Personal Computer
Hardware Reference
Library

RT PC Technical Reference
Token-Ring Network Adapter

SK2T—-0291—1

Personal Computer
Hardware Reference
Library

RT PC Technical Reference
Token-Ring Network Adapter

Second Edition (February 1987)

Changes are made periodically to the information herein; these changes will be incorporated in new editions of this publication.

References in this publication to IBM products, programs, or services do not imply that IBM intends to make these available in all countries
in which IBM operates. Any reference to an IBM program product in this publication is not intended to state or imply that only IBM’s
program product may be used. Any functionally equivalent program may be used instead.

International Business Machines Corporation provides this manual “as is, ” without warranty of any kind, either express or implied,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purposes. IBM may make improvement
and/or changes in the product(s) and/or the program(s) described in this manual at any time.

Products are not stocked at the address given below. Requests for copies of this product and for technical information about the system
should be made to your IBM representative or to the IBM branch office serving your locality.

Address comments on this publication to IBM Corporation, Department EO2, PO. Box 12195, Research Triangle Park, North Carolina 27709.
IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any obligation to you.

©Copyright International Business Machines Corporation 1986, 1987

Federal Communications Commission (FCC) Statement

Warning: This equipment generates, uses and can radiate radio frequency energy and if not installed and used
in accordance with the instructions manual, may cause interference to radio communications. It has been tested
and found to comply with the limits for a Class A computing device pursuant to Subpart J of Part 15 of FCC
rules, which are designed to provide reasonable protection against such interference when operated in a
commercial environment. Operation of this equipment in a residential area is likely to cause interference in
which case the user at his own expense will be required to take whatever measures may be required to correct
the interference.

iv. Token-Ring Network Adapter

About This Book

Purpose

This manual describes the operating characteristics of the IBM Token-Ring Network RT PC
Adapter.

Audience

The information in this publication is for reference, and is intended for hardware and program
designers, programmers, engineers, and anyone else who needs to understand the design and
operation of the IBM Token-Ring Network RT PC Adapter.

How to Use This Book

The manual consists of four chapters: Chapter 1 is an introduction to the function and features of
the IBM Token-Ring Network RT PC Adapter, Chapter 2 describes the hardware and its operation,
Chapter 3 describes the software required to utilize the Adapter, Chapter 4 provides the

environmental requirements to ensure proper operation. Appendix A is provided for example
software.

About This Book v

Related Publications

Refer to the following IBM publications for additional information:

® A Building Planning Guide for Communication Wiring G230-8059
® [BM Cabling System Planning and Installation Guide, GA27-3361

® Using the IBM Cabling System with Communication Products, GA27-3677.

Prerequisite Publications

Information from the following publications is necessary for use of this manual.
® IBM Token-Ring Network Architecture Reference
e |EEE Standards for Token-Ring Networks: Logical Link Control, ANSI/IEEE Std 802.2 - 1985

vi Token-Ring Network Adapter

Contents

Chapter 1. OVerviewottt iiiierernreernonereenonaennnenas 1-1
DT 4 o1 14 ¢ PP 1-3
Chapter 2. Description oottt 2-1
ATCRItECIUTE o vttt ittt ittt st it ieasesnanesaaasanoasasssennssssnns 2-3
System Interface Description . v v vt vt i e ittt ittt ttinieniieantnaeeacensenns 2-5
Adapter Bus Interface . ..o iviiniiiiii i it i i i e e i 2-11
RiINg INterface ..ttt i ittt ittt it ettt inaenenoseneesanecenaenennnas 2-12
Schematic DIagrams .. .ov vt ettt it tniiteeseerenerenneesssetantesnnnseens 2-15
Physical DesCription v v vttt ittt iiiteienseiinneenseesniseenseennseennns 2-41
Chapter 3. Software Interface i i 3-1
Software Interfaceo vttt i i e e e 3-3
Summary of System Buffer Requirementsoiv ittt 3-4
Register DesCriptions « oo v v vt vttt it ittt ieii ettt ienisssaseeasseanseroinesennnns 3-5
Bring-up DiagnostiCs « v v v v vt vttt eeeeosouseeeesenensnseeeessesonssseesssssan 3-13
Adapter Initlalization. . v oot v in ittt ettt et ittt i e 3-15
The Command and Status Block oo ittt i i i i it ens 3-23
Adapter CommandS. ..o v vttt ineee e tnnnnneeeeesessennneneessosannsnasseesns 3-35
Freeze-DUump « oottt i it i i i i e et e e 3-78
Chapter 4. Environmental Requirements oo, 4-1
Physical REqUITEMENtS . . v ot vttt ittt ittt it it enatisennansennsnnnsons 4-3
Appendix A. Software Example i i A-1

Contents vii

viii Token-Ring Network Adapter

Figure

[-1. ToKen FOormati ittt it iisiantosoonosesnasseseesronnnnnnanns 1-5
1-2, Frame Formatttt ittt ittt it it tes i iionnannnanans 1-6
2-1. Token-Ring Adapter ArChiteCtUrE .. v v vttt v s v oonnusssonesononesnasssnnanes 2-3
2-2. Adapter Bus Memory Map ..o iiiiiit ittt it i ittt 2-11
2-3. Differential Manchester Codeiiiiiiiiiitit i ieesnennnnns 2-14
2-4A. Token-Ring Adapter Logic Diagram (card assembly 56X2295 or 69X8139) 2-17
2-4B. Token-Ring Adapter Logic Diagram (card assemblies other than 56X2295 and 69X8139) 2-29
2-5A. Jumper Diagrams (card assembly 56X2295 or 69X8139) i, 2-42
2-5B. Jumper Diagrams (card assemblies other than 56X2295 and 69X8139) 2-43
2-6A. Token-Ring Adapter Card (card assemblies 56X2295 and 69X8139) 2-47
2-6B. Token-Ring Adapter Card (card assemblies other than 56X2295 or 69X8139)........... 2-48
3-1. CMD/STS Register Write Bit ASSIZNMENtS . v oot vt it iiiternaeerineennnnnns 3-6
3-2. CMD/STS Register Read Bit Assignmentscoviiiiiiiiieiitienionnsns 3-8
3-3. Parameter Initialization Blockcoii it ittt i, 3-16
3-4. Initialization Options Bit ASSIgNMEnNts ovvvtt it innneinennoensss 3-17
3-5. System Command Block Formatviiiintiinnninniiiiiienirnnnnnnnans 3-23
3-6. System Status Block Formatcc.iiiiiiiiiiiiiiiiiiiiieririnnnnnnnns 3-25
3-7. RING STATUS SSB FOImMat. . oo vt etieneerensonneeeronsesoasesaneesennns 3-26
3-8. RING STATUS Field Bit Assignmentsc.uuitiiitiniiiinierennrennannss 3-27
3-9. COMMAND REJECT SSBFOImMAat . .vvvvvtvitnrnneennneernneenannenanens 3-29
3-10. Reject Reason Field Bit ASSINMENt .+ oot iit it iiinternineennneeeanenanncns 3-30
3-11. Adapter Check Status Format . ..ottt ittt 3-31
3-12. Adapter Check Field Bit ASSINMENES o oot vien it iiiiniieentennnenoennesns 3-32
3-13. OPEN Command SCBttt ittt ettt itinie i eeeoeeanns 3-36
3-14. OPEN Parameter List ... vvt it iniiiiiii ittt ieinennnnenaseseneeens 3-37
3-15. OPEN Command SSBottt ettt st sasenae e iteeannnan 341
3-16. Example Adapter Internal Frame Format i i, 3-44
3-17. Attached System Frame Logical Format ot 3-46
3-18. TRANSMIT SCB ..ttt ittt ittt ittt ittt eititeenaeetinnnesnnnns 3-49
3-19. TRANSMIT Parameter List shown with three Data Countscovuvenn.. 3-50
3-20. TRANSMIT SSB ..ttt ittt ittt iet it iennaeonsnsosanesssaeesnnnens 3-54
3-21. Transmit List Format: Example 1 ittt 3-58
3-22. Transmit List Format: Example 2ottt ittt iieiiinnannnnns 3-59
3-23. Transmit List Format: Example 3o ittt 3-60
3-24. Transmit List Format: Example 4 it i it 3-61
3-25. TRANSMIT HALT Command SCBot tittriitiiiiiiiniiieaneeannnnns 3-62
3-26. RECEIVECommand SCB.t iiittiiiiniiinnetiennneesnneeoensaenannnn 3-63
3-27. RECEIVE Parameter List Shown with three Data Countsovvnnnn. 3-63

Figures

S

ix

3-28. RECEIVE Command SSBttt ittt it i i cnnanes 3-67
3-29. CLOSECommand SCB. ...ttt ittt ittt eeiie i ieie e 3-69
3-30. CLOSE Command SSB .. v ittt ittt ittt it ienintnnnneennnas 3-70
3-31. SET GROUP ADDRESS CommandSCBottt 3-70
3-32. SET GROUP ADDRESS Command SSBiitiitiiiieiiniiinnneennns 3-71
3-33. SET FUNCTIONAL ADDRESS Command SCB ...ttt iiiiiiiennnnns 3-71
3-34. SET FUNCTIONAL ADDRESS Command SSB.o iiiiiiiiiiiiiiiiinnnn, 3-72
3-35. READ ERROR LOG Command SCBttttiiieiiiientnnnennenannnens 3-72
3-36. ErrorLogTable ... v vttt it ittt it i ettt 3-73
3-37. READ ERROR LOG Command SSB..ottt it 3-73
3-38. READ ADAPTER BUFFER Command SCBciiiiiiiiiiiiininn.. 3-74
3-39. READ ADAPTER System Buffer Space........ociiiiiiiiiii .. 3-75
3-40. READ ADAPTER BUFFER Command SSB, . 3-77

x Token-Ring Network Adapter

Tables

2-1. DIO Register Addresses . oo v vevenettteennnneeeeeeeeennsnaeeseeeennnnnnnnns 2-5
2-2. Adapter I/ O Addresses . ..vviitntn ittt i e e e e 2-10
2-3. Ring Connector Pin ASSIZNMENE ... v vttt ettt eneeeneenesneoroseseneenenns 2-13
2-4. Default Jumper Configurationv.v vttt it rnnnnernneeeneneneneeeennns 2-31
2-4A. Default Jumper Configuration (card assemblies 56X2295 and 69X8139) 2-46
2-4B. Default Jumper Configuration (other card assemblies).............................. 2-46
3-1. CMD/STS Register Write Bit Functionscoov ittt iini e ienenn. 3-7
3-2. CMD/STS Register Read Bit FUNCHIONS « vttt vt it e ineereeetoonoennnaeenss 3-9
3-3. Bring-up Diagnostics Error Codes .. vvvvrntin e ienneteenneenneeenneenennnens 3-14
3-4. Initialization Options Field Bit Functionsciitiiernennneneeneennann 3-18
3-5. Adapter Initialization Errors ... iit ittt inietinne e nneenenossenssnnanns 3-22
3-6. RING STATUS Field Bit Functionsoeiuiiuiniininniernenneenennn 3-28
3-7. Reject Reason Field Bit FUnNCtions . . v v evvi it i innneeinenetneeroneneannnanss 3-31
3-8. Adapter Check Bit Definitions . .o vvu vttt iinnn it rontoroaneaanonss 3-33
3-9. Adapter Command SUMMATY .+ . v vt ontneenntneennooesonsensonenasansensss 3-35
3-10. OPEN Parameter FUNCHIONS . o v vt ve ittt tee et tenennennneerossenannannns 3-38
3-11. OPEN Status Bit Definitions . .. cvvvtitiet et renneereaneenonesosonsannneess 3-41
3-12. OPEN Phases and OPEN Error Codesviiiennnnnineeeiionionenneeenanss 3-42
3-13. OPENEmor Code ..o v v ittt it iiitettttseeennanenossossosnanasananss 343
3-14. Attached System Frame Fields. ..ottt 3-47
3-15. TRANSMIT Parameter List Fields ... oottt iiiiiiiiirinaeninienannnesas 3-51
3-16. Transmit Complete Field Bit Definitionscoitiiiii it rnenn. 3-55
3-17. RECEIVE Parameter List Field Definitionscoiiiietiieetiinrennneess 3-64
3-18. RECEIVE COMPLETE Field Bit Definitions . . .« e oo oiviiiiienentnineneeenann. 3-67
3-19. CLOSE COMPLETION Field Bit Definitionsouveueenenrceeenanenenen 3-70
3-20. SET GROUP ADDRESS Completion Field Bit Definitions...................... 3-71
3-21. SET FUNCTIONAL ADDRESS Completion Field Bit Definitions 3-72
3-22. READ ERROR LOG COMPLETION Field Bit Definitionsccovvvevennneess 3-74
3-23. Adapter Internal PoInters.o vttt iit i e et iieenneroerenannenneanennnos 3-76
3-24. READ ADAPTER BUFFER Completion Field Bit Definitions 3-77

Tables xi

xii Token-Ring Network Adapter

Chapter 1. Overview

Overview 1-1

CONTENTS

D TCTYe3) o1 T) s U e 1-3
Components of the IBM Token-Ring Networkottt ittt iineaans 1-3
Communicating on the IBM Token-Ring Networkcoouniinieiniriii i, 1-3
Adapter Communication on the Networkttt ittt it iieiien i iin s 1-4
ToKen FOrmat ...t it ettt e it ittt enenenroeinesnononcnenos 1-5
S 2441 1-5

1-2 Token-Ring Network Adapter

Description

The IBM Token-Ring Network, a token-ring, star-wired network, can accomodate up to 260
attaching devices (printers, processors, controllers). These work stations, within a moderate-sized
geographic area, can be connected to one another via a series of cable, multistation access units, and
special adapter cards installed in the attaching devices. Application programs running in each work
station (such as an IBM RT Personal Computer) can direct the adapter to become a part of the ring.

Components of the IBM Token-Ring Network

Cable connects work areas to wiring closets and wiring closets to one another.

Access units, such as IBM 8228 Multistation Access Units, are connected to the ring with patch
cables. You may connect up to eight attaching devices, such as IBM RT Personal Computers, to
each 8228 Access Unit.

Adapter cards, such as the IBM Token-Ring Network RT PC Adapters, are installed in each
attaching device to enable the devices to communicate to one another on the network.

Communicating on the IBM Token-Ring Network

The IBM Token-Ring Network uses a protocol to control data flow, monitor ring conditions, and
encapsulate and route data for devices attached to the physical ring. The Token, Frame and Medium
Access Control (MAC) are involved in this LAN protocol. This protocol is not totally explained in
this manual. See /BM Token- Ring Network Architecture Reference for more detail about this
protocol.

Overview 1-3

Adapter Communication on the Network

An IBM RT PC is ready to become part of the network when:
e AnIBM Token-Ring Network RT PC Adapter has been installed.

e The IBM Token-Ring Network RT PC Adapter is connected to the IBM Cabling System using
an attachment cable to a multistation access unit. (The Token-Ring Adapter can also be
attached to telephone twisted-pair media by using the Type 3 Media Filter. Reference the /BM
Token-Ring Network Telephone Twisted- Pair Media Guide, GA27-3714.)

® A program to support the IBM Token-Ring Network RT PC Adapter has been loaded into the
RT PC.

To communicate on the network a device adapter obtains a token and changes the token to a frame
containing control information and data. The frame is then passed around the ring, and each device
on the ring monitors the frame and retransmits it. When the frame reaches the device to which it is
addressed, the device copies the frame while retransmitting it and indicates in the frame that the data
has been received. The frame continues in the same direction around the ring until it returns to the
device that sent the frame. The sending device removes the frame from the ring replacing it with a
token.

Transmission of Data on the Network

When the RT Personal Computer is powered on, the Token-Ring Network Adapter goes through a
series of operational diagnostics before attempting to attach to the network. The adapter card
verifies:

® The correct operation of the adapter card.
e That a cable between the attaching device and the 8228 Access Unit exists.

e That a test message sent along the lobe cable (the cable between the attaching device and the
8228 Access Unit) can pass through the cable and return unchanged.

The ADAPTER.OPEN command tells the adapter to send a direct current to the 8228 Access Unit
to which it is attached. This causes the attaching device to become an active part of the ring,
receiving, monitoring, and retransmitting ring traffic.

The device places data on the ring by changing a token into a frame that will pass around the ring in
place of the token.

1-4 Token-Ring Network Adapter

Token Format

A token is a unique sequence of bits in 3 bytes transmitted on the ring. The sequence is a start
delimiter followed by an access control field of one byte and ending with an end delimiter byte. Each
byte is eight bits in length without parity. Both the start delimiter (SD) and the end delimiter (ED)
are unique bit arrangements recognized by all adapters compatible with an IBM Token-Ring
Network. The access control (AC) field controls access to the ring. Refer to Figure 1-1.

SD AC ED
1 Byte 1 Byte 1 Byte

Figure 1-1. Token Format

The same three bytes are included in a frame. However, the token indicator bit is set to 1 in the AC
byte to indicate a frame rather than a token. Additional information bytes are included between the
AC byte and the ED byte.

Frames

A frame consists of a physical header followed by information bytes and a physical trailer. Refer to
figure 1-2.

The physical header consists of the starting delimiter (SD) byte, the access control (AC) byte with
the token indicator bit set to 1, the frame control (FC) byte, 6 bytes of destination address, 6 bytes
of source address, and from zero to 18 bytes of routing information. This is followed by the
information field which contains the user-provided data. At the end of the frame is the physical
trailer which consists of a 4 byte frame check sequence (FCS), the ending delimiter (ED) byte, and
the frame status (FS) byte. The data contained in the frame may be of two types:

e MAC frames
o Non-MAC frames

Overview 1-5

Medium Access Control (MAC) frames contain information about the status of an adapter or the
ring itself. Non-MAC frames contain data and messages that users transmit to one another. The 2

most significant bits of the FC byte define the frame type. The types are :

B‘00’= MAC frame
B01’= LLC frame

B‘10’= reserved
B‘l11’= reserved

Frames are described in detail in the IBM Token-Ring Network Architecture Reference.

SD AC FC Dest. Source ROUTING Info FCS ED FS
Addr. Addr. Field
0-18 ----
1 byte | 1 byte | 1 byte 6 bytes 6 bytes bytes bytes 4 bytes | I byte | 1 byte

Figure 1-2. Frame Format

1-6 Token-Ring Network Adapter

Chapter 2. Description

Description 2-1

CONTENTS

ATCRITECTUTE o vttt ettt et ittt e ettt et aae ettt s e et ae e e e teae s ttaeseennaeennaneeeeennoanas 2-3
B atUTES « ittt i i i i e e e et e ettt e 2-4
System Interface DesCriptionottt nnn ittt tetare e tnnerenneesonuneroeenanaeas 2-5
I Fa s BT N 0=) PR 2-5
IBM RT PC Bus Connector Pin Description.eeerettettanneeeenneeeruneeennnrennaeeeenans 2-5
Adapter Bus Interface. i i e e e e 2-11
Adapter Bus Memory Ma . oo vttt ittt itt it tne e tneeeeteeteeneaeeueneeneseeneoneneeans 2-11
RING IO aCE ittt ettt it ettt e e e e et et e e e 2-12
Hardware DesCriptionuuu ettt ittt ittt e ittt et e it e 2-12
Physical Signalinguutotiutttn ittt ettt tiaeaee ettt 2-14
Schematic DIaGIamIs . . vu vttt ittt ittt et ettt e 2-15
PhySical DeSCriPtion .o v vttt ettt ettt ee s teeee e eananneetessnnsensoensoseeaneenneenansnnens 2-41
JUMPET DESCIIPLIONS « « vttt vttt ittt et aee e teee et s eettonsensennesonnoeneannseannnneeenas 2-41
L2 o B 55 2-46

2-2 Token-Ring Network Adapter

Architecture

The Adapter hardware can be conceptualized as three different interfaces: the Host System
Interface, the Adapter Bus interface which provides the internal communication link of the adapter,
and the Ring Interface which provides the communications interface to the IBM Token-Ring
Network. See figure 2-1. The information which follows is presented in this manner with a hardware
description of the Host System Interface, the Adapter Bus, and the Ring Interface. Schematic
diagrams for the Adapter Card and some physical characteristics of the Adapter Card are also

provided.

_/

~—

Host
System C 3
Bus

System
Interface

Token-Ring Adapter

Communications
Processor

i

Adapter Bus

<

1

Protocol ‘-—J—

Handler

Ring
Interface

Transmit

To

yocsae Network

Figure 2-1. Token-Ring Adapter Architecture

Receive

Description 2-3

Features

The RT PC Token-Ring Network Adapter is designed to provide a communications interface
between an IBM Token-Ring Network and an Intel 80286-type interface such as the IBM RT
Personal Computer, A summary of the Adapter’s features are listed below:

e IEEE 802.5 Token-Ring LAN Compatible

® Jumper selectable DMA levels and I/0 address space

® Microcode Update Capability -EPROM Sockets for Microcode Instructions (Jumper Selectable)
® 16K Bytes Data Buffer

¢ DMA Bus Master

® Direct I/O Addressing

® Interrupt sharing

® Jumper selectable* interrupt levels

* Not applicable to card assembly 56X2295 or 69X8139

2-4 Token-Ring Network Adapter

System Interface Description

This interface provides for read/writes between the Token-Ring Network Adapter (hereafter referred
to as Adapter) and the IBM RT PC, termed a Direct Input/Output (DIO), and Direct Memory
Access (DMA) in which the Adapter is bus owner and controls read/ writes to the Host System Bus.
The interface also features a sharable interrupt on interrupt levels 11* and 12.

* Not applicable to card assembly 56X2295 or 69X8139.

Signal Levels

Signals are active high except when the signal name is preceded by the symbol “-”, which indicates
that the signal is active low.

IBM RT PC Bus Connector Pin Description

System Address Bus (SA0 - SA19, LA17 - LA23)

This tri-state bus consists of 27 latched address lines. This bus is driven by the Adapter when it is
Bus Owner. During DIO cycles, address bits SA16 and LA17 - LA23 are all 0. LA23 is the most
significant bit and SAQ is the least significant bit.

Address bits SA1 and SA2 are wired to bits SRS1 and SRS0, respectively, on the system interface of
the Adapter Card. The state of SRS1 and SRSO0 selects one of four halfword registers through the
DIO interface. A summary of the register addresses is provided in the following table.

Table 2-1. DIO Register Addresses

SA2 SAl BHE Register Accessed
(SRS0) (SRS1)
0 0 0 SIFD MSB and LSB
0 1 0 SIFD/INC MSB and LSB
| 0 0 SIFADR MSB and LSB
1 1 0 SIFCMD and SIFSTS

Note: When -BHE is 0, both bytes of the halfword register are accessed together; when -BHE is 1,
the LSB of the halfword register is accessed.

Description 2-5

System Bus High Enable (-SBHE)
This is a tri-state bidirectional line that is driven during a DMA operation and is an input during a

DIO operation. It is placed in the high impedance state at all other times. The signal is active when
the high byte is to be enabled on the output bus, Ag an input, the signal selects the most significant

S 1O DO ClaDiCd On 1 SCiCl i 15 Hiiical

byte of the DIO register.

Address Enable (AEN)

Address enable is used in the address decode of the Adapter to ensure proper device selection during
a DIO cycle. AEN low and a valid address properly selects the Adapter.

System Data Bus (SDO0 - SD15)
This tri-state bidirectional bus consists of sixteen data lines which are used to transfer data between

the Adapter and system memory. The Adapter sends data on write cycles and the memory sends
data on read cycles. SD15 is the most significant bit and SDO is the least significant bit.

Memory Read (-MEMR)

The Memory Read Command is a tri-state signal driven by the Adapter card during DMA
operations. It instructs the selected device in the memory space to drive data onto the data bus.

Memory Write (-MEMW)
The Memory Write Command is a tri-state signal driven by the Adapter card during DMA

operations. It instructs the selected device in the memory space to store the data present on the data
bus.

2-6 Token-Ring Network Adapter

1/0 Read (-IOR)

The 1/O Read command is a tri-state signal driven by the System Bus which instructs the Adapter
card to drive data onto the data bus during DIO operations. This data is held on the bus for as long
as -IOR is active.

1/0 Write (-I0W)

The 1/ O Write command is a tri-state signal driven by the System Bus which instructs the Adapter
card to store the data presently on the data bus during DI1O operations.

I/0 Channel Ready (I/OCHRDY)

1/O Channel Ready is a normally high, open collector signal that is used by the Adapter to lengthen
a current cycle. During a DIO, when the Adapter is a controlled device, [/ OCHRDY is driven low
after a valid select is detected and held low until the Adapter is able to complete the cycle. During a
DMA, when the Adapter controls the bus, the current cycle may be lengthened by the Host System
Bus driving I/OCHRDY low.

I/0 Card Select 16-Bit (-1/0CS16)

This signal is driven active by the Adapter card after decoding a valid address.

DMA Request (DRQ3% DRQS5, DRQ6, DRQ7%)

The DMA Request line (DRQx, jumper selectable) is driven high by the Adapter to request DMA
service or control of the system bus. DRQx is held high by the Adapter card throughout the bus
operation. DRQ3 has the highest priority and DRQ7 has the lowest priority. The DRQ is tri-stated by
the assertion of a System Reset. In the case of a soft reset, a DIO to the Adapter Reset address, the
DRQ will be tri-stated and this may cause the DMA controller to erroneously detect a DMA request.
To avert this problem the DMA controller should be disabled before a soft reset is asserted.

* Not applicable to card assembly 56X2295 or 69X8139.

Description 2-7

DMA Ackhowledge (-DACK3*, - DACKS, -DACK6, -DACKT7*)

The DMA Acknowledge signal is driven active by the System Bus in response to the corresponding
DMA request. The -DACKXx signal indicates that the Adapter will be granted use of the bus following
proper activation of the -MASTER control signal.

* Not applicable to card assembly 56X2295 or 69X8139.

Bus Master (-MASTER)

This signal is used by the Adapter to gain control of the I/O Bus after receiving a DMA
Acknowledge. After receiving the -DACK the Adapter drives the -MASTER line low, then after a
delay the Adapter drives the address and data lines. When releasing the bus all address, data, and
control lines are tri-stated before driving -MASTER high (inactive).

Interrupt Request (IRQ11*% TRQ12)

The interrupt request line is used to signal the System processor that the Adapter card requires atten-
tion. An interrupt request is generated by pulsing the IRQxx line. This pulse is formed by a transition
from high-to-low and held low for two clock cycles before transitioning high. The low-to-high transi-
tion of the pulse signals an interrupt to the Using Product System. A 2-kilohm pullup resistor is in-
cluded on the output of the IRQxx tri-state driver to accommodate interrupt sharing. This driver has
an enable/disable function which is programmable by the Using Product system software and an
interrupt is disabled by a system reset.

* Not applicable to card assembly 56X2295 or 69X8139.

Reset Driver (RESET DRYV)

Reset Driver is an input to the Adapter used to set internal devices to a known state.

2-8 Token-Ring Network Adapter

I/0 Pin Assignments

SIGNAL 1/0 SIGNAL 1/0
NAME PIN NAME PIN
SA0 A3l -IOW B13
SAl A30 GND B10
SA2 A29 +5 B03
SA3 A28 RESET DRV B02
SA4 A27 GND BO1
SAS A26 SD15 Cl18
SA6 A25 SDi14 Cl17
SA7 A24 SD13 Cl6
SA8 A23 SDI12 Cl15
SA9 A22 SDI11 Cl4
SA10 A2l SD10 Cl13
SAll A20 SD9 Cl2
SA12 Al9 SDS8 Cl1
SA13 Al8 -MEMW Cl10
SAl4 Al7 -MEMR C09
SAIlS Alé LA17 C08
SAl6 AlS LA1S8 Cco7
SA17 Al4 LA19 C06
SAI8 Al3 LA20 Co5
SAI9 Al2 LA21 Cco4
AEN All LA22 Co3
I/O CHRDY Al0 LA23 Co02
SDO A09 -SBHE Co1
SDI A08 GND DI8
SD2 A07 -MASTER D17
SD3 A06 +5 D16
SD4 A0S DRQ7* D15
SD5 A04 -DACK7* D14
SDé6 A03 DRQ6 D13
SD7 A02 -DACK6 D12
GND B31 DRQS5 Di11
+5 B29 -DACKS5 D10
DRQ3* B16 IRQ12 D05
-DACK3* BI15 IRQI1 * D04
-IOR B14 -I/0CS16 D02

* Not applicable to card assembly 56X2295 or 69X8139

Description 2-9

Adapter I/O Addresses

Table 2-2. Adapter I/O Addresses

Primary Alternate Register
(Hex Address) (Hex Address)

01C0 0140 SIF Data
01C2 0142 SIF Data INC
01C4 0144 SIF Address
01C6 0146 Command/ Status
01C8 0148 Enable Interrupts
o1cc 014C Disable Interrupts
01CE 014E Adapter Reset
06F4 06F4 Interrupt Level Enable (ILE), Level 12

2-10 Token-Ring Network Adapter

Adapter Bus Interface

The Adapter Bus Interface is internal to the Adapter Card. It interfaces to the Communications
Processor, the Protocol Handler, the System Interface, as well as the Adapter RAM and sockets for

the Microcode Update EPROMs.

Adapter Bus Memory Map

The memory map for the Adapter is shown in Figure 2-2. This memory map illustrates a memory
space of 64 Kbytes.

Hex Address
0000

1000
4000

TFFF

C000

FFFE
Figure 2-2. Adapter Bus Memory Map

Microcode Update EPROMs

The Adapter’s control program currently resides in ROM within the Protocol Handler. The adapter
features sockets for three EPROMs which allow for microcode updates.

Description 2-11

Ring Interface

Hardware Description

The interface of the Adapter to the IBM Token-Ring Network is via the Ring Interface circuit,
containing two bipolar MSI circuits and several discrete components. The two bipolar MSI chips
are an anolog chip set which provide the IEEE 802.5 compatible interface functions between the
Adapter’s Protocol Handler (PH), and the IBM Token-Ring Network. These chips are referred to as
the Adapter’s Ring Transceiver and Ring Controller. The Transceiver provides the transmit and
receive functions while the Controller provides ring interface control functions. Included in the
schematic shown in Schematic Diagrams, are all the necessary passive components in addition to an
Adapter Address and a Processor Activity Timer which are discussed in further detail below.

Adapter Address

The 1024x4 PROM and the 74L.S164 in the schematic in Chapter 2, implement the Adapter Address
feature of the Adapter. This feature provides the Adapter with a 48-bit node address if a node address
is not passed during the OPEN command. Whenever the Adapter is initialized, the Communication
Processor will fetch the Adapter Address from the address module. If the node address passed to the
Adapter during the OPEN command is zero, the Adapter Address will be used as the Adapter’s Ring
Station Address. The Adapter software tests for the presence of the address module circuitry during
initialization. The Adapter reads the PROM and checks the integrity of the data in the address
PROM, but does not check for valid addresses. An error in the address PROM will cause the OPEN
command to terminate with a node address error.

Notes:

1. On card assemblies 56X2295 and 69X8139, the Adapter Address feature is selectable through the
use of Jumper J4. The jumper is set in either the internal or system position with the internal
address as the default position.

2. On other card assemblies, the internal address is always selected (no jumper).

2-12 Token-Ring Network Adapter

Processor Activity Timer

The Processor Activity Timer (PAT) feature includes a one-shot which is configured to provide a 20
millisecond pulse when a negative transition occurs on signal -PHNSRT. The inverted Q output of the
one-shot serves as the active-low signal causing the Adapter to physically insert onto the ring. The
Adapter’s program code toggles the -PHNSRT line every 10 milliseconds whenever the Adapter is
inserted on the ring. The failure of the Adapter to toggle the -PHNSRT causes the one-shot to time
out and the Adapter is physically de-inserted from the ring.

Notes:

1. On card assemblies 56X2295 and 69X8139, this timer may be disabled with Jumper J5. The default
position of Jumper J5 is enabled.

2. On other card assemblies, this timer is always enabled (no jumper).

Ring Connector Interface

Table 2-3. Ring Connector Pin Assignment

Pin Number Pin Name
POS 1 Ring In 1 (Green)
POS 2 DC Common
POS 3 + 5 Volts
POS 4 DC Common
POS 5 Ring Out 2 (Black)
POS 6 Ring In 2 (Red)
POS 7 DC Common
POS 8 DC Common
POS 9 Ring Out 1 (Orange)

Description 2-13

Physical Signaling

Differential Manchester Code

The Token-Ring Protocol calls for a ring signaling format called Differential Manchester Code. This
signaling scheme follows these rules:

1. A signal transition always occurs in the center of the bit time.

2. A zero bit has a transition at the beginning of the bit time. A one bit has no transition during
this time.

Figure 2-3 illustrates this coding scheme. The signaling transitions are symmetric around the zero
volt level, thus providing an average zero volt DC level. This facilitates transformer coupling of the

Adapter’s transmitter and receiver to the ring.
ENCODED | I or I |
ZERO BIT

|<1 bt |«-1 bits]|
time time
ENCODED] or [
ONE BIT <1 bite =1 bits
time time

Figure 2-3. Differential Manchester Code

Ring Clocking

An Adapter, randomly designated via a claim-token process, provides master clocking to the ring by
deriving its timebase from a crystal oscillator. This Adapter is called the Active Monitor. Any
Adapter on the ring may assume the role of Active Monitor.

