
--- ------ - ---- ---- - ---- - - -----------'- Personal Computer
Computer Language
Series

ASSEMBLER
REFERENCE
for the UCSD p-System'· Version IV.O

Produced by SofTech Microsystems, Inc.

First Edition (January 1982)

Changes are periodically made to the information herein;
these changes will be incorporated in new editions of this
publication.

Products are not stocked at the address below. Requests for
copies of this product and for technical information about the
system should be made to your authorized IBM Personal
Computer Dealer.

A Product Comment Form is provided at the back of this
publication. If this form has been removed, address comment
to: IBM Corp., Personal Computer, P.O. Box 1328-C, Boca
Raton, Florida 33432. IBM may use or distribute any of the
information you supply in any way it believes appropriate
without incurring any obligations whatever.

© Copyright International Business Machines Corporation 1982
© Copyright Softech Microsystems, Inc. 1981

UCSD, UCSD Pascal, and UCSD p-System are all trademarks
of the Regents of the University of California.

PREFACE

This manual describes the UCSD p-System
8086/88/87 Assembler. It also describes the
instruction set of the 8086/88 CPUs and the 8087
floating point processor. (This assembler was
developed by Softech Microsystems to support these
three Intel processors but this does not imply
support of the 8087 on all configurations of the IBM
Personal Computer.) The p-System Assembler is a
powerful tool for creating assembly routines to be
run within (or outside of) the UCSD p-System
environment.

For a complete understanding of the 8086/88/87
assembly language, the Intel 8086 Family Users'
Manual (Intel Corporation, Santa Clara, Calif., 1979)
should be used in conjunction with this manual.

Chapter 1 of this manual describes the UCSD
p-System assembler itself. It should be noted that
the p-System assembler differs substantially from
the Intel assembler.

Chapter 2 describes how you can simplify coding,
reduce the chance of making errors, and ensure that
standard sequences of instructions are coded by
using the Assembler Directives.

Chapter 3 gives a brief overview of the 8086/88
CPU. The registers, flags, and addressing modes are
discussed. For a more detailed description of the
8086/88 processor see the Intel manual.

Chapter 4 lists the 8086/88 and8087 operations and
gives a brief summary of their actions. Again, for
more detailed information, the Intel manual should
be referenced. Chapter 4 also describes differences
between the standard Intel mnemonics and the
mnemonics accepted by the UCSD p-System
Assembler.

iii

iv

CONTENTS

CHAPTER 1. UCSD p-SYSTEM 8086/88/87
ASSEMBLER 1-1

Introduction 1-3
Assembly Language Definitions ... 1-3
Assembly Language Applications ... 1-4

General Programming Information 1-4
Object Code Format 1-4
Source Code Format. 1-5

Character Set. 1-5
Identifiers. 1-5
Predefined Symbols and

Identifiers 1-6
Character Strings 1-6
Constants 1-6
Expressions 1-9

Source Statement Format 1-13
Label Field 1-13
Ope ode Field 1-15

Source File Format 1-16
Assembly Routines 1-16
Global Declarations 1-16
Absolute Sections 1-17

CHAPTER 2. ASSEMBLER
DIRECTIVES 2-1

Metasymbols 2-5
Procedure-Delimiting Directives 2-7

PROC 2-7
FUNC 2-8
RELPROC 2-8
RELFUNC 2-9
END 2-9

v

Data and Constant Definition
Directives 2-10

ASCII 2-10
BYTE 2-10
BLOCK 2-11
WORD 2-12
EQU 2-13

Location Counter Modification
Directives 2-14

ORG 2-14
ALIGN 2-14

Listing Control Directives 2-15
TITLE 2-15
ASCII LIST 2-16
NOASCIILIST 2-16
CONDLIST 2-16
NOCONDLIST 2-17
NOSYMTABLE 2-17
PAGEHEIGHT 2-17
NARROWPAGE 2-18
PAGE 2-18
LIST 2-19
NO LIST 2-19
MACRO LIST 2-20
NOMACROLIST 2-20
PATCHLIST 2-21
NOPATCHLIST 2-21

Program Linkage Directives 2-22
CONST 2-22
PUBLIC 2-22
PRIVATE 2-23
INTERP 2-23
REF 2-24
DEF 2-24

vi

Conditional Assembly Directives 2-25
IF 2-25
ENDC 2-25
ELSE 2-26
MACRO 2-27
ENDM 2-27
INCLUDE 2-28
ABSOLUTE 2-29
ASECT 2-29
PSECT 2-30
RADIX 2-30

Conditional Assembly 2- 31
Conditional Expressions 2- 32
Macro Language 2-33

Macro Definitions 2-34
Macro Calls 2-35
Parameter Passing 2- 3 5
Scope of Labels in Macro 2- 36
Local Labels As Macro

Parameters 2- 37
Program Linking and Relocation 2-38
Program Linking Directives 2-41
Host Communication Directives 2-42
External Reference Directives 2-42
Program Identifier Directives 2-43
Linking Program Modules 2-44

Linking with a Pascal Host
Program 2-44

Parameter Passing Conventions ... 2 -46
Accessing Byte Array Parameters

with a Segment Pointer 2-48
Example of Linking to Pascal

Host 2-48

vii

Stand-alone Applications 2-5C
Assembling 2-51
Loading and Executing Absolute

Codefiles 2-52
Operation of the Assembler 2-53
Support Files 2-54

Setting Up Input and Output
Files 2-55

Responses to Listing Prompt 2-56
Output Modes 2-57
Responses to Error Prompt 2-57
Miscellany 2-58

Assembler Output 2-59
Source Listing 2-60
Error Messages 2-60
Code Listing 2-61
Forward References 2-61
External References 2-62
Multiple Code Lines 2-62

Symbol Table 2-62
Sharing Machine Resoures with

Interpreter 2-63
Accessing Parameters 2-63
Register Usage 2-64

CHAPTER 3. THE 8086/88 CPU 3-1
Introdution 3-3
General Registers 3-3

Segment Registers 3-5
Flags 3-6

Addressing Modes 3-8
Register and Immediate

Operands 3-8
Direct Addressing 3-9
Register Indirect Addressing 3-9
Based Addressing 3-10
Based Index Addressing 3-10
String Addressing 3-11

viii

CHAPTER 4. 8086/88/87
INSTRUCTIONS 4-1

Introduction 4-3
Assembler Differences from

Intel Standard 4-3
Assembler Directives 4-3
Specification of Code Segment

Register ;...... 4-3
Parenthesis 4-4
Immediate Byte 4-4
Memory Byte 4-4
MUL and DIV Byte 4-5
MOV Substitute for LEA 4-5
IN and OUT..................... 4-5
String Operations 4-6
Segment Override 4-6
Long Jumps, Calls, and Returns 4-7
8087 Mnemonics................. 4-8

The 8086/88 Instruction Set 4-9

APPENDIX A. ASSEMBLER ERROR
MESSAGES A-I

ix

NOTES

x

CHAPTER 1. UCSD p-SYSTEM
8086/88/87
ASSEMBLER

Contents

Introduction 1-3
Assembly Language Definition 1-3
Assembly Language Applications 1-4
General Programming Information 1-4
Object Code Format 1-4
Source Code Format 1-5
Character Set 1-5
Identifiers 1-5
Predefined Symbols and Identifiers 1-6
Character Strings 1-6
Constants 1-6
Expressions 1-9
Source Statement Format 1-13
Label Field 1-13
Opcode Field 1-15
Source File Format 1-16
Assembly Routines 1-16
Global declarations 1-16
Absolute Sections 1-17

1-1

1-2

Introduction
This chapter describes the UCSD p-System
8086/88/87 Assembler. Definitions of technical
terms and descriptions of assembler-related
concepts are given. The assembler directives are
detailed. Linking of assembled routines with host
compilation units is described. Various other issues
are addressed, such as assembled listings, error
messages, and sharing of machine resources with the
Interpreter.

Assembly Language Definition

An assembly language consists of symbolic names
which can represent machine instructions, memory
addresses, or program data. The main advantage of
assembly language programming over machine
coding is that programs can be organized in a more
readable and hence easier to understand fashion.

An assembly language program (called source code)
is translated by an assembler into a sequence of
machine instructions (called object code).
Assemblers can create either relocatable or absolute
object code. Relocatable code includes information
that allows a loader to place it in any available area of
memory, while absolute code must be loaded into a
specific area of memory. Symbolic addresses in
programs that are assembled to relocatable object
code are called relocatable addresses.

1-3

Assembly Language Applications

Users of the UCSD Pascal system are interested in
developing assembly language programs for one of
two purposes:

1) assembly language procedures running under
the control of a host program in Pascal or
FORTRAN.

2) stand-alone assembly language programs for
use outside of the operating system's
environment.

The UCSD p-System 8086/88/87 Assembler, in
conjunction with the system linker and some
support programs, has been designed to meet these
needs.

General Programming Information
Object Code Format

1-4

Byte Organization

A byte consists of eight bits. The bits may represent
eight binary values, or a single character of data. The
bits may also represent a one byte machine
instruction or a number which is interpreted either
as a signed two's complement number in the range of
-128 to 127 or an unsigned number in the range ofo
to 255.

Word Organization

A word consists of sixteen bits, or two adjacent bytes
in memory. A word may contain a one word machine
instruction, any combination of byte quantities, or a
number which may be interpreted either as a signed
two's complement number in the range of-32,768 to
32,767 or an unsigned number in the range of 0 to
65,535.

Source Code Format
Character Set

The following characters are used to construct
source code:

• upper and lower case alphabetic: A .. Z, a .. z

• numerals: 0 .. 9

• special symbols: I @ # $ % A & * () < > ~
[].,/;:"'+-=?

• space (' ') character and tab character

Iden tifiers

Identifiers consist of an alphabetic character
followed by a series of alphanumeric characters
and! or underscore characters. The underscore
character is not significant. This definition of
identifiers is equivalent to the Pascal definition.

Identifiers are used in:

• label and constant definitions.

• machine instructions, assembler directives, and
macro identifiers.

• label and constant references.

Example: FormArray
FORM ARRAY
formarray

... all denote the same item.

1-5

Predefined Symbols and Identifiers

Predefined identifiers are reserved by the assembler
as symbolic names for machine instructions and
registers. They may not be used as names for labels,
constants, or procedures. Also, the dollar sign, "$",
is predefined to specify the location counter. When
used in an expression, the dollar sign represents the
current value of the location counter in the program.

Character Strings

A character string is written as a series of ASCII
characters delimited by double quotes. A string may
contain up to eighty characters, but cannot cross
source lines. A double quote may be embedded in a
character string by entering it twice, for example,
"This contains ""embedded"" double quotes". The
assembler directive .ASCII requires a character
string for its operand. Strings also have limited uses
in expressions.

Constants

Examples:

1-6

Binary Integer Constants

A binary integer constant is a series of bits or binary
digits (0 .. 1) followed by the letter T. The range of
values is 0 to 11111111, or 0 to 1111, if a byte
constant.

01' 010001001 1110n

Examples:

Decimal Integer Constants

A decimal integer word constant is written as a series
of numerals (0 .. 9) followed by a period. Its range of
values is -32768 to 32767 as a signed two's
complement number. As a byte constant, its range of
values is -128 to 127 as a signed two's complement
number or 0 to 255 as an unsigned number.

000. 256. -4096.

Hexadecimal Integer Constants

A hexadecimal integer word constant is written as a
series of up to four significant hexadecimal numerals
(0 .. 9, A .. F) followed by the letter H. The leading
numeral of a hex constant must be a numeric
character. The range of values is 0 to FFFF. These are
examples of valid hex constants:

Examples: OAH

Examples:

100H
OFFFEH ; leading zero is required here

Byte constants possess similar syntax, but can have
at most two significant hex numerals, with a range of
o to FF.

Octal Integer Constants

An octal integer word constant is written as a series
of up to six significant octal numerals (0 .. 7) followed
by the letter Q. Its range of values is 0 to 177777.
Byte constants can have at most three significant
octal numerals, with a range of 0 to 477.

1-7

Examples:

1-8

Default Radix Integer Constants

The radix of an integer constant lacking a trailing
radix character is decimal on the p-System 8086/87
Assembler.

Character Constants

Character constants are special cases of character
strings and may be used in expressions. The
maximum length is two characters for a word
constant, and one character for a byte constant.

"A" "Be" "YA"

Assembly Time Constants

An assembly time constant is written as an identifier
that has been assigned a constant value by the. EQU
directive (see "Data and Constant Definition
Directives" in this chapter). Its value is completely
determined at assembly time from the expression
following the directive. Assembly time constants
must be defined before they may be referenced.

Expressions

Expressions are used as symbolic operands for
machine instructions and assembler directives. An
expression can be:

• a label, which might refer to a defined address or
an addr~ss further down in the source code
(implying that the label is presently undefined),
an externally referenced address, or an absolute
address.

• a constant.

• a series of labels or constants separated by
arithmetic or logical operators.

• the null expression, which evaluates to a
constant of value O.

Relocatable and Absolute Expressions

An expression containing more than one label is
valid only if the number of relocatable labels added
to the expression exceeds the number of relocatable
labels subtracted from the expression by zero or
one. The expression result is absolute if the
difference is zero, and relocatable if the difference is
one. Subexpressions that evaluate to relocatable
quantities may not be used as arguments to a
multiplication, division, or logical operation. Unary
operators may not be applied to relocatable
quantities.

In relocatable programs, absolute expressions may
not be used as operands of instructions which
require location-counter-relative address modes.

1-9

1-10

Linking and One Pass Restrictions

An expression may contain no more than one
externally defined label, and its value must be added
to the expression. An expression containing an
external reference may not contain a forward
referenced label, and the relocation sum of any other
relocatable labels in the expression must be equal to
zero.

An expression may contain no more than one
forward referenced identifier. A forward referenced
identifier is assumed to be a relocatable label defined
further down in the source code; any other
identifiers must be defined before they are used in an
expression. An expression containing a forward
referenced label may not contain an externally
defined label.

Arithmetic & Logical Operators

The following operators are available for use in
expressions:

unary operations:
+ plus

minus (two's complement negation)
logical not (one's complement negation)

binary operations:
+ plus

*
I
II
%
I
&

minus
exclusive or
multiplication
signed integer division (DIV)
unsigned integer division (DIV)
unsigned remainder division (MOD)
bitwise OR
bitwise AND

The following operators are available for use only
with conditional assembly directives:

equal
<> not equal

The following symbols may be used as alternatives to
the single character definitions presented above.
Occurrences of these alternative definitions require
at least single blank characters as delimiters .

. OR

.AND &

.NOT

.XOR

.MOD %

The assembler performs left to right evaluation of
expressions; there is no operator precedence. All
operations are performed on word quantities. Usage
of unary operators is limited to constants and
absolute addresses. Angle brackets must enclose
sub expressions which contain embedded unary
operators.

Subexpression Grouping

Angle brackets (< and>) may be used in expressions
to override the left to right evaluation of operands.
Sub expressions enclosed in angle brackets are
completely evaluated before inclusion in the rest of
the expression.

1-11

Examples:

1-12

The following are examples of valid expressions.
The default radix is decimal.

