HOWARD W. SAMS & COMPANY 22638

Programmer’s Guide to

NetBIOS

W. David Schwaderer

Foreword by Dr. Robert M. Metcalfe,
3Com Corporation

NetBIOS Final Return Codes

00h Successful completion, good return

O1lh Invalid buffer length

03h Invalid command

05h Command timed-out

06h Incomplete received message

07h Local No-Ack command failed

08h Invalid local session number

0%h No resource available

OAh Session has been closed

OBh Command was canceled

0Dh Duplicate name in local NetBIOS name table

OEh NetBIOS name table full

OFh Name has active sessions and is now deregistered

11h NetBIOS local session table full

12h Session open rejected because no Listen is outstanding

13h Illegal name number

14h Cannot find name called or no answer

15h Name not found, or cannot specify asterisk (*) or O0h as first byte of NcbName,
or the name is deregistered and cannot be used

16h Name in use on remote adapter

17h Name deleted

18h Session ended abnormally

15h Name conflict detected

1Ah Incompatible remote device (PC Network)

21h Interface busy

22h Too many commands outstanding

23h Invalid number in NcbLanaNum field

24h Command completed while cancel occurring

25h Reserved name specified for Add Group Name

26h Command not valid to cancel

30h Name defined by another process (OS/2 Extended Edition only)

34h NetBIOS environment not defined (OS/2 Extended Edition only)

35h Required operating system resources (OS/2 Extended Edition only)

36h Maximum applications exceeded (OS/2 Extended Edition only)

37h No SAPs available for NetBIOS (OS/2 Extended Edition only)

38h Requested resources not available (OS/2 Extended Edition only)

40h System error (PC Network)

41h Hot carrier from a remote adapter detected (PC Network)

42h Hot carrier from this adapter detected (PC Network)

43h No carrier detected (PC Network)

4Eh Status bit 12, 14, or 15 on longer than one minute (Token-Ring)

4Fh One or more of status bits 8-11 on (Token-Ring)

50h-F6h Adapter malfunction

F7h Error on implicit DIR.INITIALIZE

F8h Error on implicit DIR.OPEN.ADAPTER

FOh IBM LAN Support Program internal error

FAh Adapter check

FBh NetBIOS program not loaded in PC

FCh DIR.OPEN.ADAPTER or DLC.OPEN.SAP failed—check parameters

FDh Unexpected adapter close

FFh Command-pending status

C

Programmer’s Guide to

NetBIOS

HOWARD W, SAMS & COMPANY
HAYDEN BOOKS

Related Titles

C Programmer’s Guide to
Serial Communications
Joe Campbell

C with Excellence:
Programming Proverbs
Henry Ledgard with John Tauer

QuickC™ Programming for
the IBM®

Carl Townsend

Turbo C® Developer’s Library

Edward R. Rought and Thomas D.
Hoops

C Programmer’s Guide to
Microsoft® Windows 2.0
Carl Townsend

The Waite Group’s Advanced
C Primer ++
Stephen Prata

The Waite Group’s C ++
Programming (Version 2.0)
Edited by The Waite Group

The Waite Group’s Microsoft®
C Bible
Naba Barkakati

The Waite Group’s Microsoft®
C Programming for the IBM®
Robert Lafore

The Waite Group’s Turbo C®
Bible
Naba Barkakati

The Waite Group’s Turbo C®
Programming for the IBM®
Robert Lafore

Hayden Books
C Library

Programming in C, Revised
Edition
Stephen G. Kochan

Programming in ANSI C
Stephen G. Kochan

Advanced C: Tips and
Techniques
Paul Anderson and Gail Anderson

Portability and the C
Language
Rex Jaeschke

Hayden Books UNIX®
System Library

Topics in C Programming
Stephen G. Kochan, Patrick H. Wood

For the retailer nearest you, or to order directly from the publisher,
call 800-428-SAMS. In Indiana, Alaska, and Hawaii call 317-298-5699.

C

Programmer’s Guide to

NetBIOS

W. DAVID SCHWADERER

W

HOWARD W. SAMS & COMPANY
A Division of Macmillan, Inc.
4300 West 62nd Street
Indianapolis, Indiana 46268 USA

Send code corrections that may be incorporated into the sample programs,
helpful insights, suggestions, and requests for technical assistance to:

W. David Schwaderer

c/o Howard W. Sams & Company
Public Relations Department
4300 West 62nd Street
Indianapolis, IN 46268

Please note the author may use and distribute the material you submit in any
way he believes is appropriate without incurring any obligation.

©1988 by W. David Schwaderer

FIRST EDITION
SECOND PRINTING — 1988

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying,
recording, or otherwise, without written permission from the publisher. No
patent liability is assumed with respect to the use of the information contained
herein. While every precaution has been taken in the preparation of this book,
the publisher and author assume no responsibility for errors or omissions.
Neither is any liability assumed for damages resulting from the use of the
information contained herein.

International Standard Book Number: 0-672-22638-3
Library of Congress Catalog Card Number: 88-62228

Acquisition Editor: James S. Hill

Development Editor: James Rounds

Production Coordinator: Marjorie Colvin

Editor: Albright Communications, Incorporated

Ilustrator: Donald B. Clemons

Cover Artist: Ned Shaw

Keyboarder: Lee Hubbard, Type Connection, Indianapolis
Indexer: Brown Editorial Service

Compositor: Shepard Poorman Communications Corporation

Printed in the United States of America

Trademark Acknowledgments

All terms mentioned in this book that are known to be trademarks or service
marks are listed below. In addition, terms suspected of being trademarks or
service marks have been appropriately capitalized. Howard W. Sams & Company
cannot attest to the accuracy of this information. Use of a term in this book
should not be regarded as affecting the validity of any trademark or service mark.

The following are trademarks of International Business Machines Corporation:
IBM, Personal System/2, PS/2, Operating System/2, OS/2, Operating System/2
Extended Edition, OS/2 EE, PC-DOS, IBM XT, and IBM AT.

Ethernet and Xerox are registered trademarks of Xerox Corporation.

Microsoft and Microsoft C are registered trademarks of Microsoft Corporation.

UNIX and AT&T are registered trademarks of American Telephone and Telegraph.

10 my family: Barbara, Greg, and Melissa
and
10 the incandescent intellects
of James T. Brady and Larry K. Raper

Contents

Foreword Xiii
Preface Xv
Part I Introduction to NetBIOS 1
1 Overview 3
Where Does NetBIOS Fit in the Scheme of Things? 3
Where Did NetBIOS Come From? 5
What Is “True NetBIOS”’? 6
How Do I Get NetBIOS? 6
What IBM NetBIOS Reference Material Is Available? 9

2 NetBIOS and IBM’s LAN Adapters 11
Token-Ring Environment 11
IBM PC Network Broadband Environment 13
IBM PC Network Baseband Environment 14
Ethernet Environment 15
IBM LAN Programming Interfaces 15

3 Application Services 19
NetBIOS Name Support 19
Datagram and Session Support 23

General Commands 30

vig

C Programmer’s Guide to NetBIOS

Issuing NetBIOS Commands
Testing for the Presence of NetBIOS

4 Ncb/Mcb Fields

Command

Return Code

Local Session Number
Name Number

Buffer Address

Buffer Length

Call (Remote) Name
(Local) Name

Receive Time Out

Send Time Out

Post Routine Address
LANA Number
Command Complete Flag
Reserved

Sample C Program to Test for NetBIOS Presence

The IBM PC-DOS LAN Support Program

What Is Its Role?
NetBIOS Parameter Summary

6 NetBIOS Relationships to Other IBM Products

IBM PC-DOS Version Requirements
IBM PC LAN Program Considerations

7 LAN Data Integrity and Security

LAN Data Integrity
LAN Data Security—A Word to the Wise
The Uneasy Conclusion

Part II NetBIOS Support Programming

8 General Support Programming
The NetBIOS RESET Sample Program

32
34

37

39
40
41
41
41
41
41
42
42
42
43
43
43
43
44

47

47
48

57

57
57

63
63

63
65

67

69

69

Contents

The NetBIOS Adapter Status Sample Program
The Adapter Reset and Adapter Status Synergy
The NetBIOS Cancel Sample Program
The NetBIOS Unlink Sample Program

9 Name Support Programming

The NetBIOS Name Activity Sample Program

10 Datagram Support Programming

11

12

13

The main() Function
InitDatagramNcb() and XmitDatagram()

Intermediate Datagram Applications

A Date and Time Server Application
A Date and Time Client Application

Real-Time LAN Conferencing Application

The main() Function

EditArgs()

NetBIOS Add Name Processing Routines
Participate()

ServiceDatagramNcbs()
ProcessReceivedDatagram()
ServiceKeyboard()

SendKeyboardMsg()

ApplyKeystroke()

C File Transfer Applications

Application Overview

14 Medialess Workstations, RPL, and Redirectors

Clients and Servers

Data Layers

A Redirector Implementation

A Block Device Driver Implementation
The INT 13 BIOS Interface

77
86
88
92

95
95

101

104
104

105

105
109

119

133
134
134
134
135
136
136
137
137

139
152

155

155
156
159
159
160

C Programmer's Guide to NetBIOS

A NetBIOS RPL Implementation—Or How Does PC-DOS
Get in There?

Part III A Cyclic Redundancy Check (CRC) Treatise

15 CRC Fundamentals

The Need for CRC Checking
The XMODEM Check Sum
CRC Mathematics

CRC Calculation

Prevalent CRC Polynomials

16 CRC-16 and CRC General Mechanics

CRC Hardware

Generalized CRC-16 Shifting
Table Look-Up Schemes
CRC Compatibility Caveats

17 CRC-CCITT and Minimum Look-Up Table Sizes
The Table Look-Up Approach

18 CRC-32—Token-Ring, PC Network, and Ethernet
Part IV NetBIOS Technical Reference

19 Network Control Block

Ncb Fields
Command Completion

20 NetBIOS Commands

The Commands

Special Value Summary
Complex Hang Up Scenario
Return Code Summary

160

167

169

169
170
170
174
177

181

183
189
192
198

199
200

207

219

221

221
228

231

231
260
261
261

Contents

Xi

Appendixes

A NetBIOS2.h Listing

B C Post Routine Listing -

C Error Codes, Reasons, and Actions

D Ncb Command and Field Relationship

E Send No-Ack and Chain Send No-Ack

F 0S/2 Extended Edition and LAN Manager
Bibliography

Index

263

265

271

275

287

291

295

301

303

Foreword

NetBIOS is an extremely important network programming interface. In
the PC-DOS arena NetBIOS provides a consistent interface for communi-
cation systems using IBM, XNS, TCP, IEEE and OSI protocols, among
others. As we networkers migrate our systems to new protocols such as
OS], to new LAN operating systems such as the OS/2 LAN Manager, and
to new hardware platforms such as the PS/2 and Macintosh II, NetBIOS’s
importance expands.

Schwaderer’s C Programmer’s Guide to NetBIOS gives clarity and
stability to a heretofore illusory de facto standard. It provides historical
perspective as well as a working NetBIOS reference. It illustrates princi-
ples and techniques for developing the growing variety of NetBIOS ap-
plications that operate on the many evolving LAN systems.

Dr. Robert M. Metcalfe
Ethernet Inventor
Founder, 3Com Corporation

Xiif

Preface

Network Basic Input/Output System (NetBIOS) is nearly a communica-
tion programmer’s dream come true. Is NetBIOS perfect? I doubt it, but
it takes so little effort to master and provides such a remarkably powerful
LAN communications programming platform that I feel compelled to
share it with the uninitiated—its innate simplicity as well as some of its
more obscure areas.

With the information in this book, you will learn

e a history of NetBIOS and how it interrelates with other IBM hard-
ware and software

name, datagram, and session support programming

the Ncb fields

LAN data security and integrity

CRC fundamentals

NetBIOS commands

Example listings throughout the book demonstrate application prin-
ciples and the Appendixes provide ready reference tables and programs.

Acknowledgments

Two friends are mentioned in the dedication. The first, Jim Brady, is cur-
rently my second-level manager. I am especially indebted to him for as-
signing me to LAN-related projects for most of the two and one-half years
I have worked in IBM’s disk-drive division. My assignments allow me to
keep abreast of developments in LAN technology in a way that is presum-
ably useful to our division. Thankfully, Jim has not wandered too far into
communication subjects, or my life at work would be doubly difficult.

Xv

Xvi

C Programmer’s Guide to NetBIOS

The second fellow is Larry Raper. He occasionally calls me at mid-
night to suggest an approach for a program I am working on. This is re-
markable because midnight in San Jose means Larry is calling at 3:00
A.M. from the east coast. The sample C Post Routine in Appendix B
is a direct consequence of one of these calls. Larry is one of the most
brilliant programming craftsmen and system designers in the industry.
Simply put, there are some as good, but none better anywhere. The in-
ternal clarity, design elegance, and concussion of Larry’s programs can
reduce even the most gifted programmers to despondency.

I am most grateful that the paths of these two fellows have crossed
mine to change it immeasurably for the better. In the event that you
know or come to know them, you might not want to mention this tribute
to them as they would likely immolate in crimson distress. It can be a
secret we share.

Finally, my deepest thanks to Nancy Albright for her remarkable edit-
ing skills, to Jim Rounds and Marj Colvin for their coordinating efforts, to
Ned Shaw for his spectacular cover, and to my acquisition editor, Jim Hill.
His personal integrity is the principal reason I initially signed with How-
ard W. Sams, and my regard for him has yet to change.

This book was written on an IBM PC-AT using Wordproof and
the Personal Editor II. The programs were compiled using the Microsoft
C 5.0 compiler and were debugged using the compiler’s CodeView de-
bugger assisted by an Atron Miniprobe.

Good luck with NetBIOS and drop a line if you will. I'd love to hear
your thoughts on what might have been done better in this book or how
you are using NetBIOS to improve your work. If you find any errors or
have any suggestions, please write me in care of the publisher. I will do
everything I can to personally reply and fix the problem in the next print-
ing. Thanks in advance.

W. David Schwaderer
San Jose, California
August 1988

Part 1

Introduction to NetBIOS

Overview, 3

NetBIOS and IBM's LAN Adapters, 11

Application Services, 19

Ncb/Mcb Fields, 37

The IBM PC-DOS LAN Support Program, 47
NetBIOS Relationships to Other IBM Products, 57
LAN Data Integrity and Security, 63

Chapter 1

Overview

The Network Basic Input/Output System (NetBIOS) is an application
programming interface for data exchange between data sources and data
sinks. Loosely speaking, NetBIOS is a programming gateway to sets of
services that allow computer applications and devices to communicate.
Application programs must generally invoke these various NetBIOS serv-
ices using specific command sequences. Hence, NetBIOS has explicit,
though minimal, protocols associated with some of its services.

Typically, data exchange occurs between NetBIOS applications resid-
ing within separate machines connected by a Local Area Network (LAN).
However, two applications within the same machine can also use Net-
BIOS for data communication without a LAN. Thus, though all IBM Net-
BIOS implementations require a LAN adapter, NetBIOS use is not
restricted to LAN environments.

Where Does NetBIOS Fit in the Scheme of Things?

If you are familiar with data communication theory, you might recall the

International Standards Organization (ISO) Open Systems Interconnec-

tion (OSI) Reference Model depicted in Figure 1-1. This conceptual

model divides the various activities, typically required to effect orderly

- data communication between two applications residing in distinct ma-

chines, into seven discrete processes or “layers.” NetBIOS’s location
within this conceptual model is also illustrated in Figure 1-1.

During application-to-application communication, each layer within

a given machine directly coordinates message-passing activities with the

Part I: Introduction to NetBIOS

Peer

< >
Layers
Computer 1 Computer 2
4
Application > Application
Presentation Presentation
———— NetBIOS NetBIOS
Session Session
Adjacent
Layers Transport Transport
Network Network
Data Link Data Link
Physical Physical
v
Physical Media (air, fiber optic cable, twisted-pair wire, etc.)

Fig. 1-1. ISO/OSI Reference Model.

adjacent layers immediately above and below it. This type of communi-
cation is called adjacent-layer communication. In addition, each layer
within a machine also indirectly coordinates its message-passing activi-
ties with its peer-level counterpart within the other machine. This type
of communication is called peer-layer communication.

NetBIOS is situated high within the reference model hierarchy, so ap-
plications that program to the NetBIOS interface are largely isolated and
essentially insulated from the precise way the lower layers interact with
their peer and adjacent layers. For example, two NetBIOS applications
may communicate using IBM PC Network adapters. The underlying
communication may be accomplished using the native Session Manage-
ment Protocol (SMP) located on the adapter card. The applications may
also use the IBM PC LAN Support Program which uses IEEE 802.2 Logi-

Chapter 1: Overview 5

cal Link Control (LLC) protocols. In any event, the application programs
are insulated from the precise protocols used.

This immunity allows general NetBIOS application portability across a
spectrum of communication environments, though the portability is usu-
ally not total. For example, each type of IBM LAN has a specific NetBIOS
implementation, or will have according to one of IBM’s statements of direc-
tion issued at the introduction of the IBM PC Network. Because of the vari-
ety of IBM’s LAN offerings, the precise effect of some NetBIOS commands
does vary by LAN offering and the same is generally true for other NetBIOS
implementations within other communication environments. However,
because of the significant portability of NetBIOS applications and Net-
BIOS’s intuitive simplicity, NetBIOS has rapidly become an uncontested de
facto industry standard. Moreover, while not a perfect fit, NetBIOS inter-
faces are also appearing for other communication environments such as
the popular TCP/IP and emerging MAP/TOP environments.

NetBIOS is rapidly becoming a pervasive data communication pro-
gramming platform within a variety of operating environments such as
PC-DOS, OS/2, and UNIX. Thus, if you are facile with NetBIOS program-
ming, you possess a very marketable skill within an exploding market.

Where Did NetBIOS Come From?

NetBIOS first appeared in August 1984 with the IBM PC Network adapter
card designed for IBM by Sytek Inc. The IBM PC Network was IBM’s first
LAN. It provides a 2-megabit per second data transmission burst rate
across a broadband coaxial cable, using the popular industry standard
Carrier Sense Multiple Access Carrier Detect (CSMA/CD) access method
that first appeared with IEEE 802.3 Ethernet.

Located on the IBM PC Network LAN Adapter (LANA) is an extended
BIOS ROM referred to as the LANA's Network Adapter BIOS. This ROM
module occupies 8K bytes of memory, starting at memory segment
CCO00h, and contains the LANA initialization routines, diagnostics,
coprocessor and PC memory interface routines, and part of the first Net-
BIOS implementation. The remainder of this implementation is located
on a second adapter ROM referred to as the adapter’s protocol ROM. The
adapter ROM also contains routines that allow a medialess (no bootable
hard disk or available diskette) IBM PC to boot from a boot-server con-
nected to the same network. The surrogate diskette boot process is re-
ferred to as Remote Program Load (RPL) and invokes the coresident ROM
NetBIOS services to achieve its purpose.

6 Part I Introduction to NetBIOS

What Is ‘“True NetBIOS’’?

The industry standard TCP/IP NetBIOS implementations, first demon-
strated in December 1987, required NetBIOS extensions for resolution of
internetwork routing between, and name resolution within, intercon-
nected network environments. Because the MAP/TOP implementations
are in their embryonic stages as of this writing, differences are likely to
appear there as well.

Within the IBM product line, the current version of the IBM LAN
Support Program provides the “true NetBIOS” implementation because
it provides NetBIOS support for all of IBM’s LAN adapters through a vari-
ety of PC-DOS device drivers.

One significant advantage of this program is that it allows IBM’s vari-
ous adapters to communicate with each other via an intermediary PC or
PS/2* running the IBM Token-Ring/PC Network Interconnect Program.
This enables IBM PC Network LAN workstations to communicate with
Token-Ring based workstations, among other things. Thus, strategic rea-
sons alone dictate that the IBM LAN Support Program’s NetBIOS imple-
mentation supersede the original implementation as the true NetBIOS
industry standard. ‘

How Do I Get NetBIOS?

If you are using an IBM LAN, the answer to this question requires a histor-
ical product survey, which follows. Otherwise, consult your system ven-
dor.

Original PC Network LANA Card

NetBIOS is automatically included on each IBM PC Network Adapter
LANA card. However, because the LANA ROM is a PC BIOS extension, it,
like the PC-XT Fixed Disk Adapter, Extended Graphics Adapter (EGA),
etc., requires the presence of the PC BIOS Extended BIOS Option. This
feature is automatically included with every IBM PC model except the
original IBM PC (i.e., is available with the IBM PC-XT, IBM PC-AT, etc.).

In the case of the original IBM PC, this requires a BIOS-ROM upgrade

*PC includes the IBM PC family (excluding the PC Junior) and the PS/2 family, unless
explicitly stated otherwise. :

Chapter 1: Overview 7

before the NetBIOS is usable. The effect of the upgrade is that after exe-
cuting its Power-On-Self-Tests (POST) and initialization routines—but
before loading PC-DOS—the PC scans PC memory for BIOS extensions.
The BIOS starts at memory location C800:0000 and looks for the ex-
tended ROM signature value of AAS5h every 2K bytes. Because IBM no
longer provides BIOS ROM upgrade kits, check with your systems sup-
plier for alternate ways to install this capability.

If the AA55h value is found, a BIOS extension is detected and exe-
cuted by calling the instruction three bytes beyond the AA55h value.
This permits the ROM extension to perform various activities, such as
adapter and interrupt vector initialization. When complete, each ROM
extension returns to the PC BIOS, allowing the PC BIOS to continue its
memory scan for more ROM extensions. Hence, individual or multiple
BIOS extensions initialize in an orderly manner.

Subsequent to the availability of the first LANA NetBIOS, IBM up-
graded the Network Adapter BIOS with another version of the ROM. If
you have a LANA adapter, you can determine whether you have the ini-
tial NetBIOS ROM or the upgraded one. Using PC-DOS’s DEBUG.COM
program, you can display the value at memory location CC00:0000. Near
that location you see the Network Adapter BIOS part number, which is
either 6360715 for the original version or 6480417 for the upgraded ver-
S101.

You can also visually inspect the actual LANA NetBIOS chip, which is
positioned in an upside-down orientation on the lower edge of the card
immediately above the lefthand side of the adapter’s PC bus connector.
Figure 1-2 illustrates the position of the ROM chip.

The original ROM’s copyright date has the year 1984 and the updated
version, 1985. These dates are also displayed in memory near the Net-
work Adapter BIOS part number.

NetBIOS ROM —¥|

W

Fig. 1-2. Location of the PC Network LANA NetBIOS ROM chip.

Part I: Introduction to NetBIOS

NETBIOS.COM

NETBIOS.COM is a complete NetBIOS replacement for the PC Network
LANA NetBIOS. It is included with versions of the IBM PC LAN Program.
Unlike the NetBIOS ROM version, NETBIOS.COM occupies memory
within the 640K PC memory address space. When the IBM PC LAN Pro-
gram executes, and when the adapter’s NetBIOS ROM has an earlier date
than the NETBIOS.COM module, the IBM PC LAN Program automati-
cally loads and executes NETBIOS.COM as part of its initialization pro-
cess. This completely replaces the ROM’s NetBIOS services, upgrading
the NetBIOS ROM.

Note that NETBIOS.COM can be executed as part of an AUTOEXEC.
BAT initialization procedure (or AUTOUSER.BAT in instances where the
IBM PC LAN Program has usurped AUTOEXEC.BAT) if you wish to use
NetBIOS prior to running your licensed copy of the IBM PC LAN Pro-
gram.

In the event you have the original NetBIOS and do not have an au-
thorized copy of NETBIOS.COM, contact your authorized IBM sales rep-
resentative for replacement policy information.

The IBM Token-Ring’s NETBEUI

When IBM introduced the IBM Token-Ring in October 1985, it provided
it with a NetBIOS programming interface. The NetBIOS support ap-
peared as a separately purchased module named NETBEUI.COM, which
is an acronym for NetBIOS Extended User Interface.

NETBEUI.COM requires another module named TOKREUI.COM
(Token-Ring Extended User Interface). TOKREUI.COM is included on
the Token Ring Guide To Operations Diskette and provides another com-
munication programming interface known as Data Link Control (DLC),
which uses a different set of communication protocols than LLC.
NETBEUI.COM translates NetBIOS commands into DLC commands and
presents them to the DLC interface. The 7oken-Ring’s Technical Refer-
ence Manual documents NETBEUL.COM’s services, which have minor
deviations from the IBM LANA NetBIOS services.

The IBM LAN Support Program

IBM’s latest implementation of NetBIOS is an IBM LAN Support Program
component named DXMTOMOD.SYS which works in conjunction with

Chapter 1: Overview 9

other Program modules. All DLC and NetBIOS support is provided by
combinations of members within the Program’s PC-DOS device drivers
families. The specific device drivers you select depend on your particu-
lar PC and optional software. DXMTOMOD.SYS can have 26 parameters
which customize the installation of the Program.

What IBM NetBIOS Reference Material Is Available?

The PC Network Technical Reference Manual, the Token-Ring Network
PC Adapter Technical Reference Manual, and the IBM NetBIOS Applica-
tion Development Guide provide documentation and assistance in appli-
cation and implementation of NetBIOS.

PC Network Technical Reference Manual

The PC Network Technical Reference Manual (IBM Part Number
6322505) documents the original PC Network LANA NetBIOS program-
ming interface and includes a Network Adapter BIOS listing in Appendix
D. However, the LANA protocol ROM largely implements the actual Net-
BIOS and no LANA protocol ROM listing is provided. Using PC-DOS DE-
BUG.COM to examine the code shipped on the first version of the
Network Adapter BIOS, and comparing it to the code in the listing,
quickly reveals that the two are not identical. On page D-17, the listing
mentions two PC-DOS include files that are not listed in the manual. One
of them, NetBIOS.LIB, is present on the IBM PC Network Sample Pro-
gram Diskette accompanying the Manual. The other, LANAS.INC, is un-
documented. ‘

For these and other reasons, the Manual has limited utility in provid-
ing an example NetBIOS implementation, although it has important RPL
information as well as RPL sample program listings on the Diskette. Curi-
ously enough though, the 1984 LANA NetBIOS code listing compares
the BIOS model signature byte to an FCh constant (for a PC-AT) and asks
the question “On a PC-3?” as a comment.

Token-Ring Network PC Adapter Technical Reference Manual

Chapter 5 of the Token-Ring Network PC Adapter Technical Reference
Manual (IBM Part Number 69X7830) documents the NETBEUL.COM

Part I: Introduction to NetBIOS

programming interface, which varies slightly from the original PC Net-
work LANA NetBIOS programming interface. Specifically, two additional
commands are provided, as well as additional return codes, use of a pre-
viously reserved area, and different status information reflecting the dif-
ferences between a CSMA/CD and Token-Ring environment. The Sample
Diskette contains some of the same program listings as the PC Network
Technical Reference Manual Sample Diskette.

IBM NetBIOS Application Development Guide

The IBM NetBIOS Application Development Guide (IBM Part Number
S68X-2270) describes the NetBIOS programming interface and provides
pseudocode for the NetBIOS commands as well as the NetBIOS com-
mands used with the PC Network Protocol Driver Program. The PC Net-
work Protocol Driver Program allows PC Network II and PC Network
II/A adapters to communicate with the original PC Network LANA
adapter cards using the original LANA protocols.

DXMINFQ.DOC

The IBM LAN Support Program device drivers are provided on a PC disk-
ette along with a printable file named DXMINFO.DOC. This file contains
several pages of critical late-breaking NetBIOS and adapter configuration
information. It also documents the 26 DXMTOMOD.SYS NetBIOS input
parameters (discussed in Chapter 5). Be warned the information has a
definite LLC terminology orientation.

NetBIOS is a pervasive communications programming interface
available within a variety of operational environments. Its several imple-
mentations vary in minor ways, reflecting differences within specific
communication environments. Because of its innate simplicity and intu-
itive approach, NetBIOS has become an uncontested industry de facto
standard. For the sake of simplicity, this book only discusses IBM’s PC
LANs, though the discussion is generally extendable to numerous other
environments.

Chapter 2

NetBIOS and IBM’s LAN Adapters

IBM offers a variety of PC LAN adapters spanning five LAN environ-
ments:

Token-Ring

PC Network Broadband

PC Network Baseband
Ethernet

the IBM Industrial Network

IBM currently provides a NetBIOS implementation for each of these
offerings except the Industrial Network and issued an August 1984 state-
ment of direction that it would provide a NetBIOS interface for an “IBM
Industrial local area network using the token-bus protocol.”