The remaining ring stations on the ring derive their timebase by phase synchronizing a voltage
controlled oscillator to the incoming bit stream. This Phase Locked Loop (PLL) derived clock

provides the necessary timebase from which the bit stream is received and transmitted by the
Adapter.

For more information about the IBM Token-Ring Network operations see the /BM Token- Ring
Network Architecture Reference.

2-14 Token-Ring Network Adapter

Schematic Diagrams

The following section displays the logic diagrams for the RT PC Token-Ring Network Adapter.

Description 2-1§

2-16 Token-Ring Network Adapter

SAD-SAIS SN
—— 7 —
W 74L8125 ey TR A0GS16 57
10 SRESET
X5 (SHT 3)
SHT 2
(sHT 210X 74ALS04 (SHT 4)
PI | 7415260 74ALS00 = 13 13 12
A3 1-SAD__ ANSAIS__ 4 4 7415260 \ 5 2 3
a0 |54 N SAL] 1 u21
.ﬁ SA 6 12, T4ALS20] U39 T4ALS138 | P
:;g SASASAI2 117/ a U36 3T Yobl 13, 74ALS21 _ HE_.SETDRVEE
g7 R — NIRRT s T e D Vb it 8 S68_Mysht 3
Py I — SAG 10} AoY2 ISHT 3)
pred BT TAALS244 us2 2 Y3 g u20 R21 33K 7418125 N
[sa__] 1 —VW\—o:5Y I0CHRDY,
poal s ANsann_ |2 18 Ly Ls, 7aLss0 '1} 6lor yeRlll— T4ALS04 3 ——{wi1]
22 |SM b 12 s | hofeen Y6 [8
o [SAID A\ 80 4&"15 T 1 8 > | e v
/] L
AOspr—Ashe | 6 4 il ; = 30 | | u21
Alg -S4 uz3 100F (s 2
A18 1 s o TAALSIO REsErSHT 21
A A s 8 12 3 B T COISHT 4
N e O ; D"ﬁ' ! TARLS2! — CIsHT
NSAL__ 11 g g —J4ALSOZ I_“ .
_SAZ 13 [} 7 v |_1D¢'3 4
3 u18 T uz0
NSA4 % 5 74ALS27 %l;cnsm 3)
s |17 P 3 13) 12 [SCISHT 3)
19 . I
L a0 uss
A\SA3__ =
A SAB
74ALS04
74ALS20 —
A1y REN 1 10 4 1 74ALS241
28
u21 y
u32 46
748832 TAALS04 TGCRAGY T |
SA7
3 8 3 4 . 74ALS00 oyl
u21 8 : : P S
+
R = uzr u36 K
- T4AS32 N9] 'Sg%ulsm 3
SBISsHT 3)
B13 |1OW. 1 3 < SWRAsHT 3)
—= 2 74AS04 L 137 SBHEB T 3
= 1 10) [
= 7 15N\ TROTZ _74ALSIZ5
7 2S00 vz - %' 14as04 | L— .
(SHT 2) u NG 5 [-
(SHT /O SALS " 1 ; us 03]
10 | u37 =
12 SET 5| 8] 74As32 . PUB L sHT 3)
1l ok | g :;2; 1 2
N 3
CLR
74AL874 .
13] u2s
U44
—] SBCLK s 3)
PUT shT 3)
PUY
U9 (sHT 3)
SAZB oyt 3)

Figure 2-4A. Token-Ring Adapter Logic Diagram (card assembly 56X2295 or 69X8139) (Sheet 1)

Description

2-17

2-18 Token-Ring Network Adapter

SADLO-SADL7 SADLO-SADLT

7 4 N f
SADHO-SADH < SADHO.SADH7
3““:2 g{sur a}
SALE /(sHT 3
: (SHT 1. SHT 3, SHT 4)
SXAL ST 3)
TAALS245 Pl
Nsanur g | SD0(roe~
NSADLG 83 oo so_00
NSADS 733 pe o snz_|A0¢
NSADLA 5] 0 g4 s;g_|A07
\SADL3 5 1k 5 s14_|A0D
ETTVID: W T S5\
SADLL 39 K B2 s A0%
SADLO 2 8 S07
748832 Ldm w0 02
8 Tl
10 6 -
vz 74ALS245 -
\.sADHD 9 1 I8
g ||| ho— s 2 e
3 3 -
i NI o Y sorz_ o1
u2 \SADH4 A3 B3 SIL_cia
NSADHS 43t B sog_ |2
\SADHG < , S00
MBI c12
SADH7 noa S0 |c2
740804 "
19 IR)
(SHT 1} 08P ! 2 6 a6 4 14ALS373 74ALS373
uzg TAALS3T3 N\SADLD 3§, g o 10r2 Chay o2
SADHO 3 [1p jol-2SM5 SAl5 _g:m. dbp 20} 20 a0
SADH |y gl o SAI4_SAIA / N 3 30 oy
SADH a3 SAI3_ SAI3 A MSWL 4D 40)= 340 40 3 c05
SADH a0 40 9 saz7_SAiZ \SA0LE13i6p 5o 50 50 C06
0 SA SADLS 14 [1¢ LA cos
\SADHA e colZSA SADLS o 6o 60 60 A8 co
N_SADH5 4 160 SAI0 __ SAII _) tsAnL 70 70 m 70 SR C08
_SADHG 713 g8 SR sA3 ™/ AL 1860 80 80 8 A1
NEILH 8 : SAE__SAB /] A 6 8 .
] 50 %4 o—SOWN_ Joc 0c D(SHT 4)
SALE 11 |g - T M st
SOWN" 1 Joc q A SAD-SAIS CISHT 4)
uag
7AALS00
13
PUS
SHT 2)C3-
b SATB st 1)
BROX 3 (SHT 4)
i 16
T 080 N}j gcr 74ALS04
o1 {-DACKS Qo > 8 SR CIsHT)
=8 uz1 g5 CISHT 3.SHT4)
019 “D"“og“ < S| TaRLS00 TS0 X85 _Fyisut 1y
012 = 3\'2 0
X_ .Y
PI Hne w2
]

Figure 2-4A. Token-Ring Adapter Logic Diagram (card assembly 56X2295 or 69X8139) (Sheet 2)

Description 2-19

2-20 Token-Ring Network Adapter

LADO-LADIS LADO-LAD1S
“SADHO-SADRT A4 SADHO-SADHT
SADLO-SADLT Y SADLO-SADLY
4 BET, LBCLKT_—(SHT 4)
g
150K RESET_ 3 (SHT 4
? 5% TMS38030 LPH 3(SHT 4,SHT 5)
SBCLK 42 20 AL ¥
(SHT HO3 —{sseik Lok 122 AL EY(SHT 4,8HT 5)
SBN16 LCLK2 [—33 LIND =y(SHT 4)
“SRESET Ffown e p B sl
(SHT 11— oS L e CISHT)
N\SADHO] 77_lsppyo Lapog |—'BLADO 4 A18 128 D('gl'ilTT Ut
NCSADHTTTO0 Jeaont Lano1 |—BLA01_A 24K L5y TBAO [gy 4 SHT 5)
N_SADH2| 88 | cyobo anog | Z7LAD2 A A—0 LBERT (=J(SHT 4 SHT 5
SAOH3[87 |shonz HADOZ I T7iAna ——LJ(SHT 4.
NCSADHA 96 |cania Lanod | 7EADd 2 I Tonez 1 .
\SADHC1 80 fSaDHs LADOS [—oras 7 LBGR2 12
SADHP] o5 | SADHE LADG (e 75 L1ReO q}g
oavp LS8 {SADHT LADOT (il 57 LRI 3
s; 7-‘; SADLO LADOB Tm/ LIRQ2 —i
N\ SADL SADLI LADOg |—2LAD3 L2 L8eR1 L
\SADL 65 Isaple Lo [—2RADIO 21] (Ryi =
v SADL 9 lons LaDn b—oA0 A LBRDY
R20 \.SADL4 % fsana Lapiz [AADIZ ls LEN
150K N\ SADL A {sanls LAD13 (132 77| LANW
5% ::gt —{sAnLe LaD14 [-,—j 1] LiNo
e SADLT LADIS S 3| ML
SXAL 37| SPL LPL ™39]
(sHT 20 33 SXAL LAL = AD15 46
(SHT 2j0—F e SALE LiNp 38 \.L T LADIS
(SHT 1) g o SRD LANW 7} k%T LADI4
(SHT 110—F3pcs o swh LEN-E. N\ Taniz a3 LAD13 TMS38010
(SHT NO—eie SRDY LBRDY [otpmos N TADIT 42| LADI2 U3
(SHT 20— 8= <|SOBEN LBROS p-3a--2 a2 LADI1
(SHT 2) 00—t SODR LGRS p-LLBER L LADIO
(SHT 1)13— 's”"’*f"" g‘s—o SBHE LIROD J—gmm gﬂ \-——:gg gg LADOS
(SHT 2) 50 % o SOWN LIROI N\ LADB 39 f)0q
84T 2 SHLDA 51 Johon LiRoz |_29LIRQ0UT: NLADT 35] a0
SHT 2 CF—Fo00 12 lsygg LIRlo}—2 LADG 34 f)anpg TeSTZ|—3-
(SHT 2) 62 57 LAD5 33 a7
B2 fsppSY LRI fAL—— N\LADS 33 1 apos TESTI[-4T_
L dfsprs L1230 ——— [ADe52 1 aoos TesTO[AE-
37| SBERR GND g m— LADO3 TESTp—>-
LSIACK GND N\-TA0e—30 14002 LesYNpoe-
(SHT 11O SINTR 341 SnTR P) LADL_29 frangr (i o3 24MHZ
(SHT 1) |SCS 8 oiscs a2 LATID & oo cLkovi-ile . .
SAZB oy SRAS BND |7 A xTaL2 T{NC_vects
(SHT 11— SATE —5—] SRS GND 77 RESET XTAL1 73 -9~ 5] 0UT 6N
(SHT 11 i A3 SRS GND o] LELk2 4
(SHT 1103~ 53] 3AS2 VBB 11 LOLKI 22PF _|:- ¥
5V 3 JTEST CPTSTPp —{ XTALO 3 = =
PUSIP10 — T 7418395 I_ 22PF=
e 37 | G6g 3 MXTALOUT suy 4)
43 | big 5 A PIROA(sHT 4)
(SHT 5) 32! T T i ap
49 c
350 8] 9 0
oU5 53 s o
(SHT 4) —{sHLD 8
(SHT 13RUL = ves = -l "E"m °§_ CWNR
(SHT 1)C3PU8 10 007 B (sHT 5)
O T L w
1K _PUB(sHT 4)
RP1 PULE(SHT 4)
Figure 2-4A. Token-Ring Adapter Logic Diagram (card assembly 56X2295 or 69X8139) (Sheet 3)
Description 2-21

- 2-22 Token-Ring Network Adapter

LADO-LAD1S

LADO-LAD1S

4ALS08
13

FEXTAL ((HT 6)

2 1
‘: Juz ‘

FEDRVR
~ TR ISHT 6)
—__TRAQ Ay 6

s S ol e
T oI TBCL2 34] LCLKI FERAQ g TEWRRE ot o)
(SHT AO-TREerT a‘_‘ju LCLK2 FWRAP (34 PRSRT — FaaghT D
(SHT 3O ST RESET ENSAT |3 (SHT 6)
(SHT 30 TR LPH FRCVR Lz_—
{ADOD FRCLK
LADI 28] oot raepy bd TBPZ4541
TR L] Lane pwrLT P2 A vee 8 50
N0 oe] LAD03 A6 A8 FERSRTLI(SHT 6)
LADO4 A5 A9 L CI(SHT 6)
LADS 24] [angs 7418164 / 74ALS08
T 1 3 M A0 9 Al
0T 221 gy 7f B0 2 n
22 | : A
LADS 21 Lhnos I T NG 3 2
-1 LAD0S] Er 74RS37
N IR 3 E oo s2iile 9 13 BUFEND
m--;- LAD11 0F — Ts = 10 12 (SHT 5)
\CAnia13] 012 g . - I T M)
NTTIERER DA BT LK " 7] AN CishT 5)
oL NLADIST1] {013 I 1% 2 - 74Aso4ﬁ ,
(SHT 310~ LPL * 3 '
AL
(SHT 303 LAL e S0 9 V29
(SHT SID-LIINW 3577 LND 150K 748804 3
(SHT 310_-LEN 32 tgxm 4TuF 5% 010
(SHT 3)0H 13 12 y
(SHT TS 59 Lanoy = '3 s - 74F64
(SHT D3R £ LBcP = [
(SHT 30~ LBRQP b -NRAM
__.:f PHTSTO A2 o
— g PHTSTI 3 18 g
—= PHTST2 2 3 B2 103—— 1412 L-ROM
(shT 3-ERL_ 34 rRg PHes | B LI 8 (SHT 5)
(SHT 5)C1-eA v i :g '
CLR T4AS04 74A804
(SHT 3]D o m]) Rowes| | | 5
SHT 3 8
o T4ALS244 iTNLSIZZ ‘ ui7 2 ur7
3 U8
748504 1
\Lamo| 2 ' o T4F84
(SHT 1y 3 8 -
“SRESET 17 LADIT 4 16
. .
ﬁ{ﬁ:‘ 14 . = -NROMCS
(SHT nn% 5 " 74AS04 —I PUS st 2)
e g i
(sHT 2R "% g ”'; 74ALS08 . _—
(SHT 2)HLALE 13 I P ° U8 TSkt 5)
e . e T Jiiz 74ALS00
LAl 9 8
SHT 210}
(SHT 2) ”%' : 2)ug RAMWAT oo
(SHT 21 S0WN = 19 4 :::; ":;
(sHT 22X = SA1g]y
LANW
LBCLKT
Figure 2-4A. Token-Ring Adapter Logic Diagram (card assembly 56X2295 or 69X8139) (Sheet 4)
Description 2-23

2-24 Token-Ring Network Adapter

LAD-LAI4 LAQ - LA14

Y Y LD0-LD15 X
LAD-LADIS 4 LADG.LADIS
NS
HM6264
T4ALS373 N2 T0], 01
LA 3 13 A e
LADI 4 N_LA4 A2 1/03
LADZ 7 NLAS R
L (AD3 8 NLAE 108
\ L4 134 LAT N o
_LAD5 14 N84 [, Jorol8
\LADG 175 NI Ao 10719
_LAD? 18 (nig 25 | >
1 N LA 24 |8
L h9
L NE Ao
tai3_23 (Al .
N_LA14 A 4 1
2 0 A
LADD_ 4 on 2 c3l 21 g
LADIO 7|3y 5ol GLAID 2 |0 z
o 3]0 Oz ZLdwe 2
50 50 uis HN27C64G ust
LAD 2 olISLALS
LAD 170 To[IELAI4
L \LAD Ian a2 | HMG264]
(SHT 3107 [74ALS373 a2 T N N
1488245 o u34 N_LA2 " T0lag /gLl LT A
N_LA3 01y (gpfSl2 LDE -
sHT HLEH Nl 8Ly 13 L0 /| N
(SKT ST 1pL \LAS 104 N
(SHT 3103 % N_LtE 6y /04 L3 %:Aﬁ
B N N N
-, 1AD2 7 NIA 3]y |/pafole 00 NLAg
3 TAD3 63 L0 25 | NLAID
3 LADA 5 LA 2
CWNR S LADS 4 L A L
bt g L0EEE g} NI N 2
NA £ A12 L
. i .
19 2ol Loeam | unzrcsds
PR w " uz5
qAWE Ul ~Q
L8 o L
L LAD9 g<<
LADI0 7 A1 26 [y grhold_ L8 /
AT 63 D15 N 19
Tz 5% 1 s 23 |62 BT
N - N B
Lanis 2 M L \\LAS = | 03:13 L013_
19 17 1010/ N3], 2Rl Lo
g TaA8245 18 100 N nu>>1' 1015 A
9 uzs 19108/ N
"
LATL 7_ip3
N Az
NN
HM6264 7 VPP
(sHT &) RN us 27 |PEM HN27C54G
0F
(SHT &) CJ-RAMWAT 1 D U4t
MEMOE
(SHT 4)3—MEMOE PUL
_ROM 1J4A7
[SHT 40——

Figure 2-4A. Token-Ring Adapter Logic Diagram (card assembly 56X2295 or 69X8139) (Sheet 5)

Description 2-2§

2-26 Token-Ring Network Adapter

+5V

P3

w

N~ s o

+ c63 | c32 | ca3| c20_| o5 | €7
47 2701 TZ01 200 ZZ01 -0t
10v T s0v T sov] sov] 50
- 74ALS00 15ALS00
(SHT 4)[3--RAC +5V
(SHT g3 P8
3 oAl 5T 1 ANGXMT
5y iNsa47p *SV
Rl 1oV
2.4K +5YV R4 5% R2 6 2
1% rmsssest 300 7 3
(SHT 4) FERCVR 5% 1N4148 3?0 i L
(SHT 4 FEDRUR i o | 3 g
FEWRAP
[SHT 4)CEEWRAP FEWRAP- 8 4 .
(SHT) CHERe £1FeFRAQ DROUTAS ' 14148 R——‘"GXMT
(SHT gCHERTAL FEXTAL DROUTBI
ENABLE NRGCAPFS-
FEOCLK EQUALB
o ENERGO EQUALAT - IN414B o
5V €33 R13 CRGPMP RCVINBY oR2 |
THS38052 0PF 224K FERCVR RCVINA
50V 0% 1 RCVHYS|H
(SHT 4]El-FENSRT 20 [FENSRT- 7 I_ 5 A
f VCOGAN a 17 I =
— 111 oGKRF veacPa
(SHT 4)C-EEWELT LIFEWFLT-VCOCPB = Us R =
(SHT 4)CHEERRY 3 FeReDY- ENABLE| 7 20K S g 5y !
(SHT 40— T7]FERCLK FEDCLK 1% GBO0PF =
>R1Z @—={L0CKIN ENERGI = 50V
1 CRIO
b e FILTER (g q CRI2 2 1Ng14p
o o-ﬁ PHOUTB[7g R6 P] 1N414 RNGRCV
— PHOUTA 330K 82 N
5% 15
L L vaa 1 121 121
- - RN £34 1% g A a A%
825 v
1% Soore
= +5Y m
CRY CRT .
1N4004 1N4004 100
™
AN~ *
01
o AA s
+l €30 CR8 CRG %ﬂ
| o Te2 1N4004 IN4004 W
j|;a.z
Figure 2-4A. Token-Ring Adapter Logic Diagram (card assembly 56X2295 or 69X8139) (Sheet 6)
Description 2-27

2-28 Token-Ring Network Adapter

SA0-SA1S SA0-SA1S
S0
PU3 J6 [] (SHT. 2)
(SHT. 3) [}— Q_ﬁL P1
1 sho 1 T4ALSZHO @ s 100816 m
2
::: SAL A gALS 18 3 -jﬂ“"’ T4ALS02
SA2 74ALS30 12[SET] 9 2
nzq__sn_a/ = *] Q 3 A1SRESETs gsm: 2)
zggwf_gmi 16 . 11 K a7 HT. 3)
Azg 3RS/ S abd L
29 996 | _9n13 14 [fomet CLR RESETOR! Q
nz;L—/‘-""" 2 74ALS138 1y U 74ALS04
azd SA6/ 2 11| yze _1eLoA-2 sn38 30 yobid 13 12
aoa 8A9 |\SA12 1 20 A28 3 T e
A4 3010 NSAL28 2 19 " sA1B FY I < |
Azo SALM sAiy L Al NSA10B 3 8 B
a19-3AL NSAIB 7 10Re 13 2EE300 bt &_ L
9“30_13” _sA1d 7 5 1o 10Ws 12 1 blor ysptd 13, ryaLs21
7 g:i ‘; 1] SFTRODs uzo ;C 628 Yop— 4 8 scse,
A _sAq | 1 s 8 s ng 1 D—A_D (SHT. 3)
INTLD=_ 4 10DECS = 029 uiq
o SA1B] (SHT. 3)
A1 PEN 1 3 4 148832
a1 s ! SR (SHT. 3)
uss uze L_L 74ALS21 1] (SHT. 2)
4 74ALS244 - 5 6 7418125 &
\spa| 2 18 9A88 74AL308 - s 19 8| 2 IUMDY
3
lsaz | b 16 9A78 o B 1"Tusw
TEST®) (SHT. 3,
l_sas | © 14 SASB il 4
74ASOY
h.oAy | 8 12 sAYB 3 4
>uzs
h.spa | 11 9_SA3B
h_sA2 13% 7_8A28
_sAs 15:DE 5 sA18 IROX
_sho | 17, 3 sAoB ——I0CHROYs 3‘;‘3 (SHT. 2)
” J———D (SHT. 2)
[TEY4 1 _74ALS241
= 7HALSO 16 L_2n |18 MEMR ;o
3 4 2755 4 K16 MEMHS| o o
U3 hsn23 14 Asail) SBHE™
Dos [IROL2 “%_—8__11 %, 74ALS20 oo
A0S 812
s mu.so: \S_O_S_Q o }_, SRDr.D (SHT. 3)
o R O 1N 9 SRO* (SHT. 3)
Doy |IR0L gL 13 7 SHRe,
B A [(SHT. 3)
Y
] s 1P SBHEBe (sHT. 3)
u28 E1d IEN IRGX -
1yl T0R 19 K|
pyg LOH® uis @
2
74ASOH
10
ﬂ 74ALSTY uz8
2 [SET J 5 74AS32
) 12
X 13
@bl v26
CLR
f uso
I
= | r
(SHT. 2) [}-SOWN=
Figure 2-4B. Token-Ring Adapter Logic Diagram (card assemblies other than 56X2295 and 69X8139) (Sheet 1)
Description 2-29

2-30 Token-Ring Network Adapter

_SADLO-SADLY

SADL0-SADL7

SADHO-SADH?

’ SADH0 - SADH?

SOBEN® — (qyt 3)

(SHT. H[-32°

SOBENS
%ﬂ (SHT. 3)

{7 (SHT. 3)

_SOMN®=) (ST, 1,SHT. 3,SHT. 4)

SXALM (SHT. 3)
74ALI24S P1
NSBOL7 da; il Soa0e
NSALES (g, pgyi2s 907 708
7 13 | ngRo7
NSALS? das g 03 aoe
NSBOLEE dou gy ,ﬁ__J o5 A0S
s 13 g AoY
_Eﬁﬂ.s.__< A3 B3 3D RO3
nSeL2 % Ao gy 16 3p15 22
7
NSADL13 gy 2T o1
N_SADLO 2 a0 Bl 18 3012 cie
e I—
. Dii|C15
1 oIR DiolC1*
—g¢e 504C13
o Y
TY4ALS24S T4AL8973
(SHT. 1) 3 LA2
3 1 1 co2
\ﬁLO N R g 622 Go3
7 ¥ % cos
J4nLsuy \sADH2 7 g \saoce 1330 ¥ CAid 007
] SAH3__ & ¢ \SALS Hp ogtd LAY oo
"3 [hsADle 17(,n ,qi6 LAL7| Gog
- e 3 oLz 23160 8 LI P
\SADHS 4 c
SOMN®
_sADHe 3 J L LAL7
3 oc t:i; (SHT. 4)
M uss ——‘—~—|m“] (SHT. 4)
1 I 74ALS373 L LA19M (sHT. 4)
DIR 3 2
19 N.saoLo 3| | 2 sar
—de 10 1
NsADLL Yl,n g S gAc 4
[NsADLz 7lsn g & 9AS
hsADL3 8lyn 4 3 sAs A
74AL8373 5P S5
N_SADLS D 6 9A2 A
N_SADHO 3 0 1 g N-SAOLe 1 gt SAL
hsADHI Y| N_saDL? SAD
2 7 gg gu 6 SALE gn 8
t ﬁ; 3 SOWN® 3
4w 4
_SADHY @ sgi? ©
N-SADHS L] P L] U36
_Sﬁﬂ'lt; : 0 7028
i v v L N\ SA0-SA15
SOWNe 3.
NSDHKN,
= e
SHL ;
(SHT. 3)
30 16L88-2
(SHT. [T .
(SHT. N[} 0
L [18 T4ASO4
mo_mxs- |18 NSHLDR 1 2
D12| DACK6® ar_____ uze
14| DACK7s E © MASTRENS®
15| DACK3e 6 5
7 ¥
MSRESET : 12
q
B I
(SHT. 1)) g
TESTe - uss
(SHT. D" =

Figure 2-4B. Token-Ring Adapter Logic Diagram (card assemblies other than 56X2295 and 69X8139) (Sheet 2)

Description 2-31

2-32 Token-Ring Network Adapter

LADO-LAD1S LADO-L AD1S

SADHO ~-SABH7 ’ SADHO -SADH7
SADL0-SADL.7 SADL0-SADL.7
LPH,
(SHT. 4,SHT. 5)
135 Lﬁg (SHT. 4)
—\/\N\,—@ BOLKZ (SHT. 4)
Junsoy, R19 LBCLK1E (gHT. 4)
L‘i%g (SHT. 4, SHT. 5)
. TM338030
8BOLK vie 42 LR SHT-4)
(SHT. 1) (= E— 74 38CLK 20LBCLK1 L:NT% gn} :;
38N16 LCLKY LENs, .
SRESET 78151 Lotk :: LERDYF) (SHT. 4)
(SHT. 1) [T SRES LRE BRGLcL] (SHT. 4, SHT. 5)
L8PH| 7 | gpy LPH—2 LBGth:' (::I :)
, e e i ; 9y
2lme it 80.p0H1 LAODY5oLADL SO TM938010
X He VY g7|300H2 LADOZ— 5 - 29 eraz 1 +5
2l o2 ¥ lsaous LapogLTLACE s 12
IND D> K_SADHY 3| SADHY LADOH—rore 25 13
——dLo 15 3A0HE qq |POHS LADOY e) 26| R? 16
SHT. 2 dor CRRY qa]300He LADOG— oy z7|-IROL 37
(SHT. 2) . N.SB0H? 8ADH7 LApo7|—2:H07 LIRGO
ENBLP \saolo | 85 3LAD8
10 sAoLo LADog—oEAD8 :% LBGRL as
, LT N BSlsaoLs Lanog 2000 1 2 ero1 -
—25 oLk t—i‘:‘m‘- SADL2 LADLO— o ol 7
07 A0 i Ssjseus Leowt SRS ¥ L =t
[\-SAOLY sADLY LApio|TiLAOLZ
L hoAOLs | Bhigan s Lapiy-13LAOLY P
= sx & SADLE LADLY 1
R20 L7 a3 SADL7 LADL. 24LADLS LAL
A A pring e e
SXAL 32 39 LADLS 351, ongs
SHT-2) Loa e EE] o LA 58 N-LBO1Y 451, oy
(SHT. 2) [SALE LI LAD13
SRDe 61 NI LAD13
SHT- 1 Croure 7SRO RNY 29 LA012 ¥3) oy
(SHT. 1) [} 3HRe IHswr LENp 2L a1 vz |-F012
(SHT. 1) [}SROY= SRDY LBROY] A0 WL ot
(SHT. 2) (300N : SDBEN LBRagpSorORaS: 1803 %), g0
(sHT. 2) B30IR 2Zisp01R LBGRYD \LA0s 3% ongg
(SHT. 1) Crooune % b | SeLIRADUTO 807 38), onos
SHT. 2) [H soun LIRool2e=iRa T nLaoe 3 ionoe TESTZE
SHLDA 51 LIROY g TRaOUT2 NLB0S 33 onos TESTIL
(SHT. 2) -20n 72|SHLDA LIR0Z Laos 32 ooy TESTOE
(HT.2) -2 72| g0 70 (“Lana 317004
seesy LRID) Lanz 304 ong, arhy 3
Liifsers LIR30 Lap1 23] 002 TESTD-2
SBERR LIRIZ ADo 28 2
SINTR S5 stac ong-33 i sz;:aoz—a—
(SHT. 1) [F SINTR cNDl 2
23 RESET L2y
scge 82 GNI—5 Loikz ~ OLKD
(SHT. 1) -2 S scs ongH-25 FU] o g P}
sAz8 az | 3RAS OND iy Ui xtactt
(SHT. 1) (o028 22 srs0 oyt (oo .
(SHT.) O-2na 13| ars1 N1 Uz
SHT. 1) OO _ &4 srs2 veet—30 748395
6;365—1 53] TEST CPTSTD g~ 3 a walts
L 37 66 B oolie
- 43 | 67 | 1¢ acHt3 | ‘
46| 76 0 iz MXTALOUT
1 %] 83 s1 By PiRass (SHT-4)
sHT. 5 O 2 = ot vp P B RO*S) (SHT. 4)
- PUZ 3 q |2
U3 # :‘53 1%
PUY 5 = = 10
SHT PUS 3 = uh - OLK 4o UB
(SHT.4) [} PUG 7 4
(sHT. 1) -2 8
g:: :} 8 TESTe 10 %{j(snt 1)
’ LQ‘JuQJ 1K - [} (SHT. a)
- RP1

Figure 2-4B. Token-Ring Adapter Logic Diagram (card assemblies other than 56X2295 and 69X8139) (Sheet 3)

Description 2-33

2-34 Token-Ring Network Adapter

LADO-LAD1S LADO-LAD1S
N

1574808
\ 11 FEXTAL
‘ TM338020 ’—ﬁ|_/un [(SHT. 6)
(SHT. 3) Oraa LCLK1 FORVRY SVRM (SHT. 6)
T 3 CjLeoke W IrRenterRAG
: LRESETY 38 havies (1Y FEWRRAP®
(SHT. 3) [JLRESE RESET FHRAPDES. [] (SHT. 6)
LPH 2 FNGATDIAPHNS
(SHT.3) [T LPH (0 FERCUR
NLeDo 29 gnep FROVR— FERCURLT (SHT.)
—LADL 28 gy FROLK—) Frrraeil] (SHT. 6)
LAz 27l gnop FREOYD rprye REDY* S (SHT. 6)
\CLAD3 26 pos FHFLTDRITHEL
29
—LADY 23, oy
\“LAns 24
LADOS
—LADe 23(anoe TEP2Y4SHY
N-LAOZ_22)) ppo7 Har i @ FEWFLT®
NLB0s 181, onog Y FENFLT® (sHT. 6)
LADY_17) ogq THLS164 [QA FL =1 (SHT.)
MLﬂDiL—igLamo 10 A3 s|hy Fad
s o S caaasti
A013 13| Fore bok ag> Lins a3t
1o]LAoLt - oo L1 e T | 74308
™ -LAO0LS 2L AD1S oHi1 1
(SHT. 3) [} LPL 1 ;’ 12 — U12 -
(SHT.3) O II:?F;D ;;ul 1: Wor o2 74RS0%
(SHT. 3) [Hpyg 3¢ -0 20 21 1 2
(SHT. 3) [}-on S|LRN = Ute
(SHT. 3) CHygrpy §|LEN 38 R10
(SHT. 3) [LBROY
LBCR1w
(SHT.3) Oes LBcRP 4 74AS04
(SHT. 3) [JEEROLe édLerap - 13 12
2pPHTSTO uzs
PHTSTL
89 prar2 NRAMe
(SHT. 3) [}-PIRO® 3Yr1r0 il
U3 | 8
2
74AL300
LAO q
SHT. 5
3 e u20
= <7 U13
ot 7408122 L ROMe— (suT. 5)
(SHT.3) I
PUS,
BRDY] (SHT. 2,
PUS r Sir s
(SHT. 1) [erLs2 T4ASOY SHT. 6)
1 " 11{>ﬁ:o (SHT. 5)
N-LBDo 2 18
LaD1 Y 16
6 1
8 12 ; 3 RAMKRT/ (sHT. 5)
u20
(SHT. 2) [}-=Y7 11:%“ j BNR (SHT. 5)
(SHT. 2) [}-=R18 13 7 sa17 ooy
L SALE o, 4
(SHT. 2) [JLALY 15 5 ELTC o
17 3
SOWNe 19
SHT. 2
¢) T D30
- LRESETs
LENs
LRNH
LBCLKL