MARK+4

BILL-2

2-BARRY

3*2+MACRO

DIVIII+3*2

650/2·RICH

-4*12+<6/2>

85+2+<-5>

oillro}

; The sum of the value of
; identifier MARK plus 4

; The result of subtracting 2 from
; the value of identifier BILL

; The result of subtracting the
; value of identifier BARRY from
; 2. BARRY must be absolute.

; The sum of the value of
; identifier MACRO plus the
; product of 3 times 2.

; 2 times the sum of the
; identifier DAVID and 3. DAVID
; must be absolute.

; The result of dividing 650 by 2
; and subtracting the value of
; identifier RICH from the
; quotient. RICH must be
; absolute.
; Null expression: constant 0

; evaluates to ·45 (deCimal)

; evaluates to 82 (decimal)

; evaluates to 1

o .OR 1 .AND <.NOT 0> ; is the same
; expression (result is 1)

Source Statement Format
An assembly language source program consists of
source statements which may contain machine
instructions, assembler directives, comments, or
nothing (a blank line). Each source statement is
defined as one line of a textfile. Assembly language
identifiers are restricted to upper case alphabetic
characters, but lower case characters may be used in
the comment field.

Label Field

Example:

The assembler supports the use of both standard
labels and local (i. e., reuseab Ie) labels. The label field
begins in the leftmost character position of each
source line. Macro identifiers and machine
instructions must not appear in the start of the label
field, but assembler directives and comments may
appear there.

Standard label usage

A standard label is an identifier that appears in the
label field of a source statement. It may be
terminated by an optional colon character, which is
not used when refrencing the labeL As in Pascal, only
the first eight characters of the label are important;
the rest are ignored by the assembler. As in Pascal,
the underscore character is not significant.

BIOS
L3456:
The_Kind
LONG label

referenced as L3456

last character is ignored

A standard label is a symbolic name for a unique
address or constant; it may be declared only once in a

1-13

Example:

1-14

source program. A label is optional for machine
instructions and for many of the assembler
directives. A source statement consisting of only a
label is a valid statement; it has the effect of assigning
the current value of the location counter to the label.
This is equivalent to placing the label in the label
field of the next source statement that generates
object code. Labels defined in the label field of the
.EQU directive (see "Data and Constant Definition
Directives" in this chapter) are assigned the value of
the expression in the operand field.

Local Label Usage

Local labels allow source statements to be labeled
for reference by other instructions without taking
up storage space in the symbol table. They can
contribute to the cleanliness of source program
design by allowing the creation of nonmnemonic
labels for use by iterative and decision constructs,
thus reserving the use of mnemonic label names for
demarking conceptually more important sections of
code.

Local labels must have $ in the first character
position; the remaining characters must be digits. As
in regular labels, only the first eight digits are
significant. The scope of a local label is limited to the
lines of source statements between the declaration
of consecutive standard labels; thus, the jump to
label $4 in the following example is illegal:

LABEll
ADe AX, SI

$3 MOV MEM, AX
dC $3 legal
NOP $4 Illegal
JNC

LABEI.2
IDC AX, 51

$4 MOV MEM, AX

Up to 21 local labels may be defined between 2
occurrences of a standard label. On encountering a
standard label, the assembler purges all existing
local label definitions; hence, all local label names
may be redefined after that point. Local labels may
not be used in the label field of the .EQU directive
(see "Data and Constant Definition Directives" in
this chapter).

Opcode Field

The opcode field begins with the first non-blank
character following the label field, or with the first
nonblank character following the leftmost character
position when the label is omitted. It is terminated
by one or more blanks. The opcode field contains an
identifier which can be of the following types:

• machine instruction

• assembler directive

• macro call

Operand Field

The operand field begins with the first nonblank
character following the opcode field, and is
terminated by zero or more blanks. It can contain
zero or more expressions, depending on the
requirements of the preceding opcode.

Comment Field

The comment field can be preceded by zero or more
blanks, begins with a semicolon (;), and extends to
the end of the current source line. It may contain any
printable ASCII characters. The comment field is
listed on assembled listings, and has no other effect
on the assembly process.

1-15

Source File Format
Assembly source files are generated using the system
editor and saved as files of type TEXT. A source file is
constructed from the following entities:

• assembly routines (procedures and functions).

• global declarations.

Assembly Routines

A source file may contain more than one assembly
routine; in this case, a routine ends upon the
occurrence in the source code of another program
delimiting directive (e.g., the start of the following
routine). Each routine in a source file is a separate
entity; it contains its own relocation information and
may be individually referenced by a Pascal host
program during linking.

Assembly routines must begin with a .PROC,
.FUNC, .RELPROC, or .RELFUNC directive. The
last routine in the source file must be terminated by
the. END directive. "Program Linking and
Relocation" in this chapter gives a detailed
description of these directives.

At the end of each routine, the assembler's symbol
table is cleared of all but predefined and globally
declared symbols, and the location counter (LC) is
reset to zero.

Global Declarations

1-16

An assembly routine may not directly access objects
declared in another assembly routine, even if the
routines are assembled in the same source file;
however, occasions arise when it is desirable for a set
of routines to share a common group of

declarations. Therefore, the assembler allows global
data declarations.

Any objects declared before the first occurrence of a
.PROC or .FUNC directive in a source file may be
referenced by all subsequent assembly routines. No
code may be generated before the first procedure
delimiting directive; hence, the global objectives are
limited to the non-code-generating directives
(.EQU, .REF, .DEF, .MACRO, .LIST, etc.).

any non-code
generating
operations

code-generating
or non-code generating

operations and directives

Absolute Sections

Assembly language programmers often find it
necessary to access absolute addresses in memory,
regardless of where an assembly routine is loaded in
memory. For instance, a program may need to access
ROM routines. Absolute sections allow the user to
define labels and data space using the standard
syntax and directives, but with the extra ability to
specify absolute (nonrelocatable) label addresses
starting at any location in memory.

Absolute sections are initiated by the directive
.ASECT (for absolute section) and terminated by the
directive .PSECT (for program section, which is the
default setting during assembly). When the .ASECT

1-17

1-18

directive is encountered, the absolute section
location counter (ALC) becomes the current
location counter. The. ORG directive can be used to
set the ALC to any desired value. Label definitions
are nonrelocatable and are assigned the current
value of the ALe. The data directives. WORD,
.BLOCK, and .BYTE cause the ALC (instead of the
regular LC) to be incremented.

Data directives in an absolute section cannot place
initial values in the locations specified as they can
when used in the program section; thus, the absolute
section serves as a tool for constructing a template of
label-memory address assignments.

The equate directive (.EQU) may be used in an
absolute section, but the labels are restricted to
being equated only to absolute expressions. The
only other directives allowed to occur within an
absolute section are .LIST, .NOLIST, .END, and the
conditional assembly directives ..

Absolute sections may appear as global objects.

The following is a simple example of an absolute
section:

.ASECT ; start absolute section

.ORG ODFOOH ; set ALC to DFOO hex

; note· no data values assigned
; label assignments below

DKSOUT .BnE ; DSKOUT = DFOO
DSKSTAT .BnE ; DSKSTAT = DFOl
CONS .WORD ; CONS = DF02
BLAGUE .BLOCK 4 ; BLAGUE = DF04

(4 bytes)
REMOUT .WORD ; REM OUT = DFOS
OFFSET .EOU ; REMOUT + 2

; OFFSET = DFOA

.PSECT

CHAPTER 2. ASSEMBLER
DIRECTIVES

Contents

Metasymbols 2- 3
PROC 2-5
.FUNC 2-6
.RELPROC 2-6
.RELFUNC 2-7
.END 2-7
.ASCII 2-8
.BYTE 2-8
.BLOCK 2-9
.WORD 2-10
.EQU 2-11
.ORG 2-12
.ALIGN 2-12
.TITLE 2-13
.ASCIILIST 2-14
.NOASCIILIST 2-14
.CONDLIST 2-14
.NOCONDLIST 2-15
.NOSYMTABLE 2-15
.PAGEHEIGHT 2-15
.NARROWPAGE 2-16
.PAGE 2-16
.LIST 2-17
.NOLIST 2-17
.MACROLIST 2-18
.NOMACROLIST 2-18
.PATCHLIST 2-19
.NOPATCHLIST 2-19
.CONST 2-20
.PUBLIC 2-20
.PRIVATE 2-21
.INTERP 2-21
.REF 2-22

2-1

.DEF 2-22

.IF 2-23

.ENDC 2-23

.ELSE 2-24

.MACRO 2-25

.ENDM 2-25

.INCLUDE 2-26

.ABSOLUTE 2-27

.ASECT 2-27

.PSECT 2-28

.RADIX 2-28
Macro Definitions 2-32
Macro Calls 2-33
Parameter Passing 2-33
Scope Of Labels In Macros 2-34
Local Labels As Macro Parameters 2- 35
Program Linking and Relocation 2-36
Program Linking Directives 2-39
Host Communication Directives 2-40
External Reference Directives 2-40
Program Identifier Directives 2-41
Linking Program Modules 2-42
Linking With A Pascal Host Program ... 2-42
Parameter Passing Conventions 2-44
Accessing Byte Array Parameters with

a Segment Pointer 2-46
Example Of Linking To Pascal Host ... 2-46
Stand-alone Applications 2-48
Assembling 2-49
Loading And Executing Absolute

Codefiles 2-50
Operation of the Assembler 2-51
Support Files 2-52
Setting Up Input And Output Files 2-53
Responses To Listing Prompt 2-54
Output Modes 2-55
Responses To Error Prompt 2-55
Miscellany 2-56
Assembler Output 2-57
Source Listing 2-58
Error Messages 2-58
Code Listing 2-59

2-2

Forward References 2-59
External REferences 2-60
Multiple Code Lines 2-60
Symbol Table 2-60
Sharing Machine Resources with

Interpreter 2-61
Calling and Returning 2-61
Accessing Parameters 2-61
Register Usage 2-62

2-3

NOTES

2-4

Assembler directives (sometimes referred to as
pseudo-ops) enable the programmer to supply data
to be included in the program and exercise control
over the assembly process. Assembler directives
appear in the source code as predefined identifiers
preceded by a period (.).

Metasymbols
The following metasymbols are used below in the
syntax definitions for assembler directives:

• special characters and items in capital letters
must be entered as shown.

• items that are in italics are defined by the user.

• items within square brackets ([]) are optional.

• the word 'or' indicates a choice between two
items.

• items in lower case letters are generic names for
classes of items.

The following terms are names for classes of items:

b = the occurrence of one or more blanks.

integer = any legal integer constant as defined in
"Constants" in Chapter 1.

label = any legal label as defined in "Label Field"
in Chapter 1.

expression = any legal expression as defined in
"Expressions" in Chapter 1.

value = any label, constant, or expression. Its
default value is o.

2-5

Example:

2-6

value list = a list of zero or more values
delimited by commas.

identifier = a legal identifier as defined in
"Identifiers" in Chapter 1.

idlist = a list of one or more identifiers delimited
by commas.

id:integer list = a list of one or more
identifier-integer pairs separated by a color
and delimited by a comma. The colon:intege:
part is optional; its default value is 1.

comment = any legal comment as defined in
"Comment Field" in Chapter 1.

character string = any legal character string as
defined in "Character Strings" in Chapter 1.

file identifier = any legal name for a Pascal text
file.

[label] ,ASCII ill rnn:~nrt:pr I comment]

... indicates that a label may be included in the label
field (but is not necessary), and that a character
string must be included as an operand. These formal
definitions should be thought of as being on one line
even though they may appear on more than one line
in this manual (because of textual space
considerations).

Small examples are included after each definition to
supply the user with a reference to the specific
syntax of the directive.

Procedure-Delimiting Directives

PROC

FORMAT:

Example:

Every source program (including those intended for
use as stand-alone code files) must contain at least
one set of procedure-delimiting directives. The most
frequent use of the assembler is in assembling small
routines intended to be linked with a host
compilation unit. The directives .PROC and .FUNC
identify and delimit assembly language procedures .
. RELPROC and .RELFUNC identify and delimit
dynamically relocatable procedures. Dynamically
relocatable procedures may reside in the code pool,
and are subject to more of the System's memory
management strategies. "Program Linking and
Relocation" in this chapter has a more detailed
description of the use of these directives.

Identifies the beginning of an assembly language
procedure. The procedure is terminated by the
occurrence of another delimiting directive in the
source file.

[b] .PROC b identifier [,integer] [comment]

identifier is the name associated with the assembly
procedure.

integer indicates the number of words of parameters
passed to this routine. The default is O.

2-7

Procedure-Delimiting Directives

.FUNC

Format:

Example:

Identifies the beginning of an assembly language
function, which is expected (by the host compilation
unit) to return a function result on top of the stack;
otherwise, equivalent to the .PROC directive.

[b] . FUNC b identifier [,integer] [comment]

identifier is the name associated with the assembly
procedure.

integer indicates the number of words of parameters
passed to this routine. The default is O.

,FUNC RANDOM

.RELPROC

Format:

Example:

2-8

Identifies the begininng of a dynamically relocatable
assembly language procedure. Such assembly
procedures must be position-independent (see
"Program Linking and Relocation" in this chapter).
The procedure is terminated by the occurrence of
another delimiting directive in the source file.

[b] .RELPROC b identifier [. integer] [comment]

identifier is the name associated with the assembly
procedure.

integer indicates the number of words of parameters
passed to this routine. The default is O.

.RELPROC POOF,3

Procedure-Delimiting Directives

.RELFUNC

Format:

Example:

.END

Format:

Identifies the beginning of a dynamically relocatable
assembly language function which is expected (by
the host compilation unit) to return a function result
on the stack; otherwise, equivalent to the
.RELPROC directive.

[b] .RELFUNC b identifier [, integer] [comment]

identifier is the name associated with the assembly
function.

integer indicates the number of words of parameters
passed to this routine. The default is O.

.RELFUNC POOOF

Marks the end of an assembly source file.

[label] [b] .END

2-9

Data and Constant Definition
Directives

.ASCII

Format:

Example:

. BYTE

Format:

Example:

2-10

Converts character strings to a series of ASCII byte
constants in memory. The bytes are allocated in the
order that they appear in the string. An identifier in
the label field is assigned the location of the first
character allocated in memory.

[label] [b] .ASCII b character string [comment]

character string is any string of printable ASCII
characters delimited by double quotes.

.ASCII "HELLO"

Allocates and initializes values in one or more bytes
of memory. Values must be absolute byte quantities.
The default value is zero. An identifier in the label
field is assigned the location of the first byte
allocated in memory.

[label] [b] .BYTE b [valuelist] [comment]

TEMP .OnE 4; cl'n'l~ wluilid
; be: 041 ~IBX

nMf1 .OnE ; codew!lluld
; ha: Oil tiel:{

Data and Constant Definition
Directives

.BLOCK

Format:

Example:

Allocates and initializes a block of consecutive bytes
in memory. A byte value must be an absolute
quantity. The default value is zero. An identifier in
the label field is assigned the location of the first
byte/word allocated.

[label] [b] . BLOCK b length [, value] [comment]

length is the number of bytes to allocate with the
initial value value.

