Inte‘rnational Technical Support Centers

IBM RT PC System Architecture

Document Number 6624~ ,24-00

April 1986

International Technical Supvport Center
: Austin

-

First Edition (April 1986)
This edition applies to the first release of the
IBM RT PC systenm.

The information contained in this document has not been
submitted to any formal IBM test and is distributed

on an Mas is™ basis Without any Warranty either

expressed or implied, The use of this information

or the implementation of any of these techniques is a
customer responsibility and depends on the ability of
customers to evaluate and integrate them into their operational
environment. While each item may have been reviewed by IBM
for accuracy in a specific situation, there is no

guarantee that the same or similar results will be obtained
elsewhere. Customers attempting to adapt these techniques to
their own environments do so at their own risk.

It is possible that this material may contain reference to,

or information about, IBM products (machines and progranms),
programming, or services that are not announced in your country.
Such references or information must not be construed to mean that
IBM intends to announce such IBM products, programming, or services
in your country,.

Publisations are not stocked at the address given below; requests
for IBM publications should be made to vour IBM representative or
to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this
document. If the form has been removed, comments may be addressed
to International Technical Support Center — Austin,

Dept. 948 7 Bldg. 808,

IBM Corporation, 11400 Burnet Road, Austin, Texas 78758, U.S.A.

All occurrences of the term Unix in this document refer to the
trademark of AT&T Bell Labs.

c Copyri

Q

ht International Business Machines Corporation 1986

IBM RT PC System Architecture

-t

ARSTRACT

For IBM RT PC the System Architecture is described by giving a reasonably
technical presentation of both the hardware and software structure. In
addition several other issues are covered such as an introduction to RISC
technology and the UNIX enhancements added to the IBM RT PC operating
system environment.

This bulletin is addressed to IBM systems engineers who wish to acquire
a strong foundation on the system architecture of the IBM RT PC, The
background needed to understand it is being familiar with interactive
operating systems and knowing some basic concepts of computer hardware.
Familiarity with UNIX is a plus, but it is not a prerequisite.

Abstract

-t
-3
=it

iv IBM RT PC System Architecture

PREFACE

This bulletin represents a compact presentation of both the hardware and
software aspacts of the system architecture of the IBM RT PC system,

This product combines:

The

A very fast Reduced Instruction Set 32-bit processor for efficient
execution of programs compiled from a high—-level language.

A resource manager that provides virtual machine, storage and 1/0
functions in order to assure data integrity and processing continu-
ity.

A multitasking, multiuser operating system based on the AT & T UNIX
System V, but with a lot of IBM extensions allowing it to serve dif-
ferent user requirements.

An B0286 Coprocessor feature that allows users to run programs written
for the IBM Personal Computer without interfering with the normal
native operation of the IBM RT PC.

A wide variety of displays, printers, communications adapters and
processing features are included in a system.

All that can fit on or under a desk.
structure of this bulletin is as follows:

The first chapter: ™Reduced Instruction Set Computers™, covers the
RISC topic, by showing the evolution of CPU technology and explaining
what RISC technology is and why it is state-of-the-art.

The second chapter: ™IBM RT PC System Architecture Overview™, covers
the overall architecture of the IBM RT PC by giving equal emphasis
to the hardware as well as to the software structure, It introduces
the specific terminology and it allows the reader to better understand
and combine the more in-depth treatment that follows.

The third and fourth chapters: "The ROMP/MMU Processor Complex™ and
"Virtual Resource Manager (VRM) and Virtual Machine Interface
(VMI)™, cover in more detail, respectively, the hardware basis and
the layered software architecture of the IBM RT PC.

The appendices cover other topics, such as the Floating Point Accel-
erator option, the Coprocessor card, the system memory boards, the
I/0 adapters available and the UNIX enhancements implemented with the
operating system of the IBM RT PC.

A glossary with IBM and non-IBM references is also provided at the
end of this bulletin.

Preface v

vi

IBM RT PC System Architecture

Reduced Instruction Set Computers
Introduction to RISC e e 4 e e s
RISC Overview e e e e e e e e

TABLE OF CONTENTS

IBM RT PC System Architecture Overvienw o e o o 0 e v e

Introduction s e e e e e e e e
System Hardware Architecture

Summary e e e e e e e

.
-
.
.« o
N =

-
.
-
.
-
.

N~

Hardware Architecture e
Software Architecture e e e e e et e e e e e e e e e e e e 1
The ROMP/MMU Processor COMPLlE@X . ¢ & ¢ ¢ ¢ o o o o s o s o o s o o 17

Introduction e
ROMP Processor T A
ROMP Instruction Set T
Interrupt Facility et e 4 e s e e e e e e e e e e e s e e s . . 28
Memory Management Unit (MMU) e e e s e e e e e e e e e e e e e . 29
Virtual Address Translation e e e e s e e s e e e e e e e e o . 30
Memory Protection e e e e s e e e . e e . ¥4
ECC and Parity Checking - ¥4
Virtual Resource Manager (VRM) and Virtual Machine Interface (VMI) 33
Introduction - X
Highlights of VRM s e s s e e e e s s s e e s e e s e s s o . 33
Functional Aspects of VRM - 3
I/0 support R 35
Real time tasking structure (for I1I/0 processes) e ¢« s« s+ e« « . 38
Logical disk support and virtual storage control e s e e e o o G0
Coprocessor support e e 8 s e s s 4 s s 4 s e e e e e e e e . 61
Virtual console support L 2
Development support . ¥4

VRM Management routines . &)
VMI characteristics e e e s e e s s e e s s e e e e e e e e e . B&
System integrity and virtual machine architecture. v s e e . . 4%
Appendix A, The IBM PC/AT Coprocessor e 6 o s s s o e s o o s o o 87
Appendix B, Floating Point Accelerator (FPA) e o o o o s s s s s o 89
Appendix c. system Hemory Boards Ll . . L) . . L] ° . L] - * * ® L] L] * 51
Appendix D, Other I/0 bus options e o o o o o o s s e o s s s o o B3
AppendiX E, UNIX EnhancementS . . . « o o s o o s o o o s s o« o « 55
Appendix F, Conclusions e v o s o o s 8 s s e e s e s s s e s e« 61
Appendix Go References e ® e 8 e e o e & © o o e ©° O e o o e 0 o » 63
Glossary - L] . . L] L] ® . . ° * L 2 L] . . [] . L[] L] [] L] L] (] L] * L] L] L] 65
Table of Contents vii

Index

L] . L] L] L) L] L] * . . . L] . .

IBM RT PC System Architecture

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

[

LIST OF

ILLUSTRATIONS

1, Overview of the hardware architecture . e s
2. IBM RT PC software design e e e e e e e e e
3. Processor Board Data Flow and Board Interfaces
4., Data Units in System Memory e e e e e e e e
5. SCR Organization v s e e e e e s e e e e e
6. MMU Functional Parts e e e e e e e e e e

7. Generation of Virtual Address e e e e e e e e
8. Device Driver e e e e e e e e e e e e e e e
9. Define Device Structure (DDS) e v e e e e

0. Process management et e e e e e e e e e e

e .17
e e e . 20

s e e .. 30
- 3 £
- 1
B]

List of Illustrations ix

X IBM RT PC System Architecture

REDUCED INSTRUCTION SET COMPUTERS

Introduction to RISC

Before addressing why RISC technology is used on the IBM RT PC we shall
first explain what RISC is., Since it is a relatively new concept most
readers have probably never heard about it.

The abbreviation stands for Reduced Instruction Set Computers, and, as
the term itself implies, we are talking about processors with only a basic
set of instructions. This means that a RISC processor is not equipped
with powerful instructions like the ones found in machines such as the
IBM System/370 or even those at the microprocessor level.

Thus far we have only discussed the definition of RISC and it is imper-
ative now to explain why this new concept exists in state-of-the-art
computers like the IBM RT PC.

As VLSI technology advances, the new generation processor chips can im-
plement the architecture of powerful minicomputers on a single chip. Such
an implementation has to cope with certain purely technological con-
straints which engineers will not know how to overcome for several years.
On one hand, the perspective of single-chip designs is rather limited by
the resources one disposes of in terms of silicon real-estate, or more
practically speaking, of the transistors and power dissipation the chip
can handle. Typical designs today contain several tens (and at times even
hundreds) of thousands of transistors.

On the other hand, the clear trend of current MOS technology is scaling
douwn successful designs to narrower line widths. MWhen a scaling takes
place the devices on the chip become smaller and smaller. The distances
electrons now have to travel are shrinking, and the devices become faster.
Faster transistors, on a processor chip for example, immadiately means
an increase in the processor's throughput.

Since transistors become smaller and smaller the communications between
different parts of the same chip become crucial. The signal delays in-
troduced by long wiring connections are not at all negligible and it ac-
tually becomes one of the most difficult problems to resolve,

This shows that intra—-chip communications have to be carefully addressed
and random logic as well as long-distance communications have to be kept
to an absolute minimum,

One can now understand that it is not only a matter of generating a pro-
portionally scaled layout (in order to successfully map on a chip the
architecture of a mini or a mainframe). The constraints we have discussed
have to be well studied, understood, evaluated and dealt with accordingly.
The system partitioning in different chips as well as the allocation of
certain chip areas has to be done prudently and judiciously.

Reduced Instruction Set Computers 1

In this context, IBM researchers have found that a reasonable restriction
to a smaller set of instructions, combined with an architecture customized
for fast execution of all the instructions in the set, can result in a
machine with a surprisingly high throughput.

Such a Reduced Instruction Set Computer can be designed with a relatively
small control section and a short machine cycle. The ROMP processor used
in the IBM RT PC for example is characterized by a 170 nsec cycle. The
design of such a processor is then much more straight-forward than tra-
ditional designs in the sense that both design time and the influence on
the final result of the eventual architectural flaws are drastically re-
duced.

IBM has been directly involved in RISC research since 1975 when a team
from the Yorktown Heights Research Center, led by George Radin, started
experimenting with these ideas. The project was called "Project 801%™ from
the site building number they were working in. An operational result was
functional in 1979 based on standard off-the—-shelf Establishment Commu-
nications Link (ECL) components, but the results were not made public for
obvious reasons until 1982, Another project pursued by IBM engineers
resulted in the ROMP processor, a very powerful 32-bit RISC micro-
processor, which is the base of the IBM RT PC,

RISCs are not something only IBM has been working on. The University of
California at Berkeley has developed two distinct designs; tha RISC I in
1981 and the more sophisticated RISC II in 1983. A team from Stanford
University has also recently introduced with the MIPS (Microprocessor
without Interlocked Pipelined Stages) processor. Industry is also moving
fast in this direction.

RISC Overview

Computer architecture started existing as a concept in 1964 when IBM in-
troduced the Systems/360, It was the first time that a differentiation
was made between the computer architecture = the abstract structure of a
computer that a machine-language programmer needs to know in order to
write programs = and the actual hardware implementation of that structure.

Before that, the criteria to rate a computer was the cost of an imple-
mentation. Howaver, researchers now tried to come up with new measures
of performance. The decreasing hardware cost gave birth to arguments for
richer instruction sets. Rich instruction sets were said to simplify
compilers, compensate for the rising cost of software development and even
improve the architecture quality. The new means of evaluating architec-
tures was program size and the design mentality that prevailed in the
1970's was that large programs are invariably slow progranms.

This philosophy is responsible for the exotic instruction formats one can
find in machines like the IBM 370/168.

2 IBM RT PC System Architecture

Tha use of microcoda in that generation of machines was very intensive,
The reasons are very simple to understand. Memory costs uwere steadily
decreasing and large microcoded modules would add almost nothing to the
overall cost. Microinstructions were faster than normal instructions.
Registers made the writing of compilers very difficult and this was why
stacks or memory—to—memory architectures were adopted.

In the meantime the cache memory, or high speed buffer, was invented,
yielding substantial improvement in the implementation speed of the ar-
chitecture, while compilers started finding it difficult to generate
those complex new functions. A special breed of compilers, the optimizing
compilers, were removing so many of the unknown elements at compile~time
that they almost never made use of the powerful instruction set at
run-time.

When computers made the transition from physical to virtual memory, the
microcode had to ensure that any routine could start over if any memory
operand caused a page fault. The performance gained by microcode was lost
by a tremendous overhead which incurred during swapping in a multiprocess
environment. MWhen each program has its own microcode, a multiprocessing
operating system has to reload the Writable Control Storage (WCS) with
the corresponding microcode. This reloading time ranges between 1,000
and 25,000 mamory accesses depending on the machine,

This latter point led researchers to decide that future computers should
have virtual control storage, which meant that page faults could occur
even during microcode execution. The distinction between programming and
microprogramming was becoming less and less obvious.

It was clear that the attempt to bridge the "semantic gap™ by using
writable control storage had led to a "performance gap™. The motives were
still valid: programmers should write operations that mapped directly
to microinstructions, and instructions should be no faster than microin-
structions. However, the caches allowed main memory accesses at the same
speaed microcode was accessed in control storage. Microcode no longer
enjoyed a ten-to-one speed advantage.

It was this whole context that gave rise to a new computer design phi-
losophy. Optimizing compilers could be used for the compilation of
high—-level programming languages down to the level of simple instructions
of comparable efficiency to microinstructions, and to make the instruc—-
tion cycle as fast as technology would allow.

These machines are characterized by fewer instructions = hence the name
RISC - which in general execute in one cycle.

RISCs have set up a new set of architectural design principles:

L All functions should be kept as simple as possible unless there is
an extraordinary reason not to do so.

o Microinstructions should not be faster than simple instructions be-
cause caches are built from the same technology as WCS.

Reduced Instruction Set Computers 3

. Software is not better if microcode is used, it only becomes more
difficult to change. All the hardware primitives available to
microcode have to be accessible to assembly language programming.

. Simple decoding techniques and pipelined execution are much more im—
portant than program size. This leads to simple instruction formats
which do not cross word boundaries.

