

IBM RT PC

vs FORTRAN User's Guide

Programming Family .

--- ------ - ---- ---- - ---- - - ----------_.-
Personal
Computer
Software

First Edition (March 1987)

The information in this manual applies to Version 1 of IBM RT PC VS FORTRAN for use with Release 2.1 of the AIX
Operating System; and it applies to all subsequent releases and modifications until otherwise indicated in new editions or
Technical Newsletters.

Changes are made periodically to the information herein; these changes will be incorporated in new editions of this publica­
tion.

References in this publication to IBM products, programs, or services do not imply that IBM intends to make these avail­
able in all countries in which IBM operates. Any reference to an IBM program product in this publication is not intended
to state or imply that only IBM's program product may be used. Any functionally equivalent program may be used instead.

International Business Machines Corporation provides this manual "as is" without warranty of any kind, either express or
implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. IBM
may make improvements and/or changes in the product(s) and/or the program(s) described in this manual at any time.

Requests for copies of this product and for technical information about the system should be made to your authorized IBM
RT PC dealer.

A reader's comment form is provided at the back of this publication. IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any obligation to you.

© IBM Corporation 1987

8R T PC is a trademark of IBM Corporation

8 AIX is a trademark of IBM Corporation

Preface

This manual is a user's guide to compiling FORTRAN programs using IBM
RT PC VS FORTRAN on an RT Personal Computer (RT PCl) operating
on the AIX2 Operating System.

For a formal description of IBM RT PC VS FORTRAN, see the RT PC VS
FORTRAN Reference Manual.

Contents:

• Chapter 1 - "Introduction" describes the highlights of IBM RT PC VS
FORTRAN. The chapter also contains a diagram showing the main
steps in creating a FORTRAN program under the AIX Operating
System, and a diagram illustrating the compilation process.

• Chapter 2 - "The Compiler" pr~vides the information necessary to
compile FORTRAN programs, and describes each of the available
command-line options and compiler directives.

• Chapter 3 - "Opening Files for Input and Output" describes how to
open files for input and output under the AIX Operating System.

• Chapter 4 - "Data Representations" describes how IBM RT PC VS
FORTRAN represents data storage.

• Chapter 5 - "Mixing Languages" describes the procedures to follow
when mixing program elements written in IBM RT PC VS FORTRAN,
IBM R T PC VS Pascal, and IBM R T PC C Version 1. It also illustrates
the mechanism for passing parameters to subroutines and functions.

RT PC is a trademark of IBM Corporation

2 AIX is a trademark of IBM Corporation

Preface iii

• Chapter 6 - "The Disassembler" describes how to translate binary
code modules into assembly language equivalents.

• Appendix A - "Messages" lists the compile-time and run-time mes­
sages.

• Appendix B - "ASCII Character Set" lists the decimal, octal, and
hexadecimal values for the American National Standard ASCII charac­
ters.

• Appendix C - "Migrating Programs" describes the limitations and
uncertainties to be aware of when compiling code written in IBM VS
FORTRAN Version 2, IBM RT PC FORTRAN 77 Version 1.1, and
VAX3 FORTRAN Version 3.

Related Publications

iv FORTRAN User's Guide

You may want to refer to the following IBM R T PC publications for addi­
tional information:

• VS FORTRAN Reference Manual, SH23-0130, describes the
FORTRAN 77 programming language as implemented on the RT PC.

• VS Pascal User's Guide, SH23-0127, describes the procedures for com­
piling and running R T PC VS Pascal programs under the AIX Operating
System.

• VS Pascal Reference Manual, SH23-0128, describes the Pascal pro­
gramming language as implemented on the RT PC.

• VS Language/Operating System Interface Library, SH23-0131, describes
the system routines that can be called from FORTRAN and Pascal pro­
grams.

VAX is a trademark of Digital Equipment Corporation

·, Concepts, GC23-0784, gives an overview of the RT PC hardware, the
AIX Operating System, and supporting publications.

• Installing and Customizing the AIX Operating System, SV21-8001, pro­
vides step-by-step instructions for installing and customizing the AIX
Operating System, including instructions for adding devices to and
deleting them from the system and for defining device characteristics.
This book also explains how to create, delete, and change AIX and
non-AIX minidisks.

• Messages Reference, SV21-8002, lists messages displayed by the RT PC
and explains how to respond to the messages.

• Usability Services Guide and Usability Services Reference, SV21-8003,
show how to create and print text files, work with directories, start
application programs, and do other basic tasks.

• Using and Managing the AIX Operating System, SV21-8004, contains
information on using AIX Operating System commands, working with
the file system, developing shell procedures, and performing such
system-management tasks as creating and mounting file systems,
backing up the system, and repairing file-system damage.

• AIX Operating System Commands Reference, SV21-8005, lists and
describes the AIX Operating System commands.

• C Language Guide and Reference, SV21-8008, provides information for
writing, compiling, and running C language programs.

• AIX Operating System Technical Reference, SV21-8009, describes the
system calls and subroutines a programmer would use to write applica­
tion programs. This book also provides information about the AIX
Operating System file system, special files, miscellaneous files, and the
writing of device drivers.

• AIX Operating System Programming Tools and Interfaces, SV21-8010,
describes the programming environment of the AIX Operating System
and includes information about the use of operating system tools to
develop, compile, and debug programs.

Preface V

vi FORTRAN User's Guide

• A/X Operating System DOS Services Reference, SV21-8012, provides
step-by-step information for using the AIX Operating System shell. In
addition, this book describes the DOS system services.

• User Setup Guide, SV21-8020, provides instructions for setting up and
connecting devices to system units. It also gives procedures for
installing the AIX Operating System and for testing the setup.

• Guide to Operations, SV21-8021, describes system units, displays,
console keyboard, and other devices that can be attached to the RT PC.
This guide also includes procedures for operating the hardware and for
moving system units.

• Problem Determination Guide, SV21-8022, provides instructions for
running diagnostic routines for hardware and problem-determination
procedures for software.

You may also want to consult the IBM RT PC FORTRAN 77 Version 1.1
publications.

Contents

Chapter 1. Introduction 1-1
FORTRAN Programs Under AIX 1-3
Compilation Process 1-5
Methods of Presentation 1-7

Chapter 2. The Compiler 2-1
Invoking the Compiler 2-1

Command-Line Options 2-3
Compiler Directives 2-9
Modifying Compiler Options 2-10

@PROCESS Statement 2-10
OPTIONS Statement 2-12

Optimization of Programs 2-13

Chapter 3. Opening Files for Input and Output 3-1
Opening Files with Environment-Determined Names 3-1

Using Environment Variables on the Command Line 3-2
Using Environment Variables in Shell Scripts 3-4

Opening Files with Program-Determined Names 3-5

Chapter 4. Data Representations 4-1
Storage Allocated For Each Data Type 4-1
Data Representation For Each Data Type 4-3

Representation of Integer Data 4-3
Representation of Floating-Point Data 4-4
Representation of Logical Data 4-14
Representation of Character Data 4-14

Storage of Arrays 4-15
Alignment ... 4-15

Chapter 5. Mixing Languages 5-1
Correspondence of Data Types 5-1
Storage of Matrices 5-3
Input/Output Primitives 5-4
Subroutine Linkage Convention 5-5

Contents vii

Load Module Format 5-5
Register Usage 5-5
Stack Frame 5-8
Parameter Passing 5 -11
Function Values 5-12
Parameter Addressing 5-12
Traceback .. 5-12
Entry and Exit Code 5-13
Calling a Routine 5-13

Sample Programs 5-14
FORTRAN Calling Pascal and C 5-14
Pascal Calling FORTRAN and C 5-18
C Calling FORTRAN and Pascal 5-22

Chapter 6. The Disassembler 6-1
Preparation ... 6-1

Automatic Option Memory File 6-2
Using the Disassembler 6-2

From the Command Line - with Options 6-2
From the Command Line - without Options 6-8
From the Menu System 6-10
From a Command File 6-16

Appendix A. Messages A-I
Compile-Time Messages A-I
Run-Time Messages A-II

Appendix B. ASCII Character Set B-1

Appendix C. Migrating Programs C-l
From VS FORTRAN Version 2 C-l

Limitations C-l
Uncertainties C-2

From RT PC FORTRAN 77 Version 1.1 C-5
Uncertainties C-5

From VAX FORTRAN Version 3 C-7
Limitations C-7
Uncertainties C-7

Index X-I

viii FORTRAN User's Guide

Chapter 1. Introduction

IBM RT PC VS FORTRAN is an easy-to-use, high-level programming lan­
guage for the RT Personal Computer. It compiles source code in
FORTRAN as defined by IBM VS FORTRAN Version 2, IBM RT PC
FORTRAN 77 Version 1.1, ANSI Standard FORTRAN 77, and VAX
FORTRAN Version 3.

In addition to excellent performance, IBM RT PC VS FORTRAN offers
these enhanced functions:

• Automated installation
• Source compatibility with IBM VS FORTRAN Version 21
• Source compatibility with IBM R T PC FORTRAN 77 Version 1.11
• Source compatibility with ANSI Standard FORTRAN 77
• Source compatibility with VAX FORTRAN Version 31

• Optimized executable code
• Excellent compile-time performance
• An operating system interface library
• No significant limit on program size
• No significant limit on data size
• Separate unit compilation
• Access to command-line options
• Common development/debugging environment

Detailed screen messages
• Easy inter-language linkages with FORTRAN and C.

You may select one of four compiler modes: IBM mode, R1 mode, AN
mode, or VX mode. You may work in the mode you need or with which
you are most familiar.

See Appendix C, "Migrating Programs" for limitations.

Chapter 1. Introduction 1-1

1-2 FORTRAN User's Guide

IBM Mode

This is the default mode of the compiler, and it allows you to compile
code written in IBM VS FORTRAN Version 2 (see
Appendix C, "Migrating Programs" for limitations).

You may develop and run IBM mode programs entirely on the RT PC.
As a cost-effective development tool, you may develop and run IBM
mode programs on an independent R T PC workstation and then move
the programs to a mainframe that uses VS FORTRAN Version 2.

You may also take programs written in IBM VS FORTRAN Version 2
from a mainframe and run them on your RT PC.

IBM mode contains all of the ANSI Standard FORTRAN 77 require­
ments; you may use ANSI Standard FORTRAN 77 code in IBM mode,
and can improve it using IBM mode enhancements.

Rl Mode

This mode allows you to compile code written in IBM R T PC
FORTRAN 77 Version 1.1 (see Appendix C, "Migrating Programs"
for limitations). You can take code written in this version of
FORTRAN and recompile it in IBM RT PC VS FORTRAN in order to
take advantage of its improvements and additional features.

AN Mode

This mode allows you to compile code written in ANSI Standard
FORTRAN 77. Code that is to adhere to this definition of FORTRAN
can be compiled in this mode; during program compilation, you are
warned when any extension to this definition is used.

VXMode

This mode allows you to compile code written ih VAX FORTRAN
Version 3 (see Appendix C, "Migrating Programs" for limitations).
You may take programs written in VAX FORTRAN Version 3 from a
mainframe and run them on your RT PC.

An additional advantage of IBM RT PC VS FORTRAN is that you have the
ability to mix modes in creating an executable program. However, each sep­
arate unit compilation may use only a single mode.

You should note that some programs may produce different results when
run on the RT PC compared to other machines because of differences in
machine architecture, operating systems, or compiler implementations.
These differences, along with the limitations of each mode, are noted in
Appendix C, "Migrating Programs."

FORTRAN Programs Under AIX

As illustrated in Figure I-Ion page 1-4, the four main steps in creating an
executable FORTRAN program under the AIX Operating System are:

1. Create your program using a text editor and store it with a ".for" or ".f"
extension.

2. Compile your source program to generate a binary file.

3. Link the output with the AIX system linker "cc" to create an executable
file.

4. Run the program.

Chapter 1. Introduction 1-3

STEP

Editor
.for or .f ~ Source File

L.------I L.---.--.....I

STEP 2

~ __ s_~_~_~_~_e_o_~_i_~e_f ____ ~~~1 _c_o_m_p_i_le_r~~I~ __ B_i_n_a_r_:_o_F_i_l_e __ ~

STEP 3

Binary File
.0

Libraries
lusr/lib/libvsfor.a
lusr/lib/libvssys.a

User Library Fi les
(Optional)

STEP 4

Run the
program

Figure 1-1. Creating a FORTRAN Program Under AIX

1-4 FORTRAN User's Guide

Compilation Process

As illustrated in Figure 1-2 on page 1-6, the compiler follows these steps
when invoked:

1. The source file is passed to "vsfort", which produces intermediate code
with an ".i" extension.

2. The" .i" file is passed to "vspass2", the code generator.

3. Code is then passed to "vspass3".

a. If the "g+" command-line option was set when the code was passed
to "vsfort", then "vspass3" creates both a ".dbg" file that can be
used with the Diassembler (disasm) and a binary file (.0 file). The
" .0" file is passed to the AIX linker (cc) which creates an execut­
able file. The executable file can be debugged by the Symbolic
Debugger (sdb).

Note: If both the "d+" and the "g+" command-line options are
set, regardless of their order on the command line, the" g+" option
has the higher priority.

b. If the "d+" command-line option was set when the code was passed
to "vsfort", then "vspass3" creates both a ".dbg" file that can be
used with the Disassembler (disasm) and a binary file (.0 file). The
".0" file is passed to the AIX linker (cc) which creates an execut­
able file. The executable file cannot be debugged by the Symbolic
Debugger (sdb).

c. If neither command-line option was set when the code was passed to
"vsfort", then "vspass3" creates a binary file (.0 file). The" .0" file
is passed to the AIX linker (cc) which creates an executable file.
The executable file cannot be debugged by the Symbolic Debugger
(sdb).

Chapter 1. Introduction 1-5

~_s_o_u_r_c_e __ f_i_le __ ~~~I _____ V_S_f_o_r_t ____ ~
t

. i file

t
vspass2

f
..... *9+ * yes
".set? ."----+rrspaSS3

! no

vspass3

t
.0 file

"----+. t
cc

t
executable

file

disasm

sdb

Figure 1-2. Compilation Process

1-6 FORTRAN User's Guide

Methods of Presentation

In this guide:

• Italicized letters and words represent variables, for which user-supplied
information is substituted. For example, the word "source!l" in a format
could be coded as "myprogl".

• Brackets "[]" indicate that an item is optional. For example, the specifi­
cation "[option]" in a format could be left blank or coded as "a+" as
needed.

• An ellipsis (...) indicates that the preceding specification can, optionally,
be repeated. For example, the specification "[option] ... " in a format
could be left blank or coded as "a+" or "a+ d+" or "a+ d+ f+" as
needed.

• All other words, letters, and symbols are to be coded as shown.

• The general rule in FORTRAN for spaces (blanks) is that they have no
significance in statements, and are used to improve readability. Space
and blank are synonymous in this ·manual.

• The phrase "FORTRAN 77" refers to ANSI Standard FORTRAN 77.

• The phrase "FORTRAN 66" refers to ANSI Standard FORTRAN 66.

Chapter 1. Introduction 1-7

1-8 FORTRAN User's Guide

Chapter 2. The Compiler

FORTRAN source code is compiled on the RT PC by executing the "vsf"
compiler, which produces binary code from the FORTRAN source code.
The binary code is then linked using the AIX Operating System linker "cc".

This chapter describes how to execute the compiler, and includes a
description of each of the command-line options and compiler directives
available in IBM, Rl, VX, and AN modes. Compiler option modification
and optimization capabilities are also described.

Note: For more information on the AIX Operating System linker, see the
A/X Operating System Commands Reference manual.

Invoking the Compiler

The format for running the compiler from the command line is:

I vsf sourcefl [option [...

sourcefl

option

is the name of a source file that has a ".for" or ".f" extension. If the
extension is not specified, the compiler searches for a "sourcefl.for"
file, and if not found, then searches for a "sourcefl.f" file. This is the
only argument required for the compiler's operation.

is any of the command-line options listed in "Command-Line
Options" on page 2-3. If no options are specified, the compiler:

Chqpter 2. The Compiler 2-1

• writes error messages to the standard output device
• generates calls to a compatible software library
• gives local variables AUTOMATIC implementation (except those

appearing in SAVE statements or those initialized in DATA state­
ments)

• reads source programs in fixed-form format
• compiles in IBM mode
• produces warning messages.

Example:

C SAMPLE PROGRAM "sample. for"
1 INTEGER I
2 REAL REAL
3 REAL IFINAL
4 DOUBLE PRECISION EXACT
5 FORMAT(lX,5F8.3)
6 DO 11,1= 1 ,5
7 REAL=3.12*I
8 EXACT=REAL/2
9 IFINAL=(EXACT*2)*(I-1)+REAL
10 WRITE (6,5) IFINAL
11 CONTINUE
12 STOP
13 END

To compile this program, enter vsf sample. This command invokes a shell
script named "vsf", which runs the compiler.

The screen displays the message:

o errors. 13 lines. File sample. for
o warnings.

The program now runs whenever sample is entered. The output from this
program is:

2-2 FORTRAN User's Guide

sample
3.120

12.480
28.080
49.920
78.000

Programmed STOP

Command-Line Options

Command-line options are provided to change any of the compiler's default
settings. Figure 2-1 on page 2-8 lists all of the options and indicates the
modes in which each one can be used.

a+ CONDITIONAL COMPILATION
instructs the compiler to also compile lines that have an upper­
case or lowercase D in column 1.

This option is available in VX mode.

d+ DISASSEMBLER INFORMATION
instructs the compiler to put disassembler information in the
".dbg" file. This option.is required if this module is to be disas­
sembled using the RT PC Disassembler. This option also pre­
pares the binary files for profiling. For more information on
profiling, see the A/X Operating System Commands Reference
manual.

This option is available in all modes.

efilename ERROR FILE
instructs the compiler to place its error output in filename. If
the efilename option is not specified, error messages are written
to the standard output device.

This option is available in all modes.

Chapter 2. The Compiler 2-3

f+ FLOATING-POINT HARDWARE
instructs the compiler to generate in-line calls to floating-point
hardware. The floating-point hardware is required at run time
but is optional at compile time.

This option is available in all modes.

g+ DEBUGGER INFORMATION
instructs the compiler to put debugger information in the execut­
able file. This option is required if this module is to be debugged
using the RT PC Symbolic Debugger.

This option is available in all modes.

h+ STATIC IMPLEMENTATION
instructs the compiler to give local variables STATIC implemen­
tation.