The output code would be:

2-11

Data and Constant Definition
Directives

.WORD

Format:

Example:

2-12

Allocates and initializes values in one or more
consecutive words of memory. Values may be
relocatable quantities. The default value is zero. An
identifier in the label field is assigned the location of
the first word allocated.

[label] [b] . WORD b valuelist [comment]

TEMP .WORD 0,2,,4

The output code would be:

0000
0002
0000 ; this is a default value.
0004

11 .WORD 12

The output code would be a word containing the
address of the label L2.

.EQU

Format:

Example:

Data and Constant Definition
Directives

Equates a value to a label. Labels may be equated to
an expression containing relocatable labels,
externally referenced labels, and/or absolute
constants. The general rule is that labels equated to
values must be defined before use. The exception to
this rule is for labels equated to expressions
containing another label. Local labels may not
appear in the label field of an equate statement.

label [b] .EQU b value [comment]

BASE ,EOIJ H6

2-13

Location Counter Modification
Directives

. ORG

Format:

Example:

These directives affect the value of the location
counter (LC or ALe) and the location in memory of
the code being generated .

If used at the beginning of an absolute assembly
program, .ORG initializes the location counter to
value. Used anywhere else, .ORG will generate zero
bytes until the value of the location counter equals
value.

[b] .ORG b value [comment]

.ALIGN

Format:

Example:

2-14

Outputs sufficient zero bytes to set the location
counter to a value which is a multiple of the operand
value.

[b] .ALIGN b value [comment]

.AUGN 2

This aligns the LC to a word boundary.

Listing Control Directives

These directives allow the user to exercise control
over the format of the assembled listing file
generated by the assembler. No code is generated by
these directives, and their source lines do not appear
on assembled listings. See "Assembler Output" in
this chapter for a more detailed description of an
assembled listing .

. TITLE

Format:

Example:

Changes the title printed on the top of each page of
the assembled listing. The title may be up to 80
characters long. The assembler will change the title
to SYMBOLTABLE DUMP when printing a symbol
table; the title reverts back to its former value after
the symbol table is printed. The default value for the
title is ' '.

[b] . TITLE b character string [comment]

2-15

Listing Control Directives

.ASCIILIST

Format:

Example:

Print all bytes generated by the .ASCII directive in
the code field of the list file, creating multiple lines in
the list file if necessary. Assembly begins with an
implicit .ASCIILIST directive.

[b] .ASCIILIST [comment]

,ASCII LIST

.NOASCIILIST

Format:

Example:

Limit the printing of data generated by the .ASCII
directive to as many bytes as will fit in the code field
of one line in the list file.

[b] ,NOASCIILIST [comment]

,NOASCIiLiST

.CONDLIST

Format:

Example:

2-16

List source code contained in the unassembled
sections of conditional assembly directives.

[b] .CONDLIST [comment]

,CONDLIST

Listing Control Directives

.NOCONDLIST

Format:

Example:

Suppress the listing of source code contained in the
unassembled sections of conditional assembly
directives. Assembly begins with an implicit
.NOCONDLIST directive.

[b] .NOCONDLIST [comment]

.NOCONDLIST

.NOSYMT ABLE

Format:

Example:

Suppress the printing of a symbol table after each
assembly routine in an assembled listing.

[b] .NOSYMTABLE [comment]

.NOSYMTABLE

.PAGEHEIGHT

Format:

Example:

Control the number oflines printed in an assembled
listing between page breaks. Assembly begins with
an implicit .PAGEHEIGHT 59 directive.

[b] .PAGEHEIGHT integer [comment]

.PAGEHEIGHT

2-17

Listing Control Directives

.NARROWPAGE

Format:

Example:

.PAGE

Format:

Example:

2-18

Limit the width of an assembled listing to 80
columns. The symbol table is printed in a narrow
format, source lines are truncated to a maximum of
49 characters, and title lines on the page headers are
truncated to a maximum of 40 characters.

[b] .NARROWPAGE [comment]

"i~UUiROWPAGE

Continue the assembled listing on the next page by
sending an ASCII form feed character to the
assembled listing.

[b] .PAGE

.PAGE

.LIST

Format:

Example:

Listing Control Directives

Enables output to the list file, if a listing is not
already being generated .. LIST and .NOLIST can be
used to examine certain sections of source and
object code without creating an assembled listing of
the entire program. Assembly begins with an
implicit .LIST directive.

[b] .LIST

.mnf

.NOLIST

Format:

Example:

Suppresses output to the list file, if it is not already
off.

[b] .NOLIST

2-19

Listing Control Directives

.MACROLIST

Format:

Example:

Specifies that all following macro definitions will
have their macro bodies printed when they are
invoked in the source program. Assembly begins
with an implicit .MACROLIST directive. "Macro
Language" in this chapter has a detailed description
of macro language.

[b] .MACROLIST

MACROUST

.NOMACROLIST

Format:

Example:

2-20

Specifies that all following macro definitions will not
have their macro bodies printed when they are
invoked in the source program. Only the macro
identifier and parameter list are included in the
listing.

[b] .NOMACROLIST

.I\UlMACROUST

Listing Control Directives

.PATCHLIST

Format:

Example:

List occurrences of all back patches of forward
referenced labels in the list file. Assembly begins
with an implicit. P A TCHLIST directive. "Assembler
Output" in this chapter has a detailed description of
back patches.

[b] . P A TCHLIST

.PATCHLIST

.NOPATCHLIST

Format:

Example:

Suppress the listing of back patches of forward
references.

[b] .NOPATCHLIST

.NOPATCHUST

2-21

Program Linkage Directives

Linking directives enable communication between
separately assembled and/or compiled programs.
"Program Linking and Relocation" in this chapter
has a detailed description of program linking .

. CONST

Format:

Example:

Allows access to globally declared constants in the
host compilation unit by the assembly procedure.

[b) .CONST b idlist [comment]

Each id is the name of a global constant declared in
the Pascal host.

.CONST LENGTH

. PUBLIC

Format:

Example:

2-22

Allows variables declared in the global data segment
of the host compilation unit to be referenced by an
assembly language routine.

[b) . PUBLIC b idltst [comment]

Each id is the name of a global variable declared in
the Pascal host.

.PUBLIC I,J,LENGTH

Program Linkage Directives

. PRIVATE

Format:

Example:

Allows an assembly language routine to store
variables in the global data segment of the host
compilation unit that are accessible only to the
assembly language routine.

[b] . PRIV A TE b id:integer list [comment]

.PRIVATE PRINT,BARRAY:9

Each id is treated as a label defined in the source
code. integer determines the number of words of
space allocated for id.

.INTERP

Format:

Example:

Allows an assembly language procedure to access
code or data in the P-code interpreter .. INTERP is a
predefined symbol for a processor dependent
location in the resident interpreter code; offsets
from this base location may be used to access any
code in the interpreter. Correct usage of this feature
requires a knowledge of the interpreter's jump
vector for this location. Its domain is generally
restricted to systems applications.

valid when used in expression

ERR .EOU 12
; hypothetical
; routine offset

BOMB .EOU .INTERP+ERR
JMP BOMBINT

2-23

Program Linkage Directives

.REF

Format:

Example:

.DEF

Format:

Example:

2-24

Provides access to one or more labels defined in
other assembly language routines.

[b] .REF tillist [comment]

.REF SCHLUMP

Makes one or more labels to be defined in the
current routine available to other assembly language
routines for reference.

[b] . D EF tillist [comment]

.DEF FOON,YEEN

Conditional Assembly Directives

. IF

Format:

Example:

"Conditional Assembly" in this chapter has a
detailed description of conditional assembly
features .

Marks the start of a conditional section of source
statements.

[b] .IF b expression [= or <> expression] [comment]

.IF DEBUG

.ENDC

Format:

Example:

Marks the end of a conditional section of source
statements.

[b] . ENDC [comment]

.EHDC

2-25

Conditional Assembly Directives

.ELSE

Format:

Example:

2-26

Marks the start of an alternative section of source
statements.

[b] . ELSE [comment]

.ELSE

Macro Definition Directives

"Macro Language" in this chapter has a detailed
description of macro language .

. MACRO

Format:

Example:

Indicates the start of a macro definition.

[b] .MACRO b identifier [comment]

identifier is used to invoke the macro being
defined.

.MACRO AOOWOROS

.ENDM
Marks the end of a macro definition.

Format: [b] .ENDM [comment]

Example: .ENOM

2-27

Miscellaneous Directives

. INCLUDE

Format:

Example:

2-28

Causes the assembler to start assembling the file
named as an argument of the directive; when the end
of this file is reached, assembling resumes with the
source code that follows the directive in the original
file. This feature is useful for including a file of
macro definitions or for splitting up a source
program too large to be edited as a single text file .
. INCLUDE may not be used in an included source
file (Le., nested use of the directive) and may not be
used in a macro definition.

[b] .INCLUDE bfile identifier [comment]

The comment field of the .INCLUDE directive must
be separated from the file identifier by at least one
blank character.

.INCLUDE MYDlSK:MACROS

Miscellaneous Directives

.ABSOLUTE

Format:

Example:

Causes the following assembly routine to be
assembled without relocation information. Labels
become absolute addresses and label arithmetic is
allowed in expressions. Usage is valid only before the
occurrence of the first procedure delimiting
directive .. ABSOLUTE must not be used when
creating a Pascal external procedure. "Program
Linking and Relocation" has a detailed description
of absolute code files.

[b] .ABSOLUTE [comment]

.ABSOLUTE

.ASECT

Format:

Example:

Specifies the start of an absolute section. "Absolute
Sections" in Chapter 1 has a detailed description of
.ASECT.

[b] .ASECT [comment]

.£lSECY

2-29

Miscellaneous Directives

.PSECT

Format:

Example:

Specifies the start of a program section, and is used
to terminate an absolute section. "Absolute
Sections" in Chapter 1 has a detailed description of
.PSECT.

[b] .PSECT [comment]

.PSECT

.RADIX

Format:

Example:

2-30

Sets the current default radix to the value of the
operand. Allowable operands are: 2 (binary),
8 (octal), 10 (decimal), and 16 (hexadecimal).
"Constants" in Chapter 1 has a detailed description
of radices. Initial defaults for each assembler version
are listed in "Sharing Machine Resources with
Interpreter" .

[b] . RADIX integer [comment]

.RADIX 10
; decimal
; default radix

Conditional Assembly

Conditional assembly directives are used to
selectively exclude or include sections of source
code at assembly time. Conditional sections are
initiated with the .IF directive and terminated with
the .ENDC directive, and may contain the .ELSE
directive. Control over the inclusion of conditional
sections is determined by the use of conditional
expressions. Conditional sections may contain other
conditional sections.

When the assembler encounters an .IF directive, it
evaluates the associated expression to determine the
condition value. If the condition value is false, the
source statements following the directive are
discarded until a matching .ENDC or .ELSE is
reached. If the .ELSE directive is used in a
conditional section, source code before the .ELSE is
assembled if the condition is true, and source code
after the .ELSE is assembled if the condition is false.

Overall syntax for a conditional section (using the
metalanguage described in "Assembler Directives"
in this chapter is as follows:

.IF conditional expressIon
source statements

[.ElSE
source statements]

.(HOC

2-31

Conditional Expressions

Example:

2-32

A conditional expression can take one of two forms:
a single expression, or comparison of two character
strings or expressions. The first form is considered
false if it evaluates to zero; otherwise, it is considered
true. The second form of conditional expression is
comparison for equality or inequality (indicated by
the symbols = and <>, respectively).

.IF LABEL1·LABEl2 ; arithmetic expression

; This code is assembled only if
; difference is zero

.IF % l="STUFF" ; comparison expression

; This code is assembled only if
; outer condition is true and
; text of first macro parameter
; is equal to "STUFF" .

. ENDC ; terminate nested section

.ELSE

; This code is assembled if outer
; condition is true

; This code is assembled if first
; condition is false

.ENDC ; terminate outer section

Example:

Macro Language

The assembler supports the use of a macro language
in source programs. A macro language allows the
programmer to associate a set of source statements
with an identifying symbol; when the assembler
encounters this symbol (known as a macro
identifier) in the source code, it substitutes the
corresponding set of source statements (known as
the macro body) for the macro identifier, and
assembles the macro body as if it had been included
directly in the source program. A carefully designed
set of macro definitions can be used in all source
programs to simplify the development of assembly
language routines.

Macro language is enhanced by including a
mechanism for passing parameters (known as macro
parameters) to the macro body while it is being
expanding, allowing a single macro definition to be
used for an entire class of sub tasks.

; macro definition ...
. MACRO STRING macro identifier is

.BYTE %2

.ASCII %1

.ENDM

STRING
Macro Body:

; %1 and %2 are
parameter
declarations

; 2nd parameter is
length byte

1 st parameter is
argument

end macro definition

2-33

Macro Language

Further down in the source code ...

STRING "WRITE",5. 1 st macro call
parameters are

"WRITE"
and 5.

STRING "TYPE SPACE",10.
; 2nd macro call

parameters are
"TYPE SPACE"
and 10.

This is what gets assembled ...

. BYTE 5. ; data string declarations

.ASCII "WRITE"

.BYTE 10 .

. ASCII "TYPE SPACE"

Macro Definitions

2-34

Macro definitions may occur anywhere in a source
program and are delimited by the directives
.MACRO and .ENDM. The macro identifier must be
unique to the source program, except when the
programmer is redefining a predefined machine
instruction name as a macro identifier. A macro
definition may not include another macro
definition; however, it may include macro calls.
Macro calls may be nested to a maximum depth of
five levels. A macro definition must occur before any
calls to that macro are assembled, but macro calls
may be forward referenced within the bodies of
other macro definitions.

Macro Calls

Macro calls may occur anywhere in a source program
that code may be generated. A macro call consists of
a macro identifier followed by a list of parameters.
The parameters are delimited by commas and
terminated by a carriage return or semicolon. Upon
encountering a macro call, source code is read from
the text of the corresponding macro body. Macro
parameters within the macro body are substituted
with the text of the matching parameter listed after
the macro identifier which initiated the call.

Parameter Passing

Macro parameters are referenced in a macro body by
using the symbol %n in an expression, where n is a
single nonzero decimal digit. Upon scanning this
symbol, the assembler replaces it with the text of the
n'th macro parameter. Please note that macro
parameters are not expanded within the quotes of
an ASCII data string.

Three cases are possible:

1) The parameter exists - make the substitution.

2) The n'th parameter doesn't exist in the
parameter list being checked (less than n
parameters were passed); a null string is
substituted.

3) Another symbol of the form %m is encountered
in the parameter list. If nested macro calls exist,
the text of the m'th parameter at the next
higher level of macro nesting is substituted;
otherwise, the symbol itself is assembled.

Parameters are passed without leading and trailing
blanks. All assembly symbols except macro calls may
be passed as parameters.

2-35

The following is an example of parameter passing in
macros:

.MACRO DOS
UNO %2, UN
SAR %1
.ENOM

.MACRO
MOV
SAL
.ENOM

UNO
%1,%2
%2

In a program, the macro calL ..

DOS TROIS, DEUX

assembles as ...

