

IBM RT PC Advanced Interactive Executive Operating System Version 2.1

AIX Operating System
Commands Reference

-~-------- ---------- -. ---- - - ---------------, -
Personal
Computer
Software

First Edition (January 1987)

Portions of the code and documentation described in this book were developed at the Electrical Engineering and Computer
Sciences Department at the Berkeley Campus of the University of California under the auspices of the Regents of the
University of California.

This edition applies to Version 2.1 ofIBM RT PC AIX Operating System Licensed Program and to all subsequent releases until
otherwise indicated in new editions or technical newsletters. Changes are made periodically to the information herein; these
changes will be incorporated in new editions of this publication.

References in this publication to IBM products, programs, or services do not imply that IBM intends to make these available in
all countries in which IBM operates. Any reference to an IBM program product in this publication is not intended to state or
imply that only IBM's program product may be used. Any functionally equivalent program may be used instead.

International Business Machines Corporation provides this manual "as is," without warranty of any kind, either
express or implied, including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IBM may make improvements and/or changes in the products and/or the programs described in
this manual at any time.

Products are not stocked at the address given below. Requests for copies of this product and for technical information about
the system should be made to your authorized IBM RT PC dealer.

A reader's comment form is provided at the back of this publication. If the form has been removed, address comments to IBM
Corporation, Department 997, 11400 Burnet Road, Austin, Texas 78758-3493. IBM may use or distribute whatever information
you supply in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1985, 1986, 1987
© Copyright INTERACTIVE Systems Corporation 1984
© Copyright AT&T Technologies 1984

About This Book

This book contains reference information on AIXI Operating System commands. It
describes the commands you can run and summarizes who can call them, how one calls
them, what they do, how they read input, how they write output, and how one modifies
their actions.

Who Should Use This Book

To use this book, you should be familiar with AIX or UNIX2 System 5 commands. If you
are not already familiar with AIX or UNIX System V, see Using the AIX Operating System.
If you are familiar with the commands but need to review how to use the shell and write
shell procedures, see "sh" on page 637.

How To Use This Book

Most of the AIX commands described in this book are in alphabetical order by command
name. Some related commands are combined in one description, but these commands
should appear in the "Contents" and the "Index." Therefore, if you cannot find a
particular command in this book, the "Contents" or the "Index" should tell you where to
find its description.

Task Index
A "Task Index" on page 7 appears before "Commands" on page 29 to help you locate the
commands you need to perform specific tasks. The "Task Index" begins with a "Contents"
listing general and specific tasks. To find a command to perform a specific task, go to the
page shown and look at the commands and their purposes listed on that page.

AIX is a trademark of International Business Machines Corporation.

UNIX was developed and licensed by AT&T. It is a registered trademark of AT&T in the
United States of America and other countries.

About This Book iii

Commands
"Commands" begin on page 29. The discussion of each command includes the following
information:

Purpose

Syntax

Description

Flags

Sub commands

Examples

Files

Related Information

A single-sentence description of the major function of each
command.

A syntax diagram that shows command line options. For a
discussion of how to use this syntax diagram, see "Syntax
Diagrams" on page 3.

A discussion of the command that provides more details about its
function and use.

A list of command line flags and associated parameters that
explains how they modify the action of the command.

A list of subcommands (for interactive commands) that explains
their use.

Specific examples of how you can use the command.

A list of files used by the command.

A list of related commands in this book and related discussions in
other books.

For details on other conventions used in this book, see "How To Use The Commands
Section" on page 1.

Special Key Sequences
You can use the AIX Operating System from any of several different display stations, each
of which has a different keyboard. In some cases, you must press different keys to perform
the same special function from different keyboards. This book identifies both the function
name (for example, INTERRUPT) and the necessary key sequence on the IBM RT Personal
Computer3 (in parentheses). If you do not have the IBM RT PC Keyboard, look at your
keyboard reference chart to find out which keys on your keyboard produce the special
function.

3 RT Personal Computer, RT PC and RT are trademarks of International Business Machines
Corporation.

iv Commands Reference

Reference and Information Aids
The standard system devices are described in Appendix A, "AIX Device Table" on
page 869. A cross-reference listing of commands and program packages appears in
Appendix B, "Program Cross-Reference Index" on page 871. Appendix C, "Details on
Reading Syntax Diagrams" on page 879 contains a detailed description of how to read
syntax diagrams. A "Glossary" of terms appears after the Appendixes, followed by an
"Index."

A Reader's Comment Form and Book Evaluation Form are provided at the back of this
book. Use the Reader's Comment Form at any time to give IBM information that may
improve the book. After you have become familiar with the book, use the Book Evaluation
Form to give IBM specific feedback about the book.

Prerequisite Information

• IBM RT PC Using the AIX Operating System describes using the AIX Operating
System commands, working with file systems, and developing shell procedures.

• IBM RT PC Managing the AIX Operating System provides instructions for performing
such system management tasks as adding and deleting user IDs, creating and mounting
file systems, and repairing file system damage.

Related Information

• IBM RT PC AIX Operating System Programming Tools and Interfaces describes the
programming environment of the AIX Operating System and includes information
about using the operating system tools to develop, compile, and debug programs. In
addition, this book describes the operating system services and how to take advantage
of them in a program. This book also includes a diskette that includes programming
examples, written in C language, to illustrate using system calls and subroutines in
short, working programs. (Available optionally)

• IBM RT PC AIX Operating System Technical Reference describes the system calls and
subroutines that a C programmer uses to write programs for the AIX Operating System.
This book also includes information about the AIX file system, special files, file
formats, GSL subroutines, and writing device drivers. (Available optionally)

• IBM RT PC Using AIX Operating System DOS Services provides step-by-step
information for using AIX Operating System DOS Services. (Available optionally;
packaged with IBM RT PC AIX Operating System DOS Services Reference)

• IBM RT PC AIX Operating System DOS Services Reference provides reference
information about the AIX Operating System DOS Services. This book also includes
information on sharing DOS files with Personal Computer AT Coprocessor Services,

About This Book v

and on the differences between PC DOS and DOS Services. (Available optionally;
packaged with IBM RT PC Using AIX Operating System DOS Services)

• IBM RT PC C Language Guide and Reference provides guide information for writing,
compiling, and running C language programs and includes reference information about
C language data structures, operators, expressions, and statements. (Available
optionally)

• IBM RT PC Messages Reference lists messages displayed by the IBM RT PC and
explains how to respond to the messages.

• Virtual Resource Manager Technical Reference is a two-volume set. The first volume,
Virtual Resource Manager Programming Reference, describes the VRM programming
environment, including the internal VRM routines, VRM floating-point support, use of
the VRM debugger, and the supervisor call instructions that form the Virtual Machine
Interface. The second volume, Virtual Resource Manager Device Support, describes
device IPL and configuration, minidisk management, the virtual terminal and block I/O
subsystems, as well as the interfaces to the predefined VRM device drivers. This
volume also describes the programming conventions for developing your own VRM
code and installing it on the system.

• IBM RT PC AIX Operating System Text Formatting Guide describes the functions and
capabilities of NROFF and TROFF to perform text processing tasks. (Available
optionally)

See IBM RT PC Bibliography and Master Index for order numbers of IBM RT PC
publications and diskettes.

Ordering Additional Copies of This Book

To order additional copies of this publication (without program diskettes), use either of the
following sources:

• To order from your IBM representative, use Order Number SBOF-0128.

• To order from your IBM dealer, use Part Number 79X3853.

A binder is included with the order. For information on ordering the binder and manual
separately, contact your IBM representative or your IBM dealer.

vi Commands Reference

Contents

How To Use The Commands Section 1
Command Input and Output ... 2
File Name Substitution ... 2
Syntax Diagrams .. 3
Flag and Parameter Syntax Under Description 6

Task Index

Commands
acctj* .. .

chargefee
ckpacct .. .
dodisk
lastlogin .. .
monacct .. .
nulladm .. .
prctmp
prdaily _
prtacct
remove
shutacct .. .
startup
turnacct .. .

acctcms
acctcom .. .
acctcon .. .

acctconl
acctcon2

acctdisk .. .
acctmerg
acctprc

acctprcl .. .
acctprc2 .. .
accton

actman .. .
adb .. .
admin .. .
ar
arithmetic .. .

Contents

7

29
31
32
32
32
33
33
33
33
33
34
34
34
34
34
36
38
42
42
43
44
46
48
48
49
49
50

50.1
51
58
62

vii

as .. 64
at, batch .. 66
awk .. 70
back .. 75
backup .. 76
banner .. 80
basename, dirname ... 81
be .. 83
bdiff .. 88
bfs ... 90
bj .. 94
bs .. 95
cal .. 106
calendar .. 107
cat .. 109
cb ... 111
cc ... 112
cd ... 121
cdc .. 123
cflow .. 125
chgrp ... 126.1
chmod ... 128
chown ... 132
chparm .. 133
chroot ... 134
clri .. 136
cmp ... 138
col .. 140
comb .. 142
comm .. 144
confer. .. 146
config .. 150
connect .. 152
cp ... 156
cpio ... 158
cpp .. 163
craps .. 167
crash .. 168
cron ... 172
crontab .. 174
csh .. 177
csplit .. 202
ctab ... 204
ctags .. 208
cut .. 210
cvid ... 212

viii Commands Reference

cw, checkcw .. 213
cxref 217
date ... 219
dc ... 222
dcopy .. 226
dd ... 228
defltey ... 232
del .. 234
delta ... 236
deroff .. 239
devices ... 241
devnm ... 242
df ... 244
diff .. 246
diff3 ... 249
diffmk ... 252
dircmp ... 254
diskusg .. 256
display ... 258
dos .. 262
dosdel .. 266
dosdir .. 267
dosread .. 269
doswrite .. 271
dsipc .. 272.1
dsldxprof .. 272.2
dsstate .. 272.4
dsxlate .. 272.6
du ... 273
dump .. 275
dumpfmt ... 277
echo ... 278
ed ... 280
edit .. 292
env .. 298
eqn, neqn, checkeq ... 300
errdead .. 302
errdemon ... 303
errpt, errpd ... 305
errstop ... 309
errupdate ... 310
ex ... 312
expr ... 317
factor .. 321
ff .. 322
file .. 324

Contents ix

find .. 326
fish .. 330
format ... 331
fortune ... 332
fptype ... 332.1
fsck, dfsck .. 333
fsdb ... 338
fuser ..,............. 343
fwtmp .. 345

acctwtmp ... 345
wtmpfix : 346

gdev ... 347
hpd .. 347
erase .. 348
hardcopy ... 348
tekset .. 348
td ... 348

ged .. 350
gend ... 357
get .. 359
get opt .. 367
gettext ... 370
getty ... 372
graph .. 375
graphics .. 377
greek .. 379
grep ... 381
groups ... 385
gutil ... 386

bel .. 387
cvrtopt ... 387
gd ... 388
gtop ... 388
pd ... 388
ptog ... 388
quit .. 388
rem com .. 388
whatis ... 388
yoo .. 389

hangman ... 390
help ... 391
hp ... 392
hyphen ... 394
id ... 395
init .. 396
install .. 399

x Commands Reference

installp ... 402
inusave .. 403
inurecv .. 404
inurest ... 405
ckprereq ... 406
mvmd .. 407

ipcrm .. 409
ipcs .. 411
ipctable ... 414.1
istat ... 415
join .. 417
keyboard ... 421
kill .. 422
killall .. 425
Id ... 427
lex .. 432
Ii .. 437
line .. 443
link, unlink ... 444
lint .. 446
In ... 450
locator ... 452
login ... 453
logname .. 456
lorder .. 457
Ip ... 459
Is .. 461
m4 .. 465
mail ... 470
make .. 474
makekey ... 481
mdrc ... 482
mesg ... 484
minidisks ... 485
mkdir .. 486
mkfs ... 487
mknod ... 490
mm, checkmm .. 492
mmt, checkmm .. 495
moo ... 497
mount ... 498
mv .. 502
mvdir .. 504
ncheck ... 505
ndtable .. 506.1
newform ... 507

Contents xi

newgrp .. .
news .. .
nice .. .
nl .. .
nm
nohup
nroff .. .
number
od .. .
open .. .
pack .. .

pcat .. .
unpack .. .

passwd .. .
paste
penable

pdisable
phold

pg .. .
piobe
pr .. .
profiler -........................... .

prfld .. .
prfstat .. .
prfdc, prfsnap .. .
prfpr .. .

print .. .
prof .. .
proto
prs
ps .. .
ptx
puttext .. .
pwck .. .
pwd
qdaemon .. .
quiz
rc .. .
regcmp .. .
restore .. .
rm
rmdel
rmdir
runacct
sact .. .
sadc .. .

xii Commands Reference

510
512
515
517
521
523
525
537
538
541
543
544
544
546
547
550
551
551
553
557
561
564
565
565
565
565
566
571
573
574
579
584
586
588
589
590
591
594
595
596
601
604
605
606
609
610

sal .. 611
sa2 .. 611

sag .. 612
sar .. 614
sccsdiff .. 618
sdb .. 619
sdiff ... 627
sed .. 629
setdma .. 634.1
setmnt ... 635
sh ... 637
shlib ... 660
shutdown ... 663
size .. 665
skulker .. 667
sleep .. '. 668
sno .. 670
sort .. 672
sound .. 679
spell ... 681
spline .. 684
split ... 686
splp .. 687
stat .. 690
strip ... 716
stty .. 717
su ... 724
sum ... 726
sync ... 727
tab, untab .. 728
tabs ... 729
tail .. 732
tapechk .. 734
tar .. 735
tbl ... 739
tc ... 742
tctl .. 744
tee .. 746
termdef .. 748
test .. 750
tic ... 753
time ... 754
timex .. 755
toc .. 757

dtoc ... 757
ttoc .. 758

Contents xiii

vtoc ... 758
touch .. 760
tplot ... 762
tput ... 763
tr ... 765
trace ... 768
trcrpt .. 772
trcstop ... 774
trcupdate ... 775
true ... 777
tsort ... 778
ttt ... 780
tty .. 781
turnon ... 783
ugtable ... 784
umask .. 784.1
umount .. 786
uname ... 788
unget .. 790
uniq ... 792
units ... 793
updatep .. 796

inudocm .. 799
inuupdt .. 800

users .. 802
uuclean .. 805
uucp ... 807

uulog .. 809
uuname .. 809

uustat ... 810
uusub .. 813
uuto ... 815

uupick ... 816
uux .. 818
val .. 821
varyon ... 823
vc ... 826
verify .. 830
vi, vedit, view ... 832
vrmconfig .. 842
wait ... 844
wall ... 845
wc ... 846
what ... 848
who ... 850
write ... 853

xiv Commands Reference

wump .. 856
xargs .. 857
yacc ... 861
300 .. 863
4014 .. 865
450 .. 866

Appendix A. AIX Device Table

Appendix B. Program Cross-Reference Index

869

871

Appendix C. Details on Reading Syntax Diagrams 879
File Input ... 880
Syntax Diagrams .. 881

Figures

Glossary

889

891

Index .. 909

Contents xv

xvi Commands Reference

How To Use The Commands Section

This book contains reference information about AIX commands. This information includes syntax
diagrams to illustrate how to enter the commands on the command line, descriptions of how
commands work, descriptions of command flags and subcommands, lists of related files, and
cross-references to related commands in this book and related material in other books.

The following includes a description of:

• Command input and output

• File name substitution by the shell

• Syntax diagrams

• Flag and parameter syntax.

How To Use The Commands Section 1

Command Input and Output

Many commands take their input from standard input and write their output to standard output.
By default, standard input comes from the keyboard, and standard output goes to the display. It is
important to remember this as you read the command descriptions, since they describe the default
action. In this context, the verb display means "write to the standard output." Any command that
reads standard input and writes to standard output can have its input or output redirected to a file
and can be used in a pipeline, where the standard output of a previous command is directed to the
standard input of the next command. For more information on pipelines, see "sh" on page 637.

There are a few commands that must have a file name supplied or that must read standard input.
You can see what a particular command can read by looking at the syntax diagram at the beginning
of the description of the command. For instructions on interpreting syntax diagrams, see "Syntax
Diagrams" on page 3.

File Name Substitution

When file is supplied as an argument to either a command or a flag, you can automatically produce a
list of file name arguments by specifying a pattern that the shell matches against the file names in a
directory.

Most characters in such a pattern match themselves, but you can also use some special
pattern-matching characters in your pattern. These special characters are:

*
?

[...]
[! ...]

Matches any string, including the null string.

Matches anyone character.

Matches anyone of the characters enclosed in square brackets.

Matches any character other than one of the characters that follow the exclamation mark
within square brackets.

Inside square brackets, a pair of characters separated by a - (minus) specifies a set of all characters
lexically within the inclusive range of that pair, so that [a-dyJ is equivalent to [abcdy].

Using pattern-matching characters in file names on the command line has some restrictions. If the
first character of a file name is a . (dot), it can be matched only by a pattern that begins with a dot.
For example, * matches the file names myfi 1 e and yourfi 1 e, but not .myfi 1 e and .yourfi 1 e. To
match these file names, use a pattern such as:

.*file

If a pattern does not match any file names, the pattern itself is returned as the result of the match.

2 Commands Reference

Note: File and directory names should not contain the characters *, ?, [, or] because this may
create infinite loops during pattern matching attempts.

Syntax Diagrams

Before each command discussion, you will find a syntax diagram that shows you how to enter that
command correctly on the command line. These diagrams show:

• Which flags can be entered on the command line
• Which flags must take parameters
• Which flags have optional parameters
• Default values of flags and parameters, if any
• Which flags can and cannot be entered together
o Where you must enter flags or parameters and where you have a choice
• Where you can repeat flag and parameter sequences.

The following discussion explains how to interpret the syntax diagrams. It begins with an example
diagram that shows most of the conventions used in diagrams. Each part of the diagram is labeled
and explained. Following the example are sample diagrams taken from this book.

Diagram items that must be entered literally on the command line are in bold. These items include
the command name, all flags, and literal characters. Variable items are in italics. These items
include parameters that follow flags, and parameters that the command reads, such as files and
directories. If an item has a default value, it is shown in the normal font and the path is shown in
bold. You do not enter on the command line any item shown in the normal font on a bold path.

How To Use The Commands Section 3

The following diagram is an example to illustrate the conventions used in the syntax diagrams:

III
command name

[§] GO TO

~)TNE
..........

ffi] REQUIRED ITEM

[l] CONTINUE DIAGRAM [II DEFAULT VALUE UQ] INPUT OR OUTPUT

~)-(Evalu~ ~
~ D-J. EparmF\.. filer

~ parm
/f

!]J OPTIONAL PARAMETER

OL805370

1 Do not put a blank between these items.
OL805308

You interpret the diagram as follows:

1 command name

2 SINGLE CHOICE BOX

3 DEFAULT LINE

4 REPEAT ARROW

4 Commands Reference

The first item in the diagram is the name of the command you want to
invoke. It is in bold, so it must be entered exactly as it appears in the
diagram.

After the command name, the path branches into two paths. You can
follow either path.

If you follow the lower path, you encounter a box with the words one of
over it. You can choose only one item from this box.

If you follow the upper path, you bypass the single choice box,and enter
nothing. The bold line around the box is a default line, which means
that you do not have to enter anything from that part of the diagram.
Exceptions are usually explained under "Description." One important
exception, the blank default line around input and output files, is
explained in item 10.

When you follow a path that takes you to a box with an arrow around it,
you must choose at least one item from the box. Then you can either
follow the arrow back around and continue to choose items from it, or
you can continue along the path. When following the arrow around just
the box (rather than an arrow that includes several branches in the
diagram), do not choose the same item more than once.

5 REQU I RED ITEM Following the branch with the repeat arrow is a branch with three
choices and no default line around them. This means that you must
choose one of A, B, or C.

6 GO TO NEXT LIN E If a diagram is too long to fit on one line, this character tells you to go to
the next line of the diagram to continue entering your command line.
Remember, the diagram does not end until you reach the vertical mark.

7 CO NT I NU E 0 I AGRAM This character shows you where to continue with the diagram after it
breaks on the previous line.

S OPTIONAL PARAMETER If a flag can, but does not have to, take a parameter, the path branches
after the flag to show this. If you cannot enter a space between the flag
and parameter, you are told in a footnote.

9 DEFAULT VALUE Often, a command has default values or actions that it will follow if you
do not enter a specific item. These default values are indicated in
normal font in the default line if they are equivalent to something you
could enter on the command line (for example, a flag with a value). If
the default is not something you can enter on the command line, it is not
indicated in the diagram. However, it is discussed under "Flags."

Note: Default values are included in the diagram for your information.
Do not enter them on the command line.

10 I NPUT OR OUTPUT A command that can read either standard input or input files has an
empty default line around the file parameter. If the command can write
its output to either a file or to standard output, it is also shown with a
default line around the output file parameter. If a command can read
only from standard input, input is not shown in the diagram, and
standard input is assumed. If a command writes only to standard output,
this is also assumed and output is not included in the diagram. When
you must supply a file name for input or output, the file parameter is
included in the diagram without a default line around it.

Following are examples of how to enter this command based on this syntax diagram.

command name A
command name C
cOlnmand name a B
command name d B
command name e A
command name e 9 f A
command name C 0
command name C 08
command name A E7
command name B myfi 1 e
command name a e 9 B 03 E6 myfile
command name d f e h C 0 myfile

How To Use The Commands Section 5

Note: Although the diagram implies that the order of the flags is important, it is usually not. When
the order of the flags is important, it is indicated in the diagram, under "Flags," or in both places.
With this in mind, an additional example of how to enter this command is:

command name E9 a 0 9 A h f myfile
This is a brief discussion of how to read syntax diagrams. If you need more information on the
syntax diagrams, Appendix C, "Details on Reading Syntax Diagrams" on page 879 shows several
more examples from this book, and explains in detail how to interpret the diagrams.

Flag and Parameter Syntax Under Description

The description of flags and parameters under "Description" uses the following conventions:

bold Flags and other items in bold are to be entered literally.

italics

[]

Items in italics are parameter names for which you substitute an appropriate value in that
position on the command line. For example, if you see file, you should type in the name of
a file in that position.

Items in brackets are optional. The only exception is brackets that are themselves in bold.
Brackets in bold are part of what is to be entered literally.

Items followed by an ellipsis can be repeated. Thus, if you see file . .. , you can type
several file names separated by blanks.

Using these conventions, the following string:

-Dname[= value]

shows that, with the -D flag,the name parameter is required but assigning a value to name is
optional. The following are valid ways to specify this flag and parameter combination:

-Daxis
-Daxis=lO
The next string shows a parameter that can be replaced by several values:

-I file . ..

The following are valid ways to enter the -I flag:

-1 memo letter
-1 memo
-1 letter

6 Commands Reference

Task Index

This index lists most of the commands that are described in this book and gives the purpose of each
command. The commands are grouped by task to help you find a command by the task it performs.

Operating and Managing the System .. 9
Starting and Stopping the System ... 9
Installing Programs ... 9
Configuring the System .. 9
Controlling System Processes ... 10
Displaying and Printing Data and Text ... 11
Performing Calculator Functions .. 11
Controlling System Security .. 12
Displaying System Statistics and Information 12
Performing System Accounting Functions 14
Managing File Systems .. 14
Analyzing System Activity ,....................................... 15
Backing Up and Restoring System Files ... 16

Working with Files and Directories .. 16
Working with Directories .. 16
Archiving Files .. 16
Comparing Files ... 17
Copying and Moving Files ... 17
Creating and Editing Files ... 17
Deleting Files ... 18
Merging and Splitting Files .. 18
Printing and Displaying Files ... 18
Scanning Files .. 19
Sorting Files .. 19
Displaying, Setting, and Changing File Permission 19

Working with Data ... 20
Working with Text ... 20

Creating and Editing Text Files ... 20
Formatting Text ... 21

Communicating with Other Users .. 22
Communicating with Other Systems .. 22
Working with Disks and Diskettes ... 22
Working with Tape ... 23
Working with Work Stations ... 23
Working with Graphics .. 24

Task Index 7

Developing Programs ... 24
Programming in Assembler ... 24
Programming in C ... 24
Programming in Miscellaneous Languages 25
Programming in Shell ... 25
Handling Messages ... 26
Debugging Programs .. 26

Managing Progrllills .. 26
Making and Ins·:.alling Programs .. 26
Managing Source Programs Using the Source Code Control System (SCCS) 26
Managing Object Files .. 27

Playing Games .. 28

8 Commands Reference

Operating and Managing the System

Starting and Stopping the System
actman

date

getty

in it

login

newgrp

open

passwd

penable

rc

shutdown

users

Lets you interact with multiple virtual terminals.

Displays or sets the date.

Sets the characteristics of ports.

Initializes the system.

Allows you to sign on to the system.

Changes your primary group identification.

Opens a virtual terminal.

Changes your login password.

Controls or reports the availability of login ports.

Performs normal startup initialization.

Ends system operation.

Adds, deletes and changes user and group information.

Installing Programs
ckprereq

cvid

install

installp

mvmd

updatep

vrmconfig

Checks the level of the prerequisite licensed program.

Creates a VRM install diskette for backup purposes.

Installs a command.

Installs a program.

Updates the VRM minidisk.

Updates one or more programs.

Installs peripheral devices.

Configuring the System
chparm

config

devices

defkey

Changes or examines system parameters.

Extracts configuration information from configuration files.

Adds, deletes, changes, and displays device information.

Defines keyboard key assignments.

Task Index 9

TNL SN20-9861 (26 June 1987) to SC23-0790-0

display

I dsipc

I dsxlate

I dsldxprof

env

getty

keyboard

locator

minidisks

mdrc

mknod

mvmd

penable

pdisable

phold

sound

splp

stty

termdef

users

varyon

verify

vrmconfig

Selects the physical display that an existing or new virtual terminal uses and
sets colors and fonts.

Installs the Interprocess Communication key mapping in the kernel.

Installs Distributed Services UID/GID translate tables into the kernel.

Loads translate information into the UID/GID translate profiles.

Sets the environment for execution of a command.

Sets the characteristics of ports.

Controls the delay and repetition rates of the keyboard.

Controls the sample rate of the locator.

Adds, deletes, changes, and displays minidisks.

Allows you to reinstall a user-created mini disk after you have reinstalled AIX.

Creates a special file.

Updates the VRM minidisk.

Controls or reports the availability of login ports.

Kills the logger running on the specified port.

Prevents new users from logging into a port.

Controls the volume and click of the keyboard speaker.

Changes or displays printer driver settings.

Sets, resets, or reports work station operating parameters.

Queries terminal characteristics.

Adds, deletes and changes user and group information.

Makes an IBM 9332 Direct Access Storage Device and the minidisks and file
systems defined on it available for use.

Turns write verification on or off for a particular minidisk.

Installs peripheral devices.

Controlling System Processes
at

cron

crontab

errdemon

errstop

Runs commands at a later time.

Runs commands automatically.

Submits a schedule of commands to cron.

Starts the error-logging demon.

Terminates the error-logging demon.

10 Commands Reference

kill

killall

nice

nohup

open

prs

qdaemon

sleep

trace

trcstop

wait

Sends a signal to a running process.

Cancels all processes except the calling process.

Runs a command at a different priority.

Runs a command without hangups and quits.

Opens a virtual terminal.

Displays a Source Code Control System (SCCS) file.

Schedules jobs enqueued by the print command.

Suspends execution for an interval.

Starts the trace function.

Stops the trace function.

Waits for completion of a process.

Displaying and Printing Data and Text
banner

cal

cat

calendar

col

echo

lp

pg

pr

piobe

print

qdaemon

splp

Writes character strings in large letters to standard output.

Displays a calendar.

Concatenates or displays files.

Writes reminder messages to standard output.

Processes text having reverse linefeeds and forward/reverse half-linefeeds for
output to standard output.

Writes its arguments to standard output.

Prints a file in a format suitable for sending to a line printer.

Formats files to the work station.

Writes a file to standard output.

Writes a file to standard output in a format suitable for sending to a line
printer.

Enqueues a file.

Schedules jobs enqueued by the print command.

Changes or displays printer driver settings.

Performing Calculator Functions
bc

dc

Provides an interpreter for arbitrary-precision arithmetic language.

Provides an interactive desk calculator for doing arbitrary-precision integer
arithmetic.

Task Index 11

TNL SN20-9861 (26 June 1987) to SC23-0790-0

factor Factors a number.

Controlling System Security
chgrp

chmod

chown

id

logname

login

newgrp

passwd

pwck

su

umask

users

Changes the group ownership of a file or directory.

Changes permission codes.

Changes the owner of files or directories.

Displays the system identity of the user issuing the command.

Displays your login name.

Allows you to sign on to the system.

Changes your primary group identification.

Changes your login password.

Checks the password and group files for inconsistencies.

Obtains the privileges of another user, including superuser authority.

Sets file-creation permission code mask.

Adds, deletes and changes user and group information.

Displaying System Statistics and Information
chparm
date

devices

diskusg

I dsstate

errpt

errupdate

file

fuser

groups

help

id

ipcs

istat

logname

Changes or examines system parameters.
Displays or sets the date.

Adds, deletes, changes, and displays device information.

Generates disk accounting data by user ID.

Sets the state of the Distributed Services kernel logic.

Processes a report of logged errors.

Updates an error report template.

Determines file type.

Identifies processes using a file or file structure.

Displays your group membership.

Provides information about a Source Code Control System (SCCS) message or
command or about certain non-SCCS commands.

Displays the system identity of the user issuing the command.

Reports inter-process communication facility status.

Examines i-nodes.

Displays your login name.

12 Commands Reference

minidisks

ncheck

news

od

penable

prfld

profiler

ps

pwck

pwd

sact

sadc

sag

sar

splp

stty

sum

time

timex

tty

uname

uustat

Adds, deletes, changes, and displays minidisks.

Generates path names from i-numbers.

Writes system news items to standard output.

Writes the contents of storage to the standard output.

Controls or reports the availability of login ports.

Profiles the operating system.

Displays program profile data.

Reports process status.

Checks the password and group files for inconsistencies.

Displays the path name of the working directory.

Displays current Source Code Control System (SCCS) file editing status

Provides a system activity report package.

Displays a graph of system activity.

Collects, reports, or saves system activity information.

Changes or displays printer driver settings.

Sets, resets, or reports work station operating parameters.

Displays the checksum and block count of a file.

Times the execution of a command.

Times a command, and reports process data and system activity.

Writes to standard output the full path name of your work station.

Displays the name of the current operating system.

Reports the status of and provides rudimentary job control for the uucp
command.

Task Index 13

uusub

who

Defines and monitors a uucp subnetwork structure.

Identifies the users currently logged in.

Performing System Accounting Functions
acctdisk

acctcms

acctcom

acctconl

acctmerg

acctprcl

acct/*

diskusg

du

fwtmp

runacct

sadc

Performs disk-usage accounting.

Produces command usage summaries from accounting records.

Displays selected process accounting record summaries.

Performs connect-time accounting.

Merges total accounting files.

Performs process accounting.

Provides accounting shell procedures.

Generates disk accounting data by user ID.

Summarizes disk usage.

Manipulates connect accounting records.

Runs daily accounting.

Provides a system activity report package.

Managing File Systems
basename

chroot

clri

cpio

crash

dcopy

devnm

df

du

ff

fsck

fsdb

fuser

Returns the base name of a string parameter.

Changes the root directory of a command.

Clears the specified i-node.

Copies files into and out of archive storage and directories.

Examines system images.

Copies file systems for the best access time.

N ames a device.

Reports number of available disk blocks.

Summarizes disk usage.

Lists the file names and statistics for a file system.

Checks file system consistency and interactively repairs the file system.

Debugs file systems.

Identifies processes using a file or file structure.

14 Commands Reference

env

istat

link

mdrc

mkfs

mknod

mount

ncheck

proto

setmnt

skulker

sync

unlink

umount

varyon

Sets the environment for execution of a command.

Examines i-nodes.

Performs the link system call.

Allows you to reinstall a user-created minidisk after you have reinstalled AIX.

Makes a file system.

Creates a special file.

Makes a file system available for use.

Generates path names from i-numbers.

Constructs a prototype file for a file system.

Creates mount table.

Cleans up file systems by removing unwanted files.

Updates the superblock and writes buffered files to the fixed disk.

Performs the unlink system call.

Makes a file system unavailable for use.

Makes an IBM 9332 Direct Access Storage Device and the minidisks and file
systems defined on it available for use.

Analyzing System Activity
errdead

errdemon

errpt

errstop

errupdate

dumpfmt

fuser

prfld

time

trace

trcrpt

trcstop

trcupdate

Extracts error records from dump.

Starts the error-logging demon.

Processes a report of logged errors.

Terminates the error-logging demon.

Updates an error report template.

Formats the VRM dump file.

Identifies processes using a file or file structure.

Profiles the operating system.

Times the execution of a command.

Starts the trace function.

Formats a report from the trace log file.

Stops the trace function.

Updates trace format templates.

Task Index 15

Backing Up and Restoring System Files
backup

pack

restore

tapechk

tar

tctl

Backs up files.

Compresses files.

Copies back files created by the backup command.

Performs consistency checking of the streaming tape device.

Manipulates tape archives.

Gives commands to streaming tape.

Working with Files and Directories

Working with Directories
cd

chroot

dircmp

dosdir

f"md

Ii

Is

mkdir

mvdir

pwd

rm

rmdir

Archiving Files
ar

backup

cpio

lorder

pack

Changes the current directory.

Changes the root directory of a command.

Compares two directories and the contents of their common files.

Lists the directory for DOS files.

Finds files matching expression.

Lists the contents of a directory.

Displays the contents of a directory.

Makes a directory.

Moves (renames) a directory.

Displays the path name of the working directory.

Removes files or directories.

Removes a directory.

Maintains portable libraries used by the linkage editor.

Backs up files.

Copies files into and out of archive storage and directories.

Finds the best order for member files in an object library.

Compresses files.

16 Commands Reference

restore

shlib

tar

Copies back files created by the backup command.

Creates a shared library.

Manipulates tape archives.

Comparing Files
cmp

comm

bdiff

diff

diff3

diffmk

dircmp

sdiff

sccsdiff

uniq

Compares two files.

Selects or rejects lines common to two sorted files.

Uses diff to find differences in very large files.

Compares text files.

Compares three files.

Marks differences between files.

Compares two directories and the contents of their common files.

Compares two files and displays the differences in a side-by-side format.

Compares two versions of a Source Code Control System (SCCS) file.

Deletes repeated lines in a file.

Copying and Moving Files
cat

cp

dd

dosread

doswrite

In

mv

uucp

uuto

Concatenates or displays files.

Copies files.

Converts and copies a file.

Copies a DOS file.

Copies AIX files to DOS files.

Links files.

Moves files.

Copies files from one AIX system to another.

Copies public files from one AIX system to another system with local system
control of file access.

Creating and Editing Files
admin

cdc

ed

Creates and initializes SCCS files.

Changes the comments in a Source Code Control System (SCCS) delta.

Edits text by line.

Task Index 17

edit

ex

get

mknod

sed

uniq

vi

Deleting Files
del

dosdel

rm

uniq

uuclean

Provides a simple line editor for the new user.

Edits lines interactively, with screen display.

Creates a specified version of a Source Code Control System (SCCS) file.

Creates a special file.

Provides a stream editor.

Deletes repeated lines in a file.

Edits files with a full screen display.

Deletes files if the request is confirmed.

Deletes DOS files.

Removes files or directories.

Deletes repeated lines in a file.

Deletes from the uucp spool directory or a named directory selected files older
than a specified number of hours.

Merging and Splitting Files
csplit

cut

join

paste

sort

split

tail

Splits files by context.

Writes out selected fields from each line of a file.

Joins data fields of two files.

Merges the lines of several files or subsequent lines in one file.

Sorts or merges files.

Splits a file into pieces.

Writes a file to standard output, beginning at a specified point.

Printing and Displaying Files
cat Concatenates or displays files.

cut Writes out selected fields from each line of a file.

lp Prints a file in a format suitable for sending to a line printer.

nl Numbers lines in a file.

od Writes the contents of storage to the standard output.

pg Formats files to the work station.

18 Commands Reference

piobe

pr

prs

print

qdaemon

splp

tail

Scanning Files
awk

bfs

file

find

grep

sed

spell

uniq

we

what

Sorting Files
lorder

sort

tsort

Writes a file to standard output in a format suitable for sending to a line
printer.

Writes a file to standard output.

Displays a Source Code Control System (SCCS) file.

Enqueues a file.

Schedules jobs enqueued by the print command.

Changes or displays printer driver settings.

Writes a file to standard output, beginning at a specified point.

Finds lines in files matching specified patterns and performs specified actions
on them.

Scans files.

Determines file type.

Finds files matching expression.

Searches a file for a pattern.

Provides a stream editor.

Finds spelling errors.

Deletes repeated lines in a file.

Counts the number of lines, words, and characters in a file.

Displays identifying information in files.

Finds the best order for member files in an object library.

Sorts or merges files.

Sorts an unordered list of ordered pairs (a topological sort).

Displaying, Setting, and Changing File Permission
ehgrp

ehmod

ehown

groups

Changes the group ownership of a file or directory.

Changes permission codes.

Changes the owner of files or directories.

Displays your group membership.

Task Index 19

Ii

Is

umask

Lists the contents of a directory.

Displays the contents of a directory.

Sets file-creation permission code mask.

Working with Data

cal

calendar

echo

ed

edit

ex

join

tr

units

vi

wc

Displays a calendar.

Writes reminder messages to standard output.

Writes its arguments to standard output.

Edits text by line.

Provides a simple line editor for the new user.

Edits lines interactively, with screen display.

Joins data fields of two files.

Translates characters.

Converts units in one measure to equivalent units in another measure.

Edits files with a full screen display.

Counts the number of lines, words, and characters in a file.

Working with Text

Creating and Editing Text Files
ed

edit

ex

hyphen

spell

sed

tab

tr

untab

vi

Edits text by line.

Provides a simple line editor for the new user.

Edits lines interactively, with screen display.

Finds hyphenated words.

Finds spelling errors.

Provides a stream editor.

Changes space characters into tabs.

Translates characters.

Changes tabs into space characters.

Edits files with a full screen display.

20 Commands Reference

Formatting Text
col

greek

hp

hyphen

cw

deroff

diffmk

eqn

mm

mmt

newform

nl

nroIT

paste

ptx

tab

tabs

tbl

tc

troff

untab

300

4014

450

Processes text having reverse linefeeds and forward/reverse half-linefeeds for
output to standard output.

Converts output for a TELETYPE Model 37 work station to output for other
work stations.

Handles special functions for the HP2640- and HP2621-series terminals.

Finds hyphenated words.

Prepares constant-width text for troIT.

Removes nroff, troff, tbl, and eqn constructs from files.

Marks differences between files.

Formats mathematical text for the nroff and troff commands.

Displays or checks documents formatted with Memorandum Macros.

Typesets documents, manual pages, view graphs, and slides.

Changes the format of a text file.

Numbers lines in a file.

Formats text for printing devices.

Merges the lines of several files or subsequent lines in one file.

Generates a permuted index.

Changes space characters into tabs.

Sets tab stops on work stations.

Formats tables for the nroff and troff commands.

Simulates phototypesetter output for a Tektronix 4014 work station.

Formats text for a phototypesetter.

Changes tabs into space characters.

Handles special line-motion functions for DASI 300/300s work stations.

Formats a full page 66-line screen display for a Tektronix 4014 work station.

Handles special line-motion functions for the DASI 450 work station.

Task Index 21

Communicating with Other Users

confer

mail

mesg

news

sum

wall

who

write

Provides an on-line conferencing system.

Sends messages to system users and displays messages from system users.

Permits or refuses write messages.

Writes system news items to standard output.

Displays the checksum and block count of a file.

Writes a message to all logged-in users.

Identifies the users currently logged in.

Sends messages to other users on the system.

Communicating with Other Systems

connect

sum

uuclean

uucp

uustat

uusub

uuto

uux

Establishes a connection to a remote system.

Displays the checksum and block count of a file.

Deletes from the uucp spool directory or a named directory selected files older
than a specified number of hours.

Copies files from one AIX system to another.

Reports the status of and provides rudimentary job control for the uucp
command.

Defines and monitors a uucp subnetwork structure.

Copies public files from one AIX system to another system with local system
control of file access.

Runs a command on another AIX system.

Working with Disks and Diskettes

format

mdrc

minidisks

mount

umount

Formats diskettes.

Allows you to reinstall a user-created mini disk after you have reinstalled AIX.

Adds, deletes, changes, and displays minidisks.

Makes a file system available for use.

Makes a file system unavailable for use.

22 Commands Reference

varyon

verify

TNL SN20-9861 (26 June 1987) to SC23-0790-0

Makes an IBM 9332 Direct Access Storage Device and the minidisks and file
systems defined on it available for use.

Turns write verification on or off for a particular minidisk.

Working with Tape

tapechk

tar

tctl

Performs consistency checking of the streaming tape device.

Manipulates tape archives.

Gives commands to streaming tape.

Working with Work Stations

display

echo

hp

keyboard

I defkey

locator

penable

stty

tabs

termdef

tic

tput

tty

300

4014

450

Selects the physical display that an existing or new virtual terminal uses and
sets colors and fonts.

Writes its arguments to standard output.

Handles special functions for the HP2640- and HP2621-series terminals.

Controls the delay and repetition rates of the keyboard.

Defines keyboard key assignments.

Controls the sample rate of the locator.

Controls or reports the availability of login ports.

Sets, resets, or reports work station operating parameters.

Sets tab stops on work stations.

Queries terminal characteristics.

Translates terminfo files from source to compiled format.

Queries the terminfo file.

Writes to standard output the full path name of your work station.

Handles special line-motion functions for DASI 300/300s work stations.

Formats a full page 66-line screen display for a Tektronix 4014 work station.

Handles special line-motion functions for the DASI 450 work station.

Task Index 23

Working with Graphics

gdev

ged

gend

graph

graphics

gutil

spline

stat

toc

tplot

Provides graphical device routines and filters.

Displays, makes, and edits graphical files on Tektronix 4010 terminals.

Provides a general graphics device backend.

Draws a graph.

Accesses graphical and numerical commands.

Provides graphical utility programs.

Interpolates smooth curve.

Provides tools for analyzing numerical data.

Provides graphical table of contents routines.

Produces plotting instructions for a particular work station.

Developing Programs

Programming in Assembler
as Assembles a 'source. file.

sdb Provides a symbolic debugger for C and assembler programs.

Programming in C
cb

cc

cflow

cpp

cxref

factor

ipcrm

m4

lex

lint

Puts C source code into a form that is easily read.

Compiles C programs.

Generates a C flow graph of external references.

Performs file inclusion and macro substitution on C Language source files.

Creates a C program cross-reference listing.

Factors a number.

Removes message queue, semaphore set or shared memory identifiers.

Preprocesses files, expanding macro definitions.

Generates a C Language program that matches patterns for simple lexical
analysis of an input stream.

Checks C programs for potential problems.

24 Commands Reference

regcmp

sdb

tic

yacc

Compiles patterns.

Provides a symbolic debugger for C and assembler programs.

Translates term info files from source to compiled format.

Generates a LR(l) parsing program from input consisting of a context-free
grammar specification.

Programming in Miscellaneous Languages
be

bs

lex

m4

sno

Provides an interpreter for arbitrary-precision arithmetic language.

Compiles and interprets modest-sized programs.

Generates a C Language program that matches patterns for simple lexical
analysis of an input stream.

Preprocesses files, expanding macro definitions.

Provides a SNOBOL interpreter.

Programming in Shell
basename

csh

cron

crontab

echo

env

expr

find

get opt

line

nice

nohup

open

sh

sleep

tee

test

Returns the base name of a string parameter.

Interprets commands read from a file or entered from the keyboard.

Runs commands automatically.

Submits a schedule of commands to cron.

Writes its arguments to standard output.

Sets the environment for execution of a command.

Evaluates arguments as an expression.

Finds files matching expression.

Parses command line flags and parameters.

Reads one line from the standard input.

Runs a command at a different priority.

Runs a command without hangups and quits.

Opens a virtual terminal.

Interprets commands read from a file or entered at the keyboard.

Suspends execution for an interval.

Displays the output of a program and copies it into a file.

Evaluates conditional expressions.

Task Index 25

TNL SN20-9861 (26 June 1987) to SC23-0790-0

time

true

wait

xargs

Times the execution of a command.

Returns an exit value of zero.

Waits for completion of a process.

Constructs argument lists and runs commands.

Handling Messages
gettext

puttext

Extracts message/insert/help descriptions.

Updates an output file that contains message/insert/help descriptions.

Debugging Programs
crash

dump

dumpfmt

od

prof

ladb

sdb

time

timex

Examines system images.

Dumps selected parts of an object file.

Formats the VRM dump file.

Writes the contents of storage to the standard output.

Displays program profile data.

Provides a general purpose debugger.

Provides a symbolic debugger for C and assembler programs.

Times the execution of a command.

Times a command,' and reports process data and system activity.

Managing Programs

Making and Installing Programs
make

install

installp

updatep

Maintains up-to-date versions of programs.

Installs a command.

Installs a program.

Updates one or more programs.

Managing Source Programs Using the Source Code Control System (SCCS)
admin

cdc

comb

Creates and initializes SCCS files.

Changes the comments in a Source Code Control System (SCCS) delta.

Combines SCCS deltas.

26 Commands Reference

delta

get

help

prs

rmdel

sact

sccsdiff

unget

val

what

Creates a delta in a Source Code Control System file.

Creates a specified version of a Source Code Control System (SCCS) file.

Provides information about a Source Code Control System (SCCS) message or
command or about certain non-SCCS commands.

Displays a Source Code Control System (SCCS) file.

Removes a delta from a Source Code Control System (SCCS) file.

Displays current Source Code Control System (SCCS) file editing status.

Compares two versions of a Source Code Control System (SCCS) file.

Cancels a previous get command.

Validates Source Code Control System (SCCS) files.

Displays identifying information in files.

Managing Object Files
ar

as

dump

ld

lorder

make

prof

nm

size

strip

touch

tsort

Maintains portable libraries used by the linkage editor.

Assembles a source file.

Dumps selected parts of an object file.

Links object files.

Finds the best order for member files in an object library.

Maintains up-to-date versions of programs.

Displays program profile data.

Displays the symbol table of an object file.

Displays the section sizes of common object files.

Removes symbol and line number information from a common object file.

Updates the access and modification times of a file.

Sorts an unordered list of ordered pairs (a topological sort).

Task Index 27

Playing Games

arithmetic

back

bj

craps

fish

fortune

hangman

moo

number

quiz

ttt

turnon

wump

Tests arithmetic skills.

Plays backgammon.

Plays blackj ack.

Plays craps.

Plays the card game Go Fish.

Tells a fortune.

Plays hangman, the word-guessing game.

Plays a number-guessing game.

Displays the written form of a number.

Tests your know ledge.

Plays tic-tac-toe.

Turns on execute permission for games.

Plays the game Hunt the Wumpus.

28 Commands Reference

/'

Commands

Commands 29

30 Commands Reference

acct/*

Purpose

Provides accounting shell procedures.

Syntax

/usr/lib/acct/chargefee - user - number-l

1000

/usr/lib/acct/ckpacct -C ~
numblocksJ

/usr/lib/acct/dodisk ~
\-01 \!!!d

/usr /Iib/ acct/lastlogin -l

/usr/lib/acct/monacct ~
~numberr

/usr/lib/acct/nulladm T file -r

/usr/lib/acct/prctmp -l

-p:mmdd>r /usr/lib/accl/prdaily _ c

1 The default number is the current month.
2 The defaultmmddis the current day.

acct/*

OLB05236

0L805237

Commands 31

TNL SN20-9861 (26 June 1987) to SC23-0790-0
acct/*

/usr/lib/accl/prtacct i-I fie/dspec K ~
-v , heading'

/usr /lib/acct/remove

/usr/lib/acct/shutacct ~ I
~'reason,r

/ usr /Iib/ acct/startup ---I

/usr/lib/acct/turnacct -

Description

Note: You should not share accounting files among nodes in a Distributed Services
system. Each node should have its own copy of the various accounting files.

chargefee

01.805238

The chargefee command charges the specified number of units to the specified user.
number can have an integer or decimal value. It writes a record to /usr/adm/fee, to be
merged with other accounting records by the runacct command.

ckpacct

The ckpacct command checks the size of /usr/adm/pacct. If the size exceeds the number
specified in numb locks, ckpacct invokes turnacct switch. (The default value for
numblocks is 1000.) If the number of free disk blocks in the /usr file system falls below 500,
ckpacct automatically turns off the collection of process accounting records by invoking
turnacct off. When 500 blocks are again available, accounting is activated again. This
feature is sensitive to how frequently ckpacct is run (usually by cron).
do disk
The dodisk command performs the disk-usage accounting functions. cron normally runs
this command periodically. By default, it does disk accounting on the special files whose
stanzas in /etc/filesystems contain the attribute account = true. If you specify the -0

flag, it does a slower version of disk accounting by login directory.

The file parameter specifies the one or more file system names where disk accounting is to
be done. If you specify any file names, disk accounting is done on only these file systems.
If you do not specify -0, file names should be the special file names of mountable file

32 Commands Reference

acct/*

Purpose

Provides accounting shell procedures.

Syntax

/usr /Iib/acct/chargefee - user - number---1

1000

/usr/lib/acct/ckpacct --c ~
numblocksF

/usr/lib/acct/dodisk ~
\-0/ \!!!d

/usr/lib/acct/lastlogin ---1

/usr/lib/accl/monacct -{ J-j
number1

.

/usr/lib/acct/nulladm T file ~

/usr /Iib/ acct/prctmp ---l

~mmdd~ /usr/llb/accl/prdaily _-c

1 The default number is the current month.
2 The defaultmmddis the current day.

acct/*

OL805236

OLB05237

Commands 31

acct/*

/usr/lib/acctfprtacct ---l :::1 fieldspec K. ..~
v headIng

/usr/lib/acct/remove ---l

/usr/lib/acct/shutacct ... ~ I
~'reason·r

/usr/lib/acct/startup ---l

/usr /Iib/ acct/turnacct -

OL805238

Description

chargefee
The chargefee command charges the specified number of units to the specified user.
number can have an integer or decimal value. It writes a record to /usr/adm/fee, to be
merged with other accounting records by the runacct command.

ckpacct
The ckpacct command checks the size of /usr/adm/pacct. If the size exceeds the number
specified in numblocks, ckpacct invokes turnacct switch. (The default value for
numblocks is 1000.)

If the number of free disk blocks in the /usr file system falls below 500, ckpacct
automatically turns off the collection of process accounting records by invoking
turnacct off. When 500 blocks are again available, accounting is activated again. This
feature is sensitive to how frequently ckpacct is run (usually by cron).

dodisk
The do disk command performs the disk-usage accounting functions. cron normally runs
this command periodically. By default, it does disk accounting on the special files whose
stanzas in /etc/filesystems contain the attribute account = true. If you specify the -0

flag, it does a slower version of disk accounting by login directory.

The file parameter specifies the one or more file system names where disk. accounting is to
be done. If you specify any file names, disk accounting is done on only these file systems.
If you do not specify -0, file names should be the special file names of mountable file

32 Commands Reference

/

acct/*

systems. If you specify both -0 and file names, the files should be mount points of mounted
file systems.

lastlogin
The lastlogin command updates the file /usr/adm/acct/sum/loginlog to show the last
date each user logged on. runacct normally calls this command.

monacct
The monacct command performs monthly (or periodic) accounting. cron should run this
command once each month or accounting period. number indicates the month or period to
process. The default number is the current month. This default is useful if monacct is
run by cron on the first day of each month. The monacct command creates summary files
in /usr/adm/acct/fiscal and restarts summary files in /usr/adm/acct/sum.

nulladm
The nulladm command creates file, assigns it permission code 664, and ensures that its
owner and group are adm. (See "chmod" on page 128 for an explanation of file
permissions.) Various accounting shell procedures call nulladm.

prctmp
The prctmp command displays the session record file created by the acctconl command
(normally /usr/adm/acct/nite/ctmp).

prdaily
The prdaily command formats a report of the day's accounting data. Use mmdd to specify
a date other than the current day. The report resides in /usr/adm/acct/sum/rprtmmdd
where mmdd specifies the month and day of the report. runacct invokes this command to
format a report of the previous day's accounting data.

Flags

-c Reports exceptional resource usage by command, and may be used on the current
day's accounting data only.

-1 Reports exceptional usage by login ID for the specified date.

Daily reports are deleted (and thus inaccessible) each time monacct runs.

Commands 33

acctj*

Files

prtacct
The prtacct command formats and displays any total accounting (tacct) file. You can
specify a heading for the report by enclosing it in " " (double quotation marks).

Flags

-ffieldspec Selects fields to be displayed, using the field selection mechanism of
acctmerg.

-v Produces verbose output in which more precise notation is used for
floating-point numbers.

remove

The remove command deletes all /usr/adm/acct/sum/wtmp*,
/usr/adm/acct/sum/pacct*, and /usr/adm/acct/nite/lock* files.

shutacct
The shutacct command turns process accounting off and adds a "reason" record to
/usr/adm/wtmp. It is usually invoked during a system shutdown.

startup
The startup command turns on the accounting functions when the system is started up. It
should be called by the /etc/rc command file.

turnacct
The turnacct command provides an interface to accton for turning process accounting on
or off.

The switch flag turns accounting off, moves the current /usr/adm/pacct to the next free
name in /usr/adm/pacctincr, where incr is a number starting at 1 and increased by one
for each additional pacct file. After moving the pacct file, turnacct turns accounting
back on.

This command is usually called by ckpacct, which in turn is called by cron, keeping the
pacct file down to a manageable size.

/usr/adm/fee
/usr/adm/pacct
/usr/adm/pacct*

Accumulator for fees charged to login names.
Current file for process accounting.
Used if pacct gets large and during running of the daily
accounting procedures.

34 Commands Reference

/usr/adm/wtmp
/usr/lib/acct/ptelus.awk

/usr/lib/acct/ptecms.awk

/usr / adm/ acct/ni te
/usr/lib/acct
/usr/adm/acct/sum

Related Information

acct/*

Login/logout history file.
Shell procedure that calculates the limits for exceptional
usage by login ID.
Shell procedure that calculates the limits of exceptional
usage by command name.
Working directory.
Holds all accounting commands.
Summary directory.

The following commands: "acctcms" on page 36, "acctcom" on page 38, "acctcon" on
page 42, "acctmerg" on page 46, "acctprc" on page 48, "chmod" on page 128, "cron" on
page 172, "fwtmp" on page 345, and "runacct" on page 606.

The acct system call and the acct, utmp, and file systems files in AIX Operating System
Technical Reference.

"Running System Accounting" in Managing the AIX Operating System.

Commands 35

acctcms

acctcms

Purpose

Produces command usage summaries from accounting records.

Syntax

/usr /Iib/acct/acctcms

-a

OL805421

Description

The acctcms command reads the specified files. It adds together all records for identically
named processes, sorts them, and writes them to standard output in a binary format. Files
are usually in the acct file format described in AIX Operating System Technical Reference.

When you use the -0 and -p flags together, acctcms produces a report that combines
prime- and nonprime-time. All the output summaries are of total usage except for number
of times run, CPU minutes, and real minutes, which are split into prime and nonprime
minutes.

A typical sequence for performing daily command accounting and for maintaining a
running total is:

acctcms file. .. > today
cp total previoustotal
acctcms -s today previoustotal > total
acctcms -a -s today

36 Commands Reference

Flags

acctcms

-a Displays output in ASCII summary format rather than binary summary format. Each
output line contains the command name, the number of times the command was run,
its total kcore-time, its total CPU time, its total real time, its mean memory size (in
K bytes), its mean CPU time per invocation of the command, and its CPU usage
factor. The listed times are all in minutes. acctcm8 normally sorts its output by
total kcore-minutes. The unit kcore-minutes measures the amount of storage used
(in K-bytes) multiplied by the amount of time it was in use.

-c Sorts by total CPU time rather than total kcore-minutes.

-j Combines under the heading ***other all commands called only once.

-n Sorts by the number of times the commands were called.

-0 Displays a command summary of nonprime-time commands only. You can use this
flag with only the -a flag.

-p Displays a command summary of prime-time commands only. You can use this flag
with only the -a flag.

-8 Assumes that any named files that follow this flag are already in binary format.

-t Processes all records as total accounting records. The default binary format splits
each field into prime and non prime time sections.

Related Information

The following commands: "acct/*" on page 31, "acctcom" on page 38, "acctcon" on
page 42, "acctmerg" on page 46, "acctprc" on page 48, "fwtmp" on page 345, and
"runacct" on page 606.

The acct system call and the acct and utmp files in A/X Operating System Technical
Reference.

"Running System Accounting" in Managing the A/X Operating System.

Commands 37

acctcom

acctcom

Purpose

Displays selected process accounting record summaries.

Syntax

acctcom -c seconds -e time
-9 group -[time
-H factor -s time
-I num -s time
-I line
-n pattern
-0 seconds
-u user

OL805418

Description

The acctcom command reads from specified files, from standard input, or from
/usr/adm/pacct and writes records (selected by flags) to standard output. The input file
format is described under acct in AIX Operating System Technical Reference.

If you do not specify any file parameters and if standard input is assigned to a work station
or to /dev/null (as it is when a process runs in the background), acctcom reads
/usr/adm/pacct instead of standard input.

By default, if you specify any file parameters, acctcom reads each chronologically by
process completion time. Usually, /usr/adm/pacct is the current file that you want
acctcom to examine. Because the ckpacct procedure keeps this file from growing too
large, a busy system may have several pacct files. All but the current file have the
following path name:

/usr/adm/pacct?
where? is an integer incremented each time a new file is created.

Each record represents one completed process. The default display consists of the
command name, user name, tty name, start time, end time, real seconds, CPU seconds, and
mean memory size (in K bytes). These default items have the following headings in the
output:

38 Commands Reference

Flags

COMMAND
NAME USER

START
TTYNAME TIME

END REAL CPU
TIME (SECS) (SECS)

MEAN
SIZE(K)

acctcom

By using the appropriate flags, you can also display the fork/exec flag (F), the system exit
value (STAT), the ratio of total CPU time to elapsed time (HOG FACTOR), the product of
memory used and elapsed time (KCORE MI N), the ratio of user time to total (system and
user) time (CPU FACTOR), the number of characters transferred in input/output operations
(CHARS TRNSFD), and the total number of blocks read or written (BLOCKS READ).

If a process ran with superuser authority, its name is prefixed with a # (hash mark). If a
process is not assigned to a known work station (for example, when cron runs it), a
question mark (?) appears in the TTYNAME field.

-a

-b

Note: The acctcom command only reports on processes that have finished. Use
the ps command to examine active processes.

If a specified time is later than the current time, it is interpreted as occurring on the
previous day.

Shows some average statistics about the processes selected. The statistics
will be displayed after the output records.

Reads backwards, showing the most recent commands first. This flag has no
effect when acctcom reads standard input.

-c seconds Shows only processes whose total CPU time (system time + user time),
exceeds number of seconds.

-e time

-E time

-f

-g group

-h

Selects processes existing at or before the specified time. You can use the
NLTIME environment variable to specify the order of hours, minutes, and
seconds. The default order is hh[mm[ssll.

Selects processes ending at or before the specified time. You can use the
NLTIME environment variable to specify the order of hours, minutes, and
seconds. The default order is hh[mm[ssll. If you specify the same time for
both the -E and -8 flags, acctcom displays the process that existed at the
specified time.

Displays the fork/exec flag and the system exit value columns in the output.

Selects processes belonging to group. You can specify either the group ID or
the group name.

Instead of mean memory size, shows the fraction of total available CPU time
consumed by the process while it ran (hog factor). This factor is computed
as:

(total CPU time)/(elapsed time)

Commands 39

acctcom

-H factor Shows only processes that exceed factor. (See the -h flag for a discussion of
how this factor is calculated.)

-i Displays columns showing the number of characters transferred in read or
write operations (the I/O counts).

-I num Shows only processes transferring more than num characters.

-k Instead of memory size, shows total kcore minutes.

-I line Shows only processes belonging to work station /dev/line.

-m Shows mean main memory size. This flag is on by default. Specifying the -h
or -k flags turns off -m.

-n pattern Shows only commands matching pattern, where pattern is a regular expression
like those in the ed command (see page 280), except that here you can use a
+ (plus sign) as a special symbol for one or more occurrences of the
preceding character.

-0 file Copies selected process records to file, keeping the input data format. This
flag suppresses writing to standard output.

-0 seconds Shows only processes with CPU system time exceeding seconds.

-q Does not display any output records; just displays the average statistics that

-r

-s time

-8 time

-t

-u user

-v

are displayed with the -a flag.

Shows CPU factor. This factor is computed as:

(user-time) / (system-time + user-time).

Shows only those processes that existed on or after the specified time. You
can use the NLTIME environment variable to specify the order of hours,
minutes, and seconds. The default order is hh[mm[ss]].

Shows only those processes starting at or after the specified time. You can
use the NLTIME environment variable to specify the order of hours, minutes,
and seconds. The default order is hh[mm[ss]].

Shows separate system and user CPU times.

Shows only processes belonging to user. For user, you can give a user ID, a
login name that is converted to a user ID, a # to select processes run with
superuser authority, or a ? to select processes associated with unknown user
IDs.

Eliminates column headings from the output.

40 Commands Reference

Files

/usr/adm/pacct
/etc/passwd
/etc/group

Current process accounting file.
User names and user IDs.
Group names and group IDs.

acctcom

Related Information

The following commands: "acctdisk" on page 44, "acctcms" on page 36, "acctcon" on
page 42, "acctmerg" on page 46, "acctprc" on page 48, "acct/*" on page 31, "fwtmp" on
page 345, "ps" on page 579, "runacct" on page 606, and "su" on page 724.

The acct system call, the acct and utmp files and the environment miscellaneous facility
in A/X Operating System Technical Reference.

"Running System Accounting" and "Overview of International Character Support" in
Managing the A/X Operating System.

Commands 41

acctcon

acctcon

Purpose

Performs connect-time accounting.

Syntax

/usr /Iib/ acct/ acctcon 1

/ usr /Iib/ acct/ acctcon2 ---l

OLB05233

Description

acctconl
The acctconl command converts a sequence of login and logout records (read from
standard input) to a sequence of login session records (written to standard output). its
input should normally be redirected from /usr/adm/wtmp.

The acctconl command displays, in ASCII format, the login device, user ID, login name,
prime connect time (seconds), nonprime connect time (seconds), session starting time
(numeric), and starting date and time (in date/time format). It also maintains a list of ports
on which users are logged in. When it reaches the end of its input, it writes a session
record for each port that still appears to be active. It normally assumes that its input is a
current file, so that it uses the current time as the ending time for each session still in
progress (see the -t flag on page 43).

Flags

-1 file Writes to file a line-usage summary showing the line name, the number of minutes
used, the percentage of total elapsed time used, the number of sessions charged, the
number of logins, and the number of logouts. This file helps track line usage and
identify bad lines. All hang-ups, terminations of login, and terminations of the
login shell cause the system to write logout records, so the number of logouts is
often much higher than the number of sessions.

42 Commands Reference

Files

acctcon

-0 file Writes to file an overall record for the accounting period, giving starting time,
ending time, number of restarts, and number of date changes.

-p Displays input only, showing line name, login name, and time in both numeric and
date/time formats.

-t Uses the last time found in the input as the ending time for any current processes
instead of the current time. This is necessary in order to have reasonable and
repeatable values for noncurrent files.

acctcon2
The acctcon2 command converts a sequence of login session records, produced by the
acctconl command, into total accounting records.

/usr/adm/wtmp Login/logout history file.

Related Information

The following commands: "acctdisk" on page 44, "acctcms" on page 36, "acctcom" on
page 38, "acctmerg" on page 46, "acctprc" on page 48, "acct/*" on page 31, "fwtmp" on
page 345, "init" on page 396, "login" on page 453, and "runacct" on page 606.

The acct system call and the acct and utmp files in AIX Operating System Technical
Reference.

"Running System Accounting" in Managing the AIX Operating System.

Commands 43

acctdisk

acctdisk

Purpose

Performs disk-usage accounting.

Syntax

/usr/lib/acct/acctdisk ----l

/usr/lib/acct/acctdusg -(
-u

)-C-p /etc/passwd L
file -p file ~

OLB05192

Description

Files

acctdisk
The acctdisk command reads lines from standard input that contain a user ID, the user's
login name, and the number of disk blocks occupied by his files. It converts these lines to
total accounting records that can be merged with other accounting records and writes
those records to standard output.

acctdusg
The acctdusg command reads a list of file names from standard input (usually piped from
a find / -print command), computes disk resource usage (including indirect blocks) using
the login name of the owner of the files, and writes the results to standard output.

Flags

-p file Searches file for login names and numbers, instead of searching /etc/passwd.

-u file Places in file records of file names for which it does not charge.

/etc/passwd
/usr/lib/acct

Used to convert login names to user IDs.
Directory holding all accounting commands.

44 Commands Reference

acctdisk

Related Information

The following commands: "acct/*" on page 31, "acctcms" on page 36, "acctcom" on
page 38, "acctcon" on page 42, "acctmerg" on page 46, "acctprc" on page 48, "fwtmp"
on page 345, and "runacct" on page 606.

The acct system call and the acct and utmp files in AIX Operating System Technical
Reference.

"Running System Accounting" in Managing the AIX Operating System.

Commands 45

acctmerg

acctmerg

Purpose

Merges total accounting files.

Syntax

/usr /lib/acct/acctmerg
-a -j

-h -p
-y

1 acctmerg always read standard imput in addition to any named files.
2Do not put a blank between these items.

Description

OLB05234

The acctmerg command reads records from standard input and up to nine additional files,
all in the tacct binary format or the tacct ASCII format. It merges these by adding
records with keys (normally user ID and name) that are identical, and expects the input
records to be sorted by those key fields. It writes these merged records to standard output.

The optional fieldspecs allow you to select input or output fields. A field specification is a
comma-separated list of fields or field ranges. Field numbers are in the order specified in
the tacct file in A/X Operating System Technical Reference, with array sizes, except for the
ta _name characters, taken into account. For example, -h2-3, 7 ,15-13,2 displays the
login name, prime CPU and connect times, fee, queueing system, and disk usage data, and
the login name again, in that order, with column headings. The default specification is
"all fields" (1-1S or 1-), which produces very wide output lines containing all the
available accounting data.

Queueing system, disk usage, or fee data can be converted into tacct records using the
-ifieldspec argument. For example, disk accounting records, produced by acctdisk, consist
of lines containing the user ID, login name, number of blocks, and number of disk samples
(always 1). A file, dacct, containing these records can be merged into an existing total
accounting file, tacct, with:

acctmerg -il-2,13,lS <dacct I. acctmerg tacct >output

46 Commands Reference

Flags

-a [fie ldspec]

-h [fie ldspec]

-i[fieldspec]

-p[fieldspec]

-t

-u

-v [fieldspec]

acctmerg

Produces output in the form of ASCII records.

Displays column headings. This flag implies -a but is effective with -p or -v.

Expects input files composed of ASCII records.

Displays input without processing.

Produces a single record that contains the totals of all input.

Summarizes by user ID rather than by user name.

Produces output in ASCII format, with more precise notation for
floating-point numbers.

Example

The following sequence is useful for making repairs to any file in tacct format:

acctmerg -v <filel >file2
edit file2 as desired ...

acctmerg -a <file2 >filel

Related Information

The following commands: "acct/*" on page 31, "acctcms" on page 36, "acctcom" on
page 38, "acctcon" on page 42, "acctdisk" on page 44, "fwtmp" on page 345, "acctprc"
on page 48, and "runacct" on page 606.

The acct system call and the acct and utmp files in AIX Operating System Technical
Reference.

"Running System Accounting" in Managing the AIX Operating System.

Commands 47

acctprc

acctprc

Purpose

Performs process accounting.

Syntax

~
/etc/pas:rWd

/usr/lib/aeet/aeetprc 1
file

/usr/lib/aect/aeetprc2 --l

~
/usr/adm/Jacct

/ usr /Iib/ aect/ aeeton
file

Description

acctprcl

OL805235

The acctprcl command reads records from standard input that are in the acct format
(described in A/X Operating System Technical Reference), adds the login names that
correspond to user IDs, and then writes an ASCII record to standard output. This record
contains the user ID, login name, prime CPU time, nonprime CPU time, the total number
of characters transferred (in 512-byte units), the total number of blocks read and written,
and mean memory size (in 64-byte units) for each process.

If specified, file contains a list of login sessions in utmp format (described in A/X
Operating System Technical Reference), sorted by user ID and login name. By default,
acctprcl gets login names from the password file, /etc/passwd. The information in file
helps distinguish among different login names that share the same user ID.

48 Commands Reference

Files

acctprc

acctprc2
The acctprc2 command reads (from standard input) the records written by acctprcl,
summarizes them by user ID and name, and writes the sorted summaries to standard output
as total accounting records.

accton
The accton command without arguments turns process accounting off. If you specify file
(the name of an existing file), the kernel adds process accounting records to it
(fusr/adm/pacct by default).

/ etc/passwd, /usr / adm/pacct

Related Information

The following commands: "acct/*" on page 31, "acctdisk" on page 44, "acctcms" on
page 36, "acctcom" on page 38, "acctcon" on page 42, "acctmerg" on page 46, "fwtmp"
on page 345, and "runacct" on page 606.

The acct system call and the acct and utmp files in A/X Operating System Technical
Reference.

"Running System Accounting" in Managing the A/X Operating System.

Commands 49

actman

actman

Purpose

Lets you interact with multiple virtual terminals.

Syntax

actman ---I
OL805323

Description

The actman command is the Activity Manager for the AIX Operating System. It is
normally run by the AIX logger in the same manner as any program listed in the
/etc/passwd file. Once started by the logger, actman creates the initial shell (fbin/sh)
and monitors the number of open virtual terminals until all have been closed. It then exits
to the AIX init process. If you try to end the initial shell when other virtual terminals are
still open, actman restarts the initial shell.

To take advantage of the multiple virtual terminal capability, use the open command (see
page 541) to execute another shell in a separate virtual terminal.

Note: You must log out of each existing shell to end your login session.

You do not need an Activity Manager if you do not have virtual terminal
capabilities. Thus if you do not log in from the local console, actman overlays itself
with the initial shell.

Related Information

The following command: "open" on page 541.

"Using Display Station Features" in Using the AIX Operating System.

50 Commands Reference

,Purpose

Provides a general purpose de bugger.

,Syntax

, Description

TNL SN20-9861 (26 June 1987) to SC23-0790-0
adb

0L805465

The adb command provides a debugger for C and assembler language programs. With it,
you can examine object and core files and provide a controlled environment for running a
program.

Normally, objfil is an executable program file that contains a symbol table. If objfil does
not contain a symbol table, the symbolic features of adb cannot be used, although the file
can still be examined. The default objfil is a.out.

The corfil is assumed to be a core image file produced by running objfil. The default corfil
is core.

While running, adb takes input from standard input and writes to standard output. adb
does not recognize the Quit or Interrupt keys. These keys cause adb to wait for a new
command.

In general, requests to adb are of the form

[address] [,count] [command] [;]

where address and count are expressions. The default count is 1. If address is specified,
then the expression. (dot) is set to address.

The interpretation of an address depends on the context it is used in. If a subprocess is
being debugged, addresses are interpreted in the usual way in the address space of the
subprocess. For more information, see "Addresses" on page 50.7.

You can enter more than one command at a time by separating the commands with a ;
(semicolon).

Commands 50.1

TNL SN20-9861 (26 June 1987) to SC23-0790-0
adb

Expressions

+
A

II

integer

'ecce'

< name

symbol

-symbol

. symbol

Specifies the last address used by a command; this is also known as the current
address.

Increases the value of. (dot) by the current increment.

Decreases the value of. (dot) by the current increment.

Specifies the last address typed by a command.

Specifies an octal number if integer begins with 00, a hexadecimal number if
preceded by Ox or #, a decimal number if preceded by Ot; otherwise, a number
interpreted in the current radix. The radix is initially 16.

Specifies the ASCII value of up to 4 characters. \ (slash) can be used to escape a
, (apostrophe).

Reads the current value of name. name is either a variable name or a register
name. adb maintains a number of variables (see "Variables" on page 50.7)
named by single letters or digits. If name is a register name, the value of the
register is obtained from the system header in corfil. The register names are
rO ... r15 pc ics cs mq; the names fp, pcp, and link are recognized as synonyms
for rl, r14, and r15.

Specifies a sequence of upper or lower case letters, underscores, or digits, not
starting with a digit. The value of the symbol is taken from the symbol table in
objfil. An initial - (underscore) is prefixed to symbol if needed.

Specifies, in C, the true name of an external symbol begins with - (underscore),
as does the name of the constant pool of an external function. It may be
necessary to use this name to distinguish it from internal or hidden variables of
a program.

Specifies the entry point of the function named by symbol .

routine. name
Specifies the address of the variable name in the specified C routine. Both
routine and name are symbols. If name is omitted the value is the address of the
most recently activated C stack frame corresponding to routine.

(exp) Specifies the value of the expression expo

50.2 Commands Reference

TNL SN20-9861 (26 June 1987) to SC23-0790-0
adb

Operators
Integers, symbols, variables, and register names can be combined with the following
operators:

Unary

*exp

@exp

-exp

-exp

Binary

el+e2

el-e2

el*e2

el%e2

el&e2

elle2

el#e2

Contents of location addressed by exp in corefile.

Contents of the location addressed by exp in objfi/.

Integer negation.

Bitwise complement.

Integer addition.

Integer subtraction.

Integer multiplication.

Integer division.

Bitwise conjunction.

Bitwise disjunction.

el rounded up to the next multiple of e2.

Binary operators are left associative and are less binding than unary operators.

Commands
You can display the contents of a text or data segment with the? or the I (slash) command.
The = command displays a given address in the specified format f. (The commands? and I
may be followed by *, see "Addresses" on page 50.7.)

?f Displays, in the format f, the contents of the objfil starting at address. The
value of . (dot) increases by the sum of the increment for each format letter.

If Displays, in the format f, the contents of the corfil starting at address. The
value of • (dot) increases by the sum of the increment for each format letter.

= f Displays the value of address in the format f. The i and s format letters are not
meaningful for this command.

The format consists of one or more characters that specify print style. Each format
character may be preceded by a decimal integer that is a repeat count for the format
character. While stepping through a format, . (dot) increments by the amount given for
each format letter. If no format is given, the last format is used. The format letters
available are as follows:

o 2 Prin ts 2 bytes in octal.

Commands 50.3

TNL SN20-9861 (26 June 1987) to SC23-0790-0
adb

o 4 Prints 4 bytes in octal.

q 2 Prints 2 bytes in the current radix, unsigned.

Q 4 Prints 4 bytes in the current radix, unsigned.

d 2 Prints in decimal.

D 4 Prints long decimal.

x 2 Prints 2 bytes in hexadecimal.

X 4 Prints 4 bytes in hexadecimal.

u 2 Prints as an unsigned decimal number.

U 4 Prints long unsigned decimal.

b 1 Prints the addressed byte in the current radix, unsigned.

c 1 Prints the addressed character.

C 1 Prints the addressed character using the following escape conventions:

1. Prints control characters as - followed by the corresponding printing
character.

2. Prints non-printable characters as - < n > where n is a hexadecimal value
of the character. The character - prints as - -.

s n Prints the addressed character until a zero character is reached.

S n Prints a string using the - escape convention. n specifies the length of the
string including its zero terminator.

y 4 Prints 4 bytes in date format (see ctime in AIX Operating System Technical
Reference).

in Prints as instructions. n is the number of bytes occupied by the instruction.

a 0 Prints the value of . (dot) in symbolic form. Symbols are checked to ensure
that they have an appropriate type as indicated below.

/ local or global data symbol
? local or global text symbol

local or global absolute symbol

p 4 Prints the addressed value in symbolic form using the same rules for symbol
lookup as a.

t 0 When preceded by an integer, tabs to the next appropriate tab stop. For
example, 8t moves to the next 8-space tab stop.

r 0 Prints a space.

nO Prints a newline.

50.4 Commands Reference

TNL SN20-9861 (26 June 1987) to SC23-0790-0
adb

" ... "0 Prints the enclosed string.
1\

+
Decreases. (dot) by the current increment. Nothing prints.

Increases. (dot) by 1. Nothing prints.

Decreases. (dot) decrements by 1. Nothing prints.

newline
Repeats the previous command incremented with a count of 1.

[? /]lvalue mask
Words starting at . (dot) are masked with mask and compared with value until a
match is found. If L is used then the match is for 4 bytes at a time instead of 2. If
no match is found then. (dot) is unchanged; otherwise. (dot) is set to the matched
location. If mask is omitted then -1 is used.

[? I1wvalue ...
Writes the 2-byte value into the addressed location. If the command is W, write 4
bytes. If the command is V, write 1 byte. Alignment restrictions may apply when
using w or W.

[?l1m b1 e1 f1[?/]
Records new values for (b1, e1, f1). If less than three expressions are given then the
remaining map parameters are left unchanged. If the? or / is followed by * then the
second segment (b2, e2, f2) of the mapping is changed. If the list is terminated by ?
or / then the file (objfil or corfil respectively) is used for subsequent requests. (For
example, /m? causes / to refer to objfil).

> name
Assigns. (dot) to the variable or register name.

Calls a shell to read the rest of the line following !.

$modifier
Miscellaneous commands. The available modifiers are:

< file Reads commands from file and returns to the standard input.

> file Sends output to file. If file is omitted, output returns to the standard
output. file is created if it does not exist.

r Prints the general registers and the instruction addressed by pc and sets .
(dot) to pc.

b Prints all breakpoints and their associated counts and commands.

c C stack backtrace. If address is given then it is taken as the address of
the current frame (instead of using the frame pointer register). If C is
used then the names and values of all automatic and static variables are
printed for each active function. If count is given then only the first count
frames are printed.

Commands 50.5

TNL SN20-9861 (26 June 1987) to SC23-0790-0
adb

e Prints the names and values of external variables.

w Sets the output page width for address. The default is 80.

s Sets the limit for symbol matches to address. The default is 255.

o Sets the current radix to 8.

d Sets the current radix to address or 16, if none is specified.

q Exits adb.

v Prints all non-zero variables in octal.

m Prints the address map.

p Uses the remainder of the line as a prompt string.

: modifier
Manages a subprocess. Available modifiers are:

bc Sets the breakpoint at address. The breakpoint runs count -1 times before
causing a stop. Each time the breakpoint is encountered, the command c
runs. If this command sets. (dot) to 0, the breakpoint causes a stop.

d Deletes the breakpoint at address.

r Runs objfil as a subprocess. If address is given explicitly, the program is
entered at this point; otherwise, the program is entered at its standard
entry point. count specifies how many breakpoints are to be ignored
before stopping. Arguments to the subprocess may be supplied on the
same line as the command. An argument starting with < or > causes the
standard input or output to be established for the command. On entry to
the subprocess, all signals are turned on.

es Continues the subprocess with signal s (see the signal system call in A/X
Operating System Technical Reference). If address is given,the subprocess
is continued at this address. If no signal is specified, the signal that
caused the subprocess to stop is sent. Breakpoint skipping is the same as
for r

ss Continues the subprocess is single steps count times. If there is no current
subprocess, objfil is run as a subprocess as for r. In this case no signal
can be sent; the remainder of the line is treated as arguments to the
subprocess.

k Stops the current subprocess, if one is running.

50.6 Commands Reference

I Flags

TNL SN20-9861 (26 June 1987) to SC23-0790-0

adb

Variables
adb provides a number of variables. On entry to adb, the following variables are set from
the system header in the corfil. If corfil does not appear to be a core file, then these values
are set from objfil.

b The base address of the data segment
d The size of the data segment
e The entry address of the program
m The "magic" number (0405, 0407, 0410, or 0411)
s The size of the stack segment
t The size of the text segment.

Addresses
The address in a file associated with a written address is determined by a mapping
associated with that file. Each mapping is represented by two triples (bl, el, fl) and (b2,
e2, f2). The file address that corresponds to a written address is calculated as follows:

bl ~ address < el = > file address = address + fl-bl

or

b2 ~ address < e2 = > file address = address + f2-b2,

otherwise, the requested address is not legal. In some cases (for example, programs with
separated I and D space) the two segments for a file may overlap. If a ? or I is followed by
an *, then only the second triple is used.

The initial setting of both mappings is suitable for normal a.out and core files. If either
file is not of the kind expected, then for that file, bl is set to 0, el is set to the maximum
file size and fl is set to 0; in this way, the whole file can be examined with no address
translation.

In order for adb to be used on large files, all appropriate values are kept as signed 32-bit
integers.

-pprompt
Sets the prompt used by adb to prompt. If the prompt includes spaces, enclose the
prompt in quotation marks.

-w Opens the objfil and corfil for writing. This flag makes either file if they do not exist.

Commands 50.7

TNL SN20-9861 (26 June 1987) to SC23-0790-0
adb

I Files

/dev/mem
/dev/swap
a.out
core.

I Related Information

The ptrace system call in AIX Operating System Technical Reference.

The a.out and core files in IBM RT PC A/X Operating System Technical Reference.

50.8 Commands Reference

admin

Purpose

Creates and initializes SCCS files.

Syntax

To Create SCCS Files:

-(
-n----------~

admin .
-I -{

a
I 1

num
,

one of

b j
cnum mmodule
dSID n
fnum qtext

ttype

-Iv -m)-C-r101

\ ... ~pro-;:::J-Cmrly-<T-auser~ -rnum numJ

~ -I file H ;-- -y ---" >-r newfile 1
-.I ~ _y comment /

2 If -0 is never used to specify users,
then any user can run get -e on the file 0

admin

OLB05376

OL805160

OLB05417

Commands 51

admin

To Change Existing sees Files:

admin

-f
one of

b j
cnum mmodule
dSlD n
fnum qtext

ttype

-fv

-d
-dv

b
c m
d n
f q

t

To Check and Correct Damaged sces Files:
one of

admin~

1 Do not put a blank between these items.

-t

OLS05385

OLS05158

OLS05308

Description

The admin command creates new Source Code Control System (SeeS) files or changes
specified parameters in existing SCCS files. These parameters control how the get
command builds the files that you can edit. They also provide information about who can
access the file, who can make changes, and when changes were made. The admin
command is most often used to create new SCCS files without setting parameters. See

52 Commands Reference

admin

"Examples" on page 56 for the syntax used to create an sees file with no parameters set
in the new file.

If the named file exists, admin modifies its parameters as specified by the flags. If it does
not exist and you supply the -i or the -n flag, admin creates the new file and provides
default values for unspecified flags. If you specify a directory name for file, admin
performs the requested actions on all sees files in that directory (all files with the s.
prefix). If you specify a - (minus) as a file name, admin reads standard input and
interprets each line as the name of an sees file. An end-of-file character (Ctrl-D) ends
input.

If you are not familiar with the delta numbering system, see AIX Operating System
Programming Tools and Interfaces for more information.

SCCS File Conventions

All sees file names must have the form s.name. New sees files are created with
read-only permission. You must have write permission in the directory to create a file (see
"chmod" on page 128 for an explanation of file permissions). admin writes to a
temporary x-file, which it calls x.name. The x-file has the same permissions as the original
sees file if it already exists, and it is read-only if admin creates a new file. After
successful completion of admin, the x-file is moved to the name of the sees file. This
ensures that changes are made to the sees file only if admin does not detect any errors
while it is running.

Directories containing sees files should be created with permission code 755 (read, write,
and execute permissions for owner, read and execute permissions for group members and
others). sees files themselves should be created as read-only files (444). With these
permissions, only the owner can use non-SeeS commands to modify sees files. If a group
can access and modify the sees files then the directories should include group write
permission.

The admin command also uses a temporary lock file (called z.name), to prevent
simultaneous updates to the sees file by different users. See "sees Files" on page 360
for additional information on the z.name file.

The following table contains the header flags that can be set with the -f flag and unset
with the -d flags (see page 55). The header flags control the format of the g-file created
with the get command (see "sees Files" on page 360 for details on the g-file).

Commands 53

admin

Header
Flag Header Flag Purpose

b Lets you use the -b flag of a get command to create branch deltas.

cnum Makes num the highest release number that a get -e can use. The value of
num must be less than or equal to 9999. (Its default value is 9999.)

fnum Makes num the lowest release number that a get -e can retrieve. num must
be greater than 0 and less than 9999. (Its default value is 1.)

dSID Makes SID the default delta supplied to a get command.

i Treats the No id keywords (9 e 6) message issued by the get or delta
command as an error (see "Identification Keywords" on page 362).

j Permits concurrent get commands for editing the same SID of an sees file.
This allows multiple concurrent updates to the same version of the sees file.

lnum[,num] ... Locks the releases specified by num . .. against editing, so that a get -e
against one of these releases fails. You can lock all releases against editing
by specifying -fla and unlock specific releases with the -d flag.

n Causes delta to create a null delta in any releases that are skipped when a
delta is made in a new release. For example, if you make delta 5.1 after delta
2.7, releases 3 and 4 will be null. The resulting null deltas can serve as points
from which to build branch deltas. Without this flag, skipped releases do not
appear in the the sees file.

qtext Substitutes text for all occurrences of the %Q% keyword in an sees text file
retrieved by a get command. (See "Identification Keywords" on page 362 for
more information on keywords.)

mmodule Substitutes module for all occurrences of the %M% keyword in an sees text
file retrieved by a get command. The default module is the name of the sees
file without the s. prefix.

ttype Substitutes type for all % Y% keywords in a g-file retrieved by a get.

v [program] Makes delta prompt for Modification Request (MR) numbers as the reason
for creating a delta. program specifies the name of an MR number validity
checking program (see "delta" on page 236). If v is set in the sees file, the
admin -m flag must also be used, even if its value is null.

Figure 1. sees Header Flags

Flags

You can enter the flags and input file names in any order. All flags apply to all the files.

54 Commands Reference

admin

-auser Adds the specified user to the list of users that can make sets of changes
(deltas), to the sees file. user can be either a user name, a group name,
or a group ID. Specifying a group name or number is the same as
specifying the names of all users in that group. You can specify more
than one -a flag on a single admin command line. If an sees file
contains an empty user list, then anyone can add deltas.

If a file has a user list, the creator of the file must be included in the list
in order for the creator to make deltas to the file.

-dhdrflag Removes the specified header flag from the sees file. You can specify
this flag only with existing sees files. You can also specify more than
one -d flag in a single admin command. See Figure 1 on page 54 for
the header flags that admin recognizes.

-euser Removes the specified user from the list of users allowed to make deltas
to the sees file. Specifying a group ID is equivalent to specifying all
user names common to that group. You can specify several -e flags on a
single admin command line.

-fhdrflag[value] Places the specified header flag and value in the sees file. You can
specify more than one header flag in a single admin command. See
Figure 1 on page 54 for the header flags that admin recognizes.

-h Checks the structure of the sees file and compares a newly computed
checksum with the checksum that is stored in the first line of the sees
file. When the checksum value is not correct, the file has been
improperly modified or has been damaged. This flag helps you detect
damage caused by the improper use of nonSeeS commands to modify
sees files, as well as accidental damage. The -h flag prevents writing
to the file, so it cancels the effect of any other flags supplied. If an error
message is returned indicating the file is damaged, use the -z flag to
recompute the checksum. Then test to see if the file is corrected by
using the -h flag again.

-i[name] Gets the text for a new sees file from name. This text is the first delta
of the file. If you specify the -i flag but you omit the file name, admin
reads the text from standard input until it reaches END OF FILE
(Ctrl-D). If you do not specify the -i flag, but you do specify the -n flag,
admin creates an empty sees file. admin can only create one file
containing text at a time. If you are creating two or more sees files
with one call to admin, you must use the -n flag, and the sees files
created are empty.

-m[mrlist] Specifies a list of Modification Requests (MR) numbers to be inserted
into the sees file as the reason for creating the initial delta. The v flag
must be set. The MR numbers are validated if the v flag has a value (the
name of an MR number validation program). admin reports an error if
the v flag is not set or if MR validation fails.

Commands 55

admin

-n

-rnum.num

-t[file]

-y[comment]

-z

Creates a new, empty SCCS file. Do not specify this flag when you use
the -i flag.

Inserts the initial delta into num.num, the release and version
respectively. You can specify -r only if you also specify the -i or -n flag.
If you do not specify this flag, the initial delta becomes release 1, version
1. Use this flag only when creating an sees file.

Takes descriptive text for the sees file from file. If you use -t when
creating a new sees file, you must supply a file name. In the case of
existing sees files:

• Without a file name, -t causes removal of the descriptive text (if any)
currently in the sees file.

• With a file name, -t causes text in the named file to replace the
descriptive text (if any) currently in the sees file.

Inserts comment text into the initial delta in a manner identical to that
of the delta command. Use this flag only when you create an sees file.
If you do not specify a comment, admin inserts a line of the following
form:

date and time created YYjMMjDD HH:MM:SS by login
Recomputes the sees file checksum and stores it in the first line of the
sees file (see the -h flag on page 55).

Warning: Using admin with this flag on a damaged file
can prevent future detection of the damage. This flag
should only be used if the sees file is changed using
non-SeeS commands because of a serious error.

Examples

1. To create an empty sees file named s.prog.c:

admin -n s.prog.c

56 Commands Reference

2. To convert an existing text file into an sees file:

admin -iprogram.c s.prog.c

admin

This converts the text file program. c into the sees file s. prog. c. The original file
remains intact, but it is no longer needed. You must rename or delete it before you
can use the get command on s. prog. c.

Related Information

The following commands: "delta" on page 236, "ed" on page 280, "get" on page 359,
"help" on page 391, "prs" on page 574, and "what" on page 848.

The sccsfile file in AIX Operating System Technical Reference.

"Maintaining Different Versions of a Program" in AIX Operating System Programming
Tools and Interfaces.

Commands 57

ar

ar

Purpose

Maintains portable libraries used by the linkage editor.

Syntax

or
a
b

posname

~-----l d q I----------------.J

P t
v x h

or - w - library ---l

1 Do not put 0 blank between these items.

library T name T

OL805377

OLB05349

OL805308

Description

Flags

The ar command combines one or more named files into a single library file written in ar
archive format.

When ar creates a library, it creates headers in a transportable format; when it creates or
updates one, it rebuilds the symbol table that the linkage editor (the ld command) uses to
make efficient multiple passes over object file libraries. (The ar file entry in AIX
Operating System Technical Reference describes the format and structure of portable
archives and symbol tables.)

Note: You must list all selected flags together on the command line, without blanks
between them. You must always specify one from the set dhmpqrtxw. You can also
specify any number of optional flags from the set abcilsuv. If you select a positioning flag

58 Commands Reference

ar

(a, h, or i), you must also specify the name of a file within library (posname), immediately
following the flag list (separated from it by a blank).

a posname

h posname

c

d

h

i posname

1

m

p

q

r

s

t

Positions the named files after the existing file identified by posname.

Positions the named files before the existing file identified by posname.

Suppresses the normal message that is produced when library is created.

Deletes the named files from the library.

Sets the modification times in the member headers of the named files to the
current date and time. If you do not specify any file names, ar sets the time
stamps of all member headers.

Positions the named files before the existing file identified by posname (same
as h).

Places temporary files in the current (local) directory instead of directory
/tmp.

Moves the named files to some other position in the library. By default, it
moves the named files to the end of the library. Use a positioning flag (ahi) to
specify some other position.

Writes to the standard output the contents of the named files or all files in a
library if you do not specify any files.

Adds the named files to the end of the library. Positioning flags, if present, do
not have any effect. Note that this process does not check to see if the named
files are already in the library. In addition, if you name the same file twice, it
may be put in the library twice.

Replaces a named file if it already appears in the library. Since the named
files occupy the same position in the library as the files they replace, a
positioning flag does not have any additional effect. When used with the u
flag (update), r replaces only files modified since they were last added to the
library file.

If a named file does not already appear in the library, ar adds it. In this case,
positioning flags do affect placement. If you do not specify a position, new
files are placed at the end of the library. If you name the same file twice, it
may be put in the library twice.

Forces the regeneration of the library symbol table whether or not ar modifies
the library contents. Use this flag to restore the library symbol table after
using the strip command on the library.

Writes to the standard output a table of contents for the library. If you
specify file names, only those files appear. If you do not specify any files, t
lists all files in the library.

Commands 59

ar

u

v

w

x

Copies only files which have been changed since they were last copied (see the
r flag discussed previously).

Writes to standard output a verbose file-by-file description of the making of
the new library. When used with the t flag, it gives a long listing similar to
that of the Is -I command, described under "Is" on page 461. When used with
the x flag, it precedes each file with a name. When used with the h flag, it
lists the member name and the updated modification times.

The environment variables NLLDATE and NLTIME control the format of
the archive date and time.

Displays the archive symbol table. Each symbol is listed with the name of the
file in which the symbol is defined.

Extracts the named files by copying them into the current directory. These
copies have the same name as the original files, which remain in the library.
If you do not specify any files, x copies all files out of the library. This
process does not alter the library.

Examples

1. To create a library:

ar vq lib.a strlen.o strcpy.o
If 1 i b . a does not exist, then this creates it and enters into it copies of the files
strl en. 0 and strcpy. o. If 1 i b. a does exist, then this adds the new members to the
end without checking for duplicate members. The v flag sets verbose mode, in which
ar displays progress reports as it proceeds.

2. To list the table of contents of a library:

ar vt lib.a
This lists the table of contents of 1 i b. a, displaying a long listing similar to Is -I. To
list only the member file names, omit the v flag.

3. To replace or add new members to a library:

ar vr lib.a strlen.o strcat.o
This replaces the members strl en. 0 and strcat. o. If 1 i b. a was created as shown
in Example 1, then the strl en. 0 member is replaced. A member named strcat. 0
does not already exist, so it is added to the end of the library_

4. To specify where to insert a new member:

ar vrb strlen.o lib.a strcmp.o
This adds strcmp. 0, placing the new member before strl en. o.

60 Commands Reference

Files

5. To update a member if it has been changed:

ar vru lib.a strcpy.o

This replaces the existing strcpy. 0 member, but only if the file strcpy. 0 has been
modified since it was last added to the library.

6. To change the order of the library members:

ar vma strcmp.o lib.a strcat.o strcpy.o

This moves the members strcat. 0 and strcpy. 0 to positions immediately after
strcmp. o. The relative order of strcat. 0 and strcpy. 0 is preserved. In other
words, if strcpy. 0 preceded strcat. 0 before the move, then it still does.

7. To extract library members:

ar vx lib.a strcat.o strcpy.o

This copies the members strcat. 0 and strcpy. 0 into individual files named
strcat.o and strcpy. 0, respectively.

8. To extract and rename a member:

ar p lib.a strcpy.o >stringcopy.o

This copies the member strcpy. 0 to a file named stri ngcopy. o.
9. To delete a member:

ar vd lib.a strlen.o

This deletes the member s t r 1 en . 0 from the library 1 i b . a.

/tmp/ar* Temporary files.

ar

Related Information

The following commands: "backup" on page 76, "ld" on page 427, "lorder" on page 457,
"make" on page 474, "nm" on page 521, "size" on page 665, and "strip" on page 716.

The a.out and ar files and environment miscellaneous facility in AIX Operating System
Technical Reference.

The "Overview of International Character Support" in Managing the AIX Operating
System.

Commands 61

arithmetic

arithmetic

Purpose

Tests arithmetic skills.

Syntax

arithmetic
10\ I

ranger

x
/

OL805164

1 Do not put a blank between these items.
OLB05308

Description

The arithmetic command displays simple arithmetic problems and waits for you to enter
an answer. If your answer is correct, the program displays Ri ght! and presents a new
problem. If your answer is wrong, it displays What? and waits for another answer. Every
20 problems, arithmetic displays the number of correct and incorrect responses and the
time required to answer.

The arithmetic command does not give the correct answers to the problems it displays. It
provides practice rather than instruction in performing arithmetic calculations.

The range is a decimal number specifying the permissible range of all numbers (except
answers). The default range is 10. At the start, all numbers within this range are equally
likely to appear. If you make a mistake, the numbers in the problem you missed become
more likely to reappear.

To quit the game, press INTERRUPT (Alt-Pause); arithmetic displays the final game
statistics and exits.

62 Commands Reference

Flags

arithmetic

Two types of optional flags modify the action of arithmetic. The first set specifies the
type of arithmetic problem:

+ Specifies addition problems.

Specifies subtraction problems.

x Specifies multiplication problems.

/ Specifies division problems.

If you do not select any flags, arithmetic selects addition and subtraction problems. If
you give more than one problem specifier (+ -xf), the program mixes the specified types of
problems in random order.

Examples

1. To drill on addition and subtraction of integers from 0 to 10:

/usr/games/arithmetic
2. To drill on addition, multiplication, and division of integers from 0 to 50:

/usr/games/arithmetic +x/ 50

Commands 63

as

as

Purpose

Assembles a source file.

Syntax

as

-a -I
-n name
-oobjfi/e

OLS05165

1 Do not put a blank between these items.

OLS05308

Description

Flags

The as command reads and assembles the named file (conventionally this file ends with a
.s suffix). If you do not specify a file, as reads and assembles standard input. It stores its
output, by default, in a file named a.out. The output file is executable if no errors occur
and if there are no unresolved external references.

-a Provide extended addressing for handling large structures.

-I [listfile] Produces a assembler listing. If you do not specify a file name, a default name
is produced by replacing the .s extension of the source file name with an .Ist
extension.

-n name Specifies the name that appears in the header of the assembler listing. By
default, the header contains the name of the assembler source file.

-0 objfile Writes the output of the assembly process to the specified file instead of to
a.out.

64 Commands Reference

Files

a.out Default output file.

Related Information

The following commands: "cc" on page 112 and "ld" on page 427.

The a.out file in AIX Operating System Technical Reference.

The discussion of as in Assembler Language Reference and AIX Operating System
Programming Tools and Interfaces.

as

Commands 65

at

at, batch

Purpose

Runs commands at a later time.

Syntax

~
time-(today

date

at
-1-------

-r

batch --I

Description

increment

0L805002

The at and batch commands read from standard input the names of commands to be run at
a later time:

• at allows you to specify when the commands should be run.
• batch runs jobs when the system load level permits.

Both at and batch mail you all output from standard output and standard error for the
scheduled commands, unless you redirect that output. They also write the job number and
the scheduled time to standard error.

Variables in the shell environment, the current directory, umask, and ulimit are retained
when the commands are run. Open file descriptors, traps, and priority are lost.

You can use at if your name appears in the file /usr/lib/cron/at.allow. If that file does
not exist, at checks the file /usr/lib/cron/at.deny to determine if you should be denied
access to at. If neither file exists, only the superuser can submit a job. The allow/deny
files contain one user name per line. If at.allow does exist, the superuser's login name
must be included in it for the superuser to be able to use the command.

66 Commands Reference

Flags

at

The required time parameter can be one of the following:

1. A number followed by an optional suffix. at interprets one-and two-digit numbers as
hours. It interprets four digits as hours and minutes. The NLTIME environment
variable specifies the order of hours and minutes. The default order is the hour
followed by the minute. You can also separate hours and minutes with a : (colon). The
default order is hour:minute.

In addition, you may specify a suffix of am, pm, or zulu. If you do not specify am or
pm, at uses a 24 hour clock. The suffix zulu indicates that the time is GMT
(Greenwich Mean Time). The NLTMISC environment variable controls the suffixes
that at recognizes.

2. at also recognizes the following keywords as special times: noon, midnight, and now.
Note that you can use the special word now only if you also specify a date or an
increment. Otherwise, at tells you: too 1 ate. The NLTSTRS environment variable
controls the additional keywords that at recognizes.

You may specify the date parameter as either a month name and a day number (and
possibly a year number preceded by a comma), or a day of the week. The NLDATE
environment variable specifies the order of the month name and day number (by default,
month followed by day). The NLLDAY environment variable specifies long day names;
NLSDA Y and NLSMONTH specify short day and month names. (By default, the long
name is fully spelled out; the short name abbreviated to three characters.) at recognizes
two special "days," today and tomorrow by default. (The NLTSTRS environment
variable specifies these special days.) today is the default date if the specified time is later
than the current hour; tomorrow is the default if the time is earlier than the current
hour. If the specified month is less than the current month (and a year is not given), next
year is the default year. The optional increment can be one of the following:

1. A + (plus sign) followed by a number and one of the following words: minute[s],
hour[s], day[s], week[s], month[s], year[s] (or their non-English equivalents).

2. The special word next followed by one of the following words: minute[s], hour[s],
day[s], week[s], month[s], year[s] (or their non-English equivalents).

The NLTUNITS environment variable specifies the non-English equivalents of the English
defaults.

-1 Reports your scheduled jobs.
-r job. .. Removes jobs previously scheduled by at or batch, where job is the number

assigned by at or batch. If you do not have superuser authority (see "su" on
page 724), you can remove only your own jobs.

Commands 67

at

Examples

1. To schedule the command from the terminal, use a command similar to one of the
following:

at 5 at now next week at now + 2 days
pm Friday uuclean uuclean
uuclean Ctrl-D Ctrl-D
Ctrl-D

2. To run uuclean at 3:00 in the afternoon on the 24th of January, use anyone of the
following commands:

echo uuclean
echo uuclean
echo uuclean

at
at
at

3:00
3pm
1500

pm
Jan
jan

January
24

24

3. To run a job when the system load permits:

batch «~I
longjob 2)&1)outfile mail myID
!

24

This example shows the use of a here document to send standard input to at (see
"Inline Input Documents" on page 650).

The order of redirections is important here, so that only error messages are sent into
the pipe to the mail command. If you reverse the order, both standard error and
standard output are sent to outfi 1 e (see the discussion of "Input and Output
Redirection Using File Descriptors" on page 651 for details).

4. To have a job reschedule itself, invoke at from within the shell procedure by including
code similar to the following within the shell file:

echo "sh shellfile" at now tomorrow

5. To list the jobs you have sent to be run later:

at -1

6. To cancel jobs:

at -r 103 227

This cancels jobs 103 and 227. Use at -1 to list the job numbers assigned to your jobs.

68 Commands Reference

Files

lusr/lib/cron
lusr/lib/cron/at.allow
I usr IIi b I cronl at. deny
lusrlspool/cron/atjobs

Main cron directory.
List of allowed users.
List of denied users.
Spool area.

at

Related Information

The following commands: "cron" on page 172, "kill" on page 422, "mail" on page 470,
"nice" on page 515, "ps" on page 579, and "sh" on page 637.

The environment special facility in AIX Operating System Technical Reference.

"Running Commands at Pre-set Times" and "Overview of International Character Support"
in IBM RT PC Managing the AIX Operating System.

Commands 69

awk

awk

Purpose

Finds lines in files matching specified patterns and performs specified actions on them.

Syntax

awk r-\ r'1\ potternX octionJr'x XJ
~ -Fchar1~ -f pragfi/e variab/e=value file

1 The default char is a tab.
2 The default pattern is every line.
3 The default action is to print the line.

OL805422

Description

The awk command is a more powerful pattern matching command than the grep command.
It can perform limited processing on the input lines, instead of simply displaying lines that
match. Some of the features of awk are:

• It can perform convenient numeric processing.
• It allows variables within actions.
• It allows general selection of patterns.
• It allows control flow in the actions.
• It does not require any compiling of programs.

For a detailed discussion of awk, see AIX Operating System Programming Tools and
Interfaces.

The awk command, reads files in the order stated on the command line. If you specify a
file name as - (minus) or do not specify a file name, awk reads standard input.

The awk command searches its input line by line for patterns. When it finds a match, it
performs the associated action and writes the result to standard output. Enclose
pattern-action statements on the command line in single quotation marks to protect them
from interpretation by the shell.

70 Commands Reference

awk

The awk command first reads all pattern-action statements, then it reads a line of input
and compares it to each pattern, performing the associated actions on each match. When
it has compared all patterns to the input line, it reads the next line.

The awk command treats input lines as fields separated by spaces, tabs, or a field
separator you set with the FS variable. Fields are referenced as $1, $2, and so on. $0
refers to the entire line.

On the awk command line, you can assign values to variables as follows:

variable = value

Pattern-Matching Statements
Pattern-matching statements follow the form:

pattern { action }
If a pattern lacks a corresponding action, awk writes the entire line that contains the
pattern to standard output. If an action lacks a corresponding pattern, it matches every
line.

Actions

An action is a sequence of statements that follow C Language syntax. These statements
can include:

statement
if
while
for
break
continue

format
if (conditional) statement [else statement]
while (conditional) statement
for (expression; conditional; expression) statement

{ statement . .. }
(assignment) variable = expression
print print [expression-list] [> expression]
printf printf format[, expression-list] [> expression]
next
exit

Statements can end with a semicolon, a new-line character, or the right brace enclosing
the action.

If you do not supply an action, awk displays the whole line. Expressions can have string
or numeric values and are built using the operators +, -, *, /, %, a blank for string
concatenation, and the C operators ++, --, +=, -=, *=, /=, and %=. In statements,
variables may be scalars, array elements (denoted x[iD or fields. Variable names may
consist of upper- and lowercase alphabetic letters, the underscore character, the digits
(0-9), and extended characters. Variable names cannot begin with a digit. Variables are

Commands 71

awk

initialized to the null string. Array subscripts may be any string; they do not have to be
numeric. This allows for a form of associative memory. String constants in expressions
should be enclosed in double quotation marks.

There are several variables with special meaning to awk. They include:

FS Input field separator (default is a blank). This separator character cannot

NF
NR
FILENAME
OFS

ORS

OFMT

be a two-byte extended character.
The number of fields in the current input line (record).
The number of the current input line (record).
The name of the current input file.
The output field separator (default is a blank). This separator character
cannot be a two-byte extended character.
The output record separator (default is a new-line character). This
separator character cannot be a two-byte extended character.
The output format for numbers (default %. 6g).

Since the actions process fields, input white space is not preserved on the output.

The printf statement formats its expression list according to the format of the printf
subroutine (see A/X Operating System Technical Reference), and writes it arguments to
standard output, separated by the output field separator and terminated by the output
record separator. You can redirect the output using the print> file or printf> file
statements.

You have two ways to designate a character other than white space to separate fields. You
can use the -Fc flag on the awk command line, or you can start progfile with:

BEG IN { FS = c }

Either action changes the field separator to c.

There are several built-in functions that can be used in awk actions.

length

exp(n)
log(n)
sqrt(n)
int(n)
substr(s,m,n)

sprintf(fmt,expr,expr, ...)

Returns the length of the whole line if there is no argument
or the length of its argument taken as a string.
Takes the exponential of its argument.
Takes the base e logarithm of its argument.
Takes the square root of its argument.
Takes the integer part of its argument.
Returns the substring n characters long of s, beginning at
position m.
Formats the expressions according to the printf format string
fmt and returns the resulting string.

72 Commands Reference

/

Flags

awk

Patterns

Patterns are arbitrary Boolean combinations of patterns and relational expressions (the !,
II, and && operators and parentheses for grouping). You must start and end patterns with
slashes (/). You can use regular expressions like those allowed by the egrep command (see
"grep" on page 381), including the following special characters:

+ One or more occurrences of the pattern.
? Zero or one occurrences of the pattern.

Either of two statements.
() Grouping of expressions.

Isolated patterns in a pattern apply to the entire line. Patterns can occur in relational
expressions. If two patterns are separated by a comma, the action is performed on all lines
between an occurrence of the first pattern and the next occurrence of the second. Regular
expressions can contain extended characters with one exception: range constructs in
character class specifications using square brackets cannot contain two-byte extended
characters. Individual instances of extended characters can appear within square
brackets; however, two-byte extended characters are treated as two separate one-byte
characters. Regular expressions can also occur in relational expressions.

There are two types of relational expressions that you can use. One has the form:

expression matchop pattern

where matchop is either: - (for "contains") or ! - (for "does not contain"). The second has
the form:

expression relop expression

where relop is any of the six C relational operators: <, >, <=, >=, ==, and! =. A
conditional can be an arithmetic expression, a relational expression, or a Boolean
combination of these.

You can use the special patterns BEGIN and END to capture control before the first and
after the last input line is read, respectively. You can only use these patterns before the
first and after the last line in progfile.

There are no explicit conversions between numbers and strings. To force an expression to
be treated as a number, add 0 to it. To force it to be treated as a string, append a null
string (" ").

-f progfile Searches for the patterns and perform the actions found in the file progfile.

-Fchar Uses char as the field separator character (by default a blank).

Commands 73

awk

Examples

1. To display the lines of a file that are longer than 72 characters:

awk "length >72 11 chapterl

This selects each line of the file chapterl that is longer than 72 characters. awk
then writes these lines to standard output because no action is specified.

2. To display all lines between the words s ta rt and stop:

awk II /start/, /stop/" chapterl

3. To run an awk program (sum2. awk .) that processes a file (chapterl):

awk -f sum2.awk chapterl

The following awk program computes the sum and average of the numbers in the
second column of the input file:

{

}

END {

}

sum += $2

pri nt "S um : ", sum;
print "Average: II , sum/NR;

The first action adds the value of the second field of each line to the variable sum.
awk initializes s urn (and all variables) to zero before starting. The keyword END
before the second action causes awk to perform that action after all of the input file
has been read. The variable NR, which is used to calculate the average, is a special
variable containing the number of records (lines) that have been read.

4. To print the names of the users who have the C shell as the initial shell:

awk -F: I /csh/{pri nt $l} I /etc/passwd

Related Information

The following commands: "lex" on page 432, "grep" on page 381, and "sed" on page 629.

The printf subroutine in AIX Operating System Technical Reference.

The "Overview of International Character Support" in Managing the AIX Operating
System.

The discussion of awk in A/X Operating System Programming Tools and Interfaces.

74 Commands Reference

back

TNL SN20-9861 (26 June 1987) to SC23-0790-0
back

Purpose

Plays backgammon.

Syntax

/usr / games/back --t
01.805186

Description

Files

The back game provides you with a partner for backgammon. You select one of three skill
levels: beginner, intermediate, or expert. You may also choose to roll your own dice
during your turns, and you are asked if you want to move first.

The points are numbered such that:

• 0 is the bar for removed white pieces.

• 1 is white's extreme inner table.

• 24 is brown's extreme inner table.

• 25 is the bar for removed brown pieces.

For details on how to make your moves, enter y when back asks Instruct; ons at the
beginning of the game. When it first asks Move?, enter? to see a list of choices other than
entering a numerical move.

When the game is finished, back asks you if you want to save game information. A Y
response stores game data in the file back.log in your current directory.

The back game plays only the forward game, even at the expert level. It will object if you
try to make too many moves in a turn, but not if you make too few. Doubling is not
implemented.

To quit the game, press INTERRUPT (Alt-Pause).

/usr / games/lib/backrules
/tmp/b*
back.log

Rules file.
Log temp file.
Log file.

Commands 75

backup

backup

Purpose

Backs up files.

Syntax

-fdevice
,------ -i ------backup

-Inum
-v
-Cnum
-ddensity
-ssize

-mCI
fi/esystem

-r

OLS05082

Description

The backup command copies files in the backup format described in AIX Operating
System Technical Reference. The backup output device is usually a removable medium,
such as diskette or magnetic tape. You can name either a file system (backup by i-node)
or the actual files to be backed up (backup by name). In the first case, you can back up
either all files on the system (a full backup) or only the files that have been modified since
a specific full backup (an incremental backup). You can also specify a mini disk (backup
by minidisk), in which case backup copies an exact image of the entire minidisk.

Note: Because a backup by minidisk backs up an entire minidisk as an exact
image, a large minidisk with a small or sparsely used file system may take longer
and require more backup medium to back up this way, rather than by i-node or by
name.

If the file system you are backing up is mounted and is not the root file system,
backup unmounts the file system before it performs an i-node backup and then
remounts the file system before quitting.

If the file systems you are backing up include the root file system, backup ensures
that the other file systems are not in use. If one is, it warns you of this and quits.

For a file system backup, you supply a level number and a filesystem name. The possible
level numbers are 0-9; the default level is 9. A level 0 backup includes all files on the file

76 Commands Reference

Flags

TNL SN20-9861 (26 June 1987) to SC23-0790-0
backup

system. A level n backup includes all files modified since the last level n-l backup. The
level numbers, in conjunction with the -u flag, provide an easy way to maintain a
hierarchy of incremental backups for each file system. See Managing the AIX Operating
System for a discussions of backup strategy and the use of incremental backups.

The name of a filesystem can be either the physical device name (the block or raw name) or
the name of the directory on which the file system is normally mounted. When you
specify a directory name, backup reads /etc/filesystems for the physical device name. In
this case, it also acquires values for other backup parameters from /etc/filesystems.

Note: The filesystem must specify a local device or directory.

By default, backup writes to the device defined in the backupdev entry of
/etc/filesystems for a backup by i-node or to /dev/rfdO for backups by minidisk or name
or if no backupdev is defined in /etc/filesystems. You can override this default action
with the -f flag. The backup command recognizes a special syntax for the names of output
files. If the argument is a range of names, such as /dev/rfdO-3, backup automatically goes
from one drive (in the range) to the next. After exhausting all of the specified drives, it
halts and requests that new volumes be mounted.

For individual file backup, use the -i flag. backup reads standard input for the names of
files to be backed up. In this case, backup does not read /etc/filesystems and does not
default to the settings specified there.

Warning: Ensure that the flags you specify match the backup
medium. If the backup medium is not a disk or diskette, do not
specify the -I flag. Similarly, if the backup medium is not a tape,
do not specify the -d or -8 flags. If you do specify flags that do
not go with the medium, backup displays an appropriate error
message and continues the backup.

-Cnum Specifies the number of blocks to write in a single output operation. If you do
not specify num, backup uses a default value appropriate for the physical
device selected. Larger values of num result in longer physical transfers to
tape devices. The value of the -C flag is always ignored when backup writes to
diskette. In this case, it always writes in clusters that occupy a complete track.

-ddensity Specifies the density of a tape medium in bytes per inch. The default density is
700 bytes per inch.

-fdevice Specifies the output device.

-i Reads standard input for the names of files to back up.

-Inum Uses num as the limit of the total number of block to use on a diskette. The
default value is the entire diskette (2400 blocks).

Commands 77

backup

-m

-r

Backs up the entire minidisk as an exact image.

Note: Incremental backups are not supported for this mode of backup.

Indicates that removable medium is ready to use. When you specify this flag,
backup proceeds without prompting you to prepare the backup medium or
waiting for you to press the Enter key to continue.

-slength Specifies the length in feet of usable space on a tape medium. This is a
combination of the physical length and the number of tracks on the tape. In
the case of IBM RT PC Streaming Tape, you should multiply the physical
length of the tape by 9 (the number of tracks) to determine the usable space
available.

-u

-v

Updates the time, date, and level of the backup in the /etc/budate file. This
file provides the information needed for incremental backups.

Reports on each phase of the backup as it is completed and gives regular
progress reports during the longest phase.

-level Specifies the backup level (0-9). The default level is 9.

Examples

You should use the -u flag when you do an incremental backup to ensure that
information regarding the last date, time, and level of each incremental backup
is written to the file /etc/budate.

1. To back up an entire file system:

backup -0 -u /
This backs up the entire (-0) root file system (/) to the device defined in the
backupdev entry in /etc/filesystems. It also updates the current backup level record
in /etc/budate (-u). Only the root file system is backed up, not mounted file systems.

2. To back up all files modified since the last level 0 backup:

backup -1 -u /
3. To back up selected files:

find $HOME -print backup -v -i

This backs up all of the user's files, displaying a progress report as each file is copied
(-v). The -; flag causes backup to read from standard input the names of files to be
backed up. In this example, the find command supplies the list of file names. For
more information about this command, see "find" on page 326.

78 Commands Reference

Files

4. To back up an entire minidisk:

backup -mf/dev/rmtO /xyz

backup

This backs up the entire minidisk that contains the file system xyz, copying it to the
streaming tape (/ dev / rmtO).

/ etc/filesystems
/etc/budate
/dev/rfdO
/dev/rhdO

Read for default parameters.
Log for most recent backup dates.
Default backup device.
Default file system.

Related Information

The following commands: "find" on page 326, "format" on page 331, and "restore" on
page 596.

The backup and file systems files and the tape special file in A/X Operating System
Technical Reference.

"Backing up Files and File Systems" in Managing the A/X Operating System.

Commands 79

banner

banner

Purpose

Writes character strings in large letters to standard output.

Syntax

banner T string r
OL805080

Description

The banner command writes character strings to standard output in large letters. Each
line in the output can be up to 10 uppercase or lowercase characters long. On output, all
characters appear in uppercase, with the lowercase input characters appearing smaller
than the uppercase input characters.

Examples

1. To display a banner at the work station:

banner SMILE!
2. To display more than one word on a line, enclose the text in quotation marks:

banner "0ut to" Lunch
This displays Out to on one line, and Lunch on the next.

3. To print a banner:

banner We like Computers print

Related Information

The following command: "echo" on page 278.

80 Commands Reference

basename

basename, dirname

Purpose

Returns the base name of a string parameter.

Syntax

basename - string --CJ---l
suffix

dirname.-- path ---l
Description

OLS050S5

OLS05047

The basename command reads the string specified on the command line, deletes any prefix
that ends with a I (slash), as well as any specified suffix, if it is present, and writes the
remaining base file name to standard output.

Note: A basename of I is null and is considered an error.

The dirname command writes to standard output all but the last part of the specified path
name (all but the part following the last I).
The basename and dirname commands are generally used inside command
substitutions within a shell procedure to specify an output file name that is some
variation of a specified input file name. For more information, see "Command
Substitution" on page 647.

Examples

1. To display the base name of a shell variable:

basename $WORKFILE

This displays the base name of the value assigned to the shell variable WORKFI LE. If
WORKFI LE is set to lui j; m/program. C, then program. C is displayed.

Commands 81

basename

2. To construct a file name that is the same as another file name, except for its suffix:

OFI LE='basename $1 . c'. 0

This assigns to 0 F I LEthe value of the first positional parameter ($1), but with its . c
suffix changed to .0. If $1 is /u/jim/program.c, then OFILE becomes program.o.
Because program. 0 is only a base file name, it identifies a file in the current
directory.

The' , (grave accents) perform command substitution.

3. To construct the name of a file located in the same directory as another:

AOUTFI LE='di rname $TEXTFI LE'/ a. out

This sets the shell variable AOUT F I L E to the name of an a.out file that is in the same
directory as TEXTFI LE. If TEXTFI LE is /u/fran/prog. c, then the value of di rname
$TEXTFILE is /u/fran and AOUTFILE becomes /u/fran/a.out.

Related Information

The following command: "sh" on page 637.

82 Commands Reference

bc

be

Purpose

Provides an interpreter for arbitrary-precision arithmetic language.

Syntax

be

OL805081

Description

The be command is an interactive process that provides unlimited precision arithmetic. It
is a preprocessor for the de command. be invokes de automatically, unless the -e (compile
only) flag is specified. If the -e flag is specified, the output from be goes to the standard
output.

The be command lets you specify an input and output base in decimal, octal, or
hexadecimal (the default is decimal). The command also has a scaling provision for
decimal point notation. The syntax for be is similar to that of the C language.

The be command takes input first from the specified file. When be reaches the end of the
input file, it reads standard input.

The following description of syntax for be uses the following abbreviations: L means
letters a-z; E means expressions; S means statements.

Names
Simple variables: L
Array elements: L[E]
The words ibase, obase, and scale.
Comments are enclosed in /* and * /.

Commands 83

be

Other Operands
Arbitrarily long numbers with optional sign and decimal point.
(E)
sqrt (E)
length (E)
scale (E)
L (E, ... ,E)

Operators

number of significant decimal digits
number of digits to the right of the decimal point

+ . * / ~/o " (% is remainder; " is power)
+ + .. (prefix and postfix; apply to names)
==<=>=!=<>
= = + =. =* =/ =% ="

Statements
E
{ 8; ... ;8}
if (E) 8
while (E) 8
for (E;E;E) 8
(null statement)
break
quit

Function Definitions
define L (L, ... ,L) {

}

auto L, ... ,L
8; ... 8
return (E)

84 Commands Reference

Flags

be

Functions in -1 Math Library
s(x) SIne
e(x) COSIne
e(x) exponential
I(x) log
a(x) arctangent
j (n,x) Bessel function

All function parameters are passed by value.

The value of a statement that is an expression is displayed unless the main operator is an
assignment. A semicolon or new-line character separates statements. Assignments to
scale controls the number of decimal places printed on output and maintained during
multiplication, division, and exponentiation. Assignments to ibase or obase set the input
and output number radix respectively.

The same letter may refer to an array, a function, and a simple variable simultaneously.
All variables are global to the program. "Auto" variables are pushed down during function
calls. When you use arrays as function parameters, or define them as automatic variables,
empty square brackets must follow the array name.

All for statements must have all three E's.

The quit statement is interpreted when read, not when executed.

-e Compiles file, but does not invoke de.

-I Includes a library of math functions.

Examples

1. To use be as a calculator:

You: bc
1/4

System: 0
You: scale 1 /* Keep 1 decimal place */

1/4
System: 0.2

You: scale = 3 /* Keep 3 decimal places */
1/4

System: 0.250
You: 16+63/5

System: 28.600

Commands 85

be

You: (16 + 6 3) 15
System: 15.800

You: 71/6
System: 11.833

You: 1/6
System: 0.166

You may type the comments (enclosed in 1* */), but they are provided only for your
information. be displays the value of each expression when you press the Enter key,
except for assignments.

When you enter be expressions directly from the keyboard, press END OF FILE
(Ctrl-D) to end the be session and return to the shell command line.

2. To convert numbers from one base to another:

3.

You: bc
obase = 16
ibase = 8
12

1* Display numbers in Hexadecimal *1
1* Input numbers in Octal *1

System: A
You: 123

System: 53
You: 123456

System: A 72 E
When you enter be expressions directly from the keyboard, press END OF FILE
(Ctrl-D) to end the be session and return to the shell command line.

To write and run C-like programs:

You: bc -1 prog.bc
e(2) 1* e squared *1

System: 7.38905609893065022723
You: f(5) 1* 5 factorial *1

System: 120
You: f(10) 1* 10 factorial *1

System: 3628800

This interprets the be program saved in prog. bc, then reads more be statements from
the work station keyboard. Starting be with the -1 flag makes the math library
available. This example uses the e (exponential) function from the math library, and f
is defined in the program file prog. bc as:

86 Commands Reference

Files

/* compute the factorial of n */

define f(n) {
auto i, r;

}

r = 1;
for (i=2; i<=n; i++) r =* i;
return (r);

be

Note: The statement following a for or while statement must begin on the same line.

When you enter be expressions directly from the keyboard, press END OF FILE
(Ctrl-D) to end the be session and return to the shell command line.

4. To convert an infix expression to reverse polish notation (RPN):

You: bc -c
(a * b) % (3 + 4 * c)

System: 1 a 1 b* 3 41 c*+%ps.
This compiles the be infix-notation expression into one that the de command can
interpret. de evaluates extended RPN expressions.

In the compiled output, the 1 (ell) before each variable name is the de subcommand to
load the value of the variable onto the stack. The p displays the value on top of the
stack, and the s. discards the top value by storing it in register. (dot).

You can save the RPN expression in a file for de to evaluate later by redirecting the
standard output of this command. For more details, see "Redirection of Input and
Output" on page 649.

When you enter be expressions directly from the keyboard, press END OF FILE
(Ctrl-D) to end the be session and return to the shell command line.

/usr /lib/lib. b
/usr/bin/dc

Mathematical library.
Desk calculator proper.

Related Information

The following command: "de" on page 222.

Commands 87

bdiff

bdiff

Purpose

Uses diff to find differences in very large files.

Syntax

-(
3500JO

bdiff - filel - file2
num -s

OL805083

Description

Flag

The bdiff command compares filel and file2 and writes information about their differing
lines to standard output. If either file name is - (minus), bdiff reads standard input. The
bdiff command is used like diff to find lines that must be changed in two files to make
them identical (see "diff" on page 246). Its primary purpose is to permit processing of files
that are too large for diff.

The bdiff command ignores lines common to the beginning of both files, splits the
remainder of each file into num-line segments, and calls diff to compare the corresponding
segments. In some cases, the 3500 line default for num is too large for diff. If diff fails,
specify a smaller value for num and try again.

The output of bdiff has the same format as that of diff. bdiff adjusts line numbers to
account for the segmenting of the files. Note that because of the file segmenting, bdiff
does not necessarily find the smallest possible set of file differences.

-8 Suppresses error messages from bdiff. (Note that the -8 flag does not suppress error
messages from dift).

Example

To display the differences between chapl and chapl. bak:
bdiff chapl chapl.bak

88 Commands Reference

bdiff

Files

/tmp/bd* Temporary files.

Related Information

The following command: "diff' on page 246.

Commands 89

bfs

bfs

Purpose

Scans files.

Syntax

bls -0- file----'

OL805084

Description

The bfs command reads a file but does not do any processing of it, allowing you to scan but
not edit it.

The bfs command is basically a read-only version of the ed command, except it can process
much larger files and it has some additional subcommands. Input files can be up to 32K
lines long, with up to 255 characters per line. bfs is usually more efficient than ed for
scanning a file, because the file is not copied to a buffer. It is most useful for identifying
sections of a large file where you can use the csplit command to divide it into more
manageable pieces for editing.

If you enter the P subcommand, bfs prompts you with an * (asterisk). You can turn off
prompting by entering a second P. bfs displays error messages when prompting is turned
on.

Forward and Backward Searches
The bfs command supports all the address expressions described under "ed" on page 280.
In addition, you can instruct bfs to search forward or backward through the file, with or
without wrap-around. If you specify a forward search with wrap-around, bfs continues
searching from the beginning of the file after it reaches the end of the file. If you specify a
backward search with wrap-around, it continues searching backwards from the end of the
file after it reaches the beginning. The symbols for specifying the four types of search are
as follows:

/pattern/ Searches forward with wrap-around for the pattern.

?pattern? Searches backward with wrap-around for the pattern.

> pattern> Searches forward without wrap-around for the pattern.

<pattern < Searches backward without wrap-around for the pattern.

90 Commands Reference

Flags

The pattern matching routine of bfs differs somewhat from the one used by ed and
includes additional features (see the regcmp subroutine in AIX Operating System
Technical Reference). There is also a slight difference in mark names: only lowercase
letters a through z may be used, and all 26 marks are remembered.

bfs

Suppresses the display of file sizes. Normally, bfs displays the size in bytes of the file
being scanned.

Subcommands

The e, g, v, k, n, p, q, W, = , ! and null subcommands operate as explained under "ed" on
page 280. Subcommands such as --, + + +-, -+- + + =, -12, and +4p are accepted. Note that
1, lOp and 1,10 both display the first ten lines. The f subcommand displays only the name
of the file being scanned; there are no remembered file names. The W subcommand is
independent of output diversion, truncation, or compression (see the xo, xt, and xc
subcommands on page 91). Compressed output has strings of tabs and blanks reduced to
one blank and blank lines suppressed.

The following additional subcommands are available:

xf file Reads bfs subcommands from the file. When bfs reaches the end of file
or receives an INTERRUPT signal or if an error occurs, bfs resumes
scanning the file that contains the xf subcommand. These xf
subcommands may be nested to a depth of 10.

xo flile]

:label

Sends further output from the p and null subcommands to the named
file, which is created with read and write permission granted to all
users. If you do not specify a file parameter, bfs writes to standard
output. Note that each redirection to a file creates the specified file,
deleting an existing file if necessary.

Positions a label in a subcommand file. The label is ended with a
new-line character. Blanks between the: (colon) and the start of the
label are ignored. This subcommand may be used to insert comments
into a subcommand file, since labels need not be referenced.

[addr 1 [,addr 2]]xb/ pattern/ labe l
Sets the current line to the line containing pattern and jumps to label in
the current command file if pattern is matched within the designated
range of lines. The jump fails under any of the following conditions:

• Either addrl or addr2 is not between the first and last lines of the
file.

• addr2 is less than addrl.
• The pattern does not match at least one line in the specified range,

including the first and last lines.

Commands 91

bfs

This subcommand is the only one that does not issue an error message
on bad addresses, so it may be used to test whether addresses are bad
before other subcommands are run. Note that the subcommand:

is an unconditional jump.

The xb subcommand is allowed only if it is read from some place other
than a work station. If it is read from a pipe, only a downward jump
is possible.

xt number Truncates output from the p and null subcommands to number
characters. The default number is 255.

xv[digit] [value] Assigns the specified value to the variable named digit (0 through 9).
You can put one or more spaces between digit and value. For example:

xv5 100
xv6 1,100p

assigns the value 100 to the variable 5 and the value 1, lOOp to the
variable 6.

To reference a variable, put a % (percent sign) in front of the variable
name. Given the preceding assignments for variables 5 and 6, the
following three subcommands:

1,%5p
1,%5
%6
each display the first 100 lines of a file. To escape the special meaning
of %, precede it with a \ (backslash). For example:

g/ II • *\% [cds] /p

matches and lists lines containing printf variables (%c, %d, or %5).

You can also use the xv subcommand to assign the first line of
command output as the value of a variable. To do this, make the first
character of value an ! (exclamation point), followed by the command
name. For example:

xv5 ! cat j un k

stores the first line of the file j un k in the variable 5. To escape the
special meaning of ! as the first character of value, precede it with a \
(backslash). For example:

xv7 \! date

92 Commands Reference

xbz label

xbn label

xc [switch]

bfs

stores the value ! date in the variable 7.

Tests the last saved exit value from a shell command and jumps to label
in the current command file if the value is zero.

Tests the last saved exit value from a shell command and jumps to label
in the current command file if the value is not zero.

Turns compressed output mode on or off. (Compressed output mode
suppresses blank lines and replaces multiple blanks and tabs with a
single space.)

If switch is 1, output from the p and null subcommands is compressed; if
switch is 0 it is not. If you do not specify switch, the current value of
switch reverses. Initially, switch is set to O.

Related Information

The following commands: "csplit" on page 202 and "ed" on page 280.

The regcmp subroutine in AIX Operating System Technical Reference.

Commands 93

bj

bj

Purpose

Plays blackj ack.

Syntax

/usr/games/b j---l
OL805187

Description

The bj game plays the the role of the dealer in blackjack. The following rules apply.

The bet is $2 every hand. If you draw a natural (blackjack), you win $3. If the dealer
draws a natural, you lose $2. If you and the dealer both have naturals, you exchange no
money (a push). If the dealer has an ace showing, you can make an insurance bet on the
chance that the dealer has a natural, winning $2 if the dealer has a natural and lose $1 if
not. If you are dealt two cards of the same value, you can double, that is, play two hands,
each of which begins with one of these cards, betting $2 on each hand. If the value of your
original hand is 10 or 11, you can double down, that is, double the bet to $4 and receive
exactly one more card in that hand.

Under normal play, you can draw a card (hit) as long as your cards total 21 or less. If the
cards toal more than 21, you bust and the dealer wins the bet. When you stand (decide
not to hit), the dealer hits until he has a total of 17 or more. If the dealer busts, you win.
If both you and the dealer stand, the one with the higher total wins. A tie is a push.

The bj command deals, keeps score, and asks the following questions at appropriate times:
? (Do you want a hit?) Insurance? Daubl e? Daubl e down? To answer "yes," press
y; to answer "no," press the Enter key.

The dealer tells you whenever the deck is being shuffled and displays the action (total bet)
and standing (total won or lost). To quit the game, press INTERRUPT (Alt-Pause); bj
displays the final action and standing and exits.

94 Commands Reference

bs

bs

Purpose

Compiles and interprets modest-sized programs.

Syntax

bS-{file~
flag

OL805167

Description

This compiler/interpreter provides interactive program development and debugging. To
simplify program testing, it minimizes formal data declaration and file manipulation,
allows line-at-a-time debugging, and provides trace and dump facilities and run-time error
messages.

The optional command line parameter file specifies a file of program statements that the
compiler reads before it reads from the standard input. By default, statements read from
this file are compiled for later execution. Likewise, statements entered from the standard
input are normally executed immediately (see the compile keyword on page 96 and the
execute keyword on page 96). Unless the final operation is assignment, the result of an
immediate expression statement is displayed.

Additional command line flags can be passed to the program using the built-in functions
arg and narg (explained in more detail on page 100).

Program lines must conform to one of the following formats:

statement
label statement

The interpreter accepts labeled statements only when it is compiling statements. A label is
a name immediately followed by a colon. A label and a variable can have the same name.
If the last character of a line is a \ (backslash), the statement continues on the following
physical line.

A statement consists of either an expression or a keyword followed by zero or more
expressions.

Commands 95

bs

Statement Syntax
break Exits the innermost for or while loop.

clear Clears the symbol table and removes compiled statements from memory.
A clear is always executed immediately.

compile [expr] Causes succeeding statements to be compiled (overrides the immediate
execution default). The optional expression is evaluated and used as a
file name for further input. In this latter case, the symbol table and
memory are cleared first. compile is always executed immediately.

continue Transfers control to the loop-continuation test of the current for or
while loop.

dump [name] Displays the name and current value of every global variable or,
optionally, of the named variable. After an error or interrupt, dump
displays the number of the last statement and (possibly) the user-function
trace.

exit [expr] Returns to the system level. The expression is returned as process
status.

execute Changes to immediate execution mode (pressing INTERRUPT
[Alt-Pause] has the same effect). This statement does not cause stored
statements to execute (see run on page 98).

for name = expr expr statement

for name = expr expr
statement . ..

next

for expr, expr, expr statement

forexpr, expr, expr
statement . ..

next Repetitively performs, under the control of a named variable, a statement
(first format) or a group of statements (second format). The variable
takes on the value of the first expression, then is increased by one on
each loop until it exceeds the value of the second expression. The third
and fourth formats require three expressions separated by commas. The
first of these is the initialization, the second is the test (true to
continue), and the third is the loop-continuation action.

fun f ([a, ...]) [u, ...]
statement . . .

nuf Defines the function name (j), parameters (a), and local variables (u) for a
user-written function. Up to 10 parameters and local variables are
allowed. Such names cannot be arrays, nor can they be I/O associated.
Function definitions may not be nested.

96 Commands Reference

freturn

goto name

ibase 11,

if expr statement

if expr
statement . ..

[else
statement . ..]

fi

include expr

obase 11,

onintr label
onintr

return [expr]

bs

Signals the failure of a user-written function. Without interrogation,
freturn returns zero. (See the unary interrogation operator? discussed
on page 99.) With interrogation, freturn transfers to the interrogated
expression, possibly bypassing intermediate function returns.

Passes control to the compiled statement with the matching label.

Sets the input base to n. The only supported values for 11, are 8, 10 (the
default), and 16. Hexadecimal values 10-15 are entered as alphabetic
characters a-f. A leading digit is required when a hexadecimal number
begins with an alphabetic character (for example, fOa must be entered
as OfOa). ibase is always executed immediately.

Performs a statement (first format) or group of statements (second
format) if the expression evaluates to nonzero. The strings 0 and ""
(null) evaluate as zero. In the second format, an optional else allows a
group of statements to be performed when the first group is not. The
only statement permitted on the same line with an else is an if; only
other fis can be on the same line with a fl. You can combine else and if
into elif. Only a single fi is required to close an if ... elif ... [else ...]
sequence.

The expression must evaluate to the name of a file containing program
statements. Such statements become part of the program being compiled.
include statements may not be nested, and are always executed
immediately.

Sets the output base to n. The only supported values for 11, are 8, 10 (the
default), and 16. Hexadecimal values 10-15 are entered as alphabetic
characters a-f. A leading digit is required when a hexadecimal number
begins with an alphabetic character (that is, fOa must be entered as
OfOa). Like ibase, obase is always executed immediately.

Provides program control of interrupts. In the first format, control
passes to the label given, just as if a goto had been performed when
onintr was executed. The effect of the onintr statement is cleared after
each interrupt. In the second format, pressing INTERRUPT (Alt-Pause)
ends bs.

Evaluates the expression and passes the result back as the value of a
function call. If you do not provide an expression, the function returns
zero.

Commands 97

bs

run

stop

trace [expr]

Passes control to the first compiled statement. The random number
generator is reset. If a file contains a run statement, it should be the
last statement; run is always executed immediately.

Stops execution of compiled statements and returns to immediate mode.

Controls function tracing. If you do not provide an expression or if it
evaluates to zero, tracing is turned off. Otherwise, a record of
user-function calls/returns will be written. Each return decreases by
one the trace expression value.

while expr statement

while expr
statement . ..

next

! AIXcmd

#comment

while is similar to for except that only the conditional expression for
loop continuation is given.

Runs an AIX command, then returns control to bs.

Inserts a comment line.

Expression Syntax
name Specifies a variable or, when followed immediately by a colon, a label.

Names are composed of a letter (uppercase or lowercase) optionally
followed by letters and digits. Only the first six characters of a name are
significant. Except for names declared locally in fun statements, all
names are global. Names can take on numeric (double float) values or
string values or be associated with input/output (see the built-in function
open on page 102).

name([expr[, expr] ...)
Calls function name and passes to it the parameters in parentheses.
Except for built-in functions (listed in the following text), name must be
defined in a fun statement. Function parameters are passed by value.

name[expr[, expr] ...]

number

string

References either arrays or tables (see built-in function table on page
103). For arrays, each expression is truncated to an integer and used as
a specifier for the name. The resulting array reference is syntactically
identical to a name; a [1, 2J is the same asa [lJ [2J. The truncated
expressions must be values between 0 and 32767.

Represents a constant numerical value. This number can be expressed in
integer, decimal, or scientific notation (it can contain digits, an optional
decimal point, and an optional e followed by a possibly signed exponent).

Character string delimited by" " (double quotation marks). The \
(backslash) is an escape character that allows the double quotation mark
(\"), new-line character (\n), carriage return (\r), backspace (\b), and tab

98 Commands Reference

(expr)

bs

(\t) characters to appear in a string. When not immediately followed by
these special characters, \ stands for itself.

Parentheses alter the normal order of evaluation.

(expr, expr[, expr] ...) [expr]

expr op expr

The bracketed expression outside the parentheses functions as a
subscript to the list of expressions within the parentheses. List elements
are numbered from the left, starting at zero. The expression:

(False, True) [a == b]

has the value True if the comparison is true.

Except for the assignment, concatenation, and relational operators, both
operands are converted to numeric form before the operator is applied.