This option is available in all modes.

inl,n2, ... nn CONDITIONAL INCLUDE
instructs the compiler to selectively activate the INCLUDE
statement within the FORTRAN source code during compila­
tion. If the number specified in an INCLUDE statement's
optional nnn parameter is also specified in this option's
nl,n2, ... nn list, the contents of the file specified in the
INCLUDE statement are included in the compilation. The vari­
ables nnn and nl,n2, ... nn are numbers from 1 through 255, and
there are no default values. The INCLUDE statement is
described in "Compiler Directives" on page 2-9.

This option is available in IBM mode.

k- FREE-FORM FORMAT

2-4 FORTRAN User's Guide

instructs the compiler to read the input source program in free­
form format. Formats are described in the RT PC VS
FORTRAN Reference Manual.

This option is available in IBM mode.

Ifilename LISTING FILE
instructs the compiler to place its listing output in filename. If
the lfilename option is not specified, a listing file is not gener­
ated.

This option is available in all modes.

1+ LIST TO STANDARD OUTPUT DEVICE
instructs the compiler to generate a listing to the standard output
device.

This option is available in all modes.

man AN MODE
instructs the compiler to compile in AN mode. Modes are
described in Chapter 1, "Introduction."

mrl R1 MODE
instructs the compiler to compile in R1 mode. Modes are
described in Chapter 1, "Introduction."

mvx VXMODE
instructs the compiler to compile in VX mode. Modes are
described in Chapter 1, "Introduction."

nxxx MAXIMUM CHARACTER LENGTH
specifies the maximum length for any character variable, char­
acter array element, or character function (where xxx is a
number from 1 through 32767). Within a program unit, you
cannot specify a character length greater than the number speci­
fied. The default value of xxx is 500.

This option is available in IBM mode.

01+ OPTIMIZATION LEVEL 1
instructs the compiler to use optimization level 1 (see
"Optimization of Programs" on page 2-13).

This option is available in all modes.

Chapter 2. The Compiler 2-5

02+ OPTIMIZATION LEVEL 2
instructs the compiler to use optimization level 2 (see
"Optimization of Programs" on page 2-13).

This option is available in all modes.

03+ OPTIMIZATION LEVEL 3
instructs the compiler to use optimization level 3 (see
"Optimization of Programs" on page 2-13).

This option is available in all modes.

04+ OPTIMIZATION LEVEL 4
instructs the compiler to use optimization level 4 (see
"Optimization of Programs" on page 2-13).

This option is available in all modes.

t- NO CHARACTER TRANSFORMATION
instructs the compiler not to perform transformation on any
characters. Uppercase and lowercase letters are significant in
the program, and keywords are only recognized in lowercase.

This option is available in R 1 mode.

u- NO IMPLICIT VARIABLE TYPING
instructs the compiler not to implicitly type variables. When this
option is specified, all variables must be explicitly declared.

This option is available in R 1 and VX modes.

v- NO COMPILER PROGRESS INFORMATION
instructs the compiler not to generate information on the
progress of the compile.

This option is available in all modes.

w- NO WARNING MESSAGES
instructs the compiler not to generate warning messages.

This option is available in IBM, R1, and VX modes.

2-6 FORTRAN User's Guide

x+ CROSS-REFERENCE LISTING
instructs the compiler to generate a cross-reference listing of the
source code file. The cross-reference listing appears in the
".1st" file; therefore, the lfilename option must also be specified.

This option is available in all modes.

y+ FORTRAN 66 FEATURES
instructs the compiler to accept these FORTRAN 66 features:

• execute DO loops at least once
• allow character and numeric data to be assigned to the same

common block
• allow character and numeric data to be II equivalenced II
• allow non-character variables to be initialized with character

data statements via the DATA statement
• have INTEGER *2 as the default integer data type
• have LOGICAL * 1 as the default logical data type.

For more information on FORTRAN 66 compatibility features,
see the RT PC VS FORTRAN Reference Manual.

This option is available in all modes.

zcbl,cb2, ... cbn COMMON BLOCK ALLOCATION
defines the names of common blocks that are to be allocated at
execution time, where cbl,cb2, ... cbn are common block names.
This option allows the specification of very large common
blocks that can reside in the additional storage space available
through the AIX Operating System. No blanks are allowed in
the list.

This option is available in IBM mode.

Note: In any instance where a command-line option conflicts with an
@PROCESS statement in IBM mode or an OPTIONS statement in VX
mode, the @PROCESS or OPTIONS statement prevails. For example, if
you specify x+ as an option on the command line yet use @PROCESS
NOXREF, no cross-reference information is generated. The @PROCESS
and OPTIONS statements are described in "Modifying Compiler Options"
on page 2-10.

Chapter 2. The Compiler 2-7

Option Function IBM Rl VX AN

a+ Conditional compilation •

d+ Disassembler information • • • •

efilename Error file • • • •

f+ Floating-point hardware • • • •

g+ Debugger information • • • •

h+ Static implementation • · • ·
inl,n2, ... nn Conditional INCLUDE •

k- Free-form format •

Ifilename Listing file · • • •

1+ List to standard output device • • • •

man AN mode •

mrl Rl mode •

mvx VXmode •

nxxx Maximum character length •

01+ Optimization level 1 • • • •

02+ Optimization level 2 • • • •

03+ Optimization level 3 • • • •

04+ Optimization level 4 • • • •

t- No character transformation •

u- No implicit variable typing • •

Figure 2-1 (Part 1 of 2). Co~piler Command-Line Options

2-8 FORTRAN User's Guide

Option Function IBM Rl VX AN

v- No compiler progress informa- • • • •
tion

w- No warning messages • • •

x+ Cross-reference listing • • • •

y+ FORTRAN 66 features • • • •

zcbl,cb2, ... cbn Common block allocation • • • •

Figure 2-1 (Part 2 of 2). Compiler Command-Line Options

Compiler Directives

Compiler directives are an extension to ANSI Standard FORTRAN 77 and
provide additional controls over the compiler's actions.

For fixed-form input format, the first character of a compiler-directive is
entered in column 7 or after. For free-form input format (available in IBM
mode), a compiler directive can start in any column. For a description of
input formats, see the RT PC VS FORTRAN Reference Manual.

EJECT
starts a new page of the source listing.

This directive is available in IBM mode.

INCLUDE (filename) [nnn] (IBM mode)
INCLUDE 'filename' (Rl and VX modes)

includes the contents of the file filename in the program source code.
The nnn is a number from 1 through 255 used to decide whether to
include the file during compilation. When nnn is not specified, the file
is always included. When nnn is specified, the file is included only if
the number is included in the number list of the "i" command-line

Chapter 2. The Compiler 2-9

option, described in "Command-Line Options" on page 2-3, or is
specified in an @PROCESS CI(nnn) statement, described in
"@PROCESS Statement" on page 2-10.

The contents of the included file appear in the source code as if it had
been written there. Included files can be nested to a maximum of five.

This directive is available in IBM, R 1, and VX modes.

Directive Function IBM Rl VX AN

EJECT New page •

INCLUDE Include file • • •

Figure 2-2. Compiler Directives

Modifying Compiler Options

The command-line options specified when the compiler is invoked remain in
effect throughout a program's compilation unless they are overridden with
the @PROCESS statement (available in IBM mode) or the OPTIONS
statement (available in VX mode).

@PROCESS Statement

To modify compiler options in IBM mode, the @PROCESS statement must
be the first statement in the program unit that is to be affected. The form of
the @PROCESS statement is:

@PROCESS option [, option] 000

2-10 FORTRAN User's Guide

option
can be any of the following keywords (other keywords are ignored):

FREE

FIXED

XREF

FREE-FORM FORMAT
instructs the compiler to read the input source program in
free-form format. Formats are described in the RT PC VS
FORTRAN Reference Manual.

FIXED-FORM FORMAT
instructs the compiler to read the input source program in
fixed-form format. Formats are described in the RT PC
VS FORTRAN Reference Manual.

CROSS-REFERENCE LISTING
instructs the compiler to generate a cross-reference listing
of the source code file.

NOXREF NO CROSS-REFERENCE LISTING
instructs the compiler not to generate a cross-reference
listing of the source code file.

FIPS NON-ANSI STANDARD FLAGS
instructs the compiler to flag non-ANSI Standard
FORTRAN 77 items as errors.

NOFIPS NO NON-ANSI STANDARD FLAGS
instructs the compiler not to flag non-ANSI Standard
FORTRAN 77 items.

CL(nnn) MAXIMUM CHARACTER LENGTH

CI(nnn)

specifies the maximum length for any character variable,
character array element, or character function (where nnn
is a number from 1 through 32767). Within a program
unit, you cannot specify a character length greater than
the number specified. The default value of nnn is 500.

CONDITIONAL INCLUDE
instructs the compiler to selectively activate the
INCLUDE statement within the FORTRAN source code
during compilation. If the number specified in an
INCLUDE statement's optional nnn parameter matches
the number specified in an @PROCESS CI(nnn) state-

Chapter 2. The Compiler 2-11

ment, the contents of the file specified in the INCLUDE
statement are included in the compilation. The nnn is a
number from 1 through 255, and there is no default value.
The INCLUDE statement is described in "Compiler
Directives" on page 2-9.

DC(cbname} COMMON BLOCK ALLOCATION
defines the name of a common block that is to be allocated
at execution time, where cbname is a common block name.
This option allows the specification of very large common
blocks that can reside in the additional storage space avail­
able through the AIX Operating System.

The @PROCESS statement must appear in columns 1-8, and the options
must appear in columns 9-72 of the statement. Multiple @PROCESS
statements can be used in a program unit.

OPTIONS Statement

To modify compiler options in VX mode, the OPTIONS statement must be
the first statement in the program unit that is to be affected. The form of
the OPTIONS statement is:

I OPTIONS option [, option I ...

option

2-12 FORTRAN User's Guide

can be any of the following keywords (other keywords are ignored
and warning messages are issued):

/NOI4 2-BYTE INTEGER
instructs the compiler to allocate 2 bytes for the
INTEGER data type.

/14 4-BYTE INTEGER
instructs the compiler to allocate 4 bytes for the
INTEGER data type.

INOF77 NON-FORTRAN 77 FEATURES
instructs the compiler to accept these FORTRAN 66 fea­
tures that are not found in FORTRAN 77:

• execute DO loops at least once
• allow character and numeric data to be assigned to

the same common block
• allow character and numeric data to be "equiv­

alenced"
• allow non-character variables to be initialized with

character data statements via the DATA statement
• have INTEGER *2 as the default integer data type
• have LOGICAL * 1 as the default logical data type.

For more information on FORTRAN 66 compatibility
features, see the RT PC VS FORTRAN Reference
Manual.

IF77 FORTRAN 77 FEATURES ONLY

Optimization of Programs

instructs the compiler to accept only FORTRAN 77 fea­
tures.

"Optimization" refers to the process of improving the execution perform­
ance of a given program. It is done at the cost of compile time but results in
reduced execution time. The RT PC VS FORTRAN compiler performs two
separate optimization passes - machine-dependent optimizations and
machine-independent optimizations - which are controlled by selecting
compiler command-line options. The command-line options for optimiza­
tion are:

01+ MACHINE-DEPENDENT OPTIMIZATION
instructs the compiler to perform a machine-dependent optimizing
pass, which takes place after the code-generation phase of the compi­
lation. This pass examines object code at the basic block level and
includes:

Chapter 2. The Compiler 2-13

• eliminating unnecessary branches
• eliminating redundant loads and stores
• exploiting machine idioms
• replacing branches with branch-with-execute instructions
• strength reduction.

02+ MACHINE-INDEPENDENT OPTIMIZATION
instructs the compiler to perform a machine-independent optimizing
pass that includes:

• constant folding
• straightening
• eliminating unreachable code
• copy propagation
• eliminating dead code.

03+ MACHINE-INDEPENDENT OPTIMIZATION
instructs the compiler to perform a machine-independent optimizing
pass that includes:

• eliminating common subexpressions
• subscript optimization
• eliminating induction variables
• loop invariant code motion.

04+ MACHINE-DEPENDENT AND MACHINE-INDEPENDENT
OPTIMIZATION
instructs the compiler to perform machine-dependent and machine­
independent optimization.

Optimization Considerations

The choice of algorithm for a given task can have a much greater impact on
execution speed than any compiler optimization. It is generally true that
most of program execution time is spent on less than 100/0 of the code.
Changes to the algorithm in the critical 100/0 frequently have dramatic
results.

The optimizing feature of the compiler should not be used while developing
programs. Some optimizations move statements from one area of a program
to another, or change statements or variables in a way that is not obvious.

2-14 FORTRAN User's Guide

Since this makes debugging programs more difficult, optimizing before
debugging should be avoided. After a program is developed, it can be
recompiled with optimization command-line options to improve its perform­
ance.

Note: The optimization process is disabled whenever the "g+" option
(debugger information) is specified on the command line.

Chapter 2. The Compiler 2-15

2-16 FORTRAN User's Guide

Chapter 3. Opening Files for Input and Output

This chapter describes how to open files for input and output using RT PC
input and output facilities under the AIX Operating System.

For a description of the available FORTRAN input/output facilities, see the
RT PC VS FORTRAN Reference Manual.

Note: This chapter describes the procedures for opening files in IBM mode.
For all other modes, the name specified with the statement that opens
the file must be a physical file name. For more information, see the
RT PC VS FORTRAN Reference Manual.

The name of a file to be opened for input or output may be "environment
determined" or "program determined". Using an environment-determined
file name permits the file name to be specified on the AIX command line at
program execution time, which is done using AIX environment variables.
Program-determined file names are specified through OPEN statement
options.

Opening Files with Environment-Determined Names

The name of an input or output file can be determined at program execution
time by using environment-determined file names. The environmentvari­
able file names are specified by using a program variable as the name of a
file. This permits access to a different file each time the program is exe­
cuted. The two methods of opening environment-determined files are:

• using environment variables on the command line
• using environment variables in shell scripts.

Chapter 3. Opening Files for Input and Output 3-1

The following FORTRAN program, "MYPGM", is a sample program used
in the descriptions of the input and output procedures throughout this
chapter:

PROGRAM MYPGMi

CHARACTER*1000 BUFFER
OPEN(UNIT=8,FILE='INFILE')
OPEN(UNIT=9,FILE='OUTFILE' ,STATUS='NEW')

123 READ (8, 800,END=999) BUFFER
800 FORMAT (A)

WRITE(9,800)BUFFER
GOTO 123

999 STOP
END

Note: "MYPGM", "INFILE", and "OUTFILE" are referenced as
"mypgm", "infile", and "outfile", respectively, to agree with AIX con­
ventions.

Using Environment Variables on the Command Line

AIX environment variables are used to associate a file name with the chosen
program variable (for example, "infile" in the program "mypgm"). The fol­
lowing AIX command formats show how to use environment variables in
the Bourne shell, the C shell, and the DOS shell. The AIX command is
entered on the command line prior to the invocation of the program, and
has the form:

Bourne shell

ENVIRONMENT-NAME=file-name; export ENVIRONMENT-NAME

r: CsheU :env ENVIRONMENT-NAMEJile-name

3-2 FORTRAN User's Guide

j: DOSsheU

: ENVIRONMENT-NAME=file-name

ENVIRONMENT-NAME
is the same as the file variable name being used.

Note: Environment variables under the AIX Operating System are
case sensitive.

file-name
is the actual file name used in the AIX file system.

Note: Unless otherwise specified, the examples in this chapter use the
Bourne shell. For detailed descriptions of the C shell and the DOS shell, see
the Using and Managing the AIX Operating System and AIX Operating
System DOS Services Reference manuals.

In the following example, the environment variable "INFILE", which is
used as a program variable, is associated with the file "filel.in.al". The
program "mypgm" is then executed.

INFILE=file1.in.a1i export INFILE
mypgm

After execution, the exported filename, "INFILE", remains in the AIX
environment for any subsequent executions that use the same variable and
AIX file. To run the same program using a different file, you must associate
the new file name with the "INFILE" environment variable and export it
again.

It is possible to execute one program in the background and to execute the
same program in the foreground using different files, as shown in this
example:

INFILE=file1.in.a1i export INFILEi mypgm&

INFILE=file2.in.a1i export INFILE
mypgm

Chapter 3. Opening Files for Input and Output 3-3

By entering the program invocation on the same line as the environment
statements, you associate each line's statements with its own unique AIX
process. Environment variables are only known in their current environ­
ment. Therefore, "filel" is local to the first invocation of "mypgm", and
"file2" is local to the second invocation of "mypgm".

Using Environment Variables in Shell Scripts

The easiest and most efficient method for executing a program containing a
variable name involves the use of a shell script. All the necessary com­
mands can be put into the shell script. When the name of the shell script
file is invoked, each command in the shell script file is executed sequentially.
For a complete description of shell script usage, see Using and Managing the
A/X Operating System.

The shell script allows the use of the association of environment variable
with the same file name each time, or with a different file name each time.

Shell Script Using the Same File Name: The following example illus­
trates a shell script named "runl" that associates the environment variable
named "INFILE" with the file named "filel.in.al". It also contains the
command to execute the "mypgm" program.

The shell script "runl" contains:

INFILE=file1.in.a1; export INFILE
mypgm

After the shell script is created as a file and is made executable through the
command chmod 755 run 1, it can be executed by entering:

run1

When "runl" is executed, it is considered an AIX process. Therefore, any­
thing that executes within the script is a child of that process. Since a child
process is known only to its parent, the contents of the "INFILE" environ­
ment variable are local to the "run l" shell script and unknown to other AIX
processes.

3-4 FORTRAN User's Guide

Shell Script Using Different Files: To prevent having to edit the shell
script whenever a different AIX file is used, the shell script can be created
with a variable in place of the file name. Using the same shell script shown
in the previous example, a variable "$1 " is used in place of the physical file
name.

INFILE=$1i export INFILE
mypgm

To execute the shell script using the "file1.in.a1" file, enter:

run1 file1.in.a1

When the shell script is executed, "$1" is replaced with "file 1.in. a 1 ". This
allows "run1" to be executed using different file names. It also allows the
execution of "run1" to proceed in the background under one name and in
the foreground under a second name. For example:

run1 file1.in.a1&
run1 file2.in.a1

Opening Files with Program-Determined Names

AIX file names can also be determined from within programs, which is done
by using OPEN statement options. This method enables you to control
which file is being opened.

Examples:

C Suppose that there is no environment
C variable set.
C

OPEN(UNIT=9,FILE='MYFILE' ,STATUS='NEW' ,
+ FORM= 'FORMATTED , ,ACCESS='DIRECT')

This OPEN statement opens the new file "FILE.MYFILE" as unit 9. The
file format is formatted and the file access is direct.

Chapter 3. Opening Files for Input and Output 3-5

C Suppose that there is no environment
C variable set.
C

OPEN(UNIT=8,STATUS='NEW')

This OPEN statement opens the new file "PILE.PT08POOl" (the default
name) as unit 8. The file format is formatted (the default) and the file
access is sequential (the default).