MOV DEUX, UN ; UNO got UN directly,
; but had to use ~~S's
; 2nd param

SAL DEUX
SAR TROIS ; DOS used its own 1 st

; param

Scope Of Labels In Macros

2-36

A problem arises in the use of macro language when
the definition of a macro body requires the use of
branch instructions and thus the presence of labels.
Declaring a regular label in a macro body is incorrect
if the macro is called more than once, for the label
would be substituted twice into the source program
and flagged by the assembler as a previously defined
labeL Location-counter-relative addressing can be
used, but is prone to errors in nontrivial
applications. The solution is to generate labels that
are local to the macro body; the assembler's local
labels have this capability.

Local label names declared in a macro body are local
to that macro; thus, a section of code that contains a
local label $1 and a macro call whose body also has
the local label $1 will assemble without errors
(contrast this with what happens when two
occurrences of $1 fall between two regular labels).
This feature allows local labels to be used freely in
macros without fear of conflicts with the rest of the
program.

Note: The maximum of 21 local labels active
at any instant still applies.

Local Labels As Macro Parameters

The passing oflocallabels as parameters has a special
property. Unlike other macro parameters, local
labels are not passed as uninterpreted text. The
scope of a local label passed in a macro call does not
change as it is passed through increasing levels of
macro nesting, regardless of naming conflicts along
the way. One use of this property is passing an
address to a macro which simulates a conditional
branch instruction.

2-37

The following is an example of passing local labels as
macro parameters:

.MACRO EIN
JE $1
JEN %1

$1
.ENDM

In a program, the code ...

TWIE
SUB
EIN
RET

$1

ICHI,NI
$1

JMP SAN

assembles as ...

TWIE
SUB
JE

JNE

$1

RET

ICHI,NI
$1 ; this references macro

; local label
$1 ; this references

; outside $1
; macro local labe!

$1 ; outside $1
JMP SAN

Program Linking and Relocation

2-38

The Adaptable Assembler produces either absolute
or relocatable object code that may be linked as
required to create executable programs from
separately assembled or compiled modules.

Program linking directives generate information
required by the System Linker to link modules.

Some of the advantages of linking are:

• Long programs can be divided into separately
assembled modules to avoid a long assembly,
reduce the symbol table size, and encourage
modular programming techniques.

• Modules can be shared by other linked modules.

• Utility modules can be added to the System
Library for use as external procedures by a large
number of programs.

• Pascal programs can directly call assembly
language procedures.

The assembler generates linker information in both
relocatable and absolute code files. The System
Linker accesses this information during the linking
process and removes it from the linked code file.

Relocatable code includes information that allows a
loader program to place it anywhere in memory,
while absolute (also called core image) codefiles
must be loaded into a specific area of memory to
execute properly. Assembly procedures running in
the Pascal system environment must always be
relocatable; the loading and relocation process is
performed by the interpreter at a load address
determined by the state of the System.

Absolute code will not run under the p-System
environment (under which high-level programs
must run). Relocatable code can run under the
p-System. Code segments which contain statically
relocatable code remain in main memory
throughout the lifetime of their host program (or
unit), and are position-locked for that duration.
Thus, relocatable code may maintain and reference
its own internal data space (or spaces). In addition,

2-39

statically relocatable code saves some space because
its relocation information does not have to remain
present throughout the life of the program.

The directives .PROC and .FUNC ..designate
statically relocatable routines; .RELPROC and
.RELFUNC designate dynamically relocatable
routines. Code segments which contain dynamically
relocatable code do not necessarily occupy the same
loca tion in memory throughout their host's lifetime,
but are maintained in the code pool along with other
dynamic segments (mostly P-code), and may be
swapped in and out of main memory while the host
program (or unit) is running. Thus, dynamically
relocatable code cannot maintain internal data
spaces - data which is meant to last across different
calls of the assembly routine must be kept in host
data segments using .PRIV ATEs and .PUBLICs. (It is
the programmer's responsibility to make sure that
this is the case.)

Examples: 1) Data space is embedded in the code, but the
code does not move:

2-40

.PROC FOON

.WORD SPACE

.END

2) The code moves, but data space is allocated in
the host compilation unit's global data
segment:

.RELPROC FOON

.PRIVATE SPACE

.END

3) Wrong: The code moves, and the data is
embedded in the code, so the data is destroyed:

.RELPROC

.WORD

.END

FOON
SPACE

Code pool management is described in the Internal
Architecture Guide.

Program Linking Directives
This section describes overall usage of linking
directives. All linking of assembly procedures
involves word quantities; it is not possible to
externally define and reference data bytes or
assembly time constants. Arguments of these
directives must match the corresponding name in
the target module (a lower case Pascal identifier will
match an upper case assembly name, and vice versa)
and must not have been used before their
appearance in the directive; all following references
to the arguments are treated by the assembler as
special cases oflabels. These external references are
resolved by the linker and! or interpreter by adding
the link time and run time offsets to the existing
value of the word quantity in question; thus, any
intial offsets generated by the inclusion of external
references and constants in expressions are
preserved.

2-41

Host Communication Directives
The directives .CONST, .PUBLlC, and .PRIVATE
allow the sharing of constants and data between an
assembly procedure and its host compilation unit .

. CONST Allows an assembly procedure to
access globally declared constants in
the host compilation unit. All
references to arguments of .CONST
are patched by the Linker with a word
containing the value of the host's
compile time constant .

. PUBLIC Allows an assembly procedure to
access globally declared variables in
the host compilation unit. Note - this
directive can be used to set up
pointers to the start of multi-word
variables in host programs; it is not
limited to single word variables .

. PRIVATE Allows an assembly procedure to
declare variables in the global data
segment of the host compilation unit
that are inaccessible to the host. The
optional length attribute of the
arguments allows multi-word data
spaces to be allocated; the default data
space is one word.

External Reference Directives

2-42

The directives .REF and .DEF allow separately
assembled modules to share data space and
subroutines. See "Example of Linking to Pascal
Host" in this chapter for examples.

.DEF

.REF

Declares a label to be defined in the
current program as accessible to other
modules. One restriction is imposed
on usage - it is invalid to .DEF a label
that has been equated to a constant
expression or an expression
containing an external reference.

Declares a label existing and .DEF'ed
in another module to be accessible to
the current program.

Program Identifier Directives
The directives .PROC, .FUNC, .RELPROC,
.RELFUNC, and .END serve as delimiters for source
programs. Every source program (relocatable or
absolute) must contain at least one pair or delimiting
directives (see "Assembly Routines" in this chapter.)

The identifier argument of the .PROC or
.RELPROC directives serves two functions: it is
referenced by the Linker when linking an assembly
procedure to its corresponding host, and it can be
referenced as an externally declared label by other
modules. Specifically, the declaration:

.PROC FOON ; procedure heading

... in a source program is functionally equivalent in
the assembly environment to the following
statements:

.OEF FOON

FOON

FOON may be externally
referenced

declare FOON as a label

This feature allows an assembly module to call other
(external and eventually linked in) assembly
modules by name. The .FUNC and .RELFUNC

2-43

directives are used when linking an assembly
function directly to a Pascal host program; they are
not intended for uses which involve linking with
other assembly modules.

The optional integer argument after the procedure
identifier is referenced by the Linker to determine if
the number of words of parameters passed by the
Pascal host's external procedure declaration
matches the number specified by the assembly
procedure declaration; it is not relevant when
linking with other assembly modules.

Linking Program Modules
For information on linking with FORTRAN, refer to
the FORTRAN manuaL

Linking With A Pascal Host Program

2-44

External procedures and functions are assembly
language routines declared in Pascal programs. In
order to run Pascal programs with external
declarations, it is necessary to compile the Pascal
program, assemble the external procedure or
function, and link the two codefiles. The linking
process can be simplified by adding the assembled
routine to the system library with the librarian
program.

A host program declares a procedure to be external
in a syntactically similar manner to a forward
declaration. The procedure heading is given (with
parameter list, if any), followed by the keyword
EXTERNAL. Calls to the external procedure use
standard Pascal syntax, and the Compiler checks
that calls to the external procedure agree in type and
number of parameters with the external declaration.
All parameters are pushed on the stack in the order
of their appearance in the parameter list of the

declaration; thus, the rightmost parameter in the
declaration will be on the top of the stack.
"Parameter Passing Conventions" in this chapter
has a detailed description of parameter passing
conventions.

It is the programmer's responsibility to assure that
the assembly language routine maintains the
integrity of the stack. This includes removing all
parameters passed from the host, preserving the SS
and SP registers, and making a clean return to the
Pascal run time environment using the return
address originally passed to it. The price of
nonconformance in these matters is a potentially
fatal system crash, as assembly routines are outside
the scope of the Pascal environment's run time error
facilities. "Sharing Resource with the Interpreter" in
this chapter has a detailed description of Pascal!
assembly language protocols on the IBM Personal
Computer.

An external function is similar to a procedure, but
with some differences that affect the way in which
parameters are passed to and from the Pascal
runtime environment. First, the external function
call will push one, two, or four words on the stack
before any parameters have been pushed. Two or
four words will be pushed for a function of type real
(depending upon the real size that your IBM
Personal Computer has been set up to run on). One
word will be pushed for all other types of functions.
The words are part of the P-machine's function
calling mechanism, and are irrelevant to assembly
language functions; the assembly routine must
throw these away before returning the function's
result. Second, the assembly routine must push the
proper number of words (2 or 4 for type real, 1
otherwise) containing the function result onto the
stack before passing control back to the host.
"Sharing Resource with the Interpreter" in this
chapter describes a very clean way to do all of this
without ever using an actual POP or PUSH
operation.

2-45

Parameter Passing Conventions

2-46

The ability of external procedures to pass any
variables as parameters gives the assembly
programmer complete freedom to access the
machine dependent representations of machine
independent Pascal data structures; however, with
this freedom comes the responsibility of respecting
the integrity of the Pascal run time environment.
This section attempts to enumerate the P-machine's
parameter passing conventions for all data types in
order that the programmer may gain a better
understanding of the PascaVassembly language
interface; it does not actually describe data
representations.

Parameters may be passed either by value or by name
(variable parameters). For purposes of assembly
language manipulation, variable parameters are
handled in a more straightforward fashion than value
parameters.

The word tos is used in the following sections as an
abbreviation for top of stack.

Variable Parameters

Variable parameters are referenced through a one
word pointer passed to the procedure. Thus, the
procedure declaration:

procedure pass _by _name (var i,j : integer;
var q : some _type); external;

... would pass 3 one word pointers on the stack; tos
would be a pointer to q, followed by pointers to j and
and i.

A Pascal external procedure declaration is allowed to
contain variable parameters lacking the usual type
declaration; this enables variables of different Pascal

types to be passed through a single parameter to an
assembly routine. Untyped parameters are not
allowed in normal pascal procedure declarations.

The procedure declaration:

procedure untyped_var (var i; var q:
some_type); external;

... contains the untyped parameter i.

Value Parameters

Value parameters are handled in a manner
dependent upon their data type. The following types
are passed by pushing copies of their current values
directly on the stack: boolean, char, integer, real,
subrange, scalar, pointer, set, and long integer.
Other sections of the user manual describe the
number of words per data type and the internal data
format. For instance, the declaration:

procedure pass_by_value (i : integer; r : real);
external;

... would pass 2 words on tos containing the value of
the real variable r followed by one word containing
the value of the integer variable i.

Variables of type record and array are passed by
value in the same manner as variable parameters;
pointers to the actual variable are pushed onto the
stack. Variables of type PACKED ARRAY OF
CHAR and STRING are passed by value with a
segment pointer (see "Accessing Byte Array
Parameters with a Segment Pointer" in this chapter.

Pascal procedures protect the original variables by
using the passed pointer to copy their values into a
local data space for processing; assembly procedures
should respect this convention and not alter the
contents of the original variables.

2-47

Accessing Byte Array Parameters with a Segment
Pointer

A segment pointer consists of two words on the
stack. The first word (tos) contains either NIL or a
pointer to a segment environment record.

If the first word is NIL, then the second word (at
tos-l) points to the parameter.

If the first word is not NIL, then to find the
parameter it is necessary to chain through some
records. The first word is a pointer and the second
word is an offset. The first word points to a segment
environment record. The second word of this record
contains a pointer to a pointer to the base of the
segment where the parameter resides. The exact
location of the parameter is given by the second
word on the stack (tos-l), which is an offset into the
code segment.

This address chain may be described as follows
(offsets are word offsets):

(first word + 1) + contents of second_word

A full description of these mechanisms may be found
in the Internal Architecture Guide.

Example Of Linking To Pascal Host

2-48

Note that in the following example the host
program passes control to the beginning of an
assembly procedure whether or not machine
instructions are present there; therefore, all data
sections allocated in the procedure must either
occur after the end of the machine instructions or
have a jump instruction branch around them.

Example: PROGRAM EXAMPLE;
{Pascal host program}

const size = 80;
var i,j,k: integer;

Istl : array [0 .. 9] of char;
{PRT and LST2 get allocated here}

procedure do_nothing; external;
function null_func

(xxyxx,z:integer)
:integer; external;

begin
k:= 45;
do_nothing;
j := null_func(k,size);

end .

. PROC OONOTHING ; underscores

.CONST SIZE

.PUBLIC I,LSTl

.OEF TEMPl

POP RETAOR

; does nothing

PUSH RETADR

RElL

RETADR .EOU
TEMPl .WORD

are not
; significant
; in Pascal

; can get at size
; constant in host
; and also these two
; global vail'S
; this allows
; NULLFUNC
; to get at templ
; code starts here
; return addr
; pushed on stack

; set up stack for
; return

; data area
TEMPl

; end of procedure
; DONOTHING

2-49

.fUNC NULLfUNC,2

.PRIVATE PRT,LST2:9; 10 words of
; private data

.REf TEMP1 ; references data
; temp in
; DONOTHING
; code starts here

POP RETURN ; save return
; address

POP PRT ; get parameter z
POP LST2+4 ; get parameter

; xxyxx

POP TEMP1 ; toss 1 word of
junk

performs null action

PUSH LST2+4 ; return xxyxx as
; result

PUSH RETURN ; restore subr link
RETL ; return to calling

; program
; data starts here

RETURN .WORD
; end of assembly

.END

Stand-alone Applications

2-50

The UCSD p-System 8086/88/87 Assembler has the
capability to produce absolute (core image)
codefiles for use outside of the p-System's runtime
environment.

The p-System does not include a linking loader or an
assembly language debugger, as the P-machine
architecture is not conducive to running programs
(whether high or low level) that must reside in a

dedicated area of memory. The user is responsible
for loading and executing the object codefile; this
can be done using the p-System, with the
understanding that the existing runtime
environment may be jeopardized in the process.
"Loading and Executing Absolute Codefiles" in this
chapter provides some ideas on how to create a
Pascal loader program.

The utility COMPRESSOR is a much easier and
more versatile way of doing this task. It allows for
relocation and compaction of code. Refer to the
Users' Guide for the UCSD p-System.

Assembling
The .ABSOLUTE and .ORG directives are used to
create an object codefile suitable for use as an
absolute core image .. ABSOLUTE causes the
creation of nonrelocatable object code, and .ORG
may be used to initialize the location counter to any
starting value. A source file headed by .ABSOLUTE
should not have more than one assembly routine;
sequential absolute routines do not produce
continuous object code and cannot be successfull)
linked with one another to produce a core image.