. Compilar technology should be used to simplify instructions rather
than to generate complex instructions.

The last point is of crucial importance and it deserves explanation. RISC
compilers will try at compile~time to remove as much work as possible so
that simple instructions can be used. This means, for example, that such
a compiler wWill try to keep operands in registers, so that simple
register-to-register instructions can be used. A traditional compiler
will try to discover the ideal addressing mode and the shortest instruc-
tion format to add the operands in memory. In general, RISC compilers
favor register-to-register operations because operands kept in registers
are easily reused without new memory accesses and address calculations.
RISC compilers use only LOADs and STOREs to access memory so that operands
ara not implicitly discarded after being fetched, as happens in the
memory~-to—memory model of execution.

Saveral unique features of RISC processors such as delayved branches and
loads are described in depth in this document (see the Index).

4 IBM RT PC System Architecture

IBM RT PC SYSTEM ARCHITECTURE OVERVIEW

Introduction

The IBM RT PC is characterized by a totally new architecture and it is
useful to talk a little about the goals identified right from the start
of the development work.

The next generation of workstation systems had to be implemented using
state-of-the~art technology both in hardware and software. This implied
that the heart of the system should be a processor offaering unprecedented
capabilities in speed and functionality. Advanced memory management
functions should be provided for and the system®'s physical size should
be proportional to the potential of current integrated circuits technol~-
ogy. It also implied that an ingenious software structure had to be de-
vised which would render the software applications practically
independent of hardware configuration changes.

IBM RT PC designers wanted to assure a compatibility with the IBM Personal
Computer architecture in order to provide the IBM RT PC user with the
capability of using the vast amount of IBM and non-IBM applications which
run on the PC,

The Research Oriented Mini Processor (ROMP) is a 32-bit IBM proprietary
processor capable of about 4 MIPS (Million Instructions Processed per
Sacond) execution speed and reduced instruction set,. IBM researchers
realized that instead of having a processor with very powerful in-
structions taking the system a lot of time to decode and being idle when
branches and loads happened, they would rather develop a new processor,
which would need less silicon real estate and which would only be armed
by a basic instruction set. This would result in a system taking less
time to run an application. The major development effort needs to be in
coming up with really powerful compilers, which will be in position to
fully exploit the capabilities offered by the processor. The IBM RT PC
is the result of a joint effort development based on RISC system archi-
tecture work from Austin, the Yorktown Heights state-of-the—-art compiler
technology and the 2 micron silicon—-gate NMOS process from Burlington,
vt,

Efficient compilers are possible now, where a lot of different optimiza—-
tion techniques are used in order to take advantage of the processor ca-
pabilities. For example the PL.B compiler used internally for the IBM
RT PC development generates code about 10% less efficient than good
hand-written assembly.

Another concern was the addressability. Sixteen~bit computers are lim-
ited to addressing only 64K bytes or words. The only way to overcome this
limitation is by using special hardware provisions or segment registers,
However, it turns out that it is not that simple to handle objects larger
than 64K even when using segment registers.

IBM RT PC System Architecture Overview 5

Accordingly, the following goals are set up:

L The processor should be an all-32 bit machine, where registers, ad-
dressaes and data are all 32-bits long.

. Virtual memory capabilities are a must in such a powerful workstation
environment,

¢ The addressable space should be linear and practically not limited,.

. The architecture should ensure the compatibility with existing IBM
PC and PC/AT applications.

Reducing the cost of a system means using state~of-the—art VLSI design
and packaging. For silicon area reasons the 2 major subsystems, i.e,
processor and memory management unit, have been implemented in 2 different
chips (actually the MMU is slightly larger than ROMP).

The IBM RT PC development team had in mind that the system should be
characterized by a remarkably high performance without using expensive
memory, The 801 minicomputer designed by a team at the IBM Thomas J.
Watson Research Center was one of thae first to investigate the effac-
tiveness of RISCs. By using directly off-the—-shelf ECL MSI components
it gave tremendously encouraging results and inspired other teams to go
on and mplement different appoaches on the RISC issue. The B0l was using
2 caches, which could deliver an instruction word and a data word at each
cycle. However such caches are extremely expensive for small to medium
systems and hence the IBM RT PC designers opted for pipeline-techniques,
More details are given later on in this bulletin at the discussion of the
system boards (M™Appendix C. System Memory Boards™ on page 51) and in the
chapter discussing ROMP and MMU more deeply (™The ROMP/MMU Processor
Complex™ on page 17).

The IBM RT PC is offering a 40-bit virtually addressable space and it
supports real memory size up to 16Mbytes. There are some concepts from
the System/38 that are used and the system architecture provides a means
of controlling access to virtual memory sections lying within a page.
This proves especially useful in database locking schemes.

The system architecture was meant to assure the effective integration of
such a virtual memory processor with aexisting as well as with new 8-bit
and 16-bit I/0 adapters, The attachment of coprocessors for compatibility
and performance enhancement was also considered a must and the open ar-
chitecture should allow the user to install practically everything he
would think would enhance the performance of the machine.

system Hardware Architecture Summary

The IBM RT PC system architecture is the same for both the desktop and
the floor—-standing model. The floor—standing model offers the maximum

6 IBM RT PC System Architecture

extensions becausae of more free slots, however most options are available
to all models. .
The IBM RT PC systems have a wide range of standard a~d optional hardware
features. A system planar board is used with all basic circuits and 170
slots, Figure 1 on page 9 gives an illustration of the system architec-
ture and its structuring. The I/0 slots are designed in such a way that
many existing IBM PC and PC/AT cards can also be plugged into the system,
The operator keys—-in the input from a 10l-key keyboard or an optional
2-button mouse or even from a tablet-pointing device. Besides all the
I/0 slots there are specific slots in the system for each of the 32-bit
system components. The ROMP processor and its Mamory Management Unit lie
on the processor card which comes with every model. On the same card lies
also the ROM with the microcode used by the machine at IPL time. The
Storage Control is also on the processor card, as well as the Error Cor-
recting Code logic used by MMU when accessing the main memory. Data
storage is provided on 5-1/4 inch hard disks and diskettes. One of the
optional cards is the FPA (Floating Point Accelerator) card and it plugs
into a separate 32-bit slot. Two other dedicated slots are used for
system memory cards. Because of technological limitations, for the time
being the only memory cards that are available are of 1 Megabyte and 2
Megabytes. This gives at this time a real storage capacity of up to %
Megabytes. The hardware architecture however allows an expansion up to
16 Megabytes real memory.

The optional 80286 coprocessor card plugs in one unique slot and provides
the ability to execute both IBM PC and PC/AT programs concurrently with
native ROMP code. The I/0 bus slots offer the possibility of using other
coprocessor-options such as PC/AT memory cards and a mathematical
coprocessor chip.

Saveral monochrome and color APA displays are supported by the system in
addition to existing IBM PC displays and adapters. For computer-aided
design applications a serial link adapter is provided allowing to attach
an IBM 5085 graphics workstation in a host-based network.

Hardware Architecture

The IBM RT PC system contains a 32-bit microprocessor and memory manage-
ment unit combined with a 16~bit I/0 bus. In order to provide high per-
formance 32-bit processing capabilities as well as compatibility with
standard 16~bit I/0 adapters a system partitioning had to be done. The
interface between the 2 buses is being taken care of by the IOCC (Input
Output Channel Converter). The microprocessor is implemented using RISC
architecture with only 118 instructions and a full 32-bit data flow for
both data and addresses. The performance is rated at about 1.5 to 2.1
MIPS and the majority of register—-to-register operations execute in one
170 nanosecond cycle,

The translation mechanism from a 32-bit system address to a 40-bit virtual
address is provided by a "single level store™ architecture implemented

IBM RT PC System Architecture Overview 7

by the MMU, The MMU also contains internal translation buffers which take
care of tha conversion betuween the 40-bit virtual address and the 24-bit
real address. The MMU hardware also automatically reloads from the main
memory space the translation buffers as needed. The ECC logic for system
mamory is contained in the MMU as well as some of the memory control logic
and the IPL and power—-on self test ROM., More details about the ROMP and
the MMU chips can be found in "The ROMP/MMU Processor Complex™ on page
17.

Figure 1 on page 9 shows the two distinct buses on the processor board.
From that it is seen that on the processor card, except for the processor
itself and its MMU, there are logic circuits accounting for adapting the
high—-speed 32-bit packet—-switching processor bus to an asynchronous
32-bit bus processor to which directly connect the floating point accel-
erator card and the System Board IOCC (Input Output Channel Converter).
The MMU interfaces with the system memory cards through a dedicated memory
bus,

An interesting feature is that I/0 channel timing does not affect the
processor timing because the clock generation for the processor, its MMU
and system memory is provided on the processor card. This will eventually
allow the use of higher performance processor and memory cards as tech-
nology advances, without disrupting the I/0 channel timing.

The optional FPA card can be attached to the 32-bit processor bus and
provides much higher performance for floating point applications. The
FPA card is based on the National Semiconductor NS532081 coprocessor and
can operate totally independent from ROMP. The actual form of the FPA
is relatively poor for such a machine and is evaluated to about 200,000
Whetstone Instructions per Second (200 KWIPS),

As already mentioned the system memory attaches to the processor card
through two dedicated slots. The memory bus consists of a 40-bit data
bus (32 bits of data plus 8 bits of (ECC) error correcting code) and a
24-bit address bus. The 24-bit addressing allows up to 16 Megabytes of
real system memory. The ECC allows automatic detection and correction
of all single bit system memory errors, as well as detection of all double
bit errors.

The technology used is 256K dynamic RAM and on each memory card the system
memory is two-way interleaved. This means that the available memory is
always logically partitioned into two distinct banks. One bank contains
only even addresses while the other contains only odd ones. This simple
techni«ue provides a very high system memory bandwidth of 23.5 megabytes
per second (4 bytes per 170 nanoseconds) and renders cache architectures
totally useless. This memory bandwidth is by far higher than the ones
implemented in every other competitive machine of this class.

In order to adapt the 32-bit processor bus to a PC/AT~like I/0 bus special
convarsion logic is needed. This logic is implemented on the system
board. All the 170 channel support functions, such as the real time clock
and timer, DMA controller and interrupt controller are also provided on
the system board. Considerable effort was given to the task of keeping
the IBM RT PC I/0 channel as compatible as possible with the PC/AT I/0

8 IBM RT PC System Architecture

32-BIT SYSTEM COMPONENTS

STANDARD PC I/0 FEATURES

PCXX

PCXX

PCXX

PCXX

PCXX

PCXX

PCXX

PCXX

SYSTEM BOARD
RS-232 SERIAL |RT PCRT PCX
ASYNC X
X
RS5—232 SERIAL |RT PCRT PCX
ASYNC NATIVE I/0 X
X
KEYBOARD KBD RTC/ X
TIMER X
SPEAKER SPKR X
DMA RT PC
MOUSE/TABLET MOUSE X
INTERRUPTS X
FLOATING X
POINT RT PCRT PCRT PCRT PCX X
ACCELERATOR X X
X X
X X
X 32-BIT X
32-BIT X PROCESSOR X
PROCESSOR X BUS X
X X
X X IoccC X
RT PCRT PCXXXX]| IOCC |RT PCRT PCRT PC BUS X
X INTF CONTROL | XXX
X X
X PROCESSOR I/0 RT
CARD BUS X
MEMORY (16-BIT) RT
MANAGEMENT X
UNIT X
RT
X X
X RT
X
STORAGE RT
CONTROL RT PCRT PCRT PCRT PCRT PCRT PCXXX X
X X RT
X X X
IPL X X MEMORY RT
ROM |RT PCRT PCXXX X BUS X
X (32-BIT) RT
X
SYSTEM ‘ X
2MB ECC 1 RT PCRT PCRT PCRT PCRT PCX
MEMORY | X
1IMB ECC 2 RT PC?T PCRT PCRT PCRT PCX
Figure 1. Overview of the hardware architecture

IBM RT PC System Architecture Overview

PC

PC

AT

AT

AT

AT

AT

AT

9

bus. Besides timings and address, DMA and interrupt assignments that had
to be kept as close to those of the PC/AT as possibla, there have been
new provisions such as burst and buffered DMA and shareable interrupts
in order to enhance the channel performance. The IBM RT PC system sup~
ports eight channels of Direct Memory Access (DMA) by using two Intel 8237
DMA controllers. A DMA Adapter is either a DMA device or an alternate
controller. The terms are explained in the glossary at the end of this
bulletin. DMA channels 0-3 support 8-bit devices or 16-bit alternate
controllers. DMA channels 5-7 support 16-bit devicas or 16-bit alternate
controllers. DMA channel 8 supports only alternate controllers. This
DMA channel is only available on the coprocessor slot. The coprocessor
has the lowest DMA priority on the 170 channel. However when it is exe-
cuting out of system memory or 1/0 channel, attached RAM, it can hold on
to the channel for multiple cycles to improve performance. More details
can be found in the ™IBM RT PC Hardware Technical Reference Manual™ (see
mAppendix G. References™ on page 63).

Timing and performance of the I/0 channel is the same for both models,
howevaer the 6150 provides two 8-bit PC slots and six 16~-bit PC/AT slots
in distinction to the 6151 which provides one 8-bit PC slot and five
16-bit PC/AT slots.

Adapters on the I/0 channel can easily access system memory through
hardware facilities responsible for programmable translation control on
the system board.

The system board contains a separate microprocessor which is handling the
keyboard, the mouse, the tablet interface and the speaker. The 6150 in-
cludes two built-in RS-232 serial ports with DMA capabilities for the
attachment of terminals, printers or other I/0 devices.

The optional coprocessor card is based on the 80286 and the optional ex-
tension 80287 as a math coprocessor. This card plugs in to an I/0 channel
slot and provides compatibility with IBM PC and PC/AT programs. On this
card there is a considerable amount of control logic that protects the
system against improperly written PC code, supports the sharing of system
raesources between the coprocessor and ROMP and is used by ROMP software
to emulate current PC/AT adapters while using new adapters.

