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For IBM RT PC the System Architecture is described by giving a reasonably 
technical presentation of both the hardware and software structure. In 
addition several other issues are covered such as an introduction to RISC 
technology and the UNIX enhancements added to the IBM RT PC operating 
system environment. 

This bulletin is addressed to IBM systems engineers who wish to acquire 
a strong foundation on the system arcMtecture of the IBM RT PC. The 
background needed to understand it is being famiHar with interactive 
operating systems and knowing some basic concepts of computer hardware. 
Familiarity with UNIX is a plus# but it is not a prerequisite. 
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PREFACE 

Th;s bullet;n represents a compact presentat;on of both the hardware and 
software aspects of the system arch;tecture of the IBM RT PC system. 

Th;s product comb;nes: 

• A very fast Reduced Instruct;on Set 32-b;t processor for eft;c;ent 
execut;on of programs comp;led from a h;gh-level language. 

• A resource manager that prov; des v; rtual mach1 ne, storage and I/O 
funct1ons ;n order to assure data ;ntegr1ty and process1ng cont1nu-
1ty. 

• A mult1task;ng, mult;user operat;ng system based on the AT & T UNIX 
System v, but with a lot of IBM extensions allow;ng ;t to serve d1f­
ferent user requ;rements. 

• An 80286 Coprocessor feature that allows users to run programs wr1 tten 
for the IBM Personal Computer wHhout interfering w1 th the normal 
nat1ve operat1on of the IBM RT PC. 

• A w1de var;ety of d1splays, pr;nters, commun1cat1ons adapters and 
process;ng features are 1ncluded 1n a system. 

• All that can f;t on or under a desk. 

The structure of th1s bullet1n 1s as follows: 

• The fl rst chapter: "Reduced Instruct1on Set Computers•, covers the 
RISC top;c, by show1ng the evolut;on of CPU technology and explain1ng 
what RISC technology 1s and why ;t ;s state-of-the-art. 

• The second chapter: •IBM RT PC System Arch1tecture Overv;ew•, covers 
the overall arch;tecture of the IBM RT PC by g1v1ng equal emphas1s 
to the hardware as well as to the software structure. It ;ntroduces 
the spec1 fl c term1 no logy and ; t allows the reader to better understand 
and comb;ne the more 1n-depth treatment that follows. 

• The th1rd and fourth chapters: •The ROMP/MMU Processor Complex• and 
•v;rtual Resource Manager CVRM> and V1rtual Mach1ne Interface 
CVMI>•, cover 1n more detail, respect;vely, the hardware bas;s and 
the layered software architecture of the IBM RT PC. 

• The append1ces cover other top;cs, such as the Float;ng Point Accel­
erator opt;on, the Coprocessor card, the system memory boards, the 
l/O adapters ava1 !able and the UNIX enhancements ; mplemented w1 th the 
operat1ng system of the IBM RT PC. 

• A glossary w1th IBM and non-IBM references is also prov1ded at the 
end of th1s bullet1n. 
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REDUCED INSTRUCTION SET COMPUTERS 

Introduction to RISC 

Before addressing why RISC technology is used on the IBM RT PC we shall 
first explain what RISC is. Since 'it 'is a relatively new concept most 
readers have probably never heard about it. 

The abbreviation stands for Reduced Instruction Set Computers, and, as 
the term itself implies, we are talking about processors with only a basic 
set of instructions. This means that a RISC processor is not equipped 
with powerful instructions like the ones found in machines such as the 
IBM System/370 or even those at the microprocessor level. 

Thus far we have only discussed the definition of RISC and it is imper­
ative now to explain why this new concept exists in state-of-the-art 
computers like the IBM RT PC. 

As VLSI technology advances, the new generation processor chips can im­
plement the architecture of powerful m'in'icomputers on a single ch'ip. Such 
an implementation has to cope with certain purely technological con­
straints which engineers will not know how to overcome for several years. 
On one hand, the perspective of single-chip designs is rather limited by 
the resources one disposes of in terms of silicon real-estate, or more 
practically speaking, of the transistors and power dissipation the chip 
can handle, Typical designs today contain several tens Cand at times even 
hundreds) of thousands of transistors, 

On the other hand, the clear trend of current MOS technology 'is scaling 
down successful designs to narrower l'ine widths. When a scaling takes 
place the devices on the chip become smaller and smaller, The distances 
electrons now have to travel are shri nk'i ng, and the devices become faster. 
Faster transistors, on a processor chip for example, i mmadi ately means 
an increase in the processor's throughput. 

Since transistors become smaller and smaller the communications between 
different parts of the same chip become crucial. The signal delays in­
troduced by long wiring connections are not at all negligible and it ac­
tually becomes one of the most difficult problems to resolve. 

This shows that intra-chip communications have to be carefully addressed 
and random logic as well as long-distance communications have to be kept 
to an absolute minimum. 

Ona can now understand that it is not only a matter of generating a pro­
portionally scaled layout Ci n order to successfully map on a ch'i p the 
architecture of a mini or a mainframe>. The constraints we have discussed 
have to be well studied, understood, evaluated and dealt with accordingly, 
The system partitioning in different chips as well as the allocation of 
certain chip areas has to be done prudently and judiciously, 
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In th;s context, IBM researchers have found that a reasonable restr;ct;on 
to a smaller set of instructions, combined with an architecture customl:O?:ed 
for fast execution of all the instructions in the set, can result in a 
machine with a surpr;singly high throughput. 

Such a Reduced Instruction Set Computer can be designed with a relatively 
small control section and a short mach;ne cycle. The ROMP processor used 
in the IBM RT PC for example is characterized by a 170 nsec cycle. The 
design of such a processor is then much more straight-forward than tra­
ditional designs in the sense that both design time and the influence on 
the final result of the eventual architectural flaws are drastically re­
duced. 

IBM has been directly involved in RISC research since 1975 when a team 
from the Yorktown Heights Research Center, led by George Radin, started 
experimenting with these ideas. The project was called "Project 801" from 
the site building number they were working in. An operational result was 
functional in 1979 based on standard off-the-shelf Establishment Commu­
nications Link CECL) components, but the results were not made public for 
obvious reasons until 1982. Another project pursued by IBM engineers 
resulted ; n the ROMP processor, a very powerful 32-bit RISC micro­
processor, which is the base of the IBM RT PC. 

RISCs are not something only IBM has been working on. The University of 
California at Berkeley has developed two distinct designs; the RISC I in 
1981 and the more sophisticated RISC II in 1983. A team from Stanford 
University has also recently ; ntroduced with the MIPS CMi croprocessor 
without Interlocked Pipelined Stages) processor. Industry is also moving 
fast in this direction. 

RISC ovel'view 

Computer architecture started existing as a concept in 1964 when IBM in­
troduced the System/360, It was the first time that a differentiation 
was made between the computer arch;tecture - the abstract structure of a 
computer that a machine-language programmer needs to know in order to 
write programs - and the actual hardware implementation of that structure. 

Before that, the criteria to rate a computer was the cost of an imple­
mentation. However, researchers now tried to come up with new measures 
of performance. The decreasing hardware cost gave birth to arguments for 
richer instruction sets. Rich instruction sets were said to simpHfy 
compilers, compensate for the rising cost of software development and aven 
improve the architecture quality, The new means of evaluating architec­
tures was program size and the design mentality that prevailed in the 
1970's was that large programs are invariably slow programs. 

This philosophy is responsible for the exotic instruction formats one can 
find in machines like the IBM 370/168. 
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The use of m;crocode ;n that generation of mach;nes was very ;ntensive. 
The reasons are very simple to understand. Memory costs were steadily 
decreasing and large microcoded modules would add almost nothing to the 
overall cost. Micro;nstruct;ons were faster than normal instructions. 
Registers made the writing of compilers vary difficult and this was why 
stacks or memory-to-memory architectures were adopted. 

In the meantime the cache memory, or high speed buffer, was invented, 
yielding substantial improvement in the implementation speed of the ar­
cMtecture, while compilers started finding it difficult to generate 
those complex new functions. A special breed of compilers, the optimizing 
compilers, ware removing so many of the unknown elements at compile-time 
that they almost never made use of the POWarful instruct; on set at 
run-time. 

When computers made the transition from physical to virtual memory, the 
microcode had to ensure that any routine could start over ;f any memory 
operand caused a page fault. The performance gained by microcode was lost 
by a tremendous overhead which incurred during swapping in a multiprocess 
environment. When each program has its own microcode, a multiprocessing 
operating system has to reload the Writable Control Storage CWCS> with 
the corresponding microcode. This reloading time ranges between 1,000 
and 25,000 memory accesses depending on the machine. 

This latter POint led researchers to decide that future computers should 
have virtual control storage, which meant that page faults could occur 
even during microcode execution. The distinction between programming and 
microprogramming was becoming less and less obvious. 

It was clear that the attempt to bridge the "semantic gap" by using 
writable control storage had led to a "performance gap". The motives were 
sti 11 vaH d: programmers should wri ta operations that mapped directly 
to microinstructions, and instructions should be no faster than microin­
structions. However, the caches allowed main memory accesses at the same 
speed microcode was accessed in control storage. Microcode no longer 
enjoyed a ten-to-one speed advantage. 

It was this whole context that gave rise to a new computer design phi­
losophy. Optimizing compilers could be used for the compilation of 
high-level programming languages down to the level of simple instructions 
of comparable efficiency to microinstructions, and to make the instruc­
tion cycle as fast as technology would allow. 

These machines are characterized by fewer instructions -·hence the name 
RISC - which in general execute in one cycle. 

RISCs have sat up a new set of architectural design principles: 

• All functions should be kept as simple as possible unless there is 
an extraordinary reason not to do so. 

• Microinstructions should not be faster than simple instructions be­
cause caches are built from the same technology as WCS. 
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• Software ; s not batter if mi crocoda is used, it only becomes more 
difficult to change. All the hardware pdmitives available to 
microcode have to be accessible to assembly language programming. 

• Simple decoding techniques and pipelined execution are much more im­
por~ant than program size. This leads to simple instruction formats 
whi c~h do not cross word boundaries. 

• Compiler technology should be used to simplify instr-uctions rather 
than to generate complex instructions. 

The last point is of crucial imPOr-tance and it deserves explanation. RISC 
compilers will try at compile-time to remove as much work as possible so 
that simple instructions can be used. This means, for example, that such 
a compiler wi 11 try to kaap operands ; n regi stars, so that simple 
regi ster-to-regi star instrucUons can be used. A traditfonal compiler 
will try to discover the ideal addressing mode and the shortest instruc­
tion format to add the operands in memory, In general, RISC compilers 
favor register-to-register operations because operands kept in registers 
are easily reused without new memory accesses and address calculations. 
RISC compilers use only LOADs and STOREs to access memory so that operands 
are not i mpl i ci tly discarded after being fetched, as happens ; n the 
memory-to-memory model of execution. 

Several unique features of RISC processors such as delayed branches and 
loads are described in depth in this document Csee the Index>. 
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IBM RT PC SYSTEM ARCHITECTURE OVERVIEW 

Introduct;on 

The IBM RT PC ;s characterized by a totally new architecture and it ;s 
useful to talk a little about the goals identif;ed right from the start 
of the development work. 

The next generation of workstation systems had to be ;mplemented us;ng 
state-of-the-art technology both in hardware and software. This ;mpl;ed 
that the heart of the system should be a processor offer;ng unprecedented 
capabUHies ;n speed and functionality, Advanced memory management 
functions should be provided for and the system's physical size should 
be proport;onal to the potential of current integrated circuits technol­
ogy, It also ;mplied that an ingen;ous software structure had to be de­
v;sed which would render the software applications pract;cally 
independent of hardware configuration changes. 

IBM RT PC designers wanted to assure a compat i bi 1; ty w; th the IBM Personal 
Computer architecture in order to prov;de the IBM RT PC user w;th the 
capabU ity of using the vast amount of IBM and non-IBM applications which 
run on the PC. 

The Research Oriented Min; Processor CROMP> ;s a 32-b;t IBM propr;etary 
processor capable of about 4 MIPS CM; llion Instructions Processed per 
.Second) execut;on speed and reduced ;nstruct;on set. IBM researchers 
realized that instead of having a processor w; th very powerful in­
structions tak;ng the system a lot of time to decode and ba;ng idle when 
branches and loads happened. they would rather develop a new processor. 
which would need less si 1; con real estate and which would only be armed 
by a bas;c instruction set. This would result in a system taking less 
time to run an application. The major development effort needs to be in 
coming up with really powerful compilers, which will be in position to 
fully exploit the capabilities offered by the processor. The IBM RT PC 
is the result of a joint effort development based on RISC system archi­
tecture work from Aust;n, the Yorktown Heights state-of-the-art comp;ler 
technology and the 2 m; er-on si 1 icon-gate HMOS process from Burlington, 
Vt. 

Efficient compilers are poss;ble now, where a lot of d;fferent opt;miza­
t;on techniques are used in order to take advantage of the processor ca­
pabilities, For example the PL.8 comp;ler used internally for the IBM 
RT PC development generates code about lOX less eff; ci ant than good 
hand-written assembly. 

Another concern was the addressab;1;ty, Sixteen-bit computers are l;m­
ited to addressing only 64K bytes or words. The only way to overcome this 
limitation is by using special hardware provisions or segment registers. 
However, it turns out that it h not that simple to handle objects larger 
than 64K even when using segment registers. 
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Accord; ngly, the follow; ng goals are set up: 

• The processor should be an all-32 b;t mach;ne, where reg;sters, ad­
dresses and data are all 32-b;ts long. 

• v; rtual memory capab; Ht; es are a must in such a powerful workstation 
env; ronment. 

• The addressable space should be l;near and pract;cally not limited. 

• The architecture should ensure the compat;bu;ty with exist;ng IBM 
PC and PC/AT applicat;ons. 

Reducing the cost of a system means using state-of-the-art VLSI design 
and packag;ng. For silicon area reasons the 2 major subsystems, i.e. 
processor and memory management unit, have been ;mplemented ;n 2 different 
chips <actually the MMU is slightly larger than ROMP>. 