Unary Operators

?expr

-expr

+ + name

--name

!expr

The interrogation operator (?) tests for the success of the expression
rather than its value. It is useful for testing end of file, for testing the
result of the eval built-in function, and for checking the return from
user-written functions (see freturn on page 97). An interrogation trap (
end of file, for example), causes an immediate transfer to the most recent
interrogation, possibly skipping assignment statements or intervening
function levels.

Negates the expression.

Increases by one the value of the variable (or array reference).

Decreases by one the value of the variable.

The logical negation of the expression.

Binary Operators (in increasing precedence)

&

The assignment operator. The left operand must be a name or an array
element. It acquires the value of the right operand. Assignment binds
right to left; all other operators bind left to right.

The concatenation operator (the underline character).

logical AND, logical OR. The result of

expr & expr

is 1 (true) only if both of its parameters are nonzero (true); it is 0 (false)
if one or both of its parameters are 0 (false). The result of

expr I expr

Commands 99

bs

< <= > >=

+ -

* / %

"

is 1 (true) if one or both of its expressions are nonzero (true); it is 0
(false) only if both of its expressions are 0 (false). Both operators treat a
null string as a zero.

= = !=
The relational operators « less than, . < = less than or equal to, >
greater than, > = greater than or equal to, = = equal to, ! = not equal
to) return 1 if the specified relation is True. They return 0 (false)
otherwise. Relational operators at the same level extend as follows:
a> b > c is the same as a> b & b > c. A string comparison is made if both
operands are strings. The comparison is based on the collating sequence
specified in the environment variable NLCTAB.

Addition and subtraction.

Multiplication, division, and remainder.

Exponentiation.

Functions Dealing With Arguments
arg(i)

narg()

Returns the value of the i-th actual argument at the current function
call level. At level zero, arg returns the i-th command-line argument.
For example, arg(O) returns bs.

Returns the number of arguments passed. At level zero, it returns the
command line argument count.

Mathematical Functions
abs(x)

atan(x)

ceil(x)

cos(x)

exp(x)

floor(x)

log(x)

rand()

sin(x)

sqrt(x)

Returns the absolute value of x.

Returns the arctangent of x.

Returns the smallest integer not less than x.

Returns the cosine of x.

Returns e raised to the power x.

Returns the largest integer not greater than x.

Returns the natural logarithm of x.

Returns a uniformly distributed random number between zero and one.

Returns the sine of x.

Returns the square root of x.

100 Commands Reference

bs

String Functions
size(s)

format(f, a)

index(x, y)

Returns the size (length in bytes) of s.

Returns the formatted value of a, f being a format specification string in
the style of the printf subroutine. Use only the % ... f, % ... e, and % ... s
formats.

Returns a number that is the first position in x containing a character
that any of the characters in y matches. If there is no match, index
yields zero. For two-byte extended characters, the index functions
returns the location of the first byte.

trans(s, f, t) Translates characters in the source string s which match characters in f
into characters having the same position in t. Source characters that do
not appear in f are copied unchanged into the translated string. If string
f is longer than t, source characters that match characters found in the
excess portion of f do not appear in the translated string.

subst(s, start, length)
Returns the substring of s defined by starting position and length.

match(string, pattern)
mstring(n) This function returns the number of characters in string that match

pattern. The characters ., *, ? [,], /\ (when inside square brackets), \(
and \) have the following special meanings (see "ed" on page 280 for a
more detailed discussion of this special notation):

*

$
[.-.]
[...]

[/\ .-.]
[/\ ...]

[].-.]
[] ...]

\(... \)

Matches any character except the new-line character.

Matches zero or more occurrences of the pattern element that
it follows (for example, . * matches zero or more occurrences of
any character except the new-line character).

Specifies the end of the line.

Matches anyone character in the specified range ([-.]) or list ([
...]), including the first and last characters.

Matches any character except the new-line character and the
remaining characters in the range or list. A circumflex (/\) has
this special meaning only when it immediately follows the left
bracket.

Matches] or any character in the list. The right square
bracket does not terminate such a list when it is the first
character within it (after an initial /\, if any).

Marks a substring and matches it exactly.

Commands 101

bs

To succeed, a pattern must match from the beginning of the string. It
also matches the longest possible string. Consider, for example:

match(l a 123ab123 ' ,I.*\([a-z]\)") == 6

In this instance, . * matches a 123 a (the longest string that precedes a
character in the range a-z); \ ([a-z] \) matches b, giving a total of six
characters matched in the string. In an expression such as [a-z], the
minus means "through" according to the current collating sequence. A
collating sequence may define equivalence classes for use in character
ranges. See the "Overview of International Character Support" in
Managing the AIX Operating System for more information on collating
sequences and equivalence classes.

The mstring function returns the nth substring in the last call to
match (n must be between 1 and 10 inclusive).

File-Handling Functions
open(name, file, mode)
close(name) The name parameter must be a legal variable name (passed as a string).

access(p, m)

ftype(s)

For open, the file parameter may be:

• A 0, 1, or 2 for standard input, output, or error output, respectively
• A string representing a file name
• A string beginning with an !, representing a command to be run (via

s h - c).
The mode flag must be either r (read), w (write), W (write without
new-line character), or a (append). After a close, the name becomes an
ordinary variable. The initial associations are:

open("get", 0, "r")
open("put", 1, "W")
open("puterr", 2, "Wl!)

Performs the access system call. Parameter p is the path name of a file;
m is a bit pattern representing the requested mode of access. This
function returns a 0 if the request is permitted, -1 if it is denied. (See
AIX Operating System Technical Reference for a more extensive
discussion of this system call.)

Returns a single character indicating file type: f for regular file, p for
FIFO (named pipe), d for directory, b for block special, or c for character
special.

102 Commands Reference

bs

Table Functions
table(name, size) A table in bs is an associatively accessed, one-dimensional array.

item(name, i)
key()

"Subscripts" (called keys) are strings (numbers are converted). The name
parameter must be a bs variable name (passed as a string). The size
parameter sets the minimum number of elements to be allocated. On
table overflow, bs writes an error message.

The item function accesses table elements sequentially (in normal use,
there is an orderly progression of key values). Where the item function
accesses values, the key function accesses the "subscript" of the previous
item call. The name parameter should not be quoted. Since exact table
sizes are not defined, the interrogation operator should be used to detect
end-of-table; for example:

table(lt",lOO)

#If word contains "party", the following expression
#adds one to the count of that word:
++t [word]

To display the key/value pairs:
for i=O, ?(s=item(t, i)), ++i if key() put=key()_":"_s

iskey(name, word)
Tests whether the key word exists in the table name and returns one for
true, zero for false.

Miscellaneous Functions
eval(string) The string parameter is evaluated as an expression. The function is

handy for converting numeric strings to numbers. eval can also be used
as a crude form of indirection, as in:

name = "xyz"
eval CI++"_name)

which increments the variable xyz. In addition, eval preceded by the
interrogation operator permits you to control bs error conditions. For
example:

?eval (lopen(\IX\", \"XXX\", \"r\") ")

Commands 103

bs

returns the value zero if there is no file named II XXX II (instead of halting
your program). The following performs a goto to the label L: (if it
exists):

label=IIL: 1I

if!(?eval(lIgotoll_label))puterr=lIno label ll

plot(request, args)

lastO

The plot function produces output on devices recognized by the tplot
command. The requests are as follows:

Call

plot(O, term)

plot(1)

plot (2, string)

plot(3, xl, yl, x2,

plot(4, x, y, r)

plot(5, xl, yl, x2,

plot(6)

plot(7, x, y)

plot(8, xy)

plot(9, x, y)

plot(lO, string)

y2)

y2,

Function

Causes further plot output to be piped into
tplot with a flag of -Tterm.

"Erases" the plotter.

Labels the current point with string.

Draws the line between (xl, yl) and (x2, y2).

Draws a circle with center (x, y) and radius
r.

x3, y3)
Draws an arc (counterclockwise) with center
(xl, yl) and endpoints (x2, y2) and (x3, y3).

Not implemented.

Makes the current point at (x, y).

Draws a line from the current point to (x, y).

Draws a point at (x, y).

Sets the line mode to string.

plot(ll, xl, yl, x2, y2) Makes (xl, yl) the lower left corner of the
plotting area and (x2, y2) the upper right
corner of the plotting area.

plot(12, xl, yl, x2, y2) Causes subsequent x (y) coordinates to be
multiplied by xl (yl) and then added to x2
(y2) before they are plotted. The initial
scaling is plot(12, 1.0, 1.0, 0.0, 0.0).

Some requests do not apply to all plotters. All requests except zero and
12 are implemented by piping characters to tplot.

In immediate mode, last returns the most recently computed value.

104 Commands Reference

bs

Related Information

The following commands: "ed" on page 280, "sh" on page 637, and "tplot" on page 762.

The access system call, the printf subroutine, and the plot file in AIX Operating System
Technical Reference.

"Overview of International Character Support" in Managing the AIX Operating System.

Commands 105

cal

cal

Purpose

Displays a calendar.

Syntax

cal r-\. year--l
~monthr

OL805168

Description

The cal command writes to standard output a calendar for the specified year or month.

The month parameter names the month for which you want the calendar. It can be a
number between 1 and 12 for January through December, respectively.

The year parameter names the year for which you want the calendar. Since cal can
display a calendar for any year from 1 to 9999, enter the full year rather than just the last
two digits.

Examples

1. To display a calendar for February 1984 at your work station:

cal 2 1984
2. To print a calendar for 1984:

cal 1984 I print
3. To display a calendar for the year 84 A.D.:

cal 84

106 Commands Reference

calendar

calendar

Purpose

Writes reminder messages to standard output.

Syntax

COlendor-G

OL805169

Description

Flag

The calendar command reads a file named calendar, which you create in your current
(usually home) directory. It writes to standard output any line in the file that contains
today's or tomorrow's date.

The calendar command recognizes date formats such as Dec. 7 or 12/7. It also
recognizes the special character * (asterisk). It interprets * /7, for example, as signifying
the seventh day of every month. calendar does not recognize formats such as 7
December, 7/12, or DEC. 7.

On Fridays, calendar writes all lines containing the dates for Friday, Saturday, Sunday,
and Monday. It does not, however, recognize holidays, so "tomorrow" is the holiday rather
than the next working day.

For you to get reminder service, your calendar should have read permission for others (see
"chmod" on page 128).

Calls calendar for everyone having a file calendar in his home directory and sends
any reminders by mail

Example

To display information in the calendar file that pertains to the next two business days:

calendar

Commands 107

calendar

Files

A typical calendar file might look like this:

*/25 - Prepare monthly report
Aug. 12 - Fly to Denver
aug 23 - board meeting
Martha out of town - 8/23, 8/24, 8/25
8/24 - Mail car payment
sat aug/25 - beach trip
August 27 - Meet with Simmons
August 28 - Meet with Wilson
If today is Friday, August 24, then the calendar command displays:

*/25 - Prepare monthly report
Martha out of town - 8/23, 8/24, 8/25
8/24 - Mail car payment
sat aug/25 - beach trip
August 27 - Meet with Simmons

$HOME/calendar
/usr/lib/calprog
/etc/passwd
/tmp/cal*

The program that determines dates.
Used to identify users.
Temporary files.

Related Information

The following commands: "chmod" on page 128 and "mail" on page 470.

108 Commands Reference

cat

cat

Purpose

Concatenates or displays files.

Syntax

cat

OL805086

Description

Flags

The cat command reads each file in sequence and writes it to standard output. If you do
not specify file or specify - (minus) instead of a file, cat reads from standard input.

Warning: Do not redirect output to one of the input files using the>
redirection symbol. If you do this, you will lose the original data in the
input file because the shell truncates it before cat can read it (see "sh" on
page 637).

-8 Does not display a message if cat cannot find an input file.

-u Does not buffer output.

Examples

1. To display a file at the work station:

cat notes

This displays the data in the file notes. If the file is more than about 23 lines long,
some of it will scroll off the screen. To list a file one page at a time, use the pg
command. (See "pg" on page 553 for details.)

2. To concatenate several files:

cat sectionl.l sectionl.2 sectionl.3 >sectionl

Commands 109

cat

This creates a file named sec t ion 1 that is a copy of sec t ion 1 . 1 followed by
secti onI. 2 and secti onI. 3.

3. To suppress error messages about files that do not exist:

cat -s section2.1 section2.2 section2.3 >section2

If secti on2.1 does not exist, this concatenates secti on2. 2 and secti on2. 3. The
result is the same if you do not use the -8, except that cat displays the error message:

cat: cannot open section2.1

You may want to suppress this message with the -s flag when you use the cat
command in shell procedures.

4. To append one file to the end of another:

cat sectionl.4 »sectionl

This appends a copy of secti onl. 4 to the end of secti onI.

Note: The» appends data to the end of secti onI, but using> replaces the file. For
more details, see "Redirection of Input and Output" on page 649.

5. To add text to the end of a file:

cat »notes
Get milk on the way home
Ctrl-D

This adds the text Get mi 1 k on the way home to the end of notes. The cat
command does not prompt, but waits silently for you to enter text. Pressing Ctrl-D
indicates the end of the text to be added.

6. To concatenate several files with text entered from the keyboard:

cat section3.1 section3.3 >section3

This concatenates secti on3 .1, text from the keyboard, and secti on3. 3.

7. To concatenate several files with output from another command:

li cat section4.1 - >section4

This copies sect i on4. 1, followed by the output of the Ii command to a file named
secti on4.

Related Information

The following commands: "cp" on page 156, "pr" on page 561, and "8h" on page 637.

110 Commands Reference

cb

cb

Purpose

Puts C source code into a form that is easily read.

Syntax

-s ::Ij length ~ ~ Cb~oneOf~
01.,805170

Description

Flags

The cb command reads C programs from standard input or from specified files and writes
them to standard output in a form that shows, through indentations and spacing, the
structure of the code. When called without flags, cb does not split or join lines. Note that
punctuation in preprocessor statements can cause indentation errors.

-j

-1 length

-s

Joins lines that are split.

Splits lines that are longer than length.

Formats the source code according to the style of Kernighan and Ritchie in
The C Programming Language. (Englewood Cliffs, New Jersey: Prentice-Hall,
Inc., 1978.).

Example

To create a version of pgm. c called pgm. pretty. c that is easy to read:

cb pgm.c > pgm.pretty.c

Related Information

The following command: "cc" on page 112.

The discussion of cb in AIX Operating System Programming Tools and Interfaces.

Commands 111

TNL SN20-9861 (26 June 1987) to SC23-0790-0
CC

cc

Purpose

Compiles C programs.

Syntax

Ordinary Operation

-y
one of

, d P
m z
n

"f= file ~_I key~

-f -0
-G -p
-g -a
-h -w
-f2 -x

-z

-Dnome

, Do not put a blank between these items.

-00. out

-I dir
-L dir
-0 nome

(/09 2

2 Use any flag belonging to as, cpp, or Id (except -I key).

3 Put this flag last if used (see the Id command).

4 Use any flag from the first diagram (except -I key) or any flag
belonging to as, cpp or Id.

112 Commands Reference

OLB05171

OLB05343

TNL SN20-9861 (26 June 1987) to SC23-0790-0
cc

Extended Functions and Debugging

ee
fee
vee -(

/lib/O
-8 1

prefix

-t We, flog 2

1 Do not put a blank between these items.

2 Use any flag belonging to as, cpp, or Id (except -I key).

3 Put this flag last if used (see the Id command).

4 Use any flag from the first diagram (except -I key) or any flag
belonging to as, epp or Id.

Description

OL805389

OLB05343

The ee command runs the C compiler. It accepts files containing C source code, assembler
source code, or object code and changes them into a form that the computer system can
run. ee compiles and assembles source files and then links them with any specified object
files, in the order listed on the command line. It puts the resulting executable program in
a file named a.out.

The fee command is a link to ee that compiles programs to run with the Floating-Point
Accelerator. fee should only be used on the ROM processor. It automatically uses the -f
flag as well as special versions of the standard libraries that have been compiled for direct
floating-point applications. Note that programs compiled with fee can run only on systems
that have installed the Floating-Point Accelerator.

The vee command is a link to ee that compiles modules to be installed in the VRM. Use
the vrmfmt command to convert the a.out file produced by the vee command to a
VRM-compatible object module. The syntax of this command is as follows:

vrmfmt infile [outfile]

The default output file name is a.vrm.

Commands 113

TNL SN20-9861 (26 June 1987) to SC23-0790-0
CC

The cc command runs the following programs. Each program processes the source file and
then sends the results to the next program in the sequence:

cpp The macro preprocessor.

ccomO The first pass of the compiler.

ccomq The intermediate code optimizer (if you specify the -0 flag).

This program provides a variety of optimizations to the intermediate code, such
as removing loop invariants, eliminating common subexpressions, and allocating
registers. The following cannot be optimized:

• Functions that call setjmp
• Functions that contain asm statements

If you are compiling a large program and the flow optimizer runs out of space,
the compiler stops the process and displays a message describing the problem.

ccom! The second pass of the compiler.

copt The optimizer (if you specify the -0 flag).

as The assembler.

ld The linkage editor.

You can replace any or all of these passes with your own versions (see the -B and -t flags).
Both cc and fcc use the cc.cfg configuration file, which specifies the standard runtime
link options and libraries to be used with each version of the compiler.

Input File Types
The cc command recognizes and accepts as input the following file types:

file.c

The name of a C language source file should end with .c. After cc compiles this source
file, it gives the resulting object file the same name, except that it ends in .0 rather than
.c. If you use one command both to compile and to load a single C program, the compiler
normally deletes the .0 file when it loads the program. If you use the -c flag, the compiler
does not delete the .0 file.

file.i

The name of a file that contains preprocessed C source code ends in .i.

114 Commands Reference

Flags

file.o

TNL SN20-9861 (26 June 1987) to SC23-0790-0
CC

The name of an object file should end in .0. The cc command sends these files to the Id
command.

file.s

The name of an assembly language source program should end with .s. After cc assembles
this source file, it gives the resulting object file the same name, except that it ends in .0

rather than .s.

The cc command recognizes several flags. In addition, flags intended to modify the action
of the linkage editor (Id), the assembler (as), or the preprocessor (cpp) may also appear on
the cc command line. cc sends any flags it does not recognize to these commands for
processing. The following list includes the most 'commonly used cpp flags (-D, -I), and Id
flags (-1, -L, -0). See "as" on page 64, "cpp" on page 163, and "Id" on page 427 for a
complete list of additional flags.

Note: If you use the -1 flag, it must be the last entry on the command line, following any
file parameters.

Ordinary Operation
-a

-c

-Dname[= defJ

-E

-f

-£2

Reserves a register for extended addressing. You should use this flag if a
compiled procedure creates a stack greater than 32,767 bytes. Because
this flag causes the compiler to reserve a register for use by the
assembler, it reduces the number of available registers by one.

Does not send the completed object file to the Id command. With this
flag, the output of cc is a .0 file for each .c or .s file.

Defines name as in a #define directive. The default def is l.

Runs the named C source file through only the preprocessor and writes
the result to standard output.

Generates code that uses the Floating-Point Accelerator. Programs
compiled with this flag will run correctly only on AIX processors
configured with the Floating-Point Accelerator.

Generates code that uses the Advanced Floating-Point Accelerator.
Programs compiled with this flag will run correctly only"on AIX
processors configured with the Advanced Floating-Point Accelerator and
an Advanced Processor Card.

Commands 115

TNL SN20-9861 (26 June 1987) to SC23-0790-0
CC

-g

-G

-h

-Idir

-I [key]

-Ldir

-N[ndpt]num

-oname

-0

-p

-p

-Q!

Produces additional information for use with the sdb command (the
symbolic debugger).

Indicates that global variables are volatile. The optimizer (ccomq)
makes fewer transformations when you specify this flag. To make a
particular variable volatile, add the "volatile" specification to its
declaration.

Treats files with the suffix .h in the same way as files with the suffix .c.

Looks first in dir, then looks in the directories on the standard list for
#include files with names that do not begin with / (slash).

Searches the specified library file, where key selects the file libkey.a.
With no key, -I selects libc.a, the standard system library for C and
assembly language programs. Id searches for this file in the directory
specified by an -L flag, then in /lib and /usr/lib. The Id command
searches library files in the order in which you list them on the command
line.

Looks in dir for files specified by -I keys. If it does not find the file in
dir, Id searches the standard directories.

Changes the size of the symbol table (n), the dimension table (d), the
constant pool (p), or the space for building the parse tree (t). Each table
must be changed separately. The default size of the symbol table is 1500;
the default size of the dimension table is 2000; the default size for the
constant pool is 600; the default space for the parse tree is 1000.

Assigns name rather than a~out to the output file.

Sends compiler output to the code optimizers.

Prepares the program so that the prof command can generate an
execution profile. The compiler produces code that counts the number of
times each routine is called. If programs are sent to Id, the compiler
replaces the startup routine with one that calls the monitor subroutine
at the start (see AIX Operating System Technical Reference for a
discussion of this subroutine), and writes a mon.out file when the
program ends normally.

Sends the specified C source file to the macro preprocessor and stores the
output in a .i file.

Turns off inlining. The following may be used:

? Shows the reason for not inlining in the output file.

-name, name . . . Does not in line name

+ name,name ... Inlines name

116 Commands Reference

-8

-w

-x

-y[dmnpz]

-z

TNL SN20-9861 (26 June 1987) to SC23-0790-0
CC

Inum Limits the size increase of the function into which inlining
occurs to num intermediate operations. The default num is
100.

#num Limits the expansion of an individual call to num intermediate
operators. The default num is 100.

-@file Reads a list of forbidden functions from file.

+ @file Reads a list of requested functions from file.

Requesting a function to be inlined overrides size constraints.

Compiles the specified C programs, storing assembly language output in
a .s file.

Prevents printing of warning messages about functions that cannot be
optimized.

Produces an assembler listing. This is stored in a file that has the same
name as the assembler source file, but with the extension .1st instead of
.s.

Specifies the rounding mode for floating-point constant folding. These
modes are specified as follows:

d Disables floating-point constant folding.
m Rounds toward negative infinity.
n Rounds to nearest. This is the default action and applies to

constant folding in all applicable passes of the compiler.
p Rounds toward positive infinity.
z Rounds toward O.

Uses the !ibm.a, or one specified by the user, version of the following
transcendental functions:

acos cos SIn
aSIn exp sqrt
at an log tan
atan2 log10

If this flag is not used, the compiler generates calls to the AIX kernel, or
the Advanced Floating Point Accelerator if possible. For more
information, see math.h in A/X Operating System Technical Reference.

Commands 117

cc

Debugging
-Ffile[:stanza]

-v

-#

Uses an alternative file and/or stanza for cc configuration (see A/X
Operating System Technical Reference for a discussion of the
configuration file, cc.cfg). If used, this flag must be the first flag on the
command line.

Displays the trace as with -# and invokes the programs.

Displays a trace of the actions to be taken (for example, invoking the
preprocessor), without actually invoking any programs.

Extended Functions
-Bprefix

-t[pcqgoal]

Constructs path names for substitute preprocessor, compiler, optimizer,
assembler, or linkage editor programs. prefix defines part of a path name
to the new programs. To form the complete path name for each new
program, cc adds prefix to the standard program names (see the
discussion of the programs called by cc on page 114). For example, if
you enter the command:

cc testfile.c -B/usr/jim/new
cc calls the following compiler programs:

1. /usr/jim/newcpp
2. /usrfjim/newccomO
3. /usr/jim/newccom1
4. /usr/jim/newas
5. /usr/jim/newld

Similarly, if you enter the command:

cc testfile.c -B/usr/jim/new/
cc calls the following compiler programs:

1. /usr/jim/new/cpp
2. /usrfjim/llew/ccom
3. /usr/jirn/new/ccom1
4. /usrfjim/new/as
5. /usr/jim/new/ld

The default prefix is /lib/o.

Applies the -B flag instructions for constructing file names to only the
designated preprocessor (p), compiler first (c), intermediate code
optimizer (q), compiler second (g), optimizer (0), assembler (a), or linkage
editor (I) passes. You can select any combination of pcqgoal.

118 Commands Reference

cc

The -t flag with no additional p, c, q, g, 0, a, or I designates by default
the preprocessor, compiler and optimizer programs (see the discussion of
the programs called by cc on page 114).

If you do not specify the -B flag when you specify the -t flag, the default
file name prefix is /lib/n.

Note: You can specify this prefix with the -B flag. However, depending
on what combination of the -B and the -t flags you specify, prefix can
have two possible default values. If you specify -B but no accompanying
prefix, the default prefix is /lib/o. If you specify the -t flag without also
specifying the -B flag, the default prefix is /lib/n.

-Wc,fZagl[,fZag2 ...]
Gives the listed flags to the compiler program c; c can be anyone of the
values [pcqgoal] discussed with the -t flag. For example, since both ld
and as recognize a -0 flag, use -W to specify the program to which the
flag is to be sent. That is, -WI,-o sends it to Id. -Wa,-o sends it to as.

Examples

1. To compile and link a C program, creating an executable a.out file:

cc pgm.c

2. To compile a program, producing an object file to be linked later:

cc -c pgm.c

This compiles pgm. c and produces an object file named pgm.o.

3. To compile a program to run on the Floating-Point Accelerator:

fcc pgm.c

This compiles pgm. c using the special libraries libfc.a and libfm.a instead of the
standard libraries libc.a and libm.a.

4. To view the output of the macro preprocessor:

cc -P -C pgm.c

This creates a file named pgm.i that contains the preprocessed program text including
comments. To view this file, use an editor or see "pg" on page 553 cc passes the -P
and -C flags to the preprocessor. See "cpp" on page 163 for more details about them.

5. To predefine macro identifiers:

cc -DBUFFERSIZE=512 -DDEBUG pgm.c

This assigns BUFFERSIZE the value 512 and DEBUG the value 1 before preprocessing.
cc passes the -D flag to the preprocessor.

Commands 119

cc

Files

6. To use #include files located in nonstandard directories:

cc -I/u/jim/include pgm.c

This looks in the directory that contains pgm. c for the #include files with names
enclosed in double quotes CI "), then in lui j im/i ncl ude, and then in the standard
directories. It looks in lui j i m/i nc 1 ude for #include file names enclosed in angle
brackets « », then in the standard directories. cc passes the -I flag to the
preprocessor.

7. To optimize the object code and produce an assembler listing:

cc -S -0 pgm.c
This uses the optimizing compiler (-0 is minus, capital oh), and produces an assembler
listing in a file named pgm.s (-8).

file.c
file. 0

file.s
a.out
/etc/cc.cfg
/tmp/ctm*
/lib/cpp
/lib/ccomO
/lib/ccomq
/lib/ccoml
/lib/cgen
/lib/copt
/bin/as
/bin/ld
/lib/crtO.o
/lib/mcrtO.o
/lib/libc.a
/lib/libfc.a
/lib/libm.a
/lib/libfm.a
/lib/librts.a
/usr/include
/usr/tmp/ctm*

C source file.
Object file.
Assembler file.
Linked output.
cc configuration file.
Temporary.
C preprocessor.
Compiler first pass.
Intermediate code optimizer.
Compiler second pass.
Compiler.
optimizer.
Assembler.
Linkage editor.
Runtime startoff.
Runtime startoff for profiling.
Standard library.
Standard library for use with Floating-Point Accelerator.
Standard math library.
Standard math library for use with Floating-Point Accelerator.
Runtime services.
Standard directory for #include files.
Temporary.

120 Commands Reference

cc

Related Information

The following commands: "as" on page 64, "Id" on page 427, "cpp" on page 163, "prof' on
page 571, and "sdb" on page 619.

The discussion of cc in AIX Operating System Programming Tools and Interfaces, in C
Language Guide and Reference and in Assembler Language Reference.

The monitor subroutine and the a.out and cc.cfg files in AIX Operating System Technical
Reference.

Commands 120.1

cc

120.2 Commands Reference

cd

cd

Purpose

Changes the current directory.

Syntax

/$HOME~

cd ~directoryF

Description

The cd command moves you from your present directory to another. You must have
execute (search) permission in the specified directory.

OL805087

If you do not specify a directory, cd moves you to your login directory ($HOME). If the
specified directory name is a full path name, it becomes the current directory. A full path
name begins with a / (slash-root directory), with a . (dot-current directory), or with a ..
(dot dot-parent directory). If the directory name is not a full path name, cd searches for it
relative to one of the paths specified by the $CDP ATH shell variable. This variable has
the same syntax as, and similar semantics to, the $PATH shell variable. (See "Shell
Variables and Command-Line SubstitutionsH on page 641 for a discussion of these
variables.)

Examples

1. To change to your home directory:

cd

2. To change to an arbitrary directory:

cd /usr/include

This changes the current directory to /usr/i ncl ude. Now file path names that do not
begin with / or .. / specify files located in /usr/i ncl ude.

Commands 121

cd

3. To go down one level of the directory tree:

cd sys

If the current directory is / us r / inc 1 ude and if it contains a subdirectory named sys,
then /usr/i ncl ude/sys becomes the current directory.

4. To go up one level of the directory tree:

cd

The special file name .. (dot-dot) always refers to the directory immediately above the
current directory.

Related Information

The following commands: "pwd" on page 589 and "sh" on page 637.

The chdir system call in A/X Operating System Technical Reference.

122 Commands Reference

cdc

cdc

Purpose

Changes the comments in a Source Code Control System (SCCS) delta.

Syntax

cdc - -rSID -(X ft file I
-mmrlist -ycomment

cdc- -rSID-C-m \ . .. i-Y ~- ~
-m mrlist ~.-y comment~

OL805088

Description

Flags

The cdc command changes the Modification Requests (MRs) and comments for the SID
specified by the -r flag for each named Source Code Control System (SCCS) file. If you
specify a directory name, cdc performs the requested actions on all SCCS files in that
directory (that is, all files with names that have the s. prefix). If you specify a - (minus) in
place of file, cdc reads standard input and interprets each line as the name of an SCCS file.
For more information on SCCS comments and Modification Requests, see AIX Operating
System Programming Tools and Interfaces.

You can change the comments and MRs for an SID only if you made the SID or you own
the file and the directory. For more information on the permissions needed to change
SCCS files, see "sccs Files" on page 360.

-m[mrlist] Supplies a list of MR numbers for cdc to add or delete in the SID specified
by the -r flag. You can only use this flag if the file has the v header flag set
(see Figure 1 on page 54). A null MR list has no effect.

In the mrlist, MRs are separated by blanks, tab characters, or both. To
delete an MR, precede the MR number with an ! (exclamation point). If the
MR you want to delete is currently in the list of MRs, it is changed into a
comment line. cdc places a list of all deleted MRs in the comment section of

Commands 123

cdc

the delta and precedes them with a comment line indicating that the
following MRs were deleted.

If you do not specify the -m flag, and the v header flag is set, MRs are read
from standard input. If standard input is a work station, cdc prompts you
for the MRs. The first new-line character not preceded by a backs lash ends
the list on the command line. cdc continues to take input until it reads an
end-of-file character (Ctrl-D) or a blank line. MRs are always read before
comments (see the -y flag).

If the v flag has a value, cdc interprets the value as the name of a program
which validates the MR numbers. If the MR number validation program
returns a nonzero exit value, cdc stops and does not change the MRs.

-rSID Specifies the sees identification number of the delta for which cdc will
change the comments or MRs.

-y[comment] Specifies text to replace any comment already existing for the delta specified
by the -r flag. cdc keeps the existing comments and precedes them by a
comment line stating that they were changed. A null comment has no effect.

If you do not specify -y, cdc reads comments from standard input until it
reads an end-of-file character. If the standard input is a work station, cdc
prompts for the comments and also allows a blank line to end input. If the
last character of a line is a backslash (\), cdc ignores it and continues to
read standard input.

Note: If cdc reads standard input for file names (that is, when you specify
a file name of -), you must use the -y and -m flags.

Related Information

The following commands: "admin" on page 51, "delta" on page 236, "get" on page 359,
"help" on page 391, and "prs" on page 574.

The sccsfile file in AIX Operating System Technical Reference.

The discussion of sees in AIX Operating System Programming Tools and Interfaces.

124 Commands Reference

,/

cflow

cflow

Purpose

Generates a C flow graph of external references.

Syntax

cflow
-dnum
-r
-L
-ix

OL805172

Description

The cflow command analyzes C, yacc, lex, assembler, and object files and writes a chart of
their external references to standard output.

It sends files with suffixes .y, .1, and .c to the yacc, lex, and cpp commands for the
appropriate processing. This step is bypassed for .i files. It then runs the output of this
processing through the first pass of lint. It assembles files which end in .s, extracting
information from the symbol table (as it does with .0 files). From this output, cflow
produces a graph of external references, which it writes to standard output.

Each line of output begins with a line number followed by sufficient tabs to indicate the
level of nesting. Then comes the name of the global, a colon, and its definition. This name
is normally a function not defined as external and not beginning with an underline
character; see the -i _ inclusion flag on p. 126. For information extracted from C source
files, the definition consists of an abstract type declaration (for example, char*), the name
of the source file, surrounded by angle brackets, and the line number on which the
definition was found. Definitions extracted from object files contain the file name and
location counter under which the symbol appeared. cflow deletes leading underline
characters in C-style external names.

Once cflow displays the definition of a name, later references to it contain only the cflow
line number where the definition may be found. For undefined references, cflow displays
only < >.

If the nesting level becomes too deep to display in available space, pipe the output from
cflow to the pr command, using the -e flag to compress the tab expansion to something
less than every eight spaces.

Commands 125

cflow

Flags

Note: Files produced by lex and yacc cause the reordering of line number declarations
which can confuse cflow. To get proper results, feed cflow the yacc or lex input.

In addition to the following, cflow recognizes the -I, -D, and -U flags of the cpp command.

-dnum Sets to decimal integer num the depth at which the flow graph is cut off. By
default this is a very large number. Do not set the cutoff depth to a nonpositive
integer.

-ix Includes external and static data symbols. The default includes only functions.

-i Includes names that begin with an underline character. The default excludes
these functions (and corresponding data if -ix is used).

-r Produces an inverted listing which shows the callers of each function, sorted by
called function.

Related Information

The following commands: "as" on page 64, "cc" on page 112, "lex" on page 432, "lint" on
page 446, "nm" on page 521, "pr" on page 561, and "yacc" on page 861.

The discussion of cflow in AIX Operating System Programming Tools and Interfaces.

126 Commands Reference

chgrp

TNL SN20-9861 (26 June 1987) to SC23-0790-0
chgrp

Purpose

Changes the group ownership of a file or directory.

Syntax

chgrp ~ group

~-rr
0L805090

Description

I Flag

The chgrp command changes the group associated with the specified file or directory to
groupname or group/D. If you do not own the file, you must have superuser authority to
change the group ID.

If the file or directory resides on a remote node, the translated group ID is used.

-r Causes the untranslated group ID to be used.

Examples

Files

To change the group ownership of the file or directory named proposal s to staff:

chgrp staff proposals

The group access permissions for proposal s now apply to the staff group.

JetcJgroup

Commands 126.1

TNL SN20-9861 (26 June 1987) to SC23-0790-0
chgrp

Related Information

The following command: "groups" on page 385.

The chown and chownx system calls and the group file in A/X Operating System
Technical Reference.

"Distributed Services id Translation" in Managing the A/X Operating System.

126.2 Commands Reference

chgrp

Commands 127

chmod

chmod

Purpose

Changes permission codes.

Syntax

SYMBOLIC

chmod

ABSOLUTE

chmod - permcode

1
Do not put a blank between these items.

2 Do not put a blank on either side of the comma.
OLB05091

Description

The chmod command modifies the read, write, execute (file), or search (directory)
permission codes of specified files or directories. You can use either symbolic or absolute
mode to specify the desired permission settings.

You can change the permission code of a file or directory only if you own it or if you are
operating with superuser authority.

128 Commands Reference

chmod

Symbolic Mode

When you use the symbolic mode to specify permission codes, the first set of flags selects
the permission field, as follows:

u User (owner)
g Group
o All others
a User, group, and all others (same effect as ugo). This is the default permission

field.

The second set of flags selects whether permissions are to be taken away, added, or set
exactly as specified:

Removes specified permissions
+ Adds specified permissions

Clears the selected permission field and sets it to the code specified. If you do not
specify a permission code following =, chmod removes all permissions from the
selected field.

The third set of flags of the chmod command selects the permissions as follows:

r Read permission.
w Wri te permission.
x Execute permission for files; search permission for directories.

s Set user-ID or set group-ID permission. This permission bit sets the effective
user-ID or group-ID to that of the file whenever the file is run. Use this permission
setting in combination with the u or g field to allow temporary or restricted access
to files not normally accessible to other users. An s appears in the user or group
execute position of a long listing (see "Is" on page 461 or "Ii" on page 437), to show
that the file runs "set user-ID" or "set group-ID."

t The save text permission. Setting this permission bit causes the text segment of a
program to remain in virtual memory after its first use. The system thus avoids
having to transfer the program code of frequently-accessed programs into the
paging area. A character special file with this bit set is a multiplexed file. You
can specify this permission only with the u field. A t appears in the execute
position of the "all others" field to indicate that the file has this bit (the sticky bit)
set.

You can specify multiple symbolic modes, separated with commas. Do not separate items
in this list with spaces. Operations are performed in the order they appear from left to
right.

Commands 129

chmod

Absolute Mode

The chmod command also permits you to use octal notation to set each bit in the
permission code. chmod sets the permissions to the permcode you provide. This permcode
is constructed by combining (the logical OR of) the following values:

4000 Sets user-ID on execution
2000 Sets group-ID on execution
1000 Retains memory image after execution (executable file)
1000 Indicates multiplexed character special file
0400 Permits read by owner
0200 Permits write by owner
0100 Permits execute or search by owner
0040 Permits read by group
0020 Permits write by grdup
0010 Permits execute or search by group
0004 Permits read by others
0002 Permits write by others
0001 Permits execute or search by others

All permission bits not explicitly specified are cleared.

Examples

1. To add a type of permission to several files:

chmod g+w chapl chap2

This adds write permission for group members to the files chapl and chap2.
2. To make several permission changes at once:

chmod go-w+x mydir

This denies group members and others the permission to create or delete files in mydi r
(go-w). It allows them to search mydi r or use it in a path name (go+x). This is
equivalent to the command sequence:

chmod
chmod
chmod
chmod

g-w mydir
o-w mydir
g+x mydir
o+x mydir

3. To permit only the owner to use a shell procedure as a command:

chmod u=rwx,go= cmd

This gives read, write, and execute permission to the user who owns the file (u=rwx).
It also denies the group and others the permission to access cmd in any way (go=).

130 Commands Reference

chmod

If you have permission to execute the shell command file cmd, then you can run it by
entering:

cmd

This may not work in some cases, depending on the value of the shell variable PATH.
See page 646 for more information about PATH.

4. To use "set-ID" modes:

chmod ug+s cmd

When cmd is executed, this causes the effective user and group IDs to be set to those
that own the file cmd. Only the effective IDs associated with the subprocess that runs
cmd are changed. The effective IDs of the shell session remain unchanged.

This feature allows you to permit restricted access to important files. Suppose that the
file cmd has the set-user-ID mode enabled and is owned by a user called dbms. dbms is
not actually a person, but might be associated with a database management system.
The user betty does not have permission to access any of dbms's data files. However,
she does have permission to execute cmd. When she does so, her effective user ill is
temporarily changed to dbms, so that the cmd program can access the data files owned
by dbms.

This way betty can use cmd to access the data files, but she cannot accidentally
damage them with the standard shell commands.

5. To use the absolute mode form of the chmod command:

chmod 644 text

This sets read and write permission for the owner, and it sets read-only mode for the
group and others.

Related Information

The following commands: "Is" on page 461, "Ii" on page 437, and "umask" on page 784.1.

Commands 131

TNL SN20-9861 (26 June 1987) to SC23-0790-0
chown

chown

Purpose

Changes the owner of files or directories.

Syntax

Chown-D-user
-r

Description

OL805095

The chown command changes the owner of the specified files or directories to username or
userID. The group associated with the file or directory is not affected.

tFlag

Note: If you give ownership of a file or directory to another user, you cannot regain
ownership unless you have superuser authority.

If the file or directory resides on a remote node, the translated user ID is used.

-r Causes the untranslated user ID to be used.

Example

Files

chown jim program.c

The user access permissions for program. c now apply to jim. As the owner, jim can use
chmod to permit or deny the other users access to program. c. See "chmod" on page 128
for details.

/etc/passwd

132 Commands Reference

Related Information

TNL SN20-9861 (26 June 1987) to SC23-0790-0
chown

The following command: "passwd" on page 546.

The chown and chownx system calls and the passwd file in AIX Operating System
Technical Reference.

"Distributed Services id Translation" in Managing the AIX Operating System.

Commands 132.1

chown

132.2 Commands Reference

chparm

chparm

Purpose

Changes or examines system parameters.

Syntax

nOdename~/uniX~ ... 1

~ename=newvalue kernel-image
chparm nnnA r

OL805093

Description

The chparm command lets you change a system parameter or look at its current setting.
Currently, only the nodename parameter may be examined or changed. The name
assigned cannot be longer than eight characters. If you do not assign a newvalue, chparm
writes the current value of nodename to standard output. The default kernel-image is
/unix.

Changes do not affect the running system. You must restart the system for the change to
become effective.

Examples

1. To display the nodename of your system:

chparm nodename
This displays the nodename of /unix, which is a file containing the kernel of the AIX
operating system. This file is loaded and run when you start up the computer.

2. To change the nodename of a system:

chparm nodename=COMP-CTR /unix.compctr
This changes the nodename of fun; x. compctr to COMP-CTR. fun; x. compctr is a
file that contains an alternate version of the operating system kernel. The change does
not affect the running system, even if you change the /unix kernel.

Commands 133

chroot

chroot

Purpose

Changes the root directory of a command.

Syntax

chroot - directory-command--l
OL805094

Description

Warning: If special files in the new root have different major and minor
device numbers than they have in the real root, it is possible to overwrite
the file system.
The chroot command can be used only by a user operating with superuser authority (see
"su" on page 724). If you have superuser authority, the chroot command changes the root
directory to the specified directory when executing command. The first / (slash) in any
path name changes to directory for the specified command and any of its children.

Notice that:

chroot directory command > file

creates the file. relative to the original root, not the new one.

The directory path name is always relative to the current root. Even if a chroot is in
effect, directory is relative to the current root of the running process.

Several programs may not operate properly after chroot has been run. For example, the
command Is -1 will fail to give user and group names if the current root location makes
/etc/passwd beyond reach. In addition, utilities that depend on description files produced
by the ctab command (see page 204) may fail altogether if these files are also not in the
new root file system. It is your responsibility to ensure that all vital data files are present
in the new root file system and that the path names accessing such files are changed as
necessary.

134 Commands Reference

Examples

1. To run a subshell with another file system as the root:

chroot /disketteO /bin/sh

chroot

This makes the directory name / refer to /disketteO for the duration of the command
/bin/sh. It also makes the original root file system inaccessible. The file system on
/disketteO must contain the standard directories of a root file system. In particular,
the shell will look for commands in /bin and /usr/bin on the /disketteO file system.

Running the command /bin/sh creates a subshell, which runs as a separate process
from your original shell. Press END OF FILE (Ctrl-D) to end the subshell and go back
to where you were in the original shell. This restores the environment of the original
shell, including the meanings of the current directory (.) and the root directory (/).

2. To run a command in another root file system and save the output:

chroot /disketteO /bin/cc -E /u/bob/prog.c >prep.out
This runs the /bin/ce command with / referring to /disketteO. It saves the output in
the file prep. out, which is in the original root file system.

This runs the C language preprocessor (/ bin / c c - E) on the file
/di sketteO/u/bob/prog. c, reading #inelude files from /disketteO/usr/include, and
putting the preprocessed text in prep. out on the primary root file system.

Related Information

The following commands: "ee" on page 112, "epp" on page 163, and "sh" on page 637.

The ehdir and ehroot system calls in A/X Operating System Technical Reference.

Commands 135

clri

clri

Purpose

Clears the specified i-node.

Syntax

clr; ~ filesystem t inumber r
~

OL805097

Description

Warning: Use this command only in emergencies and with extreme care.
The clri command is used to clear i-node entries for files that do not appear in a directory.
In general, you do not need to use this program because fsck can deal with most file
system inconsistencies.

Always run fsck on a file system after you have used clri on it, because it may create
dangling directory references or missing blocks. These can be fixed if they are attended to
promptly. Do not run the system when the file system has dangling directory references or
a bad free list.

The clri command zeroes over the flags word of the i-node, thus freeing it for reallocation.
The inumber parameter specifies the i-node and filesystem specifies the file system it is on.
inumber should be a decimal number, while filesystem can be either the name of the device
on which the file system resides or the name by which it is normally mounted.

If you use clri to remove an i-node that does appear in a directory, you should track down
and remove all of these entries. Otherwise, when the i-node is reallocated to some new file,
the old entry will still point to that file. At that point removing the old entry destroys the
new file and the new entry again points to an unallocated i-node.

By default, the clri command displays some information about the file and asks for
confirmation before it destroys the file. If you enter a y or yes, the file is destroyed.

Since clri only zeroes the flags word of the i-node, if you destroy the wrong file, you can
recover the file by using the fsdb command to restore the flags word.

Note: If the file is open, clri is likely to be ineffective. For this reason, you should run
clri only on an unmounted file system.

136 Commands Reference

Flags

-f Destroys the file without confirmation, but writes a description of the file.

-q Destroys the file without confirmation or writing a description of the file.

Example

To clear i-nodes 170 and 368 of the file system /disketteO and then clean up the file
system:

c 1 ri
fsck

/disketteO
/disketteO

Related Information

170 368

The following commands: "fsck, dfsck" on page 333 and "fsdb" on page 338.

The fs file in AIX Operating System Technical Reference.

clri

Commands 137

cmp

cmp

Purpose

Compares two files.

Syntax

cmp --<{J>-ne of fi/e1- fi/e2 --l
-I
-s

OL805157

Description

Flags

The cmp command compares filel and file2 and writes the results to standard output. If
you specify a - (minus) for filel, cmp reads standard input. Under default conditions, cmp
displays nothing if the files are the same. If they differ, cmp displays the byte and line
number at which the first difference occurs. If one file is an initial subsequence of the
other (that is, if cmp reads an end-of-file character in one file before finding any
differences), cmp notes this. Normally, you use cmp to compare non-text files and the diff
command to compare text files.

-1 Displays, for each difference, the byte number in decimal and the differing bytes in
octal.

-s Returns only an exit value. (0 indicates identical files; 1 indicates different files; 2
indicates inaccessible file or a missing argument)

Examples

1. To determine whether two files are identical:

cmp prog.o.bak prog.o

This compares prog. o. bak and prog. o. If the files are identical, then a message is
not displayed. If the files differ, then the location of the first difference is displayed.

138 Commands Reference

cmp

For instance:

prog.o.bak prog.o differ: char 5, line 1

If the message cmp: EOF on prog. o. bak is displayed, then the first part of prog. 0 is
identical to prog. o. bak, but there is additional data in prog. o.

2. To display each pair of bytes that differ:

cmp -1 prog.o.bak prog.o
This compares the files, and then displays the byte number (in decimal) and the
differing bytes (in octal) for each difference. For example, if the fifth byte is octal 101
in prog. o. bak and 141 in prog. 0, then cmp displays:

5 101 141

3. To compare two files without writing any messages:

cmp -s prog.c.bak prog.c

This gives an exit value of 0 if the files are identical, 1 if different, or 2 if an error
occurs. This form of the command is normally used in shell procedures. For example:

if cmp -s prog.c.bak prog.c
then

echo No change
fi

This partial shell procedure displays No change if the two files are identical. See page
653 for details about the if command.

Related Information

The following commands: "comm" on page 144, "diff' on page 246, and "sh" on page 637.

Commands 139

col

col

Purpose

Processes text having reverse linefeeds and forward/reverse half-linefeeds for output to
standard output.

Syntax

OL805173

Description

The col command reads from standard input and writes to standard output. It performs the
line overlays implied by reverse linefeeds (ASCII ESC-7), and by forward and reverse
half-linefeeds (ASCII ESC-9 and ASCII ESC-8). col is particularly useful for filtering
multi-column output made by the nroff .rt command and output from the tbl command.
The input format accepted by col matches the output format produced by nroff -T37 or by
nroff -TIp. Use -T37 and the col -f flag if the output is being sent to a device that can
interpret half-line motions; use -TIp otherwise.

The col command assumes that the ASCII control characters SO (\017) and SI (\016) begin
and end text in an alternate character set. col remembers the character set each input
character belongs to, and on output generates SI and SO characters as appropriate to
ensure that each character is printed in the correct character set.

On input, col accepts only the control characters for space, backspace, tab, return, the
new-line character, SI, SO, VT, and ESC-7, 8, or 9. VT (\013) is an alternate form of full
reverse linefeed included for compatibility with some earlier programs of this type. col
ignores all other non-printing characters.

Note: The col command cannot back up more than 128 lines.

It allows at most 800 characters, including backspaces, on a line.

It ignores local vertical motions that would result in backing up over the first line.
As a result, the first line must not contain any superscripts.

140 Commands Reference

Flags

col

-b Assumes that the output device in use is not capable of backspacing. In this case, if
two or more characters are to appear in the same position, only the last one read
appears in the output.

-f Suppresses the default treatment of half-line motions in the input. Normally, col
does not emit half-line motions on output, although it does accept them in its input.
With this flag, output may contain forward half-linefeeds (ESC-9) but not reverse
linefeeds (ESC-7 or ESC-8).

-p Displays unknown escape sequences as characters, subject to overprinting from
reverse line motions. Normally, col ignores them. You should be fully aware of the
textual position of escape sequences before you use this flag.

-x Suppresses changing the white space to tabs. Without this flag, col converts white
space to tabs wherever doing so might shorten printing time.

Related Information

The following commands: "nroff' on page 525 and "tbl" on page 739.

The discussion of col in Text Formatting Guide.

Commands 141

comb

comb

Purpose

Combines sees deltas.

Syntax

comb file --l

OL805098

Description

Flags

The comb command writes to standard output a shell procedure that can combine the
specified deltas (SIDs) or all deltas into one delta. You may reduce the size of your sees
file by running the resulting procedure on the file. You can see how much the file will be
reduced by running comb with the -s flag. If you specify a directory in place of file, comb
performs the requested actions on all sees files (that is, those with file names with the s.
prefix). If you specify a - (minus) in place of file, comb reads standard input and interprets
each line as the name of an sees file. comb continues to take input until it reads END
OF FILE (Ctrl-D).

If you do not specify any flags, comb preserves only leaf deltas and the minimal number of
ancestors needed to preserve the tree (see "delta" on page 236).

Note: The comb command may rearrange the shape of the tree deltas. It may not save
any space; in fact, it is possible for the reconstructed file to actually be larger than the
original.

Each flag or group of flags applies independently to each named file.

-clist Specifies a list of deltas (SIDs) that the shell procedure will preserve (see get -i
list for the SID list format on page 364). The procedure will combine all other
deltas.

142 Commands Reference

Files

comb

-0 Accesses the reconstructed file at the release of the delta to be created for each
get -e generated; otherwise accesses the reconstructed file at the most recent
ancestor. Using the -0 flag may decrease the size of the reconstructed sees file.
It may also alter the shape of the delta tree of the original file.

-pSID Specifies the SID of the oldest delta for the resulting procedure to preserve. All
older deltas are combined in the reconstructed file.

-s Causes comb to generate a shell procedure that produces a report for each file
giving: the file name, size (in blocks) after combining, original size (also in
blocks), and percentage change computed by the formula:

s.eOMB
comb*

100 * (original - combined) / original

You should run comb using this flag and run its procedure before combining
sees files in order to judge how much space will actually be saved by the
combining process.

The name of the reconstructed sees file.
Temporary files.

Related Information

The following commands: "admin" on page 51, "delta" on page 236, "get" on page 359,
"help" on page 391, and "prs" on page 574.

The sccsfile file in AIX Operating System Technical Reference.

The discussion of sees in AIX Operating System Programming Tools and Interfaces.

Commands 143

comm

comm

Purpose

Selects or rej ects lines common to two sorted files.

Syntax

one of

-1 -2-3
comm - -12 -13 -23 r-- file1- file2 --l

-123

Description

OL805099

The comm command reads filel and file2 and writes, by default, a three-column output to
standard output. The columns consist of:

Flags

1. Lines that are only in filel
2. Lines that are only in file2
3. Lines that are in both filel and file2.

If you specify - (minus) for one of the file names, comm reads standard input. Both filel
and file2 should be sorted according to the collating sequence specified by the environment
variable NLCTAB (see "ctab" on page 204 and "sort" on page 672),

-1 Suppresses the display of the first column (lines in file 1).
-2 Suppresses the display of the second column (lines in file2).
-3 Suppresses the display of the third column (lines common to filel and file2).

Note: Specifying -123 does nothing (a noop).

Examples

1. To display the lines unique to each file and common to both:

comm things.to.do things.done

144 Commands Reference

If the files th i ng s . to . do and th i ng s . done contain:

things. to.do things.done

buy soap 2nd revision
groceries interview
luncheon luncheon
meeting at 3 system update
system update tech. review
tech. review weekly report

then eomm displays:

2nd revision
buy soap
groceries

interview
luncheon

meeting at 3
system update
tech. review

weekly report

comm

The first column contains the lines found only in thi ngs. to. do. The second column,
indented with a tab character, lists the lines found only in thi ngs. done. The third
column, indented with two tabs, lists the lines common to both.

2. To display the lines that appear in only one file:

comm -23 things.to.do things.done
This suppresses the second and third columns of the eomm listing. If the files are the
same as in Example 1, then the following is displayed:

buy soap
groceries
meeting at 3

Related Information

The following commands: "emp" on page 138, "etab" on page 204, "diff" on page 246,
"sdiff" on page 627, "sort" on page 672, and "uniq" on page 792.

The environment miscellaneous facility in A/X Operating System Technical Reference.

"Overview of International Character Support" in Managing the A/X Operating System.

Commands 145

TNL SN20-9861 (26 June 1987) to SC23-0790-0
confer

confer

Purpose

Provides an on-line conferencing system.

Syntax

~
n$LOGNAME

confer

..... -n nome
-v

joinconf - nome -l

Description

user

0L805174

The confer command sets up an on-line, written conference among logged-in users on your
local node. You start a conference by running the confer command, specifying the users
and/or work stations (@ttynum) that are part of the conference. If the users you specify
are logged in and their work stations are writable, they are requested to join the
conference by using the joinconf command. The other conferees are informed as each user
joins the conference.

Once you join a conference, everything you enter at your work station displays at all other
work stations that are part of the conference. This display continues until you press
Ctrl-D to end your own active participation or until you excuse a conference participant,
thus stopping the display of your contributions at his work station. (See page 147.)

To prevent the confusion that can be caused by several conferees typing at the same time,
users should follow some agreed on protocol. The following is one recommended protocol:

• In order to take the floor, a user presses the Enter key before entering his
contribution. This notifies other participants that he has the floor because his name
displays in brackets at their respective work stations.

• A user is presumed to have the floor until he relinquishes it by entering a blank line.

• If two or more users try to claim the floor at the same time, the last person to do so
(the one whose name appears last), is assumed to have the floor. The others should
immediately relinquish the floor by typing single blank lines.

146 Commands Reference

Flags

confer

The confer command gives each conference a unique name, normally the name of the
conference leader, with additional letters added to it, if necessary. The conference leader
can override this default by specifying the -n flag.

A user who is logged in to more than one work station is normally written to on all of
them, unless the conference leader specifies one of the work stations with the @ttynum
flag when he invokes confer.

A conferee ends his active participation by pressing Ctrl-D. This action causes his name
and the word BY E to display at the work stations of the other conference participants.
However, the contributions of the other participants will continue to display at his work
station until the other participants each excuse him.

You can run shell commands from within a conference by simply prefixing them with a I
(vertical bar) or an! (exclamation point). Using the exclamation point causes the
command to run in the normal fashion; the output displays only at the work station that
runs it. Using the vertical bar, however, causes the command and all of its standard
output and standard error output to become part of the conference, visible to all conferees.

Three subcommands are run directly by confer and joinconf. These are:

!excuse name... Excuses the specified conferees from the conference. No further
conference material displays at these work stations.

!- Makes all contributions from the user who issues it off the record
until he issues the! - - subcommand.

! - - Cancels a preceding! -, placing the user's remarks back on the record.

Unless the conference leader makes a conference off the record by specifying the - flag,
confer makes a transcript of all conference proceedings. When a participant leaves the
conference, he is asked whether he wants a transcript. If he does, he is mailed a copy
when the conference concludes. Any participant can make a comment off the record in a
conference that is otherwise on the record by beginning the line with a - (tilde).

Conference contributions are normally transmitted one line at a time. If the conference
leader specifies the -v flag, transmission occurs one character at a time. As this mode of
transmission sends all user typing errors and hesitations and imposes a considerably larger
load on the system, its use is strongly discouraged.

-nname

-v

Assigns name to the conference transcript. The conference name is used by
those joining the conference so that they get into the right one. The name of
the user who starts the conference is the default conference name.

Transmits conference messages one character at a time.

Sets up the conference off the record, that is, no transcript of the proceedings
is recorded.

Commands 147

confer

@ttynum Specifies a particular work station for a conferee, if a user is also specified (for
example, ttyl). This is useful if a conferee is logged in to more than one work
station. If no user is specified, this flag invites any user logged in to the
specified work station to participate.

Examples

1. To start a conference with steve and rache 1 :

confer steve rachel
Running the confer command makes you the conference leader, so your login name is
also the name of the conference. confer sends steve and rache 1 a message inviting
them to join your conference and giving them the conference name.

2. To specify work stations that may join the conference:

confer steve@tty5 rachel @ttylO
Suppose that steve is logged in at the work stations tty3, tty4, and tty5, and that
rache 1 is logged in at tty7 and tty8. This command invites steve to join the
conference at work station tty5 only, invites rache 1 to join at either work station she
is using or at both, and invites whoever is logged in at ttylO to join.

3. To join a conference named paul a:
joinconf paula
N ow the text you type becomes part of the dialog: prefixed with your name, displayed
at each participant's work station, and recorded in the transcript of the conference.

4. Suppose that you start a conference by entering the command given in Example 2, and
the person using ttylO decides not to join the conference. If you do nothing, this
person also sees the dialog, even though not participating in it. To prevent this from
happening, each person that has joined the conference must enter:

!excuse @ttylO
Similarly, if rache 1 decides to join the conference from tty7, the discussion is also
displayed at her other work station, tty8, unless everyone enters:

!excuse rachel@tty8
rachel should enter this, too, but only at tty7, the work station she is using for the
conference.

5. To make a single-line statement off the record:

~Coffee and donuts at my place.
confer displays lines beginning with - (tilde) at participants' work stations, but does
not include them in the record of the conference.

148 Commands Reference

Files

To make a multiple-line statement:

! -
Everyone is invited
to my place after the conference
for coffee and donuts.
!--

6. To run a shell command privately, without leaving the conference:

! 1 i

confer

This lists the current directory without including the Ii command or its output in the
conference.

7. To include the output of a shell command in the discussion:

Icat notes.conf

This lists the contents of the file notes. conf at each participant's work station, and
includes it in the conference record.

8. To send command output to others, off the record:

! -
Icat notes.conf
!--

9. To leave the conference, press Ctrl-D. If your user name is paul a, then after you
press Ctrl-D, the message: [p au 1 a] BY E is sent to the other participants. The rest
of the discussion continues to appear at your work station until each of the other
participants enters:

!excuse paula

/etc/utmp
/dev/tty??
/tmp/*.cnf
/tmp/*.ln?
/tmp/*.mls

List of logged-in users.
Work station names.
User transcript files.
Links to main conference file.
Transcript mailing list.

Related Information

The following command: "write" on page 853.

Commands 149

config

config

Purpose

Extracts configuration information from configuration files.

Syntax

~
m letc/mas:J-(tr -c canf.CX1 speCialSJ--

canfig systemfile ---I

-m mfile -c cfile -I spfile
OL805416

Description

Flags

Files

The config program reads the AIX master and system configuration files (by default
/etc/master and the specified systemfile). It writes a·C Language configuration file and a
special file list (by default conf.c and specials). The special file list is a list of the
mknod, chown, and chmod commands that the shell runs to define the necessary special
files. The return code is the number of errors encountered.

The C Language configuration file can then be compiled and linked with other kernel
object files to produce a new kernel. Normally, when you want to reconfigure the kernel,
you should run the make command with the Makefile supplied in the /usr/sys directory.
This runs config and then builds a new kernel. For a discussion of reconfiguring the
kernel, see Managing the A/X Operating System.

-c cfile

-I spfile

-m mfile

/etc/master
/etc/system
conf.c
specials

Writes the C configuration file to cfile instead of to conf.c.

Writes the special fiie list commands to spfile instead of to specials.

Reads mfile instead of /etc/master.

Default master configuration file.
A system configuration file.
Default C configuration file.
Default special file list.

150 Commands Reference

Related Information

The following commands: "make" on page 474 and "vrmconfig" on page 842.

The master and system files in AIX Operating System Technical Reference.

The discussion of config in Managing the AIX Operating System.

config

Commands 151

TNL SN20-9861 (26 June 1987) to SC23-0790-0
connect

connect

Purpose

Establishes a connection to a remote system.

Syntax

connect - -b ~ rmthost-1
~file:T

r-------zO------~

connect
-iname -mprompt
-wsec -parg
-targ -xarg

Description

rmthost~
!cmd

file: rmt host -r pgm

OL805388

The connect command lets you establish a connection to a remote host. connect runs in
two parts. The first part makes the connection with the remote system specified by
rmthost. The second part is a program called the talker. It runs automatically and
exchanges data with the rmthost. For information about the talker program, see connect
in A/X Operating System Technical Reference. Any flags that you specify are passed
directly to the talker without interpretation. The default talker for asynchronous links is
atalk.

The connect command uses a system-wide control file, connect.con, located in
/usr/lib/INnet. You can specify an additional control file, file:rmthost. If you do not
specify an additional file, connect searches $HOME/bin for a connect.con file.
Information needed to complete the connection is found in one of these files.

Attributes needed to complete the connection are taken from the control file or from the
command line assignment var = val. For a description of the parameters, see connect in
A/X Operating System Technical Reference.

152 Commands Reference

Flags

TNL SN20-9861 (26 June 1987) to SC23-0790-0
connect

When atalk detects an escape sequence in the input, it places the work station in its
former mode of operation and prompts you with the local prompt. You can then use the
flags that follow. Once the flag has run, atalk returns to its former mode.

The connect command does not limit access to the phone system to control dialing based
on the number to be called.

Warning: The connect command lets you set up and maintain
connections through a wide variety of communications devices. It
interacts with you through the file connect. con which is free-format.
Problems with the format of this file may cause unpredictable results.

Note: There are no spaces between the flags and the associated parameters.

-b

-d
-q

-e[esc]

-f
-h

-iname

Sends a break to the port. This is done by lowering the transmission speed to
75 bps and transmitting an ASCII NULL on the port. If the speed is too low,
less than 100 bps, this may not work.

Closes, quits (q) or disconnects (d) the port. Note that this does not end your
job or session at the remote site. After closing the port, connect exits.

Sets the escape sequence to the character string esc. If you do not specify esc,
connect displays escape sequence. It takes the default escape sequence from
the environment variable CONESC, if defined, or else sets it to:

Ctrl-V uCtrl-M

Enables (-h) or disables (-f) local echoing.

Writes file name to the port.

Warning: If you are connected to the remote host by RS-232
lines, data from the file may be lost if the remote host cannot
keep up with the input.
Normally, this flag is used to transfer a small file from the local site to the
remote site. File transmission must be ended manually by pressing Ctrl-D.

Commands 153

connect

For example:

cat> newfile
[escape sequence]
LOCAL: i fred

Ctrl-D

-mprompt Set the local prompt to the prompt character string. connect displays this
prompt when it recognizes the escape sequence. By default, it sets the prompt
to the value of the environment variable CONPMT. If this variable is not set,
it uses the the string LOCAL:.

-parg Sets parity as specified by arg, where arg is one of the following characters: 0

(odd), e (even), 7 (both even and odd), or 8 (eight data bits).

-rpgm Runs the network program pgm. Anything following pgm on the command line
is passed to pgm as an argument, along with the additional arguments -i3 -03.
The port set up as file descriptor 3. The program is run as a child process.

-srate Sets the transmission speed to rate, which is one of the following: 0, 50, 75,
110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800, 9600, exta, extb (0 effectively
turns off the port). If you do not specify rate, current transmission speed
displays.

-targ Enables or disables transcripts. If arg is any character string other than a
minus or plus sign, the transcript function is enabled with the specified file
arg as transcript. When you use an existing file as a transcript file, new data
is added to its end. Use t- to disable the transcript function, and t + to enable
the transcript to the previous transcript file (no default).

-wsec Sets the inter-line delay of the include function to cause a delay interval of the
specified seconds between each line written to the port. The default value is 0.

-xarg Enables or disables input or output flow control. If the input flow control is
enabled, CTRL-S and CTRL-Q are automatically sent to the remote host to
control the rate at which it transmits data. If the output flow control is
enabled, CTRL-S and CTRL-Q are automatically honored if received from the
host. This is useful when using the include command. xi + enables input
flow control. xi - disables input flow control. xi displays the current state.
For control of output flow control, replace xi with xo. See the discussion of
IXON and INOFF in the termio file in AIX Operating System Technical
Reference.

!cmd Runs the AIX command cmd. Anything that follows !, including arguments to
cmd, is passed to the local shell to be run by the system system call. In
particular, all I/O redirection and piping works.

154 Commands Reference

Files

/usr/lib/IN net/ connect. con
$H OME/bin/ connect. con
/usr/lib/INnet/dialers/*
$HOME/bin/*
/usr/lib/IN net/ atalk
/etc/sites
/etc/locks

System-wide connection control file.
Private connection control file.
System-wide dialer programs.
Private dialer programs.
Default talker program, asynchronous lines.
Network sites file.

connect

Directory for locks on ports (devices) used for logins and
out-going connections.

Related Information

The system and exec system calls, the connect subroutine, and the termio special
facility in AIX Operating System Technical Reference.

Commands 155

cp

cp

Purpose

Copies files.

Syntax

Fc!-l ~ directory~
~ infi/e -- outfi/e ~

Description

OL805100

The cp (copy) command copies infile to a directory or another file, outfile. Do not name
outfile as one of the input files. If your output is to a directory, then the files are copied to
that directory with the same base file name.

You can also copy special device files. If the file is a named pipe, the data in the pipe is
copied into a regular file. If the file is a device, the file is read until the end of file and
that data is copied into a regular file.

Examples

1. To make another copy of a file in the current directory:

cp prog.c prog.bak

This copies prog. c to prog. bak. If the file prog. bak does not already exist, then cp
creates it. If it does exist, then cp replaces it with a copy of prog. c.

2. To copy a file to the same name in another directory:

cp jones clients

This copies jones to clients/jones.

Note the difference: prog. bak in Example 1 is the name of a file; cl i ents in Example
2 is a directory that already exists.

156 Commands Reference

3. To copy several files into another directory:

cp listing clients/smith /u/tom

This copies 1 i sti ng to /u/tom/l i sti ng and cl i ents/smi th to lu/tom/smi tho
4. To use cp with pattern-matching characters:

cp programs/*.c

cp

This copies all of the files in directory programs that end with. C into the current
directory (.), giving them the same names they have in programs. Note that you must
type a space between the C and the final period.

Related Information

The following commands: "cpio" on page 158, "link, unlink" on page 444, "In" on
page 450, and "mv" on page 502.

Commands 157

cpio

cpio

Purpose

Copies files into and out of archive storage and directories.

Syntax

cpio- -0

OL805175

cpio- -i
b c d
m r t u
v s 8 S
6

OL805350

cpio-
-p ~,--__ ~_~_v_1 _m_?----I directory -l

1 Do not put a blank between these items.
OL805351

Description

Warning: If you redirect the output from cpio to a special file (device),
you should redirect it to the raw device and not the block device. Because
writing to a block device is done asynchronously, there is no way to know
if the end of the device has been reached.

158 Commands Reference

Flags

TNL SN20-9861 (26 June 1987) to SC23-0790-0
cpio

cpio -0

This command reads file path names from standard input and copies these files to standard
output along with path names and status information. Path names cannot exceed 128
characters. Avoid giving cpio path names made up of many unique linked files as it may
not have enough memory to keep track of them and so would lose linking information.

cpio -i

This command reads from standard input the name of an archive file created by the cpio -0

command and copies from it the files with names that match pattern. These files are copied
into the current directory tree. You may list more than one pattern, using the file name
notation described under "sh" on page 637. Note, however, that in this application the
special characters *, ?, and [. . .] match the / (slash) in path names, in addition to their
use as described under "sh" on page 637. The default pattern is * (select all files in the
current directory).

In an expression such as [a-z], the minus means "through" according to the current
collating sequence. A collating sequence may define equivalence classes for use in
character ranges. See the "Overview of International Character Support" in Managing the
AIX Operating System for more information on collating sequences and equivalence
classes.

cpio -p

This command reads file path names from standard input and copies these files into the
named directory. The specified directory must already exist. If these path names include
directory names and if these directories do not already exist, you must use the d flag to
cause the directory to be created.

Note: You can copy special files only if you have superuser authority.

All flags must be listed together, without any blanks between them. Not all of the
following flags can be used with each of the -0, -i, and -p flags.

a Resets the access times of copied files to the current time.

b Swaps both bytes and halfwords.

Note: If there are an odd number of bytes or halfwords in the file being
processed, data can be lost.

B Performs block input/output, 5120 bytes to a record.

c Writes header information in ASCII character form.

Commands 159

cpio

Cvalue Performs block input/output, value * 512 bytes to a record.

Note: The C flag and the B flag are mutually exclusive. If you list both, cpio
uses the last one it encounters in the flag list.

d Creates directories as needed.

f Copies all files except those matching pattern.

1 Links files rather than copies them, whenever possible. This flag is usable only
with cpio -po

m Retains previous file modification time. This flag does not work when copying
directories.

r Renames files interactively. If you do not want to change the file name, enter the
current file name or press the Enter key only. In this last case, cpio does not
copy the file.

s Swaps bytes. This flag is usable only with cpio -i.

Note: If there are an odd number of bytes in the file being processed, data can
be lost.

S Swaps halfwords. This flag is usable only with cpio -i.

Note: If there are an odd number of halfwords in the file being processed, data
can be lost.

t Creates a table of contents. This does not copy any files.

u Copies unconditionally. An older file now replaces a newer file with the same
name.

v Lists file names. If you use this with the t flag, the output looks similar to that of
the Is -I command.

6 Processes an old file (one written in UNIX Sixth Edition format). This flag is
usable only with cpio -i.

Examples

1. To copy files onto diskette:

cpio -ov <filenames >/dev/rfdO

This copies the files with path names that are listed in the file fi 1 enames in a
compact form onto the diskette (> / dey / rfdO). The -v flag causes cpio to display the
name of each file as it is copied. This command is useful for making backup copies of
files. The diskette must already be formatted, but it must not contain a file system or
be mounted.

160 Commands Reference

cpio

2. To copy files in the current directory onto diskette:

ls *.C cpia -av >/dev/rfdO
This copies all the files in the current directory whose names end with . c.

3. To copy the current directory and all subdirectories onto diskette:

find -print cpia -av >/dev/rfdO
This saves the directory tree that starts with the current directory (.) and includes all
of its subdirectories and files. A faster way to do this is:

find -cpia /dev/rfdO -print
The -pri nt displays the name of each file as it is copied.

4. To list the files that have been saved onto a diskette with cpio:

cpia -itv </dev/rfdO
This displays the table of contents of the data previously saved onto /dev/rfdO in cpio
format. The listing is similar to the long directory listing produced by Ii -1. To list
only the file path names, use only the -it flags.

5. To copy the files previously saved with cpio from a diskette:

cpia -idmv </dev/rfdO
This copies the files previously saved onto /dev/rfdO by cpio back into (-i) the file
system. The -d flag allows cpio to create the appropriate directories if a directory tree
was saved. The -m flag maintains the last modification time that was in effect when
the files were saved. The -v causes cpio to display the name of each file as it is copied.

6. To copy selected files from diskette:

cpia -i "*.C 11 "*.a 11 </dev/rfdO
This copies the files that end with. C or .0 from diskette. Note that the patterns
II * . C II and 11 * .0 11 must be enclosed in quotation marks to prevent the shell from
treating the * as a pattern-matching character. This is a special case in which cpio
itself decodes the pattern-matching characters.

7. To rename files as they are copied from diskette:

cpia -ir </dev/rfdO
The -r flag causes cpio to ask you whether or not to rename each file before copying it
from diskette. For example, the message:

Rename <prog.c>
asks whether to give the file saved as prog. c a new name as it is copied in. To
rename the file, type the new name and press Enter. To keep the same name, you
must enter the name again. To avoid copying the file at all, press the Enter key alone.

Commands 161

cpio

8. To copy a directory and all of its subdirectories:

mkdi r
find

/u/jim/newdir
-print cpio -pdl /u/jim/newdir

This duplicates the current directory tree, including the current directory and all of its
subdirectories and files. The duplicate is placed in the new directory /u/ j i m/newdi r.
The -1 flag causes cpio to link files instead of copying them, when possible.

Related Information

The following commands: "ar" on page 58, "find" on page 326, and "In" on page 450.

The cpio system call in A/X Operating System Technical Reference.

"Overview of International Character Support" in Managing the A/X Operating System.

162 Commands Reference

cpp

cpp

Purpose

Performs file inclusion and macro substitution on C Language source files.

Syntax

/Iib/cpp

1 The default def is 1 .

Description

1
h--f--- -D name --t...-(

-Dname=def infi/e

OL805378

The cpp program is the C Language preprocessor. It reads infile and writes to outfile
(standard input and standard output by default). Although you can use this preprocessor
by itself, it is best to use it through the cc command, which by default sends a C Language
source file to cpp as the first pass in compilation.

The cpp program recognizes two special names, __ LINE __ (the current line number) and
__ FILE __ (current file name). These names can be used anywhere just as any other
defined name.

All cpp directive lines must begin with a hash sign (#). These directives are:

#define name token-string
Replaces subsequent instances of name with token-string.

#define name(arg, ... ,arg) token-string
Replaces subsequent instances of the sequence name (arg, ... ,arg)
with token-string, where each occurrence of an arg in token-string is
replaced by the corresponding token in the comma-separated list. Note
that there must not be any space between name and the left
parenthesis.

#undef name Ignores the definition of name from this point on.

Commands 163

cpp

#include "file"
#include < file> Includes at this point the contents of file, which cpp then processes.

If you enclose file in double quotation marks (" "), cpp searches first
in the directory of infile, second in directories named with the -I flag,
and last in directories on a standard list .

If you use the < file> notation, cpp searches for file only in the
standard places. It does not search the directory in which infile
resides.

#line num ["file"] Includes line control information for the next pass of the C compiler.
num is the line number of the next line and file is the file from which
it comes. If you omit "file", the current file name remains unchanged.

#endif Ends a section of lines begun by a test directive (#if, #ifdef, or
#ifndef). Each test directive must have a matching #endif.

#ifdef name Places the subsequent lines in the output only if name has been
defined by a previous #define and has not been undefined by an
intervening #undef.

#ifndef name Places the subsequent lines in the output only if name has not been
defined by a previous #define or has been undefined by an intervening
#undef.

#if expr Places subsequent lines in the output only if expr evaluates to nonzero.

#else

All the binary nonassignment C operators, the ?: operator, and the
unary -, !, and - operators are legal in expr. The precedence of the
operators is the same as that defined in the C Language. There is also
a unary operator defined, which can be used in expr in these two
forms:

defined (name)
defined name

This allows the utility of #ifdef and #ifndef in a #if directive. Only
these operators, integer constants, and names which are known by cpp
should be used in expr. The sizeof operator is not available.

Places subsequent lines in the output only if the expression in the
preceding #if directive evaluates to False (and hence the lines
following the #if and preceding the #else have been ignored).

You can nest the test directives and the possible #else directives.

164 Commands Reference

Flags

cpp

-C Copies source file comments to the output file. If you omit this flag, cpp
removes all comments (except those found on cpp directive lines).

-Dname[= defJ Defines name as in a #define directive. The default de! is 1.

-Idir Looks first in dir, then looks in the directories on the standard list for
#include files with names that do not begin with a / (slash). See the
previous discussion of #include.

-p Preprocesses input without producing line control information for the
next pass of the C compiler.

-Uname Removes any initial definition of name, where name is a reserved symbol
predefined by the preprocessor.

Examples

1. To display the text that the preprocessor sends to the C compiler:

/lib/cpp pgm.c
This preprocesses pgm. c and displays the resulting text at the work station. You may
want to see the preprocessor output when looking for errors in your macro definitions.

2. To create a file containing more readable preprocessed text:

/lib/cpp -P -C pgm.c pgm.i
This preprocesses pgm. c and stores the result in pgm. i. It omits line numbering
information intended for the C compiler (-P), and includes program comments (-C).

3. To predefine macro identifiers:

/lib/cpp -DBUFFERSIZE=512 -DDEBUG pgm.c pgm.i
This defines BUFFERSIZE with the value 512 and DEBUG with the value 1 before
preprocessing.

4. To use #include files located in nonstandard directories:

/lib/cpp -I/u/jim/include pgm.c
This looks in the current directory for quoted #include files, then in
/u/jim/incl ude, and then in the standard directories. It looks in /u/jim/i ncl ude
for angle-bracketed #include files « » and then in the standard directories.

Commands 165

cpp

Files

/usr/include Standard directory for #include files.

Related Information

The following commands: "cc" on page 112 and "m4" on page 465.

166 Commands Reference

craps

craps

Purpose

Plays craps.

Syntax

/usr/games/craps -----1

OL805188

Description

The craps game plays a form of the game of craps that is played in Las Vegas. It simulates
the roller while you place bets. Bet with the roller by making a positive bet or with the
House by making a negative bet.

You start with a $2000 bankroll. When the program prompts with bet?, you may bet all
or part of your bankroll. If you bet more than your bankroll, the program repeats the
prompt until you make a legal bet. Then the roller throws the dice. The payoff odds are
one to one. The player wins depending on whether the bet is placed with the roller or with
the House. The first roll is the roll immediately following a bet.

The following rules apply. On the first roll, 7 or 11 wins for the roller; 2, 3, or 12 wins for
the House; and any other number becomes the point and you roll again (the next rule then
applies). On subsequent rolls, the point wins for the roller; 7 wins for the House; and any
other number rolls again.

If you lose your bankroll, the House prompts marker?, offering to lend you an additional
$2000. Accept the loan by responding y or yes. Any other response ends the game. When
you hold markers, the House reminds you before a bet how many markers are outstanding.
When you have markers and your bankroll exceeds $2000, craps asks Repay marker? If
you want to repay part or all of your loan, respond with y (or yes). If you have more than
one marker, craps asks you How many? If you respond with a number greater than the
number of markers you hold, it repeats the prompt until you enter a valid number. If you
accumulate 10 markers (a total loan of $20,000), craps tells you so and exits. If you
accumulate a bankroll of more than $50,000 while holding markers, the money owed is
repaid automatically.

A bankroll of more than $100,000 breaks the bank, and craps will prompt New game? To
quit the game, press INTERRUPT (Alt-Pause); craps displays whether you have won, lost,
or broken even and exits.

Commands 167

crash

crash

Purpose

Examines system images.

Syntax

-c/deV/memy
crash

system
OL805101

Description

The crash command is an interactive utility for examining an operating system image (a
core image or the running kernel). It has facilities for interpreting and formatting the
various control structures in the system and certain miscellaneous functions useful for
examining a dump.

The system parameter specifies the file that contains the system image and the kernel
symbol definitions. Its default value is /dev/mem. Thus you can run crash with no
arguments to examine an active system. If you specify a system-image file, crash assumes
that it is a system dump file, and it sets the default process to the process running at the
time of the crash.

Note: A source listing of the system header files may be helpful while using crash
to identify the flags it uses.

Stack tracing of the current process on a running system does not work.

The crash command recognizes several aliases in the format specification accompanying
the subcommands. They are as follows:

Format Aliases Format Aliases
byte b inode ino, i
character char, c longdec Id, D
decimal dec, e longoct 10,0
directory direct, dir, d octal oct, 0
hexadecimal hexadec, hex, h, x write w

168 Commands Reference

/

crash

Subcommands

The crash command presents a prompt (» when it is ready to interpret subcommands
entered at the work station. The general subcommand format for crash is:

subcommand [flags] [structures to be displayed]

When allowed, flags modify the format of the data displayed. If you do not specify which
structure elements you want to examine, all valid entries are displayed. In general, those
subcommands that perform I/O with addresses assume hexadecimal notation.

Most of the subcommands recognized by crash have aliases (abbreviated forms that give
the same result). crash recognizes the following subcommands:

user [process-table-entry]... Aliases: uarea, u_area, u
Displays the user structure of the named process as determined by the information
contained in the process table entry. (See the /usr/include/sys/user.h file for this
structure definition.) If you do not specify an entry, the information about the last
running process is displayed. Attempting to display a paged process produces an
error message.

trace [process-table-entry]... Aliases: t
Displays a kernel stack trace of the current process. The trace starts at the bottom
of the stack and attempts to find valid stack frames deeper in the stack. If you do
not provide an entry number, information about the last running process is
displayed.

stack [process-table-entry]... Aliases: stk, s, kernel, k
Displays a dump of the kernel stack of a process. The addresses shown are virtual
data addresses rather than true physical locations. If you do not provide an entry
number, information about the last running process is displayed. Stack tracing of
the current process on a running system does not work.

proc [-] [-r] [process-table-entry]... Aliases: ps, p
Displays the process table. (See the /usr/include/sys/proc.h file for this structure
definition.) The -r flag causes only runable processes to be displayed. The
- (minus) alone displays a longer listing.

inode [-] [i-node-table-entry]... Aliases: ino, i
Displays the i-node table. The - flag also displays the i-node data block addresses.
Unless specific i-node entries are requested, only those with a nonzero reference
are displayed.

file [file-table-entry]... Aliases: files, f
Displays the file table. Unless specific file entries are requested, only those with a
nonzero reference are displayed.

mount [mount-table-entry]... Aliases: mnt, m
Displays the mount table. Unless specific mount table entries are requested, only
those in use are displayed.

Commands 169

crash

text [text-table-entry]... Aliases: txt, x
Displays the text table. Unless specific text entries are requested, only those with
a nonzero i-node pointer are displayed.

tty [type] [-] [tty-entry]... Aliases: term, dz, dh
Displays the tty structures. The type parameter specifies which structure is used
(such as ksr, or rs). The last type entered with the tty command becomes the
default. The - flag displays the stty parameters for the given line.

stat Displays statistics found in the dump. These include the panic message (if a panic
occurred), time of crash, and system name.

var Aliases: tunables, tunable, tune, v
Displays the tunable system parameters.

buf [buffer-header] ...
Displays the system buffer headers.

buffer [format] [buffer] ...
Displays the data in a system buffer according to format. If you do not provide a
format parameter, the previous format is used. Valid formats include decimal,
octal, hex, character, byte, directory, i-node and write. The write format
creates a file in the current directory containing the buffer data.

callout Aliases: calls, call, c, timeout, time, tout
Displays all entries in the callout table.

map [map-name] ...
Displays the named system map structures.

nm [symbol] ...
Displays symbol value and type as found in the kernel-image file.

ts [text-address] ...
Finds the text symbols closest to the given addresses.

ds [data-address] ...
Finds the data symbols closest to the given addresses.

od [symbol name or address] [count] [format]
Dumps count data values starting at the symbol value or address given according to
format. Allowable formats are octal, longoct, decimal, longdec, character, hex, or
byte.

Runs shell commands.

q Exits from crash.

? Displays summary of crash commands.

170 Commands Reference

Files

/usr/include/sys/* .h
/dev/mem
/unix
buf.#

Header files for table and structure information.
Default system-image file.
Default kernel-image file.
Files containing buffer data.

crash

Related Information

The following commands: "mount" on page 498, "nm" on page 521, "ps" on page 579,
"sh" on page 637, and "stty" on page 717.

Commands 171

cron

cron

Purpose

Runs commands automatically.

Syntax

1
eron -l

1 Not usually run from the command line, but included in fete/reo
OL805184

Description

Files

The cron command runs shell commands at specified dates and times. Regularly scheduled
commands can be specified according to instructions contained in crontab files. You can
submit your crontab file via the crontab command (see page 174). Use the at command
(see page 66) to submit commands that are to be run only once. Because cron never exits,
it should be run only once. This is best done by running cron from the initialization
process through the /etc/rc command file (see page 594).

The cron command examines crontab files and at command files only during process
initialization and when a file changes. This reduces the overhead of checking for new or
changed files at regularly scheduled intervals.

The cron command also executes a sync system call approximately once a minute to
assure that all information in memory that should be on disk (buffered output) is written
out. These periodic updates minimize the possibility of file system damage in the event of
a crash. In addition, cron keeps a number of frequently used system directories open to
keep their i-nodes in kernel memory for faster access.

If the file /usr/lib/cron/log exists, cron records a history of its activities in it.

For a discussion of how to schedule commands, see "crontab" on page 174.

I usr IIi b I cron
I usr IIi b I cron/l 0 g
lusrlspool/cron
Ibin
Ilib

Main cron directory.
Accounting information.
Spool area.
Directory kept open.
Directory kept open.

172 Commands Reference

/usr
/usr/bin
/usr/lib
/etc
/tmp

Related Information

Directory kept open.
Directory kept open.
Directory kept open.
Directory kept open.
Directory kept open.

cron

The following commands: "at, batch" on page 66, "crontab" on page 174, and "rc" on
page 594.

The sync system call and the crontab file in AIX Operating System Technical Reference.

Commands 173

crontab

crontab

Purpose

Submits a schedule of commands to cron.

Syntax

crontab

OL805003

Description

The crontab command copies the specified file, or standard input if you do not specify a
file, into a directory that holds all users' crontab files. The cron command runs
commands according to the instructions in these crontab files. It then mails you the
output from standard output and standard error for these commands, unless you redirect
standard output or standard error. When entries are made to a crontab file, all previous
ertries are erased.

You may use crontab if your logname appears in the file /usr/lib/cron/cron.allow. If
that file does not exist, crontab checks the file /usr/lib/cron/cron.deny to determine if
you should be denied access to crontab. If neither file exists, you can submit a job only if
you are operating with superuser authority. The allow/deny files contain one user name
per line.

Note: If your login ID is associated with more than one login name, crontab uses
the first login name that appears in the /etc/passwd file, regardless of which login
name you might actually be using.

If cron.allow exists, the superuser's logname must appear there for the superuser to
be able to use the command.

174 Commands Reference

Flags

crontab

Each crontab file entry consists of a line with six fields, separated by spaces and tabs, that
contain, respectively:

1. The minute (0-59)
2. The hour (0-23)
3. The day of the month (1-31)
4. The month of the year (1-12)
5. The day of the week (0-6 for Sunday-Saturday)
6. The shell command.

Each of these fields can contain:

• A number in the specified range
• Two numbers separated by a minus to indicate an inclusive range
• A list of numbers separated by commas, which selects all numbers in the list
• An asterisk, meaning all legal values.

Note that the specification of days may be made by two fields (day of the month and day of
the week). If you specify both as a list of elements, both are adhered to. For example the
following entry:

o 0 1, 15 * 1 command
would run command on the first and fifteenth days of each month, as well as every
Monday. To specify days by only one field, the other field should contain an *.
The cron command runs the command named in the sixth field at the selected date and
time. If you include a % (percent sign) in the sixth field, cron treats everything that
precedes it as the command invocation and makes all that follows it available to standard
input, unless you escape or quote the percent sign (\% or "%").

Note: The shell runs only the first line of the command field (up to a % or end of line). All
other lines are made available to the command as standard input.

The cron command invokes a subshell from your $HOME directory. This means that it
will not run your .profile file. If you schedule a command to run when you are not logged
in and you want to have commands in your .profile run, you must explicitly do so in the
crontab file. (For a more detailed discussion of how sh can be invoked, see "sh" on
page 637).

cron supplies a default environment for every shell, defining HOME, LOGNAME, SHELL
(= fbi n/sh), and PATH (=: fbi n: /usr/bi n).

-1 Lists your crontab file.

-r Removes your crontab file from the crontab directory.

Commands 175

crontab

Examples

Files

The following examples show valid crontab file entries.

1. To write the time to the console every hour on the hour:

o * * * * echo The hour is 'date'. >/dev/console
This example uses command substitution. For more information, see "Command
Substitution" on page 647.

2. To run calendar at 6:30 a.m. every Monday, Wednesday, and Friday:

30 6 * * 1,3,5 /usr/bin/calendar -
3. To define text for the standard input to a command:

o 16 10-31 12 5 wall%HAPPY HOLIDAYS!%Remember to turn in your time card.
This writes a message to all users logged in at 4:00 p.m. each Friday between December
10th and 31st.

The text following the % (percent sign) defines the standard input to the wall command
as:

HAPPY HOLIDAYS!
Remember to turn in your time card.

/usr/lib/cron
/usr/spool/cron/crontabs
/usr/lib/cron/cron.allow
/usr/lib/cron/cron.deny

Main cron directory.
Spool area.
List of allowed users.
List of denied users.

Related Information

The following commands: "cron" on page 172 and "sh" on page 637.

176 Commands Reference

csh

csh

Purpose

Interprets commands read from a file or entered from the keyboard.

Syntax

one of

csh
-c II cmd string"
-s
-t

file-r--\-

~
OL805447

Description

The csh command is a system command interpreter and programming language that
incorporates a history mechanism and a C-like syntax. Like the sh command, it is an
ordinary user program that reads commands typed at the keyboard and arranges for their
execution. In addition, it can read commands from a file, usually called a shell procedure
or a command file.

When you run csh, it begins by executing commands from the file .cshrc in your home
directory, if it exists. If, on the other hand, csh runs as a login shell, it executes
commands from your .cshrc file and your .login file.

Commands
A simple command is a sequence of words separated by blanks or tabs. A word is a
sequence of characters and/or numerals that does not contain unquoted blanks. In
addition, the following characters and doubled characters also form single words when
used as command separators or terminators:

&
&& II

II

< > « »
These special characters may be parts of other words. Preceding them with a \ (backslash),
however, prevents the shell from interpreting them as special characters. When the shell

Commands 177

csh

is not reading input from a work station, it treats any word that begins with a # (number
sign) as a comment and ignores that word and all characters following up to the next
new-line character. Strings enclosed in matched pairs of quotation characters or grave
accents (I I, II II, or ' ') can also form parts of words. (Blanks, tab characters, and
special characters do not form separate words when they are found within these quotation
marks.) In addition, within pairs of single quotation marks (I I) and double quotation
marks (II II), you may include the new-line character by preceding it with \ (backslash).

The first word in the simple-command sequence (numbered 0), usually specifies the name of
a command. any remaining words, with a few exceptions, are passed to that command. If
the command specifies an executable file that is a compiled program, the shell immediately
runs that program. If the file is marked executable but is not a compiled program, the
shell assumes that it is a shell procedure. In this case it spawns another instance of itself
(a subshell), to read the file and execute the commands included in it.

A pipeline is a sequence of one or more commands separated by a I (vertical bar). The
output of each command in a pipeline provides the input to the next command.

A list is a sequence of one or more pipelines separated by a ; (semicolon), & (ampersand),
&& (two ampersands), or II (two vertical bars) and optionally ended by a ; (semicolon) or
an & (ampersand). These separators and terminators have the following effects:

Causes sequential execution of the preceding pipeline (the shell waits for the
pipeline to finish).

& Causes asynchronous execution of the preceding pipeline (the shell does not wait
for the pipeline to finish).

&& Causes the list following it to be executed only if the preceding pipeline returns a
zero exit value.

II Causes the list following it to be executed only if the preceding pipeline returns a
nonzero exit value.

Note: The cd command is an exception. If it returns a nonzero exit value, no
subsequent commands in a list are executed, regardless of the separators.

The ; and & separators 4ave equal precedence, as do && and II. The single-character
separators have lower precedence than the double-character separators. A un quoted
new-line character following a pipeline functions the same as a ; (semicolon).

Place any of the above in parentheses to form a simple command.

The shell associates a job with each pipeline. It keeps a table of current jobs and assigns
them small integer numbers. When you start a job asynchronously by terminating the
command with a &, the shell displays a line that looks like the following:

[1] 1234

178 Commands Reference

csh

This line indicates that the job number is 1 and that the job is composed of one process
with a process-ID of 1234. Use the built-in jobs command (page 194) to see what jobs are
currently running.

A job running in the background competes for input if it tries to read from the work
station. Background jobs can also produce output that competes for the work station and
is interleaved there with the output of other jobs.

There are several ways to refer to jobs in the shell. Use the % (percent) character to
introduce a job name. This name can be either the job number or the command name that
started the job, if this name is unique. So, for example, if a make process is running as
job 1, you can refer to it as % 1. You can also refer to it as %rna ke, if there is only one
suspended job with a name that begins with the string rna ke. You can also use

%? : string
to specify a job whose name contains string, if there is only one such job.

The shell detects immediately whenever a process changes state. Whenever a job becomes
blocked so that further progress is not possible, a message is sent to the work station, but
not until just before the shell prompt. If, however, the notify shell variable is set (see
page 188), the shell issues a message that indicates changes in status of background jobs
immediately. Use the notify built-in command (page 195) to mark a single process so that
its status changes are immediately reported. By default, notify marks the current process.

History Substitution
History substitution lets you use words from previous commands as portions of new
commands, thus making it easy to repeat commands, repeat the arguments of a previous
command in the current command, or fix spelling mistakes in the previous command with
little typing.

History substitutions begin with the! (exclamation) character and may appear anywhere
on the command line, provided they do not nest (in other words, a history substitution
cannot contain another history substitution). You can precede the ! with a \ to prevent its
special meaning. In addition, if you place the! before a blank, tab, new-line character, =
(equal sign), or ((left parenthesis), it is passed unchanged. History substitutions also
occur when you begin an input line with a /\ (circumflex). (This special abbreviation is
discussed on page 182.) The shell echoes any input line containing history substitutions at
the work station before it executes that line.

The history list saves commands that the shell reads from the work station and that
consist of one or more words. History substitution reintroduces sequences of words from
these saved commands into the input stream.

The history shell variable (page 187) controls the size of the history list. You must set the
history shell variable either in the .cshrc file or on the command line with the built-in
set command (page 196). The previous command is always retained, however, regardless of

Commands 179

csh

the value of history. Commands in the history list are numbered sequentially starting
from 1.

The built-in history command (page 193) produces output of the type:

9 write michael
10 ed write.c
11 cat oldwrite.c
12 diff *write.c
The command strings are shown with their event numbers. It is not usually necessary to
use event numbers to refer to events, but you can have the current event number displayed
as part of your system prompt by placing an ! in the prompt string assigned to the prompt
environmental variable (page 188).

A full history reference contains an event specification, a word designator, and one or
more modifiers in the following general format:

event[:]word:modifier[:modifier] ...

In the previous sample of history command output, the current event number is 13. Using
this example, the following refer to previous events:

Event Specification

!10

!-2

!d

!?mic?

Refers to event number 10

Refers to event number 11 (the current event minus 2)

Refers to a command word beginning with d (in this case event number 12)

Refers to a command word that contains the string mi c (in this case, event
number 9).

These forms, without further modification, simply reintroduce the words of the specified
events, each separated by a single blank. As a special case, ! ! refers to the previous
command; the command! ! alone on an input line reruns the previous command.

To select words from an event, follow the event specification with a : (colon) and one of the
following word designators (the words of an input line are numbered sequentially starting
from 0):

Word Designator

o
n
/\

$

The first word (the command name)

The nth argument

The first argument

The last argument

180 Commands Reference

%
x-y

-y

*

x*

x-

The word matched by an immediately preceding ? string? search

A range of words from the xth word to the yth word

A range of words from the first word (0) to the yth word

csh

The first through the last argument, or nothing if there is only one word (the
command name) in the event

The xth through the last argument

Like x* but omitting the last word.

You may omit the colon that separates the event specification from the word designator if
the word designator begins with a ", $, *, -, or %. You can also place a sequence of the
following modifiers after the optional word designator, each preceded by a colon:

Modifier

h

r

e

s/l/r/

t

&

g

p

q

x

Remove a trailing path name extension, leaving the head.

Remove a trailing" .xxx" component, leaving the root name.

Remove all but the trailing extension" .xxx."

Substitute l for r. With substitutions, it is an error for no word to be
applicable.

The left side of a substitution is not a patterns in the sense of the editors but,
rather, a string. Normally, a / (slash) delimits the string (l) and its
replacement (r). However, you can use any character as the delimiter if you
precede that character with a \ (backslash). Thus, in the following example:

s\%/ us r /myfi 1 e\%/ us r /yourfi 1 e\%

the % becomes the delimiter allowing you to include the / in your strings. If
you include an & in the replacement string, it is replaced by the text from the
left-hand side (l). A null l string is replaced by either the last substitution or
by the last string used in the contextual scan !? string? .

You may omit the trailing delimiter (/) if a new-line character follows
immediately.

Remove all leading path name components, leaving the tail.

Repeat the previous substitution.

Apply the change globally, that is, g&.

Display the new command, but do not run it.

Quote the substituted words, thus preventing further substitutions.

Act like q, but break into words at blanks, tabs, and new-line characters.

Commands 181

csh

Unless the modifier is preceded by a g, the change applies only to the first modifiable word.

If you give a history reference without an event specification, for example. ! $, the shell
uses the previous command as the event, unless a previous history reference occurs on the
same line, in which case it repeats the previous reference. Thus, the following sequence:

!?fOO?A !$

gives the first and last arguments of the command that matches ?foo?

A special abbreviation of a history reference occurs when the first nonblank character of
an input line is a A (circumflex). This is equivalent to ! : SA, thus providing a convenient
shorthand for substitutions on the text of the previous line. The commanc Alb Ali b
corrects the spelling of lib in the previous command.

You can enclose a history substitution in {} (braces), if necessary, to insulate it from the
characters that follow. For example, if you want to use a reference to the command:

ls -ld -paul

to perform the command:

ls -ld -paula

use the following:

!{l}a

whereas! 1 a would look for a command starting with 1 a

Quoting with Single and Double Quotes
Enclose strings in single and double quotation marks to prevent all or some of the
substitutions that remain. Enclosing strings in single quotation marks (I I) prevents any
further interpretation. Enclosing strings in double quotation marks (" ") allows further
expansion. In both cases, the text that results becomes (all or part of) a single word. Only
in one special case does a string quoted by" "yield parts of more than one word; strings
quoted by I I never do (see "Command Substitution" on page 183).

Command and File Name Substitution
The shell performs command and file-name substitutions selectively on the arguments of
built-in commands. This means that it does not expand those parts of expressions that are
not evaluated. For nonbuilt-in commands, the shell substitutes the command name
separately from the argument list. This occurs very late, after it performs input/output
redirection and in a child of the main shell.

182 Commands Reference

csh

Command Substitution

The shell performs command substitution on a command string ,enclosed in grave accents
(' '). The shell normally breaks the output from such a command into separate words at
blanks, tabs, and new-line characters; this text then replaces the original command string.
Within strings surrounded by double quotation marks (" "), the shell treats only the
new-line character as a word separator, thus preserving blanks and tabs within the word.

In any case, the single final new-line character does not force a new word. Note that it is
therefore possible for command substitution to yield only part of a word, even if the
command outputs a complete line.

File-name Substitution

If a word contains any of the characters *, ?, [, or {, or begins with the - character, then
that word is a candidate for file name substitution, also known as globbing. This word is
then regarded as a pattern and replaced with an alphabetically sorted list of file names
which match the pattern. The current collating sequence is used, which may be specified
by the environment variables NLCTAB or NLFILE. In a list of words specifying file name
substitution, it is an error for no patterns to match an existing file name, but it is not
required that each pattern match. Only the character-matching symbols *, ?, and [imply
pattern matching; the characters - and { being more related to abbreviations.

In matching file names, the character. (dot) at the beginning of a file name or
immediately following a /, and the character /, must be matched explicitly. The *
character matches any string of characters, including the null string. The? character
matches any single character. The sequence [abed] matches anyone of the enclosed
characters. Within [J, a lexical range of characters may be indicated by [a-z]. The
characters that match this pattern are defined by the current collating sequence (see
"ctab" on page 204).

The - character at the beginning of a file name is used to see home directories. Standing
alone, - expands to your home directory as reflected in the value of the home shell
variable. When followed by a name that consists of letters, digits, and - characters, the
shell searches for a user with that name and substitutes their home directory. Thus, - ken
might expand to /usr/ken and -ken/chmach to /usr/ken/chmach. If the - character
is followed by a character other than a letter or /, or appears not at the beginning of a
word, it is left undisturbed.

The pattern a{b, c, d}e is a shorthand for abe ace ade. The shell preserves the
left-to-right order, with results of matches being stored separately at a low level to preserve
this order. This construct may be nested. Thus:

-source/sl/{oldls,ls}.c

Commands 183

csh

expands to:

/usr/source/sl/o1d1s.c /usr/source/sl/1s.c

if the home directory for source is /usr/source. Similarly:

.. /{memo,*box}
might expand to:

.. /memo .. /box .. /mbox

(Note that memo is not sorted with the results of matching *box.) As a special case, {, },
and {} are passed undisturbed.

Alias Substitution
The shell maintains a list of aliases that the alias and unalias built-in commands (page
190) can establish, display, and modify. After the shell scans the command line, it divides
it into distinct commands and checks the first word of each command, left to right, to see if
it has an alias. If it does, the shell uses the history mechanism available (see "History
Substitution" on page 179), to replace the text of the alias with the text of the command it
stands for. The words that result replace the command and argument list. If reference is
not made to the history list, then the argument list is left unchanged. Thus, if the alias for
the Is command is 1 s - 1 , the shell replaces the command 1 s / u s r with 1 s - 1 / u s r, the
argument list here being undisturbed because there is not reference to the history list in
aliased command. Similarly, if the alias for lookup is:

grep !A /etc/passwd

then the shell replaces lookup bi 11 with:

grep bill /etc/passwd

Here, ! A refers to the history list and the shell replaces it with the first argument in the
input line, in this case bill.
Note from this last example that you can use special pattern-matching characters in an
alias. Thus the command:

alias 1print 'pr \!* » print'
makes a command which formats its arguments to the line printer. The! is protected from
the shell in the alias so that it is not expanded until pr runs.

If an alias is found, the word transformation of the input text is performed and the aliasing
process begins again on the reformed input line. If the first word of the next text is the
same as the old, looping is prevented by flagging it to prevent further aliasing. Other
loops are detected and cause an error.

184 Commands Reference

/'

csh

Variable Substitution
The shell maintains a set of variables, each of which has as its value a list of zero or more
words. Some of these variables are set by the shell or referred to by it. For instance, the
argv variable is an image of the shell variable list, and words which comprise the value of
this variable are referred to in special ways.

You can change and display the values of variables with the set and unset commands. Of
the variables referred to by the shell, a number are toggles; the shell does not care what
their value is, only whether they are set or unset. For instance, the verbose variable is a
toggle which causes command input to be echoed. The setting of this variable results from
the -v flag on the command line.

Other operations treat variables numerically. The @ command performs numeric
calculations and the result is assigned to a variable. Variable values are, however, always
represented as (zero or more) strings. For numeric operations, the null string is considered
to be zero, and the second and subsequent words of multi-word values are ignored.

After an input line is aliased and parsed, and before each command is run, variable
substitution is performed, keyed by $ characters. You can prevent this expansion by
preceding the $ with a \, except within II II (double quotation marks, where it always
occurs, and within I I (single quotation marks), where it never occurs. Strings quoted by

I are interpreted later (see "Command Substitution" on page 183), so $ substitution
does not occur there until later, if at all. A $ is passed unchanged if it is followed by a
blank, tab, or new-line character.

Input/output redirections are recognized before variable expansion and are variable
expanded separately. Otherwise, the command name and complete argument list expands
together. It is therefore possible for the first (command) word to this point to generate
more than one word, the first of which becomes the command name and the rest of which
become parameters.

Unless enclosed in II II or given the :q modifier, the results of variable substitution may
themselves eventually be command and file name substituted. Within pairs of double
quotation marks, a variable with a value that consists of multiple words expands to a
(portion of a) single word, with the words of the variable's value separated by blanks.
When you apply the :q modifier to a substitution, the variable expands to multiple words.
Each word is separated by a blank and quoted to prevent later command or file name
substitution.

The following notation allows you to introduce variable values into the shell input.
Except as noted, it is an error to reference a variable that is not set.

?name
?{name} Replaced by the words assigned to name, each separated by a

blank. Braces insulate name from any following characters that
would otherwise be part of it. Shell variable names start with a
letter and consist of up to 20 letters and digits, including the _
(underline) character. If name is not a shell variable but is set

Commands 185

csh

?name[selector]
?{name[selector]}

?#name
?{#name}

?o

?number
?{number}

?*

in the environment, then that value is returned. The: modifiers
and the other forms given below are not available in this case.

Used to select only some of the words from the value of name.
The selector is subjected to $ substitution and may consist of a
single number, or two numbers separated by a -. The first word
of a variable's string value is numbered 1. If the first number of
a range is omitted, it defaults to 1. If the last member of a range
is omitted, it defaults to $#name. The * symbol selects all
words. It is not an error for a range to be empty if the second
argument is omitted or is in range.

Gives the number of words in the variable. This is useful for
later use in a [selector].

Substitutes the name of the file from which command input is
being read. An error occurs if the name is not known.

Equivalent to $ a rgv [number]

Equivalent to $argv [*].
You can apply the modifiers :h, :r, :q, and :x to the substitutions above, as may :gh, :gt
and :gr. If {} (braces) appear in the command form, then the modifiers must appear within
the braces. The current implementation allows only one : modifier on each $ expansion.

The following substitutions may not be changed with: modifiers.

$?name
${?name}

$?O

$$

$<

Substitutes the string 1 if name is set; 0 if it is not set.

Substitutes 1 if the current input file name is known; 0 if it is
not known.

Substitutes the (decimal) process number of the (parent) shell.

Substitutes a line from the standard input, without further
interpretation. Use it to read from the keyboard in a shell
procedure.

186 Commands Reference

csh

Predefined and Environmental Variables
The following variables have special meaning to the shell. Of these, argv, cwd, home,
path, prompt, shell, and status are always set by the shell. Except for cwd and status,
this setting occurs only at initialization. These variables are not changed unless this is
done explicitly by you.

The csh command copies the environment variables USER, TERM, HOME, and PATH
into the csh variables user, term, home, and path, respectively. The values are copied
back into the environment whenever the normal shell variables reset. It is not necessary
to worry about the setting of the path variable other than in the .cshrc file, since csh
subprocesses import the definition of path from the environment and re-export it if it is
changed.

argv

cdpath

cwd

echo

histchars

history

home

ignoreeof

mail

Set to the arguments to the shell; it is from this variable that positional
parameters are substituted.

Can be given a list of alternate directories to be searched by the chdir
commands to find subdirectories.

The full path name of the current directory.

Set when the -x command line flag is used; when set, causes each
command and its arguments to echo just before it is run. For non built-in
commands, all expansions occur before echoing. Built-in commands are
echoed before command and file name substitution, since these
substitutions are then done selectively.

Can be given a string value to change the characters used in history
substitution. Use the first character of its value as the history
substitution character, this replaces the default character !. The second
character of its value replaces the " (circumflex) character in quick
substitutions.

Can be given a numeric value to control the size of the history list. Any
command that is referenced in this many events is not discarded. Very
large values of history may run the shell out of memory. Saves the last
command that ran on the history list, regardless of whether history is
set.

Your home directory, initialized from the environment. The file name
expansion of - refers to this variable.

If set, the shell ignores an end-of-file character from input devices that
are work stations. This prevents shells from accidentally being killed
when it reads an end-of-file character (Ctrl-D).

The files where the shell checks for mail. This is done after each
command completion, which results in a prompt if a specified interval has
elapsed. The shell displays the message, "You have new mai 1" if the
file exists with an access time not greater than its change time.

Commands 187

esh

noelobber

no glob

nonomateh

notify

path

prompt

savehist

shell

If the first word of the value of mail is numeric, it specifies a different
mail checking interval (in seconds); the default is 10 minutes.

If you specify multiple mail files, the shell displays the message, II New
rna; 1 ; n file II , when there is mail in file.

If set, places restrictions on output redirection to insure that files are not
accidentally destroyed, and that > > redirections see existing files. (See
"Redirecting Input and Output" on page 189)

If set, inhibits file name expansion. This is most useful in shell
procedures that are not dealing with file names, or after a list of file
names has been obtained and further expansions are not desirable.

If set, it is not an error for a file name expansion to not match any
existing files; rather, the primitive pattern returns. It is still an error for
the primitive pattern to be malformed.

If set, the shell notifies asynchronou~ly of changes in job status. The
default presents status changes just before displaying the shell prompt.

Each word of the path variable specifies a directory in which commands
are to be sought for execution. A null word specifies the current
directory. If there is no path variable set, then only full path names run.
The usual search path is the current directory, Ibin, and lusr/bin. For
the superuser, the default search path is lete, Ibin, and/usr/bin. A shell
which is given neither the -e nor the -t flags normally hashs the contents
of the directories in the path variable after reading .eshre and each time
the path variable is reset. If new commands are added to these
directories while the shell is active, it may be necessary to give the
rehash command (page 196), or the commands may not be found.

The string which is displayed before each command is read from an
interactive work station input. If a ! appears in the string, it is replaced
by the current even number, unless a preceding \ is given. The default
prompt is %, # for the superuser.

Given a numeric value to control the number of entries of the history list
that are saved in - I.history when you log out. Any command which is
referenced in this many events is saved. During startup, the shell reads
- I.history into the history list, enabling history to be saved across
logins. Very large values of savehist slow down the shell startup.

The file in which the shell resides. This is used in forking shells to
interpret files which have execute bits set, but which are not executable
by the system (see "Nonbuilt-in Command Execution" on page 199). This
is initialized to the (system-dependent) home of the shell.

188 Commands Reference

status

time

verbose

csh

The status returned by the last command. If it ended abnormally, then
0200 is added to the status. Built-in commands that fail return exit status
1; all other built-in commands set status o.
Controls automatic timing of commands. If set, then any command that
takes more than this many CPU seconds cause a line giving user, system,
and real times and a utilization percentage, that is the ratio of
user-plus-system-times to real time, displays when it ends.

Set by the -v command line flag, causes the words of each command to
display after history substitution.

Redirecting Input and Output
You can redirect the standard input and standard output of a command with the following
syntax:

< name

« word

> name
>! name
>& name
>&! name

Opens file name (which is first variable, command, and file name expanded)
as the standard input.

Reads the shell input up to a line which is the same as word. word is not
subjected to variable, file name, or command substitution, and each input
line is compared to word before any substitutions are done on this input line.
Unless a quoting character (\, II, I, or ') appears in word, the shell performs
variable and command substitution on the intervening lines, allowing \ to
quote $, \, and '. Commands which are substituted have all blanks, tabs, and
new-line characters preserved, except for the final new-line character, which
is dropped. The resultant text is placed in an anonymous temporary file,
which is given to the command as standard input.

Uses the file name as standard output. If the file does not exist, it is made.
If the file exists, it is truncated, its previous contents being lost.

If the noclobber shell variable is set, the file must not exist or be a
character special file, or an error results. This helps prevent accidental
destruction of files. In this case, use the ! forms to suppress this check.

The forms involving & route the diagnostic output into the specified file as
well as the standard output. name expands in the same way as < input file
names.

Commands 189

csh

» name
»& name
»! name
> >&! name Uses file name as standard output like >, but places output at the end of the

file. If the noclobber shell variable is set, it is an error for the file not to
exist, unless one of the ! forms is given. Otherwise, it is similar to >.

A command receives the environment in which the shell was invoked, as changed by the
input/output parameters and the presence of the command as a pipeline. Thus, unlike
some previous shells, commands that run from a file of shell commands do not have any
access to the text of the commands by default. Rather, they receive the original standard
input of the shell. Use the «mechanism to present in line data. This lets shell command
files function as components of pipelines and lets the shell block read its input. Note that
the default standard input for a command run detached is not changed to be the empty file
/dev/null. Rather, the standard input remains as the original standard input of the shell.

To redirect the diagnostics output through a pipe with the standard output, use the form 1&
rather than just 1 (vertical bar).

Control Flow
The shell contains some commands that can be used to regulate the flow of control in
command files (shell procedures) and (in limited but useful ways) from work station input.
These commands all operate by forcing the shell to reread or skip in its input and, because
of the implementation, restrict the placement of some of the commands.

The foreach, switch, and while statements, and the if-then-else form of the if statement,
require that the major keywords appear in a single simple command on an input line.

If the shell input is not searchable, the shell buffers input whenever a loop is being read
and searches the internal buffer to do the rereading implied by the loop. To the extent
that this allows, backward gotos succeed on inputs that you cannot search.

Built-in Commands
Built-in commands are run within the shell. If a built-in command occurs as any
component of a pipeline except the last, it runs in a subshell.

alias
alias name
alias name word list Displays all aliases (first form). The second form displays the

alias for name. The final form assigns the specified word list as
the alias of name. wordlist is command and file name substituted.
name is not allowed to be alias or unalias.

190 Commands Reference

,/

break

breaksw

case label:

cd
cd name
chdir
chdir name

continue

default:

dirs

echo string
echo -n string ...

else
end
endif
endsw

eval arg . ..

exec cmd

csh

Resumes running after the end of the nearest enclosing foreach
or while. Runs the remaining commands on the current line.
Multi-level breaks are therefore possible by writing them all on
one line.

Breaks from a switch; resumes after the endsw.

Defines a label in a switch statement, as discussed in the
following.

Changes the current directory to name. If no argument is given,
then changes to your home directory.

If name is not found as a subdirectory of the current directory and
does not begin with /, . /, or .. /, then each component of the
cdpath shell variable is checked to see if it has a subdirectory
name. Finally, if all else fails, but name is a shell variable with a
value that begins with /, then this is tried to see if it is a
directory.

Continues execution of the nearest enclosing while or foreach.
The rest of the commands on the current line run.

Labels the default case in a switch statement. The default should
come after all case labels.

Displays the directory stack, the top of the stack is at the left, the
first directory in the stack being the current directory.

Writes the listed strings to the shell's standard output, separated
by spaces and ending with a new-line character unless you specify
the -n flag.

See the description of the foreach, if, switch, and while
statements.

Reads arg as input to the shell and runs the resulting command(s)
in the context of the current shell. Use this to run commands
generated as the result of command or variable substitution, since
parsing occurs before these substitutions.

Runs the specified command in place of the current shell.

Commands 191

csh

exit
exit (expr)

foreach name (list)

end

glob list

goto word

history
history num
history -r num
history -h num

if (expr) cmd

192 Commands Reference

Exits the shell with either the value of the status shell variable
(first form) or with the value of the specified expression (second
form).

Successively sets name to each member of list and runs the
sequence of commands between the foreach and the matching
end. Both foreach and end must appear alone on separate lines.

Use the continue statement to continue the loop and the break
statement to end the loop prematurely. When this command is
read from the work station, the loop is read once, prompts with ?
before any statement in the loop runs. If a mistake is made in
entering a loop, it can be corrected before you run the loop.
Commands within loops, prompted for by ?, are not placed in the
history list.

Functions like echo, but does not recognize backslash (\) escapes,
and delimits words by null characters in the output. Useful for
programs that wish to use the shell to file name expand a list of
words.

Continues to run after the line specified by word The specified
word is file-name and command expanded to yield a string of the
form label. The shell rewinds its input as much as possible and
searches for a line of the form label:, possibly preceded by blanks
or tabs. '

Displays the history event list. If you specify a number, only the
n most recent events are displayed. The -r flag reverses the order
of display to the most recent first rather than the oldest first. The
-h flag causes the history list to be displayed without leading
numbers. Use this to produce files suitable for used with the -h
flag of the source command.

Runs the single command (with arguments) if the specified
expression evaluates true. Variable substitution on cmd happens
early, at the same time it does for the rest of the if statement.
cmd must be a simple command, not a pipeline, command list, or
parenthesized command list.

Note: Input and output redirection occurs even if expr is false
(and the command is not executed).

,/

if (expr) then

else if (expr2) then

else

endif

jobs
jobs -I

kill %job
kill -signal %job ...
kill pid
kill -signal pid ...
kill -I

limit
limit resource
limit resource max-use

csh

If expr is true, runs the commands that follow the first then; else
if expr2 is true, runs the commands that follow the second then;
else runs the commands that follow the second else. Any number
of else-if pairs are possible; only one endif is needed. The else
part is optional. The words else and endif must appear at the
beginning of input lines. The if must appear alone on its input
line or after an else.

Lists the active jobs. With the -I flag, lists process-IDs in addition
to the job number and process-ID.

Sends to the jobs or process that you specify either the TERM
(terminate) signal or signal. Specify signals either by number or
by names (as given in /usr/inc1ude/signal.h, stripped of the SIG
prefix). Signal names are listed by kill -1.

Limits the usage by the current process and each process it
creates to not individually exceed max-use on the specified
resource. If a max-use is not given, the current limit displays; if a
resource is not given, all limitations are given.

Controllable resources are limited to filesize, stacksize, and
datasize.

You can specify max-use as a (floating-point or integer) number
followed by a scale factor: k or kilobytes (1024 bytes), m or
megabytes, or b or blocks (the units used by the ulimit system
call).

For both resource names and scale factors, unambiguous prefixes
of the names suffice.

filesize may be lowered by an instance of csh, but may only be
raised by an instance whose effective user-ID is root. (See the
ulimit system call in AIX Operating System Technical Reference.)

Commands 193

csh

login

logout

nice
nice +num
nice cmd
nice + num cmd

nohup
nohup cmd

notify
notify %job ...

onintr
onintr -
onintr label

popd
popd +n

194 Commands Reference

Ends a login shell, and replaces it with an instance of /bin/login.
This is one way to log out (included for compatibility with the sh
command).

Ends a login shell. Especially useful if ignoreeof is set.

Sets the priority of commands run in this shell to 24 (first form).
The second form sets the priority to the specified number. The
final two forms run the specified command at priority 24 and the
specified number, respectively. If you are have superuser
authority you can specify nice with a negative number. The
command always runs in a subshell, and the restrictions placed on
commands in simple if statements apply.

Causes hangups to be ignored for the remainder of the procedure
(first form). The second form causes the specified command to be
run with hangups ignored. All processes run in the background
with & are effectively protected from being sent a hangup signal
when you log out, but will still be subject to explicitly sent
hangups unless nohup is used.

Causes the shell to notify you asynchronously when the status of
the current or specified jobs changes. Normally, notification is
presented just before the shell prompt. This is automatic if the
notify shell variable is set.

Controls the action of the shell on interrupts. The first form
restores the default action of the shell on interrupts, which is to
end shell procedures or to return to the workstation command
input level. The second form causes all interrupts to be ignored.
The third form causes the shell to run a goto label when it
receives an interrupt or a child process ends due to an
in terru ption.

In any case, if the shell is running detached and interrupts are
being ignored, all forms of onintr have no meaning, and
interrupts continue to be ignored by the shell and all invoked
commands.

Pops the directory stack, returns to the new top directory. With a
+ n, discards the nth entry in the stack. The elements of the
directory stack are numbered from the top starting at O.

pushd
pushd name
pushd +n

rehash

repeat count cmd

set
set name
set name = word
set name [index] = word

csh

With no arguments, exchanges the top two elements of the
directory stack. With name, changes to the new directory and
pushes the old current directory (as given in the cwd shell
variable) onto the directory stack. With a numeric argument,
rotates the nth argument of the directory stack around to be the
top element and changes to it. The members of the directory
stack are numbered from the top starting at O.

Causes the internal hash table of the contents of the directories in
the path shell variable to be recomputed. This is needed if new
commands are added to directories in path while you are logged
in. This should only be necessary if commands are added to one
of the user's own directories, or if someone changes the contents
of one of the system directories.

Runs the specified command, which is subject to the same
restrictions as the if statement, count times.

Note: I/O redirections occur exactly once, even if count is O.

set name = (list) Shows the value of all shell variables (first form). Variables that
have more than a single word as their value are displayed as a
parenthesized word list. The second form sets name to the null
string. The third form sets the indexth component of name to
word; this component must already exist. The final form sets
name to the list of words in list. In all cases, the value is
command- and file-name expanded.

setenv name value

These arguments may be repeated to set multiple values in a
single set command. However, variable expansion happens for all
arguments before any setting occurs.

Sets the value of environment variable name to be value, a single
string. The most commonly used environment variables, USER,
TERM, and PATH, are automatically imported to and exported
from the csh variables user, term, and path; there is no need to
use setenv for these.

If you modify the environment variables NLFILE or NLCTAB,
the current international character support environment and
collating sequence are changed as specified for subsequent
commands executed from the shell.

Commands 195

csh

shift
shift variable

source name
source -h name

switch (string)
case strl:

breaksw
default:

breaksw
endsw

time
time cmd

umask
umask value

196 Commands Reference

Shifts the members of argv to the left. It is an error for argv not
to be set or to have less than one word as its value. The second
form does the same function on the specified variable.

Reads commands from name. You can nest the source commands.
However, if they are nested too deeply, the shell may run out of
file descriptors. An error in a source command at any level ends
all nested source commands. Normally, input during source
commands is not placed on the history list. The -h flag causes the
commands to be placed in the history list without running.

Successively matches each case label against string. The string is
command and file-name expanded first. Use the pattern-matching
characters *, ?, and [...] in the case labels, which are variable
expanded. If none of the labels match before a default label is
found, then the execution begins after the default label. Each
case label and the default label must appear at the beginning of
a line. The breaksw command causes execution to continue after
the endsw. Otherwise, control may fall through case labels and
the default labels, as in C. If no label matches and there is no
default, execution continues after the endsw.

With no argument, displays a summary of time used by this shell
and its children. If arguments are given, the specified command is
timed, and a time summary as described under the time shell
variable is displayed. If necessary, an extra shell is created to
display the time statistic when the command completes.

Displays the file creation mask (first form) or sets it to the
specified value (second form). The mask is given as an octal
value. Common values for the mask are 002, giving all access to
owner and group and read and execute access to others, or 022,
giving all access to the owner and all access except write access
for users in the group or others.

/

unalias pattern

unhash

unlimit
unlimit resource

unset pattern

unsetenv pattern

wait

while (expr)

end

@
@ name = expr
@ name [index]

csh

Discards all aliases with names that match pattern. Thus, all
aliases are removed by unalias *. It is not an error for nothing to
be unaliased.

Disables the use of the internal hash table to locate running
programs.

Removes the limitation on resource. If you do not specify resource,
then all resource limitations are removed. The only removable
limitation is that on fllesize, and only the superuser can remove
it.

Removes all variables with names that match the pattern. Use
unset * to remove all variables. It is not an error for nothing to
be unset.

Removes all variables from the environment whose names match
the specified pattern. (See the setenv built-in command on page
195.)

Waits for all background jobs. If the shell is interactive, an
INTERRUPT (Alt-Pause) can disrupt the wait, when the shell
displays the names and job numbers of all jobs known to be
outstanding.

Evaluates the commands between the while and the matching
end while expr evaluates nonzero. You can use break to end and
continue to continue the loop prematurely. The while and end
must appear alone on their input lines. If the input is a work
station, prompts occur the first time through the loop, as for the
foreach statement.

expr Displays the values of all the shell variables (first form). The
second form sets the specified name to the value of expr. If the
expression contains <,), &, or I, then at least this part of the
expression must be placed within parentheses. The third form
assigns the value of expr to the indexth argument of name. Both
name and its indexth component must already exist.

C operators, such as *= and += are available. The space
separating name from the assignment operator is optional. Spaces
are, however, required in separating components of expr, which
would otherwise be single words. Special postfix + + and -­
operators increase and decrease name.

Commands 197

esh

Expressions
The @ built-in command and the exit, if, and while statements accept expressions which
include operators similar to those of C, with the same precedence. The following operators
are available:

* / %
+
« »
<=)=)

-- != -- ! -

In the preceding list, operators of equal precedence appear on the same line, below those
lines containing operators (if any) that have greater precedence and above those lines
containing operators having lesser precedence. The ==, ! =, =-, and! - operators compare
their arguments as strings; all others operate on numbers. The = - and ! - operators are
similar to ! = and ==, except that the right-most side is a pattern against which the
left-hand operand is matched. This reduces the need for use of the switch statement in
shell procedures when all that is really needed is pattern matching.

Strings which begin with 0 are considered octal numbers. Null or missing arguments are
considered O. The result of all expressions are strings, which represent decimal numbers.
It is important to note that now two components of an expression can appear in the same
word; except when next to components of expressions which are syntactically significant to
the parser (& I <) (), expression components should be surrounded by spaces.

Also available in expressions as primitive operands are command executions enclosed in {
and} and file inquiries of the form -l name where l is one of:

r Read access
w Write access
x Execute access
e Existence
o Ownership
z Zero size
f Plain file
d Directory

The specified name is command and file name expanded and then tested to see if it has the
specified relationship to the real user. If the file does not exist or is inaccessible, then all
inquiries return false, that is, O. Command runs succeed, returning true (1), if the
command exits with status 0, otherwise they fail, returning false (0). If more detailed
status information is required, run the command outside an expression and the examine
status shell variable.

198 Commands Reference

csh

Nonbuilt-in Command Execution
When a command to run is found not to be a built-in command, the shell attempts to run
the command with execve. (See the exec system call in AIX Operating System Technical
Reference.) Each word in the path shell variable names a directory from which the shell
attempts to run the command. If it is given neither a -c nor a -t flag, the shell will hash
the names in these directories into an internal table so it only tries an exec in a directory
if there is a possibility that the command resides there. If this mechanism has been turned
off with unhash, or if the shell is given a -c or -t (and in any case for each directory
component of path that does not begin with a I), the shell concatenates with the given
command name to form a path name of a file, which it then attempts to run.

Parenthesized commands always run in a subshell. Thus, (cd ; pwd) ; pwd displays
the home directory without changing the current directory location, whereas cd ; pwd
changes the current directory location to the home directory. Parenthesized commands
are most often used to prevent chdir from affecting the current shell.

If the file has execute permissions, but is not an executable binary to the system, then it is
assumed to be a file containing shell commands and a new shell runs to read it.

If there is an alias for shell, then the words of the alias will be prefixed to the argument
list to form the shell command. The first word of the alias should be the full path name of
the shell. Note that this is a special, late-occurring case of alias substitution and only
allows words to be prefixed to the argument list without modification.

Signal Handling

The shell normally ignores QUIT signals. Jobs running detached are immune to signals
generated from the keyboard (INTERRUPT, QUIT, and HANGUP). Other signals have the
values the shell inherited from its parent. You can control the shell's handling of
INTERRUPT and TERMINATE signals in shell procedures with onintr. Login shells catch
the TERMINATE signal; otherwise, this signal is passed on to children from the state in
the shell's parent. In no case are INTERRUPTs allowed when a login shell is reading the
.logout file.

Limitations
The following are csh limitations:

• Words can be no longer than 1024 characters.

• Argument lists are limited to 5120 characters.

• The number of arguments to a command that involves file name expansion is limited to
1/6th the number of characters allowed in an argument list.

• Command substitutions can substitute no more characters than are allowed in an
argument list.

Commands 199

csh

Flags

Files

• To detect looping, the shell restricts the number of alias substitutions on a single line
to 20.

If the first argument to the shell is - (minus), this is a login shell. The flags are interpreted
as follows:

-c Reads commands from the (single) following argument, which must be present.
Any remaining arguments are placed in argv.

-e Exits if any invoked command ends abnormally or yields a nonzero exit status.

-f Starts without searching for or running commands from the .cshrc file in the your
home directory.

-i Prompts for its top-level input (an interactive shell), even if input does not appear
to be coming from a work station. Shells are interactive without this flag if their
input and output are attached to work stations.

-n Parses commands but does not run them. This aids in syntactic checking of shell
procedures.

-s Takes command input from the standard input.

-t Reads and processes a single line of input. You can use a \ to escape the new-line
character at the end of the current line to continue onto another line.

-v Sets the verbose shell variable, with the effect that command input is echoed after
history substitution.

-V Sets the verbose shell variable even before .cshrc runs.

-x Sets the echo shell variable, so that commands are echoed immediately before they
run.

-x Sets the echo shell variable even before .cshrc runs.

After processing of flag arguments, if arguments remain but none of the -c, -i, -s, or -t
flags were given, the first parameter is taken as the name of a file of commands. The shell
opens this file and saves its name for possible resubstitution by $0. The shell runs a
standard shell, if the first character of a procedure is not a #, that is, if the procedure does
not start with a comment. Remaining parameters initialize the argv variable.

$HOME/.cshrc
$HOME/.login
$HOME/.logout
/bin/sh
/tmp/sh*

Read at beginning of execution by each shell.
Read by login shell, after .cshrc at login.
Read by login shell, at logout.
Standard shell.
Temporary file for < <.

200 Commands Reference

/

csh

/etc/passwd Source of home directories for - name.

Related Information

The following commands: "cd" on page 121, "make" on page 474, "pr" on page 561, and
"sh" on page 637.

The access, exec, fork, pipe, umask, and wait system calls, the a.out and environ files,
and the environment miscellaneous facility in AIX Operating System Technical Reference.

"Overview of International Character Support" in Managing the AIX Operating System.

Commands 201

csplit

csplit

Purpose

Splits files by context.

Syntax

csplit file -.- parm T

OL805177

Description

The csplit command reads a file and separates it into segments defined by the specified
parameters (parm ...). By default, csplit writes these segments to files xxOO + ... xxn,
where n is the number of parms listed on the command line (n may not be greater than 99).
These new files get the following pieces of file:

00:

01:

n+l:

From the start of file up to, but not including, the line referenced by the first
parm.
From the line referenced by the first parm up to the line referenced by the
second parm.

From the line referenced by the last parm to the end of file.

Note that csplit does not alter the original file.

The specified parms can be a combination of the following:

/pattern/ Creates a file that contains the segment from the current line up to (but not
including) the line containing pattern, which becomes the current line.

%pattern % Makes the line containing pattern the current line, but does not create a file
for the segment.

+num
-num Moves forward or backward the specified number of lines from the line

matched by an immediately preceding pattern parameter (for example,
/Page/ -5).

202 Commands Reference

Flags

csplit

linenum Creates a file containing the segment from the current line up to (but not
including) linenum, which becomes the current line.

{number} Repeats the preceding argument the specified number of times. This number
can follow any of the pattern or linenum parameters. If it follows a pattern
parameter, csplit reuses that pattern the specified number of times. If it
follows a linenum parameter, csplit splits the file from that point every
linenum of lines for the specified number of times.

Quote all pattern parameters that contain blanks or other characters special to the shell.
Patterns may not contain embedded new-line characters. In an expression such as [a-z],
the minus means "through" according to the current collating sequence. A collating
sequence may define equivalence classes for use in character ranges. See the "Overview
of International Character Support" in Managing the A/X Operating System for more
iriformation on collating sequences and equivalence classes.

-f prefix

-k

-s

Specifies the prefix name for the created file segments. xx is the default prefix.

Leaves created file segments intact in the event of an error.

Suppresses the display of character counts.

Examples

1. To split the text of a book into a separate file for each chapter:

csplit book 11/" *Chapter *[0-9J* *$/{IO}II

This creates files named xxOO, xxOl, xx02, ... ,xxlO, which contain individual chapters
of the file boo k. Each chapter begins with a line that contains only the word
Chapter and the chapter number. The file xxOO contains the front matter that comes
before the first chapter. The {IO} after the pattern allows up to 10 chapters.

2. To specify the prefix for the created file names:

csplit -f chap book 11/" *Chapter *[0-9J* *$/{IO}II

This splits book into files named chapOO, chapOl, chap02, ... ,chaplO.

Related Information

The following commands: "ed" on page 280, "sh" on page 637, and "regcmp" on
page 595.

The regxp file in A/X Operating System Technical Reference.

"Overview of International Character Support" in Managing the A/X Operating System.

Commands 203

ctab

ctab

Purpose

Produces a collating table.

Syntax

--(

-i ctab.iX-O ctab.ouyt
ctab

-j infi/e -ooutfi/e
OL805451

Description

The ctab command takes an input file (by default a file named ctab.in found in the
current directory) and produces a binary file (by default named ctab.out) containing a
collating table. These output files are stored in a conventional directory. Programs that
need the current collating and case information use the NLCTAB environment variable to
access that information.

The following conventions are used to make it easier to set up a table file:

• One line of information is present for each character explicitly named.

• A line beginning with the word option serves to change one or more of the default
conditions or metacharacters built into ctab. An option line contains a set of
name/value pairs, with each half of each pair delimited by tab or space characters. The
following is a list of recognized names:

eclass Turns the use of equivalence classes on or off globally. The assigned
value must be on (the default) or off.

sep

trans

repeat

Uses the assigned value as the field separator character. The default
value is : (colon).

Uses the assigned value of the "translate" indicator in subject character
fields. The default character is I (vertical bar).

Uses the assigned value as the "same as last line" indicator in subject
character field. The default value is A (circumflex).

comment Uses the assigned value as the comment character. The default value is
the # character.

• The order of the per-character input lines specifies the collating sequence.

204 Commands Reference

ctab

• By default, fields on a line are separated by colons. Tabs or spaces may surround fields
or separators. You can change the separator character with an option line.

• Use an octal escape sequence in the ASCII range to name a nonprintable character. A
backslash character that does not form part of a valid escape sequence serves to strip
the following character, including a second backslash, of any special meaning it
otherwise would have. For example, to include the colon character in the collating
sequence, use the following line:

\
The input file format includes a comment convention, namely that the remainder of the
line following a # character is ignored. The comment character can be changed with
an option line.

Input File Specification

Use the following rules to build infile, entering field information for each line.:

1. The first field on a line contains the subject character, a character to be inserted into
the collating sequence at that point.

• This subject character definition can include a translation mechanism:

Instead of a single character, this field may contain two or more characters
that are to be collated as a single unit, or

The single subject character may be followed by a vertical bar (I) and a single­
or multiple-character string. The vertical bar indicates that the first character
will be translated to the second string before being collated.

For example, to treat an "e" (e acute) as equivalent to the character "e," use
the following line:

aloe

One restriction is placed on the translation mechanism: the subject character
cannot be contained in the translated string of characters. For example, the
following line is illegal:

aloe

• Any form of the first field may contain a trailing circumflex (/\) to indicated that
the current character is to collate to the same value as the preceding one.
However, a circumflex following a translation string is illegal because the subject
character to be translated has no inherent collating value.

• If the subject field contains a string of multiple characters (to collate as a unit), its
first character must be declared elsewhere to establish the default collating
sequence of that character.

Commands 205

ctab

• The translate and collating no-change characters can be changed with option
lines.

2. The second and third fields specify whether or not a character is alphabetic and what
its lower- and uppercase equivalents are:

• If a subject character is to be treated as a lowercase alphabetic, the second field on
its line is its uppercase equivalent, and the third field must be I or L.

• If a subject character is to be treated as a uppercase alphabetic, the second field on
its line is its lowercase equivalent, and the third field must be u or U.

• If a subject character is to be treated as a control character or a space character,
the third field must be c, C, s, or S.

• Each character explicitly named whose line contains a nonnull second field will be
considered alphabetic (that is, matched by NCisalpha). Characters that do not
have an uppercase or lowercase equivalent (that is, that have a null second field)
but that you wish to be considered alphabetic should simply contain a third field
that is I, L, u, or u.

3. The fourth field on a line is used explicitly to specify the first character in the
equivalence class of the subject character. The members of one equivalence class
must be consecutively listed in the input file.

• There cannot be any gaps within a particular equivalence class. For example, the
following lines will put the characters a, h, and c in the same equivalence class:

a:A:l :a
b: B: 1 : a
c: c: 1 : a

• As a convenience, if the fourth field is not specified, then the group of consecutive
characters with blank fourth fields, provided that they are all based on the same
Roman alphabetic character, will be placed in the same equivalence class. To
reiterate, only characters with the same base will be placed into the same
equivalence class by default. If you wish to have many characters from different
bases belong to one equivalence class, as in the example above, the first character
of the equivalence class has to be specified in the fourth field for every character
specified.

• It is illegal to specify an equivalence character that comes later in the collating
sequence. The fourth field can refer only to characters that have already been
mentioned.

• All international character support characters not based on Roman alphabetic
characters by default are the sole members of their equivalence class.

Characters not named in the table file that have an ordinal value (that is, a value as an
NLchar) below the ordinal value of the lowest-valued character named are put into the
collating sequence below the first character in the table file. All other characters not

206 Commands Reference

Flags

Files

ctab

named in the table file are put into the collating sequence above the last character in the
table file.

The standard characters for decimal and hexadecimal digits are always marked as digits (to
be matched by NCisdigit and NCisxdigit). All other printable characters not marked as
alphabetic are marked as punctuation.

-i infile Specifies the name of the input file (ctab.in by default).

-0 outfile Specifies the name of the output file (ctab.out by default).

/usr /lib/nls/ascii.in
/usr/lib/nls/iso.in

Input file listing the ASCII range of characters.
Input file listing the ISO Collating Sequence

Related Information

The NCisalpha, NCisdigit, NCisxdigit, nls, and NLgetenv subroutines in AIX Operating
System Technical Reference.

The "Overview of International Character Support" in IBM RT PC Managing the AIX
Operating System.

Commands 207

ctags

ctags

Purpose

Makes a tags file.

Syntax

ctogs file

OL805457

Description

The ctags command makes a tags file for ex and vi editors from the specified C, Pascal,
and FORTRAN source files. A tags file gives the locations of specified objects (in this case
functions) in a group of files. Each line of the tags file contains the object name, the file
in which it is defined, and an address specification for the object definition. Functions are
searched with a pattern. Specifiers are given in separate fields on the line, separated by
blanks or tabs. Using the tags file, ex and vi can quickly find these object definitions.

If a file name ends in .c or .h, it is assumed to be a C source file and is searched for C
routine and macro definitions. Others are first examined to see if they contain any Pascal
or FORTRAN routine definitions; if not, they are processed again for C definitions.