PC application programs for the coprocessor are stored in either system
memory, or in dedicated I/0 channel attached memory. Typically the
coprocessor performance is that of a PC when executing programs in system
memory, and about 80% that of a PC/AT when using I/70 channel attached
memory.

Concerning the hard disk possibilities of the system, the 5-1/4 inch in-
dustry standard disk units are available with 40 and 70 Megabytes with
the possibility of having uo to three hard disks per system. The adapters
are the existing IBM PC/AT Fixed-Disk and Diskette Drive adapters, some-
thing that shows how flexible the system is.

An external streaming tape drive and separate adapter card that attaches
to the I/0 channel is also available as an option. Using a standard 174

10 IBM RT PC System Architecture

inch tape cartridge the streaming tape unit provides a backup capacity
of 55 Megabytes.

Since this system is supposed to work at a multi-user multi-tasking en-
vironment different displays are supported offering the user the choice
of the display that best suits his or her needs.

In the first place the system provides for the attachment of several ex-
isting IBM PC adapters and displays, such as the Monochrome Display and
the Enhanced Color Display with their respective adapters.

The new displays and adapters for the IBM RT PC provide direct processor
access to a 1024 x 512 bit map with a display viewing area of 720 x 512
pixels., Special hardware assist provides for text and graphics alignment
down to the pixel level.

At a functionally higher level another display subsystem provides a con-
siderably larger viewing area of 1024 x 768 pixels as well as extensive
hardware assist for very high speaed vector-to-raster conversion from a
vector list buffer.

A full 1024 x 1024 color display with existing advanced computer-aided
design applications is provided by the unique ability to attach an IBM
5085 Graphics Workstation to the IBM RT PC system in a host-based network.

The conclusion is that the IBM RT PC system is a very powerful system
designed by IBM in order to bridge the gap between the rapidly expanding
Personal Computer market and the more demanding market of 32-bit supermini
level workstations with extensive virtual memory management facilities.
This new generation of workstations has already become the basis of pow-
erful computing systems that have extensive storage, display and commu- -
nications requirements as they are supposed to offer THE solution to
rapidly growing and evolving applications.

Specifically the IBM RT PC:

. Introduces an IBM developed high performance 32~bit RISC architecture
with virtual memory.

. Combines the 32-bit features with a standard PC I70 channel.

¢ Provides an optional PC coprocessor for compatibility with already
existing PC application programs,

o Allows future performance and feature upgrades by replacement of the
processor, memory, and floating point cards as technology improves.

The usefulness of the open architecture of the IBM RT PC is a phenomenon
already seen from the IBM PC family. It allows both IBM and vendors to
very easily come up with different products which will enhance the
functionality and the usability of the system. The architecture supports
numerous possibilities of performance enhancement, such as increased
memory capacity, larger hard-disk capacity, higher performance displays,

IBM RT PC System Architecture Overview 11

di fferent local-area networks, higher speed host attachments and diffar-
ent kinds of coprocessors.

software Architecture

Besides a new hardware architecture the IBM RT PC is implementing a
totally new software architecture offering the user a powerful and easily
reconfigurable environment.

In order to render this environment as functionally complete as possible,
a three-level scheme is used. First, the built~in functions are powerful
enough to satisfy most applications. Second, for the cases uwhere the
built-in functions are not complete controlled access is provided to the
hardware, and third, the operating system is open—~ended enough to allow
for extensions to cover things such as new types of devices.

Another issue is that most of the IBM PC applications can be executed on
the IBM RT PC, and there are vendors who would like to give those appli-
cations the maximum benefit from accessing the ROMP and MMU.

The layered structure (as shown in Figure 2 on page 13) of the VRM (Vir-
tual Resource Manager) provides a lot of flexibility allowing the user
to easily meet his needs,

The VRM is a software package which provides a high level operating system
environment. The VRM is not an operating system itself. Its goal is to
directly control the real devices and provide a standardized interface
to applications. This interface is called the VMI (Virtual Machine
Interface) and gives the applications the capabilities of a virtual ma-
chine and of virtual devices.

The VRM is designed to work on hardware consisting of a RISC processor
and a PC/AT compatible I/0 bus, but it should be kept in mind that this
does not at all limit VRM to only such an environment. An example that
VRM is able to support different I/70 hardware is the VRM's support of the
IBM 5080 graphics hardware, which is designed to an IBM 370 architecture
channel interface.

We have already seen that the idea behind the RISC concept is to minimize
hardware functions providing only a limited set of primitives., Since the
processor is designed with a minimum logic, the native instructions enjoy
a corresponding increase in execution speed. In such an environment,
functions traditionally provided by hardware such as integer multiply and
divide, or instructions like character string manipulations have to be
replaced by software functions. That is exactly what VRM builds on the
hardware. Namely VRM:

° Provides a high-level machine interface, simplifying the daevelopment
of guest operating systems and their applications.

12 IBM RT PC System Architecture

APPLICATION PROGRAMS

USABILITY PACKAGE

DATA MANAGEMENT

(BASE OPERATING SYSTEM INTERFACE)

{DOS & UNIX Shells

Systam Utilities

System Management

KERNEL

DEVICE DRIVERS

VIRTUAL MACHINE INTERFACE

VIRTUAL VIRTUAL VIRTUAL |VIRTUAL
MEMORY 1/0 DISK TERMINAL COMMUNICATIONS
MANAGER MANAGER | MANAGER |MANAGER
IBM RT PC HARDWARE
Figure 2. IBM RT PC software design

U Maximizes performance for real-time applications, although the vir-
tual memory capabilities of the machine can be of harm to a real-tima
environment as we will see later on.

. Allows users to easily reconfigure and customize their system ac-
cording to their needs, by providing a very flexible and extendable
interface.

L Provides compatibility with IBM-PC applications thanks to the 80286
coprocessor.

The VMI implements these points with a set of functions which facilitate
the use of a variety of concurrent operating systems. Except for the
problem isolation instruction set, the VMI assures the isolation of si-
multaneously running operating systems and applications from the actual
harduware. :

The concept of a virtual machine is not something new on IBM machines.
One of the major IBM operating systems, VM/370 implemented on IBM 370
architecture mainframes provides a virtual machine environment. There
are however many important differences between the way VM implements it
and the way VRM does it on the IBM RT PC. VM/370 provides a complete
functional simulation of the actual 5/370 hardware. This means that an

IBM RT PC System Architecture Overvienw 13

operating system designed and written to run on 5/370 hardware, such as
MVS for example, will also run under VM in a virtual machine. The VMI
support provided by the VRM provides much more functional support than
the IBM RT PC hardware can. This means that if an operating svstem is
written at the VMI level it will run as a guest under VRM but it will never
run on the actual hardware.

Judging from the VM experience, we know that a virtual machine suffers
in performance cue to the overhead associated with the simulation of the
di fferent hardware functions. The VRM really is an exception to this rule
because the vast majority of the guest operating system instructions ex—-
ecute directly on the harduware. The slight overhead VRM introduces is
actually due to the VRM interference when it is invoked mainly to handle
I/0 operations at a relatively high functional level. This overhead was
wanted, because the IBM RT PC designers opted for a more flexible and much
more functionally rich programming environment than what a rigid native
operating system could give.

The IBM RT PC operating system is the AIX, which was derived from AT &
T's UNIX System V. Several enhancements to the original version have been
included and the kernel has totally been rewritten by IBM. This assures
a better integration of all additional and eventual functions as well as
a differentiation from the UNIX-me-too vendors. For more details the
reader is referred to TAppendix E. UNIX Enhancements™ on page 55 and to
"Appendix G. References™ on page 63.

A key <concept to understanding the support of multiple simultaneous
interactive applications is the idea of the virtual terminal supported
by AIX. A virtual terminal is the virtual counterpart of an IBM RT PC
real de''ice, such as the mouse, a display, or the keyboard. Each appli-
cation works on a single virtual terminal which can either be a simulated
ASCII terminal or a high-function terminal equivalent in power mwith the
real device.

One of the responsibilities of the VRM is to take care of controlling all
ROMP/MMU virtual memory functions. This relieves the operating system
from having to handle page faults and management of real memory and paging
space.

The operating system is also provided by the VRM with a queued interface
to the I/0 devices, insulating in this way the virtual machines from the
burden of management of shared devices. AIX can dynamically add code to
support and activate specialized devices while the VRM is running; that
is without IPL.

The 80286 coprocessor is seen by the VRM as another virtual machine. When
the coprocessor is active, all user input is presented to the coprocessor
as if it was produced by the corresponding PC/AT devices. The VRM ensures
that there will not be any interference between the 80286 coprocessor's
and ROMP's distinct processing.

Two types of programs can be installed into the VRM: Device Drivers and

Device Managers. Device Drivers are a set of subroutines which support
a specific type of hardware device. Every time the VRM needs to cope with

14 IBM RT PC System Architecture

device~specific functions like handling interrupts and timeout condi-
tions, and processing I/0 commands from the virtual machines, it will call
the corresponding Device Driver, The VRM Device Driver supports rela-
tively simple devices, such as printers, diskette drivers, and tape
drives.

On the other hand the Device Managers provide an additional level of
support for more sophisticated devices, such as virtual terminals or
communications subsystems. These subsystems usually have different re-
quirements to handle multiple asynchronous events as well as to manage
di fferent kinds of shareable or non-shareable resources. The Device
Managers and virtual machines are implemented by the VRM like "processes™,
which are served by the processor according to the control of a prior-
itized round-robin scheduling algorithn.

VRM support for processes includes the following features:

* Inter-process communications and queueing of messages and events are
supported by queues,.

. Semaphores are used for synchronization and serialization.
L Time of day and timer capabilities are equally available.

L Resources like DMA channels and interrupt levels are controlled and
allocated by special functions.

A final note on the impact of virtual memory to the real-time performance
of the system: Although real-time applications can in principle run on
the ROMP, the current version of the oparating system supports things like
that rather weakly. The reason for that is that whenever there is a page
fault, the interrupts from the real-time applications cannot be served
before the missing pages are brought into system memory. This can be very
harmful for delicate real-time applications when one cannot afford losing
extra time. Although the development team is already implementing ways
.to bypass this shortcoming of virtual-memory systems, one should keep in
mind that it is the 80286 which for the time being assumes the real-time
responsibilities on the I/70 channel.

IBM RT PC System Architecture Overvieuw 15

16 IBM RT PC System Architecture

THE ROMP/MMU PROCESSOR COMPLEX

Introduction

The Central Processing Unit (CPU) and the Memory Management Unit (MMU)
of the IBM RT PC system are provided on a separate processor card, which
plugs into a dedicated 200-pin slot on the system board. The Research
Office Product Division MicroProcessor (ROMP) implements a full 32-bit
RISC architecture. Current VLSI technology did not allow combining the
ROMP CPU and the Memory Management Unit (MMU) on a single chip. The
solution was to use two chips, one for the processor and one for the MMU.
They are connected via a high performance channel, called RSC (ROMP
Storage Channel). The RSC is a packet-switched 32-bit bus with a band-
width of 23.5 Mbytes per second. This kind of performance is required
to support the pipelined RISC architecture of the ROMP processor, which
is able to execute an instruction almost every CPU cycle (170 ns),

32-BIT MEMORY MEMORY DATA BUS
PROCESSOR MANAGEMENT | <
UNIT <— [>
T ADR V BUSV
D R/C
MEMORY |<——>| ARRAY
v INTERFACE |<—1—>
Al
1/0 | IPL |<—>
INTERFACE L>| Ros
INTERRUPT A |MEMORY ADDRESS
REQST. | | BUS I
v v v
- PROCESSOR CHANNEL MEMORY CHANNEL
| INTERFACE INTERFACE

| 100-PIN CONNECTOR 100—PIN CONNECTOR

Figure 3. Processor Board Data Flow and Board Interfaces

The ROMP/MMU Processor Complex 17

The following list summarizes some basic features of the processor card.
In depth coverage will be given in later chapters.

ROMP processor

MMU

RSC bus

IPL ROM

PROCESSOR CHANNEL

VLSI chip, housed in a 175-pin package
Fetches and executes instructions
Pipelined 32-bit RISC architecture
Implements priority based interrupt scheme

Supports user and system states

VLSI chip, housed in a 175-pin package

Supports 40-bit virtual address space (102%
GigaBytes or 1 TeraByte)

Supports up to 16 Mbyte real memory

High resolution memory protection scheme

Packet-switched 32-bit ROMP Storage Channel

Bandwidth: 23.5 Mbytes/sec (4 bytes every 170
ns)

Ability to support overlapped memory access

32 Kbyte Read Only Memory for Initial Program
Load

Connects the processor board to

the (optional) Floating Point Accelerator,
which plugs into a dedicated slot on the system
board

the I/0 subsystem, located on the system board,
providing access to the 170 channel. The I/0
channel consists of 8-bit IBM PC and 16~bit IBM
PC/AT slots for attachment of

- standard I/0 adapters

IBM PC AT coprocessor

18 IBM RT PC System Architecture

- IBM PC At memory boards

MEMORY CHANNEL

. Connects the processor board to the system
memory

. Two dedicated slots on the system board

L 32-bit data bus plus 8-bit Error Correction
Code (ECC)

. Bandwidth : 23 .5 Mbyte/sec (4 bytes every 170
ns)

It is important to distinguish between 32-bit ROMP system memory on the
memory channel and 16-bit IBM PC/AT memory on the I/0 channel.

ROMP Processor

The register set of the ROMP processor consists of sixteen 32-bit General
Purpose Registers (GPR's) and sixteen 32-bit System Control Registers
(5CR*'s), All data and address manipulations are handled by any of the
GPR's, which are grouped into eight pairs., These register pairs are im—
plicitly usaed in certain instructions such as non-destructive shifts.
The contents of a GPR can be treated as either a double word (4 bytes),
a half word (2 bytes) or a character (1 byte) quantity.

The sixteen System Control registers (SCR's) are shown in Figure 5.

