

Second Edition (May, 1988)

The following paragraph does not apply to the United Kingdom or any country where
such provisions are inconsistent with local law: INTERNATIONAL BUSINESS
MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied
warranties in certain transactions, therefore, this statement may not apply to you.

This publication could include technical inaccuracies or typographical errors. Changes
are periodically made to the information herein; these changes will be incorporated in
new editions of the publication. IBM may make improvements and/or changes in the
product(s) and/or the program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or information about, IBM
products (machines and programs), programming, or services that are not announced
in your country. Such references or information must not be construed to mean that
IBM intends to announce such IBM products, programming, or services in your country.

THE PUBLICATION OF THE INFORMATION CONTAINED HEREIN IS NOT INTENDED TO
AND DOES NOT CONVEY AN'Y RIGHTS OR LICENSES, EXPRESS OR IMPLIED, UNDER
ANY IBM PATENTS, COPYRIGHTS, TRADEMARKS, MASK WORKS, OR ANY OTHER
INTELLECTUAL PROPERTY RIGHTS.

Requests for copies of this publication and for technical information about IBM
products should be made to your IBM Authorized Dealer or your IBM Marketing
Representative.

Personal System/2 is a registered trademark of the International Business Machines
Corporation.

© Copyright International Business Machines Corporation 1988. All rights reserved.
No part of this work may be reproduced or distributed in any form or by any means
without prior permission in writing from the IBM Corporation.

Preface

This technical reference provides Basic Input/Output System (BIOS)
and Advanced BIOS (ABIOS) interface information. It is intended for
developers who provide hardware or software products to operate
with the following IBM products:

• IBM PC Convertible
• IBM PCjr™
• IBM Personal Computer
• IBM Personal Computer AT®
• IBM Personal Computer)(TTM

• IBM Personal Computer XT Model 286
• IBM Portable Personal Computer
• IBM Personal System/2® Models 25, 30, 50, 60, 70, and 80
• IBM Color/Graphics Monitor Adapter
• IBM Enhanced Graphics Adapter
• IBM Monochrome Display and Printer Adapter
• IBM devices using ESDl-type commands.

You should understand the concepts of computer architecture and
programming before using this publication.

Warning: The term "Reserved" is used to describe certain signals,
bits, and registers. Use of reserved areas can cause compatibility
problems, loss of data, or permanent damage to the hardware.

This technical reference is divided into three parts: BIOS, Advanced
BIOS, and Supplements.

BIOS contains the following:

Section 1, "Introduction to BIOS," provides an overview of BIOS,
interrupts, parameter passing, data areas and read-only memory

PCjr and Personal Computer XT are trademarks of the International
Business Machines Corporation.

Personal Computer AT and Personal System/2 are registered trademarks
of the International Business Machines Corporation.

Iii

(ROM) tables. It also describes how to determine the system
BIOS version date.

Section 2, "Interrupts," contains detailed information about how
interrupts function across the IBM Personal System/2 and
Personal Computer product lines. Exceptions between products
are noted.

Section 3, "BIOS Data Areas and ROM Tables," contains detailed
information about regular data areas, extended data areas, and
ROM tables for system and adapter ROM BIOS.

Section 4, "Additional Information," contains information about
sharing interrupts in IBM Personal System/2 and Personal
Computer products. It also contains information about adapter
ROM calls, video compatibility, multitasking provisions, system
identification bytes, keyboard keys, and scan code/character
code combinations.

An index is provided for BIOS.

Advanced BIOS contains the following sections:

Iv

Section 1, "Introduction to Advanced BIOS," provides an
overview of Advanced BIOS, Data Structures, Initialization,
Request Blocks and Transfer Conventions, Interrupt Processing,
and Extending ABIOS.

Section 2, "Data Structures," contains detailed information on the
Common Data Area, Function Transfer Tables, Device Blocks,
and how these ABIOS data structures are used.

Section 3, "Initialization," describes the ABIOS steps and the
operating system steps necessary to make the ABIOS interface
operational.

Section 4, "Transfer Conventions," describes the methods used
to transfer control to ABIOS device routines. The Request Block,
the ABIOS Transfer Convention, and the Operating System
Transfer Convention are described.

Section 5, "Additional Information," contains detailed information
on interrupt processing, extending ABIOS, and operating system
implementation considerations.

Section 6, "Interfaces," describes the interfaces supported by
ABIOS.

An index is also provided for Advanced BIOS.

Supplements is reserved for additional BIOS and Advanced BIOS
interface information. The Asynchronous Communications
Supplement and the Programmable Option Select Supplement are
already provided. Record on the Contents - Supplements page any
supplements that you add. Supplements to this technical reference
will be offered for sale as additional BIOS and Advanced BIOS
interface information becomes available.

System-specific hardware and software interface information for IBM
systems and for IBM diskette drives, fixed disk drives, adapters, and
other options is contained in separate technical reference
publications.

Important: Information added to the Supplements area of this
technical reference may have new information about subjects
covered in other parts of this technical reference. Refer to
Supplements for information that could affect your hardware or
software development decisions.

y

Notes:

vi

Contents - BIOS

Section 1. Introduction to BIOS . 1-1
Interrupts . 1-3
Parameter Passing . 1-3
Data Areas and ROM Tables . 1-4
BIOS Level Determination 1-4
System Groups 1-5

Section 2. Interrupts . 2-1
Interrupt 02H - Nonmaskable Interrupt (NMI) 2-5
Interrupt 05H - Print Screen . 2-7
Interrupt 08H - System Timer 2-8
Interrupt 09H - Keyboard 2-9
Interrupt 10H - Video 2-11
Interrupt 11 H - Equipment Determination 2-46
Interrupt 12H - Memory Size Determination 2-47
Interrupt 13H - Diskette . 2-48
Interrupt 13H - Fixed Disk . 2-58
Interrupt 14H - Asynchronous Communications 2-69
Interrupt 15H - System Services . 2-73
Interrupt 16H - Keyboard . 2-102
Interrupt 17H- Printer 2-110
Interrupt 19H - Bootstrap Loader . 2-113
Interrupt 1AH - System-Timer and Real-Time Clock Services . 2-114
Interrupt 70H - Real-Time Clock Interrupt 2-121

Section 3. Data Areas and ROM Tables 3-1
BIOS Data Area . 3-3
Extended BIOS Data Area 3-17
ROM Tables . 3-18

Fixed Disk Drive Parameter Table 3-18
Diskette Drive Parameter Table . 3-26

Section 4. Addltlonal Information
Interrupt Sharing

Precautions .
Interrupt Request (IRQn) Reset
Interrupt-Sharing Software Requirements
Interrupt-Sharing Chaining Structure and Signature
ROM Considerations

4-1
4-3
4-3
4-4
4-4
4-6
4-7

Implementation Information . 4-7
Adapter ROM . 4-12

Video Function Compatibility . 4-14
Video Presence Test . 4-14
Video Mode Switching . 4-15

Multitasking Provisions . 4-16
System Identification . 4-18
Application Guidelines . 4-19

Math Coprocessor Testing . 4-19
Hardware Interrupts . 4-19
Programming Considerations . 4-21
BIOS and Operating System Function Calls 4-21

Scan Code/Character Code Combinations 4-24

Index .. X-1

Figures - BIOS

2-1. Interrupts . 2-3
2-2. INT 1 OH - Video Functions 2-11
2-3. Video Modes . 2-12
2-4. Hardware Specific Video Mode Characteristics 2-13
2-5. PC Convertible Display Types 2-39
2-6. INT 13H - Diskette Functions 2-48
2-7. INT 13H - Fixed Disk Functions 2-58
2-8. INT 14H - Asynchronous Communications Functions 2-69
2-9. INT 15H - System Services Functions 2-73

2-10. Block Move Global Descriptor Table 2-86
2-11. Global Descriptor Table 2-89
2-12. INT 16H - Keyboard Functions 2-102
2-13. INT 17H - Printer Functions 2-110
2-14. INT 1AH - System-Timer and Real-Time Clock

Services . 2-114
3-1. RS-232C Port Base Address Data Area 3-3
3-2. Printer Port Base Address Data Area 3-3
3-3. System Equipment Data Area '. 3-4
3-4. Miscellaneous Data Area 1 3-4
3-5. Memory Size Data Area . 3-5
3-6. Keyboard Data Area 1 . 3-5
3-7. Diskette Drive Data Area . 3-6
3-8. Video Control Data Area 1 3-7
3-9. System Data Area 1 . 3-7

3-10. System-Timer Data Area 3-7
3-11. System Data Area 2 . 3-8
3-12. Fixed Disk Drive Data Area 3-8
3-13. Printer Time-Out Value Data Area 3-9
3-14. RS-232C Time-Out Value Data Area 3-9
3-15. Keyboard Data Area 2 . 3-10
3-16. Video Control Data Area 2 3-10
3-17. Diskette Drive/Fixed Disk Drive Control Data Area . . . 3-10
3-18. Keyboard Data Area 3 . 3-12
3-19. Real-Time Clock Data Area 3-12
3-20. Save Pointer Data Area . 3-13
3-21. Secondary Save Pointer Data Area 3-15
3-22. Miscellaneous Data Area 2 3-17
3-23. Fixed Disk Drive Parameter Table Definition 3-18
3-24. Fixed Disk Drive Parameters (AT and Personal

System/2 products) . 3-19

3-25. Fixed Disk Drive Parameter Table (Personal System/2
products except Model 25 and Model 30) 3-21

3-26. Fixed Disk Drive Parameter Table 00 (PC XT BIOS
Dated 11/10/82) . 3-22

3-27. Fixed Disk Drive Parameter Table 01 (PC XT BIOS
Dated 11/10/82) . 3-22

3-28. Fixed Disk Drive Parameter Table 02 (PC XT BIOS
Dated 11/10/82) . 3-23

3-29. Fixed Disk Drive Parameter Table 03 (PC XT BIOS
Dated 11/10/82) . 3-23

3-30. Fixed Disk Drive Parameter Table 00 - Type 1 (PC XT
BIOS Dated 1/08/86) . 3-24

3-31. Fixed Disk Drive Parameter Table 01 - Type 16 (PC XT
BIOS Dated 1 /08/86) . 3-24

3-32. Fixed Disk Drive Parameter Table 02 - Type 2 (PC XT
BIOS Dated 1/08/86) . 3-25

3-33. Fixed Disk Drive Parameter Table 03 - Type 13 (PC XT
BIOS Dated 1 /08/86) . 3-25

3-34. Diskette Drive Parameter Table __ 3-26
4-1. System ldentifi cation . 4-18
4-2. Head Settle Time . 4-22
4-3. Keyboard Keystrokes . 4-24
4-4. Shift Keyboard Keystrokes 4-27
4-5. Ctrl Keyboard Keystrokes 4-29
4-6. Alt Keyboard Keystrokes . 4-32

Section 1. Introduction to BIOS

Interrupts . 1-3
Parameter Passing . 1-3
Data Areas and ROM Tables . 1-4
BIOS Level Determination . 1-4
System Groups 1-5

Introduction to BIOS 1-1

Notes:

1-2 Introduction to BIOS

The Basic Input/Output System (BIOS} for IBM Personal System/2 and
Personal Computer products is a software intertace or "layer" that
isolates operating systems and application programs from specific
hardware devices. BIOS routines allow assembly language
programmers to perform block and character-level operations without
concern for device addresses or hardware operating characteristics.
The BIOS also provides system services such as ti me-of-day and
memory size determination.

Operating systems and application programs should make functional
requests to BIOS rather than directly manipulating 1/0 ports and
control words of the hardware. Hardware design and timing changes
then become less critical, and software compatibility across systems
and features is enhanced.

Interrupts

BIOS is accessed by software interrupts; each BIOS entry point is
available through its own interrupt. The AH register, where
appropriate, indicates the specific routine within the overall interrupt
function that is being executed.

Software interrupts INT 10H through INT 1AH each access different
BIOS routines. For example, INT 12H invokes the BIOS routine for
determining memory size and returns the value to the caller.

See Section 2, "Interrupts," for additional information.

Parameter Passing

All parameters passed to and from the BIOS routines go through the
microprocessor registers. Each BIOS interrupt routine indicates the
registers used on the call and the return. In general, if a BIOS routine
has several possible functions, (AH} is used to select the desired
function. For example, to set the time, the following code is required:

MOV AH,l
MOV CX,HIGH_COUNT
MOV DX,LOW_COUNT
INT lAH

;Function is to set time of day.
;Establish the current time. .
;Set the time.

Introduction to BIOS 1-3

To read the time, the following code is required:

MOV AH,0
INT lAH

;Function is to read time of day.
;Read the timer.

The BIOS interrupt handlers save all registers except (AX), the flags,
and those registers that return a value to the caller. In some cases,
other registers are modified. See Section 2, "Interrupts," for
additional information.

All parameters are 1-based (that is, the count starts with 1, not 0),
unless noted as 0-based.

Data Areas and ROM Tables

Data areas are the memory locations allocated specifically to system
BIOS and adapter BIOS to use as work areas. Read-only memory
(ROM) tables are used by BIOS to define the characteristics of
hardware devices supported by a particular system BIOS or adapter
BIOS.

See Section 3, "Data Areas and ROM Tables," for additional
information.

BIOS Level Determination

The BIOS is contained in ROM modules located on the system boards
of Personal System/2 and Personal Computer products. It is also
contained in ROM modules on some optional features (usually
adapters) to provide device-level control of the features.

The BIOS has been amended several times since its inception. All
BIOS versions are dated. In this technical reference, BIOS version
dates are used when necessary to indicate interface differences in
similar systems.

1-4 Introduction to BIOS

To determine the BIOS version date, run the following BASIC
program. The date that is displayed is the version date of the BIOS
for that system:

10 DEF SEG=&HF000
20 FOR X=&HFFF5 TO &HFFFC
30 PRINT CHR$(PEEK(X));
40 NEXT
RUN

See "System Identification" on page 4-18 for a list of IBM products
and their BIOS version dates. To access this information, see INT
15H, "(AH) = COH Return System Configuration Parameters" on
page 2-92.

System Groups

In this technical reference, IBM systems are categorized into groups
with similar BIOS interfaces. These groups are referred to with any
exceptions noted. The groups with similar interfaces include:

• Personal System/2 products - al I models
• Personal Computer XT products - includes Portable Personal

Computer
• Personal Computer AT products - all models.

Important: Information added to the Supplements area of this
technical reference may have new information about subjects
covered in other parts of this technical reference. Refer to the
supplements for information that could affect your hardware or
software development decisions.

Introduction to BIOS 1-5

Notes:

1-6 Introduction to BIOS

Section 2. Interrupts

Interrupt 02H - Nonmaskable Interrupt (NMI) 2-5
Interrupt 05H - Print Screen . 2-7
Interrupt 08H - System Timer . 2-8
Interrupt 09H - Keyboard 2-9
Interrupt 1 OH - Video . 2-11
Interrupt 11 H - Equipment Determination 2-46
Interrupt 12H - Memory Size Determination 2-47
Interrupt 13H - Diskette . 2-48
Interrupt 13H - Fixed Disk . 2-58
Interrupt 14H - Asynchronous Communications 2-69
Interrupt 15H - System Services . 2-73
Interrupt 16H - Keyboard . 2-102
Interrupt 17H - Printer . 2-110
Interrupt 19H - Bootstrap Loader . 2-113
Interrupt 1AH - System-Timer and Real-Time Clock Services . 2-114
Interrupt 70H - Real-Time Clock Interrupt 2-121

Interrupts 2-1

Notes:

2-2 Interrupts

The following figure lists each interrupt, its function, and, where
applicable, the location of a more detailed description of the interrupt.

Important: The Supplements section of this book may contain
additional information that could affect your hardware or software
development decisions.

Interrupt
Number (Hex)

00
01
02
03
04
05
06 to 07
08
09
OA to OD
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E

1F

Interrupt Function

Divide by O
Single Step
Nonmaskable (NMI) (See page 2-5)
Breakpoint
Overflow
Print Screen (See page 2-7)
-Reserved-
System Timer (See page 2-8)
Keyboard (See page 2-9)
-Reserved-
Diskette (See INT 13H on page 2-48)
-Reserved-
Video (See page 2-11)
Equipment Determination (See page 2-46)
Memory Size Determination (See page 2-47)
Fixed Disk/Diskette (See pages 2-48 and 2-58)
Asynchronous Communications (See page 2-69)
System Services (See page 2-73)
Keyboard (See page 2-102)
Printer (See page 2-110)
Resident BASIC
Bootstrap Loader (See page 2-113)
System Timer and Real-Time Clock Services (See page 2-114)
Keyboard Break (See INT 09H on page 2-9)
User Timer Tick (See INT 08H on page 2-8)
Video Parameters
Diskette Parameters (See "Diskette Drive Parameter Table"
on page 3-26)
Video Graphics Characters

Figure 2-1 (Part 1 of 2). Interrupts

Interrupts 2-3

Interrupt
Number (Hex)

20to 3F
40
41
42to 45
46
47to 49
4A

4Bto 5F
60to 67
68to 6F
70
71to74
75
76to 7F
80to 85
86to FO
F1 to FF

Interrupt Function

- Reserved for Disk Operating System (DOS) -
Diskette BIOS Revector
Fixed Disk Parameters (See INT 13H on page 2-58)
-Reserved-
Fixed Disk Parameters (See INT 13H on page 2-58)
-Reserved-
User Alarm (See INT 08H on page 2-8 and INT 70H on page
2-121)
-Reserved-
- Reserved for User Program Interrupts-
- Reserved-
Real-Time Clock (See page 2-121)
-Reserved-
Redirect to NMI Interrupt (See INT 02H on page 2-5)
-Reserved-
-Reserved-
Used by BASIC Interpreter when Running BASIC
- Reserved for User Program Interrupts -

Figure 2-1 (Part 2 of 2). Interrupts

2-4 Interrupts

Interrupt 02H - Nonmaskable Interrupt (NMI)

For PCjr the nonmaskable interrupt (NMI) is attached to the keyboard
interrupt.

For PC, PC XT, AT, and Personal System/2 Model 25 and Model 30,
this interrupt handler displays PARITY CHECK 1 indicating a parity
error occurred on the system board, or PARITY CHECK 2 indicating a
parity error occurred on the 110 channel (assumes 1/0 channel
memory). This interrupt handler attempts to find the storage location
containing the bad parity, and if it is found, the segment address is
displayed. If no parity error is found, m?? appears in place of the
address, indicating an intermittent read problem.

For Personal System/2 products except Model 25 and Model 30, the
above paragraph applies except PARITY CHECK 1 and PARITY
CHECK 2 are replaced by error codes, 110 and 111, respectively. In
addition, the NMI detects two other errors. The error codes are as
follows:

110 System Board Memory Failure
111 110 Channel Check Activated (assumes 1/0 channel memory)
112 Watchdog Time-Out
113 Direct Memory Access (OMA) Bus Time-Out

When the Watchdog Time-Out is enabled and a missing timer
interrupt (IRQ 0) is detected, the system generates the NMI. If this
occurs, the NMI interrupt handler displays 112, indicating an expected
timer interrupt was missed. Also, when a OMA-driven device uses
the bus longer than the al lowed 7 .8 microseconds, the central
arbitration control point generates the NMI and 113 is displayed,
indicating a OMA bus time-out has occurred.

When an NMI occurs, the central arbitration control point is implicitly
disabled. The NMI interrupt handler explicitly reenables the central
arbitration control point by writing a OOH to port 90H.

For PC Convertible, the NMI is attached to the keyboard, the diskette,
the real-time clock, and the system suspend interrupts. The NMI is
activated by an 1/0 channel check.

INT 02H - Nonmaskable Interrupt (NMI) 2-5

Notes:

1. An 8087 math coprocessor error on 8088- or 8086-based systems
drives the NMI of the 8088 or 8086, respectively.

2. An 80287 or 80387 math coprocessor error on 80286- or
80386-based systems drives the IRQ 13 line. The IRQ 13 interrupt
handler issues a software INT 02H to be compatible with software
that expects the NMI to occur.

3. For all systems, the math coprocessor application that points the
NMI vector to itself must be sensitive to NMI errors. If the NMI
occurs due to an NMI error, control should be transferred to the
system NMI handler.

2·6 INT 02H - Nonmaskable Interrupt (NMI)

Interrupt OSH - Print Screen

This interrupt handler prints the screen to printer 1. When INT 05H is
issued, the cursor position is saved and is restored upon completion
of the interrupt. INT OSH runs with interrupts enabled. Additional
print screen requests are ignored when a print screen is already in
progress. An initial status error from the printer ends the print
request. Data area address hex 50:00 contains the status of the print
screen. The supported status values for hex 50:00 are as follows:

00 Print Screen not called or, on return, operation successfully completed
01 Print Screen in progress, ignore request
FF Error encountered during printing

For PC Convertible, an initial status error ends the print request and
also sounds a "beep." The Ctrl-Break sequence ends the print
screen.

INT OSH - Print Screen 2-7

Interrupt OSH - System Timer

This interrupt handler controls the timer interrupt from channel 0 of
the system timer. The input frequency is 1.19318 MHz and the divisor
is 65536, resulting in approximately 18.2 interrupts every second.

The interrupt handler:

• Maintains a count of interrupts at data area address hex 40:6C
(timer counter) since power-on that may be used to establish time
of day. After 24 hours of operation, hex 40:70 (timer overflow) is
increased (made non 0).

• Decrements hex 40:40 (motor off counter of the diskette drive)
and, when the count reaches 0, turns the diskette drive motor off,
and resets the motor running flags in hex 40:3F (motor status).

• Calls a user routine through software interrupt 1CH every timer
tick.

For PC Convertible, this interrupt handler calls a user routine
through software interrupt 4AH when an alarm interrupt occurs.

2-8 INT OBH - System Timer

Interrupt 09H - Keyboard

This interrupt handler is issued upon the make or break of every
keystroke.

For ASCII keys, when a make code is read from port 60H, the
character code and scan code are placed in the 32-byte keyboard
buffer that begins at data area address hex 40:1E, at the address
pointed to by hex 40:1C (keyboard buffer tail pointer). The keyboard
buffer tail pointer is then increased by 2, unless it extends past the
end of the buffer. In this case it is reinitialized to the start of the
buffer.

For every Ctrl, Alt, or Shift key make or break, the BIOS data areas
hex 40:17 and hex 40:18 (keyboard control) and hex 40:96 (keyboard
mode state and type flags) are updated.

The Ctrl-Alt-Del sequence causes the handler to set hex 40:72 (reset
flag) to hex 1234 (bypass memory test), then jump to the power-on
self-test (POST). The POST checks hex 40:72 (reset flag) and does not
retest memory if it finds hex 1234. For PC Convertible, instead of a
jump to POST, a processor reset is done, causing POST to execute.

The Pause key sequence causes the handler to loop until a valid
ASCII keystroke is pressed. The PC Convertible issues INT 15H, (AH)
= 41H (Wait on External Event) to wait for a valid ASCII keystroke.

The print screen key sequence issues an INT 05H (Print Screen).

The Ctrl-Break sequence issues an INT 1 BH (Keyboard Break).

For PC XT BIOS dated 1/10/86 and after, AT, PC XT Model 286, PC
Convertible, and Personal System/2 products, System Request
causes the handler to issue an INT 15H, (AH) = 85H (System Request
Key Pressed) to inform the system of a System Request key make or
break operation. Also, the keyboard interrupt issues an INT 15H, (AH)
= 91H (Interrupt Complete) with (AL) = 02H (Type = Keyboard),
indicating that a keystroke is available.

INT 09H - Keyboard 2-9

For AT BIOS dated 6/10/85 and after, PC XT Model 286, PC
Convertible, and Personal System/2 products, INT 15H, (AH) = 4FH
(Keyboard Intercept), is issued after reading the scan code from port
60H. This allows the system to replace or absorb the scan code. End
of Interrupt (EOI) processing is done upon return.

2-10 INT 09H - Keyboard

Interrupt 1 OH - Video

The following is a summary of the video functions of INT 10H:

(AH) = OOH - Set Mode
(AH) = 01H - Set Cursor Type
(AH) = 02H - Set Cursor Position
(AH) = 03H - Read Cursor Position
(AH) = 04H - Read Light Pen Position
(AH) = 05H - Select Active Display Page
(AH) = 06H - Scroll Active Page Up
(AH) = 07H - Scroll Active Page Down
(AH) = 08H - Read Attribute/Character at Current Cursor Position
(AH) = 09H - Write Attribute/Character at Current Cursor Position
(AH) = OAH - Write Character at Current Cursor Position
(AH) = OBH - Set Color Palette
(AH) = OCH - Write Dot
(AH) = OOH - Read Dot
(AH) = OEH - Write Teletype to Active Page
(AH) = OFH - Read Current Video State
(AH) = 10H - Set Palette Registers
(AH) = 11H - Character Generator
(AH) = 12H - Alternate Select
(AH) = 13H - Write String
(AH) = 14H - Load LCD Character Font/Set LCD High-Intensity Substitute
(AH) = 15H - Return Physical Display Parameters for Active Display
(AH) = 16H to 19H - Reserved
(AH) = 1AH - Read/Write Display Combination Code
(AH) = 1 BH - Return Functionality/State Information
(AH) = 1 CH - Save/Restore Video State
(AH) = 1 DH to FFH - Reserved

Figure 2-2. INT 10H - Video Functions

INT 10H - Video 2-11

(AH) = OOH - Set Mode

(AL) - Requested video mode

The following table describes the supported video modes:

Mode Maximum Alpha Buffer
(Hex) Type Colors Format Start

0, 1 A/N 16 40x25 88000
2,3 A/N 16 80x25 88000
4,5 APA 4 40x25 88000
6 APA 2 80x25 88000
7 A/N Mono 80x25 80000
8 APA 16 20x25 BOOOO
9 APA 16 40x25 80000
A APA 4 80x25 80000
8,C -Reserved-
D APA 16 40x25 AOOOO
E APA 16 80x25 AOOOO
F APA Mono 80x25 AOOOO
10 APA 16 80x25 AOOOO
11 APA 2 80x30 AOOOO
12 APA 16 80x30 AOOOO
13 APA 256 40x25 AOOOO

APA - All Points Addressable (Graphics)
A/N - Alphanumeric (Text)

Figure 2-3. Video Modes

2-12 INT 10H - Video

The following table lists hardware specific video mode
characteristics:

Mode DI splay Box Maximum
(Hex) Size Size Supporting IBM Products Pages

0, 1 320x200 8x8 PCjr, Color/Graphics Monitor Adapter (CGA), 8
Enhanced Graphics Adapter (EGA), PC
Convertible, and Personal System/2
products except Model 25 and Model 30

320x350 8x14 EGA and Personal System/2 products except 8
Model 25 and Model 30

320x400 8x16 Personal System/2 Model 25 and Model 30 8

360x400 9x16 Personal System/2 products except Model 25 8
and Model 30

2,3 640x200 8x8 PCjr, CGA, and PC Convertible 4

640x200 8x8 EGA and Personal System/2 products except 8
Model 25 and Model 30

640x350 8x14 EGA and Personal System/2 products except 8
Model 25 and Model 30

640x400 8x16 Personal System/2 Model 25 and Model 30 8

720x400 9x16 Personal System/2 products except Model 25 8
and Model 30

4,5 320x200 8x8 PCjr, CGA, EGA, and Personal System/2
products

6 640x200 8x8 PCjr, CGA, EGA, and Personal System/2
products

7 720x350 9x14 Monochrome Display and Printer Adapter
(MDPA) and PC Convertible

720x350 9x14 EGA and Personal System/2 products except 8
Model 25 and Model 30

720x400 9x16 Personal System/2 products except Model 25 8
and Model 30

640x200 8x8 PC Convertible 4

Figure 2-4 (Part 1 of 2). Hardware Specific Video Mode Characteristics

INT 10H - Video 2-13

Mode Display Box Maximum
Pages (Hex) Size Size Supporting IBM Products

8 160x200 8x8 PCjr

9 320x200 8x8 PCjr

A 640x200 8x8 PCjr

B,C -Reserved-

D 320x200 8x8 EGA and Personal System/2 products except 8
Model 25 and Model 30

E 640x200 8x8 EGA and Personal System/2 products except 4
Model 25 and Model 30

F, 10 640x350 8x14 EGA and Personal System/2 products except 2
Model 25 and Model 30

11 640x480 8x16 Personal System/2 products

12 640x480 8x16 Personal System/2 products except Model 25
and Model 30

13 320x200 8x8 Personal System/2 products

Figure 2-4 (Part 2 of 2). Hardware Specific Video Mode Characteristics

Notes:

1. PCjr and IBM Color/Graphics Monitor Adapter (CGA):

a. The cursor is not displayed in graphics (APA) modes.
b. Modes 0, 2, and 5 are identical to modes 1, 3, and 4 except

color burst is not enabled. Color burst on enables color
information on composite displays. Color burst off disables
color information on composite displays. RGB displays are
not affected by the state of color burst.

c. For PCjr during mode set, if bit 7 of (AL) is set, the video
buffer is not cleared.

2. IBM Enhanced Graphics Adapter (EGA):

a. The cursor is not displayed in graphics (APA) modes.
b. Modes 0, 2, and 5 are identical to modes 1, 3, and 4 except

color burst is not enabled. Color burst on enables color
information on composite displays. Color burst off disables

2-14 INT 10H - Video

color information on composite displays. RGB displays are
not affected by the state of color burst.

c. The power-on default mode is based on switch settings on the
adapter.

d. During mode set, if bit 7 of (AL) is set, the video buffer is not
cleared.

See BIOS data area address hex 40:A8 on page 3-13 for save
pointer dynamic overrides.

3. PC Convertible:

a. The cursor is not displayed in graphics (APA) modes.
b. Modes 0, 2, and 5 are identical to modes 1, 3, and 4 except

color burst is not enabled. Color burst on enables color
information on composite displays. Color burst off disables
color information on composite displays. RGB displays are
not affected by the state of color burst.

c. The power-on default mode for color/graphics mode is 2.
d. The power-on default mode for monochrome mode is 7.
e. During mode set, if bit 7 of (AL) is set, the video buffer is not

cleared.
f. Mode 7 (640x200) is used for a liquid crystal display (LCD) as

monochrome.
g. Mode 7 (720x350) is used for a monochrome display.

4. Personal System/2 Model 25 and Model 30:

a. The cursor is not displayed in graphics (APA) modes.
b. Modes 0, 2, and 5 are identical to modes 1, 3, and 4.
c. The power-on default mode is 3.
d. During mode set, if bit 7 of (AL) is set, the video buffer is not

cleared.
e. For all modes except mode 13H, the first 16 color registers

are initialized and the values in the remaining 240 color
registers are undefined.

f. For mode 13H, 248 color registers are loaded.

5. Personal System/2 products except Model 25 and Model 30:

a. The cursor is not displayed in graphics (APA) modes.
b. Modes 0, 2, and 5 are identical to modes 1, 3, and 4.
c. The power-on default mode with an analog color display

attached is 3.
d. The power-on default mode with an analog monochrome

display attached is 7.

INT 10H -Video 2-15

e. During mode set, if bit 7 of (AL) is set, the video buffer is not
cleared.

f. For all modes except mode 13, the first 64 color registers are
initialized and the values in the remaining 192 color registers
are undefined.

g. Refer to (AH) = 12H, (BL) = 30H to select alpha mode scan
lines (200, 350, or 400.)

See BIOS data area address hex 40:A8 on page 3-13 for save
pointer dynamic overrides.

(AH) = 01 H - Set Cursor Type

Notes:

(CH) - Top line for cursor (bits 4 to 0)
(Hardware causes blinking cursor;
setting bit 6 or 5 causes erratic
blinking or no cursor)

(CL) - Bottom line for cursor (bits 4 to 0)

1. The BIOS maintains only one cursor type for all video pages.

2. For Personal System/2 Model 25 and Model 30, before writing
to the hardware video ports, (CH) is multiplied by 2, and (CL)
is multiplied by 2 and increased by 1.

(AH) = 02H - Set Cursor Position

(DH.DL) - Row. column (0.0 is upper left)
(BH) - Page number (0-based). see Figure 2-4 on page 2-13 for

maximum pages

(AH) = 03H - Read Cursor Position

(BH) - Page number (0-based). see Figure 2-4 on page 2-13 for
maximum pages

On Return:
(DH.DL) - Row. column of current cursor for requested page
(CH.CL) - Cursor type currently set

2-16 INT 10H - Video

(AH) = 04H - Read Light Pen Position

For PC Convertible ahd Personal System/2 products:

On Return:
(AH) = 00H - Light pen is not supported
(BX, ex, DX) are altered on return

For al I others:

On Return:
(AH) = eeH - Light pen switch not activated
(BX, ex, DX) are altered on return

(AH) = 01H - Valid light pen value in registers
(DH,DL) - Row, column of character
(CH) - Raster line (0 to 199}
(CX) - Raster line (0 to nnn} new graphics modes
(BX) - PEL column (0 to 319,639}

(AH) = OSH - Select Active Dlsplay Page

For PCjr:

(AL} = 80H - Read cathode ray tube (CRT) and microprocessor
page registers

(AL} = 81H - Set microprocessor page register
(BL) - Microprocessor page register

(AL} = 82H - Set CRT page register
(BH) - CRT page register

(AL} = 83H - Set microprocessor and CRT page registers
(BL) - Microprocessor page register
(BH) - CRT page register

On Return for all:
(BH) - CRT page register
(BL) - Microprocessor page register

For al I others:

(AL) - New page number (0-based), see Figure 2-4 on page 2-13 for
maximum pages

INT 10H - Video 2-17

(AH) = 06H - Scroll Active Page Up

(AL) - Number of lines blanked at bottom of window
= 00H - Blank entire window

(CH.CL) - Row, column of upper left corner of scroll
(DH.DL) - Row, column of lower right corner of scroll
(BH) - Attribute to use on blank line

(AH) = 07H - Scroll Active Page Down

(AL) - Number of input lines blanked at top of window
= 00H - Blank entire window

(CH.CL) - Row, column of upper left corner of scroll
(DH,DL) - Row. column of lower right corner of scroll
(BH) - Attribute to use on blank line

(AH) = 08H - Read Attribute/Character at Current Cursor Position

(BH) - Page number (0-based). see Figure 2-4 on page 2-13 for
maximum pages

On Return:
(AL) - Character read
(AH) - Attribute of character read (alpha modes only)

(AH) = 09H - Write Attribute/Character at Current Cursor Position

For the read/write character interface while in graphics modes 4,
5, and 6, the characters are formed from a character generator
maintained in the system ROM that contains only the first 128
characters. To read or write the second 128 characters, initialize
the pointer at INT 1 FH (location 0007CH) to point to the 1 KB
(KB = 1,024 bytes) table containing the code points for the
second 128 characters (128-255). For all other graphics modes,
256 graphics characters are supplied in the system ROM.

For the write character interface while in graphics mode, the
character count contained in (CX) produces valid results for
characters on the same row only. Continuation to succeeding
rows produces invalid results.

(BH) - Page number (0-based). see Figure 2-4 on page 2-13 for
maximum pages

(CX) - Count of characters to write
(AL) - Character to write
(BL) - Attribute of character (alpha)/color of

character (graphics)

2-18 INT 10H - Video

Notes:

1. Functions (AH) = 09H and (AH) = OAH are similar. Use (AH)
= 09H for graphics modes.

2. For graphics modes, if bit 7 of (BL) = 01 H, then color value is
exclusive ORed with current video memory (except in mode
13H).

3. For mode 13H, the value passed in (BH) is used as the
background color.

(AH) = OAH - Write Character at Current Cursor Position

(BH) - Page number (0-based), see Figure 2-4 on page 2-13 for
maximum pages

(CX) - Count of characters to write
(AL) - Character to write

Note: Use (AH) = 09H for graphics modes.

(AH) = OBH • Set Color Palette

Notes:

(BH) - Color ID being set (0 to 1)
(BL) - Color value to be used with color ID

(BH) = 00H - Set background color for 320x200 graphics modes
- Set border color for alphanumeric modes
- Set foreground color for 640x200 graphics

(BL) = (0 to 31)

(BH) = 01H - Select palette for 320x200 graphics
(BL) = 0 - Green (1)/red (2)/brown (3)

= 1 - Cyan (1)/magenta (2)/white (3)

1. This interface has meaning for 320x200 graphics only.

2. In 40x25 or 80x25 alpha modes, the value set for palette color
O indicates the border color to use (0 to 31), where values 16
to 31 select the high-intensity background set.

3. For EGA and Personal System/2 products, when in 640x200
graphics mode and color ID = 0, the background color is set.

INT 10H - Video 2-19

(AH) = OCH - Write Dot

(DX) - Row number
(CX) - Column number
(AL) - Color value

Note: If bit 7 of (AL) = 01 H, then the color value is exclusive
ORed with the current contents of the dot (except in mode
13H).

For graphics modes supporting more than one page:

(BH) - Page number (0-based), see Figure 2-4 on page 2-13 for
maximum pages

(AH) = ODH - Read Dot

(DX) - Row number
(CX) - Column number

For graphics modes supporting more than one page:

(BH) - Page number (0-based), see Figure 2-4 on page 2-13 for
maximum pages

On Return:
(AL) returns dot read

(AH) = OEH - Write Teletype to Active Page

(AL) - Character to write
(BL) - Foreground color in graphics mode

Notes:

1. The screen width is controlled by the mode currently set.

2. Carriage Return, Line Feed, Backspace and Bell are treated
as commands rather than printable characters.

3. For PC BIOS dated 4/24/81 and 10/19/81, (BH) must be set to
the active page.

2-20 INT 10H - Video

(AH) = OFH - Read Current Video State

On Return:
(AL) - Mode currently set

[see (AH) = 00H for explanation]
(AH) - Number of character columns on screen
(BH) - Current active page number (0-based), see

Figure 2-4 on page 2-13 for maximum pages

(AH) = 1 OH - Set Palette Registers

For PCjr, systems with EGA capability, and Personal System/2
products except Model 25 and Model 30:

(AL) = 00H - Set individual palette register
(BL) - Palette register to set
(BH) - Value to set

(AL) = OlH - Set overscan register
(BH) - Value to set

(AL) = 02H - Set all palette registers and overscan
(ES:DX) - Pointer to 17-byte table

Bytes 0 to 15 - Palette values
Byte 16 - Overscan value

(AL) = 03H - Toggle intensify/blinking bit
(BL) = 00H - Enable intensify

= 01H - Enable blinking

For Personal System/2 products except Model 25 and Model 30:

(AL) = 04H to 06H - Reserved

(AL) = 07H - Read individual palette register
(BL) - Palette register to read (range 0 to 15)

On Return:
(BH) - Value read

(AL) = 08H - Read overscan register

On Return:
(BH) - Value read

INT 10H - Video 2-21

(AL) = 09H - Read all palette registers and overscan
(ES:DX) - Pointer to 17-byte buffer for return values

On Return:
(ES:DX) - Pointer to 17-byte table destination

Bytes 0 to 15 - Palette values
Byte 16 - Overscan value

(AL) = 10H - Set individual color register
(BX) - Color register to set
(DH) - Red value to set
(CH) - Green value to set
(CL) - Blue value to set

(AL) = llH - Reserved

(AL) = 12H - Set block of color registers
(ES:DX) - Pointer to table of color values

Table format: red, green, blue, red,
green, blue

(BX) - First color register to set
(CX) - Number of color register to set

(AL) = 13H - Select color page (not valid for mode 13H)
(BL) = 00H - Select paging mode

(BH) - Paging mode
= 00H - Selects 4 register blocks of 64 registers
= 01H - Selects 16 register blocks of 16 registers

(BL) = 01H - Select page
(BH) - Page number (0-based), see Figure 2-4 on page 2-13

for maximum pages
For 64-register block mode:

= 00H - Selects first block of 64 color registers
= 01H - Selects second block of 64 color registers
= 02H - Selects third block of 64 color registers
= 03H - Selects fourth block of 64 color registers

For 16-register block mode:
= 00H - Selects first block of 16 color registers
= 01H - Selects second block of 16 color registers

= 0FH - Selects 16th block of 16 color registers

Note: Function (AH) = OOH (Set Mode) defaults to the 64-register
block mode, with the first block of 64 color registers active.
Only these 64 color registers are initialized during mode
set. When using page selection, initialize alternate blocks
of the color registers.

2·22 INT 1 OH - Video

(AL) = 14H - Reserved

(AL) = 15H - Read individual color register

(BX) - Color register to read

On Return:
(DH) - Red value read
(CH) - Green value read
(CL) - Blue value read

(AL) = 16H - Reserved

(AL) = 17H - Read block of color registers
(ES:DX) - Pointer to destination table for values

Table format: red, green, blue, red,
green, blue

(BX) - First color register to read
(CX) - Number of color registers to read

On Return:
(ES:DX) - Pointer to table of values

(AL) = 18H to 19H - Reserved

(AL) = lAH - Read color page state

On Return:
(BL) - Current paging mode
(BH) - Current page

Note: See (AL) = 13H on page 2-22 for paging modes and page
information.

(AL) = lBH - Sum color values to gray shades

(BX) - First color register to sum
(CX) - Number of color registers to sum

Note: This call reads red, green, and blue values found in color
registers, performs a weighted sum (30% red + 59%
green + 11 % blue), then writes the result into each red,
green, and blue component of the color register (original
data is not retained).

INT 10H - Video 2-23

For Personal System/2 Model 25 and Model 30:

(AL) = 00H
(BX) = 0712H - Color registers set resulting

in 8 consistent colors

(AL) = 01H to 02H - Reserved

(AL) = 03H - Toggle intensify/blinking bit
(BL) = 00H - Enable intensify

= 01H - Enable blinking

(AL) = 04H to 07H - Reserved

(AL) = 10H - Set individual color register
(BX) - Color register to set
(DH) - Red value to set
(CH) - Green value to set
(CL) - Blue value to set

(AL) = llH - Reserved

(AL) = 12H - Set block of color registers
(ES:DX) - Pointer to table of color values

Table format: red, green, blue, red,
green, blue

(BX) - First color register to set
(CX) - Number of color registers to set

(AL) = 13H to 14H - Reserved

(AL) = 15H - Read individual color register
(BX) - Color register to read

On Return:
(DH) - Red value read
(CH) - Green value read
(CL) - Blue value read

(AL) = 16H - Reserved

(AL) = 17H - Read a block of color registers
(ES:DX) - Pointer to destination table for values

Table format: red, green, blue, red,
green, blue

(BX) - First color register to read
(CX) - Number of color registers to read

On Return:
(ES:DX) - Pointer to table of values

2-24 INT 10H - Video

(AL) = 18H to lAH - Reserved

(AL) = lBH - Sum color values to gray shades
(BX) - First color register to sum
(CX) - Number of color registers to sum

Note: This call reads red, green, and blue values found in color
registers, performs a weighted sum (30% red + 59%
green + 11 % blue), then writes result into each red,
green, and blue component of the color register (original
data is not retained).

For all others no action is performed.

(AH) = 11 H - Character Generator

For systems with EGA capability, this call initiates a mode set,
completely resetting the video environment but maintaining the
regenerator buffer.

(AL) = 00H - User alpha load
(ES:BP) - Pointer to user table
(CX) - Count to store
(DX) - Character offset into table
(BL) - Block to load
(BH) - Number of bytes per character

(AL) = 01H - ROM monochrome set
(BL) - Block to load

(AL) = 02H - ROM 8x8 double dot
(BL) - Block to load

(AL) = 03H - Set block specifier (valid in alpha modes)
(BL) - Character generator block selects

For example:

Character attribute byte. bit 3 = 0:
(BL) bits 1. 0 select a block from blocks 0 to 3

Character attribute byte. bit 3 = 1:
(BL) bits 31 2 select a block from blocks 0 to 3

• To set a 256-character set using block 3, set (BL) = OFH; this
selects a single block. Character attribute bit 3 turns
foreground intensity on or off.

INT 10H - Video 2-25

• To specify a 512 character set as active using blocks 0 and 3,
set (BL) = OCH; this selects block 0 when character attribute
bit 3 = 0, and block 3 when character attribute bit 3 = 1.

If bits (1, 0) and bits (3, 2) are the same, only one block is
selected and bit 3 of the attribute byte turns the foreground
intensity on or off.

When 512 characters are active, a function call with (AX) = 1000H
and (BX) = 0712H is recommended to set the color planes with
eight consistent colors.

Register values, (AL) = 10H, 11H, and 12H, are similar to (AL) =
OOH, 01H, and 02H, respectively, with the following exceptions:

1. Page 0 must be active.
2. Points (bytes per character) are recalculated.
3. Rows are calculated as follows:

INT [(200 or 350) / points] - 1

4. The length of the regenerative buffer is calculated as follows:

(Number of rows on screen) x (Number of columns on screen) x 2

5. The CRT controller registers are reprogrammed as follows:

R09H = Points - 1
R0AH = Points - 2
R0BH = Points - 1
R12H = [(Number of rows on screen) x Points]
R14H = Points - 1

(Done in mode 7H only)

Maximum scan line
Cursor start
Cursor end

- 1 Vertical display end
Underline location.

Note: The preceding register calculations must be close to the
original table values or the results may be unpredictable.

(AL) = 10H - User alpha load
(ES:BP) - Pointer to user table
(CX) - Count to store
(DX) - Character offset into table
(BL) - Block to load
(BH) - Number of bytes per character

(AL) = llH - ROM monochrome set
(BL) - Block to load

(AL) = 12H - ROM 8x8 double dot
(BL) - Block to load

2-26 INT 10H - Video

(AL) = 20H - Set user graphics characters pointer at INT lFH
(ES:BP) - Pointer to user table

(AL) = 21H - Set user graphics characters pointer at INT 43H
(ES:BP) - Pointer to user table
(CX) - Points (bytes per character)
(BL) - Row specifier

= 00H - User
(DL) - Rows

= 01H - 14 (0EH)
= 02H - 25 (19H)
= 03H - 43 (2BH)

(AL) = 22H - ROM 8xl4 Set
(BL) - Row specifier

(AL) = 23H - ROM 8x8 double dot
(BL) - Row specifier

Note: (AL) = 10H, 11 H, 12H, 20H, 21 H, 22H, or 23H should be
called only immediately after a mode set is issued, or the
results may not be predictable.

(AL) = 30H - Information
(BH) - Font pointer

= 00H - Return current INT lFH pointer
= 01H - Return current INT 44H pointer
= 02H - Return ROM 8x14 font pointer
= 03H - Return ROM double dot pointer
= 04H - Return ROM double dot pointer (top)
= 05H - Return ROM alpha alternate 9x14

On Return:
(CX) - Points
(DL) - Rows
(ES:BP) - Pointer to table

For Personal System/2 products except Model 25 and Model 30:

(AL) = 00H - User alpha load
(ES:BP) - Pointer to user table
(CX) - Count to store
(DX) - Character offset into table
(BL) - Block to load
(BH) - Number of bytes per character

INT 1 OH - Video 2-27

(AL) = 01H - ROM 8x14 font
(BL) - Block to load

(AL) = 02H - ROM 8x8 double dot font
(BL) - Block to load

(AL) = 03H - Set block specifier (valid in alpha modes)
(BL) - Character generator block selects

For example:

Character attribute byte bit 3 = 0:
(BL) bits 4, l, 0 select a block from blocks 0 to 7

Character attribute byte bit 3 = 1:
(BL) bits 5, 3, 2 select a block from blocks 0 to 7

• To set a 256-character set using block 6, set (BL) = 03AH;
this selects a single block. Character attribute bit 3 turns
foreground intensity on or off.

• To specify a 512-character set as active using blocks 0 and 6,
set (BL) = 028H; this selects block 0 active when character
attribute bit 3 = 0, and block 6 active when character
attribute bit 3 = 1. ·

If bits (4, 1, 0) and bits (5, 3, 2) are the same, then only one block
is selected and bit 3 of the attr!bute byte turns foreground
intensity on or off.

When 512 characters are active, a function call with (AX) = 1000H
and (BX) = 0712H is recommended to set color planes with eight
consistent colors.

(AL) = 04H - ROM 8x16 Font
(BL) - Block to load

Register values (AL) = 10H, 11 H, 12H, and 14H, are si"!lilar to
(AL) = OOH, 01 H, 02H, and 04H, respectively, with the following
exceptions:

1. Page O is active.
2. Points (bytes per character) are recalculated.
3. Rows are calculated as follows:

INT[(200, 350, or 400) / points] - 1

4. The length of the regenerative buffer is calculated as follows:

(Number of rows on screen) x (Number of columns on screen) x 2

2-28 INT 10H - Video

5. The CRT controller registers are reprogrammed as follows:

R09H = Points - 1
R0AH = Points - 2
R0BH = Points - 1

Maximum scan line
Cursor start
Cursor end

R12H =Vertical displacement end
For 350 and 400 scan line modes:

[(Number of rows on screen) x Points] - 1
For 200 scan line modes:

{[(Number of rows on screen) x Points] x 2} -
R14H = Points - 1 Underline location

(Done in mode 7H only)

Note: The preceding register calculations must be close to the
original table values or the results may be unpredictable.

(AL) = 10H - User alpha load
(ES:BP) - Pointer to user table
(CX) - Count to store
(DX) - Character offset into table
(BL) - Block to load
(BH) - Number of bytes per character

(AL) = llH - ROM 8x14 font
(BL) - Block to load

(AL) = 12H - ROM 8x8 double dot font
(BL) - Block to load

(AL) = 14H - ROM 8x16 font
(BL) - Block to load

(AL) = 20H - Set user graphics characters pointer at INT lFH
(ES:BP) - Pointer to user table

(AL) = 21H - Set user graphics characters pointer at INT 43H
(ES:BP) - Pointer to user table
(CX) - Points (bytes per character)
(BL) - Row specifier

= 00H - User
(DL) - Rows

= 01H - 14 (0EH)
= 02H - 25 (19H)
= 03H - 43 (2BH)

(AL) = 22H - ROM 8xl4 font
(BL) - Row specifier

INT 10H - Video 2-29

(AL) = 23H - ROM 8x8 double dot font
(BL) - Row specifier

(AL) = 24H - ROM 8x16 font
(BL) - Row specifier

Note: (AL) = 10H, 11H, 12H, 14H, 20H, 21H, 22H, 23H, or 24H
should be called only immediately after a mode set is
issued, or the results may not be predictable.

(AL) = 30H - Information
(BH) - Font pointer

On Return:

= 00H - Return current INT lFH pointer
= 01H - Return current INT 43H pointer
= 02H - Return ROM 8x14 font pointer
= 03H - Return ROM 8x8 font pointer
= 04H - Return ROM 8x8 font pointer (top)
= 05H - Return ROM 9x14 font alternate
= 06H - Return ROM 8x16 pointer
= 07H - Return ROM 9x16 font alternate

(CX) - Points
(DL) - Rows (number of character rows on screen - 1)
(ES:BP) - Pointer to table

For Personal System/2 Model 25 and Model 30:

(AL) = 00H - User alpha load
(ES:BP) - Pointer to user table
(CX) - Count to store
(DX) - Character offset into table
(BL) - Block to load
(BH) = 16 bytes per character for 400 scan lines

Note: If (BH) = 14 bytes per character for 400 scan lines,
characters are extended to 16-high by extending the last
line of 14-high characters.

(AL) = 01H - Reserved
[If called, (AL) = 04H executed]

(AL) = 02H - ROM 8x8 double dot font
(BL) - Block to load

2·30 INT 10H - Video

(AL) = 03H - Set block specifier (valid in alpha modes)
(BL) - Character generator block selects

Character attribute byte bit 3 = 0:
(BL) bits 1, 0 select a block from blocks 0 to 3

Character attribute byte bit 3 = 1:
(BL) bits 3, 2 select a block from blocks 0 to 3

For example:

• To specify a 256-character set active using block 2, set (BL)
= OAH; this selects a single block. Character attribute bit 3
turns foreground intensity on or off.

• To specify a 512-character set active using blocks O and 2, set
{BL) = 08H; this selects block 0 active when character
attribute bit 3 = 0, and block 2 active when character
attribute bit 3 = 1.

If bits (1, 0) and bits (3, 2) are the same, then only one block is
selected and bit 3 of the attribute byte turns foreground intensity
on or off.

When 512 characters are active, a function call with (AX) = 1000H
and (BX) = 0712H is recommended to set color registers,
resulting in eight consistent colors.

A block specifier command must be issued following any
character load command to make the loaded block an active
character set.

(AL) = 04H - ROM 8x16 font
(BL) - Block to load

The following register values are reserved. Calls to (AL) = 10H,
11 H, 12H, and 14H are executed as if they were calls to (AL) =
OOH, 01H, 02H, and 04H, respectively.

(AL) = 10H - Reserved
[if called - (AL) = 00H executed]

(AL) = llH - Reserved
[if called - (AL) = 01H executed]

(AL) = 12H - Reserved
[if called - (AL) = 02H executed]

INT 10H - Video 2·31

(AL) = 14H - Reserved
[if called - (AL) = 04H executed]

(AL) = 20H - Set user graphics characters pointer at INT lFH
(ES:BP) - Pointer to user table

(AL) = 21H - Set user graphics characters pointer at INT 43H
(ES:BP) - Pointer to user table
(CX) - Points (bytes per character)
(BL) - Row specifier

= 00H - User
(DL) - Rows

= 01H - 14 (0EH)
= 02H - 25 (19H)
= 03H - 43 (2BH)

(AL) = 22H - Reserved
[if called, (AL) = 24H executed]

(AL) = 23H - ROM 8x8 double dot font
(BL) - Row specifier

(AL) = 24H ROM 8x16 font
(BL) - Row specifier

Note: (AL) = 20H, 21 H, 22H, 23H, or 24H should be called only
immediately after a mode set is issued, or the results may
not be predictable.

(AL) = 30H - Information
(BH) - Font pointer

On Return:

= 00H - Return current INT lFH pointer
= 01H - Return current INT 43H pointer
= 02H - Reserved (if called, ROM 8xl6 pointer returned)
= 03H - Return ROM 8x8 font pointer
= 04H - Return ROM 8x8 font pointer (top)
= 05H - Reserved
= 06H - Return ROM 8x16 pointer
= 07H - Reserved

(CX) - Points
(DL) - Rows (number of character rows on screen - 1)
(ES:BP) - Pointer to table

For all others, no action is performed.

2-32 INT 10H - Video

(AH) = 12H - Alternate Select

For systems with EGA capability and Personal System/2 products
except Model 25 and Model 30:

(BL) = 10H - Return EGA information
(BH) = 00H - Color mode in effect (3Dx address range)

= 01H - Monochrome mode in effect (3Bx address range)
(BL) - Memory value

= 00H - 64KB
= 01H - 128KB
= 02H - 192KB
= 03H - 256KB
= 04H to FFH - Reserved

(CH) = Adapter bits
(CL) = Switch setting

(BL) = 20H - Select alternate print screen routine

For Personal System/2 products except Model 25 and Model 30:

(BL) = 30H - Select scan lines for alphanumeric modes
(Takes effect on next mode set)

(AL) = 0 - 200 scan lines
= 1 - 350 scan lines
= 2 - 400 scan lines

On Return:
(AL) = 12H - Function supported

(BL) = 31H - Default palette loading during set mode
(AH) = 00H
(AL) = 0 - Enable default palette loading

1 - Disable default palette loading

On Return:
(AL) = 12H - Function supported

Note: The EGA 16-palette registers, the overscan register, and
the 256 color registers are not altered during any mode set
when in the disabled state.

INT 10H - Video 2-33

(BL) = 32H - Video
(AL) = 0 - Enable video

= 1 - Disable video

On Return:
(AL) = 12H - Function supported

Note: The decode for the video 1/0 port addresses and the
regenerator buffer addresses is enabled/disabled for the
display that is currently active.

(BL) = 33H - Summing to gray shades
(AL) = 0 - Enable summing

= 1 - Disable summing

On Return:
(AL) = 12H - Function supported

Note: When enabled, summing occurs during (AH) = OOH (Set
Mode) color register loading and (AH) = 10H (Set Palette
Registers).

(BL) = 34H - Cursor emulation
(AL) = 0 - Enable cursor emulation

= 1 - Disable cursor emulation

On Return:
(AL) = 12H - Function supported

Note: When enabled, the requested start/end value passed to
(AH) = 01 H (Set Cursor Type), is scaled to the current
character height. The power-on default is to enable cursor
emulation.

For Personal System/2 Model 25 and Model 30:

(BL) = 20H - Select alternate print screen routine

(BL) = 30H - Reserved

(BL) = 31H - Default palette loading during set mode (AH = 00H)
(AL) = 0 - Enable default palette loading

= 1 - Disable default palette loading (the 256 color
registers are not altered during any mode set
when disabled)

2-34 INT 10H - Video

On Return:
(AL) = 12H - Function supported

(BL) = 32H - Video (the video I/O address and buffers are
enabled/disabled)

(AL) = 0 - Enable video
= 1 - Disable video

On Return:
(AL) = 12H - Function supported

(BL) = 33H - Summing to gray shades
(AL) = e - Enable summing

= 1 - Disable summing

On Return:
(AL) = 12H - Function supported

(BL) = 34H - Reserved

Note: When enabled, summing occurs during (AH) = OOH (Set
Mode) color register loading, and on (AH) = 10H (Set
Palette Registers).

For Personal System/2 products:

(BL) = 35H Display switch

(AL) = 00H - Initial adapter video off
(ES:DX) - Pointer to switch state save area of

128 bytes
= 01H - Initial system board video on
= 02H - Switch off active video

(ES:DX) - Pointer to switch state buffer save area
= 03H - Switch on inactive video

(ES:DX) = Pointer to previously saved switch state
buffer

On Return for all:
(AL) = 12H - Function supported

This interface allows display switching between a system
board video driven display and an adapter video driven
display when there is overlap in usage of the BIOS data area
and in hardware capabilities.

INT 10H - Video 2-35

Display switching requires that a disable function is available
for the system board and the adapter video functions [(AH) =

12H, (BL) = 32H].

If there is no conflict between the adapter video and the
system board video, both video functions are active in the
system and display switching is not required.

If there is conflict between the adapter video and the system
board video, the adapter video function is the primary video
source. The system board video function remains disabled
until display switching is enabled.

The following steps initiate display switching:

1. Initial adapter video off, (AL) = OOH
2. Initial system board video on, (AL) = 01H.

The initiate display switching steps are valid only the first
time switching is initiated. After the initiation steps,
switching between the system board and adapter displays is
done through the switch-off active video request, (AL) = 02H
and the switch-on inactive video request, (AL) = 03H.

For a switch-off active video request, (AL) = 02H, the
currently active video function and display are disabled.
The switch state buffer saves the video state information.
This state information is required when reactivation of
this display is desired through a switch-on inactive video
request, (AL) = 03H.

For a switch-on inactive video request, (AL) = 03H, the
currently inactive video function and display are enabled.
The switch state buffer restores the video state
information. This state information was saved on a
previous switch-off active video request, (AL) = 02H, for
this display.

2-36 INT 1 OH - Video

For Personal System/2 products except Model 25 and Model 30:

(BL) = 36H - Video screen off /on
(AL) = 1 - Screen off

= e - Screen on

On Return:
(AL) = 12H - Function supported

For all others, no action is performed.

(AH) = 13H - Write String

For PC XT BIOS dated 1/10/86 and after, AT, EGA, PC
Convertible, and Personal System/2 products:

(ES:BP) - Pointer to string to write
(CX) - Character-only count
(DX) - Position to begin string, in cursor terms
(BH) - Page number (0-based), see Figure 2-4 on page 2-13 for

maximum pages

(AL) = 00H
(BL) - Attribute

String - (Char, char, char, •..); Cursor not moved

(AL) = 01H
(BL) - Attribute

String - (Char, char, char, ...); Cursor is moved

(AL) = 02H
String - (Char, attr, char, attr, .•.)
Cursor not moved, valid for alpha modes only

(AL) = 03H
String - (Char, attr, char, attr, •••)
Cursor is moved, valid for alpha modes only

Note: Carriage Return, Line Feed, Backspace, and Bell are
treated as commands rather than printable characters.

For all others, no action is performed.

INT 10H - Video 2-37

(AH) = 14H - Load LCD Character Font/Set LCD High-Intensity
Substitute

For PC Convertible:

(AL) = eeH - Load user specified font
(ES:DI) - Point to character font within user table where

loading starts
(CX) - Number of characters to store (1 to 256) value

checked
(DX) - Character offset into RAM font area
(BL) = 00H - Load main font (block 0)

= 01H - Load alternate font (block 1)
= 02H to FFH - No operation

(BH) - Number of bytes per character (1 to 255) value
checked

(AL) = 01H - Load system ROM default font
(BL) = 00H - Load main font (block 0)

= 01H - Load alternate font (block 1)
= 02H to FFH - No operation

(AL) = 02H - Set mapping of LCD high intensity attribute
(BL) = 00H - Ignore high-intensity attribute

= 01H - Map high-intensity to reverse image
= 02H - Map high-intensity to underscore
= 03H - Map high-intensity to select alternate font
= 04H to FFH - No operation

(AL) = 03H to FFH - No operation

For all others, no action is performed.

(AH) = 15H - Return Physical Display Parameters for Active
Display

For PC Convertible:

On Return:
(AX) - Alternate display adapter type

= e - No alternate adapter
= 5140 - LCD
= 5153 - CGA type display
= 5151 - Monochrome type display

2-38 INT 10H - Video

(ES:DI) - Points to table defined as follows:
Word 1 - Display model number
Word 2 - Number of vertical PELs per meter
Word 3 - Number of horizontal PELs per meter
Word 4 - Total number of vertical PELs
Word 5 - Total number of horizontal PELs
Word 6 - Horizontal PEL separation in micrometers

(center to center)
Word 7 - Vertical PEL separation in micrometers

(center to center)

The PC Convertible has defined the following display types:

Word Monochrome CGA LCDaaCGA LCD (Monochrome)

1 5151H 5153H 5140H 5140H
2 0 0498H 08E1H 0
3 0 OA15H 0987H 0
4 0 OOCBH OOCBH 0
5 0 0280H 0280H 0
6 0 0352H 01B8H 0
7 0 0184H 019AH 0

Figure 2-5. PC Convertible Display Types

For all others no action is performed.

(AH) = 1 &H to 19H - Reserved

(AH) = 1AH - Read/Write Display Combination Code

For Personal System/2 products:

(AL) = 00H - Read display combination code

On Return:
(AL) = lAH - Function supported (see display codes on page

2-40)
(BL) - Active display code
(BH) - Alternate display code

(AL) = 01H - Write display combination code (see display codes
on page 2-48)

(BL) - Active display code
(BH) - Alternate display code

On Return:
(AL) = lAH - Function supported

INT 10H - Video 2-39

Display Codes:

00H - No display
01H - Monochrome with 5151 (monochrome)
02H - CGA with 5153/4 (color)
03H - Reserved
04H - EGA with 5153/4 (color)
05H - EGA with 5151 (monochrome)
06H - Professional Graphics System with 5175 (color)
07H - Personal System/2 products except Model 25 and Model 30 with

analog monochrome
08H - Personal System/2 products except Model 25 and Model 30 with

analog color
09H to 0AH - Reserved
0BH - Personal System/2 Model 25 and Model 30 video with analog

monochrome
0CH - Personal System/2 Model 25 and Model 30 video with analog color
0DH to FEH - Reserved
-1 - Unknown

For all others no action is performed.

2-40 INT 10H - Video

(AH) = 1 BH • Return Functlonallty/State Information

For Personal System/2 products:

(BX) - Implementation type
(ES:DI) - User buffer pointer for return of information

On Return:
User buffer contains functionality/state information
(AL) = lBH - Function supported

For implementation type 00H:

(BX) = 00H
(ES:DI) = Buffer of size 40H bytes

(DI+00H) word - Offset to static functionality information
(DI+02H) word - Segment to static functionality information

Video states:
(The following information is dynamically generated and
reflects the current video state.)

(DI+04H) byte - Video mode [see (AH) = 00H on page 2-12 for
supported modes]

(DI+05H) word - Columns on screen (character columns on screen)

(DI+07H) word - Length of regenerator buffer (bytes)
(Dl+09H) word - Starting address in regenerator buffer
(DI+0BH) word - Cursor position for eight display pages (row,

column)

(Dl+lBH) word - Cursor type setting (cursor start/end value)
(DI+lDH) byte - Active display page
(DI+lEH) word - CRT controller address (3BX-monochrome, 3DX-color)

(DI+20H) byte - Current setting of 3x8 register
(DI+21H) byte - Current setting of 3x9 register
(DI+22H) byte - Rows on screen (character lines on screen)

(DI+23H) word - Character height (scan lines per character)
(Dl+25H) byte - Display combination code (active)
(DI+26H) byte - Display combination code (alternate)

(DI+27H) word - Colors supported for current video mode
(Dl+29H) byte - Display pages supported for current video mode

(DI+2AH) byte - Scan lines in current video mode
= 0 - 200 scan lines
= 1 - 350 scan lines
= 2 - 400 scan lines
= 3 - 480 scan lines
= 4 to 255 - Reserved

INT 10H - Video 2-41

(DI+2BH) byte - Primary character block (Reserved on
Personal System/2 Model 25 and Model 30)

= 0 - Block 0
= 1 - Block 1
= 2 - Block 2

= 255 - Block 255
This information is based on block specifier [see (AH) llH,
(AL) = 03H].

(DI+2CH) byte - Secondary character block (Reserved on
Personal System/2 Model 25 and Model 30)

= 0 - Block 0
= 1 - Block 1
= 2 - Block 2

= 255 - Block 255
This information is based on block specifier [see (AH) llH,
(AL) = 03H].

(DI+2DH) byte - Miscellaneous state information
Bits 7, 6 - Reserved
Bit 5 = 0 - Background intensity

= 1 - Blinking
Bit 4 = 1 - Cursor emulation active (Always 0

for Personal System/2 Model 25 and Model 30)
Bit 3 = 1 - Mode set default palette loading disabled
Bit 2 = 1 - Monochrome display attached
Bit 1 = 1 - Summing active
Bit 0 = 1 - All modes on all displays active (Always 0

for Personal System/2 Model 25 and Model 30)

(DI+2EH) byte - Reserved
(DI+2FH) byte - Reserved
(DI+30H) byte - Reserved

(DI+31H) byte - Video memory available
= 0 - 64KB
= 1 - 128KB
= 2 - 192KB
= 3 - 256KB
= 4 to 255 - Reserved

(DI+32H) byte - Save pointer state information
Bits 7, 6 - Reserved

2-42 INT 10H - Video

Bit 5 = 1 - DCC extension active
Bit 4 = 1 - Palette override active
Bit 3 = 1 - Graphics font override active
Bit 2 = 1 - Alpha font override active
Bit 1 = 1 - Dynamic save area active
Bit 0 = 1 - 512-character set active

(DI+33H) to (Dl+3FH) 13 bytes - Reserved

Format of static functionality table:

e = Not supported
1 = Supported

(00H) byte - Video modes
Bit 7 = Mode 07H
Bit 6 = Mode 06H
Bit 5 = Mode 05H
Bit 4 = Mode 04H
Bit 3 = Mode 03H
Bit 2 = Mode 02H
Bit 1 = Mode 01H
Bit e = Mode eeH

(01H) byte - Video modes
Bit 7 = Mode 0FH
Bit 6 = Mode 0EH
Bit 5 = Mode 0DH
Bit 4 = Mode ecH
Bit 3 = Mode 0BH
Bit 2 = Mode 0AH
Bit 1 = Mode 09H
Bit 0 = Mode 08H

(02H) byte - Video modes
Bits 7 to 4 - Reserved
Bit 3 = Mode 13H
Bit 2 = Mode 12H
Bit 1 = Mode llH
Bit 0 = Mode 10H

See (AH) = 00H on page 2-12 for video mode information.

(03H) to (07H) 4 bytes - Reserved

(07H) byte - Scan lines available in text modes
Bits 7 to 3 - Reserved
Bit 2 = 400 scan lines
Bit 1 = 350 scan lines
Bit 0 = 200 scan lines

See (AH) = 12H, (BL) = 30H for text mode scan line selection.

