IBM RT PC Advanced Interactive Executive Operating System Version 2.1

AIX Operating System
Commands Reference

Programming Family

Personal
Computer
Software

SC23-0790-0




IBM RT PC Advanced Interactive Executive Operating System Version 2.1

AIX Operating System
Commands Reference

. ;..._..P.r.a..._g.i.'_a._'ﬁ.ﬁiﬁ_gﬂFaMm..ﬁky,,. N e b B A B 3k AP 1B . RS A B B SRR =

Personal
Computer
Software



First Edition (January 1987)

Portions of the code and documentation described in this book were developed at the Electrical Engineering and Computer
Sciences Department at the Berkeley Campus of the University of California under the auspices of the Regents of the
University of California.

This edition applies to Version 2.1 of IBM RT PC AIX Operating System Licensed Program and to all subsequent releases until
otherwise indicated in new editions or technical newsletters. Changes are made periodically to the information herein; these
changes will be incorporated in new editions of this publication.

References in this publication to IBM products, programs, or services do not imply that IBM intends to make these available in
all countries in which IBM operates. Any reference to an IBM program product in this publication is not intended to state or
imply that only IBM’s program product may be used. Any functionally equivalent program may be used instead.

International Business Machines Corporation provides this manual “as is,” without warranty of any kind, either
express or implied, including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IBM may make improvements and/or changes in the products and/or the programs described in
this manual at any time.

Products are not stocked at the address given below. Requests for copies of this product and for technical information about
the system should be made to your authorized IBM RT PC dealer.

A reader’s comment form is provided at the back of this publication. If the form has been removed, address comments to IBM
Corporation, Department 997, 11400 Burnet Road, Austin, Texas 78758-3493. IBM may use or distribute whatever information
you supply in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1985, 1986, 1987
© Copyright INTERACTIVE Systems Corporation 1984
© Copyright AT&T Technologies 1984



About This Book

This book contains reference information on AIX! Operating System commands. It
describes the commands you can run and summarizes who can call them, how one calls
them, what they do, how they read input, how they write output, and how one modifies
their actions.

Who Should Use This Book

To use this book, you should be familiar with AIX or UNIX2 System 5 commands. If you
are not already familiar with AIX or UNIX System V, see Using the AIX Operating System.
If you are familiar with the commands but need to review how to use the shell and write
shell procedures, see “sh” on page 637.

How To Use This Book

Most of the AIX commands described in this book are in alphabetical order by command
name. Some related commands are combined in one description, but these commands
should appear in the “Contents” and the “Index.” Therefore, if you cannot find a
particular command in this book, the “Contents” or the “Index” should tell you where to
find its description.

Task Index

A “Task Index” on page 7 appears before “Commands” on page 29 to help you locate the
commands you need to perform specific tasks. The “Task Index” begins with a “Contents”
listing general and specific tasks. To find a command to perform a specific task, go to the
page shown and look at the commands and their purposes listed on that page.

1 AIX is a trademark of International Business Machines Corporation.

2 UNIX was developed and licensed by AT&T. It is a registered trademark of AT&T in the
United States of America and other countries.

About This Book iii



Commands

“Commands” begin on page 29. The discussion of each command includes the following

information:

Purpose A single-sentence description of the major function of each
command.

Syntax A syntax diagram that shows command line options. For a
discussion of how to use this syntax diagram, see “Syntax
Diagrams” on page 3.

Description A discussion of the command that provides more details about its
function and use.

Flags A list of command line flags and associated parameters that
explains how they modify the action of the command.

Subcommands A list of subcommands (for interactive commands) that explains
their use.

Examples Specific examples of how you can use the command.

Files A list of files used by the command.

Related Information A list of related commands in this book and related discussions in
other books.

For details on other conventions used in this book, see “How To Use The Commands
Section” on page 1.

Special Key Sequences

You can use the AIX Operating System from any of several different display stations, each
of which has a different keyboard. In some cases, you must press different keys to perform
the same special function from different keyboards. This book identifies both the function
name (for example, INTERRUPT) and the necessary key sequence on the IBM RT Personal
Computer? (in parentheses). If you do not have the IBM RT PC Keyboard, look at your
keyboard reference chart to find out which keys on your keyboard produce the special
function.

3 RT Personal Computer, RT PC and RT are trademarks of International Business Machines
Corporation.

iv Commands Reference



Reference and Information Aids

The standard system devices are described in Appendix A, “AIX Device Table” on
page 869. A cross-reference listing of commands and program packages appears in
Appendix B, “Program Cross-Reference Index” on page 871. Appendix C, “Details on
Reading Syntax Diagrams” on page 879 contains a detailed description of how to read

syntax diagrams. A “Glossary” of terms appears after the Appendixes, followed by an
“Index.”

A Reader’s Comment Form and Book Evaluation Form are provided at the back of this
book. Use the Reader’s Comment Form at any time to give IBM information that may
improve the book. After you have become familiar with the book, use the Book Evaluation
Form to give IBM specific feedback about the book.

Prerequisite Information

IBM RT PC Using the AIX Operating System describes using the AIX Operating
System commands, working with file systems, and developing shell procedures.

IBM RT PC Managing the AIX Operating System provides instructions for performing
such system management tasks as adding and deleting user IDs, creating and mounting
file systems, and repairing file system damage.

Related Information

IBM RT PC AIX Operating System Programming Tools and Interfaces describes the
programming environment of the AIX Operating System and includes information
about using the operating system tools to develop, compile, and debug programs. In
addition, this book describes the operating system services and how to take advantage
of them in a program. This book also includes a diskette that includes programming
examples, written in C language, to illustrate using system calls and subroutines in
short, working programs. (Available optionally)

IBM RT PC AIX Operating System Technical Reference describes the system calls and
subroutines that a C programmer uses to write programs for the AIX Operating System.
This book also includes information about the AIX file system, special files, file
formats, GSL subroutines, and writing device drivers. (Available optionally)

IBM RT PC Using AIX Operating System DOS Services provides step-by-step
information for using AIX Operating System DOS Services. (Available optionally;
packaged with IBM RT PC AIX Operating System DOS Services Reference)

IBM RT PC AIX Operating System DOS Services Reference provides reference
information about the AIX Operating System DOS Services. This book also includes
information on sharing DOS files with Personal Computer AT Coprocessor Services,

About This Book v



and on the differences between PC DOS and DOS Services. (Available optionally;
packaged with IBM RT PC Using AIX Operating System DOS Services)

e [BM RT PC C Language Guide and Reference provides guide information for writing,
compiling, and running C language programs and includes reference information about
C language data structures, operators, expressions, and statements. (Available
optionally)

e [BM RT PC Messages Reference lists messages displayed by the IBM RT PC and
explains how to respond to the messages.

o Virtual Resource Manager Technical Reference is a two-volume set. The first volume,
Virtual Resource Manager Programming Reference, describes the VRM programming
environment, including the internal VRM routines, VRM floating-point support, use of
the VRM debugger, and the supervisor call instructions that form the Virtual Machine
Interface. The second volume, Virtual Resource Manager Device Support, describes
device IPL and configuration, minidisk management, the virtual terminal and block I/O
subsystems, as well as the interfaces to the predefined VRM device drivers. This
volume also describes the programming conventions for developing your own VRM
code and installing it on the system.

o IBM RT PC AIX Operating System Text Formatting Guide describes the functions and
capabilities of NROFF and TROFF to perform text processing tasks. (Available
optionally)

See IBM RT PC Bibliography and Master Index for order numbers of IBM RT PC
publications and diskettes.

Ordering Additional Copies of This Book

vi

To order additional copies of this publication (without program diskettes), use either of the
following sources:

e To order from your IBM representative, use Order Number SBOF-0128.
o To order from your IBM dealer, use Part Number 79X3853.

A binder is included with the order. For information on ordering the binder and manual
separately, contact your IBM representative or your IBM dealer.

Commands Reference



Contents

How To Use The Commands Section ...... ...ttt tenmeeneen. 1
Command Input and OQutput . ....... ... .. . . e 2
File Name Substitution . . ... ...ttt e e e et e e e e 2
Syntax Diagrams . ..o v i e e e e e 3
Flag and Parameter Syntax Under Description . ..........0. i rinennn .. 6
Task INdex . .. v it ittt it it ittt ittt i teeteteseneeeeenenenns 7
Commands .. ...ttt ittt et e et e e e e e 29
BCCE ™ L e e e e e 31
chargefee . ... ... .. . .. e e e e e 32
CRpacet ... e e e e e e e e 32
dodisk ... e e e e e e 32
lastlogin . ... e e e e e e e 33
0 0 03 o 12 o1 o1 R 33
nulladm .. e 33
03 o7 o 1+ SO 33
prdaily ......... . ... .. .. e e e 33
03 0 o 1 o o1 34
=Y ¢ 0 L0 e - O 34
SRULACC . . .. e e e e e e e 34
o2 7« J Y 34
L7260 o B= Y o1 v 34
ACCE OIS . . i e e e e e e e e e e e 36
ACCECOIM . . . it e e e e e e e e e e e 38
P2 Y o2 o 7 0 3 « 1P 42
ACCECOMN] . . L e e e e e 42
ACCECOM Y . . e e e e e e e e e e 43
AaCCtdISK . ... e e e e e e e 44
E T 118 ¢ =3 o = 46
A P . . ot e e e e e e e e e e e e 48
ACCEPTCL . ... e e e e e 48
ACCEPIC . . . e e e e e e e e e 49
2 T o2 L« 3 o T O 49
ACEIMIANL . . . . e e e e e e e e e e e 50
A L 50.1
AdIIT . . . e e e e e e e e e e 51
2 58
arithmetic . ... e e e e e e e 62

Contents vii



vili

at, batch . ... e e e e e e 66
AWK e e e e e e e 70
bacCKk .. e e e e e e 75
DaACKUD . ot e e e e e 76
5 7= 04 1+ =3 80
basename, dirname . ... ... e 81
5 83
BAifE . e e e e 88
DS o e e e e e e 90
T OO 94
o 22O 95
Cal e e e e e e e e 106
calendar . ... .. e e e e e e 107
022 Y 7 109
') o TN 111
CC i vt e e e e e e e e 112
' 121
CAC . o o e e 123
CE oW e e e 125
o3 o =5 o 126.1
chmod ... e e e e e 128
CROWIL L e e e e e e e e 132
ChParIN . .. e e e e e e e 133
3+ ¥ o Yo 3 134
'3 ' O 136
145 o ) + X 138
COl e e e e e e e 140
oM L e e 142
603 0.9 % o« 144
COME T . . . e e e e e e 146
CONE . . e e e e e e 150
o203 s '+ L= 1 /2 152
3+ 156
) + 3 U 158
03 o 2 163
o) - 1) 1= 167
CraAS . e e e e e e e 168
3 oo 3 o Y 172
CromtaD L e e e e e e e e 174
L c1=) + 177
CSPIIt . e e e e e e 202
2 17 1 o N 204
ClA S . .t it e e 208
03 210
CVId L e e e e e e 212

Commands Reference



CXT L . . e e e 217
date ... e 219
AC . e e e 222
T « "2t 226

................................................................. 228
defey .o e e e e e e e e 232
del . e e 234
delta ... e e e e e 236
deroff ... e e e e e e 239
devViCeS . . e 241
L =7 + ¥ o o A 242
' 244
L 5 246
5 2 7 249
diffm K . e e 252
Lo 5 o3 '+ 1+ J 254
QIS KUSE ..o e e e e e e e e 256
diSPlay . ..o e e e 258
QOS . e e e e e e e e e e e 262
dosdel .. ... e e e e 266
dosdir . ... e e e 267
dosread . ... ... e e e e e e e e e 269
doswrite ............ ... .. ..., e e e e 271
L5 £« Y 272.1
dsldxprof . ... .. e e e e e 272.2
ASState . ... e e e e 272.4
dsxlate ... ... e e e e e 272.6
AU . e e e e e 273
QUIN D .. e e e e e e e e e e 275
dumpfmt .. e e 277
23 + ¥o YN N 278
=Y 280
it ... e e e e e 292
BIIV L ot e e e e e e e e e e e 298
eqn, neqn, checkeq . ...... ... ... e e e - 300
errdead ... .. e e e e e e e 302
Lo g o =Y 10 (o) o Y 303
BIEPL, B TP . ..o e e e e e e 305
38 =1 7+ + K 309
ErTUPAate . . ... e e e et e 310
BX ittt et et e e e e e e e e 312
234 ¢ 317
2 01 ¢ ¢ 3 321
O 322
5 1 OO 324

Contents ix



5 1= + T 330
formiat .. ... e e e e e e e e 331
0 7 ' = 332
17,74 ¢ 1= 332.1
fsck, dfsck . . ..o e 333
=T L« 338
FUS T . . . e e e e 343
747 ¢ 1)« 345
ACCEWEIMID . .. . L e e e e 345
WEMPE X . . e 346
BAeV L e e e e 347
hpd .. e e e e e 347
ELASE . i ittt e e e e e e e e e e e e e e e 348
hardcopy . ... e e 348
tekSet . .. e e e e e e e e 348
L7 348
=Y ¢ 350
gend . e e e e 357
0 - O 359
L 0] 72N 367
gettext ... e e e e e e 370
= 1 71 P 372
BraAP I . L e e e e 375
BraAPNICS . .. e e e e 377
e =Y =Y < 379
5 =Y + 2 381
0 0 1 o1 P 385
gutil L e e 386
bel e e e e 387
L1 70 ) + 387
O 388
8 0 ) « 388
PA e e e e e 388
PO i e e e e e e e e e 388
L 388
=3 00 L7030 's N 388
Whatis ... e e e e 388
FO00 o e e e e e e e e e e e e e e 389
hangman .. ... .. e e e e 390
help . e e e e e 391
¢ o T 392
hyphen . ... . e 394
1 395
'+ 3 U 396
Install ... e e e e 399

x Commands Reference



Installp ... e e e e e 402

IUSAVE ... e e 403

0 N =Y o 2N 404

o ) 00 o <1 /2 405

(60 42 =) =Y 406

VA . .. e e e e e e 407
) 015 0 o P 409
)+ P 411
IpCtable . ... e e e e e e 414.1
1] 7 X 2 415
JOIM e e e e e e e 417
keyboard . ... ... ... e e e e e e e e 421
1< 422
KAl Al ... e e e e e e e e 425
) 427
=3 < 432
B o e e e e e e e e 437
e . e e e e e e 443
lnk, unlink . ... .. e e e e 444
55 s 446
s 450
JoCAtOr . .o e e e e e e e e e 452
0 5« 453
logname . ... ... .. e e e e 456
Jorder . .. e e e e e e 457
2 459
= 461
o s - S 465
o0 7 1 470
MAKE . e e e e e e e e e 474
MAKEKEY ... e e e e e e e 481
o 4 U5 b of N 482
o 0 T = 484
MINIdISKS . ... e e e e e e e 485
MKAIr .. e e e e e e 486
LS e e e e e 487
MKNOd . . e e e 490
mm, checkmm . ... ... . e e e e 492
mmt, Checkmm .. ... . . e e e e e 495
o Lo 1o J 497
0 103 1 X 2O 498
o+ 2 502
INVAIY . . e e e e e e e e e e e 504
NChECK .. e e e e e e e e e e 505
ndtable . ... .. e e 506.1
B0 =23 03 v+ « N OO 507

Contents . xi



xii

NeWS . . . . i it et e v oo e
BEWE ... ooue st e 512
HIGE L .ous e 515
L 517
L L L e PR R R REEEEPP PR 521
BORUD .. 523
BEOT . ..o 525
BUIIDOT . oo 537
T L L L PP R EEEEEPPPRREEES 538
OPEIL s 541
e T 543
BOAL oo 544
e BPACK 544
PASSWA oo 546
BSE |+ 547
Dl e T 550
bdisable - 551
g PROM 551
D 553
PIOBE - 557
T 17T 561
O T 564
DEd oo 565
L e R EEEE LR LR R R REEEPETS 565
Prde, PIfSnap e 565
P 565
DEIIE et 566
PIOF 571
PEORO oot 573
BIS oo 574
DS 579
T L L L L PP R R REEEEPPPEREE 584
PUBLEXE oo 586
BWEk oot 588
P 589
QAGMOR oo 590
BHE oS 591
T 11T 594
FEEOMP . ... sie s st 595
PEBLOFE ... uiuuussssssse s st eiu st a i 596
FHD e 601
EIEL Lo 604
FIIE o 605
FUBACCE .. sies sttt st s 606
SACL 609
............................................. 610

Commands Reference



=T 1. 611
L= 1 N 612
=T 614
SCCSAILT . . ... e 618
SAD L e 619
SAIE . . e e 627
SeA . e e e e 629
SeEAIIA .. ... e e e e e 634.1
F= =10 s § 4 X 2 635
1=« Y 637
1= 41 51« 660
Shutdown . ... . e e e e e 663
=3 X = 665
SKRULK T .. e 667
SlEeD ... e e e e e 668
=3 o Lo 2 670
1= .3 o 672
SOUNMA . .. i e e e e 679
SPEIl . e e e e e 681
=3 1 5 « U= 684
=3 3 686
=3+ 1 + 687
=37 & 2 690
=17 )« J 716
12372 7 2 717
=1 724
£ 1+« L 726
£ o L 727
tab, untab . ... e e e 728
BADS . e e e e 729
L7 5 1 732
tapech K ... e e e e e 734
72 o 735
17+ 3 739
L7 ¢ 742
7 2 7 744
7= = 746
termdel . ... e e e e e e 748
L =3 750
7 T 753
175 o'« (= e 754
780 0 U=« 755
7o 757

AEOC .o e e e e e 757

17 7o o 758

Contents xiii



BOUCh . L e e e 760
15 +J (o 7 762
7« 1 O 763
5 765
17 o U1 < O 768
17 o 3 o 2 P 772
175 of 11 /10 774
treupdate . ... ... e e e e e 775
5 ol 0 L 71
71T 03 o 778
72 7 2 780
1727, 2O 781
72 0 o5 L3 « Y 783
ugtable . ... e e e e 784
UMASK . . e e e e e e 784.1
L8 8 4o L35« 786
L0 2 o L 788
L85 4 7= O 790
L8 8 1 792
UMt . . o e e e e 793
UPAateD ... . e e e e e 796

INUAOCIN . . ... 799

INUUPAt .. e e e e 800
L8 ES = 802
MUCAN . ... e 805
L0 80 T« T 807

MU0 . e e e 809

L b8 o T2 o U 809
BUSEAL . . e e e e e e e e e e e e e e 810
WUSUD L 813
HUEO . e e e e e 815

UUPICK .. e e e 816
L0 818
VAl L 821
2 % o 3 + T 823
2 826
R ¥ 2 830
Vi, vedit, VIeW . ... e e e 832
VEMCONSIE . . e e 842
WaALE .. e 844
Wall L e e 845
4 Z 846
What ... e e 848
WO L e e 850
4 0 1 - S 853

xiv Commands Reference



D o £ 857
£ L 861
R 863
L1 865
12 | N 866
Appendix A. AIX DeviceTable .........cciiiiiiiiitineeann 869
Appendix B. Program Cross-Reference Index ................. 871
Appendix C. Details on Reading Syntax Diagrams ....... e e 879

File Input ... e e e e e e e 880

Syntax Diagrams . ... ... ...ttt e e e e 881
Figures .. ... ..ttt iiiitieeinensoeeesneennoosasocanes 889
GloSSATY & i ittt ittt ittt it et eaeetaeeaeeaseastetnaanan 891
Index ... ... ittt il ittt ettt eatenanotanocanas 909

Contents xv



xvi Commands Reference



How To Use The Commands Section

This book contains reference information about AIX commands. This information includes syntax
diagrams to illustrate how to enter the commands on the command line, descriptions of how
commands work, descriptions of command flags and subcommands, lists of related files, and
cross-references to related commands in this book and related material in other books.

The following includes a description of:
e Command input and output

¢ File name substitution by the shell
e Syntax diagrams

e Flag and parameter syntax.

How To Use The Commands Section 1



Command Input and Output

Many commands take their input from stendard input and write their output to standard output.
By default, standard input comes from the keyboard, and standard output goes to the display. It is
important to remember this as you read the command descriptions, since they describe the default
action. In this context, the verb display means “write to the standard output.” Any command that
reads standard input and writes to standard output can have its input or output redirected to a file
and can be used in a pipeline, where the standard output of a previous command is directed to the
standard input of the next command. For more information on pipelines, see “sh” on page 637.

There are a few commands that must have a file name supplied or that must read standard input.
You can see what a particular command can read by looking at the syntax diagram at the beginning
of the description of the command. For instructions on interpreting syntax diagrams, see “Syntax
Diagrams” on page 3.

File Name Substitution

When file is supplied as an argument to either a command or a flag, you can automatically produce a
list of file name arguments by specifying a pattern that the shell matches against the file names in a
directory.

Most characters in such a pattern match themselves, but you can also use some special
pattern-matching characters in your pattern. These special characters are:

* Matches any string, including the null string.

? Matches any one character.

[...] Matches any one of the characters enclosed in square brackets.

Ir...] Matches any character other than one of the characters that follow the exclamation mark

within square brackets.

Inside square brackets, a pair of characters separated by a - (minus) specifies a set of all characters
lexically within the inclusive range of that pair, so that [a-dy] is equivalent to [abcdy].

Using pattern-matching characters in file names on the command line has some restrictions. If the
first character of a file name is a . (dot), it can be matched only by a pattern that begins with a dot.

For example, * matches the file names myfile and yourfile, but not .myfile and .yourfile. To
match these file names, use a pattern such as:

Ffile

If a pattern does not match any file names, the pattern itself is returned as the result of the match.

2 Commands Reference



Note: File and directory names should not contain the characters *, ?, [, or ] because this may
create infinite loops during pattern matching attempts.

Syntax Diagrams

Before each command discussion, you will find a syntax diagram that shows you how to enter that
command correctly on the command line. These diagrams show:

Which flags can be entered on the command line

Which flags must take parameters

Which flags have optional parameters

Default values of flags and parameters, if any

Which flags can and cannot be entered together

Where you must enter flags or parameters and where you have a choice
e Where you can repeat flag and parameter sequences.

The following discussion explains how to interpret the syntax diagrams. It begins with an example
diagram that shows most of the conventions used in diagrams. Each part of the diagram is labeled
and explained. Following the example are sample diagrams taken from this book.

Diagram items that must be entered literally on the command line are in bold. These items include
the command name, all flags, and literal characters. Variable items are in italics. These items
include parameters that follow flags, and parameters that the command reads, such as files and
directories. If an item has a default value, it is shown in the normal font and the path is shown in
bold. You do not enter on the command line any item shown in the normal font on a bold path.

How To Use The Commands Section 3



The following diagram is an example to illustrate the conventions used in the syntax diagrams:

[3] pEFAULT UNE

|
command name one of
ac

b d

@ SINGLE CHOICE BOX

REPEAT ARROW

CONTINUE DIAGRAM
:- D—1

P
OPTIONAL PARAMETER

parm

[5] REQUIRED ITEM

[9] DEFAULT VALUE INPUT OR OUTPUT
Evalue m
Eparm file

OL805370

' Do not put a blank between these items.

OL805308

You interpret the diagram as follows:

1 command name

2 SINGLE CHOICE BOX

3 DEFAULT LINE

4 REPEAT ARROW

4 Commands Reference

The first item in the diagram is the name of the command you want to
invoke. It is in bold, so it must be entered exactly as it appears in the
diagram.

After the command name, the path branches into two paths. You can
follow either path.

If you follow the lower path, you encounter a box with the words one of
over it. You can choose only one item from this box.

If you follow the upper path, you bypass the single choice box, and enter
nothing. The bold line around the box is a default line, which means
that you do not have to enter anything from that part of the diagram.
Exceptions are usually explained under “Description.” One important
exception, the blank default line around input and output files, is
explained in item 10.

When you follow a path that takes you to a box with an arrow around it,
you must choose at least one item from the box. Then you can either
follow the arrow back around and continue to choose items from it, or
you can continue along the path. When following the arrow around just
the box (rather than an arrow that includes several branches in the
diagram), do not choose the same item more than once.



5

6 GO TO NEXT LINE

7 CONTINUE DIAGRAM

8 OPTIONAL PARAMETER

9 DEFAULT VALUE

10 INPUT OR OQUTPUT

REQUIRED ITEM

Following the branch with the repeat arrow is a branch with three
choices and no default line around them. This means that you must
choose one of A, B, or C.

If a diagram is too long to fit on one line, this character tells you to go to
the next line of the diagram to continue entering your command line.
Remember, the diagram does not end until you reach the vertical mark.

This character shows you where to continue with the diagram after it
breaks on the previous line.

If a flag can, but does not have to, take a parameter, the path branches
after the flag to show this. If you cannot enter a space between the flag
and parameter, you are told in a footnote.

Often, a command has default values or actions that it will follow if you
do not enter a specific item. These default values are indicated in
normal font in the default line if they are equivalent to something you
could enter on the command line (for example, a flag with a value). If
the default is not something you can enter on the command line, it is not
indicated in the diagram. However, it is discussed under “Flags.”

Note: Default values are included in the diagram for your information.
Do not enter them on the command line.

A command that can read either standard input or input files has an
empty default line around the file parameter. If the command can write
its output to either a file or to standard output, it is also shown with a
default line around the output file parameter. If a command can read
only from standard input, input is not shown in the diagram, and
standard input is assumed. If a command writes only to standard output,
this is also assumed and output is not included in the diagram. When
you must supply a file name for input or output, the file parameter is
included in the diagram without a default line around it.

Following are examples of how to enter this command based on this syntax diagram.

command
command
comnmand
command
command
command
command
command
command
command
command
command

name
name
name
name
name
name
name
name
name
name
name
name

A

C
a
d
e
e
C
C
A
B
a
d

o = ww

e g B D3 E6 myfile
fehCDmyfile

How To Use The Commands Section 5



Note: Although the diagram implies that the order of the flags is important, it is usually not. When
the order of the flags is important, it is indicated in the diagram, under “Flags,” or in both places.
With this in mind, an additional example of how to enter this command is:

command name E9 a D g A h f myfile

This is a brief discussion of how to read syntax diagrams. If you need more information on the
syntax diagrams, Appendix C, “Details on Reading Syntax Diagrams” on page 879 shows several
more examples from this book, and explains in detail how to interpret the diagrams.

Flag and Parameter Syntax Under Description

The description of flags and parameters under “Description” uses the following conventions:
bold Flags and other items in bold are to be entered literally.

italics Items in italics are parameter names for which you substitute an appropriate value in that
position on the command line. For example, if you see file, you should type in the name of
a file in that position.

[1 Items in brackets are optional. The only exception is brackets that are themselves in bold.
Brackets in bold are part of what is to be entered literally.

Items followed by an ellipsis can be repeated. Thus, if you see file . . ., you can type
several file names separated by blanks.

Using these conventions, the following string:
-Dname[ =value]

shows that, with the -D flag, the name parameter is required but assigning a value to name is
optional. The following are valid ways to specify this flag and parameter combination:

-Daxis
-Daxis=10

The next string shows a parameter that can be replaced by several values:
“lfile. ..
The following are valid ways to enter the -1 flag:

-1 memo letter
-1 memo
-1 letter

6 Commands Reference



Task Index

This index lists most of the commands that are described in this book and gives the purpose of each
command. The commands are grouped by task to help you find a command by the task it performs.

Operating and Managing the System .. ... ...... ... .ttt
Starting and Stopping the System ... ........ . i i e e
Installing Programs ... ... ... i e e e e e
Configuring the System ... ... ... . it et e et e
Controlling System Processes . ........... ...ttt ettt
Displaying and Printing Data and Text ... ....... ...ttt
Performing Calculator FUnctions . ........... ..ttt
Controlling System Security . ......... ...ttt ittt
Displaying System Statistics and Information ............... ... ... .. .. .. ...
Performing System Accounting Functions . ............ ...t iiiiinnnnnnnn.
Managing File Systems .. ... oottt e e e e e
Analyzing System Activity ........... e e e e e e e
Backing Up and Restoring System Files . ... ... ... . .. i

Working with Files and Directories .. .......... ...ttt ittt
Working with Directories .. .... ... ... . . ittt ettt e e
Archiving Files ... . e
Comparing Files . ... ... ... e e
Copying and Moving Files ... ... ... e e et e
Creating and Editing Files ... ... ... .. . i i ettt ie et
Deleting Files . ... it e e e e e e e
Merging and Splitting Files . ... ...ttt e et e
Printing and Displaying Files ... ... ... ..ttt ettt e
Scanning Files ... ... e e
Sorting FIles . ..ottt e e e
Displaying, Setting, and Changing File Permission ............ ... ... i,

Working with Data . ... .. ... .. i i e i et e e e e

Working with Text ... ... .. i i e e et e
Creating and Editing Text Files . ... ... ... ittt e
Formatting Text .. ...t e e e e e

Communicating with Other Users . ...........0 ittt ittt eiinannn

Communicating with Other Systems . ... ........... .. ittt

Working with Disks and Diskettes . .... ... ... ... ittt i

Working with Tape . ... ... ittt e et ettt e ettt eee e

Working with Work Stations . ..... ... ... ..ttt ettt e e

Working with Graphics ... ... .. ...ttt et e e ettt et

Task Index

7



Developing Programs . ... ... i i i e e e e e e e e 24

Programming in Assembler ... ... ... ... i e e e e e, 24
Programming in C ... ... . e e e e 24
Programming in Miscellaneous Languages . ............... .. .. . ..., 25
Programming in Shell .. ... ... .. ... . e e e e 25
Handling Messages . ... .oi ittt ittt e ettt ettt et e ettt 26
Debugging Programs . ...... ...ttt e e e e 26
Managing Programs ..ottt ittt e e e e e 26
Making and Installing Programs . ......... ... . i e 26
Managing Source Programs Using the Source Code Control System (SCCS) ............. 26
Managing Object Files ... ... . i e i e e e e 27
Playing Games .. ... ...t e e e e e e 28

8 Commands Reference



Operating and Managing the System

Starting and Stopping the System

actman
date
getty
init
login
newgrp
open
passwd
penable
re
shutdown

users

Lets you interact with multiple virtual terminals.
Displays or sets the date.

Sets the characteristics of ports.

Initializes the system.

Allows you to sign on to the system.

Changes your primary group identification.
Opens a virtual terminal.

Changes your login password.

Controls or reports the availability of login ports.
Performs normal startup initialization.

Ends system operation.

Adds, deletes and changes user and group information.

Installing Programs

ckprereq
cvid
install
installp
mvmd
updatep

vrmconfig

Checks the level of the prerequisite licensed program.
Creates a VRM install diskette for backup purposes.
Installs a command.

Installs a program.

Updates the VRM minidisk.

Updates one or more programs.

Installs peripheral devices.

Configuring the System

chparm
config
devices

defkey

Changes or examines system parameters.
Extracts configuration information from configuration files.
Adds, deletes, changes, and displays device information.

Defines keyboard key assignments.

Task Index



TNL SN20-9861 (26 June 1987) to SC23-0790-0

display

| dsipe

| dsxlate

| dsldxprof
env
getty
keyboard
locator
minidisks
mdrc
mknod
mvmd
penable
pdisable
phold
sound
splp
stty
termdef
users

varyon

verify

vrmconfig

Selects the physical display that an existing or new virtual terminal uses and
sets colors and fonts.

Installs the Interprocess Communication key mapping in the kernel.
Installs Distributed Services UID/GID translate tables into the kernel.
Loads translate information into the UID/GID translate profiles.

Sets the environment for execution of a command.

Sets the characteristics of ports.

Controls the delay and repetition rates of the keyboard.

Controls the sample rate of the locator.

Adds, deletes, changes, and displays minidisks.

Allows you to reinstall a user-created minidisk after you have reinstalled AIX.
Creates a special file.

Updates the VRM minidisk.

Controls or reports the availability of login ports.

Kills the logger running on the specified port.

Prevents new users from logging into a port.

Controls the volume and click of the keyboard speaker.

Changes or displays printer driver settings.

Sets, resets, or reports work station operating parameters.

Queries terminal characteristics.

Adds, deletes and changes user and group information.

Makes an IBM 9332 Direct Access Storage Device and the minidisks and file
systems defined on it available for use.

Turns write verification on or off for a particular minidisk.

Installs peripheral devices.

Controlling System Processes

at

cron
crontab
errdemon
errstop

Runs commands at a later time.
Runs commands automatically.
Submits a schedule of commands to cron.
Starts the error-logging demon.

Terminates the error-logging demon.

10 Commands Reference



kill Sends a signal to a running process.

killall Cancels all processes except the calling process.
nice Runs a command at a different priority.

nohup Runs a command without hangups and quits.

open Opens a virtual terminal.

prs Displays a Source Code Control System (SCCS) file.
gdaemon Schedules jobs enqueued by the print command.
sleep Suspends execution for an interval.

trace Starts the trace function.

trestop Stops the trace function.

wait Waits for completion of a process.

Displaying and Printing Data and Text

banner Writes character strings in large letters to standard output.

cal Displays a calendar.

cat Concatenates or displays files.

calendar Writes reminder messages to standard output.

col Processes text having reverse linefeeds and forward/reverse half-linefeeds for
output to standard output.

echo Writes its arguments to standard output.

Ip Prints a file in a format suitable for sending to a line printer.

pg Formats files to the work station.

pr Writes a file to standard output.

piobe W?ites a file to standard output in a format suitable for sending to a line
printer.

print Enqueues a file.

gdaemon Schedules jobs enqueued by the print command.

splp Changes or displays printer driver settings.

Performing Calculator Functions

bc Provides an interpreter for arbitrary-precision arithmetic language.
de Provides an interactive desk calculator for doing arbitrary-precision integer
' arithmetic.

Task Index 11



TNL SN20-9861 (26 June 1987) to SC23-0790-0

factor

Factors a number.

Controlling System Security

chgrp
chmod
chown
id
logname
login
newgrp
passwd
pwck
su
umask
users

Changes the group ownership of a file or directory.

Changes permission codes.

Changes the owner of files or directories.

Displays the system identity of the user issuing the command.
Displays your login name.

Allows you to sign on to the system.

Changes your primary group identification.

Changes your login password.

Checks the password and group files for inconsistencies.
Obtains the privileges of another user, including superuser authority.
Sets file-creation permission code mask.

Adds, deletes and changes user and group information.

Displaying System Statistics and Information

chparm
date

devices
diskusg

| dsstate
errpt
errupdate
file
fuser
groups
help

id

ipcs
istat
logname

Changes or examines system parameters.
Displays or sets the date.

Adds, deletes, changes, and displays device information.
Generates disk accounting data by user ID.

Sets the state of the Distributed Services kernel logic.
Processes a report of logged errors.

Updates an error report template.

Determines file type.

Identifies processes using a file or file structure.
Displays your group membership.

Provides information about a Source Code Control System (SCCS) message or
command or about certain non-SCCS commands.

Displays the system identity of the user issuing the command.
Reports inter-process communication facility status.
Examines i-nodes.

Displays your login name.

12 Commands Reference



minidisks
ncheck
news
od
penable
prfld
profiler
ps
pwck
pwd
sact
sade
sag

sar

splp
stty
sum
time
timex
tty
uname

uustat

Adds, deletes, changes, and displays minidisks.

Generates path names from i-numbers.

Writes system news items to standard output.

Writes the contents of storage to the standard output.

Controls or reports the availability of login ports.

Profiles the operating system.

Displays program profile data.

Reports process status.

Checks the password and group files for inconsistencies.
Displays the path name of the working directory.

Displays current Source Code Control System (SCCS) file editing status
Provides a system activity report package.

Displays a graph of system activity.

Collects, reports, or saves system activity information.

Changes or displays printer driver settings.

Sets, resets, or reports work station operating parameters.
Displays the checksum and block count of a file.

Times the execution of a command.

Times a command, and reports process data and system activity.
Writes to standard output the full path name of your work station.
Displays the name of the current operating system.

Reports the status of and provides rudimentary job control for the uuep
command.

Task Index

13



uusub Defines and monitors a uucp subnetwork structure.

who Identifies the users currently logged in.

Performing System Accounting Functions

acctdisk Performs disk-usage accounting.

acctcms Produces command usage summaries from accounting records.
acctcom Displays selected process accounting record summaries.
acctconl Performs connect-time accounting.

acctmerg Merges total accounting files.

acctprcel Performs process accounting.

acct/* Provides accounting shell procedures.

diskusg Generates disk accounting data by user ID.

du Summarizes disk usage.

fwtmp Manipulates connect accounting records.

runacct Runs daily accounting.

sadc Provides a system activity report package.

Managing File Systems

basename Returns the base name of a string parameter.

chroot Changes the root directory of a command.

clri Clears the specified i-node.

cpio Copies files into and out of archive storage and directories.
crash Examines system images.

dcopy Copies file systems for the best access time.

devnm Names a device.

df Reports number of available disk blocks.

du Summarizes disk usage.

ff Lists the file names and statistics for a file system.

fsck Checks file system consistency and interactively repairs the file system.
fsdb Debugs file systems.

fuser Identifies processes using a file or file structure.

14 Commands Reference



env
istat
link
mdrc
mkfs
mknod
mount
ncheck
proto
setmnt
skulker
sync
unlink
umount

varyon

Sets the environment for execution of a command.

Examines i-nodes.

Performs the link system call.

Allows you to reinstall a user-created minidisk after you have reinstalled AIX.
Makes a file system.

Creates a special file.

Makes a file system available for use.

Generates path names from i-numbers.

Constructs a prototype file for a file system.

Creates mount table.

Cleans up file systems by removing unwanted files.

Updates the superblock and writes buffered files to the fixed disk.
Performs the unlink system call.

Makes a file system unavailable for use.

Makes an IBM 9332 Direct Access Storage Device and the minidisks and file
systems defined on it available for use.

Analyzing System Activity

errdead
errdemon
errpt
errstop
errupdate
dumpfmt
fuser
prfld

time
trace
trerpt
trcstop
trcupdate

Extracts error records from dump.
Starts the error-logging demon.
Processes a report of logged errors.
Terminates the error-logging demon.
Updates an error report template.
Formats the VRM dump file.

Identifies processes using a file or file structure.
Profiles the operating system.

Times the execution of a command.
Starts the trace function.

Formats a report from the trace log file.
Stops the trace function.

Updates trace format templates.

Task Index 15



Backing Up and Restoring System Files

backup Backs up files.

pack Compresses files.

restore Copies back files created by the backup command.
tapechk Performs consistency checking of the streaming tape device.
tar Manipulates tape archives.

tctl Gives commands to streaming tape.

Working with Files and Directories

Working with Directories

cd Changes the current directory.

chroot Changes the root directory of a command.
dircmp Compares two directories and the contents of their common files.
dosdir Lists the directory for DOS files.

find Finds files matching expression.

1i Lists the contents of a directory.

Is Displays the contents of a directory.

mkdir Makes a directory.

mvdir Moves (renames) a directory.

pwd Displays the path name of the working directory.
rm Removes files or directories.

rmdir Removes a directory.

Archiving Files

ar Maintains portable libraries used by the linkage editor.
backup Backs up files.

cpio Copies files into and out of archive storage and directories.
lorder Finds the best order for member files in an object library.
pack Compresses files.

16 Commands Reference



restore
shlib

tar

Copies back files created by the backup command.
Creates a shared library.

Manipulates tape archives.

Comparing Files

cmp
comm
bdiff
diff
diff3
diffmk
dircmp
sdiff
scesdiff

uniq

Compares two files.

Selects or rejects lines common to two sorted files.

Uses diff to find differences in very large files.

Compares text files.

Compares three files.

Marks differences between files.

Compares two directories and the contents of their common files.
Compares two files and displays the differences in a side-by-side format.
Compares two versions of a Source Code Control System (SCCS) file.

Deletes repeated lines in a file.

Copying and Moving Files

cat

cp

dd
dosread
doswrite
In

mv

uucp

uuto

Concatenates or displays files.

Copies files.

Converts and copies a file.

Copies a DOS file.

Copies AIX files to DOS files.

Links files.

Moves files.

Copies files from one AIX system to another.

Copies public files from one AIX system to another system with local system
control of file access.

Creating and Editing Files

admin
cdc
ed

Creates and initializes SCCS files.
Changes the comments in a Source Code Control System (SCCS) delta.
Edits text by line.

Task Index 17



edit

ex

get
mknod
sed
uniq

vi

Deleting Files
del

dosdel

rm

uniq

uuclean

Provides a simple line editor for the new user.

Edits lines interactively, with screen display.

Creates a specified version of a Source Code Control System (SCCS) file.
Creates a special file.

Provides a stream editor.

Deletes repeated lines in a file.

Edits files with a full screen display.

Deletes files if the request is confirmed.
Deletes DOS files.

Removes files or directories.

Deletes repeated lines in a file.

Deletes from the uucp spool directory or a named directory selected files older
than a specified number of hours.

Merging and Splitting Files

csplit
cut
join
paste
sort
split
tail

Splits files by context.

Writes out selected fields from each line of a file.

Joins data fields of two files.

Merges the lines of several files or subsequent lines in one file.
Sorts or merges files.

Splits a file into pieces.

Writes a file to standard output, beginning at a specified point.

Printing and Displaying Files

cat
cut
Ip
nl
od
rg

Concatenates or displays files.

Writes out selected fields from each line of a file.

Prints a file in a format suitable for sending to a line printer.
Numbers lines in a file.

Writes the contents of storage to the standard output.

Formats files to the work station.

18 Commands Reference



piobe Writes a file to standard output in a format suitable for sending to a line

printer.

pr Writes a file to standard output.

prs Displays a Source Code Control System (SCCS) file.

print Enqueues a file.

gdaemon Schedules jobs enqueued by the print command.

splp Changes or displays printer driver settings.

tail Writes a file to standard output, beginning at a specified point.

Scanning Files

awk Finds lines in files matching specified patterns and performs specified actions
on them.

bfs Scans files.

file Determines file type.

find Finds files matching expression.

grep Searches a file for a pattern.

sed Provides a stream editor.

spell Finds spelling errors.

uniq Deletes repeated lines in a file.

we Counts the number of lines, words, and characters in a file.

what Displays identifying information in files.

Sorting Files

lorder Finds the best order for member files in an object library.

sort Sorts or merges files.

tsort Sorts an unordered list of ordered pairs (a topological sort).

Displaying, Setting, and Changing File Permission

chgrp Changes the group ownership of a file or directory.
chmod Changes permission codes.

chown Changes the owner of files or directories.

groups Displays your group membership.

Task Index

19



li Lists the contents of a directory.
Is Displays the contents of a directory.

umask Sets file-creation permission code mask.

Working with Data

cal Displays a calendar.

calendar Writes reminder messages to standard output.

echo Writes its arguments to standard output.

ed Edits text by line.

edit Provides a simple line editor for the new user.

ex Edits lines interactively, with screen display.

join Joins data fields of two files.

tr Translates characters.

units Converts units in one measure to equivalent units in another measure.
vi Edits files with a full screen display.

wce Counts the number of lines, words, and characters in a file.

Working with Text

Creating and Editing Text Files

ed Edits text by line.

edit Provides a simple line editor for the new user.
ex Edits lines interactively, with screen display.
hyphen Finds hyphenated words.

spell Finds spelling errors.

sed Provides a stream editor.

tab Changes space characters into tabs.

tr Translates characters.

untab Changes tabs into space characters.

vi Edits files with a full screen display.

20 Commands Reference



Formatting Text

col
greek

hp
hyphen
cw
deroff
diffmk
eqn
mm
mmt
newform
nl
nroff
paste
ptx
tab
tabs
tbl

tc
troff
untab
300
4014
450

Processes text having reverse linefeeds and forward/reverse half-linefeeds for
output to standard output.

Converts output for a TELETYPE Model 37 work station to output for other
work stations.

Handles special functions for the HP2640- and HP2621-series terminals.
Finds hyphenated words.

Prepares constant-width text for troff.

Removes nroff, troff, tbl, and eqn constructs from files.

Marks differences between files.

Formats mathematical text for the nroff and troff commands.
Displays or checks documents formatted with Memorandum Macros.
Typesets documents, manual pages, view graphs, and slides.

Changes the format of a text file.

Numbers lines in a file.

Formats text for printing devices.

Merges the lines of several files or subsequent lines in one file.
Generates a permuted index.

Changes space characters into tabs.

Sets tab stops on work stations.

Formats tables for the nroff and troff commands.

Simulates phototypesetter output for a Tektronix 4014 work station.
Formats text for a phototypesetter.

Changes tabs into space characters.

Handles special line-motion functions for DASI 300/300s work stations.
Formats a full page 66-line screen display for a Tektronix 4014 work station.

Handles special line-motion functions for the DASI 450 work station.

Task Index

21



Communicating with Other Users

confer
mail
mesg
news
sum
wall
who

write

Provides an on-line conferencing system.

Sends messages to system users and displays messages from system users.
Permits or refuses write messages.

Writes system news items to standard output.

Displays the checksum and block count of a file.

Writes a message to all logged-in users.

Identifies the users currently logged in.

Sends messages to other users on the system.

Communicating with Other Systems

connect
sum

uuclean

uucp

uustat

uusub

uuto

uux

Establishes a connection to a remote system.
Displays the checksum and block count of a file.

Deletes from the uucp spool directory or a named directory selected files older
than a specified number of hours.

Copies files from one AIX system to another.

Reports the status of and provides rudimentary job control for the uucp
command.

Defines and monitors a uucp subnetwork structure.

Copies public files from one AIX system to another system with local system
control of file access.

Runs a command on another AIX system.

Working with Disks and Diskettes

format
mdrc
minidisks
mount

umount

Formats diskettes.

Allows you to reinstall a user-created minidisk after you have reinstalled AIX.
Adds, deletes, changes, and displays minidisks.

Makes a file system available for use.

Makes a file system unavailable for use.

22 Commands Reference



TNL SN20-9861 (26 June 1987) to SC23-0790-0

varyon

verify

Makes an IBM 9332 Direct Access Storage Device and the minidisks and file
systems defined on it available for use.

Turns write verification on or off for a particular minidisk.

Working with Tape

tapechk
tar
tetl

Performs consistency checking of the streaming tape device.
Manipulates tape archives.

Gives commands to streaming tape.

Working with Work Stations

display

echo

hp
keyboard
| defkey
locator
penable
stty
tabs
termdef
tic

tput

tty

300

4014

450

Selects the physical display that an existing or new virtual terminal uses and

sets colors and fonts.

Writes its arguments to standard output.

Handles special functions for the HP2640- and HP2621-series terminals.
Controls the delay and repetition rates of the keyboard.

Defines keyboard key assignments.

Controls the sample rate of the locator.

Controls or reports the availability of login ports.

Sets, resets, or reports work station operating parameters.

Sets tab stops on work stations.

Queries terminal characteristics.

Translates terminfo files from source to compiled format.

Queries the terminfo file.

Writes to standard output the full path name of your work station.
Handles special line-motion functions for DASI 300/300s work stations.
Formats a full page 66-line screen display for a Tektronix 4014 work station.

Handles special line-motion functions for the DASI 450 work station.

Task Index

23



Working with Graphics

gdev
ged
gend
graph
graphics
gutil
spline
stat

toc

tplot

Provides graphical device routines and filters.

Displays, makes, and edits graphical files on Tektronix 4010 terminals.
Provides a general graphics device backend.

Draws a graph.

Accesses graphical and numerical commands.

Provides graphical utility programs.

Interpolates smooth curve.

Provides tools for analyzing numerical data.

Provides graphical table of contents routines.

Produces plotting instructions for a particular work station.

Developing Programs

Programming in Assembler

as
sdb

Assembles a source. file.

Provides a symbolic debugger for C and assembler programs.

Programming in C

cb

cc
cflow
cpp
cxref
factor
ipcrm
m4

lex

lint

Puts C source code into a form that is easily read.

Compiles C programs.

Generates a C flow graph of external references.

Performs file inclusion and macro substitution on C Language source files.
Creates a C program cross-reference listing.

Factors a number.

Removes message queue, semaphore set or shared memory identifiers.
Preprocesses files, expanding macro definitions.

Generates a C Language program that matches patterns for simple lexical
analysis of an input stream.

Checks C programs for potential problems.

24 Commands Reference



regecmp
sdb
tic

yace

Compiles patterns.
Provides a symbolic debugger for C and assembler programs.
Translates terminfo files from source to compiled format.

Generates a LR(1) parsing program from input consisting of a context-free
grammar specification.

Programming in Miscellaneous Languages

be
bs

lex

m4

sSno

Provides an interpreter for arbitrary-precision arithmetic language.
Compiles and interprets modest-sized programs.

Generates a C Language program that matches patterns for simple lexical
analysis of an input stream.

Preprocesses files, expanding macro definitions.
Provides a SNOBOL interpreter.

Programming in Shell

basename
csh
cron
crontab
echo
env
expr
find
getopt
line
nice
nohup
open

sh

sleep
tee

test

Returns the base name of a string parameter.

Interprets commands read from a file or entered from the keyboard.
Runs commands automatically.

Submits a schedule of commands to cron.

Writes its arguments to standard output.

Sets the environment for execution of a command.

Evaluates arguments as an expression.

Finds files matching expression.

Parses command line flags and parameters.

Reads one line from the standard input.

Runs a command at a different priority.

Runs a command without hangups and quits.

Opens a virtual terminal.

Interprets commands read from a file or entered at the keyboard.
Suspends execution for an interval.

Displays the output of a program and copies it into a file.

Evaluates conditional expressions.

Task Index

25



TNL SN20-9861 (26 June 1987) to SC23-0790-0

time Times the execution of a command.

true Returns an exit value of zero.

wait Waits for completion of a process.

xargs Constructs argument lists and runs commands.

Handling Messages

gettext Extracts messagefinsert/help descriptions.
puttext Updates an output file that contains message/insert/help descriptions.

Debugging Programs

crash Examines system images.

dump Dumps selected parts of an object file.

dumpfmt Formats the VRM dump file.

od Writes the contents of storage to the standard output.

prof Displays program profile data.
| adb Provides a general purpose debugger.

sdb Provides a symbolic debugger for C and assembler programs.
time Times the execution of a command.

timex Times a command, and reports process data and system activity.

Managing Programs

Making and Installing Programs

make Maintains up-to-date versions of programs.
install Installs a command.

installp Installs a program.

updatep Updates one or more programs.

Managing Source Programs Using the Source Code Control System (SCCS)

admin Creates and initializes SCCS files.
cde Changes the comments in a Source Code Control System (SCCS) delta.
comb Combines SCCS deltas.

26 Commands Reference



delta
get
help

prs
rmdel
sact
scesdiff
unget
val
what

Creates a delta in a Source Code Control System file.

Creates a specified version of a Source Code Control System (SCCS) file.

Provides information about a Source Code Control System (SCCS) message or

command or about certain non-SCCS commands.

Displays a Source Code Control System (SCCS) file.

Removes a delta from a Source Code Control System (SCCS) file.
Displays current Source Code Control System (SCCS) file editing status.
Compares two versions of a Source Code Control System (SCCS) file.
Cancels a previous get command.

Validates Source Code Control System (SCCS) files.

Displays identifying information in files.

Managing Object Files

ar
as
dump
1d
lorder
make
prof
nm
size
strip
touch

tsort

Maintains portable libraries used by the linkage editor.
Assembles a source file.

Dumps selected parts of an object file.

Links object files.

Finds the best order for member files in an object library.
Maintains up-to-date versions of programs.

Displays program profile data.

Displays the symbol table of an object file.

Displays the section sizes of common object files.
Removes symbol and line number information from a common object file.
Updates the access and modification times of a file.

Sorts an unordered list of ordered pairs (a topological sort).

Task Index

27



Playing Games

arithmetic
back

bj

craps

fish
fortune
hangman
moo
number
quiz

ttt
turnon

wump

Tests arithmetic skills.

Plays backgammon.

Plays blackjack.

Plays craps.

Plays the card game Go Fish.

Tells a fortune.

Plays hangman, the word-guessing game.
Plays a number-guessing game.
Displays the written form of a number.
Tests your knowledge.

Plays tic-tac-toe.

Turns on execute permission for games.

Plays the game Hunt the Wumpus.

28 Commands Reference



Commands

Commands 29



30 Commands Reference



acct/*

acct/*

Purpose
Provides accounting shell procedures.
Syntax

/usr/lib/acct/chargefee — user — number —

1000
/usr/lib/acct/ckpacct { 7—4
numblocks
/usr/lib/acct/dodisk m
-0

/usr/lib/acct/lastlogin ~—

/usr/lib/acct/monacct ‘<_—_>—<
number!

/usr/lib/acct/nulladm —& file —4

OL805236

/usr/lib/acet/pretmp —i

/usr/lib/acct/prdaily

' The default number is the current month.
2 The defaultmmddis the current day.

0OL805237

Commands 31



TNL SN20-9861 (26 June 1987) to SC23-0790-0

acct/*
/usr/lib/acct/prtacet —| ~f fieldspec |— i
v 'heading'
/usr/lib/acct/remove
/usr/lib/acct/shutacct —{ i
‘reason’'
/usr/lib/acct/startup —
one of
on
/usr/lib/acct/turnacct — [off [
switch
OL805238
Description

Note: You should not share accounting files among nodes in a Distributed Services
system. Each node should have its own copy of the various accounting files.

chargefee

The chargefee command charges the specified number of units to the specified user.
number can have an integer or decimal value. It writes a record to /usr/adm/fee, to be
merged with other accounting records by the runacct command.

ckpacct

The ckpacct command checks the size of /usr/adm/pacct. If the size exceeds the number
specified in numblocks, ckpacet invokes turnacct switch. (The default value for
numblocks is 1000.) If the number of free disk blocks in the /usr file system falls below 500,
ckpacct automatically turns off the collection of process accounting records by invoking
turnacct off. When 500 blocks are again available, accounting is activated again. This
feature is sensitive to how frequently ckpacct is run (usually by cron).

dodisk

The dodisk command performs the disk-usage accounting functions. cron normally runs
this command periodically. By default, it does disk accounting on the special files whose
stanzas in /etc/filesystems contain the attribute account=true. If you specify the -o
flag, it does a slower version of disk accounting by login directory.

The file parameter specifies the one or more file system names where disk accounting is to
be done. If you specify any file names, disk accounting is done on only these file systems.
If you do not specify -0, file names should be the special file names of mountable file

32 Commands Reference



acct/*

acct/*

Purpose
Provides accounting shell procedures.
Syntax

/usr/lib/acct/chargefee — user — number —

1000
/usr/lib/acct/ckpacct «C _>_4
numblocks
/usr/lib/acct/dodisk ﬂ
-0

/usr/lib/acct/lastlogin —

/usr/lib/acct/monacct — Y—
number'/

/usr/lib/acct/nulladm — file —

0L805236

/usr/lib/acct/pretmp ——

-1 >—< dd2
/usr/lib/acct/prdaily ‘<< mm
~c

' The default number is the current month.
2 The defaultmmddis the current day.

OL805237

Commands 31



acct/*

/usr/lib/acct/prtacet — —f fieldspec |— —
v 'heading'

/usr/lib/acct/remove —

/usr/lib/acct/shutacct —{ Y
'reason’

/usr/lib/acct/startup —

one of
on
/usr/lib/acct/turnacct — |off -
switch
OL805238
Description
chargefee

The chargefee command charges the specified number of units to the specified user.
number can have an integer or decimal value. It writes a record to /usr/adm/fee, to be
merged with other accounting records by the runacet command.

ckpacct

The ckpacct command checks the size of /usr/adm/pacect. If the size exceeds the number
specified in numblocks, ckpacct invokes turnacct switeh. (The default value for
numblocks is 1000.)

If the number of free disk blocks in the fusr file system falls below 500, ckpacct
automatically turns off the collection of process accounting records by invoking
turnacct off. When 500 blocks are again available, accounting is activated again. This
feature is sensitive to how frequently ckpacet is run (usually by cron).

dodisk

The dodisk command performs the disk-usage accounting functions. cron normally runs
this command periodically. By default, it does disk accounting on the special files whose
stanzas in [etc/filesystems contain the attribute account =true. If you specify the -o
flag, it does a slower version of disk accounting by login directory.

The file parameter specifies the one or more file system names where disk:accounting is to
be done. If you specify any file names, disk accounting is done on only these file systems.
If you do not specify -0, file names should be the special file names of mountable file

32 Commands Reference



acct/*

systems. If you specify both -0 and file names, the files should be mount points of mounted
file systems.

lastlogin

The lastlogin command updates the file /usr/adm/acct/sum/loginlog to show the last
date each user logged on. runacct normally calls this command.

monacct

The monacet command performs monthly (or periodic) accounting. cron should run this
command once each month or accounting period. number indicates the month or period to
process. The default number is the current month. This default is useful if monacct is
run by cron on the first day of each month. The monacct command creates summary files
in /usr/adm/acect/fiscal and restarts summary files in /usr/adm/acct/sum.

nulladm

The nulladm command creates file, assigns it permission code 664, and ensures that its

owner and group are adm. (See “chmod” on page 128 for an explanation of file
permissions.) Various accounting shell procedures call nulladm.

prctmp

The pretmp command displays the session record file created by the acctconl command
(normally /usr/adm/acct/nite/ctmp).

prdaily

The prdaily command formats a report of the day’s accounting data. Use mmdd to specify
a date other than the current day. The report resides in fusr/adm/acct/sum/rprtmmdd
where mmdd specifies the month and day of the report. runacct invokes this command to
format a report of the previous day’s accounting data.

Flags

-¢  Reports exceptional resource usage by command, and may be used on the turrent
day’s accounting data only.
-1 Reports exceptional usage by login ID for the specified date.

Daily reports are deleted (and thus inaccessible) each time monacct runs.

Commands 33



acct/*

Files

prtacct

The prtacet command formats and displays any total accounting (tacct) file. You can
specify a heading for the report by enclosing it in ” ” (double quotation marks).

Flags

~ffieldspec  Selects fields to be displayed, using the field selection mechanism of
acctmerg.

-v Produces verbose output in which more precise notation is used for

floating-point numbers.

remove

The remove command deletes all fusr/adm/acct/sum/wtmp¥,
/usr/adm/acct/sum/pacct*, and fusr/adm/acct/nite/lock* files.

shutacct

The shutacct command turns process accounting off and adds a “reason” record to
Jusr/adm/wtmp. It is usually invoked during a system shutdown.

startup

The startup command turns on the accounting functions when the system is started up. It
should be called by the /etc/re command file.

turnacct

The turnacct command provides an interface to accton for turning process accounting on
or off.

The switch flag turns accounting off, moves the current /usr/adm/pacct to the next free
name in fusr/adm/pacctincr, where incr is a number starting at 1 and increased by one
for each additional pacct file. After moving the pacect file, turnacct turns accounting
back on.

This command is usually called by ckpacct, which in turn is called by cron, keeping the
pacct file down to a manageable size.

Jusr/adm/fee Accumulator for fees charged to login names.
Jusr/adm/pacct Current file for process accounting.
Jusr/adm/pacct* Used if pacct gets large and during running of the daily

accounting procedures.

34 Commands Reference



acct/*

Jusr/adm/wtmp Login/logout history file.

Jusr/lib/acct/ptelus.awk Shell procedure that calculates the limits for exceptional
usage by login ID.

Jusr/lib/acct/ptecms.awk Shell procedure that calculates the limits of exceptional
usage by command name.

[usr/adm/acct/nite Working directory.

Jusr/lib/acct Holds all accounting commands.

fusr/adm/acct/sum Summary directory.

Related Information

The following commands: “acctecms” on page 36, “acctcom” on page 38, “acctcon” on
page 42, “acctmerg” on page 46, “acctprc” on page 48, “chmod” on page 128, “cron” on
page 172, “fwtmp” on page 345, and “runacct” on page 606.

The acct system call and the acct, utmp, and filesystems files in AIX Operating System
Technical Reference.

“Running System Accounting” in Managing the AIX Operating System.

Commands 35



acctems

acctems

Purpose
Produces command usage summaries from accounting records.

Syntax

/usr/lib/accf/occfcms~<<:

Description

01805421

The acctecms command reads the specified files. It adds together all records for identically
named processes, sorts them, and writes them to standard output in a binary format. Files
are usually in the acct file format described in AIX Operating System Technical Reference.

When you use the -0 and -p flags together, acctems produces a report that combines
prime- and nonprime-time. All the output summaries are of total usage except for number
of times run, CPU minutes, and real minutes, which are spiit into prime and nonprime
minutes.

A typical sequence for performing daily command accounting and for maintaining a
running total is:

acctems file . . . > today

cp total previoustotal

acctcms -s today previoustotal > total
acctcms -a -s today

36 Commands Reference



acctems

Flags

-a

-n

-0
P

-S
-t

Displays output in ASCII summary format rather than binary summary format. Each
output line contains the command name, the number of times the command was run,
its total kcore-time, its total CPU time, its total real time, its mean memory size (in
K bytes), its mean CPU time per invocation of the command, and its CPU usage
factor. The listed times are all in minutes. acctcms normally sorts its output by
total kcore-minutes. The unit kcore-minutes measures the amount of storage used
(in K-bytes) multiplied by the amount of time it was in use.

Sorts by total CPU time rather than total kcore-minutes.
Combines under the heading ***other all commands called only once.
Sorts by the number of times the commands were called.

Displays a command summary of nonprime-time commands only. You can use this
flag with only the -a flag.

Displays a command summary of prime-time commands only. You can use this flag
with only the -a flag.

Assumes that any named files that follow this flag are already in binary format.

Processes all records as total accounting records. The default binary format splits
each field into prime and nonprime time sections.

Related Information

The following commands: “acct/*” on page 31, “acctcom” on page 38, “acctcon” on
page 42, “acctmerg” on page 46, “acctprc” on page 48, “fwtmp” on page 345, and
“runacct” on page 606.

The acect system call and the acet and utmp files in AIX Operating System Technical
Reference.

“Running System Accounting” in Managing the AIX Operating System.

Commands 37



acctcom

acctcom

Purpose
Displays selected process accounting record summaries.

Syntax

acctcom

—C seconds ~—e time
—g group —E time

—H factor —s time
=l num =S time
-l line

—n pattern

-0 seconds

—u user

OL805418
Description

The acetcom command reads from specified files, from standard input, or from
/usr/adm/pacct and writes records (selected by flags) to standard output. The input file
format is described under acet in AIX Operating System Technical Reference.

If you do not specify any file parameters and if standard input is assigned to a work station
or to /dev/null (as it is when a process runs in the background), acetcom reads
Jusr/adm/pacct instead of standard input.

By default, if you specify any file parameters, acectcom reads each chronologically by
process completion time. Usually, /usr/adm/pacct is the current file that you want
acctcom to examine. Because the ckpacct procedure keeps this file from growing too
large, a busy system may have several pacet files. All but the current file have the
following path name:

/usr/adm/pacct?
where ? is an integer incremented each time a new file is created.

Each record represents one completed process. The default display consists of the
command name, user name, tty name, start time, end time, real seconds, CPU seconds, and
mean memory size (in K bytes). These default items have the following headings in the
output:

38 Commands Reference



acctcom

Flags

COMMAND START END REAL  CPU MEAN
NAME USER TTYNAME TIME  TIME (SECS) (SECS) SIZE(K)

By using the appropriate flags, you can also display the fork/exec flag (F), the system exit
value (STAT), the ratio of total CPU time to elapsed time (HOG FACTOR), the product of
memory used and elapsed time (KCORE MIN), the ratio of user time to total (system and
user) time (CPU FACTOR), the number of characters transferred in input/output operations
(CHARS TRNSFD), and the total number of blocks read or written (BLOCKS READ).

If a process ran with superuser authority, its name is prefixed with a # (hash mark). If a
process is not assigned to a known work station (for example, when cron runs it), a
question mark (?) appears in the TTYNAME field.

Note: The acctcom command only reports on processes that have finished. Use
the ps command to examine active processes.

If a specified time is later than the current time, it is interpreted as occurring on the
previous day.

-a Shows some average statistics about the processes selected. The statistics
will be displayed after the output records.

-b Reads backwards, showing the most recent commands first. This flag has no
effect when acctcom reads standard input.

-C seconds Shows only processes whose total CPU time (system time + user time),
exceeds number of seconds.

-e time Selects processes existing at or before the specified time. You can use the
NLTIME environment variable to specify the order of hours, minutes, and
seconds. The default order is Ah[mm|ssl].

-E time Selects processes ending at or before the specified time. You can use the
NLTIME environment variable to specify the order of hours, minutes, and
seconds. The default order is Ah[mm|ss]]. If you specify the same time for
both the -E and -S flags, acetcom displays the process that existed at the
specified time.

-f Displays the fork/exec flag and the system exit value columns in the output.

-g group Selects processes belonging to group. You can specify either the group ID or
the group name.

-h Instead of mean memory size, shows the fraction of total available CPU time
consumed by the process while it ran (hog factor). This factor is computed
as:

(total CPU time)/(elapsed time)

Commands 39



acctcom

-H

-i

factor

-I num

-k

-1 line

-m

-0

-O seconds

-q

-u

-V

pattern

file

time

time

user

Shows only processes that exceed factor. (See the -h flag for a discussion of
how this factor is calculated.)

Displays columns showing the number of characters transferred in read or
write operations (the I/O counts).

Shows only processes transferring more than num characters.
Instead of memory size, shows total kcore minutes.
Shows only processes belonging to work station /dev/line.

Shows mean main memory size. This flag is on by default. Specifying the -h
or -k flags turns off -m.

Shows only commands matching pattern, where pattern is a regular expression
like those in the ed command (see page 280), except that here you can use a

+ (plus sign) as a special symbol for one or more occurrences of the
preceding character.

Copies selected process records to file, keeping the input data format. This
flag suppresses writing to standard output.

Shows only processes with CPU system time exceeding seconds.

Does not display any output records; just displays the average statistics that
are displayed with the -a flag.

Shows CPU factor. This factor is computed as:
(user-time) / (system-time + user-time).

Shows only those processes that existed on or after the specified time. You
can use the NLTIME environment variable to specify the order of hours,
minutes, and seconds. The default order is hAkh[mm][ss]].

Shows only those processes starting at or after the specified time. You can
use the NLTIME environment variable to specify the order of hours, minutes,
and seconds. The default order is Ak[mm[ss]].

Shows separate system and user CPU times.

Shows only processes belonging to user. For user, you can give a user ID, a
login name that is converted to a user ID, a # to select processes run with

superuser authority, or a ? to select processes associated with unknown user
IDs.

Eliminates column headings from the output.

40 Commands Reference



acctcom

Files
Jusr/adm/pacct Current process accounting file.
[etc/passwd User names and user IDs.
etc/group Group names and group IDs.