The tag main is treated specially in C programs. The tag formed is created by prefixing M
to the file name, removing a trailing .c (if any), and removing the leading path name
components. This makes use of ctags practical in directories with more than one program.

Note: Recognitions of the keywords function, subroutine, and procedure in
FORTRAN and Pascal code is performed in a very simple-minded way. No attempt is
made to deal with block structure; if you have two Pascal procedures with the same
name but in different blocks, ctags may yield inadequate results.

The ctags command does not know about #ifdef.

208 Commands Reference

/'

Flags

Files

ctags

-a Appends to tags file.

-w Suppresses warning diagnostics.

-x Causes ctags to display a list of object names, the line number and file name on which
each is defined, as well as the text of that line. This provides a simple index index. If
you specify this flag, ctags does not build a tags file.

-u Updates the specified files in tags; that is, all references to them are deleted, and the
new values are appended to the file. This flag may be slow. (It is usually faster to
simply rebuild the tags file.)

tags Output tags file

Related Information

The following commands: "ex" on page 312 and "vi, vedit, view" on page 832.

Commands 209

cut

cut

Purpose

Writes out selected fields from each line of a file.

Syntax

-c-Clist

cut -flist~ r file F
-dchar'
-s

, The default char is a tab.
OL805178

Description

Flags

The cut command cuts out columns from a table or fields from each line of a file and
writes these columns or fields to standard output. If you do not specify a file, cut reads
standard input.

You must specify either the -c or -f flag. The list parameter is a comma-separated and/or
minus-separated list of integer field numbers (in increasing order). The minus separator
indicates ranges. Some sample lists are 1,4, 7; 1-3,8; - 5, 10 (short for 1-5, 10); and 3·
(short for third through last field). The fields specified by list can be a fixed number of
character positions, or the length can vary from line to line and be marked with a field
delimiter character, such as a tab character.

You can also use the grep command to make horizontal cuts through a file and the paste
command to put the files back together. To change the order of columns in a file use cut
and paste.

-clist Specifies character positions. For example, if you specify -cl-72, cut writes out
the first 72 characters in each line of the file. Note that there is no space
between -c and list.

210 Commands Reference

/

cut

-dchar Uses the specified character as the field delimiter when you specify the -f flag.
You must quote characters with special meaning to the shell, such as the space
character.

-flist Specifies a list of fields assumed to be separated in the file by a delimiter
character, by default the tab character. For example, if you specify -fl, 7, cut
writes out only the first and seventh fields of each line. If a line contains no field
delimiters, cut passes them through intact (useful for table subheadings), unless
you specify the -s flag.

-s Suppresses lines that do not contain delimiter characters (use only with the -f
flag).

Example

To display several fields of each line of a file:

cut -fl,5 -d: /etc/passwd

This displays the login name and full user name fields of the system password file. These
are the first and fifth fields (- fl ,5) separated by colons (- d :).

So, if the /etc/passwd file looks like this:

su:UHuj9PgdvzOJ":O:O:User with special privileges:/:/bin/sh
daemon:*:l:l::/etc:
bin:*:2:2: :/bin:
sys:*:3:3::/usr/src:
adm:*:4:4:System Administrator:/usr/adm:/bin/sh
pierre:boodwqT3irHFE:200:200:Pierre Harper:/u/pierre:/bin/sh
joan:wijBNaYpCluL.:202:200:Joan Brown:/u/joan:/bin/sh

then cut produces:

su:User with special privileges
daemon:
bin:
sys:
adm:System Administrator
pierre:Pierre Harper
joan:Joan Brown

Related Information

The following commands: "grep" on page 381 and "paste" on page 547.

Commands 211

cvid

cvid

Purpose

Creates a VRM install diskette for backup purposes.

Syntax

-{

-f vrmm)-{t -v IBMVRMX/vrm/vproto
cvid - device ---I

-(fs-ID -v vol-ID prototypefile)
OL805104

Description

Flags

The cvid command backs up the VRM minidisk onto a diskette. Since you can reinstall
the VRM system from this backup diskette, use cvid as a precautionary measure before
modifying the VRM. You must be a member of the system group or operating with
superuser authority to run this command.

The device parameter specifies the device (special file) to which cvid copies the VRM. This
can be a block device name, a raw device name, or a directory name. If device is a
directory name, cvid reads the /etc/filesystems file for the corresponding device. cvid
uses the prototypeiile parameter to determine the size of the new file system. prototypeiile
defaults to /vrm/vproto. For more information on prototype files, see "mkfs" on page 487
and "proto" on page 573.

-f is-ID Makes is-ID the label for the new file system. The default label is vrmmnt.

-v vol-ID Makes vol-ID the volume label for the new file system. The default label is
IBMVRM.

Related Information

The following commands: "mkfs" on page 487 and "mount" on page 498.

212 Commands Reference

cw

cw, checkcw

Purpose

Prepares constant-width text for troff.

Syntax

CW~-f3~ ~
~: J~fO~ -Idelim - -rdelim file

checkcw -(h file r
-Idelim - -rdelim L-J

OL805427

Description

The cw command preprocesses troff files containing text to be typeset in the
constant-width (CW) font. cw reads standard input if you do not specify a file or if you
specify a -. (minus) as one of the input file names. It writes its output to standard output.

Since the text that is typeset by cw resembles the output of line printers and work
stations, it can be used to typeset examples of programs and computer output in user
manuals and programming texts. It has been designed to be distinctive when used with the
Times Roman font.

Because the CW font contains a "nonstandard" set of characters and because text typeset
with it requires different character and interword spacing than is used for "standard
fonts," you must use cw to preprocess documents that use the CW font. The CW font
contains the 94 printing ASCII characters:

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789
! $%& () \ I *+@. ,/: ; =? [J 1 __ ,,- II <>{}#\

plus eight non-ASCII characters represented by four-character troff strings (in some cases
attaching these strings to "nonstandard" graphics):

Commands 213

cw

Character Symbol Trott Name
IICentsll sign rt \(ct
EBCDIC IInot" siqn ~ _\(no
Left arrow +- \«-
Riqht arrow -+ \(->
Down arrow ~ \(do
Vertical sinqle quote I \(fm
Control-sh ift si gn n \(d_9
Visible space sign n \(sq
Hyphen - \(hy_
Up arrow i \(ua
Home arrow , \(lh

OL805409

The cw command recognizes five request lines, as well as user-defined delimiters. The
request lines look like troff macro requests. cw copies them in their entirety onto the
output. Thus, you can define them as troff macros; in fact, the .CW and .CN macros
should be so defined. The five requests are:

.CW Marks the start of text to be set in the CW font. This request causes a
break. It can take the same flags (in the same format) as those
available on the cw command line .

. CN Marks the end of text to be set in the CW font. This request causes a
break. It can take the same flags (in the same format) as those
available on the cw command line .

. CD Changes the delimiters and/or settings of other flags. It can take the
same flags (in the same format) as those available on the cw command
line. The purpose of this request is to allow the changing of flags
other than at the beginning of a document .

. CP argument-list Concatenates all the arguments (delimited like troff macro
arguments), with the odd-numbered arguments set in the CW font and
the even-numbered ones in the prevailing font .

. PC argument-list Acts the same as .CP, except the even-numbered (rather than
odd-numbered) arguments are set in CW font.

The .CW and .CN requests should bracket text that is to be typeset in the CW font "as is."
Normally, cw operates in the transparent mode. In that mode, every character between
.CW and .CN request lines represents itself, except for the .CD request and the special /
four-character names listed previously. In particular, cw arranges for all periods (.) and
apostrophes (') at the beginning of lines, and all backslashes (\) and ligatures (fi, ff, and so
on) to be hidden from troff. The transparent mode can be turned off by using the -t flag,
in which case normal troff rules apply. In either case, cw hides from the user the effect of
the font changes generated by the .CW and .CN requests.

214 Commands Reference

cw

You can also use the -I and -r flags to define delimiters with the same function as the .CW
and .CN requests. They are meant to enclose words or phrases that are to be set in CW font
in the running text. cw treats text between delimiters as it does text bracketed by
.CW/.CN pairs, with one exception. Spaces within .CW/.CN pairs have the same width as
other CW characters, while spaces within delimited text are half as wide, so they have the
same width as spaces in the prevailing text. Delimiters have no special meaning inside
.CW / .CN pairs.

The checkcw command checks that left and right delimiters, and the .CW / .CN pairs are
properly balanced. It prints out all lines in the section with the unmatched delimiters.

Note: It is unwise to use. (period) or \ (backslash) as delimiter characters.

Certain CW characters do not combine well with certain Times Roman characters, for
example, the spacing between a CW & (ampersand) followed by a Times Roman comma
(,). In such cases, using troff half-and quarter-space requests can help.

The troff code produced by cw is difficult to rea~l.

The mm and mv macro packages contain definitions of .CW and .CN macros that
are adequate for most use. If you define your own, make sure that the .CW macro
invokes the troff no-fill (.n£) mode, and the .CN macro restores the fill mode (.fi), if
appropriate.

When set in running text, the CW font is meant to be set in the same point size as the
rest of the text. In displayed matter, on the other hand, it can often be profitably set
one point smaller than the prevailing point size. The CW font is sized so that, when
it is set in 9-point, there are 12 characters per inch.

Documents that contain CW text may also contain tables and equations. If this is the
case, the order of preprocessing must be cw, tbl, and eqn. Usually, the tables will
not contain any CW text, although it is possible to have elements in the table set in
the CW font. Care must be taken that cw does not modify the tbl format information.
Attempts to set equations in the CW font are not likely to be pleasing or successful.

In the CW font, overstriking is most easily accomplished with backspaces. Because
spaces (and therefore backspaces) are half as wide between delimiters as inside
.CW/.CN pairs, two backspaces are required for each overstrike between delimiters.

Commands 215

cw

Flags

Files

-d

-ffont

-ldelim

-rdelim

-t

+t

Displays the current flag settings on the standard error output in the form of
troff comment lines. This flag is meant for debugging.

Replaces font with the cw font (default = 3, replacing the bold font). -£5 is
commonly used for formatters that allow more than four simultaneous fonts.

This flag is useful only on the command line.

Sets the left delimiter as the one-or two-character string delim The left
delimiter is undefined by default.

Set the right delimiter as delim The right delimiter is undefined by default.
The left and right delimiters may (but need not) be different.

Turns the transparent mode off.

Turns the transparent mode on (this is the default).

/usr/lib/font/ftCW CW font-width table.

Related Information

The following commands: "eqn, neqn, checkeq" on page 300, "mmt, checkmm" on
page 495, "thl" on page 739, and "troff' on page 526.

The mm and mv miscellaneous facilities in AIX Operating System Technical Reference.

216 Commands Reference

/

cxref

cxref

Purpose

Creates a C program cross-reference listing.

Syntax

cxref~
~~ file

1 •
Do not put a space between these Items.

OL805180

Description

Flags

The cxref command analyzes C program files and creates a cross-reference table, using a
version of the cpp command to include #define directives in its symbol table. It writes to
standard output a listing of all symbols in each file processed, either separately or in
combination (see the -c flag on page 217). When a reference to a symbol is that symbol's
declaration, an * (asterisk) precedes it.

You can also use the -D, -I, and -U flags from the cpp command.

-c displays a combined listing of the cross-references in all input files.

-0 file Directs the output to the specified file.

-s Does not display the input file names.

-t Makes the listing 80 columns wide.

-w[num] Makes the listing num columns wide, where num is a decimal integer greater
than or equal to 51. If you do not specify num or if num is less than 51, the
listing will be 80 columns wide.

Commands 217

cxref

Files

/usr/lib/xcpp Special version of C-preprocessor.

Related Information

The following commands: "cc" on page 112 and "cpp" on page 163.

The discussion of cxref in AIX Operating System Programming Tools and Interfaces.

/

218 Commands Reference

date

date

Purpose

Displays or sets the date.

Syntax

Operating With Superuser Authority

del. -«6)-)- mm ~ r.-\ ,
1 hh ~.'Ss~ yyJ

1 dd
MM

OL805105

Operating Without Superuser Authority

date ~,
~ + II string lOr

1 Do not put a blank between these items.

OL805357

Description

Warning: Do not change the date while the system is running with more
than one user.
If called with no flags or with a flag list that begins with a + (plus sign), the date
command writes the current date and time to standard output. Otherwise, it sets the
current date. Only a user operating with superuser authority can change the date and
time. The NLDATE variable, if it is defined, controls the ordering of the day and month
numbers in the date specifications. The default order is MMddhhmm.ssyy where:

• MM is the month number.
• dd is the number of the day in the month.
• hh is the hour in the day (using a 24-hour clock).
• mm is the minute number.
• .ss is the number of seconds.
• yy is the last two numbers of the year.

The alternative ordering is ddMMhhmm.ssyy.

Commands 219

date

The current month, day, hour, and year are default values. The system operates in
Greenwich Mean Time (GMT). date takes care of the conversion to and from local
standard and daylight time as specified in the NLTZ environmental variable.

If you follow date with a + and a field descriptor, you can control the output of the
command. You must precede each field descriptor with a percent sign (%). The system
replaces the field descriptor with the specified value. Enter a literal % as %%. date copies
any other characters to the output without change. date always ends the string with a
new-line character. Output fields are fixed size (zero padded if necessary).

Field Descriptors

a

d

D

h

H

j

m

M

n

r

S

t

T

w

y

Examples

Displays the abbreviated day of the week (Sun to Sat or the non-English
equivalent).

Displays the day of month (01 to 31).

Displays the date as mm/dd/yy (the default), or as dd/mm/yy. This format is
specified by the NLDATE environment variable, if defined.

Displays the abbreviated month (Jan to Dec or the non-English equivalent).

Displays the hour (00 to 23).

Displays the day of year (001 to 366).

Displays the month of year (01 to 12).

Displays the minute (00 to 59)

Inserts a new-line character.

Displays the time in AM/PM notation (or the non-English equivalent).

Displays the second (00 to 59).

Inserts a tab character.

Displays the time as hh:mm:ss (the default), or as mm:hh:ss. This format is specified
by the NLTIME environment variable, if defined.

Displays the day of the week numerically (Sunday = 0).

Displays the last two numbers of year (00 to 99).

1. To display current date and time:

date

220 Commands Reference

/

Files

2. To set the date and time:

date 02171425.45

date

This sets the date and time to 14:25:45 (45 seconds after 2:25 p.m.) February 17 of the
current year.

3. To display the date and time in a specified format:

date +"%r %a %d %h %y (Julian Date: %j)"
This displays the date (assume current year is 1984) shown in Example 2 as:

02:25:03 PM Fri 17 Feb 84 (Julian Date: 048)

/dev/kmem

Related Information

See the time and stime system calls and the environment miscellaneous facility in AIX
Operating System Technical Reference.

"Overview of International Character Support" in Managing the AIX Operating System.

Commands 221

dc

de

Purpose

Provides an interactive desk calculator for doing arbitrary-precision integer arithmetic.

Syntax

de·· I\. I

~ file r
OLB05106

Description

The de command is an arbitrary precision arithmetic calculator. de takes its input from
file or standard input until it reads an end-of-file character. It writes to standard output.
It operates on decimal integers, but you may specify an input base, output base, and a
number of fractional digits to be maintained. de is structured overall as a stacking,
reverse Polish, calculator.

The be command (see page 95) is a preprocessor for de. It provides infix notation and a
syntax similar to the C language which implements functions and reasonable control
structures for programs.

Subcommands

number

+-/*%/\

sx

Sx

Ix

Pushes the specified value onto the stack. A number is an unbroken
string of the digits 0-9. To specify a negative number, precede it with _
(underscore). A number may contain a decimal point.

Adds (+), subtracts (-), multiplies (*), divides (/), remainders (%), or
exponentiates (/\) the top two values on the stack. de pops the top two
entries off the stack and pushes the result on the stack in their place. de
ignores fractional parts of an exponent.

Pops the top of the stack and stores it in a register named x, where x may
be any character.

Treats x as a stack. It pops the top of the main stack and pushes that
value onto stack x.

Pushes the value in register x on the stack. The register x is not changed.
All registers start with zero value.

222 Commands Reference

Lx

d

p

P

f

q

Q

x

X

[string]

<x
>x
=x

v

e

I

o

o
k

z

Treats x as a stack and pops its top value onto the main stack.

Duplicates the top value on the stack.

de

Displays the top value on the stack. The top value remains unchanged.
The p interprets the top of the stack as an ASCII string, removes it, and
displays it.

Interprets the top of the stack as a string, removes it, and displays it.

Displays all values on the stack.

Exits the program. If de is executing a string, it pops the recursion level
by two.

Pops the top value on the stack and the string execution level by that
value.

Treats the top element of the stack as a character string and executes it as
a string of de commands.

Replaces the number on the top of the stack with its scale factor.

Puts the bracketed string onto the top of the stack.

Pops the top two elements of the stack and compares them. Evaluates
register x as if it obeys the stated relation.

Replaces the top element on the stack by its square root. Any existing
fractional part of the argument is taken into account, but otherwise the
scale factor is ignored.

Interprets the rest of the line as a AIX command.

Cleans the stack: de pops all values on the stack.

Pops the top value on the stack and uses that value as the number radix
for further input.

Pushes the input base on the top of the stack.

Pops the top value on the stack and uses that value as the number radix
for further output.

Pushes the output base on the top of the stack.

Pops the top of the stack, and uses that value as a nonnegative scale
factor. The appropriate number of places displays on output and is
maintained during multiplication, division, and exponentiation. The
interaction of scale factor, input base, and output base is reasonable if all
are changed together.

Pushes the number of elements in the stack onto the stack.

Commands 223

de

z

?

,.

Replaces the top number in the stack with the number of digits in that
number.

Gets and runs a line of input.

be uses these characters for array operations.

Examples

1. To use de as a calculator:

2.

You: 14/ P
System: 0

You: 1 k [Keep 1 decimal place] s.
14/ P

System: 0.2
You: 3 k [Keep 3 decimal places Js.

14/ P
System: 0.250

You: 16 63 5 / + p
System: 28.600

You: 16 63 5 + / p
System: 0.235

You may type the comments (enclosed in [] s.), but they are provided only for your
information.

When you enter de expressions directly from the keyboard, press Ctrl-D to end the be
session and return to the shell command line.

To load and run a de program file:

You: dc prog.dc
5 1 f X P [5 factorial] s.

System: 120
You: 10 1 f X P [10 factorial] s.

System: 3628800

This interprets the de program saved in prog. dc, then reads from the work station
keyboard. The If x evaluates the function stored in register f, which could be defined
in the program file prog. Cas:

[f: compute the factorial of n Js.
[(n = the top of the stack) Js.

[If l)n do b; If l<n do r Js.
[d 1)b d 1 <rJ sf

224 Commands Reference

de

[Return f{n) = 1 Js.
[d - 1 +] sb

[Return f(n) = n * f(n-l) Js.
[d 1 - 1 f x *J s r

You can create de program files with a text editor, or with the -e (compile) flag of the
be command.

When you enter de expressions directly from the keyboard, press Ctrl-D to end the be
session and return to the shell command line.

Related Information

The following command: "be" on page 83.

"Overview of International Character Support" in Managing the A/X Operating System.

Commands 225

dcopy

dcopy

Purpose

Copies file systems for the best access time.

Syntax

dcopy 1
=~CYI:SkiP

oldfs - newfs ~

1 If not specified, the values from oldfs are used.

01.805420

Description

Warning: oldfs and newfs must not refer to the same minidisk. Doing so
will destroy the old file system.
The dcopy command copies an existing file system oldfs to a new file system newfs,
appropriately sized to hold the reorganized results. For best results, oldfs should be the
raw device and newfs should be the block device. If oldfs or newfs is a file system name,
dcopy uses the corresponding block device given in /etc/fllesystems. You should run
dcopy on unmounted file systems (in the case of the root file system, copy to a new
minidisk).

If you do not specify any flags, dcopy copies files from oldfs, compressing directories by
removing vacant entries and spacing consecutive blocks in a file by the optimal rotational
gap.

The dcopy command makes newfs identical to oldfs and preserves the pack and volume
labels. Thus, to compress a file system without moving it, use the dcopy command to copy
the file to another file system and the dd command to copy the file back.

The dcopy command catches INTERRUPT and QUIT signals and reports on its progress.
To end dcopy, send a QUIT signal (Ctrl-V) and dcopy no longer catches INTERRUPT or
QUIT. dcopy also attempts to modify its command line arguments so that its progress can
be monitored with the ps command.

226 Commands Reference

Flags

dcopy

-anum Places files not accessed in the specified number of days after the free
blocks of the destination file system. The default value of num is 7. If you
do not specify num, no files are moved.

-d Leaves the order of directory entries as is. If you do not specify this flag,
dcopy moves subdirectories to the beginning of directories.

-flsize[:isize] Specifies the file system and i-node list sizes (in blocks). If not specified, the
value from oldls is used.

-scyl:skip Supplies device information for creating the best organization of blocks in a
file, where cyl is the number of block per cylinder and skip is the number of
blocks to skip.

-v Reports how many files were processed and how big the source and
destination free lists are.

Related Information

The following commands: "fsck, dfsck" on page 333, "mkfs" on page 487, and "ps" on
page 579.

Commands 227

TNL SN20-9861 (26 June 1987) to SC23-0790-0
dd

dd

Purpose

Converts and copies a file.

Syntax

dd I bs= num obs-num .cif= infi/e
of=outfi/e
cbs=num
fskip=num
skip= num
seek::::num
count=num

. ibs=512 X ~bS~512
'------- bs::::num

1
conv= - ascii 2

ebcdic 2

iblock
oblock
block
tonls

icase 3

ucase 3

swab
noerror
sync
fromnls
flatten

1 Do not put a blank between these items.
2 Use only one of ascii and ebcdic.
3 Use only one of icase and ucase .
4 infi/e and outfi/e default to standard input and standard output.

Description

OL805373

The dd command reads the specified infile or standard input, does the specified
conversions, and copies it to the specified outfile or standard output. The input and output
block size may be specified to take advantage of raw physical I/O. The terms block and

228 Commands Reference

dd

record refer to the quantity of data read or written by dd in one operation and are not
necessarily the same size as a disk block.

Where sizes are specified, a number of bytes is expected. A number may end with w, b, or
k to specify multiplication by 2, 512, or 1024 respectively; a pair of numbers can be
separated by an x to indicate a product.

The conversion requested by conv =tonls translates each extended character in a text file
to a printable ASCII escape sequence that uniquely identifies the extended character. The
complementary conversion, provided by conv = fromnls, translates ASCII escape
sequences to the corresponding extended character. The conversion requested by
conv = flatten translates an extended character to the single ASCII character most
resembling it in appearance or to a ? (question mark) if no ASCII characters resemble that
extended character.

The character set mappings associated with conv = ascii and conv = ebcdic are
complementary operations, described in the ebcdic file in AIX Operating System Technical
Reference. These attempt to map between ASCII and the subset of EBCDIC that is found
on most terminals and keypunches.

The cbs specification is used only if the ascii or ebcdic conversion is specified. For ASCII
conversions, dd places characters in a conversion buffer of size cbs, converts these
characters to ASCII, trims trailing blanks and adds new-line characters before sending
data specified output. For EBCDIC conversions, it places ASCII characters in the
conversion buffer, converts these characters to EBCDIC, adds trailing blanks to create
records of size cbs.

After it finishes, dd reports the number of whole and partial input and output blocks.

Parameters

if= infile

of= outfile

ibs=num

obs=num

bs=num

cbs=num

skip=num

seek=num

fskip=num

Specifies the input file name; standard input is the default.

Specifies the output file name; standard output is the default.

Specifies the input block size in bytes; the default is 512.

Specifies the output block size in bytes; the default is 512.

Specifies both the input and output block size, superseding ibs and
obs.

Specifies the conversion buffer size.

Skip num input records before starting copy.

Seek to the numth record from the beginning of output file before
copying.

Skip past num end-of-file characters before starting copy; this
parameter is useful for positioning on multi-file magnetic tapes.

Commands 229

dd

count = num Copies only num input blocks. The default block size is 512 bytes
(see the ibs parameter).

conv = spec [,spec •••] Specifies one or more of the following conversions:

ascii Converts EBCDIC to ASCII.

ebcdic Converts ASCII to EBCDIC.

tonls Converts ASCII escape sequences to extended
characters.

fromnls Converts extended characters to ASCII escape
sequences.

flatten

iblock
oblock
block

lease

ucase

swab

Converts extended characters to the ASCII character
most resembling it or to a? (question mark).

Minimizes data loss resulting from a read or write error
on direct access devices. If you specify iblock and an
error occurs during a block read (where the block size
is 512 or the size specified by ibs = num), dd attempts to
reread the data block in smaller size units. If dd can
determine the sector size of the input device, it reads
the bad record one sector at a time. Otherwise, it reads
it 512 bytes at a time. The input block size (ibs) must
be a multiple of this "retry size." This allows you to
maximize disk input efficiency while ensuring that data
loss associated with a read error is confined to a single
sector. The oblock conversion works similarly on
output. Specifying block is same as specifying
iblock,oblock.

Makes all alphabetic characters lowercase.

Makes all alphabetic characters uppercase.

Swaps every pair of bytes.

noerror Does not stop processing on an error.

sync Pads every input record to ibs.

Note: Normally, you need only write access to the output file. However, when the
output file is not on a direct access device and you use the seek parameter, you also
need read access to the file.

The dd command inserts new-line characters only when converting to ASCII; it pads
only when converting to EBCDIC.

230 Commands Reference

dd

Example

1. To convert an ASCII text file to EBCDIC:

dd if=text.ascii of=text.ebcdic conv=ebcdic

This converts text. asci i to EBCDIC representation, storing the EBCDIC version in
text. ebcdi c.

Note: When you specify conv=ebcdi c, dd converts the ASCII 1\ (circumflex)
character to an unused EBCDIC character (9A hexadecimal), and ASCII - (tilde) to
EBCDIC I (NOT symbol).

2. To use dd as a filter:

1i -1 I dd conv=ucase

This displays a long listing of the current directory (l i - 1) in uppercase.

3. To read data that was written by a non-UNIX computer system:

dd if=/dev/rmtO of=data ibs=800 cbs=80 conv=ascii,swab

This reads EBCDIC data from magnetic tape (i f= / dev /rmtO) that has ten SO-byte card
images per block. dd then converts it to ASCII (conv=asci i), swaps each pair of bytes
(conv=swab), and stores it in a file named data.
Note that this example reads input from a raw device. The dd command can read and
write blocks of any size, which makes it very useful for copying data to and from raw
devices.

Related Information

The following command: "cp" on page 156.

The ebcdic file in AIX Operating System -Technical Reference.

The "Overview of International Character Support" in Managing the AIX Operating
System.

Commands 231

defkey

defkey

Purpose

Defines keyboard key assignments.

Syntax

defkey
-? file

OL805453

Description

Flags

The defkey command lets you redefine the keyboard keys on the active virtual terminal.
Input to defkey comes either interactively from the keyboard or from.a redirected file.
Key assignments can be a single character, non-spacing characters, or strings.

If you specify a file that does not exist, defkey creates and opens the file; if file exists,
defkey opens the file. It then displays a menu that prompts you for input. This file can
then be used as redirected input to defkey.

-? Provides help information.

Examples

1. To redefine a key or keys and create or add to a keyboard definition file:

defkey mykeys

This creates the file my keys and prompts for input. When defkey ends, the keys that
you specified will be redefined on the active virtual terminal. You can also use the file
mykeys to redefine the keyboard on another virtual terminal with the command:

defkey < mykeys

2. To interactively redefine one or more keyboard keys for the active virtual terminal:

defkey

232 Commands Reference

Related Information

hft and dispsym in A/X Operating System Technical Reference.

The Keyboard Description and Character Reference.

defkey

Commands 233

del

del

Purpose

Deletes files if the request is confirmed.

Syntax

del~
OL805049

Description

Flag

The del command displays the list of specified file names and asks you to confirm your
request to delete the group of files. To answer yes (delete the files), press the Enter key
or enter a line beginning with y. Any other response specifies no (do not delete the files).

The del command does not delete directories. See "rmdir" on page 605 for information
about deleting directories.

Warning: The del command ignores file protection, allowing the owner of
a file to delete a write-protected file. However, to delete a file, you must
have write permission in the directory that the file exists in.

Since pressing the Enter key by itself is the same as answering "yes," be
careful not to delete files accidentally.

Requests confirmation for each specified file rather than for the entire group.

Examples

1. To delete a file:

del chapl.bak

234 Commands Reference

This displays the message:

delete chap1.bak? (y)

del

to ask for confirmation before deleting ch ap 1. b a k. The (y) reminds you to press the
Enter key or to enter y to answer "yes."

2. To use del with pattern-matching characters:

del *.bak

Before passing the command line to del, the shell replaces the pattern *. bak with the
names of all the files in the current directory that end with . b a k. (This is known as
file-name expansion.) del asks for confirmation before deleting them all at one time.

3. To interactively select files to be deleted:

del *
This displays the name of each file in the current directory one at a time, allowing you
to select which ones to delete.

Related Information

The following commands: "rmdir" on page 605 and "rm" on page 601.

Commands 235

delta

delta

Purpose

Creates a delta in a Source Gode Control System file.

Syntax

-y -m --"""'

-y c-:::::;}-{-m mrlisl

delta

-s

OL805056

Description

The delta command is used to introduce into the named Source Code Control System
(SeeS) file any changes that were made to the file version retrieved by a get -e command.

The delta command reads the g-files that correspond to the specified files (see "sccs
Files" on page 360) and creates· a new delta.

If you specify a directory in place of file, delta performs the requested actions on all SCCS
files within that directory (that is, on all files with the s. prefix). If you specify a - (minus)
in place of file, delta reads standard input and interprets each line as the name of an SCCS
file. When delta reads standard input, you must supply the -y flag. You must also supply
the -m flag if the v header flag is set. (For more information on header flags, see the
discussion in the admin command on page 54.) delta reads standard input until it reaches
END OF FILE (Ctrl-D).

If you are not familiar with the delta numbering system, see AIX Operating System
Programming Tools and Interfaces for more information.

Note: Lines beginning with an SOH ASCII character (binary 001) cannot be placed in the
SCCS file unless the SOH is quoted using a \ (backslash). SOH has special meaning to
sces and causes an error. See the sccsfile file in AIX Operating System Technical
Reference.

236 Commands Reference

Flags

delta

A get of many sees files, followed by delta of those files, should be avoided when the get
generates a large amount of data. Instead, you should alternate the use of get and delta.

-glist

-m[mrlist]

Specifies a list of SIDs (deltas) that are to be ignored when the get
command creates the g-file. After you use this flag, get ignores this delta if
it is one that it should not include when it builds the g-file.

If the sees file has the v header flag set, then a Modification Request (MR)
number must be supplied as the reason for creating the new delta.

If you do not specify the -m flag, and the v header flag is set, delta reads
MRs from the standard input. If standard input is a work station, delta
prompts you for the MRs. delta continues to take input until it reads END
OF FILE (Ctrl-D). It always reads MRs before the comments (see the -y
flag). You can use blanks, tab characte~s, or both to separate MRs in a list.

If the v header flag has a value, it is interpreted as the name of a program
that validates the MR numbers. If delta returns a nonzero exit value from
the MR validation program, delta assumes some of the MR numbers were
invalid and stops running.

-n Retains the g-file, which is normally removed at completion of delta
processing.

-p Writes to standard output (in the format of the diff command) the sees file
differences before and after the delta is applied. See "diff' on page 246 for
an explanation of the format.

-rSID Specifies which delta is to be made to the sees file. You must use this flag
only if two or more outstanding get -e commands were done on the same
sees file by the same person. The SID can be either the SID specified on
the get command line or the SID to be made.as reported by the get
command (see Figure 2 on page 362 for additional information). An error
results if the specified SID cannot be uniquely identified, or if a SID must be
specified but it is not.

-8 Suppresses the information normally written to standard output on normal
completion of the delta command.

-y[comment] Specifies text used to describe the reason for making the delta. A null
string is considered a valid comment. If your comment line includes special
characters or blanks, the line must be enclosed in single or double quotation
marks.

If you do not specify -y, delta reads comments from standard input until it
reads a blank line or END OF FILE (Ctrl-D). If input is from the keyboard,
delta prompts for the comments. If the last character of a line is a
backslash, it is ignored. Comments must be no longer than 512 characters.

Commands 237

delta

Example

To record changes you have made to an sees file:

delta s.prog.c

This adds a delta to the sees file s. prog. c, recording the changes made by editing
p rog . c. delta then asks you for a comment that summarizes the changes you made.
Enter the comment, then press END OF FILE (Ctrl-D) or press the Enter key twice to
indicate that you have finished the comment.

Related Information

The following commands: "admin" on page 51, "bdiff" on page 88, "cdc" on page 123,
"get" on page 359, "help" on page 391, "prs" on page 574, and "rmdel" on page 604.

The sccsfile file in AIX Operating System Technical Reference.

The discussion of sees in AIX Operating System Programming Tools and Interfaces.

238 Commands Reference

/

deroff

deroff

Purpose

Removes nroff, troff, tbl, and eqn constructs from files.

Syntax

deroff

OLS05181

Description

Flags

The deroff command reads files (standard input by default), removes all troff requests,
macro calls, backslash constructs, eqn constructs (between .EQ and .EN lines and
between delimiters), and tbl descriptions (perhaps replacing them with blanks or blank
lines), and writes the remainder of the file to standard output.

The deroff command normally follows chains of included files (.so and .nx troff
commands).' If a file has already been included, a .so naming it is ignored and a .nx
naming that file ends execution.

Note: deroff is not a complete troff interpreter, so it can be confused by subtle
constructs. Most errors result in too much rather than too little output.

The -ml flag does not handle nested lists correctly.

-i

-I

-mm

-ml

-ms

Suppresses the processing of included files.

Suppresses the processing of included files whose names begin with /usr/lib, such
as macro files in /usr/lib/tmac.

Ignores MM macros in text so that only running text is output (no text from
macro lines is included).

Ignores MM macros in text (-mm) and also deletes MM list structures.

Ignores MS macros in text.

Commands 239

deroff

-w Makes the output a word list, with one word per line and all other characters
deleted. In text, a word is any string that contains at least two letters and is
composed of letters, digits, ampersands (&), and apostrophes ('). In a macro call, a
word is a string that begins with at least two letters and contains a total of at
least three letters. Delimiters are any characters other than letters, digits,
apostrophes, and ampersands. Trailing apostrophes and ampersands are removed
from words.

Related Information

The following commands: "eqn, neqn, checkeq" on page 300, "nroff' on page 525, "tbl"
on page 739, and "troff' on page 526.

240 Commands Reference

devices

devices

Purpose

Adds, deletes, changes, and displays device information.

Syntax

devices --l
OLS05306

Description

Files

The devices command lets you add, delete, change, or examine information about devices
on the system. To use devices you must be a member of the system group or have
superuser authority.

The devices command is an interactive, menu-driven program. For information on how to
use it, see Installing and Customizing the AIX Operating System.

/dev
/ etc/filesystems
/ etc/predefined
/etc/master
/etc/system
/etc/ports
/etc/qconfig
/tmp/CONFIGREPORT
/etc/ddi

Directory.

Directory.

Related Information

The discussion of devices in Installing and Customizing the AIX Operating System.

Commands 241

TNL SN20-9861 (26 June 1987) to SC23-0790-0
devnm

devnm

Purpose

Names a device.

Syntax

devnm T path -r
Description

OLB05114

The devnm command reads path, identifies the special file associated with the mounted
file system where path resides, and writes the special file name to standard output. Each
path must be a full path name.

The most common use of the devnm command is by /etc/rc to construct a mount table
entry for the root device.

Note: This command is for local file systems only.

Examples

1. To identify the device on which a file resides:

devnm /disketteO/bob/textfile
This displays the name of the special device file on which
/di s ketteO/bob/textfi 1 e resides. If a diskette is mounted as /disketteO, then
devnm displays:

fdO /disketteO/bob/textfile
rfdO /disketteO/bob/textfile

This means that / di s ketteO/bob/textfi 1 e resides on the diskette drive /dev/fdO.

2. To identify the device on which a file system resides:

devnm /

This displays the name of the device on which the root file system.(/) resides. The
following list appears on the screen:

hdO /

242 Commands Reference

devnm

This means that / resides on /dev/hdO.

Files

/dev Directory.
/etc/mnttab

Related Information

The following commands: "rc" on page 594 and "setmnt" on page 635.

Commands 243

df

df

Purpose

Reports number of available disk blocks.

Syntax

df --o-c filesystem 1~
1 The default action is to provide information for each file

system in /efc/filesysfems with the attribute f ree= true.
OL805052

Description

Flag

The df command writes to standard output information about total space and available
space on the specified file systems. filesystem can be the name of the device on which the
file system resides or the directory on which it is mounted. If you do not specify filesystem,
df uses each file system in jetcjfilesystems that has the attribute free=true.

Normally, df uses free counts maintained in the superblock. Under certain exceptional
circumstances, these counts may be in error.

If a file system is being actively modified at the instant df is run, the free count may be
inaccurate.

-8 Checks for count errors by forcing df to fully search the free lists to verify the counts.
The df command requires considerably more processing time when the -s flag is
specified.

244 Commands Reference

Examples

Files

1. To list information about all default file systems:

df
If your system is configured so that the I, lusr, lu, and Itmp directories reside in
separate file systems, the output from the df command looks something like this:

Device Mounted on total free used ifree used
/dev/hdO / 19368 9976 48% 4714 5%
/dev/hd1 /usr 24212 4808 80% 5031 19%
/dev/hd2 /u 9744 9352 4% 1900 4%
/dev/hd5 /tmp 3868 3856 0% 986 0%

2. To list information about the file system on a diskette:

df /dev/fdO
3. To list information about the file system normally mounted as IdisketteO:

df /disketteO

/ etc/filesystems

Related Information

The following command: "fsck, dfsck:' on page 333.

The file system file in AIX Operating System Technical Reference.

The discussion of df in Managing the AIX Operating System.

df

Commands 245

diff

diff

Purpose

Compares text files.

Syntax

diff fileT - fi/e2 ----I

OLS05046

Description

The diff command compares filel and file2 and writes to standard output information about
what changes must be made to bring them into agreement. If you specify a - (minus) for
filel or file2, diff reads standard input. If filel is a directory, then diff uses a file in that
directory with the name file2. If file2 is a directory, then diff uses a file in that directory
with the name filel.

The normal output contains lines of these forms:

Lines Affected in filel Action Lines Affected in file2

numl a num2[,num3]

numl[,num2] d num3

numl[,num2] c num3[,num4]

These lines resemble ed subcommands to convert filel into file2. The numbers before the
action letters pertain to filel; those after pertain to file2. Thus, by exchanging a for d and
reading backward, you can also tell how to convert file2 into filel. As in ed, identical
pairs (where numl = num2) are abbreviated as a single number.

Following each of these lines, diff displays all lines affected in the first file preceded by a
<, then all lines affected in the second file preceded by a >.

Except in rare circumstances, diff finds a smallest sufficient set of file differences. An exit
value of 0 indicates no differences, 1 indicates differences found, and 2 indicates an error.

Note: Editing scripts produced by the -e or -f flags cannot create lines consisting of a
single period (.).

246 Commands Reference

Flags

dill

-b Ignores trailing spaces and tab characters and considers other strings of blanks to
cQmpare as equal.

-e Produces output in a form suitable for use with the ed command to convert filel to
file2.

-f Produces output in a form not suitable for use with ed, showing the modifications
necessary to convert filel to file2 in the reverse order of that produced under the -e
flag.

-b Performs a faster comparison. This flag only works when the changed sections are
short and well separated, but it does work on files of any length. The -e and -f flags
are not available when you use the -b flag.

Examples

1. To compare two files:

diff chapl.bak chapl

This displays the differences between the files chapl. bak and chapl.
2. To compare two files, ignoring differences in the amount of white space:

diff -b prog.c.bak prog.c
If two lines differ only in the number of blanks and tabs between words, then diff
considers them to be the same.

3. To create a file containing commands that ed can use to reconstruct one file from
another:

diff -e chap2 chap2.o1d >new.to.old.ed

This creates a file named new. to .01 d . ed that contains the ed commands to change
chap2 back into the version of the text found in chap2. old. In most cases,
new. to. old. ed is a much smaller file than chap2. old. You can save disk space by
deleting chap2. old, and you can reconstruct it at any time by entering:

(cat new.to.old.ed ; echo Il,$pl) led chap2 >chap2.o1d

The commands in parentheses add l, $ p to the end of the editing commands sent to ed.
The l, $p causes ed to write the file to standard output after editing it. This modified
command sequence is then piped to ed (I ed), and the editor reads it as standard input.
The - flag causes ed not to display the file size and other extra information since it
would be mixed with the text of chap2. old. See page 654 for details about grouping
commands with parentheses.

Commands 247

diff

Files

/tmp/d?????
/usr/lib/diffh

Temporary files.
For the -h flag.

Related Information

The following commands: "bdiff" on page 88 "emp" on page 138, "eomm" on page 144,
"ed" on page 280, and "sdiff" on page 627.

248 Commands Reference

,/

diff3

diff3

Purpose

Compares three files.

Syntax

diff31Wne of filel- file2 - file3 --l -&
-j(

-3
OL805053

Description

The diff3 command reads three versions of a file and writes to standard output the ranges
of text that differ, flagged with the following codes:

= = = =1
= = = =2
= = = =3

All three files differ.
filel differs.
file2 differs.
file3 differs.

The type of change needed to convert a given range of a given file to match another file is
indicated in one of these two ways in the output:

file nl a Text is to be added after line number nl in file, where file is 1, 2, or
3.

file nl [,n2] c Text in the range line nl to line n2 is to be changed. If nl = 1£2,
the range may be abbreviated to nl.

The original contents of the range follows immediately after a c indication. When the
contents of two files are identical, diff3 does not show the contents of the lower-numbered
file, although it shows the location of the identical lines for each.

Note: Editing scripts produced by the -e flag cannot create lines consisting only of
a single period (.).

The diff3 command does not work on files longer than 64K bytes.

Commands 249

diff3

Flags

-e Creates an edit script for use with the ed command to incorporate into filel all
changes between file2 and file3 (that is, the changes that normally would be flagged
= = = = and = = = = 3).

-li Produces an edit script to incorporate only changes flagged = = = = .

-3 Produces an edit script to incorporate only changes flagged = = = = 3.

Example

To list the differences among three files:

diff3 fruit.a fruit.b fruit.c

If frui t. a, frui t. b, and frui t. c contain the following data:

fruit.a fruit.b fruit.c

banana apple grape
grape banana grapefruit
kiwi grapefruit kiwi
lemon kiwi lemon
mango orange mango
orange peach orange
peach pear peach
pare pear

then the output from diff3 shows the differences between these files as follows. (The
comments on the right do not appear in the output.)

---- • All three files are different.
1: 1, 2c - Lines 1 and 2 of the first file, frui t. a

banana
grape

2 : 1 ,3 c - Lines 1 through 3 of fru it. b
apple
banana
grapefruit

3: 1, 2c - Lines 1 and 2 of frui t. c
grape
grapefruit

====2 • The second file, frui t. b, is different.

250 Commands Reference

/'

Files

1:4,5c
2:4a
3:4,5c

lemon
mango

- Lines 4 and 5 are the same in frui t. a and frui t. c.
- To make frui t. b look the same, add text after line 4.

====1 • The first file, frui t. a, is different.
1:8c

pare
2: 7 c - Line 7 of fruit.b and line 8 of fruit.c are the same
3:8c

pear

/tmp/d3*
/usr/lib/diff3prog

Related Information

The following command: "diff' on page 246.

diff3

Commands 251

diffmk

diffmk

Purpose

Marks differences between files.

Syntax

diffmk

-ce X
-dbX
-deX

file1 - file2 _r-\. I

~file3F

OLB05057

Description

Flags

The diffmk command compares filel and file2 and creates a third file that includes change
mark commands for the nroff and troff commands. filel and file2 are the old and new
versions of the file. diffmk writes the newly created file to file3, if specified, or to
standard output. This file contains the lines of file2 with formatter change mark (.me)
requests inserted as appropriate. When file3 is formatted, the changed or inserted text is
marked by a I (vertical bar) at the right margin of each line. An * (asterisk) in the margin
indicates that a line. was deleted.

If the environment parameter DIFFMARK is defined, it names a command string that
diffmk uses to compare the files. (Normally, diffmk uses the diff command.) For
example, you might set DIFFMARK to di ff -h in order to better handle extremely large
files.

-abX Uses X to mark where added lines begin.

-a eX Uses X to mark where added lines end.

-b Ignores differences that are only changes in tabs or spaces on a line.

-ebX Uses X to mark where changed lines begin.

252 Commands Reference

/'

diffmk

-ceX Uses X to mark where changed lines end.

-dbX Uses X to mark where deleted lines begin.

-deX Uses X to mark where deleted lines end.

Examples

1. To mark the differences between two versions of a text file:

diffmk chap1.01d chap1 > chap1.nroff

This produces a copy of chap 1 containing nroff/troff change mark commands to
identify text that has been added to, changed in, or deleted from chap1. 01 d. This
copy is saved in the file chap 1. nroff.

2. To mark differences with non-nroff/troff messages:

diffmk -abl»New: 1 -ael«End New l chap1.01d chap1 >chap1.nroff

This causes diffmk to write> >New: on the line before a section of new lines that have
been added to chap 1 and to write «End New on the line following the added lines.
Changes and deletions still generate nroff/troff commands to put a I or * in the
margin.

3. To use different nroff/troff marking commands and ignore changes in white space:

diffmk -b -cbl.mc %1 chap1.01d chap1 > chap1.nroff

This imbeds commands that mark changes with %, additions with I, and deletions with
*. It does not mark changes that only involve a different number of spaces or tabs
between words (- b).

Related Information

The following commands: "diff' on page 246, "nroff' on page 525, and "troff' on
page 526.

Commands 253

dircmp

dircmp

Purpose

Compares two directories and the contents of their common files.

Syntax

dircmp W directory1 - directory2 --l
-d
-s

OLB05004

Description

Flags

The dircmp command reads directory 1 and directory2 and writes information about their
contents to standard output. First, dircmp compares the file names in each directory.
When the same file name appears in both, dircmp compares the contents of both files.

In the output, dircmp lists the files unique to each directory. It then lists the files with
identical names in both directories, but with different contents. With no flag, it also lists
files that have identical contents as well as identical names in both directories.

-d Displays for each common file name both versions of the differing file lines. The
display format is the same as that of "diff" on page 246.

-8 Does not list the names of identical files.

Examples

1. To summarize the differences between the files in two directories:

dircmp proj.verl proj.ver2

This displays a summary of the differences between the directories proj. verI and
proj . ver2. The summary lists separately the files found only in one directory or the
other, and those found in both. If a file is found in both directories, dircmp notes
whether or not the two copies are identical.

254 Commands Reference

2. To show the details of the differences between files:

dircmp -d -5 proj.verl proj.ver2

dircmp

The -s flag suppresses information about identical files. The -d flag displays a diff
listing for each of the differing files found in both directories.

Related Information

The following commands: "emp" on page 138 and "diff' on page 246.

Commands 255

TNL SN20-9861 (26 June 1987) to SC23-0790-0
diskusg

diskusg

Purpose

Generates disk accounting data by user ID.

Syntax

-P/etc/paS~Wd N
diskusg i ~ ~ne of

C . c. -pfil. -u fil. fil •
.....: -I f nmll st ~ L-. -....;..v_.....J.

OL805402

Description

Flags

The diskusg command generates intermediate disk accounting information from data in
files or from standard input if you do not specify any files. diskusg writes lines to
standard output, one per user, in the following format:

uid login #blocks
where:

uid
login
#blocks

Is the numerical user ID of the user
Is the login name of the user; and
Is the total number of disk blocks allocated to this user.

The diskusg command normally reads only the i-nodes of file systems for disk accounting.
In this case, files are the special file names of these devices.

Note: This command is for local devices only.

-1 fnmlist Ignores the data on those file systems with a file system name in fnmlist.
fnmlist is a list of file system names separated by commas or enclosed within
quotation marks. diskusg compares each name in this list with the file
system name stored in the volume ID.

-p file Uses file as the name of the password file to generate login names.
/etc/passwd is used by default.

-s Combines all lines for a single user into a single line. (The input date is
already in diskusg output format.)

256 Commands Reference

-u file

-v

diskusg

Writes records to file of files that are charged to no one. Records consist of
the special file name, the i-node number, and the user ID.

Writes a list to standard error of all files that are charged to no one.

The output of diskusg is normally the input to acctdisk, which generates total accounting
records that can be merged with other accounting records. diskusg is normally run in
do disk (see "acct/*" on page 31).

Examples

Files

The following will generate daily disk accounting information:

for in /dev/hdO /dev/hd1 /dev/hd2 /dev/hd3
do

diskusg $i > dtmp. 'basename $i I &
done
wait
diskusg -s dtmp.* sort +On +1 acctdisk > dacct

/etc/passwd Used for user ID to login name conversions.

Related Information

The following commands: "acct/*" on page 31, "acctcms" on page 36, "acctcom" on
page 38, "acctcon" on page 42, "acctmerg" on page 46, "acctprc" on page 48, "fwtmp"
on page 345, and "runacct" on page 606.

The acct system call and the acct and utmp files in AIX Operating System Technical
Reference.

The discussion of accounting in Managing the AIX Operating System.

Commands 257

display

display

Purpose

Selects the physical display that an existing or new virtual terminal uses and sets colors
and fonts.

Syntax

-m -t

addr -size

®
OL805442

Description

The display command changes the physical display assigned to the current virtual
terminal or assigns a default display to be used when you open a virtual terminal. It also
sets the foreground and background colors, the active color palette, and the active and
alternate fonts on the current display. The display parameter can be one of the following
names:

pcmono

egamono

ega col

advmono

advcol

extmono

megapel

PC Monochrome Adapter and Display

Enhanced Graphics Adapter and PC Monochrome Display

Enhanced Graphics Adapter and Display

Advanced Monochrome Graphics Adapter and Display

Advanced Color Graphics Adapter and Display

Extended Monochrome Graphics Adapter and Display

Megapel Display Adapter and IBM 5081 Display Models 16 and 19.

258 Commands Reference

Flags

display

You can request only those displays that are actually installed on the system. If you have
more than four, only four will be displayed on the -c and -d menus. Before display makes
any changes, it checks all arguments for errors and, if it encounters one, displays a list of
valid arguments and exits.

Note: You must insure that the TERM shell variable contains the proper value for
whatever the current display is. See"termdef" on page 748 and the terminfo file in A/X
Operating System Technical Reference for a list of these values.

-b [color]

-c [display]

-d [display]

-f [color]

-m [addr size]

Selects the background color. The color parameter is an integer from
1 to 8 for the Enhanced Graphics Display and from 1 to 16 for other
color graphics displays. These values correspond to the first eight or
sixteen entries in the active color palette (see the -p flag). For
example, -b 5 selects the fifth entry. If you do not specify a number,
display lists the palette of active background colors and prompts you
to select a number for the new background color~

Changes the display used by the current virtual terminal.

If you do not specify a display, you are given a menu of available
options. This menu consists of a numbered list of display names and
descriptions. The display number reflects the number of physical
displays installed and their relative positions in the Real Screen
Table. The current default is always display number 1 in this list.
Changing the default alters the display number associated with each
physical display. If the virtual terminal does not know the
display/adapter combination, the Name column will contain the words
Unknown Di spl ay or ????? A prompt at the bottom of the display
list asks you to enter the new display number for the current or
default display setting. Whenever you change the current display, the
screen of that display clears.

Changes the default display used when a virtual terminal is opened. If
you do not specify a display, you are given a menu of available options
(see the -c flag).

Selects the foreground color. The color parameter is an integer from 1
to 16. These values correspond to the first sixteen entries in the
active color palette (see the -p flag). If you do not specify a color
number, display lists the palette of active foreground colors and
prompts you to select a number for the new foreground color.

Changes the DMA pinned page at the specified starting address to size
256K blocks. If you do not specify an address and a size, the current
starting address and size is displayed.

Commands 259

display

-p [file] Changes the active color palette. The optional file parameter is the
full path name to a file that contains a list of colors for the current
display, one color per line, where each color is the decimal
representation of the 32 bit color value. The color palette file can also
contain blank lines and comment lines (a comment line must begin
with a * character in column one). Each supported display has a
corresponding color file which contains its default active color palette.
The name of this file is /etc/vtm/pal.name where name is the display
name described on page 258. This is the default value for the file
parameter.

-t [font[,font] ...] Selects the primary and active alternate fonts for the current virtual
terminal on the current display. The first font named in the optional
list following -t will be the primary font. The remaining fonts will be
alternates, in the order listed, for the active font table. If you do not
specify eight font IDs, the first font will be used to fill out in the
remaining entries in the active font table.

Note: All of the fonts in the list must be of the same size.

Some applications that use the terminfo file expect the italic
font to be the first alternate and the bold font to be the second
alternate fonts (see the terminfo file in A/X Operating System
Technical Reference for more information).

If you do not specify any fonts, all of the fonts available for the
current display will be listed, and you will be prompted first for the
desired primary font ID and then for alternate font IDs until you enter
F. As you enter alternate fonts, the display command checks that
they are the same size as the new primary font. If you enter fewer
than eight fonts, the primary font will be repeated in the remaining
entries of the active font table.

You can specify combinations of the same flags on a single command line. display
processes -c and -d flags first. If you specify -c, you will see the message Changi ng to
current di sp 1 ay ... , and the current display will be changed. Any menu interface for
the color or font parameters will be displayed there. A -p flag will be processed next. The
screen will be immediately redrawn with the colors from the new color palette. Then any
foreground, background, or font flags will be processed.

Examples

1. To change the current virtual terminal display:

display -c egamono
This changes the display to the Enhanced Graphics Adapter and PC Monochrome
Display.

260 Commands Reference

,/

display

2. To make the Advanced Color Graphics Display the default virtual terminal display;

display -d advcol

3. To change both the current and the default displays:

display -c pcmono -d egacol
This makes the PC Monochrome Adapter and Display the current display and makes
the Enhanced Graphics Adapter and Display the default display.

4. To change the active color palette for the current display:

display -p /u/new/palette

Related Information

The following commands: "open" on page 541 and "termdef' on page 748.

The term info file in AIX Operating System Technical Reference.

"Using Display Station Features" in IBM RT PC Using the AIX Operating System and
"Managing Display Station Features" in IBM RT PC Managing the AIX Operating System.

The default color palettes in Virtual Resource Manager Technical Reference.

Commands 261

dos

dos

Purpose

Starts DOS Services.

Syntax

dos

WneOf
-v
-x

OLS05330

Description

The dos command starts a DOS emulation environment. It interprets DOS commands and
runs programs that can use the routines that simulate DOS runtime behavior. (For more
information on these routines and this environment, see AIX Operating System
DOS Services Reference and Installing and Customizing the AIX Operating System.)

When you enter dos, a DOS environment file is created from the process environment.
(For details on how this is done, see dosinit in A/X Operating System Technical Reference.)
Upon invocation, dos sets the current drive to A: or the first valid drive. The environment
variable DOSDISK can be set to define the default current drive (B:, C:, D, and so on).

The file parameter specifies a dos batch file to be run. file must have the extension .bat or
.BAT.

If the current DOS Services directory contains the batch file autoexec.bat or
AUTOEXEC.BAT, then DOS Services initially reads and runs commands from this file.

DOS commands are either built in (to the dos command itself), or they are external.
External commands reside in the /usr/dos/bin directory. Normally, the search order for
commands that you enter is as follows:

• The directory /usr/dos/bin

262 Commands Reference

dos

• The working directory
• Each directory in the dos path.

When you enter a command, dos searches each directory fora file with a name composed
of the command name and either the extension .BAT, the extension .bat, or no extension.
If the file has the extension .BAT or .bat, it runs as a batch file. Otherwise, it runs as an
AIX program. If it is a AIX program, it can be either a compiled program or a shell file. In
either case you must have execute access to it.

The dos command supports two types of file systems: AIX file systems and DOS file
systems. Each dos minidisk can contain either an AIX-formatted file system or a
DOS-formatted file system. However, diskette drives (such as /dev/fdO) may contain only
DOS-formatted file systems, unless the device is mounted as an AIX file system before you
invoke dose

Warning: Only one user or process at a time can access a dos file system.
If a dos file system resides on a minidisk, two or more users may attempt
to access the mini disk at the same time. Because dos has no way to warn
you that another process is using a minidisk, you should allocate minidisks
containing dos file systems on a per-user basis.

If a coprocessor on the system accesses a dos-formatted minidisk at the
same time as an RT PC process, there is no conflict because only the first
process has read/write privileges. Subsequent opens at the device level are
limited to read-only access.
There are different restrictions for file names on DOS drives and AIX drives. For
DOS Services drives:

• File names cannot be longer than 12 characters.
• The name is always stored in uppercase.
• All files in the directory must have unique names.
• There can be only one period in a file name.

For AIX file systems:

• File names cannot be longer than 14 characters.
• Names may contain either uppercase or lowercase letters.
• Two files in the same directory can have the same name if the letter case is different.
• There can be more than one period in a file name.
• All files in the directory must have unique names.

On AIX drives, file names that begin with a period specify hidden files. On DOS Services
drives, hidden files have a bit set in the attribute byte of the file directory.

There are differences between AIX and DOS Services file formats. AIX ASCII files and
DOS Services ASCII files are similar and can be converted from one format to the other.
Two new commands, FILETYPE and CONVERT, are available for detecting and changing
a file format.

Commands 263

dos

DOS Services Commands and Programs

There are several differences between the set of supported DOS Services commands and
DOS commands.

Unsupported DOS Commands and Programs
You can use all of the standard DOS commands except BREAK, CTTY, EDLIN,
EXE2BIN, GRAPHICS, and SYS.

Modified DOS Commands
The following DOS Services commands behave differently than the corresponding standard
DOS commands:

backup

chdir

date

dir

format

label

mode

print

set

time

The 1M parameter is not valid for DOS Services file systems.

Unlike DOS, DOS Services may not allow you to change to the highest
directory in the file system.

This command lets only superuser change the date.

Does not list file-name extensions in a separate column when executed on an
AIX drive.

The IB is not supported. Two additional flags, IU and IH are supported. Use
the IU flag to format a AIX diskette. Use the IH flag to format a fixed disk to
contain DOS Services file systems in a single partition.

Note: The format command makes use of the mksf command, which in turn
uses the letc/filesystems file. If you modify this file, it will affect the
format command.

On an AIX-formatted drive, the label is written to a file called LABEL. VOL.
Reading a label is accomplished by reading this file. Changing a label
modifies the contents of this file.

Note: The command del *.* deletes the volume label.

Only option 3 (for an asynchronous communications adapter) is supported.

The DOS Services version does not ask you which device to store the print
queue on. This information is set up in your user profile.

The IB, D, M, IS, IQ, and IU configuration flags are not supported.

A IU flag lets you display the AIX environment as it is inherited by the dos
command. You can change the environment variables internal to dose When
you exit from dos, the environment variables remain unchanged.

Allows only the superuser to change the time.

264 Commands Reference

Flags

Files

dos

Additional Commands
In addition to DOS commands, the following commands are available:

(The Escape command.) Runs the remainder of the command line as an AIX
shell command.

COMMAND The new flags which have been added to dos also apply to this command.

CONVERT Converts a DOS format ASCII file to a AIX format ASCII file or a AIX
format ASCII file to a DOS format ASCII file.

ed Starts the line editor.

EXIT Ends DOS Services. You can also use END OF FILE (Ctrl-D).

FILETYPE Attempts to determine the format (AIX or DOS) and contents of the
specified file.

shutdown Provides for an orderly exit from the system.

-a

-c cmd

-n

-v

-x

Does not run the AUTOEXEC.BAT file.

Runs the specified command.

Reads commands but does not run them.

Displays the commands and their flags as they are read.

Displays the commands and their flags as they are run.

/usr/dos/bin/*
AUTOEXEC.BAT
autoexec.bat

DOS Services external commands.

Related Information

The following commands: "dosdel" on page 266, "dosread" on page 269 and "doswrite"
on page 271.

The dosinit subroutine in AIX Operating System Technical Reference.

The discussion of dos in Using AIX Operating System DOS Services and AIX Operating
System DOS Services Reference.

Commands 265

dosdel

dosdel

Purpose

Deletes DOS files.

Syntax

dosdel ~ -v . ~ file :r'
~ -Ddevlce U

OL805108

Description

Flags

The dosdelcommand deletes the DOS file specified by file. Use the -v flag to obtain
format information about the disk.

File-naming conventions are those of DOS, with one exception. doswrite replaces the \
(backslash) character used to separate components of a DOS path name with the / (slash)
because the backslash can have special meaning to AIX. dosdel converts lowercase
characters in the filel name to uppercase before it checks the disk. Because all file names
are assumed to be full (not relative) path names, you need not add the initial / (slash).

-D device Specifies a device or file system to use as the DOS disk. If you do not specify
this flag the default device is /dev/fdO.

-v Writes format information about the disk. Use primarily to verify the identify
of a disk or file system as a DOS disk.

Related Information

The following commands: "dos" on page 262, "dosdir" on page 267, "dosread" on
page 269, and "doswrite" on page 271.

The pcdos subroutine in AIX Operating System Technical Reference.

266 Commands Reference

./

dosdir

dosdir

Purpose

Lists the directory for DOS files.

Syntax

. -{ ~-D/deV/fdOr dosdlr
-0

-I -t -D device
-e -d

OLS05358

Description

Flags

The dosdir command displays information about the specified DOS file or directory (the
current directory by default). If you specify a directory without also specifying the -d flag,
dosdir displays information about the files in. that directory.

File-naming conventions are those of DOS, with one exception. dosdir replaces the \
(backslash) character used to separate components of a DOS path name with a / (slash)
because the backslash can have special meaning to the AIX Operating System. dos~ir
converts lowercase characters in the file or directory name to uppercase before it checks
the disk. Because all file names are assumed to be full (not relative) path names, you need
not add the initial / (slash).

-a

-d

Writes information about all files. This includes hidden and system files as
well as the. (dot) and .. (dot dot) files.

Treats file as a file, even if it is a directory. If a directory is specified,
information about the directory is listed" rather than information about the
files it contains.

Commands 267

dosdir

-D [device] Specifies a device or file system to use as the DOS disk. If you do not specify
this flag the default device is /dev/fdO.

-e Uses the -I flag to write the list of clusters allocated to the file.

-1 Produces a long list that includes the creation date, size in bytes, and
attributes. The size of a subdirectory is specified as 0 bytes. The attributes
have the following meanings:

A Archive - the file has not been backed up since it was last modified.
D Directory - the file is a subdirectory, and is not included in the normal

DOS directory search.
H Hidden - the file is not included in the normal DOS directory search.
R Read-only - the file cannot be modified.
S System - the file is a system file, and is not included in the normal DOS

directory search.

-t Lists the entire directory tree starting at the named directory.

-v Writes information about the format of the disk.

Related Information

The following commands: "dosdel" on page 266, "dosread" on page 269, and "doswrite"
on page 271.

The pcdos subroutine in AIX Operating System Technical Reference.

268 Commands Reference

dosread

dosread

Purpose

Copies a DOS file.

Syntax

dosread
-D/deV/fdo)- ---c::r

file1
-D device file2

OL805111

Description

Flags

The dosread command copies the specified DOS filel to standard output or to the specified
AIX file2 (by default the root directory). Unless otherwise specified, dosread copies as
many bytes as are specified in the directory entry for filel. This means, in particular, that
copying directories does not work, since directories by convention have a record size of o.
File-naming conventions are those of DOS, with one exception. dosread replaces the \
(backslash) character used to separate components of a DOS path name with a / (slash)
because the backslash can have special meaning to the AIX Operating System. dosread
converts lowercase characters in the filel name to uppercase before it checks the disk.
Because all file names are assumed to be full (not relative) path names, you need not add
the initial / (slash).

Note: Wild card characters (* and ?) are not treated in a special way by this
command (although they are by the shell). If, for example, you do not specify a
file-name extension, the file name is matched as if you had specified a blank
extension.

This command must be named dosread.

-a Replaces the sequence CRLF (carriage return-line feed) with NL (new-line
character) and interprets a Ctrl-Z (ASCII SUB) as the end-of-file character.

Commands 269

dosread

-D device Specifies the name of the DOS device or file system. The default device is
/dev/fdO.

Note: This device must have the DOS-disk format.

-v Writes information to the standard output about the format of the disk. Use
this flag to verify that a device or file system is a DOS disk.

Examples

Files

1. To copy a text file from a DOS diskette to the AIX file system:

dosread -a chapl.doc chapl

This copies the DOS text file \CHAPI. DOC on /dev/fdO to the AIX file chapl in the
current directory.

2. To copy a nontext file from a fixed-disk DOS file system to the AIX file system:

dosread -D/dev/hdl /survey/test.dta /u/fran/testdata

This copies the DOS data file \SURVEY\TEST. DTA on /dev/hdl to the AIX file
/ u/ fran/tes tdata.

/dev/fdO

Related Information

The following commands: "dosdel" on page 266, "dosdir" on page 267, and "doswrite" on
page 271.

The pcdos subroutine in AIX Operating System Technical Reference.

270 Commands Reference

doswrite

doswrite

Purpose

Copies AIX files to DOS files.

Syntax

doswrite
-D/dev/fdO :J-

file1- file2 --I
-D filesystem

OLS05112

Description

Flags

The doswrite command copies the specified AIX filel to the specified DOS file2. If file2 is
a multi-component name (that is, if it contains I), each intervening component must exist
as a directory and the last component (the named file), must not exist.

File-naming conventions are those of DOS, with one exception. doswrite replaces the \
(backslash) character used to separate components of a DOS path name with the / (slash)
because the backslash can have special meaning to AIX. doswrite converts lowercase
characters in the filel name to uppercase before it checks the disk. Because all file names
are assumed to be full (not relative) path names, you need not add the initial / (slash).

Note: Wild card characters (* and ?) are not treated in a special way by this
command (although they are by the shell). If, for example, you do not specify a
file-name extension, the file name is matched as if you had specified a blank
extension.

This command must be named doswrite.

-a Replaces NL (new-line character) characters with the sequence CR-LF
(carriage return-linefeed). A Ctrl-Z is added to the output at end of file.

-D filesystem Specifies the name of the DOS device or file system. The default device is
/dev/fdO.

Note: This device must have the DOS-disk format.

Commands 271

doswrite

-v Writes information to the standard output about the format of the disk.
Use this flag to verify that a device or file system is a DOS disk.

Examples

Files

1. To copy a text file from the AIX file system to a DOS diskette:

doswrite -a chapl chapl.doc

This copies the AIX file chap I in the current directory to the DOS text file
\CHAPI. DOC on /dev/fdO.

2. To copy a non text file from the AIX file system to a fixed-disk DOS file system:

doswrite -O/dev/hdl /u/fran/testdata /survey/test.dta

This copies the AIX data file /u/fran/testdata to the DOS file \SURVEY\TEST. OTA
on /dev/hdl.

/dev/fdO

Related Information

The following commands: "dosdir" on page 267, "dosread" on page 269, and "dosdel" on
page 266.

The pcdos subroutine in A/X Operating System Technical Reference.

272 Commands Reference

TNL SN20-9861 (26 June 1987) to SC23-0790-0
dsipc

Idsipc

I Purpose

Installs the Interprocess. Communication key mapping in the kernel.

I Syntax

dsipC-1

I Description

The dsipe command replaces all IPC key mapping currently in the kernel with new
mapping from the profile data base. The dsipe command is usually called, at system
startup time, by /ete/re.ds to update the Distributed Services kernel. To use dsipe
command from the command line, you must be a member of the system group or have
superuser authority (see "su" on page 724).

I Related Information

"Using Distributed Services" in Managing the AIX Operating System.

OLB05461

Commands 272.1

TNL SN20-9861 (26 June 1987) to SC23-0790-0
dsldxprof

Idsldxprof

I Purpose

Loads translate information into the UIDjGID translate profiles.

I Syntax

dsldxprof

I Description

OLB05460

The dsldxprof command loads translate information from a file into the UID/GID translate
profiles. Each line in the file contains a row of translate information in the following
format:

UsrlOrp-name UIO Local-id Outbound-id Inbound-id Originating-node
This is the same format as the translate information from the Network Users/Groups
table (for information on Network Users/Groups, see Managing the AIX Operating
System). You must specify the UIO, Local-id, and either the Inbound-id or Outbound-id
fields. If you specify the Inbound-id field the Originating-node field must also be
specified. A - (hyphen) is placed in unused fields as a placeholder.

dsldxprof reads a row of data from the file, validates the data, and loads the data into
profiles. Translate rows are rejected due to improper syntax or incorrect values, or they
may conflict with translate rows already in the profiles. A translate row is in conflict if
there is an existing row in the profiles with a matching UIO, LocaLid, Inbound-id, and
Originating-node, or if there is an existing row in the profiles with a matching UIO,
LocaLid, and Outbound-id, or both. If there is conflict, you are prompted to replace or
reject the conflicting row. Rejected rows are written to standard error along with the
information on why they are rejected.

To delete a translate row from the profiles, precede an identical row in the file with ##.

To use dsldxprof command, you must be a member of the system group or have superuser
authority (see "su" on page 724).

272.2 Commands Reference

I Flags

TNL SN20-9861 (26 June 1987) to SC23-0790-0
dsldxprof

-a Places all rows that are in conflict into the profiles without prompting.

-f filename Reads translate information from filename.

-n nodename Updates translate profiles on the remote node nodename.

-r Rejects all conflicting rows without prompting.

I Related Information

"Using Distributed Services" in Managing the AIX Operating System.

Commands 272.3

TNL SN20-9861 (26 June 1987) to SC23-0790-0
dsstate

,dsstate

,Purpose

Sets the state of the Distributed Services kernel logic.

,Syntax

dSSIQle-(V onfX 0#
-c s -0 - b -s _ s

e a e

01,805462

, Description

,Flags

The dsstate command changes the state of the Distributed Services kernel logic, including
the number of kernel processes allocated for Distributed Services, whether incoming and
outgoing remote requests are allowed, and where temporary storage takes place. Only
members of the system group or users operating with superuser authority can use dsstate
to change the state of the Distributed Services kernel logic (see "su" on page 724). Other
users can use dsstate with no flags to write to the standard output the current state of the
Distributed Services kernel logic.

-c s Starts client sync, which forces all files for which this node is the client to be
written directly to the server, preventing caching (temporary storage) of the
file contents at the client. Starting client sync often affects the performance of
file operations, and is used primarily for certain system startup and shutdown
routines.

-c e Ends client sync and allows some data to be stored at the local node.

272.4 Commands Reference

TNL SN20-9861 (26 June 1987) to SC23-0790-0
dsstate

-a b Breaks all connections with remote nodes and blocks new requests for remote
file services.

-a a Allows requests from this client node for remote file services.

-s s Starts server sync, which forces all files for which this node is the server to be
written directly to the server, preventing caching (temporary storage) of the
file contents at the client node. Starting server sync often affects the
performance of file operations, and is used primarily for certain system startup
and shutdown routines.

-s e Ends server sync and allows some data to be stored at the client node.

-s b Blocks all requests for file services from other nodes, including both new
requests and requests for files already in use.

-s a Allows this server to accept requests for file services from other nodes.

-k Starts the Distributed Services kernel processes.

-p number Sets the number of active Distributed Services kernel processes to number. If
number is greater than the number of kernel processes allocated for
Distributed Services, then those that are available are activated. If number is
o or a negative value, the number of kernel processes is not changed.

By adjusting the number of active Distributed Services kernel processes, the
rate at which services are provided to remote nodes can be varied. Lowering
the number of active Distributed Services kernel processes lowers remote use
of this node's processor, leaving more system resources for local use.

Note: The Distributed Services kernel processes must have been started with
a -k flag on either this dsstate command or an earlier dsstate command.

I Related Information

The dsstate system call in AIX Operating System Technical Reference.

"Using Distributed Services" in Managing the AIX Operating System.

Commands 272.5

TNL SN20-9861 (26 June 1987) to SC23-0790-0
dsxlate

Idsxlate

I Purpose

Installs Distributed Services UID/GID translate tables into the kernel.

I Syntax

dsxlate~

I Description

OLB05463

The dsxlate command installs Distributed Services UID/GID translate tables. dsxlate is
usually called, at system startup, by /ete/re.ds to update the kernel. To use dsstate
command from the command line, you must be a member of the system group or have
superuser authority (see "su" on page 724).

dsxlate ensures that the Distributed Services kernel tables reflect the current profiles. All
existing Distributed Services kernel information is discarded.

I Related Information

The following commands: "ipetable" on page 414.1, "ndtable" on page 506.1, and
"ugtable" on page 784.

The loadtbl system call in AIX Operating System Technical Reference.

"Using Distributed Services" in Managing the AIX Operating System.

272.6 Commands Reference

du

du

Purpose

Summarizes disk usage.

Syntax

du ----G =~ =~ 0-G file 1)-< 1] [T 1] directory: rr
0L805113

Description

Flags

The du command gives the number of blocks in all files and (recursively), directories
within each specified directory. By specifying the -a flag, you can also have du report the
number of blocks in individual files. The block count includes the indirect blocks of each
file and is in units of 512 bytes, independent of the cluster size used by the system. If you
provide no file or directory name, du uses the current directory.

Note: If you do not specify the -a flag, du does not report on any files.

If there are too many distinct linked files, du counts the excess files more than once.

Block counts are based only on file size; therefore, unallocated blocks are not
accounted for in the block counts reported.

-a Displays disk use for each file.

-1 Allocates blocks in files with multiple links evenly among the links. By default, a file
with two or more links is counted only once.

-r Indicates inaccessible files and directories.

-8 Displays only the grand total (for each of the specified files or directories given).

Commands 273

du

Examples

1. To summarize the disk usage of a directory tree and each of its subtrees:

du /u/fran

For /u/fran and each of its subdirectories, this displays the number of disk blocks
that the files in the tree beneath it contain.

2. To display the disk usage of each file:

du -a /u/fran
This displays the number of disk blocks contained in each file and subdirectory of
/u/fran. The number beside a directory is the disk usage of that directory tree. The
number beside a regular file is the disk usage of that file alone.

3. To display only the total disk usage of a directory tree:

du -rs /u/fran

This displays only the sum total disk usage of /u/fran and the files it contains (-s).
The - r flag tells du to display an error message if it cannot read a file or directory.

274 Commands Reference

dump

TNL SN20-9861 (26 June 1987) to SC23-0790-0
dump

Purpose

Dumps selected parts of an object file.

Syntax

dump

-zname

1 Do not put a space between these items.

2 Use -p only with -c, or -0 .

3 Do not use -v with -5 or -0 .

OL805404

Description

Flags

The dump command dumps selected parts of the specified file. dump accepts object files,
archive object files, and executable files (with the -x flag). It writes information in
character, hexadecimal, octal, or decimal representation, as appropriate to format the
information in a meaningful way.

You must use at least one of the following flags:

-a

-b

-c

Dumps the archive header of each member of each specified archive.

Dumps the shared library key.

Dumps the string table.

Commands 275

dump

-d

-g

-I

-0

-r

-s

-t

-x

Dumps the contents of the data section.

Dumps the global symbols in the archive symbol table.

Dumps line number information.

Dumps each optional header.

Dumps relocation information.

Dumps the contents of the object file section.

Dumps symbol table entries.

Dumps the object module extended header from executable files. The
extended header contains the table of shared libraries that the program
uses.

The following optional flags are also available:

-p Does not print the headers.

-tnum Dumps only the index symbol table entry specified with num. Use -t with
the + t flag to specify a range of symbol table entries.

+ tnum Dumps the symbol table entry in the range that ends with num. The range
starts at either the first symbol table entry or at the entry specified by -to

-u Underline the name of the file.

-v Dumps the information in symbolic representation rather the numeric.
You can use this with any of the above flags except -s or -0.

-zname[,num] Dumps line number entries for name function or a range of line number
entries that starts at the specified number. You can use a blank to replace
the comma that separates name and num if the entire argument is quoted.

+ znum Dumps all line numbers up to num.

Related Information

The following commands: "ar" on page 58, "nm" on page 521, "shlib" on page 660, and
"size" on page 665.

The a.out and ar files in A/X Operating System Technical Reference.

276 Commands Reference

dumpfmt

dumpfmt

Purpose

Formats the VRM dump file.

Syntax

~/deV/f~a ;y
dumpfmt -5

file
-h

0L805109

Description

Flags

The dumpfmt command formats a file containing VRM dump structures. If you do not
specify a file name, the system reads data from /dev/fdO.

By default, dumpfmt is an interactive utility program. To see the list of commands
available for selecting a specific structure to format, enter a 1. To quit, enter q.

-a Batches the output and formats the entire diskette.

-b Includes a Dump Data Header. This header contains general information about data
on the dump diskette: the module name of the component, the data address of the
module containing the component, and the offset address within the module of the
component.

-n Does not display a prompt when the screen fills with data during interactive output.

-8 Limits the output of each structure to a maximum size of 32 bytes.

Related Information

The discussion of dumpfmt in AIX Operating System Programming Tools and Interfaces.

Commands 277

echo

echo

Purpose

Writes its arguments to standard output.

Syntax

echo T string r
OL805115

Description

The echo command writes its arguments to standard output. strings are separated by
blanks and a new-line character follows the last string. Use echo to produce diagnostic
messages in command files and to send data into a pipe.

The echo command recognizes the following escape conventions:

\b Display a backspace character.

\c Suppress the new-line character.

\f Display a form-feed character.

\n Display a new-line character.

\r Display a carriage return character.

\t Display a tab character.

\ \ Display a backslash character.

\num Display an 8-bit character. whose ASCII value is the 1-, 2-or 3-digit octal number
num. The first digit of num must be a zero.

Examples

1. To write a message to standard output:

echo Please insert diskette ...

278 Commands Reference

2. To display a message containing special characters:

echo "\n\n\nIlm at lunch.\nIlll be back at 1:00. 11

This skips three lines and displays the message:

Ilmatlunch.
1111 be back at 1:00.

echo

Note: You must quote the message if it contains escape sequences like \n. Otherwise,
the shell treats the \ specially. See page 641 for details about quoting.

3. To use echo with pattern-matching characters:

echo The back-up files are: *.bak

This displays the message The back-up fi 1 es are: followed by the file names in the
current directory ending with. bak.

4. To add a single line of text to a file:

echo Remember to set the shell search path to $PATH. »notes

This adds the message to the end of the file notes after the shell substitutes the value
of the shell variable PATH.

5. To write a message to the standard error output:

echo Error: file already exists. >&2

Use this in shell procedures to write error messages. If the >&2 is omitted, then the
message is written to the standard output. For details about this type of file
redirection, see "Input and Output Redirection Using File Descriptors" on page 651.

Related Information

The following command: "sh" on page 637.

Commands 279

ed

ed

Purpose

Edits text by line.

Syntax

01..805182

Description

The ed command is a line editing program that works on only one file at a time by copying
it into a temporary file buffer and making changes to that copy. ed does not alter the file
itself until you use the write subcommand. You can specify on the command line the file
you want to edit, or you can use the edit subcommands. If you specify a - (minus) on the
command line, ed does not display character counts with the e, r, or w subcommands,
diagnostic messages with the e or q subcommands, or the ! prompt after a !AIX-cmd.

When ed reads a new file into the buffer, the contents of that file replaces the buffer's
previous contents, if any.

There is also a restricted version of ed, the red command, for use withth~ restricted shell
(see "sh" on page 637). With red, you can edit only files that reside in the current
directory, or in the /tmp directory, and you cannot use the !AIX-cmd subcommand (see
page 290).

An ed subcommand consists of zero, one, or two addresses, followed by a single-character
subcommand, possibly followed by parameters to that subcommand. These addresses
specify one or more lines in the buffer. Because every subcommand has default addresses,
you frequently do not need to specify addresses.

The ed program operates in one of two modes, command mode and text mode. In
command mode, ed recognizes and executes subcommands. In text mode, ed adds text to
the file buffer but does not recognize subcommands. To leave text mode, enter a . (dot)
alone at the beginning of a line.

280 Commands Reference

/'

ed

Pattern Matching

The ed command supports a limited form of special pattern-matching characters that
you can use as regular expressions (REs) to construct pattern strings. You can use
these patterns in addresses to specify lines and in some subcommands to specify portions of
a line.

Regular Expressions (REs)
The following REs match a single character:

char An ordinary character (one other than one of the special pattern-matching
characters), matches itself.

A period (.) matches any single character except for the new-line character.

[string] A string enclosed in square brackets ([]) matches anyone character in that
string. Certain pattern-matching characters have special meanings within
square brackets:

A If the first character of string is a circumflex, then the RE ([A string])
matches any character except the characters in string and the
new-line character. A A has this special meaning only if it occurs
first in the string.

You can use a minus (-) to indicate a range of consecutive ASCII
characters according to the current collating sequence. For example,
[a-f] might be equivalent to [abcdef] or [aAbBcCdDeEfFJ or
[aaabcdeeefJ. The collating sequence is defined by the environment
variable NLCTAB or NLFILE. See Managing the A/X Operating
System for more information. A collating sequence may define
"equivalence classes" for characters. For example, if three
characters-e, e, and e-are equivalent, the following expressions
identify the same sequence of characters:

[a-e]
[a-e]

The minus character loses its special meaning if it occurs first
([-string]), if it immediately follows an initial circumflex ([A-string]), or
if it appears last ([string-]) in the string.

When the right square bracket (]) is the first character in the string
([]string]) or when it immediately follows an initial circumflex
([A]string]), it is treated as a part of the string rather than as the
string terminator.

\sym A \ (backslash) followed by a special pattern-matching character matches the
special character itself (as a literal character). These special pattern-matching
characters are:

Commands 281

ed

. * [\
1\

$

Always special except when they appear within square brackets ([D.

Special at the beginning of an entire pattern or when it immediately
follows the left bracket of a pair of brackets ([1\ ••• D.
Special at the end of an entire pattern.

In addition, the character used to delimit an entire pattern is special for that
pattern. (For example, see how slash (/) is used in the g subcommand on page
286.)

Forming Patterns
The following rules describe how to form patterns from REs:

1. An RE that consists of a single, ordinary character matches that same character in a
string.

2. An RE followed by an asterisk (*) matches zero or more occurrences of the character
that the RE matches. For example, the following pattern:

ab*ed
matches each of the following strings:

aed
abed
abbed
abbbed
but not the following string:

abd
If there is any choice, the longest matching leftmost string is chosen. For example,
given the following string:

122333444

the pattern. * matches 122333444, the pattern. *3 matches 122333, and the pattern
. *2 matches 122.

3. An RE followed by:

\{m\} Matches exactly m occurrences of the character matched by the RE.

\{m,\} Matches at least m occurrences of the character matched by the RE.

\ {m,n \} Matches any number of occurrences of the character matched by the RE
from m to n inclusive.

m and n must be integers from 0 to 255, inclusive. Whenever a choice
exists, this pattern matches as many occurrences as possible.

282 Commands Reference

ed

4. You can combine REs into patterns that match strings containing that same sequence
of characters. For example, AB*CD matches the string AB*CD and [A-Za-zJ * [0-9J *
matches any string that contains any combination of alphabetic characters (including
none), followed by any combination of numerals (including none).

5. The character sequence \ (pattern\) marks a subpattern that matches the same string
it would match if it were not enclosed.

6. The characters \num match the same string of characters that a subpattern matched
earlier in the pattern (see the preceding discussion of item 5). num is a digit. The
pattern \num matches the string matched by the numth subpattern, counting from left
to right. For example, the following pattern:

\ (A\) \ (B\) C\2\1

matches the string ABCBA. You can nest subpatterns.

Restricting What Patterns Match
A pattern 'can be restricted to match only the first segment of a line, the final segment, or
both:

1. A 1\ (circumflex) at the beginning of a pattern causes the pattern to match only a
string that begins in the first character position on a line.

2. A $ (dollar sign) at the end of a pattern causes that pattern to match only a string that
ends with the last character (not including the new-line character) on a line.

3. The construction 1\ pattern $ restricts the pattern to matching only an entire line.

In addition, the null pattern (that is, / /) duplicates the previous pattern.

Addressing

The current line, usually the last line affected by a command, is the point of reference in
the buffer. ed always has a current line. This is the default address for several ed
commands. (See "Subcommands" on page 285 to find out how each subcommand affects
the current line.)

There are three types of ed addresses: line number addresses, addresses relative to the
current line, and pattern addresses. Following are guidelines for constructing addresses:

1. . (dot) addresses the current line.

2. $ (dollar sign) addresses the last line of the buffer.

3. n addresses the nth line of the buffer.

4. ' x addresses the line marked with a lowercase ASCII letter, x, by the k subcommand
(see page 287).

Commands 283

ed

5. /pattern/ (a pattern enclosed in slashes) addresses the next line contains a matching
string. The search begins with the line after the current line and stops when it finds a
match for the pattern. If necessary, the search moves to the end of the buffer, wraps
around to the beginning of the buffer, and continues until it either finds a match or
returns to the current line.

6. ?pattern? (a pattern enclosed in question marks) addresses the previous line that
contains a match for the pattern. The? pattern? construct, like /pattern/, can search
the entire buffer, but it does so in the opposite direction.

7. An address followed by + n or -n (a plus sign or a minus sign followed by a decimal
number) specifies an address plus or minus the indicated number of lines. (The + sign
is optional.)

8. An address that begins with + or - specifies a line relative to the current line. For
example, - 5 is the equivalent of . - 5 (five lines above the current line).

9. An address that ends with - or + specifies the line immediately before (-) or
immediately after (+) the addressed line. Used alone, the - character addresses the
line immediately before the current line. The + character addresses the line
immediately after the current line; however, the + character is optional. The + and­
characters have a cumulative effect; for example, the address -- addresses the line two
lines above the current line.

10. For convenience, a , (comma) stands for the address pair 1, $ (first line through last
line) and a ; (semicolon) stands for the pair. ,$ (current line through last line).

Commands that do not accept addresses regard the presence of an address as an error.
Commands that do accept addresses can use either given or default addresses. When given
more addresses than it accepts, a command uses the last (rightmost) one(s).

In most cases, commas (,) separate addresses (for example 2,8). Semicolons (;) also can
separate addresses. A semicolon between addresses causes ed to set the current line to the
first address and then calculate the second address (for example, to set the starting line for
a search based on rules 5 and 6 above). In a pair of addresses, the first must be
numerically smaller than the second.

For many purposes, you may prefer to use a different editor that has different features:

"edit" on page 292, a simple line editor for novice or casual users
"sed" on page 629, a stream editor often used for writing programs
"ex" on page 312, an extended (line) editor with numerous interactive subcommand
features
"vi, vedit, view" on page 832, a visual (screen) editor that also accesses ex line editing /'
features while letting you view the text.

284 Commands Reference

The following is a list of ed size limitations:

• 64 characters per file name.
• 512 characters per line (although there is currently a system-imposed limit of 255

characters per line entered from the keyboard).
• 256 characters per global subcommand list.
• 128K characters buffer size. (Note that the buffer not only contains the original file

but also editing information. Each line occupies one word in the buffer.)

ed

In addition, the maximum number of lines permitted also depends on the amount of
memory available to you. The maximum file size depends on the amount of physical data
storage (disk or tape drive) available or on the maximum number of lines permitted in user
memory.

Subcommands

In most cases, only one ed subcommand can be entered on a line. The exceptions to this
rule are the p and 1 subcommands, which can be added to any ed command except e, f, r,
orw.

The e, f, r, and w subcommands accept file names as parameters. The ed program stores
the last file name used with a subcommand as a default file name. The next e, f, r, or w
given without a file name uses the default file name.

The ed program responds to an error condition with one of two messages: ? (question
mark) or ? file.

When ed receives an INTERRUPT signal (Alt-Pause), it displays a ? and returns to
command mode.

When it reads a file, ed discards ASCII NULL characters and all characters after the last
new-line character. ed cannot edit a file that contains characters not in the ASCII set (for
example, an a.out file with bit 8 set on).

Note: In the following list of ed subcommands, default addresses are shown in
parentheses. (Do not key in the parentheses.) The address. (period) refers to the current
line.

(.)a
<text>

The append subcommand adds text to the buffer after the
addressed line. The a subcommand sets the current line to the
last inserted line, or, if no lines were inserted, to the addressed
line. Address 0 causes the a subcommand to add text at the
beginning of the buffer.

Commands 285

ed

(.)c
< text>

(.,.)d

e file

E file

f [file]

The change subcommand deletes the addressed lines, then
replaces them with new input. The c command sets the
current line to the last new line of input, or, if there were
none, to the first line that was not deleted.

The delete subcommand removes the addressed lines from the
buffer. The line after the last line deleted becomes the current
line. If the deleted lines were originally at the end of the
buffer, the new last line becomes the current line.

The edit subcommand first deletes any contents from the
buffer, then loads another file into the buffer, sets the current
line to the last line of the buffer, and displays the number of
characters read in to the buffer. If the buffer has been changed
since its contents were last saved (with the w subcommand), e
displays? before it clears the buffer.

The e subcommand stores file as the default file name to be
used, if necessary, by subsequent e, r, or w subcommands. (See
the f subcommand.)

When the ! character replaces file, e takes the rest of the line
as a AIX shell (sh) command and reads the command output.
The e subcommand does not store the name of the shell
command as a default file name.

The Edit subcommand works like e, with one exception: E
does not check for changes made to the buffer since the last w
subcommand.

The file name subcommand changes the default file name (the
stored name of the last file used) to file, if file is given. If file is
not given-,-the-fsuhcomm-arni-prints-the default file name.

(1, ?)g/pattern/subcmd-list The global subcommand first marks every line that matches
the pattern. Then, for each marked line, this subcommand sets
the current line to that line and executes subcmd-list. A single
subcommand, or the first subcommand of a list, should appear
on the same line with the g subcommand; subsequent
subcommands should appear on separate lines. Except for the
last line, each of these lines should end with a \.

The subcmd-list can include the a, i, and c subcommands and
their input. If the last command in subcmd-list would normally
be the. (dot) that ends input mode, the. (dot) is optional. If
there is no subcmd-list, ed displays the current line. The
subcmd-list cannot include the g, G, v, or V subcommands.

286 Commands Reference

/'

(1, ?)G/pattern/

h

H

(.)i
< text>

(.,. + l)j

(.)kx

(.,.)1

ed

Note: The g subcommand is similar to the v subcommand,
which executes subcmd-list for every line that does not contain
a match for the pattern.

The interactive Global subcommand first marks every line that
matches the pattern, then displays the first marked line, sets
the current line to that line, and waits for a subcommand. G
accepts any but the following ed subcommands: a, c, i, g, G, v,
and V. After the subcommand finishes, G displays the next
marked line, and so on. G takes a new-line character as a null
subcommand. An:& causes G to execute the previous
subcommand again, if there was one. Note that subcommands
executed within the G subcommand can address and change
any lines in the buffer. The G subcommand can be terminated
by pressing INTERRUPT (Alt-Pause).

The help subcommand gives a short explanation (help message)
for the most recent? diagnostic or error message.

The Help subcommand causes ed to display the help messages
for all subsequent? diagnostics. H also explains the previous
? if there was one. H alternately turns this mode on and off; it
is initially off.

The insert subcommand inserts text before the addressed line
and sets the current line to the last inserted line. If there no
lines are inserted, i sets the current line to the addressed line.
This subcommand differs from the a subcommand only in the
placement of the input text. Address 0 is not legal for this
subcommand.

The join subcommand joins contiguous lines by removing the
intervening new-line characters. If given only one address, j
does nothing. (For splitting lines, see the s subcommand.)

The mark subcommand marks the addressed line with name x,
which must be a lowercase ASCII letter. The address IX (single
quotation mark before the marking character) then addresses
this line. The k subcommand does not change the current line.

The list subcommand displays the addressed line(s). The 1
subcommand wraps long lines and, unlike the p subcommand,
represents non-printing characters, either with mnemonic
overstrikes or in octal notation. An 1 subcommand may be
appended to any ed subcommand except: e,f,r, or w.

Commands 287

ed

(.,.)ma

(.,.)n

(.,.)p

P

q

Q

(?)r file

(.,.)s/pattern/replacement/

The move subcommand repositions the addressed line(s). The
first moved line follows the line addressed by a. Address 0 for
a causes m to move the addressed line(s) to the beginning of
the file. Address a cannot be one of the lines to be moved.
The m subcommand sets the current line to the last moved
line.

The number subcommand displays the addressed lines, each
preceded by its line number and a tab character (displayed as
blank spaces); n leaves the current line at the last line
displayed. An n subcommand may be appended to any ed
subcommand except e, f, r, or w.

The print subcommand displays the addressed line(s) and sets
the current line set to the last line displayed. A p
subcommand may be appended to any ed subcommand except:
e, f, r, or w. For example, the subcommand dp deletes the
current line and displays the new current line.

The P subcommand turns on or off the ed prompt string *
(asterisk). Initially, P is off.

The quit subcommand exits the ed program. Before ending the
program q checks to determine whether the buffer has been
written to a file since the last time it was changed. If not, q
displays the? message.

The Quit subcommand exits the ed program without checking
for changes to the buffer since the last w subcommand
(compare with the q subcommand).

The read subcommand reads a file into the buffer after the
addressed line; r does not delete the previous contents of the
buffer. When entered without file, r reads the default file, if
any, into the buffer (see e and f subcommands). r does not
change the default file name. Address 0 causes r to read a file
in at the beginning of the buffer. After it reads a file
successfully, r, displays the number of characters read into the
buffer and sets the current line to the last line read. If!
(exclamation point) replaces file in a r subcommand, r takes
the rest of the line as a AIX shell (sh) command whose output
is to be read. The r subcommand does not store the names of
shell commands as default file names.

(.,.)s/pattern/replacement/g The substitute subcommand searches each addressed line for a
string that matches the pattern and then replaces the string
with the specified replacement string. Without the global

288 Commands Reference

/'

(.,.)ta

u

ed

indicator (g), s replaces only the first matching string on each
addressed line. With the g indicator, s replaces every
occurrence of the matching string on each addressed line. If s
does not find a match for the pattern, it returns the error
message? Any character except a space or a new-line
character can separate (delimit) the pattern and replacement.
The s subcommand sets the current line to the last line
changed.

An ampersand (&) in the replacement string is a special symbol
that has the same value as the pattern string. So, for example,
the subcommand s/are/&n't/ has the same effect as the
subcommand s/are/aren'tl and replaces are with aren't on
the current line. A backslash before the ampersand (\&)
removes this special meaning of & in replacement.

A subpattern is part of a pattern enclosed by the strings \(and
\); the pattern works as if the enclosing characters were not
present. In replacement, the characters \n refer to strings that
match subpatterns; n, a decimal number, refers to the nth
subpattern, counting from the left. (for example, s/\(t\)\(h\)
\(e\)/t\l \2ose) replaces the with those if there is a match for
the pattern the on the current line). Whether subpatterns are
nested or in a series, \n refers to the nth occurrence, counting
from the left, of the delimiting characters, \).

The % (percent sign) character, when used by itself as
replacement, causes s to use the previous replacement again.
The % character does not have this special meaning if it is part
of a longer rep lacement or if it is preceded by a \.

Lines may be split by substituting new-line characters into
them. In replacement, the sequence \Enter quotes the new-line
character (not displayed) and moves the cursor to the next line
for the remainder of the string. New-lines cannot be
substituted as part of a g or v subcommand list.

The transfer subcommand inserts a copy of the addressed lines
after address a. The t subcommand accepts address 0 (for
inserting lines at the beginning of the buffer). The t
subcommand sets the current line to the last line copied.

The undo subcommand restores the buffer to the state it was in
before it was last modified by an ed subcommand. The
commands that u can undo are: a, c, d, g, G, i, j, m, r, s, t, v,
and V.

Commands 289

ed

(1, ?)v/pattern/subcmd-list The v subcommand executes the subcommands in subcmd-list
for each line that does not contain a match for the pattern.

Note: The v subcommand is a complement for the global
subcommand g, which executes subcmd-list for every line that
does contain a match for the pattern.

(l,$)V /pattern/ / The V subcommand first marks every line that does not match
the pattern, then displays the first marked line, sets the
current line to that line, and waits for a subcommand.

Note: The V subcommand complements the G subcommand,
which marks the lines that do match the pattern.

(1, ?)w file The write subcommand copies the addressed lines from the
buffer to the file named in file. If the file does not exist, the w
subcommand creates it with permission code 666 (read and
write permission for everyone), unless the umask setting
specifies another file creation mode. (For information about
file permissions, see "umask" on page 784 and "chmod" on
page 128.) The w subcommand does not change the default file
name (unless file is the first file name used since you started
ed). If you do not provide a file name, ed uses the default file
name, if any (see the e and f subcommands). The w
subcommand does not change the current line.

($)=

!AIX-cmd

If ed successfully writes the file, it displays the number of
characters written. When ! replaces file, ed takes the rest of
the line as a ArX shell (sh) command whose output is to be
read; w does not save shell command names as default file
names.

Note: 0 is not a legal address for the w subcommand.
Therefore, it is not possible to create an empty file with ed.

Without an address, the = (equal sign) subcommand displays
the current line number. With the address $, = displays the
number of the last line in the buffer. The = subcommand does
not change the current line and cannot be included in a g or v
subcommand list.

The! (exclamation point) subcommand allows ArX commands
to be run from within ed. Anything following! on an ed
subcommand line is interpreted as an ArX command. Within
the text of that command string, ed replaces the unescaped
character % with the current file name, if there is one.

When used as the first character of a shell command (after the
! that runs a subshell) ed replaces the ! character with the

290 Commands Reference

/

Files

num
+num
-num

/tmpje#
ed.hup

ed

previous AIX command; for example, the command !! repeats
the previous AIX command. If the AIX command interpreter
(the sh command), expands the command string, ed echoes the
expanded line. The! subcommand does not change the
current line.

ed interprets a number alone on a line as an address and
displays the addressed line. Addresses can be absolute (line
numbers or $) or relative to the current line (+num or - num).
Entering a new-line character (a blank line) is equivalent to
+ Ip and is useful for stepping forward through the buffer one
line at a time.

Temporary file; # is the process number.
Work is saved here if the terminal hangs up while ed is running.

Related Information

The following commands: "grep" on page 381, "sed" on page 629, "sh" on page 637,
"stty" on page 717, and "regcmp" on page 595.

The regexp system call in AIX Operating System Technical Reference.

The environment miscellaneous facility in Text Formatting Guide.

The discussion and examples of ed in Using the AIX Operating System.

The "Overview of International Character Support" in Managing the AIX Operating
System.

Commands 291

edit

edit

Purpose

Provides a simple line editor for the new user.

Syntax

edit ~ file ----'
~-r~

0L805329

Description

Warning: The edit command does not support international characters.
If you use this command to edit a file that contains extended characters,
you can lose data.
The edit command provides a line editor designed for beginning users. It is a simplified
version of the ex command (see "ex" on page 312). To edit the contents of a file, enter:

edi t file

If file is the name of an existing file, edit copies it to a buffer and displays the number of
lines and characters in it. Then it displays a colon prompt (:) to show that it is ready to
read subcommands from standard input. If file does not already exist, edit tells you this,
but still stores the name as the current file name. You can give more than one file name,
in which case edit copies the first file into its buffer and stores the remaining file names in
an argument list for later use.

The edit command operates in one of two modes: command mode and text entry mode.
In command mode, edit displays the colon prompt to show you that it is ready to accept
edit subcommands. In text entry mode, edit places all input into its editing buffer. The
general format of an edit subcommand is as follows:

[addr]subcommand [parameters] [count]

If you do not specify an address, edit works on the current line. If you add a numeric
count to most subcommands, edit works on the specified number of lines.

For most subcommands, the last line affected becomes the new current line. That means,
for example, that after edit reads a file into its buffer, the last line in the file becomes the
current line. addr can be a line number or a pattern to be matched or, in some cases, a
range of line numbers or patterns. To specify a range, separate two line numbers or

292 Commands Reference

edit

patterns with a comma or a semicolon (for example, 1,5 or 1 ; 5). In a range, the second
address must refer to a line that follows the first addressed line in the range.

Addressing Lines Within a File

The simplest way to address a line within a file is to use its line number. But this can be
unreliable because line numbers change when you insert and delete lines. edit provides a
way to search through the buffer for strings. Given the following address:

/pattern/

edit searches forward for pattern, while given:

?pattern?

it searches backwards for pattern. If a forward search reaches the end of the buffer
without finding pattern, it continues the search at the beginning of the file until it reaches
the current line. A backwards search does just the reverse.

The following characters have special meanings in these search patterns:

" Matches the beginning of a line.

$ Matches the end of a line.

Thus, you can use /" pattern/ to search for patterns at the beginning of a line, and
/pattern$/ to search for patterns at the end of the line.

The current line has a symbolic name, dot (.), and the last line in the buffer has a symbolic
name, dollar sign ($), that you can use in addresses. This is useful when working with a
range of lines. For example,

.,$print
displays all lines from the current line to the last line in the buffer. Arithmetic with line
references is also possible, so that $ - 5 refers to the fifth line from the last and . + 2 0
refers to the line 20 lines past the current line. You can also use the = (equal) command
to find out the line number of the current line or the last line, as follows:

$=

To view the next line in the buffer, press the Enter key. Press Ctrl-D to display the next
half-screen of lines.

Note: Do not confuse the meaning of $ in text patterns (end of line) with its meaning in
addresses (last line).

Commands 293

edit

Flag

U sing the ex Command

As you become more experienced with using an editor, you may still find that edit meets
your needs. If you become interested in using ex, you will find that it builds on the
commands you are already familiar with from using edit.

The edit subcommands work the same way in ex, but the editing environment is somewhat
different. You should be aware of the differences that exist between the two editors. In
edit, only the characters A, $, and \ have special meanings as pattern-matching characters.
Several additional characters have special meanings in ex, as described under "ex" on
page 312.

Another feature of the edit environment prevents you from accidentally entering two
alternative modes of editing, open mode and visual mode, in which the editor behaves
differently from normal command mode. See "vi, vedit, view" on page 832 for a full
discussion of visual mode.

-r Recovers file after an editor or system crash.

Subcommands

You can enter most edit subcommands as either a complete word or an abbreviation. In
the following list, a subcommand abbreviation appears in parentheses. Unless noted
otherwise, all subcommands work by default on the current line. edit recognizes and
interprets the following subcommands when it displays the colon prompt:

[addr]append (a)
text

Reads the input text into the file being edited, placing the text after the
line at the specified address. If you specify address 0, edit places the
text at the beginning of the buffer.

[addrl[,addr2]]change (c)
text

Replaces the specified line or lines with the input text. If any lines are
input, the last input line becomes the new current line.

[addr 1 [,addr2]]delete [buffer] (d)
Removes the specified line or lines from the editing buffer. The line
following the last deleted line becomes the current line. If you specify a
buffer by giving a letter from a to z, edit saves the specified lines in that
buffer or, if the letter is uppercase, appends the lines to that buffer.

294 Commands Reference

/

edit file (e)

file (f)

file file

edit

Begins an editing session on a new file. The editor first checks to see if
the buffer has been modified (edited) since the last write subcommand.
If it has, edit issues a warning and cancels the edit subcommand.
Otherwise, it deletes the complete contents of the editor buffer, makes
the named file the current file, and displays the new file name. After
insuring that this file can be edited, it reads the file into its buffer. If
edit reads the file without error, it displays the number of lines and
characters that it read. The last line read becomes the new current line.

Displays the current file name along with the following information
about it:

• Whether it has been modified since the last write.
• What the current line is.
• How many lines are in the buffer.
• What percentage of the way through the buffer the current line is.

Changes the name of the current file to file. edit considers this file not
edited.

[addrl[,addr2]]global/pattern/cmds (g)

[addr]insert (i)
text

Marks each of the specified lines that matches the pattern. Then edit
carries out the specified subcommands (cmds) on each marked line.

A single cmd or the first cmd in a subcommand list appears on same line
as global. The remaining cmds must appear on separate lines, where
each line (except the last) ends with a \ (backslash). The default
subcommand is print.

The list can include the append, insert, and change subcommands and
their associated input. In this case, if the ending period comes on the
last line of the command list, you may omit it. The undo subcommand
and the global subcommand itself, however, may not appear in the
command list.

Places the given text before the specified line. The last line input
becomes the current line. Otherwise, the current line does not change.

[addr 1 [,addr2]]move addr3 (m)
Repositions the specified line or lines to follow addr3. The first of the
moved lines becomes the current line.

next (n) Copies the next file in the command line argument list to the buffer for
editing.

[addr 1 [,addr2]]number (nu)
Displays each specified line or lines preceded by its buffer line number.
The last line displayed becomes the current line.

Commands 295

edit

preserve
Saves the current editor buffer as though the system had just crashed.
Use this command when a write subcommand has resulted in an error,
and you do not know how to save your work.

[addr 1 [,addr2]]print (p)
Displays the specified line or lines. The last line displayed becomes the
current line.

[addr]put buffer (pu)

quit (q)
quit! (q!)

recover file

Retrieves the contents of the specified buffer and places it after addr. If
you do not specify a buffer, edit restores the last deleted or yanked text.
Thus you can use this subcommand together with delete to move lines or
with yank to duplicate lines between files.

Ends the editing session.

Note: The quit command does not write the editor buffer to a file.
However, if you have modified the contents of the buffer since the last
write, edit displays a warning message and does not end the session. In
this case, either use the quit! subcommand to discard the buffer or write
the buffer and then quit.

Recovers file from the system save area. Use this after a system crash, or
a preserve subcommand.

[addr 1 [,addr2]]substitute/pattern/repl/ (s)
[addrl[,addr2]]substitute/pattern/repl/g

Replaces on each specified line the first instance of pattern with the
replacement pattern repl. If you add the g flag, it replaces all instances
of pattern on each specified line.

undo (u) Reverses the changes made in the buffer by the last buffer editing
subcommand. Note that global subcommands are considered a single
subcommand to an undo. You cannot undo a write or an edit.

[addrl,[addr2]]write file (w)
Writes the contents of the specified line or lines to file. The default
range is all lines in the buffer. edit displays the number of lines and
characters that it writes. If you do not specify a file, edit uses the
current file name. If file does not exist, edit creates it.

[addrl,[addr2]]yank [buffer] (ya)

[addr]z

[addr]z-

Places the specified line or lines in the named buffer (a buffer name is a
single letter from a to z).

displays a screen of text, beginning with the specified line.

Displays a screen of text, with the specified line at the bottom of the
screen.

296 Commands Reference

[addr]z.

edit

Displays a screen of text, with the specified line in the middle of the
screen.

Related Information

The following commands: "ed" on page 280, "ex" on page 312, and "vi, vedit, view" on
page 832.

Commands 297

env

env

Purpose

Sets the environment for execution of a command.

Syntax

env ---<of name~ valuer command~
OLS05117

Description

The env command lets you get and change your current environment, and then run the
named command with the changed environment. Changes in the form name = value are
added to the current environment before the command is run. If - (minus) is used, the
current environment is ignored and the command runs with only the changed environment.
Changes are only in effect while the named command is running.

If a command is not specified, env displays your current environment one name = value pair
per line.

Examples

1. To add a shell variable to the environment for the duration of one command:

TZ=tv1ST7rv1DT date
env TZ=MST7MDT date
Each of these commands displays the current date and time in Mountain Standard
Time. The two commands shown are equivalent. When date is finished, the previous
value of TZ takes effect again.

2. To replace the environment with another one:

env - PATH=$PATH IDIR=/u/jim/include LIBDIR=/u/jim/lib make

This runs make in an environment that consists only of these definitions for PATH,
I D I R, and L I BD I R. You must redefine PATH so that the shell can find the make
command.

When make is finished, the previous environment takes effect again.

298 Commands Reference

Related Information

The following command: "sh" on page 637.

The exec system call, the profile file, and the environ miscellaneous facility in AIX
Operating System Technical Reference.

env

Commands 299

eqn

eqn,neqn,checkeq

Purpose

Formats mathematical text for the nroff and troff commands.

Syntax

-dxy -pnum
-ssize -ffont

CheCkeq~
~

0L805183

Description

The eqn command is a troff preprocessor for typesetting mathematical text on a
phototypesetter. The neqn command is used with nroff for other printing devices. The
output of eqn and neqn is generally piped into troff and nroff as follows:

eqn file I troff
neqn file I nroff

If you do not specify any files or if you specify - as the last file name, the commands read
standard input. A line consisting of .EQ marks the start of equation text; the end of
equation text is marked by a line consisting of .EN. Neither of these lines is altered by the
commands, so they can be defined in macro packages to give you centering and numbering.

The program checkeq reports missing or unbalanced delimiter pairs and .EQ/.EN pairs.

For information on how to format eqn text, see Text Formatting Guide.

300 Commands Reference

/'

Flags

eqn

The eqn command recognizes the following mathematical words, and prints the associated
symbol:

above
back
bar
bold
eeol
col
epile
define
de lim
dot

dotdot
down
dyad
fat
font
from
fwd
gfont
gsize
hat

italic
leol
left
lineup
lpile
mark
matrix
ndefine
over
pile

reol to
right under
roman up
rpile vee
rpile
size "
sub {}
sup " "
tdefine
tilde

-dxy Sets x and y as one character delimiters of the text to be processed by eqn, in
addition to the .EQ and .EN macros. The text between these delimiters will be
treated as input to eqn.

-ffont

-pnum

-ssize

Note: Within a file, you can also set delimiters for eqn text using the
command delim xy. They are turned off by the command delim off. All text
that is not between delimiters or .EQ and .EN is passed through unprocessed.

Acts the same as -s for fonts. See the discussion of gfont and font in Text
Formatting Guide for information on changing font within the text.

Reduces subscripts and superscripts num points in size (the default is 3).

Changes point size in all eqn processed text to size. See the discussion of gsize
and size in Text Formatting Guide for information on changing the point size
within the text.

Related Information

The following commands: "ew, eheekew" on page 213, "mm, eheekmm" on page 492,
"mmt, eheekmm" on page 495, "nroft' on page 525, and "troft' on page 526.

The eqnehar and mv miscellaneous facilities in AIX Operating System Technical
Reference.

The discussion of eqn in Text Formatting Guide.

Commands 301

errdead

errdead

Purpose

Extracts error records from dump.

Syntax

-c/unix=r
errdead - dumpfile

kernel-image
OL805120

Description

Files

When the system detects a hardware error, it produces an error record containing
information pertinent to the error. If errdemon, the error-logging demon, is not running
or if the system crashes before it can place the record in the error file, the system holds the
error information in a local buffer. errdead examines a system dump (or memory),
extracts the error records, and passes them to errpt to generate a report. Note that no
analysis is available because these error entries were never sent back via the errdemon.

The dumpfile parameter specifies the file (or memory) to be examined. The kernel-image
parameter specifies the system name list, by default /unix.

/unix
/usr /bin/ errpt
/usr/tmp/err*

System kernel image.
Analysis program.
Temporary file.

Related Information

The following command: "errpt, errpd" on page 305.

The discussion of errdead in AIX Operating System Programming Tools and Interfaces.

302 Commands Reference

errdemon

Purpose

Starts the error-logging demon.

Syntax

/usr /lib/errdemon --11

1 This command is not usually
run from the command line.

Description

errdemon

OLB05118

The error-logging demon errdemon collects error records from the operating system by
reading the special file /dev/error and places them in one of two error log files.
errdemon creates the names of the two log files by adding a .0 and .1 to the end of the file
name found in /etc/rasconf. If an error log file does not already exist, errdemon c-reates
one.

The errdemon command adds error records to the first error log file until it reaches the
maximum allowable length specified in /etc/rasconf. At that point, errdemon closes the
first error log file, changes the file name from filename.O to filename.l, and opens a new
filename.O. Thus, the newest error records are always in filename.O. When it is full,
err demon overwrites the first file.

You can stop the error-logging demon by sending it a SIGKILL signal (see "errstop" on
page 309). Normally, the /etc/rc command file runs errdemon at system start up. Only a
user operating with superuser authority can start errdemon, and only one demon may be
active at any time.

If errdemon is unable to log an error, it logs it in abbreviated form in /dev/nvram. Just
one error can be logged in /dev/nvram, so each subsequent error overwrites any previous
entries. When the system is started, errdemon searches for a previously written entry in
/dev/nvram and, if a record is found, records it in one of the error log files and clears
/dev/nvram.

Commands 303

errdemon

Files

/dev/error
/dev/nvram
/ etc/rasconf
/etc/rc
/usr / adm/ras/ errfile *

Source of error records.
Non-volatile read-only memory.
Configuration file.
System startup file.
Repository for error records.

Related Information

The following commands: "errpt, errpd" on page 305, "errstop" on page 309, and "kill"
on page 422.

The error and nvram files in A/X Operating System Technical Reference.

A/X Operating System Programming Tools and Interfaces.

304 Commands Reference

,/

errpt

errpt, errpd

Purpose

Processes a report of logged errors.

Syntax

errpt
date

-e date
-0
-n node
-v vmid
-d list

0L805410

Description

Flags

The errpt command reads a specified error file or files, processes the data, and writes a
report of that data to standard output. These error files should be named file.O or file.I,
but do not include the .0 or .1 extension when you specify the file name argument. errpt
adds the extension. If you do not specify a file name, errpt uses the file listed in
/etc/rasconf, adding the .0 and .1 extensions (these are usually /usr/adm/ras/errfile.O
and /usr/adm/ras/errfile.I). The default report is a summary of all errors posted in the
named file, as well as system information events, such as time changes, system starts, and
so on.

The errpt command pipes error entries through the program /usr/lib/errpd, which adds
probable cause information to certain entries. If no probable cause information is added,
errpt logs records exactly as it receives them.

-a

-d list

Produces a detailed report. This contains specific error information for
every event that errpt formats.

Limits the report to certain types of error records as defined by list. The
list items can either be separated by commas or enclosed in double
quotation marks and separated by commas or blanks. See "Error
Identifiers" on page 306 for the valid list values.

Commands 305

errpt

-e date Includes all records posted earlier than date, where date has the form
MMddhhmmyy (month, day, hour, minute and year).

-n nodename Includes only entries in the error report from the specified nodename.

-8 date Includes all records posted later than date, where date has the form
MMddhhmmyy.

-v vmid Includes only entries in the error report from the system name specified
with vmid.

Error Identifiers

In the following error identifiers, 0 acts as a wildcard character, such that, for example,
HOO gives you all hardware errors (Hll to HFF), and HI0 gives you all errors from Hll to
HIF, and so on.

1. Class

HOO = Hardware (01)
SOO = Software (02)
IOO = IPL/Shutdown (03)
GOO = General System Condition (04)
UOO = User Defined, Non-Hardware

2. Class/Subclass

HI0 = Hardware/Processor and Memory Management Card Machine Check
HII = Hardware/Main Processor
HI2 = Hardware/Main Memory
H20 = Hardware/Fixed Disk Drive and Adapter
H30 = Hardware/Diskette Drive and Adapter
H40 = Hardware/Tape and Adapter
H50 = Hardware/Display Station
H5I = Hardware/5080 Display Adapter
H52 = Hardware/ AP A16 Display Adapter
H60 = Hardware/Display Station Adapter
H70 = Hardware/Keyboard/Mouse
H80 = Hardware/Communication Adapters
H8I = Hardware/RS232 Multi-port
H84 = Hardware/Serial or Serial/Parallel
H85 = Hardware/IBM PC Network Adapter
H86 = Hardware/RS422 Multi-port
H87 = Hardware/Native Serial I/O
H8E = Hardware/SSLA
H90 = Hardware/Parallel Printer and Adapter
H9I = Hardware/Parallel or Serial/Parallel
H92 = Hardware/Parallel or PC Monochrome
HAO = Hardware/Printers

306 Commands Reference

TNL SN20-9861 (26 June 1987) to SC23-0790-0
errpt

HFO

HFF = User Defined Hardware

S10 = Software/Processor and Memory Management Card Program Check
S20 = Software/Abend
S21 = Software/Abend dump taken
S22 = Software/Abend No dump taken
S30 = Software/Program Error A1X
S33 = Software/Program Error A1X Kernel
S40 = Software/Program Error A1X Device Driver
S42 = Software/5080 Display Device Driver
S50 = Software/Program Error A1X Device Driver
S60 = Software/Program Error VRM Base
S61 = Software/Program Error VRM Attach Device
S70 = Software/Program Base VRM Component
S72 = Software/Program Base VRM Component - Virtual Terminal
S74 = Software/5080 Display VRM Device Driver
S75 = Software/5080 Peripherals VRM Device Driver Manager
S80 = Software/Program Error Application
S80 = Software/Program Error Application - Error Log Analysis
S80 = Software/Program Error Application - Interactive Workstation
S90 = Software/Program Error Application
SAO = Software/Program Error Application
SBO = Software/Program Error Application
SCO = Software/Program Error Application
SDO = Software/Program Error Application
SEO = Software/Program Error Application
SFO = Software/Program Error Application

no = 1PL/Shutdown/Manual IPL
120 = 1PL/Shutdown/Soft 1PL
130 = IPL/Shutdown/Auto IPL
140 = IPL/Shutdown/Shutdown
150 = IPL/Shutdown/Maintenance Shutdown

G 10 = General System Condition/Degraded Config
G20 = General System Condition/Set Date/ Time
G40 = General System Condition/Error Reporting
G50 = General System Condition/LPOST
G41 = General System Condition/Cause Codes
G42 = General System Condition/Device Information
G43 = General System Condition/Counters
G51 = General System Condition/Memory Test LPOST

Commands 307

errpt

Files

UIO

UFF = User Defined, Non-Hardware

errpd
The error log analysis program, /usr/lib/errpd, analyzes the error log data.
/usr/lib/errpd processes error data to determine if the error is a hardware error and if the
error is a temporary or permanent error.

The analysis does the following:

• Generates a number that corresponds to a service request number.
• Analyzes the data and generates the ALERT number.
• Makes the description message ID number. The description consists of the following:

Error Analysis determines, from the error data passed, the nature of the operation
at the time of the failure. This becomes part of the error description.
Error Analysis determines what failed and what the error indication is. This
becomes part of the error description and is used to create the ALERT number.
Field Replacement Unit (FRU) Analysis determines the Service Request Code. This
becomes part of the error description.

/usr/adm/ras/errfile? Error file.

Related Information

The following command: "errdemon" on page 303.

The errfile file in AIX Operating System Technical Reference.

AIX Operating System Programming Tools and Interfaces.

308 Commands Reference

errstop

errstop

Purpose

Terminates the error-logging demon.

Syntax

-c /uniX:y
errstop

kernel-image
0L805121

Description

Files

The errstop command stops the error-logging demon errdemon by running the ps
command to determine the demon process ID and then sending it a Software Terminate
signal (see the signal system call in AIX Operating System Technical Reference). If you do
not specify kernel-image, errstop uses /unix. Only a user operating with superuser
authority can run errstop.

/unix System kernel image.

Related Information

The following commands: "errdemon" on page 303 and "ps" on page 579.

The kill system call in AIX Operating System Technical Reference.

AIX Operating System Programming Tools and Interfaces.

Commands 309

errupdate

errupdate

Purpose

Updates an error report template.

Syntax

errupdcte - file ... 1\. I '--or
OLS05332

Description

The errupdate command adds, replaces, or deletes error report format templates in the file
/etc/errfmt. errupdate creates an undo file in the current directory that it names
file.undo.err. You can use this undo file as input to errupdate with the -0 (override) flag
to undo the changes errupdate has just made.

The errupdate command adds the extension .err to the file name you specify and reads
update commands from the file with that name and extension. The first field of each
template contains an operator:

+ To add or replace a template

To delete a template.

If the operation is +, then the following fields contain the template to be replaced. If the
operation is a -, then the second field contains the class/subclass/mask identifier of the
template to delete. errupdate checks for valid combinations of identifiers and writes error
messages if it encounters invalid combinations. When adding or replacing, it compares the
version numbers of each input template with the version number of the existing template
of the same class/subclass/mask and, if the version number of the input template is later,
replaces the old template with the input template. If the template does not already exist,
then it is added to the file. The input template must contain an identifier line on the first
line:

* /etc/errfmt
or errupdate rejects the input file. All delete operations are performed before the
add/replace operations.

310 Commands Reference

/

Flag

-0 Does no version number checking.

Example

The following is an example input file:

* /etc/errfmt
+ H8l 2.0 Native Serial: lOON 02: 10CN 02: Base_Addr 04:\

errupdate

Dev_Name A4: \n: Dev_Type X4: DOl_Length 04: Error _Type XI:\
Last_I/O Xl: Line_Status Xl: Printer_Status Xl:

Files

- H92

/etc/errfmt
file. err
file.undo.err

Related Information

The following command: "errpt, errpd" on page 305.

AIX Operating System Programming Tools and Interfaces.

Commands 311

ex

ex

Purpose

Edits lines interactively, with screen display.

Syntax

ex

+

-w num
-x

0L805325

1 Do not put a blank between these items.
0L805308

Description

Warning: The ex command does not support international characters. If
you use this command to edit a file that contains extended characters, you
can lose data.
The ex command is a line-oriented text editor that is a subset of the vi screen editor. The
ex command is similar to ed, but is more powerful, providing multi-line displays and access
to a screen editing mode. You may prefer to call vi directly to have environmental
variables set for screen editing.

Note: Some vi subcommands have meanings that differ from ed subcommands.

A limited subset of ex, edit, is available for novice or casual use (see "edit" on page 292).

To determine how to drive your work station more efficiently, ex uses the work station
capability data base terminfo and the type of the work station you are using from the
shell environment variable TERM.

312 Commands Reference

/

ex

Some features of ex are:

• You can view text in files. The z subcommand lets you access windows of text, and you
can scroll through text by pressing Ctrl-D and Ctrl-U. The vi subcommand provides
further viewing options and active screen-editing by invoking the vi editor.

• The undo subcommand lets you revoke the last previous subcommand entered (except
for q and w). undo can be used to revoke itself. You can switch back and forth
between the latest change in the edit file and the last prior file status; you can view
the effect of a subcommand without having irrevocably performed it. (ex displays
changed lines and indicates when more than a few lines are affected by a
subcommand.)

Note: The undo subcommand causes all marks to be lost on lines changed and then
restored if the marked lines were changed. It never clears the buffer modi fi ed
condition.

e If the system or the editor crashes, you can retrieve your work (except changes that
were in the buffer) by re-entering the editor using the - r parameter and providing the
file name. When the file name is not specified, all open files in your partition are
listed.

• You can queue a sequence or group of files to edit. List the files on the ex command
line and use the next subcommand to access each file sequentially. Within ex, you
can give next subcommand a list of file names or a pattern (as used by the shell) to
specify a new set of files to deal with. In general, you can designate file names to the
editor using all of the pattern-matching symbols that the shell will accept. The wild
card character % is available for forming file names and represents the name of the
current edit file.

• A group of buffers, named a through z, lets you move text between files and within a
file. You can temporarily place text in named buffers and copy or reinsert it in a file
or carry it over to another file you edit. The buffers are cleared when you finally quit
the editor.

Warning: ex does not notify you if text is placed in a buffer and not
used before exiting the editor.

• The ex utility lets you use patterns that match words. This lets you, for example,
search only for the word "ink" when your document also contains the word "inkblot"
or "blink."

• The z subcommand displays a window of logical lines. You can select the number of
lines displayed and locate the current line within the display simultaneously.

Note: More than-a screen of output can result when the file lines are longer than the
output display lines because the set number of logical lines are displayed rather than a
number of physical lines.

Commands 313

ex

ex States
Command Normal and initial state. Input is prompted for by : (colon). Pressing END

OF FILE (Ctrl-D) clears an uncompleted subcommand from the command
line.

Entry Entered by a, i and c. In this state you can enter text. Entry state ends
normally with a line that has only a . (period) on it or ends abnormally if you
press INTERRUPT (Alt-Pause).

Visual Entered by v or 0, and returns to command state with Q or "\.

ex Command Names and Abbreviations
Note: Most of the following commands are discussed under "edit" on page 292 or "vi,
vedit, view" on page 832.

abbrev ab next n unabbrev una
append a number nu undo u
args ar unmap unm
change c preserve pre verSIon vc
copy co print p visual vi
delete d put pu write w
edit e quit q xit x
file f read re yank ya
global g recover rec window z
insert rewind rew escape !
join j set se lshift <
list I shell sh print next CR
map source so resubst &
mark rna stop st rshift >
move m substitute s scroll "D

Subcommand Addresses

$ The last line x-num The numth line before x
+ The next line x,Y Lines x through y

The previous line 'm The line marked with m
+ num The numth line forward " The previous con text
-num The numth previous line /$pat The next line with pat at end of

line

314 Commands Reference

,/

Flags

% The first through last lines

num line num
The current line

/"pat

/pat
?pat

ex

The next line with pat at start of
line
The next line with pat
The previous line with pat

Scanning Pattern Formation

"
$

\<
\>
[string]
[" string]
[x-y]

*

-1

-r [file]

-R

-t tag

-v

The beginning of the line
The end of the line
Any character
The beginning of the word
The end of the word
Any character in string
Any character not in string
Any character between x and y, inclusive
Any number of the preceding character.

Indents appropriately for Lisp code, and accepts the () {} [[and]] characters as
text rather than interpreting them as vi subcommands. The Lisp modifier is
active in open or visual modes.

Recovers file after an editor or system crash. If you do not specify file, a list of
all saved files is displayed.

The readonly option is set, preventing you from altering the file.

Loads the file that contains tag and positions the editor at tag.

Invokes the visual editor.

Note: When the v flag is selected, an enlarged set of subcommands are
available, including screen editing and cursor movement features. See "vi,
vedit, view" on page 832.

Suppresses all interactive-user feedback. If you use this flag, file input/output
errors do not generate a helpful error message.

+ subcmd Begins the edit at the specified editor search or subcommand. When
subcomand is not entered, + places the current line to the bottom of the file.
Normally ex sets current line to the start of the file, or to some specified tag or
pattern.

Commands 315

ex

Files

/usr/lib/ ex? ?strings
/usr/lib/ex? ?recover
/usr /lib/ ex? ?preserve
/usr/lib/* /*
$HOME/.exrc
. /.exrc
/tmp/Exnnnnn
/tmp/Rxnnnnn
/usr /preserve

Error messages.
Recover subcommand.
Preserve subcommand.
Describes capabilities of work stations.
Editor startup file .
Editor startup file.
Editor temporary.
Names buffer temporary.
Preservation directory.

Related Information

The following commands: "vi, vedit, view" on page 832, "edit" on page 292, "awk" on
page 70, "ed" on page 280, "grep" on page 381, and "sed" on page 629.

The curses subroutine and the TERM, INIT, and terminfo files in A/X Operating System
Technical Reference.

316 Commands Reference

expr

expr

Purpose

Evaluates arguments as an expression.

Syntax

expr - expression ~
OL805048

Description

The expr command reads an expression, evaluates it, and writes the result to standard
output. Within expression, you must separate each term with blanks, precede characters
special to the shell with a backslash (\), and quote strings containing blanks or other
special characters. Note that expr returns 0 to indicate a zero value, rather than the null
string. Integers may be preceded by a unary minus sign. Internally, integers are treated
as 32-bit, two's complement numbers.

The operators and keywords are described in the following listing. Characters that need to
be escaped are preceded by a backs lash (\). The list is in order of increasing precedence,
with equal precedence operators grouped within braces ({}).

expressionl \1 expression2
Returns expressionl if it is neither null nor 0; otherwise it returns
expression2.

expressionl \& expression2
Returns expressionl if neither expressionl nor expression2 is null or 0;
otherwise it returns o.

expressionl { = , \> , \>= , \ < , \ < = , ! = } expression2
Returns the result of an integer comparison if both expressions are integers;
otherwise returns the result of a string comparison.

expressionl {+, -} expression2
Adds or subtracts integer-valued arguments.

expressionl { \ * , / , %} expression2
Multiplies, divides, or provides the remainder from the division of
integer-valued arguments.

Commands 317

expr

expressionl expression2
Compares expressionl with expression2, which must be a pattern; pattern
syntax is the same as that of the ed command (see page 280), except that all
patterns are anchored, so 1\ (which anchors a pattern to the beginning of a
line), is not a special character in this context.

Normally, the matching operator returns the number of characters
matched. Alternatively, you can use the \(... \) symbols in expression2 to
return a portion of expressionl. In an expression such as [a-z], the minus
means "through" according to the current collating sequence. A collating
sequence may define equivalence classes for use in character ranges. See
the "Overview of International Character Support" in Managing the AIX
Operating System for more information on collating sequences and
equivalence classes.

The expr command returns the following exit values:

o The expression is neither null nor O.

1 The expression is null or O.

2 The expression is invalid.

Note: After parameter processing by the shell, expr cannot distinguish between an
operator and an operand except by the value. Thus, if $a is =, the command:

expr $a = 1=1

looks like:

expr = = =

after the shell passes the arguments to expr, and they will all be taken as the
The following works:

expr X$a = X=

operator.

Examples

1. To modify a shell variable:

COUNT='expr $COUNT + l'

This adds 1 to the shell variable COUNT. The expr command is enclosed in grave
accents, which causes the shell to substitute the standard output from expr into the
COUNT= command. For more details, see "Command Substitution" on page 647.

2. To find the length of a shell variable:

LENGTH='expr $STR : II *",

318 Commands Reference

expr

This sets LENGTH to the value given by the : (colon) operator. The pattern. * matches
any string from beginning to end, so the colon operator gives the length of STR as the
number of characters matched. Note that II. *11 must be in quotes to prevent the shell
from treating the * as a pattern-matching character. The quotes themselves are not
part of the pattern.

If STR is set to the null string, the error message exp r: syntax error is displayed.
This happens because the shell does not normally pass null strings to commands. In
other words, the expr command sees only

* ..
(The shell also removes the quotation marks.) This does not work because the colon
operator requires two values. We can fix this problem by enclosing the shell variable
in double quotation marks:

L ENGTH='exp r II $STR II : II. * II,
Now if STR is null, LENGTH is set to zero. Enclosing shell variables in double quotes is

recommended in general. However, do not enclose shell variables in single quotes. See
page 641 for details about quoting.

3. To use part of a string:

FLAG='expr "$FLAG" : "_*\(. *\) II,

This removes leading minus signs, if any, from the shell variable FLAG. The colon
operator gives the part of FLAG matched by the part of the pattern enclosed in \(\). If
you omit the \(\), the colon operator gives the number of characters matched.

If FLAG is set to - (minus), a syntax error message is displayed. This happens because
the shell substitutes the value of FLAG before running the expr command. expr does
not know that the minus is the value of a variable. It can only see:

- : - *\ (. *\)
and it interprets the first minus sign as the subtraction operator. We can fix this
problem by using:

FLAG=expr "x$FLAG" : "x_*\(. *\) II

Commands 319

expr

4. To use expr in an if statement:

if expr II$ANSWER II : "[yYJII >/dev/null
then

ANSWER begins with "y" or lIylI
fi

If ANSWER begins with y or Y, the then part of the if statement is performed. If the
match succeeds, the result of the expression is 1 and expr returns an exit value of 0,
which is recognized as the logical value TRUE by if. If the match fails, the result is 0
and the exit value 1 (FALSE).

Redirecting the standard output of expr to the /dev/null special file discards the result
of the expression. If you do not redirect it, the result is written to the standard output,
which is usually your work station display.

5. Consider the following expression:
expr II$STR II = 11=11

If STR has the value = (equal sign), then after the shell processes this command expr
sees the expression:

The expr command interprets this as three = operators in a row and displays a syntax
error message. This happens whenever the value of a shell variable is the same as one
of the expr operators. You can avoid this problem by doing the following:

expr "x$STR Il = "X=II

Related Information

The following commands: "ed" on page 280 and "sh" on page 637.

The "Overview of International Character Support" in Managing the A/X Operating
System.

320 Commands Reference

/'

factor

factor

Purpose

Factors a number.

Syntax

factor ~ I
~numberr

OLB05051

Description

When called without an argument, the factor command waits for you to enter a positive
number less than 256. It then writes the prime factors of that number to standard output.
It displays each factor the proper number of times. To exit, enter a 0 or any nonnumeric
character.

When called with an argument, factor determines the prime factors of number, writes the
results to standard output, and exits.

Example

To calculate the prime factors of 123:

factor 123

This displays:

123
3
41

Commands 321

TNL SN20-9861 (26 June 1987) to SC23-0790-0
ff

ff

Purpose

Lists the file names and statistics for a file system.

Syntax

ff
-a num -n file

device ---.,

-c num -p prefix
-I -s
-m num -u
-I

OL805122

Description

Warning: This program is not intended for use with diskette-based file
systems because of the difference in superblock structure and the general
format of the file system.
The ff command reads the i-list and directories specified by device and writes information
about them to standard output. It assumes that device is a file system, and saves i-node
data for files specified by flags. The output from the ff command consists of the path name
for each saved i-node, in addition to other file information that you request with the flags.
The output is listed in order by i-node number, with tabs between all fields. The default
line produced by ff includes the path name and i-number fields. With all flags enabled, the
output fields include path name, i-number, size, and DID.

The num parameter in the flags descriptions is a decimal number, where + num means
more than num, -num means less than num, and num means exactly num. A day is defined
as a 24-hour period.

The ff command lists only a single path name out of many possible ones for an i-node with
more than one link, unless you specify the -1 flag. With -1, ff applies no selection criteria
to the names listed. All possible names for every linked file on the file system are included
in the output. On very large file systems, memory may run out before ff does.

322 Commands Reference

Flags

-a

-c

-i

-I

-1

-m

-n

num

num

i-node

num

file

Selects if the i-node has been accessed in num days.

Selects if the i-node has been changed in num days.

Generates names for only those i-nodes specified in the inode list.

Does not display the i-node number after each path name.

Generates a list of all path names for files with more than one link.

Selects if the file associated with the i-node has been modified in num days.

Selects if the file associated with the i-node has been modified more recently
than the specified file.

-p prefix Adds the specified prefix to each path name. The default prefix is . (dot).

-s Writes the file size, in bytes, after each path name.

-u Writes the owner's login name after each path name.

ff

Examples

1. To list the path names of all files in a given file system:

ff -I /dev/hdO

This displays the path names of the files on the / d e V / h dO disk. If you do not specify
the - I flag, then ff also displays the i-number of each file.

2. To list files that have been modified recently:

ff -m -2 -u /dev/hdO

This displays the path name, i-number, and owner's user name (- u) of each file on
/dev /hdO that has been modified within the last two days (-m -2).

3. To list files that have not been used recently:

ff -a +30 /dev/hdO
This displays the path name and i-number of each file that was last accessed more than
30 days ago (- a +30).

4. To find out the path names of certain i-nodes:

ff -1 -i 451,76 /dev/hdO

This displays all the path names (-1) associated with i-nodes 451 and 76.

Commands 322.1

ff

Related Information

The following commands: "find" on page 326 and "ncheck" on page 505.

322.2 Commands Reference

ff

Commands 323

file

file

Purpose

Determines file type.

Syntax

~
m /ete/magie

file
-m mfile

-(

-m jete/mOyie
file - -c

-m mfile
OLS05124

Description

Flags

The file command reads its input files, performs a series of tests on each one, and attempts
to classify them by their types. file then writes the file types to standard output. If a file
appears to be ASCII, file examines the first 512 bytes and tries to determine its language.
If a file does not appear to be ASCII, file further attempts to distinguish a binary data file
from a text file that contains extended characters. If file is an a.out file, and the version
number is greater than zero (see "ld" on page 427), file displays the version stamp.

The file command uses the file /etc/magic to identify files that have some sort of magic
number, that is, any file containing a numeric or string constant that indicates its type.
Comments at the beginning of /etc/magic explain its format.

-c Checks the mfile (fetc/magic by default) for format errors. This validation is
not normally done. File typing is not done under this flag.

-f file Reads file for a list of files to examine.

-m mfile Specifies mfile as the magic file (fetc/magic by default).

324 Commands Reference

file

Examples

Files

1. To display the type of information a file contains:

fi 1 e myfi 1 e

This displays the file type of myfi 1 e (directory, data, ASCII text, C-program source,
archive, and so forth).

2. To display the type of each file named in a list of file names:

file -f filenames

This displays the type of each file with a name that appears in fi 1 enames. Each file
name must appear alone on a line.

To create fi 1 enames:
ls >filenames

then edit fi 1 enames as desired.

/etc/magic File type database.

Related Information

"Overview of International Character Support" in Managing the AIX Operating System.

Commands 325

TNL SN20-9861 (26 June 1987) to SC23-0790-0
find

find

Purpose

Finds files matching expression.

Syntax

find T path T expression --l

01.805125

Description

The imd command recursively searches the directory tree for each specified path, seeking
files that match a Boolean expression written using the terms given below. The output
from find depends on the terms used in expression.

Expression Terms

In the following descriptions, the parameter num is a decimal integer that can be specified
as + num (more than num), -num (less than num), or num (exactly num).

-name file True if file matches the file name. You can use pattern-matching
characters, provided they are quoted. In an expression such as [a-z], the
minus means "through" according to the current collating sequence. A
collating sequence may define equivalence classes for use in character
ranges. See "Overview of International Character Support" in Managing
the AIX Operating System for more information on collating sequences
and equivalence classes.

-node nname True.if the file resides in the node nname. If nname is a valid nickname,
it is used as is. If nname is not a valid nickname but has a valid NID
syntax, it is used as a NID.

-perm onum True if the file permission code of the file exactly matches the octal
number onum (see "chmod" on page 128 for an explanation of file
permissions). The onum parameter may be up to three octal digits.

If you want to test the higher-order permission bits (the set-user-ID bit or
set-group-ID bit, for example), prefix the onum parameter with a minus (-)
sign. This makes more flag bits significant (see the stat system call for
an explanation of the additional bits), and also changes the comparison
to:

326 Commands Reference

find

(flags&onum) = = onum

-type type True if the file type is of the specified type as follows:

b Block special file
e Character special file
d Directory
f Plain file
p FIFO (a named pipe).

-links num True if the file has num links. See "In" on page 450.

-user uname True if the file belongs to the user uname. If uname is numeric and does
not appear as a login name in the /ete/passwd file, it is interpreted as a
user ID.

-group gname True if the file belongs to the group gname. If gname is numeric and does
not appear in the fete/group file, it is interpreted as a group ID.

-size num True if the file is num blocks long (512 bytes per block). For this
comparison the file size is rounded up to the nearest block.