(08H) byte - Character blocks available in text modes
(09H) byte - Maximum number of active character blocks in text

modes

See (AH) = llH for character block loading interfaces.

INT 10H - Video 2-43

(0AH) byte - Miscellaneous functions
Bit 7 = Color paging [see (AH) = lGH]

(Always 0 for Personal System/2 Model 25 and
Model 30)

Bit 6 = Color palette [see (AH) = 10H]
Bit 5 = EGA palette [see (AH) = 10H]
Bit 4 = Cursor emulation [see (AH) = 01H]
Bit 3 = Mode set default palette loading [see

(AH) = 12H]
Bit 2 = Character font loading [see (AH) = llH]
Bit 1 = Summing [see (AH) = 10H and (AH) = 12H]
Bit 0 = All modes on all displays {Always 0

for Personal System/2 Model 25 and Model 30)

(0BH) byte - Miscellaneous functions
Bits 7 to 4 - Reserved
Bit 3 = DCC [see (AH) = lAH]
Bit 2 = Background intensity/blinking control [see

(AH) = 10H]
Bit 1 = Save/restore [see (AH) = lCH]

(Always 0 for Personal System/2 Model 25 and
Model 30)

Bit 0 = Light pen [see (AH) = 04H]

(0CH) to (0DH) 2 bytes - Reserved

(0EH) byte - Save pointer functions
Bits 7, 6 = Reserved
Bit 5 = DCC extension (Always 0 for

Personal System/2 Model 25 and Model 30)
Bit 4 = Palette override
Bit 3 = Graphics font override
Bit 2 =Alpha font overr1de
Bit 1 = Dynamic save area
Bit 0 = 512-character set

(0FH) byte - Reserved

For all others no action is performed.

2-44 INT 10H - Video

(AH) = 1 CH - Save/Restore Video State

For Personal System/2 products except Model 25 and Model 30:

(AL) = 00H - Return save/restore state buffer size
(CX) - Requested states (see supported save/restore states

on page 2-45)

On Return:
(AL) = lCH - Function supported
(BX) - Save/restore buffer size block count [number of

64-byte blocks for saving requested states in (CX)]

(AL) = 01H - Save state
(CX) = Requested states (see supported save/restore states

on page 2-45)
(ES:BX) = Buffer pointer to save state

On Return:
(AL) = lCH - Function supported

Requested states saved

(AL) = 02H - Restore state
(CX) - Requested states (see supported save/restore states

on page 2-45)
(ES:BX) - Buffer pointer to restore state

On Return:
(AL) = lCH - Function supported

Requested states restored

Supported save/restore states

Bits 15 to 3 - Reserved and set to 0
Bit 2 = 1 - Save/restore video DAC state and color registers
Bit 1 = 1 - Save/restore video BIOS data area
Bit 0 = 1 - Save/restore video hardware state

Note: The current video state is altered during the save state
operation. To maintain the current video state, perform a
restore state operation.

For all others, no action is performed.

(AH) = 1 DH to FFH - Reserved

INT 10H - Video 2-45

Interrupt 11 H - Equipment Determination

This routine returns the optional devices that are attached to the
system. BIOS data area hex 40:10 (installed hardware) is set during
the POST as fol lows:

On Return:
(AX) - Equipment flags

Bits 15,14 - Number of printers attached
Bit 13 - Internal modem installed
Bit 12 - Not used
Bits 11,10.9 - Number of RS-232C cards attached
Bit 8 - Not used
Bits 7,6 - Number of diskette drives, if bit 0 = 1

(values are binary)
= 00 - 1 drive
= 01 - 2 drives

Bits 5,4 - Video mode type (values are binary)
= 00 - Reserved
= 01 - 40x25 (color)
= 10 - 80x25 (color)
= 11 - 80x25 (monochrome)

Bit 3 - Not used
Bit 2 - Pointing device installed
Bit 1 = Math coprocessor installed
Bit 0 = IPL diskette installed

2-48 INT 11H - Equipment Determination

Interrupt 12H - Memory Size Determination

This routine returns the amount of RAM up to 640KB in the system as
determined by the POST, minus the memory allocated to the
Extended BIOS Data Area. See INT 15H, (AH) = C1H (Return
Extended BIOS Data Area Segment Address) on page 2-94, and INT
15H, (AH) = SSH (Extended Memory Size Determine) on page 2-S7 for
additional information.

The following assumptions are made during memory size
determination:

• All installed memory is functional
• All memory from 0 to 640KB is contiguous.

On Return, (AX) contains the number of contiguous 1 KB blocks of
memory.

INT 12H - Memory Size Determination 2-47

Interrupt 13H - Diskette

This interface provides access to diskette drives. The following is a
summary of the diskette functions of Interrupt 13H.

(AH) = OOH - Reset Diskette System
(AH) = 01 H - Read Status of Last Operation
(AH) = 02H - Read Desired Sectors into Memory
(AH) = 03H - Write Desired Sectors from Memory
(AH) = 04H - Verify Desired Sectors
(AH) = OSH - Format Desired Track
(AH) = 06H to 07H - Reserved
(AH) = 08H - Read Drive Parameters
(AH) = 09H to 14H - Reserved
(AH) = 15H - Read DASO Type
(AH) = 16H - Diskette Change Line Status
(AH) = 17H - Set DASO Type for Format
(AH) = 18H - Set Media Type for Format
(AH) = 19H to FFH - Reserved

Figure 2-6. INT 13H - Diskette Functions

Note: For the diskette drive parameters see "Diskette Drive
Parameter Table" on page 3-26.

For AT, PC XT BIOS dated 1/10/86 and after, PC XT Model 286, PC
Convertible, and Personal System/2 products, operations that require
the diskette drive motor to be turned on call INT 15H, (AX) = 90FDH
(Diskette Drive Motor Start). This allows the operating system to
perform a different task while waiting for the diskette drive motor to
accelerate.

Prior to waiting for the diskette interrupt, BIOS calls INT 15H, (AH) =
90H (Device Busy) with (AL) = 01 H (Type = Diskette). This informs
the operating system of the wait. The complementary INT 15H, (AH)
= 91 H (Interrupt Complete) with (AL) = 01 H (Type = Diskette) is
called indicating the operation is complete. See "Multitasking
Provisions" on page 4-16 for additional information.

2-48 INT 13H - Diskette

(AH) = OOH - Reset Diskette System

Notes:

(DL) - Drive number (0-based)
Bit 7 = 0 - Diskette

On Return:
CF = 1 - Status is non 0

= 0 - Status is 0

(AH) - Status of operation
= 80H - Diskette drive not ready
= 40H - Seek operation failed
= 20H - General controller failure
= 10H - Cyclic redundancy check (CRC) error on diskette

read
= 0CH - Media type not found
= 09H - Attempt to OMA across a 64KB boundary
= 08H - OMA overrun on operation
= 06H - Diskette change line active
= 04H - Requested sector not found
= 03H - Write protect error
= 02H - Address mark not found
= 01H - Invalid diskette parameter
= 00H - No error

Diskette status at hex 40:41 - Status of operation

1. If an error is reported by the diskette BIOS, reset the diskette
system and retry the operation.

2. If (DL) is greater than or equal to hex 80, the diskette system
is reset then the fixed disk system is reset. The status
returned in (AH) is the status of fixed disk reset. Read the
status of the diskette system after completing the operation.

(AH) = 01 H - Read Status of Last Operation

(DL) - Drive number (0-based)
B1t 7 = 0 - Diskette (value checked)

On Return:
CF = 1 - Status is non e

= e - Status is 0
(AH) - Status of operation (see values for the status of

operation on page 2-49)

INT 13H - Diskette 2-49

(AH) = 02H - Read Desired Sectors Into Memory

(DL) - Drive number (0-based)
Bit 7 = 0 - Diskette (value checked)

(DH) - Head number (not value checked, 0-based)
(CH) - Track number (not value checked, 0-based)
(CL) - Sector number (not value checked)
(AL) - Number of sectors (not value checked)
(ES:BX) - Address of buffer

On Return:
CF = 1 - Status is non 0

= 0 - Status is 0
(AL) - Number of sectors actually transferred
(AH) - Status of operation (see values for the status of

operation on page 2-49)

Diskette status at hex 40:41 - Status of operation

Note: If an error is reported by the diskette BIOS, reset the
diskette system, then retry the operation.

(AH) = 03H - Write Desired Sectors from Memory

Notes:

(DL) - Drive number (0-based)
Bit 7 = 0 - Diskette (value checked)

(DH) - Head number (not value checked, 0-based)
(CH) - Track number (not value checked, 0-based)
(CL) - Sector number (not value checked)
(AL) - Number of sectors (not value checked)
(ES:BX) - Address of buffer

On Return:
CF = 1 - Status is non 0

= 0 - Status is 0
(AL) - Number of sectors actually transferred
(AH) - Status of operation (see values for the status of

operation on page 2-49)

Diskette status at hex 40:41 - Status of operation

1. If an error is reported by the diskette BIOS, reset the diskette
system, then retry the operation.

2. For PC XT Model 286, (AL) is not required.

2-50 INT 13H - Diskette

(AH) = 04H - Verify Desired Sectors

Notes:

(DL) - Drive number (0-based)
Bit 7 = 0 - Diskette (value checked)

(DH) - Head number (not value checked, 0-based)
(CH) - Track number (not value checked, 0-based)
(CL) - Sector number (not value checked)
(AL) - Number of sectors (not value checked)
(ES:BX) - Address of buffer

On Return:
CF = 1 - Status is non 0

= 0 - Status is 0
(AL) - Number of sectors verified
(AH) - Status of operation (see values for the status of

operation on page 2-49)

Diskette status at hex 40:41 - Status of operation

1. If an error is reported by the diskette BIOS, reset the diskette
system, then retry the operation.

2. ES:BX is not required for AT BIOS dated 11/15/85 and after,
PC XT Model 286, PC Convertible, or Personal System/2
products.

(AH) = 05H - Format Desired Track

The buffer pointer (ES:BX) must point to the collection of desired
address fields for the track. Each field has the following four
bytes:

Byte 0 - Track number
Byte 1 - Head number
Byte 2 - Sector number

Byte 3 - Number of bytes per sector
= 00H - 128-bytes per sector
= 01H - 256-bytes per sector
= 02H - 512-bytes per sector
= 03H - 1024-bytes per sector

There must be one entry for every sector on the track. This
information is used to find the requested sector during read/write
access. Prior to formatting a diskette, if there is more than one
supported format for the drive in question, it is necessary to call
(AH) = 17H (Set DASO Type for Format), or (AH) = 18H (Set
Media Type for Format) to set the diskette type to be formatted.

INT 13H - Diskette 2-51

Notes:

(AL) - Number of sectors to format (not value checked)
(DL) - Drive number (0-based)

Bit 7 = 0 - Diskette (value checked)
(DH) - Head number (not value checked, 0-based)
(CH) - Track number (not value checked, 0-based)
(ES:BX) - Address of buffer

On Return:
CF = 1 ~ Status is non 0

= 0 - Status is 0
(AH) - Status of operation (see values for the status of

operation on page 2-49)

Diskette status at hex 40:41 - Status of operation

1. If an error is reported by the diskette BIOS, reset the diskette
system, then retry the operation.

2. The diskette parameter table is used to format the diskette.
See "Diskette Drive Parameter Table" on page 3-26.

3. For PC XT Model 286, (AL) is not required.

(AH) = 06H to 07H • Reserved

(AH) = 08H - Read Drive Parameters

There is a parameter table for each supported media type.

For PCjr, PC, PC XT, and for At BIOS dated 1/10/84:

On Return:
CF = 1 - Error
(AH) - Status of operation

= OlH - Invalid command

Diskette status at hex 40:41 - Status of operation

For ail others:

(DL) - Drive number (0-based)
Bit 7 = 0 - Diskette (value checked)

On Return:
(ES:DI) - Pointer to 11-byte parameter table

associated with the maximum supported media type
within the drive in question (see
"Diskette Drive Parameter Table" on page 3-26.)

2-52 I NT 13H - Diskette

(CH) - Maximum number of tracks (low 8 bits of 10-bit track
number. 0-based)

(CL) - Bits 7. 6 - Maximum number of tracks (high 2 bits of
10-bit track number. 0-based)

- Bits 5 to 0 - Maximum sectors per track
(DH) - Maximum head number
(DL) - Number of diskette drives installed
(BH) = 0

(BL) - Bits 7 to 4 = 0
Bits 3 to 0 - Valid drive type value in CMOS

= 01H - 360KB. 5.25 inch. 40 track*
= 02H - 1.2MB. 5.25 inch. 80 track*
= 03H - 720KB. 3.5 inch. 80 track
= 04H - 1.44MB. 3.5 inch. 80 track

(AX) = 0

*KB = 1.024 bytes; MB = 1,048.576 bytes.

When the drive type is known but the CMOS type is invalid,
CMOS is not present, CMOS battery is discharged or CMOS
checksum is invalid, all registers are returned as above except
(BL) = 0.

If the requested drive is not installed, then (AX), (BX), (CX), (DX),
(DI), and (ES) = 0.

Diskette status hex 40:41 = 0 and CF = 0

For drive number 80H or above (indicating fixed disks):

CF = 1 - Error
(AH) - Status of operation

= 01H - Invalid command

(ES), (AX), (BX), (CX), (DH), and (DI) all equal 0 and (DL) contains
the number of drives when any of the following conditions exist:

• Drive number is invalid
• Drive type is unknown and the CMOS is not present
• CMOS battery is discharged or CMOS checksum is invalid
• Drive type is unknown and the CMOS drive type is invalid.

Diskette status hex 40:41 = 0 and CF = 0

INT 13H - Diskette 2-53

(AH} = 09H to 14H - Reserved

(AH}= 15H - Read DASD Type

For AT, PC XT BIOS dated 1110/86 and after, PC XT Model 286, PC
Convertible, and Personal System/2 products:

(DL) - Drive number (0-based)
Bit 7 = 0 - Diskette (value checked)

On Return:
CF= 0 - Operation successfully completed
(AH) = 00H - Drive not present

= 01H - Diskette, no change line available
= 02H - Diskette, change line available
= 03H - Reserved

Diskette status at hex 40:41 - Status of operation

For all others:

On Return:
CF = 1 - Error
(AH) - Status of operation

= 01H - Invalid command

Diskette status at hex 40:41 - Status of operation

(AH} = 1 &H - Diskette Change Line Status

For AT, PC XT BIOS dated 1110/86 and after, PC XT Model 286, PC
Convertible, and Personal System/2 products:

(DL) - Drive number (0-based)
Bit 7 = 0 - Diskette (value checked)

On Return:
(AH) = 00H - 'Diskette change' signal not active

= 01H - Invalid diskette parameter
= 06H - 'Diskette change' signal active
= 80H - Diskette drive not ready

CF = 0 if (AH) is 0
= 1 if (AH) is non 0

Diskette status at hex 40:41 - (AH) on return

2-54 INT 13H - Diskette

For all others:

On Return:
(AH) - Status of operation

= 01H - Invalid command
CF = 1 - Error

Diskette status at hex 40:41 - Status of operation

(AH) = 17H • Set DASD Type for Format

The 'diskette change' signal is checked for all drives that support
it. If found active, the logic attempts to reset 'diskette change' to
the inactive state. If successful, the BIOS sets the data rate for
format and returns the disk change error code. If the attempt
fails, the logic returns the time-out error code and sets the DASO
type to a predetermined state, indicating that the media type is
unknown.

When the 'diskette change' signal is found active, as it is after a
diskette is changed, this function is called again.

For PC XT BIOS dated 1/10/86 and after, AT, PC Convertible, and
Personal System/2 products:

(DL) - Drive number (0-based)
Bit 7 = 0 - Diskette (value checked)

(AL) = 00H - Invalid request
= 01H - Diskette 320/360KB in 360KB drive
= 02H - Diskette 360KB in l.2MB drive
= 03H - Diskette l.2MB in l.2MB drive
= 04H - AT BIOS before 6/10/85: Invalid request

- All others: Diskette 720KB in 720KB drive
= 05H through 0FFH - Invalid request

On Return:
CF = 1 - Status is non 0

= e - Status is 0
(AH) - Status of operation (see values for the status of

operation on page 2-49)

Diskette status at hex 40:41 - Status of operation

INT 13H - Diskette 2-55

For all others:

On Return:
(AH) - Status of operation

= 01H - Invalid command
CF = 1 - Error

Diskette status at hex 40:41 - Status of operation

(AH) = 18H • Set Media Type for Format

For AT BIOS dated 11/15/85 and after, PC XT BIOS dated 1/10/86
and after, PC XT Model 286, and Personal System/2 products, this
function is called before issuing INT 13H, (AH) = 05H (Format the
Desired Track). If the diskette is changed, the function is called
again. A diskette must be present in the drive.

There is one parameter table for each supported media type.

(DL) - Drive number (0-based)
Bit 7 = 0 - Diskette (value checked)

(CH) - Number of tracks (low 8 bits, 0-based)
(CL) - Bits 7, 6 - Number of tracks (high two bits, 0-based)

- Bits 5 to 0 - Sectors per track

On Return:
(ES:DI) - Pointer to 11-byte parameter table for this

media type, unchanged if (AH) is non 0 (see
"Diskette Drive Parameter Table" on page 3-26.)

CF = 1 - Status is non 0
= 0 - Status is 0

(AH) - Status of operation (see values for the status of
operation on page 2-49)

Note: For PC XT Model 286 and Personal System/2 products, this
function monitors the 'diskette change' signal. If the signal
is active, the logic attempts to reset the change line to the
inactive state. If the attempt succeeds (for example, when
media is present), the BIOS sets the correct data rate for
format. If the attempt fails (for example, when no media is
present), the BIOS returns (AH) = 80H (Diskette Drive Not
Ready) and the carry flag is set.

When the 'diskette change' signal is inactive, the BIOS performs
the function as requested.

2-56 INT 13H - Diskette

For al I others:

On Return:
(AH) - Status of operation

= 01H - Invalid command
CF = 1 - Error

Diskette status at hex 40:41 - Status of operation

(AH) = 19H to FFH - Reserved

INT 13H - Diskette 2-57

Interrupt 13H - Fixed Disk

This interface provides access to fixed disk drives. The following is a
summary of the fixed disk functions of INT 13H.

(AH) = OOH - Reset Disk System
(AH) = 01 H - Read Status of Last Operation
(AH) = 02H - Read Desired Sectors into Memory
(AH) = 03H - Write Desired Sectors from Memory
(AH) = 04H - Verify Desired Sectors
(AH) = 05H - Format Desired Cylinder
(AH) = 06H - Format Desired Cylinder and Set Bad Sector Flags
(AH) = 07H - Format Drive Starting at Desired Cylinder
(AH) = 08H - Read Drive Parameters
(AH) = 09H - Initialize Drive Pair Characteristics
(AH) = OAH to OBH - Reserved
(AH) = OCH - Seek
(AH) = OOH - Alternate Disk Reset
(AH) = OEH to OFH - Reserved
(AH) = 10H - Test Drive Ready
(AH) = 11H - Recalibrate
(AH) = 12H to 14H - Reserved
(AH) = 15H - Read DASO Type
(AH) = 16H to 18H - Reserved
(AH) = 19H - Park Heads
(AH) = 1AH - Format Unit
(AH) = 1BH to FFH - Reserved

Figure 2-7. INT 13H - Fixed Disk Functions

Notes:

1. If a fixed disk drive adapter is not installed, the code is not
hooked into INT 13H. The returns are described in the diskette
interface.

2. For the fixed disk interface, the drive number (DL} is value
checked for all functions that use (DL}.

3. For AT, PC XT Model 286, and Personal System/2 products, prior
to waiting for interrupt, the BIOS calls INT 15H, (AH} = 90H
(Device Busy} with (AL} = OOH (Type = Disk}, informing the
operating system of the wait. The complementary INT 15H, (AH}
= 91 H (Interrupt Complete} with (AL} = OOH (Type = Disk}, is
called indicating the operation is complete.

4. For Personal System/2 products, prior to waiting for the fixed disk
reset the BIOS calls INT 15H, (AH} = 90H (Device Busy} with (AL}

2-58 INT 13H - Fixed Disk

= FCH (Type = Fixed Disk Reset). This is a time-out only
function. There is no complementary Post operation. See
"Multitasking Provisions" on page 4-16.

5. Bit 7 of the drive number must be set upon entry to the fixed disk
BIOS.

6. For the drive parameters see "Fixed Disk Drive Parameter Table"
on page 3-18.

(AH) = OOH - Reset Disk System

Notes:

(DL) - Drive number, bit 7 = 1 for fixed disk drive (0-based)

On Return:
CF = 1 - Status is non 0

= 0 - Status is 0

(AH) - Status of operation
= 00H - No error
= 01H - Invalid function request
= 02H - Address mark not found
= 03H - Write protect error
= 04H - Sector not found
= 05H - Reset failed
= 07H - Drive parameter activity failed
= 08H - OMA overrun on operation
= 09H - Data boundary error
= 0AH - Bad sector flag detected
= 0BH - Bad cylinder detected
= 0DH - Invalid number of sectors on format
= 0EH - Control data address mark detected
= 0FH - OMA arbitration level out of range
= 10H - Uncorrectable error checking and correction (ECC)

or cyclic redundancy check (CRC) error
= llH - ECC corrected data error
= 20H - General controller failure
= 40H - Seek operation failed
= 80H - Time-out
= BBH - Undefined error occurred
= CCH - Write fault on selected drive
= E0H - Status error/error register = 0
= FFH - Sense operation failed

1. Reset Disk System is issued only if the 7-bit drive number is
less than or equal to the maximum number of fixed disk
drives. The diskette system is also reset for all values of
(OL).

INT 13H - Fixed Disk 2-59

2. For Personal System/2 products, prior to waiting for the fixed
disk reset, the BIOS calls INT 15, (AH) = 90H (Device Busy)
with (AL) = FCH (Type = Fixed Disk Reset) informing the
operating system of the wait.

(AH) = 01 H - Read Status of Last Operation

(DL) - Drive number, bit 7 = 1 for fixed disk drive (0-based)

On Return:
CF = 1 - Status is non 0

= 0 - Status is 0

(AH) - Status of operation (see values for the status of
operation on page 2-59)

Disk status is reset to e

(AH) = 02H - Read Desired Sectors Into Memory

Notes:

(DL) - Drive number, bit 7 = 1 for fixed disk drive (0-based)
(DH) - Head number (0-based, not value checked)
(CH) - Cylinder number (low 8 bits of 10-bit cylinder number,

0-based, not value checked)

(CL) - Bits 7, 6 - Cylinder number (high 2 bits of 10-bit
cylinder number, 0-based, not value checked)

- Bits 5 to 0 ~Sector number (not value checked)
(AL) - Number of sectors
(ES:BX) - Address of buffer

On Return:
CF = 1 - Status is non 0

= 0 - Status is 0
(AH) - Status of operation (see values for the status of

operation on page 2-59)

1. An 11 H error indicates the data read had a recoverable error
that w~s corrected by the ECC algorithm. The data may be
good; however, the BIOS routine indicates an error to allow
the controlling program to make this determination. The
error may not recur if the data is rewritten.

2. If an error is reported by the fixed disk BIOS, reset the disk
system, then retry the operation.

2-60 INT 13H - Fixed Disk

{AH) = 03H - Write Desired Sectors from Memory

(DL) - Drive number, bit 7 = 1 for fixed disk drive (0-based)
(DH) - Head number (0-based, not value checked)
(CH) - Cylinder number (low 8 bits of 10-bit cylinder number,

0-based, not value checked)

(CL) - Bits 7, 6 - Cylinder number (high 2 bits of 10-bit
cylinder number, 0-based, not value checked)

- Bits 5 to 0 - Sector number (not value checked)
(AL) - Number of sectors
(ES:BX) - Address of buffer

On Return:
CF = 1 - Status is non 0

= 0 - Status is 0
(AH) - Status of operation (see values for the status of

operation on page 2-59)

Note: If an error is reported by the fixed disk BIOS, reset the disk
system, then retry the operation.

{AH) = 04H - Verify Desired Sectors

(DL) - Drive number, bit 7 = 1 for fixed disk drive (0-based)
(DH) - Head number (0-based, not value checked)
(CH) - Cylinder number (low 8 bits of 10-bit cylinder number,

0-based, not value checked)

(CL) - Bits 7, 6 - Cylinder number (high 2 bits of 10-bit
cylinder number, 0-based, not value checked)

- Bits 5 to 0 - Sector number (not value checked)
(AL) - Number of sectors

On Return:
CF = 1 - Status is non 0

= 0 - Status is 0
(AH) - Status of operation (see values for the status of

operation on page 2-59)

Note: If an error is reported by the fixed disk BIOS, reset the disk
system, then retry the operation.

INT 13H - Fixed Disk 2·61

(AH) = 05H - Format Desired Cylinder

(DL) - Drive number, bit 7 = 1 for fixed disk drive (0-based)
(DH) - Head number (0-based, not value checked)
(CH) - Cylinder number (low 8 bits of 10-bit cylinder number,

0-based, not value checked)

(CL) - Bits 7, 6 - Cylinder number (high 2 bits of 10-bit
cylinder number, 0-based, not value checked)

For PC XT:

(AL) - Contains interleave value

On Return:
CF = 1 - Status is non 0

= 0 - Status is 0

(AH) - Status of operation (see values for the status of
operation on page 2-59)

For AT, PC XT Model 286, and Personal System/2 products:

(ES:BX) - Address of buffer

(ES:BX) points to a 512-byte buffer. The first
2 x (Sectors per cylinder) bytes contain F, N for each sector.

On Return:

F = 00H - Good sector
= 80H - Bad sector

N - Sector number

CF = 1 - Status is non 0
= 0 - Status is 0

(AH) - Status of operation (see values for the status of
operation on page 2-59)

For any device using ESDl-type commands:

On Return:
(AH) - Status of operation = 01H - Invalid function request
CF = 1 - Error

Note: If an error is reported by the fixed disk BIOS, reset the disk
system, then retry the operation.

2-62 INT 13H - Fixed Disk

(AH) == 06H - Format Desired Cylinder and Set Bad Sector Flags

Warning: Formatting destroys all information on the fixed disk
drive.

For PC XT:

(DL) - Drive number, bit 7 = 1 for fixed disk drive (0-based)
(DH) - Head number (0-based, not value checked)
(CH) - Cylinder number (low 8 bits of 10-bit cylinder number,

0-based, not value checked)

(CL) - Bits 7, 6 - Cylinder number (high 2 bits of 10-bit
cylinder number, 0-based. not value checked)

(AL) - Interleave value

On Return:
CF = 1 - Status is non 0

= 0 - Status is 0
(AH) - Status of operation (see values for the status of

operation on page 2-59)

For AT, PC XT Model 286, Personal System/2 products, and any
device using ESDl-type commands:

On Return:
(AH) - Status of operation = 01H - Invalid function request
CF = 1 - Error

Note: If an error is reported by the fixed disk BIOS, reset the disk
system, then retry the operation.

(AH) == 07H - Format Drive Starting at Desired Cylinder

For PC XT:

(DL) - Drive number, bit 7 = 1 for fixed disk drive (0-based)
(CH) - Cylinder number (low 8 bits of 10-bit cylinder number,

0-based, not value checked)

(CL) - Bits 7, 6 - Cylinder number (high 2 bits of 10-bit
cylinder number. 0-based, not value checked)

(AL) - Interleave value

On Return:
CF = 1 - Status is non 0

= 0 - Status is 0
(AH) - Status of operation (see values for the status of

operation on page 2-59)

INT 13H - Fixed Disk 2-63

For AT, PC XT Model 286, Personal System/2 products, and any
device using ESDl-type commands:

On Return:
(AH) - Status of operation= 01H - Invalid function request
CF = 1 - Error

Note: If an error is reported by the fixed disk BIOS, reset the disk
system, then retry the operation.

(AH) = 08H - Read Drive Parameters

If the drive number is invalid then (AH) and hex 40:74 = 07H (last
fixed disk drive operation status), (CX) and (DX) = 0, and CF is
set. If no fixed disk drive is attached or no fixed disk drive
adapter is installed, (AH) and hex 40:41 = 01H (last diskette drive
operation status), and CF is set.

(DL) - Drive number, bit 7 = 1 for fixed disk drive (0-based)

On Return:
(DL) - Number of consecutive drives attached (1, 2; controller

card 0 tally only)
(DH) - Maximum value for head number (range 0-3FH)
(CH) - Maximum value for cylinder number (range 0-3FFFH)
(CL) - Maximum value for sector and high order 2 bits of

cylinder numbers

(AH} = 09H - lnitlallze Drive Pair Characteristics

(DL) - Drive number, bit 7 = 1 for fixed disk drive (0-based)

On Return:
CF = 1 - Status is non 0

= 0 - Status is 0
(AH) - Status of operation (see values for the status of

operation on page 2-59)

For PC XT:

Interrupt 41H points to the parameter tables. Four entries in
the PC XT table correspond to the switch settings on the fixed
disk drive adapter. The switches act as an inde:x into the
parameter table. For example, if both switches are set to the
On position, the drive is initialized with the first entry of the
parameter table. If the drive number is an allowable value
[80H ~ (DL) ~ 87H] then both drives 0 and 1 are initialized.

2-64 INT 13H - Fixed Disk

For al I other values, an invalid command status is returned.
If drive 0 initialization fails, drive 1 initialization is not
attempted. If either attempt fails, hex 40:74 = 07H (last fixed
disk drive operation status) and (AH) are updated with the
appropriate error.

For AT, PC XT Model 286, and Personal System/2 products:

Interrupt 41H points to the single parameter table for drive 0,
and interrupt 46H points to the single parameter table for
drive 1. If (DL) = 80H, then drive 0 is initialized using
interrupt 41H. If (DL) = 81H, then drive 1 is initialized using
interrupt 46H. For all other values, an invalid command
status is returned.

For any device using ESDl-type commands:

This function performs no action. Drive configuration
information is ot:>tained from the drive, not from a table in the
host ROM. Drive type initialization is performed
automatically by the controller.

Note: If an error is reported by the fixed disk BIOS, reset the disk
system, then retry the operation.

(AH) == OAH to OBH - Reserved

(AH) == OCH - Seek

(DL} - Drive number, bit 7 = 1 for fixed disk drive (0-based}
(DH} - Head number (0-based, not value checked)
(CH} - Cylinder number (low 8 bits of 10-bit cylinder number,

0-based, not value checked)

(CL} - Bits 7, 6 - Cylinder number (high 2 bits of 10-bit
cylinder number, 0-based, not value checked}

On Return:
CF = 1 - Status is non 0

= 0 - Status is 0
(AH) - Status of operation (see values for the status of

operation on page 2-59}

Note: If an error is reported by the fixed disk BIOS, reset the disk
system, then retry the operation.

INT 13H - Fixed Disk 2-65

(AH) = OOH - Alternate Disk Reset

(DL) - Drive number. bit 7 = 1 for fixed disk drive (0-based)

On Return:
CF = 1 - Status is non 0

= 0 - Status is 0
(AH) - Status of operation (see values for the status of

operation on page 2-59)

Note: Alternate Disk Reset is issued only if the 7-bit drive
number is less than or equal to the maximum number of
fixed disk drives.

(AH) = OEH to OFH - Reserved

(AH) = 10H -Test Drive Ready

(DL) - Drive number. bit 7 = 1 for fixed disk drive (0-based)

On Return:
CF = 1 - Status is non 0

= 0 - Status is 0
(AH) - Status of operation (see values for the status of

operation on page 2-59)

(AH) = 11 H - Recalibrate

(DL) - Dr)ve number, bit 7 = 1 for fixed disk drive (0-based)

On Return:
CF = 1 - Status is non 0

= 0 - Status is 0
(AH) - Status of operation (see values for the status of

operation on page 2-59-)

Note: If an error is reported by the fixed disk BIOS, reset the disk
system, then retry the operation.

(AH) = 12H to 14H - Reserved

2-66 INT 13H - Fixed Disk

(AH) = 1 SH - Read DASD Type

For PC XT:

On Return:
(AH) - Status of operation = 01H - Invalid function request
CF = 1 - Error

For AT, PC XT Model 286, and Personal System/2 products:

(DL) - Drive number, bit 7 = 1 for fixed disk drive (0-based)

On Return:
(AH) = 00H - Drive not present or (DL) invalid

= 01H - Reserved
= 02H - Reserved
= 03H - Fixed disk

(CX,DX) - Number of 512-byte blocks
If (AH) = 0 then (CX) and (DX) = 0

CF= 0 - Operation successfully completed

(AH) = 16H to 1 SH - Reserved

(AH) = 19H - Park Heads

For PC XT, AT, and PC XT Model 286:

On Return:
(AH) - Status of operation= 01H - invalid function request
CF = 1 - Error

For Personal System/2 products:

(DL) - Drive number, bit 7 = 1 for fixed disk drive (0-based)

On Return:
(AH) - Status of operation (see values for the status of

operation on page 2-59)
CF = 1 - Error

(AH) = 1AH - Format Unit

For any device using ESDl-type commands:

Warning: Formatting destroys all information on the fixed disk
drive.

INT 13H - Fixed Disk 2-67

This command may take more than an hour to complete.

(AH) = lAH - Format fixed disk drive

(AL) - Relative block address (RBA) defect table block count
= e - No RBA table associated with this format request
> e - RBA table used

(ES:BX) - Address of RBA table

(CL) - Modifier bits
Bits 7, 6, 5 - Must be 0
Bit 4 - Periodic interrupt. The controller interrupts the

host for every cylinder completed during each phase
of the formatting operation. This feature allows
the host to display formatting progress. The phase
is defined as follows:

0 - Reserved
1 - Surface analysis
2 - Formatting

An INT lSH (AH) = 0FH, (AL) = Phase Code is executed
by BIOS. The return must clear CF to allow
formatting to continue. Set CF to end formatting.
The host must keep a running count of interrupts
for each phase. This running count is the cylinder
number. The host may display formatting progress
in granularities other than 1, although interrupts
occur for every cylinder. ,

Bit 3 - Perform extended surface analysis. (A format with this
bit set toe must have occurred before attempting to
format with this bit set.)

Bit 2 - Update secondary defect map. This map is updated to
reflect defects found during surface analysis and
those passed with the format command. If this bit
is set with bit l, the secondary defect map is
replaced.

Bit 1 - Ignore secondary defect map. The secondary defect
map is not processed.

Bit e - Ignore primary defect map. The primary defect map
is not processed.

(DL) - Drive number, bit 7 = 1 for fixed disk drive (0-based)

For all others, this function is reserved.

(AH) = 1 BH to FFH • Reserved

2-68 INT 13H - Fixed Disk

Interrupt 14H - Asynchronous Communications

These routines provide RS-232C support. The following is a summary
of the RS-232C support functions of Interrupt 14H:

(AH) = OOH - Initialize the Communications Port
(AH) = 01 H - Send Character
(AH) = 02H - Receive Character
(AH) = 03H - Read Status
(AH) = 04H - Extended Initialize
(AH) = 05H - Extended Communications Port Control
(AH) = 06H to FFH - Reserved

Figure 2-8. INT 14H - Asynchronous Communications Functions

(AH) = OOH • Initialize the Communications Port

(AL) - Parameters for initialization
Bits 7, 6, 5 - Baud rate (values are binary)

= 000 - 110
= 001 - 150
= 010 - 300
= 011 - 600
= 100 - 1200
= 101 - 2400
= 110 - 4800
= 111 - 9600

On Personal System/2 products, for baud rates above
9600, see INT 14H, (AH) = 04H and (AH) = 05H.

Bits 4, 3 - Parity (values are binary)
= 00 - None
= 01 - Odd
= 10 - None
= 11 - Even

Bit 2 - Stop bit
= 0 - 1
= 1 - 2

Bits 1, 0 - Word length (values are binary)
= 10 - 7 Bits
= 11 - 8 Bits

(DX) - RS-232C Communications line to use (0,1,2,3) corresponding
to actual port base address at hex 40:00

INT 14H - Asynchronous Communications 2-69

On Return:
(AL) - Modem status

Bit 7 - Received line signal detect
Bit 6 - Ring indicator
Bit 5 - Data set ready
Bit 4 - Clear to send
Bit 3 - Delta receive line signal detect
Bit 2 - Trailing edge ring detector
Bit 1 - Delta data set ready
Bit 0 - Delta clear to send

(AH) - Line status
Bit 7 - Time-out
Bit 6 - Transmitter shift register empty
Bit 5 - Transmitter holding register empty
Bit 4 - Break detect
Bit 3 - Framing error
Bit 2 - Parity error
Bit 1 - Overrun error
Bit 0 - Data ready

Note: If bit 7 of the Ii ne status byte is set to 1, other bits are
unpredictable.

(AH) = 01 H • Send Character

(AL) - Character to send
(DX) - RS-232C communications line to use (0,1,2,3) corresponding

to actual port base addresses at hex 40:00

On Return:
(AL) is preserved
(AH) - Line status (see values for the line status on page 2-70)

(AH) = 02H • Receive Character

(DX) - RS-232C communications line to use (0,1,2,3) corresponding
to actual port base addresses at hex 40:00

On Return:
(AL) - Character received
(AH) - Line status (see values for the line status on page 2-70)

Note: The routine waits for the character.

2-70 INT 14H - Asynchronous Communications

(AH) = 03H - Read Status

(DX} - RS-232C communications line to use (0,1,2,3} corresponding
to actual port base addresses at hex 40:00

On Return:
(AL} - Modem status (see values for the modem status on page 2-70}
(AH} - Line status (see values for the line status on page 2-70}

(AH) = 04H - Extended lnltlallze

For Personal System/2 products:

(DX} - RS-232C communications line to use (0,1,2,3} corresponding
to actual port base addresses at hex 40:00

(AL} - Break
= 00H - No break
= 01H - Break

(BH} - Parity
= 00H - None
= 01H - Odd
= 02H - Even
= 03H - Stick parity odd
= 04H - Stick parity even

(BL} - Stop bit
= 00H - One
= 01H - Two if 6-, 7-, or 8-bit word length

- One-and-one-half if 5-bit word length

(CH} - Word length
= 00H - 5 bits
= elH - 6 bits
= 02H - 7 bits
= 03H - 8 bits

(CL} - Baud rate
= 00H - 110 baud
= 01H - 150 baud
= 02H - 300 baud
= 03H - 600 baud
= 04H - 1200 baud
= 05H - 2400 baud
= 06H - 4800 baud
= 07H - 9600 baud
= 08H - 19200 baud

On Return:
(AL} - Modem status (see values for the modem status on page 2-70}
(AH} - Line status (see values for the line status on page 2-70}

For all others, no action is performed.

INT 14H - Asynchronous Communications 2-71

(AH) = 05H - Extended Communications Port Control

For Personal System/2 products:

(AL) = 00H - Read modem control register
(DX) - RS-232C communications line to use (0.1.2,3)

corresponding to actual port base addresses
at hex 40:(:)0

On Return:
(BL) - Modem control register

Bit 7 to 5 - Reserved
Bit 4 = 1 - Loop
Bit 3 = 1 - Out2
Bit 2 = 1 - Outl
Bit 1 = 1 - Request to send
Bit 0 = 1 - Data terminal ready

(AL) = 01H - Write modem control register
(DX) - RS-232C communications line to use (0,l,2,3)

corresponding to actual port base addresses
at hex 40:00

(BL) - Modem control register
Bit 7 to 5 - Reserved
Bit 4 = 1 - Loop
Bit 3 = 1 - Out2
Bit 2 = 1 - Outl
Bit 1 = 1 - Request to send
Bit 0 = 1 - Data terminal ready

On Return:
(AL) - Modem status (see values for the modem status on page 2-70)
(AH) - Line status (see values for the line status on page 2-70)

For all others, no action is performed.

(AH) = 06H to FFH - Reserved

2-72 INT 14H - Asynchronous Communications

Interrupt 1 SH - System Services

The following is a summary of the system services of Interrupt 15H:

(AH) = OOH - Turn Cassette Motor On
(AH) = 01H - Turn Cassette Motor Off
(AH) = 02H - Read Blocks from Cassette
(AH) = 03H - Write Blocks to Cassette
(AH) = 04H to OEH - Reserved
(AH) = OFH - Format Unit Periodic Interrupt
(AH) = 10H to 20H - Reserved
(AH) = 21H - Power-On Self-Test Error Log
(AH) = 22H to 3FH - Reserved
(AH) = 40H - Read/Modify Profiles
(AH) = 41H - Wait for External Event
(AH) = 42H - Request System Power-Off
(AH) = 43H - Read System Status
(AH) = 44H - Activate/Deactivate Internal Modem Power
(AH) = 45H to 4EH - Reserved
(AH) = 4FH - Keyboard Intercept
(AH) = SOH to 7FH - Reserved
(AH) = 80H - Device Open
(AH) = 81 H - Device Close
(AH) = 82H - Program Termination
(AH) = 83H - Event Wait
(AH) = 84H - Joystick Support
(AH) = 85H - System Request Key Pressed
(AH) = 86H - Wait
(AH) = 87H - Move Block
(AH) = 88H - Extended Memory Size Determine
(AH) = 89H - Switch Processor to Protected Mode
(AH) = 8AH to 8FH - Reserved
(AH) = 90H - Device Busy
(AH) = 91H - Interrupt Complete
(AH) = 92H to BFH - Reserved
(AH) = COH - Return System Configuration Parameters
(AH) = C1H - Return Extended BIOS Data Area Segment Address
(AH) = C2H - Pointing Device BIOS Interface
(AH) = C3H - Enable/Disable Watchdog Time-Out
(AH) = C4H - Programmable Option Select
(AH) = CSH to FFH - Reserved

Figure 2-9. INT 15H - System Services Functions

INT 15H - System Services 2-73

(AH) = OOH - Turn Cassette Motor On

For PCjr and PC:

On Return:
(AH) = eeH
CF = 0

For al I others:

On Return:
(AH) = 86H
CF = 1

(AH) = 01 H - Turn Cassette Motor Off

For PCjr and PC:

On Return:
(AH) = eeH
CF = 0

For al I others:

On Return:
(AH) = 86H
CF = 1

(AH) = 02H - Read Blocks from Cassette

For PCjr and PC:

(ES:BX) - Pointer to data buffer
(CX) - Count of bytes to read

On Return:
(ES:BX) - Pointer to last byte read + 1
(DX) - Count of bytes read
CF = 0 - No error

= 1 - Error
For PCjr when CF = l, (AH) contains:

01H = CRC error
02H = Lost data transitions
04H = No data found

2-74 INT 15H - System Services

For al I others:

On Return:
(AH) = 86H
CF = 1

(AH) = 03H - Write Blocks to Cassette

For PCjr and PC:

(ES:BX) - Pointer to data buffer
(CX) - Count of bytes to write

On Return:
(ES:BX) - Pointer to last byte written + 1
(CX) = 00H
CF = 0 - No error

= 1 - Error
For PCjr when CF = 1, (AH) contains:

E>lH = CRC error
02H = Lost data transitions
04H = No data found

For all others:

On Return:
(AH) = 86H
CF = 1

(AH) = 04H to OEH - Reserved

(AH) = OFH - Format Unit Periodic Interrupt

For any device using ESDl-type commands:

(AL) - Phase code
= 00H - Reserved
= 01H - Surface analysis
= 02H - Formatting

On Return:
CF = 0 - Continue formatting or scanning

= 1 - End formatting or scanning

Note: Function (AH) = OFH provides a hook to the caller upon
completion of formatting or scanning each cylinder. If no
handler is hooked, CF is set to 1 on return.

INT 15H - System Services 2-75

For PCjr and PC:

On Return:
(AH) = 80H
CF = 1

For all others:

On Return:
(AH) = 86H
CF = 1

(AH) == 10H to 20H - Reserved

(AH) == 21 H - Power-On Self-Test Error Log

For PCjr and PC:

On Return:
(AH) = 80H
CF = 1

For Personal System/2 products except Model 25 and Model 30:

(AL) = 00H - Read POST error log

On Return:
(ES:DI) - Pointer to POST error log
(BX) - Number of POST error codes stored
CF = 0
(AH) = 00H

(AL) = 01H - Write error code to POST error log
(BX) - POST error code (word)

(BH) - Device code
(Bl) - Device error

On Return:
CF = 0 - Successfully stored

= 1 - Error code location full
(AH) = 00H - Successfully stored

= 01H - Error code location full

2-76 INT 15H - System Services

For all others:

On Return:
(AH) = 86H
CF = 1

(AH) = 22H to 3FH - Reserved

(AH) = 40H - Read/Modify Profiles

For PCjr and PC:

On Return:
(AH) = 80H
CF = 1

For PC Convertible:

(AL) = eeH - Read system profile

On Return:
(CX.BX) - Profile information

(AL) = 01H - Modify system profile
(CX.BX) - Profile information

(AL) = 02H - Read internal modem profile

On Return:
(BX) - Profile information

(AL) = 03H - Modify internal modem profile
(BX) - Profile information

On Return for all:
(AL) = eeH - Operation successfully completed

= 80H - Profile execution failed

CF= e - Operation successfully completed
= 1 - Profile execution failed

For all others:

On Return:
(AH) = 86H
CF = 1

INT 15H - System Services 2-77

(AH) = 41 H - Walt for External Event

For PCjr and PC:

On Return:
(AH) = 80H
CF = 1

For PC Convertible:

(ES:DI) - Pointer to byte in user area for event
determination (event type codes 01H to 04H)

-or-
- (DX) contains the 1/0 port address to read for

event determination (event type codes llH
through 14H)

(AL) - Event type code
= eeH - Return after any event has occurred
= 01H - Compare value. return if equal
= 02H - Compare value. return if not equal
= 03H - Test bit, return if not e
= 04H - Test bit, return if 0

(BH) - Condition compare or mask value
(BL) - Time-out value (in 55 millisecond units). 0 =No time-out

On Return:
CF = 1 - Time-out

Note: Event type codes (AL) = 11H, 12H, 13H, and 14H are the
same as codes (AL) = 01 H, 02H, 03H, and 04H,
respectively, except that (DX) is used to contain the event
determination address.

For al I others:

On Return:
(AH) = 86H
CF = 1

(AH) = 42H - Request System Power-Off

For PCjr and PC:

On Return:
(AH) = 80H
CF = 1

2-78 INT 15H - System Services

For PC Convertible:

{AL) = 00H - Use system profile for
suspend/IPL determination

{AL) = 01H - Force system suspend mode
regardless of profile

On Return:
(AX) is modified

For al I others:

On Return:
(AH) = 86H
CF = 1

(AH) = 43H - Read System Status

For PCjr and PC:

On Return:
(AH) = 80H
CF = 1

For PC Convertible:

On Return:
(AL) - Status

Bit 7 - Low battery indication
Bit 6 - Operating on external power source
Bit 5 - Standby power lost (real-time clock time bad)
Bit 4 - Power activated by real-time clock alarm
Bit 3 - Internal modem power-on
Bit 2 - RS-232C/parallel power-on
Bit 1 - Reserved
Bit 0 - LCD detached

(AH) is modified

For all others:

On Return:
(AH) = 86H
CF = 1

INT 15H - System Services 2-79

(AH) = 44H - Activate/Deactivate Internal Modem Power

For PCjr and PC:

On Return:
(AH) = 80H
CF = 1

For PC Convertible:

(AL) = 00H - Power-off internal modem
(AL) = 01H - Power-on internal modem and configure according

to system profile

On Return:
(AL) = 00H - Operation successfully completed

= 80H - Request failed
CF = 0 - Operation successfully completed

= 1 - Request failed

For all others:

On Return:
(AH) = 86H
CF = 1

(AH) = 45H to 4EH - Reserved

(AH) = 4FH - Keyboard Intercept

For PCjr and PC:

On Return:
(AH) = 80H
CF = 1

For PC XT BIOS dated 11 /08/82 and AT BIOS dated 1/10/84:

On Return:
(AH) = 86H
CF = 1

For all others, the keyboard intercept (keyboard escape), is called
by the INT 09H (keyboard) routine to allow the keystroke to be
changed or absorbed. Normally, the system returns the scan
code unchanged, but the operating system can point INT 15H to
itself and do one of the following:

2-80 INT 15H - System Services

1. Replace (AL) with a different scan code and return with the
carry flag set, effectively changing the keystroke.

2. Process the keystroke and return with the carry flag reset,
causing the INT 09H routine to ignore the keystroke.

{AL) - Scan code
CF = 1

On Return:
(AL) - New scan code
CF = 1

-or-
(AL) - Unchanged scan code
CF = 0

Note: To dynamically determine the products that support this
feature, see INT 15H, (AH) = COH (Return System
Configuration Parameters) on page 2-92.

(AH) = 50H to 7FH - Reserved

(AH) = 80H - Device Open

For PCjr and PC:

On Return:
(AH) = 80H
CF = 1

For PC XT BIOS dated 11/08/82:

On Return:
(AH) = 86H
CF = 1

For all others:

(BX) - Device ID
(CX) - Process ID

INT 15H - System Services 2-81

(AH} == 81 H - Device Close

For PCjr and PC:

On Return:
(AH) = 80H
CF = 1

For PC XT BIOS dated 11/08/82:

On Return:
(AH) = 86H
CF = 1

For all others:

(BX) - Device ID
(CX) - Process ID

(AH} == 82H - Program Termination

For PCjr and PC:

On Return:
(AH) = 80H
CF = 1

For PC XT BIOS dated 11108/82:

On Return:
(AH) = 86H
CF = 1

For all others:

(BX) - Device ID

(AH} == 83H - Event Walt

For PCjr and PC:

On Return:
(AH) = 80H
CF = 1

2-82 INT 15H - System Services

For PC XT:

On Return:
(AH) = 86H
CF = 1

For AT BIOS dated 1/10/84:

(ES:BX) - Pointer to byte in caller's memory that has
the high order bit set as soon as possible after
interval expires.

(CX,DX) - Microseconds until posting
(Granularity is 976 microseconds)

On Return:
CF = 0 - Operation successfully completed

= 1 - Operation unsuccessful. function busy

For all others:

(AL) = 00H - Set interval
(ES:BX) - Pointer to byte in caller's memory that has

the high order bit set as soon as possible after
interval expires.

(CX,DX) - Microseconds until posting
(Granularity is 976 microseconds)

On Return:
CF = 0 - Operation successfully completed

= 1 - Operation unsuccessful. function busy

(AL) = 01H - Cancel set interval

On Return:
CF = 0 - Operation successfully completed

= 1 - Operation unsuccessful. function busy

(Personal System/2 Model 25 and Model 30 always return with CF = 1)

(AH) = 84H • Joystick Support

For PCjr, PC, and PC Convertible:

On Return:
(AH) = 80H
CF = 1

INT 1 SH - System Services 2-83

For PC XT BIOS dated 11 /08/82:

On Return:
(AH) = 86H
CF = 1

For all others:

(DX) = 00H - Read current switch settings

On Return:
(AL) - Switch.settings (bits 7 to 4)
CF= 1 - Invalid call

(DX) = 01H - Read resistive inputs

On Return:
(AX) - A(x) value
(BX) - A(y) value
(CX) - B(x) value
(DX) - B(y) value
CF = 1 - Invalid call

(AH) = 85H - System Request Key Pressed

For PCjr and PC:

On Return:
(AH) = 80H
CF = 1

For PC XT BIOS dated 11 /08/82:

On Return:
(AH) = 86H
CF = 1

For all others:

(AL) = 00H - Key make·
(AL) = 01H - Key break

2-84 INT 15H - System Services

(AH) = 86H - Walt

For PCjr and PC:

On Return:
(AH) = 80H
CF = 1

For PC XT:

On Return:
(AH) = 86H
CF = 1

For all others:

(CX,DX) - Time before return to caller, in microseconds
(Granularity is 976 microseconds)

CF = 0 - Successful wait
= 1 - Wait function already in progress

(AH) = 87H - Move Block

For PCjr and PC:

On Return:
(AH) = 80H
CF = 1

For PC XT, PC Convertible, and PS/2™ Model 25 and Model 30:

On Return:
(AH) = 86H
CF = 1

For AT, PC XT Model 286, and PS/2 products except Model 25 and
Model 30, this function allows a real mode program or system to
transfer a block of data to and from storage above the 1 MB
protected mode address range by switching to the protected
mode.

(AH) = 87H - Block move.
(CX) - Word count of storage block to be moved.

[maximum count = 8000H for 32KB words (65KB)]
(ES:SI) - Location of a global descriptor table (GOT)

built by a routine using this function.

PS/2 is a trademark of the International Business Machines Corporation.

INT 15H - System Services 2-85

(ES:SI) points to a global descriptor table (GOT) built before
interrupting to this function. The descriptors are used to perform
the block move in the protected mode. The source and target
descriptors built by the user must have a segment length equal to
or greater than 2 times (CX-1). The data access rights byte must
be set to CPLO-R/W (93H). The 24-bit address (byte high, word
low) must be set to the target/source.

Note: No interrupts are allowed during transfers. Large block
moves may cause lost interrupts.

On Return:
(AH) = 00H - Operation successfully completed
(AH) = 01H - RAM parity (parity error registers cleared)
(AH) = 02H - Other exception interrupt error occurred
(AH) = 03H - Gate address line 20H failed

All registers are restored except (AH)

If (AH) = 00H:
CF = 0
ZF = 1

If (AH) = 01H to 03H:
CF = 1 .
ZF = 0

The following shows the organization of a block move GOT:

(ES:SI) __... + 00 f
Dummy

+08
GOT

t--
Location

+10
Source

GOT
+18

Target
GOT

+20
BIOS
cs

+28

SS

Figure 2-10. Block Move Global Descriptor Table

2-86 I NT 15H - System Services

The descriptors are defined as follows:

• The first is the required dummy and is user initialized to 0.

• The second points to the GOT as a data segment. It is user
initialized to O and can be modified by the BIOS.

• The third points to the source to be moved and is user
initialized.

• The fourth points to the destination segment and is user
initialized.

• The fifth is used by the BIOS to create the protected mode
code segment. It is user initialized to O and can be modified
by the BIOS.

• The sixth is used by the BIOS to create a protected mode
stack segment. It is user initialized to 0, can be modified by
the BIOS, and points to the user stack.

The following is a sample of a source or target descriptor:

SOURCE_TARGET_DEF STRUC

SEG_LIMIT OW
LO_WORD OW
HI_BYTE DB
DATA_ACC_RIGHTS DB
Reserved OW

SOURCE_TARGET_DEF ENDS

? : Segment limit (1 to 65536 bytes)
? : 24-bit segment physical
? : address [0 to (16MB-1)]
93H : Access rights byte (CPL0-R/W)
0 : Reserved word (must be 0)

The global descriptor table [actual location pointed to by (ES:SI)]

BLOCKMOVE_GDT_DEF STRUC
ow 0.0.0.0

CGDT_LOC DW ?.?.?.0
SOURCE OW ?.?.?,0
TARGET OW ?.?.?,0
BIOS_CS OW ?.?.?,0
TEMP_SS OW ?.?.?,0
BLOCKMOVE_GDT_DEF ENDS

First descriptor not accessible
Location of calling routine GOT
Source descriptor
Target descriptor
BIOS code descriptor
Stack descriptor

(AH) = 88H - Extended Memory Size Determine

For PCjr and PC:

On Return:
(AH) = 80H
CF = 1

INT 15H - System Services 2-87

For PC XT, PC Convertible, and PS/2 Model 25 and Model 30:

On Return:
(AH) = 86H
CF = 1

For AT, PC XT Model 286, and PS/2 products except Model 25 and
Model 30, this routine returns the amount of system memory
beginning at address 100000H, as determined by the POST. The
system may not be able to use 1/0 channel memory unless the
system board is fully populated.

On Return:
(AX) - Contiguous lKB blocks of memory available beginning

at address 100000H

(AH) = 89H - Switch Processor to Protected Mode

For PCjr and PC:

On Return:
(AH) = 80H
CF = 1

For PC XT, PC Convertible, and PS/2 Model 25 and Model 30:

On Return:
(AH) = 86H
CF = 1

For AT, PC XT Model 286, and PS/2 products except Model 25 and
Model 30, this function allows the user to switch into the
protected (virtual address) mode. Upon completion, the system
microprocessor is in the protected mode and control is
transferred to the code segment specified by the user.

Entry requirements:

(ES:SI) points to a GOT built before calling this function.
These descriptors initialize the interrupt descriptor table (IDT)
register, the GOT register, and the stack segment (SS)
selector. The data segment (OS) selector, the extra segment
(ES) selector, and the code segment (CS) selector are
initialized from descriptors built by the routine using this
function.

2-88 INT 15H - System Services

(BH) contains an index into the interrupt descriptor table that
states where the first eight hardware interrupts begin
(interrupt level 1). (BL) contains an index !nt~ the interrupt
descriptor table that states where the second eight hardware
interrupts begin (interrupt level 2).

The following shows the organization of the selectors in this GOT;
the actual location is pointed to by (ES:SI).

(ES:SI)-.. +00 +~
Dummy

+08

GOT t---'

+10

IDT

+18

DS

+20

ES

+28

SS

+30

cs
+38

Temporary BIOS
cs

Figure 2-11. Global Descriptor Table

Each descriptor mu~t contain the limit, the base address, and the
access rights byte; The descriptors are defined as follows:

• The first is the required durrimy and is user initialized to 0.

• The second points to the GOT as a data segment and is l!Ser
initialized.

• The third points to the user-defined interrupt ~escriptor table
(IDT) and is user initialized.

INT 15H - System Services 2-89

• The fourth points to the user data segment (OS) and is user
initialized.

• The fifth points to the user extra segment (ES) and is user
initialized.

• The sixth points to the user stack segment (SS) and is user
initialized.

• The seventh points to the user code segment (CS) that this
function returns to, and is user initialized.

• The eighth is used to establish a code segment for itself. This
is necessary for this function to complete its operation while
in the protected mode. When control is passed to the user
code, this descriptor can be reused.

(AH) = 89H
(ES:SI) - Location of GOT built by a routine using this

function.

On Return:
(AH) = 00H - Operation successfully completed

All segment registers are changed, (AX) and (BP) are modified.

Considerations:

1. BIOS functions are not available to the user. The user must
handle all 110 commands.

2. Interrupt vector locations must be moved, due to the 80286
reserved areas.

3. The hardware interrupt controllers must be reinitialized to
define locations that do not reside in the 80286 reserved
areas.

4. An exception interrupt table and handler must be initialized
by the user.

5. The interrupt descriptor table cannot overlap the real mode
BIOS interrupt descriptor table.

2-90 INT 15H - System Services

The following is an example of a way to call the protected (virtual
address) mode:

- User code -
MOV AX,GDT SEGMENT
MOV ES,AX
MOV SI,GDT OFFSET
MOV BH,HARDWARE INT LEVEL 1 OFFSET
MOV BL.HARDWARE INT LEVEL 2 OFFSET
MOV AH,89H
INT 15H
- User code -
(Protected mode established)

(AH) = 8AH to 8FH • Reserved

(AH) = 90H - Device Busy

For PCjr and PC:

On Return:
(AH) = 80H
CF = 1

For PC XT BIOS dated 11 /08/82:

On Return:
(AH) = 86H
CF = 1

For all others, this function is called to tell the operating system
that the system is about to wait for a device.

The type code assignments for (AH) = 90H and 91 H use the
following general guidelines:

OOH to 7FH: Serially reusable devices (operating system must
serialize access).

80H to BFH: Reentrant devices; (ES:BX) is used to distinguish
different calls (multiple 1/0 calls are allowed
simultaneously).

COH to FFH: Wait only calls; there is no complementary Post for
these waits. These are time-out only. Times are
function number dependent.

INT 15H - System Services 2-91

(AL) - Type code
= 00H - Disk (time-out)
= 01H - Diskette (time-out)
= 02H - Keyboard (no time-out)
= 03H - Pointing device (time-out)
= 80H - Network (no time-out)

(ES:BX) = Network control block (NCB)
= FCH - Fixed disk reset for Personal System/2 products only

(time-out) ·
= FDH - Diskette drive motor start (time-out)
= FEH - Print~r (time-out)

On Return:
CF = 0 - Wait not satisfied

= 1 - Minimum wait time satisfied for
this type code

(AH) = 91 H - Interrupt Complete

For PCjr and PC:

On Return:
(AH) .: 80H
CF = 1

For PC XT BIOS dated 11 /08/82:

On Return:
(AH) = 86H
CF = 1

For all others the interrupt complete flag is set to tell the
operating system that the interrupt has occurred.

(AL) - Type code [see (AH) = 90H (Device Busy)]

(AH) = 92H to BFH - Reserved

(AH) = COH - Return System Conflguratl~n Parameters

For PCjr and PC:

On Return:
(AH) ·= 80H
CF = 1

2-92 INT 15H - System Services

For PC XT BIOS dated 11/08/82 and AT BIOS dated 1/10/84:

On Return:
(AH) = 86H
CF = 1

For AT BIOS dated 6/10/85 and after, PC XT BIOS dated 1/10/86
and after, PC XT Model 286, PC Convertible, and Personal
System/2 products:

(AH) = C0H

On Return:
(ES:BX) - Pointer to system descriptor vector in ROM
(AH) = 0
CF = 0

System Descriptor:

DW xx xx

DB xx

DB xx

DB xx

DB xx

Byte count of data that follows:
minimum length = 8

Model byte
See "System Identification" on page 4-18

Submodel byte
See "System Identification" on page 4-18

BIOS revision level
See "System Identification" on page 4-18
00 = First release
Revision level is increased by one
for each subsequent release of code

Feature information byte 1

Bit 7 = 1 - Fixed disk BIOS uses
DMA channel 3

= 0 - OMA channel 3 not used by
fixed disk BIOS or channel 3
usage cannot be determined

Bit 6 = 1 - Slave interrupt controller
present

= 0 - Slave interrupt controller not
present

Bit 5 = 1 - Real-time clock present
= 0 - Real-time clock not present

INT 15H - System Services 2-93

DB xx

DB xx

DB xx

DB xx

Bit 4 = 1 - Keyboard intercept sequence
(INT 15H) called in keyboard
interrupt (INT 09H)

= 0 - Keyboard intercept sequence not
called

Bit 3 = 1 - Wait for external event
supported

= 0 - Wait for external event not
supported

Bit 2 = 1 - Extended BIOS data area is
allocated

= 0 - Extended BIOS data area is
not allocated

Bit 1 = 1 - Micro Channel implemented
= 0 - PC type I/O channel implemented

Bit 0 - Reserved

Feature information byte 2

Bit 7 - Reserved

Bit 6 = 1 - Keyboard functionality call
supported

= 0 - Keyboard functionality call
not supported

Bits 5 to 0 - Reserved

Feature information byte 3 - Reserved

Feature information byte 4 - Reserved

Feature information byte 5 - Reserved

Note: For Personal System/2 products except Model 25 and
Model 30, if the system model cannot be determined,
this function returns (AH) = 86H, CF = 1, and (ES:BX) is
not changed.

(AH) == C1 H - Return Extended BIOS Data Area Segment Address

For PCjr and PC:

On Return:
(AH) = 80H
CF = 1

2-94 INT 15H - System Services

For PC XT, AT, PC XT Model 286, and PC Convertible:

On Return:
(AH) = 86H
CF = 1

For al I others:

On Return:
(ES) - Extended BIOS data area segment address
CF = e - No error

= 1 - Error

(AH) == C2H - Pointing Device BIOS Interface

For PCjr and PC:

On Return:
(AH) = seH
CF = 1

For PC XT, AT, PC XT Model 286, and PC Convertible:

On Return:
(AH) = 86H
CF = 1

For all others:

(AL) = eeH - Enable/disable pointing device
(BH) = 00H - Disable

= 01H - Enable

On Return:
CF = e - Operation successfully completed
CF = 1 - Operation unsuccessful
(AH) - Status

= eeH - No error
= 01H - Invalid function call
= 02H - Invalid input
= 03H - Interface error
= 04H - Resend
= 05H - No far call installed

(AL) = 01H - Reset pointing device

INT 15H -System Services 2-95

On Return:
See Return for (AL) = 00H on page 2-95

If the operation successfully completed:
(BH) - Device ID

= 00H
The pointing device state is as follows:

-Disabled
-Sample rate at 100 reports per second
-Resolution at 4 counts per millimeter
-Scaling at 1 to 1
-Data package size remains the same as before this
function was called

(BL) is modified on return

(AL) = 02H - Set sample rate
(BH) - Sample rate value

On Return:

= 00H - 10 reports per second
= 01H - 20 reports per second
= 02H - 40 reports per second
= 03H - 60 reports per second
= 04H - 80 reports per second
= 05H - 100 reports per second
= 06H - 200 reports per second

See Return for (AL) = 00H on page 2-95

(AL) = 03H - Set resolution
(BH) - Resolution value

On Return:

= 00H - 1 count per millimeter
= 01H - 2 counts per millimeter
= 02H - 4 counts per millimeter
= 03H - 8 counts per millimeter

See Return for (AL) = 00H on page 2-95

(AL) = 04H - Read device type

On Return:
See Return for (AL) = 00H on page 2-95

If the operation successfully completed:
(BH) - Device ID

= 00H

2-96 INT 15H -System Services

(AL) = 05H - Pointing device interface initialization
(BH) - Data package size

= 00H - Reserved
= 01H - 1 byte
= 02H - 2 bytes
= 03H - 3 bytes
= 04H - 4 bytes
= 05H - 5 bytes
= 06H - 6 bytes
= 07H - 7 bytes
= 08H - 8 bytes

On Return:
See Return for (AL) = 00H on page 2-95

The pointing device state is as follows:
-Disabled
-Sample rate at 100 reports per second
-Resolution at 4 counts per millimeter
-Scaling at 1 to 1

(AL) = 06H - Extended commands
(BH) = 00H - Return status

On Return:
See Return for. (AL) = 00H on page 2-95

If the operation successfully completed:

(BL) - Status byte 1
Bit 7 = 0 - Reserved
Bit 6 = 0 - Stream mode

= 1 - Remote mode
Bit 5 = 0 - Disable

= 1 - Enable
Bit 4 = 0 - 1:1 scaling

= 1 - 2:1 scaling
Bit 3 = 0 - Reserved
Bit 2 = 1 - Left button pressed
Bit 1 = 0 - Reserved
Bit e = 1 - Right button pressed

(CL) - Status byte 2
= 80H - 1 count per millimeter
= 81H - 2 counts per millimeter
= 02H - 4 counts per millimeter
= 03H - 8 counts per millimeter

INT 15H - System Services 2-97

(DL) - Status byte 3
= 0AH - 10 reports per second
= 14H - 20 reports per second
= 28H - 40 reports per second
= 3CH - 60 reports per second
= 50H - 80 reports per second
= 64H - 100 reports per second
= C8H - 200 reports per second

(BH) = 01H - Set scaling to 1:1

On Return:
See Return for (AL) = 00H on page 2-95

(BH) = 02H - Set scaling to 2:1

On Return:
See Return for (AL) = 00H on page 2-95

(AL) = 07H - Device driver far call initialization
(ES) - Segment
(BX) - Offset

On Return:
See Return for (AL) = 00H on page 2-95

The user codes a routine to receive control when the pointing
device data is available. The device driver far call initialization
communicates the address of this routine to the BIOS. Each time
the pointing device data is available the pointing device interrupt
handler calls the user routine, with the following parameters on
the stack:

Status - First word pushed on the stack
X data - Second word pushed on the stack
Y data - Third word pushed on the stack
Z data - Fourth word pushed on the stack

Word 1 on stack:
Low byte - Status

Bit 7 - Y data overflow
= 1 - Overflow

Bit 6 - X data overflow
= 1 - Overflow

Bit 5 - Y data sign
= 1 - Negative

2-98 INT 15H - System Services

Bit 4 - X data sign
= 1 - Negative

Bit 3 - Reserved (must be 1)
Bit 2 - Reserved (must be 0)

Bit 1 - Right button status
= 1 - Pressed

Bit 0 - Left button status
= 1 - Pressed

High byte = 0

Word 2 on stack:
Low byte - X data

Bit 7 = Most significant bit
Bit 0 - Least significant bit

High byte = 0

Word 3 on stack:
Low byte - Y data

Bit 7 = Most significant bit
Bit 0 - Least significant bit

High byte = 0

Word 4 on stack:
High byte = 0
Low byte = 0

The pointing device interrupt handler uses a far call to transfer
control to the user routine. This routine should be coded as a far
procedure and should not pop the parameters off the stack before
returning.