Related Information

The following commands: “acctdisk” on page 44, “acctems” on page 36, “acctcon” on
page 42, “acctmerg” on page 46, “acctpre” on page 48, “acet/*” on page 31, “fwtmp” on
page 345, “ps” on page 579, “runacct” on page 606, and “su” on page 724.

The acct system call, the acet and utmp files and the environment miscellaneous facility
in AIX Operating System Technical Reference.

“Running System Accounting” and “Overview of International Character Support” in
Managing the AIX Operating System.

Commands 41



acctcon

acctcon

Purpose

Performs connect-time accounting.

Syntax
/usr/lib/acct/acctconi ~C_'>—<
=1 file
-o file
-P

—t

/usr/lib/acct/acctcon2 —
0OL805233
Description

acctconl

The acctconl command converts a sequence of login and logout records (read from
standard input) to a sequence of login session records (written to standard output). its
input should normally be redirected from /usr/adm/wtmp.

The acctconl command displays, in ASCII format, the login device, user ID, login name,
prime connect time (seconds), nonprime connect time (seconds), session starting time
(numeric), and starting date and time (in date/time format). It also maintains a list of ports
on which users are logged in. When it reaches the end of its input, it writes a session
record for each port that still appears to be active. It normally assumes that its input is a
current file, so that it uses the current time as the ending time for each session still in
progress (see the -t flag on page 43).

Flags

-1 file Writes to file a line-usage summary showing the line name, the number of minutes
used, the percentage of total elapsed time used, the number of sessions charged, the
number of logins, and the number of logouts. This file helps track line usage and
identify bad lines. All hang-ups, terminations of login, and terminations of the
login shell cause the system to write logout records, so the number of logouts is
often much higher than the number of sessions.

42 Commands Reference



acctcon

Files

-0 file Writes to file an overall record for the accounting period, giving starting time,
ending time, number of restarts, and number of date changes.

-p Displays input only, showing line name, login name, and time in both numeric and
date/time formats.

-t Uses the last time found in the input as the ending time for any current processes
instead of the current time. This is necessary in order to have reasonable and
repeatable values for noncurrent files.

acctcon2

The acctcon2 command converts a sequence of login session records, produced by the
acctconl command, into total accounting records.

Jusr/adm/wtmp Login/flogout history file.

Related Information

The following commands: “acctdisk” on page 44, “acctems” on page 36, “acctcom” on
page 38, “acctmerg” on page 46, “acctpre” on page 48, “acct/*” on page 31, “fwtmp” on
page 345, “init” on page 396, “login” on page 453, and “runacct” on page 606.

The acct system call and the acct and utmp files in AIX Operating System Technical
Reference.

“Running System Accounting” in Managing the AIX Operating System.

Commands 43



acctdisk

acctdisk

Purpose

Performs disk-usage accounting.

Syntax

/usr/lib/acct/acctdisk —

-p /etc/passwd
/usr/lib/acct/acctdusg —{ >~<—_' Y—i
—-u file -p file

0OL805192

Description

Files

acctdisk

The acctdisk command reads lines from standard input that contain a user ID, the user’s
login name, and the number of disk blocks occupied by his files. It converts these lines to
total accounting records that can be merged with other accounting records and writes
those records to standard output.

acctdusg

The acctdusg command reads a list of file names from standard input (usually piped from
a find / -print command), computes disk resource usage (including indirect blocks) using
the login name of the owner of the files, and writes the results to standard output.

Flags

-p file Searches file for login names and numbers, instead of searching /etc/passwd.

-u file Places in file records of file names for which it does not charge.

Jetc/passwd Used to convert login names to user IDs.
[usr/lib/acct Directory holding all accounting commands.

44 Commands Reference



acctdisk

Related Information

The following commands: “acct/*” on page 31, “acctems” on page 36, “acctcom” on
page 38, “acctcon” on page 42, “acctmerg” on page 46, “acctprc” on page 48, “fwtmp”
on page 345, and “runacect” on page 606.

The acct system call and the acct and utmp files in AIX Operating System Technical
Reference.

“Running System Accounting” in Managing the AIX Operating System.

Commands 45



acctmerg

acctmerg

Purpose

Merges total accounting files.

Syntax

/usr/lib/acet/acctmerg

-a -i
—-h —p 2
-v fieldspec

1clc:ci‘merg always read standard imput in addition to any named files.
Do not put o blank between these items.

9 maximum

OL805234

Description

The acctmerg command reads records from standard input and up to nine additional files,
all in the tacct binary format or the tacet ASCII format. It merges these by adding
records with keys (normally user ID and name) that are identical, and expects the input
records to be sorted by those key fields. It writes these merged records to standard output.

The optional fieldspecs allow you to select input or output fields. A field specification is a
comma-separated list of fields or field ranges. Field numbers are in the order specified in
the tacet file in AIX Operating System Technical Reference, with array sizes, except for the
ta _name characters, taken into account. For example, -h2-3,7,15-13,2 displays the
login name, prime CPU and connect times, fee, queueing system, and disk usage data, and
the login name again, in that order, with column headings. The default specification is
“all fields” (1-18 or 1-), which produces very wide output lines containing all the
available accounting data.

Queueing system, disk usage, or fee data can be converted into tacct records using the
-ifieldspec argument. For example, disk accounting records, produced by acctdisk, consist
of lines containing the user ID, login name, number of blocks, and number of disk samples
(always 1). A file, dacct, containing these records can be merged into an existing total
accounting file, tacet, with:

acctmerg -i1-2,13,18 <dacct i. acctmerg tacct >output

46 Commands Reference



acctmerg

Flags
-a[fieldspec] Produces output in the form of ASCII records.
-h[fieldspec] Displays column headings. This flag implies -a but is effective with -p or -v.
-i[fieldspec] = Expects input files composed of ASCII records.
-plfieldspec] Displays input without processing.
-t Produces a single record that contains the totals of all input.
-u Summarizes by user ID rather than by user name.
-v{fieldspec] Produces output in ASCII format, with more precise notation for
floating-point numbers.
Example

The following sequence is useful for making repairs to any file in tacct format:

acctmerg -v <filel >file2
edit file2 as desired . . .
acctmerg -a <file2 >filel

Related Information

The following commands: “acct/*” on page 31, “acctems” on page 36, “acctcom” on
page 38, “acetcon” on page 42, “acctdisk” on page 44, “fwtmp” on page 345, “acctprc”
on page 48, and “runacct” on page 606.

The acct system call and the acct and utmp files in AIX Operating System Technical
Reference.

“Running System Accounting” in Managing the AIX Operating System.

Commands 47



acctprce

acctprce

Purpose

Performs process accounting.

Syntax

/etc/passwd
/usr/iib/acet/acctprei —->——4
file

/usr/lib/acet/acctpre2 —i

/usr/adm/pacct
/usr/lib/acct/accton ~<‘ ->——4
file

Description

0OL805235

acctprel

The acctprel command reads records from standard input that are in the acct format
(described in AIX Operating System Technical Reference), adds the login names that
correspond to user IDs, and then writes an ASCII record to standard output. This record
contains the user ID, login name, prime CPU time, nonprime CPU time, the total number
of characters transferred (in 512-byte units), the total number of blocks read and written,
and mean memory size (in 64-byte units) for each process.

If specified, file contains a list of login sessions in utmp format (described in AIX
Operating System Technical Reference), sorted by user ID and login name. By default,
acctprel gets login names from the password file, /etc/passwd. The information in file
helps distinguish among different login names that share the same user ID.

48 Commands Reference



acctpre

Files

acctpre2

The acctpre2 command reads (from standard input) the records written by acctprel,
summarizes them by user ID and name, and writes the sorted summaries to standard output
as total accounting records.

accton

The accton command without arguments turns process accounting off. If you specify file
(the name of an existing file), the kernel adds process accounting records to it
(/usr/adm/pacct by default).

Jetc/passwd, /usr/adm/pacct

Related Information

The following commands: “acct/*” on page 31, “acctdisk” on page 44, “acctecms” on
page 36, “acctcom” on page 38, “acctcon” on page 42, “acctmerg” on page 46, “fwtmp”
on page 345, and “runacet” on page 606.

The acct system call and the acet and utmp files in AIX Operating System Technical
Reference.

“Running System Accounting” in Managing the AIX Operating System.

Commands 49



actman

actman

Purpose

Lets you interact with multiple virtual terminals.

Syntax

actman —
0OL805323

Description

The actman command is the Activity Manager for the AIX Operating System. It is
normally run by the AIX logger in the same manner as any program listed in the
[ete/passwd file. Once started by the logger, actman creates the initial shell (/bin/sh)
and monitors the number of open virtual terminals until all have been closed. It then exits
to the AIX init process. If you try to end the initial shell when other virtual terminals are
still open, actman restarts the initial shell.

To take advantage of the multiple virtual terminal capability, use the open command (see
page 541) to execute another shell in a separate virtual terminal.

Note: You must log out of each existing shell to end your login session.

You do not need an Activity Manager if you do not have virtual terminal
capabilities. Thus if you do not log in from the local console, actman overlays itself
with the initial shell.

Related Information

The following command: “open” on page 541.

“Using Display Station Features” in Using the AIX Operating System.

50 Commands Reference



TNL SN20-9861 (26 June 1987) to SC23-0790-0

adb
radb
| Purpose
| Provides a general purpose debugger.
| Syntax
—a.out—core
adb core
-w ape
—pprompt objfil —< '
corfil
01805465
i Description

The adb command provides a debugger for C and assembler language programs. With it,
you can examine object and core files and provide a controlled environment for running a
program.

Normally, 0djfil is an executable program file that contains a symbol table. If objfil does
not contain a symbol table, the symbolic features of adb cannot be used, although the file
can still be examined. The default objfil is a.out.

The corfil is assumed to be a core image file produced by running objfil. The default corfil
is core.

|

|

|

|

|

I

l

l

| While running, adb takes input from standard input and writes to standard output. adb
| does not recognize the Quit or Interrupt keys. These keys cause adb to wait for a new
| command.

| In general, requests to adb are of the form

| [address] [,count] [command] {;]

|

|

|

I

|

|

|

where address and count are expressions. The default count is 1. If address is specified,
then the expression . (dot) is set to address.

The interpretation of an address depends on the context it is used in. If a subprocess is
being debugged, addresses are interpreted in the usual way in the address space of the
subprocess. For more information, see “Addresses” on page 50.7.

You can enter more than one command at a time by separating the commands with a ;
(semicolon).

Commands 50.1



TNL SN20-9861 (26 June 1987) to SC23-0790-0

adb

Expressions

+

A

n

integer

‘ceee’

< name

symbol

—symbol

.symbol

Specifies the last address used by a command; this is also known as the current
address.

Increases the value of . (dot) by the current increment.
Decreases the value of . (dot) by the current increment.
Specifies the last address typed by a command.

Specifies an octal number if integer begins with 0o, a hexadecimal number if
preceded by Ox or #, a decimal number if preceded by Ot; otherwise, a number
interpreted in the current radix. The radix is initially 16.

Specifies the ASCII value of up to 4 characters. \ (slash) can be used to escape a
’ (apostrophe).

Reads the current value of name. name is either a variable name or a register
name. adb maintains a number of variables (see “Variables” on page 50.7)
named by single letters or digits. If name is a register name, the value of the
register is obtained from the system header in corfil. The register names are
r0...r15 pc ics ¢s mq; the names fp, pep, and link are recognized as synonyms
for rl, r14, and ri5.

Specifies a sequence of upper or lower case letters, underscores, or digits, not
starting with a digit. The value of the symbol is taken from the symbol table in
objfil. An initial — (underscore) is prefixed to symbol if needed.

Specifies, in C, the true name of an external symbol begins with — (underscore),
as does the name of the constant pool of an external function. It may be
necessary to use this name to distinguish it from internal or hidden variables of
a program.

Specifies the entry point of the function named by symbol.

routine.name

(exp)

Specifies the address of the variable name in the specified C routine. Both
routine and name are symbols. If name is omitted the value is the address of the
most recently activated C stack frame corresponding to routine.

Specifies the value of the expression exp.

50.2 Commands Reference



TNL SN20-9861 (26 June 1987) to SC23-0790-0
adb

Operators

Integers, symbols, variables, and register names can be combined with the following
operators:

Unary
*exp Contents of location addressed by exp in corefile.

@exp Contents of the location addressed by exp in objfil.

-exp Integer negation.
~exp Bitwise complement.
Binary

el+e2 Integer addition.

el-e2 Integer subtraction.

el*e2 Integer multiplication.

el%e2 Integer division.

el&e2 Bitwise conjunction.

elle2 Bitwise disjunction.

elffe2 el rounded up to the next multiple of e2.

Binary operators are left associative and are less binding than unary operators.

Commands

You can display the contents of a text or data segment with the ? or the / (slash) command.
The = command displays a given address in the specified format f. (The commands ? and /
may be followed by *, see “Addresses” on page 50.7.)

”f Displays, in the format f, the contents of the objfil starting at address. The
value of . (dot) increases by the sum of the increment for each format letter.

/f Displays, in the format f, the contents of the corfil starting at address. The
value of . (dot) increases by the sum of the increment for each format letter.

=f Displays the value of address in the format f. The i and s format letters are not
meaningful for this command.

The format consists of one or more characters that specify print style. Each format
character may be preceded by a decimal integer that is a repeat count for the format
character. While stepping through a format, . (dot) increments by the amount given for
each format letter. If no format is given, the last format is used. The format letters
available are as follows:

o2 Prints 2 bytes in octal.

Commands 50.3



TNL SN20-9861 (26 June 1987) to SC23-0790-0

adb

04
q2
Q4
d2
D4
x 2
X4
u 2
U4
b1
cl
C1

sn
Sn

Y4

in
al

p4
t0

ro0
no

Prints 4 bytes in octal.

Prints 2 bytes in the current radix, unsigned.

Prints 4 bytes in the current radix, unsigned.

Prints in decimal.

Prints long decimal.

Prints 2 bytes in hexadecimal.

Prints 4 bytes in hexadecimal.

Prints as an unsigned decimal number.

Prints long unsigned decimal.

Prints the addressed byte in the current radix, unsigned.
Prints the addressed character.

Prints the addressed character using the following escape conventions:

1. Prints control characters as ~ followed by the corresponding printing
character.

2. Prints non-printable characters as ~ <n> where n is a hexadecimal value
of the character. The character ~ prints as ~ ~.

Prints the addressed character until a zero character is reached.

Prints a string using the ~ escape convention. n specifies the length of the
string including its zero terminator.

Prints 4 bytes in date format (see ctime in AIX Operating System Technical
Reference).

Prints as instructions. n is the number of bytes occupied by the instruction.

Prints the value of . (dot) in symbolic form. Symbols are checked to ensure
that they have an appropriate type as indicated below.

/ local or global data symbol
? local or global text symbol
= local or global absolute symbol

Prints the addressed value in symbolic form using the same rules for symbol
lookup as a.

When preceded by an integer, tabs to the next appropriate tab stop. For
example, 8t moves to the next 8-space tab stop.

Prints a space.

Prints a newline.

50.4 Commands Reference



TNL SN20-9861 (26 June 1987) to SC23-0790-0
adb

“...” 0 Prints the enclosed string.

A

Decreases . (dot) by the current increment. Nothing prints.
+ Increases . (dot) by 1. Nothing prints.
- Decreases . (dot) decrements by 1. Nothing prints.

newline
Repeats the previous command incremented with a count of 1.

2/ Mvalue mask
Words starting at . (dot) are masked with mask and compared with value until a
match is found. If L is used then the match is for 4 bytes at a time instead of 2. If
no match is found then . (dot) is unchanged; otherwise . (dot) is set to the matched
location. If mask is omitted then -1 is used.

[2/1wvalue...
Writes the 2-byte value into the addressed location. If the command is W, write 4
bytes. If the command is V, write 1 byte. Alignment restrictions may apply when
using w or W.

[?/lm b1 el f1[?/]
Records new values for (b1, el, fI). If less than three expressions are given then the
remaining map parameters are left unchanged. If the ? or / is followed by * then the
second segment (b2, e2, f2) of the mapping is changed. If the list is terminated by ?
or / then the file (objfil or corfil respectively) is used for subsequent requests. (For
example, /m? causes [ to refer to objfil).

> name
Assigns . (dot) to the variable or register name.

Calls a shell to read the rest of the line following !.

$modifier
Miscellaneous commands. The available modifiers are:

<file Reads commands from file and returns to the standard input.

>file Sends output to file. If file is omitted, output returns to the standard
output. file is created if it does not exist.

r Prints the general registers and the instruction addressed by pc and sets .
(dot) to pe.
b Prints all breakpoints and their associated counts and commands.

C stack backtrace. If address is given then it is taken as the address of
the current frame (instead of using the frame pointer register). If C is
used then the names and values of all automatic and static variables are
printed for each active function. If count is given then only the first count
frames are printed.

Commands 50.5



TNL SN20-9861 (26 June 1987) to SC23-0790-0

adb

T g 4@ RO W g oo

:modifier

Prints the names and values of external variables.

Sets the output page width for address. The default is 80.

Sets the limit for symbol matches to address. The default is 255.
Sets the current radix to 8.

Sets the current radix to address or 16, if none is specified.
Exits adb.

Prints all non-zero variables in octal.

Prints the address map.

Uses the remainder of the line as a prompt string.

Manages a subprocess. Available modifiers are:

be

SSs

Sets the breakpoint at address. The breakpoint runs count -1 times before
causing a stop. Each time the breakpoint is encountered, the command ¢
runs. If this command sets . (dot) to 0, the breakpoint causes a stop.

Deletes the breakpoint at address.

Runs objfil as a subprocess. If address is given explicitly, the program is
entered at this point; otherwise, the program is entered at its standard
entry point. count specifies how many breakpoints are to be ignored
before stopping. Arguments to the subprocess may be supplied on the
same line as the command. An argument starting with < or > causes the
standard input or output to be established for the command. On entry to
the subprocess, all signals are turned on.

Continues the subprocess with signal s (see the signal system call in AIX
Operating System Technical Reference). If address is given,the subprocess
is continued at this address. If no signal is specified, the signal that
caused the subprocess to stop is sent. Breakpoint skipping is the same as
forr

Continues the subprocess is single steps count times. If there is no current
subprocess, objfil is run as a subprocess as for r. In this case no signal
can be sent; the remainder of the line is treated as arguments to the
subprocess.

Stops the current subprocess, if one is running.

50.6 Commands Reference



TNL SN20-9861 (26 June 1987) to SC23-0790-0
adb

Variables

adb provides a number of variables. On entry to adb, the following variables are set from
the system header in the corfil. If corfil does not appear to be a core file, then these values
are set from objfil.

b The base address of the data segment

d The size of the data segment

e The entry address of the program

m The “magic” number (0405, 0407, 0410, or 0411)
s The size of the stack segment

t The size of the text segment.

Addresses

The address in a file associated with a written address is determined by a mapping
associated with that file. Each mapping is represented by two triples (b1, el, fI) and (b2,
e2, f2). The file address that corresponds to a written address is calculated as follows:

bl <address<el= >file address = address + f1-bl
or
b2<address <e2= > file address = address +f2-b2,

otherwise, the requested address is not legal. In some cases (for example, programs with
separated I and D space) the two segments for a file may overlap. If a ? or / is followed by
an *, then only the second triple is used.

The initial setting of both mappings is suitable for normal a.out and core files. If either
file is not of the kind expected, then for that file, b1 is set to 0, el is set to the maximum
file size and f1I is set to 0; in this way, the whole file can be examined with no address
translation.

In order for adb to be used on large files, all appropriate values are kept as signed 32-bit
integers.

~pprompi
Sets the prompt used by adb to prompt. If the prompt includes spaces, enclose the
prompt in quotation marks.

-w Opens the 0bjfil and corfil for writing. This flag makes either file if they do not exist.

Commands 50.7



TNL SN20-9861 (26 June 1987) to SC23-0790-0

core.

adb
| Files
] /dev/mem
| /dev/swap
| a.out
|

| Related Information

| The ptrace system call in AIX Operating System Technical Reference.
| The a.out and core files in IBM RT PC AIX Operating System Technical Reference.

50.8 Commands Reference



admin

admin

Purpose

Creates and initializes SCCS files.

Syntax
To Create SCCS Files:

-n
odmin~<
=i 1

name —f!

-r1.1
— N Y
—auser —r num num
—fv program ~mmrlist

>_<\ -y newfile
—t file L——,
—y comment

2 If —a is never used to specify users,
then any user can run get —e on the file.

OL805376

0OL805160

0L805417

Commands 51



admin

To Change Existing SCCS Files:

a
admin | 1
—quser num
—guser s
—f 1
one of
b i

cnum mmodule

dSID n
fnum qtext
i ttype

a
num
—d 4 , —fvprogram
one of —dv
b i

]
¢ m
d n
fq
it
01805385
To Check and Correct Damaged SCCS Files:
one of
P B 4 ;
OL805158
' Do not put a blank between these items.
01805308

Description

The admin command creates new Source Code Control System (SCCS) files or changes
specified parameters in existing SCCS files. These parameters control how the get
command builds the files that you can edit. They also provide information about who can
access the file, who can make changes, and when changes were made. The admin
command is most often used to create new SCCS files without setting parameters. See

)

52 Commands Reference



admin

“Examples” on page 56 for the syntax used to create an SCCS file with no parameters set
in the new file.

If the named file exists, admin modifies its parameters as specified by the flags. If it does
not exist and you supply the -i or the -n flag, admin creates the new file and provides
default values for unspecified flags. If you specify a directory name for file, admin
performs the requested actions on all SCCS files in that directory (all files with the s.
prefix). If you specify a - (minus) as a file name, admin reads standard input and
interprets each line as the name of an SCCS file. An end-of-file character (Ctrl-D) ends
input.

If you are not familiar with the delta numbering system, see AIX Operating System
Programming Tools and Interfaces for more information.

SCCS File Conventions

All SCCS file names must have the form s.name. New SCCS files are created with
read-only permission. You must have write permission in the directory to create a file (see
“chmod” on page 128 for an explanation of file permissions). admin writes to a
temporary x-file, which it calls x.name. The x-file has the same permissions as the original
SCCS file if it already exists, and it is read-only if admin creates a new file. After
successful completion of admin, the x-file is moved to the name of the SCCS file. This
ensures that changes are made to the SCCS file only if admin does not detect any errors
while it is running.

Directories containing SCCS files should be created with permission code 755 (read, write,
and execute permissions for owner, read and execute permissions for group members and
others). SCCS files themselves should be created as read-only files (444). With these
permissions, only the owner can use non-SCCS commands to modify SCCS files. If a group
can access and modify the SCCS files then the directories should include group write
permission.

The admin command also uses a temporary lock file (called z.name), to prevent
simultaneous updates to the SCCS file by different users. See “SCCS Files” on page 360
for additional information on the z.name file.

The following table contains the header flags that can be set with the -f flag and unset
with the -d flags (see page 55). The header flags control the format of the g-file created
with the get command (see “SCCS Files” on page 360 for details on the g-file).

Commands 53



admin

Header

Flag Header Flag Purpose

b Lets you use the -b flag of a get command to create branch deltas.

cnum Makes num the highest release number that a get -e can use. The value of
num must be less than or equal to 9999. (Its default value is 9999.)

fnum Makes num the lowest release number that a get -e can retrieve. num must
be greater than 0 and less than 9999. (Its default value is 1.)

dSID Makes SID the default delta supplied to a get command.

i Treats the No id keywords (ge6) message issued by the get or delta
command as an error (see “Identification Keywords” on page 362).

j Permits concurrent get commands for editing the same SID of an SCCS file.
This allows multiple concurrent updates to the same version of the SCCS file.

lnum[,num] . .. Locks the releases specified by num . . . against editing, so that a get -e
against one of these releases fails. You can lock all releases against editing
by specifying -fla and unlock specific releases with the -d flag.

n Causes delta to create a null delta in any releases that are skipped when a

delta is made in a new release. For example, if you make delta 5.1 after delta
2.7, releases 3 and 4 will be null. The resulting null deltas can serve as points
from which to build branch deltas. Without this flag, skipped releases do not
appear in the the SCCS file.

qtext Substitutes text for all occurrences of the % Q% keyword in an SCCS text file
retrieved by a get command. (See “Identification Keywords” on page 362 for
more information on keywords.)

mmodule Substitutes module for all occurrences of the %M% keyword in an SCCS text
file retrieved by a get command. The default module is the name of the SCCS
file without the s. prefix.

ttype Substitutes type for all % Y% keywords in a g-file retrieved by a get.

viprogram] Makes delta prompt for Modification Request (MR) numbers as the reason
for creating a delta. program specifies the name of an MR number validity
checking program (see “delta” on page 236). If v is set in the SCCS file, the
admin -m flag must also be used, even if its value is null.

Figure 1. SCCS Header Flags

Flags

You can enter the flags and input file names in any order. All flags apply to all the files.

54 Commands Reference



admin

-auser

-dhdrflag

-euser

-fhdrflaglvalue]

-h

-i[name]

-m[mrlist]

Adds the specified user to the list of users that can make sets of changes
(deltas), to the SCCS file. user can be either a user name, a group name,
or a group ID. Specifying a group name or number is the same as
specifying the names of all users in that group. You can specify more
than one -a flag on a single admin command line. If an SCCS file
contains an empty user list, then anyone can add deltas.

If a file has a user list, the creator of the file must be included in the list
in order for the creator to make deltas to the file.

Removes the specified header flag from the SCCS file. You can specify
this flag only with existing SCCS files. You can also specify more than
one -d flag in a single admin command. See Figure 1 on page 54 for
the header flags that admin recognizes.

Removes the specified user from the list of users allowed to make deltas
to the SCCS file. Specifying a group ID is equivalent to specifying all
user names common to that group. You can specify several -e flags on a
single admin command line.

Places the specified header flag and value in the SCCS file. You can
specify more than one header flag in a single admin command. See
Figure 1 on page 54 for the header flags that admin recognizes.

Checks the structure of the SCCS file and compares a newly computed
checksum with the checksum that is stored in the first line of the SCCS
file. When the checksum value is not correct, the file has been
improperly modified or has been damaged. This flag helps you detect
damage caused by the improper use of nonSCCS commands to modify
SCCS files, as well as accidental damage. The -h flag prevents writing
to the file, so it cancels the effect of any other flags supplied. If an error
message is returned indicating the file is damaged, use the -z flag to
recompute the checksum. Then test to see if the file is corrected by
using the -h flag again.

Gets the text for a new SCCS file from name. This text is the first delta
of the file. If you specify the -i flag but you omit the file name, admin
reads the text from standard input until it reaches END OF FILE
(Ctrl-D). If you do not specify the -i flag, but you do specify the -n flag,
admin creates an empty SCCS file. admin can only create one file
containing text at a time. If you are creating two or more SCCS files
with one call to admin, you must use the -n flag, and the SCCS files
created are empty.

Specifies a list of Modification Requests (MR) numbers to be inserted
into the SCCS file as the reason for creating the initial delta. The v flag
must be set. The MR numbers are validated if the v flag has a value (the
name of an MR number validation program). admin reports an error if
the v flag is not set or if MR validation fails.

Commands 55



admin

-n

-rnum.num

-t[file]

-ylcomment]

=Z

Examples

Creates a new, empty SCCS file. Do not specify this flag when you use
the -i flag.

Inserts the initial delta into num.num, the release and version
respectively. You can specify -r only if you also specify the -i or -n flag.
If you do not specify this flag, the initial delta becomes release 1, version
1. Use this flag only when creating an SCCS file.

Takes descriptive text for the SCCS file from file. If you use -t when
creating a new SCCS file, you must supply a file name. In the case of
existing SCCS files:

e Without a file name, -t causes removal of the descriptive text (if any)
currently in the SCCS file.

e With a file name, -t causes text in the named file to replace the
descriptive text (if any) currently in the SCCS file.

Inserts comment text into the initial delta in a manner identical to that
of the delta command. Use this flag only when you create an SCCS file.
If you do not specify a comment, admin inserts a line of the following
form:

date and time created YY/MM|DD HH:MM:SS by login

Recomputes the SCCS file checksum and stores it in the first line of the
SCCS file (see the -h flag on page 55).

Warning: Using admin with this flag on a damaged file
can prevent future detection of the damage. This flag
should only be used if the SCCS file is changed using
non-SCCS commands because of a serious error.

1. To create an empty SCCS file named s.prog.c:

admin

-Nn

s.prog.c

56 Commands Reference



admin

2. To convert an existing text file into an SCCS file:
admin -iprogram.c s.prog.c
This converts the text file program. c into the SCCS file s.prog.c. The original file

remains intact, but it is no longer needed. You must rename or delete it before you
can use the get command on S.prog.c.

Related Information

The following commands: “delta” on page 236, “ed” on page 280, “get” on page 359,
“help” on page 391, “prs” on page 574, and “what” on page 848.
The scesfile file in AIX Operating System Technical Reference.

“Maintaining Different Versions of a Program” in AIX Operating System Programming
Tools and Interfaces.

Commands 57



ar

ar
Purpose
Maintains portable libraries used by the linkage editor.
Syntax
posname
ar library name
o
S d q
| pt
v X h
OL805377
ar — w — Jibrary —
01805349
' Do not put a blank between these items.
OL805308
Description
The ar command combines one or more named files into a single library file written in ar
archive format.
When ar creates a library, it creates headers in a transportable format; when it creates or
updates one, it rebuilds the symbol table that the linkage editor (the 1d command) uses to
make efficient multiple passes over object file libraries. (The ar file entry in AIX
Operating System Technical Reference describes the format and structure of portable
archives and symbol tables.)
Flags

Note: You must list all selected flags together on the command line, without blanks
between them. You must always specify one from the set dhmpgrtxw. You can also
specify any number of optional flags from the set abcilsuv. If you select a positioning flag

58 Commands Reference



ar

(a, b, or i), you must also specify the name of a file within library (posname), immediately
following the flag list (separated from it by a blank).

a posname Positions the named files after the existing file identified by posname.

b posname Positions the named files before the existing file identified by posname.

c
d
h

i posname

Suppresses the normal message that is produced when library is created.
Deletes the named files from the library.

Sets the modification times in the member headers of the named files to the
current date and time. If you do not specify any file names, ar sets the time
stamps of all member headers.

Positions the named files before the existing file identified by posname (same
as b).

Places temporary files in the current (local) directory instead of directory
/tmp.

Moves the named files to some other position in the library. By default, it
moves the named files to the end of the library. Use a positioning flag (abi) to
specify some other position.

Writes to the standard output the contents of the named files or all files in a
library if you do not specify any files.

Adds the named files to the end of the library. Positioning flags, if present, do
not have any effect. Note that this process does not check to see if the named
files are already in the library. In addition, if you name the same file twice, it
may be put in the library twice.

Replaces a named file if it already appears in the library. Since the named
files occupy the same position in the library as the files they replace, a
positioning flag does not have any additional effect. When used with the u
flag (update), r replaces only files modified since they were last added to the
library file.

If a named file does not already appear in the library, ar adds it. In this case,
positioning flags do affect placement. If you do not specify a position, new
files are placed at the end of the library. If you name the same file twice, it
may be put in the library twice.

Forces the regeneration of the library symbol table whether or not ar modifies
the library contents. Use this flag to restore the library symbol table after
using the strip command on the library.

Writes to the standard output a table of contents for the library. If you
specify file names, only those files appear. If you do not specify any files, t
lists all files in the library.

Commands 59



ar

u Copies only files which have been changed since they were last copied (see the
r flag discussed previously).

v Writes to standard output a verbose file-by-file description of the making of
the new library. When used with the t flag, it gives a long listing similar to
that of the Is -1 command, described under “1s” on page 461. When used with
the x flag, it precedes each file with a name. When used with the h flag, it
lists the member name and the updated modification times.

The environment variables NLLDATE and NLTIME control the format of
the archive date and time.

w Displays the archive symbol table. Each symbol is listed with the name of the
file in which the symbol is defined.

x Extracts the named files by copying them into the current directory. These
copies have the same name as the original files, which remain in the library.
If you do not specify any files, x copies all files out of the library. This
process does not alter the library.

Examples
1. To create a library:
ar vq Tlib.a strien.o strcpy.o
If 1ib. a does not exist, then this creates it and enters into it copies of the files
strien.o and strcpy.o. If 1ib.a does exist, then this adds the new members to the
end without checking for duplicate members. The v flag sets verbose mode, in which
ar displays progress reports as it proceeds.
2. To list the table of contents of a library:
ar vt 1lib.a
This lists the table of contents of 11b. a, displaying a long listing similar to 1s -1. To
list only the member file names, omit the v flag.

3. To replace or add new members to a library:

ar vr 1lib.a strlen.o strcat.o

This replaces the members strlen.o and strcat.o. If 1ib.a was created as shown
in Example 1, then the strlen.o member is replaced. A member named strcat.o
does not already exist, so it is added to the end of the library.

4. To specify where to insert a new member:

ar vrb strlen.o 1ib.a strcmp.o
This adds strcmp. o, placing the new member before strlen.o.

60 Commands Reference



ar

Files

To update a member if it has been changed:
ar vru lib.a strcpy.o

This replaces the existing strcpy.o member, but only if the file Strcpy.o has been
modified since it was last added to the library.

To change the order of the library members:
ar vma strcmp.o 1ib.a strcat.o strcpy.o
This moves the members strcat.o and strcpy. o to positions immediately after

strcmp.o. The relative order of strcat.o and strcpy.o is preserved. In other
words, if strcpy.o preceded strcat. o before the move, then it still does.

To extract library members:
ar vx lib.a strcat.o strcpy.o

This copies the members strcat.o and strcpy. o into individual files named
strcat.o and strcpy. o, respectively.

To extract and rename a member:

ar p Tlib.a strcpy.o >stringcopy.o

This copies the member strcpy.o to a file named stringcopy.o.
To delete a member:

ar vd 1lib.a strlen.o

This deletes the member strlen.o from the library 1ib.a.

/tmp/ar* Temporary files.

Related Information

The following commands: “backup” on page 76, “l1d” on page 427, “lorder” on page 457,
“make” on page 474, “nm” on page 521, “size” on page 665, and “strip” on page 716.

The a.out and ar files and environment miscellaneous facility in AIX Operating System
Technical Reference.

The “Overview of International Character Support” in Managing the AIX Operating
System.

Commands 61



arithmetic

arithmetic

Purpose

Tests arithmetic skills.

Syntax
arithmetic
OL805164
' Do not put a blank between these items.
OL805308
Description

62

The arithmetic command displays simple arithmetic problems and waits for you to enter
an answer. If your answer is correct, the program displays Right! and presents a new
problem. If your answer is wrong, it displays What? and waits for another answer. Every
20 problems, arithmetic displays the number of correct and incorrect responses and the
time required to answer.

The arithmetic command does not give the correct answers to the problems it displays. It
provides practice rather than instruction in performing arithmetic calculations.

The range is a decimal number specifying the permissible range of all numbers (except
answers). The default range is 10. At the start, all numbers within this range are equally
likely to appear. If you make a mistake, the numbers in the problem you missed become
more likely to reappear.

To quit the game, press INTERRUPT (Alt-Pause); arithmetic displays the final game
statistics and exits.

Commands Reference



arithmetic

Flags
Two types of optional flags modify the action of arithmetic. The first set specifies the
type of arithmetic problem:
+ Specifies addition problems.
-  Specifies subtraction problems.
x Specifies multiplication problems.
/  Specifies division problems.

If you do not select any flags, arithmetic selects addition and subtraction problems. If
you give more than one problem specifier (+-x/), the program mixes the specified types of
problems in random order.

Examples

1. To drill on addition and subtraction of integers from 0 to 10:
/usr/games/arithmetic
2. To drill on addition, multiplication, and division of integers from 0 to 50:

/usr/games/arithmetic +x/ 50

Commands 63



as

as
Purpose
Assembles a source file.
Syntax
= >
—q - 1 file
—n name listfile
—o objfile
OL805165
' Do not put a blank between these items.
0L805308
Description
The as command reads and assembles the named file (conventionally this file ends with a
.s suffix). If you do not specify a file, as reads and assembles standard input. It stores its
output, by default, in a file named a.out. The output file is executable if no errors occur
and if there are no unresolved external references.
Flags

-a Provide extended addressing for handling large structures.

-1[listfile] Produces a assembler listing. If you do not specify a file name, a default name
is produced by replacing the .s extension of the source file name with an .Ist
extension.

-n name Specifies the name that appears in the header of the assembler listing. By
default, the header contains the name of the assembler source file.

-0 objfile Writes the output of the assembly process to the specified file instead of to
a.out.

64 Commands Reference



as

Files

a.out Default output file.

Related Information

The following commands: “ce¢” on page 112 and “ld” on page 427.
The a.out file in AIX Operating System Technical Reference.

The discussion of as in Assembler Language Reference and AIX Operating System
Programming Tools and Interfaces.

Commands 65



at

at, batch

Purpose

Runs commands at a later time.

Syntax
today
time ~<
date increment
at
— _—__\
ot/
batch —
0L805002
Description

The at and batch commands read from standard input the names of commands to be run at
a later time:

e at allows you to specify when the commands should be run.
e Dbatch runs jobs when the system load level permits.

Both at and batch mail you all output from standard output and standard error for the
scheduled commands, unless you redirect that output. They also write the job number and
the scheduled time to standard error.

Variables in the shell environment, the current directory, umask, and ulimit are retained
when the commands are run. Open file descriptors, traps, and priority are lost.

You can use at if your name appears in the file fusr/lib/eron/at.allow. If that file does
not exist, at checks the file /usr/lib/cron/at.deny to determine if you should be denied
access to at. If neither file exists, only the superuser can submit a job. The allow/deny
files contain one user name per line. If at.allow does exist, the superuser’s login name
must be included in it for the superuser to be able to use the command.

66 Commands Reference



at

Flags

The required time parameter can be one of the following:

1. A number followed by an optional suffix. at interprets one-and two-digit numbers as
hours. It interprets four digits as hours and minutes. The NLTIME environment
variable specifies the order of hours and minutes. The default order is the hour
followed by the minute. You can also separate hours and minutes with a : (colon). The
default order is hour:minute.

In addition, you may specify a suffix of am, pm, or zulu. If you do not specify am or
pm, at uses a 24 hour clock. The suffix zulu indicates that the time is GMT
(Greenwich Mean Time). The NLTMISC environment variable controls the suffixes
that at recognizes.

2. at also recognizes the following keywords as special times: noon, midnight, and now.
Note that you can use the special word now only if you also specify a date or an
increment. Otherwise, at tells you: too late. The NLTSTRS environment variable
controls the additional keywords that at recognizes.

You may specify the date parameter as either a month name and a day number (and
possibly a year number preceded by a comma), or a day of the week. The NLDATE
environment variable specifies the order of the month name and day number (by default,
month followed by day). The NLLDAY environment variable specifies long day names;
NLSDAY and NLSMONTH specify short day and month names. (By default, the long
name is fully spelled out; the short name abbreviated to three characters.) at recognizes
two special “days,” today and tomorrow by default. (The NLTSTRS environment
variable specifies these special days.) today is the default date if the specified time is later
than the current hour; tomorrow is the default if the time is earlier than the current
hour. If the specified month is less than the current month (and a year is not given), next
year is the default year. The optional increment can be one of the following:

1. A + (plus sign) followed by a number and one of the following words: minute[s],
hour[s], day[s], week[s], month[s], year[s] (or their non-English equivalents).

2. 'The special word next followed by one of the following words: minute[s], hour[s],
day[s], week[s], month[s], year[s] (or their non-English equivalents).

The NLTUNITS environment variable specifies the non-English equivalents of the English
defaults.

-1 Reports your scheduled jobs.

-r job ... Removes jobs previously scheduled by at or batch, where job is the number
assigned by at or batch. If you do not have superuser authority (see “su” on
page 724), you can remove only your own jobs.

Commands 67



at

- Examples
1. To schedule the command from the terminal, use a command similar to one of the
following:
at b at now next week at now + 2 days
pm Friday uuclean uuclean
uuclean Ctrl-D Ctrl-D
Ctrl-D

2. To run uuclean at 3:00 in the afternoon on the 24th of January, use any one of the

following commands:

echo wuuclean
echo uuclean
echo uuclean

at 3:00 pm January 24

at 3pm Jan
at 1500 jan

24
24

3. To run a job when the system load permits:

batch <!

longjob 2>&1 >outfile | mail mylD
!

This example shows the use of a here document to send standard input to at (see
“Inline Input Documents” on page 650).

The order of redirections is important here, so that only error messages are sent into
the pipe to the mail command. If you reverse the order, both standard error and
standard output are sent to outfile (see the discussion of “Input and Output
Redirection Using File Descriptors” on page 651 for details).

4. To have a job reschedule itself, invoke at from within the shell procedure by including
code similar to the following within the shell file:

echo '"sh shellfile" | at

now tomorrow

5. To list the jobs you have sent to be run later:

at -1

6. To cancel jobs:

at -r 103 227

This cancels jobs 103 and 227. Use at -1 to list the job numbers assigned to your jobs.

68 Commands Reference



at

Files
Jusr/lib/cron Main cron directory.
Jusr/lib/cron/at.allow List of allowed users.
Jusr/lib/cron/at.deny List of denied users.
Jusr/spool/cron/atjobs Spool area.

Related Information
The following commands: “cron” on page 172, “kill” on page 422, “mail” on page 470,
“nice” on page 515, “ps” on page 579, and “sh” on page 637.
The environment special facility in AIX Operating System Technical Reference.

“Running Commands at Pre-set Times” and “Overview of International Character Support”
in IBM RT PC Managing the AIX Operating System.

Commands 69



awk

awk

Purpose
Finds lines in files matching specified patterns and performs specified actions on them.

Syntax

awk m‘t—pattern 2~>_<:Jct/'on:>T —
~Fchar! ~f progfile variable =value file

! The default charis a tab.
2 The default pattern is every line.
3 The default action is to print the line.

0L805422
Description

The awk command is a more powerful pattern matching command than the grep command.
It can perform limited processing on the input lines, instead of simply displaying lines that
match. Some of the features of awk are:

o It can perform convenient numeric processing.
e It allows variables within actions.

o It allows general selection of patterns.

e It allows control flow in the actions.

It does not require any compiling of programs.

For a detailed discussion of awk, see AIX Operating System Programming Tools and
Interfaces.

The awk command, reads files in the order stated on the command line. If you specify a
file name as - (minus) or do not specify a file name, awk reads standard input.

The awk command searches its input line by line for patterns. When it finds a match, it
performs the associated action and writes the result to standard output. Enclose
pattern-action statements on the command line in single quotation marks to protect them
from interpretation by the shell.

70 Commands Reference



awk

The awk command first reads all pattern-action statements, then it reads a line of input
and compares 1t to each pattern, performing the associated actions on each match. When
it has compared all patterns to the input line, it reads the next line.

The awk command treats input lines as fields separated by spaces, tabs, or a field
separator you set with the F'S variable. Fields are referenced as $1, $2, and so on. $0
refers to the entire line.

On the awk command line, you can assign values to variables as follows:

variable =value

Pattern-Matching Statements
Pattern-matching statements follow the form:
pattern { action }

If a pattern lacks a corresponding action, awk writes the entire line that contains the
pattern to standard output. If an action lacks a corresponding pattern, it matches every
line.

Actions

An action is a sequence of statements that follow C Language syntax. These statements
can include:

statement format

if if ( conditional ) statement | else statement |
while while ( conditional ) statement

for for ( expression ; conditional ; expression ) statement
break

continue

{ statement . .. }

(assignment) variable=-expression

print print [expression-list] [ > expression]

printf printf format|, expression-list] [ > expression]
next

exit

Statements can end with a semicolon, a new-line character , or the right brace enclosing
the action.

If you do not supply an action, awk displays the whole line. Expressions can have string
or numeric values and are built using the operators +, -, *, /, %, a blank for string
concatenation, and the C operators ++, --, +=, -= *= /= and %=. In statements,
variables may be scalars, array elements (denoted x[i]) or fields. Variable names may
consist of upper- and lowercase alphabetic letters, the underscore character, the digits
(0-9), and extended characters. Variable names cannot begin with a digit. Variables are

Commands 71



awk

initialized to the null string. Array subscripts may be any string; they do not have to be
numeric. This allows for a form of associative memory. String constants in expressions
should be enclosed in double quotation marks.

There are several variables with special meaning to awk. They include:

FS Input field separator (default is a blank). This separator character cannot
be a two-byte extended character.

NF The number of fields in the current input line (record).

NR The number of the current input line (record).

FILENAME The name of the current input file.

OFS The output field separator (default is a blank). This separator character
cannot be a two-byte extended character.

ORS The output record separator (default is a new-line character). This
separator character cannot be a two-byte extended character.

OFMT The output format for numbers (default %. 6g).

Since the actions process fields, input white space is not preserved on the output.

The printf statement formats its expression list according to the format of the printf
subroutine (see AIX Operating System Technical Reference), and writes it arguments to
standard output, separated by the output field separator and terminated by the output
record separator. You can redirect the output using the print > file or printf> file
statements.

You have two ways to designate a character other than white space to separate fields. You
can use the -Fc flag on the awk command line, or you can start progfile with:

BEGIN { FS = ¢ }
Either action changes the field separator to c.

There are several built-in functions that can be used in awk actions.

length Returns the length of the whole line if there is no argument
or the length of its argument taken as a string.

exp(n) Takes the exponential of its argument.

log(n) Takes the base e logarithm of its argument.

sqrt(n) Takes the square root of its argument.

int(n) ‘ Takes the integer part of its argument.

substr(s,m,n) Returns the substring n characters long of s, beginning at
position m.

sprintf(fmt,expr,expr, . ..) Formats the expressions according to the printf format string

fmt and returns the resulting string.

72 Commands Reference



awk

Flags

Patterns

Patterns are arbitrary Boolean combinations of patterns and relational expressions (the !,

i1, and && operators and parentheses for grouping). You must start and end patterns with
slashes (/). You can use regular expressions like those allowed by the egrep command (see
“grep” on page 381), including the following special characters:

+ One or more occurrences of the pattern.
? Zero or one occurrences of the pattern.
| Either of two statements.

() Grouping of expressions.

Isolated patterns in a pattern apply to the entire line. Patterns can occur in relational
expressions. If two patterns are separated by a comma, the action is performed on all lines
between an occurrence of the first pattern and the next occurrence of the second. Regular
expressions can contain extended characters with one exception: range constructs in
character class specifications using square brackets cannot contain two-byte extended
characters. Individual instances of extended characters can appear within square
brackets; however, two-byte extended characters are treated as two separate one-byte
characters. Regular expressions can also occur in relational expressions.

There are two types of relational expressions that you can use. One has the form:
expression matchop pattern

where matchop is either: ~ (for “contains”) or !~ (for “does not contain”). The second has
the form:

expression relop expression

where relop is any of the six C relational operators: <, >, <=, >=, ==, and !=. A
conditional can be an arithmetic expression, a relational expression, or a Boolean
combination of these.

You can use the special patterns BEGIN and END to capture control before the first and
after the last input line is read, respectively. You can only use these patterns before the
first and after the last line in progfile.

There are no explicit conversions between numbers and strings. To force an expression to
be treated as a number, add O to it. To force it to be treated as a string, append a null
string ("'").

-f progfile Searches for the patterns and perform the actions found in the file progfile.
-Fchar Uses char as the field separator character (by default a blank).

Commands 73



awk

Examples

1.

To display the lines of a file that are longer than 72 characters:
awk "length >72" chapterl

This selects each line of the file chapterl that is longer than 72 characters. awk
then writes these lines to standard output because no action is specified.

To display all lines between the words start and stop:

awk "/start/,/stop/" chapterl

To run an awk program (sum2.awk .) that processes a file (chapterl):
awk -f sum2.awk chapterl

The following awk program computes the sum and average of the numbers in the
second column of the input file:

sum += $2

}
END {

print "Sum: ", sum;
print "Average:", sum/NR;

The first action adds the value of the second field of each line to the variable sum.
awk initializes sum (and all variables) to zero before starting. The keyword END
before the second action causes awk to perform that action after all of the input file
has been read. The variable NR, which is used to calculate the average, is a special
variable containing the number of records (lines) that have been read.

To print the names of the users who have the C shell as the initial shell:
awk =-F: '/csh/{print $1}' /etc/passwd

Related Information

The following commands: “lex” on page 432, “grep” on page 381, and “sed” on page 629.

The printf subroutine in AIX Operating System Technical Reference.

The “Overview of International Character Support” in Managing the AIX Operating
System.

The discussion of awk in AIX Operating System Programming Tools and Interfaces.

74 Commands Reference



TNL SN20-9861 (26 June 1987) to SC23-0790-0

back
back
Purpose
Plays backgammon.
Syntax
/usr/games/back —
0L805186

Description

Files

The back game provides you with a partner for backgammon. You select one of three skill
levels: beginner, intermediate, or expert. You may also choose to roll your own dice
during your turns, and you are asked if you want to move first.

The points are numbered such that:

e 0 is the bar for removed white pieces.
e 1 is white’s extreme inner table.

® 24 is brown’s extreme inner table.

e 25 is the bar for removed brown pieces.

For details on how to make your moves, enter y when back asks Instructions at the

beginning of the game. When it first asks Move?, enter ? to see a list of choices other than
entering a numerical move.

When the game is finished, back asks you if you want to save game information. Ay
response stores game data in the file back.log in your current directory.

The back game plays only the forward game, even at the expert level. It will object if you
try to make too many moves in a turn, but not if you make too few. Doubling is not
implemented.

To quit the game, press INTERRUPT (Alt-Pause).

Jusr/games/lib/backrules Rules file.
/tmp/b* Log temp file.
back.log Log file.

Commands 175



backup

backup

Purpose

Backs up files.

Syntax
O
— level —u>_<
backup _:
—fdevice !
=1 num
-v
—Cnum -m _<
—ddensity .
—ssize filesystem
-r
OL805082
Description

The backup command copies files in the backup format described in AIX Operating
System Technical Reference. The backup output device is usually a removable medium,
such as diskette or magnetic tape. You can name either a file system (backup by i-node)
or the actual files to be backed up (backup by name). In the first case, you can back up
either all files on the system (a full backup) or only the files that have been modified since
a specific full backup (an incremental backup). You can also specify a minidisk (backup
by minidisk), in which case backup copies an exact image of the entire minidisk.

Note: Because a backup by minidisk backs up an entire minidisk as an exact
image, a large minidisk with a small or sparsely used file system may take longer
and require more backup medium to back up this way, rather than by i-node or by
name.

If the file system you are backing up is mounted and is not the root file system,
backup unmounts the file system before it performs an i-node backup and then
remounts the file system before quitting.

If the file systems you are backing up include the root file system, backup ensures
that the other file systems are not in use. If one is, it warns you of this and quits.

For a file system backup, you supply a level number and a filesystem name. The possible
level numbers are 0-9; the default level is 9. A level 0 backup includes all files on the file

76 Commands Reference



TNL SN20-9861 (26 June 1987) to SC23-0790-0
backup

Flags

system. A level n backup includes all files modified since the last level n-1 backup. The
level numbers, in conjunction with the -u flag, provide an easy way to maintain a
hierarchy of incremental backups for each file system. See Managing the AIX Operating
System for a discussions of backup strategy and the use of incremental backups.

The name of a filesystem can be either the physical device name (the block or raw name) or
the name of the directory on which the file system is normally mounted. When you
specify a directory name, backup reads /etc/filesystems for the physical device name. In
this case, it also acquires values for other backup parameters from /etc/filesystems.

Note: The filesystem must specify a local device or directory.

By default, backup writes to the device defined in the backupdev entry of
/etc/filesystems for a backup by i-node or to /dev/rfd0 for backups by minidisk or name
or if no backupdev is defined in /etc/filesystems. You can override this default action
with the -f flag. The backup command recognizes a special syntax for the names of output
files. If the argument is a range of names, such as /dev/rfd0-3, backup automatically goes
from one drive (in the range) to the next. After exhausting all of the specified drives, it
halts and requests that new volumes be mounted.

For individual file backup, use the -i flag. backup reads standard input for the names of
files to be backed up. In this case, backup does not read /etc/filesystems and does not
default to the settings specified there.

Warning: Ensure that the flags you specify match the backup
medium. If the backup medium is not a disk or diskette, do not
specify the -1 flag. Similarly, if the backup medium is not a tape,
do not specify the -d or -s flags. If you do specify flags that do
not go with the medium, backup displays an appropriate error
message and continues the backup.

-Cnum Specifies the number of blocks to write in a single output operation. If you do
not specify num, backup uses a default value appropriate for the physical
device selected. Larger values of num result in longer physical transfers to

tape devices. The value of the -C flag is always ignored when backup writes to
diskette. In this case, it always writes in clusters that occupy a complete track.

-ddensity Specifies the density of a tape medium in bytes per inch. The default density is
700 bytes per inch.

-fdevice Specifies the output device.
-i Reads standard input for the names of files to back up.

-lnum Uses num as the limit of the total number of block to use on a diskette. The
default value is the entire diskette (2400 blocks).

Commands 77



backup

-m Backs up the entire minidisk as an exact image.
Note: Incremental backups are not supported for this mode of backup.

-r Indicates that removable medium is ready to use. When you specify this flag,
backup proceeds without prompting you to prepare the backup medium or
waiting for you to press the Enter key to continue.

-slength  Specifies the length in feet of usable space on a tape medium. This is a
combination of the physical length and the number of tracks on the tape. In
the case of IBM RT PC Streaming Tape, you should multiply the physical
length of the tape by 9 (the number of tracks) to determine the usable space

available.

-u Updates the time, date, and level of the backup in the /etc/budate file. This
file provides the information needed for incremental backups.

-v Reports on each phase of the backup as it is completed and gives regular
progress reports during the longest phase.

-level Specifies the backup level (0-9). The default level is 9.

You should use the -u flag when you do an incremental backup to ensure that
information regarding the last date, time, and level of each incremental backup
is written to the file /ete/budate.

Examples

1. To back up an entire file system:
backup -0 -u /

This backs up the entire (-0) root file system (/) to the device defined in the
backupdev entry in /etc/filesystems. It also updates the current backup level record
in /ete/budate (-u). Only the root file system is backed up, not mounted file systems.

2. To back up all files modified since the last level 0 backup:
backup -1 -u /

3. To back up selected files:
find $HOME -print + backup -v -i

This backs up all of the user’s files, displaying a progress report as each file is copied
(-v). The -1 flag causes backup to read from standard input the names of files to be
backed up. In this example, the find command supplies the list of file names. For
more information about this command, see “find” on page 326.

78 Commands Reference



backup

4. To back up an entire minidisk:
backup -mf/dev/rmt0 /xyz

This backs up the entire minidisk that contains the file system Xyz, copying it to the
streaming tape (/dev/rmt0).

Files
Jete/filesystems Read for default parameters.
/etc/budate Log for most recent backup dates.
/dev/rfd0 Default backup device.
[dev/rhd0 Default file system.

Related Information

The following commands: “find” on page 326, “format” on page 331, and “restore” on
page 596.

The backup and filesystems files and the tape special file in AIX Operating System
Technical Reference.

“Backing up Files and File Systems” in Managing the AIX Operating System.

Commands 79



banner

banner

Purpose
Writes character strings in large letters to standard output.

Syntax

0L805080
Description

The banner command writes character strings to standard output in large letters. Each
line in the output can be up to 10 uppercase or lowercase characters long. On output, all
characters appear in uppercase, with the lowercase input characters appearing smaller
than the uppercase input characters.

Examples

1. To display a banner at the work station:
banner SMILE!

2. To display more than one word on a line, enclose the text in quotation marks:
banner "Out to" Lunch
This displays Out to on one line, and Lunch on the next.

3. To print a banner:

banner We 1ike Computers i print
Related Information

The following command: “echo” on page 278.

80 Commands Reference



basename

basename, dirname

Purpose

Returns the base name of a string parameter.

Syntax

basename — string —

suffix
OL805085

dirname — path —
OL805047

Description

The basename command reads the string specified on the command line, deletes any prefix

that ends with a / (slash), as well as any specified suffix, if it is present, and writes the
remaining base file name to standard output.

Note: A basename of / is null and is considered an error.

The dirname command writes to standard output all but the last part of the specified path
name (all but the part following the last /).

The basename and dirname commands are generally used inside command
substitutions within a shell procedure to specify an output file name that is some
variation of a specified input file name. For more information, see “Command
Substitution” on page 647.

Examples

1. To display the base name of a shell variable:
basename $WORKFILE

This displays the base name of the value assigned to the shell variable WORKFILE. If
WORKFILE is set to /u/jim/program.c, then program. cC is displayed.

Commands 81



basename

2. To construct a file name that is the same as another file name, except for its suffix:

OFILE="basename $1 .c'.o

This assigns to OFILE the value of the first positional parameter ($1), but with its .c
suffix changed to .0. If $1is /u/jim/program.c, then OFILE becomes program.o.

Because program.o is only a base file name, it identifies a file in the current
directory.

The * * (grave accents) perform command substitution.

3. To construct the name of a file located in the same directory as another:
AOUTFILE=‘dirname $TEXTFILE‘/a.out

This sets the shell variable AOUTFILE to the name of an a.out file that is in the same
directory as TEXTFILE. If TEXTFILE is /u/fran/prog.c, then the value of dirname
$TEXTFILE is /u/fran and AOUTFILE becomes /u/fran/a.out.

Related Information

The following command: “sh” on page 637.

82 Commands Reference



be

bc

Purpose

Provides an interpreter for arbitrary-precision arithmetic language.

Syntax

be ~<-one of
—c

Description

OL805081

The be command is an interactive process that provides unlimited precision arithmetic. It
is a preprocessor for the de command. be invokes de automatically, unless the -¢ (compile

only) flag is specified. If the -c flag is specified, the output from be goes to the standard

output.

The be command lets you specify an input and output base in decimal, octal, or
hexadecimal (the default is decimal). The command also has a scaling provision for
decimal point notation. The syntax for be is similar to that of the C language.

The be command takes input first from the specified file. When bc reaches the end of the

input file, it reads standard input.

The following description of syntax for be uses the following abbreviations: L means

letters a-z; £ means expressions; S means statements.

Names

Simple variables: L
Array elements: L[E]

The words ibase, obase, and scale.
Comments are enclosed in /* and */.

Commands

83



bc

Other Operands

Arbitrarily long numbers with optional sign and decimal point.
(E)

sqrt (E)

length ( E) number of significant decimal digits

scale (E) number of digits to the right of the decimal point
L(E, ... ,E)

Operators

A

+ -* /% * (% is remainder; " is power)
+ + -- (prefix and postfix; apply to names)
== <= >= 1= <>

= = 4+ =. = * :/ = % =A

Statements

E
{S;...;8}

if (E) S

while (E) S
for (E;E;E) S
(null statement)
break

quit

Function Definitions
define L (L,...,L){
auto L, ...,L

S;...S
return ( E )

84 Commands Reference



be

Functions in -1 Math Library

s(x) sine

c(x) cosine

e(x) exponential
1(x) log

a(x) arctangent

j(n,x) Bessel function
All function parameters are passed by value.

The value of a statement that is an expression is displayed unless the main operator is an
assignment. A semicolon or new-line character separates statements. Assignments to
scale controls the number of decimal places printed on output and maintained during
multiplication, division, and exponentiation. Assignments to ibase or obase set the input
and output number radix respectively.

The same letter may refer to an array, a function, and a simple variable simultaneously.
All variables are global to the program. “Auto” variables are pushed down during function
calls. When you use arrays as function parameters, or define them as automatic variables,
empty square brackets must follow the array name.

All for statements must have all three E’s.

The quit statement is interpreted when read, not when executed.

Flags
-¢  Compiles file, but does not invoke de.
-1 Includes a library of math functions.
Examples

1. To use be as a calculator:

You: bc
1/4
System: 0
You: scale = 1 /* Keep 1 decimal place */
1/4
System: 0.2
You: scale = 3 /* Keep 3 decimal places */
1/4

System: 0.250
You: 16+63/5
System: 28.600

Commands 85



be

You: (16"‘63) /5
System: 15.800

You: 71 / 6
System: 11.833
You: 1/ 6

System: 0.166

You may type the comments (enclosed in /* */), but they are provided only for your
information. be displays the value of each expression when you press the Enter key,
except for assignments.

When you enter be expressions directly from the keyboard, press END OF FILE
(Ctrl-D) to end the be session and return to the shell command line.

2. To convert numbers from one base to another:

You: bcC
obase = 16 /* Display numbers in Hexadecimal */
ibase = 8 /* Input numbers in Octal */
12
System: A
You: 123
System: 53
You: 123456

System: A72E

When you enter be expressions directly from the keyboard, press END OF FILE
(Ctrl-D) to end the be session and return to the shell command line.

3. To write and run C-like programs:

You: bc -1 prog.bc
e(2) /* e squared */
System: 7 .38905609893065022723
You: T(5) /* 5 factorial */
System: 120
You: T(10) /* 10 factorial */
System: 3628800

This interprets the be program saved in prog.bc, then reads more be statements from
the work station keyboard. Starting be with the -1 flag makes the math library
available. This example uses the e (exponential) function from the math library, and f
is defined in the program file prog.bc as:

86 Commands Reference



be

Files

/* compute the factorial of n */

define f(n) {
auto i, r;

r =1;
for (i=2; i<=n; i++) r =* i;
return (r);

}

Note: The statement following a for or while statement must begin on the same line.

When you enter be expressions directly from the keyboard, press END OF FILE
(Ctrl-D) to end the be session and return to the shell command line.

To convert an infix expression to reverse polish notation (RPN):

You: bc -cC
(a *b) % (3+4*c)
System: lalb* 3 41c*+%ps.

This compiles the be infix-notation expression into one that the dc command can
interpret. dec evaluates extended RPN expressions.

In the compiled output, the 1 (ell) before each variable name is the de subcommand to
load the value of the variable onto the stack. The p displays the value on top of the
stack, and the s. discards the top value by storing it in register . (dot).

You can save the RPN expression in a file for dc to evaluate later by redirecting the
standard output of this command. For more details, see “Redirection of Input and
Output” on page 649.

When you enter be expressions directly from the keyboard, press END OF FILE
(Ctrl-D) to end the be session and return to the shell command line.

Jusr/lib/lib.b Mathematical library.
Jusr/bin/dc Desk calculator proper.

Related Information

The following command: “de¢” on page 222.

Commands 87



bdiff
bdiff

Purpose

Uses diff to find differences in very large files.

Syntax
3500
bdiff — filel — file2 { :>—<__>—
num 1
OL805083
Description

The bdiff command compares filel and file2 and writes information about their differing
lines to standard output. If either file name is - (minus), bdiff reads standard input. The
bdiff command is used like diff to find lines that must be changed in two files to make
them identical (see “diff” on page 246). Its primary purpose is to permit processing of files
that are too large for diff.

The bdiff command ignores lines common to the beginning of both files, splits the
remainder of each file into num-line segments, and calls diff to compare the corresponding
segments. In some cases, the 3500 line default for num is too large for diff. If diff fails,
specify a smaller value for num and try again.

The output of bdiff has the same format as that of diff. bdiff adjusts line numbers to
account for the segmenting of the files. Note that because of the file segmenting, bdiff
does not necessarily find the smallest possible set of file differences.

Flag

-s Suppresses error messages from bdiff. (Note that the -s flag does not suppress error
messages from diff).

Example

To display the differences between chapl and chapl.bak:
bdiff chapl chapl.bak

88 Commands Reference



bdiff

Files

[tmp/bd* Temporary files.
Related Information

The following command: “diff” on page 246.

Commands 89



bfs
bfs

Purpose

Scans files.

Syntax

ois—( Y 1o

Description

OL805084

The bfs command reads a file but does not do any processing of it, allowing you to scan but
not edit it.

The bfs command is basically a read-only version of the ed command, except it can process
much larger files and it has some additional subcommands. Input files can be up to 32K
lines long, with up to 255 characters per line. bfs is usually more efficient than ed for
scanning a file, because the file is not copied to a buffer. It is most useful for identifying
sections of a large file where you can use the csplit command to divide it into more
manageable pieces for editing.

If you enter the P subcommand, bfs prompts you with an * (asterisk). You can turn off
prompting by entering a second P. bfs displays error messages when prompting is turned
on.

Forward and Backward Searches

The bfs command supports all the address expressions described under “ed” on page 280.
In addition, you can instruct bfs to search forward or backward through the file, with or
without wrap-around. If you specify a forward search with wrap-around, bfs continues
searching from the beginning of the file after it reaches the end of the file. If you specify a
backward search with wrap-around, it continues searching backwards from the end of the
file after it reaches the beginning. The symbols for specifying the four types of search are

as follows:
[pattern/ Searches forward with wrap-around for the pattern.
?pattern? Searches backward with wrap-around for the pattern.

>pattern> Searches forward without wrap-around for the pattern.

<pattern< Searches backward without wrap-around for the pattern.

90 Commands Reference



bfs

The pattern matching routine of bfs differs somewhat from the one used by ed and
includes additional features (see the regemp subroutine in AIX Operating System
Technical Reference). There is also a slight difference in mark names: only lowercase
letters a through z may be used, and all 26 marks are remembered.

Flags
- Suppresses the display of file sizes. Normally, bfs displays the size in bytes of the file
being scanned.
Subcommands

The e, g, v, k, n, p, q, w, = , ! and null subcommands operate as explained under “ed” on
page 280. Subcommands such as --, + + +-, + + + =, -12, and +4p are accepted. Note that
1,10p and 1,10 both display the first ten lines. The f subcommand displays only the name
of the file being scanned; there are no remembered file names. The w subcommand is
independent of output diversion, truncation, or compression (see the xo, xt, and x¢
subcommands on page 91). Compressed output has strings of tabs and blanks reduced to
one blank and blank lines suppressed.

The following additional subcommands are available:

xf file Reads bfs subcommands from the file. When bfs reaches the end of file
or receives an INTERRUPT signal or if an error occurs, bfs resumes
scanning the file that contains the xf subcommand. These xf
subcommands may be nested to a depth of 10.

xo ([file] Sends further output from the p and null subcommands to the named
file, which is created with read and write permission granted to all
users. If you do not specify a file parameter, bfs writes to standard
output. Note that each redirection to a file creates the specified file,
deleting an existing file if necessary.

:label Positions a label in a subcommand file. The label is ended with a
new-line character. Blanks between the : (colon) and the start of the
label are ignored. This subcommand may be used to insert comments
into a subcommand file, since labels need not be referenced.