The codefile format consists of a 1 block codefile
header followed by the absolute code, and is
terminated by one block of linker info; thus,
stripping off the first and last block of the codefile
will leave a core image file. The use of .ABSOLUTE
should be limited to one routine; though linker
information is generated, it is difficult to link
absolute codefiles so as to produce a correct core
image file.

2-51

Loading And Executing Absolute
Codefiles

2-52

The following section describes one method of
loading and executing absolute codefiles using the
UCSD p-System. The program outlined is not the
only solution. It is also feasible to use the system
intrinsics to read and/or move the codefile into the
desired memory location, but this requires a
knowledge of where the interpreter, operating
system, and user program reside in order to prevent
system crashes by accidentally overwriting them.
The program outlined below allows the most
freedom in loading core images; the only constraint
is that the assembly code itself is not overwritten
while being moved to its final location. This
possibility can be detected before loading proceeds.

It must be emphasized that in most cases loading
object code into arbitrary memory locations while a
Pascal system is resident will adversely affect the
system; the absolute assembly language program is
then on its own, and rebooting may be necessary to
revive the Pascal system.

The loader program consists of:

1) A Pascal host program that calls two external
procedures.

2) One or more linkable absolute codefiles to be
loaded. (.RELPROCs are not allowed.)

3) AsmallassemblyprocedureMOVE_AND_GO
that moves the above object codefiles from
their system load address to their proper
locations and transfers control to them.

4) A small assembly language procedure
LOAD_ ADDRESS that returns the system
load addresses of the aforementioned assembly
code to the host program.

The absolute codefiles are assembled to run at their
desired locations, and MOVE_AND_ GO contains
the desired load addresses of each core image. Both
LOAD_ADDRESS and MOVE_AND_GO have
external references to the core images; these are
used to calculate the system load address and code
size of each image file. The whole collection is linked
and executed, with the Pascal host performing the
following actions:

Print the result of calling LOAD_ADDRESS to
determine whether the area of memory in which the
Pascal system loaded the assembly code overlays the
known final load address of the core images. Issue a
prompt to continue, so that the program can be
aborted if a conflict does arise.

Operation of the Assembler
The system assembler is invoked by typing A at the
command level of the operating system. This
command will execute the file named
SYSTEM.ASSMBLER (note the missing E in the file
name; this is required for conformance with the file
system's restrictions on file name lengths); if this is
not the name of the desired assembler version, be
sure to save the existing file SYSTEM.ASSMBLER
under a different name before changing the desired
assembler's name to SYSTEM.ASSMBLER.
Assemblers that are not in use are usually saved with
the file name ASM8086.CODE.

2-53

Support Files

2-54

The UCSD p-System 8086/88/87 assembler has
three associated support files: two opcodes files and
an error file. These should always be stored along
with the assembler code file.

In order for the assembler to run correctly, it is
necessary that the proper opcode files be present on
some on-line disk. The assembler will search all units
in increasing order of the unit number until it finds
them. The opcode files must have the names
8086.0PCODES and 8087.FOPS. The 8087.FOPS
file is necessary only if your IBM Personal Computer
is set up to run with the 8087 floating point
processor. The opcode files contains all predefined
symbols (instruction and register names) and their
corresponding values for the associated assembly
language. If the proper opfile is not on-line, the
assembler will write opfilename not on any vol and
abort the assembly.

The assembler also has an error file which contains a
list of8086/88/87 specific error messages. The error
file must have the name 8086.ERRORS. The
presence of the error file is not necessary for running
the assembler, but it can greatly aid the chore of
squeezing the syntax errors out of a freshly written
program.

Setting Up Input And Output Files

When the assembler is first invoked from the
prompt line, it will attempt to open the work file as
its input file; if a work file exists, the first prompt will
be the listing prompt described in "Responses to
Listing Prompt" in this chapter and the generated
code file will be named SYSTEM.WRK.CODE. If
not, this prompt will appear.

Assemble what text?

Type in the file name of the input file followed by a
carriage return. Typing only a carriage return will
abort the assembly; otherwise, the next prompt will
then appear:

To what codefile?

Type in the desired name of the output code file
followed by a carriage return. Typing only a carriage
return here will cause the assembler to name the
output *SYSTEM.WRK.CODE, but typing $ will
cause the code file to be created with the same
filename prefix as the source file. The assembler will
then display its standard listing prompt.

2-55

Responses To Listing Prompt

2-56

Before assembling begins, the following prompt will
appear on the console:

8088 Asslmbllr
Output fill for asslmbled listing: eR for none

At this point, the user may respond with one of the
following:

0) The escape key will abort the assembly and
return the user to the operating system prompt.

1) CONSOLE: or #1: will send an assembled
listing of the source program to the screen
during assembly.

2) PRINTER: or #6: will send an assembled listing
to the printer unit.

3) REMOUT: orIS: will send an assembled listing
to the REMOTE unit.

4) A carriage return will cause the assembler to
suppress generation of an assembled listing and
ignore all listing directives.

5) All other responses will cause the assembler to
write the assembled listing to a text file of that
name; any existing textfile of that name will be
removed in the process. For instance, the
following responses will cause a list file named
LISTING. TEXT to be created on disk unit 5:

#5:lIstlng.text
#5:lIstlng

In all cases, it is the responsibility of the user to
ensure that the specified unit is on-line; the
assembler will print an error message and abort if it is
requested to open an off-line I/O unit.

Output Modes

If the user sends an assembled listing to the console,
then that is what will be displayed on the screen
during the assembly process; however, if the listing is
sent to some other unit or if no listing is generated,
the assembler writes a running account of the
assembly process to the screen for the user's benefit.
One dot is written to the screen for every line
assembled; on every 50'th line, the number of lines
currently assembled is written on the left hand side
of the screen (delimited by angle brackets).

When an include file directive is processed by the
assembler, the console displays the current source
statement:

.INCLUDE file name

This allows the user to keep track of which include
file is currently being assembled.

At the end of the assembly, the console displays the
total number of lines assembled in the source
program and the total number of errors flagged in
the source program.

Responses To Error Prompt

When the assembler uncovers an error, it will print
the error number and the current source statement
(if applicable to the error; this does not apply to
undefined labels and system errors). It then attempts
to retrieve and print an error message from the
errors file. If the errors file cannot be opened (file is
nonexistent or lack of memory), no message will
appear. This is followed by the prompt:

E(dlt, space, esc

2-57

Typing an E will invoke the editor, a space will
continue the assembly, and an escape character will
abort the assembly. Some restrictions exist when
either invoking the editor or attempting to
continue:

1) In most cases, typing a space character restarts
the assembly process with no problems; since
assembly language source statements are
independent of one another with respect to
syntax, it is not a difficult task for the assembler
to continue generating a code file. Thus, a code
file will exist at the end of an assembly if the user
types a space for every (nonfatal) error prompt
that appears; of course, the code produced may
not be a correct translation of the user's source
program. Certain system errors are considered
fatal by the assembler; these errors will abort
the assembly regardless of the response given to
the above prompt.

2) If an E is typed, the system automatically
invokes the editor, which opens the file
containing the offending error and positions
the cursor at the location where the error
occurred. This feature will always work
correctly when the source program is wholly
contained in one file; however, when include
files are used, the user should set up the input
and output files manually (see "Setting Up
Input and Output Files" in this chapter) in
order for the editor to position the cursor in the
file that contains the error.

Miscellany

2-58

At the end of an assembly, an error message for each
undefined label is printed. In some cases,
occurrences of undefined labels can be ignored by
the user if the labels in question are semantically
irrelevant to the desired execution of the code file;
the resulting code file will be perfectly valid, but the

references to the nonexistent labels will not be
completely resolved.

In addition to generating a codefile, the assembler
makes use of a scratch file, which is always removed
from the disk upon normal termination of the
assembly. Occasionally though, a system error may
occur that will prevent the assembler from removing
this file; if this happens, a new file may appear named
LINKER.INFO. It may be removed without
anxiety, as it is entirely useless outside of the
assembler's domain. This should be a rare (if not
nonexistent) phenomenon.

Assembler Output
The assembler can generate two varieties of output
files. A codefile is always produced, but the user
controls whether an assembled listing of the source
file is produced.

An assembled listing displays each line of the source
program, the machine code generated by that line,
and the current value of the location counter. The
listing may display the expanded form of all macro
calls in the source program. Any errors that occur
during the assembly process have messages printed
in the'listing file, usually immediately following the
line of source code that caused the error. A symbol
table is printed at the end of the listing; it serves as a
directory for locating all labels declared in the source
program.

An assembled listing of a source program printed on
hard copy is one of the most effective debugging aids
available for assembly language programs; it is
equally useful for off-line, mental debugging and in
conjunction with system debuggers.

A description of the codefile format is beyond the
scope of this document. See the Internal Architecture
Guide.

2-59

Source Listing

A paginated assembled listing is produced when the
user responds to the assembler's listing prompt with
a listfile name. The default listing is 1 32 characters
wide and 55 lines per page. Each line of a source
program is included in the assembled listing, except
for source lines that contain list directives. Source
statements that contain the equate directive .EQU
have the resulting value of the associated expression
listed to the left of the source line.

Macro calls are always listed, including the list of
macro parameters and the comment field, if any. The
macro is expanded by listing the body (with all
formal parameters replaced by their passed values) if
the macro list option was enabled when the macro
was defined. Macro expansion text is marked in the
assembled listing by the character # just to the left of
the source listing. Commeht fields in the definition
of the macro body are not listed in macro
expansions.

Source lines with conditional assembly directives are
listed; however, source statements in an
unassembled part of a conditional section are not
listed.

Error Messages

2-60

Error messages in assembled listings have the same
format as the error messages sent to the console (see
"Operation of the Assembler" in this chapter),
except that the user prompt is not included.

Code Listing

The code field lies to the left of the source program
listing. It always contains the current value of the
location counter, along with either code generated
by the matching source statement or the value of an
expression occurring in a statement that includes
the equate directive .EQU; all are printed in the
default list radix of the assembler version being used
(either hex or octal- see "Sharing Resources with the
Interpreter" in this chapter). Separately emitted
bytes and words of code on the same line are
delimited by spaces.

Forward References

When the assembler is forced to emit a byte or word
quantity that is the result of evaluating an expression
that includes an undefined label, it lists a * for each
digit of the quantity printed (for example, an
unresolved hex byte is listed as **, while an
unresolved octal word appears as ******). If the
.PATCHLIST directive is used, the assembler lists
patch messages every time it encounters a label
declaration that enables it to resolve all occurrences
of a forward reference to that label. The messages
(one for every backpatch performed) appear before
the source statement that contains the label in
question, and are of the form:

location in code/ile patched * patch value

With this feature, the listing describes the contents
of each byte or word of emitted code; if neatness of
the assembled listing is more desirable, the
.NOP ATCHLIST directive will suppress the patch
messages.

2-61

External References

When the assembler emits a word quantity that is the
result of evaluating an expression that contains an
externally referenced label, the value of that label
(which cannot be determined until link time) is
taken as zero; therefore, the emitted value will
reflect only the result of any assembly time constants
that were present in the expression.

Multiple Code Lines

Sometimes, it is possible for one source statement to
generate more code than will fit in the code field; in
most cases, the code is listed on successive lines of
the code field (with corresponding blank source
listing fields). Three exceptions are the .ORG,
.ALIGN, and . BLOCK. directives; because most uses
of these directives generate large numbers of
uninteresting byte values, the code field for these
arguments is limited to as many bytes as will fit in the
code field of one line.

Symbol Table

2-62

The symbol table is an alphabetically sorted table of
entries for all symbols declared in the source
program. Each entry consists of three fields; the
symbol identifier, the symbol type, and the value
assigned to that symbol. The symbol identifiers are
defined in a dictionary printed at the top of the
symbol table. Symbols equated to constants have
their constant values in the third field, while
program labels are matched with their location
counter offsets; all other symbols have dashes in
their value field, as they possess no values relevant to
the listing.

Sharing Machine Resources
with Interpreter
Calling and Returning

The p-System Interpreter invokes an assembly
routine using the call long (CALLL) operator. Thus,
the top of the stack contains a two word return
address upon entrance into the routine. In order to
return from an assembly routine the return long
(RETL) operator should be used. (Alternatively, the
return address could be popped and a jump long
OMPL) operation used.)

Accessing Parameters

The 8086/88 processor contains instructions which
make accessing parameters passed to an assembly
routine very easy. By moving the value of SP (which
points to the P-machine stack) into BP, the
parameters can be accessed by adding an offset of 4
bytes (to account for the two word return address).
The first parameter (at the location4 bytes above the
top of the stack) is actually the last declared
parameter in the host routine (the parameters are
pushed in the order that they are declared).

If a function value is to be returned by a .FUNC
assembly routine, it should be placed just above the
last parameter using the same accessing scheme. The
size of the returned function value is either 1, 2, or 4
words as described in "Linking with a Pascal Host
Program" in this chapter.

The RETL operator may be given an operand which
indicates how many bytes to cut the stack back after
popping its two word return address. The size of the
data space occupied by the parameters should be
used. Thus, parameters may be accessed, and a clean
return made without ever using a specific POP or
PUSH instruction.

2-63

The following is an example of this scheme of
accessing parameters and returning:

MOV
MOV
MOV
MOV

MOV

RElL

IP,SP
AI, (IP+4)
11,(IP+6)
CI,(IP+8)

(IP+l0),RSLT

6

j Last Param
j Middle Param
; First Param

j Function return val
; (If .FUNC)

j Remove 3 params

Register Usage

2-64

All of the 8086/88 registers are available for use by
user assembly routines (the Interpreter saves and
restores the register values that it needs).

SS and SP must be preserved by the user, however.
(The user may create and use a private stack if a
minimum of 40 words are left available for stack
expansion during interrupts. This is a very
dangerous procedure, however, and is not
recommended.)

Notes:

1. The integrity of the P-machine stack must
be maintained. This is the programmer's
responsibility and if this is not done, the results
are unpredictable.

2. Upon entrance into the assembly routine,
SS equals the P-machine stack pointer (SP).
Also, DS, ES, and CS are all equal to the base of
the p-System code segment.

3. Parameters which are passed as Pascal V AR
variables are p-System pointers to actual data.
These pointers are relative to SS.

4. .PRIV ATE and. PUBLIC variables are also
SS relative.

5. .BYTE quantities, . WORD quantities, and
.REF'flabels are relative to CS, DS, or ES.

2-65

NOTES

2-66

CHAPTER 3. THE 8086/88 CPU

Contents

Introduction 3-3
General Registers 3-3
Segment Registers 3-5
Flags 3-6
Addressing Modes 3-8
Register and Immediate Operands 3-8
Direct Addressing 3-9
Register Indirect Addressing 3-9
Based Addressing 3-10
Based Index Addressing 3-10
String Addressing 3-11

3-1

NOTES

3-2

INTRODUCTION

This chapter briefly describes the registers, flags,
and addressing modes of the 8086/88 CPU. For more
detailed information concerning the 8086/88
processor see the Intel 8086 Family User's Manual.