(AH) = C3H - Enable/Disable Watchdog Time-Out

For PCjr and PC:

On Return:
(AH) = 80H
CF = 1

For PC XT, AT, PC XT Model 286, PC Convertible, and Personal
System/2 Model 25 and Model 30:

On Return:
(AH) = 86H
CF = 1

INT 15H - System Services 2-99

For Personal System/2 products except Model 25 and Model 30:

(AL) = 00H - Disable watchdog time-out
= 01H - Enable.watc~dog time-out
(BX) - Watchdog timer count

(1 to 255 is valid for Personal System/2 products)

On Return:
CF = 0 - Operation successfully completed

= 1 - Operation unsuccessful

(AH) = C4H - Programmable Option Select (POS)

For PCjr and PC:

On Return:
(AH) = 80H
CF = 1

For PC XT, AT, PC XT Model 286, PC Convertible, and Personal
System/2 Model 25 and Model 30:

On Return:
(AH) = 86H
CF = 1

For Personal System/~ products except Model 25 and Model 30:

(AL) = 00H - Return base POS adapter register address

On Return:
(AL) = 00H
(DX) - Base POS adapter register address

(AL) = 01H - Enable slot for setup
(BL} - Slot number

On Return:
(AL) = 01H
(BL) - Slot number

2-100 INT 15H - System Services

(AL) = 02H - Adapter enable

On Return:
(AL) = 02H

On Return for all:
CF = 0 - Operation successfully completed

= 1 - Request failed

(AH) = C5H to FFH • Reserved

INT 15H - System Services 2·101

Interrupt 1 &H - Keyboard

These routines provide keyboard support. The following is a
summary of the keyboard functions of Interrupt 16H.

(AH) = OOH - Keyboard Read
(AH) = 01H - Keystroke Status
(AH) = 02H - Shift Status
(AH) = 03H - Set Typematic Rate
(AH) = 04H - Keyboard Click Adjustment
(AH) = 05H - Keyboard Write
(AH) = 06H to OFH - Reserved
(AH) = 10H - Extended Keyboard Read
(AH) = 11 H - Extended Keystroke Status
(AH) = 12H - Extended Shift Status
(AH) = 13H to FFH - Reserved

Figure 2-12. INT 16H - Keyboard Functions

The extended functions, (AH) = 10H, 11H, and 12H, have been added
to the BIOS interface to support the 101/102-Key Keyboard. The
extended-function keyboard scan codes fall into one of three
categories:

1. When only one key produces an ASCII character, the scan code
read from the keyboard port is the same as with the standard
keyboards.

2. When more than one key produces the same character, one of the
keys generates the standard keyboard scan code. The other key
generates a unique sequence of scan codes, enabling the system
to differentiate between the keys.

3. New scan codes are assigned to keys that did not exist on the
standard keyboards.

The extended functions allow new programs to take advantage of all
categories and avoid compatibility problems with existing programs.

If the extended functions are not supported by the system BIOS, the
scan code/character code combination placed in the keyboard buffer
by the keyboard interrupt handler are returned without change upon
calling (AH) = OOH (Keyboard Read) and (AH) = 01 (Keystroke
Status).

2-102 INT 16H - Keyboard

If the extended functions are supported by the system BIOS:

• The character code placed in the keyboard buffer by the keyboard
interrupt handler differentiates between keys with identical
nomenclature.

• The keyboard interrupt handler places the scan code/character
code combination for new keys in the keyboard buffer.

• (AH) = 1 OH (Extended Keyboard Read) and (AH) = 11 H
(Extended Keystroke Status) extract the scan code/character
code combination from the buffer as is, and return it to the caller.
The scan code/character code combination is returned for new
keys. The scan code/character code combination is returned for
like keys, with the character code used to differentiate between
them. If the character code is equal to hex FOH and the scan
code is not equal to hex OOH, the character code is set to hex OOH.

• (AH) = OOH (Keyboard Read) and (AH) = 01 H (Keystroke Status)
extract the scan code/character code combination and translate
it, if necessary, to the the scan code/character code combination
compatible with previous keyboards. The translation:

1. Converts like codes to compatible codes

2. Extracts the scan code/character code combination until a
compatible combination is found.

• (AH) = 12H (Extended Shift Status) returns the existing keyboard
shift state and the shift state of the separate Ctrl and Alt keys.

To determine if the extended functions, (AH) = 10H, 11H, and 12H,
are supported by the system BIOS, the program must use INT 16H,
(AH) = 05H (Keyboard Write) to write a scan code/character code
combination of hex FFFF to the buffer. If on return (AL) = OOH, the
function successfully inserted hex FFFF into the buffer. Next, INT 16H,
(AH) = 10H (Extended Keyboard Read) is issued to read the scan
code/character code combination from the keyboard buffer. If on
return (AX) is hex FFFF, the extended keyboard functions are
supported. If on return (AX) is not hex FFFF, INT 16H, (AH) = 10H
(Extended Keyboard Read) is issued until (AX) is hex FFFF on return.
If after 16 tries (the buffer size) or if each of the calls to the Extended
Keyboard Read function yields an (AX) not equal to hex FFFF, the
extended keyboard functions are not supported.

INT 16H - Keyboard 2-103

See "Scan Code/Character Code Combinations" on page 4-24 for
scan code/character code combinations.

(AH) = OOH - Keyboard Read

The scan code/character code is extracted from the buffer. The
keyboard buffer head pointer (hex 40:1A) is increased by 2 or, if
the pointer is already at the end, is reinitialized to the start of the
buffer.

On Return:
(AL) - ASCII character code
(AH) - Scan code

For AT, PC XT Model 286, PC Convertible, and Personal System/2
products, if no keystroke is available, INT 15H, (AH) = 90H
(Device Busy) is called with (AL) = 02H (Type = Keyboard), to
inform the operating system that a keyboard loop is about to take
place, allowing the operating system to perform another task.
When the keyboard operation is completed, INT 09H calls INT
15H, (AH) = 91H (Interrupt Complete) with (AL) = 02H (Type =
Keyboard). See "Multitasking Provisions" on page 4-16 for
additional information.

Note: Control is returned only when a keystroke is available.
The keystroke is removed from the buffer.

(AH) = 01 H - Keystroke Status

On Return:
ZF = 1 - No code available

= 0 - Code is available

If code is available:
(AL) - ASCII character code
(AH) - Scan code

Note: The keystroke is not removed from the buffer.

2-104 INT 16H - Keyboard

(AH) = 02H • Shift Status

On Return:
(AL) - Current shift status

Bit 7 = 1 - Insert locked
Bit 6 = 1 - Caps Lock locked
Bit 5 = 1 - Num Lock locked
Bit 4 = 1 - Scroll Lock locked
Bit 3 = 1 - Alt key pressed
Bit 2 = 1 - Ctrl key pressed
Bit 1 = 1 - Left Shift key pressed
Bit 0 = 1 - Right Shift key pressed

(AH) - Reserved

(AH) = 03H • Set Typematlc Rate

For PCjr, and for Personal System/2 BIOS supporting
Interrupt 16H, (AH) = 09H with bit o = 1:

(AL} = 00H - Returns to default. restores original state
(typematic on. normal initial delay and normal
typematic rate)

For PCjr only:

(AL) = 01H - Increases initial delay (this is the delay between
first character and the burst of typematic
characters}

(AL} = 02H - Slows typematic characters by one-half

(AL) = 03H - Increases initial delay and slows typematic
characters by one-half

For PCjr, and for Personal System/2 BIOS supporting
Interrupt 16H, (AH) = 09H with bit 1 = 1:

(AL) = 04H - Turns off typematic characters

INT 16H - Keyboard 2·105

For AT BIOS dated 11/15/85 and after, PC XT Model 286, and
Personal System/2 products:

(AL) = 05H - Set typematic rate and delay
(BL) - Typematic rate (in characters per second)
00H = 30.0 0BH = 10.9 16H = 4.3
01H = 26.7 0CH = 10.0 17H = 4.0
02H = 24.0 0DH = 9.2 18H = 3.7
03H = 21.8 0EH = 8.6 19H = 3.3
04H = 20.0 0FH = 8.0 lAH = 3.0
05H = 18.5 10H = 7.5 lBH = 2.7
06H = 17.1 llH = 6.7 lCH = 2.5
07H = 16.0 12H = 6.0 lDH = 2.3
08H = 15.0 13H = 5.5 lEH = 2.1
09H = 13.3 14H = 5.0 lFH = 2.0
0AH = 12.0 15H = 4.6 20H to FFH - Reserved

(BH) - Delay value (in milliseconds)
00H = 250
01H = 500
02H = 750
03H = 1000
04H to FFH - Reserved

For Personal System/2 BIOS supporting Interrupt 16H,
(AH) = 09H with bit 3 = 1:

(AL) = 06H - Return current typematic rate and delay

On Return:
(BL) - Typematic rate
(BL) - Delay

For all others no action is performed.

(AH) = 04H - Keyboard Ciiek Adjustment

For PCjr and PC Convertible:

(AL) = 00H - Set keyboard click off

(AL) = 01H - Set keyboard click on

For all others no action is performed.

(AH) = 05H - Keyboard Write

For AT BIOS dated 11/15/85 and after, PC XT dated 1/10/86 and
after, PC XT Model 286, and Personal System/2 products, this
function places scan code/character code combination in the
keyboard buffer as if they came from the keyboard.

2-106 INT 16H - Keyboard

(CL) - ASCII character code
(CH) - Scan code

On Return:
(AL) = eeH - Operation successfully completed

= 01H - Buffer full

For all others no action is performed.

(AH) == O&H to 08H - Reserved

(AH) == 09H - Keyboard Functionality Determination

To determine if INT 16H, function (AH) = 09H is supported, the
program must use INT 15H, (AH) = COH (Return System
Configuration Parameters), testing bit 6 of Feature Information
Byte 2. If this bit is 0, (AH) = 09H is undefined. If this bit is 1,
(AH) = 09H is defined as follows. This test can be made for all
systems that support INT 15H, (AH) = COH.

On Return:
(AL) - Function code

Bits 7 to 4 - Reserved
Bit 3 = 1 - Get current typematic rate/delay supported

0 - Get current typematic rate/delay
not supported

Bit 2 = 1 - Set typematic rate/delay supported
0 - Set typematic rate/delay not supported

Bit 1 = 1 - Turn on/off typematic supported
0 - Turn on/off typematic not supported

Bit 0 = 1 - Return to default typematic rate/delay
supported

0 - Return to default typematic rate/delay
not supported

(AH) == OAH to OFH ·Reserved

INT 16H - Keyboard 2-107

(AH) == 1 OH - Extended Keyboard Read

For AT BIOS dated 11/15/85 and after, PC XT dated 1/10/86 and
after, PC XT.Model 286, and Personal System/2 products, the
scan code/character code combination is extracted from the
puffer. The keyboard buffer head pointer (hex 40:1A) is increased
by 2. If the pointer is already at the end, it is reinitialized to the
start of the buffer .

On Return:
(AL) - ASCII character code
(AH) - Scan code

Note: ~ontrol is returned only when a keystroke is available.
The keystroke is removed from the buffer.

For all others no action is performed.

(AH) == 11 H - Extended Keystroke Status

For AT BIOS dated 11/15/85 and after, PC XT dated 1/10/86 and
after, PC XT Model 286, and Personal System/2 products:

On Return:
ZF = 1 - No code available

= e - Code is available

If code is available:
(AL) - ASCII character code
(AH) - Scan code

Note: The keystroke is not removed from the buffer.

For all others no action is performed.

2·108 INT 16H - Keyboard

(AH) = 12H - Extended Shift Status

For AT BIOS dated 11/15/85 and after, PC XT dated 1/10/86 and
after, PC XT Model 286, and Personal System/2 products:

On Return:
(AL) - Shift status

Bit 7 = 1 - Insert locked
Bit 6 = 1 - Caps Lock locked
Bit 5 = 1 - Num Lock locked
Bit 4 = 1 - Scroll Lock locked
Bit 3 = 1 - Alt key pressed
Bit 2 = 1 - Ctrl key pressed
Bit 1 = 1 - Left Shift key pressed
Bit 0 = 1 - Right Shift key pressed

(AH) - Extended shift status
Bit 7 = 1 - SysRq key pressed
Bit 6 = 1 - Caps Lock key pressed
Bit 5 = 1 - Num Lock key pressed
Bit 4 = 1 - Scroll Lock key pressed
Bit 3 = 1 - Right Alt key pressed
Bit 2 = 1 - Right Ctrl key pressed
Bit 1 = 1 - Left Alt key pressed
Bit 0 = 1 - Left Ctrl key pressed

For all others no action is performed.

(AH) = 13H to FFH - Reserved

INT 16H - Keyboard 2-109

Interrupt 17H - Printer

These routines provide printer support. The following is a summary
of the printer support functions of Interrupt 17H.

(AH) = OOH - Print Character
(AH) = 01H - Initialize the Printer Port
(AH) = 02H - Read Status
(AH) = 03H to FFH - Reserved

Figure 2-13. INT 17H - Printer Functions

(AH) = OOH - Print Character

(AL) - Character to print
(DX) - Printer to use (0,1,2); index into the port base address

table at hex 40:08

On Return:
(AH) - Status

Bit 7 = 1 - Not busy
Bit 6 = 1 - Acknowledge
Bit 5 = 1 - Out of paper
Bit 4 = 1 - Selected
Bit 3 = 1 - 1/0 error
Bits 2, 1 - Reserved
Bit 0 = 1 - Time-out

(AH) = 01 H - lnltlallze the Printer Port

(DX) - Printer to use (0,1,2); index into the port base address
table at hex 40:08

On Return:
(AH) - Status

Bit 7 = 1 - Not busy
Bit 6 = 1 - Acknowledge
Bit 5 = 1 - Out of paper
Bit 4 = 1 - Selected
Bit 3 = 1 - 1/0 error
Bits 2, 1 - Reserved
Bit 0 - Time-out

2-110 INT 17H - Printer

(AH} = 02H - Read Status

(DX) - Printer to use (0.1,2): index into the port base address
table at hex 40:08

On Return:
(AH) - Status

Bit 7 = 1 - Not busy
Bit 6 = 1 - Acknowledge
Bit 5 = 1 - Out of paper
Bit 4 = 1 - Selected
Bit 3 = 1 - 1/0 error
Bits 2, 1 - Reserved
Bit 0 - Time-out

(AH} = 03H to FFH - Reserved

Notes:

1. For AT, PC XT Model 286, PC Convertible, and Personal System/2
products, when the printer is busy, the BIOS calls INT 15H, (AH)
= 90H (Device Busy) with (AL) = FEH (Type = Printer),
informing the operating system that a time-out loop is about to
begin. See "Multitasking Provisions" on page 4-16 for additional
information.

2. For AT BIOS dated before 11/15/85, PCjr, PC, and PC XT BIOS
dated 11/08/82, the printer port number associated with (DX) is
tested for 0. If found to be 0, no action occurs. If it is non 0, the
print operation is performed. The (DX) register is not tested for a
valid printer port number at the offset into the printer base
address data area at hex 40:08.

3. For PC XT BIOS dated 1/10/86 and after, if (DX) is greater than 3
or the printer port associated with (DX) is 0, no action is
performed and, on return (AH) = 29H.

4. For PC Convertible, if the printer port associated with (DX) is 0,
the return is (AH) = 01H. If (DX) is non 0, the print operation is
performed. No test is made on (DX) to see if a valid printer port
number exists at the offset into the printer base address data
area at hex 40:08.

INT 17H - Printer 2·111

5. For AT BIOS dated 11 /15/85 and PC XT Model 286, if (DX) is
greater than 3 or the printer port associated with (DX) is 0, no
action is performed and (AH) is returned unchanged.

6. For Personal System/2 products, if (DX) is greater than 2 or the
printer port associated with (DX) is 0, no action is performed and
(AH) is returned unchanged.

2-112 INT 17H - Printer

Interrupt 19H - Bootstrap Loader

Track 0, sector 1 is read into segment 0, offset 7COOH. Control is then
transferred as follows:

(CS) = 0000H
(IP) = 7C00H
(DL) - Drive where bootstrap sector was read

INT 19H - Bootstrap Loader 2-113

Interrupt 1AH - System-Timer and Real-Time
Clock Services

The following is a summary of the system-timer and real-time clock
services of Interrupt 1AH.

(AH) =OOH - Read System-Timer Time Counter
(AH) = 01H - Set System-Timer Time Counter
(AH) = 02H - Read Real-Time Clock Time
(AH) = 03H - Set Real-Time Clock Time
(AH) = 04H - Read Real-Time Clock Date
(AH) = 05H - Set Real-Time Clock Date
(AH) = 06H - Set Real-Time Clock Alarm
(AH) = 07H - Reset Real-Time Clock Alarm
(AH) = 08H - Set Real-Time Clock Activated Power-On Mode
(AH) = 09H - Read Real-Time Clock Alarm Time and Status
(AH) = OAH - Read System-Timer Day Counter
(AH) = OBH - Set System-Timer Day Counter
(AH) = OCH to 7FH - Reserved
(AH) = 80H - Set Up Sound Multiplexer
(AH) = 81H to FFH - Reserved

Figure 2-14. INT 1AH - System-Timer and Real-Time Clock Services

Note: For Personal System/2 Model 25 a real-time clock is not
available. Therefore, (AH) = 02H through (AH) = 09H do not
apply. The system-timer functions do apply.

(AH) = OOH - Read System-Timer Time Counter

On Return:
(CX) - High portion of count
(DX) - Low portion of count
(AL) = 0 - Timer has not passed 24 hours worth of counts since

power-on, last system reset. last system-timer time
counter read. or last system-timer time counter set.

> 0 - Timer has passed 24 hours worth of counts since
power-on. last system reset. last system-timer time
counter read. or last system-timer time counter set.

Note: Execution causes the timer overflow flag (hex 40:70) to be
reset to 0. Counts occur at the rate of 1193180+65536
counts per second (about 18.2 per second).

2-114 INT 1AH - System-Timer and Real-Time Clock Services

(AH) == 01 H - Set System-Timer Time Counter

(CX) - High portion of count
(DX) - Low portion of count

Note: Execution causes the timer overflow flag (hex 40:70) to be
reset to 0. Counts occur at the rate of 1193180+65536
counts per second (about 18.2 per second).

(AH) == 02H - Read Real-Time Clock Time

For AT BIOS dated before 6/10/85:

On Return:
(CH) - Hours in BCD
(CL) - Minutes in BCD
(DH) - Seconds in BCD

CF = 0 - Clock operating
= 1 - Clock not operating

For AT BIOS dated 6/10/85 and after, PC XT Model 286, PC
Convertible, and Personal System/2 products:

On Return:
(CH) - Hours in BCD
(CL) - Minutes in BCD
(DH) - Seconds in BCD
(DL) = 01H - Daylight savings time option

= 00H - No daylight savings time option

CF = 0 - Clock operating
= 1 - Clock not operating

For all others no action is performed.

INT 1AH - System-Timer and Real-Time Clock Services 2-115

(AH) = 03H - Set Real-Time Clock Time

For AT, PC XT Model 286, PC Convertible, and Personal System/2
products:

(CH) - Hours in BCD
(CL) - Minutes in BCD
(DH) - Seconds in BCD
(DL) = 01H - Daylight saving time option

= 00H - No daylight saving time option

Note: For Personal System/2 Model 30, (DL) is not used.

For all others no action is performed.

(AH) = 04H - Read Real-Time Clock Date

For AT, PC XT Model 286, PC Convertible, and Personal System/2
products:

On Return:
(CH) - Century in BCD (19 or 20)
(CL) - Y~ar in BCD
(DH) - Month in BCD
(DL) - Day in BCD

CF = 0 - Clock operating
= 1 - Clock not operating

For all others no action is performed.

(AH) = 05H - Set Real-Time Clock Date

For AT, PC XT Model 286, PC Convertible, and Personal System/2
products:

(CH) - Century in BCD (19 or 20)
(CL) - Year in BCD
(DH) - Month in BCD
(DL) - Day in BCD

For al I others no action is performed.

2-116 INT 1AH - System-Timer and Real-Time Clock Services

(AH) = 06H • Set Real-Time Clock Alarm

For AT, PC XT Model 286, PC Convertible, and Personal System/2
products:

(CH) - Hours in BCD
(CL) - Minutes in BCD
(DH) - Seconds in BCD

On Return:
CF= 0 - Operation successfully completed

= 1 - Alarm already set or clock not operating

Note: The alarm interrupt occurs at the specified hour, minute,
and second passed in (CH), (CL), and (DH) respectively.
When the alarm interrupt occurs, a software interrupt 4AH
is issued. The user must point software interrupt 4AH to an
alarm routine prior to setting the real-time clock alarm INT
1AH, (AH) = 06H. Only one alarm function may be active
at any time. The alarm interrupt occurs every 24 hours at
the specified time until it is reset.

For all others no action is performed.

(AH) = 07H • Reset Real-Time Clock Alarm

For AT, PC XT Model 286, PC Convertible, and Personal System/2
products, this function stops the real-time clock alarm interrupt
from occurring.

For al I others no action is performed.

INT 1AH- System-Timer and Real-Time Clock Services 2-117

(AH) = OSH - Set Real-Time Clock Activated Power-On Mode

For PC Convertible:

(CH) - Hours in BCD
(CL) - Minutes in BCD
(DH) - Seconds in BCD

On Return:
CF= e - Operation successfully completed

= 1 - Alarm already set or clock not operating

For AT BIOS dated 6/10/85 and after, PC XT Model 286, and
Personal System/2 products:

On Return:
CF = 1 - Invalid function request

For al I others no action is performed.

(AH) = 09H - Read Real-Time Clock Alarm Time and Status

For PC Convertible and Personal System/2 Model 30:

On Return:
(CH) - Hours in BCD
(CL) - Minutes in BCD
(DH) - Seconds in BCD
(DL) - Alarm status

00H = Alarm not enabled
01H = Alarm enabled but will not power-on system
02H = Alarm enabled and will power-on system

Note: Personal System/2 Model 30 does not support the
power-on system feature.

For AT BIOS dated 6/10/85 and after, PC XT Model 286, and
Personal System/2 products except Model 30:

On Return:
CF = 1 - Invalid function request

For all others no action is performed.

2-118 INT 1AH - System-Timer and Real-Time Clock Services

(AH) = OAH • Read System-Timer Day Counter

For AT and PC XT Model 286:

On Return:
CF = 1 - Invalid function request

For PC XT BIOS dated 1/10/86 and after, and Personal System/2
products:

On Return:
(CX) - Count of days since 1-1-1980

Note: The count of days since 1/1/80 is initialized too during the
POST.

For all others no action is performed.

(AH) = OBH • Set System-Timer Day Counter

For AT and PC XT Model 286:

On Return:
CF = 1 - Invalid function request

For PC XT BIOS dated 1/10/86 and after, and Personal System/2
products:

(CX) - Count of days since 1-l-198e

Note: The count of days since 1/1/80 is initialized to O during the
POST.

For al I others no action is performed.

(AH) = OCH to 7FH • Reserved

INT 1AH - System-Timer and Real-Time Clock Services 2·119

(AH) = 80H - Set Up Sound Multiplexer

For PCjr:

(AL) - Source of sound ("Audio Out" or RF modulator)
00H = 8253 channel 2
01H = Cassette input
02H = "Audio In" line on 1/0 channel
03H = Complex sound generator chip

For AT BIOS dated 6/10/85 and after, PC XT Model 286, PC
Convertible, and Personal System/2 products:

On Return:
CF·= 1 - Invalid function request

For all others no action is performed.

(AH) = 81 H to FFH - Reserved

2-120 INT 1AH -System-Timer and Real-Time Clock Services

Interrupt 70H - Real-Time Clock Interrupt

For AT, PC XT Model 286, and Personal System/2 products except
Model 25:

This interrupt handler controls the periodic and alarm interrupt
functions from the real-time clock.

Periodic function -When activated, the interrupt occurs
approximately 1024 times per second. The doubleword
microsecond counter is decremented by a value of 976
microseconds (1/1024 of a second). When the counter
becomes less than or equal to 0, bit 7 of the designated
location is set. For INT 15H, (AH) = 83H (Event Wait), the
designated location is provided by the user. For INT 15H,
(AH) = 86H (Wait), the designated location is bit 7 of BIOS
data area hex 40:AO (wait active flag).

Alarm function -When activated, the interrupt occurs at the
specified time and a software interrupt 4AH is issued. The
us~r must point interrupt 4AH to an alarm routine prior to
setting INT 1AH, (AH) = 06H (Real-Time Clock Alarm).

For all others, the Real-Time Clock Interrupt is not supported.

Notes:

1. The PC Convertible provides the above functions, but the
Real-Time Clock Interrupt generates a nonmaskable interrupt
rather than INT 70H. Additionally, PC Convertible uses the
real-time clock update ended interrupt function (interrupts
once per second) when certain system profiles are enabled.

2. For Personal System/2 Model 30, the periodic function is not
supported.

INT 70H - Real-Time Clock Interrupt 2-121

Notes:

2-122 INT 70H - Real-Time Clock Interrupt

Section 3. Data Areas and ROM Tables

BIOS Data Area 3-3
Extended BIOS Data Area . 3-17
ROM Tables 3-18

Fixed Disk Drive Parameter Table 3-18
Diskette Drive Parameter Table . 3-26

Data Areas and ROM Tables 3-1

Notes:

3-2 Data Areas and RQM Tables

BIOS Data Area

The BIOS Data Area is allocated specifically as a work area for
system BIOS and adapter BIOS. The BIOS routines use 256 bytes of
memory from absolute address hex 400 to hex 4FF. A description of
the BIOS data area follows:

Address
(Hex)

40:00
40:02
40:04
40:06

RS-232C Communications Line 1 Port Base Address Word
RS-232C Communications Line 2 Port Base Address Word
RS-232C Communications Line 3 Port Base Address Word
RS-232C Communications Line 4 Port Base Address Word

Note: The RS-232C communications line port base address fields may be
initialized to 0 by the POST if the system configuration contains less than
four serial ports. The POST never places O in the RS-232C communications
line port base address table between two valid RS-232C communications
line port base addresses.

Figure 3-1. RS-232C Port Base Address Data Area

Address
(Hex)

40:08
40:0A
40:0C
40:0E

Exception

40:0E

Function

Printer 1 Port Base Address
Printer 2 Port Base Address
Printer 3 Port Base Address
Reserved

Size

Word
Word
Word
Word

Printer 4 Port Base Address (PC, PC XT, AT, and PC Word
Convertible)

Note: The printer port base address fields may be initialized to 0 by the POST if
the system configuration contains less than four parallel ports. The POST
never places 0 in the printer port base address table between two valid
printer port base addresses.

Figure 3-2. Printer Port Base Address Data Area

Data Areas and ROM Tables 3-3

Address
(Hex)

40:10

Bits 15,14
Bit 13
Bit 12
Bits 11,10,9
Bit 8
Bits 7,6
Bits 5,4

Bit 3
Bit 2
Bit 1
Bit 0

Exceptions

Function

Installed Hardware

Number of Printer Adapters
Reserved
Reserved
Number of RS-232C Adapters
Reserved
Number of Diskette Drives (0-based)
Video Mode Type (Values are Binary)

00 = Reserved
01 = 40x25 Color
10 = 80x25 Color
11 = 80x25 Monochrome

Reserved
Pointing Device
Math Coprocessor
IPL Diskette

Bit 13 Internal Modem (PC Convertible Only)
Bit 2 Reserved (PC, PC XT, AT, and PC Convertible)

Note: Refer to INT 11H for equipment return information .

Figure 3-3. System Equipment Data Area

Address
(Hex)

40:12

Exception

40:12

Function

Reserved

Power-On Self-Test Status (PC Convertible Only)

Figure 3-4. Miscellaneous Data Area 1

3-4 Data Areas and ROM Tables

Size

Word

Size

Byte

Byte

Address
(Hex) Function Size

40:13 Memory Size in KB (Range Oto 640) Word
40:15 to 40:16 Reserved Byte

Figure 3-5. Memory Size Data Area

Address
(Hex) Function Size

40:17 Keyboard Control Byte

Bit 7 Insert Locked
Bit6 Caps Lock Locked
Bit5 Num Lock Locked
Bit4 Scroll Lock Locked
Bit3 Alt Key Pressed
Bit2 Ctrl Key Pressed
Bit 1 Left Shift Key Pressed
BitO Right Shift Key Pressed

40:18 Keyboard Control Byte

Bit7 Insert Key Pressed
Bit 6 Caps Lock Key Pressed
Bit 5 Num Lock Key Pressed
Bit4 Scroll Lock Key Pressed
Bit3 Pause Locked
Bit2 System Request Key Pressed
Bit 1 Left Alt Key Pressed
BitO Left Ctrl Key Pressed

40:19 Alternate Keypad Entry Byte
40:1A Keyboard Buffer Head Pointer Word
40:1C Keyboard Buffer Tail Pointer Word
40:1E Keyboard Buffer 32 Bytes

Figure 3-6. Keyboard Data Area 1

Data Areas and ROM Tables 3-5

Address
(Hex) Function Size

40:3E Recalibrate status Byte

Bit 7 Interrupt Flag
Bit 6 Reserved
Bit 5 Reserved
Bit 4 Reserved
Bit 3 Recalibrate Drive 3
Bit 2 Recalibrate Drive 2
Bit 1 Recalibrate Drive 1
Bit 0 Recalibrate Drive O

40:3F Motor Status Byte

Bit 7 Write/Read Operation
Bit 6 Reserved
Bits 5,4 Diskette Drive Select Status (Values in Binary)

00 = Diskette Drive O Selected
01 = Diskette Drive 1 Selected
1 O = Diskette Drive 2 Selected
11 = Diskette Drive 3 Selected

Bit 3 Diskette Drive 3 Motor On Status
Bit 2 Diskette Drive 2 Motor On Status
Bit 1 Diskette Drive 1 Motor On Status
Bit 0 Diskette Drive 0 Motor On Status

40:40 Motor off counter Byte

40:41 Last Diskette Drive Operation Status Byte

OOH = No Error
01 H = Invalid Diskette Drive Parameter
02H = Address Mark not Found
03H = Write-protect Error
04H = Requested Sector not Found
06H = Diskette Change Line Active
08H = OMA Overrun on Operation
09H = Attempt to OMA Across a 64KB Boundary
OCH = Media Type not Found
1 OH = CRC Error on Diskette Read
20H = General Controller Failure
40H = Seek Operation Failed
80H = Diskette Drive not Ready

40:42 Diskette Drive Controller Status Bytes 7 Bytes

Figure 3-7. Diskette Drive Data Area

3-6 Data Areas and ROM Tables

Address
(Hex) Function Size

40:49 Display Mode set Byte
40:4A Number of Columns Word
40:4C Length of Regen Buffer in Bytes Word
40:4E Starting Address in Regen Buffer Word
40:50 Cursor Position Page 1 Word
40:52 Cursor Position Page 2 Word
40:54 Cun~or Position Page 3 Word
40:56 Cursor Position Page 4 Word
40:58 Cursor Position Page 5 Word
40:5A Cursor Position Page 6 Word
40:5C Cursor Position Page 7 Word
40:5E Cursor Position Page 8 Word
40:60 Cursor Type Word
40:62 Display Page Byte
40:63 CRT Controller Base Address Word
40:65 Current Setting of 3x8 Register Byte
40:66 Current Setting of 3x9 Register Byte

Figure 3-8. Video Control Data Area 1

Address
(Hex) Function Size

40:67 Reserved DWord
40:6B Reserved Byte

Exception

40:67 Pointer to reset code upon system reset with DWord
memory preserved (Personal System/2 products
except Model 25 and Model 30).
Reset Flag at hex 40:72 = 4321 H

Figure 3-9. System Data Area 1

Address
(Hex) Function Size

40:6C Timer Counter DWord
40:70 Timer Overflow Byte

(If non 0, timer has counted past 24 hours.)

Figure 3-10. System-Timer Data Area

Data Areas and ROM Tables 3-7

Address
(Hex) Function Size

40:71 Break Key State Byte
40:72 Reset Flag Word

1234H = Bypass Memory Test
4321 H = Preserve Memory (Personal System/2
products except Model 25 and Model 30)
5678H = System Suspended (PC Convertible)
9ABCH = Manufacturing Test Mode (PC
Convertible)
ABCDH = System POST Loop Mode (PC
Convertible)

Figure 3-11. System Data Area 2

Address
(Hex) Function Size

40:74 Last Fixed Disk Drive Operation Status Byte

OOH = No Error
01 H = Invalid Function Request
02H = Address Mark not Found
03H = Write Protect Error
04H = Sector not Found
OSH = Reset Failed
07H = Drive Parameter Activity Failed
08H = OMA Overrun on Operation
09H = Data Boundary Error
OAH = Bad Sector Flag Detected
OBH = Bad Track Detected
OOH = Invalid Number of Sectors on Format
OEH = Control Data Address Mark Detected
OFH = OMA Arbitration Level Out of Range
10H = Uncorrectable ECC or CRC Error
11 H = ECC Corrected Data Error
20H = General Controller Failure
40H = Seek Operation Failed
80H = Time Out
AAH = Drive not Ready
BBH = Undefined Error Occurred
CCH = Write Fault on Selected Drive
EOH = Status Error/Error Register is 0
FFH = Sense Operation Failed

Figure 3-12 (Part 1 of 2). Fixed Disk Drive Data Area

3-8 Data Areas and ROM Tables

Address
(Hex) Function Size

40:75 Number of Fixed Disk Drives Attached Byte
40:76 Reserved Byte
40:77 Reserved Byte

Exceptions

40:74 Reserved (devices using ESDl-type commands) Byte
40:76 Fixed Disk Drive Control (PC XT) Byte
40:77 Fixed Disk Drive Controller Port (PC XT) Byte

Figure 3-12 (Part 2 of 2). Fixed Disk Drive Data Area

Address
(Hex) Function Size

40:78 Printer 1 Time-out Value Byte
40:79 Printer 2 Time-out Value Byte
40:7A Printer 3 Time-out Value Byte
40:7B Reserved

Exception

40:7B Printer 4 Time-out Value (PC, PC XT, and AT) Byte

Figure 3-13. Printer Time-Out Value Data Area

Address
(Hex) Function Size

40:7C RS-232C Communications Line 1 Time-out Value Byte
40:70 RS-232C Communications Line 2 Time-out Value Byte
40:7E RS-232C Communications Line 3 Time-out Value Byte
40:7F RS-232C Communications Line 4 Time-out Value Byte

Figure 3-14. RS-232C Time-Out Value Data Area

Data Areas and ROM Tables 3-9

Address
(Hex)

40:80
40:82

Figure

Address
(Hex)

40:84
40:85
40:87
40:88
40:89
40:8A

Figure

Address
(Hex)

40:8B

3-15.

3-16.

Bits 7,6

Bits 5,4
Bit 3
Bit 2
Bit 1
Bit 0

40:8C
40:8D
40:8E
40:8F

Function

Keyboard Buffer Start Offset Pointer
Keyboard Buffer End Offset Pointer

Keyboard Data Area 2

Function

Number of Rows on the Screen (Minus 1)
Character Height (Bytes/Character)
Video Control States
Video Control States
Reserved
Reserved

Video Control Data Area 2

Function

Media Control

Last Diskette Drive Data Rate Selected (Values in
Binary)

00 = SOOKB Per Second
01 = 300KB Per Second
10 = 250KB Per Second
11 = Reserved

Last Diskette Drive Step Rate Selected
Reserved
Reserved
Reserved
Reserved

Fixed Disk Drive Controller Status
Fixed Disk Drive Controller Error Status
Fixed Disk Drive Interrupt Control
Reserved

Size

Word
Word

Size

Byte
Word
Byte
Byte
Byte
Byte

Size

Byte

Byte
Byte
Byte
Byte

Figure 3-17 (Part 1 of 2). Diskette Drive/Fixed Disk Drive Control Data
Area

3-10 Data Areas and ROM Tables

Address
(Hex)

40:90
40:91

Bits 7,6

Bit5
Bit 4
Bit 3
Bits 2,1,0

40:92
40:93
40:94
40:95

Exception

Function

Drive 0 Media State
Drive 1 Media State

Diskette Drive Data Rate (Values in Binary)

00 = 500KB Per Second
01 = 300KB Per Second
10 = 250KB Per Second
11 = Reserved

Double Stepping Required
Media Established
Reserved
Drive/Media State (Values in Binary)

000 = 360KB Diskette/360KB Drive not Established
001 = 360KB Diskette/1.2MB Drive not Established
010 = 1.2MB Diskette/1.2MB Drive not Established
011 = 360KB Diskette/360KB Drive Established
100 = 360KB Diskette/1.2MB Drive Established
101 = 1.2MB Diskette/1.2MB Drive Established
110 = Reserved
111 = None of the Above

Reserved
Reserved
Drive O Current Cylinder
Drive 1 Current Cylinder

Size

Byte
Byte

Byte
Byte
Byte
Byte

40:8B to 40:95 Reserved (PC, PCjr, PC XT BIOS Dated 11/8/82, and Byte
PC Convertible)

Figure 3-17 (Part 2 of 2). Diskette Drive/Fixed Disk Drive Control Data
Area

Data Areas and ROM Tables 3-11

Address
(Hex) Function Size

40:96 Keyboard Mode State and Type Flags Byte

Bit 7 Read ID in Progress
Bit 6 Last Character was First ID Character
Bit 5 Force Num Lock if Read ID and KBX
Bit4 101/102-Key Keyboard Installed
Bit 3 Right Alt Key Pressed
Bit 2 Right Ctrl Key Pressed
Bit 1 Last Code was EO Hidden Code
Bit 0 Last Code was E1 Hidden Code

40:97 Keyboard LED Flags Byte

Bit 7 Keyboard Transmit Error Flag
Bit 6 Mode Indicator Update
Bit 5 Resend Receive Flag
Bit 4 Acknowledgment Received
Bit 3 Reserved (Must be 0)
Bits 2, 1,0 Keyboard LED State Bits

Figure 3-18. Keyboard Data Area 3

Address
(Hex) Function Size

40:98 Offset Address to User Wait Complete Flag Word
40:9A Segment Address to User Wait Complete Flag Word
40:9C User Wait Count - Low Word (Microseconds) Word
40:9E User Wait Count - High Word (Microseconds) Word

40:AO Wait Active Flag Byte

Bit 7 Wait Time Elapsed and Post
Bits 6 to 1 Reserved
BitO INT 15H, AH = 86H (Wait) has Occurred

40:A 1 to 40:A7 Reserved Byte

Figure 3-19. Real-Time Clock Data Area

3-12 Data Areas and ROM Tables

For systems with EGA capability and Personal System/2 products, the
save pointer table contains pointers that define specific dynamic
overrides for the video mode set function, INT 10H, (AH) = OOH.

Address
(Hex)

40:A8

DWord 1

DWord 2

DWord 3

Function

Pointer to Video Parameters and Overrides

Video Parameter Table Pointer

Initialized to the BIOS video parameter table.
This value must contain a valid pointer.

Dynamic Save Area Pointer (except Personal
System/2 Model 25 and Model 30)

Initialized to hex 00:00, this value is optional.
When non 0, this value points to an area in RAM
where certain dynamic values are saved. This
area holds the 16 EGA palette register values
plus the overseen value in bytes (0-16),
respectively. A minimum of 256 bytes must be
allocated for this area.

Alpha Mode Auxiliary Character Generator Pointer

Initialized to hex 00:00, this value is optional.
When non 0, this value points to a table that is
described as follows:

Size

DWord

Bytes/Character Byte

Block to Load, O = Normal Operation Byte

Count to Store, 256 = Normal Operation Word

Character Offset, o = Normal Operation Word

Figure 3-20 (Part 1 of 2). Save Pointer Data Area

Data Areas and ROM Tables 3-13

Address
(Hex) Function Size

Pointer to a Font Table DWord

Displayable Rows Byte
If OFFH, the maximum calculated value is used,
otherwise this value is used.

Consecutive bytes of mode values for this font Byte
description. The end of this stream is indicated
by a byte code of OFFH.

Note: Use of the DWord 3 pointer may cause unexpected cursor type operation.
For an explanation of cursor type, see INT 10H, (AH) = 01H.

DWord4

DWord 5

DWord 6

DWord 7

Graphics Mode Auxiliary Character Generator
Pointer

Initialized to hex 00:00, this value is optional.
When non 0, this value points to a table that is
described as follows:

Displayable Rows Byte

Bytes Per Character Word

Pointer to a Font Table DWord

Consecutive bytes of mode values for this font Byte
description. The end of this stream is indicated
by a byte code of OFFH.

Secondary Save Pointer (except EGA and Personal
System/2 Model 25 and Model 30)

Initialized to the BIOS secondary save pointer.
This value must contain a valid pointer.

Reserved and set to hex 00:00.

Reserved and set to hex 00:00.

Figure 3-20 (Part 2 of 2). Save Pointer Data Area

3-14 Data Areas and ROM Tables

Address Function Size

Word 1 Table Length

Initialized to the BIOS secondary save pointer
table length.

DWord 2 Display Combination Code (DCC) Table Pointer

Initialized to ROM DCC table. This value must
exist. It points to a table described as follows:

Number of Entries in Table Byte
DCC Table Version Number Byte
Maximum Display Type Code Byte
Reserved Byte

00,00 Entry O No Displays
00,01 Entry 1 MDPA
00,02 Entry 2 CGA
02,01 Entry 3 MDPA + CGA
OO,o4 Entry 4 EGA
04,01 Entry 5 EGA + MDPA
00,05 Entry 6 MEGA
02,05 Entry 7 MEGA + CGA
00,06 Entry 8 PGC
01,06 Entry 9 PGC + MDPA
05,06 Entry 10 PGC + MEGA
00,08 Entry 11 CVGA
01,08 Entry 12 CVGA + MDPA
00,07 Entry 13 MVGA
02,07 Entry 14 MVGA + CGA
02,06 Entry 15 MVGA + PGC

Abbreviation Meanings:
MDPA = Monochrome Display and Printer
Adapter
CGA = Color/Graphics Monitor Adapter
EGA = Enhanced Graphics Adapter
MEGA = EGA with monochrome display
PGC = Professional Graphics Controller
VGA = Video Graphics Array
MVGA = VGA based with monochrome display
CVGA = VGA based with color display

Figure 3-21 (Part 1 of 3). Secondary Save Pointer Data Area

Data Areas and ROM Tables 3-15

Address

DWord 3

Function

Second Alpha Mode Auxiliary Character
Generator Pointer

Initialized to hex 00:00, this value is optional.
When non 0, this value points to a table that is
described as follows:

Size

Bytes/Character Byte

Block to load, should be non O for normal Byte
operation.

Reserved Byte

Pointer to a Font Table DWord

Consecutive bytes of mode values for this font Byte
description. The end of this stream is indicated
by a byte code of OFFH.

Note: Attribute bit 3 is used to switch between primary and secondary fonts. It
may be desirable to use the user palette profile to define a palette of
consistent colors independent of attribute bit 3.

DWord 4 User Palette Profile Table Pointer

Initialized to hex 00:00, this value is optional.
When non 0, this value points to a table that is
described as follows:

Underlining flag (1 = On, 0 = Ignore, -1 = Off;
0 = Normal Operation)

Reserved

Reserved

Internal Palette Count (0-17; 17 = Normal
Operation)

Internal Palette Index (0-16; O = Normal
Operation)

Pointer to Internal Palette

Figure 3-21 (Part 2 of 3). Secondary Save Pointer Data Area

3-16 Data Areas and ROM Tables

Byte

Byte

Word

Word

Word

DWord

Address

DWord 5to
DWord 7

Function Size

External Palette Count (0-256; 256 = Normal Word
Operation)

External Palette Index (0-255; 0 = Normal Word
Operation)

Pointer to External Palette DWord

Consecutive bytes of mode values for this font Byte
description. The end of this stream is indicated
by a byte code of OFFH.

Reserved and set to hex 00:00.

Figure 3-21 (Part 3 of 3). Secondary Save Pointer Data Area

Address
(Hex)

40:ACto
40:FF
50:00

Function

Reserved

Print Screen Status Byte (INT 05H Status)

Figure 3-22. Miscellaneous Data Area 2

Extended BIOS Data Area

Size

Byte

Word

The Extended BIOS Data Area is supported on Personal System/2
products only. The POST allocates the highest possible (n) KB of
memory below 640KB to be used as this data area. The word value
at hex 40:13 (memory size), indicating the number of KB below the
640KB limit, is decremented by (n). The first byte in the Extended
BIOS Data Area is initialized to the length in KB of the allocated area.

To access the Extended BIOS Data Area segment, issue an INT 15H,
(AH) = C1 H (Return Extended BIOS Data Area Segment Address).
To determine if an Extended BIOS Data Area is allocated, use INT
15H, (AH) = COH (Return System Configuration Parameters).

Data Areas and ROM Tables 3-17

ROM Tables

The following ROM tables are used by the BIOS to define the
characteristics of the hardware devices supported by the system or
adapter BIOS.

Fixed Disk Drive Parameter Table

The fixed disk drive parameter table is defined as follows.

Offset Length Description

0 1 Word Maximum Number of Cylinders
2 1 Byte Maximum Number of Heads
3 1 Word For PC XT: Starting Reduced Write Current Cylinder

All Others: Not Used
5 1 Word Starting Write Precompensation Cylinder
7 1 Byte For PC XT: Maximum ECC Data Burst Length

All Others: Not Used
8 1 Byte Control Byte

For PC XT:
Bit 7 - Disable Disk-Access Retries
Bit 6 - Disable ECC Retries
Bits 5to 3 = O
Bits 2, 1,0 - Drive Option

All Others:
Bit 7 - Disable Retries
-or-
Bit 6 - Disable Retries
Bit 5;. Manufacturer's Defect Map Present at

Maximum Cylinders + 1
Bit 3 - More than Eight Heads
Bits 2, 1,0 - Reserved

9 1 Byte For PC XT: Standard Time-out Value
All Others: Not Used

10 1 Byte For PC XT: Time-out Value For Format Drive
All Others: Not Used

11 1 Byte For PC XT: Time-out Value For Check Drive
All Others: Not Used

12 1 Word For PC XT: Reserved
All Others: Landing Zone

14 1 Byte For PC XT: Reserved
All others: Number of Sectors Per Track

15 1 Byte Reserved

Figure 3-23. Fixed Disk Drive Parameter Table Definition

3-18 Data Areas and ROM Tables

For AT and Personal System/2 products, the following lists the fixed
disk drive parameters for the various fixed disk drive types. Values
are decimal unless noted otherwise.

Number of Number Number Write Landing Defect Number
Type Cyllnders of Heads Precompensatlon Zone Map of Sectors

0 -No fixed disk drive installed-
1 306 4 128 305 No 17
2 615 4 300 615 No 17
3 615 6 300 615 No 17
4 940 8 512 940 No 17
5 940 6 512 940 No 17
6 615 4 OFFFFH (None) 615 No 17
7 462 8 256 511 No 17
8 733 5 OFFFFH (None) 733 No 17
9 900 15 OFFFFH (None) 901 No 17
10 820 3 OFFFFH (None) 820 No 17
11 855 5 OFFFFH (None) 855 No 17
12 855 7 OFFFFH (None) 855 No 17
13 306 8 128 319 No 17
14 733 7 OFFFFH (None) 733 No 17
15 -Reserved-
16 612 4 0 (All Cylinders) 663 No 17
17 977 5 300 977 No 17
18 977 7 OFFFFH (None) 977 No 17
19 1024 7 512 1023 No 17
20 733 5 300 732 No 17
21 733 7 300 732 No 17
22 733 5 300 733 No 17
23 306 4 0 (All Cylinders) 336 No 17
24 612 4 305 663 No 17
25 306 4 OFFFFH (None) 340 No 17
26 612 4 OFFFFH (None) 670 No 17
27 698 7 300 732 Yes 17
28 976 5 488 977 Yes 17
29 306 4 0 (All Cylinders) 340 No 17
30 611 4 306 663 Yes 17
31 732 7 300 732 Yes 17
32 1023 5 OFFFFH (None) 1023 Yes 17
33 614 4 OFFFFH (None) 663 Yes 25

Types 34 through 255 are reserved.

Figure 3-24. Fixed Disk Drive Parameters (AT and Personal System/2
products)

Data Areas and ROM Tables 3-19

Notes:

1. Software interrupt 41H points to the entry in the table for drive 0.
Software interrupt 46H points to the entry in the table for drive 1.

2. AT BIOS dated 1/10/84 contains entries O through 14.

3. AT BIOS dated 6/10/85or11/15/85 contains entries O through 23.

4. PC XT Model 286 contains entries 0 through 24.

5. Personal System/2 products except Model 25 and Model 30
contain entries 0 through 32.

6. Personal System/2 Model 30 contains entries 0 through 26.

7. For Personal System/2 Model 70 and Personal System/2 Model 80
BIOS dated 10/07/87 and after, the fixed disk drive parameters in
Figure 3-24 on page 3-19 and Figure 3-25 on page 3-21 do not
apply. Also, software interrupts 41H and 46H are reserved.

3-20 Data Areas and ROM Tables

For Personal System/2 products except Model 25 and Model 30 the
following fixed disk parameter table applies:

Offset Length Value Description

0 2 41 Length of Fixed Disk Drive Table
2 22 (ID) ASCII string 'IBM HARDFILE TYPE xxx',

where xxx is the type number in ASCII.
24 1 yyy Type Number (Values are Binary)
25 2 * Maximum Number of Cylinders
27 1 Maximum Number of Heads
28 2 0 Reserved
30 2 Start Write Precompensation Cylinder
32 0 Reserved
33 Control Byte

Bit 7 or 6 - Disable Retries
Bit 5 - Defect Map Installed
Bit 3- More Than 8 Heads (AT Only)

34 3 0 Reserved
37 2 Landing Zone
39 1 Number of Sectors Per Track
40 1 0 Reserved

Figure 3-25. Fixed Disk Drive Parameter Table (Personal System/2
products except Model 25 and Model 30)

Note: This information is located at head 0, track 0, sector 2 and
applies only to ST412 and ST506 type drives.

Data Areas and ROM Tables 3-21

For PC XT BIOS dated 11/10/82 the following fixed disk drive
parameter tables apply:

Size Value Description

ow 0306 Maximum Cylinders
DB 02 Maximum Heads
ow 0306 Start Reduced Write Current Cylinder
ow 0000 Start Write Precompensation Cylinder
DB OBH Maximum ECC Burst Data Length
DB OOH Control Byte
DB OCH Standard Time-out
DB OB4H Time-out for Format Drive
DB 028H Time-out for Check Drive
DB 0,0,0,0 Reserved

Figure 3-26. Fixed Disk Drive Parameter Table 00 (PC XT BIOS Dated
11/10/82)

Size Value Description

ow 0375 Maximum Cylinders
DB 08 Maximum Heads
ow 0375 Start Reduced Write Current Cylinder
ow 0000 Start Write Precompensation Cylinder
DB OBH Maximum ECC Burst Data Length
DB 05H Control Byte
DB OCH Standard Time-out
DB OB4H Time-out for Format Drive
DB 028H Time-out for Check Drive
DB 0,0,0,0 Reserved

Figure 3-27. Fixed Disk Drive Parameter Table 01 (PC XT BIOS Dated
11/10/82)

3-22 Data Areas and ROM Tables

Size Value Description

ow 0306 Maximum Cylinders
DB 06 Maximum Heads
ow 0128 Start Reduced Write Current Cylinder
ow 0256 Start Write Precompensation Cylinder
DB OBH Maximum ECC Burst Data Length
DB OSH Control Byte
DB OCH Standard Time-out
DB OB4H Time-out for Format Drive
DB 028H Time-out for Check Drive
DB 0,0,0,0 Reserved

Figure 3-28. Fixed Disk Drive Parameter Table 02 (PC XT BIOS Dated
11/10/82)

Size Value Description

ow 0306 Maximum Cylinders
DB 04 Maximum Heads
ow 0306 Start Reduced Write Current Cylinder
ow 0000 Start Write Precompensation Cylinder
DB OBH Maximum ECC Burst Data Length
DB OSH Control Byte
DB OCH Standard Time-out
DB OB4H Time-out for Format Drive
DB 028H Time-out for Check Drive
DB 0,0,0,0 Reserved

Figure 3-29. Fixed Disk Drive Parameter Table 03 (PC XT BIOS Dated
11/10/82)

Note: INT 41H points to the beginning of the table. The switch
settings on the adapter are used as an index into the table.

Data Areas and ROM Tables 3-23

For PC XT BIOS dated 1/08/86 and after the following fixed disk drive
parameter tables apply:

Size Value Description

ow 306 Maximum Cylinders
DB 4 Maximum Heads
ow 306 Start Reduced Write Current Cylinder
ow 0 Start Write Precompensation Cylinder
DB OBH Maximum ECC Burst Data Length
DB 05H Control Byte
DB OCH Standard Time-out
DB OB4H Time-out for Format Drive
DB 028H Time-out for Check Drive
DB 0,0,0,0 Reserved

Figure 3-30. Fixed Disk Drive Parameter Table 00 - Type 1 (PC XT BIOS
Dated 1 /08/86)

Size Value Description

ow 612 Maximum Cylinders
DB 4 Maximum Heads
ow 612 Start Reduced Write Current Cylinder
ow 0 Start Write Precompensation Cylinder
DB OBH Maximum ECC Burst Data Length
DB 05H Control Byte
DB 20H Standard Time-out
DB OB4H Time-out for Format Drive
DB 028H Time-out for Check Drive
DB 0,0,0,0 Reserved

Figure 3-31. Fixed Disk Drive Parameter Table 01 - Type 16 (PC XT BIOS
Dated 1 /08/86)

3-24 Data Areas and ROM Tables

Size Value Description

ow 615 Maximum Cylinders
DB 4 Maximum Heads
ow 615 Start Reduced Write Current Cylinder
ow 300 Start Write Precompensation Cylinder
DB OBH Maximum ECC Burst Data Length
DB 05H Control Byte
DB 18H Standard Time-out
DB OB4H Time-out for Format Drive
DB 028H Time-out for Check Drive
DB 0,0,0,0 Reserved

Figure 3-32. Fixed Disk Drive Parameter Table 02 - Type 2 (PC XT BIOS
Dated 1 /08/86)

Size Value Description

ow 306 Maximum Cylinders
DB 8 Maximum Heads
ow 306 Start Reduced Write Current Cylinder
ow 128 Start Write Precompensation Cylinder
DB OBH Maximum ECC Burst Data Length
DB 05H Control Byte
DB OCH Standard Time-out
DB OB4H Time-out for Format Drive
DB 028H Time-out for Check Drive
DB 0,0,0,0 Reserved

Figure 3-33. Fixed Disk Drive Parameter Table 03 -Type 13 (PC XT BIOS
Dated 1 /08/86)

Note: INT 41H points to the beginning of the table. The switch
settings on the adapter are used as an index into the table.

Data Areas and ROM Tables 3-25

Diskette Drive Parameter Table

The diskette drive parameter table is defined as follows:

Offset Length

0
1
2

3

4
5
6
7
8
9
10

1 Byte
1 Byte
1 Byte

1 Byte

1 Byte
1 Byte
1 Byte
1 Byte
1 Byte
1 Byte
1 Byte

Description

First Specify Byte
Second Specify Byte
Number of Timer Ticks to Wait Prior to
Turning Diskette Drive Motor Off
Number of Bytes Per Sector
OOH = 128 Bytes Per Sector
01H = 256 Bytes Per Sector
02H = 512 Bytes Per Sector
03H = 1024 Bytes Per Sector

Sectors Per Track
Gap Length
Dtl (Data Length)
Gap Length for Format
Fill Byte for Format
Head Settle Time (Milliseconds)
Motor Startup Time (1/8 Second)
For Example: 8 = 1 Second Wait

Figure 3-34. Diskette Drive Parameter Table

Note: The diskette drive parameter table is pointed to by INT 1 EH.

3-26 Data Areas and ROM Tables

Section 4. Additional Information

Interrupt Sharing . 4-3
Precautions . 4-3
Interrupt Request (IRQn) Reset . 4-4
Interrupt-Sharing Software Requirements 4-4
Interrupt-Sharing Chaining Structure and Signature 4-6
ROM Considerations 4-7
Implementation Information . 4-7

Adapter ROM . 4-12
Video Function Compatibility . 4-14

Video Presence Test . 4-14
Video Mode Switching 4-15

Multitasking Provisions . 4-16
System Identification . 4-18
Application Guidelines . 4-19

Math Coprocessor Testing ". 4-19
Hardware Interrupts . 4-19
Programming Considerations . 4-21
BIOS and Operating System Function Calls 4-21

Scan Code/Character Code Combinations 4-24

4-1

Notes:

4-2

Interrupt Sharing

This section defines an interrupt sharing protocol that allows multiple
hardware adapters on the PC type 1/0 channel and Micro Channel™
to share a single interrupt request line.

Precautions

Take the following precautions before implementing interrupt
sharing:

• This interrupt sharing protocol is intended to run only in the real
address mode. It is not intended to run in the protected (virtual
address) mode.

• This interrupt sharing protocol does not apply to the sharing of an
interrupt level between an interrupt handler running in the real
mode and an interrupt handler running in the protected mode.

• This interrupt sharing protocol is not necessarily compatible with
all operating systems.

• Interrupts must be disabled before control is passed to the next
handler on the chain. The disabling of the interrupts allows the
next handler to receive control as if a hardware interrupt had
caused it to receive control.

• Interrupts must be disabled before the non-specific End of
Interrupt (EOI) is issued and not reenabled in the interrupt
handler to ensure that the Return from Interrupt (IRET) is
executed. The flags are restored and the interrupts reenabled
before another interrupt is serviced, protecting the stack from
excessive build-up.

• All interrupt handlers must have a routine that can be executed
after power-on to disable their adapters' interrupts. Executing
this routine and resetting the interrupt sharing hardware ensures
that adapters are deactivated if the user resets the system.

Micro Channel is a trademark of the International Business Machines
Corporation.

Interrupt Sharing 4-3

• Interrupt handler implementations must store data in memory
using Intel format; that is, word hex 4248 is stored as 4BH,42H in
memory.

Interrupt Request (IRQn) Reset

The Micro Channel interrupt mechanism is level sensitive as opposed
to the edge sensitive mechanism of the PC type 1/0 channel. The
level sensitive Micro Channel mechanism simplifies the interrupt
hardware needed for the adapters.

An interrupt request in the PC type 1/0 channel is implicitly reset due
to the edge sensitive characteristic of the signal. In the Micro
Channel, due to the level sensitive characteristic of the signal, an
interrupt request must be explicitly reset by the bus slave interrupt
handler software. This is not the case if the bus slave hardware
implicitly resets the interrupt request. An example of a bus slave
device that implicitly resets an interrupt request is the system timer.

Interrupt-Sharing Software Requirements

All interrupt sharing software developed for Micro Channel bus
slaves must reset the interrupt request. The interrupt-sharing
chaining structure must be provided by all interrupt handlers. The
16-byte interrupt-sharing chaining structure must begin at the third
byte from the entry point of the interrupt handler. Pointers and flags
stored in the interrupt-sharing chaining structure must be stored in
Intel data format (see "Interrupt-Sharing Chaining Structure and
Signature" on page 4-6). These requirements are specified to
support the portability of the interrupt handlers across hardware
operating environments.

The interrupt handling software for all adapters sharing an interrupt
request line must implement this interrupt sharing software standard.
Interrupt sharing software operating in a multitasking environment
must support the linking of a task's interrupt handler to a chain of
interrupt handlers, the sharing of the interrupt level while that task is
active, and the unlinking of the interrupt handler from the chain once
the task is complete.

To link an interrupt handler, the newly activated task's interrupt
handler replaces the interrupt vector in low memory with a pointer to

4-4 Interrupt Sharing

its own interrupt handler. (See "ROM Considerations" on page 4-7
for interrupt handlers stored in ROM.) The interrupt handler must
preserve the interrupt vector it is replacing and use it as a forward
pointer to the next interrupt handler in the chain. This old interrupt
vector must be stored at a fixed offset from the entry point of the new
task's interrupt handler.

When the system acknowledges an interrupt request, each interrupt
handler must determine whether it is the appropriate interrupt
handler for the adapter presenting the interrupt request. This is
accomplished by the handler reading the contents of the interrupt
status register of the adapter.

If the handler's device caused the interrupt, the handler must service
the interrupt, reset the interrupt status bit, clear the interrupts, issue
a non-specific EOI to the interrupt controller, then execute an IRET.

If the handler's device did not cause the interrupt, the handler passes
control to the next interrupt handler in the chain using the previously
stored forward pointer.

An interrupt handler is unlinked from a chain by the task first locating
its handler's position within the chain. The chain can be searched by
starting at the interrupt vector in low memory and using the offset of
each handler's forward pointer to locate the entry point of each
handler. This is done until the task finds its own handler. Each
interrupt handler's signature (424BH) must be checked to ensure that
a valid forward pointer exists. The task's forward pointer replaces
the forward pointer of the previous handler in the chain, thus
removing the handler from the chain.

Note: If the interrupt handler cannot locate its position in the chain,
the interrupt handler cannot unlink.

An application-dependent unlinking error-recovery procedure must
be incorporated into the unlinking routine for those situations where
the unlinking routine discovers that the interrupt chain has been
corrupted (an interrupt handler is linked but does not have a valid
signature). All interrupt sharing handlers, except those in ROM (see
"ROM Considerations" on page 4-7), must use 424BH as the
signature to avoid corrupting the chain.

Interrupt Sharing 4-5

During a system-reset condition, a routine for each interrupt handler
must be executed after power-on to disable interrupts from their
responsible devices.

Operating system environments that support dynamic relocation of
software must manage the entire interrupt sharing process. Interrupt
handler software written exclusively for dynamic-relocation
operating-system environments does not have to provide the
interrupt-sharing chaining structure. These interrupt handlers do not
have to provide linking and unlinking support. They must provide
support for disabling the interrupting capability of the bus slave they
support.

Interrupt-Sharing Chaining Structure and Signature

The interrupt-sharing software chaining structure is in a 16-byte
format containing a 4-byte forward pointer (FPTR), a 2-byte signature,
and 8 reserved bytes (RES_BYTES), as depicted in the following
example:

ENTRY: JMP SHORT PAST ; Jump around structure
FPTR DD 0 ; Forward Pointer
SIGNATURE ow 424BH ; Used when unlinking to identify

; compatible interrupt handlers
FLAGS DB 0 ; Flags
FIRST EQU 80H ; Flag for being first in chain
JMP SHORT RESET
RES_BYTES DB DUP 7(0) ; -Reserved-

PAST: ;Actual start of code

The interrupt-sharing software chaining structure begins at the third
byte from the interrupt handler's entry point. The first instruction of
each handler is a short jump around the structure, placing the
structure at a known offset from the beginning of the handler routine.
Since the position of each interrupt handler's chaining structure is
known (except for the handlers on adapter ROM), the FPTRs can be
updated when linking and unlinking.

The FIRST flag is used to determine the handler's position in the
chain when linking and unlinking for shared interrupt levels. The
contents of the FLAGS byte is changed to the value of the FIRST flag
(80H) to indicate that the handler is the first handler linked in the
chain. All interrupt handlers not stored in ROM must store the FIRST

4-6 Interrupt Sharing

flag (SOH) in the FLAGS byte when they are the first handler in the
chain.

The Reset routine, an entry point for the operating system, must
disable the adapter interrupt and return to the operating system.

ROM Considerations

Adapters with interrupt handlers in ROM must implement chaining by
storing the FPTR in latches or ports on the adapter. If the adapter is
sharing interrupt levels 7 or 15, it must also store the FIRST flag that
indicates whether it is positioned first in the chain of interrupt
handlers. Storage of this information is required because it cannot
be guaranteed that handlers in ROM will always link first and never
unlink. The ROM handler must contain the signature OOOOH beginning
at the seventh byte from the handler entry point since the forward
pointer in ROM handlers is not stored at the third byte from the
handler entry point.

Implementation Information

The Interrupt Mask register is located at 110 port 21 H. Specific End of
Interrupt (EOI) values for the various interrupt levels are listed (67H
for level 7). The specific EOI is accomplished by issuing an OUT to
the programmable interrupt controller operation command
register (port 20H), using Operation Command Byte 2. A non-specific
EOI is accomplished by issuing an OUT value of hex 20 to the
programmable interrupt controller operation command register
(port 20H).

Interrupt Sharing 4-7

The following are examples of code used to implement interrupt
sharing:

Linking

PUSH ES
CLI ;Clear interrupts

;Set forward pointer to value of interrupt vector in low memory
ASSUME CS:CODESEG.DS:CODESEG
PUSH ES
MOV AX,350FH
INT 21H
MOV SI.OFFSET CS:FPTR

MOV
MOV

CS: [SI] ,BX
CS: [SI+2] ,ES

;DOS get interrupt vector

;Get offset of your forward pointer
; in an indexable register
;Store the old interrupt vector
; in your forward pointer for
; chaining

CMP ES:BYTE PTR[BX],0CFH ;Test for IRET
if iret_test_only_is_needed ; See NOTE below

JNE SETVECTR
else

JE FRSTVCTR
CMP ES: WORD PTR[BX+6],424BH; Is signature present?
JE SETVECTR
MOV AX.ES
CMP AX.0F000H ;See if pointing to dummy handler
JNE SE TV CTR
CMP BX.WORD PTR ES:[0FF01H] ; Dummy Vector Pointer?
JNE SETVECTR ;If dummy. then first

FRSTVCTR:
endif

MOV
SETVECTR: POP

PUSH

CS: FLAGS.FIRST
ES
OS

;Set up first in chain flag

;Make interrupt vector in low memory point to your handler

;Unmask

. MOV DX.OFFSET ENTRY ;Make interrupt vector point to

MOV
MOV
MOV
INT
POP

(enable)
IN
JMP
AND
OUT
MOV
JMP
OUT
STI
POP

AX.SEG ENTRY
OS.AX
AX.250FH
21H
OS

; your handler
;If DS ~ cs. get it and
; put it in PS
;DOS set interrupt vector

interrupts for your level
AL,IMR ;Read interrupt mask register
$+2 ;I/O delay
AL~07FH ;Unmask interrupt level 7
IMR.AL ;Write new interrupt mask
AL.SPC_EOI ;Issue specific EOI for level 7
$+2 ; to allow pending level 7 interrupts
OCR.AL ; (if any) to be serviced

;Enable interrupts
ES

4-8 Interrupt Sharing

Notes:

1. The operating system must ensure that the SEG:OFF points to a
valid interrupt handler or to an IRET (OCFH) for levels 7 and 15.

2. ROM interrupt handlers during ROMSCAN (before the operating
~ system is loaded) and handlers on other than IRQ 7, must test the

SEG:OFF as shown in the "else" clause in this listing to
determine if they are the first handler in the chain. Checking the
SEG:OFF to see if it points to an IRET as the sole determination of
FIRST is allowed only on IRQ 7, and then only after the operating
system is loaded.