Por more information on the OPEN statement and its options, see the RT
PC VS FORTRAN Reference Manual.

3-6 FORTRAN User's Guide

Chapter 4. Data Representations

This chapter describes how RT PC VS FORTRAN represents data in
storage. Since internal data representation is unspecified by ANSI Standard
FORTRAN 77, you should be aware that any code that makes explicit
assumptions about the data storage or format may not be portable. At
times, however, it is necessary and convenient to write such code.

Programming procedures are usually available to determine the internal data
formats used by computers to store data. In RT PC VS FORTRAN, you
can output data in Z format or use FORTRAN EQUIVALENCE to provide
a window into the internal storage mechanism and number representations
used by the compiler.

Storage Allocated For Each Data Type

In general, a word value (a value that occupies 32 bits) is aligned on a word
boundary, and data types larger than a word are also aligned on a word
boundary. Values that can fit into a single byte are aligned on a byte
boundary, which means that any data type larger than a byte has an even­
numbered address for its first byte. Data types and arrays that are 2 bytes
or larger are aligned on a word boundary.

RT PC VS FORTRAN supports integer, real, double-precision, complex,
double-complex, character, and logical data types. Integers are represented
internally in twos complement notation. The * 1 and *2 specifications are
non-ANSI Standard FORTRAN 77 features used to indicate that certain
data types are to occupy less than the standard amount of storage.

The standard integer data type (INTEGER) and INTEGER *4 each occupy
1 word (4 bytes, or 32 bits) of storage aligned on a word boundary.
INTEGER and INTEGER*4 can assume values from -2,147,483,648
through 2,147,483,647.

Chapter 4. Data Representations 4-1

The INTEGER *2 data type occupies a halfword (2 bytes, or 16 bits) of
storage aligned on a halfword boundary and has an even-numbered address.
INTEGER*2 can assume values from -32768 through 32767.

The standard real data type (REAL) and REAL *4 each occupy 1 word (4
bytes, or 32 bits) of storage aligned on a word boundary, and each has an
even-numbered address. REAL and REAL *4 can assume values from
-3.402824E+38 through -1.175494E-38, 0, and from 1.175494E-38
through 3.402824E+38, with a precision of one part in 2**23 (about seven
decimal places). Real data is stored with a sign bit, an 8-bit exponent, and a
23-bit mantissa. The byte with the sign bit has the smallest address of the 4
bytes. RT PC VS FORTRAN real data conforms to the IEEE standard for
floating-point data.

REAL *8 is the same as the double-precision data type (DOUBLE PRECI­
SION).

The double-precision data type (DOUBLE PRECISION) occupies 2 words
(8 bytes, or 64 bits) of storage aligned on a word boundary and has a 4-byte
address. DOUBLE PRECISION can assume values from -1.797693D+308
through -2.225074D-308, 0, and from 2.225074D-308 through
1.797693D+308, with a precision of one part in 2**52 (about 16 decimal
places). Double-precision data is stored with a sign bit, an II-bit exponent,
and a 52-bit mantissa. The byte with the sign bit has the smallest address of
the 8 bytes. RT PC VS FORTRAN REAL *8 and DOUBLE PRECISION
data conforms to the IEEE standard for double-precision floating-point
data.

The standard complex data type (COMPLEX) occupies 2 words of storage
because it is represented as a pair of single-precision real data values. The
first element, which has the smaller address, represents the "real" part of
the complex number and the second element represents the "imaginary"
part of the number.

COMPLEX*16 occupies 4 words of storage because it is represented as a
pair of double-precision real data values. (In Rl and VX modes,
COMPLEX*16 may also be specified as DOUBLE COMPLEX.) The first
element, which has the smaller address, represents the "real" part of the
double-complex number and the second element represents the "imaginary"
part of the number.

4-2 FORTRAN User's Guide

The character data type (CHARACTER *n) occupies n bytes of storage
aligned on a word boundary. RT PC VS FORTRAN uses the ASCII repre­
sentation for characters and control codes. See Appendix B, "ASCII
Character Set."

The standard logical data type (LOGICAL) and LOGICAL *4 each occupy
1 word (4 bytes, or 32 bits) of storage aligned on a word boundary. A value
of 0 represents ".FALSE." and a value of 1 represents ".TRUE.". Any
other value is undefined.

LOGICAL * 1 data occupies 1 byte (8 bits) of storage aligned on a byte
boundary. A value of 0 represents II.F ALSE. II and a value of 1 represents
" . TRUE. ". Any other value is undefined.

VX mode in RT PC VS FORTRAN allows LOGICAL *2 data, which occu­
pies a halfword (16 bits) of storage aligned on a word boundary. A value of
o represents ".FALSE." and a value of 1 represents ".TRUE.". Any other
value is undefined.

Data Representation For Each Data Type

Whatever the size of the data object in use, the most significant bit is always
in the byte with the lowest address of however many bytes are required to
represent that object.

Representation of Integer Data

INTEGER*2

bit ---> 15 0

Ibyte 0 I byte 1

Chapter 4. Data Representations 4-3

INTEGER, INTEGER*4

bit ---> 31 o

1 byte 0 1 byte 1 byte 2 byte 31

Integer data is stored in twos complement notation and the most significant
bit is the sign bit. If b(i) represents the value of bit i, which can be either 1
or 0, and i=O represents the least significant bit and i=m-l represents the
most significant bit in an m-bit number, the formula for the value repres­
ented in memory is:

i=m-l
value = -b(m)*(2**m) + sum b(i)*(2**i)

i=O

A field of all zeros represents O. The largest negative integer is represented
by a 1 in the most significant bit position (b(m) = 1) and zeros everywhere
else. The largest positive integer is represented by a 0 in the most signif­
icant bit position (b(m)=O) and l's everywhere else. A field of alll's
represents the value -1.

In twos complement notation, there appear to be more negative integers
(-(2**m)) than positive integers (2**m)-1. For example, the range of
INTEGER*2 variables is -32768 to 32767. This asymmetry is resolved if 0
is counted as a positive integer.

Representation of Floating-Point Data

RT PC VS FORTRAN conforms to the IEEE standard for representation
of floating-point numbers. In general, a value is represented in IEEE
floating-point format by this formula:

value = [(-I)**s] * [2**(expfld - bias)] * [1 + mantissa/(2**manwidth)]

The s represents the sign bit. The exponent field (expfld) and the mantissa
are to be considered unsigned binary integers. The bias and the mantissa
width (man width) depend upon whether a single-precision or double-

4-4 FORTRAN User's Guide

precision floating-point is used. The bias for single-precision is 127 and the
bias for double-precision is 1023.

The width of the exponent field determines the dynamic range of the repre­
sentation, and the width of the mantissa field determines the precision of
the representation. The value of the exponent field can be 0 to 255 for
single-precision and 0 to 2047 for double-precision. The value of the
mantissa field can be 0 to (2**manwidth)-1.

REAL (single-precision floating-point)

byte 0 byte byte 2 byte 3

bit ----> 31 30 23 22 o

lsi expfld I mantissa

For single-precision floating-point numbers, the exponent field is 8 bits
wide and the mantissa field is 23 bits wide. Note that the 8 bits of the expo­
nent are not aligned on a byte boundary. The byte with the sign bit has the
smallest address of the 4 bytes.

The standard complex data type (COMPLEX) is represented as a pair of
single-precision floating-point data values.

DOUBLE PRECISION (double-precision floating-point)

byte 0 byte byte 2 through
bit ---> 63 62 52 51

I s I expfld mantissa

byte 7
o

For double-precision floating-point numbers, the exponent field is 11 bits
wide and the mantissa field is 52 bits wide. The byte with the sign bit has
the smallest address of the 8 bytes.

Chapter 4. Data Representations 4-5

COMPLEX*16 (which can also be specified as DOUBLE COMPLEX in
Rl and VX modes) is represented as a pair of double-precision floating­
point data values.

Representations of Selected Floating-Point Numbers

These figures contain hexadecimal representations of selected single­
precision and double-precision floating-point numbers.

Hexadecimal s,expfld,
Value Representation mantissa Notes

+0.00000000 0,00,000000

-0. 80000000 1,00,000000

+ 1. 3F800000 0,7F,000000

-1. BF800000 1,7F,000000

+ 2. 40000000 0,80,000000

+ 3. 40400000 0,80,400000

PI 40490FDA 0,80,490FDA

-(2**(-129)) 80200000 1,00,200000 Denormalized

2**(-149) 00000001 0,00,000001 Smallest
denormalized

approximately 7F7FFFFF 0,FE,7FFFFF Most positive
3.403E38 normalized

approximately FF7FFFFF 1 ,FE, 7FFFFF Most negative
-3.403E38 normalized

Figure 4-1 (Part 1 of 2). Selected Single-Precision Floating-Point Numbers

4-6 FORTRAN User's Guide

Hexadecimal s,expfld,
Value Representation mantissa Notes

2**(-126) 00800000 0,01,000000 Smallest normal-
ized

+ infinity 7F800000 O,FF,OOOOOO

-infinity FF800000 1 ,FF ,000000

NaN 7F803303 0,FF,003303 Sign irrelevant

NaN FF835FOO 1,FF,035FOO Sign irrelevant

Figure 4-1 (Part 2 of 2). Selected Single-Precision Floating-Point Numbers

Hexadecimal
Value Representation Notes

+0. 00000000,00000000

+l. 3 FFOOOOO ,00000000

-l. BFFOOOOO,OOOOOOOO

+2. 40000000,00000000

+3. 40080000,00000000

PI 400921FB,54524550

-(2**(-1029» 80002000,00000000 Denormalized

2**(-1074) 00000000,00000001 Smallest denormalized

approximately 7FEFFFFF ,FFFFFFFF Most positive normalized
±2.0D-308

Figure 4-2 (Part 1 of 2). Selected Double-Precision Floating-Point Numbers

Chapter 4. Data Representations 4-7

Hexadecimal
Value Representation Notes

approximately FFEFFFFF ,FFFFFFFF Most negative normalized
±2.0D+308

2**(-1022) 00100000,00000000 Smallest normalized

+ infinity 7FFOOOOO,FFFFFFFF

-infinity FFFOOOOO,OOOOOOOO

NaN 7FFOOSOO,00009090 Sign irrelevant - any
nonzero mantissa

NaN FFF03333,78433333 Sign irrelevant - any
nonzero mantissa

Figure 4-2 (Part 2 of 2). Selected Double-Precision Floating-Point Numbers

Extreme Values and Denormalized Numbers

Extreme floating-point numbers can be classified as zero, signed infinity,
Not-a-Number (NaN), denormalized, or normalized.

Zero is represented by either a 1 (-0) or a 0 (+0) in the sign bit position.
Negative zero is treated the same as positive zero.

Signed infinity values are usually generated by arithmetic overflows and are
represented by a sign bit of 1 (-infinity) or 0 (+infinity), an exponent field
of all ones, and a mantissa field of all zeros. When infinity is printed, all the
digits in the field are replaced with plus signs (+) for positive infinity and
minus signs (-) for negative infinity.

N aN values are generated when invalid arithmetic is attempted. NaN values
are represented by an exponent field of all ones and a nonzero mantissa
field. The sign is usually ignored. When a NaN value is printed, all the
digits in the field are replaced with question marks (?).

4-8 FORTRAN User's Guide

Denormalized numbers represent very small positive and negative numbers
that result from gradual underflow. The value represented by a denormal­
ized number is determined by this formula:

value = [(-1) **s] * [2**(-bias+ 1)] * [mantissa/ (2**manwidth)]

The value represented by a normalized number is determined by this
formula:

value = [(-l)**s] * [2**(expfld - bias)] * [1 + mantissa/(2**manwidth)]

Normalized numbers are often thought of as containing a hidden bit. This
hidden bit is the 1 in the preceding formula that is added to the scaled
mantissa to generate the value represented. To understand the reason for
this, you need to understand the process of normalization:

Unnormalized numbers are generated as intermediate results during
most floating-point operations, and they must be normalized before they
can be processed further. Normalization of an unnormalized number
consists of repeatedly shifting the mantissa left or right with the corre­
sponding decrement or increment, respectively, of the exponent field.
This process is repeated until the most significant "on" bit of the
mantissa is in the most significant bit of the mantissa field. At this
point, one more shift left is performed along with a corresponding decre­
ment of the exponent field. The leading "on" bit of the mantissa is lost
and therefore not represented explicitly.

Denormalized numbers may be thought of as "unnormalizable" because the
exponent field is already so small that the left-shift decrement cannot be
performed. Consequently, denormalized numbers do not have a hidden bit.

Chapter 4. Data Representations 4-9

Arithmetic Operations on Extreme ValDes

This section describes the results derived from applying the basic arithmetic
operations and some of the special functions such as square root, sine, and
logarithms to combinations of extreme values and ordinary values. No
interceptions or other actions take place when extreme values are generated.

In figures 4-3 through 4-10, the inputs are assumed to be positive. Over­
flow, underflow, and cancellation are assumed not to happen. The
meanings of the abbreviations in the tables are:

Den Denormalized number
Num Normalized number
Inf Infinity (+ or -)
NaN Not-a-Number
Uno Unordered

Addition and Subtraction

Left
Operand Right Operand

0 Den Num Inf NaN

0 0 Den Num Inf NaN

Den Den Den Num Inf NaN

Num Num Num Num Inf NaN

Inf Inf Inf Inf Note NaN

NaN NaN NaN NaN NaN NaN

Note: Inf + Inf = Inf; Inf - Inf = NaN

Figure 4-3. Addition and Subtraction of Extreme Values

4-10 FORTRAN User's Guide

Multiplication

Left
Operand Right Operand

0 Den Num Inf NaN

0 0 0 0 NaN NaN

Den 0 0 Num Inf NaN

Num 0 Num Num Inf NaN

Inf NaN Inf Inf Inf NaN

NaN NaN NaN NaN NaN NaN

Figure 4-4. Multiplication of Extreme Values

Division

Left
Operand Right Operand

0 Den Num Inf NaN

0 NaN 0 0 0 NaN

Den Inf Num Num 0 NaN

Num Inf Num Num 0 NaN

Inf Inf Inf Inf NaN NaN

NaN NaN NaN NaN NaN NaN

Figure 4-5. Division of Extreme Values

Chapter 4. Data Representations 4-11

Comparison

Left
Operand Right Operand

a Den Num Inf NaN

a = < < < Uno

Den > < < Uno

Num > > < Uno

Inf > > > Uno

NaN Uno Uno Uno Uno Uno

Note: NaN compared with NaN is unordered and also
results in inequality. +0 equals -0.

Figure 4-6. Comparison of Extreme Values

Maximum

Left
Operand Right Operand

a Den Num Inf NaN

a a Den Num Inf NaN

Den Den Den Num Inf NaN

Num Num Num Num Inf NaN

Inf Inf Inf Inf Inf NaN

NaN NaN NaN NaN NaN NaN

Figure 4-7. Maximum of Extreme Values

4-12 FORTRAN User's Guide

Minimum

Left
Operand Right Operand

0 Den Num Inf NaN

0 0 0 0 0 NaN

Den 0 Den Den Den NaN

Num 0 Den Num Num NaN

Inf 0 Den Num Inf NaN

NaN NaN NaN NaN NaN NaN

Figure 4-8. Minimum of Extreme Values

Operand Function

ATN EXP LN/LOG SQRT TRIG

-Inf -PI/2 0 NaN NaN NaN

-Num Num * NaN NaN **

0 0 1 -Inf 0 o or 1

+Num Num *** Num Num **

+Inf PI/2 +Inf +Inf +Inf NaN

NaN NaN NaN NaN NaN NaN

* Result can be 0 or a number less than 1.0.
** Result can be 0, a number, +Inf, -Inf, or (if the

magnitude of the number is not less than 65536) NaN.
*** Result can be a number greater than 1.0 or +Inf.

Figure 4-9. Special Functions on Extreme Values

Chapter 4. Data Representations 4-13

X to I FUNCTION

Operand Integer Power

Neg/ Neg/ Pos/
Odd Even 0 Even

-Inf 0 0 NaN +Inf

-Num * ** 1 .0 **

0 +Inf +Inf NaN 0

+Num ** ** 1 .0 **

+Inf 0 0 NaN +Inf

NaN NaN NaN NaN NaN

* Result can be 0, a negative number, or -Inf.
** Result can be 0, a positive number, or +Inf.

Pos/
Odd

-Inf

*

0

**

+Inf

NaN

Figure 4-10. X to I Function on Extreme Values

Representation of Logical Data

All logical variables assume either a ".TRUE." value or a ".FALSE." value.
A ".TRUE." value is represented by zeros in all the bit positions except the
least significant bit position. A ".F ALSE." value is represented by zeros in
all the bit positions. Any other bit pattern in a logical variable represents an
undefined value.

Representation of Character Data

RT PC VS FORTRAN uses the ASCII representation for characters and
control codes. Appendix B, "ASCII Character Set" shows the correspond­
ence between values stored in a byte and the character or control code that
the value represents.

4-14 FORTRAN User's Guide

A variable declared as CHARACTER *n occupies n bytes of storage aligned
on a word boundary. The first character of a character string is stored in
the byte with the lower address, the second character is stored in the next
higher address, and so on.

Storage of Arrays

Alignment

FORTRAN array data is organized in computer memory by column
(column major order); therefore, the first subscript in a multi-dimensional
array varies fastest. For example, an array dimensioned as x (3,2) is stored
in this order: x (1 , 1), X (2 , 1), X (3 , 1), X (1 , 2), X (2 , 2) , and x (3 , 2) •

The microprocessor in the RT PC has two types of instructions for
accessing memory. Memory access can be done for 1 byte (load and store
character instructions) or 1 word (4-byte load and store instructions).
Because of memory-access limitations, FORTRAN data types (including
arrays and common blocks) that require more than 2 bytes of storage are
always aligned on a word (4-byte) boundary.

FORTRAN always passes parameters by reference (address). When calling
routines written in other languages, such as Pascal or C, care should be
taken to ensure that those routines expect addresses instead of value param­
eters.

Difficulties can also arise from alignment issues when mixing language pro­
cedures. For instance, an addressing exception can occur if the address of a
character in C is not on a word boundary and is passed to a FORTRAN
routine that expects the address of an integer, which always must be on a
word boundary. It is imperative that care be taken to ensure proper align­
ment when mixing language calls.

Chapter 4. Data Representations 4-15

4-16 FORTRAN User's Guide

Chapter 5. Mixing Languages

The RT PC language system permits the mixing of elements from different
languages in a single program. This chapter assumes you are familiar with
the languages you wish to mix; the elements of the languages are not
described here in detail.