-atime num True if the file has been accessed in num days.

-mtime num True if the file has been modified in num days.

-etime num True if the file i-node has been changed in num days.

-exee cmd True if the cmd runs and returns a zero value as exit status. The end of
cmd must be punctuated ,by a quoted or escaped semicolon. A command
parameter {} is replaced by the current path name.

-ok cmd The find command asks you whether it should start cmd. If your
response begins with y, cmd is started. The end of cmd must be
punctuated by a quoted or escaped semicolon.

-print Always true; causes the current path name to be displayed. find does not
display path names unless you specify this expression term.

-epio device Write the current file to device in cpio format. See "epio" on page 158.

-newer file True if the current file has been modified more recently than the file
indicated by file.

-depth Always true. This causes the descent of the directory hierarchy to be
done so that all entries in a directory are affected before the directory
itself. This can be useful when find is used with epio to transfer files
that are contained in directories without write permission.

\(expression \) True if the expression in parentheses is true.

Commands 327

find

You may perform the following logical operations on these terms (listed in order of
decreasing precedence):

• Negate a term (! is the NOT operator).

• Concatenate terms (juxtaposing two terms implies the AND operation).

• Alternate terms (-0 is the OR operator).

Examples

1. To list all files in the file system with a given base file name:

find / -name .profile -print
This searches the entire file system and writes the complete path names of all files
named. profi 1 e. The / tells find to search the root directory and all of its
subdirectories. This may take a while, so it is best to limit the search by specifying the
directories where you think the files might be.

2. To list the files with a specific permission code in the current directory tree:

find -perm 0600 -print
This lists the names of the files that have only owner-read and owner-write permission.
The. (dot) tells find to search the current directory and its subdirectories. See
"chmod" on page 128 for details about permission codes.

3. To search several directories for files with certain permission codes:

find manual clients proposals -perm -0600 -print
This lists the names of the files that have owner-read and owner-write permission and
possibly other permissions. The directories manua 1, cl i ents, and proposa 1 s, and
their subdirectories, are searched. Note that -perm 0600 in the previous example
selects only files with permission codes that match 0600 exactly. In this example,
-perm -0600 selects files with permission codes that allow at least the accesses
indicated by 0600. This also matches the permission codes 0622 and 2744.

4. To search for regular files with multiple links:

find -type f -links +1 -print
This lists the names of the ordinary files (- type f) that have more than one link
(- 1 inks + 1). Note that every directory has at least two links: the entry in its parent
directory and its own. (dot) entry. See "In" on page 450 for details about multiple file
links.

328 Commands Reference

Files

TNL SN20-9861 (26 June 1987) to SC23-0790-0
find

5. To back up selected files in cpio format:

find -name II*.C" -cpio /dev/rfdO

This saves all the. C files onto the diskette in cpio format. See "cpio" on page 158
for details. Note that the pattern 11*. C II must be quoted to prevent the shell from
treating the * as a pattern-matching character. This is a special case in which find
itself decodes the pattern-matching characters.

6. To perform an action on all files that meet complex requirements:

find. \(-name a.out -0 -name 11*.0 11
\) -atime +7 -exec rm {} \;

This deletes (-exec rm {} \;) all files named a. out or that end with. 0, and that
were last accessed over seven days ago (- at i me + 7). The - 0 flag is the logical OR
operator.

/etc/passwd
/etc/group

Related Information

The following commands: "cpio" on page 158, "sh" on page 637, and "test" on page 750.

The stat system call and the cpio and fs files in AIX Operating System Technical
Reference.

"Overview of International Character Support" and "Using Distributed Services" in
Managing the AIX Operating System.

Commands 329

fish

fish

Purpose

Plays the card game Go Fish.

Syntax

/usr/games/fish ---i

01.805189

Description

The object of the fish game is to accumulate books of four cards with the same face value.
You and the program take turns asking each other for a card in your hand. If your
opponent has any of that card, he must hand them over. If not, he says GO FI SH, and you
draw a card from the pool of undealt cards. If you draw the card you asked for, you draw
again. As books are made, they are laid down on the table. Play continues until there are
no cards left. The player with the largest number of books wins the game. fish tells you
the winner and exits.

The fish game asks if you want instructions before play begins. To see the instructions,
enter y or yes.

Entering p as your first move gives you the professional level game.

The fish game tells you the cards in your hand each time it prompts for a move. It tells
you when either side makes a book, says GO FI SH for you, and draws for you. All you
must enter as play prcgresses is the value of the card you want to ask for. If you press
only the Enter key, you are given information about the number of cards in your
opponent's hand and in the pool.

To exit the game before play is completed, press INTERRUPT (Alt-Pause).

330 Commands Reference

format

format

Purpose

Forma ts diskettes.

Syntax

format
-d/dev/fdO\ I

-ddevice ~

OLS05395

Description

Flags

The format command formats diskettes in the specified device (fdev/fdO by default).
format determines the device type, either a 360K or a 1.2M diskette drive. By default, it
formats a diskette in a 360K drive to have 40 cylinders, 9 sectors per track, and 2 sides and
a diskette in a 1.2M drive to have 80 cylinders, 15 sectors per track, and 2 sides.

-ddevice Specifies the device containing the diskette to be formatted.

-f Formats the diskette without checking for bad tracks, thus formatting the
diskette faster.

-1 Formats a 360K diskette in a 1.2M diskette drive.

Warning: A 360K diskette drive may not be able to read a 360K
diskette that has been formatted in a 1.2M drive.

-s Specifies a single-sided diskette. Use only for 360K diskette drives.

-t Specifies that the number of sectors on a 360K diskette should be 8.

Related Information

The fd file in AIX Operating System Technical Reference.

Commands 331

fortune

fortune

Purpose

Tells a fortune.

Syntax

/usr/games/fortune --j

Description

The fortune game tells a fortune, selected at random from the file
/usr/games/lib/fortunes, and exits.

OLB05190

You can edit the file /usr/games/lib/fortunes to add your own fortunes. Each saying in
the file should be a single line. fortune folds long sayings into multiple lines as necessary.

Files

/usr / games/lib/fortunes

332 Commands Reference

TNL SN20-9861 (26 June 1987) to SC23-0790-0
fptype

,fptype

,Purpose

Displays the floating point configuration of the system.

,Syntax

fptype -j

OL805471

, Description

The fptype command calls a subroutine which determines the current floating point
configuration. fptype returns one of the following values and displays the corresponding
message:

Return Value Message

o Floating Point Type = Software Emulation

1 Floating Point Type = FP A Card

2 Floating Point Type = APC Card with MC68881

4 Floating Point Type = AFPA - No DMA Support

12 Floating Point Type = AFPA - With DMA Support

, Related Information

The fpfp subroutine in AIX Operating System Technical Reference.

Commands 332.1

TNL SN20-9861 (26 June 1987) to SC23-0790-0
fptype

332.2 Commands Reference

fsck, dfsck

Purpose

Checks file system consistency and interactively repairs the file system.

Syntax

fsck

. ~ =: file : -bblocknum
-SCYI:SkiPn K ,r
-Scyl : skip

~-dblocknum A-iinumXfileSystemr

1 The default action is to check every file system with the attribute check-true in the file

/etc/fllesysfem.

dfsck r--\. filesystem1 __ 1 r--\. filesystem2 --I
~ f/ag/ist1 r ~ f/aglist2 r

1 Use a - to separate the groups when you specify flags as part of
the arguement.

Description

fsck

OL8055384

OL805456

Warning: Always run fsck on file systems after a system crash.
Corrective actions may result in some loss of data. The default action for
each consistency correction is to wait for the operator to respond yes or
no. If you do not have write permission for an affected file, fsck defaults
to a no response in spite of your actual response.
The fsck command checks and interactively repairs inconsistent filesystems. It should .be
run on every file system as part of system initialization (see "rc" on page 594). You must
have superuser authority to run fsck. Normally, the file system is consistent, and fsck

Commands 333

fsck

merely reports on the number of files, used blocks and free blocks in the file system. If the
filesystem is inconsistent, fsck displays information about the inconsistencies found and
prompts you for permission to repair them. fsck is conservative in its repair efforts and
tries to avoid actions that might result in the loss of valid data. In certain cases, however,
fsck recommends the destruction' of a damaged file.

If you do not specify filesystem, fsck looks at /etc/filesystems to find a list of file systems
to check by. default. fsck can perform checks (on separate arms) in parallel (running in
parallel processes). This can reduce the time required to check a large number of file
systems.

In /etc/filesystems, automatic checking may be enabled by adding a line in the stanza, as
follows:

check=true

If you specify the -p flag, fsck can perform multiple checks at the same time. To tell fsck
which file systems are on the same drives change the check specification in
/etc/filesystems as follows:

chec k=number

The number tells fsck which group contains a particular file system. File systems on a
single drive are placed in the same group. Each group is checked in a separate parallel
process. File systems are checked, one at a time, in the order that they appear in
/etc/filesystems. All check=true file systems are in group 1. fsck attempts to check the
root file system before any other file system regardless of order specified on the command
line or in /etc/filesystems.

The fsck command checks for the following inconsistencies:

• Blocks allocated to multiple files or to a file and the free list.
• Blocks allocated to a file or on the free list outside the range allowable block numbers.
• Discrepancies between the number of directory references to a file and the link count

in the file.
• Size checks:

- Incorrect number of blocks.
- Directory size not I6-byte aligned.

• Bad i-node format.
• Blocks not accounted for anywhere.
• Directory checks:

File pointing to an i-node that is not allocated.
I-node number out of range.
Dot (.) link missing or not pointing to itself.
Dot dot (..) link missing or not pointing to the parent directory.
Files that are not referenced or directories that are not reachable.

• Superblock checks:
More than 65535 i-nodes.

- More blocks for i-nodes than there are in the file system.

334 Commands Reference

,/

fsck

• Bad free block list format.
• Total free block and/or free i-node count incorrect.

Orphaned files and directories (those that cannot be reached) are, if you allow it,
reconnected by placing them in the lost + found subdirectory in the root directory. The
name assigned is the i-node number. The only restriction is that the directory lost + found
must already exist in the root directory of the file system being checked and must have
empty slots in which entries can be made (accomplished by copying a number of files to the
directory and then removing them before you run fsck). If you do not allow fsck to
reattach an orphaned file, it requests permission to destroy the file. When fsck displays
i-node information, the NLTIME environment variable controls the format of the
modification time.

In addition to its messages, fsck records the outcome of its checks and repairs through its
exit value. This exit value can be any sum of the following conditions:

o All checked file systems are now ok.
2 fsck was interrupted before it could complete checks or repairs.
4 fsck changed the mounted file system; the user must restart the system immediately.
8 The file system contains unrepaired damage.

When the system is being started up normally, fsck runs with the -p flag from /etc/rc (see
"rc" on page 594). If fsck detects and repairs errors on the root or other mounted file
systems, it displays a message on the console and restarts the system, if possible. If it
cannot restart the system or if it detects errors that it cannot repair, it displays
appropriate messages on the console and returns an exit value indicating that an
immediate restart is necessary.

Note: All statistics reported by fsck are in 512-byte blocks, regardless of the actual block
size of the file system being checked. All user specifications should be specified in 512-byte
blocks.

dfsck
The dfsck command lets you simultaneously check two file systems on two different drives.
Use the {laglisti and {laglist2 arguments to pass flags and parameters for the two sets of
file systems. Use a - (minus) to separate the file system groups if you specify flags as part
of the arguments.

The dfsck command permits you to interact with two fsck commands at once. To aid in
this, dfsck displays the file system name with each message. When responding to a
question from dfsck, you must prefix your response with a 1 or a 2 to indicate whether the
answer refers to the first or second file system group.

Note: Do not use dfsckto check the root file system (fdev/hdO).

Commands 335

fsck

Flags

-bblocknum Designates a block as bad. fsck searches for any files that contain the
specified block. If it finds any such files, it asks permission to delete them.
If it finds no such files or is told to delete all such files, the specified block is
added to the bad block list in i-node 1. This keeps the block out of
circulation so that it cannot be allocated to any user file.

-dblocknum Searches for references to a specified disk block. Whenever fsck encounters
a file that contains a specified block, it displays the i-node number and all
path names that refer to it.

-f Performs a fast check. Under normal circumstances, the only file systems
likely to be affected by halting the system without shutting down properly
are those that were mounted when the system stopped. the -f flag tells fsck
not to check file systems that were cleanly unmounted. fsck determines this
by inspecting the s _fmod flag in the file system superblock. this flag is set
whenever a file system is mounted and cleared when it is cleanly unmounted.
if a file system was cleanly unmounted, it is unlikely to have any problems.
because most file systems are cleanly unmounted, not checking those file
systems can reduce the checking time.

-iinum Searches for references to a specified i-node. Whenever fsck encounters a
directory reference to a specified i-node number, it displays the full path
name of the reference.

-n Assumes a no response to all questions asked by fsck; does not open
filesystem for writing.

-p Does not display messages about minor problems, but fixes them
automatically. This flag does not grant the wholesale license that the -y flag
does and is useful for performing automatic checks when the system is to be
started normally. You should use this flag whenever the system is being run
automatically as part of the system startup procedures.

-s[cyl:skip] Ignores the actual free list and unconditionally reconstructs a new one. You
can specify an optional interleave specification with this flag: cyl specifies
the number of blocks per cylinder; skip specifies the number of blocks to
skip. If you do not specify cyl or skip, fsck uses the interleave parameters in
the superblock. The file system should be unmounted while this is done; if
this is not possible, be sure that you are running no programs and that you
perform a system restart immediately afterwards so that the old copy of the
superblock in memory is not written to disk.

-S[cyl:skip] Conditionally reconstructs the free list. This flag is like the -s flag except
that the free list is rebuilt only if there are no discrepancies discovered in
the file system. Using -S forces a no response to all questions asked by fsck.
Use this flag to force free list reorganization on uncontaminated file systems.

336 Commands Reference

fsck

-tfile Uses file as a scratch file if lsck cannot obtain enough memory to keep its
tables. If you do not specify -t and lsck needs a scratch file, it prompts you
for the name of the scratch file. However, if you have specified the -p flag,
lsck fails. The file chosen must not be on the file system being checked. If
it is not a special file, it is removed when lsck ends.

-y Assumes a yes response to all questions asked by lsck. This lets lsck take
any action that it considers necessary. Use this flag only on severely
damaged file systems.

Examples

Files

1. To check all the default file systems:

fsck

This checks all the file systems marked check=true in /etc/filesystems. This form of
the lsck command asks you for permission before making any changes to a file system.

2. To fix minor problems with the default file systems automatically:

fsck -p
3. To check a specific file system:

fsck /dev/hdl

This checks the unmounted file system located on the /dev /hdl device.

4. To simultaneously check two file systems on two different drives:

dfsck -p /dev/hdl -p /dev/hd7
This checks both file systems simultaneously, if the file systems on the devices
/dev /hdl and /dev /hd7 are located on two different drives. You can also specify the
file system names that are found in the /etc/filesystems file.

/etc/filesystems Contains default list of file systems to check.

Related Information

The following commands: "rc" on page 594, "lsdb" on page 338, "istat" on page 415,
"mkls" on page 487, "ncheck" on page 505, and "shutdown" on page 663.

The filesystems and Is files in AIX Operating System Technical Reference.

The discussion of lsck and dfsck in Managing the AIX Operating System

Commands 337

fsdb

fsdb

Purpose

Debugs file systems.

Syntax

Isdb - filesysfem -0
OLB05244

Description

Flag

Warning: This program is not intended for use with diskette-based file
systems because of the difference in superblock structure and the general
format of the file system.
You can use the fsdb command to examine and patch a damaged file system after a system
crash. It allows you to access blocks and i-numbers and to examine various parts of an
i-node. You can reference components of the i-node symbolically. These features simplify
procedures for correcting control-block entries or for descending the file-system tree.

The file system to be examined can be specified by a block device name, a raw device name,
or a mounted file system name. In the latter case, fsdb determines the associated file name
by reading the file /etc/filesystems.

Any numbers you enter are considered decimal by default, unless you prefix them with a 0
(zero) to indicate an octal number.

Because fsdb reads and writes one block at a time, it works with raw as well as with block
I/O. It uses a buffer management routine to retain commonly used blocks of data in order
to reduce the number of read system calls. All assignment operations write the
corresponding block immediately.

Disables the error checking routines used to verify i-node and block addresses. The 0
subcommand toggles these routines on and off. When these routines are running,
fsdb reads the i-size and f-size entries from the superblock of the file system.

338 Commands Reference

fsdb

Subcommands

The subcommands you give to fsdb are requests to display or modify information. A
display subcommand is a block address optionally followed by a display format
specification. A field modification subcommand is similar to the display subcommand but
may include a subfield specification, an operator, and a value. An address specification is
a number optionally followed by a type specifier and subfield specification.

The display subcommands are:

num
i-numberi
block-address b
directory-s lot-offsetd
q
!

Display data at absolute address num.
Display data at i-number.
Display data at block-address.
Display data at directory-slot-offset.
Quit.
Escape to the shell.

The display formats are:

P
f

General display facilities
File display facility.

You can step through the i-node information examining each byte, word, or double word.
Select the desired display mode by entering one of the following subcommands:

B Begin displaying in byte mode.
D Begin displaying in double word mode.
W Begin displaying in word mode.
o Toggle error checking on or off.

Moving forward or backward through the i-node data is done with the following symbols:

+num
-num

Move forward the specified number of units currently in effect.
Move backward the specified number of units currently in effect.

The following symbols allow you to store the current address and return to it conveniently:

> address Store address for later reference. If you do not specify address, fsdb
stores the current address.

< Return to the previously stored address.

The display format applied to the information at the selected address is the one currently
in effect. You may receive an error message indicating improper alignment if the address
you specify does not fall on an even boundary.

The display facilities display a formatted output in various styles. The current address is
normalized to an appropriate boundary before display begins. It advances with the
displaying and is left at the address of the last item displayed. The output can be ended at
any time by pressing INTERRUPT (Alt-Pause).

Commands 339

fsdb

If you enter a number after the p symbol, fsdb displays that number of entries. A check is
made to detect block boundary overflows because logically sequential blocks are generally
not physically sequential. If you enter a count of zero, fsdb displays all entries to the end
of the current block.

The display formats available are:

i
d
o
e
c
b
y

Display as i-nodes.
Display as directories.
Display as octal words.
Display as decimal words.
Display as characters.
Display as octal bytes.
Display as hex bytes.

Use the f symbol to display data blocks associated with the current i-node. If you enter a
number after f, fsdb displays that block of the file. Block numbering begins at zero. The
desired display subcommand follows the block number, if present, or the f symbol. The
display facility works for large as well as small files. It checks for special devices and also
checks the data are not zero.

You can use dots (.), tabs, and spaces as subcommand delimiters, but they are not
necessary. Pressing just the Enter key (entering a blank line) increments the current
address by the size of the data type last displayed. That is, the address is set to the next
byte, word, double word, directory entry or i-node, allowing you to step through a region of
a file system. fsdb displays information in a format appropriate to the data type. Bytes,
words and double words are displayed as an octal address followed by the octal
representation of the data at that address and the decimal equivalent enclosed in
parentheses. fsdb adds a .B or .D to the end of the address to indicate a display of byte or
double word values. It displays directories as a directory slot offset followed by the
decimal i-number and the character representation of the entry name. It displays i-nodes
with labeled fields describing each element. The environment variables NLLDATE and
NLTIME control the formats of the date and time.

The following mnemonics are used for the names of the fields of an i-node and refer to the
current working i-node:

md
In
uid
gid
sz
an
at
mt
maj
min

Permission mode
Link count
User number
Group number
File size
Data block numbers (0 - 12)
Access time
Modification time
Major device number
Minor device number

340 Commands Reference

fsdb

The general form for assigning new values is:

mnemonic operator new-value

The fsdb command modifies the value of the field specified by mnemonic according to the
operator and new-value.

Valid operators include:

= Assign new-value to the specified mnemonic.
=+ Increment the mnemonic by the specified new-value. The default new-value is 1.
-- Decrease the mnemonic by the specified new-value. The default new-value is 1.
= II Assign character string new-value to the specified mnemonic.

Examples

The following examples show subcommands that you can use after starting fsdb.

1. . To display an i-node:

386i

This displays i-number 386 in i-node format. It now becomes the current i-node.

2. To change the link count for the current i-node to 4:

In=4
3. To increase the link count of the current i-node by 1:

In=+l
4. To display part of the file associated with the current i-node:

fc
This displays as ASCII text block zero of the file associated with the current i-node.

5. To display entries of a directory:

2i . fd

This changes the current i-node to the root i-node (i-node 2), then displays the
directory entries in the first block associated with that i-node.

6. To go down a level of the directory tree:

d5i .fc
This changes the current i-node to the one associated with directory entry 5. Then it
displays the first block of the file as ASCII text (fc). Directory entries are numbered
starting from 0 (zero).

Commands 341

fsdb

7. To display a block when you know its block number:

1b.pOo

This displays the superblock (block 1) of file system in octal.

8. To change the i-number of a directory entry:

2; .aOb.d7=3

This changes the i-number of directory entry 7 in the root directory (2;) to 3. This
example also shows how several operations can be combined on one line.

9. To change the file name of a directory entry:

d7.nm=lchap1.rec"

This changes the name field of directory entry 7 to ch ap 1 . rec.
10. To display a given block of the file associated with the current i-node:

a2b.pOd

This displays block 2 of the current i-node as directory entries.

Related Information

The following command: "fsck, dfsck" on page 333.

The fs and dir files and the environment miscellaneous facility in A/X Operating System
Technical Reference.

The "Overview of International Character Support" in Managing the A/X Operating
System.

342 Commands Reference

fuser

TNL SN20-9861 (26 June 1987) to SC23-0790-0
fuser

Purpose

Identifies processes using a file or file structure.

Syntax

fus.r~file~

OLB05055

Description

Flags

The fuser command lists, for local processes, the process numbers of the processes using
the specified local or remote file. For remote processes that use local files, fuser lists the
node (NID) that has the files open. It does not list the process numbers, user names, or
usage information. For block special devices, all processes using any file on that device
are listed. The process number is followed by a letter indicating how the process is using
the file:

c Using file as the current directory
p Using file as the parent of the current directory (only when in use by the system)
r Using file as the root directory.

The process numbers are written as a single line to standard output, separated by spaces
and ended with a single new-line character. All other output is written to standard error.

-k Sends the SIGKILL signal to each local process. Only the person operating with
superuser authority can kill another user's process (see "kill" on page 422). SIGKILL
is not sent to remote processes.

-u Indicates the login name in parentheses after the process number. The login name is
not listed for remote processes.

Cancels any flags selected for the previous set of file or files.

Flags may be respecified between groups of files on the command line. The new set of flags
replaces the old set.

Commands 343

TNL SN20-9861 (26 June 1987) to SC23-0790-0
fuser

Examples

Files

1. To list the ID numbers of the processes using the /etc/passwd file:

fuser /etc/passwd
2. To list the process IDs and user names of the processes using the /etc/filesystems file:

fuser -u /etc/filesystems
3. To stop all of the processes using a given disk drive:

fuser -k -u /dev/hdl
This lists the process ID and user name, and then stops each process that is using the
/dev /hdl disk drive. You must have superuser authority to stop processes that belong
to someone else. You might want to do this if you are trying to unmount /dev/hdl,
and a process accessing it is preventing you from doing so.

4. To perform the actions of the previous examples in reverse order:

fuser -k -u /dev/hdl -u /etc/filesystems /etc/passwd

Note that lone dashes before the -u and before /etc/passwd turn off both the -k and
-u flags.

/unix
/dev/kmem
/dev/mem

System kernel image.
For system image.
Also for system image.

Related Information

The following commands: "killall" on page 425, "mount" on page 498, and "ps" on
page 579.

The kill and signal system calls in A/X Operating System Technical Reference.

"Using Distributed Services" in Managing the A/X Operating System.

344 Commands Reference

fwtmp

fwtmp

Purpose

Manipulates connect accounting records.

Syntax

/usr/lib/acct/fwtmp~
'--icJ

/usr/lib/acct/wtmpfix ~
~

/usr/lib/acct/acctwtmp - "reason" ~
0L805239

Description

fwtmp
The fwtmp command reads wtmp records from standard input and converts them to
formatted ASCII records, which it writes to standard output.

Flag

-ic Reads ASCII input and writes output in binary form.

acctwtmp
The acctwtmp command writes to standard output a utmp record containing the string
reason and the current date and time. reason can contain 11 or fewer characters.

Commands 345

fwtmp

Files

wtmpfix
The wtmpfix command examines standard input or the named files containing records in
wtmp format, corrects the date and time stamps to make the entries consistent, and writes
the corrected input to standard output. (It is necessary that date and time stamps be
consistent because acctconl generates an error and stops when it encounters inconsistent
date change records.)

Each time the date is set (on system startup or with the date command) a pair of date
change records is written to /usr/adm/wtmp. The first record is the old date, denoted by
the string old time placed in the line field and the flag OLD _TIME placed in the type
field. The second record is the new date, denoted by the string new time placed in the
line field and the flag NEW _TIME placed in the type field. The wtmpfix command uses
these records to synchronize all date and time stamps in the file.

In addition to correcting date and time stamps, wtmpfix checks the validity of the name
field to ensure that it consists solely of alphanumeric characters, a dollar sign ($), or
spaces. If it encounters an invalid name, it changes the login name to INVALID and
writes a diagnostic to standard error. In this way, wtmpfix reduces the chance that
acctcon2 will fail when it processes connect accounting records.

/usr/adm/wtmp
/usr/include/utmp.h

Related Information

The following commands: "acct/*" on page 31, "acctcms" on page 36, "acctcom" on
page 38, "acctcon" on page 42, "acctdisk" on page 44, "acctmerg" on page 46,
"acctprc" on page 48, and "runacct" on page 606.

The acct system call and the acct and utmp files in AIX Operating System Technical
Reference.

"Running System Accounting" in Managing the AIX Operating System.

346 Commands Reference

gdev

gdev

Purpose

Provides graphical device routines and filters.

Syntax

hpd
-c num -xv num
-p num -yd num
-s num -yv num
-xd num

erase --l

hardcopy --l

tekset --l

td --0-f ~:e of \. file T
~-e J ~ -rnum I L-

Description

OL777036

The following commands provide various graphical device routines and filters. They all
reside in the /usr/bin/graf directory (see "graphics" on page 377).

hpd
The hpd command takes a graphical file in gps format (standard input by default), and
translates it into instructions for the Hewlett-Packard 7221A Graphics Plotter. See the
gps file in AIX Operating System Technical Reference for a description of this file format.
It computes a viewing window from the maximum and minimum points in the file, unless
you specify the -r or -u flags.

Commands 347

gdev

Flags

cnum Selects character set num, where num is an integer between 0 and 5. See the
Hewlett-Packard 7221A Graphics Plotter documentation for a list of these
character sets.

pnum Selects pen numbered num, where num is an integer between 1 and 4 inclusive.

rnum Displays a window on a GPS J.:.egion, where num is an integer from 1 to 25
inclusive.

snum Slants characters num degrees clockwise from the vertical.

u Displays window on the entire GPS universe.

xdnum Sets x displacement of the viewport's lower left corner to num inches.

xvnum Sets width of viewport to num inches.

ydnum Sets y displacement of the viewport to num inches.

yvnum Sets height of viewport to num inches.

erase
The erase command sends characters to a Tektronix 4010 series storage terminal to erase
the screen.

hardcopy
When issued at a Tektronix display terminal with a hard copy unit, the hardcopy
command produces a screen copy on the unit.

tekset
The tekset command send characters to a Tektronix terminal to clear the display screen,
set the display mode to alpha, and set characters to the smallest font.

td
The td command translates a GPS object to scope code for a Tektronix 4010 series storage
terminal. It computes a viewing window from the maximum and minimum points in file,
unless you specify the -u or -rnum flag. Standard input is the default input file.

Flags

e Does not erase the screen before initiating display.

rnum Displays GPS region num, where num is an integer between 1 and 25 inclusive.

u Displays the entire GPS universe.

348 Commands Reference

,/

gdev

Related Information

The following commands: "ged" on page 350, "gend" on page 357, and "graphics" on
page 377.

The gps file in AIX Operating System Technical Reference.

Commands 349

ged

ged

Purpose

Displays, makes, and edits graphical files on Tektronix 4010 terminals.

Syntax

ged ~~ ~:e of r<d
-e fIle
-R -rnum

OL777037

Description

Flags

The ged command is an interactive graphical editor used to edit drawings on Tektronix
4010 series display terminals. The drawings are a sequence of objects that consist of lines,
arcs, and text. With ged you can view the objects at various magnifications and from
various locations. The drawings are stored in graphical primitive string (GPS) files. If you
specify - (minus) as the file name, ged reads standard input into the edit buffer.

An arc or lines object has a start point (object-handle), followed by zero or more points
(point-handles). A text object has only an object-handle. These objects are positioned
within a Cartesian plane (universe), having 64K (-32K to + 32K) points (universe-units)
on each axis. The GPS universe is divided into 25 equal sized areas called regions. These
regions are arranged in five rows of five squares each, numbered 1 to 25 from the lower left
of the universe to the upper right.

The ged command maps rectangular areas (windows) from the universe onto the display
screen. Windows let you view pictures from different locations and at different
magnifications. The universe-window is the window with minimum magnification; that
is, the window that views the entire universe. The home-window is the window that
completely displays the contents of the display buffer.

-e Does not erase the screen before the initial display

-rnum Displays region number num.

-u Displays the entire GPS universe.

-R Invokes the restricted shell on use of! (exclamation character).

350 Commands Reference

ged

Subcommands

The ged sub commands are entered in stages. Typically each stage ends with a < cr >
(Return). Prior to the final < cr >, you may cancel the subcommand by pressing
INTERRUPT (Alt-Pause). You can edit the input of a stage, during the stage, by using
the erase and kill characters of the calling shell. The * (star) prompt indicates that ged is
waiting at stage 1.

Each subcommand consists of a subset of the following stages:

1. Command line, whose format is the same as the format of a shell command:

subcommand-name [-flags] [filename]

followed by pressing the Enter key. The subcommand-name consists of the first
character of the subcommand. ged echoes the full command name and pauses for the
remainder of the command line. Flags are indicated by a leading - (minus). To
generate a list of ged subcommands, enter: ?

2. Text, a sequence of characters terminated by an unescaped Enter You can have a
maximum of 120 lines of text.

3. Points, a sequence of one or more screen locations (maximum of 30), indicated either
by the terminal crosshairs or by name. The prompt for entering points is the
appearance of the crosshairs. When the crosshairs are visible, typing:

sp (space) Enters the current location as a point. The point is identified by a
number.

$num

>x

$x

$.num

@

Enters the previous point numbered num.

labels the last point entered with the upper case letter x.

Enters the point labeled x.

Establishes the previous points as the current points. At the start of a
command, the previous points are those locations given with the previous
command.

Echoes the current points.

Enters the point.

Erases the last point entered.

Erases all of the points entered.

4. Pivot, a single location entered by pressing the Enter key or by using the $ operator
and indicated with a * (star).

5. Destination, a single location entered by pressing the Enter key or by using $ (dollar
sign).

Commands 351

ged

Subcommand Summary
In the following lists, characters printed in bold are to be entered literally. Subcommand
stages are printed in bold italics. Arguments surrounded by [] (brackets) are optional.
Parentheses surrounding arguments separated by "or" indicate that you must specify
exactly one of the arguments.

Construct Subcommands
Arc [-echo,style,weight] points

Box [-echo,style,weight] text

Circle [-echo,style,weight] point

Hardware [-echo] text points

Lines [-echo,style,weight] points

Text [-angle,echo,height, mid-point,right-point,text, weight] text points

Edit Subcommands
Delete

Edit

Kopy

Move

Rotate

Scale

(-(universe or view) or points)

[-angle,echo,height,style,weight] (-(universe or view) or points)

[-echo,points,x] points pivot destination

[-echo,points,x] points pivot destination

[-angle,echo,kopy,x] points pivot destination

[-echo,factor,kopy,x] points pivot destination

View Subcommands
coordinates

erase

new-display

o bj ect-handles

point-handles

view

x

zoom

points

(-(universe or view) or points)

(-(labelled-points or universe or view) or points)

(-(home or universe or region) or [-x] pivot destination)

[-view] points

[-out] points

352 Commands Reference

,/

Other Subcommands
quit or Quit

ged

read [-angle,echo,height, mid-point,right-point,text, weight] file-name[destination]

set [-angle,echo,factor, heigh t,kopy ,mid-poin t,poin ts, righ t-point,sty Ie, text, weigh t,x]

write file-name

!command

?

Options
Options specify parameters used to construct, edit, and view graphical objects. If a
parameter used by a subcommand is not specified as an option, the default value for the
parameter will be used (see set following). The format of subcommand options is:

-option[,option]

where option is keyletter[value]. Flags take on the values of true or false indicated by +
and - respectively. If no value is given with a flag, true is assumed.

Object Options

anglen

echo

factorn

heightn

kopy

mid-point

points

right-point

style type

text

weighttype

Specifies an angle of n degrees.

When true, changes made to the display buffer are echoed to the screen.

Specifies a scale factor is n percent.

Sets the height of text to n universe-units (0 ~ n < 1280).

When true, copies rather than moves.

When true, uses the mid-point of a text string to locate string.

When true, operates on points; otherwise operates on objects.

When tr~le, uses the rightmost point of the text string to locate string.

Sets the line sty Ie to one of following types:

so solid
da dashed
dd dot-dashed
do dotted
ld long-dashed.

When false, outlines rather than draws text strings.

Sets line weight to one of following types:

Commands 353

ged

n narrow
m medium
b bold.

Area Options

home References the home-window.

out Reduces magnification during zoom.

regionn References the region n.

unIverse References the universe-window.

view References those objects currently in view.

x Indicates the center of the referenced area.

Subcommand Descriptions

Construct Subcommands

Arc
Lines

Box
Circle

Text
Hardware

Behave similarly. Each consists of a command line followed by points. The
first point entered is the object-handle. Successive points are point-handles.
Lines connects the handles in numerical order. Arc fits a curve to the handles
(currently a maximum of 3 points will be fit with a circular arc; splines will be
added in a later version).

Special cases of Lines and Arc, respectively. Box generates a rectangle with
sides parallel to the universe axes. A diagonal of the rectangle would connect
the first point entered with the last point. The first point is the
object-handle. Point-handles are created at each of the vertices. Circle
generates a circular arc centered about the point numbered zero and passing
through the last point. The circle's object-handle coincides with the last
point. A point-handle is generated 180 degrees around the circle from the
obj ect-handle.

Generate text objects. Each consists of a command line, text and points
Text is a sequence of characters delimited by < cr >. Multiple lines of text
may be entered by preceding a cr with a \ (backslash). The Text subcommand
creates software generated characters. Each line of software text is treated as
a separate text object. The first point entered is the object-handle for the first
line of text. The Hardware command sends the characters in text,
uninterpreted, to the terminal.

354 Commands Reference

/

ged

Edit Subcommands

Edit subcommands operate on portions of the display buffer called defined-areas. A
defined-area is referenced either with an area option or interactively. If an area option is
not given, the perimeter of the defined-area is indicated by points. If no point is entered, a
small defined-area is built around the location of the < cr >. This is useful to reference a
single point. If only one point is entered, the location of the < cr > is taken in
conjunction with the point to indicate a diagonal of a rectangle. A defined-area referenced
by points will be outlined with dotted lines.

Delete Removes all objects whose object-handle lies within a defined-area. The universe
option removes all objects and erases the screen.

Edit Modifies the parameters of the objects within a defined-area. Parameters that can
be edited are:

Kopy
Move

Rotate

Scale

angle
height
style
weight

Specifies the angle of text
Specifies the height of text
Specifies the style of lines and arc
Specifies the weight of lines, arc, and text

Copies (or moves) object- and/or point-handles within a defined-area by the
displacement from the pivot to the destination.

Rotates objects within a defined-area around the pivot. If the kcopy flag is true
then the objects are copied rather than moved.

For object whose object-handles are within a defined-area, point displacements
from the pivot are scaled by factor percent. If the kopy flag is true then the
objects are copied rather than moved.

View Subcommands

coordinates

erase

new-display

o bj ect-handles
poin t-handles

VIew

Displays the location of point(s) in universe- and screen-units.

Clears the screen (but not the display buffer).

Erases the screen then displays the display buffer.

Labels object- (and/or point-handles) that lie within the defined-area with
o (or P). point-handles identifies labeled points when the labeled-points
flag is true.

Moves the window so that the universe point corresponding to the pivot
coincides with the screen point corresponding to the destination.
Options for home, universe, and region display particular windows in the
universe.

Commands 355

ged

x

zoom

Indicates the center of a defined-area. Option view indicates the center of
the screen.

Decreases (zoom out) or increases the magnification of the viewing
window based on the defined-area. For increased magnification, the
window is set to circumscribe the defined-area. For a decrease in
magnification the current window is inscribed within the defined-area.

Other Subcommands

quit
Quit

read

set

write

Exit from ged. quit responds with? if the display buffer has not been written since
the last modification.

Inputs the contents of a file. If the file contains a GPS object, it is read directly. If
the file contains text it is converted into text object(s). The first line of a text file
begins at destination.

When given option(s) resets default parameters, otherwise it prints current default
values.

Outputs the contents of the display buffer to a file.

Escapes ged to execute a AIX Operating System command.

? Lists ged subcommands.

Related Information

The following commands: "gdev" on page 347, "graphics" on page 377, and "sh" on
page 637.

The gps file in AIX Operating System Technical Reference.

356 Commands Reference

/

gend

gend

Purpose

Provides a general graphics device back end.

Syntax

gend

0L805458

Description

Flags

The /usr/bin/graf/gend command displays GPS files on the graphics output devices
supported by the Advanced Display Graphics Support Library (GSL). For more
information about GSL, see the "Advanced Display Graphics Support Library" in AIX
Operating System Technical Reference. By default, gend reads standard input and writes to
the current display (see "display" on page 258), but gend can also drive printers and
plotters if you have installed the VDI drivers that are in the Extended Services Program.
You can specify the name of one or more GPS files on the command line. If you enter a
file name of - (minus), gend reads standard input.

When gend displays an image, it opens a new virtual terminal. You can move to and from
this virtual terminal by pressing Next Window (Alt-Action). See "open" on page 541 and
Using the AIX Operating System for for information on virtual terminals. To end gend
and close the virtual terminal, press END OF FILE (Ctrl-D).

Note: The gend command produces the standard GPS line style attributes with one
exception. Line style 4 (long dashed) is rendered as dash-dot-dot.

-nnum Specifies the number of chords per circle. Legal values are 64, 128, 256, or 512.
The default value is 128.

Rather than drawing truly circular arcs or circles, gend converts them into a
series of very short line segments (chords), whose end points lie on the circle.
For most devices and images, the default value of 128 is satisfactory. The higher
values give a smoother image; the lower value provides faster drawing time.

Commands 357

gend

Files

-rnum Displays data in GPS region num. A GPS object is defined in a Cartesian plane
of 64K points on each axis. The plane, or universe, is divided into 25 square
regions numbered 1 to 25 from the lower left to the upper right.

-u Displays data in the entire GPS universe.

-Tname Uses the device specified by the name environment variable. The default is the
current display (this must be supported by /dev/hft). When the image is to be
displayed on other devices, you must ensure that the proper VDI device handler
is installed.

/usr /bin/ graff gend
/tmp/dev.XXXXXX

The general devices backend.
Temporary file.

Related Information

The following commands: "ged" on page 350, "gdev" on page 347, "graphics" on
page 377, and "open" on page 541.

"Advanced Display Graphics Support Library" in AIX Operating System Technical
Reference

Installing programs in Installing and Customizing the AIX Operating System.

358 Commands Reference

/

get

get

Purpose

Creates a specified version of a Source Code Control System (SCCS) file.

Syntax

-g -m -s
get -ccutoff -n -t

-iJist -p -x/ist
-rSID -wstring

OL805058

get

-b -r SID
-ccutoff -s
-j list -t

-x/ist

OL805355

Description

The get command reads the specified versions of the named Source Code Control System
(SeeS) files, creates an ASCII text file for each file according to the specified flags, and
writes each text file to a file with the same name as the original SCCS file without the s. (s
period) prefix (the g-file). The flags and files can be specified in any order, and all flags
apply to all named files.

If you specify a directory in place of file, get performs the requested actions on all the files
in the directory that begin with the s. prefix. If you specify a - (minus) in place of a file,
get reads standard input and interprets each line as the name of an SCCS file. get
continues to read input until it reads END OF FILE (Ctrl-D).

If the effective user has write permission in the directory containing the SCCS files but the
real user does not, then only one file can be named when the -e flag is used.

If you are not familiar with the terms SID and delta or you do not know the numbering
system of the deltas, see AIX Operating System Programming Tools and Interfaces for more
information.

Commands 359

get

sees Files
In addition to the file with the s. prefix (the 8-file), get can create several auxiliary files:
the g-file, I-file, p-file, and z-file. These files are identified by their tag, the letter before
the hyphen. get names auxiliary files by replacing the leading s. in the sees file name
with the proper tag, except for the g-file, which is named by removing the s. prefix. So, for
a file named s.sample, the auxiliary file names would be sample, l.sample, p.sample, and
z.sample.

These files serve the following purposes:

s-file This file contains the original file text and all the changes (deltas) made to the file.
It also includes information about who can change the file contents, who has made
changes, when those changes were made, and what the changes were. You cannot
edit this file directly since the file is read-only. It contains the information needed
by the sees commands to build the g-file, the file you can edit.

g-file The g-file is an ASeII text file that contains the text of the sees file version that
you specify with the -r flag (or the latest trunk version by default). You can edit
this file directly. When you have made all your changes and you want to make a
new delta to the file, you can then apply the delta command to the file. get creates
the g-file in the current directory.

The get command creates a g-file whenever it runs, unless the -g flag or the -p flag
is specified. The real user owns it (not the effective user). If you do not specify the
-k or the -e flag, the file is read-only. If the -k or the -e flag is specified, the owner
has write permission for the g-file. You must have write permission in the current
directory to create a g-file.

I-file The get command creates the I-file when the -I flag is specified. The I-file is a read
only file. It contains a table showing which deltas were applied in generating the
g-file. You must have write permission in the current directory to create an I-file.
Lines in the I-file have the following format:

1. A blank character if the delta was applied; a * appears otherwise.

2. A blank character if the delta was applied or was not applied and ignored; a *
appears if the delta was not applied and was not ignored.

3. A code indicating a special reason why the delta was or was not applied:

Blank Included or excluded normally.
I Included using the -i flag.
X Excluded using the -x flag.
C eut off using the -c flag.

4. The SID.

5. The date and time the file was created.

6. The login name of person who created the delta.

360 Commands Reference

Comments and MR data follow on subsequent lines, indented one horizontal tab
character. A blank line ends each en try.

For example, for a delta cutoff with the -c flag, the entry in the I-file might be:

**C 1.3 85/03/13 12:44:16 pat
and the entry for the initial delta might be:

1.1 85/02/27 15:42:20 pat
date and time created 85/02/27 15:42:20 by pat

p-file The get command creates the p-file when the -e or the -k flag is specified. The

get

p-file passes information resulting from a get -e to a delta command. The p-file also
prevents a subsequent execution of get with a -e flag for the same SID until delta is
run or the joint edit keyletter 0) is set in the sees file. The j keyletter allows
several gets on the same SID. The p-file is created in the directory containing the
sees file. To create a p-file in the sees directory, you must have write permission
in that directory. The permission code of the p-file is read-only to all but its owner,
and it is owned by the effective user. The p-file contains:

• The current SID
• The SID of new delta to be created
• The user name
• The date and time of the get
• The -i flag, if it was present
• The -x flag, if it was present

The p-file contains an entry with the above information for each pending delta for
the file. No two lines have the same new delta SID.

z-file The z-file is a lock mechanism against simultaneous updates. The z-file contains the
binary process number of the get command that created it. It is created in the
directory containing the sees file and exists only while the get command is
running.

When you use the get command, it displays the SID being accessed and the number of lines
created from the sees file. If you specify the -e flag, the SID of the delta to be made
appears after the SID accessed and before the number of lines created. If you specify more
than one file, or a directory, or standard input, get displays the file name before each file
is processed. If you specify the -i flag, get lists included deltas below the word Inc 1 uded
If you specify the -x flag, get lists excluded deltas below the word Exc 1 uded

Commands 361

get

Identification Keywords
You can use identification keywords in your files to insert identifying information. These
keywords are replaced by their values in the g-file when get is invoked without the -e or
-k flag. The following identification keywords can be used in sees files:

%M% Module name: the value of the m flag in the sees file
%1% The SID (%lR%.%L%.%B%.%S%) of the g-file
%R% Release
%L% Level
%B% Branch
%S%
%D%
%H%
%T%
%E%
%G%
%U%
%Y%
%F%
%P%
%Q%

Sequence
Date of the current get (YY/MM/DD)
Date of the current get (MM/DD/YY)
Time of the current get (HH:MM:SS)
Date newest applied delta was created (YY/MM/DD)
Date newest applied delta was created (MM/DD/YY)
Time newest applied delta was created (HH:MM:SS)
Module type: the value of the t flag in the sees file
sees file name
Full path name of the sees file
The value of the q flag in the file

%C% The current line number. This keyword is intended for identifying messages
output by the program. It is not intended to be used on every line to provide
sequence numbers.

%Z% The 4-character string @(#) recognized by the what command
% W% A shorthand notation for constructing what strings for AIX program files. Its

value is the characters and keyletters:

%VV% = %Z%%~%<horizontal-tab>%I%

%A % Another shorthand notation for constructing what strings for non-AIX program
files. Its value is the keyletters:

%A% = %Z%%Y% %~% %I%%Z%
The following table illustrates how get determines the SID of the file it retrieves, and what
the pending SID is. The column SID Specified shows the various ways the SID can be
specified with the -r flag. The two columns illustrate the various conditions that can exist,
including whether or not the -b flag is used with the get -e. The SID Retrieved indicates
the SID of the file that makes up the g-file. The SID of Delta to be Created column
indicates the SID of the version that will be created when delta is applied.

362 Commands Reference

get

SID -b Other SID SID of Delta
Specified Used Conditions Retrieved to be Created

none! no R defaults to mR2 mR.mL mR.(mL+1)

none! yes R de fa ults to mR mR.mL mR.mL.(mB + 1).1

(R)elease no R > mR mR.mL R.13

R no R = mR mR.mL mR.(mL+1)

R yes R > mR mR.mL mR.mL.(mB + 1).1

R yes R = mR mR.mL mR.mL.(mB + 1).1

R N/A R < mR and R does not exist hR.mL4 hR.mL.(mB + 1).1

R N/A R < mR and R exists R.mL R.mL.(mB + 1).1

R.(L)evel no No trunk successor R.L R.(L+1)

R.L yes No trunk successor R.L R.L(mB + 1).1

R.L N/A Trunk successor in release ~ R R.L R.L.(mB + 1).1

R.L.(B)ranch no No branch successor R.L.B.mS R.L.B.(mS + 1)

R.L.B yes No branch successor R.L.B.mS R.L.(mB + 1).1

R.L.B.(S)equence no No branch successor R.L.B.S R.L.B.(S + 1)

R.L.B.S yes No branch successor R.L.B.S R.L.(mB + 1).1

R.L.B.S N/A Branch successor R.L.B.S R.L.(mB + 1).1

1 Applies only if the d (default SID) flag is not present in the file (see "admin" on page 51)

2 The mR indicates the maximum existing release.

3 Forces creation of the first delta in a new release.

4 The hR is the highest existing release that is lower than the specified, nonexistent, release R.

Figure 2. SID Determination

Flags

-b Specifies that the delta to be created should have an SID in a new branch. The
new SID is numbered according to the rules stated in Figure 2. You can use -b
only with the -e flag. It is only necessary when you want to branch from a leaf
delta (a delta without a successor). Attempting to create a delta at a nonleaf
delta automatically results in a branch, even if the b header flag is not set. If
you do not specify the b header flag in the sees file, get ignores the -b flag

Commands 363

get

because the file does not allow branching (see the discussion of header flags on
page 54).

-ccutoff Specifies a cutoff date and time, in the form: YY[MM[DD[HH[MM[SS]]]]] get
includes no deltas to the sees file created after the specified cutoff in the g-file.
The values of any unspecified items in the cutoff default to their maximum
allowable values. Thus, a cutoff date and time specified with only the year (YY)
would specify the last month, day, hour, minute, and second of that year. Any
number of nonnumeric characters can separate the two-digit items of the cutoff
date and time. This allows you to specify a date and time in a number of ways,
as follows:

-c85/9/2,9:00:00
-c"85/9/2 9:00:00"
"- c85/9/2 9:00:00"

-e Indicates that the g-file being created is to be edited by the user applying get.
The changes are recorded later with the delta command. get -e creates a p-file
that prevents other users from issuing another get -e and editing a second g-file
on the same SID before delta is run. The owner of the file can override this
restriction by allowing joint editing on the same SID through the use of the
admin command with the -fj flag. Other users, with permission, can obtain
read-only copies by using get without the -e flag. The get -e command enforces
sees file protection specified via the ceiling, floor, and authorized user list in
the sees file (see "admin" on page 51).

-g Suppresses the actual retrieval of text from the sees file. Use the -g flag
primarily to create an I-file or to verify the existence of a particular SID. Do
not use it with the -e flag.

-ilist Specifies a list of deltas to be included in the creation of a g-file. The SID list
format consists of a combination of individual SIDs separated by commas and
SID ranges indicated by two SIDs separated by a hyphen. You specify the same
SIDs with both the following command lines:

get -e -i1.4,1.5,1.6 s.file
get -e -i1.4-1.6 s.file
You can specify the sees Identification of a delta in any form shown in the
SID Specified column of Figure 2 on page 362. get Interprets partial SIDs as
shown in the SID Retrieved column of the table.

-k Suppresses replacement of identification keywords in the g-file by their value
(see "Identification Keywords" on page 362). The -k flag is implied by the -e
flag. If you accidentally ruin the g-file created by get with an -e flag, you can
recreate it by reissuing the get command with the -k flag in place of the -e flag.

364 Commands Reference

get

-l[p] Writes a delta summary to an I-file. If you specify -lp, the delta summary is
written to standard output, and get does not create the I-file. Use this flag to
determine which deltas were used to create the g-file currently in use. See
"sees Files" on page 360 for the format of the I-file.

-m Writes before each line of text in the g-file the SID of the delta that inserted the
line into the sees file. The format is:

SID tab line of text

-n Writes the value of the %M% keyword before each line of text in the g-file (see
"Identification Keywords" on page 362 for information on keywords). The
format is the value of %M%, followed by a horizontal tab, followed by the text
line. When both the -m and -n flags are used, the format is:

%M% value tab SID tab line of text

-p Writes the text created from the sees file to standard output and does not
create a g-file. get sends output normally sent to standard output to file
descriptor 2 instead. If you specify the -s flag with the -p flag, output normally
sent to standard output does not appear anywhere. Do riot use -p with the -e
flag.

-rSID Specifies the sees identification string (SID) of the sees file version to be
created. Figure 2 on page 362 shows what version of a file is created and the
SID of the pending delta as functions of the SID specified.

-s Suppresses all output normally written to standard output. Error messages
(written to standard error output), remain unaffected.

-t Accesses the most recently created delta in a given release or release and level.
Without the -r flag, get accesses the most recent delta regardless of its SID.

-wstring Substitutes string for the % W% keyword in g-files not intended for editing (see
"sees Files" on page 360 for information on g-files).

-xlist Excludes a list of deltas in the creation of a file. See the -i flag for the SID list
format on page 364.

Examples

1. To get an sees file for editing:

get -e s.prog.c

This creates a file named prog. c that only you have permission to modify. No one
else can use prog. c or s. prog. c until you use the delta command to indicate that
you are finished.

Commands 365

get

2. To get an sees file for reading:

get s.prog.c

This creates a file named prog. c that anyone can read, but that no one can modify.
You can do this before searching files with the grep command or before compiling
programs that are controlled with sees. If you are also using the make command to
manage the development of a software project, make automatically does the get before
compiling a program.

Related Information

The following commands: "admin" on page 51, "delta" on page 236, "help" on page 391,
"prs" on page 574, and "what" on page 848.

The sccsfile file in AIX Operating System Technical Reference.

The discussion of sees in AIX Operating System Programming Tools and Interfaces.

366 Commands Reference

get opt

Purpose

Parses command line flags and parameters.

Syntax

set - - - -' getopt - opstring -$.' ---l 1

1 This command is not entered on the command
line, but is used in shell procedures.

Description

get opt

OL805050

The getopt command is used to break up flags and parameters in command lines for easy
parsing by shell procedures and to check for valid flags. opstring is a string of recognized
flags (see the getopt subroutine call in AIX Operating System Technical Reference).
Extended characters are not permitted. If a letter within opstring is followed by a colon,
the flag is expected to take a modifying parameter that mayor may not be separated from
it on the command line by one or more tabs or spaces. If you specify -- as the last flag on a
command line processed by getopt, getopt recognizes it and stops its processing;
otherwise, get opt creates the terminating --. In either case, getopt places it at the end of
the flags.

When the output from getopt is passed by command substitution to the shell set command,
set resets all of the shell positional parameters ($1, $2 ...) so that each flag is preceded by
a - (minus) and occupies its own positional parameter. Each parameter (for example, file
names and other parameters) is also parsed into its own positional parameter.

The get opt command writes a message to standard error when it encounters a flag not
included in opstring. The set command returns a nonzero value if a flag appears on the
command line but is not specified in opstring. Consequently, you can test the validity of
command flags by testing the value of the shell variable $? If it is nonzero, the command
line contains an unrecognized flag.

Example

The following shell procedure is a front end to the ar command. It uses getopt to separate
the flags and parameters, then translates them into the ar command syntax and runs ar
with these flags.

Commands 367

getopt

@(#) lib: Front end to the ar command.

Accepts the following flags:
ar flags with II_II prefixes. See the ar command.
-L library The default library is 1I1ibsubs.a ll

•

Note: 1I1ib -r -b sub1.o -v -1 newsub.o " performs
liar rbvl sub1.o libsubs.a newsub.o".
The ar command DOES interpret this correctly.

set -- 'getopt clsvmrua:b:i:dpqtxwL: $*'
if [$? 1= 0] # Test for syntax error
then

exit 2
fi
FLAGS= POSNAME=
whi 1 e [$1 1 =
do

case $1 in

LIBRARY=libsubs.a
]

-L)
LIBRARY=$2

Default library name

shift; shift # Shift past the -L and library name
, ,

-al-bl-i)
FLAGS=$FLAGS'expr "$111 : 11_\(.\)11,
POSNAME=$2
shift; shift # Shift past the flag and parameter
, ,

-*) # Strip the II_" from the flag
FLAGS=$FLAGS'expr "$111 : 11_\(.\)11'

esac
done

shift
, ,

shift # Shift past the 11 __ 11 from getopt
FLAGS=${FLAGS:-vt} # Default if action not specified
ar $FLAGS $POSNAME $LIBRARY $*

If this shell procedure is stored in a file named 1 i b, then all of the following commands are
equivalent:

368 Commands Reference

lib -L mylib.a -v -r -b putfld.o getnam.o getfld.o getaddr.o
lib -Lmylib.a -v -r -bputfld.o getnam.o getfld.o getaddr.o
lib -Lmylib.a -vrbputfld.o getnam.o getfld.o getaddr.D
lib -Lmylib.a -v -rbputfld.o -- getnam.o getfld.o getaddr.o
In each of these cases, get opt breaks down the command into:

-L mylib.a -v -r -b putfld.o -- getnam.o getfld.o getaddr.o

get opt

The get opt command writes to its standard output. Because this command is enclosed in
, '(grave accents), the shell takes its standard output and uses it to construct the
command:

set -- -L mylib.a -v -r -b putfld.o -- getnam.o
getfld.o getaddr.o
This is called command substitution. For more details, see "Command Substitution" on
page 647.

The set command (page 656) sets the positional parameters $1, $2, $3 ... to each of the
values - L, my 1 i b. a, - v ... , respectively.

The shell procedure then uses the positional parameters to construct and run the
command:

ar vrb putfld.o mylib.a getnam.o getfld.o getaddr.o
The ar command (page 58) accepts the flags in any order. Therefore, you can specify flags
to 1 i b in any order, as long as a parameter immediately follows a -a, -h, -i, or -L flag, and
all the flags come before any file names. This means that:

lib -bputfld.o -rv -Lmylib.a getnam.o getfld.o getaddr.o
produces the command:

ar brv putfld.o mylib.a getnam.o getfld.o getaddr.o
which performs the same action as each of the previous commands. See "test" on page 750
and "expr" on page 317 for more information about these commands.

Related Information

The following command: "sh" on page 637.

The getopt subroutine in AIX Operating System Technical Reference.

Commands 369

gettext

gettext

Purpose

Extracts message/insert/help descriptions.

Syntax

gettext

r-----p
maximum three each)- outfi/e ----j

-h he/pnum Linfi/e
-m mesgnum
-t insertnum

OL805130

Description

Flags

The gettext command gets message, insert, or help descriptions from infile and places the
descriptions in outfile. If you specify the -p flag or gettext outfile, gettext places a
message/insert/help template in outfile. When you have your message, insert, or help
descriptions or your message/insert/help template in outfile; you can edit outfile.

The outfile is an AIX ASCII file that consists of a header to identify the component and a
group of message/insert/help descriptions. The contents of the message/insert/help
descriptions includes a delimiter, control information and message/insert/help text. See
AIX Operating System Programming Tools and Interfaces for a description of the outfile
format and contents.

-h helpnum

-m mesgnum

-p

-t insertnum

Extracts help information from infile. You specify the index value used for
the desired help number with helpnum.

Extracts message information from infile. You specify the index value used
for the desired message number with mesgnum.

Makes a message/insert/help template for outfile.

Extracts text insert information from infile. You specify the index value
used for the desired insert number with insertnum.

370 Commands Reference

/

gettext

The syntax for the mesgnum, insertnum, and helpnum parameters is as follows:

num-num Retrieves index numbers num to num.

num,num. .. Retrieves a list of index numbers specified with num, num, num, and so on
(maximum of 50 numbers).

num- Retrieves index numbers equal to and larger than num.

-num Retrieves index numbers from one to num.

Related Information

The following command: "puttext" on page 586.

The discussion of gettext in AIX Operating System Programming Tools and Interfaces.

Commands 371

getty

getty

Purpose

Sets the characteristics of ports.

Syntax

getty . ~ - portname ~
~-dr

OL805333

Description

The init process runs the getty command for each portname enabled for login. Its primary
function is to set the characteristics of the port specified by portname. Port characteristics
include:

• Line speed (baud rate).
• Parity.
• Carriage return, tab, new-line, and form feed delays.
• Character set mapping, such as uppercase to lowercase, carriage return to new-line

translation, and tab expansion.
• Extended character support.
• Character erase and line erase editing characters.
• Local or remote echo.
• Screen length for paging.

The getty command obtains these settings by reading the port attributes specified in the
/etc/ports configuration file and by observing the behavior of the port itself. (For details
regarding the format of /etc/ports, see AIX Operating System Technical Reference. For the
logmodes and runmodes parameter settings, see "stty" on page 717.) When getty is
invoked, it first opens the specified port. However, if carrier detection (modem control) is
available on the port, getty cannot open the port until the carrier is present. Once the
port is opened, getty sets the work station attributes according to the first speed,
logmodes, parity, erase, kill and other parameters in the ports file and writes the herald
message herald to the port. getty then reads a login name from the port. If the login /
name contains extended characters, they are translated to the single ASCII characters
most resembling them.

If a framing error occurs while reading, either because a user generates a BREAK signal
from the work station or because the line speed is not the same as that of the transmitting
work station, the port parameters are reset to the next combination specified in the ports

372 Commands Reference

getty

file. Once getty reads a login name, it resets the work station modes according to the
runmodes parameter, turns on carriage-return-to-new-line mapping if the login name was
terminated by a carriage return, turns on uppercase-to-lowercase mapping if the alphabetic
characters in the login name were uppercase, and executes the program specified by the
logger parameter. That program, defaulting to /bin/login, runs in the same process as
getty not as its child.

Any additional arguments entered after the login name are passed to the logger program.
The login command interprets these as shell variable settings and places them in the
environment.

On dial-in ports, it is often desirable to set no parity generation or checking as a default,
but to permit the user to select parity as an option. For example, the following line, in the
/ etc/ports file:

parity = none,odd+inpck,even+inpck
accepts logins with any parity, but if a user generates BREAK before typing a login name,
getty sets the port to generate odd parity and to check incoming characters for odd parity,
while two BREAKs generate and check for even parity. Similarly, the line:

speed=1200,300
works with 1200 baud, reverting to 300 baud when a BREAK is received before the login
name. The default runmodes parameter (which must appear on one line in the ports file),
is generally satisfactory. However, for work stations that have built-in tabs to every eight
character positions and do not require tab delays, eliminating the tab3 from the default in
jete/ports will provide faster output with less system load.

Special Purpose Options

If there is a timeout keyword in the ports file, getty waits only the specified number of
seconds for a response to the herald before advancing to the next port settings or, after all
the settings are exhausted, exiting. If there is a program keyword for the port, then
instead of displaying the herald a.nd gathering a login name, it executes the specified
program immediately. This feature is a general mechanism for supporting special service
ports such as network mail demons that need to be spawned when a connection is made
from the outside world. As a special case, if you specify:

program = HOLD
the runinodes, owner, and protection of the port are set and getty holds the port open
indefinitely, thereby preventing the port modes from reverting to their open-default
settings. This is useful, for example, in setting the modes on serial printer ports when it is
inconvenient or impossible to have the programs that use them do so.

Commands 373

getty

Flag

-d Uses standard input as the work station for which parameters are to be set according
to those governing portname. Instead of executing a logger or a program, getty
displays the name of the program that would have been run.

Example

Files

To test a new fete/ports entry:

getty -d /dev/tty5
This tests a new port definition for /dev/tty5 by simulating the login sequence of this

device at your work station.

/etc/ports
/bin/login
/bin/setmaps

Related Information

The following commands: "login" on page 453, "init" on page 396, and "stty" on
page 717.

The tty and ports files in A/X Operating System Technical Reference.

The "Overview of International Character Support" in Managing the A/X Operating
System.

374 Commands Reference

/

graph

Purpose

Draws a graph.

Syntax

graph

-g grid -s
-h space -t
-lIable -u space
-m style -w space
-r space

-x

-y

Description

lolim

lolim

TNL SN20-9861 (26 June 1987) to SC23-0790-0
graph

-0-('-(0
num

lowlim

uplim

uplim

OL805429

The graph command reads pairs of numbers from standard input, where each pair is the x
and y coordinates of a point on a graph. It processes the data so that when it is printed,
successive points are connected by straight lines. It writes the graph to standard output.
You can then use the tplot command to code the output for printing (see "tplot" on
page 762).

Commands 375

graph

Flags

In the input, non-numeric strings following the coordinates of a point are labels. Labels
begin on the point. Labels can be surrounded with" (double quotation marks), in which
case they can be empty or contain blanks and numbers. Labels cannot contain new-line
characters.
The graph command stores all points internally and drops those for which there is not
room. It also drops segments that run out of bounds.

-a [num [lolim]]
Supplies abscissas missing from the input automatically. num determines the
spacing on the axis (the default is 1). lolim determines the starting point for
automatic abscissas (the default is 0 or the lower limit given by -x[lolim].

-b Breaks the graph after each label in the input.
-c char
-g grid

-h space
-I "label"
-m style

-r space

-s
-t

Uses the character string char as the default label for each point.
Uses grid as the grid style, where grid = 0 indicates no grid, grid = 1
indicates a frame with tick marks, and grid = 2 indicates a full grid (default).
Uses space as a fraction of space for height.
Uses label as a label for the graph.
Uses style as the style of connecting lines, where style =0 indicates
disconnected lines, and style = 1 indicates connected lines (default).
Uses space as the fraction of space to move to the right before plotting.
Saves the current graphic screen image, does not erase before starting the plot.
Transposes horizontal and vertical axes. (-x now applies to the vertical axis).

-u space Uses space as the fraction of space to move up before plotting.
-w space Uses space as a fraction of space for width.
-x [1] [lolim [uplim [space]]]

Makes the x axis logarithmic if 1 is used. Use lolim as the lower x axis limit
and uplim as the upper x axis limit. Use space for the grid spacing on x axis.
Normally these are determined automatically.

-y [1] [lolim [uplim [space]]]
Acts the same as -x for the y axis.

The graph command produces a legend indicating grid range with a grid unless you
specify the -s flag. If a specified lower limit exceeds the upper limit, graph reverses the
axis. Note that logarithmic axes cannot be reversed.

Related Information

The following commands: "spline" on page 684 and "tplot" on page 762.

376 Commands Reference

graphics

graphics

Purpose

Accesses graphical and numerical commands.

Syntax

graphics ;----\,

'--rJ
OL777038

Description

Flag

The graphics command appends the path name /usr/bin/graf to the current $PATH
value, changes the primary shell prompt to 1\, and executes a new shell. The directory
/usr/bin/graf contains all of the graphics subsystem commands.

The command line format for a command in graphics is command name followed by
argument(s). An argument may be a filename or an flag string. A filename is the name of
any AIX Operating System file, except those beginning with -. The filename - is the name
for the standard input. An flag string consists of - followed by one or more flag(s). A flag
consists of a keyletter possibly followed by a value. Flags may be separated by commas.

The graphical commands have been partitioned into four groups.

• Commands that manipulate and plot numerical data; see "stat" on page 690.

• Commands that generate tables of contents; see "toc" on page 757.

• Commands that interact with graphical devices; see "gdev" on page 347 and "ged" on
page 350.

• A collection of graphical utility commands; see "gutil" on page 386.

To produce a list of graphics commands, enter whatis in the graphics environment.

-r Creates access to the graphical commands in a restricted environment; that is, it
sets $PATH to :/usr/bin/graf:/rbin:/usr/rbin and invokes the restricted shell,
rsh. To restore the environment that existed prior to issuing the graphics
command, press Ctrl-D (END OF FILE). To log out of the graphics
environment, enter quit.

Commands 377

graphics

Related Information

The following commands: "gdev" on page 347, "ged" on page 350, "gend" on page 357,
"gutil" on page 386, "stat" on page 690, and "toe" on page 757.

The gps file in A/X Operating System Technical Reference.

378 Commands Reference

greek

greek

Purpose

Converts output for a TELETYPE Model 37 work station to output for other work stations.

Syntax

-C
-T$TERMy greek

- Tworkstation
OL805185

Description

Flag

The greek command reinterprets the TELETYPE Model 37 character set, including
reverse and half-line motions, for display on other work stations. It simulates special
characters, when possible, by overstriking. greek reads standard input and writes to
standard output.

-Tworkstation Uses the specified workstation. If you omit the -T flag, greek attempts
to use the work station specified in the environment variable $TERM
(see the environ special facility in A/X Operating System Technical
Reference.) workstation can be anyone of the following:

300
300-12
300s
300s-12
450
450-12
1620
1620-12
2621
2640
2645
4014
hp
tek

DASI300.
DASI 300 in 12-pitch.
DASI300s.
DASI 300s in 12-pitch.
DASI450.
DASI 450 in 12-pitch.
Diablo 1620 (alias DASI 450).
Diablo 1620 (alias DASI 450) in 12-pitch.
Hewlett-Packard 2621, 2640, and 2645.
Hewlett-Packard 2621, 2640, and 2645.
Hewlett-Packard 2621, 2640, and 2645.
Tektronix 4014.
Hewlett-Packard 2621, 2640, and 2645.
Tektronix 4014.

Commands 379

greek

Files

/usr/bin/300
/usr/bin/300s
/usr/bin/4014
/usr/bin/450
/usr/bin/hp

Related Information

The following commands: "300" on page 863, "4014" on page 865, "450" on page 866, "eqn,
neqn, checkeq" on page 300, "hp" on page 392, "mm, checkmm" on page 492, "tplot"
on page 762, and "nroff' on page 525.

The greek miscellaneous facility in AIX Operating System Technical Reference.

380 Commands Reference

,/

grep

grep

Purpose

Searches a file for a pattern.

Syntax

grep pattern ~
~

OLB05275

egrep pattern a ~
l--f---e pattern--~

-f stringfile file

OLB05359

fgrep pattern :3 (d --1--- ':""e pattern
-f stringfile file

OLB05361

Description

Commands of the grep family search input files (standard input by default), for lines
matching a pattern. Normally, they copy each line found to standard output. Three
versions of the grep command permit you to express the matching pattern in varying levels
of complexity:

grep Searches for patterns, which are limited regular expressions in the style of the ed
command. grep uses a compact nondeterministic algorithm.

Commands 381

grep

Flags

egrep Searches for patterns which are full regular expressions as in ed, except for \ (and
\) and with the addition of the following rules:

• A regular expression followed by a plus sign (+) matches one or more
occurrences of the regular expression.

• A regular expression followed by a question mark (?) matches 0 or 1
occurrences of the regular expression.

• Two regular expressions separated by a vertical bar (I) or by a new-line
character match strings that are matched by either.

• A regular expression may be enclosed in parentheses 0 for grouping.

The order of precedence of operators is [], then *? +, then concatenation, then I
and the new-line character.

The egrep command uses a deterministic algorithm that needs exponential space.

fgrep Searches for patterns which are fixed strings. It searches for lines that contain
one of the strings (lines are separated by new-line characters).

All versions of grep display the name of the file containing the matched line if you specify
more than one file name. Characters with special meaning to the shell ($ * [I A ()

\), must be quoted when they appear in patterns. When pattern is not simple string, you
usually must enclose the entire pattern in single quotation marks. In an expression such
as [a-z], the minus means "through" according to the current collating sequence. A
collating sequence may define equivalence classes for use in character ranges. See the
"Overview of International Character Support" in Managing the A/X Operating System for
more information on collating sequences and equivalence classes.

The exit value of these commands is:

o A match was found.

1 No match was found.

2 A syntax error was found or a file was inaccessible (even if matches were found).

-b

-c

Note: Lines are limited to 512 characters; longer lines are broken into multiple
lines of 512 or fewer characters (grep only).

Paragraphs (under the -p flag) are currently limited to a length of 5000 characters.

Running grep on a special file produces unpredictable results and is discouraged.

Precedes each line by the block number on which it was found. Use this flag
to help find disk block numbers by context.

Displays only a count of matching lines.

382 Commands Reference

grep

-e pattern Specifies a pattern. This works the same as a simple pattern but is useful
when the pattern begins with a - (does not work with grep).

-f stringfile Specifies a file that contains patterns (egrep) or strings (fgrep).

-1

-n

Lists just the names of files (once) with matching lines. Each file name is
separated by a new-line character.

Precedes each line with its relative line number in the file.

-pparsep Displays the entire paragraph containing matched lines. Paragraphs are
delimited by paragraph separators, parsep, which are patterns in the same
form as the search pattern. Lines containing the paragraph separators are
used only as separators; they are never included in the output. The default
paragraph separator is a blank line (grep only).

-8

-v

-x

Suppresses error messages about inaccessible files (grep only).

Displays all lines except those that match the specified pattern.

Displays lines that match the pattern exactly with no additional characters
(fgrep only).

Examples

1. To search several files for a simple string of characters:

fgrep II strcpyll * . c

e

This searches for the string strcpy in all files in the current directory with names
ending in . C

2. To count the number of lines that match a pattern:

fgrep -c II {II
fgrep -c II}II

pgm.c
pgm.c

This displays the number of lines in pgm. c that contain open and close braces.

If you do not put more than one {or } on a line in your C programs, and if the braces
are properly balanced, then the two numbers displayed will be the same. If the
numbers are not the same, then you can display the lines that contain braces in the
order that they occur in the file with: egrep II{I}II pgm. c

3. To use a pattern that contains some of the pattern-matching characters *, A, ?, [,], \(,
\), \{, and \}:

grep II A[a-zA-ZJII pgm.s

This displays all lines in pgm. s that begin with a letter.

Commands 383

grep

Note that because fgrep does not interpret pattern-matching characters:

fgrep II" [a-zA-ZJ II pgm. s

makes fgrep search only for the string" [a-zA-IJ in pgm. s.

4. To use an extended pattern that contains some of the pattern-matching characters +,
?, I, (, and):

egrep "\(*([a-zA-ZJ*1 [0-9J*) *\)" my.txt

This displays lines that contain letters in parentheses or digits in parentheses, but not
parenthesized letter-digit combinations. It matches (y) and (783902), but not
(alpha19c).

Note: When using egrep, \(and \) match parentheses in the text, but (and) are
special characters that group parts of the pattern. The reverse is true for grep.

5. To display all lines that do not match a pattern:

grep -v ""#"

This displays all lines that do not begin with a # character.

6. To display the names of files that contain a pattern:

fgrep - 1 II strcpyll * . c

This searches the files in the current directory that end with. c and displays the
names of those files that contain the string strcpy.

Related Information

The following commands: "ed" on page 280, "sed" on page 629, and "sh" on page 637.

The "Overview of International Character Support" in Managing the AIX Operating
System.

384 Commands Reference

TNL SN20-9861 (26 June 1987) to SC23-0790-0
groups

groups

Purpose

Displays your group membership.

Syntax

groups ~ ,
~ user1J

1 The default user is the person running the command.
OLS05129

Description

I Files

The groups command writes to standard output the groups to which you or the specified
user belong. The AIX Operating System allows you to belong to many different groups at
the same time.

Your primary group is specified in the file /ete/passwd. Once you are logged in, you can
change your active group with the newgrp command (see page 510). When you create a
file, its group ID is that of your active group.

Other groups that you belong to are specified in the file fete/group. If you belong to more
than one group, you can access files belonging to any of those groups without changing
your primary group ID. These are called your concurrent groups.

Note: The /ete/passwd and /ete/opasswd files must be on the same node.

/etc/group
/etc/passwd
/etc/opasswd

Related Information

The following command: "newgrp" on page 510.

The setgroups system call and the initgroups subroutine in AIX Operating System
Technical Reference.

Commands 385

gutil

gutil

Purpose

Provides graphical utility programs.

Syntax

bel -l

cvrtopt

=sstring
=f string
=i string
=t string

gd -Gfile~
gtop

pd ifi,eJr
ifi,e~ ptog

quit ----1

386 Commands Reference

OL777039

0L805449

remcom ---.r ~
I Lfile~ I

whatis ---f)..J ~
~-o ..J ~nameJ I

yoo - file --I

Description

gutil

OL805450

The following are the miscellaneous device-independent utility commands found in the
/usr/bin/graf directory. If you do not specify any files, these commands read standard
input. All output is sent to standard output. Graphical data is stored in GPS format; see
the gps file in AIX Operating System Technical Reference.

bel
Sends the ASCII BEL character to the terminal.

cvrtopt
The cvrtopt command reformats its arguments (usually the command line arguments of a
calling shell procedure) to facilitate processing by shell procedures. An arg is either a file
name or a flag string. A file name is either a - (minus) by itself or a string not beginning
with a -. A flag string is a string of flags beginning with a - (minus). cvrtopt produces
output of the following form:

-flag -flag. .. file ...

All flags appear singularly in the output and precede any file names. Arguments that take
values or are two letters long must be described through flags to cvrtopt.

The cvrtopt command is usually used with the set command as the first line of a shell
procedure (see page 656 for a description of the set command):

set 'cvrtopt [=flagsJ . .. $@'

Flags

sstring The specified string accepts string values, where string is a one or two letter flag
name.

Commands 387

gutil

fstring The specified string accepts floating point numbers as values, where string is a
one or two letter flag name.

istring The specified string accepts integers as values, where string is a one or two letter
flag name.

tstring The specified string is a two letter flag name that takes no value.

gd

The gd command produces a readable listing of a file in GPS format.

gtop
The gtop command transforms a GPS format into plot file commands displayable by plot
filters. GPS objects are translated if they fall within the window that circumscribes the
first file, unless specify one of the following flags:

Flags

rnum

u

pd

Translates objects in GPS region num.

Translates all objects in the GPS universe.

The pd command displays a readable listing of plot format graphical commands.

ptog
The ptog command transforms plot file commands into a GPS file.

quit
The quit command terminates the session.

remcom
The remcom command copies its input to its output with comments removed. Comments
are as defined in the C language (/* comment * I).

whatis
The whatis command displays a short description of each name specified. If you do not
specify a name, then whatis displays the current list of description names. The command
wh at i s \ * displays every description.

388 Commands Reference

gutil

Flag

-0 Displays only command flags.

yoo
The yoo command is a piping primitive that deposits the output of a pipeline into a file
used in the pipeline. Note that without yoo, this is not usually successful because it
causes a read and write on the same file simultaneously.

Related Information

The following command: "graphics" on page 377.

The gps format in AIX Operating System Technical Reference.

Commands 389

hangman

hangman

Purpose

Plays hangman, the word-guessing game.

Syntax

/usr/games/hangman _~J
~fi'er

Description

OL805228

The hangman game chooses a word of at least seven letters from a standard dictionary.
You try to guess the word by guessing the letters in it, one at a time. You are allowed
seven mistakes. The file parameter specifies an alternate dictionary.

To quit the game, press INTERRUPT (Alt-Pause) or END OF FILE (Ctrl-D).

390 Commands Reference

/

help

help

Purpose

Provides information about a Source Code Control System (SCCS) message or command or
about certain non-SCCS commands.

Syntax

help ~ errorCOdeJr

command

OL805054

Description

Files

The help command writes to standard output information about the use of a specified
secs command or about messages generated while using the commands. Each message
has an associated errorcode, which can be supplied as a argument to the help command.
Zero or more arguments may be supplied. If you do not supply a argument, help prompts
for one. You may include any of the sces commands as arguments to help.

The errorcode consists of numbers and letters, and is found at the end of the message. For
example, in the message no i d keywords (ge6), the error code is ge6.

/usr/lib/help Directory containing files of message text.
/usr /Ii b /hel p/hel ploc File containing locations of help files not in /usr/lib/help.

Related Information

The discussion of sees in AIX Operating System Programming Tools and Interfaces.

Commands 391

hp

hp

Purpose

Handles special functions for the HP2640- and HP2621-series terminals.

Syntax

hP~
~

01.805018

Description

Flags

The hp command reads standard input (usually output from nroff), and writes to standard
output, which is usually Hewlett-Packard 2640-and 2621-series terminal displays. If your
terminal has the display enhancement feature, you can display subscripts and superscripts.
With the mathematical-symbol feature, you can display Greek and other special characters
the same way as the 300 command, with two exceptions: hp approximates the logical
operator NOT with a right arrow and it only shows the top half of the integral sign.

For overstrike characters (characters followed by a backspace and another character), if
either character is an underscore character, the other appears underlined or in inverse
video depending on terminal enhancements.

Note: Some sequences of control characters (reverse line-feeds and backspaces) can make
text disappear from the display. Tables with vertical lines generated by the tbl command
will often be missing lines of text containing the bottom of a vertical line. You can avoid
these problems by first piping the input through col, and then through hp.

-e Shows overstruck characters underlined, superscripts in half-bright, and subscripts
half-bright underlined. Otherwise, all overstruck characters, subscripts, and
superscripts appear in inverse video (dark-on-light). Use this flag only if your display
has the display enhancements feature.

-m Produces only one blank line for any number of successive blank lines in the text.

392 Commands Reference

hp

Related Information

The following commands: "300" on page 863, "col" on page 140, "eqn, neqn, checkeq" on
page 300, "greek" on page 379, "nroft'" on page 525, and "thl" on page 739.

Commands 393

hyphen

hyphen

Purpose

Finds hyphenated words.

Syntax

hYPhOn~
'C:i

OL805019

Description

The hyphen command reads the input files (standard input by default), finds all the lines
ending with hyphenated words, and writes those words to standard output. A word is
considered hyphenated only if the hyphen occurs at the end of a line. hyphen reads
standard Input if you do not specify any file names on the command line.

Note: The hyphen command cannot handle hyphenated italic words. It also sometimes
gives unnecessary output.

Examples

1. To check the way words are hyphenated in a text file:

hyphen chapl

This lists the words in ch ap 1 that are hyphenated at the end of a line.

2. To check the hyphenation performed by a text formatting program:

mm chapl hyphen
This lists the words that nroff decides to hyphenate across lines.

Related Information

The following commands: "mm, checkmm" on page 492, "nroff" on page 525, and
"troff" on page 526.

394 Commands Reference

/

id

id

Purpose

Displays the system identity of the user issuing the command.

Syntax

id --l

OL805131

Description

The id command writes a message to standard output containing the user and group IDs
and corresponding names of the invoking process. When effective and real names and IDs
do not match, id writes both.

Related Information

The following command: "logname" on page 456.

The getuid subroutine in AIX Operating System Technical Reference.

Commands 395

init

init

Purpose

Initializes the system.

Syntax

init --l

1 This command should not be entered on the command line.
OL805132

Description

After the kernel completes the basic processor initialization, it starts a process that is the
ancestor of all other processes in the system. The process is init, the program that
controls the state in which the system is running, normally either maintenance mode or
multiuser mode. It is the program from which all loggers and most system demons are
started.

When init starts up, it determines what the startup mode should be based on information
in the file /etc/.init.state, or, if this file does not exist or is unreadable, on an argument
passed to it by the kernel. The usual startup modes for init are:

maintenance

multiuser

exec-program

Maintenance Mode

Starts a shell on the console, but do not start any other processes
(single-user mode).

Runs the command file /etc/rc and spawn loggers on all enabled
ports.

Runs the specified program.

The maintenance mode is used for system installation, correcting problems on the file
system using the fsck command, and other operations requiring an inactive system. There
are three ways to bring the system up in maintenance mode:

1. If the system is currently running in normal (multiuser) mode, use the shutdown -m
command to bring the system down to maintenance mode (shutdown sends init a
SIGINT signal).

396 Commands Reference

TNL SN20-9861 (26 June 1987) to SC23-0790-0
init

2. Start the system from the Installation/Maintenance Diskette and specify the
Maintenance Mode option from the End System Management menu.

3. Edit the file /ete/ .init.state such that it consists of the character m. This causes the
system to come up in maintenance mode each time it is started up.

Maintenance mode starts a shell program with superuser authority on the console. When
you log off this shell by pressing END OF FILE (Ctrl-D), init asks you if you want to
leave maintenance mode.
A response beginning with n or N indicates "no," and init starts another shell on the
console. Any processes running in the background continue to run. Any other response
indicates "yes."

If the response is yes, init enters normal mode, as described in the following section. It
also asks if the file system should be assumed to be clean. If you believe this to be true
(for example, you have run fsek and corrected all problems), answer yes. Your answer
determines whether the re command is run with an m or d argument.

Normal Mode

After the normal startup of the system (either from system startup or by leaving
maintenance mode), init runs the normal initialization command file fete/reo It passes re
an argument of either m (normal startup, clean root), or d (normal startup, dirty root).
The latter is the default argument if the startup is from maintenance mode. re is
responsible for performing integrity checks, doing any necessary cleanups, mounting the
normal file systems, enabling standard ports, and starting system demons. If an error
occurs during the running of this command file (indicated by a nonzero return code), init
either forces a system restart by executing the reboot system call or enters maintenance
mode.

Once re completes successfully, init starts logger processes (normally getty) on each
enabled port. Whenever someone ends a logger by logging off a port, init notes the logout
and starts a new logger on the port. Everything init knows about enabling ports is
contained in the file /ete/portstatus, which is maintained by the penable command.
Through this file, you can enable new ports or disable ports that were previously enabled.
Whenever init receives a SIGUP (hangup) signal, it rereads the portstatus file to see if
any changes of port status have been requested.

init then reads the commands in the /ete/re.ds file, if that file exists. Typically,
/ete/re.ds contains commands to start Distributed Services. Any commands that are
needed to run remote mounts should be placed in /ete/re.ds.

If, at any time after the system starts up normally, init discovers that no ports are enabled
or if init receives an INTERRUPT signal, it decides again on startup options. Generally,
this means init will go through normal startup, assuming a dirty root.

Commands 397

init

Environments

Files

Because init is the ultimate ancestor of every process on the system, its environment
parameters are inherited by every process. As part of its initialization sequence, in it reads
the file fete/environment and copies any assignments found in that file into the
environment passed to all of its subprocesses. It treats umask differently. If it is assigned
a reasonable octal value, init does a umask system call for the specified value, rather than
passing the value in the environment. Similarly, if filesize is specified, init issues a
ulimit call with the given size as the argument.

/etc/utmp
/usr/adm/wtmp
/etc/portstatus
/etc/rc
/etc/environment

Record of logged-in users.
Permanent login accounting file.
Enabled port status file.
Initialization command file.
System-wide environment variables.

Related Information

The following commands: "getty" on page 372, "penable" on page 550, "re" on page 594,
and "shutdown" on page 663

The reboot and umask system calls and the portstatus file in A/X Operating System
Technical Reference.

The discussion of starting up the system in Managing the A/X Operating System.

398 Commands Reference

install

install

Purpose

Installs a command.

Syntax

install
-n directory

-{

-c directory

install
-f directory

file~
~

file-----J,

OL805022

1;:>escription

Flags

The install command installs file in a specific place within a file system. It is most often
used in "makefiles" (see "make" on page 474). When replacing files, install copies each
file into the appropriate directory, thereby retaining the original owner and permissions.
A newly-created file has permission code 755, owner bin, and group bin. install writes a
message telling you exactly which files it is replacing or creating and where they are
going.

If you do not supply any arguments, install searches a set of default directories (lbin,
/usr/bin, fete, /lib, and /usr/lib, in that order) for a file with the same name as file. The
first time it finds one, it overwrites it with file and issues a message indicating that it has
done so. If a match is not found, install issues a message telling you there was no match
and exits with no further action.

If any directories are specified on the command line, install searches them before it
searches the default directories.

-c directory Installs a new command file in directory only if that file does not already
exist there. If it finds a copy of file there, it issues a message and exits
without overwriting the file. This flag can be used alone or with -so

Commands 399

install

-f directory Forces installation of file in directory whether or not file already exists. If
the file being installed does not already exist, install sets the permission
code and owner of the new file to 755 and bin, respectively. This flag can be
used alone or with -0 or -so

-i Ignores the default directory list and searches only those directories
specified on the command line. This flag cannot be used with -c or -f.

-n directory Installs file in directory if it is not in any of the searched directories and sets
the permissions and owner of the file to 755 and bin, respectively. This flag
cannot be used with -c or -f.

-0 Saves the old copy of file by copying it to OLDfile in the directory in which
it found it. This flag cannot be used with -c.

-s Suppresses display of all but error messages.

Examples

1. To replace a command that already exists in one of the default directories:

install fixit

This replaces fi xi t if it is found in /bin, /usr/bin, /etc, /lib, or /usr/lib. Otherwise,
it is not installed. For example, if /usr/bin/fixit exists, then this file is replaced by
a copy of the file fi xi t in the current directory.

2. To replace a command that already exists in a specified or default directory, and to
preserve the old version:

install -0 fixit fete /usr/games

This replaces fi xi t if found in /etc, /usr/games, or one of the default directories.
Otherwise it is not installed. If fi xi t is replaced, the old version is preserved by
renaming it OLDfi xi t in the directory in which it was found (-o).

3. To replace a command that already exists in a specified directory:

install -i fixit /u/jim/bin /u/joan/bin /usr/games

This replaces fixit if found in /u/jim/bin, /u/joan/bin, or /usr/games.
Otherwise it is not installed.

4. To replace a command if found in a default directory, or install it in a specified
directory if not found:

install -n /usr/bin fixit

This replaces fi xi t if found in one of the default directories. If fi xi t is not found, it
is installed as lusr/bi n/f; x; t (-n /usr/bin).

400 Commands Reference

5. To install a new command:

install -c lusr/bin fixit

install

This creates a new command by installing a copy of fi x; t as Ius rib; n I f; x; t, but
only if this file does not already exist.

6. To install a command in a specified directory whether or not it already exists:

install -f lusr/bin -0 -s fixit
This forces f; x; t to be installed as lusr/b; n/f; X; t whether or not it already exists.
The old version, if any, is preserved by moving it to Ius rib; n IOLDf; x; t (-0). The
messages that tell where the new command was installed are suppressed (-8).

Related Information

The following command: "make" on page 474.

The mk system maintenance procedure in A/X Operating System Technical Reference.

Commands 401

installp

installp

Purpose

Installs a program.

Syntax

r -d Idev/rfd0)--Cn $LOGNAyM

installp~
-d device -n name

Description

OL805021

Warning: Before you install a program, you must restart your system and
be sure that no other users are on the system and no other programs are
runnIng.
The installp command installs a program. You must be a member of the system group or
operating with superuser authority to run this command.

Because more than one program may be on a set of diskettes, installp asks whether or not
you want to install each program. If you do, installp checks to see if it is an older version
than the one currently installed. If it is, installp asks if you wish to continue.

The installp command makes a backup copy of the program history file before installation
begins. If installation is not successful, it sets the Version, Release, and Level fields of the
last record of the history file to 00.00.0000 and logs the exit value in the program history
file. The history file remains on the system as /usr/lpp/pgm-name/lpp.hist, where
pgm-name is the program name.

Note: Only ordinary files with the prefix lpp. remain in /usr/lpp/pgm-name after
completion of installp. All other ordinary files are removed.

You cannot use INTERRUPT (Alt-Pause) to stop the installp command. To stop installp,
press QUIT WITH DUMP (Ctrl-V). This should be used only in extreme circumstances
since the state of the system cannot be predicted. For example:

• The write-verify feature may be left on for all minidisks. See "verify" on page 830

• All terminals other than the console may be disabled. See "penable" on page 550.

• Some install control files may need to be deleted.

402 Commands Reference

/

Flags

installp

-d device Installs the program from the specified device. The default device is /dev/rfdO.

-n name Logs the first eight nonblank characters of name in the program history file.
The default name is the value of the environment variable $LOGNAME.

The installp command runs a program-provided installation procedure instal. Each
installation procedure returns one of the following exit values to installp:

o Installation completed; take no action.
2 Update superblocks, i-nodes, and delayed block I/O (sync), then restart the AIX

Operating System.
3 Build the kernel, then update the superblocks, i-nodes, and delayed block I/O (sync)

and shut down the VRM.
4 Build the kernel, then update the superblocks, i-nodes, and delayed block I/O (sync)

and restart the AIX Operating System.
5 Installation cancelled without errors.
6 Update superblocks, i-nodes, and delayed block I/O (sync), then shut down the VRM.

Any other return value indicates that installation failed.

Internal Commands

Install procedures can use the following internal commands. Because they are internal
commands, they do a minimum validation of input parameters. Their purpose is to provide
common code for the save and recovery functions frequently needed by most
program-provided procedures. Because these internal commands function as subcommands,
they return exit values rather than issue error messages. However, messages may come
from other system commands that they run. C Language programmers of install
procedures that call these commands can use the /usr/include/inu21.h file to define the
return codes for them.

inusave
The inusave command saves some or all of the files and archive files that will be changed
during a program install or update procedure. It uses the following syntax:

inusave listfile pgm-name

The pgm-name parameter specifies the program to be installed or updated. pgm-name can
be a maximum of 8 characters. lis tfile , which must be a full path name, contains a list of
relative path names (relative to the root) for all of the files that need to be saved. listfile
must be in the format of an apply list (see AIX Operating System Programming Tools and
Interfaces for a discussion of the format of an apply list).

The inusave command creates the save directory (fusr/lpp/pgm-name/inst _updt.save).
This is the directory in which the install and update procedures store saved files and the

Commands 403

installp

control list that correlates the local file names with their full path names. inusave uses
listfile as a basis to determine which files need to be temporarily saved.

If the file named in listfile already exists, inusave copies that file to
/usr/lpp/pgm-name/inst _updt.save/update. n, where n is an integer assigned by
inusave. If the file does not exist, inusave assumes that this entry in listfile represents
either a new file or a file to be archived or processed by the archive procedure. inusave
maintains a list of saved files in /usr/lpp/pgm-name/inst _updt.save/update.list. The
format of each entry in the list is:

update.n file

where update.n is the name of the saved file and file is the full path name of the file.

An archived constituent file is saved if there is a valid archive control file,
/usr/lpp/pgm-name/lpp.acf, for the program. If this file exists, inusave compares each of
the file names in listfile to the constituent file names in /usr/lpp/pgm-name/lpp.acf. When
it finds a match, inusave uses the ar command to extract the constituent file from its
associated archive file. It then moves it to /usr/lpp/pgm-name/inst _updt.save/archive.
n, where n is an integer selected by inusave. inusave maintains a list of the extracted
files that have been saved in the file /usr/lpp/pgm-name/inst _updt.save/archive.list .
The format of each entry in the list is:

archive.n cfile afile

where archive.n is the name of the saved file and cfile and afile are the constituent and
archive files defined in the archive control file.

The inusave command returns the following exit values:

o No error conditions occurred.
105 Failure occurred trying to create a save directory.
107 Copy of a file from one directory to another failed. This implies that the update

apply has not yet begun and that the old level of the program is still usable.
202 One or more parameters missing.
204 Too many parameters were entered.
207 Could not access the apply list.

inurecv
The inurecv command recovers all files and archive-constituent files saved from the
previous inusave. inurecv uses the following syntax:

inurecv pgm-name reject-flag

It uses the control lists from the /usr/lpp/pgm-name/inst _updt.save directory to recover
the files. inusave creates the /usr/lpp/pgm-name/inst _updt.save directory and control
lists. inurecv also recovers files that may have been saved by the program-provided install
or update procedure (see AIX Operating System Programming Tools and Interfaces for
details).

404 Commands Reference

TNL SN20-9861 (26 June 1987) to SC23-0790-0

installp

The inurecv command has to distinguish between an immediate recovery that occurs
because of an error condition during an install or update and an update rejection that
occurs because a user rejects an update (updatep -r). If the reject-flag argument is yes,
inurecv assumes that it is being run because of an update rejection. If the argument is no
or if no flag is specified, inurecv assumes that it is being run because of an immediate
recovery.

The inurecv command returns the following exit status values:

o No error conditions occurred.
101 The save directory does not exist.
102 A copy of a file from one directory to another failed. This implies that the program

could not be recovered and that it must be reinstalled and any updates reapplied.
104 A file that was saved in the save directory was not found.
205 Replacement of a constituent file in an archive file failed while attempting to

recover a program. This implies that the program is no longer useable and should be
reinstalled and any updates reapplied.

inurest
The inurest command does simple restores and archives. It does not do any additional
processing or user interaction. inurest uses the following syntax:

inurest [-ddevice] [-q] listfile pgm-name

The listfile is the full path name of a file containing the relative directory target path name
(relative to the root), of files that a program needs to restore. It must be in the format of
an apply list. inurest restores all files in the list relative to the root directory. pgm-name
specifies the name of the program to be installed or updated. It can be a maximum of 8
characters.

To archive a file, there must be an archive control file, /usr/lpp/pgm-name/lpp.acf. If it
exists, inurest compares each of the target names in listfile to the component files listed in
there. Whenever inurest finds a match, it archives the restored file into the
corresponding archive file and deletes the restored file.

Flags

The following flags modify the action of inurest:

-d device Specifies the input device. The default device is /dev/rfdO.

-q Prohibits restore from displaying the "insert volume 1" prompt.

The inurest command returns the following exit status values:

o No error conditions occurred.
106 Failed trying to restore an updated version of files.
201 An invalid flag was specified.

Commands 405

TNL SN20-9861 (26 June 1987) to SC23-0790-0
installp

202 One or more parameters missing.
204 Too many parameters were entered.
206 Failed trying to replace file in an archive file.
208 Could not access the apply list.

ckprereq
The ckprereq command determines whether the system level is compatible with the
program to be installed or updated. It uses the following syntax:

ckprereq [-v] [-f prerequisites]

You can run ckprereq only if you are a member of the system group or are operating with
superuser authority. prerequisites is a program prerequisite list file. Each record in this
file contains the name of a prerequisite program and describes the version, release, and
level requirements. There is one record for each prerequisite program. The default
prerequisites file is prereq. See AIX Operating System Programming Tools and Interfaces
for details on the format of ckprereq file entries.

The ckprereq command tests the current version, release, and level found in the history
file and marks each "prereq state" field of the prereq file with one of the following codes if
the test fails:

n The history file was not found.
s There is a syntax error in the prereq file.
v The test is false for version.
r The test is false for release.
I The test is false for level.

A blank "prereq state" field indicates that the test was true. The exit value of ckprereq is
the number of records that did not test true. If all records test true, the exit value is O.

Note: If a program is installed on a local node and executed on a remote node, the remote
node must have file trees that have all necessary prerequisite files available.

Flags

-f prerequisites Specifies the prerequisites file to use in place of prereq.

-v Sends a descriptive message to standard error for each failure in the
prerequisite program test. The messages give the same information as the
prereq state field of the prereq file.

406 Commands Reference

installp

mvmd
The mvmd command updates the VRM minidisk. It uses the following syntax:

mvmd -a file -D VRM-dir [-fp [file]] -1 pgm-name
mvmd -c VRM-file permissions -1 pgm-name
mvmd -d VRM-file -1 pgm-name
mvmd -m VRM-file [-fp [file]] -1 pgm-name
mvmd -r file -D VRM-dir -1 pgm-name

You must be a member of the system group or operating with superuser authority to run
mvmd.

Flags

-a file Adds the specified file to the VRM minidisk. Use the -D flag to specify the
destination VRM directory. file must not already exist in the specified
directory. By default, mvmd adds the file to the first unused position in
the VRM directory. To specify a position, use the -f or -p flag.

-c VRM-file permissions

-d VRM-file

-D VRM-dir

-f [file]

Changes the permission code of the specified VRM-file to the octal value,
permissions. The VRM-file parameter must be a full path name. Valid
combinations of permission bits are as follows:

0700 The loadlist processor loads, runs, and deletes this module.
0450 The loadlist processor transfers control to this module after all

loadlist directory entries have been processed.
0440 The loadlist processor loads this module.
0410 This module is a virtual machine.
0040 If the system startup device is a diskette, the loadlist processor is

to load the module. If the system startup device is a fixed disk, the
loadlist processor does not load the module. Inste~d, it maps the
module.

The loadlist processor ignores any module that does not have the load bit
set. For more information about these permission bits, see Virtual
Resource Manager Technical Reference.

Deletes the specified file from the VRM minidisk. The VRM-file parameter
must be a full path name.

Specifies the full path name of the VRM directory.

Specifies the position following file in the directory list or, if you do not
specify file, the bottom of the directory list. Use this positioning flag with
the -a or -m flags.

Commands 407

installp

Files

-I pgm-name Specifies the name of a program that is modifying the VRM minidisk. The
pgm-name, the date, the user name, and a descriptive title are place in a
record appended to the VRM history file. If you do not specify this flag,
then a record with the name UNKNOWN is appended to the VRM history file.

-m VRM-file Moves the specified file within its VRM directory. By default, mvmd
moves the file to the first unused position. To specify a position, use the -f
or -p flag.

-p [file] Specifies the position prior to file in the directory list or, if you do not
specify file, the top of the directory list. Use this positioning flag with the
-a or -m flags.

-r file Replaces the specified file on the VRM minidisk. Use the -D flag to select
the VRM directory of the file to be replaced. Both the replacement file and
the file to be replaced must have the same name.

The mvmd command returns an exit status of 0 if no errors occurred. A nonzero return
indicates that an error did occur.

instal
liblpp.a
lpp.hist
prereq
/usr/lpp/pgm-name/lpp.acf
/usr/lpp/pgm-name/inst_updt.save
/usr/lpp/pgm-name/inst_updt/inuPIDtempn
/usr/include/inu21.h

Program installation procedure.
Central archive file.
Program history file.
Program prerequisite list file.
Archive control file.
Directory for saved files.
Temporary files.
Defines error codes returned from internal
commands.

Related Information

The following command: "updatep" on page 796.

The fork and exec system calls and the Ipp.hist file in AIX Operating System Technical
Reference.

The discussion of installing programs in AIX Operating System Programming Tools and
Interfaces.

408 Commands Reference

ipcrm

TNL SN20-9861 (26 June 1987) to SC23-0790-0
ipcrm

Purpose

Removes message queue, semaphore set or shared memory identifiers.

Syntax

ipcrm
-I msqid
-L msgkey
-m shmid
-q msgid
-s semid
-M shmkey
-Q msgkey
-5 semkey

OL805135

Description

Flags

The ipcrm command removes one or more message queue, semaphore set, or shared
memory identifiers.

-lmsqid Removes local information about the remote queue msqid without removing
the remote queue.

-Lmsgkey Removes local information about the remote queue msgkey without removing
the remote queue.

-m shmid Removes the shared memory identifier shmid. The shared memory segment
and data structure associated with shmid are also removed after the last
detach.

-M shmkey Removes the shared memory identifier, created with key shmkey. The shared
memory segment and data structure associated with it are also removed after
the last detach.

-q msqid Removes the message queue identifier msqid and the message queue and data
structure associated with it.

Commands 409

ipcrm

-Q msgkey

-s semid

Removes the message queue identifier, created with key msgkey, and the
message queue and data structure associated with it.

Removes the semaphore identifier semid and the set of semaphores and data
structure associated with it.

-8 semkey Removes the semaphore identifier, created with key semkey, and the set of
semaphores and data structure associated with it.

The details of the remove operations are described in msgctl, shmctl, and semctl in the
A/X Operating System Technical Reference. The identifiers and keys can be found by using
the ipcs command.

Related Information

The following command: "ipcs" on page 411.

The msgctl, msgget, msgrcv, msgsnd, semctl, semget, semop, shmctl, shmget, and
shmop system calls in A/X Operating System Technical Reference.

410 Commands Reference

ipcs

TNL SN20-9861 (26 June 1987) to SC23-0790-0
ipcs

Purpose

Reports inter-process communication facility status.

Syntax

ipcs
-c Idev/kmem \/-N/unix

-c corefile ~ -N kernel-i~
-c
-0
-p
-t

0L805432

Description

The ipcs command writes to the standard output information about active inter-process
communication facilities. If you do not specify any flags, ipcs writes information in a
short form about currently active message queues, shared memory segments, semaphores,
remote queues, and local queue headers.

The column headings and the meaning of the columns in an ipcs listing follow. The letters
in parentheses indicate the flags that cause the corresponding heading to appear. all
means that the heading always appears. These flags only determine what information is
provided for each facility. They do not determine which facilities will be listed.

T (all) Type of facility:

ID

KEY

q message queue
Q message queue resides on a remote node
m shared memory segment
s semaphore.

(all) The identifier for the facility entry.

(all) The key used as a parameter to msgget, semget, or shemget to make
the facility entry.

Note: The key of a shared memory segment is changed to IPC-PRIVATE
when the segment is removed until all processes attached to the segment
detach it.

Commands 411

ipcs

MODE

OWNER

GROUP

(all) The facility access modes and flags. The mode consists of 11 characters
that are interpreted as follows:

The first two characters can be:

R if a process is waiting on a msgrev
S if a process is waiting on a msgsnd
D if the associated shared memory segment has been removed. It disappears

when the last process attached to the segment detaches it.
C if the associated shared memory segment is to be cleared when the first

attach is run
if the corresponding special flag is not set.

The next 9 characters are interpreted as three sets of three bits each. The
first set refers to the owner's permissions; the next to permissions of others in
the user-group of the facility entry; and the last to all others. Within each
set, the first character indicates permission to read, the second character
indicates permission to write or alter the facility entry, and the last character
is currently unused.

The permissions are indicated as follows:

r if read permission is granted
w if write permission is granted
a if alter permission is granted

if the indicated permission is not granted.

(all) The login name of the owner of the facility entry.

(all) The name of the group that owns the facility entry.

CREATOR (a,e) The login name of the creator of the facility entry.

CGROUP (a,e) The group name of the group of the creator of the facility entry.

Note: For the OWNER, GROUP, CREATOR, and CGROUP, the user and
group IDs display instead of the login names.

CBYTES (a,o) The number of bytes in messages currently outstanding on the
associated message queue.

QNUM (a,o) The number of messages currently outstanding on the associated
message queue.

QBYTES (a,b) The maximum number of bytes allowed in messages outstanding on the
associated message queue.

LSPID (a,p) The ID of the last process that sent a message to the associated queue.
If the last message sent was from a process in a node other than the node
which holds the queue, then LSPID is the PID of the kernel process which
actually placed the message on the queue, not the PID of the sending process.

412 Commands Reference

LRPID

STIME

RTIME

CTIME

NATTCH

SEGSZ

CPID

LPID

ATIME

DTIME

NSEMS

OTIME

Flags

-a

-b

-c

-Ccorefile

ipcs

(a,p) The ID of the last process that received a message from the associated
queue. If the last message received was from a process in a node other than
the node which holds the queue, then LRPID is the PID of the kernel process
which actually received the message on the queue, not the PID of the
receiving process.

(a,t) The time when the last message was sent to the associated queue. For
remote queues, this is the server time. No attempt is made to compensate for
any clock skew between the local clock and the server clock.

(a,t) The time when the last message was received from the associated queue.
For remote queues, this is the server time. No attempt is made to compensate
for any clock skew between the local clock and the server clock.

(a,t) The time when the associated entry was created or changed. For remote
queues, this is the server time. No attempt is made to compensate for any
clock skew between the local clock and the server clock.

(a,o) The number of processes attached to the associated shared memory
segment.

(a,b) The size of the associated shared memory segment.

(a,p) The process ID of the creator of the shared memory entry.

(a,p) The process ID of the last process to attach or detach the shared
memory segment.

(a,t) The time when the last attach was completed to the associated shared
memory segment.

(a,t) The time the last detach was completed on the associated shared memory
segment.

(a,b) The number of semaphores in the set associated with the semaphore
entry.

(a,t) The time the last semaphore operation was completed on the set
associated with the semaphore entry.

Uses the -b, -c, -0, -p and -t flags.

Writes the maximum number of bytes in messages on queue for message
queues, the size of segments for shared memory, and the number of
semaphores in each semaphores set.

Writes the login name and group name of the user that 'made the facility.

Uses the file corefile in place of /dev/kmem. corefile is a memory image
file produced by the Ctrl-(left)Alt-End key sequence.

Commands 413

TNL SN20-9861 (26 June 1987) to SC23-0790-0
ipcs

Files

-m Writes information about active shared memory segments.

-Nkernel-image Uses the specified kernel-image (funix is the default).

-0 Writes the following usage information:

• Number of messages on queue
• Total number of bytes in messages in queue for message queues
• Number of processes attached to shared memory segments.

-p Writes the following:

-q

-s

-t

/unix
/dev/kmem
/etc/passwd
/etc/group

• Process number of the last process to receive a message on message
queues

• Process number of the creating process
• Process number of last process to attach or detach on shared memory

segments.

Writes information about active message queues.

Writes information about active semaphore set.

Writes the following:

• Time of the last control operation that changed the access
permissions for all facilities

• Time of the last msgsnd and last msgrcv on message queues
• Time of the last shmat and last shmdt on shared memory
• Time of the last semop on semaphore sets.

System kernel image.
Memory.
User names.
Group names.

Related Information

The ipcs, msgrcv, msgsnd, semop, shmat, and shmdt system calls in AIX Operating
System Technical Reference.

The discussion of generating core files in Problem Determination Guide.

414 Commands Reference

ipctable

lipctable

I Purpose

Accessess the Distributed Services IPC Queues Table.

I Syntax

ipctable ---j

OL805468

I Description

The ipctable command lets you build, examine, or change the Distributed Services IPC
Queues Table. Only members of the system group or users operating with superuser
authority can use ipctable to change the state of the Distributed Services IPC Queues
Tables (see "su" on page 724). Other user can use ipctable to browse the IPC Queues
Table.

I Related Information

"Getting Started With Distributed Services Configuration Menus" in Managing the A/X
Operating System.

Commands 414.1

ipctable

414.2 Commands Reference

istat

TNL SN20-9861 (26 June 1987) to SC23-0790-0
istat

Purpose

Examines i-nodes.

Syntax

----.r- filename

istat ~ ;""
inumber - dJ

Description

OLS05138

The istat command writes information about the i-nodes specified with inumber to
standard output. Use the istat command to write information about the i-node for a
specified filename, or to write the contents of a specified i-node, inumber on an arbitrary
file system.

If you specify filename, istat writes the following information about the file:

• The device where the file resides.
• The i-node number of the file, on that device.
• The file type (normal, directory, block device, and so on).
• What protection is on the file.
• The name and identification number of the owner and group.

Note: The owner and group names for remote files are taken from the local
/etc/passwd file.

• The number of links to the file.
• If the i-node is for a normal file, the length of the file.
• If i-node is for a device, the major and minor device designations.
• The date of the last time the i-node was updated.
• The date of the last time the file was modified.
• The date of the last time the file was referenced.

If you specify inumber and device, istat also displays, in long decimal values, the block
numbers recorded in the i-node. You can specify the device as either a device name or as a
mounted-file-system name.

Note: inumber and device cannot specify a remote device.

Commands 415

istat

Examples

1. To display the information stored in a file i-node:

istat /bin/sh
This displays the i-node information for the file fbi n/sh. The information looks
something like this:

Inode 34 on device
Protection: rwxr-xr-x
Owner: O(su)

0/10 File
Sti cky

Group: O(system)
Length 54240 bytes Lin k count: 1

Last updated:
Last modified:
Last accessed:

Tue Dec 18 01:07:36 1984
Sat Jun 30 18:11:47 1984
Wed Feb 13 11:06:37 1985

2. To display i-node information if given a file i-number:

istat 34 /dev/hdO
This displays the information contained in i-node number 34 on the /dev /hdO device.
In addition to the information shown in Example 1, this displays:

Block pointers:
219 220 221
227 228 229

222
o

223
o

224 225 226

These numbers are addresses of the disk blocks that contain the data about the file.

Related Information

The following command: "fsdb" on page 338.

The stat system call and the filesystems and fs files in A/X Operating System Technical
Reference.

416 Commands Reference

join

join

Purpose

Joins data fields of two files.

Syntax

join file1 - file2 ~

1 Do not put a blank on either side of the comma.
OL805371

Description

Flags

The join command reads filel and file2, joins lines in the files according to the flags, and
writes the results to standard output. Both files must be sorted according to the collating
sequence specified by the NLCTAB environment variable, if set, for the fields on which
they are to be joined (normally the first field in each line).

One line appears in the output for each identical join field appearing in both filel and
file2. The join field is the field in the input files that join looks at to determine what will
be included in the output. The output line consists of the join field, the rest of the line
from filel, then the rest of the line from file2. You can specify standard input in place of
filel by substituting a - (minus) for the name.

Both input files must be sorted in increasing ASCII collating sequence on the fields on
which they are to be joined (the join field, normally the first field in each line).

Fields are normally separated by a blank, a tab character, or a new-line character. In this
case, join treats consecutive separators as one, and discards leading separators.

-anum When num is 1, join produces an output line for each line found in filel
but not in file2. When num is 2, join produces an output line for each
line found in the file2 but not in filel.

Commands 417

join

-e string

-j[n] num

Replaces empty output fields with string.

Joins the two files on the numth field of file n. n is 0 or 1. If you do not
specify n, join uses the numth field in each file.

-0 n.num[,n.num .. .]

-tchar

Makes each output line consist of the fields specified in list, in which
each element has the form n.num, where n is a file number and num is a
field number.

Uses char as the field separator character in the input and the output.
Every appearance of char in a line is significant. The default separator is
a blank. With default field separation, the collating sequence is that of
sort -b. If you specify -t, the sequence is that of a plain sort. To specify
a tab character, enclose it in single quotation marks (").

Examples

Note: The vertical alignment shown in these examples may not be consistent with your
output.

1. To perform a simple join operation on two files whose first fields are the same:

join phonedir names

If phonedi r contains the and name s is this listing then join displays:
following telephone directory: of names and department

numbers:

Brown J. 555-6235 Elder Dept. 389 Elder G. 555-1234 Dept. 389
Dickerson B. 555-1842 Frost Dept. 217 Green P. 555-2240 Dept. 311
Elder G. 555-1234 Green Dept. 311 McGuff M. 555-5341 Dept. 454
Green P. 555-2240 McGuff Dept. 454 Wilde c. 555-1234 Dept. 520
Harper M. 555-0256 Wilde Dept. 520
vohnson M. 555-7358
Lewis B. 555-3237
McGuff M. 555-5341
Wilde c. 555-1234

Each line consists of the join field (the last name), followed by the rest of the line
found in phonedi r and the rest of the line in names.

2. To display unmatched lines with the command:

join -a2 phonedir names

418 Commands Reference

join

If phonedi r contains: and name s contains: then join displays:

Brown J. 555-6235 Elder Dept. 389 Elder G. 555-1234 Dept. 389
Di c kerson B. 555-1842 Frost Dept. 217 Frost Dept. 217
Elder
Green
Harper
Johnson
Lewis
McGuff
Wilde

G. 555-1234 Green Dept. 311 Green P. 555-2240 Dept. 311
P. 555-2240 McGuff Dept. 454 McGuff M. 555-5341 Dept. 454
M. 555-0256 Wilde Dept. 520 Wilde C. 555-1234 Dept. 520
M. 555-7358
B. 555-3237
M. 555-5341
C. 555-1234

This performs the same join operation as in Example 1, and also lists the lines of
names that have no match in phonedi r. Itincludes Frost's name and department
number in the listing, although there is no entry for Frost in phonedi r:

3. To display selected fields:

join -0 2.3 2.1 1.2 1.3 phonedir names

This displays the following fields in the order given:

Field 3 of name s
Field 1 of name s
Field 2 of phonedi r
Field 3 of phonedi r

(Department Number)
(Last Name)
(First Initial)
(Telephone Number)

If phonedi r contains: and names contains: then join displays:

Brown J. 555-6235 Elder Dept. 389 389 Elder G. 555-1234
Di ckerson B. 555-1842 Frost Dept. 217 311 Green P. 555-2240
Elder
Green
Harper
Johnson
Lewis
McGuff
Wilde

G. 555-1234 Green Dept. 311 454 McGuff M. 555-5341
P. 555-2240 McGuff Dept. 454 520 Wilde
M. 555-0256 Wilde Dept. 520
M. 555-7358
B. 555-3237
M. 555-5341
C. 555-1234

4. To perform the join operation on a field other than the first:

sort +2 -3 phonedir; join -j1 3 - numbers

C. 555-1234

This combines the lines in phonedi r and names, comparing the third field of
phonedi r to the first field of numbers.

Commands 419

join

First, this sorts phonedi r by the third field, because both files must be sorted by their
join fields. The output of sort is then piped to join. The - (minus sign) by itself causes
the join command to use this output as its first file. The -j 1 3 defines the third field of
the sorted phonedi r as the join field. This is compared to the first field of numbers
because its join field is not specified with a -j flag.

If numbers then this command displays the names listed in phonedi r for
contains: each telephone number:

555-0256 555-0256 Harper M.
555-1234 555-1234 Elder G.
555-5555 555-1234 Wilde C.
555-7358 555-7358 Johnson M.

Note that join lists all the matches for a given field. In this case, join lists both El der
G. and Wi 1 de C. as having the telephone number 555-1234. The number 555-5555
is not listed because it does not appear in phonedi r.

Related Information

The following commands: "awk" on page 70, "comm" on page 144, "sort" on page 672,
"cut" on page 210, and "paste" on page 547.

The environment miscellaneous facility in AIX Operating System Technical Reference.

The "Overview of International Character Support" in Managing the AIX Operating
System.

420 Commands Reference

keyboard

keyboard

Purpose

Controls the delay and repetition rates of the keyboard.

Syntax

keyboard

OL805443

Description

Flags

The keyboard command changes the keyboard delay and repetition rates. These rates are
initially set at system startup to 500 milliseconds and 14 characters per second,
respectively.

-drate Sets the delay rate to the specified value. rate can be 300, 400, 500, or 600
milliseconds.

-rrate Sets the rate of repetition to the specified value. This rate can be an integer from
2 to 40, inclusive.

Example

To change both the delay and repetiton rates:

keyboard -d300 -r40
This sets the keyboard to a delay of 300 milliseconds and the repetition rate to 40
characters per second.

Commands 421

kill

kill

Purpose

Sends a signal to a running process.

Syntax

-C-15~ kill . process-ID
- sIgnal

OLB05139

Description

The kill command sends a signal to a running process, by default signal 15 (SOFTWARE
TERMINATE). This default action normally kills processes that do not catch or ignore the
signal. You specify a process by giving its process-ID (process identification number, or
PID). The shell reports the PID of each process that is running in the background (unless
you start more than one process in a pipeline, in which case the shell reports the number
of the last process). You can also use the ps command to find the process ID number of
commands.

In addition, there are special process-IDs that cause the following special actions:

o

-1

The signal is sent to all processes having a process-group ID equal to the
process-group ID of the sender (except those with PID's 0 and 1).

If the effective user ID of the sender is not 0 (root), signal is sent to all
processes with a process-group ID equal to the effective user ID of the sender.
(except those with PID's 0 and 1).

If the effective user ID of the sender is 0 (root), signal is sent to all processes,
excluding numbers 0 and 1.

-process-ID The signal is sent to all processes whose process-group number is equal to the
absolute value of process-ID. Note that when you specify a minus PID, you
must also specify the signal to be sent, even signal 15.

See the kill system call in AIX Operating System Technical Reference for a complete
discussion of kill. For a list of signal numbers, see the signal systems call in AIX
Operating System Technical Reference.

Unless you are are operating with superuser authority, the process you wish to stop must
belong to you. When operating with superuser authority, you can stop any process.

422 Commands Reference

/'

Examples

1. To stop a given process:

ki 11 1095

kill

This stops process 1095 by sending it the default signal, 15 (also called SIGTERM).
Note that process 1095 might not actually stop if it has made special arrangements to
ignore or override signal 15.

2. To stop several processes that ignore the default signal:

ki 11 -9 1034 1095

This sends signal 9 (SIGKILL) to processes 1034 and 1095. Signal 9 is a special
signal that normally cannot be ignored or overridden.

3. To stop all of your background processes:

ki 11 0

This sends signal 15 to all members of the shell process group. This includes all
background processes started with &. (See page 638 about running background
processes.) Although the signal is sent to the shell, it has no effect because the shell
ignores signal 15.

4. To stop all of your processes and log yourself out:

ki 11 -9 0

This sends signal 9 to all members of the shell process group. Because the shell cannot
ignore signal 9, this also stops the login shell and logs you out. If you are using
multiple windows on a high-function terminal, then this closes the active window.

5. To stop all processes that you own:

kill -9 -1

This sends signal 9 to all processes owned by the effective user, even those started at
other work stations and that belong to other process groups. If you are using multiple
windows on a high-function terminal, then this closes all of the windows. If a listing
that you requested is being printed, then it is also stopped.

Note: To send signal 15 with this form of the kill command, you must specify -15
explicitly:

kill -15 -1

Commands 423

kill

6. To send a different signal code to a process:

kill -16 1103

This sends signal 16 (SIGUSRl) to process 1103.

The name of the kill command is misleading because many signals, including 16, do
not stop processes. The action taken on signal 16 is defined by the particular
application you are running.

Related Information

The following commands: "ps" on page 579 and "sh" on page 637.

The kill and signal system calls in A/X Operating System Technical Reference.

424 Commands Reference

kill all

killall

Purpose

Cancels all processes except the calling process.

Syntax

killall

/unix

kernel-iJ

OL805140

Description

Flags

The killall command cancels all processes that you started, except those producing the
killall process. This command provides a convenient means of cancelling all processes
created by the shell that you control. When started by a user operating with superuser
authority, killall cancels all cancellable processes except those that started it.

The kernel-image parameter specifies the name of the system load module (by default,
/unix).

Sends a SIGTERM signal initially and then sends a SIGKILL (kill) signal to all
processes that survive for 30 seconds after receipt of the signal first sent. This
gives processes that catch SIGTERM signal an opportunity to clean up. (For
more information, see the signal system call in AIX Operating System Technical
Reference.)

-signal Sends the specified signal number. (For information about signal numbers, see
the signal system call in AIX Operating System Technical Reference.)

Examples

1. To stop all background processes that have started:

killall

This sends all background processes the kill signal 9 (also called SIGKILL).

Commands 425

killall

Files

2. To stop all background processes, giving them a chance to clean up:

killall -

This sends signal 15 (SIGTERM), waits 30 seconds, and then sends signal 9 (SIGKILL).

3. To send a specific signal to the background processes:

killall -2

This sends signal 2 (SIGINT) to the background processes.

/unix
/dev/mem

System kernel image.
Used for reading the process table.

Related Information

The following command: "kill" on page 422.

The signal system call in A/X Operating System Technical Reference.

426 Commands Reference

ld

ld

Purpose

Links object files.

Syntax

Id
-d -Anum -z str
-j -e label -Bnum

-k key:path

-K -Hnum -Dnum
-m -L dir -5
-n -Rnum
-r -T num
-5 -u sym
-x -Vnum

-y num

~-j -{~ num }-<[;]X-I keyr
~key: J

OL805362

1 Do not put a blank between these items.
OL805308

Description

The ld command (the linkage editor) combines the specified object files into one, resolving
external references and searching libraries. It produces an object module that can be run
or that can become a file parameter in another call to ld. In the latter case, you must use
the -r flag to preserve the relocation bits. ld places its output in a file named a.out. It
makes this file executable if no errors occur during the link and if the -r flag is not
specified.

The linkage editor links object files and searches object libraries in the order specified. It
links object modules unconditionally, but links from the library only those files that define

Commands 427

ld

Flags

an unresolved external reference. If a routine from a library calls another routine in that
library, the called routine must follow the calling routine.

Unless you use the -e flag to specify another entry point, the first byte of the first nonnull
text segment (or the first byte of the data segment if all text segments are null) becomes
the entry point of the output file.

The reserved symbols _text, _data, _sdata, _etext, _edata, and _end (in C text, data,
sdata, etext, edata, and end) are set to the first location of the program, the first location
of the data, the segment number of the data, the first location above the program, the first
location above initialized data, and the first location above all data, respectively. You
cannot define these symbols.

Because you can use Id to link modules intended to run on other machines, some of its
action depends upon the architecture of the computer system on which you intend to run
the module. Id recognizes that architecture automatically from the input modules and
modifies its action accordingly. You can use some of its flags to alter the default behavior
of Id for a particular architecture.

The Id command recognizes several flags. Except for -I entries, which are really
abbreviations for file names, the order in which you specify flags does not affect the way
they work. You can specify numeric values in either decimal, octal (with a leading 0), or
hexadecimal (with a leading Ox or OX) format.

-Anum Stores num in the a_mise field of the output file header. This field indicates the
size of memory, in bytes, allocated to the process which runs the file. On many
systems, the stand-alone loader or kernel uses this value to set the base of the
runtime stack pointer.

-Bnum Makes num the starting address for the uninitialized data (bss) segment of the
output file. The default starting address is the first storage unit after the end of
the data segment. Not all architectures support the separation of data and bss
segments.

-d Defines common storage, even if you have specified the -r flag.

-Dnum Makes num the starting address for the initialized data segment of the output
file. The default starting address begins at location 0 (if -i is in effect), at the
first storage unit after the end of the text segment, or, if -n is in effect, at the
next page or segment boundary.

-elabel Makes label the entry point of the executable output file.

-Hnum Makes num the boundary, usually the page size, to which the text segment must
be padded if it has a different protection than does the data segment. Specify
this parameter only to override the default value for the given architecture.

428 Commands Reference

ld

-i Assigns text and data segments to separate address spaces in memory, with the
text segment read-only-if the architecture supports read-only memory-and
shared among all users. The data segment starts at location zero unless set with
-D. If the architecture does not support separate instruction and data space,
this flag is treated as if it were -no

-j [key:]num
Assigns the shared library image key to location num. If you do not specify key,
do not use location num when you assign the runtime location of the shared
library text images. The exact interpretation of num depends on the target
architecture. On the RT PC, num refers to the segment register, one of 4
through 13. You can specify -j once for each shared library image that has an
assigned location.

-kkey:path
Maps any reference to the shared library image with the shared library key into
path. Instead of adding the shared library key to the runtime table, add path.
You can specify -k once for each shared library image with a remapped key.

-K Loads the a.out header into the first bytes of the text segment, followed by the
text segments from the object modules. This flag causes pages of executable files
to be aligned on pages in the file system so that they can be demand paged on
systems that support paging. This flag provides mapped file support for the text
and data segments.

-Ikey Searches the specified library file, where key selects the file libkey.a. Id searches
for this file in the directory specified by an -L flag, then in /lib and /usr/lib. It
searches library files in the order that you list them on the command line.

-Ldir Looks in dir for files specified by -I keys. If it does not find the file in dir, Id
searches the standard directories.

-m Lists on standard output the names of all files and archive members used to
create the output file.

-n Makes the text segment read-only-if the architecture supports read-only
memory-and shared among all users running the file. The data segment starts
at the first segment boundary following the end of the text unless set with -D.
On architectures which only permit read-only text with separate text and data
spaces, the -n flag is treated as if it were the -i flag.

-0 name Assigns name rather than a.out to the output file.

-r Writes relocation bits in the output file so that it can serve as a file parameter
in another Id call. This flag also prevents common symbols from being assigned
final definitions and suppresses the undefi ned symbo 1 diagnostic messages.

-Rnum Makes num bytes the allocation unit for objects manipulated by ld, such as
segments or common objects. Typically this value ranges from 1 to 8. Specify
this parameter only to override the default value for the given architecture.

Commands 429

ld

-s Strips the symbol table, line number information, and relocation information
from the output. This saves space but impairs the usefulness of the debugger.
U sing the strip command has the same effect. This flag is turned off if there are
any undefined symbols.

-8 num Makes num the maximum size the user stack is allowed to grow. This value
represents the number of bytes allowed. If you do not specify this argument, the
system assumes a default limit of 1 MB.

-Tnum Makes num the starting address for the text segment of the output file. If not
specified, the text segment begins at location zero.

-u sym Enters sym into the symbol table as an undefined symbol. This is useful when
linking from only a library, since initially the symbol table is empty and an
unresolved reference is needed to force the linking of the first routine.

-Vnum Stores num in the a_version field of the output file header; num must be in the
range 0 to 32767.

-x Does not enter local symbols in the output symbol table; enters only external
symbols. This flag saves some space in the output file.

-Y num In a segmented system, makes num the boundary to which the te'Xt segment
should be padded if it has a protection different from that of the data segment. If
num is zero, the padding is either that selected by the -H flag or the default
value associated with that flag. Specify this parameter only to override the
default value for the given architecture.

-Zstr Prefixes with str the names specified by the -I key. For example, with -Z/test
and -Ixyz, Id looks for the file /test/lib/llbxyz.a or, if that file does not exist,
/test/usr/lib/libxyz.a. The ordinary directories will not be searched. This flag
is most useful when cross-compiling.

Examples

1. To link several object files and produce an a.out file to run under the AIX Operating
System without the Floating-Point Accelerator:

ld -n -tOxlOOOOOOO -K /lib/crtO.o pgm.o subsl.o subs2.o -lrts -lc
A simpler way to accomplish this is to use the cc command to link the files as follows:

cc pgm.o subsl.o subs2.o
Since the cc command automatically uses the link options and necessary support
libraries, you do not need to specify them on the command line (it gets this information
from the configuration file cc.cfg). For this reason, you should use cc to link files
when you are producing programs that run under the AIX Operating System.

430 Commands Reference

Files

2. To specify the name of the output file:

cc -0 pgm pgm.o subsl.o subs2.0

This stores the linked output in the file pgm.
3. To conditionally link library subroutines:

cc pgm.o subsl.o subs2.0 mylib.a -ltools

ld

This links the object modules pgm. 0, subs 1.0, and subs2. 0 unconditionally. It then
links the subroutines from my 1 ; b . a that are used by the preceding modules. (This is
often called conditional linking.) Then Id conditionally links subroutines from the
library specified by - 1 too 1 s. (This means /1 i b /1 i b too 1 s . a, if it exists. If Id does
not find this file, then it looks for /usr/l; b/l; btool s. a.)

Note: Always list libraries and -I flags at the end of the Id or cc command lines.

/lib/lib* .a
/usr/lib/lib*.a
a.out

Libraries.
Libraries.
Output file.

Related Information

The following commands: "ar" on page 58, "as" on page 64, "cc" on page 112, and
"shlib" on page 660.

The a.out file in AIX Operating System Technical Reference.

The discussion of Id in AIX Operating System Programming Tools and Interfaces and in
Assembler Language Reference.

Commands 431

lex

lex

Purpose

Generates a C Language program that matches patterns for simple lexical analysis of an
input stream.

Syntax

lex

OL805025

Description

The lex command reads file or standard input, generates a C Language program, and
writes it to a file named lex.yy.c. This file, lex.yy.c, is a compilable C Language program.

The lex command uses rules and actions contained in file to generate a program, lex.yy.c,
which can be compiled with the cc command. It can then receive input, break the input
into the logical pieces defined by the rules in file, and run program fragments contained in
the actions in file. For a more detailed discussion of lex and its operation, see AIX
Operating System Programming Tools and Interfaces.

The generated program is a C Language function called yylex. lex stores yylex in a file
named lex.yy.c. Yau can use yylex alone to recognize simple, one-word input, or you can
use it with other C Language programs to perform more difficult input analysis functions.
For example, you can use lex to generate a program that simplifies an input stream before
sending it to a parser program generated by the yacc command.

The function yylex analyzes the input stream using a program structure called a "finite
state machine." This structure allows the program to exist in only one state (or condition)
at a time. There is a finite number of states allowed. The rules in file determine how the
program moves from one state to another.

If you do not specify a file, lex reads standard input. It treats multiple files as a single file.

Note: Since lex uses fixed names for intermediate and output files, you can have only one
lex-generated program in a given directory.

432 Commands Reference

lex

Input File Format (file)

The input file can contain three sections; definitions, rules, and user subroutines. Each
section must be separated from the others by a line containing only the delimiter, % %.
The format is:

definitions
0/00/0
rules
%0/0
user subroutines

The purpose and format of each are described in the following sections.

Definitions

If you want to use variables in your rules, you must define them in this section. The
variables make up the left column, and their definitions make up the right column. For
example, if you want to define D as a numerical digit, you would write;

o [0-9J

You can use a defined variable in the rules section by enclosing the variable name in
braces ({D}).

In the definitions section, you can set table sizes for the resulting finite state machine.
The default sizes are large enough for small programs. You may want to set larger sizes
for more complex programs.

%p n Number of positions is n (default 2000)

%n n Number of states is n (default 500)

%t n

%a n

Number of parse tree nodes is n (default 1000)

Number of transitions is n (default 3000)

If extended characters appear in regular expression strings, you may need to reset the
output array size with the %0 parameter (possibly to array sizes in the range 10,000 to
20,000). This reset reflects the much larger number of characters relative to the number of
ASCII characters.

Commands 433

lex

Rules

Once you have defined your terms, you can write the rules section. It contains strings and
expressions to be matched in file to yylex, and C commands to execute when a match is
made. This section is required, and it must be preceded by the delimiter % %, whether or
not you have a definitions section. lex does not recognize your rules without this
delimiter. In this section, the left column contains the pattern to be recognized in an input
file to yylex. The right column contains the C program fragment executed when that
pattern is recognized. Patterns can include extended characters with one exception: these
characters may not appear in range specifications within character class expressions
surrounded by square brackets. The columns are separated by a tab. For example, if you
want to search files for the keyword KEY, you might write:

(KEY)
printf("found KEY");

If you include this rule in file, the lexical analyzer yylex matches the pattern KEY and runs
the printf command.

Each pattern may have a corresponding action, a C command to execute when the pattern
is matched. Each statement must end with a semicolon. If you use more than one
statement in an action, you must enclose all of them in braces. A second delimiter, % %,
must follow the rules section if you have a user subroutine section.

When yylex matches a string in the input stream, it copies the matched file to an external
character array, yytext, before it executes any commands in the rules section.

You can use the following operators to form patterns that you want to match:

x

[]

""

\

*

+
?

1\

Matches the character written. x matches the literal character x.

Matches anyone character in the enclosed range ([.-.]) or the enclosed list ([...]).
[a,b,c,x-z] matches a,b,c,x,y,or z.

Matches the enclosed character or string even if it is an operator. "$" prevents
lex from interpreting the character $ as an operator.

Acts the same as " ". \$ also prevents the shell from interpreting the character
$ as an operator.

Matches zero or more occurrences of the character immediately preceding it.
x* matches zero or more repeated

Matches one or more occurrences of the character immediately preceding it.

Matches either zero or one occurrences of the character immediately preceding
it.

Matches the character only at the beginning of a line. 1\ X matches an x at the
beginning of a line.

434 Commands Reference

["]

$

/

()

{}

{m,n}

lex

Matches any character but the one following the ". [" x] matches any character
but x.

Matches any character except the new-line character.

Matches the end of a line.

Matches either of two characters. X I Y matches either x or y.

Matches one character only when followed by a second character. It reads only
the first character into yytext. x/y matches x when it is followed by y, and
reads x into yytext.

Matches the pattern in the parentheses. This is used for grouping. It reads the
whole pattern into yytext. A group in parentheses can be used in place of any
single character in any other pattern. (xyz123) matches the pattern xyz123
and reads the whole string into yytext.

Matches the character as you defined it in the definitions section. If you defined
D to be numerical digits, {D} matches all numerical digits.

Matches m to n occurrences of the character. x{2,4} matches 2, 3, or 4
occurrences of x.

If a line begins with only a blank, lex copies it to the output file, lex.yy.c. If the line is in
the declarations section of file, lex copies it to the declarations section of lex.yy.c. If the
line is in the rules section, lex copies it to the program code section of lex.yy.c.

User Subroutines

The lex library has three subroutines defined as macros, and which you can use in the
rules.

input()

unput()

output()

Reads a character from yyin.

Replaces a character after it has been read.

Writes an output character to yyout.

You can override these three macros by writing your own code for these routines in the
user subroutines section. But if you write your own, you must undefine these macros in
the definition section as follows:

%{
#undef input
#undef unput
#undef output
}%

Commands 435

TNL SN20-9861 (26 June 1987) to SC23-0790-0
lex

Flags

Files

There is no main() in lex.yy.c because the lex library contains the main() that calls
yylex. Therefore, if you do not include main() in the user subroutines section, when you
compile lex.yy.c, you must enter cc -ll lex.yy.c, where II will call the lex library.

External names generated by lex all begin with the preface yy, as in yyin, yyout, yylex,
and yytext.

-n Suppresses the statistics summary. When you set your own table sizes for the finite
state machine (see page 433), the lex automatically produces this summary if you do
not select this flag.

-t Writes lex.yy.c to standard output instead of to a file.

-v Provides a one-line summary of the generated finite-state-machine statistics.

/usr/lib/libl.a Run-time library.

Related Information

The following command: "yacc" on page 86l.

The description of lex in AIX Operating System Programming Tools and Interfaces.

"Overview of International Character Support" in Managing the AIX Operating System.

436 Commands Reference

Ii

Purpose

TNL SN20-9861 (26 June 1987) to SC23-0790-0
Ii

Lists the contents of a directory.

Syntax

-C
-oa1 bcdfpx

Ii

-0 a f
b p
c x
d

di

,-_____ -Rl ____ ~ -R:Jy& one of
-R num ~ q

-f -v -num
-k

c
f P
9 r
h s
i u
I

1 Do not put a blank between these items.

OL805372

OL805346

OL805308

Commands 437

TNL SN20-9861 (26 June 1987) to SC23-0790-0
Ii

Description

The Ii command lists the contents of each named directory or archive file on standard
output. For each non archive file named, Ii displays the file name and any information
requested. If you do not specify a file or directory, Ii lists the current directory.

By default, Ii sorts the output alphabetically and lists it in multiple columns. The
collating sequence is determined by the NLCTAB environment variable (see "ctab" on
page 204). It displays control characters in file names in expanded form (for example, "D,
\177, and so on). When you specify more than one file or directory, Ii sorts them
appropriately, but files appear before directories and their contents. When the date and
time appear, the NLLDATE and NLTIME environment variables control their format.
The NLSMONTH environment variable controls the short names for months.

The di command is equivalent to 1 i-I a 1 mops.

Permissions Field
The permissions field displayed with the -Ip flag contains 11 characters. The first
character is:

d The entry is a directory.
b The entry is a block-type special file.
c The entry is a character-type special file.
p The entry is a pipe (FIFO).

The entry is an ordinary file.
D The entry is a remote directory.
F The entry is a remote ordinary file.
B The entry is a remote block special file.
C The entry is a remote character special file.
P The entry is a remote first-in first-out (FIFO) special file.

The next nine characters are interpreted as three sets of three bits each. The first set
refers to owner permissions, the next to permissions for others in the same group, and the
last to all others. Each of the three characters within each set indicate, respectively,
permission to read, write, or execute the file. For a directory, "execute" permission is
interpreted as permission to search the directory for a special file. These permissions are
indicated as follows:

r If the file is readable.
w If the file is writable.
x If the file is executable.

If the corresponding permission is not granted.

The group-execute permission is given as s if the file has set-group-ID mode. The
user-execute permission character is given as s if the file has set-user-ID mode. (For a
discussion of these modes, see "chmod" on page 128.)

438 Commands Reference

Flags

TNL t)N:lU-~~(jl (~(j June nn:n) to ;:'Li~0-U/~U-U
Ii

The last character of the field is normally blank, but is displayed as t if the 1000 bit of the
mode is on. (See the chmod system call in AIX Operating System Technical Reference for
the current meaning of this mode.)

Note: Some combinations of flags do not work well together. For example, 1 i -vRa
looks unusual, and 1 i - RSx and 1 i - Sx * are both nearly unintelligible if there are
subdirectories contained in the current directory, due to confusion about what level is
being listed.

Flags are grouped into five classes, four of which are always introduced by an uppercase
letter: fields (lor E), restrictions (0), recursion (R), sort orders (8), and miscellaneous.
The following flags modify the action of Ii:

-I [hiplogcsmaunrfb]
-E [hiplogcsmaunrfb]

Requests the inclusion (-I) or exclusion (-E) of certain fields. These fields are
selected by the flags in the subset hiplogcsmaunrfb. -I includes and -E excludes
the selected fields in the order in which they appear in the argument list. For
example, - 1 - Ep excludes the protections field, while - Ep - 1 includes it, since
-1 (the equivalent of -Icg1mop) follows -Ep.