The IBM RT PC development team had ; n m; nd that the system should be 
characterized by a remarkably h1 gh performance w; thout using expensive 
memor~'· The 801 minicomputer designed by a team at the IBM Thomas J, 
Watson Research Center was one of the first to investigate the effec­
t; veness of RISCs. By using directly off-the-shelf ECL MSI components 
it gavr tremendously encouraging results and ;nspired other teams to go 
on and mplement different appoaches on the RISC issue. The 801 was using 
2 cachei, which could deliver an instruct;on word and a data word at each 
cycle. However such caches are extremely expens;ve for small to medium 
systems and hence the IBM RT PC designers opted for pi peHne-techni ques. 
More details are given later on in this bulletin at the discuss;on of the 
system boards <•Appendix C. System Memory Boards• on page 51> and in the 
chapter discussing ROMP and MMU more deeply c•The ROMP/MMU Processor 
Complex• on page 17). 

The IBM RT PC ;s offering a 40-bit virtually addressable space and it 
supports real memory size up to 16Mbytes. There are some concepts from 
the System/38 that are used and the sy~tem architecture provides a means 
of controlling access to virtual memory sect;ons lying within a paga. 
This proves especially useful in database locking schemes. 

The system architecture was meant to assure the effect;ve ;ntegrat;on of 
such a virtual memory processor w;th exist;ng as well as with new 8-b;t 
and 16-bi t I/O adapters. The attachment of coprocessors for compati bi H ty 
and performance enhancement was also cons;dered a must and the open ar­
ch; tecture should allow the user to ; nstall. practically everythl ng he 
would th;nk would enhance the performance of the machine. 

system Hardware Architecture summary 

The IBM RT PC system architecture ;s the same for both the desktop and 
the floor-stand; ng model. The floor-standing model offers the maximum 
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axtens;ons because of more free slots, however most opt;ons are ava; lable 
to all models. • 

The IBM RT PC systems have a w;da range of standard ~nd opt;onal hardware 
features. A system planar board ;s used w;th all bas;c c;rcu;ts and I/O 
slots. F; gure 1 on page 9 g;ves an ; Oustrat;on of the system arch;tec­
ture and ;ts structur;ng. The I/O slots are des;gned ;n such a way that 
many ex;st;ng IBM PC and PC/AT cards can also be plugged ;nto the system. 
The operator keys-;n the input from a 101-key keyboal"'d or an opt;onal 
2-button mouse or even from a tablet-po;nting dev;ce. Bes;des all the 
I/O slots there are spec;f;c slots ;n the system for each of the 32-b;t 
system components. The ROMP processor" and ;ts Memory Management un;t He 
on the Pl"'Ocessol"' cal"'d which comes w; th evel"'Y model. On the same card 1; es 
also the ROM w;th the m;crocode used by the mach;ne at IPL t;me. The 
Storage Control ;s also on the Pl"'Ocessor card, as well as the Error Cor­
reci.ing Code log;c used by MMU ""hen access;ng the ma;n memory. Data 
sto1·age 1s Pl"'ov; ded on 5-l/4 inch hal"'d d; sks and diskettes. One of the 
opt;onal cards ;s the FPA CFloat;ng Po;nt Accelerator) card and ;t plugs 
; nto a separate 32-b; t slot. Two other dad; cated slots are used fol"' 
system memOl"'Y cards. Because of technolog;cal l;m;tat;ons, fol"' the t1me 
be1ng the only memory cards that al"'e ava;lable are of 1 Megabyte and 2 
Megabytes. This g;ves at this t; me a real storage capac; ty of up to 4 
Megabytes. The hardwal"'e arch;tectul"'e however allows an expans;on up to 
16 Megabytes real memory. 

The opt;onal 80286 coprocessor card plugs 1n one un1que slot and Pl"'ov;des 
the ab;1;ty to execute both IBM PC and PC/AT programs concul"'l"'ently w;th 
nat;ve ROMP code. The I/O bus slots offer the poss; b11; ty of us; ng other 
coprocessor-opt1ons such as PC/AT memory cards and a mathemat1cal 
coprocessor" ch;p. 

Several monochrome and color APA d;splays al"'e supported by the system 1n 
add;t;on to ex;st1ng IBM PC d1splays and adaptel"'s. Fol"' compute ... -a;ded 
des; gn appH cations a sed al 11 nk adapter h provided allowing to attach 
an IBM 5085 graphics wol"'kstation ;n a host-based network. 

Hardware Architecture 

The IBM RT PC system contains a 32-bit micl"'oprocessor and memol"'Y manage­
ment unit comb1ned w;th a 16-b;t I/O bus. In ol"'der to Pl"'ov;de h1gh pel"'­
fol"'mance 32-b1t process1ng capab1Ht1es as well as compat1bH1ty w1th 
standal"'d 16-b1t I/O adapters a system pal"'t1t1on1ng had to be done. The 
1ntel"'face between the 2 buses 1s be1ng taken care of by the IOCC <Input 
Output Channel Converter). The microprocessor" is implemented us1ng RISC 
al"'ch1tecture w1th only 118 1nstruct1ons and a full 32-b1t data flow for 
both data and addresses. The pel"'fol"'mance ;s rated at about 1.5 to 2.1 
MIPS and the major;ty of reg;ster-to-reg;ster operat;ons execute ;n one 
170 nanosecond cycle. 

The translat;on mechanism from a 32-bit system address to a 40-b;t v;rtual 
addl"'ess ;s prov1ded by a •single level store• arch;tectul"'e ;mplemented 
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by the MMU. The MMU also contains ;nternal translat;on buffers which take 
eare of the convers;on between the 40-b;t virtual address and the 24-bit 
real address, The MMU hardware also automatically reloads from the main 
memory space the translation buffers as needed. The ECC logic for system 
memory ;s contained ;n the MMU as well as some of the memory control logic 
and the IPL and power-on self test ROM. More details about the ROMP and 
the MMU chips can be found 1n nThe ROMP/MMU Processor Complexn on page 
17. 

Figure 1 on page 9 shows the two d;stinct buses on the processor board. 
From that it is seen that on the processor card, except for the processor 
itself and its MMU, there are logic circuits accounting for adapting the 
high-speed 32-bi t packet-switching processor bus to an asynchronous 
32-b1t bus processor to which directly connect the floating point accel­
erator card and the System Board IOCC Cinput Output Channel Converter), 
The MMU ; nterfaces with the system memory cards through a dedicated memory 
bus. 

An interesting feature is that I/O channel timing does not affect the 
processor timing because the clock generation for the processor, its MMU 
and system memory ; s provided on the processor card. This wi 11 eventually 
allow the use of higher performance processor and memory cards as tech­
nology advances, without disrupting the I/O channel timing. 

The optional FPA card can be attached to the 32-bit processor bus and 
provides much higher performance for floating point applications. The 
FPA card is based on the National Semiconductor HS32081 coprocessor and 
can operate totally independent from ROMP. The actual form of the FPA 
;s relatively poor for such a machine and is evaluated to about 200,000 
Whetstone Instructions per Second (200 KWIPS>. 

As already ment;oned the system memory attaches to the processor card 
through two dedicated slots. The memory bus cons;sts of a 40-bit data 
bus C32 bi ts of data plus 8 bi ts of C ECC) error correcting code) and a 
24-bit address bus. The 24-bit addressing allows up to 16 Megabytes of 
real system memory. The ECC allows automatic detection and correction 
of all single b;t system memory errors, as well as detection of all double 
bit errors. 

The technology used ; s 256K dynamic RAM and on each memory card the system 
memor}' is two-way interleaved, This means that the available memory is 
always logically partitioned into two distinct banks. One bank contains 
only even addresses while the other contains only odd ones. This simple 
techn1•,ue provides a very high system memory bandwidth of 23.5 megabytes 
per sec~nd C4 bytes per 170 nanoseconds) and renders cache architectures 
totally useless. This memory bandwidth is by far h1gher than the ones 
i mpl emeuted in every other competitive machine of thi s class. 

In order to adapt the 32-bi t processor bus to a PC/AT-like I/O bus special 
conversion logic is needed. This logic is implemented on the system 
board. All the I/O channel support functions. such as the real time clock 
and timer, DMA controller and interrupt controller are also provided on 
the system board. Considerable effort was given to the task of keeping 
the IBM RT PC I/O channel as compatible as possible with the PC/AT I/O 
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bus. Bas;das timings and addrass, DMA and interrupt assignments that had 
to be kept as close to those of the PC/AT as possible, there have been 
new provisions such as burst and buffered DMA and shareable interrupts 
in order to enhance the channel performance. The IBM RT PC system sup­
ports ai ght channels of Direct Memory Access CDMA> by using two Intel 8237 
DMA controllers. A DMA Adapter is either a DMA device or an alternate 
controller. The tarms are explained in the glossary at the end of this 
bulletin. DMA channels 0-3 suppart 8-bit devices or 16-b;t alternate 
contr01lers. DMA channels 5-7 support 16-bit devices or 16-bit alternate 
controllers. DMA channel 8 supparts only alternate controllers. This 
DMA channel is only available on the coprocessor slot. The coprocessor 
has the lowest DMA priority on the I/O channel. However when it is exe­
cuting out of system memory or I/O channel, attached RAM, it can hold on 
to the channel for multiple cycles to improve performance. More details 
can be found in the •IBM RT PC Hardware Technical Reference Manual• (see 
•Appendix G. References• on page 63>. 

Timing and performance of the I/O channel is the same for both models, 
however the 6150 provides two 8-bit PC slots and six 16-bit PC/AT slots 
in distinction to the 6151 which provides one 8-bit PC slot and five 
16-bit PC/AT slots. 

Adapters on the I/O channel can easily access system memory through 
hardware facilities responsible for programmable translation control on 
the system board. 

The system board contains a separate microprocessor which is handling the 
keyboard, the mouse, the tablet interface and the speaker. The 6150 in­
cludes two built-in RS-232 serial ports with DMA capabilities for the 
attachment of terminals, printers or other I/O devices. 

The optional coprocessor card is based on the 80286 and the optional ex­
tension 80287 as a math coprocessor. This card plugs in to an I/O channel 
slot and provides compatibility with IBM PC and PC/AT programs. On this 
card there is a considerable amount of control logic that protects the 
system against improperly written PC code, supports the sharing of system 
resources between the coprocessor and ROMP and is used by ROMP software 
to emulate current PC/AT adapters while using new adapters. 

PC application programs for the coprocessor are stored in either system 
memory, or in dedicated 1/0 channel attached memory. Typically the 
coprocessor performance is that of a PC when executing programs in system 
memory, and about 80~ that of a PC/AT when using I/O channel attached 
memory. 

Concerning the hard disk passi bil i ti es of the system, the 5-1/4 ; nch in­
dustry standard disk units are available with 40 and 70 Megabytes with 
the possibility of having uo to three hard disks per system. The adapters 
are the existing IBM PC/AT Fixed-Disk and Diskette Drive adapters, some­
thing that shows how flexible the system is. 

An external streaming tape drive and separate adapter card that attaches 
to the I/O channel is also available as an option. Using a standard 1/4 
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;nch tape cartr;dge the stream;ng tape un;t prov;des a backup capac;ty 
of 55 Megabytes. 

s;nce th;s system ;s supposed to work at a mult;-user mult1-task;ng en­
v;ronment d;fferent d;splays are supported offer;ng the user the cho;ce 
of the display that best su;ts his or her needs. 

In the f;rst place the system provides for the attachment of several ex­
isting IBM PC adapters and displays, such as the Monochrome o;splay and 
the Enhanced Color o;splay with the;r respective adapters. 

The new displays and adapters for the IBM RT PC provide direct processor 
access to a 1024 x 512 bit map with a display viewing area of 720 x 512 
pixels. Spec;a1 hardware assist prov; des for text and graphics alignment 
down to the pixel level. 

At a functionally higher level another display subsystem provides a con­
siderably larger viewing area of 1024 x 768 pixels as well as extensive 
hardware assist for very high speed vector-to-raster conversion from a 
vector list buffer. 

A full 1024 x 1024 color display w;th ex;sting advanced computer-a;ded 
design applications is provided by the un;que ab;1;ty to attach an IBM 
5085 Graphics Workstatfon to the IBM RT PC system ; n a host-based network. 

The conclusion is that the IBM RT PC system is a very powerful system 
designed by IBM in order to bridge the gap between the rapidly expanding 
Personal Computer market and the more demand;ng market of 32-b;t supermini 
level workstations w;th extensive virtual memory management facilities. 
This new generation of workstat;ons has already become the basis of pow­
erful computing systems that have extensive storage, display and commu­
n; cations requirements as they are supposed to offer THE solution to 
rapidly growing and evolving applicat;ons. 

Specifically the IBM RT PC: 

• Introduces an IBM developed high performance 32-bit RISC architecture 
with virtual memory. 

• Combines the 32-bit features with a standard PC I/O channel. 

• Provides an optional PC coprocessor for compat;bHlty w;th already 
ex;sting PC applicat;on programs. 

• Allows future performance and feature upgrades by replacement of the 
processor, memory, and floating point cards as technology improves. 

The usefulness of the open arch;tecture of the IBM RT PC ;s a phenomenon 
already seen from the IBM PC fam;ly. It allows both IBM and vendors to 
very eas; ly come up with d; fferent products which wi 11 enhance the 
functionality and the usabHity of the system. The architecture supports 
numerous possi bi 11 ti es of performance enhancement, such as ; ncreased 
memory capacity, larger hard-disk capac;ty, higher performance displays, 
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different local-area networks, higher speed host attachments and differ­
ent kinds of coprocessors. 

Software Architecture 

Besides a new hardware archi tectura the IBM RT PC is implementing a 
totally new software architecture offering the user a powerful and easily 
reconfigJrable environment. 

In order to render this environment as functionally complete as possible, 
a three-level scheme is used. First, the built-in functions are powerful 
enough to satisfy most applications. Second, for the cases where the 
built-in functions are not complete controlled access is provided to the 
hardware, and third, the operating system is open-ended enough to allow 
for extensions to cover things such as naw types of devices. 

Another issue ;s that most of the IBM PC applications can be executed on 
the IBM RT PC, and there are vendors who would like to give those appli­
cations the maximum benefit from accessing the ROMP and MMU. 

The layered structure (as shown in Figure 2 on page 13> of the VRM <Vir­
tual Resource Manager> provides a lot of flexibility allowing the user 
to easily meet his needs. 