Interrupt Handler

YOUR_ CARD EQU xx xx :Location of your card interrupt
: control/status register

ISB EQU xx :Interrupt bit in your card
: interrupt control/status register

REARM EQU 2F7H :Global Rearm location for
: interrupt level 7

SPC_EOI EQU 67H :Specific EOI for programmable
: interrupt controller interrupt level 7

EOI EQU 20H :Non-specific EOI
OCR EQU 20H :Location of programmable interrupt

: controller operation command register
IMR EQU 21H :Location of programmable interrupt

controller interrupt mask
MYCSEG SEGMENT PARA

ASSUME CS:MYCSEG,DS:DSEG
ENTRY PROC FAR

JMP SHORT PAST :Entry point of handler
FPTR DD 0 :Forward Pointer
SIGNATURE ow 424BH :Used when unlinking to identify

: compatible interrupt handlers
FLAGS DB 0 :Flags
FIRST EQU 80H
JMP SHORT RESET
RES_BYTES DB 7 DUP (0) ;Future expansion
PAST: STI :Actual start of handler code

PUSH :Save needed registers
MOV DX,YOUR_CARD :Select your status register
IN AL,DX :Read the status register
TEST AL, ISB ;Your card caused interrupt?
JNZ SERVICE :Yes, branch to service logic
TEST CS: FLAGS, FIRST :Are we the first ones in?
JNZ EXIT :If yes, branch for EOI and Rearm
POP :Restore registers
CLI :Clear interrupts
JMP DWORD PTR CS:FPTR :Pass control to next handler on chain

SERVICE: :Service the interrupt

Interrupt Sharing 4-9

EXIT:
cu ;Clear interrupts
MOV AL,EOI
OUT OCR.AL ;Issue non-specific EOI to programmable

; interrupt controller
MOV DX, REARM ;Rearm the cards
OUT DX,AL
POP ;Restore registers
IRET

RESET: ;Disable your card
RET ;Return FAR to operating system

ENTRY ENDP
MYCSEG ENDS

END ENTRY

Unllnklng

PUSH OS
PUSH ES
CLI ;Clear interrupts
MOV AX,350FH ;DOS get interrupt vector
INT 21H ;ES:BX points to first of chain
MOV CX,ES ;Pick up segment part of interrupt vector

;Are we the first handler in the chain?
MOV AX,CS ;Get code seg into comparable register
CMP BX.OFFSET ENTRY ;Interrupt vector in low memory

JNE
CMP

UNCHAIN_A
Ax.ex

; pointing to your handler offset?
;No, branch
;Vector pointing to your handler
; segment?

JNE UNCHAIN_A ;No, branch
;Set interrupt vector in low memory to point to the handler pointed to

by your pointer
PUSH
MOV
MOV
MOV
INT
POP
JMP

DS
DX,WORD PTR CS:FPTR
DS,WORD PTR CS:FPTR[2]
AX,250FH ;DOS set interrupt vector
21H
OS
UNCHAIN_X

UNCHAIN_A:
CMP

BX = FPTR offset, ES = FPTR segment, CX = CS
ES:[BX+6],4B42H ;Is handler using the appropriate

JNE
LOS
CMP

JNE
MOV
CMP

JNE

; conventions (is SIGNATURE present in
; the interrupt chaining structure)?

exception ;No, invoke error exception handler
SI,ES:[BX+2] ;Get FPTR segment and offset
SI.OFFSET ENTRY ;Is this forward pointer pointing to

UNCHAIN_B
CX,DS
AX,CX

UNCHAIN_B

; your handler offset?
;No, branch
;Move to compare
;Is this forward pointer pointing to
; your handler segment?
;No, branch

4-10 Interrupt Sharing

;Locate your handler in the chain
MOV AX.WORD PTR CS:FPTR ; Get your FPTR offset
MOV ES:[BX+2],AX ;Replace offset of FPTR of handler

MOV
MOV

MOV
AND
OR
JMP

UNCHAIN_B: MOV
PUSH
POP
JMP

UNCHAIN_X: STI
POP
POP

; that points to you
AX.WORD PTR CS:FTPR[2] ; Get your FPTR segment
ES:[BX+4],AX ;Replace segment of FPTR of handler

AL.CS: FLAGS
AL.FIRST
ES:[BX+6],AL
UNCHAIN_X
BX.SI
DS
ES
UNCHAIN_A

ES
OS

; that points to you
; Get your fl ags
;Isolate FIRST flag
;Set your first flag into prior routine

;Move new offset to BX
;Set pointer to next in chain

;Examine next handler in chain
;Enable interrupts

Interrupt Sharing 4-11

Adapter ROM

The BIOS provides a method for integrating adapters with on-board
ROM code into the system. During the POST, interrupt vectors are
established for BIOS calls. After the default vectors are in place, a
scan for adapter ROM modules occurs. At this point, an adapter ROM
routine can gain control. The routine can establish or intercept
interrupt vectors to hook into the system.

Early in the POST the absolute addresses hex COOOO through hex
C7FFF are scanned in 2KB blocks in search of adapter ROM modules
that need to be initialized (for example, valid video adapter ROM).

Later in the POST, the absolute addresses hex C8000 through hex
DFFFF are scanned in 2KB blocks in search of devices with valid
adapter ROM modules. Valid adapter ROM is defined as follows:

Byte 0: Hex 55

Byte 1: Hex AA

Byte 2: A length indicator representing the number of 512-byte
blocks (limit hex 7F) in the ROM (length/512). A checksum
tests the integrity of the ROM module. Each byte in the
defined ROM is summed modulo hex 100. This sum must
be 0 for the module to be valid.

When the POST identifies valid adapter ROM, it executes a far call to
byte 3 of the ROM (which should contain executable code). The
device can now perform power-on initialization. The adapter ROM
should return control to the POST by executing a far return.

For PC Convertible, if the adapter ROM diagnoses a self-test error,
the following should be done before returning:

• Set bit 4 of hex 40:12 (POST status) to 1
• Set the device number for the supported adapter into (AH)
• Set a two-digit error code into (AL).

If no self-test error is found, the adapter ROM should reset bit 4 of
hex 40:12 (POST status) to 0 before returning.

4·12 Adapter ROM

For Personal System/2 products except Model 25 and Model 30, video
adapters in the channel have a ROM signature code that identifies the
video adapter. During the POST, when CMOS is not valid (abnormal
condition), the signature code is used to find the first video adapter
and set up its ROM programmable option select (POS) parameters.

The code starts at OCH in the ROM address space and consists of:

77H. CCH. 'VIDEO I

The POS parameters are accessed from offset 30H in the ROM
address space and are in the following order:

POS Byte 102. POS Byte 103, POS Byte 104. POS Byte 105

Video ROM scan remains COOOOH to C7FFFH.

For Personal System/2 BIOS dated 10/07/87 and after, the adapter
ROM integration method is as follows:

Early in the POST, the absolute addresses hex COOOO through
DFFFF are scanned in 2KB blocks in search of adapter ROM
modules that have video adapter signature code, as previously
described. Only adapters with a video signature code are
initialized early. in the POST.

Later in the POST, the absolute addresses hex COOOO through
DFFFF are again scanned in 2KB blocks to initialize other adapter
ROM modules not initialized in the early scan.

For PC Convertible, during early ROM scan the following protocol is
established to determine the video support:

Upon return from a call to a video adapter ROM module, (BH)
indicates the following:

(BH) = 00H - Not a video adapter
= 02H - Video adapter supporting video in the

color/graphics adapter range
= 04H - Video adapter supporting video in the

monochrome adapter range

Adapter ROM 4-13

Video Function Compatibility

The following procedures are recommended to provide video function
compatibility to application software.

Video Presence Test

Use this video presence test to determine which IBM video functions
are present.

1. Issue an INT 10H, with (AH) = 1AH and (AL) = OOH (Read Display
Combination Code).

If on return (AL) is not equal to 1AH, the Read/Write Display
Combination Code function is not supported, and step 2 should be
followed to determine video presence.

If on return (AL) = 1AH, the information returned in (BX) defines
the video environment. The active display code is returned in
(BL). The alternate display code, if any, is returned in (BH).
Refer to INT 10H, (AH) = 1AH on page 2-39 for display code
definitions.

2. To determine the presence of an IBM Enhanced Graphics Adapter
(EGA) when the Display Combination Code function is not
supported, issue an INT 10H with (AH) = 12H and (BL) = 10H
(Return EGA Information).

If on return, (BL) = 10H, an EGA is not present and step 3 should
be followed.

If on return (BL) is not equal to 10H then an EGA is present. Note
that an IBM Color/Graphics Monitor Adapter or an IBM
Monochrome Display and Printer Adapter may also be present,
depending on the EGA switch settings.

3. Complete steps 1 and 2 before performing this step. The video
functions that may be present at this point are the IBM
Color/Graphics Monitor Adapter, the IBM Monochrome Display
and Printer Adapter, or both. Perform a presence test on video
buffer addresses OBSOOOH, OBOOOOH to determine which video
functions are present.

4-14 Video Function Compatibility

Video Mode Switching

Use the following video mode switching procedure when applications
will switch between monochrome and color video modes. A correct
video function presence test, as previously described, is required.
The following three system video environments are possible:

1. A single video function that supports either monochrome or color
video modes. If a monochrome function is present, only
monochrome video modes are available. If a color function is
present, only color video modes are available.

2. Two video functions; one supporting color and the other
supporting monochrome video modes. In this case both
monochrome and color video modes are available. To switch
from monochrome to color or from color to monochrome, the
application program should change the system equipment video
mode type bits (see data area hex 40:10, bits 5, 4 on page 3-4) to
monochrome or color and issue a INT 10H, (AH) = OOH (Set
Mode).

3. A single video function that supports both monochrome and color
video modes. To determine if a single video function supports
both monochrome and color video modes, the application
program should issue an INT 1 OH, (AH) = 1 BH (Return
Functionality/State Information).

If on return (AL) is not equal to 1 BH, the Return
Functionality/State function is not supported. Support for both
monochrome and color video modes on a single video function is
not available.

If on return (AL) = 1 BH, use the returned information to
determine if the All Modes on All Displays function is active. If
active, color and monochrome modes are available and the
application program should change the system equipment video
mode type bits to monochrome or color and issue a INT 10H, (AH)
= OOH (Set Mode). If inactive, only color modes or monochrome
modes are available, depending on the results of the video
presence test.

Video Function Compatibility 4-15

Multitasking Provisions

The BIOS provides hooks to assist in multitasking implementation.
Whenever a busy (Wait) loop occurs in the BIOS, a hook is provided
for the program to break out of the loop. Also, when the BIOS
services an interrupt, a corresponding Wait loop is exited, and
another hook is provided. A program may be written that employs
the bulk of the device driver code. The following is valid only in the
microprocessor real address mode, and the following steps must be
taken by the code to allow this support.

The program is responsible for matching corresponding Wait and
Post calls and for the serialization of access to the device driver. The
BIOS code is not reentrant.

The following four interfaces are used by the multitasking dispatcher:

Startup: The startup code hooks INT 15H. The dispatcher is
responsible to check for function codes of (AH) = 90H or (AH) = 91H
(see the following descriptions of Wait and Post). The dispatcher
must pass all other functions to the previous user of INT 15H (use a
JMP or a CALL). If (AH) = 90H or (AH) = 91 H, the dispatcher must
do the appropriate processing, and return by the IRET instruction.

Serlallzation: The multitasking system must ensure that the device
driver code is used serially. Multiple entries into the code can result
in errors.

Walt (Busy): Whenever the BIOS is about to enter a Wait loop, it first
issues an INT 15H, (AH) = 90H. This signals a wait condition. At this
point, the dispatcher should save the task status and dispatch another
task. This allows overlapped execution of tasks when the hardware is
busy. The following is an outline of the code that has been added to
the BIOS to perform this function.

MOV AX, 90xxH ;Wait code in AH and
: type code in AL

INT 15H ;Issue call
JC TIMEOUT ;Optional: for time-out or

: if carry is set, time-out
: occurred

NORMAL TIMEOUT LOGIC ;Normal time-out

4-16 Multitasking Provisions

Post (Interrupt): Whenever the BIOS has set an interrupt flag for a
corresponding busy loop, an INT 15H, (AH) = 91H occurs. This
signals a Post condition. At this point, the dispatcher must set the
task status to "ready to run" and return to the interrupt routine. The
following is an outline of the code added to the BIOS that performs
this function.

MOV AX, 91xxH

INT 15H

;Post code AH and
: type code AL
;Issue call

Three Wait loop function code classes are supported:

• The first (hex Oto 7F} is serially reusable. This means that for the
devices that use these codes, access to the BIOS must be
restricted to one task at a time and the operating system must
serialize access.

• The second (hex 80 to BF} is for reentrant devices. There is no
restriction on the number of tasks that may access the device.
ES:BX is used to distinguish different calls.

• The third (hex CO to FF} is non interrupt (Wait-only calls}. There
is no corresponding interrupt for the Wait loop. The dispatcher
must take the appropriate action to satisfy this condition, and exit
from the loop. There is no complementary Post for these Waits.
They are time-out only and the times are function-number
dependent.

To support time-outs properly, the multitasking dispatcher must be
aware of time. If a device enters a busy loop, it generally should
remain there for a specific amount of time before indicating an error.
The dispatcher must return to the BIOS Wait loop with the carry bit
set if a time-out occurs.

Multitasking Provisions 4-17

System Identification

Each BIOS ROM module has a model byte located at hex FOOO:FFFE
in ROM. In some cases, a submode! byte and a BIOS revision level
byte are used to further distinguish the various BIOS ROM modules.
To gain access to this information, see INT 15H, (AH) = COH (Return
System Configuration Parameters) on page 2-92.

BIOS Model Submode I
Product Date Byte Byte Revision

PC 04/24/81 FF - -
PC 10/19/81 FF - -
PC 10/27/82 FF - -
PCXT 11/08/82 FE - -
PCXT 01/10/86 FB 00 01
PCXT 05/09/86 FB 00 02
PCjr 06/01/83 FD - -
AT 01/10/84 FC - -
AT 06/10/85 FC 00 01
AT 11/15/85 FC 01 00
PC XT Model 286 04/21/86 FC 02 00
PC Convertible 09/13/85 F9 00 00
PS/2 Model 25 06126187 FA 01 00
PS/2 Model 30 09/02/86 FA 00 00
PS/2 Model 50 (Type 1) 02/13/87 FC 04 00
PS/2 Model 50 (Type 2) 01/28/88 FC 04 03
PS/2 Model 60 02/13/87 FC 05 00
PS/2 Model 70 (Type 1) 01129/88 F8 09 00
PS/2 Model 70 (Type 2) 01/29/88 F8 04 00
PS/2 Model 80 (Type 1) 03/30/87 F8 00 00
PS/2 Model 80 (Type 2) 10/07/87 F8 01 00

The "Supplements" section of this manual may contain additional system
identification information.

Figure 4-1. System Identification

Note: Specific information about system board types can be found in
the technical reference manual for that model.

4-18 System Identification

Application Guidelines

Use the following information to develop application programs for the
IBM Personal System/2 and Personal Computer products. Whenever
possible, BIOS should be used as an interface to hardware in order to
provide maximum compatibility and portability of applications across
systems.

Math Coprocessor Testing

The BIOS Equipment Function should be used where possible as the
method for detecting the presence of the math coprocessor.

Hardware Interrupts

Hardware interrupts are level-sensitive for systems using the Micro
Channel architecture while systems using the PC type 1/0 channel
have edge-triggered hardware interrupts. On edge-triggered
interrupt systems, the interrupt controller clears its internal
interrupt-in-progress latch when the interrupt routine sends an end of
interrupt (EOI) command to the controller. The EOI is sent whether
the incoming interrupt request to the controller is active or inactive.

In level-sensitive systems, the interrupt-in-progress latch is readable
at an 110 address bit position. This latch is read during the interrupt
service routine and may be reset by the read operation or may
require an explicit reset.

Note: Designers may want to limit the number of devices sharing an
interrupt level for performance and latency considerations.

The interrupt controller on level-sensitive systems requires the
interrupt request to be inactive at the time the EOI is sent; otherwise,
a "new" interrupt request will be detected and another
microprocessor interrupt caused.

To avoid this problem, a level-sensitive interrupt handler must clear
the interrupt condition (usually by a Read or Write to an 110 port on
the device causing the interrupt). After clearing the interrupt
condition, a JMP $ + 2 should be executed prior to sending the EOI to
the interrupt controller. This ensures that the interrupt request is

Application Guidelines 4-19

removed prior to reenabling the interrupt controller. Another
JMP $+2 should be executed after sending the EOI, but prior to
enabling the interrupt through the Set Interrupt Flag (STI) instruction.

1/0 commands followed immediately by an STI instruction do not
permit enough recovery time for some system board and channel
operations. To ensure enough time, a JMP SHORT $+2 must be
inserted between the 1/0 command and the STI instruction.

Notes:

1. MOV AL,AH type instructions do not allow enough recovery time.
An example of the correct procedure follows:

OUT IO ADD, AL
JMP SHORT $+2
MOV AL,AH
STI

2. Prior to programming the interrupt controllers, interrupts should
be disabled by issuing a Clear Interrupt Flag (CU) instruction.
This includes programming the Mask register and issuing EOls,
initialization command bytes, and operation command bytes.

In the level-sensitive systems, hardware prevents the interrupt
controllers from being set to the edge-triggered mode.

Hardware interrupt IRQ9 is defined as the replacement interrupt level
for the cascade level IRQ2. Program interrupt sharing should be
implemented on IRQ2, INT OAH. The following processing occurs to
maintain compatibility with the IRQ2 used by IBM Personal Computer
products:

1. A device drives the interrupt request active on IRQ2 of the
channel.

2. This interrupt request is mapped in hardware to IRQ9 input on the
slave interrupt controller.

3. When the interrupt occurs, the system microprocessor passes
control to the IRQ9 (INT 71 H) interrupt handler.

4. This interrupt handler performs an EOI to the slave interrupt
controller and passes control to IRQ2 (INT OAH) interrupt handler.

5. When handling the interrupt, the IRQ2 interrupt handler causes
the device to reset the interrupt request prior to performing an

4-20 Application Guidelines

EOI to the master interrupt controller that finishes servicing the
IRQ2 request.

Programming Considerations

The IBM-supported languages of IBM C, BASIC, FORTRAN, COBOL,
and Pascal are the best choices for writing compatible programs. If a
program uses specific features of the hardware, that program may
not be compatible with all IBM Personal System/2 and Personal
Computer products.

Any program that requires precise timing information should obtain it
through an operating system or language interface; for example,
TIME$ in BASIC. The use of programming loops may prevent a
program from being compatible with other Personal System/2 and
IBM Personal Computer products, and software.

BIOS and Operating System Function Calls

For maximum portability, programs should perform all 1/0 operations
through operating system function calls. In environments where the
operating system does not provide the necessary programming
interfaces, programs should access the hardware through BIOS
function calls, if permissible. When writing programs, consider the
following:

• In some environments, program interrupts are used for access to
these functions. This practice removes the absolute addressing
from the program. Only the interrupt number is required.

• The system can mask hardware sensitivity. New devices can
change the BIOS to accept the same programming interface on
the new device.

• In cases where BIOS provides parameter tables, such as for
video or diskette, a program can substitute new parameter values
by building a new copy of the table and changing the vector to
point to that table. The program should copy the current table,
using the current vector, and then modify those locations in the
table that need to be changed. In this way, the program does not
inadvertently change any values that should be left the same.

• The Diskette Parameters Table pointed to by INT 1 EH consists of
11 parameters required for diskette operation. It is

Application Guidelines 4-21

recommended that the values supplied in ROM be used. If it
becomes necessary to modify any of the parameters, build
another parameter block and modify the address at INT 1 EH
(0:78) to point to the new block.

The parameters were established to allow:

Some models of the IBM Personal Computer to operate both
the 5.25-inch high capacity diskette drive (96 tracks per inch)
and the 5.25-inch double-sided diskette drive (48 tracks per
inch).

Some models of the Personal System/2 to operate both the
3.5-inch 1.44MB diskette drive and the 3.5-inch 720KB
diskette drive.

The Gap Length Parameter is not always retrieved from the
parameter block. The gap length used during diskette read,
write, and verify operations is derived from within diskette BIOS.
The gap length for format operations is still obtained from the
parameter block.

If a parameter block contains a head settle time parameter value
of O milliseconds, the following minimum head settle times are
enforced.

Drive Type

5.25-lnch Diskette Drives:
Double Sided (48 TPI)
High Capacity (96 TPI)

3.5-lnch Diskette Drives:
720KB
1.44MB

Figure 4-2. Head Settle Time

Head Settle Time

20 milliseconds
15 milliseconds

20 milliseconds
15 milliseconds

Read and verify operations use the head settle time provided by
the parameter block.

For any function that requires a parameter block containing a
motor start wait parameter of less than 500 milliseconds
(1 second for a Personal Computer product), diskette BIOS
enforces a minimum time of 500 milliseconds (1 second for a
Personal Computer product).

4-22 Application Guidelines

• Programs may be designed to reside on both 5.25-inch and
3.5-inch diskettes. Since not all programs are operating-system
dependent, the following procedure can be used to determine the
type of media inserted into a diskette drive:

1. Verify track 0, head 0, sector 1 (1 sector): This allows diskette
BIOS to determine if the format of the media is a
recognizable type.

If the verify operation fails, issue the reset function (AH= 0) to
diskette BIOS and try the operation again. If another failure
occurs, the media needs to be formatted or is defective.

2. Verify track 0, head 0, sector 16 (1 sector).

If the verify operation fails, either a 5.25-inch (48 TPI) or
3.5-inch 720KB diskette is installed. The type can be
determined by verifying track 78, head 1, sector 1 (1 sector).
A successful verification of track 78 indicates a 3.5-inch
720KB diskette is installed; a verification failure indicates a
5.25-inch (48 TPI) diskette is installed.

Note: Refer to the DOS Technical Reference for the File
Allocation Table parameters for single-sided and
double-sided diskettes.

3. Read the diskette controller status in BIOS starting with
address hex 40:42. The fifth byte defines the head that the
operation ended with. If the operation ended with head 1, the
diskette is a 5.25-inch high-capacity (96 TPI) diskette; if the
operation ended with head 0, the diskette is a 3.5-inch 1.44MB
diskette.

Application Guidelines 4-23

Scan Code/Character Code Combinations

Note: Refer to the Personal System/2 Model 25 Technical Reference
for scan code/character code combinations for the PC Space
Saving (84/85-key) Keyboard.

The following lists the keyboard keystrokes and the scan
code/character code combinations that are returned through INT 16H:

83- and 84-Key 1011102-Key 101/102-Key
Standard Standard Extended

Keystroke Function Function Function

Esc 01/18 01/18 01/18
1 02/31 02/31 02/31
2 03/32 03/32 03/32
3 04/33 04/33 04/33
4 05/34 05/34 05/34
5 06/35 06/35 06/35
6 07/36 07/36 07/36
7 08/37 08/37 08/37
8 09/38 09/38 09/38
9 OA/39 OA/39 OA/39
0 OB/30 OB/30 OB/30
- OC/20 OC/20 OC/20
= 00/30 00/30 00/30
Backspace OE/08 OE/08 OE/08
Tab OF/09 OF/09 OF/09
q 10/71 10/71 10/71
w 11/77 11/77 11/77
e 12/65 12/65 12/65
r 13/72 13/72 13/72
t 14/74 14/74 14/74
y 15/79 15/79 15/79
u 16/75 16/75 16/75
i 17/69 17/69 17/69
0 18/6F 18/6F 18/6F
p 19/70 19/70 19/iO
[1A/5B 1A/5B 1A/5B
] 18/50 18/50 18/50
Return 1C/OO 1C/OO 1C/OO
Ctrl ** ** **
a 1E/61 1E/61 1E/61
s 1F/73 1F/73 1F/73
d 20/64 20/64 20/64

Figure 4-3 (Part 1 of 3). Keyboard Keystrokes

4-24 Scan Code/Character Code Combinations

83- and 84-Key 101/102-Key 101/102-Key
Standard Standard Extended

Keystroke Function Function Function

f 21/66 21/66 21/66
g 22/67 22/67 22/67
h 23/68 23/68 23/68
j 24/6A 24/6A 24/6A
k 25/6B 25/6B 25/6B
I 26/6C 26/6C 26/6C
; 27/3B 27/3B 27/3B
' 28/27 28/27 28/27

29/60 29/60 29/60
Shift ** ** **
\ 2B/5C 2B/5C 2B/5C
z 2C/7A 2C/7A 2C/7A
x 20/78 20/78 20/78
c 2E/63 2E/63 2E/63
v 2F/76 2F/76 2F/76
b 30/62 30/62 30/62
n 31/6E 31/6E 31/6E
m 32/60 32/60 32/60

33/2C 33/2C 33/2C
34/2E 34/2E 34/2E

I 35/2F 35/2F 35/2F
* 37/2A 37/2A 37/2A
Alt ** ** **
Space 39/20 39/20 39/20
Caps Lock ** ** **
F1 3B/OO 3B/OO 3B/OO
F2 3C/OO 3C/OO 3C/OO
F3 30/00 30/00 30/00
F4 3E/OO 3E/OO 3E/OO
FS 3F/OO 3F/OO 3F/OO
F6 40100 40100 40/00
F7 41/00 41/00 41/00
F8 42/00 42/00 42/00
F9 43/00 43/00 43/00
F10 44100 44/00 44/00
F11 (no key) -- 85/00
F12 (no key) -- 86100
Num Lock ** ** **
Scroll Lock ** ** **
Home 47100 47100 47100
Up Arrow 48/00 48100 48/00
Pg Up 49/00 49/00 49/00

- 4A/20 4A/20 4A/20
Left Arrow 4B/OO 4B/OO 4B/OO

Figure 4-3 (Part 2 of 3). Keyboard Keystrokes

Scan Code/Character Code Combinations 4-25

83- and 84-Key 101 /102-Key 1011102-Key
Standard Standard Extended

Keystroke Function Function Function

Center Key 4C/OO
Right Arrow 40/00 4D/OO 40/00

+ 4E/28 4E/2B 4E/2B
End 4F/OO 4F/OO 4F/OO
Down Arrow 50/00 50/00 50/00
Pg On 51/00 51/00 51100
Ins 52/00 52/00 52/00
Del 53/00 53/00 53/00
SysReq (no key) (no key)
Key45 (no key) 56/5C 56/5C
Enter (no key) 1C/OD EO/OD
I (no key) 35/2F E0/2F
PrtSc (no key)
Pause (no key)
Home (no key) 47100 47/EO
Up Arrow (no key) 48/00 48/EO
PageUp (no key) 49/00 49/EO
Left Arrow (no key) 48/00 48/EO
Right Arrow (no key) 4D/OO 40/EO
End (no key) 4F/OO 4F/EO
Down Arrow (no key) 50/00 50/EO
Page Down (no key) 51100 51/EO
Insert (no key) 52/00 52/EO
Delete (no key) 53/00 53/EO

** These combinations do not provide a keystroke for the application but perform
some other action. They are not put in the INT 16H queue.
-- These combinations have no function and are ignored.

Figure 4-3 (Part 3 of 3). Keyboard Keystrokes

4-26 Scan Code/Character Code Combinations

The following lists the Shift keyboard keystrokes and the scan
code/character code combinations that are returned through INT 16H:

83· and 84-Key 101/102-Key 101/102-Key
Standard Standard Extended

Keystroke Function Function Function

Shift Esc 01/18 01/18 01/18
Shift! 02/21 02/21 02/21
Shift@ 03/40 03/40 03/40
Shift# 04/23 04/23 04/23
Shift$ 05/24 05/24 05/24
Shift% 06/25 06/25 06/25
Shift" 07/5E 07/5E 07/5E
Shift & 08/26 08/26 08/26
Shift* 09/2A 09/2A 09/2A
Shift (OA/28 OA/28 OA/28
Shift) OB/29 OB/29 OB/29
Shift OC/5F OC/SF OC/5F -
Shift+ 00/28 00/28 00/28
Shift Backspace OE/08 OE/08 OE/08
Shift Tab (Backtab) OF/00 OF/00 OF/00
Shift Q 10/51 10/51 10/51
Shift W 11/57 11/57 11/57
Shift E 12/45 12/45 12/45
Shift R 13/52 13/52 13/52
Shift T 14/54 14/54 14/54
Shift Y 15/59 15/59 15/59
Shift U 16/55 16/55 16/55
Shift I 17/49 17/49 17/49
Shift 0 18/4F 18/4F 18/4F
Shift P 19/50 19/50 19/50
Shift { 1A/7B 1A/7B 1A/7B
Shift} 18/70 18/70 18/70
Shift Return 1C/OO 1C/OD 1C/OO
Shift Ctrl ** ** **
Shift A 1E/41 1E/41 1E/41
Shift S 1F/53 1F/53 1F/53
Shift O 20/44 20/44 20/44
Shift F 21/46 21/46 21/46
Shift G 22/47 22/47 22/47
Shift H 23/48 23/48 23/48
Shift J 24/4A 24/4A 24/4A
Shift K 25/48 25/48 25/48
Shift L 26/4C 26/4C 26/4C
Shift: 27/3A 27/3A 27/3A

Shift" 28/22 28/22 28/22

Shift - 29/7E 29/7E 29/7E

Figure 4-4 (Part 1 of 3). Shift Keyboard Keystrokes

Scan Code/Character Code Combinations 4-27

83· and 84-Key 101/102-Key 1011102-Key
Standard Standard Extended

Keystroke Function Function Function

Shift : 28/7C 28/7C 28/7C
Shift Z 2C/5A 2C/5A 2C/5A
Shift X 20/58 20/58 20/58
Shift C 2E/43 2E/43 2E/43
Shift V 2F/56 2F/56 2F/56
Shift 8 30/42 30/42 30/42
Shift N 31/4E 31/4E 31/4E
Shift M 32/40 32/40 32/40
Shift< 33/3C 33/3C 33/3C
Shift> 34/3E 34/3E 34/3E
Shift? 35/3F 35/3F 35/3F
Shift* 37/2A 37/2A 37/2A
Shift Alt ** ** **
Shift Space 39/20 39/20 39/20
Shift Caps Lock ** ** **
Shift F1 54/00 54/00 54/00
Shift F2 55/00 55/00 55/00
Shift F3 56/00 56/00 56/00
Shift F4 57100 57100 57100
Shift F5 58/00 58/00 58/00
Shift F6 59/00 59/00 59/00
Shift F7 5A/OO 5A/OO 5A/OO
Shift F8 58/00 58/00 58/00
Shift F9 5C/OO 5C/OO 5C/OO
Shift F10 50/00 50/00 50/00
Shift F11 (no key) -- 87/00
Shift F12 (no key) -- 88/00
Shift Num Lock ** ** **
Shift Scroll Lock ** ** **
Shift 7 47/37 47/37 47/37
Shift 8 48/38 48/38 48/38
Shift 9 49/39 49/39 49/39
Shift - 4A/20 4A/20 4A/20
Shift 4 48/34 48/34 48/34
Shift 5 4C/35 4C/35 4C/35
Shift 6 40/36 40/36 40/36
Shift+ 4E/28 4E/28 4E/28
Shift 1 4F/31 4F/31 4F/31
Shift 2 50/32 50/32 50/32
Shift 3 51/33 51/33 51/33
Shift 0 52/30 52/30 52/30
Shift. 53/2E 53/2E 53/2E
Shift SysReq ** (no key) (no key)
Shift Key 45 (no key) 56/7C 56/7C

Figure 4-4 (Part 2 of 3). Shift Keyboard Keystrokes

4-28 Scan Code/Character Code Combinations

83- and 84-Key 101/102-Key 101/102-Key
Standard Standard Extended

Keystroke Function Function Function

Shift Enter (no key) 1C/OD EO/OD
Shift I (no key) 35/2F E0/2F
Shift PrtSc (no key)
Shift Pause (no key)
Shift Home (no key) 47/00 47/EO
Shift Up Arrow (no key) 48/00 48/EO
Shift PgUp (no key) 49/00 49/EO
Shift Left Arrow (no key) 48/00 48/EO
Shift Right (no key) 4D/OO 4D/EO
Shift End (no key) 4F/OO 4F/EO
Shift Down Arrow (no key) 50/00 50/EO
Shift PgDn (no key) 51100 51/EO
Shift Insert (no key) 52/00 52/EO
Shift Delete (no key) 53/00 53/EO

' These combinations do not provide a keystroke for the application presently
running but perform some other action. They are not put in the INT 16H queue.
-- These combinations have no function and are ignored.

Figure 4-4 (Part 3 of 3). Shift Keyboard Keystrokes

The following lists the Ctrl keyboard keystrokes and the scan
code/character code combinations that are returned through INT 16H:

83- and 84-Key 101/102-Key 1011102-Key
Standard Standard Extended

Keystroke Function Function Function

Ctrl Esc 01/18 01/18 01/18
Ctrl 1
Ctrl 2 (NUL) 03/00 03/00 03/00
Ctrl 3
Ctrl 4
Ctrl 5
Ctrl 6 (RS) 07/1E 07/1E 07/1E
Ctrl 7
Ctrl 8
Ctrl 9
Ctrl 0
Ctr I OC/1F OC/1F OC/1F -
Ctrl =
Ctrl Backspace (DEL) OE/7F OE/7F OE/7F
Ctrl Tab 94/00

Figure 4-5 (Part 1 of 3). Ctrl Keyboard Keystrokes

Scan Code/Character Code Combinations 4-29

83- and 84-Key 1011102-Key 101/102-Key
Standard Standard Extended

Keystroke Function Function Function

Ctrl q (OC1) 10111 10111 10111
Ctrl w (ETB) 11/17 11/17 11/17
Ctrl e (ENO) 12/05 12/05 12/05
Ctrl r (DC2) 13112 13/12 13/12
Ctrl t (DC4) 14/14 14/14 14/14
Ctrl y (EM) 15119 15/19 15/19
Ctrl u (NAK) 16/15 16/15 16/15
Ctrl i (HT) 17/09 17/09 17/09
Ctrl o (SI) 18/0F 18/0F 18/0F
Ctrl p (OLE) 19/10 19110 19/10
Ctrl [(ESC) 1A/1B 1A/1B 1A/1B
Ctrl] (GS) 18110 1B/1D 1B/1D
Ctrl Return (LF) 1C/OA 1C/OA 1C/OA
Ctrl a (SOH) 1E/01 1E/01 1E/01
Ctrl s (DC3) 1F/13 1F/13 1F/13
Ctrl d (EOT) 20/04 20/04 20/04
Ctrl f (ACK) 21/06 21/06 21/06
Ctrl g (BEL) 22/07 22/07 22/07
Ctrl h (Backspace) 23/08 23/08 23/08
Ctrl j (LF) 24/0A 24/0A 24/0A
Ctrl k (VT) 25/08 25/0B 25/0B
Ctrl I (FF) 26/0C 26/0C 26/0C
Ctrl;
Ctrl'
Ctrl'
Ctrl Shift
Ctrl \ (FS) 2B/1C 2B/1C 2B/1C
Ctrl z (SUB) 2C/1A 2C/1A 2C/1A
Ctrl x (CAN) 20/18 20/18 20/18
Ctrl c (ETX) 2E/03 2E/03 2E/03
Ctrl v (SYN) 2F/16 2F/16 2F/16
Ctrl b (STX) 30/02 30/02 30/02
Ctrl n (SO) 31/0E 31/0E 31/0E
Ctrl m (CR) 32/0D 32/0D 32/0D
Ctrl,
Ctrl.
Ctrl I
Ctrl * 96/00
Ctrl Alt
Ctrl Space 39/20 39/20 39/20
Ctrl Caps Lock
Ctrl F1 5E/OO 5E/OO 5E/OO
Ctrl F2 5F/OO 5F/OO 5F/OO
Ctrl F3 60/00 60/00 60/00

Figure 4-5 (Part 2 of 3). Ctrl Keyboard Keystrokes

4-30 Scan Code/Character Code Combinations

83- and 84-Key 101/102-Key 101/102-Key
Standard Standard Extended

Keystroke Function Function Function

Ctrl F4 61/00 61/00 61100
Ctrl F5 62/00 62/00 62/00
Ctrl F6 63/00 63/00 63/00
Ctrl F7 64/00 64/00 64/00
Ctrl F8 65/00 65/00 65/00
Ctrl F9 66/00 66/00 66/00
Ctrl F10 67/00 67/00 67100
Ctrl F11 (no key) 89/00
Ctrl F12 (no key) 8A/OO
Ctrl Num Lock
Ctrl Scroll Lock
Ctrl Home 77100 77/00 77/00
Ctrl Up Arrow 8D/OO
Ctrl PgUp 84/00 84/00 84/00
Ctrl Keypad - 8E/OO
Ctrl Left Arrow 73/00 73/00 73/00
Ctrl Center 8F/OO
Ctrl Right Arrow 74/00 74/00 74/00
Ctrl Keypad + 90/00
Ctrl End 75/00 75/00 75/00
Ctrl Down Arrow 91/00
Ctrl PgDn 76/00 76/00 76/00
Ctrl Ins 92/00
Ctrl Del 93/00
Ctrl SysReq (no key) (no key)
Ctrl Key 45 (no key)
Ctrl Enter (no key) 1C/OA EO/OA
Ctrl I (no key) 95/00
Ctrl PrtSc (no key) 72/00 72/00
Ctrl Break (no key) 00/00 00/00
Ctrl Home (no key) 77100 77/EO
Ctrl Up (no key) 8D/EO
Ctrl PageUp (no key) 84/00 84/EO
Ctrl Left (no key) 73/00 73/EO
Ctrl Right (no key) 74/00 74/EO
Ctrl End (no key) 75/00 75/EO
Ctrl Down (no key) 91/EO
Ctrl PageDown (no key) 76100 76/EO
Ctrl Insert (no key) 92/EO
Ctrl Delete (no key) 93/EO

** These combinations do not provide a keystroke for the application presently
running but perform some other action. They are not put on the INT 16H queue.
-- These combinations have no function and are ignored.

Figure 4-5 (Part 3 of 3). Ctrl Keyboard Keystrokes

Scan Code/Character Code Combinations 4-31

The following lists the Alt keyboard keystrokes and the scan
code/character code combinations that are returned through INT 16H:

83- and 84-Key 101/102-Key 101/102-Key
Standard Standard Extended

Keystroke Function Function Function

Alt Esc 01/00
Alt 1 78/00 78/00 78/00
Alt 2 79/00 79/00 79/00
Alt3 7A/OO 7A/OO 7A/OO
Alt 4 78/00 78/00 78/00
Alt 5 7C/OO 7C/OO 7C/OO
Alt 6 70/00 70/00 70/00
Alt 7 7E/OO 7E/OO 7E/OO
Alt8 7F/OO 7F/OO 7F/OO
Alt 9 80100 80100 80100
Alt 0 81/00 81100 81/00
Alt - 82/00 82/00 82/00
Alt= 83/00 83/00 83/00
Alt Backspace OE/00
Alt Tab A5/00
Alt q 10/00 10/00 10/00
Altw 11/00 11100 11/00
Alt e 12/00 12/00 12/00
Alt r 13/00 13/00 13/00
Altt 14/00 14/00 14/00
Alty 15/00 15/00 15/00
Alt u 16/00 16/00 16/00
Alt i 17/00 17/00 17/00
Alto 18/00 18/00 18/00
Alt p 19/00 19/00 19/00
Alt[1A/OO
Alt] 18/00
Alt Return 1C/OO
Alt Ctrl
Alt a 1E/OO 1E/OO 1E/OO
Alts 1F/OO 1F/OO 1F/OO
Alt d 20/00 20/00 20/00
Altf 21/00 21/00 21/00
Alt g 22/00 22/00 22/00
Alt h 23/00 23/00 23/00
Alt j 24/00 24/00 24/00
Alt k 25/00 25/00 25/00
Alt I 26/00 26/00 26/00
Alt; 27/00
Alt' 28/00
Alt' 29/00

Figure 4-6 (Part 1 of 3). Alt Keyboard Keystrokes

4-32 Scan Code/Character Code Combinations

83- and 84-Key 101/102-Key 101/102-Key
Standard Standard Extended

Keystroke Function Function Function

Alt Shift
Alt\ 28/00
Alt z 2C/OO 2C/OO 2C/OO
Alt x 20/00 20/00 20/00
Alt c 2E/OO 2E/OO 2E/OO
Alt v 2F/OO 2F/OO 2F/OO
Alt b 30/00 30/00 30/00
Alt n 31/00 31/00 31/00
Alt m 32/00 32/00 32/00
Alt, 33/00
Alt. 34/00
Alt/ 35/00
Alt* 37/00
Alt Space 39/20 39/20 39/20
Alt Caps Lock
Alt F1 68100 68100 68/00
Alt F2 69/00 69/00 69/00
Alt F3 6A/OO 6A/OO 6A/OO
Alt F4 68/00 68/00 68/00
Alt F5 6C/OO 6C/OO 6C/OO
Alt F6 60/00 60/00 60/00
Alt F7 6E/OO 6E/OO 6E/OO
Alt F8 6F/OO 6F/OO 6F/OO
Alt F9 70/00 70/00 70/00
Alt F10 71100 71/00 71/00
Alt F11 (no key) 88/00
Alt F12 (no key) 8C/OO
Alt Num Lock
Alt Scroll Lock
Alt Keypad - 4A/OO
Alt Keypad+ 4E/OO
Alt Keypad Nos. # # #
Alt Del
Alt SysRq (no key) (no key)
Alt Key 45 (no key)
Alt Enter (no key) A6/00
Alt I A4/00
Alt Print Screen (no key)
Alt Pause (no key)
Alt Home (no key) 97/00
Alt Up (no key) 98/00
Alt PageUp (no key) 99/00
Alt Left (no key) 98/00
Alt Right (no key) 90/00

Figure 4-6 (Part 2 of 3). Alt Keyboard Keystrokes

Scan Code/Character Code Combinations 4-33

83- and 84-Key 101/102-Key 101/102-Key
Standard Standard Extended

Keystroke Function Function Function

Alt End (no key) 9F/OO
Alt Down (no key) A0/00
Alt PageDown (no key) A1/00
Alt Insert (no key) A2/00
Alt Delete (no key) A3/00

See the following page for use of Alt key with number keys.
** These combinations do not provide a keystroke for the application presently
running but perform some other action. They are not put on the INT 16H queue.
-- These combinations have no function and are ignored.

Figure 4-6 (Part 3 of 3). Alt Keyboard Keystrokes

For all keyboards, the numeric keypad can be used in combination
with the Alt key to input any ASCII character. The scan code (always
00) and character code are returned after the Alt key is released. For
example, pressing Alt and Keypad 1, then releasing Alt returns scan
code/character code combination hex 00/01; pressing Alt and Keypad
255, then releasing Alt returns scan code/character code combination
hex 00/FF.

4-34 Scan Code/Character Code Combinations

Index

A
activate/deactivate internal modem

power 2-80
adapter ROM 4-12
alternate disk reset 2-66
alternate select 2-33
application guidelines 4-19

BIOS function calls 4-21
hardware interrupts 4-19
operating system function

calls 4-21
programming

considerations 4-21
asynchronous communications

interrupt (14H) 2-69

B

extended communications port
control 2-72

extended initialize 2-71
initialize the communications

port 2-69
read status 2-71
receive character 2-70
send character 2-70

BASIC 4-21
BIOS data area 3-3
BIOS data area, extended 3-17
BIOS function calls 4-21
BIOS level determination 1-4
bootstrap loader interrupt

(19H) 2-113

c
C language 4-21
character code combinations 4-24
character generator 2-25
COBOL 4-21
compatibility, video 4-14

D
data areas 1-4, 3-3, 3-17
device busy 2-91
device close 2-82
device open 2-81
diskette change line status 2-54
diskette drive data area 3-6
diskette drive parameter

table 3-26
diskette drive/fixed disk drive

control data area 3-10
diskette interrupt (13H) 2-48

diskette change line status 2-54
format desired track 2-51
read DASO type 2-54
read desired sectors into

memory 2-50
read drive parameters 2-52
read status of last

operation 2-49
reset diskette system 2-49
set DASO type for format 2-55
set media type for format 2-56
verify desired sectors 2-51
write desired sectors from

memory 2-50

Index X-1

E
edge-triggered interrupts 4-19
enable/disable watchdog

time-out 2-99
equipment determination interrupt

(11 H) 2-46
event wait 2-82
extended BIOS data area 3-17
extended communications port

control 2-72
extended initialize 2-71
extended keyboard read 2-108
extended keystroke status 2-108
extended memory size

determine 2-87
extended shift status 2-109

F
fixed disk drive data area 3-8
fixed disk drive parameter

table 3-18
fixed disk interrupt (13H) 2-58

alternate disk reset 2-66
format desired cylinder 2-62
format desired cylinder and set

bad sector flags 2-63
format drive starting at desired

cylinder 2-63
format unit 2-67
initialize drive pair

characteristics 2-64
park heads 2-67
read DASO type 2-67
read desired sectors into

memory 2-60
read drive parameters 2-64
read status of I ast

operation 2-60
recalibrate 2-66
reset disk system 2-59
seek 2-65
test drive ready 2-66
verify desired sectors 2-61

X-2 Index

fixed disk interrupt (13H)
(continued)

write desired sectors from
memory 2-61

format desired cylinder 2-62
format desired cylinder and set bad

sector flags 2-63
format desired track 2-51
format drive starting at desired

cylinder 2-63
format unit 2-67
format unit periodic interrupt 2-75
FORTRAN 4-21
function calls 4-21

G
gap length 4-22
guidelines, application 4-19

BIOS function calls 4-21
hardware interrupts 4-19
operating system function

H

calls 4-21
programming

considerations 4-21

hardware interrupts
edge-triggered interrupts 4-19
110 commands 4-20
level-sensitive interrupts 4-19
STI instructions 4-20

hardware specific video mode
characteristics 2-13

I
1/0 commands 4-20
IBM C 4-21
identification, system 4-18
initialize drive pair

characteristics 2-64
initialize the communications

port 2-69
initialize the printer port 2-110
INT 1AH (system-timer and

real-time clock services
interrupt) 2-114

read real-time clock alarm time
and status 2-118

read real-time clock date 2-116
read real-time clock time 2-115
read system-timer day

counter 2-119
read system-timer time

counter 2-114
reset real-time clock

alarm 2-117
set real-time clock activated

power-on mode 2-118
set real-time clock alarm 2-117
set real-time clock date 2-116
set real-time clock time 2-116
set system-timer day

counter 2-119
set system-timer time

counter 2-115
set up sound multiplexer 2-120

INT 10H (video) 2-11
alternate select 2-33
character generator 2-25
load LCD character font/set LCD

high-intensity substitute 2-38
read attribute/character at

current cursor position 2-18
read current video state 2-21
read cursor position 2-16
read dot 2-20
read light pen position 2-17

INT 10H (video) (continued)
read/write display combination

code 2-39
return functionality/state

information 2-41
return physical display

parameters for active
display 2-38

save/restore video state 2-45
scroll active page down 2-18
scroll active page up 2-18
set color palette 2-19
set cursor position 2-16
set cursor type 2-16
set mode 2-12
set palette registers 2-21
write attribute/character at

current cursor position 2-18
write character at current cursor

position 2-19
write dot 2-20
write string 2-37
write teletype to active

page 2-20
INT 13H (diskette) 2-48

diskette change line status 2-54
format desired track 2-51
read DASO type 2-54
read desired sectors into

memory 2-50
read drive parameters 2-52
read status of last

operation 2-49
reset diskette system 2-49
set DASO type for format 2-55
set media type for format 2-56
verify desired sectors 2-51
write desired sectors from

memory 2-50
INT 13H (fixed disk) 2-58

alternate disk reset 2-66
format desired cylinder 2-62
format desired cylinder and set

bad sector flags 2-63

Index X-3

INT 13H (fixed disk) (continued)
format drive starting at desired

cylinder 2-63
format unit 2-67
initialize drive pair

characteristics 2-64
park heads 2-67
read DASO type 2-67
read desired sectors into

memory 2-60
read drive parameters 2-64
read status of last

operation 2-60
recalibrate 2-66
reset disk system 2-59
seek 2-65
test drive ready 2-66
verify desired sectors 2-61
write desired sectors from

memory 2-61
INT 14H (asynchronous

communications) 2-69
extended communications port

control 2-72
extended initialize 2-71
initialize the communications

port 2-69
read status 2-71
receive character 2-70
send character 2-70

INT 15H (system services) 2-73
activate/deactivate internal

modem power 2-80
device busy 2-91
device close 2-82
device open 2-81
enable/disable watchdog

time-out 2-99
event wait 2-82
extended memory size

determine 2-87
format unit periodic

interrupt 2-75
interrupt complete 2-92

X-4 Index

INT 15H (system services)
(continued)

joystick support 2-83
keyboard intercept 2-80
move block 2-85
pointing device BIOS

interface 2-95
power-on self-test error

log 2-76
program termination 2-82
programmable option select

(POS) 2-100
read blocks from cassette 2-74
read system status 2-79
read/modify profiles 2-77
request system power-off 2-78
return extended BIOS data area

segment address 2-94
return system configuration

parameters 2-92
switch processor to protected

mode 2-88
system request key

pressed 2-84
turn cassette motor off 2-74
turn cassette motor on 2-74
wait 2-85
wait for external event 2-78
write blocks to cassette 2-75

INT 16H (keyboard) 2-102
extended keyboard read 2-108
extended keystroke

status 2-108
extended shift status 2-109
keyboard click

adjustment 2-106
keyboard read 2-104
keyboard write 2-106
keystroke status 2-104
set typematic rate 2-105
shift status 2-105

INT 17H (printer) 2-110
initialize the printer port 2-110
print character 2-110

INT 17H (printer) (continued)
read status 2-111

interrupt complete 2-92
interrupt sharing 4-3

implementation information 4-7
interrupt request 4-4
interrupt-sharing chaining

structure and signature 4-6
interrupt-sharing software

requirements 4-4
precautions 4-3
ROM considerations 4-7

interrupts 2-3
asynchronous communications

(14H) 2-69
bootstrap loader (19H) 2-113
diskette (13H) 2-48
edge-triggered interrupts 4-19
equipment determination

(11 H) 2-46
fixed disk (13H) 2-58
110 commands 4-20
INT 02H 2-5
INT 05H (print screen) 2-7
INT 08H (system timer) 2-8
INT 09H (keyboard) 2-9
INT 1AH (system-timer and

real-time clock
services) 2-114

INT 10H (video) 2-11
INT 11H (equipment

determination) 2-46
INT 12H (memory size

determination) 2-47
INT 13H (diskette) 2-48
INT 13H (fixed disk) 2-58
INT 14H (asynchronous

communications) 2-69
INT 15H (system services) 2-73
INT 16H (keyboard) 2-102
INT 17H (printer) 2-110
INT 19H (bootstrap

loader) 2-113
INT 70H (real-time clock

interrupt) 2-121

interrupts (continued)
keyboard (16H) 2-102
keyboard interrupt (09H) 2-9
level-sensitive interrupts 4-19
memory size determination

(12H) 2-47
NMI (02H) 2-5
nonmaskable interrupt

(02H) 2-5
print screen (05H) 2-7
printer (17H) 2-110
real-time clock (70H) 2-121
real-time clock services

(1AH) 2-114
STI instructions 4-20
system services (15H) 2-73
system timer (08H) 2-8
system-timer services

(1AH) 2-114
video (10H) 2-11

introduction 1-3

J
joystick support 2-83

K
keyboard click adjustment 2-106
keyboard data area 3-5, 3-9, 3-12
keyboard intercept 2-80
keyboard interrupt (09H) 2-9
keyboard interrupt (16H) 2-102

extended keyboard read 2-108
extended keystroke

status 2-108
extended shift status 2-109
keyboard click

adjustment 2-106
keyboard read 2-104
keyboard write 2-106
keystroke status 2-104
set typematic rate 2-105
shift status 2-105

Index X-5

keyboard read 2-104
keyboard write 2-106
keystroke status 2-104

L
level-sensitive interrupts 4-19
load LCD character font/set LCD

high-intensity substitute 2-38

M
memory size data area 3-5
memory size determination

interrupt (12H) 2-47
mode switching, video 4-15
model byte 2-93, 4-18
move block 2-85
multitasking 4-16

N

device driver code 4-16
post 4-17
serialization 4-16
startup 4-16
time-outs, multitasking 4-17
wait 4-16, 4-17

NMI (nonmaskable interrupt) 2-5
nonmaskable interrupt (02H) 2-5

0
operating system function

calls 4-21

X-6 Index

p
parameter passing 1-3
park heads 2-67
Pascal 4-21
PC Convertible display types 2-39
pointing device BIOS

interface 2-95
power-on self-test error log 2-76
presence test, video 4-14
print character 2-11 O
print screen interrupt (05H) 2-7
printer interrupt (17H) 2-110

initialize the printer port 2-110
print character 2-110
read status 2-111

printer port base address data
area 3-3

printer time-out value data
area 3-9

program termination 2-82
programmable option select

(POS) 2-100
programming considerations 4-21

gap length 4-22

R
read attribute/character at current

cursor position 2-18
read blocks from cassette 2-74
read current video state 2-21
read cursor position 2-16
read DASO type 2-54, 2-67
read desired sectors into

memory 2-50, 2-60
read dot 2-20
read drive parameters 2-52, 2-64
read light pen position 2-17
read real-time clock alarm time and

status 2-118
read real-time clock date 2-116
read real-time clock time 2-115
read status 2-71, 2-111

read status of last operation 2-49,
2-60

read system status 2-79
read system-timer day

counter 2-119
read system-timer time

counter 2-114
read/modify profiles 2-77
read/write display combination

code 2-39
real-time clock data area 3-12
real-time clock interrupt

(70H) 2-121
recalibrate 2-66
receive character 2-70
request system power-off 2-78
reset disk system 2-59
reset diskette system 2-49
reset real-time clock alarm 2-117
return extended BIOS data area

segment address 2-94
return functionality/state

information 2-41
return physical display parameters

for active display 2-38
return system configuration

parameters 2-92
revision level byte 2-93, 4-18
ROM tables 1-4, 3-3, 3-18
RS-232C port base address data

area 3-3
RS-232C support 2-69
RS-232C time-out value data

area 3-9

s
save pointer data area 3-13
save/restore video state 2-45
scan code/character code

combinations 4-24
scroll active page down 2-18
scroll active page up 2-18

secondary save pointer data
area 3-15

seek 2-65
select active display page 2-17
send character 2-70
set color palette 2-19
set cursor position 2-16
set cursor type 2-16
set DASO type for format 2-55
set media type for format 2-56
set mode 2-12
set palette registers 2-21
set real-time clock activated

power-on mode 2-118
set real-time clock alarm 2-117
set real-time clock date 2-116
set real-time clock time 2-116
set system-timer day

counter 2-119
set system-timer time

counter 2-115
set typematic rate 2-105
set up sound multiplexer 2-120
sharing, interrupt 4-3

implementation information 4-7
interrupt request 4-4
interrupt-sharing chaining

structure and signature 4-6
interrupt-sharing software

requirements 4-4
precautions 4-3
ROM considerations 4-7

shift status 2-105
STI instructions 4-20
submode! byte 2-93, 4-18
summary of interrupt functions

INT 1AH (system-timer and
real-time clock
services) 2-114

INT 10H (video) 2-11
INT 13H (diskette) 2-48
INT 13H (fixed disk) 2-58
INT 14H (asynchronous

communications) 2-69

Index X-7

summary of interrupt functions
(continued)

INT 15H (system services) 2-73
INT 16H (keyboard) 2-102
INT 17H (printer) 2-110

switch processor to protected
mode 2-88

system data area 3-7, 3-8
system equipment data area 3-4
system groups 1-5
system identification 4-18
system request key pressed 2-84
system services interrupt

(15H) 2-73
activate/deactivate internal

modem power 2-80
device busy 2-91
device close 2-82
device open 2-81
enable/disable watchdog

time-out 2-99
event wait 2-82
extended memory size

determine 2-87
format unit periodic

interrupt 2-75
interrupt complete 2-92
joystick support 2-83
keyboard intercept 2-80
move block 2-85
pointing device BIOS

interface 2-95
power-on self-test error

log 2-76
program termination 2-82
programmable option select

(POS) 2-100
read blocks from cassette 2-74
read system status 2-79
read/modify profiles 2-77
request system power-off 2-78
return extended BIOS data area

segment address 2-94
return system configuration

parameters 2-92

X-8 Index

system services interrupt (15H)
(continued)

switch processor to protected
mode 2-88

system request key
pressed 2-84

turn cassette motor off 2-74
turn cassette motor on 2-74
wait 2-85
wait for external event 2-78
write blocks to cassette 2-75

system timer interrupt (08H) 2-8
system-timer and real-time clock

services interrupt (1AH) 2-114
read real-time clock alarm time

and status 2-118
read real-time clock date 2-116
read real-time clock time 2-115
read system-timer day

counter 2-119
read system-timer time

counter 2-114
reset real-time clock

alarm 2-117
set real-ti me clock activated

power-on mode 2-118
set real-ti me clock alarm 2-117
set real-time clock date 2-116
set real-time clock time 2-116
set system-timer day

counter 2-119
set system-timer time

counter 2-115
set up sound multiplexer 2-120

system-timer data area 3-7

T
test drive ready 2-66
turn cassette motor off 2-74
turn cassette motor on 2-74

v
verify desired sectors 2-51, 2-61
video compatibility 4-14

mode switching 4-15
presence test 4-14

video control data area 3-6, 3-1 O
video interrupt (10H) 2-11

alternate select 2-33
character generator 2-25
load LCD character font/set LCD

high-intensity substitute 2-38
read attribute/character at

current cursor position 2-18
read current video state 2-21
read cursor position 2-16
read dot 2-20
read light pen position 2-17
read/write display combination

code 2-39
return functionality/state

information 2-41
return physical display

parameters for active
display 2-38

save/restore video state 2-45
scroll active page down 2-18
scroll active page up 2-18
set color palette 2-19
set cursor position 2-16
set cursor type 2-16
set mode 2-12
set palette registers 2-21
write attribute/character at

current cursor position 2-18
write character at current cursor

position 2-19
write dot 2-20
write string 2-37

video interrupt (10H) (continued)
write teletype to active

page 2-20
video mode switching 4-15
video modes 2-12
video presence test 4-14

w
wait 2-85, 4-16
wait for external event 2-78
write attribute/character at current

cursor position 2-18
write blocks to cassette 2-75
write character at current cursor

position 2-19
write desired sectors from

memory 2-50, 2-61
write dot 2-20
write string 2-37
write teletype to active page 2-20

Index X-9

Notes:

X-10 Index

Contents Advanced BIOS

Section 1. Introduction to Advanced BIOS 1-1
Introduction . 1-3
Data Structures 1-4
Initialization . 1-5
Transfer Conventions . 1-6
Interrupt Processing . 1-7
Extending ABIOS 1-8

Section 2. Data Structures . 2-1
Introduction . 2-3
Common Data Area . 2-3
Function Transfer Table . 2-7
Device Block . 2-9

Section 3. lnltlallzatlon . 3-1
Introduction . 3-3
Build System Parameters Table - Operating System 3-4
Build System Parameters Table - BIOS 3-4
Build Initialization Table - Operating System 3-6
Build Initialization Table - BIOS . 3-6
Build Common Data Area - Operating System 3-9
lnitiali~e Pointers - Operating System 3-10
Initialize Data Structures - ABIOS . 3-11
Logical ID 2 Initialization . 3-13
Build Protected Mode Tables . 3-14

Section 4. Transfer Conventions . 4-1
Introduction . 4-3
Request Block . 4-3

Functional Parameters . 4-5
Service Specific Parameters . 4-5

ABIOS Transfer Convention . 4-14
Operating System Transfer Convention 4-16

Section 5. Addltlonal Information
Interrupt Processing

Interrupt Flow
Interrupt Sharing
Default Interrupt Handler

Adding, Patching, Extending, and Replacing
Adapter ROM Structure

5-1
5-3
5-3
5-3
5-5
5-6
5-7

RAM Extension Structure . 5-9
Adding . 5-12
Patching . 5-12
Extending . 5-14
Replacing . 5-16
Considerations for RAM Extensions 5-18

Operating Systems Implementation Considerations 5-20
ABIOS Rules . 5-20
Considerations for Bimodal Implementations 5-22

Section 6. Interfaces . 6-1
Introduction . 6-3
Diskette . 6-5
Disk .. 6-21
Video 6-33
Keyboard . 6-49
Parallel Port . 6-61
Asynchronous Communications 6-69
System Timer 6-97
Real-Time Clock . 6-99
System Services . 6-109
Nonmaskable Interrupt (NMI) . 6-113
Pointing Device . 6-117
Nonvolatile Random Access Memory (NVRAM) 6-125
Direct Memory Access (OMA) . 6-129
Programmable Option Select (POS) 6-139
Keyboard Security . 6-145

Index .. X-1

Figures Advanced BIOS

1-1. Types of Requests . 1-4
1-2. Flow of the Initialization Process 1-6
1-3. Flow of ABIOS Transfer Convention 1-7
1-4. Flow of Operating System Transfer Convention 1-7
2-1. Flow of Common Data Area 2-4
2-2. Common Data Area . 2-5
2-3. Flow of Function Transfer Table 2-7
2-4. Function Transfer Table . 2-8
2-5. Flow of Device Block . 2-1 O
2-6. Device Block . 2-11
2-7. Logical ID Values . 2-12
2-8. Device ID Values . 2-13
3-1. Flow of Real Mode Common Data Area Initialization 3-3
3-2. Build System Parameters Table BIOS Function 3-4
3-3. System Parameters Table . 3-5
3-4. Build Initialization Table BIOS Function 3-6
3-5. Initialization Table . 3-7
3-6. Initialize Device Block and Function Transfer Table

Routine . 3-11
3-7. Reserved Data Pointers . 3-13
3-8. Function Transfer Table for Logical ID 2 3-13
3-9. Flow of Protected Mode Common Data Area

Initialization . 3-14
4-1. Flow of Request Block . 4-4
4-2. Request Block . 4-6
4-3. Return Codes . 4-10
4-4. Return Code Field Bit Definitions 4-11
4-5. Flow of ABIOS Transfer Convention 4-14
4-6. ABIOS Transfer Convention Stack Frame 4-15
4-7. Flow of Operating System Transfer Convention 4-16
4-8. Operating System Transfer Convention Stack Frame . 4-17
5-1. Adding, Patching, Extending, and Replacing ABIOS ... 5-7
5-2. ROM Module Header ABIOS 5-7
5-3. RAM Extension Header . 5-9
5-4. Build Initialization Table Entry Routine 5-11
5-5: Adding ABIOS . 5-12
5-6. Patching ABIOS . 5-14
5-7. Extending ABIOS . 5-16
5-8. Replacing ABIOS 5-17
5-9. Bimodal Data Areas . 5-23
6-1. Diskette Return Codes . 6-18

6-2.
6-3.
6-4.
6-5.
6-6.
6-7.
6-8.
6-9.

6-10.
6-11.
6-12.
6-13.

6-14.
6-15.
6-16.

Disk Return Codes .
Video Return Codes
Video Modes Table
Keyboard Return Codes
Parallel Port Return Codes
Asynchronous Communications Return Codes
System Timer Return Codes
Real-Time Clock Return Codes
System Services Return Codes
Nonmaskable Interrupt Return Codes
Pointing Device Return Codes
Nonvolatile Random Access Memory (NVRAM) Return
Codes
Direct Memory Access (OMA) Return Codes
Programmable Option Select (POS) Return Codes ..
Keyboard Security Return Codes

6-29
6-48
6-48
6-58
6-66
6-91
6-98

6-107
6-112
6-115
6-123

6-128
6-136
6-144
6-150

Section 1. Introduction to Advanced BIOS

Introduction . 1-3
Data Structures . 1-4
Initialization . 1-5
Transfer Conventions . 1-6
Interrupt Processing . 1-7
Extending ABIOS . 1-8

Introduction to Advanced BIOS 1-1

Notes:

1-2 Introduction to Advanced BIOS

Introduction

Advanced BIOS (ABIOS) is firmware that isolates an operating
system from the low-level system hardware interface on IBM
Personal System/2 systems that use 80286 or 80386 microprocessors.
The operating system makes functional requests of ABIOS (read,
write) rather than directly manipulating the 1/0 ports and control
words of the system hardware. This allows details of the hardware
attachments and the timings of the hardware interfaces to be altered
without disturbing the operating system components above the
ABIOS interface.

The ROM BIOS operates as a single-tasking component whose
addressing capabilities are limited to less than 1 megabyte of
memory and only in the real address mode (real mode) of the lnteP
microprocessor. ABIOS supports addressing above 1 megabyte
using the protected virtual address mode (protected mode) of the
Intel microprocessor. ABIOS is contained in ROM but does not
prevent a RAM implementation. ABIOS can be operated in the real
mode, in the protected mode, or in a bimodal environment using both
the real mode and the protected mode. ABIOS provides a data
structure for implementing a protected mode or bimodal (real and
protected modes) operating system. In addition, ABIOS can be
executed in virtual 8086 mode.

Requests to ABIOS made by an operating system fall into three
categories: single-staged, discrete multistaged, and continuous
multistaged. Single-staged requests perform the requested function
before returning to the caller. Discrete multistaged requests start an
action or operation that involves a delay before the operation is
completed. Continuous multistaged requests start an action or
operation that also involves a delay but never ends. For multistaged
operations, control is returned to the caller during these delays so the
processing time may be used. An interrupt from an 1/0 device
usually indicates completion of a stage of the operation.

1 Intel is a trademark of Intel Corporation.

Introduction to Advanced BIOS 1-3

The following figure shows the three categories of ABIOS requests.

Single-Staged

I Start - Complete I

Discrete Multistaged

Complete

Continuous Multistaged

Figure 1-1. Types of Requests

Data Structures

Requests to ABIOS made by an operating system are through transfer
conventions provided by the ABIOS structure. These conventions
require data structures that link the operating system to the device
function routines of each supported device. These data structures
include the Common Data Area, Function Transfer Tables, and Device
Blocks. They reside in system memory and are initialized during
ABIOS initialization.

The transfer conventions provided by ABIOS are defined to allow
operations that use the real mode and/or the protected mode of an
Intel microprocessor. To provide flexibility in implementing a real
mode, protected mode, or bimodal operating system, the Common
Data Area links all ABIOS pointers into a single structure (see
"Common Data Area" on page 2-3). This structure contains the
Function Transfer Table pointers, the Device Block pointers, and the
ABIOS data pointers.

ABIOS entry points are stored in vector tables called Function
Transfer Tables (see "Function Transfer Table" on page 2-7). Each
supported ABIOS device has an associated Function Transfer Table.
The first three entries of the Function Transfer Table are structured

1-4 Introduction to Advanced BIOS

entry routines called the Start Routine, the Interrupt Routine, and the
Time-out Routine.

ABIOS routines require a permanent work area for each device called
the Device Block (see "Device Block" on page 2-9). Hardware port
addresses, interrupt levels, and device state information are the
types of information stored in the Device Block.

l11itiE1li~E1tie>11

Initialization is a defined protocol between ABIOS and an operating
system. The operating system plays a major role in the initialization
process, including starting the process. Until the operating system
starts the initialization process, ABIOS cannot be used (see
Section 3, "Initialization"). This initialization process must occur in
the real mode of the microprocessor, and consists of three steps:

1. The operating system calls BIOS to build the System Parameters
Table. This table describes the number of devices available in
the system, ABIOS common entry points, and system stack
requirements.

2. The operating system calls BIOS to build the Initialization Table.
This table defines the initialization information for each device
the system supports. This information is used to initialize Device
Blocks and Function Transfer Tables.

3. The operating system allocates memory for the Common Data
Area using the initialization information returned in step 2. The
memory for Device Blocks and Function Transfer Tables is
allocated and the Device Block pointers and Function Transfer
Table pointers are initialized in the Common Data Area. The
operating system then calls ABIOS to build the Device Blocks and
Function Transfer Tables for each device.

Introduction to Advanced BIOS 1-5

The flow of the initialization process is shown below.