Figure 2-4B. Token-Ring Adapter Logic Diagram (card assemblies other than 56X2295 and 69X8139) (Sheet 4)

Description 2-35

2-36 Token-Ring Network Adapter

Figure 2-4B. Token-Ring Adapter Logic Diagram (card

LAO-LALY LAO-LALY
N LD0-LD15 ’
LADO-LAD1S LADO-LAD1S
T4ALS373 HM6264 HN27COMNG
“LAD0 3fin 4ol 2LA0 4 LAL 26 fu,n o7bid
YT el BT NI M €T S
LAD2 75y 3¢ OLA2 _LA3 AL ospil
NiaDs 8l oo 9183 4 LAy aLe oupie
li =0 w%LB!L LAS a9 03I
NiADs 1%10h (qiSLAS NLRe 25 log o2 i3
LA 171.n oli6lR6 N-LA? a7 o1piZ
LAO? 181en g lILAT _Las: A6 oot
¢ LA As
oc NLRLO 6 1o,
hiail 7 ins
u1 \LA12 8 (oo
74ALS373 > sy —Lﬂ-ﬁ——u:— AL
LADs 3 0 1 2 Nilely 2 | LAY 10 o4
V- LY pregpy B q 1
\LAD10 7lay 39 & 4 77 |VPP
nLBoLl Slup o 3 2z’
a1z 13|40 otz A 269%
0] 215 qCE
60 6
LAY 171, pqle (Y]
LAD15 18] 40 gq1d
(SHT. 3) [--At ilg T
oc HN2TCEYG
74R9245 = usz _LA2 1(13 t:i . he gz;: D1/
(SHT.3) (FEPHLPH 3 doy ppy 1LPH Nr—— \LA2 AL oshil Loz
P L. S L. N 1)) PO G P 1. 8 LAY TS Ao oupre LD3
. s NLRS 7 | A9 03 LDY4 1
I dns a3 h_LA6 LAe 25 |g, 0z ;ZL_I.D.L
6 dav mib 1t . hLar___S LeL 3 lq; 01 %L_uls_
4 p NLADO 3 g [-LAS LAs =2 e oopi1 LOT
3 das et 8 LAY 3 | LAl S g
4 16 A NLR1o 25| NLALo 6 | av
——pz B _L.mzL< A1l 24 | LAl 7 lag
i< a1 Bib-t 6 LAtz 21] LAz 8 1.
2 18 < \Lﬂlﬁ—za \Lﬁlﬁ_q AL
~=—A0 BO Lany S g LAty 2 | LAl 10 (o4
(SHT. 4y [JNR 1_lome 4
: BUFENBs | 19 NLADS * 4 1
(SHT. 9 (7 G 3 7-jvee
LADe 3 4 d ' drom
Uko 2 2 0e
o9
) qce
19 v2%
1 HN27COUC
NLA2 10] LAl 2 .13 108 4
LADS 9 LAz 9 | :{S :7 £18 L09
4 LAy 8 | Loz ey ,‘;M
LADY 8 Nips 7 | N_LAY Ao oypieLDil
LAD10 7 Nige 6 | LAS a9 0351012
a7 S | LAe 25 [na 02 LD13
LAD11 6 NLas 4 N_LA7 ar 015121014
LAD1Z 5 3% 3 \ﬂﬁ A6 oo p1LDIS
LAD13 4 LA11L 2% LALlo 5 | 23
LADIY 3 17LD1Y La1z 24 LAl 7 i3
\La13 23 \ a1z 8 |o,
LAD1S 2 18 L0135, LAt4 2 NITTEREN oy
10
1 22 LAl 20 1qo
13 203
—9¢ TN L {upp
U2s 2 qPcM
RAMART 3
(SHT. 4) [1—1oH qoE
(SHT. 4y [} . dce
(SHT. 4) [}
(SHT. 4) RO [E5)

PUL~ (SHT. 3)

assemblies other than 56X2295 and 69X8139) (Sheet 5)

Description 2-37

2-38 Token-Ring Network Adapter

FERCVR

+

4.7
iov

C25 | €37 | C13

0.1/0.1]0
S0V | Sov

Ci4 | C15

séﬂ_%aﬂ? =

(SHT.) L rrur

(SHT.) L1 rape

(SHT. &) O—Froed

(SHT. 4) Ohceyrer @ &

(SHT. 4) [} P3
RL 5TL 1 RNGxXHT(g
2.4K °41 |&°
: - o

TMS38052 ___TIMS38031 300 300
(SHT. 4) [J-FENSRT® 201\ opr. ! 1/ FeoRVR e R s N~
ic 026 < pi3 7| FEMRAP- 16
11000 § 21 2 4 RNGXMT|
FEWFLTe | [17]LOCKRF VOOCPAI-o— TH00pr=2. 4K 27| FEFRAQ DROUTA—2 5

(SHT. &) [-Lerrt——T T FEWFLT- vo0oPB SV | sx %{rExTAL DROUTB

(SHT. 4) FERGLK 4| FEREDY- ENAELE L—{ENRBLE NRGCAP [20

(SHT. 4) E! 47 |FERCLK FEDCLK —8{FEDcik EquALBiZ Ry cR2

{LookIN ENERGI 15|ENERGO EQUALA IS zs 3

—¢] FILTER 10|CROPHP RCVINB (S INYLHST ING1US
s} PHOUTB |3 FIFERCUR RCVINALZD 8
PHOUTA T B ROVHYS | c16 4
_le L 7
U23 17 6800PF = 2

L Sov
= u4 =
1% R3 CR12 -A-CR10 =
z.nx% 2.49K INGL48 T INHINS 1%
R12 : 4
1% 572 1 RNGRCY
1‘ 0,)
= 121 ,{"W\ sj Ez L1
= CR13 —hOR11 _LCYS J_Q“ 12 7 (| 3| SewM 1_
ANHL48 T INH148 | 62PF T‘szpr ° h

4 RNGROVSl |
~J

RL7

75

1%

R4 CR7
IN4OO4 INvoo4

=

2W
100 _Lcu
0.1
R7 50V
20
+l coq 100
5.2 CRS &ORS
ﬂ£3° * 1NY 004 ANYOOY
8.2

Figure 2-4B. Token-Ring Adapter Logic Diagram (card assemblies other than 56X2295 and 69X8139) (Sheet 6)

Descrip

tion

2-39

2-40 Token-Ring Network Adapter

Physical Description

This data defines the physical aspects of the Adapter card including the jumpers and the component
placement.

Jumper Descriptions

The Adapter Card features five selectable jumpers which allow the user to reconfigure the card. The
following diagrams identify the jumper location and give a brief description of their function. The
dot (®) adjacent to each jumper indicates pin 1 position. The default positions are listed in Tables
2-4A and 2-4B.

Description 2-41

2-42

JUMPERS J1 and J2 - ROM Select 1 and 2

PH ROM I
] o (o)
EXT ROM |
[] o (o]

® =pin1

JUMPER J3 - Primary/Secondary Address and DMA Level Select

|

Primary Address |

and
DMA Level 5
I |
}oooooooo} ® (pin 1)
O000000O0
| R, J
Secondary Address
and
DMA Level 6
A
l-_’L_—_ -1
JOOOOOOO @ @ (pin1)
I[0O0OO0 0000 O}
| _l

Figure 2-5A. Jumper Diagrams (card assembly 56X2295 or 69X8139) (Sheet 1)

Token-Ring Network Adapter

JUMPER J4 — Internal Adapter Address

Enable |
® (o] (o}
Disable |
o (o] [

JUMPER J5 — Processor Activity Timer

Enable I
® (o] o
Disable |
® = pin 1 ® (o] (o)

Figure 2-5A. Jumper Diagrams (card assembly 56X2295 or 69X8139) (Sheet 2)

JUMPERS J1 and J2 — ROM Select 1 and 2

PH ROM |
[] o o
EXT ROM l__—
® = pin 1 [o (o]

Figure 2-5B. Jumper Diagrams (For card assemblies other than 56X2295 and 69X8139) (Sheet 1)

Description

2-43

2-44

JUMPERS J5 and J6 — 1/O Address Space and DMA Level Select

1/0 Address Group 1
and
DMA Level 5

1/0 Address Group 2
and
DMA Level 6

1/0 Address Group 3
and
DMA Level 7

® =pin1

J5

O t—

o +——

J6

Figure 2-5B. Jumper Diagrams (For card assemblies other than 56X2295 and 69X8139) (Sheet 2)

Token-Ring Network Adapter

JUMPERS J5 and J6 - 1/O Address Space and DMA Level Select

(Con't)
Jb5 J6
(o] (]
1/0 Address Group 4
and
DMA Level 3
0O -—— (o] -dﬁ
@ < @ -———J

JUMPER J8 - Interrupt Level/Interrupt Enable Select

Interrupt Level 12
and
Interrupt Enable ‘O6F4’

l_—y____ -1

loooooooael
looooooool

L 4
Interrupt Level 11
and
Interrupt Enable 'O6F3’

[—__'L_7

[O0000O0O0 e

looooooool
® = pin 1 L J

Figure 2-5B. Jumper Diagrams (For card assemblies other than 56X2295 and 69X8139) (Sheet 3)

Description 2-45

Jumper Configuration

Table 2-4A. Default Jumper Configuration (card assemblies 56X2295 and 69X8139)

Jumper No. Default Position
J1 Protocol Handler ROM
J2 Protocol Handler ROM
J3 Primary Address Space
J4 Internal Adapter Address
J5 Processor Activity Timer Included

Table 2-4B. Default Jumper Configuration (other card assemblies)

Jumper No. Default Position
Ajl Protocol Handler ROM
J2 Protocol Handler ROM
J5 1/0 Address Group 1 and DMA Level 5
J6 1/0 Address Group 1 and DMA Level 5
J8 Interrupt Level 12

Card Layout

The physical component layout of the Adapter Card is shown in Figures 2-6A and 2-6B. In no case
will any components be included on the card that will not allow side-by-side mounting of this card
with another card in a %-inch card to card spacing.

The on-card connector for the Ring-in and Ring-out signals is a 9-pin D-shell connector. The shield
on the Token-Ring Network wire media coming from the wall connector is grounded to the product
frame through the tailgate. The DC ground of the Adapter is not connected to the chassis ground.
Refer to table 2-3 for cable connections.

2-46 Token-Ring Network Adapter

External ROM

External ROM

1

System

Internal

A=
23

q

= =]

u3

L 4\@:'/[_1—3

CeE 3 Cw JCow I C @9 Cow 3w 3

T — -2
v g —mr—
S —
u41 o u43 —r

mmmmmm o3

mmmmwwug[Tz
C® 1 w9 w9 s oy

C s W w3 w3 w3

J1

]

P3 | |
] &

oC—J

o

Figure 2-6A. Token-Ring Adapter Card (card assemblies 56X2295 and 69X8139)

Description

2-47

(1/0 Address/DMA Level \

J5 J6
01C0-01CF/DMA 5 13 13

2

(9]
o

|

0140-014F/DMA 6

External ROM External ROM

—e
~

o
o
RN

11CO-11CF/DMA 7 o3 Iﬁ

*—e
- o
e}

11DO-11DF/DMA 8 03 03

) o)] o

[
B a0 T : B
= -
=
5

u

} d U5 §]: U q: [U s]. w4 w4 [§ 23 q
v = R13 £37
< L cn;ﬂ L gndu
= = Z 4 1
025 Q§ 26 ' u27 ' 28 qgl 30 q w] s

46
fa[cri] W

uz24

3
— 1=

e) .
T = 033 EEJI w4 5] 35 j[36 L _ur dl 38 dlm

= 0 100

g 1] [T@[_WTEFW[T@ a7 B a8

slE: o e
- B aw sl
3

u3g

Interrupt Level 12
8 7 6 5

4 3 2 1
0 0 0 O I I I I
0 0 o o

9 10 1 12(13 4 1B B

Interrupt Level 11

8 7 6 5|4 3 2 1
I I I I © 0 0 O

0 0 0 O
9 10 N 12|13 ¥ 15 16

Figure 2-6B. kToken-Ring Adapter Card (card assemblies other than 56X2295 or 69X8130)

2-48 Token-Ring Network Adapter

Chapter 3. Software Interface

Software Interface 3-1

CONTENTS

SOftware INterface . . oo vttt ittt ittt ittt it e e et e e 3-3
Summary of System Buffer Requirements.ouuettttnriienneerenerorennioeeanesnnseanonanns 34
RegiSter DeSCIIPLIONS .ot v et ittt ittt et te s ae sttt etaen st aaonsessoonosnnonnnannsssssennennns 3-5
Command / Status ReISter . ..ottt ittt ettt ettt it e et ie ettt e, 3-5
SIF Address RegiSterottt ettt e ittt et et ettt e et et e e e e 3-11
SIF Data RegISter . . oo\ i ittt ettt ittt ettt ettt et ettt ettt ie et e et e 3-11
SIF Data Register with Auto-increment [SIF Data Inc]c.ciiiiininiiniiniinenennn. 3-11
Enable Intermuptot e e e e e e e 3-11
Disable INteITUDE o ..ottt ettt ettt ettt et e e e et e e e e e e e 3-12
AdaDter ReSet . ..ottt e e e e e e e 3-12
Interrupt Level Enable [ILE]o et e ettt e et et et e e 3-13
Bring-up Diagnosticsttt ittt e i ettt e e e e 3-13
Bring-up Diagnostic Verificationttt ittt itnt i inenreennaneanns 3-13
Adapter INITIZAtION .. v et ettt ettt et eee e ttnee s eneeeeeaneeeeuanssesnasssossnaneoenaossnns 3-15
The Initialization BloCK . . .o vtvitut ittt ittt ittt ettt eteeeieetnereneroueesnesensonneans 3-15
Writing the Initialization Block i e it et 3-21
The Command and Status Block i i i it ittt it te it ieerencneanns 3-23
Command Initiation: System Command Block ...t it iie e 3-23
Status Reporting: The System Status BloCK.vvtieerirn it iieeinnreenrnanreorennnns 3-25
Adapter COmMMAaNAS . ov ettt netaneeeueennesoneeasososeneesssoeassonesenssnsoaasonnsssnnss 3-35
OPEN COmmMmand .. .vovtttunttnetaneeenneanssueensonssasesussenssonsssaeansosnesanssnns 3-35
TRANSMIT Command . .oouiiniinenniniienttetnetnenesnoesenosesossastosaeensaesnsesenaas 3-46
TRANSMIT HALT Command . . .« v oene ettt ttaeetteeseannneseeeeanseonanerannnsoeenanns 3-61
RECEIVE Commanduiuuttiettunnennsenneeaneuneeunenuneanesonesaussonesnassnnonanns 3-62
CLOSE Command.unnertit et eeeneneunesnosenoseneenseanneenesanesonsanosanaeensenseens 3-69
SET GROUP ADDRESS Commanduuuuentererensenneennnesoeeeneeeneenesanaasssenseons 3-70
SET FUNCTIONAL ADDRESS Commandcouutunteunornntineetneeeneennronsonncenneans 3-71
READ ERROR LOG ... ittt ittt it tieiaetunetnseannronesenessasssesunseassannsns 3-72
READ ADAPTER BUFFER Commandcueiuetineiieeinnreneerneenneennesnasnsennnens 3-74
Freeze-DUmp . oot e e e e e i e e i i 3-78
FREEZE Commandvuuuintnnteruneunenseneeeeneaooesnsuesseesesnsonsosneeasnnsnsonenns 3-78
STEP Commanduunnttnieenetenneeneeeeeenoeassoeeaneeessesaeeeaesoneeaesnsosnsssons 3-78
WRITE Commanduunitniiti ittt ittt eenttneeenseenseeansonsseesonesanesans 3-78
EXECUTE COmMMANA . . ot ottt et et attuneeneeaneunstneeneesaessassoensanssanesnessnseansos 3-78

3-2 Token-Ring Network Adapter

Software Interface

This chapter describes the software interface between the IBM RT Personal Computer (hereafter
referred to as “the attached system™) and the IBM Token-Ring Network RT PC Adapter (hereafter
referred to as Adapter). This software interface controls the operation of the Adapter to effect data
transfer to and from the network.

The Adapter is controlled through direct access to four registers and a DM A channel contained
within the System Interface (SIF).

The System Interface registers are used to initialize the Adapter, read the cause of interrupts posted
to the attached system, and post interrupts to the Adapter to initiate DMA transfers to and from the
system memory.

The DMA channel is used to pass commands, parameters, and frames to the Adapter and to receive
completion codes and frames from the Adapter. In addition, all data movement to and from the ring
is via DMA only. The DMA channel is initialized during Adapter Initialization which is described
later in this chapter.

Software Interface 3-3

Summary of System Buffer Requirements

The integration of the Adapter into an attached system requires that several system memory buffers
be allocated and reserved for Adapter use. The following list specifies the necessary system memory
allocation. For more detailed information, refer to “The Command and Status Block” and “Adapter

Commands” in this chapter.
SYSTEM COMMAND BLOCK

SYSTEM STATUS BLOCK

COMMAND PARAMETER LISTS

RECEIVE LIST

TRANSMIT LIST

PRODUCT ID BLOCK

3-4 Token-Ring Network Adapter

The System Command Block (SCB) is a six byte buffer
which is used to hold the command to be executed by the

Adapter and a 24-bit address pointer to a parameter block or
buffer.

The System Status Block (SSB) is an eight byte buffer which
is used to hold status codes returned upon completion of
Adapter commands.

Certain commands (like the OPEN command) require that a
block of memory be designated as a parameter block. Once
the command has completed execution, this buffer allocation
may be released for other uses.

The RECEIVE command requires that Receive List(s) be
allocated within system memory. The memory allocation size
is dependent upon the size and number of lists used in the
application. The size of a receive list may be selected upon
Adapter initialization to be either 14, 20, or 26 bytes in
length. The number of lists is application dependent. A
discussion on Receive Lists is provided later. Refer to
“Receive Commands” in this chapter.

The TRANSMIT command requires that Transmit List(s) be
allocated within system memory. The memory allocation size
is dependent upon the size and number of lists used in the
application. The size of a Transmit List may be selected upon
Adapter initialization to be either 14, 20, or 26 bytes in
length. The number of lists is application dependent.

The OPEN command requires a pointer to an 18 byte
Product ID block as part of the open parameter list. The
system software designer should reserve 18 bytes of system
memory for this function. After completing OPEN, the
reserved 18 bytes may be released for other uses. Additional
information on Product IDs may be found in the /BM
Token-Ring Architecture Reference.

Register Descriptions

The Adapter contains eight registers which are used for Direct I/0 (DIO) reads and writes. (Refer to
the table below.) This chapter describes in detail the functions these registers perform.

I/0 Address Space Assignments

Group 1 Group 2 Group 3* Group 4*

01CO 0140 11C0 11D0 SIF Data

01¢c2 0142 11C2 11D2 SIF Data INC
01C4 0144 11C4 11D4 SIF Address
01C6 0146 11Cé6 11D6 Command/Status
01C8 0148 11C8 11D8 Enable Interrupts
01CC 014C 11CC 11DC Disable Interrupts
01CE 014E 11CE 11DE Adapter Reset

* Groups 3 and 4 are not supported on card assembly 56X2295 or 69X8139

Command/Status Register

The Command/Status Register is used to post interrupts to the Adapter as well as to read interrupt
status information from the Adapter. The function performed by each bit of the CMD/STS Register
is dependent upon whether a bit is read or written by the attached system. It is important to note
that bits 0-7 can be set to one but not reset to zero by the attached system. These bits, when set to
one by the attached system, can only be cleared by the Adapter. Likewise, bit 8 can be reset by zero
by the attached system but can only be set by the Adapter. Bits 9-15 can be read only by the
attached system. These bits are set or reset by the Adapter.

Writing to the CMD/STS Register

A direct I/ O (DIO) write to the CMD/STS Register will transfer a 16-bit word which is used to post
interrupts to the Adapter as well as reset an Adapter system interrupt.

Figure 3-1 shows the bit assignments of the CMD/STS Register when written by the attached
system. Table 3-1 defines the functions of each bit.

Software Interface 3-5

(MSB)
Bit 0

O 00 X N W AW N

— .
w N = O

14

15
(LSB)

Interrupt Adapter

Adapter Reset

SSB Clear

Execute

SCB Request

Receive Continue

Receive Valid

Transmit Valid

Reset System Interrupt

X

el I el el e

‘X’ denotes don’t care

Figure 3-1. CMD/STS Register Write Bit Assignments

3-6 Token-Ring Network Adapter

Table 3-1. CMD/STS Register Write Bit Functions

BIT O INTERRUPT ADAPTER. Bit 0, when set to one, will cause an internal Adapter
interrupt. This bit when set to zero has no effect. This bit will be cleared by the
Adapter after the Adapter responds to the interrupt. The purpose of the interrupt is
defined by the SSB CLEAR, EXECUTE, SCB REQUEST, RECEIVE
CONTINUE, RECEIVE VALID, and TRANSMIT VALID bits described below.

BIT 1 ADAPTER RESET. Setting bit 1 to one forces an Adapter reset if bit 0 and bits 2-7
(INTERRUPT ADAPTER, SSB CLEAR, EXECUTE, SCB REQUEST,
RECEIVE CONTINUE, RECEIVE VALID, and TRANSMIT VALID) are also
set to one. Following an Adapter Reset, the initialization procedure outlined in this
chapter should be followed. This reset function is a software command and certain
conditions of hardware failure may prevent its execution.

BIT 2 SSB CLEAR. Setting this bit to one activates this interrupt request. This interrupt
request is used by the system to notify the Adapter that the System Status Block
(SSB) is available for the Adapter to post additional status information.

BIT 3 EXECUTE. Setting this bit to one activates this interrupt. This interrupt is used to
initiate an Adapter command contained in the System Command Block (SCB).
This block will be DMA read and executed by the Adapter

BIT 4 SCB REQUEST. Setting this bit to one activates this interrupt. This interrupt is
used to cause the Adapter to interrupt the attached system when the SCB is
available for another command. The Adapter will return the SCB CLEAR
interrupt code.

BIT S RECEIVE CONTINUE. Setting bit 5 to one activates this interrupt request. This
interrupt request signals the Adapter that buffers have been added to the Receive
List Chain in the attached system’s memory.

BIT 6 RECEIVE VALID. Setting this bit to one activates this interrupt request. This
interrupt request signals the Adapter that the condition causing List Processing
suspension during receive has been cleared.

BIT 7 TRANSMIT VALID. Setting bit 7 to one activates this interrupt request. This
interrupt request signals the adapter that the condition causing List Processing
suspension during transmit has been cleared.

BIT 8 RESET SYSTEM INTERRUPT. Writing a zero to bit 8 will reset the Adapter-to-
attached system interrupt (i.e. clearing the SINTR line). Writing a one to this bit
will inhibit the reset of the system interrupt. SSB CLEAR and INTERRUPT
ADAPTER should always be set when this bit position is cleared.

BIT 9-15 RESERVED. These bits are ignored.

Software Interface 3-7

Reading from the CMD/STS Register

A direct 1/O (DIO) read of the CMD/STS Register will transfer a 16-bit word, which is used to
examine status of the Adapter.

Figure 3-2 shows the bit assignments of the CMD/STS Register when read by the attached system.
Table 3-2 defines the functions of each bit.

(MSB)
Bit 0 Interrupt Adapter
1 Adapter Reset
2 SSB Clear
3 Execute
4 SCB Request
5 Receive Continue
6 Receive Valid
7 Transmit Valid
8 Interrupt System
9 Initialize
10 Test
11 Error
12 Interrupt Code 0 / Error Code 0
13 Interrupt Code 1 / Error Code 1
14 Interrupt Code 2 / Error Code 2
15 Error Code 3
(LSB)

Note: Bits 12 through 15 are used to report bring-up diagnostic and initialization errors. The bring-
up diagnostic error codes are shown in Table 3-3 and the initialization error codes are shown in
Table 3-5.

Figure 3-2. CMD/STS Register Read Bit Assignments

3-8 Token-Ring Network Adapter

Table 3-2. CMD/STS Register Read Bit Functions

BIT 0 INTERRUPT ADAPTER. Bit 0 reflects the current state of the system-to-Adapter
interrupt bit.

BIT 1 ADAPTER RESET. Bit I reflects the current state of the ADAPTER RESET
interrupt request bit.

BIT 2 SSB CLEAR. Bit 2 reflects the current state of the SSB CLEAR interrupt request
bit.

BIT 3 EXECUTE. Bit 3 reflects the current state of the EXECUTE interrupt request bit.

BIT 4 SCB REQUEST. Bit 4 reflects the current state of the SCB REQUEST interrupt

request bit,

BIT 5 RECEIVE CONTINUE. Bit 5 reflects the current state of the RECEIVE
CONTINUE interrupt request bit.

BIT 6 RECEIVE VALID. Bit 6 reflects the current state of the RECEIVE VALID
interrupt request bit.

BIT 7 TRANSMIT VALID. Bit 7 reflects the current state of the TRANSMIT VALID
interrupt request bit.

BIT 8 INTERRUPT SYSTEM. Bit 8 is set to one if the Adapter-to-attached system
interrupt is valid. In systems not implementing hardware interrupt control, this bit
may be polled under software control. The Adapter cannot reset this bit to zero.
This must be done by the attached system writing a zero to this bit location.

BIT9 INITIALIZE. Bit9 is set to one when the bring-up diagnostics have completed and
the Adapter is ready to start the initialization process. This bit is cleared to zero
when the initialization process is complete.

BIT 10 TEST. Bit 10 is set to one by the bring-up diagnostics following an Adapter reset.
This bit is cleared when INITIALIZE (bit 9) is initially set.
BIT 11 ERROR. Bit 11 is set if the bring-up diagnostics detect an error or if there is an
" error during the initialization process. The error condition is specified in bits 12
through 15.

Software Interface 3-9

Table 3-2. CMD/STS Register Read Bit Functions (Continued)

BITS 12-14 INTERRUPT CODE. Bits 12-14 define the Adapter-to-attached system interrupt
reason code. The lower, the code value numerically, the higher the interrupt priority.
The 3-bit interrupt code is shown below:

000 ADAPTER CHECK. This interrupt code is used when the Adapter has
encountered an unrecoverable hardware or software error.

001 Reserved.

010 RING STATUS. This interrupt code will be used if the SSB is updated
with Ring Status.

011 SCB CLEAR. This interrupt code will be used following a SCB
REQUEST interrupt when the SCB is clear.

100 COMMAND STATUS. This interrupt code will be used when the SSB is
updated with command status for commands other than TRANSMIT and
RECEIVE. This includes COMMAND REJECT STATUS.

101 RECEIVE STATUS. This interrupt code will be used if the SSB is updated
with RECEIVE COMMAND STATUS.

110 TRANSMIT STATUS. This interrupt code will be used if the SSB is
updated with TRANSMIT COMMAND STATUS.

Bits 12-15 are also used to indicate the error code resulting from the
execution of bring-up diagnostics or the initialization process. The bring-up
diagnostic codes are discussed in “Bring-up Diagnostics

Verification” in this chapter, and the initialization error codes are

discussed in “Adapter Initialization” in this chapter.

Note: Bits 9-15 are only set or reset by the Adapter. The attached system cannot set or reset these bits;
these bits can only be read by the attached system.

3-10 Token-Ring Network Adapter

SIF Address Register

The Address register contains the address pointer for internal Adapter RAM accesses via the Data
or Data/ Auto-increment registers. All 16 bits can be read, although only bits 5-14 can be actually
set/reset by the attached system. This allows the attached system to access a 2k byte block of the
Adapter’s internal RAM. The actual starting location of RAM which is read is a function of how the
Adapter sets bits 0-4. During normal operation of the Adapter, bits 0-4 will be set to 00001. If an

Adapter Check Interrupt occurs, these bits will be set to 00000. Bit 15 is controlled by the Adapter
as all data transfers on the Adapter bus are by 16-bit words only.

SIF Data Register

The Data Register is the “port” into the Adapter’s internal RAM in which data may be read or
written. The internal RAM locations read or written through this register are pointed to by the
address contained in the Address Register. This capability allows initialization parameters to be
passed to the Adapter for initialization.

After initialization, only the address range X‘0800° through X‘OFFF’ may be read through the Data
Register. Write access to the internal Adapter Bus is denied.

SIF Data Register with Auto-increment [SIF Data INC]

This register is identical to the Data Register except that the address contained in the Address
Register is automatically incremented following a read or write to this register. This allows Adapter
RAM to be read or written to sequentially without re-writing the Address Register pointer between

each access. If the Address register attempts to increment past X‘0FFF’, the address will reset to
X0800°.

Enable Interrupt

The Adapter posts a System Interrupt only if the Interrupt has been enabled. The Interrupt is
enabled by executing a DIO read or write to the addresses shown above.

Software Interface 3-11

Disable Interrupt

The Adapter may be prevented from posting a System Interrupt by disabling the Interrupt. The
Interrupt is disabled by executing a DIO read or write to the addresses shown above.

Adapter Reset

The Adapter may be hard reset by the attached system driving RESET DRV or soft reset by
executing back-to-back DIO reads or writes to the addresses shown.The first DIO asserts the
internal reset and the second deasserts the reset. A reset puts the Adapter into a known state by
resetting the internal Adapter Bus. A reset acts to clear any detected interrupt and tri-states the
DMA Request lines. Note that since a tri-stated DRQ line is indeterminate, it may be errantly
detected by the System DMA controller. The problem can be averted by disabling the DMA
controller before a soft reset occurs. A second programming note when using the soft reset feature is
that back-to-back DIO reads or writes to the Adapter Reset address may not provide the minimum
reset time required by the Adapter. It is recommended that the software provide a wait time of four
DIO cycles between the first and second Reset DIO.

Interrupt Level Enable [ILE]

The Interrupt of the Adapter is a shareable interrupt in that a pulse on the IRQxx line effectively
disables the interrupt of the adapter until a write to the ILE address clears the detected interrupt. A
system reset, whether hard or soft, also clears any latched interrupts.

The ILE address for interrupt level 12 is X‘06F4’ and for interrupt level 11* is X‘06F3’.

* Interrupt level 11 is not supported on card assemblies 56X2295 and 69X8139.

3-12 Token-Ring Network Adapter

Bring-up Diagnostics

The Adapter executes a stand-alone diagnostic routine upon one of three conditions:

1. Host System asserts RESET DRV

2. Host System executing a DIO read/ write to the Adapter Reset.

3. Writing a one to bits 0-7 (X‘FF00’) of the CMD/STS Register. (All other bits are zero.)

Bring-up Diagnostics Verification

Before the Adapter can be initialized for proper operation, the attached system must verify that the
bring-up diagnostics terminated normally. To do this the following procedure should be followed:

1. After either application of the RESET DRV signal, a DIO to the Adapter Reset register, or
writing a software reset (X‘FF00’) to the CMD/STS Register, the attached system should wait 3
seconds and then read the CMD/STS Register.

a.

If the INITIALIZE bit is set to one, and the TEST bit is zero, and the ERROR bit is zero,
then the INTERRUPT CODE bits (12-15) should also be zero. This indicates that the
bring-up diagnostics completed successfully and the Adapter may now be initialized.

If the TEST and the ERROR bits are set to one, the diagnostics have detected an
unrecoverable hardware error. The bring-up error code may be read from bits 12-15. Table
3-3 lists the definitions of these error codes.

If neither of the above conditions occur within three seconds of reset, there is a hardware
error preventing completion of the diagnostic routines. The attached system should reset
and re-try this procedure three times. If still unsuccessful, an unrecoverable hardware
error has occurred and the Adapter should be checked.

Software Interface 3-13

Table 3-3. Bring-up Diagnostics Error Codes

Error Code Bits Error Condition

12 13 14 15

o 0 0 O Initial Test Error

0 0 o0 1 Adapter ROM CRC Error

0O 0o 1 o0 Adapter RAM Error

0 0 1 1 Instruction Test Error

0 1 0 o0 Context/Interrupt Test Error

0O 1 0 1 Protocol Handler Hardware Error
o 1 1 0 System Interface Register Error

Following verification of the bring-up diagnostics, the attached system software may now continue

with Adapter initialization.

3-14 Token-Ring Network Adapter

Adapter Initialization

After verification that the Adapter’s bring-up diagnostics completed normally, the system software
must initialize the Adapter. This initialization involves the transfer of parameters to the Adapter
using the DIO interface. These parameters specify:

® The address in the system memory of the System Command Block (SCB) and System Status
Block (SSB)

e Interrupt control parameters.