The VRM is a software package which provides a high level operating system 
environment. The VRM is not an operating system itself. Its goal is to 
directly control the real devices and provide a standardized interface 
to applications. This interface is called the VMI (Virtual Machine 
Interface> and gives the applications the capabilities of a virtual ma­
chine and of virtual devices. 

The VRM is designed to work on hardware consisting of a RISC processor 
and a PC/AT compatible I/O bus, but it should be kept in mind that this 
does not at all limit VRM to only such an environment. An example that 
VRM is able to support different I/O hardware is the VRM's support of the 
IBM 5080 graphics hardware, which is designed to an IBM 370 architecture 
channel interface. 

We have already seen that the idea behind the RISC concept is to m1n1m1ze 
hardware functions providing only a limited set of primitives. Since the 
processor is designed with a minimum logic, the native instructions enjoy 
a correspond; ng increase ; n exacution speed. In such an environment, 
functions traditionally provided by hardware such as intager multiply and 
di vi de, or instructions like character string manipulations have to ba 
replaced by software functions. That is exactly what VRM builds on the 
hardware. Namely VRM: 

• Provides a high-lava! machine interface, simplifying the development 
of guest operating systems and their applications. 
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figure 2. IBM RT PC software design 

• Maximizes performance for real-time applications, although tha vir­
tual memory capabilities of the machine can be of harm to a real-tima 
environment as we will sea later on. 

• Allows users to easily reconf; gura and customize thai r system ac­
cording to their needs, by providing a very flexible and extendable 
interface. 

• Provides compatibility with IBM-PC applications thanks to the 80286 
coprocessor. 

The VMI implements these points with a set of functions which facilitate 
the use of a vad ety of concurrent operaHng systems. Except for the 
problem isolation instruction set, the VMI assures the isolation of si­
multaneously running operating systems and applications from the actual 
hardware. 

The concept of a virtual machine is not something naw on IBM machinQs. 
One of the major IBM operating systems, VM/370 implemented on IBM 370 
architecture mainframes provides a virtual machine environment. There 
are however many important differences between the way VM implements it 
and the way VRM does it on the IBM RT PC. VM/370 provides a complete 
functfonal si mulatfon of the actual S/370 hardware. This means that an 
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oper-ating system designed and wr-itten to r-un on S.1370 har-dwar-e, such as 
MVS for- example, wi 11 also r-un under- VM 1n a v; r-tual mach; ne. The VMI 
suppor-t pr-ovided by the VRM pr-ovides much mor-e functional suppor-t than 
the IBM RT PC hardwar-e can. This means that if an oper-ating svstem is 
wr-itten at the VMI level it wi 11 run as a guest under VRM but it wi 11 never 
run on the actual har-dwar-e. 

Judging fr-om the VM exper-;ence, we know that a vir-tual mach;ne suffers 
in per-for-mance c;ue to the overhead assoc;ated w;th the simulation of the 
differ-ent har-dw~re funct;ons. The VRM r-eally ;s an exception to this rule 
because the vast major-;ty of the guest operat;ng system instr-uctions ex­
ecute directly on the hardware. The slight over-head VRM i ntr-oduces ; s 
actually due to the VRM inter-fer-ence when it ;s invoked ma;nly to handle 
I/O oper-ations at a r-elat;vely high functional level. This overhead was 
wanted, because the IBM RT PC designers opted for a more flexible and much 
more functionally ,.;ch programming env;ronment than what a rigid native 
operating system could give. 

The IBM RT PC oper-ating system is the AIX, wh;ch was derived from AT & 
T's UNIX System V. Several enhancements to the original version have been 
included and the ker-nel has totally been rewritten by IBM. This assures 
a better- integration of all additional and eventual functions as well as 
a differentiation from the UNIX-me-too vendors. For more details the 
reader- is referred to nAppendi x E. UNIX Enhancementsn on page 55 and to 
nAppendix G. Refer-encesn on page 63. 

A key -;oncept to understand;ng the support of mul t; ple simultaneous 
interactive applications ;s the idea of the virtual terminal supported 
by AIX. A vi r-tual terminal ; s the virtual counter-part of an IBM RT PC 
real de•·; ce, such as the mouse. a d; splay, or the keyboar-d. Each appli­
cation works on a single virtual terminal which can either be a simulated 
ASCII t~rminal or a high-funct;on term;nal equivalent ;n power- with the 
real device. 

One of the responsi bH i ties of the VRM is to take car-e of controlling all 
ROMP.tMMU v; rtual memor-y functions. This relieves the operat;ng system 
from having to handle page faults and management of r-eal memor-y and paging 
space. 

The oper-at;ng system is also provided by the VRM with a queued interface 
to the I/O devices, ;nsulat;ng ;n th;s way the v;rtual mach;nes from the 
burden of management of shar-ed devices. AIX can dynamically add code to 
suppor-t and activate spec;alized devices while the VRM is running; that 
is without IPL. 

The 80286 coprocessor is seen by the VRM as another virtual machine. When 
the coprocessor is active, all user input is pr-esented to the coprocessor­
as if ; t was produced by the cor-r-espondi ng PC/AT devices. The VRM ensures 
that there will not be any interference between the 80286 coprocessor's 
and ROMP's distinct processing. 

Two types of progr-ams can be installed into the VRM: Device Driver-s and 
Device Managers. Device Drivers are a set of subr-outines which support 
a specific type of hardware dev;ce. Every t;me the VRM needs to cope with 
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devke-spec;flc funct;ons Hke handHng foterrupts and t;meout cond;­
Uons, and process;ng I/O commands from the v;rtual machines, it w;11 call 
the corresponding Device Dr;ver. The VRM Dev1ce Dr1ver supports rela­
t1vely s1 mpla dev; ces, such as pr1nters, d; skette dr1vers, and tape 
dr;ves. 

On the other hand the Dev;ce Managers prov;de an add;t1onal level of 
support for more sopMsticated devicas, such as v1rtual term;nals or 
communicat;ons subsystems. These subsystems usually have different re­
quirements to handle multiple asynchronous events as well as to manage 
different k1nds of shareable or non-shareable resources. The Dev; ce 
Managers and virtual macM nas are implemented by the VRM 1; ke "processes", 
which are served by the processor according to the control of a pr1or­
;t;zad round-rob;n schadul;ng algorithm. 

VRM support for processes includes the following features: 

• Intar-procass communications and queue;ng of messages and events are 
supported by queues. 

• Samaphores are used for synchronization and serial;zation. 

• T;ma of day and timer capabil;ties are equally available. 

• Resources l;ka DMA channels and ;nterrupt levels are controlled and 
allocated by spacial funct;ons. 

A f;nal nota on the ;mpact of virtual memory to the real-time performance 
of the system: Although real-t;me appl;cat;ons can ;n princ;ple run on 
tha ROMP, the current varsi on of tha operat; ng system supports tM ngs H ke 
that rather weakly. The reason for that is that whenever there ; s a page 
fault, the ;ntarrupts from the real-t;me appHcatfons cannot be served 
before the m; ss;ng pages are brought into system memory. TM s can be very 
harmful for delicate real-t;ma appl;cat;ons when one cannot afford los;ng 
extra t;me. Although the development team is already implementing ways 

.. to bypass tM s shortcoming of virtual-memory systams, one should keep ; n 
m;nd that ;t ;s the 80266 wh;ch for the t;me be;ng assumes the real-time 
respons;b;1;t;es on the I/O channel. 
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THE ROMP/"1'IU PROCESSOR COHPLEX 

Introduct;on 

The Central Processing Unit CCPU> and the Memory Management Unit CMMU> 
of the IBM RT PC system are provided on a separate processor card, which 
plugs into a dedicated 200-pin slot on the system board. The Research 
Office Product Division MicroProcessor CROMP> implements a full 32-bit 
RISC architecture. Current VLSI technology did not allow combining the 
ROMP CPU and the Memory Management Unit CMMU> on a sfogla ch;p. The 
solution was to use two chips, one for the processor and one for the MMU. 
Thay are connected via a high performance channel, called RSC (ROMP 
Storage Channel>. The RSC is a packet-switched 32-bit bus with a band­
width of 23.5 Mbytes per second. This kind of performance is required 
to support the pipelined RISC architecture of the ROMP processor, wh;ch 
is able to execute an instruction almost every CPU cycle C170 ns>. 
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Figure 3. Processor Board Data Flow and Board Interfaces 
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The follow;ng i;st summar;zes soma bas;c features of tha processor card. 
In depth covaraga will ba given in later chapters. 

ROMP processor 

RSC bus 

IPL ROM 

PROCESSOR CHANNEL 

• VLSI chip, housed in a 175-pin package 

• Fetches and executes instructions 

• Pipelined 32-bit RISC architecture 

• Implements priority based interrupt schema 

• Supports user and system states 

• VLSI chip, housed in a 175-pin package 

• Supports 40-bi t virtual address space <1024 
GigaBytes or 1 TeraByte> 

• Supports up to 16 Mbyte real memory 

• High resolution memory protection schema 

• Packet-switched 32-bit ROMP Storage Channel 

• Bandwidth: 23 .5 Mbyte/sec C4 bytes every 170 
ns) 

• Ability to support overlapped memory access 

• 32 Kbyte Read Only Memory for Initial Program 
Load 

Connects the processor board to 

• the Copt;onal) Float;ng Point Accelerator, 
which plugs into a dedicated slot on the system 
board 

• tha I/O subsystem, located on tha system board, 
provid;ng access to the I/O channel. The I/O 
channel cons; sts of 8-bi t IBM PC and 16-bi t IBM 
PC/AT slots for attachment of 

standard I/O adapters 

IBM PC AT coprocessor 
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MEMORY CHANNEL 

IBM PC At memory boards 

• Connects the processor board to the system 
memory 

• Two dedicated slots on the system board 

• 32-bi t data bus plus 8-bi t Error Correction 
Code CECC> 

• Bandwidth 
ns> 

23 .5 Mbyte/sec C4 bytes every 170 

It ;s ;mportant to d;st;ngu;sh between 32-b;t ROMP system memory on the 
memory channel and 16-bit IBM PC/AT memory on the I/O channel. 

ROMP Processor 

The register set of the ROMP processor consists of sixteen 32-bit General 
Purpose Registers CGPR 1 s) and sixteen 32-bit System Control Registers 
CSCR's). All data and address manipulations are handled by any of the 
GPR's, which are grouped into eight pairs. These register pairs are im­
pUcitly used in certain instructions such as non-destructive shifts. 
The contents of a GPR can be treated as either a double word C4 bytes), 
a half word C2 bytes) or a character Cl byte) quantity. 
The sixteen System Control registers CSCR's) are shown in Figure 5. 

Some SCR's and special SCR fields are reserved. The others are assigned 
to system facilities such as 

counter source 

counter 

TS 

MQ 

MCS 

PCS 

IRB 

ICS 

IAR 

system timer facility to provide real time functions 

system timer facility 

Timer Status (system timer facility) 

Multiplier Quotient: The MQ is an extension of the MUL­
TIPLY STEP and DIVIDE STEP instructions 

Machine Check Status 

Program Check Status 

Interrupt Request Buffer 

Interrupt Control Status 

Instruction Address Register (instruction pointer) 
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Figure 4. Data Units in System Memory 

CS Cond1t1on Status (flags) 

The ab111ty of the ROMP processor to execute an 1nstruct1on almost every 
CPU cycle C170 ns> requ1res an on-chip 1nstruct1on queue. The ROMP has 
four 32-b1t Instruct1on Prefetch Buffers CIPB's> and they are usually at 
least part; ally filled, due to the high bandw1 dth of the ROMP Storage 
Channel CRSC>, wh;ch 1s by far greater than necessary for program exe­
cut1on. The RSC has still enough bandwidth left to handle data refer­
ences from the ROMP to system memory and to keep up w; th DMA t raff; c from 
the I/O channel to system memory, 

Look1ng at the pipelined architecture of the ROMP it is obvious that 1n­
struct1on execut1on is relat1vely independent of memory requests. In­
structions are prefetched into the IPB's, and having usually two or so 
1nstructions 1n 1ts IPB's keeps the processor busy at almost any time. 
Several CPU cycles are necessary to complete one 1nstruction. Execution 
of a single instruction consists of the following steps: 

InFt Instruction Fetch 

InDc Instruction Decode 

ExOp Execution of Operands in ALU 

HOLD hold-offs Cwait cycles> 

Reg1ster Wr1te to save results from ExOp step 

The instruct;on fetch time can be assumed to be zero because of the 
on-chip prefetch buffers CIPB' s>. During every cycle the RSC receive area 
of the ROMP captures whatever is on the RSC bus. The tag 11nes of the 
RSC 1ndicate if the 1ncom1ng data 1s an 1nstruction, to be stored in the 
appropriate IPB, or data to be stored into one of the registers. 

At least three cycles are needed to complete a single 1nstruction. The 
first cycle is used to decode the ;nstruct;on CinDc>, the second man;pu­
lates the operands 1n the ALU CExOp) and the third stores the results of 
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r RESERVED SCR 2 

RESERVED SCR 3 

RESERVED SCR 4 

RESERVED I SCR 5 

COUNTER SOURCE I SCR 6 I 
COUNTER SCR 7 
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r MULTIPLIER QUOTIENT SCR 10 J i 

r RESERVED l MCS I PCS SCR 11 I 
.i 

RESERVED IRB SCR 12 

IAR SCR 13 I 
RESERVED ICS SCR 14 

RESERVED cs SCR 15 

the ExOp step ; nto the sped fi ed l"'eg; ste...C s) on the ROMP. Only a few 
;nstl"'uct;ons need mol"'e than one cycle fol" the execut;on of the opel"'ands 
;n the ALU CExOp step). 