[addri],addr2]}xb/pattern/label
Sets the current line to the line containing pattern and jumps to label in
the current command file if pattern is matched within the designated
range of lines. The jump fails under any of the following conditions:

o Either addrl or addr?2 is not between the first and last lines of the
file.

® addr?2is less than addrl.

o The pattern does not match at least one line in the specified range,
including the first and last lines.

Commands 91



bfs

xt number

xv[digit] [value]

92 Commands Reference

This subcommand is the only one that does not issue an error message
on bad addresses, so it may be used to test whether addresses are bad
before other subcommands are run. Note that the subcommand:

xb/*/1abel
1s an unconditional jump.

The xb subcommand is allowed only if it is read from some place other
than a work station. If it is read from a pipe, only a downward jump
is possible.

Truncates output from the p and null subcommands to number
characters. The default number is 255.

Assigns the specified value to the variable named digit (0 through 9).
You can put one or more spaces between digit and value. For example:

xvh 100
xv6 1,100p

assigns the value 100 to the variable 5 and the value 1,100p to the
variable 6.

To reference a variable, put a % (percent sign) in front of the variable

name. Given the preceding assignments for variables 5 and 6, the
following three subcommands:

1,%5p
1,%5
%6

each display the first 100 lines of a file. To escape the special meaning
of %, precede it with a \ (backslash). For example:

g/".*\%[cds]/p
matches and lists lines containing printf variables (%c, %d, or %S).

You can also use the xv subcommand to assign the first line of
command output as the value of a variable. To do this, make the first
character of value an ! (exclamation point), followed by the command
name. For example:

xvh !cat junk

stores the first line of the file junk in the variable 5. To escape the
special meaning of ! as the first character of value, precede it with a \
(backslash). For example:

xv7 \ldate



bfs

xbz label
xbn label

xc [switch]

stores the value !date in the variable 7.

Tests the last saved exit value from a shell command and jumps to label
in the current command file if the value is zero.

Tests the last saved exit value from a shell command and jumps to label
in the current command file if the value is not zero.

Turns compressed output mode on or off. (Compressed output mode
suppresses blank lines and replaces multiple blanks and tabs with a
single space.)

If switch is 1, output from the p and null subcommands is compressed; if
switch is 0 it is not. If you do not specify switch, the current value of
switch reverses. Initially, switch is set to 0.

Related Information

The following commands: “esplit” on page 202 and “ed” on page 280.

The regemp subroutine in AIX Operating System Technical Reference.

Commands 93



Purpose

Plays blackjack.
Syntax

/usr/games/bj—
OL805187

Description

The bj game plays the the role of the dealer in blackjack. The following rules apply.

The bet is $2 every hand. If you draw a natural (blackjack), you win $3. If the dealer
draws a natural, you lose $2. If you and the dealer both have naturals, you exchange no
money (a push). If the dealer has an ace showing, you can make an insurance bet on the
chance that the dealer has a natural, winning $2 if the dealer has a natural and lose $1 if
not. If you are dealt two cards of the same value, you can double, that is, play two hands,
each of which begins with one of these cards, betting $2 on each hand. If the value of your
original hand is 10 or 11, you can double down, that is, double the bet to $4 and receive
exactly one more card in that hand.

Under normal play, you can draw a card (hit) as long as your cards total 21 or less. If the
cards toal more than 21, you bust and the dealer wins the bet. When you stand (decide
not to hit), the dealer hits until he has a total of 17 or more. If the dealer busts, you win.
If both you and the dealer stand, the one with the higher total wins. A tie is a push.

The bj command deals, keeps score, and asks the following questions at appropriate times:
? (Do you want a hit?) Insurance? Double? Double down?. To answer “yes,” press
Y; to answer “no,” press the Enter key.

The dealer tells you whenever the deck is being shuffled and displays the action (total bet)
and staending (total won or lost). To quit the game, press INTERRUPT (Alt-Pause); bj
displays the final action and standing and exits.

94 Commands Reference



bs

bs

Purpose

Compiles and interprets modest-sized programs.

Syntax

bs —<
file

flag

OL805167
Description

This compiler/interpreter provides interactive program development and debugging. To
simplify program testing, it minimizes formal data declaration and file manipulation,
allows line-at-a-time debugging, and provides trace and dump facilities and run-time error
messages.

The optional command line parameter file specifies a file of program statements that the
compiler reads before it reads from the standard input. By default, statements read from
this file are compiled for later execution. Likewise, statements entered from the standard
input are normally executed immediately (see the compile keyword on page 96 and the
execute keyword on page 96). Unless the final operation is assignment, the result of an
immediate expression statement is displayed.

Additional command line flags can be passed to the program using the built-in functions
arg and narg (explained in more detail on page 100).

Program lines must conform to one of the following formats:

statement
label statement

The interpreter accepts labeled statements only when it is compiling statements. A label is
a name immediately followed by a colon. A label and a variable can have the same name.
If the last character of a line is a \ (backslash), the statement continues on the following
physical line.

A statement consists of either an expression or a keyword followed by zero or more
expressions.

Commands 95



bs

Statement Syntax
break Exits the innermost for or while loop.

clear Clears the symbol table and removes compiled statements from memory.
A clear is always executed immediately.

compile [expr] Causes succeeding statements to be compiled (overrides the immediate
execution default). The optional expression is evaluated and used as a
file name for further input. In this latter case, the symbol table and
memory are cleared first. compile is always executed immediately.

continue Transfers control to the loop-continuation test of the current for or
while loop.
dump [name] Displays the name and current value of every global variable or,

optionally, of the named variable. After an error or interrupt, dump
displays the number of the last statement and (possibly) the user-function

trace.

exit [expr] Returns to the system level. The expression is returned as process
status.

execute Changes to immediate execution mode (pressing INTERRUPT

[Alt-Pause] has the same effect). This statement does not cause stored
statements to execute (see run on page 98).

for name=expr expr statement

for name=expr expr
Statement . . .
next

for expr, expr, expr statement

for expr, expr, expr
statement . . .

next Repetitively performs, under the control of a named variable, a statement
(first format) or a group of statements (second format). The variable
takes on the value of the first expression, then is increased by one on
each loop until it exceeds the value of the second expression. The third
and fourth formats require three expressions separated by commas. The
first of these is the initialization, the second is the test (true to
continue), and the third is the loop-continuation action.

funf(a,...Dv,...]
statement . . .
nuf Defines the function name (f), parameters (a), and local variables (v) for a
user-written function. Up to 10 parameters and local variables are
allowed. Such names cannot be arrays, nor can they be I/O associated.
Function definitions may not be nested.

96 Commands Reference



bs

freturn

goto name

ibase n

if expr statement

if expr
statement . . .
[else
statement . . . |
fi

include expr

obase n

onintr label
onintr

return [expr]

Signals the failure of a user-written function. Without interrogation,
freturn returns zero. (See the unary interrogation operator ? discussed
on page 99.) With interrogation, freturn transfers to the interrogated
expression, possibly bypassing intermediate function returns.

Passes control to the compiled statement with the matching label.

Sets the input base to n. The only supported values for n are 8, 10 (the
default), and 16. Hexadecimal values 10-15 are entered as alphabetic
characters a-f. A leading digit is required when a hexadecimal number
begins with an alphabetic character (for example, fOa must be entered
as 0f0a). ibase is always executed immediately.

Performs a statement (first format) or group of statements (second
format) if the expression evaluates to nonzero. The strings 0 and ””
(null) evaluate as zero. In the second format, an optional else allows a
group of statements to be performed when the first group is not. The
only statement permitted on the same line with an else is an if; only
other fis can be on the same line with a fi. You can combine else and if
into elif. Only a single fi is required to close an if . . . elif . . . [else . . . ]
sequence.

The expression must evaluate to the name of a file containing program
statements. Such statements become part of the program being compiled.
include statements may not be nested, and are always executed
immediately.

Sets the output base to n. The only supported values for n are 8, 10 (the
default), and 16. Hexadecimal values 10-15 are entered as alphabetic
characters a-f. A leading digit is required when a hexadecimal number
begins with an alphabetic character (that is, fO0a must be entered as
0f0a). Like ibase, obase is always executed immediately.

Provides program control of interrupts. In the first format, control
passes to the label given, just as if a goto had been performed when
onintr was executed. The effect of the onintr statement is cleared after
each interrupt. In the second format, pressing INTERRUPT (Alt-Pause)
ends bs.

Evaluates the expression and passes the result back as the value of a
function call. If you do not provide an expression, the function returns
Zero.

Commands 97



bs

run Passes control to the first compiled statement. The random number
generator is reset. If a file contains a run statement, it should be the
last statement; run is always executed immediately.

stop Stops execution of compiled statements and returns to immediate mode.

trace [expr] Controls function tracing. If you do not provide an expression or if it
evaluates to zero, tracing i1s turned off. Otherwise, a record of
user-function calls/returns will be written. Each return decreases by
one the trace expression value.

while expr statement

while expr

statement . . .
next while is similar to for except that only the conditional expression for
loop continuation is given.
! AIXemd Runs an AIX command, then returns control to bs.
#comment Inserts a comment line.

Expression Syntax

name Specifies a variable or, when followed immediately by a colon, a label.
Names are composed of a letter (uppercase or lowercase) optionally
followed by letters and digits. Only the first six characters of a name are
significant. Except for names declared locally in fun statements, all
names are global. Names can take on numeric (double float) values or
string values or be associated with input/output (see the built-in function
open on page 102).

name([expr[, expr] ...)
Calls function name and passes to it the parameters in parentheses.
Except for built-in functions (listed in the following text), name must be
defined in a fun statement. Function parameters are passed by value.

namelexprl[, expr] . . . ]
References either arrays or tables (see built-in function table on page
103). For arrays, each expression is truncated to an integer and used as
a specifier for the name. The resulting array reference is syntactically
identical to a name; a[1, 2] is the same as a[1][2]. The truncated
expressions must be values between 0 and 32767.

number Represents a constant numerical value. This number can be expressed in
integer, decimal, or scientific notation (it can contain digits, an optional
decimal point, and an optional e followed by a possibly signed exponent).

string Character string delimited by ” ” (double quotation marks). The \
(backslash) is an escape character that allows the double quotation mark
(\"), new-line character (\n), carriage return (\r), backspace (\b), and tab

98 Commands Reference



bs

(expr)

(\t) characters to appear in a string. When not immediately followed by
these special characters, \ stands for itself.

Parentheses alter the normal order of evaluation.

(expr, expr[, expr]...) [expr]

expr op expr

The bracketed expression outside the parentheses functions as a
subscript to the list of expressions within the parentheses. List elements
are numbered from the left, starting at zero. The expression:

(False, True) [ a == b ]
has the value True if the comparison is true.

Except for the assignment, concatenation, and relational operators, both
operands are converted to numeric form before the operator is applied.

Unary Operators

2expr

-expr
+ +name
--name

lexpr

The interrogation operator (?) tests for the success of the expression
rather than its value. It is useful for testing end of file, for testing the
result of the eval built-in function, and for checking the return from
user-written functions (see freturn on page 97). An interrogation trap (
end of file, for example), causes an immediate transfer to the most recent
interrogation, possibly skipping assignment statements or intervening
function levels.

Negates the expression.
Increases by one the value of the variable (or array reference).
Decreases by one the value of the variable.

The logical negation of the expression.

Binary Operators (in increasing precedence)

The assignment operator. The left operand must be a name or an array
element. It acquires the value of the right operand. Assignment binds
right to left; all other operators bind left to right.

The concatenation operator (the underline character).
logical AND, logical OR. The result of
expr & expr

is 1 (true) only if both of its parameters are nonzero (true); it is 0 (false)
if one or both of its parameters are 0 (false). The result of

expr | expr

Commands 99



bs

< <= > >=
+ -
LAV ALA

A

is 1 (true) if one or both of its expressions are nonzero (true); it is 0
(false) only if both of its expressions are 0 (false). Both operators treat a
null string as a zero.

== !=

The relational operators (< less than, . < = less than or equal to, >
greater than, > = greater than or equal to, = = equal to, ! = not equal
to) return 1 if the specified relation is True. They return 0 (false)
otherwise. Relational operators at the same level extend as follows:
a>b>c is the same as a>b & b>c. A string comparison is made if both
operands are strings. The comparison is based on the collating sequence
specified in the environment variable NLCTAB.

Addition and subtraction.
Multiplication, division, and remainder.

Exponentiation.

Functions Dealing With Arguments

arg(i)

narg( )

Returns the value of the i-th actual argument at the current function
call level. At level zero, arg returns the i-th command-line argument.
For example, arg(0) returns bs.

Returns the number of arguments passed. At level zero, it returns the
command line argument count.

Mathematical Functions

abs(x)
atan(x)
ceil(x)
cos(x)
exp(x)
floor(x)
log(x)
rand( )
sin(x)

sqrt(x)

Returns the absolute value of x.

Returns the arctangent of x.

Returns the smallest integer not less than x.

Returns the cosine of x.

Returns e raised to the power x.

Returns the largest integer not greater than x.

Returns the natural logarithm of x.

Returns a uniformly distributed random number between zero and one.
Returns the sine of x.

Returns the square root of x.

100 Commands Reference



bs

String Functions

size(s)
format(f, a)

index(x, y)

trans(s, f, t)

Returns the size (length in bytes) of s.

Returns the formatted value of g, f being a format specification string in
the style of the printf subroutine. Use only the %...f, %...e, and %...s
formats.

Returns a number that is the first position in x containing a character
that any of the characters in y matches. If there is no match, index
yields zero. For two-byte extended characters, the index functions
returns the location of the first byte.

Translates characters in the source string s which match characters in f
into characters having the same position in . Source characters that do
not appear in f are copied unchanged into the translated string. If string
f is longer than ¢, source characters that match characters found in the
excess portion of f do not appear in the translated string.

subst(s, start, length)

Returns the substring of s defined by starting position and length.

match(string, pattern)

mstring(n)

This function returns the number of characters in string that match

pattern. The characters ., *, ? [, ], » (when inside square brackets), \(
and \) have the following special meanings (see “ed” on page 280 for a
more detailed discussion of this special notation):

Matches any character except the new-line character.

* Matches zero or more occurrences of the pattern element that
it follows (for example, .* matches zero or more occurrences of
any character except the new-line character).

$ Specifies the end of the line.

(-] . - .

[...] Matches any one character in the specified range ([-.]) or list ([
... ], including the first and last characters.

[*.-] _

[*...] Matches any character except the new-line character and the

remaining characters in the range or list. A circumflex (") has
this special meaning only when it immediately follows the left
bracket.
(-]
f...]1 Matches ] or any character in the list. The right square
bracket does not terminate such a list when it is the first

character within it (after an initial *, if any).

\(...\) Marks a substring and matches it exactly.

Commands 101



bs

To succeed, a pattern must match from the beginning of the string. It
also matches the longest possible string. Consider, for example:

match('al23ab123',".*\([a-z]\)") == 6

In this instance, .* matches al23a (the longest string that precedes a
character in the range a-z); \([a-z]\) matches b, giving a total of six
characters matched in the string. In an expression such as [a-z], the
minus means “through” according to the current collating sequence. A
collating sequence may define equivalence classes for use in character
ranges. See the “Overview of International Character Support” in
Managing the AIX Operating System for more information on collating
sequences and equivalence classes.

The mstring function returns the nth substring in the last call to
match (n must be between 1 and 10 inclusive).

File-Handling Functions

open(name, file, mode)

close(name)

access(p, m)

ftype(s)

The name parameter must be a legal variable name (passed as a string).
For open, the file parameter may be:

e A0, 1, or 2 for standard input, output, or error output, respectively
e A string representing a file name
e A string beginning with an !, representing a command to be run (via

sh -c¢).

The mode flag must be either r (read), w (write), W (write without
new-line character), or a (append). After a close, the name becomes an
ordinary variable. The initial associations are:

open("get", 0,
open{"put", 1,
open("puterr", 2, "w")

"Y‘”)
"W”)

Performs the access system call. Parameter p is the path name of a file;
m is a bit pattern representing the requested mode of access. This
function returns a 0 if the request is permitted, -1 if it is denied. (See
AIX Operating System Technical Reference for a more extensive
discussion of this system call.)

Returns a single character indicating file type: f for regular file, p for
FIFO (named pipe), d for directory, b for block special, or ¢ for character
special.

102 Commands Reference



bs

Table Functions

table(name, size) A table in bs is an associatively accessed, one-dimensional array.

item(name, i)
key( )

"Subscripts” (called keys) are strings (numbers are converted). The name
parameter must be a bs variable name (passed as a string). The size
parameter sets the minimum number of elements to be allocated. On
table overflow, bs writes an error message.

The item function accesses table elements sequentially (in normal use,
there is an orderly progression of key values). Where the item function
accesses values, the key function accesses the “subscript” of the previous
item call. The name parameter should not be quoted. Since exact table

sizes are not defined, the interrogation operator should be used to detect
end-of-table; for example:

table("t",100)

#1f word contains "party”, the following expression
#adds one to the count of that word:
++t [word]

# To display the key/value pairs:
for i=0, ?(s=item(t, i)), ++i if key() put=key().":"_s

iskey(name, word)

Tests whether the key word exists in the table name and returns one for
true, zero for false.

Miscellaneous Functions

eval(string)

The string parameter is evaluated as an expression. The function is
handy for converting numeric strings to numbers. eval can also be used
as a crude form of indirection, as in:

name = "xyz"

eval ("++"_name)

which increments the variable Xyz. In addition, eval preceded by the

interrogation operator permits you to control bs error conditions. For
example:

?eval ("open(\"X\",\"XXX\", \"r\")")

Commands 103



bs

returns the value zero if there is no file named "XXX" (instead of halting
your program). The following performs a goto to the label L: (if it

exists):

label="L:"

if!(?eval("goto"_label))puterr="no label"

plot(request, args)

The plot function produces output on devices recognized by the tplot
command. The requests are as follows:

Call
plot(0, term)

plot(1)

plot (2, string)

plot(3, xI, yI, x2, y2)
plot{4, x, y, r)

Function

Causes further plot output to be piped into
tplot with a flag of -Tterm.

"Erases” the plotter.
Labels the current point with string.
Draws the line between (x1, yl1) and (x2, y2).

Draws a circle with center (%, y) and radius
r.

plot(5, xI, yI, x2, y2, x3, y3)

plot(6)

plot(7, x, y)

plot(8, xy)

plot(9, x, )

plot(10, string)

plot(11, x1, y1, x2, y2)

plot(12, xI, y1, x2, y2)

Draws an arc (counterclockwise) with center
(x1, y1) and endpoints (x2, y2) and (x3, y3).

Not implemented.

Makes the current point at (x, y).

Draws a line from the current point to (x, y).
Draws a point at (x, y).

Sets the line mode to string.

Makes (x1, y1) the lower left corner of the
plotting area and (x2, y2) the upper right
corner of the plotting area.

Causes subsequent x (y) coordinates to be
multiplied by x1 (y1) and then added to x2
(y2) before they are plotted. The initial
scaling is plot(12, 1.0, 1.0, 0.0, 0.0).

Some requests do not apply to all plotters. All requests except zero and
12 are implemented by piping characters to tplot.

last() In immediate mode, last returns the most recently computed value.

104 Commands Reference



bs

Related Information

The following commands: “ed” on page 280, “sh” on page 637, and “tplot” on page 762.

The access system call, the printf subroutine, and the plot file in AIX Operating System
Technical Reference.

“Overview of International Character Support” in Managing the AIX Operating System.

Commands 105



cal

cal

Purpose

Displays a calendar.

Syntax

cal ﬂyear —
month

Description

OL805168

The cal command writes to standard output a calendar for the specified year or month.

The month parameter names the month for which you want the calendar. It can be a
number between 1 and 12 for January through December, respectively.

The year parameter names the year for which you want the calendar. Since cal can
display a calendar for any year from 1 to 9999, enter the full year rather than just the last
two digits.

Examples

1. To display a calendar for February 1984 at your work station:
cal 2 1984

2. To print a calendar for 1984:
cal 1984 | print

3. To display a calendar for the year 84 A.D.:
cal 84

106 Commands Reference



calendar

calendar

Purpose

Writes reminder messages to standard output.

Syntax

calendar ~<—>—

Description

OL805169

The calendar command reads a file named calendar, which you create in your current
(usually home) directory. It writes to standard output any line in the file that contains
today’s or tomorrow’s date.

The calendar command recognizes date formats such as Dec. 7 or 12/7. It also
recognizes the special character * (asterisk). It interprets */7, for example, as signifying

the seventh day of every month. calendar does not recognize formats such as 7
December, 7/12, or BEC. 7.

On Fridays, calendar writes all lines containing the dates for Friday, Saturday, Sunday,
and Monday. It does not, however, recognize holidays, so “tomorrow” is the holiday rather
than the next working day.

For you to get reminder service, your calendar should have read permission for others (see
“chmod” on page 128).

Flag

- Calls calendar for everyone having a file calendar in his home directory and sends
any reminders by mail

- Example

To display information in the calendar file that pertains to the next two business days:
calendar

Commands 107



calendar

A typical calendar file might look like this:

*/25 - Prepare monthly report

Aug. 12 - Fly to Denver

aug 23 - board meeting

Martha out of town - 8/23, 8/24, 8/25
8/24 - Mail car payment

sat aug/25 - beach trip

August 27 - Meet with Simmons

August 28 - Meet with Wilson

If today is Friday, August 24, then the calendar command displays:

*/25 - Prepare monthly report

Martha out of town - 8/23, 8/24, 8/25
8/24 - Mail car payment

sat aug/25 - beach trip

August 27 - Meet with Simmons

Files
$HOME/calendar
Jusr/lib/calprog The program that determines dates.
[etc/passwd Used to identify users.
[tmp/cal* Temporary files.

Related Information

The following commands: “chmod” on page 128 and “mail” on page 470.

108 Commands Reference



cat

cat
Purpose
Concatenates or displays files.
Syntax
cat
—u file
—-S
OL805086
Description
The cat command reads each file in sequence and writes it to standard output. If you do
not specify file or specify - (minus) instead of a file, cat reads from standard input.
Warning: Do not redirect output to one of the input files using the >
redirection symbol. If you do this, you will lose the original data in the
input file because the shell truncates it before cat can read it (see “sh” on
page 637).
Flags
-s Does not display a message if cat cannot find an input file.
-u Does not buffer output.
Examples
1. To display a file at the work station:
cat notes
This displays the data in the file notes. If the file is more than about 23 lines long,
some of it will scroll off the screen. To list a file one page at a time, use the pg
command. (See “pg” on page 553 for details.)
2. To concatenate several files:

cat sectionl.l sectionl.?2 sectionl.3 >sectionl

Commands 109



cat

This creates a file named sectionl that is a copy of sectionl. 1 followed by
sectionl.2 and sectionl.3.

3. To suppress error messages about files that do not exist:
cat -s section2.1 section2.2 section2.3 >section?

If section?.1 does not exist, this concatenates section2.2 and section2.3. The
result is the same if you do not use the -s, except that cat displays the error message:

cat: cannot open section2.1

You may want to suppress this message with the -s flag when you use the cat
command in shell procedures.

4. To append one file to the end of another:
cat sectionl.4 >>sectionl
This appends a copy of sectionl.4 to the end of sectionl.

Note: The >> appends data to the end of sectionl, but using > replaces the file. For
more details, see “Redirection of Input and Output” on page 649.

5. To add text to the end of a file:

cat >>notes
Get milk on the way home
Ctrl-D

This adds the text Get milk on the way home to the end of notes. The cat
command does not prompt, but waits silently for you to enter text. Pressing Ctrl-D
indicates the end of the text to be added.

6. To concatenate several files with text entered from the keyboard:
cat section3.1 - section3.3 >section3
This concatenates section3. 1, text from the keyboard, and section3.3.

7. To concatenate several files with output from another command:
1i + cat sectiond.l - D>sectiond

This copies sectiond. 1, followed by the output of the li command to a file named
sectiond.

Related Information

The following commands: “cp” on page 156, “pr” on page 561, and “sh” on page 637.

110 Commands Reference



cb

cb

Purpose

Puts C source code into a form that is easily read.

Syntax

Cb‘( H one of )
-s -l length file

=]

OL805170
Description

The cb command reads C programs from standard input or from specified files and writes
them to standard output in a form that shows, through indentations and spacing, the
structure of the code. When called without flags, ¢b does not split or join lines. Note that
punctuation in preprocessor statements can cause indentation errors.

Flags
- Joins lines that are split.
-1 length Splits lines that are longer than length.
-s Formats the source code according to the style of Kernighan and Ritchie in
The C Programming Language. (Englewood Cliffs, New Jersey: Prentice-Hall,
Inc., 1978.).
Example

To create a version of pgm.c called pgm.pretty.c that is easy to read:
cb pgm.c > pgm.pretty.c

Related Information

The following command: “cc” on page 112.

The discussion of ¢b in AIX Operating System Programming Tools and Interfaces.

Commands 111



TNL SN20-9861 (26 June 1987) to SC23-0790-0
cC

CcC
Purpose
Compiles C programs.
Syntax
Ordinary Operation
one of a.out ~oa.out
one of
- —P —-f -0 -1dir
—E =S -G -p -Ldir
-g -a -0 name
—h —w flag?
—-f2 =X
—Z

f —Dname

—D name =def

|
~
3 3a(8
®
ND|o

—~l key

1 Do not put a blank between these items.

2 Use any flag belonging to as, cpp, or Id (except =l key ).

3 Put this flag last if used (see the Id command).

“Use any flag from the first diagram (except —lkey) or any flag

belonging to as, cpp or Id.

112 Commands Reference

OL805171

0OL805343



TNL SN20-9861 (26 June 1987) to SC23-0790-0

cC
Extended Functions and Debugging
one of
cc —F file one of /lib/o
-
vee —Ffile:stanza v prefix
»< pco
—t
1ja c |
opg
q
OL805389
' Do not put a blank between these items.
2 Use any flog belonging to as, cpp, or Id (except —lkey).
3 Put this flag last if used (see the Id command).
“Use any flag from the first diagram (except —lkey) or any flag
belonging to as, cpp or Id.
OL805343

Description

The cc command runs the C compiler. It accepts files containing C source code, assembler
source code, or object code and changes them into a form that the computer system can
run. cc compiles and assembles source files and then links them with any specified object
files, in the order listed on the command line. It puts the resulting executable program in
a file named a.out.

The fce command is a link to cc that compiles programs to run with the Floating-Point
Accelerator. fcc should only be used on the ROM processor. It automatically uses the -f
flag as well as special versions of the standard libraries that have been compiled for direct
floating-point applications. Note that programs compiled with fce can run only on systems
that have installed the Floating-Point Accelerator.

The vee command is a link to cc¢ that compiles modules to be installed in the VRM. Use
the vemfmt command to convert the a.out file produced by the vee command to a
VRM-compatible object module. The syntax of this command is as follows:

vemfmt infile [outfile]

The default output file name is a.vrm.

Commands 113



TNL SN20-9861 (26 June 1987) to SC23-0790-0
cc

The cc command runs the following programs. Each program processes the source file and
then sends the results to the next program in the sequence:

cpp The macro preprocessor.
ccom0 The first pass of the compiler.
ccomq The intermediate code optimizer (if you specify the -O flag).

This program provides a variety of optimizations to the intermediate code, such
as removing loop invariants, eliminating common subexpressions, and allocating
registers. The following cannot be optimized:

e Functions that call setjmp
e Functions that contain asm statements

If you are compiling a large program and the flow optimizer runs out of space,
the compiler stops the process and displays a message describing the problem.

ccoml The second pass of the compiler.

copt The optimizer (if you specify the -O flag).
as The assembler.

1d The linkage editor.

You can replace any or all of these passes with your own versions (see the -B and -t flags).
Both cc and fee use the ce.efg configuration file, which specifies the standard runtime
link options and libraries to be used with each version of the compiler.

Input File Types
The cec command recognizes and accepts as input the following file types:
file.c

The name of a C language source file should end with .e. After ce compiles this source
file, it gives the resulting object file the same name, except that it ends in .0 rather than
.c. If you use one command both to compile and to load a single C program, the compiler
normally deletes the .o file when it loads the program. If you use the -¢ flag, the compiler
does not delete the .o file.

file.i

The name of a file that contains preprocessed C source code ends in .i.

114 Commands Reference



TNL SN20-9861 (26 June 1987) to SC23-0790-0
cec

Flags

file.o

The name of an object file should end in .0. The cc command sends these files to the 1d
command.

file.s

The name of an assembly language source program should end with .s. After cc assembles
this source file, it gives the resulting object file the same name, except that it ends in .o
rather than .s.

The ec command recognizes several flags. In addition, flags intended to modify the action
of the linkage editor (Id), the assembler (as), or the preprocessor (cpp) may also appear on
the cc command line. ce sends any flags it does not recognize to these commands for
processing. The following list includes the most commonly used cpp flags (-D, -I), and 1d
flags (-1, -L, -0). See “as” on page 64, “cpp” on page 163, and “1d” on page 427 for a
complete list of additional flags.

Note: If you use the -1 flag, it must be the last entry on the command line, following any
file parameters.

Ordinary Operation

-a Reserves a register for extended addressing. You should use this flag if a
compiled procedure creates a stack greater than 32,767 bytes. Because
this flag causes the compiler to reserve a register for use by the
assembler, it reduces the number of available registers by one.

-c Does not send the completed object file to the ld command. With this
flag, the output of cc is a .o file for each .c or .s file.

-Dname[=def]  Defines name as in a #define directive. The default def is 1.

-E Runs the named C source file through only the preprocessor and writes
the result to standard output.

-f Generates code that uses the Floating-Point Accelerator. Programs
compiled with this flag will run correctly only on AIX processors
configured with the Floating-Point Accelerator.

-£2 Generates code that uses the Advanced Floating-Point Accelerator.
Programs compiled with this flag will run correctly only on AIX
processors configured with the Advanced Floating-Point Accelerator and
an Advanced Processor Card.

Commands 115



TNL SN20-9861 (26 June 1987) to SC23-0790-0

cc

-Idir

-1[key]

-Ldir

~-N[ndpt]rum

-oname

P

-P

Produces additional information for use with the sdb command (the
symbolic debugger).

Indicates that global variables are volatile. The optimizer (ccomq)
makes fewer transformations when you specify this flag. To make a
particular variable volatile, add the “volatile” specification to its
declaration.

Treats files with the suffix .h in the same way as files with the suffix .c.

Looks first in dir, then looks in the directories on the standard list for
#include files with names that do not begin with / (slash).

Searches the specified library file, where key selects the file libkey.a.
With no key, -1 selects libc.a, the standard system library for C and
assembly language programs. ld searches for this file in the directory
specified by an -L flag, then in /lib and /usr/lib. The ld command
searches library files in the order in which you list them on the command
line.

Looks in dir for files specified by -1 keys. If it does not find the file in
dir, 1d searches the standard directories.

Changes the size of the symbol table (n), the dimension table (d), the
constant pool (p), or the space for building the parse tree (t). Each table
must be changed separately. The default size of the symbol table is 1500;
the default size of the dimension table is 2000; the default size for the
constant pool is 600; the default space for the parse tree is 1000.

Assigns name rather than a.out to the output file.
Sends compiler output to the code optimizers.

Prepares the program so that the prof command can generate an
execution profile. The compiler produces code that counts the number of
times each routine is called. If programs are sent to 1d, the compiler
replaces the startup routine with one that calls the monitor subroutine
at the start (see AIX Operating System Technical Reference for a
discussion of this subroutine), and writes a mon.out file when the
program ends normally.

Sends the specified C source file to the macro preprocessor and stores the
output in a .i file.

Turns off inlining. The following may be used:
? Shows the reason for not inlining in the output file.
-name,name . . . Does not inline name

+name,name . . . Inlines name

116 Commands Reference



TNL SN20-9861 (26 June 1987) to SC23-0790-0

cce
num Limits the size increase of the function into which inlining
occurs to num intermediate operations. The default num is
100.
#num Limits the expansion of an individual call to num intermediate
operators. The default num 1s 100.
-@file Reads a list of forbidden functions from file.
+ @file Reads a list of requested functions from file.
Requesting a function to be inlined overrides size constraints.
-S Compiles the specified C programs, storing assembly language output in
a .s file.
-W Prevents printing of warning messages about functions that cannot be
optimized.
-X Produces an assembler listing. This is stored in a file that has the same
name as the assembler source file, but with the extension .Ist instead of
.S.
-y{dmnpz] Specifies the rounding mode for floating-point constant folding. These
modes are specified as follows:
d Disables floating-point constant folding.
m Rounds toward negative infinity.
n Rounds to nearest. This is the default action and applies to
constant folding in all applicable passes of the compiler.
P Rounds toward positive infinity.
z Rounds toward 0.
-z Uses the libm.a, or one specified by the user, version of the following

transcendental functions:

acos cos sin
asin exp sqrt
atan log tan
atan2 logl0

If this flag is not used, the compiler generates calls to the AIX kernel, or
the Advanced Floating Point Accelerator if possible. For more
information, see math.h in AIX Operating System Technical Reference.

Commands 117



CccC

Debugging
-Ffile[:stanza]

%

-#

Uses an alternative file and/or stanza for cc configuration (see AIX
Operating System Technical Reference for a discussion of the
configuration file, cc.efg). If used, this flag must be the first flag on the
command line.

Displays the trace as with -# and invokes the programs.

Displays a trace of the actions to be taken (for example, invoking the
preprocessor), without actually invoking any programs.

Extended Functions

-Bprefix

-t{pcqgoal]

Constructs path names for substitute preprocessor, compiler, optimizer,
assembler, or linkage editor programs. prefix defines part of a path name
to the new programs. To form the complete path name for each new
program, cc adds prefix to the standard program names (see the
discussion of the programs called by cc on page 114). For example, if
you enter the command:

cc testfile.c -B/usr/jim/new
cc calls the following compiler programs:

Jusrf/jim/newcpp
Jusr/jim/newccom0
[usr/jim/newccom1
Jusr/jim/newas
Jusr/jim/newld

O o o

Similarly, if you enter the command:
cc testfile.c -B/usr/jim/new/

cc calls the following compiler programs:

1. /usr/jim/new/cpp

2. [usr/jim/new/ccom
3. /usrf/jim/new/ccoml
4. [usr/jim/new/as

5. /usr/jim/new/ld

The default prefix is flib/o.

Applies the -B flag instructions for constructing file names to only the
designated preprocessor (p), compiler first (¢), intermediate code
optimizer (q), compiler second (g), optimizer (o), assembler (a), or linkage
editor (1) passes. You can select any combination of pcqgoal.

118 Commands Reference



CC

-We,flagl{,flag2 .

The -t flag with no additional p, ¢, q, g, 0, a, or 1 designates by default
the preprocessor, compiler and optimizer programs (see the discussion of
the programs called by cc on page 114).

If you do not specify the -B flag when you specify the -t flag, the default
file name prefix is /lib/n.

Note: You can specify this prefix with the -B flag. However, depending
on what combination of the -B and the -t flags you specify, prefix can
have two possible default values. If you specify -B but no accompanying
prefix, the default prefix is [lib/o. If you specify the -t flag without also
specifying the -B flag, the default prefix is /lib/n.

Gives the listed flags to the compiler program c; ¢ can be any one of the
values [peqgoal] discussed with the -t flag. For example, since both 1d
and as recognize a -o flag, use -W to specify the program to which the
flag is to be sent. That is, -W1,-0 sends it to Id. -Wa,-o sends it to as.

Examples
1. To compile and link a C program, creating an executable a.out file:
cc pgm.c
2. To compile a program, producing an object file to be linked later:
cc -C pgm.c
This compiles pgm. Cc and produces an object file named pgm.o.
3. To compile a program to run on the Floating-Point Accelerator:
fcc pgm.c
This compiles pgm. C using the special libraries libfe.a and libfm.a instead of the
standard libraries libe.a and libm.a.
4. To view the output of the macro preprocessor:
cc -P -C pgm.c
This creates a file named pgm.i that contains the preprocessed program text including
comments. To view this file, use an editor or see “pg” on page 553 cc passes the -P
and -C flags to the preprocessor. See “cpp” on page 163 for more details about them.
5. To predefine macro identifiers:

cc -DBUFFERSIZE=512 -DDEBUG pgm.c

This assigns BUFFERSIZE the value 512 and DEBUG the value 1 before preprocessing.
cc passes the -D flag to the preprocessor.

Commands 119



CC

6. To use #include files located in nonstandard directories:
cc -I/u/jim/inciude pgm.c
This looks in the directory that contains pgm. c for the #include files with names
enclosed in double quotes (" "), then in /u/jim/include, and then in the standard
directories. It looks in /u/jim/include for #include file names enclosed in angle

brackets (< >), then in the standard directories. cc passes the -I flag to the
Preprocessor.

7. To optimize the object code and produce an assembler listing:
cc -S -0 pgm.c

This uses the optimizing compiler (-O is minus, capital oh), and produces an assembler
listing in a file named pgm.s (-S).

Files
file.c C source file.
file.o Object file.
file.s Assembler file.
a.out Linked output.
[ete/ce.cfg cce configuration file.
[tmp/ctm* Temporary.
[lib/cpp C preprocessor.
/lib/eccom0 Compiler first pass.
/lib/ccomq Intermediate code optimizer.
/lib/ccom1 Compiler second pass.
/lib/cgen Compiler.
[lib/copt optimizer.
/bin/as Assembler.
/bin/ld Linkage editor.
[/libjert0.0 Runtime startoff.
/lib/mert0.0 Runtime startoff for profiling.
/lib/libc.a Standard library.
/lib/libfc.a Standard library for use with Floating-Point Accelerator.
/lib/libm.a Standard math library.
/lib/libfm.a Standard math library for use with Floating-Point Accelerator.
[lib/librts.a Runtime services.
Jusr/include Standard directory for #include files.

[usr/tmp/ctm*  Temporary.

120 Commands Reference



CcC

Related Information
The following commands: “as” on page 64, “1d” on page 427, “cpp” on page 163, “prof” on
page 571, and “sdb” on page 619.

The discussion of c¢c in AIX Operating System Programming Tools and Interfaces, in C
Language Guide and Reference and in Assembler Language Reference.

The monitor subroutine and the a.out and cc.cfg files in AIX Operating System Technical
Reference.

Commands 120.1



CcC

120.2 Commands Reference



cd

cd

Purpose

Changes the current directory.

Syntax
$HOME
RS
directory
OL805087
Description

The c¢d command moves you from your present directory to another. You must have
execute (search) permission in the specified directory.

If you do not specify a directory, ed moves you to your login directory (SHOME). If the
specified directory name is a full path name, it becomes the current directory. A full path

name begins with a / (slash—root directory), with a . (dot—current directory), or with a . .
(dot dot—parent directory). If the directory name is not a full path name, cd searches for it
relative to one of the paths specified by the SCDPATH shell variable. This variable has
the same syntax as, and similar semantics to, the $PATH shell variable. (See “Shell
Variables and Command-Line Substitutions” on page 641 for a discussion of these
variables.)

Examples

1. To change to your home directory:
cd

2. To change to an arbitrary directory:
cd /usr/include

This changes the current directory to /usr/include. Now file path names that do not
begin with / or ../ specify files located in /usr/include.

Commands 121



cd

3. To go down one level of the directory tree:
cd sys

If the current directory is /usr/include and if it contains a subdirectory named Sys,
then /usr/include/sys becomes the current directory.

4. To go up one level of the directory tree:

cd

The special file name .. (dot-dot) always refers to the directory immediately above the
current directory.

Related Information

The following commands: “pwd” on page 589 and “sh” on page 637.
The chdir system call in AIX Operating System Technical Reference.

122 Commands Reference



cde

cdce
Purpose
Changes the comments in a Source Code Control System (SCCS) delta.
Syntax
=0 T e T T
~mmrlist —~Ycomment.
—-m -y
cde — ~rSID _C —( -
—mmrlist ~Ycomment
OL805088
Description
The ede command changes the Modification Requests (MRs) and comments for the SID
specified by the -r flag for each named Source Code Control System (SCCS) file. If you
specify a directory name, edc performs the requested actions on all SCCS files in that
directory (that is, all files with names that have the s. prefix). If you specify a - (minus) in
place of file, cdc reads standard input and interprets each line as the name of an SCCS file.
For more information on SCCS comments and Modification Requests, see AIX Operating
System Programming Tools and Interfaces.
You can change the comments and MRs for an SID only if you made the SID or you own
the file and the directory. For more information on the permissions needed to change
SCCS files, see “SCCS Files” on page 360.
Flags

-m[mrlist] Supplies a list of MR numbers for cde to add or delete in the SID specified
by the -r flag. You can only use this flag if the file has the v header flag set
(see Figure 1 on page 54). A null MR list has no effect.

In the mrlist, MRs are separated by blanks, tab characters, or both. To
delete an MR, precede the MR number with an ! (exclamation point). If the
MR you want to delete is currently in the list of MRs, it is changed into a
comment line. edc places a list of all deleted MRs in the comment section of

Commands 123



cde

the delta and precedes them with a comment line indicating that the
following MRs were deleted.

If you do not specify the -m flag, and the v header flag is set, MRs are read
from standard input. If standard input is a work station, cdc prompts you
for the MRs. The first new-line character not preceded by a backslash ends
the list on the command line. edec continues to take input until it reads an
end-of-file character (Ctrl-D) or a blank line. MRs are always read before
comments (see the -y flag).

If the v flag has a value, cdc interprets the value as the name of a program
which validates the MR numbers. If the MR number validation program
returns a nonzero exit value, cde stops and does not change the MRs.

-rSID Specifies the SCCS identification number of the delta for which ede will
change the comments or MRs.

-ylcomment] Specifies text to replace any comment already existing for the delta specified
by the -r flag. cdec keeps the existing comments and precedes them by a
comment line stating that they were changed. A null comment has no effect.

If you do not specify -y, cdc reads comments from standard input until it
reads an end-of-file character. If the standard input is a work station, cdc
prompts for the comments and also allows a blank line to end input. If the
last character of a line is a backslash (\), cde ignores it and continues to
read standard input.

Note: If cde reads standard input for file names (that is, when you specify
a file name of -), you must use the -y and -m flags.

Related Information

The following commands: “admin” on page 51, “delta” on page 236, “get” on page 359,
“help” on page 391, and “prs” on page 574.
The secsfile file in AIX Operating System Technical Reference.

The discussion of SCCS in AIX Operating System Programming Tools and Interfaces.

124 Commands Reference



cflow

cflow

Purpose

Generates a C flow graph of external references.

Syntax

cflow file

OL805172

Description

The eflow command analyzes C, yace, lex, assembler, and object files and writes a chart of
their external references to standard output.

It sends files with suffixes .y, .1, and .e to the yace, lex, and cpp commands for the
appropriate processing. This step is bypassed for .i files. It then runs the output of this
processing through the first pass of lint. It assembles files which end in .s, extracting
information from the symbol table (as it does with .o files). From this output, cflow
produces a graph of external references, which it writes to standard output.

Each line of output begins with a line number followed by sufficient tabs to indicate the
level of nesting. Then comes the name of the global, a colon, and its definition. This name
is normally a function not defined as external and not beginning with an underline
character; see the -i _ inclusion flag on p. 126. For information extracted from C source
files, the definition consists of an abstract type declaration (for example, char*), the name
of the source file, surrounded by angle brackets, and the line number on which the
definition was found. Definitions extracted from object files contain the file name and
location counter under which the symbol appeared. cflow deletes leading underline
characters in C-style external names.

Once cflow displays the definition of a name, later references to it contain only the cflow
line number where the definition may be found. For undefined references, cflow displays
only <>.

If the nesting level becomes too deep to display in available space, pipe the output from
cflow to the pr command, using the -e flag to compress the tab expansion to something
less than every eight spaces.

Commands 125



cflow

Note: Files produced by lex and yace cause the reordering of line number declarations
which can confuse cflow. To get proper results, feed cflow the yacc or lex input.

Flags

In addition to the following, cflow recognizes the -1, -D, and -U flags of the cpp command.

-dnum Sets to decimal integer num the depth at which the flow graph is cut off. By
default this is a very large number. Do not set the cutoff depth to a nonpositive

integer.
-ix Includes external and static data symbols. The default includes only functions.
-i_ Includes names that begin with an underline character. The default excludes

these functions (and corresponding data if -ix is used).

-r Produces an inverted listing which shows the callers of each function, sorted by
called function.

Related Information

The following commands: “as” on page 64, “cc” on page 112, “lex” on page 432, “lint” on
page 446, “nm” on page 521, “pr” on page 561, and “yacc” on page 861.

The discussion of cflow in AIX Operating System Programming Tools and Interfaces.

126 Commands Reference



TNL SN20-9861 (26 June 1987) to SC23-0790-0

chgrp
chgrp
Purpose
Changes the group ownership of a file or directory.
Syntax
file .
chgrp ﬂgraup T directory
-r
OL805090

Description

The chgrp command changes the group associated with the specified file or directory to
groupname or grouplD. If you do not own the file, you must have superuser authority to
change the group ID.

If the file or directory resides on a remote node, the translated group ID is used.

| Flag
| -r Causes the untranslated group ID to be used.
Examples
To change the group ownership of the file or directory named proposals to staff:
chgrp staff proposals
The group access permissions for proposals now apply to the staff group.
Files

etc/group

Commands 126.1



TNL SN20-9861 (26 June 1987) to SC23-0790-0
chgrp

Related Information

The following command: “groups” on page 385.

| The chown and chownx system calls and the group file in AIX Operating System
Technical Reference.

“Distributed Services id Translation” in Managing the AIX Operating System.

126.2 Commands Reference



chgrp

Commands 127



chmod

chmod

Purpose

Changes permission codes.

Syntax
SYMBOLIC
file
chmod T directory
u
ug
og
ABSOLUTE

file

chmod — permcode _T: directory ]—4

1
Do not put a blank between these items.

2Do not put a blank on either side of the comma.
0L805091

Description

The chmod command modifies the read, write, execute (file), or search (directory)
permission codes of specified files or directories. You can use either symbolic or absolute
mode to specify the desired permission settings.

You can change the permission code of a file or directory only if you own it or if you are
operating with superuser authority.

128 Commands Reference



chmod

Symbolic Mode

When you use the symbolic mode to specify permission codes, the first set of flags selects
the permission field, as follows:

®» oM

User (owner)

Group

All others

User, group, and all others (same effect as ugo). This 1s the default permission
field.

The second set of flags selects whether permissions are to be taken away, added , or set
exactly as specified:

+

Removes specified permissions

Adds specified permissions

Clears the selected permission field and sets it to the code specified. If you do not
specify a permission code following =, chmod removes all permissions from the
selected field.

The third set of flags of the chmod command selects the permissions as follows:

Read permission.
Write permission.
Execute permission for files; search permission for directories.

Set user-ID or set group-ID permission. This permission bit sets the effective
user-ID or group-ID to that of the file whenever the file is run. Use this permission
setting in combination with the u or g field to allow temporary or restricted access
to files not normally accessible to other users. An s appears in the user or group
execute position of a long listing (see “Is” on page 461 or “li” on page 437), to show
that the file runs “set user-ID” or “set group-ID.”

The save text permission. Setting this permission bit causes the text segment of a
program to remain in virtual memory after its first use. The system thus avoids
having to transfer the program code of frequently-accessed programs into the
paging area. A character special file with this bit set is a multiplexed file. You
can specify this permission only with the u field. A t appears in the execute
position of the “all others” field to indicate that the file has this bit (the sticky bit)
set.

You can specify multiple symbolic modes, separated with commas. Do not separate items
in this list with spaces. Operations are performed in the order they appear from left to

right.

Commands 129



chmod

Absolute Mode

The chmod command also permits you to use octal notation to set each bit in the
permission code. chmod sets the permissions to the permcode you provide. This permcode
is constructed by combining (the logical OR of) the following values:

4000 Sets user-ID on execution

2000 Sets group-ID on execution

1000 Retains memory image after execution (executable file)
1000 Indicates multiplexed character special file

0400 Permits read by owner

0200 Permits write by owner

0100 Permits execute or search by owner

0040 Permits read by group

0020 Permits write by group

0010 Permits execute or search by group
0004 Permits read by others

0002 Permits write by others

0001 Permits execute or search by others

All permission bits not explicitly specified are cleared.
Examples

1. To add a type of permission to several files:

chmod g+w chapl chap?2

This adds write permission for group members to the files chapl and chap?2.
2. To make several permission changes at once:

chmod go-w+x mydir

This denies group members and others the permission to create or delete files in mydir
(go-w). It allows them to search mydir or use it in a path name (go+x). This is
equivalent to the command sequence:

chmod g-w mydir
chmod o-w mydir
chmod g+x mydir
chmod o+x mydir

3. To permit only the owner to use a shell procedure as a command:
chmod u=rwx,go= cmd

This gives read, write, and execute permission to the user who owns the file (U=rwX).
It also denies the group and others the permission to access ¢md in any way (go=).

130 Commands Reference



chmod

If you have permission to execute the shell command file cmd, then you can run it by
entering:

cmd

This may not work in some cases, depending on the value of the shell variable PATH.
See page 646 for more information about PATH.

4. To use “set-ID” modes:

chmod ug+s cmd

When cmd is executed, this causes the effective user and group IDs to be set to those
that own the file cmd. Only the effective IDs associated with the subprocess that runs
cmd are changed. The effective IDs of the shell session remain unchanged.

This feature allows you to permit restricted access to important files. Suppose that the
file cmd has the set-user-ID mode enabled and is owned by a user called dbms. dbms is
not actually a person, but might be associated with a database management system.
The user betty does not have permission to access any of dbms’s data files. However,
she does have permission to execute cmd. When she does so, her effective user ID is
temporarily changed to dbms, so that the cmd program can access the data files owned
by dbms.

This way betty can use cmd to access the data files, but she cannot accidentally
damage them with the standard shell commands.

5. To use the absolute mode form of the chmod command:
chmod 644 text

This sets read and write permission for the owner, and it sets read-only mode for the
group and others.

Related Information

The following commands: “Is” on page 461, “li” on page 437, and “umask” on page 784.1.

Commands 131



|

TNL SN20-9861 (26 June 1987) to SC23-0790-0

chown

chown

Purpose

Changes the owner of files or directories.

Syntax

h user file
chown directory
—r |

OL805095

Description

The chown command changes the owner of the specified files or directories to username or
userID. The group associated with the file or directory is not affected.

Note: If you give ownership of a file or directory to another user, you cannot regain
ownership unless you have superuser authority.

If the file or directory resides on a remote node, the translated user ID is used.

Flag
-r Causes the untranslated user ID to be used.

Example
chown jim program.c
The user access permissions for program.C now apply to jim. As the owner, jim can use
chmod to permit or deny the other users access to program.c. See “chmod” on page 128
for details.

Files

[etc/passwd

132 Commands Reference



TNL SN20-9861 (26 June 1987) to SC23-0790-0
chown

Related Information

The following command: “passwd” on page 546.

The chown and chownx system calls and the passwd file in AIX Operating System
Technical Reference.

“Distributed Services id Translation” in Managing the AIX Operating System.

Commands 132.1



chown

132.2 Commands Reference



chparm

chparm

Purpose

Changes or examines system parameters.

Syntax

nodename /unix
chparm ‘<7_ T >—‘
value kernel-image

nodename="1ew
0L805093

Description

The chparm command lets you change a system parameter or look at its current setting.
Currently, only the nodename parameter may be examined or changed. The name
assigned cannot be longer than eight characters. If you do not assign a newvalue, chparm
writes the current value of nodename to standard output. The default kernel-image is
[unix.

Changes do not affect the running system. You must restart the system for the change to
become effective.

Examples

1. To display the nodename of your system:

chparm nodename

This displays the nodename of /unix, which is a file containing the kernel of the AIX
operating system. This file is loaded and run when you start up the computer.

2. To change the nodename of a system:
chparm nodename=COMP-CTR /unix.compctr

This changes the nodename of /unix.compctr to COMP-CTR. /unix.compctrisa
file that contains an alternate version of the operating system kernel. The change does
not affect the running system, even if you change the /unix kernel.

Commands 133



chroot

chroot

Purpose

Changes the root directory of a command.
Syntax

chroot — directory — command —
0L805094

Description

Warning: If special files in the new root have different major and minor
device numbers than they have in the real root, it is possible to overwrite
the file system.

The chroot command can be used only by a user operating with superuser authority (see
“su” on page 724). If you have superuser authority, the chroot command changes the root
directory to the specified directory when executing command. The first | (slash) in any
path name changes to directory for the specified command and any of its children.

Notice that:
chroot directory command > file
creates the file. relative to the original root, not the new one.

The directory path name is always relative to the current root. Even if a chroot is in
effect, directory is relative to the current root of the running process.

Several programs may not operate properly after chroot has been run. For example, the
command Is -1 will fail to give user and group names if the current root location makes
/etc/passwd beyond reach. In addition, utilities that depend on description files produced
by the ctab command (see page 204) may fail altogether if these files are also not in the
new root file system. It is your responsibility to ensure that all vital data files are present
in the new root file system and that the path names accessing such files are changed as
necessary.

134 Commands Reference



chroot

Examples

1. To run a subshell with another file system as the root:
chroot /disketteO0 /bin/sh

This makes the directory name / refer to /diskette0 for the duration of the command
/bin/sh. It also makes the original root file system inaccessible. The file system on
/diskette0 must contain the standard directories of a root file system. In particular,
the shell will look for commands in /bin and /usr/bin on the /diskette0 file system.

Running the command /bin/sh creates a subshell, which runs as a separate process
from your original shell. Press END OF FILE (Ctrl-D) to end the subshell and go back
to where you were in the original shell. This restores the environment of the original
shell, including the meanings of the current directory (.) and the root directory (/).

2. To run a command in another root file system and save the output:
chroot /disketteO /bin/cc -E /u/bob/prog.c >prep.out

This runs the /bin/ce command with / referring to /diskette0. It saves the output in
the file prep.out, which is in the original root file system.

This runs the C language preprocessor (/bin/cc -E) on the file
/disketteO/u/bob/prog.c, reading #include files from /diskette0/usr/include, and
putting the preprocessed text in prep.out on the primary root file system.

Related Information

The following commands: “ce” on page 112, “cpp” on page 163, and “sh” on page 637.
The chdir and chroot system calls in AIX Operating System Technical Reference.

Commands 135



clri

clri
Purpose

Clears the specified i-node.
Syntax

clri filesystem T inumber T

-q
0OL805097

Description

Warning: Use this command only in emergencies and with extreme care.

The clri command is used to clear i-node entries for files that do not appear in a directory.
In general, you do not need to use this program because fsck can deal with most file
system inconsistencies.

Always run fsck on a file system after you have used elri on it, because it may create
dangling directory references or missing blocks. These can be fixed if they are attended to
promptly. Do not run the system when the file system has dangling directory references or
a bad free list.

The clri command zeroes over the flags word of the i-node, thus freeing it for reallocation.
The inumber parameter specifies the i-node and filesystem specifies the file system it is on.
inumber should be a decimal number, while filesystem can be either the name of the device
on which the file system resides or the name by which it is normally mounted.

If you use clri to remove an i-node that does appear in a directory, you should track down
and remove all of these entries. Otherwise, when the i-node is reallocated to some new file,
the old entry will still point to that file. At that point removing the old entry destroys the
new file and the new entry again points to an unallocated i-node.

By default, the clri command displays some information about the file and asks for
confirmation before it destroys the file. If you enter a y or yes, the file is destroyed.

Since clri only zeroes the flags word of the i-node, if you destroy the wrong file, you can
recover the file by using the fsdb command to restore the flags word.

Note: If the file is open, clri is likely to be ineffective. For this reason, you should run
clri only on an unmounted file system.

136 Commands Reference



clri

Flags
-f Destroys the file without confirmation, but writes a description of the file.
-q Destroys the file without confirmation or writing a description of the file.
Example

To clear i-nodes 170 and 368 of the file system /diskette0 and then clean up the file
system:

clri /diskette0 170 368
fsck /diskette0

Related Information

The following commands: “fsck, dfsck” on page 333 and “fsdb” on page 338.
The fs file in AIX Operating System Technical Reference.

Commands 137



cmp

cmp

Purpose

Compares two files.

Syntax

cmp one of filel — file2 —

it}

OL805157
Description

The emp command compares filel and file2 and writes the results to standard output. If
you specify a - (minus) for filel, emp reads standard input. Under default conditions, cmp
displays nothing if the files are the same. If they differ, cmp displays the byte and line
number at which the first difference occurs. If one file is an initial subsequence of the
other (that is, if cmp reads an end-of-file character in one file before finding any
differences), cmp notes this. Normally, you use emp to compare non-text files and the diff
command to compare text files.

Flags

-1 Displays, for each difference, the byte number in decimal and the differing bytes in
octal.
-s Returns only an exit value. (0 indicates identical files; 1 indicates different files; 2
indicates inaccessible file or a missing argument)
Examples

1. To determine whether two files are identical:
cmp prog.o.bak prog.o

This compares prog.o.bak and prog.o. If the files are identical, then a message is
not displayed. If the files differ, then the location of the first difference is displayed.

138 Commands Reference



cmp

For instance:

prog.o.bak prog.o differ: char 5, 1line 1

If the message cmp: EOF on prog.o.bak is displayed, then the first part of prog.o is
identical to prog.o.bak, but there is additional data in prog.o.

2. To display each pair of bytes that differ:
cmp -1 prog.o.bak prog.o

This compares the files, and then displays the byte number (in decimal) and the
differing bytes (in octal) for each difference. For example, if the fifth byte is octal 101
in prog.o.bak and 141 in prog.o, then cmp displays:

5 101 141
3. To compare two files without writing any messages:
cmp -s prog.c.bak prog.c

This gives an exit value of 0 if the files are identical, 1 if different, or 2 if an error
occurs. This form of the command is normally used in shell procedures. For example:

if cmp -s prog.c.bak prog.c
then

echo No change
fi

This partial shell procedure displays No change if the two files are identical. See page
653 for details about the if command.

Related Information

The following commands: “comm” on page 144, “diff” on page 246, and “sh” on page 637.

Commands 139



col

col
Purpose
Processes text having reverse linefeeds and forward/reverse half-linefeeds for output to
standard output.
Syntax
col
-b —p
—f —x
0OL805173
Description

The col command reads from standard input and writes to standard output. It performs the
line overlays implied by reverse linefeeds (ASCII ESC-7), and by forward and reverse
half-linefeeds (ASCII ESC-9 and ASCII ESC-8). col is particularly useful for filtering
multi-column output made by the nroff .rt command and output from the tbl command.
The input format accepted by col matches the output format produced by nroff -T37 or by
nroff -Tlp. Use -T37 and the col -f flag if the output is being sent to a device that can
interpret half-line motions; use -Tlp otherwise.

The col command assumes that the ASCII control characters SO (1017) and SI (\016) begin
and end text in an alternate character set. col remembers the character set each input
character belongs to, and on output generates SI and SO characters as appropriate to
ensure that each character is printed in the correct character set.

On input, col accepts only the control characters for space, backspace, tab, return, the

new-line character, SI, SO, VT, and ESC-7, 8, or 9. VT (\013) is an alternate form of full
reverse linefeed included for compatibility with some earlier programs of this type. col
ignores all other non-printing characters.

Note: The col command cannot back up more than 128 lines.
It allows at most 800 characters, including backspaces, on a line.

It ignores local vertical motions that would result in backing up over the first line.
As a result, the first line must not contain any superscripts.

140 Commands Reference



col

Flags

-X

Assumes that the output device in use is not capable of backspacing. In this case, if
two or more characters are to appear in the same position, only the last one read
appears in the output.

Suppresses the default treatment of half-line motions in the input. Normally, col
does not emit half-line motions on output, although it does accept them in its input.
With this flag, output may contain forward half-linefeeds (ESC-9) but not reverse
linefeeds (ESC-7 or ESC-8).

Displays unknown escape sequences as characters, subject to overprinting from
reverse line motions. Normally, col ignores them. You should be fully aware of the
textual position of escape sequences before you use this flag.

Suppresses changing the white space to tabs. Without this flag, col converts white
space to tabs wherever doing so might shorten printing time.

Related Information

The following commands: “nroff” on page 525 and “tbl” on page 739.

The discussion of col in Text Formatting Guide.

Commands 141



comb

comb

Purpose

Combines SCCS deltas.

Syntax
comb file —
—o —pSID
~s —c /ist
OL805098
Description

Flags

The comb command writes to standard output a shell procedure that can combine the
specified deltas (SIDs) or all deltas into one delta. You may reduce the size of your SCCS
file by running the resulting procedure on the file. You can see how much the file will be
reduced by running comb with the -s flag. If you specify a directory in place of file, comb
performs the requested actions on all SCCS files (that is, those with file names with the s.
prefix). If you specify a - (minus) in place of file, comb reads standard input and interprets
each line as the name of an SCCS file. comb continues to take input until it reads END
OF FILE (Ctrl-D).

If you do not specify any flags, comb preserves only leaf deltas and the minimal number of
ancestors needed to preserve the tree (see “delta” on page 236).

Note: The comb command may rearrange the shape of the tree deltas. It may not save
any space; in fact, it is possible for the reconstructed file to actually be larger than the
original.

Each flag or group of flags applies independently to each named file.

-clist  Specifies a list of deltas (SIDs) that the shell procedure will preserve (see get -i
list for the SID list format on page 364). The procedure will combine all other
deltas.

142 Commands Reference



comb

Files

s.COMB

comb*

Accesses the reconstructed file at the release of the delta to be created for each
get -e generated; otherwise accesses the reconstructed file at the most recent
ancestor. Using the -o flag may decrease the size of the reconstructed SCCS file.
It may also alter the shape of the delta tree of the original file.

Specifies the SID of the oldest delta for the resulting procedure to preserve. All
older deltas are combined in the reconstructed file.

Causes comb to generate a shell procedure that produces a report for each file
giving: the file name, size (in blocks) after combining, original size (also in
blocks), and percentage change computed by the formula:

100 * (original - combined) / original

You should run comb using this flag and run its procedure before combining
SCCS files in order to judge how much space will actually be saved by the
combining process.

The name of the reconstructed SCCS file.
Temporary files.

Related Information

The following commands: “admin” on page 51, “delta” on page 236, “get” on page 359,

“help” on page 391, and “prs” on page 574.

The scesfile file in AIX Operating System Technical Reference.
The discussion of SCCS in AIX Operating System Programming Tools and Interfaces.

Commands 143



comm

comm

Purpose

Selects or rejects lines common to two sorted files.

Syntax
ohe of
-1 -2 =3
comm —| —12 =13 =23 |— filel—file2 —
-123
OL805099
Description

The comm command reads filel and file2 and writes, by default, a three-column output to
standard output. The columns consist of:

1. Lines that are only in filel
2. Lines that are only in file2
3. Lines that are in both filel and file2.

If you specify - (minus) for one of the file names, comm reads standard input. Both filel
and file2 should be sorted according to the collating sequence specified by the environment
variable NLCTAB (see “ctab” on page 204 and “sort” on page 672),

Flags

-1 Suppresses the display of the first column (lines in filel).
-2 Suppresses the display of the second column (lines in file2).
-3 Suppresses the display of the third column (lines common to filel and file2).

Note: Specifying -123 does nothing (a noop).
Examples

1. To display the lines unique to each file and common to both:
comm things.to.do things.done

144 Commands Reference



comm

If the files things.to.do and things.done contain:

things.to.do

things.done

buy soap
groceries
Tuncheon
meeting at 3
system update
tech. review

2nd revision
interview
Tuncheon
system update
tech. review
weekly report

then comm displays:

2nd revision
buy soap
groceries
interview
lTuncheon
meeting at 3
system update
tech. review
weekly report

The first column contains the lines found only in things.to.do. The second column,

indented with a tab character, lists the lines found only in things.done. The third
column, indented with two tabs, lists the lines common to both.

To display the lines that appear in only one file:
comm -23 things.to.do things.done

This suppresses the second and third columns of the comm listing. If the files are the
same as in Example 1, then the following 1s displayed:

buy soap
groceries
meeting at 3

Related Information

The following commands: “ecmp” on page 138, “ctab” on page 204, “diff” on page 246,
“sdiff” on page 627, “sort” on page 672, and “uniq” on page 792.

The environment miscellaneous facility in AIX Operating System Technical Reference.

“Overview of International Character Support” in Managing the AIX Operating System.

Commands 145



TNL SN20-9861 (26 June 1987) to SC23-0790-0
confer

confer

Purpose

Provides an on-line conferencing system.

Syntax
-n$LOGNA user
confer -@r ettynum
~n name ettynum
joinconf — name —i
OL805174
Description

The confer command sets up an on-line, written conference among logged-in users on your
local node. You start a conference by running the confer command, specifying the users
and/or work stations (@ttynum) that are part of the conference. If the users you specify
are logged in and their work stations are writable, they are requested to join the
conference by using the joinconf command. The other conferees are informed as each user
joins the conference.

Once you join a conference, everything you enter at your work station displays at all other
work stations that are part of the conference. This display continues until you press
Ctrl-D to end your own active participation or until you excuse a conference participant,
thus stopping the display of your contributions at his work station. (See page 147.)

To prevent the confusion that can be caused by several conferees typing at the same time,
users should follow some agreed on protocol. The following is one recommended protocol:

e In order to take the floor, a user presses the Enter key before entering his
contribution. This notifies other participants that he has the floor because his name
displays in brackets at their respective work stations.

® A user is presumed to have the floor until he relinquishes it by entering a blank line.

e If two or more users try to claim the floor at the same time, the last person to do so
(the one whose name appears last), is assumed to have the floor. The others should
immediately relinquish the floor by typing single blank lines.

146 Commands Reference



confer

Flags

The confer command gives each conference a unique name, normally the name of the
conference leader, with additional letters added to it, if necessary. The conference leader
can override this default by specifying the -n flag.

A user who is logged in to more than one work station is normally written to on all of
them, unless the conference leader specifies one of the work stations with the @ttynum
flag when he invokes confer.

A conferee ends his active participation by pressing Ctrl-D. This action causes his name
and the word BYE to display at the work stations of the other conference participants.
However, the contributions of the other participants will continue to display at his work
station until the other participants each excuse him.

You can run shell commands from within a conference by simply prefixing them with a |
(vertical bar) or an ! (exclamation point). Using the exclamation point causes the
command to run in the normal fashion; the output displays only at the work station that
runs it. Using the vertical bar, however, causes the command and all of its standard
output and standard error output to become part of the conference, visible to all conferees.

Three subcommands are run directly by confer and joinconf. These are:

lexcuse name ... Excuses the specified conferees from the conference. No further
conference material displays at these work stations.

"~ Makes all contributions from the user who issues it off the record
until he issues the !~ subcommand.