Before the completion of the initialization process, the Adapter initiates a test of the DMA interface.
These tests include:

e DMA writes to both the System Command Block and System Status Block

e DMA reads from both the System Command Block and System Status Block to compare to
expected results.

These tests do not require any attached system software to execute. However, in the event these tests
fail, the Adapter will return an error in the CMD/STS Register.

The Initialization Block

The Initialization Block is 22 bytes (11 16-bit words) in length and the entire block must be
transferred to the Adapter. Figure 3-3 defines the 11 words of this block.

Software Interface 3-15

High Byte Low Byte
Word 0 Initialization Options
I Command Transmit
2 Receive Ring
3 SCB Clear Adapter Check
4 Receive Burst Size
5 Transmit Burst Size
6 DMA Abort Thresholds
7 SCB Address (high)
8 SCB Address (low)
9 SSB Address (high)
10 SSB Address (low)

Figure 3-3. Parameter Initialization Block

Interrupt Vectors

The following information describe the various fields of the Initialization Block and the corresponding

bit functions within each field.

Initialization Options

This 16-bit field is used to specify the desired initialization options. The bit assignments of the 16-bit

Initialization Options field is shown in Figure 3-4.

3-16 Token-Ring Network Adapter

(MSB)
Bit 0

O 00 N N n bR W N

—_— b e
W N = O

14

15
(LSB)

|

Parity Enable Bit 1

Parity Enable Bit 2

Burst SCB/SSB

Burst List

Burst List Status

Burst Receive Data

Burst Transmit Data

0

oclo|lolo]l OO O

Figure 3-4. Initialization Options Bit Assignments

The function of each of these bits is described in Table 3-4.

Software Interface

3-17

Table 3-4. Initialization Options Field Bit Functions

BIT 0
BITS 1-2

BIT 3

BIT 4

BIT 5

BIT 6

BIT 7

BITS 8-15

RESERVED. This bit must be set to one.

PARITY ENABLE. These bits should be set to one if the system bus provides odd
parity on its data. If parity checking is not desired, these bits should be set to zero.
If enabled, parity checking is performed on both DIO and DMA transfers between
the Adapter and attached system.

BURST SCB/SSB. If this bit is set to one, the Adapter will transfer the SCB from
the system and the SSB to the system in DMA burst mode. The burst size will be
six bytes for the SCB read, two bytes for SCB clear, and eight bytes for SSB write.
If this bit is set to zero, then these transfers will occur in cycle steal mode. (See Note)

BURST LIST. If this bit is set to one, the Adapter will transfer transmit and
receive lists from the system in DMA Burst Mode. The burst size will be the list
length with the maximum burst size being 26 bytes. If this bit is set to zero, then
cycle steal mode is selected. (See Note)

BURST LIST STATUS. If this bit is set to one, the Adapter will transfer list status
data to the system in DMA Burst Mode. If this bit is set to zero, cycle steal mode
will be selected. (See Note)

BURST RECEIVE DATA. If this bit is set to one, the Adapter will transfer
receive data to the system in DM A burst mode. The burst size is specified in the
RECEIVE BURST SIZE field of the Initialization Block. If this bit is set to zero,
cycle steal mode is selected. (See Note)

BURST TRANSMIT DATA. If this bit is set to one, the Adapter will transfer
transmit data from the system in DMA burst mode. The burst size is specified in
the TRANSMIT BURST SIZE field of the Initialization Block. If this bit is set to
zero, cycle steal mode is selected. (See Note)

RESERVED. These bits must be set to zero.

Note: If burst sizes are small, better perfromance is attained by using cycle steal mode.

Command Status Vector

This byte contains the interrupt vector that the Adapter places on the attached system bus when the SSB
is updated with command status for commands other than TRANSMIT or RECEIVE. COMMAND
REJECT STATUS will also use this vector.

3-18 Token-Ring Network Adapter

Transmit Command Status Vector

This byte contains the interrupt vector that the Adapter places on the attached system bus when the
SSB is updated with TRANSMIT COMMAND STATUS.

Receive Command Status Vector

This byte contains the interrupt vector that the Adapter places on the attached system bus when the
SSB is updated with RECEIVE COMMAND STATUS.

Ring Status Vector

This byte contains the interrupt vector that the Adapter places on the attached system bus when the
SSB is updated with RING STATUS.

SCB Clear Vector

This byte contains the interrupt vector that the Adapter places on the attached system bus if an SCB
CLEAR interrupt is generated.

Adapter Check Vector

This byte contains the interrupt vector that the Adapter places on the attached system bus if an
ADAPTER CHECK interrupt is generated.

Receive Burst Size

This 16-bit field contains a count of the maximum number of bytes that the Adapter will DMA
during one burst cycle when receive data is written to the attached system memory. If this field is
cleared, the Adapter will set the burst size equal to the amount of data to be transferred. This
parameter is ignored if the BURST RECEIVE DATA bit of the Initialization Options field is set to
zero, indicating cycle steal mode. This parameter must be even.

Software Interface 3-19

Transmit Burst Size

This 16-bit field contains a count of the maximum number of bytes that the Adapter will DMA
during one burst cycle when transmit data is read from the attached system memory. If this field is
cleared, the Adapter will set the burst size equal to the amount of data to be transferred. This
parameter must be even since only two byte transfers occur. This parameter is not ignored if the
BURST TRANSMIT DATA bit of the Initialization Options field is set to zero, indicating cycle
steal mode. Even in cycle steal mode, TRANSMIT BURST SIZE is used to limit transmit data bus
utilization so that higher priority receive DMA operations can be initiated.

DMA Abort Thresholds
This 16-bit field contains counts for the number of times the Adapter will attempt a DMA operation
(read or write) if it is terminated abnormally with a bus error or parity error. The high-order byte

(bits 0-7) contains the count for bus errors and the low-order byte (bits 8-15) contains the count for

parity errors. The counts specify the total number of times the DMA operation is to be attempted. A
count of zero is not permitted,

SCB Address

This 32-bit field contains the 24-bit address of the SCB in attached system memory. This value must
be an even address aligned on a word boundary. The high-order byte of this field is ignored.

SSB Address

This 32-bit field contains the 24-bit address of the SSB in attached system memory. This value must
be an even address aligned on a word boundary. The high-order byte of this field is ignored.

3-20 Token-Ring Network Adapter

Writing the Initialization Block

The Initialization Block is passed to the Adapter by following the procedure below:

1.
2.
3.

Verify that the bring-up diagnostics completed successfully as previously described.
Write the address X0200’ into the SIF Address Register.

Begin transfer of the Initialization Block by writing each byte or 16-bit word to the SIF Data
Register/ Auto-increment. This will cause the block to be written to successive Adapter RAM
locations beginning at RAM address X‘0A00’.

Write the bit pattern X‘9080° to the CMD/STS Register. This sets the INTERRUPT
ADAPTER, EXECUTE, and RESET SYSTEM bits and clears all others.

Continue to read the CMD/STS Register until one of the following occurs:
a. The INITIALIZE, TEST, and ERROR bits are all zero. This condition indicates that

initialization is complete without error. The SCB should contain X‘0000C1E2D48B’ and the

SSB should contain X‘FFFFDID7C5D9C3D4’.

b. If the ERROR bit is set, the initialization process has failed. The Interrupt Code bits 12-15

will contain the initialization error code. (These error codes are listed in Table 3-5.) The
initialization procedure must be restarted from Adapter reset.

c. If neither of the above conditions occurs within 11 seconds of loading the Parameter

Initialization Block, there is a hardware error. Because the DM A Timeout Error is not

realized for at least 10 seconds, it is recommended that the attached system wait at least 11

seconds to detect an initialization error code. If no Interrupt Code is posted then the

Adapter has a hardware error. It is recommended that the attached system reset the Adapter

and re-try the initialization procedure three times. If still unsuccessful, there is an
unrecoverable hardware error.

Software Interface

3-21

3-22

Table 3-5. Adapter Initialization Errors

Error Condition

Error Code Bits
12 13 14 15
0O 0 0 1
o 0 1 o0
0O 0 1 1
O 1 0 0
0 0 1
0O 1 1 0
o 1 1 1
1 0 0 0
1 0 0 1
1 0 1 O
1 0 1 1
1 1 0 O
1 1 0 1

Invalid Initialization Block. Twenty-two (22) bytes were not passed.
Invalid Options. This code is returned if the Initialization Options word
has the TRANSFER MODE bit set, the PARITY ENABLE Bits are

not equal, or the Reserved bits are not zero.

Invalid Receive Burst Count. The Receive Burst count is odd.

Invalid Transmit Burst Count. The transmit burst count is odd.

Invalid DMA Abort Threshold. The DMA abort thresholds were
specified as zero.

Invalid SCB. The SCB address was specified as odd.

Invalid SSB. The SSB address was specified as odd.

DIO Parity. A parity error occurred during a DIO write operation.

DMA Timeout. The Adapter timed out (10 seconds) waiting for a test
DMA transfer to complete.

DMA Parity Error. A parity error occurred during the DMA tests and
the operation was tried the number of times specified by the DMA
Abort Threshold.

DMA Bus Error. The DMA test encountered a bus error and the
operation was tried the number of times specified by the DM A Abort
Threshold

DMA Data Error. Initialize DMA test failed due to a data compare
error.

Adapter Check. The Adapter encountered an unrecoverable hardware
error.

Token-Ring Network Adapter

The Command and Status Block

Two fixed-address control blocks must be provided by the system: the System Command Block
(SCB) and the System Status Block (SSB). The starting address of both blocks is passed to the
Adapter during the initialization process as described in the previous section. Both blocks must be
aligned on an even byte boundary.

In general, the attached system issues a command to the Adapter by loading the request in the SCB
and interrupting the Adapter. The Adapter will then download the command (and any required
parameters) through the System Interface DMA channel. If the SCB REQUEST bit (bit 4) of the
CMD/STS Register is set, the Adapter will interrupt the attached system after the command has
been downloaded, indicating to the attached system that the SCB is available for additional
commands.

When the status of any outstanding command is to be returned, the Adapter will load the SSB via
DMA and interrupt (if enabled) the attached system. After the system has read the SSB, the system
must notify the Adapter that the SSB is clear and available for additional status posting. This is
done by writing a one to the SSB CLEAR bit (bit 2) of the Adapter’s CMD/STS Register. All
command status is returned in the SSB.

Command Initiation: System Command Block

The System Command Block (SCB) is six bytes in length and the Adapter will always DMA read 6
bytes. The SCB format is shown in Figure 3-5.

SCB Address +0 Command
+2 Address (high)
+4 Address (low)

Figure 3-5. System Command Block Format

The Command field contains the 16-bit command code request to the Adapter. The command set of
the Adapter will be discussed in detail later in this chapter.

Software Interface 3-23

The 32-bit address field contains a 24-bit address used as a pointer to the command parameters. The
high-order byte of this field is read but ignored. Some commands do not have additional parameters
and only the 16-bit command code must be written.

The attached system initiates an Adapter command by following the sequence shown below:

1. The attached system must write the command request code into the SCB including the address
to the parameter block, if required.

2. The attached system writes to the Adapter’s CMD/STS Register and sets the following bits to
one:

a. INTERRUPT ADAPTER bit (bit 0)
b. SSB CLEAR bit (bit 2)
c. EXECUTE bit (bit 3).

Note: The RESET SYSTEM INTERRUPT bit (bit 8) must be considered and properly set to prevent
loss of interrupts.

This sequence will cause an interrupt internal to the Adapter. The Adapter will fetch, via DMA, the
SCB and any required parameters. Once the SCB and any required parameters are downloaded, the
Adapter will write a zero to the Command field of the SCB. This indicates to the attached system
that the command has been downloaded and another may be issued.

If the SCB REQUEST bit (bit 4) of the Adapter CMD/STS Register is set to one, an interrupt will
also be posted to the attached system when the SCB is available for additional commands. If this is
the case, the attached system must reset the interrupt by writing a zero to the RESET SYSTEM bit
(bit 8) of the CMD/STS Register to clear the Adapter-to-system interrupt and post an ILE to clear
the interrupt. The system should also check that the Command Field of the SCB is set to zero when
the interrupt is recognized. If the Command Field is zero, then the SCB is available for use. If the
Command Field is non-zero, an EXECUTE Interrupt request was issued or the SCB was altered in
preparation for an EXECUTE Interrupt request subsequent to the SCB REQUEST. If SCB
REQUEST is desired, it is recommended that either the SCB REQUEST be issued coincident with an
EXECUTE Interrupt Request, or that the SCB alteration and EXECUTE Interrupt Request be per-
formed only in response to SCB CLEAR.

A maximum of three commands may be executed simultaneously within the Adapter. A fourth
command will not begin execution until there are less than three commands executing
simultaneously. There may not be more than one transmit or receive command executed at one time.
Thus the Adapter may be executing a TRANSMIT command, a RECEIVE command, and one
other command.

3-24 Token-Ring Network Adapter

Status Reporting: The System Status Block

The System Status Block (SSB) is eight bytes in length. It is the block in which the Adapter returns
RING STATUS, COMMAND REJECT STATUS, and status upon completion of Adapter
commands. The Adapter will always DMA write the entire eight bytes regardless of the actual length
of the returned status. The unspecified status fields should be ignored in this case. The SSB is not
used to return status for frame commands. The frame status information can be obtained in the
parameter lists associated with RECEIVE and TRANSMIT commands. The SSB format is defined
in Figure 3-6.

SSB Address +0 Command
+2 Status 0
+4 Status 1
+6 Status 2

Figure 3-6. System Status Block Format

The Command field is written to the SSB by the Adapter and is used to identify either RING
STATUS, COMMAND REJECT STATUS, or the status of a general command. The Status fields
contain the actual status information for the Command field.

Following the DMA operation to write the status information to the SSB, the Adapter will interrupt
the attached system to indicate that the SSB contains valid status information. The attached system
software should reset the Adapter-to-system interrupt and communicate to the Adapter that the SSB
is clear and available for additional status posting. This is done by writing a one to the SSB CLEAR
and zero to the RESET SYSTEM INTERRUPT bit (bits 2 and 8 respectively) of the CMD/STS
Register. In addition, the attached system must clear the Adapter interrupt by writing an ILE.

Software Interface 3-25

RING STATUS Interrupt

The SSB will be loaded with the current ring status and an interrupt posted to the attached system
when any of the following error interrupt conditions occur:

1.
2.

NS » e

8.

The Adapter detects a signal loss on the ring.

The Adapter is transmitting or receiving beacon frames to/from the ring. This interrupt
condition may be disabled by setting bit 1 of the OPEN command options to zero.

The Adapter transmits a Report Error MAC Frame. This interrupt error condition may be
disabled by setting bit 2 of the OPEN command options to zero.

An open or short circuit fault is detected by the Adapter.
The Adapter receives a Remove Ring Station MAC frame.
The attached product counter has been incremented from 254 to 255.

The Adapter has been opened and is the only station on the ring or becomes the only station on
the ring.

The Adapter is transmitting or receiving claim Token MAC frames.

Ring Status will not be reported until the completion of the OPEN command.

The SSB is loaded with RING STATUS as shown in Figure 3-7. The bit positions of the Ring
Status Field are defined in Figure 3-8.

SSB Address +0 X‘0001°
+2 Ring Status Field

Figure 3-7. RING STATUS SSB Format

3-26 Token-Ring Network Adapter

(MSB)
Bit 0

O 00 3 N R W

—_— e e
w N = O

14

15
(LSB)

Figure 3-8. RING STATUS Field Bit Assignments

These bits are described in Table 3-6.

Signal Loss

Hard Error

Soft Error

Transmit Beacon

Lobe Wire Fault

Auto-removal Error

-reserved-

Remove Received

Counter Overflow

Single Station

Ring Recorvery

0

0
0
0
0

Software Interface

3-27

Table 3-6. RING STATUS Field Bit Functions

BITO

BIT 1

BIT 2

BIT 3

BIT 4

BIT 5

BIT 6
BIT 7

BIT 8

BIT 9

BIT 10

BITS I1-15

SIGNAL LOSS. Bit 0, when set to one, indicates that the Adapter has detected a
loss of signal on the ring.

HARD ERROR. Bit 1, when set to one, indicates that the Adapter is presently
transmitting or receiving beacon frames to or from the ring.

SOFT ERROR. Bit 2, when set to one, indicates that the Adapter has transmitted a
Report Error MAC frame.

TRANSMIT BEACON. Bit 3, when set to one, indicates that the Adapter is
transmitting beacon frames to the ring.

LOBE WIRE FAULT. Bit 4, when set to one, indicates that the Adapter has
detected an open or short circuit in the lobe data path. The Adapter will be closed
and at the state following Adapter initialization (waiting for an SCB command).

AUTO-REMOVAL ERROR . Bit 5, when set to one, indicates that the Adapter
has detected an internal hardware error following the Beacon Auto-removal process
and has de-inserted from the ring. The Adapter will be ciosed and at the state
following Adapter initialization (waiting for an SCB command).

RESERVED. This bit is undefined.

REMOVE RECEIVED. Bit 7 , when set to one, indicates that the Adapter has
received a Remove Ring Station MAC frame request. The Adapter will be closed
and at the state following Adapter initialization (waiting for an SCB command).

COUNTER OVERFLOW. Bit 8, when set to one, indicates that the Attached
Product Counter has been incremented from 254 to 255.

SINGLE STATION. Bit 9, when set to one, indicates that the Adapter has sensed
that it is the only station on the ring. This bit will be reset to zero when
another station inserts into the ring.

RING RECOVERY. Bit 10, when set to one, indicates the Adapter is either
transmitting or receiving Claim Token MAC frames. This bit is reset to zero when
the Adapter receives a Ring Purge MAC frame.

RESERVED. Bits 11-15 will be set to zero.

3-28 Token-Ring Network Adapter

Some of the RING STATUS Interrupts require a response from the Adapter or the Adapter user.
For example, item 4 describes a situation in which an open or short has occurred on the ring lobe
media. An appropriate response by the user is to check the ring cable of the workstation for an
accidental disconnect from the ring. Item 5 describes the Adapter being forcibly removed from the
ring, the user should respond by executing the Adapter Diagnostics to check for proper Adapter
operation. If the Adapter successfully completes the Diagnostics, the user may again insert onto the
ring. If the user receives a Counter Overflow, the proper action is to do a READ ERROR LOG,
which will reset the product counter. Refer to “Read Error Log.” in this chapter.

In the event the Adapter receives a Single Station status, the Adapter should ignore the error if it is
known to be the first station on the ring or the only station on the ring. If the Adapter receives a
Single Station status and there are other stations on the ring, the user should execute the Adapter
Diagnostics to ensure proper Adapter operation.

Due to the dynamic nature of the report indications and the possibility that the ring status could
change before the system can respond to a previous RING STATUS interrupt, the current ring
status could possibly equal the last ring status report.

COMMAND REJECT Status Interrupt

The SSB will be loaded with COMMAND REJECT STATUS if the Command Field or Address
Field of the SCB are in error. The format of the SSB in this situation is shown in Figure 3-9. The
Command Field of the SSB will be set to X‘0002’. The Reject Command will be loaded with the
Command Field of the offending SCB. Figure 3-10 defines the bit position within the Reject Reason
Field and Table 3-7 describes these bits.

SSB Address +0 X‘0002’
+2 Reject Reason
+4 Reject Command

Figure 3-9. COMMAND REJECT SSB Format

Software Interface 3-29

(MSB)

Bit 0 Illegal Command
1 Address Error
2 Adapter Open
3 Adapter Closed
4 Same Command
5 0
6 0
7 0
8 0
9 0
10 0
11 0
12 0
13 0
14 0
15 0
(LSB)

Figure 3-10. Reject Reason Field Bit Assignments

3-30 Token-Ring Network Adapter

These bits are described in Table 3-7:

Table 3-7. Reject Reason Field Bit Functions

BITO

BIT 1

BIT 2

BIT 3

BIT 4

BITS 5-15

ILLEGAL COMMAND. Bit 0 is set to one when an illegal command is issued

from the SCB.

ADDRESS ERROR. Bit 1 is set to one if the SCB ADDRESS Field is odd (not

half-word aligned).

ADAPTER OPEN. Bit 2 is set to one if a command is issued when an Adapter is

open and the command is honored only when the Adapter is closed.

ADAPTER CLOSED. Bit 3 is set to one if a command is issued when the Adapter
is closed and the command is honored only when the Adapter is open.

SAME COMMAND. Bit 4 is set to one if a command is issued and the same

command is already executing.

These bits will be set to zero.

ADAPTER CHECK Error Interrupt

The ADAPTER CHECK Interrupt is generated when the Adapter has encountered an unrecoverable
hardware or software error. The SSB is not altered when the ADAPTER CHECK Interrupt is

generated. The Adapter will be in a closed state waiting for an Adapter reset.

ADAPTER CHECK information may be obtained by writing the 16-bit Address Register with the
address X‘05EQ’ and then reading the next consecutive eight bytes through the Data/ Auto-increment
register. The Adapter check status format is shown in Figure 3-11. The bit assignments are illustrated in
Figure 3-12 and are described in Table 3-8.

Adapter RAM X‘0SE0” +0

Adapter Check

+2

Parameter 0

+4

Parameter 1

+6

Parameter 2

Figure 3-11. Adapter Check Status Format

Software Interface

3-31

(MSB)

Bit 0 DIO Parity

| DMA Read Abort
2 DMA Write Abort
3 Illegal Op Code

4 LB Parity Error

5 EM Parity Error
6 SIF Parity Error
7 PH Parity Error
8 RECYV Parity Error
9 XMIT Parity Error
10 Ring Underrun
1 Ring Overrun
12 Invalid Interrupt
13 Invalid Error Interrupt
14 Invalid XOP
15 Program Check

(LSB)

Figure 3-12. Adapter Check Field Bit Assignments

3-32 Token-Ring Network Adapter

Table 3-8. Adapter Check Bit Definitions

BIT 0

BIT 1

BIT 2

BIT 3

BIT 4-9

DIO PARITY. Bit 0 is set to one if the Adapter detects bad parity on data passed
from the attached system to the Adapter through a direct 1/ O access. Parameters
0-2 should be ignored.

DMA READ ABORT. Bit 1 is set to one if the Adapter aborts a DMA read
operation (from the system). This can be a result of parity errors in excess of the
parity abort threshold set during initialization, bus errors in excess of the bus error
abort threshold also set during initialization, or if the Adapter times out (10
seconds) waiting for the completion of a DMA bus operation (with or without an
error). Parameter 0 will contain the following information:

X‘0000° Indicates a timeout abort.
X0001° Indicates a parity error abort.
X‘0002 Indicates a bus error abort.

Parameters 1-2 will contain the failing system address. This address can be within
plus or minus 6 bytes of the actual failed address.

DMA WRITE ABORT. Bit 2 is set to one if the Adapter aborts a DMA write. The
description for DMA READ ABORT (bit 1) applies to this condition also.

ILLEGAL OP CODE. Bit 3 is set to one if the Adapter’s Communications
Processor detects an illegal operation code in the Adapter’s internal program.
Parameters 0-2 will contain the Communications Processor registers R13, R14, and
R15 respectively.

PARITY ERRORS. These bits are set to one if the Adapter detects a bus parity
error on the Adapter’s internal Adapter Bus. Parameters 0-2 will contain the
Communications Processor registers R13, R14, and R15 respectively. The specific
bit set to one (bits 4-9) depends upon the source of the error. A description of bits
4-9 and the parity error causing the bits to be set to one, follows:

BIT 4 Bit 4 is set to one if the Communications Processor detects the
Adapter Bus parity error.

BIT 5 Reserved.

BIT 6 Bit 6 is set to one if the System Interface detects the Adapter Bus

parity error.

BIT 7 Bit 7 is set to one if the Protocol Handler detects the Adapter Bus
parity error.

Software Interface 3-33

Table 3-8. Adapter Check Bit Definitions (Continued)

BIT 10

BIT 11

BIT 12

BIT 13

BIT 14

BIT 15

BIT 8 Bit 8 is set to one if the parity error occurred when the Adapter was
copying a frame from the ring. Parameter 0 will contain the buffer
address.

BIT9 Bit 9 is set to one if the parity error occurred when the Adapter was

transmitting on the ring. Parameter 0 will contain the buffer address.

RING UNDERRUN. Bit 10 is set to one if the Adapter detects an internal DMA
underrun when transmitting on the ring. Parameters 0-2 should be ignored.

RING OVERRUN. Bit 11 is set to one if the Adapter detects an internal DMA
overrun when receiving from the ring.

INVALID INTERRUPT. Bit 12 is set to one if an unrecognized interrupt was
generated internal to the Adapter. Parameters 0-2 will contain the Communications
Processor registers R13, R14, and R15, respectively.

INVALID ERROR INTERRUPT. Bit 13 is set to a one if an unrecognized error
interrupt was generated. Parameters 0-2 will contain Adapter registers R13,
R14, R15.

INVALID XOP. Bit 14 is set to one if an unrecognized XOP request was generated
in the Communications Processor’s code. Parameters 0-2 will contain the
Communications Processor registers R13, R14, and R15, respectively.

PROGRAM CHECK. This bit will be set to one if the Adapter’s internal software
detects a software error. Parameters 0-2 will contain the following:

Parameter 0 Abend Code.
Parameter 1 Location of detected error.

Parameter 2 Ignored.

3-34 Token-Ring Network Adapter

Adapter Commands

This information describes the Adapter SCB commands and subsequent error reporting. Table 3-9

lists the available Adapter commands.

Table 3-9. Adapter Command Summary

Function Command
OPEN X‘0003’
TRANSMIT X‘0004°
TRANSMIT HALT X0005
RECEIVE X0006
CLOSE X0007°
SET GROUP ADDRESS X*0008’
SET FUNCTIONAL ADDRESS X‘0009
READ ERROR LOG X‘000A°
READ ADAPTER BUFFER X‘000B’°

OPEN Command

Before the Adapter can be used for data communications, the attached system must first open the
Adapter by issuing an OPEN command. The OPEN command serves to set the Adapter’s various
addresses and enables the receipt of frames from the ring. A RECEIVE command must be issued

immediately after successful OPEN completion. The Adapter will suspend processing of all interrupt

requests except reset during the OPEN process.

The OPEN options can be changed only by closing the Adapter via the CLOSE command and then

re-opening the Adapter with the desired options.

Software Interface

3-35

OPEN Command Block

The OPEN SCB is shown in Figure 3-13. The Address Field is a 24-bit address which points to a 32-
byte block of the OPEN parameter list. The high order byte of this address is ignored.

SCB Address +0 X0003°
+2 Address (High)
+4 Address (Low)

Figure 3-13. OPEN Command SCB

Upon completion of the OPEN command, the status of the OPEN completion is loaded into the
SSB address+2.

OPEN Parameter List.

Figure 3-14 defines the OPEN parameter list. Table 3-10 describes the functions of the fields within
the OPEN parameter list.

3-36 Token-Ring Network Adapter

BYTE 0

10
12
14
16
18
20
22
24
26
27
28
30

Open Options

Node Address (high)

Node Address

Node Address (low)

Group Address (high)

Group Address (low)

Functional Address (high)

Functional Address (low)

Receive List Size

Transmit List Size

Buffer Size

Exp. RAM Start Address

Exp. RAM End Address

XMIT Buffer Min Count

XMIT Buffer Max Count

Product ID Address (high)

Product ID Address (low)

Figure 3-14. OPEN Parameter List

Software Interface

3-37

3-38

Table 3-10. OPEN Parameter Functions

BYTE 0,1 OPEN OPTIONS. The bit functions of the Open Options field are
provided below:

BIT 0 WRAP INTERFACE. Setting bit 0 to one on OPEN negates the
Ring Insertion Process and causes all user transmit data to
appear as user receive data. The data is transmitted on the lobe
from the attached product to the wiring concentrator. This
option can be used for system interface debug, system
interface DMA testing, or lobe media testing. A CLOSE
command must be issued to terminate WRAP mode.

BIT | DISABLE HARD ERROR. If bit 1 is set to a one, the RING
STATUS Hard Error and TRANSMIT BEACON Interrupts will not
be generated.

BIT 2 DISABLE SOFT ERROR. If bit 2 is set to a one, the RING
STATUS Soft Error Interrupt will not be generated.
BIT 3 PASS ADAPTER MAC FRAMES. Bit 3 is used to specify to the

Adapter what action is to be taken when Adapter class MAC
frames are received, but are not supported by the Adapter. If
this bit is set to one the MAC frames will be passed to the
attached system as normal receive data. If this bit is set to zero,
the Adapter will ignore all unsupported Adapter MAC frames,
purge them from internal Adapter buffers, and transmit a
negative response MAC frame to the originating station.

BIT 4 PASS ATTENTION MAC FRAMES. If bit 4 is set to one, all
Attention MAC frames that are not equal to the last Attention
MAC frame received will be passed to the system as normal
receive data following normal processing by the Adapter.

BIT S PAD ROUTING FIELD. If bit S is set to one, the Adapter will
pad the Routing Field to 18 bytes. If no RI field is present in the
received frame, the entire field will be padded to 18 bytes. This
option is voided if the current buffer’s data count is not at least
32 bytes. In this case the frame will be transferred as if the bit
was set to zero.

BIT 6 FRAME HOLD. If bit 6 is set to one, the Adapter will wait for an
entire frame to be read from the ring before initiating the DM A
transfer of the frame to the system. If this bit is a zero,-then a
DMA transfer will be initiated whenever an Adapter internal
buffer is filled.

Token-Ring Network Adapter

Table 3-10. OPEN Parameter Functions (Continued)

BYTES 2-7

BYTES 8-11

BYTES 12-15

BYTES 16-17

BYTES 18-19

BYTES 20-21

BIT 7 CONTENDER. If bit 7 is set to one, the Adapter will participate
in the Claim-Token Process if another Adapter detects the need
for contention and initiates the Claim-Token Process. This bit
has no effect if this Adapter detects the need for contention
and initiates the Claim-Token Process.

BIT 8 PASS BEACON MAC FRAMES. If this bit is set to one, the
Adapter will pass Beacon MAC frames. After passing the
Beacon MAC frame, the next Beacon MAC frame will be passed
only if the source address or the Beacon Type Subvector
changes.

BIT 9-15 RESERVED. Bits 9-15 are ignored.

NODE ADDRESS. This 6-byte field specifies the node address for the
Adapter. If this address is all zeros, the Adapter will use the Adapter Address
read from the address module. If the Node Address is not zero then the
following check is made. Byte 0 bits 0,1 must be set to “01”. If any of the
above checks fail, the Adapter will report a Node Address Error.

GROUP ADDRESS. This 32-bit field specifies the Group Address and will
cause the Adapter to receive messages that are sent to the Group Address.
The GROUP ADDRESS can be any value. Bit 0 is ignored by the Adapter.
Group Address recognition is disabled by specifying the GROUP ADDRESS
as zero.

FUNCTIONAL ADDRESS. This 32-bit field specifies the Functional Address
and will cause the Adapter to receive messages that are sent to the

Functional Address. FUNCTIONAL ADDRESS bits 0, 30, and 31 are ignored
by the Adapter. A zero value disables the Functional Address feature.

RECEIVE LIST SIZE. This 16-bit field indicates the number of bytes the
Adapter will read when obtaining a Receive List from the attached system. A
decimal value of 0, 14, 20, or 26 is required. If zero, the default value of 26

is used.

TRANSMIT LIST SIZE. This 16-bit field indicates the number of bytes the
Adapter will read when obtaining a Transmit List from the attached system.
A decimal value of 0, 14, 20, or 26 is required. If zero, the default value of 26
is used.

BUFFER SIZE. This 16-bit field indicates the Adapter’s internal buffer size in
bytes. BUFFER SIZE must be greater than or equal to 96. The three low-
order bits must be zero. If this field is zero, a default value of 112 bytes

is used.

Software Interface

3-39

Table 3-10. OPEN Parameter Functions (Continued)

BYTES 22-23 EXPANSION RAM START ADDRESS. This 16-bit parameter defines an
expansion RAM start address within the Adapter. This additional RAM may
be used for transmit and/ or receive buffers. If this field is zero, no external
RAM is defined within the Adapter. If bit 15 is set to one, the existing
internal Adapter RAM will not be used for transmit or receive buffers,
defaulting to the expansion RAM. The expansion RAM within the Adapter
begins at X*4006’and ends at X“7FFF’. The expansion RAM and decode logic
are tested, but if bad parity is detected, an ADAPTER CHECK Parity Error
will be issued.

BYTES 24-25 EXPANSION RAM END ADDRESS. This 16-bit field specifies the ending
address of Adapter expansion RAM. The Expansion RAM End Address for
the Adapter is X‘7FFE’. If the EXPANSION RAM START ADDRESS is zero,
this field is ignored.