In cel"'ta; n cases an ; nstl"'uct;on may be idle fol" a couple of cycles. So 
called hold-offs <HOLD cycles) occul"' ;f the ;nstruct;on ;s wa;t;ng fol" 
data fl"'om the RSC. S; nee only LOAD/STORE and successful BRANCH ;n­
struct ions l"'efel"'ence memol"'Y cv;a RSC> there al"'e no HOLD cycles dul"'ing the 
execution of a "normal" instruction. A highly ovel"'lapped Pl"'ocessing 
scheme allows the executfon of an instl"'uct;on CinDc+ExOp+RgSt) almost 
every CPU cycle: 
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cycles 
1 2 3 4 5 6 7 8 9 10 

1. instruction IInDclExOplRgWrl I 
2. instruction I I InDc I ExOp I RgWrl I 
3. instruction I I I lnDc I ExOp I RgWr I 

The one-cycle execution rate is prevented when an instruction needs more 
than one cycle to manipulate the operands in the ALU every few in­
structions need that), because the decoding of the next instruction will 
be controlled by the LAST ExOp cycle of the preceding instruction 1 

1. instruction 
2. instruction 
3. instruction 

cycles 
1 2 3 4 5 6 7 8 

IInDclExOplExOplExOplRgWrl 
I I I IInDclExOpl I I 
I I I I IInDclExOplRgWrl 

9 10 

The first instr_uction needs three cycles to manipulate the operands in 
the ALU and therefore full overlapping cannot be achieved. The DIVIDE 
STEP instruction of the ROMP is an example for that. 

References to memory require a two cycle hold-off. This time is required 

• t~ get the data request out on the RSC, 

• give the MMU time to access storage 

• anc get the reply from the RSC into the register. 

Later, : t w'i 11 be shown that these hold-offs may be overlapped by the 
execution of subsequent instructions that do not reference the unloaded 
reg'ister(s). The following example examines a LOAD instruction: 

LOAD Rl,VarA #load variable from memory into register 1 

processor 

RSC 

Storage 

1 
InDc 

2 
ExOp 

cycles 
3 

HOLD 
4 

HOLD 

lrequl 
I data I 

I storage 
I access 

lrepll 
I data I 

5 
RgWr 

At least five cycles are needed to get the job done. Memory will be 
referenced during the two hold-offs. ROMP puts the address of the vari­
able CVarA> on the RSC at the beginning of the first hold-off cycle (data 
request) and the corresponding data reply from the MMU will be on the RSC 

22 IBM RT. PC System Architecture 



at the end of the follow;ng cycle, Add;t;onal hold-offs may occur. The 
2-cycle memory access ; ncludes address translaHon, address and data 
buffer;ng and ECC error detect;on but not error correct;on. If, an, error 
;s detected the reply from the MMU to ROMP is cancelled and retransmitted 
on a subsequent cycle if the error ;s correctable. 

ROMP needs about 60% to 70% of the RSC bandwidth to support its inherent 
performance. The remainder is ava; lable for DMA I/O traffic w; thout 
caus; ng processor performance degradation, The ROMP can handle four 
outstand;ng instruction fetches and two outstanding data requests before 
requ;ring a reply. This decoupled nature of ROMP and memory is imple­
mented by us;ng tag l;nes on the RSC allowing ROMP and MMU to handle data 
and ;nstructions on the RSC correctly. 

As mentfoned earlier, it ; s poss; ble to keep the ROMP busy during the 
hold-off cycles of an ;nstruction referenc;ng memory, Due to the fact 
that the instruction queue on the ROMP CIPB's) ;s at least partially 
filled, subsequent instructions can be executed ;f they do not reference 
the unloaded register of the preceding instruction. Consider the fol­
lowing piece of code: 

LOAD 
INC 
ADD 

Rl,VarA 
R2 
R8,Rl2 

I load variable into register l 
I ;ncrement reg;ster 2 
I add values of register 8 and 12 

and store result in register 8 

cycles 
8 9 10 

1. LOAD Rl,VarA 
1 2 3 4 5 6 7 

IInDclExOplHOLDIHOLDIRgWrl 
2. INC R2 I IInDclExOplRgWrl I 
3. ADD R8,Rl2 I I IInDclExOplRgWrl 

The example shows the high overlapping of instruction execution during 
hold-off cycles, The point is that useful work can be done during memory 
access if the compiler Cor programmer) is able to place the loading of 
registers and their actual use in subsequent instructions not too close 
to each other in the instruction stream. In other words, there is a 
substantial difference in execution time, Consider the following exam­
ple: 

program l 1 program 2: 

LOAD Rl,VarA LOAD Rl,VarA 
ADD Rl,+5 INC R2 
INC R2 ADD R8,Rl2 
ADD R8,Rl2 INC R7 
INC R7 ADD Rl,+5 

Without altering the program logic proper arrangement of the instructions 
results in shorter total execution t;me C7 cycles instead of ten): 
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program 1: 

1. LOAD Rl,VarA 
2. ADD Rl,+5 
3. INC R2 
4. ADD R8,R12 
5. INC R7 

program 2: 

1. LOAD Rl, VarA 
2. INC R2 
3. ADD R8,R12 
4. INC R.7 
5. ADD Rl,+5 

cycles 
1 2 3 4 5 6 7 8 9 10 

IInDclExOplHOLDIHOLDfRgWrl I I 
I IInDcfHOLDIHOLDIHOLDIExOplRgWrl I 
I I I I I IInDclExOplR.gWrl I 
I I I I I I IInDclExOpfR.gWrl I 
I I I I I I I IInDclExOpfRgWrl 

cycles 
1 2 3 4 5 6 7 8 

IInDcf ExOplHOLDfHOLDIRgWrl 
I f InDclExOplRgWrl I 
I I IInDclExOplRgWrl I 
I I I IInDclExOplRgWrl I 
I I I I f InDcf ExOpfRgWrl 

9 10 

In the first case (program 1) the execution of the second instruction has 
to be suspended until register 1 is loaded (cycle 5) and that causes a 
delay of three cycles. Full overlapping is possible in case two (program 
2) because of the fact that subsequent i nstructi.ons do not reference 
register 1 before the completion of the LOAD instruction. Both programs 
do exactly the same but the performance gain is a significant 30 percent 
with program 2 C7 cycles instead of ten), 

Dudng hold-off cycles subsequent instructions can be executed only if 
they are already in the Instruction Prefetch Buffers CIPB's) of the ROMP. 
Execution has to be suspended, due. to hold-off cycles, if unconditional 
or successful bt"anches are taken. The BRANCH instructions alter the 
program flow an~ instructions, physically stored next in memory and pre­
fetched by ROMP, are of no use in this case. The prefetch buffers have 
to be cleared and an instruction fetch, controlled by the BRANCH in­
struction, has to be issued to memory. A 2-cycle memory access, similar 
to the LOAD, and an additional cycle for reading the Instruction Prefetch 
Buffer CIPB> is needed before execution can resume. The hold-offs cannot 
be overlapped by subsequent instructions, because of an empty instruction 
prefetch queue at this point of ti me. The Instruction Prefetch Buffers 
have still to be refilled. Consider the following piece of code: 

DIVS Rl,R7 • divide step operation 
BRANCH lab • branch to label 

XXX: ADD R7,R9 • add register 
INC R3 • increment register 3 

LAB: SUB R6,+8 • subtract register 
ADD Rl,R2 # add register 
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When the BRANCH ; s executed subsequent ; nstruct; ons CADD, INC, ••• > are 
already ;n the prefetch queue CIPB's) on the ROMP. They have to be d;s­
carded because the SUB ;nstruct;on executes next, after befog fetched from 
memory. Three hold-offs w;thout any overlapp;ng occur before execut;on 
can resume: 

cycles 
1 2 3 4 5 6 7 8 9 10 

1. DIVS Rl,R7 IInDclExOplExOplExOplRgWrl I I I 
2. BRANCH lab I I I IInDclExOplHOLDIHOLDIHOLDI I I 
3. SUB R6,+8 I I I I I I I I I InDcl ExOpl 
4. ADD Rl,R2 I I I I I I I I I I InDcl 
5. I I I I I I I I I I I 

The DIVIDE STEP operation takes three CExOp) cycles to execute ;n the ALU. 
Full overlapp; ng ; s not poss; ble because only the last ExOp cycle controls 
the decodfog of the next ;nstruct;on <BRANCH>. s;multaneously, the 
hardw;red ;nstruct;on prefetch mechan;sm f;lls the Instruct;on Prefetch 
Buffers CIPB's> by ;ssu;ng memory requests whenever the RSC ;s available. 
Th;s results ;n hav;ng the subsequent ;nstruct;ons CADD, INC, •. > ready 
;n the prefetch queue on the ROMP before execut;ng the BRANCH. However, 
they are of no use ;n th;s case. The BRANCH alters the program flow by 
jump;ng far ahead ;n the ;nstruct;on stream. The prefetch queue has to 
be flushed and reloaded, caus;ng a 3-cycle hold-off, Th;s t;me ;s needed 
to get the next ;nstruct;on CSUB> from memory and have ;t ready to exe­
cute. The f;rst four ;nstruct;ons execute ;n twelve cycles Conly ten are 
shown). 

The ROMP prov; des spec;a1 BRANCH ; nstructions to overcome this 3-cycle 
HOLD gap, Jumps are redef;ned so that they do not take place unt;l the 
next ;nstr-uction has completed. Th;s ls called a DELAYED BRANCH or BRANCH 
WITH EXECUTE. The s; mple ; dea ls to overlap the 3-cycle HOLD-gap by us fog 
the mod;f;ed BRANCH and r-earr-ang;ng the code: 

BRANCHX lab I branch w; th EXECUTE 
DIVS Rl,R7 I d;v;de step 

XXX: ADD R7,R9 I add r-egister 
INC R3 I ;ncr-ement r-eg;ster 3 

LAB: SUB R6,+8 I subtr-act r-eg;ster-
ADD Rl,R2 I add r-eg;ster-

The first two ;nstruct;ons CBRANCHX, DIVS> are h;ghly overlapped, The 
DIVIDE STEP, wh;ch ;s called the subject ;nstr-uct;on, executes dur-;ng the 
3-cycle HOLD of the BRANCHX (branch w;th execute> ;nstr-uct;on. This r-e­
sul ts ; n sav; ng thr-ee cycles. Note that both pr-ogr-ams do exactly the 
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same, because the BRAHCH actually takes place after the completion of the 
DIVIDE STEP ;nstructipn: 

cycles 
l 2 3 4 5 6 7 8 9 10 

l. BRAHCHX lab IInDclExOpfHOLDIHOLDIHOLDI I 
2. DIVS Rl,R7 I IInDclExOpJExOplExOplRgWrl I I 
3. SUB R6,+8 I I I I I I InDc I ExOp I RgWr I I 
4. ADD Rl,R2 I I I I I I IInDclExOp(RgWrl 
5. I I I I I I I I I I 

The ROMP prov;des for all k;nd of BRANCH ;nstruct;ons counterparts sup­
port;ng the BRANCH WITH EXECUTE. The example shows that a s;gn;f;cant 
performance ga;n can be ach;eved by us,ng th;s feature Caxecut;on t;me: 
9 ;nstaad of 12 cycles>. The job of the ROMP assembler programmer gets 
more complex. Ins;de knowledge of how the processor works ;s necessary 
to code effic;ently. Overlapp;ng dur;ng LOAD and BRANCH ;nstruct;ons has 
to be used to max;m;ze ROMP performance. In case of higher level lan­
guages cc, FORTRAN, PASCAL, etc.> the comp;ler has to take care of re­
arrang;ng the code in a way that overlapping ;s poss;ble. 

It should be clear by now, that overlapp;ng of ;nstruct;on execut;on ;s 
the key to max;m;ze ROMP performance. 

ROMP Instruct;on set 

The instruction set ;s clearly targeted at opt;miz;ng comp;lers. Seven 
'i nstruct;on formats are supported and they are def; ned to have the op-code 
and two reg;ster fields always in the same bit positions within each in­
struction format to minimize instruction decode time. On the other hand, 
using two and four byte instruct;ons adds unnecessary complexity to the 
instruction fetch and decode mechanism. The decision to support two byte 
instructions was based on the advantages of minimizing memory coda space 
and memory bandwidth required for instruct;on fetches. The decrease in 
memory code space results in fawar page faults and improved system per­
formance. Code space efficiency and compiler studies led to the defi­
nition of special short form (2-byte> versions of several instructions: 

• add immediate 

• subtract immediate 

• compare immediate 

• load immediate 

• short jump ;,.plus/mi nus 256· bytes) 
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ROMP is generally a two-address, register-to-register oriented architec­
ture with only LOAD and STORE instructions accessing memory. No 
memory-to-memory instructions are provided. Usually the two register 
fields in the instruction formats specify the source registers with the 
first one also specifying the destination register, where the result of 
the operation is to be stored. Extensive studies showed the need for a 
three register instruction, called Compute Address Short CCAS>, where the 
contents of two registers are added and the sum is placed in a third 
register so that the contents of both source registers could be preserved. 
This supports efficient address computation. 

The ROMP instruction set includes only simple instructions which can be 
used efficiently by the compiler. ROMP does not include 

• complex instructions, 

• complex addressing modes, 

• complex loop features, 

• repeat, edit features, 

• advanced floating point operations. 

The goal was to implement an instruction set where almost all instructions 
can be executed in one CExOp) cycle. ROMP instructions are grouped into 
ten classes: 

class Number of instructions 

1. memory access 17 
2. address computation 8 
3. branch and jump 16 
4. traps 3 
5. moves and inserts 13 
6. arithmetic 21 
7. logical 16 
8. shift 15 
9. system control 7 

10. input and output 2 

118 

The memory access instructions are the only ones to reference memory, 
All storage addresses are computed as 32-bit quantities (base address plus 
displacement). 

The branch and jump class include the previously discussed delayed 
branches CBRANCH WITH EXECUTE>. Subroutine Hnkage is provided by the 
branch and Hnk instrucHons. Decision making and loop control is sup­
ported by the conditional branch and conditional jump instructions. 
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The move and ;nsert class instruct;ons are concerned w;th the movement 
of data between GPR's and between a GPR and the Test Bit of the Condition 
Status Cone of the System Control Reg;ster). 