Some SCR'"s and special SCR fields are reserved. The others are assigned
to system facilities such as

counter source system timer facility to provide real time functions

counter system timer facility

TS Timer Status (system timer facility)

MQ Multiplier Quotient: The MQ is an extension of the MUL-
TIPLY STEP and DIVIDE STEP instructions

MCS Machine Check Status

PCS Program Check Status

IRB Interrupt Request Buffer

ICS Interrupt Control Status

IAR Instruction Address Register (instruction pointer)

The ROMP/MMU Procaessor Complex 19

0 8 16 2% 31 BITS

0 1 2 3 CHARACTERS OR BYTES
UPPER HALF LOWER HALF HALF WORDS
0 REGISTER IMAGE
WORD

Figure 4, Data Units in System Memory
cs Condition Status (flags)

The ability of the ROMP processor to execute an instruction almost every
CPU cycle (170 ns) requires an on—~chip instruction queue. The ROMP has
four 32-bit Instruction Prefetch Buffers (IPB's) and they are usually at
least partially filled, due to the high bandwidth of the ROMP Storage
Channel (RSC), which is by far greater than necessary for program exe-
cution. The RSC has still enough bandwidth left to handle data refer—
ences from the ROMP to system memory and to keep up with DMA traffic from
the I/0 channel to system memory.

Looking at the pipelined architecture of the ROMP it is obvious that in-
struction execution is relatively independent of memory requests. In-
structions are prefetched into the IPB's, and having usually two or so
instructions in its IPB"s keeps the processor busy at almost any time.
Several CPU cycles are necessary to complete one instruction. Execution
of a single instruction consists of the following steps:

InFt Instruction Fetch

InDc - Instruction Decode

ExOp Execution of Operands in ALU

HOLD hold-offs (wait cycles)

Rglr Register Write to save results from ExOp step

The instruction fetch time can be assumed to be =zero because of the
on=chip prefetch buffers (IPB*s), During every cycle the RSC receive area
of the ROMP captures whatever is on the RSC bus, The tag lines of the
RSC indicate if the incoming data is an instruction, to be stored in the
appropriate IPB, or data to be stored into one of the registers,

At least three cycles are needed to complete a single instruction. The

first cycle is used to decode the instruction (InDc), the second manipu-
lates the operands in the ALU (ExOp) and the third stores the results of

20 IBM RT PC System Architecture

RESERVED SCR 0
RESERVED SCR 1
RESERVED SCR 2
RESERVED SCR 3
RESERVED SCR 4
RESERVED SCR 5
COUNTER SOURCE SCR 6
COUNTER SCR 7
RESERVED TS SCR 8
RESERVED SCR 9
MULTIPLIER QUOTIENT SCR 10
RESERVED MCS PCS SCR 11
RESERVED IRB SCR 12
IAR SCR 13
RESERVED ICS SCR 14
RESERVED CS SCR 15

Figure 5. SCR Organization

the ExOp step into the specified register(s) on the ROMP, Only a few
instructions need more than one cycle for the execution of the operands
in the ALU (ExOp step).

In certain cases an instruction may be idle for a couple of cycles. So
called hold-offs (HOLD cycles) occur if the instruction is waiting for
data from the RSC. Since only LOAD/STORE and successful BRANCH in-
structions reference memory (via RSC) there are no HOLD cycles during the
execution of a "normal™ instruction. A highly overlapped processing
scheme allows the execution of an instruction (InDct+ExOp+RgSt) almost
every CPU cycle: ‘

The ROMP/MMU Processor Complex 21

1 2 3 4 5 6 7 8 9 10

1. instruction | InDc| ExOp|RgWr| | | | i | | |
2. instruction | | InDc| ExOp|Rglr| | | | | | |
3., instruction] | | InDc| ExOp|RoWr|] | | | |

The one-cycle execution rate is prevented when an instruction needs more
than one cycle to manipulate the operands in the ALU (very few in—-
structions need that), because the decoding of the next instruction will
be controlled by the LAST ExOp cycle of the preceding instruction:

cycles
1 2 3 % 5 6 7 8 9 10
1. instruction | InDc|ExOp| ExOp| ExOp|Rglr| | | | | |
2. instruction | | | | InDc| ExOp| | | | | |
3. instruction] | | | | InDc| ExOp|Rglr| | | |

The first instruction needs three cycles to manipulate the operands in
the ALU and therefore full overlapping cannot be achieved. The DIVIDE
STEP instruction of the ROMP is an example for that.

References to memory require a two cycle hold-off. This time is required
. to get the data request out on the RSC,

o give the MMU time to access storage

L anc¢ get the reply from the RSC into the register.

Later, 7t will be shown that these hold-offs may be overlapped by the

execution of subsequent instructions that do not reference the unloaded
register(s). The following example examines a LOAD instruction:

LOAD R1,VarA #load variable from memory into register 1
cycles
1 2 3 4 5
processor | InDc | ExOp] HOLD | HOLD | Rghr |
RSC | | |requi | Irepl] |
| I ldatal | Idatal |
Storage | storage |
laccess |

At least five cycles are needed to get the job done. Memory will be
referenced during the two hold-offs. ROMP puts the address of the vari-
able (VarA) on the RSC at the beginning of the first hold-off cycle (data
request) and the corresponding data reply from the MMU will be on the RSC

22 IBM RT PC System Architecture

at the end of the following cycle. Additional hold-offs may occur. The
2-cycle memory access includes address translation, address and data
buffering and ECC error detection but not error correction. If an error
is detected the reply from the MMU to ROMP is cancelled and retransmitted
on a subsequent cycle if the error is correctable.

ROMP needs about 60% to 70% of the RSC bandwidth to support its inherent
performance. The remainder is available for DMA I/0 traffic without
causing processor performance degradation. The ROMP can handle four
outstanding instruction fetches and two outstanding data requests before
requiring a reply. This decoupled nature of ROMP and memory is imple-
mented by using tag lines on the RSC allowing ROMP and MMU to handle data
and instructions on the RSC correctly.

As mentioned earlier, it is possible to keep the ROMP busy during the
hold-off cycles of an instruction referencing memory. Due to the fact
that the instruction queue on the ROMP (IPB's) is at least partially
filled, subsequent instructions can be executed if they do not reference
the unloaded register of the preceding instruction. Consider the fol-
lowing piece of code:

LOAD R1,VarA # load variable into register 1
INC R2 ; # increment register 2
ADD R8,R12 # add values of register 8 and 12

and store result in register 8

cycles
1 2 3 4 5 3 7 8 9 10
1. LOAD R1,VarA |InDcl|ExOpIHOLD|HOLD|RgWr| | | | | |
2. INC R2 | | InDc|ExOp|RgWr| | | | | | |
3. ADD RS8,R12 | | | InDcl ExOp|RgWr| |] |] l

The example shows the high overlapping of instruction execution during
hold~off cycles. The point is that useful work can be done during memory
access if the compiler (or programmer) is able to place the loading of
registers and their actual use in subsequent instructions not too close
to each other in the instruction stream. In other words, there is a
substantial difference in execution time. Consider the following exam-
ple:

program 1: program 2:
LOAD R1,VarA LOAD R1,VarA
ADD R1,+5 INC R2

INC R2 ADD R8,R12
ADD R8,R12 INC R7

INC R7 ADD R1,+5

Without altering the program logic proper arrangement of the instructions
results in shorter total execution time (7 cycles instead of ten):

The ROMP/MMU Processor Complex 23

program 1:
cycles
1 2 3 4% 5 6 7 8 9 10

1. LOAD R1,VarA |InDc|ExOp|HOLD|HOLD|RgWr| | | | | |
2. ADD R1,+5 | | InDc|HOLD|HOLD|HOLD|ExOpiRgWr| | | |
3. INC R2 | | | | | | InDc] ExOp |RgWr| | |
4. ADD R8,R12 | | | | | | | InDc|ExOplRglr| |
5. INC R7 | | | | | l | | InDc | ExOp|Rghir]

program 2:
cycles
1 2 3 4 5 6 7 8 9 10

LOAD R1,VarA InDc|ExOp|HOLD|HOLD|Rghr| I

1 | | | | |
2. INC R2 | | InDc| ExOp|RgHr | | I | | l |
3. ADD R8,R12 | | | InDc|ExOp|RglWr] | l | | |
4. INC R7 | | | | InDc| ExOp |RgWr| | | | |
5. ADD R1,+5 | | | | | InDc| ExOp |RghWr | | | |

In the first case (program 1) the execution of the second instruction has
to be suspended until register 1 is loaded (cycle 5) and that causes a
delay of three cycles. Full overlapping is possible in case two (program
2) because of the fact that subsequent instructions do not reference
register 1 before the completion of the LOAD instruction. Both programs
do exactly the same but the performance gain is a significant 30 percent
with program 2 (7 cycles instead of ten).

During hold-off cycles subsequent instructions can be executed only if
they are already in the Instruction Prefetch Buffers (IPB's) of the ROMP,
Execution has to be suspended, due to hold-off cycles, if unconditional
or successful branches are taken. The BRANCH instructions alter the
program flow and instructions, physically stored next in memory and pre-
fetched by ROMP, are of no use in this case. The prefetch buffers have
to be cleared and an instruction fetch, controlled by the BRANCH in-
struction, has to be issued to memory. A 2-cycle memory access, similar
to the LOAD, and an additional cycle for reading the Instruction Prefetch
Buffer (IPB) is needed baefore execution can resume. The hold-offs cannot
be overlapped by subsequent instructions, because of an empty instruction
prefetch queue at this point of time. The Instruction Prefetch Buffers
have still to be refilled. Consider the following piece of code:

DIVS R1,R7 # divide step operation
BRANCH lab # branch to label
XXX ADD R7,R9 # add register
INC R3 # increment register 3
LAB: SUB R6,+8 # subtract register
ADD R1,R2 # add register

2% IBM RT PC System Architecture

When the BRANCH is executed subsequent instructions (ADD, INC, ...) are
already in the prefetch queue (IPB"s) on the ROMP. They have to be dis-
carded because the SUB instruction executes next, after being fetched from
memory. Three hold-offs without any overlapping occur before execution
can resume: '

cycles
1 2 3 % 5 6 7 8 9 10

DIVS R1,R7 |InDc|ExOp|ExOp|ExOp|Rghr| | | | | |

.

I
|
SUB R6,+8 |
|
|

UIPUN =

. BRANCH 1lab | | | InDc|ExOp|HOLD|HOLDIHOLD] | |
|] | | | | | | InDc| ExOpl|

. ADD R1,R2 | | | | | | | 1InDcl
| |

.

L)

The DIVIDE STEP operation takes three (ExOp) cycles to execute in the ALU.
Full overlapping is not possible because only the last ExOp cycle controls
the decoding of the next instruction (BRANCH). Simultaneously, the
hardwired instruction prefetch mechanism fills the Instruction Prefetch
Buffers (IPB's) by issuing memory requests whenever the RSC is available.
This results in having the subsequent instructions (ADD, INC, ..) ready
in the prefetch queue on the ROMP before executing the BRANCH. However,
they are of no use in this case. The BRANCH alters the program flow by
jumping far ahead in the instruction stream. The prefetch queue has to
be flushed and reloaded, causing a 3-cycle hold-off. This time is needed
to get the next instruction (SUB) from memory and have it ready to exe-
cute., The first four instructions execute in twelve cycles (only ten are
shown) .

The ROMP provides spacial BRANCH instructions to overcome this 3-cycle
HOLD gap. Jumps are redefined so that they do not take place until the
next instruction has completed. This is called a DELAYED BRANCH or BRANCH
WITH EXECUTE. The simple idea is to overlap thae 3-cycle HOLD-gap by using
the modified BRANCH and rearranging the coda:

e

BRANCHX 1lab # branch with EXECUTE
DIVS R1,R7 # divide step
XnX: ADD R7,R9 # add register
INC R3 # increment register 3
LAB: SUB R6,+8 # subtract register
ADD R1,R2 # add register

The first two instructions (BRANCHX, DIVS) are highly overlapped. The
DIVIDE STEP, which is called the subject instruction, executes during the
3-cycle HOLD of the BRANCHX (branch with execute) instruction. This re-
sults in saving three cycles. Note that both programs do exactly the

The ROMP/MMU Processor Complex 25

sama, because the BRANCH actually takes place after the completion of the
DIVIDE STEP instructipn:

cycles
1 2 3 4 5 6 7 8 9 10

1. BRANCHX lab | InDc| ExOp [HOLD |HOLD|HOLDI | | | | |
2. DIVS R1,R7 | | InDc|ExOp| ExOp| ExOp|Rghr| | | | |
3. SUB R6,+8 | | | | | | InDclExOp|Rglr| | |
4. ADD R1,R2 | | | | | | InDc|ExOp |RgUr| |
5 | |

LI

The ROMP provides for all kind of BRANCH instructions counterparts sup-
porting the BRANCH WITH EXECUTE. The example shows that a significant
performance gain can be achieved by using this feature (execution time:
9 instead of 12 cycles)., The job of the ROMP assembler programmer gets
more complex. Inside knowledge of how the processor works is necessary
to code efficiently. Overlapping during LOAD and BRANCH instructions has
to be used to maximize ROMP performance. In case of higher level lan-
guages (C, FORTRAN, PASCAL, etc.) the compiler has to take care of re-
arranging the code in a way that overlapping is possible.

It should be clear by now, that overlapping of instruction execution is
the key to maximize ROMP performance.