The only field included by default is the name (n) field. If you include any other
fields, Ii lists the output in single-column rather than multiple-column format. Ii
lists the following fields in the following order:

h Headers
I-number

p Protections
1 Link count
o Local owner (name or UID)
g Local group (name or GID)
c Character count
s Size in blocks
m Modified time
a Accessed time
u Updated (i-node modified) time
n Name
r Node where the entry resides
f Raw UID of the entry's owner
b Raw GID of the entry's group.

If the file is a special file, the size (s) field contains the major-and minor-device
numbers. If you select the c (character count) or s (size in blocks) flags, Ii writes a
total number of blocks for each directory and a grand total when appropriate.

Commands 439

~ 1.'1.1...1 01.'I~U-~OOl. \L;O dune U1tH) to ;::HJ~0-U'/~U-U

Ii

For remote files and directories, the local owner and local group are obtained by
using inverse IDs. If there is no inverse ID or if Ii cannot determine the inverse ID,
a - (minus sign) displays in the corresponding field. If possible, remote nodes are
identified with nicknames. Otherwise, they are identified by their NID displayed in
hexadecimal. (See "Distributed Services Concepts" in Managing the A/X Operating
System.)

For local files and directories that do not have a nickname defined for the local
node ID, the node ID field displays as a - (minus sign), and the raw UID (GID) field
contains the local owner UID (group GID).

-0 [abcdfpx]
Requests that the listing be restricted to files of certain types. These types are
selected from the subset abcdfpx. The possible types are:

a Archives
b Block devices
c Character devices
d Directories
f Files (normal, not special)
p Pipes (FIFOs)
x Executable files (any file with execute permission)

-R[num]apq
Lists recursively to number levels deep. The default depth is infinite. This
normally displays a single column, with a two-column indentation for each level of
the directory structure. When Ii reaches a directory with no subdirectories, it lists
the contents of that directory in multiple-column form. Specifying either -Ra or
-Rp suppresses the indentation and multiple-column display. These flags display
either the full (-Ra) or relative (-Rp) path names of each file found. The -Rq flag
also lists the contents of archive files.
When using the -Rq flag to list the contents of remote archive files, the user and
group fields display as a - (minus sign) unless the -k flag is specified. With the -k
flag, the user and group fields for archive entries display as raw as found in the
archive. (See the archive file format in A/X Operating System Technical Reference.)

-8 [acmnrsux]
Describes the order in which the listing is to be displayed. The default order is by
name (n). The -8x flag specifies no sorting. Choosing a flag from the subset
acmnsu selects which field the listing will be sorted by:

a Accessed time, latest first
c Character count, largest first
m Modified time, latest first
n Name
s Size (same as character count)
u Updated time, latest first

If you include the r flag with any of these, Ii reverses the order of the sort.

440 Commands Reference

Ii

The miscellaneous flags are:

-a Lists all entries, including those beginning with. (dot).

-d Lists only the name, not the contents, of directories.

-f Forces Ii to interpret each file as a directory and to list the name found in each
slot. All flags requiring information not found in directory entries are turned off
and the -a flag is turned on. Names are listed in the order that they appear in the
directory.

-k Provides a listing that is equivalent to 1 i-I bcfmpr. That is, it lists the
permission code, node ID, remote UID, remote GID, time of last modification,
character count, and file name for remote entries.

-1 Uses a listing that is equivalent to 1 i-I cg 1 mop (the long form listing). That is, it
lists the permission code, link count, owner, group, character count, time of last
modification, time of last access, and name of each file.

-n Inhibits the interpretation of control characters in file names. This flag is useful
for generating lists of file names for program input or for editing into per-file
commands.

-s Provides a listing similar to that of the -v flag, except that the distinguishing
marks for file types do not affect sorting (a sortable verbose list). Subdirectories
appear in the listing as name/, files with execute permission as name* and special
files as name?

-v Lists files in a way that visually differentiates file types (a verbose visual listing).
With this flag, Ii lists subdirectories as [name], files with execute permission as
< name>., and special files as *name*. This differentiation occurs before the -S
sort. Thus, different types of files are sorted into different parts of the listing.

-x Displays every available field except headers (an extended form listing). This is
equivalent to specifying 1 i-I abcfgl i moprsu.

-num Lists with a maximum of num columns. If num is unreasonable, Ii picks its own
num. This flag can be used as in 1 i -1 to make shell files or 1 i-I 09 to force Ii to
display its output in multiple columns. A number appearing in any flag argument
is assumed to be the number of columns unless it follows the -R flag.

Examples

1. To list the files in the current directory in alphabetical order:

1 i

2. To list all files in the current directory, including those with names beginning with a
. (dot):

1 i -a

Commands 441

TNL SN20-9861 (26 June 1987) to SC23-0790-0
Ii

Files

3. To display detailed information:

li -1 chapl .profile

This displays a long listing with detailed information about chapl and .profile. It
lists all the information that you probably need to see. However, Ii can supply even
more information with the -x flag.

4. To display detailed information about a directory:

1 i -d -1 . manual manual/chapl

This displays a long listing for the directories. and manua 1, and for the file
manual/chapl. -d flag, this would list the files in . and manual instead of the
detailed information about the directories themselves.

5. To list the files in order of modification time:

1 i -Sm - 1

This displays a long listing of the files that were modified most recently, followed by
the older files.

6. To include extra information in the listing:

li -Ichil

In addition to the file name, this lists the character count (-Ie), i-number (-Ii), and link
count (-II) for each file in the current directory. The -Ih tells Ii to write a heading at
the top of each column of information.

7. To list the contents of each directory in a tree:

1 i -R manual

This lists the names in each subdirectory of the tree that starts with manual.

/etc/passwd

/etc/group

Contains user names for 1 i-I o.

Contains group names for 1 i-I g.

Related Information

The following commands: "etab" on page 204 and "Is" on page 461.

The ehmod system call and the environment miscellaneous facility in A/X Operating
System Technical Reference.

"Overview of International Character Support" in Managing the A/X Operating System.

442 Commands Reference

Ii

"Distributed Services Concepts" in Managing the AIX Operating System.

Commands 442.1

Ii

442.2 Commands Reference

line

line

Purpose

Reads one line from the standard input.

Syntax

line ---l

OL805142

Description

The line command copies one line from standard input and writes it to standard output. It
returns an exit value of 1 on an end-of-file and always writes at least a new-line character.
Use this command within a shell command file to read from your work station.

Example

To read a line from the keyboard and append it to a file:

echo 'Enter comments for the log:'
echo ': \c'
line »log

This shell procedure displays the message:

Enter comments for the log:

then reads a line of text from the work station keyboard and adds it to the end of 1 og. The
echo ': \c' command displays a colon prompt. See "echo" on page 278 for information
about the \c escape sequence.

Related Information

The following command: "sh" on page 637.

The read system call in AIX Operating System Technical Reference.

Commands 443

link

link, unlink

Purpose

Performs the link system call.

Syntax

link - filet - fi/e2 --j

OLB05143

unlink - file ---l
OL805227

Description

The link and unlink commands perform the corresponding system calls of the same name
on the specified file, abandoning all error checking. These commands can be run only by a
user operating with superuser authority (see "su" on page 724). You should be familiar
with the link and unlink system calls described in A/X Operating System Technical
Reference.

The link and unlink commands do not issue error messages when the associated system
call fails; you must check the exit value to determine if the command completed normally.
Each returns a 0 if it succeeds, a 1 if you specify too few or too many parameters, and a 2 if
its system call fails.

Warning: The link and unlink commands allow the superuser to deal
with unusual problems, such as moving an entire directory to a different
part of the directory tree. They also permit you to create directories that
cannot be reached or escaped from. Be careful to preserve directory
structure by observing the following rules:

• Be certain every directory has a . (dot) link to itself.

• Be certain every directory has a .. (dot dot) link to its parent directory.

• Be certain every directory has no more than one link to it.

• Be certain every directory is accessible from the root of its file system.

444 Commands Reference

Example

To restore the. (dot) entry of the damaged directory di r:

link dir dir/.

link

Warning: Do this only if the. (dot) entry has somehow been destroyed
and fsck is unable to repair it. This happens very rarely.

Related Information

The following commands: "In" on page 450 and "fsck, dfsck" on page 333.

The link and unlink system calls in AIX Operating System Technical Reference.

Commands 445

TNL SN20-9861 (26 June 1987) to SC23-0790-0
lint

lint

Purpose

Checks C programs for potential problems.

Syntax

lint
-Q -Ikey
-b -n -Y

-h -p -x
-Nnnum

OL805433

Description

The lint program checks C language source code for coding and syntax errors and for
inefficient or nonportable code. You can use this program to

• Identify source code and library incompatibility
• Enforce type checking rules more strictly than does the compiler
• Identify potential problems with variables
• Identify potential problems with functions
• Identify problems with flow control
• Identify legal constructions that may produce errors or be inefficient
• Identify possibly nonportable code.

The lint command assumes that file names ending in .c are C Language source files. It
assumes that those ending in .In are the result of an earlier running of lint with either the
-c or the -0 flag used. These .In files are analogous to the .0 (object) files produced by the
cc command when given a .c file as input. lint warns you about files with other suffixes
and ignores them.

The lint command takes all the .c and .In files and the libraries specified by -I flags and
processes them in the order that they appear on the command line. By default, it adds the
standard lint library (llib-Ic.In) to the end of the list of files. However, when you select
the -p flag, lint uses the portable library llib-port.In. By default, the second pass of lint
checks this list of files for mutual compatibility; however, if you specify the -c flag, lint
ignores the .In and lib-Ix files.

The -c and -0 flags allow for incremental use of lint on a set of C Language source files.
Generally, you use lint once for each source file with the -c flag. Each of these runs
produces a .In file that corresponds to the .c file and writes all messages that are about

446 Commands Reference

Flags

TNL SN20-9861 (26 June 1987) to SC23-0790-0
lint

just that source file. After you have run all source files separately through lint, you run it
once more, without the -c flag, listing all the .In files with the needed -I arguments. This
writes all inter-file inconsistencies. This procedure works well with the make command,
allowing it to run lint on only those source files that have been modified since the last
time that set of source files was checked.

The following comments in a C source program change the way that lint operates when
checking the source program:

/*NOTREACHED* / Suppresses comments about unreachable code.

/*VARARGSn*/ Suppresses checking the following function declaration for varying
numbers of arguments but does check the data type of the first n
arguments. If you do not include a value for n, lint checks no
arguments (n = 0).

/* ARGSUSED* / Turns on the -v flag for the next function.

/*LINTLIBRARY* / If you place this comment at the beginning of a file, lint does not
identify unused functions in the file.

The lint command first writes messages about each source file as it processes the file. It
collects messages about included files and writes those after it has gone through all the
source files. Finally, if you have not specified the -c flag, it collects information gathered
from all input files and checks it for consistency. At this point, if it is not clear whether a
message stems from a given source file or from one of its included files, lint displays the
source file name followed by a question mark.

-a

-b

-b

-c

-lkey

-n

Suppresses messages about assignments of long values to variables that
are not long.

Suppresses messages about unreachable break statements.

Does not try to detect bugs, improve style, or reduce waste.

Causes lint to produce a .In file for every .c file on the command line.
These .In files are the product of the first pass of lint only and are not
checked for inter-function compatibility.

Includes the additional lint library llib-lkey.In. You can include a lint
version of the math library llib-Im.ln by specifying -1m on the command
line or llib-ldos.ln by specifying -Idos on the command line. Use this
flag to include local lint libraries when checking files that are part of a
project having a large number of files. This flag does not prevent lint
from using the llib-Ic.ln library.

Does not check for compatibility with either the standard or the portable
lint libraries.

Commands 447

lint

-Nnnum

-0 lib

-p

-u

-v

-x

Increases the size of the symbol table. The default size is 1500.

Causes lint to create a lint library with the name llib-llib.ln. The -e flag
nullifies any use of the -0 flag. The lint library produced is the input
that is given to the second pass of lint. The -0 flag simply causes this file
to be saved in the named lint library. To produce a llib-llib.ln without
extraneous messages, use the -x flag. The -v flag is useful if the source
files for the lint library are just external interfaces (for example, the way
the file llib-Ie is written). These flag settings are also available through
the use of lint comment lines.

Checks for portability to other C dialects.

Suppresses messages about functions and external variables that are
either used and not defined or defined and not used. Use this flag to run
lint on a subset of files of a larger program.

Suppresses messages about function parameters that are not used.

Suppresses messages about variables that have external declarations but
are never used.

In addition, lint recognizes the following flags of the epp command (macro preprocessor):

-Dname[= defJ Defines the name, as if by #define. The default de! is 1.

-Idir

-Uname

Adds dir to the list of directories in which lint searches for #inelude
files.

Removes any initial definition of name, where name is a reserved
symbol that is predefined by the particular preprocessor.

Examples

1. To check a C program for errors:

lint program.c
2. To suppress some of the messages:

lint -v -x program.c

This checks program. c, but does not display error messages about unused function
parameters (-v) or unused externals (-x).

3. To check the program against an additional lint library:

lint -lsubs program.c

This checks p rog ram. c against both the standard lint library (fusr/lib/llib-Ie.ln) and
/usr/lib/llib-ls ub s .In.

448 Commands Reference

Files

4. To check against the portable library and an additional library:

lint -lsubs -p program.c

lint

This checks program. c against both the portable lint library (fusr/lib/llib-port.ln)
and /usr /lib /llib-l sub s .In.

5. To check against a nonstandard library only:

lint -lsubs -n program.c

This checks program. c against only /usr/lib/llib-lsubs.ln.

/usr/lib/lint[12]
/usr /lib/llib-Ic.ln
/usr/lib/llib-Ic
/usr/lib/llib-port.ln
/ usr /li b /lli b-port
/usr/lib/llib-Im.ln
/usr/lib/llib-Im
/ usr /li b /lli b-Idos .In
/usr/lib/llib-Idos
/usr/tmp/*lint*

Programs.
Declarations for standard functions (binary format).
Declarations for standard functions (source).
Declarations for portable functions (binary format).
Declarations for portable functions (source).
Declarations for standard math functions (binary format)
Declarations for standard math functions (source)
Declarations for DOS Services functions (binary format).
Declarations for DOS Services functions (source).
Temporary files.

Related Information

The following command: "cc" on page 112.

The topic "Checking C Progams" in AIX Operating System Programming Tools and
Interfaces.

The "Overview of International Character Support" in Managing the AIX Operating
System.

Commands 449

In

In

Purpose

Links files.

Syntax

In ~ directory ~

~ file -- newname --.1-----'

Description

OLB05028

The In command links file to newname (in the current directory), or to the same name (file)
in another existing directory. You can link directories, provided the two directories have
the same parent.

If you are linking a file to a new name, you can list only one file. If you are linking to a
directory, you can list more than one file.

Note: You cannot link files across file systems.

Examples

1. To create another name (also called an alias) for a file:

In chapl intro

This links chapl to the new name i ntro. If i ntro does not already exist, the file
name is created. If i ntro does exist, the file is replaced by a link to chapl. Now
chapl and i ntro are two file names that refer to the same file. Any changes made to
one also appear in the other. If one name is deleted with del or rm, the file is not
actually deleted, but remains under the other name.

2. To link a file to the same name in another directory:

1 n index manua 1

This links index to the new name manual Ii ndex.

Note the difference: ; ntro in Example 1 is the name of a file; manua 1 in Example 2 is a
directory that already exists.

450 Commands Reference

3. To link several files to names in another directory:

In chap2 jim/chap3 /u/manual

This links chap2 to the new name /u/manual /chap2 and jim/chap3 to
/u/manua 1/ chap3.

4. To use In with pattern-matching characters:

In manual/*

In

This links all files in the directory manua 1 into the current directory (.), giving them
the same names they have in manua l. Note that you must type a space between the
asterisk and the period.

Related Information

The following commands: "rm" on page 601, "mv" on page 502, and "cp" on page 156.

The chmod and link system calls in AIX Operating System Technical Reference.

Commands 451

locator

locator

Purpose

Controls the sample rate of the locator.

Syntax

locator - -r rate ---1

OL805444

Description

The locator command sets the rate at which the system checks, per second, the cursor
position controlled by the mouse. You can specify any of the following rates: 10, 20, 40, 60,
80, or 100. Initially, at system startup, this rate is set at 60.

Note: You can run the locator command only from the system console.

Flag

-rrate Sets the sampling rate to the specified value.

Example

To set the locator rate to 40:

locator -r40

452 Commands Reference

login

login

Purpose

Allows you to sign on to the system.

Syntax

login ---l 1

1 This command is not normally entered on the command line.
OL805005

Description

The login program logs you onto the system. Its primary functions are:

• To validate your password.
• To make the required accounting and log entries.
• To set up your processing environment.
• To run the command interpreter that is specified in the password file, usually the sh

program.

A logger process, initially running the getty program, is started for each enabled port.
getty reads a login name and sets work station modes (see "getty" on page 372). Then it
runs login, which may ask for a password. If you do not have a password, press the Enter
key.

Your log in attempt might fail for the following reasons:

• Your login name/password pair does not match an entry in the password file.
• Your password has expired. This can happen if your system requires that you change

your password after a set number of days. In this case, login runs the passwd
command instead of letting you log in. (For more information, see "passwd" on
page 546.) After you change your password, you can attempt to log in again.

• The system has reached the limit of simultaneously logged-in users. Each AIX kernel
sets a limit on the number of concurrent log ins by nonprivileged users; this limit may
be one. A privileged user is one that has a user ID from 0 to 20. A privileged user can
log in at any time.

In one special case, login does not ask for a user name and password pair. When the login
port is the console and the file /etc/autolog contains a valid user name, login creates a
login session for that user automatically. Other processing by login proceeds normally.

Commands 453

login

Files

When a user logs in successfully, the login program makes entries in /ete/utmp, the
record of users logged into the system, and in /usr/adm/wtmp (if it exists), for use in
accounting. On invalid login attempts (due to an incorrect login name or password), login
makes entries in the /ete/ .Hog file.

Once you are logged in to the system, the login program lists your previous login time and
the system message of the day (stored in the /ete/motd file), if it has been modified since
your last log in or if this is your first log in of the day. If a user file size limit has been
specified in the passwd file, the limit is set with ulimit system call. When you log in as
user root or su and the /ete/.Hog file is not empty, you see a message advising the you to
check the /ete/ .Hog file for a record of unsuccessful login attempts.

The login program sets the LOGNAME and HOME environment variables from
information in the password file. Environment variables inherited from getty and init
(such as those specified in fete/environment) are kept. You may expand or modify the
environment by supplying additional parameters to login when it requests your login
name. These may take the form xxx or xxx = yyy. Parameters without an equal sign are
placed in the environment as Lnum = xxx, where num is a number starting at 0 and
incremented each time a new variable name is required. Parameters containing an equal
sign are placed into the environment without modification. If they already exist, the new
assignment replaces the older value. There are two exceptions: You cannot change the
shell variables PATH and SHELL. (This restriction prevents people, logging into
restricted environments, from spawning secondary shells that are not restricted.) Both
login and getty understand simple single-character quoting conventions. Typing a
backslash (\) in front of a character quotes it and allows you to include such things as
spaces and tab characters.

The login command changes the current directory to your HOME directory, changes the
ownership of the port (work station) to the user logging in, sets the user-and group-IDs of
the process, and then runs the program specified for the user in the password file,
normally the shell (fbin/sh). login calls this program with a name consisting of - (minus)
followed by the last segment of its path name. An instance of the shell can therefore
determine from its invocation name whether it is a login shell or a subshell.

The /ete/passwd file entry may include parameters that are always passed to the shell
program. For more details, see the passwd file in AIX Operating System Technical
Reference.

/etc/utmp
/usr/adm/wtmp
/etc/.ilog
/etc/autolog
/usr/motd
/etc/passwd
. llog

Accounting.
Accounting.
Accounting.
Login ID for automatic login.
Message of the day.
Password file.
Date of last login .

454 Commands Reference

login

Related Information

The following commands: "users" on page 802, "getty" on page 372, "init" on page 396,
"passwd" on page 546, and "penable" on page 550.

The passwd and utmp files in AIX Operating System Technical Reference.

The discussion of login sessions in Managing the AIX Operating System.

Commands 455

logname

logname

Purpose

Displays your login name.

Syntax

logname ---l
OL805145

Description

The logname command writes to standard output the name you used to log into the
system. It is the contents of the environment variable $LOGNAME, which is set when
you log into the system.

Files

/etc/profile

Related Information

The following commands: "env" on page 298 and "login" on page 453.

The logname subroutine AIX Operating System Technical Reference.

The environ special facility in AIX Operating System Technical Reference.

456 Commands Reference

lorder

lorder

Purpose

Finds the best order for member files in an object library.

Syntax

lorder T file T
OL805029

Description

The lorder command reads one or more object or library archive files, looking for external
references and writing a list of paired file names to standard output. The first of each
paired files contains references to identifiers that are defined in the second file. You can
send this list to the tsort command to find an ordering of a library member file suitable for
one-pass access by ld.

If object files do not end with .0, lorder overlooks them and attributes their global symbols
and references to some other file.

Example

To create a subroutine library:

lorder charin.o scanfld.o scan.o scanln.o I tsort I xargs ar qv libsubs.a

This creates a subroutine library named 1 i bsubs. a that contains chari n. 0, scanfl d. 0,

scan.o, and scan 1 n. 0. The ordering of the object modules in the library is important.
The ld command requires each module to precede all the other modules that it calls or
references. The lorder and tsort commands together add the subroutines to the library in
the proper order.

Commands 457

lorder

Files

Suppose that scan.o calls scanfld.o and scanln.o. scanfld.o also calls charin.o.
First, the lorder command creates a list of pairs that shows these dependencies:

charin.o charin.o
scanfld.o scanfld.o
scan.o scan.o
scanln.o scanln.o
scanfld.o charin.o
scanln.o charin.o
scan.o scanfld.o
Next, the I (vertical bar) sends this list to the tsort command, which converts it into the
ordering we need:

scan.o
scanfld.o
scanln.o
charin.o

Note that each module precedes the module it calls. chari n. 0, which does not call
another module, is last.

The second I then sends this list to xargs, which constructs and runs the following ar
command:

ar qv libsubs.a scan.o scanfld.o scanln.o charin.o
This ar command creates the properly ordered library.

/tmp/sym* Temporary files

Related Information

The following commands: "ar" on page 58, "ld" on page 427, "nm" on page 521 "tsort"
on page 778, and "xargs" on page 857.

The ar file in A/X Operating System Technical Reference.

458 Commands Reference

lp

TNL SN20-9861 (26 June 1987) to SC23-0790-0
lp

Purpose

Prints a file in a format suitable for sending to a line printer.

Syntax

-fl=66 -fw=80

/usr/lpd/lp
-fl = value
-fw = value -elite
-indent = val ue -wp
-skip = val ue -pip
-statusfile

OL805396

Description

Flags

The Ip command prints file on its standard output in a form that is suitable for a line
printer. The Ip command is normally invoked by the qdaemon command. qdaemon
directs the output from Ip to the appropriate device.

Flags are passed to Ip in the following ways:

• Flags specified in the qconfig structure are passed each time that Ip is invoked. The
-pIp, -ibmgp, -oki, and -statusfile flags most likely appear in qconfig.

• Flags that are not recognized by the print command are assumed to be for Ip and are
passed to Ip with the requested job.

-elite

-fl = value

-fw= value

-ibmgp

Prints the text at 12 characters per inch instead of 10 characters per
inch. This flag changes the default forms width to 96 characters.

Sets the forms length equal to value. The default length is 66 lines.

Sets the forms width equal to value. The default width is 80 columns.
Lines that are wider than value are truncated. If you set value to 0, no
truncation is performed.

Specifies an IBM Graphic Printer.

Commands 459

lp

-indent = value

-oki

-plot

-pip

-skip = value

-statusfile

-wp

Indents the printed output the number of spaces specified with value.

Specifies an Okidata Model 92 or 93.

Passes text directly to the printer without processing. This is useful
when using the printer as a plotter. Normally, lines that contain
backspaces and carriages return characters are processed so that they
print with minimum print head motion. The sequence ESC-9 maps to half
line feeds.

Sets and resets printer port parameters, if the printer is attached with a
parallel interface.

Does not print the first value blank lines in the file.

Updates the status information in the status file that is open on file
descriptor 3. The status information is passed from qdaemon.

Sets the printer, if possible, to the Word Processing mode.

Related Information

The following commands: "print" on page 566 and "qdaemon" on page 590.

The qconfig file in A/X Operating System Technical Reference.

460 Commands Reference

Is

TNL SN20-9861 (26 June 1987) to SC23-0790-0
Is

Purpose

Displays the contents of a directory.

Syntax

Is

OL805030

Is --f

di rectory

OLS05243

Description

The Is command writes to standard output the contents of each specified directory or the
name of each specified file, along with any other information you ask for with the flags. If
you do not specify a file or directory, Is displays the contents of the current directory. By
default, Is displays all information in alphabetic order by file name. The collating

Commands 461

TNL SN20-9861 (26 June 1987) to SC23-0790-0
Is

sequence is determined by the NLCTAB environment variable (see "ctab" on page 204).
Individual file names are listed before directory names.

There are three main ways to format the output:

1. List one entry per line. This is the default format.
2. List entries in multiple columns by specifying either the -C or -x flags.
3. List entries in a comma-separated series by specifying the -m flag.

To determine the number of character positions in the output line, Is uses the environment
variable COLUMNS. If this variable is not set, it reads the terminfo file. If Is cannot
determine the number of character positions by either of these methods, it uses a default
value of 80.

The mode displayed with the -1 flag is interpreted as follows:

If the first character is:

d The entry is a directory.
b The entry is a block special file.
c The entry is a character special file.
p The entry is a first-in first-out (FIFO) special file.

The entry is an ordinary file.
D The entry is a remote directory.
F The entry is a remote ordinary file.
B The entry is a remote block special file.
C The entry is a remote character special file.
P The entry is a remote first-in first-out (FIFO) special file.

The next nine characters are divided into three sets of three characters each. The first
three characters show the owner's permission. The next set of three characters show the
permission of the other users in the group. The last set of three characters show the
permission of anyone else with access to the file. The three characters in each set show
read, write and execute permission of the file. Execute permission of a directory lets you
search a directory for a specified file.

Permissions are indicated as follows:

r You can read the file.
w You can edit (write) the file.
x You can search the file.

You do not have permission to the file.

The group-execute permission character is s if the file has set-group ID mode. The
user-execute permission character is s if the file has set-user-ID mode. The last character
of the mode (normally x or -) is t if the 1000 (octal) bit of the mode is set; see "chmod" on
page 128 for the meaning of this mode. The indications of set-ID and 1000 bit. of the mode
are capitalized (8 and T respectively) if the corresponding execute permission is not set.

When the size of the files in a directory are listed, the Is command displays a total count of
blocks, including indirect blocks.

462 Commands Reference

Flags

TNL SN20-9861 (26 June 1987) to SC23-0790-0
Is

The environment variables NLLDATE and NLTIME control the format of the date and
time. The environment variable NLSMONTH controls the short names of months.

-a Lists all entries in the directory including the entries that begin with a . (dot).

-b Displays nonprintable characters in an octal \nnn notation.

-c Uses the time of last modification of the i-node (file created, mode changed, and so on)
for sorting (when used with -t) or for displaying (when used with -I). This flag has no
effect when not used with either -t or -lor both.

-c Sorts output vertically in a multi-column format.

-d Displays only the information for the directory named. This is useful with the -I flag
to get the status of a directory.

-f Lists the name in each slot for each named directory. This flag turns off -I, -t, -s, and
-r, and turns on -a; the order is the order in which entries appear in the directory.

-F Puts a / (slash) after each file name if the file is a directory and an * (asterisk) after
each file name if the file can be executed.

-g Displays the same information as with -I, except for the owner.

-i Displays the i-number in the first column of the report for each file.

-k Displays the permission codes, node ID, remote UID, remote GID, time of last
modification, size (in bytes), and file name for remote entries.

For remote files and directories, the local owner and local group are obtained by
using inverse IDs. If there is no inverse ID or if Is cannot determine the inverse ID, a
- (minus sign) displays in the corresponding field. If possible, remote nodes are
identified with nicknames. Otherwise, they are identified by their NID displayed in
hexadecimal. (See "Distributed Services Concepts" in Managing the A/X Operating
System.)

For local files and directories that do not have a nickname defined for the local node
ID, the node ID field displays as a - (minus sign), and the raw UID (GID) field
contains the local owner UID (group GID).

-I Displays the mode, number of links, owner, group, size (in bytes), and time of last
modification for each file. If the file is a special file, the size field will instead contain
the major and minor device numbers.

-m Uses stream output format (a comma-separated series).

-n Displays the same information as with -I, except that it displays the user and the
group IDs instead of the user and group names.

-0 Displays the same information as with -I, except for the group.

Commands 463

Is

-p Puts a slash after each file name if that file is a directory. This is useful when you
pipe the output of Is to the pr command as follows:

ls -p I pr -5 -t -w80
-q Displays nonprintable characters in file names as the character ?

-1' Reverses the order of the sort, giving reverse alphabetic or the oldest first, as
appropriate.

-R Lists all subdirectories recursively.

-s Gives size in blocks (including indirect blocks) for each entry.

-t Sorts by time of last modification (latest first) instead of by name.

-u Uses the time of the last access instead of time of the last modification for sorting
(when used with -t) or for displaying (when used with -1). This flag has no effect
when not used with either -t or -lor both.

-x Sorts output horizontally in a multi-column format.

Examples

1. To list all files in the current directory:

1 s -a
This lists all files, including. (dot), .. (dot-dot), and other files with names beginning
with a dot.

2. To display detailed information:

ls -1 chapl .profile

This displays a long listing with detailed information about chapl and .profile.

3. To display detailed information about a directory:

ls -d -1 manual manual/chapl

This displays a long listing for the directories. and manua 1, and for the file
manual/chapl. Without the -d flag, this would list the files in . and manual instead
of the detailed information about the directories themselves.

4. To list the files in order of modification time:

ls -1 -t
This displays a long listing of the files that were modified most recently, followed by
the older files.

464 Commands Reference

Files

/etc/passwd
/etc/group
/usr/lib/terminfo/*

TNL SN20-9861 (26 June 1987) to SC23-0790-0
Is

Contains user IDs.
Contains group IDs.
Contains terminal information.

Related Information

The following commands: "chmod" on page 128, "ctab" on page 204, and "find" on
page 326.

The environment miscellaneous facility in AIX Operating System Technical Reference.

"Overview of International Character Support" in Managing the AIX Operating System.

"Distributed Services Concepts" in Managing the AIX Operating System.

Commands 464.1

Is

464.2 Commands Reference

m4

TNL SN20-9861 (26 June 1987) to 8C23-0790-0
m4

Purpose

Preprocesses files, expanding macro definitions.

Syntax

-oname-(=""

= value

Description

OLS05434

The m4 command is a macro processor used as a preprocessor for C and other languages.
You can use it to process built-in macros or user-defined macros. Each file is processed in
order. If you do not specify a file or if you give a minus (-) as a file name, m4 reads
standard input. It writes the processed macros to standard output.

Macro calls follow the form:

macroname(argument ...)
The left parenthesis must immediately follow macroname. If the left parenthesis does not
follow the name of a defined macro, m4 reads it as a macro call with no arguments. Macro
names consist of ASCII alphabetic letters, digits, and the underscore character (-).
Extended characters are not allowed in macro names. The first character cannot be a
digit.

While collecting arguments, m4 ignores unquoted leading blanks, tabs, and new-line
characters. Use single quotation marks to quote strings. The value of a quoted string is
the string with the quotation marks stripped off.

When m4 recognizes a macro, it collects arguments by searching for a matching right
parenthesis. If you supply fewer arguments than appear in the macro definition, m4
considers the trailing arguments in the definition to be null. Macro evaluation proceeds

Commands 465

m4

normally during the collection of the arguments. All commas or right parentheses within
the value of a nested call are translated literally; they do not need an escape character or
quotation marks. After collecting arguments, m4 pushes the value of the macro back onto
the input stream and scans again.

Built-in Macros

The m4 command makes available the following built-in macros. You may redefine them,
but you will lose the original meaning. The values of these macros are null unless
otherwise stated:

define(name,new-name) Replaces the macro name with the value of new-name. The
new-name string can take the form $n . . . (where n is a
digit). In this case, each occurrence of n in the replacement
text is replaced by the n-th argument of name. $0 is the name
of the macro. The null string replaced missing arguments. The
number of arguments replaces $#. A comma-separated list of
all arguments replaces $*. $@ acts like $*, but each
argument is quoted with the current quotation character (see
changequote).

undefine(name) Removes the definition of name.

defn(name . . .) Returns the quoted definition of name.

pushdef(name,new-name) Redefines name with new-name as in define, but save any
previous definition.

popdef(name ...) Removes the current definition of name and returns to the
previous definition, if one existed.

ifdef(name,true,[false]) Returns the value of true only if name is defined, otherwise
return false. If you do not supply false, its value is null.

Note: The word unix is predefined.

shift(argument ...) Returns all but the first argument. The other arguments are
quoted and pushed back with commas in between. The quoting
nullifies the effect of the extra scan that will subsequently be
performed.

changequote(L,R) Changes quote symbols to Land R. The symbols can be up to
five bytes long. changequote without arguments restores the
original values (' ').

changecom(Lcom,Rcom) Changes left and right comment markers from the default #
and new-line character to Lcom and Rcom. With no arguments,
the comment mechanism is disabled. With one argument, the
left marker becomes the parameter and the right marker
becomes a new-line character. With two arguments, both

466 Commands Reference

divert(num)

undivert(num ...)

divnum

dnl

markers are affected. Comment markers can be up to five
bytes long.

m4

Changes the current output stream to stream num. There are
10 output streams, numbered 0-9. The final output is the
concatenation of the streams in numerical order. Initially,
stream 0 is the current stream. m4 discards output diverted to
a stream other than 0-9.

Causes immediate output of text from the specified diversions
(or all diversions if there is no argument). Text may be
undiverted into another diversion. Undiverting discards the
diverted text.

Returns the value of the current output stream.

Reads and discards characters up to and including the next
new-line character.

ifelse([string1,string2,true,[false]] ...)

incr(num)

decr(num)

eval(expr[,numl[,num2]])

len(string)

dlen(string)

index(s1,s2)

substr(string ,position,num)

If string1 and string2 are the same, then the value is true. If
they are not and if there are more than four arguments, m4
repeats the process with the additional arguments (4, 5, 6, and
7). Otherwise, the value is either false or null if you provide no
value for false.

Returns the value of its argument incremented by 1.

Returns the value of its argument decreased by 1.

Evaluates its first argument as an arithmetic expression, using
32-bit arithmetic. The operators you can use include +, -, *,
/,%, 1\ (exponentiation), bitwise &, I, -, and 1\ relationals, and
parentheses. Octal and hex numbers can be specified as in C.
num1 specifies the radix for the result of the expression. The
default radix is 10. The optional num2 specifies the minimum
number of digits in the result.

Returns the number of bytes in string.

Returns the number of displayable characters in string; that is,
two-byte extended characters are counted as one displayable
character.

Returns the position in the string s1 where the string s2 begins
(zero origin), or -1 if the second parameter does not occur.

Returns a substring of string. The beginning of the substring
is selected with position, and num indicates the length of the
substring. Without num, the substring includes everything to
the end of the first string.

Commands 467

m4

Flags

translit(string ,from ,to)

include (file)

sinclude(file)

syscmd(command)

sysval

Transliterates the characters in string from the set given by
from to the set given by to. No abbreviations are permitted.
Two-byte extended characters are correctly mapped into the
corresponding replacement characters.

Returns the contents of file or displays an error message if it
cannot access the file.

Returns the contents of file, but it gives no error message if file
is inaccessible.

Runs the AIX command. No value is returned.

Returns the return code from the last call to syscmd.

maketemp(... XXXXX ...)

m4exit(value)

Replaces XXXXX in its argument with the current process ID
number.

Exits from m4 immediately, returning the specified exit value
(the default is 0).

m4wrap(lastmacro) Runs lastmacro after reading the end-of-file character. For
example: m4wrap ('c1 eanup () I) runs the c1 eanup macro at
the end of m4.

errprin t(message)

dumpdef([name . ..])

Includes message on the diagnostic output file.

Writes to standard output the current names and definitions
for the named items or for all if no arguments are provided.

traceon(macro) Turns on tracing for macro. If none is named, tracing is turned
on for all macros.

traceoff(macro . . .) Turns off trace globally and for any macro specified. Macros
specifically traced by traceon can be untraced only by specific
calls to traceoff.

-Bnum

-e

-Hnum

-s

Makes num the size of the push-back and parameter collection buffers (the
default is 4096).

Operates interactively. Interrupts are ignored and the output is not
buffered.

Makes num the size of the symbol table hash array (the default is 199).
The size must be a prime number.

Enables the line sync output for the C preprocessor (#line ...).

468 Commands Reference

m4

-Snum Makes num the size of the call stack (the default is 800 slots). Macros
take three slots, and nonmacro arguments take one.

-Tnum Makes num the size of the token buffer (the default is 512 bytes).

The preceding flags must appear before any file names and before any -D or -U flags.

-Dname[= val] Define name as val. If val is not specified, name becomes null.

-Uname Undefines a name previously defined with the -D flag.

Example

To preprocess a C language program with m4 and compile it:

m4 prog.m4 >prog.c
cc prog.c

Related Information

The following commands: "cc" on page 112 and "cpp" on page 163.

The "Overview of International Character Support" in Managing the A/X Operating
System.

Commands 469

mail

mail

Purpose

Sends messages to system users and displays messages from system users.

Syntax

mail

-I $HOME/mbox ~

-ffile---y
OL805347

one of

Imail KJ.: ~mail -t user --r
OL805034

Description

The mail command with no flags writes to standard output, one message at a time, all
stored mail addressed to the your login name. Following each message, mail prompts you
with a question mark (?). Press the Enter key to display the next mail message, or enter
one of the sub commands which control the disposition of the message (see "Subcommands"
on page 471).

When sending mail, you specify users, and then mail reads a message from standard input
until you press END OF FILE (Ctrl-D) or enter a line containing only a period (.). It
prefixes this message with the sender's name and the date and time of the message (its
postmark) and adds this message to the file /usr/mail/user for each user specified on the
command line.

The action of mail can be modified in two ways by manipulating /usr/mail/user:

1. The default permission assignment for "others" is "read-only." If you change this
permission assignment to "read/write" or to all permissions denied, the system
preserves the file, even when it is empty, in order to maintain the desired permissions.

470 Commands Reference

Flags

TNL SN20-9861 (26 June 1987) to SC23-0790-0
mail

2. You can edit the file to contain as its first line:

Forward to person

This causes all messages sent to user to be sent to person instead. The Forward to
feature is especially useful for sending all of a person's mail to a particular machine in
a network environment.

The rmail command is similar to mail except that it only allows the user to send mail.
The uucp command uses rmail for security reasons, allowing a user to send mail to a
remote system, but not to read mail on that system.

To specify a recipient on a remote system, prefix the system name and an exclamation
mark (!) to user. See "uucp" on page 807 for a detailed discussion of how to address
remote systems.

-e Does not display any messages. This flag causes mail to return an exit value of 0
if the user has mail, an exit value of 1 if he has no mail.

-f file Saves mail in the named file instead of in the default mailfile, $HOME/mbox.

-p Displays mail without prompting for a disposition code. This flag does not delete,
copy, or forward any messages. (For disposition codes, see "Subcommands").

-q Causes mail to exit when you press INTERRUPT (Alt-Pause). Normally,
pressing INTERRUPT (Alt-Pause) stops only the message being displayed. (In
this case, the next message sometimes does not display until you enter the p
subcommand.)

-r Displays mail in first-in, first-out order.

-t Prefixes each message with the names of all recipients of the mail. (Normally,
only the individual recipient's name appears as addressee.)

Usually, user is a name recognized by the login command. It can also be the ASCII
synonym that is automatically defined for any name that contains NLS code points. If the
system does not recognize one or more of the specified users or if mail is interrupted
during input, mail saves messages in the file $HOME/dead.letter to allow for editing and
resending.

Subcommands

The following subcommands control message disposition:

+ Displays the next mail message (the same as pressing the Enter key).

Displays the previous message.

Commands 471

mail

d

p

s [file]

w [file]

m user

q

x

Deletes the current message and displays the next message.

Displays the current message again.

Saves the message in the named file instead of in the default mailfile,
$HOME/mbox.

Saves the message, without its postmark, in the named file instead of in the
default mailfile, $HOME/mbox.

Forwards the message to the named user.

Writes any mail not yet deleted to /usr/mail/user and exits. Pressing END OF
FILE (Ctrl-D) has the same effect.

Writes all mail unchanged to /usr/mail/user and exits.

!AIX-cmd Runs the specified AIX command.

* Displays a subcommand summary.

Examples

1. To display your mail:

mai 1

After the most recent message is displayed, a ? (question mark) indicates that mail is
waiting for one of the subcommands explained previously (+, -, d, p, etc.). Enter *
(asterisk) to list the subcommands available.

2. To send mail to other users:

mail tom rachel
Don't forget the
meeting tomorrow at 9:30.

Ctrl-D

This mails the message Don't forget the meeti ng tomorrow at 9: 30. to users
tom and rache 1. The Ctrl-D indicates the end of the message, but is not included in
the text.

3. To send a file to another user:

mail fran <proposal

This sends the contents of the file propos a 1 to fran. You can create memo with an
editor, which allows you to correct your mistakes before sending the message. You can
also use this form of the mail command to send someone a copy of a data file.

4. To retrieve a file that was sent to you:

mai 1

472 Commands Reference

Files

mail

This displays the messages mailed to you one at a time. You need to look at them
because the file you want was actually added to /usr/mail/user as a message. You may
see several other messages before the file that was sent to you. If so, press the Enter
key after the? prompt until the desired file appears. If you go too far, enter the
- (minus) subcommand to go back a message. After the? immediately following the
file, enter:

w mycopy

This creates a file named mycopy in the current directory that contains the text mailed
to you. Actually, you can save a copy of any message this way.

/etc/passwd
/usr/mail/user
$HOME/mbox
$HOME/dead.letter
/tmp/ma*
/usr/mail/* .lock

To identify sender and locate user.
Incoming mail for user.
Saved mail.
Unmailable text.
Temporary file.
Lock for mail directory.

Related Information

The following commands: "login" on page 453, "uucp" on page 807, and "write" on
page 853.

Commands 473

make

make

Purpose

Maintains up-to-date versions of programs.

Syntax

one of

-f makefile
-f Makefile
-f s. makefile

malee -f s. Makefile

-f makefile

-I< -s -p
-i -q -r

~ name=def X target F
OLS05035

Description

The make command reads makefile for information about the specified target files and for
the commands necessary to update them. make does not change the target if you have not
changed any of the source files since you last built it. It considers a missing file to be a
changed file (out of date).

You can also include macro definitions on the command line after all of the flags. Macro
definitions have the form:

macro-name = string
See "Macros" on page 477 for more information about macros and their uses.

The make command considers all entries on the command line that follow the flags and
that do not contain an equal sign to be target file names.

474 Commands Reference

make

Description File
The description file contains a sequence of entries specifying the files that the target tiles
depend on. The general form of an entry is:

targ [targ] . . . : [:] [file] . . . [; cmd] . . . [#]
[cmdJ . .. [#J

The first line of an entry (called the dependency line), contains a list of targets followed
by a : (colon) and an optional list of prerequisite files or dependencies. If you put shell
commands on the dependency line, they must be preceded by a ; (semicolon). All
commands that follow the semicolon and all following lines that begin with a tab contain
shell commands that make uses to build the target.

To specify more than one set of commands, you must enter more than one dependency
definition. In this case, each definition must have the target name followed by two colons
(::), a dependency list, and a command list.

The first line that does not begin with a tab or # (hash sign) begins a new dependency or a
macro definition. Command lines are performed one at time, each by its own subshell.
Thus, the effect of some shell commands, such as cd, does not extend across new-line
characters. You can, however, put a \ (backslash) at the end of a line to continue it on the
next physical line. A comment begins with a # and ends with a new-line character.

The first one or two characters in a command can be one of the following special
characters:

Ignores errors returned by the command on this line.

@ : Does not display this command line.

-@
@- Does not display this command line and ignores errors.

Suffixes
The make command has default rules that govern the building of most standard files.
These rules depend on the standard suffixes used by the system utility programs to identify
file types. These rules define the starting and ending file types so that, for example, given
a specified .0 file, make can infer the existence of a corresponding .c file and knows to
compile it using the CC -c command.

Use a - (tilde) in the suffix to indicate a SCCS file. For example, the. c- .0 rule governs
changing an SCCS C source file into an object file.

You can define rules within the description file. make recognizes as a rule any target that
contains no slashes and starts with a dot.

A rule with only one suffix (that is, .c:) defines the building of prog from all its source
files.

Commands 475

TNL SN20-9861 (26 June 1987) to SC23-0790-0
make

You can also add suffixes to the list of suffixes recognized by make and add to the default
dependency rules. Use the target name .SUFFIXES followed by the suffixes you want to
add. Be careful of the order in which you list the suffixes. make uses the first possible
name for which both a file and a rule exist. The default list is:

.SUFFIXES: .0 .C .C- .y .y- .1 .1- .S .s- .sh .sh- .h .h-

You can clear the list of suffixes by including .SUFFIXES: with no following list.

Special Target Names
You can use some special target names in the description file to tell make to process the
file in a different manner. The special target names are:

.DEFAULT The commands that appear after this name in the description file tell
make what to do if it can find no commands or default rules to tell it
how to create a specific file .

. IGNORE If this name appears on a line by itself, make does not stop when errors
occur. Using a - (minus) as the first character on a line in the
description file tells make to ignore errors for the command on that line .

. PRECIOUS The files named on the same line as this special name are not removed
when make is interrupted .

. SILENT If this name appears on a line by itself, make does not display any of the
commands that it performs to build a file .

. SUFFIXES Use this name to add more suffixes to the list of file suffixes that make
recognizes.

Environment
When you run make, it reads the environment and treats all variables as macro
definitions. make processes the environment variables aftel it processes its own internal
rules and before processing any description files. Therefore, macro assignments in a
description file normally override duplicate environment variables. The -e flag instructs
make to use the environment variables instead of the description file macro assignments.

Note: Because make uses the dollar sign symbol ($) to designate a macro, do not use that
symbol in file names of targets and parents, or in commands in the description file unless
you are using a defined make macro.

The make command recognizes a macro MAKEFLAGS, which can be assigned any make
command line flag except -f, -p, and -d. When make begins, it assigns the current flags to
MAKEFLAGS. It passes this variable to any commands it invokes, including additional
invocations of make itself. Thus you can perform a make -n recursively on a software
system to see what would have been performed. The -n is put in MAKEFLAGS and
passed to further copies of the shell that runs the next level of make commands. In this
way, you can check all of the description files for a software project without actually
compiling the project.

476 Commands Reference

make

Macros

Entries of the form stringl = string2 are macro definitions. string2 can consist of all
characters that can occur on a line before a comment character (#) or before a new-line
character that is not a continuation line. After this macro definition, make replaces each
$ (string 1) in the file with string 2. You do not have to use the parentheses around the
macro name if the macro name is only one character long and there is no substitute
sequence (see the next paragraph).

If you use the following form, you can also replace characters in the macro string with
other characters for one time that you use the macro:

$ (string 1 [: substl = [subst2]])

The optional : substl = subst2 + specifies a substitute sequence. If you specify a
substitute sequence, make replaces each substl in the named macro with subst2 (if
substl does not overlap with another substl). Strings in a substitute sequence begin and
end with any of the following: a blank, tab, new-line character, or beginning of line. See
"Libraries" on page 478 for an example of the use of the substitute sequence.

Internal Macros
The make command has five internal macros. It assigns values to these macros under one
or more of the following conditions:

• When it uses an internal rule to build a file.
• When it uses a .DEFAULT rule to build a file.
• When it uses rules in the description file to build a file.
• When the file is a library member.

They are defined as follows:

$* The file name (without the suffix) of the source file.

$@ The full target name of the current target.

$< The source files of an out-of-date module. make evaluates this macro when
applying inference rules or the .DEFAULT rule. For example:

. C.o:
cc -c $<

Here, $< is the equivalent of $* and refers to the .c file of any out-of-date .0 file.

$? The list of out-of-date files. make evaluates this macro when it evaluates explicit
rules from makefile.

$% The name of an archive library member. make evaluates this macro only if the
target is an archive library member of the form lib(file.o). In this case, $@
evaluates to lib and $% evaluates to the library member, file.o.

Commands 477

make

You can add an uppercase D or F to indicate "directory part" or "file part," respectively,
to all internal macros except for $? Th us, $ (@D) refers to the directory part of the name
$@. If there is no directory part, make uses. / .

Libraries
If a target name contains parentheses, make considers it an archive library. The string
within parentheses refers to a library member. Thus, lib(file.o) and $(LIB)(file.o) both see
an archive library which contains file.o. (You must have defined the LIB macro already.)
The expression $ (LIB) + (filel.o file2. 0) is not legal.

Rules that apply to archive libraries have the form x. a, where. X is the suffix of the file
you want to add to an archive library. For example, . c. a indicates a rule that changes
any C source file to a library file member. The following lines give the default rule for this
change:

lib: lib (file. 0) lib (file. 0) lib (file. 0)

.c. a:
@echo lib is now up to date

$(CC) -c $(CFLAGS) $<
ar rv $@ $*.0
rm -f $*.0

• X must be different from the suffix of the archive member. Therefore, you cannot have
1 i b (fi 1 e. 0) depend upon fi 1 e. o.
Another, but more limited, example of an archive library maintenance rule follows:

lib: lib (file. 0) lib (file. 0) lib (file. 0)
$(CC) -c $(CFLAGS) $(?:.o=.c)
ar rv lib $?
rm $? @echo lib is now up to date

. c .. a: ;

This example rule uses a substitute sequence (.0=. c) to replace with .c files all .0 files
generated by the $? macro. The $? list is the set of object file names (inside lib) with C
source files that are out of date. The macro substitution translates .0 to .c.

If this rule appears in your description file, it disables the default. c. a: rule, which
creates each object file one by one. This type of organization speeds up archive library
maintenance, but becomes hard to use if the archive library contains a mix of assembly
programs and C programs.

478 Commands Reference

Flags

make

-b Recognizes makefiles that were written for old versions of make.

-d Displays detailed information about the files and times that make examines
(debug mode).

-e Uses environment variables in place of any assignments made within
description files. These assignments normally replace environment variables.

-f makefile Reads makefile for a description of how to build the target file. If you give
only a - (minus) for makefile, make reads standard input. If you do not use
the -f flag, make looks in the current directory for a description file named
makefile, Makefile, s.makefile, or s.Makefile. You can specify more than
one description file by entering the -f flag more than once (with its
associated makefile parameter).

-i Ignores error codes returned by commands. make normally stops if a
command returns a nonzero code. Use this flag to compile several modules
only if you want make to continue when an error occurs in one of the
modules. Do not link the resulting modules when you use this flag.

-k Stops processing the current target if an error occurs, but continues with
other branches that do not depend on that target.

-n Displays commands, but do not run them. Displays lines beginning with an @
(at sign). If the command in the description file contains the string
$ (MAK E), perform another call to make (see the discussion of the
MAKEFLAGS macro on page 476). Use this flag to preview the performance
of make.

-p Displays the complete set of macro definitions and target descriptions before
performing any commands.

-q Returns a zero status code if the target file is up to date; returns a nonzero
status code if the target file is not up to date.

-r Does not use the default rules.

-s Does not display commands on the screen as they are performed.

-t Changes only the date of the files, rather than performing the listed
commands. Use this flag if you have made only minor changes to a source
file that do not affect anything outside of that file. This flag changes the
date of all target files that appear on the command line or in the description
file.

Commands 479

make

Examples

Files

1. To make the file specified by the first entry in the description file:

make
2. To display, but not run, the commands that make would use to make a file:

make -n search.o
You may want to do this to verify that a new description file is correct before using it.

3. To save the internal rules in a file:

make -p -f /dev/null 2> /dev/null > defaults
This lists the internal rules and macros and saves them in the file defaul ts for
viewing or editing. All exported shell environment variables are included in the list of
macro definitions.

Makefile
makefile
s.Makefile
s.makefile

Related Information

The discussion of make in AIX Operating System Programming Tools and Interfaces.

480 Commands Reference

makekey

makekey

Purpose

Generates an encryption key.

Syntax

/usr/lib/makekey -l
OL805240

Description

The makekey command generates an encryption key to use with programs that perform
encryption. Its input and output are usually pipes.

The makekey command reads 10 characters from standard input and writes 13 characters
to standard output. The first 8 of the 10 input characters can be any sequence of ASCII
characters. The last two input characters (the salt), are best chosen from the set
[a-zA-ZO-9. ,fl. The salt characters are repeated as the first two characters of the
output. The remaining 11 output characters are chosen from the same set as the salt and
constitute the output key that you use as the key parameter to programs that perform
encryption.

Example

To generate an encryption key:

fusrfl i bfmakekey
1234567890

This generates an encryption key based on the string 1234567890. The key
90y7 4T fNXwl U is displayed at the work station. Do not press Ctrl-D after typing the input
key 1234567890 because this would end your shell session. Also, the shell prompt
appears immediately after the generated key, instead of appearing on a separate line as it
usually does. This is normal.

Commands 481

mdrc

mdrc

Purpose

Allows you to reinstall a user-created minidisk after you have reinstalled AIX.

Syntax

mdrc
-h hdisknum

OL805440

Description

The mdrc command provides access to user-created minidisks. You should run this
command if you have reinstalled the AIX Operating System or if you have had to replace
the /etc/system, /etc/filesystems, or /etc/ddi/cpmgr files with copies that do not contain
stanzas describing any user-installed minidisks. The system uses the information in these
stanzas to configure the minidisks at system startup, and mdrc recreates the necessary
stanzas. Normally, mdrc uses the backup copy of /etc/filesystems produced by the
minidisk command when you use it to create a new minidisk. This backup copy is named
/u/filesystems.

If mdrc cannot recreate the original /etc/filesystems stanza for AIX Operating System
minidisks, it assigns attributes of Auto Mount = no, Read/Write Status = R/W, and
Mount Directory = /tmp/directory/hdn to the minidisk. In this case, you should then
run the minidisk command to change the attributes to the values you want. You might
also need to run the mkdir command to create the mount directory, if you reinstalled the
entire AIX Operating System.

If minidisk has been created for use by the Personal Computer AT Coprocessor, mdrc will
update the /etc/ddi/cpmgr file. If you have not installed Personal Computer AT
Coprocessor Services before running mdrc, it creates an entry in /etc/system, but
displays a warning message because the /etc/ddi/cpmgr does not exist. You must run
mdrc again after you install the Coprocessor to be able to use the Coprocessor minidisks.

The mdrc command does not recognize external disks and any mini disks on them if the
disks are not configured. To configure an external disk and its minidisks, see "varyon" on
page 823.

You must have superuser authority or be a member of the system group to run the mdrc
command.

482 Commands Reference

,/

Flag

Files

mdrc

-h hdisknum[, hdisknum] ...
Specifies any disks that have been removed or damaged and tells mdrc to
remove the minidisk configuration entries for these disks. If you do not
specify this flag and an external disk is not configured, mdrc ignores entries
in the configuration files for the external disk's minidisks.

Note: If you do not have any external disks, you do not need to specify this
flag.

/etc/filesystems
/etc/system
/ etc/ ddi/ cpmgr

Related Information

The following commands: "minidisks" on page 485 "mkdir" on page 486 and "varyon"
on page 823.

The filesystems and system files in AIX Operating System Technical Reference.

Commands 483

mesg

mesg

Purpose

Permits or refuses write messages.

Syntax

mes9 W
OL805036

Description

Flags

Files

The mesg command controls whether other users on the system can send messages to you
with the write command. Called without arguments, mesg displays the current work
station message-permission setting. The shell start-up process permits messages by default.
You can override this default action by including the line: mesg n in your
$HOME/.profile file. A user with superuser authority can send write messages to any
work station, regardless of its message permission setting. Message permission has no
effect on mail messages.

n Disables incoming write messages. Use this form of the command to avoid having
others clutter your display with incoming messages.

y Permits write messages.

/dev/tty*

Related Information

The following commands: "write" on page 853 and "mail" on page 470.

484 Commands Reference

,/

minidisks

minidisks

Purpose

Adds, deletes, changes, and displays minidisks.

Syntax

minidisks --I
OL805307

Description

Files

The minidisks command lets you add, delete, show or change characteristics of a minidisk.
To use the minidisks command, you must be a member of the system group or have
superuser authority.

The minidisks command is menu-driven. For information on how to use it, see Installing
and Customizing the AIX Operating System.

/dev
/tmp
/etc/ddi
/etc/master
/etc/system
/etc/mdkaf
/etc/filesystems
/tmp/CONFIGREPORT

Directory.
Directory.
Directory.

Related Information

The following command: "mkdir" on page 486.

The discussion of minidisks in Installing and Customizing the AIX Operating System.

Commands 485

TNL SN20-9861 (26 June 1987) to SC23-0790-0
mkdir

mkdir

Purpose

Makes a directory.

Syntax

mkdir T directory T

Description

OLS05037

The mkdir command makes a new directory in either the local or a remote node. mkdir
creates the new directories with read, write, and execute permissions enabled for all users.
You can change the permissions it sets by default with the umask command (see page
784.1). mkdir also creates by default the standard entries . (dot), for the directory itself,
and .. (dot dot), for its parent.

Note: To make a new directory you must have write permission in the parent directory.

Related Information

The following commands: "sh" on page 637, "rm" on page 601, and "umask" on
page 784.1.

The mkdir system call in AIX Operating System Technical Reference.

486 Commands Reference

mkfs

mkfs

Purpose

Makes a file system.

Syntax

mkfs - device

-bblocknum

Description

-f fi/esystem
-s cy/: skip
-v volume

one of
blocks
blocks: inodes
prototype

-p/stand/boot \

-p program~

OL805364

The mkfs command makes new file systems. mkfs initializes the volume label and file
system label, start-up block, bad-block list, and interleaves the free list in accordance with
the flags or with defaults found in the /etc/filesystems file.

The mkfs command creates the new file system on the device specified on the command
line. device can be a block device name, raw device name, or file system name. If it is a
file system name, mkfs uses this name as the filesystem and uses the following parameters
from the applicable stanza in /etc/filesystems:

dev Device name.
cyl See the following -s flag.
skip See the following -s flag.
vol Volume ID.
bad List of bad blocks separated by commas.
size File system size.
boot Program to be installed in start up block.

Commands 487

mkfs

File System Size

You can specify the size of a new file system in the following way:

• On the command line
• In the prototype file
• In the /etc/filesystems entry for the given file system

If the size is not specified in any of these places, mkfs takes it from the devinfo structure
for the block device associated with the file system being generated. (See the ioctl system
call and the devinfo file in AIX Operating System Technical Reference.) The size provided
in the devinfo structure is the maximum size of the file system in any case. A size
specification on the command line overrides any defaults found in the devinfo structure or
in /etc/filesystems.

Prototype Files

To initialize the contents of a new file system in accordance with a prototype, specify the
name of a prototype file on the command line. The proto command can be used to
construct prototype files from existing file systems.

The prototype file contains tokens separated by spaces or new-line characters. The first
token is the name of a file to be copied onto block 0 as the bootstrap program. The second
token is a number specifying the size of the created file system. Typically it is the number
of blocks on the device, perhaps diminished by space for paging. The next token is the
number of i-nodes in the i-list. (mkfs rounds this to fill out the appropriate number of
blocks.) The next set of tokens contains the specifications for the root file. File
specifications consist of tokens giving the mode, the user name, the group name, and the
initial contents of the file. The syntax of the contents field depends on the mode.

The mode token for a file is a six-character string. The first character specifies the type of
the file. (The characters -, b, c, and d specify regular, block special, character special, and
directory files, respectively.) The second character must be either u or -. If u is used, the
set-user-ID mode is specified; if - is used the set-user-ID mode is not specified. The third
character must be either g or - for specifying the set-group-ID mode. The rest of the mode
is a three-digit octal number giving the owner, group, and other read, write, execute
permissions (see "chmod" on page 128).

Two decimal number tokens come after the mode. They specify the user and group names
of the owner of the file.

If the file is a regular file, the next token is a path name from which the contents and size
are copied.

If the file is a block or character special file, two decimal number tokens follow, which
give the major and minor device numbers.

488 Commands Reference

Flags

mkfs

If the file is a directory, mkfs makes the entries. (dot) and .. (dot dot) and then
recursively reads a list of names and file specifications for the entries in the directory.
The scan is ended with the token $ (dollar sign).

-bblocknum When present, specifies the number of blocks allocated to file i-node!
which is automatically created.

-ffilesystem Specifies the file system label for the new file system. This can be up to
six characters.

-pprogram Specifies the name of a program to be installed in block 0 of the new file
system. The default bootstrap program is /stand/boot.

-scyl:skip Specifies an interleaving of the free list. (Interleaving the free list can
improve the speed of disk I/O.) cyl is the number of blocks per cylinder,
and skip is the number of blocks to skip.

-vvolume Specifies the volume label for the new file system. This can be up to six
characters.

blocks[:inodes] A size specification where blocks is the number of 512-byte blocks in the
file system. When inodes is specified, it determines the number of i-nodes
on the system. If inodes is not specified, a number suitable for the size of
the file system is used. The number of i-nodes is rounded up so that the
i-node area occupies an integral number of blocks.

Examples

1. To create an empty file system on a diskette:

mkfs /dev/fdO
2. To specify volume and file system names for a new file system:

mkfs /dev/fdO -fWORKFS -vVOLOOl
This creates an empty file system on the diskette, giving it the volume serial VOLOOI
and file system name WORKFS.

Related Information

The following command: "fsck, dfsck" on page 333.

The ioctl system call and the devinfo, dir, fllesystems, and fs files in AIX Operating
System Technical Reference.

Commands 489

mknod

mknod

Purpose

Creates a special file.

Syntax

. rC ~)-major-minor \
mknod - devIce \ j---l

'-----p------'
OL805146

Description

The mknod command makes a directory entry and corresponding i-node for a special file.
The first parameter is the name of the entry device. Select a name that is descriptive of the
device.

The mknod command has two forms. In the first case, the second argument is b or c. b
indicates that the special file is a block-oriented device (disk, diskette, tape). c indicates
that it is a character-oriented device (other devices). The last two parameters are numbers
specifying the major device, which helps the operating system find the device driver code,
and the minor device, that is, the unit drive, or line number, which may be either decimal
or octal.

The assignment of major device numbers is specific to each system. Device numbers are
determined by examining the system source file conf.c.

Note: If you change the contents of conf.c to add a device driver, you must rebuild the
operating system. See the discussion of device drivers in AIX Operating System
Programming Tools and Interfaces and in A/X Operating System Technical Reference.

The second form of mknod is used to create FIFOs (named pipes). The p flag after device
indicates that you are creating a named pipe. See the A/X Operating System Technical
Reference for an explanation of FIFOs and named pipes.

Example

To create the special file for a new diskette drive:

mknod /dev/fd2 b 1 2

490 Commands Reference

mknod

This creates the special file /dev/fd2, which is a block special file with major device
number 1 and minor device number 2.

Related Information

The mknod file and device driver description in AIX Operating System Technical
Reference.

The discussion of device drivers in AIX Operating System Programming Tools and
Interfaces.

Commands 491

mm

mm, checkmm

Purpose

Displays or checks documents formatted with Memorandum Macros.

Syntax

mm -12
-c
-e
-E
-t
- T workstation

checkmm

OLS05039

Description

Using the nroff command and the Memorandum Macro text-formatting package (MM), the
mm command writes files to standard output. If you specify a - (minus) instead of any
files, mm reads standard input. Do not specify both file names and standard input on the
command line.

The mm command has flags to specify preprocessing by the tbl and/or eqn commands and
postprocessing by various work station oriented output filter. It generates the proper
pipelines and the required arguments for nroff and MM, depending on the flags selected,
creates the required pipelines.

The checkmm command is a program for checking the contents of the named files for
errors in the use of MM and some eqn and neqn constructions. The program skips all
directories, and if you do not specify a file, checkmm reads standard input.

Note: Use the -olist argument of nroff to specify ranges of pages to be output.
Note, however, that invoking mm with one or more of the -e, -t, and - minus
arguments together with nroff -olist may cause a harmless broken pi pe diagnostic
if the last page of the document is not specified in list.

The mm command calls nroff with the -h flag. With this flag, nroff assumes that
the work station has tabs set every eight character positions.

492 Commands Reference

/

Flags

If you use the -s flag of nroff (to stop between pages of output), use a linefeed
(rather than Enter or a new-line character) to restart the output. The -s flag of
nroff does not work with the -c flag of mm or if mm automatically calls the col
command.

If you provide inaccurate information to mm about the kind of work station its
output is to be printed on, you will get unsatisfactory results; however, if you are
redirecting output to a file, use the -T37 flag and then use the appropriate work
station filter when you actually print the file.

mm

Any flags on the command line not listed below are passed to nroff or to MM, as
appropriate. The flags can occur in any order, but they must come before file. To obtain a
list of mm flags, enter the command name with no arguments.

-c Invokes the col command. Note that col is invoked automatically by mm
unless workstation (the -T flag parameter) is one of the following:

• 300
0 300s
• 450
• 37
• 4000a
• 382
• 4014
• tek
• 1620
• X

-e Invokes the neqn command.

-E Invokes the -e flag of nroff.

-t Invokes the tbl command.

-Tworkstation Uses work station specification workstation. For a list of recognized

-12

values for workstation, enter:

help terml
By default, mm uses the value of the shell variable $TERM from the
environment as the value of workstation. If $TERM is not set mm uses lp.
If several work station types are specified, the last one listed takes effect.

Uses 12-pitch font. This may be used when $TERM is set to one of 300,
300s, 450, or 1620. (The pitch switch on the DASI 300 and 300s work
stations must be manually set to 12 if this flag is used.)

Commands 493

mm

Related Information

The following commands: "col" on page 140, "env" on page 298, "eqn, neqn, checkeq"
on page 300, "greek" on page 379, "mmt, checkmm" on page 495, "nroff" on page 525,
and "tbl" on page 739.

The profile file and the eqnchar, mm, and term miscellaneous facilities in AIX
Operating System Technical Reference.

The discussion of mm in Text Formatting Guide.

494 Commands Reference

mmt, checkmm

Purpose

Typesets documents, manual pages, view graphs, and slides.

Syntax

one of
mt
mmt
mant
mvt

Checkmm~
~

1 If no files are given, these commands will display their flags.

Description

mmt

OL805092

These commands are similar to the mm command, except they typeset their input via troff
as opposed to formatting it via nroff. The mvt, mt, and mant commands are links to
mmt. mmt uses the MM Macro Package (see mm in A/X Operating System Technical
Reference), mvt uses the macro package for view graphs and slides (see mv in A/X
Operating System Technical Reference), mant uses the manual page macros, and mt does
not use a macro package.

These commands have flags to specify preprocessing by tbl, CW, or eqn. mmt generates
the proper pipelines and the required arguments for troff and for the macro package used,
depending on the flags selected. These commands read standard input if you specify a -
(minus) instead of any file names.

The checkmm command can be used to check the input to mmt.

If the input contains a troff comment line consisting solely of the string I \ II X (single
quotation mark, backs lash, double quotation mark x), where x is any combination of the
three letters c, e, and t and where there is exactly one blank between the double quotation

Commands 495

mmt

Flags

mark and x, then the input will be processed through the appropriate combination of cw,
eqn, and tbl, respectively, regardless of the command-line arguments.

Note: Use the -olist argument of troff to specify ranges of pages to be output. Note,
however, that calling these commands with one or more of the -c, -e, -t, and - arguments
together with troff -olist may cause a harmless bra ken pi pe diagnostic if the last page of
the document is not specified in list.

Flags other than the ones listed below are passed to troff or to the macro package, as
appropriate. All flags must appear before the file names. If you do not provide any
arguments, these commands print a list of their flags.

-a Invokes the -a flag of troff.

-c

-e

-t

-T4014
-Ttek

Preprocesses the input files with cwo

Preprocesses the input files with eqn.

Preprocesses the input files with tbl.

Directs the output to a Tektronix 4014 work station via the tc command.

Related Information

The following commands: "env" on page 298, "eqn, neqn, checkeq" on page 300, "mm,
checkmm" on page 492, "tbl" on page 739, "tc" on page 742, and "troff' on page 526.

The profile file and the environ, mm, and mv miscellaneous facilities in AIX Operating
System Technical Reference.

496 Commands Reference

moo

moo

Purpose

Plays a number-guessing game.

Syntax

/usr/gamos/moo --I

01.805231

Description

The moo command picks a random four-digit decimal number with nonrepeating digits.
You guess four digits and score a "cow" with a correct digit in an incorrect position and a
"bull" with a correct digit in a correct position. The game continues until you guess the
number.

To quit the game, press INTERRUPT (Alt-Pause) or END OF FILE (Ctrl-D).

Commands 497

TNL SN20-9861 (26 June 1987) to SC23-0790-0
mount

mount

Purpose

Makes a file system available for use.

Syntax

mount
r---- -t string ______________ ---;

directory

I Description

OL805467

The mount command instructs the operating system to make a file system available for
use. In addition, you can use mount to build other file trees made up directory and file
mounts. In the case of file system mounts, mount mounts the specified device on the
specified directory and records its availability in /etc/mnttab. After mount has finished,
directory becomes the root of the newly mounted file system.

Any user can issue a mount directory directory or mount file file command if :

• He has search permission to the directory or file he wants to mount (directoryl or filel).
• He owns the directory or file that he wants to mount over (directory2 or file2).
• He has write permission to the parent directory of directory2 or file2.

Members of the system group can do any mount that a user can do plus any mount
described in the /etc/filesystems file (mount directory). Users operating as superuser can
issue any mount command. Unless you specify the -s flag, device and directory names are
restricted to strings of 100 characters or less.

The mount command without flags writes to standard output a list of all mounted file
systems, except those mounted with the -s flag, along with their location and whether they
are read-only. The environment variables NLLDATE and NLTIME control the
appearance of the modification date and time.

If you specify only a directory name, mount takes it to be the name of the dir~ctory or file
on which a file system, directory, or file is usually mounted (as defined in the
/etc/filesystems file). mount looks up the associated device, directory, or file and mounts

498 Commands Reference

Flags

TNL SN20-9861 (26 June 1987) to SC23-0790-0
mount

it. This is the most convenient way of using the mount command, as it does not require
you to remember what is normally mounted on a directory or file.

The /etc/filesystems file should include a stanza for each mountable file system,
directory, or file. This stanza should specify at least the name of the file system and either
the device on which it resides or the directory name. If the stanza includes a mount
attribute, the mount command uses the associated values. It recognizes five values in the
mount attribute: true, false, removable, inherit and read-only (see the filesystems file
in AIX Operating System Technical Reference for a description of these mount attributes.)
The command mount all causes all file systems with the attribute mount = true to be
mounted in their normal places. This command is typically used during system
initialization.

If you are operating with superuser authority, you can mount a file system arbitrarily by
naming both a device and a directory on the command line. mount takes device to be the
name of the block device special file and directory to be the directory on which it should
moun t the file system.

The mount and umount programs maintain the mount table in /etc/mnttab as
accurately as possible. However, some events can invalidate this mount table. (The
system itself has an internal mount table that it maintains independently.) Several
programs and library routines use /etc/mnttab to determine the fully qualified name of
the current directory. If /etc/mnttab does not properly reflect the state of all mounted
file systems, these programs may stop working.

Using the -8 flag, deleting /etc/mnttab, or truncating it after file systems have been
mounted will almost surely invalidate its contents. When the system is restarted after a
crash, an old (possibly invalid) /etc/mnttab may still be present. If you suspect that your
/etc/mnttab is invalid, you can use mount to check it and clean it up as follows:

1. Run a simple mount without any arguments to weed out any entries that describe file
systems that are not actually mounted.

2. Enter mount all to remount all of the usual file systems. While mount cannot
remount file systems that are already mounted, it notices that file systems are not
listed as mounted and adds the appropriate entries to /etc/mnttab.

-i

-n node

-p

Requests an inherited mount. (For information on inherited mounts, see
Managing the AIX Operating System.)

Specifies the node that holds the directory to be mounted. If you use -n
node without a directory, mount displays a list of all mounts issued at
node.

Mounts a file system as a removable file system: While there are open
files, a removably mounted file system behaves the same as a normally
mounted file system. However, when there are not open files (and no

Commands 499

TNL SN20-9861 (26 June 1987) to SC23-0790-0
mount

-r

-s

process has a current directory on the file system), all of the file system's
disk buffers are written to the medium, and the operating system "forgets"
the structure of the file system. This allows you to remove and reinsert
media such as diskettes without issuing a mount or umount command
each time. Use this flag only for diskette mounts.

Mounts a file system as a read-only file system, regardless of the
specification in /etc/filesystems.

Does not record the availability of the new file system in /etc/mnttab.
This allows a file systems to be mounted on a read-only root where
/etc/mnttab would not be writable. As several programs and library
routines depend on /etc/mnttab, use this flag with caution.

-t string Mounts all stanzas in /etc/filesystems that have a type value equal to
string and are not mounted.

Examples

1. To list the file systems that are mounted:

mount

For each file system, this lists the device name, the name under which it is mounted,
the access permitted (read only or read/write), and the time it was mounted.

2. To mount a diskette:

mount /dev/fdO /disketteO

This mounts a diskette (/ dey /fdO) onto the directory / di s ketteO. A file system must
already exist on the diskette, and the directory /di s ketteO must already exist. (See
"mkfs" on page 487 to create a file system, or "mkdir" on page 486 to create a
directory.)

To access a file on the diskette, use a path name that begins with / dis ket teO. For
example, to access prog. c use / di s ketteO/prog. c.

Warning: Be sure that the current directory is not still on the diskette
when you remove it from the drive, or you may lose some of your data.

3. To mount a write-protected diskette:

mount -r /dev/fdO /disketteO

This mounts the diskette on /disketteO as a read-only, file system. This tells the
operating system not to update file access times, which would cause errors with a
write-protected diskette.

4. To mount a default file system:

500 Commands Reference

Files

mount /disketteO

TNL SN20-9861 (26 June 1987) to SC23-0790-0
mount

This mounts the device that is usually mounted on /disketteO, which is determined by
information in the file /ete/filesystems.

5. To mount all default file systems:

mount all
This mounts all standard file systems in /ete/filesystems marked mount=true.

6. To mount a remote directory:

mount -n nodeA /u/tom /u/tom
This mounts the remote nodeA directory /u/tom onto the local node directory /u/tom.

7. To mount a file or directory from the /ete.filesystem file:

mount -t remote
This mounts all files or directories in the /ete/filesystems file that have a stanza that
contains the attribute type=remote.

/etc/mnttab
/etc/filesystems

Record of mounted file systems.
Descriptions of mountable file systems.

Related Information

The following command: "umount" on page 786.

The mount, mntetl, umount, and vmount system calls and the filesystems and mnttab
files in AIX Operating System Technical Reference.

"Overview of International Character Support" in Managing the AIX Operating System.

Commands 501

mv

mv

Purpose

Moves files.

Syntax

o L8050 10

Description

Warning: The mv command may overwrite many files if you do not
ensure that the file path names you are specifying do not already exist.
The mv (move) command moves files from one directory to another, or it renames a file or
directory. If you move a file to a new directory, it retains the base file name. When you
move a file, all links to other files remain intact, except when you move it to a different
file system.

You can only rename a directory with mv; you cannot move it. Both directory and
newname must have the same parent. All files in directory are moved to a newly-created
directory newname under the same file names.

When you use mv to rename a file, then newname can specify either a new file name or a
new directory path name. If moving the file would overwrite an existing write-protected
file and if standard input is a workstation, mv displays the permission code of the file to be
overwritten and reads one line from standard input. If the line begins with y, the move
takes place and the file is overwritten. If not, mv does nothing with the file.

Note: If the file is on different file system than directory, mv must copy the file to the
new file system and delete the original. In this case, the owner name becomes that of the
user, and all links to other files are lost.

502 Commands Reference

TNL SN20-9861 (26 June 1987) to SC23-0790-0
mv

Examples

1. To rename a file:

mv appendix apndx.a

This renames append; x to apndx. a. If a file named apndx. a already exists, its old
contents are replaced with those of appendi x.

2. To rename a directory:

mv book manual

This renames boo k to man u a 1. If a directory named man u a 1 already exists, then an
error message is displayed.

3. To move a file to another directory and give it a new name:

mv intro manual/chapl

This moves; ntro to manual /chapl. The name i ntro is removed from the current
directory, and the same file appears as ch ap 1 in the directory manua 1.

4. To move a file to another directory, keeping the same name:

mv chap3 manual

This moves chap3 to manual /chap3.

Note the difference: Examples 1 and 3 name two files, Example 2 names two existing
directories, and Example 4 names a file and a directory.

5. To move several files into another directory:

mv chap4 jim/chap5 /u/manual

This moves chap4 to /u/manual /chap4 and jim/chapS to /u/manual /chapS.

6. To use mv with pattern-matching characters:

mv manual/*

This moves all files in the directory manua 1 into the current directory (.), giving them
the same names they had in manua 1. This also empties manua 1. Note that you must
type a space between the star and the period.

Related Information

The following commands: "chmod" on page 128, "In" on page 450, and "rm" on page 601.

The rename system call in AIX Operating System Technical Reference.

Commands 503

TNL SN20-9861 (26 June 1987) to SC23-0790-0
mvdir

mvdir

Purpose

Moves (renames) a directory.

Syntax

mvdir - directory1 - directory2 --l

Description

0L805137

The mvdir command renames directories within a file system. To use mvdir, you must
have write permission to the parent directories of directoryl and directory2. The directoryl
parameter must name an existing directory. If directory2 does not exist, directoryl is
moved to directory2. If directory2 exists, directoryl becomes a subdirectory of directory2.
Neither directory can be a subset of the other.

Note: directoryl and directory2 may be the names of files. If directory2 is a file name, it is
replaced with directoryl.

Example

To rename or move a directory to another location:

mvdir appendixes manual

Ifmanual does not exist, then this renames the directory appendixes to manual. You
can also rename a directory with the mv command.

If a directory named manua 1 already exists, this moves appendi xes and its contents to
manua 1/ appendi xes. In other words, appendi xes becomes a subdirectory of manua 1.

Related Information

The following commands: "mkdir" on page 486 and "mv" on page 502.

The rename system call in A/X Operating System Technical Reference.

504 Commands Reference

ncheck

ncheck

Purpose

Generates path names from i-numbers.

Syntax

nchecl<

-j

OLB05196

Description

Flags

The ncheck command without any flags writes to standard output the path name and
i-number list for all files in filesystem.

If you specify an invalid file system, the?? in the name stands for the parent of a file
system that does not have a parent. Path names beginning with ... (dot dot dot) indicate
a loop.

-a

-i inumber

-s

Lists includes the file names. (dot) and .. (dot dot).

Lists only the file specified by inumber.

Lists only special files and files with set-user-ID mode.

Examples

1. To list the i-number and path name of each file in the default file systems:

ncheck

Commands 505

ncheck

2. To list all the files in a specified file system:

ncheck -a I
This lists the i-number and path name of each file in the root file system (/), including
the. (dot) and .. (dot-dot) entries in each directory (- a).

3. To list the name of a file when you know its i-number:

ncheck -i 690 357 280 Idi5ketteO
This lists the i-number and path name for every file in the file system /disketteO with
i-numbers of 690, 357, or 280. If a file has more than one link, all of its path names
are listed.

4. To list special and set-user-ID files:

ncheck -5 I
This lists the i-number and path name for every file in the root file system that is a
special file (also called a device file) or that has set-user-ID mode enabled.

Related Information

The following commands: "fsck, dfsck" on page 333 and "sort" on page 672.

506 Commands Reference

Indtable

I Purpose

TNL SN20-9861 (26 June 1987) to SC23-0790-0
ndtable

Accesses the Distributed Services Node Table.

I Syntax

ndtable ----l
OL805470

i Description

The ndtable command lets you build, examine, or change the Distributed Services
Network Node Table. Only members of the system group or users operating with superuser
authority can use ndtable to change the state of the Distributed Services network node
table (see "su" on page 724). Other users can use ndtable to browse the Network Node
Table.

I Related Information

"Getting Started With Distributed Services Configuration Menus" in Managing the AIX
Operating System.

Commands 506.1

TNL SN20-9861 (26 June 1987) to SC23-0790-0
ndtable

506.2 Commands Reference

newform

newform

Purpose

Changes the format of a text file.

Syntax

newform

1 Do not put a blank between these items.

OL805197

Description

The newform command takes lines from file (standard input by default), and writes the
formatted lines to standard output. Lines are reformatted in accordance with command
line flags in effect.

Except for -8, command line flags can appear in any order, can be repeated, and can be
mixed with the file parameter. Command line flags are processed in the order specified. In
other words, flag sequences like -e15 -160 yield results different from -160 -e15. Flags
are applied to all files on the command line.

An exit value of 0 indicates normal execution, a 1 indicates an error.

Note: The newform command normally only keeps track of physical characters;
however, for the -i and -0 flags, newform keeps track of backspaces in order to line
up tabs in the appropriate logical columns.

The newform command does not prompt you if a tabspec is to be read from the
standard input (by use of -i-- or -0 --).

If the -f flag is used and the last -0 flag specified was -0-- and was preceded by
either a -0-- or a -i--, the tab specification format line will be incorrect.

Commands 507

newform

Flags

-a[num]

-b[num]

-c[char]

-e[num]

-f

-i[tabspec]

-I[num]

-0 [tabspec]

-p[num]

-s

Adds num characters to the end of the line when the line length is less than
the effective line length (see the -c and -p flags in this section).

Truncates num characters from the beginning of the line when the line length
is greater than the effective line length (see -Inum). The default action
truncates the number of characters necessary to obtain the effective line
length. If you specify -b with no num, the default takes effect. This flag can
be used to delete the sequence numbers from a COBOL program as follows:

newform -11-b7 file-name
The -11 must be used to set the effective line length shorter than any existing
line in the file so that the -b flag is activated.

Changes the prefix/add character to char. Default character for char is a
space.

Same as -bnum except that characters are truncated from the end of the line.

Writes the tab specification format line to standard output before any other
lines are written. The tab specification format line displayed corresponds to
the format specified in the last -0 flag. If no -0 flag is specified, the line
displayed contains the default specification of -8.

Replaces all tabs in the input with the number of spaces specified by tabspec.
tabspec recognizes all tab specification forms described in "tabs" on page 729.
If you specify a -- (minus minus) for the value of tabspec, newform assumes
that the tab specification can be found in the first line read from standard
input (see fspec in AIX Operating System Technical Reference). The default
tabspec is -8. A tabspec of -0 expects no tabs; if any are found, they are
treated as -1.

Sets the effective line length to num characters. If num is not entered, -I
defaults to 72. The default line length without the -I flag is 80 characters.
Note that tabs and backspaces are considered to be one character (use -i to
expandtabstospace~.

Replaces spaces in the input with a tab in the output, according to the tab
specifications given. The default tabspec is -8. A tabspec of -0 means that no
spaces are converted to tabs on output.

Prefixes num characters (see -cchar) to the beginning of a line when the line
length is less than the effective line length. The default action is to prefix the
number of characters that are necessary to obtain the effective line length.

Removes leading characters on each line up to the first tab and places up to
eight of the removed characters at the end of the line. If more than eight
characters (not counting the first tab) are removed, the eighth character is

508 Commands Reference

newform

replaced by an * (asterisk) and any characters to the right of it are discarded.
The first tab is always discarded.

The removed characters are saved internally until all other flags specified are
applied to that line. The characters are then added at the end of the
processed line.

For example, to convert a file with leading digits, one or more tabs, and text
on each line, to a file beginning with the text, all tabs after the first expanded
to spaces, padded with spaces out to column 72 (or truncated to column 72),
and the leading digits placed starting at column 73, the command would be as
follows:

newform -5 -i -1 -a -e fi 1 e-name
The newform command displays an error message and stops if this flag is
used on a file without a tab on each line.

Related Information

The following commands: "tabs" on page 729 and "csplit" on page 202.

The fspec file in AIX Operating System Technical Reference.

Commands 509

newgrp

newgrp

Purpose

Changes your primary group identification.

Syntax

newgrp ----.1\._. ~
~-J\..groupr

OL805198

Description

Flag

The newgrp command changes your primary group identification to group. newgrp
recognizes only group names, not group ID numbers. Without an argument, it changes
your primary group to the one specified in the /ete/passwd file.

If the group has a password and you do not or if the group has a password and you are not
listed in the fete/group file as a member, then newgrp asks you for the group password.
(The use of group passwords is not encouraged because, by their very nature, they
encourage poor security practices.)

Note: Any active user-generated shell will be terminated when newgrp is used.

Changes the environment to the login environment of the new group.

Examples

1. To change the primary group ID of the current shell session to admin:

newgrp admin
2. To change the primary group ID back to your original login group:

newgrp

510 Commands Reference

Files

fete/group
/ete/passwd

Related Information

The following commands: "login" on page 453 and "users" on page 802.

newgrp

The group and passwd files in Installing and Customizing the AIX Operating System.

Commands 511

news

news

Purpose

Writes system news items to standard output.

Syntax

news

-s
OLB05199

Description

Flags

The news command keeps you informed of news concerning the system. Each news item is
contained in a separate file in directory /usr/news. Anyone having read/write permission
to this directory can create a news file.

If you run the news command without any flags, it displays every current file in
/usr/news, showing the most recent first. Or you can specify the items you want
displayed.

Each file is preceded by an appropriate header. To avoid reporting old news, news stores a
currency time. news considers your currency time to be the modification time of the file
named $HOME/.news _time. Each time you read the news, the modification time of this
file changes to that of the reading. Only news item files posted after this time are
considered current.

Pressing INTERRUPT (Alt-Pause) during the display of a news item stops the display of
that item and starts the next. Pressing INTERRUPT (Alt-Pause) again ends news.

Most users run news each time they log in by including the line:

news -n
in their $HOME/.profile file or in the system's fete/profile.

-a Displays all news items, regardless of the currency time. The currency time does not
change.

512 Commands Reference

news

-n Reports the names of current news items without displaying their contents. The
currency time does not change.

-s Reports the number of current news items without displaying their names or contents.
The currency time does not change.

Examples

Files

1. To display the items that have been posted since you last read the news:

news

2. To display all the news items:

news -a pg

This displays all the news items a page at a time (I pg) whether or not you have read
them yet.

3. To list the names of the news items that you have not read yet:

news -n

Each name is a file in the directory /usr /news.

4. To display specific news items:

news newusers services

This displays news about newusers and servi ces, which are names listed by
news -no

5. To display the number of news items that you have not read yet:

news -s

6. To post news for everyone to read:

cp schedule /usr/news

This copies the file schedule into the system news directory, /usr/new5, to create the
file /usr/news/schedul e. To do this you must have write permission for
/usr/news.

/etc/profile
/usr/news/*
$HOME/.news_time

Commands 513

news

Related Information

The following command: "pg" on page 553.

The profile file and environ special facility in AIX Operating System Technical Reference.

514 Commands Reference

nice

nice

Purpose

Runs a command at a different priority.

Syntax

-c-10=>-nice 1 cmdstring ---l

- number

1 Maximum increment is 19.
OLS05200

Description

The nice command lets you run the specified command at a lower priority. The value of
number can range from 1 to 19, with 19 being the lowest priority. The default value of
number is 10.

If you have superuser authority, you can run commands at a higher priority by specifying
number as a negative number, such as --10.

Examples

1. To run a command at low priority:

nice cc -c *.c

This runs the command cc -c *. c at low priority. Note that this does not run the
command in the background. Your work station is not available for doing other
things.

2. To run a low priority command in the background:

nice cc -c *.c &
This runs the command cc -c *. C at low priority in the background. Your work
station is free so that you can run other commands while cc is running. See page 638
for details about starting background processes with &.

Commands 515

nice

3. To specify a very low priority:

nice -15 cc -c *.c &
This runs cc in the background at a priority that is even lower than the default
priority set by nice.

4. To specify a very high priority:

nice --10 wall «end
System shutdown in 2 minutes!
end

This runs wall at a higher priority than all user processes. Doing this slows down
everything else running on the system. If you do not have superuser authority when
you run this command, then the wall command runs at the normal priority.

The «end and end define a "Here Document," which uses the text entered before the
end line as standard input for the command. For more details, see "Inline Input
Documents" on page 650.

Related Information

The following command: "nohup" on page 523.

The nice system call in AIX Operating System Technical Reference.

516 Commands Reference

/'

nl

TNL SN20-9861 (26 June 1987) to SC23-0790-0
nl

Purpose

Numbers lines in a file.

Syntax

,..----- -bt -hn -fn ----""

nl

-(-12)
one :f -I num

t
n
ppattern

~
-stay-c:rb
-s

file
-ssep

Description

-v1 -w6
-nrn -dOl\; II
-i 1

-p
-dxx

-wnum
-n format

OL805386

The nl command reads files (standard input by default), numbers the lines in the input, and
writes the numbered lines to standard output. In the output, nl numbers the lines on the
left according to the flags you specify on the command line.

The input test must be written in logical pages. Each logical page has a header, a body,
and a footer section (you can have empty sections). Unless you use the -p flag, nl resets
the line numbers at the start of each logical page. You can set line numbering flags
independently for the header, body, and footer sections (for example, no numbering of
header and footer lines while numbering text lines only in the body).

Commands 517

nl

Flags

Signal the start of logical page sections with lines in file that contain nothing but the
following delimiter characters:

Line contents Start of

Header

Body

Footer

\:\:\:

\:\:
\:
You can name only one file on the command line. You can list the flags and the file name
in any order.

All the parameters are set by default. Use the following flags to change these default
settings. Except for the -s flag, enter a flag without a parameter to see its default value.

-htype Chooses which body section lines to number. The recognized types are:

a Numbers all lines.
t Does not number blank lines (default).
n Does not number any lines.
ppattern Numbers only those lines containing the specified pattern.

-dxx Uses xx as the delimiters for the start of a logical page section. The default
characters are \: (backslash followed by a colon). You may specify two ASCII
characters, two one-byte extended characters, or one extended extended
character. If you enter only one one-byte character after -d, the second
character remains the default (colon). If you want to use a backslash as a
delimiter, enter two backslashes (\ \).

-ftype Chooses which logical page footer lines to number. The types recognized are
the same as in -htype. The default type is n (no lines numbered).

-htype Chooses which logical page header lines to number. The types recognized are
the same as in -htype. The default type is n (no lines numbered).

-inum Increments logical page line numbers by num. The default value of num is 1.

-Inum Uses num as the number of blank lines to count as one. For example, -13 will
only number the third adjacent blank. The default value of num is 2. This flag
can only be used in documents where the -ha flag is used.

-nformat Uses format as the line numbering format. Recognized formats are:

In Left justified, leading zeroes suppressed.
rn Right justified, leading zeroes suppressed (default).
rz Right justified, leading zeroes kept.

-p Does not restart numbering at logical page delimiters.

518 Commands Reference

nl

-s[sep] Separates the text from its line number by the sep character. The default value
of sep is a tab character. If you enter -8 without a parameter, there is no
separation between the line number and its text.

-vnum Sets the initial logical page line number to num, (1 by default).

-wnum Uses num as the number of characters in the line number. The default value of
num is 6.

Examples

1. To number only the nonblank lines:

nl chapl

This displays a numbered listing of chapl, numbering only the nonblank lines in the
body sections. If ch ap 1 contains no \:\:\ + :, \:\ + :, or \: delimiters, then the entire file
is considered the body.

2. To number all lines:

nl -ba chapl
This numbers all the lines in the body sections, including blank lines. This form of the
nl command is adequate for most uses.

3. To specify a different line number format:

nl -i 10 -nrz -5:: -vl0 -w4 chapl

This numbers the lines of chapl starting with ten (-vl0) and counting by tens (-i 10).
It displays four digits for each number (-w4), including leading zeroes (-nrz). The line
numbers are separated from the text by two colons (- 5 : :).

For example, if ch ap 1 contains the text:

A not-50-important
note to remember:
You can't kill time
without injuring eternity.

then the numbered listing is:

0010::A not-50-important
0020::note to remember:
0030::You can't kill time
0040::without injuring eternity.

Note that the blank line was not numbered. To do this, use the -ba flag as shown in
Example 2.

Commands 519

nl

Related Information

The following command: "pr" on page 561.

The "Overview of International Character Support" in Managing the AIX Operating
System.

520 Commands Reference

nm

nm

Purpose

Displays the symbol table of an object file.

Syntax

nm~ ~file=r -T -e one of -0

-u -n -x

OL805202

Description

The nm command writes the symbol table of each specified object file to standard output.
file can be a single relocatable or absolute common object file or an archive library of
relocatable or absolute common object files. nm displays the following information for
each symbol:

Name

Value

Class

Type

Size

Line

Section

The name of the symbol.

Its value expressed as an offset or an address depending on its storage class.

Its storage class.

Its type and derived type. If the symbol refers to a structure or a union, the
structure or union tag follows the type declaration. If the symbol is an array,
the array dimensions follow the type. Note that you must have compiled the
object file with cc -g for this information to appear.

Its size in bytes, if available. Note that you must have compiled the object file
with cc -g for this information to appear.

The source line number at which it is defined, if available. Note that you
must have compiled the object file with cc -g for this information to appear.

For static and external storage classes, the object file section containing the
symbol.

Commands 521

nm

Flag

Files

-e Displays only static and external symbols.

-h Does not display output header data.

-n Sorts external symbols by name before displaying them. Use this flag only in
conjunction with the -e flag.

-0 Displays a symbol's value and size as an octal rather than a decimal number.

-T Truncates every name that would otherwise overflow its column, making the last
character displayed in the name an asterisk. By default, nm displays the entire name
of the symbols listed, and a name that is longer than the width of the column set aside
for it causes every column after the name to be misaligned.

-u Displays only undefined symbols.

-v Sorts external symbols by value before displaying them. Use this flag only in
conjunction with the -e flag.

-x Displays a symbol's value and size as a hexadecimal rather than a decimal number.

a.out Default input file

Related Information

The following commands: "ar" on page 58, "as" on pa,ge 64, "backup" on page 76, "cc"
on page 112, "Id" on page 427, "size" on page 665, and "strip" on page 716.

The a.out and ar files in AIX Operating System Technical Reference.

522 Commands Reference

nohup

nohup

Purpose

Runs a command without hangups and quits.

Syntax

nohup -- command ~
OL805203

Description

The nohup command runs command, ignoring all hangups and QUIT signals. Use this
command to run programs in the background after you log out of the system.

Unless redirected, the output goes to the file nohup.out. If nohup.out is not writable in
the current directory, the output is redirected to $HOME/nohup.out

Examples

1. To leave a command running after you log out:

nohup find / -print &
Shortly after you enter this, the following is displayed:

670
$ Sending output to nohup.out
The number will probably be different when you use this command. It is the ID of the
background process started by & (ampersand). (See page 638 about starting background
processes with &.) The $ (dollar sign) is your shell prompt. Sendi ng output .
is a message from nohup telling you that it is storing the output from the. fi nd

command in the file nohup. out.

You can log out after you see these messages, even if the fi nd command has not
finished yet.

2. To do the same, but redirecting the standard output to a different file:

nohup find / -print >filenames &

Commands 523

nohup

This runs the fi nd command and stores its output in a file named fi 1 enames. Now
only the process ID and your prompt are displayed:

677
$

Wait for a second or two before logging out. The nohup command takes a moment to
start the command you specified. If you log out too quickly, your command may not
run at all. Once your command has started, logging out will not affect it.

Related Information

The following command: "nice" on page 515.

The signal system call in A/X Operating System Technical Reference.

524 Commands Reference

nroff

nroff

Purpose

Formats text for printing devices.

Syntax

- T37 -s1

nroft
-unum
-snum -q
-raN -z
-mname -e
-Tname -h

OL805204

traff - -b---l

-s1

traff
-s'lum -i
-rON -0
-pflum -z
-f -w
-mname -q

OL805368

Description

A complete list of nroff and troff requests, escape sequences and number registers begins
on page 528. See Text Formatting Guide for a complete list of the naming conventions for
the non-ASCII special characters and for information on writing text suitable for
processing by troff or nroff.

Commands 525

nroff

nroff
The nroff command reads files (standard input by default), formats the text in its input for
printing, and writes to standard output. nroff formats text for line printers and other
printing devices, excluding phototypesetters. An input file name of - (minus) indicates
standard input.

troff
The troff command formats text in the input files (or standard input by default) for a
phototypesetter, and writes its output to standard output. It is similar to the nroff
command. An input file name of - (minus) indicates standard input.

nroff and troff Flags:

-i Reads standard input after the input files.

-mname Adds /usr/lib/tmac/tmac.name to the beginning of the list of input file names.

-nnum Numbers the first printed page num. Do not use this flag with -oUst.

-oUst Prints only pages with page numbers appearing in list which consist of a

-q

-raN

-snum

-z

comma-separated list of page numbers and ranges. A range of A-B means print
pages A through B; an initial -A means print from the beginning to page A; and
a final A- means print from page A to the end.

Note: When this flag is used in a pipeline (for example, with CW, eqn, or tbl) it
may cause a broken pipe diagnostic if the last page in the document is not
specified in list.

Invokes the simultaneous input/output mode of the .rd request. nroff echoes the
.rd prompt, but does not echo your input. When you enter two consecutive
new-line characters, normal output is resumed.

Sets register a to N. a must have a one-character name. This is useful for
automatic numbering of sections, paragraphs, lines, and so forth.

Stops every num pages (the default is 1). nroff or troff will halt every num
pages to allow paper loading or changing and will resume upon receipt of a
line-feed or new-line character. This flag does not work in pipelines. When
nroff halts between pages, an ASCII BEL character is sent to the printing
device.

Suppresses the formatted output. Prints only messages generated by . tm (work
station message) requests.

526 Commands Reference

nroff

nrott Flags:

-e Produces equally spaced words in adjusted lines, using the full resolution of the
printing device.

-h Uses tab characters during horizontal spacing. Tab settings are assumed to be
every eight spaces.

-Tname Prepares the output for the specified printing device. Known names are:

37
tn300
300s
300
450
lp
382
4000A
832
X
2631

TELETYPE Model 37 work station (default)
GE TermiNet 300 or any work station without half-line capability
DASI300s
DASI300
DASI450
Any ASCII line printer
DCT-382
Trendata 4000A
Anderson J aco bson 832
any EBCDIC printer
Hewlett Packard 2631 line printer. Use a name of 2631-c to get
compressed print. Use 2631-e to get expanded print.

-u[num] Sets the number of character overstrikes for boldface to num or to zero if num is
not specified.

trott Flags:

-a Sends a printable ASCII approximation of the output to standard output.

-b Reports whether the phototypsetter is busy or available. No text processing is
done.

-f Does not feed out paper and stop the phototypesetter at the end of the run.

-pnum Prints all characters in the point size specified by num. Smaller point sizes may
reduce the printing time.

-t Directs output without modification to standard output instead of the
phototypsetter.

-w Waits until phototypesetter is available if it is currently busy.

Commands 527

nroll

nroll and troll Requests

Request Form Function -- Font and Character Size Control

. ps ± N Change point size by N points. Also, for troff only, \s ± N .

. ssN Space-character size set to N/36 em (troff) only .

. cs F N M Constant character space (width) mode (fontF) (troff only) .

.bdFN Embolden font F by N units (troff only).

. bd SF N Embolden Special Font when current font is F (troff only) .

. ft F Change to font F .

. fpNF Mount font F on position N (1-4) .

Request Form Function -- Page Control

. pI ± N Change page length by N .

. bp ± N Eject current page, next page number is N .

. pnN Next page number is N .

. po ±N Page offset = N .

. neN Need N vertical space .

. mkR Mark current vertical place in register R .

. rt ±N Return (upward only) to marked vertical place .

Request Form Function -- Text Filling, Adjusting, and Centering

.br Break.

. fi Fill subsequent output lines .

. nf No filling or adjusting of output lines .

. ad [c] Adjust output lines with mode c .

. na Do not adjust output lines .

. ceN Center the following N lines .

528 Commands Reference

nroff

Request Form Function -- Vertical Spacing

. vs N Set vertical base-line spacing to N .

.Is N Output N-! base-line spaces after each text output line .

. spN Space vertical distance N in either direction .

. svN Save vertical distance N .

. os Output saved vertical space .

. ns Turn no-space mode on .

.rs Restore spacing, turn no-space mode off.

Request Form Function -- Line Length and Indenting

. Ii ±N Change line length by N .

. in ±N Change indenting by N .

. ti ±N Change the indent on the next line by N .

Request Form Function -- Macros, Strings, Diversion, and Position Traps

. de xx yy Define or redefine macro xx; end at call of yy .

. am xxyy Append to a macro .

. ds xx string Define a string xx containing string .

. as xx string Append string to string xx .

. rmxx Remove request, macro, or string named xx .

. rn xx yy Rename request, macro, or string xx to yy .

. di xx Divert output to macro xx .

.da xx Divert and append to xx.

. wh Nxx Set location trap; negative is with respect to the end of the page .

. ch xx N Change trap location .

. dt N xx Set a diversion trap .

. it N xx Set an input line trap .

. emxx End macro is xx .

Commands 529

nroff

Request Form Function -- Number Registers

.nr R ±N M Define and set number register R;auto-increment by M.

. afR c Assign format to register R (c = 1, i, I, a, A) .

. rrR Remove register R .

Request Form Function -- Tabs, Leaders, and Fields

. ta Nt ... Tab settings; left type, unless t=R (right) or C (centered) .

. tc c Tab repetition character .

.Ic c Leader repetition character .

. fc a b Set field delimiter a and pad character b .

Request Form Function -- Input/Output Conventions
and Character Translations

. ec c Set escape character .

. eo Turn off escape character mechanism .

. lg N Ligature on if N> o .

. ulN Underline in nroff or italicize in troff the next N input lines .

. cuN Continuous underline in nroff. Acts like .ul in troff .

. ufF Underline font set to F (to be switched to by .ul) .

. cc c Set control character to c .

. c2 c Set no-break control character to c .

.tr abcd ... Translates a to b, and so on, on output.

Request Form Function -- Hyphenation

. nh No hyphenation .

. hyH Hyphenate; N = mode .

.hc c Hyphenation indicator character c

.wc word ... Exception words.

530 Commands Reference

nroff

Request Form Function -- Three Part Titles

. tl ' left' center' right' Three part title.

. pc c Page number character .

.It ±N Length of title .

Request Form Function -- Output Line Numbering

.nm ±N M 81 Number mode on or off, set parameters.

. nmN Do not number next N lines .

Request Form Function -- Conditional Acceptance of Input

.if c.anything If condition c is true, accept anything as input. For multiple
lines, use \ {anything\} .

.if !c anything If condition c is false, accept anything as input .

. if N anything If expression N> 0, accept anything as input.

.if! N anything If expression N ~ 0, accept anything as input.

.if I string 11 string2 I anything If string1 is identical to string2, accept anything as input.

.if !'string1'string2.' anything If string 1 is not identical to string2, accept anything as input.

. ie c anything If part of if-else; can take all forms of if above .

.el anything Else part of if-else.

Request Form Function -- Environment Switching

.evN Environment switched (push down).

Request Form Function -- Insertions from Standard Input

.rdprompt Read insertion.

. ex Exit from nroff or troff .

Commands 531

nroff

Request Form Function -- Input/Output File Switching

.so file Switch source file (push down) .

. nx file Next file.

. piprogram Pipe output to program (nroff only) .

Request Form Function -- Miscellaneous

. mccN Set margin character c and separation N .

. tm string Print string on standard error output .

. ig yy Ignore untill call of yy .

. pm t Print macro names and sizes; if t is present, print only the total of sizes .

• £1 Flush output buffer .

.ab [text] Prints text on standard error output and stops output. User abort is printed
if no text is included.

! cmdparms Runs the AIX command cmd and interpolates at that point. The standard
input for cmd is closed.

Escape Sequences for Characters, Indicators, and Functions

Escape
Sequence Meaning

\\ Prevents or delays interpretation of \.

\e Printable version of the current escape character.

\'. Acute accent; equivalent to \(aa.

\'. Grave accent; equivalent to \(ga.

\- Minus sign in the current font.

\. Dot.

\(space) Unpaddable space-size character.

\0 Digit width space.

\1 1/6 em narrow space character (zero width in nroff).

532 Commands Reference

nroff

Escape
Sequence Meaning

\" 1/12 em half-narrow space character (zero width in nroff).

\& Non-printing, zero-width character.

\! Transparent line indicator.

\$N Interpolate argument 1 ~ N ~ 9.

\% Default optional hyphenation character.

\(xx Character named xx.

*x, *(xx Interpolate string x or xx.

\a Non-interpreted leader character.

\b'abc . .. Bracket building function.

\c Interrupt text processing (continue word across input line break).

\d Forward (down) 1/2 em vertical motion (1/2 line in nroff).

\fx, \f(xx, \fN Change to font N named x or xx, or font position N.

\gx, \g(xx Return the format of register x or xx. Return nothing if the register has not
yet been referenced.

\h'N' Local horizontal motion; move right N (negative left).

\jx, \jxx Mark in register x or xx the current horizontal position on the output line.

\kx Mark horizontal input place in register x.

\l'N[c]' Horizontal line drawing function.

\L'N[c]' Vertical line drawing function.

\nx, \(xx Interpolate number register x or xx.

\o'abc . ..
,

Overstrike characters a, b, c,
\p Break and spread output line.

\r Reverse 1 em vertical motion (reverse line in nroff).

\sN, \s±N Point-size change function.

\t Non-interpreted horizontal tab.

\u Reverse (up) 1/2 em vertical motion (1/2 line in nroff).

\v'N' Local vertical motion; move down N (negative up).

\w'string' Interpolate width of string.

Commands 533

nroff

Escape
Sequence Meaning

\x'N' Extra line-space function (negative before, positive after).

\zc Print c with zero width without spacing.

\{ Begin conditional input.

\} End conditional input.

\(new line) Concealed new line.

\X X, any character not listed above.

Predefined General Number Registers

Register
Name Description
% Current page number.

ct Character width type (set by width function).

dl Maximum width of last completed diversion.

dn Height (vertical size) of last completed diversion.

dw Current day of the week (1 = Sunday ... 7 = Saturday).

dy Current day of the month (1-31).

hp Current horizontal place on the input line.

In Output line number.

mo Current month (1-12).

nl Vertical position of last printed text base-line.

sb Depth of string below base line (generated by width function).

st Height of string above base line (generated by width function).

yr Last two digits of current year.

534 Commands Reference

nroff

Predefined Read-Only Number Registers

Register
Name Meaning

$ Number of arguments available at the current macro level.

. A Set to 1 in troff if the -a flag is used; always 1 in nroff .

. F The name of the current input file .

.H Available horizontal resolution in basic units.

. L Contains the current line spacing parameter .

. P Contains the value 1 if the current page is being printed, 0 otherwise .

. R The number of columns available .

. T Set to 1 in nroff, it the -T flag is used; always 0 in troff .

.v Available vertical resolution in basic units.

. a Post-line extra line-space most recently utilized using \s'N' .

. h Emboldening factor of the current font .

• c Number of lines read from current input file, including .so files .

. d Current vertical place in current diversion; equal to nl if no diversion .

. f Current font as physical quadrant .

.h Text base-line high-water mark on current page or diversion.

. i Current indent .

. j Current adjustment mode and type .

.k Contains the horizontal size of the text portion of the current,
partially-collected output line, if any, in the current environment.

. 1 Current line length .

. n Length of text portion on previous output line .

• 0 Current page offset .

. p Curren t page length .

. s Current point size .

. t Distance to the next trap .

. U Equal to 1 in fill mode; equal to 0 in no-fill mode .

Commands 535

nroff

Register
Name

• v

. w

. x

. y

. z

Files

Meaning

Current vertical line spacing .

Width of previous character .

Reserved version-dependent register .

Reserved version-dependent register .

Name of current diversion .

/usr/lib/suftab
/tmp/ta$#
/usr /lib/tmac/tmac. *
/usr/lib/macros/*
/usr/lib/font/*
/usr/lib/term/*

Suffix hyphenation tables.
Temporary file.
Standard macro files.
Standard macro files.
Font width tables for troff.
Work station driving tables for nroff.

Related Information

The following commands: "col" on page 140, "ew, eheekew" on page 213, "eqn, neqn,
eheekeq" on page 300, "mm, eheekmm" on page 492, "mmt, eheekmm" on page 495,
"greek" on page 379, "thI" on page 739, and "te" on page 742.

The mm miscellaneous facility in AIX Operating System Technical Reference.

The discussion of nroff and troff in Text Formatting Guide.

536 Commands Reference

number

number

Purpose

Displays the written form of a number.

Syntax

/usr/games/number ---l

OL805229

Description

The number game displays the written form of a number that it reads from standard input.
The largest number it can translate accurately contains 66 digits.

The number game does not prompt you for a number. Once loaded, it simply waits for
input. To exit the program, press INTERRUPT (Alt-Pause) or END OF FILE (Ctrl-D).

Example

To display the written form of several numbers:

You: /usr/games/number
829

System: ei ght hundred twenty ni ne.

You:
System:

You:

12345678
twelve million.

three hundred forty five thousand.
six hundred seventy eight.

Ctrl-D

Commands 537

od

od

Purpose

Writes the contents of storage to the standard output.

Syntax

r--------o------~ r----------+O----------~

od

1 Do not put a blank between these items.

+0--""",

one of
+num

num· +num.
numb +numb

OL805205

OL805308

Description

Flags

The od command reads file (standard input by default), and it writes to standard output the
information stored in file using the format specified by the first flag. If you do not specify
the first flag, -0 is the default.

When od reads standard input, num must be preceded by a + (plus sign).

-b Displays bytes as .octal values.

-c Displays bytes as ASCII characters. The following nongraphic characters appear as C
escapes sequences:

\0 Null
\b Backspace
\f Form feed
\n New-line character

538 Commands Reference

\r Return
\t Tab
\81
\82
\83
\84 Extended character shifts.

Others appear as 3-digit octal numbers.

od

-C Displays any extended characters as standard printable ASCII characters using the
appropriate character escape string.

-d Displays 16-bit words as unsigned decimal values.

-0 Displays 16-bit words as octal values.

-8 Displays 16-bit words as signed decimal values.

-x Displays 16-bit words as hexadecimal values.

The num parameter specifies the point in the file where the storage output starts. The
num parameter is interpreted as octal bytes. If a . (dot) is added to num, it is interpreted in
decimal. If b is added to num, it is interpreted in blocks of 512 bytes.

The storage output continues until the end of the file.

Examples

1. To display a file in octal a page at a time:

od a. out pg

This displays a.out in octal (base 8) word format a page at a time.

2. To translate a file into several formats at once:

od -ex a.out >a.xed
This writes a. out in hexadecimal (base 16) format (-x) into the file a. xed, giving also
the ASCII character equivalent, if any, of each byte (-e).

3. To start in the middle of a file:

od -bex a.out +100.

This displays a. out in octal-byte, character, and hexadecimal formats, starting from
the 100th byte.

Note: The. (dot) after the offset makes it a decimal number. Without the dot, the
dump would start from the 64th (100 octal) byte.

Commands 539

od

Related Information

The following commands: "sdb" on page 619 and "pg" on page 553.

The "Overview of International Character Support" in Managing the AIX Operating
System.

540 Commands Reference

open

open

Purpose

Opens a virtual terminal.

Syntax

OL805337

Description

The open command opens a virtual terminal and runs the specified file on that terminal.
If file does not reside in one of the directories specified in the shell PATH variable, you
must give a full path name. Any arguments that follow file on the command line are
passed to file. To move from one virtual terminal to another, press Next Window
(Alt-Action). To close a virtual terminal, press END OF FILE (Ctrl-D) or end the
application that is running on it.

Note: You should run the actman command before opening any virtual terminals (see
"actman" on page 50).

Usability Services Commands
The following additional commands are available to you from within the Usability Services
Activity Manager (fusr/bin/actmngr):

hide

activate

cancel

Removes an activity window from the window ring.

Activates an activity window.

Cancels an activity window.

For details about using these commands, see Usability Services Reference or Usability
Services Guide.

Commands 541

open

Example

To run another shell on a new virtual terminal:

open sh

To move back and forth between this new virtual terminal and any others that you have
opened, press Next Window (Alt-Action). To close this terminal and log off the new shell,
press END OF FILE (Ctrl-D).

Related Information

The following command: "actman" on page 50.

"Using Display Station Features" in Using the A/X Operating System.

542 Commands Reference

pack

pack

Purpose

Compresses files.

Syntax

paCk~

Description

pack

OL805061

The pack command stores the specified file in a compressed form. The input file is
replaced by a packed file with a name derived from the original file name (file.z), with the
same access modes, access and modification dates, and owner as the original file. The
input file name must contain no more than 12 characters to allow space for the added .z
extension. Directories cannot be compressed.

If pack cannot create a smaller file, it stops processing and reports that it is unable to
save space. (A failure to save space, generally happens with small files or files with
uniform character distribution.) The amount of space saved depends on the size of the
input file and the character frequency distribution. Because a decoding tree forms the first
part of each .z file, you will generally not be able to save space with files smaller than
three blocks. Typically, text files are reduced 25 to 40 percent.

The exit value of the pack command is the number of files that it could not pack. Packing
is not done under anyone of the following conditions:

• The file is already packed.
• The input file name has more than 12 characters.
• The file has links.
• The file is a directory.
• The file cannot be opened.
• No storage blocks are saved by packing.
• A file called file.z already exists.

Commands 543

pack

Flag

• The.z file cannot be created.
• An I/O error occurs during processing.

Note: Both pcat and unpack operate only on files ending in .z. As a result, when you
specify a file name that does not end in .z, pcat and unpack add the suffix and search the
directory for a file name with that suffix.

pcat
The pcat command reads the specified files, unpacks them, and writes them to standard
output.

unpack
The unpack is the reverse of the pack command. It reads the input files, expands them,
and writes them to their original file name, the name without the .z suffix.

The exit value of pcat is the number of files it was unable to unpack. A file cannot be
unpacked if anyone of the following occurs:

• The file name (exclusive of the .z) has more than 12 characters.
• The file cannot be opened.
• The file is not a packed file.

The unpack command expands files created by pack. For each file specified, unpack
searches for a file called file.z. If this file is a packed file, unpack replaces it by its
expanded version. The unpack command names the new file name by removing the .z
suffix from file. The new file has the same access modes, access and modification dates,
and owner as the original packed file.

The exit value is the number of files the unpack command was unable to unpack. A file
cannot be unpacked if anyone of the following occurs:

• The file cannot be opened.
• The file is not a packed file.
• A file with the unpacked file name already exists.
• The unpacked file cannot be created.

Note: The unpack command writes a warning to standard output if the file it is
unpacking has links. The new unpacked file has a different i-node than the packed file
from which it was created. However, any other files linked to the packed file's original
i-node still exist and are still packed.

Displays statistics about the input files. The statistics are calculated from a Huffman
minimum redundancy code tree built on a byte-by-byte basis. Repeating - (minus) on
the command line toggles this function.

544 Commands Reference

Examples

1. To compress files:

pack chapl chap2

pack

This compresses chapl and chap2, replacing them with files named chapl.z and
chap2.z. pack displays the percent decrease in size for each file.

2. To display statistics about the amount of compression done:

pack chapl chap2

This compresses chapl and chap2 and displays statistics about chapl, but not about
chap2. The first - (minus) turns on the statistic display, and the second turns it off.

3. To display compressed files:

pcat chapl.z chap2 pg

This displays the compressed files chapl. z and chap2.z on the screen in expanded
form, a page at a time (: pg). Note that pcat added the .z to the end of chap2, even
though we did not enter it.

4. To use a compressed file without expanding the copy stored on disk:

pcat chapl.z grep IGreece l

This pipes the contents of ch ap 1 . z in its expanded form to the grep command. See
page 638 for a discussion of piping.

5. To expand compressed files:

unpack chapl.z chap2

This expands the compressed files chapl. z and chap2.z, replacing them with files
named chapl and chap2. Note that you can give unpack file names either with or
without the .z suffix.

Related Information

The following command: "cat" on page 109.

Commands 545

TNL SN20-9861 (26 June 1987) to SC23-0790-0
passwd

passwd

Purpose

Changes your login password.

Syntax

passwd - user ---l

01.805206

Description

I Files

The passwd command establishes or changes the password associated with your login user
name. When you enter this command, you get a prompt for the old password if one exists.
Then you get two successive prompts for the new password. You must enter the same
password twice for it to take effect.

Passwords can be from four to eight characters. Only the owner of the password or the
superuser can change it. To change a password, the owner must know the old password.
Only a user operating with superuser authority can create a null password (by removing
the password entry from the /etc/passwd file).

The system password file does not change when a new password is the same as the old one,
nor does it change if the password has not aged sufficiently.

Note: The /etc/passwd and /etc/opasswd files must be on the same node.

/ etc/passwd
/etc/opasswd

Related Information

The following commands: "login" on page 453 and "users" on page 802.

The crypt and getpwent subroutines and the passwd file in AIX Operating System
Technical Reference.

546 Commands Reference

paste

paste

Purpose

Merges the lines of several files or subsequent lines in one file.

Syntax

paste ~-d"\t"~ file! L file2:r

11 =~ list II
OL805207

paste --s T file -r
OL805366

Description

Flags

The paste command reads input files (standard input if you specify a - as a file name),
concatenates the corresponding lines of the given input files, and writes the resulting lines
to standard output. Output lines are restricted to 511 characters.

Without a flag, or with the -d flag, paste treats each file as a column and joins them
horizontally with a tab character by default (parallel merging). You can think of paste as
the counterpart of the cat command (see page 109), which concatenates files vertically,
that is, one file after another.

With the -s flag, paste combines subsequent lines of an input file (serial merging). These
lines are joined with the tab character by default.

Note: The action of pr -t -m is similar to that of paste, but creates extra blanks, tabs
and lines for a nice page layout.

-dlist Changes the delimiter that separates corresponding lines in the output with one or
more characters in list (the default is a tab). If more than one character is in list,
then they are repeated in order until the end of the output. In parallel merging,
the lines from the last file always end with a new-line character, instead of one
from list.

Commands 547

paste

The following special characters can also be used in list:

\n New-line character
\t Tab
\ \ Backslash
\0 Empty string (not a null character).
c An extended character.

You must quote characters that have special meaning to the shell.

-s Merges subsequent lines from the first file horizontally. With this flag, paste
works through one entire file before starting on the next. When it finishes
merging the lines in one file, it forces a new line and then merges the lines in the
next input file, continuing in the same way through the remaining input files, one
at a time. A tab separates the lines unless you use the -d flag. Regardless of the
list, the last character of the file is forced to be a new-line character.

Examples

1. To paste several columns of data together:

paste names places dates > npd

This creates a file named npd that contains the data from names in one column,
places in another, and dates in a third. If names, places, and dates look like:

names places dates

rachel New York February 5
jerry Austin March 13
mark Chicago June 21
marsha Boca Raton July 16
scott Seattle November 4

then npd contains:

rachel New York February 5
jerry Austin March 13
mark Chicago June 21
marsha Boca Raton July 16
scott Seattle November 4

A tab character separates the name, place, and date on each line. As in this example,
the columns do not always line up because the tab stops are set at every eighth
column.

548 Commands Reference

2. To separate the columns with a character other than a tab:

paste -d"!@" names places dates > npd

paste

This alternates! and @ as the column separators. If names, places, and dates are
the same as in Example 1, then npd contains:

rachel !New York@February 5
jerry!Austin@March 13
mark!Chicago@June 21
marsha!Boca Raton@July 16
scott!Seattle@November 4

3. To display the standard input in multiple columns:

1 s paste

This lists the current directory in four columns. Each - tells paste to create a column
containing data read from the standard input. The first line is put in the first column,
the second line in the second column, ... , the fifth line in the first column, and so on.

This is equivalent to:

1 s I paste -d"\t\t\t\n" -s

which fills the columns across the page with subsequent lines from the standard input.
The -d"\t\t\t\n" defines the character to insert after each column: a tab character
(\ t) after the first three columns, and a new-line character (\n) after the fourth.
Without the -d flag, paste -s - would display all of the input as one line with a tab
between each column.

Related Information

The following commands: "grep" on page 381, "cut" on page 210, and "pr" on page 561.

The "Overview of International Character Support" in Managing the AIX Operating
System.

Commands 549

penable

penable

Purpose

Controls or reports the availability of login ports.

Syntax

penable

one of -a

I~~~~ble~ oJ
-w devIce

OL805208

Description

The penable command makes a port (device) available for logging on. If you do not specify
any arguments, penable reports the names of all enabled ports.

Use the device parameter to specify the ports to be affected. Permitted values for device
include:

• A full device name, such as /dev /ttyl.
• A simple device name, such as ttyl.
• A general class of devices in the form attribute = value, which is equivalent to naming

each port with a stanza in fete/ports that includes the specified attribute (see Example
4 on page 551).

These programs work by updating an entry in the /ete/portstatus file and then sending a
signal to init. When init receives the signal and reads the updated status entry, it takes
the appropriate action.

550 Commands Reference

Flags

penable

pdisable
The pdisable command kills the logger running on the specified port, even if a user is
logged on, and makes the ports unavailable for logging in. If you do not specify any
arguments, pdisable reports the names of all disabled ports.

phold
The phold command allows logged-on users to continue, but does not allow any more users
to log on. If you do not specify any arguments, phold reports the names of all ports on
hold.

-a With penable, enables all ports normally enabled in the /etc/ports file. This is
equivalent to penable enabled = true.

With pdisable and phold, disables or holds all ports currently enabled in the
portstatus file.

-i Reinitializes an existing /etc/portstatus file instead of updating the existing one.
This flag can only be used with penable. You typically use this flag in the /etc/rc
command file to re-establish default port enabling before starting up the system with
multiple users.

-w Makes the applicable command return immediately rather than wait for init to
confirm the changes in port status. You must use this flag when running penable
either in maintenance mode or from /etc/rc because init does not initiate loggers
until the system is in normal mode.

Examples

1. To list the ports that are currently enabled:

penable

2. To list the ports that are currently on hold:

phold

3. To disable the work station attached to the /dev/tty8 port:

pdisable tty8

4. To put all 9600 baud ports on hold:

phold speed=9600

Commands 551

penable

Files

/etc/ports
/etc/portstatus

Descriptions of all known login ports.
Current status of each known login port.

Related Information

The following command: "init" on page 396.

The ports and portstatus files in A/X Operating System Technical Reference.

552 Commands Reference

pg

pg

Purpose

Formats files to the work station.

Syntax

pg

Description

-num
-c
-9
-f
-n
-p string
-s

one of
+ linenum
+/ pattern/

OL805245

The pg command reads files and writes them to standard output one screen at a time. If
you specify file as - (minus) or run pg without arguments, pg reads standard input. Each
screen is followed by a prompt. If you press the Enter key, another page is displayed. The
pg command lets you back up to review something that has already passed.

To determine work station attributes, pg scans the file terminfo for the wor~ station type
specified by the environment variable TERM. The default type is dumb. See AIX
Operating System Technical Reference for information on terminfo.

Subcommands

When pg pauses and issues its prompt, you can issue a subcommand. Some of these
subcommands change the display to a particular place in the file, some search for specific
patterns in the text, and others change the environment in which pg works.

The following commands display a selected place in the file:

page

+num

-num

1

Displays the specified page.

Displays the page num pages after the current page.

Displays the page num pages before the current page.

Scrolls the display one line forward.

Commands 553

pg

numl

+numl

-numl

d

-d

Ctrl-L

$

Displays a screen with the specified line number at the top.

Scrolls the display num lines forward.

Scrolls the display num lines backward.

Scrolls half a screen forward. Pressing Ctrl-D also does this.

Scrolls half a screen backward. Pressing -Ctrl-D also does this.

Displays the current page again. A single period also does this.

Displays the last page in the file. Do not use this when the input is from a
pipeline.

The following commands search for text patterns in the text. You can use the patterns
described in "ed" on page 280. They must always end with a new line character, even if
the -n flag is used. In an expression such as [a-z], the minus means "through" according
to the current collating sequence. A collating sequence may define equivalence classes
for use in character ranges. See the "Overview of International Character Support" in
Managing the A/X Operating System for more information on collating sequences and
equivalence classes.

[num]fpattern/ Search for the numth occurrence of pattern. The search begins
immediately after the current page and continues to the end of the
current file, without wrap around. The default for num is 1.

num?pattern?
num " pattern" Search backward for the numth occurrence of pattern. The searching

begins immediately before the current page and continues to the
beginning of the current file, without wrap around. The" (circumflex) is
useful for the Adds 100 work station, which cannot handle the? The
default for num is 1.

After searching, pg normally displays the line found at the top of the screen. You can
change this by adding m or b to the search command to leave the line found in the middle
or at the bottom of the window with all succeeding subcommands. Use the suffix t to
return to displaying the line with the pattern to the top of the screen.

You can change the pg environment with the following subcommands:

[num]n Begins examining the numth next file in the command line. The default
num is 1.

[num]p

[num]w

s file

Begins examining the numth previous file on the command line. The
default num is 1.

Displays another window of text. If num is present, sets the window size
to num.

Saves the input in file. Only the current file being examined is saved.
This command must always end with a new line character, even if you
specify the -n flag.

554 Commands Reference

Flags

h

q or Q

!AIX-cmd

Displays an abbreviated summary of available subcommands.

Quits pg.

Sends the specified AIX command to the shell named in the SHELL
environment variable. If this is not available, the default shell is used.

pg

This command must always end with a new line character, even if the -n
flag is used.

At any time when output is being sent to the work station, you can press QUIT WITH
DUMP (Ctrl-V) or INTERRUPT (Alt-Pause). This causes pg to stop sending output and
displays the prompt. Then you can enter one of the above commands in the normal
manner.

Note: Some output is lost when when you press QUIT WITH DUMP (Ctrl-V) or
INTERRUPT (Alt-Pause) because any characters waiting in the output queue are purged
when the QUIT signal is received.

If standard output is not a work station, pg acts like the cat command, except that a
header displays before each file.

While waiting for work station input, pg stops running when you press INTERRUPT
(Alt-Pause). Between prompts these signals interrupt the current task and place you in
the prompt mode.

-c

-e

-f

-n

Note: When you use pg in a pipe, an Interrupt is likely to end the other commands
in the pipe.

If work station tabs are not set every eight positions, unpredictable results can
occur.

When using pg in a pipe with other commands that change work station I/O options,
work station settings may not be restored correctly.

Moves the cursor to the home position and clears the screen before each
page. This flag is ignored if clear _ screen is not defined for your work
station type in the terminfo file.

Does not pause at the end of each file.

Does not split lines. Normally, pg splits lines longer than the screen width.

Stops processing when a pg command letter is entered. Normally, commands
must end with a new-line character.

-p string Uses string as the prompt. If the string contains a %d, the %d is replaced by
the current page number in the prompt. The default prompt is : (colon). If
string contains spaces, you must quote it.

-s Highlights all messages and prompts.

Commands 555

pg

Files

+ linenum Starts at linenum.

-num Specifies the number of lines in the window. On work stations that contain
24 lines, the default is 23.

+ /pattern/ Starts at the first line that contains pattern.

/usr/lib/terminfo/*
/tmp/pg*

Related Information

The following commands: "ed" on page 280 and "grep" on page 381.

The terminfo file in AIX Operating System Technical Reference.

The "Overview of International Character Support" in Managing the AIX Operating
System.

556 Commands Reference

/

piobe

TNL SN20-9861 (26 June 1987) to SC23-0790-0
piobe

Purpose

Writes a file to standard output in a format suitable for sending to a line printer.

Syntax

/usr/lpd/piobe

-prof i le=/etc/dd i/pprinter

-fw= num -prof ile= pnome

OL805391

-device=dnome -mhp
-display -plot
-dpc=volue -strip
-cs=volue -kpoe
-Im=num -fl=num
-fw=num -tm=num
-Ipi=num -bm=num
-start=num -ph=num
-fnt= num -fid=volue

-psd=volue

OL805452

Description

The piobe command writes file to its standard output in a form that is suitable for a line
printer. If you do not specify a file, piobe reads standard input. piobe is normally called
by the qdaemon command after you have enqueued a file with the print command (see
"print" on page 566). The qdaemon directs the output from piobe to the appropriate
device.

Commands 557

TNL SN20-9861 (26 June 1987) to SC23-0790-0
piobe

Flags

You can specify the following flags on the print command line or in the /etc/qconfig file
(see AIX Operating System Technical Reference).

-bm = num Sets the bottom margin to num lines from the top of the page.

-cdp
-nocdp Turns the condensed printing mode on (-cdp) or off (-nocdp).

-cs = value Uses PC code set 1 or 2.

-device = dname Specifies the name of a printer stanza in the printer configuration file
(see "Files" on page 559).

-display Specifies that the input data stream has KSR code page controls.

-dpc = value Prints in the specified color. Valid color values are red, blue, yellow,
and black.

-dsp
-nodsp Turns the double strike mode on (-dsp) or off (-nodsp).

-dwp
-nodwp Turns the double wide printing mode on (-dwp) or off (-nodwp).

-elite Sets the character pitch to 12, the same as specifying -pitch = 12.

-ep
-noep

-fid= value

-fl=num

-fnt=num

-fw=num

-kpoe

-lm=num

-lpi=num

Turns the emphasized printing mode on (-ep) or off (-noep).

Specifies the font identifier for an IBM 5202 Quietwriter® III Printer
font. Valid values for embedded fonts are 11 (Courier 10), 85 (Courier
12), 254 (Courier 17), and 159 (Boldface). Values for fonts in the
pluggable cartridges precede the font name on the cartridge label.

Sets the form length to num.

Allows font change. Valid values for num are 1 through 8.

Sets the right margin at num characters from the left edge of the
carriage.

Forgives keying mistakes and ignores invalid flags. If you specify this
flag, piobe processes the job and sends you no message. If you do not
specify this flag, piobe does not forgive invalid flags and does not print
the job. In this case, it sends you a message detailing the error.

Sets the left margin at num characters from the left edge of the
carriage.

Sets the number of lines per inch to num. Valid settings are 6 and 8.

558 Commands Reference

Files

-mhp

-ph=num

-pitch=num

-plot

-pq = value

-profile = pname

-psd = value

-start=num

-strip

-tm=num

-trunc

-wll

-wp

/etc/ddi/pprinter
/etc/ddi/sprinter

TNL SN20-9861 (26 June 1987) to SC23-0790-0
piobe

Allows thJ horizontal position on the print line to be maintained for
line feed and vertical tab controls, if desired.

Allows you to use single-sheet paper in the QuietwriterOO printer. The
printer stops at the end of each page, beeps three times, and waits for
you to push the start button. num can have the following values:
o Manual operation.
1 Sheetfeed operation.
2 Continuous operation.

Sets the character pitch to num.

Specifies that the input data is to be passed through without
modification. This allows arbitrary files to be printed on arbitrary
printers.

Prints in specified print quality. Valid quality values are dp, text, and
letter.

Specifies the name of a printer configuration file. The default name is
jetcjddijpprinter.

Specifies a paper source drawer for the optional IBM 5202 Quietwriter®
III Printer two-drawer sheetfeeder. Valid values are 1 (top drawer), 2
(bottom drawer), and 3 (envelopes).

Sets the starting page number to num.

Strips all multibyte controls from the data stream. This flag is useful in
filter mode in order to send data that has imbedded printer controls to a
nonprinter device.

Sets the top margin to num lines.

Specifies' that lines exceeding the value set by -fw should be truncated.

Specifies that lines exceeding the value set with the -fw flag should
overflow to the next line. This is the reverse of the -trunc flag.

Selects word processing mode, the same as specifying -pq = letter.

Parallel configuration information.
Serial configuration information.

Commands 559

piobe

Related Information

The following commands: "print" on page 566 and "qdaemon" on page 590.

The qconfig file in A/X Operating System Technical Reference.

560 Commands Reference

pr

pr

Purpose

Writes a file to standard output.

Syntax

-166 -00 + 1 -1

pr -m

-d
-f -num
-Inum
-onum
-p
-r
-wnum
+num

~-O-C5~8~ -n -? 1 1 file

char num ~um

1 Do not put a blank between these items.
OL805437

Description

Flags

The pr command writes file to the standard output. If you do not specify file or if file is a -
(minus), pr reads standard input. A heading that contains the page number, date, time,
and the name of the file separates the output into pages.

Unless specified, columns are of equal width and separated by at least one space. Lines
that are too long for the page width are cut off. If the standard output is a work station,
pr does not display any error messages until it has ended.

-a

-d

Displays multi-column output across the page.

Double-spaces the output.

Commands 561

pr

-e[charHnum] Expands tabs to character positions num + 1, 2*num + 1, 3*num + 1, and so
on. The default value of num is 8. Tab characters in the input expand to
the appropriate number of spaces to line up with the next tab setting. If
you specify char (any character other than a digit) that character becomes
the input tab character. The default value of char is the ASCII TAB
character.

-f Uses a form-feed character to advance to a new page. (Otherwise pr issues
a sequence of line-feed characters.) Pauses before beginning the first page
if the standard output is a work station.

-h" string" Displays string as the page header instead of the file name.

-i[charHnum] In the output, replaces white space wherever possible by inserting tabs to
character positions num + 1, 2*num + 1, 3*num + 1, and so on. The default
value of num is 8. If you specify char (any character other than a digit),
that character becomes the output tab character. (The default value of
char is the ASCII TAB character).

-Inum Sets the length of a page to num lines (the default is ,66).

-m Combines and writes all files at the same time, with each file in a separate
column. (This overrides the -num and -a flags).

-n[charHnum] Provides num-digit line numbering (the default value of num is 5). The
number occupies the first num + 1 character positions of each column of
normal output or each line of -m output. If you specify char (any
character other than a digit), that character is added to the line number to
separate it from whatever follows (the default value of char is an ASCII
T AB character).

-onum Indents each line by num character positions (the default is 0). The
number of character positions per line is the sum of the width and offset.

-p Pauses before beginning each page if the output is directed to a work
station. (pr sounds the alarm at the work station and waits for you to
press the Enter key.)

-r Does not display diagnostic messages if the system cannot open files.

-schar Separates columns by the single character char instead of by the
appropriate number of spaces (the default for char is an ASCII TAB
character).

-t Does not display the five-line identifying header and the five-line footer.
Stops after the last line of each file without spacing to the end of the page.

-wnum Sets the width of a line to num character positions (the default value is 72
for equal-width multi-column output, no limit otherwise).

-num Produce num-column output (the default is 1). The -e and -i flags are
assumed for multi-column output.

562 Commands Reference

pr

+num Begin the display with page num (the default value is 1).

Examples

Files

1. To print a file with headings and page numbers on the printer:

pr prog.c print

This adds page headings to prog. c and sends it to the print command. The heading
consists of the date the file was last modified, the file name, and the page number.

2. To specify a title:

pr -h "MAIN PROGRAM" prog. c pri nt

This prints prog. c with the title MAl N PROGRAM in place of the file name. The
modification date and page number are still printed.

3. To print a file in multiple columns:

pr -3 word. 1st print

This prints the file word. 1 s t in three columns. Consecutive lines of word. 1 s t go
down the page.

4. To print several files side-by-side on the paper:

pr -m -h "Members and Visitors" member.1st visitor. 1st print

This prints member. 1 stand vi s i tor. 1 s t side by side with the title Members and
Vi s i tors.

5. To modify a file for later use:

pr -t -e prog.c > prog.notab.c

This replaces tab characters in p rog . c with blanks and puts the result in
prog. notab. c. Tab positions are at columns 9, 17, 25, 33, The -e tells pr to
replace the tab characters; the - t suppresses the page headings.

fdevftty* To suspend messages.

Related Information

The following command: "cat" on page 109.

Commands 563

profiler

profiler

Purpose

Profiles the operating system.

Syntax

prfld
/unix=r

-Lrnel-image

prfstat -(on ~
off -.1-'

prfdc - file

prfsnap - file ----l

/unix=r
prfpr - file

cutoff kernel-image

Description

With the prfld, prfstat, prfdc, prfsnap, and prfpr commands, you can examine the
activity of the AIX operating system.

564 Commands Reference

OL805006

Files

profiler

prfld
Use prfld to initialize the recording mechanism in the system. It produces a table
containing the starting address of each system subroutine as extracted from kernel-image.

prfstat
Use prfstat to enable or disable the sampling mechanism. prfstat also reveals the number
of text addresses being measured.

prfde, prfsnap
Use prfdc and prfsnap to collect profiler data by copying the current value of all the text
address counters to a file where the data can be analyzed. prfdc stores the counters into
file every specified minutes and turns off at hour (0-24). prfsnap collects data at the time
of invocation only, adding the counter values to file.

prfpr
Use prfpr to format the data collected by prfdc or prfsnap. It converts each text address
to the nearest text symbol (as found in kernel-image) and displays it if the percent activity
for that range is greater than cutoff.

/dev/prf
/unix

Interface to profile data and text addresses.
System kernel image file.

Related Information

The prf file in AIX Operating System Technical Reference.

Commands 565

TNL SN20-9861 (26 June 1987) to SC23-0790-0
print

print

Purpose

Enqueues a file.

Syntax

print

-C
O

queue 1

: device

-bp=2
one of\ ...

-bp -b~r
-nb -bp=1

-bp=2

-cp
-no

_q -from=name 2

-nc=num -tl=title
-rm -pr=num -to=name

print one of
-co 2

-su=user
-op= num

one of

print _~2 I

~

print --(---c,0 YI O~:dOf f
queue 1 dk

. -du
: devIce

1 Do not put a blank between these items.

2 Only members of the system group can use these flags.

3 Only specify -fi once.

566 Commands Reference

OL805348

OL805147

0L805354

print

Description

Flags

With the print command you can enqueue files on -queue. (See Managing the AIX
Operating System for information on establishing the default queue.) If more than one
device services a queue, you can request a particular device by putting the device number
after the queue name, separating them with a colon. Otherwise, the job is sent to the first
available device.