The following hardware discussion is brief and illustrates the wide
spectrum of IBM LAN adapter offerings. For a more detailed discussion
of the individual adapters and the LAN technologies involved, consult
IBM's Local Area Networks: Power Networking and Systems Connectiv-
ity (Schwaderer 1988).

Token-Ring Environment

IBM’s strategic LAN, the Token-Ring, provides a 4-megabit burst trans-
mission rate on shielded and unshielded twisted-pair wiring using a to-
ken access method within a ring topology. All IBM Token-Ring adapters
transmit data signals on shielded twisted-pair copper wire using electri-
cal voltage-level variations.

11

12

Part I: Introduction to NetBIOS

IBM has also announced work on a 16-megabit shielded twisted-pair
version, as well as a 100-megabit fiber optic Token-Ring based on the
ANSI X3T9.5 Fiber Distributed Data Interface (FDDI) draft standard.

Currently, IBM provides five Token-Ring Adapters:

IBM Token-Ring Network PC Adapter

IBM Token-Ring Network PC Adapter II

IBM Token-Ring Network Adapter/A

IBM Token-Ring Network Trace and Performance Adapter II
IBM Token-Ring Network Trace and Performance Adapter/A

The IBM Token-Ring Network PC Adapter operates in IBM PCs, PC-
XTs, PC-ATs, and PS/2 models 25 and 30, and contains 8K bytes of on-
board shared-RAM for network functions and an empty socket which al-
lows installation of an 8K-byte RPL feature EPROM.

The 8K bytes are referred to as shared-RAM because both the PC’s
microprocessor and the LAN adapter’s microprocessor directly access
this memory. The RPL EPROM feature’s protocols are LLC-based. Hence,
they are incompatible with the PC Network LANA RPL protocols that are
NetBIOS/SMP-based. However, they are compatible with the onboard
RPL capability of the IBM PC Network Broadband Adapter II(/A) adapters
and the IBM PC Network Baseband Adapter(/A) adapters.

The IBM Token-Ring Network PC Adapter IT also operates in IBM PCs,
PC-XTs, PC-ATs, and PS/2 models 25 and 30, and contains 16K bytes of
onboard shared-RAM for network functions as well as an empty socket
for an 8K-byte RPL feature EPROM.

The additional 8K bytes of shared-RAM on the Adapter II allows it to
use larger size transmission packets (essentially 2K bytes versus 1K bytes)
than the Adapter I. Therefore, in high-transmission rate applications typi-
cal for file servers, bridges, and gateways, the Adapter II has a significant
performance advantage over the Adapter I.

The IBM Token-Ring Network Adapter/A operates in all IBM PS/2s ex-
cept PS/2 models 25 and 30, and contains 16K bytes of shared-RAM for
improved network performance as well as an empty socket for an 8K-
byte LLC-protocol RPL feature EPROM.

The IBM Token-Ring Network Trace and Performance Adapter II op-
erates in members of the original PC, PC-XT, PC-AT, and PS/2 models 25
and 30, and with the IBM Token-Ring Network Trace and Performance
Program. It also functions as a normal network adapter.

The IBM Token-Ring Network Trace and Performance Adapter/A op-
erates in members of the PS/2 except models 25 and 30, and with the

Chapter 2: LAN Adapters 13

IBM Token-Ring Network Trace and Performance Program. It also func-
tions as a normal network adapter.

IBM PC Network Broadband Environment

The IBM PC Network provides a 2-megabit burst rate on broadband ca-
bling using the popular industry-standard IEEE 802.3 CSMA/CD access
method within a branching-tree topology. IBM PC Network broadband
adapters transmit data signals on coaxial cable using radio frequency (RF)
techniques. Currently, IBM provides three PC Network broadband
adapters, though two of them can operate at different frequencies by
changing their adapter transceiver (RF modem):

e IBM PC Network Adapter
e IBM PC Network Adapter II
e IBM PC Network Adapter II/A

The IBM PC Network Adapter was discussed in Chapter 1. The IBM
PC Network Adapter II operates in IBM PCs, PC-XTs, PC-ATs, and PS/2
models 25 and 30, and contains 8K bytes of shared-RAM for network
functions.

The IBM PC Network Adapter II/A operates in all IBM PS/2s except
models 25 and 30, and contains 8K bytes of shared-RAM for network
functions.

Both the Adapter II and the Adapter II/A are available with transceiv-
ers that operate at one of three different frequencies. Table 2-1 illustrates
the relationships.

Table 2-1. IBM PC Network Adapter II and Adapter II/A
Frequency Options

Broadband
Channels IBM PC Adapter IBM PS/2 Adapter

Chan. T14 & J IBM PC Network Adapter II IBM PC Network Adapter II/A
Chan. 2’ &0 IBM PC Network Adapter II ~ IBM PC Network Adapter II/A
Frequency 2 Frequency 2
Chan. 3’ &P IBM PC Network Adapter II ~ IBM PC Network Adapter II/A
Frequency 3 Frequency 3

14

Part I: Introduction to NetBIOS

IBM PC Network Baseband Environment

The IBM PC Network Baseband provides 2-megabit burst transmission
rates on twisted-pair wiring using the popular industry-standard IEEE
802.3 CSMA/CD access method within star and single-bus topologies.
Currently, IBM provides two PC Network baseband adapters:

e IBM PC Network Baseband Adapter
e IBM PC Network Baseband Adapter/A

The IBM PC Network Baseband Adapter operates in IBM PCs, PC-
XTs, PC-ATs, and PS/2 models 25 and 30, and contains 8K bytes of
shared-RAM for network functions.

The IBM PC Network Baseband Adapter/A operates in all IBM PS/2s
except PS/2 models 25 and 30, and contains 8K bytes of shared-RAM for
network functions.

The individual members of the IBM PC Network baseband family of
adapters are low-cost and have nearly identical counterparts within the
IBM PC Network broadband family of adapters. The only essential differ-
ence is that the baseband adapter transceivers drive twisted-pair media
and the broadband adapter transceivers drive broadband media. In this
sense, Adapter II(/A) and the Baseband Adapter(/A) are excellent exam-
ples of “layered hardware” design. In fact, applications that use Broad-
band II and II/A adapters must go to some length to determine whether
they are actually running on Baseband Adapter and Baseband Adapter/A,
respectively.

An application must read the LAN adapter Transceiver Interface Regis-
ter at the primary (alternate) port address 062Eh (062E). If the two high-
order bits have a value of 00, then the adapter’s transceiver is a broadband
transceiver. Otherwise, the two high-order bits have a value of 01 and the
transceiver is a baseband transceiver. This inconsequential difference
clearly illustrates that base adapters are absolutely identical, differing only
in their transceivers, which are attached in the final assembly phases.

Indeed, you could switch transceivers between Adapter II(/A) and
Baseband Adapter(/A) and reinstall the adapters in the appropriate net-
work without application impact other than changing the network
adapter’s serial number. Thus, assumptions that given applications can
run on IBM PC Network Broadband Adapter 1Is (/As) but not on IBM PC
Network Baseband Adapters (/As) are largely statements of support, not
capability. In the final analysis, nothing prevents applications from going
the extra mile to detect that they are executing on a PC Network base-
band adapter and to terminate execution on that basis. Caveat emptor.

Chapter 2: LAN Adapters 15

Ethernet Environment

IBM markets Ethernet adapters manufactured by Ungermann-Bass of
Santa Clara, California. The adapters are available from a business unit
known as IBM Academic Computing Information Systems (ACIS), which
works closely with academic institutions under joint development
agreements involving a variety of technologies and communication envi-
ronments.

IBM LAN Programming Interfaces

NetBIOS is one of five communication programming interfaces provided
by IBM for its LANs. The various interfaces are

e adapter card

® Advanced Program-to-Program Communications (APPC)
e Data Link Control (DLC)

e direct

e NetBIOS

The relationships of these interfaces to NetBIOS are illustrated in Figure
2-1. Detailed discussion of the other four major interfaces is beyond the
scope of this book, but the following discussion summarizes their pur-
poses.

Adapter Card Interface

The adapter card interface is the most difficult programming interface, re-
quiring timing-sensitive logic, tricky interrupt processing, and nimble
management of shared-RAM. For example, the IBM Token-Ring PC
Adapter has a variety of independent interrupts that must be correctly
handled in isolation or in mass. The adapter’s interrupt fecundity, com-
bined with an error in the PC BIOS’s timer tick handler, eventually led IBM
to introduce the CONFIG.SYS STACKS parameter (with DOS 3.2) and the
TIMERINT.SYS device driver (with the IBM LAN Support Program), re-
spectively. In other words, this is an interface of last resort, though it is the
interface used by LAN monitors to observe network traffic.

16

Part I. Introduction to NetBIOS

APPC Adapter
Requests Crd

APPC/PC
or
0S/2 DLC Direct NetBIOS
Extended sts. Ragsts.
Edition
'\
DXMTOMOD.SYS IBM LAN
(installed Support
last) Program
DXMCnMOD.SYS > or
or (installed second)
DXMGnMOD.SYS 0S/2
Extended
Edition
DXMAOMOD.SYS (installed first) j

LAN Adapter

Fig. 2-1. IBM PC LAN programming interface relationships.

APPC Interface

APPC is the interface provided for Systems Network Architecture (SNA)
communication. It has numerous command sequences and control
blocks associated with it, and is useful for peer-to-peer communications
with IBM mainframes and other IBM processor applications that require
SNA LU 6.2 communication capability.

DLC Interface

DLC provides the IEEE 802.2 LLC communication interface for IBM’s
LAN adapters, which supports the IEEE type 2 LLC protocol guarantee-

Chapter 2: LAN Adapters 17

ing notification of unsuccessful transmissions. DLC also provides the
IEEE type 1 “‘connectionless” communications, sometimes referred to
as “‘send and pray”’ communication, in which no guarantee of message
delivery is provided and no notification is given in the event of transmis-
sion problems.

DLC offers the potential of higher performance communication than
NetBIOS because it is “closer to the adapter” As earlier indicated, Net-
BIOS commands are converted into one or more DLC commands and
then presented to the DLC interface. This is why NetBIOS data transmis-
sion throughput rates often cannot exceed DLC data transmission
throughput rates.

Direct Interface

The direct interface provides the ability to open, initialize, and close
adapters, and permits programs to read and reset adapter logs, trace
adapter activities, obtain status information, and operate adapter timers.

IBM provides a wide spectrum of LAN adapters and programming in-
terfaces, including NetBIOS. Clearly, a mechanism is needed to support
these diverse adapters while simultaneously presenting a stable, uniform
set of programming interfaces to applications. This is provided by the
IBM LAN Support Program, which insulates applications from imple-
mentation details of the specific LAN they operate on, allowing users to
select the appropriate LAN for their requirements.

Chapter 3

Application Services

NetBIOS provides four categories of application services:

® name support

e datagram support
® session support
e general command

NetBIOS Name Support

An individual NetBIOS LAN adapter is distinguished from other adapters
on its respective network by one or more network names, which allow
LAN applications to direct their messages to specific adapters and indi-
cate that their adapter originated the message.

Each network name consists of 16 characters. Within a network
name, each of the 16 characters is significant and uppercase is different
than lowercase. The names you can create cannot have a value of binary
zero or an asterisk (*) as the first character. IBM reserves the values of 00h
to 1Fh for the 16th character and uses some of the reserved character val-
ues with the IBM PC LAN Program. This is why you can only have a 15-
character IBM PC LAN Program machine name. Finally, IBM reserves the
use of “IBM” as the first three characters of any name. For a more com-
plete discussion of NetBIOS naming considerations, refer to the NetBIOS
Adapter Status Program discussion in Part II, of this book.

The number of names an adapter can use (Or is using) will vary, as can
the number of adapters using a given name, but before an adapter can use
any name, it must acquire the rights to register and use the name on the
LAN.

19

Part I: Introduction to NetBIOS

NetBIOS initiates name registration activities in response to either of
the two types of NetBIOS add-name commands: Add Name and Add
Group Name. An adapter registers a network name by first broadcasting a
network petition (a name-claim packet) to use the name. The type of
packet, Name__Claim or Add__Group__Name__Claim, indicates whether
the adapter wants to register the name as a unique name or as a group
name respectively.

Finally, once a name is successfully registered, any registered name
except the first can be deregistered by issuing a NetBIOS Delete Name
command. NetBIOS Adapter Reset commands erase the NetBIOS name
table (except the first name), as does a system reset (Ctrl-Alt-Del) and
powering off the workstation.

Unique Names

If an adapter tries to register a name as a unique name, then no other
adapter operating on the LAN can have the same registered name or the
registration attempt fails. If the name is currently registered, either as a
unique name or as a group name, the offended adapter(s) issues a network
complaint and the pending name registration command is refused. Other-
wise, the adapter has the exclusive right to use the name on its LAN.

Group Names

If an adapter tries to register a name as a group name, then no other
adapter can be using that name as a unique name or the registration at-
tempt fails. If the name is in use as a unique name, the offended adapter
issues a network complaint and the command to use the name is refused.
Otherwise, the adapter has the nonexclusive right to use the name on the
LAN. This allows other adapters to register the name as a group name,
though not as a unique name. Group names are useful for sending mes-
sages to collections of workstations such as departments or teams.

The Name Table and Name Number

If an attempted name registration fails, the failure is reported to the work-
station application for subsequent analysis along with an appropriate er-
ror return code. In the absence of network complaints, the adapter’s
NetBIOS support places the name in a locally maintained, internal table

Chapter 3: Application Services 21

known as the NetBIOS name table. It then reports the name registration
success to the LAN application along with a one-byte value.

The one-byte value is an unsigned number referred to as the name’s
NetBIOS name number. The name number is subsequently used in various
NetBIOS commands associated with the name. NetBIOS assigns the value
of the name number in an incremental, modulo 255, roundrobin manner.
The values zero and 255 are never assigned, and the first entry is perma-
nently assigned by the adapter based on its internal serial number. Thus,
the numbers are assigned inthe order 1,2, 3, . . . 254,2,3,4, . . . 254, etc.

Placing the name in the name table authorizes the adapter to subse-
quently scrutinize registration petitions of other adapters wishing to reg-
ister names. And, once added, a name can be deleted from the table,
potentially allowing some other name to use it as a unique name.

Note that the NetBIOS name table is a temporary table contained
within RAM and is reconstructed after each system boot or adapter reset.
Because each adapter has its own private name table, NetBIOS name res-
olution is highly autonomous across the LAN, requiring no central name
administration. If a NetBIOS module is supporting more than one LAN
adapter within a workstation, each adapter also has its own independent
NetBIOS name table.

The Permanent Node Name

All IBM LAN adapters have a unique six-byte number associated with
them, guaranteed to be unique for every IBM LAN adapter and contained
in an adapter ROM. The number is referred to by a variety of names:

permanent node name
permanent node address
burned-in address (BIA)
universally administered address
unit identification number
physical address

local node name

For all IBM LAN adapters other than the PC Network LANA card, this
address is in the range that is universally administered by the standards
committees for LANs and has the two high-order bits set to zero. Under
the native ROM NetBIOS, PC Network LANA adapter cards always have
two bytes of binary zeros as the last two bytes of their permanent node
name. The values of the two high-order bits in the remaining four bytes
vary by adapter.

22

Part I: Introduction to NetBIOS

The permanent node name can be overridden at boot time with a six-
byte locally administered address whose high-order bytes must have a
value of X’4000’. This provides a new LAN hardware address for the
adapter that replaces the permanent node name and is accomplished by
specifying an appropriate value on the LAN adapter’s IBM PC LAN Sup-
port Program device driver. DXMINFO.DOC has the appropriate details.

If overridden, the locally administered address temporarily replaces
the permanent node name as the adapter’s LAN hardware address until
the system is rebooted. This provides the opportunity to omit or
respecify the overriding locally administered address value or to replace
the adapter with another that uses the same locally administered address.

Note: NetBIOS applications cannot detect when a permanent node
name has been overridden either on a local or remote adapter. NetBIOS
always uses and returns the original permanent node name when an ap-
plication obtains an adapter’s name. The only v.vay to obtain both the per-
manent node name and the current LAN hardware address is to issue a
local DIR.STATUS request. This is not a NetBIOS request and is beyond
the scope of this book.

When any LAN adapter is initialized and active on a LAN, it has a
unique six-byte number associated with it, the burned-in permanent node
name. The number is also guaranteed to be unique on the LAN because it
is registered in the NetBIOS name table as a unique name during adapter
initialization (the six bytes are appended to 12 bytes of binary zeros to con-
struct a unique 16-byte name). Because the registration happens during
system initialization, the permanent node name is always the first entry in
an adapter’s NetBIOS name table. Zero is an invalid NetBIOS name num-
ber value, so permanent node name always has a name number value of
one.

The permanent node name serves as a LAN address that fingerprints
all messages transmitted by an adapter, and serves as an identification
anchorpoint for all messages transmitted fo an adapter. Specifically, it is
used to tell the adapter’s communication circuitry which messages
should be ignored and which messages should be admitted into the
workstation. This unique 48-bit value constitutes an adapter’s electronic
message sieve.

Symbolic Names

Suppose you wrote a program to send a message to an associate named
Melissa and you wished to send it to her workstation’s permanent node -
name, which you believe is X’4001020003404".

Chapter 3: Application Services 23

This type of approach would be error prone because
X’4001020003404 is an invalid address (it has one too many digits), and
the program may need rewriting if Melissa’s workstation adapter is
changed, perhaps for maintenance reasons. Thus, it would be conven-
ient to personalize the LAN adapter address by using your associate’s nat-
ural name, Melissa. Such pseudonyms are called symbolic names and are
registered in the NetBIOS name table as either unique names or group
names.

Adapters can receive messages that are addressed to it using only

e their 48-bit unique address derived from their unique serial num-
ber

e an indiscriminate general broadcast address of X’FFFFFFFFFFFF’

bit-mapped functional addresses

e one value-mapped group address

The last two of these methods are beyond the scope of this book.

The name registration process is actually a LAN protocol for early
name-usage conflict detection, and is an indiscriminate broadcast proto-
col in preparation for subsequent communication requiring translation
of symbolic names to 48-bit LAN addresses.

Once a symbolic name has been resolved into an appropriate 48-bit
address, NetBIOS needs only that address to conduct the communica-
tion. The name used to make the association is nonessential until it is
needed to resolve another, perhaps a different 48-bit address, to the sym-
bolic name. Remember, symbolic names can be registered and deregis-
tered.

Datagram and Session Support

Once an adapter becomes active in a network, application programs
within the workstation can use NetBIOS to communicate with other ap-
plications residing in the same or different workstations. The applica-
tions can communicate using either datagrams or sessions.

Datagram Support

Datagrams are short messages whose size varies by NetBIOS implementa-
tion and have no guarantee of delivery beyond a “best effort” by the

24

Part I: Introduction to NetBIOS

adapter. Regardless of whether the messages arrive safely, no receipt indi-
cation is provided by NetBIOS. The intended recipient machine may

® not exist
® be powered off
® not be expecting a datagram

In these instances, and in the case of network problems, the
datagram may never be received by any workstation. Datagram commu-
nication is ‘“‘send and pray”’ communication unless the receiving applica-
tion takes explicit action to transmit a receipt acknowledgment. The
primary advantage of datagram communication is that it can consume
less workstation resource than session communication.

There are two types of datagram communication: broadcast
datagrams and plain datagrams. In both cases, the NetBIOS datagram
transmission command references an existing local NetBIOS name num-
ber, perhaps the permanent node name’s, that serves as the datagram’s
origin name. This name number may be associated with a local unique
or group name. Finally, plain datagrams transmitted to group names and
broadcast datagrams have a very low level of data security because they
can be intercepted with very little effort.

Broadcast Datagrams
Broadcast datagrams are totally indiscriminate datagrams transmitted
with a NetBIOS Send Broadcast Datagram command. Any adapter, in-
cluding the transmitting adapter, can receive a broadcast datagram if it
has previously issued a NetBIOS Receive Broadcast Datagram command.
In general, broadcast datagram communication should be avoided
because two applications within the same workstation could easily re-
ceive broadcast datagrams intended for the other application. In addi-
tion, applications that execute in workstations running the IBM PC LAN
Program are specifically warned against using broadcast datagram com-
munication.

Plain Datagrams

Plain datagrams are discriminate datagrams transmitted with a NetBIOS
Send Datagram command. Unlike NetBIOS Send Broadcast Datagram
commands, applications specify a recipient NetBIOS name with the
Send Datagram command. Any adapter, including the transmitting
adapter, can receive a datagram if it has previously added the appropriate
recipient name and issued a Receive Datagram command to NetBIOS ref-
erencing the number of the name specified in the command.

Chapter 3: Application Services 25

If an application specifies a name number of FFh in a receive
datagram, the application can receive a datagram for any name in the Net-
BIOS name table. This is referred to as a receive-any datagram. However,
Receive Datagram commands for a specific name number have priority
over Receive-Any Datagram commands. Figure 3-1 summarizes the rela-
tionship between the two forms of Receive Datagram commands.

Application Name/NcbNum LSN

Greg/03h

T

Receive Datagram
NcbNum =03h <{Z==

Melissa/F2h
2Dh

4Ch

Receive Datagram for a specified name number

Application Name/NcbNum LSN

Greg/03h
me 0 ShE T

Receive-Any Datagram (lowest priority)

Fig. 3-1. Receive Datagram command flavors.

Part I: Introduction to NetBIOS

Finally, plain datagrams can be transmitted to adapters using the
name as a unique name, or to groups of adapters that share a group name.

Session Support

The second form of NetBIOS application communication is session
communication. NetBIOS session support creates a reliable two-way
data communication connection between two applications that can exist
for extended periods. Such connections are sometimes referred to as vir-
tual circuits.

The communicating applications may reside within the same work-
station (local sessions) or within different workstations (remote ses-
sions). Each application constitutes one half or side of the session.

The primary advantage of session communication over datagram
communication is that message-receipt status is presented to the trans-
mitting application for every message it transmits. Datagram communi-
cation provides message transmission status. However, session
communication reliability comes with the slight overhead of creating
and maintaining sessions and the packet acknowledgment protocol be-
tween adapters.

Creating Sessions

Sessions are created when one application issues a NetBIOS Listen com-
mand referencing a name in its NetBIOS name table. The application may
use an existing name in the table such as the permanent node name or
add one of its own.

The Listen command also specifies the remote name that a petition-
ing application must use to qualify as a session partner, and may use an
asterisk (*) as the first character of the remote name. In this case, the re-
maining 15 characters are ignored and the local NetBIOS allows the sec-
ond application to use any name to qualify as a session partner. (Since
session security depends on matching both names, one might correctly
suspect such promiscuous behavior has its hazards.)

A second application then issues a NetBIOS Call command, which
references the name in its NetBIOS name table that the first application is
expecting as a partner’s name. The Call command also references the
name the first application referenced in its own NetBIOS name table.
The double name match fulfills the criteria of both applications to create
a session and the pending Listen and Call commands then complete.
Note the sequence: first the Listen, then the Call. This sequence cannot
be successfully reversed.

Chapter 3: Application Services 27

Each application then receives notification of session establishment
and a one-byte unsigned value referred to as the NetBIOS Local Session
Number (LSN) that the adapter associates with the session. The LSN is
analogous to a PC-DOS file handle.

NetBIOS assigns the LSN value in an incremental, modulo 255, round-
robin manner. The values zero and 255 are never assigned. Thus, the num-
bers are assigned in the order 1, 2, 3, . . . 254, 1,2, 3, 4, . . . 254, etc.

Even if both sides of the session are local sessions, note that two
numbers are assigned—one for each side. In this case, either application
can use either LSN. In general, there is no restriction that the two LSNs
have the same value, even if they are both local sessions. The session cre-
ation procedure is summarized in Figure 3-2.

Application 1 Application 2

Add name "Greg" (optional) Add name "Melissa" (optional)

Listen for "Melissa"
using the name "Greg"

Call "Greg" using
the name "Melissa”

Session established, LSN == X Session established, LSN ==

Fig. 3-2. Session establishment.

Receive Command Flavors
After establishing a session, both sides can issue NetBIOS Send and Re-
ceive commands to transfer data. If a given name is used to create several
sessions, an application can also issue a NetBIOS Receive-Any-for-a-Spec-
ified-Name (Receive-Any) command, which provides received data from
any session associated with a specified name. More generally, the applica-
tion can issue a NetBIOS Receive-Any-for-Any-Name (Receive-Any-Any)
command, which provides received data from any existing session the
adapter has actively established.

In the event a message arrives that could satisfy more than one of
these types of NetBIOS Receives, the following hierarchy is observed:

1. Receive (highest priority)
2. Receive-Any-for-a-Specified-Name
3. Receive-Any-for-Any-Name (lowest priority)

The behavior of the various Receive flavors is summarized in Figure 3-3.

28

Part I: Introduction to NetBIOS

Send Command Flavors

Applications issue NetBIOS Send commands to transfer data to the other
application. The Send command allows the application to send messages
ranging in size from zero bytes to 64K minus 1 bytes of data; the data
must be in contiguous memory. The application can also issue a NetBIOS
Chain Send command that allows data to reside in buffers located in two
different storage areas.

Application Name/NcbNum LSN

Greg/03h

Receive
Ncblsn = 33h <{ZE
ACh
Melissa/F2h
2Dh
4Ch
Receive
Application Name/NcbNum LSN

Greg/03h

Receive-Any
NcbNum =03h

Melissa/F2h
2Dh

4Ch

Receive-Any-for-a-Specified-Name

Fig. 3-3. Receive command flavors.

Chapter 3: Application Services 29

With a Chain Send command, data within each of the buffers must be
in contiguous memory, though the two buffers themselves do not have
to be contiguous. Moreover, each data block can range from zero bytes to
64K minus one bytes, allowing up to 128K minus two bytes to transfer
with one Chain Send command.

Send and Receive Considerations

First note that a NetBIOS Chain Send command exists, but a NetBIOS
“Chain Receive” command does not. NetBIOS allows applications to re-
ceive part of a transmission and issue subsequent NetBIOS Receives to
receive the remainder of the message. This is true for messages that origi-
nate from both Send and Chain Send commands. Conversely, a single
NetBIOS Receive command can usually receive messages transmitted
with a Chain Send command provided the message is not too large. In
any event, the receiving application cannot detect whether a message
was transmitted with a Send versus a Chain Send unless the size of the
total message exceeds 64K minus one bytes. This is because Chain Send
command data originating in two separate buffers always arrives seam-
lessly with no indication of the original buffer boundaries.

The only stipulation for an application that partially receives a mes-
sage is that it not delay “too long” to receive the entire message. Specific-
ally, when the session is established, each side specifies Receive and Send
time-out threshold periods. If the Send threshold period is exceeded be-

Application Name/NcbNum LSN

Greg/03h

SERE

Receive-Any
NcbNum = FFh

Receive-Any-for-Any-Name (lowest priority)

Fig. 3-3. (Cont.)

30

Part I Introduction to NetBIOS

fore the message is completely received, the Send times-out and the entire
session is terminated by the sending adapter. In this instance, both sides of
the session are notified of the consequences of the receiver’s lethargy.

Send No-Ack and Chain Send No-Ack Considerations

The Send No-Ack and Chain Send No-Ack commands first appeared with
version 1.02 of the IBM LAN Support Program. They differ from the Send
and Chain Send commands, respectively, by eliminating unnecessary
NetBIOS-to-NetBIOS data-receipt acknowledgments occurring with
prior IBM NetBIOS implementations.

Caution: The Send No-Ack and Chain Send No-Ack commands are
not in the original NetBIOS definition and may not be universally recog-
nized by other NetBIOS implementations, including prior IBM NetBIOS
implementations and the IBM PC Network Protocol Driver Program. Us-
ing them may produce nonportable results because they require new
command codes and generate new return code values for themselves
and the Send, Chain Send, Receive, and Receive-Any commands.

Ending Sessions Gracefully

Sessions are ended by one or both sides issuing a NetBIOS Hang Up com-
mand that specifies the LSN of the session to be terminated. The other
application is notified of the session termination when it issues a subse-
quent session command. An application can issue a NetBIOS Session Sta-
tus command that will indicate the status of a session—existing or
cancelled.