The arithmet;c operations treat the GPR's as 32-bit quantit;es in two's 
complement representation. All of them effect certain flags Cb;ts ;n the 
Condition Status reg;ster). Supported are standard functions like 

• add (2- and 4-byte format) 

• compare C2- and 4-byte format) 

• subtract C2- and 4-byte format) 

ROMP has no complex instructions like mult;plication or div;sion of two 
32-bit quantities. Those operations have to be emulated ;n software. 
ROMP gives basic support in prov;ding the MULTIPLY STEP and DIVIDE STEP 
;nstructions. There are no expl;c;t floating point operations. A soft­
ware floating po;nt emulator provides the floating point arithmetic. An 
optional Float;ng Point Accelerator CFPA> board can be added to the system 
to improve performance. It plugs into a dedicated slot on the system 
board and is connected to the ROMP v;a the processor channel. The FPA 
is based on a 10 MHZ Nat;onal Semiconductor HS32081 Floating Point Unit 
CFPUJ and supports the IEEE 754 Floating Point Standard. Performance 
depends heavily on how much overlapped processing between ROMP and FPA 
can be achieved. However, the FPA option is currently the only way to 
boost floating point performance of a ROMP based system to over 200 KWips 
CKilo Whetstone instruct;ons per second). 

Instructions in the system control class are generally priv; leged in­
struct;ons that are valid only in superv;sor state. They include the 
manipulat;on of System Control Reg;ster CSCR's) l;ke 

set and clear SCR b;ts 

load program status 

wait for ;nterrupt 

The ;nput/output instruct;ons are used to access the I/O ports of the 
system, e. g, mani pulat; ng the control registers ; n the MMU or other 
system elements. 

Interrupt Fac;1;ty 

Romp ;mplements a pr;ority-base interrupt scheme. The ;nterrupt sources 
are 

• 7 external l;nes 

• software ;nterrupts 
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The FPA board ;s one of the external ;nterrupt sources. The 16 ;nterrupt 
lines of the I/O channel are controlled by two Programmable Interrupt 
Cont rollers CPIC I HT EL 8259 >. Each of the PIC' s handles 8 foterrupt H nes 
on the I/O channel and ; s connected to one of the external ;ntarrupt Hnes 
of the ROMP. 

Software ;nterrupts are ;ssued by setting dedicated bits in the Interrupt 
Request Buffer CIRB> control register on the ROMP. 

Machine-check errors (parity, time-outs> and program-check errors (ad­
dressing errors, page faults) are handled by two additional error re­
porting interrupt levels. 

ROMP provides a special Load Program Status CLPS> instruction for software 
to return from an interrupt. This instruction w;11 restore the following 
System Control Registers CSCR>s 

IAR the instruction pointer 
Cinstruct;on Address Register) 

CS the flags (Condition Status) 

ICS Interrupt Control Status 

Saving of the current processor status and load; ng the new processor 
status is performed automatically by ROMP hardware. This task switching 
does not include the saving of any GPR's. Software is responsible for 
saving any GPR's modified by the interrupt service routine. 

A selectable priority level, ranging from 0 to 7, is assigned to the in­
struction execution on the ROMP. Special bits in the Interrupt Control 
Status CICS> register control this instruction priority level. Only in­
terrupts with a higher priority level wi 11 be served. The interrupt 
priority levels range from 0 to 6 and are implicitly specified by using 
the external lines. Explicit setting is done by us;ng ded;cated b;ts in 
the Interrupt Request Buffer CIRB>. 

Interrupts can only occur on ;nstruction boundar;es. An except;on ;s the 
BRANCH WITH EXECUTE instruction. Ho interrupt is possible during the jump 
and the execution of the subject instruction overlapping the ~RANCH. In 
order to support virtual memory, precise interrupts were defined for ROMP 
so that the cause of a page fault can be identified easily. All in­
structions are restartable. Instructions causing page faults can be 
re-executed after the fault has been resolved. 

Memory Management Unit CMMU) 

The MMU is a separate chip on the processor board and communicates with 
the ROMP via the RSC. It provides virtual address translation and con-
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trols up to 16 Mbyte of RAM. The MMU can be funct;onally divided into 
three sections: 

RSC 

ROMP 
M 

RSC I 
INTERFACE 

M U 
TRANSLATE 
LOGIC 

STORAGE 
CONTROL 

MEMORY 
CHANNEL 

16MB 
MEMORY 
RAM 
ROS 

figure 6. MMU Functional Parts 

RSC Interface handles all the communications to and from the RSC 

Translate Logic 

storage control 

provides the translation from a 32-bit effective ad­
dress, received from ROMP via the RSC, to a real ad­
dress to access storage 

provides storage access, memory refresh and ECC logic 

ROMP's ability to execute an instruction almost every CPU cycle requires 
overlapping operations in the MMU. In fact, the MMU can handle, simul­
taneously, two memory requests while the result of a third one is being 
transmitted to ROMP. As mentioned earlier, tag lines are used to manage 
reque~ts and replies on the RSC. 

v;rtual Address translat;on 

The MMU provides several control registers. In supervisor state they are 
accessec:i by ROMP via I/O read and I/O write fostructions. Sixteen Segment 
Registers are used to build the 40-bit virtual address: 
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EFFECTIVE ADDRESS 
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I 
!<~PAGE DISPLACEMENT 

11 BITS FOR 2K PAGES 
12 BITS FOR 4K PAGES 

< VIRTUAL PAGE INDEX 
17 BITS FOR 2K PAGES 
16 BITS FOR 4K PAGES 

I< ~~~~~~-----~-·SEGMENT IDENTIFIER 

I I 
v v 

SEGMENT VIRTUAL PAGE 
ID IHDEX 

f;gure 7. Generat;on of v;rtual Address 

v 

BYTE 
INDEX 

12 BITS 

Addresses generated by ROMP are 32-bit and called effective addresses. 
The high-order four b;ts are used to select one of the sixteen Segment 
Registers CSR's>. The 12-b;t Segment Identification CSID> of the selected 
SR concatenated with the remain;ng 28-bits of the effective address form 
the 40-bit virtual address. To the executing program, memory appears to 
be 4 G;gabytes broken into 16 segments of 256 Mbyte (28-bit) each. The 
12-b;t SID-entry ;n a Segment Register allows specification of 4096 dif­
ferent SID values. Therefore 256 sets of 4 Gbyte memory each can be 
specif;ed, resulting in 1024 Gbytes or 1 Terabyte of virtual memory. 

The translation of the 40-bit virtual address to real is done by using 

an Inverted Page Table CIPT>, 

a Hash Anchor Table CHAT>, 

Translation Lookaside Buffer CTLB>. 

The IPT and the HAT are comb;ned into one memory resident structure pro­
viding an entry for each page of real memory. For a given virtual page 
the IPT is searched for the correspond;ng real memory page. The HAT and 
hash;ng techniques are used to speed up the IPT search. But it still adds 
too many cycles to the translation time, because the search for the real 

The ROMP/MMU Processor Complex 31 



memory page ;n the IPT ;nvolves memory accesses. In order to el;minate 
most of the IPT searches the MMU ma1ntains a cache of recently-used pages 
in an on-chip Translation look-aside Buffer <TLB >. The TLB has 32 entries 
and the MMU completes the address translation in one cycle if the requ;red 
entry is ;n the TLB. A TLB nmissn ;nitiates the IPT search and adds eight 
to eleven cycles to the translation time. An IPT nmissn 'is a page fault 
and requires further action. 

Memory Protection 

Special bits ;n the Segment Register CSR> and bit fields in the IPT entry 
of a real page control the memory access rights. Memory protection on a 
page level is implemented by using the SR key bit and a 2-bit Page Key 
field in the IPT. 

If the SR Special Segment bit is set, then a high resolution memory pro­
tection scheme applies. Each page is considered to be made up of 16 
nl'inesn of 

• 128 bytes C2 Kbyte pages) or 

• 256 bytes C4 Kbyte pages). 

An IPT entry Cone page) contains 16 lock bits plus an 8-bit Transaction 
Ident;fier CTID) to control the page n1ine8 access. 

ECC and Par;tv check;ng 

The MMU supportn either 32/40 Error Correct;on Code CECC) or byte-parity 
for RAM. Parity check;ng provides data integrity by detecting all single 
bit failures, but does not allow corrections. ECC requires additional 
check bits, but allows detection and correction -0f all single bit errors. 
In addition it wHl detect all double and most multiple bit failures. 
The support for ECC on the RAM is justified by the large memory sizes 
expected to be used with the ROMP/MMU processor complex Cup to 16 Mbyte 
RAM>. The impact of ECC on the access time is about 30 nanoseconds for 
the normal case when no error is detected. 
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VIRTUAL RESOURCE MANAGER CVRHl AND VIRTUAL MACHINE INTERFACE (VMil 

Introduction 

The VRM ;s a collect;on of programs wh;ch control and extend the hardware 
of the Reduced Instruct;on Set Computer CRISC). VRM consists of a variety 
of processes, device drivers and runtime rout;nes which provide virtual 
devices in order to enable the operating system to support multiple si­
multaneous interactive applications. 

The main purpose of VRM is to support a virtual machine interface CVMI) 
for the operating system. Th;s defined interface makes it easy to change 
the underlying hardware without having to adapt the operating system. 
It's relieving the operating system of the responsibility for page fault 
handHng, paging space management and memory management. Providing a 
queued interface to the I/O devices, it frees the virtual machines from 
the shared device management. Code for new devices can be added to the 
VRM dynamically so that new devices can be added without IPL of the sys­
tem. 

The advantage of virtual machines for the user is that he has no re­
strictions on program memory (address space for virtual memory is 1000 
Gigabytes). For the programmer the VRM means that he does not have to 
program down to the processor instruction level. 

Htshlf ghts of VRM 

The VRM programs, extending and controlling the hardware, mainly support 
the Virtual Machine Interface CVMI) which is an interface between the 
operating system and the VRM plus hardware (see "VMI characteristics" on 
page 44). VMI contains features allowing operating systems to run 
concurrently, while insulating them from most details of hardware imple­
mentatfon. Additionally these VMI features allow the installation of 
extensions to the VRM in order to support different I/O hardware. The 
basic idea of generating a virtual machine, realized already in the 
software product VM/370, is significantly different in its implementation 
in the IBM RT PC. The Virtual Machine Interface supported by the VRM 
offurs more capabilities than the hardware can provide. Consequently an 
ope..-ating system implemented to the VMI wi 11 not run on the real hardware. 
The main characteristics VRM provides along with the VM concept are: 

v; rtual memory 

mapped files 

virtual devices as minidisks and virtual terminals. 
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v;rtual Memory: 

The hardware memory management handles 16 Megabytes of real memory 
(24-b;t address space) and allows a 40- b;t space for v;rtual memory, 
wh;ch allows one to address 1 Terabyte spl;t ;nto 4096 segments of 
256 Megabytes each. 16 segment reg; stars are prov; dad by the hardware; 
one ;s reserved for address;ng I/O devices. Therefore 15 segments 
can be accessed s;multaneously. 

Mapped fHes: 

They are related to v;rtual memory. Logical d;sk blocks are related 
to virtual addresses, so that read/wr; te of fl les can be done with 
the associated memory addresses ancf avoid expHcit disk read/wr;te 
(see minid;sk manager) which adds to ;ncrease performance. 

Minidisks are designed as phys;cally adjacent part;tions of a real 
d; sk which have their own v; rtual dev; ca addresses. A separate 
m;n;disk ;s allocated for pag;ng space to back up v;rtual memory on 
the phys; cal disk. Additfonally a VRM m;n;disk exists containing all 
;ts runt;me routines and dev;ce drivers. The mtn;d;sks are parti­
t;oned ;nto log;cal blocks the s;ze of wh;ch are determ;ned by the 
operating system. The m;n;disk manager not only takes care of func­
tions normally found ;n s;mple hardware access methods but it also 
handles error recovery and bad blocks. 

I/O dev; ces: 

The v; rtual resource concept h also appH ed to I/O dev; ces. VRM 
prov;des v;rtual devices such as virtual terminals whose act;ons are 
coord;nated by the v;rtual terminal manager. The latter 

handles v;rtual configurat;ons 

opens and closes virtual dev;ces 

does routing 

coordinates the use of the display screens 

makes the virtual device drivers ava;lable. 

That means VMI includes a M gh level interface to I/O devices whl ch 
is cons;stent for all dev;ces. 
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Functfonal Aspects of VRM 

l/O support 

Dynamically installable devices 

With the device driver concept VRM generates a hardware independent device 
interface for a physical hardware device. The driver accepts commands 
from higher level CVRM device manager or AIX dev;ce dr;ver) and generates 
the I/O commands for the real dev;ce ;n order to perform the enqueued 
request. The device driver ;s also respons;ble for handling ;nterrupts 
from the hardware (see f;gure 1 on page 9). 

Operating System AIX 
Processes 
Dev;ce drivers 

Superv1sor I 
Calls CSVC> V 

A 
I 

lv;rtual Resource 

V1rtual 
1nterrupts 

I 
Manager I 

I Processes 
Dev;ce dr1vers I 

I/O 
commands 

I 
.v 

Hardware 

A 
I 

real 
;nterrupts 

F1gure 8. Device Dr;ver1 Funct;onal descr;ption of device dr;ver 
concept 

The format of the dev;ce driver code 1s ma1nly the same for all dr;vers, 
but ;t differs ;n the characteristics of the devices they control. These 
characteristics are noted in a table-like field, called Define Dev;ce 
Structure <DDS>. DDS ;s sent from the v;rtual dev;ce to the VRM in order 
to commun;cate information. It therefore allows the user to def;ne other 
than IBM-supplied predefined devices. f;gure 9 on page 36 shows the basic 
structure of the DDS. Only the header has a constant length. The other 
DDS fields vary in length for each dev;ce driver and the error log f;eld 
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is not even used by some dr-1 vers, so it can be empty. Error logging ; s 
supported by the VRM for dev;ces, l;ke d;sks, where the error log data 
may occupy several sect;ons because that dev; ce dr;ver has to perform 
error recovery. 

0 

28 

H 

M 

Header IODH, IOCH, Dev;ce type 
Dev;ce name etc. 