You can also use print to cancel a print request (-ca), alter the priority of a print request
(-ap), and display the status of print queues and devices (-q). Note that to print a file, you
must have read access to it. To remove a file, you must have write access to the directory
containing that file. If you do not specify any file names, print copies standard input into
a file, which it enqueues for printing.

Flags and file names may be interspersed in any order.

Note: If you want to continue changing the file after you use print but before it is
printed, you must use the -cp flag.

If you give print a list of file names, it enqueues them all for printing on the default
printer.

-ap=num

-bp=num
-bp
-nb

-ca

-cp

Changes to num the priority of the named file (which must already have
been submitted for printing). See "-pr" on page 568 for a description of
priorities.

Controls the printing of burst pages according to the value of num as
follows:

o Does not print headers or trailers.
1 Prints one header page before each file. No trailer appears.
2 Prints a header page at the beginning and a trailer page at the end of

each file.

The header stanza in the qconfig file defines the default treatment of
burst pages.

Specifying only -bp is the same as specifying -bp = 2. Specifying -nb is the
same as specifying -bp = o.
Cancels the printing of the named files.

Copies the file. Ordinarily, to save disk space, print remembers the name
of the file, but does not actually copy the file itself. Use the -cp flag if you
want to continue changing the file while you are waiting for the current
copy to be printed.

Commands 567

print

-fi

-nc=num

-no

-pr=num

-q

-rm

-tl = title

-to = name

Causes print to act as a filter. The print command automatically reads
standard input if you do not specify files as arguments. However, if you do
specify file arguments, you can use the -fi flag to force print to read
standard input at the appropriate time.

Prints num copies of the file. Normally a file is printed only once.

Notifies you when your job is finished. If the -to flag is also used, print
notifies the user for whom the request is intended (see the -to flag on page
568).

Sets the priority of the named file to num. Higher numbers assign higher
priority. The default priority is 15. The maximum priority is 20 for most
users and 30 for the users with superuser authority and members of the
system group (group 0).

Displays the status of the queues and printers. The environment variable
NLTIME controls the appearance of the time field.

Removes the file after it has been successfully printed.

Puts title on the header page and displays it when the -q flag is specified.
Normally the job title is the name of the file. If print reads from standard
input, the job title is PRIMARY. OUTPUT.

Labels the output for delivery to name. Normally the output is labeled for
delivery to the person issuing the print request.

In addition the flags available to all users, users with superuser authority and members of
the system group (group 0), can use the following additional flags:

-dd

-dg

-dk

-du

Turns off the device associated with queue. The qdaemon no longer sends
jobs to the device, and entering pri nt -q shows its status as OFF. Any
job currently running on the device is allowed to finish.

Kills the qdaemon after all currently running jobs are finished. This is
the only clean way to bring the qdaemon down. Using the kill command
may cause problems, such as jobs hanging up in the queue.

Acts the same as -dd, except current jobs are killed. They remain in the
queue, and are run again when the device is turned on.

Turns on the device associated with queue. The qdaemon sends jobs to it
again and entering pri nt -q shows its status as READY.

Note: If more than one device is associated with a queue, you must
specify the device as well as the queue when you use the -dd, -dk, and -du
flags. Devices are numbered, starting at zero, in the order that they appear
in the qconfig file. For example, -1 p: 0 designates the first device on the
Ip queue. - 1 P designates the same device only if there is no other device
on that queue.

568 Commands Reference

print

-from = name Labels the output as though name had submitted it. You can only use this
flag with superuser authority.

-rr Forces the qdaemon to reread the qconfig file after all currently running
jobs are finished. With this flag, a user with superuser authority can
change the qconfig file without having to kill and restart the qdaemon.

-su = user Cancels or changes the priority on another user's job when used with the
-ca or the -ap flags. For example, a job report submitted by user ann can
be cancelled as follows:

print -su=ann -ca report
The print command passes flags it does not recognize to the backend that does the
printing. Thus, for each queue there are flags not described above that can be included on
the print command line. See "piobe" on page 557 for a list of these flags.

Examples

1. To print a file on the default printer:

print memo
2. To print a file with page numbers:

pr prog.c print
The pr command puts a heading at the top of each page that includes the date the file
was last modified, the name of the file, and the page number. The print command then
prints the file.

3. To see if a file is still waiting to be printed:

print -q
This displays the status of the queues and printers. If a file has not been printed yet,
then it appears in the queue status listing. If you piped data to print, as in Example 2,
then it is listed as PRIMARY. OUTPUT.

4. To stop printing a file:

print -ca chapterl

This cancels the request you made earlier to print the file chapterl. If the file is
currently being printed, then the printer stops immediately. If the file has not been
printed yet, then it is removed from the queue so that it will not be printed.

Commands 569

print

Files

If the file is not in the queue, print displays the message:

no such request from you ~- perhaps it's done?
5. To disconnect a printer from the queueing system:

print -a:2 -dd

This stops print requests from being sent to the third printer that serves the - a queue.
If a file is currently being printed, it is allowed to finish. You must be a member of the
system group (group 0) to run this command.

Note: The printers serving a given queue are numbered starting with zero in the
order that they appear in the /etc/qconfig file.

/etc/qdaemon
/usr/lpd/qdir/*
/usr/lpd/stat/*
/usr/spool/qdaemonJ*
/etc/qconfig

Queueing demon.
Queue requests.
Information on the status of the devices.
Temporary copies of enqueued files.
Queue configuration file.

Related Information

The following commands: "piobe" on page 557, "pr" on page 561, and "qdaemon" on
page 590.

The qconfig file in AIX Operating System Technical Reference.

The discussion of print in Managing the AIX Operating System.

The "Overview of International Character Support" in Managing the AIX Operating
System.

570 Commands Reference

/

prof

prof

Purpose

Displays program profile data.

Syntax

-Q-t~c-m mon.out)-(a.outr prof one of one of
-c -t -0 -9 -z -mmdata prog
-a -n -x -s -h

OL805438

Description

Flags

The prof command interprets profile data collected by the monitor subroutine for the
object file prog (a.out by default). It reads the symbol table in the object file prog and
correlates it with the profile file (mon.out by default). prof displays, for each external
text symbol, the percentage of execution time spent between the address of that symbol and
the address of the next, the number of times that function was called, and the average
number of milliseconds per call.

For the number of calls to a function to be tallied, you must have compiled the file using
the -p flag of the cc command. This flag also arranges for the object file to include a
special profiling start-up function that calls the monitor subroutine at the beginning and
end of execution. It is the call to monitor at the end of execution that writes mon.out.
Thus, only programs that explicitly exit or return from main cause the mon.out file to
be produced.

Note: No more than 600 functions can have call counters established during program
execution. If you exceed this limit, prof overwrites other data and damages the mon.out
file. prof automatically reports the number of call counters used whenever the number
exceeds 500.

The mutually exclusive flags a, c, n, and t determine how prof sorts the output lines:

-a Sorts by increasing symbol address.

-c

-n

Sorts by decreasing number of calls.

Sorts lexically by symbol name.

Commands 571

prof

Files

-t Sorts by decreasing percentage of total time (default).

The mutually exclusive flags 0 and x specify how to display the address of each symbol
monitored.

-0

-x

Displays each address in octal, along with the symbol name.

Displays each address in hexadecimal, along with the symbol name.

Use the following flags in any combination:

-g Includes nonglobal symbols (static functions).

-h Suppresses the heading normally displayed on the report. (This is useful if
the report is to be processed further.)

-m mdata Takes profiling data from mdata instead of mon.out.

-s Displays a summary of monitoring parameters and statistics on standard

-z

mon.out
a.out

error.

Includes all symbols in the profile range, even if associated with zero calls
and zero time.

Default profile.
Default object file.

Related Information

The following commands: "ee" on page 112 and "nm" on page 521.

The exit and profil system calls and the monitor subroutine in A/X Operating System
Technical Reference.

572 Commands Reference

,/

proto

proto

Purpose

Constructs a prototype file for a file system.

Syntax

jete/proto - directory r-\. .
~prefix~

Description

OL805007

The proto command makes a prototype file for a file system or part of a file system. Use
the prototype file as input to the mkfs command to construct a file system according to a
predefined template. The prototype file consists of a recursive directory listing of every
file on the file system, with its owner, group, and protection. It also contains the file from
which the prototype file is to be initialized, formatted as described in the mkfs command.

Specify the base directory from which the prototype file is made with directory. The
prototype file includes the complete subtree below directory that is contained on the same
file system as directory.

The prefix parameter is added to the names of all the initialization files, forcing the
initialization files to be taken from a place other than the prototype. Before the output
from proto can be used with mkfs, mkfs needs a start up program, a file system size, and
an i-list size. Link information is not preserved with the proto command.

The collating sequence is determined by the ct _collate array in the NLctab subroutine.

Related Information

The following command: "mkfs" on page 487.

The "Overview of International Character Support" in Managing the AIX Operating
System.

Commands 573

prs

prs

Purpose

Displays a Source Code Control System (SeCS) file.

Syntax

prs

OL805248

Description

The prs command reads files, and writes to standard output a part or all of a Source Code
Control System (SeCS) file. If you specify a directory in place of file, prs performs the
requested actions on all sees files (those with a name that has the s. prefix). If you
specify a - (minus) in place of file, prs reads standard input and interprets each line as the
name of an SCCS file. prs continues to take input until it reads an end-of-file character
(Ctrl-D).

Data Keywords
Data keywords specify which parts of an secs file are to be retrieved and written to
standard output. All parts of an secs file have an associated data keyword. There is no
limit to the number of times a data keyword can appear in a string. The information that
prs displays consists of user-supplied text and appropriate values (extracted from the sees
file) substituted for the recognized data keywords in the order of appearance in string. The
format of a data keyword value is either simple, in which the keyword substitution is
direct, or multi-line, in which the substitution is followed by a carriage return. Text is any
characters other than recognized data keywords. Specify a tab character with \t and a
carriage return/new-line character with a \n. Remember to quote the \t and \n with an
extra \ to prevent shell from interpreting the \ and just passing a t or n to prs as text.

574 Commands Reference

prs

The following table lists the keywords associated with information in the delta table in the
sees file (see the sccsfile file in AIX Operating System Technical Reference for the
structure of an sees file),

Keyword Data Represented Value Format

:R: Release number num Simple

:L: Level number num Simple

:B: Branch number num Simple

:S: Sequence number num Simple

:1: sees ID string (SID) :R::L::B::S: Simple

:Dy: Year delta created YY Simple

:Dm: Month delta created MM Simple

:Dd: Day delta created DD Simple

:D: Date delta created YY/MM/DD Simple

:Th: Hour delta created HH Simple

:Tm: Minute delta created MM Simple

:Ts: Second delta created SS Simple

:T: Time delta created HH:MM:SS Simple

:DT: Delta type D orR Simple

:P: User who created the delta login name Simple

:DS: Delta sequence number num Simple

:DP: Previous delta sequence number num Simple

:Dt: Delta information :DT::I::D: :T::P::DS::DP: Simple

:Dn: Sequence numbers of deltas included :DS:" , Simple

:Dx: Sequence numbers of deltas excluded :DS:" , Simple

:Dg: Sequence numbers of deltas ignored :DS:" , Simple

:DI: Sequence numbers of deltas included, :Dn:/:Dx:/:Dg: Simple
excluded, and ignored

:Li: Lines inserted by Delta num Simple

:Ld: Lines deleted by Delta num Simple

Figure 3 (Part 1 of 2). Delta Table Keywords

Commands 575

prs

Keyword Data Represented Value Format

:Lu: Lines unchanged by Delta num Simple

:DL: Delta line statistics :Li:/:Ld:/:Lu: Simple

:MR: MR numbers for delta text Multi-line

:C: Comments for delta text Multi-line

Figure 3 (Part 2 of 2). Delta Table Keywords

The following table lists the keywords associated with the header flags in the SCCS file.
For more information of Header flags, see Figure 1 on page 54.

Keyword Data Represented Value Format

:Y: module type text simple

:MF: MR validation flag set yes or no Simple

:MP: MR validation program name text Simple

:KF: Keyword/error warning flag set yes or no Simple

:BF: Branch flag set yes or no Simple

:J: Joint edit flag set yes or no Simple

:LK: Locked releases :R: ... Simple

:Q: User defined keyword text Simple

:M: Module name text Simple

:FB: Floor boundary :R: Simple

:CB: Ceiling boundary :R: Simple

:Ds: Default SID :1: Simple

:ND: Null Delta flag set yes or no Simple

:FL: Header flag list text Multi-line

Figure 4. Header Flag Keywords

576 Commands Reference

prs

The following table lists the keywords associated with other parts of the sees file.

Keyword Data Represented Value Format

:UN: user names text Multi-line

:FD: descriptive text text Multi-line

:BD: body of text text Multi-line

:GB: text in a g-file text Multi-line

:W: a what string :Z::M: \tab :1: Simple

:A: a what string :Z::Y::M::I::Z: Simple

:Z: a what string delimiter @(#) Simple

:F: sees file name text Simple

:PN: sees file path name text Simple

Figure 5. Other Keywords

Flags

Each flag or group of flags applies independently to each named file.

-a

-ccutoff

Writes information for the specified deltas, whether or not they have been
removed (see "rmdel" on page 604). If you do not specify the -a flag, prs
supplies information only for the specified deltas that have not been removed.

Specifies a cutoff date and time for the -e and -I flags. Specify cutoff in the
following form:

YY[MM[DD[HH[MM[SS]]]]]
All omitted items default to their maximum values, so specifying -c8402 is the
same as specifying -c840229235959. You can separate the fields with any
non-numeric characters. For example, you can specify -c84/2/20, 9: 22: 25
or -c Il 84/2/20 9: 22: 25 11 or lI-c84/2/20 9: 22: 25 11

•

-d" string" Specifies the data items to be displayed. string is a string consisting of
optional text and sees file data keywords. You must enclose all text and
spaces in string in quotation marks.

-e Requests information for all deltas created earlier than and including the delta
specified by the -r flag.

-I Requests information for all deltas created later than and including the delta
specified by the -r flag.

Commands 577

prs

Files

-rSID

/tmp/pr?????

Specifies the SID of a delta for which prs will retrieve information. If no SID
is specified, prs retrieves the information for the SID of the highest numbered
delta.

Related Information

The following commands: "admin" on page 51, "delta" on page 236, "get" on page 359,
and "help" on page 391.

The sccsfile file in AIX Operating System Technical Reference.

The discussion of sees in AIX Operating System Programming Tools and Interfaces.

578 Commands Reference

ps

ps

Purpose

Reports process status.

Syntax

ps

Description

-t console
one of

-g glist
-e -p plist
-d -t tlist

-u ulist

-c/dev/mem\ r--n/unix~

-c corfile ~-n kernel-image r

OLS05439

The ps command writes certain information about active processes to standard output.
Without flags, ps displays information about the current work station.

The column headings in a ps listing have the following meaning. The letters f and 1
following the column heads indicate which flags cause the corresponding heading to
appear. If all follows the column head, that heading always appears. Note that the -f and
-1 flags determine only what information is provided about a process; they do not determine
which processes are listed.

F (1)

S (1)

Flags (octal and additive) associated with the process:

01 In core
02 System process
04 Locked in core (for example, for physical I/O);
10 Waiting for a page default, or forking
20 Being traced by another process
40 Another tracing flag
100 Process has shared text.

The state of the process:

o Nonexistent
S Sleeping
W Waiting
R Running

Commands 579

TNL SN20-9861 (26 June 1987) to SC23-0790-0
pS

I
Z
T
K
X

UID (f,1)

Intermediate
Canceled
Stopped
Available kernel process
Growing.

The user ID of the process owner; the login name is displayed with the -f flag.

PID (all)
The process ID of the process.

PPID (f,l)
The process ID of the parent process.

C (f,1)
Processor utilization for scheduling.

STIME (f)
Starting time of the process. The NLLDATE and NLTIME environment variables
control the appearance of this field.

PRI (1)
The priority of the process; higher numbers mean lower priority.

NI (I)
Nice value; used in calculating priority.

ADDR (I)
The segment number of the process stack, if normal; if a kernel process, the address of
the pre-process data area.

SZ (I)
The size in blocks of the core image of the process.

WCHAN (I)
The event for which the process is waiting or sleeping; if blank, the process is
running.

TTY (all)
The controlling work station for the process.

TIME (all)
The total execution time for the process.

CMD (all)
The command name; the full command name and its parameters are displayed with
the -f flag.

A process that has exited and has a parent, but has not yet been waited for by the parent,
is marked < defunct> .

580 Commands Reference

Flags

ps

With the -f flag, ps determines what the command name and parameters were when the
process was created by examining memory or the paging area. If it cannot find this
information, the command name, as it would appear without the -f flag, displays in square
brackets.

-a

-c

-d

-e

-f

-g

Note: Things can change while ps is running.

Some data displayed for defunct processes are irrelevant.

The current work station is defined as the one associated with standard error. Thus
redirecting standard error, for example:

ps 2> /dev/null
does not work as expected.

corefile

glist

Writes to standard output information about all processes except the
process group leaders and processes not associated with a terminal.

Uses corefile instead of the default fdev fmem. corefile is a core image
file that has been created by the Ctrl-(left)Alt-End key sequence.

Writes information to standard output about all processes except the
process group leaders.

Writes information to standard output about all processes except kernel
processes.

Generates a full listing. The meaning of columns in a full listing is
described on page 579.

Writes information to standard output only about processes that are in
the process groups listed in glist. The glist is either a comma-separated
list of process-group identifiers or a list of process-group identifiers
enclosed in double quotation marks C1

") and separated from one
another by a comma and/or one or more spaces.

-k Writes information to standard output about kernel processes.
Otherwise, it does not list kernel processes.

-I Generates a long listing. The meaning of a long listing is described on
page 579.

-n kernel-image Takes kernel-image as the name of an alternate kernel-image file (funix
is the default).

-p plist Displays only information about processes with the process numbers
specified in plist. plist is either a comma-separated list of process-ID
numbers or a list of process-ID numbers enclosed in double quotation

Commands 581

ps

-t tlist

-u ulist

marks (II II) and separated from one another by a comma and/or one or
more spaces.

Displays only information about processes associated with the work
stations listed in tlist. tlist is either a list of comma-separated
work-station identifiers or a list of work-station identifiers enclosed in
double quotation marks (II II) and separated from one another by a
comma and/or one or more spaces.

Displays only information about processes with the user ID numbers or
login names specified in ulist. ulist is either a comma-separated list of
user ID's or a list of user ID's enclosed in double quotation marks (" II)
and separated from one another by a comma and/or one or more spaces.
In the listing, ps displays the numerical user ID unless the -f flag is
used; then it displays the login name.

Examples

1. To list the processes that you have started:

ps
This displays a short listing of information about the processes associated with your
work station.

2. To display all process information available:

ps -e -f -1

This displays all the information ps has to offer (- 1 - f) about all processes (-e for
" everything").

3. To list processes owned by specific users:

ps -f -1 -ujim,jane,su

This displays all the information available (- 1 - f) about the processes being run by
the users jim, jane, and s u.

4. To list processes associated with specific work stations:

ps ~t-,conso1e

This displays information about processes not connected to any work station (- t -), and
processes associated with the work station I dev I can so 1 e.

582 Commands Reference

Files

/unix
/dev/mem
/etc/passwd
/etc/ps_data
/dev

System kernel image.
Memory.
Supplies DID information.
Internal data structure.
Searched to find work station ("TTY") names.

Related Information

The following commands: "kill" on page 422 and "nice" on page 515.

ps

Commands 583

ptx

ptx

Purpose

Generates a permuted index.

Syntax

ptx

infile

OL805250

Description

The ptx command reads infile (standard input by default), creates a permuted index from
its input, and writes to outfile (standard output by default).

The ptx command searches infile for keywords, sorts the lines, and generates the file
outfile. outfile can then be processed with nroff or troff to produce a permuted index from
the file infile.

The ptx command follows three steps:

1. In the permutation, generates one line for each keyword in an input line, and rotates
the keyword to the front.

2. Sorts the permuted file.
3. Rotates the sorted lines so that the keyword comes at the middle of each line.

The resulting lines in output are in the form:

.xx, "tail" "before keyword" "keyword and after" "head"

where .xx is an nroff or troff macro provided by the user, or provided by the mptx macro
package (see the AIX Operating System Technical Reference for information on this macro
package). The before keyword and keyword and after fields incorporate as much of the line
as will fit around the keyword when it is printed. tailor head, at least one of which is
always the empty string, are wrapped-around pieces small enough to fit in the unused
space at the opposite end of the line.

Note: Line length counts do not account for overstriking or proportional spacing.

Lines that contain tildes (-) do not work because ptx uses that character internally.

584 Commands Reference

Flags

Files

-b break

-f

-g num

-i ignore

-0 only

-r

-t

-w num

/bin/sort

Uses the characters in the break file to separate words. Tab characters,
new-line characters, and spaces are always used as break characters.

ptx

Does not distinguish between uppercase and lowercase characters while sorting
(see "sort" on page 672).

Uses num as the number of spaces displayed between the four parts of the line.
The default num is 3.

Does not use any words in the ignore file as keywords. If the -i and -0 flags are
not used, /usr/lib/eign is the default ignore file.

Uses only the words in the only file as keywords.

Takes any leading nonblank characters of each input line to be a reference
identifier separate from the text of the line. Attaches that identifier as a fifth
field on each output line.

Prepares the output for the phototypesetter.

Uses num as the length of the output line. The default line length is 72
characters for nroff and 100 for troff.

/usr/lib/eign
/usr/lib/tmac/tmac.ptx

Related Information

The following commands: "nroff" on page 525 and "troff" on page 526.

The mm and mptx miscellaneous facilities in AIX Operating System Technical Reference.

The "Overview of International Character Support" in Managing the AIX Operating
System.

Commands 585

puttext

puttext

Purpose

Updates an output file that contains message/insert/help descriptions.

Syntax

puttext ~ infi/e _r--\. , ... ~ -nJ ~ outfi/e r
OL805209

Description

Flag

The puttext command uses the message/insert/help descriptions in infile to change, delete
and add message/insert/help text to outfile for a component. (For information about the
format and contents of infile, see AIX Operating System Programming Tools and
Interfaces.)

The infile parameter specifies the name of the file where the message/insert/help
descriptions reside. See AIX Operating System Programming Tools and Interfaces for a
discussion of the gettext output file parameters that describes the format and contents of
this file.

The outfile parameter specifies the name of the output file. If you specify an outfile that
does not exist, a new component file is created. If you specify an existing outfile, a copy of
that file is renamed as a backup file. In this case, an old backup file will be deleted.

Note: In order for the new file to be accessed by the message support run-time services,
the output file name must be in the format xxxccc_EN.m. If you do not specify outfile, the
component ID is prefixed to _EN.m to form the output file name.

-n Causes puttext to assign available index numbers to the input descriptions. If you
specify this flag, all the index number fields of the input file must be underscore
characters or blanks.

586 Commands Reference

puttext

Related Information

The following commands: "gettext" on page 370.

The discussion of puttext in AIX Operating System Programming Tools and Interfaces.

Commands 587

pwck

pwck

Purpose

Checks the password and group files for inconsistencies.

Syntax

~
/etc/pas=rSWd

pwck
file

~
/etc/gro=rup

grpck
file

OL805008

Description

Files

The pwck command scans the named file or the default file /etc/passwd and writes to
standard output any inconsistencies. The checks include validation of the number of
fields, login name, user ID, group ID, and existence of the login directory and optional
program name.

The grpek command scans the named file or the default file fete/group and writes to
standard output any inconsistencies. The checks include validation of the number of
fields, group name, group ID, and whether all login names appear in the password file.
grpck writes to standard output any group entries that do not have login names.

/etc/group
/etc/passwd

Related Information

The following commands: "groups" on page 385, "passwd" on page 546, and "users" on
page 802.

The discussion of passwords in Managing the AIX Operating System.

588 Commands Reference

pwd

TNL SN20-9861 (26 June 1987) to SC23-0790-0
pwd

Purpose

Displays the path name of the working directory.

Syntax

pwd ---l
OL805210

Description

The pwd command writes to standard output the full path name of your current directory
(from the root directory). All directories are separated by a / (slash). The root directory is
represented by the first /, and the last directory named is your current directory.

Related Information

The following command: "cd" on page 12l.

The fullstat and ffullstat system calls in AIX Operating System Technical Reference.

Commands 589

qdaemon

qdaemon

Purpose

Schedules jobs enqueued by the print command.

Syntax

qdaemon ----l

1 This command is not usually entered on the command line.

Description

Files

The qdaemon is a background process (usually started by the rc command file) that
schedules printing jobs enqueued by print.

/usr/lpd/qdir/*
/usr/lpd/stat/*
/usr/spool/qdaemon/*

Print requests.
Information on the status of the devices.
Temporary copies of files to be printed.

Related Information

The following commands: "lp" on page 459, "piobe" on page 557, and "print" on
page 566.

The qconfig file in AIX Operating System Technical Reference.

590 Commands Reference

OL805148

quiz

.
qUIZ

Purpose

Tests your knowledge.

Syntax

/usr/games/quiz
category1 - category2

OL805230

Description

Flags

The quiz game gives associative knowledge tests on various selectable subjects. It asks
about items chosen from categoryl and expects answers from category2. If you do not
specify the categories, quiz gives instructions and lists the available categories.

The quiz game gives the correct answer whenever you press the Enter key by itself. The
game ends when questions run out or when you press INTERRUPT (Alt-Pause); quiz
reports a score and exits.

-ifile Substitutes the named file for the standard index file.

Note: In the following syntax description, brackets are normally used to indicate
that an item is optional; a bold-faced bracket or brace, however, should be entered
as a literal part of the syntax. A vertical list of items indicates that one and only
one must be chosen. The lines in file must have the following syntax:

line category [:category] .. .
category alternate [lalternate] .. .
alternate [primary]
primary character

[category]
option

option = {category}

In an index file, the first category of each line must specify the name of an
information file (the information file contains the names of files with quiz material).

Commands 591

quiz

The remaining categories specify the order and contents of the data in each line of
the information file. The quiz data in an information files follows the same syntax.
A \ (backslash) is an escape character which allows you to quote syntactically
significant characters or to insert a new-line character (\n) into a line. When either
a question or its answer is blank, quiz does not ask it. The construct alab does not
work in an information file. Use arb}.

-t Provides a tutorial. Repeats missed questions and introduce new material
gradually.

Examples

1. To start a Latin-to-English quiz:

/usr/garnes/quiz latin english

The quiz command displays Latin words and waits for you to enter what they mean in
English.

2. To start an English-to-Latin quiz:

/usr/garnes/quiz english latin

3. To set up a Latin-English quiz, add the following line to the index file:

/usr/garnes/lib/quiz/latin:latin:english

This line specifies that the file / u s r / 9 arne s / 1 i b / qui z / 1 at i n contains information
about the categories 1 ati nand engl ish.

You can add new categories to the standard index file, /usr/games/lib/quiz/index, or
to an index file of your own. If you create your own index file, run the quiz command
with the -i file flag to give it your list of quiz topics.

4. This is a sample information file:

cor:heart
sacerdos:priest{ess}
quando:whenlsincelbecause
optat:{{s}he lit }[desireslwishesJ\
Idesi relwi sh
alb [u s I a I urn] : \., hit e

This information file contains Latin and English words. The: (colon) separates each
Latin word from its English equivalent. Items enclosed in { } (braces) are optional. A
I (vertical bar) separates two items when entering either is correct. The [] (brackets)
group items separated by vertical bars.

592 Commands Reference

Files

quiz

The first line accepts only the answer heart in response to the Latin word cor. The
second accepts either pri es t or pri es tes s in response to s acerdos. The third line
accepts when, since, or because for quando.

The \ (backslash) at the end of the fourth line indicates that this entry continues on
the next line. In other words, the fourth and fifth lines together form one entry. This
entry accepts any of the following in response to optat:

she desires it desires desire
she wishes it wishes wish
he desires desires
he wishes wishes

If you start a Latin-to-English quiz, then the last line of this sample information file
instructs quiz to ask you the meaning of a 1 bus. If you start an English-to-Latin quiz,
then quiz displays whi te and accepts al bus, al ba, or al bum for the answer.

If any of the characters {, }, [,], or I appear in a question item, then quiz gives the
first alternative of every I group and displays every optional group. Thus, the
English-to-Latin question for the fourth definition in this sample is she desi res.

/usr/games/lib/quiz/index
/usr / games/lib/ quiz/*

Commands 593

rc

rc

Purpose

Performs normal startup initialization.

Syntax

/etc/rc -l

1 This command is not usually run from the command line.
OL805339

Description

When the init process starts up the system in normal operating mode, it runs the command
file /ete/re to perform the necessary system initialization, including the enabling of
various loggers. If the system is being brought up with no file system checking, init passes
the argument m to re. If init determines that the root file system needs consistency
checking, it passes the argument d to re.

The contents of /ete/re may be installation specific, but there are a few things that it
should do:

• Run the fsek command to check the default file systems if re is passed the d flag.

• Mount the default file systems (note that the root file system is implicitly mounted).

• Purge temporary files.

• Start system demons.

• Enable default ports.

If all of the necessary operations complete successfully, the file exits with a zero return
code that allows init to start loggers to complete normal initialization and startup.

Related Information

The following commands: "fsek, dfsek" on page 333 and "init" on page 396.

The discussion of starting up the system in Managing the AIX Operating System.

594 Commands Reference

regcmp

regcmp

Purpose

Compiles patterns.

Syntax

regcmp~
OL805211

Description

Flag

The regcmp command compiles the pattern in file, placing its output in file.i.

In most cases, regcmp makes unnecessary the use of the regcmp system call in your C
programs, saving execution time and program size. The output of regcmp is C source
code. Make each file entry a C variable name, followed by one or more blanks, followed by
a pattern enclosed in double quotation marks (" II). Compiled patterns are initialized char
declarations. Thus, file.i can be included in C programs, and file.c can be a file parameter
to the cc command. The C program that uses regcmp output should use the regex
subroutine to apply it to a string. (See regcmp and regex in AIX Operating System
Technical Reference.)

Places the output in file.c

Related Information

The regcmp subroutine in AIX Operating System Technical Reference.

Commands 595

restore

restore

Purpose

Copies back files created by the backup command.

Syntax

one of

restore ---r=rl
L=IJ

restore - -x

restore

one of

~
l=BJ

restore --m

Description

-d -h
-v -q
-f device
-cnum

fi/esystem ~

fi/esystem ---l

OL805251

OL805352

OL805353

OL805441

The restore command reads backup files written by the backup command and copies them
back into the file system. There are four ways to use it:

• To display a table of contents for the backup (-T) or to display label information (-t)
• To restore individually named files (-x)

596 Commands Reference

Flags

TNL SN20-9861 (26 June 1987) to SC23-0790-0
restore

• To restore an entire file system (-r) or begin at an arbitrary volume number (-R).
• To restore an entire minidisk (-m).

If more than one diskette is required, restore reads the one mounted, then halts and
requests a new one. After inserting the new diskette, press the Enter key to continuing
restoring files.

Note: If the file system you are restoring is mounted and is not the root file
system, restore unmounts the file system before it performs an i-node restore and
then remounts the file system before quitting.

If the file systems you are restoring include the root file system, restore ensures
that the other file systems are not in use. If one is, it warns you of this and quits.

-Cnum Specifies the number of blocks to read in a single input operation. If you do not
specify this flag, restore selects a default value appropriate for the physical
device you have selected. Larger values of num result in longer physical
transfers from tape devices. restore always ignores the value of the -C flag
when it reads a diskette; the input is always read in clusters that occupy a
complete track.

-d Indicates that if file is a directory, all files in that directory should be restored.
In this case, the name of each restored file is always its name as shown by
restore -T, whether the backup was by name or by i-node. The file names
supplied need not be directories. Thus, for i-node backups:

restore -x a/b/file.c
creates a file whose name is its i-node number, while:

restore -xd a/b/file.c

creates a file named a/b/fi 1 e. c. With this flag, file names can include
pattern-matching characters, although you must quote these characters to
prevent their expansion by the shell.

Use this flag only when you are restoring by individual file name (-x).

-fdevice Specifies the local input device. By default, restore reads the device defined in
the backupdev entry of /etc/filesystems if you are are restoring an entire file
system and /dev/rfdO if you are restoring a mini disk image, restoring
individually named files, or displaying a table of contents or if no backupdev is
defined in /etc/filesystems. The restore command recognizes a special syntax
for the names of input files. If the device parameter is a range of names, for
example /dev/rfdO-3, restore automatically goes from one drive (in the range) to
the next. After using all of the specified drives, it stops and requests that
another diskette be inserted.

Commands 597

restore

-h Specifies that the access and modification times of restored files are to be set to
the time of restoration. (When restore is run under superuser authority, the
default action is to use the file access and modification times from the backup
medium.) If a restored file is an archive, the modification times in all the
member headers are also set to the time of restoration. You can specify this flag
only when you are restoring individually named files.

-m Restores an entire minidisk as an exact image.

Note: You can use this flag only with minidisks that are at least as large as the
original mini disk that was backed up. If the minidisk is larger than the original,
the leftover space becomes unusable after restoring the mini disk. You can use
restore -t to see how large a minidisk you need.

-q Specifies that the removable medium is ready to use. In this case, restore
proceeds without prompting you to prepare the removable medium.

-r Restores an entire file system. Use this flag with i-node backups only (see
"backup" on page 76). filesystem can be a device name (block or character
special file) or a directory name that restore looks up in jetcjfilesystems.

If you are restoring a full (level 0) backup, run the mkfs command to create an
empty file system before doing the restore. If you are restoring an incremental
backup at, say, level 2, run mkfs, then restore the appropriate level 0 backup,
then the level! backup, and finally the level 2 backup.

Warning: If you do not follow this procedure carefully, you can
ruin an entire file system. As an added safety precaution, run fsck
after you restore each backup level.

-R Restarts an aborted restore at a specified point. restore prompts you for the
starting volume number. This flag is invalid in combination with the -m flag.

-T Displays the backup file header and the names of the backed up files. If the
backup was made by name (backup -i), the names displayed are the ones you
provided to backup. If the backup was made by i-node, restore displays the
i-number of each file along with the file name. The names are relative to the
root directory of the file system backed up. The only exception is the root
directory itself, whose name is given as a slash (/).

-t Displays only the backup file header.

-v Reports the progress of the restoration as it proceeds.

-x Restores individually named files. The names must be in the same form as the
names shown by restore -T. With a name backup, restore gives the restored
file whatever name was supplied when the file was backed up. If the original
name was specified relative to the current directory, restore creates a file
relative to the current directory. restore automatically creates any needed

598 Commands Reference

restore

directories. With an i-node backup, the name of the restored file is the same as
its i-number. This flag is invalid with the -m flag.

Examples

1. To list the names of files previously backed up:

restore -T
If individual files were backed up, then only the file names are displayed. If an entire
file system was backed up, then the i-number is also shown.

Note: Unless you specify otherwise with the -f flag, restore reads the /dev/rfdO as
the default backup device.

2. To display technical information about a backup:

restore -t
This displays information including when the backup was made, which file system was
saved, and whether it is an individual file backup (Files backed up by name), a
minidisk backup (Files backed up by minidisk), or a file system backup (Files
backed up by inode).

Note: Files must be restored using the same method by which they were backed up.

3. To copy files to the main file system:

restore -x -v
This extracts all the files from the backup diskette and restores them to their proper
places in the file system (- x). This displays a progress report as each file is restored
(- v). If a file system backup is being restored, then the files are named with their
i-numbers.

4. To copy selected files:

restore -x -v /u/jim/manual/chapl
This extracts the file /u/jim/manual /chapl from the backup diskette and restores it.
To work properly, /u/jim/manual /chapl must be a name displayed by restore -T.

5. To copy all the files in a directory:

restore -x -d -v manual
This restores the directory manua 1 and all the files in it. A directory named manua 1 IS

created in the current directory to hold the files being restored.

Commands 599

restore

Files

6. To restore an entire file system backup:

mkfs /dev/hdl
restore -r -v /dev/hdl

This restores an entire file system backup onto /dev /hdl. It destroys and replaces
any file system that was previously stored on /dev /hdl. If the backup was made using
incremental file system backups, restore the backups in increasing backup-level order
(0, 1, 2 ...).

7. To restore a minidisk:

restore -m /dev/hdl

This restores the exact image of mini disk /dev/hdl. You can also identify the
mini disk by its stanza name in the /etc/filesystems file.

/ etc/filesystems
/dev/rfdO

Consulted for default parameters.
Default restore device.

Related Information

The following command: "backup" on page 76.

The discussion of filesystems and backup in A/X Operating System Technical Reference.

"Backing up and Restoring Files" in Using the A/X Operating System.

600 Commands Reference

rm

rm

Purpose

Removes files or directories.

Syntax

OL805212

Description

Flags

The rm (delete) command removes the entries for files from a directory. If an entry is the
last link to a file, it is destroyed. To remove a file, you must have write permission in its
directory, but neither read nor write permission for the file itself if you own it or are
acting with superuser authority.

If a file has no write permission and standard input is a work station, rm displays the file
permission code and reads a line from standard input. If that line begins with y, rm
deletes the file; otherwise it remains.

-f Does not prompt before removing a write-protected file.

-i Prompts you before deleting each file. When you use both -i and -r together, rm also
asks if you want to examine directories.

-r Permits recursive removal of directories and their contents (for cases where file is a
directory).

Examples

1. To delete a file:

rm myfi 1 e

If there is another link to this file, then the file remains under that name, but the name
myfi 1 e is removed. If myfi 1 e is the only link, the file itself is deleted.

Commands 601

rm

2. To delete a file silently:

rm -f core
This removes core without asking any questions or displaying any error messages.
This is normally used in shell procedures. It prevents confusing messages from being
displayed when deleting files that mayor may not exist.

3. To delete files one by one:

rm -i mydir/*
This interactively asks you if you want to remove each file. After each file name is
displayed, enter y to delete the file, or press Enter alone to keep it.

4. To delete a directory tree:

rm -ir manual

This recursively removes the contents of all subdirectories of manua 1, then removes
manua 1 itself, asking if you want to remove each file. For example:

You: rm -ir manual
System: di rectory manua 1 :

You: y
System: di rectory manual /draftl:

You: y
System: manual /draftl/chapterl:

You: y
System: manual /draftl/chapter2:

You: y
System: manual /draftl:

You: y
System: di rectory manual/draft2

You: y
System: manual /draft2:

You: n
System: manua 1 :

You: y

Here, rm first asks if you want it to search the directory manua 1. Because manua 1
contains directories, rm next asks for permission to search manual /draftl for files to
delete, and then asks if you want it to delete the files manual /draftl/chapterl and
manua 1/ draftl/ chapter2. rm next asks for permission to search the directory
manual /draft2, and then asks for permission to delete the directories
manual/draftl, manual/draft2, and manual. Because you denied permission to

602 Commands Reference

,/

remove manual /draft2, rm will not remove manua 1. Instead, you will see the
message rmdi r: manua 1 not empty.

Related Information

The following commands: "del" on page 234 and "In" on page 450.

The unlink system call in AIX Operating System Technical Reference.

rm

Commands 603

rmdel

rmdel

Purpose

Removes a delta from a Source Code Control System (SCCS) file.

Syntax

rmdel - -r SID T file =r
OL805213

Description

Flag

The rmdel command removes the delta specified by SID from each named Source Code
Control System (SeCS) file. You can remove only the most recently created delta in a
branch, or the latest trunk delta if it has no branches. In addition, the SIn you specify
must not be a version currently being edited for the purpose of making a delta. To remove
a delta, you must either own the SCCS file and the directory, or you must be the user who
created the delta you want to remove.

If you specify a directory in place of file, rmdel performs the requested actions on all
SCCS files (those with file names that have the s.prefix). If you specify a - (minus) in place
of file, rmdel reads standard input, and interprets each line as the name of an SCCS file.
rmdel continues to take input until it reads an end-of-file character (Ctrl-D).

-rSID Removes the delta SID from the SCCS file. This flag is required.

Related Information

The following commands: "delta" on page 236, "get" on page 359, "help" on page 391,
and "prs" on page 574.

The sccsfile file in AIX Operating System Technical Reference.

The discussion of SCCS in AIX Operating System Programming Tools and Interfaces.

604 Commands Reference

rmdir

TNL SN20-9861 (26 June 1987) to SC23-0790-0
rmdir

Purpose

Removes a directory.

Syntax

rmdir ~ directory T
OL805252

Description

The rmdir command removes a directory from the system. The directory must be empty
before you can remove it, and you must have write permission in its parent directory. Use
the Ii -1 command to see if the directory is empty.

Example

To empty and remove a directory:

rm mydir/*
rmdir mydir

mydir/.*

This removes the contents of mydi r, then removes the empty directory. The rm command
displays an error message about trying to remove the directories. (dot) and .. (dot dot),
and then rmdir removes them.

Note that rm mydi r/* mydi r/. * first removes files with names that do not begin with a
that dot, then those with names that do begin with a dot. You may not realize that the
directory contains file names that begin with a dot because the Ii command does not
normally list them.

Related Information

The following command: "rm" on page 60l.

The unlink and rmdir system calls in AIX Operating System Technical Reference.

Commands 605

runacct

runacct

Purpose

Runs daily accounting.

Syntax

/usr/lib/accl/runacct --{mmdd-(Y
state

Description

OL805253

The runacct command is the main daily accounting shell procedure. Normally initiated
by cron, runacct processes connect, fee, disk, queueing system and process accounting
data files. It also prepares summary files for the prdaily procedure or for billing purposes.

The runacct command protects active accounting files and summary files in the event of
run-time errors. It records its progress by writing descriptive messages into the file
/usr/adm/acct/nite/active. When runacct encounters an error, it writes a diagnostic
message to /dev/console, sends mail to users root and adm, and exits.

The runacct procedure also creates two temporary files, lock and lockl in the directory
/usr/adm/acct/nite, which it uses to prevent two simultaneous calls to runacct. It uses
the file lastdate (in the same directory), to prevent more than one invocation per day.

The runacct command breaks its processing into separate, restartable states. As it
completes each state, it writes the name of the next state in /usr/adm/acct/nite/statefile.
runacct processes the various states in the following order:

State

SETUP

WTMPFIX

CONNECT!

Actions

Moves the active accounting files to working files and restarts the
active files.

Verifies the integrity of the wtmp file, correcting date changes if
necessary.

Calls acctconl to produce connect session records.

606 Commands Reference

runacct

CONNECT2 Converts connect session records into total accounting records (tacct.h
format).

PROCESS Converts process accounting records into total accounting records
(tacct.h format).

MERGE Merges the connect and process total accounting records.

FEES Converts the output of chargefee into total accounting records (tacct.h
format) and merges them with the connect and process total accounting
records.

DISK Merges disk accounting records with connect, process, and fee total
accounting records.

QUEUEACCT Sorts the queue (printer) accounting records, converts them into total
accounting records (tacct.h format), and merges them with other total
accounting records.

MERGETACCT Merges the daily total accounting records in daytacct with the
summary total accounting records in /usr/adm/acct/sum/tacct.

CMS Produces command summaries in the file /usr/adm/acct/sum/cms.

USEREXIT If the shell file /usr/adm/siteacct exists, calls it at this point to perform
site-dependant processing.

CLEANUP Deletes temporary files and exit.

To restart runacct after a failure, first check the /usr/adm/acct/nite/active file for
diagnostic messages, then fix any damaged data files such as pacct or wtmp. Remove the
lock files and lastdate file (all in the /usr/adm/acct/nite directory), before restarting
runacct. You must specify the mmdd parameter if you are restarting runacct. It
specifies the month and day for which runacct is to rerun the accounting. runacct
determines the entry point for processing by reading statefile. To override this default
action, specify the desired state on the runacct command line. For a more detailed
discussion of restarting runacct, see Managing the AIX Operating System.

It is not usually a good idea to restart runacct in the SETUP state. Instead, perform the
setup actions manually and restart accounting with the WTMPFIX state, as follows:

runacct mmdd WTMPFIX
If runacct fails in the PROCESS state, remove the last ptacct file, because it will be

incomplete.

Examples

1. To start runacct:

nohup /usr/lib/acct/runacct 2> /usr/adm/acct/nite/accterr &

Commands 607

runacct

Files

This starts runacct in the background (&), ignoring all INTERRUPT and QUIT signals
(nohup). All standard error output is written to the file
/usr/adm/acct/nite/accterr.

2. To restart runacct:

nohup /usr/lib/acct/runacct 0601 2» /usr/adm/acct/nite/accterr &
This restarts runacct for the day of June 1 (0601). runacct reads the file
/usr/adm/acct/nite/statefile to find out the state to begin with. Standard error
output is added to the end of the file / us r / adm/ acct/ni tel accterr.

3. To restart runacct in a specific state, in this case the MERGE state:

nohup /usr/lib/acct/runacct 0601 MERGE 2» /usr/adm/acct/nite/accterr &

/usr/adm/wtmp
/usr/adm/pacct*
/usr / adm/ acct/nite/ daytacct
/usr/adm/qacct
/usr/adm/fee
/usr/ adm/ acct/ sum/*
/usr/adm/acct/nite/ptacct*.mmdd
/usr / adm/ acct/ni tel active
/usr/ adm/ acct/nite/lock*
/usr / adm/ acct/nite /lastda te
/usr/adm/acct/nite/statefile

Login/logout history file.
Process accounting file.
Disk usage accounting file.
Active queue accounting file.
Record of fees charge to users.
Command and total accounting summary files.
Concatenated version of pacct files.
runacct message file.
Prevent simultaneous invocation of runacct.
Contains last date runacct was run.
Contains current state to process.

Related Information

The following commands: "acct/*" on page 31, "acctcms" on page 36, "acctcom" on
page 38, "acctcon" on page 42, "acctmerg" on page 46, "acctprc" on page 48, "cron" on
page 172, and "fwtmp" on page 345.

The acct system call and the acct and utmp files in AIX Operating System Technical
Reference.

"Running System Accounting" in IBM RT PC Managing the AIX Operating System.

608 Commands Reference

sact

sact

Purpose

Displays current Source Code Control System (SCeS) file editing status.

Syntax

sact -.-- file r
OL805063

Description

The sact. command reads Source Code Control System (SCCS) files and writes to
standard output the contents, if any, for the p-file associated with file (see "sccs Files"
on page 360 for information on the contents of the p-file). If - (minus) is specified for file,
sact. reads standard input, and interprets each line as the name of an SCCS file. If file is
a directory, sact. performs its actions on all SCCS files (that is, those files with the s.
prefix).

Related Information

The following commands: "delta" on page 236, "get" on page 359, and "unget" on
page 790.

The sccsfile file in AIX Operating System Technical Reference.

The discussion of SCCS in AIX Operating System Programming Tools and Interfaces.

Commands 609

TNL SN20-9861 (26 June 1987) to SC23-0790-0
sadc

sadc

Purpose

Provides a system activity report package.

Syntax

/usr/lib/sa/sadc -(}{ L
interval - num outfile ~ ;

/usr/lib/sa/sa1-(L
interval - num ~ ,

1
/usr /lib/sa/sa2 ---1

See the sar command for the format and flag description.
Note that you cannot use the -0 and -f flags withsa2 .

Description

The operating system contains a number of counters that are incremented as various
system actions occur. They include the following:

• System unit utilization counters
• Buffer usage counters
• Disk and tape I/O activity counters
• TTY device activity counters
• Switching and system-call counters
• File-access counters
• Queue activity counters
• Inter-process communications counters

OL805254

The sadc command and the sal and sa2 shell procedures sample, save and process this
data.

Note: These commands only report on local activities.

610 Commands Reference

Files

sadc

sadc
The sadc command, the data collector, samples system data num times every interval
seconds. It writes in binary format to outfile or to the standard output. If you do not
specify interval or num, a special record is written. This facility is used at system startup
to mark the time when the counter restarts from zero.

sal
Use the shell procedure sal, a variant of sadc to collect and store binary data in the file
/usr/adm/sa/sadd, where dd is the day of the month. The interval and num parameters
specify that the record should be written num times at interval seconds. If you do not
specify these parameters, one record is written. You must have permission to write in the
directory /usr/adm/sa to use this command.

The sal command is designed to be started automatically by the cron command.

sa2
Use the shell procedure sa2, a variant of the sar command, to write a daily report in the
file /usr/adm/sa/sardd. See "sar" on page 614 for a description of the flags.

The sa2 command is designed to be started automatically by the cron command.

/usr/adm/sa/sadd
/usr/adm/sa/sardd
/tmp/sa.adrfl

Daily data file, dd represents the day of the month.
Daily report file, dd represents the day of the month.
Address file.

Related Information

The following commands: "cron" on page 172, "sag" on page 612, "sar" on page 614, and
"timex" on page 755.

Commands 611

TNL SN20-9861 (26 June 1987) to SC23-0790-0
sag

sag

Purpose

Displays a graph of system activity.

Syntax

-ccS08:00y-c;:e18:oY-C -f /usr/adm/sa/sadd r
sag -s hh -e hh

-f file --------'
-shh:mm -ehh:mm

... r----\ / -T$TERM

~ -j seconds ~ -Tworkstation

1 The default for -y is • % usr 0 100; % usr + % sys 0 100; % usr + % sys +
%wio 0 100'

OL805387

Description

Flags

The sag command displays a graph of system activity. It gets information either from the
daily activity file usr/adm/sa/sadd or from the binary data file selected by the -f flag.
You must have already created this file by running the sar command with the -0 flag. (See
"sar" on page 614.)

The sag command calls the sar command, selecting the desired data by string-matching
the data column header.

The sag command passes the first four of the following flags to sar in order to collect the
desired data for display. The last three flags specify plotting parameters.

-e hh[:mm] Selects data up to the time specified by hh[:mmD. The default time is
18:00.

612 Commands Reference

Files

sag

-f file Reads data from file. The default file is /usr/adm/sa/sadd, the current
daily data file.

-i seconds Selects data at intervals as close as possible to seconds.

-s hh[:mm] Selects data later than the specified time. Default is 08:00.

-T workstation Produces output suitable for workstation. (See "tplot" on page 762 for
known work stations.) If you do not specify a work station, sag uses the
value found in the shell variable $TERM.

-x spec Specifies the x axis. spec has the following form:

name [opname] ... [10 hi]

where name is a character string matching a column header in the
sar-created data file (with an optional device name in brackets), or it is
an integer value. op is +, -, *, or / surrounded by blanks, with up to
five names specified. Parentheses are not recognized and evaluation is
left to right. Note that + and - have precedence over * and I in
evaluating expressions. 10 and hi specify numeric scale limits. If these
limits are unspecified, sag gets these limits from the data.

-y spec Specifies the y axis. spec has the same form as x spec.

Specify only one spec for the x axis. If unspecified, the x axis assumes the time specified
with the -e and -s flags (or their defaults if they are not used) as x axis limits. You can
specify up to five specs separated by : (semicolons) for -yo If unspecified, the y axis has the
value:

-y "%usr 0 100; %usr + %sys 0 100; %usr + %sys + %wio 0 100"
If you include blanks or an escaped carriage return (\Enter) within the -x and -y specs,
enclose them in " " (double quotation marks).

/usr/adm/sa/sadd Daily data file for day dd.

Related Information

The following commands: "sar" on page 614 and "tplot" on page 762.

Commands 613

TNL SN20-9861 (26 June 1987) to SC23-0790-0
sar

sar

Purpose

Collects, reports, or saves system activity information.

Syntax

sor -A

-0

-b
-c
-k
-m
-q

-u
-v
-w
-y
-r

interval -C1~J
numberJ

sar --c -u ---A------0-C----, -:~::~~
,'--o----m----w'-r-J I=~~~: mm

Description

-b -q -y -shh: mm :ss
-c -u -r
-k -v

-e 18:00 ~-f/usr /adm/sa/sa dd ~

one of

OL805390

OL805:i69

The first format of the sar command writes to standard output the contents of selected
cumulative activity counters in the operating system. It writes information a total of
number times spaced interval seconds apart. The default value of number is l. You can
also save the collected data in the file specified by -0 file.

614 Commands Reference

Flags

TNL SN20-9861 (26 June 1987) to SC23-0790-0
sar

In the second format (with no sampling interval specified), sar extracts and writes to
standard output records previously saved in a file. This file can be either the one specified
by the -f flag or, by default, the standard system activity daily data file,
/usr/adm/sa/sadd, for the current day, dd.

You can select with flags the system activity you want information about. Not specifying
any flags selects only cpu activity. Specifying the -A flag selects all activities.

Note: This command only reports on local activities.

-a

-A

-b

-c

Reports use of file access system routines:

iget/s Calls per second to the i-node look-up routine.
namei/s Calls per second to the directory search routine.
dirblk/s Directory blocks read per second by nameiO.

Report all data.

Reports buffer activity for transfers, accesses, and cache hit ratios:

lread/s, lwrit/s Number of logical read/write requests per interval.
bread/s, bwrit/s Number of block read/write operations per interval.
%rcache, %wcache Cache hit ratios (for example, 1 - bread/lread).
pread/s, pwrit/s Read/writes per interval on seekable raw devices.

Reports system calls:

scall/s
rchar/s, wchar/s
sread/s, swrit/s
fork/s, 8xec/s

Total number of system calls per second.
Characters transferred per interval by read/write calls.

Specific system calls per second.

-e hh[:mm[:ss]]
Sets the ending time of the report. The default ending time is 18:00.

-f file Extracts records from file (created by -0 file). The default file is the current
daily data file, /usr/adm/sa/sadd.

-i seconds Selects data records at intervals as close as possible to the specified number of
seconds. Otherwise, sar reports all intervals found in the data file.

-k Reports kernel activity:

ksched/s Number of kernel processes assigned to tasks per second.
kproc-ov/s Number of overflows occurring between sampling points.
kexit/s Number of kernel processes terminating per second.

-m Reports message and semaphore activities:

msg/s
sema/s

IPC message primitives per second.
IPC semaphore primitives per second.

Commands 615

sar

Files

-0 file

-q

-r

Saves the readings in file in binary form. Each reading is in a separate record
and each record contains a tag identifying the time of the reading.

Reports average queue length while occupied, and percentage of time
occupied:

runq-sz, %runocc Runs queue of processes in memory and runable.

Reports VRM paging statistics:

slots
cycle/s
fault/s
odio/s

The number of free pages on the paging minidisk.
The number of page replacement cycles per second.
The number of page faults per second.
The number of nonpaging disk I/0s per second.

-8 hh[:mm[:ss]]

-u

-v

-w

-y

Sets the starting time of the data. That is, extract records time-tagged at or
following the time specified. The default starting time is 08:00.

Reports CPU activity (this flag is on by default):

%usr
%sys
%wio

010 idle

Percentage of CPU time devoted to the user.
Percentage of CPU time devoted to the kernel.
Percentage of CPU time waiting for block 1/0 to
complete.
Percentage of CPU time idle.

Reports status of text, process, i-node, and file tables:

text-sz, proc-sz,
inod-sz, file-sz
text-ov, proc-ov,
inod-ov, file-ov

Entries in use at each sample point for each table.

Overflows occurring at each sample point for each table.

Reports system switching activity:

pswch/s Process switches per second.

Reports TTY device activity:

rawch/s Tty raw input queue characters per second.
canch/s TTY canonical input queue characters per second.
outch/s TTY output queue characters per second.
revin/s TTY receive interrupts per second.
xmtin/s TTY transmit interrupts per second.
mdmin/s TTY modem interrupts per second.

I usr I adml sal sadd Daily data file, where dd are numbers representing the day of the
month.

616 Commands Reference

sar

Related Information

The following command: "sag" on page 612.

The discussion of monitoring system activity in Managing the AIX Operating System.

Commands 617

sccsdiff

sccsdiff

Purpose

Compares two versions of a Source Code Control System (SCCS) file.

Syntax

sccsdiff - -r SID1 - -r SlD2 ~ ::~ num ~ file --r

OL805258

Description

The sccsdiff command reads two versions of an sees file, compares them, and writes to
standard output the differences between the two versions. Any number of SCCS files can
be specified, but the same arguments apply to all files.

Flags

-p Pipes the output through pro

-rSIDl Specifies SIDl as one delta of the SCCS file for sccsdiff to compare.

-rSID2 Specifies SID2 as the other delta of the SCCS file for sccsdiff to compare.

-snum Specifies the file segment size for bdiff to pass to diff. This is useful when diff
fails due to a high system load.

Related Information

The following commands: "bdiff' on page 88, "get" on page 359, "help" on page 391,
and"pr" on page 561.

The sccsfile file in AIX Operating System Technical Reference.

The discussion of SCCS in AIX Operating System Programming Tools and Interfaces.

618 Commands Reference

sdb

sdb

Purpose

Provides a symbolic debugger for C and assembler programs.

Syntax

a.out-core--.------_

sdb
-w -w
-n kernel-image --ccore_.

object file --C'
core file

dirlist
OLS05214

Description

The sdb command provides a symbolic debugger to be used with C and assembler
programs. With it you can examine object and core files and provide a controlled
environment for running a program. You can set breakpoints at selected statements or run
the program one line at a time. You can debug using symbolic variables and instruct sdb
to display them in their correct format.

Normally, objectfile is an executable file produced by invoking cc with the -g flag. If you
have not compiled objectfile using the -g flag or if it is not executable (because of compiler
or loader errors), the symbolic capabilities of sdb are limited, but you can still examine the
file and debug the program. objectfile should always be in the same directory as the source
files used to construct it. Its default name is a.out.

The corefile parameter specifies a core image file. Its default is core. The system writes
out this core image of a process when it ends abnormally. Specifying - (minus) for corefile
instructs sdb to ignore any core image file that may be present. The colon-separated list of
directories specified by the dirlist parameter identifies the location of the source files used
to build corefile. The default is the current directory. If dirlist is the name of a file, the
contents of the file should be a colon-separated list of directory names.

While running, sdb always recognizes a current line and current file. If corefile exists,
sdb initially sets the current line and the current file to the line and the file that contains
the source statement at which the process ended. Otherwise, it sets them to the first line
in main and the file containing main. There is also a current function, which is the
function you are working with at any given time. You can change the current line, file, or
function with the e command.

Commands 619

sdb

Write variable names as you do in C language programs. Access variables local to a
function by using the form function:variable. The current function is the default function.
You can also specify a variable by its address. Since you can use all forms of integer
constants which are valid in C, addresses can be expressed as decimal, octal, or
hexadecimal values.

Refer to structure members as variable.member, pointers to structure members as
variable- > member, and array elements as variable[number].

If you use the form number. member or number- > member, sdb assumes number to be the
address of the last structure referred to. Generally, sdb interprets a structure as a set of
variables. Thus, it displays the values of all elements when you request it to display a
structure. If, however, you request the address of a structure, it displays this value and
not the addresses of individual elements.

Refer to elements of a multidimensional array as variable[number][number] or as
variable[number,number]. In place of number, use the form number;number to indicate a
range of values. You can also use an * (asterisk) to represent all legitimate values for a
subscript or omit subscripts to indicate the full range of values. As with structures, sdb
displays all the values of an array or of a section of an array if you omit trailing
subscripts. If you omit subscripts, it displays only the address of the array itself or of the
section specified.

Refer to a variable on the stack by using the form function:variable,. Here, number
specifies the variable's location on the stack, counting the top, or most recently pushed
variable, ao the GroL. Uoe Llii::; [ui' i'ecul'sivt:: fUJ.lctiull calls. Th6 Cui"i"6lit fulictiGli is thc
default.

Refer to line numbers as filename:number or function:number. The current file and current
function are the default values.

Note: Data stored in text sections is indistinguishable from functions.

Line number information in optimized functions is unreliable, and some information
may be missing.

Source line and local symbol information for routines in shared libraries is not
implemented, and these modules should not be compiled with the -g flag. Break
points may be set in these routines by address only, and code in shared library
modules may be single-stepped by instruction only.

The sdb command cannot comprehend a module in which C functions (as opposed to
declarations and preprocessor definitions) occur in include files.

620 Commands Reference

/

Flags

TNL SN20-9861 (26 June 1987) to SC23-0790-0
sdb

-n kernel-image Specifies the name of the running kernel (or the one running when
corefile was produced). This enables proper traces back through the
floating-point emulation code. /unix is the default value.

-w Allows overwriting of locations in o bjectfile.

-W Turns off the warnings normally given if source files cannot be found or
are newer than objectfile.

Subcommands

Examining Program Data
T Displays the top line of the stack trace.

t

variable/[nlfJ

Displays a stack trace of the program that ended abnormally.

Displays variable or n memory locations starting at the address of variable.

The 1 parameter selects the number of bytes in one memory location. Your
choices are:

b One byte
h Two bytes
1 Four bytes.

The f parameter selects the display format. This can be one of the
following:

a Displays all bytes from the address of the variable to the first null
byte.

c Displays a character value.
d Displays a decimal value.
r Displays a 32-bit, single-precision floating-point value.
g Displays a 64-bit, double-precision floating-point value.
I Interprets values as assembly language instructions and displays

numerically.
Interprets values as assembly language instructions and displays
them numerically and symbolically.

o Displays an octal value.
t Displays F if variable = 0; otherwise, displays T.
p Displays a pointer to a function.
s Treats variable as a string pointer and displays characters beginning

with the address to which it points and ending at the first null byte
reached.

u Displays an unsigned decimal value.

Commands 621

sdb

line? [Ill
variable?[lll

line = [Ill
variable = [Ill
number = [Ill

variable!value

x Displays a hexadecimal value.

If you do not specify n, I, or f, sdb chooses a value appropriate to variable
type as declared in the source file. Specifying a memory location size only
works with formats c, d, 0, u, and x. You can specify the number of
memory locations (n) to be displayed by the s or a formats. For strings
that contain two-byte extended characters, the font shift character is
represented by a backslash followed by lowercase s and the font shift
number. For example, \sl means that the current byte being displayed is a
font shift character. This form of representation for the font shift byte is
only available when a count is specified. However, if the first character
contained in the address specified by the a format is the second byte of a
two-byte extended character, then that byte is displayed without the
proper shift affixed to construct the whole two-byte sequence. The default
action for these formats is to display characters until either a null byte is
reached or 128 characters have been displayed. The command .J (dot
slash) redisplays the last variable.

You can use the special sh characters * (asterisk) and? (question mark)
in function and variable names, providing a limited form of pattern
matching. If you give no function name, global variables and variables
local to the current function are matched. If you specify a function name,
then only variables local to that function are matched. To match only
glohal variables, use the form :pattern.

The sdb command recognizes structures, arrays, and pointers so that all of
the following commands work:

array [2][3] /
sym. i d/
psym->usage/
xsym[20].p->usage/

Displays the value found in objectfile at the address selected by line or
variable (function name), using the specified length and format. The
default format is i.

Displays the address of variable or line or the value of numbe~ in the
specified length and format. The default is Ix. number = [Ill provides a
convenient way to convert decimal, octal, and hexadecimal values.

Sets variable to the given value. value may be a numeric or character
constant or another variable. Expressions that produce more than one
value, such as structures, are not allowed as value. However, variable may
be an expression which represents more than one variable, such as an
array or structure name.

622 Commands Reference

x

x

sdb

Specify a character constant with an initial' (single quote), for example,
'c. Numbers are treated as integers unless they contain a decimal point or
an exponent. In the latter case, they are treated as having the type
double. Register values are viewed as integers. If you give an address of a
variable, it is treated as the address of a variable of type into C
conventions are used in any type conversions that are necessary to
perform the indicated assignment.

Displays the machine registers and the current assembly language
instruction.

Displays the current assembly language instruction.

Displaying and Manipulating Source Files
e function
e file
e dir/
e dir file

/pattern/

?pattern?

p

z

w

number

number+

number-

Ctrl-D

Enter

Changes the current function, file, or directory. Specifying only function
also sets the current file to the one containing the selected function. sdb
reports the current function, file, or directory for any unspecified
parameters.

Searches forward from the current line for a line containing a string
matching pattern. The trailing / (slash) can be omitted. See "ed" on
page 280 for a discussion of pattern notation.

Searches backward from the current line for a line containing a string
matching pattern. The trailing? (question mark) can be omitted.

Displays the current line.

Displays the current line and the following nine lines. Sets the current
line to the last line displayed.

Displays the 10 lines around the current line (a window).

Sets the current line to number. Displays the new current line.

Advances the current line by the specified number of lines. Displays the
new current line.

Decreases the current line by the specified number of lines. Displays the
new current line.

Scrolls. Pressing Ctrl-D displays the next 10 lines of source or data.

If the previous command displayed a source line, pressing the Enter key
advances the current line by one line and displays the new current line. If
the previous command displayed a memory location, pressing the Enter
key displays the next memory location.

Commands 623

sdb

Controlling the Running of the Source Program
[num] r [p [P2] ...]
[num] R Runs the program with the given parameters. If you specify no parameters

with r, it reuses previously specified parameters. R runs the program with
no parameters. A parameter beginning with < (left angle bracket) or >
(right angle bracket) redirects input or output, respectively. If given, num
selects the number of breakpoints to be ignored.

[line] b [command[; command] ...]
Sets a breakpoint at the given line. If you specify a function name without
a line number, sdb places a breakpoint at the first line in the function,
even if it was not compiled with the -g flag. If you do not specify a line, a
breakpoint is placed at the current line. If you specify no commands, the
program stops running just before the breakpoint and returns control to
sdb. Otherwise sdb performs the specified commands when the breakpoint
is encountered, and then the program being debugged continues. If the k
command is specified, however, control returns to sdb.

B Lists the currently active breakpoints.

[line] d Deletes a breakpoint at the selected line. If you select no line, breakpoints
are deleted interactively. sdb displays each breakpoint location and reads
a line from standard input. If the line begins with a y or d, then it deletes
the breakpoint.

D Deletes all breakpoints.

[line] c [num]
[line] C [num]

[line] g [num]

I

i
1

Continues running program after a breakpoint or an interrupt. C
continues after resetting the signal that caused the program to stop. c
ignores the signal. An optional num selects the number of breakpoints to
ignore. If you specify a line, sdb places a temporary breakpoint at the line
and continues the program. It deletes the breakpoint when the command
finishes.

Continues after a breakpoint, with execution resumed at the given line.
num specifies how many breakpoints to ignore.

Displays the last executed line.

Runs the program one machine level instruction at a time, ignoring the
signal that stopped the program (i) or passing the signal back to the
program (I).

624 Commands Reference

s [num]
S [num]

sdb

Runs the program for one or the specified number of lines. S is equivalent
to s except that it does not stop within called functions. Use S if you are
confident that the called function works, but want to test the calling
routine.

variable$m [num]
address:m [num] Runs the program until the specified location is modified with a new

value or is modified a specified num of times. The variable must be
accessible from the current function.

line a

[level] v

If line is of the form function:number, this command has the effect of the
sdb subcommand: line b 1. If line is of the form function:, it has the
effect of the sdb subcommand: function: b T.

Toggles verbose mode, for use with the S, s or m commands. If you omit
level, then just the current source file or subroutine name is displayed
when either changes. If level is 1 or greater, each C source line is
displayed before it is executed; if level is 2 or greater, each assembler
statement is also displayed. If verbose mode is on for any level, another v
turns it off.

function(p [p ... D[ff]

k

M

Runs the named function, passing to it the specified parameters. These
can be integer, character, or string constants or the names of variables
accessible to the current function. You can specify the format of displayed
values. The default format is d (decimal).

Kills the program being debugged.

Displays the address maps. Program addresses are mapped to file
addresses using two field triples: bl, el, fl and b2, e2, f2. The fl field is the
length of the header at the beginning of the file; the f2 field is the
displacement from the beginning of the file to the data. For a plain
executable file with mixed text and data, this is the same as the length of
the header; for shared text and split instruction/data files, this is the
length of the header plus the size of the text portion.

The band e fields are the starting and ending locations for a segment.
Given an address A, calculate its location in the file (either a.out or core)
as follows:

If bl < A < el
then file address = (A-bl) fl

If b2 < A < e2
then file address = (A-b2) f2

Commands 625

sdb

Files

M[?/][*] b e f Records new values for the address map. The parameters? and / specify
the text and data maps respectively. The first segment is changed unless
you specify *, in which case the second segment is changed. (These
segments differ only in programs with split instruction and data space. In
this case, use the second segment to examine the data section of the a.out
file rather than the data section of the core image file.) If you give fewer
than three values, the remaining map parameters are left unchanged.

" string Displays the given string. sdb recognizes C escape sequences of the form
\character.

!AIX-command Performs the specified AIX-command.

<file

> file

q

Reads commands from file until reaching the end of file and then continues
to accept commands from standard input. When a command in such a file
tells sdb to display a variable, the variable name is displayed along with
the value. This command cannot be nested.

Redirects standard output to file.

Exits the debugger.

Debugging the Debugger

Q
V

a.out, core

Displays a list of functions and files being debugged.
Displays the version number.

Related Information

The following commands: "cc" on page 112, "ed" on page 280, and "sh" on page 637.

The a.out and core files in AIX Operating System Technical Reference.

The "Overview of International Character Support" in Managing the AIX Operating
System.

The topic "Debugging Programs" in AIX Operating System Programming Tools and
Interfaces.

626 Commands Reference

sdiff

sdiff

Purpose

Compares two files and displays the differences in a side-by-side format.

Syntax

sdiff ir<ne of -w130 ~- file 1 - file2--l

-I -w num ~-o outfile J
-s

OL805301

Description

Flags

The sdiff command reads filel and file2, uses diff to compare them, and writes the results
to standard output in a side-by-side format. sdiff displays each line of the two files with a
series of blanks between them if the lines are identical, a < (less than sign) in the field of
blanks if the line only exists in filel, a > (greater than sign) if the line only exists in file2,
and a I (vertical bar) for lines that are different.

When you specify the -0 flag, sdiff produces a third file by merging filel and file2
according to your instructions.

-1 Displays only the left side when lines are identical.

-0 outfile Creates a third file, outfile, by a controlled line-by-line merging of file 1 and
file2. The following subcommands govern the creation of this file:

1 Adds the left side to outfile.

r Adds the right side to outfile.

s Stops displaying identical lines.

v Begins displaying identical lines.

Commands 627

sdiff

-s

-w num

el
er
eb
e Starts ed with the left side, the right side, both sides, or an empty

file, respectively.

Each time you exit from ed, sdiff writes the resulting edited file to
the end of outfile. If you fail to save the changes before exiting,
sdiff writes the initial input to outfile.

q Exits the program.

Does not display identical lines.

Sets the width of the output line to num, 130 characters, by default.

Examples

1. To print a comparison of two files:

sdiff chapl.bak chapl print

This prints a side-by-side listing that compares each line of chapl. bak and chapl.
The I pri nt sends the listing to the print command. sdiff assumes that your printer
has wide paper (130 columns).

2. To display only the lines that differ:

sdiff -s -w 80 chapl.bak chapl
This displays the differences at the work station. The -w 80 sets page width to 80
columns. The -s flag tells sdiff not to display lines that are identical in both files.

3. To selectively combine parts of two files:

sdiff -s -w 80 -0 chapl.combo chapl.bak chapl
This combines chapl.bak and chapl into a new file called chapl.combo. For each
group of differing lines, sdiff asks you which group to keep or whether you want to
edit them using ed.

Related Information

The following commands: "diff' on page 246 and "ed" on page 280.

628 Commands Reference

sed

sed

Purpose

Provides a stream editor.

Syntax

script
sed -8 _" script II

-f- sfile

OL805302

Description

The sed command modifies lines from the specified file according to an edit script and
writes them to standard output. The sed command includes many features for selecting
lines to be modified and making changes only to the selected lines.

The sed command uses two work spaces for holding the line being modified: the pattern
space, where the selected line is held, and the hold space, where a line can be stored
temporarily.

An edit script consists of individual subcommands, each one on a separate line. The
general form of sed subcommands is:

[address-range] function [modifiers]

The sed command processes each input file by reading an input line into a pattern space,
applying all sed subcommands in sequence whose addresses select that line, and writing
the pattern space to standard output. It then clears the pattern space and repeats this
process for each line in the input file. Some of the subcommands use a hold space to save
all or part of the pattern space for subsequent retrieval.

When a command includes an address, either a line number or a search pattern, only the
addressed line or lines is affected by the command. Otherwise, the command is applied to
all lines.

An address is either a decimal line number, a $ (dollar sign), which addresses the last line
of input, or a context address. A context address is a regular expression similar to those
used in ed except for the following differences:

Commands 629

sed

Flags

• You can select the character delimiter for patterns. The general form of the expression
is:

\?pattern?
where? is a character delimiter you select. This delimiter cannot be a two-byte
international character support extended character. The default form for the pattern
IS:

/pattern/
• The sequence \n matches a new-line character in the pattern space, except the

terminating new line.

• A. (dot) matches any character except a terminating new-line character. That is,
unlike ed, which cannot match a new-line character in the middle of a line, sed can
match a new-line character in the pattern space.

Certain commands allow you to specify one line or a range of lines to which the command
should be applied. These commands are called addressed commands. The following rules
apply to addressed commands:

• A command line with no address selects every line.

• A command line with one address, expressed in context form, selects each line that
matches the address.

• A command line with two addresses separated by commas selects the entire range from
the first line that matches the first address through the next line that matches the
second. (If the second address is a number less than or equal to the line number first
selected, only one line is selected.) Thereafter the process is repeated, looking again
for the first address.

Note: The text parameter accompanying the a\, c\, and i\ commands can continue onto
more than one line provided all lines but the last end with a \ to quote the new-line
character. Backslashes in text are treated like backslashes in the replacement string of an
s command and can be used to protect initial blanks and tabs against the stripping that is
done on every script line. The rfile and wfile parameters must end the command line and
must be preceded by exactly one blank. Each wfile is created before processing begins.

-e "script" Uses the file script as the editing script. If you are using just one -e flag and
no -f flag. the -e flag may be omitted.

-f sfile Uses sfile as the source of the edit script. sfile is a prepared set of editing
commands to be applied to file.

-n Suppresses all information normally written to standard output.

630 Commands Reference

sed

Subcommands

In the following list of functions, the maximum number of permissible addresses for each
function is indicated in parentheses. The sed script subcommands are as follows:

(1) a\
text

(2)b[label]

(2)c\
text

(2)d

(2)D

(2)g

(2)G

(2)h

(2)H

(1)i\
text

(2)1

(2)n

(2)N

(2)p

(2)P

(l)q

(2)r rfile

Places text on the output before reading the next input line.

Branches to the: command bearing the label. If label is empty, it branches
to the end of the script.

Deletes the pattern space. With 0 or 1 address or at the end of a 2-address
range, places text on the output. Starts the next cycle.

Deletes the pattern space. Starts the next cycle.

Deletes the initial segment of the pattern space through the first new-line
character. Starts the next cycle.

Replaces the contents of the pattern space by the contents of the hold space.

Appends the contents of the hold space to the pattern space.

Replaces the contents of the hold space by the contents of the pattern space.

Appends the contents of the pattern space to the hold space.

Writes text to standard output before reading the next line into the pattern
space.

Writes the pattern space to standard output showing nondisplayable
characters as two-digit octal values. Long lines are folded.

Writes the pattern space to standard output. Replaces the pattern space
with the next line of input.

Appends the next line of input to the pattern space with an embedded
new-line character. (The current line number changes.) You can use this to
search for patterns that may be split onto two lines.

Writes the pattern space to standard output.

Writes the initial segment of the pattern space through the first new-line
character to standard output.

Branches to the end of the script. Does not start a new cycle.

Reads the contents of rfile. Places contents on the output before reading the
next input line.

Commands 631

sed

(2)s/pattern/replacement/flags
Substitutes the replacement string for the first occurrence of the pattern in
the pattern space. Any character appearing after the s can substitute for
the / separator.

You can add zero or more of the following flags:

g Substitutes all nonoverlapping instances of the pattern rather than just
the first one.

p Writes the pattern space to standard out if a replacement was made.

w wfile
Writes the pattern space to wfile if a replacement was made. Appends
the pattern space to wfile. If wfile was not already created by a
previous write by this sed script, sed creates it.

(2)tlabel Branches to :label in the script file if any substitutions were made since the
most recent reading of an input line execution of a t subcommand. If you do
not specify label, control transfers to the end of the script.

(2)wwfiIe Appends the pattern space to wfile.

(2)x Exchanges the contents of the pattern space and the hold space.

(2)y /patternl /pattern2/

(2)!sed-cmd

(O):label

(1) =

(2){subcmd

Replaces all occurrences of characters in patternl with the corresponding
characters pattern2. The byte lengths of patternl and pattern2 must be
equal.

Applies the specified sed subcommand only to lines not selected by the
address or addresses.

This script entry simply marks a branch point to be referenced by the band
t commands. This label can be any sequence of eight or fewer bytes.

Writes the current line number to standard output as a line.

Groups subcommands enclosed in {} (braces).

632 Commands Reference

sed

Examples

1. To perform a global change:

sed "s/happy/enchanted/g" chap1 >chap1.new

This replaces each occurrence of happy found in the file chap1 with enchanted, and
puts the edited version in a separate file named chap 1. new. The g at the end of the s
subcommand tells sed to make as many substitutions as possible on each line. Without
the g, sed replaces only the first happy on a line.

The sed stream editor operates as a filter. It reads text from standard input or from
the files named on the command line (chap1 in this example), modifies this text, and
writes it to standard output. Unlike most editors, it does not replace the original file.
This makes sed a powerful command when used in pipelines.

2. To use sed as a filter in a pipeline:

pr chap2: sed lis/Page *[0-9J*$/(&)/": print

This encloses the page numbers in parentheses before printing chap2. The pr
command puts a heading and page number at the top of each page, then sed puts the
page numbers in parentheses, and the print command prints the edited listing.

The sed pattern /Page * [0-9J *$/ matches page numbers that appear at the end of a
line. The s subcommand changes this to (&), where the & (ampersand) stands for the
page number that was matched.

3. To display selected lines of a file:

sed -n "/food/p" chap3

This displays each line in chap3 that contains the word food. Normally, sed copies
every line to standard output after it is edited. The -n flag stops sed from doing this.
You then use subcommands like p to write specific parts of the text. Without the -n,
this example would display all the lines in chap3, and it would show each line
con taining f 00 d twice.

4. To perform complex editing:

sed -f script. sed chap4 >chap4.new

It is always a good idea to create a sed script file when you want to do anything very
complex. You can then test and modify your script before using it. You can also reuse
your script to edit other files. Create the script file with an interactive text editor.

Commands 633

sed

5. A sample sed script file:

:join
/\\$/{N
s/\\\n/ /
b join
}

This sed script joins each line that ends with a \ (backslash) to the line that follows it.

First, the pattern /\\$/ selects a line that ends with a \ for the group of commands
enclosed in { }. The N subcommand then appends the next line, imbedding a new-line
character. The s/\\\n/ / deletes the \ and imbedded new-line character. Finally,
b j oi n branches back to the label: j oi n to check for a \ at the end of the newly
joined line. Without the branch, sed writes the joined line and read the next one
before checking for a second \.

Note: The N subcommand causes sed to stop immediately if there are no more lines of
input (that is, if N reads the end-of-file character). It does not copy the pattern space
to standard output before stopping. 'rhis means that if the last line of the input ends
with a \, then it is not copied to the output.

Related Information

The following commands: "awk" on page 70, "ed" on page 280, and "grep" on page 381.

634 Commands Reference

/

Isetdma

I Purpose

TNL SN20-9861 (26 June 1987) to SC23-0790-0
setdma

Sets the DMA channel adapter of the specified adapter.

I Syntax

one of

setdma

OL805466

I Description

The setdma command sets the DMA channel of the specified adapter. eesdi 0 sets the
DMA adapter channel to O. eesdi 1 sets the DMA adapter channel to 1.

I Related Information

Installing and Customizing the AIX Operating System.

Commands 634.1

TNL SN20-9861 (26 June 1987) to SC23-0790-0
setdma

634.2 Commands Reference

setmnt

setmnt

Purpose

Creates mount table.

Syntax

setmnt -l
OL805062

Description

The setmnt command reads lines from standard input and writes the /etc/mnttab table to
standard output (see the mnttab file in AIX Operating System Technical Reference). The
/etc/mmttab is needed for both the mount and unmount commands. setmnt creates a
mnttab entry for each line read. Input lines have the format:

filesys directory

where filesys is the name of the file system's special file and directory is the root name of
that file system. Thus, filesys and directory become the first two strings in the mnttab
entry. filesys and directory must not be longer than 100 characters.

The setmnt command enforces an upper limit on the maximum number of mnttab entries.

Examples

To set the mount table after it has been destroyed or made invalid:

setmnt «end
/dev/hdl /u
/dev/fdO /a
/dev/fdl /b
end

This sets the mount table to show /dev/hdl mounted on /u, /dev/fdO on la, and /dev/fdl
on lb.

The «end and end define a Here Document, which uses the text entered before the end
line as the standard input for the setmnt command. For more details, see "Inline Input
Documents" on page 650.

Commands 635

setmnt

Files

/etc/mnttab

Related Information

The mnttab file in A/X Operating System Technical Reference.

636 Commands Reference

sh

sh

Purpose

Interprets commands read from a file or entered at the keyboard.

Syntax

one of
a n
e t
f u
h v
k x

1 Do not put a blank between these items.

Description

file

one of

-c cmdstring
-s

OL805425

The sh command is a system command interpreter and programming language. It is not a
part of the operating system kernel, but an ordinary user program that reads commands
entered at the keyboard and arranges for their execution. In addition, it can read
commands that you have saved in a file. Such a file is usually called a shell procedure or
a command file. For a complete description of how to write shell procedures to take
advantage of this useful tool, see Using the AIX Operating System.

A restricted version of shell (the rsh command) is available that allows you to create user
environments with a limited set of privileges and capabilities. See "Restricted Shell" on
page 658 for additional information on the restricted shell.

Commands
A simple command is a sequence of words separated by blanks or tabs. A word is a
sequence of characters and/or numerals that contains no un quoted blanks. The first word
in the sequence (numbered as 0), usually specifies the name of a command. Any remaining
words, with a few exceptions, are passed to that command.

The value of a simple command is its exit value if it ends normally or (octal) 200 status if
it ends abnormally. For a list of status values, see the signal system call in AIX Operating
System Technical Reference.

Commands 637

sh

A command is either a simple command or a control command (see "Control Commands"
on page 653).

A pipeline is a sequence of one or more commands separated by a I (vertical bar) or, for
historical compatibility, by a " (circumflex). In a pipeline, the standard output of each
command becomes the standard input of the next command. Each command runs as a
separate process, and the shell waits for the last command to end. A filter is a command
that reads its standard input, transforms it in some way, then writes it to its standard
output. A pipeline normally consists of a series of filters. Although the processes in a
pipeline (except the first process) can execute in parallel, they are synchronized to the
extent that each program needs to read the output of its predecessor.

The exit value of a pipeline is the exit value of the last command.

A list is a sequence of one or more pipelines separated by ; (semicolon), & (ampersand), &&
(two ampersands), or II (two vertical bars) and optionally ended by a ; (semicolon) or an &
(ampersand). These separators and terminators have the following effects:

Causes sequential execution of the preceding pipeline (the shell waits for the
pipeline to finish).

& Causes asynchronous execution of the preceding pipeline (the shell does not wait
for the pipeline to finish).

&& Causes the list following it to be executed only if the preceding pipeline returns a
zero exit value.

II Causes the list following it to be executed only if the preceding pipeline returns a
nonzero exit value.

Note: The cd command is an exception. If it returns a nonzero exit value, no
subsequent commands in a list are executed, regardless of the separator characters.

The; and & separators have equal precedence, as do && and II. The single-character
separators have lower precedence than the double-character separators. An unquoted
new-line character following a pipeline functions the same as a ; (semicolon).

The shell treats as a comment any word that begins with a # character and ignores that
word and all characters following up to the next new-line character.

Command Execution
Each time the shell executes a command, it carries out the substitutions discussed in the
following text. If the command name matches one of the built-in commands discussed in
"Built-in Commands" on page 654, it executes it in the shell process. If the command name /
does not match a built-in command but matches the name of a defined function, it executes
the function in the shell process. The shell sets the positional parameters to the
parameters of the function.

If the command name matches neither a built-in command nor the name of a defined
function and the command names an executable file that is a compiled (binary) program,

638 Commands Reference

sh

the shell (as parent) spawns a new (child) process that immediately runs the program. If
the file is marked executable but is not a compiled program, the shell assumes that it is a
shell procedure. In this case, the shell spawns another instance of itself (a subshell), to
read the file and execute the commands included in it (note how this differs from the
execution of functions). The shell also executes a parenthesized command in a subshell
(see page 654). From your point of view as a user, a compiled program is run in exactly the
same way as a shell procedure.

The shell normally searches for commands in four places in the file system. The shell first
looks for the command in the /bin directory. If it does not find the command there, it
looks in the /usr/bin directory. If this also fails, it looks in the fete directory and then,
finally, in the current directory. You can also give a specific path name when you invoke
a command, for example fbi n/ sort, in which case .the shell does not search any
directories other than the one you specify in the path name. If the command name
contains a / (slash), the shell does not use the search path (note that the restricted shell
will not execute such commands). You can give a full path name that begins with the root
directory (as in fbi n/sort), or a path name relative to the current directory, for example
bi n/myfi 1 e. In this last case, the shell looks in the current directory for a directory
named bin and in that directory for my f i 1 e.

You can change the particular sequence of directories searched by resetting the PATH
variable (page 646).

The shell remembers the location in the search path of each executed command (to avoid
unnecessary execs later). If the command was found in a relative directory (one whose
name does not being with I), the shell must redetermine its location whenever the current
directory changes. The shell forgets all remembered locations whenever you change the
PATH variable or execute the hash -r command (page 655).

Signals
The shell ignores INTERRUPT and QUIT signals for an invoked command if the command
is terminated with a & (that is, if it is running in the background). Otherwise signals have
the values inherited by the shell from its parent, with the exception of signal 11 (see also
the built-in trap command on page 657).

The . profile File
When you log in, the shell is called to read your commands. Before it does that, however,
it checks to see if a file named fete/profile exists on the system, and if it does, it reads
commands from it (this file should set variables needed by all users). After this, the shell
looks for a file named .profile in your login directory. If it finds one, it executes
commands from it. Finally, the shell is ready to read commands from your standard input.

Commands 639

sh

File-name Substitution
Command parameters are very often file names. You can automatically produce a list of
file names as parameters on a command line by specifying a pattern that the shell matches
against the file names in a directory.

Most characters in such a pattern match themselves, but you can also use some special
pattern-matching characters in your pattern. These special characters are:

*
?

[...]
[! ...]

Matches any string, including the null string.

Matches anyone character.

Matches anyone of the characters enclosed in square brackets.

Matches any character other than one of the characters that follow the
exclamation mark within square brackets.

Inside square brackets, a pair of characters separated by a - (minus) specifies a set of all
characters lexically within the inclusive range of that pair, according to the current
collating sequence (see "ctab" on page 204). The NLCTAB environment variable controls
the collating sequence.

The current collating sequence may group characters into equivalence classes for the
purpose of defining the end points of a range of characters. For example, if the collating
sequence defines the lexical order to be AaBbCc . . . and groups upper- and lowercase
characters into equivalence classes, then all the following have the same effect: [a-c],
[A-C], [a-C], and [A-c].

Pattern matching has some restrictions. If the first character of a file name is a . (dot), it
can be matched only by a pattern that literally begins with a dot. For example, * matches
the file names myfi 1 e and yourfi 1 e but not the file names. myfi 1 e and .yourfi 1 e.
To match these files, use a pattern such as the following:

.*file

If a pattern does not match any file names, then the pattern itself is returned as the result
of the attempted match.

File and directory names should not contain the characters *, ?, [, or] because this can
cause infinite recursion (that is, infinite loops) during pattern-matching attempts.

640 Commands Reference

sh

Shell Variables and Command-Line Substitutions
The shell has several mechanisms for creating variables (assigning a string value to a
name). Certain variables, positional parameters and keyword parameters, are normally
set only on a command line. Other variables are simply names to which you or the shell
can assign string values.

Positional Parameters

When you run a shell procedure, the shell implicitly creates positional parameters that
reference each word on the command line by its position on the command line. The word
in position 0 (the procedure name), is called $0, the next word (the first parameter) is
called $1, and so on up to $9. To refer to command line parameters numbered higher than
9, use the built-in shift command (page 656).

You can also assign values to these positional parameters explicitly by using the built-in
set command (page 656).

User-defined Variables

The shell also recognizes alphanumeric variables to which string values can be assigned.
You assign a string value to a name, as follows:

name=string

A name is a sequence of letters, digits, and underscores that begins with an underscore or
a letter. To use the value that you have assigned to a variable, add a $. (dollar sign) to the
beginning of its name. Thus $name yields the value string. Note that no blanks surround
the = (equal sign) in an assignment statement. (Positional parameters cannot appear in a
assignment statement; they can only be set as described earlier.) You can put more than
one assignment on a command line, but remember: the shell performs the assignments
from right to left.

If you surround string with quotation marks, either double or single (" " , '), the shell
does not treat blanks, tabs, semicolons, and new-line characters within it as word
delimiters but imbeds them literally in the string.

If you surround string with double quotation marks (" "), the shell still recognizes variable
names in the string and performs variable substitution; that is, it replaces references to
positional parameters and other variable names that are prefaced by $ with their
corresponding values, if any. The shell also performs command substitution (see
"Command Substitution" on page 647) within strings that are surrounded by double
quotation marks.

If you surround string with single quotation marks (' '), the shell does no variable or
command substitution within the string. The following sequence illustrates this difference:

Commands 641

sh

You: stars=*****
asterisksl="Add $stars"
asterisks2='Add $stars l

echo $asterisksl
Display: Add *****

You: echo $asterisks2
Display: Add $s ta rs
The shell does not reinterpret blanks in assignments after variable substitution (see
"Blank Interpretation" on page 653). Thus the following assignments result in $fi rst
and $second having the same value:

first='a string with embedded blanks '
second=$first
When you reference a variable, you can enclose the variable name (or the digit designating
a positional parameter) in {} (braces) to delimit the variable name from any following
string. In particular, if the character immediately following the name is a letter, digit, or
underscore and the variable is not a positional parameter, then the braces are required:

You: a = I T his i s a I
echo "${a}n example"

Display: Thi sis an examp 1 e
You: echo II $a tes t II

Display: T his i sat est
See "Conditional Substitution" on page 643 for a different use of braces in variable
substitutions.

A Command's Environment

All the variables (with their associated values) that are known to a command at the
beginning of its execution constitute its environment. This environment includes
variables that a command inherits from its parent process and variables specified as
keyword parameters on the command line that calls the command.

The shell passes to its child processes the variables that have been named as arguments to
the built-in export command. export places the named variables in the environments of
both the shell and all its future child processes.

Keyword parameters are variable-value pairs that appear in the form of assignments,
normally before the procedure name on a command line (but see also the -k flag on page
656). Such variables are placed in the environment of the procedure being called.

642 Commands Reference

sh

For example, given the following simple procedure that echoes the values of two variables
(saved in a command file named key_command):
key_command
echo $a $b

the following command lines produce the output shown:

You:

Display:

You:

Display:

a=keyl b=key2 key_command
keyl key2
a=tom b=john key_command
tom john

A procedure's keyword parameters are not included in the parameter count stored in $#.
A procedure can access the values of any variables in its environment; however, if it
changes any of these values, these changes are not reflected in the shell environment.
They are local to the procedure in question. To place these changes in the environment
that the procedure passes to its child processes, you must export these values within that
procedure.

To obtain a list of variables that have been made exportable from the current shell, enter:

export

(You will also get a list of variables that have been made readonly.) To get a list of
name-value pairs in the current environment, enter:

env

Conditional Substitution

Normally, the shell replaces $variable with the string value assigned to variable, if there is
one. However, there is a special notation that allows conditional substitution, depending
on whether the variable is set and/or not null. By definition, a variable is set if it has ever
been assigned a value. The value of a variable can be the null string, which you can
assign to a variable in anyone of the following ways:

A=
bcd=""
Efg= I I

set I I 1111

The first three of these examples assign the null string to each of the corresponding
variable names. The last example sets the first and second positional parameters to the
null string and unsets all other positional parameters.

Commands 643

sh

The following is a list of the available expressions you can use to perform conditional
substitution:

$ {variable-string} If the variable is set, substitute the value of variable in place of this
expression. Otherwise, replace this expression with the value of
string.

$ {variable:-string} If the variable is set and is not null, substitute the value of variable
in place of this expression. Otherwise, replace this expression with
the value of string.

${ variable = string} If the variable is set, substitute the value of variable in place of this
expression. Otherwise, set variable to string and then substitute the
value of the variable in place of this expression. You cannot assign
values to positional parameters in this fashion.

${variable: = string} If the variable is set and is not null, substitute the value of variable
in place of this expression. Otherwise, set variable to string and
then substitute the value of the variable in place of this expression.
You cannot assign values to positional parameters in this fashion.

$ {variable?string} If the variable is set, substitute the value of variable in place of this
expression. Otherwise, display a message of the form:

${ variable:?string}

variable: string

and exit from the current shell (unless the shell is the login shell).
If you do not specify string, the shell displays the following message:

variable: parameter null or not set

If the variable is set and not null, substitute the value of variable in
place of this expression. Otherwise, display a message of the form:

variable: string

and exit from the current shell (unless the shell is the login shell).
If you do not specify string, the shell displays the following message:

variable: parameter null or not set

${ variable + string} If the variable is set, substitute the value of string in place of this
expression. Otherwise, substitute the null string.

${variable: + string} If the variable is set and not null, substitute the value of string in
place of this expression. Otherwise, substitute the null string.

644 Commands Reference

sh

In conditional substitution, the shell does not evaluate string until it uses it as a
substituted string, so that, in the following example, the shell executes the pwd command
only if d is not set or is null:

echo ${d:-'pwd'}

Variables Used by the Shell

The shell uses the following variables. The shell sets some of them, and you can set or
reset all of them:

CDPATH The search path for the cd (change directory) command (see the PATH
variable in the following list for an explanation of search paths).

HOME The name of your login directory, the directory that becomes the current
directory upon completion of a login. The login program initializes this
variable. The cd command uses the value of $HOME as its default value.
If you use this variable in your shell procedures rather than using explicit
full path name, your procedures run even if your login directory is
changed or if another user runs them.

LOGNAME Your login name, marked readonly in the fete/profile file.

MAIL The path name of the file used by the mail system to detect the arrival of
new mail. If MAIL is set, the shell periodically checks the modification
time of this file and displays the value of $MAILMSG if this time
changes.

You should set MAIL in your .profile file. The value normally assigned
to it by users of the mail command is /usr/mail/$LOGNAME.

MAILCHECK The number of seconds that the shell lets elapse before checking again for
the arrival of mail in the files specified by the MAILPATH or MAIL
parameters. The default value is 600 seconds (10 minutes). If you set
MAILCHECK to 0, the shell checks before each prompt.

MAILP ATH A colon-separated list of file names (see PATH). If you set this
parameter, the shell informs you of the arrival of mail in any of the files
specified in the list. You can follow each file name by a % (percent sign)
and a message to be displayed when mail arrives. Otherwise, the shell
uses the value of MAILMSG or by default "you have rna; 1".

MAILMSG The mail notification message. If you explicitly set MAILMSG to a null
string (MA I L = II II), no message is displayed.

NLCTAB Defines the collating sequence to use when sorting names and when
character ranges occur in patterns. If absent, it may be taken form the
parameter NLFILE. If both are absent, the American English collating

Commands 645

sh

PATH

PSI

PS2

IFS

SHACCT

SHELL

sequence is used. See "Overview of International Character Support" in
IBM RT PC Managing the AIX Operating System for further information.

An ordered list of directory path names separated by colons. The shell
searches these directories in the specified order when it looks for
commands. A null string anywhere in the list represents the current
directory.

PATH is normally initialized in the fete/profile file, usually to
/bin:/usr/bin:/ete::. You can reset this variable to suit your own needs.
Thus if you wish to search your current directory first, rather than last,
you would enter:

PATH=:/bin:/usr/bin:/etc
where, by definition, a null string is assumed in front of the leading colon.
If you have a personal directory of commands (say, $HOME/bin) that you
want searched before the standard system directories, set your PATH as
follows:

PATH=$HOME/bin:/bin:/usr/bin:/etc: :
The best place to set your PATH to something other than the default
value is in your .profile file (see "The .profile File" on page 639). You
cannot reset PATH if you are executing commands under the restricted
shell.

The string to be used as the primary system prompt. An interactive shell
displays this prompt string when it expects input. The default value of
PSI is "$" (a $ followed by a blank).

The value of the secondary prompt string. If the shell expects more input
when it encounters a new-line character in its input, it prompts with the
value of PS2. The default value of PS2 is "> "(a > followed by a blank).

The characters that are internal field separators (the characters that
the shell uses during blank interpretation, see "Blank Interpretation" on
page 653). The shell initially sets IFS to include the blank, tab, and
new-line characters.

The name of a file (that you oV/n). If this parameter is set, the shell
writes an accounting record in the file for each shell procedure executed.
You can use accounting programs such as aeeteom and aeetems to
analyze the data collected.

A path name whose simple part (the part after the last /) contains an "r"
if you want the shell to become restricted when invoked. This should be
set and exported by the $HOME/.profile file of each restricted login.

646 Commands Reference

sh

TIMEOUT A number of minutes. After the shell displays its prompt, you have
TIMEOUT minutes to enter a command. If you fail to do so, the shell
exits; in the login shell, such an exit is a logout. Setting TIMEOUT to 0
inhibits automatic logout.

Predefined Special Variables

Several variables have special meanings; the following are set only by the shell:

$# The number of positional parameters passed to the shell, not counting the name of
the shell procedure itself. $# thus yields the number of the highest-numbered
positional parameter that is set. One of the primary uses of this variable is to check
for the presence of the required number of arguments.

$? The exit value of the last command executed. Its value is a decimal string. Most
UNIX commands return 0 to indicate successful completion. The shell itself returns
the current value of $? as its exit value.

$$ The process number of the current process. Because process numbers are unique
among all existing processes, this string of up to five digits is often used to generate
·unique names for temporary files. The following example illustrates the
recommended practice of creating temporary files in a directory used only for that
purpose:

temp=$HOME/temp/$$
ls >$temp

rm $temp

$! The process number of the last process run in the background (using the &
terminator). Again, this is a string of up to five digits.

$- A string consisting of the names of the execution flags (page 656) currently set in
the shell.

Command Substitution

To capture the output of any command as an argument to another command, place that
command line within grave accents (' '). This concept is known as command substitution.
The shell first executes the command or commands enclosed within the grave accents, and
then replaces the whole expression, grave accents and all, with their output. This feature
is often used in assignment statements:

today='date'

Commands 647

sh

This statement assigns the string representing the current date to the variable today. The
following assignment saves, in the variable fi 1 es, the number of files in the current
directory:

files='ls I ws -1'

You can enclose any command that writes to standard output in grave accents. You can
nest command substitutions as long as you quote the inside sets of grave accents with a
preceding \ (backslash):

10gmsg='echo Your 1 ogi n di rectory is \'pwd\"

You can also give values to shell variables indirectly by using the built-in read command.
read takes a line from standard input (usually your keyboard), and assigns consecutive
words on that line to any variables named:

read first init last

will take an input line of the form:

J. Q. Public

and have the same effect as if you had typed:

first=J. init=Q. last=Public

read assigns any excess words to the last variable.

Quoting Mechanisms
Many characters have a special meaning to the shell; sometimes you want to conceal that
meaning. Single (' ') and double (" ") quotation marks surrounding a string or a backslash
(\) before a single character provide this function in somewhat different ways.

Within single quotation marks, all characters (except the single quotation character itself),
are taken literally, with any special meaning removed. Thus:

stuff=lecho $? $*; ls * I wc l

results only in the literal string echo $? $*; 1 s * I we being assigned to the variable
stuff; the echo, 1 s, and wc commands are not executed, nor are the variables $? and $*
and the special character -)..- expanded by the shell.

Within double quotation marks, the special meaning of certain characters (the $, " and ")
does persist, while all other characters are taken literally. Thus, within double quotation
marks, command and variable substitution takes place. In addition, the quotation marks
do not affect the commands within a command substitution that is part of the quoted
string, so characters there retain their special meanings.

648 Commands Reference

Consider the following sequence:

You: 1 s *
Display: f i 1 e 1

fi1e2
fi1e3

You: message=IIThi s di rectory contai ns '1 s * , II
echo $message

Display: Thi s di rectory contai ns fi 1 el fi 1 e2 fi 1 e3

sh

This shows that the * special character inside the command substitution was expanded.

To hide the special meaning of $, " and" within double quotation marks, precede these
characters with a \ (backslash). Outside of double quotation marks, preceding a character
with \ is equivalent to placing it within single quotation marks. Hence, a \ immediately
preceding the new-line character (that is, a \ at the end of the line) hides the new-line
character and allows you to continue the command line on the next physical line.

Redirection of Input and Output
In general, most commands do not know or care whether their input or output is
associated with the keyboard, the display screen, or a file. Thus a command can be used
conveniently either at the keyboard or in a pipeline.

Standard Input and Standard Output

When a command begins running, it usually expects that three files are already open:
standard input, standard output, and diagnostic output (sometimes called error output
or standard error output). A number called a file descriptor is associated with each of
these files as follows:

File descriptor 0 Standard input

File descriptor 1 Standard output

File descriptor 2 Diagnostic (error) output

A child process normally inherits these files from its parent; all three files are initially
assigned to the work station (0 to the keyboard, 1 and 2 to the display). The shell permits
them to be redirected elsewhere before control is passed to a command. Any argument to
the shell in the form < file or > file opens the specified file as the standard input or output,
respectively. In the case of output, this process destroys the previous contents of file, if it
already exists. An argument in the form> > file directs the standard output to the end of
file, thus allowing you to add data to it without destroying its existing contents. If file
does not exist, the shell creates it.

Commands 649

sh

Such redirection arguments are subject only to variable and command substitution; neither
blank interpretation nor pattern matching of file names occurs after these substitutions.
Thus:

echo 'this is a test' > *.999

produces a one-line file named *·999 (a disastrous name for a file), and:

cat < ?

produces an error message, unless you have a file named ? (also a bad choice for a file
name).

Diagnostic and Other Output

Diagnostic output from UNIX commands is normally directed to the file associated with
file descriptor 2. You can redirect this error output to a file by immediately preceding
either output redirection arrow (> > » with a 2 (the number of the file descriptor). For
example, the following line adds error messages from the cc command to the file ERRORS:
cc testfile.c 2» ERRORS

Note that there must be no blanks between the file descriptor and the redirection symbol;
otherwise, the shell interprets the number as a separate argument to the command.

You can also use this method to redirect the output associated with any of the first 10 file
descriptors (numbered 0 through 9) so that, for instance, if a command (cmd) writes to file
descriptor 9 (although this is not a recommended programming habit), you can capture that
output in a file savedata as follows:

cmd 9> savedata

If a command writes to more than one output, you can independently redirect each one.
Suppose that a command directs its standard output to file descriptor 1, directs its error
output to file descriptor 2, and builds a data file on file descriptor 9. The following
command line redirects each of these outputs to a different file:

cmd > standard 2> error 9> data

Inline Input Documents

Upon seeing a command line of the form:

cmd < < eofstring

where eofstring is any string that does not contain any pattern-matching characters, the
shell takes the subsequent lines as the standard input of cmd until it reads a line
consisting of only eofstring (possibly preceded by one or more tab characters). The lines

650 Commands Reference

sh

between the first eofstring and the second are frequently referred to as a here document.
If a - (minus) immediately follows the < <, the shell strips leading tab characters from each
line of the input document before it passes the line to the command.

The shell creates a temporary file containing the input document and performs variable
and command substitution on its contents before passing it to the command. It performs
pattern matching on file names that are a part of command lines in command substitutions.
If you want to prohibit all substitutions, quote any character of eofstring:

cmd < < \eofstring

The here document is especially useful for a small amount of input data that is more
conveniently placed in the shell procedure rather than kept in a separate file (such as
editor "scripts"). For instance, you could enter:

cat «- xyz

xyz

This message will be shown on the
display with leading tabs removed.

This feature is most useful in shell procedures. Note that inline input documents can not
appear within grave accents (command substitution).

Input and Output Redirection Using File Descriptors

As discussed previously, a command occasionally directs output to some file associated
with a file descriptor other than 1 or 2. The shell also provides a mechanism for creating
an output file associated with a particular file descriptor. By entering:

fdl>&fd2

where fdl and fd2 are valid file descriptors, you can direct the output that would normally
be associated with file descriptor fdl to the file associated with fd2. The default value for
fdl and fd2 is 1 (standard output). If, at execution time, no file is associated with fd2, then
the redirection is void. The most common use of this mechanism is to direct standard
error output to the same file as standard output, as follows:

cmd 2>&1
If you want to redirect both standard output and standard error output to the same file,
enter:

cmd > file 2>&1

The order here is significant. First, the shell associates file descriptor 1 with fi 1 e; then it
associates file descriptor 2 with the file that is currently associated with file descriptor l.
If you reverse the order of the redirections, standard error output will go to the display
and standard output would go to fi 1 e because at the time of the error output redirection,
file descriptor 1 was still associated with the display.

Commands 651

sh

You can also use this mechanism to redirect standard input. You could enter:

fda<&fdb

to cause both file descriptors to be associated with the same input file. For commands that
run sequentially, the default value of fda and fdb is 0 (standard input). For commands that
run asynchronously (commands terminated by &), the default value of fda and fdb is
/dev/null. Such input redirection is useful for commands that use two or more input
sources.

Summary of Redirection Options

The following can appear anywhere in a simple command or can precede or follow a
command, but they are not passed to the command:

< file Use file as standard input.

> file Use file as standard output. Create the file if it does not exist; otherwise
truncate it to zero length.

> > file- Use file as standard output. Create the file if it does not exist; otherwise
add the output to the end of the file.

< < [-]eofstr Read as standard input all lines from eofstr up to a line containing only
eofstr or up to an end-of-file character. If any character in eofstr is quoted,
the shell does not expand or interpret any characters in the input lines;
otherwise, it performs variable and command substitution and ignores a
quoted new-line character (\new-line). Use a \ to quote characters within
eofstr or within the input lines.

If you add a - (minus) to < < then all leading tabs are stripped from eofstr
and from the input lines.

< &digit Associate standard input with file descriptor digit.

> &digit Associate standard output with file descriptor digit.

< &- Close standard input.

> &- Close standard output.

The restricted shell does not allow the redirection of output.

652 Commands Reference

/'

Blank In terpreta tion
After the shell performs variable and command substitution, it scans the results for
internal field separators (those defined in the shell variable IFS, see page 646). It splits
the line into distinct words at each place it finds one of these characters. It retains
explicit null arguments ('III I I) and discards implicit null arguments (those resulting
from parameters that have no values).

Control Commands
The shell provides several flow control commands that are useful in creating shell
procedures:

for name [in word . ..]
do list

sh

done For each word, sets name to word and executes the commands in list. If you
omit in word . .. , then the for command executes list for each positional
parameter that is set. Execution ends when there are no more words in the
word list.

case word in
pattern [Ipattern] ...) list;;
[.

pattern [Ipattern] ...) list;;]
esac Executes the commands in the list associated with the first pattern that

matches word. Uses the same character-matching notation in patterns that
you use for file-name substitution (see "File-name Substitution" on

if list
then list
[elif list] ...
[else list]
fi

while list
do list
done

page 640), except that you do not need to match explicitly a slash, a leading
dot, or a dot immediately following a slash.

Executes the list following the if keyword. If it returns a zero exit value,
execute the list following the first then. Otherwise, execute the list
following elif (if there is an elif), and if its exit value is zero, execute the
next then. Failing that, execute the list following the else. If no else list
or then list is executed, the if command returns a zero exit value.

Executes the list following the while. If the exit value of the last command
in the list is zero, executes the list following do. Continue looping through
the lists until the exit value of the last command in the while list is
nonzero. If no commands in the do list are executed, the while command
returns a zero exit value.

Commands 653

sh

until list
do list
done

(list)

{list;}

Executes the list following the until. If the exit value of the last command
in the list is nonzero, executes the list following do. Continues looping
through the lists until the exit value of the last command in the until list is
zero. If no commands in the do list are executed, the until command
returns a zero exit value.

Executes the commands in list in a subshell.

Executes the commands in list in the current shell process (does not spawn
a subshell).

name 0 { list; } Defines a function that is referenced by name. The body of the function is
the list of commands between the braces.

The following words are recognized only as the first word of a command and when not
quoted:

if then else elif fl case esac for while until do done {}

Built-in Commands

• file

break [n]

continue [n]

cd [dir]

echo [arg ...]

eval [arg ...]

Does nothing. This null command returns a zero exit value.

Reads and executes commands from file and returns. Does not spawn a
subshell. The search path specified by PATH is used to find the
directory containing file.

Exits from the enclosing for, while, or until loop, if any. If n is
specified, then breaks n levels.

Resumes the next iteration of the enclosing for, while, or until loop. If
n is specified, resumes at the nth enclosing loop.

Changes the current directory to dir. The value of the shell variable
HOME is the default dir. The shell variable CDPATH defines the
search path for the directory containing dir. Alternative directory
names appear in a colon-separated list. A null path name specifies the
current directory (which is the default path). This null path name can
appear immediately after the equal sign in the assignment or between
the colon delimiters anywhere else in the path list. If dir begins with a
slash, the shell does not use the search path. Otherwise, the shell
searches each directory in the path. cd cannot be executed by the
restricted shell.

Writes arguments to standard output. See "echo" on page 278 for a
discussion of its usage and parameters.

Reads arguments as input to the shell and executes the resulting
command(s).

654 Commands Reference

,/

exec [arg ...] Executes the command specified by argument in place of this shell
without creating a new process. Input and output arguments can
appear and, if no other arguments appear, cause the shell input or
output to be modified (not a good idea with your login shell).

sh

exit [n] Causes a shell to exit with the exit value specified by n. If you omit n,
the exit value is that of the last command executed (an end of file will
also cause a shell to exit).

export [name . ..]
Marks the specified names for automatic export to the environments of
subsequently executed commands. If you specify no names, export
displays a list of all names that are exported in this shell. You cannot
export function names.

hash [-r] [name . ..]
For each name, finds and remembers the location in the search path of
the command specified by name. The -r flag causes the shell to forget
all locations. If you do not specify the flag or any names, the shell
displays information about the remembered commands. In this
information, hits is the number of times a command has been run by
the shell process. Cost is a measure of the work required to locate a
command in the search path. There are certain situations that require
that the stored location of a command be recalculated (for example, the
location of a relative path name when the current directory changes).
Commands for which that might be done are indicated by an asterisk
next to the hits information. Cost is incremented when the
recalculation is done.

newgrp [arg ...] Executes the newgrp command in the current shell process. See
"newgrp" on page 510 for a discussion of command options.

pwd Displays the current directory. See "pwd" on page 589 for a discussion
of command options.

read [name . ..] Reads one line from standard input. Assigns the first word in the line
to the first name, the second word to the second name, and so on, with
leftover words assigned to the last name. This command returns a 0
unless it encounters an end of file.

readonly [name ...]
Marks the specified names readonly. The values of these names cannot
be reset. If you do not specify any names, readonly displays a list of all
read only names.

return [n] Cause a function to exit with a return value of n. If you do not specify
n, the function returns the status of the last command executed in that
function. This command is valid only when executed within a shell
function.

Commands 655

sh

set [flag . .. [arg] ...]

shift [n]

-a Marks for export all variables that are modified or changed.

-e Exits immediately if a command exits with a nonzero exit value.

-f Disables file-name substitution.

-h Locates and remembers the commands called within functions as
the functions are defined (normally these commands are located
when the function is executed-see the hash command on page 655).

-k Places all keyword parameters in the environment for a command,
not just those that precede the command name.

-n Reads commands but do not execute them.

-t Exits after reading and executing one command.

-u Treats an unset variable as an error when performing variable
substitution.

-v Displays shell input lines as they are read.

-x Displays commands and their arguments as they are executed.

Does not change any of the flags. This is useful in setting $1 to a
string beginning with a - (minus).

Using a + (plus) rather than a - (minus) unsets flags. You can also
specify these flags on the shell command line. The special variable $­
contains the current set of flags.

Any arguments to set are positional parameters and are assigned, in
order, to $1, $2, and so on. If you specify no flags or parameters, set
displays all names.

Shifts command line arguments to the left; that is, reassign the value of
the positional parameters by discarding the current of value of $1 and
assigning the value of $2 to $1, of $3 to $2, and so on. If there are
more than 9 command line arguments, the tenth is assigned to $9 and
any that remain are still unassigned (until after another shift). If there
are 9 or fewer arguments, a shift unsets the highest-numbered
positional parameter.

$0 is never shifted. The command shift n is a shorthand notation for n
consecutive shifts. The default value of n is 1.

test expr I [expr] Evaluates conditional expressions. See "test" on page 750 for a
discussion of command options.

656 Commands Reference

sh

times Displays the accumulated user and system times for processes run from
the shell.

trap [arg] [n] . .. Runs the command specified by arg when the shell receives signal(s} n.
(Note that the shell scans parm once when the trap is set and once
when the trap is taken). trap commands are executed in order of signal
number. Any attempt to set a trap on a signal that was ignored on
entry to the current shell is ineffective. If you specify no arg, then all
trap(s} n are reset to their current values. If arg is the null string, then
this signal is ignored by the shell and by the commands it invokes. If n
is 0, then arg is executed on exit from the shell. If you specify no arg
and no n, trap displays a list of-commands associated with each signal
number.

type [name . ..] For each name, indicates how the shell would interpret it as a command
name.

ulimit [-b [m]] [-fJ [n] [-s [m]]

umask [nnn]

Sets or queries size limits.

The -b flag sets the break value to m. This limits the size of data
segment to m pages. If you specify -b with no m, ulimit displays the
current break value.

The -f flag imposes a size limit of n blocks on files written by the child
processes (files of any size can be read). Without n, ulimit displays the
current limit (this is the default action of ulimit).

Note: Since the shell rounds n down to the nearest cluster size,
it is best to make it a multiple of 4 (for example, specifying values
of 1, 2, or 3 for n all result in a size limit of O).

Any user can decreased this limit, but only a user operating with
superuser authority can increase the limit.

The -s flag imposes a size limit of m pages on the stack. If you specify
-s with no m, ulimit displays the current stack size limit.

Sets the user file-creation mask to nnn (see the umask system call). If
you omit nnn, umask displays the current value of the mask.

unset [name . ..] For each name, removes the corresponding variable or function. The
variables PATH, PSI, PS2, MAILCHECK and IFS cannot be unset.

wait [n] Waits for the child process whose process number is n to end and
reports its termination status. If you do not specify n, then the shell
waits for all currently active child processes and the return value is 0
(see "wait" on page 844).

Commands 657

sh

Flags

Running the Shell
The sh command can be run either as a login shell or as a Only the login command can
call sh as a login shell. It does this by using a special form of the sh command name:
- 5 h. When called with an initial - (minus), the shell first reads and runs commands found
in the system profile file and your $HOME/.profile, if one exists. It then accepts
commands as described in the following discussion of flags.

Once logged in and working under a login shell, you can call sh with the command name
sh. This command runs a subshell, a second shell running as a child of the login shell.

Restricted Shell
The restricted shell, rsh, is used to set up login names and environments whose
capabilities are more controlled than those of the standard shell. The actions of rsh are
identical to those of sh, except that the following are not allowed:

• Changing directory (see "cd" on page 121)

• Setting the value of $p ATH

• Specifying path or command names containing /

• Redirecting output (> and> ».

The restrictions above are enforced after .profile is interpreted, meaning that the
restrictions can override settings originally set in .profile.

When a command to be run is found to be a shell procedure, rsh starts sh to run it. Thus,
it is possible to provide to the end-user shell procedures that have access to the full power
of the standard shell, while imposing a limited menu of commands; this scheme assumes
that the end-user does not have write and run permissions in the same directory.

The net effect of these rules is that the writer of the .profile has complete control over
user actions, by performing setup actions and leaving the user in an appropriate directory
(probably not the login directory).

When called with the name -rsh, rsh reads the user's .profile (from $HOME/.profile). It
acts as the standard sh while doing this, except that an interrupt causes an immediate exit
instead of a return to command level.

The following flags are interpreted by the shell only when you call it. Note that unless
you specify either the -c or -s flag, the shell assumes that the next parameter is a command
file (shell procedure). It passes anything else on the command line to that command file
(see "Positional Parameters" on page 641).

658 Commands Reference

Files

-c cmdstring

-i

-r

-s

TNL SN20-9861 (26 June 1987) to SC23-0790-0
sh

Runs commands read from cmdstring. The shell does not read additional
commands from standard input when you specify this flag.

Makes the shell interactive, even if input and output are not from a work
station. In this case the shell ignores the TERMINATE signal (so that kill 0
does not stop an interactive shell) and traps an INTERRUPT (so that you can
interrupt wait). In all cases, the shell ignores the QUIT signal. (See the
signal system call in AIX Operating System Technical Reference, "kill" on
page 422, and "wait" on page 844 for more information about signals.)

Creates a restricted shell (the same as running rsh).

Reads commands from standard input. Any remaining parameters specified
are passed as positional parameters to the new shell. Shell output is written
to standard error, except for the output of built-in commands (see "Built-in
Commands" on page 654).

The remaining flags and parameters are described in the built-in set command on page 656.

/etc/environment
/etc/profile
$HOME/.profile
/tmp/sh*
/dev/null

Related Information

The following commands: "cd" on page 121, "echo" on page 278, "env" on page 298,
"login" on page 453, "newgrp" on page 510, "pwd" on page 589, "test" on page 750,
"umask" on page 784.1, and "wait" on page 844.

The dup, exec, fork, fullstat, pipe, signal, ulimit, and umask system calls and the
a.out, .profile, and environ files in AIX Operating System Technical Reference.

"Using the Shell with Processes" and "Advanced Shell Features" in Using the AIX
Operating System.

"Overview of International Character Support" in Managing the AIX Operating System.

Commands 659

shlib

shlib

Purpose

Creates a shared library.

Syntax

shlib

Description

one of

infi/e -m-a outfi/e
-n
-v

OLB05448

The shlib command creates a shared library from a set of unshared object and/or archive
files. The shared library it creates has two parts:

• A single shared library text image that contains the code, and only the code, from all of
the input files.

• Modified archive or object files that refer to the text image, each of which corresponds
to one of the shlib input files.

By default, shlib uses the name of the first input file to generate the shared library key. It
does this by removing any directory path from the file name and, if the file name does not
contain a suffix, adding the suffix .yyddd, where yy is the last two digits of the current
year and ddd is the number of the day. shlib puts this key in each of the modified output
files. By default, it also uses this key as the name of the shared library text image, which
contains the shared library key in a form that can be found by the what command.

The shlib command transforms each input file specified on the command line and copies it
to (or verifies it against) an output file. Each ouLput object module differs from the
corresponding input object module in that the text portion has been removed and added to
the end of the shared library text image. shlib also appends the shared library key to each
output module and marks its a.out header so the ld command recognizes that the file
refers to a shared library and relocates references appropriately.

Once you create an archive for a shared library, you can use the ar command to replace
individual object files. The new object files will not refer to the shared library, thus
allowing you to patch shared libraries.

660 Commands Reference

Flags

shlib

The shlib command can process all cc and 117 programs. Other programs must have
KCALL relocation entries as the only external references within the text portion (see the
a.out file in A/X Operating System Technical Reference). KCALL relocation entries are
replaced by balax instructions to location OxCOO, which contain a code fragment to
continue calls across segments. That code requires that register 0 point to the constant
pool of the called routine, the first entry of which is the entry point of the invoked routine.

-a outfile

-kkey

-n outfile

-ofile

-rstring

-v outfile

Adds new object modules in archives to outfile. This lets you add
functions to a shared library, replacing the shared library text image
without relinking programs that refer to it. The entire shared library
image must be rebuilt.

Uses the shared library key in the output object modules to refer to the
shared library text image. If key does not contain a . (period), a suffix in
the form .yyddd is added.

Makes a new output file for each input file.

Assigns the name file to the shared library text image. shlib always
makes a new shared library text image, replacing the old one.

Adds string to the end of the shared library key in the what string. This
only applies to the text image file.

Verifies components of a changed shared library, thus ensuring that the
resulting object files are the same as the files previously created by
shlib. Changes can be made to C source code as long as references to
external names are not added, deleted, or rearranged and no floating
point, string, or static' initial values are modified.

Examples

1. To create a new shared text image:

shlib -kclibs -r"C shared library text" \
/lib/libc.a -n /lib/libcs.a /lib/librts.a -n /lib/librtss.a

This creates shared libraries 1 i bcs. a and 1 i brtss. a and the text image file
cl i bs. 86133 (86133 indicates that this file was produced on 13 May 1986).

2. To modify an existing shared text image:

shlib -kclibs -r"C shared library text" \
/lib/libc.a -a /lib/libcs.a /lib/libm.a -n /lib/libms.a

Commands 661

shlib

This updates the shared library 1 i bcs . a, creates the shared library 1 i bms . a, and
u pda tes the the shared text image c 1 i b s . 86133. (1 i b c . a may contain new members
that are added to the shared library and the the text image.)

3. To create a shared text image with a different name than its key:

shlib -kclibs -octext-image -rliC shared library textll \
/lib/libc.a -n /lib/libcs.a /lib/librts.a -n /lib/librtss.a

This produces a text image file named ctext- i mage. Note that you must use the -k
flag when you compile programs that use this text image, since the key and the file
name are not the same:

cc myproj.c -kclibs:ctext-image -lrtss -lcs

Related Information

The following command: "Id" on page 427.

The profil system call, monitor subroutine and a.out file in AIX Operating System
Technical Reference.

The discussion of shared libraries in AIX Operating System Programming Tools and
Interfaces.

662 Commands Reference

TNL SN20-9861 (26 June 1987) to SC23-0790-0
shutdown

shutdown

Purpose

Ends system operation.

Syntax

/\ ,-vU-C60

shutdown ~ _. ~,ne of J
-f ~m seconds

-v
-d

OL805215

Description

The shutdown command brings the AIX Operating System from distributed mode to
multiuser mode, from multiuser mode to maintenance mode, or halts the operating system
completely by shutting down the virtual machine. You can run shutdown only if you are
a member of the system group or if you have superuser authority.

During the default shutdown, all users are notified through the wall command of the
impending system shutdown. The hold command prevents any new logins. After the
specified number of seconds (60 by default), the system stops the accounting and
error-logging processes. shutdown then runs the killall command to end any remaining
processes and runs the sync command to flush all memory resident disk blocks. Finally, it
unmounts the file systems and sends the appropriate signal to init. These signals are:

SIGINT
SIGTERM

Maintenance mode
Virtual machine halt.

Note: Users who have files open on the node that is running shutdown, but who are not
logged on that node are not notified about the shutdown.

If you request a complete halt to the operating system, shutdown kills all processes,
unmounts all file systems, and sends init the SIGTERM signal.

Warning: If you are bringing the system down to maintenance mode, you
must run shutdown from the root directory to ensure that it can cleanly
unmount the file systems.

Commands 663

TNL SN20-9861 (26 June 1987) to SC23-0790-0
shutdown

Flags

-d Brings the system down from a distributed mode to a multiuser mode.

-f Does a fast shutdown, bypassing the messages to other users and bringing the system
down as quickly as possible. If you do not specify this flag, shutdown sends a
message to each logged-in user and waits a certain amount of time before bringing the
system down, to allow each user to log off cleanly.

-m Brings the system down to maintenance mode. From maintenance mode, you can
return to multi-user mode.

-v Shuts down the virtual machine (halts the operating system completely).

Examples

Files

1. To tell the operating system you are about to turn off the machine:

shutdown
This shuts down the system, waiting 60 seconds before stopping the user processes and
the init process.

2. To give users and the system more time to finish what they are doing:

shutdown -m 120 *
This brings the system down from multiuser mode to maintenance mode after waiting
120 seconds.

/etc/shutdown.sh
/etc/fshutdown.sh

Related Information

The following commands: "acct/*" on page 31, "errstop" on page 309, "init" on page 396,
"kill" on page 422, and "killall" on page 425,

The dsstate and signal system calls in A/X Operating System Technical Reference.

664 Commands Reference

size

size

Purpose

Displays the section sizes of common object files.

Syntax

size

OL805216

Description

Flags

The size command writes to the standard output the number of bytes required by the text,
initialized data, and uninitialized data, along with their sum for each file. The default file
is a.out.

The output is in decimal notation unless you change the output with the following flags:

-0 Writes in octal notation.

-x Writes in hexadecimal notation.

Examples

1. To display the size of a.out in decimal:

size
This displays the size in bytes of the executable file a.out. The size of each section of
the object file is given, followed by the total. The three sections are program text,
data, and bss (uninitialized data). The values are in decimal.

2. To display the size of an object file in octal:

size -0 driver.o

This displays the size of the object file dri ver. 0 in octal.

Commands 665

size

3. To display the size of several object files in hex:

size -x *.0

This displays in hexadecimal the size of each file in the current directory ending with
.0.

Related Information

The following commands: "ar" on page 58, "as" on page 64, "cc" on page 112, "dump" on
page 275, "ld" on page 427, "nm" on page 521, and "strip" on page 716.

The discussion of the a.out and ar files in A/X Operating System Technical Reference.

666 Commands Reference

skulker

skulker

Purpose

Cleans up file systems by removing unwanted files.

Syntax

skulker ---I
OL805217

Description

Warning: Because this command file runs with superuser authority and
its whole purpose is to remove files, it has the potential for unexpected
results. Before installing a new skulker, test any additions to its file
removal criteria by running it manually using the xargs -p command.
After you have verified that the new skulker removes only the files you
want removed, you can install it.
The skulker command is a shell command file for periodically purging obsolete or
unneeded files from file systems. Candidate files include those in /tmp, .bak files older
than a specified age, and files named a.out, core, or ed.hup.

The skulker command is normally invoked daily, often as part of an accounting procedure
run by cron during off-peak periods. Individual sites should modify skulker to suit local
needs following the patterns shown in the distributed version. Local users should be made
aware of the criteria for automatic file removal.

The find and xargs commands form a powerful combination for use in skulker. Most file
selection criteria can be expressed conveniently with find expressions. The resulting file
list, generated with the -print flag of the find command, can then be segmented and
inserted into rm commands using xargs to reduce the overhead that would result if each
file were deleted with a separate command.

Related Information

The following commands: "cron" on page 172, "find" on page 326, "rm" on page 601, and
"xargs" on page 857.

Commands 667

sleep

sleep

Purpose

Suspends execution for an interval.

Syntax

sleep - seconds ---I

OL805218

Description

The sleep command suspends execution of a process for the interval specified by seconds.
seconds can range from 1 to 65,536 seconds.

Examples

1. To run a command after a certain amount of time has passed:

echo "SYSTEM SHUTOm·JN IN 10 MINUTES! II I wall
(sleep 300; echo "SYSTEM SHUTDm~N IN 5 MINUTES!II I wall) &
(sleep 540; echo "SYSTEM SHUTDm~N IN 1 MINUTE! II I wall) &
(sleep 600; shutdown) &

This command sequence warns all users 10 minutes, 5 minutes, and 1 minute before the
system is shut down.

2. To run a command at regular intervals:

while true
do

date
sleep 60

done

This shell procedure displays the date and time once a minute. To stop it, press
INTERRUPT (Alt-Pause).

668 Commands Reference

sleep

Related Information

The following commands: "shutdown" on page 663 and "wall" on page 845.

The alarm system call and the sleep, pause, and signal subroutines in A/X Operating
System Technical Reference.

Commands 669

sno

sno

Purpose

Provides a SNOBOL interpreter.

Syntax

sno~
~

OL805219

Description

The sno command provides a SNOBOL compiler and interpreter, with some differences
from standard SNOBOL. It reads the named files and the standard input. It compiles all
input through a statement containing the label end. The rest is available to syspit. The
sno command differs from SNOBOL in the following ways:

• There are no unanchored searches. To get the same effect:

a ** b' Unanchored search for b
a *x* b = x c Unanchored assignment.

• There is no back referencing.

x = "abc"
a *x* x Unanchored search for abc.

• Function declaration is done at compile time by the use of the (nonunique) label
define. Execution of a function call begins at the statement following the define.
Functions cannot be defined at run time, and the use of the name define is preempted.
There is no provision for automatic variables other than parameters. Examples:

define fO
define f(a, b, e)

• All labels except define (even end), must have a non empty statement.

• Labels, functions, and variables must all have distinct names. In particular, the
non empty statement on end cannot merely name a label.

• If start is a label in the program, program execution begins there. If not, execution
begins with the first executable statement. define is not an executable statement.

• There are no built-in functions.

670 Commands Reference

sno

• Parentheses for arithmetic are not needed. Normal precedence applies. Because of
this, the arithmetic operators \ (backslash) and * (asterisk) must be set off by spaces.

• The right side of assignments must be nonempty.

• Either I (single quotation mark) or .. (double quotation mark) can be used for literal
quotation marks.

• The pseudo-variable sysppt is not available.

Related Information

The following command: "awk" on page 70.

Commands 671

TNL SN20-9861 (26 June 1987) to SC23-0790-0
sort

sort

Purpose

Sorts or merges files.

Syntax

sort
-b -f -ooutfi/e
-c -j -r
-d -m -t char
-A -n -u

+ fskip
- (skip

OL805380

Description

The sort command sorts lines in its input files and writes the result to standard output. It
treats all of its input files as one file when it performs the sort. A - (minus) in place of a
file name specifies standard input. If you do not specify any file names, it sorts standard
input.

The default sort key (the part of the line used for sorting) is an entire line. Default
ordering is lexicographic by characters in the collating sequence. The file /usr/pub/ascii
shows the default collating sequence. To change the default collating sequence, see "ctab"
on page 204.

The two numbers, fskip and cskip, specify the sort key. Both numbers have two parts, as
follows:

+ fskip.cskip
-fskip.cskip

The {skip specifies the number of fields to skip from the beginning of the input line, and
cskip specifies the number of additional characters to skip to the right beyond that point.
For both the starting point (+ fskip.cskip) and the ending point (-fskip.cskip) of a sort key,

672 Commands Reference

Flags

sort

fskip is measured from the beginning of the input line, and cskip is measured from the last
field skipped. If you omit .cskip, .0 is assumed. If you omit fskip, 0 is assumed. If you omit
the ending field specifier (-fskip.cskip), the end of the line is the end of the sort key.

You can supply more than one sort key by repeating + fskip.cskip and -fskip.cskip. In
cases where you specify more than one sort key, keys specified further to the right on the
command line are compared only after all earlier keys are sorted. For example, if the first
key is to be sorted in numerical order and the second in dictionary order, all strings that
start with the number one are sorted alphabetically before the strings that start with the
number two. Lines that are identical in all keys are sorted with all characters significant.

You can also specify different flags for different sort keys in multiple sort keys. See the
examples for illustration.

A field is one or more characters bounded by the beginning of a liJ)e and the current field
separator, or one or more characters bounded by a the field separator on either side. The
space character is the default field separator.

Note: Very long lines are truncated silently.

-A Sorts on a byte-by-byte basis. This sort is functionally compatible with the
Version 1.1 sort command, prior to the addition of international character
support.

-b Ignores leading blanks, spaces, and tabs in sort key comparisons.

-c Checks that the input is sorted according to the ordering rules specified in the
flags. Displays nothing unless the is not sorted.

-d Sorts in dictionary order. Only letters, digits and blanks are considered in
comparisons.

-f Merges uppercase and lowercase letters. Case is not considered in the sorting,
so that initial-capital words and all-capital words are not grouped together at
the beginning of the output.

-i Sorts only by characters in the ASCII range octal 040-0176 (all printable
characters and the space character) in nonnumeric comparisons.

-m Merges only; the input is already sorted.

-n Sorts any initial numeric strings (consisting of optional blanks, optional minus
signs, and zero or more digits with optional decimal point) by arithmetic value.
The -n flag automatically gives you the -b flag.

-0 outfile Directs output to outfile instead of standard output. outfile can be the same as
one of the input files.

-r Reverses the order of the specified sort.

Commands 673

sort

-tchar

-u

Sets field separator character to char. To specify the tab character as the field
separator, you must enclose it in single quotation marks (I I).

Suppresses all but one in each set of equal lines. Ignored characters (such as
leading tabs and spaces) and characters outside of sort keys are not considered
in this type of comparison.

Examples

1. To perform a simple sort:

sort fruits

This displays the contents of frui ts sorted in ascending lexicographic order. This
means that the characters in each column are compared one by one, including spaces,
digits, and special characters. For instance, if frui ts contains the text:

banana
apple
orange
Persimmon
apple
%%banana
pear
ORANGE
then sort displays:

%%banana
ORANGE
Persimmon
apple
apple
banana
orange
pear

This order follows from the fact that in the ASCII collating sequence, % (percent sign)
precedes the uppercase letters, which precede the lowercase letters. If the system uses
a character set other than ASCII, your results may be different.

674 Commands Reference

2. To sort in dictionary order:

sort -d fruits

sort

This sorts and displays the contents of frui ts, comparing only letters, digits, and
blanks. If frui ts is the same as in Example 1, then sort displays:

ORANGE
Persimmon
apple
apple
%%banana
banana
orange
pear

The - d flag tells sort to ignore the % character because it is not a letter, digit, or
blank. This puts %%banana next to banana.

3. To group lines that contain uppercase and special characters with similar lowercase
lines:

sort -d -f fruits
This ignores special characters (-d) and differences in case (-f). Given the frui ts of
Example 1, this displays:

apple
apple
%%banana
banana
ORANGE
orange
pear
Persimmon

4. To sort as in Example 3 and remove duplicate lines:

sort -d -f -u fruits

The - U flag tells sort to remove duplicate lines, making each line of the file unique.
This displays:

apple
%%banana
orange
pear
Persimmon

Commands 675

sort

Note that not only was the duplicate app 1 e removed, but banana and ORANGE as well.
These were removed because the -d told sort to treat %%banana as if it were banana,
and the -f told it to treat ORANGE as orange. Thus, sort considered %%banana to be
a duplicate of banana and ORANGE a duplicate of orange.

Note: There is no way to predict which duplicate lines sort - u will keep and which
it will remove.

5. To sort as in Example 3 and remove duplicates, unless capitalized or punctuated
differently:

sort -u +0 -d -f +0 fruits

The +0 - d - f does the same type of sort done with - d - f in Example 3. Then the +0
performs another comparison to distinguish lines that are not actually identical. This
prevents - U from removing them.

Given the frui ts file shown in Example 1, the added +0 distinguishes %%banana from
banana and ORANGE from orange. However, the two instances of app 1 e are identical,
so one of them is deleted.

apple
%%banana
banana
ORANGE
orange
pear
Persimmon

6. To specify the character that separates fields:

sort -t: +1 vegetables

This sorts vegetab 1 es, comparing the text that follows the first colon on each line.
The + 1 tells sort to ignore the first field and to compare from the start of the second
field to the end of the line. The - t: tells sort that colons separate fields. If
vegetab 1 es contains:

yams:] 04
turnips:8
potatoes:15
carrots:104
green beans:32
radishes:5
lettuce:15

676 Commands Reference

then sort displays:

carrots:104
yams: 104
lettuce:15
potatoes:15
green beans:32
rudishes:5
tUI~ni ps: 8

sort

Note that the numbers are not in numeric order. This happened because a
lexicographic sort compares each character from left to right. In other words, "3"
comes before "5" and "2" comes before" ", so "32" comes before "5 "

7. To sort numbers:

sort -t: +1 -n vegetables

This sorts vegetab 1 es numerically on the second field. If vegetab 1 es is the same as
in Example 6, then sort displays:

radishes:5
turnips:8
lettuce:15
potatoes:15
green beans:32
carrots:104
yams:104

8. To sort on more than one field:

sort -t: +1 -2 -n +0 -1 -r vegetables

This performs a numeric sort on the second field (+ 1 -2 -n). Within that ordering, it
sorts the first field in reverse alphabetic order (+0 -1 - r). The output looks like this:

radishes:5
turnips:8
potatoes:15
lettuce:15
green beans:32
yams:104
carrots:104

Now the lines are sorted in numeric order. When two lines have the same number,
they appear in reverse alphabetic order.

Commands 677

sort

Files

9. To replace the original file with the sorted text:

sort -0 vegetables vegetables

This stores the sorted output into the file vegetab 1 es (-0 vegetab 1 es).

/usr/tmp/stm???

Related Information

The following commands: "comm" on page 144, "join" on page 417, and "uniq" on
page 792.

The "Overview of International Character Support" in Managing the A/X Operating
System.

678 Commands Reference

sound

sound

Purpose

Controls the volume and click of the keyboard speaker.

Syntax

sound ~f----i

OL805415

Description

Flags

The sound command controls the volume of the sound output (the console bell and the
keyboard click) and, additionally, whether or not the keyboard click is produced. You can
modify these two sound characteristics independently of each other.

The system startup process sets the sound volume to medium.

Note: You can run sound only from the console (fdev/console).

You must select at least one flag from the following two groups of flags or, optionally, one
flag from each of the two groups. The first group of flags controls the volume of all sound
output:

-h Sets the volume to high.

-I Sets the volume to low.

-m Sets the volume to medium.

-0 Turns the volume off.

Commands 679

sound

The second group of flags controls whether or not click sounds are produced:

-c Turns clicking on.

-q Turns clicking off (quiet).

Example

To set the volume to low and turn the click function on:

sound -lc

In addition to turning on the keyboard click (-c), this command sets the volume of both
the bell and the click to low (- 1).

680 Commands Reference

spell

spell

Purpose

Finds spelling errors.

Syntax

spell
-i
-v
-b
-x
-I
+wordlist

/usr /Iib/spoll/hashmal<o -l

/usr/lib/spoll/spollin - num -l

/usr /lib/spoll/hashchecl< - spellinglist -l

Description

OL805304

The spell command reads words in file and compares them to those in a spelling list.
Words that cannot be matched in the spelling list or derived from words in the spelling list
(by applying certain inflections, prefixes, and/or suffixes) are written to standard output.
If you do not specify a file to read, spell reads standard input.

The spell command ignores the same troff, tbl, and eqn constructs as the deroff
command.

The coverage of the spelling list is uneven. You should create your own dictionary of
special words used in your files.

Certain auxiliary files can be specified by file name parameters; see "Files" on page 683
Copies of all output are accumulated in the history file.