General Commands

The NetBIOS general commands provide such NetBIOS services as

Reset

Adapter Status
Cancel and Unlink
Find Name

Trace

Reset Command

The Reset command forces the adapter to an initialized state. This termi-
nates all sessions and removes all names from the NetBIOS name table ex-

Chapter 3: Application Services 31

cept for the permanent node name. The Reset command optionally
specifies the maximum allowable number of NetBIOS commands that can
be pending at one time as well as the maximum number of sessions that
concurrently exist within the adapter. Minimizing these values can increase
performance by freeing up valuable work space for more network buffers.

Adapter Status Command

The Adapter Status command allows you to query a NetBIOS adapter and
retrieve operational information such as detected LAN error counts and
the adapter’s NetBIOS name table. The queried adapter could be a local
adapter or a remote adapter on the LAN. In some environments, using
the Adapter Status command to query a remote adapter is an excellent
way to determine whether the adapter and a workstation is hung or just
the workstation is hung. (Adapters can sometimes operate from LAN in-
terrupts though the workstation is hung.)

Cancel and Unlink Commands

The NetBIOS Cancel command allows applications to cancel commands
that have not completed. The NetBIOS Unlink command allows a PC
Network LANA adapter that has booted using RPL to disconnect from the
RPL server machine. The Unlink command is intercepted by the PC Net-
work LANA NetBIOS and converted to a Hang Up command that uses
information stored in high RAM.

The Unlink request is only valid for the primary adapter and always
returns a zero (successful) return code. For all other IBM LAN adapter
NetBIOS implementations, the Unlink command is provided as a com-
patibility feature for the PC Network LANA card and performs no func-
tion. See Part I1I for a complete discussion of the RPL process.

Find Name Command

The NetBIOS Find Name command locates adapters that are using a sym-
bolic name specified in the Find Name command. This is similar to an
Adapter Status command except NetBIOS returns one adapter response
at most to an Adapter Status command. (Several adapters sharing a group
name may respond, but only one response is returned to a requesting
application.)

32

Part I: Introduction to NetBIOS

In the case of the Find Name command, several adapters can also re-
ply if they share a group name, but theoretically speaking, all the re-
sponses are cligible to be returned to the requesting application. An
Adapter Status command returns all names within the target adapter’s
NetBIOS name table and the NetBIOS Find Command returns the
adapter routing information for the adapters that are using the name.

The adapter routing information is only relevant in interconnected
LANSs such as the IBM Token-Ring because the information indicates the
route(s) a message can take to arrive at a specific workstation. This rout-
ing information identifies the bridges connecting separate physical rings.
Messages must traverse these bridges to reach the LAN the recipient
workstation is on.

Trace Command

The Trace Command activates a trace of all commands issued to the Net-
BIOS interface. Its primary objective is to provide support for diagnostic
programs. In the event your implementation does not have a Trace com-
mand, you can write one yourself by intercepting all INT 5C requests.
You should only analyze interrupt requests where the ES:BX register pair
point to a byte in memory that has a value greater than 02h. When ES:BX
point to values of 00h, O1h, and 02h, the request isa DLCIEEE 802.2 LLC
request. This topic and the general Trace command is beyond the scope
of this book.

Issuing NetBIOS Commands

Applications issue NetBIOS commands by first zeroing out a 64-byte area
of memory. This prevents residual data from causing NetBIOS to wildly
branch into random memory when the command completes. The appli-
cation then uses the area to construct a NetBIOS Control Block or Ncb.
Completing the control block consists of filling various fields that are re-
quired by the particular command that will be issued. Failure to com-
plete the Ncb fields correctly can hang the user’s machine because
uncompleted fields are initialized to all zeros. For example, in the case of
PC-DOS, if the Ncb specifies a Receive command and the receive data
buffer address is inadvertently not specified, the arriving data will oblig-
ingly be placed at address 0000:0000 overlaying and corrupting your .
machine’s interrupt vectors. That can be a difficult error to isolate
though its effect is more than somewhat obvious.

Chapter 3: Application Services 33

After filling in the Ncb, the application then points the ES:BX register
pair at the Ncb and issues an INT 5C interrupt request. When NetBIOS
can report status on the request, it does. However, the particular way it
does this varies with the way the particular request was issued.

C Example

Listing 3-1 shows how to issue a NetBIOS interrupt request using the C
language. This particular figure issues a NetBIOS interrupt directly to the
native NetBIOS interrupt. For IBM PCs, an alternate method uses a PC-
DOS INT 2Ah request specifying a value of 0400h or 0401h in the AX
register. In both cases, the ES:BX register pair point to a valid Ncb.

Listing 3-1. C Fragment Illustrating a Direct NetBIOS
Interrupt Request

#define USGC unsigned char
#define USGI unsigned
#define USGL unsigned long

#define NetbiosInt21FunctionCode ((USGC) Ox2A)
#define NetbiosInt5C ((USGC) 0x5C)

void NetbiosRequest(NcbPointer)

struct Ncb *NcbPointer;

{

struct SREGS SegRegs;

union REGS 1InRegs, OutRegs; /* defined in dos.h */
struct Ncb far *NcbPtr = (struct Ncb far *) NcbPointer;

segread(&SegRegs) ;

SegRegs.es = FP_SEG(NcbPtr);
InRegs.x.bx = FP_OFF(NcbPtr);

int86x (NetbiosInt5C, &InRegs, & utRegs, &SegRegs);

An AX value of 0401h indicates PC-DOS should not automatically re-
- try the command if the command failed. An AX value of 0400h indicates
PC-DOS should retry the command if the command failed because

e the adapter does not have the resources necessary to complete the
command successfully
e the adapter is busy and cannot handle the request

34

Part I: Introduction to NetBIOS

e the other workstation rejected our application’s attempt to start a
communication session with it

The INT 2A approach is sometimes necessary for total coexistence
with the IBM PC LAN Program. However, before first using this interface,
an application must test the version of PC-DOS to verify it is version 3.1
or later, and then determine whether the IBM PC LAN Program is in-
stalled (see Chapter 6).

MASM Example

Listing 3-2 illustrates how to issue a NetBIOS interrupt request using
MASM. Again, this particular figure issues a NetBIOS interrupt directly to
the native NetBIOS interrupt in lieu of a PC-DOS INT 2Ah request with
AH set to 0400h or 0401h.

Listing 3-2. MASM Fragment Illustrating a Direct NetBIOS
Interrupt Request

NetbiosInt equ 5Ch ; NETBIOS interrupt vector
mov BX,offset Ncb
mov AX,CS
mov ES,AX ; ES:BX ==> Ncb
int NetbiosInt

Testing for the Presence of NetBIOS

Before an application can safely issue a NetBIOS request, it must deter-
mine if NetBIOS is present. For IBM PCs, this process varies with the
model.

The Original IBM PC and PC-XT Test

The original IBM PC and PC-XT BIOS POST procedures initialize inter-
rupt vectors that BIOS does not need to OFFSET:SEGMENT values of
0000:0000. Issuing a NetBIOS request in one of these machines to an
uninitialized interrupt is virtually guaranteed to hang the machine.

Chapter 3: Application Services

35

The Test for Other IBM PCs

The IBM PC-AT and follow-on machine BIOS POST procedures point
the interrupt vectors that BIOS does not need at an immediate IRET in-
struction. The SEGMENT value of the IRET instruction is always FOOOh.
Thus, issuing a NetBIOS request to an uninitialized interrupt in one of
these machines is harmless though unproductive. Chapter 4 contains a
program that tests correctly for NetBIOS presence.

To summarize, there are four categories of NetBIOS commands, each

with several members:

Name Support

Datagram Support

Session Support

General Commands

Add Name

Add Group Name
Delete Name
Receive Datagram
Receive Broadcast Datagram
Send Datagram
Send Broadcast Datagram
Call

Listen

Send

Send No-Ack

Chain Send

Chain Send No-Ack
Receive
Receive-Any

Hang Up

Session Status
Reset

Cancel

Adapter Status
Unlink

Chapter 4

Ncb/Mcb Fields

IBM Token-Ring literature refers to the Ncb as the Message Control block
or Mcb, but we will use the term Ncb exclusively.

The Ncb is 64 bytes, with 13 fields and one 14-byte reserved area.
Table 4-1 diagrams the Ncb and its fields. The C language Ncb structure is
illustrated in Listing 4-1 and the MASM structure is illustrated in Listing 4-
2. The chart on the inside front cover illustrates when a field is an input
field and when it is an output field. The fields are discussed in greater

detail in Part IV.

Table 4-1. The Ncb Fields

Length
Offset Field Name in Bytes Field Structure
+00 Command 1 O
+01 Return Code 1 O
+02 Local Session Number 1 O
+03 Name Number 1 O
+04 Buffer Address 4 OO0.O
+08 Buffer Length 2 0O
+10 Call Name 16 EEEEEEEEEEERENEN
+26 Name (Local) 16 I I |
+42 Receive Time Out 1 O
+43 Send Time Out 1 O

37

38 Part I: Introduction to NetBIOS

Table 4-1. (cont.)

Length
Offset Field Name in Bytes Field Structure
+44 Post Routine Address 4 OoOd
+48 LANA Number 1 O
+49 Command Complete Flag 1 O
+50 Reserved Field 14 OOOOOOOOOOOOs4

Listing 4-1. A C Ncb Structure

#define USGC unsigned char
#define USGI unsigned
#define USGL unsigned long

struct Ncb
{

USGC NcbCommand; /* command code */

USGC NcbRetCode; /* return code */

USGC NcbLsn; /* local session number */

USGC NcbNum; /* Datagram ADD NAME table entry */

char * NcbBufferOffset; /* 1/0 buffer offset */

USGI NcbBufferSegment; /* I/0 buffer segment */

USGI NcbLength; /* length of data in I/0 buffer %/

char NcbCallNamel[16]; /* remote system name for CALL */

char NcbName[16]; /* local adapter network name */

USGC NcbRto; /* receive timeouts in 1/2 second units */
USGC NcbSto; /* send timeouts in 1/2 second units */
char * NcbPostRtnOffset; /* offset of post routine */

USGI NcbPostRtnSegment; /* segment of post routine */

USGC NcbLanaNum; /* network adapter number to execute cmd */

USGC NcbCmdCplt; /* OxFF ==> command pending, else cmplted */

char NcbReservedAreal14]; /* work area for network card */
} ZeroNcb; /* prototype NCB for sizeof calcs */

Chapter 4: Ncb/Mcb Fields 39

Listing 4-2. A MASM Ncb Structure

; Ncb Structure

Ncb struc
Ncb_Command db 00h ;Ncb command field
Ncb_RetCode db 00h ;Ncb return code
Ncb_Lsn db 00h ;Ncb local session number
Ncb_Num db 00h ;Ncb name number from AddName
Ncb_BufferOff dw 0000h ;Ncb message buffer offset
Ncb_BufferSeg dw 000Ch ;Ncb message buffer segment
Ncb_Length dw 0000h ;Ncb message buffer Llength (in bytes)
Ncb_CallName db 16 dup(0) ;Ncb remote name
Ncb_Name db 16 dup(0) ;Ncb AddName
Ncb_Rto db 00h ;Ncb receive timeout
Ncb_Sto db 0Ch ;Ncb send timeout
Ncb_PostOff dw 0000h ;Ncb post routine offset
Ncb_PostSeg dw 0000h ;Ncb post routine segment
Ncb_Lana_Num db 00h ;Ncb adapter number
Ncb_Cmd_Cplt db 0O0h ;Ncb OFFh ==> command pending indicator
Ncb_Reserve db 14 dup(0) ;Ncb reserved area

Ncb ends

Command

The Ncb command field is a one-byte field containing the NetBIOS com-
mand code for the desired operation. If the high-order bit of the com-
mand code is zero, NetBIOS accepts the request and returns to the
application when the command is completed. This is referred to as the
wait option. Clearly, only one wait-option command can be pending ata
time.

Although some commands such as Reset, Cancel, and Unlink are
guaranteed to complete, other commands only complete under certain
conditions. If such a command never completes, NetBIOS never returns
and the machine hangs in an infinite NetBIOS command completion
spin-loop. To avoid this, applications can set the high-order bit of the
command field to a binary one value for all commands except the Reset,
Cancel, and Unlink commands. This is referred to as the no-wait option.
In this situation, NetBIOS returns immediately with an initial return code
(in AL for the IBM PC) and expects that the Ncb and all associated data
areas will remain undisturbed until the command can complete.

40

Part I. Introduction to NetBIOS

If NetBIOS accepts the command, it queues it for subsequent action
which allows several requests to be pending at one time. It also places an
FFh in the Ncb command complete field, indicating the command has
been queued but has not completed. When the command completes,
NetBIOS posts the final return code in both the Ncb return code field
and the Ncb command complete field. It also inspects the Ncb post
routine address field to see if it is all zeros. If it is not, NetBIOS immedi-
ately enters the code in a disabled state as if the code were an interrupt
routine.

The code must subsequently return to NetBIOS with an IRET in-
struction and should enable interrupts if itg activities require any signifi-
cant time to accomplish. Moreover, a post routine should not issue PC-
DOS requests because they may have been interrupted to invoke the post
routine and PC-DOS is not reentrant. However, a post routine can issue
other NetBIOS requests.

Finally, some programs occasionally terminate execution and return
to the operating system with NetBIOS commands still pending. This is
equivalent to leaving without disabling enabled hardware interrupts.
NetBIOS will destroy memory in the 64-byte Ncb area if the Ncb eventu-
ally completes. At the very worst, NetBIOS will see that the NetBIOS
post routine address is not zero when the command completes, perhaps
because your word processor has overlaid the area where the Ncb re-
sided. Thus, NetBIOS might wildly branch into memory based on the
unpredictable post routine address value, causing your machine to peri-
odically hang for inexplicable reasons, such as divide-by-zero interrupts
during periods of apparent workstation inactivity.

Be warned. Pending NetBIOS requests must be canceled before an
application completes and returns to the operating system. This is done
by explicitly canceling all pending Ncbs or possibly by issuing an adapter
Reset command. Failing to do this can result in debugging sessions that
are memorably excruciating.

Return Code

The Ncb return code field is a one-byte field that eventually contains the
value of the command’s final return code. If it is zero after command
completion, the command completed successfully. Otherwise, a prob-
lem was detected, though it may not be of any consequence. Appendix C
lists the NetBIOS Ncb return codes.

Chapter 4: Ncb/Mcb Fields 41

Local Session Number

The Ncb local session number field is a one-byte field containing the lo-
cal session number associated with a command. NetBIOS assigns the
value of the local session number in an incremental, modulo 255, round-
robin manner. The values zero and 255 are never assigned.

Name Number

The Ncb name number field is a one-byte field containing the NetBIOS
name table name number associated with a command. NetBIOS assigns
the value of the name number in an incremental, modulo 255, round-
robin manner. The values zero and 255 are never assigned. The first en-
try’s number, name number one, is always the permanent node name’s
number.

Buffer Address

The Ncb buffer address field is a four-byte field containing a memory
pointer to a data buffer. In the case of the IBM PC, the data is in the OFF-
SET:SEGMENT format.

Buffer Length

The Ncb buffer length field is a two-byte field indicating the size of the
buffer pointed at by the Ncb buffer address field.

Call (Remote) Name

The Ncb call name field is a 16-byte field typically, but not always, con-
taining a remote name associated with the request. All 16 bytes are signifi-
cant and are used. In some instances, such as local session creation, the
name may be a local name instead of a remote name.

42

Part I: Introduction to NetBIOS

In the case of a Chain Send Command, the Ncb call name field does
not contain a name. The first two bytes are used to indicate the length of
the Chain Send’s second buffer. The next two bytes contain the second
buffer’s offset, and the last two bytes contain the buffer’s segment ad-
dress. While using the Ncb call name field in this manner may seem a bit
odd, it has the advantage of minimizing the Ncb size while satisfying field
alignment requirements for many C compilers.

(Local) Name

The Ncb (local) name field is a 16-byte field containing a local name asso-
ciated with the request. All 16 bytes are significant and are used. The first
character cannot have a value of binary zero or be an asterisk (*). In addi-
tion, IBM reserves the values of 00h to 1Fh for the 16th character and the
values “IBM” as the first three characters of any name.

Receive Time Out

The Ncb receive time out field is a one-byte field used with Call and Lis-
ten commands. It specifies the number of half-second periods that a Re-
ceive (Receive, Receive-Any) command can wait for completion before
timing-out and returning an error. The time-out threshold is established
at session creation and cannot be subsequently altered. Specifying a
value of 00h indicates that there is no time-out threshold for Receive
commands associated with the session.

Send Time Out

The Ncb send time out field is a one-byte field used with Call and Listen
commands. It specifies the number of half-second periods that a Send
command (Send, Send No-Ack, Chain Send, Chain Send No-Ack) can
wait for completion before timing-out and returning an error. The time-
out threshold is established at session creation and cannot be subse-
quently altered. If a Send command times-out, the session is terminated.
Specifying a value of 00h indicates that there is no time-out threshold for
Send commands associated with the session.

Chapter 4: Ncb/Mcb Fields 43

Post Routine Address

The Ncb post routine address field is a four-byte field containing a mem-
ory pointer to a routine that is executed when the command completes.
NetBIOS only inspects this field when the command has specified the
no-wait option; otherwise, it is ignored. In the case of the IBM PC, the
data is in the OFFSET:SEGMENT format. See the related Ncb command
field for more information.

LANA Number

The Ncb LANA number field is a one-byte field indicating which adapter
should handle the command. In the case of the IBM PC LAN adapters,
there are at most two adapters. The primary adapter is LANA adapter
zero; the alternate adapter is LANA adapter number one.

Command Complete Flag

The Ncb LANA number field is a one-byte field that indicates whether a
command that specified the no-wait option has completed. If the value
in this field is FFh, the command has not completed. Otherwise, the field
contains the final command return code. See the Ncb command field for
more information.

Reserved

The Ncb reserved field is a 14-byte reserved area that NetBIOS may use to
return extended error information. In addition, NetBIOS uses it as an in-
termittent scratchpad during request processing. Application programs
'should never use the Ncb reserved field because if it is tampered with,
NetBIOS’s behavior may be unpredictable.

44 Part I. Introduction to NetBIOS

Sample C Program to Test for NetBIOS Presence

We now look at our first C NetBIOS program. Listing 4-3, PRESENCE.C,
is a sample C program that should correctly test for the presence of Net-
BIOS on all IBM PC models. In the event that this program does not work
correctly with your machine or future IBM machines, you should use a
debugger to inspect the INT 5C interrupt vector at segment 0000h, offset
0170h, and correct to program accordingly.

Listing 4-3. PRESENCE.C
#define LINT_ARGS

#include <dos.h>
#include <stdio.h>
#include '"netbios2.h"

struct SREGS SegRegs;

#if defined (LINT_ARGS)

extern int main(int argc,char * *argv);

extern int CheckDosIVs(void);

extern void IssuelnvalidNetbiosRequest(void);
extern void ClearNcb(struct Ncb *NcbPtr);

extern void NetbiosRequest(struct Ncb *NcbPointer);
extern void Logo(void);

#endi f

int main(argc, argv)
int argc;
char *argvll;
{
unsigned char temp;

Logo();

if (CheckDosIVs())
IssuelnvalidNetbiosRequest();

printf(''\n\nProgram ending...\n'");
return 0;

#define DOS_INT_21 Ox21
#define DOS_FETCH_IV 0x35

Chapter 4: Ncb/Mcb Fields

45

Listing 4-3. (cont.)

int CheckDosIVs()

{
union REGS InRegs, OutRegs;
struct SREGS SegRegs;
InRegs.h.ah = DOS_FETCH_IV;
InRegs.h.al = NetbiosInt5C;
int86x(DOS_INT_21, &InRegs, &0utRegs, &SegRegs);
printf("\n\nNetBIOS Int 5Ch IV SEGMENT:OFFSET == %04X:%04X...",
SegRegs.es, OutRegs.x.bx);
switch (SegRegs.es) {
case 0x0000 : printf("\n\nNetBIOS IV segment == 0x0000\x07'");
return FAILURE;
break;
case OxFOOO : printf(''\n\nNetBIOS IV segment == 0xFO00\x07');
return FAILURE;
break;
default : printf('\n\nNetBIOS IV segment appears valid...'");
return SUCCESS;
break;
}
>

#define ERROR_INVALID_COMMAND 0x03
void IssuelnvalidNetbiosRequest ()
{
struct Ncb PresenceNcb;
ClearNcb(&PresenceNcb);
PresenceNcb.NcbCommand = NETBIOS_INVALID_COMMAND;
NetbiosRequest (&PresenceNcb);
if (PresenceNcb.NcbRetCode == ERROR_INVALID_COMMAND)
printf(''and NetBIOS is present...'");

else
printf("but NetBIOS is not present...\x07");

46

Part I: Introduction to NetBIOS

Listing 4-3. (cont.)

void ClearNcb(NcbPtr)
struct Ncb *NcbPtr;
{

int i;

char *CharPtr;

CharPtr = (char *) NcbPtr;

for (i = 0; i < sizeof(ZeroNcb); i++)
*CharPtr++ = 0x00;

.void NetbiosRequest(NcbPointer)

struct Ncb *NcbPointer;

{

union REGS InRegs, OutRegs; /* defined in dos.h */
struct Ncb far *NcbPtr = (struct Ncb far *) NcbPointer;

segread(&SegRegs) ;

SegRegs.es = FP_SEG(NcbPtr);
InRegs.x.bx FP_OFF(NcbPtr);

int86x (NetbiosInt5C, &InRegs, &0utRegs, &SegRegs);

void Logo()

{
printf('"\n*- NetBIOS Presence Test Program');
printf(" © Copyright 1988 W. David Schwaderer -*");

Note that the program also issues an invalid NetBIOS request to en-
sure that the NetBIOS interrupt vector is actually being used by NetBIOS
and has not been captured by some other program. However, if the inter-
rupt vector has been captured by another program that reflects the
request to an uninitialized NetBIOS interrupt, the results may be cata-
strophic. The NetBIOS presence testing process is significantly compli-
cated by the existence of the NETBIOS.COM module. NETBIOS.COM
can be loaded anywhere and is generally indistinguishable from a debug-
ging program that may pass the interrupt (reflect) to an uninitialized in-

terrupt vector.

Chapter 5

The IBM PC-DOS LAN
Support Program

As indicated in Figure 2-1, the IBM LAN Support Program provides sup-
port for the NetBIOS, DLC, and direct interfaces in PC-DOS environ-
ments. It replaces the predecessor NETBEUI.COM and TOKREUI.COM
programs and provides communication interface support for all of IBM’s
LAN adapters.

The IBM LAN Support Program can simultaneously support up to
two adapters within the same machine and they do not have to be of the
same type. One adapter is referred to as the primary and has a program-
ming address of zero, and the other, if present, is referred to as the alter-
nate adapter and has a programming address of one.

Since a given adapter requires specific support programming, the IBM
LAN Support Program provides families of device drivers that enable users
to configure the specific support they require. As an example, this allows
the original IBM PC Network LANA card to use standard LLC protocols.

Conversely, using another program named the IBM PC Network
Protocol Driver allows IBM PC Network Adapter Il and II/A cards to com-
municate with IBM PC Network LANA cards using the original SMP
protocols. In any event, the protocol used is invisible to NetBIOS appli-
cations unless an application that uses one protocol tries to communi-
cate with an application using another. That would never work in any
circumstance. Hence, the operative concept throughout IBM LAN sys-
tem offerings is communication flexibility within protocols.

What Is Its Role?

The IBM LAN Support Program provides users of IBM LAN adapters a
significant degree of independence from the specific programming and

47

48

>Part I: Introduction to NetBIOS

operating characteristics of the particular LAN they are using. This en-
ables users to select the appropriate type of media and LAN topology for
their environments, independent of their particular application require-
ments. However, this independence is not universally granted without
restrictions.

It is rather remarkable to folks familiar with the original PC Network
LANA card’s design that it can communicate using the 802.2 LLC proto-
cols. Among other things, this capability enables PCs using the original
PC Network LANA card to communicate with Token-Ring devices via an
intermediary PC running the IBM Token-Ring/PC Network Interconnect
Program. However, the PC Network adapter card used in the gateway
cannot be an original PC Network LANA card. It has to be a PC Network
Broadband Adapter II or II/A because there must be no other communi-
cation adapter in a PC if an original PC Network LANA card using LLC
protocols is present.

The IBM LAN Support Program provides the “‘glue” for the various
IBM LAN adapters, and that is a very significant role though it sometimes
involves a few restrictions.

NetBIOS Parameter Summary

The IBM LAN Support Program NetBIOS device driver, DXMTOMOD.
SYS, is one of eight device drivers included on the Program diskette.
DXMTOMOD.SYS has 26 parameters that can optionally appear on the
CONFIG.SYS device driver specification line. One of the parameters,
STATIONS, helps determine the number of transmit buffers as well as the
size of both the transmit and receive buffers. This parameter can signifi-
cantly affect NetBIOS performance. Other parameters such as DLC.
MAXIN, DLC.MAXOUT, DLC.T1, and DLC.T2 parameters affect Net-
BIOS performance as well.

The rest of the parameters either affect memory consumption or per-
formance during error recovery (see Table 5-1). Consult DXMINFO.DOC
for details concerning the other device drivers and how to specify the
parameter values for primary and alternate adapters.

DLC, LLC, SAPs, and Link Stations Preliminaries

A Service Access Point (SAP) is a constructed code point that identifies
applications to the DLC and LLC software (see Table 5-1). All 802.2

Chapter 5: LAN Support Program 49

Table 5-1. Effect of the DXMTOMOD.SYS STATIONS Parameter

Link Station Count Transmit Buffer Count Transmit Buffer Size Receive Buffer Size

01-06
07-12
13-18
19-24
) 24

01-32
33-48
49-64
> 64

01-32
33-48
49-64
Y 64

Token-Ring I Adapter (8K-byte shared-RAM)

2 1048 280
1 1048 192
1 600 144
1 600 112
1 600 96

Token-Ring II Adapter and Token-Ring/A Adapter (16K-byte shared-RAM)

2 2040 280
2 1048 280
1 1048 280
1 600 144

PC Network Adapter

2 2040 280
2 1048 280
1 1048 280
1 600 144

Source: DXMINFO.DOC version 1.02

frames (transmitted packets) contain a one-byte SAP value. DLC and LLC
logic use this value to determine the destination application and where
to obtain resources (e.g., storage) to handle a frame. The NetBIOS SAP
value is OFh and the SNA value is 04h; there are others. DLC and LLC
software both permit multiple simultaneous active SAPs.

SAPs own link stations and can own more than one link station simul-
taneously. Link stations are components which DLC and LLC use to iden-
tify communicating adapters. When NetBIOS establishes a session, a
local link station connects with a remote link station, establishing a path.
The session uses this path for all frames associated with the session. LLC
insures the integrity of the data and handles the acknowledgment and
sequencing of the frames. When a session abnormally ends, there is a
connection problem between two link stations.

For each of the parameters we are going to discuss, the expression in
parentheses indicates the parameter’s abbreviation as well as its allowa-
ble range or values. Where appropriate, the value following the ““default
=" is the default value. Parameters that begin with DLC are given to LLC

50

Part I Introduction to NetBIOS

software to specify characteristics of NetBIOS link stations. Note that
this information is extracted from the DXMINFO.DOC version 1.02 and
is subject to change. For more current information, consult the
DXMINFO.DOC file on your current IBM PC LAN Program Diskette.

ADAP.ADDR.NOT.REVERSED

The ADAPADDR.NOT.REVERSED (ANR=Y/N, default = N) parameter
specifies the order in which an Adapter Status command should present
the bytes composing an adapter’s permanent node name.

PC Network LANA Adapter Cards

Using native ROM NetBIOS, PC Network LANA adapter cards always
have two bytes of binary zeros as the last two bytes of their permanent
node name. If a PC Network LANA adapter has a permanent node name
of X’112233440000’, specifying ANR=Y causes an Adapter Status to
present the value as X’000011223344’. Otherwise, the value is presented
as X’443322110000’. This means, with either selection of the ANR value,
the PC LAN Program version 1.02 does not provide the value a native
LANA NetBIOS provides. (Refer to Figure 5-1.)

Non-LANA Permanent Node Name —& X'112233445566'

ANR = Y —» X'112233445566'
ANR = N — X'665544332211'

LANA Permanent Node Name —#& X'112233440000'

ANR = Y —» X'000011223344'
ANR = N —& X'443322110000'

Fig. 5-1. Effect of ANR parameter, LAN Support Program version 1.02.