Hardware Characteristics 
Length of HW charact. 
Internal dev. type 
Interrupt def;n;tion 
OMA type, I/O port address 
RAM or ROM start address 

Device Character;st;cs 

Error Log 

Descr;ption of character;stics 
for each dev; ce 

Section for standard error log 
Extended for hard d;sks 

figure 9. Define Device Structure CODS>: Field of DDS, with DDS 
header,section for hardware characteristics, section for 
device character;stics and section for error logging 

The information in the DDS field for hardware character;st;cs focludes: 

the I/O port address used by the dev;ce 

wh;ch OMA channel is used 

which bus interrupt level it uses 

whether ;t has resident RAM or ROM 

Moreover the DDS-field contains ;nformat;on about which program module 
should be called to process functions l;ke: 

Device definition (default) 

Dev;ce initialization 

Device term;nation 

I/O in;tiatfon 

Interrupt handling 
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Exception and timeout handling. 

Using information from the DDS, VRM is able to determine which user in­
stalled program to call for handling an interrupt generated by a real 
device. The VMI has functions to use real devices and to install a log­
ical connection, or path, between the user and the device • 

Ther·e are two type of modules avaUable in VRM for handHng devices: 

Device driver (modules) 

Device manager (modules) 

The device driver modules contain subroutines which support specific 
hardware devices. VRM performs most of the common device driver functions 
(generating interrupts, allocating space for code and data areas); for 
device specific functions. however, VRM calls these subroutines Ceg, in­
terrupt handling, I/O initiation from the virtual machine, timeout han­
dling etc.>. for most device subsystems the VRM device driver support 
is sufficient (printers, disk and diskette drivers, asynchronous device 
driver, etc.>. 

More sophisticated subsystems (resources> which involve virtual devices, 
such as minidisks, virtual terminals and communication subsystems, how­
ever, require device mana9ers. The device manager modules handle multiple 
asynchronous events which are typical for a virtual terminal with its 
display, keyboard, speaker, etc. 

To summarize the conceptual ideas of the VRM's device 

1. Each physical device is controlled by a device driver. 

2. A device driver consists of subroutines that are called by the VRM 
to handle the following operations for a device: 

definition 

i ni ti ali zation 

termination 

I/O foi ti at ion 

interrupt handling 

exception handling 

3. Each device has an l/O device number CIODH>; VMI has facilities to 
put the IODH in the device driver or in the process <Define Device 
Supervisor Call). 

4. Each device has a Query Device Structure (QDS> to describe the device 
and its status. The device driver Cor process> is responsible for 
updating it as well as the error log fields in DDS. 
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5. The VRM manages the physical resources like: 

adapters 

interrupt levels 

memory 

OMA channels 

6. VRM uses the following types of registers to manage its resources: 

segment registers to control virtual memory access 

system control registers to manage virtual machines. 

The dynam;cally ;nstallable devices make the architecture of the virtual 
machine extendahle. In the above mentioned DDS which is included in the 
VMI a programme1· can describe the attributes of a new device and its re­
lated software support to the VRM. 

Real t;me task;ng structure Cfor I/O processes> 

Memory management 

Timer management 

Process management (interrupt/dispatching) 

A con~iderable high accent was given to the real-time performance of the 
system. Particular emphasis is placed on supporting high speed devices. 
For example, the VRM device driver is able to handle a disk formatted with 
a 2:1 ?nterleave factor Csee •Appendix D. Other I/O bus options• on page 
53). A;i •off-level• interval handler capabH i ty is available which allows 
a devicl interrupt handler to process time critical operations without 
their t~sk being preempted. It transfers less critical processing to a 
lower priority level which can be preempted by other device interrupts. 

For the VRM a process ;s a d;st;nct ent1ty, wh;ch receives time from the 
processor in order to handle different programs. By its nature, the VRM 
supports different active processes at the same time. Multiple processes 
are dispatched according to their priority levels. In the case of equal 
priorities, a round-robin algorithm is followed. 

A process can be in one of the four following states: 

• Ready 

• Running 

• Waiting 
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• Terminated 

I I 
>I READY I< _creatp 

_enq I 
I 

I 

_post I A 
_send I I 

I I 
WAITING dispatch I I interrupt TERMINATED 

I 
A page fault, I I A 
I-sleep, v I I 
j_wai t I I 

RUNNING 

F;gure 10. Process management: It describes how a process ;s man­
aged by VRM 

figure 10 shows the cycle every process has to go through when supervised 
by 'the VRM. 

When a process 1s created, the VRM ;n;t;a1;zes ;t and places ;t ;n the 
Ready status. The process ;s then dispatched by the VRM and placed in 
the Running status. Of course a running process may be interrupted at 
any moment. In such a case the VRM will put it back in the Ready status. 
A running process may also be placed in a Waiting status. 

There are actually three ways to force a process ;nto the waiting 
status: 

• Queue event Ce,g, arrival of an expected element) 

• Semaphore (e,g, synchronization between processes) 

• Page fault (e.g. the VRM has first to resolve it) 

For more details about Process Creation and Termination, Exception Han­
dling, etc., the reader is referred to the VMI Technical Reference Manual. 

The VRM process management is characterized by a very effl ci ent process 
switching mechanism. In addition. the queueing and semaphore techniques 
provide an efficient means of interprocess communications CIPC) by of­
fering the ability to pass messages and synchronize processes, as well 
as lock shared resources without the need of complex procedures. 
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In a typical operating system, when an interrupt occurs the state of the 
interrupted program is saved in a known location, then transferred to a 
control block associated with the interrupted program if it is necessary 
to switch control of the processor to a different program. In the VRM, 
this would require moving around a large amount of data. Therefore, the 
interrupt handler is set up to save the state of an interrupted program 
directly into its control block. This contributes to faster context 
switching. 

Logical disk support and virtual storage control 

Mini disk 

virtual memory 

mapped files 

VRM supports either serially usable or shared resources. Sed ally usable 
are devices like printers on which one application has to be finished 
before the next one begins. Disks and memory are shared resources like 
real terminals. They are shareable by splitting them into logical units. 

Minidisks: The virtual machine allows a physical disk to be divided into 
minidisks. VRM takes care of the translation of an element's physical 
address (sector number) into its logical minidisk block number (and vice 
versa) using the minidisk manager. It contains commands or l/O routines 
for handling mini disks as well as fixed disks. It also communicates with 
the fixed disk device drivers. Additionally the minidisk manager takes 
care of error recovery and bad block relocation, functions usually not 
found in hardware access methods. 

Virtual memory: VRM provides virtual machines with paged virtual memory. 
Because the paging mechanism is hidden, virtual machines treat virtual 
like physical mP.mory with variable access times. Virtual memory is di­
vided into segmunts, that is, linearly addressable spaces of one or more 
2K-bytes pages with a maxi mum size of 256 MB. VRM maintains 16 segment 
registers and such gives access to 15 segments of virtual memory simul­
taneously. 

Direct Memory Access CDMA> is used for l/O adapters to access either the 
system processor or the coprocessor. 
or in non-shared mode. 

Eight channels may run in shared 

Mapped files: Logical disk blocks are related to virtual addresses ena­
bling read and write of files to be done with associated memory addresses 
access. This avoids explicit disk I/O. 
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Coprocessor support 

The VRM al so manages the resources wM ch can be shared w; th the 80286 
coprocessor CDMA channels, d;sks etc.>. For non shared dev;ces VRM re­
serves the device for be;ng used exclus;vely by the co-processor. Such 
I/O processes Ce.g. pr;nting) take place w;thout further control of the 
VRM and they perform at the same speed as in an IBM PC/AT. 

For shared devices Cdisplays, diks etc.> the VRM has to simulate a real 
dedicated device to the coprocessor. The VRM is able to wr;te data to 
memory buffer until the requested device is •free•. This is the reason 
why performance is degraded in shared devices to some extent compared to 
nat;ve IBM PC-AT application. 

Specifically for memory, another shared resource, VRM can reserve own 
memory for the coprocessor's use. In order to gain performance a memory 
card can be plugged into the I/O bus additional to the system memory. 

v;rtual console support 

v;rtual rermtnal Manager CVTMJ 

v;rtual Term;nal Resource Manager CVTRHJ 

Dev;ce dr;vers 

VRM supports multiple virtual terminals. These virtual terminals are 
handled by a Virtual Terminal Manager CVTM), a comp9nent of the VMR. VMI 
serves as interface between the virtual machine and the VTM. The VTM is 
a collection of VRM components which1 

extends the function of I/O hardware 

controls the physical terminals 

controls input devices (keyboard, mouse) 

controls output devices (displays, speakers) 

maps virtual terminals to virtual machines. 

The v;rtual Term;nal Manager consists of 

1. Virtual Term;nal Resource Hanager CVTRHJ. It coordinates the actions 
of all virtual terminals with its two moduless a resource controller 
and a screen manager. 

2. Virtual Term;nal Mode Processor CVTHPJ. It controls operation modes, 
datastream information, etc. 
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3. Dev;ce drivers. 

The preferred method of us;ng a d;splay from a v;rtual mach;ne ;s to take 
advanta9:;i of the VRM and its I/O support functions. The device manager 
VTMP, however, gives access to two modes: Keyboard Send/Rec; eve Mode and 
Monitor mode. The Monitor Mode allows the VRM services to be bypassed, 
which might be of interest for graphic appll cations. Performance is 
gained, but with the disadvantage of less flexibility. It provides con­
trolled access to the real hardware and compatibility with existing ap­
plications CPEEK and POKE in BASIC>. 

Development support 

In order to exploit most of the capabiHties of the VRM functions, a wide 
and extensive development support is provided: 

VRM debugger: a full screen, real terminal (system console) debugger 
for error detection mainly in code of device drivers. 

C- and assembler interface routines in VRM 
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VRM Management rout;nes 

Process management 

Queue management 

Memory management 

Semaphore management 

Timer management 

Program management 

Device management 

Virtual machine control procedures 
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VMI character;stics 

The Virtual Mach;ne Interface CVMI> is a software interface between the 
operat;ng system(s) and the Virtual Resource Manager CVRM>. And as de­
scribed ;n the preceding VRM chapters VRM controls and extends the hard­
ware. VMI therefore presents a standardized hardware-like ;nterface to 
the operating system(s). Changes in hardware configurations normally do 
not require a change in the operating system. The second important 
character;stic of the VMI is that it allows concurrent virtual machines 
CVM>, based on one VRM. 

Main characteristics: 

Allows installation of multiple virtual machines including concurrent 
execut;on of operating systems 

Virtual machines as defined by VMI have a high level hardware-like 
interface. 

VMI isolates virtual machines from each other and from the VRM. 

VMI insulates operating systems from hardware changes. 

It thus g;ves the ;mpress;on of mult;ple (see v;rtual terminals> and 
enhanced (see virtual memory) resources. 

components: 

Problem state ;nstruction set. 

A simulated pr;v;leged machine structure and a set of privileged ma­
chine functions. 

A paged virtual memory system. 

Device independent interface to displays and input devices. 

Functions for multiple virtual machine management, functions which 
provide for the VM termination, communication between machines, etc. 

system ;ntegr;ty and virtual machine architecture. 

A virtual machine is, by definition, a simulation of a physical machine 
and its related devices. Some limitations are imposed on the virtual 
machine in order to maintain system integrity: 

Virtual machines execute with the processor being in an unprivileged 
state. It runs in the normal execution level 7 until ;ts work is 
completed, interrupted or preempted. 
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Hardware devices are accessible only in privileged state with float­
ing point accelerator as exception. 

A virtual machine can access only its memory and memory which has no 
specific owner. 

Only programs running in privileged state or programs directly ac­
cessing the I/O bus can affect systems integrity. 

When a process executes, data manipulation and computation are done in 
the general purpose registers of the processor. System control registers 
kee~ track of facilities like processor, timer, and interrupts. The 
virtual machine control registers CVMCR) are the equivalents of the system 
control registers CSCR). 

Interrupts al"'e segregated into di ffel"'ent levels (levels 0 to 7, plus 
progl"'am cheque and machine communication level>. The levels are deter­
mined by the soul"'ce or the cause of the interrupt, work which is done by 
the interrupt handlers, When an intel"'l"'upt occurs the interl"'upt handlers 
wi 11 save the status of the machine at that ti me and determine the address 
of the interrupt handling routine for that level, The program status word 
will be used fol" the physical machine and the program status block for 
the vil"'tual machine. The interl"'upt level points for both machines either 
to a program status word OI"' block, which dil"'ects the machine to the ad­
dress of the appropriate interrupt handling routine. 
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APPENDIX A, THE IBM PC/AT COPROCESSOR 

The IBM PC/AT Coprocessor option is implemented on a single board which 
plugs into a unique slot on the I/O channel. The Coprocessor provides 
full IBM PC/AT processing power. The packaging includes major IBM PC/AT 
parts 1 i ke 

• 80286 processor 

• 80287 numeric coprocessor (optional> 

• 80284 clock 

• 8259 interrupt controller Ctwo) 

• 8254 timer 

• 12 mhz crystal clock 

There is no onboard memory and two memory options are available to run 
the Coprocessor 

system memory 

I/O channel memory 

The use of 32-bi t ROMP system memory is the most 
economical way to run the Coprocessor. The long 
access path from the Coprocessor to system memory 
results in a performance degradation of about 6 0 
percent (slightly better than an IBM PC/XT>. ROMP 
performance may also suffer due to memory inter­
ference. 

The Coprocessor approaches IBM PC/AT performance 
if 16-bit I/O channel memory is installed. In this 
case true concurrent processing is provided CROMP 
using 32-bit system memory and the Coprocessor us­
ing 16-bit I/O channel memory), 

ROMP and the Coprocessor use 

• keyboard, 

• disks, 

• displays 

on a time shared basis under the control of ROMP. 
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APPENDIX B. FLOATING POINT ACCELERATOR CFPA) 

The FPA is implemented on a single board which plugs into a dedicated slot 
on the system board. ROMP communicates with the FPA via the processor 
channel. The FPA is based on National Semiconductor's NS32081 Floating 
Point Unit CFPU> running at 10 MHZ. The IEEE 754 Floating Point standard 
is supported but additional software is needed to fully implement the 
standard. 

Overlapped processing between ROMP and FPA is possible. An onboard ex­
ternal register file (32 sets of sixteen 32-bit registers) provides in­
creased read and write Floating Point Register CFPR> performance. 
Performance depends heavily on how much overlapped processing between 
ROMP and FPA can be achieved. 