Note: In this chapter, the FORTRAN language described is IBM RT PC
VS FORTRAN; the Pascal language is IBM RT PC VS Pascal; the C lan­
guage is IBM RT PC C.

Correspondence of Data Types

The data types of one language are usually quite different from the data
types of another language. Also, the way data is stored is not the same
across languages; the internal data representation is left unspecified and
usually varies with the implementation.

However, a certain amount of similarity among the data types of the dif­
ferent languages exists since the languages share many system primitives
and since IEEE standard data representations are used as much as possible.
Figure 5 -1 on page 5 -2 shows some of the correspondence among lan­
guages.

Note: Figure 5-1 shows how the languages represent data internally in the
computer's memory rather than how data are passed between program
units.

Chapter 5. Mixing Languages 5-1

FORTRAN FORTRAN Pascal C
IBM and Rl Modes VXMode

LOGICAL*1 LOGICAL*1 BOOLEAN

LOGICAL*2

LOGICAL*4 LOGICAL*4

INTEGER*2 INTEGER*2 short

INTEGER*4 INTEGER*4 INTEGER int

REAL*4 REAL*4 SHORTREAL float

REAL*8 REAL*8 REAL double

COMPLEX COMPLEX

COMPLEX*8 COMPLEX*8

COMPLEX*16 COMPLEX*16

CHARACTER CHARACTER packed array of char
CHAR

STRING

Figure 5-1. Correspondences of Data Types Among Languages

As Figure 5-1 shows, each language has data types that do not exist in the
other languages. When you interface languages, make sure you either avoid
mismatching data types or use the mismatches very cautiously. When data
types do correspond, the interfacing of the languages is very straightfor­
ward.

Most numeric data types have counterparts across the languages. However,
character and string data types do not. The most difficult aspect of lan­
guage interfacing is the passing of character, string, or text variables
between languages.

FORTRAN's only character variable type is CHARACTER, which is
stored as a set of contiguous bytes, one character per byte. The length of a
FORTRAN character variable or character array element is determined at

5-2 FORTRAN User's Guide

compile time and is therefore static. Character lengths are returned by the
FORTRAN intrinsic function LEN.

Pascal's character-variable data types are STRING and packed array of
CHAR. The STRING data type has a 4-byte word-aligned string length
followed by a set of contiguous bytes, one character per byte. The dynamic
length of the string can be determined using the length function. Packed
array of CHAR, however, like FORTRAN's CHARACTER type, is stored
as a set of contiguous bytes, one character per byte.

C character data is typically stored as arrays of type" char". The" char"
data type stores one character per byte; therefore, an array of "char" is
stored exactly like a FORTRAN CHARACTER variable or a Pascal packed
array of CHAR.

Storage of Matrices

FORTRAN matrices are stored in computer memory by column (column
major order); therefore, the first subscript in a multi-dimensional array
varies fastest. An array dimensioned as A (3,2) is stored in this order:
A (1 , 1), A (2, 1), A (3, 1), A (1 ,.2), A (2,2) , and A (3,2) .

Pascal and C matrices are stored in computer memory by row (row major
order). For example, if an array in Pascal is declared as A : array
[1 .. 3, 1 .. 2] of REAL, it is stored in this order: A [1 , 1], A [1 ,2] ,

A [2 , 1], A [2 , 2], A [3 , 1] , and A [3 , 2] .

Since the matrix storage convention for Pascal and C differs from that for
FORTRAN, be careful when passing references to matrices between
FORTRAN and the other languages.

Chapter 5. Mixing Languages 5-3

Input/Output Primitives

Primitive input/output routines are usually bound to a user's program
during the final linking process when the AIX linker includes the necessary
code from the language run-time library ("libvsfor.a" for FORTRAN), and
the system run-time library ("libvssys.a" for FORTRAN and Pascal).

When you mix, for example, FORTRAN and Pascal, you must remember to
link both "libvsfor.a" and "libvssys.a" in this order. This allows the primi­
tives needed for both the FORTRAN and Pascal parts of the program to be
present.

The input/output primitives are different for each language; because of this
you are not able, for example, to open a file or device for use by one lan­
guage and write to it or read from it in a different language. Generally,
however, two languages can exist in a program as long as they each have
their own files and device for input/output, which includes the console
device.

Calling from a Non-RT PC VS Main Program: When the main program
is compiled using a non-RT PC VS compiler, special handling is required
when calling RT PC VS Pascal and FORTRAN subroutines that perform
input/ output.

An initialization routine must first be called from the main program so that
the input/output buffers and information are properly set up: for RT PC
VS Pascal, the routine is "vs~io" and is in the system run-time library
"libvssys.a"; for RT PC VS FORTRAN, the routine is "vs fio "and is in
the language run-time library "libvsfor.a". These routines do not require
parameters.

Note: When using RT PC FORTRAN languages, the trailing underscore is
automatically appended to the routine name; therefore the name to be
coded is "vs fio".

When the main program is compiled using RT PC VS Pascal or FORTRAN
but the subroutine to be called is not, you need to first become familiar with
the requirements of that particular subroutine.

5-4 FORTRAN User's Guide

Subroutine Linkage Convention

The "subroutine linkage convention" describes the machine state at subrou­
tine entry and exit. This scheme allows routines that are compiled sepa­
rately in the same or a different R T PC language to be linked and executed
when called.

Load Module Format

Register Usage

The load module format used is AIX GPOFF (General Purpose Output File
Format). For the GPOFF, each routine has a "constant pool" in the data
segment. A constant pool is a data area created for each routine. The first
word of each routine's constant pool contains the address of the routine's
entry point. A constant pool also provides the routine with address ability to
constants, local data, and any called-routine's constant pool. A constant
pool pointer (cpp) is passed in register 0 on a call.

If a register is not saved during the call, its contents may be changed during
the call. Conversely, if a register is saved, its contents are not changed, and
the register can be used as "scratch" (that is, as a work area). Figure 5-2
lists registers and their functions.

Chapter 5. Mixing Languages 5-5

Saved
During

Register Name Call Use

0 called no Constant pool pointer. On call, con-
cpp tains address of called routine's con-

stant pool. Can also be used for scratch
between calls.

1 fp yes Stack pointer

2 -- no On call, first word of parameter words
to called routines. On return, first word
of return value. Between calls, can be
used as scratch.

3 -- no On call, second word of parameter
words to called routines. On return,
second word of return value (for
example, low-order 2 words of a
floating-point value). Between calls,
can be used as scratch.

4 -- no On call, third word of parameter words
to called routines. Between calls, can
be used as scratch.

5 -- no On call, fourth word of parameter
words to called routines. Between calls,
can be used as scratch.

6 -- yes Not involved in call interface. Can
contain register variables or can be used
as scratch.

Figure 5-2 (Part 1 of 2). Register Usage

5-6 FORTRAN User's Guide

Saved
During

Register Name Call Use

7 -- yes Not involved in call interface. Can
contain register variables or can be used
as scratch.

8 -- yes Not involved in call interface. Can
contain register variables or can be used
as scratch.

9 -- yes Not involved in call interface. Can
contain register variables or can be used
as scratch.

10 -- yes Not involved in call interface. Can
contain register variables or can be used
as scratch.

11 -- yes Not involved in call interface. Can
contain register variables or can be used
as scratch.

12 -- yes Not involved in call interface. Can
contain register variables or can be used
as scratch.

13 -- yes Frame pointer

14 current yes Not involved in call interface. By con-
cpp vention, however, contains address of

current routine's constant pool.

15 link no On call, contains return address. Can
also be used as scratch.

Figure 5-2 (Part 2 of 2). Register Usage

Chapter 5. Mixing Languages 5-7

Stack Frame

When a routine is called, the compiler passes parameter words 5 through n
onto the stack. Space is allocated for parameter words 1 through 4. If the
routine uses local or temporary variables, they are allocated space on the
stack. The stack grows from higher addresses to lower addresses. A single
frame-pointer register (register 13) is used to address local storage,
incoming and outgoing parameters, and the save area.

Input
Parameter
Words

Output
Parameter
Words

HIGH ADDRESSES

Ca ller
,
s

Stack
Area

P5 ... Pn

Pl ... p4

Linkage Area

Register
Save
Area

Local

Temps

P5 ... Pn

Pl ... p4

LOW ADDRESSES

.--- Caller's Stack Pointer
(Register 1)

.--- Frame Pointer
(Register 13)

.--- Current Stack Pointer
(Register 1)

Figure 5-3. Contents of a Stack Frame

Figure 5-3 represents the contents of a stack frame. The areas in the stack
are described as follows:

5-8 FORTRAN User's Guide

• Input parameter words
• Linkage area
• Register save area
• Local and temporary stack area
• Frame pointer
• Output parameter words

Total stack frame

Input Parameter Words: If a routine receives more than 4 parameter
words, the stack pointer (register 1) upon entry addresses the locations in
the stack where parameter words 5 through n are stored. Immediately
below the stack pointer is a 4-word area in which the first 4 parameter
words (passed in registers 2 through 5) can be stored by the compiler. The
parameter words are stored only if registers 2 through 5 are to be used as
scratch registers or if a parameter address is required. This area is present
regardless of the number of parameters being passed.

regparsize = 16 # Size of area in which first 4
parameter words can be stored.

Linkage Area: The first word of the linkage area is reserved for storing
the environment pointer, which is the frame pointer (register 13) of the
routine in which the current routine is nested. It is used to gain address­
ability to the enclosing routine's local variables. Internal calls to nested rou­
tines do not use this pointer. It is required to support Pascal parametric
procedures or functions since they may be called from a separately compiled
routine.

envirsize = 4 # Environment pointer size

The next 4 words of the linkage area are reserved.

resrvsize = 16
linksize = envirsize +

resrvsize

Reserved area size
Link area size

Chapter 5. Mixing Languages 5-9

Register Save Area: The general-purpose registers (GPRs) and floating­
point registers (FPRs) are saved in the register save area. GPR 15 is always
saved in the highest word of the register save area. Floating-point registers
are saved immediately following the GPRs.

Rn # First GPR saved (6 <= Rn <= 15)
GPRsize = 4* (16-Rn) # GPR save area size
save = regargsize + # Offset of GPR save area

linksize + GRPsize
FPRsize = 4*163 # FPR save area size
savesize = GRPsize + # Total register save area

FPRsize

Local and Temporary Stack Area: When a routine needs space for local
or temporary variables, the compiler allocates space for them in the local
and temporary stack area. The size of this area is known at compile time.

set localsize # Size of local auto's and temp's

Frame Pointer: The compiler uses register 13 as the frame pointer to
address sections in the stack frame. The register save area, linkage area,
and input parameter words are referenced as positive offsets to register 13.
The local and temporary variables are referenced as negative offsets to reg­
ister 13. Output parameter words are referenced using register 1, the
current stack pointer.

Output Parameter Words: If a routine makes a call with more than 4
parameter words, the compiler allocates space for the parameter extension
list immediately above the stack pointer. This area is large enough to hold
the biggest parameter extension list for any call made by the routine.

extlistsize # Size of biggest parameter extension list

5-10 FORTRAN User's Guide

Total Stack Frame: The entire stack frame can be thought of as including
all the space between the caller's stack pointer and the current stack pointer.
It is also reasonable to consider the input parameter area as being part of
the current stack frame. In a sense, each parameter area belongs to both the
caller's stack frame and the current stack frame. In either case, the stack
frame size is best defined as the difference between the caller's stack
pointer and the current stack pointer.

framesize = regargsize +
linksize + savesize +
localsize + extlistsize

Parameter Passing

stack frame size

The contents of the parameter words vary among languages. Parameters are
understood to occupy an array in the stack, with each parameter aligned on
a word boundary. The compiler allocates space in the stack for all the
parameter words, but it does not store the first 4 words on the stack. These
values are passed in registers 2 through 5. They are only copied to the stack
space if a parameter address is required or if registers 2 through 5 are to be
used as scratch registers.

Parameter values are passed according to type:

• A type value less than or equal to 4 bytes is passed right-justified in a
single word or register, word aligned.

• A procedure or function parameter is passed as a pointer to the routine's
constant pool. The routine's environment pointer is also passed.

• A double value is passed in two successive words, which need not be
doubleword aligned. One may be in register 5 and the other in the stack
frame.

Chapter 5. Mixing Languages 5 -11

Function Values

Functions return their values according to type:

• A type value less than or equal to 4 bytes is returned right-justified in
register 2.

• A double value is returned in registers 2 and 3.

Parameter Addressing

Traceback

The input parameter words 5 through n can be addressed in the stack by:

linksize + savesize+4*k-4(r13) # get k-th parameter word

If the compiler stored the first 4 parameter words (registers 2 through 5) in
the stack frame, then they can be addressed the same way.

The compiler supports the traceback mechanism, which is required by the
AIX Operating System Symbolic Debugger in order to unravel the
call/return stack. Each module has a traceback table in the text segment at
the end of its code. This table contains information about the module
including the type of module as well as stack frame and register information.

5-12 FORTRAN User's Guide

Entry and Exit Code

Calling a Routine

The compiler adds entry and exit code around each routine's code, which
sets up and removes the routine's stack frame.

The entry code:

• saves modified non-volatile registers
• decreases stack pointer (register 1) by frames ize
• copies the constant pool pointer from register 0 to register 14
• sets frame pointer (register 13); if the routine is the main program, reg­

ister 13 points to the global data area.

The exit code:

• restores stack pointer (register 1)
• restores registers.

A routine has two symbols associated with it: a constant pool pointer
(_name) and an entry point (.name). When a call is made to a routine, the
compiler branches to the .name entry point directly and loads the _name
constant pool pointer into register O. If the routine entry point is not within
a megabyte of the call, the compiler loads the _name constant pool pointer,
loads the. name entry point from the first word of the constant pool, and
branches to it.

Chapter 5. Mixing Languages 5-13

Sample Programs

The following sample programs show ways to connect program units written
in different languages. They also illustrate the mechanisms for passing char­
acter, integer, and floating-point variables between Pascal, FORTRAN, and
C.

In covering these three variable types, an example of each language calling
the other languages is given. The sample programs are included only to
illustrate the mixing of the languages and do not show all types of parameter
passing.

The lists of AIX commands needed to run the sample programs illustrate
that the FORTRAN and Pascal source files must be compiled to ".0" files
and then linked together (in these cases, along with C files) to produce an
executable file. This can be done by executing each pass of the compiler
separately and stopping when the ".0" file is produced, or by interrupting
the shell script before the link ("cc") step.

FORTRAN Calling Pascal and C

This example illustrates the passing of FORTRAN CHARACTER,
INTEGER, REAL, and DOUBLE PRECISION data to a Pascal procedure
and a C function. The source code for each program unit and the AIX com­
mands needed to run the program are shown, as well as a sample run of the
program.

Note: The FORTRAN compiler appends an underscore (_) to external
symbols. Thus the name of the FORTRAN routine calling Pascal would be
"fcallp" but the called Pascal routine must be named "fcallp_" for linkage
resolution.

5-14 FORTRAN User's Guide

The Calling FORTRAN Program

C This FORTRAN code is in the file named "forexam.f".
C

PROGRAM EXAMPLE
CALL MYCHOICE
WRITE(*,100)

100 FORMAT(' I've safely returned after doing all that! ')
END

SUBROUTINE MYCHOICE
INTEGER IFOR
REAL XFOR
DOUBLE PRECISION YFOR
CHARACTER*10 CHRFOR

EQUIVALENCE (CHRFOR,LETTER)
CHRFOR=' HELLO'
IFOR=50
XFOR=10.

C Some data is initialized.
YFOR=O.
WRITE(*,100) CHRFOR,IFOR,XFOR,YFOR

100 FORMAT(/'Before calls: 'I' Text string: *'A'*'
+ I' IFOR='I10/' XFOR='F10.2/' YFOR='F10.2)

C A Pascal procedure is called.
CALL PSUB(CHRFOR,IFOR,XFOR,YFOR)
WRITE(*,110) CHRFOR,IFOL,XFOR,YFOR

110 FORMAT(/'After Pascal call: 'I' Text string: *'A'*'
+ I' IFOR='I10/' XFOR='F10.2/' YFOR='F10.2)

C A C subroutine is called.
CALL CSUB(CHRFOR,IFOR,XFOR,YFOR)
WRITE(*,120) CHRFOR,IFOR,XFOR,YFOR

120 FORMAT(/'After C call: 'I' Text string: *'A'*'
+ I' IFOR='I10/' XFOR='F10.2/' YFOR='F10.2)

END

Chapter 5. Mixing Languages 5 -15

The Called Pascal Procedure

This is the Pascal procedure to be called by FORTRAN.
This code is in the file named "fcallp.pas". }

segment DUMMYNAME;

type TEXT packed array [0 .. 79] of CHAR;

procedure PSUB -

procedure PSUB_
begin

(var

var
var
var

WORDS TEXT;
COUNT INTEGER;
I INTEGER;
X SHORTREAL;
Y REAL) ;external;

WORDS [0] .= 'B'; WORDS[1] .= 'Y'; WORDS [2] .= 'E';
WORDS [3] .= ' '; WORDS [4] .= ' ';

X .= X * I;
I .= COUNT;
Y .= 1.0dO;

end;

The Called C Function

/*
/*

This is the C function to be called by FORTRAN.
This code is in the file named "fcallc.c".

/* Note underscore in procedure declaration.

int csub - (word,
count,

i,
x,
y)

char word [79] ;
int count;
int *i;
float *x;
double *y;

5-16 FORTRAN User's Guide

/* C subprograms are functions, but
/* value returned can be ignored.

the

*/
*/

*/

*/
*/

word[O] 'hi ; /* Arrays in C always use the
word [1] 'i' ; /* call-by-reference mechanism.
word[2] , , . ,
word[3] 'c' ;
word[4] , , . ,
*i -3;
*x = - (*x);
*y = 2.0;
return (0) ; /* A zero is returned which may

/* be ignored.

Commands and Output

The AIX commands needed to run this sample program are:

vsfort forexam.f
vspass2 forexam.i
vspass3 forexam.obj
vspascal fcallp.pas
vspass2 fcallp.i
vspass3 fcallp.obj
cc -0 forexam forexam.o fcallp.o fcallc.c -1m

/usr/lib/libvsfor.a /usr/lib/libvssys.a
forexam

*/
*/

*/
*/

Chapter 5. Mixing Languages 5 -17

The output from running this sample program is:

Before calls:
Text string: *HELLO *
IFOR= 50
XFOR=
YFOR=

10.00
.00

After Pascal call:
Text string: *BYE *
IFOR= 10
XFOR=
YFOR=

500.00
1 .00

After C call:
Text string: *hi C *
IFOR= -3
XFOR=
YFOR=

-500.00
2.00

I've safely returned after doing all that!