Other Network Adapter Cards

If the ADAPADDR.NOT.REVERSED parameter is specified as Y, an
Adapter Status command presents the adapter’s permanent node name
the way it exists on the adapter. If omitted or specified as N, an Adapter
Status command presents the adapter’s permanent node name in a byte-
reversed format. (Refer to Figure 5-1.)

Chapter 5: LAN Support Program 51

CLOSE.ON.RESET

The CLOSE.ON.RESET (CR=Y/N, default = N) parameter specifies
whether NetBIOS should close and reopen the adapter whenever a Net-
BIOS Reset command is issued. An adapter close and reopen can take a
few seconds to complete.

If omitted or specified as N, the close and reopen is not performed
when the adapter is Reset. In this case, the Reset command takes signifi-
cantly less time to complete because it only clears the NetBIOS name ta-
ble and changes the resettable maximum command and session values.
This also does not disrupt DLC communication that may exist at the time
of the Reset command.

COMMANDS

The COMMANDS (0 (= C (= 254, default = 12) parameter specifies the
maximum number of Ncbs that may be waiting for completion at one
time. If omitted or specified as 0, the default value of 12 is used.

DATAGRAM.MAX

This DATAGRAM.MAX (DG=Y/N, default = N) parameter specifies that
the maximum length datagram transmitted by NetBIOS is computed
from the adapter’s transmit buffer size (data hold buffer or DHB) rather
than arbitrarily using the normal 512 bytes. If specified as Y, a datagram’s
maximum length is the transmit buffer’s size less 96 bytes (DHB Size —
90).

DHB.NUMBER
The DHB.NUMBER (DN, default = NetBIOS selected) parameter speci-

fies the number of adapter transmit buffer(s). If omitted or specified as O,
the value is determined by the NetBIOS device driver.

DHB.SIZE

The DHB.SIZE (0 or 200 (= DS (= 9999, default = NetBIOS selected)
parameter specifies the size of the adapter’s transmit buffer(s) data hold

52

Part I: Introduction to NetBIOS

buffer(s) or DHB(s). If omitted or specified as 0, the value is determined
by the NetBIOS device driver.

DLC.MAXIN

The DLC.MAXIN (1 (= MI (= 9, default = 1) parameter specifies the
MAXIN value for all NetBIOS device driver link stations. If omitted or
specified as 0, the default value of 1 is used.

DLC.MAXOUT

The DLC.MAXOUT (1 (= MO (=9, default = 2) parameter specifies the
MAXOUT value for all NetBIOS device driver link stations. If omitted or
specified as 0, the default value of 2 is used.

DLC.RETRY.COUNT

The DLC.RETRY.COUNT (1 (= RC (= 255, default = 8) parameter de-
termines the number of retry attempts to be made by the adapter’s LLC
code. If omitted or specified as 0, the default value of 8 is used.

DLC.T1

The DLC.T1 (DLC.tee-one) (0 (= T1 {= 10, default = 5) parameter deter-
mines the value of the T1 (response) timer in the adapter’s LLC code. If
omitted or specified as 0, the default value of 5 is used. For more informa-
tion on the response timer, consult the 7oken-Ring Technical Reference
Manual.

DLC.T2

The DLC.T2 (0 {= T2 (= 11, default = 2) parameter determines the value
of the T2 (receiver acknowledgment) timer in the adapter’s LLC code. If
the value is 11, the T2 timer function is not used. If omitted or specified
as 0, the default value of 2 is used. For more information on the receiver
acknowledgment timer, consult the 7oken-Ring Technical Reference
Manual.

Chapter 5: LAN Support Program 53

DLC.TI

The DLC.TI(DLC.tee-eye) (0 {= TI (= 10, default = 3) parameter deter-
mines the value of the Ti (inactivity) timer in the adapter’s LLC code. If
omitted or specified as 0, the default value of 3 is used. For more informa-
tion on the inactivity timer, consult the Token-Ring Technical Reference
Manual.

ENABLE

The ENABLE (E, positional parameter) parameter is the only
DXMTOMOD.SYS positional parameter, and must be the first parameter
if it is present and can be abbreviated E. The ENABLE parameter should
be present when the host PC has an asynchronous communication
adapter that is operating at “high-speed” (a speed equal to or greater than
1,200 bits per second according to IBM’s field support representatives).
The effect of this parameter, when present, is a potential “loss in perfor-
mance” according to the DXMINFO.DOC documentation.

EXTRA.SAPS

The EXTRA.SAPS (0 (= ES (= 99, default = 0) parameter requests that
the NetBIOS device driver obtain additional SAPs when it implicitly
opens the adapter by first attempting to execute a command before the
adapter is open. These SAPs are not used by the NetBIOS device driver. If
omitted or specified as 0, no additional SAPs are requested.

EXTRA.STATIONS

The EXTRA.STATIONS (0 (= EST (= 99, default = 0) parameter re-
quests the NetBIOS device driver to obtain additional link stations when
it implicitly opens the adapter. These link stations are not used by the
NetBIOS device driver. If omitted or specified as 0, no additional stations
are requested.

NAMES

The NAMES (0 (= N (= 254, default = 17) parameter specifies the maxi-
mum number of NetBIOS names that may exist in the NetBIOS name ta-

Part I. Introduction to NetBIOS

ble, including the universally administered address in the case of the
Token-Ring. If omitted or specified as 0, the default value of 17 is used.

OPEN.ON.LOAD

If the OPEN.ON.LOAD (O=Y/N, default = Y) parameter is specified as Y,
the NetBIOS device driver opens the adapter at load time during CON-
FIG.SYS processing. This eliminates the delay caused by an adapter open
when the first Ncb is subsequently issued. If omitted, the default value of
Y is used.

RECEIVE.BUFFER.SIZE

The RECEIVE.BUFFER.SIZE (R, default = NetBIOS selected) parameter
specifies the size of the adapter’s receive buffers. If omitted or specified
as 0, the value is determined by the NetBIOS device driver.

REMOTE.DATAGRAM.CONTROL

The REMOTE.DATAGRAM.CONTROL (RDC=Y/N, default = N) parame-
ter is meaningless if the REMOTE.NAME.DIRECTORY (RND) (0 (= RND
(= 255) parameter is omitted or specified as 0.

If specified as Y, Send Datagram also uses the remote name directory
for transmitting to remote nodes. If omitted or specified as N, Send
Datagram does not use the RND.

REMOTE.NAME.DIRECTORY

If omitted or specified as 0, all Calls, Status Queries, and Send Datagrams
are broadcast to all NetBIOS nodes, as in previous levels of NetBIOS.

If a nonzero value is coded, the RND value specifies the number of
remote names that may be saved by the local node. Note, the minimum
number of name entries is 4 and the value of 4 is used if it is specified as 1,
2, or 3. After the local station has located a remote name, the remote
node address is saved in the remote name directory.

Subsequent Calls, Status Queries, and Send Datagrams to that name
are to the specific node rather than broadcast to all nodes. Issuing a Find
Name command with a receive buffer-length of zero forces a remote name
directory update when there is a failing bridge in the transmission path.

Chapter 5: LAN Support Program 55

RESET.VALUES

If specified as Y, the RESET.VALUES (RV=Y/N, default = N) parameter
has two options.

When the number of sessions is specified as 0 in a subsequent Reset,
the default is the SESSIONS value rather than the normal default value of
6. When the number of commands is specified as 0 in a subsequent Re-
set, the default is the COMMANDS value rather than the normal default
value of 12.

If omitted or specified as N, RESET works as it does in earlier releases
of NetBIOS.

RING.ACCESS

The RING.ACCESS (0 (= RA (= 3, default = 0) parameter specifies a To-
ken-Ring adapter’s ring access priority for NetBIOS device driver mes-
sages. Higher numbers indicate a higher priority. If omitted or specified
as 0, the default value of 0 is used.

SESSIONS

The SESSIONS (0 (= S {= 254, default = 6) parameter specifies the max-
imum number of NetBIOS sessions that may be defined. If omitted or
specified as 0, the default value of 6 is used.

STATIONS

The STATIONS (0 (= ST (= 254, default = 6) parameter specifies the
maximum number of NetBIOS link stations that may be defined. If omit-
ted or specified as 0, the default value of 6 is used.

TRANSMIT.COUNT

The TRANSMIT.COUNT (1 (= TC (= 10, default = 6) parameter speci-
fies the number of times queries (Call, Remote Adapter Status Query, Add
Name, Add Group Name, and Find Name) are transmitted. If omitted or
specified as 0, the default value of 6 is used.

Part I: Introduction to NetBIOS

TRANSMIT. TIMEOUT

The TRANSMIT.TIMEOUT (0 (= TT (= 20, default = 1) parameter spec-
ifies the number of half-second intervals between transmission of que-
ries (Call, Remote Adapter Status Query, Add Name, Add Group Name,
and Find Name). If omitted or specified as 0, the default value of 1 is used
for a half-second interval.

DLC.MAXIN, DLC.MAXOUT, DLC.T1, and DLC.T2 Relationship

DLC.MAXIN is the number of frames a local link station receives before
issuing an acknowledgment. The DLC.T2 timer specifies how long the
receiving LLC component waits before sending the acknowledgment. If
DLC.MAXIN is five and the local link station has received two frames,
LLC acknowledges the two received frames when DLC.T2 expires.

The DLC.MAXOUT specifies the number of frames a local link sta-
tion sends before expecting an acknowledgment. The DLC.T1 timer
specifies how long the transmitting LLC component waits for this ac-
knowledgment. If DLC.T1 expires before an acknowledgment, the link
station enters checkpointing which causes a sequence-information ex-
change and network integrity validation by the link stations.

The DLC.MAXOUT and DLC.MAXIN default values of 2 and 1, re-
spectively, allow NetBIOS and LLC to operate in maximum parallel
mode. A transmitting link station sends two back-to-back frames to a re-
ceiving link station. The receiving station receives the first frame and im-
mediately acknowledges it. Typically, by the time the second frame is
transmitted, the acknowledgment for the first has arrived. This allows
maximum utilization of the network.

IBM provides a wide spectrum of LAN adapters. Combined with the
IBM LAN Support Program’s versatility, IBM’s LAN system offerings pro-
vide a significant degree of isolation from the underlying hardware sup-
port, including LAN media. This allows users to select the hardware and
topology best suited to their requirements, confident that their programs
will function correctly independent of their specific hardware choices.

Chapter 6

NetBIOS Relationships to Other IBM
Products

There is a common misconception that NetBIOS requires some version
of PC-DOS. Since NetBIOS operates on UNIX-based operating systems,
this is clearly false. Moreover, if you use an IBM PC Network LANA
adapter, you can write NetBIOS programs that execute on PC-DOS 1.0.

IBM PC-DOS Version Requirements

PC-DOS 3.1, and later PC-DOS versions, contain LAN considerations for
the PC-DOS redirector. The redirector provides PC-DOS services neces-
sary for the operation of the IBM PC LAN Program. REDIR.EXE module
actually provides the redirector services and is an IBM PC LAN Program
component.

IBM PC LAN Program Considerations

The IBM PC LAN Program expects to be the first NetBIOS user of a LAN
adapter. If there are any existing sessions or names registered in the Net-
BIOS name table, the Program will not provide network services and ter-
minates operation. This happens because the Program may reset a LAN
adapter in an attempt to increase the maximum number of sessions and
pending commands.

Appendix B of the IBM PC Local Area Network Program User’s
Guide contains a list of additional restrictions that must be observed by

57

58 Part I: Introduction to NetBIOS

coexisting NetBIOS applications if the IBM PC LAN Program is to operate
correctly in a server configuration.

Coexistence Restrictions

NetBIOS applications may need to determine if the IBM PC LAN Program
is operating. If it is, the applications should observe the following con-
siderations as mentioned in the Guide.

They should not use all the available sessions and pending com-
mands, because the IBM PC LAN Program needs some.

They should not issue a NetBIOS Reset command because this
removes the names the IBM PC LAN Program has added to the
NetBIOS name table.

They should not use any of the names added to the NetBIOS name
table by the IBM PC LAN Program.

They should not use the Receive-Any-for-Any Name command be-
cause the IBM PC LAN Program needs to receive its messages.
They should not use the values 00h to 1Fh for the 16th byte value
in NetBIOS names because these are reserved for the IBM PC LAN
Program. Application programmers are encouraged to use a blank
(20h) as the 16th character in NetBIOS Names.

They should carefully reflect appropriate captured hardware and
software interrupts and do so in a disabled state to simulate correct
entry into the IBM PC LAN Program.

To avoid overlaid data problems, destroyed FATs, and destroyed
directories, they must not do direct disk or diskette accesses to
write data.

They should not directly program the display controller (e.g.,
6845) to avoid the possibility of the IBM PC LAN Program’s im-
properly restoring the display settings. The controller settings
should be changed only with application BIOS calls.

They should not use the NetBIOS Receive Broadcast Datagram
command. Application designers are warned that using Receive
Broadcast Datagram ‘“‘will probably result in PC LAN or applica-
tion failures that will require the user to reset (Ctrl-Alt-Del) the ma-
chine” Application designers are advised to use plain datagrams
sent to group names if necessary.

Where appropriate, they should use DOS file-handle functions
with sharing modes and avoid using FCBs because FCBs do not
support file sharing or locking functions. If this is not possible,

Chapter 6: Other IBM Products 59

applications should not construct their own FCBs, change FCB re-
served areas, or close the FCB and continue to use it as though it
were still open. The last restriction includes saving an FCB in a file
for use at another time. Moreover, to insure data integrity, applica-
tions should periodically close and reopen files that are accessed
via FCBs.

e They should use the PC-DOS Create Unique File function (INT
21h AH=5Ah) to create temporary files. To avoid file contention
and collisions in multiuser environments, they should not use
fixed names for temporary files.

e They should use the PC-DOS Create New File function (INT 21h
AH=5Bh) to create a file instead of simply creating one to see if it
already exists. ‘

e To avoid “unpredictable problems” they should not change the
timer tick rate from its natural 18.2 times per second rate.

For more information, consult Appendix B of the Guide.

Detecting the Program

The IBMLANPG.C sample program in Listing 6-1 illustrates the proper
way a program should determine whether the IBM PC LAN Program is
installed. The application should first check that the PC-DOS version is
3.10 or later, then check to see if the Program is installed. If so, the appli-
cation can request the machine name that the Program is using.

The machine name is returned as a 15-character name, padded at the
end with blanks. A 16th byte holds an ASCII zero. In reality, the 16th byte
of the machine name in the NetBIOS name table is a blank. For more de-
tails, check the Guide and the PC-DOS Technical Reference Manual,
which documents the Get Machine Name function.

Listing 6-1. IBMLANPG.C
#define LINT_ARGS

#include <dos.h>
#include <stdio.h>
#include "netbios2.h"

#if defined (LINT_ARGS)

extern int main(int \argc,char * *argv);
extern 1int CheckDosVersion(void);
extern void CheckForIbmLanProgram(void);

60

Part I: Introduction to NetBIOS

Listing 6-1. (cont.)

extern void GetMachineName(void);
extern void Logo(void);

#endi f

#define DOS_INT_21 0x21
#define DOS_INT_2A 0x2A
#define DOS_INT_2F 0x2F

#define PC_LAN_PGM_CHECK 0xB800
#define DOS_FETCH_VERSION 0x30
#define GET_MACHINE_NAME Ox5E00

#define REDIRECTOR_FLAG 0x0008
#define RECEIVER_FLAG 0x0080
#define MESSENGER_FLAG 0x0004
#define SERVER_FLAG 0x0040
int main(argc, argv)
int argc;
char *argvl];
{

Logo();

if (CheckDosVersion())
CheckForIbmLanProgram();

printf(''\n\nProgram ending...\n");
return 0;
int CheckDosVersion()
{
union REGS InRegs, OutRegs;
InRegs.h.ah = DOS_FETCH_VERSION;

int86(DOS_INT_21, &InRegs, &0utRegs);

printf("'\n\nThe PC-DOS Version is %u.%u... ",
OutRegs.h.al, OutRegs.h.ah);

if (OutRegs.h.al < 3) /* check the major version number */

Chapter 6: Other IBM Products

61

Listing 6-1. (cont.)

return FAILURE;

if (OutRegs.h.ah < 10) /* check the minor version number */

return FAILURE;
InRegs.h.ah = 0;
int86(DOS_INT_2A, &InRegs, &0utRegs);
if (OutRegs.h.ah '= 0)

printf(""\n\nThe INT 2A NetBIOS interface is availab
else

printf(""\n\nThe INT 2A NetBIOS interface is not available...\x07");

return SUCCESS;

void CheckForIbmLanProgram()

{

USGC temp;
union REGS InRegs, OutRegs;

InRegs.x.ax = PC_LAN_PGM_CHECK;
int86(DOS_INT_2F, &InRegs, &0utRegs);
if (OutRegs.h.al == 0) {

printf(*'\n\nThe IBM PC LAN Program is not installed
return;

printf(""\n\nThe IBM PC LAN Program is installed '");
printf("'and operating as a ');

temp = OutRegs.h.bl & (REDIRECTOR_FLAG
MESSENGER_FLAG

RECEIVER_FLAG
SERVER_FLAG) ;

/* The order of testing is important because
the bit settings are cumulative as are the
configurations.

*/

if (SERVER_FLAG & temp)

le...");

. \x07';

62

Part I: Introduction to NetBIOS

Listing 6-1. (cont.)

printf(''Server.'");
else if (MESSENGER_FLAG & temp)
printf(''"Messenger.');
else if (RECEIVER_FLAG & temp)
printf(''Receiver.");
else if (REDIRECTOR_FLAG & temp)
printf(''Redirector.');

else {
printf("'and operating in an unknown configuration.\x07");
return;

}

GetMachineName () ;

void GetMachineName()

{
struct SREGS SegRegs;
union REGS InRegs, OutRegs;
char Buffer[16], far *BufferPtr = Buffer;
InRegs.x.ax = GET_MACHINE_NAME;
SegRegs.ds = FP_SEG(BufferPtr);
InRegs.x.dx = FP_OFF(BufferPtr);
int86x(DOS_INT_21, &InRegs, &0utRegs, &SegRegs);
if (OutRegs.h.ch !=0) {
printf(''\n\nThe machine name is ==>%s<== ", Buffer);
printf(""\n\nThe machine name's NetBIOS Name Number is %u.'"
,OutRegs.h.cl);
} else .
printf(""\n\nThe machine name is not defined...'");
}

void Logo()

{
printf("'\nIBM Local Area Network Program Presence Test Program');
printf(""\n© Copyright 1988 W. David Schwaderer ');

Chapter 7

LAN Data Integrity and Security

This material merits its own discussion because the issues of LAN data
integrity and security are becoming critical as LANs become more perva-
sive within business environments.

LAN Data Integrity

The good news is that LAN communication is typically very reliable.
However, some LAN adapters do not have Cyclic Redundancy Checking
(CRC) for message transmission and reception verification, and some do
not have parity checking for onboard adapter memory.

The chilling fact is that if sections of a network’s transmission path
do not have these or comparable facilities, end-to-end data integrity can-
not be guaranteed without some extra application programming effort.
It may be worthwhile to check with your potential vendor to see if your
LAN has sufficient data integrity features to satisfy your requirements.

LAN Data Security—A Word to the Wise

LANs provide all the data security that cordless telephones provide their
users. Just as a cordless phone broadcasts conversations for passers-by
and neighbors to monitor, all LAN communication is broadcast to all LAN
adapters.

The adapter determines whether the data enters the workstation’s
memory or is simply discarded. Given enough guidance from a deter-

63

Part I: Introduction to NetBIOS

mined programmer, many LAN adapters can be coaxed into what is re-
ferred to as promiscuous mode, receiving all LAN-transmitted data for
subsequent distribution to and leisurely review by affluent or otherwise
interested third parties. Consider the following IBM statements.,

IBM Statement 1

Above the copyright notice, the Token-Ring Network PC Adapter Tech-
nical Reference Manual states:

Note: This product is intended for use within a single establish-
ment and within a single, homogeneous user population. For
sensitive applications requiring isolation from each other, man-
agement may wish to provide isolated cabling or to encrypt the
sensitive data before putting it on the network.

Remember that achieving, not to mention maintaining, user population
homogeneity could present a challenge.

IBM Statement 2
The IBM NetBIOS Application Development Guide Introduction states:

It is the responsibility of the operating system or application pro-
gram to make sure that data or devices are secure on the network
as network security is not built into the NetBIOS.

Permanent Node Name Capers

You might suppose you can use an adapter’s permanent node name to
identify workstations involved in communication activities. However,
unfriendly LAN users may alter their locally administered name or even
covertly exchange LAN adapters among workstations.

This potentially allows a user to obtain a coveted permanent node
name and subsequently “impersonate” other LAN users authorized with
special LAN privileges by virtue of their permanent node names. Such
privileges might include using the LAN to silently eavesdrop on other
LAN workstation activities and inspection or manipulation of sensitive
files—all unobtrusively from behind closed doors.

Chapter 7: Data Integrity and Security 65

Thus, while IBM LAN adapter initialization procedures and support-
ing software guarantee that a node’s permanent node name or locally ad-
ministered ID is unique on a given LAN, be vigilant when you use adapter
numbers as the only mechanism for user identification or LAN-user priv-
ilege administration.

You may not know who is really using a privileged permanent node
name. While you might want to keep these numbers confidential from
users, this is generally a futile effort against determined or sophisticated
LAN penetrations.

The Uneasy Conclusion

As of this writing, portable LAN monitors are commercially available that
can selectively or indiscriminately record and display everything trans-
mitted on an Ethernet and IBM Token-Ring LAN. Though they are some-
what expensive, you should not discount their eventual use within your
establishment.

If you would not project your spreadsheets, personal mail, financial
data, etc., on a neighborhood drive-in theater’s screen, you would be
well advised to consider encrypting your data before transmitting it on a
LAN.

Part 11

NetBIOS Support
Programming

General Support Programming, 69

Name Support Programming, 95

Datagram Support Programming, 101
Intermediate Datagram Applications, 105
Real-Time LAN Conferencing Application, 119

C File Transfer Applications, 139

Medialess Workstations, RPL, and Redirectors, 155

67

Chapter 8

General Support Programming

Our first NetBIOS program resets an adapter that is assumed to be con-
trolled by the IBM LAN Support Program. Examine this program in detail
because it presents many NetBIOS programming principles used, but not
discussed, in later programs. If you only study one program completely,
this should be it. Note that all programs assume compatibility with
Microsoft Corporation’s C 5.0 compiler.

First note the #define LINT_ARGS statement. All programs contain
this statement to include subsequent function prototype statements in
the compilation. The compiler produces these statements when invoked
with the /Zg parameter. (Redirecting the compiler output to a file allows
the generated prototypes to be included in the source listing or separate
header file.) All program function declarations observe pre-ANSI X3J11
conventions but can easily be replaced by modified function prototype
statements if supported by your compiler.

Second, note the test for the adapter in the main() routine. To elimi-
nate repetition, all subsequent program listings do not include this test.

Finally, note that the netbios2.h include file listed in Appendix A de-
fines all symbolic values (e.g., SUCCESS, MAX__ADAPTER_NUMBER,
etc.).

The NetBIOS RESET Sample Program

The RESET.C program in Listing 8-1 resets a NetBIOS adapter, and ac-
cepts three integer parameters. In order, they are:

1. the number of the adapter to reset (0 or 1)

69

70

Part II: Support Programming

2. the maximum session count (0 to 254)
3. the maximum pending command count (0 to 255)

If no parameter or an incorrect parameter is entered, the program dis-
plays a usage message. Note, the actual maximum allowable values for
the session and command counts varies and may be controlled by IBM
LAN Support Program /S and /C parameter values, respectively. Exceed-
ing the ceiling values specified as IBM LAN Support Program parameter
values forces NetBIOS to compute its own values. To dynamically deter-
mine these ceiling values, a program must issue an Adapter Status re-
quest.

Listing 8-1. RESET.C
#define LINT_ARGS

#include <dos.h>
#include <stdio.h>
#include '"netbios2.h"

#if defined(LINT_ARGS)

extern int main(int argc,char * *argv);

extern void Logo(void);

extern int CheckDosIVs(void);

extern int IssuelnvalidNetbiosRequest(void);

extern int EditParms(int argc,char * *argv);

extern void ResetAdapter(unsigned int AdapterNumber,
unsigned int SessionCount,
unsigned int CommandCount);

extern void ClearNcb(struct Ncb *NcbPtr);

extern void NetbiosRequest(struct Ncb *NcbPointer);

extern void AnalyzeResetError(int ResetErrorCode);

extern void Explain(void);

extern void ExitNow(void);

#endif

struct Ncb ResetNcb;

struct SREGS SegRegs;
int main(argc, argv)

int argc;

char *argvl];

{

Chapter 8: General Support

71

Listing 8-1. (cont.)

Logo () ;

if (C(1CheckDosIVs()) || (!IssuelnvalidNetbiosRequest())) {
printf("'\n\nNetBIOS not present...program ending...\n\n\x07'");
ExitNow();

if ('EditParms(argc, argv)) {
ExplainQ);
ExitNow();
} else ResetAdapter(atoi(argvi1]),
atoi(argvi2]),
atoi(argvi3D);

return 0;

void Logo()
{
printf(''\n NETBIOS Adapter Reset Sample Program’);
printf(''\n © Copyright 1988 W. David Schwaderer');
>

#define DOS_INT_21 Ox21
#define DOS_FETCH_IV 0x35

int CheckDosIVs()

{
union REGS InRegs, OutRegs;
struct SREGS SegRegs;

InRegs.h.ah = DOS_FETCH_IV;
InRegs.h.al = NetbiosInt5C;

int86x(DOS_INT_21, &InRegs, &0utRegs, &SegRegs);
switch (SegRegs.es) {

case 0x0000 : return FAILURE;

break;

case OxFOOO : return FAILURE;
break;

default : return SUCCESS;

break;

72

Part II: Support Programming

Listing 8-1. (cont.)

int IssuelnvalidNetbiosRequest()
{
struct Ncb PresenceNcb;
ClearNcb(&PresenceNcb);
PresenceNcb.NcbCommand = NETBIOS_INVALID_COMMAND;
NetbiosRequest (&PresenceNcb);
if (PresenceNcb.NcbRetCode == (USGC) 0x03)
return SUCCESS;

else-
return FAILURE;

int EditParms(argc, argv)

int argc;
char *argvll;
{

int ReturnFlag = SUCCESS;

if (argc !'= 4) {
printf("\n\n\x07Incorrect number of parameters...');
“return FAILURE;

if (C(atoi(argv[11) < 0) || (MAX_ADAPTER_NUMBER < atoi(argv[11))) {
printf("\n\n\x07Incorrect adapter-number parameter value (%d)...",
atoi(argvl11));
ReturnFlag = FAILURE;

if ((atoi(argv[2]) < 0) !} (MAX_SESSION_COUNT < atoi(argv(21))) {
printf("\n\n\x07Incorrect session-count parameter value (%d)...",

atoi(argvi2]));

ReturnFlag = FAILURE; ’

if ((atoi(argv[3]) < 0) || (MAX_COMMAND_COUNT < atoi(argv[31))) {
printf(""\n\n\x07Incorrect command-count parameter value (%d)...",

Chapter 8: General Support

73

Listing 8-1. (cont.)

ReturnFlag = FAILURE;

if (ReturnFlag == FAILURE)

return FAILURE;

if (atoiCargv(2]) == 0) {
printf(""\n\nWarning...");

atoi(argv[31));

printf(""NetBIOS selects the session count value...\x07");

if (atoi(argv[3]) == 0) {
printf(""\n\nWarning...");

printf("'NetBIOS selects the command count value...\x07'");

return SUCCESS;

void ResetAdapter(AdapterNumber, SessionCount, CommandCount)
unsigned AdapterNumber, SessionCount, CommandCount;

{

printf(""\n\nNETBIOS adapter %d reset parameters ==>", AdapterNumber);
printf('" %d session%s and %d command’s.