ROMP Instruction Set

The instruction set is clearly targeted at optimizing compilers. Seven
instruction formats are supported and they are defined to have the op-code
and two register fields always in the same bit positions within each in-
struction format to minimize instruction dacode time. On the other hand,
using two and four byte instructions adds unnecessary complexity to the
instruction fetch and decode mechanism. The decision to support two byte
instructions was based on the advantages of minimizing memory code space
and memory bandwidth required for instruction fetches. The decrease in
mamory code space results in fewer page faults and improved system per-
formance. Code space efficiency and compiler studies led to the defi-
nition of special short form (2-byte) versions of several instructions:

. add immediate

U subtract immediate
. compare immediate
. load immediate

. short jump .plus/minus 256 bytes)

26 IBM RT PC System Architecture

ROMP is generally a two—address, register—to-register oriented architec-
ture with only LOAD and STORE instructions accessing memory. No
memory~to-memory instructions are provided. Usually the two register
fields in the instruction formats specify the source registers with the
first one also specifying the destination register, where the result of
the operation is to be stored. Extensive studies showed the need for a
three register instruction, called Compute Address Short (CAS), where the
contents of two registers are added and the sum is placed in a third
-register so that the contents of both source registers could be preserved,
This supports efficient address computation.

The ROMP instruction set includes only simple instructions which can be
used efficiently by the compiler., ROMP does not include

' complex instructions,

. complex addressing modes,

. complex loop features,

. repeat, edit features,

. advanced floating point operations.

The goal was to implement an instruction set where almost all instructions

can be executed in one (ExOp) cycle. ROMP instructions are grouped into
ten classes:

class Number of instructions

1. memory access 17
2. address computation 8
3. branch and jump 16
%, traps 3
5. moves and inserts 13
6. arithmetic 21
7. logical 16
8. shift 15
9. system control 7
10. input and output 2
118

The memory access instructions are the only ones to reference mamory.
All storage addresses are computed as 32-bit quantities (base address plus
displacement).

The branch and 3jump class include the previously discussed delayed
branches (BRANCH WITH EXECUTE). Subroutine linkage is provided by the
branch and link instructions. Decision making and loop control is sup~
ported by the conditional branch and conditional jump instructions.

The ROMP/MMU Processor Complex 27

The move and insert class instructions are concerned with the movement
of data between GPR's and between a GPR and the Test Bit of the Condition
Status (one of the System Control Register).

The arithmetic operations treat the GPR's as 32-bit quantities in two's
complement representation. All of them effect certain flags (bits in the
Condition Status register). Supported are standard functions like

. add (2- and 4-byte format)
L4 compare (2~ and 4-byte format)
. subtract (2= and 4-byte format)

ROMP has no complex instructions like multiplication or division of two
32-bit quantities. Those operations have to be emulated in software.
ROMP gives basic support in providing the MULTIPLY STEP and DIVIDE STEP
instructions. There are no explicit floating point operations. A soft-
ware floating point emulator provides the floating point arithmetic. An
optional Floating Point Accelerator (FPA) board can be added to the system
to improve performance. It plugs into a dedicated slot on the system
board and is connected to the ROMP via the processor channel, The FPA
is based on a 10 MHZ National Semiconductor N532081 Floating Point Unit
(FPU) and supports the IEEE 754 Floating Point Standard. Performance
depends heavily on how much overlapped processing between ROMP and FPA
can be achieved. However, the FPA option is currently the only way to
boost floating point performance of a ROMP based system to over 200 KWips
(Kilo Whetstone instructions per second).

Instructions in the system control class are generally privileged in-
structions that are valid only in supervisor state. They include the
manipulation of System Control Register (SCR's) like

set and clear SCR bits

load program status

wait for interrupt
The input/output instructions are used to access the I/70 ports of the

system, e.g. manipulating the control registers in the MMU or other
system elements.

Interrupt Facility

Romp implements a priority-base interrupt scheme. The interrupt sources
are ~

. 7 external lines

* software interrupts

28 IBM RT PC System Architecture

. error conditions

The FPA board is one of the external interrupt sources. The 16 interrupt
lines of the I/0 channel are controlled by two Programmable Interrupt
Controllers (PIC INTEL 8259). Each of the PIC's handles 8 interrupt lines
on the I70 channel and is connected to one of the external interrupt lines
of the ROMP.

Software interrupts are issued by setting dedicated bits in the Interrupt
Request Buffer (IRB) control register on the ROMP.

Machine-check errors (parity, time-outs) and program—check errors (ad-
dressing errors, page faults) are handled by two additional error re-
porting interrupt levels,

ROMP provides a special Load Program Status (LPS) instruction for software
to return from an interrupt. This instruction will restore the following
System Control Registers (SCR):

IAR the instruction pointer
(Instruction Address Register)

CcS the flags (Condition Status)
ICS Interrupt Control Status

Saving of the current processor status and loading the new processor
status is performed automatically by ROMP hardware. This task switching
does not include the saving of any GPR's., Software is responsible for
saving any GPR's modified by the interrupt service routine.

A selectable priority level, ranging from 0 to 7, is assigned to the in-
struction execution on the ROMP. Special bits in the Interrupt Control
Status (ICS) register control this instruction priority level. Only in-
terrupts with a higher priority level will be served. The interrupt
priority levels range from 0 to 6 and are implicitly specified by using
the external lines. Explicit setting is done by using dedicated bits in
the Interrupt Request Buffer (IRB).

Interrupts can only occur on instruction boundaries. An exception is the
BRANCH WITH EXECUTE instruction. No interrupt is possible during the jump
and the execution of the subject instruction overlapping the BRANCH. In
order to support virtual memory, precise interrupts were defined for ROMP
so that the cause of a page fault can be identified easily. All in-
structions are restartable. Instructions causing page faults can be
re-executed after the fault has been resolved.

Memory Mahagement Unit (MMU)

The MMU is a separate chip on the processor board and communicates with
the ROMP via the RSC, It provides virtual address translation and con-

The ROMP/MMU Processor Complex 29

trols up to 16 Mbyte of RAM. The MMU can be functionally divided into
three sections:

MEMORY
RSC CHANNEL
M M u 16MB
ROMP RSC | TRANSLATE STORAGE MEMORY
INTERFACE | LOGIC CONTROL RAM
ROS
Figure 6. MMU Functional Parts
RSC Interface handles all the communications to and from the RSC
Translate Logic provides the translation from a 32-bit effective ad-

dress, received from ROMP via the RSC, to a real ad-
dress to access storage

storage control provides storage access, memory refresh and ECC logic

ROMP's ability to execute an instruction almost every CPU cycle requires
overlapping operations in the MMU. In fact, the MMU can handle, simul-
taneously, two memory requests while the result of a third one is being
transmitted to ROMP., As mentioned earlier, tag lines are used to manage
requests and replies on the RSC.

virtual Address Translation

The MMU provides several control registers, In supervisor state they are
accessed by ROMP via I/0 read and I/0 write instructions. Sixteen Segment
Registers are used to build the 40-bit virtual address:

30 IBM RT PC System Architecture

EFFECTIVE ADDRESS

I

SEGMENT <——PAGE DISPLACEMENT
REGISTERS 11 BITS FOR 2K PAGES
| 12 BITS FOR 4K PAGES
|

P| R} I SEG ID 0 S| K

L—] pP| RrR| I SE6 ID 1 | S| K

< VIRTUAL PAGE INDEX
17 BITS FOR 2K PAGES
16 BITS FOR 4K PAGES

P| R |I SEG ID 15| S |K

< SEGMENT IDENTIFIER
12 BITS
v v v
SEGMENT VIRTUAL PAGE BYTE
ID INDEX INDEX

Figure 7. Generation of Virtual Address

Addresses generated by ROMP are 32-bit and called effective addresses.
The high-order four bits are used to select one of the sixteen Segment
Registers (SR's). The 12-bit Segment Identification (SID) of the selected
SR concatenated with the remaining 28-bits of the effective address form
the 40-bit virtual address. To the executing program, memory appears to
be 4 Gigabytes broken into 16 segments of 256 Mbyte (28-bit) each. The
12-bit SID~entry in a Segment Register allows specification of 4096 dif-
ferent SID values. Therefore 256 sets of 4 Gbyte memory each can be
specified, resulting in 1024 Gbytes or 1 Terabyte of virtual memory.

The translation of the 40-bit virtual addressvto real is done by using
an Inverted Page Table (IPT),
a Hash Anchor Table (HAT),
Translation Lookaside Buffer (TLB).
The IPT and the HAT are combined into one memory resident structure pro-
viding an entry for each page of real memory. For a given virtual page
the IPT is searched for the corresponding real memory page. The HAT and

hashing techniques are used to speed up the IPT search. But it still adds
too many cycles to the translation time, because the search for the real

The ROMP/MMU Processor Complex 31

memory page in the IPT involves memory accesses. In order to eliminate
most of the IPT searches the MMU maintains a cache of recently-used pages
in an on-chip Translation Look—aside Buffer (TLB). The TLB has 32 entries
and the MMU completes the address translation in one cycle if the required
entry is in the TLB. A TLB ™miss™ initiates the IPT search and adds eight
to eleven cycles to the translation time. An IPT "miss™ is a page fault
and requires further action.

Memory Protection

Spacial bits in the Segment Register (SR) and bit fields in the IPT entry
of a real page control the memory access rights. Memory protection on a
page level is implemented by using the SR key bit and a 2-bit Page Key
field in the IPT.

If the SR Special Segment bit is set, then a high resolution memory pro-
tection scheme applies. Each page is considered to be made up of 16
mlines™ of

. 128 bytes (2 Kbyte pages) or
U 256 bytes (4 Kbyte pages).

An IPT entry (one page) contains 16 lock bits plus an 8-bit Transaction
Identifier (TID) to control the page ™line™ access.

ECC and Parity Checking

The MMU supports either 32/40 Error Correction Code (ECC) or byte-parity
for RAM. Parity checking provides data integrity by detecting all single
bit failures, but does not allow corrections. ECC requires additional
check bits, but allows detection and correction of all single bit errors.
In addition it will detect all double and most multiple bit failures.
Tha support for ECC on the RAM is justified by the large memory sizes
expected to be used with the ROMP/MMU processor complex (up to 16 Mbyte
RAM), The impact of ECC on the access time is about 30 nanoseconds for
the normal case when no error is detected.

32 IBM RT PC System Architecture

VIRTUAL RESOURCE MANAGER (VRM) AND VIRTUAL MACHINE INTERFACE (VMI)

Introduction

The VRM is a collection of programs which control and extend the hardware
of the Reduced Instruction Set Computer (RISC). VRM consists of a variety
of processes, device drivers and runtime routines which provide virtual
devices in order to enable the operating system to support multiple si-
multaneous interactive applications.

The main purpose of VRM is to support a virtual machine interface (VMI)
for the operating system. This defined interface makes it easy to change
the underlying harduware without having to adapt the operating system.
It's relieving the operating system of the responsibility for page fault
handling, paging space management and memory management, Providing a
queued interface to the I/0 devices, it frees the virtual machines from
the shared device management. Code for new devices can be added to the
VRM dynamically so that new devices can be added without IPL of the sys—
tem.

The advantage of virtual machines for the user is that he has no re-
strictions on program memory (address space for virtual memory is 1000
Gigabytes). For the programmer the VRM means that he does not have to
program down to the processor instruction level,

Highlights of VRM

The VRM programs, extending and controlling the hardware, mainly support
the Virtual Machine Interface (VMI) which is an interface between the
operating system and the VRM plus hardware (see "VMI characteristics™ on
page %4%). VMI contains features allowing operating systems to run
concurrently, while insulating them from most details of hardware imple-
mentation, Additionally these VMI features allow the installation of
extensions to the VRM in order to support different I/0 hardware. The
basic idea of generating a virtual machine, realized already in the
software product VM/370, is significantly different in its implementation
in the IBM RT PC., The Virtual Machine Interface supported by the VRM
offurs more capabilities than the harduware can provide. Consequently an
operating system implemented to the VMI will not run on the real hardwuare.
The main characteristics VRM provides along with the VM concept are:

virtual memory
mapped files

virtual devices as minidisks and virtual terminals.

VRM and VMI 33

Virtual Memory:

The hardware memory management handles 16 Megabytes of real memory
(24-bit address space) and allows a 40— bit space for virtual memory,
which allows one to address 1 Terabyte split into 4096 segments of
256 Megabytes each., 16 segment registers are provided by the hardware;
one is reserved for addressing I/0 devices. Therefore 15 saegments
can be accessed simultaneously.

Mapped files:

They are related to virtual memory. Logical disk blocks are related
to virtual addresses, so that read/urite of files can be done with
the associated memory addresses and avoid explicit disk read/wurite
(see minidisk manager) which adds to increase performance.

Minidisks:
Minidisks are designed as physically adjacent partitions of a real
disk which have their own virtual device addresses, A separate
minidisk is allocated for paging space to back up virtual memory on
the physical disk. Additionally a VRM minidisk exists containing all
its runtime routines and device drivers., The ninidisks are parti-
tioned into logical blocks the size of which are determined by the
operating system. The minidisk manager not only takes care of func—
tions normally found in simple hardware access methods but it also
handles error recovery and bad blocks.
I/0 devices:
The virtual resource concept is also applied to I/0 devices. VRM
provides virtual devices such as virtual terminals whose actions are
coordinated by the virtual terminal manager. The latter
handles virtual configurations
opens and closes virtual devices
does routing
coordinates the use of the display screens

makes the virtual device drivers available,

That means VMI includes a high level interface to I/0 devices which
is consistent for all devices.

34 IBM RT PC System Architecture

Functional Aspects of VRM

I/0 support

Devicg driver
pynamically installable devices

With the device driver concept VRM generates a hardware independent device
interface for a physical harduware device. The driver accepts commands
from higher level (VRM device manager or AIX device driver) and generates
the I/0 commands for the real device in order to perform the enqueued
request. The davice driver is also responsible for handling interrupts
from the hardware (see Figure 1 on page 9).