Pascal Calling FORTRAN and C

This example illustrates the passing of Pascal CHAR, INTEGER, REAL,
and DOUBLE data to a FORTRAN subroutine and a C function. The
source code for each program unit and the AIX commands needed to run
the program are shown, as well as a sample run of the program.

Note: The FORTRAN compiler appends an underscore (_) to external
symbols. Thus the Pascal external declaration must have an underscore
appended to the FORTRAN name.

5-18 FORTRAN User's Guide

The Calling Pascal Program

This code is in the file named "pasexam.pas".

program MAIN (input,output);
type TEXT = packed array [0 .. 79] of CHAR;

Note underscore in FORTRAN procedure declaration
procedure FSUB - (var NAMES TEXT;

COUNT INTEGER;
var IPAS INTEGER;
var XPAS SHORTREAL;
var YPAS REAL) ; external;

procedure CSUB

procedure PSUB;
var

CHRPAS TEXT;

var
var

INTPAS INTEGER;

NAMES
IPAS
XPAS
YPAS

XREAL SHORTREAL;
YDOUB REAL;
I INTEGER;

begin
CHRPAS[O] .= 'H' ; CHRPAS[1]
CHRPAS[3] .= 'w' ; CHRPAS[4]
CHRPAS[6] .= 'T' ; CHRPAS[7]
INTPAS .= 50;
XREAL .= 10.0;
YDOUB .= O.OdO;

TEXT;
INTEGER;
REAL;
REAL) ; external;

.= 'I' ; CHRPAS[2] .=

.= 'I' ; CHRPAS[5] .=

.= 'H' ;

, , ;
'R' ;

Chapter 5. Mixing Languages 5-19

writeln;
writeln ('Before calls:');
write(' Text: *'); for I := 0 to 7 do write(CHRPAS[I]);
writeln('*');
writeln(' INTPAS=' ,INTPAS,' XREAL=' ,XREAL,' YDOUB=' ,YDOUB);
FSUB_(CHRPAS,20,INTPAS,XREAL,YDOUB) ;
writeln;
writeln ('After FORTRAN call: ');
write(' Text: *'); for I := 0 to 20 do write(CHRPAS[I]);
writeln('*');
writeln(' INTPAS=' ,INTPAS,' XREAL=' ,XREAL,' YDOUB=' ,YDOUB);
CSUB(CHRPAS,INTPAS,XREAL,YDOUB) ;
writeln;
writeln ('After C call: ');
write(' Text: *'); for I := 0 to 4 do write(CHRPAS[I]);
writeln (' *') ;
writeln(' INTPAS=' ,INTPAS,' XREAL=' ,XREAL,' YDOUB=' ,YDOUB);

end;

begin
wri teln ('This message is printed at the beginning of MAIN.') ;
PSUB;
wri teln ('This message is printed at the end of MAIN.')

end.

The Called FORTRAN Subroutine

C This is the FORTRAN subroutine to be called by Pascal.
C This code is in the file named "pcallf.f".

5-20 FORTRAN User's Guide

SUBROUTINE FSUB(CHR,I,X,Y)
CHARACTER*20 CHR
INTEGER I
REAL X
I=LEN(CHR)
CHR='FORTRAN Lives!'
X=X*I
Y=1.0DO
RETURN
END

The Called C Function

/*
/*

This is the e function to be called by Pascal.
This code is in the file named "pcallc.c".

*/
*/

int eSUB (word,
i,
x,

/* e subprograms are functions, but the */
/* value returned can be ignored. */

y

char word [79] ;
int *i;
float *x;
double *y;

word[O] 'hI ;
word [1] 'i' ;

/* Arrays in e always use the */
/* call-by-reference mechanism. */

Commands and Output

word[2] , , ;
word[3] 'e' ;
word[4]

,
*i -3;
*x = -1.0;
*y = 1.0;
return (0);

, ;

/* A zero is returned which may be
/* ignored if eSUB is treated as a
/* procedure, or used if eSUB is
/* treated as a function.

The AIX commands needed to run this sample program are:

vspascal pasexam.pas
vspass2 pasexam.i
vspass3 pasexam.obj
vsfort pcallf.f
vspass2 pcallf.i
vspass3 pcallf.obj
cc -0 pasexam pasexam.o pcallf.o pcallc.c -1m

/usr/lib/libvsfor.a /usr/lib/libvssys.a
pasexam

*/
*/
*/
*/

Chapter 5. Mixing Languages 5-21

The output from running this sample program is:

This message is printed at the beginning of MAIN.

Before calls:
Text: *HI WIRTH*
INTPAS=50 XREAL= 1.00000E+01 YDOUB= O.OOOOOOOOOOOOOOD+OOO

After FORTRAN call:
Text: *FORTRAN lives! *
INTPAS=20 XREAL= 2.00000E+02 YDOUB= 1.00000000000000D+OOO

After C call:
Text= *hi C *
INTPAS=-3 XREAL=-1.00000E+OO YDOUB= 1.00000000000000D+OOO

This message is printed at the end of MAIN.

C Calling FORTRAN and Pascal

This example illustrates passing C-Ianguage char, int, float, and double data
to a FORTRAN subroutine and a Pascal procedure. The source code for
each program unit and the AIX commands needed to run the program are
shown, as well as a sample run of the program.

Note: The FORTRAN compiler appends an underscore (_) to external
symbols. Thus the C external declaration must have an underscore
appended to the FORTRAN name.

The Calling C Program

/* This code is in the file named "cexam.c". */

#include <stdio.h>
main ()
{

5-22 FORTRAN User's Guide

printf("\n This message is printed at the start of MAIN.");
cfunc ();
printf("\n This message is printed at the end of MAIN.");

cfunc ()
{

char chrc [79] ;
int ic, count;
float xc;
double yc;

chrc [0] = 'h'; chrc [1] = 'i'; chrc [2] , ;
chrc[3] = 'C'; chrc[4] = '\0';
ic = 50; xc = 10.; yc = 0.0;
count=10;

printf ("\n Before calls: ") ;
printf ("\n Text string: %s", chrc) ;
printf ("\n ic %d", ic) ;
printf ("\n xc %f", xc) ;
printf ("\n yc %f", yc) ;

fsub_(chrc,count,&ic,&xc,&yc); /* Arrays in C always use */
printf("\n After FORTRAN call:"); /* the call-by-reference */
printf("\n Text string: %s", chrc); /* mechanism. */
printf ("\n ic %d", ic);
printf ("\n xc %f", xc);
printf ("\n yc %f", yc);.

psub(chrc,&ic,&xc,&yc) ;
printf("\n After Pascal call:");
printf ("\n Text string: %s", chrc);
printf ("\n ic %d", ic);

printf ("\n xc %f", xc);
printf ("\n yc %f", yc);
}

Chapter 5. Mixing Languages 5-23

The Called FORTRAN Subroutine

C This is the FORTRAN subroutine to be called by C.
C This code is in the file named "ccallf.f".

SUBROUTINE FSUB(WORDS,I,X,Y)
C FORTRAN uppercases all globals. Note that the order of
C the parameters is the order in the calling program unit.

CHARACTER*80 WORDS
INTEGER I
REAL X
DOUBLE PRECISION Y
WORDS='FORTRAN lives! '//Char(O)

C The string terminator C expects is concatenated.
I=LOG(X)
X=LOG(X)
Y=45.DO
RETURN
END

The Called Pascal Procedure

This is the Pascal procedure to be called by C.
This code is in the file named "ccallp.pas". }

segment DUMMYNAME;

5-24 FORTRAN User's Guide

type TEXT = packed array [0 .. 79] of CHAR;

procedure PSUB (var WORDS
var I
var X
var Y

procedure PSUB;
begin

TEXT;
INTEGER;
SHORTREAL;
REAL) ;external;

WORDS [0] .= 'G'; WORDS[1] .= '0'; WORDS [2] .=
WORDS [3] .= 'W'; WORDS [4] .= 'i'; WORDS [5] .= 'r'
WORDS [6] .= 't'; WORDS [7] .= 'h'; WORDS [8] .= '!'
WORDS [9] .= chr(O); {C character string terminator

X .= 2*X;
I .= 2*1;
Y .= 4.0dO;

end;

Commands and Output

The AIX commands needed to run this sample program are:

vspascal ccallp.pas
vspass2 ccallp.i
vspass3 ccallp.obj
vsfort ccallf.f
vspass2 ccallf.i
vspass3 ccallf.obj
cc -0 cexam cexam.c ccallp.o ccallf.o -1m

/usr/lib/libvsfor.a /usr/lib/libvssys.a
cexam

The output from running this sample program is:

This message is printed at the start of main.

Before calls:
Text string: hi C
ic= 50
xc= 10.000000
yc= 0.000000

After FORTRAN call:
Text string: FORTRAN lives!
ic= 2
xc= 2.302585
yc= 45.000000

After Pascal call:
Text string: Go Wirth!
ic= 4
xc= 4.605170
yc= 4.000000

This message is printed at the end of main.

Chapter 5. Mixing Languages 5-25

5-26 FORTRAN User's Guide

Chapter 6. The Disassembler

Preparation

The Disassembler produces assembly language listings for Pascal and
FORTRAN programs. With the Disassembler, binary code modules created
by high-level languages can be translated into assembly language equiv­
alents.

The assembly language output includes:

• absolute address listing
• hex code listing
• variable type listing
• variable location listing
• symbolic references to external entry points
• labels indicating high-level language source-line numbers
• indications of high-level language variable storage locations
• disassembly of certain embedded data constructs used in high-level lan­

guages.

The Disassembler is flexible and easy to use, and can be executed in a
variety of ways to suit your needs.

Before the Disassembler can be used, it is necessary to compile the source
program with the "d+" option specified on the command line. This option
instructs the RT PC VS Pascal and RT PC VS FORTRAN compilers to
place additional tables of symbolic information into the binary code, which
is consolidated during the compile into a separate file. This file has the
same root name as the source file and is given a ".dbg" extension.

The Disassembler can now be executed using the target program (the com­
piled program).

Chapter 6. The Disassembler 6-1

Automatic Option Memory File

At the beginning of each disassembly session, the Disassembler searches for
a file named "dis.cmd". If the file exists in the current directory, the Disas­
sembler uses the contents of this file to set its options. If the file is not
found, the default option profile is used. At the end of the disassembly
session, all options in effect are written to the file.

Using the Disassembler

The Disassembler can be executed in these ways:

• from the command line with one or more options specified
• from the command line with only the default settings in effect
• from the menu
• from a command file containing Disassembler options.

From the Command Line - with Options

The Disassembler can be invoked from the command line with one or more
options specified. The default settings, which may be changed, are:

• output displayed on screen
• no address listing
• no hex code listing
• no variable type listing
• no variable location listing.

The format for running the Disassembler from the command line with one
or more options specified is:

disasm +i=filename +m=module option [option] ...

6-2 FORTRAN User's Guide

+i=filename
specifies an input file that contains the program or submodule to be
disassembled.

+m=module

option

specifies the entry point to be disassembled. The entry point is
searched for in the symbol table. If symbolic information is available
for this entry point, the information is incorporated in the disas­
sembly.

Note: The #, when used for the entry point, causes the entire program
to be disassembled.

may be any of the following:

+a ABSOLUTE ADDRESS LISTING
instructs the Disassembler to include an absolute
address listing in the output. The default is no abso­
lute address listing (-a).

+d=filename SYMBOLIC DEBUGGER SYMBOLS
specifies a file of Symbolic Debugger symbols to be
used in the disassembly. The input file name is used
by default. The file name extension defaults to
".dbg".

+o=filename OUTPUT FILE FOR DISASSEMBLY

+p=cmdfile

+r

specifies an output file to be used for disassembly.
The input file name is used by default. The file name
extension defaults to ".dis".

OPTION FILE
specifies a file from which the Disassembler can read
its options. The default name is "dis.cmd".

HEX CODE (RAW DATA) LISTING
instructs the Disassembler to include a hex code (raw
data) listing in the output. The default is no hex code
listing (-r).

Chapter 6. The Disassembler 6-3

-s

+t

+v

Option

+a

+ d= filename

+o=filename

+p=cmdfile

+r

-s

+t

+v

NO OUTPUT DISPLAY ON SCREEN
instructs the Disassembler not to display the output
on the screen. The default is output displayed on the
screen (+s).

VARIABLE TYPE LISTING
instructs the Disassembler to include a variable type
listing in the output. The default is no variable type
listing (-t).

VARIABLE LOCATION LISTING
instructs the Disassembler to include a variable
location listing in the output. The default is no vari­
able location listing (-v).

Function

Absolute address listing

Symbolic debugger symbols

Output file for disassembly

Option file

Hex code (raw data) listing

No output display on screen

Variable type listing

Variable location listing

Figure 6-1. Disassembler Command-Line Options

The Disassembler command-line options, procedure names, and module
names can be in uppercase or lowercase. However, case is significant in the
specified file names. File names can be either uppercase or lowercase, but
the case has to correspond to the case used in the operating system. For
example:

disasm +a +i=INFILE +m=MOD +d=DBGFILE +o=OUTFILE.OUT

6-4 FORTRAN User's Guide

Note: The same command could be executed with a # substituted for the
module name (+m = #), resulting in the entire program being disassembled.

Output files may use any extension. However, if an extension is not speci­
fied, the default extension ".dis" is used. An input file can be a compiled
source program or input file that does not have an extension, or the debug
file that has a ".dbg" extension.

If the root of the symbol file name and the input file name are the same,
only the root of the name needs to be specified, as in the command:

disasm f1 SAMPLE

Example:

C For this example, SAMPLE is
C located in file "f1.f".
C After the program is compiled,
C the executable file is "f1".
C

PROGRAM SAMPLE
INTEGER X
X = 1
X = X +
WRITE (6,10) X

10 FORMAT (14)
STOP
END

The following code creates the assembler equivalent of the SAMPLE
program and writes the output to the file named "out.dis". The address, hex
code, variable type, and variable location listings are omitted. Provided that
the symbol file and the input file are created with the same name (fl), the
command form is:

disasm +i=f1 +m=SAMPLE +o=out

By default, the following output is displayed on the screen:

Chapter 6. The Disassembler 6-5

XDEF sample
XREF .r init
XREF . f init

-
XREF . f ixfw
XREF .f wrfi
XREF .f tfwr
XREF .f stop
XREF .f_rtsf
XREF .r end

*
*
sample: STM R6, $FFB4 (R 1)

AI R13,R1,$FF74
CAL R1,$FF6C(R1)
LR R14,RO
L R4,$4(R14)
AI R5,R13,$40
BALIX R15,.r_init
L RO,$8(R14)
BALIX R15,.f_init
L RO,$C(R14)

USERCODE: LIS R12,$1
LN 2: AIS R12,$1
LN 3: LIS R2,$1

L R3,$10(R14)
LIS R4,$5
BALIX R 15, . f ixfw
L RO,$18(R14)
LR R2,R12
BALIX R15,.f_wrfi
L RO,$lC(R14)
BALIX R15,.f tfwr
L RO,$20(R14)

LN 4: LIS R2,$O
LIS R3,$O
BALIX R15,.f_stop
L RO,$24(R14)
BALIX R15,.f rtsf
L RO,$28(R14)
BALIX R15,.r_end
L RO,$2C(R14)
LM R6,$48(R1)
BRX R15
CAL R1,$94(R1)
END

6-6 FORTRAN User's Guide

The output file "out.dis" contains:

* ROMP Disassembled Instruction Code
* Options in effect:
* Address listing
* Hex code listing
* Variable type listing
* Variable location listing

* * Image file: f1
* Debug file: f1.dbg
* Module: sample

* * Initial address: 100002DO
* Final

*

*
*

sample:

address: 10000340

XDEF sample
XREF .r init -
XREF · f init -
XREF · f ixfw
XREF .f wrfi
XREF · f tfwr
XREF .f _stop
XREF .f rtsf -
XREF .r end -

STM R6 , $ FFB4 (R 1)

[N]
[N]
[N]
[N]

AI R13,R1,$FF74
CAL R1,$FF6C(R1)
LR R14,RO
L R4,$4(R14)
AI RS,R13,$40
BALIX R1S, .r_init
L RO,$8(R14)
BALIX R1S,.f_init
L RO,$C(R14)

USERCODE: LIS R12,$1
LN 2: AIS R12,$1
LN 3: LIS R2,$1

L R3,$10(R14)
LIS R4,$S
BALIX R1S,.f_ixfw
L RO,$18(R14)
LR R2,R12

Chapter 6. The Disassembler 6-7

BALIX R15,.f_wrfi
L RO,$1C(R14)
BALIX R15,.f_tfwr
L RO,$20(R14)

LN 4: LIS R2,$O
LIS R3,$O
BALIX R15,.f_stop
L RO,$24(R14)
BALIX R15, .f_rtsf
L RO,$28(R14)
BALIX R15,.r_end
L RO,$2C(R14)
LM R6,$48(R1)
BRX R15
CAL R1,$94(R1)
END

From the Command Line - without Options

The Disassembler can be invoked without options. In this case, output is
written to the screen and no address, hex code, variable type, or variable
location listings are included.

The format for running the Disassembler from the command line without
options is:

I disasm input-file-name entry-point

input-file-name
is the file that contains the program or submodule to be disassembled.

entry-point
is the name of the procedure or function to be disassembled.

Both the input-file-name and the entry-point parameters are required; speci­
fying only one is a syntax error.

6-8 FORTRAN User's Guide

The following example uses the SAMPLE program and the executable file
"fl". To disassemble SAMPLE, enter:

disasm f1 SAMPLE

or

disasm f1 #

The following is displayed on the screen:

*
*
sample:

USERCODE:
LN 2:
LN 3:

XDEF
XREF
XREF
XREF
XREF
XREF
XREF
XREF
XREF

STM
AI
CAL
LR
L
AI
BALIX
L
BALIX
L
LIS
AIS
LIS
L
LIS
BALIX
L
LR
BALIX
L
BALIX
L

sample
.r in it -
. f in it -
. f ixfw -
.f wrfi
.f tfwr
.f _stop
.f rtsf -
.r end

-

R6 , $ FFB4 (R 1)
R13,R1,$FF74
R 1 , $FF6C (R 1)
R14,RO
R4,$4(R14)
RS,R13,$40
R1S,.r_init
RO,$8(R14)
R1S,.f_init
RO,$C(R14)
R12,$1
R12,$1
R2,$1
R3,$10(R14)
R4,$S
R1S,.f_ixfw
RO,$18(R14)
R2,R12
R1S, .f_wrfi
RO,$1C(R14)
R1S,.f_tfwr
RO,$20(R14)

Chapter 6. The Disassembler 6-9

LN_4: LIS R2,$O
LIS R3,$O
BALIX R15,.f_stop
L RO,$24(R14)
BALIX R15,.f_rtsf
L RO,$28(R14)
BALIX R15,.r_end
L RO,$2C(R14)
LM R6,$48(R1)
BRX R15
CAL R1,$94(R1)
END

From the Menu System

Options can be selected from a system of menus. To invoke the main menu,
enter:

The following menu appears on the screen:

**** Main Menu ****

1 Select input options
2 Produce disassembly
3 Select output form options
4 Select output designation
5 Display options in effect

Enter Selection # (or q to Quit) :

Any option may be selected from the menu. Press the Enter key after each
selection. For. example, to display the options currently in effect, select
option 5 from the menu. This menu is illustrated in "Display Options

6-10 FORTRAN User's Guide

Selection" on page 6-15. The default profile shows the options initially in
effect.