Build System Parameters Table
Interrupt 15H, (AH) = 04H

Build Initialization Table
Interrupt 15H, (AH) = 05H

Build Common Data Area,
the Device Blocks and

the Function Transfer Tables

Figure 1-2. Flow of the Initialization Process

Transfer Conventions

After ABIOS is initialized, requests are presented through a
parameter block called the Request Block. The Request Block has
fields that identify the target device, requested operation, details of
the request, memory locations involved in a data transfer, and the
status of the staged/completed request. The Request Block is
described in detail in Section 4, "Transfer Conventions."

ABIOS is implemented as a call-return programming model using
either the ABIOS Transfer Convention or the Operating System
Transfer Convention. These two calling conventions allow an
operating system flexibility in calling ABIOS. Both calling
conventions use the stack to pass request information to the target
ABIOS device routine.

The ABIOS Transfer Convention is the simplest calling sequence for
the operating system. The operating system passes the Common
Data Area pointer and the Request Block pointer to one of three
common entry points: the Common Start Routine, the Common
Interrupt Routine, or the Common Time-out Routine. The pointers to
these common routines are returned to the operating system during
initialization. The common routines use the Request Block
information and the Common Data Area pointer to get the Device
Block pointer and the Function Transfer Table pointer from the
Common Data Area. The common routine then transfers control to
the requested ABIOS routine whose pointer is in the Function

1-6 Introduction to Advanced BIOS

Transfer Table. The flow of the ABIOS Transfer Convention is shown
below.

Operating System
Builds Request Block

Operating System Calls
Common Routines

Figure 1-3. Flow of ABIOS Transfer Convention

Common Routine
Selects and Invokes
ABIOS Functions

The Operating System Transfer Convention requires the operating
system to determine the address for the requested ABIOS routine.
This allows the operating system flexibility in maintaining ABIOS
routine addresses that are frequently called. This method is useful
for handling interrupts from character and programmed 110 devices
that repeatedly call a single routine. The Common Data Area,
Request Block, Function Transfer Table, and Device Block pointers
are required on entry to the ABIOS routine. The flow of the Operating
System Transfer Convention is shown below.

Operating System
Builds Request Block

Operating System
Selects and Invokes
ABIOS Routines

Figure 1-4. Flow of Operating System Transfer Convention

The ABIOS Transfer Convention and Operating System Transfer
Convention are described in detail in Section 4, "Transfer
Conventions."

Interrupt Processing

For multistaged requests, interrupts from hardware devices cause the
microprocessor to branch to predefined addresses in the interrupt
vector table. When an interrupt occurs ABIOS expects the operating
system to receive control . ABIOS provides interrupt routines for the
processing of ABIOS interrupts. Interrupt processing is described in
"Interrupt Processing" on page 5-3.

Introduction to Advanced BIOS 1-7

Extending ABIOS

The ability to add, patch, extend, and replace ABIOS routines is
necessary for supporting new devices or device features on the
system. For more information see Section 5, "Additional
Information."

Important: Information added to the Supplements area of this
technical reference may have new information about subjects
covered in other parts of this technical reference. Refer to
Supplements for information that could affect your hardware or
software development decisions.

1-8 Introduction to Advanced BIOS

Section 2. Data Structures

Introduction 2-3
Common Data Area . 2-3
Function Transfer Table . 2-7
Device Block . 2-9

Data Structures 2-1

Notes:

2-2 Data Structures

Introduction

ABIOS uses data structures to link the operating system to the device
function routines for each ABIOS device. These data structures are
called the Common Data Area, the Function Transfer Table, and the
Device Block. They reside in system memory and are initialized
during ABIOS initialization.

The transfer conventions used by ABIOS are defined to allow
operations that use the real mode and/or protected mode of an Intel
microprocessor. ABIOS provides the Common Data Area for
implementing a real mode, a protected mode, or a bimodal operating
system. This structure contains Function Transfer Table pointers,
Device Block pointers, and the ABIOS data pointers. The Common
Data Area links all ABIOS pointers in a single structure to allow an
operating system to manage ABIOS requests in both operating
environments of the Intel microprocessors.

Common Data Area

The Common Data Area contains data pointers that facilitate the
ABIOS operation in a bimodal environment. These data pointers are
established during initialization and contain information for each
device the system supports. The Common Data Area is required in
all operating modes. These are the protected mode only, real mode
only, and bimodal implementations.

Each ABIOS device has a physical device identifier called a
Device ID. A Device ID has one or more Logical IDs that serve as
device handlers used by the operating system to make requests of
ABIOS. The Common Data Area is made up of two arrays: an array
of Logical ID entries and an array of data pointer entries. Each
Logical ID entry contains a pointer to a Device Block and a pointer to
a Function Transfer Table. Each data pointer entry contains memory
addresses used by ABIOS services.

Data Structures 2-3

On each request to ABIOS, a segment or selector with an assumed
offset of O is passed to ABIOS, which points to the Common Data
Area. This pointer is referred to as the Anchor pointer to the
Common Data Area. The following diagram shows the Common Data
Area and its relationship with the other ABIOS data structures.

Data Pointers Offset
Number of Logical IDs

•
Device Block Pointer
Function Transfer Table Pointer

•
Data Pointer

Figure 2-1. Flow of Common Data Area

2-4 Data Structures

The following figure shows a detailed representation of the Common
Data Area.

Fie Id

Offset to Data Pointer 0
Count of Logical IDs
Reserved

Device Block Pointer Logical ID 1
Function Transfer Table Pointer Logical ID 1
Device Block Pointer Logical ID 2
Function Transfer Table Pointer Logical ID 2

Device Block Pointer Logical ID n
Function Transfer Table Pointer Logical ID n

Data Pointer p Length
Data Pointer p Offset
Data Pointer p Segment
Data Pointer p - 1 Length
Data Pointer p - 1 Offset
Data Pointer p - 1 Segment

Data Pointer 0 Length
Data Pointer 0 Offset
Data Pointer 0 Segment

Data Pointer Count

n - is the number of Logical IDs
p - is the number of Data pointers minus 1

Figure 2-2. Common Data Area

The Common Data Area entries are:

Offset Length

+OOH 2
+02H 2
+04H 4

+08H 4
+OCH 4
+10H 4
+14H 4

+ (08H*n) 4
+ (08H*n) +04H 4

+ (08H*n) + 08H 2
+ (08H*n) + OAH 2
+ (08H*n) +OCH 2
+ (08H*n) + OEH 2
+ (08H*n) + 10H 2
+ (08H*n) + 12H 2

+ (08H*n) + (06H*p) + 08H 2
+ (08H*n) + (06H*p) + OAH 2
+ (08H*n) + (06H*p) +OCH 2

+ (08H*n) + (06H*p) + OEH 2

Offset to Data Pointer 0: This field combined with the Anchor pointer
produces a pointer to the Data Pointer 0 Length field.

Count of Loglcal IDs: This field contains the number of Device Block
and Function Transfer Table pointer pairs.

Device Block Pointers: These fields contain the pointers to the
Device Blocks for the given Logical IDs.

Data Structures 2-5

Function Transfer Table Pointers: These fields contain the pointers to
the Function Transfer Tables for the given Logical IDs.

Data Pointer Lengths: These fields contain the lengths of the data
areas pointed to by the associated Data Pointer.

Data Pointer Offsets: These fields contain the offsets of the data
areas. Each offset is combined with its associated Data Pointer
Segment to produce a pointer to the data area.

Data Pointer Segments: These fields contain the segments of the
data areas. Each segment is combined with its associated Data
Pointer Offset to produce a pointer to the data area.

Data Pointer Count: This field contains the number of data pointers.

If the Function Transfer Table Pointer field and the Device Block
Pointer field are both 0:0 after initialization, the associated Logical ID
is disregarded by the operating system as a null Common Data Area
entry. The entry is used as a temporary placeholder during
initialization for ABIOS extendibility. For more information refer to
Section 5, "Additional Information."

2-6 Data Structures

Function Transfer Table

ABIOS entry points are stored in vector tables called Function
Transfer Tables. These tables contain the doubleword address
pointers for each ABIOS function. Reserved function pointers are
initialized to 0:0. Each Logical ID (entry in the Common Data Area)
has a Function Transfer Table pointer. Multiple Logical IDs can have
Function Transfer Table pointers that point to the same Function
Transfer Table. The following figure shows a Function Transfer Table
and its relationship with the Common Data Area.

Data Pointers Offset
Number of Logical IDs

•
Device Block Pointer
Function Transfer Table Pointer

•
Data Pointer

•
Function 1 Pointer
Function 2 Pointer
Function 3 Pointer

Figure 2-3. Flow of Function Transfer Table

•
Function 1
Function 2
Function 3

Data Structures 2-7

The operating system builds a Request Block, including the Logical ID
(defines which device) and Function (defines which function). Based
on the information contained in the Request Block, the Function
Transfer Table pointer and Device Block pointer can be located in the
Common Data Area for the requested device. The operating system
uses the Function Transfer Table pointer to start requests, process
interrupts, and handle any time-outs that occur. Each pointer in the
Function Transfer Table is a doubleword pointer to a Function routine.
The following figure shows the Function Transfer Table.

Function Offset Length

Start Routine Pointer +00 4
Interrupt Routine Pointer +04 4
Time-out Routine Pointer +08 4
Function Count +oc 2
Reserved +OE 2
Function 1 Routine Pointer +10 4
Function 2 Routine Pointer +14 4

Function n Routine Pointer + OC + (4*n) 4

n - is the number of functions

Figure 2-4. Function Transfer Table

The Function Transfer Table entries are:

Start Routine Pointer: The Start Routine pointer is a doubleword
pointer, and is called (using Call Far lndi rect) to start a request. This
routine validates the Function field, the Request Block Length field,
and the Unit field. All registers are saved and restored across a call
to this routine.

Interrupt Routine Pointer: The Interrupt Routine pointer is a
doubleword pointer, and is called (using Call Far Indirect) to resume
a multistaged request upon indication from the hardware. All
multistaged requests are resumed through this routine if the
operation is not complete. All registers are saved and restored
across a call to this routine. If this Function Transfer Table
corresponds to a device that does not interrupt, the Interrupt Routine
Pointer field is initialized to 0:0.

2-8 Data Structures

Time-out Routine Pointer: The Time-out Routine pointer is a
doubleword pointer, and is called (using Call Far Indirect) to
terminate a request that fails to receive a hardware interrupt in a
specified time. This routine aborts the request and leaves the
hardware controller in a known, initial state. All registers are saved
and restored across a call to this routine. If this Function Transfer
Table corresponds to a device that does not interrupt, or a device that
interrupts but never times out, the Time-out Routine Pointer field is
initialized to 0:0.

Function Count: This is a word count of the number of functions
supported by a device.

Reserved: This is a reserved word (allocated even if the Function
Count field is equal to zero).

Function 1 Pointer: This is a doubleword pointer to the Function 1
routine.

Function 2 Pointer: This is a doubleword pointer to the Function 2
routine.

Function n Pointer: This is a doubleword pointer to the Function n
routine.

For more information see Functional Parameters on page 4-5.

Device Block

ABIOS routines require a permanent work area, per device, called
the Device Block. Hardware port addresses, interrupt levels, and
device status information are the types of information stored in the
Device Block.

The Device Block contains both public and private data. The public
data in the Device Block is a readable area whose format is common
across all Device Blocks. This area should not be altered by the
operating system. Private data in the Device Block is used internally
by ABIOS and its format and content may not be identical in all
implementations of ABIOS. The operating system should not
examine or alter private data, and IBM reserves the right to alter the
contents of the private portion of the Device Block.

Data Structures 2-9

The following figure shows a Device Block and its relationship with
the Common Data Area.

Data Pointers Offset
Number of Logical IDs

•
Device Block Pointer
Function Transfer Table Pointer L. \.\/.·······•·••··••······ J

•
Data Pointer

Figure 2-5. Flow of Device Block

2-10 Data Structures

Every ABIOS device has an associated Device Block. The Device
Block is shown in the following figure.

Fie Id Offset Length Access

Device Block Length +OOH 2 Public Read
Revision +02H 1 Public Read
Secondary Device ID +03H 1 Public Read
Logical ID +04H 2 Public Read
Device ID +06H 2 Public Read
Count of Logical ID Exclusive Port Pairs +08H 2 Public Read
Count of Logical ID Common Port Pairs +OAH 2 Public Read

Logical ID Exclusive Port Pairs 0 ? 4 Public Read
Logical ID Exclusive Port Pairs 1 ? 4 Public Read

Logical ID Exclusive Port Pairs n ? 4 Public Read

Logical ID Common Port Pairs 0 ? 4 Public Read
Logical ID Common Port Pairs 1 ? 4 Public Read

Logical ID Common Port Pairs n ? 4 Public Read

Device Unique Data Area Length ? 2 Private
Device Unique Data Area ? ? Private

Count of Units ? 2 Private

Unit Unique Data Area Length ? 2 Private
Unit Unique Data Area ? ? Private

? - is a placeholder for variable values
n - is the count of port pairs

Figure 2-6. Device Block

The Device Block entries are:

Device Block Length: This field is a word containing the number of
bytes in the Device Block, including the Device Block Length field.
The maximum specifiable length is 64KB minus 1. The required size
of the Device Block for a particular device is returned during ABIOS
initialization.

Data Structures 2-11

Revision: This byte is used to indicate the level of the supporting
code for a device. The initial value of the base level is 0. For each
succeeding version of ABIOS code for a particular Device ID and
Secondary Device ID, the Revision field is increased by 1 (that is, the
Revision field is increased by 1 if a new level of ABIOS code is
developed for existing hardware).

Secondary Device ID: This byte is used to determine the level of
hardware that an ABIOS implementation supports. The initial value
of the base level is 0. The Secondary Device ID field is increased by
1 when a new level of code is developed for a previously defined
Device ID that supports new hardware. When the Secondary Device
ID field is increased, the Revision field reverts to 0.

Logical ID: Logical ID indicates the logical name of the device
associated with a Device Block. It is analogous to the software
interrupt number used by BIOS to access different device types.
Logical ID values are determined dynamically during initialization
and the Logical ID for a given device is determined by the index of its
entry in the Common Data Area.

To facilitate the patching of common internal ABIOS functions, the
operating system is required to reserve a number of Logical IDs to
allow ABIOS to call these common internal ABIOS functions. They
are identified to the operating system during initialization. The
Logical ID values are shown in the following figure.

Usage

Reserved
Reserved
ABIOS Internal Calls
System and Adapter Devices

Logical ID

OOH
01H
02H through n
>n

n - is the last Logical ID reserved for ABIOS internal calls

Figure 2-7. Logical ID Values

2-12 Data Structures

Device ID: Device ID indicates the type of device addressed by a
function request and the level of ABIOS function that is supported.
The assigned values of this field are shown below.

Device

ABIOS Internal Calls
Diskette
Disk
Video
Keyboard
Parallel Port
Asynchronous Communications
System Timer
Real-Time Clock Timer
System Services
Nonmaskable Interrupt
Pointing Device
Reserved
Reserved
Nonvolatile Random Access Memory {NVRAM)
Direct Memory Access {OMA)
Programmable Option Select {POS)
Reserved
Keyboard Security
Reserved

Figure 2-8. Device ID Values

Device ID Value

OOH
01H
02H
03H
04H
05H
06H
07H
08H
09H
OAH
OBH
OCH
OOH
OEH
OFH
10H
11H - 15H
16H
17H- FFFFH

The value hex 00 of the Device ID field is reserved for ABIOS internal
calls; that is, an ABIOS function calling another ABIOS function. All
other Device ID values denote a type of device as well as a level of
ABIOS support, as described in Section 6, "Interfaces."

Count of Loglcal ID Exclusive Port Pairs: This is the count of Logical
ID exclusive port pairs. Logical ID exclusive ports are ports used
exclusively by a particular Logical ID. Examples are the diskette
ports, disk ports, asynchronous communication ports, parallel ports,
and video ports. If the Count of Logical ID Exclusive Port Pairs field
equals 0, no space is allocated for the Logical ID Exclusive Port Pairs
fields.

Count of Loglcal ID Common Port Pairs: This is the count of Logical
ID common port pairs. The Logical ID common ports are ports that
are shared across more than one Logical ID value. Examples are the
OMA controller ports, keyboard controller ports, and NVRAM ports.
Each Logical ID that uses one of these ports contains an entry in the

Data Structures 2-13

Logical ID Common Port Pairs fields of the Device Block. If this field
equals 0, no space is allocated for the Logical ID Common Port Pairs
fields.

Logical ID Exclusive Port Pairs: These are the Logical ID Exclusive
Port Pairs. The first word of the doubleword is the starting 110 port
number of a range of 110 port numbers. The second word is the
ending 110 port number of the range.

Logical ID Common Port Pairs: These are the Logical ID Common
Port Pairs. The first word of the doubleword is the starting 110 port
number of a range of 110 port numbers. The second word is the
ending 110 port number of the range.

Note: Every port that an ABIOS Logical ID reads from or writes to is
contained in either the Logical ID Exclusive Port Pairs fields or
the Logical ID Common Port Pairs fields.

Device Unique Data Area Length: This field c9ntains the length, in
bytes, of the device unique data area for this device.

Device Unique Data Area: This field is reserved for data unique to a
device. Parameters describing the device and working data that span
the Device ID are kept in this area. This area contains private data
for ABIOS and its content or format may change. Examples of the
data kept in this area are interrupt level, arbitration level, and device
status.

Count of Units: This field contains the count of the unit unique data
areas in the Device Block. If this field equals 0, the Count of Units
field is the last field i·n the Device Block.

Unit Unique Data Area Length: This field contains the length, in
bytes, of a single entry in the repeatable unit unique data area,
excluding the Unit Unique Data Area Length field. This field exists
only if the Count of U!"'its field is greater than o.

Unit Unique Data Area: This field is a private repeatable area
reserved for each unit of the Device ID. For example, if the diskette
ID value is hex 01 (Diskette), a particular diskette drive is a unit.
Parameters describing the unit and working data that span individual
requests are kept in this area. This area is private data for ABIOS
and its content or format may change. This field exists only if the
Count of Units field is greater than 0.

2-14 Data Structures

Section 3. Initialization

Introduction . 3-3
Build System Parameters Table - Operating System 3-4
Build System Parameters Table - BIOS 3-4
Build Initialization Table - Operating System 3-6
Build Initialization Table - BIOS . 3-6
Build Common Data Area - Operating System 3-9
Initialize Pointers - Operating System 3-10
Initialize Data Structures - ABIOS . 3-11
Logical ID 2 Initialization . 3-13
Build Protected Mode Tables . 3-14

Initialization 3·1

Notes:

3-2 Initialization

Introduction

ABIOS is initialized in an "on demand" fashion. The operating
system makes specific calls to BIOS and ABIOS to achieve the
startup. The real mode Common Data Area must be initialized before
any requests can be made to ABIOS. Initialization must be performed
in the real mode of the microprocessor, and includes building the
System Parameters Table, the Initialization Table, and the Common
Data Area. The following diagram shows the flow of the real mode
Common Data Area initialization.

Start

Operating System Calls BIOS to Build the System
Parameters Table

Operating System Calls BIOS to Build the Initialization Table

Operating System Builds the Real Mode Common Data
Area, and Allocates Memory for the Device Blocks,
and the Real Mode Function Transfer Tables

Operating System Calls Initialize Device Block and Function
Transfer Table Routine for Each Initialization Table
Entry to Build Function Transfer Tables and Device Blocks

Operating System Converts Each Data Pointer to Segments
and Offsets

End

Figure 3-1. Flow of Real Mode Common Data Area Initialization

Initialization 3-3

Build System Parameters Table - Operating
System

The operating system allocates a hex 20-byte area and calls BIOS to
build the System Parameters Table. This table describes the number
of devices available in the system, the ABIOS common entry points,
and system stack requirements.

I INT 15H, (AH) = 04H BUILD SYSTEM PARAMETERS TABLE

Invocation:

On Return:

Software Interrupt, Operating System calls BIOS.

(ES:DI) = Pointer to caller's memory
where System Parameters Table is
to be built.

(OS) = Segment with assumed 0 Offset
to RAM extension area (points to
a RAM extension with length = O for
no RAM extensions).

(CY) = 1 Indicates an exception error

(AH) = 0 for no errors

(All registers except AX and FLAGS are restored.)

Figure 3-2. Build System Parameters Table BIOS Function

Build System Parameters Table - BIOS

When called by the operating system, BIOS builds the System
Parameters Table. The Number of Entries field is established from
the system board ROM, adapter ROMs, and RAM extensions. To
accumulate the number of entries, configuration information is
obtained from system equipment data areas, from NVRAM, and
possibly by presence testing for devices whose operating code
resides in the system board ROM.

For devices with code in an adapter ROM, an extension of the
power-on self-test (POST) ROM scan determines the number of
entries that the adapter ROM requires (see "Adapter ROM Structure"
on page 5-7).

For devices with code in the RAM extension area, the RAM extension
scan determines the number of Initialization Table entries that the

3-4 Initialization

RAM extension requires (see "RAM Extension Structure" on
page 5-9).

Once the System Parameters Table information is obtained, the
memory allocated for this table may be deallocated and reused by
the operating system. The System Parameters Table is shown below.

Fie Id

Common Start Routine Pointer
Common Interrupt Routine Pointer
Common Time-out Routine Pointer
Stack Required
Reserved
Reserved
Reserved
Reserved
Number of Entries

Offset

+OOH
+04H
+08H
+OCH
+OEH
+12H
+16H
+1AH
+1EH

Figure 3-3. System Parameters Table

The System Parameters Table entries are:

Length

4
4
4
2
4
4
4
4
2

Common Start Routine Pointer: This is a doubleword address pointer
to the Common Start routine entry point.

Common Interrupt Routine Pointer: This is a doubleword address
pointer to the Common Interrupt routine entry point.

Common Time-out Routln~ Pointer: This is a doubleword address
pointer to the Common Ti me-out routine entry point.

Stack Required: This field is a word containing the amount of stack
memory, in bytes, that is required for a particular ABIOS
implementation.

Number of Entries: This field is a word containing the number of
entries required in the Initialization Table.

Initialization 3-5

Build Initialization Table - Operating System

The Initialization Table defines the initialization information for each
device the system supports. This information is used to initialize the
Device Blocks and the Function Transfer Tables.

The operating system allocates memory and calls BIOS to build the
Initialization Table. The amount of memory required for the
Initialization Table in bytes is hex 18 times the number of entries in
the Initialization Table. The Number of Entries field in the System
Parameters Table is used for this calculation. When the initialization
process is complete the memory allocated for the Initialization Table
can be deallocated and reused by the operating system.

I INT 15H, (AH) = OSH BUILD INITIALIZATION TABLE

Invocation: Software interrupt, operating system calls BIOS.

(ES:DI) = Pointer to caller's memory

On Return:

where the Initialization Table
is to be built.

(OS) = Segment with assumed 0 offset
to RAM extension area (points to
a RAM extension with length= 0 for
no RAM extensions).

(CY) = 1 Indicates exception error

(AH) = O for no errors

(All registers except AX and FLAGS are restored.)

Figure 3-4. Build Initialization Table BIOS Function

Build Initialization Table - BIOS

BIOS builds the Initialization Table. This table is established from the
system board ROM, adapter ROMs, and RAM extensions. For
devices whose code resides in an adapter ROM, an extension of the
power-on self-test (POST) ROM scan is used. For more information
see "Adapter ROM Structure" on page 5-7.

For devices whose code resides in the RAM extension area, the RAM
extension scan is used (see "RAM Extension Structure" on page 5-9).
All system board ABIOS device Initialization Table entries precede
any adapter ROM or RAM extension device entries. The Initialization

3-6 Initialization

Table structure, shown in the following figure, is repeated for each
entry.

Field

Device ID
Number of Logical IDs
Device Block Length
Initialize Device Block and

Function Transfer Table Routine Pointer
Request Block Length
Function Transfer Table Length
Data Pointers Length
Secondary Device ID
Revision
Reserved
Reserved
Reserved

Figure 3-5. Initialization Table

The Initialization Table entries are:

Offset Length

+OOH 2
+02H 2
+04H 2

+06H 4
+OAH 2
+OCH 2
+OEH 2
+10H
+11H 1
+12H 2
+14H 2
+16H 2

Device ID: For a list of the values of the Device ID fields see
Figure 2-8 on page 2-13. There may be more than one entry in the
Initialization Table with the same Device ID.

Number of Logical IDs: This is a word containing the maximum
number of devices that require individual Device Blocks but are
operated by the same code. The Number of Logical IDs field tells the
operating system the maximum number of Logical IDs that this
Initialization Table entry allows.

Device Block Length: This is a word containing the length, in bytes,
of the storage allocation required for the Device Block for this device.
A Device Block Length of 0 indicates that this Initialization Table entry
is for an ABIOS patch or extension, and no Device Block is required
to be built (see "Adding, Patching, Extending, and Replacing" on
page 5-6). When the Device Block Length is 0, the operating system
ensures that the Device Block pointer in the Common Data Area is
initialized to 0:0.

Initialization 3-7

lnltlallze Device Block and Function Transfer Table Routine Pointer:
This is a doubleword address pointer (real mode segment:offset) to
the routine to initialize the Device Blocks and Function Transfer
Tables for an entry in the Initialization Table. This routine is also
provided by adapter ROMs or RAM extensions to add, patch, extend,
or replace services (see "Adding, Patching, Extending, and
Replacing" on page 5-6).

Request Block Length: This is a word containing the length, in bytes,
of the storage allocation required for the Request Block for this
device. When making a request to ABIOS, any Request Block size
greater than the size returned is valid.

Function Transfer Table Length: This is a word containing the length,
in bytes, of the Function Transfer Table. A Function Transfer Table
Length of O indicates that this Initialization Table entry is for an
ABIOS patch and no Function Transfer Table data area is to be
allocated. When the Function Transfer Table Length field is 0, the
operating system ensures that the Function Transfer Table Pointer
field in the Common Data Area is initialized to 0:0.

Data Pointers Length: This is a word containing the length, in bytes,
of the storage allocation required for the data pointer fields in the
Common Data Area.

Secondary Device ID: This is a byte used to determine the level of
hardware that an ABIOS implementation supports. See "Device
Block" on page 2-9 for more information.

Revision: This byte is used to indicate the level of the supporting
code for this device. See "Device Block" on page 2-9 for more
information.

3-8 Initialization

Build Common Data Area - Operating System

After the System Parameters Table and the Initialization Table are
built, the operating system has all the necessary information required
to build the Common Data Area and its associated data structures
(see "Data Structures" on page 1-4). The size of the Common Data
Area, the size of each Function Transfer Table, and the size of each
Device Block can be determined from the Initialization Table.

The operating system builds the Common Data Area at offset O within
a segment, and allocates memory for each Device Block and Function
Transfer Table. Memory is allocated within the Common Data Area
for the data pointers. The offset to the Data Pointer O field is
initialized to point to the Data Pointer Length 0 field within the
Common Data Area. The Data Pointer Count field is initialized to 0.
The Count of Logical IDs field is filled in with the number of Device
Block and Function Transfer Table Pointer Pairs. Each Device Block
pointer and each Function Transfer Table pointer is initialized to point
to the memory that has been al located.

Logical ID values for physical devices are assigned by their order in
the Initialization Table. For example, if the Number of Logical IDs
field is 1 for each entry in the Initialization Table, the first entry
corresponds to Logical ID 2, the second entry corresponds to Logical
ID 3, and so on. If the Number of Logical IDs field is greater than 1 for
the first Initialization Table entry, that entry corresponds to Logical ID
2 through Logical ID 2 plus the Number of Logical IDs field minus 1.
The second Initialization Table entry corresponds to the next
succeeding Logical ID.

Multiple Function Transfer Table pointers can point to the same
Function Transfer Table. This occurs when the Number of Logical IDs
field in an Initialization Table entry is greater than 1. The operating
system must ensure that the Function Transfer Table pointers for the
succeeding Logical IDs, corresponding to a single Initialization Table
entry, point to the same Function Transfer Table.

Initialization 3-9

Initialize Pointers - Operating System

The operating system calls the Initialize Device Block and Function
Transfer Table routine once for each entry in the Initialization Table.
The operating system passes the following parameters: the Anchor
Pointer, the Starting Logical ID, and the Number of Logical IDs to
Initialize.

The Initialize Device Block and Function Transfer Table Routines are
called in the order their pointers appear in the Initialization Table.
This results in system board ROM devices being initialized prior to
any adapter ROM or RAM extension. The Initialize Device Block and
Function Transfer Table routines for adapter ROM devices and RAM
extensions can then identify system board services that may be
needed. This is accomplished by scanning the Common Data Area
using the Device ID in the public portion of the Device Block to
identify the system board service needed. Once the Device ID is
found, the Logical ID number contained within the public portion of
the Device Block is used for al I subsequent requests to the system
board ABIOS service.

The operating system needs only to call the Initialize Device Block
and Function Transfer Table routines for the devices that are to be
made operational. The operating system can make the determination
of whether or not to initialize an ABIOS device based upon the values
within the Device ID field and the Secondary Device ID field in each
Initialization Table entry. For devices that are initialized, the
operating system must ensure that each additional Initialization Table
entry that contains the same Device ID and Secondary Device ID
values must also be initialized to allow for patching. Each
Initialization Table entry that contains a Device ID equal to O must be
initialized to ensure that internal ABIOS calls are supported. There
are also Device IDs that may be required to be initialized to support
other Device IDs. For example, the OMA ABIOS is required to be
initialized if the Disk ABIOS is initialized. These requirements are
defined in Section 6, "Interfaces."

When the Number of Logical IDs field is greater than 1, the operating
system can initialize any number of Logical IDs up to and including
the Number of Logical IDs field.

3-10 Initialization

INITIALIZE DEVICE BLOCK AND
FUNCTION TRANSFER TABLE ROUTINE

Invocation:

On Return:

Call FAR, operating system calls
ABIOS on system board ROM,
on adapter ROM, or RAM extension,
depending on device.

(CX) = Number of Logical IDs to Initialize
(up to the Number of Logical IDs
field from the Initialization Table)

(DX) = Starting Logical ID

(DS) = Anchor pointer to the
Common Data Area

(AL) = Exception condition, 0 for no errors
OOH Successful completion
01H to FFH Device initialization failure

All registers except AX are restored.

Figure 3-6. Initialize Device Block and Function Transfer Table Routine

Initialize Data Structures - ABIOS

When the Initialize Device Block and Function Transfer Table routine
is called, ABIOS fills in the Function Transfer Table at the location
defined by the Function Transfer Table pointer of the Starting Logical
ID parameter (DX).

For adapter ROMs or RAM extensions, when the Initialize Device
Block and Function Transfer Table routine is called, each segment
value placed in the Function Transfer Table must equal the segment
of its corresponding ROM header or RAM extension header,
respectively. This allows an operating system to access the Length
in 512-Byte Blocks field of the ROM header or the RAM extension
header to determine the segment limit in a bimodal or protected
mode environment. When building the protected mode Common Data
Area, if offset 0 of the ROM header segment or RAM extension
header segment contains the ROM/RAM signature, offset 2 contains
the length in 512-byte increments (limit hex 7F). This value is used to
calculate the segment limit.

After filling in the Function Transfer Table, the Initialize Device Block
and Function Transfer Table routine fills in the Device Block for the

Initialization 3-11

Starting Logical ID parameter (DX) and each succeeding Logical ID
up to the Number of Logical IDs to Initialize parameter (CX).

Upon return from the Initialize Device Block and Function Transfer
Table routine, if the Exception Condition parameter (AL) is nonzero
indicating an error, the appropriate action is to deallocate the
associated Device Blocks and Function Transfer Table areas and
replace the associated Device Block pointers and Function Transfer
Table pointers with 0:0, making those entries null Common Data Area
entries.

Data Pointers

The Initialize Device Block and Function Transfer Table routine stores
all necessary ABIOS data pointers in the data pointer portion of the
Common Data Area. As the data pointers are stored, the Data
Pointer Count field is incremented. The offset to the stored data
pointer within the Common Data Area may be stored in the Device
Block as a handle to the data pointer.

Data pointers are initialized by ABIOS as 32-bit physical addresses
stored in Intel format of low word, high word at the Data Pointer
Offset field. Preceding this 32-bit physical address is the Data Pointer
Length field, that indicates the segment limit for a protected mode or
bimodal implementation. In bimodal implementations, a 0:0 data
pointer value in the real mode version of the Common Data Area
indicates an address above 1 MB.

The operating system must translate the 32-bit physical address of
each data pointer to a 16-bit offset and a 16-bit segment prior to
making any requests to ABIOS.

3-12 Initialization

Logical ID 2 Initialization

Reserved data pointers are initialized by the call to the Initialize
Device Block and Function Transfer Table routine for Logical ID 2.
Logical ID 2 is reserved for ABIOS internal calls (Device ID = 0). The
following is a list of the reserved data pointers.

Data Pointer Value Limit Deecrlptlon
Number (Physical)

0 400H 0100H BIOS Data Area
1 EOOOOH FFFFH 1st 64KB of System Board ROM
2 FOOOOH FFFFH 2nd 64KB of System Board ROM

Figure 3-7. Reserved Data Pointers

These data pointers allow a single common data pointer to be used
by multiple ABIOS devices instead of duplicating the same data
pointer multiple times.

In addition, a call to the Initialize Device Block and Function Transfer
Table routine for Logical ID 2 places the Common Start Routine,
Common Interrupt Routine, and Common Time-out Routine pointers
at the Start, Interrupt, and Time-out pointers within the Function
Transfer Table for Logical ID 2. The Initialization Table entry for the
first Device ID equal to O must have a Function Transfer Table length
of at least hex 10 (greater if ABIOS internal functions exist) to allow
for the three doubleword pointers, a word count of functions, and a
reserved field.

The Function Transfer Table for Logical ID 2 with a value of the
Function Count field equal to 0 is shown below.

Field Offset Length

Common Start Routine Pointer +OOH 4
Common Interrupt Routine Pointer +04H 4
Common Time-out Routine Pointer +08H 4
Function Count (equals 0) +OCH 2
Reserved +OEH 2

Figure 3-8. Function Transfer Table for Logical ID 2

Initialization 3-13

Build Protected Mode Tables

For protected mode or bimodal implementations, it is necessary to
build the protected mode Common Data Area and Function Transfer
Tables using the information built in the real mode Common Data
Area and Function Transfer Tables. The operating system must
create selectors in the protected mode Common Data Area and
Function Transfer Tables whose effective address is identical to their
corresponding segments in the real mode Common Data Area and
Function Transfer Tables. The following diagram describes the steps
necessary to build the protected mode Common Data Area.

Start

Operating System Builds the Real Mode Common Data Area

Operating System Allocates Memory for the Protected Mode
Common Data Area and the Protected Mode Function Transfer
Tables

Operating System Converts Each Real Mode Device Block Pointer
to a Protected Mode Device Block Pointer

Operating System Creates a Protected Mode Function Transfer
Table Pointer for Each Protected Mode Function Transfer Table

Operating System Converts Each Real Mode Function Pointer
within Each Real Mode Function Transfer Table to a Protected
Mode Function Pointer

Operating System Converts Each Real Mode Data Pointer to a
Protected Mode Data Pointer

End

Figure 3-9. Flow of Protected Mode Common Data Area Initialization

3-14 Initialization

To build descriptors associated with each selector, in addition to the
physical address, the operating system needs to know the access
rights and the segment limit of each segment.

The Function Transfer Table pointers and the Device Block pointers
are writable data segment descriptors whose expansion direction and
limit are maintained by the operating system. The length of each of
these tables is returned to the operating system in the Function
Transfer Table Length field and the Device Block Length field of the
Initialization Table.

The selector of each data pointer must pertain to a writable data
segment descriptor whose expansion direction is up. The segment
limit is determined by the Data Pointer Length field located in each
data pointer entry in the Common Data Area.

The pointers to ABIOS functions located in the Function Transfer
Table must be readable code segment descriptors whose conforming
bit is determined by the operating system. If offset O of the ROM
header segment or the RAM extension header segment contains the
ROM/RAM signature, offset 2 contains the length in 512-byte
increments (limit hex 7F). This value is to be used as the segment
limit. If the ROM/RAM signature does not exist the segment limit is to
be hex FFFF.

If ABIOS is called as a conforming code segment and is called by
multiple privilege levels, the operating system is responsible for
ensuring that ABIOS has 110 privilege at all times.

When the protected mode version of the Common Data Area is built,
each Common Data Area entry in the protected mode version, whose
corresponding entry in the real mode version is a null Common Data
Area entry, must be a null Common Data Area entry. When the
protected mode version of each Function Transfer Table is initialized,
each entry in the protected mode version, with a corresponding entry
in the real mode version of 0:0, must have a 0:0 value to indicate that
the function is not supported. The offset fields in the Function
Transfer Table must be the same for the corresponding entries in
both tables. The Device Block pointers for each Logical ID entry in
both the real and the protected mode Common Data Areas must point
to the same Device Block.

Initialization 3-15

Notes:

3-16 Initialization

Section 4. Transfer Conventions

Introduction . 4-3
Request Block 4-3

Functional Parameters . 4-5
Service Specific Parameters . 4-5

ABIOS Transfer Convention . 4-14
Operating System Transfer Convention 4-16

Transfer Conventions 4-1

Notes:

4-2 Transfer Conventions

Introduction

ABIOS can be implemented in three environments: protected
mode-only, real mode-only, and bimodal. ABIOS requires a method
of transferring control from the caller of ABIOS to ABIOS without
sacrificing performance. The two methods provided for this transfer
are the ABIOS Transfer Convention and the Operating System
Transfer Convention. Both of these conventions use the Request
Block as the method by which an operating system communicates or
passes parameters to ABIOS.

Request Block

The Request Block is a parameter block used to communicate
information bidirectionally between the caller and an ABIOS service.
Parameters are passed by the caller (IN) and returned by ABIOS
(OUT).

Transfer Conventions 4-3

The following diagram shows the Request Block and its relationship
with a Common Data Area.

Data Pointers Offset
Number of Logical IDs

•
Device Block Pointer
Function Transfer Table Pointer

•
Data Pointer

Figure 4-1. Flow of Request Block

All input parameters (IN) are unaltered by ABIOS throughout the
duration of a request. All output parameters (OUT) and work areas
need not be set to any predefined value before ABIOS is called. This
allows Request Blocks to be reused after requests are completed.
This requires that any Work Area fields containing request state
information be initialized by the ABIOS Start routines to the
predefined values. Only input (IN) or input/output (IN/OUT)
parameters that change between requests are required to be
initialized before the Request Block is reused. All reserved input
fields must be set to 0 by the caller of ABIOS. The parameters are
divided into two categories: functional parameters and service
specific parameters.

4-4 Transfer Conventions

Functional Parameters

Functional parameters are common to all ABIOS service requests.
They convey information to ABIOS about which service should be
invoked on which device. Each input parameter is initialized by the
caller and, once initialized, must remain unaltered until the requested
operation is complete. Functional parameters include the Request
Block Length field through the Time-out field, as shown in Figure 4-2
on page 4-6.

Service Specific Parameters

Service specific parameters are specific to an ABIOS request. The
details of parameters passed by the caller and parameters returned
by ABIOS depend on the service requested. The service specific
parameters include the Data Pointer 1 field through the Work Area
field, as shown in Figure 4-2 on page 4-6.

Transfer Conventions 4-5

Request Block Structure

The structure of a Request Block containing functional parameters
and service specific parameters is shown below.

Field

Functional Parameters

Request Block Length (IN)
Logical ID (IN)
Unit (IN)
Function (IN)
Reserved
Reserved
Return Code (IN/OUT)
Time-out (OUT)

Service Specific Parameters

Reserved
Data Pointer 1 (IN)
Reserved

Reserved
Data Pointer 2 (IN)

Parameters (IN/OUT)
Work Area

? - undefined initial value

Figure 4-2. Request Block

Offset Length

+OOH 2
+02H 2
+04H 2
+06H 2
+08H 2
+OAH 2
+OCH 2
+OEH 2

+10H 2
+12H 4
+16H 2

+18H 2
+1AH 4

+1EH ?
? ?

Request Block Length (IN): The Request Block Length field contains
the length, in bytes, of the Request Block including the Request Block
Length field itself. The maximum specifiable length is 64KB minus 1.
The Request Block Length field is a fixed value initialized by the
caller for the specific Logical ID. The size of the Request Block for a
Logical ID is returned at ABIOS initialization time and by the Return
Logical ID Parameters function (hex 01). However, the Request Block
may be larger than the returned size.

Loglcal ID (IN): The Logical ID field indicates the particular device
addressed by a function request. It is analogous to a software
interrupt number used by BIOS to access different device types.

4-6 Transfer Conventions

Unit (IN): The Unit field is a parameter that addresses a particular
unit of a device within a Logical ID. The range of valid values is
limited by the number of units attached to a single controller. The
maximum unit number is n-1, where n is the count of units attached to
the controller. The minimum number of units is one, resulting in a
Unit field equal to 0.

Function (IN): The Function field is a parameter used to request a
particular category of operation. The assignment of functions is:

Function Function Performed

OOH Default Interrupt Handler - This function is called with no
service specific parameters for each Logical ID by way of
the Interrupt routine. The Request Block for the Default
Interrupt Handler has a fixed length of hex 10 bytes, and
the Return Code field is updated on return with hex 0000
for Operation Completed Successfully or hex 0005 for Not
My Interrupt. For more information on the Default
Interrupt Handler, see "Default Interrupt Handler" on
page 5-5.

01H Return Logical ID Parameters -This function is a standard,
single-staged function common to all ABIOS Device IDs. It
returns information pertaining to the Logical ID, and its
Request Block has a fixed length of hex 20 bytes.

Transfer Conventions 4-7

This function returns the following parameters.

Service Specific Input

Size

Word
Word
Word

Off set

lAH
lCH
lEH

Description

Reserved
Reserved
Reserved

Service Specific Output

Size

Byte

Byte

Word
Word
Word

Word

Byte
Byte
Word
Word

Off set

10H

llH

12H
14H
16H

18H

lAH
lBH
lCH
lEH

Description

Hardware interrupt level
FFH = Noninterrupting Logical ID
FEH = Special case for NMI

Arbitration level
FFH = Not applicable

Device ID
Count of Units
Logi ca 1 ID flags
Bit 15 to 4 = Reserved
Bit 3 = Overlapped I/0 across units

0 - Not supported
1 - Supported

Bit 2 = Reserved
Bits l, 0 = Function Read/Write/Additional Data

Transfer Data Pointer mode
00 - No Read/Write/Additional Data Transfer

Functions supported
01 - Data Pointer l, Logical

Data Pointer 2, Reserved
10 - Data Pointer 1, Reserved

Data Pointer 2, Physical
11 - Data Pointer 1, Logical

Data Pointer 2, Physical
Request Block Length

For functions other than Default Interrupt Handler and
Return Logical ID parameters. Variable by Logical ID.

Secondary Device ID
Revision
Reserved
Reserved

Logical ID flags contain 2 bits that indicate the mode
(physical vs. logical) of the data pointer for the
Read (hex 08), the Write (hex 09), and the Additional Data
Transfer (hex OA) functions. If this parameter indicates
that the pointer should be a logical pointer, Data Pointer
1 is a logical pointer and Data Pointer 2 is reserved. If
this parameter indicates that the pointer should be a
physical pointer, Data Pointer 2 is a physical pointer and

4-8 Transfer Conventions

Data Pointer 1 is reserved. If this parameter indicates
that both a logical pointer and a physical pointer are to
be passed, Data Pointer 1 is the logical pointer and Data
Pointer 2 is a physical pointer. If the parameter indicates
neither, this Logical ID does not support functions
hex 08, 09, and OA, or these functions require no address
pointers. There is no space reserved for data pointers in
the Request Block in this event.

02H Reserved.

03H Read Device Parameters - Device specific parameters
are returned.

04H Set Device Parameters - Device specific parameters are
set.

05H Reset/Initialize - Device is placed in a known state.

06H Enable - Device is enabled for interrupts (not at interrupt
controller).

07H Disable - Device is disabled for interrupts (not at
interrupt controller).

OBH Read - Data is transferred from device to memory. Data
Pointer mode is determined by the function Return
Logical ID Parameters.

09H Write - Data is transferred from memory to device. Data
Pointer mode is determined by the function Return
Logical ID Parameters.

OAH Additional Data Transfer Function - Data Pointer mode is
determined by the function Return Logical ID
Parameters.

OBH and Up Additional Functions - as necessary.

Device specific functions are specified in detail in
Section 6, "Interfaces."

Transfer Conventions · 4-9

Return Code (IN/OUT}: Return Code is a field that contains the
results of the current stage of the requested operation. For those
operations that are single-staged or those that are on the final stage
of a discrete multistaged operation, the Return Code field indicates
the results of the entire operation. The return code values are shown
in the following figure.

Return Code Values

OOOOH
0001H
0002H
0005H
0009H
0081H

8000H
8001-SFFFH

9000-90FFH
9100-91FFH
9200-9FFFH

AOOO-AOFFH
A100-A1FFH
A200-AFFFH

8000-BOFFH
B100-B1FFH
8200-BFFFH

COOOH
C001H
C002H
C003H
C004H
C005-C01FH
C020-FFFEH
FFFFH

Definition

Operation Completed Successfully
Stage On Interrupt
Stage on Time
Not My Interrupt, Stage On Interrupt
Attention, Stage On Interrupt
Unexpected Interrupt Reset, Stage On Interrupt

Device in Use, Request Refused
Service Specific Unsuccessful Operation

Device Error
Retryable Device Error
Device Error

Time-out Error
Retryable Time-out Error
Time-out Error

Device Error with Time-out
Retryable Device Error with Time-out
Device Error with Time-out

Invalid Logical ID
Invalid Function
Reserved
Invalid Unit Number
Invalid Request Block Length
Invalid Service Specific Parameter
Service Specific Unsuccessful Operation
Return Code Field Not Valid

Figure 4-3. Return Codes

4-10 Transfer Conventions

The bits within the Return Code field are defined in the following
figure.

Bit Definition

15 Unsuccessful Operation
14 Parameter Error
13 Time-out Error
12 Device Error
11 - 9 Reserved
8 Retryable Error
7 Unexpected Interrupt Reset
6 - 4 Reserved
3 Attention
2 Not My Interrupt
1 Stage On Time
O Stage On Interrupt

Notes:

1. Bits 14 to 8 are defined as above only when Bit 15 equals 1.

2. Bits 7 to Oare defined as above only when Bit 15 equals 0.

3. If all bits equal 1, the Return Code field is not valid.

Figure 4-4. Return Code Field Bit Definitions

The caller of ABIOS must initialize the Return Code field to Return
Code Field Not Valid (hex FFFF) before calling any ABIOS Start
routine. If the operating system has an outstanding Request Block at
interrupt time, it first checks for a Return Code field equal to Return
Code Field Not Valid (hex FFFF), and if it is, the operating system
considers the Return Code field as not set and does not attempt to
resume this request. The ABIOS routine sets the Return Code field to
its appropriate value when the interrupt is expected.

When ABIOS is processing a request that causes a hardware
interrupt, interrupts are disabled between the time of writing to the
interrupt enable port and changing the Return Code field from a value
of Return Code Field Not Valid (hex FFFF) to a value of the Return
Code field with the Stage On Interrupt bit (bit 0) set. After changing
the Return Code field, the interrupt flag is restored to the value
contained prior to disabling it.

When the hardware interrupt occurs, the caller only responds to those
requests that have a value of the Return Code field with the Stage On

Transfer Conventions 4-11

Interrupt bit (bit 0) set. The outstanding requests with a Return Code
field equal to Return Code Not Valid (hex FFFF) are not called.

The caller should also maintain a flag that indicates whether or not a
request has completed the Start routine to the point at which the
Return Code field is interrogated. This allows for the situation when
the interrupt occurs after the Return Code field is valid (not hex FFFF)
but before the Return Code field is interrogated by the caller. At this
point there could be a Start routine and an Interrupt routine operating
on the same Request Block within different stack frames,
necessitating the caller's flag.

Attention (hex 0009) and Stage on Ti me (hex 0002) are values of the
Return Code field that need only be tested by services that require
them. Attention (hex 0009) indicates that there is data available in a
service specific output parameter although the function is not
complete. Stage on Time (hex 0002) indicates that the operation is
incomplete and must be resumed when a certain amount of time has
elapsed. This amount of time is contained in a service specific output
parameter depending on the service. In addition, the values of the
Return Code field with bit 15 equal to 1 are service specific. These
values are documented in Section 6, "Interfaces."

The return code value Device In Use, Request Refused (hex 8000) is
used for device serialization. If a Logical ID/Unit combination is a
serially reusable device, ABIOS returns this return code value when
there is an outstanding request on this device.

Time-out (OUT}: The Time-out field contains the expected duration of
the requested stage. This is used to detect when an operation has
timed out and needs to be reset by the Time-out routine. The unit of
time is 1 second, and the value occupies bits 15 through 3. Bits 2
through 0 of this field are reserved. A value of 0 indicates the
operation has no time-out value. The Time-out field is valid for the
value of the Return Code field with the Stage on Interrupt bit (bit 0)
set.

4-12 Transfer Conventions

Data Pointer 1, Data Pointer 2 (IN): Data pointers if required, are
doubleword pointers to 1/0 buffer areas for this request. The effective
address must be addressable in the current mode of the
microprocessor in a bimodal environment. The address may be a
32-bit physical address for OMA, or segmented for programmed 110.
The Return Logical ID Parameters function returns a parameter that
indicates the mode (physical or logical) of the data pointer for the
functions Read (hex 08), Write (hex 09), and Additional Data Transfer
(hex OA). If this parameter indicates that the pointer should be a
logical pointer, Data Pointer 1 is a logical pointer and Data Pointer 2
is reserved. If this parameter indicates that the pointer should be a
physical pointer, Data Pointer 2 is a physical pointer and Data Pointer
1 is reserved. If this parameter indicates that both a logical pointer
and a physical pointer are to be passed, Data Pointer 1 is the logical
pointer and Data Pointer 2 is a physical pointer. If the parameter
indicates neither, this Logical ID does not support functions hex 08, 09
and OA, or these functions require no address pointers. No space is
reserved for data pointers in the Request Block in this event.

Parameters (IN/OUT): Parameters communicate operands and, in
some cases, results of ABIOS functions. Parameter requirements
vary by device and function requested. Detailed parameter
requirements are documented in Section 6, "Interfaces."

Work Area: Work Area fields are an optional data area reserved for
ABIOS. No user data may be stored here. Their content varies by the
type of request and the particular device routine involved. These
fields are not required to be initialized to any value. Their content
must not be altered by the caller of ABIOS across multistaged
requests. Work Area fields are those fields that are not defined as
service specific input or service specific output parameters in
Section 6, "Interfaces."

Transfer Conventions 4-13

ABIOS Transfer Convention

The ABIOS Transfer Convention places the requirement on ABIOS to
determine the effective address of a particular ABIOS function.
ABIOS indexes into the Common Data Area based upon the Logical
ID field in the Request Block to access the necessary pointers
including the effective Routine pointer (Start, Interrupt, or Time-out).
The ABIOS Transfer Convention is the simplest calling sequence for
the operating system. The flow of an ABIOS Transfer Convention
request is shown below.

Operating System
Builds Request Block

Operating System Calls
Common Routines

Figure 4-5. Flow of ABIOS Transfer Convention

Common Routine
Selects and Invokes
ABIOS Functions

For this transfer convention, there are only three routines by which
the caller can transfer control to ABIOS. The pointers to these three
routines are returned in the System Parameters Table at initialization
time. They are also contained in the Function Transfer Table for
Logical ID 2. These routines are:

• Common Start Routine -This routine is called (using a Call Far
Indirect) to start a request. The Logical ID field within the
Request Block is validated. If this Logical ID value is greater than
the value of the Count of Logical IDs field in the Common Data
Area, or if this Logical ID value pertains to a null Common Data
Area entry, the Return Code field is set to Invalid Logical ID
(hex COOO).

• Common Interrupt Routine - This routine is called (using a Call
Far Indirect) to resume a multistaged request.

• Common Time-out Routine - This routine is called (using Call Far
Indirect) to terminate a request that fails to receive a hardware
interrupt in a specified time. The Time-out routine aborts the
request and leaves the hardware controller in a known, initial
state.

4-14 Transfer Conventions

The parameter passing convention for the ABIOS Transfer
Convention is a set of two parameters, two reserved doublewords,
and a return address on the stack. The first parameter is the
Common Data Area Anchor pointer segment or selector with
assumed 0 offset. The second parameter is the doubleword pointer
to the Request Block. The third parameter is a reserved doubleword
placeholder for the Function Transfer Table pointer. The fourth
parameter is a reserved doubleword placeholder for the Device Block
pointer.

The ABIOS common routines expect the addresses from high to low
(the order of pushing) as shown in the following figure.

Contents

Return Address of Caller
Placeholder for Device Block Pointer
Placeholder for Function Transfer Table Pointer
Request Block Pointer
Common Data Area Anchor Pointer

(Segment or Selector only)

Displacement
(from Stack Pointer)

+OOH
+04H
+08H
+OCH
+10H

Figure 4-6. ABIOS Transfer Convention Stack Frame

The following pseudo code instructions are suggested:

PUSH Anchor Pointer Segment or Selector
PUSH Request Block Segment or Selector
PUSH Request Block Offset
SUB Stack Pointer,8
CALL Common Start Routine

Pseudo Code - ABIOS Transfer Convention

The common routines use the Logical ID from the Request Block and
the Anchor pointer to determine which Device Block pointer and
Function Transfer Table pointer pair is to be used. These routines
take this pair of pointers and place them in the stack placeholder
positions allocated by the caller. Then the common routines transfer
control to the Start, Interrupt or Time-out routine whose pointers are
contained in the Function Transfer Table for the requested value of
the Logical ID field. The Common Data Area segment or selector, the
Request Block pointer, the Function Transfer Table pointer and the
Device Block pointer are passed on the stack. For the ABIOS

Transfer Conventions 4-15

Transfer Convention, it is the responsibility of the caller to remove
the parameters from the stack upon return.

The layout of the Function Transfer Table is contained in Figure 2-4
on page 2-8.

Operating System Transfer Convention

This convention places the requirement on the operating system to
determine the effective address of a particular routine. This method
is most useful for handling interrupts from character and
programmed 110 devices that repeatedly call a single routine.

There are two methods to accomplish operating system transfers. In
the first method, the operating system indexes into the Common Data
Area based upon the Logical ID to access the necessary pointers
including the effective Routine pointer (Start, Interrupt, or Time-out).
The advantage of this approach over the ABIOS Transfer Convention
is one of performance.

In the second method, the operating system stores the necessary
pointers as it sees fit and accesses them without indexing into the
Common Data Area. An operating system might want to use this
method if that operating system is a real mode only or protected
mode only operating system. The Common Data Area is provided to
access the necessary pointers as quickly as possible in a bimodal
environment. In a single mode environment there is no advantage to
accessing the pointers by indexing into the Common Data Area.
There is a small performance loss. The flow of an Operating System
Transfer Convention request is shown below.

Operating System
Builds Request Block

Operating System
Selects and Invokes
ABIOS Routines

Figure 4-7. Flow of Operating System Transfer Convention

The parameter passing convention for the Operating System Transfer
Convention is a set of four parameters and a return address on the
stack. The first is the Anchor pointer segment or selector of the
Common Data Area with an assumed O offset. The second is a
doubleword pointer to the Request Block. The third is a doubleword

4-16 Transfer Conventions

pointer to the Function Transfer Table, and the fourth is a doubleword
pointer to the Device Block.

The Start, Interrupt, and Time-out routines for each Logical ID expect
the addresses from high to low (the order of pu!Shing) as shown in the
following figure.

Contents Displacement
(from Stack Pointer)

Return Address of caller +OOH
Device Block Pointer +04H
Function Transfer Table Pointer +08H
Request Block Pointer +OCH
Common Data Area Anchor Pointer +10H

(Segment or Selector only)

Figure 4-8. Operating System Transfer Convention Stack Frame

The following pseudo code instructions are suggested:

PUSH Anchor Segment or Selector
PUSH Request Block Segment or Selector
PUSH Request Block Offset
PUSH Function Transfer Table Segment or Selector
PUSH Function Transfer Table Offset
PUSH Device Block Segment or Selector
PUSH Device Block Offset
CALL Logical ID Start Routine

Pseudo Code - Operating System Transfer Convention

For the Operating System Transfer Convention, it is the responsibility
of the caller to remove the parameters from the stack upon return.

Transfer Conventions 4-17

Notes:

4-18 Transfer Conventions

Section 5. Additional Information

Interrupt Processing . 5-3
Interrupt Flow 5-3
Interrupt Sharing . 5-3
Default Interrupt Handler . 5-5

Adding, Patching, Extending, and Replacing 5-6
Adapter ROM Structure . 5-7
RAM Extension Structure 5-9
Adding . 5-12
Patching . 5-12
Extending . 5-14
Replacing . 5-16
Considerations for RAM Extensions 5-18

Operating Systems Implementation Considerations 5-20
ABIOS Rules . 5-20
Considerations for Bimodal Implementations 5-22

Additional Information 5·1

Notes:

5-2 Additional Information

Interrupt Processing

Interrupt Flow

The operating system that interfaces with ABIOS provides interrupt
handlers that receive control through the hardware interrupt vector.
The operating system interrupt handler is required to retain the
Logical IDs of the devices that operate on the given interrupt level.
ABIOS provides routines that are called by the operating system
interrupt handlers.

Each device has a Logical ID that is known to the operating system.
A Logical ID may have one or more Request Blocks active when the
interrupt is processed by the operating system interrupt handler.
Each active Request Block of the Logical ID is processed by calling
ABIOS at its interrupt entry point. The Return Code field is set by
ABIOS to indicate if the interrupt was associated with the Request
Block.

The operating system can call ABIOS for interrupt processing with
interrupts enabled or disabled. ABIOS restores the state of the
interrupt flag after any period that interrupts are required to be
disabled. If no Request Blocks have the Stage On Interrupt bit (bit 0)
of the Return Code field set, and an interrupt occurs, the Default
Interrupt Handler is provided to remove the interrupt at the device.

Interrupt Sharing

Where more than one Logical ID or Logical ID-unit combination share
an interrupt level, the process is repeated for each Logical ID until all
Logical IDs are processed or the first Logical ID with an interrupt is
completely processed.

ABIOS expects the operating system to manage the end of interrupt
(EOI) processing at the interrupt controller. The method used for EOI
processing is entirely up to the operating system. ABIOS does not
reset the interrupt controller. The operating system can choose its
desired strategy for resetting the interrupt controller after all
outstanding Request Blocks for a particular Logical ID are processed
through the Interrupt routine and at least one request responds that
the interrupt was serviced. A serviced interrupt request returns from

Additional Information 5-3

the Interrupt routine with the Return Code field having any value
other than Not My Interrupt, Stage On Interrupt (hex 0005).

Rules for Interrupt Processing

One Interrupt Level per Loglcal ID: Every unit within a particular
Logical ID operates on the same interrupt level and no Logical ID
operates on more than one interrupt level.

One Microprocessor Mode per Call: After being interrupted, ABIOS is
returned to the microprocessor mode (real or protected) that it was
running at interrupt time. That is, after being preempted in the
middle of a request stage, it will be returned to the microprocessor
mode that it was running at the time of preemption.

Microprocessor Mode Changes Hidden from ABIOS: While ABIOS
function Xis running in protected mode, it can be interrupted, and
function Y can be invoked in real mode and vice versa. X can equal
Y. After being preempted in the middle of a request stage in mode X,
ABIOS can be called through the Start routine in mode Y.

ABIOS Preserves Microprocessor Interrupt Flag State: ABIOS does
not change the state of the interrupt flag. ABIOS may temporarily
disable the interrupt flag but will restore it to its original state. ABIOS
never enables the interrupt flag if it is disabled upon entry to ABIOS.

Operating System Maintains Request Block Address Valldlty: The
pointer to a Request Block that is passed on a request is valid for the
duration of that stage of the request.

Data Area Relocatlon: The effective memory address of a Logical
Address pointer (those pointers in the Request Block in the form
segment:offset or selector:offset) can be changed or moved across
stages of a request. In the real mode, the segment and/or offset can
be changed. In the protected mode, the selector and/or offset can be
changed as well as the physical address located in the descriptor.

Operating System Performs EOI: ABIOS does not perform end of
interrupt processing (EOI) on its own behalf. In a level-sensitive
interrupt environment, the device condition causing the interrupt is
reset by ABIOS when it processes the Request Block at the Interrupt
routine.

5-4 Additional Information

Return Code Indicates Reset of Interrupt Condition: The caller of
ABIOS can perform end of interrupt (EOI) processing when ABIOS
returns with a successful Return Code during processing of the
interrupt as long as all outstanding Request Blocks for that Logical ID
have been processed. If the Return Code field is any field other than
Not My Interrupt, Stage On Interrupt (hex 0005), and all Request
Blocks are serviced on the Logical ID, the caller can assume that the
interrupt was serviced (including resetting of the interrupt condition
at the device) and process the EOI.

Resetting of Interrupt Condition: Servicing an interrupt for both an
actual request or the Default Interrupt Handler resets the interrupting
condition at the hardware if the Return Code field is any other value
than Not My Interrupt, Stage on Interrupt (hex 0005).

Exhaustive Calllng: The caller is required to call ABIOS with each
outstanding request per Logical ID at interrupt time until the first
Logical ID with an interrupt is completely processed. Completely
processed means the act of calling each request that has a value of
the Return Code field with the Stage On Interrupt bit (bit 0) set for a
given Logical ID.

If multiple outstanding requests per Logical ID are waiting for an
interrupt, regardless of whether any single request returns indicating
that the interrupt was serviced, it is necessary to call each of the
requests. This is because resetting the interrupting condition for the
first request may reset the interrupt of the second request, causing a
loss of interrupt. Exceptions to this rule are defined in
Section 6, "Interfaces." An example is the Real-Time Clock Set
Interrupt functions (hex OB, hex OC, and hex OF). This cannot happen
across Logical IDs, because of the following rule concerning
Interrupts across Logical IDs.

Interrupts across Loglcal IDs: Servicing an interrupt of a given
Logical ID does not reset the interrupt on another Logical ID.

Default Interrupt Handler

In a level-sensitive interrupt environment, it is necessary to handle
unexpected hardware interrupts by not only resetting the interrupt at
the interrupt controller (EOI), but also resetting it at the device.
ABIOS provides this capability through the use of the Default Interrupt
Handler.

Additional Information 5-5

Each interrupting ABIOS service provides a Default Interrupt Handler
that resets the interrupt at the device and returns with a Return Code
field equal to Operation Completed Successfully (hex 0000) or Not My
Interrupt, Stage On Interrupt (hex 0005). The Default Interrupt
Handler is passed a Request Block with no service specific
parameters, and control is transferred to the Default Interrupt Handler
through the Interrupt routine. The Default Interrupt Handler is only
called if a given Logical ID has no outstanding Request Blocks
waiting on interrupt.

To determine whether or not a Logical ID interrupts, a call to return
Logical ID Parameters function is invoked. If the Interrupt Level field
pertains to a device that interrupts, it contains the hardware interrupt
level. If the device does not interrupt, the Interrupt Level field
contains a value of hex FF, indicating a noninterrupting Logical ID.
The nonmaskable interrupt (NMI) device is a special case and returns
with a value of hex FE for the interrupt level. If the value of hex FE or
FF is returned for the interrupt level, the Logical ID does not provide a
Default Interrupt Handler.

Adding, Patching, Extending, and Replacing

ABIOS provides a mechanism to add, patch, extend and replace the
system board ROM or adapter ROM ABIOS using a~ adapter ROM as
well as using RAM. Definitions for adding, patching, extending, and
replacing ABIOS, followed by the mechanisms for accomplishing
each, are shqwn below.

Adding This adds a previously unsupported ABIOS interface, or
adds the support for a new device within the constraints
of the old interface without replacing the old device. An
example is adding a new hardware device with ABIOS
support. Adding involves a new or old interface, new
ABIOS, and new hardware.

Patching This revectors an existing ABIOS function to a patched
routine. Patching involves an existing interface, new
ABIOS, and existing hardware.

5-6 Additional Information

Extending This adds a previously unsupported function to a
particular ABIOS interface that operates on the same
device and uses the same Device Block. Extending
involves a new interface, new ABIOS, and existing
hardware.

Replacing This involves supporting the existing interface and
optionally extending the interface for new hardware of
the same Device ID. Replacing requires the initialization
of a new Device Block. Replacing involves an existing or
possibly new interface, new ABIOS, and new hardware.

The following figure shows these relationships.

NewABIOS New New New New Function
Interface ABIOS Hardware Device Block Transfer Table

Adding Yes/No Yes Yes Yes Yes
Patching No Yes No No No
Extending Yes Yes No No Yes
Replacing Yes/No Yes Yes Yes Yes

Figure 5-1. Adding, Patching, Extending, and Replacing ABIOS

Adapter ROM Structure

ABIOS provides a facility to integrate adapters with on-board ROM
code into the system. During ABIOS initialization, the absolute
addresses hex COOOO through DFBOO are scanned in 2K blocks in
search of a valid adapter ROM.

Adapters that support ROMs can participate in the following
convention.

Fie Id

Signature= AA55H (Word Value)
Length in 512-Byte Blocks
BIOS Initialization Entry Point
Signature = BB66H (Word Value)
Number of Initialization Table Entries
Build Initialization Table Entry Point

Figure 5-2. ROM Module Header ABIOS

Offset Length

+OOH 2
+02H 1
+03H 3
+06H 2
+08H 1
+09H

Additional Information 5-7

The ROM Module Header entries are described in more detail below.

Signature = AA55H (Word Value): This value in the ROM module
header indicates that this ROM address contains a BIOS ROM, an
ABIOS ROM or both.

Length In 512-Byte Blocks: This field indicates the length (limit
hex 7F) of the ROM associated with the ROM module header.

BIOS lnltlallzatlon Entry Point: This field is the location in the ROM
which is called by the power-on self-test (POST).

Signature = BB66H (Word Value): This value in the ROM module
header indicates that this ROM address contains an ABIOS ROM.

Number of lnltlallzatlon Table Entries: This field contains the number
of Initialization Table entries that this ABIOS ROM requires. The
value of this field for each ABIOS ROM module header must be at
least 1. This field is used to determine the size of the Initialization
Table.

Bulld lnltlallzatlon Table Entry Point: This field is the location in the
adapter's ROM that the Build Initialization Table BIOS function (INT
15H, (AH) = 05H, see Figure 3-4 on page 3-6) calls to build the
Initialization Table entry for the adapter.

The ABIOS structure is very similar to the BIOS structure and does
not preclude the support of existing adapters using ROM operating
under the BIOS structure. If an adapter ROM is an ABIOS-only
adapter ROM, a dummy "Return Far" instruction must be placed at
the BIOS Initialization Entry Point field in the ROM module header to
allow for the BIOS ROM scan during the power-on self-test (POST).

When the operating system invokes the Build System Parameters
Table BIOS function (INT 15H, (AH) = 04H, see Figure 3-2 on
page 3-4) a ROM scan is invoked to determine the number of entries
in the Initialization Table. This number is obtained by accumulating
the values in the Number of Initialization Table Entries field of each
ROM module header and adding that number to the number of entries
required for the system board ROM.

When the operating system invokes the Build Initialization Table BIOS
function (INT 15H, (AH) = 05H, see Figure 3-4 on page 3-6) a ROM

5-8 Additional Information

scan is invoked, searching the ROM address space in 2K increments
until a valid ABIOS ROM is detected. The Build Initialization Table
Entry routine is called for each valid ROM to fill in the Initialization
Table for devices operated by the code on the adapter. For more
information see Figure 5-4 on page 5-11.

After the Initialization Table entry for the adapter ROM is added to the
Initialization Table, the operating system treats the entry as if it were
a system board entry.