BYTE 26 TRANSMIT BUFFER MINIMUM COUNT. This byte parameter contains the
number of Adapter buffers that are to be reserved as transmit buffers. These
buffers will be reserved for transmit only and will never be used for receive.

If zero is specified, no buffers are reserved for transmit. The minimum transmit
buffer count must be equal to or less than the transmit maximum buffer
count (byte 27).

BYTE 27 TRANSMIT BUFFER MAXIMUM COUNT. This byte parameter contains the
maximum number of Adapter buffers that are to be used for transmit. A
minimum of two buffers must be available for receive. If this parameter is set
to zero, a default value of six buffers is used. The product of TRANSMIT
BUFFER MAXIMUM COUNT and (BUFFER SIZE -8) determines the maximum
size frame that the Adapter can transmit.

BYTES 28-31 PRODUCT ID ADDRESS. This 32-bit field contains a 24-bit address of the
attached system Product ID. Eighteen bytes are transferred to the Adapter
during OPEN. If a Request Station Attachment MAC frame is received from
the Network Manager, the bytes are read from the specified location in
adapter memory. See the IBM Token-Ring Network Architecture Reference manual
for more detail concerning the Product ID.

3-40 Token-Ring Network Adapter

OPEN Completion Status

Upon completion of the OPEN command, the SSB will be loaded with the status of the OPEN
completion as shown in Figure 3-15.

SSB Address +0 X0003

+2 Status Error

Figure 3-15. OPEN Command SSB

The first word of the SSB contains the OPEN command op code. The second word contains a
Status Byte and an Error Byte. The bit definitions of the Status Byte are shown in Table 3-11.

Table 3-11. OPEN Status Bit Definitions

BIT 0 ADAPTER OPEN. Bit 0 is set to one if the OPEN command completed
successfully. All other bits will be set to zero.

BIT 1 NODE ADDRESS ERROR. Bit 1 is set to one if an error was detected in the Node
Address of the Open Parameters or the Adapter Address if the node address was all
Zeros.

BIT 2 LIST SIZE ERROR. Bit 2 is set to one if the Receive List Size and/or the
Transmit List Size are not equal to 0,14,20, or 26.

BIT 3 BUFFER SIZE ERROR. Bit 3 is set to one if BUFFER SIZE is less than 96 or
negative, if the three low-order bits are not zero, or if there are less than two buffers
specified.

BIT 4 EXPANSION RAM ERROR. Bit 4 is set to one if EXPANSION RAM is not
within the range X‘4006’ to X‘7FFF’ or if an error (other than parity) is detected in
the RAM.

BIT 5 TRANSMIT BUFFER COUNT ERROR. Bit 5 is set to one if the total number of
buffers minus the TRANSMIT BUFFER COUNT is less than two.

BIT 6 OPEN ERROR. Bit 6 is set to one if an error is detected during the OPEN
command processing. The Error byte of the SSB will specify the error.

BIT 7 RESERVED. This bit is reset to zero.

Table 3-12 specifies the Error Byte of the second word of the OPEN SSB. The Error Byte is
effectively divided into two 4-bit entities (nibbles). The first 4-bit field, entitled Open Phase, is set to
the OPEN command processing phase when the error defined in the second 4-bit field occurs. The
second 4-bit field, entitled the Open Error Code, is set to the appropriate error code if a ring-related
error occurs during OPEN command processing. Table 3-13 describes the OPEN Error codes.

Software Interface 3-41

3-42

Table 3-12. OPEN Phases and OPEN Error Codes

BITS

8§ 9 10 11 Open Command Phases

0 0 o0 1 Lobe Media Test

0 0 1 0 Physical Insertion

0 0 1 1 Address Verification

0 1 0 O Roll Call Poll

0 1 0 1 Request Initialization
BITS

12 13 14 15 Open Error Codes

0 0 0 1 Function Failure

0 0 1 0 Signal Loss

0 o0 1 1 not used

o 1 0 O not used

0 1 0 1 Timeout

0o I 1 0 Ring Failure

o 1 1 1 Ring Beaconing

1 0 0 O Duplicate Node Address

1 0 0 1 Request Initialization

1 0 1 0 Remove Received

Token-Ring Network Adapter

Table 3-13. OPEN Error Codes

FUNCTION FAILURE This code is returned when the Adapter is unable to transmit
to itself while wrapped through its lobe at the wiring
concentrator, or if any MAC frames are received.

SIGNAL LOSS This code is returned if a signal loss condition is detected at
the receiver input of the Adapter during the open process
(either when wrapped or inserted onto the ring).

TIMEOUT This code is returned if the Adapter fails to logically insert
onto the ring before the expiration of the insertion timer.
Each phase of the insertion process must complete before the
insertion time (18 seconds) expires.

RING FAILURE This code is returned if, after becoming the Active Monitor
on the ring, the Adapter times out when attempting to purge
the ring. That is, the Adapter is unable to receive its own
Ring Purge MAC frames.

RING BEACONING This code is returned if the Adapter receives, after physically
inserting, a Beacon MAC frame. This indicates a break in the
ring.

DUPLICATE NODE ADDRESS This code is returned if, during the Address Verification
Phase, the Adapter determines that another station on the
ring duplicates the Adapter’s node address.

REQUEST INITIALIZATION This code is returned if the Adapter determines that a Ring
Parameter Server (RPS) is present on the ring and the RPS
does not respond to a Request Initialization MAC frame. (If
no RPS is present, the Adapter will not return this code.)
For additional information about a Ring Parameter Server,
consult the IBM Token- Ring Network Architecture
Reference Manual.

REMOVE RECEIVED This code is returned if the Adapter receives a Remove
Adapter MAC frame during the insertion process.

Software Interface 3-43

Adapter Buffer Management

Frame data is transferred into the Adapter local memory before transmission on the ring. Data is
stored in the Adapter local memory as a linked list of buffers. Because the chosen buffer size can
affect overall Adapter performance, the local buffer size is a user-programmable option through the
OPEN parameters. The default Adapter internal buffer size is 112 bytes. An example of the
Adapter’s internal buffer format in which the buffer size is 112 is shown in Figure 3-16. Note that the
buffer size chosen for the Adapter internal buffer is independent of the data buffers used in the
attached system memory. The Adapter automatically divides or combines internal memory buffers
to form the minimum number of internal buffers required to represent a frame.

>
BACKWARD POINTER| 2 BYTES

FORWARD POINTER 2 BYTES

BUFFER HEADER
(8 BYTES) BUFFER STATUS 2 BYTES

DATA LENGTH 2 BYTES

PHYSICAL CONTROL 2 BYTES

FRAME HEADER SOURCE ADDRESS 6 BYTES
(32 BYTES)
DEST. ADDRESS 6 BYTES
ROUTING FIELD 18 BYTES (MAX)
N
e
DATA FIELD
(68 BYTES) DATA 68 BYTES
e
RECEIVED CRC [™ CRC 2 BYTES
(4 BYTES)
CRC 2 BYTES
112 BYTES

Figure 3-16. Example Adapter Internal Buffer Format

3-44 Token-Ring Network Adapter

Buffer Allocation

The Adapter has 18,176 bytes of RAM available for a buffer pool for both the reception of frames
from the ring media and transmission of frames to the ring media. When the attached system
requests a frame transmission, buffers are taken from the buffer pool one at a time until the frame
has been transferred to the Adapter. The user can specify a maximum number of these buffers to be
used for transmission. The rest are dedicated for receive.

The TRANSMIT BUFFER MAXIMUM COUNT of the OPEN parameters must leave at least two
buffers available to receive frames. A maximum of two transmit frames can be processed
simultaneously by the Adapter. One will be enqueued for transmission while the other is transferred
across the system interface, or both frames can be enqueued for transmission.

The maximum number of buffers that can be taken for frame transmission is specified in the
TRANSMIT BUFFER MAXIMUM COUNT of the OPEN parameters. If the system requests
transmission of a single frame that causes the number of buffers required to transmit the frame, to
exceed the TRANSMIT BUFFER MAXIMUM COUNT, the TRANSMIT command will be
terminated with a LIST ERROR of type TRANSMIT THRESHOLD. The TRANSMIT BUFFER
MAXIMUM COUNT must be set such that a minimum of two receive buffers are available for
receiving frames.

Buffer Size

The 18,176 bytes of RAM for a buffer pool will configure into one hundred and sixty-two 112-byte
buffers. The default number of buffers is six, allowing a transmit frame maximum information field
size of 600 bytes including a 32 byte frame header and 4 byte CRC field. The attached system can
alter the buffer size with the OPEN Command BUFFER SIZE parameter.

The limit on transmit frame size is specified by the product of TRANSMIT BUFFER MAXIMUM
COUNT field and (BUFFER SIZE -8) field. The buffer size must be evenly divisible by eight and a
minimum of two buffers must be allocated. The minimum buffer size is 96 bytes.

Software Interface 3-45

TRANSMIT Command

The TRANSMIT command is used to transmit frames to other nodes. These frames are passed from
the attached system to the Adapter using the logical format shown in Figure 3-17.

AC FC

Destination Address

Source Address

Routing Field

Data

2 Bytes
6 Bytes
6 Bytes
18 Bytes (max)

Figure 3-17. Attached System Frame Logical Format

3-46 Token-Ring Network Adapter

Table 3-14 describes the logical frame fields.

Table 3-14. Attached System Frame Fields

AC

FC

ACCESS CONTROL FIELD. This control field consists of
the following bit functions:

BITS 0-2 ACCESS PRIORITY. Bits 0-2 select
the Access Priority for the frame. This
value (0-3) must be less than or equal
to the Authorized Access Priority. For
a discussion of Priority, consult the
IBM Token-Ring Network
Architecture Reference.

BITS 3-7 RESERVED. These bits are reset to
zero by the Adapter.

FRAME CONTROL FIELD. The bit assignments and bit
definitions of the Frame Control (FC) field byte are defined
in the following:

BITS 0,1 FRAME TYPE BITS. These two bits
indicate the frame type. Currently, the
following frame types are defined:

00 MAC Control Frame

01 Non-MAC Control Frame
10 Reserved

11 Reserved

BITS 2.3 RESERVED. Bits 2 and 3 are always set to
Zero.

BITS 4-7 FC ATTENTION CODE. These bits
indicate those frames for which the
Adapter receives an internal interrupt
when the frame is copied or repeated.
The FC Attention code is examined in
MAC frames only. Consult the /BM
Token-Ring Network Architecture
Reference for further information.

Software Interface 3-47

Table 3-14. Attached System Frame Fields (Continued)

DESTINATION ADDRESS

SOURCE ADDRESS

ROUTING FIELD

DATA

3-48 Token-Ring Network Adapter

This field is 48 bits wide and contains the address of the
destination. The address must be written into system memory
such that the highest order byte is transferred first and the
lowest order byte last. This results in the address contained
within this six-byte field organized in system memory with
the highest order byte occupying the lowest system byte
address and the lowest order byte occupying the highest
system byte address.

" The Adapter will store the Node Address into the six

bytes of the SOURCE ADDRESS with the exception of byte
0 bit 0 (the Routing Information Indicator). The Node
Address is that address supplied by the Adapter Address

or passed during the OPEN command.

The Routing Field must be included if bit 0 of the SOURCE
ADDRESS field is set to one.

The Data portion is transmitted as specified by the attached
system. The CRC, Ending Delimiter, and FS are appended
to the data by the Adapter. Note that the attached system
cannot append its own CRC.

Transmit Command Block

The TRANSMIT command will be rejected with Adapter COMMAND REJECT STATUS if the
Adapter has not been opened, if there is already an executing TRANSMIT command, or if the
address passed in the SCB is not aligned on an even byte boundary.

The System Command Block for a TRANSMIT command is shown in Figure 3-18.

SCB ADDRESS +0 X+0004’
+2 ADDRESS (high)
+4 ADDRESS (low)

Figure 3-18. TRANSMIT SCB

ADDRESS is a 32-bit field containing a 24-bit address pointer to the Transmit Parameter List
Chain. The high-order byte of the ADDRESS field is ignored. This address must be even byte-
aligned. The Transmit Parameter List Chain is a 26-byte block which is used during the transmission
of a single frame. A chained Transmit Parameter List is created by the attached system. It passes the
first address in TRANSMIT SCB. One Transmit Parameter List cannot be used to transmit more
than one frame. Several Transmit Parameter Lists can be used to transmit a single frame.

Software Interface 3-49

Transmit Parameter List

The Transmit Parameter List is shown in Figure 3-19.

FORWARD POINTER
FORWARD POINTER
TRANSMIT CSTAT

FRAME SIZE

1*| DATA COUNT
DATA ADDRESS (high)
DATA ADDRESS (low)

1*| DATA COUNT
DATA ADDRESS (high)
DATA ADDRESS (low)

0*| DATA COUNT
DATA ADDRESS (high)
DATA ADDRESS (low)

*BIT ZERO VALUE.

Figure 3-19. TRANSMIT Parameter List shown with three Data Counts

3-50 Token-Ring Network Adapter

Table 3-15 describes each of the fields in the TRANSMIT Parameter List.
Table 3-15. TRANSMIT Parameter List Fields

FORWARD POINTER This 32-bit field contains a 24-bit address which is a pointer
to the next Transmit Parameter List in the chain. When this
address is ODD, it denotes that the current Transmit List is
the last in the chain. The Adapter will continue to process
Transmit Lists until it reads an ODD address. It will then
wait for the last frame (list with ODD address) to be
transmitted onto the ring. If the system updates the
FORWARD POINTER before the last frame is transmitted,
the Adapter will continue to process the Transmit Lists. If
not, the TRANSMIT command will complete and another
must be issued to continue. The system must update the
FORWARD POINTER from the most significant byte to
the least significant byte to ensure that the address is valid
before changing to an EVEN address. Frames, not lists that
define partial frames, should be added to the chain. The
FORWARD POINTER should not be initialized to point to
itself, as problems may occur due to the pipelined nature of
list processing employed by the Adapter. Transmit Lists must
be aligned on even byte boundaries. The Adapter will not
alter this parameter.

FRAME SIZE This 16-bit field contains the number of bytes to be
transmitted as a frame. The FRAME SIZE value includes
AC/FC, DESTINATION and SOURCE ADDRESS, the
Routing Field, and the Information Field. FRAME SIZE
does not include CRC, FS, or ED. This parameter is valid
only for the Transmit List that has the FRAME START bit
set. FRAME SIZE must be in all lists. The Adapter will not
alter this parameter. A frame size of zero is not valid. The
maximum frame size which can be transmitted may be
calculated as (BUFFER SIZE -8) x TRANSMIT BUFFER
MAXIMUM COUNT.

Software Interface 3-51

Table 3-15. TRANSMIT Parameter List Fields (Continued)

DATA COUNT

DATA ADDRESS

TRANSMIT CSTAT

3-52 Token-Ring Network Adapter

This 16-bit field contains the number of bytes to be
transmitted starting from the address defined in the DATA
ADDRESS parameter. There can be a maximum of three
DATA COUNT/DATA ADDRESS parameters to provide a
gather write capability per Transmit List (not frame). If Bit 0
is zero, it is the last DATA COUNT in the Transmit List. Bit
0 of the third DATA COUNT is ignored. A DATA COUNT
of 0 is permitted (with or without Bit 0 set). The sum of the
used DATA COUNT parameters must equal the FRAME
SIZE specified on the Start of Frame List. The DATA
COUNT can be even or odd. The Adapter will not alter this
parameter.

This 32-bit field contains the 24-bit address of the data to be
transmitted. DATA ADDRESS may be even or odd. The
Adapter will not alter this parameter.

TRANSMIT COMMAND/STATUS. This 16-bit parameter
is set by the attached system when the Transmit List is
created. It is over-written by the Adapter to report frame
completion status. When initially set by the attached system,
this parameter field is referred to as the TRANSMIT
CSTAT REQUEST field. After a frame completes
transmission, the Adapter will overwrite bits in this field only
in the list which starts the frame. These bits indicate the
completion status of the frame. This parameter field is
referred to as the TRANSMIT CSTAT COMPLETE. Note
that command and status information within the
TRANSMIT CSTAT field is associated with frames and not
the TRANSMIT command directly.

TRANSMIT CSTAT REQUEST.
The CSTAT bits are set by the attached system as follows:

BIT 0 VALID. The Adapter will wait for bit 0 to
be set to a one before processing the current
Transmit List. The attached system must
issue a TRANSMIT VALID Interrupt
Request when changing VALID bits from a
zero to a one. This bit is ignored unless the
list is an anticipated start of frame (i.e.
follows End of Frame or is first list of
command).

Table 3-15. TRANSMIT Parameter List Fields (Continued)

BIT 1 FRAME COMPLETE. Bit 1 should be reset
to zero.

BIT 2 START OF FRAME. Bit 2 must be set to
one for a list which defines the start of a
frame.

BIT 3 END OF FRAME. Bit 3 must be set to one

for a list which defines the end of a frame.

BIT 4 FRAME INTERRUPT. Setting bit 4 to one
will cause the Adapter to interrupt when the
frame has been transmitted, rather than
waiting for all frames on the chain to be
transmitted. This bit is ignored unless
START OF FRAME (bit 2) is a one.

BIT 5-15 RESERVED. Bits 5-15 should be set
to zero.

TRANSMIT CSTAT COMPLETE. This 16-bit field is loaded, on a list which starts a frame only,
with the completion code for the transmitted frame (not
TRANSMIT command) when the Adapter has transmitted a
frame. CSTATSs which are not in a list which defines the start
of a frame, are not altered by the Adapter. The TRANSMIT
CSTAT COMPLETE bit definitions are shown below:

BIT 0 VALID. Bit 0 is reset to zero.

BIT 1 COMPLETE. Bit 1 is set to one.

BIT 2 FRAME START. Bit 2 is set to one.

BIT 3 FRAME END. Bit 3 is the same as specified
in CSTAT REQUEST.

BIT 4 INTERRUPT (FRAME). Bit 4 is the same
as specified in CSTAT REQUEST.

BIT 5 TRANSMIT ERROR. Bit 5 is set to one if
the frame transmit or strip process was in
error.

Software Interface = 3-53

Table 3-15. TRANSMIT Parameter List Fields (Continued)

BITS 6-7 RESERVED. Bits 6-7 are the same as that
specified in the CSTAT REQUEST.

BIT 8-15 STRIP FS. Bits 8-15 contain a copy of the
FRAME STATUS Field (FS) byte returned
when the transmitted frame is stripped off
the ring. If TRANSMIT ERROR is set, the
FS should be ignored. Bits 14 and 15 of the
stripped FS will be set to zero. For further
discussion concerning FS consult the /BM
Token-Ring Network Architecture
Reference.

Transmit Completion

An interrupt will be generated for the TRANSMIT command when:

® All the frames specified by the Transmit Parameter List Chain have been transmitted, or;
e The TRANSMIT HALT command has completed, or;

® A frame has been transmitted that had FRAME INTERRUPT set in CSTAT, or;

® A list error is detected.

The SSB will be loaded as shown in Figure 3-20.

SSB ADDRESS +0 X0004’
+2 XMIT COMPLETE
+4 LIST ADDRESS (high)
+6 LIST ADDRESS (low)

Figure 3-20. TRANSMIT SSB

The Transmit Complete Field bit definitions are provided in Table 3-16.

3-54 Token-Ring Network Adapter

Table 3-16. Transmit Complete Field Bit Definitions

BIT O COMMAND COMPLETE. Bit 0 is set to one to indicate
that the TRANSMIT command has completed. The system
must issue another TRANSMIT command to transmit
additional frames. LIST ADDRESS will contain the address
of the last Transmit List processed. This bit is also set as a
result of a TRANSMIT HALT command. If a TRANSMIT
HALT is issued and no frames have been transmitted, LIST
ADDRESS will be cleared. The COMMAND COMPLETE
and FRAME COMPLETE bits are not set at the same time.

BIT 1 FRAME COMPLETE. Bit 1 is set to one to indicate that a
frame has been transmitted and the FRAME INTERRUPT
bit was set in CSTAT. Since frames on the Transmit Chain
can be transmitted faster than the system can respond to
the interrupts and/ or faster than the Adapter can cause the
interrupts, the FRAME COMPLETE interrupt can report
the completion of more than one frame at a time. LIST
ADDRESS will contain the address of the last Transmit List
of the last frame transmitted. If lists with the FRAME
INTERRUPT set are intermixed with lists that do not have
FRAME INTERRUPT set, FRAME COMPLETE can
include frames that did not have FRAME INTERRUPT set.

BIT 2 LIST ERROR. Bit 2 is be set to one if there is an error in
one of the lists that comprise a frame. Bits 8-13 define the
error. The TRANSMIT command will be terminated and the
system must issue another TRANSMIT command to
continue transmission. LIST ADDRESS will contain the
address of the list that starts the frame with parameter errors.
The LIST ERROR interrupt will not occur until all other
transmit status has been posted. The CSTATs of lists found
to be in error are not altered by the Adapter. Neither the
FRAME COMPLETE nor the COMMAND COMPLETE
bits will be set with LIST ERROR.

BIT 3-7 RESERVED. Bits 3-7 are reset to zero.

BIT 8 FRAME SIZE. Bit 8 is set to one if FRAME SIZE does not
equal the sum of the DATA COUNTs or if the frame size is
less than the required header plus one byte of Information
Field (15 bytes plus Routing Field), or a frame size of zero
was specified.

Software Interface 3-55

Table 16. Transmit Complete Field Bit Definitions (Continued)

BIT 9 TRANSMIT THRESHOLD. Bit 9 is set to one if a single
frame size determined by (BUFFER SIZE -8) x TRANSMIT
BUFFER MAXIMUM COUNT, as specified in the OPEN

command.

BIT 10 ODD ADDRESS. Bit 10 is set to one if an odd FORWARD
POINTER is read on a list that is not Frame End.

BIT 11 FRAME START. Bit 11 is set to one if the FRAME

START bit is set to one on a list that is not an anticipated
start of frame or the FRAME START bit is not set to one
on an anticipated start of frame.

BIT 12 UNAUTHORIZED ACCESS PRIORITY. Bit 12 is set to
one if the Access Priority requested has not been authorized.
BIT 13 UNAUTHORIZED MAC FRAME. Bit 13 is set to one if

the Adapter is not authorized to send a MAC Frame with the
Source Class specified, if the MAC frame has a source class
of zero or if the MAC frame FC ATTN field is greater than
one. For more information concerning MAC frames, consult
the IBM Token- Ring Network Architecture Manual.

BIT 14 ILLEGAL FRAME FORMAT. If bit 0 of the FC field was
set to one, the TRANSMIT command will terminate with
bit 14 set to one.

BIT 15 RESERVED. Bit 15 is reset to zero.

The attached system can create a chain of a fixed number of Transmit Lists, set the last list
FORWARD POINTER to the address of the first list and manipulate the VALID bits to initiate
transmission. When the Adapter reads a Frame Start List with the VALID bit reset to zero, it will
suspend processing untila TRANSMIT VALID Interrupt Request is issued by the system. The
system is not notified of this condition. The TRANSMIT VALID Interrupt must be issued when
changing one or more VALID bits from zero to one when the list is on the Transmit Chain.

The TRANSMIT VALID interrupt can be issued at any time and the Adapter will ignore the
interrupt if it is not waiting for a VALID bit transition.

If a fixed Transmit Chain technique is utilized and more than one list is used to transmit a single
frame, lists that do not have the FRAME START bit set should have the VALID bit reset to zero.
Since the Adapter does not alter the CSTAT field for lists that are not Start of Frame, re-validating
of the start of frame list will also release the remaining frame lists if the VALID bits were initiaily
set.

3-56 Token-Ring Network Adapter

A FORWARD POINTER should not be set to point to itself. That is, a chain should not be made
with one transmit list.

Due to the pipelined nature of transmit list processing, (i.e. the first frame is transmitted while the
second frame is concurrently DM Aed from system memory) this technique can cause the Adapter to
erroneously send the same frame twice.

The DATA ADDRESS parameters in the Transmit List can be on even or odd byte boundaries. If
the Adapter is to read data from an even byte system address to an internal odd byte address (due to
an odd Data Count), it will transfer a single byte and transfer the remaining data starting at an odd
system address.

Since Transmit Lists can be added dynamically to the Transmit Chain, a test should be made
following COMMAND COMPLETE to determine if the Adapter has processed all frames that the
attached system has placed on the chain. If frames have been added to the chain subsequent to the
TRANSMIT command, the FORWARD POINTER at the address contained in LIST ADDRESS
should be examined following COMMAND COMPLETE.

If the FORWARD POINTER is ODD, all frames have been transmitted. If the FORWARD
POINTER is EVEN, another TRANSMIT command should be executed with the SCB pointer to
the Transmit List Chain set equal to that FORWARD POINTER.

Transmit List Examples

Four examples (Figures 3-21 to 3-24) of possible list formats will be illustrated and all result in the
transmission of a single 400-byte frame. Figure 3-23 and Figure 3-24 are configured such that the
attached system buffer space is appended to a 14-byte list.

Software Interface 3-57

FORWARD POINTER (high)

FORWARD POINTER (low)

CSTAT = VAL, SOF, EOF

SIZE =400

1* DATA COUNT = 200

DATA ADDRESS (high) -

DATA AREA

200 BYTES

I* DATA COUNT = 100

DATA ADDRESS (high)

DATA ADDRESS (low) >

DATA ADDRESS (low)

0* COUNT = 100

DATA ADDRESS (high)

DATA AREA

100 BYTES

DATA ADDRESS (low)

*Bit Zero Value.

Figure 3-21. Transmit List Format: Example 1

3-58 Token-Ring Network Adapter

DATA AREA

100 BYTES

FORWARD POINTER (high)

FORWARD POINTER (low)

FORWARD POINTER (high)

CSTAT = VAL, SOF

SIZE = 400

0* DATA COUNT = 100

DATA ADDRESS (high)

FORWARD POINTER (low)

CSTAT = VAL, EOF

SIZE = 400

1* DATA COUNT = 140

DATA ADDRESS (high)

DATA ADDRESS (low)

DATA ADDRESS (low)

0* DATA COUNT = 160

DATA ADDRESS (high) -

Y
DATA AREA

100 BYTES

*Bit Zero Value

DATA ADDRESS (low)

DATA AREA

160 BYTES

DATA AREA

140 BYTES

Figure 3-22. Transmit List Format: Example 2

Software Interface

3-59

FORWARD POINTER (high)

FORWARD POINTER (low)

CSTAT = VAL, SOF, EOF

SIZE = 400

0* DATA COUNT = 400

DATA ADDRESS (high)

DATA ADDRESS (low) .

DATA AREA

400 BYTES

*Bit Zero Value.

Figure 3-23. Transmit List Format: Example 3

3-60 Token-Ring Network Adapter

FORWARD POINTER (high)

FORWARD POINTER (high)

FORWARD POINTER (low)

CSTAT = VAL, SOF

SIZE = 400

0*

DATA COUNT = 200

DATA ADDRESS (high)

Lt

FORWARD POINTER (low)

CSTAT = VAL, EOF

SIZE = 400

0*

DATA COUNT = 200

DATA ADDRESS (high)

DATA ADDRESS (low)

Lt

DATA AREA

200 BYTES

*Bit Zero Valve.

Figure 3-24. Transmit List Format: Example 4

TRANSMIT HALT Command

DATA ADDRESS (low)

DATA AREA

200 BYTES

The TRANSMIT HALT command is used to interrupt the Transmit List chain. Following
recognition of this command, the Adapter will terminate the transmit chain as soon as possible. Any
frames queued in the Adapter will be purged and the TRANSMIT command will be terminated with
COMMAND COMPLETE status. If there is not an executing TRANSMIT command,
TRANSMIT HALT is ignored.

Software Interface 3-61

TRANSMIT HALT Command Block
The SCB for a TRANSMIT HALT command is shown in Figure 3-25.

SCB ADDRESS +0 X0005°
+2 —_

+4 _—

Figure 3-25. TRANSMIT HALT Command SCB

The 32-bit field following the COMMAND field of the SCB is read by the Adapter, but ignored.

RECEIVE Command

The RECEIVE command is used to receive frames from other stations on the ring. This command
normally is issued only once (after OPEN), since receive data is dynamically added to a Receive
Parameter List Chain. The RECEIVE command can be terminated due to a list error.

The logical format of received frames passed across the system interface is identical to the logical
format of transmit frames, as shown in Figure 3-17.

The AC and FC, destination address and source address fields, are transferred to the attached
system as they were received from the ring.

The Routing Field is passed to the attached system for all frames. If the PAD ROUTING FIELD
option is specified during OPEN, the routing field will be padded to 18 bytes. If the frame does not
contain a Routing Field the field will still be padded to 18 bytes. The padding will not alter the
contents of the systems data buffer.

The RECEIVE command will be rejected with Adapter COMMAND REJECT STATUS under the
following conditions:

o If the Adapter has not been opened, or;
e [f there is already an executing RECEIVE command, or;

e If the address passed in the SCB is not word aligned.

3-62 Token-Ring Network Adapter

RECEIVE Command Block

The SCB for a RECEIVE command is shown in Figure 3-26.

SCB ADDRESS +0 X‘0006’
+2 ADDRESS (high)
+4 ADDRESS (low)

Figure 3-26. RECEIVE Command SCB

The 32-bit ADDRESS field contains a 24-bit address pointer to a Receive Parameter List Chain.
The high-order byte of this field is ignored. This address must be aligned on even byte boundary.

RECEIVE Parameter List

The attaching system creates a chained Receive Parameter List as shown in Figure 3-27. The address
of the Receive Parameter list is in the RECEIVE command. A single Receive Parameter List cannot

be used to receive more than one frame. Several Receive Parameter Lists can be used to receive a
single frame.

The Receive Parameter List is a 14, 20 or 26-byte data structure as shown in Figure 3-27.

FORWARD POINTER (high)
FORWARD POINTER (low)
RECEIVE CSTAT
FRAME SIZE
1*| DATA COUNT
DATA ADDRESS (high)
DATA ADDRESS (low)
1*| DATA COUNT
DATA ADDRESS (high)
DATA ADDRESS (low)
0*| DATA COUNT
DATA ADDRESS (high)
DATA ADDRESS (low)

*Bit Zero Value.

Figure 3-27. RECEIVE Parameter List shown with three Data Counts

Software Interface 3-63

Table 3-17 describes each of the fields in the RECEIVE Parameter List.

Table 3-17. RECEIVE Parameter List Field Definitions

PARAMETER

DEFINITION

FORWARD POINTER

FRAME SIZE

DATA COUNT

3-64 Token-Ring Network Adapter

This 32-bit field contains a 24-bit address pointer to the next
RECEIVE Parameter List in the chain. When this address is
ODD, it denotes that the current RECEIVE Parameter List is
the last in the chain. The Adapter will DMA write a received
frame into the address(es) specified in the RECEIVE List and
then check the FORWARD POINTER. If it is odd, the
Adapter will interrupt the system with a request to place
additional lists on the chain. The Adapter will not terminate
the RECEIVE command and will wait for a RECEIVE
CONTINUE Interrupt Request to resume the receive
operation. The attached system must update the
FORWARD POINTER from the most significant byte to
the least significant byte to ensure that the address is valid
before changing to an EVEN address. Receive Lists must be
aligned on 16-bit boundaries. The Adapter will not alter this
parameter.

This 16-bit field contains the number of bytes in the received
frame. The Adapter will store this count in the Receive List
which starts a new frame. FRAME SIZE includes AC, FC,
Destination and Source Address, Routing Field (if any), pad
length (if PAD ROUTING FIELD specified) and the Data
Field. FRAME SIZE does not include CRC, FS, or ED.

This 16-bit field contains the maximum number of bytes that
can be stored starting at the address defined in the DATA
ADDRESS parameter. There can be a maximum of three
DATA COUNT/DATA ADDRESS parameters to provide a
scatter read capability per Received List (not frame). If bit 0
is cleared, it is the last DATA COUNT in the Receive List.
Bit 0 of the third DATA COUNT is ignored. A zero DATA
COUNT is permitted (with or without Bit 0 set). The DATA
COUNT can be even or odd. The Adapter will not alter this
parameter.

Table 3-17. RECEIVE Parameter List Field Definitions (Continued)

If the PAD ROUTING FIELD option is specified during the
OPEN command, then the first DATA COUNT in a Receive
List used for start of frame must be at least 32. This allows
space for the AC, FC, DESTINATION ADDRESS,
SOURCE ADDRESS, and the ROUTING FIELD which
will be padded to 18 bytes. If the DATA COUNT is less than
32, the option will be voided.

DATA ADDRESS This 32-bit field contains the 24-bit address of the data to be
received. DATA ADDRESS may be even or odd. The
Adapter will not alter this parameter.