SessionCount, (SessionCount ==
CommandCount, (CommandCount ==

1) ? "n H llsll'
1) ? LU : "S");

printf(''\n\nPlease wait for the adapter to reset...'");

ResetNcb.NcbCommand = NETBIOS_RESET_WAIT_ONLY; /* reset command code

ResetNcb.NcbLanaNum = AdapterNumber;
ResetNcb.NcblLsn = SessionCount;
ResetNcb.NcbNum CommandCount;

NetbiosRequest (&ResetNcb);

if ('ResetNcb.NcbRetCode) {

/%
/%
/*

/*

adapter number
concurrent session count
concurrent command count

Ncb was already zero

printf(""\n\nThe return code was %x.\n", ResetNcb.NcbRetCode);

}
else {

printf("\n\n\x07The return code was %x ', ResetNcb.NcbRetCode);
AnalyzeResetError(ResetNcb.NcbRetCode);

*/
*/

*/

74

Part II: Support Programming

Listing 8-1. (cont.)

printf(''\n');

void ClearNcb(NcbPtr)
struct Ncb *NcbPtr;

{
int i;
char *CharPtr;
CharPtr = (char *) NcbPtr;
for (i =0; i < sizeof(ZeroNcb); i++)
*CharPtr++ = 0x00;
}

void NetbiosRequest(NcbPointer)

struct Ncb *NcbPointer;

{

union REGS InRegs, OutRegs;

struct Ncb far *NcbPtr = (struct Ncb far *) NcbPointer;

SegRegs.es = FP_SEG(NcbPtr);
InRegs.x.bx = FP_OFF(NcbPtr);

int86x (NetbiosInt5C, &InRegs, &OutRegs, &SegRegs);

void AnalyzeResetError(ResetErrorCode)
int ResetErrorCode;
{
if (ResetErrorCode == 0x03) {
printf("[invalid command codel");
return;

if (ResetErrorCode == 0x23) {
printf('"[adapter not installed]');
return;

if ((Ox3F < ResetErrorCode) && (ResetErrorCode < 0x50))
printf("lunusual network condition -or- unacceptable ring-statusl');

return;

Chapter 8: General Support 75

Listing 8-1. (cont.)

if (Ox4F < ResetErrorCode) {
printf(""[adapter malfunction -or- ");
printf("Adapter/PC unusual condition/error 1');
return;

printf (""[lundocumented errorl\x07'");

void Explain()

{
printf(""\n\nusage: reset adapter-number session-count command-count');
printf("\n\n where: 0 <= adapter-number <= 7%d', MAX_ADAPTER_NUMBER);
printf("'\n 0 <= session-count <= %d'", MAX_SESSION_COUNT);
printf(''\n 0 <= command-count <= 7%d", MAX_COMMAND_COUNT);
>

void ExitNow()

{
printf(""\n\nEnding RESET because of parameter input errors...\n");
exit(1);

Support Routines

The main() routine first invokes Logo() which displays a logo. It then
calls CheckDosIVs() and IssuelnvalidNetbiosRequest() to verify that
NetBIOS is present. Part I discusses these tests in more detail.

If NetBIOS is not present, the program terminates after issuing an
acerbic comment. Otherwise, control passes to EditParms() which
checks the command-line parameters.

EditParms()
The various EditParms() routine checks are:

1. The parameter count should be four.

2. The adapter number should have a nonnegative value of zero or a
value not greater than MAX__ADAPTER_NUMBER.

Part II: Support Programming

3. The requested number of sessions should be less than the maxi-
mum allowable (MAX_ SESSION__COUNT).

4. The requested number of maximum outstanding commands al-
lowable should be less than the maximum allowable (MAX__
COMMAND__COUNT).

If the session or command value is zero, a warning is presented to the
user stating that NetBIOS will compute the parameter value.

If the parameters are not acceptable, main() invokes Explain() to dis-
play the appropriate parameter values and then exits by invoking Exit-
Now(). Otherwise, the parameters are acceptable and main() invokes the
ResetAdapter() routine to reset the adapter.

ResetAdapter()

The ResetAdapter() routine first displays the adapter number, session
count, and pending command count values it uses in its Reset command.
Because the NetBIOS reset may take a few seconds, it issues a request for
user patience. Whether it actually delays the few seconds is controlled
by the IBM LAN Support Program CR parameter discussed in Part I.

ResetAdapter() completes the required fields in the Ncb structure
named ResetNcb located near the top of the listing, and invokes Netbios-
Request() to issue the request. If NetBIOS is not present in the machine,
the machine generally freezes at this point. Note that the symbolic value
of the Reset command code (NETBIOS_RESET_WAIT _ONLY) clearly
indicates that a no-wait version of the command does not exist.

After NetBIOS returns, ResetAdapter() inspects the return code. If it
is zero, then ResetAdapter() displays a success message and returns to
main() which then exits. Alternatively, ResetAdapter() displays the non-
zero return code and invokes AnalyzeResetError() to display an English
explanation before it exits.

AnalyzeResetError()

Properly analyzing error codes is a challenge because different IBM Net-
BIOS implementations provide different adapter-dependent error codes.
The error code analysis presented in AnalyzeResetError() is for errors
applying to the PC Network LANA NetBIOS. Note that IBM Token-Ring
4Xh and FXh error codes reflect an unacceptable ring status and an
adapter/PC unusual condition/error, respectively. Clearly, the applicabil-

Chapter 8: General Support 77

ity of an unacceptable ring status error code to a CSMA/CD PC Network
adapter controlled by the IBM LAN Support Program is inappropriate.
Thus, you must refer generally to the adapter’s NetBIOS documentation
before you can correctly interpret error codes.

Why Didn’t ResetNchb Get Zeroed by ClearNch()?

Because of its position in the program, ResetNcb is located in static stor-
age, which is always initialized to zeros. Thus, ResetNcb does not require
zeroing before ResetAdapter() uses it. However, if ResetNcb is a Reset-
Adapter() automatic variable or was used in a previously completed Net-
BIOS command, it requires zeroing by invoking ClearNcb(). Part I
discusses the ClearNcb() and NetbiosRequest() routines in more detail.

The NetBIOS Adapter Status Sample Program

The primary challenge of any adapter status program is displaying the
large amount of returned data. The job is significantly complicated be-
cause different IBM versions of NetBIOS return different data or return the
same data at different displacements within the returned information.

For example, IBM LAN Support Program NetBIOS implementations
return the maximum datagram packet size at offset 48 (decimal). The
original LANA NetBIOS does not return this data at all and offset 48 re-
sides within a reserved area for this NetBIOS version. Moreover, the IBM
LAN Support Program returns the major NetBIOS version number at off-
set 06 (decimal). However, the LANA NetBIOS returns the adapter
jumper settings at offset 06 and the NetBIOS major version number at
offset 08.

Finally, Token-Ring adapter status data may contain extended status
information, valid only for adapter status commands for local adapters.
This information may also contain adapter counter information that is
valid “only if no ring-status appendage is defined” according to the 7o-
ken-Ring PC Adapter Technical Reference Manual. There is no method
to determine whether such a ring-status appendage is defined. See Part
IV of this book for more details.

Because the primary purpose of this book is to teach basics, the
Adapter Status sample program takes the simple road and illustrates a par-
tial NetBIOS Adapter Status command applicable to adapters controlled
by the IBM LAN Support Program. A complete general program is leftasa

Part II: Support Programming

reader exercise. Note that the netbios2.h include file provides sample
adapter status structures for both IBM adapter status formats. The IBM
LAN Support Program format and the PC Network LANA format are Dlc-
Status and LanaStatus structures, respectively. The PC Network II and
II/A adapters use the DlcStatus structure.

The main() Function

The main() routine displays a simple logo and invokes EditArgs() to vali-
date the single valid input parameter. Assuming the parameter passes the
tests, RequestStatus() issues the Adapter Status command. If the com-
mand is not successful, a complaint is displayed containing the failing
return code and the program ends. Otherwise, DIcStatus() displays the
returned adapter type and permanent node name information fields. Fi-
nally, main() displays the number of NetBIOS names in the adapter Net-
BIOS name table before exiting. Note that each name in the table requires
18 bytes and that the minimum buffer size is 60 bytes. Since the IBM LAN
Support Program N parameter allows a maximum of 254 names in the
NetBIOS name table, a buffer size of 4,632 bytes (60 + 18 X 254) is gener-
ally required to hold all possible returned data.

EditArgs()

The Adapter Status sample program accepts one input parameter— the
name of the adapter to provide the adapter status information. It may be a
local or remote adapter.

Input Parameter Name Format

The name may be a unique name, a group name, or a permanent node
name. A NetBIOS name generally consists of 16 arbitrary characters.
However, the Adapter Status program does not support this because
some characters (e.g., carriage return) cannot be specified on the PC-
DOS command line. The permanent node name specification technique
overcomes this limitation.

Parameter Processing—Special Cases
There are three special cases that are distinguished by the first character
of the input parameter:

1. If the first character is a question mark (?), no name is specified
and the program returns usage information before exiting.

Chapter 8: General Support 79

2. If the first character is an asterisk (*), the local adapter specified in
the Adapter Status command’s NcbLanaNum field provides the
data.

3. If the first character is a backslash (\), the parameter specifies a
local or remote adapter permanent node name. The actual format
of the parameter is: \x.hh.hh.hh.hh.hh.hh.

where each h represents a valid hexadecimal digit. In this case, the six
specified bytes are appended to 10 bytes of binary zeros to create the ac-
tual network permanent node name. Note that the length of this type
specification is exactly 20 characters. A valid 20-character parameter is
converted to a six-byte value invoking sscanf(). This should produce ex-
actly six hexadecimal characters.

These six characters are placed in the six-element HoldNodeld char-
acter array. After zeroing the first 10 characters of the 16-element
HoldNetworkName character array, these six characters are then moved
into the last six characters of the HoldNetworkName character array,
completing the permanent node name specification later used in the
Adapter Status command. Finally, note that NetBIOS names can use spe-
cial characters such as the ASCII carriage return value or a binary zero
character. However, users cannot enter such characters on the PC-DOS
prompt line as part of a 16-character name.

Allowing an alternate parameter length of exactly 50 characters and
extending the switch statement logic permits general 16-character Net-
BIOS name specifications as implied above. This is left as a straight-for-
ward reader exercise. The format of such a parameter is:

\x.hh.hh.hh.hh.hh.hh.hh.hh.hh.hh.hh.hh.hh.hh.hh.hh

Parameter Processing—Normal Case

If the parameter is not a special-case parameter, it is treated as a normal
symbolic network name and is copied directly into the 16-element
HoldNetworkName character array. In this case, all characters are signifi-
cant and lowercase letters are different than uppercase letters.

If the name has less than 16 characters, the remaining uninitialized
HoldNetworkName array character elements are set to ASCII blanks.
Warning! While some programs such as the IBM Token-Ring Network/PC
Network Interconnect Program require blanks as the 16th character, arbi-
trarily selecting blanks as a filler character value can be a significant pro-
gramming hazard. Other programs may use different filler character

80

Part II: Support Programming

values resulting in name parameters that look the same on the PC-DOS
command lines but have different NetBIOS name table values.

Perhaps binary zeros would be more appropriate, as a filler or even
ASCII carriage returns. The important thing is to recognize that such an
arbitrary decision is likely inappropriate. The only alternative is to allow
a 50-character input parameter that allows users to specify the hexadeci-
mal value of every name character.

DicStatus() and DisplayNetbiosLevel()

DIlcStatus() in Listing 8-2 first invokes DisplayNetbiosLevel() to display
the level of the NetBIOS supporting the target adapter. DisplayNetbios-
Level()assumes that the IBM LAN Support Program provided the adapter .
status data, so it displays the NetBIOS level as well as the type of parame-
ters used to initialize the DXMTOMOD.SYS device driver (NetBIOS) be-
fore returning to the DlcStatus routine. Note that DXMINFO.DOC
contains critical information on the data format that is incorporated in
the netbios2.h header file.

Like DisplayNetbiosLevel(), DicStatus() assumes the IBM LAN Sup-
port Program provides the adapter status data, and so determines and dis-
plays what type adapter has provided it, concluding its operation by
displaying the permanent node name of that adapter. Note that Dlc-
Status() could display much more data but a complete listing results in
excruciatingly boring pages of printf() statements, so that task is left as a
reader exercise.

Listing 8-2. STATUS.C
#define LINT_ARGS

#include <dos.h>
#include <ctype.h>
#include <stdio.h>
#include <string.h>
#include <process.h>
#include "netbios2.h"

struct SREGS SegRegs;

struct Ncb StatusNcb;
struct DlcStatus DlcData; /* LAN Support Program Status Structure */

unsigned char HoldNodeId[6];
unsigned char HoldNetworkNamel[161];

Chapter 8: General Support 81

Listing 8-2. (cont.)

#if defined (LINT_ARGS)

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
#endi f

int main(int argc,char * *argv);

unsigned char RequestStatus(void);

void DisplayDlcStatus(char * *argv);

void DisplayNetbiosLevel(void);

void ClearNcb(struct Ncb *NcbPtr);

void NetbiosRequest(struct Ncb *NcbPointer);
int EditArgs(int argc,char * *argv);

void Logo(void);

void Explain(void);

void ExitNow(void);

int main(argc, argv)

int

argc;

char *argvll;

{

unsigned char temp;

LogoO);

if (1EditArgs(argc, argv))

ExitNow();

if (temp = RequestStatus())

printf(""\n\nRequest status error %02Xh...\n", temp);
else {

DisplayDlcStatus(argv);

printf(""\n\nThere '");

(DlcData.NameTableEntryCount == 1) ? printf('is") : printf(are');

printf(" %u ", DlcData.NameTableEntryCount);

(DlcData.NameTableEntryCount == 1) ? printf('entry') :

printf(''entries');
printf(" in the adapter Name Table.');

putchar('\n');

return 0;

unsigned char RequestStatus()

82

Part II: Support Programming

Listing 8-2. (cont.)

int temp;
char far *StatusBufferPtr =

ClearNcb(&StatusNch);

StatusNcb.NcbBufferOffset
StatusNcb.NcbBufferSegment

StatusNcb.NcbCommand =
StatusNcb.NcblLength =
StatusNcb.NcbLanaNum

N
s
0

(char far x) &DlcData;

(char *) FP_OFF(StatusBufferPtr);
(unsigned) FP_SEG(StatusBufferPtr);

ETBIOS_ADAPTER_STATUS;
izeof(DlcData);

.
’

for (temp = 0; temp < 16; temp++)
StatusNcb.NcbCal IName[temp] = HoldNetworkNameltempl;

NetbiosRequest (&StatusNcb);

return StatusNcb.NcbRetCode

void DisplayDlcStatus(argv)
char *argvl[];

{

int i, j;

DisplayNetbiosLevel O);

’

Adapter Type */

switch (DlcData.LanAdapterType) {
case TOKEN_RING_ADAPTER :

printf(''Token Ring Adapter.');
break;

case PC_NETWORK_ADAPTER :

default :

printf('"PC Network Adapter.');
break;

printf("Unknown Adapter...\x07'");
break;

[Fmmmm e e e Permanent Node Name */

Chapter 8: General Support 83

Listing 8-2. (cont.)

printf(""\n\nAdapter Permanent Node Name: ');

for (i = 0; i < sizeof(DlcData.PermanentNodeName); i++)
printf("'%02X", ((unsigned char) OxFF) & DlcData.PermanentNodeNamelil);

void DisplayNetbiosLevel ()
{

/*--- NETBIOS Version Information ---*/

printf(""\n\nUsing NetBIOS Version %u.%u ",
(DLcData.MajorVersionNumber & VERSION_MASK),
(DlcData.MinorVersionNumber & VERSION_MASK));

switch (DlcData.MinorVersionNumber & PARM_MASK) {

case OLD_PARMS :
printf("'with \"old\'"");
break;

case NEW_PARMS :
printf("with \"new\'"");
break;

default
printf("'?? - Undefined input parameter format\x07');

printf('" parameters on a '");

void ClearNcb(NcbPtr)
struct Ncb *NcbPtr;

{
int i;
char *CharPtr;
CharPtr = (char *) NcbPtr;
for (i =0; i < sizeof(ZeroNcb); i++)
*CharPtr++ = 0x00;
}

void NetbiosRequest(NcbPointer)
struct Ncb *NcbPointer;
{

Part II: Support Programming

Listing 8-2. (cont.)

union REGS InRegs, OutRegs; /* defined in dos.h */
struct Ncb far *NcbPtr = (struct Ncb far *) NcbPointer;

segread(&SegRegs) ;

FP_SEG(NcbPtr);
FP_OFF(NcbPtr);

SegRegs.es
InRegs.x.bx

int86x(NetbiosInt5C, &InRegs, &0utRegs, &SegRegs);

int EditArgs(argc, argv)
int argc;
char *argvll;
{
char c¢;
int temp;
char *NodeNamePointer;

if C(argc < 2) {
ExplainQ);
return FAILURE;

if (argc > 2) {
printf(''\nToo many parameters...\n'");
Explain();
return FAILURE;

switch (*xargv[1]1) {

case '?' :
Explain();
return FAILURE;
break;

case '"\\' :

if (strlen(argv[1]) 1= 20) {
printf(''\nParameter has the incorrect length.'");
printf("\nShould be 20 characters long.");
return FAILURE;

Chapter 8: General Support 85

default:

Listing 8-2. (cont.)

temp = sscanflargvl1], "\\x.%2x.%2x.%2x.%2x.%2x.%2x"",
&HoldNodeld[0], &HoldNodeld[11,
&HoldNodeld[21, &HoldNodeld[3],
&HoldNodeId[4], &HoldNodeld[51);

if (temp '= 6) {
printf('"\nscanf() problem with input parameter...'");
printf("\nplease clean up your input parameter...'");
printf("\nformat ==> \\x.HH.HH.HH.HH.HH.HH");
printf("\nparameter ==> %s", argvi11);
return FAILURE;

printf(''\nRequesting status for network node \\x.'");

printf("%02X.%02X.%02X.%02X.%02X.%02X"",
HoldNodeId[0] & OxOOFF, HoldNodeld[11 & OxOOFF,
HoldNodeId[2] & OxOOFF, HoldNodeld[3] & OxOOFF,
HoldNodeld[4] & OxOOFF, HoldNodeld[51 & OxOOFF);

for (temp = 0; temp < 10; temp++) {
HoldNetworkNameltempl = 0x00;
>

for (temp = 0; temp < 10; temp++) {
HoldNetworkNameltemp+10] = HoldNodeId[temp];
}

break;

if (strlenCargv[1]) > 16) {
printf('"\nParameter has the incorrect length.');
printf("\nShould be one to sixteen characters long.'");
return FAILURE;
>
for (temp = 0, NodeNamePointer = argv[1];
(temp <16) && (¢ = *NodeNamePointer);
temp++, NodeNamePointer++) {
HoldNetworkNameltempl = c;

for (; temp < 16; temp++) {
HoldNetworkNameltempl = ' ';
}

86 Part II: Support Programming

Listing 8-2. (cont.)

if (*argv[1] == '%')

printf(''\nRequesting status for local primary adapter.');
else

printf('"\nRequesting status for %s'", argv[1]);

break;

return SUCCESS;

void Logo()

{
printf(''\n NetBIOS Adapter Status Program');
printf(''\n © Copyright 1988 W. David Schwaderer\n');

void Explain(Q

{
printf(''\nusage: status Node-ID\n'");
printf(''\n Node-ID: \\x.hh.hh.hh.hh.hh.hh for Permanent Node ID');
printf(''\n -or- 12345!@#$*aBcDeF for Network Name');
printf(''\n -or- * for Local Primary Adapter Status');

}

void ExitNow()

{
printf("'\n\n\x07Program ending...\n");
exit(1);

The Adapter Reset and Adapter Status Synergy

Resetting PC Network LANA adapters with varying maximum session
and pending command values determines the maximum message size
packet the adapter can transmit. (Note this does not apply to other IBM
LAN adapters and the maximum datagram size is always 512 bytes for PC
Network LANA adapters.)

It is possible to reveal the exact undocumented effect these com-

Chapter 8: General Support 87

bined parameters have on the maximum packet size by issuing Adapter
Reset commands while varying their values from 1 to 32 and by issuing
intervening Adapter Status commands. The results differ for the two dif-
ferent levels of NetBIOS available for PC Network LANA adapters and are
displayed in Figures 8-1 and 8-2.

Fig. 8-1. Packet size (in bytes) as a function of /CMD and /SES for
LANA protocol level 1.23.

88 Part II: Support Programming

2 /CMD

01]02]o|o4]os|oslo7]os]os|10]11]12]13]14]15]16]17]18]1]20]21]22|23]24| 25]26|27]28]20]30]31 a2

1<1062>

Fig. 8-2. Packet size (in bytes) as a function of /CMD and /SES for
LANA protocol level 1.33.

The NetBIOS Cancel Sample Program

The NetBIOS Cancel sample program in Listing 8-3 illustrates the proce-
dure to cancel a pending Ncb command. The program begins by invok-

Chapter 8: General Support

89

ing Logo() to display a logo. It then invokes RequestStatus() which
issues an Adapter Status command with a no-wait option for a network
name consisting of 16 uppercase X’s. Since such a name is unlikely to
exist, the NetbiosRequest() routine should return before the command

completes.

Listing 8-3. CANCEL.C
#define LINT_ARGS

#include <dos.h>
#include <stdio.h>
#include "netbios2.h"

struct SREGS SegRegs;

struct Ncb StatusNcb, CancelNcb;
struct DlcStatus DlcData;

#if defined (LINT_ARGS)

extern int main(int argc,char * *argv);

extern void RequestStatus(void);

extern void CancelRequestStatus(void);

extern void AnalyzeNcbStatus(void);

extern void ClearNcb(struct Ncb *NcbPtr);

extern void NetbiosRequest(struct Ncb *NcbPointer);
extern void Logo(void);

#endif

int main(argc, argv)

int argc;

char *argvl];

{
unsigned char temp;
Logo();
RequestStatus();
CancelRequestStatus(Q);
AnalyzeNcbStatus();

putchar('\n");

return 0;

90 Part II: Support Programming

Listing 8-3. (cont.)

void RequestStatus()

{
int temp;
char far *StatusBufferPtr = (char far *) &DlcData;
ClearNcb(&StatusNcb);
StatusNcb.NcbBufferOffset = (char *) FP_OFF(StatusBufferPtr);
StatusNcb.NcbBufferSegment = (unsigned) FP_SEG(StatusBufferPtr);
StatusNcb.NcbCommand = NETBIOS_ADAPTER_STATUS + NO_WAIT;
StatusNcb.NcbLength .= sizeof(DlcData);
StatusNcb.NcbLanaNum =0;
for (temp = 0; temp < 16; temp++)
StatusNcb.NcbCal LNameltempl = 'X';
NetbiosRequest (&StatusNcb);
}

void CancelRequestStatus()

{
struct Ncb far *NcbPtr = (struct Ncb far *) &StatusNcb;
ClearNcb(&CancelNcb);
CancelNcb.NcbBufferOffset = (char *) FP_OFF(NcbPtr);
CancelNcb.NcbBufferSegment = (unsigned) FP_SEG(NcbPtr);
CancelNcb.NcbCommand = NETBIOS_CANCEL_WAIT_ONLY;
CancelNcb.NcbLanaNum = 0;
NetbiosRequest (&CancelNcb);

>

void AnalyzeNcbStatus()

{
printf(""\nCancel NcbRetCode ==> %02Xh'", CancelNcb.NcbRetCode);
printf(""\nStatus NcbRetCode ==> %02Xh'', StatusNcb.NcbRetCode);

void ClearNcb(NcbPtr)

Chapter 8: General Support 91

Listing 8-3. (cont.)

struct Ncb *NcbPtr;
{

int i

char *CharPtr;

CharPtr = (char *) NcbPtr;

for (i = 0; i < sizeof(ZeroNcb); i++)
*CharPtr++ = 0x00;

void NetbiosRequest (NcbPointer)

struct Ncb *NcbPointer;

{

union REGS InRegs, OutRegs; /* defined in dos.h */
struct Ncb far *NcbPtr = (struct Ncb far *) NcbPointer;

segread(&SegRegs) ;

SegRegs.es = FP_SEG(NcbPtr);
InRegs.x.bx = FP_OFF(NcbPtr);

int86x(NetbiosInt5C, &InRegs, & utRegs, &SegRegs);

void Logo()

{
printf(''\n NetBIOS Cancel Program');
printf(""\n © Copyright 1988 W. David Schwaderer \n");

The program invokes CancelRequestStatus() to cancel the presuma-
bly pending Adapter Status command. The pending command uses an
Ncb named StatusNcb that has program scope, so CancelRequestStatus()
can easily address it. Because the Cancel command has only a Wait form,
its NetbiosRequest() returns synchronously—after the command has
completed. Finally, the program invokes AnalyzeNcbStatus() to present
the NcbRetCode values of both the Adapter Status and Cancel com-
mands. If the program has successfully completed, these return codes
should be 0Bh and 00h, respectively.

Normally, a program should never leave a command pending before
exiting, though it is possible in this program for the Cancel command to
fail under unusual circumstances. In this situation, the Adapter Status com-

92

Part II: Support Programming

mand completes when the adapter’s system time-out expires or when the
target adapter responds successfully. If the latter occurs, NetBIOS then al-
ters the memory where the Adapter Status buffer was located. In any
event, NetBIOS alters the memory where the Ncb was located. At worst,
NetBIOS then detects a nonzero Post Routine field value and begins exe-
cution at some (usually) disastrous point in memory. If you execute this
program and the Cancel command is not successful, you may wish to reset
your adapter to clear the pending Adapter Status command.

The NetBIOS Unlink Sample Program

The NetBIOS Unlink sample program in Listing 8-4 illustrates the Net-
BIOS Unlink command that disconnects a client PC Network LANA
adapter from an RPL server. The command is trapped by the adapter’s
native ROM NetBIOS and is converted to a Hang Up command that uses
another Ncb.

You will likely never need to use this command, but it is supported in
many versions of NetBIOS for compatibility with IBM’s original Net-
BIOS. In any event, its utility is increasingly limited with passing time.
Note that a PC Network LANA’'s NetBIOS virtually always returns a zero
return code unless a very unusual condition occurs. Part I discusses this
command in more detail.

Listing 8-4. UNLINK.C
#define LINT_ARGS

#include <dos.h>
#include <stdio.h>
#include '"netbios2.h"

#if defined (LINT_ARGS)

extern 1int main(int argc,char * *argv);

extern void Logo(void);

extern void UnlinkAdapterNow(void);

extern void NetbiosRequest(struct Ncb *Ncho{nter);

"#endif

struct Ncb UnlinkNcb;

int main(argc, argv)
int argc;
char *argvl[];

Chapter 8: General Support

93

Listing 8-4. (cont.)

Logo();
UnlinkAdapterNow();
return 0;

}

void Logo()
{
printf('"\n NetBIOS Adapter Unlink Sample Program');
printf(''\n © Copyright 1988 W. David Schwaderer');
}

void UnlinkAdapterNow()

{
printf(''\n\nAttempting to Unlink NetBIOS adapter 0...');
UnlinkNcb.NcbCommand = NETBIOS_UNLINK_WAIT_ONLY; /* Unlink command code */
UnlinkNcb.NcbLanaNum = 0x00; /* unchecked, but should be zero */
NetbiosRequest (&UnlinkNcb);
if ('UnlinkNcb.NcbRetCode) {
printf(""\n\nAs hard-coded by NetBIOS, the return code was %x.\n'",
UnlinkNcb.NcbRetCode);
>
else {
printf(""\n\n\x07The return code was %x ', UnlinkNcb.NcbRetCode);
}
}

void NetbiosRequest(NcbPointer)

struct Ncb *NcbPointer;

{

union REGS InRegs, OutRegs; /* defined in dos.h */
struct SREGS SegRegs; /* defined in dos.h */
struct Ncb far *NcbPtr = (struct Ncb far *) NcbPointer;

SegRegs.es = FP_SEG(NcbPtr);
InRegs.x.bx = FP_OFF(NcbPtr);

int86x (NetbiosInt5C, &InRegs, &0utRegs, &SegRegs);

Chapter 9

Name Support Programming

The NetBIOS Name Activity sample program, Listing 9-1, with routines
NetbiosAddName() and FileNetbiosNameTable() illustrate how to add
and delete NetBIOS names to and from local name tables.

The NetBIOS Name Activity Sample Program

The main() routine begins by invoking Logo() which displays a logo. It
then resets the adapter insuring that the NetBIOS name table is empty
and that there are no pending commands. It then calls the NetbiosAdd-
Name() routine.