1~ Cancels a preceding !~, placing the user’s remarks back on the record.
Unless the conference leader makes a conference off the record by specifying the ~ flag,
confer makes a transcript of all conference proceedings. When a participant leaves the
conference, he is asked whether he wants a transcript. If he does, he is mailed a copy
when the conference concludes. Any participant can make a comment off the record in a
conference that is otherwise on the record by beginning the line with a ~ (tilde).

Conference contributions are normally transmitted one line at a time. If the conference
leader specifies the -v flag, transmission occurs one character at a time. As this mode of
transmission sends all user typing errors and hesitations and imposes a considerably larger
load on the system, its use is strongly discouraged.

-nname Assigns name to the conference transcript. The conference name is used by
those joining the conference so that they get into the right one. The name of
the user who starts the conference is the default conference name.

-V Transmits conference messages one character at a time.

Sets up the conference off the record, that is, no transcript of the proceedings
is recorded.

Commands 147



confer

@ttynum Specifies a particular work station for a conferee, if a user is also specified (for

example, ttyl). This is useful if a conferee is logged in to more than one work
station. If no user is specified, this flag invites any user logged in to the
specified work station to participate.

Examples

1.

To start a conference with steve and rachel:
confer steve rachel

Running the confer command makes you the conference leader, so your login name is
also the name of the conference. confer sends steve and rachel a message inviting
them to join your conference and giving them the conference name.

To specify work stations that may join the conference:
confer steve@ttyb rachel @ttyl0

Suppose that steve is logged in at the work stations tty3, tty4, and tty5, and that
rachel is logged in at tty7 and tty8. This command invites steve to join the
conference at work station tty5 only, invites rachel to join at either work station she
is using or at both, and invites whoever is logged in at tty10 to join.

To join a conference named paula:
joinconf paula

Now the text you type becomes part of the dialog: prefixed with your name, displayed
at each participant’s work station, and recorded in the transcript of the conference.

Suppose that you start a conference by entering the command given in Example 2, and
the person using ttyl0 decides not to join the conference. If you do nothing, this
person also sees the dialog, even though not participating in it. To prevent this from
happening, each person that has joined the conference must enter:

lexcuse @ttyl0

Similarly, if rachel decides to join the conference from tty7, the discussion is also
displayed at her other work station, tty8, unless everyone enters:

lexcuse rachel@tty8

rachel should enter this, too, but only at tty7, the work station she is using for the
conference.

To make a single-line statement off the record:
~Coffee and donuts at my place.

confer displays lines beginning with ~ (tilde) at participants’ work stations, but does
not include them in the record of the conference.

148 Commands Reference



confer

To make a multiple-line statement:

' ~

Everyone is invited

to my place after the conference
for coffee and donuts.

| ~~
To run a shell command privately, without leaving the conference:
114

This lists the current directory without including the Ili command or its output in the
conference.

To include the output of a shell command in the discussion:
icat notes.conf

This lists the contents of the file notes.conf at each participant’s work station, and
includes it in the conference record.

To send command output to others, off the record:

|~

icat notes.conf

| ~~

To leave the conference, press Ctrl-D. If your user name is paula, then after you

press Ctrl-D, the message: [paula] BYE is sent to the other participants. The rest
of the discussion continues to appear at your work station until each of the other
participants enters:

lexcuse paula

Files

Jetc/utmp
/dev/tty??
[tmp/*.cnf
[tmp/*.In?
Jtmp/*.mls

List of logged-in users.

Work station names.

User transcript files.

Links to main conference file.
Transcript mailing list.

Related Information

The following command: “write” on page 853.

Commands

149



config

config

Purpose

Extracts configuration information from configuration files.

Syntax
-m /etc/master -c conf.c -1 specials
config Q——C }—C systemfile —
-m mfile —c cfile -l spfile
OL805416
Description

The config program reads the AIX master and system configuration files (by default
Jete/master and the specified systemfile). It writes a.C Language configuration file and a
special file list (by default conf.c and specials). The special file list is a list of the
mknod, chown, and chmod commands that the shell runs to define the necessary special
files. The return code is the number of errors encountered.

The C Language configuration file can then be compiled and linked with other kernel
object files to produce a new kernel. Normally, when you want to reconfigure the kernel,
you should run the make command with the Makefile supplied in the /usr/sys directory.
This runs config and then builds a new kernel. For a discussion of reconfiguring the
kernel, see Managing the AIX Operating System.

Flags
-c cfile Writes the C configuration file to cfile instead of to conf.c.
-1 spfile  Writes the special file list commands to spfile instead of to specials.
-m mfile Reads mfile instead of /etc/master.
Files
Jetc/master Default master configuration file.
[ete/system A system configuration file.
conf.c Default C configuration file.
specials Default special file list.

150 Commands Reference



config

Related Information

The following commands: “make” on page 474 and “vrmconfig” on page 842.
The master and system files in AIX Operating System Technical Reference.
The discussion of config in Managing the AIX Operating System.

Commands 151



TNL SN20-9861 (26 June 1987) to SC23-0790-0
connect

connect

Purpose
Establishes a connection to a remote system.

Syntax

connect — —b ﬂrmthost —
file:

-20

connect R one of one of

—iname —mprompt —1

-wsec —parg —h E

—targ ~-xarg

rmthost
>—< lemd
—e—(1 =s-{1 file:rmthost -rpgm
esc rate

Description

0OL805388

The connect command lets you establish a connection to a remote host. connect runs in
two parts. The first part makes the connection with the remote system specified by
rmthost. The second part is a program called the talker. It runs automatically and
exchanges data with the rmthost. For information about the talker program, see connect
in AIX Operating System Technical Reference. Any flags that you specify are passed
directly to the talker without interpretation. The default talker for asynchronous links is
atalk.

The connect command uses a system-wide control file, connect.con, located in
/usr/lib/INnet. You can specify an additional control file, file:rmthost. If you do not
specify an additional file, connect searches SHOME/bin for a connect.con file.
Information needed to complete the connection is found in one of these files.

Attributes needed to complete the connection are taken from the control file or from the
command line assignment var=val. For a description of the parameters, see connect in
AIX Operating System Technical Reference.

152 Commands Reference



TNL SN20-9861 (26 June 1987) to SC23-0790-0
connect

Flags

When atalk detects an escape sequence in the input, it places the work station in its
former mode of operation and prompts you with the local prompt. You can then use the
flags that follow. Once the flag has run, atalk returns to its former mode.

The connect command does not limit access to the phone system to control dialing based
on the number to be called.

Warning: The connect command lets you set up and maintain
connections through a wide variety of communications devices. It
interacts with you through the file connect.con which is free-format.
Problems with the format of this file may cause unpredictable results.

Note: There are no spaces between the flags and the associated parameters.

-b Sends a break to the port. This is done by lowering the transmission speed to
75 bps and transmitting an ASCII NULL on the port. If the speed is too low,
less than 100 bps, this may not work.

-d

-q Closes, quits (q) or disconnects (d) the port. Note that this does not end your
job or session at the remote site. After closing the port, connect exits.

-e[esc] Sets the escape sequence to the character string esc. If you do not specify esc,
connect displays escape sequence. It takes the default escape sequence from
the environment variable CONESC, if defined, or else sets it to:
Ctrl-VuCtrl-M

-f

-h Enables (-h) or disables (-f) local echoing.

-iname Writes file name to the port.

Warning: If you are connected to the remote host by RS-232
lines, data from the file may be lost if the remote host cannot
keep up with the input.

Normally, this flag is used to transfer a small file from the local site to the
remote site. File transmission must be ended manually by pressing Ctrl-D.

Commands 153



connect

-mprompt

-parg

-rpgm

-srate

-targ

-wsec

-xarg

lemd

For example:

cat > newfile
lescape sequence]
LOCAL: ifred

Ctrl-D

Set the local prompt to the prompt character string. connect displays this
prompt when it recognizes the escape sequence. By default, it sets the prompt
to the value of the environment variable CONPMT. If this variable is not set,
it uses the the string LOCAL:.

Sets parity as specified by arg, where arg is one of the following characters: o
(odd), e (even), 7 (both even and odd), or 8 (eight data bits).

Runs the network program pgm. Anything following pgm on the command line
is passed to pgm as an argument, along with the additional arguments -i3 -03.
The port set up as file descriptor 3. The program is run as a child process.

Sets the transmission speed to rate, which is one of the following: 0, 50, 75,
110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800, 9600, exta, extb (0 effectively
turns off the port). If you do not specify rate, current transmission speed
displays.

Enables or disables transcripts. If arg is any character string other than a
minus or plus sign, the transcript function is enabled with the specified file
arg as transcript. When you use an existing file as a transcript file, new data
is added to its end. Use t- to disable the transcript function, and t+ to enable
the transcript to the previous transcript file (no default).

Sets the inter-line delay of the include function to cause a delay interval of the
specified seconds between each line written to the port. The default value is 0.

Enables or disables input or output flow control. If the input flow control is
enabled, CTRL-S and CTRL-Q are automatically sent to the remote host to
control the rate at which it transmits data. If the output flow control is
enabled, CTRL-S and CTRL-Q are automatically honored if received from the
host. This is useful when using the include command. xi+ enables input
flow control. xi— disables input flow control. xi displays the current state.
For control of output flow control, replace xi with xo. See the discussion of
IXON and INOFF in the termio file in AIX Operating System Technical
Reference.

Runs the AIX command cmd. Anything that follows !, including arguments to
cmd, is passed to the local shell to be run by the system system call. In
particular, all I/O redirection and piping works.

154 Commands Reference



connect

Files
[usr/lib/INnet/connect.con  System-wide connection control file.
$HOME/bin/connect.con Private connection control file.
Jusr/lib/INnet/dialers/* System-wide dialer programs.
$HOME/bin/* Private dialer programs.
[usr/lib/INnet/atalk Default talker program, asynchronous lines.
ete/sites Network sites file.
[etc/locks Directory for locks on ports (devices) used for logins and

out-going connections.

Related Information

The system and exec system calls, the connect subroutine, and the termio special
facility in AIX Operating System Technical Reference.

Commands 155



Ccp

cp

Purpose

Copies files.

Syntax
one of infile directory
(T
copy infile — outfile
OL805100
Description

The cp (copy) command copies infile to a directory or another file, outfile. Do not name
outfile as one of the input files. If your output is to a directory, then the files are copied to
that directory with the same base file name.

You can also copy special device files. If the file is a named pipe, the data in the pipe is
copied into a regular file. If the file is a device, the file is read until the end of file and
that data is copied into a regular file.

Examples

1. To make another copy of a file in the current directory:
cp prog.c prog.bak

This copies prog.c to prog.bak. If the file prog.bak does not already exist, then ep
creates it. If it does exist, then cp replaces it with a copy of prog.c.

2. To copy a file to the same name in another directory:
cp Jjones clients
This copies jones to clients/jones.

Note the difference: prog.bak in Example 1 is the name of a file; c1ients in Example
2 is a directory that already exists.

156 Commands Reference



cp

3. To copy several files into another directory:
cp listing clients/smith /u/tom

This copies 1isting to /u/tom/Tisting and clients/smith to /u/tom/smith.
4. To use cp with pattern-matching characters:

cp programs/*.c

This copies all of the files in directory programs that end with . C into the current
directory (.), giving them the same names they have in programs. Note that you must
type a space between the C and the final period.

Related Information

The following commands: “cpio” on page 158, “link, unlink” on page 444, “In” on
page 450, and “mv” on page 502.

Commands 157



cpio

Cp10
Purpose
Copies files into and out of archive storage and directories.
Syntax
cpio— —o one of
B
Cvalue
OL805175
Il*ll
pattern
0L805350
cpio— —p >7 directory —
'l adlm
ruy
" Do not put a blank between these items.
OL805351
Description

Warning: If you redirect the output from cpio to a special file (device),
you should redirect it to the raw device and not the block device. Because
writing to a block device is done asynchronously, there is no way to know
if the end of the device has been reached.

158 Commands Reference



TNL SN20-9861 (26 June 1987) to SC23-0790-0
cpio

Flags

cpio -o

This command reads file path names from standard input and copies these files to standard
output along with path names and status information. Path names cannot exceed 128
characters. Avoid giving cpio path names made up of many unique linked files as it may
not have enough memory to keep track of them and so would lose linking information.

cpio -i

This command reads from standard input the name of an archive file created by the ¢pio -0
command and copies from it the files with names that match pattern. These files are copied
into the current directory tree. You may list more than one pattern, using the file name
notation described under “sh” on page 637. Note, however, that in this application the
special characters *, 7, and [ . . . ] match the / (slash) in path names, in addition to their
use as described under “sh” on page 637. The default pattern is * (select all files in the
current directory).

In an expression such as [a-z], the minus means “through” according to the current
collating sequence. A collating sequence may define equivalence classes for use in
character ranges. See the “Overview of International Character Support” in Managing the
AIX Operating System for more information on collating sequences and equivalence
classes.

cpio -p

This command reads file path names from standard input and copies these files into the
named directory. The specified directory must already exist. If these path names include
directory names and if these directories do not already exist, you must use the d flag to
cause the directory to be created.

Note: You can copy special files only if you have superuser authority.

All flags must be listed together, without any blanks between them. Not all of the
following flags can be used with each of the -o, -i, and -p flags.

a Resets the access times of copied files to the current time.
b Swaps both bytes and halfwords.

Note: If there are an odd number of bytes or halfwords in the file being
processed, data can be lost.

B Performs block input/output, 5120 bytes to a record.

c Writes header information in ASCII character form.

Commands 159



cpio

Cualue

Examples

Performs block input/output, value * 512 bytes to a record.

Note: The C flag and the B flag are mutually exclusive. If you list both, cpio
uses the last one it encounters in the flag list.

Creates directories as needed.
Copies all files except those matching pattern.

Links files rather than copies them, whenever possible. This flag is usable only
with cpio -p.

Retains previous file modification time. This flag does not work when copying
directories.

Renames files interactively. If you do not want to change the file name, enter the
current file name or press the Enter key only. In this last case, cpio does not
copy the file.

Swaps bytes. This flag is usable only with cpio -i.

Note: If there are an odd number of bytes in the file being processed, data can
be lost.

Swaps halfwords. This flag is usable only with epio -i.

Note: If there are an odd number of halfwords in the file being processed, data
can be lost.

Creates a table of contents. This doés not copy any files.

Copies unconditionally. An older file now replaces a newer file with the same
name.

Lists file names. If you use this with the t flag, the output looks similar to that of
the Is -1 command.

Processes an old file (one written in UNIX Sixth Edition format). This flag is
usable only with cpio -i.

1. To copy files onto diskette:

cpio

-ov <filenames >/dev/rfd0

This copies the files with path names that are listed in the file filenames in a
compact form onto the diskette (> /dev/rfd0). The -v flag causes cpio to display the
name of each file as it is copied. This command is useful for making backup copies of
files. The diskette must already be formatted, but it must not contain a file system or
be mounted.

160 Commands Reference



cpio

To copy files in the current directory onto diskette:

s *.¢ | cpio =-ov >/dev/rfd0

This copies all the files in the current directory whose names end with .c.
To copy the current directory and all subdirectories onto diskette:

find . -print | cpio -ov >/dev/rfd0

This saves the directory tree that starts with the current directory (.) and includes all
of its subdirectories and files. A faster way to do this is:

find . -cpio /dev/rfd0 -print

The -print displays the name of each file as it is copied.

To list the files that have been saved onto a diskette with cpio:
cpio -itv </dev/rfd0

This displays the table of contents of the data previously saved onto /dev/rfd0 in cpio
format. The listing is similar to the long directory listing produced by li -1. To list
only the file path names, use only the -it flags.

To copy the files previously saved with cpio from a diskette:
cpio -idmv </dev/rfdO

This copies the files previously saved onto /dev/rfd0 by cpio back into (-i) the file
system. The -d flag allows cpio to create the appropriate directories if a directory tree
was saved. The -m flag maintains the last modification time that was in effect when
the files were saved. The -v causes cpio to display the name of each file as it is copied.

To copy selected files from diskette:
cpio -1 "*.c" "* 0" </dev/rfd0

This copies the files that end with .C or .0 from diskette. Note that the patterns
"*_ c" and "*.0" must be enclosed in quotation marks to prevent the shell from

treating the * as a pattern-matching character. This is a special case in which cpio
itself decodes the pattern-matching characters.

To rename files as they are copied from diskette:
cpio ~-ir </dev/rfd0

The -r flag causes cpio to ask you whether or not to rename each file before copying it
from diskette. For example, the message:

Rename <prog.c>

asks whether to give the file saved as prog.c a new name as it is copied in. To
rename the file, type the new name and press Enter. To keep the same name, you
must enter the name again. To avoid copying the file at all, press the Enter key alone.

Commands 161



cpio

8. To copy a directory and all of its subdirectories:

mkdir /u/jim/newdir
find . -print | cpio -pdl /u/jim/newdir

This duplicates the current directory tree, including the current directory and all of its
subdirectories and files. The duplicate is placed in the new directory /u/jim/newdir.
The -1 flag causes cpio to link files instead of copying them, when possible.

Related Information

The following commands: “ar” on page 58, “find” on page 326, and “In” on page 450.
The cpio system call in AIX Operating System Technical Reference.
“QOverview of International Character Support” in Managing the AIX Operating System.

162 Commands Reference



cpp

Cpp
Purpose
Performs file inclusion and macro substitution on C Language source files.
Syntax
/lib/cpp }‘6 -Dname %’{
:(p: —Uname —Dname =def infile
~1dir outfile
' The default def is 1.
OL805378
Description

The cpp program is the C Language preprocessor. It reads infile and writes to outfile
(standard input and standard output by default). Although you can use this preprocessor
by itself, it is best to use it through the ec command, which by default sends a C Language
source file to cpp as the first pass in compilation.

The cpp program recognizes two special names, . _LINE__ (the current line number) and
-_FILE__ (current file name). These names can be used anywhere just as any other
defined name.

All cpp directive lines must begin with a hash sign (#). These directives are:

#define name token-string
Replaces subsequent instances of name with token-string.

ffdefine name(arg, . . . ,arg) token-string
Replaces subsequent instances of the sequence name (arg, . . . ,arg)
with token-string, where each occurrence of an arg in token-string is
replaced by the corresponding token in the comma-separated list. Note
that there must not be any space between name and the left
parenthesis.

#undef name Ignores the definition of name from this point on.

Commands 163



cpp

164 Commands Reference

#include "file”
#include <file>

#line num ["file”]

#endif

#ifdef name

#ifndef name

#if expr

#else

Includes at this point the contents of file, which cpp then processes.

If you enclose file in double quotation marks (" "), epp searches first
in the directory of infile, second in directories named with the -I flag,
and last in directories on a standard list .

If you use the <file> notation, cpp searches for file only in the
standard places. It does not search the directory in which infile
resides.

Includes line control information for the next pass of the C compiler.
num is the line number of the next line and file is the file from which
it comes. If you omit “file”, the current file name remains unchanged.

Ends a section of lines begun by a test directive (#if, #ifdef, or
#ifndef). Each test directive must have a matching #endif.

Places the subsequent lines in the output only if name has been
defined by a previous #define and has not been undefined by an
intervening #undef.

Places the subsequent lines in the output only if name has not been
defined by a previous #define or has been undefined by an intervening

#undef.

Places subsequent lines in the output only if expr evaluates to nonzero.
All the binary nonassignment C operators, the ?: operator, and the
unary -, !, and ~ operators are legal in expr. The precedence of the
operators is the same as that defined in the C Language. There is also
a unary operator defined, which can be used in expr in these two
forms:

defined (name)
defined name

This allows the utility of #ifdef and #ifndef in a #if directive. Only
these operators, integer constants, and names which are known by cpp
should be used in expr. The sizeof operator is not available.

Places subsequent lines in the output only if the expression in the
preceding #if directive evaluates to False (and hence the lines
following the #if and preceding the #else have been ignored).

You can nest the test directives and the possible #else directives.



cpp

Flags

-C Copies source file comments to the output file. If you omit this flag, epp
removes all comments (except those found on cpp directive lines).

-Dname[=def] Defines name as in a #define directive. The default def is 1.

-Idir Looks first in dir, then looks in the directories on the standard list for
#include files with names that do not begin with a / (slash). See the
previous discussion of #include.

-p Preprocesses input without producing line control information for the
next pass of the C compiler.

-Uname Removes any initial definition of name, where name is a reserved symbol
predefined by the preprocessor.

Examples
1. To display the text that the preprocessor sends to the C compiler:
/lib/cpp pgm.c
This preprocesses pgm. Cc and displays the resulting text at the work station. You may
want to see the preprocessor output when looking for errors in your macro definitions.
2. To create a file containing more readable preprocessed text:
/1ib/cpp -P -C pgm.c pgm.i
This preprocesses pgm. ¢ and stores the result in pgm.i. It omits line numbering
information intended for the C compiler (-P), and includes program comments (-C).

3. To predefine macro identifiers:

/1ib/cpp -DBUFFERSIZE=512 -DDEBUG pgm.c pgm.i
This defines BUFFERSIZE with the value 512 and DEBUG with the value 1 before
preprocessing.

4. To use #include files located in nonstandard directories:

/lib/cpp -I/u/jim/inciude pgm.c

This looks in the current directory for quoted #include files, then in
/u/jim/include, and then in the standard directories. It looks in /u/jim/include
for angle-bracketed #include files (< >) and then in the standard directories.

Commands 165



Cphp

Files

Jusr/include Standard directory for #include files.

Related Information

The following commands: “cc” on page 112 and “m4” on page 465.

166 Commands Reference



craps

craps

Purpose

Plays craps.
Syntax

/usr/games/craps —i
0OL805188

Description

The craps game plays a form of the game of craps that is played in Las Vegas. It simulates
the roller while you place bets. Bet with the roller by making a positive bet or with the
House by making a negative bet.

You start with a $2000 bankroll. When the program prompts with bet?, you may bet all
or part of your bankroll. If you bet more than your bankroll, the program repeats the
prompt until you make a legal bet. Then the roller throws the dice. The payoff odds are
one to one. The player wins depending on whether the bet is placed with the roller or with
the House. The first roll is the roll immediately following a bet.

The following rules apply. On the first roll, 7 or 11 wins for the roller; 2, 3, or 12 wins for
the House; and any other number becomes the point and you roll again (the next rule then
applies). On subsequent rolls, the point wins for the roller; 7 wins for the House; and any
other number rolls again.

If you lose your bankroll, the House prompts marker?, offering to lend you an additional
$2000. Accept the loan by responding y or yes. Any other response ends the game. When
you hold markers, the House reminds you before a bet how many markers are outstanding.
When you have markers and your bankroll exceeds $2000, craps asks Repay marker? If
you want to repay part or all of your loan, respond with ¥ (or yes). If you have more than
one marker, craps asks you How many? If you respond with a number greater than the
number of markers you hold, it repeats the prompt until you enter a valid number. If you
accumulate 10 markers (a total loan of $20,000), craps tells you so and exits. If you
accumulate a bankroll of more than $50,000 while holding markers, the money owed is
repaid automatically.

A bankroll of more than $100,000 breaks the bank, and craps will prompt New game? To
quit the game, press INTERRUPT (Alt-Pause); craps displays whether you have won, lost,
or broken even and exits.

Commands 167



crash

crash

Purpose

Examines system images.

Syntax
/dev/mem
crash ‘c :>—4
system
OL805101
Description

The crash command is an interactive utility for examining an operating system image (a
core image or the running kernel). It has facilities for interpreting and formatting the
various control structures in the system and certain miscellaneous functions useful for
examining a dump.

The system parameter specifies the file that contains the system image and the kernel
symbol definitions. Its default value is /dev/mem. Thus you can run crash with no
arguments to examine an active system. If you specify a system-image file, crash assumes
that it is a system dump file, and it sets the default process to the process running at the
time of the crash.

Note: A source listing of the system header files may be helpful while using crash
to identify the flags it uses.

Stack tracing of the current process on a running system does not work.

The crash command recognizes several aliases in the format specification accompanying
the subcommands. They are as follows:

Format Aliases Format Aliases
byte b inode ino, 1
character char, ¢ longdec 1d, D
decimal dec, e longoct lo, O
directory direct, dir, d octal oct, o
hexadecimal hexadec, hex, h, x write w

168 Commands Reference



crash

Subcommands

The crash command presents a prompt (>) when it is ready to interpret subcommands
entered at the work station. The general subcommand format for crash is:

subcommand [flags] [structures to be displayed]

When allowed, flags modify the format of the data displayed. If you do not specify which
structure elements you want to examine, all valid entries are displayed. In general, those
subcommands that perform I/O with addresses assume hexadecimal notation.

Most of the subcommands recognized by crash have aliases (abbreviated forms that give
the same result). crash recognizes the following subcommands:

user [process-table-entry] . .. Aliases: uarea, u_area, u
Displays the user structure of the named process as determined by the information
contained in the process table entry. (See the fusr/include/sys/user.h file for this
structure definition.) If you do not specify an entry, the information about the last
running process is displayed. Attempting to display a paged process produces an
error message.

trace [process-table-entry] . .. Aliases: t
Displays a kernel stack trace of the current process. The trace starts at the bottom
of the stack and attempts to find valid stack frames deeper in the stack. If you do
not provide an entry number, information about the last running process is
displayed.

stack {[process-table-entry] ... Aliases: stk, s, kernel, k
Displays a dump of the kernel stack of a process. The addresses shown are virtual
data addresses rather than true physical locations. If you do not provide an entry
number, information about the last running process is displayed. Stack tracing of
the current process on a running system does not work.

proc [-] [-r] [process-table-entry]. .. Aliases: ps, p
Displays the process table. (See the /usr/include/sys/proc.h file for this structure
definition.) The -r flag causes only runable processes to be displayed. The
- (minus) alone displays a longer listing.

inode [-] [i-node-table-entry] . .. Aliases: ino, i
Displays the i-node table. The - flag also displays the i-node data block addresses.
Unless specific i-node entries are requested, only those with a nonzero reference
are displayed.

file [file-table-entry}. .. Aliases: files, f
Displays the file table. Unless specific file entries are requested, only those with a
nonzero reference are displayed.

mount [mount-table-entry] . .. Aliases: mnt, m .
Displays the mount table. Unless specific mount table entries are requested, only
those in use are displayed.

Commands 169



crash

text [texi-table-entry]. .. Aliases: txt, x
Displays the text table. Unless specific text entries are requested, only those with
a nonzero i-node pointer are displayed.

tty [type] [-] [tty-entry] ... Aliases: term, dz, dh
Displays the tty structures. The type parameter specifies which structure is used
(such as ksr, or rs). The last type entered with the tty command becomes the
default. The - flag displays the stty parameters for the given line.

stat  Displays statistics found in the dump. These include the panic message (if a panic
occurred), time of crash, and system name.

var Aliases: tunables, tunable, tune, v
Displays the tunable system parameters.

buf [buffer-header] . . .
Displays the system buffer headers.

buffer [format] [buffer]. ..
Displays the data in a system buffer according to format. If you do not provide a
format parameter, the previous format is used. Valid formats include decimal,
octal, hex, character, byte, directory, i-node and write. The write format
creates a file in the current directory containing the buffer data.

callout Aliases: calls, call, ¢, timeout, time, tout
Displays all entries in the callout table.

map [map-name] . ..
Displays the named system map structures.

nm [symbol] ...
Displays symbol value and type as found in the kernel-image file.

ts [text-address] . ..
Finds the text symbols closest to the given addresses.

ds [data-address] . ..
Finds the data symbols closest to the given addresses.

od [symbol name or address] [count] [format]
Dumps count data values starting at the symbol value or address given according to
format. Allowable formats are octal, longoct, decimal, longdec, character, hex, or
byte.

! Runs shell commands.
Exits from crash.

? Displays summary of crash commands.

170 Commands Reference



crash

Files
Jusr/include/sys/*.h Header files for table and structure information.
/dev/mem Default system-image file.
Junix Default kernel-image file.
buf.# Files containing buffer data.

Related Information

The following commands: “mount” on page 498, “nm” on page 521, “ps” on page 579,
“sh” on page 637, and “stty” on page 717.

Commands 171



cron

cron
Purpose
Runs commands automatically.
Syntax
1
cron —1
! Not usually run from the command line, but included in /etc/rc.
OL805184
Description
The eron command runs shell commands at specified dates and times. Regularly scheduled
commands can be specified according to instructions contained in crontab files. You can
submit your crontab file via the erontab command (see page 174). Use the at command
(see page 66) to submit commands that are to be run only once. Because cron never exits,
it should be run only once. This is best done by running cron from the initialization
process through the /ete/rec command file (see page 594).
The cron command examines crontab files and at command files only during process
initialization and when a file changes. This reduces the overhead of checking for new or
changed files at regularly scheduled intervals.
The cron command also executes a sync system call approximately once a minute to
assure that all information in memory that should be on disk (buffered output) is written
out. These periodic updates minimize the possibility of file system damage in the event of
a crash. In addition, cron keeps a number of frequently used system directories open to
keep their i-nodes in kernel memory for faster access.
If the file /usr/lib/cron/log exists, cron records a history of its activities in it.
For a discussion of how to schedule commands, see “crontab” on page 174.
Files

[usr/lib/cron Main cron directory.
Jusr/lib/cron/log Accounting information.
[usr/spool/cron Spool area.

/bin Directory kept open.

/lib Directory kept open.

172 Commands Reference



cron

Jusr Directory kept open.
Jusr/bin Directory kept open.
[usr/lib Directory kept open.
Jetc Directory kept open.
[tmp Directory kept open.

Related Information

The following commands: “at, batch” on page 66, “crontab” on page 174, and “rc” on
page 594.

The sync system call and the crontab file in AIX Operating System Technical Reference.

Commands 173



crontab

crontab

Purpose

Submits a schedule of commands to cron.

Syntax
crontab file
one of
-l
-r
0L805003
Description

The erontab command copies the specified file, or standard input if you do not specify a
file, into a directory that holds all users’ crontab files. The cron command runs
commands according to the instructions in these crontab files. It then mails you the
output from standard output and standard error for these commands, unless you redirect
standard output or standard error. When entries are made to a crontab file, all previous
ertries are erased.

You may use crontab if your logname appears in the file /usr/lib/cron/cron.allow. If
that file does not exist, crontab checks the file fusr/lib/cron/cron.deny to determine if
you should be denied access to erontab. If neither file exists, you can submit a job only if
you are operating with superuser authority. The allow/deny files contain one user name
per line.

Note: If your login ID is associated with more than one login name, crontab uses
the first login name that appears in the /etc/passwd file, regardless of which login
name you might actually be using.

If cron.allow exists, the superuser’s logname must appear there for the superuser to
be able to use the command.

174 Commands Reference



crontab

Flags

Each crontab file entry consists of a line with six fields, separated by spaces and tabs, that
contain, respectively:

The minute (0-59)

The hour (0-23)

The day of the month (1-31)

The month of the year (1-12)

The day of the week (0-6 for Sunday-Saturday)
The shell command.

O R ot

Each of these fields can contain:

® A number in the specified range

e Two numbers separated by a minus to indicate an inclusive range

e A list of numbers separated by commas, which selects all numbers in the list
® An asterisk, meaning all legal values.

Note that the specification of days may be made by two fields (day of the month and day of
the week). If you specify both as a list of elements, both are adhered to. For example the
following entry:

001,15 * 1 command

would run command on the first and fifteenth days of each month, as well as every
Monday. To specify days by only one field, the other field should contain an *.

The eron command runs the command named in the sixth field at the selected date and

time. If you include a % (percent sign) in the sixth field, cron treats everything that
precedes it as the command invocation and makes all that follows it available to standard

input, unless you escape or quote the percent sign (\% or "%").

Note: The shell runs only the first line of the command field (up to a % or end of line). All
other lines are made available to the command as standard input.

The cron command invokes a subshell from your $SHOME directory. This means that it
will not run your .profile file. If you schedule a command to run when you are not logged
in and you want to have commands in your .profile run, you must explicitly do so in the
crontab file. (For a more detailed discussion of how sh can be invoked, see “sh” on

page 637).

cron supplies a default environment for every shell, defining HOME, LOGNAME, SHELL
(=/bin/sh), and PATH (=:/bin:/usr/bin).

-1 Lists your crontab file.

-r Removes your crontab file from the crontab directory.

Commands 175



crontab

Examples

The following examples show valid crontab file entries.
1. To write the time to the console every hour on the hour:

0 * * * * echo The hour is ‘date‘'. >/dev/console

This example uses command substitution. For more information, see “Command
Substitution” on page 647.

2. To run calendar at 6:30 a.m. every Monday, Wednesday, and Friday:
306 * *1,3,5 /usr/bin/calendar -
3. To define text for the standard input to a command:

0 16 10-31 12 5 wall%HAPPY HOLIDAYS!%Remember to turn in your time card.

This writes a message to all users logged in at 4:00 p.m. each Friday between December
10th and 31st.

The text following the % (percent sign) defines the standard input to the wall command
as:

HAPPY HOLIDAYS!
Remember to turn in your time card.

Files
Jusr/lib/cron Main cron directory.
Jusr/spool/cron/crontabs Spool area.
Jusr/lib/cron/cron.allow List of allowed users.
Jusr/lib/cron/cron.deny List of denied users.

Related Information

The following commands: “cron” on page 172 and “sh” on page 637.

176 Commands Reference



csh

csh

Purpose

Interprets commands read from a file or entered from the keyboard.

Syntax
one of
— " d t k4 L
csh —<-one of one of _: ema string
-V —X —t
-V —X
OL805447

Description

The esh command is a system command interpreter and programming language that
incorporates a history mechanism and a C-like syntax. Like the sh command, it is an
ordinary user program that reads commands typed at the keyboard and arranges for their
execution. In addition, it can read commands from a file, usually called a shell procedure
or a command file.

When you run csh, it begins by executing commands from the file .eshre in your home
directory, if it exists. If, on the other hand, ¢sh runs as a login shell, it executes
commands from your .cshre file and your .login file.

Commands

A simple command is a sequence of words separated by blanks or tabs. A word is a
sequence of characters and/or numerals that does not contain unquoted blanks. In
addition, the following characters and doubled characters also form single words when
used as command separators or terminators:

& 1 < > ()
&& 1 KL

These special characters may be parts of other words. Preceding them with a \ (backslash),
however, prevents the shell from interpreting them as special characters. When the shell

Commands 177



csh

is not reading input from a work station, it treats any word that begins with a # (number
sign) as a comment and ignores that word and all characters following up to the next
new-line character. Strings enclosed in matched pairs of quotation characters or grave
accents (' '," ",or ' ‘) can also form parts of words. (Blanks, tab characters, and
special characters do not form separate words when they are found within these quotation
marks.) In addition, within pairs of single quotation marks (' ') and double quotation

marks (" "), you may include the new-line character by preceding it with \ (backslash).

The first word in the simple-command sequence (numbered 0), usually specifies the name of
a command. any remaining words, with a few exceptions, are passed to that command. If
the command specifies an executable file that is a compiled program, the shell immediately
runs that program. If the file is marked executable but is not a compiled program, the
shell assumes that it is a shell procedure. In this case it spawns another instance of itself
(a subshell), to read the file and execute the commands included in it.

A pipeline is a sequence of one or more commands separated by a | (vertical bar). The
output of each command in a pipeline provides the input to the next command.

A list is a sequence of one or more pipelines separated by a ; (semicolon), & (ampersand),
&& (two ampersands), or || (two vertical bars) and optionally ended by a ; (semicolon) or
an & (ampersand). These separators and terminators have the following effects:

; Causes sequential execution of the preceding pipeline (the shell waits for the
pipeline to finish).

& Causes asynchronous execution of the preceding pipeline (the shell does not wait
for the pipeline to finish).

&& Causes the list following it to be executed only if the preceding pipeline returns a
zero exit value.

H Causes the list following it to be executed only if the preceding pipeline returns a
nonzero exit value.

Note: The cd command is an exception. If it returns a nonzero exit value, no
subsequent commands in a list are executed, regardless of the separators.

The ; and & separators have equal precedence, as do && and {i. The single-character
separators have lower precedence than the double-character separators. A unquoted

new-line character following a pipeline functions the same as a ; (semicolon).
Place any of the above in parentheses to form a simple command.

The shell associates a job with each pipeline. It keeps a table of current jobs and assigns
them small integer numbers. When you start a job asynchronously by terminating the
command with a &, the shell displays a line that looks like the following:

[1] 1234

178 Commands Reference



csh

This line indicates that the job number is 1 and that the job is composed of one process

with a process-ID of 1234. Use the built-in jobs command (page 194) to see what jobs are
currently running.

A job running in the background competes for input if it tries to read from the work
station. Background jobs can also produce output that competes for the work station and
is interleaved there with the output of other jobs.

There are several ways to refer to jobs in the shell. Use the % (percent) character to
introduce a job name. This name can be either the job number or the command name that
started the job, if this name is unique. So, for example, if a make process is running as
job 1, you can refer to it as ¥1. You can also refer to it as %make, if there is only one
suspended job with a name that begins with the string make. You can also use

%?:string
to specify a job whose name contains string, if there is only one such job.

The shell detects immediately whenever a process changes state. Whenever a job becomes
blocked so that further progress is not possible, a message is sent to the work station, but
not until just before the shell prompt. If, however, the notify shell variable is set (see
page 188), the shell issues a message that indicates changes in status of background jobs
immediately. Use the notify built-in command (page 195) to mark a single process so that
its status changes are immediately reported. By default, notify marks the current process.

History Substitution

History substitution lets you use words from previous commands as portions of new
commands, thus making it easy to repeat commands, repeat the arguments of a previous
command in the current command, or fix spelling mistakes in the previous command with
little typing.

History substitutions begin with the ! (exclamation) character and may appear anywhere
on the command line, provided they do not nest (in other words, a history substitution
cannot contain another history substitution). You can precede the ! with a \ to prevent its
special meaning. In addition, if you place the ! before a blank, tab, new-line character, =
(equal sign), or ( (left parenthesis), it is passed unchanged. History substitutions also
occur when you begin an input line with a * (circumflex). (This special abbreviation is
discussed on page 182.) The shell echoes any input line containing history substitutions at
the work station before it executes that line.

The history list saves commands that the shell reads from the work station and that
consist of one or more words. History substitution reintroduces sequences of words from
these saved commands into the input stream.

The history shell variable (page 187) controls the size of the history list. You must set the
history shell variable either in the .cshre file or on the command line with the built-in
set command (page 196). The previous command is always retained, however, regardless of

Commands 179



csh

the value of history. Commands in the history list are numbered sequentially starting
from 1.

The built-in history command (page 193) produces output of the type:

9 write michael

10 ed write.c

11 cat oldwrite.c
12 diff *write.c

The command strings are shown with their event numbers. It is not usually necessary to
use event numbers to refer to events, but you can have the current event number displayed

as part of your system prompt by placing an ! in the prompt string assigned to the prompt
environmental variable (page 188).

A full history reference contains an event specification, a word designator, and one or
more modifiers in the following general format:

event[:lword:modifier[:modifier] . . .

In the previous sample of history command output, the current event number is 13. Using
this example, the following refer to previous events:

Event Specification

'10 Refers to event number 10

1-2 Refers to event number 11 (the current event minus 2)

Id Refers to a command word beginning with d (in this case event number 12)

1?mic? Refers to a command word that contains the string mic (in this case, event
number 9).

These forms, without further modification, simply reintroduce the words of the specified
events, each separated by a single blank. As a special case, ! ! refers to the previous
command; the command ! ! alone on an input line reruns the previous command.

To select words from an event, follow the event specification with a : (colon) and one of the
following word designators (the words of an input line are numbered sequentially starting
from 0):

Word Designator
0 The first word (the command name)
n The nth argument

The first argument

$ The last argument

180 Commands Reference



csh

%
x-y

xX-

The word matched by an immediately preceding ?string? search
A range of words from the xth word to the yth word

A range of words from the first word (0) to the yth word

The first through the last argument, or nothing if there is only one word (the
command name) in the event

The xth through the last argument

Like x* but omitting the last word.

You may omit the colon that separates the event specification from the word designator if

the word designator begins with a *, $, *, -, or %. You can also place a sequence of the
following modifiers after the optional word designator, each preceded by a colon:

Modifier
h
r

e

s/ifr/

X 2 'Y m g o

Remove a trailing path name extension, leaving the head.
Remove a trailing “.xxx” component, leaving the root name.
Remove all but the trailing extension “.xxx.”

Substitute [ for r. With substitutions, it is an error for no word to be
applicable.

The left side of a substitution is not a patterns in the sense of the editors but,
rather, a string. Normally, a / (slash) delimits the string () and its
replacement (r). However, you can use any character as the delimiter if you
precede that character with a \ (backslash). Thus, in the following example:

s\%/usr/myfile\%/usr/yourfile\%

the % becomes the delimiter allowing you to include the / in your strings. If
you include an & in the replacement string, it is replaced by the text from the
left-hand side (f). A null [ string is replaced by either the last substitution or

by the last string used in the contextual scan ! ?string?.

You may omit the trailing delimiter (/) if a new-line character follows
immediately.

Remove all leading path name components, leaving the tail.
Repeat the previous substitution.

Apply the change globally, that is, g&.

Display the new command, but do not run it.

Quote the substituted words, thus preventing further substitutions.

Act like q, but break into words at blanks, tabs, and new-line characters.

Commands 181



csh

182

Unless the modifier is preceded by a g, the change applies only to the first modifiable word.

If you give a history reference without an event specification, for example. ! §, the shell
uses the previous command as the event, unless a previous history reference occurs on the
same line, in which case it repeats the previous reference. Thus, the following sequence:

1?2fo0?” 1%
gives the first and last arguments of the command that matches ?foo0?

A special abbreviation of a history reference occurs when the first nonblank character of
an input line is a * (circumflex). This is equivalent to ! :s*, thus providing a convenient
shorthand for substitutions on the text of the previous line. The commanc ~1b*11ib
corrects the spelling of lib in the previous command.

You can enclose a history substitution in {} (braces), if necessary, to insulate it from the
characters that follow. For example, if you want to use a reference to the command:

1s -1d ~paul

to perform the command:
1s -1d ~paula

use the following:

1{1}a

whereas ! 1a would look for a command starting with 1a

Quoting with Single and Double Quotes

Enclose strings in single and double quotation marks to prevent all or some of the
substitutions that remain. Enclosing strings in single quotation marks (' ') prevents any
further interpretation. Enclosing strings in double quotation marks (" ") allows further
expansion. In both cases, the text that results becomes (all or part of) a single word. Only
in one special case does a string quoted by ” ” yield parts of more than one word; strings
quoted by ' never do (see “Command Substitution” on page 183).

Command and File Name Substitution

The shell performs command and file-name substitutions selectively on the arguments of
built-in commands. This means that it does not expand those parts of expressions that are
not evaluated. For nonbuilt-in commands, the shell substitutes the command name
separately from the argument list. This occurs very late, after it performs input/output
redirection and in a child of the main shell.

Commands Reference



csh

Command Substitution

The shell performs command substitution on a command string enclosed in grave accents
(* V). The shell normally breaks the output from such a command into separate words at
blanks, tabs, and new-line characters; this text then replaces the original command string.
Within strings surrounded by double quotation marks (" "), the shell treats only the
new-line character as a word separator, thus preserving blanks and tabs within the word.

In any case, the single final new-line character does not force a new word. Note that it is
therefore possible for command substitution to yield only part of a word, even if the
command outputs a complete line.

File-name Substitution

If a word contains any of the characters *, ?, [, or {, or begins with the ~ character, then
that word is a candidate for file name substitution, also known as globbing. This word is
then regarded as a pattern and replaced with an alphabetically sorted list of file names
which match the pattern. The current collating sequence is used, which may be specified
by the environment variables NLCTAB or NLFILE. In a list of words specifying file name
substitution, it is an error for no patterns to match an existing file name, but it is not

required that each pattern match. Only the character-matching symbols *, ?, and [ imply
pattern matching; the characters ~ and { being more related to abbreviations.

In matching file names, the character . (dot) at the beginning of a file name or
immediately following a /, and the character /, must be matched explicitly. The *

character matches any string of characters, including the null string. The ? character
matches any single character. The sequence [abed] matches any one of the enclosed

characters. Within [], a lexical range of characters may be indicated by [a-z]. The
characters that match this pattern are defined by the current collating sequence (see
“ctab” on page 204).

The ~ character at the beginning of a file name is used to see home directories. Standing
alone, ~ expands to your home directory as reflected in the value of the home shell

variable. When followed by a name that consists of letters, digits, and - characters, the
shell searches for a user with that name and substitutes their home directory. Thus, ~ken
might expand to /usr/ken and ~ken/chmach to /usr/ken/chmach. If the ~ character

is followed by a character other than a letter or /, or appears not at the beginning of a
word, it is left undisturbed.

The pattern a{b,c,d}e is a shorthand for abe ace ade. The shell preserves the
left-to-right order, with results of matches being stored separately at a low level to preserve
this order. This construct may be nested. Thus:

~source/sl/{o1dls,1s}.c

Commands 183



csh

expands to:

/usr/source/sl/oldls.c /usr/source/sl/1s.c

if the home directory for source is /usr/source. Similarly:
../{memo, *box}

might expand to:

../memo ../box ../mbox

(Note that memo is not sorted with the results of matching *box.) As a special case, {, },
and {} are passed undisturbed.

Alias Substitution

The shell maintains a list of aliases that the alias and unalias built-in commands (page
190) can establish, display, and modify. After the shell scans the command line, it divides
it into distinct commands and checks the first word of each command, left to right, to see if
it has an alias. If it does, the shell uses the history mechanism available (see “History
Substitution” on page 179), to replace the text of the alias with the text of the command it
stands for. The words that result replace the command and argument list. If reference is
not made to the history list, then the argument list is left unchanged. Thus, if the alias for
the Is command is 1s -1, the shell replaces the command 1s /usr with 1s -1 /usr, the
argument list here being undisturbed because there is not reference to the history list in
aliased command. Similarly, if the alias for lookup is:

grep !~ /etc/passwd
then the shell replaces Tookup bill with:
grep bill /etc/passwd

Here, ! * refers to the history list and the shell replaces it with the first argument in the
input line, in this case bill.

Note from this last example that you can use special pattern-matching characters in an
alias. Thus the command:

alias Tprint 'pr \!* >> print'

makes a command which formats its arguments to the line printer. The ! is protected from
the shell in the alias so that it is not expanded until pr runs.

If an alias is found, the word transformation of the input text is performed and the aliasing
process begins again on the reformed input line. If the first word of the next text is the
same as the old, looping is prevented by flagging it to prevent further aliasing. Other
loops are detected and cause an error.

184 Commands Reference



csh

Variable Substitution

The shell maintains a set of variables, each of which has as its value a list of zero or more
words. Some of these variables are set by the shell or referred to by it. For instance, the
argv variable is an image of the shell variable list, and words which comprise the value of
this variable are referred to in special ways.

You can change and display the values of variables with the set and unset commands. Of
the variables referred to by the shell, a number are toggles; the shell does not care what
their value is, only whether they are set or unset. For instance, the verbose variable is a
toggle which causes command input to be echoed. The setting of this variable results from
the -v flag on the command line.

Other operations treat variables numerically. The @ command performs numeric
calculations and the result is assigned to a variable. Variable values are, however, always
represented as (zero or more) strings. For numeric operations, the null string is considered
to be zero, and the second and subsequent words of multi-word values are ignored.

After an input line is aliased and parsed, and before each command is run, variable
substitution is performed, keyed by $ characters. You can prevent this expansion by
preceding the $ with a |, except within " " (double quotation marks, where it always
occurs, and within ' ' (single quotation marks), where it never occurs. Strings quoted by
' ' are interpreted later (see “Command Substitution” on page 183), so $ substitution

does not occur there until later, if at all. A $ is passed unchanged if it is followed by a
blank, tab, or new-line character.

Input/output redirections are recognized before variable expansion and are variable
expanded separately. Otherwise, the command name and complete argument list expands
together. It is therefore possible for the first (command) word to this point to generate
more than one word, the first of which becomes the command name and the rest of which
become parameters.

Unless enclosed in " " or given the :q modifier, the results of variable substitution may
themselves eventually be command and file name substituted. Within pairs of double
quotation marks, a variable with a value that consists of multiple words expands to a
(portion of a) single word, with the words of the variable’s value separated by blanks.
When you apply the :q modifier to a substitution, the variable expands to multiple words.
Each word is separated by a blank and quoted to prevent later command or file name
substitution.

The following notation allows you to introduce variable values into the shell input.
Except as noted, it is an error to reference a variable that is not set.

Tname

?{name} Replaced by the words assigned to name, each separated by a
blank. Braces insulate name from any following characters that
would otherwise be part of it. Shell variable names start with a
letter and consist of up to 20 letters and digits, including the .
(underline) character. If name is not a shell variable but is set

Commands 185



csh

?namel[selector]
?{name[selector]}

name
?{#name}

20

?number
?{number}

2%

in the environment, then that value is returned. The : modifiers
and the other forms given below are not available in this case.

Used to select only some of the words from the value of name.
The selector is subjected to $ substitution and may consist of a

single number, or two numbers separated by a -. The first word
of a variable’s string value is numbered 1. If the first number of
a range is omitted, it defaults to 1. If the last member of a range

is omitted, it defaults to $#name. The * symbol selects all
words. It is not an error for a range to be empty if the second
argument is omitted or is in range.

Gives the number of words in the variable. This is useful for
later use in a [selector].

Substitutes the name of the file from which command input is
being read. An error occurs if the name is not known.

Equivalent to $argv[number]
Equivalent to $argv[*].

You can apply the modifiers :h, :r, :q, and :x to the substitutions above, as may :gh, :gt
and :gr. If {} (braces) appear in the command form, then the modifiers must appear within
the braces. The current implementation allows only one : modifier on each $ expansion.

The following substitutions may not be changed with : modifiers.

$?name
${?name}

$20

$$
$<

186 Commands Reference

Substitutes the string 1 if name is set; 0 if it is not set.

Substitutes 1 if the current input file name is known; 0 if it is
not known.

Substitutes the (decimal) process number of the (parent) shell.

Substitutes a line from the standard input, without further
interpretation. Use it to read from the keyboard in a shell
procedure.



csh

Predefined and Environmental Variables

The following variables have special meaning to the shell. Of these, argv, cwd, home,
path, prompt, shell, and status are always set by the shell. Except for cwd and status,
this setting occurs only at initialization. These variables are not changed unless this is
done explicitly by you.

The csh command copies the environment variables USER, TERM, HOME, and PATH
into the esh variables user, term, home, and path, respectively. The values are copied
back into the environment whenever the normal shell variables reset. It is not necessary
to worry about the setting of the path variable other than in the .¢shre file, since esh
subprocesses import the definition of path from the environment and re-export it if it is
changed.

argv Set to the arguments to the shell; it is from this variable that positional
parameters are substituted.

cdpath Can be given a list of alternate directories to be searched by the chdir
commands to find subdirectories.

cwd The full path name of the current directory.

echo Set when the -x command line flag is used; when set, causes each

command and its arguments to echo just before it is run. For non built-in
commands, all expansions occur before echoing. Built-in commands are
echoed before command and file name substitution, since these
substitutions are then done selectively.

histchars Can be given a string value to change the characters used in history
substitution. Use the first character of its value as the history
substitution character, this replaces the default character !. The second
character of its value replaces the * (circumflex) character in quick
substitutions.

history Can be given a numeric value to control the size of the history list. Any
command that is referenced in this many events is not discarded. Very
large values of history may run the shell out of memory. Saves the last
command that ran on the history list, regardless of whether history is
set.

home Your home directory, initialized from the environment. The file name
expansion of ~ refers to this variable.

ignoreeof If set, the shell ignores an end-of-file character from input devices that
are work stations. This prevents shells from accidentally being killed
when it reads an end-of-file character (Ctrl-D).

mail The files where the shell checks for mail. This is done after each
command completion, which results in a prompt if a specified interval has
elapsed. The shell displays the message, "You have new mail" if the
file exists with an access time not greater than its change time.

Commands 187



csh

noclobber

noglob

nonomatch

notify

path

prompt

savehist

shell

If the first word of the value of mail is numeric, it specifies a different
mail checking interval (in seconds); the default is 10 minutes.

If you specify multiple mail files, the shell displays the message, "New
mail in file", when there is mail in file.

If set, places restrictions on output redirection to insure that files are not
accidentally destroyed, and that > > redirections see existing files. (See
“Redirecting Input and Output” on page 189)

If set, inhibits file name expansion. This is most useful in shell
procedures that are not dealing with file names, or after a list of file
names has been obtained and further expansions are not desirable.

If set, it is not an error for a file name expansion to not match any
existing files; rather, the primitive pattern returns. It is still an error for
the primitive pattern to be malformed.

If set, the shell notifies asynchronous/ly of changes in job status. The
default presents status changes just before displaying the shell prompt.

Each word of the path variable specifies a directory in which commands
are to be sought for execution. A null word specifies the current
directory. If there is no path variable set, then only full path names run.
The usual search path is the current directory , /bin, and /usr/bin. For
the superuser, the default search path is /ete, /bin, and /fusr/bin. A shell
which is given neither the -c nor the -t flags normally hashs the contents
of the directories in the path variable after reading .cshre and each time
the path variable is reset. If new commands are added to these
directories while the shell is active, it may be necessary to give the
rehash command (page 196), or the commands may not be found.

The string which is displayed before each command is read from an
interactive work station input. If a ! appears in the string, it is replaced
by the current even number, unless a preceding \ is given. The default
prompt is %, # for the superuser.

Given a numeric value to control the number of entries of the history list
that are saved in ~/.history when you log out. Any command which is
referenced in this many events is saved. During startup, the shell reads
~/.history into the history list, enabling history to be saved across
logins. Very large values of savehist slow down the shell startup.

The file in which the shell resides. This is used in forking shells to
interpret files which have execute bits set, but which are not executable
by the system (see “Nonbuilt-in Command Execution” on page 199). This
is initialized to the (system-dependent) home of the shell.

188 Commands Reference



csh

status

time

verbose

The status returned by the last command. If it ended abnormally, then
0200 is added to the status. Built-in commands that fail return exit status
1; all other built-in commands set status 0.

Controls automatic timing of commands. If set, then any command that
takes more than this many CPU seconds cause a line giving user, system,
and real times and a utilization percentage, that is the ratio of
user-plus-system-times to real time, displays when it ends.

Set by the -v command line flag, causes the words of each command to
display after history substitution.

Redirecting Input and Output

You can redirect the standard input and standard output of a command with the following

syntax:

< name

<< word

> name

>! name
>& name
>&! name

Opens file name (which is first variable, command, and file name expanded)
as the standard input.

Reads the shell input up to a line which is the same as word. word is not
subjected to variable, file name, or command substitution, and each input
line is compared to word before any substitutions are done on this input line.
Unless a quoting character (\, ", ', or ‘) appears in word, the shell performs
variable and command substitution on the intervening lines, allowing \ to
quote $, |, and *. Commands which are substituted have all blanks, tabs, and
new-line characters preserved, except for the final new-line character, which
is dropped. The resultant text is placed in an anonymous temporary file,
which is given to the command as standard input.

Uses the file name as standard output. If the file does not exist, it is made.
If the file exists, it is truncated, its previous contents being lost.

If the noclobber shell variable is set, the file must not exist or be a
character special file, or an error results. This helps prevent accidental
destruction of files. In this case, use the ! forms to suppress this check.

The forms involving & route the diagnostic output into the specified file as

well as the standard output. name expands in the same way as < input file
names.

Commands 189



csh

>> name
>>& name
>>! name

>>&! name Uses file name as standard output like >, but places output at the end of the
file. If the noclobber shell variable is set, it is an error for the file not to

exist, unless one of the ! forms is given. Otherwise, it is similar to >.

A command receives the environment in which the shell was invoked, as changed by the
input/output parameters and the presence of the command as a pipeline. Thus, unlike
some previous shells, commands that run from a file of shell commands do not have any
access to the text of the commands by default. Rather, they receive the original standard
input of the shell. Use the << mechanism to present inline data. This lets shell command
files function as components of pipelines and lets the shell block read its input. Note that
the default standard input for a command run detached is not changed to be the empty file
/dev/null. Rather, the standard input remains as the original standard input of the shell.

To redirect the diagnostics output through a pipe with the standard output, use the form 1&
rather than just | (vertical bar).

Control Flow

The shell contains some commands that can be used to regulate the flow of control in
command files (shell procedures) and (in limited but useful ways) from work station input.
These commands all operate by forcing the shell to reread or skip in its input and, because
of the implementation, restrict the placement of some of the commands.

The foreach, switch, and while statements, and the if-then-else form of the if statement,
require that the major keywords appear in a single simple command on an input line.

If the shell input is not searchable, the shell buffers input whenever a loop is being read
and searches the internal buffer to do the rereading implied by the loop. To the extent
that this allows, backward gotos succeed on inputs that you cannot search.

Built-in Commands

Built-in commands are run within the shell. If a built-in command occurs as any
component of a pipeline except the last, it runs in a subshell.

alias

alias name

alias name wordlist Displays all aliases (first form). The second form displays the
alias for name. The final form assigns the specified wordlist as
the alias of name. wordlist is command and file name substituted.
name is not allowed to be alias or unalias.

190 Commands Reference



csh

break

breaksw

case label:

cd

cd name
chdir
chdir name

continue
default:
dirs

echo string

echo -n string . ..

else
end
endif
endsw

evalarg. ..

exec cmd

Resumes running after the end of the nearest enclosing foreach
or while. Runs the remaining commands on the current line.
Multi-level breaks are therefore possible by writing them all on
one line.

Breaks from a switch; resumes after the endsw.

Defines a label in a switch statement, as discussed in the
following.

Changes the current directory to name. If no argument is given,
then changes to your home directory.

If name is not found as a subdirectory of the current directory and
does not begin with /, ./, or ../, then each component of the

cdpath shell variable is checked to see if it has a subdirectory
name. Finally, if all else fails, but name is a shell variable with a

value that begins with /, then this is tried to see if it is a
directory.

Continues execution of the nearest enclosing while or foreach.
The rest of the commands on the current line run.

Labels the default case in a switch statement. The default should
come after all case labels.

Displays the directory stack, the top of the stack is at the left, the
first directory in the stack being the current directory.

Writes the listed strings to the shell’s standard output, separated
by spaces and ending with a new-line character unless you specify
the -n flag.

See the description of the foreach, if, switch, and while
statements.

Reads arg as input to the shell and runs the resulting command(s)
in the context of the current shell. Use this to run commands
generated as the result of command or variable substitution, since
parsing occurs before these substitutions.

Runs the specified command in place of the current shell.

Commands 191



csh

192

exit
exit (expr)

foreach name (list)

end

glob list

goto word

history
history num
history -r num
history -h num

if (expr) cmd

Commands Reference

Exits the shell with either the value of the status shell variable
(first form) or with the value of the specified expression (second
form).

Successively sets name to each member of list and runs the
sequence of commands between the foreach and the matching
end. Both foreach and end must appear alone on separate lines.

Use the continue statement to continue the loop and the break
statement to end the loop prematurely. When this command is
read from the work station, the loop is read once, prompts with 7
before any statement in the loop runs. If a mistake is made in
entering a loop, it can be corrected before you run the loop.
Commands within loops, prompted for by ?, are not placed in the
history list.

Functions like echo, but does not recognize backslash (\) escapes,
and delimits words by null characters in the output. Useful for
programs that wish to use the shell to file name expand a list of
words.

Continues to run after the line specified by word The specified
word is file-name and command expanded to yield a string of the
form label. The shell rewinds its input as much as possible and
searches for a line of the form label:, possibly preceded by blanks
or tabs.

Displays the history event list. If you specify a number, only the
n most recent events are displayed. The -r flag reverses the order
of display to the most recent first rather than the oldest first. The
-h flag causes the history list to be displayed without leading
numbers. Use this to produce files suitable for used with the -h
flag of the source command.

Runs the single command (with arguments) if the specified
expression evaluates true. Variable substitution on cmd happens
early, at the same time it does for the rest of the if statement.
cmd must be a simple command, not a pipeline, command list, or
parenthesized command list.

Note: Input and output redirection occurs even if expr is false
(and the command is not executed).



csh

if (expr) then
else if (expr2) then
else

endif

jobs
jobs -1

kill %job

kill -signal %job . . .
kill pid

kill -signal pid . . .
kill -1

limit
limit resource
limit resource max-use

If expr is true, runs the commands that follow the first then; else
if expr2 is true, runs the commands that follow the second then;
else runs the commands that follow the second else. Any number
of else-if pairs are possible; only one endif is needed. The else
part is optional. The words else and endif must appear at the
beginning of input lines. The if must appear alone on its input
line or after an else.

Lists the active jobs. With the -1 flag, lists process-IDs in addition
to the job number and process-ID.

Sends to the jobs or process that you specify either the TERM
(terminate) signal or signal. Specify signals either by number or
by names (as given in /usr/include/signal.h, stripped of the SIG
prefix). Signal names are listed by kill -1.

Limits the usage by the current process and each process it
creates to not individually exceed max-use on the specified
resource. If a max-use is not given, the current limit displays; if a
resource is not given, all limitations are given.

Controllable resources are limited to filesize, stacksize, and
datasize.

You can specify max-use as a (floating-point or integer) number
followed by a scale factor: k or kilobytes (1024 bytes), m or
megabytes, or b or blocks (the units used by the ulimit system
call).

For both resource names and scale factors, unambiguous prefixes
of the names suffice.

filesize may be lowered by an instance of c¢sh, but may only be
raised by an instance whose effective user-ID is root. (See the
ulimit system call in AIX Operating System Technical Reference.)

Commands 193



csh

login

logout

nice

nice +num
nice cmd

nice +num cmd

nohup
nohup cmd

notify
notify %job . ..

onintr
onintr -
onintr label

popd
popd +n

194 Commands Reference

Ends a login shell, and replaces it with an instance of /bin/login.
This is one way to log out (included for compatibility with the sh
command).

Ends a login shell. Especially useful if ignoreeof is set.

Sets the priority of commands run in this shell to 24 (first form).
The second form sets the priority to the specified number. The
final two forms run the specified command at priority 24 and the
specified number, respectively. If you are have superuser
authority you can specify nice with a negative number. The
command always runs in a subshell, and the restrictions placed on
commands in simple if statements apply.

Causes hangups to be ignored for the remainder of the procedure
(first form). The second form causes the specified command to be
run with hangups ignored. All processes run in the background
with & are effectively protected from being sent a hangup signal
when you log out, but will still be subject to explicitly sent
hangups unless nohup is used.

Causes the shell to notify you asynchronously when the status of
the current or specified jobs changes. Normally, notification is
presented just before the shell prompt. This is automatic if the
notify shell variable is set.

Controls the action of the shell on interrupts. The first form
restores the default action of the shell on interrupts, which is to
end shell procedures or to return to the work station command
input level. The second form causes all interrupts to be ignored.
The third form causes the shell to run a goto label when it
receives an interrupt or a child process ends due to an
interruption.

In any case, if the shell is running detached and interrupts are
being ignored, all forms of onintr have no meaning, and
interrupts continue to be ignored by the shell and all invoked
commands.

Pops the directory stack, returns to the new top directory. With a
+n, discards the nth entry in the stack. The elements of the
directory stack are numbered from the top starting at 0.



csh

pushd
pushd name
pushd +n

rehash

repeat count cmd

set

set name

set name =word

set name [index] = word
set name = (list)

setenv name value

With no arguments, exchanges the top two elements of the
directory stack. With name, changes to the new directory and
pushes the old current directory (as given in the cwd shell
variable) onto the directory stack. With a numeric argument,
rotates the nth argument of the directory stack around to be the
top element and changes to it. The members of the directory
stack are numbered from the top starting at 0.

Causes the internal hash table of the contents of the directories in
the path shell variable to be recomputed. This is needed if new
commands are added to directories in path while you are logged
in. This should only be necessary if commands are added to one
of the user’s own directories, or if someone changes the contents
of one of the system directories.

Runs the specified command, which is subject to the same
restrictions as the if statement, count times.

Note: 1/O redirections occur exactly once, even if count is 0.

Shows the value of all shell variables (first form). Variables that
have more than a single word as their value are displayed as a
parenthesized word list. The second form sets name to the null
string. The third form sets the indexth component of name to
word; this component must already exist. The final form sets
name to the list of words in list. In all cases, the value is
command- and file-name expanded.

These arguments may be repeated to set multiple values in a
single set command. However, variable expansion happens for all
arguments before any setting occurs.

Sets the value of environment variable name to be value, a single
string. The most commonly used environment variables, USER,
TERM, and PATH, are automatically imported to and exported
from the csh variables user, term, and path; there is no need to
use setenv for these.

If you modify the environment variables NLFILE or NLCTAB,
the current international character support environment and
collating sequence are changed as specified for subsequent
commands executed from the shell.

Commands 195



csh

shift
shift variable

source name
source -h name

switch (string)
case strl:

I;I:e.aksw
default:
l;r‘e'aksw
endsw

time
time cmd

umask
umask value

196 Commands Reference

Shifts the members of argv to the left. It is an error for argv not
to be set or to have less than one word as its value. The second
form does the same function on the specified variable.

Reads commands from name. You can nest the source commands.
However, if they are nested too deeply, the shell may run out of
file descriptors. An error in a source command at any level ends
all nested source commands. Normally, input during source
commands is not placed on the history list. The -h flag causes the
commands to be placed in the history list without running.

Successively matches each case label against string. The string is
command and file-name expanded first. Use the pattern-matching
characters *, ?, and [ ... ] in the case labels, which are variable
expanded. If none of the labels match before a default label is
found, then the execution begins after the default label. Each
case label and the default label must appear at the beginning of
a line. The breaksw command causes execution to continue after
the endsw. Otherwise, control may fall through case labels and
the default labels, as in C. If no label matches and there is no
default, execution continues after the endsw.

With no argument, displays a summary of time used by this shell
and its children. If arguments are given, the specified command 1is
timed, and a time summary as described under the time shell
variable is displayed. If necessary, an extra shell is created to
display the time statistic when the command completes.

Displays the file creation mask (first form) or sets it to the
specified value (second form). The mask is given as an octal
value. Common values for the mask are 002, giving all access to
owner and group and read and execute access to others, or 022,
giving all access to the owner and all access except write access
for users in the group or others.



csh

unalias pattern
unhash

unlimit
unlimit resource

unset patiern
unsetenv patiern

wait

while (expr)

end

@

@ name = expr

@ name [index] = expr

Discards all aliases with names that match pattern. Thus, all
aliases are removed by unalias *. It is not an error for nothing to
be unaliased.