Currently the FPA option provides at least 200 KWips floating point per­
formance. 
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APPENDIX C, SYSTEM MEMORY BOARDS 

The architecture of the system memory cards provides full two-way high 
performance interleaving, allowing a data word access every 170 ns while 
using inexpensive, industry standard 150 ns Dynamic Random Access Memo­
ries CDRAMs), The system memory cards plug into two dedicated slots on 
the system board. 

The memory chips are packaged on 1 MB and 2 MB cards which provide for 
system memory configurations of !MB, 2MB, 3MB and 4MB. The maximum 
throughput rate is 27 Mbytes/sec. The hardware architecture allows up 
to 8MB per card for a total of 16MB of system memory, which is currently 
the maximal amount of real memory the MMU can manage. 

Each data word consists of 32 data bi ts and eight Error Correctfon Code 
CECC> bits. The memory interface bandwidth is 23.5 Mbytes/sec. 
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APPENDIX D. OTHER I/O BUS OPTIONS 

The I/O bus system differs in the two IBM RT PC models 6150 and 6151 only 
in the amount of slots provided for the adapter cards. The 6150 has eight 
I/O slots, two PC type and six PC-AT type slots; the 6151 has only six 
I/O slots, one PC type and five PC-AT type slots. In both models one PC-AT 
slot is unique and is reserved for the coprocessor option, 

All PC and PC-AT adapter cards will fit in these I/O slots, but only the 
following are fully tested and recommended for use: 

1. Monochrome display adapter 

2. Enhanced graphics display adapter 

3. Advanced Monochrome graphics display adapter 

4. RS232C asynchronous adapter C4 ports> 

5. RS422a adapterC4 ports) 

6, Serial/parallel printer adapter CPC-AT> 

7. Disk and diskette drive adapter 

8. Streaming tape dr;ve adapter 

The Monochrom D;splay Adapter used in IBM RT PC ;s in fact the IBM PC-AT 
monochrome and parallel printer adapter. It is fully supported by the 
hardware and the AIX operating system as is the Enhanced Graph;cs D;splay 
Adapter. 

The Advanced Monochrome Graph;cs o;splay Adapter provides a 64 K-byte b;t 
map translating 720 pels horizontally by 512 pels vert;cally to the d;s­
play, It supports exclusively the Advanced Monochrome Graph;cs Display, 
a high resolution monochrome di splay. It has an addressable format of 
720 by 512 pels and ;ts d;splay ;mage ;s ;nterlaced at a refresh rate of 
46/92 Hz. 

The RS232C Asynchronous Adapter provides four sedal ports, is fully 
programmable and supports asynchronous communication only. A programma­
ble baud-rate generator allows operation from 50 bps to 19200 bps, CNote: 
Two additional RS232C serial ports are provided with the model 6150 on 
the system board supporting DMA transmit.) 

The Disk And Diskette Drive Adapter is the actual IBM PC-AT adapter card 
which is able to support two 40 or 70 MB disks and two diskette drives. 
For the 6150 model with three disks two adapters are required. 

The stream;ng Tape Drive Adapter supports the streaming tape drive con­
taining a microcontroller and a data buffer of 2Kbytes. The streaming 
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tape dr;ve has a capac;ty of 55 M bytes and transfers data at a rate of 
86.7K b;ts per second. 

For further ; nformat;on refer to H terature, 
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APPENDIX E. UNIX ENHANCEMENTS 

The base of the AIX operat; ng system ; s the AT and T UNIX System V, 
However, tha kernel is totally rewritten by IBM. The AIX implementation 
compr;ses selected ;ndustry enhancements from UNIX Version 2, PC-IX Cthe 
IBM Personal Computer Interactive Executive) and the Berkeley UNIX Ver­
sion 4.2. 

This appendix gives a tabulated summary of the capabilities of this ex­
tended UNIX. For more details, the reader is referred to the nAIX Oper­
ating System Reference Manualn. 

AT & T System V.1 enhancements Cover Version 7 and System III> 

• File system performance and integrity enhancements 

• Command and library enhancements 

• Symbolic debug facility. 

• Interprocess communication CIPC> with queues, semaphores and shared 
memory. 

AT & T System V.2 enhancements include 

• vi Editor 

• Improved utilities Cls, ar, pg) 

• Enhanced curses and terminfo 

• Enhanced shell 

Standard PC-IX enhancements 

• File system and kernel enhancements 

• System management enhancements 

• Terminal/port management and control 

• Generalized queueing system 

• Improved commands and utilities 

• Async network applications Cinnet/inmail/ftp) 

• Full screen editor CIHed) 

Selected Berkeley BSD 4.2 enhancements 
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• Enhanced signals 

• Multiple concurrent group access 

• File system enhancements Cfsync, ftruncate) 

• C-shell. 

UNIX extensions for process/program management in v;rtual memory include 
the following: 

Kernel demand page fault handling 

• User process page faults 

• Kernel preempts when page fault on user data. 

Virtual fork 

• Process creation requires duplication 

• Hew program replaces 

• Logical copy 

• Copy on reference in new process. 

Other features of the extended UNIX are 

Mapped file support 

• Disk files mapped into memory 

• nsingle level store• 

User data files 

• Read/write option: Memory operations automatically reflect the disk 
file shmat Cfildes, address, shm_copy) 

• Copy on write option: shadow page recovery, shmat Cfildes, address, 
shm_copy), fsync Cfildes). 

Executable tiles 

• Kernel maps text/initialized data page in place 

• linkedit option 

(post Rl) 

• Subroutine level code sharing 

IPC message queue enhancements 
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• Queue element permission structure 

• Signal on IPC message queues (post Rl>. 

Floating point support 

• IEEE emulation for boxes without FPA 

• Management of floating point hardware resources with portable object 
code mode and direct access for full performance. 

For the file system the implemented enhancements include 

Virtual disk support 

• Mini disk 

• Generic DASD device driver. 

Support of multiple block sizes 

• 5128 / 2KB. 

Support for data management/data base 

• Truncate a file to a specified length - ftrunc 

• Release space within a file - fclfar 

• Synchronize a file in core state with disk - fsync 

• File and record level locking with user and group definition. 

Removable media support 

For input/output management the extensions include 

Device driver enhancements 

• Dynamically configured device drivers 

• Base for dynamically installed drivers. 

Generic device independent device drivers 

• TTY device driver 

• Printer device driver, 

Multiplexed device drivers 

• Virtual terminals 
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• SHA sessions. 

Terminal (console> support enhancements ;nclude 

Multiple virtual terminal support 

• •Ho~-key• between virtual terminals 

UNIX support for VRM console 

• TTY 

• Monitored mode 

• Sound 

• Mouse. 

Extended curses library and terminal data base 

• Upward compatible from Berkeley BSD version 

• Enhanced for color, windows, extended graphics, ••• 

The extended curses include a set of window management routines with en­
hanced performance and major functions, which are 

• Window features (create, delete, erase, overlay, overwrite, scroll, 
subwi ndows) 

• Output functions (add/delete/insert characters/strings, move current 
position in window> 

• Di splay attribute functions (color, change next x characters to 
•mode•, set up attribute desired initially, start/stop added charac­
ters have •mode•) 

• Windowbox functions Cdraw a box around the window> 

• Input functions (get character/string, get key) 

• Control/utility functions (query/change terminal characteristics> 

• Full PC ASCII character set. 

The Usability shell improvements include 

•usable UNIX• interface 

• User friendly interface with UNIX subset of commands and parameters, 
with po-up menus and pointing device function keys 

• Support of a wide range of ASCII terminals 
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• Features such as windows manager, tools window <to access UHIX system 
functions), files window <to use the UHIX directory structure), shall 
windows CUNIX, DOS>. 

The UNIX extensions include printer services, namely 

• 5152/5182 

• Quietwriter 

• APA page printer 

• Pro Printer 

Support for OEM ASCII 

• Specific printer conversions 

Multiple character sets/ fonts 

Data formatting. 

For the IBM Personal Computer compatibUity mode, the UHIX extensions 
include 

• DOS 3.0 shell on UNIX with DOS command interface, access to UNIX files 
and functions and access to DOS files on diskette or the coprocessor 
mfoidisk. 

• PC DOS file access API. It provides DOS 3.1 file functions for both 
DOS and UNIX files. 

• PC DOS file conversion utilities, allowing transfer between UNIX and 
DOS files, as well as ASCII conversion. 

For basic LAH services there is a •pc Network BIOS• functional interface 
to PC Network. 

From the languages paint of view, PC mode h supported in PASCAL and BASIC 
allowfog the treatment of integers, PC 1/0 functions, and PC floating 
point. 

The coprocessor services assure concurrent execution, shared resources 
and display mapping. 

As an interactive workstation, the following features are supported: 

• UNIX •pc Talk• 

• VT100 <extended> and IBM RT PC data stream 

• File transfer Cxmodam protocols> 

• Multiple flow control protocols Cxon/xoff, prompted, etc.> 
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The UNIX enhancements allow for the follow;ng conf;guration serv;cesr 

• Dynamic configuration of I/O devices, hardware features, minidisks, 
etc. 

• Menu-driven user interface that shows current configuration, 
adds/delete~/changes printers, terminals, min;d;sks, ••• 

• Application ;nterface to all these features 

• System configuration automatically updated, with file systems and 
queues created and the kernel rebuilt ;f necessary. 

• System dynam;cally configured at IPL time. Hardware recognition and 
configurat;on f;les are used. Dynamic reconfiguration anytime some­
thing is changed. 

Finally the RAS CRel;ability-Availability-Serviceability) features 
include 

• Error logging services with error device ddver, error collection 
daemon and error log analysis routines. 

• Trace services with trace device driver and trace recording daemon. 

• Dump facilities 

• Software RAS support with patch facil;ty and product update. 

• Version/Level information. 
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APPENDIX f, CONCLUSIONS 

The IBM RT PC ;s a product br;dg;ng the gap between the personal computers 
; ntroducad dur; ng the last few years and the emerg; ng advanced 32-b; t 
workstat;ons w;th axtens;ve virtual memory management facilit;es. These 
workstations slowly become the bas;s of comput;ng systems that have ex­
tensive storage, di splay and commun; cations requirements ; n order to 
sat;sfy d;fferent appl;cat;ons as they evolve. 

This bullet;n presented all the hardware and software capab;1;ties of the 
IBM RT PC. Namely, this system 

• Introduces an IBM developed high performance 32-bit RISC architecture 
with virtual memory. 

• Comb; nas the new 32-bi t features w; th a standard IBM Personal Computer 
I/O channel. 

• Prov;des an opt;onal PC/AT coprocessor for compatib;lity w;th ex;st­
ing PC appl;cat;ons. 

• Allows future performance and feature upgrades by replacement of the 
processor, memory, and float;ng PO;nt cards as technology improves. 

• The layered software structure based on the Virtual Resource Manager 
assures the virtual machine capabilities and prov;des facil;ties for 
an extendable architecture. 
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Accumulator: A register in which 
the result of an operation is 
formed. 

Adapter: An auxU i-ary device or 
unit used to extend the operation 
of another system. 

Address: Cl) A name, label, or 
number identifying a location in 
storage, a device in a network, or 
any other data source. 
C2 > A number that i dent; ff es the 
location of data in memory. 

Address Bus: One or more conduc­
tors used to carry the bi nary-coded 
address from the processor 
throughout the rest of the system. 

Address;ng: Cl> In data communi­
cations, the way that the sending 
or control station selects the 
station to which it is sending 
data, 
C2) A means of identifying storage 
locations. 

Algorithm: A finite 
well-defined rules for 

set of 
the sol-

ution of a problem in a finite 
number of steps, 

All Po;nts Addressable CAPAl: A 
mode in which all points of a dis­
playable image can be controlled 
by the user. 

CASCII > 

American National Standard Code 
for Information Exchange: The 
standard code, using a coded char­
acter set conshting of 7-bit coded 
characters C8 bits including par­
ity check), used for information 
exchange between data processing 
systems, data communication sys­
tems, and associated equipment. 

GLOSSARY 

The ASCII sat consists of control 
characters and graphic characters. 

Asynchronous Transmission: In 
data communications, a method of 
transmission in which the bits in­
cluded in a character or block of 
characters occur during a specific 
time interval. However, the start 
of each character can occur at any 
ti me during this interval. Con­
trast with synchronous trans­
mission. 

Base Address: The beginning ad­
dress for resolving symboU c ref­
erences to locations in storage, 

Base Register: A general purpase 
register that the programmer 
chooses to contain a base address. 

Binary synchronous communications 
CBSC): A form of communications 
line control using transmission 
control characters to control the 
transfer of data over a communi­
cations Hne. 

BIOS: Basic Input/Output System. 

Block: Cl) A group of records that 
i s recorded or processed as a unit. 
Same as physical record. 
(2) Ten sectors <2560 bytes) of 
disk storage, 
(3) In data communications, a group 
of records that is recorded, proc­
essed, or sent as a unit. 

Block Check Character: The char­
acter used in BSC to check that all 
bits transmitted were received. 

Branch: In a computer program an 
instruction that selects one of two 
or more alternative sets of in­
structions. A conditional branch 
occurs only when a specified con­
dition is met. On the IBM RT PC, 
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all branches occur relat;ve to the 
Instruct;on Address Reg;ster, 

Bus: One or more conductors used 
for ti'ansmitting signals or pawer. 

Channel: A path along which data 
passes. Also a dev;ce connecting 
the prc~essor to I/O, 

commun;~at;ons Adapter: A hard-
ware feature enabl; ng a computer 
or devi ca to become a part of a 
data commun;cat;ons network. 

complementary "etal oxide semicon­
ductor CC"OSJ: A log;c c;rcu;t 
family that uses very Httle power, 
It works w; th a wide range of power 
supply voltages. 

Configuration: Cl> The arrange­
ment of a computer system or net­
work as def; ned by the nature, 
number, and the chief character­
; sti cs of ;ts funct;onal units. 
More speci f1 cally, the term con­
figuration may refer to a hardware 
configurat;on or a software con­
figuration. 
(2) The dev;ces and programs that 
make up a system, subsystem, or 
network. 

cyclic Redundancy Check CCRCJ: 
C 1) A redundancy check ; n wh1 ch the 
check key ;s generated by a cycl;c 
algor;thm. 
(2) A system or error check;ng 
performed at both the sending and 
receiv;ng stat;on after a 
block-check character has been ac­
cumulated. 