When NetbiosAddName() returns, it resets the adapter to allow
FillNetbiosNameTable to demonstrate NcbNum values beginning at 02h
after each adapter reset. It then calls FillNetbiosNameTable(). When
FillNetbiosNameTable() returns, the program resets that adapter for the
last time and exits. ’

Listing 9-1. NAME.C
#define LINT_ARGS

#include <dos.h>
#include <stdio.h>
#include '"netbios2.h"

#if defined (LINT_ARGS)

extern int main(int argc,char * *argv);

extern void AddNetbiosName(void);

extern void DeleteNetbiosName(unsigned char NetbiosNameChar);

95

Part II: Support Programming

Listing 9-1. (cont.)

extern void FillNetbiosNameTable(void);

extern void ResetAdapter(void);

extern void Logo(void);

extern void ClearNcb(struct Ncb *NcbPtr);

extern void NetbiosRequest(struct Ncb *NcbPointer);
#endif

struct Ncb NameNcb; /* automatically set to zero in static storage */
int main(argc, argv)
int argc;
char *argvll;
{
Logo();

ResetAdapter();
AddNetbiosName();

ResetAdapter();
FillNetbiosNameTable();

ResetAdapter();
putchar('\n");

return 0;
void AddNetbiosName()
{
USGC i = 0;
printf(''\n\nNetBIOS Add Name Example...');

printf(""\n Adding the name 'A'+%02Xh+00h+...+00h. ", i);

ClearNcb(&NameNcb) ;

NameNcb.NcbCommand = NETBIOS_ADD_NAME;
NameNcb.NcbName[0l = 'A';
NameNcb.NcbName[1] = i;

NameNcb.NcbLanaNum = 0;

NetbiosRequest (&NameNcb) ;

Chapter 9: Name Support 97

Listing 9-1. (cont.)

printf(""\n Its NcbNum value is %02Xh.", NameNcb.NcbNum);

DeleteNetbiosName(i);

void DeleteNetbiosName(NetbiosNameChar)
USGC NetbiosNameChar;

{

struct Ncb DeleteNameNcb;
printf(""\n\nNetBIOS Delete Name Example...'");
printf("\n Deleting the name 'A'+%02Xh+00h+...+00h. ',

NetbiosNameChar);
ClearNcb(&DeleteNameNcbh) ;

DeleteNameNcb.NcbCommand = NETBIOS_DELETE_NAME;

DeleteNameNcb.NcbName[0l = 'A';
DeleteNameNcb.NcbNamel[1] = NetbiosNameChar;
DeleteNameNcb.NcbLanaNum = O;

NetbiosRequest (&DeleteNameNcb);

printf("\n The Delete Name command return code was %02Xh.",
DeleteNameNcb.NcbRetCode) ;

void FillNetbiosNameTable()

{

USGC i = 1;

printf("\n\nNetBIOS Name Table exhaustion exercise...");

ClearNcb(&NameNcb) ;

while (!NameNcb.NcbRetCode) { /* add names until there is an error */
printf("\n Adding the Group Name 'A'+%02Xh+00h+...+00h now. ", i);

ClearNcb(&NameNcb) ;

NameNcb.NcbCommand
NameNcb.NcbName (0]
NameNcb.NcbName[11]

NETBIOS_ADD_GROUP_NAME;
lAI;
i++;

98

Part II: Support Programming

Listing 9-1. (cont.)
NameNcb.NcbLanaNum = 0;
NetbiosRequest (&NameNcb) ;
if (INameNcb.NcbRetCode)

printf(''Its NcbNum value is %02Xh.', NameNcb.NcbNum);
else

printf(""\n The Add Group Name command failed...'");
printf(*"\n The failing Add Group Name command return code was %02Xh.",
NameNcb.NcbRetCode);

printf(''\n\nThe adapter's name table holds %u added names...",
i-2);

printf(""'\n\nExiting the Name Table exercise.');

void ResetAdapter()
{
struct Ncb ResetNcb;

printf(''\n\nResetting the adapter. ');

ResetNcb.NcbCommand = NETBIOS_RESET_WAIT_ONLY; /* reset command code */

ResetNcb.NcbLanaNum = O; /* adapter number */
ResetNcb.NcbLsn = 32; /* concurrent session count */
ResetNcb.NcbNum = 32; /* concurrent command count */

NetbiosRequest (&§ResetNch);

printf(""The Reset command return code was %02Xh.", ResetNcb.NcbRetCode);

void Logo()
{
printf(''\n NetBIOS Name Activity Sample Program');

printf(''\n © Copyright 1988 W. David Schwaderer');
>

void ClearNcb(NcbPtr)
struct Ncb *NcbPtr;

Chapter 9: Name Support 99

Listing 9-1. (cont.)

int i;
char *CharPtr;

CharPtr = (char *) NcbPtr;

for (i = 0; i < sizeof(ZeroNcb); i++)
*CharPtr++ = 0x00;

void NetbiosRequest(NcbPointer)

struct Ncb *NcbPointer;

{

union REGS InRegs, OutRegs;

struct SREGS SegRegs;

struct Ncb far *NcbPtr = (struct Ncb far *) NcbPointer;

segread(&SegRegs);

SegRegs.es = FP_SEG(NcbPtr);
InRegs.x.bx = FP_OFF(NcbPtr);

int86x (NetbiosInt5C, &InRegs, &0utRegs, &SegRegs);

The AddNetbiosName Routine

The AddNetbiosName routine adds a unique name to the NetBIOS name
table using a wait option. When the command completes, the routine
displays the name’s NcbNum value which should be 02h because of the
previous Adapter Reset command. (AddNetbiosName() assumes the Add
Name command successfully completed.) Before exiting, AddNetbios-
Name() invokes DeleteNetbiosName() to delete the name from the Net-
BIOS name table. At this point, the next NcbNum value should be 03h,
but the adapter is reset by main() after AddNetbiosName returns.

The FillNetbiosNameTable Routine

FillNetbiosNameTable() is a brute force routine that determines how
many names an adapter’s NetBIOS name table can hold. It continues to

100

Part II: Support Programming

add unlikely group names until an Add Group Name command returns a
nonzero return code.

When a command is successful, FillNetbiosNameTable() displays the
associated NcbNum which should start at 02h because of the Adapter Re-
set that main() issued immediately before calling FililNetbiosNameTable.
Otherwise, the command fails and the routine displays the failing return
code before exiting. Note that the return code should be OEh if the name
table has been filled.

Finally, note that this routine may take a long time to complete if the
NetBIOS name table holds many names.

Chapter 10

Datagram Support Programming

This chapter presents a simple datagram application that determines the
maximum size datagram an adapter can transmit. If the IBM LAN Support
program controls the adapter, the value of the maximum datagram size is
available at offset 48 (decimal) in returned adapter status information.
However, other NetBIOS implementations do not provide this informa-
tion with an Adapter Status command, so another method is required.
The program in Listing 10-1 uses a brute force approach that begins
by transmitting a one-byte datagram. If the datagram transmission is suc-
cessful, the program increments the datagram size and transmits another

datagram. This continues until an error occurs.

Listing 10-1. MAXDG.C

#define LINT_ARGS

#include <dos.h>
#include <stdio.h>
#include "netbios2.h"

struct SREGS SegRegs;

struct Ncb DatagramNcb;

?har Buffer[1];

char ClientNamel16] = "HﬁS-Datagram”;
#if defined (LINT_ARGS)

extern int main(int argc,char * *argv);

extern void InitDatagramNcb(void);
extern void XmitDatagram(unsigned int Length);

101

102 Part II: Support Programming

Listing 10-1. (cont.)

extern void ClearNcb(struct Ncb *NcbPtr);

extern void NetbiosRequest(struct Ncb *NcbPointer);
extern void Logo(void);

#endi f

int main(argc, argv)
int argc;
char *argvl[];
{
USGC XmitError = FALSE;
USGI LastGoodSize, SendSize = 1;

LogoQ);
printf(""\n'");
InitDatagramNcb();

while(!XmitError) {
XmitDatagram(SendSize);
if (DatagramNcb.NcbRetCode) {
XmitError = TRUE;
LastGoodSize = SendSize - 1;
Y else {
SendSizet+;
putchar('.");

printf(""\n\nDatagram Send failed; return code == %02Xh",
DatagramNcb.NcbRetCode);

printf(""\n\nMaximum datagram length == %u bytes...\n",
LastGoodSize);

return 0;

void InitDatagramNcb()
{
USGI temp;

char far *x BufferPtrFar = (char far *) Buffer;

Chapter 10: Datagram Support

103

Listing 10-1. (cont.)

ClearNcb(&DatagramNcb) ;

DatagramNcb.NcbCommand = NETBIOS_SEND_DATAGRAM;

DatagramNcb.NcbBufferOffset = (char *) FP_OFF(BufferPtrfar);
DatagramNcb.NcbBufferSegment = (USGI) FP_SEG(BufferPtrfar);

DatagramNcb.NcbNum = 0x01; /* use Permanent Node Name NameNum */

for (temp = 0; temp < 16; temp++)
DatagramNcb.NcbCallNameltemp] = ClientNameltempl;

void XmitDatagram(Length)

USGI Length;

{
DatagramNcb.NcbLength = Length;
NetbiosRequest (&DatagramNcb) ;

}

void ClearNcb(NcbPtr)
struct Ncb *NcbPtr;

{
int i
char *CharPtr;
CharPtr = (char *) NcbPtr;
for (i =0; 1 < sizeof(ZeroNcb); i++)
*CharPtr++ = 0x00;
}

void NetbiosRequest(NcbPointer)
struct Ncb *NcbPointer;
{
union REGS InRegs, OutRegs; /* defined in dos.h */
struct Ncb far *NcbPtr = (struct Ncb far *) NcbPointer;

segread(&SegRegs);

SegRegs.es = FP_SEG(NcbPtr);
InRegs.x.bx = FP_OFF(NcbPtr);

int86x(NetbiosInt5C, &InRegs, &0utRegs, &SegRegs);

104 Part II: Support Programming

Listing 10-1. (cont.)
>

void Logo()
{
printf('"\n NetBIOS Datagram Size Program');
printf(""\n © Copyright 1988 W. David Schwaderer');
}

The main() Function

The main() function begins by calling Logo() to present a logo. It then
calls InitDatagramNcb(), which initializes a Send Datagram Ncb with a
wait option. After initializing the Ncb, main() enters a while loop which
terminates when the variable XmitError becomes TRUE.

In this loop, main() calls XmitDatagram() and provides it with a
datagram length. After XmitDatagram() returns, main() checks the re-
turn code for success. If it is successful, main() increments the datagram
size, displays a period (.) to provide user feedback, and begins another
execution of the loop.

Alternatively, the command fails and the loop terminates because the
variable XmitError is set to TRUE. If the command fails because the size
is too large, the return code is 01h (Illegal Buffer Length). Before exiting,
main() displays the failing command’s return code and the size of the last
successfully transmitted datagram.

Note the program repeatedly uses the same Ncb but never reinitial-
izes it. This is generally not advisable, but is acceptable in this instance
because the command uses a wait option and the values of the Ncb fields
initialized by InitDatagramNcb() do not vary. Most importantly, the Ncb
is located in static storage and is not an automatic variable.

InitDatagramNch() and XmitDatagram()

InitDatagramNcb() initializes all fields required for a Send Datagram with
the exception of the NcbLength field. XmitDatagram() initializes this
field immediately before issuing the command. Since the command
specifies the wait option, control returns to XmitDatagram() synchro-
nously at the command’s completion and XmitDatagram() immediately
returns to main().

Chapter 11

Intermediate Datagram Applications

This chapter presents two datagram applications that respectively act as
server and client applications. The server datagram application periodi-
cally broadcasts current date and time information to potential clients.

Using datagrams allows an unlimited number of clients to receive
date and time information from an unlimited number of servers. Having
multiple clients simultaneously use the same datagram economizes the
LAN’s transmission capability, and having more than one server provides
a measure of insurance that client PCs can always receive date and time
information. Neither of these advantages are easily achieved using ses-
sion communication.

Client machines can subsequently use the date and time information
to set their current date and time during AUTOEXEC.BAT execution. This
procedure is analogous to procedures used to initialize a machine’s date
and time from a battery-backed clock-calendar board.

A Date and Time Server Application

The server application uses its permanent node name to beacon
datagrams containing the current date and time. The program in Listing
11-1 terminates when a Ctrl-Break is struck at the keyboard. Note that the
implementation of this application allows multiple date and time servers
to exist simultaneously on a given network.

Listing 11-1. DATETIME.C
#define LINT_ARGS

#include <dos.h>

105

106 Part II: Support Programming

Listing 11-1. (cont.)

#include <stdio.h>
#include '"netbios2.h"

struct SREGS SegRegs;

struct Ncb DateTimeNcb;
USGC TimeNameNum;

struct DateTimeStruct DateTimelnfo;
char ClientNamel[16] = ""WDS-DateTime'";

#if defined (LINT_ARGS)

extern int main(int argc,char * *argv);

extern void FetchDateAndTime(void);

extern void XmitDateTime(void);

extern void ClearNcb(struct Ncb *NcbPtr);

extern void NetbiosRequest(struct Ncb *NcbPointer);
extern void Logo(void);

#endif

int main(argc, argv)
int argc;
char *argvl];
{
unsigned char temp;

Logo©);

printf(''\n'");

while(TRUE) {
FetchDateAndTime();
XmitDateTimeQ);
putchar('.');

putchar('\n');

return 0;

#define DOS_INT 0x21
#define DOS_FETCH_DATE Ox2A

Chapter 11: Datagram Applications

107

Listing 11-1. (cont.)
#define DOS_FETCH_TIME 0x2C
void FetchDateAndTime()
{
union REGS InRegs, OutRegs;
InRegs.h.ah = DOS_FETCH_DATE;

int86(DOS_INT, &InRegs, &0utRegs);

DateTimeInfo.DateCX = OutRegs.x.cx;
DateTimeInfo.DateDX = OutRegs.x.dx;

InRegs.h.ah = DOS_FETCH_TIME;
int86(DOS_INT, &InRegs, &0utRegs);

DateTimeInfo.TimeCX = OutRegs.x.cx;
DateTimeInfo.TimeDX = OutRegs.x.dx;

void XmitDateTime()
{
USGI temp;
char far * BufferPtrFar = (char far *) &DateTimelnfo;

ClearNcb(&DateTimeNcb);

DateTimeNcb.NcbCommand = NETBIOS_SEND_DATAGRAM;

DateTimeNcb.NcbBufferOffset
DateTimeNcb.NcbBufferSegment

(char *) FP_OFF(BufferPtrfar);
(USGI) FP_SEG(BufferPtrFar);

DateTimeNcb.NcbLength = sizeof(DateTimelInfo);
DateTimeNcb.NcbNum 0x01; /* use Permanent Node Name NameNum */

for (temp = 0; temp < 16; temp++)
DateTimeNcb.NcbCal{Nameltempl = ClientNameltempl;

NetbiosRequest (&DateTimeNcb);

void ClearNcb(NcbPtr)

108 Part II: Support Programming

Listing 11-1. (cont.)

struct Ncb *NcbPtr;
{

int i;

char *CharPtr;

CharPtr = (char *) NcbPtr;

for (i = 0; i < sizeof(ZeroNcb); i++)
*CharPtr++ = 0x00;

void NetbiosRequest(NcbPointer)

struct Ncb *NcbPointer;

{

union REGS InRegs, OutRegs; /* defined in dos.h */
struct Ncb far *NcbPtr = (struct Ncb far *) NcbPointer;

segread(&SegRegs);

SegRegs.es = FP_SEG(NcbPtr);
InRegs.x.bx = FP_OFF(NcbPtr);

int86x(NetbiosInt5C, &InRegs, &0utRegs, &SegRegs);

void Logo()

{
printf(''\n NetBIOS Date/Time Server Program');
printf('""\n © Copyright 1988 W. David Schwaderer");

The main() Function

The main() function begins by calling Logo() to present a logo. It then
enters an infinite loop which invokes FetchDateAndTime() and
XmitDateAndTime(), and displays a period (.) to provide user execution
feedback. The loop ends when a Ctrl-Break is struck at the keyboard.

FetchDateAndTime()

FetchDateAndTime() issues two PC-DOS calls that fetch the current date
and time, respectively. After each respective PC-DOS call, it places the

Chapter 11: Datagram Applications 109

supplied information in the appropriate DateTimelnfo structure ele-
ment. Appendix A presents a netbios2.h listing containing a complete
structure declaration for DateTimeStruct.

XmitDateAndTime()

XmitDateAndTime() initializes all required DateTimeNcb structure ele-
ments with appropriate values and invokes NetbiosRequest() to transmit
the data. Note that it uses the permanent node NcbNum value O1h for the
NcbNum value. This allows the program to transmit datagrams without
adding or deleting a name to or from the NetBIOS name table.

The client name has a value of “WDS-DateTime” followed by four
bytes of binary zeros. These zeros result from the ClientName character
array definition’s defaulting the last four characters in its specification.
The C default is binary zero.

A Date and Time Client Application

The date and time client application in Listing 11-2 is more complicated
than its server counterpart because it adds and deletes a name from the
NetBIOS name table. Moreover, it cannot assume a server is providing
date and time information. Thus, the client application issues a no-wait
option Receive Datagram command allowing it to cancel the Receive
Datagram if a prudent period elapses and no information is received.
Note some program functions are not described because they are similar
to previously described functions.

Listing 11-2. The SET_D_T.C
#define LINT_ARGS

#include <dos.h>
#include <time.h>
#include <stdio.h>
#include '"netbios2.h"

struct SREGS SegRegs;

struct Ncb DateTimeNcb;
USGC TimeNameNum;

110 Part II: Support Programming

Listing 11-2. (cont.)

struct DateTimeStruct DateTimeInfo;
char ClientName[16] = '"WDS-DateTime'';

#if defined (LINT_ARGS)

extern 1int main(int argc,char * *argv);
extern int AddClientName(void);

extern void IssueDateTimeRequest(void);
extern void Delay(void);

extern void DelayTick(void);

extern void SetDateTimeAttempt(void);
extern void SetDateAndTimeNow(void);
extern void CancelDateTimeRequest(void);
extern void DeleteClientName(void);
extern void DisplayDateAndTime(void);
extern void FetchDateAndTime(void);
extern void ClearNcb(struct Ncb *NcbPtr);
extern void NetbiosRequest(struct Ncb *NcbPointer);
extern void Logo(void);

#endif

#define TICK_RATE 18.2
#define SECONDS 5
#define DELAY_TICK_COUNT (TICK_RATE * SECONDS)

int main(argc, argv)
int argc;
char *argv[];
{
unsigned char temp;

Logo);

if (AddClientName()) {
IssueDateTimeRequest();
Delay();
SetDateTimeAttempt ();
DeleteClientName();
} else
printf("\n\nProgram ending because of add-name failure.');

DisplayDateAndTime();

putchar('\n");

Chapter 11: Datagram Applications 111

Listing 11-2. (cont.)

return 0;

int AddClientName ()
{
struct Ncb AddNameNcb;

USGI temp = 0;
ClearNcb(&AddNameNcb) ;

AddNameNcb.NcbCommand = NETBIOS_ADD_GROUP_NAME;
AddNameNcb.NcbLanaNum = O;

for (temp = 0; temp < 16; temp++)
AddNameNcb.NcbNameltemp]l = ClientNameltempl;

printf(""\n\nAdding the client name...please wait...");
NetbiosRequest (&AddNameNchb) ;

if (!AddNameNcb.NcbRetCode) {
printf(""\n The add-name was successful...'");
printf("'\n The client's NcbNum value is %02Xh.",

AddNameNcb.NcbNum) ;

TimeNameNum = AddNameNcb.NcbNum;
return SUCCESS;

} else {
return FAILURE;
printf("\n The add-name was not successful...'");

}

void IssueDateTimeRequest ()
{
char far * BufferPtrFar = (char far *) &DateTimeInfo;

ClearNcb(&DateTimeNcb);

DateTimeNcb.NcbCommand = NETBIOS_RECEIVE_DATAGRAM + NO_WAIT;

DateTimeNcb.NcbBufferOffset (char *) FP_OFF(BufferPtrFar);
DateTimeNcb.NcbBufferSegment = (USGI) FP_SEG(BufferPtrFar);

112 Part II: Support Programming

}

Listing 11-2. (cont.)

DateTimeNcb.NcbLength = sizeof(DateTimelInfo);
DateTimeNcb.NcbNum TimeNameNum;

NetbiosRequest (&DateTimeNcb) ;

void Delay()

{

USGC Quit = FALSE;
USGI DelayedTicks = 0;

printf('"\n\nAttempting to fetch the date and time from the network..

printf('"please wait...'");

while ('Quit) {
if (DateTimeNcb.NcbCmdCplt != OxFF) {
return;
} else {
DelayTick();
if (DelayedTicks++ > DELAY_TICK_COUNT)
return;

#define DOS_INT 0x21
#define DOS_FETCH_TIME Ox2C

void DelayTick(O

{

union REGS InRegs, OutRegs;
USGC EntryHundredths;

InRegs.h.ah = DOS_FETCH_TIME;
int86(DOS_INT, &InRegs, &0utRegs);
EntryHundredths = OutRegs.h.dl;
while(TRUE) {

int86(DOS_INT, &InRegs, &0utRegs);

"5

Chapter 11: Datagram Applications

113

Listing 11-2. (cont.)

if (EntryHundredths !'= OutRegs.h.dl)
break;

return;

void SetDateTimeAttempt ()

{
if ((DateTimeNcb.NcbCmdCplt !'= OxFF) &&
(DateTimeNcb.NcbCmdCplt == 0x00)) {
SetDateAndTimeNow() ;
} else {
printf(""\n\nNo network response...');
printf('""\n Canceling the pending receive datagram...');
CancelDateTimeRequest();
}
}

#define DOS_SET_DATE 0x2B
#define DOS_SET_TIME 0x2D

void SetDateAndTimeNow (),

{
union REGS InRegs, OutRegs;
printf(""\n\nSetting date and time from the network...');
InRegs.h.ah = DOS_SET_DATE;
InRegs.x.cx = DateTimeInfo.DateCX;
InRegs.x.dx = DateTimeInfo.DateDX;
int86(DOS_INT, &InRegs, &0utRegs);
InRegs.h.ah = DOS_SET_TIME;
InRegs.x.cx = DateTimeInfo.TimeCX;
InRegs.x.dx = DateTimeInfo.TimeDX;
int86(DOS_INT, &InRegs, &0utRegs);

>

void CancelDateTimeRequest ()
{
struct Ncb CancelNcb;

114 Part II: Support Programming

Listing 11-2. (cont.)

struct Ncb far *NcbPtr = (struct Ncb far *) &DateTimeNcb;
ClearNcb(&CancelNcb);

CancelNcb.NcbBufferOffset = (char *) FP_OFF(NcbPtr);
CancelNcb.NcbBufferSegment = (unsigned) FP_SEG(NcbPtr);

CancelNcb.NcbCommand = NETBIOS_CANCEL_WAIT_ONLY;
CancelNcb.NcbLanaNum =0;

NetbiosRequest (&CancelNcb);

if (1cancelNcb.NcbRetCode) {

printf('"\n The cancel was successful...");
} else {

printf('"\n The cancel was not successful...'");
}

void DeleteClientName()

{

struct Ncb DeleteNameNcb;
USGI temp;

printf("'\n\nDeleting client name...");

ClearNcb(&DeleteNameNcb) ;

DeleteNameNcb.NcbCommand = NETBIOS_DELETE_NAME;
DeleteNameNcb.NcbLanaNum = 0O;

for (temp = 0; temp < 16; temp++)
DeleteNameNcb.NcbNameltemp] = ClientNameltemp];

NetbiosRequest (&DeleteNameNch);

if (!DeleteNameNcb.NcbRetCode)
printf(''\n The delete-name was successful...'");
else {
printf('"\n The delete-name was not successful...");
" printf("\n The return code was %02Xh.'",
DeleteNameNcb.NcbRetCode) ;

Chapter 11: Datagram Applications

115

Listing 11-2. (cont.)

void DisplayDateAndTime()
{
FetchDateAndTime();

printf(""\n\nThe current date is %02u-%02u-%04u...",
(USGC) (DateTimeInfo.DateDX >> 8),
(USGC) (DateTimeInfo.DateDX),
(USGI) (DateTimeInfo.DateCX));

printf(""\n\nThe current time is %02u:%02u:%02u...",
(USGC) (DateTimelnfo.TimeCX >> 8),
(USGC) (DateTimelInfo.TimeCX),
(USGC) (DateTimeInfo.TimeDX >> 8));

#define DOS_FETCH_DATE Ox2A
#define DOS_FETCH_TIME 0Ox2C
void FetchDateAndTime()
{

union REGS InRegs, OutRegs;

InRegs.h.ah = DOS_FETCH_DATE;

int86(DOS_INT, &InRegs, &0utRegs);

DateTimeInfo.DateCX = OutRegs.x.cx;
DateTimeInfo.DateDX = OutRegs.x.dx;

InRegs.h.ah = DOS_FETCH_TIME;
int86(DOS_INT, &InRegs, &0utRegs);

DateTimeInfo.TimeCX = OQutRegs.x.cx;
DateTimeInfo.TimeDX = OutRegs.x.dx;

void ClearNcb(NcbPtr)
struct Ncb *NcbPtr;
{

int i;

char *CharPtr;

116

Part II: Support Programming

Listing 11-2. (cont.)

CharPtr = (char *) NcbPtr;

for (i =0; i < sizeof(ZeroNcb); i++)
*CharPtr++ = 0x00;

void NetbiosRequest(NcbPointer)

struct Ncb *NcbPointer;

{

union REGS InRegs, OutRegs; /* defined in dos.h */
struct Ncb far *NcbPtr = (struct Ncb far *) NcbPointer;

segread(&SegRegs) ;

SegRegs.es = FP_SEG(NcbPtr);
InRegs.x.bx = FP_OFF(NcbPtr);

int86x(NetbiosInt5C, &InRegs, &0utRegs, &SegRegs);

void Logo()

{
printf(''\n NetBIOS Date/Time Client Program');
printf("\n © Copyright 1988 W. David Schwaderer');

The main() Function

The main() function begins by calling Logo() to present a logo. It then
calls AddClientName() which attempts to add the client name as a group
name. If the Add Group Name is successful then the NcbNum value of
the client name is saved in TimeNameNum, and AddClientName() re-
turns to main() with a successful return code indication. Then, main()
calls IssueDateTimeRequest() to issue the Receive Datagram request
which uses the TimeNameNum value.

After the Receive Datagram command is issued, main() calls Delay()
to pause for an appropriate amount of time before calling SetDate-
TimeAttempt() which tries to set the date and time. The program ends
after displaying the machine’s current date and time, which may not be
accurate if date and time information was not received.

Chapter 11: Datagram Applications 117

Delay()

Delay() displays a message that informs the user it is attempting to fetch
the date and time from the network. It then enters a while loop that ter-
minates when the variable Quit becomes TRUE.

In this loop, Delay() repeatedly checks the NcbCmdCplt field to see
if it has changed from a command-pending state. If it has, the variable
Quit becomes TRUE and Delay() returns to main(). Otherwise, Delay()
calls DelayTick() which waits a machine tick (18.2 ticks per second) be-
fore returning to Delay(). DelayTick() senses a tick has occurred by re-
peatedly fetching the current time from PC-DOS and watching for a
change in the DL register.

Delay() keeps track of how many ticks have occurred while the
NcbCmdCplt remains in 2 command-pending state. After a number of
ticks greater than DELAY__TICK_COUNT have occurred, Delay() re-
turns to IssueDateTimeRequest() even though the Receive Datagram
may still be pending.

SetDateTimeAttempt()

SetDateTimeAttempt() inspects the NcbCmdCplt field for a command-
pending status. If the command is still pending, SetDateTimeAttempt()
invokes CancelDateTimeRequest() to cancel the Receive Datagram com-
mand and returns to main(). Otherwise, SetDateTimeAttempt() calls
SetDateAndTimeNow() which uses the received information to set the
date and time with respective PC-DOS calls.

DisplayDateAndTime()

DisplayDateAndTime() invokes FetchDateAndTime() which fetches the
current date and time with respective PC-DOS calls. FetchDateAnd-
Time() places this current date and time information in appropriate
DateTimelnfo structure elements before returning to DisplayDateAnd-
Time(). Subsequently, DisplayDateAndTime() displays this information
before returning to main().