Disables the use of the internal hash table to locate running
programs.

Removes the limitation on resource. If you do not specify resource,
then all resource limitations are removed. The only removable
limitation is that on filesize, and only the superuser can remove
it.

Removes all variables with names that match the pattern. Use

unset * to remove all variables. It is not an error for nothing to
be unset.

Removes all variables from the environment whose names match
the specified pattern. (See the setenv built-in command on page
195.)

Waits for all background jobs. If the shell is interactive, an
INTERRUPT (Alt-Pause) can disrupt the wait, when the shell
displays the names and job numbers of all jobs known to be
outstanding.

Evaluates the commands between the while and the matching
end while expr evaluates nonzero. You can use break to end and
continue to continue the loop prematurely. The while and end
must appear alone on their input lines. If the input is a work
station, prompts occur the first time through the loop, as for the
foreach statement.

Displays the values of all the shell variables (first form). The
second form sets the specified name to the value of expr. If the
expression contains <, >, &, or |, then at least this part of the
expression must be placed within parentheses. The third form
assigns the value of expr to the indexth argument of name. Both
name and its indexth component must already exist.

C operators, such as *= and += are available. The space
separating name from the assignment operator is optional. Spaces
are, however, required in separating components of expr, which
would otherwise be single words. Special postfix + + and --
operators increase and decrease name.

Commands 197



csh

Expressions

The @ built-in command and the exit, if, and while statements accept expressions which
include operators similar to those of C, with the same precedence. The following operators
are available:

* /%
< >
>=

AN+
non

1\

~ | ~

In the preceding list, operators of equal precedence appear on the same line, below those
lines containing operators (if any) that have greater precedence and above those lines
containing operators having lesser precedence. The ==, !=, =, and !~ operators compare
their arguments as strings; all others operate on numbers. The =~ and !~ operators are
similar to ! = and ==, except that the right-most side is a pattern against which the
left-hand operand is matched. This reduces the need for use of the switch statement in
shell procedures when all that is really needed is pattern matching.

Strings which begin with 0 are considered octal numbers. Null or missing arguments are
considered 0. The result of all expressions are strings, which represent decimal numbers.
It is important to note that now two components of an expression can appear in the same
word; except when next to components of expressions which are syntactically significant to
the parser (& { < > ( )), expression components should be surrounded by spaces.

Also available in expressions as primitive operands are command executions enclosed in {
and } and file inquiries of the form -/ name where [ is one of:

Read access
Write access
Execute access
Existence
Ownership
Zero size
Plain file
Directory

RN O DM g

The specified name is command and file name expanded and then tested to see if it has the
specified relationship to the real user. If the file does not exist or is inaccessible, then all
inquiries return false, that is, 0. Command runs succeed, returning true (1), if the
command exits with status 0, otherwise they fail, returning false (0). If more detailed
status information is required, run the command outside an expression and the examine
status shell variable.

198 Commands Reference



csh

Nonbuilt-in Command Execution

When a command to run is found not to be a built-in command, the shell attempts to run
the command with execve. (See the exec system call in AIX Operating System Technical
Reference.) Each word in the path shell variable names a directory from which the shell
attempts to run the command. If it is given neither a -¢ nor a -t flag, the shell will hash
the names in these directories into an internal table so it only tries an exec in a directory
if there is a possibility that the command resides there. If this mechanism has been turned
off with unhash, or if the shell is given a -c or -t (and in any case for each directory
component of path that does not begin with a /), the shell concatenates with the given
command name to form a path name of a file, which it then attempts to run.

Parenthesized commands always run in a subshell. Thus, (cd ; pwd) ; pwd displays

the home directory without changing the current directory location, whereas cd ; pw
changes the current directory location to the home directory. Parenthesized commands
are most often used to prevent chdir from affecting the current shell.

If the file has execute permissions, but is not an executable binary to the system, then it is
assumed to be a file containing shell commands and a new shell runs to read it.

If there is an alias for shell, then the words of the alias will be prefixed to the argument
list to form the shell command. The first word of the alias should be the full path name of
the shell. Note that this is a special, late-occurring case of alias substitution and only
allows words to be prefixed to the argument list without modification.

Signal Handling

The shell normally ignores QUIT signals. Jobs running detached are immune to signals
generated from the keyboard INTERRUPT, QUIT, and HANGUP). Other signals have the
values the shell inherited from its parent. You can control the shell’s handling of
INTERRUPT and TERMINATE signals in shell procedures with onintr. Login shells catch
the TERMINATE signal; otherwise, this signal is passed on to children from the state in
the shell’s parent. In no case are INTERRUPTSs allowed when a login shell is reading the
Jogout file.

Limitations

The following are csh limitations:

o Words can be no longer than 1024 characters.
e Argument lists are limited to 5120 characters.

o The number of arguments to a command that involves file name expansion is limited to
1/6th the number of characters allowed in an argument list.

e Command substitutions can substitute no more characters than are allowed in an
argument list.

Commands 199



csh

e To detect looping, the shell restricts the number of alias substitutions on a single line

to 20.
Flags

If the first argument to the shell is - (minus), this is a login shell. The flags are interpreted

as follows:

-c Reads commands from the (single) following argument, which must be present.
Any remaining arguments are placed in argv.

-e Exits if any invoked command ends abnormally or yields a nonzero exit status.

-f Starts without searching for or running commands from the .cshrc file in the your
home directory.

-i Prompts for its top-level input (an interactive shell), even if input does not appear
to be coming from a work station. Shells are interactive without this flag if their
input and output are attached to work stations.

-n Parses commands but does not run them. This aids in syntactic checking of shell
procedures.

-s Takes command input from the standard input.

-t Reads and processes a single line of input. You can use a \ to escape the new-line
character at the end of the current line to continue onto another line.

-v Sets the verbose shell variable, with the effect that command input is echoed after
history substitution.

-V Sets the verbose shell variable even before .cshrc runs.

-X Sets the echo shell variable, so that commands are echoed immediately before they
run.

-X Sets the echo shell variable even before .cshre runs.

After processing of flag arguments, if arguments remain but none of the -c, -i, -s, or -t

flags were given, the first parameter is taken as the name of a file of commands. The shell

opens this file and saves its name for possible resubstitution by $0. The shell runs a

standard shell, if the first character of a procedure is not a #, that is, if the procedure does

not start with a comment. Remaining parameters initialize the argv variable.
Files

$HOME/.cshrc Read at beginning of execution by each shell.

$HOME/.login Read by login shell, after .cshre at login.

$HOME/.logout Read by login shell, at logout.

/bin/sh Standard shell.

[tmp/sh* Temporary file for < <.

200 Commands Reference



csh

[etc/passwd Source of home directories for ~“name.

Related Information

The following commands: “ecd” on page 121, “make” on page 474, “pr” on page 561, and
“sh” on page 637.

The access, exec, fork, pipe, umask, and wait system calls, the a.out and environ files,
and the environment miscellaneous facility in AIX Operating System Technical Reference.

“Overview of International Character Support” in Managing the AIX Operating System.

Commands 201



csplit

csplit

Purpose

Splits files by context.

Syntax
csplif file —_parm
OL805177
Description

The csplit command reads a file and separates it into segments defined by the specified
parameters (parm . . .). By default, esplit writes these segments to files xx00+ ... xxn,
where n is the number of parms listed on the command line (n may not be greater than 99).
These new files get the following pieces of file:

00: From the start of file up to, but not including, the line referenced by the first
parm.
01: From the line referenced by the first parm up to the line referenced by the

second parm.

n+1: From the line referenced by the last parm to the end of file.
Note that esplit does not alter the original file.
The specified parms can be a combination of the following:

[pattern/ Creates a file that contains the segment from the current line up to (but not
including) the line containing pattern, which becomes the current line.

%pattern% Makes the line containing pattern the current line, but does not create a file
for the segment.

+num

-num Moves forward or backward the specified number of lines from the line
matched by an immediately preceding pattern parameter (for example,
/Page/-5).

202 Commands Reference



csplit

linenum Creates a file containing the segment from the current line up to (but not
including) linenum, which becomes the current line.

{number} Repeats the preceding argument the specified number of times. This number
can follow any of the pattern or linenum parameters. If it follows a pattern
parameter, csplit reuses that pattern the specified number of times. If it
follows a linenum parameter, csplit splits the file from that point every
linenum of lines for the specified number of times.

Quote all pattern parameters that contain blanks or other characters special to the shell.
Patterns may not contain embedded new-line characters. In an expression such as [a-z],
the minus means “through” according to the current collating sequence. A collating
sequence may define equivalence classes for use in character ranges. See the “Overview
of International Character Support” in Managing the AIX Operating System for more
information on collating sequences and equivalence classes.

Flags
-f prefix Specifies the prefix name for the created file segments. xx is the default prefix.
-k Leaves created file segments intact in the event of an error.
-s Suppresses the display of character counts.

Examples

1. To split the text of a book into a separate file for each chapter:
csplit book "/~ *Chapter *[0-9]* *$/{10}"

This creates files named xx00, xx01, xx02, . . . ,xx10, which contain individual chapters
of the file book. Each chapter begins with a line that contains only the word

Chapter and the chapter number. The file xx00 contains the front matter that comes
before the first chapter. The {10} after the pattern allows up to 10 chapters.

2. To specify the prefix for the created file names:
csplit -f chap book "/~ *Chapter *[0-9]* *$/{10}"
This splits book into files named chap00, chap01, chapo02, ... ,chapio.

Related Information

The following commands: “ed” on page 280, “sh” on page 637, and “regecmp” on
page 595.
The regxp file in AIX Operating System Technical Reference.

“Overview of International Character Support” in Managing the AIX Operating System.

Commands 203



ctab

ctab

Purpose

Produces a collating table.

Syntax
-i ctab.in -o ctab.out
oIV
—~iinfile —ooutfile
OL805451
Description

The ctab command takes an input file (by default a file named ctab.in found in the
current directory) and produces a binary file (by default named ctab.out) containing a
collating table. These output files are stored in a conventional directory. Programs that

need the current collating and case information use the NLCTAB environment variable to
access that information.

The following conventions are used to make it easier to set up a table file:
e One line of information is present for each character explicitly named.

o A line beginning with the word option serves to change one or more of the default
conditions or metacharacters built into ctab. An option line contains a set of
name/value pairs, with each half of each pair delimited by tab or space characters. The
following is a list of recognized names:

eclass Turns the use of equivalence classes on or off globally. The assigned
value must be on (the default) or off.

sep Uses the assigned value as the field separator character. The default
value is : (colon).

trans Uses the assigned value of the “translate” indicator in subject character
fields. The default character is | (vertical bar).

repeat Uses the assigned value as the “same as last line” indicator in subject
character field. The default value is * (circumflex).

comment Uses the assigned value as the comment character. The default value is
the # character.

® The order of the per-character input lines specifies the collating sequence.

204 Commands Reference



ctab

e By default, fields on a line are separated by colons. Tabs or spaces may surround fields
or separators. You can change the separator character with an option line.

e Use an octal escape sequence in the ASCII range to name a nonprintable character. A
backslash character that does not form part of a valid escape sequence serves to strip
the following character, including a second backslash, of any special meaning it
otherwise would have. For example, to include the colon character in the collating
sequence, use the following line:

\::

The input file format includes a comment convention, namely that the remainder of the
line following a # character is ignored. The comment character can be changed with
an option line.

Input File Specification

Use the following rules to build infile, entering field information for each line.:

1. The first field on a line contains the subject character, a character to be inserted into
the collating sequence at that point.

This subject character definition can include a translation mechanism:

Instead of a single character, this field may contain two or more characters
that are to be collated as a single unit, or

The single subject character may be followed by a vertical bar (1) and a single-
or multiple-character string. The vertical bar indicates that the first character
will be translated to the second string before being collated.

29
e

For example, to treat an (e acute) as equivalent to the character “e,” use

the following line:
oloe
One restriction is placed on the translation mechanism: the subject character

cannot be contained in the translated string of characters. For example, the
following line is illegal:

oioe

Any form of the first field may contain a trailing circumflex (") to indicated that
the current character is to collate to the same value as the preceding one.
However, a circumflex following a translation string is illegal because the subject
character to be translated has no inherent collating value.

If the subject field contains a string of multiple characters (to collate as a unit), its
first character must be declared elsewhere to establish the default collating
sequence of that character.

Commands 205



ctab

e The translate and collating no-change characters can be changed with option
lines.

2. The second and third fields specify whether or not a character is alphabetic and what
its lower- and uppercase equivalents are:

e If a subject character is to be treated as a lowercase alphabetic, the second field on
its line is its uppercase equivalent, and the third field must be 1 or L.

e If a subject character is to be treated as a uppercase alphabetic, the second field on
its line is its lowercase equivalent, and the third field must be u or U.

o If a subject character is to be treated as a control character or a space character,
the third field must be ¢, C, s, or S.

e Each character explicitly named whose line contains a nonnull second field will be
considered alphabetic (that is, matched by NCisalpha). Characters that do not
have an uppercase or lowercase equivalent (that is, that have a null second field)
but that you wish to be considered alphabetic should simply contain a third field
thatis 1, L, u, or u.

3. The fourth field on a line is used explicitly to specify the first character in the
equivalence class of the subject character. The members of one equivalence class
must be consecutively listed in the input file.

e There cannot be any gaps within a particular equivalence class. For example, the
following lines will put the characters a, b, and ¢ in the same equivalence class:

a:A:1:a
b:B:1:a
c:C:1:a

e As a convenience, if the fourth field is not specified, then the group of consecutive
characters with blank fourth fields, provided that they are all based on the same
Roman alphabetic character, will be placed in the same equivalence class. To
reiterate, only characters with the same base will be placed into the same
equivalence class by default. If you wish to have many characters from different
bases belong to one equivalence class, as in the example above, the first character
of the equivalence class has to be specified in the fourth field for every character
specified.

e It is illegal to specify an equivalence character that comes later in the collating
sequence. The fourth field can refer only to characters that have already been
mentioned.

e All international character support characters not based on Roman alphabetic
characters by default are the sole members of their equivalence class.

Characters not named in the table file that have an ordinal value (that is, a value as an
NLchar) below the ordinal value of the lowest-valued character named are put into the
collating sequence below the first character in the table file. All other characters not

206 Commands Reference



ctab

Flags

Files

named in the table file are put into the collating sequence above the last character in the
table file.

The standard characters for decimal and hexadecimal digits are always marked as digits (to
be matched by NCisdigit and NCisxdigit). All other printable characters not marked as
alphabetic are marked as punctuation.

-i infile Specifies the name of the input file (ctab.in by default).
-0 outfile Specifies the name of the output file (ctab.out by default).

Jusr/lib/nls/ascii.in Input file listing the ASCII range of characters.
Jusr/lib/nls/iso.in Input file listing the ISO Collating Sequence

Relatéd Information

The NCisalpha, NCisdigit, NCisxdigit, nls, and NLgetenv subroutines in AIX Operating
System Technical Reference.

The “Overview of International Character Support” in IBM RT PC Managing the AIX
Operating System.

Commands 207



ctags

ctags

Purpose

Makes a tags file.

Syntax
one_of
ctags —u file

—X

—a

—W

OL805457

Description

The ctags command makes a tags file for ex and vi editors from the specified C, Pascal,
and FORTRAN source files. A tags file gives the locations of specified objects (in this case
functions) in a group of files. Each line of the tags file contains the object name, the file
in which it is defined, and an address specification for the object definition. Functions are
searched with a pattern. Specifiers are given in separate fields on the line, separated by
blanks or tabs. Using the tags file, ex and vi can quickly find these object definitions.

If a file name ends in .c or .h, it is assumed to be a C source file and is searched for C
routine and macro definitions. Others are first examined to see if they contain any Pascal
or FORTRAN routine definitions; if not, they are processed again for C definitions.

The tag main is treated specially in C programs. The tag formed is created by prefixing M
to the file name, removing a trailing .c (if any), and removing the leading path name
components. This makes use of ctags practical in directories with more than one program.

Note: Recognitions of the keywords function, subroutine, and procedure in
FORTRAN and Pascal code is performed in a very simple-minded way. No attempt is
made to deal with block structure; if you have two Pascal procedures with the same
name but in different blocks, ctags may yield inadequate results.

The ctags command does not know about #ifdef.

208 Commands Reference



ctags

Flags

-a Appends to tags file.

-w Suppresses warning diagnostics.

-x Causes ctags to display a list of object names, the line number and file name on which
each is defined, as well as the text of that line. This provides a simple index index. If
you specify this flag, ctags does not build a tags file.

-u Updates the specified files in tags; that is, all references to them are deleted, and the
new values are appended to the file. This flag may be slow. (It is usually faster to
simply rebuild the tags file.)

Files

tags Output tags file

Related Information

The following commands: “ex” on page 312 and “vi, vedit, view” on page 832.

Commands 209



cut

cut
Purpose
Writes out selected fields from each line of a file.
Syntax
—~clist
o
~flist file
' The default char is a tab.
OL805178
Description
The cut command cuts out columns from a table or fields from each line of a file and
writes these columns or fields to standard output. If you do not specify a file, cut reads
standard input.
You must specify either the -¢ or -f flag. The list parameter is a comma-separated and/or
minus-separated list of integer field numbers (in increasing order). The minus separator
indicates ranges. Some sample lists are 1,4,7; 1-3,8; -5,10 (short for 1-5,10); and 3-
(short for third through last field). The fields specified by list can be a fixed number of
character positions, or the length can vary from line to line and be marked with a field
delimiter character, such as a tab character.
You can also use the grep command to make horizontal cuts through a file and the paste
command to put the files back together. To change the order of columns in a file use cut
and paste.
Flags

-clist Specifies character positions. For example, if you specify -cl-72, cut writes out
the first 72 characters in each line of the file. Note that there is no space
between -c¢ and list.

210 Commands Reference



cut

-dchar Uses the specified character as the field delimiter when you specify the -f flag.
You must quote characters with special meaning to the shell, such as the space
character.

-flist Specifies a list of fields assumed to be separated in the file by a delimiter
character, by default the tab character. For example, if you specify -f1,7, cut
writes out only the first and seventh fields of each line. If a line contains no field

delimiters, cut passes them through intact (useful for table subheadings), unless
you specify the -s flag.

-s Suppresses lines that do not contain delimiter characters (use only with the -f
flag).

Example

To display several fields of each line of a file:
cut -fl,5 -d: /etc/passwd

This displays the login name and full user name fields of the system password file. These
are the first and fifth fields (-f1,5) separated by colons (-d:).

So, if the /etc/passwd file looks like this:

su:UHujo9Pgdvz0J":0:0:User with special privileges:/:/bin/sh
daemon:*:1:1::/etc:

bin:*:2:2::/bin:

sys:*:3:3::/usr/src:

adm:*:4:4:System Administrator:/usr/adm:/bin/sh
pierre:boodwgT3irHFE:200:200:Pierre Harper:/u/pierre:/bin/sh
joan:wijBNaYpCZulL.:202:200:Joan Brown:/u/joan:/bin/sh

then cut produces:

su:User with special privileges
daemon:

bin:

Sys:

adm:System Administrator
pierre:Pierre Harper

joan:Joan Brown

Related Information

The following commands: “grep” on page 381 and “paste” on page 547.

Commands 211



cvid

cvid

Purpose
Creates a VRM install diskette for backup purposes.

Syntax
-f vrmmnt -v IBMVRM /vrm/vproto
cvid — device ,_< .>—< }—4
—f fs-ID =v vol-ID. prototypefile

Description

0L805104

The evid command backs up the VRM minidisk onto a diskette. Since you can reinstall
the VRM system from this backup diskette, use cvid as a precautionary measure before
modifying the VRM. You must be a member of the system group or operating with
superuser authority to run this command.

The device parameter specifies the device (special file) to which cvid copies the VRM. This
can be a block device name, a raw device name, or a directory name. If device is a
directory name, cvid reads the /etc/filesystems file for the corresponding device. cvid
uses the prototypefile parameter to determine the size of the new file system. prototypefile
defaults to /vrm/vproto. For more information on prototype files, see “mkfs” on page 487
and “proto” on page 573.

Flags

-f fs-ID Makes fs-ID the label for the new file system. The default label is vrimmnt.
-v vol-ID Makes vol-ID the volume label for the new file system. The default label is
IBMVRM.
Related Information

The following commands: “mkfs” on page 487 and “mount” on page 498.

212 Commands Reference



Cw

cw, checkew

Purpose

Prepares constant-width text for troff.
Syntax

+t -f3

cw one of
+t :(fjfont —ldelim — —rdelim M

—t

checkew ~< >7 file
-ldelim — —rdelim

Description

OL805427

The cw command preprocesses troff files containing text to be typeset in the
constant-width (CW) font. ew reads standard input if you do not specify a file or if you
specify a -. (minus) as one of the input file names. It writes its output to standard output.

Since the text that is typeset by ew resembles the output of line printers and work
stations, it can be used to typeset examples of programs and computer output in user
manuals and programming texts. It has been designed to be distinctive when used with the
Times Roman font.

Because the CW font contains a “nonstandard” set of characters and because text typeset
with it requires different character and interword spacing than is used for “standard
fonts,” you must use ew to preprocess documents that use the CW font. The CW font
contains the 94 printing ASCII characters:

abcdefghijkimnopgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789

L$%& ()1 *+@., /2 5=2[] -~ "G

plus eight non-ASCII characters represented by four-character troff strings (in some cases
attaching these strings to “nonstandard” graphics):

Commands 213



Cw

Character Symbol Troff Name
"Cents" sign ¢ \(ct
EBCDIC "not" sign - \(no
Left arrow « \(<—
Right arrow — \(->
Down arrow Il \(da
Vertical single quote ' \(fm
Control-shift sign n \(dg
Visible space sign — \(sq
Hyphen _ \(hy
Up arrow + \(ua
Home arrow N \(lh

0OL805409

The cw command recognizes five request lines, as well as user-defined delimiters. The
request lines look like troff macro requests. cw copies them in their entirety onto the
output. Thus, you can define them as troff macros; in fact, the .CW and .CN macros
should be so defined. The five requests are:

CW Marks the start of text to be set in the CW font. This request causes a
break. It can take the same flags (in the same format) as those
available on the cw command line.

.CN Marks the end of text to be set in the CW font. This request causes a
break. It can take the same flags (in the same format) as those
available on the cw command line.

.CD Changes the delimiters and/or settings of other flags. It can take the
same flags (in the same format) as those available on the ew command
line. The purpose of this request is to allow the changing of flags
other than at the beginning of a document.

.CP argument-list Concatenates all the arguments (delimited like troff macro

arguments), with the odd-numbered arguments set in the CW font and
the even-numbered ones in the prevailing font.

PC argument-list Acts the same as .CP, except the even-numbered (rather than
odd-numbered) arguments are set in CW font.

The .CW and .CN requests should bracket text that is to be typeset in the CW font “as is.”
Normally, cw operates in the transparent mode. In that mode, every character between
.CW and .CN request lines represents itself, except for the .CD request and the special
four-character names listed previously. In particular, ew arranges for all periods (.) and
apostrophes (*) at the beginning of lines, and all backslashes (|) and ligatures (fi, ff, and so
on) to be hidden from troff. The transparent mode can be turned off by using the -t flag,
in which case normal troff rules apply. In either case, cw hides from the user the effect of
the font changes generated by the .CW and .CN requests.

214 Commands Reference



cw

You can also use the -1 and -r flags to define delimiters with the same function as the .CW
and .CN requests. They are meant to enclose words or phrases that are to be set in CW font
in the running text. cw treats text between delimiters as it does text bracketed by
.CW/.CN pairs, with one exception. Spaces within .CW/.CN pairs have the same width as

other CW characters, while spaces within delimited text are half as wide, so they have the
same width as spaces in the prevailing text. Delimiters have no special meaning inside
.CW/.CN pairs.

The checkcew command checks that left and right delimiters, and the .CW/.CN pairs are
properly balanced. It prints out all lines in the section with the unmatched delimiters.

Note: It is unwise to use . (period) or \ (backslash) as delimiter characters.

Certain CW characters do not combine well with certain Times Roman characters, for
example, the spacing between a CW & (ampersand) followed by a Times Roman comma
(,). In such cases, using troff half-and quarter-space requests can help.

The troff code produced by ew is difficult to read.

The mm and mv macro packages contain definitions of .CW and .CN macros that
are adequate for most use. If you define your own, make sure that the .CW macro
invokes the troff no-fill (.nf) mode, and the .CN macro restores the fill mode (.fi), if
appropriate.

When set in running text, the CW font is meant to be set in the same point size as the
rest of the text. In displayed matter, on the other hand, it can often be profitably set

one point smaller than the prevailing point size. The CW font is sized so that, when
it is set in 9-point, there are 12 characters per inch.

Documents that contain CW text may also contain tables and equations. If this is the
case, the order of preprocessing must be cw, tbl, and eqn. Usually, the tables will
not contain any CW text, although it is possible to have elements in the table set in
the CW font. Care must be taken that cw does not modify the tbl format information.
Attempts to set equations in the CW font are not likely to be pleasing or successful.

In the CW font, overstriking is most easily accomplished with backspaces. Because
spaces (and therefore backspaces) are half as wide between delimiters as inside
.CW/.CN pairs, two backspaces are required for each overstrike between delimiters.

Commands 215



Cw

Flags

-d

-ffont

-ldelim
~-rdelim

-t
+t

Files

Displays the current flag settings on the standard error output in the form of
troff comment lines. This flag is meant for debugging.

Replaces font with the cw font (default =3, replacing the bold font). -f5 is
commonly used for formatters that allow more than four simultaneous fonts.

This flag is useful only on the command line.

Sets the left delimiter as the one-or two-character string delim The left
delimiter is undefined by default.

Set the right delimiter as delim The right delimiter is undefined by default.
The left and right delimiters may (but need not) be different.

Turns the transparent mode off.

Turns the transparent mode on (this is the default).

[usr/lib/font/{tCW CW font-width table.

Related Information

The following commands: “eqn, neqn, checkeq” on page 300, “mmt, checkmm” on
page 495, “tb]l” on page 739, and “troff” on page 526.

The mm and mv miscellaneous facilities in AIX Operating System Technical Reference.

216 Commands Reference



cxref

cxref

Purpose

Creates a C program cross-reference listing.

Syntax
-w80
cxref 80 file
num
' Do not put a space between these items.
0L805180
Description

Flags

The cxref command analyzes C program files and creates a cross-reference table, using a
version of the epp command to include #define directives in its symbol table. It writes to
standard output a listing of all symbols in each file processed, either separately or in
combination (see the -c¢ flag on page 217). When a reference to a symbol is that symbol’s
declaration, an * (asterisk) precedes it.

You can also use the -D, -I, and -U flags from the epp command.

-c displays a combined listing of the cross-references in all input files.
-0 file Directs the output to the specified file.

-s Does not display the input file names.

-t Makes the listing 80 columns wide.

-w[num] Makes the listing num columns wide, where num is a decimal integer greater
than or equal to 51. If you do not specify num or if num is less than 51, the
listing will be 80 columns wide.

Commands 217



cxref

Files

Jusr/lib/xcpp Special version of C-preprocessor.

Related Information

The following commands: “ecc” on page 112 and “cpp” on page 163.

The discussion of exref in AIX Operating System Programming Tools and Interfaces.

218 Commands Reference



date

date
Purpose
Displays or sets the date.
Syntax
Operating With Superuser Authority
>—- hh .SS yy
1 dd
MM
0L805105
Operating Without Superuser Authority
date —< >—'
+ ""string "
' Do not put a blank between these items.
OL805357
Description

Warning: Do not change the date while the system is running with more
than one user.

If called with no flags or with a flag list that begins with a + (plus sign), the date
command writes the current date and time to standard output. Otherwise, it sets the
current date. Only a user operating with superuser authority can change the date and
time. The NLDATE variable, if it is defined, controls the ordering of the day and month
numbers in the date specifications. The default order is MMddhhmm.ssyy where:

MM is the month number.

dd is the number of the day in the month.

hh is the hour in the day (using a 24-hour clock).
mm is the minute number.

.ss is the number of seconds.

yy is the last two numbers of the year.

The alternative ordering is dd MMhhmm.ssyy.

Commands 219



date

The current month, day, hour, and year are default values. The system operates in
Greenwich Mean Time (GMT). date takes care of the conversion to and from local
standard and daylight time as specified in the NLTZ environmental variable.

If you follow date with a + and a field descriptor, you can control the output of the
command. You must precede each field descriptor with a percent sign (%). The system
replaces the field descriptor with the specified value. Enter a literal % as %%. date copies
any other characters to the output without change. date always ends the string with a
new-line character. Output fields are fixed size (zero padded if necessary).

Field Descriptors

a

I

s

S @B =g

y

Examples

Displays the abbreviated day of the week (Sun to Sat or the non-English
equivalent).

Displays the day of month (01 to 31).

Displays the date as mm/dd/yy (the default), or as dd/mm/yy. This format is
specified by the NLDATE environment variable, if defined.

Displays the abbreviated month (Jan to Dec or the non-English equivalent).
Displays the hour (00 to 23).

Displays the day of year (001 to 366).

Displays the month of year (01 to 12).

Displays the minute (00 to 59)

Inserts a new-line character.

Displays the time in AM/PM notation (or the non-English equivalent).
Displays the second (00 to 59).

Inserts a tab character.

Displays the time as hh:mm:ss (the default), or as mm:hh:ss. This format is specified
by the NLTIME environment variable, if defined.

Displays the day of the week numerically (Sunday =. 0).
Displays the last two numbers of year (00 to 99).

1. To display current date and time:
date

220 Commands Reference



date

2. To set the date and time:
date 02171425.45

This sets the date and time to 14:25:45 (45 seconds after 2:25 p.m.) February 17 of the
current year.

3. To display the date and time in a specified format:
date +"%r %a %d %h %y (Julian Date: %3j)"
This displays the date (assume current year is 1984) shown in Example 2 as:
02:25:03 PM Fri 17 Feb 84 (Julian Date: 048)

Files
/dev/kmem
Related Information

See the time and stime system calls and the environment miscellaneous facﬂlty in AIX
Operating System Technical Reference.

“Overview of International Character Support” in Managing the AIX Operating System.

Commands 221



de

de

Purpose

Provides an interactive desk calculator for doing arbitrary-precision integer arithmetic.

Syntax

dcﬂ
file

Description

0OL805106

The dc command is an arbitrary precision arithmetic calculator. de takes its input from
file or standard input until it reads an end-of-file character. It writes to standard output.
It operates on decimal integers, but you may specify an input base, output base, and a
number of fractional digits to be maintained. dc is structured overall as a stacking,
reverse Polish, calculator.

The be command (see page 95) is a preprocessor for de. It provides infix notation and a
syntax similar to the C language which implements functions and reasonable control
structures for programs.

Subcommands

number

o %Y

SXx

Sx

1x

Pushes the specified value onto the stack. A number is an unbroken
string of the digits 0-9. To specify a negative number, precede it with _
(underscore). A number may contain a decimal point.

Adds (+), subtracts (-), multiplies (*), divides (/), remainders (%), or
exponentiates (") the top two values on the stack. dc pops the top two
entries off the stack and pushes the result on the stack in their place. de¢
ignores fractional parts of an exponent.

Pops the top of the stack and stores it in a register named x, where x may
be any character.

Treats x as a stack. It pops the top of the main stack and pushes that
value onto stack x.

Pushes the value in register x on the stack. The register x is not changed.
All registers start with zero value.

222 Commands Reference



de

Lx

=2

X

X
[string]

<x
>x
=X

Treats x as a stack and pops its top value onto the main stack.
Duplicates the top value on the stack.

Displays the top value on the stack. The top value remains unchanged.
The p interprets the top of the stack as an ASCII string, removes it, and
displays it.

Interprets the top of the stack as a string, removes it, and displays it.
Displays all values on the stack.

Exits the program. If dec is executing a string, it pops the recursion level
by two.

Pops the top value on the stack and the string execution level by that
value.

Treats the top element of the stack as a character string and executes it as
a string of dc commands.

Replaces the number on the top of the stack with its scale factor.
Puts the bracketed string onto the top of the stack.

Pops the top two elements of the stack and compares them. Evaluates
register x as if it obeys the stated relation.

Replaces the top element on the stack by its square root. Any existing
fractional part of the argument is taken into account, but otherwise the
scale factor is ignored.

Interprets the rest of the line as a AIX command.
Cleans the stack: de pops all values on the stack.

Pops the top value on the stack and uses that value as the number radix
for further input.

Pushes the input base on the top of the stack.

Pops the top value on the stack and uses that value as the number radix
for further output.

Pushes the output base on the top of the stack.

Pops the top of the stack, and uses that value as a nonnegative scale
factor. The appropriate number of places displays on output and is
maintained during multiplication, division, and exponentiation. The
interaction of scale factor, input base, and output base is reasonable if all
are changed together.

Pushes the number of elements in the stack onto the stack.

Commands 223



de

Z

?

oo
9o

Replaces the top number in the stack with the number of digits in that
number.

Gets and runs a line of input.

bc uses these characters for array operations.

Examples

1.

To use dc¢ as a calculator:

You: 1 4 / P
System:
You: 1 k [ Keep 1 decimal place Js.
4/ p
System: 0.2
You: 3 k [ Keep 3 decimal places ]s.
4/ p
System: .250
Youw 16 63 5 / + p
System: 28.600
You: 16 63 5 + / p

System: 0.235

You may type the comments (enclosed in [ ]s.), but they are provided only for your
information.

O WO FHO

When you enter de expressions directly from the keyboard, press Ctrl-D to end the be
session and return to the shell command line.

To load and run a de program file:

You: dc prog.dc
51f xp [ b5 factorial Js.
System: 120
Yow: 10 1f x p [ 10 factorial Js.
System: 3628800

This interprets the de program saved in prog.dc, then reads from the work station
keyboard. The If x evaluates the function stored in register f, which could be defined
in the program file prog.c as:

[ f: compute the factorial of n ]s.
L (n = the top of the stack) Js.

[ If 1>n do b; If 1<n do r Js.
[d1> d1<r] sf

224 Commands Reference



de

[ Return f(n) =1 ]s.
[d -1+] sb

[ Return f(n) = n * f(n-1) Js.

[d1l-1fx *] sr
You can create dc program files with a text editor, or with the -c¢ (compile) flag of the
bc command.

When you enter dc expressions directly from the keyboard, press Ctrl-D to end the be
session and return to the shell command line.

Related Information

The following command: “be” on page 83.
“Overview of International Character Support” in Managing the AIX Operating System.

Commands 225



dcopy

dcopy

Purpose

Copies file systems for the best access time.

Syntax
-a7
dcopy _>—<:——ffsize ; oldfs — newfs —y
:3 —anum -ffsize : isize
—scyliskip
' If not specified, the values from o/dfs are used.
OL805420
Description

Warning: oldfs and newfs must not refer to the same minidisk. Doing so
will destroy the old file system.

The dcopy command copies an existing file system oldfs to a new file system neuwfs,
appropriately sized to hold the reorganized results. For best results, oldfs should be the
raw device and newfs should be the block device. If oldfs or newfs is a file system name,
dcopy uses the corresponding block device given in /etc/filesystems. You should run
dcopy on unmounted file systems (in the case of the root file system, copy to a new
minidisk).

If you do not specify any flags, dcopy copies files from oldfs, compressing directories by

removing vacant entries and spacing consecutive blocks in a file by the optimal rotational
gap.

The dcopy command makes newfs identical to oldfs and preserves the pack and volume
labels. Thus, to compress a file system without moving it, use the dcopy command to copy
the file to another file system and the dd command to copy the file back.

The dcopy command catches INTERRUPT and QUIT signals and reports on its progress.
To end dcopy, send a QUIT signal (Ctrl-V) and dcopy no longer catches INTERRUPT or
QUIT. dcopy also attempts to modify its command line arguments so that its progress can
be monitored with the ps command.

226 Commands Reference



dcopy

Flags

-anum

-d
ffsize[:isize]

-scyl:skip

-V

Places files not accessed in the specified number of days after the free
blocks of the destination file system. The default value of num is 7. If you
do not specify num, no files are moved.

Leaves the order of directory entries as is. If you do not specify this flag,
dcopy moves subdirectories to the beginning of directories.

Specifies the file system and i-node list sizes (in blocks). If not specified, the
value from oldfs is used.

Supplies device information for creating the best organization of blocks in a
file, where cyl is the number of block per cylinder and skip is the number of
blocks to skip.

Reports how many files were processed and how big the source and
destination free lists are.

Related Information

The following commands: “fsck, dfsck” on page 333, “mkfs” on page 487, and “ps” on

page 579.

Commands 227



TNL SN20-9861 (26 June 1987) to SC23-0790-0
dd

dd

Purpose

Converts and copies a file.

Syntax

ibs=512 >—< obs=512
ibs=num obs=num

bS:num

dd

“if= infile
of=outfile
cbs=num
fskip=num
skip= num
seek=num
count=npum

002 . 3
: 1
conv= ascit Icase

ebcdic2 ucases
iblock swab
oblock  noerror

block sync
tonls fromnls
flatten

1

' Do not put a blank between these items.

2Use only one of ascii and ebcdic.

3 Use only one of icase and ucase.

4 infile and outfile default to standard input and standard output.

OL805373

Description
The dd command reads the specified infile or standard input, does the specified

conversions, and copies it to the specified outfile or standard output. The input and output
block size may be specified to take advantage of raw physical I/O. The terms block and

228 Commands Reference



dd

record refer to the quantity of data read or written by dd in one operation and are not
necessarily the same size as a disk block.

Where sizes are specified, a number of bytes is expected. A number may end with w, b, or
k to specify multiplication by 2, 512, or 1024 respectively; a pair of numbers can be
separated by an x to indicate a product.

The conversion requested by conv=tonls translates each extended character in a text file
to a printable ASCII escape sequence that uniquely identifies the extended character. The
complementary conversion, provided by conv =fromnls, translates ASCII escape
sequences to the corresponding extended character. The conversion requested by

conv =flatten translates an extended character to the single ASCII character most
resembling it in appearance or to a ? (question mark) if no ASCII characters resemble that
extended character.

The character set mappings associated with conv=ascii and conv=ebcdic are
complementary operations, described in the ebedic file in AIX Operating System Technical
Reference. These attempt to map between ASCII and the subset of EBCDIC that is found
on most terminals and keypunches.

The cbs specification is used only if the aseii or ebedic conversion is specified. For ASCII
conversions, dd places characters in a conversion buffer of size cbs, converts these
characters to ASCII, trims trailing blanks and adds new-line characters before sending
data specified output. For EBCDIC conversions, it places ASCII characters in the
conversion buffer, converts these characters to EBCDIC, adds trailing blanks to create
records of size cbs.

After it finishes, dd reports the number of whole and partial input and output blocks.

Parameters

if=infile Specifies the input file name; standard input is the default.

of = outfile Specifies the output file name; standard output is the default.

ibs = num Specifies the input block size in bytes; the default is 512.

obs=num Specifies the output block size in bytes; the default is 512.

bs=num Sgecifies both the input and output block size, superseding ibs and
obs.

cbs =num Specifies the conversion buffer size.

skip=num Skip num input records before starting copy.

seek =num Seek' to the numth record from the beginning of output file before
copying.

fskip=num Skip past num end-of-file characters before starting copy; this

parameter is useful for positioning on multi-file magnetic tapes.

Commands 229



dd

count =num Copies only num input blocks. The default block size is 512 bytes
(see the ibs parameter).

conv=spec[,spec . ..] Specifies one or more of the following conversions:

ascii
ebcdic

tonls

fromnls

flatten

iblock
oblock
block

lcase
ucase
swab
noerror

sync

Converts EBCDIC to ASCIL
Converts ASCII to EBCDIC.

Converts ASCII escape sequences to extended
characters.

Converts extended characters to ASCII escape
sequences.

Converts extended characters to the ASCII character
most resembling it or to a 7 (question mark).

Minimizes data loss resulting from a read or write error
on direct access devices. If you specify iblock and an
error occurs during a block read (where the block size
is 512 or the size specified by ibs =num), dd attempts to
reread the data block in smaller size units. If dd can
determine the sector size of the input device, it reads
the bad record one sector at a time. Otherwise, it reads
it 512 bytes at a time. The input block size (ibs) must
be a multiple of this “retry size.” This allows you to
maximize disk input efficiency while ensuring that data
loss associated with a read error is confined to a single
sector. The oblock conversion works similarly on
output. Specifying block is same as specifying
iblock,oblock.

Makes all alphabetic characters lowercase.
Makes all alphabetic characters uppercase.
Swaps every pair of bytes.

Does not stop processing on an error.

Pads every input record to ibs.

Note: Normally, you need only write access to the output file. However, when the
output file is not on a direct access device and you use the seek parameter, you also

need read access to the file.

The dd command inserts new-line characters only when converting to ASCII; it pads
only when converting to EBCDIC.

230 Commands Reference



dd

Example

1. To convert an ASCII text file to EBCDIC:
dd if=text.ascii of=text.ebcdic conv=ebcdic

This converts text.ascii to EBCDIC representation, storing the EBCDIC version in
text.ebcdic.

Note: When you specify conv=ebcdic, dd converts the ASCII * (circumflex)
character to an unused EBCDIC character (9A hexadecimal), and ASCII ~ (tilde) to
EBCDIC =1 (NOT symbol).

2. To use dd as a filter:
1i -1 1 dd conv=ucase

This displays a long listing of the current directory (11 -1) in uppercase.
3. To read data that was written by a non-UNIX computer system:
dd if=/dev/rmt0 of=data ibs=800 cbs=80 conv=ascii,swab

This reads EBCDIC data from magnetic tape (i f=/dev/rmt0) that has ten 80-byte card
images per block. dd then converts it to ASCII (conv=ascii), swaps each pair of bytes
(conv=swab), and stores it in a file named data.

Note that this example reads input from a raw device. The dd command can read and
write blocks of any size, which makes it very useful for copying data to and from raw
devices.

Related Information

The following command: “cp” on page 156.
The ebcedic file in AIX Operating System Technical Reference.

The “Overview of International Character Support” in Managing the AIX Operating
System.

Commands 231



defkey
defkey

Purpose

Defines keyboard key assignments.

Syntax

w0
-2 file

Description

OL805453

The defkey command lets you redefine the keyboard keys on the active virtual terminal.
Input to defkey comes either interactively from the keyboard or from.a redirected file.
Key assignments can be a single character, non-spacing characters, or strings.

If you specify a file that does not exist, defkey creates and opens the file; if file exists,
defkey opens the file. It then displays a menu that prompts you for input. This file can
then be used as redirected input to defkey.

Flags
-?  Provides help information.
Examples

1. To redefine a key or keys and create or add to a keyboard definition file:
defkey mykeys

This creates the file mykeys and prompts for input. When defkey ends, the keys that
you specified will be redefined on the active virtual terminal. You can also use the file
mykeys to redefine the keyboard on another virtual terminal with the command:

defkey < mykeys
2. To interactively redefine one or more keyboard keys for the active virtual terminal:

defkey

232 Commands Reference



defkey

Related Information

hft and dispsym in AIX Operating System Technical Reference.
The Keyboard Description and Character Reference.

Commands 233



del
del

Purpose

Deletes files if the request is confirmed.

Syntax
- OL805049
Description

The del command displays the list of specified file names and asks you to confirm your
request to delete the group of files. To answer yes (delete the files), press the Enter key
or enter a line beginning with ¥. Any other response specifies N0 (do not delete the files).

The del command does not delete directories. See “rmdir” on page 605 for information
about deleting directories.

Warning: The del command ignores file protection, allowing the owner of
a file to delete a write-protected file. However, to delete a file, you must
have write permission in the directory that the file exists in.

Since pressing the Enter key by itself is the same as answering “yes,” be
careful not to delete files accidentally.

Flag
- Requests confirmation for each specified file rather than for the entire group.
Examples

1. To delete a file:
del chapl.bak

234 Commands Reference



del

This displays the message:
delete chapl.bak? (y)

to ask for confirmation before deleting chapl.bak. The (y) reminds you to press the
Enter key or to enter y to answer “yes.”

2. To use del with pattern-matching characters:
del *.bak

Before passing the command line to del, the shell replaces the pattern *.bak with the

names of all the files in the current directory that end with .bak. (This is known as
file-name expansion.) del asks for confirmation before deleting them all at one time.

3. To interactively select files to be deleted:
del - *

This displays the name of each file in the current directory one at a time, allowing you
to select which ones to delete.

Related Information

The following commands: “rmdir” on page 605 and “rm” on page 601.

Commands 235



delta

delta

Purpose

Creates a delta in a Source Code Control System file.

Syntax
-y -m file
-y commentj :_-—m mrlist
dslta
-y -m
—y comment j C—m mrlist j
OL805056
Description

The delta command is used to introduce into the named Source Code Control System
(SCCS) file any changes that were made to the file version retrieved by a get -e command.

The delta command reads the g-files that correspond to the specified files (see “SCCS
Files” on page 360) and creates a new delta.

If you specify a directory in place of file, delta performs the requested actions on all SCCS
files within that directory (that is, on all files with the s. prefix). If you specify a - (minus)
in place of file, delta reads standard input and interprets each line as the name of an SCCS
file. When delta reads standard input, you must supply the -y flag. You must also supply
the -m flag if the v header flag is set. (For more information on header flags, see the
discussion in the admin command on page 54.) delta reads standard input until it reaches
END OF FILE (Ctrl-D).

If you are not familiar with the delta numbering system, see AIX Operating System
Programming Tools and Interfaces for more information.

Note: Lines beginning with an SOH ASCII character (binary 001) cannot be placed in the
SCCS file unless the SOH is quoted using a \ (backslash). SOH has special meaning to
SCCS and causes an error. See the scesfile file in AIX Operating System Technical
Reference.

236 Commands Reference



delta

Flags

A get of many SCCS files, followed by delta of those files, should be avoided when the get
generates a large amount of data. Instead, you should alternate the use of get and delta.

-glist

-m[mrlist]

-n

-rSID

-S

-y[comment]

Specifies a list of SIDs (deltas) that are to be ignored when the get
command creates the g-file. After you use this flag, get ignores this delta if
it is one that it should not include when it builds the g-file.

If the SCCS file has the v header flag set, then a Modification Request (MR)
number must be supplied as the reason for creating the new delta.

If you do not specify the -m flag, and the v header flag is set, delta reads
MRs from the standard input. If standard input is a work station, delta
prompts you for the MRs. delta continues to take input until it reads END
OF FILE (Ctrl-D). It always reads MRs before the comments (see the -y
flag). You can use blanks, tab characters, or both to separate MRs in a list.

If the v header flag has a value, it is interpreted as the name of a program
that validates the MR numbers. If delta returns a nonzero exit value from
the MR validation program, delta assumes some of the MR numbers were
invalid and stops running.

Retains the g-file, which is normally removed at completion of delta
processing.

Writes to standard output (in the format of the diff command) the SCCS file
differences before and after the delta is applied. See “diff” on page 246 for
an explanation of the format.

Specifies which delta is to be made to the SCCS file. You must use this flag
only if two or more outstanding get -e commands were done on the same
SCCS file by the same person. The SID can be either the SID specified on
the get command line or the SID to be made.as reported by the get
command (see Figure 2 on page 362 for additional information). An error
results if the specified SID cannot be uniquely identified, or if a SID must be
specified but it is not.

Suppresses the information normally written to standard output on normal
completion of the delta command.

Specifies text used to describe the reason for making the delta. A null
string is considered a valid comment. If your comment line includes special
characters or blanks, the line must be enclosed in single or double quotation
marks.

If you do not specify -y, delta reads comments from standard input until it
reads a blank line or END OF FILE (Ctrl-D). If input is from the keyboard,
delta prompts for the comments. If the last character of a line is a
backslash, it is ignored. Comments must be no longer than 512 characters.

Commands 237



delta

Example

To record changes you have made to an SCCS file:
delta s.prog.c

This adds a delta to the SCCS file S.prog. C, recording the changes made by editing

prog.c. delta then asks you for a comment that summarizes the changes you made.
Enter the comment, then press END OF FILE (Ctrl-D) or press the Enter key twice to
indicate that you have finished the comment.

Related Information

The following commands: “admin” on page 51, “bdiff” on page 88, “cdc” on page 123,
“get” on page 359, “help” on page 391, “prs” on page 574, and “rmdel” on page 604.
The scesfile file in AIX Operating System Technical Reference.

The discussion of SCCS in AIX Operating System Programming Tools and Interfaces.

238 Commands Reference



deroff

deroff

Purpose

Removes nroff, troff, tbl, and eqn constructs from files.

Syntax

-ms
-ml

deroff ~<°:‘_fn(r’;L>—< one of
-w E file

0L805181

Description

Flags

The deroff command reads files (standard input by default), removes all troff requests,
macro calls, backslash constructs, eqn constructs (between .EQ and .EN lines and
between delimiters), and tbl descriptions (perhaps replacing them with blanks or blank
lines), and writes the remainder of the file to standard output.

The deroff command normally follows chains of included files (.so and .nx troff
commands). If a file has already been included, a .so naming it is ignored and a .nx
naming that file ends execution.

Note: deroff is not a complete troff interpreter, so it can be confused by subtle
constructs. Most errors result in too much rather than too little output.

The -ml flag does not handle nested lists correctly.

-i Suppresses the processing of included files.

-1 Suppresses the processing of included files whose names begin with [usr/lib, such
as macro files in /usr/lib/tmac.

-mm Ignores MM macros in text so that only running text is output (no text from
macro lines is included).

-ml Ignores MM macros in text (-mm) and also deletes MM list structures.

-ms Ignores MS macros in text.

Commands 239



deroff

-w Makes the output a word list, with one word per line and all other characters
deleted. In text, a word is any string that contains at least two letters and is
composed of letters, digits, ampersands (&), and apostrophes (). In a macro call, a
word is a string that begins with at least two letters and contains a total of at
least three letters. Delimiters are any characters other than letters, digits,
apostrophes, and ampersands. Trailing apostrophes and ampersands are removed
from words.

Related Information

The following commands: “eqn, neqn, checkeq” on page 300, “nroff” on page 525, “tbl”
on page 739, and “troff” on page 526.

240 Commands Reference



devices

devices

Purpose

Adds, deletes, changes, and displays device information.

Syntax

devices —i
0OL805306

Description

Files

The devices command lets you add, delete, change, or examine information about devices
on the system. To use devices you must be a member of the system group or have
superuser authority.

The devices command is an interactive, menu-driven program. For information on how to
use it, see Installing and Customizing the AIX Operating System.

/dev Directory.
[etc/filesystems

[ete/predefined

|etc/master

[etc/system

[etc/ports

[ete/qconfig

[tmp/CONFIGREPORT

[etc/ddi Directory.

Related Information

The discussion of devices in Installing and Customizing the AIX Operating System.

Commands 241



TNL SN20-9861 (26 June 1987) to SC23-0790-0
devnm

devnm

Purpose

Names a device.

Syntax
R M
OL805114
Description

The devnm command reads path, identifies the special file associated with the mounted

file system where path resides, and writes the special file name to standard output. Each
path must be a full path name.

The most common use of the devnm command is by /etc/rec to construct a mount table
entry for the root device.

Note: This command is for local file systems only.
Examples

1. To identify the device on which a file resides:
devnm /disketteO/bob/textfile

This displays the name of the special device file on which

/disketteO/bob/textfile resides. If a diskette is mounted as /diskette0, then
devnm displays:

fd0 /disketteO/bob/textfile
rfd0 /disketteO/bob/textfile

This means that /diskette0/bob/textfile resides on the diskette drive /dev/fd0.
2. To identify the device on which a file system resides:

devnm /

This displays the name of the device on which the root file system (/) resides. The
following list appears on the screen:

hdo /

242 Commands Reference



devnm

This means that / resides on /dev/hd0.

Files

/dev Directory.
[ete/mnttab

Related Information

The following commands: “rc¢” on page 594 and “setmnt” on page 635.

Commands 243



df
df

Purpose

Reports number of available disk blocks.

Syntax

df —<
-s filesystem’

' The default action is to provide information for each file
system in /etc/filesystems with the attribute free=true.

0OL805052

Description

The df command writes to standard output information about total space and available
space on the specified file systems. filesystem can be the name of the device on which the
file system resides or the directory on which it is mounted. If you do not specify filesystem,
df uses each file system in /etc/filesystems that has the attribute free=true.

Normally, df uses free counts maintained in the superblock. Under certain exceptional
circumstances, these counts may be in error.

If a file system is being actively modified at the instant df is run, the free count may be
inaccurate.

Flag

-s  Checks for count errors by forcing df to fully search the free lists to verify the counts.
The df command requires considerably more processing time when the -s flag is
specified.

244 Commands Reference



df

Examples

1. To list information about all default file systems:
df

If your system is configured so that the /, /usr, /u, and /tmp directories reside in
separate file systems, the output from the df command looks something like this:

Device Mounted on total free used ifree used
/dev/hd0 / 19368 9976  48% 4714 5%
/dev/hdl Jusr 24212 4808 80% 5031 19%
/dev/hd2 Ju 9744 9352 4% 1900 49
/dev/hd5 /tmp 3868 3856 0% 986 0%

2. To list information about the file system on a diskette:

df /dev/fd0

3. To list information about the file system normally mounted as /diskette0:

df /disketteO
Files
Jetc/filesystems
Related Information

The following command: “fsck, dfsck” on page 333.
The filesystem file in AIX Operating System Technical Reference.
The discussion of df in Managing the AIX Operating System.

Commands

245



diff
diff

Purpose

Compares text files.

Syntax
diff —<_ ne. H >— filel — file2 —i
f -b
—h
0L805046
Description

The diff command compares filel and file2 and writes to standard output information about
what changes must be made to bring them into agreement. If you specify a - (minus) for
filel or file2, diff reads standard input. If filel is a directory, then diff uses a file in that
directory with the name file2. If file2 is a directory, then diff uses a file in that directory
with the name filel.

The normal output contains lines of these forms:

Lines Affected in filel Action | Lines Affected in file2
numl a num2[,num3]
numlf,num?2] d num3

numl[,num?] c numd3[,num4]

These lines resemble ed subcommands to convert filel into file2. The numbers before the
action letters pertain to filel; those after pertain to file2. Thus, by exchanging a for d and
reading backward, you can also tell how to convert file2 into filel. As in ed, identical
pairs (where numl = num?) are abbreviated as a single number.

Following each of these lines, diff displays all lines affected in the first file preceded by a
<, then all lines affected in the second file preceded by a >.

Except in rare circumstances, diff finds a smallest sufficient set of file differences. An exit
value of 0 indicates no differences, 1 indicates differences found, and 2 indicates an error.

Note: Editing scripts produced by the -e or -f flags cannot create lines consisting of a
single period (.).

246 Commands Reference



diff

Flags

-b  Ignores trailing spaces and tab characters and considers other strings of blanks to
compare as equal.

-e  Produces output in a form suitable for use with the ed command to convert filel to
file2.

-f Produces output in a form not suitable for use with ed, showing the modifications
necessary to convert filel to file2 in the reverse order of that produced under the -e
flag.

-h  Performs a faster comparison. This flag only works when the changed sections are
short and well separated, but it does work on files of any length. The -e and -f flags
are not available when you use the -h flag.

Examples

1. To compare two files:
diff chapl.bak chapl
This displays the differences between the files chapl.bak and chapl.
2. To compare two files, ignoring differences in the amount of white space:
diff -b prog.c.bak prog.c
If two lines differ only in the number of blanks and tabs between words, then diff
considers them to be the same.

3. To create a file containing commands that ed can use to reconstruct one file from
another:

diff -e chap2 chap2.0ld >new.to.old.ed

This creates a file named new.to0.01d.ed that contains the ed commands to change
chap?2 back into the version of the text found in chap2.01d. In most cases,
new.to.old.ed is a much smaller file than chap2.01d. You can save disk space by
deleting chap2.01d, and you can reconstruct it at any time by entering:

(cat new.to.old.ed ; echo '1,%p') { ed - chap2 >chap2.0ld

The commands in parentheses add 1, $p to the end of the editing commands sent to ed.
The 1, $p causes ed to write the file to standard output after editing it. This modified

command sequence is then piped to ed (! ed), and the editor reads it as standard input.
The - flag causes ed not to display the file size and other extra information since it

would be mixed with the text of chap2.01d. See page 654 for details about grouping
commands with parentheses.

Commands 247



diff

Files

[tmp/d???7?? Temporary files.
[usr/lib/diffh For the -h flag.

Related Information

The following commands: “bdiff” on page 88 “cmp” on page 138, “comm” on page 144,
“ed” on page 280, and “sdiff” on page 627.

248 Commands Reference



diff3

diff3

Purpose

Compares three files.

Syntax

diff3 filel — file2 — file3 —i

OL805053

Description

The diff3 command reads three versions of a file and writes to standard output the ranges
of text that differ, flagged with the following codes:

All three files differ.
filel differs.
file2 differs.
file3 differs.

The type of change needed to convert a given range of a given file to match another file is
indicated in one of these two ways in the output:

nnu
o

[
W DO =

file : nl a Text is to be added after line number nl in file, where file is 1, 2, or
3.
file : nl[,ng] ¢ Text in the range line nl to line n2 is to be changed. If n1 = n2,

the range may be abbreviated to nl.

The original contents of the range follows immediately after a ¢ indication. When the
contents of two files are identical, diff3 does not show the contents of the lower-numbered
file, although it shows the location of the identical lines for each.

Note: Editing scripts produced by the -e flag cannot create lines consisting only of
a single period (.).

The diff3 command does not work on files longer than 64K bytes.

Commands 249



diff3

Flags
-e
-3
-3
Example

Creates an edit script for use with the ed command to incorporate into filel all
changes between file2 and file3 (that is, the changes that normally would be flagged
and = == =3).

Produces an edit script to incorporate only changes flagged = == =,

Produces an edit script to incorporate only changes flagged = = = =3.

To list the differences among three files:

diff3 fruit.a

fruit.b fruit.c
If fruit.a, fruit.b, and fruit.c contain the following data:

fruit.a fruit.b fruit.c
banana apple grape
grape banana grapefruit
kiwi grapefruit | kiwi

Temon kiwi lemon
mango orange mango
orange peach orange
peach pear peach

pare pear

then the output from diff3 shows the differences between these files as follows. (The
comments on the right do not appear in the output.)

e All three files are different.
- Lines 1 and 2 of the first file, fruit.a

1:1
banana
grape

2:1,3c

apple
banana

grapefruit

3:1,2c
grape

grapefruit

250 Commands Reference

- Lines 1 through 3 of fruit.b

- Lines 1 and 2 of fruit.c

® The second file, fruit.b, is different.




diff3

1:4,5c - Lines 4 and 5 are the same in fruit.a and fruit.c.
2:4a - To make fruit.b look the same, add text after line 4.
3:4,5c

Temon

=1 e The first file, fruit. a, is different.

2:7c - Line 7 of fruit.b and line 8 of fruit.c are the same

Files

[tmp/d3*
Jusr/lib/diff3prog

Related Information

The following command: “diff” on page 246.

Commands 251



diffmk

diffmk

Purpose

Marks differences between files.

Syntax
diffmk: filet — file2 ﬂ
file3
OL805057
Description

Flags

The diffmk command compares filel and file2 and creates a third file that includes change
mark commands for the nroff and troff commands. filel and file2 are the old and new
versions of the file. diffmk writes the newly created file to file3, if specified, or to
standard output. This file contains the lines of file2 with formatter change mark (.mc)
requests inserted as appropriate. When file3 is formatted, the changed or inserted text is
marked by a | (vertical bar) at the right margin of each line. An * (asterisk) in the margin
indicates that a line. was deleted.

If the environment parameter DIFFMARK is defined, it names a command string that
diffmk uses to compare the files. (Normally, diffmk uses the diff command.) For

example, you might set DIFFMARK to diff -h in order to better handle extremely large
files.

-abX Uses X to mark where added lines begin.
-aeX Uses X to mark where added lines end.
-b Ignores differences that are only changes in tabs or spaces on a line.

-cbX Uses X to mark where changed lines begin.

252 Commands Reference



diffmk

-ceX Uses X to mark where changed lines end.
-dbX Uses X to mark where deleted lines begin.
-deX Uses X to mark where deleted lines end.

Examples

1.

To mark the differences between two versions of a text file:
diffmk chapl.old chapl > chapl.nroff

This produces a copy of chapl containing nroff/troff change mark commands to
identify text that has been added to, changed in, or deleted from chapl.old. This
copy is saved in the file chapl.nroff.

To mark differences with non-nroff/troff messages:
diffmk -ab'>>New:' -ae'<<End New' chapl.old chapl >chapl.nroff

This causes diffmk to write >>New: on the line before a section of new lines that have
been added to chapl and to write <<End New on the line following the added lines.
Changes and deletions still generate nroff/troff commands to put a | or * in the
margin.

To use different nroff/troff marking commands and ignore changes in white space:
diffmk -b -cb'.mc %' <chapl.old chapl > chapl.nroff

This imbeds commands that mark changes with %, additions with |, and deletions with
*_ It does not mark changes that only involve a different number of spaces or tabs
between words (-b).

Related Information

The following commands: “diff” on page 246, “nroff” on page 525, and “troff” on
page 526.

Commands 253



dircmp

dircmp

Purpose

Compares two directories and the contents of their common files.

Syntax

dircmp

Description

directoryl — directory2 —i

OL805004

The direcmp command reads directoryl and directory2 and writes information about their
contents to standard output. First, dircmp compares the file names in each directory.
When the same file name appears in both, diremp compares the contents of both files.

In the output, dircmp lists the files unique to each directory. It then lists the files with
identical names in both directories, but with different contents. With no flag, it also lists
files that have identical contents as well as identical names in both directories.

Flags

-d Displays for each common file name both versions of the differing file lines. The
display format is the same as that of “diff” on page 246.

-s  Does not list the names of identical files.

Examples

1. To summarize the differences between the files in two directories:

dircmp proj.verl proj.ver2

This displays a summary of the differences between the directories proj.verl and
proj.ver2. The summary lists separately the files found only in one directory or the
other, and those found in both. If a file is found in both directories, dircmp notes
whether or not the two copies are identical.

254 Commands Reference



dircmp

2. To show the details of the differences between files:
dircmp -d -s proj.verl proj.ver2

The -s flag suppresses information about identical files. The -d flag displays a diff
listing for each of the differing files found in both directories.

Related Information

The following commands: “cmp” on page 138 and “diff” on page 246.

Commands 255



TNL SN20-9861 (26 June 1987) to SC23-0790-0
diskusg

diskusg

Purpose

Generates disk accounting data by user ID.

Syntax

-p/etc/passwd
diskusg —>—< one_of
—pfile —ufile file
-v

0OL805402

Description

Flags

The diskusg command generates intermediate disk accounting information from data in
files or from standard input if you do not specify any files. diskusg writes lines to
standard output, one per user, in the following format:

uid login #blocks

where:

uid Is the numerical user ID of the user

login Is the login name of the user; and

#blocks Is the total number of disk blocks allocated to this user.

The diskusg command normally reads only the i-nodes of file systems for disk accounting.
In this case, files are the special file names of these devices.

Note: This command is for local devices only.

-1 fnmlist Ignores the data on those file systems with a file system name in famlist.
famlist is a list of file system names separated by commas or enclosed within
quotation marks. diskusg compares each name in this list with the file
system name stored in the volume ID.

-p file Uses file as the name of the password file to generate login names.
/etc/passwd is used by default.

-s Combines all lines for a single user into a single line. (The input date is
already in diskusg output format.)

256 Commands Reference



diskusg

-u file Writes records to file of files that are charged to no one. Records consist of
the special file name, the i-node number, and the user ID.

-v Writes a list to standard error of all files that are charged to no one.

The output of diskusg is normally the input to acctdisk, which generates total accounting
records that can be merged with other accounting records. diskusg is normally run in
dodisk (see “acet/*” on page 31).

Examples

Files

The following will generate daily disk accounting information:
for i in /dev/hd0 /dev/hdl /dev/hd2 /dev/hd3
do
diskusg $i > dtmp.'basename $i' &
done
wait
diskusg -s dtmp.* 1§ sort +0On +1 | acctdisk > dacct

Jete/passwd Used for user ID to login name conversions.

Related Information

The following commands: “acct/*” on page 31, “acctcms” on page 36, “acctcom” on
page 38, “acctcon” on page 42, “acctmerg” on page 46, “acctprc” on page 48, “fwtmp”
on page 345, and “runacct” on page 606.

The acct system call and the acct and utmp files in AIX Operating System Technical
Reference.

The discussion of accounting in Managing the AIX Operating System.

Commands 257



display

display
Purpose
Selects the physical display that an existing or new virtual terminal uses and sets colors
and fonts.
Syntax
di
T AT A T
—d —f
display color file
®
.. v ))‘L ;
addr — size font
®
OL805442
Description

The display command changes the physical display assigned to the current virtual
terminal or assigns a default display to be used when you open a virtual terminal. It also
sets the foreground and background colors, the active color palette, and the active and
alternate fonts on the current display. The display parameter can be one of the following

names:

pcmono PC Monochrome Adapter and Display

egamono Enhanced Graphics Adapter and PC Monochrome Display
egacol Enhanced Graphics Adapter and Display

advmono Advanced Monochrome Graphics Adapter and Display
advcol Advanced Color Graphics Adapter and Display

extmono Extended Monochrome Graphics Adapter and Display

megapel Megapel Display Adapter and IBM 5081 Display Models 16 and 19.

258 Commands Reference



display

Flags

You can request only those displays that are actually installed on the system. If you have
more than four, only four will be displayed on the -¢ and -d menus. Before display makes
any changes, it checks all arguments for errors and, if it encounters one, displays a list of
valid arguments and exits.

Note: You must insure that the TERM shell variable contains the proper value for
whatever the current display is. See“termdef” on page 748 and the terminfo file in AIX
Operating System Technical Reference for a list of these values.

-b [color]

-¢ [display]

-d [display]

-f [color]

-m [addr size]

Selects the background color. The color parameter is an integer from
1 to 8 for the Enhanced Graphics Display and from 1 to 16 for other
color graphics displays. These values correspond to the first eight or
sixteen entries in the active color palette (see the -p flag). For
example, -b 5 selects the fifth entry. If you do not specify a number,
display lists the palette of active background colors and prompts you
to select a number for the new background color:.

Changes the display used by the current virtual terminal.

If you do not specify a display, you are given a menu of available
options. This menu consists of a numbered list of display names and
descriptions. The display number reflects the number of physical
displays installed and their relative positions in the Real Screen
Table. The current default is always display number 1 in this list.
Changing the default alters the display number associated with each
physical display. If the virtual terminal does not know the
display/adapter combination, the Name column will contain the words

list asks you to enter the new display number for the current or
default display setting. Whenever you change the current display, the
screen of that display clears.