When the Initialize Device Block and Function Transfer Table routine
is called for an adapter ROM, each segment value in the Function
Transfer Table must equal the segment of the corresponding ROM
module header.

RAM Extension Structure

ABIOS provides a facility to integrate adapters with RAM-loadable
code into the system. It is the responsibility of the operating system
to load the RAM extensions from permanent media to RAM before
ABIOS initialization. After ABIOS initialization, RAM extensions may
be relocated, but they are always required to be in memory. During
ABIOS initialization, when the Build System Parameters Table BIOS
function (see Figure 3-2 on page 3-4) and the Build Initialization
Table BIOS function (see Figure 3-4 on page 3-6) are called, a
pointer to the RAM extension area is passed as a parameter.

The layout of a RAM extension header is shown below.

Field Offset Length

Signature = AA55H (Word Value) +OOH 2
Length in 512-Byte Blocks +02H 1
Model Byte +03H 1
Submode! Byte +04H 1
ROM Revision Level +05H 1
Device ID +06H 2
Number of Initialization Table Entries +08H 1
Build Initialization Table Entry Point +09H 3
Secondary Device ID +OCH 1
Revision +OOH 1
Reserved +OEH 2

Figllre 5-3. RAM Extension Header

Additional Information 5-9

The RAM Extension Header entries are:

Signature = AASSH (Word Value): This value in the RAM extension
header indicates that this RAM address contains an ABIOS RAM
extension.

Length In 512-Byte Blocks: This field indicates the length (limit hex
7H) of the RAM extension associated with the RAM extension header.

Model Byte, Submodel Byte, ROM Revision Level: These fields
describe the system board ROM to which the RAM extension is
associated.

Device ID, Secondary Device ID, Revision: These fields describe the
ABIOS service to which the RAM extension is associated.

Number of lnltlallzatlon Table Entries: This field contains the number
of Initialization Table entries that this RAM extension requires. The
value of this field for each RAM extension header must be at least 1.
This field is used to determine the size of the Initialization Table.

Bulld lnltlallzatlon Table Entry Point: This field is the location in the
RAM extension that the Build Initialization Table BIOS function calls
to build the Initialization Table entry for this RAM extension.

The RAM extension area starts on a paragraph boundary and
contains a chained list of individual RAM extensions linked by way of
the Length in 512-Byte Blocks field. The Reserved fields in the RAM
extension header must be set to 0.

The segment value of each RAM extension is calculated by
converting the length of the preceding RAM extension to paragraphs
and adding the result to the segment of the preceding RAM extension.
If the header for RAM extension 0 is loaded at XXXX:OOOO and its
Length in 512-Byte Blocks field is n, meaning the extension was n/2
KB in length, the header for RAM extension 1 is at location
(XXXX + (20H * n)):OOOO. The last RAM extension in the RAM
extension area points to a RAM extension with the Length in 512-Byte
Block field set to 0.

When the operating system invokes the Build System Parameters
Table BIOS function (INT 15H, (AH) = 04H, see Figure 3-3 on
page 3-5) a RAM extension scan occurs to determine the number of

5-10 Additional Information

entries in the Initialization Table. This number is obtained by
accumulating the values of the Number of Initialization Table Entries
field in the RAM extension headers and adding that number to the
entries required for the system board and adapter ROMs.

When the operating system invokes the Build Initialization Table BIOS
function (INT 15H, (AH) = 05H, see Figure 3-4 on page 3-6) another
RAM extension scan occurs. The Build Initialization Table Entry
routine (see Figure 5-4) is called for each RAM extension to fill the
Initialization Table entry for that RAM extension.

After the Initialization Table entry for the RAM extension is added to
the Initialization Table, the operating system treats the entry as if it
were a system board entry.

When the Initialize Device Block and Function Transfer Table routine
is called, each segment value in the Function Transfer Table must
equal the segment of the corresponding RAM extension header.

The following figure shows the interface to the Build Initialization
Table routine used by adapter ROMs and RAM extensions.

I BUILD INITIALIZATION TABLE ENTRY ROUTINE

Invocation: Call FAR, ABIOS calls adapter ROM or RAM
extension strictly for initialization.

(ES:DI) = Pointer to the next available
entry in the Initialization Table

On Return: (AL) = Exception condition
= OOH, Operation Completed Successfully
#: OOH, Indicates no entries added
= 80H, No units found

(CX) = Count of entries added to the Initialization Table
= OifAL#O

(All registers except AX, CX, and Flags are restored)

Figure 5-4. Build Initialization Table Entry Routine

Additional Information 5-11

Adding

To add a previously unsupported ABIOS interface, an adapter ROM or
RAM extension provides the correct ROM module or RAM extension
header, and the Build Initialization Table routine is used to build an
entry in the Initialization Table. Once the Initialization Table is built,
it makes no difference to the operating system initialization process
whether the Initialization Table entry is associated with a system
board ROM, an adapter ROM, or a RAM extension. The following
diagram shows the effect of adding an additional ABIOS interface.

Common Data Area

•
Device Block

Pointer
Function Transfer

Table Pointer
•

Figure 5-5. Adding ABIOS

Patching

Device Block
(New)

Function Transfer Table
(New)

•
Function 1 Pointer
Function 2 Pointer
Function 3 Pointer

•

RAM or ROM
Addition

•
Function 1
Function 2
Function 3

•

During adapter ROM scan or RAM extension scan, an adapter ROM
or RAM extension is given control at the Build Initialization Table
routine where the adapter ROM or RAM extension builds the new
Initialization Table entry. To patch an ABIOS service, the new
Initialization Table entry is built the same as the old Initialization
Table entry with the following exceptions:

• The Device Block Length field is set to 0, indicating the existing
Device Block suffices for the adapter ROM or RAM extension.
Thus, the Device Block Pointer field within the Common Data
Area associated with this Initialization Table entry should be set
to 0:0 by the operating system.

5-12 Additional Information

• Likewise, the Function Transfer Table Length field is set to 0,
indicating the existing Function Transfer Table suffices for the
adapter ROM or RAM extension. Thus, the Function Transfer
Table Pointer field in the Common Data Area associated with this
Initialization Table entry should be set to 0:0 by the operating
system.

• The Number of Logical IDs field is set to 1, indicating this entry
requires one Logical ID to be initialized for this Initialization
Table entry.

• The Revision field is set to the value of the Revision field in the
old Initialization Table entry plus 1.

• The Initialize Device Block and Function Transfer Table Routine
Pointer field is initialized to point to the adapter ROM or RAM
extension.

When control is transferred to the Initialize Device Block and Function
Transfer Table routine, the Common Data Area is scanned for the
values of the Device ID, the Secondary Device ID, and the Revision
fields in the Device Block of the service to be patched. The search is
accomplished by accessing the Device Block Pointer field associated
with each Logical ID and interrogating the public portion of the Device
Block containing the Device ID, the Secondary Device ID, and the
Revision fields, until the Logical ID (entry in the Common Data Area)
to be patched is found (see the ABIOS device block in Figure 2-6 on
page 2-11). When scanning the Common Data Area, any null entries
should be disregarded. The associated Function Transfer Table
Pointer field is accessed and the doubleword pointer of the patched
routine is stored at the appropriate offset in the Function Transfer
Table.

The Device Block Pointer field and the Function Transfer Table
Pointer field corresponding to the Starting Logical ID parameter
passed to the Initialize Device Block and Function Transfer Table
routine are already set to 0:0, indicating the operating system should
disregard this entry as a null Common Data Area entry.

Additional Information 5-13

The following diagram shows the effect of patching an ABIOS
interface.

Common Data Area ~ Function Transfer Table ABIOS ROM

• • •
Function Transfer Function 1 Pointer Function 1 -
Table Pointer I-' Function 2 Pointer -- Function 2 --• Function 3 Pointer h Function 3

• •

RAM or ROM Patch

•
~ Function 3

•

Figure 5-6. Patching ABIOS

Extending

During adapter ROM scan or RAM extension scan, an adapter ROM
or RAM extension is given control at the Build Initialization Table
routine where the adapter ROM or RAM extension builds the new
Initialization Table entry. To extend an ABIOS service, the new
Initialization Table entry is built the same as the old Initialization
Table with the following exceptions:

• The Device Block Length field is set to 0, indicating the existing
Device Block suffices for the adapter ROM or RAM extension.
Thus, the Common Data Area Device Block Pointer field
associated with this Initialization Table entry should be set to 0:0.

• The Function Transfer Table Length field is set to the value of the
old Function Transfer Table Length field plus the length of the
extensions.

• The Count of Logical IDs field is set to 1, indicating this entry
requires one Logical ID to be initialized for this Initialization
Table entry.

• The Revision field is set to the value of the Revision field in the
old Initialization Table entry plus 1.

• The Initialize Device Block and Function Transfer Table Routine
Pointer field is initialized to point to the adapter ROM or RAM
extension.

5-14 Additional Information

When control is transferred to the Initialize Device Block and Function
Transfer Table routine, the Common Data Area is scanned for the
values of the Device ID, the Secondary Device ID, and the Revision
fields in the device block of the service to be extended. The search is
accomplished by accessing the Device Block Pointer field associated
with each Logical ID and interrogating the public portion of the Device
Block containing the Device ID, the Secondary Device ID, and the
Revision fields, until the Logical ID (entry in the Common Data Area)
to be extended is found (see the Device Block in Figure 2-6 on
page 2-11). When the Common Data Area is scanned, any null
entries should be disregarded. The old function pointers for the
service to be extended are placed in the new Function Transfer Table,
followed by the doubleword pointers to the new functions in the
adapter ROM or RAM extension. The new Function Transfer Table
Function Count field is updated to reflect the count of the old functions
plus the count of the new functions. The Function Transfer Table
Pointer field in the Common Data Area which previously pointed to
the old Function Transfer Table is replaced with the pointer to the
new Function Transfer Table.

The Device Block Pointer field corresponding to the Starting Logical
ID parameter that is passed to the Initialize Device Block and
Function Transfer Table routine is already set to 0:0. The Initialize
Device Block and Function Transfer Table routine must set the
associated Function Transfer Table Pointer field to 0:0, indicating a
null Common Data Area entry.

Additional Information 5-15

The following diagram shows the effect of extending an ABIOS
interface.

Function Transfer Table
(Old) ABIOS ROM

Common Data Area
• •

• Function 1 Pointer ~ Function 1
Function Transfer Function 2 Pointer ~ Function 2

Table Pointer ~ Function 3 Pointer H-~ Function 3
• • •

L-+j
Function Transfer Table

(New)

• RAM or ROM
Function 1 Pointer I-' Extension
Function 2 Pointer I---

Function 3 Pointer i--- •
Function 4 Pointer ~ Function 4

• •

Figure 5-7. Extending ABIOS

Replacing

To replace an ABIOS service, the adapter ROM or RAM extension is
given control at the Build Initialization Table routine where the
adapter ROM or RAM extension builds the new Initialization Table
entry. The Initialization Table entry is built with new values in each of
the fields except the Device ID field.

When the Initialize Device Block and Function Transfer Table routine
is called, the Common Data Area is scanned for the values of the
Device ID, the Secondary Device ID, and the Revision fields in the
Device Block of the service to be replaced. The search is
accomplished by accessing the Device Block Pointer field associated
with each Logical ID and interrogating the public portion of the Device
Block containing the Device ID, the Secondary Device ID, and the
Revision fields, until the Logical ID (entry in the Common Data Area)
to be replaced is found (see the Device Block in Figure 2-6 on
page 2-11). When the Common Data Area is scanned, any null
entries should be disregarded. The new function pointers that point
to the adapter ROM or RAM extension are placed in the Function
Transfer Table corresponding to the Starting Logical ID parameter.
The Function Transfer Table Pointer field in the Common Data Area

5-16 Additional Information

that previously pointed to the old Function Transfer Table is replaced
with the pointer to the new Function Transfer Table. Next the Device
Block is built for the Starting Logical ID parameter. Once the Device
Block is built, the Device Block Pointer field in the Common Data
Area that previously pointed to the old Device Block, is replaced with
the pointer to the new Device Block.

The Initialize Device Block and Function Transfer Table routine must
reinitialize the Function Transfer Table Pointer field and the Device
Block Pointer field corresponding to the Starting Logical ID parameter
to 0:0 indicating a null Common Data Area entry.

The following diagram shows the effect of replacing an ABIOS
interface.

Common Data Area

•
Device Block

Pointer
Function Transfer

Table Pointer

•

Device Block
(Old)

Device Block
(New)

Function Transfer Table
(Old)

•
Function 1 Pointer
Function 2 Pointer
Function 3 Pointer

•

Function Transfer Table
(New)

•
Function 1 Pointer
Function 2 Pointer
Function 3 Pointer

•

Figure 5-8. Replacing ABIOS

ABIOS ROM

•
Function 1
Function 2
Function 3

•

RAM or ROM
Replacement

•
Function 1
Function 2
Function 3

•

Additional Information 5-17

Considerations for RAM Extensions

The Model byte, Submode! byte and the ROM Revision Level fields
within the RAM extension header are called system board identifiers
because they describe the system board ROM associated with the
RAM extension. The Device ID, Secondary Device ID, and Revision
fields are called service identifiers because they describe the specific
ABIOS service that is associated with the RAM extension.

Two tests determine if the RAM extension is required for a particular
system.

1. The first test determines if the RAM extension should remain
resident in memory and must be performed at RAM extension
load time. This test determines if the system board identifiers in
the RAM extension match the system board identifiers that are
returned by Return System Configuration function (INT 15H,
(AH) = COH). If the system board identifiers match, the RAM
extension remains resident in memory for ABIOS initialization. If
the RAM extension header has the system board identifier
combination that indicates that it is a system board identifier wild
card (Model Byte equals 0, Submode! Byte equals 0, and ROM
Revision Level equals 0), the RAM extension is loaded into
memory for all systems.

To simplify the system board identifier test, each RAM extension
file must contain RAM extensions with the same system board
identifiers. This allows the system board identifier test to be
performed against only the first RAM extension header but
ensures the test is accurate for all RAM extension headers in the
file.

2. The second test determines if the service identifiers in the RAM
extension header match a service that exists in the system board
ROM or an adapter ROM. This test is performed by the Initialize
Device Block and Function Transfer Table routine. If the
matching service is not found during a scan of the Common Data
Area, the Initialize Device Block and Function Transfer Table
routine sets the Exception Condition parameter to a nonzero
value. When this parameter is a nonzero value, the operating
system makes the associated Logical ID a null Common Data
Area entry.

5-18 Additional Information

If a single RAM extension contains patcHes for multiple service
identifiers, it must have the service identifiers in the RAM
extension header set to the service identifier wild card (Device ID
equals hex OOFF, Secondary Device ID equals hex FF, and
Revision equals hex FF).

Each new version of a particular ABIOS service that patches, extends
or replaces an existing version must have at least one of the service
identifiers different in the new Device Block. The old Device Block is
modified or a new Device Block is built by the Initialize Device Block
and Function Transfer Table routine depending on the type of RAM
extension; patching, extending or replacing.

For patching and extending, since a new Device Block is not built, the
Revision field in the existing Device Block is updated and the Device
ID and Secondary Device ID fields remain the same. For replacing,
since a new Device Block is built due to the addition of hardware, the
Device Block is built with the same Device ID field, but the value of
the Secondary Device ID field is increased by 1 and the value of the
Revision field reverts to 0. For adding, no test is made on an existing
Device Block, therefore the Device Block is built as necessary.

The IBM Operating System/2™ supports ABIOS updates (RAM
Extensions) as follows:

• A file called ABIOS.SYS contains a list of file specifications that
are separated by blanks and/or new lines.

• The files associated with the filespecs in ABIOS.SYS (as well as
ABIOS.SYS itself) are assumed to reside on the root directory of
the IPL volume.

• If the system identifier test passes, the files associated with the
filespecs in ABIOS.SYS are loaded into memory and appended to
one another in the order that they appear in ABIOS.SYS. These
files make up the ABIOS Updates that are applied to ABIOS.

• The filename extension must be .BIO and the sector size of the
update files must be a multiple of 512-bytes.

Operating System/2 is a trademark of International Business Machines
Corporation.

Additional Information 5-19

Operating Systems Implementation
Considerations

ABIOS Rules

The following rules are presented for programmers writing operating
systems and device drivers.

Rule 1 The Device Block Pointer field, the Function Transfer Table
Pointer field and all Data Pointer fields for a given Logical ID
within the ABIOS Common Data Area must not be altered by
the operating system during a particular stage of a request
to that Logical ID.

Rule 2 ABIOS, after being interrupted within a given stage of a
request, returns to that stage in the mode that it was running
at the time of interrupt.

Rule 3 ABIOS Device Blocks are owned by ABIOS and only the
public portions are accessed by the operating system.
There is no guarantee of compatibility of the Device Block
private area contents across ABIOS implementations.

Rule 4 ABIOS Request Blocks are shared by ABIOS and the
operating system.

Rule 5 ABIOS must traverse the Common Data Area to retrieve
necessary pointers. It does not store pointers in one request
or stage of a request to be used on another request or stage
of a request.

Rule 6 ABIOS function X, running in protected mode, can be
interrupted, and function Y can be invoked in real mode, and
vice versa. X can equal Y. After being preempted in the
middle of a request stage in mode X, ABIOS can be called
through the START routine in mode Y.

Rule 7 ABIOS does not change the state of the interrupt flag.
ABIOS can temporarily disable the interrupt flag, but
restores it to its original state.

Rule 8 A Request Block pointer that is passed on a request is valid
for the duration of that stage of the request.

5-20 Additional Information

Rule 9 The effective memory address of a physical address pointer
must not be moved for the duration of a single request.
When a function requires the data pointer to be passed as a
physical address within memory it is assumed that an
external process is performing the read or write to memory,
therefore across stages this address cannot change.

Rule 10 The effective memory address of a logical address pointer
(those pointers in the Request Block in the form
segment:offset or selector:offset) can be changed or moved
across stages of a request. In real mode, the segment
and/or offset can be changed. In protected mode, the
selector and/or offset can be changed as well as the
physical address located in the descriptor.

Rule 11 ABIOS does not do end of interrupt processing. In a
level-sensitive interrupt environment, the device condition
causing the interrupt is reset by ABIOS.

Rule 12 The caller of ABIOS can perform EOI processing when the
Return Code field is any value other than Not My Interrupt,
Stage On Interrupt (hex 0005) and all Request Blocks are
serviced on the Logical ID. The caller can assume that the
interrupt was serviced and process the EOI.

Rule 13 The caller of ABIOS must call each outstanding request per
Logical ID at interrupt time until the first Logical ID with an
interrupting condition is completely processed. Exceptions
are defined in Section 6, "Interfaces."

Rule 14 Operating System device numbers are allocated by the
operating system based on increasing units within
increasing Logical IDs. For example; the first Logical ID with
Device ID = printer, unit O is lpt1 :, unit 1 is lpt2:. If unit 1
does not exist, the second Logical ID with Device ID =
printer, unit 0 is named lpt2:, and so on.

Rule 15 ABIOS in a protected mode or bimodal implementation must
have 1/0 privilege when operating in protected mode.

Additional Information 5-21

Considerations tor Bimodal Implementations

ABIOS is written to be independent of the mode of the
microprocessor. Because segmented address pointers have different
meanings in the two modes, and memory above 1MB is not generally
addressable in real mode, an operating system with a bimodal
implementation must conform to the following requirements:

Addressability of Tables: The operating system is to ensure that the
Request Blocks, Device Blocks, Function Transfer Tables, and the
Common Data Area are addressable at all times to ABIOS in the
mode in which it is called.

Addressablllty of Data for Programmed 1/0: Non-OMA devices cannot
readily use memory above 1MB in real mode. The operating system
should allocate the 110 buffers for these devices below 1 MB if ABIOS
is called in real mode.

Reentrantcy and Mode Change: ABIOS operating in one mode can be
interrupted and invoked in the other mode. The Interrupt and the
Time-out routines are fully reentrant. The Start routines are reentrant
with respect to the Device Block. That is, ABIOS can support multiple
requests to common code operating on different Device Blocks at the
same time within different stack frames. If the Start routine cannot
begin a request, it sets a Return Code field of Device In Use, Request
Refused (hex 8000).

Two Coples of Tables Recommended: Since segmented memory
pointers have ambiguous meaning in a bimodal environment, the
operating system should keep a real mode and a protected mode
version of the Common Data Area and Function Transfer Tables to
avoid the overhead of converting all of the pointers in the tables after
switching modes. One restriction is that the offset fields in the
Function Transfer Table must be the same for the corresponding
entry in both tables. When there are two copies of the table, a 0:0
value in the Data Pointer field in the real mode Common Data Area
indicates that the address is above 1MB.

ABIOS is oblivious to the fact there is more than one table. ABIOS
does not require that the protected mode table be initialized before
calling ABIOS in real mode. But, the protected mode table must be
built before calling ABIOS in protected mode.

5-22 Additional Information

The following figure shows a view of the ABIOS Common Data Area,
Function Transfer Tables, and Device Blocks in a bimodal
environment.

< 1MB

Data Area Segment/

ANYWHERE
Protected Common

Data Area
Real Common J Anchor t

~.--~~~~~~~~----. ...__s_e_le_ci_o_r~~ ~~~~~~~~~~~.____

~ Offset Data Pointers < 1 MB Offset Data Pointers , ,

Count of Logical IDs

Reserved (4)

Device Block 1
Seg ment:Offset

Function Transfer Table 1
Seg ment:Offset

•

Count of Logical IDs

Reserved (4)

Device Block 1
Selector: Offset

Function Transfer Table 1
Selector:Offset

•
--~~~ ~Bl_ock~N ~~~~

Device n_
Device Block N
Seg ment:Offset

Function Transfer Table N 1-

Seg ment:Offset

Data Length, Offset,
Segment N

Device
Data

Device Block N
Selector:Offset

,....- Function Transfer Table N
Selector: Offset

Data Length, Offset,
Selector N

L-t--~~~·~~~----<u~ (},!~~';y J-nt--~~~·~~~---ji-.
__ Data Length, Offset, IL Data Length, Offset,

1

_

Segment 0 Selector O

Data Pointer Count (2)

Start Interrupt ~

Time-out Function
Count

Function 1 Function 2

•

Function M-1I Function M t-

r...J Logical ID N j..-
1 l Function M J

Figure 5-9. Bimodal Data Areas

Data Pointer Count (2)

Start

Time-out

Interrupt

Function
Count

Function 1 Function 2

•

Function M-1 Function M Q

Additional Information 5-23

Description of Fields of Bimodal Common Data Area

The following are descriptions of the fields shown in Figure 5-9 on
page 5-23.

Anchor Segment/Selector: Referred to as the Anchor pointer, this is
a word segment or selector with an assumed O offset pointing to the
Common Data Area. There is no requirement that the segment value
passed in real mode equals the selector value passed in protected
mode.

Real Common Data Area: This is the Common Data Area used by
ABIOS operating in the real mode.

Protected Common Data Area: This is the Common Data Area used
by ABIOS operating in protected mode.

Offset Data Pointers: This entry is an offset, which in conjunction with
the Anchor pointer, points to the ABIOS Data Pointer 0 Length field.

Count of Logical IDs: This is the number of Device Block and
Function Transfer Table Pointer pairs.

Reserved (4): This is a reserved doubleword.

Device Block N Segment:Offset: This is the doubleword pointer to the
Device Block for Logical ID n.

Function Transfer Table N Segment:Offset: This is the doubleword
pointer to the Function Transfer Table for Logical ID n.

Device Block N Selector:Offset: This is the doubleword pointer to the
Device Block for Logical ID n.

Function Transfer Table N Selector:Offset: This is the doubleword
pointer to the Function Transfer Table for Logical ID n.

Data Pointer Count (2): This is the count of Data Pointer fields.

Data Length, Offset, Segment N: This is the length, offset and
segment of Data Pointer n.

5-24 Additional Information

Data Length, Offset, Selector N: This is the length offset and selector
of Data Pointer n.

Device Block N: This is the ABIOS Device Block n.

Start: This is a doubleword pointer to the Start routine for this Logical
ID available to the caller using the Operating System Transfer
Convention.

Interrupt: This is a doubleword pointer to the Interrupt routine for this
Logical ID, and is available to the caller using the Operating System
Transfer Convention.

Time-out: This is a doubleword pointer to the Time-out routine for
this Logical ID, and is available to the caller using the Operating
System Transfer Convention.

Function Count: This is a count of functions supported for this Logical
ID.

Function M: This is a doubleword pointer to the Mth Function routine
for this Logical ID.

Additional Information 5-25

Notes:

5-26 Additional Information

Section &. Interfaces

Introduction . 6-3
Diskette . 6-5

Functions . 6-5
Return Codes . 6-18
Programming Considerations 6-18

Disk .. 6-21
Functions . 6-21
Return Codes . 6-29
Programming Considerations 6-31

Video 6-33
Functions . 6-33
Return Codes . 6-48

Keyboard . 6-49
Functions . 6-49
Return Codes . 6-58
Programming Considerations 6-58

Parallel Port . 6-61
Functions . 6-61
Return Codes . 6-66
Programming Considerations 6-67

Asynchronous Communications . 6-69
Functions . 6-69
Return Codes . 6-91
Programming Considerations 6-91

System Timer 6-97
Functions . 6-97
Return Codes . 6-98
Programming Considerations 6-98

Real-Time Clock 6-99
Functions . 6-99
Return Codes . 6-107
Programming Considerations 6-107

System Services . 6-109
Functions . 6-109
Return Codes 6-112

Nonmaskable Interrupt (NMI) . 6-113
Functions . 6-113
Return Codes 6-115

Pointing Device . 6-117

Interfaces 6-1

Functions . 6-117
Return Codes . 6-123
Programming Considerations 6-124

Nonvolatile Random Access Memory (NVRAM) 6-125
Functions . 6-125
Return Codes . 6-128
Prograrriming Considerations 6-128

Direct Memory Access (OMA) . 6-129
Functions . 6-129
Return Codes . 6-136
Programming Considerations 6-136

Programmable Option Select (POS) 6-139
Functions . 6-139
Return Codes . 6-144

Keyboard Security . 6-145
Functions . 6-145
Return Codes . 6-150

6-2 Interfaces

Introduction

This section describes the interfaces supported by ABIOS. Each
interface description includes the interface functions and the values
of the Return Code field. Programming considerations are also
included where appropriate.

Parameters are passed to ABIOS functions in the request block. All
input parameters are set by the caller and all output parameters are
returned by ABIOS functions.

This section describes only the service specific parameters. The
functional parameters are described in Figure 4-2 on page 4-6.

The following notes apply to each ABIOS device interface in this
section:

• The Default Interrupt Handler function (hex 00) and the Return
Logical ID Parameters function (hex 01) are described on page
4-7.

• For the functions Read (hex 08), Write (hex 09) and Additional
Data Transfer (hex OA), the Data Pointer Mode (physical vs.
logical) should be determined through the Return Logical ID
Parameters function (hex 01).

• All input fields marked as reserved must be initialized to 0 by the
caller of ABIOS.

• All input fields are unaltered by ABIOS across the stages of a
request.

• All fields other than input fields do not need to be initialized to
any predefined values before a request is initiated through the
Start routine. These fields must not be altered by the caller
across the stages of a request.

Interfaces 6-3

• The following values of the Return Code field are returned for
parameter errors although they are not indicated as possible
Return Code field values within each function description:

Hex COOO - Invalid Logical ID, ABIOS Transfer Convention
only

Hex C001 - Invalid Function Number

Hex C003 - Invalid Unit Number

Hex C004 - Invalid Request Block Length.

• The value of the Return Code field Device in Use, Request
Refused (hex 8000) is used for device serialization. If a Logical
ID/Unit combination is a serially reusable device, ABIOS returns
this value when th~re is an outstanding request on this device.

• The caller should generically handle the error ranges of the
Return Code field as defined for the Request Block (see Section
4, "Transfer Conventions"). This permits the d~finition of
additional Return Codes in each of the ranges without affecting
the caller's error handling:

• The Time to Wait Before Resuming Request fiel9 (in
microseconds) is returned when the Return Code field is set to
Wait On Time (hex 0002).

6-4 Interfaces

Diskette

Functions
The following are the diskette functions. The Default Interrupt
Handler function and the Return Logical ID Parameters function are
described in "Request Block" on page 4-3.

OOH - Default Interrupt Handler

01 H - Return Loglcal ID Parameters

02H - Reserved

03H - Read Device Parameters

• This function returns the default parameters used in diskette
operations and device control information.

• This function returns bit 6 of the Device Control Flags field to
indicate whether the Gap Length for Format field is a required
input for the Set Media Type for Format function (hex OD). If bit 6
is set to 1, the Gap Length for Format parameter is determined
based upon the Number of Tracks to Format and the Number of
Sectors per Track fields passed on the Set Media Type for Format
(hex OD) function. If this bit is 0, the user must provide the Gap
Length for Format parameter for the media that is being
formatted.

• The possible value of the Return Code field is equal to hex 0000.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word +18H Reserved

Diskette 6-5

03H - Read Device Parameters (continued)

Service Specific Output

SIZE OFFSET

Word +10H

Word +12H

Word +14H

Word +16H

DWord +lCH
DWord +20H
Word +26H

Byte +2AH
Byte +2BH
Byte +2CH
DWord +2DH
Byte +31H
Byte +32H
Byte +33H

6-6 Diskette

DESCRIPTION

Number of sectors per track for the maximum
media density supported by the drive

Size of sector in bytes
00H - Reserved
01H - 256 bytes/sector
02H - 512 bytes/sector
03H to FFFFH - Reserved

Device control flags
Bits 15 to 7 - Reserved
Bit 6 - Support of Gap Length for Format parameter for the

Set Media Type for Format function (hex 0D)
0 - User must provide Gap Length for Format parameter
1 - ABIOS defines Gap Length for Format parameter

based on the Number of Tracks to Format and
Number of Sectors per Track fields as input to
the Set Media Type for Format function (hex 0D)

Bits 5. 4 - Reserved
Bit 3 - Recalibrate status

0 - Recalibrate is not required
1 - Recalibrate is required

Bit 2 - Concurrent operations
0 - Not supported
1 - Supported

Bit 1 - Format unit information
0 - Format unit is not supported
1 - Format unit is supported

Bit 0 - Change signal availability
0 - Change signal is not available
1 - Change signal is available

Diskette drive type
00H - Drive not present/invalid NVRAM
01H - 5.25 inch. 40-Track. 2-Head. 360KB
02H·- Reserved
03H - Reserved
04H - 3.5 inch. 80-Track. 2-Head. 1.44MB
05H to FFFFH - Reserved

Delay before turning off motor (in microseconds)
Motor startup time (in microseconds)
Number of cylinders on the maximum media

density supported by the drive
Number of heads
Recommended software retry count
Fill byte for format
Head settle time (in microseconds)
Gap length for read/write/verify
Gap length for format
Data length

04H - Set Device Parameters

• This function can be used to change the default parameters for
diskette operations.

• If the media was formatted with a sector size other than the
default sector size of 512-bytes per sector, this function should be
issued once before executing the functions Read (hex 08), Write
(hex 09), Verify (hex OB), or Format (hex OA) to set the correct
sector size.

• ABIOS uses the 512-bytes per sector value until this function is
called to set a different sector size.

• The possible values of the Return Code field are equal to
hex 0000, 8000, and C005.

Service Specific Input

SIZE OFFSET

Word +leH
Word +12H

Byte +31H
Byte +33H

DESCRIPTION

Reserved
Sector size in bytes

eeH - Reserved
01H - 256 bytes per sector
02H - 512 bytes per sector
03H to FFFFH - Reserved

Gap length for read/write/verify
Data length

Service Specific Output

None

Diskette 6-7

05H - Reset/Initialize

• This function resets the diskette system to an initial state.

• This function should be issued when switching from BIOS to
ABIOS.

• The possible values of the Return Code field are equal to
hex 0000, 0001, 0002, 8000, 9009, 9120, and 9180.

Service Specific Input

SIZE OFFSET DES CR I PTI ON

Word +10H Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

None

O&H - Enable (Reserved)

07H - Disable/Reset Interrupt

• This function resets the interrupt at the device.

• The possible values of the return code field are equal to hex 0000,
9120, and 9180.

Service Specific Input

SIZE OFFSET DES CR I PTI ON

Word +18H Reserved

Service Specific Output

SIZE OFFSET DES CR I PTI ON

None

6-8 Diskette

08H- Read

• This function transfers data from the specified cylinder, head, and
sector number on the diskette to the specified memory location.

• If the diskette was formatted with a sector size other than the
default sector size of 512-bytes per sector, the Set Device
Parameters function (hex 04) should be issued to set the proper
sector size before issuing this function.

• If the 'diskette change' signal is inactive, ABIOS proceeds with
the operation.

• If the 'diskette change' signal is active and ABIOS is able to reset
the 'diskette change' signai to the inactive state, the Return Code
field is set to Media Changed (hex 8006). However, if the
'diskette change' signal is active and ABIOS is unable to reset the
'diskette change' signal to the inactive state, the Return Code
field is set to Media Not Present (hex 8000) and no data is
transferred.

• If the Number of Sectors to Read field is 0, no action is performed
and the Return Code field is set to Operation Completed
Successfully (hex 0000).

• The possible values of the Return Code field are equal to
hex0000,0001,0002,8000,8006,8000,9009,9102,9104,9108,
9110,9120,9140,9180, andCOOC.

Service Specific Input

SIZE OFFSET

Word +10H
DWord +12H
Word +16H
Word +18H
DWord +lAH
Word +lEH
Word +24H
Word +26H
Byte +2AH
Word +31H

DESCRIPTION

Reserved
Data pointer 1
Reserved
Reserved
Data pointer 2
Reserved
Number of sectors to read
Cylinder number (0-based)
Head number (0-based)
Sector m.1mber

Service Specific Output

SIZE OFFSET

DWord +20H
Word +24H

DESCRIPTION

Time to wait before resuming request in microseconds
Number of sectors read

Diskette 6-9

09H ·Write

• This function transfers data from the specified memory location to
the diskette at the specified cylinder, head, and sector number.

• If the diskette was formatted with a different sector size other
than the default sector size of 512-bytes per sector, the Set
Device Parameters function (hex 04) should be issued to set the
proper sector size before issuing this function.

• If the 'diskette change' signal is inactive, ABIOS proceeds with
the operation.

• If the 'diskette change' signal is active and ABIOS is able to reset
the 'diskette change' signal to the inactive state, the Return Code
field is set to Media Changed (hex 8006). However, if the
'diskette change' signal is active and ABIOS is unable to reset the
'diskette change' signal to the inactive state, the Return Code
field is set to Media Not Present (hex 8000) and no data is
transferred.

• If the Number of Sectors to Write field is 0, no action is
performed, and the Return Code field is set to Operation
Completed Successfully (hex 0000).

• The possible values of the Return Code field are equal to
hex0000,0001,0002,8000,8003,8006,8000,9009,9102,9104,
9108,9110,9120,9140,9180,andCOOC.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word +10H Reserved
DWord +12H Data pointer 1
Word +16H Reserved
Word +18H Reserved
DWord +lAH Data pointer 2
Word +lEH Reserved
Word +24H Number of sectors to write
Word +26H Cylinder number (0-based)
Byte +2AH Head number (0-based)
Word +31H Sector number

Service Specific Output

SIZE OFFSET

DWord +20H
Word +24H

6-10 Diskette

DES CR I PTI ON

Time to wait before resuming request in microseconds
Number of sectors written

OAH - Addltlonal Data Transfer (Subfunctlon OOH - Format)

• This function writes the field ID from the given buffer for each
sector to the specified track.

• Each field ID entry in the buffer is composed of 4 bytes in this
order (C, H, R, N), where C is the track number, H is the head
number, R is the sector number, and N is the sector size. There
must be one entry for every sector on the track.

• The Set Media Type For Format function (hex OD) must be issued
once before issuing this function to ensure the proper format
parameters.

• The Set Media Type For Format function (hex OD) must also be
issued if the Return Code field is set to Media Changed (hex 8006)
or Media Not Present (hex SOOD).

• If the 'diskette change' signal is inactive, ABIOS proceeds with
the operation.

• If the 'diskette change' signal is active and ABIOS is able to reset
the 'diskette change' signal to the inactive state, the Return Code
field is set to Media Changed (hex 8006). However, if the
'diskette change' signal is active and ABIOS is unable to reset the
'diskette change' signal to the inactive state, the Return Code
field is set to Media Not Present (hex 800D) and the field ID is not
written.

Diskette 6-11

OAH • Addltlonal Data Transfer (Subfunctlon OOH • Format)
(continued)

• The possible values of the Return Code field are equal to
hex 0000, 0001, 0002, 8000, 8003, 8006, 8000, BOOE 9009, 9102,
9104, 9108, 9110, 9120, 9140, 9180, and COOC.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word +H>H Reserved
DWord +12H Data pointer 1
Word +16H Reserved
Word +18H Reserved
DWord +lAH Data pointer 2
Word +lEH Reserved
Word +24H Subfunction number
Word +26H Cylinder number (0-based)
Byte +2AH Head number (0-based)

Service Specific 9utput

SIZE OFFSET DESCRIPTION

DWord +20H Time to wait before resuming request in microseconds

6-12 Diskette

OBH - Verify Sectors

• This function verifies the data on the diskette. The operation is
similar to the Read function (hex 08) except data is not
transferred.

• If the diskette was formatted with a different sector size other
than the default sector size of 512-bytes per sector, the Set
Device Parameters function (hex 04) should be issued to set the
proper sector size before issuing this function.

• If the 'diskette change' signal is inactive, ABIOS proceeds with
the operation.

• If the 'diskette change' signal is active and ABIOS is able to reset
the 'diskette change' signal to the inactive state, the Return Code
field is set to Media Changed (hex 8006). However, if the
'diskette change' signal is active and ABIOS is unable to reset the
'diskette change' signal to the inactive state, the Return Code
field is set to Media Not Present (hex 8000).

• If the Number of Sectors to Verify field is 0, no action is
performed and the Return Code field is set to Operation
Completed Successfully (hex 0000).

• The possible values of the Return Code field are equal to
hex0000,0001,0002,8000,8006,8000,9009,9102,9104,9108,
9110, 9120,9140,9180, andCOOC.

Service Specific Input

SIZE OFFSET

Word +16H
Word +lEH
Word +24H
Word +26H
Byte +2AH
Word +31H

DESCRIPTION

Reserved
Reserved
Number of sectors to verify
Cylinder number (0-based)
Head number (0-based)
Sector number

Service Specific Output

SIZE OFFSET

DWord +20H
Word +24H

DES CR I PTI ON

Time to wait before resuming request in microseconds
Number of sectors verified

Diskette 6-13

OCH - Read Media Parameters

• This function returns the media parameters used for the previous
operation.

• Because multiple media types may be supported for a single
drive type, the functions Read (hex 08), Write (hex 09),
Verify (hex OB), or Format (hex OA) should be issued prior to this
function to ensure the proper media parameter values are
returned.

• The possible values of the Return Code field are equal to
hex 0000 and 8000 only.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word +16H Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

Word +HlH Number of sectors per track
Word +12H Size of sector in bytes

00H - Reserved
01H - 256 bytes per sector
02H - 512 bytes per sector
03H to FFFFH - Reserved

Word +26H Number of cylinders
Byte +2AH Number of heads
Byte +31H Gap length for read/write/verify
Byte +32H Gap length for format
Byte +33H Data length

ODH - Set Media Type For Format

• This function sets the media information to be used for the format
operation based on the given information of number of tracks and
number of sectors per track.

• Media present is checked.

If the diskette has been removed or the drive door is left
open, ABIOS sets the Return Code field to Media Not Present
(hex 8000) and the media parameters are not set.
If the diskette has been changed and a diskette is present in
the drive, ABIOS sets the requested media parameters and
resets the 'diskette change' signal to the inactive state.

6-14 Diskette

• If the Number of Tracks to Format field and the Number of Sectors
per Track field are valid for the supported diskette drive types,
ABIOS sets the correct parameters as requested. Otherwise, a
Return Code value of Unsupported Media Type/Unestablished
Media (hex COOC) is returned.

• The Read Device Parameters function (hex 03) returns bit 6 of the
Device Control Flags field to indicate whether the Gap Length for
Format field is a required input for this function. If bit 6 is set to 1,
the Gap Length for Format parameter is determined based upon
the Number of Tracks to Format and the Number of Sectors per
Track fields passed to this function. If bit 6 is 0, the user must
provide the Gap Length for Format parameter for the media that
is being formatted.

• This function must be invoked once before issuing the Format
function (hex OB) to insure the proper diskette format information.

• ABIOS uses these parameters until they are changed by issuing
the Set Device Parameters function (hex 04), or until the drive
door is opened.

• The caller is responsible for restoring the sector size to its initial
value if it was changed by issuing the Set Device Parameters
function (hex 04).

• The possible values of the Return Code field are equal to
hex 0000, 8000, 800D, 800F, COOS, and COOC.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word +10H Number of sectors per track
Word +12H Size of sector in bytes

00H - Reserved
01H - 256 bytes per sector
02H - 512 bytes per sector
03H to FFFFH - Reserved

Word +16H Reserved
Word +26H Number of tracks to format
Byte +2CH Fill byte for format
Byte +32H Gap length for format

Service Specific Output

SIZE OFFSET DESCRIPTION

DWord +20H Time to wait before resuming request in microseconds

Diskette 6-15

OEH • Read Change Signal Status

• This function returns the state of the 'diskette change' signal. It
does not change the state of the 'diskette change' signal.

• The Change Signal Status field is valid only when the specified
drive supports the 'diskette change' signal. The 'diskette change'
signal availability is returned in the Read Device Parameters
function (hex 03).

• The active status indicates that the diskette has been changed or
the diskette drive door is open and the diskette type information
is invalid. Data is not transferred when the 'diskette change'
signal is active.

• The possible values of the Return Code field are equal to
hex 0000, 8000, and 800E.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word +16H Reserved

Service Specific Output

SIZE OFFSET

Byte +10H

6-16 Diskette

DESCRIPTION

Change signal status
00H - Change signal inactive
01H to 05H - Reserved
06H - Change signal active
07H to FFH - Reserved

OFH - Turn Off Motor

• This function turns the diskette drive motor off for the requested
drive.

• The motor may be turned off by the caller when the Return Code
field is set to Operation Completed Successfully (hex 0000).

• This function is required for the functions Reset (hex 05), Read
(hex 08), Write (hex 09), Additional Data Transfer (hex OA), Verify
(hex OB), Read Media Parameters (hex OC), Set Media Type For
Format (hex OD), and Read Change Signal (hex OE).

• The delay before turning off the motor is returned in Read Device
Parameters function (hex 03).

• The possible values of the Return Code field are equal to
hex 0000 and 8000.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word +16H Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

None

1 OH - Interrupt Status

• This function returns the diskette interrupt pending status. It does
not reset the interrupt condition.

• The possible values of the Return Code field are equal to
hex 0000 and 8000.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word +16H Reserved

Service Specific Output

SIZE OFFSET

Byte +10H

DESCRIPTION

Interrupt pending status
00H - No interrupt
01H - Interrupt pending

Diskette 6-17

Return Codes

Value

OOOOH
0001H
0002H
0005H
8000H
8003H
8006H
800DH
800EH
800FH
9009H
9102H
9104H
9108H
9110H
9120H
9140H
9180H
A120H
B020H
COOOH
C001H
C003H
C004H
C005H
COOCH

Description

Operation Completed Successfully
Stage on Interrupt
Stage on Time
Not My Interrupt, Stage on Interrupt
Device Busy, Operation Refused
Write Attempted on a Write-Protected Diskette
Media Changed
Media Not Present
Change Signal Not Available
Invalid Value in NVRAM
Controller Failure in Reset Operation
Address Mark Not Found
Requested Sector Not Found
OMA Overrun on Operation
Bad CRC on Diskette Read
Controller Failure
Seek Operation Failed
General Error
Controller Failure
Controller Failure
Invalid Logical ID (ABIOS Transfer Convention only)
Invalid Function
Invalid Unit Number
Invalid Request Block Length
Invalid Diskette Parameter
Unsupported Media Type/Unestablished Media

Figure 6-1. Diskette Return Codes

Programming Considerations

• Diskette ABIOS indicates in the Return Code field if an
unsuccessful operation needs to be retried. The recommended
retry count is returned in the Read Device Parameters function
(hex 03).

• The motor may be turned off by the caller when the Return Code
field equals Operation Completed Successfully (hex 0000) by
using the Turn Off Motor function (hex OF). This function is
required for the functions Reset (hex 05), Read (hex 08), Write
(hex 09), Additional Data Transfer (hex OA), Verify (hex OB), Read
Media Parameters (hex OC), Set Media Type for Format (hex OD),
or Read Change Signal Status (hex OE). The caller is responsible

6-18 Diskette

for turning off the motor when the request is completed by using
the Turn Motor Off function (hex OF).

• Diskette ABIOS supports crossing track boundaries, but only
switching from head 0 to head 1 on the same cylinder. It does not
support switching from head 1 of a cylinder to head O of the next
cylinder.

• When issuing Diskette ABIOS and Diskette BIOS requests, the
following rules should be followed:

Do not attempt an ABIOS call while there is an outstanding
BIOS call.

Do not attempt a BIOS call while there is an outstanding
ABIOS call.

The Reset/Initialize function (hex 05) must be the first ABIOS
request following a BIOS request.

The Reset Diskette System BIOS function (INT 13H, (AH) =
OOH) must be the first BIOS request following an ABIOS
request. Also, set bit 4 to O in BIOS Data Area hex 40:90 for
drive A and hex 40:91 for drive B before issuing any diskette
function.

The Reset/Initialize function (hex 05) must be issued after
ABIOS initialization has been completed.

• In the event of an error, ABIOS resets the diskette system.

• A request for the function Read (hex 08), Write (hex 09), Verify
(hex OB), Additional Data Transfer (hex OA), or Set Media Type for
Format (hex OD) resets the 'diskette change' signal to the inactive
state before proceeding with the requested function.

Diskette 6-19

Notes:

6-20 Diskette

Disk

Functions
The following are the disk functions. The Default Interrupt Handler
function and the Return Logical ID Parameters function are described
in "Request Block" on page 4-3.

OOH - Default Interrupt Handler

01 H - Return Logical ID Parameters

02H - Reserved

03H - Read Device Parameters

• This function returns disk drive information based on the unit
requested and the disk device control information.

• The possible value of the Return Code field is equal to hex 0000.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 28H Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

Word
Word

Word

10H
12H

14H

Sectors per Track associated with unit in request block
Size of sectors in bytes

00H to 01H - Reserved
02H - 512-byte sectors
03H to FFFFH - Reserved

Device control flags
Bits 15 to 13 - Reserved
Bits 12, 11 - Format support (values in binary)

00 - Format not supported
01 - Format track supported
10 - Format unit supported
11 - Format track and format unit supported

Bit 10 - ST506 Drive
0 - Not ST506
1 - ST506

Bit 9 - Concurrent unit requests per Logical ID
0 - Not concurrent
1 - Concurrent

Disk 6-21

Service Specific Output (continued)

SIZE OFFSET

DWord 18H

Byte lCH

Byte lDH

DWord 20H

DWord 24H
Word 28H
Word 2CH

DESCRIPTION

Bit 8 - Ejecting capability
0 - Not ejectable
1 - Ejectabl e

Bit 7 - Media organization
0 - Random
1 - Sequential

Bit 6 - Locking capability
0 - Not lockable
1 - Lockable

Bit 5 - Read capability
e - Not readable
1 - Readable

Bit 4 - Caching support
0 - No caching
1 - Caching

Bit 3 - Write frequency
0 - Write once
1 - Write many

Bit 2 - Change signal support
0 - No change signal supported
1 - Change signal supported

Bits 1, 0 - Reserved
Physical number of cylinders associated

with unit in Request Block
Physical number of heads associated

with unit in Request Block
Suggested number of software

retries for retryable operations
Physical number of relative block addresses

associated with unit in Request Block
Reserved
Reserved
Maximum number of blocks to transfer per one call

04H • Set Device Parameters (Reserved)

6-22 Disk

05H - Reset/lnltlallze

• This function resets the disk system to an initial state.

• All Return Code values listed in the Disk Return Codes table are
possible for this function.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 10H Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

DWord 28H Time to wait before resuming request in microseconds

06H - Enable (Reserved)

07H - Disable (Reserved)

08H - Read

• The Read function transfers data from the specified relative block
address to the specified memory location. The Number of Blocks
to Read field contains the amount of data to transfer.

• If the Number of Blocks to Read field is 0, no action is performed.

• If the Number of Blocks to Read field is greater than the
maximum number of blocks, then no action is performed, and the
Return Code field is set to Invalid Parameter (hex C005).

• The Number of Blocks Read field contains the amount of data
transferred.

• When a parameter error is returned, the Number of Blocks Read
field is not updated. Also, when a hex 8000 or 800F error is
returned, the Number of Blocks Read field is not updated.

• All Return Code values listed in the Disk Return Codes table are
possible for this function.

Disk 6-23

08H - Read (continued)

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 10H Reserved
DWord 12H Data pointer 1
Word 16H Reserved
Word 18H Reserved
DWord lAH Data pointer 2
Word lEH Reserved
DWord 20H Relative block address
DWord 24H Reserved
Word 2CH Number of blocks to read
Byte 2EH

Bits 7 to 1 - Reserved (set to 0)
Bit 0 - Caching

0 - Caching is OK for this request
1 - Don't cache on this request

Service Specific Output

SIZE OFFSET

DWord 28H
Word 2CH
Word 2FH

6-24 Disk

DESCRIPTION

Time to wait before resuming request in microseconds
Number of blocks read
Indicates if a soft error occurred
= 0 - Soft error did not occur
~ 0 - Soft error occurred

09H -Write

• The Write function transfers data from the specified memory
location to the specified relative block address. The Number of
Blocks to Write field contains the amount of data to transfer.

• If the Number of Blocks to Write field is 0, no action is performed.

• If the Number of Blocks to Write field is greater than the
maximum number of blocks, no action is performed, and the
Return Code field is set to Invalid Parameter (hex C005).

• The Number of Blocks Written field contains the amount of data
transferred.

• When a parameter error is returned, the Number of Blocks
Written field is not updated. Also, when a hex 8000 or 800F error
is returned, the Number of Blocks Written field is not updated.

• All Return Code values listed in the Disk Return Codes table are
possible for this function.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 10H Reserved
DWord 12H Data pointer 1
Word 16H Reserved
Word 18H Reserved
DWord lAH Data pointer 2
Word lEH Reserved
DWord 20H Relative block address
DWord 24H Reserved
Word 2CH Number of blocks to write
Byte 2EH

Bits 7 to 1 - Reserved (set to 0)
Bit 0 - Caching

0 - Caching is OK for this request
1 - Don't cache on this request

Service Specific Output

SIZE OFFSET DESCRIPTION

DWord 28H
Word 2CH
Word 2FH

Time to wait before resuming request in microseconds
Number of blocks written
Indicates if a soft error occurred
= 0 - Soft error did not occur
~ 0 - Soft error occurred

Disk 6·25

OAH - Write Verify

• The Write Verify function operates similar to the Write function
(hex 09) with the addition of a Verify function (hex OB).

• If the Number of Blocks to Write/Verify field is 0, no action is
performed.

• If the Number of Blocks to Write/Verify field is greater than the
maximum number of blocks, no action is performed, and the
Return Code field is set to Invalid Parameter (hex COOS).

• The Number of Blocks Written field contains the amount of data
transferred.

• When a parameter error is returned, the Number of Blocks
Written field is not updated. Also, when a hex 8000 or 800F error
is returned, the Number of Blocks Written field is not updated.

• All Return Code values listed in the Disk Return Codes table are
possible for this function.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 10H Reserved
DWord 12H Data pointer 1
Word 16H Reserved
Word 18H Reserved
DWord lAH Data pointer 2
Word lEH Reserved
DWord 20H Relative block address
DWord 24H Reserved
Word 2CH Number of blocks to write/verify
Byte 2EH

Bits 7 to 1 - Reserved (set to 0)
Bit 0 - Caching

0 - Caching is OK for this request
1 - Don't cache on this request

Word 31H Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

DWord 28H
Word 2CH
Word 2FH

6·26 Disk

Time to wait before resuming request in microseconds
Number of blocks written
Indicates if a soft error occurred
= 0 - Soft error did not occur
f 0 - Soft error occurred

OBH -Verify

• The Verify function reads from the specified relative block
address without transferring any data to system memory. This
function verifies the readability of the data.

• If the Number of Blocks to Verify field is 0, no action is performed.

• If the Number of Blocks to Verify field is greater than the
maximum number of blocks, no action is performed, and the
Return Code field is set to Invalid Parameter (hex C005).

• All Return Code values listed in the Disk Return Codes table are
possible for this function.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 16H Reserved
Word 18H Reserved
Word lEH Reserved
DWord 20H Relative block address
DWord 24H Reserved
Word 2CH Number of blocks to verify

Service Specific Output

SIZE OFFSET DESCRIPTION

DWord 28H
Word 2FH

Time to wait before resuming request in microseconds
Indicates if a soft error occurred
= e - Soft error did not occur
~ e - Soft error occurred

Disk 6-27

OCH - Interrupt Status

• This function returns the Disk Interrupt Pending status. It does
not reset the interrupt condition.

• The Interrupt Status field is associated with the Logical ID as
opposed to the Unit field. This field represents the current
interrupt pending state of the disk controller. The Unit field is
tested for validity.

• If there is a parameter error, the Interrupt Status field is
undefined.

• The possible value of the Return Code field is equal to hex 0000.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 16H Reserved

Service Specific Output

SIZE OFFSET DESCRIPTlON

Byte +10H

6-28 Disk

Interrupt status
00H - Interrupt not pending
01H - Interrupt pending
02H to FFH - Reserved

Return Codes

Value

OOOOH
0001H
0002H
0005H
8000H
800FH
9001H
9002H
9004H
9005H
9007H
900AH
900BH
900DH
900EH
9010H
9020H
9021H
9040H
9080H
90AAH
90BBH
90CCH
90FFH
9101H
9105H
9107H
9120H
9121H
9140H
9180H
91AAH
91BBH
91CCH
91FFH
AO OOH
A001H
A002H
A004H
A005H
A007H
AOOAH
AOOBH
AOODH

Description

Operation Completed Successfully
Stage on Interrupt
Stage on Time
Not My Interrupt, Stage on Interrupt
Device Busy, Request Refused
OMA Arbitration Level Out of Range
Bad Command
Address Mark Not Found
Record Not Found
Reset Failed
Controller Parameter Activity Failed
Defective Sector
Bad Track
Invalid Sector on Format
CAM Detected During Read or Verify
Uncorrectable ECC or CRC Error
Bad Controller
Equipment Check
Bad Seek
Device Did Not Respond
Drive Not Ready
Undefined Error
Write Fault
Incomplete Sense Operation
Bad Command
Reset Failed
Controller Parameter Activity Failed
Bad Controller
Equipment Check
Bad Seek
Device Did Not Respond
Drive Not Ready
Undefined Error
Write Fault
Incomplete Sense Operation
Time-out Occurred - No Other Error
Bad Command
Address Mark Not Found
Record Not Found
Reset Failed
Parameter Activity Failed
Defective Sector
Bad Track
Invalid Sector on Format

Figure 6-2 (Part 1 of 2). Disk Return Codes

Disk 6-29

Value

AOOEH
A010H
A011H
A020H
A021H
A040H
A080H
AOAAH
AOBBH
AOC CH
AOFFH
A100H
A105H
A107H
A120H
A121H
A140H
A180H
A1AAH
A1BBH
A1CCH
A1FFH
B001H
B020H
B021H
B080H
BOBBH
BOFFH
B101H
B120H
B121H
B180H
B1BBH
B1FFH
COO OH
C001H
C003H
C004H
C005H

Description

CAM Detected During Read or Verify
Uncorrectable ECC or CRC Error
ECC Corrected Data Error
Bad Controller
Equipment Check
Bad Seek
Device Did Not Respond
Drive Not Ready
Undefined Error
Write Fault
Incomplete Sense Operation
Time-out Occurred - No Other Error
Reset Failed
Controller Parameter Activity Failed
Bad Controller
Equipment Check
Bad Seek
Device Did Not Respond
Drive Not Ready
Undefined Error
Write Fault
Incomplete Sense Operation
Bad Command
Bad Controller
Equipment Check
Device Did Not Respond
Undefined Error
Sense Failed
Bad Command
Bad Controller
Equipment Check
Device Did Not Respond
Undefined Error
Sense Failed
Invalid Logical ID (ABIOS Transfer Convention only)
Invalid Function
Invalid Unit Number
Invalid Request Block Length
Invalid Parameter

Figure 6-2 {Part 2 of 2). Disk Return Codes

6-30 Disk

Programming Considerations

• The Disk ABIOS interface requires the use of the OMA ABIOS
interface, therefore, if the disk ABIOS is initialized and used, the
OMA ABIOS must be initialized.

• Read Device Parameters returns the number of software retries
to attempt for any one operation when an error occurs that is
retry able.

• In the event of an error, ABIOS resets the disk system when
required.

• For the functions Read (hex 08), Write (hex 09), and Write/Verify
(hex OA), the output parameter at hex 2C represents the number
of blocks transferred as determined from the hardware. This
value is supplied in the event that the request ended in error
before the data transfer was complete. If no error is reported,
this value equals the number of blocks that were requested for
transfer. It is only valid when the request is completed.

• When error recovery procedures are invoked by the adapter and
are successful, disk ABIOS attempts to determine the nature of
the recovery performed. It sets the Soft Error Occurred field in
the Request Block with the recovered error code.

• Relative block addresses begin ordering with the first block
assigned the value 0. For hardware devices that do not support
relative block addresses, the equivalent is Cylinder 0, Head 0,
and Sector 1. In the formulas below, sectors per track, sector ID,
heads, and cylinders refer to physical (1-based) entities. Cylinder
and head refer to ID values as they are actually sent to the
controller (0 based). Disk ABIOS returns physical values for
number of sectors per track, number of heads, and number of
cylinders on the Read Device Parameters function (hex 03), which
should be used for relative block address calculations. ABIOS
uses the following to break down the relative block address
(RBA):

Disk 6-31

Sector ID = (RBA MOD Sectors Per Track) + 1

Head = (RBA I Sectors Per Track) MOD Heads

Cylinder = (RBA I Sectors Per Track) I Heads

The RBA may be calculated by the following:

RBA = (Sectors Per Track* Heads* Cylinder)+
(Sectors Per Track * Head) + (Sector ID - 1)

The number of RBAs is:

RBAs = Cylinders* Heads* Sectors Per Track

This is the value returned by Read Device Parameters.

The maximum allowable RBA is:

Maximum RBA = (Cylinders * Heads* Sectors Per Track) - 1.

• When issuing Disk ABIOS and Disk BIOS requests, the following
rules must be followed:

Do not attempt an ABIOS call while there is an outstanding
BIOS call.

Do not attempt a BIOS call while there is an outstanding
ABIOS call.

The Reset/Initialize function (hex 05) must be issued after
ABIOS initialization has been completed.

6-32 Disk

Video

Functions
The following are the video functions. The Default Interrupt Handler
function and the Return Logical ID Parameters function are described
in "Request Block" on page 4-3.

OOH - Default Interrupt Handler

01 H - Return Logical ID Parameters

02H - Reserved

03H - Read Device Parameters

• This function returns parameters that indicate the current video
state.

• The Character Block Specifier field returns the active character
generator blocks. The Character Block Select A field specifies
the block used to generate alpha characters when bit 3 of the
Attribute byte is a 1. The Character Block Select B field specifies
the block used to generate alpha characters when bit 3 of the
Attribute byte is a 0. When the Character Block Select A field is
equal to the Character Block Select B field, the Character Select
function is disabled and bit 3 of the Attribute byte determines the
foreground intensity state (1 = On, 0 = Off).

• The Save/Restore Header Size, Hardware State Size, Device
Block State Size, and DAC State Size fields are used in
calculating the size of the Save buffer for the Save Environment
function (hex OC). Refer to the Save ~nvironment
function (hex OC), on page 6-38 for more information.

• The possible value of the Return Code field is equal to hex 0000.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word +28H Reserved

Video 6-33

03H - Read Device Parameters (continued)

Service Specific Output

SIZE OFFSET DESCRIPTION

Byte +lCH Number of scan lines on the screen
00H - 200 scan lines
01H - 350 scan lines
02H - 400 scan lines
03H - 480 scan lines
04H to 0FFH - Reserved

Word +lEH Video mode setting
(see Figure 6-4 on page 6-48)

Word +20H Type of monitor attached
Bits 15 to 1 - Reserved

Word +22H
Word +24H

Word +2AH

Word +2EH
Word +30H
Word +32H
Word +34H

Bit 0 - Color vs monochrome
0 - Color monitor
1 - Monochrome monitor

Character height (bytes/character)
Character block specifier
Bits 15 to 12 - Reserved
Bits 11 to 8 - Character block select A
Bits 7 to 4 - Reserved
Bits 3 to 0 - Character block select B
Size of data buffer required

for the Return ROM Fonts function.
Size of the save/restore buffer header in bytes
Size of the save/restore hardware state in bytes
Size of the save/restore device block state in bytes
Size of the save/restore DAC state in bytes

04H - Set Device Parameters (Reserved)

6-34 Video

05H - Reset/lnltlallze

• This function initializes the video controller to the requested
mode (see Figure 6-4 on page 6-48).

• The Character Blocks to Load field tells which character blocks
will be loaded with the default ROM character font for the
requested mode and scan lines. This parameter is only required
when setting an alpha mode (hex 0, 1, 2, 3, or 7).

• Scan lines are only specified when setting an alpha mode (hex 0,
1, 2, 3, or 7).

• The Character Block Specifier field is only specified when setting
an alpha mode (hex 0, 1, 2, 3, or 7).

• For the Character Block Specifier field, the Character Block
Select A field specifies the block used to generate alpha
characters when bit 3 of the Attribute byte is a 1. The Character
Block Select B field specifies the block used to generate alpha
characters when bit 3 of the Attribute byte is 0. When the
Character Block Select A field is equal to the Character Block
Select B field, the Character Select function is disabled and bit 3
of the Attribute byte determines the foreground intensity state
(1 = On, 0 = Off).

• The Summing bit of the Device Control Flags field is only required
when a color display is attached. Summing is done automatically
for monochrome displays.

• When using a monochrome display in a color mode, the colors
are displayed as shades of gray. There are 16 of 64 gray shades
available in all modes except mode hex 13, where 64 gray shades
are available.

• Modes hex 0, 2, and 4 are identical to modes hex 1, 3, and 5
respectively.

• The possible value of the Return Code field is equal to hex 0000.

Video 6-35

05H - Reset/lnltlallze (continued)

Service $peclflc Input

SIZE OFFSET DESCRIPTION

Word +lAH Device control flags
Bits 15 to 3 - Reserved
Bit 2 - Summing

0 - Summing disabled
1 - Summing enabled

Bit 1 ~ Initialize digital-to-analog
converter (DAC) to default

0 - Do not initialize DAC to default
1 - Initialize DAC to default

Bit 0 - Regenerative buffer flag
0 - Don't clear buffer
1 - Clear buffer

Byte +lCH Requested number of scan lines
00H - 200 scan lines (modes 0, 1, 2, 3)
01H - 350 scan lines (modes 0, l, 2, 3, 7)
02H - 400 scan lines (modes 0, 1, 2, 3, 7)
03H to FFH - Reserved

Word +lEH Video mode to set
(see Figure 6-4 on page 6-48)

Word +24H Character block specifier
Bits 15 to 12 - Reserved
Bits 11 to 8 - Character block select A
Bits 7 to 4 - Reserved
Bits 3 to 0 - Character block select B

Word +26H Character blocks to load with default ROM font
Bit 'n' - Block 'n' flag

0 - 'Don't update font
1 - Update font

Word +28H Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

None

O&H - Enable (Reserved)

07H - Disable (Reserved)

OSH - Read (Reserved)

09H - Write (Reserved)

OAH - Addltlonal Data Transfer Function (Reserved)

6-36 Video

OBH - Return ROM Fonts Information

• This function returns the following information about each of the
ROM fonts: the pointer to the ROM font, the size of character
(row and column), whether it is a total or partial font, and if a
partial font, which font it relates to.

• There are 12 bytes of information per ROM font. They are stored
sequentially in the specified data area.

• The following shows the format of a ROM font entry:

Word - Reserved
DWord - Pointer to ROM font
Word - Reserved
Byte - Size of character (number of columns)
Byte - Size of character (number of rows)
Byte - Total/partial font indicator

00H - Total font
01H - Partial font
02H to FFH - Reserved

Byte - Related font
If this is a partial font, this byte contains a
number to indicate which font this font goes with.
The font number is based on the place a particular
font occupies in the ROM font entries.

• Before using this function, the Read Device Parameters function
(hex 03) should be issued to find the size of the buffer required to
save the ROM fonts information.

• The possible value of the Return Code field is equal to hex 0000.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word +10H
DWord +12H
Word +16H

Reserved
Pointer to buffer to store ROM fonts information
Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

None

Video 6-37

OCH • Save Environment

• This function stores the caller's requested video states in the
specified buffer.

• The video environment consists of the following states:

Hardware state
Device block state
Digital-to-Analog Converter state.

• To calculate the size of the save buffer that is required, the Read
Device Parameters function (hex 03) must be issued. It gives the
individual sizes of the possible states to be saved and the size of
the save/restore header. Then:

Save Buffer Size = (A+ B + C + D)

where:

A = Size of the Save/Restore header
B = Environment (bit 0) *(size of hardware state)
C = Environment (bit 1) * (size of device block state)
D = Environment (bit 2) * (size of digital-to-analog converter state).

• The possible value of the Return Code field is equal to hex 0000.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word +10H
DWord +12H
Word +16H
Word +2CH

Reserved
Pointer to environment save area
Reserved
Video environment states to be saved
Bits 15 to 3 - Reserved (set to 0)
Bit 2 - DAC state (1 = save state)
Bit 1 - Device block state (1 = save state)
Bit 0 - Hardware state (1 = save state)

Service Specific Output

SIZE OFFSET DESCRIPTION

None

6-38 Video

ODH - Restore Environment

• This function restores the video environment from the specified
buffer location. Refer to the Save Environment function (hex OC)
for more information on the contents and structure of the video
environment.

• Unexpected results may occur if you restore a particular state not
previously saved.

• The possible value of the Return Code field is equal to hex 0000.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word +10H
DWord +12H
Word +16H
Word +lAH

Word +2CH

Reserved
Pointer to environment restore area
Reserved
Device control flag
Bits 15 to 1 - Reserved
Bit 0 - Regenerative buffer flag

0 - Don't clear buffer
1 - Clear buffer

Video environment states to be restored
Bits 15 to 3 - Reserved (set to 0)
Bit 2 - DAC state (1 = restore state)
Bit 1 - Device block state (1 = restore state)
Bit 0 - Hardware state (1 = restore state)

Service Specific Output

SIZE OFFSET DESCRIPTION

None

Video 8-39

OEH - Select Character Generator Block

• This function selects up to two character generator blocks.

• For the Character Block Specifier field, the Character Block
Select A field specifies the block used to generate alpha
characters when bit 3 of the Attribute byte is a 1. The Character
Block Select B field specifies the block used to generate alpha
characters when bit 3 of the Attribute byte is a 0. When the
Character Block Select A field is equal to the Character Block
Select B field, the character select function is disabled and bit 3
of the Attribute byte determines the foreground intensity state
(1 = On, 0 = Off).

• The possible value of the Return Code field is equal to hex 0000.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word +16H Reserved
Word +24H Character block specifier

Bits 15 to 12 - Reserved
Bits 11 to 8 - Character block select A
Bits 7 to 4 - Reserved
Bits 3 to 0 - Character block select B

Service Specific Output

SIZE OFFSET DESCRIPTION

None

OFH - Alpha Load

• This function loads the requested character generator or part of
one to the specified character blocks.