Chapter 12

Real-Time LAN Conferencing

Application

This chapter presents a datagram application providing a real-time LAN-
conferencing capability. The program in Listing 12-1 allows several users
to communicate with one another within a given conference, with each
user seeing what the other users have entered from their keyboards. Mul-
tiple conferences can also simultaneously exist, but input from one is not

received by any other conference.

#define

#include
#include
#include
#include

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

Listing 12-1. CB.C

LINT_ARGS

<dos.h>
<conio.h>
<stdio.h>
"netbios2.h"

BIOS_VIDEO_REQUEST 0x10
CB_NAME_TERMINATOR 0x80

COLUMN_1 00
COLUMN_80 79
ENTIRE_SCREEN 00
ESC 0x1B
FETCH_CURSOR_POSITION 0x03
GROUP_NAME 2
MAX_KEYBOARD_MSG 60
MAX_NCBS 5
NAME_SIZE 16
NORMAL_ATTRIBUTE 07
ONE_LINE 01
PAGE_ZERO 00
RETURN 0x0D

119

120

Part II: Support Programming

#define
#define
#define
#define
#define
#define
#define

Listing 12-1. (cont.)

ROW_1 00
ROW_2 01
ROW_24 23
ROW_25 24
SCROLL_UP 06
SET_CURSOR_POSITION 0x02
UNIQUE_NAME 1

#if defined (LINT_ARGS)

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

extern

extern
extern
extern
extern
extern
extern
extern
extern

int main(int argc,char * *argv);
void Participate(void);
void IssueReceiveDatagramRequests(void);
void ServiceDatagramNcbs(void);
void ProcessReceivedDatagram(unsigned int Index);
void CancelReceiveDatagrams(void);
void InitializeKeyboardInputArea(void);
void SetupInputlLine(void);
void ServiceKeyboard(void);
void ApplyKeystroke(unsigned char Keystroke);
void SendKeyboardMsg(char *Message);
void EmitUserStatusMsg(char *AppendMsg);
int AddConferenceName(void);
void DeleteConferenceName(void);
unsigned char AddUserName(void);
void DeleteUserName(void);
void ClearNcb(struct Ncb *NcbPtr);
unsigned char NetbiosAddName(char *Name,int NameType);
void NetbiosDeleteName(char *Name);
void NetbiosSendDatagram(struct Ncb *NcbPtr,
struct DgStruct *BufferPtrNear,
unsigned int BufferSize);
void NetbiosReceiveDatagram(struct Ncb *NcbPtr,
struct DgStruct *BufferPtrNear,
unsigned int BufferSize);

void NetbiosCancelNcb(struct Ncb *NcbPtrNear);
void NetbiosRequest(struct Ncb *NcbPtrNear);
void Logo(void);
int EditArgs(int argc,char * *argv);
void Explain(void);
void ExitNow(void);
void Cls(void);
void ScrollScreen(unsigned int BeginRow,

unsigned int EndRow,

unsigned int RowCount);

Chapter 12: LAN Conferencing

121

extern
extern
extern

#endif

Listing 12-1. (cont.)

void FetchCursorPosition(void);

void SetPreviousCursorPosition(void);

void SetCursorPosition(unsigned int Row,
unsigned int Column);

struct

struct

struct

Ncb InDgNcb[MAX_NCBS], OutDatagramNcb;

DgStruct { char OriginName[NAME_SIZE];
char Text[MAX_KEYBOARD_MSG];
};

DgStruct OutDatagram, InDg[MAX_NCBS];

#define DATAGRAM_MSG_SIZE sizeof(OutDatagram)

char *ConferenceNamePtr, *UserNamePtr;
USGC ConferenceNameNum, UserNameNum;

USGI

CurrentRow, CurrentColumn;

int main(argc,argv)

int argc;
char *argvl];

{

LogoQ);

if

(V'editArgs(argc, argv))
ExitNow();

ConferenceNamePtr = argv[1];

UserNamePtr

if

argvl2];

(AddConferenceName()) {
if (AddUserName()) {
Participate(Q);
ClsO;
printf(""\n\nOnline program ending at user request...\n'");
CancelReceiveDatagrams();
DeleteUserName();
>
DeleteConferenceName();

122 Part II: Support Programming

Listing 12-1. (cont.)

putchar('\n');

return 0;

USGI Participating = TRUE;

char EnterAppend[] = '" has joined the conference...';
char DepartAppend[] = " has left the conference...";

void Participate()
{
printf("'\n\n\n*-- Online as user ");
printfC'\""%s\" in conference \"%s\"...",
UserNamePtr, ConferenceNamePtr);

IssueReceiveDatagramRequests();
EmitUserStatusMsg(EnterAppend);
SetupInputLine();

while(Participating) {
ServiceDatagramNcbs () ;
ServiceKeyboard();

EmitUserStatusMsg(DepartAppend);

while .(OutDatagramNcb.NcbCmdCplt == COMMAND_PENDING)
;5 /% spin until complete */
}

/%= Datagram Processing

void IssueReceiveDatagramRequests()
{
USGI 1i;

for (i = 0; i < MAX_NCBS; i++)
NetbiosReceiveDatagram(&InDgNcblil,
&InDglil,
sizeof(InDglil));

Chapter 12: LAN Conferencing 123

Listing 12-1. (cont.)

#define TARGET_NCB ((StartingNcb + index) % MAX_NCBS)

void ServiceDatagramNcbs{()
{
static USGI StartingNcb = 0; /* must be static */
USGI index = 0;

while (INDgNcb[TARGET_NCB]l.NcbCmdCplt != COMMAND_PENDING) {
ProcessReceivedDatagram(TARGET_NCB);
NetbiosReceiveDatagram(&InDgNcb[TARGET_NCBI,
&InDg[TARGET_NCBI,
sizeof(InDg[TARGET_NCB1));
index++;
¥

StartingNcb = TARGET_NCB;
}

void ProcessReceivedDatagram(Index)
USGI Index;
{

USGI i;

if (1InDgNcblIndex].NcbRetCode) {
FetchCursorPosition(Q);

ScrollScreen(ROW_2, ROW_24, 1);
SetCursorPosition(ROW_24, 0);

printf('"%s => %s'", InDglIndex].OriginName,
InDglIndex].Text);

SetPreviousCursorPosition();

}

void CancelReceiveDatagrams()
{
USGI i;

for (i = 0; i < MAX_NCBS; i++) {
if (InDgNcbl[il.NcbCmdCplt == COMMAND_PENDING)

NetbiosCancelNcb(&InDgNcblil);

124 Part II: Support Programming

Listing 12-1. (cont.)

/* Keyboard Handling */

char *KeyboardInputPtr, KeyboardInput[MAX_KEYBOARD_MSGI;
USGI KeyboardInputLength;

void InitializeKeyboardInputArea()

{
int i;
for (i =1; i < MAX_KEYBOARD_MSG; i++)
KeyboardInput[il = '\x00';
KeyboardInputPtr = KeyboardInput;
KeyboardInputLength = 0;
}

void SetupInputLine()
{
int i;

SetCursorPosition(ROW_25,COLUMN_1);

for (i =1; 1 <79; i++)
putchar(' ");

SetCursorPosition(ROW_25,COLUMN_1);
printf(''%s => ", UserNamePtr);
InitiaLizeKeyboardIhputArea();
void ServiceKeyboard()
{
USGC Keystroke;
if (kbhitO) {
switch (Keystroke = (USGC) getch()) {

case 0x00 : /* function key */
Keystroke = (USGC) getch();

Chapter 12: LAN Conferencing

125

Listing 12-1. (cont.)

break;

case 0x08 :
if (KeyboardInputlLength > 0) {
printf(''\x08 \x08";
--KeyboardInputlength;
*(--KeyboardInputPtr) = '\x00';

}
break;

case ESC: /* quit indicator */
Participating = FALSE;
break;

case RETURN: /* send indicator */
SendKeyboardMsg (KeyboardInput);
break;

default :
ApplyKeystroke(Keystroke);
break;

void ApplyKeystroke(Keystroke)
USGC Keystroke;

{
if ((KeyboardInputlength+1) >= MAX_KEYBOARD_MSG) {
putchar('\x07");
return;
)
if ((Keystroke >= ' ') && (Keystroke < 128)) {
KeyboardInputLength++;
*(KeyboardInputPtr++) = (char) Keystroke;
putchar(Keystroke);
return;
>
>

void SendKeyboardMsg(Message)
char *Message;
{

USGI Index;

126 Part II: Support Programming

Listing 12-1. (cont.)

if (KeyboardInputlLength == 0)
return;

for (Index = 0; Index < NAME_SIZE; Index++)
OutDatagram.OriginNamelIndex] = '\x00';

strncpy (OutDatagram.OriginName, UserNamePtr, NAME_SIZE);

for (Index = 0; Index < MAX_KEYBOARD_MSG; Index++)
OutDatagram.Text[Index] = '\x00';

strncpy(OutDatagram.Text, Message, MAX_KEYBOARD_MSG);

NetbiosSendDatagram(&0OutDatagramNcb,
&0OutDatagram,
DATAGRAM_MSG_SIZE);

SetupInputLine();

Sign On/0ff *

char MONITORL] = "'MONITOR!\x07';

void EmitUserStatusMsg(AppendMsg)
char *AppendMsg;

{

strncpy (OutDatagram.OriginName,
MONITOR,
strlen(MONITOR)+1);

strncpy(OutDatagram.Text,
UserNamePtr,
strlen(UserNamePtr)+1);

strncat(OutDatagram.Text, AppendMsg);

NetbiosSendDatagram(&OutDatagramNchb,
&0OutDatagram,
DATAGRAM_MSG_SIZE);

Name Addition/Deletion *

AddConferenceName ()

Chapter 12: LAN Conferencing

127

Listing 12-1. (cont.)

USGC Temp;

printf("\n\n\nChecking the Conference Name \"%s\"...",
ConferenceNamePtr);

Temp = NetbiosAddName(ConferenceNamePtr, GROUP_NAME);

if (Temp == ILLEGAL_NAME_NUM)
return FAILURE;

else {
ConferenceNameNum = Temp;
return SUCCESS;

void DeleteConferenceName()

{
printf(""\n\nDeleting the conference name...'");
NetbiosDeleteName(ConferenceNamePtr);

USGC AddUserName ()
{
USGC Temp;

printf(""\n\n\nChecking the User Name \"%s\"...",
UserNamePtr);

Temp = NetbiosAddName(UserNamePtr, UNIQUE_NAME);

if (Temp == ILLEGAL_NAME_NUM)
return FAILURE;

else {
UserNameNum = Temp;
return SUCCESS;

void DeleteUserName()

{
printf("'\n\nDeleting your user name...'");
NetbiosDeleteName (UserNamePtr);

/* Netbios Requests */

128 Part II: Support Programming

Listing 12-1. (cont.)

struct SREGS SegRegs; /* defined in dos.h */

void ClearNcb(NcbPtr)
struct Ncb *NcbPtr;

{
int i;
char *CharPtr = (char *) NcbPtr;
for (i =0; i < sizeof(ZeroNcb); i++)
*CharPtr++ = '\x00';
>

USGC NetbiosAddName(Name, NameType)
char *Name;
int NameType;
{
struct Ncb AddNameNcb;

NetbiosDeleteName (Name);
ClearNcb(&AddNameNcb) ;

if (NameType == UNIQUE_NAME)
AddNameNcb.NcbCommand = NETBIOS_ADD_NAME;
else
AddNameNcb.NcbCommand = NETBIOS_ADD_GROUP_NAME;

strncpy (AddNameNcb.NcbName, Name, strlen(Name));
AddNameNcb.NcbName[15]1 = CB_NAME_TERMINATOR;

NetbiosRequest (&AddNameNcb) ;

if ('AddNameNcb.NcbRetCode)
return AddNameNcb.NcbNum;
else {
printf(''\n\n0x%02X error with add name...',
AddNameNcb.NcbRetCode);

return ILLEGAL_NAME_NUM;

void NetbiosDeleteName(Name)
char *Name;
{

struct Ncb DeleteNameNcb;

Chapter 12: LAN Conferencing 129

Listing 12-1. (cont.)

ClearNcb(&DeleteNameNcb);
DeleteNameNcb.NcbCommand = NETBIOS_DELETE_NAME;

strncpy (DeleteNameNcb.NcbName, Name, strlen(Name));
DeleteNameNcb.NcbName[15] = CB_NAME_TERMINATOR;

NetbiosRequest (&DeleteNameNcb);

void NetbiosSendDatagram(NcbPtr, BufferPtrNear, BufferSize)

struct Ncb *NcbPtr;

struct DgStruct *BufferPtrNear;
USGI BufferSize;

{

struct DgStruct far *BufferPtrFar;

while (NcbPtr->NcbCmdCplt == COMMAND_PENDING)
H /* spin here for completion! */

ClearNcb(NcbPtr);
NcbPtr->NcbCommand = NETBIOS_SEND_DATAGRAM + NO_WAIT;
BufferPtrFar = (struct DgStruct far *) BufferPtrNear;

NcbPtr->NcbBufferOffset = (char *) FP_OFF(BufferPtrFar);
NcbPtr->NcbBufferSegment (USGI) FP_SEG(BufferPtrFar);

NcbPtr->NcblLength
NcbPtr->NcbNum

DATAGRAM_MSG_SIZE;
UserNameNum;

strncpy (NcbPtr->NcbCallName, ConferenceNamePtr, NAME_SIZE);
NcbPtr->NcbCalIName[15] = CB_NAME_TERMINATOR;

NetbiosRequest (NcbPtr);
}

void NetbiosReceiveDatagram(NcbPtr,BufferPtrNear,BufferSize)
struct Ncb *NcbPtr;
struct DgStruct *BufferPtrNear;
USGI Buffersze;
{
struct DgStruct far *BufferPtrFar;

ClearNcb(NcbPtr);

130 Part II: Support Programming

Listing 12-1. (cont.)

NcbPtr->NcbCommand = NETBIOS_RECEIVE_DATAGRAM + NO_WAIT;

BufferPtrFar = (struct DgStruct far *) BufferPtrNear;

NcbPtr->NcbBufferOffset = (char *) FP_OFF(BufferPtrFar);
NcbPtr->NcbBufferSegment = (USGI) FP_SEG(BufferPtrfar);

NcbPtr->NcbLength = BufferSize;
NcbPtr->NcbNum ConferenceNameNum;

NetbiosRequest (NcbPtr);

void NetbiosCancelNcb(NcbPtrNear)
struct Ncb *NcbPtrNear;
{
struct Ncb CancelNcb;
struct Ncb far *NcbPtrFar = (struct Ncb far *) NcbPtrNear;

if (NcbPtrNear->NcbCmdCplt == COMMAND_PENDING) {
ClearNcb(&CancelNch);

CancelNcb.NcbCommand = NETBIOS_CANCEL_WAIT_ONLY;

CancelNcb.NcbBufferOffset (char *) FP_OFF(NcbPtrfFar);
CancelNcb.NcbBufferSegment = (USGI) FP_SEG(NcbPtrFar);

NetbiosRequest (&CancelNcb);

void NetbiosRequest(NcbPtrNear)
struct Ncb *NcbPtrNear;
{

union REGS InRegs, OutRegs;

struct Ncb far *NcbPtrFar = (struct Ncb far *) NcbPtrNear;

NcbPtrNear->NcbLanaNum = 0; /* force to adapter zero */

segread(&SegRegs) ; /* init the segment regs */

SegRegs.es = FP_SEG(NcbPtrFar);
InRegs.x.bx = FP_OFF(NcbPtrFar);

int86x(NetbiosInt5C, &InRegs, &0utRegs, &SegRegs);

Chapter 12: LAN Conferencing 131

Listing 12-1. (cont.)

/* Perfunctory Routines */

void Logo()

{

ClsQ);

printf('"*- NETBIOS Online Conference');

printf(" © Copyright 1988 W. David Schwaderer -*\n");
>

int EditArgs(argc, argv)
int argc;
char *argvl[];

{
if (argc '=3) {
Explain(Q);
printf(''\n\nIncorrect number of parameters...');
return FAILURE;)
}
if (strlenCargvi1]) > 15) {
Explain();
printf(''\n\nConference name \"%s\'" is too long...",
argvli1l);
return FAILURE;
}
if (strcmp(argvi2], "MONITOR!')) {
printf("'\n\nNo no...try another handle please...'");
return FAILURE;
}
if (strlen(argvi2]) > 15) {
ExplainQ);
printf(""\n\nHandle \"%s\" is too long...",
argvi2]);
return FAILURE;
}
return SUCCESS; ;
>

void Explain()
{

132

Part II: Support Programming

printf('"\nusage :

Listing 12-1. (cont.)

cb conference handle');

printf(""\n\t\tconference: The conference name...");

printf("'\n\t\thandle:

void ExitNow()
{

Your personal pseudonym...");

printf(''\n\n\x07Program ending because of errors...\n'");

BIOS Requests

ScrollScreen(ROW_1, ROW_25, ENTIRE_SCREEN);
SetCursorPosition(ROW_1, COLUMN_1);

exit(1);
}
/%
void Cls()
{
}

void ScrollScreen(BeginRow, EndRow, RowCount)
USGI BeginRow, EndRow, RowCount;

{
union REGS

InRegs.h.ah
InRegs.h.al

InRegs.h.ch
InRegs.h.cl

InRegs.h.dh
InRegs.h.dl

InRegs.h.bh

InRegs, OutRegs;

SCROLL_UP;
RowCount;

BeginRow;
COLUMN_1;

EndRow;
COLUMN_80;

NORMAL_ATTRIBUTE;

/%

/%

/%

/%

/*

/%

defined in dos.h
scroll up request
how many lines
top left corner

lower right corner

fill attribute

int86(BIOS_VIDEO_REQUEST, &InRegs, &0utRegs);

}

void FetchCursorPosition()

{
union REGS

InRegs.h.ah
InRegs.h.bh

InRegs, OutRegs;

/* defined in dos.h

FETCH_CURSOR_POSITION; /* set cursor

PAGE_ZERO;

/* page number

int86(BIOS_VIDEO_REQUEST, &InRegs, &0utRegs);

*/

*/

*/
*/

Chapter 12: LAN Conferencing 133

Listing 12-1. (cont.)

CurrentRow = OutRegs.h.dh; /* set row */
CurrentColumn = OutRegs.h.dl; /* set column */
>

void SetPreviousCursorPosition()
{

SetCursorPosition(CurrentRow, CurrentColumn);
>

void SetCursorPosition(Row,Column)
USGI Row, Column;

{
union REGS InRegs, OutRegs; /* defined in dos.h */
InRegs.h.ah = SET_CURSOR_POSITION; /* set cursor */
InRegs.h.bh = PAGE_ZERO; /* page number */
InRegs.h.dh = Row; /* set row */
InRegs.h.dl = Column; /* set column */
int86(BIOS_VIDEO_REQUEST, &InRegs, &OutRegs);

}

The program is not only fun to use but exhibits techniques required by
datagram applications. Because it is lengthy, only significant portions
will be described. The remaining portions should closely resemble pre-
viously described programs.

The main() Function

The main() function begins by invoking Logo() which clears the screen
and presents a logo on the first display line. Then, main() calls EditArgs()
to validate the input parameters. If they are not acceptable, main() exits
by invoking ExitNow(). Otherwise, it initializes the global variables Con-
ferenceNamePtr and UserNamePtr.

Next, main() calls AddConferenceName() which adds the confer-
ence name (the first command-line parameter) as a group name. If the
Add Group Name command is successful, main() calls AddUserName()
which adds the requested user’s name (the second command-line param-
eter) with an Add Name command. A unique name is useful here in an

134 Part II: Support Programming

attempt to prevent conference imposters. (Note that user pseudonyms
such as RocketMan and RedRooster may significantly add to the LAN
conferencing experience.)

Users are allowed to participate in the conference when main() in-
vokes the primary processing routine Participate(). When the user even-
tually depresses the ESC key, Participate() exits back to main() which
clears the screen, cancels any pending Receive Datagrams, and deletes
both the conference and user name before ending execution.

EditArgs()

EditArgs() expects two command-line arguments, each of which is 15
characters or less. In addition, EditArgs does not allow the user name to
be “MONITOR!.” This character string is reserved by the program for su-
pervisory use in announcing entries into and departures from confer-
ences by individual users. Note that all 15 characters are significant.

NetBIOS Add Name Processing Routines

AddConferenceName() and AddUserName() both invoke NetbiosAdd-
Name() to add the requested conference and user names, respectively.
Unlike the previous NetBIOS Add Name routine, NetbiosAddName con-
tains two formal parameter declarations, when the second parameter in-
dicating whether the name is a group or unique name. If there is a
problem adding any name, NetbiosAddName returns an illegal NcbNum
(00h), indicating there has been an error.

Participate()

Participate() begins by displaying the requested user and conference
names. It then invokes IssueReceiveDatagramRequests() which uses
each Ncb in the InDgNcb array to issue a Receive Datagram request. Each
Ncb in this array has its receive buffer in the corresponding InDg struc-
ture array.

Participate() then calls EmitUserStatusMsg() and passes a parameter
causing each existing participant within the selected conference to re-

Chapter 12: LAN Conferencing 135

ceive notification that a new participant has joined the conference. Be-
cause newly joining participants have previously issued conference
Receive Datagrams, they receive the message as well (no conference lurk-
ers here!).

Participate() calls SetUpInputLine() which clears display line 25 and
initializes the program’s keystroke-accumulation buffer. It then enters
the primary program-processing loop which terminates only when the
variable Participating becomes FALSE (when ESC is depressed by the
user). Within this loop, the program constantly flips between processing
received datagrams from the other conference participants and process-
ing the keyboard.

When the user finally depresses the ESC key, the loop ends and Par-
ticipate() calls EmitUserStatusMsg(), passing a parameter causing each
participant within the selected conference to receive notification that
the user has departed the conference. Participate() spins on the transmis-
sion of the departure message until it completes to avoid leaving a Send
Datagram command pending after program termination.

ServiceDatagramNcbs()

ServiceDatagramNcbs() checks the InDgNcb array to see if any Receive
Datagram commands have completed. NetBIOS conveniently completes
these Ncbs in the order they were used (IssueReceiveDatagramRe-
quests() issued the Receive Datagrams using Ncb elements InDgNcb(0],

InDgNcb([1], . . . InNDgNcb[MAX__NCBS)), so the routine needs only to
check the first Ncb it discovered was not complete the last time it
checked.

This InDgNcb array element-checking is all done modulo MAX
__NCBS. The variable StartingNcb is defined as a static variable so that the
current starting point is remembered between routine entries and the en-
tire process is assisted by the TARGET _NCB preprocessor definition.

If an Ncb has completed, ServiceDatagramNcbs() invokes Process-
ReceivedDatagram() to display the message. ServiceDatagramNcbs()
then reuses the Ncb to issue another Receive Datagram command before
checking the next Ncb for completion. This process continues until a
pending Ncb is found, the StartingNcb variable is updated, and the rou-
tine returns to Participate().

Note it is possible for all Ncbs to be completed at a given workstation
when another conference workstation transmits a datagram. In this case,
the datagram is not received by the lethargic workstation. The only pos-

136

Part II: Support Programming

sible solution is to increase the number of Ncbs in the InDgNcb array for
that workstation. However, even this may not work because of restric-
tions on the maximum number of outstanding commands, among other
reasons.

In the final analysis, datagram communication works well in rela-
tively light message-rate situations. Its flexibility comes at the price of
data integrity problems in the general case.

ProcessReceivedDatagram()

ProcessReceivedDatagram() checks the return code of the Ncb that re-
quires processing. If the return code is not zero, ProcessReceived-
Datagram() returns without attempting to process the received
datagram. Otherwise, ProcessReceivedDatagram() calls FetchCur-
sorPosition() to save the current screen cursor position and scrolls the
screen from line 1 (the second line) to line 24. It then displays the name
of the user that transmitted the message and the user’s message.

Before exiting, ProcessReceivedDatagram() calls SetPreviousCur-
sorPosition() to restore the screen cursor to the position it had when
ProcessReceivedDatagram() was entered.

ServiceKeyboard()

ServiceKeyboard() checks to see if there have been any keystrokes since
it was last invoked. If not, it exits. Otherwise, it reads the keystroke and
examines it for significance:

e If a function key has been pressed or some other combination
keystroke results in a BIOS extended keystroke (e.g., Alt-1), the
keystroke is ignored. Note that this requires clearing the associ-
ated second keystroke value with another keyboard read.

e If the backspace key was pressed, the last displayed keystroke
character is erased and the accumulated keystroke buffer and
buffer length are adjusted appropriately.

e If the ESC key was pressed, the Participating variable is set to
FALSE.

e If the ENTER key was depressed, the accumulated keystrokes are
sent as a message by calling SendKeyboardMsg().

Chapter 12: LAN Conferencing 137

e Otherwise, the keystroke value is given to ApplyKeystroke() for
processing (accumulation).

SendKeyboardMsg()

SendKeyboardMsg() clears out the Send Datagram buffer area before
copying the user name and message into the buffer. It then calls Netbios-
SendDatagram() to send the conference datagram. Finally, before exit-
ing, it calls SetUplnputLine() to initialize the program keystroke
accumulation buffer.

Note that SendKeyboardMsg() does not check to see if the last Send
Datagram command is still pending. Since all Send Datagram commands
in this program use the same Ncb, this could be a serious program error.
However, NetbiosSendDatagram() does this at entry. In addition, Netbi-
osSendDatagram() also uses other logic not used in previous discus-
sions, so you may wish to examine it a bit closer than other functions.

ApplyKeystroke()

ApplyKeystroke() first checks to see that the maximum number of key-
strokes have not been accumulated. If they have, ApplyKeyStroke()
beeps the workstation and returns. Otherwise, it checks to see that the
character is a valid displayable ASCII character. If so, ApplyKeystroke()
appends that keystroke to the accumulated ones and displays the charac-
ter before returning.

This ch

Chapter 13

C File Transfer Applications

apter discusses two applications that provide file transfer capabil-

ity via a NetBIOS session. One application, SEND.C in Listing 13-1, trans-
mits a file. The other, RECEIVE.C in Listing 13-2 receives the file. While

the pro
cution,

grams only allow one file transmission before they both end exe-
they are not difficult to extend to provide multiple-file transfers

within a session, perhaps using PC-DOS wildcard file specifications. But
that topic is beyond the scope of this discussion and is left as a reader
exercise.

#define

#include
#include
#include

#if defi
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

Listing 13-1. SEND.C
LINT_ARGS

<dos.h>
<stdio.h>
"netbios2.h"

ned (LINT_ARGS)

int main(int argc,char * *argv);

int AddSessionName(char *NamePtr);

int CreateSession(void);

void ProcessFile(void);

void TransmitFile(struct _iobuf *FilePtr);
void TerminateSession(void);

void DeleteSessionName(char *NamePtr);
void ClearNcb(struct Ncb *NcbPtr);
unsigned char NetbiosAddName(char *Name);
void NetbiosCall(struct Ncb *NcbPtr);

void NetbiosDeleteName(char *Name);

void NetbiosHangUp(struct Ncb *NcbPtr,unsigned char Targetlsn);

139

140

Part II: Support Programming

extern
extern
extern
#endi f

Listing 13-1. (cont.)

void NetbiosSend(struct Ncb *NcbPtr);

void NetbiosRequest(struct Ncb *NcbPtrNear);

void Logo(void);

#define SESSION_NAME_TERMINATOR Ox88

USGC Sessionlsn;

struct Ncb ControlNcb, XmitNcb;

struct SessionMsg XmitBlock;

/* 1234567890123 */

char SendNamel] = '"WDS-Send-File';
char RecvNamell = "WDS-Recv-File'";

int main(argc,argv)
int argc;
char *argvll;

{

Logo();

if (AddSessionName(SendName)) {

if (CreateSession()) {

ProcessFile();
TerminateSession();

DeleteSessionName(SendName);

printf("\n\nProgram ending...\n");

return 0;

int AddSessionName(NamePtr)
char *NamePtr;

{

printf(""\n\nAdding the session name %s..."