Changes the default display used when a virtual terminal is opened. If
you do not specify a display, you are given a menu of available options
(see the -c flag).

Selects the foreground color. The color parameter is an integer from 1
to 16. These values correspond to the first sixteen entries in the
active color palette (see the -p flag). If you do not specify a color
number, display lists the palette of active foreground colors and
prompts you to select a number for the new foreground color.

Changes the DMA pinned page at the specified starting address to size
256K blocks. If you do not specify an address and a size, the current
starting address and size is displayed.

Commands 259



display

-p [file]

-t [font[,font] .. .]

Changes the active color palette. The optional file parameter is the
full path name to a file that contains a list of colors for the current
display, one color per line, where each color is the decimal
representation of the 32 bit color value. The color palette file can also
contain blank lines and comment lines (a comment line must begin
with a * character in column one). Each supported display has a
corresponding color file which contains its default active color palette.
The name of this file is /etc/vtm/pal.name where name is the display
name described on page 258. This is the default value for the file
parameter.

Selects the primary and active alternate fonts for the current virtual
terminal on the current display. The first font named in the optional
list following -t will be the primary font. The remaining fonts will be
alternates, in the order listed, for the active font table. If you do not
specify eight font IDs, the first font will be used to fill out in the
remaining entries in the active font table.

Note: All of the fonts in the list must be of the same size.

Some applications that use the terminfo file expect the italic
font to be the first alternate and the bold font to be the second
alternate fonts (see the terminfo file in AIX Operating System
Technical Reference for more information).

If you do not specify any fonts, all of the fonts available for the
current display will be listed, and you will be prompted first for the
desired primary font ID and then for alternate font IDs until you enter
F. As you enter alternate fonts, the display command checks that
they are the same size as the new primary font. If you enter fewer
than eight fonts, the primary font will be repeated in the remaining
entries of the active font table.

You can specify combinations of the same flags on a single command line. display
processes -¢ and -d flags first. If you specify -¢, you will see the message Changing to

current display.

.., and the current display will be changed. Any menu interface for

the color or font parameters will be displayed there. A -p flag will be processed next. The
screen will be immediately redrawn with the colors from the new color palette. Then any
foreground, background, or font flags will be processed.

Examples

1. To change the current virtual terminal display:

display -c egamono

This changes the display to the Enhanced Graphics Adapter and PC Monochrome

Display.

260 Commands Reference



display

2. To make the Advanced Color Graphics Display the default virtual terminal display:
display -d advcol

3. To change both the current and the default displays:
display -c pcmono -d egacol

This makes the PC Monochrome Adapter and Display the current display and makes
the Enhanced Graphics Adapter and Display the default display.

4. To change the active color palette for the current display:
display -p /u/new/palette

Related Information

The following commands: “open” on page 541 and “termdef” on page 748.
The terminfo file in AIX Operating System Technical Reference.

“Using Display Station Features” in IBM RT PC Using the AIX Operating System and
“Managing Display Station Features” in IBM RT PC Managing the AIX Operating System.

The default color palettes in Virtual Resource Manager Technical Reference.

Commands 261



dos

dos
Purpose
Starts DOS Services.
Syntax
-a
dos -n
’ -V file
—-a { one of >—
—c cmd \_ —v
—x
OL805330
Description

The dos command starts a DOS emulation environment. It interprets DOS commands and
runs programs that can use the routines that simulate DOS runtime behavior. (For more
information on these routines and this environment, see AIX Operating System

DOS Services Reference and Installing and Customizing the AIX Operating System.)

When you enter dos, a DOS environment file is created from the process environment.

(For details on how this is done, see dosinit in AIX Operating System Technical Reference.)
Upon invocation, dos sets the current drive to A: or the first valid drive. The environment
variable DOSDISK can be set to define the default current drive (B:, C:, D, and so on).

The file parameter specifies a dos batch file to be run. file must have the extension .bat or
.BAT.

If the current DOS Services directory contains the batch file autoexec.bat or
AUTOEXEC.BAT, then DOS Services initially reads and runs commands from this file.

DOS commands are either built in (to the dos command itself), or they are external.
External commands reside in the /usr/dos/bin directory. Normally, the search order for
commands that you enter is as follows:

e The directory /usr/dos/bin

262 Commands Reference



dos

e The working directory
e Each directory in the dos path.

When you enter a command, dos searches each directory for a file with a name composed
of the command name and either the extension .BAT, the extension .bat, or no extension.
If the file has the extension .BAT or .bat, it runs as a batch file. Otherwise, it runs as an
AIX program. If it is a AIX program, it can be either a compiled program or a shell file. In
either case you must have execute access to it.

The dos command supports two types of file systems: AIX file systems and DOS file
systems. Each dos minidisk can contain either an AIX-formatted file system or a
DOS-formatted file system. However, diskette drives (such as /dev/fd0) may contain only
DOS-formatted file systems, unless the device is mounted as an AIX file system before you
invoke dos.

Warning: Only one user or process at a time can access a dos file system.
If a dos file system resides on a minidisk, two or more users may attempt
to access the minidisk at the same time. Because dos has no way to warn
you that another process is using a minidisk, you should allocate minidisks
containing dos file systems on a per-user basis.

If a coprocessor on the system accesses a dos-formatted minidisk at the
same time as an RT PC process, there is no conflict because only the first
process has read/write privileges. Subsequent opens at the device level are
limited to read-only access.

There are different restrictions for file names on DOS drives and AIX drives. For
DOS Services drives:

o File names cannot be longer than 12 characters.

o The name is always stored in uppercase.

e All files in the directory must have unique names.
e There can be only one period in a file name.

For AIX file systems:

File names cannot be longer than 14 characters.

Names may contain either uppercase or lowercase letters.

Two files in the same directory can have the same name if the letter case is different.
There can be more than one period in a file name.

e All files in the directory must have unique names.

On AIX drives, file names that begin with a period specify hidden files. On DOS Services
drives, hidden files have a bit set in the attribute byte of the file directory.

There are differences between AIX and DOS Services file formats. AIX ASCII files and
DOS Services ASCII files are similar and can be converted from one format to the other.
Two new commands, FILETYPE and CONVERT, are available for detecting and changing
a file format.

Commands 263



dos

DOS Services Commands and Programs

There are several differences between the set of supported DOS Services commands and
DOS commands.

Unsupported DOS Commands and Programs

You can use all of the standard DOS commands except BREAK, CTTY, EDLIN,
EXE2BIN, GRAPHICS, and SYS.

Modified DOS Commands

The following DOS Services commands behave differently than the corresponding standard
DOS commands:

backup
chdir

date
dir

format

label

mode

print

set

time

The /M parameter is not valid for DOS Services file systems.

Unlike DOS, DOS Services may not allow you to change to the highest
directory in the file system.

This command lets only superuser change the date.

Does not list file-name extensions in a separate column when executed on an
AIX drive.

The /B is not supported. Two additional flags, /U and /H are supported. Use
the /U flag to format a AIX diskette. Use the /H flag to format a fixed disk to
contain DOS Services file systems in a single partition.

Note: The format command makes use of the mksf command, which in turn
uses the /ete/filesystems file. If you modify this file, it will affect the
format command.

On an AIX-formatted drive, the label is written to a file called LABEL.VOL.
Reading a label is accomplished by reading this file. Changing a label
modifies the contents of this file.

Note: The command del *.* deletes the volume label.
Only option 3 (for an asynchronous communications adapter) is supported.

The DOS Services version does not ask you which device to store the print
queue on. This information is set up in your user profile.

The /B, D, M, /S, /Q, and /U configuration flags are not supported.

A /U flag lets you display the AIX environment as it is inherited by the dos
command. You can change the environment variables internal to dos. When
you exit from dos, the environment variables remain unchanged.

Allows only the superuser to change the time.

264 Commands Reference



dos

Additional Commands
In addition to DOS commands, the following commands are available:

! (The Escape command.) Runs the remainder of the command line as an AIX
shell command.

COMMAND The new flags which have been added to dos also apply to this command.

CONVERT Converts a DOS format ASCII file to a AIX format ASCII file or a AIX
format ASCII file to a DOS format ASCII file.

ed Starts the line editor.
EXIT Ends DOS Services. You can also use END OF FILE (Ctrl-D).

FILETYPE Attempts to determine the format (AIX or DOS) and contents of the
specified file.

shutdown Provides for an orderly exit from the system.
Flags
-a Does not run the AUTOEXEC.BAT file.
-¢ ¢cmd Runs the specified command.
-n Reads commands but does not run them.
-v Displays the commands and their flags as they are read.
-x Displays the commands and their flags as they are run.
Files
[usr/dos/bin/* DOS Services external commands.
AUTOEXEC.BAT

autoexec.bat

Related Information
The following commands: “dosdel” on page 266, “dosread” on page 269 and “doswrite”
on page 271.
The dosinit subroutine in AIX Operating System Technical Reference.

The discussion of dos in Using AIX Operating System DOS Services and AIX Operating
System DOS Services Reference.

Commands 265



dosdel
dosdel

Purpose

Deletes DOS files.

Syntax

dosdel

—-v
—Ddevice

0L805108
Description
The dosdel command deletes the DOS file specified by file. Use the -v flag to obtain

format information about the disk.

File-naming conventions are those of DOS, with one exception. doswrite replaces the \
(backslash) character used to separate components of a DOS path name with the / (slash)
because the backslash can have special meaning to AIX. dosdel converts lowercase
characters in the filel name to uppercase before it checks the disk. Because all file names
are assumed to be full (not relative) path names, you need not add the initial / (slash).

Flags

-D device Specifies a device or file system to use as the DOS disk. If you do not specify
this flag the default device is /dev/fd0.

-v Writes format information about the disk. Use primarily to verify the identify
of a disk or file system as a DOS disk.

Related Information

The following commands: “dos” on page 262, “dosdir” on page 267, “dosread” on
page 269, and “doswrite” on page 271.

The pcdos subroutine in AIX Operating System Technical Reference.

266 Commands Reference



dosdir

dosdir

Purpose

Lists the directory for DOS files.

Syntax

-D/dev/fd0
dosdir 4< >_>
- -D device

file
directory

OL805358

Description

Flags

The dosdir command displays information about the specified DOS file or directory (the
current directory by default). If you specify a directory without also specifying the -d flag,
dosdir displays information about the files in that directory.

File-naming conventions are those of DOS, with one exception. dosdir replaces the \
(backslash) character used to separate components of a DOS path name with a / (slash)
because the backslash can have special meaning to the AIX Operating System. dosdir
converts lowercase characters in the file or directory name to uppercase before it checks
the disk. Because all file names are assumed to be full (not relative) path names, you need
not add the initial / (slash).

-a Writes information about all files. This includes hidden and system files as
well as the . (dot) and .. (dot dot) files.
-d Treats file as a file, even if it is a directory. If a directory is specified,

information about the directory is listed rather than information about the
files it contains.

Commands 267



dosdir

-D [device] Specifies a device or file system to use as the DOS disk. If you do not specify
this flag the default device is /dev/fd0.

-e Uses the -1 flag to write the list of clusters allocated to the file.

-1 Produces a long list that includes the creation date, size in bytes, and
attributes. The size of a subdirectory is specified as 0 bytes. The attributes
have the following meanings:

A Archive - the file has not been backed up since it was last modified.

D  Directory - the file is a subdirectory, and is not included in the normal
DOS directory search.

H Hidden - the file is not included in the normal DOS directory search.

R  Read-only - the file cannot be modified.

S  System - the file is a system file, and is not included in the normal DOS
directory search.

-t Lists the entire directory tree starting at the named directory.

-v Writes information about the format of the disk.
Related Information

The following commands: “dosdel” on page 266, “dosread” on page 269, and “doswrite”
on page 271.

The pedos subroutine in AIX Operating System Technical Reference.

268 Commands Reference



dosread

dosread

Purpose

Copies a DOS file.

Syntax
-D/dev/fd0
dosread }— filet —< >__¢
—Ddevice file2
OL805111
Description

The dosread command copies the specified DOS filel to standard output or to the specified
AIX file2 (by default the root directory). Unless otherwise specified, dosread copies as
many bytes as are specified in the directory entry for filel. This means, in particular, that
copying directories does not work, since directories by convention have a record size of 0.

File-naming conventions are those of DOS, with one exception. dosread replaces the \
(backslash) character used to separate components of a DOS path name with a / (slash)
because the backslash can have special meaning to the AIX Operating System. dosread
converts lowercase characters in the filel name to uppercase before it checks the disk.
Because all file names are assumed to be full (not relative) path names, you need not add
the initial / (slash).

Note: Wild card characters (* and ?) are not treated in a special way by this
command (although they are by the shell). If, for example, you do not specify a
file-name extension, the file name is matched as if you had specified a blank
extension.

This command must be named dosread.
Flags

-a Replaces the sequence CRLF (carriage return-line feed) with NL (new-line
character) and interprets a Ctrl-Z (ASCII SUB) as the end-of-file character.

Commands 269



dosread

-D device Specifies the name of the DOS device or file system. The default device is
/dev/fdo.

Note: This device must have the DOS-disk format.

-v Writes information to the standard output about the format of the disk. Use
this flag to verify that a device or file system is a DOS disk.

Examples

1. To copy a text file from a DOS diskette to the AIX file system:
dosread -a chapl.doc chapl

This copies the DOS text file \CHAP1.DOC on /dev/fd0 to the AIX file chapl in the
current directory.

2. To copy a nontext file from a fixed-disk DOS file system to the AIX file system:
dosread -D/dev/hdl /survey/test.dta /u/fran/testdata

This copies the DOS data file \SURVEY\TEST.DTA on /dev/hdl to the AIX file
/u/fran/testdata.

Files
/dev/{fd0
Related Information

The following commands: “dosdel” on page 266, “dosdir” on page 267, and “doswrite” on
page 271.

The pedos subroutine in AIX Operating System Technical Reference.

270 Commands Reference



doswrite

doswrite

Purpose

Copies AIX files to DOS files.

Syntax

-D/dev/fd0
doswrite 3— filet —file2 —i
-D filesystem

OL805112
Description

The doswrite command copies the specified AIX filel to the specified DOS file2. If file2 is
a multi-component name (that is, if it contains /), each intervening component must exist
as a directory and the last component (the named file), must not exist.

File-naming conventions are those of DOS, with one exception. doswrite replaces the \
(backslash) character used to separate components of a DOS path name with the / (slash)
because the backslash can have special meaning to AIX. doswrite converts lowercase
characters in the filel name to uppercase before it checks the disk. Because all file names
are assumed to be full (not relative) path names, you need not add the initial / (slash).

Note: Wild card characters (* and ?) are not treated in a special way by this
command (although they are by the shell). If, for example, you do not specify a
file-name extension, the file name is matched as if you had specified a blank
extension.

This command must be named doswrite.
Flags

-a Replaces NL (new-line character) characters with the sequence CR-LF
(carriage return-linefeed). A Ctrl-Z is added to the output at end of file.

-D filesystem Specifies the name of the DOS device or file system. The default device is
/dev/{d0.

Note: This device must have the DOS-disk format.

Commands 271



doswrite

-v Writes information to the standard output about the format of the disk.
Use this flag to verify that a device or file system is a DOS disk.

Examples
1. To copy a text file from the AIX file system to a DOS diskette:
doswrite =-a chapl chapl.doc

This copies the AIX file chapl in the current directory to the DOS text file
\CHAP1.DOC on /dev/fdo0.

2. To copy a nontext file from the AIX file system to a fixed-disk DOS file system:
doswrite -D/dev/hdl /u/fran/testdata /survey/test.dta

This copies the AIX data file /u/fran/testdata to the DOS file \SURVEY\TEST.DTA
on /dev/hdl.

Files
[dev/fd0

Related Information

The following commands: “dosdir” on page 267, “dosread” on page 269, and “dosdel” on
page 266.

The pcdos subroutine in AIX Operating System Technical Reference.

272 Commands Reference



dsipc

TNL SN20-9861 (26 June 1987) to SC23-0790-0
dsipc

| Purpose

Installs the Interprocess- Communication key mapping in the kernel.

|Syntax

dsipc —
OL805461

| Description

The dsipc command replaces all IPC key mapping currently in the kernel with new
mapping from the profile data base. The dsipe command is usually called, at system
startup time, by /ete/rc.ds to update the Distributed Services kernel. To use dsipec
command from the command line, you must be a member of the system group or have
superuser authority (see “su” on page 724).

iRelated Information

“Using Distributed Services” in Managing the AIX Operating System.

Commands 272.1



TNL SN20-9861 (26 June 1987) to SC23-0790-0
dsldxprof

dsldxprof

| Purpose

| Loads translate information into the UID/GID translate profiles.

|Syntax

dsldxprof

OL805460

| Description

The dsldxprof command loads translate information from a file into the UID/GID translate
profiles. Each line in the file contains a row of translate information in the following
format:

Usr/Grp-name UG Local-id Outbound-id Inbound_-id Originating_node

This is the same format as the translate information from the Network Users/Groups
table (for information on Network Users/Groups, see Managing the AIX Operating
System). You must specify the U/G, Local-id, and either the Inbound—-id or Outbound_id
fields. If you specify the Inbound—id field the Originating—node field must also be
specified. A - (hyphen) is placed in unused fields as a placeholder.

profiles. Translate rows are rejected due to improper syntax or incorrect values, or they
may conflict with translate rows already in the profiles. A translate row is in conflict if
there is an existing row in the profiles with a matching U/G, Local-id, Inbound_id, and
Originating—node, or if there is an existing row in the profiles with a matching U/G,
Local-id, and Outbound—id, or both. If there is conflict, you are prompted to replace or
reject the conflicting row. Rejected rows are written to standard error along with the
information on why they are rejected.

To delete a translate row from the profiles, precede an identical row in the file with ##.

To use dsldxprof command, you must be a member of the system group or have superuser

!
I
|
I
|
|
|
I
|
| dsldxprof reads a row of data from the file, validates the data, and loads the data into
|
l
|
|
|
1
|
l
l
[ authority (see “su” on page 724).

272.2 Commands Reference



TNL SN20-9861 (26 June 1987) to SC23-0790-0
dsldxprof

| -a Places all rows that are in conflict into the profiles without prompting.
| -f filename  Reads translate information from filename.
! -n nodename Ubpdates translate profiles on the remote node nodename.

| -r Rejects all conflicting rows without prompting.

|Related Information

I “Using Distributed Services” in Managing the AIX Operating System.

Commands 272.3



TNL SN20-9861 (26 June 1987) to SC23-0790-0
dsstate

|dsstate

| Purpose

| Sets the state of the Distributed Services kernel logic.

|Syntax

dssfafe{ one of one of one of
A A
one of
—p number

| Description

OL805462

| The dsstate command changes the state of the Distributed Services kernel logic, including
| the number of kernel processes allocated for Distributed Services, whether incoming and

| outgoing remote requests are allowed, and where temporary storage takes place. Only

| members of the system group or users operating with superuser authority can use dsstate

| to change the state of the Distributed Services kernel logic (see “su” on page 724). Other

| users can use dsstate with no flags to write to the standard output the current state of the
l Distributed Services kernel logic.

| Flags

l -cs Starts client sync, which forces all files for which this node is the client to be

| written directly to the server, preventing caching (temporary storage) of the

| file contents at the client. Starting client sync often affects the performance of
| file operations, and is used primarily for certain system startup and shutdown

| routines.

|

-ce Ends client sync and allows some data to be stored at the local node.

272.4 Commands Reference



I
|
I
I
I
I
I
|
|
I
|
I
I
|
|
I
|
I
I

TNL SN20-9861 (26 June 1987) to SC23-0790-0
dsstate

-aa

-8 S

-s e

-s b

-sa
-k

-p number

Breaks all connections with remote nodes and blocks new requests for remote
file services.

Allows requests from this client node for remote file services.

Starts server sync, which forces all files for which this node is the server to be
written directly to the server, preventing caching (temporary storage) of the
file contents at the client node. Starting server sync often affects the
performance of file operations, and is used primarily for certain system startup
and shutdown routines.

Ends server sync and allows some data to be stored at the client node.

Blocks all requests for file services from other nodes, including both new
requests and requests for files already in use.

Allows this server to accept requests for file services from other nodes.
Starts the Distributed Services kernel processes.

Sets the number of active Distributed Services kernel processes to number. If
number is greater than the number of kernel processes allocated for
Distributed Services, then those that are available are activated. If number is
0 or a negative value, the number of kernel processes is not changed.

By adjusting the number of active Distributed Services kernel processes, the
rate at which services are provided to remote nodes ean be varied. Lowering
the number of active Distributed Services kernel processes lowers remote use
of this node’s processor, leaving more system resources for local use.

Note: The Distributed Services kernel processes must have been started with
a -k flag on either this dsstate command or an earlier dsstate command.

I Related Information

|
I

The dsstate system call in AIX Operating System Technical Reference.

“Using Distributed Services” in Managing the AIX Operating System.

Commands 272.5



TNL SN20-9861 (26 June 1987) to SC23-0790-0
dsxlate

dsxlate

i Purpose

| Installs Distributed Services UID/GID translate tables into the kernel.

| Syntax

| dsxlate —
0L805463

' Description

| The dsxlate command installs Distributed Services UID/GID translate tables. dsxlate is
! usually called, at system startup, by /ete/rec.ds to update the kernel. To use dsstate
| command from the command line, you must be a member of the system group or have
| superuser authority (see “su” on page 724).
|
|

dsxlate ensures that the Distributed Services kernel tables reflect the current profiles. All
existing Distributed Services kernel information is discarded.

i Related Information

| The following commands: “ipctable” on page 414.1, “ndtable” on page 506.1, and
| “ugtable” on page 784.

[ The loadtbl system call in AIX Operating System Technical Reference.

|

“Using Distributed Services” in Managing the AIX Operating System.

272.6 Commands Reference



du

du

Purpose

Summarizes disk usage.

Syntax

du

file
directory

OL805113
Description

The du command gives the number of blocks in all files and (recursively), directories
within each specified directory. By specifying the -a flag, you can also have du report the
number of blocks in individual files. The block count includes the indirect blocks of each
file and is in units of 512 bytes, independent of the cluster size used by the system. If you
provide no file or directory name, du uses the current directory.

Note: If you do not specify the -a flag, du does not report on any files.
If there are too many distinct linked files, du counts the excess files more than once.

Block counts are based only on file size; therefore, unallocated blocks are not
accounted for in the block counts reported.

Flags

-a Displays disk use for each file.

-1  Allocates blocks in files with multiple links evenly among the links. By default, a file
with two or more links is counted only once.

-r Indicates inaccessible files and directories.

-s Displays only the grand total (for each of the specified files or directories given).

Commands 273



du

Examples

1.

To summarize the disk usage of a directory tree and each of its subtrees:
du /u/fran

For /u/fran and each of its subdirectories, this displays the number of disk blocks
that the files in the tree beneath it contain.

To display the disk usage of each file:
du -a /u/fran

This displays the number of disk blocks contained in each file and subdirectory of
/u/fran. The number beside a directory is the disk usage of that directory tree. The
number beside a regular file is the disk usage of that file alone.

To display only the total disk usage of a directory tree:
du -rs /Ju/fran

This displays only the sum total disk usage of /u/fran and the files it contains (-$).
The -r flag tells du to display an error message if it cannot read a file or directory.

274 Commands Reference



TNL SN20-9861 (26 June 1987) to SC23-0790-0

dump
dump
Purpose
Dumps selected parts of an object file.
Syntax
dump
—~z name —{; +z num
, num
—( [p 2 )—( file
—u +t num
1= f
—t num
' Do not put a space between these items.
2Use —p only with —a, or —o .
3Do not use —v with —s or —o .
OL805404

Description

Flags

The dump command dumps selected parts of the specified file. dump accepts object files,
archive object files, and executable files (with the -x flag). It writes information in
character, hexadecimal, octal, or decimal representation, as appropriate to format the
information in a meaningful way.

You must use at least one of the following flags:

-a Dumps the archive header of each member of each specified archive.
-b Dumps the shared library key.
-c Dumps the string table.

Commands 275



dump

Dumps the contents of the data section.

Dumps the global symbols in the archive symbol table.
Dumps line number information.

Dumps each optional header.

Dumps relocation information.

Dumps the contents of the object file section.

Dumps symbol table entries.

Dumps the object module extended header from executable files. The
extended header contains the table of shared libraries that the program
uses.

The following optional flags are also available:

-b
-tnum

+tnhum

-u

-V

-zname[,num]

+znum

Does not print the headers.

Dumps only the index symbol table entry specified with num. Use -t with
the +t flag to specify a range of symbol table entries.

Dumps the symbol table entry in the range that ends with num. The range
starts at either the first symbol table entry or at the entry specified by -t.

Underline the name of the file.

Dumps the information in symbolic representation rather the numeric.
You can use this with any of the above flags except -s or -o.

Dumps line number entries for name function or a range of line number
entries that starts at the specified number. You can use a blank to replace
the comma that separates name and num if the entire argument is quoted.

Dumps all line numbers up to num.

Related Information

The following commands: “ar” on page 58, “nm” on page 521, “shlib” on page 660, and
“size” on page 665.

The a.out and ar files in AIX Operating System Technical Reference.

276 Commands Reference



dumpfmt

dumpfmt

Purpose

Formats the VRM dump file.

Syntax

/dev/fd0
dumpfmt <Q
file
—h

Description

OL805109

The dumpfmt command formats a file containing VRM dump structures. If you do not
specify a file name, the system reads data from /dev/fd0.

By default, dumpfmt is an interactive utility program. To see the list of commands
available for selecting a specific structure to format, enter a ?. To quit, enter q.

Flags

-n

-8

Batches the output and formats the entire diskette.

Includes a Dump Data Header. This header contains general information about data
on the dump diskette: the module name of the component, the data address of the
module containing the component, and the offset address within the module of the
component.

Does not display a prompt when the screen fills with data during interactive output.

Limits the output of each structure to a maximum size of 32 bytes.

Related Information

The discussion of dumpfmt in AIX Operating System Programming Tools and Interfaces.

Commands 277



echo

echo
Purpose
Writes its arguments to standard output.
Syntax
0L805115
Description
The echo command writes its arguments to standard output. strings are separated by
blanks and a new-line character follows the last siring. Use echo to produce diagnostic
messages in command files and to send data into a pipe.
The echo command recognizes the following escape conventions:
\b Display a backspace character.
\c Suppress the new-line character.
\f Display a form-feed character.
\n Display a new-line character.
\r Display a carriage return character.
\t Display a tab character.
W\ Display a backslash character.
\num Display an 8-bit character. whose ASCII value is the 1-, 2-or 3-digit octal number
num. The first digit of num must be a zero.
Examples

1. To write a message to standard output:

echo Please insert diskette

278 Commands Reference



echo

2. To display a message containing special characters:
echo "\n\m\nI'm at lunch.\nI'11 be back at 1:00."
This skips three lines and displays the message:

I'm at lunch.
I'11 be back at 1:00.

Note: You must quote the message if it contains escape sequences like \n. Otherwise,
the shell treats the \ specially. See page 641 for details about quoting.

3. To use echo with pattern-matching characters:
echo The back-up files are: *.bak

This displays the message The back-up files are: followed by the file names in the
current directory ending with .bak.

4. To add a single line of text to a file:
echo Remember to set the shell search path to $PATH. >>notes

This adds the message to the end of the file notes after the shell substitutes the value
of the shell variable PATH.

5. To write a message to the standard error output:

echo Error: file already exists. >&?2

Use this in shell procedures to write error messages. If the >&2 is omitted, then the
message is written to the standard output. For details about this type of file
redirection, see “Input and Output Redirection Using File Descriptors” on page 651.

Related Information

The following command: “sh” on page 637.

Commands 279



ed
ed

Purpose

Edits text by line.

Syntax

one of

O
red _ file

Description

01805182

The ed command is a line editing program that works on only one file at a time by copying
it into a temporary file buffer and making changes to that copy. ed does not alter the file
itself until you use the write subcommand. You can specify on the command line the file
you want to edit, or you can use the edit subcommands. If you specify a - (minus) on the
command line, ed does not display character counts with the e, r, or w subcommands,

diagnostic messages with the e or q subcommands, or the ! prompt after a 1AIX-cmd.

When ed reads a new file into the buffer, the contents of that file replaces the buffer’s
previous contents, if any.

There 1s also a restricted version of ed, the red command, for use with-the restricted shell
(see “sh” on page 637). With red, you can edit only files that reside in the current
directory, or in the /tmp directory, and you cannot use the !AIX-cmd subcommand (see
page 290).

An ed subcommand consists of zero, one, or two addresses, followed by a single-character
subcommand, possibly followed by parameters to that subcommand. These addresses
specify one or more lines in the buffer. Because every subcommand has default addresses,
you frequently do not need to specify addresses.

The ed program operates in one of two modes, command mode and text mode. In
command mode, ed recognizes and executes subcommands. In text mode, ed adds text to
the file buffer but does not recognize subcommands. To leave text mode, enter a . (dot)
alone at the beginning of a line.

280 Commands Reference



ed

Pattern Matching

The ed command supports a limited form of special pattern-matching characters that
you can use as regular expressions (REs) to construct pattern strings. You can use
these patterns in addresses to specify lines and in some subcommands to specify portions of

a line.

Regular Expressions (REs)

The following REs match a single character:

char

[string]

\sym

An ordinary character (one other than one of the special pattern-matching
characters), matches itself.

A period (.) matches any single character except for the new-line character.

A string enclosed in square brackets ([ ]) matches any one character in that
string. Certain pattern-matching characters have special meanings within
square brackets:

A

If the first character of string is a circumflex, then the RE ([* stringl])
matches any character except the characters in string and the
new-line character. A " has this special meaning only if it occurs
first in the string.

You can use a minus (-) to indicate a range of consecutive ASCII
characters according to the current collating sequence. For example,
[a-f] might be equivalent to [abcdef] or [aAbBcCdDeEfF] or
[adabcdeééf]. The collating sequence is defined by the environment
variable NLCTAB or NLFILE. See Managing the AIX Operating
System for more information. A collating sequence may define
“equivalence classes” for characters. For example, if three
characters—e, é, and é—are equivalent, the following expressions
identify the same sequence of characters:

[a-e]
[a-&]

The minus character loses its special meaning if it occurs first
([-string]), if it immediately follows an initial circumflex ([*-string]), or
if it appears last ([string-]) in the string.

When the right square bracket (]) is the first character in the string
([Istring]) or when it immediately follows an initial circumflex
([*Istring]), it is treated as a part of the string rather than as the
string terminator.

A \ (backslash) followed by a special pattern-matching character matches the
special character itself (as a literal character). These special pattern-matching
characters are:

Commands 281



ed

LN Always special except when they appear within square brackets ([]).

Special at the beginning of an entire pattern or when it immediately
follows the left bracket of a pair of brackets ([* ... ]).

$ Special at the end of an entire pattern.

In addition, the character used to delimit an entire pattern is special for that
pattern. (For example, see how slash (/) is used in the g subcommand on page
286.)

Forming Patterns

The following rules describe how to form patterns from REs:

1.

An RE that consists of a single, ordinary character matches that same character in a
string.

An RE followed by an asterisk (*) matches zero or more occurrences of the character
that the RE matches. For example, the following pattern:

ab*cd
matches each of the following strings:

acd
abcd
abbcd
abbbcd

but not the following string:
abd

If there is any choice, the longest matching leftmost string is chosen. For example,
given the following string:

122333444

the pattern .* matches 122333444, the pattern . *3 matches 122333, and the pattern
.*2 matches 122.

An RE followed by:

\{m\} Matches exactly m occurrences of the character matched by the RE.
\{m,\} Matches at least m occurrences of the character matched by the RE.
\{m,n\} Matches any number of occurrences of the character matched by the RE

from m to n inclusive.

m and n must be integers from 0 to 255, inclusive. Whenever a choice
exists, this pattern matches as many occurrences as possible.

282 Commands Reference



ed

4. You can combine REs into patterns that match strings containing that same sequence
of characters. For example, AB\*CD matches the string AB*CD and [A-Za-z]*[0-9]*
matches any string that contains any combination of alphabetic characters (including
none), followed by any combination of numerals (including none).

5. The character sequence \(pattern\) marks a subpattern that matches the same string
it would match if it were not enclosed.

6. The characters \num match the same string of characters that a subpattern matched
earlier in the pattern (see the preceding discussion of item 5). num is a digit. The
pattern \num matches the string matched by the numth subpattern, counting from left
to right. For example, the following pattern:

\(ADV(BY) C\2\1

matches the string ABCBA. You can nest subpatterns.

Restricting What Patterns Match

A pattern can be restricted to match only the first segment of a line, the final segment, or
both:

1. A " (circumflex) at the beginning of a pattern causes the pattern to match only a
string that begins in the first character position on a line.

2. A $ (dollar sign) at the end of a pattern causes that pattern to match only a string that
ends with the last character (not including the new-line character) on a line.

3. The construction “pattern$ restricts the pattern to matching only an entire line.

In addition, the null pattern (that is, //) duplicates the previous pattern.

Addressing

The current line, usually the last line affected by a command, is the point of reference in
the buffer. ed always has a current line. This is the default address for several ed
commands. (See “Subcommands” on page 285 to find out how each subcommand affects
the current line.)

There are three types of ed addresses: line number addresses, addresses relative to the
current line, and pattern addresses. Following are guidelines for constructing addresses:

1. . (dot) addresses the current line.

2. $ (dollar sign) addresses the last line of the buffer.
3. n addresses the nth line of the buffer.
4

’x addresses the line marked with a lowercase ASCII letter, x, by the k subcommand
(see page 287).

Commands 283



ed

10.

[pattern/ (a pattern enclosed in slashes) addresses the next line contains a matching
string. The search begins with the line after the current line and stops when it finds a
match for the pattern. If necessary, the search moves to the end of the buffer, wraps
around to the beginning of the buffer, and continues until it either finds a match or
returns to the current line.

?pattern? (a pattern enclosed in question marks) addresses the previous line that
contains a match for the pattern. The ?pattern? construct, like /pattern/, can search
the entire buffer, but it does so in the opposite direction.

An address followed by +n or -n (a plus sign or a minus sign followed by a decimal
number) specifies an address plus or minus the indicated number of lines. (The + sign
is optional.)

An address that begins with + or - specifies a line relative to the current line. For
example, -5 is the equivalent of . -5 (five lines above the current line).

An address that ends with - or + specifies the line immediately before (-) or
immediately after (+) the addressed line. Used alone, the - character addresses the
line immediately before the current line. The + character addresses the line
immediately after the current line; however, the + character is optional. The + and -
characters have a cumulative effect; for example, the address -- addresses the line two
lines above the current line.

For convenience, a , (comma) stands for the address pair 1,$ (first line through last
line) and a ; (semicolon) stands for the pair . ,$ (current line through last line).

Commands that do not accept addresses regard the presence of an address as an error.
Commands that do accept addresses can use either given or default addresses. When given
more addresses than it accepts, a command uses the last (rightmost) one(s).

In most cases, commas (,) separate addresses (for example 2,8). Semicolons (;) also can
separate addresses. A semicolon between addresses causes ed to set the current line to the
first address and then calculate the second address (for example, to set the starting line for
a search based on rules 5 and 6 above). In a pair of addresses, the first must be
numerically smaller than the second.

For many purposes, you may prefer to use a different editor that has different features:

“edit” on page 292, a simple line editor for novice or casual users

“sed” on page 629, a stream editor often used for writing programs

“ex” on page 312, an extended (line) editor with numerous interactive subcommand
features

“vi, vedit, view” on page 832, a visual (screen) editor that also accesses ex line editing
features while letting you view the text.

284 Commands Reference



ed

The following is a list of ed size limitations:

® 64 characters per file name.

e 512 characters per line (although there is currently a system-imposed limit of 255
characters per line entered from the keyboard).

e 256 characters per global subcommand list.

e 128K characters buffer size. (Note that the buffer not only contains the original file
but also editing information. Each line occupies one word in the buffer.)

In addition, the maximum number of lines permitted also depends on the amount of
memory available to you. The maximum file size depends on the amount of physical data
storage (disk or tape drive) available or on the maximum number of lines permitted in user
memory.

Subcommands

In most cases, only one ed subcommand can be entered on a line. The exceptions to this
rule are the p and 1 subcommands, which can be added to any ed command except e, f, r,
or w.

The e, f, r, and w subcommands accept file names as parameters. The ed program stores
the last file name used with a subcommand as a default file name. The nexte, f, r,orw
given without a file name uses the default file name.

The ed program responds to an error condition with one of two messages: ? (question
mark) or ?file.

When ed receives an INTERRUPT signal (Alt-Pause), it displays a ? and returns to
command mode.

When it reads a file, ed discards ASCII NULL characters and all characters after the last
new-line character. ed cannot edit a file that contains characters not in the ASCII set (for
example, an a.out file with bit 8 set on).

Note: In the following list of ed subcommands, default addresses are shown in
parentheses. (Do not key in the parentheses.) The address . (period) refers to the current
line.

(Ha

<text> ,
The append subcommand adds text to the buffer after the
addressed line. The a subcommand sets the current line to the
last inserted line, or, if no lines were inserted, to the addressed
line. Address O causes the a subcommand to add text at the
beginning of the buffer.

Commands 285



ed

(e

<text>

e file

E file

£ [file]

(1,7)g/pattern/subecmd-list

286 Commands Reference

The change subcommand deletes the addressed lines, then
replaces them with new input. The ¢ command sets the
current line to the last new line of input, or, if there were
none, to the first line that was not deleted.

The delete subcommand removes the addressed lines from the
buffer. The line after the last line deleted becomes the current
line. If the deleted lines were originally at the end of the
buffer, the new last line becomes the current line.

The edit subcommand first deletes any contents from the
buffer, then loads another file into the buffer, sets the current
line to the last line of the buffer, and displays the number of
characters read in to the buffer. If the buffer has been changed
since its contents were last saved (with the w subcommand), e
displays ?. before it clears the buffer.

The e subcommand stores file as the default file name to be
used, if necessary, by subsequent e, r, or w subcommands. (See
the f subcommand.)

When the ! character replaces file, e takes the rest of the line
as a AIX shell (sh) command and reads the command output.
The e subcommand does not store the name of the shell
command as a default file name.

The Edit subcommand works like e, with one exception: E
does not check for changes made to the buffer since the last w
subcommand.

The file name subcommand changes the default file name (the
stored name of the last file used) to file, if file is given. If file is
not given, the f subcommand-prints the default file name.

The global subcommand first marks every line that matches
the pattern. Then, for each marked line, this subcommand sets
the current line to that line and executes subcmd-list. A single
subcommand, or the first subcommand of a list, should appear
on the same line with the g subcommand; subsequent
subcommands should appear on separate lines. Except for the
last line, each of these lines should end with a \.

The subcmd-list can include the a, i, and ¢ subcommands and
their input. If the last command in subcmd-list would normally
be the . (dot) that ends input mode, the . (dot) is optional. If
there is no subcmd-list, ed displays the current line. The
subemd-list cannot include the g, G, v, or V subcommands.



ed

(1,7)G/pattern/

i

<text>

(- +1)j

(kx

Note: The g subcommand is similar to the v subcommand,
which executes subecmd-list for every line that does not contain
a match for the pattern.

The interactive Global subcommand first marks every line that
matches the pattern, then displays the first marked line, sets
the current line to that line, and waits for a subcommand. G
accepts any but the following ed subcommands: a, ¢, i, g, G, v,
and V. After the subcommand finishes, G displays the next
marked line, and so on. G takes a new-line character as a null
subcommand. An :& causes G to execute the previous
subcommand again, if there was one. Note that subcommands
executed within the G subcommand can address and change
any lines in the buffer. The G subcommand can be terminated
by pressing INTERRUPT (Alt-Pause).

The help subcommand gives a short explanation (help message)
for the most recent ? diagnostic or error message.

The Help subcommand causes ed to display the help messages
for all subsequent ? diagnostics. H also explains the previous

? if there was one. H alternately turns this mode on and off; it
is initially off.

The insert subcommand inserts text before the addressed line
and sets the current line to the last inserted line. If there no
lines are inserted, i sets the current line to the addressed line.
This subcommand differs from the a subcommand only in the
placement of the input text. Address 0 is not legal for this
subcommand.

The join subcommand joins contiguous lines by removing the
intervening new-line characters. If given only one address, j
does nothing. (For splitting lines, see the s subcommand.)

The mark subcommand marks the addressed line with name x,
which must be a lowercase ASCII letter. The address ‘x (single
quotation mark before the marking character) then addresses
this line. The k subcommand does not change the current line.

The list subcommand displays the addressed line(s). The 1
subcommand wraps long lines and, unlike the p subcommand,
represents non-printing characters, either with mnemonic
overstrikes or in octal notation. An 1 subcommand may be
appended to any ed subcommand except: e,f,r, or w.

Commands 287



ed

(.,.)ma

Q

MDr file

(.,.)s/pattern/replacement/
(.,.)s/pattern/replacement/g

288 Commands Reference

The move subcommand repositions the addressed line(s). The
first moved line follows the line addressed by a. Address O for
a causes m to move the addressed line(s) to the beginning of
the file. Address a cannot be one of the lines to be moved.
'II:he m subcommand sets the current line to the last moved
ine.

The number subcommand displays the addressed lines, each
preceded by its line number and a tab character (displayed as
blank spaces); n leaves the current line at the last line
displayed. An n subcommand may be appended to any ed
subcommand except e, f, r, or w.

The print subcommand displays the addressed line(s) and sets
the current line set to the last line displayed. A p
subcommand may be appended to any ed subcommand except:
e, f, r, or w. For example, the subcommand dp deletes the
current line and displays the new current line.

The P subcommand turns on or off the ed prompt string *
(asterisk). Initially, P is off.

The quit subcommand exits the ed program. Before ending the
program q checks to determine whether the buffer has been
written to a file since the last time it was changed. If not, q
displays the ? message.

The Quit subcommand exits the ed program without checking
for changes to the buffer since the last w subcommand
(compare with the q subcommand).

The read subcommand reads a file into the buffer after the
addressed line; r does not delete the previous contents of the
buffer. When entered without file, r reads the default file, if
any, into the buffer (see e and f subcommands). r does not
change the default file name. Address O causes r to read a file
in at the beginning of the buffer. After it reads a file
successfully, r, displays the number of characters read into the
buffer and sets the current line to the last line read. If !
(exclamation point) replaces file in a r subcommand, r takes
the rest of the line as a AIX shell (sh) command whose output
is to be read. The r subcommand does not store the names of
shell commands as default file names.

The substitute subcommand searches each addressed line for a
string that matches the pattern and then replaces the string
with the specified replacement string. Without the global



ed

(., )ta

indicator (g), s replaces only the first matching string on each
addressed line. With the g indicator, s replaces every
occurrence of the matching string on each addressed line. If s
does not find a match for the pattern, it returns the error
message 7. Any character except a space or a new-line
character can separate (delimit) the pattern and replacement.
The s subcommand sets the current line to the last line
changed.

An ampersand (&) in the replacement string is a special symbol
that has the same value as the pattern string. So, for example,
the subcommand s/are/&n’t/ has the same effect as the
subcommand s/are/aren’t/ and replaces are with aren’t on
the current line. A backslash before the ampersand (\&)
removes this special meaning of & in replacement.

A subpattern is part of a pattern enclosed by the strings \( and
\); the pattern works as if the enclosing characters were not
present. In replacement, the characters \n refer to strings that
match subpatterns; n, a decimal number, refers to the nth
subpattern, counting from the left. (for example, s/\(t\)\(h\)
\(e\)/t\1\20se) replaces the with those if there is a match for
the pattern the on the current line). Whether subpatterns are
nested or in a series, \n refers to the nth occurrence, counting
from the left, of the delimiting characters, \).

The % (percent sign) character, when used by itself as
replacement, causes s to use the previous replacement again.
The % character does not have this special meaning if it is part
of a longer replacement or if it is preceded by a \.

Lines may be split by substituting new-line characters into
them. In replacement, the sequence \Enter quotes the new-line
character (not displayed) and moves the cursor to the next line
for the remainder of the string. New-lines cannot be
substituted as part of a g or v subcommand list.

The transfer subcommand inserts a copy of the addressed lines
after address a. The t subcommand accepts address O (for
inserting lines at the beginning of the buffer). The t
subcommand sets the current line to the last line copied.

The undo subcommand restores the buffer to the state it was in
before it was last modified by an ed subcommand. The
commands that u can undo are: a,c,d, g, G,i,j, m, r, s, t, v,
and V.

Commands 289



ed

1,?)v/pattern/subcmd-list

(1,$)V/pattern//

1,?)w file

$)=

1AIX-cmd

290 Commands Reference

The v subcommand executes the subcommands in subemd-list
for each line that does not contain a match for the pattern.

Note: The v subcommand is a complement for the global
subcommand g, which executes subemd-list for every line that
does contain a match for the pattern.

The V subcommand first marks every line that does not match
the pattern, then displays the first marked line, sets the
current line to that line, and waits for a subcommand.

Note: The V subcommand complements the G subcommand,
which marks the lines that do match the pattern.

The write subcommand copies the addressed lines from the
buffer to the file named in file. If the file does not exist, the w
subcommand creates it with permission code 666 (read and
write permission for everyone), unless the umask setting
specifies another file creation mode. (For information about
file permissions, see “umask” on page 784 and “chmod” on
page 128.) The w subcommand does not change the default file
name (unless file is the first file name used since you started
ed). If you do not provide a file name, ed uses the default file
name, if any (see the e and f subcommands). The w
subcommand does not change the current line.

If ed successfully writes the file, it displays the number of
characters written. When ! replaces file, ed takes the rest of
the line as a AIX shell (sh) command whose output is to be
read; w does not save shell command names as default file
names.

Note: 0 is not a legal address for the w subcommand.
Therefore, it is not possible to create an empty file with ed.

Without an address, the = (equal sign) subcommand displays
the current line number. With the address $, = displays the
number of the last line in the buffer. The = subcommand does
not change the current line and cannot be included in a g or v
subcommand list.

The ! (exclamation point) subcommand allows AIX commands
to be run from within ed. Anything following ! on an ed
subcommand line is interpreted as an AIX command. Within
the text of that command string, ed replaces the unescaped
character % with the current file name, if there is one.

When used as the first character of a shell command (after the
! that runs a subshell) ed replaces the ! character with the



ed

previous AIX command; for example, the command !! repeats
the previous AIX command. If the AIX command interpreter
(the sh command), expands the command string, ed echoes the
expanded line. The ! subcommand does not change the
current line.

num
+num
-num ed interprets a number alone on a line as an address and
displays the addressed line. Addresses can be absolute (line
numbers or $) or relative to the current line (+num or - num).
Entering a new-line character (a blank line) is equivalent to
+1p and is useful for stepping forward through the buffer one
line at a time.
Files
[tmp/e# Temporary file; # is the process number.
ed.hup Work is saved here if the terminal hangs up while ed is running.

Related Information
The following commands: “grep” on page 381, “sed” on page 629, “sh” on page 637,
“stty” on page 717, and “regcmp” on page 595.
The regexp system call in AIX Operating System Technical Reference.
The environment miscellaneous facility in Text Formatting Guide.
The discussion and examples of ed in Using the AIX Operating System.

The “Overview of International Character Support” in Managing the AIX Operating
System.

Commands 291



edit

edit

Purpose

Provides a simple line editor for the new user.

Syntax

edit file

OL805329
Description

Warning: The edit command does not support international characters.
If you use this command to edit a file that contains extended characters,
you can lose data.

The edit command provides a line editor designed for beginning users. It is a simplified
version of the ex command (see “ex” on page 312). To edit the contents of a file, enter:

edit file

If file is the name of an existing file, edit copies it to a buffer and displays the number of
lines and characters in it. Then it displays a colon prompt (:) to show that it is ready to
read subcommands from standard input. If file does not already exist, edit tells you this,
but still stores the name as the current file name. You can give more than one file name,
in which case edit copies the first file into its buffer and stores the remaining file names in
an argument list for later use.

The edit command operates in one of two modes: command mode and text entry mode.
In command mode, edit displays the colon prompt to show you that it is ready to accept
edit subcommands. In text entry mode, edit places all input into its editing buffer. The
general format of an edit subcommand is as follows:

[addrlsubcommand [parameters] [count]

If you do not specify an address, edit works on the current line. If you add a numeric
count to most subcommands, edit works on the specified number of lines.

For most subcommands, the last line affected becomes the new current line. That means,
for example, that after edit reads a file into its buffer, the last line in the file becomes the
current line. addr can be a line number or a pattern to be matched or, in some cases, a
range of line numbers or patterns. To specify a range, separate two line numbers or

292 Commands Reference



edit

patterns with a comma or a semicolon (for example, 1,5 or 1;5). In a range, the second
address must refer to a line that follows the first addressed line in the range.

Addressing Lines Within a File

The simplest way to address a line within a file is to use its line number. But this can be
unreliable because line numbers change when you insert and delete lines. edit provides a
way to search through the buffer for strings. Given the following address:

/pattern/
edit searches forward for pattern, while given:
Ipattern?

it searches backwards for pattern. If a forward search reaches the end of the buffer
without finding pattern, it continues the search at the beginning of the file until it reaches
the current line. A backwards search does just the reverse.

The following characters have special meanings in these search patterns:
A Matches the beginning of a line.
$ Matches the end of a line.

Thus, you can use /" pattern/ to search for patterns at the beginning of a line, and
[pattern$/ to search for patterns at the end of the line.

The current line has a symbolic name, dot (.), and the last line in the buffer has a symbolic
name, dollar sign ($), that you can use in addresses. This is useful when working with a
range of lines. For example,

L dprint

displays all lines from the current line to the last line in the buffer. Arithmetic with line
references is also possible, so that $-5 refers to the fifth line from the last and .+20
refers to the line 20 lines past the current line. You can also use the = (equal) command
to find out the line number of the current line or the last line, as follows:

$
To view the next line in the buffer, press the Enter key. Press Ctrl-D to display the next
half-screen of lines.

Note: Do not confuse the meaning of $ in text patterns (end of line) with its meaning in
addresses (last line).

Commands 293



edit

Flag

Using the ex Command

As you become more experienced with using an editor, you may still find that edit meets
your needs. If you become interested in using ex, you will find that it builds on the
commands you are already familiar with from using edit.

The edit subcommands work the same way in ex, but the editing environment is somewhat
different. You should be aware of the differences that exist between the two editors. In
edit, only the characters *, $, and \ have special meanings as pattern-matching characters.
Several additional characters have special meanings in ex, as described under “ex” on
page 312.

Another feature of the edit environment prevents you from accidentally entering two
alternative modes of editing, open mode and visual mode, in which the editor behaves
differently from normal command mode. See “vi, vedit, view” on page 832 for a full
discussion of visual mode.

-r Recovers file after an editor or system crash.

Subcommands

You can enter most edit subcommands as either a complete word or an abbreviation. In
the following list, a subcommand abbreviation appears in parentheses. Unless noted
otherwise, all subcommands work by default on the current line. edit recognizes and
interprets the following subcommands when it displays the colon prompt:

[addr]append (a)

text
Reads the input text into the file being edited, placing the text after the
line at the specified address. If you specify address 0, edit places the
text at the beginning of the buffer.

[addri[,addr2]]jchange (c)

text
Replaces the specified line or lines with the input text. If any lines are
input, the last input line becomes the new current line.

[addrif,addr2]ldelete [buffer] (d)
Removes the specified line or lines from the editing buffer. The line
following the last deleted line becomes the current line. If you specify a
buffer by giving a letter from a to z, edit saves the specified lines in that
buffer or, if the letter is uppercase, appends the lines to that buffer.

294 Commands Reference



edit

edit file (e) Begins an editing session on a new file. The editor first checks to see if
the buffer has been modified (edited) since the last write subcommand.
If it has, edit issues a warning and cancels the edit subcommand.
Otherwise, it deletes the complete contents of the editor buffer, makes
the named file the current file, and displays the new file name. After
insuring that this file can be edited, it reads the file into its buffer. If
edit reads the file without error, it displays the number of lines and
characters that it read. The last line read becomes the new current line.

file () Displays the current file name along with the following information
about it:
o Whether it has been modified since the last write.
e What the current line is.
e How many lines are in the buffer.
o What percentage of the way through the buffer the current line is.
file file Changes the name of the current file to file. edit considers this file not
edited.

[addri[,addr2]]global/pattern/cmds (g)
Marks each of the specified lines that matches the pattern. Then edit
carries out the specified subcommands (cmds) on each marked line.

A single cmd or the first cmd in a subcommand list appears on same line
as global. The remaining cmds must appear on separate lines, where
each line (except the last) ends with a \ (backslash). The default
subcommand is print.

The list can include the append, insert, and change subcommands and
their associated input. In this case, if the ending period comes on the
last line of the command list, you may omit it. The undo subcommand
and the global subcommand itself, however, may not appear in the
command list.

[addrlinsert (i)
text

Places the given text before the specified line. The last line input
becomes the current line. Otherwise, the current line does not change.

[addri][,addr2]lmove addr3 (m)
Repositions the specified line or lines to follow addr3. The first of the
moved lines becomes the current line.

next (n) Copies the next file in the command line argument list to the buffer for
editing.

[addri[,addr2]lnumber (nu)
Displays each specified line or lines preceded by its buffer line number.
The last line displayed becomes the current line.

Commands 295



edit

preserve
Saves the current editor buffer as though the system had just crashed.
Use this command when a write subcommand has resulted in an error,
and you do not know how to save your work.

[addri[,addr2]]print (p)
Displays the specified line or lines. The last line displayed becomes the
current line.

[addr]lput buffer (pu)
Retrieves the contents of the specified buffer and places it after addr. If
you do not specify a buffer, edit restores the last deleted or yanked text.
Thus you can use this subcommand together with delete to move lines or
with yank to duplicate lines between files.

quit  (q) o _
quit! (q!) Ends the editing session.

Note: The quit command does not write the editor buffer to a file.
However, if you have modified the contents of the buffer since the last
write, edit displays a warning message and does not end the session. In
this case, either use the quit! subcommand to discard the buffer or write
the buffer and then quit.

recover file Recovers file from the system save area. Use this after a system crash, or
a preserve subcommand.

[addri[,addr2]]substitute/pattern/repl/ (s)

[addri[,addr2]]substitute/pattern/repl/g
Replaces on each specified line the first instance of pattern with the
replacement pattern repl. If you add the g flag, it replaces all instances
of pattern on each specified line.

undo (u) Reverses the changes made in the buffer by the last buffer editing
subcommand. Note that global subcommands are considered a single
subcommand to an undo. You cannot undo a write or an edit.

[addri,[addr2]}write file (w)
Writes the contents of the specified line or lines to file. The default
range is all lines in the buffer. edit displays the number of lines and
characters that it writes. If you do not specify a file, edit uses the
current file name. If file does not exist, edit creates it.

[addrl,[addr2]lyank [buffer] (ya)
Places the specified line or lines in the named buffer (a buffer name is a
single letter from a to z).

[addriz displays a screen of text, beginning with the specified line.
[addr]z- Displays a screen of text, with the specified line at the bottom of the
screen.

296 Commands Reference



edit

[addr]z. Displays a screen of text, with the specified line in the middle of the
screen.

Related Information

The following commands: “ed” on page 280, “ex” on page 312, and “vi, vedit, view” on
page 832.

Commands 297



env

env
Purpose
Sets the environment for execution of a command.
Syntax
env >——‘
name=value — command
OL805117
Description
The env command lets you get and change your current environment, and then run the
named command with the changed environment. Changes in the form name=value are
added to the current environment before the command is run. If - (minus) is used, the
current environment is ignored and the command runs with only the changed environment.
Changes are only in effect while the named command is running.
If a command is not specified, env displays your current environment one name = value pair
per line.
Examples

1. To add a shell variable to the environment for the duration of one command:

TZ=MST7MDT date
env TZ=MST7MDT date

Each of these commands displays the current date and time in Mountain Standard
Time. The two commands shown are equivalent. When date is finished, the previous
value of TZ takes effect again.

2. To replace the environment with another one:

env - PATH=$PATH IDIR=/u/jim/include LIBDIR=/u/jim/1ib make

This runs make in an environment that consists only of these definitions for PATH,
IDIR, and LIBDIR. You must redefine PATH so that the shell can find the make
command.

When make is finished, the previous environment takes effect again.

298 Commands Reference



env

Related Information

The following command: “sh” on page 637.

The exec system call, the profile file, and the environ miscellaneous facility in AIX
Operating System Technical Reference.

Commands 299



eqn

eqn, neqn, checkeq

Purpose
Formats mathematical text for the nroff and troff commands.
Syntax

one of
eqn
neqn

—dxy  —pnum file
-ssize —ffont

checkeq E

Description

OL805183

The eqn command is a troff preprocessor for typesetting mathematical text on a
phototypesetter. The negn command is used with nroff for other printing devices. The
output of egn and neqn is generally piped into troff and nroff as follows:

eqn file | troff

negn file | nroff

If you do not specify any files or if you specify - as the last file name, the commands read
standard input. A line consisting of .EQ marks the start of equation text; the end of

equation text is marked by a line consisting of .EN. Neither of these lines is altered by the
commands, so they can be defined in macro packages to give you centering and numbering.

The program checkeq reports missing or unbalanced delimiter pairs and .EQ/.EN pairs.

For information on how to format eqn text, see Text Formatting Guide.

300 Commands Reference



eqn

The egqn command recognizes the following mathematical words, and prints the associated

symbol:

above dotdot italic rcol to

back down lcol right under

bar dyad left roman up

bold fat lineup rpile vec

ccol font Ipile rpile ~

col from mark size A

cpile fwd matrix sub {}

define gfont ndefine sup oo

delim gsize over tdefine

dot hat pile tilde

Flags

-dxy Sets x and y as one character delimiters of the text to be processed by eqn, in
addition to the .EQ and .EN macros. The text between these delimiters will be
treated as input to eqn.
Note: Within a file, you can also set delimiters for eqn text using the
command delim xy. They are turned off by the command delim off. All text
that is not between delimiters or .EQ and .EN is passed through unprocessed.

-ffont Acts the same as -s for fonts. See the discussion of gfont and font in Text

Formatting Guide for information on changing font within the text.
-pnum Reduces subscripts and superscripts num points in size (the default is 3).

-ssize Changes point size in all eqn processed text to size. See the discussion of gsize
and size in Text Formatting Guide for information on changing the point size
within the text.

Related Information
The following commands: “cw, checkcew” on page 213, “mm, checkmm” on page 492,
“mmt, checkmm” on page 495, “nroff” on page 525, and “troff” on page 526.

The egqnchar and mv miscellaneous facilities in AIX Operating System Technical
Reference.

The discussion of eqn in Text Formatting Guide.

Commands 301



errdead

errdead

Purpose

Extracts error records from dump.

Syntax

/unix
errdead — dumpfile —<‘ }*
kernel-image

Description

0L805120

When the system detects a hardware error, it produces an error record containing
information pertinent to the error. If errdemon, the error-logging demon, is not running
or if the system crashes before it can place the record in the error file, the system holds the
error information in a local buffer. errdead examines a system dump (or memory),
extracts the error records, and passes them to errpt to generate a report. Note that no
analysis is available because these error entries were never sent back via the errdemon.

The dumpfile parameter specifies the file (or memory) to be examined. The kernel-image
parameter specifies the system name list, by default /unix.

Files
Junix System kernel image.
Jusr/bin/errpt Analysis program.
Jusr/tmp/err* Temporary file.

Related Information

The following command: “errpt, errpd” on page 305.

The discussion of errdead in AIX Operating System Programming Tools and Interfaces.

302 Commands Reference



errdemon

errdemon

Purpose

Starts the error-logging demon.
Syntax

/usr/lib/errdemon —'

' This command is not usually
run from the command line.
OL805118

Description

The error-logging demon errdemon collects error records from the operating system by
reading the special file /dev/error and places them in one of two error log files.
errdemon creates the names of the two log files by adding a .0 and .1 to the end of the file
name found in /etc/rasconf. If an error log file does not already exist, errdemon creates
one.

The errdemon command adds error records to the first error log file until it reaches the
maximum allowable length specified in /etc/rasconf. At that point, errdemon closes the
first error log file, changes the file name from filename.0 to filename.l, and opens a new
filename.0. Thus, the newest error records are always in filename.0. When it is full,
errdemon overwrites the first file.

You can stop the error-logging demon by sending it a SIGKILL signal (see “errstop” on
page 309). Normally, the /ete/rc command file runs errdemon at system start up. Only a
user operating with superuser authority can start errdemon, and only one demon may be
active at any time.

If errdemon is unable to log an error, it logs it in abbreviated form in /dev/nvram. Just
one error can be logged in /dev/nvram, so each subsequent error overwrites any previous
entries. When the system is started, errdemon searches for a previously written entry in
/dev/nvram and, if a record is found, records it in one of the error log files and clears
/dev/nvram.

Commands 303



errdemon

Files
/dev/error Source of error records.
/dev/nvram Non-volatile read-only memory.
Jete/rasconf Configuration file.
[ete/re System startup file.
Jusr/adm/ras/errfile* Repository for error records.

Related Information

The following commands: “errpt, errpd” on page 305, “errstop” on page 309, and “kill”
on page 422.
The error and nvram files in AIX Operating System Technical Reference.

AIX Operating System Programming Tools and Interfaces.

304 Commands Reference



errpt

errpt, errpd

Purpose

Processes a report of logged errors.

Syntax

errpt

OL805410

Description

Flags

The errpt command reads a specified error file or files, processes the data, and writes a
report of that data to standard output. These error files should be named file.0 or file.1,
but do not include the .0 or .1 extension when you specify the file name argument. errpt
adds the extension. If you do not specify a file name, errpt uses the file listed in
/ete/rasconf, adding the .0 and .1 extensions (these are usually fusr/adm/ras/errfile.0
and /usr/adm/ras/errfile.1). The default report is a summary of all errors posted in the
named file, as well as system information events, such as time changes, system starts, and
SO on.

The errpt command pipes error entries through the program fusr/lib/errpd, which adds
probable cause information to certain entries. If no probable cause information is added,
errpt logs records exactly as it receives them.

-a Produces a detailed report. This contains specific error information for
every event that errpt formats.

-d list Limits the report to certain types of error records as defined by list. The
list items can either be separated by commas or enclosed in double
quotation marks and separated by commas or blanks. See “Error
Identifiers” on page 306 for the valid list values.

Commands 305



errpt

-e date Includes all records posted earlier than date, where date has the form
MMddhhmmyy (month, day, hour, minute and year).

-n nodename Includes only entries in the error report from the specified nodename.

-s date Includes all records posted later than date, where date has the form
MMddhhmmyy.

-v uvmid Includes only entries in the error report from the system name specified
with vmid.

Error Identifiers

In the following error identifiers, 0 acts as a wildcard character, such that, for example,
HO00 gives you all hardware errors (H11 to HFF), and H10 gives you all errors from H11 to
H1F, and so on.

1. Class

HO00 = Hardware (01)

S00 = Software (02)

100 = IPL/Shutdown (03)

G00 = General System Condition (04)
U00 = User Defined, Non-Hardware

2. Class/Subclass

H10 = Hardware/Processor and Memory Management Card Machine Check
H11 = Hardware/Main Processor
Hi2 = Hardware/Main Memory

H20 = Hardware/Fixed Disk Drive and Adapter
H30 = Hardware/Diskette Drive and Adapter
H40 = Hardware/Tape and Adapter

H50 = Hardware/Display Station

H51 = Hardware/5080 Display Adapter

H52 = Hardware/APA16 Display Adapter

H60 = Hardware/Display Station Adapter
H70 = Hardware/Keyboard/Mouse

H80 = Hardware/Communication Adapters
H81 = Hardware/RS232 Multi-port

H84 = Hardware/Serial or Serial/Parallel
H85 = Hardware/IBM PC Network Adapter
H86 = Hardware/RS422 Multi-port

H87 = Hardware/Native Serial I/O

H8E = Hardware/SSLA

H90 = Hardware/Parallel Printer and Adapter
H91 = Hardware/Parallel or Serial/Parallel
H92 = Hardware/Parallel or PC Monochrome
HAO = Hardware/Printers

306 Commands Reference



TNL SN20-9861 (26 June 1987) to SC23-0790-0

errpt
HF0
HFF = User Defined Hardware
S10 = Software/Processor and Memory Management Card Program Check
S20 = Software/Abend
S21 = Software/Abend dump taken
S22 = Software/Abend No dump taken
S30 = Software/Program Error AIX
S33 = Software/Program Error AIX Kernel
S40 = Software/Program Error AIX Device Driver
S42 = Software/5080 Display Device Driver
S50 = Software/Program Error AIX Device Driver
S60 = Software/Program Error VRM Base
S61 = Software/Program Error VRM Attach Device
S70 = Software/Program Base VRM Component
S72 = Software/Program Base VRM Component - Virtual Terminal
S74 = Software/5080 Display VRM Device Driver
S75 = Software/5080 Peripherals VRM Device Driver Manager
S80 = Software/Program Error Application
S80 = Software/Program Error Application - Error Log Analysis
S80 = Software/Program Error Application - Interactive Workstation
S90 = Software/Program Error Application
SA0 = Software/Program Error Application
SB0 = Software/Program Error Application
SCO0 = Software/Program Error Application
SDO = Software/Program Error Application
SEO0 = Software/Program Error Application
SF0 = Software/Program Error Application
110 = TPL/Shutdown/Manual IPL
120 = IPL/Shutdown/Soft IPL
130 = IPL/Shutdown/Auto IPL
140 = IPL/Shutdown/Shutdown
150 = IPL/Shutdown/Maintenance Shutdown
G10 = General System Condition/Degraded Config
G20 = General System Condition/Set Date/ Time
G40 = General System Condition/Error Reporting
G50 = General System Condition/LPOST
G41 = General System Condition/Cause Codes
G42 = General System Condition/Device Information
G43 = General System Condition/Counters
G51 = General System Condition/Memory Test LPOST
Commands 307



errpt

U10

UFF = User Defined, Non-Hardware

errpd

The error log analysis program, /usr/lib/errpd, analyzes the error log data.
/usr/lib/errpd processes error data to determine if the error is a hardware error and if the
error is a temporary or permanent error.

The analysis does the following:

o Generates a number that corresponds to a service request number.
® Analyzes the data and generates the ALERT number.
e Makes the description message ID number. The description consists of the following:

— Error Analysis determines, from the error data passed, the nature of the operation
at the time of the failure. This becomes part of the error description.