RECEIVE CSTAT RECEIVE COMMAND/STATUS. This 16-bit parameter is
set by the attached system when the Receive List is created
and is over-written by the Adapter to report frame
completion status. When initially set by the attached system,
this parameter field is referred to as the RECEIVE CSTAT
REQUEST field. After a receipt of a frame, the Adapter will
overwrite bits in this field only in the lists which start or end
a frame. These bits indicate the completion status of the
frame. This parameter field is referred to as the RECEIVE
CSTAT COMPLETE. Note that command and status
information within the RECEIVE CSTAT field is associated
with frames and not directly with the RECEIVE command.

RECEIVE CSTAT REQUEST. The RECEIVE CSTAT
REQUEST bit definitions are set by the attached system as
shown below:

BIT O VALID. The Adapter will wait for bit 0 to
be set to one before placing data in the
current Receive List. A RECEIVE VALID
Interrupt Request must be issued by the
attaching system when changing VALID
bits. This bit is examined for every Receive

List.
BIT I COMPLETE. Bit 1 should be reset to zero.
BIT 2 FRAME START. Bit 2 should be reset to
zZero.
BIT 3 FRAME END. Bit 3 should be reset to zero.

Software Interface 3-65

Table 3-17. RECEIVE Parameter List Field Definitions (Continued)

3-66 Token-Ring Network Adapter

BIT 4

BIT 5

BITS 6-15

INTERRUPT (FRAME). Bit 4, when set to
one, will cause the Adapter to interrupt
when the frame has been received. This bit is
ignored unless the FRAME START bit is
set.

INTERFRAME WAIT. Setting this bit to
one will cause the Adapter to interrupt when
a frame has been received. The Adapter will
assume a receive suspended state waiting for
the RECEIVE CONTINUE bit of the
interrupt Register to be set to one prior to
resuming frame transfer. The next list to be
used is addressed by the FORWARD
POINTER of the list which has the END
OF FRAME bit set. This bit is ignored in
lists which are not start of frame lists (bit 2
is not set to one).

RESERVED. Bits 6-15 should be reset to
Zero.

RECEIVE CSTAT COMPLETE When a frame has been
transferred to the system, the CSTATs for the Lists which
start and end a frame are updated by the Adapter as follows:

BIT 0
BIT 1
BIT 2

BIT 3

BITS 4-7
BITS 8-13

BITS 14-15

VALID. Bit 0 is reset to zero.
FRAME COMPLETE. Bit 1 is set to one.

FRAME START. Bit 2 is set to one on the
list that starts a frame.

FRAME END. Bit 3 is set to one on the list
that ends a frame.

RESERVED. Bits 4-7 are reset to zero.

RECEIVED FS. When a FRAME START
bit is reset to zero, these bits will also be
reset to zero. When FRAME START is set
to one, these bits will contain the high order
6-bits of the received FS.

RESERVED.

RECEIVE Completion

An interrupt will be generated for the RECEIVE command when the Receive Parameter List chain
has ended (odd address in FORWARD POINTER) or when a frame is copied into a list that has
Frame Interrupt set in the CSTAT parameter.The SSB upon receive completion will be loaded as
shown in Figure 4-28.

SSB ADDRESS +0 X‘0006°
+2 RECV COMPLETE
+4 LIST ADDRESS (high)
+6 LIST ADDRESS (low)

Figure 3-28. RECEIVE Command SSB

The RECEIVE COMPLETE Field bit definitions are provided in Table 3-18.
Table 3-18. RECEIVE COMPLETE Field Bit Definitions

BIT 0O FRAME COMPLETE. Bit 0 is set to one to indicate that a
frame has been received and the FRAME INTERRUPT or
INTERFRAME WAIT bit was set in CSTAT. Since frames
can be received and transferred faster than the attached
system can respond to the interrupts and/ or faster than the
Adapter can cause the interrupts, the FRAME COMPLETE
interrupt can report the completion of more than one frame
at a time. The 32-bit LIST ADDRESS will contain the
address of the last Receive List of the last frame transferred
to the system. If lists with the FRAME INTERRUPT bit set
are intermixed with lists that do not have FRAME
INTERRUPT set, FRAME COMPLETE can include frames
that did not have FRAME INTERRUPT set. FRAME
COMPLETE will not be set with the RECEIVE
SUSPENDED bit also set.

BIT 1 RECEIVE SUSPENDED. Bit 1 is set to one when the
Adapter detects an odd address in the Receive Parameter
List Chain. LIST ADDRESS will contain the address of the
list that has an odd FORWARD POINTER. The attached
system must update the FORWARD POINTER and issue a
RECEIVE CONTINUE Interrupt Request in order to
continue. RECEIVE SUSPENDED will not be set with the
FRAME COMPLETE bit also set.

BITS 2-15 RESERVED. Bits 2-15 are reset to zero.

Software Interface 3-67

The examples (Figure 3-21 to Figure 3-24) for Transmit Parameter List Formats can also be applied
to Receive Parameter List Formats.

An attached system can create a chain of a fixed number of Receive Parameter Lists by setting the
last list FORWARD POINTER to the address of the first list, and manipulate the VALID bits
appropriately to initiate reception.

When the Adapter reads any list with VALID reset to zero, it will suspend processing until a
RECEIVE VALID Interrupt Request is issued by the system. The attached system is not notified of
this condition. The RECEIVE VALID Interrupt must be issued when changing the condition of one
or more VALID bits from 0 to 1 when the list is on the Receive Chain.

The RECEIVE VALID Interrupt can be issued at any time and the Adapter will ignore the interrupt
if it is not waiting for a transition in the VALID bit.

If a fixed Receive Chain technique is utilized and more than one list is used to receive a single frame,
caution should be exercised when validating the lists. Since the Adapter does not alter the CSTAT
for lists that are not the start of a frame or the end of a frame, re-validation of the start of frame list
would also release the middle of frame lists.

The DATA ADDRESS parameters in the Receive List can be an even or odd byte alignment.

If the Adapter is to write data to an even system address from an internal odd address (i.e. odd
DATA COUNT), then it will transfer a single byte and then transfer the remaining data starting at
an odd system address.

The RECEIVE CONTINUE Interrupt can be issued at any time and the Adapter will ignore the
interrupt if it is not waiting for a FORWARD POINTER transition from an odd to even address.

Header Routing

Some systems may need to receive only a frame header (or header and a portion of the data) and
route the remainder of the frame data according to the contents of the header. This can be
accomplished as follows:

1. Set FRAME HOLD in the OPEN Command.

2. Post a Receive List that has an odd FORWARD POINTER and one DATA COUNT/DATA
ADDRESS parameter sufficient to hold the desired header.

3. The Adapter will use the list and interrupt the system with RECEIVE SUSPENDED, leaving
the CSTAT unchanged. (Should the entire frame be less than or equal to DATA COUNT, a
FRAME COMPLETE interrupt will be posted if requested.)

3-68 Token-Ring Network Adapter

4. Following RECEIVE SUSPENDED, the system can examine the header and determine the
frame destination. The frame size field of the receive parameter list will not be updated by the
Adapter and is not valid.

5. Post additional lists to receive the data by writing a non-odd address in the FORWARD
POINTER field, followed by another header list with an odd FORWARD POINTER.

6. lIssue a RECEIVE CONTINUE Interrupt Request.

7. When the frame has been transferred, a FRAME COMPLETE interrupt will occur (if
requested).

CLOSE Command

The CLOSE command is used to terminate transmission on the ring or to terminate OPEN with the
wrap option, and will purge all frames in the Adapter. The CLOSE command will be rejected with
COMMAND REJECT STATUS if the Adapter is not open.

CLOSE Command Block
The SCB for a CLOSE command is shown in Figure 3-29.

SCB ADDRESS +0 X*‘0007

+2 _

+4 -

Figure 3-29. CLOSE Command SCB

The 32-bit field following the COMMAND field is read by the Adapter, but ignored.

Software Interface 3-69

CLOSE Completion

Upon close completion the SSB will be loaded with Close Completion status as shown in Figure
3-30.

SSB ADDRESS +90 X0007°
+2 CLOSE COMPLETION

Figure 3-30. CLOSE Command SSB

Table 3-19 describes the CLOSE COMPLETION field bit definitions.
Table 3-19. CLOSE COMPLETION Field Bit Definitions

BIT 0 ADAPTER CLOSED. Bit 0 is set to one when the CLOSE command is completed.
BITS 1-15 RESERVED. Bits 1-15 are reset to zero.

SET GROUP ADDRESS Command

The SET GROUP ADDRESS command is used to set the Adapter Group Address if it is to be
changed after OPEN. The SET GROUP ADDRESS command will be rejected with COMMAND
REJECT STATUS if the Adapter is not open.

SET GROUP ADDRESS Command Block

The SCB for a SET GROUP ADDRESS command is shown in Figure 3-31.

SCB ADDRESS +0 X0008°
+2 GROUP ADDRESS (high)

+4 GROUP ADDRESS (low)

Figure 3-31. SET GROUP ADDRESS Command SCB

The 32-bit address following the COMMAND field in the SCB is the Group Address and is stored
in the Adapter Group Address Register. Bit zero is ignored.

3-710 Token-Ring Network Adapter

SET GROUP ADDRESS Completion

Upon completion of the SET GROUP ADDRESS command, the SSB will be loaded with SET
GROUP ADDRESS completion status as depicted in Figure 3-32.

SSB ADDRESS +0 X‘0008°

+2 SET GRP ADDR COMP

Figure 3-32. SET GROUP ADDRESS Command SSB
Table 3-20 describes the SET GROUP ADDRESS completion field bit definitions.
Table 3-20. SET GROUP ADDRESS Completion Field Bit Definitions

BIT 0 COMMAND COMPLETE. Bit 0 is set when the SET GROUP ADDRESS
command is completed.
BITS 1-15 RESERVED. Bits 1-15 are reset to zero.

SET FUNCTIONAL ADDRESS Command
The SET FUNCTIONAL ADDRESS command is used to set and reset the Adapter Functional

Address if it is to be changed after OPEN. The SET FUNCTIONAL ADDRESS command will be
rejected with COMMAND REJECT STATUS if the Adapter is not open.

SET FUNCTIONAL ADDRESS Command Block

The SCB for a SET FUNCTIONAL ADDRESS command is shown in Figure 3-33.

SCB ADDRESS +0 X*‘0009°
+2 | FUNCTIONAL ADDR (high)
+4 FUNCTIONAL ADDR (low)

Figure 3-33. SET FUNCTIONAL ADDRESS Command SCB

The 32-bit address following the COMMAND field in the SCB is the Functional Address and is
stored in the Adapter’s internal Functional Address Register. Bits 30 and 31 of the Functional
Address are ignored (corresponding to the Active Monitor and Ring Parameter Server). Bit 0 (most
significant bit) is also ignored.

Software Interface 3-71

SET FUNCTIONAL ADDRESS Completion

Upon completion of the SET FUNCTIONAL ADDRESS command, the SSB will be loaded with
SET FUNCTIONAL ADDRESS completion status as depicted in Figure 3-34.

SSB ADDRESS +0 X‘0009
+2 SET FTN ADDR COMP

Figure 3-34. SET FUNCTIONAL ADDRESS Command SSB
Table 3-21 describes the SET FUNCTIONAL ADDRESS Completion field bit definitions.
Table 3-21. SET FUNCTIONAL ADDRESS Completion Field Bit Definitions

BIT 0 COMMAND COMPLETE. Bit 0 is set when the SET FUNCTIONAL ADDRESS
command is completed.
BITS 1-15 RESERVED. Bits 1-15 are reset to zero.

READ ERROR LOG

The READ ERROR LOG command is used to read and reset the Adapter Attached Product Error
Log. After READ ERROR LOG command completion, the Error Log will be all zeros.

READ ERROR LOG Command Block
The SCB for a READ ERROR LOG command is shown in Figure 3-35.

SCB ADDRESS +0 X‘000A’
+2 ADDRESS (high)
+4 ADDRESS (low)

Figure 3-35. READ ERROR LOG Command SCB

3-72 Token-Ring Network Adapter

The 32-bit ADDRESS field contains a 24-bit starting address location where the 14-byte Error Log

will be written in attached system memory. The 14-byte Error Log table is shown in Figure 3-36.

BYTE +0 LINE ERROR RESERVED
+2 BURST ERROR ARI/FCI ERROR
+4 RESERVED RESERVED
+6 LOST FRAME RECEIVE
ERROR CONGESTION ERROR
+8 FRAME COPIED
ERROR RESERVED
+10 TOKEN ERROR RESERVED
+12 DMA BUS ERRORS DMA PARITY ERRORS

Figure 3-36. Error Log Table

READ ERROR LOG Completion

Upon completion of the READ ERROR LOG command, the SSB will be loaded with READ
ERROR LOG completion status as shown in Figure 3-37.

SCB ADDRESS +0 X‘000A°

+2 |ERROR LOG COMPLETION

Figure 3-37. READ ERROR LOG Command SSB

Software Interface

3-713

Table 3-22 describes the READ ERROR LOG COMPLETION field bit definitions.

Table 3-22. READ ERROR LOG COMPLETION Field Bit Definitions

BIT 0 COMMAND COMPLETE. Bit 0 is set to one when the READ ERROR LOG
command is completed.

BITS 1-15 RESERVED. Bits 1-15 are reset to zero.

READ ADAPTER BUFFER Command

The READ ADAPTER BUFFER command is used to transfer Adapter storage across the system
interface to attached system memory.

READ ADAPTER BUFFER Command Block

The SCB for a READ ADAPTER BUFFER command is shown in Figure 3-38.

SCB ADDRESS +0 X‘000B’
+2 ADDRESS
+4 ADDRESS

Figure 3-38. READ ADAPTER BUFFER Command SCB

3-74 Token-Ring Network Adapter

The 32-bit ADDRESS field contains a 24-bit address pointer to buffer space in the attached system
memory. The system buffer space is shown in Figure 3-39.

+0 DATA COUNT
+2 DATA ADDRESS
+4 DATA AREA

Figure 3-39. READ ADAPTER System Buffer Space

The 16-bit DATA COUNT field contains the number of bytes to read from the Adapter. The data
will be stored starting at the DATA COUNT location which is at the beginning of the system’s
buffer space.

The DATA ADDRESS is a 16-bit field containing the address of the data in the Adapter to be read.
Bit 15 is reset to zero by the Adapter. The DATA ADDRESS is not checked for valid extents. The
READ ADAPTER command will result in an ADAPTER CHECK Parity Error if reference is
made to an undefined storage area.

Table 3-23 illustrates some of the internal Adapter pointers accessible via the READ ADAPTER

BUFFER command. These pointers will reside beginning at location X‘0A00’ in Adapter memory.
These pointers must be read following initialization but before issuing an OPEN command.

Software Interface 3-75

Table 3-23. Adapter Internal Pointers

Address Description

X‘0A00’ Pointer to Internal Adapter Address
X‘0A02 Pointer to Software Level

X0A04 Pointer to Adapter addresses:

pointer + 0 Node Address
pointer + 6 Group Address
pointer + 10 Functional Address
X'0A06 Pointer to Adapter Parameters
pointer + 0 Physical Drop Number
pointer + 4 Upstream Node Address
pointer + 10 Upstream Physical Drop Number
pointer + 14 Last Poll Address
pointer + 22 Transmit Access Priority
pointer + 24 Source Class Authorization
pointer + 26 Last Attention Code
pointer + 28 Last Source Address
pointer + 34 Last Beacon Type
pointer + 36 Last Major Vector
pointer + 38 Ring Status
pointer + 40 Soft Error Timer Value
pointer + 42 Ring Interface Error Counter
pointer + 44 Reserved
pointer + 46 Monitor Error Code
pointer + 48 Beacon Transmit Type
pointer + 50 Beacon Receive Type
pointer + 52 Frame Correlator Save
pointer + 54 Beaconing station Upstream Node Address
pointer + 60 Reserved
pointer + 64 Beaconing station physical drop number

X‘0A08 Pointer to MAC buffer (a special buffer used by the software to
transmit Adapter generated MAC frames)

3-76 Token-Ring Network Adapter

READ ADAPTER BUFFER Completion.

Upon completion of the READ ADAPTER BUFFER command, the SSB will be loaded with
READ ADAPTER BUFFER completion status as shown in Figure 3-40.

SSB ADDRESS +0 X‘000B’
+2 READ COMPLETION

Figure 3-40. READ ADAPTER BUFFER Command SSB
Table 3-24 describes the READ ADAPTER BUFFER Completion field bit definitions.

Table 3-24. READ ADAPTER BUFFER Completion Field Bit Definitions

BIT 0 COMMAND COMPLETE. Bit 0 is set when the READ ADAPTER BUFFER
command is completed.

BITS 1-15 RESERVED. Bits 1-15 are reset to zero.

Software Interface 3-77

Freeze-Dump

The Freeze-Dump state of the Adapter is entered by executing back-to-back resets followed by a
FREEZE command issued to the Command/ Status register. The reset may be executed by either
writing to the Reset register or activating the RESET DRV line. The Freeze-Dump utility “freezes”
the adapter in its current state and allows the use of commands not ordinarily recognized by the
Adapter. Three commands are available in the Freeze-Dump state, the STEP command, the WRITE
command, and the EXECUTE command. All of the Freeze-Dump commands are written to the
Command/ Status register.

FREEZE Command (X‘80’)

The FREEZE command is used to set the Adapter in the Freeze-Dump state.

STEP Command (X‘FF)

The STEP command increments the ADDRESS Register by X‘0800’. Normally, the ADDRESS
Register is limited to a 2K-byte address range. The STEP command allows paging beyond the range
normally allowed the Attached System. The ADDRESS Register is initialized after the system reset.

WRITE Command (X‘E6’)

The WRITE command allows the Host to write to the Adapter’s memory using the DATA
Auto/Inc Register.

EXECUTE Command (X‘C5)

The EXECUTE command allows the execution of software code at a user specified location. The
user specified location should be contained in the vector at X‘0000’.

3-78 Token-Ring Network Adapter

Chapter 4. Environmental Requirements

Environmental Requirements 4-1

CONTENTS

Physical REQUITEMENTS . . oo vttt ittt ittt ittt ittt tae st tiae it etannaeenannanns 4-3
Power Supply REqUITEMENtSottt it e i it ettt et 4-3
Current and POWeTttt i e e 4-3
Non-operating REQUITEIMENTS « . .. v ittt ettt ettt ettt erennnnnnnseoesennansennennnsss 4-3
Operating ReqUITEIMENTSottt ittt ittt tiae s e tane e eennnsenannnneeas 4-4
Hot-Pluggability . o oot ittt ettt i it i it e it it i ittt e it e e i 4-4

4-2 Token-Ring Network Adapter

Physical Requirements

Power Supply Requirements

The Adapter requires +5 volts (VCC) +/- 5% and ground supplied through the card 1/ O pins.

Current and Power

The current requirements and power dissipation for the Adapter are outlined below.

Vee(mom) | Ice(nom) | Icc(max) | Power(nom) | Power(max)
Note 1 5.00V 1.1A 1.3A 5.5W 6.5W
Note 2 5.00V 1.47A 1.53A 7.5W 8.25W
Notes:

1. For card assemblies 56X2295 and 69X8139.

2. For card assemblies other than 56X2295 or 69X8139.

Non-operating Requirements

The Adapter, when properly packaged in the shipping container, will withstand the following non-

operating (storage) conditions:

Storage Air Temperature = 33-140°F (0.6-60°C)
Storage Relative Humidity = 5-80%

Environmental Requirements

43

Operating Requirements

The Adapter will meet the minimal performance requirements while operating under the following
environmental conditions:

Temperature +10 to +60°C
Relative Humidity 20-80%

These are generally defined as a building environment which is not air conditioned with normal
winter heating and normal ventilation. The conditions stated are card ambient requirements.

Hot-Pluggability

The Adapter card is not hot-pluggable and therefore must be plugged into the RT PC before power
is applied.

4-4 Token-Ring Network Adapter

Appendix A. Software Example

Appendix A contains an example of software required to execute Adapter commands. This is intended
as sample software and thus functionality and completeness are not claimed. The program is written

in assembly language but comments are provided to assist the reader.

/*
* 5799-CGZ (C) COPYRIGHT IBM CORPORATION 1986
* LICENSED MATERIALS - PROPERTY OF IBM
* REFER TO COPYRIGHT INSTRUCTIONS FORM NUMBER G120-2083
*
/* $Header: if_lan.c,v 2.10 86/07/08 14:11:58 Exp $ */
/* $Source: /usr/sys/if_lan.c,v $ */

#ifndef lint
static char *rcsid = "$Header: if_lan.c,v 2.10 86/07/08 14:11
#endif

/*
* IBM Token-Ring Local Area Network Adapter Driver
*/

#include "lan.h"
#if NLAN > O

#include "../machine/pte.h"
#include "../h/param.h"
#include "../h/dir.h"

#include "../h/user.h"
#include "../h/mbuf.h"”
#include "../h/buf.h"

#include "../h/protosw.h"
#include "../h/socket.h"
#include "../h/vmmac.h"

#include "../h/ioctl.h"
#include "../h/errno.h"
#include "../h/un.h"

#include " /usr/src/include/netdb.h"

#include “../net/if.h"

#include "../net/netisr.h"
#include "../net/route.h"
#include "../netinet/in.h"
#include "../netinet/in_systm.h"
#include "../netinet/ip.h"
#include "../netinet/ip_var.h"
#include "../netinet/if ether.h"

#include "../netpup/pup.h"

:58 Exp $";

Software Example

A-1

#include

"../machine/io.h"

#include "../machineio/ioccvar.h"

#include "../machineio/dmareg.h"

#include "../machine/debug.h"

#include "../h/kernel.h"

#include "../machineif/if_lanreg.h" /*appended at end of this listing*/
#include "../machineif/if_ landma.h" /*appended at end of this listing*/
#include "../machineif/if_lanvar.h" /*appended at end of this listing*/
#include "../machineif/if_lanio.h" /*appended at end of this listing*/
#ifdef DEBUG

char lan_debug = 0x00; /* controls printf's for debugging */
#endif DEBUG

int lan_probe(), lan_attach();

int lan_intr(), lan_init(), lan_ioctl(), lan_output(), lan_reset();
unsigned short mior();

struct mbuf *lan_get();

caddr_t

1
struct i

struct i

};

int lan_
struct 1

lan_std{)] = {

(caddr_t)0xf00001c0, (caddr_t)0xf0000140, O
occ_device *lan_info[NLAN];

occ_driver landriver = {

lan_probe, 0, lan_attach, 0, lan_std, "lan", lan_info,
0, 0, lan_intr, LAN_CMDREG

initialize(), lan_ring_watch(), lan_thaw();
an_softc lan_softc[NLANI;

char lan_xid_resp{LAN_L_XID_RESP] = { '\201', '\001', '\002'};

/*
* lan_p
*/
lan_prob

{

*
* lan_a
*
*/

lan_atta

{

robe - adapter does not interrupt in this state

e(addr)
register caddr_t addr;

DEBUGF (lan_debug, printf("lan adapter probed\n");
)
return (PROBE_NOINT) ;

ttach - make interface available to network software if
autoconfig determines that interface exists.

ch(iod)

register struct iocc_device *iod;

register struct lan_softc *1lns = &lan_scftcliod~>iod_unit];
register struct ifnet *ifp = &lns->1lns_if;

register struct sockaddr_in *sin;

ifp->if_unit = iod->iod_unit;

A-2 Token-Ring Network Adapter

ifp->if_name = "lan";

ifp->if_mtu = LAN_MTU;

sin = (struct sockaddr_in *) & lns->lns_if.if_addr;
sin->sin_family = AF_INET;

sin->sin_addr = arpmyaddr((struct arpcom *)0);
ifp->if_init = lan_init;

ifp->if_ioctl = lan_ioctl;

ifp->if_output = lan_output;

ifp->if_reset = lan_reset;

if_attach(ifp);

DEBUGF (lan_debug, printf("lan%d attached\n", iod->iod_unit);
)

/*
* lan_reset - reset interface

*/

lan_reset (unit)
register unsigned int unit;

{
register struct iocc_device *iod;
if (unit < NLAN && (iod = lan_infolunit]) != 0 && iod->iod_alive != 0)
lan_init(unit);
DEBUGF (lan_debug, printf("lan%d reset\n", unit);
)
3
/*
* lan_init - initialize and open adapter
*/

lan_init(unit)
register int unit;
{
register struct lan_softc *1lns = g&lan_softc(unit];
struct ifnet *ifp = &lns->lns_if;
struct sockaddr_in *sin;
register struct lan_device *addr;

sin = (struct sockaddr_in *) &ifp->if_addr;
if (sin->sin_addr.s_addr == 0)
return;

DEBUGF (lan_debug, printf("lan%d begin init\n", unit);
)

addr = (struct lan_device *)(lan_infolunit]->iod_addr);
if ((lns->1lns_if.if_flags & IFF_RUNNING) == Q) {

/* read node address pointer once */
lns->1ns_adapter &= LAN_ADAP_BIA_READ;

Software Example

if (lan_initialize(unit) == 0) {

Ins->1ns_if.if_flags]= IFF_RUNNING;

if (! (lns->1lns_adapter & LAN_ADAP_BIA READ)) {
lns->1lns_ctl->lan_bia.adap_addr = LAN_ADDRESSES;
lns->1ns_ctl->lan_bia.count = LAN_L_ADDR;
Ins->lns_ctl->lan_bia.flag]= LAN_ADDR_PENDING;
lan_exec(LAN_RDADAPTR, &lns->lns_ctl->lan_bia, addr, unit);

}

DEBUGF (lan_debug, printf("lan%d: end init\n", unit);

)i

} else {
lns->1ns_adapter]= LAN_ADAP_BROKEN;
lns->1ns_if.if_flags &= ~ (IFF_RUNNING] IFF_UP);
3

3
if(lns->1ns_if.if_flags & IFF_RUNNING) {
if ({lns->1lns_adapter & LAN_ADAP_OPEN) == 0) {
lan_open(unit, addr); /* Open adapter */
3

if_rtinit(&lns->lns_if

RTF_UP) ;
arpattach(&lns—>lns_ac§;

/* end lan_init */-
/*

* lan_start - start output to the adapter

*/

lan_start(lns, addr, xbuf, unit)
register struct lan_softc *lns;
register struct lan_device *addr;
register int xbuf;
reglister int unit;

{
Ins->1ns_ocactive = 1;
lns->1ns_xbuf = xbuf;
DEBUGF (lan_debug,
printf("lansd start xmit buf %x length = %x\n",
unit, xbuf, lns->xp[xbufl->frame_size);
)i
/* execute transmit command */
lan_exec(LAN_TRANSMIT, lns->xp[xbuf], addr, unit);
3

*

* lan_ssb_clear - clear adapter -> system interrupt

*/

lan_ssb_clear (addr)

register struct lan_device *addr;
{

miow(&(addr->lan_cmdstat), LAN_SSBCLEAR);
3

A-4 Token-Ring Network Adapter

/*
* lan_recv - get mbufs and initialize receive lists for reception
* into mbuf data area

*/

lan_recv(unit, addr)
register int unit;
register struct lan_device *addr;

register struct lan_softc *1lns = &lan_softc[unit];
register struct lan_recv_ctl *rcv;
struct mbuf *m, *p;
register int tcw;
int i;
/*
* use an mbuf to hold
* receive lists and headers

*/
if(lns->lns_recv == 0) {

MGET (m, M_DONTWAIT, MT_DATA);

if (m == 0)

return (ENOBUFS) ;

lns->1ns_recv = mtod(m, struct lan_recv_ctl *);
3
rcv = lns->lns_recv;

tcw = lan_dma_setup(rcv, TCW_RESERVE, lns->lan_dma_chan);

for (i = 0; 1 < 2; i++) {
lns->rp[i] = &rcv->lan_rlist[i];
Ins->rh{i] = &rcv->list_hdr[i];
/* set up lan header areas */
Ins~->rplil~>d_parm[0].d_cnt =

(((short) (sizeof (struct list_hdr)))] LAN_CHAIN);
lns->rp(il->d_parm[0].d _haddr = DMA_HI_ADDR(tcw);
lns->rpl[il->d_parm[0].d_laddr = DMA_LO_ADDR(lns->rh[il]l, tcw);
Ins->rpl[il->cstat = LAN_R_CSTAT_REQ;
Ins->rpl[i}->xlp_h =
DMA_HI_ADDR(tcw) ;

3

Ins->rp[0]->x1p_1 =
DMA_LO_ADDR(1lns->rp[l], tcw);

Ins->rp[ll->x1p_1 =
DMA_LO_ADDR(1lns->rp[0], tcw);

/*

* use large mbufs for
* receive buffers

*/
for (1 = 0; i < 2; i++) {
if (lns->1ns_rdatali] == 0) {
MGET (m, M_DONTWAIT, MT_DATA);
if (m == 0)
return (ENOBUFS) ;
MCLGET (p, 1);
if (p == 0)
return (ENOBUFS) ;
else
m->m_off = (int)p - (int)m;
lns->1ns_rbufp(i] = m;
Ins->1ns_rdatali]l = p;

Software Example A-§

3
tew = lan_dma_setup(lns->1lns_rdatali],;TCW_RESERVE, lns->lan_dma_chan);
Ins->rp[i]->d_parm[1l].d_cnt = LAN_MTU & (~LAN_CHAIN);
lns->rp{i]~->d_parm[l].d_haddr = DMA_HI_ADDR(tcw);

[1 =

Ins->rpli]->d_parm[1l].d_laddr DMA_LO_ADDR(1lns->1lns_rdatali]l, tcw);
}
return(0);
3
/*
* lan_exec - serialize command requests to the adapter;
* do one at a time for now except for
* receive which needs to be outstanding.

*

lan_exec(cmd, plist, addr, unit)
register short cmd;
register short *plist;
register struct lan_device *addr;
register int unit;

struct lan_softc *1lns = &lan_softclunit];
register struct lan_ctl *ctl = lns->1lns_ctl;
register int i;

int tcw;

int s = splimp();

tcw = lan_dma_setup(plist, TCW_RESERVE, lns->lan_dma_chan);
for (i = S5*ONESEC; i>0; i--) {
DELAY(1);
if (ctl->lan_scb.command == 0) /* wait until scb cleared */
break;

3
if (i>0) {
ctl->lan_scb.command = cmd;
ctl->lan_scb.h_addr = DMA_HI_ADDR(tcw);
ctl->lan_scb.1l_addr DMA_LO_ADDR(plist, tcw);
DEBUGF (lan_debug,
printf("lansd exec cmd %x, addr %x %x\n",
unit, ctl->lan_scb.command,
ctl->lan_scb.h_addr, ctl->lan_scb.l_addr);

)

miow(&(addr->lan_cmdstat), LAN_EXECUTE) ;
} else printf("lan%d: adapter jammed\n",unit);
splx(s);

/*

* lan_open - open adapter
*/

lan_open(unit, addr)

register int unit;
register struct lan_device *addr;

register struct lan_softc *1lns = &lan_softc(unit];
register struct lan_ctl *ctl = lns->lns_ctl;

A-6 Token-Ring Network Adapter

if ((lns->1ns_adapter & LAN_OPEN_IN_PROGRESS) == 0) {
lns->1ns_adapter]= LAN_OPEN_IN_PROGRESS;
ctl->open_parm{0] LAN_OPEN_OPTIONS;

ctl->open_parm[1] ctl->open_parm{2] = ctl->open_parm[3] = 0;
ctl->open_parm[4] = ctl->open_parm[5] =

ctl->open_parm[6] = ctl->open_parm[7] = O;
ctl->open_parm{8] = LAN_OPEN_RLIST;
ctl->open_parm[9] = LAN_OPEN_XLIST;

ctl->open_parm[10]
ctl->open_parm{11]
ctl->open_parm[12]
ctl->open_parm[13]

LAN_OPEN_BUFSIZE;
LAN_OPEN_RAMSTART;
LAN_OPEN_RAMEND;
LAN_OPEN_XMINMAX;

lan_exec(LAN_OPEN, ctl->open_parm, addr, unit);
DEBUGF (lan_debug,
printf("lan%d attempting to open addr %x %x %x\n",
unit, ctl->open_parm[1],
ctl->open_parm[2], ctl->open_parm({3]);

/*
* lan_intr - adapter interrupt handler

*/

lan_intr(unit)
register int unit;

{
register struct lan_softc *1lns = &lan_softc[unit];
register struct lan_device *addr = (struct lan_device *)lan_infolunit]->iod_addr;
struct lan_ctl *ctl = lns->lns_ctl;
register struct mbuf *m;
register short sifrbuf, sifwbuf;
struct ifqueue *ing;
struct mbuf *p;
char type, *c;
unsigned short len;
register int next_buf;
int k, i, tcw;
short retparm(4];
short *retptr;
unsigned short *initptr, *shortptr;
unsigned short open_phase, open_status;
struct ifnet *ifp = &lns->1lns_if;
struct sockaddr_in *sin;
int alt;

sifrbuf = (mior(&(addr->lan_cmdstat)));
“if ((sifrbuf & LAN_INT) == 0) {
return (1);
3
sifrbuf &= LAN_ADAP_INT; /* interrupt type */
DEBUGF (lan_debug,
printf("lan%d int: status = Ox%b, code = 0x%x, ssb = %x,%x,%X,%x\n",
unit, sifrbuf & Oxfff0, LAN_STAT_BITS, sifrbuf & 0x000f,
ctl->lan_ssb.command, ctl->lan_ssb.statusO,
ctl->lan_ssb.statusl, ctl->lan_ssb.status2);

Software Example

)
switch (sifrbuf) {
case LAN_RECVSTAT:
/*
* Receive notify
*
* When frame complete, copy data to mbuf chain.
* Signal adapter to continue. Then either enqueue IP
* packets or process arp packets.