, NamePtr);

if (NetbiosAddName(NamePtr) == ILLEGAL_NAME_NUM)

Chapter 13: C File Transfer Applications 141

Listing 13-1. (cont.)

return FAILURE;
else
return SUCCESS;

int CreateSession()

{
printf(""\n\nCalling to create the session...'");
NetbiosCall(&ControlNcb);
if (i1ControlNcb.NcbRetCode) {
printf("session successfully created...");
Sessionksn = ControlNcb.NcbLsn;
return SUCCESS;
} else {
printf(''session not created...error Ox%02X...",
ControlNcb.NcbRetCode);
return FAILURE;
}
>

void ProcessFile()
{
FILE *FilePtr;
char FileName[1001;

printf(""\n\nPlease enter the file name to send ==> ');

gets(FileName);

if (FilePtr = fopen(FileName, "rb'")) {
TransmitFile(FilePtr);
fclose(FilePtr);

void TransmitFile(FilePtr)

FILE *FilePtr;

{
USGI ReadCount, ProcessFlag = TRUE, Count = 0;
USGL TransmissionSize = 0;

142 Part II: Support Programming

Listing 13-1. (cont.)

printf("\nFile Transfer beginning...\n'");
while (ProcessFlag == TRUE) {

ReadCount = fread(XmitBlock.Text, sizeof(char),
sizeof(XmitBlock.Text), FilePtr);

if (tferror(FilePtr)) {
if ((XmitBlock.TextLength = ReadCount) != 0) {

printf("\nTransmitting block %3u...size = %u",
++Count, XmitBlock.TextLength);

NetbiosSend(&XmitNcb);

if (XmitNcb.NcbRetCode) {
printf('"\n\nSend error %02X...",
XmitNcb.NcbRetCode);
ProcessFlag = FALSE;
} else {
TransmissionSize += XmitBlock.TextLength;

>
}
if (feof(FilePtr)) {
printf("\n\nFile Transmitted...');
ProcessFlag = FALSE;
}
} else {

printf(""\n\nError reading file...'");
ProcessFlag = FALSE;

printf(""\n\nTotal transmission size = %lu bytes...",
TransmissionSize);

void TerminateSession()
{
printf(''\n\nHanging Up on the session...");

Chapter 13: C File Transfer Applications

143

Listing 13-1. (cont.)

NetbiosHangUp(&ControlNcb, Sessionlsn);

if (1ControlNcb.NcbRetCode)

printf("the Hang Up was successful..");
else

printf(''the Hang Up was not successful..");

void DeleteSessionName (NamePtr)

char *NamePtr;

{
printf(""\n\nDeleting the session name %s...", NamePtr);
NetbiosDeleteName (NamePtr);

/* Netbios Requests
struct SREGS SegRegs; /* defined in dos.h */
void ClearNcb(NcbPtr)
struct Ncb *NcbPtr;
{
int i;
char *CharPtr = (char *) NcbPtr;
for (i =0; i < sizeof(ZeroNcb); i++)

*CharPtr++ = '\x00';

USGC NetbiosAddName(Name)
char *Name;
{
struct Ncb AddNameNcb;
ClearNcb(&AddNameNcb) ;

AddNameNcb.NcbCommand = NETBIOS_ADD_NAME;

strncpy (AddNameNcb.NcbName, Name, strlen(Name));
AddNameNcb.NcbName[15] = SESSION_NAME_TERMINATOR;

NetbiosRequest (&AddNameNcb) ;

if (!AddNameNcb.NcbRetCode) {

144 Part II: Support Programming

Listing 13-1. (cont.)

printf('...the add-name was successful...'");
return AddNameNcb.NcbNum;

} else {
printf('"...unsuccessful add-name...error %02X...",

AddNameNcb.NcbRetCode);

return ILLEGAL_NAME_NUM;

void NetbiosCall(NcbPtr)
struct Ncb *NcbPtr;

{
ClearNcb(NcbPtr);
NcbPtr->NcbCommand = NETBIOS_CALL;
strncpy (NcbPtr->NcbCal LName, RecvName, strlen(RecvName));

“ NcbPtr->NcbCal LName[15] = SESSION_NAME_TERMINATOR;

strncpy (NcbPtr->NcbName, SendName, strlen(SendName));
NcbPtr->NcbNamel[15] = SESSION_NAME_TERMINATOR;
NcbPtr->NcbSto = 30; /* 15 second time out */
NcbPtr->NcbRto = 30; /* 15 second time out */
NetbiosRequest (NcbPtr);

}

void NetbiosDeleteName(Name)

char *Name;

{
struct Ncb DeleteNameNcb;
ClearNcb(&DeleteNameNcb);
DeleteNameNcb.NcbCommand = NETBIOS_DELETE_NAME;

strncpy(DeleteNameNcb.NcbName, Name, strlen(Name));
DeleteNameNcb.NcbName[15] = SESSION_NAME_TERMINATOR;

NetbiosRequest (&DeleteNameNcb) ;

Chapter 13: C File Transfer Applications 145

Listing 13-1. (cont.)
void NetbiosHangUp(NcbPtr, TargetLsn)
struct Ncb *NcbPtr;
USGC TargetlLsn;
{
ClearNcb(NcbPtr);
NcbPtr->NcbCommand = NETBIOS_HANG_UP;

NcbPtr->NcbLsn = Targetlsn;

NetbiosRequest (NcbPtr);

void NetbiosSend(NcbPtr)

struct Ncb *NcbPtr;

{
struct SessionMsg far *BufferPtrFar;
ClearNcb(NcbPtr);

NcbPtr->NcbCommand = NETBIOS_SEND;

NcbPtr->NcblLsn = SessionLsn;

BufferPtrFar = (struct SessionMsg far *) &XmitBlock;

NcbPtr->NcbBuffer0ffset (char *) FP_OFF(BufferPtrFar);
NcbPtr->NcbBufferSegment = (USGI) FP_SEG(BufferPtrFar);

NcbPtr->NcbLength = sizeof(XmitBlock);
NetbiosRequest (NcbPtr);
void NetbiosRequest (NcbPtrNear)
struct: Ncb *NcbPtrNear;
{
union REGS InRegs, OutRegs;
struct Ncb far *NcbPtrFar = (struct Ncb far *) NcbPtrNear;

NcbPtrNear->NcbLanaNum = 0; /* force to adapter zero */

segread(&SegRegs) ; /* init the segment regs */

146 Part II: Support Programming

Listing 13-1. (cont.)

SegRegs.es = FP_SEG(NcbPtrFar);
InRegs.x.bx = FP_OFF(NcbPtrFar);

int86x(NetbiosInt5C, &InRegs, &0utRegs, &SegRegs);

void Logo()
{
printf(""'\nNETBIOS Sample Send Program');
printf(" © Copyright 1988 W. David Schwaderer'");

Listing 13-2. RECEIVE.C
#define LINT_ARGS

#include <dos.h>
#include <stdio.h>
#include 'netbios2.h"

#if defined(LINT_ARGS)

extern int main(int argc,char * *argv);

extern 1int AddSessionName(char *NamePtr);

extern int CreateSession(void);

extern void ProcessFile(void);

extern void ReceiveFile(FILE *FilePtr);

extern void DeleteSessionName(char *NamePtr);
extern void TerminateSession(void);

extern void ClearNcb(struct Ncb *NcbPtr);

extern USGC NetbiosAddName(char *Name);

extern void NetbiosListen(struct Ncb *NcbPtr);
extern void NetbiosDeleteName(char *Name);

extern void NetbiosHangUp(struct Ncb *NcbPtr, USGC TargetlLsn);
extern void NetbiosReceive(struct Ncb *NcbPtr);
extern void NetbiosRequest(struct Ncb *NcbPtrNear);
extern void Logo(void);

#endif

#define SESSION_NAME_TERMINATOR 0x88
USGC Sessionlsn;
struct Ncb ControlNcb, XmitNcb;

struct SessionMsg XmitBlock;

Chapter 13: C File Transfer Applications

147

Listing 13-2. (cont.)

/* 1234567890123 */
char SendNamel]l = "WDS-Send-File";
char RecvNamel] = "WDS-Recv-File';

int main(argc,argv)
int argc;
char *argvl[];
{
Logo();
if (AddSessionName(RecvName)) {

if (CreateSession())
ProcessFile();

DeleteSessionName (RecvName);

printf(""\n\nProgram ending...\n");

return 0;

int AddSessionName(NamePtr)
char *NamePtr;

{
printf("'\n\nAdding the session name %s...'", NamePtr);
if (NetbiosAddName(NamePtr) == ILLEGAL_NAME_NUM)
return FAILURE;
else
return SUCCESS;
}

int CreateSession()
{
printf(""\n\nListening to create the session...'");

NetbiosListen(&ControlNcb);
if (!ControlNcb.NcbRetCode) {

printf('session successfully created...');
SessionLsn = ControlNcb.Ncblsn;

148

Part II: Support Programming

Listing 13-2. (cont.)

return SUCCESS;
} else {
printf(''session not created...error 0Ox%02X...",
ControlNcb.NcbRetCode);
return FAILURE;

void ProcessFile()
{
FILE *FilePtr;
char FileName[100];

printf(""\n\nPlease enter the file name to receive ==> ");
gets(FileName);

if (FilePtr = fopen(FileName, "wb')) {
ReceiveFile(FilePtr);
fclose(FilePtr);

void ReceiveFile(FilePtr)

FILE *FilePtr;

{
USGI WriteCount, ProcessFlag = TRUE, Count = 0;
USGL TransmissionSize = 0;

printf('"\nFile transfer beginning...\n");
while (ProcessFlag == TRUE) {
NetbiosReceive (&XmitNcb);
if (XmitNcb.NcbRetCode) {
printf(''\n\nReceive error %02X...", XmitNcb.NcbRetCode);
TerminateSession();
ProcessFlag = FALSE;

} else

printf(''\nSuccessfully received block %3u...size = %Zu",
++Count, XmitBlock.TextLength);

Chapter 13: C File Transfer Applications

149

Listing 13-2. (cont.)

WriteCount = fwrite(XmitBlock.Text, sizeof(char),
XmitBlock.TextLength, FilePtr);

if (WriteCount != XmitBlock.TextLength)
printf('...but only wrote %u bytes!\x07",
WriteCount);

TransmissionSize += XmitBlock.TextLength;

printf(""\n\nTotal transmission size = %lu bytes...",
TransmissionSize);

void DeleteSessionName(NamePtr)

char *NamePtr;

{
printf(""\n\nDeleting the session name %s...', NamePtr);
NetbiosDeleteName (NamePtr);

void TerminateSession()

{
printf(''\n\nHanging Up on the session...'");
NetbiosHangUp(&ControlNcb, Sessionlsn);
if (!ControlNcb.NcbRetCode)
printf("the Hang Up was successful..");
else
printf(''the Hang Up was not successful..'");
}
/* Netbios Requests */

struct SREGS SegRegs; /* defined in dos.h */

void ClearNcb(NcbPtr)
struct Ncb *NcbPtr;
{
int i
char *CharPtr = (char *) NcbPtr;

150 Part II: Support Programming

Listing 13-2. (cont.)

for (i =0; i < sizeof(ZeroNcb); i++)
*CharPtr++ = "\x00';

USGC NetbiosAddName (Name)
char *Name;

{
struct Ncb AddNameNcb;
ClearNcb(&AddNameNcb) ;
AddNameNcb.NcbCommand = NETBIOS_ADD_NAME;
strncpy (AddNameNcb.NcbName, Name, strlen(Name));
AddNameNcb.NcbName[15] = SESSION_NAME_TERMINATOR;
NetbiosRequest (&AddNameNcb) ;
if ('AddNameNcb.NcbRetCode) {
printf('"...the add-name was successful...'");
return AddNameNcb.NcbNum;
} else {
printf('...unsuccessful add-name...error %02X...",
AddNameNcb.NcbRetCode);
return ILLEGAL_NAME_NUM;
>
}

void NetbiosHangUp(NcbPtr, Targetlsn)
struct Ncb *NcbPtr;
USGC Targetlsn;
{
ClearNcb(NcbPtr);

NcbPtr->NcbCommand = NETBIOS_HANG_UP;

NcbPtr->NcblLsn = TargetLsn;

NetbiosRequest (NcbPtr);

void NetbiosListen(NcbPtr)
struct Ncb *NcbPtr;

Chapter 13: C File Transfer Applications

151

Listing 13-2. (cont.)

ClearNcb(NcbPtr);
NcbPtr->NcbCommand = NETBIOS_LISTEN;

strncpy (NcbPtr->NcbCal lName, SendName, strlen(SendName));
NcbPtr->NcbCallNamel15]1 = SESSION_NAME_TERMINATOR;

strncpy (NcbPtr->NcbName, RecvName, strlen(RecvName));
NcbPtr->NcbName[15] = SESSION_NAME_TERMINATOR;

NcbPtr->NcbSto
NcbPtr->NcbRto

30; /* 15 second time out */
30; /* 15 second time out */

NetbiosRequest (NcbPtr);

void NetbiosDeleteName(Name)
char *Name;

{

struct Ncb DeleteNameNcb;
ClearNcb(&DeleteNameNchb);
DeleteNameNcb.NcbCommand = NETBIOS_DELETE_NAME;

strncpy (DeleteNameNcb.NcbName, Name, strlen(Name));
DeleteNameNcb.NcbName[15] = SESSION_NAME_TERMINATOR;

NetbiosRequest (&DeleteNameNch);

void NetbiosReceive(NcbPtr)
struct Ncb *NcbPtr;

{

struct SessionMsg far *BufferPtrFar;

ClearNcb(NcbPtr);

NcbPtr->NcbCommand = NETBIOS_RECEIVE;

NcbPtr->NcblLsn = Sessionlsn;

BufferPtrFar = (struct SessionMsg far *) &XmitBlock;

152 Part II: Support Programming

Listing 13-2. (cont.)

NcbPtr->NcbBufferOffset
NcbPtr->NcbBufferSegment

(char *) FP_OFF(BufferPtrFar);
(USGI) FP_SEG(BufferPtrFar);

NcbPtr->NcbLength = sizeof(XmitBlock);
NetbiosRequest (NcbPtr);
void NetbiosRequest(NcbPtrNear)

struct Ncb *NcbPtrNear;
{

union REGS InRegs, OutRegs;
struct Ncb far *NcbPtrFar = (struct Ncb far *) NcbPtrNear;

NcbPtrNear->NcbLanaNum = 0; /* force to adapter zero */

segread(&SegRegs); /* init the segment regs */

SegRegs.es = FP_SEG(NcbPtrFar);
InRegs.x.bx = FP_OFF(NcbPtrFar);

int86x(NetbiosInt5C, &InRegs, &OutRegs, &SegRegs);

void Logo()

{
printf(""\nNETBIOS Sample Receive Program');
printf("" © Copyright 1988 W. David Schwaderer');

Application Overview

SEND.C and RECEIVE.C work in tandem to transfer files. They both be-
gin by adding unique names to their NetBIOS name table. SEND.C uses
the name WDS-Send-File; RECEIVE uses the name WDS-Recv-File. Both
names are terminated in the 16th position with a nonzero value, guaran-
teeing their uniqueness from IBM reserved names.

If the Add Name commands are successful, both applications attempt
to establish a session with the other. RECEIVE.C initiates its side of Net-
BIOS session with a Listen command specifying its unique name as well

Chapter 13: C File Transfer Applications 153

as the unique name SEND.C uses. The Listen command must be pending
before the Call command issued by SEND.C times-out.

The Listen command uses a no-wait option so SEND.C must connect
to it or the machine executing RECEIVE.C must eventually be rebooted.
If the SEND.C Call command times-out, simply execute SEND.C again to
establish the session. After this is done, SEND.C and RECEIVE.C prompt
their users for the file that is respectively transmitted and received. After
the users reply to their prompts, perhaps using different names, the data
transfer begins. Note that each side of the session specifies a 15-second
time-out in its Listen and Call commands for session Receive and Send
commands, so users should not wait too long to respond to prompts af-
ter the other user responds or the session will abort. If it does abort, sim-
ply run the programs again.

If any error is detected by a session partner during the transmission
session, that partner aborts the session using a Hang Up command and
the other session partner’s Send or Receive command subsequently
completes with a “‘Session Aborted” return code. Otherwise, the session
continues transferring data using a C structure that contains both data
and a value indicating how much data actually resides in the area re-
served for it. This structure is defined in the netbios2.h header file.

When SEND.C eventually has no more data to transfer, it issues a
Hang Up command to terminate the session. When RECEIVE.C’s pend-
ing Receive command completes with an error, it attempts to abort the
session which no longer exists. The Hang Up command subsequently
fails with a “Session Closed” error code.

Everything considered, NetBIOS session communication is very
easy as Listings 13-1 and 13-2 illustrate. In fact, the program logic to read
and write the files is nearly as difficult as the actual NetBIOS session
logic. The sample programs are laced with printf() statements that pro-
vide user feedback as the session continues. These statements also con-
siderably reduce any mystery within the programs’ logic, though
experienced users may find their unnecessarily chatty nature somewhat
offensive. As much logic as possible is shared between the programs to
reduce the programming effort even further. Have fun and happy file
transfers.

Chapter 14

Medialess Workstations, RPL, and
Redirectors

Medialess workstations, RPL, and redirectors share two common attri-
butes:

e Each involves the transfer of data requests (e.g., read, write, etc.)
from one workstation to another for resolution.

e Because the data request is performed elsewhere, the possibility
exists that the data is being used by many other machines, thereby
causing potential data sharing problems.

Clients and Servers

In such situations, requesting machines, referred to as clients, obtain
data storage and management services from cooperating machines, re-
ferred to as servers. Usually, clients and servers communicate via a LAN
connection. Depending on the LAN and the number of clients, it is often
possible for data requests to be processed faster and more economically
using a high-performance server rather than slower local storage devices
at client machines.

Medialess Workstations

Medialess workstations are client machines that have no local diskette or
disk storage. The primary advantage of these machines is their lower cost
and the natural data security provided by not being able to copy data
onto a diskette that may enter or leave the establishment.

155

156 Part II: Support Programming

Remote Program Load (RPL)

Medialess workstations typically use RPL to load their operating systems
into memory. Once loaded, the operating system initializes the worksta-
tion normally, oblivious to the absence of local disk and diskette devices.
Subsequent applications similarly execute, unaware of the absence of lo-
cal storage devices.

Redirectors

Redirectors are components that intercept local data requests and redi-
rect (transfer) them to server machines. In contrast to RPL, which ini-
tially operates with no operating system present, redirectors operate as
system extensions.

Examples of popular redirectors are Microsoft Corporation’s redirec-
tor in the Microsoft Networks (MS-NET) product and REDIR.EXE used in
IBM’s PC LAN Program (PCLP). In the OS/2 arena, Microsoft provides a
redirector in its Microsoft LAN Manager product and IBM includes the
OS/2 LAN Requestor function in the IBM OS/2 Extended Edition version
1.1.

Data Layers

Figure 14-1 depicts a conceptual representation of the layers that resolve
data requests within popular PC-DOS machines. This figure clearly illus-
trates that data requests can be captured at any of three points in their
processing:

the INT 21 PC-DOS Interface
the Block Device Driver Call Interface
the INT 13 BIOS Interface

The INT 21 PC-DOS Interface

The INT 21 PC-DOS interface provides a variety of machine services in-
cluding data services at the file level. These services open, close, create,
modify, and erase files based on application program requests.

Chapter 14: Medialess, RPL, and Redirectors 157

Application program

INT 21 PC-DOS interface

PC-DOS
——Block device driver call interface

Block device driver

INT 13 BIOS interface

BIOS

Device adapter

Storage device

Fig. 14-1. Conceptual view of PC-DOS data request
processing layers.

Applications load registers and initialize various data fields with val-
ues that indicate the type of service requested and which particular file
or files the request relates to. The application then issues an INT 21 re-
quest which is intercepted by PC-DOS and acted on. PC-DOS eventually
returns after performing the task to the best of its ability.

The Block Device Driver Call Interface

PC-DOS device drivers are modules that control specific devices. Their
primary advantage is that they allow programmers to create operating
systems that are independent of any particular device-specific considera-
tions. Thus, when a new device replaces another, typically only the spe-
cific device driver needs to change—not the operating systems that
support the device.

There are two types of PC-DOS device drivers: character device driv-
ers and block device drivers. A common misconception is that character
device drivers can only handle one-character-at-a-time requests while
block device drivers can handle blocks of data at a time.

Character device drivers control the operation of devices such as
printers, keyboards, displays, etc. Using operating system services such
as I/O redirection, these devices can be regarded as filelike devices.

158

Part II: Support Programming

Block device drivers control the operation of devices such as disks,
diskette drives, CD-ROM devices, etc. These types of devices support file
systems. Thus, the primary distinction between character and block de-
vice drivers is independent of an ability to process blocks of data with a
single request.

PC-DOS invokes device driver services using a program-call interface
that is documented in the PC-DOS Technical Reference Manual. This in-
terface can be involved, depending on the device, and is beyond the
scope of this book. For further information on device drivers, consult
the Manual or Writing MS-DOS Device Drivers (Lai 1987).

The INT 13 BIOS Interface

The INT 13 BIOS interface provides the lowest level data service inter-
face. After loading registers with values that specify the type of request,
PC-DOS block device drivers issue an INT 13 interrupt request. The reg-
isters and the significance of their contents are listed in Table 14-1.

Table 14-1. Interrupt Registers

Register Meaning

AH Request type (reset, read, write, format track, etc.)
CH Cylinder number

CL Sector number

DH Head number

DL Drive Number (0x00 ==) A:, 0x01 ==) B, etc.)
ES :BX Address of buffer for reads/writes

After the BIOS performs the requested operation, it follows the fol-
lowing steps:

1. placing the operation final status in the AH register

2. placing requested device information (if any) in the CX and DX
registers

3. setting the carry flag (CY) to zero or one, respectively, indicating
request success or failure

4. returning via a FAR RET 2 instruction that preserves the existing
flag settings

Chapter 14: Medialess, RPL, and Redirectors 159

The module thatissued the request resumes execution and subsequently
analyzes the results.

A Redirector Implementation

The REDIR.EXE redirector has a set of private interfaces allowing it to
determine which servers to establish NetBIOS sessions with, and to iden-
tify which client devices should have their requests forwarded to a
server. More than one client device can be serviced by a single redirector.

REDIR.EXE operates at the INT 21 PC-DOS interface by trapping INT
21 PC-DOS requests and inspecting them. If a request is not for a device
the redirector is handling, the request is passed on to PC-DOS for local
processing. Otherwise, the redirector transmits the request to the server
using the Server/Redirector protocol via a Server Message Block (SMB).
The May 1985 IBM Personal Computer Seminar Proceedings (volume 2,
number 8-1) document describes this protocol, which is beyond the
scope of this discussion.

The primary advantage of a redirector implementation is that it al-
lows servers to provide extensive services for clients because client re-
quests are intercepted at a very high level. As an example, the REDIR.EXE
redirector provides a variety of data sharing support. However, redirec-
tor implementations typically require significant programming efforts
and you must have a very intimate knowledge of PC-DOS before you can
write implementations that function transparently to applications.

A Block Device Driver Implementation

Block device drivers allow client workstations to specify disk requests
for a specific virtual drive to be passed to the device driver for forwarding
to, and processing by, a server. The target server and device are specified
during the installation of the device driver. The installation process
should also establish a communication session between the client and
server workstation. The disk space provided by the server to the client is
referred to as a Remote Virtual Disk (RVD).

In contrast to a redirector, a block device driver can typically service
requests only for a single device. Data sharing facilities are also limited
but can be crudely implemented by returning a “Media Changed” result
to client PC-DOS Media Check function calls whenever the server indi-

160

Part II: Support Programming

cates data has changed at the server. Client machines receiving such a
signal flush their buffers and reread the device to obtain the correct infor-
mation. (See Lai (1987) and the PC-DOS Technical Reference Manual.)

The INT 13 BIOS Interface

The INT 13 BIOS interface presents data requests at the lowest possible
interface—the BIOS interface. Because all local device requests result in
INT 13 calls, modules that operate at this level can forward requests for
several devices to one or more servers using preestablished NetBIOS ses-
sions. These modules may be PC terminate-and-stay-resident (TSR) pro-
grams or adapter RPL logic. These modules have virtually no knowledge
of why a given request is being issued because the accompanying infor-
mation is too scanty to make a determination. For example, is a sector-
read request part of a sequential read for a fragmented data file on the
server disk, or is it simply a read for a sector in another data file? While a
redirector can easily determine this, modules operating at the INT 13

- level cannot.

A module operating at the INT 13 level can make very informed deci-
sions regarding which server disk sectors should be cached locally be-
cause it can monitor the media access patterns. On the other hand, a
redirector operates at too high a level to enjoy this degree of media access
visibility. '

A NetBIOS RPL Implementation—Or How Does PC-DOS Get in

There?

The original PC Network (LANA) card provides the only NetBIOS RPL
capability within the IBM LAN product line. All other adapters provide
RPL services at the DLC level. However, the process is necessarily similar
for all RPL machines. 3 ,

The LANA adapter BIOS is entered during the final phase of the PC
BIOS initialization process. Before returning to BIOS, the adapter BIOS -

1. initializes the adapter protocol logic
2. saves the current ROM BASIC interrupt vector (INT 18) value

Chapter 14: Medialess, RPL, and Redirectors 161

3. replaces the ROM BASIC interrupt vector with a new value that
points inside the adapter’s BIOS

Eventually, BIOS attempts to load a boot sector from the A: diskette
drive. If the attempt fails, it attempts to load one from the C: disk drive. If
that fails, BIOS issues an INT 18 request in an attempt to invoke ROM
BASIC, which causes the microprocessor to begin executing the adapter
BIOS’s RPL logic.

Entering the RPL Logic

The RPL logic first restores the ROM BASIC interrupt vector to the value it
previously saved. Next, the adapter allocates the top 1K of memory for its
use and builds an Ncb there. It then issues an Adapter Status command to
fetch the permanent node name. Finally, it checks to see if the LANA's W1
jumper has been removed. If not, the adapter issues the ROM BASIC in-
terrupt, permanently giving control to ROM BASIC.

If jumper W1 has been removed on the LANA card, the logic issues a
NetBIOS Reset command, specifying 32 sessions and 32 pending com-
mands. Next, it issues a NetBIOS Call command to the network name
IBMNETBOOT (ten contiguous capital letters followed by six binary
zeros) using its own permanent node name and NcbSto and NcbRto val-
ues of 240 (120 seconds).

If the Call command is not successful, the logic issues the ROM BA-
SIC interrupt, permanently giving control to ROM BASIC. Otherwise, a
boot server exists on the network that should be able to help the client
machine boot. Thus, the client adapter saves the current setting of the
INT 13 interrupt vector and replaces it with another vector that points at
its INT 13 redirection logic and sets an indicator that RPL is active.

The Initial INT 13 Reset Command

Next, the RPL logic issues an INT 13 Reset command for some undeter-
mined drive number (DL is not set). This drives the adapter redirection
logic that first checks to see that the request code in the AH register does
not have a value of 0x05, 0x06, 0x07, 0x0A, or 0x0B.

If the command is one of the unwanted commands, a value of 0x01 is
loaded into the AL register and the carry flag is set indicating failure. Oth-
erwise, the logic checks to see if redirection is active. If not, the request
is passed to the original INT 13 entry point whose value was previously

162

Part II: Support Programming

saved. Since a reset request command has an AH value of 0x00, and RPL
is active for the sake of this discussion, the logic builds a message from
the register settings and sends it to the RPL server using the existing Ncb
in high memory over the previously created session (the NcbLsn must
necessarily have a value of one).

Request Message Format

This message is eleven bytes long and has the following format:

+0 +2 +& +6 +8 +10
Displacement

The eleventh byte (byte 10) is uninitialized and provides an area to hold
the returning carry flag indicator that the server must return.

Write Requests (AH == 0x03)

At this point, the redirection logic inspects the AH register’s request
code. If it specifies a write, the redirection logic computes the size of the
data from the register settings (assuming 512 bytes per sector) and sends
the data beginning at the memory location pointed at by the ES :BX regis-
ter pair with a Send command. It then issues a Receive for 11 bytes to
obtain the register values returned by the server.

Read Requests (AH == 0x02)

If the request specifies a read, the logic issues a Receive command for an
11-byte message. This returning message contains the returned registers
from the server. If the read operation was successful at the server, the
data was transmitted appended to the registers. This means the Receive
must complete with an error code of 0x06 (message incomplete) if the
read operation was successful at t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>