• This function does not update the hardware registers. Refer to
the Enhanced Alpha Load function (hex 10) if hardware updating
is required.

• When loading any of the ROM character generators (the
Character Generator Type field is equal to 1, 2, or 3), the full set
of characters (hex 100) is loaded. Thus, the only parameters
required to invoke this function are the Character Generator Type
field and the Character Block Specifier field.

6-40 Video

• When loading a user font (the Character Generator Type field is
equal to 0) all parameters are required.

• When loading a user font, if the Count of Characters field is equal
to 0, no character is loaded and the Return Code field is set to
Operation Completed Successfully (hex 0000).

• When loading a user font, the sum of the Count of Characters field
and the Character Offset field should not exceed the ma:ximum
number of characters in a set (hex 100). If it does, the Return
Code field is set to Invalid Video Parameter (hex COOS).

• The possible values of the Return Code field are equal to
hex 0000 and C005.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word +10H
DWord +12H
Word +16H
Word +18H

Byte +lDH

Reserved
Pointer to user font
Reserved
Count of characters

1 to 1eeH - Valid count of characters
Character generator type

eeH - User's alphanumerics font
01H - 8 x 8 alphanumerics ROM font
02H - 8 x 14 alphanumerics ROM font
03H - 8 x 16 alphanumerics ROM font
04H to FFH - Reserved

Word +22H Character height (bytes/character)
Word +24H Character block to load

eeH to 07H - ·valid character blocks to load values
08H to FFFFH - Reserved

Word +28H Character offset into the table

Service Specific Output

SIZE OFFSET DESCRIPTION

None

1 OH - Enhanced Alpha Load

• This fl!nction loads the requested character generator or part of
one to the specified character block and updates the hardware
registers.

• When loading any of the ROM character generators (the
Character Generator Type field is equal to 1, 2, or 3), the full set
of characters (hex 100) are loaded. Thus, the only parameters

Video 6-41

required to invoke this function are the Character Generator Type
field and the Character Blocks to Load field.

• When loading a user font (Character Generator Type field is
equal to 0) all parameters are required.

• When loading a user font, if Count of Characters field is equal to
0, no character is loaded and the Return Code field is set to
Operation Completed Successfully (hex 0000).

• When loading a user font, the sum of the Count of Characters field
and the Character Offset field should not exceed the maximum
number of characters in a set (hex 100). If it does the Return
Code field is set to Invalid Video Parameter (hex COOS).

• The possible values of the Return Code field are equal to
hex 0000 and COOS.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word +leH
DWord +12H
Word +16H
Word +18H

Byte +lDH

Word +22H
Word +24H

Word +28H

Reserved
Pointer to user font
Reserved
Count of characters

1 to 100H - Valid count of characters
Character generator type

00H - User's alphanumerics font
01H - 8 x 8 alphanumerics ROM font
02H - 8 x 14 alphanumerics ROM font
03H - 8 x 16 alphanumerics ROM font
04H to FFH - Reserved

Character height (bytes/character)
Character block to load

00H to 07H - Valid character blocks to load values
08H to FFFFH - Reserved

Character offset into the table

Service Specific Output

SIZE OFFSET DESCRIPTION

None

6-42 Video

11 H - Read Palette Register

• This function reads a palette register.

• The possible value of the Return Code field is equal to hex 0000.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word +16H Reserved
Word +32H Palette register to read

00H to 0FH - Valid palette register to read values
10H to FFFFH - Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

Word +34H Palette value read.

12H - Write Palette Register

• This function writes a value to a palette register.

• Executing this function when the mode is set to mode hex 13 is
not allowed. It is a hardware requirement to have these registers
remain programmed as set by the Reset/Initialize function
(hex 05). Changing these registers can cause unpredictable
results.

• The possible value of the Return Code field is equal to hex 0000.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word +16H Reserved
Word +32H Palette register to write

00H to 0FH - Valid palette register to write values
10H to FFFFH - Reserved

Word +34H Palette value to load
00H to 3FH - Valid
40H to FFFFH - Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

None

Video 6-43

13H - Read Color Register

• This function reads the red, green, and blue values of a color
register from the video digital-to-analog converter.

• The possible value of the Return Code field js equal to hex 0000.

Service Specific Input

SIZE OFFSET DESCR~PTION

Word +16H Reserved
Word +2AH Color register to read

· 00H to FFH - Valid color register to read values
100H to FFFFH - Reserved

Service Spe,clflc Outp'-t

SIZE OFFSET DESCRIPTION

Word +2CH Red value read
Word +2EH Green value read
Word +30H Blue value read

6-44 Video

14H - Write Color Register

• This function loads a digital-to-analog converter color register
with the specified red, green and blue values.

• For the Device Control Flags field, the Summing bit is
disregarded when a monochrome display is attached. Summing
always occurs with a monochrome display when in color modes.

• The possible value of the Return Code field is equal to hex 0000.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word +16H Reserved
Word +lAH Device control flags

Bits 15 to 3 - Reserved
Bit 2 - Summing

0 - Summing disabled
1 - Summing enabled

Bits 1, 0 - Reserved
Word +2AH Color register to write

eaH to FFH - Valid color registers to write values
100H to FFFFH - Reserved

Word +2CH Red value to write
G0H to 3FH - Valid red value to write
40H to FFFFH - Reserved

Word +2EH Green value to write
G0H to 3FH - Valid green value to write
40H - FFFFH - Reserved

Word +30H Blue value to write
G0H to 3FH - Valid blue value to write
40H - FFFFH - Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

None

Video 6-45

15H - Read Block of Color Registers

• This function reads a block of digital-to-analog color registers into
the specified save area beginning at the requested color register.

• The format of the data returned is (red value, green value, blue
value}, (red value, green value, blue value}, , (red value, green
value, blue value}.

• The range for the red, green, or blue values is hex 00 to 3F.

• If the Count of Color Registers to Read field equals 0, no action is
performed and the Return Code field is set to Operation
Completed Successfully (hex 0000).

• If the value of the First Color Register to Read field plus the value
of the Count of Color Registers to Read field is greater than the
maximum number of color registers, no action is performed and
the Return Code field is set to Invalid Video Parameter
(hex COOS}.

• The possible values of the Return Code field are equal to
hex 0000 and COOS.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word +10H
DWord +12H
Word +16H
Word +18H
Word +2AH

Reserved
Pointer to read save area
Reserved
Count of color registers to read
First color register to read

00H to FFH - Valid first color register to read values
100H to FFFFH - Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

None

6-46 Video

1 &H • Write Block of Color Registers

• This function loads a block of digital-to-analog converter color
registers with the requested values beginning with the requested
color register.

• The format of the data to be written is (red value, green value,
blue value), (red value, green value, blue value), , (red value,
green value, blue value).

• If the value of the Count of Color Registers to Write field equals 0,
no action is performed and the Return Code field is set to
Operation Completed Successfully (hex 0000).

• If the value of the First Color Register to Write field plus the value
of the Count of Color Registers field is greater than the maximum
number of color registers, no action is performed and the Return
Code field is set to Invalid Video Parameter (hex C005).

• For the Device Control Flags field, the Summing bit is
disregarded when a monochrome display is attached. Summing
will always occur with a monochrome display when in color
modes.

• The possible values of the Return Code field are equal to
hex 0000 and C005.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word +HlH
DWord +12H
Word +16H
Word +18H
Word +lAH

Word +2AH

Reserved
Pointer to write save area
Reserved
Number of color registers to write
Device control flags
Bits 15 to 3 - Reserved
Bit 2 - Summing

a - Summing disable
1 - Summing enabled

Bits 1. 0 - Reserved
First color register to write

aaH to FFH - Valid first color register to write values
1eeH to FFFFH - Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

None

Video 6-47

Return Codes

Value Description

Operation Completed Successfully OOOOH
COOOH
C001H
C003H
C004H
C005H

Invalid Logical ID (ABIOS Transfer Convention only)
Invalid Function
Invalid Unit Number
Invalid Request Block Length
Invalid Video Parameter

Figure 6-3. Video Return Codes

Video Modes

The following figure shows the supported Video Modes.

Mode Max Alpha Buffer Box Max
(Hex) Type Colors Format Start Size Pages

00 A/N 16 40x25 68000 8x8 8
00 A/N 16 40x25 68000 8x14 8
00 A/N 16 40x25 68000 9x16 8
01 A/N 16 40x25 68000 8x8 8
01 A/N 16 40x25 68000 8x14 8
01 A/N 16 40x25 68000 9x16 8
02 A/N 16 80x25 68000 8x8 8
02 A/N 16 80x25 68000 8x14 8
02 A/N 16 80x25 68000 9x16 8
03 A/N 16 80x25 68000 8x8 8
03 A/N 16 80x25 68000 8x14 8
03 A/N 16 80x25 68000 9x16 8
04 APA 4 40x25 68000 8x8 1
05 APA 4 40x25 68000 8x8 1
06 APA 2 80x25 68000 8x8 1
07 A/N Mono 80x25 60000 9x14 8
07 A/N Mono 80x25 60000 9x16 8
08 - oc Reserved
OD APA 16 40x25 AOOOO 8x8 8
OE APA 16 80x25 AOOOO 8x8 4
OF APA Mono 80x25 AOOOO 8x14 2
10 APA 16 80x25 AOOOO 8x14 2
11 APA 2 80x30 AOOOO 8x16 1
12 APA 16 80x30 AOOOO 8x16 1
13 APA 256 40x25 AOOOO 8x8 1

Figure 6-4. Video Modes Table

6-48 Video

Display Pel
Dimensions

320x200
320x350
360x400
320x200
320x350
360x400
640x200
640x350
720x400
640x200
640x350
720x400
320x200
320x200
640x200
720x350
720x400

320x350
640x200
640x350
640x350
640x480
640x480
320x200

Keyboard

Functions
The following are the keyboard functions. The Default Interrupt
Handler function and tHe. Return Logical ID Parameters function are
described in "Request Block" on page 4-3.

OOH - Default Interrupt Handler

01 H - Return Loglcal ID Parameters

02H - Reserved

03H - Read Device Parameters

• This function returns the keyboard identification values.

• The possible values of the Return Code field are equal to
hex0000,0001,0002,0005,8000,8003,9000,9002,9003,9004,
9100,9102,9103,9104, 8001, and8101.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 16H Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

DWord 10H
Byte 14H

Time to wait before resuming request in microseconds
Keyboard ID byte 1

Byte 15H Keyboard ID byte 2

04H - Set Device Parameters (Reserved)

Keyboard 6-49

05H - Reset/lnltlallze Keyboard

• This function resets the keyboard and turns off the Num Lock,
Caps Lock, and Scroll Lock indicator lights.

• The possible values of the Return Code field are equal to
hex0000,0001,0002,0005,8000,8003,9000,9001,9002,9100,
9101, 9102, 8001, and 8101.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 16H Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

DWord 10H Time to wait before resuming request in microseconds

06H - Enable

• This function enables the keyboard to allow keyboard data to be
passed to the system.

• The possible values of the Return Code field are equal to
hex 0000, 0002, 8000, 8003, 9000, and 9100.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 16H Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

DWord 10H Time to wait before resuming request in microseconds

6-50 Keyboard

07H - Dlsable

• This function disables the keyboard by inhibiting keyboard data to
the system.

• The possible values of the Return Code field are equal to
hex 0000, 0002, 8000, 8003, 9000, and 9100.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 16H Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

DWord 10H Time to wait before resuming request in microseconds

OSH - Continuous Read

• This function returns the keyboard scan code. It must be called
soon after ABIOS initialization to allow for the processing of
Keystroke interrupts. Once this function has been started, it is a
continuous multistaged request. At interrupt time, if a scan code
is available, the Keyboard Interrupt routine returns with the
Return Code field set to Attention, Stage on Interrupt (hex 0009).
This Return Code value indicates that there is a valid scan code
in the Keyboard Row Scan Code field.

• The possible values of the Return Code field are equal to
hex 0001, 0005, 0009, and 8000.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 16H Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

Byte 14H Keyboard raw scan code

09H - Write (Reserved}

OAH - Addltlonal Data Transfer (Reserved)

Keyboard 6-51

OBH - Read Keyboard Indicators

• This function returns the current state of the keyboard Num Lock,
Caps Lock and Scroll Lock indicator lights.

• The possible values of the Return Code field are equal to
hex 0000 and 8000.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 16H Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

Byte 14H Keyboard indicator data
Bits 7 to 3 - Reserved
Bit 2 - Caps Lock

e - Off
1 - On

Bit 1 - Num Lock
0 - Off
1 - On

Bit 0 - Scroll Lock
0 - Off
1 - On

6-52 Keyboard

OCH - Write Keyboard Indicators

• This function programs the state of the keyboard Num Lock, Caps
Lock, and Scroll Lock indicator lights.

• The possible values of the Return Code field are equal to
hex0000,0001,0002,0005,8000,8003,9000,9002,9100,9102,
8001, and 8101.

Service Specific Input

SIZE OFFSET DESCRIPTION

Byte 14H Keyboard indicator data

Word 16H

Bits 7 to 3 - Reserved (must be set to 0)
Bit 2 - Caps Lock

0 - Off
1 - On

Bit 1 - Num Lock
0 - Off
1 - On

Bit 0 - Scroll Lock
0 - Off
1 - On

Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

DWord 10H Time to wait before resuming request in microseconds

Keyboard 6-53

ODH - Set Typematlc Rate and Delay

• This function changes the current setting of the typematic rate
and delay for the keyboard.

• The possible values of the Return Code field are equal to
hexOOOO, 0001,0002,0005, 8000,8003, 9000,9002, 9100, 9102,
8001, and 8101.

Service Specific Input

SIZE OFFSET DESCRIPTION

Byte 14H Rate value
Bits 7 to 5 - Reserved (must be set to 0)

Byte 15H

Word 16H

Bits 4 to 0 - Rate value in characters per second
(values in binary)

Delay value

00000 - 30.0
00001 - 26.7
00010 - 24.0
00011 - 21.8
00100 - 20.0
00101 - 18.5
00110 - 17 .1
00111 - 16.0
01000 - 15.0
01001 - 13.3
01010 - 12.0
01011 - 10.9
01100 - 10.0
01101 - 9. 2
01110 - 8.6
01111 - 8.0

10000 - 7.5
10001 - 6.7
10010 - 6.0
10011 - 5.5
10100 - 5.0
10101 - 4.6
10110 - 4.3
10111 - 4.0
11000 - 3. 7
11001 - 3.3
11010 - 3.0
11011 - 2. 7
11100 - 2.5
11101 - 2.3
11110 - 2.1
11111 - 2.0

Bits 7 to 2 - Reserved (must be set to 0)
Bits 1, 0 - Delay value in milliseconds

Reserved

(values in binary)
00 - 250
01 - 500
10 - 750
11 - 1000

Service Specific Output

SIZE OFFSET DESCRIPTION

DWord 10H Time to wait before resuming request in microseconds

6-54 Keyboard

OEH - Read Keyboard Mode

• This function returns the current keyboard scan code mode.

• The possible values of the Return Code field are equal to
hex0000,0001,0002,0005, 8000, 8003,9000,9002,9003,9004,
9006,9100,9102,9103,9104,9106, B001,and8101.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 16H Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

DWord 10H Time to wait before resuming request in microseconds
Byte 14H Current keyboard scan code mode

00H - Reserved
01H - Scan code set 1
02H - Scan code set 2
03H - Scan code set 3
04H to FFH - Reserved

OFH - Set Keyboard Mode

• This function changes the current keyboard scan code mode.

• The possible values of the Return Code field are equal to
hex0000,0001,0002,0005,8000,8003,9000,9002,9100,9102,
8001, and 8101.

Service Specific Input

SIZE OFFSET DESCRIPTION

Byte 14H Keyboard scan code mode to set
00H - Reserved
01H - Scan code set 1
02H - Scan code set 2
03H - Scan code set 3
04H to FFH - Reserved

Word 16H Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

DWord 10H Time to wait before resuming request in microseconds

Keyboard 6-55

1 OH - Write Keyboard Controller Data String

• This function sends the requested data string to the keyboard
controller.

• If the Data String Count field is 0, no action is performed and the
Return Code field is set to Operation Completed Successfully
(hex 0000).

• The possible values of the Return Code field are equal to
hex0000,0001,0002,0005,8000,8003,9000, 9002,9100,9102,
8001, and 8101.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 14H Reserved
DWord 16H Pointer to data area
Byte lCH Data string count
Word 28H Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

DWord 10H Time to wait before resuming request in microseconds

6-56 Keyboard

11 H • Write Keyboard Data String

• This function sends the requested data string to the keyboard.

• If the Data String Count field is 0, no action is performed and the
Return Code field is set to Operation Completed Successfully
(hex 0000).

• The possible values of the Return Code field are equal to
hex0000,0001,0002,0005,8000,8003,9000,9002,9100,9102,
8001, and 8101.

Service Specific Input

SIZE OFFSET

Word 14H
DWord 16H
Byte lCH
Word 28H

DESCRIPTION

Reserved
Logical pointer to data area
Data string count
Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

DWord 10H Time to wait before resuming request in microseconds

Keyboard 6-57

Return Codes

Value

OOOOH
0001H
0002H
OOOSH
0009H
8000H
8003H
9000H
9001H
9002H
9003H
9004H
9006H
9100H
9101H
9102H
9103H
9104H
B001H
B101H
COOOH
C001H
C003H
C004H
FFFFH

Description

Operation Completed Successfully
Incomplete - Stage on Interrupt
Incomplete - Stage on Time (service specific)
Incomplete - Not My Interrupt, Stage on Interrupt
Attention, Stage on Interrupt
Device Busy - Request Refused
Security Enabled, Keyboard Inhibited - Request Refused
Keyboard Controller Perpetually Busy
Keyboard Failed Reset
Resend Error
Keyboard Parity Error
General Hardware Time-out
Undefined Mode Returned by Keyboard
Keyboard Controller Perpetually Busy
Keyboard Failed Reset
Resend Error
Keyboard Parity Error
General Hardware Time-out
Keyboard Error
Keyboard Error
Invalid Logical ID (ABIOS Transfer Convention only)
Invalid Function
Invalid Unit Number
Invalid Request Block Length
Return Code is Not Valid.

Figure 6-5. Keyboard Return Codes

Programming Considerations

• The Keyboard ABIOS does not attempt any retries. It is up to the
calling program to perform any retries.

• The Write Keyboard Data String function (hex 11) sends bytes to
the keyboard and expects an acknowledgement (ACK) after each
byte has been sent.

• The Write Keyboard Controller Data String function (hex 10)
sends bytes to the keyboard controller, and it does not expect a
response.

6-58 Keyboard

• The Read Keyboard Indicators function (hex OB) reflects the state
of the indicators after either a successful Reset/Initialize
Keyboard function (hex 05) or a Write Indicators function (hex OC).
If the Write Keyboard Data String function (hex 11) is used to
change the indicators, the value returned by the Read Indicators
function (hex OB) may not reflect the true state at the keyboard.

• The Keyboard Time-out routine does not attempt to reset the
keyboard, rather it sets the Return Code field to Keyboard Error
(hex B001 or B101). It is up to the caller to execute the Keyboard
Reset/Initialize function (hex 05).

• If Keyboard ABIOS is expecting an acknowledge from the
keyboard after issuing a command to the keyboard, it does not
pass the acknowledge to the controlling program.

Keyboard 6-59

Notes:

6-60 Keyboard

Parallel Port

Functions
The following are the parallel port functions. The Default Interrupt
Handler function and the Return Logical ID Parameters function are
described in "Request Block" on page 4-3.

OOH - Default Interrupt Handler

01 H - Return Logical ID Parameters

02H - Reserved

03H - Read Device Parameters

• This function returns the device specific information.

• The Printer Initialize Time to Wait Before Resuming Request field
contains the wait time value returned on the Reset/Initialize
function (hex 05).

• The possible value of the Return Code field is equal to hex 0000.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 16H Reserved

Service Specific Output

SIZE

DWord

Byte
Word

OFFSET

28H

29H
2AH

DES CR I PTI ON

Printer Initialize Time To Wait Before
Resuming Request in microseconds

Interrupt level
Printer interrupt time-out
Bits 15 to 3 - Time-out in seconds
Bits 2 to 8 - Reserved

Parallel Port 6-61

04H - Set Device Parameters

• This function sets the device specific information according to the
input parameters.

• The Printer Interrupt Time-out field must be a nonzero value. If it
is set to 0, ABIOS sets the Return Code field to Invalid Time-out
(hex C005).

• The Printer Initialize Time to Wait Before Resuming Request field
contains the wait time value returned on the Reset/Initialize
function (hex 05).

• The Printer Initialize Time to Wait Before Resuming Request field
must be a nonzero value. If it is set to 0, ABIOS sets the Return
Code field to Invalid Time to Wait (hex COOS).

• ABIOS uses these parameters until this function is called to
change them.

• The possible values of the Return Code field are equal to
hex 0000, 8000, C005, and COOS.

Service Specific Input

SIZE

Word
DWord

Word

OFFSET

16H
20H

2AH

DES CR I PTI ON

Reserved
Printer Initialize Time To Wait Before

Resuming Request in microseconds
Printer interrupt time-out
Bits 15 to 3 - Time-out in seconds
Bits 2 to 0 - Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

None

6-62 Parallel Port

05H - Reset/lnltlallze

• This function initializes the printer.

• After performing this function, the printer indicates a busy status
while it performs a self-test.

• The Printer Status field is valid only when this function is
completed. The status returned in the Request Block is not valid
during intermediate stages.

• The possible values of the Return Code field are equal to
hex 0000, 0002, and 8000.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 16H Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

DWords 20H
Byte 28H

Time to wait before resuming request in microseconds
Printer status
Bit 7 - Busy
Bit 6 - Acknowledge
Bit 5 - End of paper
Bit 4 - Selected
Bit 3 - I/0 error
Bit 2 - Interrupt
Bits l, 0 - Reserved

O&H - Enable (Reserved)

07H - Disabled (Reserved)

08H - Read (Reserved)

Parallel Port 6-63

09H - Print Block

• This function sends a block of characters to the parallel port.

• The caller must use the Cancel Print Block function (hex OB) to
cancel an existing Print Block function before issuing another
Print Block function to the same unit.

• The Printer Status field is valid only when the function is
completed. The status returned in the Request Block is not valid
during intermediate stages.

• When a print error occurs, the printer is offline, or the printer is
busy, ABIOS terminates the print block request. The Number of
Characters Printed field indicates the portion of the print block
that has been printed. The unprinted portion of the print block
can be printed by issuing another print block request when the
terminating condition is corrected.

• The possible values of the Return Code field are equal to
hex 0000, 0001, 0005, 8000, 8001, and 9000.

Service Specific Input

SIZE

Word
DWord
Word
Word
DWord
Word
Word

OFFSET

10H
12H
16H
18H
lAH
lEH
24H

DES CR I PTI ON

Reserved
Data Pointer 1
Reserved
Reserved
Data Pointer 2
Reserved
Number of characters to print

Service Specific Output

SIZE

Word
Byte

OFFSET

26H
28H

6-64 Parallel Port

DES CR I PTI ON

Number of characters printed
Printer status
Bit 7 - Busy
Bit 6 - Acknowledge
Bit 5 - End of paper
Bit 4 - Selected
Bit 3 - I/O error
Bit 2 - Interrupt
Bits l, 0 - Reserved

OAH - Additional Data Transfer (Reserved)

OBH - Cancel Print Block

• This function cancels an outstanding Print Block function (hex 09)
request.

• The Printer Status field is valid only when the function has
completed. The status returned in the Request Block is not valid
during intermediate stages.

• The possible value of the Return Code field is equal to hex 0000.

Service Specific Input

SIZE OFFSET DES CR I PTI ON

Word 16H Reserved

Service Specific Output

SIZE

Word
Byte

OFFSET

26H
28H

DESCRIPTION

Number of characters printed
Printer status
Bit 7 - Busy
Bit 6 - Acknowledge
Bit 5 - End of paper
Bit 4 - Selected
Bit 3 - 1/0 Error
Bit 2 - Interrupt
Bits 1. 0 - Reserved

Parallel Port 6-65

OCH • Return Printer Status

• This function returns the printer status.

• The Printer Status field is valid only when the function is
completed successfully.

• The possible values of the Return Code field are equal to
hex 0000 and 8000.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 16H Reserved

Service Specific Output

SIZE OFFSET

Byte 28H

DESCRIPTION

Printer status
Bit 7 - Busy
Bit 6 - Acknowledge
Bit 5 - End of paper
Bit 4 - Selected
Bit 3 - 1/0 error
Bit 2 - Interrupt
Bits 1. 0 - Reserved

Return Codes

Value

OOOOH
0001H
0002H
0005H
8000H
8001H
9000H
COOOH
C001H
C003H
C004H
C005H
C006H

Description

Operation Completed Successfully
Stage on Interrupt
Stage on Time
Not My Interrupt, Stage on Interrupt
Device in Use
Device Busy
Printer Error
Invalid Logical ID (ABIOS Transfer Convention only)
Invalid Function Number
Invalid Unit Number
Invalid Request Block Length
Invalid Time-out
Invalid Time to Wait

Figure 6-6. Parallel Port Return Codes

6-66 Parallel Port

Programming Considerations

• For the Print Block function (hex 09), if the Printer Status field is
busy, ABIOS checks the printer status for some time, and the
function is terminated if the device is still busy after that time.
ABIOS sets the Return Code field to Device Busy (hex 8001). The
Number of Characters Printed field indicates to the caller the
number of characters that were printed.

• For the Print Block function (hex 09), if the printer is put off-line in
the middle of a print block, ABIOS checks the printer status for
some time, and the function is terminated if the device is still
busy after that time. ABIOS sets the Return Code field to Device
Busy (hex 8001). The caller can issue a new Print Block function
to print the remaining characters when the printer is put back
online.

• When the Reset/Initialize function is called, some printers
perform a printer self-test that causes the printer to be busy until
the self-test is completed. The Busy bit (bit 7) of the Printer
Status field indicates this busy condition.

• The parallel port ABIOS supports the parallel port in transmit
mode only.

Parallel Port 6-67

Notes:

6-68 Parallel Port

Asynchronous Communications

Functions
The following are the asynchronous communications functions. The
Default Interrupt Handler function and the Return Logical ID
Parameters function are described in "Request Block" on page 4-3.

OOH - Default Interrupt Handler

01 H - Return Logical ID Parameters

02H - Reserved

03H - Read Device Parameters

• This function returns the communication port information. It has
no affect on any other outstanding request and it does not interact
with the hardware.

• The parameters are maintained in the Device Block as a shadow
of the hardware. The shadow is updated when requests are
made through ABIOS. If the asynchronous ports are programmed
directly or through the BIOS Interrupt Hex 14 functions, the
asynchronous parameters in the Device Block will be incorrect.
In this event the Read Device Parameters function returns the
previously stored values.

• To synchronize these parameters, a Reset/Initialize
function (hex 05) must be issued.

• During ABIOS initialization, the serial communication port is
initialized to the following default parameters: baud rate is 1200,
no parity, 1 stop bit, 7 bits per character and no break.

• The possible value of the Return Code field is equal to hex 0000.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 18H Reserved

Asynchronous Communications 6-69

03H ·Read Device Parameters (continued)

Service Specific Output

SIZE OFFSET DESCRIPTION

Byte 28H

Byte 29H

Byte 2AH

Byte 2BH

Modem control
Bits 7 to 2 - Reserved (set to 0)
Bit 1 - Request to send

0 - Disable
1 - Enable

Bit e - Data terminal ready
0 - Disable
1 - Enable

Async interrupt status byte
Bits 7 to 6 - Reserved (set to 0)
Bit 5 - Modem status interrupt

0 - Disabled
1 - Enabled

Bit 4 - Reserved
Bit 3 - Transmit interrupt

0 - Disabled
1 - Enabled

Bit 2 - Receive interrupt
0 - Disabled
1 - Enabled

Bit l, 0 - Reserved
Receive trigger level

eeH - 1 byte
01H - 4 bytes
02H - 8 bytes
03H - 14 bytes
04H to 0FFFFH - Reserved

FIFO mode status
Bits 7 to 4 - Reserved
Bit 3 - FIFO support available

0 - Not present
1 - Present

Bit 2 - Reserved
Bit 1 - FIFO device

0 - Not present
1 - Present

Bit 0 - FIFO Indicator
0 - Disabled
1 - Enabled

6-70 Asynchronous Communications

Service Specific Output (continued)

SIZE OFFSET DESCRIPTION

Byte 44H Transmission baud rate
00H - 110
01H - 150
02H - 300
03H - 600
04H - 1200
05H - 2400
06H - 4800
07H - 9600
08H - 19200
09H to 0FFH - Reserved

Byte 45H Type of parity
00H - None
01H - Odd
02H - Even
03H - Stick parity odd
04H - Stick parity even
05H to 0FFH - Reserved

Byte 46H Number of stop bits
00H - 1
01H - 2

(If the number of bits per character field is 1.2. or 3)
- 1 1/2 stop bits

(If the number of bits per character field is 0)
02H to 0FFH - Reserved

Byte 47H Number of bits per character
00H - s
01H - 6
02H - 7
03H - 8
04H to 0FFH - Reserved

Byte 48H Break status
00H - Disabled
01H - Enabled
02H to 0FFH - Reserved

04H • Set Device Parameters (Reserved)

OSH · Reset/lnltlallze

• This function initializes the asynchronous communications port
according to the input parameters.

• All communication interrupts (receive, transmit, and modem
status) are disabled. It is up to the caller to clean up all
outstanding Request Blocks and the interrupt controller where
appropriate. From the ABIOS standpoint all outstanding Request
Blocks are canceled.

Asynchronous Communications 6-71

• Any receive data that is pending at the communication port is
cleared.

• The Reset/Initialize function is used to synchronize the Device
Block parameters with the current hardware port values in
preparation for a Read Device Parameters function (hex 03) call.

• The possible value of the Return Code field is equal to hex 0000.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 18H Reserved
Byte 28H Modem control

Bit 7 to 2 - Reserved (set to 0)
Bit 1 - Request to send

0 - Disable
1 - Enable

Bit 0 - Data terminal ready
0 - Disable
1 - Enable

Byte 29H Reserved
Byte 2AH Receive trigger level

00H - 1 byte
01H - 4 bytes
02H - 8 bytes
03H - 14 bytes
04H to 0FFFFH - Reserved

Byte 2BH FIFO mode control
00H - Disable
01H - Enable and reset FIFO
02H - Enable without resetting FIFO
03H to 0FFH - Reserved

Byte 44H Transmission baud rate
00H - 110
01H - 150
02H - 300
03H - 600
04H - 1200
05H - 2400
06H - 4800
07H - 9600
08H - 19200
09H to 0FFH - Reserved

Byte 45H Type of parity
00H - None
01H - Odd
02H - Even
03H - Stick parity odd
04H - Stick parity even
05H to 0FFH - Reserved

6-72 Asynchronous Communications

Service Specific Input (continued)

SIZE OFFSET DESCRIPTION

Byte 46H

Byte 47H

Byte 48H

Number of stop bits
eeH - 1
01H - 2 - For 6-bit, 7-bit, or 8-bit word length

- 1 1/2 - For 5-bit word length
02H to 0FFH - Reserved

Number of bits per character
eeH - s
01H - 6
02H - 7
03H - 8
04H to 0FFH - Reserved

Break status
00H - Disabled
01H - Enabled
02H to 0FFH - Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

Byte 49H Line status
Bit 7 - Error in receiver FIFO

0 - Disable
1 - Enable

Bit 6 - Transmitter empty
0 - Disable
1 - Enable

Bit 5 - Transmitter holding register empty
0 - Disable
1 - Enable

Bit 4 - Break interrupt
0 - Disable
1 - Enable

Bit 3 - Framing error
e .:. Di sable
1 - Enable

Bit 2 - Parity error
0 - Disable
1 - Enable

Bit 1 - Overrun error
0 - Disable
1 - Enable

Bit e - Data ready
0 - Disable
1 - Enable

Asynchronous Communications 6-73

OSH - Reset/Initialize (continued)

Service Specific Output (continued)

SIZE OFFSET DESCRIPTION

Byte 4AH Modem status
Bit 7 - Data carrier detect

0 - Disable
1 - Enable

Bit 6 - Ring indicator
0 - Disable
1 - Enable

Bit 5 - Data set ready
0 - Disable
1 - Enable

Bit 4 - Clear to send
0 - Disable
1 - Enable

Bit 3 - Delta data carrier detect
0 - Disable
1 - Enable

Bit 2 - Trailing edge ring indicator
0 - Disable
1 - Enable

Bit 1 - Delta data set ready
0 - Disable
1 - Enable

Bit 0 - Delta clear to send
0 - Disable
1 - Enable

O&H - Enable (Reserved)

07H - Dlsable (Reserved)

08H - Read (Reserved)

09H - Write (Reserved)

OAH • Addltlonal Data Transfer (Reserved)

6-74 Asynchronous Communications

OBH - Set Modem Control

• This function sets the modem control according to the Input
parameter. This function does not affect the interrupt state of any
other Stage on Interrupt requests.

• The possible value of the Return Code field is equal to hex 0000.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 18H Reserved
Byte 28H Modem control

Bits 7 to 2 - Reserved (set to 0)
Bit 1 - Request to send

0 - Disable
1 - Enable

Bit 0 - Data terminal ready
0 - Disable
1 - Enable

Service Specific Output

SIZE OFFSET DESCRIPTION

None

Asynchronous Communications 6-75

OCH - Set Line Control

• This function sets the line control according to the input
parameters. This function does not affect the interrupt state of
any other Stage on Interrupt requests.

• The possible value of the Return Code field is equal to hex 0000.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 18H Reserved
Byte 45H Type of parity

00H - None
01H - Odd
02H - Even
03H - Stick parity odd
04H - Stick parity even
05H to 0FFH - Reserved

Byte 46H Number of stop bits
eeH - 1
01H - 2 - For 6-bit, 7-bit, or 8-bit word length

- 1 1/2 - For 5-bit word length
02H to 0FFH - Reserved

Byte 47H Number of bits per character
eeH - 5 bits
01H - 6 bits
02H - 7 bits
03H - 8 bits
04H to 0FFH - Reserved

Byte 48H Break status
00H - Disabled
01H - Enabled
02H to 0FFH - Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

None

6-76 Asynchronous Communications

OOH - Set Baud Rate

• This function sets the baud rate according to the input parameter,
and does not affect the interrupt state of any other Stage on
Interrupt requests.

• The possible value of the Return Code field is equal to hex 0000.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 18H Reserved
Byte 44H Transmission baud rate

00H - 110
01H - 150
02H - 300
03H - 600
04H - 1200
05H - 2400
06H - 4800
07H - 9600
08H - 19200
09H to 0FFH - Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

None

OEH - Transmit Interrupt

• This function enables the transmit interrupt but it does not
transmit any data until a transmit interrupt occurs. The Transmit
Tail Pointer field points to the first byte to be transmitted and the
Transmit Head Pointer field points to 1 byte logically beyond the
I ast byte to be sent.

• The values of the Transmit Head and Transmit Tail Pointer fields
are relative to the beginning of the transmit buffer where a value
of 0 indicates the first physical byte of the buffer and a value of
the Transmit Buffer Length field minus 1 indicates the last
physical byte of the buffer. Values of the Transmit Head Pointer
field and Transmit Tail Pointer field can never be out of that
range.

• The maximum number of characters that a single view of the
transmit buffer can indicate to be transmitted is 1 less than the
value of the Transmit Buffer Length field.

Asynchronous Communications 6-77

• When a transmit interrupt occurs, the Interrupt routine increments
the value of the Transmit Tail Pointer field according to the
number of bytes transmitted. The Operation Status field will have
the Transmit in Progress bit (bit 1) set. Because of the possibility
of the buffer being checked asynchronously to the transmit
Interrupt routine, the data is written to the hardware Transmit
buffer before the value of the Transmit Tail Pointer field being
incremented.

• The value of the Transmit Tail Pointer field chases the value of
the Transmit Head Pointer field as interrupts occur. If the value
of the Transmit Tail Pointer field reaches the end of the transmit
buffer, the Transmit Tail Pointer field is wrapped back to 0. A
transmit buffer-empty condition occurs when the value of the
Transmit Tail Pointer field equals the value of the Transmit Head
Pointer field. During processing of a transmit interrupt, if the
transmit buffer-empty condition occurs after sending data to the
communication port, ABIOS abruptly stops sending data to the
communication port and informs the caller of the condition. The
Operation Status field has the Transmit Buffer-Empty bit (bit 6) set
indicating that the transmit buffer is empty, but the transmit
interrupt is still enabled. On the following transmit interrupt or
any transmit interrupt, if the buffer-empty condition exists, ABIOS
disables the transmit interrupt. If the transmit interrupt is
disabled due to a buffer-empty condition the Request Block is
considered canceled. The Operation Status field has the
Transmit Buffer-Empty, Transmitter Holding Register Empty bit
(bit 7) set. The Transmit Buffer-Empty bit (bit 6) and the Transmit
Buffer-Empty, Transmitter Holding Register Empty bit (bit 7) are
mutually and exclusively set bits.

• A transmit buffer-full condition occurs when the value of the
Transmit Head Pointer field is one less than the value of the
Transmit Tail Pointer field. Also, when the value of the Transmit
Tail Pointer field equals 0, and the value of the Transmit Head
Pointer field equals 1 less than the value of the Transmit Buffer
Length field, the transmit buffer is full.

• The values of the Transmit Buffer Segment field, the Transmit
Buffer Offset field, and Transmit Buffer Length field can be
altered across calls to the Transmit Interrupt routine. Because
ABIOS removes the data from the buffer before changing the
Transmit Tail Pointer field, the caller may add data to be
transmitted during the processing of a transmit interrupt by

6·78 Asynchronous Communications

placing the data in the buffer and then logically incrementing the
value of the Transmit Head Pointer field. The caller must not
allow the value of the Transmit Head Pointer field to be equal to
the value of the Transmit Tail Pointer field because this indicates
an empty transmit buffer.

• The Operation Status field contains the current operation status
(the Transmit in Progress or Transmit buffer empty). The Return
Code field has the status as described by the ABIOS structure.
The Operation Status field should be initialized to Oby the caller
prior to calling the Start routine.

• If the Transmit Buffer Length field is O when called through the
Start routine, no action is performed and the Return Code field is
set to 0.

• When the Reset/Initialize function (hex 05) is executed, if the
Number of Bits per Character field that is set is less than 8, the
high-order bits of each byte transmitted are undefined. These
high-order bits are sent to the communication port without
change.

• The possible values of the Return Code field are equal to
hex 0000, 0001, 0005, 0081, 8000, and 9000.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 10H Reserved
Word 12H Transmit buffer offset
Word 14H Transmit buffer segment
Word 18H Reserved
DWord lAH Reserved
Word 2CH Transmit buffer length in bytes
Word 2EH Reserved
Word 30H Transmit head pointer
Word 32H Reserved
Word 34H Transmit tail pointer
Word 36H Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

Word 34H Transmit tail pointer
Word 36H Reserved
Word 4BH Operation status. Return only from interrupt routine. (See

"Programming Considerations" on page 6-91 for bit definitions)

Asynchronous Communications 6-79

OFH - Receive Interrupt

• This function enables the receive interrupt. Data is read from the
communication port when a receive interrupt is generated.

• The values of the Receive Head Pointer field and the Receive Tail
Pointer field are relative to the beginning of the receive buffer
where a value of O indicates the first physical byte of the buffer
and a value of the Receive Buffer Length field minus 1 indicates
the last physical byte of the buffer.

• The value of the Receive Head Pointer field points to the first
character position to be filled by ABIOS. The value of the
Receive Tail Pointer field points to the first received character to
be removed by the caller.

• The maximum number of characters that a single view of the
receive buffer can indicate to be received is 1 less than the value
of the Receive Buffer Length field.

• When a receive interrupt is generated, the Interrupt routine
increments the value of the Receive Head Pointer field by 1.
Upon exit, the Operation Status field has the Receive Interrupt in
Progress bit (bit 0) set. Because of the possibility of the buffer
being checked asynchronously by the Receive Interrupt routine,
the character is written to the receive buffer before the value of
the Receive Head Pointer field is incremented.

• As interrupts occur, the value of the Receive Head Pointer field
chases the value of the Receive Tail Pointer field. If the value of
the Receive Head Pointer field reaches the end of the receive
buffer, the Receive Head Pointer field is wrapped back to 0. A
receive buffer-full condition occurs when the value of the Receive
Head Pointer field is 1 less than the value of the Receive Tail
Pointer field. Also, when the value of the Receive Tail Pointer
field equals 0 and the value of the Receive Head Pointer field is 1
less than the value of the Receive Buffer Length field, the receive
buffer is considered full. The Operation Status field has the
Receive Buffer-Full bit (bit 4) set when the Receive Buffer-Full
condition occurs. If the buffer-full condition exists and a receive
interrupt occurs, the current byte is lost. The Operation Status
field has the Receive Buffer Full With Data Erased bit (bit 5) set.
The Receive Buffer Full bit (bit 4) and the Receive Buffer Full With
Data Erased bit (bit 5) are mutually and exclusively set bits.

6-80 Asynchronous Communications

• A Receive Buffer-Empty condition occurs when the value of the
Receive Head Pointer field equals the value of the Receive Tail
Pointer field. ABIOS never sets the value of the Receive Head
Pointer field equal to the value of the Receive Tail Pointer field;
however the caller may set the value of the Receive Head Pointer
field to the value of the Receive Tail Pointer field as it empties out
the receive buffer and logically increments the value of the
Receive Tail Pointer field.

• The values of the Receive Buffer Segment field, the Receive
Buffer Offset field; the Receive Head Pointer field, and the
Receive Tail Pointer field can be altered across calls to the
Receive Interrupt routine. Because ABIOS places data in the
receive buffer and then updates the value of the Receive Head
Pointer field, the caller may remove received data from the
receive buffer during the processing of a receive interrupt by
logically incrementing the value of the Receive Tail Pointer field.

• The Operation Status field has the current operation status
(Receive In Progress, Receive Buffer-Full, or Receive In Progress
and Parity Error), and the Return Code field has the status as
described by the ABIOS structure. The Operation Status field
should be initialized to 0 by the caller before calling the Start
routine.

• The receive interrupt can only be terminated using a call to the
Cancel function.

• When called through the Start routine, if the Receive Buffer
Length field is 0, no action is performed and the Return Code field
is set to 0.

• If any error conditions occur at the communication port, ABIOS
stores the current data byte in the receive buffer and returns
immediately to the caller. The Operation Status field has the
appropriate error bits (bits 8.;.10) set accordingly. If a Break
interrupt occurs, the data byte is a 0. If an overrun error occurs,
the overrun character is lost, and the data byte contains the valid
character that caused the overrun. If there is a parity error, the
data byte contains the character with the incorrect parity. If there
is a framing error, the data byte contains the character that does
not have a valid stop bit.

Asynchronous Communications 6-81

OFH ·Receive Interrupt (continued)

• If Null Stripping mode is enabled, a data character of O that is
received is not stored in the Receive buffer. If an overrun error
occurs and a Null Data byte is the byte that generated the error,
ABIOS discards the Null Data byte. The Operation Status field
indicates that an overrun error was found and the Null Data byte
was found and discarded.

• When the Reset/Initialize function (hex 05) is executed, if the
Number of Bits per Character field set is less than 8, the
high-order bits of each byte are set to 0 when data is received.

• The possible values of the Return Code field are equal to
hex 0000, 0001, 0005, 0081, 8000, and 9000.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 18H Reserved
DWord lAH Reserved
Word 20H Reserved
Word 22H Receive buffer offset
Word 24H Receive buffer segment
Byte 28H Null stripping indicator

00H - Disabled
01H - Enabled
02H to 0FFH - Reserved

Word 38H Receive buffer length in bytes
Word 3AH Reserved
Word 3CH Receive head pointer
Word 3EH Reserved
Word 40H Receive tail pointer
Word 42H Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

Word 3CH Receive head pointer
Word 3EH Reserved
Word 4BH Operation status. Return only from interrupt routine.

(See "Programming Considerations" on page 6-91 for bit definitions)

6-82 Asynchronous Communications

10H - Combined (Transmit and Receive) Interrupts

• A combined request is used to initiate a single request to both
transmit and receive. Both transmit and receive or receive-only
can be initiated. The receive operation can be made by calling
the Start routine with only the receive parameters set to enable
only the receive interrupt (the Transmit Buffer Length field is set
to 0). If this function is called to enable only the receive interrupt,
it can be recalled through the Start routine to enable the transmit
interrupt with a nonzero value of the Transmit Buffer Length field.
When the Start routine is called to enable the receive interrupt,
the Return Code field should be set to Return Code Not Valid
(hex FFFF). However, when the Start routine is called the second
time to enable the transmit interrupt, the Return Code field should
not be changed from its previously stored value. In addition, the
Return Code field is deemed undefined upon return from the call
to the second Start routine (to enable the transmit interrupt) and
therefore ignored. The combined interrupt function holds true for
only the case described above but not the reverse. That is, the
transmit interrupt only cannot be enabled through the Start
routine the first time.

• This function treats a transmit interrupt in the same manner as
described for the Transmit Interrupt function (hex OE).

• This function treats a receive interrupt in the same manner as
described for the Receive Interrupt function (hex OF).

• During a receive interrupt, the transmit interrupt is never
disabled; no test is made to determine if the Transmit Head
Pointer field is equal to the Transmit Tail Pointer field.

• To optimize performance, after servicing a receive interrupt, a
transmit interrupt pending condition is checked. If a transmit
interrupt is pending, this interrupt is serviced and the Return
Code field is set to Attention, Stage on Interrupt (hex 0009). If a
second receive interrupt is pending, ABIOS does not service the
pending interrupt and returns to the caller.

Asynchronous Communications 6-83

10H - Combined (Transmit and Receive} Interrupts (continued)

• If the Return Code field is set to Attention, Stage on Interrupt
(hex 0009), the Operation Status of Previous Interrupt field
contains the status obtained when the first interrupt was serviced.
Likewise, the ~eturn Code of the Previous Interrupt field contains
the Return Code value of the first interrupt. The Operation Status
field and the Return Code field contain the values for the second
interrupt.

• The Operation Status of the Previous Interrupt field and the
Return Code of the Previous Interrupt field should be initialized to
O by the caller before the Start routine is called.

• When called through the Start routine to enable the combined
function, if the value of the Receive Buffer Length field equals 0,
no action is performed and the Return Code field is set to
Operation Completed Successfully (hex 0000).

• When called through the Start routine the first time, if the value of
the Transmit Buffer Length field equals O and the value of the
Receive Buffe.r Length field is greater than 0, this function acts as
a Receive Interrupt function (hex OF). When called through the
Start routine the second time, if the value of the Transmit Buffer
Length field equals 0, no action is performed and the Return Code
field is set to Stage on Interrupt (hex 0001).

• The Return Code field, Bad Communications Port (hex 9000),
indicates a hardware failure.

• The possibie values of the Return Code field are equal to
hex 0000, 0001, 0005, 0009, 0081, 8000, and 9000.

6-84 Asynchronous Communications

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 10H Reserved
Word 12H Transmit buffer offset
Word 14H Transmit buffer segment
Word 18H Reserved
DWord lAH Reserved
Word 20H Reserved
Word 22H Receive buffer offset
Word 24H Receive buffer segment
Byte 28H Null stripping indicator

00H - Disabled
01H - Enabled
02H to 0FFH - Reserved

Word 2CH Transmit buffer length in bytes
Word 2EH Reserved
Word 30H Transmit buffer head in bytes
Word 32H Reserved
Word 34H Transmit buffer tail in bytes
Word 36H Reserved
Word 38H Receive buffer length in bytes
Word 3AH Reserved
Word 3CH Receive buffer head in bytes
Word 3EH Reserved
Word 40H Receive buffer tail in bytes
Word 42H Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

Word 34H Transmit buffer tail in bytes
Word 36H Reserved
Word 3CH Receive buffer head in bytes
Word 3EH Reserved
Word 4BH Operation status; return only from interrupt routine.

(See "Programming Considerations" on page 6-91 for bit definitions)
Word 4DH Operation Status of previous interrupt
Word 4FH Return code of previous interrupt

Asynchronous Communications 6-85

11H - Modem Status Interrupt

• This function enables the modem status interrupt. The Modem
Status field is returned to the caller upon exit from the Start and
Interrupt routines.

• If the Modem Status Interrupt Request Block is processed before
the receive or transmit Request Block at interrupt time, the
ABIOS routine detects a change in the modem status even if the
higher priority interrupts in the interrupt identification register are
still pending. This allows an interrupt handler to detect a change
in modem status before receiving or transmitting any data.

• The possible values of the Return Code field are equal to
hex 0001, 0005, 0081, and 8000.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 18H Reserved
DWord lAH Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

Byte 4AH Modem status
Bit 7 - Data carrier detect

0 - Disable
1 - Enable

Bit 6 - Ring indicator
0 - Disable
1 - Enable

Bit 5 - Data set ready
0 - Disable
1 - Enable

Bit 4 - Clear to send
0 - Disable
1 - Enable

Bit 3 - Delta data carrier detect
0 - Disable
1 - Enable

Bit 2 - Trailing edge ring indicator
0 - Disable
1 - Enable

Bit 1 - Delta data set ready
0 - Disable
1 - Enable

Bit 0 - Delta clear to send
0 - Disable
1 - Enable

6-86 Asynchronous Communications

12H-Cancel

• This function cancels a requested interrupt operation. All or any
combination of the interrupts may be canceled. Associated
interrupts will be disabled upon return. If an outstanding request
is associated with the interrupt type that is canceled, that Request
Block is considered canceled and should be appropriately
deallocated.

• The exception to this is the combined function. If the Combined
(Transmit and Receive) Interrupts function (hex 10) has both the
receive and the transmit interrupts enabled and the Cancel
function is called to cancel both receive and transmit, the
combined Request Block is considered canceled. If the
Combined (Transmit and Receive) Interrupts function (hex 10) has
both the receive and the transmit interrupts enabled and the
Cancel function is called to cancel only one of the transmit and
receive interrupts, the Request Block is considered active. If the
Combined (Transmit and Receive) Interrupts function (hex 10) has
both the receive and the transmit interrupts enabled and cancel is
called to cancel transmit, the call through the Start routine to
reenable transmit is permitted. If the Combined (Transmit and
Receive) Interrupts function (hex 10) has both the receive and the
transmit interrupts enabled and the Cancel function is called to
cancel receive, to reenable the receive interrupt by way of the
Combined (Transmit and Receive) Interrupts function (hex 10), the
caller must first cancel the transmit interrupt, then call the Start
Routine Combined function with receive enabled. If the
Combined (Transmit and Receive) Interrupts function (hex 10) has
only the receive interrupt enabled and the Cancel function is
called to cancel receive, the combined Request Block is
considered canceled.

• The possible value of the Return Code field is equal to hex 0000.

Asynchronous Communications 6-87

12H - Cancel (continued)

Service Specific Input

SIZE OFFSET DESCRIPTION

Word
Byte

18H
51H

Reserved
Interrupt type to cancel
Bit 7 - Reserved
Bit 6 - Reserved
Bit 5 - Modem status interrupt

e - Do not disable
1 - Disable

Bit 4 - Reserved
Bit 3 - Transmit interrupt

0 - Do not disable
1 - Disable

Bit 2 - Receive interrupt
0 - Do not disable
1 - Disable

Bit 1 - Reserved
Bit 0 - Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

None

6-88 Asynchronous Communications

13H • Return Line Status

• This function returns the line status.

• The possible value of the Return Code field is equal to hex 0000.

Service Specific lnpui

SIZE OFFSET DESCRIPTION

None

Service Specific Output

SIZE OFFSET DESCRIPTION

Byte 49H Line status
Bit 7 - Error in receiver FIFO

0 - Disable
1 - Enable

Bit 6 - Transmitter empty
0 - Disable
1 - Enable

Bit 5 - Transmitter holding register empty
0 - Disable
1 - Enable

Bit 4 - Break interrupt
0 - Disable
1 - Enable

Bit 3 - Framing error
0 - Disable
1 - Enable

Bit 2 - Parity error
0 - Disable
1 - Enable

Bit 1 - Overrun error
0 - Disable
1 - Enable

Bit 0 - Data ready
0 - Disable
1 - Enable

Asynchronous Communications 6-89

14H - Return Modem Status

• This function returns the modem status. If this function is called
and the Modem Status interrupt is enabled, the Return Code field
is set to Device Busy (hex 8000).

• The possible values of the Return Code field are equal to
hex 0000 and 8000.

Service Specific Input

SIZE OFFSET DESCRIPTION

None

Service Specific Output

SIZE OFFSET DESCRIPTION

Byte 4AH Modem status
Bit 7 - Data carrier detect

e - Disable
1 - Enable

Bit 6 - Ring indicator
e - Disable
1 - Enable

Bit 5 - Data set ready
0 - Disable
1 - Enable

Bit 4 - Clear to send
0 - Disable
1 - Enable

Bit 3 - Delta data carrier detect
0 - Disable
1 - Enable

Bit 2 - Trailing edge ring indicator
0 - Disable
1 - Enable

Bit 1 - Delta data set ready
e - Disable
1 - Enable

Bit 8 - Delta clear to send
0 - Disable
1 - Enable

15H - Used Internally by ABIOS

6-90 Asynchronous Communications

16H - Set Receive Trigger Level

• This function sets the FIFO trigger level for the asynchronous
communications port according to the input parameters.

• The possible value of the Return Code field is equal to hex 0000.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 18H Reserved
Byte 28H Receive trigger level

00H - 1 byte
01H - 4 bytes
02H - 8 bytes
03H - 14 bytes
04H to 0FFH - Reserved

Return Codes

Value

OOOOH
0001H
0005H
0009H
0081H
8000H
9000H
COOOH
C001H
C003H
C004H

Description

Operation Completed Successfully
Incomplete - Stage on Interrupt
Incomplete - Not My Interrupt, Stage on Interrupt
Attention, Stage on Interrupt
Spurious Interrupt
Device Busy, Request Refused
Bad Communications Port
Invalid Logical ID (ABIOS Transfer Convention only)
Invalid Function
Invalid Unit Number
Invalid Request Block Length

Figure 6-7. Asynchronous Communications Return Codes

Programming Considerations

• For all interrupt operations (transmit, receive, combined, and
modem status interrupts), the Operation Status (offset hex 48)
field contains the current communication port status. None of the
bits in the Operation Status field takes precedence over any other
bits in this field. If the bit is set, the condition associated with the
bit is active.

Asynchronous Communications 6-91

Bit 15 to 13 - Reserved
Bit 12 - Overrun error with null data byte found

0 - Not active
1 - Active only if null data found and discarded

Bit 11 - Break detected
0 - Not active
1 - Active

Bit 10 - Framing error
0 - Not active
1 - Active

Bit 9 - Parity error
0 - Not active
1 - Active

Bit 8 ~ Overrun error
0 - Not active
1 - Active

Bit 7 - Transmit buffer-empty, transmitter holding register empty
(:) - Not active
1 - Active

Bit 6 - Transmit buffer-empty
(:) - Not active
1 - Active

Bit 5 - Receive buffer-full, data discarded
(:) - Not active
1 - Active

Bit 4 - Receive buffer-full
0 - Not active
1 - Active

Bits 3 to 2 - Reserved
Bit 1 - Transmit interrupt in progress

0 - Not active
1 - Active

Bit 0 - Receive interrupt in progress
0 - Not active
1 - Active

• If any errors are in the character received, the data byte is stored
in the receive buffer and the Operation Status field indicates the
appropriate errors. ABIOS returns to the caller on the first error
condition encountered even if more data is left in the hardware
buffer.

• If the Null Stripping mode is enabled, an overrun error occurs and
a Null Data byte is the byte that generated the error, the following
takes place. ABIOS discards the Null Data byte, and sets bit 12 of
the Operation Status field and returns to the caller.

• ABIOS has no dependence on the values in the BIOS data area
except during ABIOS initialization. Asynchronous
Communications Logical IDs are ordered by ABIOS in the same
sequence as they are ordered in the BIOS data area. The
communication port base table for BIOS is located at hex 40:00.

6-92 Asynchronous Communications

The BIOS Asynchronous Communications device whose port
base value is located at hex 40:00 is the first Asynchronous
Communications Logical ID to be initialized. The BIOS
Asynchronous Communications device whose port base value is
located at hex 40:02 is the second Asynchronous Communications
Logical ID to be initialized and so on.

• The following is an example of a transmit sequence:

1. The caller initializes the Transmit Request Block and calls
the Start routine. The Transmit Head Pointer field and
Transmit Tail Pointer field must be set within the range of 0 to
the Transmit Buffer Length field, inclusive. In this example,
the buffer length is set to 10 and the transmit buffer is full
when the Transmit Head Pointer field equals 9. The
maximum characters that may be sent without the caller
changing the Transmit Head Pointer field is 9 (bytes 0 through
8).

2. The Start routine enables the transmit interrupt but does not
send any data to the communication port.

3. Because the Transmitter Holding Register is empty, an
interrupt is generated.

4. The caller calls the Interrupt routine. A character is sent to
the communication port and the Transmit Tail pointer is
incremented by 1. In this example, byte 0 is sent, and the
Transmit Tail Pointer field is set to 1.

Asynchronous Communications 6-93

5. There are 8 bytes left to send, bytes 1 through 8. To increase
the number of bytes in the buffer to send from 8 to 9, the
caller may wrap the Transmit Head Pointer field back to the
beginning of the buffer. In this example, the Transmit Head
Pointer field is reset to 0.

Head Tail

+ +

6. Again, when the transmitter holding register empties, an
interrupt is generated to the processor. The Interrupt routine
is called, and a character is sent to the communication port.
The Transmit Tail pointer is incremented by 1. In this
example, byte 1 is sent, and the Transmit Tail Pointer field is
set to 2.

Head Tail

+ +

7. Assuming the caller does not change the Transmit Head
Pointer field, the process repeats as interrupts occur. Byte 2
is sent, and the Transmit Tail pointer is set to 3 and so forth
until byte 9 is sent and the Transmit Tail Pointer field is
wrapped back to 0. At this point, the Transmit Tail Pointer
field equals the Transmit Head Pointer field and the caller is
informed of the buffer-empty condition (Operation Status). If
the buffer-empty condition persists when the next transmit
interrupt is generated, ABIOS disables the transmit interrupt
and sets the Return Code field value equal to 0.

Tail
Head

+

6-94 Asynchronous Communications

• The following is an example of a receive sequence:

1. The caller initializes the receive Request Block and calls the
Start routine. The Receive Head pointer and Receive Tail
pointer must be set within the range from Oto the Receive
Buffer Length field, inclusive. In this example, the buffer
length is set to 10 and the receive buffer is full when the
Receive Head pointer is logically 1 byte less than the Receive
Tail pointer. The maximum number of characters received
without the caller changing the Receive Tail pointer is 9
(bytes O through 8).
Tail
Head

+

2. The Start routine enables the receive interrupt but does not
read any data.

3. When data is available at the communication port, an
interrupt is generated.

4. The Interrupt routine is called. A character is read from the
communication port, placed at location O and the Receive
Head pointer is increased by 1.

Tail Head

t t
5. Eight locations are available in the buffer to receive data

(bytes 1 through 8). To increase the number of bytes in the
buffer to receive data, the caller may read data out of the
buffer and logically increase the Receive Tail pointer up to
and including the Receive Head pointer. If the Receive Head
pointer and Receive Tail pointer are equal, the buffer is
empty.

Tail
Head

t

Asynchronous Communications 6-95

6. Nine available locations are in the receive buffer (bytes 1
through 9). When the next receive interrupt is generated, the
Interrupt routine is called, and a character is read from the
communication port. The Receive Head pointer is increased
by 1. Assuming that the caller makes no changes to the
Receive Tail pointer, the process continues. ABIOS receives
a character, places the character at location 1, and increases
the Receive Head pointer by 1. This process is repeated until
ABIOS receives a character and places the character at
location 9. Because the Receive Head pointer, when
increased by 1, is outside the buffer range, ABIOS wraps the
Receive Head pointer back to 0.

Tail Head

+ +

7. The receive buffer is full when the Receive Head pointer is 1
byte less than the Receive Tail pointer or if the Receive Tail
pointer is O and the Receive Head pointer is 1 byte less than
the Receive Buffer Length. If the buffer-full condition exists at
entry to the Interrupt routine, the character that caused the
interrupt is lost.

6-96 Asynchronous Communications

System Timer

Functions
The following are the system timer functions. The Default Interrupt
Handler function and the Return Logical ID Parameters function are
described in "Request Block" on page 4-3.

OOH - Default Interrupt Handler

01 H - Return Logical ID Parameters

02H - Reserved

03H - Read Device Parameters (Reserved)

02H - Set Device Parameters (Reserved)

05H - Reset/lnltlallze (Reserved)

O&H - Enable (Reserved)

07H - Disable (Reserved)

08H - Read (Reserved)

09H - Write (Reserved)

OAH - Addltlonal Data Transfer (Reserved)

System Timer 6-97

Return Codes

Value

OOOOH
0001H
0005H
COOOH
C001H
C003H
C004H

Description

Operation Completed Successfully
Stage on Interrupt
Not My Interrupt, Stage on Interrupt
Invalid Logical ID (ABIOS Transfer Convention only)
Invalid Function Number
Invalid Unit Number
Invalid Request Block Length

Figure 6-8. System Timer Return Codes

Programming Considerations

• The system timer interrupt is handled through the Default
Interrupt Handler.

6-98 System Timer

Real-Time Clock

Functions
The following are the real-time clock functions. The Default Interrupt
Handler function and the Return Logical ID Parameters function are
described in "Request Block" on page 4-3.

OOH - Default Interrupt Handler

01 H - Return Loglcal ID Parameters

02H - Reserved

03H - Read Device Parameters

• This function returns the current settings of the Real-Time Clock.

• The Periodic Interrupt Rate field is valid only when the Periodic
interrupt is enabled.

• The Alarm Hours, Minutes, and Seconds fields are valid only
when the Alarm interrupt is enabled.

• If the Real-Time Clock is not started, the Return Code field is set
to Real-Time Clock Not Started (hex 8001), and no other output
fields are valid.

• The possible values of the Return Code field are equal to
hex 0000, 8000, and 8001.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 16H Reserved

Real-Time Clock 6-99

03H - Read Device Parameters (continued)

Service ~peclflc Output

SIZE

Byte

Byte

Byte
Byt~
Byte

OFFSET

10H

UH

12H
13H
14H

DESCRIPTION

Periodi~ interrupt rate
Bits 7 to 4 - Reserved
Bits 3 to 0 - Rate value set

0000 - None
0001 - 30.517 µs
0010 - 61.035 µs
0011 - 122.070 µs
0100 - 244.141 µs
0101 - 488.281 µs
0110 - 976.562 µs
0111 - 1.953125 ms
1000 - 3.90625 ms
1001 - 7.8125 ms
1010 - 15.625 ms
1011 - 31. 250 ms
1100 - 62.500 ms
1101 - 125.00 ms
1110 - 250.00 ms
1111 - 500.00 ms

Real-Time Clock status byte
Bit 7 - Set Bit Status

0 - Clock started
1 - Clock not started

Bit 6 - Periodic interrupt bit
0 - Interrupt disabled
1 - Interrupt enabled

Bit 5 - Alarm interrupt bit
0 - Interrupt disabled
1 - Interrupt enabled

Bit 4 - Update-ended interrupt bit
0 - Interrupt disabled
1 - Interrupt enabled

Bits 3. 2 - Reserved
Bit 1 - Clock mode

0 - 12-hour mode
1 - 24-hour mode

Bit 0 - Reserved
Alarm hour in binary coded decimal (00 - 230)
Alarm minute in binary coded decimal (00-590)
Alarm seconds in binary coded decimal (00-590)

6-100 Real-Time Clock

04H - Set Device Parameters

• This routine sets the Real-Time Clock to its different modes.

• The possible value of the Return Code field is hex 0000.

Service Specific Input

SIZE OFFSET

Word 16H
Byte 19H

DESCRIPTION

Reserved
Real-Time Clock mode settings
Bits 7 to 2 - Reserved
Bit 1 - Hour mode

0 - 12-hour mode
1 - 24-hour mode

Bit 0 - Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

None

05H - Reset/lnltlallze (Reserved)

06H - Enable (Reserved)

07H - Dlsable (Reserved)

08H - Read (Reserved)

09H - Write (Reserved)

OAH - Additional Data Transfer (Reserved)

Real-Time Clock 6-101

OBH - Set Alarm Interrupt

• This routine sets the alarm time according to the input values.

• The Real-Time Clock must be started before calling this function
by using the Write Time and Date function (hex 12).

• A single Real-Time Clock interrupt may indicate the occurrence
of multiple interrupt types (alarm, periodic, or update-ended
interrupt). These interrupt types are activated individually
through the Set Alarm Interrupt (hex OB), Set Periodic Interrupt
(hex OD), or Set Update-Ended Interrupt (hex OF) functions. When
a Real-Time Clock interrupt occurs with multiple interrupt type
requests active, the caller is required to make a single call with
any one of the outstanding request blocks to service the multiple
outstanding requests. Upon return, the interrupt pending status
field indicates which interrupts occurred and were serviced.

• The Cancel Alarm Interrupt function (hex OC) is provided to
cancel an outstanding Set Alarm Interrupt function request and
must be called before changing a previously set alarm time.

• The possible values of the Return Code field are equal to
hex 0001, 0005, 8000, 8001, and 8002.

Service Specific Input

SIZE OFFSET

Byte 12H
Byte 13H
Byte 14H
DWord 16H

DESCRIPTION

Hours in binary coded decimal (00 - 230)
Minutes in binary coded decimal (00 - 590)
Seconds in binary coded decimal (00 - 590)
Reserved

Service Specific Output

SIZE OFFSET

Byte lAH

DESCRIPTION

Interrupt pending status
Bit 7 - Reserved
Bit 6 - Periodic interrupt
Bit 5 - Alarm interrupt
Bit 4 - Update-Ended interrupt
Bits 3 to 0 - Reserved

6-102 Real-Time Clock

OCH - Cancel Alarm Interrupt

• This function disables the alarm interrupt.

• The possible value of the Return Code field is equal to hex 0000.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 16H Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

None

ODH - Set Periodic Interrupt

• This routine sets the periodic interrupt periodic interval.

• The Real-Time Clock must be started before calling this function
by way of the Write Time and Date function (hex 12).

• A single Real-Time Clock interrupt may indicate the occurrence
of multiple interrupt types (alarm, periodic, or update-ended
interrupt). These interrupt types are activated individually
through the Set Alarm Interrupt (hex OB), Set Periodic Interrupt
(hex OD), or Set Update-Ended Interrupt (hex OF) functions. When
a Real-Time Clock interrupt occurs with multiple interrupt type
requests active, the caller is required to make a single call with
any one of the outstanding request blocks to service the multiple
outstanding requests. Upon return, the interrupt pending status
field indicates which interrupts occurred and were serviced.

• The Cancel Periodic Interrupt function (hex OE) is provided to
cancel an outstanding Set Periodic Interrupt request, and must be
called before changing a previously set periodic interrupt
interval.

• The possible values of the Return Code field are equal to
hex 0001, 0005, 8001, and 8002.

Real-Time Clock 6-103

ODH - Set Periodic Interrupt (continued)

Service Specific Input

SIZE OFFSET

Byte 10H

DWord 16H

DESCRIPTION

Periodic interrupt rate set
Bits 7 to 4 - Reserved
Bits 3 to 0 - Rate value set

0000 - None

Reserved

0001 - 30.517 µs
0010 - 61.035 µs
0011 - 122.070 µs
0100 - 244.141 µs
0101 - 488.281 µs
0110 - 976.562 µs
0111 - 1.953125 ms
1000 - 3.90625 ms
1001 - 7.8125 ms
1010 - 15.625 ms
1011 - 31.250 ms
1100 - 62.500 ms
1101 - 125.00 ms
1110 - 250. 00 ms
1111 - 500.00 ms

Service Specific Output

SIZE OFFSET

Byte lAH

DESCRIPTION

Interrupt pending status
Bit 7 - Reserved
Bit 6 - Periodic interrupt
Bit 5 - Alarm interrupt
Bit 4 - Update-Ended interrupt
Bits 3 to 0 - Reserved

OEH - Cancel Periodic Interrupt

• This routine disables the periodic interrupt.