General Registers
The 8086/88 CPU contains eight 16-bit general
registers. The general registers are subdivided into
two sets of four registers each: the data registers
(sometimes called the H & L group for "high" and
"low"), and the pointer and index registers
(sometimes called the P & I group).

The data registers are unique in that their upper
(high) and lower halves are separately addressable.
This means that each data register can be used
interchangeably as a 16-bit register, or as two 8-bit
registers. The other CPU registers always are
accessed as 16-bit units only. The data registers can
be used without constraint in most arithmetic and
logic operations. In addition, some instructions use
certain registers implicitly, thus allowing compact
yet powerful encoding.

The pointer and index registers can also participate
in most arithmetic and logic operations. The P & I
registers (except for BP) also are used implicitly in
some instructions.

3-3

3-4

Data Register Group

Accumulator:

Base:

Count:

Data:

AX (16 Bits)
AH (Bits 8-15)
AL (Bits 0-7)

BX (16 Bits)
BH (Bits 8-15)
BL (Bits 0-7)

CX (16 Bits)
CH (Bits 8-15)
CL (Bits 0-7)

OX (16 Bits)
DH (Bits 8-15)
DL (Bits 0-7)

Pointer and Index Register Group Registers

SP Stack Pointer

BP Base Pointer

SI Source Index

01 Destination Index

Implicit Use of General Registers

AX

AL

AH

BX

Word Multiply,
Word Divide,
Word I/O

Byte Multiply,
Byte Divide,
Byte I/O
Translate
Decimal Arithmetic

Byte Multiply,
Byte Divide,

Translate

CX

CL

OX

SP

SI

01

Segment Registers

String Operations,
Loops

Variable Shift and Rotate

Word Multiply,
Word Divide,
Indirect 110

Stack Operations

String Operations

String Operations

The megabyte of memory addressable by the
8086/88 is divided into logical segments of up to
64K bytes each. (Memory segmentation is described
in detail in the Intel 8086 Family User's Manual) The
CPU has access to four segments at a time. Their
base addresses (starting locations) are contained in
the segment registers. The following table lists the
segment registers:

Segment Registers

CS Code Segment

DS Data Segment

SS Stack Segment

ES Extra Segment

The CS register points to the current code segment;
instructions are fetched from this segment. The SS
register points to the current stack segment; stack
operations are performed on locations in this
segment. The DS register points to the current data

3-5

Flags

3-6

segment; it generally contains program variables.
The ES register points to the current extra segment,
which also is typically used for data storage.

The segment registers are accessible to programs
and can be manipulated with several instructions.
See the Intel 8086 Family User's Manual for
suggested guidelines concerning segment register
use.

The 8086/88 has six I-bit status flags that reflect
certain properties of the result of an arithmetic or
logic operation. A group of instructions is available
that allows a program to alter its execution
depending on the state of these flags, that is,
depending upon the result of a prior operation.
Different instructions affect the status flags
differently; in general, however, the flags reflect the
following conditions:

If AF (the auxiliary carry flag) is set, there has been a
carry out of the low nibble (4 bits) into the high
nibble, ora borrow from the high nibble into the low
nibble of an 8-bit quantity. This flag is used by
decimal arithmetic instructions.

If CF (the carry flag) is set, there has been a carry out
of, or a borrow into, the high-order bit of the result
(8- or I6-bit). The flag is used by instructions that
add and subtract multibyte numbers. Rotate
instructions can also isolate a bit in memory or a
register by placing it in the carry flag.

If OF (the overflow flag) is set, an arithmetic
overflow has occurred; that is, a significant digit has
been lost because the size of the result exceeded the
capacity of its destination location. An Interrupt On
Overflow instruction is available that will generate
an interrupt in 'this situation.

If SF (the sign flag) is set, the high-order bit of the
result is a 1. Since negative binary numbers are
represented in the 8086/88 in standard two's
complement notation, SF indicates the sign of the
result (O=positive, l=negative).

IfPF (the parity flag) is set, the result has even parity,
an even number of I-bits. This flag can be used to
check for data transmission errors.

If ZF (the zero flag) is set, the result of the operation
is o.

Three additional control flags can be set and cleared
by programs to alter processor operations:

Setting DF (the direction flag) causes string
instructions to auto-decrement; that is, to process
strings from high addresses to low addresses, or from
"right to left". Clearing DF causes string
instructions to auto-increment, or to process strings
from "left to right".

Setting IF (the interrupt-enable flag) allows the CPU
to recognize external (maskable) interrupt requests.
Clearing IF disables these interrupts. IF has no
affect on either non-maskable external or internally
generated interrupts.

Setting TF (the trap flag) puts the processor into
single-step mode for debugging. In this mode, the
CPU automatically generates an internal interrupt
after each instruction, allowing a program to be
inspected as it executes instruction by instruction.
The Intel 8086 Family User's Manual contains an
example showing the use of TF in a single-step and
breakpoint routine.

3-7

The following table is a summary of the Flags:

CF Carry

PF Parity

AF Auxiliary Carry

ZF Zero

SF Sign

OF Overflow

IF Interrupt-Enable

DF Direction

TF Trap

Addressing Modes
The 8086/88 provides many different ways to access
instruction operands. Operands may be contained in
registers, within the instruction itself, in memory or
in I/O ports. In addition, the addresses of memory
can be calculated in several different ways. This
section briefly describes these addressing modes.
For a more complete description see the Intel 8086
Family User's Manual

Register and Immediate Operands

3-8

Instructions that specify only register operands are
generally the most compact and fastest executing of
all instruction forms. This is because the register
"addresses" are encoded in instructions in just a few
bits, and because these operations are performed
entirely within the CPU (no bus cycles are run).

Registers may serve as source operands, destination
operands, or both.

Immediate operands are constant data contained in
an instruction. The data may be either 8 or 16 bits in
length. Immediate operands can be accessed quickly'
because they are available directly from the
instruction queue; like a register operand, no bus
cycles need to be run to obtain an immediate
operand. The limitations of immediate operands are
that they may only serve as source operands and that
they are constant values.

Direct Addressing

Direct addressing is the simplest memory addressing
mode. No registers are involved. The effective
address is taken directly from the displacement field
of the instruction. (The effective address is the
unsigned 16-bit number that expresses the
operand's distance in bytes from the beginning of
the segment in which it resides.) Direct addressing is
typically used to access simple variables (scalars).

Register Indirect Addressing

The effective address may be taken directly from one
of the base or index registers (BX, BP, SI, DI). One
instruction can operate on many different memory
locations if the value in the base or index register is
updated appropriately. The LEA (Load Effective
Address) and arithmetic instructions might be used
to change the register value.

Any 16-bit general register may be used for register
indirect addressing with the]MP or CALL
instructions.

3-9

Based Addressing

In based addressing, the effective address is the sum
of a displacement value and the content of register
BX or register BP. Specifying BP as a base register
directs the Bus Interface Unit (see Intel Manual) to
obtain the operand from the current stack segment
(unless a segment override prefix is present). This
makes based addressing with BP a very convenient
way to access stack data (the Intel manual contains
examples of this).

Based addressing also provid.es a straightforward way
to address structures which may be located at
different places in memory. A base register can be
pointed at the base of a structure, and elements of
the structure addressed by their displacements from
the base. A different location can be accessed by
simply changing the base register.

Based Index Addressing

3-10

Based indexed addressing generates an effective
address that is the sum of a base register, an index
register, and a displacement. Based indexed
addressing is a very flexible mode because two
address components can be varied at execution time.

Based indexed addressing provides a convenient way
for a procedure to address an array allocated on a
stack. Register BP can contain the offset of a
reference point on the stack, typically the top of the
stack after the procedure has saved registers and
allocated local storage. The offset of the beginning
of the array from the reference point can be
expressed by a displacement value, and an index
register can be used to access individual array
elements.

Arrays contained in structures and matrices
(two-dimensional arrays) also can be accessed with
based indexed addressing.

;tring Addressing

String instructions do not use the normal memory
addressing modes to access their operands. Instead,
the index registers are used implicitly. When a string
instruction is executed, SI is assumed to point to the
first byte or word of the source string, and DI is
assumed to point to the first byte or word of the
destination string. In a repeated string operation, SI
and DI are automatically adjusted to obtain
subsequent bytes or words.

3-11

NOTES

3-12

CHAPTER 4. 8086/88/87
INSTRUCTIONS

Contents

Introduction 4-3
Assembler Differences from the

Intel Standard 4-3
Assembler Directives 4-3
Specification of Code Segment

Register 4-3
Parenthesis 4-4
Immediate Byte 4-4
Memory Byte 4-4
MUL and DIV Byte................... 4-5
MOV substitute for LEA 4-5
IN and OUT 4-5
String Operations 4-6
Segment Override 4-6
Long Jumps, Calls, and Returns 4-7
8087 Mnemonics 4-8
The 8086/88 Instruction Set 4-9
8087 Floating Point Operators 4-74

4-1

NOTES

4-2

INTRODUCTION
This chapter describes how the UCSD p-System
8086/88/87 Assembler differs from the Intel
standard assembler.

Also, brief descriptions of each of the 8086/88 and
8087 operators are given. These descriptions are
intended for quick reference use only. For detailed
information concerning the instruction set, see the
Intel 8086 Family User's Manual.

Assembler Differences from the
Intel Standard

The UCSD p-System 8086/88/87 Assembler differs
in some respects from the standard Intel assembler.
These differences are listed in this chapter.

Assembler Directives

None of the Intel assembler directives or operators
are implemented. Instead, the assembler directives
described in Chapter 2 of this manual are available.

Specification of Code Segment Register

The default code segment register is CS. Many
operations use this register, as a default, to indicate
which 64K segment of memory to obtain an operand
from. If it is desired that another segment register be
used, that register may be specified, followed by a
colon, followed by the operand (see Segment
Override below). In addition to the forms
DS:memop, and so forth, a separate mnemonic SEG
followed by a segment register name may be written
in a statement preceding the instruction mnemonic.

4-3

Examples: MOll AX,ES:AlIALUE

is equivalent to

ES MOV AX,AVALUE

Paren thesis

Index or base register references in a memory
operand are enclosed in parentheses, not square
brackets, for example, FIRST(BX) rather than
FIRST[BX].

Immediate Byte

ADD immediate byte to memory operand is coded

ADDBIM memop,immedbyte

to distinguish it from the ADD memop, immedword
which is the default. Similarly, MOVBIM, ADCBIM,
SUBBIM, SBBBIM, CMPBIM, ANDBIM, ORBIM,
XORBIM, and TESTBIM are added to the
vocabulary.

Memory Byte

4-4

INC memory byte is coded:

INeMB memop

to distinguish it from INC memory word, which is
the default. Similarly, DECMB, MULMB, IMULMB,
DIVMB, IDIVMB, NOTMB, NEGMB, ROLMB,
RORMB, RCLMB, RCRMB, SALMB, SHLMB,
SHRMB, SARMB were added to the vocabulary to
specify memory byte operands.

MUL and DIV Byte

In MUL, IMUL, DIV, IDIV the single memory
operand form, for example:

MUL memop

implies a word operation. To specify a byte
operation, either MULMB memop may be used, or
the form

MUL AL,memop

The same holds true for IMUL, DIV, IDIV.

Note: DIV AL,memop is rather misleading, as
the actual operation would be AX/
memory-byte.

MOV substitute for LEA

For LEA reg, label or LEA reg,label+const the
assembler will substitute MOV reg,immed_val
where immed_val = label or label+const. This saves
four clock times (4 vs. 8).

IN and OUT

The normal form oflN and OUT is IN ac,port or IN
ac,DX and OUT port,ac or OUT DX,ac where
ac=AL denotes an 8-bit data path and ac=AX
denotes a 16-bit path. Since the accumulator is the
only possible register source/destination (DX
specifies port=address in DX), single operand forms
are also provided: INB and OUTB for byte data, and
INW and OUTW for 16-bit data. The syntax is INB
port or INB DX.

In the two-operand forms oflN and OUT, the order
of the operands is not important; thus OUT ac,DX
or OUT ac,port will be acceptable.

4-5

String Operations

The mnemonics for the string operations are
suffixed with B or W to denote byte or word
operations: thus MOVSB and MOVSW, CMPSB and
CMPSW, SCASB and SCASW, LODSB and
LODSW, and STOSB and STOSW are in the
vocabulary, but MOVS ... STOS are not.

Segment Override

4-6

XLAT and the string instructions (9) have implied
memory operands and nothing is required to be
coded in the operand field. However, in order to
permit the specification of a segment override prefix
in the case of XLAT, MOVSB/MOVSW, CMPSB/
CMPSW, and LODSB/LODSW, the assembler
permits operand expressions for these instructions.

Note, however, that only the default segment for SI,
namely DS, can be overridden. The segment for DI is
ES and cannot be overridden. A segment override
prefix of DS applied to SI does not generate a
segment override prefix.

If these operations were written with operands, they
would have this syntax:

xun
MOVS {Blw}
CUPS {Blw}
SCAS {Blwl
LODS (Blw)
STOS (blw)

AI.. (BX)
(01), [seg:] (SI)
(D!), [seg:] (SI)
(Oll,AX
AX, [seg:) (SI)
(0I1,AX

The string instructions may be prefixed by a REP
(repeat) instruction of some type. The assembler
flags an error ifboth REP and a segment override are
specified.

Long Jumps, Calls, and Returns

Intersegment CALL, RET, and]MP are
implemented as follows:

1) The mnemonics CALLL, RETL, and]MPL
specifically designate intersegment operations.

2) An indirect address (for example, (reg) or
(label» is assembled in standard fashion with a
"mod op rim" effective address byte possibly
followed by displacement bytes. The memory
location references must hold the new IP, and
the next higher location must hold the new CS.

3) The direct address form must have two absolute
operands:

CALLL exprl,expr2

where exprl is the new IP and expr2 becomes
the new CS. Constants or external symbols (for
example, .REF definitions) qualify as absolute
operands.

4-7

8087 Mnemonics

Example:

4-8

Mnemonics for the 8087 floating point operations
are standard except for certain of the memory
reference operations, where a letter suffix is
appended to denote the operand size:

_D short real or short integer (double word)

_Q long real or long integer (quad word)

_ W integer word

_T temporary real (ten byte)

The D and Q suffixes apply to the following real ops:

FADD, FCOM, FCOMP, FDIV, FDIVR,
FMUL, FST, FSUB, GSUBR, FLD, FSTP

FADDD, FADDO, etc.

The T suffix applies only to FLD and FSTP.

The Wand D suffixes apply to the following integer
ops:

FIADD, FICOM, FICOMP, FIDIV, FIDIVR, FIMUI., FIST,
FISUB, FISUBR, FILD, FISTP

The Q suffix for long integers applies only to FILD
and FISTP.