Input Options Selection

If option 1 is selected, the "Input Options Menu" appears:

**** Input Options Menu ****

1 Specify input file name []
2 Specify program or entry point []
3 Specify debug symbol file []

Enter Selection # (or <Enter> for Main Menu) :

Empty brackets at the end of options 1, 2, and 3 indicate that the input
options have not yet been selected.

The SAMPLE program resides in input file "fl". To specify input file "fl",
enter option 1. The response is:

**** Input Options Menu ****

1 Specify input file name []
2 Specify program or entry point []
3 Specify debug symbol file []

Enter Selection # (or <Enter> for Main Menu) :

Enter input file name
or <Enter> to cancel: f1

No extension is required for the input file; you need to only enter "fl". The
updated screen shows:

Chapter 6. The Disassembler 6-11

1
2
3

**** Input Options Menu ****

Specify input file name
Specify program or entry point
Specify debug symbol file

[f1]
[]
[f1 . dbg]

Enter Selection # (or <Enter> for Main Menu) :

If SAMPLE is used as the entry point (option 2), the screen is updated once
again to include the entry point information. When option 2 is selected, this
screen is displayed:

1
2
3

**** Input Options Menu ****

Specify input file name
Specify program or entry point
Specify debug symbol file

[f 1]

[]

[f1.dbg]

Enter Selection # (or <Enter> for Main Menu): 2

Enter target name
(program, or submodule name)
or <Enter> to cancel: SAMPLE

A # may be used as the entry point for option 2, in which case the entire
program is disassembled.

After the input file name (fl) and the program name (SAMPLE) are
entered, it is possible to return to the main menu to disassemble the
program, using only the Disassembler's default settings, by choosing the
"Produce disassembly" selection.

6-12 FORTRAN User's Guide

Produce Disassembly Selection

After the selections for the "Input Options Menu" are complete, the Disas­
sembler can be executed using its default settings. It is not necessary to
continue through the menus unless changes are to be made to the default
settings or to the output designation.

When the "Produce disassembly" option is selected, the screen is cleared
and the disassembled output is displayed. Upon completion, this message is
displayed:

Do you wish to continue? (yin)

If a "y" is entered, the main menu is displayed once again. You can now
change the default settings for the output form by selecting option 3, or
change the output designation by selecting option 4. By selecting option 1,
another program can be disassembled.

If an "n" is entered, the Disassembler program is terminated.

Output Form Options Selection

If option 3 is selected, the "Output Form Options" menu appears:

1

2
3
4

**** Output Form Options ****

Address listing
Hex code listing
Variable type listing
Variable location listing

[n]

[n]

[n]

[n]

Enter Selection # (or <Enter> for Main Menu) :

To change any of the default settings, enter the appropriate option number.
For example, to include an address listing, select option 1. The response is:

Chapter 6. The Disassembler 6-13

2
3
4

**** output Form Options ****

Address listing
Hex code listing
Variable type listing
Variable location listing

Enter Selection # (or <Enter> for Main Menu): 1

Include address listing? (yin)

[n]

[n]

[n]

[n]

Enter "y" to include an address listing. The updated screen shows that the
change has been made.

Output Designation Selection

If option 4 is selected, the "Output Designation Menu" appears:

1
2

**** Output Designation Menu ****

write output to file
Display output on screen

[]

[y]

Enter Selection # (or <Enter> for Main Menu) :

To write to a file, select option 1. The following screen is displayed:

6-14 FORTRAN User's Guide

1
2

**** output Designation Menu ****

Write output to file
Display output on screen

[]
[y]

Enter Selection # (or <Enter> for Main Menu) :

Enter output file name
or <Enter> to cancel:

It is possible to select both options in this menu; the output is then written
to a file and displayed on the screen.

Display Options Selection

If option 5 is selected, the "Options in effect" screen is displayed. This
screen contains a list of the options that are currently being used by the Dis­
assembler. These options are selected from the "Output Form Options"
menu and the "Output Designation Menu" .

Options in effect:
Disassemble high level program or
submodule
Input file: fl
Module: SAMPLE
Debug File: f1.dbg
Include variable type definitions
Include variable location listing
Display output on screen

Press Enter to Continue ...

Chapter 6. The Disassembler 6-15

From a Command File

A command file can be created that contains options readable by the Disas­
sembler. The file is created with an editor, and options are entered one
option per line.

The following command file example produces pure assembler code with the
variable type and location information in comment form in the output file.
This command file contains:

+i=f1
+m=SAMPLE
+o=out
-s
+t
+v

Note: In this example," +m=SAMPLE" may be replaced with" +m= #" to
disassemble the entire program.

If this command file is named "COMMAND.CMD", the Disassembler
command is:

disasm +p=COMMAND.CMD

The output file "out" uses the default extension" .dis". The output file con­
tains:

* ROMP Disassembled Instruction Code
* Options in effect:
* Address listing
* Hex code listing
* Variable type listing
* Variable location listing

* * Image file: f1
* Debug file: f1.dbg
* Module: sample

* * Initial address:
* Final

*

6-16 FORTRAN User's Guide

address:
100002DO
10000340

[N]
[N]
[Y]

[Y]

*
*

*

sample:

USERCODE:
LN 2:
LN 3:

LN 4:

XDEF sample
XREF .r init
XREF .f init
XREF .f ixfw
XREF .f wrfi
XREF .f tfwr
XREF .f_stop
XREF .f rtsf
XREF .r end

STM
AI
CAL
LR
L
AI
BALIX
L
BALIX
L
LIS
AIS
LIS
L
LIS
BALIX
L
LR
BALIX
L

BALIX
L
LIS
LIS
BALIX
L
BALIX
L
BALIX
L

LM
BRX
CAL

R6, $FFB4 (R1)
R13,R1,$FF74
R1,$FF6C(R1)
R14,RO
R4,$4(R14)
R5,R13,$40
R15,.r_init
RO,$8(R14)
R15,.f_init
RO,$C(R14)
R12,$1
R12,$1
R2,$1
R3,$10(R14)
R4,$5
R15,.f_ixfw
RO,$18(R14)
R2,R12
R15,.f_wrfi
RO,$1C(R14)
R15,.f_tfwr
RO,$20(R14)
R2,$O
R3,$O
R15,.f_stop
RO,$24(R14)
R15,.f_rtsf
RO,$28(R14)
R15,.r_end
RO,$2C(R14)
R6,$48(R1)
R15
R1,$94(R1)

Chapter 6. The Disassembler 6-1 7

* offset definitions

*
* entry sample
* user name sample

* * entry code begins at $100002DO
* user code begins at $100002F4
* exit code begins at $10000326
* addresses for source code by line number:
* 1: $100002F4 2: $100002F6 3: $100002F8

* * variable definitions

*
* sample:

*
*

x type -3 r7

* type definitions:

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

-1
-2
-3
-4
-5
-6
-7
-8
-9

-10
-11
-12
-13
-14

integer (1 byte)

integer (2 bytes)
integer (4 bytes)
unsigned integer (1 byte)

unsigned integer (2 bytes)
unsigned integer (4 bytes)
character (1 byte)

character (2 bytes)
single precision floating
double precision floating
logical (1 byte)

logical (2 bytes)
logical (4 bytes)
file

point (4
point (8

* -15 complex floating point (16 bytes)

* -16 double complex floating point (32
END

6-18 FORTRAN User's Guide

bytes)
bytes)

bytes)

4: $1000031A

Appendix A. Messages

Compile-Time Messages

RT PC VS FORTRAN contains a file of compile-time error messages
named "vsfctmsg.inc". The compiler generates error numbers and messages
if this file is present in the default directory and errors are encountered.

If the lfilename command-line option is used, any error messages are written
to the listing file. If the efilename command-line option is used, any error
messages are written to the error file. Otherwise, error messages are dis­
played on the console.

o Unknown error
1 Fatal error reading source code block
2 Non-numeric characters in label field
3 Too many continuation lines
4 Fatal end-of-file encountered
5 Labeled continuation line
6 Missing field or syntax error on compiler-directive line
7 Compiler directive allows nonstandard feature
8 Unrecognizable compiler directive
9 Input source code file not a valid text file format
10 Maximum depth of INCLUDE file nesting exceeded

11 Integer constant overflow
12 Error in real constant
13 Too many digits in constant
14 Identifier too long
15 Character constant extends to end of line
16 Character constant is zero length
17 Illegal character in input

Appendix A. Messages A-I

18 Integer constant expected
19 Label expected
20 Error in label

21 Type name expected (INTEGER[*n], REAL[*n], DOUBLE PRECI-
SION, COMPLEX, LOGICAL[*n], or CHARACTER[*nD

22 INTEGER constant expected
23 Extra characters at end of statement
24 ' (' expected
25 Letter IMPLICITed more than once
26 ')' expected
27 Letter expected
28 Identifier expected
29 Dimension(s) required in DIMENSION statement
30 Array dimensioned more than once

31 Maximum number of array dimensions exceeded
32 Incompatible arguments to EQUIVALENCE
33 Variable appears more than once in a type specification statement
34 This identifier has already been declared
35 This intrinsic function cannot be passed as an argument
36 Identifier must be a variable
37 Identifier must be a variable or the current FUNCTION name
38 ' /, expected
39 Named COMMON block already saved
40 Variable already appears in a COMMON block

41 Variables in different COMMON blocks cannot be equivalenced
42 Number of subscripts in EQUIVALENCE statement does not agree

with variable declaration
43 EQUIVALENCE subscript out of range
44 Two distinct cells equivalenced to the same location in a COMMON

block
45 EQUIVALENCE statement extends a COMMON block in a negative

direction
46 EQUIV ALENCE statement forces a variable to two distinct

locations, not in a COMMON block
47 Statement number expected
48 Mixed CHARACTER and numeric items not allowed in same

COMMON block
49 CHARACTER items cannot be equivalenced to non-character items
50 Illegal symbols in an expression

A-2 FORTRAN User's Guide

51 Cannot use subroutine or namelist name in an expression
52 Type of argument must be INTEGER or REAL
53 Type of argument must be INTEGER, REAL, or CHARACTER
54 Types of comparisons must be compatible
55 Type of expression must be LOGICAL
56 Too many subscripts
57 Too few subscripts
58 Variable expected
59 ' =' expected
60 Size of equivalenced CHARACTER items must be the same

61 Illegal assignment - types do not match
62 Can only call subroutines
63 Dummy arguments cannot appear in COMMON statements
64 Dummy arguments cannot appear in EQUIVALENCE statements
65 Assumed-size array declarations can only be used for dummy arrays
66 Adjustable-size array declarations can only be used for dummy arrays
67 Assumed-size array dimension specifier, "*", must be the upper

bound of the last dimension
68 Adjustable bound must be either a dummy argument or in COMMON

prior to appearance
69 Adjustable bound must be simple integer expression containing only

constants, COMMON variables, or PARAMETER constant names
70 Cannot have more that one main program

71 The size of a named COMMON block must be the same in all subpro-
grams

72 Dummy arguments cannot appear in DATA statements
73 Variables in blank COMMON cannot appear in DATA statements
74 N ames of subroutines, functions, intrinsic functions, and namelists

cannot appear in DATA statements
75 Subscripts out of range in DATA statement
76 Repeat count must be integer value greater than zero
77 Constant expected
78 Type conflict in DATA statement
79 Number of variables does not match the number of values in DATA

statement list
80 Statement cannot have a label

81 No such intrinsic function
82 Type declaration for intrinsic function does not match actual type of

intrinsic function

Appendix A. Messages A-3

83 Letter expected
84 Type of function does not agree with previous usage
85 This subprogram has already appeared in this compilation
87 Error in type of argument to intrinsic function
88 Subroutine/function previously used as a function/subroutine
89 Unrecognizable statement
90 Expression not allowed

91 Missing END statement
93 Fewer actual arguments than formal arguments in a function or sub­

routine reference
94 More actual arguments than formal arguments in a function or sub-

routine reference
95 Type of actual argument does not agree with formal argument
96 The following procedures were called but not defined
98 Size of type CHARACTER must be consistent with the number in

r n r option or @PROCESS CL(nnn) statement
99 INTEGER *4 variable required
100 Statement out of order

101 Unrecognizable statement
102 Illegal jump into block
103 Label already used for FORMAT
104 Label already defined
105 Jump to FORMAT label
106 DO statement forbidden in this context
107 DO label must follow a DO statement
108 ENDIF forbidden in this context
109 No matching IF for this ENDIF
110 Improperly nested DO block in IF block

111 ELSEIF forbidden in this context
112 No matching IF for ELSEIF
113 Improperly nested DO or ELSE block
114 r (r expected
115 r) r expected
116 THEN expected
11 7 Logical expression expected
118 ELSE statement forbidden in this context
119 No matching IF for ELSE
120 Unconditional GOTO forbidden in this context

A-4 FORTRAN User's Guide

121 Assigned GOTO forbidden in this context
122 Block IF statement forbidden in this context
123 Logical IF statement forbidden in this context
124 Arithmetic IF statement forbidden in this context
125 ' " expected
126 Expression of wrong type
127 RETURN forbidden in this context
128 STOP forbidden in this context
129 END forbidden in this context

131 Label referenced but not defined
132 DO or IF block not terminated
133 FORMAT statement not permitted in this context
134 FORMAT label already referenced
135 FORMAT must be labeled
136 Identifier expected
137 Integer variable expected
138 'TO' expected
139 Integer expression expected
140 Assigned GOTO but no ASSIGN statements

141 Unrecognizable character constant as option
142 Character constant expected as option
143 Integer expression expected for unit designation
144 STATUS option expected after ',' in CLOSE statement
145 Character expression as file name in OPEN statement
146 FILE= option must be present in OPEN statement
147 RECL= option specified twice in OPEN statement
148 Integer expression expected for RECL= option in OPEN statement
149 Unrecognizable option in OPEN statement
150 Direct-access files must specify RECL= in OPEN statement

151 Adjustable arrays not allowed as input/output list elements
152 End of statement encountered in implied DO, expressions beginning

with '(' not allowed as input/output list elements
153 Variable required as control for implied DO
154 Expressions not allowed as reading input/ output list elements
155 REC= option appears twice in statement
156 REC= option expects integer expression
157 END= option only allowed in READ statement
158 END= option appears twice in statement
159 Unrecognizable input/output unit

Appendix A. Messages A-5

160 Unrecognizable format in input/output statement

161 Options expected after ',' in input/output statement
162 Unrecognizable input/output list element
163 Label used as format but not defined in FORMAT statement
164 Integer variable used as assigned format but no ASSIGN statement
165 Label of an executable statement used as format
166 Integer variable expected for assigned format
167 Label defined more than once as format
169 Function references require '0'
170 Integer expression expected for array dimension bound

171 Lower-dimension bound must be less than or equal to upper­
dimension bound

172 DATA statement cannot initialize arrays of unknown size

200 Variable name of named COMMON block expected
201 This variable already saved or declared as STATIC
202 Cannot SAVE dummy arguments
203 COMMON variables may not be saved or declared as STATIC
204 INTEGER and LOGICAL * 1, *2, or *4 only
205 No *n allowed for DOUBLE PRECISION
206 Only REAL*4 or REAL*8 allowed
207 No *n allowed for DOUBLE COMPLEX
208 Size expression only allowed for CHARACTER
209 INTEGER constant expression expected
210 INTEGER constant or INTEGER constant expression expected

211 CHARACTER substring expression out of range
212 CHARACTER substring expression must be of type INTEGER
213 Error in CHARACTER substring expression
214 CHARA CTER expression expected
215 LOGICAL expression expected
216 CHARACTER*(*) only allowed for dummy arguments
217 Undeclared PARAMETER constant
218 Constant expression not allowed
219 Arithmetic operators only apply to numeric values
220 Malformed COMPLEX constant

221 Maximum of seven levels of implied-DO allowed
222 Error in DATA statement variable list
223 Error in implied-DO list in DATA statement

A-6 FORTRAN User's Guide

224 Variables in named COMMON can only appear in a DATA statement
that is in a block data subprogram

225 Integer subscript expected
226 Subscript error
227 This identifier is already in use as an implied-DO control variable
228 Integer constant expression or implied-DO control variable expected
229 Integer expression required
230 Division by zero

231 Error in COMPLEX primary
232 Numeric expression or CHARACTER expression expected
233 COMPLEX can only compare for equality
234 COMPLEX is not compatible with DOUBLE PRECISION
235 Constant expression expected
236 ENTRY statements must appear in subroutine or function subpro­

grams
237 ENTRY statements cannot be within a block IF or a DO statement

range
238 Concatenation only applies to CHARACTER values
239 ' :' expected
240 Substring operations only apply to CHARACTER variables or

CHARACTER array elements

241 Error in implied DO expression in a DATA statement
242 Implied DO iteration count is zero in a DATA statement
243 Error in formal argument list
244 Alternate return is not allowed in a function subprogram
245 Substring error in EQUIVALENCE statement
246 EQUIVALENCE statement must not require *2, *4, or *8 variables

to be allocated on odd-byte addresses
24 7 EQUIVALENCE statement must not require a COMMON block to

be allocated on odd-byte addresses
248 CHARACTER arguments cannot contain concatenation of values

that are of size *(*)
249 Numeric expression expected
250 Subroutine or function name has already been used as a COMMON

name

251 Recursive calls are not allowed
252 Statement functions require variable or value arguments
253 Alternate ENTRY in character function must be of type CHAR­