Applications

Operating System AIX
- Processes
- Device drivers

Supervisor | A Virtual
Calls (SVC) V | interrupts

Virtual Resource Manager
- Processes
= Device drivers

I1/0 | A real
commands v | interrupts

Hardware

Figure 8. Device Driver: Functional description of device driver
concept

The format of the device driver code is mainly the same for all drivers,
but it differs in the characteristics of the devices thaey control. These
characteristics are noted in a table-like field, called Define Device
Structure (DDS). DDS is sent from the virtual device to the VRM in order
to communicate information. It therefore allows the user to define other
than IBM-supplied predefined devices. Figure 9 on page 36 shows the basic
structure of the DDS. Only the header has a constant length. The other
DDS fields vary in length for each device driver and the error log field

VRM and VMI 35

is
su

ar

not even used by some drivers, so it can be empty. Error logging is
pported by the VRM for devices, like disks, where the error log data
may occupy several sections because that device driver has to perform

ror recovery.

Header IODN, IOCN, Device type
Device name etc.

28
Hardware Characteristics
Length of HW charact.
Internal dev. type
Interrupt definition
DMA type, I/0 port address
RAM or ROM start address

Device Characteristics
Description of characteristics
for each device

Error Log
Section for standard error log
Extended for hard disks

Figure 9. Define Device Structure (DDS): Field of DDS, with

header,section for hardware characteristics, section for

device characteristics and section for error logging

DDS

The information in the DDS field for hardware characteristics includes:

Mo

the I/0 port address used by the device
which DMA channel is used

which bus interrupt level it uses
whether it has resident RAM or ROM

reover the DDS-field contains information about which program

should be calied to process functions like:

36

Device definition (default)
Device initialization
Device termination

Is0 initiation

Interrupt handling

IBM RT PC System Architecture

module

Exception and timeout handling.

Using information from the DDS, VRM is able to determine which user in-
stalled program to call for handling an interrupt generated by a real
device, The VMI has functions to use real devices and to install a log-
ical connection, or path, between the user and the device .

There are two type of modules available in VRM for handling devices:
Device driver (modules)
Device manager (modules)
The device driver modules contain subroutines which support specific
hardware devices. VRM performs most of the common device driver functions
(generating interrupts, allocating space for code and data areas); for
device spacific functions, however, VRM calls these subroutines (eg. in-
terrupt handling, I/0 initiation from the virtual machine, timeout han-
dling etc.). For most device subsystems the VRM device driver support
is sufficient (printers, disk and diskette drivers, asynchronous device
driver, etc.).
More sophisticated subsystems (resources) which involve virtual devices,
such as minidisks, virtual terminals and communication subsystems, how-
ever, require device managers. The device manager modules handle multiple
asynchronous events which are typical for a virtual terminal with its
display, keyboard, speaker, etc.
To summarize the conceptual ideas of the VRM's device

1. Each physical device is controlled by a device driver.

2. A device driver consists of subroutines that are called by the VRM
to handle the following operations for a device:

definition
initialization
termination
170 initiation
interrupt handling
exception handling
3. Each device has an I/0 device number (IODN); VMI has facilities to
put the IODN in the device driver or in the process (Define Device
Supervisor Call).
%, Each device has a Query Device Structure (QDS) to describe the device

and its status, The device driver (or process) is responsible for
updating it as well as the error log fields in DDS.

VRM and VMI 37

5. The VRM manages the physical resources like:
adapters
interrupt levels
memory
DMA channels
6. VRM uses the following types of registers to manage its resources:
segment registers to control virtual memory access
system control registers to manage virtual machines.
The dynamically installable devices make the architecture of the virtual
machine extendahle, In the above mentioned DDS which is included in the

VMI a programme: can describe the attributes of a new device and its re-
lated software support to the VRM.

Real time tasking structure (for I/0 processes)

Memory management
Timer management
Process management (interrupt/dispatching)

A considerable high accent was given to the real-time performance of the
system. Particular emphasis is placed on supporting high speed devices.
For example, the VRM device driver is able to handle a disk formatted with
a 2:1 interleave factor (see MAppendix D. Other I/0 bus options™ on page
53). A, Poff-level™ interval handler capability is available which allous
a devic: interrupt handler to process time critical operations without
their task being preempted. It transfers less critical processing to a
lower priority level which can be preempted by other device interrupts.

For the VRM a process is a distinct entity, which receives time from the
processor in order to handle different programs. By its nature, the VRM
supports different active processes at the same time. Multiple processes
are dispatched according to their priority levels. In the case of equal
priorities, a round-robin algorithm is follouwed.

A process can be in one of the four following states:
. Ready

° Running

° Waiting

38 IBM RT PC System Architecture

. Terminated

>| READY |< _creatp
—enq
_post A
_send
WAITING dispatch interrupt TERMINATED
Apage fault, A
| _sleep, v |
| _wait |
L RUNNING !

Figure 10, Process management: It describes how a process is man-—
aged by VRM

Figure 10 shows the cycle every process has to go through when supervised
by the VRM.

When a process is created, the VRM initializes it and places it in the
Ready status. The process is then dispatched by the VRM and placed in
the Running status. Of course a running process may be interrupted at
any moment. In such a case the VRM will put it back in the Ready status.
A running process may also be placed in a Waiting status.

There are actually three ways to force a process into the waiting
status:

4 Queue event (e,g, arrival of an expected element)
. Semaphore (e.,g. synchronization between processes)
. Timer

. Page fault (e.g. the VRM has first to resolve it)

For more details about Process Creation and Termination, Exception Han-
dling, etc., the reader is referred to the VMI Technical Reference Manual.

The VRM process management is characterized by a very efficient process
switching mechanism. In addition, the queueing and semaphore techniques
provide an efficient means of interprocess communications (IPC) by of-
faring the ability to pass messages and synchronize processes, as well
as lock shared resources without the need of complex proceduras,

VRM and VMI 39

In a typical operating system, when an interrupt occurs the state of the
interrupted program is saved in a known location, then transferred to a
control block associated with the interrupted program if it is necessary
to switch control of the processor to a different program. In the VRM,
this would require moving around a large amount of data. Therefore, the
interrupt handler is set up to save the state of an interrupted program
directly into its control block. This contributes to faster context
switching.

Logical disk support and virtual storage control

Minidisk
virtual memory
mapped files

VRM supports either serially usable or shared resources. Serially usable
are devices like printers on which one application has to be finished
before the next one begins. Disks and memory are shared resources like
real terminals. They are shareable by splitting them into logical units.

Minidisks: The virtual machine allows a physical disk to be divided into
minidisks. VRM takes care of the translation of an element's physical
address (sector number) into its logical minidisk block number (and vice
versa) using the minidisk manager. It contains commands or I/0 routines
for handling minidisks as well as fixed disks. It also communicates with
the fixed disk device drivers. Additionally the minidisk manager takes
care of error recovery and bad block relocation, functions usually not
found in hardware access methods.

vVirtual memory: VRM provides virtual machines with paged virtual memory.
Because the paging mechanism is hidden, virtual machines treat virtual
like physical memory with variable access times. Virtual memory is di-
vided into segments, that is, linearly addressable spaces of one or more
2K~-bytes pages with a maximum size of 256 MB. VRM maintains 16 segment
registers and such gives access to 15 segments of virtual memory simul-
taneously.

Direct Memory Access (DMA) is used for I/0 adapters to access either the
system processor or the coprocessor. Eight channels may run in shared
or in non—shared mode.

Mapped files: Logical disk blocks are related to virtual addresses ena-

bling read and write of files to be done with associated memory addresses
access. This avoids explicit disk I/0.

40 18M RT PC System Architecture

coprecassor support

The VRM also manages the resources which can be shared with the 80286
coprocessor (DMA channels, disks etc.). For hon shared devices VRM re-
serves the device for being used exclusively by the co-processor. Such
I/0 processes (e.g. printing) take place without further control of the
VRM and they perform at the same speed as in an IBM PC/AT.

For shared devices (displays, diks etc.) the VRM has to simulate a real
dedicated device to the coprocessor. The VRM is able to write data to
memory buffer until the requested device is "free™. This is the reason
why performance is degraded in shared devices to some extent compared to
native IBM PC-AT application.

Specifically for memory, another shared resource, VRM can reserve oun

memory for the coprocessor's use. In order to gain performance a memory
card can be plugged into the I/0 bus additional to the system memory.

virtual console support

virtual Terminal Manager (VTM)

virtual Terminal Resource Manager (VTRM)

Device drivers
VRM supports multiple virtual terminals. These virtual terminals are
handled by a Virtual Terminal Manager (VTM), a component of the VMR, VMI
serves as interface between the virtual machine and the VTM. The VTM is
a collection of VRM components which:

extends the function of I/0 harduware

controls the physical terminals

controls input devices (keyboard, mouse)

controls output devices (displays, speakers)

maps virtual terminals to virtual machines.
The virtual Terminal Manager consists of
1., virtual Terminal Resource Manager (VIRM). It coordinates the actions

of all virtual terminals with its two modules: a resource controller

and a screen manager.

2. Virtual Terminal Mode Processor (VIMP)., It controls operation modes,
datastream information, etc.

VRM and VMI 41

3. Device drivers,

The preferred method of using a display from a virtual machine is to take
advantaga of the VRM and its 1/0 support functions. The device manager
VTP, however, gives access to two modes: Keyboard Send/Recieve piode and
Monitor mode. The Monitor Mode allows the VRM services to be bypassed,
which might be of interest for graphic applications. Performance is
gained, but with the disadvantage of less flexibility. It provides con-
trolled access to the real hardware and compatibility with existing ap-
plications (PEEK and POKE in BASIC).

pevelopment support
In order to exploit most of the capabilities of the VRM functions, a wide
and extensive development support is provided:

VRM debugger: a full screen, real terminal (system console) debugger
for error detection mainly in code of device drivers.

C- and assembler interface routines in VRM

42 IBM RT PC System Architecture

VRM Manadgement routines

Process management
Queue management
Memory management
Semaphore management
Timer management
Program management
Device management

Virtual machine control procedures

VRM and VMI 43

VMI_ characteristics

The Virtual Machine Interface (VMI) is a software interface between the
operating system(s) and the Virtual Resource Manager (VRM). And as de~
scribed in the preceding VRM chapters VRM controls and extends the hard-
ware., VMI therefore presents a standardized harduware-~like interface to
the operating system(s). Changes in hardware configurations normally do
not require a change in the operating system, The second important
characteristic of the VMI is that it allows concurrent virtual machines
(VM), based on one VRM.

Main characteristics:

Allows installation of multiple virtual machines including concurrent
execution of operating systems

Virtual machines as defined by VMI have a high level hardware-like
interface.

VMI isolates virtual machines from each other and from the VRM.
VMI insulates operating systems from hardware changes.

It thus gives the impression of multiple (see virtual terminals) and
enhanced (see virtual memory) resources.

componants:
Problem state instruction set.

A simulated privileged machine structure and a set of privileged ma—
chine functions.

A paged virtual memory system.
Device independent interface to displays and input deviges.

Functions for multiple virtual machine management, functions which
provide for the VM termination, communication between machines, etc.

system integrity and virtual machine architecture,

A virtual machine is, by definition, a simulation of a physical machine
and its related devices. Some limitations are imposed on the virtual
machine in order to maintain system integrity:

Virtual machines execute with the processor being in an unprivileged

state, It runs in the normal execution level 7 until its work is
completed, interrupted or preempted.

44 IBM RT PC System Architecture

Hardware devices are accessible only in privileged state with float-
ing point accelerator as exception.

A virtual machine can access only its memory and memory which has no
specific owner. '

Only programs running in privileged state or programs directly ac-
cessing the I/0 bus can affect systems integrity.

When a process executes, data manipulation and computation are done in
the general purpose registers of the processor. System control registers
keew track of facilities like processor, timer, and interrupts. The
virtual machine control registers (VMCR) are the equivalents of the systenm
control registers (SCR).

Interrupts are segregated into different levels (levels 0 to 7, plus
program cheque and machine communication level)., The levels are deter-
mined by the source or the cause of the interrupt, work which is done by
the interrupt handlers. When an interrupt occurs the interrupt handlers
will save the status of the machine at that time and determine the address
of the interrupt handling routine for that level. The program status word
will be used for the physical machine and the program status block for
the virtual machinae. The interrupt level points for both machinaes either
to a program status word or block, which directs the machine to the ad-
dress of the appropriate interrupt handling routine.

VRM and VMI 45

46 IBM RT PC System Architecture

APPENDIX A, THE IBM PC/AT COPROCESSOR

The IBM PC/AT Coprocessor option is implemented on a single board which
plugs into a unique slot on the I/70 channel. The Coprocessor provides
full IBM PC/AT processing power. The packaging includes major IBM PC/AT

parts like

. 80286 processor

. 80284 clock

80287 numeric coprocessor (optional)

. 8259 interrupt controller (two)

. 8254 +timer

. 12 mhz crystal clock

There is no onboard memory and two memory options are available to run

the Coprocessor

System memory

I/0 channel memory

The use of 32-bit ROMP system memory is the most
economical way to run the Coprocessor. The long
accaess path from the Coprocessor to system memory
results in a performance degradation of about 60
percent (slightly better than an IBM PC/XT), ROMP
performance may also suffer due to memory inter-
ference.

The Coprocessor approaches IBM PC/AT performance
if 16-bit I/0 channel memory is installed. 1In this
case true concurrent processing is provided (ROMP
using 32-bit system memory and the Coprocessor us—
ing 16-bit I/0 channel memory).

ROMP and the Coprocessor use

. keyboard,

. disks,

. displays

on a time shared basis under the control of ROMP,

Appendix A. The IBM PC/AT Coprocessor 47

48 IBM RT PC System Architecture

APPENDIX B, FLOATING POINT ACCELERATOR (FPA)

The FPA is implemented on a single board which plugs into a dedicated slot
on the system board. ROMP communicates with the FPA via the processor
channel. The FPA is based on National Semiconductor's NS32081 Floating
Point Unit (FPU) running at 10 MHZ. The IEEE 754 Floating Point standard
is supported but additional software is needed to fully implement the
standard.

Overlapped processing between ROMP and FPA is possible. An onboard ex-
ternal register file (32 sets of sixteen 32-bit registers) provides in-
creased read and write Floating Point Register (FPR) performance.
Performance depends heavily on how much overlapped processing between
ROMP and FPA can be achieved.