Three routines help maintain and check the hash lists used by spell.

Commands 681

spell

Flags

/usr/lib/spell/hashmake Reads a list of words from standard input and
writes the corresponding nine-digit hash code to
standard output.

/usr/lib/spell/spellin num Reads num hash codes from standard input and
writes a compressed spelling list to standard
output.

/usr/lib/spell/hashcheck spellinglist Reads a compressed spellinglist and recreates the
nine-digit hash codes for all the words in it; it
writes these codes to standard output.

-b

-i

-1

-v

-x

+ wordlist

Checks British spelling.

Suppresses processing of included files.

Follows the chain of all included files (.so and .nx formatting commands).
Without this flag, spell follows chains of all included files except for those
beginning with /usr/lib.

Displays all words not literally in the spelling list and indicates plausible
derivations from the words.

Displays every plausible word stem with an = (equal sign).

Checks wordlist for additional word spellings. wordlist is the name of a file
you provide that contains a sorted list of words, one per line. With this flag,
you can specify a set of correctly spelled words (in addition to spell's own
spelling list) for each job.

Examples

1. To check your spelling:

spell chapl >mistakes

This creates a file named mi stakes containing all the words found in chapl that are
not in the system spelling dictionary. Some of these may be correctly spelled words
that spell does not know about. It is a good idea to save the output of spell in a file
because the word list may be long.

2. To check British spelling:

spell -b chapl >mistakes

This checks ch ap 1 against the British dictionary and writes the questionable words in
mi stakes.

682 Commands Reference

Files

3. To see how spell derives words:

spell -v chapl >deriv

spell

This lists the words that are not found literally in the dictionary, but are derived forms
of dictionary words. The prefixes and suffixes used to form the derivative are indicated
for each word. Words that do not appear in the dictionary at all are also listed.

4. To check your spelling against an additional word list:

spell +newwords chapl

This checks the spelling of words in ch ap 1 against the system dictionary and against
newwords. The file newwords lists words in alphabetical order, one per line. You can
create this file with a text editor, such as ed, and alphabetize it with the sort
command.

D_SPELL = /usr/lib/spell/hlist[ab]
S_SPELL = /usr/lib/spell/hstop
H_SPELL = /usr/lib/spell/spellhist
/usr/lib/compress
/usr/lib/spell/spellprog

Hashed spelling lists, American and British.
Hashed stop list.
History file.
Executable shell program to compress the history file.
Program.

Related Information

The following commands: "deroff' on page 239, "eqn, neqn, checkeq" on page 300,
"sed" on page 629, "sort" on page 672, "thI" on page 739, "tee" on page 746, and "troff"
on page 526.

Commands 683

spline

spline

Purpose

Interpolates smooth curve.

Syntax

-x lowlim

spline

OL805261

Description

Flags

The spline command reads from the standard input pairs of numbers that represent the
coordinates of a point on an x,y axis. From this input, spline calculates the coordinates of
points to form a smooth curve through the points in the input set. It then writes these
points to standard output. The output points are approximately equally spaced and
includes the points that you provided as input. The cubic spline output has two
continuous derivatives, and enough points so that when plotted with the graph command
it looks smooth.

When data is not strictly monotone in x, spline reproduces the input without interpolating
extra points.

You can only use 1,000 input points.

-anum

-knum

Supplies abscissas automatically; spacing is given by the next parameter
or is assumed to be 1 if the next parameter is not a number.

Uses the constant num in the boundary value calculation:

Yo = kY l ' y =numy

The default for num is zero.

684 Commands Reference

spline

-nnum Spaces output points so that approximately num intervals occur between
the lower and upper x limits (set with the -x flag). The default num is
100.

-p Makes output periodic, that is, matches derivatives at ends. First and
last input values should normally agree.

-xlowlim[uplim] Sets lower and upper x limits as lowlim and uplim. Normally, these
limits are calculated from the data. Automatic abscissas start at lower
limit, defaults to zero.

Related Information

The following command: "graph" on page 375.

Commands 685

split

split

Purpose

Splits a file into pieces.

Syntax

SPlit-{-1000~ r--x~ I

- num~ fi/e~ prefix ~

Description

OL805262

The split command reads file and writes it in num-line pieces (default 1000 lines) to a set of
output files. The name of the first output file is prefixaa, the second is prefixab, and so on
lexicographically, through prefixzz (a maximum of 676 files). prefix cannot be longer than
12 characters. If you do not specify an output name, x is assumed.

If you do not specify an input file, or if you specify - (minus) in place of file, then split
reads standard input.

Examples

1. To split a file into 1000-line segments:

split book

This splits book into 1000-line segments named xaa, xab, xac, and so forth.

2. To split a file into 50-line segments and specify the file name prefix:

split -50 book sect

This splits book into 50-line segments named sectaa, sectab, sectac, and so forth.

Related Information

The following commands: "bfs" on page 90 and "csplit" on page 202.

686 Commands Reference

splp

splp

Purpose

Changes or displays printer driver settings.

Syntax

/deV/IP~
splp one of

indent=num fontinit bs device
width=num parenb f f

length=num parodd tb

timer=num sync cr
cstopb nl csn

speed wrap cap
plot err

OLB05263

1 Do not put a blank between these items.

0L805308

Description

Flags

The splp command changes or displays settings for a printer driver (device). The default
device is /dev/lpO. If you do not specify any flags, splp reports the current settings for the
specified device. Select flags to change the current settings. No other processing is done,
and there is no other output.

The changes that splp makes remain in effect until the next time you restart the system or
rerun splp. You can run splp from the /etc/rc command file to configure your printer
each time you start up the system.

timer = num Sets the time out period to num seconds, where num is an integer.

indent = num Indents num columns, where num is an integer.

length = num Prints num lines per page, where num is an integer.

width = num Prints num columns, where num is an integer

+ bs (-bs) Sends (does not send) backspaces to the printer.

Commands 687

TNL SN20-9861 (26 June 1987) to SC23-0790-0
splp

+ cap (-cap) Converts (does not convert) all lowercase characters to uppercase.

+ cr (-cr) Sends carriage returns (translates carriage returns to line-feeds).

+ cstopb (-cstopb)

cs5 cs6 cs7 cs8

Selects 2 (1) stop bits per character.

Selects character size. See termio in A/X Operating System Technical
Reference for additional information on character size.

+ err (-err) Issues (does not issue) a signal (SIGIOINT) upon receiving a VRM error
and attempts to resume I/O.

+ ff (-fO Sends form-feeds (simulates a form-feed with line-feeds or carriage returns).

+ fontinit (-fontinit)
Indicates that fonts are (are not) loaded. Use this flag to control the
initialization of fonts for the 3812 Pageprinter.

+nl (-nl) Sends line-feeds (translates line-feeds to carriage returns).

+parenb (-parenb)
Enables (disables) parity generation and detection.

+ parodd (-parodd)

+plot

-plot

+ sync (-sync)

Selects odd (even) parity.

Sends all characters to the printer unmodified. This overrides other
settings.

Translates characters according to the settings.

Does not (does) return immediately without waiting for all data to be sent
out.

+ tb (-tb) Expands (does not expand) tabs on eight position boundaries.

+wrap (-wrap)
Wraps (truncates) characters beyond the specified width to the next line
and (with + wrap), prints" ... " before the new-line character.

50 75 110 134 150 300 600 1200 1800 2400 4800 9600 exta extb
Sets the speed to the specified number of bits per second (exta is 19200).

Examples

1. To display the current printer settings:

splp

688 Commands Reference

2. To change the printer settings:

splp width=80 +wrap +cap

splp

This changes the settings of the Idev IIp printer for 80-column paper (width = 80). It
wraps each line that is more than 80 columns wide onto a second line (+wrap), and
prints all alphabetic characters in uppercase (+ cap).

Related Information

The following command: "Ip" on page 459.

The Ip file in A/X Operating System Technical Reference.

Commands 689

stat

stat

Purpose

Provides tools for analyzing numerical data.

Description

The stat commands, residing in /usr/bin/graf, provide a package of tools for analyzing
data. All numerical data are stored in vectors. A vector is a sequence of numbers
separated by delimiters, where a number has the form:

[sign] (digits)(.digits)[e[sign]digits]

Fields surrounded by brackets are optional; one or both of those surrounded by
parentheses are required. Any input character that is not part of a number is assumed to
be a delimiter.

Vectors are text strings that can be stored in text files and created and modified by text
editors.

Note: Some commands limit the size of an input vector.

These commands can be divided into four classes:

• Those that produce an output vector based upon definable parameters (generators).

• Those that operate upon an input vector and output the resulting value (transformers).

• Those that perform mathematical or statistical operations on vectors (summarizers).

• Those that convert vectors into a format that can be viewed pictorially (translators).

The following parameters are used to designate the expected type of the value:

c A character value.

An integer value.

f A floating-point or integer value.

file A file name.

vector A vector taken from standard input or the name of a file containing a vector.
Except for the gas, prime, and rand commands, all of the commands discussed
under stat read vectors from standard input (by default) or from text files as
specified on the command line. A file name of - (minus) specifies standard input in
a file list.

string A character string (quoted if it includes white space).

690 Commands Reference

Commands That Produce Definable Vectors (Generators)

gas

Syntax

gas [-ci,if,ni,sf,tfj

Description

The gas command produces an additive sequence.

Flags

-ci Specifies the number of columns per line of output (5 by default).

-if Specifies the increment between successive elements (1 by default).

-nl Specifies the number of elements in the vector (10 by default).

-sf Specifies the starting point of the sequence (1 by default).

-tf Specifies the end of the sequence (infinity by default).

Examples

1. To generate the numbers 1 through 10:

gas

2. To generate the sequence. 01 .02 .03 .04 .05:

gas -s.01,t.05,i.Ol

3. To generate the sequence 3 5 3 5:

gas -s3,t5,i2,n4

stat

Commands 691

stat

prime

rand

Syntax

prime [-ci,hi,Ii,ni]

Description

The prime command generates consecutive prime numbers.

Flags

-ci Specifies the number of columns per line of output (5 by default).

-hi Specifies the high boundary (infinity by default).

-Ii Specifies the low boundary (2 by default).

-n~ Specifies the number of elements in the sequence (10 by default).

Example

To generate all prime numbers between 200 and 300:

prime -1200,-h300

Syntax

rand [-ci,hf,l{,mf,ni si]

Description

The rand command generates a random sequence of numbers.

Flags

-ci Specifies the number of columns per line of output (5 by default).

-hf Specifies the high boundary (1 by default).

-If Specifies the low boundary (0 by default).

692 Commands Reference

-ni Specifies the number of elements in the sequence (10 by default).

-si Specifies a seed number (1 by default).

Example

To produce a random sequence:

rand
This generates ten random numbers between 0 and 1.

rand -110,m25,c3
The generates ten random numbers between 10 and 35, three per line.

stat

Commands That Map Input to Output (Transformers)

abs

Syntax

abs [-ci] [vector . ..]

Description

The abs command provides the absolute value of a number.

Flag

-ci Specifies the number of columns per line of output (5 by default).

Example

To obtain the absolute value of each element in a vector:

abs -c3 myfile

This produces the absolute value of each number in the file myfi 1 e and displays these
values three per line.

Commands 693

stat

af

Syntax

af [-ci, t, v] expression ...

Description

The af command performs arithmetic operations on numbers.

Expressions

Expression operands are:

Vectors File names with the restriction that they must begin with a letter and be
composed only of letters, digits, and the _ (underscore) and. (dot) characters.
The first unknown file name (one not in the current directory) references
standard input.

Functions The name of a command followed by the command arguments in parentheses.
List arguments as you would on the command line.

Constants Floating-point and integer numbers (but not E notation).

Expression operators are, in order of decreasing precedence:

'v The next value from vector v.

x" y -x The value x raised to the power y; the negation of x. Both associate right to left.

x*y x/y x%y The value x multiplied by, divided by, modulo y, respectively. All associate
left to right.

x + y x-y The value x plus or minus y. Both associate left to right.

x,y The value of x followed by the value of y. This associates from left to right.

You can use parentheses to alter precedence. Because many of the operator characters are
special to the shell, it is good practice to quote expression arguments.

Flags

-ci Specifies the number of columns per line of output (5 by default).

-t Cause the output to be titled from the vector on standard input.

-v Echoes function expansions.

694 Commands Reference

ceil

Examples

1. To perform arithmetic operations:

af "3+4*5"

This yields 23.

2. To produce a matrix:

af IA,IA,A+1A,B"

This yields a four-column matrix with columns of:

a. odd elements from vector A

h. even elements from A

c. sum of adjacent odd and even elements from A

d. elements from vector B.

3. To use functions:

af "sin (A)"2"

This yields the square of the sin of the elements of vector A.

Syntax

ceil [-ci] [vector . ..]

Description

The ceil command rounds a number up to the next integer.

Flag

-ci Specifies the number of columns per line of output (5 by default).

stat

Commands 695

stat

cusum

exp

floor

Syntax

cusum [-ci] [vector . ..]

Description

The cusum command calculates a cumulative sum. Output is a vector with the ith
element being the sum of the first i elements from the input vector.

Flag

-ci Specifies the number of columns per line of output (5 by default).

Syntax

exp [-ci] [vector . ..]

Description

The exp command provides the exponential function. Output is a vector with elements e
raised to the x power, where e is approximately 2.71828 and x is each element in the input
vector.

Flag

-ci Specifies the number of columns per line of output (5 by default).

Syntax

floor [-ci] [vector . ..]

Description

The floor command rounds a number down to the nearest integer.

696 Commands Reference

stat

Flag

-ci Specifies the number of columns per line of output (5 by default).

gamma

Syntax

list

gamma [-ci] [vector . ..]

Description

The gamma command provides the gamma function.

Flag

-ci Specifies the number of columns per line of output (5 by default).

Syntax

list [-ci,dstring [file . ..]

Description

The list command lists vector elements.

Flags

-ci Specifies the number of columns per line of output (5 by default).

-dstring Specifies delimiters characters. If you do not specify -d, any character that is
not part of a number is considered a delimiter. If you specify -d, the space, tab,
and new-line characters, plus the characters in string are delimiters.

Only numbers surrounded by delimiters are listed.

Commands 697

stat

log

Examples

1. To output each element:

list -c3 myfile

This outputs each element in myfi 1 e, three per line.

2. To specify delimiters:

1 i st -d\\, myfi 1 e

This outputs each element of myfi 1 e that is delimited by commas or white space, five
per line. A comma requires two backslashes because it is a special character for list.

Syntax

log [-ci,-bi] [vector . ..]

Description

The log command provides the logarithmic function.

Flag

-ci Specifies the number of columns per line of output (5 by default).

-bi Specifies the base (e by default).

Example

To calculate a logarithm:

log -b2,c3 mydata

This outputs the logarithm base 2 of each element in mydata, three per line.

698 Commands Reference

mod

pair

stat

Syntax

mod [-ci mf] [vector . ..]

Description

The mod command returns the modulo. The output is a vector with each element being
the remainder of dividing the corresponding element from the input vector by the modulus.

-ci Specifies the number of columns per line of output (5 by default).

-mf Specifies the modulus (2 by default).

Example

To output remainders:

mod -m8,c3 mydata

This outputs the elements of mydata modulo 8, three per line.

Syntax

pair [-ci,Ffile,xi] [vector . ..]

Description

The pair command pairs elements. Output is a vector with elements taken alternatively
from a base vector and from another input vector.

Flags

-ci Specifies the number of columns per line of output (5 by default).

-Ffile The file containing the base vector. If you do not specify -F, then the base vector
comes from standard input. If both the base vector and the paired vector come
from standard input, the base vector precedes the paired vector.

-x~ The number of elements per group in the base vector (1 by default).

Commands 699

stat

power

root

Example

To pair elements:

pair -x3,Fbasefile datafile

This outputs a vector with three elements from basefi 1 e, one from datafi 1 e, three from
basefi 1 e, one from datafi 1 e, and so on.

Syntax

power [-ci,pf] [vector . ..]

Description

The power command raises a number to a power.

Flag

-ci Specifies the number of columns per line of output (5 by default).

-pf Specifies the power (2 by default).

Syntax

root [-ci,rf] [vector . ..]

Description

The root command takes the root of a number.

Flags

-ci Specifies the number of columns per line of output (5 by default).

-rf Specifies the root (2 by default).

700 Commands Reference

round

sHine

Syntax

round [-ci,pi,si] [vector . ..]

Description

The round command rounds a number to the nearest integer (.5 rounds to 1).

Flags

-ci Specifies the number of columns per line of output (5 by default).

-pi Specifies the number of places after the decimal point (0 by default).

-si Specifies the number of significant digits.

Example

To round numbers to two significant digits:

round -s2,c3 mydata

Syntax

sHine [-ci,if,ni,sf] [vector . ..]

Description

The sHine command generates a line, given slope and intercept.

Flags

-m Specifies the number of columns per line of output (5 by default).

-if Specifies the intercept (0 by default).

-nl Specifies the number of positive integers.

-sf Specifies the slope of the line.

stat

Commands 701

stat

sin

subset

Example

To output a linear fit:

siline -'lref -o,FA B' A

This outputs a simple linear fit of vector B on vector A (The 0 flag of lreg outputs the
slope and intercept in option form of B regressed on A.)

Syntax

sin [-ci] [vector . ..]

Description

The sin command provides the sine function.

Flags

-ci Specifies the number of columns per line of output (5 by default).

Syntax

subset [-a{,b{,ci,F{ile,ii,l{,nl,np,pf,si,ti] [vector . ..]

Description

The subset command produces a subset of the numbers in a vector.

Flags

-af Specifies the number above which subset members are selected.

-bf Specifies the number below which subset members are selected.

-ci Specifies the number of columns per line of output (5 by default).

-Ffile Specifies the file containing the master vector.

-ii Specifies the increment between successive elements (1 by default).

702 Commands Reference

-If The number of elements to leave.

-nli Specifies that the master file contains element numbers to leave.

-npi Specifies that the master file contains element numbers to pick.

-pf The number of elements to pick.

-sf Specifies the starting point of the sequence (1 by default).

-tf Specifies the end of the sequence (32,767 by default).

Examples

1. To specify the even elements of a vector:

subset -i2,s2 myfile

2. To specify corresponding elements:

subset -FB,p1 A

For each element in B with a 1, output the corresponding element in A.

stat

Commands That Calculate Statistics (Summarizers)

bucket

Syntax

bucket [-ai,ci,Ffiie,hf,ii,If,ni] [vector . ..]

Description

The bucket command groups numbers into buckets. The input vector must be sorted. The
output vector consists of odd (parenthesized) elements that are bucket limits and even
elements that are bucket counts. The count is the number of elements greater than or
equal to the lowest limit and less than or equal to the higher limit. Unless otherwise
specified, bucket limits are generated based on the input date and the following rule:

#buckets = 1 + log2(#elements)

Flags

-ai Specifies the average size of the bucket.

Commands 703

stat

cor

-ci Specifies the number of columns per line of output (5 by default).

-Flile Specifies the file containing bucket boundaries.

-hi Specifies the high boundary (by default, the largest element in the input vector).

-ii Specifies the interval between successive elements.

-Ii Specifies the low boundary (by default, the smallest element in the input vector).

-Dl Specifies the number of buckets.

Example

To divide elements into buckets:

bucket -a12,1-5 myfile

This outputs limits and counts for the elements of myfi 1 e, where the lowest limit is -5
and the average bucket count is 12.

Syntax

cor [-Flile] [vector . ..]

Description

The cor command provides the ordinary correlation coefficient. Use the F flag to specify
the base vector; otherwise it is assumed to come from standard input. Each vector is
compared to the base vector (both must be of the same length).

Flag

-Flile Specifies the file containing base vector.

Example

To obtain correlation coefficients:

cor -Ffilea olddata newdata

This outputs the ordinary correlation coefficients between vectors fi 1 ea and 01 ddata
and vectors fi 1 ea and newdata.

704 Commands Reference

hilo

lreg

hilo [-h,l,o,ox,oy] [vector . ..]

Description

The hilo command finds high and low values across all of the input vectors.

-h Finds the high value only.

-1 Finds the low value only.

-0 Outputs the high and low values in option form (suitable for plot).

-ox Outputs the high and low values in option form with x prefixed.

-oy Outputs the high and low values in option form with y prefixed.

Example

To find the lowest value:

hila -ox,l filel file2

stat

This finds the lowest value in vectors fi 1 eland fi 1 e2 and outputs it with X 1 prefixed to
it.

Syntax

lreg [-Ffile,i,o,s] [vector . ..]

Description

The lreg command provides linear regression. Output is the slope and intercept from a
least squares linear regression of each vector on a base vector. The default base vector is
the ascending positive integers from zero.

Flags

-Ffile Specifies a file containing the first vector.

-i Outputs only the intercept.

-0 Outputs the slope and intercepts in option form (suitable for siline).

Commands 705

stat

mean

-s Outputs only the slope.

Example

To output only the intercept:

lreg -Fbase,i mydata

This outputs the intercept from the linear regression of vector mydata on base vector
base.

Syntax

mean [-ff,ni,pl]

Description

The mean command calculates the (trimmed) arithmetic mean.

Flags

-fl Specifies the fraction of elements to trim from each end. This is calculated as
follows:

(1/1) k

where k is the total number of elements.

-n~ Specifies the number of elements to trim from each end.

-pi Specifies the percentage of elements to trim from each end.

Example

To output the mean:

mean -p.25 mydata

This outputs the mean of the middle 50% of the elements of mydata; that is, mydata is
trimmed by 25% of its elements from both ends.

706 Commands Reference

point

prod

stat

Syntax

point [-ff,ni,pf,sj [vector . ..]

Description

Output from the point command is a linearly interpolated value from the empirical
cumulative density function for the input vector. By default, point returns the median
(50% point).

Flags

-ff Returns the (1/f)*100 percent point.

-nL Returns the ith element.

-pf Returns the (k100 percent point.

-s Specifies that the input has been sorted.

Example

To output the 25% point:

point -s,p.25 mydata

Syntax

prod

Description

The prod commands calculates an internal product. Output is the product of the elements
in the input vectors.

Commands 707

stat

qsort

rank

total

Syntax

qsort [-ci] [vector . ..]

Description

The qsort command does a quick sort. Output is a vector of the elements from the input
vector in ascending order.

Flag

-ci Specifies the number of columns per line of output (5 by default).

Syntax

rank [vector . ..]

Description

The rank command ranks vectors. Output is the number of elements in each input vector.

Syntax

total [vector ...]

Description

The total command calculates a sum total. Output is the sum total of the elements in the
input vector(s).

708 Commands Reference

stat

var

Syntax

var [vector . ..]

Description

The var command calculates the variance.

Commands That Produce Pictorial Output (Translators)

bar

Input to these commands can be either a vector or a GPS object (a format for storing a
picture). A picture is defined in a Cartesian plane of 64K points on each axis. The plane,
or universe, is divided into 25 square regions numbered 1 to 25 from the lower left to the
upper right.

Syntax

bar [-a,b,f,g,ri,wi,xf,xa,yf,ya,yl{,yhf] [vector . ..]

Description

The bar command builds a bar chart. It operates on an input vector, each element of
which defines the height of a bar (y-axis). By default, the x-axis is labeled with positive
integers, beginning at 1. For other labels, see label.

Flags

-a Suppresses the axes.

-b Plots the bar chart with bold weight lines (medium is the default weight).

-f Does not build a frame around the plot area.

-g Suppresses the background grid.

-ri Puts the bar chart in GPS region i, where i is between 1 and 25 inclusive (13 by
default).

-WI, Specifies the ratio of the bar width to center-to-center spacing expressed as a
percentage (50 by default, giving equal bar width and bar space).

Commands 709

stat

hist

-xf
-yf Positions the bar chart in the GPS universe with the x-origin (y-origin) at f.

-xa
-ya Does not label the x-axis (y-axis).

-yhf Specifies the y-axis high boundary.

-ylf Specifies the y-axis low boundary.

Example

To produce a bar chart:

bar -rlO,xa,w75 myfile

This outputs the bar chart described by vector myf; 1 e, located in region 10 of the GPS
universe, with no x-axis labels. The bar width is 75% of center-to-center spacing.

Syntax

hist [-a,b,f,g,ri,xf,xa,yf,ya,yl{,yhf] [vector . ..

Description

The hist command builds a histogram. The input vector is the type produced by bucket,
of odd rank, with odd elements being limits and even elements being bucket counts.

Flags

-a Suppresses axes.

-b Plots histogram with bold weight lines (the default weight is medium).

-f Does not build a frame around the plot area.

-g Suppresses the background grid.

-ri Puts the histogram in GPS region i, where i is between 1 and 25 inclusive (13 by
default).

-xf
-yf Positions the histogram in the GPS universe with the x-origin (y-origin) at f.
-xa
-ya Does not label the x-axis (y-axis).

710 Commands Reference

label

-yhf Specifies the y-axis high boundary.

-ylf Specifies the y-axis low boundary.

Example

To produce a histogram:

hist -r5,ya myfile

stat

This outputs the histogram described by vector myfi 1 e and locates it in region 5 of the
GPS universe, with no y-axis labels.

Syntax

label [-b,c,Ffile,h,p,ri,x,xu,y,yr] [GPSfile ...]

Description

The label command labels the axis of a GPS file.

Flags

-b Assumes that the input is a bar chart.

-c Retains lowercase letters in labels; otherwise all letters are uppercase.

-Ffile Specifies a label file. Each line of the file is taken as one label. Blank lines yield
null labels. Either the GPS or the label file, but not both, can come from standard
input.

-h Assumes that the input is a histogram.

-p Assumes that the input is an x-y plot. This is the default assumption.

-r~ Rotates labels i degrees. The pivot point is the first character.

-x Labels the x-axis. This is the default action.

-xu Labels the upper x-axis (the top of the plot).

-y Labels the y-axis.

-yr Labels the right y-axis (the right side of the plot).

Commands 711

stat

pie

Examples

1. To label a plot:

label -Flabs A.g

The file A. g, assumed to be an x-y plot, is labeled with labels from the file 1 abs.

2. To label a plot from labels taken from standard input:

label -yr,r-45 A.g

The file A. 9 is labeled from the standard input. The labels are printed at 45 degrees
below the horizontal.

Syntax

pie [-b,o,p,pni,ppi,ri,v,xi,yi] [vector . ..]

Description

The pie command builds a pie chart. The input vector has a restricted format. Each input
line represents a slice of the pies and has the following form:

[< i e f ceolor >] value [label]

with brackets indicating optional fields. The control field options have the following
effects:

i

e

f

ceolor

The slice will not be drawn, though a space will be left for it.

The slice is "exploded" or moved away from the pie.

The slice is filled. The angle of fill lines depends on the color of the slice.

The slice is drawn in the specified color rather than the default black. Legal
values are b (black), r (red), g (green), and u (blue).

The pie is drawn with the value of each slice printed inside and the label printed outside.

Flags

-b Draws pie chart with bold weight lines (the default weight is medium).

-0 Places output values around the outside of the pie.

-p Expresses output values as a percentage of the total pie.

712 Commands Reference

plot

stat

-pni Expresses output values as a percentage, but the total of the percentages equals i
rather than 100.

-ppi Draws only i percent of the pie.

-r~ Puts the pie chart in GPS region i, where i is between 1 and 25 inclusive (13 by
default).

-v Does not output values.

-x~

-yi Positions the pie chart in the GPS universe with x-origin (y-origin) at i.

Example

To draw a pie chart:

pie -pp80,pn80 chartfile

This draws the pie chart specified by chartfi 1 e in 80% of a circle and outputs the values
as percentages of that total 80 percent.

Syntax

plot [-a,b,cstring,d,f,Ffile,g,m,ri,xf,xa,xif,xhf,xl{,xni,xt ,yf,ya,yif,yhf,yl{,yni,yt] [vector . ..]

Description

The plot command plots a graph. The input vectors contain the y values of an x-y graph.
Values for the x-axis come from the file specified by -F. Axis scales are determined from
the first vector plotted.

Flags

-a Suppresses the axes.

-b Plots the graph with bold weight lines (medium is the default weight).

-d Does not connect plotted points (this implies -m).

-f Does not build a frame around the plot area.

-Ffile Uses the specified file for x values; otherwise the positive integers are used. You
can specify this flag more than once, causing a different set of x values to be paired
with each input vector. If there are more input vectors than sets of x values, the
last set applies to the remaining vectors.

Commands 713

stat

-g

-m

-rl.

-xf
-yf
-xa
-ya

-xa
-ya

Suppresses the background grid.

Marks the plotted points.

Puts the graph in GPS region i, where i is between 1 and 25 inclusive (13 by
default).

Positions the graph in the GPS universe with the x-origin (y-origin) at f.

Does not label the x-axis (y-axis).

Does not label the x-axis (y-axis).

-xhf
-yhf Specifies the x-axis (y-axis) high boundary.

-xl{
-yl{ Specifies the x-axis (y-axis) low boundary.

-xnl.
-yni Specifies the approximate number of ticks on the x-axis (y-axis).

-xt
-yt Omits the x-axis (y-axis) title.

Examples

1. To plot against the positive integers:

plot plotdata

2. To customize x- and y-axes:

plot -r5,ylO,xa,Fxfile yfile

This plots vector yfi 1 e against vector X fi 1 e, with y-axis ticks beginning at zero, no
x-axis labels being printed, and the plot being placed in region 5 of the GPS universe.

plot -'hila -oy filea fileb' filea filcb

This plots vectors fi 1 ea and fi 1 eb against the positive integers, with y-axis ticks
going from the lowest to the highest values in the two vectors.

plot -Ffilea,Ffileb filec filed filee

This plots vectors fi 1 ec against fi 1 ea; fi 1 ed and fi 1 ee against fi 1 eb. The y-axis
scale is determined from fi 1 ec; the x-axis scale from fi 1 ea.

714 Commands Reference

stat

title

Syntax

title [-b,c,lstring,vstring,lL~tring] [vector . ..]

Description

The title command prefixes a title to a vector or appends one to a GPS object.

Flags

-b Makes the GPS title bold.

-c Retains lowercase letters in the title; otherwise all letters are uppercase.

-lstring Uses the specified string as a GPS lower title.

-ustring Uses the specified string as a GPS upper title.

-vstring Labels a vector with the specified string.

Related Information

The following commands: "ged" on page 350, "graphics" on page 377, and "spline" on
page 684.

The gps file in AIX Operating System Technical Reference.

Commands 715

strip

strip

Purpose

Removes symbol and line number information from a common object file.

Syntax

strip __ r\. + !ile =r
~-Hfi

OL805265

Description

Flag

Files

The strip command removes the symbol table and line number information from common
object files, including archive libraries. Once you use this command, symbolic debugging
of the file is difficult; therefore, you should normally run strip only on production modules
that you have debugged and tested. Using strip reduces the file storage overhead required
by an object file.

For each object module, strip removes all symbol table information. For each archive,
strip removes the local symbol table information from each member.

You can restore a stripped symbol table to an archive or library file by using the ar -s
command.

-H Removes the object file header as well as all symbol table information.

/usr/tmp/strp*

Related Information

The followIng commands: "ar" on page 58, "as" on page 64, "ee" on page 112, "dump" on
page 275, "ld" on page 427, "nm" on page 521, and "size" on page 665.

The ar and a.out files in AIX Operating System Technical Reference.

716 Commands Reference

stty

stty

Purpose

Sets, resets, or reports work station operating parameters.

Syntax

stty

OL805266

Description

Flags

The stty command sets certain work station I/O options for the device that is the current
standard input. If you run it without any specifications, stty writes to standard output
information about any system adapters installed and reports the settings of certain options.

If you list any work station specifications, stty sets or resets the specified work station
options.

You can find detailed information about the modes listed in the first six of the following
groups in the discussion of the termio special facility in AIX Operating System Technical
Reference. The last group contains options produced by combining options in the first six
groups.

Note: The stty command does not make compatibility checks on any parameter
combinations.

-a Writes the current state of all option settings to standard output.

-g Writes option settings to standard output in a form usable by another stty command.

Commands 717

stty

Specifications

Control Modes
The following options apply only when your work station connects to the system through
an asynchronous line adapter. See asy in AIX Operating System Technical Reference for
detailed information about this group.

parenb (-parenb) Enables (disables) parity generation and detection.

parodd (-parodd) Selects odd (even) parity.

cs5 cs6 cs7 cs8

o

Selects character size. See termio in AIX Operating System Technical
Reference for additional information on character size.

Hangs up phone line immediately.

50 75 110 134 150 300 600 1200 1800 24004800 9600 19200 19.2 38400 38.4 exta extb

hupcl (-hupcl)

Sets the work station speed to the specified number of bits per second
(exta, 19200, and 19.2 are synonyms; extb, 38400, and 38.4 are
synonyms). Regardless of the baud rate, the software only works with
terminals that generate the ASCII character set.

hup (-hup) Hangs up (does not hang up) dial-up connection on the last close.

cstopb (-cstopb) Selects 2 (1) stop bits per character.

The next two options apply to all work stations, regardless of the line adapter:

cread (-cread) Enables (disables) the receiver.

clocal (-clocal) Assumes a line without (with) modem control.

Input Modes
ignbrk (-ignbrk) Ignores (does not ignore) BREAK on input.

brkint (-brkint) Signals (does not signal) INTR on break.

ignpar (-ignpar) Ignores (does not ignore) parity errors.

parmrk (-parmrk)
Marks (does not mark) parity errors.

inpck (-inpck) Enables (disables) input parity checking.

istrip (-is trip)

inlcr (-inlcr)

igncr (-igncr)

Strips (does not strip) input characters to 7 bits.

Maps (does not map) NL to CR on input.

Ignores (does not ignore) CR on input.

718 Commands Reference

iernl (-iernl)

iuele (-iucle)

ixon (-ixon)

ixany (-ixany)

ixoff (-ixoff)

Output Modes
opost (-opost)

oleue (-oleue)

onler (-onler)

oernl (-oernl)

onoer (-onoer)

onlret (-onlret)

ofill (-ofill)

of del (-of del)

erO erl er2 er3

stty

Maps (does not map) CR to NL on input.

Maps (does not map) uppercase alphabetic characters to lowercase.

Enables (disables) START/STOP output control. Once START/STOP
output control has been enabled, you can pause output to the work
station by pressing Ctrl-S and resume output by pressing Ctrl-Q.

Allows any character (only Ctrl-Q) to restart output.

Sends (does not send) START/STOP characters when the input queue is
nearly empty/full.

Processes output (does not process output; that is, it ignores all other
output options).

Maps (does not map) lowercase alphabetic characters to uppercase on
output.

Maps (does not map) NL characters to CR-NL characters.

Maps (does not map) CR-NL characters to NL characters.

Does not (does) output CR characters at column zero.

On the terminal, NL performs (does not perform) the CR function.

Uses fill characters (uses timing) for delays.

Uses DEL (NUL) characters for fill characters.

Selects style of delay for CR characters.

nlO nll Selects style of delay for NL characters.

tabO tabl tab2 tab3

bsO bsl

ffO ffl

vtO vtl

Selects style of delay for horizontal tabs.

Selects style of delay for backspaces.

Selects style of delay for form feeds.

Selects style of delay for vertical tabs.

Commands 719

TNL SN20-9861 (26 June 1987) to SC23-0790-0
stty

Local Modes
isig (-isig) Enables (disables) the checking of characters against the special

control characters INTR and QUIT.

icanon (-icanon) Enables (disables) canonical input (canonical input allows input-line
editing with the ERASE and KILL characters).

xcase (-xcase) Echoes (does not echo) uppercase characters on input, and displays
uppercase characters on output with a preceding \ (backslash).

echo (-echo) Echoes (does not echo) every character typed.

echoe (-echoe) Echoes (does not echo) the ERASE character as the
backspace-space-backspace string.

Note: This mode does not keep track of column position, so you may
get unexpected results when erasing tabs, escape sequences, and the
like.

echok (-echok) Echoes (does not echo) a NL character after a KILL character.

likc (-lfkc) Functions the same as echok. This is an obsolete mode.

echonl (-echonl) Echoes (does not echo) the NL character.

noflsh (-noflsh) Does not clear (does clear) buffers after INTR or QUIT.

Control Assignments
control-character c Set control-character to c, where control-character is erase, kill, intr,

quit, eof, eo I, min, or time. (Use min and time with -icanon.) If c is
in the form \" c (backs lash circumflex c), then its value is the
corresponding CTRL character. A \"? (backslash circumflex question
mark) is interpreted as DEL. A \" - (backslash circumflex minus) is
interpreted as undefined.

enhedit (-enhedit)

ascedit (-ascedit)

line i

Enters (leaves) the enhanced line editing discipline (see the termio
special facility in A/X Operating System Technical Reference).

Enters (leaves) the ASCII keyboard mode for dosedit.

Sets the line discipline. i can be either 0 or 1. s tty 1 i ne 0 is the
same as stty -enhedi t. stty 1 i ne 1 is the same as stty
enhedi t.

720 Commands Reference

Screen Length
page (-page)

length n

Pauses (does not pause) during output after each screen displayed.
Typing any character during the pause causes output to resume.
Typing a space during the pause causes output to continue
uninterrupted until the next command is entered.

stty

Sets screen length to n lines, where n is an integer from 1 through 255.
An automatic pause in output occurs after n lines if page is enabled.

Combination Modes
evenp I parity

oddp

Enables parenb and es7.

Enables parenb, es7, and parodd.

-parity, -evenp, -oddp
Disables parenb and sets es8.

raw (-raw I cooked)

nl (-nl)

lease (-lease)
LCASE (-LCASE)

tabs (-tabs I tab3)

Enables (disables) raw input and output (no ERASE, KILL, INTR,
QUIT, EOT, or output processing).

Unsets (sets) iernl and onler. Specifying -nl sets iernl and onler and
also unsets inler, igner, oernl, and onlret.

Sets xcase, iuclc, and olcue. (Used for work stations with uppercase
characters only.)

Preserve tabs (expand to spaces) when printing.

ek Sets ERASE and KILL characters to Ctrl-H and Ctrl-U, respectively.

sane

term

Resets parameters to "reasonable" values.

Sets all parameters according to work station type term, where term is
one of tty33, tty37, vt05, tn300, ti700, or tek.

Terminal Mapping
imap mapname Loads /etc/nls/termmap/mapname.in as the terminal input map.

omap mapname Loads /ete/nls/termmap/mapname.out as the terminal output map.

Commands 721

stty

Examples

1. To display a short listing of your work station configuration:

stty

This lists settings that differ from the defaults.

2. To display a full listing of your work station configuration:

stty -a

3. To enable a key sequence that stops listings from scrolling off the screen:

stty ixon ixany

This sets ixon mode, which lets you stop runaway listings by pressing Ctrl-S. The
i xany parameter allows you to resume the listing by pressing any key. The normal
work station configuration includes i xon and -i xany, which allows you to stop a
listing with Ctrl-S, but only Ctrl-Q will restart it.

4. To prevent all listings from scrolling off the screen:

stty page length 24

This sets page mode with a page (screen) length of 24 lines. When a listing is more
than 24 lines long, the system pauses after each page. It beeps, reminding you to press
any key (except the space bar) to view the next page. Press the space bar to let the
rest of the listing scroll off the screen and get to the end. Paging then resumes with
the next listing.

5. To reset the configuration after it has been messed up:

Ctrl-J stty sane echo -tabs Ctrl-J
Sometimes the information displayed on the screen may look strange, or the system
won't respond when you press the Enter key. This can happen when you use stty
with parameters that are incompatible or that do things you don't understand. It can
also happen when a screen-oriented text editor ends abnormally and doesn't have a
chance to reset the work station configuration.

Entering stty sane sets a reasonable configuration, but it may differ slightly from
your normal configuration. That is why this example also includes two commonly used
parameters, echo (erase characters as you backspace over them) and -tabs (expand
tab characters to spaces on the display screen).

Press Ctrl-J before and after the command instead of Enter. The system usually
recognizes Ctrl-J when the parameters that control the Enter key processing are
messed up.

722 Commands Reference

stty

6. To save and restore the work station's configuration:

OLDCONFIG='stty -g' # save configuration
stty -echo # do not display password
echo II Enter p as sword: \c II

read PASSWD # get the password
stty $OLDCONFIG # restore configuration
This saves the work station's configuration, turns off echoing, reads a password, and
restores the original configuration. The' . . . '(grave accents) in the first
command tell the shell to insert the standard output of stty -g into the OLDCONFIG=

command. This is called command substitution. For more information, see
"Command Substitution" on page 647.

The stty -echo turns off echoing, which means that the password does not appear on
the screen when you type it at the keyboard. This has nothing to do with the echo
command, which displays a message on the screen

Related Information

The following command: "tabs" on page 729.

The ioctl system call and the terminfo and config files in AIX Operating System
Technical Reference.

The discussion of stty and the "Overview of International Character Support" in IBM RT
PC Managing the AIX Operating System.

Commands 723

su

su

Purpose

Obtains the privileges of another user, including superuser authority.

Syntax

-o-c root
su

- user -c "cmdstring"
OL805267

Description

Flag

The su command lets you operate with the privileges of the specified user (by default
root).
If you use su to become the superuser, su sets the PATH variable to /bin:/etc:/usr/bin
and changes the prompt to #. (Note that this PATH does not include the current
directory.) If you are not already operating with superuser authority, su prompts for the
password associated with user before granting you these privileges. Unless you enter a
command, su creates a new shell that runs under user. This new shell is the program
named in the shell field of the passwd file. All exported environment variables are
available, unless you use the - flag when you call suo

If you need to run only one command as user, you can run the desired command by
including it (along with any of its associated flags) on the command line as an argument to
the shell -c flag (see "sh" on page 637 for a description of this flag). In this case, su calls
the shell to run the command and exits.

Each time someone uses su to become the superuser, su writes a record in the file
/usr/adm/sulog, (creating this file, if necessary).

To restore your normal privileges, press END OF FILE (Ctrl-D). This action ends the new
shell, returning you to the previous shell and previous ID.

The following flag modifies the environment of the new shell if the optional program
named in the shell field of the passwd file is a program like sh.

724 Commands Reference

su

Creates the same environment for the new shell as the login shell of user. This is
done by calling the new shell as a login shell (see "sh" on page 637), so it reads the
system profile file and the user's $HOME/ .profile file. The environment variables
NLLDATE and NLTIME control the appearance of the date and time.

Note: The TERM and TZ variables are an exception. They are preserved at their
current values. These variables are normally set by init or getty prior to login;
hence su handles them differently.

Examples

1. To obtain superuser authority:

su

This runs a subshell with the effective user ID and privileges of user root. The su
command asks for a password, as if you were logging in as root. Now the commands
you run have superuser authority. Press END OF FILE (Ctrl-D) to end the subshell
and return to your original shell session and privileges.

2. To obtain jim's privileges:

su jim

This runs a subshell with the effective user ID and privileges of jim.

3. To set up the environment as if you had logged in as jim:

su jim

This runs a subshell with the effective user ID and privileges of jim. The - causes the
shell variable LOGNAME to be set to jim, HOME to be set to the path name of jim's
home directory, and j; m's $H 0 ME / . profile shell procedure file to be run before
prompting for the first shell command.

4. To run a single command with superuser authority:

su root -c "backup -9 _U"

This runs the shell command backup -9 -u with superuser authority (if you know the
password assigned to root).

Related Information

The following command: "sh" on page 637.

Commands 725

sum

sum

Purpose

Displays the checksum and block count of a file.

Syntax

sum -0- file ---l

-r
OL805268

Description

Flag

The sum command reads file and calculates a I6-bit checksum for the file and the number
of blocks in the file. The checksum and number of blocks are written to standard output.
The sum command is generally used to determine if a file that has been copied or
communicated over transmission lines is an exact copy of the original.

-r Uses an alternate algorithm to compute the checksum (rigorous byte-by-byte
computation rather than the default word by word computation).

Example

To display the checksum of, and the number of blocks in datafi 1 e:

sum datafile

If the checksum of datafi 1 e is 16053 and if the file contains 3 blocks, then sum displays:

16053 3

Related Information

The following command: "we" on page 846.

726 Commands Reference

sync

sync

Purpose

Updates the superblock and writes buffered files to the fixed disk.

Syntax

sync -l
OL805221

Description

The sync command runs the sync system primitive. If you have to stop the system, you
must run sync to ensure file system integrity. sync writes all unwritten system buffers to
disk. This includes modified superblocks, modified i-nodes, delayed block I/O, and
read-write mapped files.

Note: The writing, although scheduled, is not necessarily complete upon return from the
sync system call.

Related Information

The sync system call in AIX Operating System Technical Reference.

Commands 727

tab

tab, untab

Purpose

Changes space characters into tabs.

Syntax

tab~
\.--e~ ~

untab~
~

OL805069

OL805065

Description

Flag

The tab command reads files (standard input by default), replaces spaces in the input with
tab characters wherever it can eliminate one or more spaces. It writes the resulting file
back to file or, if the input was standard input, to standard output. tab assumes that the
tab stops are set every eight columns starting with column nine.

The untab command reads files or standard input, replaces tabs in the input with space
characters and writes back to the original file or to standard output.

-e Replaces only those spaces at the beginning of a line up to the first nonspace
character.

Related Information

The following command: "newform" on page 507.

728 Commands Reference

tabs

tabs

Purpose

Sets tab stops on work stations.

Syntax

-c -8J-(:-T$Term--:J-C -moy
tabs 10

tabspec - Tworkstation +m-{
num

1 Do not put a space between these items.
OL805381

Description

The tabs command clears up to 20 previous tabs and sets up to 40 tabs on the work station
according to the supplied tabspec. tabspec can be either a flag indicating an available code
or column numbers. The available codes cover formats required by most structured
programming languages.

When you use the tabs command, always see the leftmost column number as 1, even if
your work station refers to it as zero (0).

If you do not specify a tabspec, the default value is -8.

Tabspecs

-a Sets the tabs to 1, 10, 16, 36, and 72 (IBM S/370 Assembler first format)

-a2 Sets the tabs to 1, 10, 16, 40, and 72 (IBM S/370 Assembler second format)

-c Sets the tabs to 1, 8, 12, 16, 20, and 55 (COBOL normal format)

-c2 Sets the tabs to 1, 6, 10, 14, and 49 (COBOL compact format, columns 1-6 omitted).
With this code, the first column position corresponds to card column 7. One space
gets you to column 8, and a tab reaches column 12. Files using this code should
include a format specification of:

<:t-c2 m6 566 d:>

Commands 729

tabs

Flags

For an explanation of format specifications, see the fspec file in AIX Operating
System Technical Reference.

-c3 Sets the tabs to 1, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, and 67 (COBOL
compact format with more tabs than -c2. This is the recommended format for
COBOL. Files using this code should include a format specification of:

<:t-c3 m6 566 d:>
-f Sets the tabs to 1, 7, 11, 15, 19, and 23 (FORTRAN).

-p Sets the tabs to 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, and 61 (PL/I).

-s Sets the tabs to 1, 10, and 55 (SNOBOL).

-u Sets the tabs to 1, 12, 20, and 44.

In addition to the preset formats, three other types of tabspecs are available:

-num Sets regularly repeating tabs at every numth column. (-8 is the standard
AIX tab setting and the one required for use with the nroff -h flag.)
Another special case is -0, which implies no tabs at all.

num[,num] . .. Sets tabs at the named column numbers (a comma-separated list in
ascending order). You may specify up to 40 numbers. If any number
except the first has a plus sign prefix, the prefixed number is added to
the previous number for the next setting. Thus, the tab lists
1,10,20,30 and 1,10, + 10, + 10 provide the same tab settings.

--filep Reads the first line of the named filep for a format specification. If it
finds one, it sets tabs the same way. If it does not find a format
specification, it sets tabs to the system default (-8). Use this tabspec to
make sure that a file has the same tab settings as those in a file already
correctly formatted.

Note: If the same flag occurs more than once, only the last one takes effect.

-Tworkstation Identifies the work station so that tabs can set tabs and margins correctly.
workstation is one of the work stations listed under the greek command.
If you do not provide a -T flag, tabs uses the shell variable $TERM. If no
workstation can be found, tabs tries a general value that works for most
work stations.

+mnum
+mnum Moves all tabs to the right num columns, and makes column numl the left

margin. If m is given without a value, 10 is assumed. The leftmost margin
on most work stations is defined by mO.

730 Commands Reference

Related Information

The following commands: "greek" on page 379, "nroff' on page 525, and "troff' on
page 526.

The discussion of term and environ in AIX Operating System Technical Reference.

tabs

Commands 731

tail

tail

Purpose

Writes a file to standard output, beginning at a specified point.

Syntax

~
101

tail one of 10
+ 1

num

OL805303

1 Do not put a blank between these items.
OL805308

Description

Flags

The tail command writes the named file (standard input by default) to standard output,
beginning at a point you specify. It begins reading at + [num] lines from the beginning of
file or -[num] lines from the end of file. The default num is 10. num is counted in units of
lines, blocks, or characters, according to the subflag appearing after num (see the
following flags).

-f

+ [num]l
+ [num]b
+ [num]c

Does not end after it copies the line of the input file if the input file is not
read from a pipe, but enters an endless loop in which it sleeps for a second
and then attempts to read and copy further records from the input file.
Thus, it can be used to monitor the growth of a file being written by
another process.

Begins reading num lines (1, the default), blocks (b), or characters (c) from
the beginning of the input.

732 Commands Reference

tail

-[num]l
-[num]b
-[num]c Begins reading num lines (1, the default), blocks (b), or characters (c) from

the end of the input.

Examples

1. To display the last 10 lines of a file:

tai 1 notes

2. To specify how far from the end to start:

tail -20 notes

This displays the last 20 lines of notes.

3. To specify how far from the beginning to start:

tail +200c notes pg

This displays notes a page at a time starting with the 200th character from the
beginning.

4. To follow the growth of a file:

tail -1 -f accounts

This displays the last line of accounts. Once a second, tail displays any lines that
have been added to the file. This continues until stopped by pressing INTERRUPT
(Alt-Pause).

Related Information

The following command: "dd" on page 228 and "pg" on page 553.

Commands 733

TNL SN20-9861 (26 June 1987) to SC23-0790-0
tapechk

tapechk

Purpose

Performs consistency checking of the streaming tape device.

Syntax

tcpechk -(? -{ Y
numl

num2
OL805445

Description

Flags

The tapechk command performs rudimentary consistency checking on an attached
streaming tape device. Some hardware malfunctions with a streaming tape drive can be
detected by simply reading a tape. tapechk provides a way to perform tape reads on the
file level.

Since the streaming tape drive cannot backspace over physical data blocks or files,
tapechk rewinds the tape to its starting position prior to each check. You can specify
numeric arguments to control the number of files checked or skipped. If you do not specify
any arguments, tapechk rewinds the tape and checks only the first physical block.

Although you can use tapechk on any streaming tape cartridge, it is primarily designed
for checking tapes written by the backup command.

numl Checks data for the next numl files.

num2 Skips the next num2 files from the beginning of the tape.

? Explains the format of the tapechk command.

Note: If you specify this argument, it must be the first argument.

734 Commands Reference

tar

TNL SN20-9861 (26 June 1987) to SC23-0790-0
tar

Purpose

Manipulates tape archives.

Syntax

-b16----..

tar -c
-r
-t

-w -d
-m -I -h
-bblocks

one of

-f file
-f file -num

one of

-5 blocksb
-s feet

-u -num -s feet«lensity
-x -j inputlist

-C blocks

OL80542:1

Description

The tar command writes files to or retrieves files from archival storage. tar normally
looks for archives on a magnetic tape, but you can specify other archival files with the -f
flag. File names must not be longer than 100 characters and must not contain blanks (tar
ignores all characters following the first blank.)

When writing to an archive, tar uses a temporary file (/tmp/tar*) and maintains in
memory a table of files with several links. You will receive an error message if tar cannot
create the temporary file, or if there is not enough memory available to hold the link
tables.

Backspacing is not supported on a raw magnetic tape device, so the -u and -r flags will
rewind the tape, and then open and read it again. Backspacing is supported and used on
ordinary files and block special files. Records are always one block long on block
magnetic tape, but they are typically less than half as dense as blocked records on raw
magnetic tape (because of inter-record gaps). Therefore, although a blocked raw tape must
be read twice, the total amount of tape motion is less than it is when reading one-block
records from a block magnetic tape once.

Note: There is no way to ask for any occurrence of a file other than the last, and there is
no recovery from tape errors.

Commands 735

tar

Flags

You must supply one of the following five function flags to control the actions of tar:

c

r

t

u

x

Creates a new archive from the named files. Writing begins at the
beginning of the tape.

Writes files at the end of the tape.

Lists the files in the order in which they appear on the tape. Files may
appear more than once on a tape.

Adds files to the tape only if they are not already there or if they have
been modified since last written onto the tape.

Extracts files from the tape. If a file specifies a directory, tar extracts
all files on the tape in that directory. If you do not specify a file, tar
extracts all files on the tape. If multiple copies of the same file are on
the tape, tar extracts only the last one and overwrites all earlier ones.
If you have superuser authority (see "su" on page 724), tar creates all
files and directories with the same user and group IDs as on the tape.
If you do not have superuser authority, the files and directories have
your user and group IDs.

The other optional flags to tar are listed below. In all cases, a directory parameter refers
to all the files and subdirectories, recursively, within that directory. Flags without
corresponding parameters may appear separately or be grouped together. Flags that take
parameters may have them adjacent to the flag letter or as the entire following argument.

-bblocks Specifies the number of 512-byte blocks per tape record. The default is

-Cblocks

16, which is appropriate for tape records. Due to the size of
inter-record gaps, tapes written with large blocking factors can hold
much more data than tapes with only one block per record.

The block size is determined automatically when tapes are read
(function flags -x or -t). When archives are updated with the -u and -r
functions, the existing record size is used. tar will write archives using
the specified blocks value only when creating new archives under the -c
function.

For output to ordinary files with the -f flag, you can save disk space by
using a blocking factor that matches the size of disk blocks (for
example, -b4 for 2048-byte disk blocks). Ordinary files must be read
using the same blocking factor used when they were created.

Allows tar to use very large clusters of blocks when it deals with
streaming tape archives. Note, however, that on input, tar cannot
automatically determine the block size of tapes with very long block
sizes created with this flag. In the absence of a -Cnum argument, the
largest block size that tar can automatically determine is 20 blocks.

736 Commands Reference

-d

-ffile[-num]

-h

-iinputlist

-1

-m

tar

Makes separate tape entries for directories, blocks and character
special files, and FIFOs. Normally, tar writes only ordinary files to
tape, and extracts only ordinary files and the directories required to
contain them as determined by the path names on the tape. When
writing to tape with the -d flag, tar makes it possible to preserve the
directory permission codes and to restore empty directories, special
files, and FIFOs with the -x flag.

Note: Although anyone can archive special files, only a user with
superuser authority can extract them from the tape.

Uses file as the archive to be read or written. Without this flag, tar
uses a system-dependent default file name of the form /dev/rmt? If the
file given is - (minus), tar writes to standard output or reads from
standard input. If you write to standard output, the -c function flag
must be used.

If you specify num, tar provides automatic spillover from one file or
tape unit to another. For example, -f/dev/rmtO-2 writes or reads
/dev /rmtO, followed by /dev /rmtl, and then /dev /rmt2 before
requesting that additional volumes be mounted. This feature allows the
operator of a system with multiple tape drives to use multi-tape
archives without having to change tapes.

Ignores header checksum errors. tar writes a file header containing a
checksum for each file on the tape. Without this flag, when it reads a
tape, it verifies the contents of the header blocks by recomputing the
checksum, and aborts with a di rectory checksum error when a
mismatch occurs. With this flag, tar logs the error and then scans
forward on the tape until it finds a valid header block. This permits
restoring files from later volumes of a multi-volume archive without
reading earlier volumes.

Writes the files named in the file inputlist to the archive. inputlist
contains one file name per line. Files from inputlist are not treated
recursively. If you include the name of a directory in inputlist, tar
does not write that directory's subdirectories to the tape, only that
directory's files. If files are listed on the command line, the contents of
inputlist are included after tar has written all the files and their
subdirectories to the archive.

Writes error messages to standard output if tar cannot resolve all of
the links to the files archived. (If you do not specify this flag, you will
not get these messages.)

Uses the time of extraction as the modification time, even if invoked by
a user with superuser authority. Usually, when tar is invoked by a
user with superuser authority, it preserves the modification time of
extracted files.

Commands 737

tar

Files

-8 blocksb
-8 feet
-8 feet @density

-v

-w

-num

/dev/rmt?
/tmp/tar*
/bin/find
/bin/sort

Specifies the number of 512-byte blocks per volume (first format),
independent of the tape blocking factor. You can also specify the size
of the tape in feet by using the second form, and tar assumes a default
density. The third form allows you to specify both tape length and
density. Feet are assumed to be 11 inches long to be conservative.
This flag lets you deal more easily with multi-volume tape archives,
where tar must be able to determine how many blocks fit on each
volume. .

Lists the name of each file as it is processed. With the -t function flag,
-v gives more information about the tape entries, including file sizes,
times of last modification, UID, and GID, and permissions.

Displays the action to be taken followed by the file name, then wait for
user confirmation. If the response begins with y or Y, the action is
performed; otherwise, the file is ignored.

Uses /dev/rmtnum instead of the default. For example, -2 is the same
as -f/dev /rmt2. In AIX systems with multi-density tape drives, this flag
allows selecting a particular density. The default unit is system
dependent and is chosen to match the default density, as described
under the -s flag.

738 Commands Reference

tbl

tbl

Purpose

Formats tables for the nroff and troff commands.

Syntax

tbl

OL805222

Description

The tbl command is a preprocessor that formats tables for nroff and troff. It reads the
specified files or, if you do not specify any file names or you specify a - (minus) as a file
name, it reads standard input. The input is copied unchanged to standard output, except
for text between lines containing .TS and .TE. This text describes tables, and is
reformatted by tbl. The .TS and .TE lines are not altered by tbl. For more detailed
information on how to format text for tbl, see Text Formatting Guide.

Note: When tbl is used with eqn or neqn, tbl should come first to minimize the volume
of data passed through pipelines.

At the start oftbl text, you should include a line containing .TS. You can follow this with
a line containing global options. The available global options are:

center Centers the table (the default is left-adjusted).
expand Makes the table as wide as the current line length.
box Encloses the table in a box.
doublebox Encloses the table in a double box.
allbox Encloses each item of the table in a box.
tab (x) Uses the character x instead of a tab to separate items in a line of input

data.
linesize (n) Sets lines and rules for boxes in point size n.
delim (x,y) Sets x and y as the eqn and neqn text delimiters.

End the list of global options with a ; (semicolon).

After the global options, enter lines describing the format of each row in the table. Each
format line (except the last) describes one row of the table. The last one describes all
remaining rows of the table. This must end with a period to indicate that it is the end of

Commands 739

tbl

the format specification. Each column of the table is described by a single keyletter. The
available keyletters are:

c
r
I
n

s

a

/\

Centers the item in the column.
Right-adjusts the item in the column.
Left-adjusts the item in the column.
Adjusts the numerical items in the column to line up at the decimal point or
right-adjusts them if there are no decimal points.
Allows the previous item on the left to spill over into this column if the item is too
wide for its column.
Centers the longest line in this column and then left-adjusts all other lines in it with
respect to the centered line.
Allows the item above to spill over into this column if the item is too large.
Replaces this entry with a horizontal line.
Replaces this entry with a double horizontal line.

After the keyletter, you can enter specifiers that determine where vertical lines appear
between columns, column width, inter-column spacing, and the font and point size of the
item. See "Column and Item Specifiers" on page 745 for legal specifiers.

The format lines are followed by lines containing data for the table. The last line consists
of . TE. Within the data lines, data items are separated by tab characters, unless the global
option, delim is used.

If a data line consists of only _ (underscore) or = (equal sign), a single or double line is
drawn across the table at that point. If an entry in a data line consists of only _ or =,
then that item is replaced by a single or double line.

Specifier Meaning Specifier Meaning

e or E Equal width columns. worW Minimum width column.

for F Font change. z or Z Zero width column.

nnn Column separation. .xx Included troff request.

p or P Point size change. I Vertical line. I

s or S Spanned item. II Double vertical line. II

tor T Vertical spanning at top. \/\ Vertical span.

T{ ..• T} Text block. \- Short horizontal line.

U orU Staggered columns. \Rx Repeat character.

v orV Vertical spacing change.

Figure 6. tbl Column and Item Specifiers

740 Commands Reference

Flag

tbl

-TX Uses only full vertical line motions, making the output suitable for line printers
and other devices that do not have partial vertical line motions.

Related Information

The following commands: "cw, checkcw" on page 213, "eqn, neqn, checkeq" on
page 300, "mm, checkmm" on page 492, "mmt, checkmm" on page 495, "nrofr' on
page 525, and "trofr' on page 526.

The mm and mv miscellaneous facilities in AIX Operating System Technical Reference.

The discussion of tbl in Text Formatting Guide.

Commands 741

tc

tc

Purpose

Simulates phototypesetter output for a Tektronix 4014 work station.

Syntax

tc
-pnum

OL805271

1 Do not put a blank between these items.

OL805308

Description

Flags

The tc command interprets its input, either a file or standard input, as a troff document.
It then simulates the typesetter output for a Tektronix 4014 work station with ASCII and
APL character sets and writes the results to standard output (usually the work station
display). The 16 typesetter sizes are mapped into the 4014's four sizes; the entire troff
character set is drawn using the 4014's character generator, with overstruck combinations
where necessary.

At the end of each page, tc waits for a new-line character from the keyboard before
continuing to the next page. While it is waiting, the command e suppresses the screen
erase before the next page. !AIX-cmd sends AIX-cmd to the shell.

-pnum letter Sets page length to num and scale to letter. letter may include the scale
factors p (points), i (inches), c (centimeters), and P (picas). The default is
picas~ Do not put a space between num and letter.

-t Does not wait between pages (use in a pipeline).

There are no font distinctions in the display.

742 Commands Reference

/

tc

Example

To use tc in a pipeline with troff:

troff -t chapterl tc

Related Information

The following commands: "sh" on page 637, "tplot" on page 762, "troff' on page 526, and
"4014" on page 865.

Commands 743

tctl

tctl

Purpose

Gives commands to streaming tape.

Syntax

-f$TAPE 1 tctl-C }-SUbCmd----' \ ,
-ftapename ~ count r

OL805397

Description

The tetl command gives subcommands to a streaming tape device. If you do not specify
the -f flag with tapename, the environment variable TAPE is used. If the environment
variable does not exist, tetl uses the device /dev/rmt4. The tapename parameter must be a
raw (not block) tape device. You can specify more than one operation with count.

Subcommands

eof
we of

fsf

fsr

rewind

offline
rewoffl
reset

Writes count end-of-file markers at the current position on the tape.

Moves the tape forward count files.

Moves the tape forward count records.

Rewinds the tape. The count parameter is ignored.

Note: It is sometimes necessary to issue a reset before issuing a rewind
subcommand.

Places the tape drive off-line. The count parameter is ignored.

erase Erases all contents on the tape and rewinds it. /'

retension Moves the tape to the beginning, the end, and back to the beginning of the
tape. If you have excessive read errors during a restore operation, you should
run the ret ens ion subcommand. If the tape has been exposed to
environmental extremes, you should run the retension subcommand before
the save operation.

744 Commands Reference

i Files

TNL SN20-9861 (26 June 1987) to SC23-0790-0
tctl

rasl Performs a checksum on the tape drive.

ras2 Checks the capstan speed, verifies the operations of the BOT, EOT, and SAFE
sensors, and writes a worst case pattern on the tape and attempts to verify the
pattern.

/dev/rmt?? The raw streaming tape interface.

Related Information

The following command: "dd" on page 228.

The ioctl system call and the tape and environ files in AIX Operating System Technical
Reference.

Commands 745

tee

tee

Purpose

Displays the output of a program and copies it into a file.

Syntax

tee

OLR05272

Description

The tee command reads standard input and writes the output of a program to standard
output and copies it into file at the same time.

Flags

-a Adds the output to the end of file instead of writing over it.

-i Ignores interrupts.

Note: If you specify both flags, each must appear separately on the command line,
preceded by a - (minus).

Examples

1. To view and save the output from a command at the same time:

1 i nt program. c tee program. lint

This displays the standard output of the command 1 i nt program. c at the work
station, and at the same time saves a copy of it in the file program. 1 i nt. If
program. 1 i nt already exists, it is deleted and replaced.

746 Commands Reference

tee

2. To display and append to a file:

lint program.c tee-a program. lint

This displays the standard output of 1 i nt program. c at the work station and at the
same time appends a copy of it to the end of program. 1 i nt. If the file program. 1 i nt
does not exist, it is created.

Commands 747

termdef

termdef

Purpose

Queries terminal characteristics.

Syntax

-t

termdef ¥ne of
-c
-I
-t

OL805454

Description

Flags

The termdef command identifies the current display type, the active lines setting, or the
current columns setting, thus simplifying the task of resetting the lines and columns when
you switch fonts or of resetting the $TERM environment variable when you switch
displays. The terminfo file defines the default number of lines and columns for each
display, but the lines and columns can change depending upon which font is currently
active. In addition, the $TERM environment variable does not automatically reflect the
display currently being used. If you are using a display other than the ibm5151, you must
explicitly reset this variable to access the terminfo correctly.

-c Returns the current column value.

-I Returns the current lines value.

-t Returns the name of the current display (this is the default action).

Example

To set enviroment variables according to the values of the currently active font and
display, add the following lines to the /etc/rc file:

TERM='termdef'
COLUMNS='termdef -c'
LINES='termdef -1'
export TERM LINES COLUMNS

748 Commands Reference

termdef

Related Information

The following command: "display" on page 258.

The terminfo file and the hft special file in A/X Operating System Technical Reference.

Commands 749

test

test

Purpose

Evaluates conditional expressions.

Syntax

tost expression---l

[- expression -] ---I

OL805273

Description

The test command evaluates expression and, if its value is true, returns a zero (true) exit
value; otherwise it returns a nonzero (false) exit value; test also returns a nonzero exit
value if there are no parameters.

Note: In the second form of the command, that is the one that uses square brackets ([J),
rather than the word test, the brackets must be surrounded by blanks.

Functions

All the functions and operators are separate parameters to test. The following functions
are used to construct expression:

-r file True if file exists and has read permission.

-w file

-x file

-f file

-d file

-c file

-b file

-p file

-u file

True if file exists and has write permission.

True if file exists and has execute permission.

True if file exists and is a regular file.

True if file exists and is a directory.

True if file exists and is a character special file.

True if file exists and is a block special file.

True if file exists and is a named pipe (FIFO).

True if file exists and its set-user-ID bit is set.

750 Commands Reference

-g file

-k file

-s file

True if file exists and its set-group-ID bit is set.

True if file exists and its sticky bit is set.

True if file exists and has a size greater than zero.

test

-t [filedescr] True if the open file with file descriptor number filedescr (1 by default) is
associated with a work station device.

-z s1

-n s1

s1 = s2

s1 ! = s2

s1

True if the length of string s1 is zero.

True if the length of the string s1 is nonzero.

True if strings s1 and s2 are identical.

True if strings s1 and s2 are not identical.

True if s1 is not the null string.

n1 -eq n2 True if the integers n1 and n2 are algebraically equal. Any of the
comparisons -ne, -gt, -ge, -It, and -Ie can be used in place of -eq.

These functions can be combined with the following operators:

Unary negation operator.

-a Binary AND operator.

-0 Binary OR operator (-a has higher precedence than -0).

\(expression \) Parentheses for grouping.

Examples

1. To test whether a file exists and is not empty:

if test! -s "$1"
then

echo $1 does not exist or is empty.
fi

If the file specified by the first positional parameter to the shell procedure does not
exist, this displays an error message. If $1 exists, it displays nothing. Note that there
must be a space between -s and the file name.

The double quotes around $1 ensure that the test will work properly even if the value
of $1 is the empty string. If the double quotes are omitted and $1 is the empty string,
test displays the error message test: parameter expected.

Commands 751

test

2. To do a complex comparison:

if [$# - 1 t 2 - 0 ! - S II $111]
then

exit
fi

If the shell procedure was given fewer than two positional parameters or the file
specified by $1 does not exist, then this exits the shell procedure. The special shell
variable $# represents the number of positional parameters entered on the command
line that started this shell procedure. For more details, see "Shell Variables and
Command-Line Substitutions" on page 641.

Related Information

The following commands: "find" on page 326 and "sh" on page 637.

752 Commands Reference

tic

tic

Purpose

Translates term info files from source to compiled format.

Syntax

tic -(-v -{ y file T
num

OL805340

Description

Flag

Files

The tic command translates term info files from the source format into the compiled
format. tic places the results in the directory /usr/lib/terminfo. If the environment
variable TERMINFO is set, the results are placed there instead of in /usr/lib/terminfo.

The tic command compiles all term info descriptions in files. When tic finds a use = field, it
searches first the current file, then the master file, ./terminfo.src.

The total compiled entries cannot exceed 4096 bytes and the name field cannot exceed 128
bytes.

-vnum Writes trace information on the progress of tic. num is an integer that increases
the level of the verbosity.

/usr /lib/terminfo/? /* Compiled terminal capability data base.

Related Information

The curses subroutine and the terminfo file in AIX Operating System Technical
Reference.

Commands 753

time

time

Purpose

Times the execution of a command.

Syntax

time - command ~
OL805274

Description

The time command times the execution of the named command. time writes to standard
error the elapsed time of the command, the system time used, and the execution time, in
seconds.

Examples

1. To measure the time required to run a program:

time a.out
This runs the program a.out and writes to the standard error output the amount of
real, system, and user time that it uses:

real 10.5
user 0.3
sys 3.6

2. To save a record of the time information in a file:

time a.out 2> a.time
~ ~ J ~T ~ , • .n.ela"(;ea .lnIOrmataon

The following command: "timex" on page 755.

The times system call in AIX Operating System Technical Reference.

754 Commands Reference

timex

TNL SN20-9861 (26 June 1987) to SC23-0790-0
timex

Purpose

Times a command, and reports process data and system activity.

Syntax

limex--<@X _P~~ ~ ~ V-commond---"

1 Do not put a blank between these items.

OL805275

Description

Flags

The timex command reports, in seconds, the elapsed time, user time, and system execution
time for command. With flags specified, timex can list or summarize process accounting
data for command and all of its children, and report total system activity during the
execution interval. The output of the timex command is written to standard error.

Note: timex only reports on local commands.

The timex commands uses the accounting file /usr/adm/pacct to select process records
associated with command. It also includes background processes having the same user ID,
work station ID, and execution time window.

-0 Reports the total number of blocks read or written and total characters transferred by
command and all its children.

-p Lists process accounting records for command and all its children. The f, h, k, m, r,
and t arguments modify the data items reported and are defined in the acctcom
command (see page 38.) The number of blocks read or written and the number of
characters transferred are always reported.

-s Reports total system activity that occurred during the execution of command. All the
data items listed in sar are reported (see page 614).

Commands 755

timex

Related Information

The following commands: "acctcom" on page 38 and "sar" on page 614.

756 Commands Reference

toc

toe

Purpose

Provides graphical table of contents routines.

Syntax

dtoc-C =r
directory

ttoc - mmfi/e---l

vtoc

-c
-d
-h num
-j

-m
-s
-v num

OL777076

Description

All of the commands listed below reside in /usr/bin/graf (see "graphics" on page 377).

dtoc

The dtoc command makes a textual table of contents, TTOC, of all subdirectories
beginning at directory (by default the current directory.). The list has one entry per
directory. The entry fields from left to right are level number, directory name, and the
number of ordinary readable files in the directory. dtoc is useful in making a visual
display of all or parts of a file system. The following will make a visual display of all the
readable directories under the root directory (f):

dtoc / I vtoc I td

Commands 757

toe

ttoc
Output is the table of contents generated by the .TC macro of the mm command translated
to TTOC format. The input is assumed to be a mm file that uses the .R family of macros
for section headers. If no file is given, the standard input is assumed.

vtoc
The vtoc command produces a GPS describing a hierarchy chart from a TTOC. The output
drawing consists of boxes containing text connected in a tree structure. If no file is given,
the standard input is assumed. Each TTOC entry describes one box and has the form:

id[line-weight, line-style] "text" [mark]

where:

id is an alternating sequence of numbers and dots. The id specifies the position
of the entry in the hierarchy. The id o. is the root of the tree.

line-weight is either:

line-style

text

mark

n, normal-weight; or
m, medium-weight; or
b, bold-weight.

is either:

so, solid-line;
do, dotted-line;
dd, dot-dash line;
da, dashed-line; or
ld, long-dashed

is a character string surrounded by quotes. The characters between the
quotes become the contents of the box. To include a quote within a box it
must be escaped (\").

is a character string (surrounded by quotes if it contains spaces), with
included dots being escaped. The string is put above the top right corner of
the box. To include either a quote or a dot within ,a mark it must be escaped.

Entry example:

1.lb,daIlABOII OEF
Entries may span more than one line by escaping the new-line (\new-line).

Comments are surrounded by the /*,*/ pair. They may appear anywhere in a TTOC.

758 Commands Reference

toe

Flags

c Uses text as entered, (default is all upper case).

d Connects the boxes with diagonal lines.

hnum Sets horizontal interbox space to num% of box width.

Suppresses the box id.

m Suppresses the box mark.

s Do not compact boxes horizontally.

vnum Vertical interbox space is num% of box height.

Related Information

The following command: "graphics" on page 377.

The gps file in AIX Operating System Technical Reference.

Commands 759

touch

touch

Purpose

Updates the access and modification times of a file.

Syntax

~ -0 -m ~ directory

louch --=:0 -c _~ mmddhhmm'y fife =2r
mmddhhmmyy

'The current year is the default year.
OL805276

Description

Flags

The touch command updates the access and modification times of each file or directory
named to the one specified on the command line. If you do not specify a time, touch uses
the current time. If you specify a file that does not exist, touch creates a file with that
name unless you request otherwise with the -c flag.

The environment variables NLDATE and NLTIME, if defined, specify the order of month
and day in the date specification and of hour and minute in the time specification.
Otherwise, these orders default to mmdd and hhmm.

The return code from touch is the number of files for which the times could not be
successfully modified (including files that did not exist and were not created).

-a Changes only the access time.

-c Does not create the file if it does not already exist.

-m Changes only the modification time.

760 Commands Reference

Examples

1. To update the access and modification times of a file:

touch program.c

touch

This sets the last access and last modification times of program. c to the current date
and time. If program. c does not exist, touch creates an empty file with that name.

2. To avoid creating a new file:

touch -c program.c
3. To update only the modification time:

touch -m *.0

This updates only the last modification times of the files in the current directory that
end with . o. touch is often used in this way to alter the results of the make
command.

4. To explicitly set the access and modification times:

touch -c 02171425 program.c
This sets the access and modification dates to 14:25 (2:25 p.m.) February 17 of the
current year.

Related Information

The following command: "date" on page 219.

The utime system call in AIX Operating System Technical Reference.

The "Overview of International Character Support" in Managing the AIX Operating
System.

Commands 761

tplot

tplot

Purpose

Produces plotting instructions for a particular work station.

Syntax

-T$TERM

tplot I \ /\ I

~ -Tworkstation F\..fi(eJ
OL805277

Description

Flag

Files

The tplot command reads plotting instructions from standard input or from file, if
specified. (For more information about plotting instructions, see the plot file format A/X
Operating System Technical Reference). tplot writes instructions suitable for the specified
workstation to standard output. If workstation is not specified, the environment variable
TERM is used. (For more information about environment variables, see the environ file
in A/X Operating System Technical Reference).

-Tworkstation Uses the plotting instructions for workstation. The known workstation is:

/usr/lib/tcolor
/usr/lib/tprint

lp IBM PC graphics printer

Related Information

The following commands: "graph" on page 375 and "splp" on page 687.

The plot subroutine and the plot file in A/X Operating System Technical Reference.

762 Commands Reference

tput

tput

Purpose

Queries the terminfo file.

Syntax

-{

-T$TERM
tput

-Ttype
OL805398

Description

Flags

The tput. command uses the terminfo file to make terminal-dependent information
available to the shell. The output of tput. is a string if the attribute cap name (for
capability name) is of type string or an integer if the attribute is of type integer. If the
attribute is of type Boolean, tput. simply sets the exit value (0 for TRUE, 1 for FALSE),
and produces no other output.

-Ttype Indicates the type of work station. Normally, the value of type is supplied by
the environment variable $TERM.

capname Indicates the attribute from the term info file. For more information, see the
terminfo file in AIX Operating System Technical Reference.

Examples

1. To echo the clear-screen sequence for the current work station:

tput clear
2. To display the number of columns for the current work station:

tput cols

3. To display the number of columns for the 450 work station:

tput -T450 cols

Commands 763

tput

Files

4. To set the shell variable bo 1 d to the highlight mode sequence for the current work
station:

bo 1 d='tput smso'

This might be followed by a prompt:

echo "${bold}Please type in your name: \e"

5. To set the exit value to indicate if the current work station is a hardcopy terminal:

tput he

/usr/lib/terminfo/? /*
/usr/include/term.h
/usr/include/curses.h

Terminal descriptor files.
Definition files.

Related Information

The following command: "stty" on page 717.

The terminfo file in AIX Operating System Technical Reference.

764 Commands Reference

tr

tr

Purpose

Translates characters.

Syntax

tr

string/ string2 ~

'----string/ ~ ,
OL805278

Description

Flags

The tr command copies characters from the standard input to the standard output with
substitution or deletion of selected characters. Input characters from string 1 are replaced
with the corresponding characters in string2. tr cannot handle an ASCII NUL (\000) in
stringl or string2; it always deletes NUL from the input.

Abbreviations that can be used to introduce ranges of characters or repeated characters
are:

[a-z] Stands for a string of characters whose ASCII codes run from character a to
character z, inclusive.

[a*num] Stands for num repetitions of a. num is considered to be in decimal unless the
first digit of num is 0; then it is considered to be in octal.

Use the escape character \ (backslash) to remove special meaning from any character in a
string. Use the \ followed by 1, 2, or 3 octal digits for the ASCII code of a character.

-A Translates on a byte-by-byte basis. When you specify this flag, tr does not support
extended characters.

-c Complements (inverts) the set of characters in stringl with respect to the universe of
characters whose ASCII codes are 001 through 377 octal, if you specify -A, and all
characters, if you do not specify -A.

Commands 765

tr

-d Deletes all input characters in stringl.

-8 Changes characters that are repeated output characters in string2 into single
characters.

Examples

1. To translate braces into parentheses:

tr I {} I I () I <textfi 1 e >newfi 1 e

This translates each { to (and each} to). All other characters remain unchanged.

2. To translate lowercase characters to uppercase:

tr I [a-zJ I I [A-IJ I <textfi 1 e >newfi 1 e

3. This is what happens if the strings are not the same length:

tr I [0-9J I I # I <textfi 1 e >newfi 1 e

This translates each 0 to a # (number sign).

Note: If the two character strings are not the same length, then the extra characters
in the longer one are ignored.

4. To translate each digit to a #:

tr I [0-9J I I [#*J I <textfile >newfile

The * tells tr to repeat the # enough times to make the second string as long as the
first one.

5. To translate each string of digits to a single num:

tr -5 I [0-9J I I L#*J I <textfile >newfile
6. To translate all ASCII characters that are not specified:

tr -C I[_-JI '[A-_J?' <textfile >newfile
This translates each non-printing ASCII character to the corresponding control key

letter (\001 translates to A, \002 to B, etc.). ASCII DEL (\177), the character that
follows - (tilde), translates to ?

7. To create a list of the words in a file:

tr -C5 I [a-zJ [A-IJ I I [\012*J I <textfile >newfile
This translates each string of nonalphabetic characters to a single new-line character.
The result is a list of all the words in textfi 1 e, one word per line.

766 Commands Reference

Related Information

The following commands: "ed" on page 280 and "sh" on page 637.

The ascii file in A/X Operating System Technical Reference.

The "Overview of International Character Support" in Managing the A/X Operating
System.

tr

Commands 767

trace

trace

Purpose

Starts the trace function.

Syntax

trace
~c/trcprOfile\ ,

(-9medes profile ~
-I

OL805279

Description

The trace command starts the trace function in the background. This trace function
provides a base for debugging the system. trace monitors the occurrence of selected
events in the system and records on disk important data specific to each of these events.
You can format this output with the trcrpt command.

Any user or program that needs the trace process enabled for debugging or error
determination can start trace. When starting trace, you must provide a profile. This
allows you to tailor the output of the trace session to individual needs. The default profile
is /etc/trcprofile.

There may be more than one trace profile in the file system at a time. The trace profile
contains the classes of events that you can select to trace, listed by event class and by a
descriptive label. See "Example" on page 770 for a sample profile. You may keep different
profiles to trace different combinations of event classes. trace also takes additional
information about the trace session from the configuration file /etc/rasconf (see A/X
Operating System Technical Reference for a discussion of this file). You set the name and
size of the output file in this configuration file.

In a multi-user environment, trace records all system events, not just events at one virtual
terminal.

768 Commands Reference

Flags

-g {iledes

-1

-0 name

-n num

-s Slze

trace

Indicates that this is a generic trace session. Generic tracing applies only
to the VRM. In this type of session, events to be recorded do not necessarily
have a fixed event class, but are allocated to a temporary event channel by
the trace device driver, Ide v/vrmtrace. Thus, starting a generic trace does
not require a trace profile. Generic traces are started and stopped by other
processes, such as communications session managers. Therefore, the
interface to the demon is somewhat diffferent. The -g flag is useful only
when trace is started by another process.

The {iledes parameter is a file descriptor from the parent process. trace
writes this following information to this file descriptor:

• The process ID of the trace demon
• The address of the trace buffer
o The size (in bytes) of the trace buffer
• The temporary channel bit allocated to this event.

When tracing a generic event, the trace demon does not record its process
ID so that it can be stopped by the trcstop command. Thus, more than one
trace demon may be running at any time, but there may be as many as seven
traces in the system at once (one normal trace and from one to six generic
traces).

Use the trc_start and trc_stop subroutines to start and stop a generic
trace.

Indicates that the VRM trace device driver should log only the last buffer
filled before the trace demon stops. This flag is valid only during a generic
trace (-g).

Specifies the name of the log file into which the trace demon stores the
trace data. For generic traces (-g), this name must be different from the
default file name specified in the configuration file letc/rasconf.

Specifies the number of entries in the trace buffer. trace multiplies this
number by the size of the entries (see the -s flag) and uses the resulting
value to size the trace buffer. If you do not specify this flag, trace uses the
buffer size specified in the configuration file letc/rasconf.

Specifies the size (in bytes) of the entries that the trace demon will be
handling. The default size is 40 bytes. The size can be no less than 20,
which is the number of bytes in the trace header for each entry. All entries
must be the same size in a particular trace log file.

Commands 769

trace

Example

* SYSTEM TRACE PROFILE

* To set trace on for an event class, remove the comment mark (*) from the
* first column of the line containing the event you wish to trace.
* Add a comment mark (*) in the first column of lines containing event types
* you wish to stop tracing.

***** Event
* Type Description

***** Applications

***** AIX Extensions
* 36 Config

***** AIX System Calls
* 60 Shared Memory
* 61 Messages
* 62 Semaphores
* 63 Signals
* 64 Time
* 65 File System
* 66 File Handling
* 67 Directory Handling
* 68 Process

***** VRM Components
* 100 SVC Handler
* 110 Async/5080 Peripherals
* 112 Async/5080 Peripheral Interrupts
* 113 Virtual Terminal Manager
* 114 Keyboard Interrupts
* 115 Locator Interrupts

* 150 User-Defined Events

770 Commands Reference

,/

Files

/etc/trcprofile
/usr/adm/ras/trcfile
/etc/rasconf

Default profile.
Output file defined in /etc/rasconf.
Configuration file.

trace

Related Information

The following commands: "trcstop" on page 774 and "trcrpt" on page 772.

The rasconf configuration file in AIX Operating System Technical Reference.

The discussion of trace in AIX Operating System Programming Tools and Interfaces.

Commands 771

trcrpt

trcrpt

Purpose

Formats a report from the trace log file.

Syntax

trcrpti i(C /usr/adm/ras/trcfile ~
-s date . t file I
-edate

OL805280

Description

Flags

The trcrpt command writes to standard output a chronological listing in readable format
of the trace log file or files specified. You can specify a maximum of 10 log files. If you do
not specify any files, trcrpt reads /etc/rasconf for a file name. This name is usually
/usr / adm/ras/trcfile.

-e date Ends the report time with entries on or before date. The format of date is the
same as the date command, MMddhhmmyy.

-s date Starts the report with entries on or later than date. The format of date is the
same as the date command, MMddhhmmyy. If you do not specify this flag,
trcrpt formats the entire log file.

Example

To format a trace log file:

trcrpt -s0109100384 -e0109100584 /u/dave/trc_log print

This formats the log file /u/dave/trc_l og, starting with entries from January 09,1984 at
10:03 and ending at 10:05. It pipes the formatted output to the print queue.

772 Commands Reference

trcrpt

Files

/usr/adm/ras/trcfile Default log file.
/etc/trcfmt Trace format file.
/usr/adm/ras/.trcevents Trace event types table.

Related Information

The following commands: "trace" on page 768 and "trcstop" on page 774.

The rasconf file in AIX Operating System Technical Reference.

The discussion of trcrpt AIX Operating System Programming Tools and Interfaces.

Commands 773

trcstop

trcstop

Purpose

Stops the trace function.

Syntax

trcsto P ---l
OL805223

Description

The trcstop command sends a Software Terminate signal to the trace background process.
This gracefully ends trace and forces cleanup.

Files

Related Information

The following commands: "trace" on page 768 and "trcrpt" on page 772.

The discussion of trcstop in AIX Operating System Programming Tools and Interfaces.

774 Commands Reference

trcupdate

trcupdate

Purpose

Updates trace format templates.

Syntax

trcupdcte - file ~ I
~-or

OL805399

Description

The trcupdate command adds, replaces, or deletes trace report format templates in the
files /etc/trcfmt and /usr/adm/ras/.trcevents and the event types in file /etc/trcprofile.
trcupdate creates three undo files in the current directory named file.undo.trc,
.trcevents.undo.evt, and file.undo.pro. These undo files can be used as input to
trcupdate with the -0 (override) flag to undo the changes trcupdate has just made. The
trcupdate command reads three files named file.trc, file.evt, and file.pro. The trc file
contains trace format templates; the evt file contains trace event types and their
corresponding hook IDs; the pro file contains the event type line for the trace profile.

The first field of each template contains an operator:

+ To add or replace a template

To delete a template.

If the operation is +, then the following fields contain the template to be replaced. The
hook ID of the template is also added to the /usr/adm/ras/.trcevents file, and the event
type line is added to the trace profile /etc/trcprofile. If the operation is a -, then the
second field contains the hook ID of the template to delete. That hook ID is also deleted in
/usr/adm/ras/.trcevents, and the event type line is deleted from /etc/trcprofile. When
adding or replacing, trcupdate compares the version numbers of each input template with
the version number of the existing template of the same hook IDs. If the version number of
the input template is later, it replaces the old template with the input template. If the
template does not already exist, then it is added to the file. The input file must contain an
identifier line on the first line: * /etc/trcfmt or trcupdate rejects the input file.

The file.evt file contains a table of trace system event types and hook IDs that fall under
these types. trcupdate reads in the file /usr/adm/ras/.trcevents and adds in any hook
IDs from file.evt that are not already accounted for or reassigns/deletes hook IDs to the

Commands 775

trcupdate

Flags

event type given in the update file. The first line of the event/hook update file must be:
* /ras/. trcevents or trcupdate rejects the input file.

The file.pro contains the lines that are to be added to or deleted from /etc/trcprofile.
trcupdate reads /etc/trcprofile and adds or deletes the specified event type line from
file.pro. The first line of the event type file must be: * / etc/trcprofi 1 e or
trcupdate rejects the input file.

-0 Does no version number checking.

Examples

Files

1. The following is a sample trc file:

* /etc/trcfmt
+ 355 1.0 new_fmt
- 351
- 352
- 353

2. The following is a sample evt file:

* ras/.trcevents
350 355 356 357

/etc/trcfmt
/usr/adm/ras/. trcevents
file.evt
file. undo.evt
file.trc
file.undo.trc
file.pro
file.undo.pro

Related Information

The following command: "trcrpt" on page 772.

AIX Operating System Programming Tools and Interfaces.

776 Commands Reference

/'

true

true

Purpose

Returns an exit value of zero.

Syntax

true --l

false --l
OL805064

Description

The true command returns a zero exit value. The false command returns a nonzero value.
These commands are usually used in input to the sh command.

Example

To construct an infinite loop in a shell procedure:

while true
do

date
sleep 60

done

This shell procedure displays the date and time once a minute. To stop it, press
INTERRUPT (Alt-Pause).

Related Information

The following command: "sh" on page 637.

Commands 777

tsort

tsort

Purpose

Sorts an unordered list of ordered pairs (a topological sort).

Syntax

tsort -----'\ J

~fi'er

Description

OLB05224

The tsort command reads from file or standard input an unordered list of ordered pairs, it
builds a completely ordered list, and writes it to standard output.

The input file should contain pairs of non empty strings separated by blanks. Pairs of
different items indicate a relative order. Pairs of identical items indicate presence, but no
relative order. You can use tsort to sort the output of the lorder command.

If file contains an odd number of fields, tsort writes the error message Odd data

Example

To create a subroutine library:

larder charin.a scanfld.a scan.a scanln.a
tsart xargs ar qv libsubs.a

This creates a subroutine library named 1 i bsubs. a that contains chari n. a, scanfl d. a,
scan. a, and scan 1 n. a. The ordering of the object modules in the library is important.
The ld command requires each module to precede all the other modules that it calls or
references. The lorder and tsort commands together add the subroutines to the library in
the proper order.

778 Commands Reference

tsort

Suppose that scan.o calls scanfld.o and scanln.o. scanfld.o also calls charin.o.
First, the lorder command creates a list of pairs that shows these dependencies:

charin.o charin.o
scanfld.o scanfld.o
scan.o scan.o
scanln.o scanln.o
scanfld.o charin.o
scanln.o charin.o
scan.o scanfld.o
Next, the I (vertical bar) sends this list to the tsort command, which converts it into the
ordering we need:

scan.o
scanfld.o
scanln.o
charin.o
Note that each module precedes the module it calls. chari n. 0, which does not call
another module, is last.

The second I then sends this list to xargs, which constructs and runs the following ar
command:

ar qv libsubs.a scan.o scanfld.o scanln.o charin.o
This ar command creates the properly ordered library.

Related Information

The following commands: "ar" on page 58, "lorder" on page 457, and "xargs" on
page 857.

Commands 779

ttt

ttt

Purpose

Plays tic-tac-toe.

Syntax

/usr / games/ttt

OL805282

Description

The ttt game plays the popular X and 0 game. This is a learning version, but it learns
slowly. It loses nearly 80 games before completely mastering the game.

Flags

-e Increases the speed of the learning.

-i Displays the instructions prior to the start of the game.

To quit the game, press INTERRUPT (Alt-Pause) or END OF FILE (Ctrl-D).

Files

/usr/games/ttt.a Learning file.

780 Commands Reference

tty

Purpose

Writes to standard output the full path name of your work station.

Syntax

IIY~

Description

Flag

The tty command writes the name of your work station to standard output.

-s Suppresses reporting the path name. The exit value has the following possible
meanings:

o Standard input is a work station.
1 Standard input is not a work station.
2 Invalid flags specified.

tty

OL805283

If your standard input is not a work station and you do not specify the -s flag, you get the
message not a tty.

Examples

1. To display full path name of your work station:

tty
2. To test whether or not the standard input is a work station:

if tty - s
then

echo 'Enter the text to print: I >/dev/tty
fi
print

Commands 781

tty

If the standard input is a work station, this displays the message Enter the text to
pri nt: as a prompt and prints the text that the user types.

If the standard input is not a work station, this displays nothing. It merely prints the
text read from the standard input.

The echo . . . > / dev /tty displays the prompt on the screen even if you redirect
the standard output of the shell procedure. This way the prompt is never written into
an output file. The special file /dev/tty always refers your work station, although it
also has another name like /dev/console or /dev/tty2.

782 Commands Reference

turn on

turnon

Purpose

Turns on execute permission for games.

Syntax

turnon ----l
OLB05405

turnoff ---l
OLB05406

Description

The turnon and turnoff commands are shell procedures that set the permission codes of
files in the /usr/games directory. You must be operating with superuser authority to run
this command.

The turnon command looks for files with permissions set to 000 and sets them to 111
(execute permission for all users).

The turnoff command looks for files in /usr/games whose permissions are set to 111 and
sets these permissions to 000.

If you install any new games in the /usr/games directory, set their permissions to 111.

Commands 783

TNL SN20-9861 (26 June 1987) to SC23-0790-0
ugtable

lugtable

I Purpose

Accesses the Distributed Services Network User/Groups Table.

I Syntax

ugtable ---1

I Description

OL805469

The ugtable command lets you build, examine, or change the Distributed Services
Network User/Group Table. Only members of the system group or users operating with
superuser authority can use ugtable to change the state of the Distributed Services
Network User/Group Tables (see "su" on page 724). Other users can use ugtable to
browse the Network User/Groups Table.

I Related Information

"Getting Started With Distributed Services Configuration Menus" in Managing the AIX
Operating System.

784 Commands Reference

umask

Purpose

Sets file-creation permission code mask.

Syntax

umaSk-Q--l
nnn

Description

umask

01.805286

The umask command sets your file-creation mask to nnn, three octal digits that represent
the read/write/execute permissions for owner, group, and others, respectively. When you
create a file, the system ANDs the complement of nnn to the file-creation permission code,
in effect removing the corresponding permissions. (See" ehmod" on page 128 for more
information on file and directory permission codes.)

If you do not specify nnn, umask displays the current value of your file-creation
permission code mask. The initial system mask (set in fete/profile) is 022.

Examples

1. To display the current file creation mask:

umask

2. To prevent other people from writing into your files:

umask 022

This sets the file creation mask to 022, which takes away write permission for group
members and others. Now a file that would normally be created with permission code
777 has code 755, and a file normally 666 has 644.

3. To prevent other people from using your files:

umask 077

This sets the file creation mask to 077, which removes read, write, and execute
permission for group members and others. Now a file that would normally be created
with permission code 666 has code 600.

Commands 784.1

umask

Related Information

The following commands: "chmod" on page 128 and "sh" on page 637.

The creat, chmod, mknod, open, and umask calls in A/X Operating System Technical
Reference.

The discussion of tailoring the user environment in Managing the A/X Operating System.

784.2 Commands Reference

umask

Commands 7~5

TNL SN20-9861 (26 June 1987) to SC23-0790-0
umount

umount

Purpose

Makes a file system unavailable for use.

Syntax

OL805225

Description

Flags

The umount command unmounts a previously mounted file system, directory, or file.
Processing on the file system, directory, or file completes and it is unmounted. Members of
the system group and users operating with superuser authority can issue any umount
command. Other users can unmount any directory or file that they have mounted. For
local mounts, you can specify the file system, directory, or file as either the directory or
device on which it is mounted. If you specify all, umount unmounts all mounted file
systems. For remote mounts, specify the directory of the file as directory. If you specify
allr, umount unmounts all remote mounts.

-n node

-s

Specifies the remote node for the unmount. node can be either a nickname
or a node ID. The umount -n node command unmounts all remote mounts
made from node.

Prohibits the use of the /etc/mnttab file if it is damaged or not writable. If
you use this flag, you must specify the name of the device to be unmounted.

N ote: You cannot use the umount command on a device that is in use. A device is in
use if any file is open for any reason or if a user's current directory is on that device.

786 Commands Reference

TNL SN20-9861 (26 June 1987) to SC23-0790-0
umount

Examples

Files

1. To unmount a diskette drive:

umount /dev/fdO
2. To unmount the device mounted on /disketteO:

umount /disketteO
3. To unmount all mounts from a remote node:

umount -n nodeA

/etc/mnttab Table of currently mounted file systems.

Related Information

The following command: "mount" on page 498.

The mount, umount, vmount, uvmount, and mntctl system calls and the mnttab file in
AIX Operating System Technical Reference.

Commands 787

uname

uname

Purpose

Displays the name of the current operating system.

Syntax

uname

OL805287

Description

The uname command writes to the standard output the name of the operating system that
you are using.

Flags

-a Displays all information specified with the -m, -n, -r, -s, and -v flags.

-1 Displays the LAN network number.

-m Displays the type of hardware running the system.

-n Displays the name of the node (this may be a name that the system is known by to a
communications network).

-r Displays the release number of the operating system.

-s Displays the system name. (This flag is on by default.)

-v Displays the operating system version.

-x Displays the information specified with the -a flag and the LAN network number.

If you enter a flag that is not valid, uname exits with an error message, an error return
status, and no output.

788 Commands Reference

Example

To display the complete system name and version banner:

uname -a

Related Information

The uname system call in AIX Operating System Technical Reference.

uname

Commands 789

unget

unget

Purpose

Cancels a previous get command.

Syntax

unget

OL805284

Description

Flags

The unget command allows you to restore a g-file created with a get -e before the new
delta is created, and therefore discarding the changes (see "get" on page 359 and "delta"
on page 236). If you specify a - (hyphen) in place of file, standard input is read, and each
line of standard input is interpreted as the name of an SCCS file. unget continues to take
input until it reaches an end of file character, which is a Ctrl-D if input is from the
keyboard.

If you specify a directory in place of file, unget performs the requested actions on all SCCS
files (those files with the 8. prefix).

Each flag or group of flags applies independently to each named file.

-n Prevents the automatic deletion of the g-file. This flag allows you to retain the
edited version of the file without making a delta.

-rSID Specifies the new delta that would have been created by the next use of the delta
command. You must use this flag if you have two or more pending deltas to the
file under the same login name. You can look at the p-file to see if you have more
than one delta pending to a particular SID under the same login name. The SID
specification must unambiguously specify only one SIn to discard, or unget
displays an error message and stops running.

-8 Suppresses writing the deleted SIn to standard output.

790 Commands Reference

Example

To discard the changes you have made to an sees file after doing a get -e:

unget s.prog.c

Related Information

The following commands: "delta" on page 236, "get" on page 359, and "sact" on
page 609.

The sccsfile file in AIX Operating System Technical Reference.

unget

The discussion of sees in AIX Operating System Programming Tools and Interfaces.

Commands 791

uniq

uniq

Purpose

Deletes repeated lines in a file.

Syntax

uniq
infi/e

OL805285

Description

Flags

The uniq command reads standard input or infile, compares adjacent lines, removes the
second and succeeding occurrences of a line, and writes to standard output or the specified
file outfile. infile and outfile should always be different files. Repeated lines must be on
consecutive lines in order to be found. You can arrange them with the sort command (see
page 672) before processing.

-c Precedes each output line with a count of the number of times each line appears
in the file. This flag supersedes -d and -u.

-d Displays only the repeated lines.

-u Displays only the unrepeated lines.

-num Skips over the first num fields. A field is a string of nonspace, nontab characters
separated by tabs and or spaces from adjacent data on the same line.

+ num Skips over the first num characters. Fields specified by num are skipped before
characters.

Related Information

The following commands: "comm" on page 144 and "sort" on page 672.

792 Commands Reference

units

units

Purpose

Converts units in one measure to equivalent units in another measure.

Syntax

units ---l
OL805226

Description

The units command converts quantities expressed in one measurement to their equivalents
in another. units is an interactive command. It prompts you for the unit you want to
convert from and the unit you want to convert to (see "Examples" on page 794). This
command only does multiplicative scale changes. That is, it can convert from one value to
another only when the conversion is done with a multiplication factor. For example, it can
not convert between degrees Fahrenheit and degrees Celsius, because 32 must be added or
subtracted in the conversion.

You can specify a quantity as a multiplicative combination of units, optionally preceded by
a numeric multiplier.

Indicate powers by suffixed positive integers and division by I (slash).

The units command recognizes lb as a unit of mass, but considers pound to be the British
pound sterling. Compound names are run together (such as light year). Prefix British
units differing from their American counterparts with br (brgallon for instance). The file
/usr/lib/unittab contains a complete list of the units that the units command uses.

Most familiar units, abbreviations, and metric prefixes are recognized, together with the
following:

pi
c
e
g
force
mole
water
au

Ratio of circumference to diameter
Speed of light
Charge on an electron
Acceleration of gravity
Same as g
Avogadro's number
Pressure head per unit height of water
Astronomical unit.

Commands 793

units

Examples

To start the units command, enter:

units

Now you can try the following examples. In these examples, the text that you enter is
shown in bold type and the output from units is shown in non-bo 1 d type.

1. To display conversion factors:

you have: in
you want: em

* 2.540000e+OO
/ 3.937008e-01

The output from units tells you to multiply the number of inches by 2. 540000e+OO to
get centimeters, and to multiply the number of centimeters by 3. 937008e-01 to get
inches.

These numbers are in standard exponential notation, so 3. 937008e-01 means
3.937008 x 10-1, which is the same as 0.3937008. The second number is always the
reciprocal of the first. That is, 2.54 = 1 -7- 0.3937008.

2. To convert a measurement to different units:

you have: 5 years
you want: mierosee

* 1.577846e+14
/ 6.337753e-15

The output shows that 5 years equals 1. 577846x1014 microseconds, and that one
microsecond equals 6. 337753x10-15 years.

3. To give fractions in measurements:

you have: 113 mi
you want: km

* 5.364480e-01
/ 1.864114e+OO

The I (vertical bar) indicates division, so 113 means one-third. This shows that
one-third mile is the same as 0.536448 kilometers.

4. To include exponents in measurements:

you have: 1.2-5 gal
you want: floz

* 1.536000e-03
/ 6.510417e+02

794 Commands Reference

Files

units

The expression 1.2-5 gal stands for 1. 2xl0-5. Do not type an e before the exponent.
This example shows that 1.2xl0-5 (0.000012) gallons equall.536xl0-3 (0.001536)
fluid ounces.

5. To specify complex units:

you have: gram centimeter/second2
you want: kg-m/sec2

* 1.000000e-05
/ 1.000000e+05

The units gram centimeter/second2 mean "grams x centimeters -:- second2."

similarly, kg-m/sec2 means "kilograms x meters -:- sec2," which is often read as
"kilogram-meters per seconds squared." Note that you can show multiplication of
units with a - (hyphen) or with a blank.

6. If the units you specify after "you have" and "you want" are incompatible:

you have: ft
you want: lb
conformability

3.048000e-Ol m
4.535924e-Ol kg

The message conformabi 1 i ty means that the units you specified cannot be converted.
Feet measure length, and pounds measure mass, so converting from one to the other
doesn't make sense. Therefore, the units command displays the equivalent of each
value in standard units.

In other words, this example shows that one foot equals 0.3048 meters and that one
pound equals 0.4535924 kilograms. units shows the equivalents in meters and
kilograms because the command considers these units to be "standard" measures of
length and mass.

fusrflibfunittab

Commands 795

updatep

updatep

Purpose

Updates one or more programs.

Syntax

one of

updatep

-a -s
-ac -r
-aci -rx
-ai -c

-n $LOGNAXd IdeV/rfdOy
-n user -d device

OL805392

Description

Warning: Before you apply or reject an update, you must restart your
system and be sure that you are not running any programs and that no
other work stations are enabled.
The updatep command controls the update process for one or more programs. It also lets
you determine the status of pending program updates and provides documentation about
the updates. You must be a member of the system group to run this command.

The updatep command supports an apply/commit/reject philosophy. To apply one or more
programs, you use the -a or the -ai flags. You must then use either the -c flag to commit
the program or the -r flag to reject the program. Normally you should not use -r until you
have tested the program on your system. If you specify -ac or -aci, you can apply and
commit in one operation. The -r flag must be used separately. During an apply, updatep
normally saves the current versions of files that are being updated. If needed, these files
can be used to do a recovery or rej ect.

You are responsible for reserving update save space in the /usr file system. updatep
checks to insure that there is adequate save space in /usr before it applies an update. If
there is insufficient free space, updatep gives you the option of either ending the
command or of allowing it to continue. If you end the command, you can take action to
increase the free space in your /usr file system. If you continue, no current versions of
files will be saved, and updatep will automatically commit the update, even though you
may not have requested a commit originally. Normally, you should reserve 4000 blocks (2
megabytes) of free space in the /usr file system for updates.

796 Commands Reference

Flags

updatep

You cannot use INTERRUPT (Alt-Pause) to stop the updatep command. To stop
updatep, press QUIT \\lITH DUMP (Ctrl-V). This should be used only in extreme
circumstances since the state of the system cannot be predicted. For example:

• The write-verify feature may be left on for all minidisks. See "verify" on page 830

• All terminals other than the console may be disabled. See "penable" on page 550.

• Some update control files may need to be deleted.

-a[i] Applies the updates for one or more programs. If there is a pending update for
any program on the system, updatep does not permit an apply. You must
either commit or reject all pending updates before it accepts another update
apply.

The updatep command asks you to select the program you wish to update.
After you select a program, updatep runs the inudocm command for any
specific update instructions. If it finds any, it copies them into the file
/usr/ipp/pgm-name/ui.vv.rr.llll., where vv is the version, rr the release, and llll
the level of the program Normally you should review instructions before
continuing. To restart the update procedure and ignore the check for existing
update instructions, enter updatep -ai or updatep -aci.

The updatep command applies the update for each program by running
inuupdt for each name. After each update, it deletes the
/usr/lpp/pgm-name/inst_updt directory. It then runs inudocm to check for
any update documentation. If there is information for a manual, updatep
copies it into the file /usr/ipp/pgm-name/me.vv.rr.llll and writes a message.

-c Accepts a previous update apply. updatep presents selection information for
programs that have pending updates. You select the programs that you want to
commit.

Any programs that you apply as a group must be committed as a group.
Management control information about the update changes to indicate that the
program is accepted. updatep deletes the directory that contains the update
recovery information, /usr/pgm-name/inst_ updt.save.

-d device Specifies the input device name. The default input device is /dev/rfdO.

-n user Lets you specify a name in the program history file that is responsible for the
program. The default is the value of the system variable $LOGNAME. If you
specify user, the first 8 nonblank characters are stored in the program history
file.

-r Rejects a previous update apply for one or more programs. updatep presents
selection information for the programs that have pending updates. You select
the programs to rej ect.

Commands 797

updatep

programs that are grouped together by the system must be rejected or applied
as a group. Specify -r without -x if you want automatic recovery of saved files.
If you do specify the -x flag, the management control information about the
update reflects that thp. 11!1natp. i~ rp.jp.~t.p.r1, hllt. l1!,r1~t~~ d0e~ !!0! !'e~0't.Te!' s~'!ed.
files. You should look at the information in
/usr/lpp/pgm-name/inst_ updt/save to recover the necessary files. This flag
should be used only by someone very knowledgable about the system.

-s Writes status information about all pending program updates.

-x Cancels the automatic recovery of saved files (use with -r).

The updatep command receives the following exit codes indirectly from update through
inuupdt:

o Normal return, no errors indicated.
2 Use the sync command to update the super blocks, i-nodes, and delayed block I/O and

then restart the system.
3 Build the kernel, then update the superblocks, i-nodes, and delayed block I/O (sync)

and shut down the VRM.
4 Use the cfgaply subroutine to build the kernel. Use the sync command to update the

super blocks, i-nodes, and delayed block I/O and then restart the system.
5 Installation cancelled without errors.
6 Update superblocks, i-nodes, and delayed block I/O (sync), then shut down the VRM.
7 Update cancelled by update procedure, recovery needed.

If it receives any other exit code, it runs the recovery function inurecv. If the system
cannot run updatep, it returns an exit code of 1.

Internal Commands

The updatep command uses the inudocm command for update documentation control. It
uses the inuupdt command to apply an update to a single program. inuupdt runs a
program-provided update procedure, update. updatep passes the following parameters to
the update procedure:

• The full path name of the apply-list.
• The full path name of the device (file) where the update information is stored in

backup format.

In addition to the commands discussed here, program-provided update procedures can use
all of the internal commands discussed under "installp" on page 402. Since they are
internal commands, they do a minimum validation of input parameters. Their purpose is to
provide common code for functions frequently needed by most program-provided
procedures. Since these internal commands function as subcommands, they return exit
values rather than issue error messages. However, messages may come from other system
commands that they run. C Language programmers of update procedures that call these
commands can use the /usr/include/inu21.h file to define the return codes for them.

798 Commands Reference

updatep

inudocm
The inudocm command is normally used as an internal command to get copies of specific
update instructions or manual errata information that you can print out. There may be
cases, however, when you would enter this command from the command line (for example,
if you have misplaced the manual errata information that came with a previous update).
You must be a member of the system group to run this command.

The inudocm command has the following syntax

inudocm -eu [-d device] [pgm-name] [level] [-f file]

where pgm-name specifies the name of the program being checked. It must be specified
unless you use the -f flag. It can be a maximum of 8 characters. level specifies the current
level of pgm-name. This value must be identical to the level value for the last committed
entry in /usr/lpp/pgm-name/lpp.hist. It must be specified unless you use the -f flag.

Flags

-d device Restores file from this device. device must be the full path name of a device
special file. The default device is /dev/rfdO. You must not specify this flag if
you use the -f flag.

-e

-f file

-u

Requests the existing manual errata information for pgm-name from level. If you
select this flag, inudocm uses the ar x command to extract the archive file
/usr/sys/inst_ updt/pgm-name_erata. (If this file is not present, no information
is available.) inudocm extracts any level-dependent manual errata information
files if there are any more recent than the current level. Selected files are
moved to /usr/Ipp/pgm-name/me.vv.rr.llll.

Identifies a file that already contains the pgm-name and the level. Only updatep
itself should use this flag.

Requests the existing specific update instructions for pgm-name from level. If
you select this flag, inudocm uses the ar x command to extract the archive file
/usr/sys/inst_ updt/pgm-name_instr. (If this file is not present, no information
is available.) inudocm extracts any level-dependent specific update instruction
files if there are any more recent than the current level. Selected files are
moved to /usr/Ipp/pgm-name/ui.vv.rr.llll.

The inudocm command returns the following exit values:

o Normal return, no error occurred.
1 The system cannot run inudocm.
2 Specific update instruction files were requested but not found.
4 Manual errata information was requested, but none were found.
6 Specific update instructions and manual errata were both requested but not found.
201 An invalid flag was specified, or the first argument was not -e, -eu, or -u.
202 One or more parameters were missing.

Commands 799

updatep

Files

204 Too many parameters were entered.
250 The level parameter did not contain exactly 4 characters, or they were not numeric.
251 An error occurred while attempting to restore /usr/sys/inst_ updt/control.
253 The directory /usr/lpp/pf{m-name does not exist.

inuupdt
The inuupdt command provides a common interface for applying an update to a single
program. Normally, updatep runs inuupdt.

The inuupdt command has the following format:

inuupdt -d device current-level new-level pgm-name

where pgm-name is the name of a program and current-level specifies the current
maintenance level. new-level is the level of the update to be applied. pgm-name can be a
maximum of 8 characters and current-level must be identical to the level value in the
/usr/lpp/pgm-name/lpp.hist file.

Flag

-d device Updates the program from the specified device.

The inuupdt command passes the following exit values to the process that called it:

o Normal return.
Normal return. 2-7

101-102
104-107
201-202
204-208

Places error code in the history file.
Places error code in the history file.
Places error code in the history file.
Places error code in the history file.

It returns the follows exit status values:

100 Unknown return code received by inuupdt. It changes any unknown return code to
100 and logs it in the history file.

103 The restore of the archive file that contains the update control list,
/usr/lpp/pgm-name/inst_ updt/arp, failed.

201 An invalid minus parameter was specified.
202 One or more parameters were missing.
203 Apply list does not exist or was not readable.
204 Too many parameters were entered.

/usr/lpp/pgm-name/inst_ updt
/usr/lpp/inst_ updt
/usr/sys/inst_ updt/updt_cntrl

Temporary directory.
Temporary directory.
Temporary file.

800 Commands Reference

/usr/sys/inst_ updt/pgm-name
/usr/sys/inst_ updt/inutemp.xx ... x
/usr/lpp/pgm-name/inst_ updt.save
/usr/sys/inst_ updt/control
/usr/sys/inst_ updt/pgm-name_instr
/usr/Ipp/pgm-name/ui.vv.rr.llll
/usr/sys/inst_ updt/pgm-name_erata
/usr/Ipp/pgm-name/me.vv.rr.llll

Control file.
Temporary files.
Directory for saved files.
Temporary file.
Update instruction library.
Update instruction file.
Document change library.
Document change file.

updatep

/usr /include/inu21. h Error code definitions for internal routines.

Related Information

The following command: "installp" on page 402.

The lpp.hist file in AIX Operating System Technical Reference.

The discussion of updating programs in AIX Operating System Programming Tools and
Interfaces.

Commands 801

users

users

Purpose

Adds, deletes and changes user and group information.

Syntax

U~:~SOf J/USr/adm/USer.cfile~ .

I adduserl L configfi/e __ ~---J
OL805076

Description

The users command lets you add, change, or delete user and group information in the
/ete/passwd and fete/group files. To use the users command, you must be a member of
the system group or have superuser authority (see "su" on page 724).

Note: It is possible to delete a user who still owns files or to delete a group that still has
members. This causes problems later, when the user name or group name is reused.

The users command does all of its work in temporary files. When you enter the quit
subcommand, the temporary files become the permanent files. The old versions of
/ete/passwd and fete/group are renamed /ete/opasswd and /ete/ogroup. If users is
ended by an INTERRUPT (Alt-Pause), it removes the temporary files, and the system files
remain as they were before the session. Note, however, that any directories created still
exist. Therefore, it may be necessary to remove these directories after sending an
INTERRUPT.

For configuration, users uses the file /usr/adm/user.efile, the file specified with
configfile, or the default parameters that follow:

802 Commands Reference

Parameter Default Value

udir lui
program null

minage null

maxage null

siteinfo null

filesize null

gname staff

minid 200

maxid 60000

pfile /etc/passwd

gfile /etc/group

owner bin

invalid /usr/lib/sorry

TNL SN20-9861 (26 June 1987) to SC23-0790-0
users

Description

Prefix of user home directory names.

The name of the user login program.

Minimum number of weeks that a password must be
in effect before the password can be changed.

Maximum number of weeks that a password can be
in effect before the password must changed.

Any site-specific information.

Size, in blocks, of the largest file that a user can
make.

N arne of the group that a user is initially assigned.

Minimum number that can be assigned as a user or
group ID.

Maximum number that can be assigned as a user or
group ID.

N arne of the password file.

N arne of the group file.

N arne of the owner of password and group files.

Program for invalid accounts.

Figure 7. Configuration File Parameters

For information on how to use the users command, see Managing the AIX Operating
System.

Note: The /etc/passwd, /etc/opasswd, /etc/group, /etc/ogroup, and
/usr/adm/user.cfile files must all exist on the same node.

Subcommands

add Adds a new user or group.

change Changes data for an existing user or group.

delete Deletes an existing user or group.

help Displays a summary of available commands. Entering a question mark (?)
also works for help.

invalidate Changes a user's shell to a do-nothing program.

Commands 803

users

Files

quit

show

Updates files and exit.

Shows information about a user or group.

The initial letter of each subcommand is recognized as the subcommand name.

/usr/adm/user.cfile
/usr/ adm/newuser.sys
/usr/adm/newuser.usr
/etc/passwd
/etc/group
/ etc/ opass wd
/etc/ogroup

Default configuration file.
Initialization shell file for added users.
Initialization shell file for added users.
Password file-identifies all known users.
Group file-identifies all known groups.
Saved previous version of the password file.
Saved previous version of the group file.

Examples

The following is a sample /usr/adm/user.cfile:

pfile
gfi 1 e
owner
minid
maxid
udir
program
gname
invalid

/ete/passwd
jete/group
root
200
1000
lui
/bin/sh
staff
/usr/lib/sorry

Related Information

The group and passwd files in AIX Operating System Technical Reference.

The discussion of users in Managing the AIX Operating System.

804 Commands Reference

uuclean

uuclean

Purpose

Deletes from the uucp spool directory or a named directory selected files older than a
specified number of hours.

Syntax

/usr /lib/uucp/uuclean
-d/usrISPOOI/UU?-C -n72)-)--Q

~:::~directorY -nhours -P-\-pref~X _ file

10 maximum

OL805379

Description

Flags

Files

The uuclean command scans the spool directory (or a directory named with the -d flag) for
files with the specified prefix and deletes any of those that are older than a specified
number of hours. Typically, cron runs uuclean on a regular basis.

-ddirectory Cleans directory instead of the uucp spool directory (fusr/spool/uucp).

-m Notifies owners of deleted files by mail.

-nhours Deletes only files older than hours that match the prefix specified in the
following -p flag. The default time is 72 hours.

-pprefix Deletes files beginning with prefix that are older than the number of hours
selected by the -n flag. In a file name, a prefix is separated from the rest of
the name by a . (dot.)

You can specify up to ten prefixes by repeating -pprefix. If you do not specify
a prefix, uuclean deletes all files older than the specified time.

/usr/lib/uucp
/usr/spool/uucp

Commands 805

uuclean

Related Information

The following commands: "cron" on page 172, "uucp" on page 807, and "uux" on
______ ()"1()

pube 01.0.

806 Commands Reference

uucp

uucp

Purpose

Copies files from one AIX system to another.

Syntax

uucp destination ~
-esystem
-9X
-r
-nuser
-m

uulog

uuname~ I

~-,r
OL805382

Description

uucp
The uucp command copies one or more source files from one system to a single destination
on another system.

A file name may be a path name on your system or may have the form:

system!pathname

where system is taken from a list of system names which uucp knows about. The system
parameter can also be a list of names such as:

system!system! ... !system!pathname

Commands 807

uucp

in which case the file is sent via the specified route (but only to a destination in
/usr/spool/uucppublic). You must be sure that the intermediate systems in this route are
willing to forward information (see AIX Operating System Communications Guide). In
~r1(lition if tlu" filt:\ n~l1'lt:\ on tht:\ rt:\l1'lott:\ c!Uc:!tt:\l1'l f'f'\nt~inQ t:\vtont1ot1 f'haraf'torQ all -., .- - -- ---- -------- --- ---- -------- -J------ ----------- ---------- -----------, ---
intermediate systems must support extended characters.

You can use the special shell characters ?, *, and [] in path names. The appropriate
system will expand them. However, these characters must be escaped or quoted to prevent
the local shell from interpreting them.

Path names can be one of the following:

1. A full path name

2. A path name preceded by -user, where user is a login name on the specified system.
uucp replaces this with that user's login directory.

3. A path name preceded by - /user, where user is a login name on the specified system.
uucp replaces this with that user's directory under /usr/spool/uucppublic.

4. A partial path name, which is assumed to begin in the current directory.

If destination is a directory, uucp uses the last part of the source name.

When transmitting files, uucp preserves execute permissions and grants read and write
permissions to everyone. (uucp owns the file.)

The system administrator should restrict the accessing of local files by users on other
systems. Because using the -esystem flag to get files from other systems often fails, ask
someone on the other systems to send them to you. Sending files to arbitrary destination
path names on other systems often fails because of security restrictions.

Flags

-c Transfers source directly, rather than first copying it to the spool directory for
transfer from there. (See the -C flag immediately following.) This flag is on by
default.

-C Copies the source file to the spool directory for transfer from there.

-d Creates all directories as necessary. This flag is on by default.

-esystem Sends uucp to the specified system to be executed there. This succeeds only if
the other system allows /usr/lib/uucp/uuxqt to run uucp.

Note: Relative file names are resolved locally before being sent.

-f Does not create intermediate directories during file copy.

808 Commands Reference

Files

-gX

-m

-nuser

-r

uulog

uucp

Marks the created spool file grade X, where X is an uppercase letter. uucp
processes spooled files with alphabetically higher grades first. It makes grade
S transfers only when the local site is the not the controlling end of the
connection.

Notifies the requester by mail when uucp completes the copy. The -m flag
works for sending a number of files but for receiving only a single file.

Notifies user on the other system that you sent a file.

Does not start the spooling program that moves files between systems.

The uulog command provides information about uucp and uux activities, which it reads
from the file jusrjspooljuucpjLOGFILE. The format of the date in the log files is
controlled by the environment variable NLDATE, if it is defined.

Flags

-ssystem Displays information about copy requests involving the named system (or all
systems if you do not specify a system).

-uuser Displays information about copy requests involving the named user.

uuname
The uuname command writes to standard output the names of all other systems accessible
to the local system.

Flag

-I Writes the local system name.

/usr/spool/uucp
/usr/spool/uucppublic
/usr/lib/uucp/*

Spool directory.
Public directory for receiving and sending.
Other data and program files.

Related Information

The following commands: "mail" on page 470 and "uux" on page 818.

The "Overview of International Character Support" in Managing the A/X Operating
System.

Commands 809

uustat

uustat

Purpose

Reports the status of and provides rudimentary job control for the uucp command.

Syntax

uustat

-m ___ I; all

~machine

-0 hour
-ssystem
-uuser
-v
-y hour

OL805383

Description

Flags

The uustat command writes to standard output the status of uucp commands or general
status on uucp connections to other systems. You can also use this command with the -k
flag to cancel uucp copy requests.

If you invoke uustat with no flags, it reports the status of all uucp requests issued by the
current user. uustat reports status as:

job# use rid system-name time status

where time is the latest status time and status is either an octal number or a verbose
description.

The following flags are mutually exclusive:

-chour Removes status entries older than hour. The person using this flag must
either be the one who made the uucp request being removed or be operating
with superuser authority.

810 Commands Reference

Files

uustat

-jjobnum Reports the status of the uucp request jobnum. If you specify all for jobnum,
uustat reports the status of all jobs.

-kjobnum Cancels the uucp request jobnum. The person using this flag must either be
the one who made the uucp request being canceled or be operating with
superuser authority.

-mmachine Reports the status of system machine. If you specify all for machine, uustat
reports the status of all machines known to the local system.

The following flags may be combined with one of the preceding flags and with each other.

-ohour Reports the status of all uucp requests older than hour.

-ssystem Reports the status of all uucp requests that communicate with remote system.

-uuser Reports the status of all uucp requests by user.

-v Reports the uucp status verbosely. If you do not specify this flag, an octal
status code is displayed with each uucp request. The octal codes are:

OCTAL STATUS

000001
000002
000004
000010
000020
000040
000100
000200
000400
001000
002000
004000
010000
020000

The copy failed, but the reason cannot be determined.
Permission to access local file is denied.

-yhour

Permission to access remote file is denied.
Bad u ucp command is generated.
Remote system cannot create temporary file.
Cannot copy to remote directory.
Cannot copy to local directory.
Local system cannot create temporary file.
Cannot execute uucp.
Copy (partially) succeeded.
Copy finished, job deleted.
Job is queued.
Job is killed (incomplete).
Job is killed (complete).

Reports the status of all uucp requests younger than hour.

/usr/spool/uucp Spool directory
/usr/lib/uucp/L_stat System status file
/usr/lib/uucp/R_stat Request status file

Commands 811

uustat

Related Information

The following command: "uucp" on page 807.

812 Commands Reference

uusub

uusub

Purpose

Defines and monitors a uucp subnetwork structure.

Syntax

uusub
-a system -f
-csystem -I
-d system -r
-LI hour

OL805342

Description

Flags

The uusub command defines a uucp subnetwork and monitors the connection and traffic
among the systems in the subnetwork.

-asystem Adds system to the subnetwork.

-csystem Connects to system. If you use all for system, uusub. connects to all systems
in the subnetwork.

-dsystem Deletes system from the subnetwork.

-f Clears the connection statistics.

-1 Reports connection statistics as follows:

system #call #ok time #noacu #login #nack #other

where:

The remote system name. system
#call The number of times the local system tried to call system since the

last clear was done.
#ok
time
#noacu
#login

The number of successful connections.
The latest successful connect time.
The number of unsuccessful connections due to no auto call unit.
The number of connections due to unsuccessful login.

Commands 813

uusub

Files

-uhour

#nack

#other

The number of unsuccessful connections due to no response (for
example, line busy, system down).
The number of unsuccessful connections for other reasons.

sysname sfile sbyte rfile rbyte

where:

sysname

sfile

sbyte

rfile

The name of the system.

The number of files sent.

The number of bytes sent during the period specified in the most
recent uusub command with the -uhour flag.

The number of files received.

rbyte The number of bytes received during the period specified in the
most recent uusub command with the -uhour flag.

Gathers the traffic statistics over the past hours.

/usr/spool/uucp/SYSLOG
/usr/lib/uucp/L_sub
/usr/lib/uucp/R_sub

System log file.
Connection statistics.
Traffic statistics.

Related Information

The following commands: "uucp" on page 807 and "uustat" on page 810.

814 Commands Reference

uuto

uuto

Purpose

Copies public files from one AIX system to another system with local system control of file
access.

Syntax

uuto ~ source T destination ~
-p
-m

UUPiCk·-~
~-ssystemr

Description

uuto

OLS05290

The uuto command copies one or more sources from one system to a single destination on
another system. uuto uses the uucp command to send files, but it allows the local system
to control the file access with the uupick command.

Flags

-m Notifies the sender by mail when the copy is complete.

-p Copies the source file to the spool directory for transfer from there. The default
action is to transfer a source file directly.

Commands 815

uuto

A source is a path name on the local system or a path name on the system that runs the
command. The destination has the form:

system! user

where system is the name of a system connected to the local system. (Run the uuname
command to learn which systems are connected.) user is the login name of someone on the
specified system. The system parameter can also be a list of names such as:

system!system! ... !system!pathname

in which case the file is sent via the specified route (but only to a destination in
/usr/spool/uucppublic). You must be sure that the intermediate systems in this route are
willing to forward information (see AIX Operating System Communications Guide). In
addition, if the file name on the remote system contains extended characters, all
intermediate systems must support extended characters.

The uuto command sends files to /usr/spool/uucppublic on system. Specifically, it sends
files to:

/usr/spool/uucppublic/receive/user/mysystem/files
The uuto command notifies the recipient by mail when files arrive.

uupick
The uupick command accepts or rejects the files transmitted to user. Specifically, uupick
searches /usr/spool/uucppublic for files destined for user. For each entry (file or
directory) found, uupick writes the following message to standard output.

from system: [fi 1 e file-name] [di r dirname]?

It then waits for a response from standard input to determine the disposition of the file, as
follows:

Enter

d

m [dir]

a [dir]

p

q

Ctrl-D

!cmd

*

Goes to next entry.

Deletes the entry.

Moves the entry to directory dir. The default is the current directory.

Move to dir all the files sent from system.

Writes the contents of the file to standard output.

Stop.

Same as q.

Runs the specified AIX command.

Writes a command summary to standard output.

816 Commands Reference

Flags

You can modify the action of uupick with the following flag:

-ssystem Search /usr/spool/uucppublic only for files sent from system.

Files

/us~spooUuucppublic Public directory.

Related Information

The following commands: "mail" on page 470, "uuclean" on page 805, "uucp" on
page 807, "uustat" on page 810, and "uux" on page 818.

uuto

Commands 817

uux

uux

Purpose

Runs a command on another AIX system.

Syntax

uux cmdstring -4

OL805291

Description

The uux command gathers files from various systems, runs a command on a specified
system, and then writes the results to a file on a specified system. For security reasons,
many installations permit uux to run only mail.

The cmdstring is made up of one or more arguments that look like an AIX command line,
except that cmdstring may be prefixed by system-name!. The default system-name is the
local system. The system parameter can also be a list of names such as:

system!system! ... !system!pathname

in which case the command (or files) are searched for via the specified route. You must be
sure that the intermediate systems in this route are willing to forward information (see
AIX Operating System Communications Guide). In addition, if the file name on the remote
system contains extended characters, all intermediate systems must support extended
characters.

Note: Only the first command in a pipeline may have a system-name!. All other
commands are executed on the system of the first command.

File names may be one of the following:

1. A full path name.

2. A path name preceded by - user, where user is a login name on the specified system.
uucp replaces this with that user's login directory.

3. A partial path name, which is assumed to begin in the current directory.

818 Commands Reference

Flags

uux

The pattern-matching characters ?, *, and [] in pathname are expanded on the appropriate
system. However, the * may not do what you want it to do.

Quote special characters such as <, >, ;, and I, either by quoting the entire cmdstring or
by quoting the individual characters. Do not use the redirection symbols < < and > >.

The uux command attempts to move all files to the execution system. Use parentheses for
output files so that uux will not try to move them.

Unless you specify the -n or -z flags, uux notifies you if the remote system did not allow
the requested command. The response comes by remote mail from the other system.

-c Copies the source file directly rather than copying the file to the spool directory for
transfer from there.

-gX Marks the created spool file grade X, where X is an uppercase letter. uux processes
spooled files with alphabetically higher grades first. It makes grade S transfers only
when the local site is the noncontrolling end of the connection.

-1 Links source files to the spool directory rather than copying them. If the link fails,
then copy them to the spool directory as usual.

-n Does not notify user by mail, regardless of whether the command fails or completes
successfully.

-p Uses the standard input to the uux command as the standard input to cmdstring. A
- (minus) has the same effect.

-r Does not start the spooling program that transfers files between systems.

-z Does not notify user by mail if the remote command completes successfully.

Examples

1. To compare files that are located on two different systems:

uux "!diff usg!/usr/dan/fl pwba!/a4/dan/fl > !fl.diff"

This gets the /usr/dan/fl files located on the usg and pwba systems, runs a diff
command, and puts the results in fl. di ff in the local directory.

You should escape special characters such as <, >, ;, or :, either by quoting the entire
cmdstring or by quoting special characters as individual arguments.

2. To specify an output file on a different system:

uux aluucp bl/u/file \(cl/u/file\)

Commands 819

uux

Files

This command sends the uucp command to system a to get lu/f; 1 e from system b
and send it to system c. Since uux attempts to get all files to the execution system,
you must use parentheses to escape any output-file or nonfile arguments containing
exclamation points.

/usr/spool/uucp
/usr/lib/uucp/QTCMDS

/usr/lib/uucp/*

Spool directory.
List of commands permitted to be run remotely on the local
machine.
Other data and programs.

Related Information

The following commands: "uuclean" on page 805 and "uucp" on page 807.

820 Commands Reference

val

val

Purpose

Validates Source Code Control System (SCCS) files.

Syntax

val
-mname
-rSID
-s
-ytype

OL805292

Description

The val command reads files and determines if the specified file is an Source Code Control
System (SCCS) file meeting the characteristics specified by the flags. If you specify a -
(minus) for file, val reads standard input and interprets each line of standard input as val
flags and the name of an SCCS file. val continues to take input until it reaches an
end-of-file character (Ctrl-D).

The val command displays error messages to standard output for each file processed. val
also returns a single 8-bit code upon exit. The 8-bit code indicates possible mismatches or
errors. It is interpreted as a bit string in which set bits (from left to right) are interpreted
as follows:

bit 0 = missing file parameter
:55 1 = unknown or duplicate flag
bit 2 = damaged SCCS file
bit 3 = cannot open file or file not SCCS
bit 4 = SID is invalid
bit 5 = SID does not exist
bit 6 = 010 Y%, -y mismatch
bit 7 = %M%, -m mismatch

When val processes two or more files on a given command line or multiple command lines
(when reading the standard input), a code is returned that is a logical OR of the codes
generated for each command line and file processed. val can process up to 50 files on a
single command line. Any number above 50 produces a dump.

Commands 821

val

Flags

Each flag or group of flags applies independently to each named file. The flags may appear
in Rny ornpr

-mname Compares the value name with the sees %M%) identification keyword in file.
See "Identification Keywords" on page 362 for more information on the %M%
keyword.

-rSID Specifies the SID of the file to be validated. The SID must be valid and
unambiguous.

-s Suppresses the error message normally written to standard output.

-ytype Specifies a type to compare with the sees % Y% identification keyword in file.
See "Identification Keywords" on page 362 for more information on the % YOlo
keyword.

Related Information

The following commands: "admin" on page 51, "delta" on page 236, "get" on page 359,
and "prs" on page 574.

The sccsfile file in AIX Operating System Technical Reference.

The discussion of sees in AIX Operating System Programming Tools and Interfaces.

822 Commands Reference

TNL SN20-9861 (26 June 1987) to SC23-0790-0
varyon

varyon

Purpose

Makes an IBM 9332 Direct Access Storage Device and the minidisks and file systems
defined on it available for use.

Syntax

r---- -d hdisknum

varyon 1\
'--vJ

-p directory

OL805455

Description

Flags

The varyon command adds an IBM 9332 Direct Access Storage Device and any minidisks
residing on the disk to the existing AIX Operating System hardware and minidisk
configurations. It runs the fsck command to perform file system consistency checks and
mounts the file system if the attributes vcheck = true and mount = true are present in the
corresponding stanza in the /etc/filesystems file.

Normally, varyon sends only generalized completion messages to standard output, routing
more detailed error messages to the file /etc/varyon.out.

-c

-d hdisknum

Does not perform file consistency checking. This flag can be
specified only with the -m or -p flags.

Specifies the AIX Operating System name for an IBM 9332 Direct
Access Storage Device, where num is an integer from 6 to 33,
inclusive. The names hdiskO through hdisk5 are reserved for
internal fixed drives.

Commands 823

varyon

The varyon command uses vrmconfig to configure all minidisks
residing on the drive. It uses fsck to check each file system whose
stanza in the /etc/filesystems file contains the attribute
vcheck = true. It mounts each file system that has the attribute
mouni; = i;rue.

-m hdnum ... Specifies the minidisk or minidisks to be made available for use.
varyon runs vrmconfig to configure the minidisk. It configures
the disk drive containing each minidisk, if it is not already
configured, and checks and mounts each file system.

-p directory ... Makes the minidisk associated with each specified directory
available for use. varyon runs vrmconfig to configure the
minidisk. It checks and mounts each file system and configures
each disk drive containing the minidisk, if it is not already
configured.

-v Sends all messages to standard output.

Examples

1. To configure an entire IBM 9332 Direct Access Storage Device:

varyon -d hdisk7

This configures a disk drive named hdi s k7 into the operating system, configures any
minidisks defined on the disk, and performs fsck and mount functions on file systems
as specified by the /etc/filesystems file.

2. To configure more than one IBM 9332 Direct Access Storage Device:

varyon -d hdisk9 hdisk7 hdisk12

This makes disk drives hdi sk9, hdi sk7, and hdi sk12 available for use.

3. To configure the device containing a specified minidisk:

varyon -m hd8
This instructs vary on to find the name of the disk drive that contains the minidisk
named hd8, to configure it into the system, and to add the minidisk definition to the
minidisk configuration. varyon performs fsck and mount functions unconditionally
on the file system defined on the minidisk.

4. To configure several minidisks:

varyon -m hd7 hd8 hdll

This makes minidisks hd7, hd8, and hdll available for use, configures the
corresponding drives, and unconditionally performs fsck and mount functions.

824 Commands Reference

Files

5. To configure a minidisk without performing fsck functions:

varyon -c -m hd7 hd8 hdll
6. To configure a minidisk using its mount directory path name:

varyon -p /usr/lib

varyon

This causes the appropriate disk drive and minidisk definitions to be configured into
the operating system and unconditionally performs fsck and mount functions on the
file system.

7. To configure several minidisks by specifying their mount directory path names:

varyon -p /usr/lib /job/lib
8. To avoid fsck functions when configuring a minidisk associated with a specified mount

directory path name:

varyon -c -p /usr/lib
9. To direct all detailed status and error messages to standard output:

varyon -v -d hdisklO

/ etc/filesystems
/etc/system
/etc/varyon.out

Descriptions of mountable file systems.
Default system file.
Default error output file.

Related Information

The following commands: "fsck, dfsck" on page 333, "mount" on page 498, and
"vrmconfig" on page 842.

The filesystems file in AIX Operating System Technical Reference.

Commands 825

vc

vc

Purpose

Substitutes assigned values in place of keywords.

Syntax

vc

ke yword=va/ ue

-cchar
-s

OL805293

Description

The ve command is used to control writing different versions of a file to standard output.
However, since Source Code Control System commands ("admin" on page 51, "get" on
page 359, and "delta" on page 236) provide more efficient and complete control, they
should be used instead of ve.

The ve command copies lines from standard input to standard output. The flags and
keywords on the command line and control statements in the input modify the resulting
output. ve replaces user declared keywords with their value assigned on the command line.
These keywords can be replaced both in text and in control statements.

Control Statements
A control statement is a single line beginning with a control character (the default control
character is a : (colon». They provide conditional processing of the input. The allowable
types of control statements are:

:if condition
text
:end Writes all the lines between the :if statement and the matching :end to

standard output only if condition is true. You can nest :if-:end statements,
but once a condition is false, all remaining nested :if-:end statements are
ignored. See "Condition Syntax" on page 827 for the syntax of conditions
and allowable operators.

826 Commands Reference

:dcl keyword [, keyword ...]
Declares keywords. All keywords must be declared.

:asg keyword = value

:: text

:on
:off

:ctl char

:msg message

Assigns value to keyword. An :asg statement takes precedence over
keyword assignment on the vc command line. A later :asg statement
overrides all earlier assignments of the associated keyword. keywords
declared, but not assigned values have null values.

Removes the two leading control characters and replaces keywords with
their values, and then copies the line to the standard output.

Turns on or off keyword replacement on all lines.

Changes the control character to char.

Writes a message to standard error output in the form:

Message (n): message

The n indicates the line number on which the message appeared in the
input.

:err message Writes an error message to standard error in the form:

ERROR: message
ERROR: err statement on line n (vc15)
vc stops processing and returns an exit value of 1.

Condition Syntax

Item
condition

or statement

and statement

expression

operator

Statements Allowed
: : =or statement
: : =not or statement
: : =and statement
: : =and statement I or statement
: : =expression
: : =expression & and statement
: : = (or statement)
: : =value operator value
: : = = or ! = or < or >

vc

Commands 827

vc

Item
value

Statements Allowed
: : = ASCII string
: : =numeric string

The available condition operators and their meanings are as follows:

equal
! = not equal
& and

or
> greater than
< less than
() used for logical groupings
not may only occur immediately after the if, and when present, inverts the value of the

entire condition.

The > and < (greater than and less than symbols) operate only on unsigned integer
values; for example: 012 > 12 is false. All other operators take strings as modifiers; for
example: 012 ! = 12 is true. The precedence of the operators, from highest to lowest
precedence, is as follows:

= ! = > < all of equal precedence

&

Parentheses can be used, of course, to alter the order of precedence.