ACTER and must be the same size as the function

Appendix A. Messages A-7

254 This intrinsic function cannot be passed as an argument
255 Executable statements cannot appear in block data subprograms
256 An argument to an ENTRY statement has already appeared as a local

variable

270 Assigned GOTO variable must be INTEGER or INTEGER *4
271 INTEGER, REAL, or DOUBLE PRECISION variable expected
272 INTEGER, REAL, or DOUBLE PRECISION expression expected
273 Unrecognizable element in option list
274 Option appears more than once in an option list
275 Incorrect type for variable
276 Variable must be *4 in size
277 CHARACTER variable or CHARACTER array element required
278 CHARA CTER expression expected
279 Cannot have FILE and UNIT specifier in same INQUIRE statement
280 Must have a FILE or UNIT specifier in INQUIRE statement

281 Must have UNIT specifier
282 PRINT statement requires no option list - use WRITE
283 WRITE statement must have an option list
284 READ statement must not have both REC= and END= options
285 Must not specify REC= option with * format specifier
286 Cannot do internal input/output with * format specifier
287 Cannot use REC= specifier with internal input/output
288 Malformed implied DO loop
289 Implied DO loop must have simple variable for loop control
290 Wrong number of arguments to intrinsic function

291 Unit set more than once in input/output statement
292 No unit specified in input/output statement
293 Error in FORMAT statement
294 Hexadecimal constant expected
295 Too many characters in statement
296 Cannot find INCLUDE file
299 Improper use of Hollerith constant
300 Non-ANSI standard feature used

400 Code file write error
403 Procedure too large (code buffer too small)

405 Blank lines are not allowed with free-form input
406 A comment line cannot follow a continuation line in free-form input

A-8 FORTRAN User's Guide

407 A label can have only 1 to 5 decimal digits

420 Reserved words must be in lowercase

500 '" (Single quote) expected
501 Binary constant expected
502 Octal constant expected
503 Declared size too small for binary constant in DATA statement - All

digits besides 16 rightmost truncated
504 Declared size too small for binary constant in DATA statement - All

digits besides 8 rightmost truncated
505 DO WHILE statement forbidden in this context
506 END DO expected
507 Invalid binary constant digit(s)
508 Invalid octal constant digit(s)
509 Declared size too small for octal constant - All digits besides 6 right­

most truncated
510 Declared size too small for octal constant - All digits besides 3 right­

most truncated

511 Invalid hex constant digit(s)
512 END DO forbidden in this constant
513 DO, IF, or DO WHILE block not terminated
514 Declared size too small for hexadecimal constant - All digits besides

4 rightmost truncated
515 Declared size too small for hexadecimal constant - All digits besides

2 rightmost truncated
516 Hex constant expected
517 Declared size too small for hexadecimal constant - All digits besides

8 rightmost truncated
518 Declared size too small for octal constant - All digits besides 11

rightmost truncated
519 Declared size too small for binary constant in DATA statement - All

digits besides 32 rightmost truncated

520 A namelist group name must be declared only once
521 Namelist group name has been declared as variable previously
522 Dummy arguments may not appear in a NAMELIST statement
523 Namelist READ or WRITE should not specify iolist
524 Only COMPLEX*8 or COMPLEX* 16 allowed
525 This VS or VAX feature is not supported
526 This identifier name has been declared as namelist name previously

Appendix A. Messages A-9

532 Declared size too small for hexadecimal constant - All digits besides
16 rightmost truncated

552 Cannot declare function as AUTOMATIC or STATIC
553 Same identifier declared as both AUTOMATIC and STATIC (or

saved)
554 Cannot declare dummy arguments as AUTOMATIC or STATIC
555 Variables declared as AUTOMATIC may not appear in COMMON

statement
556 Variable declared as AUTOMATIC may not be equivalenced with

static variable
557 Variables declared as AUTOMATIC may not appear in DATA state­

ment
559 A variable has been declared as AUTOMATIC more than once
560 Single subscript reference for multi-dimensional array element in

EQUIVALENCE statement

562 In IMPLICIT statement, the dollar sign ($) follows the letter Z

581 Not a VS FORTRAN feature or syntax
582 Not an RT PC FORTRAN 77 Version 1.1 feature or syntax
583 Not a VAX FORTRAN feature or syntax
584 Dynamic COMMON is not allowed to initialize data at compile time
585 The following qualifiers of OPTIONS statement have no effect in AIX

System (/G_FLOATING, ICHECK)

595 The data type of a dummy argument of a function is undefined
596 The data type of a dummy argument of a statement function is unde-

fined
597 The data type of a function is undefined
598 The data type of a statement function is undefined
599 Variable type undefined due to 'u-' option, or IMPLICIT UNDE­

FINED statement or IMPLICIT NONE statement specified

600 Non-blank characters truncated in string constant

610 Dummy arguments cannot appear in type initialization statements

620 Variables in blank COMMON cannot appear in type initialization
statements

622 N ames of subroutines, functions, intrinsic functions, statement func­
tions, and namelists cannot appear in type initialization statements

A-I0 FORTRAN User's Guide

900 OPTIMIZER ERROR PHASE 0 - degrade optimization level
901 OPTIMIZER ERROR PHASE 1 - degrade optimization level
902 OPTIMIZER ERROR PHASE 2 - degrade optimization level
903 OPTIMIZER ERROR PHASE 3 - degrade optimization level
904 OPTIMIZER ERROR PHASE 4 - degrade optimization level
905 OPTIMIZER ERROR PHASE 5 - degrade optimization level
906 OPTIMIZER ERROR PHASE 6 - degrade optimization level
907 OPTIMIZER ERROR PHASE 7 - degrade optimization level
908 OPTIMIZER ERROR PHASE 8 - degrade optimization level
909 OPTIMIZER ERROR PHASE 9 - degrade optimization level

1000 Could not do block write on outfile
1001 Could not do block read on outfile
1002 Could not do block read on infile
1003 Could not seek to block requested in infile
1 004 No more memory
1005 Code not implemented yet
1006 FATAL CODE GENERATION ERROR
1007 Unable to open input file *.i
1008 Unable to open output file * .obj
1009 Input file is not a .i file
1010 Input file is not correct version

Run-Time Messages

RT PC VS FORTRAN contains a file of run-time error messages named
"vsfrtmsg.inc". The compiler generates error numbers and messages if this
file is present in the default directory and errors are encountered.

600 FORMAT statement missing final ')'
601 Sign not expected in input
602 Sign not followed by digit in input
603 Digit expected in input
604 Missing N or Z after B in format
605 Unexpected character in format
606 Zero repetition factor in format not allowed
607 Integer expected for w field in format
608 Positive integer required for w field in format

Appendix A. Messages A-II

609 I. I expected in format
610 Integer expected for d field in format

611 Integer expected for e field in format
612 Positive integer required for e field in format
613 Positive integer required for w field in A format
614 Hollerith field in format must not appear for reading
615 Hollerith field in format requires repetition factor
616 X field in format requires repetition factor
617 P field in format requires repetition factor
618 Integer appears before I + I or I - I in format
619 Integer expected after I + I or I - I in format
620 P format expected after signed repetition factor in format

621 Maximum nesting level (10 levels) for formats exceeded
622 ') I has repetition factor in format
623 Integer followed by I, I invalid in format
624 I. I is invalid format-control character
625 Character constant must not appear in format for reading
626 Character constant in format must not be repeated
627 I I' in format must not be repeated
628 I \ I, I $ I, I: I, I S I, I SP I, and I SS I in format must not be repeated
629 BN or BZ format control must not be repeated
630 Attempt to perform inputloutput on unknown unit number

631 Formatted or list-directed input I output attempted on file opened as
unformatted

632 Format fails to begin with '('
633 I format expected for integer read
634 F, D, G, or E format expected for real read
635 Two I. I characters in formatted real read
636 Digit expected in formatted real read
637 L format expected for logical read
639 Tor F expected in logical read
640 A format expected for character read

641 I format expected for integer write
642 w field in F format not greater than d field + 1
643 Scale factor out of range of d field in E format
644 E, D, G, or F format expected for real write
645 L format expected for logical write
646 A format expected for character write

A-12 FORTRAN User's Guide

647 Attempt to do unformatted input/output to a file opened as formatted
648 Unable to write blocked output - possibly no room on output device
649 Unable to read blocked input
650 Error in formatted text file - no carriage return in last 512 bytes

651 Integer overflow on input
652 T, TL, or TR in format must not be repeated
653 Positive integer expected for c field in T, TL, or TR format
654 Attempt to open direct-access unit on unblocked device
655 Attempt to do external input/output on a unit beyond end-of-file

record
656 Attempt to position a unit for direct access on a non-positive record

number
657 Attempt to do direct access on a unit opened as sequential
658 Attempt to position direct-access unit on an unblocked device
659 Attempt to position direct-access unit beyond end-of-file for reading
660 Attempt to backspace unit connected to unblock device or unfor-

matted file

661 Attempt to backspace sequential unformatted unit
662 Argument to ASIN or ACOS out of bounds - ABS(x) > 1.0
663 Argument to SIN or COS too large
664 Attempt to do unformatted input/output to internal unit
665 Attempt to put more than one record into an internal unit
666 Attempt to write more characters to an internal unit than its length
667 EOF called on unknown unit
668 Direct-access formatted input files must not use DLE
669 Error in opening file
670 Error in closing file

671 Cannot specify KEEP in CLOSE if file opened SCRATCH
672 Unrecognizable option specified as character value in input/output

statement
673 File name required unless status is SCRATCH
674 Must not name file if status is SCRATCH
675 Record length not allowed for sequential files
676 Record length must be positive
677 Record length must be specified for direct-access files
678 BLANK option only for formatted files
679 Rewind only allowed on sequential files
680 Endfile only allowed on sequential files

Appendix A. Messages A-13

681 Backspace only allowed on sequential files
682 Formatted records must be less than or equal to 512 characters
683 More characters written to internal file record than record length
684 Incorrect number of characters read in formatted record of direct-

access file
685 Attempt to write too many characters into formatted record of direct-

access file
686 No repeatable edit-descriptor found and format exhausted
687 Digit expected in input field exponent
688 Too many digits in input real number
689 Numeric field expected in input
690 Unexpected character encountered in list-directed or namelist­

directed input

691 Repeat factor in list-directed input must be positive
692 ' " between reals for complex expected in list-directed input
693 ')' expected to terminate complex in list-directed input
694 Attempt to do list-directed or namelist-directed input/output to

direct-access file
697 Integer variable not currently assigned a FORMAT label
698 End-of-file encountered on a read with no END= option
699 Integer variable not assigned a label used in assigned GOTO state­

ment

701 Integer input item expected for list-directed input
702 Numeric input item expected for list-directed input
703 Logical input item expected for list-directed input
704 Complex input item expected for list-directed input
705 Character input item expected for list-directed input
706 Incorrect number of bytes read or written to direct-access unfor-

matted file
707 Substring index range error
708 Invalid character in hex read
709 Invalid character in octal read

720 Read or write beyond the end of internal file

751 Subscript error in namelist input record
752 Item name in namelist input record is not defined in namelist item list
753 No input data for specified namelist group name
754 No item name precedes '=' or '(' in namelist input record
755 ' =' expected after item name in namelist input record

A-14 FORTRAN User's Guide

756 List-directed input/output to internal file is valid only under IBM
mode

760 Positive infinity floating-point exception - Maximum positive
number substituted

761 Negative infinity floating-point exception - Maximum negative
number substituted

762 NaN floating-point exception - Maximum positive (or negative)
number substituted

763 Q format code is valid as character count edit-descriptor only under
VXmode

Appendix A; Messages A-IS

A-16 FORTRAN User's Guide

Appendix B. ASCII Character Set

This appendix lists the standard ASCII characters in numerical order with
the corresponding decimal, octal, and hexadecimal values. The control
characters are indicated by a "Ctrl-" notation. For example, the horizontal
tab (HT) is indicated by "Ctrl-I", which is keyed by simultaneously pressing
the Ctrl key and I key.

Note that this character set was originally developed for teletype communi­
cations. Consequently, most of the original control characters (decimal 0
through 31) are undefined in other types of communication. However, two
important control characters have retained their original function: LF
(decimal 10), which generates a line feed (causing subsequent output on a
display or printer to appear on the next line), and CR (decimal 13), which
generates a carriage return.

Decimal Octal Hex Control ASCII
Value Value Value Character Symbol Meaning

0 000 00 Ctrl-@ NUL null
1 001 01 Ctrl-A SOH start of heading
2 002 02 Ctrl-B STX start of text
3 003 03 Ctrl-C ETX end of text
4 004 04 Ctrl-D EOT end of transmission
5 005 05 Ctrl-E ENQ inquiry
6 006 06 Ctrl-F ACK acknowledge
7 007 07 Ctrl-G BEL bell
8 010 08 Ctrl-H BS backspace

Figure B-1 (Part 1 of 6). ASCII Character Set

Appendix B. ASCII Character Set B-1

Decimal Octal Hex Control ASCII
Value Value Value Character Symbol Meaning

9 011 09 Ctrl-I HT horizontal tab
10 012 OA Ctrl-l LF line feed
11 013 OB Ctrl-K VT vertical tab
12 014 OC Ctrl-L FF form feed
13 015 OD Ctrl-M CR carriage return
14 016 OE Ctrl-N SO shift out
15 017 OF Ctrl-O SI shift in
16 020 10 Ctrl-P DLE data link escape
17 021 11 Ctrl-Q DC1 device control 1
18 022 12 Ctrl-R DC2 device control 2
19 023 13 Ctrl-S DC3 device control 3
20 024 14 Ctrl-T DC4 device control 4
21 025 15 Ctrl-U NAK negative acknowledge
22 026 16 Ctrl-V SYN synchronous idle
23 027 17 Ctrl-W ETB end of transmission block
24 030 18 Ctrl-X CAN cancel
25 031 19 Ctrl-Y EM end of medium
26 032 1A Ctrl-Z SUB substitute
27 033 1B Ctrl-[ESC escape
28 034 1C Ctrl- \ FS file separator
29 035 1D Ctrl-] as group separator
30 036 IE Ctrl-A RS record separator
31 037 IF Ctrl-- US unit separator
32 040 20 SP space
33 041 21
34 042 22 "
35 043 23 #
36 044 24 $
37 045 25 0/0

Figure 8-1 (Part 2 of 6). ASCII Character Set

B-2 FORTRAN User's Guide

Decimal Octal Hex Control ASCII
Value Value Value Character Symbol Meaning

38 046 26 &
39 047 27 apostrophe
40 050 28 (
41 051 29)
42 052 2A *
43 053 2B +
44 054 2C comma
45 055 2D minus
46 056 2E period
47 057 2F /
48 060 30 0
49 061 31 1
50 062 32 2
51 063 33 3
52 064 34 4
53 065 35 '5
54 066 36 6
55 067 37 7
56 070 38 8
57 071 39 9
58 072 3A
59 073 3B
60 074 3C <
61 075 3D =
62 076 3E >
63 077 3F ?
64 100 40 @
65 101 41 A
66 102 42 B

Figure B-1 (Part 3 of 6). ASCII Character Set

Appendix B. ASCII Character Set B-3

Decimal Octal Hex Control ASCII
Value Value Value Character Symbol Meaning

67 103 43 C
68 104 44 D
69 105 45 E
70 106 46 F
71 107 47 G
72 110 48 H
73 111 49 I
74 112 4A J
75 113 4B K
76 114 4C L
77 115 4D M
78 116 4E N
79 117 4F 0
80 120 50 P
81 121 51 Q
82 122 52 R
83 123 53 S
84 124 54 T
85 125 55 U
86 126 56 V
87 127 57 W
88 130 58 X
89 131 59 y

90 132 SA Z
91 133 5B [
92 134 5C \
93 135 5D]
94 136 5E 1\

95 137 SF underscore

Figure B-1 (Part 4 of 6). ASCII Character Set

B-4 FORTRAN User's Guide

Decimal Octal Hex Control ASCII
Value Value Value Character Symbol Meaning

96 140 60 grave
97 141 61 a
98 142 62 b
99 143 63 c
100 144 64 d
101 145 65 e
102 146 66 f
103 147 67 g
104 150 68 h
105 151 69
106 152 6A j
107 153 6B k
108 154 6C 1
109 155 6D m
110 156 6E n
111 157 6F 0

112 160 70 p
113 161 71 q
114 162 72 r
115 163 73 s
116 164 74 t
117 165 75 u
118 166 76 v
119 167 77 w
120 170 78 x
121 171 79 y
122 172 7A z
123 173 7B {
124 174 7C I

Figure B-1 (Part 5 of 6). ASCII Character Set

Appendix B. ASCII Character Set B-5

Decimal Octal Hex Control ASCII
Value Value Value Character Symbol Meaning

125 175 7D }
126 176 7E
127 177 7F DEL delete

Figure B-1 (Part 6 of 6). ASCII Character Set

B-6 FORTRAN User's Guide

Appendix C. Migrating Programs

IBM RT PC VS FORTRAN is source-language compatible with IBM VS
FORTRAN Version 2, IBM RT PC FORTRAN 77 Version 1.1, and VAX
FORTRAN Version 3, except for the minor limitations described in this
appendix. Unless noted here, the statements, data types, and compiler
directives in each of these variations of FORTRAN are supported.

Most VS FORTRAN Version 2, RT PC FORTRAN 77 Version 1.1, and
VAX FORTRAN Version 3 programs may be compiled on the RT PC and
executed without modification, although some compiler directives are
accepted syntactically but not functionally. Also, because of differences in
hardware architectures, operating systems, and compiler implementations,
some of these programs may produce unintended results.

The purpose of this appendix is to describe the areas of the compiler that
are"known to cause problems so that you can determine the extent to which
your programs might be affected, and can implement the necessary changes
to achieve the intended results.

From VS FORTRAN Version 2

Limitations

The following VS FORTRAN Version 2 features are not supported in RT
PC VS FORTRAN:

• quadruple precision
• FORTRAN 66 language mode
• asynchronous input/output
• indexed file support

Appendix C. Migrating Programs C-1

Uncertainties

• floating-point exceptions.

Programs that use these features must be recoded so that these features are
not used.

Differences between VS FORTRAN Version 2 and RT PC VS FORTRAN
may cause unintended results in the following areas.

Floating-Point Representation

Precision of Results: The VS FORTRAN Version 2 and RT PC VS
FORTRAN floating-point representations differ in the number of bits used
to represent the mantissa and exponent of a number, and therefore in the
precision of the number. Additionally, there may be differences in the algo­
rithms used to compute mathematical functions, which could lead to dif­
ferent results near the limits of precision.

Exception Handling: RT PC VS FORTRAN calls for floating-point
exceptions (overflow, underflow, undefined) to be reported by returning a
particular bit pattern (+infinity, -infinity, Not-a-Number) rather than by
raising an actual exception condition.

Representation Dependence: Unintended results may be produced by
programs that map floating-point variables onto other data types and
depend on the bitwise floating-point representation.

Output Format: Since ANSI Standard FORTRAN 77 does not precisely
specify the output format for floating-point numbers, the output format may
differ in some instances.