• The possible value of the Return Code field is equal to hex 0000.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 16H Reserved

Service Specific Output

Size Offset Description

None

6-104 Real-Time Clock

OFH - Set Update-Ended Interrupt

• This function enables the Update-Ended interrupt.

• The Real-Time Clock must be started before calling this function
by way of the Write Time and Date function (hex 12).

• A single Real-Time Clock interrupt may indicate the occurrence
of multiple interrupt types (alarm, periodic, or update-ended
interrupt). These interrupt types are activated individually
through the Set Alarm Interrupt (hex OB), Set Periodic Interrupt
(hex OD) or Set Update-Ended Interrupt (hex OF) functions·. When
a Real-Time Clock interrupt occurs with multiple interrupt type
requests active, the caller is required to make a single call with
any one of the outstanding request blocks to service the multiple
outstanding requests. Upon return, the interrupt pending status
field indicates which interrupts occurred and were serviced.

• The Cancel Update-Ended Interrupt function (hex 10) is provided
to cancel an outstanding Set Update-Ended Interrupt request, and
must be called before restarting the Update-Ended interrupt.

• The possible values of the Return Code field are equal to
hex 00·01, 0005, 8001, and 8002.

Service Specific Input

SIZE OFFSET DESCRIPTION

DWord 16H Reserved

Service Specific Output

Size Offset

Byte lAH

Description

Interrupt pending status
Bit 7 - Reserved
Bit 6 - Periqdic interrupt
Bit 5 - Alarm interrupt
Bit 4 - Update-Ended interrupt
Bits 3 to 0 - Reserved

Real-Time Clock 6-105

1 OH • Cancel Update-Ended Interrupt

• This function disables the Update-Ended Interrupt.

• The possible value of the Return Code field is equal to hex 0000.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 16H Reserved

Service Specific Output

SIZE OFFSET DES CR I PTI ON

None

11 H - Read Time and Date

• This function reads the current setting of the Real-Time Clock.

• The Real-Time Clock must be started before calling this function
by using the Write Time and Date function (hex 12).

• The Time and Date fields are valid only when the Return Code
field is set to Operation Completed Successfully (hex 0000).

• The possible values of the Return Code field are equal to
hex 0000, 8000, and 8001.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word H>H Reserved

Service Specific Output

SIZE OFFSET

Byte 12H
Byte 13H
Byte 14H
Byte 15H
Byte 16H
Byte 17H
Byte 18H

DESCRIPTION

Alarm hour in binary coded decimal (ea - 23D)
Alarm minute in binary coded decimal (00-59D)
Alarm seconds in binary coded decimal (00-59D)
Century in binary coded decimal (19D or 20D)
Year in binary coded decimal (ea - 99D)
Month in binary coded decimal (01D - 12D)
Day in binary coded decimal (01D - 31D)

6-106 Real-Time Clock

12H - Write Time and Date

• This function starts the clock if it is not al ready started and sets
the time and date information according to the input parameters.

• The possible value of the Return Code field is equal to hex 0000.

Service Specific Input

SIZE OFFSET

Word 10H
Byte 12H
Byte 13H
Byte 14H
Byte 15H
Byte 16H
Byte 17H
Byte 18H

DESCRIPTION

Reserved
Hours in binary coded decimal (00 - 230)
Minutes in binary coded decimal (00 - 590)
Seconds in binary coded decimal (00 - 590)
Century in binary coded decimal (190 or 200)
Year in binary coded decimal (00 - 990)
Month in binary coded decimal (010 - 120)
Day in binary coded decimal (010 - 310)

Service Specific Output

SIZE OFFSET DES CR I PTI ON

None

Return Codes

Value Description

Operation Completed Successfully
Stage on Interrupt
Not My Interrupt, Stage on Interrupt
Device in Use
Real-Time Clock Not Started
Interrupt Already Enabled

OOOOH
0001H
0005H
BOOOH
8001H
8002H
COOOH
C001H
C003H
C004H

Invalid Logical ID (ABIOS Transfer Convention only)
Invalid Function Number
Invalid Unit Number
Invalid Request Block Length

Figure 6-9. Real-Time Clock Return Codes

Programming Considerations

• If the Real-Time Clock is in a clock update cycle, the Return Code
field is set to Device In Use (hex 8000).

Real-Time Clock 6-107

Notes:

6-108 Real-Time Clock

System Services

Functions
The following are the system services functions. The Default
Interrupt Handler function and the Return Logical ID Parameters
function are described in "Request Block" on page 4-3.

OOH - Default Interrupt Handler

01 H - Return Logical ID Parameters

02H - Reserved

03H - Used Internally by ABIOS

04H - Set Device Parameters (Reserved)

OSH - Reset/lnltlallze (Reserved)

O&H - Enable (Reserved)

07H - Disable (Reserved)

08H - Read (Reserved)

09H - Write (Reserved)

OAH - Additional Data Transfer (Reserved)

System Services 6-109

OBH • Switch To Real Mode

• This function switches the processor into real mode, and disables
Address Line 20.

• All interrupts, the Nonmaskable interrupt (NMI), 1/0 Channel
Check, and Parity are disabled. ABIOS gives control back to the
caller at the location pointed to by the Resume Pointer field. The
caller must reenable interrupts and the NMI.

• For 80386 systems, the selector to a Dummy Descriptor field in
the caller's global descriptor table must have its segment limit
set to the maximum (hex OFFFF). The base address can be any
value, and the Access Rights byte is set to:

Expand upward (E = 0)
- Writable (W = 1)
- Present (P = 1).

• The Return Code field is not updated in this function unless a
parameter error occurs. The (AH) register should be set to a
value other than O so it can be checked upon return.

Service Specific Input

SIZE OFFSET

DWord 10H
DWord 60H
Word 64H

DESCRIPTION

Reserved
Resume pointer
Selector to a dummy descriptor field

Service Specific Output

SIZE OFFSET DESCRIPTION

None

6-110 System Services

OCH - Used Internally by ABIOS

ODH - Enable Address Line 20

• This function enables Address Line 20.

• The possible value of the Return Code field is equal to hex 0000.

Service Specific Input

SIZE OFFSET DESCRIPTION

DWord H>H Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

None

OEH - Disable Address Line 20

• This function disables Address Line 20.

• The possible value of the Return Code field is equal to hex 0000.

Service Specific Input

SIZE OFFSET DESCRIPTION

DWord 10H Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

None

System Services 6-111

OFH - Speaker

• This function enables the system speaker with the input
frequency and duration.

• If the value of the Frequency Divisor field equals 0, or the value of
the Duration Counter field is equal to 0, no action is performed,
and the Return Code field is set to Operation Completed
Successfully (hex 0000).

• The possible value of the Return Code field is equal to hex 0000.

Service Specific Input

SIZE OFFSET DESCRIPTION

DWord 10H Reserved
Word 60H Frequency divisor

(1.19 MHz/freq.)= # frequency
(freq. div. = 1331 for 886 Hz freq.)

Byte 66H Duration counter in 1/64 seconds

Service Specific Output

SIZE OFFSET DESCRIPTION

None

Return Codes

Value Description

OOOOH Operation Completed Successfully
COOOH Invalid Logical ID (ABIOS Transfer Convention only)
C001 H Invalid Function Number
C003H Invalid Unit Number
C004H Invalid Request Block Length

Figure 6-10. System Services Return Codes

6-112 System Services

Nonmaskable Interrupt (NMI)

Functions
The following are the NMI functions. The Default Interrupt Handler
function and the Return Logical ID Parameters function are described
in "Request Block" on page 4-3.

OOH - Default Interrupt Handler (Reserved)

01 H • Return Logical ID Parameters

02H • Reserved

03H • Read Device Parameters (Reserved)

04H - Set Device Parameters (Reserved)

OSH • Reset/lnltlallze (Reserved)

O&H ·Enable

• This function unmasks the NMI.

• The possible value of the Return Code field is equal to hex 0000.

Service Specific Input

SIZE OFFSET DES CR I PTI ON

Word 21H Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

None

Nonmaskable Interrupt 6-113

07H - Disable

• This function disables the NMI for system board memory parity
and 1/0 channel check.

• The OMA bus time-out NMI and the watchdog time-out NMI
cannot be disabled through ABIOS.

• The possible value of the Return Code field is equal to hex 0000.

Service Specific Input

SIZE OFFSET DES CR I PTI ON

Word 21H Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

None

08H - Continuous Read

• This function returns the NMI status.

• If the NMI is caused by a OMA arbitration bus time-out, the
Interrupt routine returns the arbitration level that caused the
time-out.

• Upon return from the NMI Interrupt routine, the NMI is disabled.
The caller should reenable the NMI through the Enable function
(hex 06) if NMI interrupts are desired.

• The possible values of the Return Code field are equal to
hex 0001 and 0005.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 21H Reserved

6-114 Nonmaskable Interrupt

08H - Continuous Read (continued)

Service Specific Output

SIZE OFFSET

Word 10H

Byte lEH

Byte lFH

OESCRI PTI ON

Type of NMI
00H - Reserved
01H - Parity
02H - Channel check
03H - OMA Bus time-out
04H - Watchdog time-out
05H to FFFFH - Reserved
OMA arbitration level

which caused the OMA bus time-out
Slot number which caused the 1/0 channel check

09H - Write (Reserved)

OAH - Addltlonal Data Transfer (Reserved)

Return Codes

Value

OOOOH
0001H
0005H
COOOH
C001H
C003H
C004H

Description

Operation Completed Successfully
Stage on Interrupt
Not My Interrupt, Stage on Interrupt
Invalid Logical ID (ABIOS Transfer Convention only)
Invalid Function Number
Invalid Unit Number
Invalid Request Block Length

Figure 6-11. Nonmaskable Interrupt Return Codes

Nonmaskable Interrupt 6-115

Notes:

6-116 Nonmaskable Interrupt

Pointing Device

Functions
The following are the pointing device functions. The Default Interrupt
Handler function and the Return Logical ID Parameters function are
described in "Request Block" on page 4-3.

OOH - Default Interrupt Handler

01 H - Return Loglcal ID Parameters

02H - Reserved

03H - Read Device Parameters

• This function returns the current pointing device status and
package size setting.

• The possible values for the Data Package Size field are 1 through
8.

• The possible values of the Current Sample Rate field are hex OA,
14, 28, 3C, so, and ca.

• The possible value of the Return Code field is equal to hex 0000.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word lCH Reserved

Service Specific Output

SIZE OFFSET DES CR I PTI ON

Byte 10H Interface status
Bits 7 to 6 - Reserved
Bit 5 - Interface enable

0 - Disabled
1 - Enabled

Bits 4 to 0 - Reserved
Byte UH Data package size

Pointing Device 6-117

03H - Read Device Parameters

Service Specific Output (continued)

SIZE OFFSET DESCRIPTION

Word

Word

Word
DWord

12H

14H

16H
18H

Current pointing device status
Bits 15 to 7 - Reserved
Bit 6 - Mode

0 - Stream mode
1 - Remote/Poll mode

Bit 5 - Status
0 - Disabled
1 - Enabled

Bit 4 - Scaling
0 - Scaling 1:1
1 - Scaling 2:1

Bit 3 - Reserved
Bit 2 - Left button status

0 - Not pressed
1 - Pressed

Bit 1 - Reserved
Bit 0 - Right button status

0 - Not pressed
1 - Pressed

Current resolution
00H - 1 count/1 mm
01H - 2 count/l mm
02H - 4 count/1 mm
03H - 8 count/1 mm
04H to FFFFH - Reserved

Current sample rate
Time to wait before resuming request in microseconds

04H - Set Device Parameters (Reserved)

6-118 Pointing Device

05H - Reset/lnltlallze Pointing Device

• This function resets the pointing device. Upon completion the
pointing device is initialized as follows:

Package size remains unchanged.
Resolution = 4 counts/mm.
Sample rate = 100 reports/second.
Scaling = 1:1.
The pointing device is disabled.

• The possible values of the Return Code field are equal to
hex 0000, 0001, 0002, 0005, 8000, 8001, 8002, and 8003.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word lCH Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

Byte 10H Pointing device completion code
Byte llH Pointing device identification code
DWord 18H Time to wait before resuming request in microseconds

06H - Enable

• This function enables the pointing device.

• The possible values of the Return Code field are equal to
hex 0000, 0001, 0002, 0005, 8000, 8001, 8002, and 8003.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word lCH Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

DWord 18H Time to wait before resuming request in microseconds

Pointing Device 6-119

07H - Disable

• This function disables the pointing device.

• The possible values of the Return Code field are equal to
hex 0000, 0001, 0002, 0005, 8000, 8001, 8002, and 8003.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word lCH Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

DWord 18H Time to wait before resuming request in microseconds

08H - Continuous Read

• This function is called to read the pointing device; the pointing
device remains disabled. This function must be called before any
other pointing device function except the Return Logical ID
Parameters function (hex 01). Once it is called, the pointing
device can be enabled by calling the Enable function (hex 06).

• The possible values of the Return Code field are equal to
hex 0001 H, 0002H, 0005H, 0009H, 8000H, 8003H, and C005H.

Service Specific Input

SIZE OFFSET DES CR I PTI ON

Byte 10H Package size (in bytes)
00H - Reserved
01H - 1
02H - 2
03H - 3
04H - 4
05H - 5
06H - 6
07H - 7
08H - 8
09H to FFH - Reserved

DWord 12H Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

Byte lCH String of 12 bytes of data returned from the pointing device

6-120 Pointing Device

09H - Write (Reserved)

OAH - Addltlonal Data Transfer (Reserved)

OBH - Set Sample Rate

• This function sets the pointing device sample rate.

• The possible values of the Sample Rate field are hex OA, 14, 28,
3C, so, 64, and ca.

• The possible values of the Return Code field are equal to
hex 0000, 0001, 0002, 0005, 8000, 8001, 8002, and 8003.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 12H Sample rate in reports/second

Service Specific Output

SIZE OFFSET DESCRIPTION

DWord 18H Time to wait before resuming request in microseconds

OCH - Set Resolution

• This function sets the pointing device resolution.

• The possible values of the Return Code field are equal to
hex 0000, 0001, 0002, 0005, 8000, 8001, 8002, and 8003.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 12H Resolution
00H - 1 count/1 mm
01H - 2 counts/1 mm
02H - 4 counts/1 mm
03H - 8 counts/1 mm
04H to FFFFH - Reserved

Word lCH Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

DWord 18H Time to wait before resuming request in microseconds

Pointing Device 6-121

OOH - Set Scaling

• This function sets the pointing device scaling value.

• The possible values of the Return Code field are equal to
hex 0000, 0001, 0002, 0005, 8000, 8001, 8002, and 8003.

Service Specific Input

SIZE OFFSET DESCRIPTION

Byte 10H Scaling value
00H - Reserved
01H - Set scaling 1:1
02H - Set scaling 2:1
03H to FFH - Reserved

Word lCH Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

DWord 18H Time to wait before resuming request in microseconds

OEH - Read Pointing Device Identification Code

• This function returns the Pointing Device Identification Code.

• The possible values of the Return Code field are equal to
hex 0000, 0001, 0002, 0005, 8000, 8001, 8002, and 8003.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word lCH Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

Byte 10H Pointing device identification code
DWord 18H Time to wait before resuming request in microseconds

6-122 Pointing Device

Return Codes

Return Codes

OOOOH
0001H
0002H
0005H
0009H
8000H
8001H
8002H
8003H
9100H
COOOH
C001H
C003H
C004H

Description

Operation Completed Successfully
Stage On Interrupt
Stage On Time
Not My Interrupt, Stage on Interrupt
Attention, Stage on Interrupt, Data Available
Device in Use
Resend
Two Consecutive Resends Found
System Lock
Controller Failure
Invalid Logical ID (ABIOS Transfer Convention only)
Invalid Function Number
Invalid Unit Number
Invalid Request Block Length

Figure 6-12. Pointing Device Return Codes

Pointing Device 6-123

Programming Considerations

• The Read Pointing Device ID function (hex OE) returns the
Device ID read from the auxiliary device interface. The IBM
Pointing Device ID is hex 00.

· • For pointing device Read function (hex 08), the following byte
definitions apply:

Byte 1 - Status from pointing device
Bit 7 - Y data overflow

0 - No overfl ow
1 - Overflow

Bit 6 - X data overflow
0 - No overfl ow
1 - Overflow

Bit 5 - Y data sign
0 - Positive
1 - Negative

Bit 4 - X data sign
0 - Positive
1 - Negative

Bit 3 - Reserved (set to 1)
Bit 2 - Reserved (set to 0)
Bit 1 - Right button status

0 - Not pressed
1 - Pressed

Bit 0 - Left button status
0 - Not pressed
1 - Pressed

Byte 2 - X data from the pointing device
Byte 3 - Y data from the pointing device
Bytes 4 to 12 - Reserved

6-124 Pointing Device

Nonvolatile Random Access Memory (NVRAM)

Functions
The following are the NVRAM functions. The Default Interrupt
Handler function and the Return Logical ID Parameters function are
described in "Request Block" on page 4-3.

OOH - Default Interrupt Handler

01 H - Return Loglcal ID Parameters

02H - Reserved

03H - Read Device Parameters

• This function returns the NVRAM device parameters

• The possible value of the Return Code field is equal to hex 0000.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 16H Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

Word 22H Start of user RAM
Word 24H Length of user RAM

04H - Set Device Parameters (Reserved)

05H - Reset/lnltlallze (Reserved)

06H - Enable (Reserved)

07H - Disable (Reserved)

NVRAM 6-125

08H - Read NVRAM

• This function returns the data that is currently stored in the
specific location of the requested RAM (64-byte RAM or extended
RAM).

• If the value of the Number of Bytes to Transfer field is equal to 0,
no action is performed and the Return Code field is set to
Operation Completed Successfully (hex 0000).

• If the value of the Number of Bytes to Transfer field plus the value
of the Starting RAM Address field is greater than the maximum
amount of RAM, no action is performed, and the Return Code
field is set to Invalid NVRAM Parameter (hex COOS). The
maximum number of bytes is returned by the Read Device
Parameters function (hex 03).

• The possible values of the Return Code field are equal to
hex 0000, 80FE, 80FF, and COOS.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 10H Reserved
DWord 12H Data Pointer 1
Word 16H Reserved
DWord lAH Data Pointer 2
Word 20H Flag Word

Bit 15 - NMI state on exit
0 - NMI enabled
1 - NMI disabled

Bits 14 to 1 - Reserved
Bit 0 - RAM type

0 - 64-byte RAM
1 - Extended RAM

Word 22H Starting RAM address
Word 24H Number of bytes to transfer

Service Specific Output

SIZE OFFSET DESCRIPTION

None

6-126 NVRAM

09H - Write NVRAM

• This function writes the data supplied to the specified location of
the requested RAM (64-byte RAM or extended RAM).

• If the value of the Number of Bytes to Transfer field is equal to 0,
no action is performed, and the Return Code field is set to
Operation Completed Successfully (hex 0000).

• If the value of the Number of Bytes to Transfer field plus the value
of the Starting RAM Address field is greater than the maximum
amount of RAM, no action is performed and the Return Code field
is set to Invalid NVRAM Parameter (hex COOS).

• The possible values of the Return Code field are equal to
hex 0000, 80FE, 80FF, and COOS.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word leH Reserved
DWord 12H Data pointer 1
Word 16H Reserved
DWord lAH Data pointer 2
Word 20H Flag word

Bit 15 - NMI state on exit
0 - NMI enabled
1 - NMI disabled

Bits 14 to 1 - Reserved
Bit 0 - RAM type

0 - 64-byte RAM
1 - Extended RAM

Word 22H Starting RAM address
Word 24H Number of bytes to transfer

Service Specific Output

SIZE OFFSET DESCRIPTION

None

OAH Additional Data Transfer Function (Reserved)

NVRAM 6-127

OBH - Recompute Checksum

• This function recomputes the checksum for the requested RAM
(64-byte RAM or extended RAM).

• The possible values of the Return Code field are equal to
hex 0000, SOFE, and SOFF.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 16H Reserved
Word 20H Flag word

Bit 15 - NMI state on exit
0 - NMI enabled
1 - NMI disabled

Bits 14 to 1 - Reserved
Bit 0 - RAM type

0 - 64-byte RAM
1 - Extended RAM

Service Specific Output

SIZE OFFSET DESCRIPTION

None

Return Codes

Value Description

OOOOH Operation Completed Successfully
BOFEH NVRAM Check Sum Invalid
BOFFH NVRAM Battery Bad
COOOH Invalid Logical ID (ABIOS Transfer Convention only)
C001H Invalid Function Number
C003H Invalid Unit Number
C004H Invalid Request Block Length
COOSH Invalid NVRAM Parameter

Figure 6-13. Nonvolatile Random Access Memory {NVRAM) Return Codes

Programming Considerations

• The Read Device Parameters function (hex 03) returns the
locations of RAM within the extended RAM that are allocated to
the user. All other areas of the extended RAM and all areas of
the 64-byte RAM are reserved by IBM.

6-128 NVRAM

Direct Memory Access (OMA)

Functions
The following are the OMA functions. The Default Interrupt Handler
function and the Return Logical ID Parameters function are described
in "Request Block" on page 4-3.

OOH • Default Interrupt Handler

01 H • Return Logical ID Parameters

02H • Reserved

03H Read Device Parameters

• This function returns the OMA device parameters.

• The possible value of the Return Code field is equal to hex 0000.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 16H Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

Word 10H Maximum address in lMB
Word 12H Maximum direct memory access transfer size in lKB
Byte 14H Number of arbitration levels
Byte 15H Number of direct memory access channels

04H • Set Device Parameters (Reserved)

OSH - Reset/lnltlallze (Reserved)

O&H - Enable - for Interrupts (Reserved)

07H - Disabled • for Interrupts (Reserved)

08H - Read (Reserved)

09H - Write (Reserved)

OMA 6·129

OAH - Addltlonal Data Transfer (Reserved)

OBH - Allocate Arbitration Level

• This function allocates an arbitration level. The value of the
Arbitration Level to Allocate field should not exceed the value of
the Number of Arbitration Levels field returned in the Read
Device Parameters function.

• The possible values of the Return Code field are equal to
hex 0000, 8001, 8006, and COOS.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 16H Reserved
Byte lFH Arbitration level to allocate

Service Specific Output

SIZE OFFSET DESCRIPTION

None

OCH - Deallocate Arbitration Level

• This function makes available a previously user-allocated
arbitration level.

• Users of this function should only deallocate arbitration levels
that have been previously allocated by the user.

• The possible values of the Return Code field are equal to
hex 0000, 8002, 8004, and 8007.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 16H Reserved
Byte lFH Arbitration level to deallocate

Service Specific Output

SIZE OFFSET DESCRIPTION

None

6-130 OMA

ODH - Dlsable Arbitration Level

• This function disables the arbitration level in the OMA controller
for transfers that have been completed. Use the Abort function
(hex OF) to disable an arbitration level for a transfer that is in
progress.

• An auto-initialized mode arbitration level can be disabled only
through the Abort function (hex OF).

• The possible values of the Return Code field are equal to
hex 0000, 8002, and 8004.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 16H Reserved
Byte lFH Arbitration level to disable

Service Specific Output

SIZE OFFSET DESCRIPTION

None

OEH - Transfer Status

• This function returns the number of bytes left to transfer as read
from the OMA controller.

• The possible values of the Return Code field are equal to
hex 0000, 8002, and 8003.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 16H Reserved
Byte lFH Arbitration level to check

Service Specific Output

SIZE OFFSET DESCRIPTION

DWord 18H Number of bytes left to transfer

OMA 6-131

OFH -Abort

• This function accesses the OMA controller to disable an
arbitration level in the middle of a transfer and to read the
number of bytes left to transfer.

• This function should be used to disable a auto-initialized mode
arbitration level.

• The possible values of the Return Code field are equal to
hex 0000, 8002, 8003, and 8005.

Service Specific Input

SIZE OFFSET DESCRIPTION

Word 16H Reserved
Byte lFH Arbitration level on which to abort operation

Service Specific Output

SIZE OFFSET DESCRIPTION

DWord 10H Physical address when abort was issued
DWord 18H Count of data not transferred when abort was issued

6-132 OMA

1 OH - Read from Memory and Write to 110

• This function programs the OMA controller with the indicated
values from the Request Block.

• The possible values of the Return Code field are equal to
hex 0000, 8002, 8004, and COOS.

Service Specific Input

SIZE OFFSET DES CR I PTI ON

DWord 10H Physical address of memory
DWord 14H Physical address of I/0
DWord 18H Count of data to transfer
Byte lCH Mode Control

Bits 7 to 3 - Reserved
Bit 2 - Programmable I/O
Bit 1 - Reserved
Bit 0 - Auto initialization

Byte lDH Transfer Control 1
Bits 7 to 3 - Reserved
Bit 2 - Coµnt Control

0 - Increment
1 - Decrement

Bit 1 - Reserved
Bit 0 - Device size

(:) - 8-bit
1 - 16-bit

Byte lEH Transfer Control 2
Bits 7 to 1 - Reserved
Bit 0 - Device size

0 - 8-bit
1 - 16-bit

Byte lFH Arbitration level to use

Service Specific Output

SIZE OFFSET DESCRIPTION

None

OMA 6-133

11 H • Read from 1/0 and Write to Memory

• This function programs the OMA controller with the indicated
values from the Request Block.

• The possible values of the Return Code field are equal to
hex 0000, 8002, 8004, and C005.

Service Specific Input

SIZE OFFSET DESCRIPTION

DWord 10H Physical address of memory
DWord 14H Physical address of I/0
DWord 18H Count of data to transfer
Byte lCH Mode Control

Bits 7 to 3 - Reserved
Bit 2 - Programmable I/0
Bit 1 - Reserved
Bit 0 - Auto initialization

Byte lDH Transfer control 1
Bits 7 to 3 - Reserved
Bit 2 - Count control

0 - Increment
1 - Decrement

Bit 1 - Reserved
Bit 0 - Device size

0 - 8-bit
1 - 16-bit

Byte lEH Transfer control 2
Bits 7 to 1 - Reserved
Bit 0 - Device size

0 - 8-bit
1 - 16-bit

Byte lFH Arbitration level to use

Service Specific Output

SIZE OFFSET DESCRIPTION

None

6-134 OMA

12H -Verify

• This function programs the OMA controller with the indicated
values from the Request Block.

• The possible values of the Return Code field are equal to
hex 0000, 8002, 8004, and C005.

Service Specific Input

SIZE OFFSET DESCRIPTION

DWord H>H Physical address of memory
DWord 14H Physical address of I/0
DWord 18H Count of data to transfer
Byte lCH Mode control

Bits 7 to 3 - Reserved
Bit 2 - Programmable I/O
Bit 1 - Reserved
Bit 0 - Auto initialization

Byte lDH Transfer control 1
Bits 7 to 3 - Reserved
Bit 2 - Count control

0 - Increment
1 - Decrement

Bit 1 - Reserved
Bit 0 - Device size

e - 8-bit
1 - 16-bit

Byte lEH Transfer control 2
Bits 7 to 1 - Reserved
Bit 0 - Device size

e - 8-bit
1 - 16-bit

Byte lFH Arbitration level to use

Service Specific Output

SIZE OFFSET DESCRIPTION

None

OMA 6-135

Return Codes

Value

OOOOH
8000H
8001H
8002H
8003H
8004H
8005H
8006H
8007H
COO OH
C001H
C003H
C004H
C005H

Description

Operation Completed Successfully
Device in Use
Arbitration Level Not Available
Arbitration Level Not Allocated
Arbitration Level Disabled
Transfer in Progress or the Arbitration Level is not Disabled
No Transfer in Progress
No Channel Available
Arbitration Level Not Disabled
Invalid Logical ID (ABIOS Transfer Convention only)
Invalid Function Number
Invalid Unit Number
Invalid Request Block Length
Invalid OMA Parameters

Figure 6-14. Direct Memory Access (OMA) Return Codes

Programming Considerations

• OMA channels are defined as being physical or virtual. A
physical channel can only have one arbitration level assigned to
it. A virtual channel can be programmed to use any arbitration
level that is not currently assigned to a different channel.

• There is no difference in function between physical or virtual
channels. Priority of the channels is determined by the
arbitration level, with arbitration level O having the highest
priority and arbitration level hex OE having the lowest.

Note: Arbitration level F is reserved.

• To perform a OMA transfer operation, a caller performs the
following steps:

1. Ask for an arbitration level.

2. Set up a transfer to a device.

3. Disable the arbitration level.

4. Deallocate the arbitration level.

• Direct reading/writing of the OMA controller ports may cause
unpredictable results.

6-136 OMA

• The Mode Control field, and the Transfer Control fields 1 and 2
are filled in by the caller to indicate what characteristics should
be programmed to the OMA controller for the requested service.

• The Mode Control field bits are provided to use the
auto-initialization and programmable 1/0 options provided by the
OMA controller. The auto-initialization bit determines if
auto-initialization should occur when the transfer reaches
terminal count. The programmable 1/0 bit is set by the caller to
indicate that the 1/0 address is to be programmed to the OMA
controller. This will drive the indicated 110 address on the bus
during the OMA cycles instead of an 110 address of 0.

• Transfer Control Fields 1 and 2 are used to give information
relating to the physical address of memory field and the physical
address of 110 field for memory to 110, 110 to memory, and verify
functions. The device size bits indicate if the transfer is 8 or 16
bits. The Count control field is used to specify if the physical
address is incremented or decremented during a transfer.

OMA 6-137

Notes:

6-138 OMA

Programmable Option Select (POS)

Functions
The following are the POS functions. The Default Interrupt Handler
function and the Return Logical ID Parameters function are described
in "Request Block" on page 4-3.

OOH - Default Interrupt Handler

01 H - Return Loglcal ID Parameters

02H - Reserved

03H - Read Device Parameters (Reserved)

04H - Set Device Parameters (Reserved)

OSH - Reset/lnltlallze (Reserved)

O&H - Enable (Reserved)

07H - Dlsable (Reserved)

OBH - Read (Reserved)

09H - Write (Reserved)

OAH - Addltlonal Data Transfer Function (Reserved)

Programmable Option Select 6-139

OBH - Read Stored POS Data to Memory

• This function returns the programmable option select data that is
currently stored in 64-byte RAM or extended RAM for the
requested slot.

• For system board option select data, the output buffer contains
the system board option select byte.

• For adapter option select data, the output buffer contains four
bytes of data, adapter option select bytes 1, 2, 3, and 4.

• If the value of the Slot Number field is greater than the maximum
number of slots, no action is performed and the Return Code field
is set to Invalid POS Parameter (hex COOS).

• The possible values of the Return Code field are equal to
hex 0000, 80FE, 80FF, and COOS.

Service Specific Input

SIZE OFFSET DESCRIPTION

Byte 10H Slot number
Bits 7 to 4 - Reserved
Bits 3 to 0 - Slot number (values in binary)

0000 - System board
0001 - Slot 1
0010 - Slot 2
0011 - Slot 3
0100 - Slot 4
0101 - Slot 5
0110 - Slot 6
0111 - Slot 7
1000 - Slot 8

Byte llH Reserved
Word 14H Reserved
DWord 16H Pointer to data buffer
Word lCH Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

Word 12H Adapter ID

6-140 Programmable Option Select

OCH - Write Stored POS Data from Memory

• This function writes the programmable option select data to the
requested slot locations of the appropriate RAM (64 byte RAM or
extended RAM).

• For system board option select data, the output buffer contains
the system board option select byte.

• For adapter option select data, the output buffer contains 4 bytes
of data, adapter option select bytes 1, 2, 3, and 4.

• If the value of the Slot Number field is greater than the maximum
number of slots, no action is performed and the Return Code field
is set to Invalid POS Parameter (hex COOS).

• The possible values of the Return Code field are equal to
hex 0000, SOFE, 80FF, and COOS.

Service Specific Input

SIZE OFFSET DESCRIPTION

Byte 10H Slot number
Bits 7 to 4 - Reserved
Bits 3 to 0 - Slot number (values in binary)

0000 - System board
0001 - Slot 1
0010 - Slot 2
0011 - Slot 3
0100 - Slot 4
0101 - Slot 5
0110 - Slot 6
0111 - Slot 7
1000 - Slot 8

Byte llH Reserved
Word 12H Adapter ID
Word 14H Reserved
DWord 16H Pointer to data buffer
Word lCH Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

None

Programmable Option Select 8-141

OOH - Read Dynamic POS Data to Memory

• This function reads the supplied programmable option select data
to the adapter in the requested slot.

• For system board option select data, the output buffer contains
the system board option select byte.

• For adapter option select data, the output buffer contains 4 bytes
of data, adapter option select bytes 1, 2, 3, and 4.

• If the value of the Slot Number field is greater than the maximum
number of slots, no action is performed and the Return Code field
is set to Invalid POS Parameter (hex C005).

• The possible values of the Return Code field are equal to hex
0000 and COOS.

Service Specific Input

SIZE OFFSET DESCRIPTION

Byte 10H Slot number (values in binary)
Bits 7 to 4 - Reserved
Bits 3 to 0 - Slot number

0000 - System board
0001 - Slot 1
0010 - Slot 2
0011 - Slot 3
0100 - Slot 4
0101 - Slot 5
0110 - Slot 6
0111 - Slot 7
1000 - Slot 8

Byte UH Reserved
Word 14H Reserved
DWord 16H Pointer to data buffer
Word lCH Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

Word 12H Card ID

6-142 Programmable Option Select

OEH - Write Dynamic POS Data from Memory

• This function writes the supplied programmable option select
data to the adapter in the requested slot.

• For system board option select data, the output buffer contains
the system board option select byte.

• For adapter option select data, the output buffer contains 4 bytes
of data, adapter option select bytes 1, 2, 3, and 4.

• If the value of the Slot Number field is greater than the maximum
number of slots, no action is performed and the Return Code field
is set to Invalid POS Parameter (hex C005).

• The possible values of the Return Code field are equal to hex
0000 and C005.

Service Specific Input

SIZE OFFSET DESCRIPTION

Byte 10H Slot number (values in binary)
Bits 7 to 4 - Reserved
Bits 3 to 0 - Slot Number

Byte llH Reserved
Word 14H Reserved

0000 - System board
0001 - Slot 1
0010 - Slot 2
0011 - Slot 3
0100 - Slot 4
0101 - Slot 5
0110 - Slot 6
0111 - Slot 7
1000 - Slot 8

DWord 16H Pointer to data buffer
Word lCH Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

None

Programmable Option Select 6-143

Return Codes

Value

OOOOH
80FEH
80FFH
CO OOH
C001H
C003H
C004H
C005H

Description

Operation Completed Successfully
NVRAM Check Sum Invalid
NVRAM Battery Bad
Invalid Logical ID (ABIOS Transfer Convention only)
Invalid Function Number
Invalid Unit Number
Invalid Request Block Length
Invalid POS Parameter

Figure 6-15. Programmable Option Select (POS) Return Codes

6-144 Programmable Option Select

Keyboard Security

Functions
The following are the keyboard security functions. The Default
Interrupt Handler function and the Return Logical ID Parameters
function are described in "Request Block" on page 4-3.

OOH • Default Interrupt Handler

01 H • Return Loglcai ID Parameters

02H - Reserved

03H • Read Device Parameters

• This function returns the maximum password length.

• The possible value of the Return Code field is equal to hex 0000.

Service Specific Input

SIZE OFFSET DESCRIPTION

Byte llH Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

Byte 10H Maximum password length

04H • Set Device Parameters (Reserved)

OSH - Reset/Initialize (Reserved)

Keyboard Security 6-145

O&H - Enable

• This function enables password security.

• The possible values of the Return Code field are equal to
hex 0000, 8000, and 8003.

Service Specific Input

SIZE OFFSET DESCRIPTION

Byte llH Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

None

07H - Disable (Reserved)

08H - Read (Reserved)

09H - Write (Reserved)

OAH - Addltlonal Data Transfer (Reserved)

6-146 Keyboard Security

OBH - Write Password

• This function changes the password.

• If the Password Length field is 0, or greater than the maximum
password length, no action is performed and the Return Code
field is set to lnval id Keyboard Security Parameter (hex C005).

• The maximum password length is returned in the Read Device
Parameters function (hex 03).

• The possible values of the Return Code field are equal to
hex 0000, 8000, and 8003.

Service Specific Input

SIZE OFFSET DESCRIPTION

Byte 10H Password length (bytes)
Byte llH Reserved
Byte 12H First scan code
Byte 13H Second scan code
Byte 14H Third scan code
Byte 15H Fourth scan code
Byte 16H Fifth scan code
Byte 17H Sixth scan code
Byte 18H Seventh scan code

Service Specific Output

SIZE OFFSET DESCRIPTION

None

Keyboard Security 6-147

OCH - Write Invocation Byte

• This function changes the invocation byte scan code. This byte is
used to signal the system that security is enabled with a valid
password. After enabling security, the system sends this byte (by
using the keyboard interrupt) to the operating system as if it were
a scan code. If the invocation byte is 0, the system does not send
this byte after enabling keyboard security.

• The possible values of the Return Code field are equal to
hex 0000, 8000, and 8003.

Service Specific Input

SIZE OFFSET DESCRIPTION

Byte 10H Invocation byte scan code
Byte llH Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

None

ODH - Write Match Byte

• This function changes the match byte. This byte is used to signal
the system that security is deactivated with the correct password.
After the correct sequence is typed, the system sends this byte
(by using the keyboard interrupt) as if it were a scan code to the
operating system. If the match byte is 0, the system does not
send the this byte when keyboard security is disabled.

• The possible values of the Return Code field are equal to
hex 0000, 8000, and 8003.

Service Specific Input

SIZE OFFSET DESCRIPTION

Byte 10H Scan code
Byte llH Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

None

6-148 Keyboard Security

OEH - Write Fiiter Byte 1

• This function changes filter byte 1. The filter bytes are scan
codes that are ignored during password validation. For example,
it might be desirable to ignore the scan code for the shift keys.

• The possible values of the Return Code field are equal to
hex 0000, 8000, and 8003.

Servl~e Specific Input

SIZE OFFSET DESCRIPTION

Byte 10H Filter byte 1
Byte llH Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

None

OFH - Write Fiiter Byte 2

• This function changes filter byte 2. The filter bytes are scan
codes that are ignored during password validation. For example,
it might be desirable to ignore the scan code for' the shift keys.

• The possible values of the Return Code field are equal to
hex 0000, 8000, and 8003.

Service Specific Input

SIZE OFFSET DESCRIPTION

Byte 10H Filter byte 2
Byte llH Reserved

Service Specific Output

SIZE OFFSET DESCRIPTION

None

Keyboard Security 6-149

Return Codes

Value

OOOOH
8000H
8003H
COO OH
C001H
C003H
C004H
COO SH

Description

Operation Completed Successfully
Device Busy
Device Inhibited
Invalid Logical ID (ABIOS Transfer Convention only)
Invalid Function Number
Invalid Unit Number
Invalid Request Block Length
Invalid Keyboard Security Parameter

Figure 6-16. Keyboard Security Return Codes

6-150 Keyboard Security

Index

A
ABIOS parameters

adding 5-6, 5-12
bimodal 5-21
common data area 2-3, 2-4
data pointer 2-4
device block 1-5, 2-11
extending 5-6, 5-14
function transfer table 4-16
initialization 3-3, 5-9
parameters 4-13
patching 5-6, 5-12
protected mode 5-20
real mode 4-3, 5-20
replacing 5-6, 5-16
request block 1-4
rules for interrupt

processing 5-4
rules for operating system

implementation 5-20
transfer conventions 4-3
work area 4-13

ABIOS transfer convention 4-15,
4-16

See also OS transfer convention
anchor pointer 4-15
common interrupt 4-14
common start 4-14, 4-16
common time-out 4-14
parameter passing 4-15
request block 4-15
stack frame 4-15
stack pointer 4-15

ABIOS.SYS file 5-19
access rights byte 3-14
adapter ROM 3-4
adding

ABIOS 5-12
definition of 5-6

adding using RAM 5-10, 5-12
adding using ROM 5-7, 5-12
address pointers 5-22
allocating 1/0 buffers 5-22
anchor pointer

common data area 2-3
initialization table entry 3-10
operating system transfer

convention 4-16
word segment 5-24

anchor segment/selector 5-24
arbitration level 6-130
asynchronous

communications 6-69
additional data transfer

(reserved), OAH 6-74
cancel, 12H 6-87
combined (transmit and receive)

interrupts, 10H 6-83
default interrupt handler,

OOH 6-69
disable (reserved), 07H 6-74
enable (reserved), 06H 6-74
modem status interrupt,

11H 6-86
programming

considerations 6-91
read (reserved), 08H 6-74
read device parameters,

03H 6-69
receive interrupt, OFH 6-80
reserved, 02H 6-69
reset/initialize, 05H 6-71
return codes 6-91
return line status, 13H 6-89
return logical ID parameters,

01H 6-69
return modem status, 14H 6-90
set baud rate, OOH 6-77
set device parameters

(reserved), 04H 6-71

Index X-1

asynchronous communications
(continued)

B

set line control, OCH 6-76
set modem control, OBH 6-75
transmit interrupt, OEH 6-77
write (reserved), 09H 6-74

bimodal 5-21
common data area 2-3
data areas 5-23
data pointers 4-13
fields 5-22
implementations 5-21
protected mode tables 3-14

bimodal implementations 5-21
data area 5-23
function transfer table 5-22
1/0 privilege 5-22

BIOS
ABIOS and BIOS structure 5-8
accessing devices 4-6
data area 3-12
interrupt number 2-12
startup 3-3

build initialization table 5-8
build initialization table -

ABIOS 3-6
build initialization table - operating

system 3-6
build system parameters table 5-8
byte

access rights 3-14
revision 2-12

X-2 Index

c
call far 3-10, 4-14
common data area 2-12, 5-20

anchor pointer 2-3, 4-16
bimodal 2-3
bimodal mode 5-22
data pointer 2-4
data structure 1-4
detailed representation 2-5
function transfer table

pointer 2-5
function transfer tables 4-3
logical ID 2-4
protected mode 3-14, 3-15
real mode 5-22
transfer conventions 4-15

common interrupt 3-5, 4-15
common routines 4-15
common start 3-5, 4-15
common time-out 3-5, 4-15
continuous multistaged

requests 1-3
convention, ABIOS transfer 4-13
count of logical ID common port

pairs 2-13
count of logical IDs 2-5, 5-24
count of units 2-14
count, data pointer 2-6

D
data length, offset, segment n 5-24
data length, offset, selector n 5-25
data pointer 3-12, 5-20

common data area 2-4
count 2-6
count field 3-12
OMA 4-13
length 2-6, 3-8
length, initialization table 3-7
offset 2-6
protected mode tables 3-14
reserved 3-13
segment 2-6

data pointer count 5-24
data pointer fields 2-5
data pointer n 4-13
data pointer 1 4-13
data pointer 2 4-13
data structures

common data area 2-3
device block 2-9
request block 4-3

default interrupt handler 4-7, 5-5
device block 2-9

bimodal data areas 5-25
common data area 2-12
count of logical ID common port

pairs 2-13
count of logical ID exclusive port

pairs 2-13
count of units 2-14
device ID 2-12, 2-13
device unique data area 2-14
device unique data area

length 2-14
initialization 1-5
internal calls 2-12, 2-13
length 2-11, 5-14
length field 5-12
logical ID 2-12
logical ID common port

pairs 2-14
logical ID exclusive port pairs

0-n 2-14
multiple requests 2-11
permanent area 1-4
pointer 2-5, 5-20
private area 5-20
private data 1-5
public area 5-20
public data 1-5
revision 2-12
storage allocation 3-7
structure 2-11
unit unique 2-14
unit unique data area

length 2-14

device block length
initialization table 3-7

device block n segment:offset 5-24
device block n selector:offset 5-24
device block pointer

common data area entry 2-5
common routines 4-15

device busy 5-22
device control 4-7
device ID

extending 5-16
initialization table 3-7
initialize 3-10
replacing 5-14
revising common data

area 5-17
device serialization 6-4
device unique data area 2-14
device unique data length 2-14
direct memory access (OMA)

data pointer 32-bit address 4-13
device ID values 2-13
OMA controller 2-13
functions

See OMA functions
non-OMA devices 5-22
programming

considerations 6-136
required initialization 3-10
return codes 6-136

disk
functions 6-21

See also disk functions
programming

considerations 6-31
return codes 6-29

disk functions
default interrupt handler,

OOH 6-21
disable (reserved), 07H 6-23
enable (reserved), 06H 6-23
interrupt status, OCH 6-28
read device parameters,
03H 6-21

Index X-3

disk functions (continued)
read, 08H 6-23
reserved, 02H 6-21
reset/initialize, 05H 6-23
return logical ID parameters,

01H 6-21
set device parameters

(reserved), 04H 6-22
verify, OBH 6-27
write verify, OAH 6-26
write, 09H 6-25

diskette
functions

See diskette functions
programming

considerations 6-18
return codes 6-18

diskette functions
additional data transfer

(subfunction OOH - format),
OAH 6-11

default interrupt handler,
OOH 6-5

disable/reset interrupt, 07H 6-8
enable (reserved), 06H 6-8
interrupt status, 10H 6-17
read change signal status,

OEH 6-16
read device parameters,
03H 6-5

read media parameters,
OCH 6-14

read, 08H 6-9
reserved, 02H 6-5
reset/initialize, 05H 6-8
return logical ID parameters,

01H 6-5
set device parameters, 04H 6-7
set media type for format,

OOH 6-14
turn off motor, OFH 6-17
verify sectors, OBH 6-13
write, 09H 6-10

X-4 Index

DMA functions
abort, OFH 6-132
additional data transfer

(reserved), OAH 6-130
allocate arbitration level,

OBH 6-130
deallocate arbitration level,

OCH 6-130
default interrupt handler,

OOH 6-129
disable arbitration level,

OOH 6-131
disabled - for interrupts

(reserved), 07H 6-129
enable - for interrupts (reserved),

06H 6-129
read (reserved), 08H 6-129
read device parameters,

03H 6-129
read from 1/0 and write to

memory, 11H 6-134
read from memory and write to

110, 10H 6-133
reserved, 02H 6-129
reset/initialize (reserved),

05H 6-129
return logical ID parameters,

01 H 6-129
set device parameters

(reserved), 04H 6-129
transfer status, OEH 6-131
verify, 12H 6-135
write (reserved), 09H 6-129

doubleword 4-13
doubleword pointer 2-8, 5-25

E
end of interrupt (EOI)

interrupt routine 5-4
level-sensitive

environment 5-21
processing 5-3
unexpected hardware

interrupt 5-5
errors, parameter 6-4
exhaustive calling 5-5
extending 2-4

ABIOS 5-14
definition of 5-7

extending ABIOS 5-16
extending using RAM 5-18
extending using ROM 5-14, 5-18
extending with ABIOS 5-6

F
feature ROM 3-6
field

common data area . 2-5
data pointer 2-5
device block 2-11
device ID 2-13
number of entries 3-4
request block 1-6

field, number of entries 3-4
flag

BIOS function 3-4
build system parameters

table 3-4
caller 4-12
interrupt 4-12, 5-3, 5-20
interrupt flag 4-11
logical ID 4-8
request block 4-6, 4-10

function
category of operation 4-7
return logical ID

parameters 4-8
system functions performed 4-7

function count 5-25
function m 5-25
function transfer table 2-8

bimodal 5-22
common data area 2-7, 5-22
common data area pointer 2-4
doubleword pointer 2-8
function transfer table 5-9
initialization table 3-7
interrupt 2-8
interrupt routine 2-8
logical ID pointer 2-7
logical ID 2 3-14
pointer 2-6, 4-15, 5-20
pointers and mode change 5-22
protected mode 3-15, 5-22
real mode 5-22
start 2-3, 2-8
start routine 1-4, 2-8
time-out 1-4, 2-3, 2-8
time-out routine 2-8
word length 3-8

function transfer table n
selector:offset 5-24

function, print block 6-64
functional parameters 4-4

I
1/0 buffer area 4-13
110 privilege 5-21
initialization 3-3
initialization table

entry definitions 3-7
initialization table build 5-8
initialization table entry 3-5
initialize device block and function

transfer table routine pointer 3-7
initialize device block transfer

pointer 3-10, 5-9
initialize table build 5-12
interrupt 5-22, 5-25

combined transmit and
receive 6-83

Index X-5

interrupt (continued)
common 3-5
default interrupt handler 5-5
end of interrupt processing 5-3,

5-4
EOI (end of interrupt) 5-5
flag 4-11, 5-3, 5-20
flag state 5-4
flow of 5-3
handler 5-3
interrupt 1-4, 2-3
interrupt, not my 5-3, 5-4
level 5-3
level sensitive 5-5
level-sensitive

environment 5-21
logical ID n 5-6
not my interrupt 5-5, 5-21
processing rules 5-4
receive 6-80
servicing an interrupt 5-4, 5-5
sharing 1-7, 5-3
stage 5-20
table 1-7
transmit 6-77
vector table 1-7

interrupt flag 5-4, 5-20
interrupt level 5-3, 5-4

processing interrupts 5-4
interrupt processing

default interrupt handler 5-3
EOI (end of interrupt) 5-4
interrupt flag 5-3
interrupt level 5-3
interrupt sharing 5-3
interrupt, not my 5-4, 5-20
level sensitive 5-4
local address 5-4

interrupt routine 4-17
interrupt sharing 1-7, 5-3
interrupt vector table 1-7
interrupt, not my 5-4, 5-21

X-6 Index

K
keyboard

functions
. See keyboard functions

programming
considerations 6-58

return codes 6-58
keyboard functions

additional data transfer
(reserved), OAH 6-51

continuous read, 08H 6-51
default interrupt handler 6-49
disable, 07H 6-51
enable, 06H 6-50
read device parameters,

03H 6-49
read keyboard indicators,

OBH 6-52
read keyboard mode, OEH 6-55
reserved, 02H 6-49
reset/initialize keyboard,

05H 6-50
return logical ID parameters,

01H 6-49
set device parameters

(reserved), 04H 6-49
set keyboard mode, OFH 6-55
set typematic rate and delay,

OOH 6-54
write (reserved), 09H 6-51
write keyboard controller data

string, 10H 6-56
write keyboard data string,

11H 6-57
write keyboard indicators,

OCH 6-53
keyboard security

additional data transfer
(reserved), OAH 6-146

default interrupt handler,
OOH 6-145

disable (reserved), 07H 6-146
enable, 06H 6-146

keyboard security (continued)
read (reserved), 08H 6-146
read device parameters,

03H 6-145

L

reserved, 02H 6-145
reset/initialize (reserved),

05H 6-145
return codes 6-150
return logical ID parameters,

01H 6-145
set device parameters

(reserved), 04H 6-145
write (reserved), 09H 6-146
write filter byte 1, OEH 6-149
write filter byte 2, OFH 6-149
write invocation byte,

OCH 6-148
write match byte, OOH 6-148
write password, OBH 6-147

level sensitive
device condition 5-4
unexpected interrupts 5-5

limit ,data pointer 2-4
logical address 5-4, 5-21
logical ID

common data area 2-4
common port pairs 2-14
count of logical ID common port

pairs 2-13
count of logical ID exclusive port

pairs 2-13
definition of 2-12
exclusive port pairs 2-14
field 4-6
flag 4-8
values 2-12
with function transfer table 3_ 13
2 initialization 3-13

M
memory

build 3-4
data area relocation 5-4
logical address 5-21
physical address 5-21
protected mode 5-22
RAM extension headers 5-1 o
RAM extensions 5-9
RAM loadable code 5-9

microprocessor
ABIOS independent of 5-22
addressing capability 1-3
initialization mode 3-3
modes per cal I 5-4
real mode 1-5

mode change 5-22
model byte 5-18
modes

bimodal 3-12
common data area 3-15
current 4-13
data pointer I 4-9
logical 4-8, 4-13
physical 4-8, 4-13
processor 5-4
protected 3-14, 3-15
real 1-4,3-15
transfer data 4-8
x 5-4
y 5-4

multistaged 1-3

N
nonmaskable interrupt 6-113

functions
See nonmaskable interrupt

functions
return codes 6-115

nonmaskable interrupt functions
additional data transfer

(reserved), OAH 6-115
continuous read, 08H 6-114

Index X-7

nonmaskable interrupt functions
(continued)

default interrupt handler
(reserved), OOH 6-113

disable, 07H 6-114
enable, 06H 6-113
read device parameters

(reserved), 03H 6-113
reserved, 02H 6-113
reset/initialize (reserved),

05H 6-113
return logical ID parameters,

01H 6-113
set device parameters

(reserved), 04H 6-113
write (reserved), 09H 6-115

null common data area entry
extending using ABIOS 5-16
in the common data area 2-4
patching using ABIOS 5-14
revising using ABIOS 5-17

number of logical IDs 3-7
NVRAM (nonvolatile random access

memory)
additional data transfer function

(reserved), OAH 6-127
default interrupt handler,

OOH 6-125
disable (reserved), 07H 6-125
enable (reserved), 06H 6-125
programming

considerations 6-128
read device parameters,

03H 6-125
read NV RAM, 08H 6-126
recompute checksum,

OBH 6-128
reserved, 02H 6-125
reset/initialize (reserved),

05H 6-125
return codes 6-128
return logical ID parameters,

01H 6-125
set device parameters

(reserved), 04H 6-125

X-8 Index

NVRAM (nonvolatile random access
memory) (continued)

write NVRAM, 09H 6-127

0
offset data pointers 5-24
offset to data pointer o 2-5
operands 4-13
operating system

ABIOS compatibility 5-20
allocating 110 buffers 5-22
EOI (end of interrupt) 5-4
implementation

considerations 5-20
interrupt processing 5-20

operating system transfer
convention

See also ABIOS transfer
convention

common data area 4-16, 4-17
device block pointer 4-16
function transfer table

pointer 4-16
interrupt 4-16
parameter passing 4-16
stack frame 4-17
start 4-16
time-out 4-16

operating system/2 5-19

p
parallel port

additional data transfer
(reserved), OAH 6-65

cancel print block, OBH 6-65
default interrupt handler,

OOH 6-61
disabled (reserved), 07H 6-63
enable (reserved), 06H 6-63
print block, 09H 6-64
programming

considerations 6-67

parallel port (continued)
read (reserved), 08H 6-63
read device parameters,

03H 6-61
reserved, 02H 6-61
reset/initialize, 05H 6-63
return codes 6-66
return logical ID parameters,

01H 6-61
return printer status, OCH 6-66
set device parameters,

04H 6-62
parameter passing 4-16
parameters 4-13

default interrupt handler 4-7
device block 4-3
error 6-4
functional 4-4, 4-7
input 4-3, 4-4
logical ID flags 4-8
operand 4-13
output 4-3
read device 4-9
service specific 4-4, 6-3
set device 4-9
work area 4-4

patching
ABIOS 5-12
definition of 5-6

patching ABIOS 5-6, 5-12
patching using ROM 5-12, 5-14
permanent work area 1-4

ABIOS routines 1-4
storage 1-5

physical address 5-20
placeholder 2-4
pointer, data 2-6
pointer, segment 2-6
pointers

ABIOS rules 5-20
addressable 5-22
altering 5-20
anchor 3-10
common interrupt 4-16

pointers (continued)
common start 4-16
common time-out 4-16
data 2-4, 2-6, 3-12, 4-8
data pointer mode 4-9
device block 2-4, 2-5
doubleword 2-8, 4-13
function transfer table 2-6, 3-14,

5-20
in common routines 4-15
initialized 3-12
logical 4-13
logical address 5-21
logical ID 2-7
physical 4-8, 4-13
physical address 5-20
protected mode tables 3-14
request block 4-15, 5-20
reserved 3-13
segmented memory 5-22

pointing device
additional data transfer

(reserved), OAH 6-121
continuous read, 08H 6-120
default interrupt handler,

OOH 6-117
disable, 07H 6-120
enable, 06H 6-119
programming

considerations 6-124
read device parameters,

03H 6-117
read pointing device

identification code, OEH 6-122
reserved, 02H 6-117
reset/initialize pointing device,

05H 6-119
return codes 6-123
return logical ID parameters,

01H 6-117
set device parameters

(reserved), 04H 6-118
set resolution, OCH 6-121
set sample rate, OBH 6-121

Index X-9

pointing device (continued)
set scaling, OOH 6-122
write (reserved), 09H 6-121

port
count of logical ID common port

pairs 2-13
count of logical ID exclusive port

pairs 2-13
logical ID common port

pairs 2-14
logical ID exclusive port

pairs 2-14
POST (power-on self-test) 3-6
power supply
print block function 6-64
private data area 2-9
programmable option select

additional data transfer function
(reserved), OAH 6-139

default interrupt handler,
OOH 6-139

disable (reserved), 07H 6-139
enable (reserved), 06H 6-139
read (reserved), 08H 6-139
read device parameters

(reserved), 03H 6-139
read dynamic POS data to

memory, ODH 6-142
read stored POS data to memory,

OBH 6-140
reserved, 02H 6-139
reset/initialize (reserved),

05H 6-139
return codes 6-144
return logical ID parameters,

01H 6-139
set device parameters

(reserved), 04H 6-139
write (reserved), 09H 6-139
write dynamic POS data from

memory, OEH 6-143
write stored POS data from

memory, OCH 6-141

X-10 Index

programmed 110 5-22
protected mode

See also real mode
common data area 5-22, 5-24
function transfer table 5-22
110 privilege 5-21
invoking and interrupting 5-20
tables 3-14

public data area 2-9

R
RAM 3-4

adding using RAM 5-9, 5-11
extension 3-6, 5-19
extension area 5-9, 5-10
extension scan 3-6
layout of an extension 5-9, 5-11
structure 5-7
tests to determine

requirements 5-18
RAM extension 3-4
RAM extension area 3-4

header 3-11, 5-9, 5-10
scan 3-4, 5-9
structure 5-9

RAM extension header 5-9
RAM loadable code 5-9
RAM Scan

adding ROM 5-11
extending using ABIOS 5-16
invoking 5-8
patching using ABIOS 5-14
RAM structure 5-7

read device 4-9
real mode

See also protected mode
ABIOS function X 5-20
common data area 5-22, 5-24
environment 4-3
function transfer table 5-22

real-time clock 6-99
additional data transfer

(reserved), OAH 6-101

real-time clock (continued)
cancel alarm interrupt,

OCH 6-103
cancel periodic interrupt,

OEH 6-104
cancel update-ended interrupt,

10H 6-106
default interrupt handler,

OOH 6-99
disable (reserved), 07H 6-101
enable (reserved), 05H 6-101
programming

considerations 6-107
read (reserved), 08H 6-101
read device parameters,

03H 6-99
read time and date, 11H 6-106
reserved, 02H 6-99
reset/initialize (reserved),

05H 6-101
return codes 6-107
return logical ID parameters,

01H 6-99
set alarm interrupt, OBH 6-102
set device parameters,

04H 6"."101
set periodic interrupt,

OOH 6-103
set update-ended interrupt,

OFH 6-105
write (reserved), 09H 6-101
write time and date, 12H 6-107

receive interrupt 6-80
receive sequence 6-95
reentrancy 5-22
replacing

definition of 5-7
using ABIOS 5-16

request block 5-20
EOI (end of interrupt) 5-4
flags 4-10
function(IN) 4-7
functional parameters 4-6
length 4-6

request block (continued)
logical ID 4-6
no space for data pointers 4-13
pointer 5-20
relationship with common data

area 4-4
return code (IN/OUT) 4-10
return logical ID

parameters 4-9
size 4-6
structure 4-6
time-out 4-12
unit (IN) 4-6
within stack frames 4-12

request block flags (IN/OUT) 4-10
request block length

definition 3-8
functional parameters 4-4
initialization table 3-7

requests
continuous multistaged 1-3
multistaged 1-3
single-staged 1-3

return code
attention, stage on

interrupt 4-10
device error 4-10
device error with time-out 4-10
device in use, request

refused 4-10, 5-22
invalid function 4-10
invalid logical ID 4-10
invalid request block

length 4-10
invalid service specific

parameter 4-10
invalid unit number 4-10
not my interrupt 5-21
not my interrupt, stage on

interrupt 4-10
operation completed

successfully 4-10
possible values 4-10
retryable device error 4-10

Index X-11

return code (continued)
retryable device error with

time-out 4-10
retryable time-out error 4-10
return code field not valid 4-10
service specific unsuccessful

operation 4-1 O
set by ABIOS 5-3
stage on interrupt 4-10
stage on time 4-10
successful return code 5-4
time-out error 4-10
unexpected interrupt reset, stage

on interrupt 4-10
return logical ID parameters 4-9
revising ABIOS 5-17
revision

byte definition 3-8
changing using ABIOS 5-14
ROM level 5-18

ROM 3-4, 5-7
adding to 5-7
extending 5-14
header 5-8
patching 5-14
replacing 5-16
revision level 5-18
ROM module header 5-7
ROM scan 3-4, 5-7, 5-14
using adapter ROM 5-14

ROM header 3-11
ROM module header 5-7, 5-8
routines

common interrupt 4-14, 4-16
common start 4-14, 4-16
common time-out 4-14, 4-16

rules
interrupt processing 5-4
interrupts 5-5
operating system

implementation 5-20

X-12 Index

s
scan

RAM extension 3-6, 5-9, 5-10,
5-14

ROM 5-7, 5-14
secondary Device ID

determine the hardware
level 2-12

extending using ABIOS 5-16
revising using ABIOS 5-17

segment limit 3-11, 3-15
serialization, device 6-4
service identifiers 5-18
service specific

input 4-13
output 4-13
output parameter value 4-12
parameter definition 4-4
parameter detai Is 4-5
request block 4-4
return code values 4-10
with default interrupt

handler 5-5
sharing 1-7
sharing interrupts 5-3, 5-4
single-staged 1-3
stack frame 4-15, 5-22
stack pointer 4-15
stack required 3-5
staged

multistaged 1-3
singled-staged 1-3

start 5-25
start routine 4-10, 4-17
submode! byte 5-18
system board identifiers 5-18
system parameters table 3-5, 5-8
system services

additional data transfer
(reserved), OAH 6-109

default interrupt handler,
OOH 6-109

disable (reserved), 07H 6-109

system services (continued)
disable address line 20,

OEH 6-111
enable (reserved), 06H 6-109
enable address line 20,

OOH 6-111
read (reserved), 08H 6-109
reserved, 02H 6-109
reset/initialize (reserved),

05H 6-109
return codes 6-112
return logical ID parameters,

01H 6-109
set device parameters

(reserved), 04H 6-109
speaker,OFH 6-112
switch to real mode, OBH 6-110
used internally by ABIOS,

OCH 6-111
used internally by ABIOS,

03H 6-109
write (reserved), 09H 6-109

system timer

T

default interrupt handler,
OOH 6-97

programming
considerations 6-98

return codes 6-98
return logical ID 6-97

table, initialization table 3-6
tables, ABIOS

addressability 5-22
build initialization 3-6
build system parameters 5-11
function transfer 2-7, 2-8, 3-14
initialization 3-6, 3-7, 3-10
protected mode 3-14
ROM system parameter 5-8
segment limit 3-11
system parameters 3-4, 3-5, 5-8

time-out 5-22
as a pointer 5-25
field definition 4-12
function transfer table entry 2-8
functional parameter 4-4

ti me-out routine 4-17, 5-22
transfer convention 4-3, 4-13, 4-15
transmit interrupt 6-77
transmit sequence 6-93

u
unique

device unique data area
length 2-11, 2-14

unit unique data area 2-11
unit 4-6
updates to ABIOS 5-19

v
vector

interrupt 5-3
revectors a function 5-6
table 1-7

video
additional data transfer function

(reserved), OAH 6-36
alpha load, OFH 6-40
default interrupt handler,

OOH 6-33
disable (reserved), 07H 6-36
enable, 06H 6-36
enhanced alpha load, 10H 6-41
functions 6-33
modes 6-48
modes table, ABIOS 6-48
read (reserved), 08H 6-36
read block of color registers,

15H 6-46
read color register, 13H 6-44
read device parameters,

03H 6-33
read palette register, 11 H 6-43

Index X-13

video (continued)
reserved, 02H 6-33
reset/initialize, 05H 6-35
restore envlronmen~, OOH 6-39
return codes 6-48
return logical ID parameters,

01H 5..;33
return ROM fonts information,

OBH 6-37 .
save environment, OCH 6-38
select character generator block,

OEH 6-40
set device parameters

(reserved), 04H 6-34
write (reserved), 09H 6-36
write block of color registers,

16H 6-47
write color register, 14H 6-45
write palette register, 12H 6-43

video mode table 6-48
video modes 6-48

w
work area 4-5, 4-13

X·14 Index

Contents - Supplements

File supplements behind this page. Enter the name and the date of
each supplement in the space provided below.

NAME DATE

Asynchronous Communications July, 1987

Programmable Option Select May, 1988

NAME DATE

Asynchronous Communications Supplement

This supplement contains programming considerations that apply to
the Advanced BIOS section of the IBM Personal System/2 and IBM
Personal Computer BIOS Interface Technical Reference.

This information should be used in addition to the material covered in
the Advanced BIOS (ABIOS) section of this manual.

July 31, 1987

Programming Considerations

In the following listing the specific ABIOS function affected is
identified by its Device ID, Secondary Device ID, and Revision level.
This information is contained in the readable public data area of the
Device Block.

Asynchronous Communications

Device ID 06H
Secondary Device ID OOH
Revision OOH
Function Reset/Initialize (hex 05)
Description The hardware receive buffer is not cleared.

Asynchronous Communications

Device ID 06H
Secondary Device ID OOH
Revision OOH
Functions Transmit Interrupt (hex OE)

Receive Interrupt (hex OF)
Combined Interrupts (hex 10)

Description The head and tail pointers may equal the
buffer length when their maximum values
should be buffer length minus 1.

Asynchronous Communications

Device ID 06H
Secondary Device ID OOH
Revision OOH
Functions Receive Interrupt (hex OF)

Combined Interrupts (hex 10)
Description When an overrun error occurs with null

stripping activated and the character that
caused the overrun is a null character, the
receive routine discards the null character but
does not indicate that the overrun character
was a null character. This condition is
normally indicated by setting bit 12 of the
Operation Status field.

Asynchronous Communications Supplement

Programmable Option Select Supplement

This supplement contains programming considerations that apply to
the Advanced BIOS section of the IBM Personal System/2 and IBM
Personal Computer BIOS Interface Technical Reference.

This information should be used in addition to the material covered in
the Advanced BIOS (ABIOS) section of this manual.

May 5, 1988

Programming Considerations

In the following listing the specific ABIOS function affected is
identified by its Device ID; Secondary Device ID, and Revision level.
This information is contained in the readable public data area of the
Device Block.

Programmable Option Select (POS)

Device ID
Secondary Device ID
Revision
Functions

Description

10H
OOH
OOH, 01H
Read Stored POS Data to Memory (hex OB)
Write Stored POS Data from Memory (hex OC)
Read Dynamic POS Data to Memory (hex OD)
Write Dynamic POS Data from Memory
(hex OE)
The value of the Slot Number field is not
checked against the maximum number of
slots available. Therefore, the Return Code
field is not set to Invalid POS Parameter.

Programmable Option Select Supplement

---------- --------- - ---- -- ------------ ·-

© Copyright
International Business
Machines Corporation , 1988
All Rights Reserved

Printed in the
United States of America

References in this
Publication to IBM
products or services do not
imply that IBM intends
to make them available
outside the United States.

15F0306