— Error Analysis determines what failed and what the error indication is. This
becomes part of the error description and is used to create the ALERT number.

— Field Replacement Unit (FRU) Analysis determines the Service Request Code. This
becomes part of the error description.

Files
[usr/adm/ras/errfile? Error file.
Related Information

The following command: “errdemon” on page 303.
The errfile file in AIX Operating System Technical Reference.
AIX Operating System Programming Tools and Interfaces.

308 Commands Reference



errstop

errstop

Purpose

Terminates the error-logging demon.

Syntax
/unix
errstop AC >—|
kernel-image
OL805121
Description

The errstop command stops the error-logging demon errdemon by running the ps
command to determine the demon process ID and then sending it a Software Terminate
signal (see the signal system call in AIX Operating System Technical Reference). If you do
not specify kernel-image, errstop uses funix. Only a user operating with superuser
authority can run errstop.

Files
[unix System kernel image.

Related Information

The following commands: “errdemon” on page 303 and “ps” on page 579.
The kill system call in AIX Operating System Technical Reference.
AIX Operating System Programming Tools and Interfaces.

Commands 309



errupdate

errupdate

Purpose

Updates an error report template.

Syntax

errupdate — file —D—i
—~0

Description

0OL805332

The errupdate command adds, replaces, or deletes error report format templates in the file
[etc/errfmt. errupdate creates an undo file in the current directory that it names
file.undo.err. You can use this undo file as input to errupdate with the -o (override) flag
to undo the changes errupdate has just made.

The errupdate command adds the extension .err to the file name you specify and reads
update commands from the file with that name and extension. The first field of each
template contains an operator:

+ To add or replace a template
- To delete a template.

If the operation is +, then the following fields contain the template to be replaced. If the
operation is a -, then the second field contains the class/subclass/mask identifier of the
template to delete. errupdate checks for valid combinations of identifiers and writes error
messages if it encounters invalid combinations. When adding or replacing, it compares the
version numbers of each input template with the version number of the existing template
of the same class/subclass/mask and, if the version number of the input template is later,
replaces the old template with the input template. If the template does not already exist,
then it is added to the file. The input template must contain an identifier line on the first
line:

* Jetc/errfmt

or errupdate rejects the input file. All delete operations are performed before the
add/replace operations.

310 Commands Reference



errupdate

Flag
-0 Does no version number checking.
Example
The following is an example input file:
* Jetc/errfmt
+ H87 2.0 Native Serial: IODN D2: IOCN D2: Base_Addr D4:\
Dev_Name A4: \n: Dev_Type X4: DDI_Length D4: Error _Type X1:\
Last_I/0 X1: Line_Status X1: Printer_Status X1:
- H92
Files
[etc/errfmt
file.err

file.undo.err
Related Information

The following command: “errpt, errpd” on page 305.

AIX Operating System Programming Tools and Interfaces.

Commands 311



ex

ex
Purpose
Edits lines interactively, with screen display.
Syntax
A
- —-v + 1
:f tag = subemd
—-w num
—X
0L805325
' Do not put a blank between these items.
OL805308
Description
Warning: The ex command does not support international characters. If
you use this command to edit a file that contains extended characters, you
can lose data.
The ex command is a line-oriented text editor that is a subset of the vi screen editor. The
ex command is similar to ed, but is more powerful, providing multi-line displays and access
to a screen editing mode. You may prefer to call vi directly to have environmental
variables set for screen editing.
Note: Some vi subcommands have meanings that differ from ed subcommands.
A limited subset of ex, edit, is available for novice or casual use (see “edit” on page 292).
To determine how to drive your work station more efficiently, ex uses the work station
capability data base terminfo and the type of the work station you are using from the
shell environment variable TERM.
312 Commands Reference



ex

Some features of ex are:

You can view text in files. The z subcommand lets you access windows of text, and you
can scroll through text by pressing Ctrl-D and Ctrl-U. The vi subcommand provides
further viewing options and active screen-editing by invoking the vi editor.

The undo subcommand lets you revoke the last previous subcommand entered (except
for q and w). undo can be used to revoke itself. You can switch back and forth
between the latest change in the edit file and the last prior file status; you can view
the effect of a subcommand without having irrevocably performed it. (ex displays
changed lines and indicates when more than a few lines are affected by a
subcommand.)

Note: The undo subcommand causes all marks to be lost on lines changed and then
restored if the marked lines were changed. It never clears the buffer modified
condition.

If the system or the editor crashes, you can retrieve your work (except changes that
were in the buffer) by re-entering the editor using the —r parameter and providing the
file name. When the file name is not specified, all open files in your partition are
listed.

You can queue a sequence or group of files to edit. List the files on the ex command
line and use the next subcommand to access each file sequentially. Within ex, you
can give next subcommand a list of file names or a pattern (as used by the shell) to
specify a new set of files to deal with. In general, you can designate file names to the
editor using all of the pattern-matching symbols that the shell will accept. The wild
card character % is available for forming file names and represents the name of the
current edit file.

A group of buffers, named a through z, lets you move text between files and within a
file. You can temporarily place text in named buffers and copy or reinsert it in a file
or carry it over to another file you edit. The buffers are cleared when you finally quit
the editor.

Warning: ex does not notify you if text is placed in a buffer and not
used before exiting the editor.

The ex utility lets you use patterns that match words. This lets you, for example,
search only for the word “ink” when your document also contains the word “inkblot”
or “blink.”

The z subcommand displays a window of logical lines. You can select the number of
lines displayed and locate the current line within the display simultaneously.

Note: More than a screen of output can result when the file lines are longer than the
output display lines because the set number of logical lines are displayed rather than a
number of physical lines.

Commands 313



ex

ex States

Command Normal and initial state. Input is prompted for by : (colon). Pressing END
OF FILE (Ctrl-D) clears an uncompleted subcommand from the command

Entry

Visual

line.

Entered by a, i and c¢. In this state you can enter text. Entry state ends
normally with a line that has only a . (period) on it or ends abnormally if you

press INTERRUPT (Alt-Pause).

Entered by v or o, and returns to command state with Q or *\.

ex Command Names and Abbreviations

Note: Most of the following commands are discussed under “edit” on page 292 or “vi,
vedit, view” on page 832.

abbrev ab next
append a number
args ar

change c preserve
copy co print
delete d put

edit e quit

file f read
global g recover
insert i rewind
join j set

list 1 shell
map source
mark ma  stop
move m substitute

Subcommand Addresses

+ num
—hum

The last line

The next line

The previous line

The numth line forward
The numth previous line

314 Commands Reference

nu
pre

pu

re
rec
rew
se
sh
so
st

unabbrev
undo
unmap
version
visual
write

xit

yank
window
escape
Ishift
print next
resubst
rshift
scroll

x-num
X%,y

”

[$pat

The numth line before x

Lines x through y

The line marked with m

The previous context

The next line with pat at end of
line



ex

Flags

%

num

The first through last lines /" pat The next line with pat at start of
line

line num /pat The next line with pat

The current line pat The previous line with pat

Scanning Pattern Formation

— & >

<

\>
[string]
[*string]
[x-y]

*

+subemd

The beginning of the line

- The end of the line

Any character

The beginning of the word

The end of the word

Any character in string

Any character not in string

Any character between x and y, inclusive
Any number of the preceding character.

Indents appropriately for Lisp code, and accepts the () {} [[ and ]] characters as
text rather than interpreting them as vi subcommands. The Lisp modifier is
active in open or visual modes.

Recovers file after an editor or system crash. If you do not specify file, a list of
all saved files is displayed.

The readonly option is set, preventing you from altering the file.
Loads the file that contains tag and positions the editor at tag.
Invokes the visual editor.

Note: When the v flag is selected, an enlarged set of subcommands are
available, including screen editing and cursor movement features. See “vi,
vedit, view” on page 832.

Suppresses all interactive-user feedback. If you use this flag, file input/output
errors do not generate a helpful error message.

Begins the edit at the specified editor search or subcommand. When
subcomand is not entered, +places the current line to the bottom of the file.
Normally ex sets current line to the start of the file, or to some specified tag or
pattern.

Commands 315



ex

Files
Jusr/lib/ex?.?7strings Error messages.
Jusr/libjex?.?recover Recover subcommand.
Jusr/lib/ex?.?preserve Preserve subcommand.
Jusr/lib/*[* Describes capabilities of work stations.
$HOME/.exrc Editor startup file.
.].exrc Editor startup file.
/tmp/Exnnnnn Editor temporary.
/tmp/Rxnnnnn Names buffer temporary.
[usr/preserve Preservation directory.

Related Information

The following commands: “vi, vedit, view” on page 832, “edit” on page 292, “awk” on
page 70, “ed” on page 280, “grep” on page 381, and “sed” on page 629.

The curses subroutine and the TERM, INIT, and terminfo files in AIX Operating System
Technical Reference.

316 Commands Reference



expr

expr

Purpose

Evaluates arguments as an expression.

Syntax

expr — expression —
OL805048

Description

The expr command reads an expression, evaluates it, and writes the result to standard
output. Within expression, you must separate each term with blanks, precede characters
special to the shell with a backslash (\), and quote strings containing blanks or other
special characters. Note that expr returns 0 to indicate a zero value, rather than the null
string. Integers may be preceded by a unary minus sign. Internally, integers are treated
as 32-bit, two’s complement numbers.

The operators and keywords are described in the following listing. Characters that need to
be escaped are preceded by a backslash (|). The list is in order of increasing precedence,
with equal precedence operators grouped within braces ({}).

expressionl \l expression2
Returns expressionl if it is neither null nor 0; otherwise it returns
expression2.

expressionl \& expression2
Returns expressionl if neither expressionl nor expression2 is null or 0;
otherwise it returns 0.

expression] { =, \>, V=, \{, \{=, != } expression2
Returns the result of an integer comparison if both expressions are integers;
otherwise returns the result of a string comparison.

expression] {+, - } expression2
Adds or subtracts integer-valued arguments.

expressionl { \*, /, % } expression2
Multiplies, divides, or provides the remainder from the division of
integer-valued arguments.

Commands 317



expr

expressionl : expression2
Compares expressionl with expression2, which must be a pattern; pattern
syntax is the same as that of the ed command (see page 280), except that all
patterns are anchored, so * (which anchors a pattern to the beginning of a
line), is not a special character in this context.

Normally, the matching operator returns the number of characters
matched. Alternatively, you can use the \(...\) symbols in expression2 to
return a portion of expressionl. In an expression such as [a-z], the minus
means “through” according to the current collating sequence. A collating
sequence may define equivalence classes for use in character ranges. See
the “Overview of International Character Support” in Managing the AIX
Operating System for more information on collating sequences and
equivalence classes.

The expr command returns the following exit values:
0 The expression is neither null nor 0.

1 The expression is null or 0.

2 The expression is invalid.

Note: After parameter processing by the shell, expr cannot distinguish between an
operator and an operand except by the value. Thus, if $a is =, the command:

expr %$a = '='
looks like:

after the shell passes the arguments to expr, and they will all be taken as the = operator.
The following works:

expr X$a = X=
Examples

1. To modify a shell variable:
COUNT=‘expr $COUNT + 1°

This adds 1 to the shell variable COUNT. The expr command is enclosed in grave
accents, which causes the shell to substitute the standard output from expr into the

COUNT= command. For more details, see “Command Substitution” on page 647.
2. To find the length of a shell variable:
LENGTH='expr $STR : " . *m

318 Commands Reference



expr

This sets LENGTH to the value given by the : (colon) operator. The pattern .* matches
any string from beginning to end, so the colon operator gives the length of STR as the
number of characters matched. Note that ".*" must be in quotes to prevent the shell

from treating the * as a pattern-matching character. The quotes themselves are not
part of the pattern.

If STR is set to the null string, the error message expr: syntax error is displayed.
This happens because the shell does not normally pass null strings to commands. In
other words, the expr command sees only

*
(The shell also removes the quotation marks.) This does not work because the colon

operator requires two values. We can fix this problem by enclosing the shell variable
in double quotation marks:

LENGTH=‘expr "$STR" : . *m

Now if STR is null, LENGTH is set to zero. Enclosing shell variables in double quotes is
recommended in general. However, do not enclose shell variables in single quotes. See
page 641 for details about quoting.

To use part of a string:
FLAG='expr "$FLAG" : "-*\(.*\)™

This removes leading minus signs, if any, from the shell variable FLAG. The colon

operator gives the part of FLAG matched by the part of the pattern enclosed in \( \). If
you omit the \( \), the colon operator gives the number of characters matched.

If FLAG is set to - (minus), a syntax error message is displayed. This happens because

the shell substitutes the value of FLAG before running the expr command. expr does
not know that the minus is the value of a variable. It can only see:

- (m)
and it interprets the first minus sign as the subtraction operator. We can fix this
problem by using:

FLAG=expr "x$FLAG" : "x-*\(.*\)"

Commands 319



expr

4, To use expr in an if statement:

if expr "$ANSWER" : "[yY]" >/dev/null
then

# ANSWER begins with "y" or "Y"
fi

If ANSWER begins with y or Y, the then part of the if statement is performed. If the
match succeeds, the result of the expression is 1 and expr returns an exit value of 0,
which is recognized as the logical value TRUE by if. If the match fails, the result is 0
and the exit value 1 (FALSE).

Redirecting the standard output of expr to the /dev/null special file discards the result
of the expression. If you do not redirect it, the result is written to the standard output,
which is usually your work station display.

5. Consider the following expression:

expr u$STRu = Hzu

If STR has the value = (equal sign), then after the shell processes this command expr
sees the expression:

The expr command interprets this as three = operators in a row and displays a syntax
error message. This happens whenever the value of a shell variable is the same as one
of the expr operators. You can avoid this problem by doing the following:

expr "x$STR" = "x="

Related Information

The following commands: “ed” on page 280 and “sh” on page 637.

The “Overview of International Character Support” in Managing the AIX Operating
System.

320 Commands Reference



factor

factor

Purpose

Factors a number.

Syntax
factor ﬂ
number
0OL805051
Description

When called without an argument, the factor command waits for you to enter a positive
number less than 2%, It then writes the prime factors of that number to standard output.
It displays each factor the proper number of times. To exit, enter a 0 or any nonnumeric
character.

When called with an argument, factor determines the prime factors of number, writes the
results to standard output, and exits.

Example

To calculate the prime factors of 123:
factor 123
This displays:

123
3
41

Commands 321



TNL SN20-9861 (26 June 1987) to SC23-0790-0

ff

ff

Purpose

Lists the file names and statistics for a file system.

Syntax

ff - device —
—-a num -=n file =i inod
=C num —p prefix I tnoge
_.| -5 )
-m num —u
-1

OL805122

Description

Warning: This program is not intended for use with diskette-based file
systems because of the difference in superblock structure and the general
format of the file system.

The ff command reads the i-list and directories specified by device and writes information
about them to standard output. It assumes that device is a file system, and saves i-node
data for files specified by flags. The output from the ff command consists of the path name
for each saved i-node, in addition to other file information that you request with the flags.
The output is listed in order by i-node number, with tabs between all fields. The default
line produced by ff includes the path name and i-number fields. With all flags enabled, the
output fields include path name, i-number, size, and UID.

The num parameter in the flags descriptions is a decimal number, where +num means
more than num, -num means less than num, and num means exactly num. A day is defined
as a 24-hour period.

The ff command lists only a single path name out of many possible ones for an i-node with
more than one link, unless you specify the -] flag. With -1, ff applies no selection criteria
to the names listed. All possible names for every linked file on the file system are included
in the output. On very large file systems, memory may run out before ff does.

322 Commands Reference



ff

Flags
-a num  Selects if the i-node has been accessed in num days.
-c num Selects if the i-node has been changed in num days.
-i i-node Generates names for only those i-nodes specified in the inode list.
-1 Does not display the i-node number after each path name.
-1 Generates a list of all path names for files with more than one link.
-m num Selects if the file associated with the i-node has been modified in num days.
-n file Selects if the file associated with the i-node has been modified more recently
than the specified file.
-p prefix Adds the specified prefix to each path name. The default prefix is . (dot).
-s Writes the file size, in bytes, after each path name.
-u Writes the owner’s login name after each path name.
Examples
1. To list the path names of all files in a given file system:

ff -1 /dev/hdO

This displays the path names of the files on the /dev/hd0 disk. If you do not specify
the -1 flag, then ff also displays the i-number of each file.

To list files that have been modified recently:
ff -m -2 -u /dev/hdO

This displays the path name, i-number, and owner’s user name (-u) of each file on
/dev/hd0 that has been modified within the last two days (-m -2).

To list files that have not been used recently:
ff -a +30 /dev/hd0

This displays the path name and i-number of each file that was last accessed more than
30 days ago (-a +30).

To find out the path names of certain i-nodes:
ff -1 -1 451,76 /dev/hdO

This displays all the path names (-1) associated with i-nodes 451 and 76.

Commands 322.1



ff

Related Information

The following commands: “find” on page 326 and “ncheck” on page 505.

322.2 Commands Reference



ff

Commands

323



file
file

Purpose

Determines file type.

Syntax
-m /etc/magic —f file
file
-m mfile file
-m /etc/magic
file — —c 4>—«
-m mfile
0L805124
Description

The file command reads its input files, performs a series of tests on each one, and attempts
to classify them by their types. file then writes the file types to standard output. If a file
appears to be ASCII, file examines the first 512 bytes and tries to determine its language.
If a file does not appear to be ASCII, file further attempts to distinguish a binary data file
from a text file that contains extended characters. If file is an a.out file, and the version
number is greater than zero (see “1d” on page 427), file displays the version stamp.

The file command uses the file /etc/magic to identify files that have some sort of magic
number, that is, any file containing a numeric or string constant that indicates its type.
Comments at the beginning of /etc/magic explain its format.

Flags

-c Checks the mfile (fetc/magic by default) for format errors. This validation is
not normally done. File typing is not done under this flag.
-f file Reads file for a list of files to examine.

-m mfile Specifies mfile as the magic file (/etc/magic by default).

324 Commands Reference



file

Examples
1. To display the type of information a file contains:
file myfile

This displays the file type of myfile (directory, data, ASCII text, C-program source,
archive, and so forth).

2. To display the type of each file named in a list of file names:
file -f filenames

This displays the type of each file with a name that appears in filenames. Each file
name must appear alone on a line.

To create filenames:
1s >filenames

then edit filenames as desired.
Files

/etc/magic File type database.
Related Information

“Overview of International Character Support” in Managing the AIX Operating System.

Commands 325



TNL SN20-9861 (26 June 1987) to SC23-0790-0

find

find

Purpose

Finds files matching expression.

Syntax

find —l path :}— expression —i

Description

OL805125

The find command recursively searches the directory tree for each specified path, seeking
files that match a Boolean expression written using the terms given below. The output
from find depends on the terms used in expression.

Expression Terms

In the following descriptions, the parameter num is a decimal integer that can be specified
as +num (more than num), -num (less than num), or num (exactly num).

-name file

-node nname

-perm onum

True if file matches the file name. You can use pattern-matching
characters, provided they are quoted. In an expression such as [a-z], the
minus means “through” according to the current collating sequence. A
collating sequence may define equivalence classes for use in character
ranges. See “Overview of International Character Support” in Managing
the AIX Operating System for more information on collating sequences
and equivalence classes.

True if the file resides in the node nname. If nname is a valid nickname,
it 1s used as is. If nname is not a valid nickname but has a valid NID
syntax, it is used as a NID.

True if the file permission code of the file exactly matches the octal
number onum (see “chmod” on page 128 for an explanation of file
permissions). The onum parameter may be up to three octal digits.

If you want to test the higher-order permission bits (the set-user-ID bit or
set-group-ID bit, for example), prefix the onum parameter with a minus (-)
sign. This makes more flag bits significant (see the stat system call for
an explanation of the additional bits), and also changes the comparison
to:

326 Commands Reference



find

-type type

-links num
-user uname
-group gname
-size num

-atime num
-mtime num
-ctime num

-exec cmd

-ok cmd

-print

-cpio device

-newer file

-depth

\( expression \)

(flags&onum)= =onum

True if the file type 1s of the specified type as follows:

b  Block special file

c Character special file
d Directory

f Plain file

p

FIFO (a named pipe).
True if the file has num links. See “In” on page 450.

True if the file belongs to the user uname. If uname is numeric and does
not appear as a login name in the /ete/passwd file, it is interpreted as a
user ID.

True if the file belongs to the group gname. If gname is numeric and does
not appear in the /ete/group file, it is interpreted as a group ID.

True if the file is num blocks long (512 bytes per block). For this
comparison the file size is rounded up to the nearest block.

True if the file has been accessed in num days.
True if the file has been modified in num days.
True if the file i-node has been changed in num days.

True if the cmd runs and returns a zero value as exit status. The end of
cmd must be punctuated by a quoted or escaped semicolon. A command
parameter {} is replaced by the current path name.

The find command asks you whether it should start cmd. If your
response begins with y, cmd is started. The end of cmd must be
punctuated by a quoted or escaped semicolon.

Always true; causes the current path name to be displayed. find does not
display path names unless you specify this expression term.

Write the current file to device in cpio format. See “cpio” on page 158.

True if the current file has been modified more recently than the file
indicated by file.

Always true. This causes the descent of the directory hierarchy to be
done so that all entries in a directory are affected before the directory
itself. This can be useful when find is used with cpio to transfer files
that are contained in directories without write permission.

True if the expression in parentheses is true.

Commands 327



find

You may perform the following logical operations on these terms (listed in order of
decreasing precedence):

Negate a term (! is the NOT operator).
Concatenate terms (juxtaposing two terms implies the AND operation).

Alternate terms (-o is the OR operator).

Examples

1.

To list all files in the file system with a given base file name:
find / -name .profile -print

This searches the entire file system and writes the complete path names of all files
named .profile. The / tells find to search the root directory and all of its
subdirectories. This may take a while, so it is best to limit the search by specifying the
directories where you think the files might be.

To list the files with a specific permission code in the current directory tree:
find . -perm 0600 -print

This lists the names of the files that have only owner-read and owner-write permission.
The . (dot) tells find to search the current directory and its subdirectories. See
“chmod” on page 128 for details about permission codes.

To search several directories for files with certain permission codes:

find manual clients proposals -perm -0600 -print

This lists the names of the files that have owner-read and owner-write permission end
possibly other permissions. The directories manual, clients, and proposals, and
their subdirectories, are searched. Note that ~perm 0600 in the previous example
selects only files with permission codes that match 0600 exactly. In this example,
-perm -0600 selects files with permission codes that allow at least the accesses
indicated by 0600. This also matches the permission codes 0622 and 2744.

To search for regular files with multiple links:
find . -type f -links +1 -print

This lists the names of the ordinary files (-type f) that have more than one link
(-1inks +1). Note that every directory has at least two links: the entry in its parent

directory and its own . (dot) entry. See “In” on page 450 for details about multiple file
links.

328 Commands Reference



TNL SN20-9861 (26 June 1987) to SC23-0790-0
find

5. To back up selected files in cpio format:
find . -name "*.c" -cpio /dev/rfd0
This saves all the . C files onto the diskette in cpio format. See “cpio” on page 158
for details. Note that the pattern "*.c" must be quoted to prevent the shell from

treating the * as a pattern-matching character. This is a special case in which find
itself decodes the pattern-matching characters.

6. To perform an action on all files that meet complex requirements:

find . \( -name a.out -0 -name "*.0" \) -atime +7 -exec rm {} \;

This deletes (-exec rm {} \;) all files named a.out or that end with .0, and that
were last accessed over seven days ago (-atime +7). The -0 flag is the logical OR
operator.

Files

Jetc/passwd
[ete/group

Related Information

The following commands: “cpio” on page 158, “sh” on page 637, and “test” on page 750.

The stat system call and the cpio and fs files in AIX Operating System Technical
Reference.

“Overview of International Character Support” and “Using Distributed Services” in
Managing the AIX Operating System.

Commands 329



fish
fish

Purpose

Plays the card game Go Fish.
Syntax

/usr/games/fish —
OL805189

Description

The object of the fish game is to accumulate books of four cards with the same face value.
You and the program take turns asking each other for a card in your hand. If your
opponent has any of that card, he must hand them over. If not, he says GO FISH, and you
draw a card from the pool of undealt cards. If you draw the card you asked for, you draw
again. As books are made, they are laid down on the table. Play continues until there are
no cards left. The player with the largest number of books wins the game. fish tells you
the winner and exits.

The fish game asks if you want instructions before play begins. To see the instructions,
enter Y or yes.

Entering p as your first move gives you the professional level game.

The fish game tells you the cards in your hand each time it prompts for a move. It tells
you when either side makes a book, says GO FISH for you, and draws for you. All you
must enter as play progresses is the value of the card you want to ask for. If you press
only the Enter key, you are given information about the number of cards in your
opponent’s hand and in the pool.

To exit the game before play is completed, press INTERRUPT (Alt-Pause).

330 Commands Reference



format

format

Purpose

Formats diskettes.

Syntax

format

-d/dev/fd0
—ddevice }—
0L.805395

Description

The format command formats diskettes in the specified device (/dev/fd0 by default).
format determines the device type, either a 360K or a 1.2M diskette drive. By default, it
formats a diskette in a 360K drive to have 40 cylinders, 9 sectors per track, and 2 sides and
a diskette in a 1.2M drive to have 80 cylinders, 15 sectors per track, and 2 sides.

Flags
-ddevice Specifies the device containing the diskette to be formatted.
-f Formats the diskette without checking for bad tracks, thus formatting the
diskette faster.
-1 Formats a 360K diskette in a 1.2M diskette drive.

Warning: A 360K diskette drive may not be able to read a 360K
diskette that has been formatted in a 1.2M drive.

- Specifies a single-sided diskette. Use only for 360K diskette drives.
-t Specifies that the number of sectors on a 360K diskette should be 8.

Related Information

The fd file in AIX Operating System Technical Reference.

Commands 331



fortune

fortune

Purpose

Tells a fortune.
Syntax

/usr/games/fortune —i
OL805190

Description

The fortune game tells a fortune, selected at random from the file
/usr/games/lib/fortunes, and exits.

You can edit the file fusr/games/lib/fortunes to add your own fortunes. Each saying in
the file should be a single line. fortune folds long sayings into multiple lines as necessary.

Files

[usr/games/lib/fortunes

332 Commands Reference



TNL SN20-9861 (26 June 1987) to SC23-0790-0
fptype

fptype

| Purpose

Displays the floating point configuration of the system.

| Syntax

fptype —y
OL805471

| Description

1
t
|
I
!
l
|
|
|

The fptype command calls a subroutine which determines the current floating point
configuration. fptype returns one of the following values and displays the corresponding
message:

Return Value Message

0 Floating Point Type = Software Emulation

1 Floating Point Type = FPA Card

2 Floating Point Type = APC Card with MC68881

4 Floating Point Type = AFPA - No DMA Support
12 Floating Point Type = AFPA - With DMA Support

| Related Information

l

The fpfp subroutine in AIX Operating System Technical Reference.

Commands 332.1



TNL SN20-9861 (26 June 1987) to SC23-0790-0
fptype

332.2 Commands Reference



fsck

fsck, dfsck

Purpose

Checks file system consistency and interactively repairs the file system.

Syntax
fsck —< °"_ey°f —scyl : skip
-n
-p =Scyl : skip

—dblocknum —iinum filesystem’

—bblocknum

'The default action is to check every file system with the attribute check=true in the file

/etc/filesystem.

OL8055384
dfsck <<__>’ filesystem! — -! ﬂ filesystem2 —
flaglist? flaglist2
'Usea ~ to separate the groups when you specify flags as part of
the arguement.
OL805456

Description

Warning: Always run fsck on file systems after a system crash.
Corrective actions may result in some loss of data. The default action for
each consistency correction is to wait for the operator to respond yes or
no. If you do not have write permission for an affected file, fsck defaults
to a no response in spite of your actual response.

The fsck command checks and interactively repairs inconsistent filesystems. It should be

run on every file system as part of system initialization (see “rc” on page 594). You must
have superuser authority to run fsck. Normally, the file system is consistent, and fsck

Commands 333



fsck

merely reports on the number of files, used blocks and free blocks in the file system. If the
filesystem is inconsistent, fsck displays information about the inconsistencies found and
prompts you for permission to repair them. fsck is conservative in its repair efforts and
tries to avoid actions that might result in the loss of valid data. In certain cases, however,
fsck recommends the destruction of a damaged file.

If you do not specify filesystem, fsck looks at /etc/filesystems to find a list of file systems
to check by default. fsck can perform checks (on separate arms) in parallel (running in
parallel processes). This can reduce the time required to check a large number of file
systems.

In /etc/filesystems, automatic checking may be enabled by adding a line in the stanza, as
follows:

check=true

If you specify the -p flag, fsck can perform multiple checks at the same time. To tell fsck
which file systems are on the same drives change the check specification in
[etc/filesystems as follows:

check=number

The number tells fsck which group contains a particular file system. File systems on a
single drive are placed in the same group. Each group is checked in a separate parallel
process. File systems are checked, one at a time, in the order that they appear in
Jetc/filesystems. All check=true file systems are in group 1. fsck attempts to check the
root file system before any other file system regardless of order specified on the command
line or in /etc/filesystems.

The fsck command checks for the following inconsistencies:

e Blocks allocated to multiple files or to a file and the free list.
e Blocks allocated to a file or on the free list outside the range allowable block numbers.
e Discrepancies between the number of directory references to a file and the link count
in the file.
e Size checks:
— Incorrect number of blocks.
—~ Directory size not 16-byte aligned.
e Bad i-node format.
Blocks not accounted for anywhere.
e Directory checks:
— File pointing to an i-node that is not allocated.
— I-node number out of range.
— Dot (\) link missing or not pointing to itself.
— Dot dot (..) link missing or not pointing to -the parent directory.
— Files that are not referenced or directories that are not reachable.
e Superblock checks:
— More than 65535 i-nodes.
— More blocks for i-nodes than there are in the file system.

334 Commands Reference



fsck

o Bad free block list format.
e Total free block and/or free i-node count incorrect.

Orphaned files and directories (those that cannot be reached) are, if you allow it,
reconnected by placing them in the lost+found subdirectory in the root directory. The
name assigned is the i-node number. The only restriction is that the directory lost+ found
must already exist in the root directory of the file system being checked and must have
empty slots in which entries can be made (accomplished by copying a number of files to the
directory and then removing them before you run fsck). If you do not allow fsck to
reattach an orphaned file, it requests permission to destroy the file. When fsck displays
i-node information, the NLTIME environment variable controls the format of the
modification time.

In addition to its messages, fsck records the outcome of its checks and repairs through its
exit value. This exit value can be any sum of the following conditions:

0 All checked file systems are now ok.

2 fsck was interrupted before it could complete checks or repairs.

4 fsck changed the mounted file system; the user must restart the system immediately.
8 The file system contains unrepaired damage.

When the system is being started up normally, fsck runs with the -p flag from /ete/rc (see
“rc” on page 594). If fsck detects and repairs errors on the root or other mounted file
systems, it displays a message on the console and restarts the system, if possible. If it
cannot restart the system or if it detects errors that it cannot repair, it displays
appropriate messages on the console and returns an exit value indicating that an
immediate restart is necessary.

Note: All statistics reported by fsck are in 512-byte blocks, regardless of the actual block
size of the file system being checked. All user specifications should be specified in 512-byte
blocks.

dfsck

The dfsck command lets you simultaneously check two file systems on two different drives.
Use the flaglistl and flaglist2 arguments to pass flags and parameters for the two sets of
file systems. Use a - (minus) to separate the file system groups if you specify flags as part
of the arguments.

The dfsck command permits you to interact with two fsck commands at once. To aid in
this, dfsck displays the file system name with each message. When responding to a
question from dfsck, you must prefix your response with a 1 or a 2 to indicate whether the
answer refers to the first or second file system group.

Note: Do not use dfsckto check the root file system (/dev/hd0).

Commands 335



fsck

Flags

-bblocknum

-dblocknum

-f

-iinum

-n

-s[cyl:skip]

-Slecyl:skip]

Designates a block as bad. fsck searches for any files that contain the
specified block. If it finds any such files, it asks permission to delete them.
If it finds no such files or is told to delete all such files, the specified block is
added to the bad block list in i-node 1. This keeps the block out of
circulation so that it cannot be allocated to any user file.

Searches for references to a specified disk block. Whenever fsck encounters
a file that contains a specified block, it displays the i-node number and all
path names that refer to it.

Performs a fast check. Under normal circumstances, the only file systems
likely to be affected by halting the system without shutting down properly
are those that were mounted when the system stopped. the -f flag tells fsck
not to check file systems that were cleanly unmounted. fsck determines this
by inspecting the s _fmod flag in the file system superblock. this flag is set
whenever a file system is mounted and cleared when it is cleanly unmounted.
if a file system was cleanly unmounted, it is unlikely to have any problems.
because most file systems are cleanly unmounted, not checking those file
systems can reduce the checking time.

Searches for references to a specified i-node. Whenever fsck encounters a
directory reference to a specified i-node number, it displays the full path
name of the reference.

Assumes a no response to all questions asked by fsck; does not open
filesystem for writing.

Does not display messages about minor problems, but fixes them
automatically. This flag does not grant the wholesale license that the -y flag
does and is useful for performing automatic checks when the system is to be
started normally. You should use this flag whenever the system is being run
automatically as part of the system startup procedures.

Ignores the actual free list and unconditionally reconstructs a new one. You
can specify an optional interleave specification with this flag: cyl specifies
the number of blocks per cylinder; skip specifies the number of blocks to
skip. If you do not specify ¢yl or skip, fsck uses the interleave parameters in
the superblock. The file system should be unmounted while this is done; if
this is not possible, be sure that you are running no programs and that you
perform a system restart immediately afterwards so that the old copy of the
superblock in memory is not written to disk.

Conditionally reconstructs the free list. This flag is like the -s flag except
that the free list is rebuilt only if there are no discrepancies discovered in
the file system. Using -S forces a nO response to all questions asked by fsck.
Use this flag to force free list reorganization on uncontaminated file systems.

336 Commands Reference



fsck

-tfile Uses file as a scratch file if fsck cannot obtain enough memory to keep its

tables. If you do not specify -t and fsck needs a scratch file, it prompts you
for the name of the scratch file. However, if you have specified the -p flag,

fsck fails. The file chosen must not be on the file system being checked. If
it is not a special file, it is removed when fsck ends.

-y Assumes a yes response to all questions asked by fsck. This lets fsck take
any action that it considers necessary. Use this flag only on severely
damaged file systems.

Examples
1. To check all the default file systems:

Files

fsck

This checks all the file systems marked check=true in /etc/filesystems. This form of
the fsck command asks you for permission before making any changes to a file system.

To fix minor problems with the default file systems automatically:

fsck -p

To check a specific file system:

fsck /dev/hdl

This checks the unmounted file system located on the /dev/hdl device.
To simultaneously check two file systems on two different drives:

dfsck -p /dev/hdl - -p /dev/hd7

This checks both file systems simultaneously, if the file systems on the devices
/dev/hdl and /dev/hd7 are located on two different drives. You can also specify the
file system names that are found in the /etc/filesystems file.

[etc/filesystems Contains default list of file systems to check.

Related Information

The following commands: “rc” on page 594, “fsdb” on page 338, “istat” on page 415,

“mkfs” on page 487, “ncheck” on page 505, and “shutdown” on page 663.

The filesystems and fs files in AIX Operating System Technical Reference.
The discussion of fsck and dfsck in Managing the AIX Operating System

Commands 337



fsdb

fsdb

Purpose

Debugs file systems.

Syntax

fsdb — filesystem ﬂ

OL805244

Description

Flag

Warning: This program is not intended for use with diskette-based file
systems because of the difference in superblock structure and the general
format of the file system.

You can use the fsdb command to examine and patch a damaged file system after a system
crash. It allows you to access blocks and i-numbers and to examine various parts of an
i-node. You can reference components of the i-node symbolically. These features simplify
procedures for correcting control-block entries or for descending the file-system tree.

The file system to be examined can be specified by a block device name, a raw device name,
or a mounted file system name. In the latter case, fsdb determines the associated file name
by reading the file /etc/filesystems.

Any numbers you enter are considered decimal by default, unless you prefix them with a 0
(zero) to indicate an octal number.

Because fsdb reads and writes one block at a time, it works with raw as well as with block
I/O. It uses a buffer management routine to retain commonly used blocks of data in order
to reduce the number of read system calls. All assignment operations write the
corresponding block immediately.

- Disables the error checking routines used to verify i-node and block addresses. The O
subcommand toggles these routines on and off. When these routines are running,
fsdb reads the i-size and f-size entries from the superblock of the file system.

338 Commands Reference



fsdb

Subcommands

The subcommands you give to fsdb are requests to display or modify information. A
display subcommand is a block address optionally followed by a display format
specification. A field modification subcommand is similar to the display subcommand but
may include a subfield specification, an operator, and a value. An address specification is
a number optionally followed by a type specifier and subfield specification.

The display subcommands are:

num Display data at absolute address num.
i-numberi Display data at i-number.
block-addressb Display data at block-address.
directory-slot-offsetd Display data at directory-slot-offset.

q Quit.

! Escape to the shell.

The display formats are:

P General display facilities

f File display facility.

You can step through the i-node information examining each byte, word, or double word.
Select the desired display mode by entering one of the following subcommands:

B Begin displaying in byte mode.

D Begin displaying in double word mode.
w Begin displaying in word mode.

0] Toggle error checking on or off.

Moving forward or backward through the i-node data is done with the following symbols:

+num Move forward the specified number of units currently in effect.
-num Move backward the specified number of units currently in effect.

The following symbols allow you to store the current address and return to it conveniently:

>address Store address for later reference. If you do not specify address, fsdb
stores the current address.
< Return to the previously stored address.

The display format applied to the information at the selected address is the one currently
in effect. You may receive an error message indicating improper alignment if the address
you specify does not fall on an even boundary.

The display facilities display a formatted output in various styles. The current address is
normalized to an appropriate boundary before display begins. It advances with the
displaying and is left at the address of the last item displayed. The output can be ended at
any time by pressing INTERRUPT (Alt-Pause).

Commands 339



fsdb

If you enter a number after the p symbol, fsdb displays that number of entries. A check is
made to detect block boundary overflows because logically sequential blocks are generally
not physically sequential. If you enter a count of zero, fsdb displays all entries to the end
of the current block.

The display formats available are:

Display as i-nodes.
Display as directories.
Display as octal words.
Display as decimal words.
Display as characters.
Display as octal bytes.
Display as hex bytes.

<Toe0

Use the f symbol to display data blocks associated with the current i-node. If you enter a
number after f, fsdb displays that block of the file. Block numbering begins at zero. The
desired display subcommand follows the block number, if present, or the f symbol. The
display facility works for large as well as small files. It checks for special devices and also
checks the data are not zero.

You can use dots (.), tabs, and spaces as subcommand delimiters, but they are not
necessary. Pressing just the Enter key (entering a blank line) increments the current
address by the size of the data type last displayed. That is, the address is set to the next
byte, word, double word, directory entry or i-node, allowing you to step through a region of
a file system. fsdb displays information in a format appropriate to the data type. Bytes,
words and double words are displayed as an octal address followed by the octal
representation of the data at that address and the decimal equivalent enclosed in
parentheses. fsdb adds a .B or .D to the end of the address to indicate a display of byte or
double word values. It displays directories as a directory slot offset followed by the
decimal i-number and the character representation of the entry name. It displays i-nodes
with labeled fields describing each element. The environment variables NLLDATE and
NLTIME control the formats of the date and time.

The following mnemonics are used for the names of the fields of an i-node and refer to the
current working i-node:

md Permission mode

In Link count

uid User number

gid Group number

Sz File size

an Data block numbers (0 - 12)
at Access time

mt Modification time

maj Major device number

min Minor device number

340 Commands Reference



fsdb

The general form for assigning new values is:

mnemonic operator new-value

The fsdb command modifies the value of the field specified by mnemonic according to the
operator and new-value.

Valid operators include:

Assign new-value to the specified mnemonic.

=+  Increment the mnemonic by the specified new-value. The default new-value is 1.
== Decrease the mnemonic by the specified new-value. The default new-value is 1.
=" Assign character string new-value to the specified mnemonic.

Examples

The following examples show subcommands that you can use after starting fsdb.

1.

. To display an i-node:

3861

This displays i-number 386 in i-node format. It now becomes the current i-node.

To change the link count for the current i-node to 4:

In=4

To increase the link count of the current i-node by 1:

Tn=+1

To display part of the file associated with the current i-node:

fc

This displays as ASCII text block zero of the file associated with the current i-node.
To display entries of a directory:

2i.fd

This changes the current i-node to the root i-node (i-node 2), then displays the
directory entries in the first block associated with that i-node.

To go down a level of the directory tree:
d5i.fc

This changes the current i-node to the one associated with directory entry 5. Then it
displays the first block of the file as ASCII text (fc). Directory entries are numbered
starting from 0 (zero).

Commands 341



fsdb

7. To display a block when you know its block number:
1b.p0o
This displays the superblock (block 1) of file system in octal.
8. To change the i-number of a directory entry:

21.a0b.d7=3

This changes the i-number of directory entry 7 in the root directory (21) to 3. This
example also shows how several operations can be combined on one line.

9. To change the file name of a directory entry:
d7.nm="chapl.rec"
This changes the name field of directory entry 7 to chapl.rec.

10. To display a given block of the file associated with the current i-node:
a2b.p0d

This displays block 2 of the current i-node as directory entries.

Related Information

The following command: “fsck, dfsck” on page 333.

The fs and dir files and the environment miscellaneous facility in AIX Operating System
Technical Reference.

The “Overview of International Character Support” in Managing the AIX Operating
System.

342 Commands Reference



TNL SN20-9861 (26 June 1987) to SC23-0790-0

fuser
fuser
Purpose
Identifies processes using a file or file structure.
Syntax
fuser file
OL805055
Description

Flags

The fuser command lists, for local processes, the process numbers of the processes using
the specified local or remote file. For remote processes that use local files, fuser lists the
node (NID) that has the files open. It does not list the process numbers, user names, or
usage information. For block special devices, all processes using any file on that device

are listed. The process number is followed by a letter indicating how the process is using
the file:

¢ Using file as the current directory
P Using file as the parent of the current directory (only when in use by the system)
r Using file as the root directory.

The process numbers are written as a single line to standard output, separated by spaces
and ended with a single new-line character. All other output is written to standard error.

-k Sends the SIGKILL signal to each local process. Only the person operating with
superuser authority can kill another user’s process (see “kill” on page 422). SIGKILL
is not sent to remote processes.

-u Indicates the login name in parentheses after the process number. The login name is
not listed for remote processes.

- Cancels any flags selected for the previous set of file or files.

Flags may be respecified between groups of files on the command line. The new set of flags
replaces the old set.

Commands 343



TNL SN20-9861 (26 June 1987) to SC23-0790-0

fuser
Examples
1. To list the ID numbers of the processes using the /etc/passwd file:
fuser /etc/passwd
2. To list the process IDs and user names of the processes using the /etc/filesystems file:
fuser -u /etc/filesystems
3. To stop all of the processes using a given disk drive:
fuser -k -u /dev/hdl
This lists the process ID and user name, and then stops each process that is using the
/dev/hdl disk drive. You must have superuser authority to stop processes that belong
to someone else. You might want to do this if you are trying to unmount /dev/hdl,
and a process accessing it is preventing you from doing so.
4. To perform the actions of the previous examples in reverse order:
fuser -k -u /dev/hdl - -u /etc/filesystems - /etc/passwd
Note that lone dashes before the -u and before /etc/passwd turn off both the -k and
-u flags.
Files
Junix System kernel image.
/dev/kmem For system image.
/dev/mem Also for system image.

Related Information

The following commands: “killall” on page 425, “mount” on page 498, and “ps” on
page 579.

The kill and signal system calls in AIX Operating System Technical Reference.

“Using Distributed Services” in Managing the AIX Operating System.

344 Commands Reference



fwtmp

fwtmp

Purpose

Manipulates connect accounting records.

Syntax

/usr/lib/acct/fwimp ﬂ
—ic
/usr/lib/acct/wimpfix

/usr/lib/acct/acctwimp — "reason” —
OL805239

Description

fwtmp

The fwtmp command reads wtmp records from standard input and converts them to
formatted ASCII records, which it writes to standard output.

Flag
-ic Reads ASCII input and writes output in binary form.

acctwtmp

The acctwtmp command writes to standard output a utmp record containing the string
reason and the current date and time. reason can contain 11 or fewer characters.

Commands 345



fwtmp

Files

wtmpfix

The wtmpfix command examines standard input or the named files containing records in
wtmp format, corrects the date and time stamps to make the entries consistent, and writes
the corrected input to standard output. (It is necessary that date and time stamps be
consistent because acctconl generates an error and stops when it encounters inconsistent
date change records.)

Each time the date is set (on system startup or with the date command) a pair of date
change records is written to /usr/adm/wtmp. The first record is the old date, denoted by
the string old time placed in the line field and the flag OLD _TIME placed in the type
field. The second record is the new date, denoted by the string new time placed in the
line field and the flag NEW _TIME placed in the type field. The wtmpfix command uses
these records to synchronize all date and time stamps in the file.

In addition to correcting date and time stamps, wtmpfix checks the validity of the name
field to ensure that it consists solely of alphanumeric characters, a dollar sign ($), or
spaces. If it encounters an invalid name, it changes the login name to INVALID and
writes a diagnostic to standard error. In this way, wtmpfix reduces the chance that
acctcon? will fail when it processes connect accounting records.

Jusr/adm/wtmp
Jusr/include/utmp.h

Related Information

The following commands: “acet/*” on page 31, “acctcms” on page 36, “acctcom” on
page 38, “acctcon” on page 42, “acctdisk” on page 44, “acctmerg” on page 46,
“acctpre” on page 48, and “runacct” on page 606.

The acct system call and the acct and utmp files in AIX Operating System Technical
Reference.

“Running System Accounting” in Managing the AIX Operating System.

346 Commands Reference



gdev

gdev

Purpose

Provides graphical device routines and filters.

Syntax
—cnum  —xy num —u
—p num  —yd num —r num
—-s num -yv num
—xd num
erase —i

hardcopy —

tekset —
td ‘< >—< one of >—F_fi/e—~’—
—e —-u
—r num
OL777036
Description

The following commands provide various graphical device routines and filters. They all
reside in the /usr/bin/graf directory (see “graphics” on page 377).

hpd

The hpd command takes a graphical file in gps format (standard input by default), and
translates it into instructions for the Hewlett-Packard 7221A Graphics Plotter. See the
gps file in AIX Operating System Technical Reference for a description of this file format.
It computes a viewing window from the maximum and minimum points in the file, unless
you specify the -r or -u flags.

Commands 347



gdev

Flags

cnum Selects character set num, where num is an integer between 0 and 5. See the
Hewlett-Packard 7221A Graphics Plotter documentation for a list of these
character sets.

prum  Selects pen numbered num, where num is an integer between 1 and 4 inclusive.

rnum Displays a window on a GPS region, where num is an integer from 1 to 25
inclusive.

snum Slants characters num degrees clockwise from the vertical.

u Displays window on the entire GPS universe.

xdnum Sets x displacement of the viewport’s lower left corner to num inches.
xvnum Sets width of viewport to num inches.

ydnum Sets y displacement of the viewport to num inches.

yvnum Sets height of viewport to num inches.

erase

The erase command sends characters to a Tektronix 4010 series storage terminal to erase
the screen.

hardcopy

When issued at a Tektronix display terminal with a hard copy unit, the hardcopy
command produces a screen copy on the unit.

tekset

The tekset command send characters to a Tektronix terminal to clear the display screen,
set the display mode to alpha, and set characters to the smallest font.

td

The td command translates a GPS object to scope code for a Tektronix 4010 series storage
terminal. It computes a viewing window from the maximum and minimum points in file,
unless you specify the -u or -rnum flag. Standard input is the default input file.

Flags
e Does not erase the screen before initiating display.
rnum Displays GPS region num, where num is an integer between 1 and 25 inclusive.

u Displays the entire GPS universe.

348 Commands Reference



gdev

Related Information

The following commands: “ged” on page 350, “gend” on page 357, and “graphics” on
page 377.

The gps file in AIX Operating System Technical Reference.

Commands 349



ged

ged

Purpose

Displays, makes, and edits graphical files on Tektronix 4010 terminals,

Syntax

one of
ged —{ -y .
E file
l—l e

OL777037

Description

Flags

The ged command is an interactive graphical editor used to edit drawings on Tektronix
4010 series display terminals. The drawings are a sequence of objects that consist of lines,
arcs, and text. With ged you can view the objects at various magnifications and from
various locations. The drawings are stored in graphical primitive string (GPS) files. If you
specify - (minus) as the file name, ged reads standard input into the edit buffer.

An arc or lines object has a start point (object-handle), followed by zero or more points
(point-handles). A text object has only an object-handle. These objects are positioned
within a Cartesian plane (universe), having 64K (-32K to +32K) points (universe-units)
on each axis. The GPS universe is divided into 25 equal sized areas called regions. These
regions are arranged in five rows of five squares each, numbered 1 to 25 from the lower left
of the universe to the upper right.

The ged command maps rectangular areas (windows) from the universe onto the display
screen. Windows let you view pictures from different locations and at different
magnifications. The universe-window is the window with minimum magnification; that
is, the window that views the entire universe. The home-window is the window that
completely displays the contents of the display buffer.

-e Does not erase the screen before the initial display
-rnum Displays region number num.
-u Displays the entire GPS universe.

-R Invokes the restricted shell on use of ! (exclamation character).

350 Commands Reference



ged

Subcommands

The ged subcommands are entered in stages. Typically each stage ends with a <cr>
(Return). Prior to the final <er>, you may cancel the subcommand by pressing
INTERRUPT (Alt-Pause). You can edit the input of a stage, during the stage, by using

the erase and kill characters of the calling shell. The * (star) prompt indicates that ged is
waiting at stage 1.

Each subcommand consists of a subset of the following stages:
1. Command line, whose format is the same as the format of a shell command:
subcommand-name [-flags] [filename]

followed by pressing the Enter key. The subcommand-name consists of the first
character of the subcommand. ged echoes the full command name and pauses for the
remainder of the command line. Flags are indicated by a leading - (minus). To
generate a list of ged subcommands, enter: ?.

2. Text, a sequence of characters terminated by an unescaped Enter You can have a
maximum of 120 lines of text.

3. Points, a sequence of one or more screen locations (maximum of 30), indicated either
by the terminal crosshairs or by name. The prompt for entering points is the
appearance of the crosshairs. When the crosshairs are visible, typing:

sp (space) Enters the current location as a point. The point is identified by a

number.
$num Enters the previous point numbered num.
>x labels the last point entered with the upper case letter x.
$x Enters the point labeled x.

Establishes the previous points as the current points. At the start of a
command, the previous points are those locations given with the previous
command.

= Echoes the current points.

$.num Enters the point.
# Erases the last point entered.
@ Erases all of the points entered.

4. Pivot, a single location entered by pressing the Enter key or by using the $ operator
and indicated with a * (star).

5. Destination, a single location entered by pressing the Enter key or by using $ (dollar
sign).

Commands 351



ged

352

Subcommand Summary

In the following lists, characters printed in bold are to be entered literally. Subcommand
stages are printed in bold italics. Arguments surrounded by [] (brackets) are optional.
Parentheses surrounding arguments separated by “or” indicate that you must specify
exactly one of the arguments.

Construct Subcommands

Arc [-echo,style,weight] points

Box [-echo,style,weight] text

Circle [-echo,style,weight] point

Hardware [-echo] text points

Lines [-echo,style,weight] points

Text [-angle,echo,height, mid-point,right-point,text, weight] text points

Edit Subcommands

Delete (-(universe or view) or points)

Edit [-angle,echo,height,style,weight] (-(universe or view) or points)
Kopy [-echo,points,x] points pivot destination

Move [-echo,points,x] points pivot destination

Rotate [-angle,echo,kopy,x] points pivot destination

Scale [-echo,factor,kopy,x] points pivot destination

View Subcommands

coordinates points

erase

new-display

object-handles (-(universe or view) or points)

point-handles  (-(labelled-points or universe or view) or points)

view (-(home or universe or region) or [-x] pivot destination)
x [-view] points
zoom [-out] points

Commands Reference



ged

Other Subcommands

quit or Quit

read
set

[-angle,echo,height, mid-point,right-point,text, weight] file-name|destination]

write file-name

lcommand

?

Options

Options specify parameters used to construct, edit, and view graphical objects. If a

parameter used by a subcommand is not specified as an option, the default value for the

parameter will be used (see set following). The format of subcommand options is:

-option[,option]

where option is keyletter[value]. Flags take on the values of true or false indicated by +

and - respectively. If no value is given with a flag, true is assumed.

Object Options

anglen
echo
factorn
heightn
kopy
mid-point
points
right-point
styletype

text
weighttype

Specifies an angle of n degrees.

When true, changes made to the display buffer are echoed to the screen.
Specifies a scale factor is n percent.

Sets the height of text to n universe-units (0 <n <1280).

When true, copies rather than moves.

When true, uses the mid-point of a text string to locate string.

When true, operates on points; otherwise operates on objects.

When true, uses the rightmost point of the text string to locate string.
Sets the line style to one of following types:

1) solid

da  dashed

dd dot-dashed
do dotted

1d long-dashed.
When false, outlines rather than draws text strings.

Sets line weight to one of following types:

Commands

[-angle,echo,factor, height, kopy,mid-point,points, right-point,style,text, weight,x]

353



ged

n narrow
m medium
b bold.

Area Options

home
out
regionn
universe
view

X

References the home-window.

Reduces magnification during zoom.
References the region n.

References the universe-window.
References those objects currently in view.

Indicates the center of the referenced area.

Subcommand Descriptions

Construct Subcommands

Arc
Lines

Box
Circle

Text
Hardware

Behave similarly. Each consists of a command line followed by points. The
first point entered is the object-handle. Successive points are point-handles.
Lines connects the handles in numerical order. Arc fits a curve to the handles
(currently a maximum of 3 points will be fit with a circular arc; splines will be
added in a later version).

Special cases of Lines and Arc, respectively. Box generates a rectangle with
sides parallel to the universe axes. A diagonal of the rectangle would connect
the first point entered with the last point. The first point is the
object-handle. Point-handles are created at each of the vertices. Circle
generates a circular arc centered about the point numbered zero and passing
through the last point. The circle’s object-handle coincides with the last
point. A point-handle is generated 180 degrees around the circle from the
object-handle.

Generate text objects. Each consists of a command line, text and points
Text is a sequence of characters delimited by <er>. Multiple lines of text
may be entered by preceding a er with a \ (backslash). The Text subcommand
creates software generated characters. Each line of software text is treated as
a separate text object. The first point entered is the object-handle for the first
line of text. The Hardware command sends the characters in text,
uninterpreted, to the terminal.

354 Commands Reference



ged

Edit Subcommands

Edit subcommands operate on portions of the display buffer called defined-areas. A
defined-area is referenced either with an area option or interactively. If an area option is
not given, the perimeter of the defined-area is indicated by points. If no point is entered, a
small defined-area is built around the location of the <ecr>. This is useful to reference a
single point. If only one point is entered, the location of the <cr> is taken in
conjunction with the point to indicate a diagonal of a rectangle. A defined-area referenced
by points will be outlined with dotted lines.

Delete Removes all objects whose object-handle lies within a defined-area. The universe
option removes all objects and erases the screen.

Edit Modifies the parameters of the objects within a defined-area. Parameters that can
be edited are:

angle Specifies the angle of text

height Specifies the height of text

style Specifies the style of lines and arc
weight  Specifies the weight of lines, arc, and text

Kopy
Move Copies (or moves) object- and/or point-handles within a defined-area by the
displacement from the piveot to the destination.

Rotate Rotates objects within a defined-area around the pivot. If the kcopy flag is true
then the objects are copied rather than moved.

Scale  For object whose object-handles are within a defined-area, point displacements
from the pivot are scaled by factor percent. If the kopy flag is true then the
objects are copied rather than moved.

View Subcommands

coordinates Displays the location of poin#(s) in universe- and screen-units.
erase Clears the screen (but not the display buffer).
new-display Erases the screen then displays the display buffer.

object-handles

point-handles  Labels object- (and/or point-handles) that lie within the defined-area with
O (or P). point-handles identifies labeled points when the labeled-points
flag is true.

view Moves the window so that the universe point corresponding to the pivot
coincides with the screen point corresponding to the destination.
Options for home, universe, and region display particular windows in the
universe.

Commands 355



ged

x Indicates the center of a defined-area. Option view indicates the center of
the screen.
zoom Decreases (zoom out) or increases the magnification of the viewing

window based on the defined-area. For increased magnification, the
window is set to circumscribe the defined-area. For a decrease in
magnification the current window is inscribed within the defined-area.

Other Subcommands

quit
Quit Exit from ged. quit responds with ? if the display buffer has not been written since
the last modification.

read Inputs the contents of a file. If the file contains a GPS object, it is read directly. If
the file contains text it is converted into text object(s). The first line of a text file
begins at destination.

set When given option(s) resets default parameters, otherwise it prints current default
values.

write Outputs the contents of the display buffer to a file.
! Escapes ged to execute a AIX Operating System command.

? Lists ged subcommands.

Related Information

The following commands: “gdev” on page 347, “graphics” on page 377, and “sh” on
page 637.

The gps file in AIX Operating System Technical Reference.

356 Commands Reference



gend

gend

Purpose

Provides a general graphics device backend.

Syntax

gend one of
—rnum

—u

OL805458

Description

Flags

The /usr/bin/graf/gend command displays GPS files on the graphics output devices
supported by the Advanced Display Graphics Support Library (GSL). For more
information about GSL, see the “Advanced Display Graphics Support Library” in AIX
Operating System Technical Reference. By default, gend reads standard input and writes to
the current display (see “display” on page 258), but gend can also drive printers and
plotters if you have installed the VDI drivers that are in the Extended Services Program.
You can specify the name of one or more GPS files on the command line. If you enter a
file name of - (minus), gend reads standard input.

When gend displays an image, it opens a new virtual terminal. You can move to and from
this virtual terminal by pressing Next Window (Alt-Action). See “open” on page 541 and
Using the AIX Operating System for for information on virtual terminals. To end gend
and close the virtual terminal, press END OF FILE (Ctrl-D).

Note: The gend command produces the standard GPS line style attributes with one
exception. Line style 4 (long dashed) is rendered as dash-dot-dot.

-nnum  Specifies the number of chords per circle. Legal values are 64, 128, 256, or 512.
The default value is 128.

Rather than drawing truly circular arcs or circles, gend converts them into a
series of very short line segments (chords), whose end points lie on the circle.
For most devices and images, the default value of 128 is satisfactory. The higher
values give a smoother image; the lower value provides faster drawing time.

Commands 357



gend

-rnum  Displays data in GPS region num. A GPS object is defined in a Cartesian plane
of 64K points on each axis. The plane, or universe, is divided into 25 square
regions numbered 1 to 25 from the lower left to the upper right.

-u Displays data in the entire GPS universe.

-Tname Uses the device specified by the name environment variable. The default is the
current display (this must be supported by /dev/hft). When the image is to be
displayed on other devices, you must ensure that the proper VDI device handler
is installed.

Files

Jusr/bin/graf/gend The general devices backend.
[tmp/dev. XXXXXX Temporary file.

Related Information
The following commands: “ged” on page 350, “gdev” on page 347, “graphics” on
page 377, and “open” on page 541.

“Advanced Display Graphics Support Library” in AIX Operating System Technical
Reference

Installing programs in Installing and Customizing the AIX Operating System.

358 Commands Reference



get

get

Purpose

Creates a specified version of a Source Code Control System (SCCS) file.

Syntax

_g -m -3

t —Ccutoff —n -t
9 =ilist -p —xl/ist onfl of .
—rSID  —Wstring ip file
one of
get —e one of
—k b =rsiD - file
—ceutoff -—s -Ip

—ilist ~t
—x/ist

OL805058

0OL805355

Description

The get command reads the specified versions of the named Source Code Control System
(SCCS) files, creates an ASCII text file for each file according to the specified flags, and
writes each text file to a file with the same name as the original SCCS file without the s. (s
period) prefix (the g-file). The flags and files can be specified in any order, and all flags
apply to all named files.

If you specify a directory in place of file, get performs the requested actions on all the files
in the directory that begin with the s. prefix. If you specify a - (minus) in place of a file,
get reads standard input and interprets each line as the name of an SCCS file. get
continues to read input until it reads END OF FILE (Ctrl-D).

If the effective user has write permission in the directory containing the SCCS files but the
real user does not, then only one file can be named when the -e flag is used.

If you are not familiar with the terms SID and delta or you do not know the numbering
system of the deltas, see AIX Operating System Programming Tools and Interfaces for more
information.

Commands 359



get

SCCS Files

In addition to the file with the s. prefix (the s-file), get can create several auxiliary files:
the g-file, l-file, p-file, and z-file. These files are identified by their tag, the letter before
the hyphen. get names auxiliary files by replacing the leading s. in the SCCS file name
with the proper tag, except for the g-file, which is named by removing the s. prefix. So, for
a file named s.sample, the auxiliary file names would be sample, l.sample, p.sample, and
z.sample.

These files serve the following purposes:

s-file

g-file

1-file

This file contains the original file text and all the changes (deltas) made to the file.
It also includes information about who can change the file contents, who has made

changes, when those changes were made, and what the changes were. You cannot

edit this file directly since the file is read-only. It contains the information needed

by the SCCS commands to build the g-file, the file you can edit.

The g-file is an ASCII text file that contains the text of the SCCS file version that
you specify with the -r flag (or the latest trunk version by default). You can edit
this file directly. When you have made all your changes and you want to make a
new delta to the file, you can then apply the delta command to the file. get creates
the g-file in the current directory.

The get command creates a g-file whenever it runs, unless the -g flag or the -p flag
is specified. The real user owns it (not the effective user). If you do not specify the
-k or the -e flag, the file is read-only. If the -k or the -e flag is specified, the owner
has write permission for the g-file. You must have write permission in the current
directory to create a g-file.

The get command creates the 1-file when the -l flag is specified. The l-file is a read
only file. It contains a table showing which deltas were applied in generating the
g-file. You must have write permission in the current directory to create an l-file.
Lines in the l-file have the following format:

1. A blank character if the delta was applied; a * appears otherwise.

2. A blank character if the delta was applied or was not applied and ignored; a *
appears if the delta was not applied and was not ignored.

3. A code indicating a special reason why the delta was or was not applied:

Blank Included or excluded normally.
I Included using the -i flag.
X  Excluded using the -x flag.
C  Cut off using the -c flag.

The SID.
The date and time the file was created.

The login name of person who created the delta.

360 Commands Reference



get

p-file

z-file

Comments and MR data follow on subsequent lines, indented one horizontal tab
character. A blank line ends each entry.

For example, for a delta cutoff with the -c¢ flag, the entry in the l-file might be:
**C 1.3 85/03/13 12:44:16 pat
and the entry for the initial delta might be:

1.1 85/02/27 15:42:20 pat
date and time created 85/02/27 15:42:20 by pat

The get command creates the p-file when the -e or the -k flag is specified. The
p-file passes information resulting from a get -e to a delta command. The p-file also
prevents a subsequent execution of get with a -e flag for the same SID until delta is
run or the joint edit keyletter (j) is set in the SCCS file. The j keyletter allows
several gets on the same SID. The p-file is created in the directory containing the
SCCS file. To create a p-file in the SCCS directory, you must have write permission
in that directory. The permission code of the p-file is read-only to all but its owner,
and it is owned by the effective user. The p-file contains:

The current SID

The SID of new delta to be created
The user name

The date and time of the get

The -i flag, if it was present

o The -x flag, if it was present

The p-file contains an entry with the above information for each pending delta for
the file. No two lines have the same new delta SID.

The z-file is a lock mechanism against simultaneous updates. The z-file contains the
binary process number of the get command that created it. It is created in the
directory containing the SCCS file and exists only while the get command is
running.

When you use the get command, it displays the SID being accessed and the number of lines
created from the SCCS file. If you specify the -e flag, the SID of the delta to be made
appears after the SID accessed and before the number of lines created. If you specify more
than one file, or a directory, or standard input, get displays the file name before each file
is processed. If you specify the -i flag, get lists included deltas below the word Included.
If you specify the -x flag, get lists excluded deltas below the word Excluded.

Commands 361



get

Identification Keywords

You can use identification keywords in your files to insert identifying information. These
keywords are replaced by their values in the g-file when get is invoked without the -e or

-k flag.
%M%
%1%
%R%
% L%
%B%
%S %
%D %
%H%
%T%
%E%
%G%
%U%
%Y %
%F%
%P%
% Q%
%C%

%NZ%
%W %

%A%

The following identification keywords can be used in SCCS files:

Module name: the value of the m flag in the SCCS file
The SID (%R%.%L%.%B%.%S%) of the g-file
Release

Level

Branch

Sequence

Date of the current get (YY/MM/DD)

Date of the current get (MM/DD/YY)

Time of the current get (HH:MM:SS)

Date newest applied delta was created (YY/MM/DD)
Date newest applied delta was created (MM/DD/YY)
Time newest applied delta was created (HH:MM:SS)
Module type: the value of the t flag in the SCCS file
SCCS file name

Full path name of the SCCS file

The value of the g flag in the file

The current line number. This keyword is intended for identifying messages
output by the program. It is not intended to be used on every line to provide
sequence numbers.

The 4-character string @(#) recognized by the what command

A shorthand notation for constructing what strings for AIX program files. Its
value is the characters and keyletters:

YW% = 3Z%%M%<horizontal-tab>%I%

Another shorthand notation for constructing what strings for non-AIX program
files. Its value is the keyletters:

%A% = %L%%5Y% WM% X6HL%

The following table illustrates how get determines the SID of the file it retrieves, and what
the pending SID is. The column SID Specified shows the various ways the SID can be
specified with the -r flag. The two columns illustrate the various conditions that can exist,
including whether or not the -b flag is used with the get -e. The SID Retrieved indicates
the SID of the file that makes up the g-file. The SID of Delta to be Created column
indicates the SID of the version that will be created when delta is applied.