*/

./* determine buffer(s) from receive list address */
if ((ctl->lan_ssb.statusl == lns->rp[l]->xlp_h) &&
(ctl->lan_ssb.status2 == lns->rp[l]->xlp_1))
i = 0;
else 1 = 1;
if (ctl->lan_ssb.statusO == LAN_FRAME_COMPLETE) {
DEBUGF (lan_debug,
printf("lan%d recv: status=0x%b, cstat=0x%b, length=%x\n",
unit, ctl->lan_ssb.statusO, LAN_RECV_BITS,
lns->rp{i]->cstat, LAN_RCSTAT_BITS,
lns->rpl[i}->frame_size);
)
lan_ssb_clear(addr);
alt = 0;
/* if alternate buffer full, get that one first */
if (lns->rpll-i]->cstat & LAN_RCSTAT_COMPLETE) {
alt=LAN_RECV_ALT;
i=1-1i;
3
check_alt:
lns->1lns_if.if_ipackets++;
len = lns->rpl[i]->frame_size - sizeof(struct list_hdr);
if (len == 0)
goto chk_xid;
p = lns->lns_rdatali];
m = lan_get(p, len);
type = lns->rh(i]->dsap;
if (m == 0)
goto clear;
chk_xid:
if((lan_xid_test(m, i, unit))]] (len == 0))
goto clear;
switch (type) {
#ifdef INET
case LAN_IPTYPE:
schednetisr (NETISR_IP);
ing = &ipintrgq;
break;
case LAN_ARPTYPE:
arpinput(&lns~>1lns_ac, m);
goto clear;
#endif
default:
DEBUGF (lan_debug,
printf("lan%sd packet not recognized, freeing mbuf\n"
unit);
)i

m_freem(m);

A-8 Token-Ring Network Adapter

goto clear;
}
if (IF_QFULL(ing)) {
DEBUGF (lan_debug, printf("lan%d: ip gfull\n", unit);
)i
IF_DROP(ing) ;
m_freem(m) ;
goto clear;
3
IF_ENQUEUE(ing, m);

3
else lan_ssb_clear(addr);
clear:
lns->rpli]->cstat = LAN_R_CSTAT_REQ;
miow(&(addr->lan_cmdstat), LAN_RECVALID);
if (alt) {
alt = 0;
i=1-1i;
goto check_alt;
3
break;

case LAN_XMITSTAT:
/*
* Transmit status
*
* If next buffer full, start output.
* Dequeue next IP buffer.

*/

lan_ssb_clear (addr) ;
lns->1lns_1if.if_ opackets++;

if ((ctl->lan_ssb.statusl == lns->xpl[l]l->xlp_h) &&
(ctl->lan_ssb.status2 == (lns->xp[1l]->xlp_1 & ~LAN_ODD_PTR)))
next_buf = 1;
else next_buf = 0;
if (lns->xplnext_buf]->cstat & LAN_XMIT_VALID) {
lan_start(lns, addr, next_buf, unit);
if (lns->1lns_if.if_snd.ifq _head) {
struct mbuf *m;
IF_DEQUEUE(&lns->1lns_if.if_snd, m);
if (lan_put(lns, m, 1 - next_buf, unit) != 0)
m_freem(m) ;
}
} else
lns->1ns_ocactive = 0;
break;

case LAN_ACHECK:
*

* Adapter check - Retry adapter initialization
*/

lns->1ns_adapter]= LAN_ADAP_BROKEN;
lns->lns_if.if_flags &= ~ (IFF_RUNNING] IFF_UP);
sifwbuf = LAN_ACHECK_DATA;

shortptr = &(addr->lan_address);

initptr = &(addr->lan_data);

Software Example

for (k = ADAP_CHK_SIZE, retptr = ((short *)retparm);
miow(shortptr, sifwbuf);
*retptr = mior(initptr);
sifwbuf = sifwbuf + 2;

}

k > 0; k=--, retptr++)

printf("lan%d: unrecoverable token ring adapter failure, ", unit);
printf("adapter check field = 0x%b, parm0=0x%x, parml=0x%x, parm2=0x%x\n",
retparm[0], LAN_ACHECK_BITS, retparm[l], retparm[2], retparm[3])

if (lns->1lns_freezer != 0) {
lan_freeze(unit); /* freeze the adapter */
wakeup (1lns) ;
timeout(lan_thaw, (caddr_t)unit, 180 * hz);
} else {
lan_ssb_clear (addr) ;
timeout(lan_reset, (caddr_t)unit, 1 * hz);
3
if (retparm{0] & (XMIT_PARITY]] XMIT_UNDERRUN)) {
lns->1lns_if.if_oerrors++;
3

if (retparm[0] & (RECV_PARITY]] RECV_ OVERRUN)) {
lns->1Ins_if.if_ ierrors++;

}

break;

case LAN_RINGSTAT:
/*

* Ring status

*

* Processing depends on ring status: For

* ring error set timer to check again in 60
* seconds to allow for possible ring

* recovery. Certain statuses update adapter
* state. Others informational only.

*/

DEBUGF (lan_debug,
printf("lan%d ring status = %b\n",

unit, ctl->lan_ssb.status0, LAN_RING_BITS);

)

if (ctl->lan_ssb.statusO & LAN_AUTOER1) ({
Ins->1ns_adapter]= LAN_ADAP_AUTOER1;
Ins->1ns_if.if flags &= ~IFF_UP;
lan_ssb_clear (addr);
lan_open(unit, addr);
break;

} else if (ctl->lan_ssb.statusO & LAN_REMOVE_RECV) {
lns->1ns_adapter &= ~LAN_ADAP_OPEN;
lns->1ns_adapter]= LAN_ADAP_DOWN;
Ins->1lns_if.if_flags &= ~IFF_UP;

printf("lan%d: removed from network\n", unit);

} else if (ctl->lan_ssb.statusO & LAN_WIRE_FAULT) ¢{
printf("lan%sd: cable failure\n", unit);
lan_ssb_clear (addr);
lns->1ns_adapter &= ~LAN_ADAP_OPEN;
Ins->1ns_if.if_flags &= ~IFF_UP;
Ins->1ns_ring]= LAN_CABLE_FAIL;
if(!1lns->1lns_ring watch) {

Ins->1ns_ring_watch++;

timeout(lan_ring_watch, (caddr_t)unit,

A-10 Token-Ring Network Adapter

SIXTY * hz);

}
break;
} else if (ctl->lan_ssb.statusO &
(LAN_SIGNAL_LOSS] LAN_HARD_ERROR]| LAN_XMIT_BEACON)
) £
if (lns->1lns_ring & LAN_RECOVERY)
lns->lns_ring = ctl->lan_ssb.statusO0] LAN_RECOVERY;
else {
lns->1ns_ring]= LAN_RECOVERY;
if (ctl->lan_ssb.statusO & LAN_XMIT BEACON)
printf("lan%d: beaconing\n", unit);
if (!1lns->1ns_ring_watch) {
Ins->1lns_ring_watch++;
timeout(lan_ring_watch, (caddr_t)unit, SIXTY * hz);

}
3
lns->1lns_ring &= ~LAN_RECOVERY;
if (ctl->lan_ssb.status0 & LAN_SINGLE) {
printf("lan%d: single station on network\n", unit);
}
lan_ssb_clear (addr);
break;

case LAN_CMDSTAT:
J*

* Command status

On open, examine completion status. Set
adapter state and, if failure, print
informational message and retry open if error
not permanent. If success, set up transmit
lists and begin output.

* ¥ Ok Ok % ¥

*/

DEBUGF (lan_debug, printf("lan%d cmd stat: %x %x %x %x\n",
unit, ctl->lan_ssb.command, ctl->lan_ssb.status0,
ctl->lan_ssb.statusl, ctl->lan_ssb.status2);
)i
if (ctl->lan_ssb.command == LAN_OPEN) {
if (ctl->lan_ssb.status0 == LAN_OPEN_COMPLETE) {
lan_ssb_clear(addr);
DEBUGF (lan_debug, printf("lan%d open complete\n", unit);
)i
lns->1lns_adapter &= LAN_ADAP_BIA_ READ;
lns~>1ns_adapter]= LAN_ADAP_OPEN;
Ilns->1lns_ring &= ~(
LAN_RECOVERY]
LAN_XMIT_BEACON]
LAN_CABLE_FAIL) ;
ctl->lan_bia.adap_addr = lns->1lns_node_addr;
ctl->lan_bia.count = LAN_I,_ADDR;
lan_exec(LAN_RDADAPTR, &ctl->lan_bia, addr, unit);
} else {
Ins->1ns_adapter &=
~(LAN_ADAP_OPEN] LAN_OPEN_IN_PROGRESS) ;
/* adapter open error */
lns->1ns_if.if_flags &= ~IFF_UP;

Software Example

A-11

DEBUGF (lan_debug,

printf("lan%d open failure, status = Ox%b, error = 0Ox%x\n",
unit, ctl->lan_ssb.statusO & 0xff00,
LAN_OPEN_STAT_BITS,
ctl->lan_ssb.status0 & 0x00ff);

)

open_phase =
ctl->lan_ssb.statusO & ~LAN_OPEN_PHASE_MASK;

open_status =
ctl->lan_ssb.statusO & LAN_OPEN_PHASE_MASK;

lan_ssb_clear(addr);

if (open_status & LAN_OPEN_NODE_ERROR) {
printf("lan%d: node address error\n", unit);
Ins->1ns_adapter }= LAN_ADAP_DOWN;
break;

} else if (lns->lns_adapter & LAN_ADAP_AUTOER1) {
Ins->1ns_adapter &= ~LAN_ADAP_AUTOER1;
printf("lan%d: hardware error, ", unit);
printf ("adapter removed from ring\n");
break;

printf("lan%d: open err=0x%x",unit, open_status);
printf("$s-n", open_errmsglopen_status & 0x0f]);
switch (open_status) {
case LAN_OPEN_TIMEOUT:
case LAN_OPEN_OREQ PARM:
case LAN_OPEN_OIMPL:
if (lns->1lns_open_retries < LAN_MAX_OPEN_RETRY)
{
Ins->1ns_open_retries++;
lan_open(unit,addr);
}
else lns->lns_open_retries = 0;
break;
case LAN_OPEN_FUNC_FAILURE:
if ((open_phase == LAN_OPEN_LOBE_TEST)]}
(open_phase == LAN_OPEN_INSERTION))
{

Ins->lns_ring]= LAN_CABLE_FAIL;

if(t1ns->1ns_ring_watch) {
lns->1lns_ring_watch++;
timeout (lan_ring_watch,
(caddr_t)unit, SIXTY * hz);

3
else
if (Ilns->1lns_adapter & LAN_ADAP_FCTNFAIL == 0)
{
Ins->1ns_adapter]= LAN_ADAP_FCTNFAIL;
lan_open(unit,addr);
3
break;
case LAN_OPEN_OSIGNAL_LOSS:
case LAN_OPEN_RING_FAILURE:
case LAN_OPEN_RING_BEACON:
if (!1lns->1ns_ring watch) {
Ins->1ns_ring_watch++;
timeout(lan_ring watch, (caddr_t)unit, SIXTY * hz);

A-12 Token-Ring Network Adapter

}

3

} else if (ctl->lan_ssb.command == LAN_RDADAPTR) {
lan_ssb_clear(addr) ;

if (ctl-

} else {

>lan_bia.flag & LAN_ADDR_PENDING) {
Ins->1ns_node_addr = ctl->lan_bia.count;
ctl->lan_bia.flag &= ~LAN_ADDR_PENDING;

becopy (&ctl->lan_bia.count, lns->lns_addr, LAN_L_ADDR);
printf ("lan%d: address ",unit);

¢ = (char *)lns->lns_addr;
for (i = 0; i < LAN_L_ADDR; it++) {
if (i !'= 0) printf (":");

printf ("sx", *c++);
}
printf("\n");
/* allocate transmit list buffers very first time */
if ((lns->1lns_adapter & LAN_ADAP_BIA_READ) == 0) {
/* allocate xmit lists */
for (i = 0; i < LAN_XMITLIST CT; i++) ¢
MGET (m, M_DONTWAIT, MT_DATA);
if (m == 0)
goto lan_mbuf_fail;
MCLGET(p, 1);

if (p == 0)

goto lan_mbuf_fail;
else

m->m_off = (int)p - (int)m;
lns->xp[i] = (struct lan_list *)p;
Ins->1lns_xbufp(i] = (char *) ((int)lns->xp(i]

+ sizeof (struct lan_list));

tcw = lan_dma_setup(lns->1lns_xbufp[i] ,TCW_RESERVE,
lns->lan_dma_chan) ;
Ins->xp[i]->d_parm([0].d_haddr =
Ins->xp{il->d_parm([0].d_laddr =
DMA_LO_ADDR(1lns->1ns_xbufp[i], tcw);

DMA_HI_ADDR(tcw) ;

}
Ins~>1ns_oactive = 0;
lns->1ns_adapter]= LAN_ADAP_BIA_READ;
3
for (1 = 0; i < LAN_XMITLIST_CT; i++) {
tew = lan_dma_setup(lns->xp[i], TCW_RESERVE, lns->lan_dma_chan) ;
Ins->xp[1-i]->x1p_h =
DMA_HI_ADDR(tcw) ;
Ins->xp{1-i]->x1lp_1 =
(DMA_LO_ADDR(lns->xp[i], tcw))] LAN_ODD_PTR;
lns->xp[i]->cstat = LAN_XCSTAT_COMPLETE;
3
/* reset receive lists */
if (lan_recv(unit, addr) != 0) goto lan_mbuf_fail;
lan_exec(LAN_RECEIVE, lns->rp[0], addr, unit);
lns->1ns_if.if_flags]= IFF_UP;
sin = (struct sockaddr_in *) & ifp->if_addr;
arpwhohas(&lns->1ns_ac, &sin->sin_addr);
if (lns->1lns_if.1f_snd.ifqg_head) {
struct mbuf *m;

Software Example

A-13

IF_DEQUEUE(&lns->1ns_if.if_snd, m);
if (lan_put(lns, m, O, unit) == 0) {
lan_start{lns, addr, 0, unit);
if (lns->1lns_if.if_snd.ifqg_head) {
IF_DEQUEUE (&lns->1ns_if.if_snd,
m) ;
if (lan_put(lns, m, 1, unit) != 0)
m_freem(m) ;
3
} else
m_freem(m) ;

3

3
} else if (ctl->lan_ssb.command == LAN_CLOSE) {
if (ctl->lan_ssb.statusO == LAN_CLOSE_COMPLETE) {
lns->1ns_adapter]= LAN_ADAP_DOWN;
DEBUGF (lan_debug, printf("lan%d closed\n", unit);
)i
3
lan_ssb_clear (addr) ;
} else {
if (ctl->lan_ssb.command == LAN_SSB_REJECT)
printf("lan%d: command reject, internal software error, ",
unit);
printf("reject reason = Ox%b, command = Ox%x.\n",
ctl->lan_ssb.status0, LAN_CMD_REJ_BITS,
ctl->lan_ssb.statusl);
lan_ssb_clear(addr);
3
break;
lan_mbuf_fail:
printf("lan%d: mbufs.\n", unit);
break;

default:
DEBUGF (lan_debug,
printf("lan%d unexpected interrupt: status = 0x%b, code = 0Ox%x\n",
unit, sifrbuf & Oxfff0, LAN_STAT_BITS, sifrbuf & Ox000f);
);
lan_ssb_clear(addr);
break;
3
/* end switch */

LAN_IRQ1l2 = 0; / enable interrupt level */
return (0);

/*
* lan_ioctl - adapter ioctl
*
lan_ioctl(ifp, cmd, data)
register struct ifnet *ifp;
register int cmd;
register caddr_t data;

register struct ifreq *ifr = (struct ifreq *)data;

A-14 Token-Ring Network Adapter

register int s = splimp();

register int error = 0;
register struct lan_softc *1lns = &lan_softc[ifp->if unit];
struct lan_device *addr = (struct lan_device *)

lan_infolifp->if_unitl->iod_addr;
unsigned short *dump, dump_data;
int i, J;

switch (cmd) {
case SIOCSIFADDR:
if (ifp->if_flags & IFF_RUNNING)
if_rtinit(ifp, -1); /* delete previous route */
lan_setaddr(ifp, (struct sockaddr_in *) & ifr->ifr_addr);
lan_init(ifp->if_unit);
break;
case SIOCSIFFLAGS:
if ((ifr->ifr_flags & IFF_UP)
&& ((lns->1ns_adapter & LAN_ADAP_OPEN) == 0)) {
lan_init(ifp->if_unit);
} else if (((ifr->ifr flags & IFF_UP) == 0)
&& (lns->1ns_adapter & LAN_ADAP_OPEN)) {
lan_close(ifp->if_unit);
3
break;
case SIOCSLANDUMP:
lns->1ns_freezer = u.u_procp;
sleep(lns,PZERO+1) ;
break;
case SIOCFLANDUMP:
lan_freeze(ifp->if_unit); /* freeze the adapter */
timeout (lan_thaw, (caddr_t)ifp->if_unit, 180 * hz);
break;
case SIOCGLANDUMP:
if (lns->1lns_adapter & LAN_ADAP_FROZEN) {
dump = ((struct lan_dump *)ifr->ifr_data)->lan_dump_data;
for (j = 0; j < LAN_FREEZE_DUMP / LAN_FREEZE_CHUNK; j++) {
if (3) {
miow(&(addr->lan_cmdstat), LAN_FREEZE_INCR);
DELAY (LAN_ADAP_MIN_RESET) ;
}
miow(&(addr->lan_address), 0);
for (i = 0; i < LAN_FREEZE_CHUNK / 2; i++, dump++) {
dump_data = mior(&(addr->lan_datai));
if (copyout ((caddr_t)&dump_data,
(caddr_t)dump,sizeof (short)) !=0) {
goto dump_done;

3
dump_done:
lan_unfreeze(ifp->if_unit);
timeout(lan_reset, (caddr_t) (ifp->if_unit), 1 * hz);
3
break;
default:
error = EINVAL;
3
splx(s);

Software Example

A-15

/*

return (error});

* lan_output - token ring output routine

*/

lan_output(ifp, m0, dst)

register struct ifnet *ifp;
register struct mbuf *mO;
struct sockaddr *dst;

int error;

char type;

u_char edst[LAN_L_ADDR];

struct in_addr idst;

register struct lan_softc *1lns = &lan_softclifp->if_unit];
register struct mbuf *m = mO;

register struct ether_header *un;

extern struct ifnet loif;

DEBUGF (lan_debug, printf("lan%d output request\n", ifp->if_unit);
)i

switch (dst->sa_family) {

#ifdef INET

#endif

bad:

case AF_INET:
idst = ((struct sockaddr_in *)dst)->sin_addr;
if (larpresolve(&lns->1lns_ac, m, &idst, edst))
return (0);
type = LAN_IPTYPE;
break;

case AF_UNSPEC:
un = (struct ether_header *)dst->sa_data;
becopy((caddr_t)un->ether_dhost, (caddr_t)edst, sizeof(edst));

type = LAN_ARPTYPE;
break;
default:
printf("lansd: can't handle af3d.\n", ifp->if_unit, dst->sa_family);
error = EAFNOSUPPORT;
goto bad;
}

return (lan_output_llc(ifp, mO, edst, LAN_UI_CMD, type));

m_freem(m0);
return (error);

lan_output_llc(ifp, mO, dst, llc_ctl, type)

register struct ifnet *ifp;
register struct mbuf *m0;
u_char * dst;

char 1llc_ctl;

char type;

int s, error;
u_char edst|[LAN_L_ADDR];

A-16 Token-Ring Network Adapter

struct lan_device *addr = (struct lan_device ¥*)
lan_infolifp->if_unit]->iod_addr;

register struct lan_softc *1lns = &lan_softc{ifp->if_unit];
register struct mbuf *m = mO;

register struct list_hdr *lan;

extern struct ifnet loif;

/* Add token-ring header */

m = m_get(M_DONTWAIT, MT_HEADER);
if (m == 0) {
error = ENOBUFS;

goto bad;
}
m->m_next = m0;
m->m_off = MMINOFF;
m->m_len = sizeof (struct list_hdr);

lan = mtod(m, struct list_hdr *);
bcopy((caddr_t)dst, (caddr_t)lan->to_addr, sizeof(edst));
becopy{(caddr_t)lns->1lns_addr, (caddr_t)lan->from_addr, LAN_L_ADDR);
lan->dsap = type;
lan->ssap = type;
if(llc_ctl != LAN_UI_CMD)
lan->ssap]= 0x01;
lan->1lc_ctl = llc_ctl;
lan->pcf0 = LAN_PCFO;
lan->pcfl = LAN_PCF1l;
s = splimp();
if (IF_QFULL(&ifp->if_snd)) {
IF_DROP({&ifp->if_snd);
error = ENOBUFS;
goto gfull;
3
if (!(lns->1lns_adapter & (LAN_ADAP_BROKEN] LAN_ADAP_DOWN))) {
if (lns->1lns_adapter & LAN_ADAP_OPEN) {
int next_buf=Ilns->lns_nextbuf;
if (Ins->xp[next_buf]->cstat & LAN_XCSTAT_COMPLETE) {
if (lan_put(lns, m, next_buf, ifp->if_unit) == 0) {
DEBUGF (lan_debug,
printf("lan%d xmit buf %x filled\n",
ifp->if_unit, next_buf);
)
if (lns=->1lns_oactive == 0)
lan_start(lns, addr, next_buf, ifp->if_unit);

} else
m_freem(m);
} else
IF_ENQUEUE(&ifp->if_snd, m);
} else {
if ((lns->1lns_adapter & LAN_OPEN_IN_PROGRESS) == 0) {

lan_open(ifp->if_unit, addr);
3
IF_ENQUEUE(&ifp->if_snd, m);
3
} else
m_freem(m);

splx(s);
return (0);

Software Example

A-17

qfull:

mO0 = m;
splx(s);
DEBUGF (lan_debug, printf("lan%d IP output queue full\n", ifp->if_unit);
)i
bad:
m_freem(m0) ;
return (error);
3
/*

lan_ring_watch

timer set to examine ring state and print status message.
If necessary, attempt to reopen the adapter.

*/

lan_ring_watch(unit)
register int unit;

*
*
* This routine is entered upon expiration of the 60-second interval
*
*

{
register struct lan_device *addr = (struct lan_device *)lan_infolunit]->iod_addr;
register struct lan_softc *lns = &lan_softclunit];
int s;
if (lns->1lns_ring & LAN_RECOVERY) {
if (lns->lns_ring & LAN_XMIT_BEACON)
printf("lan%d: beaconing\n", unit);
}
s = splimp();
if ((lns->lns_adapter & (
LAN_OPEN_IN_PROGRESS |
LAN_ADAP_OPEN |
LAN_ADAP_BROKEN]
LAN_ADAP_DOWN
)) == 0) {
lan_open{unit, addr);
timeout(lan_ring_watch, (caddr_t)unit, SIXTY * hz);
}
else lns->lns_ring watch = 0;
splx(s);
3
/*

* lan_put - copy mbufs into large xmit.mbuf already mapped for dma operation

*/

lan_put(lns, m, xbuf, unit)
struct lan_softc *1lns;
struct mbuf *m;
int xbuf;
int unit;

struct lan_device *addr = (struct lan_device *)lan_infolunit]~>iod_addr;
struct mbuf *mp;

register struct lan_list *xcp;

register int total_length = 0;

int s;

A-18 Token-Ring Network Adapter

register char *bp;

xcp = lns->xplxbuf];
xcp->xlp_1]= LAN_ODD_PTR;

bp = ((char *) lns->lns_xbufpl[xbufl);
for (mp = m; mp; mp = mp->m_next) {
register int len = mp->m_len;

bcopy(mtod(mp, char *), bp, len);
bp += len;
total_length += len;
3
xcp->frame_size = total_length;
xcp->d_parm[0].d_cnt = total_length & (~LAN_CHAIN);
lns=->1ns_nextbuf = l-xbuf;
s = splimp();
Xxcp->cstat = LAN_X_CSTAT_REQ;
if (lns->1lns_oactive) {
lns->xp{l-xbuf]->xlp_1 &= ~LAN_ODD_ PTR;
miow(&(addr->lan_cmdstat), LAN_XMTVALID);

3

splx(s);
m_freem(m) ;
return (0);

/*
* lan_get - copy from driver receive buffers into mbuf's
*
struct mbuf *lan_get(faddr, totlen)
u_char * faddr;
register unsigned short totlen;

register struct mbuf *m;

struct mbuf *top = 0;

register struct mbuf **mp = ⊤
register unsigned short len;
register u_char * cp;

cp = faddr;
while (totlen > 0) {
MGET(m, M_DONTWAIT, MT_DATA);
if (m == 0)
goto bad;
len = totlen;
if (len >= CLBYTES) {
register struct mbuf *p;

MCLGET (p, 1);
if (p t= 0) {

m->m_len = len = CLBYTES;
m->m_off = (int)p - (int)m;

} else {
m->m_len = len = MIN(MLEN, len);
m->m_off = MMINOFF;

3

} else {
m->m_len = len = MIN(MLEN, len);

Software Example A-19

m->m_off = MMINOFF;
}
bcopy(cp, mtod(m, char *), len);
cp += len;

*mp = m;
mp = &m->m_next;
totlen -= len;
3
return (top);
bad:
DEBUGF (lan_debug, printf("lan mbuf request failed\n");
)3
if (top != 0)
m_freem(top) ;
return (0);
}
/*
* lan_initialize - initialize adapter;
*
* Initialization consists of 3 phases:
* 1) check of bring-up diagnostics
* 2) transfer of initialization parameters
*

3) dma interface check.
*/

lan_initialize(unit)
register int unit;
{
register struct lan_softc *lns = &lan_softclunit];
register struct lan_device *addr;
int retry, success, failure, j, k; /* loop controls */
unsigned short initparm[LAN_NUM_IPARMS];
register unsigned short *parmptr, *initptr;
unsigned short sifrbuf, sifwbuf;
register unsigned short *shortptr;
int tcw = 0;
struct mbuf *m;
char c;

/*
* assume initial attempt plus
* 3 more retries of full procedure

*/

DEBUGF (lan_debug, printf("lan%d initialization\n", unit);
)
addr = (struct lan_device *)(lan_info(unit]->icd_addr);
/* disable dma channel */
if ((caddr_t)addr == lan_std[0]) {

Ins->lan_dma_chan = DM_CHAN5;

*((char *)CTL2_SMASK) = (CH_DISABLE] CH5);
} else {

Ins->lan_dma_chan = DM_CHANG;

*((char *)CTL2_SMASK) = (CH_DISABLE] CH6);

A-20 Token-Ring Network Adapter

lan_dma_init(lns->lan_dma_chan);

/* begin adapter “initialization */
for (retry = LAN_RETRY; retry > O; retry--) {
shortptr = &(addr->lan_cmdstat);
miow(shortptr, LAN_RESET);
/* check bring-up diagnostics results */
DEBUGF (lan_debug,
printf("lan%d init retry %d\n", unit, LAN_RETRY - retry);
)i
for (j = LAN_RESET_WAIT, success = failure = 0; j > 0; j--) {
DELAY (TEN_MS) ;
sifrbuf = mior(shortptr);
DEBUGF (lan_debug,
printf("lansd status = Ox%b, int/err code = Ox%x\n",
unit, sifrbuf & Oxfffo,
LAN_STAT_BITS, sifrbuf & 0x000f);
)
if (sifrbuf & LAN_INITIALIZE) {
if ((sifrbuf &
(LAN_TEST]
LAN_ERROR]
LAN_ADAP_INT)) == 0) {
/* diagnostics successful */
successt+;
break;
} else if ((sifrbuf & LAN_TEST) &&
(sifrbuf & LAN_ERROR)) {
/* unrecoverable error */
failure++;

break;
3
3
} 3
DEBUGF (lan_debug, printf("lan%d pods complete\n", unit);
) /* end bring-up diagnostics */
if (success) { /* diagnostics ok,now handshake */

/* transfer initialization parms */
LAN_IRQ12 = 0; / enable interrupt level */

success = 0;
sifrbuf = mior(&(addr->lan_enable));
/*

* yse an mbuf to store scb, ssb
* to guarantee alignment
*
if (Ins->1ns_ctl == 0) {
MGET (m, M_DONTWAIT, MT_DATA);
if (m==0) {
failure++;
break;
3
Ins->1ns_ctl = mtod(m, struct lan_ctl *);
3
tcw = lan_dma_setup(lns->1lns_ctl, TCW_RESERVE, lns->lan_dma_chan);
initparm[0] = LAN_INIT_OPTIONS;
initparm([1] initparm[2] = initparm{3] = 0O;
initparm(4] LAN_INIT_RBURST;
initparm[5] LAN_INIT_XBURST;

o

Software Example A-21

initparm[6]
initparm[7]

LAN_INIT_ABORT;
DMA_HI_ADDR(tcw) ;
initparm[8] DMA_LO_ADDR(1lns->1lns_ctl, tcw);
initparm[9] initparm{7];
initparm[10] = DMA_LO_ADDR(&lns->lns_ctl->lan_ssb, tcw);
/* write adapter init parameters */
miow(&(addr->lan_address), LAN_INIT_DATAA);
initptr = &(addr->lan_datai);
for (k = LAN_NUM_IPARMS, parmptr = initparm;
k > 0;
k--, parmptr++) {
miow(initptr, *parmptr);

nonouon

}
/* read status to clear */
c = *((char *)CTL2_CMD);
if (lns->lan_dma_chan == DM_CHANS5) {
/* set page mode for dma */
*((char *)DMRA) &= ~CH5_PAGE;
*((char *)CTL2_SMASK) = (CH_ENABLE | CH5);
*((char *)CTL2_MODE) = (DM_CASCADE] CH5);
} else {
/* set page mode for dma */
*{((char *)DMRA) &= ~CH6_PAGE;
*((char *)CTL2_SMASK) = (CH_ENABLE] CH6);
*((char *)CTL2_MODE) = (DM_CASCADE] CH6);
3
miow(&(addr->lan- cmdstat), LAN_EXECUTE);

/*
* wait at least 10 seconds before detecting
* initialization error to allow for dma timeout

*/

for (k = LAN_DMA_TIMEOUT + 1; k > 0; k--) {
DELAY (TEN_MS) ;
sifrbuf = mior(&(addr->lan_cmdstat));
if ((sifrbuf &
(LAN_INITIALIZE]
LAN_TEST]
LAN_ERROR)) == 0) {
DEBUGF (lan_debug,
printf("lan%sd dma xface test ok\n",
unit) ;
)i
success++;
break;
} else if (sifrbuf & LAN_ERROR) {
DEBUGF (lan_debug,
printf("lan%d dma xface error, ",
unit) ;
printf("status = Ox%b, code = 0x%x\n",
sifrbuf & Oxfffo,
LAN_STAT_BITS,
sifrbuf & 0x000f);

break;

A-22 Token-Ring Network Adapter

/* end handshake */
if (success)
return (0);
}
/* retry init procedure */
printf("lan%d: token ring adapter initialization failure, status = Ox%b, error code = 0x%x.\n",
unit, sifrbuf & Oxfff0, LAN_STAT_BITS, sifrbuf & 0x000f);
return (LAN_INIT_ERROR) ;

/* end lan_initialize */

/*
* lan_setaddr - set adapter's internet address
*
lan_setaddr (ifp, sin)
register struct ifnet *ifp;
register struct sockaddr_in *sin;