Dev;ce Driver: A program that op­
erates a spec;f;c dev;ce, such as 
a printer, d;sk dr;ve, or d1splay, 

Dev;ce "anager: Collect;on of 
rout; nes that act as an ; nterme­
d; ary between dev; ce drivers and 
virtual mach;nes for complex 
; nterfaces. For exainple, supervi­
sor calls from a virtual machine 
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are examined by a device manager 
and are routed to the appropr; ate 
subord;nate device dr;vers. 

DMA D f rect "emory Access: DMA ; s 
a method of transferr;ng large 
blocks of sequenthl data between 
two dev;ces w;th m;n;mal ;nterfer­
ence ·to the system processor. One 
part;c;pant ;n the transfer ;s 
usually memory. The other is an 
adapter or option which supplies 
or receives the data. 

D"A alternate controller: An al­
ternate controller is an adapter 
or option WITH the ability to han­
dle ; ts own addressing and I/O 
channel control. Compare this w; th 
a "DMA dev; ca" where the system DMA 
controller ;s needed. Alternate 
controllers may also have a dev;ce 
mode, When ; n devi ca mode, the 
alternate controller acts like any 
other I/O dev;ce. 

D"A controller: A DMA system con­
troller is e; ther the system DMA 
controller c;n the IBM RT PC it is 
the INTEL 8237 DMA controller) or 
an alternate controller. 

D"A device: A DMA device is a de­
v; ca that has the abH; ty to re­
quest a DMA operation. It requests 
use of the I/O channel when ; t 
needs to transfer data w; th another 
devi ca (usually memory), Such a 
devi ca uses the system DMA con­
troller which prov;des addressing 
and data transfer control s; gnals 
for the transfer. Hote that the 
DMA device must be ready to prov; de 
or race;ve the data before ;t re­
quests the use of the I/O channel. 

Effective Address: A real storage 
address that ; s computed at exe­
cution. The affective address 
cons; sts of contents of a base 
regi star, plus a displacement, 
plus the contents of an index reg­
; ster if one is present. 



Exc~pt;on Handler: A set of rou­
t; nes used to detect deadlock con­
ditions or to process abnormal 
condition process;ng. This allows 
the normal execution of processes 
to be interrupted and resumed. 

F; rst Level Interrupt Handler 
CFLIH): A routine that receives 
control of the system as a result 
of a hardware interrupt. One FLIH 
is assigned to each of the six in­
terrupt levels. 

General-purpose Resister CGPRJ: A 
reg; st er, usually explicitly ad­
dressable within a set of reg; s­
ters, that can be used for 
different purposes; for example, 
as an accumulator, or as an index 
register, or as a special handler 
of data. 

Index: Cl> A table containing the 
key value and location of each re­
cord in an indexed file. 
C2> A computer storage position or 
register, whose contents identify 
a particular element in a set of 
elements. 

Index Resister: A register whose 
contents are added to the operand 
or absolute address that results 
when a displacement is added to a 
base address. 

Initial Prosram Load CIPL l: The 
process of loading the system pro­
grams and and preparing the system 
to run jobs. 

Input/Output Cil"O): Cl> Pertain­
ing to a device or to a channel 
that may be involved in an input 
process, and at a different ti me 
in an output process. 
C2> Pertaining to a device who5e 
parts can be performing an input 
process and an output process at 
the same time, 
(3) Pertaining to either input, or 
output, or both. 

Input/Output Channel controller 
(IOCC): A hardware component that 
supervises communication between 
the input/output bus and the 
processor. 

Input-output code Number C IOCN >: 
A value supplied by the virtual 
machine to a VRM component. This 
number uniquely identifies the 
code associated with a component 
and can be considered a module 
name. 

Input-output Device Number 
CIODN): A value assigned to a de­
vice driver by the virtual mach;ne 
or to a virtual device by the v;r­
tual resource manager. This number 
uniquely identifies the device re­
gardless of whether it is real or 
virtual, 

Il"O dev;ce: An I/O device is an 
I/O adapter or option which is able 
to provide or receive data under 
the control of the system DMA con­
troller or an alternate control­
ler. 

Instruction Address Resister 
CIAR): A system control register 
containing the address of the next 
instruction to be executed. The 
IAR (sometimes called a •program 
counter"> can be accessed vi a a 
supervisor call in supervisor 
state, but cannot be directly ad­
dressed in problem state, 

Interface: A device that alters 
or converts actual electrical 
signals between distinct devices, 
programs, or systems. 

Interleave: To arrange parts of 
one sequence of things or events 
so that they alternate with parts 
of one or more other sequences of 
the same nature and so that each 
sequence retains its identity. 

Interrupt: Cl) To temporarily 
stop a process. 
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(2) In data communications, to take 
an act1on at a r-eceiv1ng stat1on 
that causes the sending stat1on to 
end a tr-ansmission. 
C3) A signal sent by an I/O device 
to the pr-ocessor- when an er-r-or- has 
occur-r-ed or- when assistance 1s 
needed to complete I/O. An inter-­
rupt usually suspends execution of 
the cur-r-ently eHecuting pr-ogr-am. 

Memory t1ana9ement Un ;t C HHU J : 
Har-dwar-e that manages vir-tual mem­
or-y by pr-oviding tr-anslation fr-om 
a vi r-tual addr-ess to a r-eal ad­
dr-ess. 

Microcode: Cl> One or- mor-e micr-o­
; nstr-uctions. 
C 2) A code, r-epr-esent i ng the in­
str-uct ions of an instruction set, 
implemented in a part of stor-age 
that is not pr-ogr-am-addr-essable. 

Microinstruction: Cl> An instr-uc­
tion of micr-ocode, 
(2) A basic or- elementar-y machine 
i nstr-u<.;ti on. 

Mini di sit>:: 
of a r-eal 

A logical subdivision 
disk that has its own 

virtual device address. 

Module: C 1 > A di scr-ete pr-ogr-am­
mi ng unit that usually per-for-ms a 
specif; c task or- set of tasks. 
Modules ar-e subr-outines and call­
; ng pro gr-ams ar-e assembled sepa­
r-ately, then linked to make a 
complete pr-ogr-am. 

t1Ultiprogrammin9: Cl> Per-taining 
to the concur-r-ent execut1on of two 
or- mor-e computer- pr-ogr-ams by a 
computer-. 
(2) A mode of oper-ation that pr-o­
vides for- the inter-leaved exe­
cution of two or- more computer­
pr-ogr-ams by a single pr-ocessor-. 

Operatin9 System: Softwar-e that 
contr-ols the execution of pr-o­
gr-ams; an oper-ating system may 
pr-ovi de ser-vi ces such as r-esour-ce 
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allocat1on, scheduling, 
1nput/output contr-ol, and data 
management. 

Page: A fi xed-1 ength block of in­
str-uct ions, data, or- both, that can 
be tr-ansfer-r-ed between r-eal stor­
age and exter-nal page stor-age. 

Pase Fault: A pr-ogr-am inter--
ruption that occur-s when a page of 
memor-y not in r-eal stor-age is r-e­
fer-r-ed to by an active page. 

Pasins: The action of tr-ans-
fer-r-ing instr-uctions, data, or­
both between r-eal stor-age and ex­
ter-nal page stor-age, 

Parallel: Cl) Per-taining to the 
concur-r-ent or- simultaneous oper-a­
ti on of two or- mor-e devices, or- to 
the concur-r-ent per-for-mance of two 
or- mor-e activities. 
C2) Per-taining to the concur-r-ent 
or- simultaneous occur-r-ence of two 
or- mor-e r-elated activities in mul­
tiple device or- channels. 
(3) Per-taining to the simultaneous 
pr-ocessing of the individual par-ts 
of a whole, such as the bits of a 
char-acter- and the char-acters of a 
wor-d, using separ-ate facilities 
for- the various par-ts. 
(4) Contr-ast with ser-ial. 

Pollins: Cl> Inter-r-ogation of de­
vices for- purposes such as to avoid 
contention, to deter-mine oper-a­
tional status, or- to deter-mine 
r-eadiness to send or- r-ece1ve data. 
(2) The pr-ocess wher-eby stations 
ar-e invited, one at a time, to 
tr-ansmit. 

Port: An access point fo,. data 
entr-y or- exit. 

Privileged Instructions: System 
contr-ol instr-uctions that can only 
r-un in the processor-' s pr-i vi leged 
state. Pr-ivileged instr-uctions 
gener-ally manipulate virtual ma­
chines or- the memor-y manager-; they 



typically are not used by applica­
tion programmers. 

Pr;v;leged State: A hardware pro­
tection state 1n which the 
processor can run privileged in­
structions. The processor's priv­
ileged state supports the v1 rtual 
machine's VRM state. 

Problem State: A state during 
which the CPU processing unit can­
not exeq~te privileged in­
structions. Most programs written 
to perform tasks or solve problems 
run in the problem state. 

Process: C 1 > A sequence of dis­
crete actions required to produce 
a dusired result. 
C2> An entity receiving a portion 
of the processor's ti me for exe­
cuting a program. 

Program: A document con ta; n i ng a 
set of instructions, conforming to 
a particular programming language 
syntax. Programs perform proc­
esses and are represented by proc­
ess objects when active (i.e., when 
they are executed). 

Program Status Block CPSBJ: A 
control block that describes a 
virtual interrupt condition. 

Protocol: In data communications, 
the rules for transferring data. 

Protocol procedure: A process 
that implements a function for a 
device manager. For example, a 
virtual terminal manager may use a 
protocol procedure to interpret 
the meaning of keystrokes. 

Queue: A Hne or H st formed by 
items waiting to be processed. 

Real Address: A 24-bit address on 
the internal bus which will be ap­
plied to the storage by ROSETTA 
without modification by the trans­
lation mechanism of ROSETTA. 

Reg;ster: A storage area, in a 
computer, capable of storing a 
specified amount of data such as a 
bit or an address. 

Relat;ve Address: Cl) A means of 
addres~:dng instructions and data 
areas by designating their lo­
cations to the Instruction Address 
Register or to some symbol. 
(2) An address specified in re­
lation to the contents of the In­
struction Address Register or to a 
symbol. When a program is relo­
cated, the addresses themselves 
will change, but the specification 
of relative addresses remains the 
same. 

Reduced Instruction set computers 
(RISC): Processors with no so­
phisticated instructions in their 
instruction sets. They tend to 
perform almost as well as micro­
code, by using highly optimizing 
compilers, that take advantage of 
their high speed execution and 
their pipelined architecture. 

ROM/BIOS: The ROM resident basic 
input/output system, which pro­
vides the level control of the ma­
jor I/O devices in the computer 
system. 

Rout;ne: A set of statements in a 
program causing the system to per­
form an operation or a series of 
related operations. 

Run-ti me Env i ronment: A co 1-
1 ect ion of subroutines that pro­
vide commonly used functions for 
system components. 

second Level Interrupt Handler 
CSLIH): A routfoe that handles the 
processing of an interrupt from a 
specific adapter. An SLIH is 
called by the first level interrupt 
handler assoc1 ated with that in­
terrupt level. 
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Sector: ( 1) An area on a d; sk 
track or a diskette track reserved 
to record ;nformation. 
(2) The smallest amount of ;nfor­
mation that can be written to or 
read from a disk or diskette during 
a single read or write operation. 

Segment: A contiguous area of 
virtual storage allocated to a job 
or system task. A program segment 
can be run by itself, even if the 
whole program is not in main stor­
age. 

Semaphore: Entity used to control 
access to system resources. Proc­
esses can be locked to a resource 
with semaphores if the processes 
follow certain programming con­
ventions. 

Serial: Cl) Perta;ning to the se­
quential performance of two or more 
activities in a single device. 
(2) Pertaining to the sequential 
or consecutive occurrence of two 
or more related activities in a 
single device or channel. 
(3) Pertaining to the sequential 
processing of the individual parts 
of a whole, such as the bits of a 
character or the characters of a 
word, using the same fad 1 i ti es for 
successive parts. 
(4) Contrast w;th parallel. 

Server: A program that handles 
protocol, queueing, routing, and 
other tasks necessary for data 
t ran sf er between devices in a com­
puter system. 

Stack: An area in storage that 
stores temporary register informa­
tion and returns addresses of sub­
routines. 

supervi<;or: The part of IBM RT 
PC's control program that coordi­
nates the use of resources, and 
maintain:; the flow of processing 
unit operations. 
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supervisor call CSVC): An in­
struction that interrupts the pro­
gram being executed and passes 
control to the supervisor so it can 
perform a specific serv1ce indi­
cated by the instruction. 

System Unit: The part of the sys­
tem that contains the processing 
unit, the disk drive and the disk, 
and the diskette drive and 
diskettes. 

Task: A basic unit of work to be 
performed. Examples are a user 
task, a server task, and a 
processor task. 

Translation Lookaside Buffer 
CTLB): Hardware that conta;ns the 
virtual-to-real address mapping. 

Trap: An unprogrammed, 
hardware-inltiated jump to a spe­
c; fie address. Occurs as a result 
of an error or certain other con­
ditions. 

Unprivileged State: A hardware 
protection state in which the 
processor can only run unprivi­
leged instructions. The 
processor's unprivileged state 
supports the virtual machine's op­
erating system state and problem 
state. 

Virtual Address: A 32-bit address 
on the internal bus intended to be 
translated by MMU. 

Virtual Device: A device that ap­
pears to the user as a separate 
entity but is actually a 
time-shared portion of a real de­
vice. For example, several virtual 
terminals may exist simultane­
ously, but only one is active at 
any given time. 

Virtual Machine Interface CVMI J: 
A software interface between IBM 
RT PC workstations and operating 
systems. The VMI shields operating 



system software from hardware 
changes and low-level 'interfaces 
and provides for concurrent exe­
cution of multiple virtual ma­
chines. 

Virtual Resource Manager CVRMJ: A 
set of programs that manage the 
hardware resources (main storage, 
disk storage, display stat'ions, 
and printers) of the system so that 

these resources can be used inde­
pendently of each other. 

Virtual Storage: Addressable 
space that appears to be real 
storage. From virtual storage, 
instructions and data are mapped 
'into real storage locations. 

Word: A contiguous sel""i es of 32 
bits (four bytes) in storage. 
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