362 Commands Reference



get

SID -b Other SID SID of Delta
Specified Used | Conditions Retrieved | to be Created
none! no R defaults to mR2 mR.mL mR.(mL+1)
none! yes R defaults to mR mR.mL mR.mL.(mB+1).1
(R)elease no R > mR mR.mL R.13

R no R = mR mR.mL mR.(mL-+1)

R yes R > mR mR.mL mR.mL.(mB+1).1
R yes R = mR mR.mL mR.mL.(mB+1).1
R N/A R < mR and R does not exist hR.mL* hR.mL.(mB+1).1
R N/A R < mR and R exists R.mL R.mL.(mB+1).1
R.(L)evel no No trunk successor R.L R.(L+1)

R.L yes No trunk successor R.L R.IL(mMB+1).1
R.L N/A Trunk successor in release > R R.L R.L.(MmB+1).1
R.L.(B)ranch no No branch successor R.L.B.mS R.L.B.(mS+1)
R.L.B yes No branch successor R.L.B.mS R.L.(mB+1).1
R.L.B.(S)equence no No branch successor R.L.B.S R.L.B.(S+1)
R.L.B.S yes No branch successor R.L.B.S R.L.mB+1).1
R.L.B.S N/A Branch successor R.L.B.S R.L.mB+1).1

2 The mR indicates the maximum existing release.

3 Forces creation of the first delta in a new release.

1 Applies only if the d (default SID) flag is not present in the file (see “admin” on page 51)

4 The hR is the highest existing release that is lower than the specified, nonexistent, release R.

Figure 2. SID Determination

Flags

Specifies that the delta to be created should have an SID in a new branch. The
new SID is numbered according to the rules stated in Figure 2. You can use -b
only with the -e flag. It is only necessary when you want to branch from a leaf
delta (a delta without a successor). Attempting to create a delta at a nonleaf
delta automatically results in a branch, even if the b header flag is not set. If
you do not specify the b header flag in the SCCS file, get ignores the -b flag

Commands

363



get

-ccutoff

g

-ilist

because the file does not allow branching (see the discussion of header flags on
page 54).

Specifies a cutoff date and time, in the form: YY[MM[DD[HH[MM][SS]]1]] get
includes no deltas to the SCCS file created after the specified cutoff in the g-file.
The values of any unspecified items in the cutoff default to their maximum
allowable values. Thus, a cutoff date and time specified with only the year (YY)
would specify the last month, day, hour, minute, and second of that year. Any
number of nonnumeric characters can separate the two-digit items of the cutoff
date and time. This allows you to specify a date and time in a number of ways,
as follows:

-¢85/9/2,9:00:00
-c"85/9/2 9:00:00"
"-c85/9/2 9:00:00"

Indicates that the g-file being created is to be edited by the user applying get.
The changes are recorded later with the delta command. get -e creates a p-file
that prevents other users from issuing another get -e and editing a second g-file
on the same SID before delta is run. The owner of the file can override this
restriction by allowing joint editing on the same SID through the use of the
admin command with the -fj flag. Other users, with permission, can obtain
read-only copies by using get without the -e flag. The get -e command enforces
SCCS file protection specified via the ceiling, floor, and authorized user list in
the SCCS file (see “admin” on page 51).

Suppresses the actual retrieval of text from the SCCS file. Use the -g flag
primarily to create an l-file or to verify the existence of a particular SID. Do
not use it with the -e flag.

Specifies a list of deltas to be included in the creation of a g-file. The SID list
format consists of a combination of individual SIDs separated by commas and
SID ranges indicated by two SIDs separated by a hyphen. You specify the same
SIDs with both the following command lines:

get -e -il.4,1.5,1.6 s.file
get -e -il.4-1.6 s.file

You can specify the SCCS Identification of a delta in any form shown in the
SID Specified column of Figure 2 on page 362. get Interprets partial SIDs as
shown in the SID Retrieved column of the table.

Suppresses replacement of identification keywords in the g-file by their value
(see “Identification Keywords” on page 362). The -k flag is implied by the -e
flag. If you accidentally ruin the g-file created by get with an -e flag, you can
recreate it by reissuing the get command with the -k flag in place of the -e flag.

364 Commands Reference



get

-1{p]

-m

-n

P

-rSID

-S
-t
-wstring

-xlist

Examples

Writes a delta summary to an l-file. If you specify -1p, the delta summary is
written to standard output, and get does not create the 1-file. Use this flag to
determine which deltas were used to create the g-file currently in use. See
“SCCS Files” on page 360 for the format of the l-file.

Writes before each line of text in the g-file the SID of the delta that inserted the
line into the SCCS file. The format is:

SID tab line of text

Writes the value of the %M% keyword before each line of text in the g-file (see
“Identification Keywords” on page 362 for information on keywords). The
format is the value of %M%, followed by a horizontal tab, followed by the text
line. When both the -m and -n flags are used, the format is:

%M% value tab SID tab line of text

Writes the text created from the SCCS file to standard output and does not
create a g-file. get sends output normally sent to standard output to file
descriptor 2 instead. If you specify the -s flag with the -p flag, output normally
sent to standard output does not appear anywhere. Do not use -p with the -e
flag.

Specifies the SCCS identification string (SID) of the SCCS file version to be
created. Figure 2 on page 362 shows what version of a file is created and the
SID of the pending delta as functions of the SID specified.

Suppresses all output normally written to standard output. Error messages
(written to standard error output), remain unaffected.

Accesses the most recently created delta in a given release or release and level.
Without the -r flag, get accesses the most recent delta regardless of its SID.

Substitutes string for the % W% keyword in g-files not intended for editing (see
“SCCS Files” on page 360 for information on g-files).

Excludes a list of deltas in the creation of a file. See the -i flag for the SID list
format on page 364.

1. To get an SCCS file for editing:

get

-e s.prog.c

This creates a file named prog.c that only you have permission to modify. No one

else can use prog.c or S.prog.c until you use the delta command to indicate that
you are finished.

Commands 365



get

2. To get an SCCS file for reading:
get s.prog.c

This creates a file named prog. ¢ that anyone can read, but that no one can modify.
You can do this before searching files with the grep command or before compiling
programs that are controlled with SCCS. If you are also using the make command to
manage the development of a software project, make automatically does the get before
compiling a program.

Related Information

The following commands: “admin” on page 51, “delta” on page 236, “help” on page 391,
“prs” on page 574, and “what” on page 848.
The sccsfile file in AIX Operating System Technical Reference.

The discussion of SCCS in AIX Operating System Programming Tools and Interfaces.

366 Commands Reference



getopt

getopt

Purpose

Parses command line flags and parameters.

Syntax

1

set — — *getopt — opstring —$s* —

'This command is not entered on the command
line, but is used in shell procedures.
OL805050

Description

The getopt command is used to break up flags and parameters in command lines for easy
parsing by shell procedures and to check for valid flags. opstring is a string of recognized
flags (see the getopt subroutine call in AIX Operating System Technical Reference).
Extended characters are not permitted. If a letter within opstring is followed by a colon,
the flag is expected to take a modifying parameter that may or may not be separated from
it on the command line by one or more tabs or spaces. If you specify -- as the last flag on a
command line processed by getopt, getopt recognizes it and stops its processing;
otherwise, getopt creates the terminating --. In either case, getopt places it at the end of
the flags.

When the output from getopt is passed by command substitution to the shell set command,
set resets all of the shell positional parameters ($1, $2 . . . ) so that each flag is preceded by
a - (minus) and occupies its own positional parameter. Each parameter (for example, file
names and other parameters) is also parsed into its own positional parameter.

The getopt command writes a message to standard error when it encounters a flag not
included in opstring. The set command returns a nonzero value if a flag appears on the
command line but is not specified in opsiring. Consequently, you can test the validity of
command flags by testing the value of the shell variable $?. If it is nonzero, the command
line contains an unrecognized flag.

Example

The following shell procedure is a front end to the ar command. It uses getopt to separate
the flags and parameters, then translates them into the ar command syntax and runs ar
with these flags.

Commands 367



getopt

# @(#) 1ib: Front end to the ar command.
#
# Accepts the following flags:
# ar flags with "-" prefixes. See the ar command.
# -L Tlibrary The default library is "libsubs.a".
# Note: "1ib -r -b subl.o -v -1 newsub.o" performs
# "ar rbvl subl.o libsubs.a newsub.o".
# The ar command DOES interpret this correctly.
set -- ‘getopt clsvmrua:b:i:dpgtxwlL: $*
if [ $2 '=0] # Test for syntax error
then
exit 2
fi
FLAGS= POSNAME= LIBRARY=1ibsubs.a # Default Tibrary name
while [ $1 != -- ]
do
case $1 in
-L)
LIBRARY=$2
shift; shift # Shift past the -L and library name
~a|-b|-i)
FLAGS=$FLAGS'expr "$1" : "-\(.\)™
POSNAME=$2
shift; shift # Shift past the flag and parameter
—x) 7 # Strip the "-" from the flag
FLAGS=$FLAGS'expr "$1" : "-\(.\)™
shift
esac
done
shift # Shift past the "--" from getopt
FLAGS=${FLAGS:-vt} # Default if action not specified

ar $FLAGS $POSNAME $LIBRARY $*

If this shell procedure is stored in a file named 11D, then all of the following commands are
equivalent:

~

368 Commands Reference



getopt

1ib -L mylib.a -v -r -b putfld.o getnam.o getfld.o getaddr.o
1ib -Lmylib.a -v -r -bputfld.o getnam.o getfld.o getaddr.o
1ib -Lmylib.a -vrbputfld.o getnam.o getfld.o getaddr.o

1ib -Lmylib.a -v -rbputfld.o -- getnam.o getfld.o getaddr.o

In each of these cases, getopt breaks down the command into:
-L mylib.a -v -r -b putfld.o -- getnam.o getfld.o getaddr.o

The getopt command writes to its standard output. Because this command is enclosed in
' ' (grave accents), the shell takes its standard output and uses it to construct the
command:

set -- -L mylib.a -v -r -b putfld.o -- getnam.o
getfld.o getaddr.o

This is called command substitution. For more details, see “Command Substitution” on
page 647.

The set command (page 656) sets the positional parameters $1, $2, $3 .. . to each of the
values -L, mylib.a, -v ..., respectively.

The shell procedure then uses the positional parameters to construct and run the
command:

ar vrb putfld.o mylib.a getnam.o getfld.o getaddr.o

The ar command (page 58) accepts the flags in any order. Therefore, you can specify flags
to 1ib in any order, as long as a parameter immediately follows a -a, -b, -i, or -L flag, and
all the flags come before any file names. This means that:

1ib -bputfld.o -rv -Lmylib.a getnam.o getfld.o getaddr.o

produces the command:

ar brv putfld.o mylib.a getnam.o getfid.o getaddr.o

which performs the same action as each of the previous commands. See “test” on page 750
and “expr” on page 317 for more information about these commands.

Related Information

The following command: “sh” on page 637.
The getopt subroutine in AIX Operating System Technical Reference.

Commands 369



gettext

gettext

Purpose

Extracts message/insert/help descriptions.

Syntax
P
gettext maximum three each > outfile —
—-h  helpnum infile
-p -m mesgnum
-t insertnum
0L805130

Description

The gettext command gets message, insert, or help descriptions from infile and places the
descriptions in outfile. If you specify the -p flag or gettext outfile, gettext places a
message/insert/help template in outfile. When you have your message, insert, or help
descriptions or your message/insert/help template in outfile; you can edit outfile.

The outfile is an AIX ASCII file that consists of a header to identify the component and a
group of message/insert/help descriptions. The contents of the message/insert/help
descriptions includes a delimiter, control information and message/insert/help text. See
AIX Operating System Programming Tools and Interfaces for a description of the outfile
format and contents.

Flags
-h helpnum  Extracts help information from infile. You specify the index value used for

the desired help number with Aelpnum.

-m mesgnum Extracts message information from infile. You specify the index value used
for the desired message number with mesgnum.

-p Makes a message/insert/help template for outfile.

-t insertnum  Extracts text insert information from infile. You specify the index value
used for the desired insert number with insertnum.

370 Commands Reference



gettext

The syntax for the mesgnum, insertnum, and helpnum parameters is as follows:

num-num Retrieves index numbers num to num.

num,num ... Retrieves a list of index numbers specified with num, num, num, and so on
(maximum of 50 numbers).

num- Retrieves index numbers equal to and larger than num.

-num Retrieves index numbers from one to num.

Related Information

The following command: “puttext” on page 586.

The discussion of gettext in AIX Operating System Programming Tools and Interfaces.

Commands 371



getty

getty

Purpose

Sets the characteristics of ports.

Syntax

getty —D' portname —i
—d

Description

OL805333

The init process runs the getty command for each portname enabled for login. Its primary
function is to set the characteristics of the port specified by portname. Port characteristics

include:

o Line speed (baud rate).

e Parity.

e Carriage return, tab, new-line, and form feed delays.

e Character set mapping, such as uppercase to lowercase, carriage return to new-line

translation, and tab expansion.

Extended character support.

Character erase and line erase editing characters.
Local or remote echo.

Screen length for paging.

The getty command obtains these settings by reading the port attributes specified in the
/ete/ports configuration file and by observing the behavior of the port itself. (For details
regarding the format of /ete/ports, see AIX Operating System Technical Reference. For the
logmodes and runmodes parameter settings, see “stty” on page 717.) When getty is
invoked, it first opens the specified port. However, if carrier detection (modem control) is
available on the port, getty cannot open the port until the carrier is present. Once the
port is opened, getty sets the work station attributes according to the first speed,
logmodes, parity, erase, kill and other parameters in the ports file and writes the herald
message herald to the port. getty then reads a login name from the port. If the login
name contains extended characters, they are translated to the single ASCII characters
most resembling them.

If a framing error occurs while reading, either because a user generates a BREAK signal
from the work station or because the line speed is not the same as that of the transmitting
work station, the port parameters are reset to the next combination specified in the ports

372 Commands Reference



getty

file. Once getty reads a login name, it resets the work station modes according to the
runmodes parameter, turns on carriage-return-to-new-line mapping if the login name was
terminated by a carriage return, turns on uppercase-to-lowercase mapping if the alphabetic
characters in the login name were uppercase, and executes the program specified by the
logger parameter. That program, defaulting to /bin/login, runs in the same process as
getty not as its child.

Any additional arguments entered after the login name are passed to the logger program.
The login command interprets these as shell variable settings and places them in the
environment.

On dial-in ports, it is often desirable to set no parity generation or checking as a default,
but to permit the user to select parity as an option. For example, the following line in the
[ete/ports file:

parity = none,odd+inpck,even+inpck

accepts logins with any parity, but if a user generates BREAK before typing a login name,
getty sets the port to generate odd parity and to check incoming characters for odd parity,
while two BREAKSs generate and check for even parity. Similarly, the line:

speed=1200,300

works with 1200 baud, reverting to 300 baud when a BREAK is received before the login
name. The default runmodes parameter (which must appear on one line in the ports file),
is generally satisfactory. However, for work stations that have built-in tabs to every eight
character positions and do not require tab delays, eliminating the tab3 from the default in
/ete/ports will provide faster output with less system load.

Special Purpose Options

If there is a timeout keyword in the ports file, getty waits only the specified number of
seconds for a response to the herald before advancing to the next port settings or, after all
the settings are exhausted, exiting. If there is a program keyword for the port, then
instead of displaying the herald and gathering a login name, it executes the specified
program immediately. This feature is a general mechanism for supporting special service
ports such as network mail demons that need to be spawned when a connection is made
from the outside world. As a special case, if you specify:

program = HOLD

the runmodes, owner, and protection of the port are set and getty holds the port open
indefinitely, thereby preventing the port modes from reverting to their open-default
settings. This is useful, for example, in setting the modes on serial printer ports when it is
inconvenient or impossible to have the programs that use them do so.

Commands 373



getty

Flag

-d Uses standard input as the work station for which parameters are to be set according
to those governing portname. Instead of executing a logger or a program, getty
displays the name of the program that would have been run.

Example

To test a new /ete/ports entry:
getty -d /dev/tty5

This tests a new port definition for /dev/tty5 by simulating the login sequence of this
device at your work station.

Files

[etc/ports
/bin/login
/bin/setmaps

Related Information

The following commands: “login” on page 453, “init” on page 396, and “stty” on
page 717.
The tty and ports files in AIX Operating System Technical Reference.

The “Overview of International Character Support” in Managing the AIX Operating
System.

374 Commands Reference



TNL SN20-9861 (26 June 1987) to SC23-0790-0
graph

graph

Purpose

Draws a graph.

Syntax
-g grid
—-h space
-1 lable
—-m style
—r space

~s
—t

—u space
—w space

o
-a 4<' 0 —cchar
num~<j— -b
lowlim

O

uplim

space

Description

h<'¥< H{

uplim

space
OL805429

The graph command reads pairs of numbers from standard input, where each pair is the x
and y coordinates of a point on a graph. It processes the data so that when it is printed,
successive points are connected by straight lines. It writes the graph to standard output.
You can then use the tplot command to code the output for printing (see “tplot” on

page 762).

Commands 375



graph

In the input, non-numeric strings following the coordinates of a point are labels. Labels
begin on the point. Labels can be surrounded with ” (double quotation marks), in which
case they can be empty or contain blanks and numbers. Labels cannot contain new-line
characters.

The graph command stores all points internally and drops those for which there is not
room. It also drops segments that run out of bounds.

Flags

-a [num [lolim]]
Supplies abscissas missing from the input automatically. num determines the
spacing on the axis (the default is 1). lolim determines the starting point for
automatic abscissas (the default is 0 or the lower limit given by -x[lolim].

-b Breaks the graph after each label in the input.
-¢ char Uses the character string char as the default label for each point.

-g grid Uses grid as the grid style, where grid = 0 indicates no grid, grid = 1
indicates a frame with tick marks, and grid = 2 indicates a full grid (default).

-h space Uses space as a fraction of space for height.
-1 "label” Uses label as a label for the graph.

-m style Uses style as the style of connecting lines, where style=0 indicates
disconnected lines, and style=1 indicates connected lines (default).

-r space  Uses space as the fraction of space to move to the right before plotting.
-s Saves the current graphic screen image, does not erase before starting the plot.
-t Transposes horizontal and vertical axes. (-x now applies to the vertical axis).
-u space Uses space as the fraction of space to move up before plotting.
-w space Uses space as a fraction of space for width.
-x [1] [lolim [uplim [space]]]

Makes the x axis logarithmic if 1 is used. Use lolim as the lower x axis limit

and uplim as the upper x axis limit. Use space for the grid spacing on x axis.
Normally these are determined automatically.

-y [ [lolim [uplim [space]l}
Acts the same as -x for the y axis.

The graph command produces a legend indicating grid range with a grid unless you
specify the -s flag. If a specified lower limit exceeds the upper limit, graph reverses the
axis. Note that logarithmic axes cannot be reversed.

Related Information

The following commands: “spline” on page 684 and “tplot” on page 762.

376 Commands Reference



graphics

graphics

Purpose

Accesses graphical and numerical commands.

Syntax

graphics ﬂ
-r

Description

OL777038

The graphics command appends the path name /usr/bin/graf to the current $PATH
value, changes the primary shell prompt to *, and executes a new shell. The directory
/usr/bin/graf contains all of the graphics subsystem commands.

The command line format for a command in graphics is command name followed by
argument(s). An argument may be a filename or an flag string. A filename is the name of
any AIX Operating System file, except those beginning with -. The filename - is the name
for the standard input. An flag string consists of - followed by one or more flag(s). A flag
consists of a keyletter possibly followed by a value. Flags may be separated by commas.

The graphical commands have been partitioned into four groups.
e Commands that manipulate and plot numerical data; see “stat” on page 690.
o Commands that generate tables of contents; see “toc” on page 757.

e Commands that interact with graphical devices; see “gdev” on page 347 and “ged” on
page 350.

® A collection of graphical utility commands; see “gutil” on page 386.

To produce a list of graphics commands, enter whatis in the graphics environment.
Flag

-r Creates access to the graphical commands in a restricted environment; that is, it
sets $PATH to :/usr/bin/graf:/rbin:/usr/rbin and invokes the restricted shell,
rsh. To restore the environment that existed prior to issuing the graphics
command, press Ctrl-D (END OF FILE). To log out of the graphics
environment, enter quit.

Commands 377



graphics

Related Information

The following commands: “gdev” on page 347, “ged” on page 350, “gend” on page 357,
“gutil” on page 386, “stat” on page 690, and “toc” on page 757.

The gps file in AIX Operating System Technical Reference.

378 Commands Reference



greek

greek

Purpose

Converts output for a TELETYPE Model 37 work station to output for other work stations.

Syntax
-T$TERM
greek ~<— —>—<
—Tworkstation

Description

0OL805185

The greek command reinterprets the TELETYPE Model 37 character set, including
reverse and half-line motions, for display on other work stations. It simulates special
characters, when possible, by overstriking. greek reads standard input and writes to
standard output.

Flag

-Tworkstation Uses the specified workstation. If you omit the -T flag, greek attempts
to use the work station specified in the environment variable $TERM
(see the environ special facility in AIX Operating System Technical
Reference.) workstation can be any one of the following:

300 DASI 300.

300-12 DASI 300 in 12-pitch.

300s DASI 300s.

300s-12 DASI 300s in 12-pitch.

450 DASI 450.

450-12 DASI 450 in 12-pitch.

1620 Diablo 1620 (alias DASI 450).

1620-12 Diablo 1620 (alias DASI 450) in 12-pitch.
2621 Hewlett-Packard 2621, 2640, and 2645.
2640 Hewlett-Packard 2621, 2640, and 2645.
2645 Hewlett-Packard 2621, 2640, and 2645.
4014 Tektronix 4014.

hp Hewlett-Packard 2621, 2640, and 2645.
tek Tektronix 4014.

Commands 379



greek

Files

Jusr/bin/300
Jusr/bin/300s
Jusr/bin/4014
[usr/bin/450
[usr/bin/hp

Related Information

The following commands: “300” on page 863, “4014” on page 865, “450” on page 866, “eqn,
neqn, checkeq” on page 300, “hp” on page 392, “mm, checkmm” on page 492, “tplot”
on page 762, and “nroff” on page 525.

The greek miscellaneous facility in AIX Operating System Technical Reference.

380 Commands Reference



grep

grep
Purpose
Searches a file for a pattern.
Syntax
grep pattern E
—pparsep
-s
-v
OL805275
pattern
egrep —a pattern
—f stringfile
OL805359
pattern
fgrep —e pattern
—t stringfile file
OL805361
Description

Commands of the grep family search input files (standard input by default), for lines
matching a pattern. Normally, they copy each line found to standard output. Three
versions of the grep command permit you to express the matching pattern in varying levels
of complexity:

grep Searches for patterns, which are limited regular expressions in the style of the ed
command. grep uses a compact nondeterministic algorithm.

Commands 381



grep

egrep Searches for patterns which are full regular expressions as in ed, except for \( and
\) and with the addition of the following rules:

® A regular expression followed by a plus sign (+) matches one or more
occurrences of the regular expression.

e A regular expression followed by a question mark (?) matches 0 or 1
occurrences of the regular expression.

® Two regular expressions separated by a vertical bar (I) or by a new-line
character match strings that are matched by either.

e A regular expression may be enclosed in parentheses () for grouping.

The order of precedence of operators is [}, then * ? +, then concatenation, then !
and the new-line character.

The egrep command uses a deterministic algorithm that needs exponential space.

fgrep Searches for patterns which are fixed strings. It searches for lines that contain
one of the strings (lines are separated by new-line characters).

All versions of grep display the name of the file containing the matched line if you specify
more than one file name. Characters with special meaning to the shell ($ * [} ~ ( )

\), must be quoted when they appear in patterns. When pattern is not simple string, you
usually must enclose the entire pattern in single quotation marks. In an expression such
as [a-z], the minus means “through” according to the current collating sequence. A
collating sequence may define equivalence classes for use in character ranges. See the
“Overview of International Character Support” in Managing the AIX Operating System for
more information on collating sequences and equivalence classes.

The exit value of these commands is:

0 A match was found.

1 No match was found.

2 A syntax error was found or a file was inaccessible (even if matches were found).

Note: Lines are limited to 512 characters; longer lines are broken into multiple
lines of 512 or fewer characters (grep only).

Paragraphs (under the -p flag) are currently limited to a length of 5000 characters.

Running grep on a special file produces unpredictable results and is discouraged.

-b Precedes each line by the block number on which it was found. Use this flag
to help find disk block numbers by context.

-c Displays only a count of matching lines.

382 Commands Reference



grep

-e pattern Specifies a pattern. This works the same as a simple pattern but is useful

when the paitern begins with a - (does not work with grep).

-f stringfile Specifies a file that contains patterns (egrep) or strings (fgrep).

-1 Lists just the names of files (once) with matching lines. Each file name is
separated by a new-line character.

-n Precedes each line with its relative line number in the file.

-pparsep Displays the entire paragraph containing matched lines. Paragraphs are
delimited by paragraph separators, parsep, which are patterns in the same
form as the search pattern. Lines containing the paragraph separators are
used only as separators; they are never included in the output. The default
paragraph separator is a blank line (grep only).

-s Suppresses error messages about inaccessible files (grep only).

-v Displays all lines except those that match the specified pattern.

-X Displays lines that match the pattern exactly with no additional characters
(fgrep only).

Examples
1. To search several files for a simple string of characters:

fgrep "strcpy" *.c
e

This searches for the string Strcpy in all files in the current directory with names
ending in .C

To count the number of lines that match a pattern:

fgrep -c "{" pgm.c
fgrep -c "}" pgm.c

This displays the number of lines in pgm. c that contain open and close braces.

If you do not put more than one { or } on a line in your C programs, and if the braces
are properly balanced, then the two numbers displayed will be the same. If the
numbers are not the same, then you can display the lines that contain braces in the

order that they occur in the file with: egrep "{i}" pgm.c

To use a pattern that contains some of the pattern-matching characters *, *, 2, [, 1, \(,

W, \{, and \}:
grep "~[a-zA-Z]" pgm.s
This displays all lines in pgm. s that begin with a letter.

Commands 383



grep

Note that because fgrep does not interpret pattern-matching characters:
fgrep "~[a-zA-Z]" pgm.s
makes fgrep search only for the string *[a-zA-Z] in pgm.s.

To use an extended pattern that contains some of the pattern-matching characters +,
2,1, (and):

egrep "\( *([a-zA-Z]*|[0-9]*) *\)" my.txt

This displays lines that contain letters in parentheses or digits in parentheses, but not
parenthesized letter-digit combinations. It matches (y) and ( 783902), but not
(alphal9c).

Note: When using egrep, \( and \) match parentheses in the text, but (and ) are
special characters that group parts of the pattern. The reverse is true for grep.

To display all lines that do not match a pattern:

grep -v "rg!

This displays all lines that do not begin with a # character.
To display the names of files that contain a pattern:

fgrep -1 ‘"strcpy" *.c

This searches the files in the current directory that end with . C and displays the
names of those files that contain the string strcpy.

Related Information

The following commands: “ed” on page 280, “sed” on page 629, and “sh” on page 637.

The “Overview of International Character Support” in Managing the AIX Operating
System.

384 Commands Reference



TNL SN20-9861 (26 June 1987) to SC23-0790-0

groups
groups
Purpose
Displays your group membership.
Syntax
groups ﬂ
user!
'The default user is the person running the command.
OL805129

Description

The groups command writes to standard output the groups to which you or the specified
user belong. The AIX Operating System allows you to belong to many different groups at
the same time.

Your primary group is specified in the file /ete/passwd. Once you are logged in, you can
change your active group with the newgrp command (see page 510). When you create a
file, its group ID is that of your active group.

Other groups that you belong to are specified in the file /etc/group. If you belong to more
than one group, you can access files belonging to any of those groups without changing
your primary group ID. These are called your concurrent groups.

Note: The /etc/passwd and fetc/opasswd files must be on the same node.

Jetc/group
Jete/passwd
[etc/opasswd

Related Information

The following command: “newgrp” on page 510.

The setgroups system call and the initgroups subroutine in AIX Operating System
Technical Reference.

Commands 385



gutil

gutil

Purpose

Provides graphical utility programs.

Syntax

bel —i

cvrtopt

args _:

=sstring
=fstring
=istring
=t string

)

gtop one of file
bt V
=rnum

"

quit —

386 Commands Reference

OL777039

0OL805449



gutil

o
whatis —<
—-0 name

yoo — file —i

OL805450

Description

The following are the miscellaneous device-independent utility commands found in the
Jusr/bin/graf directory. If you do not specify any files, these commands read standard
input. All output is sent to standard output. Graphical data is stored in GPS format; see
the gps file in AIX Operating System Technical Reference.

bel
Sends the ASCII BEL character to the terminal.

cvrtopt

The cvrtopt command reformats its arguments (usually the command line arguments of a
calling shell procedure) to facilitate processing by shell procedures. An arg is either a file
name or a flag string. A file name is either a - (minus) by itself or a string not beginning
with a -. A flag string is a string of flags beginning with a - (minus). cvrtopt produces
output of the following form:

flag flag ... file...

All flags appear singularly in the output and precede any file names. Arguments that take
values or are two letters long must be described through flags to cvrtopt.

The cvrtopt command is usually used with the set command as the first line of a shell
procedure (see page 656 for a description of the set command):

set - ‘cvrtopt [=flags] . . . 3@

Flags

sstring 'The specified string accepts string values, where string is a one or two letter flag
name.

Commands 387



gutil

fstring The specified string accepts floating point numbers as values, where string is a
one or two letter flag name.

istring The specified string accepts integers as values, where string is a one or two letter
flag name.

tstring The specified string is a two letter flag name that takes no value.

gd

The gd command produces a readable listing of a file in GPS format.

gtop

The gtop command transforms a GPS format into plot file commands displayable by plot
filters. GPS objects are translated if they fall within the window that circumscribes the
first file, unless specify one of the following flags:

Flags

rnum Translates objects in GPS region num.

u Translates all objects in the GPS universe.
pd

The pd command displays a readable listing of plot format graphical commands.

ptog

The ptog command transforms plot file commands into a GPS file.

quit

The quit command terminates the session.

remcom

The remcom command copies its input to its output with comments removed. Comments
are as defined in the C language (/* comment */).

whatis

The whatis command displays a short description of each name specified. If you do not
specify a name, then whatis displays the current list of description names. The command
whatis \* displays every description.

388 Commands Reference



gutil

Flag

-0 Displays only command flags.

yoo

The yoo command is a piping primitive that deposits the output of a pipeline into a file
used in the pipeline. Note that without yoo, this is not usually successful because it
causes a read and write on the same file simultaneously.

Related Information

The following command: “graphics” on page 377.

The gps format in AIX Operating System Technical Reference.

Commands 389



hangman

hangman

Purpose

Plays hangman, the word-guessing game.

Syntax
/usr/games/hangman —D—
file
01.805228
Description

The hangman game chooses a word of at least seven letters from a standard dictionary.
You try to guess the word by guessing the letters in it, one at a time. You are allowed
seven mistakes. The file parameter specifies an alternate dictionary.

To quit the game, press INTERRUPT (Alt-Pause) or END OF FILE (Ctrl-D).

390 Commands Reference



help

help

Purpose

Provides information about a Source Code Control System (SCCS) message or command or
about certain non-SCCS commands.

Syntax
errorcode
help .
command
OL805054
Description

The help command writes to standard output information about the use of a specified
SCCS command or about messages generated while using the commands. Each message
has an associated errorcode, which can be supplied as a argument to the help command.
Zero or more arguments may be supplied. If you do not supply a argument, help prompts
for one. You may include any of the SCCS commands as arguments to help.

The errorcode consists of numbers and letters, and is found at the end of the message. For
example, in the messageno id keywords (ge6), the error code is geé.

Files

Jusr/lib/help Directory containing files of message text.
Jusr/lib/help/helploc File containing locations of help files not in fusr/lib/help.

Related Information

The discussion of SCCS in AIX Operating System Programming Tools and Interfaces.

Commands 391



hp

hp

Purpose

Handles special functions for the HP2640- and HP2621-series terminals.

Syntax

hp

0L805018

Description

Flags

The hp command reads standard input (usually output from nroff), and writes to standard
output, which is usually Hewlett-Packard 2640-and 2621-series terminal displays. If your
terminal has the display enhancement feature, you can display subscripts and superscripts.
With the mathematical-symbol feature, you can display Greek and other special characters
the same way as the 300 command, with two exceptions: hp approximates the logical
operator NOT with a right arrow and it only shows the top half of the integral sign.

For overstrike characters (characters followed by a backspace and another character), if
either character is an underscore character, the other appears underlined or in inverse
video depending on terminal enhancements.

Note: Some sequences of control characters (reverse line-feeds and backspaces) can make
text disappear from the display. Tables with vertical lines generated by the tbl command
will often be missing lines of text containing the bottom of a vertical line. You can avoid
these problems by first piping the input through col, and then through hp.

-e  Shows overstruck characters underlined, superscripts in half-bright, and subscripts
half-bright underlined. Otherwise, all overstruck characters, subscripts, and
superscripts appear in inverse video (dark-on-light). Use this flag only if your display
has the display enhancements feature.

-m Produces only one blank line for any number of successive blank lines in the text.

392 Commands Reference



hp

Related Information

The following commands: “300” on page 863, “col” on page 140, “eqn, neqn, checkeq” on
page 300, “greek” on page 379, “nroff” on page 525, and “tbl” on page 739.

Commands 393



hyphen

hyphen

Purpose

Finds hyphenated words.

Syntax

.

Description

0OL805019

The hyphen command reads the input files (standard input by default), finds all the lines
ending with hyphenated words, and writes those words to standard output. A word is
considered hyphenated only if the hyphen occurs at the end of a line. hyphen reads
standard input if you do not specify any file names on the command line.

Note: The hyphen command cannot handle hyphenated italic words. It also sometimes
gives unnecessary output.

Examples

1. To check the way words are hyphenated in a text file:

hyphen chapl

This lists the words in chapl that are hyphenated at the end of a line.
2. To check the hyphenation performed by a text formatting program:

mm chapl 1 hyphen

This lists the words that nroff decides to hyphenate across lines.
Related Information

The following commands: “mm, checkmm” on page 492, “nroff” on page 525, and
“troff” on page 526.

394 Commands Reference



Purpose

Displays the system identity of the user issuing the command.

Syntax

id —
OL805131

Description
The id command writes a message to standard output containing the user and group IDs

and corresponding names of the invoking process. When effective and real names and IDs
do not match, id writes both.

Related Information

The following command: “logname” on page 456.
The getuid subroutine in AIX Operating System Technical Reference.

Commands 395



init

init

Purpose

Initializes the system.

Syntax

1
init —

1 . .
This command should not be entered on the command line.
0L805132

Description

After the kernel completes the basic processor initialization, it starts a process that is the
ancestor of all other processes in the system. The process is init, the program that
controls the state in which the system is running, normally either maintenance mode or
multiuser mode. It is the program from which all loggers and most system demons are
started.

When init starts up, it determines what the startup mode should be based on information
in the file /etc/.init.state, or, if this file does not exist or is unreadable, on an argument
passed to it by the kernel. The usual startup modes for init are:

maintenance Starts a shell on the console, but do not start any other processes
(single-user mode).

multiuser Runs the command file /ete/rc and spawn loggers on all enabled
ports.

exec-program Runs the specified program.

Maintenance Mode

The maintenance mode is used for system installation, correcting problems on the file
system using the fsck command, and other operations requiring an inactive system. There
are three ways to bring the system up in maintenance mode:

1. If the system is currently running in normal (multiuser) mode, use the shutdown -m
command to bring the system down to maintenance mode (shutdown sends init a
SIGINT signal).

396 Commands Reference



TNL SN20-9861 (26 June 1987) to SC23-0790-0
init

2. Start the system from the Installation/Maintenance Diskette and specify the
Maintenance Mode option from the End System Management menu.

3. Edit the file /etc/.init.state such that it consists of the character m. This causes the
system to come up in maintenance mode each time it is started up.

Maintenance mode starts a shell program with superuser authority on the console. When
you log off this shell by pressing END OF FILE (Cirl-D), init asks you if you want to
leave maintenance mode.

A response beginning with n or N indicates “no,” and init starts another shell on the
console. Any processes running in the background continue to run. Any other response
indicates “yes.”

If the response is yes, init enters normal mode, as described in the following section. It
also asks if the file system should be assumed to be clean. If you believe this to be true
(for example, you have run fsck and corrected all problems), answer yes. Your answer
determines whether the r¢ command is run with an m or d argument.

Normal Mode

After the normal startup of the system (either from system startup or by leaving
maintenance mode), init runs the normal initialization command file /etc/re. It passes rc
an argument of either m (normal startup, clean root), or d (normal startup, dirty root).
The latter is the default argument if the startup is from maintenance mode. rc is
responsible for performing integrity checks, doing any necessary cleanups, mounting the
normal file systems, enabling standard ports, and starting system demons. If an error
occurs during the running of this command file (indicated by a nonzero return code), init
either forces a system restart by executing the reboot system call or enters maintenance
mode.

Once rec completes successfully, init starts logger processes (normally getty) on each
enabled port. Whenever someone ends a logger by logging off a port, init notes the logout
and starts a new logger on the port. Everything init knows about enabling ports is
contained in the file /etc/portstatus, which is maintained by the penable command.
Through this file, you can enable new ports or disable ports that were previously enabled.
Whenever init receives a SIGUP (hangup) signal, it rereads the portstatus file to see if
any changes of port status have been requested.

init then reads the commands in the /ete/rc.ds file, if that file exists. Typically,
[etc/rc.ds contains commands to start Distributed Services. Any commands that are
needed to run remote mounts should be placed in /ete/re.ds.

If, at any time after the system starts up normally, init discovers that no ports are enabled
or if init receives an INTERRUPT signal, it decides again on startup options. Generally,
this means init will go through normal startup, assuming a dirty root.

Commands 397



init

Environments

Because init is the ultimate ancestor of every process on the system, its environment
parameters are inherited by every process. As part of its initialization sequence, init reads
the file /fetc/environment and copies any assignments found in that file into the
environment passed to all of its subprocesses. It treats umask differently. If it is assigned
a reasonable octal value, init does a umask system call for the specified value, rather than
passing the value in the environment. Similarly, if filesize is specified, init issues a
ulimit call with the given size as the argument.

Files
Jetc/utmp Record of logged-in users.
Jusr/adm/wtmp Permanent login accounting file.
[etc/portstatus Enabled port status file.
[ete/re Initialization command file.
[etc/environment System-wide environment variables.

Related Information
The following commands: “getty” on page 372, “penable” on page 550, “r¢” on page 594,
and “shutdown” on page 663

The reboot and umask system calls and the portstatus file in AIX Operating System
Technical Reference.

The discussion of starting up the system in Managing the AIX Operating System.

398 Commands Reference



install

install

Purpose

Installs a command.

Syntax

insfan~< file
—n directory E
—c directory
insfcll >» file—s
-t directory

Description

0L805022

The install command installs file in a specific place within a file system. It is most often
used in “makefiles” (see “make” on page 474). When replacing files, install copies each
file into the appropriate directory, thereby retaining the original owner and permissions.
A newly-created file has permission code 755, owner bin, and group bin. install writes a
message telling you exactly which files it is replacing or creating and where they are
going.

If you do not supply any arguments, install searches a set of default directories (/bin,
Jusr/bin, /ete, /lib, and /usr/lib, in that order) for a file with the same name as file. The
first time it finds one, it overwrites it with file and issues a message indicating that it has
done so. If a match is not found, install issues a message telling you there was no match
and exits with no further action.

If any directories are specified on the command line, install searches them before it
searches the default directories.

Flags

-c directory Installs a new command file in directory only if that file does not already
exist there. If it finds a copy of file there, it issues a message and exits
without overwriting the file. This flag can be used alone or with -s.

Commands 399



install

-f directory Forces installation of file in directory whether or not file already exists. If

-

the file being installed does not already exist, install sets the permission
code and owner of the new file to 755 and bin, respectively. This flag can be
used alone or with -0 or -s.

Ignores the default directory list and searches only those directories
specified on the command line. This flag cannot be used with -¢ or -f.

-n directory Installs file in directory if it is not in any of the searched directories and sets

-S

the permissions and owner of the file to 755 and bin, respectively. This flag
cannot be used with -¢ or -f.

Saves the old copy of file by copying it to OLDfile in the directory in which
it found it. This flag cannot be used with -c.

Suppresses display of all but error messages.

Examples

1.

To replace a command that already exists in one of the default directories:
install fixit
This replaces fixit if it is found in /bin, /usr/bin, /ete, /lib, or fusr/lib. Otherwise,

it is not installed. For example, if /usr/bin/fixit exists, then this file is replaced by
a copy of the file fixit in the current directory.

To replace a command that already exists in a specified or default directory, and to
preserve the old version:

install -o fixit /etc /usr/games

This replaces fixit if found in /ete, /usr/games, or one of the default directories.
Otherwise it is not installed. If fixit is replaced, the old version is preserved by
renaming it OLDfixit in the directory in which it was found (-o).

To replace a command that already exists in a specified directory:
install -i fixit /u/jim/bin /u/joan/bin /usr/games

This replaces fixit if found in /u/jim/bin, /u/joan/bin, or /usr/games.
Otherwise it is not installed.

To replace a command if found in a default directory, or install it in a specified
directory if not found:

install -n /Jusr/bin fixit

This replaces fixit if found in one of the default directories. If fixit is not found, it
is installed as /usr/bin/fixit (-n fusr/bin).

400 Commands Reference



install

5. To install a new command:
install -c¢  /Jusr/bin fixit

This creates a new command by installing a copy of fixit as /usr/bin/fixit, but
only if this file does not already exist.

6. To install a command in a specified directory whether or not it already exists:
install -f /Jusr/bin -0 -s fixit

This forces fixit to be installed as /usr/bin/fixit whether or not it already exists.

The old version, if any, is preserved by moving it to /usr/bin/OLDfixit (-0). The
messages that tell where the new command was installed are suppressed (-s).

Related Information

The following command: “make” on page 474.

The mk system maintenance procedure in AIX Operating System Technical Reference.

Commands 401



installp

installp

Purpose

Installs a program.

Syntax

-d /dev/rfd0 -n $LOGNAME
installp ——<; Y ;>—¢
—d device -n name

OL805021

Description

402

Warning: Before you install a program, you must restart your system and
be sure that no other users are on the system and no other programs are
running.

The installp command installs a program. You must be a member of the system group or
operating with superuser authority to run this command.

Because more than one program may be on a set of diskettes, installp asks whether or not
you want to install each program. If you do, installp checks to see if it is an older version
than the one currently installed. If it is, installp asks if you wish to continue.

The installp command makes a backup copy of the program history file before installation
begins. If installation is not successful, it sets the Version, Release, and Level fields of the
last record of the history file to 00.00.0000 and logs the exit value in the program history
file. The history file remains on the system as /usr/lpp/pgm-name/lpp.hist, where
pgm-name is the program name.

Note: Only ordinary files with the prefix Ipp. remain in /usr/lpp/pgm-name after
completion of installp. All other ordinary files are removed.

You cannot use INTERRUPT (Alt-Pause) to stop the installp command. To stop installp,
press QUIT WITH DUMP (Ctrl-V). This should be used only in extreme circumstances
since the state of the system cannot be predicted. For example:

e The write-verify feature may be left on for all minidisks. See “verify” on page 830
e All terminals other than the console may be disabled. See “penable” on page 550.
o Some install control files may need to be deleted.

Commands Reference



installp

Flags

-d device Installs the program from the specified device. The default device is /dev/rfdO0.

-n name Logs the first eight nonblank characters of name in the program history file.
The default name is the value of the environment variable $LOGNAME.

The installp command runs a program-provided installation procedure instal. Each
installation procedure returns one of the following exit values to installp:

0 Installation completed; take no action.

2 Update superblocks, i-nodes, and delayed block I/O (sync), then restart the AIX
Operating System.

Build the kernel, then update the superblocks, i-nodes, and delayed block I/O (sync)
and shut down the VRM.

Build the kernel, then update the superblocks, i-nodes, and delayed block I/O (sync)
and restart the AIX Operating System.

Installation cancelled without errors.

Update superblocks, i-nodes, and delayed block I/O (sync), then shut down the VRM.

Any other return value indicates that installation failed.

[~ 31 B ]

Internal Commands

Install procedures can use the following internal commands. Because they are internal
commands, they do a minimum validation of input parameters. Their purpose is to provide
common code for the save and recovery functions frequently needed by most
program-provided procedures. Because these internal commands function as subcommands,
they return exit values rather than issue error messages. However, messages may come
from other system commands that they run. C Language programmers of install
procedures that call these commands can use the /usr/include/inu2l.h file to define the
return codes for them.

inusave

The inusave command saves some or all of the files and archive files that will be changed
during a program install or update procedure. It uses the following syntax:

inusave listfile pgm-name

The pgm-neme parameter specifies the program to be installed or updated. pgm-name can
be a maximum of 8 characters. listfile, which must be a full path name, contains a list of
relative path names (relative to the root) for all of the files that need to be saved. [listfile
must be in the format of an apply list (see AIX Operating System Programming Tools and
Interfaces for a discussion of the format of an apply list).

The inusave command creates the save directory (Jusr/lpp/pgm-name/inst _updt.save ).
This is the directory in which the install and update procedures store saved files and the

Commands 403



installp

control list that correlates the local file names with their full path names. inusave uses
listfile as a basis to determine which files need to be temporarily saved.

If the file named in listfile already exists, inusave copies that file to
Jusr/lpp/pgm-name/inst _updt.save/update. n, where n is an integer assigned by
inusave. If the file does not exist, inusave assumes that this entry in listfile represents
either a new file or a file to be archived or processed by the archive procedure. inusave
maintains a list of saved files in /usr/lpp/pgm-name/inst _updt.save/update.list . The
format of each entry in the list is:

update.n file
where update.n is the name of the saved file and file is the full path name of the file.

An archived constituent file is saved if there is a valid archive control file,
Jusr/lpp/pgm-name/lpp.acf, for the program. If this file exists, inusave compares each of
the file names in lisifile to the constituent file names in fusr/lpp/pgm-name/lpp.acf. When
it finds a match, inusave uses the ar command to extract the constituent file from its
associated archive file. It then moves it to fusr/lpp/pgm-name/inst _updt.save/archive.
n, where n is an integer selected by inusave. inusave maintains a list of the extracted
files that have been saved in the file /usr/lpp/pgm-name/inst _updt.save/archive.list .
The format of each entry in the list is:

archive.n cfile afile

where archive.n is the name of the saved file and cfile and afile are the constituent and
archive files defined in the archive control file.

The inusave command returns the following exit values:

0 No error conditions occurred.

105 Failure occurred trying to create a save directory.

107 Copy of a file from one directory to another failed. This implies that the update
apply has not yet begun and that the old level of the program is still usable.

202 One or more parameters missing.

204 Too many parameters were entered.

207 Could not access the apply list.

inurecv '

The inurecv command recovers all files and archive-constituent files saved from the
previous inusave. inurecv uses the following syntax:

inurecv pgm-name reject-flag

It uses the control lists from the /usr/lpp/pgm-name/inst _updt.save directory to recover
the files. inusave creates the /usr/lpp/pgm-name/inst _updt.save directory and control
lists. inurecv also recovers files that may have been saved by the program-provided install
or update procedure (see AIX Operating System Programming Tools and Interfaces for
details).

404 Commands Reference



TNL SN20-9861 (26 June 1987) to SC23-0790-0
installp

The inurecv command has to distinguish between an immediate recovery that occurs
because of an error condition during an install or update and an update rejection that
occurs because a user rejects an update (updatep -r). If the reject-flag argument is yes,
inurecv assumes that it is being run because of an update rejection. If the argument is no
or if no flag is specified, inurecv assumes that it is being run because of an immediate
recovery.

The inurecv command returns the following exit status values:

0 No error conditions occurred.

101 The save directory does not exist.

102 A copy of a file from one directory to another failed. This implies that the program
could not be recovered and that it must be reinstalled and any updates reapplied.

104 A file that was saved in the save directory was not found.

205 Replacement of a constituent file in an archive file failed while attempting to
recover a program. This implies that the program is no longer useable and should be
reinstalled and any updates reapplied.

inurest

The inurest command does simple restores and archives. It does not do any additional
processing or user interaction. inurest uses the following syntax:

inurest [-ddevice] [-q] listfile pgm-name

The listfile is the full path name of a file containing the relative directory target path name
(relative to the root), of files that a program needs to restore. It must be in the format of
an apply list. inurest restores all files in the list relative to the root directory. pgm-name
specifies the name of the program to be installed or updated. It can be a maximum of 8
characters.

To archive a file, there must be an archive control file, fusr/lpp/pgm-name/lpp.acf. If it
exists, inurest compares each of the target names in listfile to the component files listed in
there. Whenever inurest finds a match, it archives the restored file into the
corresponding archive file and deletes the restored file.

Flags

The following flags modify the action of inurest:

-d device Specifies the input device. The default device is /dev/rfd0.

-q Prohibits restore from displaying the “insert volume 1” prompt.
The inurest command returns the following exit status values:

0 No error conditions occurred.
106 Failed trying to restore an updated version of files.
201 An invalid flag was specified.

Commands 405



TNL SN20-9861 (26 June 1987) to SC23-0790-0

installp
202 One or more parameters missing.
204 Too many parameters were entered.

206 Failed trying to replace file in an archive file.
208 Could not access the apply list.

ckprereq

The ckprereq command determines whether the system level is compatible with the
program to be installed or updated. It uses the following syntax:

ckprereq [-v] [-f prerequisites]

You can run ckprereq only if you are a member of the system group or are operating with
superuser authority. prerequisites is a program prerequisite list file. Each record in this
file contains the name of a prerequisite program and describes the version, release, and
level requirements. There is one record for each prerequisite program. The default
prerequisites file is prereq. See AIX Operating System Programming Tools and Interfaces
for details on the format of ckprereq file entries.

The ckprereq command tests the current version, release, and level found in the history
file and marks each “prereq state” field of the prereq file with one of the following codes if
the test fails:

n The history file was not found.

s There is a syntax error in the prereq file.
v The test is false for version.

r The test is false for release.

1 The test is false for level.

A blank “prereq state” field indicates that the test was true. The exit value of ckprereq is
the number of records that did not test true. If all records test true, the exit value is 0.

Note: If a program is installed on a local node and executed on a remote node, the remote
node must have file trees that have all necessary prerequisite files available.

Flags

-f prerequisites Specifies the prerequisites file to use in place of prereq.

-v Sends a descriptive message to standard error for each failure in the
prerequisite program test. The messages give the same information as the
prereq state field of the prereq file.

406 Commands Reference



installp

mvmd

The mvmd command updates the VRM minidisk. It uses the following syntax:

mvmd
mvmd
mvmd
mvmd
mvmd

-a file -D VRM-dir [-fp [file]] -1 pgm-name
-¢c VRM-file permissions -1 pgm-name

-d VRM-file -1 pgm-name

-m VRM-file [-fp [file]] -1 pgm-name

-r file -D VRM-dir -1 pgm-name

You must be a member of the system group or operating with superuser authority to run

mvmd.

Flags

-a file

Adds the specified file to the VRM minidisk. Use the -D flag to specify the
destination VRM directory. file must not already exist in the specified
directory. By default, mvmd adds the file to the first unused position in
the VRM directory. To specify a position, use the -f or -p flag.

-¢ VRM-file permissions

-d VRM-file

-D VRM-dir
-f [file]

Changes the permission code of the specified VRM-file to the octal value,
permissions. The VRM-file parameter must be a full path name. Valid
combinations of permission bits are as follows:

0700 The loadlist processor loads, runs, and deletes this module.

0450 The loadlist processor transfers control to this module after all
loadlist directory entries have been processed.

0440 The loadlist processor loads this module.

0410 This module is a virtual machine.

0040 If the system startup device is a diskette, the loadlist processor is
to load the module. If the system startup device is a fixed disk, the
loadlist processor does not load the module. Instead, it maps the
module.

The loadlist processor ignores any module that does not have the load bit
set. For more information about these permission bits, see Virtual
Resource Manager Technical Reference.

Deletes the specified file from the VRM minidisk. The VRM-file parameter
must be a full path name.

Specifies the full path name of the VRM directory.

Specifies the position following file in the directory list or, if you do not
specify file, the bottom of the directory list. Use this positioning flag with
the -a or -m flags.

Commands 407



installp

-1 pgm-name Specifies the name of a program that is modifying the VRM minidisk. The
pgm-name, the date, the user name, and a descriptive title are place in a
record appended to the VRM history file. If you do not specify this flag,
then a record with the name UNKNOWN is appended to the VRM history file.

-m VRM-file Moves the specified file within its VRM directory. By default, mvmd
moves the file to the first unused position. To specify a position, use the -f
or -p flag.

-p [file] Specifies the position prior to file in the directory list or, if you do not
specify file, the top of the directory list. Use this positioning flag with the
-a or -m flags.

-r file Replaces the specified file on the VRM minidisk. Use the -D flag to select
the VRM directory of the file to be replaced. Both the replacement file and
the file to be replaced must have the same name.

The mvmd command returns an exit status of 0 if no errors occurred. A nonzero return
indicates that an error did occur.

Files
instal Program installation procedure.
liblpp.a : Central archive file.
Ipp.hist Program history file.
prereq Program prerequisite list file.
Jusr/lpp/pgm-name/lpp.acf Archive control file.
Jusr/lpp/pgm-name/inst_updt.save Directory for saved files.
[usr/lpp/pgm-name/inst_updt/inuPIDtempn Temporary files.
Jusr/include/inu21.h Defines error codes returned from internal

commands.

Related Information

The following command: “updatep” on page 796.

The fork and exec system calls and the lpp.hist file in AIX Operating System Technical
Reference.

The discussion of installing programs in AIX Operating System Programming Tools and
Interfaces.

408 Commands Reference



TNL SN20-9861 (26 June 1987) to SC23-0790-0
ipcrm

ipcrm

Purpose

Removes message queue, semaphore set or shared memory identifiers.

Syntax

ipcrm_é

-| msqid
=L msgkey
—-m shmid
—q msgid
-s semid
—M shmkey
—Q msgkey
=S semkey

Description

Flags

OL805135

The iperm command removes one or more message queue, semaphore set, or shared
memory identifiers.

-Imsqid
-Lmsgkey

-m shmid

-M shmkey

-q msqid

Removes local information about the remote queue msqid without removing
the remote queue.

Removes local information about the remote queue msgkey without removing
the remote queue.

Removes the shared memory identifier shmid. The shared memory segment
and data structure associated with shmid are also removed after the last
detach.

Removes the shared memory identifier, created with key shmkey. The shared
memory segment and data structure associated with it are also removed after
the last detach.

Removes the message queue identifier msqid and the message queue and data
structure associated with it.

Commands 409



ipcrm

-Q msgkey  Removes the message queue identifier, created with key msgkey, and the
message queue and data structure associated with it.

-s semid Removes the semaphore identifier semid and the set of semaphores and data
structure associated with it.

-S semkey Removes the semaphore identifier, created with key semkey, and the set of
semaphores and data structure associated with it.

The details of the remove operations are described in msgctl, shmctl, and semctl in the
AIX Operating System Technical Reference. The identifiers and keys can be found by using
the ipcs command.

Related Information

The following command: “ipcs” on page 411.

The msgctl, msgget, msgrev, msgsnd, semctl, semget, semop, shmctl, shmget, and
shmop system calls in AIX Operating System Technical Reference.

410 Commands Reference



TNL SN20-9861 (26 June 1987) to SC23-0790-0

ipcs
ipcs
Purpose
Reports inter-process communication facility status.
Syntax
-m-q -s —C /dev/kmem -N/unix
T
—Ccorefile —N kernel-image
OL805432
Description

The ipcs command writes to the standard output information about active inter-process
communication facilities. If you do not specify any flags, ipes writes information in a
short form about currently active message queues, shared memory segments semaphores,
remote queues, and local queue headers.

The column headings and the meaning of the columns in an ipes listing follow. The letters
in parentheses indicate the flags that cause the corresponding heading to appear. all
means that the heading always appears. These flags only determine what information is
provided for each facility. They do not determine which facilities will be listed.

T (all) Type of facility:

q message queue

Q message queue resides on a remote node
m shared memory segment

s semaphore.

D (all) The identifier for the facility entry.

KEY (all) The key used as a parameter to msgget, semget, or shemget to make
the facility entry.

Note: The key of a shared memory segment is changed to IPC_.PRIVATE
when the segment is removed until all processes attached to the segment
detach it.

Commands 411



ipcs

412

MODE

OWNER
GROUP
CREATOR
CGROUP

CBYTES
QNUM
QBYTES

LSPID

(all) The facility access modes and flags. The mode consists of 11 characters
that are interpreted as follows:

The first two characters can be:

R if a process is waiting on a msgrev

S if a process is waiting on a msgsnd

D if the associated shared memory segment has been removed. It disappears
when the last process attached to the segment detaches it.

C if the associated shared memory segment is to be cleared when the first
attach is run

- if the corresponding special flag is not set.

The next 9 characters are interpreted as three sets of three bits each. The
first set refers to the owner’s permissions; the next to permissions of others in
the user-group of the facility entry; and the last to all others. Within each
set, the first character indicates permission to read, the second character
indicates permission to write or alter the facility entry, and the last character
is currently unused.

The permissions are indicated as follows:

if read permission is granted
if write permission is granted
if alter permission is granted
if the indicated permission is not granted.

I”ih‘

(all) The login name of the owner of the facility entry.

(all) The name of the group that owns the facility entry.

(a,c) The login name of the creator of the facility entry.

(a,c) The group name of the group of the creator of the facility entry.

Note: For the OWNER, GROUP, CREATOR, and CGROUP, the user and
group IDs display instead of the login names.

(a,0) The number of bytes in messages currently outstanding on the
associated message queue.

(a,0) The number of messages currently outstanding on the associated
message queue.

(a,b) The maximum number of bytes allowed in messages outstanding on the
associated message queue.

(a,p) The ID of the last process that sent a message to the associated queue.
If the last message sent was from a process in a node other than the node
which holds the queue, then LSPID is the PID of the kernel process which
actually placed the message on the queue, not the PID of the sending process.

Commands Reference



ipcs

Flags

LRPID

STIME

RTIME

CTIME

NATTCH

SEGSZ
CPID
LPID

ATIME
DTIME
NSEMS

OTIME

-C

-Ccorefile

(a,p) The ID of the last process that received a message from the associated
queue. If the last message received was from a process in a node other than
the node which holds the queue, then LRPID is the PID of the kernel process
which actually received the message on the queue, not the PID of the
receiving process.

(a,t) The time when the last message was sent to the associated queue. For
remote queues, this is the server time. No attempt is made to compensate for
any clock skew between the local clock and the server clock.

(a,t) The time when the last message was received from the associated queue.
For remote queues, this is the server time. No attempt is made to compensate
for any clock skew between the local clock and the server clock.

(a,t) The time when the associated entry was created or changed. For remote
queues, this is the server time. No attempt is made to compensate for any
clock skew between the local clock and the server clock.

(a,0) The number of processes attached to the associated shared memory
segment.

(a,b) The size of the associated shared memory segment.
(a,p) The process ID of the creator of the shared memory entry.

(a,p) The process ID of the last process to attach or detach the shared
memory segment.

(a,t) The time when the last attach was completed to the associated shared
memory segment.

(a,t) The time the last detach was completed on the associated shared memory
segment.

(a,b) The number of semaphores in the set associated with the semaphore
entry.

(a,t) The time the last semaphore operation was completed on the set
associated with the semaphore entry.

Uses the -b, -¢, -0, -p and -t flags.

Writes the maximum number of bytes in messages on queue for message
queues, the size of segments for shared memory, and the number of
semaphores in each semaphores set.

Writes the login name and group name of the user that made the facility.

Uses the file corefile in place of /dev/kmem. corefile is a memory image
file produced by the Ctrl-(left)Alt-End key sequence.

Commands 413



TNL SN20-9861 (26 June 1987) to SC23-0790-0

ipcs
-m Writes information about active shared memory segments.
-Nkernel-image Uses the specified kernel-image (funix is the default).
-0 Writes the following usage information:
e Number of messages on queue
e Total number of bytes in messages in queue for message queues
e Number of processes attached to shared memory segments.
-p Writes the following:
® Process number of the last process to receive a message on message
queues
o Process number of the creating process
e Process number of last process to attach or detach on shared memory
segments.
-q Writes information about active message queues.
-s Writes information about active semaphore set.
-t Writes the following:
o Time of the last control operation that changed the access
permissions for all facilities
o Time of the last msgsnd and last msgrecv on message queues
e Time of the last shmat and last shmdt on shared memory
e Time of the last semop on semaphore sets.
Files
Junix System kernel image.
/dev/kmem Memory.
Jetc/passwd User names.
[etc/group Group names.

Related Information

The ipes, msgrev, msgsnd, semop, shmat, and shmdt system calls in AIX Operating
System Technical Reference.

The discussion of generating core files in Problem Determination Guide.

414 Commands Reference



ipctable

ipctable

| Purpose

| Accessess the Distributed Services IPC Queues Table.

|Syntax

| ipctable —
OL805468

| Description

| The ipctable command lets you build, examine, or change the Distributed Services IPC
| Queues Table. Only members of the system group or users operating with superuser

| authority can use ipctable to change the state of the Distributed Services IPC Queues
| Tables (see “su” on page 724). Other user can use ipectable to browse the IPC Queues
| Table.

iRelated Information

| “Getting Started With Distributed Services Configuration Menus” in Managing the AIX
| Operating System.

Commands 414.1



ipctable

414.2 Commands Reference



TNL SN20-9861 (26 June 1987) to SC23-0790-0

istat
istat
Purpose
Examines i-nodes.
Syntax
filename
istat { V—i
inumber — device
OL805138

Description

The istat command writes information about the i-nodes specified with inumber to
standard output. Use the istat command to write information about the i-node for a
specified filename, or to write the contents of a specified i-node, inumber on an arbitrary
file system.

If you specify filename, istat writes the following information about the file:

The device where the file resides.

The i-node number of the file, on that device.

The file type (normal, directory, block device, and so on).
What protection is on the file.

The name and identification number of the owner and group.

Note: The owner and group names for remote files are taken from the local
[etc/passwd file.

The number of links to the file.

If the i-node is for a normal file, the length of the file.

If i-node is for a device, the major and minor device designations.

The date of the last time the i-node was updated.

The date of the last time the file was modified.

The date of the last time the file was referenced.

If you specify inumber and device, istat also displays, in long decimal values, the block
numbers recorded in the i-node. You can specify the device as either a device name or as a
mounted-file-system name.

Note: inumber and device cannot specify a remote device.

Commands 415



istat

Examples

1. To display the information stored in a file i-node:
istat /bin/sh

This displays the i-node information for the file /bin/sh. The information looks
something like this:

Inode 34 on device 0/10 File
Protection: rwxr-xr-x  Sticky

Owner: 0(su) Group: O(system)
Link count: 1 Length 54240 bytes

Last updated: Tue Dec 18 01:07:36 1984
Last modified: Sat Jun 30 18:11:47 1984
Last accessed: Wed Feb 13 11:06:37 1985

2. To display i-node information if given a file i-number:

istat 34 /dev/hdO

This displays the information contained in i-node number 34 on the /dev/hd0 device.
In addition to the information shown in Example 1, this displays:

Block pointers:
219 220 221 222 223 224 225 226
227 228 229 0 0

These numbers are addresses of the disk blocks that contain the data about the file.
Related Information

The following command: “fsdb” on page 338.

The stat system call and the filesystems and fs files in AIX Operating System Technical
Reference.

416 Commands Reference



join
Purpose
Joins data fields of two files.
Syntax
join estiivg ne of c;'neur())vf >—<_° . filel — file2 —
— —1n -
fehar —a2 —j0 num l 1
-1 num ’
Do not put a blank on either side of the comma.
OL805371
Description
The join command reads filel and file2, joins lines in the files according to the flags, and
writes the results to standard output. Both files must be sorted according to the collating
sequence specified by the NLCTAB environment variable, if set, for the fields on which
they are to be joined (normally the first field in each line).
One line appears in the output for each identical join field appearing in both filel and
file2. The join field is the field in the input files that join looks at to determine what will
be included in the output. The output line consists of the join field, the rest of the line
from filel, then the rest of the line from file2. You can specify standard input in place of
filel by substituting a - (minus) for the name.
Both input files must be sorted in increasing ASCII collating sequence on the fields on
which they are to be joined (the join field, normally the first field in each line).
Fields are normally separated by a blank, a tab character, or a new-line character. In this
case, join treats consecutive separators as one, and discards leading separators.
Flags

-anum When num is 1, join produces an output line for each line found in filel
but not in file2. When num is 2, join produces an output line for each
line found in the file2 but not in filel.

Commands 417



-e string Replaces empty output fields with string.

-j[n] num Joins the two files on the numth field of file n. n is 0 or 1. If you do not
specify n, join uses the numth field in each file.

-0 n.num[,n.num...]
Makes each output line consist of the fields specified in list, in which
each element has the form n.num, where n is a file number and num is a
field number.

~tchar Uses char as the field separator character in the input and the output.
Every appearance of char in a line is significant. The default separator is
a blank. With default field separation, the collating sequence is that of
sort -b. If you specify -t, the sequence is that of a plain sort. To specify
a tab character, enclose it in single quotation marks (”).

Examples

Note: The vertical alignment shown in these examples may not be consistent with your
output.
1. To perform a simple join operation on two files whose first fields are the same:

join phonedir names

If phonedir contains the and names is this listing | then join displays:
following telephone directory: | of names and department

numbers:
Brown J. 555-6235 Elder Dept. 389 Elder G. 555-1234 Dept. 389
Dickerson B. 555-1842 Frost  Dept. 217 Green P. 555-2240 Dept. 311
Elder G. 555-1234 Green  Dept. 311 McGuff M. 555-5341 Dept. 454
Green P. 555-2240 McGuff Dept. 454 Wilde C. 555-1234 Dept. 520
Harper M. 555-0256 Wilde Dept. 520
Johnson M. 555-7358
Lewis B. 555-3237
McGuff M. 555-5341
Wilde C. 555-1234

Each line consists of the join field (the last name), followed by the rest of the line
found in phonedir and the rest of the line in names.

2. To display unmatched lines with the command:
join -a2 phonedir names

418 Commands Reference



If phonedir contains: and names contains: then join displays:

Brown

J. 555-6235 Elder  Dept. 389 Elder G. 555-1234 Dept. 389

Dickerson B. 555-1842 Frost  Dept. 217 Frost Dept. 217
Elder G. 555-1234 Green  Dept. 311 Green P. 555-2240 Dept. 311
Green P. 555-2240 McGuff Dept. 454 McGuff M. 555-5341 Dept. 454
Harper M. 555-0256 Wilde Dept. 520 Wilde C. 555-1234 Dept. 520
Johnson M. 555-7358
Lewi