Values must be separated from operators or parentheses by at least one blank or tab.

Keyword Replacement
A keyword must begin and end with the same control character used in control statements.
A keyword may be up to nine alphanumeric characters, where the first character must be
alphabetic. Keyword values can be any ASCII string. A numeric keyword value is an
unsigned string of digits. values cannot contain tabs or spaces.

Examples of keyword = value assignments are:

numlines=4
prog=acctg
pass4=yes
The vc command removes all control characters and keywords from input text lines marked
with two control characters as it writes the text to standard output. To prevent a control
character from being interpreted, precede it with a backslash, as in the following example:

::the :prog: program includes several of the following\:

828 Commands Reference

Flags

The keyword :prog: is replaced by its value, but the \: is passed to standard output as :
(colon).

vc

Input lines beginning with a \ (backslash) followed by a control character are not control
lines, and are copied to standard output without the backslash. vc writes lines beginning
with a backslash and no following control character without any changes (including the
initial backslash).

-a Replaces keywords surrounded by control characters with their assigned value in
all text lines (not just those beginning with two control characters).

-cchar Uses char as the control character.

-8 Does not display the warning messages normally displayed to standard error.

-t Ignores all characters from the beginning of a line up to and including the first
tab character for detecting a control statement. If vc finds a control character, it
ignores all characters up to and including the tab.

Related Information

The following commands: "admin" on page 51, "delta" on page 236, and "get" on
page 359.

Commands 829

verify

verify

Purpose

Turns write verification on or off for a particular minidisk.

Syntax

one of

verify -1::~ 1- device --1
-v

OL805446

Description

Flags

Files

The verify command turns write verification on or off for the specified minidisk device.
Generally speaking, you can verify any device name that is by shown by the minidisk
command. More specificially, the name must be a stanza name in the fete/system file.

When write verification is on, the system checks each write operation to the minidisk by
comparing the data written to disk with the data in the write buffer. If it detects an
uncorrectable error, then it passes an error code back from the write operation.

At system startup, write verification is turned off.

-0 Turns write verification off.

-q Tells you whether write verification is set on or off.

-v Turns write verification on.

/ dev / config
/etc/system

830 Commands Reference

verify

Related Information

The following command: "minidisks" on page 485.

The mdverify subroutine in A/X Operating System Technical Reference.

Commands 831

vi

vi, vedit, view

Purpose

Edits files with a full screen display.

Syntax

-wnum

OL805424

Description

Warning: These commands do not support international characters. If
you use them to edit a file that contains extended characters, you can lose
data.
The vi command is a display editor based on an underlying line editor (ex). The view
command is a read-only version of vi. The vedit command is a version of vi intended for
beginners. In it, the report option is set to 1, and the showmode and novice options are
set. For more information on these options, see "set and map Commands" on page 833.

The file parameter specifies the file or files to be edited. If you supply more than one file
on the command line, vi edits each file in the order specified.

When you use vi, changes you make to a file are reflected in your display. The position of
the cursor on the display indicates its position within the file. The subcommands effect the
file at the cursor position.

The vi editor has the following operational states:

Command

Input

This is the initial state. Any subcommand can be entered (except
commands that can only be used in the input state). When subcommands
and the other states end, they return to this state. Pressing ESCAPE (Esc)
cancels a partial command.

Entered by the a, A, i, I, 0, 0, c, C, s, S, and R subcommands. After
entering one of these commands, you can enter text into the file buffer at
the current cursor position. To return to the command state, press

832 Commands Reference

Last Line

ESCAPE (Esc) for normal exit or press INTERRUPT (Alt-Pause) to end
abnormally.

vi

Some subcommands (those with the prefix :, \, ?, or !!) read input on a line
displayed at the bottom of the screen. When you enter the initial
character, vi places the curser at the bottom of the screen, where you enter
the remaining characters of the command. Press the Enter key to perform
the subcommand and INTERRUPT (Alt-Pause) to cancel it.

Defining Macros
If you use a sequence of subcommands frequently, you can create a macro that will issue
the commands whenever you call the macro. You can enter your sequence of
subcommands into buffer x. Then You invoke the macro by entering @x. Entering @@
repeats the last macro you invoked.

set and map Conlmands
The vi editor has options which can be changed with the set command. To view all the
options enter: set a 11 while in vi. To change the value of an option, enter a line of the
form set option = value To toggle an option that is either on or off, enter a line of the form
set option (to set it on) or set noption (to set it off).

All options can be abbreviated when they are set. Some of the most useful options and
their abbreviations are:

Option
autoindent
autowrite

ignorecase
lisp

list

magic

number

paragraphs

redraw

Abbreviation Description
ai Indents automatically (default setting is noai).
aw Writes the buffer to the file automatically before the :n, :ta,

Ctrl-" , and! subcommands (the default is noaw).
IC Ignores case during searches (the default is noic).
lisp Forces the (,), {, and} commands to deal with S-expressions

(the default is nolisp).
list Prints tabs as Ctrl-I; the end of lines are marked with $ (the

default is nolist).
magic Treats the characters. (dot), [, and * as special characters in

scans (the default is magic)
nu Displays lines prefixed with their line numbers (the default is

nonu).
para = value Defines to vi macro names that start paragraphs (the default

is para = IPLPPPQPbpP LI).
re Simulates a smart work station on a dumb work station (the

default is nore).

Commands 833

vi

Flags

Option
sections

shiftwidth

showmatch

slowopen

term

Abbreviation Description
sect = Defines to vi macro names that start sections (the default is

sect = NHSHH HU).
sw = Sets the shift distance for the commands >, <, and the input

commands Ctrl-D and Ctrl-T (the default is sw = 8).
sm Shows the matching opening (or { as you type the closing)

or } (the default is nosm).
slow Postpones updating the display during inserts (the default is

slow).
term = Sets the kind of work station you are using (the default is

dumb).

You can use the map command to set a keystroke to a sequence of subcommands. For
example, to force @ to delete lines, enter:

map @ dd

-1

-r [file]

-R

-t tag

-wnum

+ [subcmd]

Enters vi in LISP mode. In this mode, vi indents appropriately for LISP code
and the (,), {, }, [[, and]] subcommands are modified to act appropriately for
LISP.

Recovers file after an editor or system crash. If you do not specify a file
name, vi displays a list of all saved files.

Sets the readonly option to protect the file against overwriting.

Edits the file containing the tag and positions the editor at its definition.

Sets the default window size to num. This is useful when you use the editor
over a low speed line.

Performs the ex subcommand before editing begins. If you do not specify
subcmd, the cursor is placed on the last line of the file.

Subcommands

In the following lists, < ESC> stands for pressing the ESCAPE key instead of pressing the
Enter key.

834 Commands Reference

· VI

Counts Before Subcommands
You may prefix many subcommands with a number. vi interprets this number in one of the
following ways:

1. Go to line number:

5G
10z

2. Go to column number:

251

3. Scroll number lines:

10Ctrl-D
10Ctrl-U

Moving Within The File
There are many commands that you can use to move within a file. They can be entered
while vi is in the Command state.

Small Movements

~ orh

! or j

i or k

~ or 1

Moves the cursor one character to the left.

Moves the cursor down one line (but it remains in the same column).

Moves the cursor up one line (but it remains in the same column).

Moves the cursor one character to the right.

Character Positioning

A

o
$

fx

Fx

tx

Tx

Moves the cursor to the first nonblank character.

Moves the cursor to the beginning of the line.

Moves the cursor to the end of the line.

Moves the cursor to the next x character.

Moves the cursor to the last x character.

Moves the cursor to one column before the next x character.

Moves the cursor to one column after the last x character.

Repeat the last f, F, t, or T subcommand.

Commands 835

vi

numl

Repeat the last f, F, t, or T subcommand in the opposition direction.

Moves the cursor to the specified column.

Words, Sentences, Paragraphs

w Moves the cursor to the next word (includes punctuation as words).

b Moves the cursor to the previous word (includes punctuation as words).

e Moves the cursor to the end of the word (includes punctuation as words).

W Moves the cursor to the next word (ignores punctuation).

B Moves the cursor to the previous word (ignores punctuation).

E Moves the cursor to the to the end of the word (includes punctuation as part of
the current word).

Line Positioning

H Moves the cursor to the top line on the screen.

L Moves the cursor to the last line on the screen.

M Moves the cursor to the middle line on the screen.

+ Moves the cursor to the next line at its first nonblank character.

Moves the cursor to the previous line at its first nonblank character.

<Enter>
Moves the cursor to the next line at its first nonblank character.

Scrolling

Ctrl-U

Ctrl-D

Ctrl-F

Ctrl-B

Scrolls up one half screen.

Scrolls down one half screen.

Scrolls forward one screen.

Scrolls backward one screen.

Searching for Patterns

[num]G Places the cursor at line number num or to the last line if num is not specified.

/pattern Places the cursor at the next line containing pattern.

836 Commands Reference

· VI

?pattern Places the cursor at the next previous line containing pattern.

n Repeats last search for pattern in the same direction.

N Repeats last search for pattern in the opposite direction.

/pattern/ + num
Places the cursor at the numth line after the line matching pattern.

?pattern?-num
Places the cursor at the numth line before the line matching pattern.

% Finds the parentheses or brace that matches the one at the current cursor
position.

Moving to Sentences, Paragraphs, or Sections

]] Places the cursor at next section (or function if you are in the LISP mode).

[[Places the cursor at previous section (or function if you are in the LISP mode).

(Places the cursor at the beginning of the previous sentence (or the previous
s-expression if you are in the LISP mode).

) Places the cursor at the beginning of the next sentence (or the next s-expression
if you are in the LISP mode).

}

Places the cursor at the beginning of the next paragraph (or at the next list if
you are in the LISP mode).

Places the cursor at the beginning of the next the paragraph (or at the next list
if you are in the LISP mode).

Marking and Returning

\\

"

mx

'x

'x

Moves the cursor to the previous location off current line.

Moves cursor to the beginning of the line containing the pervious location off
the current line.

Marks the current position with letter x.

Moves cursor to mark x.

Moves cursor to the beginning of the line containing mark x.

Adjusting the Screen

Ctrl-L Clears and redraws the screen.

Commands 837

· VI

Ctrl-R

z

z-

z.

/pattern/z-

znum.

Ctrl-E

Ctrl-Y

Redraws the screen and eliminates blank lines marked with a @.

Redraws the screen with the current line top of the screen.

Redraws the screen with the current line at the bottom of the screen.

Redraws the screen with the current line at the center of the screen.

Redraws the screen with the line containing pattern at the bottom.

Makes the window num lines long.

Scrolls the window down 1 line.

Scrolls the window up 1 line.

Subcommands For Editing
Use the following subcommands to edit your text. Those subcommands that do not have an
* (asterisk) following them enter the input state. You return to the Command state by
pressing the ESCAPE (Esc) key. These subcommands affect the text relative to the
current cursor position.

Editing the FIle

itext

cwtext

atext

itext

Atext

Itext

o

o
rx *

Rtext

x *
x *
s *

Inserts text before the current cursor position.

Changes word to text.

Inserts text after the cursor.

Inserts text before the cursor.

Adds text to the end of the line.

Inserts text before the first nonblank character in the line.

Adds an empty line below the current line.

Adds an empty line above the current line.

Replaces the current character with x. (Commands followed by * do not enter
the input state.)

Overwrites characters with text.

Deletes a character.

Deletes characters before cursor (dh).

Substitutes characters (cl).

838 Commands Reference

· VI

S *
J *
dw *
dd *
D*
cw

cc

C

yw *
yy *
«*

Substitutes lines (cc).

Joins lines.

Deletes a word.

Deletes a line.

Deletes the rest of the line (d$).

Changes a word.

Changes a line.

Changes rest of line (c$).

Yanks a word into the undo buffer.

Yanks a line into the undo buffer.

Shifts one line to the left.

<L Shifts all lines from the cursor to the end of the screen to the left.

> > * Shifts one line to the right.

>L

! *
Shifts all lines from the cursor to the end of the screen to the right.

Indents for LISP.

u* Undoes the previous change.

Corrections During Insert

Use the following commands only while in the Insert state. They have different meanings
in the Command state.

Ctrl-H Erases last character.

Ctrl-W Erases last word.

\ Quotes the erase and kill characters.

< ESC> Ends insertion, back to command mode.

Ctrl-? Interrupts, terminates insert or Ctrl-D.

Ctrl-D Goes back to previous autoindent stop.

A Ctrl-D (circumflex control-D)
Kills auto indent for this line only.

OCtrl-D Moves cursor back to left margin.

Ctrl-V Enters nonprinting character.

Commands 839

vi

Moving Text

p Puts back text in the undo buffer after the cursor.

P Pu ts back text in the undo buffer before the cursor.

"xp Puts back text from the buffer x.

"xd Deletes text into the buffer x.

y Places the object that follows (for example, w for word) in the undo buffer.

"xy Places the object that follows in the x buffer, where x is any letter.

Y Places the line in the undo buffer.

Restoring and Repeating Changes

u Undoes the last change.

U Restores the current line.

Repeats the last change.

"n p Retrieves the nth last delete.

Interrupting, Cancelling, and Exiting vi
ZZ Exits vi, saving changes.

:q Quits vi. If you have changed the buffer contents, vi displays a warning
message and does not quit.

:q! Quits vi, discarding changes.

!!cmd

:sh

:!cmd

<ESC>

Ctrl-?

Ctrl-L

Ctrl-R

Executes shell command cmd and includes output in buffer.

Runs a shell. You can return to vi by pressing Ctrl-D.

Runs cmd, then returns.

Ends insert or ends an incomplete subcommand.

Interrupts a subcommand.

Redisplays a screen.

Redisplays the screen if Ctrl-L is the -+ key.

840 Commands Reference

File Manipulation
:w

:w file

:w! file

:e file

Writes the buffer contents to the original file.

Writes the buffer contents to the named file.

Overwrites file with the buffer contents.

Edits file.

:e! Re-edits the current file and discards all changes.

:e + file
Edits file starting at the end.

:e +num
Edits file starting at line num.

vi

:e # Edits the alternate file. The alternate file is the last file name you entered with
a last line command.

:n

:n files

Ctrl-G

:ta tag

Edits next file in the list entered on the command line.

Specifies new list of files to edit.

Shows current file name and line.

Edits a file containing tag at the location of tag.

Related Information

The following commands: "ed" on page 280 and "ex" on page 312.

Commands 841

vrmconfig

vrmconfig

Purpose

Installs peripheral devices.

Syntax

-m jete/master one of
-h jete
-I specials
-s jete/system

-startup
-shutdown

vrmeonfig
-m mfile
-h helpdir
-I sprile
-s syrile

OL805400

Description

Flags

The vrmeonfig command installs VRM device drivers. Normally, it runs automatically at
each system startup. Its exit value is the number of errors it encountered.

Note: Most users will never need to run this command from the command line.

The vrmeonfig command performs its operations through the /dev/eonfig driver.

-a stanza Adds devices to a running system. vrmeonfig processes the specified stanza
in fete/system or the file specified with the -s flag.

-d stanza Deletes a device from a running system. vrmeonfig processes the specified
stanza in fete/system or the file specified with -so The special file list
produced includes commands to remove relevant special files, since
vrmeonfig assumes that the device has been removed from the configuration.

-h helpdir Specifies the directory that contains the configuration helper programs. The
default value is fete.

-1 spfile Specifies the output special file list. The default value is specials.

842 Commands Reference

Files

-m mfile

-s syfile

-u

-v

vrmconfig

Specifies the input master configuration file. The default value is
fete/master.

Specifies the input system configuration file. The default value is
fete/system.

Causes only AIX-related configuration steps to be performed, that is, AIX
driver installation calls. This flag may be used only with the -a or -d flags.

Causes only VRM-related configuration steps to be performed, that is,
DefineDevice calls. This flag may be used only with the -a or -d flags.

-shutdown Causes all installed drives to be deleted for shutting down the system.

-startup

Special files are not deleted, since the actual configuration is not considered
changed.

Causes all defined devices to be configured in at system start up. (Any stanza
that contains the attribute noipl = true is skipped.) For devices such as
minidisks, which remain configured between system restarts, vrmeonfig does
not perform "once-only" configuration steps. It does not modify special files
that already exist.

/etc/confgstatus
/etc/system
/etc/master
specials

Status file recording current configuration status.
Default system file.
Default master file.
Default special file list.

/etc
/etc/vrmdd
/vrm/vrmdd
/etc/ddi

Default directory containing configuration helper programs.
Directory containing VRM device driver modules.
Directory containing VRM device driver modules.
Directory containing device specific information files.

Related Information

The following command: "eonfig" on page 150.

The master and system files in AIX Operating System Technical Reference.

Installing and Customizing the AIX Operating System.

Commands 843

wait

wait

Purpose

Waits for completion of a process.

Syntax

wait ---l
OL805294

Description

The wait command causes the shell to wait until child processes started with an & have
completed. The shell waits on all of its currently active children, and the return code from
wait is zero.

Because the wait system call must be run in the parent process, the shell runs wait
without creating a new process.

Note: Not all processes of a three or more stage pipeline are children of the shell, and
thus cannot be waited for.

Example

To wait for all processes started with & to finish:

wait

Related Information

The following command: "sh" on page 637.

844 Commands Reference

wall

TNL SN20-9861 (26 June 1987) to SC23-0790-0
wall

Purpose

Writes a message to all logged-in users.

Syntax

wall~
OLR05017

Description

Files

The wall command reads a message from standard input until it reaches an end-of-file
character. It then sends the message to all logged-in users preceded by the following
heading:

Broadcast Message from user

To override any protections other users have set up, you must be operating with superuser
authority. Typically, the superuser uses wall to warn all users of an impending system
shutdown.

Note: This command only sends messages to the local node.

/dev/tty*

Related Information

The following commands: "mesg" on page 484, "su" on page 724. and "write" on
page 853.

Commands 845

wc

we

Purpose

Counts the number of lines, words, and characters in a file.

Syntax

we

OL805242

Description

Flags

The we command counts the number of lines, words, or characters in file or in the
standard input if you do not specify any files. It writes the results to standard output. It
also keeps a total count for all named files. A word is defined as a string of characters
delimited by spaces, tabs, or new-line characters. we counts lines, words, and characters
by default.

When you specify more than one file on the command line, we displays the name of the file
along with the counts.

-e Counts bytes.

-1 Counts lines.

-w Counts words.

Examples

1. To display the line, word, and character counts of a file:

wc chapl

This displays the number of lines, words, and characters in the file ch ap 1.

846 Commands Reference

we

2. To display only character and word counts:

WC -CW chap*

This displays the number of characters and words in each file whose name starts with
chap, and displays the totals.

Commands 847

what

what

Purpose

Displays identifying information in files.

Syntax

what _I\. .. file -----'
~-s~

OL805295

Description

Flags

The what command searches the named files for all occurrences of the pattern that get
substitutes for the %Z%) keyletter (see "Identification Keywords" on page 362). By
convention, the value substituted is @ (#). what writes to standard output whatever
follows the pattern up to but not including the first double quotation mark ("), greater
than symbol (», new-line character, backslash (\), or null character.

The what command is intended for use in conjunction with the get command, which
automatically inserts the identifying information. You can also use what on files where
the information is inserted manually.

-s Searches for only the first occurrence of @ (#) .

Examples

Suppose that the file test. c contains a C program that includes the line:

char ident[] = "@(#)Test Program";

848 Commands Reference

If you compile test. c to produce test. 0 and a. out, then the command:

what test.c test.o a.out
displays:

test.c:
Test Program

test.o:
Test Program

a.out:
Test Program

Related Information

The following commands: "get" on page 359, and "help" on page 391.

The sccsfile file in AIX Operating System Technical Reference.

what

The discussion of sees in AIX Operating System Programming Tools and Interfaces.

Commands 849

who

who

Purpose

Identifies the users currently logged in.

Syntax

who

-s -u
-I

who am i --l

Description

/etc/utmp \ I

file~

OLS05296

The who command with no flags writes to standard output the login name, work station
name, and date and time of login for all users currently on the system. who am i gives
this information only for you.

With flags, who can also display the elapsed time since line activity occurred, the
process-ID of the command interpreter (shell), logins, logouts, restarts, and changes to the
system clock, as well as other processes generated by the init process.

The general format of the output of who is as follows:

name [state] 1 i ne time acti vi ty pi d [1 ocati on] [exi t]

where:

• n arne is the user's login name.

• S tate indicates whether or not the line is readable by everyone (see the -T flag on
page 851).

• 1 i ne is the name of the line as found in the directory /dev.

• time is the time that user logged in.

850 Commands Reference

Flags

TNL SN20-9861 (26 June 1987) to SC23-0790-0
who

• acti vi ty is the hours and minutes since activity last occurred on that user's line. A
dot (.) here indicates line activity within the last minute. If the line has been quiet
more than 24 hours or has not been used since the last system startup, the entry is
marked old.

• pi d is the process-ID of the user's shell.

• 1 ocati on is the location associated with this line as found in file fete/ports. This file
can contain information about where the work station is located, the telephone number
of the dataset, the type of work station if direct-connected, and other related
information.

• ex it is the exit status of ended processes (see the -d flag on page 851).

To obtain its information, who normally examines /ete/utmp. If you specify another file,
who examines the named file instead. This file will usually be /usr/adm/wtmp, which
contains the history of all logins since the file was last created or /ete/ .Hog, which
contains the history of invalid logins. Only someone operating with superuser authority or
a member of the system group can examine /ete/.Hog

Note: This command only identifies users on the local node.

-a Processes /ete/utmp or the named file with all flags on.

-b Indicates the time and date of the most recent system startup. The NLTIME and
NLLDATE environment variables control the format of the login time and date.

-d Displays all processes that have expired without being regenerated by init. The exit
field appears for dead processes and contains the termination and exit values (as
returned by wait) of the dead process. (This flag is useful for determining why a
process ended.)

-1 Lists only work stations not in use. The name field is LOGIN in such cases. Other
fields are the same as for user entries except that the state field doesn't appear.

-s Lists only the name, line, and time fields. (This is the default; thus, who and who -s
are equivalent.) The NLTIME environment variable controls the format of the time.

-t Indicates the last change to the system clock by the superuser using the date
command. The NLTIME environment variable controls the format of the time.

-T Displays the state of the work station line and indicates who can write to that work
station as follows:

+ writable by anyone
writable only by the superuser or its owner

? bad line encountered.

Commands 851

who

-u Displays the user name, work station name, login time, line activity, and process-ID of
each current user. The NLTIME environment variable controls the format of the
login time.

Examples

Files

1. To display information about who is using the system:

who
This lists the user name, work station name, and login time of all users currently using
the system.

2. To display your user name:

who am i

This displays the user name you typed when you logged in, the name of the work
station you are using, and the time you logged in. Your login user name may be
different from your current user name if you have used the su command.

3. To display a history of logins, logouts, system startups, and system shutdowns:

who /usr/adm/wtmp

/etc/utmp
/usr/adm/wtmp
/etc/ports

Related Information

The following commands: "date" on page 219, "init" on page 396, "login" on page 453,
"mesg" on page 484, and "su" on page 724.

The wait system call and the ports and utmp files in A/X Operating System Technical
Reference.

"Overview of International Character Support" in Managing the A/X Operating System.

852 Commands Reference

write

TNL SN20-9861 (26 June 1987) to SC23-0790-0
write

Purpose

Sends messages to other users on the system.

Syntax

write - user-~ I

~/iner
OLB05297

Description

A common use of this command is to converse with another logged-in user. That is, each
user alternately sends and receives short messages from the other work station. Long
messages can be sent by first putting the complete message in a file and then redirecting
that file as input to the write command.

For other users to receive your message, they must be logged in, and they must not have
refused message permission. When a person you are trying to reach is not logged in, you
get the message user not logged in. When the person you are trying to reach has
refused message permission, you get the message write: permission denied.
Note: This command only sends messages to users on the local node.

When you run the write command, it immediately sends the following message, along with
an attention-getting sound (the ASCII BEL character) to the person whose login name you
entered.

Message from yourid (ttynn)
[dateJ . . .

After successful connection, write then sends two ASCII BEL characters to your work
station to alert you that whatever you enter now is being sent to the other user. Sending
continues until you press Ctrl-D, at which point write sends an end-of-text character to
the other work station and exits.

At this point, the other user can respond by sending a write message back. For this type
of exchange, the following convention is useful: When you first write to others, wait for
them to write back before sending any text. End a message with a signal such as 0 (over)
to alert the other person to reply. Use 00 (over and out) when the conversation is finished.

Commands 853

write

When you write to a user logged in at more that one work station, write uses the first
login instance found in file /etc/utmp as the message delivery point, and you get the
message:

use rid is logged on more than one place.
You a re connected to II work station II •

Other locations are:
work station

You can contact this user at another location by specifying the line. line indicates to
which work station (ttyOO, for example) the message should be sent.

Permission to write to another user is granted or denied by the other user with the mesg
command. Some commands deny message permission while they are running to prevent
interference with their output. A user with superuser authority can write to any work
station regardless of the work station's message permission.

Examples

1. To write a message to a user who is logged in:

write scott
1 need to see you! Meet me
in my office at 12:30.
Ctrl-D

If your user ID is janet and you are using work station tty3, then scott's work
station displays:

Message from janet tty3 ...
1 need to see you! Meet me
in my office at 12:30.
EOF

2. To hold a conversation:

write scott
Are you free at 12:30?
(0)

This starts a conversation with scott. The (0) at the end stands for "over." It tells
Scott that you are waiting for a response. Do not press Ctrl-D yet because this would
end the conversation.

N ow Scott replies by typing:

write janet
No, but 11m free after 3.
(0)

854 Commands Reference

Files

And you might respond:

write scott
OK. Meet me in my office at 3.
(00)

write

The (00) stands for "over and out," telling Scott that you have nothing more to say.
If Scott is also finished (00), then you both press Ctrl-D to end the conversation.

3. To write someone a prepared message:

write fred <message. text

This writes the contents of the file message. text to fred's work station.

4. To write to the person using a certain work station:

write - console
The printer in building 998 has jammed.
Please send help.
Ctrl-D

This writes the message to the person logged in at the work station /dev/console.

/etc/utmp

Related Information

The following commands: "mesg" on page 484, "nroff' on page 525, "pr" on page 561,
"sh" on page 637, "wall" on page 845, and "who" on page 850.

Commands 855

wump

wump

Purpose

Plays the game Hunt the Wumpus.

Syntax

/usr/games/wump ---l

OL805232

Description

A wumpus is a creature living in a cave with many rooms interconnected by tunnels. You
move among the rooms trying to shoot the wumpus with an arrow and trying to avoid
being eaten by the wumpus or falling into Bottomless Pits. There are also Super Bats that
may pick you up and drop you in some randomly selected room. For moving among the
rooms and shooting arrows, wump asks appropriate questions and follows your
instructions.

After either you kill the wumpus, the wumpus eats you, or you fall into a Bottomless Pit,
wump asks if you want a new game. To quit the game at any time, press INTERRUPT
(Alt-Pause) or END OF FILE (Ctrl-D).

856 Commands Reference

xargs

xargs

Purpose

Constructs argument lists and runs commands.

Syntax

xargs -n num ----"t-{

_I (" 1

~num

-S470~

-ssize f"--J

-e -j ~ I Y
-e_y--<.< echo

-eeorstr -ireplstr ~ cmdstringJ
OL805298

Description

Flags

The xargs command runs a command line. It constructs the command line by combining
cmdstring, a string containing a command and its flags or parameters, with additional
arguments read from standard input. It runs cmdstring as many times as necessary to
process all input arguments. The default cmdstring is echo.

Arguments read from standard input are character strings delimited by one or more blanks,
tabs, or new-line characters. You can embed a blank or a tab in arguments by preceding it
with a \ (backslash) or by quoting it. xargs reads characters enclosed in single or double
quotes as literals and removes the delimiting quotes. It always discards empty lines.

-e[eofstr] Sets the logical end-of-file string to eofstr. xargs reads standard input until it
encounters either an end-of-file character or the logical EOF string. If you do
not specify the -e flag, the default eofstr is _ (the underline character). If you
specify -e with no eofstr, xargs interprets the underline character as a literal
character rather than as an end-of-file marker.

Commands 857

xargs

-i [rep lstr] Takes an entire line as a single argument and inserts it in each instance of
replstr found in cmdstring. A maximum of five arguments in cmdstring may
each contain one or more instances of replstr. xargs discards blanks and tabs
at the beginning of each line. The argument constructed may not be larger
than 255 characters. The default replstr is {}. This flag also turns on the -x
flag.

-l[num] Runs cmdstring with the specified num of nonempty argument lines read from
standard input. The last invocation of cmdstring can have fewer argument
lines if fewer than num remain. A line ends with the first new-line character
unless the last character of the line is a blank or a tab. A trailing blank or tab
indicates a continuation through the next nonempty line. The default num is
1. This flag turns on the -x flag.

-nnum Executes cmdstring using as many standard input arguments as possible, up to
a maximum of num. xargs uses fewer arguments if their total size is greater
than the number of characters specified by the -ssize flag described following.
It also uses fewer arguments for the last invocation if fewer than num
arguments remain. When -x is present, each num argument must fit the size
limitation specified by -x.

-p Asks whether or not to run cmdstring. It displays the constructed command
line, followed by a ? ... prompt. Press y to run the cmdstring. Any other
response causes xargs to skip that particular invocation of cmdstring. You are
asked about each invocation.

-ssize Sets the maximum total size of each argument list. size must be a positive
integer less than or equal to 470. The default size is 470 characters. Note that
the character count for size includes one extra character for each argument
and the number of characters in the command name.

-t Echoes the cmdstring and each constructed argument list to file descriptor 2
(usually standard error).

-x Stops running xargs if any argument list is greater than the number of
characters specified by the -ssize. This flag is turned on if you specify either
the -i or -1 flags. If you do not specify -i, -1, or -n, the total length of all
arguments must be within the size limit.

Note: The xargs command ends if it cannot run cmdstring or if it receives a return code
of -1. When cmdstring calls a shell procedure, the shell procedure should explicitly exit
with an appropriate value to avoid accidentally returning -1. (See "sh" on page 637.)

858 Commands Reference

Examples

1. To use a command on files whose names are listed in a file:

xargs lint -a <cfilesl *
If cfi 1 es contains the text:

rnain.c readit.c
gettoken.c
putobj.c
then xargs constructs and runs the command:

lint -a rnain.c readit.c gettoken.c putobj.c

xargs

Each shell command line can be up to 470 characters long. If cfi 1 es contains more
file names than fit on a single line, then xargs runs the lint command with the file
names that fit. It then constructs and runs another lint command using the remaining
file names. Depending on the names listed in cfi 1 es, the commands might look like:

lint -a rnain.c readit.c gettoken.c .. .
lint -a getisx.c getprp.c getpid.c .. .
lint -a fltadd.c fltrnult.c fltdiv.c .. .
This is not quite the same as running lint once with all the file names. The lint
command checks cross-references between files. However, in this example it cannot
check between rna in. c and fl tadd . c, or between any two files listed on separate
command lines.

For this reason you may want to run the command only if all the file names fit on one
line. Tell xargs this by using the -x flag:

xargs -x lint -a <cfiles
If all the file names in cfi 1 es do not fit on one command line, then xargs displays an
error message.

2. To construct commands that contain a certain number of file names:

xargs -t
starting
chap3
end

-n2
chapl

diff «end
concepts chap2 writing

This constructs and runs diff commands that contain two file names each (-n2):

diff
diff
diff

starting
concepts
writing

chapl
chap2

chap3

Commands 859

xargs

The -t flag tells xargs to display each command before running it so that you can see
what is happening. The «end and end define a "Here Document," which uses the
text entered before the end line as standard input for the xargs command. For more
details, see "Inline Input Documents" on page 650.

3. To insert file names into the middle of commands:

ls xargs -t -; mv {} {}.old
This renames all files in the current directory by adding .01 d to the end of each
name. The -i tells xargs to insert each line of the Is directory listing where a {}
appears. If the current directory contains the files chapl, chap2, and chap3, then
this constructs the commands:

mv chapl
mv chap2
mv chap3

chapl.o1d
chap2.o1d
chap3.o1d

4. To run a command on files that you select individually:

ls xargs -p -nl ar r 1ib.a
This allows you to select files to add to the library 1 i b. a. The -p flag tells xargs to
display each ar command it constructs and ask if you want to run it. Type y and press
Enter to run the command. Press Enter alone if you do not want to run it.

Related Information

The following command: "sh" on page 637.

860 Commands Reference

yacc

yacc

Purpose

Generates a LR(l) parsing program from input consisting of a context-free grammar
specification.

Syntax

yacc grammar--l

OL805300

Description

Flags

The yacc command converts a context-free grammar into a set of tables for a simple
automaton that executes an LR(l) parsing algorithm. The grammar can be ambiguous;
specified precedence rules are used to break ambiguities.

You must compile the output file, y.tab.c, with a C Language compiler to produce a
function yyparse. This function must be loaded with the lexical analyzer function yylex,
as well as main and yyerror, an error-handling routine (you must provide these routines).
The lex command is useful for creating lexical analyzers usable by yacc.

For more detailed discussion of yacc and its operations, see AIX Operating System
Programming Tools and Interfaces.

-d Produces the file y.tab.h. This contains the #define statements that associate the
yacc-assigned token codes with your token names. This allows source files other
than y.tab.c to access the token codes by including this header file.

-I Does not include any #line constructs in y.tab.c. Use this only after the grammar
and associated actions are fully debugged.

-s Breaks the yyparse function into several smaller functions. Since its size is
somewhat proportional to that of the grammar, it is possible for yyparse to become
too large to compile, optimize, or execute efficiently.

Commands 861

yacc~

Files

-t Compiles run-time debugging code. By default, this code is not included when y.tab.c
is compiled. However, the run-time debugging code is under the control of
YYDEBUG, a global variable for the cc command preprocessor. If YYDEBUG has a
nonzero value, the C compiler (cc) includes the debugging code, whether or not the -t
flag was used. Without compiling this code, yyparse will have a faster operating
speed.

-v Prepares the file y.output. It contains a readable description of the parsing tables
and a report on conflicts generated by grammar ambiguities.

y.output
y.tab.c
y.tab.h
yacc.tmp,
yacc.debug
yacc.acts
/usr/lib/yaccpar

Definitions for token names.

Temporary file.
Temporary file.
Parser prototype for C programs.

Related Information

The following command: "lex" on page 432.

The description of yacc in AIX Operating System Programming Tools and Interfaces.

862 Commands Reference

300

300

Purpose

Handles special line-motion functions for DASI 300/300s work stations.

Syntax

OLB05193

Description

Note: If your work station has a PLOT switch, make sure this switch is turned on before
using this command.

The 300 command reads standard input, processes its input for printing on the DASI 300,
GSI 300, or DTC 300 work stations, and writes to standard output. The 3008 command
performs the same functions for the DASI 300s, GSI 300s, and DTC 300s. They convert the
input files' motion control characters for half-line forward, half-line reverse, and full-line
reverse into motion commands recognized by these work stations.

You can use the 300 and 3008 commands to draw Greek characters and other special
symbols that require more than one vertical line, and it allows you to use 12-pitch text.
For a discussion of special symbols and greek characters supported by 300, see "greek" on
page 379.

The nroff command can be used with the 300 command to format text. 300 must be used if
you use special delays or formatting options. You can either pipe from nroff to 300 or use
the -T300 flag with nroff to specify the printing device. The movement control of the 300
command usually produces better aligned output than nroff -T300.

When using nroff, the -8 flag or .rd requests are required for inserting paper manually or
changing fonts in the middle of a document. In these cases, you must press the line feed
key to continue printing.

Using the 300 command with the neqn command will give you the best display of your
equations. You can use the following sequence to display equations:

neqn file . . . I nroff I 300

Commands 863

300

Flags

Note: Some special characters cannot be correctly printed in column 1 because the print
head cannot be moved to the left from that position.

If your output contains Greek characters or reverse line feeds, use a friction-feed platen
instead of a forms tractor. A forms tractor slips when reversing direction.

-dt,len,c Controls output delay factors. The default setting is -d3,90,30. DASI 300 is too
slow to handle very long lines, too many tab characters, or long strings with no
blanks and no identical characters. One null character is inserted in a line for
every set of t tabs, and for every contiguous string of c nonblank, non tab
characters. When a line is longer than len bytes, several nulls (the line length
divided by 20, plus one) are inserted at the end of that line. In all three cases,
the nulls delay the output enough to avoid a problem. Items can be omitted
from the end of the list, implying the default values. Entering zero for t results
in insertion of two null bytes per tab, while entering zero for c results in
insertion of two null bytes per character.

-num

When printing C Language programs, using -dO, 1 will help adjust for the many
indentation levels. When printing files like /ete/passwd, using -d3, 30,5 will
help print it properly.

This flag affects carriage return and line feed delays. The stty parameters nlO
er2 or nlO er3 are recommended for most uses.

Controls the size of half-line spacing. The default half-line values (which are
exact half-lines) of num are:

10-pitch, 6 lines-per-inch, num = 4
12-pitch, 8 lines-per-inch, num = 3
12-pitch, 6 lines-per-inch, num = 4

You can use other values for num to change the appearance of subscripts and
superscripts. For example, -2 makes nroff half-lines act like quarter-lines.

+ 12 Uses 12-pitch, 6 lines-per-inch text. The DASI 300 normally allows only two
combinations: 10-pitch, 6 lines per inch, or 12-pitch, 8 lines per inch. To use the
12-pitch, 6 lines-per-inch combination, set the PITCH switch to 12 and use the
+ 12 flag on the command line.

Related Information

The following commands: "450" on page 866, "eqn, neqn, eheekeq" on page 300, "graph"
on page 375, "mesg" on page 484, "nroff' on page 525, "stty" on page 717, "thl" on
page 739, and "tplot" on page 762.

The greek miscellaneous facility in A/X Operating System Technical Reference.

864 Commands Reference

4014

4014

Purpose

Formats a full page 66-line screen display for a Tektronix 4014 work station.

Syntax

40141 =~numr-pnum -p661--~
OL805195

Description

Flags

The 4014 command reads a file (standard input by default) and writes a 66-line page display
to standard output. It also divides the screen into a specified number of columns, adding
an eight space page offset when it uses the default single column format. It interprets tabs,
spaces, backspaces, and TELETYPE Model 37 half-line and reverse-line sequences
correctly. At the end of each page, 4014 waits for a line feed from the keyboard before
continuing. While 4014 is waiting, you can send commands to the shell by entering
!AIX-cmd, where AIX-cmd is a AIX command.

-cnum Divides the screen into num columns and waits after the last column. The
default is a single, full page-width column.

-n Starts displaying at the current cursor position and does not erase the screen.

-pnuml
-pnumi Sets page length to num lines (1, the default) or to num inches (i).

-t Does not wait between pages.

Related Information

The following commands: "pr" on page 561, "tc" on page 742, and "troff" on page 526.

Commands 865

450

450

Purpose

Handles special line-motion functions for the DASI 450 work station

Syntax

450~
OLS05194

Description

The 450 command reads standard input, processes its data for output on a DASI 450 or an
equivalent work station (such as the DIABLO 1620 or XEROX 1700). It converts half-line
forward, half-line reverse, and full-line reverse motions to the correct vertical motions on
standard output. It attempts to draw Greek characters and other special symbols in the
same manner as the 300 command vertical line space. See "greek" on page 379 for a list
of symbols supported by 450.

Use 450 with the nroff -8 flag or .rd requests when you need to insert paper manually or
change fonts in the middle of a document. Instead of using the return key in these cases,
you must use a the line feed key to get any response. In many cases you can use nroff
-T450 instead of the 450 command. However, you must use 450 if you require special
delays or options. In a few cases, using 450 may produce better aligned output. You can
pipe the output of the neqn command to 450 to print equations neatly.

Note: Make sure the PLOT switch is turned on before using this command. Also,
the SPACING switch should be in the desired position, either 10- or 12-pitch. For
either setting, vertical spacing is 6 lines per inch unless changed to 8 lines per inch
by an escape sequence.

Some special characters cannot be correctly printed in column 1 because the print
head cannot be moved to the left from that position.

If your output contains Greek characters or reverse linefeeds, use a friction-feed
platen instead of a forms tractor. A forms tractor tends to slip when reversing
direction.

866 Commands Reference

Flag

450

-f Permits the use of ETX/ACK protocol with 1200 bps printers. You cannot use 450 with
this flag in a pipeline or if you redirect its output. Instead it must drive the printer
directly.

Related Information

The following commands: "300" on page 863, "eqn, neqn, checkeq" on page 300, "graph"
on page 375, "greek" on page 379, "mesg" on page 484, "nroff' on page 525, "stty" on
page 717, "tabs" on page 729, "tbl" on page 739, "tplot" on page 762, and "troff' on
page 526.

The greek miscellaneous facility in AIX Operating System Technical Reference.

Commands 867

450

868 Commands Reference

Appendix A. AIX Device Table

Appendix A. AIX Device Table 869

Special File Description

appltrace Application trace pseudo device driver

config Configuration pseudo device driver

console Console device

error Error-logging interface

fd[num] Diskette drive, block device

fp Floating-point function

hd[num] Fixed disk drive, block device

hft High function terminal

kmem Kernel memory image

lp[num] Line printer

mem Memory image

null The null device

nvram Non-volatile memory image

osm System message interface

prf AIX Operating System profiler

rfd[num] Diskette drive, raw device

rhd[num] Fixed disk drive, raw device

rmt[num] Streaming tape

termio General terminal interface

tty[num] Controlling terminal interface

unixtrace Kernel trace event pseudo device driver

vrmtrace VRM trace event pseudo device driver

870. Commands Reference

Appendix B. Program Cross-Reference Index

Appendix B. Program Cross-Reference Index 871

TNL SN20-9861 (26 June 1987) to SC23-0790-0

Command Program Command Program

acctcms Multi-User Services bfs Extended Services

acctcom Multi-User Services bj Extended Services

acctconl Multi-User Services bs Extended Services

acctcon2 Multi-User Services cal Extended Services

acctdisk Multi-User Services calendar Extended Services

acctdusg Multi-User Services cat AIX Operating System

acctmerg Multi-User Services cb AIX Operating System

accton Multi-User Services cc AIX Operating System

acctprcl Multi-User Services cd AIX Operating System

acctprc2 Multi-User Services cdc Extended Services

acctwtmp Multi-User Services cflow Extended Services

actman AIX Operating System chargefee Multi-User Services

adb Extended Services checkcw Extended Services

adduser AIX Operating System checkeq Extended Services

admin Extended Services checkmm Extended Services

ar AIX Operating System chgrp AIX Operating System

arithmetic Extended Services chmod AIX Operating System

as AIX Operating System chown AIX Operating System

at AIX Operating System chparm AIX Operating System

awk AIX Operating System chparm Installation/Maintenance

back Extended Services chroot Extended Services

backup AIX Operating System ckpacct Multi-User Services

backup Installation/Maintenance ckprereq AIX Operating System

banner Extended Services clri AIX Operating System

basename AIX Operating System cmp AIX Operating System

batch AIX Operating System col Extended Services

bc Extended Services comb Extended Services

bdiff Extended Services comm Extended Services

872 Commands Reference

TNL SN20-9861 (26 June 1987) to SC23-0790-0

Command Program Command Program

compress Extended Services deroff Extended Services

confer Multi-User Services devices AIX Operating System

config AIX Operating System devnm AIX Operating System

connect AIX Operating System df AIX Operating System

copy AIX Operating System dfsck AIX Operating System

cp AIX Operating System di AIX Operating System

cpio AIX Operating System diff AIX Operating System

cpp AIX Operating System diff3 Extended Services

craps Extended Services diffmk Extended Services

crash AIX Operating System dircmp Extended Services

cron AIX Operating System dirname AIX Operating System

crontab AIX Operating System diskusg Multi-User Services

csh Extended Services display AIX Operating System

csplit Extended Services dodisk Multi-User Services

ctab Extended Services dos AIX Operating System

ctag AIX Operating System dosdel AIX Operating System

cut AIX Operating System dosdir AIX Operating System

cvid AIX Operating System dosread AIX Operating System

cw Extended Services doswrite AIX Operating System

cxref Extended Services dsipc Distributed Services

date AIX Operating System dsstate Distributed Services

dc Extended Services dsldxprof Distributed Services

dcopy Extended Services dsxlate Distributed Services

dd AIX Operating System du AIX Operating System

dd Installation/Maintenance dump Extended Services

defkey AIX Operating System dumpfmt AIX Operating System

del AIX Operating System echo AIX Operating System

delete AIX Operating System ed AIX Operating System

Appendix B. Program Cross-Reference Index 873

Command Program Command Program

delta Extended Services fuser Extended Services

ed Installation/Maintenance fwtmp Multi-User Services

edit Extended Services get Extended Services

egrep AIX Operating System getopt AIX Operating System

env AIX Operating System gettext AIX Operating System

eqn Extended Services getty AIX Operating System

errdead AIX Operating System graph Extended Services

errdemon AIX Operating System graph Multi -User Services

errpd AIX Operating System greek Multi-User Services

errpt AIX Operating System grep Extended Services

errstop AIX Operating System groups AIX Operating System

errupdate AIX Operating System grpck Extended Services

ex Extended Services hangman Extended Services

expr AIX Operating System hash check Extended Services

factor Extended Services hashmake Extended Services

false AIX Operating System help Extended Services

ff Extended Services hp Multi-User Services

fgrep AIX Operating System hyphen Extended Services

file AIX Operating System id Multi-User Services

find AIX Operating System init AIX Operating System

fish Extended Services init Installation/Maintenance

format AIX Operating System install AIX Operating System

format Installation/Maintenance installp AIX Operating System

fortune Extended Services inudocm AIX Operating System

fsck AIX Operating System inurecv AIX Operating System

fsck Installation/Maintenance inurest AIX Operating System

fsdb AIX Operating System inusave AIX Operating System

fsdb Installation/Maintenance inuumsg AIX Operating System

874 Commands Reference

TNL SN20-9861 (26 June 1987) to SC23-0790-0

Command Program Command Program

inuupdt AIX Operating System mdrc AIX Operating System

ipcrm AIX Operating System mant Extended Services

ipcs AIX Operating System mesg Multi-User Services

is tat Extended Services minidisks AIX Operating System

JOIn Extended Services mkdir AIX Operating System

joinconf Multi-User Services mkfs AIX Operating System

keyboard AIX Operating System mknod AIX Operating System

kill AIX Operating System mkfs Installation/Maintenance

killall AIX Operating System mknod Installation/Maintenance

lastlogin Multi-User Services mm Extended Services

ld AIX Operating System mmt Extended Services

lex Extended Services monacct Multi-User Services

Ii AIX Operating System moo Extended Services

line AIX Operating System mount AIX Operating System

link AIX Operating System mount Installation/Maintenance

lint Extended Services move AIX Operating System

In AIX Operating System mv AIX Operating System

locator AIX Operating System mvdir AIX Operating System

login AIX Operating System mvmd AIX Operating System

logname AIX Operating System mvt Extended Services

lorder AIX Operating System ncheck AIX Operating System

lp AIX Operating System neqn Extended Services

Is AIX Operating System newform Extended Services

Is Installation/Maintenance newgrp AIX Operating System

m4 AIX Operating System news AIX Operating System

mail AIX Operating System nICe AIX Operating System

make AIX Operating System nl Extended Services

makekey AIX Operating System nm AIX Operating System

Appendix B. Program Cross-Reference Index 875

TNL SN20-9861 (26 June 1987) to SC23-0790-0

Command Program Command Program

nohup AIX Operating System ps AIX Operating System

nroff Extended Services ptx Extended Services

nulladm Multi-User Services puttext AIX Operating System

number Extended Services pwck Extended Services

od Extended Services pwd AIX Operating System

open AIX Operating System qdaemon AIX Operating System

pack Extended Services qUIZ Extended Services

passwd AIX Operating System rc AIX Operating System

paste Extended Services regcmp Extended Services

pcat Extended Services remove Multi-User Services

pdisable AIX Operating System restore AIX Operating System

penable AIX Operating System restore Installation/Maintenance

pg AIX Operating System rm AIX Operating System

phold AIX Operating System rm Installation/Maintenance

piobe AIX Operating System rmail AIX Operating System

pr AIX Operating System rmdel Extended Services

prctmp Multi-User Services rmdir AIX Operating System

prdaily Multi-User Services rmdir Installation/Maintenance

prfdc Extended Services rsh AIX Operating System

prfld Extended Services runacct Multi -User Services

prfpr Extended Services sal Multi-User Services

prfsnap Extended Services sa2 Multi-User Services

prfstat Extended Services sact Extended Services

print AIX Operating System sadc Multi-User Services

prof Extended Services sag Multi-User Services

proto Extended Services sar Multi-User Services

prs Extended Services sccsdiff Extended Services

prtacct M ul ti-User Services sdb Extended Services

876 Commands Reference

TNL SN20-9861 (26 June 1987) to SC23-0790-0

Command Program Command Program

sdiff Extended Services sync Installation/Maintenance

sed AIX Operating System su AIX Operating System

setmnt AIX Operating System sum AIX Operating System

sh AIX Operating System tab Extended Services

sh Installation/Maintenance tabs Extended Services

shlib AIX Operating System tail Extended Services

shutacct Multi-User Services tapechk AIX Operating System

shutdown AIX Operating System tar Extended Services

SIze AIX Operating System tbl Extended Services

skulker AIX Operating System tc Multi-User Services

sleep AIX Operating System tctl AIX Operating System

sno Extended Services tctl Installation/Maintenance

sort AIX Operating System tee AIX Operating System

sound AIX Operating System termdef AIX Operating System

spell Extended Services test AIX Operating System

spellhist Extended Services tic Extended Services

spellin Extended Services time AIX Operating System

spellprog Extended Services timex AIX Operating System

spline Multi-User Services timex Multi-User Services

split AIX Operating System touch AIX Operating System

splp AIX Operating System tplot Multi-User Services

startup Multi-User Services tput Extended Services

stat Multi-User Services tr Extended Services

strip AIX Operating System trace AIX Operating System

STTY AIX Operating System trcrpt AIX Operating System

stty AIX Operating System trcstop AIX Operating System

stty Installa tion/Main tenance trcupdate AIX Operating System

sync AIX Operating System troff Extended Services

Appendix B. Program Cross-Reference Index 877

TNL SN20-9861 (26 June 1987) to SC23-0790-0

Command Program Command Program

true AIX Operating System uusuh Extended Services

tsort AIX Operating System uuto Extended Services

ttt Extended Services uux Extended Services

tty AIX Operating System val Extended Services

turnacct Multi-User Services varyon AIX Operating System

turnoff Extended Services vc Extended Services

turnon Extended Services vedit Extended Services

umask AIX Operating System verify AIX Operating System

umount AIX Operating System VI Extended Services

umount Installation/Maintenance VIew Extended Services

uname AIX Operating System vrmconfig AIX Operating System

unget Extended Services vrmconfig Installation/Maintenance

uniq Extended Services wait AIX Operating System

units Extended Services wall AIX Operating System

unlink AIX Operating System wc AIX Operating System

unmount AIX Operating System what AIX Operating System

unpack Extended Services who AIX Operating System

untah Extended Services write AIX Operating System

updatep AIX Operating System wtmpfix Multi-User Services

users AIX Operating System wump Extended Services

uuclean Extended Services xargs AIX Operating System

uucp Extended Services yacc Extended Services

uulog Extended Services 300s Multi-User Services

uuname Extended Services 4014 Multi-User Services

uupick Extended Services 450 Multi-User Services

uustat Extended Services

878 Commands Reference

Appendix C. Details on Reading Syntax Diagrams

Appendix C. Details on Reading Syntax Diagrams 879

File Input

Some commands must read a file as their input, some must read standard input, and some
can read both. The syntax diagrams show you which case applies to each particular
command.

If a command must read a file as its input, the diagram shows a path through the
parameter representing the file. It will have no branch around it. The following is an
example of a command that must read a file:

sccsdiff - -rSID1 - -rSID2 i =~num r file--r

Since the only path from the command name to the end passes through file, you must
supply a file name to the sccsdiff command.

OL805258

When a command can only read standard input, you will find no place in the diagram to
supply a file name. For example:

tee

OL805272

The file in the diagram refers to an output file. But since there is no place for the input to
be specified as a file, you can assume that the tee command reads standard input only.
Therefore, if you want to use the tee command, you must supply its input through a
pipeline, through redirection of the output from another command, or directly from the
keyboard (if it is standard input).

Most commands can either read standard input or files for their input. The diagrams show
this by branching and giving you a choice of entering a file name or nothing. The default
action is to read standard input if no file name is supplied (if this is not the default action,
it is explained under "Description" or with a footnote to the diagram.

880 Commands Reference

The following shows how this is diagramed:

grep pattern ~
~

OL805375

When you use the grep command, you can give it a specific file name, and it will read that
file for its input. If you do not give it a file name, it will read standard input. The
following are valid command lines for grep:

grep AAA
grep -sAAA
grep AAA memo
grep -s -v AAA memo
grep AAA memo letter report
grep -s AAA memo letter report
In the first two cases, grep reads the standard input.

Note: Some commands require that you enter a - (minus) when you want the command to
read standard input. If that is the case, it is explained under "Description", NOT in the
diagram. Usually this is done so that you can read several files as input and you can
include standard input as one of the "files".

Syntax Diagrams

Command Only
The simplest syntax diagram shows a command that is entered literally on the command
line with nothing else. Some examples are:

logname --l
OL805145

devices --l
OL805306

The blue command name means it should be entered literally. As you follow the line away
from the command name, the next item you encounter is the end mark, which indicates
nothing more can be entered with that command. The correct way to enter these
commands is to simply enter:

Appendix C. Details on Reading Syntax Diagrams 881

logname
devices

Commands with Required Parameters
Many diagrams have parameters in italics to represent specific values that you must enter
on the command line. When entering the command, you replace the parameter with the
value you need. One example is:

unlink - file ---I
OLS05227

To read the diagram, you start with the command name in blue type. As you move along
the line to the right, you reach the parameter file, and you must supply a file name. As
you move further to the right, you reach the end mark, and must stop.

Suppose you want to unlink three files named report, memo, and letter. You would have
to enter the unlink command three times:

unlink
unlink
unlink

report
memo
letter

Note that you must enter a file after the command. The diagram shows that you do not
have the choice of entering the command without one.

Often, you may want to enter more than one parameter on the command line. If you are
allowed to do so, the diagrams show it with a repeat arrow, an arrow that provides a path
back to an earlier part of the diagram. For example:

sact.-- file r
OL805063

eCho T string r
OLS05115

With all these diagrams, you start with the command name, then you reach the parameter
and must supply a value. Then you have a choice; you can continue to the right to the end
mark and end your command, or you can follow the repeat arrow around to the point
between the command name and the parameter, and enter another parameter. All the
following are valid command lines according to these diagrams:

sact s . 1 etter
sact s.letter s.memo s.report
echo hello!
echo hello there!

882 Commands Reference

If there is a maximum number of parameters that you can enter, the diagram tells you that
number. If no maximum is mentioned, then you can enter as many parameters as you
wish, within the length of your command line.

Commands with Optional Flags or Parameters
Many commands have optional flags or parameters. If something is optional, you have a
choice of paths in the diagram. One takes you around the flags, and the other takes you
through them. For example:

d.l~
OLS05049

With this diagram, as you move to the right from the command name, you reach a branch.
You can either take the upper branch to the file parameter, or you can take the lower
branch through the flag to the end mark. The dark line around the flag is a default line.
It shows that this is the path taken if you enter nothing from the lower branch. There are
only two ways to enter this command, according to this diagram. They are

del filel file2 file3
de 1 fi 1 e 1 fi 1 e2 fi 1 e3
As the command syntax becomes more complicated, the features of the diagrams are
combined to help you enter commands properly. The next diagram shows a command that
accepts an optional flag and an optional parameter that can be repeated.

df -0-<:: filesystem ,Tr
1 The default action is to provide information for each file

system in /etc/filesystems with the attribute f ree=t rue.
OLS05052

Once you have typed the command name, you have a choice of entering the flag. Then you
can stop, you can supply one file-system name, or you can supply more than one if you
follow the repeat arrow instead of proceeding to the end mark. Several valid command
lines are:

df
df -s
df systeml
df -s systeml
df systeml system2 system3
df -s systeml system2 system3

Appendix C. Details on Reading Syntax Diagrams 883

Commands Taking Only One Flag or Parameter
Many commands have flags or parameters that cannot or should not be entered together
on the command line. When this is the case, the mutually exclusive items are enclosed in
a single-choice box. The following diagram shows a command with optional flags that are
mutually exclusive:

mesg -<{})~

There are only three valid ways to enter this command:

mesg
mesg n
mesg y

OL805036

Whenever you see a box with several flags or parameters in it and see above the box the
words "one or', you can only choose one item in the box.

Commands That Can Take Several Flags
With many commands, you can enter as many of a group of flags or parameters as you
want. If this is the case, the items are in a box that has a repeat arrow around it. You can
follow the arrow around and through the box until you have selected all the items you
want to use. Note that as you continue to go through the box, you should not normally
choose an item that was previously chosen. Some commands do not work if you choose
flags more than once.

The following is an example of a diagram with flags in a box surrounded by a repeat arrow.

cat

OL805086

With cat, you can enter only the command name by following the default line over the
box. You can enter one flag and then continue to the end mark. You can also follow the
arrow around and choose both flags. The following are valid command lines:

cat
cat -u
cat -s
cat -u -s

884 Commands Reference

The following is not a valid command line:

cat -u -s -u
Once you have chosen an item from the box, you cannot choose it again, unless a footnote
tells you otherwise.

Commands That Can Repeat Part of a Sequence
Some commands allow you to choose flags for each parameter that they read. When this is
the case, another repeat arrow allows you to go back to an earlier part of the diagram.
One example is:

fus.r~ file Dr
OL805055

In this diagram, there are three repeat arrows. The first allows you to choose one or both
flags. The second allows you to have fuser read more than one file. The third allows you
to repeat the complete sequence from the beginning of the diagram to the end. The
following are all correct ways to enter fuser on the command line:

fuser memo
fuser memo
fuser -k memo
fuser -k -u memo
fuser -k -u memo letter
fuser -k -u memo
fuser -k memo -u -k letter -u report
The third arrow does allow you to enter the same flag repeatedly, but only after at least
one file name has been entered. If you follow the diagram, you cannot repeat a flag
without entering at least one file name after it.

Appendix C. Details on Reading Syntax Diagrams 885

Commands With Default Values
The default line can show more than just an alternate path around flags and parameters.
Sometimes, a flag is set by default or a parameter has a default value. When that is the
case, the default value is shown in the normal font in the default line. For example:

gettext
he/pnum

-m mesgnum
-t insertnum

)-OUlfile ~
infi/e

OL805130

If you do not enter any flags with gettext, the -p flag is set by default. Selecting the -h,
-m, or -t flags will turn the -p flag off. The following two command lines are equivalent
ways of entering gettext:

get text -p report
get text report
The following are valid command lines using the non-default flags for gettext:

gettext -h2 report
gettext -m3 report
gettext -m3 memo report
You can have default parameter values and default flags. The following is an example:

trace
=Q>-CC/trcprofile\ ,

(-9filedes profile~
-I

OL805279

If no profile file is supplied, trace reads the file /etc/trcprofi 1 e. The following are
equivalent command lines:

trace
trace /etc/trcprofile

886 Commands Reference

Diagrams Taking More Than One Line
Some of the more complex diagrams do not fit on one line. They are marked with an
arrowhead where they break, and they continue on the next line. For example:

pr

-166 -00 +1 -1-----------_

-d
-f
-I num
-0 num
-p
-r
-w num
+ num

1 Do not put a blank between these items.

OL805437

As you follow this diagram, you can choose as many as eight flags. Then, you have a
choice of entering no flag, the -m flag, or the - flag with a number, num On any of these
three branches, you continue until you reach the arrowhead. Then you must go down to
the next arrowhead, which is right below the command name, pro You can then choose no
flag, the -t flag, or the -h flag. These can be followed by the -n flag, and its parameters.
You then reach another arrowhead, and you must go down another line to the second
arrowhead beneath the command name. As you work your way through this line, you
finally reach the end mark. Note that while following the diagram will impose a specific
order to the flags, you do not need to strictly follow that order when entering the
command. If strict order is important, it is stated under "Description" in the commands
discussion. The following are some of the ways you can enter pr on the command line:

pr
pr -d
pr -04 -r -m -sX memo letter
pr -r -m -t -n4 -iX3 memo letter report
pr -m -n4 -r -iX3 -t memo report letter
pr -130 5 -3 -a -nX -iX3 -eY memo report
There are a few other features to note in this diagram. One is that many flags that take
parameters have default values. Entering -n is equivalent to entering -n5, since 5 is
num's default value. This diagram also has a footnote. Footnotes are used to show

Appendix C. Details on Reading Syntax Diagrams 887

information that cannot be diagramed. In this case, it tells you that you cannot put a
space between the -e or -i flags and their parameters. You cannot type -e Y or -i X 3.
You have to type them without spaces, according to the footnote.

Commands With More Than One Diagram
Several commands are shown with two or more diagrams. For example, the cdc command
requires two diagrams:

cdc - -rSJD ~ X L file -r
\'-mmrlist -ycommentJ t J

cdc- -rSID-C-m,-;--y ~- -l

-m mrlist F"\....-y comment-.l

OL805088

When you want cdc to read named files, you look at the first diagram for the syntax. It
shows that the -m and -y flags are optional, but they must have parameters. However, if
you want cdc to read standard input, you look at the second diagram. It shows that you
must supply a - (hyphen) to read standard input. It also shows that the -m and -y flags are
required, while their parameters are optional. The following are ways you can enter cdc
according to the diagrams:

cdc
cdc
cdc
cdc

-r15.2
-r15.2
-r15.2
-r15.2

s.memo
-mfilel
-m -y
-mfilel

s.letter
s.letter

-y

By following the above rules, you can enter commands using the correct syntax.

888 Commands Reference

Figures

1. SCCS Header Flags ... 54
2. SID Determination .. 363
3. Delta Table Keywords .. 575
4. Header Flag Keywords ... 576
5. Other Keywords .. 577
6. tbl Column and Item Specifiers ... 740
7. Configuration File Parameters ... 803

Figures 889

890 Commands Reference

access. To obtain data from or put data in
storage.

access permission. A group of designations
that determine who can access a particular AIX
file and how the user may access the file.

account. The log in directory and other
information that give a user access to the
system.

activity manager. A collection of
system-supplied tasks allowing users to manage
their activities. Provides the ability to list
current activities (Activity List) and to begin,
cancel, hide, and activate activities.

All Points Addressable (AP A) display. A
display that allows each pel to be individually
addressed. An AP A display allows for images to
be displayed that are not made up of images
predefined in character boxes. Contrast with
character display.

allocate. To assign a resource, such as a disk
file or a diskette file, to perform a specific task.

alphabetic. Pertaining to a set of letters a
through z.

alphanumeric character. Consisting of
letters, numbers and often other symbols, such
as punctuation marks and mathematical
symbols.

American National Standard Code for
Information Interchange (ASCII). The code
developed by ANSI for information interchange
among data processing systems, data
communications systems, and associated
equipment. The ASCII character set consists of
7-bit control characters and symbolic
characters.

Glossary

American National Standards Institute. An
organization sponsored by the Computer and
Business Equipment Manufacturers Association
for establishing voluntary industry standards.

application. A program or group of programs
that apply to a particular business area, such as
the Inventory Control or the Accounts
Receivable application.

application program. A program used to
perform an application or part of an
application.

argument. Numbers, letters, or words that
change the way a command works.

ASCII. See American National Standard Code
for Information Interchange.

attribute. A characteristic. For example, the
attribute for a displayed field could be blinking.

auto carrier return. The system function
that places carrier returns automatically within
the text and on the display. This is
accomplished by moving whole words that
exceed the line end zone to the next line.

backend. The program that sends output to a
particular device. There are two types of
backends: friendly and unfriendly.

background process. (1) A process that does
not require operator intervention that can be
run by the computer while the work station is
used to do other work. (2) A mode of program
execution in which the shell does not wait for
program completion before prompting the user
for another command.

backup copy. A copy, usually of a file or
group of files, that is kept in case the or.iginal

Glossary 891

file or files are unintentionally changed or
destroyed.

backup diskette. A diskette containing
information copied from a fixed disk or from
another diskette. It is used in case the original
information becomes unusable.

bad block. A portion of a disk that can never
be used reliably.

base address. The beginning address for
resolving symbolic references to locations in
storage.

base name. The last element to the right of a
full path name. A filename specified without its
parent directories.

batch printing. Queueing one or more
documents to print as a separate job. The
operator can type or revise additional
documents at the same time. This is a
background process.

batch processing. A processing method in
which a program or programs process records
with little or no operator action. This is a
background process. Contrast with interactive
processing.

binary. (1) Pertaining to a system of numbers
to the base two; the binary digits are 0 and 1.
(2) Involving a choice of two conditions, such
as on-off or yes-no.

bit. Either of the binary digits 0 or 1 used in
computers to store information. See also byte.

block. (1) A group of records that is recorded
or processed as a unit. Same as physical record.
(2) In data communications, a group of records
that is recorded, processed, or sent as a unit.
(3) A block is 512 bytes long. (4) A logical
block is 2048 bytes long.

block file. A file listing the usage of blocks on
a disk.

block special file. A special file that provides
access to an input or output device is capable of

892 Commands Reference

supporting a file system. See also character
special file.

bootstrap. A small program that loads larger
programs during system initialization.

branch. In a computer program an instruction
that selects one of two or more alternative sets
of instructions. A conditional branch occurs
only when a specified condition is met.

breakpoint. A place in a computer program,
usually specified by an instruction, where
execution may be interrupted by external
intervention or by a monitor program.

buffer. (1) A temporary storage unit,
especially one that accepts information at one
rate and delivers it at another rate. (2) An area
of storage, temporarily reserved for performing
input or output, into which data is read, or from
which data is written.

burst pages. On continuous-form paper, pages
of output that can be separated at the
perforations.

byte. The amount of storage required to
represent one character; a byte is 8 bits.

call. (1) To activate a program or procedure at
its entry point. Compare with load.

callouts. An AIX kernel parameter
establishing the maximum number of scheduled
activities that can be pending simultaneously.

cancel. To end a task before it is completed.

carrier return. (1) In text data, the action
causing line ending formatting to be performed
at the current cursor location followed by a line
advance of the cursor. Equivalent to the
carriage return of a typewriter. (2) A keystroke
generally indicating the end of a command line.

case sensitive. Able to distinguish between
uppercase and lowercase letters.

character. A letter, digit, or other symbol.

character display. A display that uses a
character generator to display predefined
character boxes of images (characters) on the
screen. This kind of display cannot address the
screen any less than one character box at a
time. Contrast with All Points Addressable
display.

character key. A keyboard key that allows
the user to enter the character shown on the
key. Compare with function keys.

character position. On a display, each
location that a character or symbol can occupy.

character set. A group of characters used for
a specific reason; for example, the set of
characters a printer can print or a keyboard
can support.

character special file. A special file that
provides access to an input or output device.
The character interface is used for devices that
do not use block I/O. See also block special file.

character string. A sequence of consecutive
characters.

character variable. The name of a character
data item whose value may be assigned or
changed while the program is running.

child. (1) Pertaining to a secured resource,
either a file or library, that uses the user list of
a parent resource. A child resource can have
only one parent resource. (2) In the AIX
Operating System, child is a process spawned by
a parent process that shares resources of parent
process. Contrast with parent.

e language. A general-purpose programming
language that is the primary language of the
AIX Operating System.

class. Pertaining to the I/O characteristics of
a device. AIX devices are classified as block or
character.

close. (1) To end an activity and remove that
window from the display.

code. (1) Instructions for the computer.
(2) To write instructions for the computer; to
program. (3) A representation of a condition,
such as an error code.

code segment. See segment.

collating sequence. The sequence in which
characters are ordered within the computer for
sorting, combining, or comparing.

color display. A display device capable of
displaying more than two colors and the shades
produced via the two colors, as opposed to a
monochrome display.

column. A vertical arrangement of text or
numbers.

column headings. Text appearing near the
top of columns of data for the purpose of
identifying or titling.

command. A request to perform an operation
or run a program. When parameters,
arguments, flags, or other operands are
associated with a command, the resulting
character string is a single command.

command interpreter. A program that sends
instructions to the kernel; also called an
interface.

command line. The area of the screen where
commands are displayed as they are typed.

command line editing keys. Keys for editing
the command line.

command programming language. Facility
that allows programming by the combination of
commands rather than by writing statements in
a conventional programming language.

compile. (1) To translate a program written in
a high-level programming language into a
machine language program. (2) The computer
actions required to transform a source file into
an executable object file.

Glossary 893

compress. (1) To move files and libraries
together on disk to create one continuous area
of unused space. (2) In data communications,
to delete a series of duplicate characters in a
character string.

concatenate. (1) To link together. (2) To
join two character strings.

condition. An expression in a program or
procedure that can be evaluated to a value of
either true or false when the program or
procedure is running.

configuration. The group of machines,
devices, and programs that make up a computer
system. See also system customization.

configuration file. A file that specifies the
characteristics of a system or subsystem, for
example, the AIX queueing system.

consistent. Pertaining to a file system,
without internal discrepancies.

console. (1) The main AIX display station.
(2) A device name associated with the main AIX
display station.

constant. A data item with a value that does
not change. Contrast with variable.

context search. A search through a file
whose target is a character string.

control block. A storage area used by a
program to hold control information.

control commands. Commands that allow
conditional or looping logic flow in shell
procedures.

control program. Part of the AIX Operating
System system that determines the order in
which basic functions should be performed.

controlled cancel. The system action that
ends the job step being run, and saves any new
data already created. The job that is running
can continue with the next job step.

894 Commands Reference

copy. The action by which the user makes a
whole or partial duplicate of already existing
data.

crash. An unexpected interruption of
computer service, usually due to a serious
hardware or software malfunction.

current directory. The directory that is
active, and can be displayed with the pwd
command.

current line. The line on which the cursor is
located.

current working directory. See current
directory.

cursor. (1) A movable symbol (such as an
underline) on a display, used to indicate to the
operator where the next typed character will be
placed or where the next action will be directed.
(2) A marker that indicates the current data
access location within a file.

cursor movement keys. The directional keys
used to move the cursor.

customize. To describe (to the system) the
devices, programs, users, and user defaults for a
particular data processing system.

cylinder. All fixed disk or diskette tracks that
can be read or written without moving the disk
drive or diskette drive read/write mechanism.

daemon. See daemon process.

daemon process. A process begun by the root
or the root shell that can be stopped only by the
root. Daemon processes generally provide
services that must be available at all times such
as sending data to a printer.

data block. See block.

data communications. The transmission of
data between computers, or remote devices or
both (usually over long distance).

data stream. All information (data and
control information) transmitted over a data
link.

debug. (1) To detect, locate, and correct
mistakes in a program. (2) To find the cause of
problems detected in software.

default. A value that is used when no
alternative is specified by the operator.

default directory. The directory name
supplied by the operating system if none is
specified.

default drive. The drive name supplied by the
operating system if none is specified.

default value. A value stored in the system
that is used when no other value is specified.

delete. To remove. For example, to delete a
file.

dependent work station. A work station
having little or no standalone capability, that
must be connected to a host or server in order
to provide any meaningful capability to the
user.

device. An electrical or electronic machine
that is designed for a specific purpose and that
at~aches to your computer, for example, a
prInter, plotter, disk drive, and so forth.

device driver. A program that operates a
specific device, such as a printer disk drive or
display. "

device name. A name reserved by the system
that refers to a specific device.

diagnostic. Pertaining to the detection and
isolation of an error.

diagnostic aid. A tool (procedure, program,
reference manual) used to detect and isolate a
device or program malfunction or error.

diagnostic routine. A computer program that
recognizes, locates, and explains either a fault

in equipment or a mistake in a computer
program.

digit. Any of the numerals from 0 through 9.

directory. A type of file containing the names
and controlling information for other files or
other directories.

disable. To make nonfunctional.

discipline. Pertaining to the order in which
requests are serviced, for example,
first-come-first-served (fcfs) or shortest job next
(sjn).

disk I/O. Fixed-disk input and output.

diskette. A thin, flexible magnetic plate that
is permanently sealed in a protective cover. It
can be used to store information copies from the
disk or another diskette.

diskette drive. The mechanism used to read
and write information on diskettes.

display device. An output unit that gives a
visual representation of data.

display screen. The part of the display device
that displays information visually.

display station. A device that includes a
keyboard from which an operator can send
information to the system and a display screen
on which an operator can see the information
sent to or received from the computer.

dump. (1) To copy the contents of all or part
of storage, usually to an output device.
(2) Data that has been dumped.

dump diskette. A diskette that contains a
dump or is prepared to receive a dump.

dump formatter. Program for analyzing a
dump.

EBCDIC. See extended binary-coded decimal
interchange code.

Glossary 895

EBCDIC character. Anyone of the symbols
included in the 8-bit EBCDIC set.

edit. To modify the form or format of data.

edit buffer. A temporary storage area used by
an editor.

editor. A program used to enter and modify
programs, text, and other types of documents
and data.

emulation. Imitation; for example, when one
computer imitates the characteristics of another
computer.

enable. To make functional.

enter. To send information to the computer by
pressing the Enter key.

entry. A single input operation on a work
station.

environment. The settings for-shell variables
and paths set associated with each process.
These variables can be modified later by the
user.

error-correct backspace. An editing key that
performs editing based on a cursor position; the
cursor is moved one position toward the
beginning of the line, the character at the new
cursor location is deleted, and all characters
following the cursor are moved one position
toward the beginning of the line (to fill the
vacancy left by the deleted element).

escape character. A character that
suppresses the special meaning of one or more
characters that follow.

exit value. A numeric value that a command
returns to indicate whether it completed
successfully. Some commands return exit
values that give other information, such as
whether a file exists. Shell programs can test
exit values to control branching and looping.

896 Commands Reference

expression. A representation of a value. For
example, variables and constants appearing
alone or in combination with operators.

extended binary-coded decimal interchange
code (EBCDIC). A set of 256 eight-bit
characters.

feature. A programming or hardware option,
usually available at an extra cost.

field. (1) An area in a record or panel used to
contain a particular category of data. (2) The
smallest component of a record that can be
referred to by a name.

FIFO. See first-in-first-out.

file. A collection of related data that is stored
and retrieved by an assigned name.

file name. The name used by a program to
identify a file. See also label.

filename. In DOS, that portion of the file
name that precedes the extension.

file specification (filespec). The name and
location of a file. A file specification consists
of a drive specifier, a path name, and a file
name.

file system. The collection of files and file
management structures on a physical or logical
mass storage device, such as a diskette or
minidisk.

filetab. An AIX kernel parameter establishing
the maximum number of files that can be open
simultaneously.

fiIter. A command that reads standard input
data, modifies the data, and sends it to standard
output.

first-in-first-out (FIFO). A named permanent
pipe. A FIFO allows two unrelated processes to
exchange information using a pipe connection.

fixed disk. A flat, circular, nonremoveable
plate with a magnetizable surface layer on

which data can be stored by magnetic
recording.

fixed-disk drive. The mechanism used to read
and write information on fixed disk.

flag. A modifier that appears on a command
line with the command name that defines the
action of the command. Flags in the AIX
Operating System almost always are preceded
by a dash.

font. A family or assortment of characters of a
given size and style.

foreground. A mode of program execution in
which the shell waits for the program specified
on the command line to complete before
returning your prompt.

format. (1) A defined arrangement of such
things as characters, fields, and lines, usually
used for displays, printouts, or files. (2) The
pattern which determines how data is recorded.

formatted diskette. A diskette on which
control information for a particular computer
system has been written but which mayor may
not contain any data.

free list. A list of available space on each file
system. This is sometimes called the free-block
list.

free-block list. See free list.

full path name. The name of any directory or
file expressed as a string of directories and files
beginning with the root directory.

function. A synonym for procedure. The C
language treats a function as a data type that
contains executable code and returns a single
value to the calling function.

function keys. Keys that request actions but
do not display or print characters. Included are
the keys that normally produce a printed
character, but when used with the code key
produce a function instead. Compare with
character key.

generation. For some remote systems, the
translation of configuration information into
machine language.

Gid. See group number.

global. Pertains to information available to
more than one program or subroutine.

global action. An action having general
applicability, independent of the context
established by any task.

global character. The special characters *
and ? that can be used in a file specification to
match one or more characters. For example,
placing a ? in a file specification means any
character can be in that position.

global search. The process of having the
system look through a document for specific
characters, words, or groups of characters.

global variable. A symbol defined in one
program module, but used in other
independently assembled program modules.

graphic character. A character that can be
displayed or printed.

group name. A name that uniquely identifies
a group of users to the system.

group number (Gid). A unique number
assigned to a group of related users. The group
number can often be substituted in commands
that take a group name as an argument.

hardware. The equipment, as opposed to the
programming, of a computer system.

header. Constant text that is formatted to be
in the top margin of one or more pages.

header label. A special set of records on a
diskette describing the contents of the diskette.

here document. Data contained within a
shell program or procedure (also called in line
input).

Glossary 897

highlight. To emphasize an area on the
display by any of several methods, such as
brightening the area or reversing the color of
characters within the area.

history file. A file containing a log of system
actions and operator responses.

hog factor. In system accounting, an analysis
of how many times each command was run, how
much processor time and memory it used, and
how intensive that use was.

home directory. (1) A directory associated
with an individual user. (2) The user's current
directory on login or after issuing the cd
command with no argument.

I/O. See input/output.

ID. Identification.

IF expressions. Expressions within a
procedure, used to test for a condition.

indirect block. A block containing pointers to
other blocks. Indirect blocks can be
single-indirect, double-indirect, or
tri ple-indirect.

informational message. A message providing
information to the operator, that does not
require a response.

initial program load (IPL). The process of
loading the system programs and preparing the
system to run jobs. See initialize.

initialize. To set counters, switches, addresses,
or contents of storage to zero or other starting
values at the beginning of, or at prescribed
points in, the operation of a computer routine.

inline input. See here document.

i-node. The internal structure for managing
files in the system. I-nodes contain all of the
information pertaining to the node, type, owner,
and location of a file. A table of i-nodes is
stored near the beginning of a file system.

898 Commands Reference

i-number. A number specifying a particular
i-node on a file system.

inodetab. An AIX kernel parameter that
establishes a table in memory for storing copies
of i-nodes for all active files.

input. Data to be processed.

input device. Physical devices used to provide
data to a computer.

input file. A file opened by a program so that
the program can read from that file.

input list. A list of variables to which values
are assigned from input data.

input redirection. The specification of an
input source other than the standard one.

input-output file. A file opened for input and
output use.

input-output device number. A value
assigned to a device driver by the guest
operating system or to the virtual device by the
virtual resource manager. This number
uniquely identifies the device regardless of
whether it is real or virtual.

input/output (I/O). Pertaining to either
input, output, or both between a computer and
a device.

interactive processing. A processing method
in which each system user action causes
response from the program or the system.
Contrast with batch processing.

interface. A shared boundary between two or
more entities. An interface might be a
hardware component to link two devices
together or it might be a portion of storage or
registers accessed by two or more computer
programs.

interleave factor. Specification of the ratio
between contiguous physical blocks (on a
fixed-disk) and logically contiguous blocks (as
in a file).

interrupt. (1) To temporarily stop a process.
(2) In data communications, to take an action
at a receiving station that causes the sending
station to end a transmission. (3) A signal sent
by an I/O device to the processor when an error
has occurred or when assistance is needed to
complete I/O. An interrupt usually suspends
execution of the currently executing program.

IPL. See initial program load.

job. (1) A unit of work to be done by a system.
(2) One or more related procedures or programs
grouped into a procedure.

job queue. A list, on disk, of jobs waiting to
be processed by the system.

justify. To print a document with even right
and left margins.

kbuffers. An AIX kernel parameter
establishing the number of buffers that can be
used by the kernel.

K-byte. See kilobyte.

kernel. The memory-resident part of the AIX
Operating System containing functions needed
immediately and frequently. The kernel
supervises the input and output, manages and
controls the hardware, and schedules the user
processes for execution.

kernel parameters. Variables that specify
how the kernel allocates certain system
resources.

key pad. A physical grouping of keys on a
keyboard (for example, numeric key pad, and
cursor key pad).

keyboard. An input device consisting of
various keys allowing the user to input data,
control cursor and pointer locations, and to
control the dialog between the user and the
display station

keylock feature. A security feature in which
a lock and key can be used to restrict the use of
the display station.

keyword. One of the predefined words of a
programming language; a reserved word.

keyword argument. One type of variable
assignment that can be made on the command
line.

kill. An AIX Operating System command that
stops a process.

kill character. The character that is used to
delete a line of characters entered after the
user's prom pt.

kilobyte. 1024 bytes.

kprocs. An AIX kernel parameter establishing
the maximum number of processes that the
kernel can run simultaneously.

label. (1) The name in the disk or diskette
volume table of contents that identifies a file.
See also file name. (2) The field of an
instruction that assigns a symbolic name to the
location at which the instruction begins, or
such a symbolic name.

left margin. The area on a page between the
left paper edge and the leftmost character
position on the page.

left-adjust. The process of aligning lines of
text at the left margin or at a tab setting such
that the leftmost character in the line or filed is
in the leftmost position. Contrast with
rig ht-adj us t.

library. A collection of functions, calls,
subroutines, or other data.

licensed program product (LPP). Software
programs that remain the property of the
manufacturer, for which customers pay a
license fee.

line editor. An editor that modifies the
contents of a file one line at a time.

linefeed. An ASCII character that causes an
output device to move forward one line.

Glossary 899

link. A connection between an i-node and one
or more file names associated with it.

literal. A symbol or a quantity in a source
program that is itself data, rather than a
reference to data.

load. (1) To move data or programs into
storage. (2) To place a diskette into a diskette
drive, or a magazine into a diskette magazine
drive. (3) To insert paper into a printer.

loader. A program that reads run files into
main storage, thus preparing them for
execution.

local. Pertaining to a device directly
connected to your system without the use of a
communications line. Contrast with remote.

log. To record; for example, to log all messages
on the system printer. A list of this type is
called a log, such as an error log.

log in. To begin a session at a display station.

log in shell. The program, or command
interpreter, started for a user at log in.

log off. To end a session at a display station.

log out. To end a session at a display station.

logical device. A file for conducting input or
output with a physical device.

loop. A sequence of instructions performed
repeatedly until an ending condition is reached.

main storage. The part of the processing unit
where programs are run.

maintenance system. A special version of
the AIX Operating System which is loaded from
diskette and used to perform system
management tasks.

major device number. A system
identification number for each device or type of
device.

mapped files. Files on the fixed-disk that are
accessed as if they are in memory.

900 Commands Reference

mask. A pattern of characters that controls
the keeping, deleting, or testing of portions of
another pattern of characters.

matrix. An array arranged in rows and
columns.

maxprocs. An AIX kernel parameter
establishing the maximum number of processes
that can be run simultaneously by a user.

memory. Storage on electronic chips.
Examples of memory are random access
memory, read only memory, or registers. See
storage.

menu. A displayed list of items from which an
operator can make a selection.

message. (1) A response from the system to
inform the operator of a condition which may
affect further processing of a current program.
(2) Information sent from one user in a
multi-user operating system to another.

minidisk. A logical division of a fixed disk.

minor device number. A number used to
specify various types of information about a
particular device, for example, to distinguish
among several printers of the same type.

mode word. An i-node field that describes the
type and state of the i-node.

modem. See modulator-demodulator.

modulation. Changing the frequency or size
of one signal by using the frequency or size of
another signal.

modulator-demodulator (modem). A device
that converts data from the computer to a
signal that can be transmitted on a
communications line, and converts the signal
received to data for the computer.

module. (1) A discrete programming unit that
usually performs a specific task or set of tasks.
Modules are subroutines and calling programs

that are assembled separately, then linked to
make a complete program. (2) See load module.

mount. To make a file system accessible.

mountab. An AIX kernel parameter
establishing the maximum number of file
systems that can be mounted simultaneously.

multiprogramming. The processing of two or
more programs at the same time.

multivolume file. A diskette file occupying
more than one diskette.

nest. To incorporate a structure or structures
of some kind into a structure of the same kind.
For example, to nest one loop (the nested loop)
within another loop (the nesting loop); to nest
one subroutine (the nested subroutine) within
another subroutine (the nesting subroutine).

networ k. A collection of products connected
by communication lines for information
exchange between locations.

new-line character. A control character that
causes the print or display position to move to
the first position on the next line.

null. Having no value, containing nothing.

null character (NUL). The character hex 00,
used to represent the absence of a printed or
displayed character.

numeric. Pertaining to any of the digits 0
through 9.

object code. Machine-executable instruction,
usually generated by a compiler from source
code written in a higher level language.
consists of directly executable machine code.
For programs that must be linked, object code
consists of relocatable machine code.

octal. A base eight numbering system.

open. (1) To make a file available to a
program for processing.

operating system. Software that controls the
running of programs; in addition, an operating
system may provide services such as resource
allocation, scheduling, input/output control,
and data management.

operation. A specific action (such as move,
add, multiply, load) that the computer performs
when requested.

operator. A symbol representing an operation
to be done.

output. The result of processing data.

output devices. Physical devices used by a
computer to present data to a user.

output file. A file that is opened by a program
so that the program can write to that file.

output redirection. The specification of an
output destination other than the standard one.

override. (1) A parameter or value that
replaces a previous parameter or value. (2) To
replace a parameter or value.

overwrite. To write output into a storage or
file space that is already occupied by data.

owner. The user who has the highest level of
access authority to a data object or action, as
defined by the object or action.

pad. To fill unused positions in a field with
dummy data, usually zeros or blanks.

page. A block of instructions, data, or both.

page space minidisk. The area on a fixed
disk that temporarily stores instructions or data
currently being run. See also minidisk.

pagination. The process of adjusting text to
fit within margins and/or page boundaries.

paging. The action of transferring
instructions, data, or both between real storage
and external page storage.

Glossary 901

parallel processing. The condition in which
multiple tasks are being performed
simultaneously within the same activity.

parameter. Information that the user supplies
to a panel, command, or function.

parent. Pertaining to a secured resource,
either a file or library, whose user list is shared
with one or more other files or libraries.
Contrast with child.

parent directory. The directory one level
above the current directory.

partition. See minidisk.

password. A string of characters that, when
entered along with a user identification, allows
an operator to sign on to the system.

password security. A program product option
that helps prevent the unauthorized use of a
display station, by checking the password
entered by each operator at sign-on.

path name. See full path name and relative
path name.

pattern-matching character. Special
characters such as * or ? that can be used in
search patterns. Some used in a file
specification to match one or more characters.
For example, placing a ? in a file specification
means any character can be in that position.
Pattern-matching characters are also called
wildcards.

permission code. A three-digit octal code, or
a nine-letter alphabetic code, indicating the
access permissions. The access permissions are
read, write, and execute.

permission field. One of the three-character
fields within the permissions column of a
directory listing indicating the read, write, and
run permissions for the file or directory owner,
group, and all others.

902 Commands Reference

phase. One of several stages file system
checking and repair performed by the fsck
command.

physical device. See device.

physical file. An indexed file containing data
for which one or more alternative indexes have
been created.

physical record. (1) A group of records
recorded or processed as a unit. Same as block.
(2) A unit of data moved into or out of the
computer.

PID. See process ID.

pipe. To direct the data so that the output
from one process becomes the input to another
process.

pipeline. A direct, one-way connection
between two or more processes.

pitch. A unit of width of typewriter type,
based on the number of times a letter can be set
in a linear inch. For example, 10-pitch type has
10 characters per inch.

platen. The support mechanism for paper on a
printer, commonly cylindrical, against which
printing mechanisms strike to produce an
impression.

pointer. A logical connection between
physical blocks.

port. (1) To make the programming changes
necessary to allow a program that runs on one
type of computer to run on another type of
computer. (2) An access point for data input to
or data output from a computer system. See
connector.

position. The location of a character in a
series, as in a record, a displayed message, or a
computer printout.

positional parameter. A shell facility for
assigning values from the command line to
variables in a program.

print queue. A file containing a list of the
names of files waiting to be printed.

printout. Information from the computer
produced by a printer.

priority. The relative ranking of items. For
example, a job with high priority in the job
queue will be run before one with medium or
low priority.

priority number. A number that establishes
the relative priority of printer requests.

privileged user. The account with superuser
authority.

problem determination. The process of
identifying why the system is not working.
Often this process identifies programs,
equipment, data communications facilities, or
user errors as the source of the problem.

problem determination procedure. A
prescribed sequence of steps aimed at recovery
from, or circumvention of, problem conditions.

procedure. See shell procedure.

process. (1) A sequence of actions required to
produce a desired result. (2) An entity
receiving a portion of the processor's time for
executing a program. (3) An activity within the
system begun by entering a command, running
a shell program, or being started by another
process.

process accounting. An analysis of the use
each process makes of the processing unit,
memory, and I/O resources.

process ID (PID). A unique number assigned
to a process that is running.

profile. (1) A file containing customized
settings for a system or user (2) Data describing
the significant features of a user, program, or
device.

program. A file containing a set of
instructions conforming to a particular
programming language syntax.

prompt. A displayed request for information
or operator action.

propagation time. The time necessary for a
signal to travel from one point on a
communications line to another.

qdaemon. The daemon process that maintains
a list of outstanding jobs and sends them to the
specified device at the appropriate time.

queue. A line or list formed by items waiting
to be processed.

queued message. A message from the system
that is added to a list of messages stored in a
file for viewing by the user at a later time. This
is in contrast to a message that is sent directly
to the screen for the user to see immediately.

quit. A key, command, or action that tells the
system to return to a previous state or stop a
process.

quote. To mask the special meaning of certain
characters; to cause them to be taken literally.

random access. An access mode in which
records can be read from, written to, or
removed from a file in any order.

readonly. Pertaining to file system mounting,
a condition that allows data to be read, but not
modified.

recovery procedure. (1) An action performed
by the operator when an error message appears
on the display screen. Usually, this action
permits the program to continue or permits the
operator to run the next job. (2) The method of
returning the system to the point where a major
system error occurred and running the recent
critical jobs again.

redirect. To divert data from a process to a
file or device to which it would not normally
go.

Glossary 903

reference count. In an i-node, a record of the
total number of directory entries that refer to
the i-node.

relational expression. A logical statement
describing the relationship (such as greater
than or equal) of two arithmetic expressions or
data items.

relational operator. The reserved words or
symbols used to express a relational condition
or a relational expression.

relative address. An address specified
relative to the address of a symbol. When a
program is relocated, the addresses themselves
will change, but the specification of relative
addresses remains the same.

relative addressing. A means of addressing
instructions and data areas by designating their
locations relative to some symbol.

relative path name. The name of a directory
or file expressed as a sequence of directories
followed by a file name, beginning from the
current directory.

remote. Pertaining to a system or device that
is connected to your system through a
communications line. Contrast with local.

reserved character. A character or symbol
that has a special (non-literal) meaning unless
quoted.

reserved word. A word that is defined in a
programming language for a special purpose,
and that must not appear as a user-declared
identifier.

reset. To return a device or circuit to a clear
state.

restore. To return to an original value or
image. For example, to restore a library from
diskette.

right adjust. The process of aligning lines of
text at the right margin or tab setting such that

904 Commands Reference

the rightmost character in the line or file is in
the rightmost position.

right justify. See right align.

right margin. The area on a page between the
last text character and the right upper edge.

right-adjust. To place or move an entry in a
field so that the rightmost character of the field
is in the rightmost position. Contrast with
left-adjust.

root. Another name sometimes used for
superuser.

root directory. The top level of a
tree-structured directory system.

root file system. The basic AIX Operating
System file system, which contains operating
system files and onto which other file systems
can be mounted. The root file system is the file
system that contains the files that are run to
start the system running.

routine. A set of statements in a program
causing the system to perform an operation or a
series of related operations.

run. To cause a program, utility, or other
machine function to be performed.

run-time environment. A collection of
subroutines and shell variables that provide
commonly used functions and information for
system components.

scratch file. A file, usually used as a work
file, that exists until the program that uses it
ends.

screen. See display screen.

scroll. To move information vertically or
horizontally to bring into view information that
is outside the display screen boundaries.

sector. (1) An area on a disk track or a
diskette track reserved to record information.
(2) The smallest amount of information that

can be written to or read from a disk or diskette
during a single read or write operation.

security. The protection of data, system
operations, and devices from accidental or
intentional ruin, damage, or exposure.

segment. A contiguous area of virtual storage
allocated to a job or system task. A program
segment can be run by itself, even if the whole
program is not in main storage.

separator. A character used to separate parts
of a command or file.

sequential access. An access method in
which records are read from, written to, or
removed from a file based on the logical order
of the records in the file.

session records. In the accounting system, a
record of time connected and line usage for
connected display stations, produced from log in
and log out records.

set flags. Flags that can be put into effect
with the shell set command.

shared printer. A printer that is used by
more than one work station.

shell. See shell program.

shell procedure. A series of commands
combined in a file that carry out a particular
function when the file is run or when the file is
specified as an argument to the sh command.
Shell procedures are frequently called shell
scripts.

shell program. A program that accepts and
interprets commands for the operating system
(there is an AIX shell program and a DOS shell
program).

shell prompt. The character string on the
command line indicating the the system can
accept a command (typically the $ character).

shell script. See shell procedure.

shell variables. Facilities of the shell
program for assigning variable values to
constant names.

size field. In an i-node, a field that indicates
the size, in bytes, of the file associated with the
i-node.

software. Programs.

sort. To rearrange some or all of a group of
items based upon the contents or
characteristics of those items.

source diskette. The diskette containing data
to be copied, compared, restored, or backed up.

source program. A set of instructions written
in a programming language, that must be
translated to machine language compiled before
the program can be run.

special character. A character other than an
alphabetic or numeric character. For example;
*, +, and % are special characters.

special file. Special files are used in the AIX
system to provide an interface to input/output
devices. There is at least one special file for
each device connected to the computer.
Contrast with directory and file. See also block
special file and character special file.

spool files. Files used in the transmission of
data among devices.

standalone shell. A limited version of the
shell program used for system maintenance.

standalone work station. A work station
that can be used to preform tasks independent
of (without being connected to) other resources
such as servers or host systems.

standard error. The place where many
programs place error messages.

standard input. The primary source of data
going into a command. Standard input comes
from the keyboard unless redirection or piping
is used, in which case standard input can be

Glossary 905

from a file or the output from another
command.

standard output. The primary destination of
data coming from a command. Standard output
goes to the display unless redirection or piping
is used, in which case standard output can be to
a file or another command.

stanza. A group of lines in a file that together
have a common function. Stanzas are usually
separated by blank lines, and each stanza has a
name.

statement. An instruction in a program or
procedure.

status. (1) The current condition or state of a
program or device. For example, the status of a
printer. (2) The condition of the hardware or
software, usually represented in a status code.

storage. (1) The location of saved
information. (2) In contrast to memory, the
saving of information on physical devices such
as disk or tape. See memory.

storage device. A device for storing and/or
retrieving data.

string. A linear sequence of entiti"es such as
characters or physical elements. Examples of
strings are alphabetic string, binary element
string, bit string, character string, search
string, and symbol string.

suo See superuser.

subdirectory. A directory contained within
another directory in the file system hierarchy.

subprogram. A program invoked by another
program, such as a subshell.

subroutine. (1) A sequenced set of statements
that may be used in one or more computer
programs and at one or more points in a
computer program. (2) A routine that can be
part of another routine.

906 Commands Reference

subscript. An integer or variable whose value
refers to a particular element in a table or an
array.

subshell. An instance of the shell program
started from an existing shell program.

substring. A part of a character string.

subsystem. A secondary or subordinate
system, usually capable of operating
independently of, or synchronously with, a
controlling system.

superblock. The most critical part of the file
system containing information about every
allocation or deallocation of a block in the file
system.

superuser (su). The user who can operate
without the restrictions designed to prevent
data loss or damage to the system (user ID 0).

superuser authority. The unrestricted ability
to access and modify any part of the operating
system that is associated with the user who
manages the system. The authority obtained
when one logs in as root.

system. The computer and its associated
devices and programs.

system call. A request by an active process
for a service by the system kernel.

system customization. A process of
specifying the devices, programs, and users for
a particular data processing system.

system date. The date assigned by the system
user during setup and maintained by the
system.

system dump. A copy, of memory made
whenever an error stops the system. Contrast
with task dump.

system management. The tasks involved in
maintaining the system in good working order
and modifying the system to meet changing
requirements.

system parameters. See kernel parameters.

system profile. A file containing the default
values used in system operations.

system unit. The part of the system that
contains the processing unit, the disk drives,
and the diskette drives.

system user. A person who uses a computer
system.

target diskette. The diskette to be used to
receive data from a source diskette.

task. A basic unit of work to be performed.
Examples are a user task, a server task, and a
processor task.

task dump. A copy of memory associated
program that failed (and its data). Contrast
with system dump.

terminal. An input/output device containing a
keyboard and either a display device or a
printer. Terminals usually are connected to a
computer and allow a person to interact with
the computer.

text. A type of data consisting of a set of
linguistic characters (for example, alphabet,
numbers, and symbols) and formatting controls.

text application. A program defined for the
purpose of processing text data (for example,
memos, reports, and letters).

text editing program. See editor and text
application.

texttab. A kernel parameter establishing the
size of the text table, in memory, that contains
one entry each active shared program text
segment.

trace. To record data that provides a history
of events occurring in the system.

trace table. A storage area into which a
record of the performance of computer program
instructions is stored.

track. A circular path on the surface of a
fixed disk or diskette on which information is
magnetically recorded and from which recorded
information is read.

trap. An unprogrammed, hardware-initiated
jump to a specific address. Occurs as a result of
an error or certain other conditions.

tree-structured directories. A method for
connecting directories such that each directory
is listed in another directory except for the root
directory, which is at the top of the tree.

truncate. To shorten a field or statement to a
specified length.

typematic key. A key that repeats its
function multiple times when held down.

typestyle. Characters of a given size, style
and design.

Uid. See user number.

update. An improvement for some part of the
system.

user. The name associated with an account.

user account. See account.

user ID. See user number.

user name. A name that uniquely identifies a
user to the system.

user number (Uid). (1) A unique number
identifying an operator to the system. This
string of characters limits the functions and
information the operator is allowed to use. The
Did can often be substituted in commands that
take a user's name as an argument.

user profile. A file containing a description of
user characteristics and defaults (for example,
printer assignment, formats, group ID) to be
conveyed to the system while the user is signed
on.

utility. A service; in programming, a program
that performs a common service function.

Glossary 907

valid. (1) Allowed. (2) True, in conforming to
an appropriate standard or authority.

value. (1) In Usability Services, information
selected or typed into a pop-up. (2) A set of
characters or a quantity associated with a
parameter or name. (3) In programming, the
contents of a storage location.

variable. A name used to represent a data
item whose value can change while the program
is running. Contrast with constant.

verify. To confirm the correctness of
something.

version. Information in addition to an object's
name that identifies different modification
levels of the same logical 0 bj ect.

virtual device. A device that appears to the
user as a separate entity but is actually a
shared portion of a real device. For example,
several virtual terminals may exist
simultaneously, but only one is active at any
given time.

virtual machine. A functional simulation of a
computer and its related devices.

virtual machine interface (VMI). A software
interface between work stations and the
operating system. The VMI shields operating
system software from hardware changes and
low-level interfaces and provides for concurrent
execution of multiple virtual machines.

virtual resource manager (VRM). A set of
programs that manage the hardware resources
(main storage, disk storage, display stations,
and printers) of the system so that these

908 Commands Reference

resources can be used independently of each
other.

virtual resources. See virtual resource
manager.

virtual storage. Addressable space that
appears to be real storage. From virtual
storage, instructions and data are mapped into
real storage locations.

virtual terminal. Any of several logical
equivalents of a display station available at a
single physical display station.

Volume ID (Vol ID). A series of characters
recorded on the diskette used to identify the
diskette to the user and to the system.

VRM. See virtual resource manager.

wildcard. See pattern-matching characters.

word. A contiguous series of 32 bits (4 bytes)
in storage, addressable as a unit. The address
of the first byte of a word is evenly divisible by
four.

work file. A file used for temporary storage of
data being processed.

work station. A device at which an individual
may transmit information to, or receive
information from, a computer for the purpose of
performing a task, for example, a display
station or printer. See programmable work
station and dependent work station.

working directory. See current directory.

wrap around. Movement of the point of
reference in a file from the end of one line to
the beginning of the next, or from one end of a
file to the other.

I Special Characters I

$- 647
$! 647
$$ 647
$? 647
$# 647

abs command 693
access times of a file, changing 760
accounting

ASCII format 47
ASCII summary format 37
billing summary file 606
binary summary format 37
combining total accounting files 46
connect 42
daily 606
disk 32
line-usage summary 42
login 33
merging total accounting files 46
monthly reports 33
process 32, 48
reports 33
session 33
shell procedures 31
start 34
turn off process 34
usage summaries 36

accounting commands
acctcms 36
acctcom 38
acctconl 42
acctcon2 43

acctdisk 44
acctdusg 44
acctmerg 46
accton 49
acctprcl 48
acctprc2 49
acctwtm p 345
chargefee 32
ckpacct 32
dodisk 32
fwtmp 345
lastlogin 33
monacct 33
nulladm 33
prctmp 33
prdaily 33
prtacct 34
runacct 606
shutacct 34
startup 34
turnacct 34
wtmpfix 346

accounting file 33
accounting files

/usr/adm/acct/fiscal 33
/usr/adm/acct/nite/active 606
/usr/adm/acct/nite/ctmp 33
/usr/adm/acct/nite/lastdate 606
/usr/adm/acct/nite/lock 606
/usr/adm/acct/nite/lockl 606
/usr/adm/acct/nite/statefile 606
/usr/adm/acct/sum 33
/usr/adm/acct/sum/loginlog 33
/usr/adm/acct/sum/rprt 33
/usr/adm/fee 32
/usr/adm/pacct 32

acctcom 38
accton 49
ckpacct 32
turnacct 34

Index

Index 909

/usr/adm/wtmp
acctcon1 42

billing summary file 606
creating 33

accounting records
ASCII 48
ASCII format 42
converting ASCII to binary 345
converting binary to ASCII 345
display 38
examining connect records 345
login session 42
repairing wtmp records 346
session 42
total accounting login session 43

accounting report, process 38
accounting, disk usage 44
acctcms command 36-37
acctcom command 38-41
acctcon1 command 42-43
acctcon2 command 43
acctdisk command 44
acctdusg command 44
acctmerg command 46-47
accton command 49
acctprc2 command 49
acctwtmp command 345
activity graph, system 612
activity manager 50
activity reporter, system 610, 614
actman command 50
adb command 50.1-50.8
adding

devices 241
groups 802
header flags, SCCS 55
users 802
users, SCCS 55

adduser command 802-804
admin command 51-57
Advanced Floating-Point Accelerator 115

910 Commands Reference

Advanced Processor Card 115
af command 694
ar command 58-61
arbitrary precision arithmetic 83
arithmetic game 62-63
arithmetic, shell variable 317
as command 64-65, 115
assembler 64
assembling

source code
as 64
asm 64
cc 113
masm 64

at command 66-69
awk command 70-74

back game 75
backing up files 76
backup command 76-79
banner command 80
bar command 709
basename command 81-82
batch command 66-69
bc command 83-87
bdiff command 88-89
bel command 387
belonging to different groups 385
bfs command 90-93
billing summary file, accounting 606
bj game 94
blackjack game 94
block count of a file, display 726
branching from nonleaf deltas 363
break command 654
bs command 95-105
bucket command 703

C Language programming
See also managing programs
See also programming
assembling source code 113
commands

ar 58
as 64
cb 111
cc 112
cflow 125
cpp 163
fcc 113
lint 446
vcc 113
vrmfmt 113

cross-reference listing 217
files

a.out 113
formatting source code 111
linking object files 113
maintaining linkage libraries 58
preprocessing source code 113
syntax checking 446

cal command 106
calculating

CPU factor 40
CPU time 39
hog factor 39

calculator program 83
calculator, desk 222
calendar command 107-108
calprog program 108
case command 653
cat command 109-110
cb command 111
cc command 112-120.1, 135
cd command 121-122 654
cdc command 123-124
CDPATH 645
ceil command 695
cflow command 125-126
changing

ASCII accounting records to binary 345

binary accounting records to ASCII 345
changing permission codes 128
current directory 121
devices 241
files, SCCS 236
format of a file 507
group identification 510
group ownership 126.1
groups 802
login environment 510
owner-ID of files or directories 132
password 546
primary group 510
root directory 134
SCCS delta comments 123
system parameters 133
users 802

changing Distributed Services ipc queues
table 414.1

changing Distributed Services network
user/groups table 784

changing Distributed Services node table 506.1
changing state values 272.4
chargefee command 32
charting

external references 125
checkcw command 215-216
checkeq command 300-301
checking process accounting files 32
checkmm command 492
checksum of a file, display 726
chgrp command 126.1-127

changing
group ownership 126.1

chmod command 128-131
chown command 132-133
chparm command 133
chroot command 134-135
ckpacct command 32
ckprereq command 406
clearing an i-node 136
clri command 136-137
cmp command 138-139
col command 140-141
collating sequence

collating sequence

Index 911

csh command 183
ctab command 204
sh command 640
sort command 672

csh command 183
ctab command 204
equivalence classes

ctab command 204
Ii command 438
Is command 462
NLeTAB environment variable 645
sh command 640
sort command 672

colors
setting active display palette 258
setting background display 258
setting foreground display 258

comb command 142-143
combining

deltas, sees 142
total accounting files 46

comm command 144-145
command execution environment 298
command line flag parsing 367
command usage summary 36
commands

See accounting commands
See e Language programming
See communication commands
See editors
See filter commands
See graphics commands
See maintenance commands
See Multi-User Services commands
See programming
See reading standard input
See sees, commands
See system group commands
Sep. text processing commands
See writing to standard output

communication commands
confer 146
connect 152
mesg 484
news 512
uuclean 805

912 Commands Reference

uucp 807
uulog 807
uuname 807
uupick 815
uustat 810
uusub command 813
uuto 815
uux 818
wall 845
who 850
300 863
4014 865
450 866

communication, inter-process status 411
comparing

directories
dircmp 254

files 627
bdiff 88
cmp 138
diff 246
diffmk 252
diff3 249
dircmp 254

sees files 618
compilers

bs 95
cc 112
sno 670

compress program 683
compressing files 543
concatenate files 109
concurrent groups 385
conditional expressions, evaluating 750
confer command 146-149
config command 150-151
configuration information 150
connect accounting 42
connect command 152-155
consistency check and repair of files

dfsck command 335
fsck command 333

constant-width text 213
constructing a file system 487
contents of directory, listing 267, 437
context split. 202

continue command 654
converting

ASeII accounting records to binary 345
binary accounting records to ASeII 345

copy command 156-157
copying

AIX files
copy 156
cp 156

DOS files
dosread 269
doswrite 271

cor command 704
cp command 156-157
cpio command 158-162
cpp command 115, 163-166
epu factor computation 40
epu time computation 39
craps game 167
crash command 168-171
creating

e program cross-reference listing 217
delta, sees 236
mount table 635
sees files 51
special file 490
specified version of an sees file 359

cron command 172-173, 606
used with the sal command 611
used with the sa2 command 611

crontab command 174-176
cross-reference listing, e program 217
csh command 177-201
csplit command 202-203
ctab command 204-207
ctags command 208-209
curren~ ~~rec~ory, .
'-'U.L~'VJ..1'" U.&.J.,-,\,...ollV.&.J, '-".£..!.L4.a..'&b'&'&'.I.b

cusum command 696
cut command 210-211
cvid command 212
cvrtopt command 387
cw command 213-216

used in pipeline with nroff 526
cxref command 217-218

daily accounting 606
database operator 417
date command 219-221, 272.3, 272.6
dc command 222-225
dcopy command 226-227
dd command 228-231
debugger, file system 338
defining shell functions 654
defkey command 232-233
del command 234-235
deleting

delta from sees file 604
devices 241
directories

rm 601
rmdir 605

DOS files 266
files

del 234
rm 601
skulker 667

groups 802
repeated words 792
users 802
users, sees 55

delta command 236-238
delta summary of sees file 365
deltas, branching from nonleaf 363
demon, error-logging 303
demon, error-logging termination 309
deroff command 239-240
description file, make command 479
desk calculator 222
device (special) files

/dev/null
acctcom 38
standard input assigned to 38

adding 241
changing 241
creating 490
deleting 241

Index 913

device name 242
devices
devices command 241
devnm command 242-243
df command 244
dfsck command 335-337
di command 437-443
diff command 138, 246-248
diffmk command 252-253
dif£3 command 249-251
dircmp command 254-255
directories

changing
owner-ID 132

comparIng
dircmp 254

listing contents
di 437
DOS directories 267
li 437
Is 461

removing
rm 601
rmdir 605

directory 504
change root 134
changing
changing current 121
create 486
moving 504
renaming 504
return path name 81

directory contents, listing 267, 437
dirname command 81-82
disk usage accounting 44
disk usage summary 273
diskusg command 256-257
display command 258-261
display station

changing DMA pinned page 259
setting active color palette 258
setting background colors 258
setting fonts 258
setting foreground colors 258

displaying
a calendar 106

914 Commands Reference

accoun ting report 33
compressed files 543
connect accounting records 345
contents of i-nodes 415
corresponding group names and IDs 395
corresponding user names and IDs 395
current directory 589
date 219
documents formatted with the Memorandum
Macros 492

file checksum 726
files 90, 109
formatted files 553, 561
login name 456
news items 512
packed files 543
process accounting records 38
process status 579
profile data 571
sees file editing activity 609
session record 33
squeezed files 543
system images 168
system parameters 133
total accounting report 34

Distributed Services
dsldxprof 272.2

dividing a file into pieces 686
DMA channel, setting 634.1
dodisk command 32
dos command 262-265
dosdel command 266
dosdir command 267 -268
dosread command 269-270
doswrite 271-272
drill in arithmetic skills 62
dsipc command 272.1
dsldxprof command 272.2
dsstate command 272.4-272.5
dsxlate command 272.6
dtoc command 757
du command 273-274
dump command 275-276
dump, extracting error records 302
dump, octal 538
dumpfmt command 277

echo command 278-279
ed command 280-291
edit command 292-297
editors

ed 280
edit 292
ex 312
ged 350
red 280
sed 629
vedit 832
vi 832
view 832

egrep command 381-384
end a process 422
env command 298-299
environment, changing login 510
eqn command 300, 301

constructs removed by the deroff
command 239

used in pipeline with nroff 526
used with tbl 739

erase command 348
errdead command 302
errdemon command 303-304
error-logging demon 303
error-logging demon termination 309
error records extraction from dump 302
error report 305
errpd command 304, 308
errpt command 305-308
errstop command 309
errupdate 311
prrllnc1~tf~ romm::mo illO
eval command 654
evaluating expressions

expr 317
test 750

ex command 312-316
examining

connect accounting records 345
contents of i-nodes 415
files 90

system images 168
system parameters 133

exec command 655
exercising link system call 444
exit command 655
exp command 696
expanding packed files 543
export command 655
expr command 317-320
expression evaluation 317
extended character support

See international character support
external references, flow graph 125
extract error records from dump 302

factor command 321
factoring a number 321
false command 777
fcc command 113
ff command 322-322.2
fgrep command 381-384
file

display checksum 726
file command 324-325
file formats

acct 36,48
ar 58
backup 76
tacct 46
utmp 345
wtmp 346

file pattern search 381
file !ystem

., .. • / • '1'\. ~.,

UC:C Cl.i.:lU U~ V 1.\""'--' \u'pv\...t.J.lA.iJl."-'1tJ'

See also maintenance commands
See also system files
backing up 76
make available for use 498
make unavailable for use 786
making 487
moving a directory 504
renaming a directory 504

Index 915

unmount 786
file system debugger 338
files

See also accounting files
See also device (special) files
See also sees, files
See also system files
a.out 113
backing up 76
calendar 107
changing

owner-ID 132
checking consistency

dfsck command 335
fsck command 333

comparing 627
cmp 138
diff 246
diffmk 252
diff3 249
dircmp 254

comparing large files 88
compressing 543
concatenating 109
copying

AIX files 156
DOS files 269, 271

creating sees files 51
deleting

del 234
DOS files 266

determining type 324
displaying 109
displaying formatted files 553, 561
expanding 543
finding 326
identifying the processes using a file 343
initializing sees files 51
linking 450
merge lines 547
merging 672
modifying the user mask 784.1
naming sees files 53
packing 543
parallel merging 547
removing

916 Commands Reference

rm 601
skulker 667

repairing
dfsck command 335
fsck command 333

repairing damage 168
return base name 81
scanning 90
searching 90
searching for a pattern 381
serial merging 547
setting file-creation permission code
mask 784.1

sorting 672
squeezing 543
text

changing the format 507
transforming 228
translating 228
unpacking 543
unsqueezing 543
writing the last part 732
3-way comparison 249

fil ter commands
acctcom 38
acctcon1 42
acctmerg 46
awk 70
bdiff 88
cb 111
cmp 138
col 140
comb 142
cw 213
definition of 638
fwtmp 345
hp 392
nl 517
nroff 526
paste 547
ptx 584
tbl 739
troff 526
wtmpfix 346

find command 326, 329
acctdusg 44

find hyphenated words 394
find necessary order of files in an object
library 457

fish game 330
fixed minidisk information 485
Floating-Point Accelerator 115
floating point configuration 332.1
floor command 696
flow graph of external references 125
fonts

setting virtual terminal 258
for command 653
format command 331
formats

See file formats
formatting C Language source code 111
formatting text

constant-width text 213
for a phototypesetter 525
for a printing device 525
inverse linefeeds and half-linefeeds 140
mathematical text 300
tables for nroff 739
tables for troff 739

fortune game 332
forwarding mail 471
fptype command 332.1
free disk space, reporting 244
fsck command 333-337
fsdb command 136, 338-342
fuser command 343-344
fwtm p command 345

bailIe;::,

arithmetic 62
back 75
backgammon 75
bj 94
blackjack 94
craps 167
fish 330
fortune 332

hangman 390
moo 497
number 537
quiz 591
ttt 780
wump 856

gamma command 697
gd command 388
gdev commands 347-349
ged command 350-356
gend command 357-358
generating C program cross-reference
listing 217

generating names from i-numbers 505
get command 236, 237, 359-366
getopt command 367 -369
gettext command 370-371
getty command 372-374
going to maintenance mode 663
graph command 375-376
graph, system activity 612
graphical editor 350
graphics command 377-378
graphics commands

abs 693
af 694
bar 709
bel 387
bucket 703
ceil 695
cor 704
cusum 696
cvrtopt 387
dtoc 757
erase 348
exp 696
floor 696
0-------- -

gd 388
ged 350
gend 357
graph 375
graphics 377
gtop 388
hardcopy 348
hilo 705

Index 917

hist 710
hpd 347
label 711
list 697
log 698
lreg 705
mean 706
mod 699
pair 699
pd 388
pie 712
plot 713
point 707
power 700
prime 692
prod 707
ptog 388
qsort 708
quit 388
rand 692
rank 708
remcom 388
root 700
round 701
siline 701
sin 702
spline 684
subset 702
td 348
tekset 348
title 715
total 708
tplot 762
ttoc 758
utility commands 386
var 709
vtoc 758
whatis 388

graphing
external references 125

greek command 379-380
grep command 381-384
group

adding 802
changing 802
deleting 802

918 Commands Reference

group identification, changing 510
group IDs and names, displaying 395
group membership 385
group membership, display 385
groups command 385
grpck command 588
gtop command 388
guess a word 390

hangman game 390
hardcopy command 348
hash command 655
hash check command 682
hashmake command 682
header flags, sees 53, 55
help command 391
hilo command 705
hist command 710
hog factor computation 39
HOME 645
hp command 392-393
hpd command 347-348
hyphen command 394
hyphenated words 394

i-node content, displaying 415
i-node examination 415
i-numbers

generating names 505
I/O counts 40
id command 395
ID, special user

adm 606
root 422, 606, 724, 725

if command 653
IFS 646
init command 396-398

initialization, normal startup 594
ini tializing

secs files 51
install command 399-401
installp command 402-408
inter-process communication status 411
interactive processor 83
international character support

at command 67
batch command 67
collating sequence
csh command 183
ctab command 204
dd command 229
dfsck command 335
equivalence classes
fsck command 335
fsdb command 340
Ii command 438
Is command 462
od command 539
print command 568
ps command 580
sh command 645
sort command 672
stty command 721

interpolating a smooth curve 684
interpretors

bc 83
bs 95
sno 670

Interprocess Communication key mapping
installation 272.1

in udocm command 799-800
inuupdt command 800
ipc queues table

access 414.1
l1J\,;1111 \,;Vl1UHC1llU "ZV.::J-"Z.J.V

ipcs command 411-414
ipctable command 414.1
istat command 415-416

join command 417-420
joinconf command 146
joining database files 417
joint editing of an sees file 364

kcore minutes, definition 37
keyboard command 421
keyboard, redefine 232
kill all nonancestral processes 425
kill command 422-424
killall command 425

label command 711
language support

See international character support
lastlogin command 33
Id command 115, 427-431
lex command 432-436
li command 437-443, 605
library maintainer 58
library search order 116
line command 443
line editor 280
line numbering filter 517
line printer backend 459
1~ 1,. ",..,~, r1 II II II_II II t;

link library maintaining 58
linkage editor 427
linking

files 450
object files

cc 113
Id 427

lint command 446-449

Index 919

list command 697
listing

directory contents
di 437
Ii 437
Is 461

DOS directory contents 267
file names for a file system 322
statistics for a file system 322

In command 450-451
locator command 452
log command 698
logged error report 305
login command 453-455
login environment, changing 510
login session records 42
login shell subshell under the login shell. 658
LOGNAME 645
logname command 456
looking at

connect accounting records 345
contents of i-nodes 415
files 90
system images 168
system parameters 133

lorder command 457-458
lp command 459-460
lreg command 705
Is command 461-465

m4 command 465, 469
macro processor 465
MAIL 645
mail command 470-473
MAILCHECK 645
MAILMSG 645
MAILP A TH 645
maintaining groups of programs 474
maintaining linkage libraries 58
maintenance commands

backup 76
clri 136

920 Commands Reference

cplO 158
mount 498
umount 786
unmount 786

maintenance mode, going to 663
make a directory 486
make a tags file 208
make command 474-480
makekey command 481
making a file system 487
making two files the same 88
manager, virtual terminals 50
managing programs

See also programming
See also SCCS
make 474

mant command 495
marking differences between files 252
mdrc command 482-483
mean command 706
membership, display group 385
merging files 672
merging lines in files 547
merging total accounting files 46
mesg command 484
message queue removal 409
messages, permitting 484
messages, refusing 484
messages, send 470
messages, sending 853
minidisks 485
minidisks command 485
mkdir command 486
mkfs command 487 -489
mknod command 490-491
mm command 492-494
mmt command 495-496
mod command 699
modification request number 237
modification times of a file, changing 760
modifying·

changing permission codes 128
current directory 121
devices 241
files, sees 236
group identification 510

group ownership 126.1
groups 802
login environment 510
owner-ID of files or directories 132
password 546
primary group 510
root directory 134
SCCS delta ~omments 123
system parameters 133
users 802

modifying access times of a file 760
modifying modification times of a file 760
monacct command 33
moo game 497
mount a file system 498
mount command 498-501
mount table, creating 635
move command 502-503
moving a directory 504
moving files 502
mt command 495
Multi-User Services commands

acctcms 36
acctcom 38
acctcon1 42
acctcon2 43
acctdisk 44
acctdusg 44
acctmerg 46
accton 49
acctprc1 48
acctprc2 49
acctwtm p 345
chargefee 32
ckpacct 32
dodisk 32
fwtmp 345
~r1 '.)0::;

lastlogin 33
mesg 484
monacct 33
nulladm 33
prctmp 33
prdaily 33

prtacct 34
runacct 606
sar 614
shutacct 34
startup 34
turnacct 34
who 850
wtmpfix 346
300 863
4014 865
450 866

mv command 502-503
mvdir command 504
mvmd command 407-408
mvt command 495

ncheck command 505-506
ndtable command 506.1
neqn command 300-301

used with tbl 739
network user/groups table

access 784
newform command 507-509
newgrp command 510-511,655
news command 512-514
nice command 515-516
nl command 517-520
NLCTAB 645
nm command 521-522
node table

access 506.1
nohup command 523-524
normal startup initialization 594
_____ pp _ _ _ _ _ _ _ _ _ _ _., ~ n - ~ n f"

tbl, preprocessor 739
nulladm command 33
number factoring 321
number game 537
numbering lines 517

Index 921

object library
ordering relation 457

octal dump 5a8
od command 538-540
open command 541, 542

used after actman command 50

pack command 543-545
pair command 699
parallel merging of lines in files 547
parameters

work station
erase 372
kill 372
logmodes 372
owner 373
parity 372
program 373
protection 373
runmodes 372, 373
special purpOSE; options 373
speed 372

parameters, setting work station 717
terminal mapping 721

parsing command line flags 367
passwd command 546
password, change 546
paste command 547-549
PATH 646
path name, return directory 81
pattern matching

acctcom 40
awk 70

pattern, search for 381
pcat command 543-545
pd command 388
pdisable command 550-552
penable command 550-552

922 Commands Reference

perform disk accounting functions 32
perform. monthly accounting 33
perfo~m.lng process accounting 48
permISSIOn codes, changing 128

changing
permissions 128

permi tting messages 484
pg command 553-556
phold command 550-552
pie command 712
piobe command 557-560
pipe fitting 746
pipeline

asynchronous execution 638
conditional execution 638
definition of 638
sequential execution 638

plot command 713
point command 707
port characteristics 372
port characteristics, setting 372
power command 700
pr command 561-563
prctmp command 33
prdaily command 33, 606
precision arithmetic 83
preprocessing

source code
cc 113
cpp 163

preprocessor
macro 465

primary group 385
pr~mary group, changing 510
pnme command 692
print command 566-570
printer backend 459
printing

a calendar 106
accounting report 33
compressed files 543
corresponding group names and IDs 395
corresponding user names and IDs 395
current directory 589
date 219

documents formatted with the Memorandum
Macros 492

file checksum 726
formatted files 55:1, 561
login name 456
news items 512
packed files 543
process accounting records 38
process status 579
profile data 571
sees file editing activity 609
session record 33
squeezed files 543
total accounting report 34

priority, running a command 515
process a report of logged errors 305
process accounting 48
process accounting records, display 38
process accounting report 38
process accounting, turn off 34

/usr/adm/wtmp
shutacct 34

process suspenSIOn 422
prod command 707
producing e program cross-reference
listing 217

prof command 116, 571-572
profiler commands 564
profiling the operating system 564
program checking, e programs 446
program maintenance 474
program update 800
program updating 474
programmIng

See also managing programs
assembler

as 64
assembling source coue 113
awk command 70
bs 95
e Language

cb 111
cc 112

cflow 125
cpp 163
fcc 113
formatting source code] 11
lint 446
vcc 113
vrmfmt 113

debugging programs
files

a.out 113
linking object files 113
managIng programs

awk 70
make 474

messages
miscellaneous languages

ar 58
awk 70

preprocessing source code 113
the shell

proto command 573
prs command 574-578
prtacct command 34
ps command 579-583
PSI 646
PS2 646
ptecms.awk program 35
ptelus.awk program 35
ptog command 388
ptx command 584-585
puttext command 586-587
pwck command 588
pwd command 589, 655

qdaemon command 590
qsort command 708
query terminal characteristics 748
quit command 388
quiz game 591-593

Index 923

rand command 692
rank command 708
rc command 594

startup 34
read command 655
read operations 40
reading one line 443
reading standard input

acctcon1 42
acctmerg 46
as 64
at 66
awk 70
batch 66
bdiff 88
cb 111
cmp 138
comb 142
fwtmp 345
wtmpfix 346

readonly command 655
recovering from a system crash 168
red command 280
redefine keyboard 232
refusing messages 484
regcmp command 595
rejecting lines common to two sorted files 144
relational database operator 417
rem com command 388
reminder service 107
remote system mail 471
remote system, connection 152
remotely-settable hardware tabs 729
remove a message queue 409
remove a semaphore set 409
remove a shared memory id 409
remove command 34
removing

delta from sees file 604
devices 241
directories

rm 601
rmdir 605

924 Commands Reference

DOS files 266
files

del 234
rm 601
skulker 667

groups 802
repeated words 792
users 802
users, sees 55

renaming a directory 504
renaming files 502
repairing damaged files 168
repairing wtmp records 346
repeated words, deleting 792
report process data and system activity 755
report, process accounting 38
reporting free disk space 244
reports

sees 143
reports, accounting
restore command 596-600
return base file name or directory path

name 81
return command 655
returning a true or false value 777
rm command 601-603, 605
rmail command 471
rmdel command 604
rmdir command 605
root command 700
root directory, changing 134
round command 701
rsh command 658
runacct command 606-608
runn~ng a command at low priority 515
runnIng commands at a later time 66

sact command 609
sadc command 610-611
sag command 612-613
sar command 614-617
saving files 76

sal command 610-611
sa2 command 610-611
scanning files 90
sees

branching from leaf deltas 363
changing delta comments 123
checking the structure of sees files 55
commands

admin 51
cdc 123
comb 142
delta 236
get 359
help 391
prs 574
sact 609
sccsdiff 618
unget 790
val 821
what 848

creating a file 51
creating a specified version of a file 359
Data Keywords 574
delta summary 365
files

auxiliary files 360
creating a delta 236
g-file 53, 236, 237, 359, 360, 365
I-file 360, 365
lock file 53
p-file 360, 361, 364
s-file 360
x-file 53
z-file 53, 360

getting help information 391
header flags 53
identification keywords 362
Inluallzlng a rue D1

in terpreting errors 391
joint editing of files 364
modification request (MR) number 56, 237
Modification Requests 123
naming a file 53
recalculating the sees file checksum 56
removing a delta 604
reports 143

SID (SeeS Identification) 237
specifying version date cutoff 364
z-file 361

RccRdiff command 618
scheduling commands 66
scheduling queue requests 590
sdb command 619-626
sdiff command 627-628
search order, library 116
searching files 90
sed command 629-634
segment files 202
selecting fields from a file 210
selecting lines common to two sorted files 144
semaphore set removal 409
sending messages 470, 853
serial merging of lines in files 547
session records 42
set command 367, 656
set environment 298
setdma command 634.1
setmnt command 635-636
setting DMA channel 634.1
setting file-c~eation permission code
mask 784.1

setting port characteristics 372
setting tabs on a work station 729
setting the date 219
setting the parameters for a work station 717
sh command 637 -659

See also shell
command line separators and
terminators 638

SHAeCT 646
shared memory id removal 409
shell 646

actman 50
Ulall1\. lUl.,eqJI"t:!l.,aLlUU OiJO

built-in commands 654
command environment 642
command execution 638
command-line substitution 641
command substitution 647
conditional substitution 643
control commands 653
diagnostic output 650

Index 925

file descriptors 649
file-name substitution 640
inline input documents 650
positional parameters 641
predefined special variables
profile file 639
quoting mechanisms 648
redirection of input and output 649, 653
running the shell 658
shell variables

$- 647
$! 647
$$ 647
$? 647
$# 647
CDPATH 645
HOME 645
IFS 646
LOGNAME 645
MAIL 645
MAILCHECK 645
MAILMSG 645
MAILP ATH 645
NLCTAB 645
PATH 646
PSI 646
PS2 646
SHACCT 646
SHELL 646
TIMEOUT 647

signals 639
standard input and output 649
subshell 639
summary of redirection options 652
user-defined variables 641
variables 641

shell environment 373
shell procedures for accounting 31
shell variable arithmetic 317
shift command 656
shlib command 660-662
show login records 33
showing

a calendar 106
accounting report 33
compressed files 543

926 Commands Reference

corresponding group names and IDs 395
corresponding user names and IDs 395
current directory 589
date 219
documents formatted with the Memorandum

Macros 492
file checksum 726
formatted files 553, 561
login name 456
news items 512
packed files 543
process accounting records 38
process status 579
profile data 571
secs file editing activity 609
session record 33
squeezed files 543
total accounting report 34

shutacct command 34
shutdown command 663-664
shutting down the system 663
siline command 701
sin command 702
size command 665-666
skulker command 667
sleep command 668-669
sno command 670-671
sort command 672-678
sorting files 672
sound command 679-680
source code

external references flow graph 125
Source Code Control System

See sees
special (device) files

/dev/null
acctcom 38
standard input assigned to 38

adding 241
changing 241
creating 490
deleting 241

special user ID
adm 606
root 422, 606, 724, 725

specifying version date cutoff 364

spell command 681-683
spellin command 682
spellprog program 683
spline command 684-685
split command 686
split files by context 202
splitting a file into pieces 686
splp command 687-689
squeezing files 543
standard input

acctconl 42
acctmerg 46
as 64
at 66
awk 70
batch 66
bdiff 88
cb 111
cmp 138
comb 142
fwtmp 345
wtmpfix 346

standard output
acctcon1 42
acctmerg 46
acctwtmp 345
awk 70
bdiff 88
cal 106
cb 111
cflow 125
cmp 138
comb 142
fwtmp 345
wtmpfix 346

start accounting functions 34
starting up the system 396
startup command 34
startup initialization 594
startup shell

actman 50
stat commands 690-715
state values

changing 272.4
status of inter-process communication 411
stop a process 422

stopping error-logging demon 309
stream editor 629
strings 80
strip command 716
stty command 717-723
su command 724-725
subset command 702
sum command 726
summarize disk usage 273
summary of command usage 36
superblock update 727
superuser authority 568, 569, 737, 811

commands
adduser 802
at 66
chmod 128
chroot 134
ck prereq 406
cpio 159
crontab 174
cvid 212
date 219
devices 241
dfsck 335
errdemon 303
errstop 309
fsck 333
installp 402
killall 425
mesg 484
minidisks 485
mount 498
mvmd 407
nice 515
passwd 546
print 568
removing scheduled jobs 67
rm 601
shown in report 39
shutdown 663
tar 736
updatep 796
users 802
uustat 810

dsipc 272.1
dsldxprof 272.2

Index 927

dsstate 272.4
dsxlate 272.6
ipctable 414.1
ndtable 506.1
removing files 601
ugtable 784

suspend a process 422
sync command 727
syntax checking, C programs 446
system activity graph 612
system activity reporter 610, 614
system files

$HOME/.profile 725
/dev/null

expr 320
/etc/.ilog 454, 851
/etc/budate

mount 78
/etc/environment 398, 454
/etc/filesystems 334, 344, 487

cvid 212
mount 77,498,499

/etc/group 802
groups 385

/etc/magic 324
/etc/mnttab 499

mount 498
umount 786

/etc/ogroup 802
/etc/opasswd 802
/etc/passwd 454, 724, 802

acctdisk 44
acctprc1 48
groups 385

/etc/portstatus 397, 551
/etc/profile 725
/etc/qconfig 558
/etc/rasconf 303
jusr/adm/sulog 724
jusr/adm/user.cfile 802, 804
/usr/adm/wtmp 346, 851
/usr/games/lib/backrules 75
/usr/lib/cron/at.allow 66
/usr/lib/cron/at.deny 66
/usr/lib/eign 585
/usr/lib/terminfo 555

928 Commands Reference

/usr/lib/tmac 239
a.out 64
connect. con 152
group 327, 510
passwd 327, 510, 546
ports 550, 851
portstatus 550
utmp 851

system group commands
adduser 802
backup 76
ck prereq 406
cvid 212
date 219
devices 241
dsipc 272.1
dsldxprof 272.2
dsstate 272.4
dsxlate 272.6
installp 402
ipctable 414.1
minidisks 485
mount 498
mvmd 407
ndtable 506.1
print 568
turnoff 783
turn on 783
ugtable 784
users 802

system image examination 168
system parameters, changing or examining 133
system procedures

starting the error-logging demon 303
system startup 396

tab command 728
tabs command 729-731
tail command 732-733
tape archiver 735
tapechk command 734
tar command 735-738

tbl command 739, 741
descriptions removed by the deroff
command 239

used in pipeline with nroff 526
tc command 742-743
tctl command 744-745
td command 348
tee command 746-747
tekset command 348
termdef command 748
terminal characteristics 748
terminal mapping 721
terminals

DASI300 863
DASI300s 863
DASI450 866
Diablo 1620 866
HP2621 392
HP2640 392
phototypesetter simulator 742
Tektronix 4014 742, 865
Xerox 1700 866

terminals, multiple virtual 50
terminating error-logging demon 309
test command 656, 750-752
text file, changing the format of 507
text processing commands

checkcw 213
checkeq 300
checkmm 492
col 140
cw 213
eqn 300
eqncheck 300
greek 379
mant 495
mm 492
mmt 495
mt 495
mvt 495
neqn 300
nroff 525
spell 681
tbl 739
troff 526

tic command 753

time a command 754, 755
time command 754
TIMEOUT 647
times command 657
timex command 755-756
title command 715
toc commands 757-759
total command 708
touch command 760-761
tplot command 762
tput command 763-764
tr command 765-767
trace command 768-771
translate characters 765
translate profile
trap command 657
trcrpt command 772-773
trcstop command 774
trcupdate command 775-776
troff command 526, 536

requests removed by the deroff
command 239

tbl, preprocessor 739
true command 777
tsort command 778-779
ttoc command 758
ttt game 780
tty command 781-782
turn off process accounting 34
turn on accounting functions 34
turnacct command 34
turning the computer off 663
turnoff command 783
turnon command 783
type command 657

ugtable command 784
ulimit command 657
umask command 657, 784 .. 1-784.2
umount command 499, 786-787
uname command 788-789
unget command 790-791

Index 929

uniq command 792
units command 793-795
unlink 444
unlin k command 445
unmount command 786-787
unmounting a file system 786
unpack command 543-545
unset command 657
untab command 728
until command 654
update a program 800
update groups of programs 474
updatep command 796-801
updating access times of a file 760
updating modification times of a file 760
updating the superblock 727
usage, command summary 36
user

adding 802
adm 33
changing 802
deleting 802

user ID, special
adm 606
root 422, 606, 724, 725

user IDs and names, displaying 395
user mask, modifying 784.1
users command 802-804
using

display station features 258
u uclean command 805-806
uucp command 807-809
u ulog command 807 -809
uuname command 807-809
uupick command 815-817
uustat command 810-812
uusub command 813-814
uuto command 815-817
uux command 818-820

930 Commands Reference

val command 821-822
var command 709
varyon command 823-825
vc command 826-829
vcc command 113
vedit command 832-841
verify command 830-831
version date cutoff, specifying 364
vi command 832-841
view command 832-841
virtual terminal

assigning default display 258
assigning physical display 258
changing DMA pinned page 259
setting active color palette 258
setting background colors 258
setting fonts 258
setting foreground colors 258

virtual terminal manager 50
vrmconfig command 842-843
vrmfmt command 113
vtoc command 758

wait command 657, 844
wall command 845
wc command 846-847
what command 848-849
whatis command 388

utility commands 389
while command 653
who command 850-852
work station characteristics 748
work station parameters. setting 717
work stations

DABI300 863
DABI300s 863
DABI450 866
Diablo 1620 866

HP2621 392
HP2640 392
phototypesetter simulator 742
Tektronix 4014 742, 865
Xerox 1700 866

write command 853-855
write operations 40
writing buffered files to fixed disk 727
writing the last part of a file 732
writing to standard output

acctcon1 42
acctmerg 46
acctwtmp 345
awk 70
bdiff 88
cal 106
cb 111
cflow 125
cmp 138
comb 142
fwtmp 345
wtmpfix 346

wtmpfix command 346
wum p game 856

xargs command 857-860

yacc command 861-862

I Numerics I

300 command 863-864
4014 command 865
450 command 866-867

Index 931

932 Commands Reference

--------- -------- - ---- - - ----------_.-

Reader's Comment Form

AIX Operating System
Commands Reference

The IBM RT PC
Programming Family

SC23-0790-0

Your comments assist us in improving our products. IBM may
use and distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever.
You may, of course, continue to use the information you supply.

For prompt resolution to questions regarding set up, operation,
program support, and new program literature, contact the
authorized IBM RT PC dealer in your area.

Comments:

L __ _
I adBl pUB PIO.:!

Q)

c
:.::i
C)

c
o «

-0
"0
l.L

o
.....
::J

U

!:linn.

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 997, Building 998
11400 Burnet Rd.
Austin, Texas 78758

_ . .,.1_.- ._ .. ______ I •

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

adBl pUB PI

IBM RT PC AIX Commands Reference SC23-0790

Book Title Order No.

Book Evaluation Form

Your comments can help us produce better books. You may use this form to communicate your comments about this book, its
organization, or subject matter, with the understanding that IBM may use or distribute whatever information you supply in any
way it believes appropriate without incurring any obligation to you. Please take a few minutes to evaluate this book as soon as
you become familiar with it. Circle Y (Yes) or N (No) for each question that applies and give us any information that may
improve this book.

Y N Is the purpose of this book clear?

Y N Is the table of contents helpful?

Y N Is the index complete?

Y N Are the chapter titles and other headings
meaningful?

Y N Is the information organized appropriately?

Y N Is the information accurate?

Y N Is the information complete?

Y N Is only necessary information included?

Y N Does the book refer you to the appropriate
places for more information?

Y N Are terms defined clearly?

Y N Are terms used consistently?

Y N Are the abbreviations and acronyms
understandable?

Y N Are the examples clear?

Y N Are examples provided where they are needed?

Y N Are the illustrations clear?

Y N Is the format of the book (shape, size, color)
effective?

Other Comments

What could we do to make this book or the entire set of
books for this system easier to use?

Your name

Company name

Street address

City, State, ZIP

Optional Information

No postage necessary if mailed in the U.S.A.

L __ _
I adEl pUE PIc::!

OJ
c

:.::i
Cl
c
o «
"0
o
U.

o
.....
::J

U

::linD.

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 997, Building 998
11400 Burnet Rd.
Austin, Texas 78758

-...... ~.- . __ . -- ---_ ..

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

adEl PUE PII