The 8086/88 Instruction Set
The following are the 8086/88 opcode mnemonics
recognized by the UCSD p-System 8086/88/87
Assembler. The differences between these
mnemonics and the standard Intel mnemonics is
discussed in "Assembler Differences from the Intel
Standard" in this chapter. This is meant as a quick
reference list only. For a detailed description of the
8086/88 operations see the Intel 8086 Family User's
Manual

Note: The special case mnemonics (which are
not Intel standard) such as ADDBIM are listed
with the standard mnemonic to which they
correspond, for example, ADD. This does not
mean that the special case mnemonics indicate
operations which take all of the addressing
modes listed. For example, ADDBIM is meant
for adding immediate bytes only. The
mnemonic ADD is meant to take any of the
other addressing modes listed (and will default
to a word add if an immediate quantity is
indicated). All of these special mnemonics are
discussed in "Assembler Differences from the
Intel Standard" in this chapter.

4-9

AAA (ASCII Adjust for Addition)

Format: AAA (no operands)

Flags: 0 D ITS ZAP C
U UUXUX

Operands: none

Example: AAA

AAD (ASCII Adjust for Division)

Format: AAD (no operands)

Flags: 0 D ITS ZAP C
U XXUXU

Operands: none

Example: lAD

4-10

AAM (ASCII Adjust for Multiply)

Format: AAM (no operands)

Flags: 0 D ITS ZAP C
U XXUXU

Operands: none

Example: AAM

AAS (ASCII Adjust for Subtraction)

Format: AAA (no operands)

Flags: 0 D ITS ZAP C
U UUXUX

Operands: none

Example: AAS

4-11

ADC (Add with carry)

ADCBIM (Add with carry Immediate
Byte)

Format:

Flags:

Operands:

Example:

4-12

ADC destination, source

ODITSZAPC
X XXXXX

register, register
register, memory
memory, register
register, immediate
memory, immediate
accumulator, immediate

ADe AX,S.

ADD (Addition)

ADDBIM (Add Immediate Byte)

Format:

Flags:

Operands:

Example:

ADD destination, source

ODITSZAPC
X xxxxx

register, register
register, memory
memory, register
register, immediate
memory, immediate
accumulator, immediate

ADD DI,(BX).ALPHA

4-13

AND (Logical and)

ANDBIM (Logical and, immediate
byte)

Format:

Flags:

Operands:

Example:

4-14

AND destination, source

ODITSZAPC
o xxuxo

register, register
register, memory
memory, register
register, immediate
memory, immediate
accumulator, immediate

CALL (Call a procedure)

CALLL (Long Call of a procedure)

Format:

Flags:

Operands:

Example:

Format:

Flags:

Operands:

Example:

CALL target

ODITSZAPC

near-proc
far-proc
memptr 16
regptr 16
memptr 32

CBW (Convert byte to word)

CBW (no operands)

ODITSZAPC

none

CBW 4-15

CLC (Clear carry flag)

Format: CLC (no operands)

Flags: ODITSZAP C
0

Operands: none

Example: CLC

CLD (Clear direction flag)

Format: CLD (no operands)

Flags: ODITS ZAP C
0

Operands: none

Example: CLD

4-16

Format:

Flags:

CLI (Clear interrupt flag)

CLI (no operands)

ODITSZAPC
o

Operands: none

Example: CLI

CMC (Complement carry flag)

Format: CMC (no operands).

Flags: o D ITS ZAP C
X

Operands: none

Example: CMC

4-17

CMP (Compare destination to source)

CMPBIM (Compare immediate byte)

Format:

Flags:

Operands:

Example:

4-18

CMP destination, source

ODITSZAPC
X XXXXX

register, register
register, memory
memory, register
register, immediate
memory, immediate
accumulator, immediate

eMP (8P+2),SI

CMPSW (Compare string, wordwise)

CMPSB (Compare string, by~wise)

Format:

Flags:

Operands:

Example:

CMPSB dest-string, source-string

ODrTS ZAPC
X xxxxx

dest-string, source-string
(repeat) dest-string, source-string

COMPSB BUFF1, BUFF2

CWD (Convert word to double word) -

Format: CWD (no operands)

Flags: ODrTS ZAP C

Operands: none

Example: cwo
4-19

DAA (Decimal adjust for Addition)

Format:

Flags:

Operands:

Example:

DAA (no operands)

ODITSZAPC
X xxxxx

none

DAA

DAS (Decimal adjust for Subtraction)

Format: DAS (no operands)

Flags: 0 D ITS ZAP C
U xxxxx

Operands: none

Example: DAS

4-20

DEC (Decrement by one)

DECMB (Decrement memory byte)

Format:

Flags:

Operands:

Example:

DEC destination

ODITS ZAP C
X XXXX

reg16
regS
memory

DEC AX

4-21

DIV (Division, unsigned)

DIVMB (Division, unsigned,
memory byte)

Format:

Flags:

Operands:

Example:

4-22

DIV source

ODITSZAPC
U uuuuu

regS
reg16
memS
mem16

DlV TABLE(SI)

Format:

Flags:

Operands:

Example:

Format:

Flags:

Operands:

Example:

ESC (Escape)

ESC external-opcode, source

ODITSZAPC

immediate, memory
immediate, register

ESC 20, AL

HL T (no operands)

ODITSZAPC

none

HLT

HLT (Halt)

4-23

IDV (Integer Division)

IDIVMB (Integer Division, memory
byte)

Format: IDIV source

Flags: 0 D ITS ZAP C
U UUUUU

Operands: reg8
reg16
mem8
mem16

Example: IDIV (8Xl.DIVISOR_WORD

4-24

IMUL (Integer Multiplication)

IMULMB (Integer Multiplication
memory byte)

Format: IMUL source

Flags: 0 D ITS ZAP C
X UUUUX

Operands: regS
reg16
memS
mem16

Example: IMUL CL

4-25

IN (Input byte or word)

INB (Input byte)

INW (Input word)

Format:

Flags:

Operands:

Example:

4-26

IN accumulator, port

ODITSZAPC

accumulator, immed8
accumulator, DX

IN AX, DX

INC (Increment by one)

INCMB (Increment memory byte)

Format:

Flags:

Operands:

Example:

Format:

Flags:

Operands:

Example:

INC destination

ODITSZAPC
X xxxx

reg16
reg8
memory

INC CX

INT (Interrupt)

INT interrupt-type

ODITSZAPC
o 0

immed8 (type=3)
immed8 (type <> 3)

INT 3
4-27

INTR (external maskable interrupt)

Format: INTR (no operands)

Interrupt if INTR and IF=l

Flags:

Operands:

Example:

ODITSZAPC
o 0

none

not applicable

INTO (Interrupt if overflow)

Format:

Flags:

INTO (no operands)

ODITS ZAPC
o 0

Operands: none

Example: INTO

4-28

IRET (Interrupt return)

Format:

Flags:

Operands:

Example:

IRET (no operands)

aDI TSZAPC
RRRRRRRRR

none

IRET

JA/JNBE Oump if above/Jump if not
below nor equal)

Format: JA short-label
JNBE short-label

Flags: a D ITS ZAP C

Operands: short-label

Example: JA ABOVE

4-29

JAE/JNB crump if above or equal/
Jump if not below)

Format: JAE short-label
JNB short-label

Flags: 0 D ITS ZAP C

Operands: short-label

Example: JAE ABOVE_EQUAL

JB/JNAE Oump if below/
Jump if not above nor equal)

Format: JB short-label
JNAE short-label

Flags: 0 D ITS ZAP C

Operands: short-label

Example: JB BELOW

4-30

JBE/JNA crump if below or equal/
Jump if not above)

Format:]BE short-label
]NA short-label

Flags: 0 D ITS ZAP C

Operands: short-label

Example: JNA NOT_ABOVE

JC crump if carry)

Format:]C short-label

Flags: 0 D ITS ZAP C

Operands: short-label

Example: JC CARRY_SET

4-31

JCXZ crump if CX is zero)

Format: JCXZ short-label

Flags: 0 D ITS ZAP C

Operands: short-label

Example: JCXl COUNCDONE

JE/JZ Oump if equal/Jump if zero)

Format: JE short-label
JZ short-label

Flags: 0 D ITS ZAP C

Operands: short-label

Example: Jl lERO

4-32

JG/JNLE Oump if greater/
Jump if not less nor equal)

Format: JG short-label
JNLE short-label

Flags: 0 D ITS ZAP C

Operands: short-label

Example: JG GREATER

JGE/JNL Oump if greater or equal/
Jump if not less)

Format: JGE short-label
JNL short-label

Flags: ODITSZAPC

Operands: short-label

Example: JGE GREATER_EUUAL
4-33

JL/JNGE crump if less/Jump if not
greater nor equal)

Format:

Flags:

Operands:

Example:

JL short-label
JNGE short-label

ODITSZAPC

short-label

JL LESS

JLE/JNG Oump if less or equal/
Jump if not greater)

Format: JLE short-label
JNG short-label

Flags: 0 D ITS ZAP C

Operands: short-label

Example: JLE LESS_EQUAL

4-34

Format:

Flags:

Operands:

Example:

]MP Oump)

]MPL Oump Long)

]MP target

ODITSZAPC

short-label
near-label
far-label
memptr16
regptr16
memptr32

4-35

JNC crump if not carry)

Format: JNC short-label

Flags: 0 D ITS ZAP C

Operands: short-label

Example: JNC NOT_CARRY

JNE/JNZ crump if not equal/
Jump if not zero)

Format: JNE short-label
JNZ short-label

Flags: 0 D ITS ZAP C

Operands: short-label

Example: JNE NOT_EQUAL

4-36

JNO Oump if not overflow)

Format:]NO short-label

Flags: ODITSZAPC

Operands: short-label

Example: JNO NO_OVERFLOW

JNP/JPO Oump if not parity/
Jump if parity odd)

Format:]NP short-label
]PO short-label

Flags: 0 D ITS ZAP C

Operands: short-label

Example: JPO ODD_PARITY

4-37

JNS crump if not sign)

Format: JNS short-label

Flags: ODITSZAPC

Operands: short-label

Example: JNS POSITIVE

JO crump if overflow)

Format: JO short-label

Flags: ODITSZAPC

Operands: short-label

Example: JO SIGNED_OVERFLOW

4-38

JP/JPE crump if parity/
Jump if parity even)

Format:]P short-label
]PE short-label

Flags: 0 D ITS ZAP C

Operands: short-label

Example: JPE EVEN_PARITY

JS Oump if sign)

Format:]S short-label

Flags: 0 D ITS ZAP C

Operands: short-label

Example: JS NEGATIVE

4-39

LAHF (Load AH from flags)

Format: LAHF (no operands)

Flags: ODITSZAPC

Operands: none

Example: LAHF

LOS (Load pointer using OS)

Format: LDS destination, source

Flags: ODITSZAPC

Operands: reg16, memptr32

Example: LOS SI,OATA.SEG(OI)

4-40

LEA (Load effective address)

Format: LEA destination, source

Flags: ODITSZAPC

Operands: reg16, memptr16

Example: LEA 8X,(8P)(01)

LES (Load pointer using ES)

Format: LES destination, source

Flags: ODITSZAPC

Operands: reg16, memptr32

Example: LES 0I,(8X).TEXT_BUFF)

4-41

LOCK (Lock bus)

Format: LOCK (no operands)

Flags: ODITSZAPC

Operands: none

Example: LOCK XCHGFLAG,AL

LODSB (Load string bytewise)

LODSW (Load string wordwise)

Format: LODS source-string

Flags: ODITSZAPC

Operands: source-string
(repeat) source-string

Example: REP LOOS NAME

4-42

LOOP (Loop)

Format: LOOP short-label

Flags: ODITSZAPC

Operands: short-label

Example: lOOP AGAIN

LOOPE/LOOPZ (Loop if equal/
Loop if zero)

Format:

Flags:

Operands:

Example:

LOOPE short-label
LOOPZ short-label

ODITSZAPC

short-label

lOOPE AGAIN

4-43

LOOPNE/LOOPNZ (Loop is not
equal/Loop if not zero)

Format: LOOPNE short-label
LOOPNZ short-label

Flags: 0 D ITS ZAP C

Operands: short-label

Example: LOOPNE AGAIN

4-44

NMI
(external nonmaskable interrupt)

Format: NMI (no operands)

Interrupt if NMI=l

Flags:

Operands:

Example:

ODITSZAPC
o 0

no operands

not applicable

4-45

MOV(Move)

MOVBIM (Move immediate byte)

Format:

Flags:

Operands:

Example:

4-46

MOV destination, source

ODITSZAPC

memory, accumulator
accumulator, memory
register, register
register, memory
memory, register
register, immediate
memory, immediate
seg-reg, reg16
seg-reg, mem16
reg16, seg-reg
memory, seg-reg

MOV BP,STACK_TOP

MOVSB (Move string bytewise)

MOVSW (Move string wordwise)

Format:

Flags:

Operands:

Example:

Format:

Flags:

Operands:

Example:

MOVS dest-string, source-string

ODITSZAPC

dest-string, source-string
(repeat) dest-string, source-string

MOVS LINE, EDIT_DATA

MOVSB/MOVSW
(Move strng (byte/word»

MOVSB/MOVSW (no operands)

ODITSZAPC

(none)
repeat (none)

REP MOVSW 4-47

MUL (Multiplication, unsigned)

MULMB (Multiplication, unsigned,
memory byte)

Format: MUL source

Flags: a D ITS ZAP C
x UU U U x

Operands: regS
reg16
memS
mem16

Example: MUL ex

4-48

NEG (Negate)

NEGMB (Negate memory byte)

Format:

Flags:

Operands:

NEG destination

ODITSZAPC
X XXXX1*

* 0 if destination=O

register
memory

Example: NEG AL

NOP (No operation)

Format: NOP

Flags: ODITSZAPC

Operands: none

Example: NOP
4-49

NOT (Logical not)

NOTBIM (Logical not, immediate
byte)

Format:

Flags:

Operands:

Example:

4-50

NOT destination

ODITSZAPC

register
memory

NOTAl

Format:

Flags:

Operands:

Example:

OR (Logical inclusive or)

ORBIM (Logical inclusive or,
immediate byte)

OR destination, source

ODITSZAPC
o xx U X 0

register, register
register, memory
memory, register
accumulator, immediate
register, immediate
memory, immediate

4-51

OUT (Output byte or word)

OUTB (Output byte)

OUTW (Output word)

Format:

Flags:

Operands:

Example:

4-52

OUT port, accumulator

ODITSZAPC

immed8, accumulator
DX, accumulator

OUT OX, AL

Format:

Flags:

Operands:

POP (Pop word off stack)

POP destination

ODITSZAPC

register
seg-reg (CS illegal)
memory

Example: POP OX

Format:

Flags:

Operands:

Example:

POPF (POp flags off stack)

POPF (no operands)

ODITSZAPC
RRRRRRRRR

none

POPF

4-53

PUSH (Push word onto stack)

Format:

Flags:

Operands:

Example:

PUSH source

ODITSZAPC

register
seg-reg (CS legal)
memory

PUSH ES

PUSHF (Push flags onto stack)

Format: PUSHF (no operands)

Flags: ODITSZAPC

Operands: none

Example: PUSHF

4-54

RCL (Rotate left through carry)

RCLMB (Rotate left through carry,
memory byte)

Format: . RCL destination, count

Flags: 0 D ITS ZAP C
X X

Operands: register, 1
register, CL
memory, 1
memory, CL

Example: RCL At., CL

4-55

RCR (Rotate right through carry)

RCRMB (Rotate right through carry,
memory byte)