{
ifp->if_addr = *(struct sockaddr *)sin;
ifp->if_net = in_netof (sin->sin_addr);
ifp->if_host[0] = in_lnaof(sin->sin_addr);
sin = (struct sockaddr_in *) & ifp->if_broadaddr;
sin->sin_family = AF_INET;
sin->sin_addr = if_makeaddr (ifp->if_ net, INADDR_ANY) ;
ifp->if_flags]= IFF_BROADCAST;
3
/*
* close - terminate communication on ring
*/

lan_close(unit)
register int unit;
{
register struct lan_softc *1lns = &lan_softclunit];
register struct lan_device *addr = (struct lan_device *)lan_info[unit]->iod_addr;
register struct lan_ctl *ctl = lns->lns_ctl;

Ins->1ns_if.if_flags &= ~IFF_UP;
lns->1lns_adapter &= ~(LAN_ADAP_OPEN] LAN_OPEN_IN_PROGRESS) ;
lan_exec(LAN_CLOSE, ctl->close_parm, addr, unit);

/*
* freeze - freeze adapter to enable internal storage dump
*/
lan_freeze(unit)
register int unit;
{
register struct lan_softc *1lns = &lan_softclunit];
register struct lan_device *addr = (struct lan_device *)lan_info[unit]->iod_addr;
register int s = splimp();
register int i;
lns->1ns_adapter]= LAN_ADAP_FROZEN;
Ins->1lns_if.if_flags &= ~(IFF_RUNNING] IFF_UP);

Software Example A-23

/*
* generate pulses on adapter reset line
* to freeze; write to sif cmd reg for
* microcode level 12 compatibility
*
for (i = 0; i < LAN_ADAP_FREEZE_PULSES; i++) {
if (i)
DELAY (LAN_ADAP_FREEZE_DELAY) ;
miow(&(addr->lan_hreset), 0);
DELAY (LAN_ADAP_MIN_RESET) ;
miow(&(addr->lan_hreset), 0);

3
*{char *)(&(addr->lan_cmdstat)) = LAN_FREEZE_SIG_ul2;
splx(s);

3

/*

* unfreeze - unfreeze adapter

*

lan_unfreeze(unit)
register int unit;

{
register struct lan_softc *1lns = &lan_softclunit];
register struct lan_device *addr = (struct lan_device *)lan_infolunit]->iod_addr;
register int s = splimp{();

/* pulses hardware reset line to unfreeze */
miow(&(addr->lan_hreset), 0);

DELAY (LAN_ADAP_MIN_RESET) ;
miow(&(addr->lan_hreset), 0);
lns->1ns_adapter &= ~LAN_ADAP_FROZEN;
splx(s);

/*
* thaw - release adapter frozen state
*

lan_thaw(unit)
register int unit;

{
register struct lan_softc *1lns = &lan_softclunit];
if (lns->lns_adapter & LAN_ADAP_FROZEN) {
lan_unfreeze(unit);
timeout (lan_reset, (caddr_t)unit, 1 * hz);
3
3
/*

* lan_read_adapter ~ transfer adapter storage to system
*

lan_read_adapter()

{

/* TO BE IMPLEMENTED */
}

A-24 Token-Ring Network Adapter

/*

* lan_error_log - read and reset adapter error log
*/

lan_error_log()

{

/* TO BE IMPLEMENTED */

}

/*

* lan_set_faddr - reset adapter functional address after open
*/

lan_set_faddr ()

{

/* TO BE IMPLEMENTED */
3

*

* lan_dma_setup - for a given virtual address, return a tcw entry
* corresponding to the real address mapping
*/
lan_dma_setup(vaddr, type, chan)
register char *vaddr;
register int type;
register int chan;

register int raddr;
register unsigned int i;
register short *tcwp;

raddr = vtop((int)vaddr & ~(PAGESIZE - 1));

switch (type) {
case TCW_RESERVE:
*

* if tcw is type RESERVE it will not be freed
* so try to allocate from end of table down
*/
tewp = (short *)(TCW_BASE + (((chan << 6) + (NUMTCW - 1)) << 1));
for (i = NUMTCW - 1; i >= 0; i--, tcwp--) {
if (*tcwp == TCW_FREE)
goto alloc_slot;
if ((((int) *tcwp &
(PAGESIZE-1)) << 11) == raddr)
return (i);
}
return (TCW_ERROR) ;
/*
* if tcw is for single use we expect it to be freed
* so allocate it from the start of the table up

*/
case TCW_SINGLE_USE:
tcwp = (short *) (TCW_BASE + (chan << 7));
for (i = 0; i < NUMTCW; i++, tcwp++) {
if (*tcwp == TCW_FREE)

goto alloc_slot;

Software Example

A-25

return (TCW_ERROR) ;
default:
return (TCW_ERROR) ;
3
alloc_slot:
*(short *) (TCW_BASE + (((chan << 6) + i) << 1)) =
(short) (((int)raddr) >> 11) 1 RSC_ACC] REAL_ACC;
return (1i);

*
* lan_dma_init - initialize the tcw table so all entries are free

*/

lan_dma_init(chan)
register int chan;

{
register short *tcwp;
register int 1i;
tcwp = (short *)(TCW_BASE + (chan << 7));
for (i = NUMTCW; i > 0; i--, tcwp++)
*tcwp = TCW_FREE;
3
J/*

* lan_xid_test - support logical link control type 1 operation

*/

lan_xid_test(m, i, unit)
register struct mbuf *m;
register int i;
register int unit;

{
register struct lan_softc *1lns = &lan_softclunit];
register struct ifnet *ifp = &lns->lns_if;
char *c;
int j;
switch (lns->rh{i]->1lc_ctl) {
case LAN_LLC_XID_CMDO:
case LAN_LLC_XID_CMD1:
c = mtod(m, char *);
for (j = 0; j < LAN_L_XID_RESP; j++) {
*c++ = lan_xid_respljl;
}
m~>m_len = LAN_L_XID_RESP;
case LAN_LLC_TEST_CMDO:
case LAN_LLC_TEST_CMD1:
lan_output_llc(ifp, m, lns->rh[i]l->from_addr,
lns->rh([i]->11lc_ctl, lns->rh[i}->dsap);
return (lns->rh[i]->1lc_ctl);
break;
default:
return(0) ;
break;
3
3

A-26 Token-Ring Network Adapter

/*
* miow - swap bytes before port output

*/

miow(ioport, datawd)
register unsigned short *ioport;
register unsigned short datawd;

{
*joport = ((datawd >> 8)] (datawd << 8));
}
/*
* mior - swap bytes after port input
*/
unsigned short
mior (ioport) /* swap bytes after port input */
register unsigned short *ioport;
{
register unsigned short datawd;
datawd = *ioport;
return ((unsigned short) (datawd >> 8)] {(datawd << 8));
}

#endif NLAN > O

/*
* 5799-CGZ (C) COPYRIGHT IBM CORPORATION 1986
* LICENSED MATERIALS - PROPERTY OF IBM
* REFER TO COPYRIGHT INSTRUCTIONS FORM NUMBER G120-2083
*/
/* S$Header: if_lanreg.h,v 2.7 86/07/08 14:12:51 Exp §$ */
/* $Source: /usr/sys/if_lanreg.h,v $ */

#if 1defined(lint) && !defined(LOCORE) && defined(RCS_HDRS)
static char *rcsidif_lanreg = "$Header: if_lanreg.h,v 2.7 86/07/08 14:12:51 Exp $";
#endif

/* Adapter register addresses */
struct lan_device {

unsigned short lan_data; /* system interface data reg */
unsigned short lan_datai; /* system interface data incr */
unsigned short lan_address; /* system interface address */
unsigned short lan_cmdstat; /* command/status register */
unsigned short lan_enable; /* enable adapter interrupts */
unsigned short lan_undef; /* undefined adapter address */
unsigned short lan_disable; /* disable adapter interrupts */
unsigned short lan_hreset; /* hard reset adapter */

Software Example

A-27

/* IRQ12 interrupt reset (shared level interrupt) */
#define LAN_IRQ12 ((char *)0xFO0006F4)

/* Adapter command/status register offset for probe */
#define LAN_CMDREG 0x6

/* Adapter locations for initialization and adapter check */
/* These values are written to the lan_address register */
#define LAN_INIT DATAA 0x0200

#define LAN_ACHECK_DATA 0x05EO

/* System to Adapter Interrupts */
/* These values are written to the lan_cmdstat register */

#define LAN_RESET OxXFF80 /* reset adapter */

#define LAN_SSBCLEAR 0xA000 /* notify that status block available */
#define LAN_EXECUTE 0x9080 /* initiate command in command block */
#def ine LAN_RECVCONT 0x8480 /* request recv operation to continue */
#define LAN_RECVALID 0x8280 /* signal recv list suspension cleared */
#define LAN_XMTVALID 0x8180 /* signal xmit list suspension cleared */

/* Adapter to System Response */
/* These values are read from the lan_cmdstat register */
#define LAN_INT 0x0080 /* valid interrupt */

#define LAN_ADAP_INT O0x000E /* adapter -> system interrupt code */
#define LAN_ACHECK 0x0000 /* unrecoverable adapter error */
#define LAN_IMPLFRC 0x0002 /* IMPL force mac frame received */
#define LAN_RINGSTAT 0x0004 /* ring status update */

#define LAN_SCBCLEAR 0x0006 /* system command block clear */
#define LAN_CMDSTAT 0x0008 /* command status update */

#define LAN_RECVSTAT 0x000A /* receive status update */

#define LAN_XMITSTAT 0x000C /* transmit status update */

#define LAN_STAT BITS

"\20\20INTADAP\ 17RESET\ 16 SSBCLR\ 15EXECUTE\ 14SCBREQ\ 13RCVCONT\ 12RCVLD\ 1 1XMTVLD\
\10INTSYS\7INIT\6TEST\5ERR"

/* System Command Block */
struct lan_scb {
unsigned short command;
unsigned short h_addr;
unsigned short 1_addr;
1;

/* Adapter Commands */
/* These values are written to the lan_scb control block */

#define LAN_OPEN 0x0003 /* open adapter */

#define LAN_TRANSMIT 0x0004 /* transmit frame */

#define LAN_TRANSHLT 0x0005 /* interrupt transmit list chain */
#define LAN_RECEIVE 0x0006 /* receive frames */

#define LAN_CLOSE 0x0007 /* close adapter */

#define LAN_SETGADDR 0x0008 /* set group address */
#define LAN_SETFADDR 0x0009 /* set functional address */
#define LAN_RDERRORLOG O0x000A /* read error log */

#define LAN_RDADAPTR 0x000B /* read adapter storage */

/* System Status Block */
struct lan_ssb {
unsigned short command;
unsigned short statusO;
unsigned short statusl;

A-28 Token-Ring Network Adapter

unsigned short status2;
};

/* Adapter Status */

/* These values are read from the lan_ssb control block */
#define LAN_SSB_RING 0x0001 /* ring status update */
#define LAN_SSB REJECT 0x0002 /* command reject */

#define LAN_CMD_REJ_BITS \
"\20\20ILLCMD\17ADDRERR\ 16ADAPOPN\ 15ADAPCLS\ 14SAMCMD"

/* Adapter Check Status */
/* These values are read from the adapter check field */

#define ADAP_CHK_SIZE 4

#define RECV_PARITY 0x80

#define XMIT PARITY 0x40

#define XMIT_UNDERRUN 0x20

#define RECV_OVERRUN 0x10

#define LAN_ACHECK_BITS \
"\20\20DIOPAR\17DMARD\ 16DMAWT\ 15ILLOP\ 14LBPAR\ 13EMPAR\ 12SIFPAR\ 11PHPAR\
\ LORCVPAR\ 7WTPAR\ 6UNDRN\ 50VRUN\ 4 INVINT\ 3INVERR\ 2 INVXOP\ 1PGMCHK"

/* Ring Status */

/* These values are read from the lan_ssb on ring status update */
#define LAN_SIGNAL_LOSS 0x8000 /* signal loss */

#define LAN_HARD_ERROR 0x4000 /* xmit/recv beacon frames */
#define LAN_SOFT_ERROR 0x2000 /* xmit report error mac frame */
#define LAN_XMIT_BEACON 0x1000 /* xmit beacon frames */

#define LAN_WIRE_FAULT 0x0800 /* short circuit in data path */

#define LAN_AUTOER1 0x0400 /* auto-removal process */
#define LAN_AUTOER2 0x0200 /* reserved */

#define LAN_REMOVE_RECV 0x0100 /* remove received */
#define LAN_CTR_OVER 0x0080 /* counter overflow */
#define LAN_SINGLE 0x0040 /* single station */

#define LAN_RING_BITS
"\ 20\ 20SIGLOSS\ 17HRDERR\ 16 SFTERR\ 15BEACON\ 14WRFLT\ 13AERR\ 11RMV\8CTROVFL\ 7SNG"

/* Adapter Initialization Parameters */

#define LAN_INIT_ OPTIONS 0x8000 /* resv bit on, default options */
#define LAN_INIT_CMDSTAT 0x0COC /* int vector cmd, xmit stat */
#define LAN_INIT RECVRING 0x0COC /* int vector recv,ring stat */

#define LAN_INIT_SCBCHK 0Ox0OCOC /* int vector scb,adapter check */
#define LAN_INIT RBURST 0x0000 /* dma burst size for recv data */
#define LAN_INIT_XBURST 0x0000 /* dma burst size for xmit data */
#define LAN_INIT ABORT 0x0101 /* no. of dma attempts if error */

/* Adapter Initialization Status */
#define LAN_INITIALIZE O0x0040 /* bring-up diagnostics complete */

#define LAN_TEST 0x0020 /* initialization test */

#define LAN_ERROR 0x0010 /* initialization error */

/* Adapter Open Parameters */

#define LAN_OPEN_OPTIONS 0x0000 /* open options */

#define LAN_OPEN_RLIST 0x0000 /* receive list size */

#define LAN_OPEN_XLIST 0x0000 /* transmit list size */

#define LAN_OPEN_BUFSIZE 0x00e8 /* buffer size = 224 bytes */
#define LAN_OPEN_RAMSTART 0x4006 /* RAM start address */

#define LAN_OPEN_RAMEND Ox7FFE /* RAM end address */

#define LAN_OPEN_XMINMAX 0x040e /* xmit buffer min/max counts */

Software Example

A-29

/* Open Status */

#define LAN_OPEN_COMPLETE 0x8000
#define LAN_OPEN_NODE_ERROR 0x4000
#define LAN_OPEN_LIST_ERROR 0x2000
#define LAN_OPEN_BUF_ERROR 0x1000
#define LAN_OPEN_RAM_ERROR 0x0800
#define LAN_OPEN_XMIT_ ERROR 0x0400
#define LAN_OPEN_ERROR 0x0200

open complete */

node address error */
recv/xmit list size error */
buffer size error */

RAM address error */

xmit buffer count error */
error detected during open */

"\20\200PENOK\ 17ADDRERR\ 16LSTSZ\ 15BUFSZ\ 14RAMERR\ 13XMTBFCT\ 120PENERR"

#define LAN_OPEN_STAT BITS
char *open_errmsg[l6] = {
"undefined",

"function failure”,
"receiver exception",
"undefined",
"undefined",

"timeout",

"ring failure",

"ring beaconing",
"duplicate node address",
"request parameters",
"remove received",

"IMPL force received" };

/* Open Command Phases */

#define LAN_OPEN_LOBE_TEST 0x0010
#define LAN_OPEN_INSERTION 0x0020
#define LAN_OPEN_ADDR_VER 0x0030
#define LAN_OPEN_ROLL_CALL 0x0040
#define LAN_OPEN_REQ PARM 0x0050
/* Open Error Codes */

#define LAN_OPEN_FUNC_FAILURE 0x0201
#define LAN_OPEN_OSIGNAL_LOSS 0x0202
#define LAN_OPEN_OWIRE_FAULT 0x0203
#define LAN_OPEN_FREQ ERROR 0x0204
#define LAN_OPEN_TIMEOUT 0x0205
#define LAN_OPEN_RING_FAILURE 0x0206
#define LAN_OPEN_RING_BEACON 0x0207
#define LAN_OPEN_DUP_NODE 0x0208
#define LAN_OPEN_OREQ_ PARM 0x0209
#define LAN_OPEN_OREM_RECV 0x020A
#define LAN_OPEN_OIMPL 0x020B
/* Close Status */

#define LAN_CLOSE_COMPLETE 0x8000

#define LAN_L_ADDR 6
#define LAN_N_DATA 3
/* Receive, Transmit Lists */
struct lan_list {
unsigned short
unsigned short
unsigned short
unsigned short
struct d_list {
unsigned short d_cnt;

Xx1lp_h;
xlp 1;
cstat;
frame_size;

A-30 Token-Ring Network Adapter

lobe media test */
physical insertion */
address verification */
roll call poll */
request parameters */

function failure */
signal loss */

wire fault */
unused */

timeout */

~ ring failure */

ring beaconing */
duplicate node address */
request parameters */
remove received */

IMPL force received */

close complete */

/* length lan address */
/* max data fields in recv/xmit list */

unsigned short d_haddr;
unsigned short d_laddr;
3} d_parm[LAN_N_DATA];
¥
/* Lan header includes control fields, source and destination
addresses, and llc fields: */
struct list_hdr ¢
char pcfO0;
char pcfl;
char to_addr [LAN_L_ADDR];
char from_addr [LAN_I._ADDR];
char dsap;
char ssap;
char llc_ctl;
3

/* Receive Status */
#define LAN_FRAME_COMPLETE
#define LAN_RECV_SUSPEND

0x8000 /* received frame complete */
0x4000 /* receive chain ended */
#define LAN_RCSTAT_COMPLETE 0x4000 /* received frame complete */
#define LAN_RECV_BITS "\20\20RCVCMPL\ 17RCVSUSP"

#define LAN_RCSTAT_ BITS "\20\17FRMCMPL\16FRMSTRT\15FRMEND"

/* Transmit Status */
#define LAN_XCSTAT COMPLETE 0x4000 /* transmitted frame complete */
/* Adapter Storage for Burned-In Address */
struct lan_bia {

unsigned short count;

unsigned short adap_addr;

char bial6];

char flag;
}i

/* Miscellaneous */

#define LAN_RETRY 4 /* Retries during initialization */

#define LAN_RESET_WAIT 300 /* Wait time (in 10's of ms) for bring-up-diags */
#define LAN_DMA_TIMEOUT 1000 /* Dma timeout error (10's of ms) */
#define SCB_LEN 6 /* Number bytes in scb */

#define SCB_INIT 0x0000cle2d48b /* Scb initialization contents */

#define SSB_LEN 8 /* Number bytes in ssb */

#define SSB_INIT Oxfff£d1d7¢5d9¢c3d4 /* Ssb initialization contents */
#define LAN_ADDRESSES 0x0a04 /* Pointer to adap addresses in adap storage */
#define LAN_OPEN_PHASE_MASK Oxff0f /* Ignore phase if open error */

#define LAN_NUM_IPARMS 11 /* Number of initialization parameters */

#define LAN_TIMEOUT 10 /* Dma timeout in 10 seconds */

#define LAN_PCFO 0x00 /* Physical Control Field 0 */

#define LAN_PCF1 0x40 /* Physical Control Field 1 (not mac) */

#define LAN_PCF1 0x40 /* Physical Control Field 1 (not mac) */

#define LAN_CHAIN 0x8000 /* chain indicator in recv/xmit list */

#define LAN_ODD_PTR 0x0001 /* end of list indicator */

#define LAN_X_CSTAT REQ OxB7FF /* Xmit cmd/stat on request */

#define LAN_XMIT_VALID 0x8000 /* Xmit list valid indicator */

#define LAN_XMIT EOF 0x1000 /* Xmit end of frame indicator */
#define LAN_RECV_ALT 1 /* Multiple received frames reported on intr */
#define LAN_R_CSTAT REQ Ox88FF /* Recv cmd/stat on request */

Software Example

A-31

/* Settings to en/disable the dma channels used by the adapter */
#define CHS_PAGE 0x04

#define CH6_PAGE 0x02

#define CH_ENABLE 0x00

#define CH_DISABLE 0x04

#define CH5 0x01

#define CH6 0x02

/* TCW Variables */
#define NUMTCW 64

#define TCW_FREE Oxffffffff /* in raddr means tcw slot free */
#define TCW_SINGLE_USE 1 /* tcw freed after single dma op*/
#define TCW_RESERVE 2 /* tcw will remain in use*/
#define TCW_ERROR -1 /* error in tcw allocation*/
#define ALTMAST_PAGEMODE_HIBITS Oxfe

#define ALTMAST_PAGEMODE_DISP Ox7ff

#define ALTMAST_PAGEMODE_TCW_LOBITS 11

#define ALTMAST_PAGEMODE_TCW_HIBIT 5

/* Address conversion macros */
#define PAGESIZE 2048

#define LOG2PAGESIZE 11

#define DMA_HI_ADDR(x) (ALTMAST PAGEMODE_HIBITS] (x >> ((sizeof(u_short) << 3)-LOG2PAGESIZE)))
#define DMA_LO_ADDR(y,x) (((int)y & (PAGESIZE - 1))] (x << LOG2PAGESIZE))

*

* 5799~CGZ (C) COPYRIGHT IBM CORPORATION 1986
* LICENSED MATERIALS - PROPERTY OF IBM
* REFER TO COPYRIGHT INSTRUCTIONS FORM NUMBER G120-2083
*/
/* $Header: if_lanvar.h,v 2.9 86/07/08 14:12:58 Exp $ */
/* $Source: /usr/sys/if_lanvar.h,v $ */

#if !defined(lint) && !defined(LOCORE) && defined(RCS_HDRS)
static char *rcsidif_lanvar = "$Header: if_lanvar.h,v 2.9 86/07/08 14:12:58 Exp $";
#endif

struct lan_ctl {
struct lan_scb lan_scb;
struct lan_ssb lan_ssb;
struct lan_bia lan_bia;
unsigned short open_parm[16];
unsigned short close_parm{2];
3;

#define LAN_XMITLIST_CT 2 /* Number of transmit lists */
#define LAN_RECVLIST_CT 2 /* Number of receive lists */
#define LAN_MAX_ LISTS_PER_PAGE 75 /* Number of lists per big mbuf */

struct lan_recv_ctl{
struct lan_list lan_rlist[LAN_RECVLIST_CT];
struct list_hdr list_hdr [LAN_RECVLIST_CT];
};

/* Token-Ring software status per adapter */
struct lan_softc {

A-32 Token-Ring Network Adapter

struct arpcom lns_ac; /* like ethernet structs */

#define lns_if 1lns_ac.ac_if /* network-visible interface */
#define lns_addr 1lns_ac.ac_enaddr /* hardware lan address */
short lns_ocactive; /* is output active */
short lns_xbuf; /* in=-use xmt buf */
short lns_nextbuf; /* next buf to fill */
short lns_xstart [LAN_XMITLIST CTI];
short lns_ring; /* ring state */
short lns_adapter; /* adapter state */
short lns_open_retries; /* open retry count */
short lns_beacon; /* open retries while beaconing */
short lns_ring_watch; /* control timeout count */
unsigned short lns_node_addr; /* node address in adapter storage */
struct proc *lns_freezer;
struct lan_ctl *1lns_ctl; /* control structure pointer */

struct lan_list *xp[LAN_XMITLIST_CT];/* xmit list ptrs */
struct lan_list *rp[LAN_RECVLIST_CT];/* recv list ptrs */
struct list_hdr *rh{LAN_RECVLIST CT];/* recv hdr ptrs */
struct lan_recv_ctl *1lns_recv; /* recv struct pointer */
char *1ns_xbufp[LAN_XMITLIST_CT];

struct mbuf *1lns_rbufp [LAN_RECVLIST_CT]; /* receive buffer pointers */
struct mbuf *1lns_rdata[LAN_RECVLIST_CT]; /* receive data area pointers */
struct lan_tcw_list { /* remember tcw's in use */

int num_entries;
int tcw_slot [NUMTCW] ;
} lan_tcw_list[LAN_XMITLIST_CT];
int lan_dma_chan; /* dma channel used by this addr*/
};

/* Adapter/Ring Status */

#define LAN_ADAP_OPEN 0x8000 /* Adapter .open */

#define LAN_OPEN_IN_PROGRESS 0x4000 /* Adapter open in progress */
#define LAN_RETRY_IN_PROGRESS 0x2000 /* Adapter open being retried */
#define LAN_ADAP_BROKEN 0x1000 /* Adapter failure */

#define LAN_ADAP_AUTOER1 0x0800 /* Adapter internal error */
#define LAN_ADAP_FCTNFAIL 0x0400 /* Adapter function failure */
#define LAN_ADAP_BIA_READ 0x0200 /* Adapter node address read */
#def ine LAN_ADAP_DOWN 0x0100 /* Adapter closed */

#define LAN_ADAP_FROZEN 0x0008 /* Adapter frozen for dump */

#def ine LAN_BEACONING 0x0001 /* Ring beaconing */

#def ine LAN_RECOVERY 0x0002 /* Ring in recovery */

#define LAN_CABLE_FAIL 0x0004 /* Cable failure */

/* Logical Link Control Class 1 Definitions */

#def ine LAN_IPTYPE 0x06 /* IP packet type */

/* TEMP: FOLLOWING FAKE VALUE IS PENDING ARP NUMBER ASSIGNMENT */

#define LAN_ARPTYPE 0x99

/* NB: The bits in the following Unnumbered Information Command are in the
* wrong order. However, this sequence is being temporarily maintained
* for compatibility; it should be corrected when all workstations are
* able to receive frames correctly when the UI command is sent correctly. */
#define LAN_UI_CMD 0xc0

#define LAN_LLC_XID_CMDO Oxaf

#define LAN_LLC_XID_CMD1 Oxbf

#define LAN_LLC_TEST_CMDO Oxe3

#define LAN_LLC_TEST CMD1 0xf3

#def ine LAN_L_XID_RESP 3

Software Example

A-33

/* Maximum transmission unit */

#define LAN_MTU ETHERMTU /% same as ethernet */

/* Miscellaneous */

#define LAN_MAX_OPEN_RETRY 3 /* Max number of open retries *x/
#define LAN_INIT_ERROR -1

#define ONESEC 240000 /* argument to DELAY 1 second */

#define TEN_MS 2400 /* argument to DELAY 10 ms */

#define SIXTY 60 /* ring recovery time in seconds */
#define LAN_ADDR_PENDING 0x01 /* Waiting to update lan addr */

*
* 5799-CGZ (C) COPYRIGHT IBM CORPORATION 1986
* LICENSED MATERIALS ~ PROPERTY OF IBM
* REFER TO COPYRIGHT INSTRUCTIONS FORM NUMBER G120-2083
*/
/* $Header: if_lanio.h,v 1.1 86/05/20 11:11:37 Exp $§ */
/* $Source: /usr/sys/if_lanio.h,v $ */

#if !defined(lint) && !defined(LOCORE) && defined(RCS_HDRS)

static char *rcsidif_lanio = "$Header: if_lanio.h,v 1.1 86/05/20 11:11:37 Exp $";
#endif
/* Adapter Storage for Freeze-bDump Data */
#define LAN_FREEZE_DUMP 4096 /* Size of freeze-dump data in bytes */
#define LAN_FREEZE_CHUNK 2048 /* Size of read window when frozen */
#define LAN_FREEZE_INCR 0xff00 /* Increment addr during freeze */
#define LAN_ADAP_FREEZE_PULSES 2 /* Number pulses to freeze *
#define LAN_ADAP_FREEZE_DELAY 120 /* Delay between pulses to detect*/
#define LAN_ADAP_MIN_RESET 4 /* Delay between back-to-back dio*/
#define LAN_FREEZE_SIG_ul2 0x80 /* ucode level 12 compatibility */
struct lan_dump {

int lan_len; /* buffer length */

unsigned short lan_dump_data[LAN_FREEZE_DUMP/2] ;
3;

/* lan freeze~dump controls */

#define SIOCFLANDUMP _IOwW(i, 128, struct ifreq) /* freeze lan */
#define SIOCSLANDUMP _IowW(i, 127, struct ifreq) /* set lan dump */
#define SIOCGLANDUMP _IOW(i,126, struct ifreq) /* get lan dump */

A-34 Token-Ring Network Adapter

AC, access control field 1-5, 1-6, 3-46, 47
Access units 1-3, 14
Adapter Address 2-12
Adapter bus

memory map 2-11

microcode expansion 2-11
ADAPTER CHECK 3-31 thru 3-34
Adapter closed 3-70
Address enable (AEN) 2-6

Bring-up diagnostic (BUD) 3-13
Buffer allocation 3-45

Buffer size 3-39, 3-45

Bus master -MASTER) 2-8

CLOSE command 3-69, 3-70
Command parameters list 3-4
COMMAND REJECT status 3-39 thru 3-31

D]

DMA Acknowledge
(-DACKS, -DACK6) 2-8
Destination address 3-48

Index

Differential manchester code 2-14

Direct input/output (DIO)
address of 2-5, 2-10

DRQ5 2-7

DRQ6 2-7

ED, end delimiter 1-5, 1-6

Frame complete 3-67
Frame control field (FC) 3-47
Frames
LLC 1-6
MAC 1-5, 1-6, 3-26
non-MAC 1-5, 1-6
Freeze-Dump 3-78
Functional address 3-39, 3-71

Group address 3-39, 3-70

1]

IEEE 802.5 24
Initialization
error codes 3-22
options 3-16 thru 3-19

Index X-1

Interrupt codes 3-10
Interrupt request (IRQ12) 2-8
Interrupts
level 12 24
I/O card select (IOCS16) 2-7
I/O channel ready (IOCHRDY) 2-7
I/O read (-IOR) 2-7
I/ O write (-IOW) 2-7

Jumpers
description 2-9
ship position 2-31

Memory read (-MEMR) 2-6
Memory write -MEMW) 2-6
Microcode patch 2-4, 2-11

Node address 3-39

[o]

OPEN command 3-35 thru 3-45

completion status 3-41 thru 345 .

parameter list 3-36 thru 341

X-2 Token-Ring Network Adapter

(]

Pad routing field 3-38
Power 4-3

Processor activity timer 2-13
Product ID address 3-40
Product ID block 34

[®]

READ ADAPTER BUFFER 3-74 thru 3-77

READ ERROR LOG 3-72 thru 3-74
RECEIVE 3-62 thru 3-68
completion 3-67, 3-68
parameter list 3-63 thru 3-66
Receive list 34
Receive list size 3-39
Receive suspended 3-67
Registers
adapter reset 3-12
address register 3-11
command/status 3-5 thru 3-11
data register 3-11
data register inc 3-11
disable interrupt 3-12
enable interrupt 3-11
interrupt level enable (ILE) 3-12
Reset driver (RESET DRV) 2-8
Ring beaconing 3-43
Ring status 3-26 thru 3-29

Source address 3-48
Start delimiter (SD) 1-5, 1-6
System address bus 2-5

System bus high ENABLE (-SBHE) 2-6

System command block (SCB) 34, 3-19, 3-20, 3-23
thru 3-31

System data bus 2-6

System status block (SSB) 3-4, 3-20, 3-25 thru 3-29

Token format 1-5

TRANSMIT command 3-36 thru 3-61
completion 3-54 thru 3-57
examples 3-57 thru 3-61
parameters list 3-50 thru 3-54

Transmit CSTAT 3-53
TRANSMIT HALT 3-61
Transmit list 3-4
Transmit list size 3-39

Wrap interface 3-38

Index

X-3

X-4 Token-Ring Network Adapter

RT PC Technical Reference READER’'S
Token-Ring Network Adapter COMMENT

Publication No. SK2T-0291-1 FORM

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. You may use this form to communicate your
comments about this publication, its organization, or subject matter, with the understanding
that IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

Note: Copies of IBM publications are not stocked at the location to which this form is
addressed. Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.
Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

What is your occupation?

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you
may mail directly to the address in the Edition Notice on the back of the title page.)

Fold and tape Please Do Not Staple Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Dept. EO2

P.O. Box 12195

Research Triangle Park, N.C. 27709-9990

©IBM Corp. 1987
All rights reserved

International Business

Machines Corporation

Department EQ2

P.O. Box 12195

Research Triangle Park, NC 27709

Printed in the
United States of America

SK2T—0291—1

[lun]
1
I

ol "

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	3-64
	3-65
	3-66
	3-67
	3-68
	3-69
	3-70
	3-71
	3-72
	3-73
	3-74
	3-75
	3-76
	3-77
	3-78
	4-01
	4-02
	4-03
	4-04
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34
	X-01
	X-02
	X-03
	X-04
	replyA
	replyB
	xBack