C-2 FORTRAN User's Guide

Character Representation

Run-Time Errors

Data Storage

Environments: VS FORTRAN Version 2 operates in EBCDIC environ­
ments, while R T PC VS FORTRAN operates in ASCII.

Character Data Values: Unintended results may be produced by pro­
grams that depend on a particular data value for a character or a particular
relationship among character data values.

Collating Sequence: Unintended results may be produced by programs
that depend on the order of character values to sort or otherwise work with
character data.

Binary Files with Embedded Character Data: Characters remain in
EBCDIC when you port a FORTRAN-created binary data file in which
character and numeric data is mixed from an IBM System 370 to an RT PC.

Error Numbers, Contexts, Message Texts: Error numbers, contexts, and
message texts are different.

IOSTAT Tests: Unintended results may be produced by programs that
test IOSTAT for particular values to indicate run-time error conditions.

Uninitialized Data: Unintended results may be produced by programs that
depend on the value of uninitialized storage or on the value of previously
used storage uninitialized in a particular subroutine.

Static Treatment of Local Variables: Unintended results may be
produced by programs that depend on local variables having the SAVE
attribute even when SAVE is not specified.

Appendix C. Migrating Programs C-3

Files

Function Calls

Logical Representation: Unintended results may be produced by pro­
grams that depend on the internal representation of LOGICAL data values.

Storage Mapping: Unintended results may be produced by programs that
index out of one array and into another. In general, unintended results may
be produced by programs that depend on the storage layout or alignment of
data.

Binary Files Not Pure: If a FORTRAN-created binary data file is ported
from an IBM System 370 to an RT PC, the internal format of the data file
may be different.

Character and Floating-Point Files: Data files containing characters or
floating-point numbers must be mapped by a translate utility if they are to
be ported. .

File Names: Case is significant in the RT PC AIX environment, but not
significant in the IBM System 370 environments.

Parameter Persistence: Programs can call a FORTRAN subroutine with
a parameter list and subsequently enter the same subroutine through an
ENTRY statement with a shorter parameter list. However, the program
should not depend on the parameter values of the extra parameters per­
sisting from the first call to the second call. Such programs may produce
unintended results.

Function Results When No Assignment is Made: Unintended results
may be produced by programs that depend on a particular function result
(such as 0) when no assignment to the function has been made.

C-4 FORTRAN User's Guide

Compiler Behavior

Order of Evaluation of Parameter Expressions: Unintended results
(because of side effects) may be produced by programs that depend on
parameter expressions being evaluated in a particular order.

Mismatched Parameter Types: Unintended results may be produced by
programs that intentionally pass character parameters to subroutines with
non-character dummy parameters which then pass them on to other subrou­
tines.

Using Debugger as Part of FORTRAN Language: In VS FORTRAN
Version 2, the debugger may be treated as part of the language. For
example, the DISPLAY statement might be used instead of FORTRAN
PRINT. This is not supported in RT PC VS FORTRAN.

From RT PC FORTRAN 77 Version 1.1

Uncertainties

Run-Time Errors

Differences between RT PC FORTRAN 77 Version 1.1 and RT PC VS
FORTRAN may cause unintended results in the following areas.

Error Numbers, Contexts, Message Texts: Error numbers, contexts, and
message texts are different.

IOSTAT Tests: Unintended results may be produced by programs that
test lOST AT for particular values to indicate run-time error conditions.

Appendix C. Migrating Programs C-5

Data Storage

Function Calls

Uninitialized Data: Unintended results may be produced by programs that
depend on the value of uninitialized storage or on the value of previously
used storage uninitialized in a particular subroutine.

Logical Representation: Unintended results may be produced by pro­
grams that depend on the internal representation of LOGICAL data values.

Storage Mapping: Unintended results may be produced by programs that
index out of one array and into another. In general, unintended results may
be produced by programs that depend on the storage layout or alignment of
data.

Function Results When No Assignment is Made: Unintended results
may be produced by programs that depend on a particular function result
(such as 0) when no assignment to the function has been made.

Order of Evaluation of Parameter Expressions: Unintended results
(because of side effects) may be produced by programs that depend on
parameter expressions being evaluated in a particular order.

Mismatched Parameter Types: Unintended results may be produced by
programs that intentionally pass character parameters to subroutines with
non-character dummy parameters which then pass them on to other subrou­
tines.

C-6 FORTRAN User's Guide

From VAX FORTRAN Version 3

Limitations

Uncertainties

The following VAX FORTRAN Version 3 features are not supported in RT
PC VS FORTRAN:

• quadruple precision
• text libraries
• indexed file support
• expressions in FORMAT
• run-time range checking

argument list built-in functions
• %LOC function
• non-ANSI keywords in input/output statements
• ENCODE and DECODE statements
• Alternative PARAMETER syntax
• octal notation for integer constants
• DEFINE FILE statement
• FIND statement
• /NOF77 interpretation of external statement
• RADIX-50 constants and character set
• ERRSNS subroutine.

Programs that use these features must be recoded so that these features are
not used.

Differences between VAX FORTRAN Version 3 and RT PC VS
FORTRAN may cause unintended results in the following areas.

Appendix C. Migrating Programs C-7

Floating-Point Representation

Run-Time Errors

Precision of Results: The VAX FORTRAN Version 3 and RT PC VS
FORTRAN floating-point representations differ in the number of bits used
to represent the mantissa and exponent of a number, and therefore in the
precision of the number. Additionally, there may be differences in the algo­
rithms used to compute mathematical functions, which could lead to dif­
ferent results near the limits of precision.

Exception Handling: RT PC VS FORTRAN calls for floating-point
exceptions (overflow, underflow, undefined) to be reported by returning a
particular bit pattern as a result (+infinity, -infinity, Not-a-Number) rather
than by raising an actual exception condition.

Representation Dependence: Unintended results may be produced by
programs that map floating-point variables onto other data types and
depend on the bitwise floating-point representation.

Output Format: Since ANSI Standard FORTRAN 77 does not precisely
specify the output format for floating-point numbers, the output format may
differ in some instances.

Error Numbers, Contexts, Message Texts: Error numbers, contexts, and
message texts are different.

IOSTAT Tests: Unintended results may be produced by programs that
test lOST A T for particular values to indicate run-time error conditions.

C-8 FORTRAN User's Guide

Data Storage

Files

Uninitialized Data: Unintended results may be produced by programs that
depend on the value of uninitialized storage or on the value of previously
used storage uninitialized in a particular subroutine.

Integer Representation: Unintended results may be produced by pro­
grams that equivalence longer and shorter forms of INTEGER data and that
depend on the internal order of significant bytes.

Logical Representation: Unintended results may be produced by pro­
grams that depend on the internal representation of LOGICAL data values.

Storage Mapping: Unintended results may be produced by programs that
index out of one array and into another. In general, unintended results may
be produced by programs that depend on the storage layout or alignment of
data.

Binary Files Not Pure: If a FORTRAN-created binary data file is ported
from a VAX to an RT PC, the internal format of the data file may be dif­
ferent.

Character and Floating-Point Files: Data files containing characters or
floating-point numbers must be mapped by a translate utility if they are to
be ported.

File Names: Case is significant in the RT PC AIX environment, but not
significant in the VAX environments.

Appendix C. Migrating Programs C-9

Function Calls

Function Results When No Assignment is Made: Unintended results
may be produced by programs that depend on a particular function result
(such as 0) when no assignment to the function has been made.

Order of Evaluation of Parameter Expressions: Unintended results
(because of side effects) may be produced by programs that depend on
parameter expressions being evaluated in a particular order.

Mismatched Parameter Types: Unintended results may be produced by
programs that intentionally pass character parameters to subroutines with
non-character dummy parameters which then pass them on to other subrou­
tines.

C-IO FORTRAN User's Guide

Index

+a Disassembler option 6-3
a+ command-line option 2-3
absolute address listing 6-3
accessing memory 4-15
address listing 6-3
AIX linker 1-3, 2-1
alignment 4-15
AN mode 1-2,2-5
ANSI Standard 1-1, 1-7, 2-11
array storage 4-15, 5-3
ASCII character set B-1
assembly language 6-1
@PROCESS statement 2-10
AUTOMATIC implementation 2-2
automatic option memory file 6-2

binary file
Bourne shell

1-3
3-2

C calling FORTRAN and Pascal 5-22
C shell 3-2
calling a routine 5-13
case significance 6-4
cc linker 1-3, 2-1

character data representation 4-14
character length, maximum 2-5,2-11
character set, ASCII B-1
character transformation 2-6
CHARACTER 4-2, 4-14
CI 2-11
CL 2-11
column major order 4-15,5-3
command file, Disassembler 6-16
command-line options

compiler 2-3-2-9,2-13,6-1
modifying 2-10
summary 2-8

Disassembler 6-3
common block allocation 2-7, 2-12
compile-time messages A-I-A-ll
compiler 2-1-2-15

command-line options 2-3-2-9, 2-13, 6-1
compiler directives

@PROCESS 2-10
EJECT 2-9
INCLUDE 2-9
OPTIONS 2-12
summary 2-10

compiler modes 1-1
compiler options

See command-line options, compiler direc-
tives

compiler progress information 2-6
complex data representation 4-4
COMPLEX 4-2
COMPLEX*16 4-2
conditional compilation 2-3
conditional INCLUDE 2-4,2-11
constant pool pointer 5-5,5-13

Index X-I

cross-reference listing 2-7, 2-11

+d Disassembler option 6-3
d+ command-line option 2-3, 6-1
data representations 4-1-4-15
data types 5-1
.dbg file 2-3,6-1,6-3,6-5
DC 2-12
debugger

See Symbolic Debugger
denormalized numbers 4-8
directives

See compiler directives
.dis file 6-3,6-5,6-16
dis.cmd file 6-2, 6-3
Disassembler 2-3, 6-1-6-18

command file 6-16
command-line options 6-3
executing 6-2,6-13
menus 6-10
preparation 6-1
with options specified 6-2
without options specified 6-8

DOS shell 3 -2
DOUBLE COMPLEX 4-2
DOUBLE PRECISION 4-2, 4-5
double-complex data representation
double-precision data representation

X-2 FORTRAN User's Guide

4-4
4-4

e command-line option 2-3
EJECT compiler directive 2-9
entry code 5-13
entry point 6-3
environment variables 3-2
environment-determined file names

opening files 3-1
using shell scripts 3-4

error file 2-3
error message file A-I , A-II
error messages 2-2, A-I-A-15
examples of programs

C calling FORTRAN and Pascal
FORTRAN calling Pascal and C
Pascal calling FORTRAN and C

exit code 5-13
explicit variable typing 2-6
extensions 6-5
extreme values 4-8

addition of 4-10
comparison of 4-12
division of 4-11
maximum of 4-12
minimum of 4-13
multiplication of 4-11
special functions on 4-13
subtraction of 4-10
X to I function on 4-14

.f files 1-3,2-1
f + command-line option 2-4
file names

environment-determined 3-1
program-determined 3-1

3-1

5-22
5-14
5-18

FIPS 2-11
FIXED 2-11
fixed-form format 2-11
floating-point data representation 4-4
floating-point hardware 2-4
floating-point registers 5-10
floating-point representations 4-6
.for files 1-3, 2-1
format

fixed-form 2-2, 2-11
free-form 2-4, 2-11
general-purpose output file 5-5
GPOFF 5-5

FORTRAN calling Pascal and C 5-14
FORTRAN 66 1-7
FORTRAN 66 features 2-7,2-13
FORTRAN 77 1-7
frame pointer 5-10
FREE 2-11
free-form format 2-4, 2-11
function values 5-12
F77 2-13

g+ command-line option 2-4
general-purpose output file format 5-5
general-purpose registers 5-10
GPOFF format 5-5

h+ command-line option 2-4
hex code listing 6-3
hidden bit 4-9

i command-line option 2-4
+i Disassembler option 6-2
IBM mode 1-2,2-2
imaginary part 4-2
implementation 2-2, 2-4
implicit variable typing 2-6
INCLUDE compiler directive 2-9
INCLUDE statement 2-4,2-11
input file 6-3, 6-5
input options menu, Disassembler 6-11
input parameter words 5-9
input/ output primitives 5-4
INTEGER 2-12
integer data representation 4-3
INTEGER 4-1,4-3
INTEGER *2 4-1, 4-3
INTEGER*4 4-1,4-3
14 2-12

k- command-line option 2-4

1 command-line option 2-5
1+ command-line option 2-5
library

libvsfor.a 5-4
libvssys.a 5-4

libvsfor.a 5-4
libvssys.a 5-4
linkage area 5-9
linkage convention

Index X-3

See subroutine linkage convention
linker 1-3, 2-1

compilation process 1-5
listing

absolute address 6-3
cross-reference
file 2-5
hex code 6-3
raw data 6-3

2-7, 2-11

to standard output device
variable location 6-4
variable type 6-4

2-5

load module format 5-5
local stack area 5-10
location listing 6-4
logical data representation
LOGICAL 4-3
LOGICAL*1 4-3
LOGICAL *2 4-3
LOGICAL *4 4-3
lowercase 6-4

4-14

.1st files 2-6

+m Disassembler option 6-3
machine-dependent optimization 2-13, 2-14
machine-independent optimization 2-14
main menu, Disassembler 6-10
man command-line option 2-5
matrix storage 5-3
maximum character length 2-5,2-11
memory access 4-15
menu system, Disassembler 6-10

input options 6-11
options in effect 6-15
output designation 6-14
output form options 6-13
produce disassembly 6-13

X-4 FORTRAN User's Guide

messages
compile-time A-I-A-ll
error A-I-A-15
run-time A-II-A-15
warning 2-2,2-6

methods of presentation 1-7
migrating programs C-I-C-6
modes 1-1

AN 1-2
IBM 1-2
Rl 1-2
VX 1-2

mrl command-line option 2-5
mvx command-line option 2-5

n command-line option 2-5
NOF77 2-13
NOI4 2-12
normalized numbers 4-9
NOXREF 2-11

+0 Disassembler option 6-3
opening. files

with environment variables 3-2
with program-determined file names 3-5
with shell scripts 3-4

optimization 2-13
optimization levels 2-5
option file, Disassembler 6-3
options

See command-line options, compiler direc­
tives

options in effect menu, Disassembler 6-15

OPTIONS statement 2-12
output designation menu 6-14
output display, Disassembler 6-4
output file format, general-purpose 5-5
output file, disassembly 6-3
output form options menu, Disassembler 6-13
output parameter words 5-10
01+ command-line option 2-5,2-13
02+ command-line option 2-6,2-14
03+ command-line option 2-6,2-14
04+ command-line option 2-6, 2-14

+p Disassembler option 6-3
parameter addressing 5-12
parameter passing 4-15, 5-11
Pascal calling FORTRAN and C 5-18
presentation methods 1-7
primitive input/output routines 5-4
@PROCESS statement 2-10
produce disassembly selection,
Disassembler 6-13

profiling 2-3
program examples

C calling FORTRAN and Pascal 5-22
FORTRAN calling Pascal and C 5-14
Pascal calling FORTRAN and C 5-18

program migration C-1-C-6
program optimization 2-13
program-determined file names 3-1

opening files 3-5
progress information 2-6

+r Disassembler option 6-3
raw data listing 6-3
real data representation 4-4
real part 4-2
REAL 4-2, 4-5
REAL*4 4-2
REAL*8 4-2
register save area 5-10
register usage 5-5
routine calling 5-13
row major order 5-3
R T PC Disassembler

See Disassembler
RT PC migration 1-2

data storage C-6
function calls C-6
run-time errors C-5

R T PC Symbolic Debugger
See Symbolic Debugger

run-time messages A-11-A-15
R1 mode 1-2, 2-5

-s Disassembler option 6-3
sdb program

See Symbolic Debugger
shell scripts 3-4

using different files 3-5
using the same file name 3-4

stack frame 5-8
frame pointer 5-10
input parameter words 5-9
linkage area 5-9
local area 5 -1 0
output parameter words 5-10

Index X-5

register save area 5-10
temporary area 5-10
total frame 5-11

statements
@PROCESS 2-10
OPTIONS 2-12

STATIC implementation 2-4
storage allocations 4-1
storage of arrays 4-15, 5-3
storage of matrices 5-3
subroutine linkage convention 5-5-5-13

entry code 5-13
exit code 5-13
function values 5-12
load module format 5-5
parameter addressing 5-12
parameter passing 5-11
register usage 5-5
routine calling 5-13
stack frame 5-8
traceback 5 -12

Symbolic Debugger 2-4, 5-12, 6-3

+ t Disassembler option 6-4
t- command-line option 2-6
temporary stack area 5-10
traceback 5 -12
transformation, character 2-6
twos complement notation 4-1, 4-4
type listing 6-4

X-6 FORTRAN User's Guide

u- command-line option 2-6
uppercase 6-4

+ v Disassembler option 6-4
v- command-line option 2-6
variable location listing 6-4
variable type listing 6-4
variable typing 2-6
VAX migration 1-2

data storage C-9
files C-9
floating-point representation C-8
function calls C-I0
limitations C-7
run-time errors C-8

VS migration 1-2
character representation C-3
compiler behavior C-5
data storage C-3
files C-4
floating-point representation C-2
function calls C-4
limitations C-l
run-time errors C-3

vsf compiler
See compiler

vsfctmsg.inc A-I
vsfrtmsg.inc A-II
VX mode 1-2,2-5

w- command-line option 2-6
warning messages 2-2,2-6

x+ command-line option 2-7
XREF 2-11

y+ command-line option 2-7

z compile-time option 2-7

Index X-7

--- ------ --------- - ---- - - ----------_.-

Reader's Comment Form

IBM RT PC VS FORTRAN
User's Guide

IBM RT PC

SH23-0 129-0

Your comments assist us in improving our products. IBM may use and
distribute any of the information you supply in any way it believes
appropriate without incurring any obligation whatever. You may, of
course, continue to use the information you supply.

For prompt resolution to questions regarding set up, operation, program
support, and new program literature, contact the authorized IBM RT PC
dealer in your area.

Comments:

L __ _

QJ

C

:J
OJ
c
a
~
-0
(5
U.

o
.....
::J

U

adBl pUB PIO.:l

adel.

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department 79L, Building 4
Commerce Park & Eagle Road
Danbury, Connecticut 06810

aldelS ION 00 aseald

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

adBl pUB PIO.:l

adel.

©IBMCorp.1987
All rights reserved.

International Business Machines Corporation
Department 79L, Building 4
Commerce Park and Eagle Road
Danbury, CT 06810

Printed in the
United States of America

SH23·0129

---- ------- ----- ---- - ---- - - ---------
®

SH23-0129-00