Currently the FPA option provides at least 200 KWips floating point par-
formance.

Appendix B. Floating Point Accelerator (FPA) 49

50 IBM RT PC System Architecture

APPENDIX C., SYSTEM MEMORY BOARDS

The architecture of the system memory cards provides full two-way high
performance interleaving, allowing a data word access every 170 ns while
using inexpensive, industry standard 150 ns Dynamic Random Access Memo-
ries (DRAMs). The system memory cards plug into two dedicated slots on
the system board.

The memory chips are packaged on 1 MB and 2 MB cards which provide for
system memory configurations of 1MB, 2MB, 3MB and 4MB. The maximum
throughput rate is 27 Mbytes/sec. The hardware architecture allows up
to BMB per card for a total of 16MB of system memory, which is currently
the maximal amount of real memory the MMU can manage.

Each data word consists of 32 data bits and eight Error Correction Code
(ECC) bits. The memory interface bandwidth is 23.5 Mbytes/sec.

Appendix C., System Memory Boards 51

52 IBM RT PC System Architecture

APPENDIX D, OTHER I/O0 BUS OPTIONS

The I/0 bus system differs in the two IBM RT PC models 6150 and 6151 only
in the amount of slots provided for the adapter cards. The 6150 has eight
I/0 slots, two PC type and six PC-AT type slots; the 6151 has only six
I/0 slots, one PC type and five PC-AT type slots. In both models one PC-AT
slot is unique and is reserved for the coprocessor option.

All PC and PC-AT adapter cards will fit in these I/0 slots, but only the
following are fully tested and recommended for use:

1. Monochrome display adapter

2. Enhanced graphics display adapter

3. Advanced Monochrome graphics display adapter
4. RS232C asynchronous adapter (4 ports)

5. RS422a adapter(4 ports)

6. Serials/parallel printer adapter (PC-AT)

7. Disk and diskette drive adapter

8. Streaming tape drive adapter

The Monochrom Display Adapter used in IBM RT PC is in fact the IBM PC-AT
monochrome and parallel printer adapter. It is fully supported by the
hardware and the AIX operating system as is the Enhanced Graphics Display
Adapter,

The Advanced Monochrome Graphics Display Adapter provides a 64 K~byte bit
map translating 720 pels horizontally by 512 pels vertically to the dis-
play. It supports exclusively the Advanced Monochrome Graphics Display,
a high resolution monochrome display. It has an addressable format of
720 by 512 pels and its display image is interlaced at a refresh rate of
46792 Hz.

The RS232C Asynchronous Adapter provides four serial ports, is fully
programmable and supports asynchronous communication only. A programma-
ble baud-rate generator allows operation from 50 bps to 19200 bps. (Note:
Two additional RS232C serial ports are provided with the model 6150 on
the system board supporting DMA transmit.)

The Disk And Diskette Drive Adapter is the actual IBM PC-AT adapter card
which is able to support two 40 or 70 MB disks and two diskette drives.
For the 6150 model with three disks two adapters are required.

The Streaming Tape Drive Adapter supports the streaming tape drive con-
taining a microcontroller and a data buffer of 2Kbytes. The streaming

Appendix D. Other I/0 bus options 53

tape drive has a capacity of 55 M bytes and transfers data at a rate of
86.7K bits per second.

For further information refer to literature.

54 IBM RT PC System Architecture

APPENDIX E, UNIX ENHANCEMENTS

The base of the AIX operating system is the AT and T UNIX System V.
However, the kernel is totally rewritten by IBM., The AIX implementation
comprises selected industry enhancements from UNIX Version 2, PC-IX (the
IBM Personal Computer Interactive Executive) and the Berkeley UNIX Ver-
sion 4.2.
This appendix gives a tabulated summary of the capabilities of this ex-
tended UNIX. For more details, the reader is referred to the "AIX Oper-
ating System Reference Manual™,.

AT & T System V.1 enhancements (over Version 7 and System III)
. File system performance and integrity enhancements
. Command and library enhancements

o Symbolic debug facility.

. Interprocess communication (IPC) with queues, semaphores and shared
memory.

AT & T System V.2 enhancements include
° vi Editor
. Improved utilifies (ls, ar, pg)
. Enhanced curses and terminfo
. Enhanced shell
Standard PC-IX enhancements
. File system and kernel enhancements
. System management enhancements
U Terminal/port management and control
. Generalized queueing system
. Improved commands and utilities
. Async network applications (innet/inmail/ftp)
U Full screen editor (INed)

Selected Berkeley BSD 4.2 enhancements

Appendix E. UNIX Enhancements 55

* Enhanced signals

. Multiple concurrent group access

U File system enhancements (fsync, ftruncate)
. C-shell.

UNIX extensions for process/program management in virtual memory include
the following:

Kernel demand page fault handling
. User process page faults
. Kernel preempts when page fault on user data.
Virtual fork
. Process creation requires duplication
. New program replaces
. Logical copy
. Copy on reference in new process.
Other features of the extended UNIX are
Mapped file support
* Disk files mapped into memory
. "Single level store™
User data files

. Read/write option: Memory operations automatically reflect the disk
file shmat (fildes, address, shm_copy)

U Copy on urite option: shadow page recovery, shmat (fildes, address,
shm_copy), fsync (fildes).

Executable ¥iles
* Kernel maps text/initialized data page in place
. linkedit option
(post R1)
. Subroutine level code sharing

IPC message queue enhancements

56 IBM RT PC System Architecture

For

For

Queuae element permission structure
Signal on IPC message queues (post R1).
Floating point support

IEEE emulation for boxes without FPA

Management of floating point hardware resources with portable object

code mode and direct access for full performance.
the file system the implemented enhancements include
Virtual disk support

Mini disk

Generic DASD device driver.

Support of multiple block sizes

512B 7 2KB.

Support for data management/data base

Truncate a file to a specified length - ftrunc
Release space within a file = fclfar

Synchronize a file in core state with disk = fsync
File and record level locking with user and group definition.
Removable media support

input/output management the extensions include
Device driver enhancements

Dynamically configured device drivers

Base for dynamically installed drivers.

Generic device independent device drivers

TTY device driver

Printer device driver,

Multiplexed device drivers

Logical "™device™ support

Virtual terminals

Appendix E. UNIX Enhancements

57

SNA sessions.

Terminal (console) support enhancements include

The

Multiple virtual terminal support

"Hot~key"™ between virtual terminals

UNIX support for VRM console

TTY

Monitored mode

Sound

Mouse.

Extended curses I?brary and terminal data base
Upward compatible from Berkeley BSD version
Enhanced for color, windows, extended graphics,...

extended curses include a set of window management routines with en—

hanced performance and major functions, which are

[]

The

58

Window features (create, delete, erase, overlay, overuwrite, scroll,
subwindows)

Output functions (add/delete/insert characters/strings, move current
position in window)

Display attribute functions (color, change next x characters to
"mode™, set up attribute desired initially, start/stop added charac-
ters have ™mode™)

Windowbox functions (draw a box around the window)

Input functions (get character/string, get key)

Control/utility functions (query/change terminal characteristics)
Full PC ASCII character set.

Usability shell improvements include

"Usable UNIX"™ interface

User friendly interface with UNIX subset'of commands and parameters,
with po~up menus and pointing device function keys

Support of a wide range of ASCII terminals

IBM RT PC System Architecture

U] Features such as windows manager, tools window (to access UNIX system
functions), files window (to use the UNIX directory structure), shell
windows (UNIX, DOS).

The UNIX extensions include printer services, namely

¢ 5152/5182

. Quietwriter

. APA page printer

. Pro Printer
Support for OEM ASCII

. Specific printer conversions
Multiple character sets 7/ fonts

Data formatting.

For the IBM Personal Computer compatibility mode, the UNIX extensions
include

. DOS 3.0 shell on UNIX with DOS command interface, access to UNIX files
and functions and access to DOS files on diskette or the coprocessor

minidisk.

. PC DOS file access API. It provides DOS 3.1 file functions for both
D0OS and UNIX files,

. PC DOS file conversion utilities, allowing transfer between UNIX and
DOS files, as uwell as ASCII conversion,

For basic LAN services there is a "PC Network BIOS® functional interface
to PC Netuwork.

From the languages point of view, PC mode is supported in PASCAL and BASIC
allowing the treatment of integers, PC I/0 functions, and PC floating

point,

The coprocessor services assure concurrent execution, shared resources
and display mapping.

As an interactive workstation, the following features are supported:
s UNIX "PC Talk™
U VT100 (extended) and IBM RT PC data stream
. File transfer (xmodem protocols)

. Multiple flow control protocols (xon/xoff, prompted, etc.)

Appendix E. UNIX Enhancements 59

60

The UNIX enhancements allow for the following configuration services:

Dynamic configuration of I/0 devices, hardware features, minidisks,
etc.

Menu-driven user interface that shows current configuration,
adds/deletes/changes printers, terminals, minidisks,...

Application interface to all these features

System configuration automatically updated, with file systems and
queues created and the kernel rebuilt if necessary.

System dynamically configured at IPL time. Hardware recognition and
configuration files are used. Dynamic reconfiguration anytime some-

thing is changed.

Finally the RAS (Reliability-Availability~Serviceability) features
include

Error logging services with error device driver, error collection
deemon and error log analysis routines.

Trace services with trace device driver and trace recording daemon.
Dump facilities
Software RAS support with patch facility and product update.

Version/Level information.

IBM RT PC System Architecture

ENDI CONCLUSTONS

The IBM RT PC is a product bridging the gap between the personal computers
introduced during the last few years and the emerging advanced 32-bit
workstations with extensive virtual memory management facilities. These
workstations slowly become the basis of computing systems that have ex-
tensive storage, display and communications requirements in order to
satisfy different applications as they evolvae.

This bulletin presented all the hardware and software capabilities of the
IBM RT PC. Namely, this systenm

. Introduces an IBM developed high performance 32-bit RISC architecture
with virtual memory.

° Combines the new 32-bit features with a standard IBM Personal Computer
I/0 channel.

L Provides an optional PC/AT coprocessor for compatibility with exist~
ing PC applications.

. Allows future performance and feature upgrades by replacement of the
processor, memory, and floating point cards as technology improves.

L The layered software structure based on the Virtual Resource Manager

assures the virtual machine capabilities and provides facilities for
an extendable architecturae.

Appendix F. Conclusions 61

62 IBM RT PC System Architecture

APPENDIX G, REFERENCES

IBM RT PC Virtual Resource Manager Technical Reference, Doc.No.
ATX4-0130.

IBM RT PC Virtual Machine Interface Technical Reference, Doc.No.
5C23-0811.

IBM RT PC AIX Operating System Technical Reference, Doc.No.
SC23-0807-0.

IBM RT PC Hardware Technical Reference Manual, Doc.No. 5C23-0854-0.

Radin, 6. The 801 minicomputer. IBM J. Res. Dev. 27,3 (May 1983),
pp.237-246.

Patterson, David A. Reduced Instruction Set Computers, Com, ACM, 28,
1 (January 1985), pp.8-21.

IBM RT PC Technology, Doc.No. S5A23-1057.

Appendix G. References 63

64 IBM RT PC System Architecture

Accumulator: A register in which
the result of an operation is
formed.

Adapter: An auxiliary device or

unit used to extend the operation
of another system,

Address: (1) A nama, label, or
number identifying a location in
storage, a device in a network, or
any other data source.

(2) A number that identifies the
location of data in memory.

Address Bus: One or more conduc-
tors used to carry the binary-coded
address from the processor
throughout the rest of the systenm.

Addressing: (1) In data communi-
cations, the way that the sending
or control station selects the
station to which it is sending
data.

(2) A means of identifying storage
locations.

Algorithm: A finite sat of
well-defined rules for the sol-
ution of a problem in a finite
number of steps.

All Points Addressable (APA): A
mode in which all points of a dis-
playable image can be controlled
by the user.

(ASCII)

American National Standard Code
for Information Exchange: The
standard code, using a coded char-
acter set consisting of 7-bit coded
characters (8 bits including par-
ity check), used for information
exchange between data processing
systems, data communication sys-
tems, and associated equipment,

GLOSSARY

The ASCII set consists of control
characters and graphic characters.

Asynchronous Transmission: In
data communications, a method of
transmission in which the bits in-
cluded in a character or block of
characters occur during a specific
time interval., However, the start
of each character can occur at any

time during this interval. Con-
trast with synchronous trans-
mission.

Base Address: The beginning ad-
dress for resolving symbolic ref-
erences to locations in storage.

Base Register: A general purpose
register that the programmer
chooses to contain a base address.

Binary Synchronous Communications
(BSC): A form of communications
line control using transmission
control characters to control the
transfer of data over a communi-
cations line.

BIOS: Basic Input/Qutput System.
Block: (1) A group of records that
is recorded or processed as a unit.
Same as physical record.

(2) Ten sectors (2560 bytes) of
disk storage.

(3) In data communications, a group
of records that is recorded, proc-
essed, or sent as a unit,

Block Check Character: The char-
acter used in BSC to check that all
bits transmitted were received.

Branch: In a computer program an
instruction that selects one of two
or more alternative sets of in-
structions. A conditional branch
occurs only when a specified con-
dition is met. On the IBM RT PC,

Glossary 65

all branches occur relative to the
Instruction Address Register,

Bus: One or more conductors used
for tiransmitting signals or pouwer,

Channel: A path along which data
passes. Also a device connecting
the prccessor to 1/0.

communications Adapter: A hard-
ware Tfeature enabling a computer
or device to become a part of a
data communications netuwork.

Complementary Metal Oxide Semicon-
ductor (CMOS): A logic circuit
family that uses very little power,
It works with a wide range of pouwer
supply voltages,

configuration: (1) The arrange-
ment of a computer system or net-
work as defined by the nature,
number, and the chief character-
istics of its functional units.
More specifically, the term con-
figuration may refer to a hardware
configuration or a software con-—
figuration.

(2) The devices and programs that
make up a system, subsystem, or
network. :

cyclic Redundancy Check (CRC):
(1) A redundancy check in which the
check key is generated by a cyclic
algorithm,

(2) A system or error chacking
performed at both the sending and
receiving station after a
block—-check character has been ac-
cumulated.

Davice Driver: A program that op-
erates a specific device, such as
a printer, disk drive, or display.

Device Manager: Collection of
- routines that act as an interme—
diary betuween device drivers and
virtual machines for complex
intarfaces. For example, supervi-
sor calls from a virtual machine

66 IBM RT PC System Architecture

are examined by a device manager
and are routed to the appropriate
subordinate device drivers.

DMA Direct Memory Access: DMA is
a method of transferring large
blocks of sequential data between
two devices with minimal interfer-
ence to the system processor. One
participant in the transfer is
usually memory. The other is an
adapter or option which supplies
or receives the data.

DMA alternate controller: An al-
ternate controller is an adapter
or option WITH the ability to han-
dle its own addressing and I/0
channel control. Compare this with
a "DMA device™ where the system DMA
controller is needed. Alternate
controllers may also have a device
mode. When in davice mode, the
alternate controller acts like any
other I/0 device.

DMA controller: A DMA system con-
troller is either the system DMA
controller (in the IBM RT PC it is
the INTEL 8237 DMA controller) or
an alternate controller.

DMA device: A DMA device is a de-
vice that has the ability to re-
quest a DMA operation. It requests
usae of tha I/0 channel when it
needs to transfer data with another
device (usually memory). Such a
device uses the system DMA con-
troller which provides addressing
and data transfer control signals
for the transfer. Note that the
DMA device must be ready to provide
or receive the data before it re-
quests the use of the I/0 channel.

Effective Address: A real storage
address that is computed at exe~
cution. The effective address
consists of contents of a base
ragister, plus a displacement,
plus the contents of an index raeg—
ister if one is present,

Exception Handler: A set of rou-
tines used to detect deadlock con-
ditions or to process abnormal
condition processing. This allous
the normal exaecution of processes
to be interrupted and resumed.

Firet Level Interrupt Handler
(FLIH): A routine that receives
control of the system as a result
of a hardware interrupt. One FLIH
is assigned to each of the six in-
terrupt levels.

General=-purpose Register (GPR): A
register, usually explicitly ad-
dressable within a set of regis-
ters, that can be used for
different purposes; for example,
as an accumulator, or as an index
register, or as a special handler
of data.

Index: (1) A table containing the
key value and location of each re—
cord in an indexed file.

(2) A computer storage position or
register, whose contents identify
a particular element in a set of
elements.

Index Register: A register whose
contents are added to the operand
or absolute address that results
when a displacement is added to a
base address.

Initial Program Load (IPL): The
process of loading the system pro-
grams and and preparing the system
to run jobs.

Inputsoutput (I/0): (1) Pertain-
ing to a device or to a channel
that may be involved in an input
process, and at a different time
in an output process.

(2) Pertaining to a device whose
parts can be performing an input
process and an output process at
the same time.

(3) Pertaining to either input, or
output, or both.

InputsOutput cChannel Ccontroller
(I0CC): A hardware component that
supervises communication between
the input/output bus and the
processor.

Input-Output Code Number (IOCN):

A value supplied by the virtual
machine to a VRM component. This
number uniquely identifies the
code associated with a component

and can be considered a module
name.

Input~-output Device Number
(IODN): A value assigned to a de-

vice driver by the virtual machine
or to a virtual device by the vir-
tual resource manager. This number
uniquely identifies the device re-
gardless of whether it is real or
virtual.

I/0 device: An I/0 device is an
I/0 adapter or option which is able
to provide or receive data under
the control of the system DMA con-
troller or an alternate control-
lar,

Instruction Address Register
(IAR): A system control register
containing the address of the next
instruction to be executed. The
IAR (sometimes called a ™program
counter™) can be accessed via a
supervisor call in supervisor
state, but cannot be directly ad-
dressed in problem state.

Interface: A device that alters
or converts actual electrical
signals between distinct devices,
programs, or systems,

Interleave: To arrange parts of
one saquence of things or events
so that they alternate with parts
of one or more other sequences of
the same nature and so that each
sequence retains its identity.

Interrupt: (1Y To
stop a process.

temporarily

Glossary 67

(2) In data communications, to take
an action at a receiving station
that causes the sending station to
end a transmission.

(3) A signal sent by an I/0 device
to the processor when an error has
occurred or when assistance is
neaded to complete I/0. An inter-
rupt usually suspends execution of
the currently executing progranm.

Memory Management Unit (MMU):
Hardware that manages virtual mem—
ory by providing translation from
a virtual address to a real ad-
dress.

Microcode: (1) One or more micro—
instructions.
(2) A code, representing the in-

structions of an instruction set,
implemented in a part of storage
that is not program-addressable.

Microinstruction:
tion of microcode.
(2) A basic or elementary machine
instruction.

(1) An instruc-

Minidisx: A logical subdivision
of a real disk that has its ouwn
virtual device address.

Module: (1) A discrete program—
ming unit that usually performs a
specific task or set of tasks.
Modules are subroutines and call-
ing programs are assembled sepa-
rately, then 1linked to make a
complete program,

Multiprogramming: (1) Pertaining
to the concurrent execution of two
or more computer programs by a
computer.

(2) A mode of operation that pro-
vides for the interleaved exe-
cution of two or more conmputer
programs by a single processor.

operating System: Software that
controls the execution of pro-
grams; an operating system may
provide services such as resource

68 IBM RT PC System Architecture

' are

allocation,
input/output
management.

scheduling,

control, and data

Page: A fixed-length block of in-
structions, data, or both, that can
be transferred between real stor-
age and external page storage.

Page Fault: A program inter-
ruption that occurs when a page of
memory not in real storage is re-
ferred to by an active page.

Paging: The action of trans-
ferring instructions, data, or
both between real storage and ex-
ternal page storage.

Parallel: (1) Pertaining to the
concurrent or simultaneous opera-
tion of two or more devices, or to
the concurrent performance of two
or more activities.

(2) Pertaining to the concurrent
or simultaneous occurrence of two
or more related activities in mul~
tiple device or channels.

(3) Pertaining to the simultaneous
processing of the individual parts
of a whole, such as the bits of a
character and the characters of a
word, using separate facilities
for the various parts.

(4) Contrast with serial.

Polling: (1) Interrogation of de-
vices for purposes such as to avoid
contention, to determine opera-
tional status, or to determine
readiness to send or receive data.
(2) The process whereby stations
invited, one at a time, to
transmit.

pPort: An access point for data
entry or exit.

Privileged Instructions: System
control instructions that can only
run in the processor'"s privileged
state. Privileged instructions
generally manipulate virtual ma-
chines or the memory manager; they

typically are not used by applica-
tion programmers,

Privileged state: A hardware pro-
taction state in which the
processor can run privileged in-
structions. The processor's priv—-
ileged state supports the virtual
machine's VRM state.

Problem State: A state during
which the CPU processing unit can-
not exequte privileged in-
structions. Most programs written
to perform tasks or solve problems
run in the problem state.

Process: (1) A sequence of dis-
crete actions required to produce
a dusired result.
(2) An entity receiving a portion
of the processor's time for exe-
cuting a progran,

Program: A document containing a
set of instructions, conforming to
a particular programming language
syntax. Programs perform proc-
esses and are represented by proc-
ass objects when active (i.e., when
they are executed).

Program Status Block (PSB): A
control block that describes a
virtual interrupt condition.

Protocol: In data communications,
the rules for transferring data.

Protocol procedure: A process
that implements a function for a
daevice manager. For example, a
virtual terminal manager may use a
protocol procedure to interpret
the meaning of keystrokes.

Queua: A line or list formed by
items waiting to be processed.

Real Address: A 24-bit address on
the internal bus which will be ap-
plied to the storage by ROSETTA
without modification by the trans-
lation mechanism of ROSETTA.

Register: A storage area, in a
computer, capable of storing a
specified amount of data such as a
bit or an address.

Relative Address: (1) A means of
addressing instructions and data
areas by designating their lo—
cations to the Instruction Address
Register or to some symbol.

(2) An address specified in re-
lation to the contents of the In-
struction Address Register or to a
symbol. When a program is relo-
cated, the addresses themselves
will change, but the specification
of relative addresses remains the
same.

Raeduced Instruction Set Computers
(RISC): Processors with no so-
phisticated instructions in their
instruction sets. They tend to
perform almost as well as micro-
code, by using highly optimizing
compilers, that take advantage of
their high speed execution and
their pipelined architecture,

ROM/BIOS: The ROM resident basic
input/output system, which pro~
vides the level control of the ma-
jor I/0 devices in the computer
system,

Routine: A set of statements in a
program causing the system to per-
form an operation or a series of
related operations.

Run=time Environment: A col=-
lection of subroutines that pro-
vide commonly used functions for
system components.

Second Level Interrupt Handler
(SLIH): A routine that handles the
processing of an interrupt from a
specific adapter. An SLIH is
called by the first level interrupt
handler associated with that in-
terrupt level,

Glossary 69

sector: (1) An area on a disk
track or a diskette track reserved
to record information.

(2) The smallest amount of infor-
mation that can be written to or
read from a disk or diskette during
a single read or write operation.

Segment: A contiguous area of
virtual storage allocated to a job
or system task, A program segment
can be run by itself, even if the
whole program is not in main stor-
age,

Semaphore: Entity used to control
access to system resources. Proc—
esses can be locked to a resource
with semaphores if the processes

follow certain programming con-
ventions.
serial: (1) Pertaining to the se-

quential performance of two or more
activities in a single device.

(2) Pertaining to the sequential
or consecutive occurrence of two
or more related activities in a
single device or channel.

(3) Pertaining to the sequential
processing of the individual parts
of a whole, such as the bits of a
character or the characters of a
word, using the same facilities for
successive parts.

(4) Contrast with parallel.

sarver: A program that handles
protocol, 4queueing, routing, and
other tasks necessary for data

transfer between devices in a com—
puter system,

stack: An area in storage that
stores temporary register informa-
tion and returns addresses of sub-
routines.

supervisor: The part of IBM RT
PC*s control program that coordi-
nates the use of resources, and
maintains the flow of processing
unit operations.

70 IBM RT PC System Architecture

supervisor Call (svC): An in-
struction that interrupts the pro-
gram being executed and passes
control to the supervisor so it can
perform a specific service indi-
cated by the instruction.

system Unit: The part of the sys—
tem that contains the processing
unit, the disk drive and the disk,

and the diskette drive and
diskettes.

Task: A basic unit of work to be
performed, Examples are a user
task, a servar task, and a
processor task.,

Translation Lookaside Buffer
(TLB): Hardware that contains the

virtual-to-real address mapping.

Trap: An unprogrammed,
hardware-initiated jump to a spe-
cific address. Occurs as a result
of an error or certain other con-
ditions.

Unprivileged State: A hardwuare
protection state in which the
processor can only run unprivi-
leged instructions. The
processor's unprivileged state
supports the virtual machine's op~
erating system state and problem
state.

Virtual Address: A 32-bit address
on the internal bus intended to bhe
translated by MMU.

virtual Device: A device that ap-
pears to the user as a separate
entity but is actually a
time~shared portion of a real de-

vice., For example, several virtual
terminals may exist simultane-
ously, but only one is active at

any given time,

virtual Machine Interface (VMI):

A software interface between IBM
RT PC workstations and operating
systems. The VMI shields operating

system software from hardware
changes and low-level interfaces
and provides for concurrent exe-
cution of multiple virtual ma-
chines.,

virtual Resource Manager (VRM): A
set of programs that manage the
hardware resources (main storage,
disk storage, display stations,
and printers) of the system so that

these resources can be used inde-
pendently of each other.

virtual storage: Addressable
space that appears to be real
storage. From wvirtual storage,

instructions and data are mapped
into real storage locations.

Word: A contiguous series of 32
bits (four bytes) in storage.

Glossary 71

72 IBM RT PC System Architecture

INDEX

APA 7, 59 LOAD 21, 22, 23, 24, 26, 27
ASCII 14, 58, 59

minidisk 33, 34, 37, 40, 59, 60
BRANCH WITH EXECUTE 25 mMMuU 6, 7, 8, 12, 14, 17, 18, 22,
23, 28, 29, 30, 32, 51

D
R
DELAYED BRANCH 25, 27
DMA 40 RISC 1-7, 11, 12, 17, 18, 33, 61
G s
GPR 19, 28, 29 SvC 35
I v
IAR 19, 21, 29 VMI 12, 13, 14, 15, 33, 34, 37,
Iocc 7, 8, 9 38, 39, 41, 44
IOCN 36 VRM 12, 13, 14, 33-45, 58

IODN 36, 37
L 7, 8, 9, 14, 17, 18, 33, 60

Index 73

6GG24~3024~-00 READER'S COMMENT FORM
IBM RT PC System Architecture

You may use this form to communicate your comments about this publication,
its organization, or subject matter with the understanding that IBM may
use or distribute whatever information vyou supply in any way it believes
appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review
and action, if any, is deemed appropriate. Comments may be written in
your own language; use of English is not required.

Note: Copies of IBM publications are not stocked at the location to which
this form is addressed. Please direct any requests for copies of publi-
cations or for assistance in using your IBM system, to your IBM repre-
sentative or to the IBM branch office serving your locality.

Possible topics for comment include: Clarity, Accuracy, Completeness,
Organization, Coding, Retrieval, Legibility.

If you would like a reply, please give your name, company, mailing address
and date:

What is your occupation?

Most raecent Neuwsletter associated with this publication:

Thank you for your cooperation.

Reader's Comment Form

--

...

Fold and tape

...

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

IBM International Technical Support Center
Department 948, Building 808

11400 Burnet Road

Austin, Texas 78758

- e e e ——— ur] BuOlY P04 20 XD —-