Format:

Flags:

Operands:

Example:

4-56

RCR destination, count

ODITSZAPC
X X

register, 1
register, CL
memory, 1
memory, CL

ReR (BX).STATUS, 1

REP (Repeat string operation)

Format: REP (no operands)

Flags: ODITSZAPC

Operands: none

Example: REP MOVS DEST,SRCE

REPE/REPZ (Repeat string
operation while equal/while zero)

Format: REPE/REPZ (no operands)

Flags: ODITSZAPC

Operands: none

Example: REPE CMPS DATA,KEY

4-57

REPNE/REPNZ (Repeat string
operation while not equal/not zero)

Format: REPNE/REPNZ (no operands)

Flags: 0 D ITS ZAP C

Operands: none

Example: REPNE SCASW INPUT_LINE

4-58

RET (Return from procedure)

RETL (Return Long from procedure)

Format:

Flags:

Operands:

Example:

RET optional pop value

ODITSZAPC

(intra-segment, no pop)
(intra-segment, pop)
(inter-segment, no pop)
(inter-segment, pop)

RET 4

4-59

ROL (Rotate left)

ROLMB (Rotate left, memory byte)

Format:

Flags:

Operands:

Example:

4-60

ROL destination, count

ODITSZAPC
X X

register, 1
register, CL
memory, 1
memory, CL

ROL ax, 1

ROR (Rotate right)

RORMB (Rotate right, memory byte)

Format:

Flags:

Operands:

Example:

Format:

Flags:

Operands:

Example:

ROR destination, count

ODITSZAPC
X X

register, 1
register, CL
memory, 1
memory, CL

ROR CMD_WORD, CL

SAHF (Store AH into flags)

SAHF (no operands)

ODITSZAPC
RRRRR

none

SAHF 4-61

SAL/SHL (Shift arithmetic leftl
Shift logical left)

SALMB/SHLMB (Shift left, memory
byte)

Format: SAL/SRL destination, count

Flags: 0 D ITS ZAP C
X X

Operands: register, 1
register, CL
memory, 1
memory, CL

Example: SAL AL, 1

4-62

Format:

Flags:

SAR (Shift arithmetic right)

SARMB (Shift arithmetic right,
memory byte)

SAR destination, count

ODITSZAPC
X XXUXX

Operands: register, 1
register, CL
memory, 1
memory, CL

Example: SAR 01, CL

4-63

SBB (Subtract with borrow)

SBBBIM (Subtract with borrow
immediate byte)

Format:

Flags:

Operands:

Example:

4-64

SBB destination, source

ODITSZAPC
X XXXXX

register, register
register, memory
memory, register
accumulator, immediate
register, immediate
memory, immediate

SBB BX, ex

SCASB (Scan string, bytewise)

SCASW (Scan string, wordwise)

Format:

Flags:

Operands:

Example:

SCASW dest-string

ODITSZAPC
X xxxxx

dest-string
(repeat) dest-string

REPNE SCASB BUFFER

4-65

SHR (Shift logical right)

SHRMB (Shift logical right,
memory byte)

Format: SHR destination, count

Flags: 0 D ITS ZAP C
X X

Operands: register, 1
register, CL
memory, 1
memory, CL

Example: SHR SI, 1

4-66

STC (Set carry flag)

Format:

Flags:

STC (no operands)

ODITSZAPC
1

Operands: none

Example: STC

STD (Set direction flag)

Format:

Flags:

STD (no operands)

ODITSZAPC
1

Operands: none

Example: STD

4-67

STI (Set interrupt enable flag)

Format:

Flags:

STI (no operands)

ODITSZAPC
1

Operands: none

Example: STI

STOSB (Store bytestring)

STOSW (Store word string)

Format:

Flags:

Operands:

Example:

4-68

STOSB dest-string

ODITSZAPC

dest-string
(repeat) dest-string

REP STOSH DISPLAY

Format:

Flags:

Operands:

Example:

SUB (Subtraction)

SUBBIM (Subtraction,
immediate byte)

SUB destination, source

ODITSZAPC
X XXX X X

register, register
register, memory
memory, register
accumulator, immediate
register, immediate
memory, immediate

SUB ex, BX

4-69

TEST (Test or non~destructive
logical and)

TESTBIM (Test, immediate byte)

Format:

Flags:

Operands:

Example:

4·70

TEST destination, source

ODITSZAPC
o xxuxo

register, register
register, memory
accumulator, immediate
register, immediate
memory, immediate

TEST SI, END_COUNT

Format:

Flags:

Operands:

Example:

Format:

Flags:

Operands:

Example:

WAIT (Wait while TEST pin
not inserted)

WAIT (no operands)

ODITSZAPC

none

WAIT

XCHG (Exchange)

XCHG destination, source

ODITSZAPC

accumulator, reg16
memory, register
register, register

XCHG AX, ax

4-71

XLAT (Translate)

Format: XLAT (source-table)

Flags: ODITSZAPC

Operands: source-table

Example:

4-72

XOR (Logical exclusive or)

XORBIM (Logical exclusive or,
immediate byte)

Format:

Flags:

Operands:

Example:

XOR destination, source

ODITSZAPC
o XXUXO

register, register
register, memory
memory, register
accumulator, immediate
register, immediate
memory, immediate

XOR CL, MASK _BYTE

4-73

8087 FLOATING POINT
OPERATORS

4-74

The following is a reference list of the8087 floating
point operators. "Assembler Differences from the
Intel Standard" in this chapter describes the
differences between the UCSD p-System 8087
Assembler mnemonics suffixes and the standard
Intel mnemonics.

Key to 8087 Exception Codes

I = Invalid Operand
Z = Zero Divide
D = Denormalized
0= Overflow
U = Underflow
P = Precision

Many instructions allow their operands to be coded
in more than one way. For example, FADD (add real)
may be written without operands, with only a source,
or with a destination and a source. The instruction
descriptions in this section employ the simple
convention of separating alternative operand forms
with slashes; the slashes, however, are not coded.
Consecutive slashes indicate an option of no explicit
operands. The operands for FADD are thus
described as:

/ / source/ destination, source

This means that FADD may be written in any of
three ways:

FADD

FADD source

FADD destination, source

ST indicates the top of the stack. ST(i) indicates a
stack element where i is a three bit quantity in the
range 0 to 7. (See the Intel documentation for a
complete description of this.)

4-75

FABS (Absolute value)

Format: FABS (no operands)

Operands: none

Exceptions: I

Example: FAIS

FADD (Add real)

Format: FADD / / source/ destination, source

Operands: //ST,ST(i)/ST(i),ST
short-real
long-real

Exceptions: I, D, 0, U, P

Example: FADD ST, ST(4)

4-76

FADDP (Add real and pop)

Format: FADDP destination, source

Operands: ST(i),ST

Exceptions: I, D, 0, U, P

Example: FADOP ST(2), ST

FBLD (Packed decimal (BCD) load)

Format: FBLD source

Operands: packed decimal

Exceptions: I

Example: FBLO YTO SALES

4-77

FBSTP (Packed decimal (BCD)
store and pop)

Format: FBSTP source

Operands: packed decimal

Exceptions: I

Example: FBSTP (BX).FORCAST

FCHS (Change sign)

Format: FCHS (no operands)

Operands: none

Exceptions: I

Example: FCHS

4-78

FCLEX/FNCLEX (Clear exceptions)

Format: FCLEX/FNCLEX (no operands)

Operands: none

Exceptions: none

Example: FCLEX

FCOM (Compare real)

Format: FCOM //source

Operands: / /ST(i)
short-real
long-real

Exceptions: I, D

Example: FCOM ST(l)

4-79

FCOMP (Compare real and pop)

Format: FCOMP //source

Operands: / /ST(i)
short-real
long-real

Exceptions: I, D

Example: FCOMP SI(2)

FCOMPP (Compare real and
pop twice)

Format: FCOMPP (no operands)

Operands: none

Exceptions: I, D

Example: FCOMPP

4-80

FDECSTP (Decrement stack pointer)

Format: FDECSTP (no operands)

Operands: none

Exceptions: none

Example: FOECSTP

FDISI/FNDISI (Disable interrupts)

Format: FDISIIFNDISI (no operands)

Operands: none

Exceptions: none

Example: FOISI

4-81

FDIV (Divide real)

Format: FDIV (//source/destination,source)

Operands: //ST(i), ST
short-real
long-real

Exceptions: I, D, Z, 0, D, P

Example: FDIV ARC(DI)

FDIVP (Divide real and pop)

Format: FDIVP destination, source

Operands: ST(i), ST

Exceptions: I, D, Z, 0, D, P

Example: FDIVP ST(4), ST

4-82

FDIVR (Divide real reversed)

Format: FDIVR destination, source

Operands: //ST,ST(i)/ST(i), ST
short-real
long-real

Exceptions: I, D, Z, 0, D, P

Example: FDIVR 5T(2), 5T

FDIVRP (Divide real reversed and
pop)

Format: FDIVRP destination, source

Operands: ST(i), ST

Exceptions: I, D, Z, 0, D, P

Example: FDIVRP 5T(1), 5T

4-83

FENI/FNENI (Enable interrupts)

Format: FENI/FNENI (no operands)

Operands: none

Exceptions: none

Example: FENI

FFREE (Free register)

Format: FFREE destination

Operands: ST(i)

Exceptions: none

Example: FFREE

4-84

FIADD (Integer add)

Format: FIADD source

Operands: word-integer
short-integer

Exceptions: I, D, 0, P

Example: FIADD DISTANCE TRAVELED

FICOM (Integer compare)

Format: FICOM source

Operands: word-integer
short-integer

Exceptions: I, D

Example: FICOM TOOL.N PASSES

4-85

FICOMP (Integer compare and pop)

Format: FICOMP source

Operands: word-integer
short-integer

Exceptions: I, D

Example: FICOMP N SAMPLES

FIDIV (Integer divide)

Format: FIDIV source

Operands: word-integer
short-integer

Exceptions: I, D, Z, 0, U, P

Example: FIDIV RELATIVE ANGLE(DI)

4-86

FIDIVR (Integer divide reversed)

Format: FIDIVR source

Operands: word-integer
short-integer

Exceptions: I, D, Z, 0, U, P

Example: FIOIVR FREOUENCY

FILD (Integer load)

Format: FILD source

Operands: word-integer

Exceptions: I

short-integer
long-integer

Example: FILD (BX).SEOUENCE

4-87

FIMUL (Integer multiply)

Format: FIMUL source

Operands: word-integer
short-integer

Exceptions: I, D, 0, P

Example: FIMUL BEARING

FINCSTP (Increment stack pointer)

Format: FINCSTP

Operands: none

Exceptions: none

Example: FINCSTP

4-88

FINIT/FNINIT (Initialize processor)

Format: FIN IT

Operands: none

Exceptions: none

Example: FNINIT

FIST (Integer store)

Format: FIST destination

Operands: word-integer
short-integer

Exceptions: I, P

Example: FIST OBS.COUNT(SI)

4-89

FISTP (Integer store and pop)

Format: FISTP destination

Operands: word-integer
short-in teger
long-integer

Exceptions: I, P

Example: FISTP (BXl.ALPHA _COUNT(SI)

FISUB (Integer subtract)

Format: FISUB source

Operands: word-integer
short-integer

Exceptions: I, D, 0, P

Example: FISUB BASE _FREQUENCY

4-90

FISUBR (Integer subtract reversed)

Format: FISUBR source

Operands: word-integer
short-integer

Exceptions: I, D, 0, P

Example: FISUBR BALANCE

FLO (Load real)

Format: FLD source

Operands: ST(i)
short-real
long-real
temp-real

Exceptions: I, D

Example: FLO Sl{O)

4-91

FLDCW (Load control word)

Format: FLDCW source

Operands: 2-bytes

Exceptions: none

Example: FLDCW CONTROL WORD

FLDENV (Load environment)

Format: FLDENV source

Operands: 14-bytes

Exceptions: none

Example: FLDENV(BP+6)

4-92

FLDLG2 (Load log (base 10) of 2)

Format: FLDLG2

Operands: none

Exceptions: I

Example: FLDLG2

FLDLN2 (Load log (base e) of 2)

Format: FLDLN2

Operands: none

Exceptions: I

Example: FLDLN2

4-93

FLDL2E (Load log (base 2) of e)

Format: FLDL2E

Operands: none

Exceptions: I

Example: FLDL2E

FLDL2T (Load log (base 2) of 10)

Format: FLDL2T

Operands: none

Exceptions: I

Example: FLDL2T

4-94

FLDPI (Load pi)

Format: FLDPI

Operands: none

Exceptions: I

Example: FLOPI

FLDZ (Load +0.0)

Format: FLDZ

Operands: none

Exceptions: I

Example: FLOl

4-95

FLD1 (Load +1.0)

Format: FLDI

Operands: none

Exceptions: I

Example: FLDl

FMUL (Multiply real)

Format: FMUL //source/destination, source

Operands: / /ST(i),ST/ST,ST(i)
short-real
long-real

Exceptions: I, D, 0, U, P

Example: FMUL SPEED_FACTOR

4-96

FMULP (Multiply real and pop)

Format: FMULP destination, source

Operands: ST(i),ST

Exceptions: I, D, 0, U, P

Example: FMULP S1(1),S1

FNOP (No operation)

Format: FNOP

Operands: none

Exceptions: none

Example: FNOP

4-97

FPATAN (Partial arctangent)

Format: FPATAN

Operands: none

Exceptions: U, P (operands not checked)

Example: FPATAN

FPREM (Partial remainder)

Format: FPREM

Operands: none

Exceptions: I, D, U

Example: FPREM

4-98

FPTAN (Partial tangent)

Format: FPTAN

Operands: none

Exceptions: I, P (operands not checked)

Example: FPTAN

FRNDINT (Round to integer)

Format: FRNDINT

Operands: none

Exceptions: I, P

Example: FRNDINT

4-99

FRSTOR (Restore saved state)

Format: FRSTOR source

Operands: 94-bytes

Exceptions: none

Example: FRSTOR (BP)

FSA VE/FNSA VE (Save state)

Format: FSAVE destination

Operands: 94-bytes

Exceptions: none

Example: FSAVE (BP)

4-100

FSCALE (Scale)

Forma t: FSCALE

Operands: none

Exceptions: I, 0, U

Example: FSCALE

FSQRT (Square root)

Format: FSQRT

Operands: none

Exceptions: I, D, P

Example: FSQRT

4-101

FST (Store real)

Format: FST destination

Operands: ST(i)
short-real
long-real

Exceptions: I, 0, U, P

Example: FST MEAN READING

FSTCW /FNSTCW
(Store control word)

Format: FSTCW destination

Operands: 2-bytes

Exceptions: none

Example: FSTCW SAVE _CTRL

4-102

FSTENV /FNSTENV
(Store environment)

Format: FSTENV destination

Operands: 14-bytes

Exceptions: none

Example: FSTENV (8P)

FSTP (Store real and pop)

Format: FST destination

Operands: ST(i)
short-real
long-real
temp-real

Exceptions: I, 0, U, P

Example: FSTP ST(2)

4-103

FSTSW/FNSTSW (Store status word)

Format: FSTSW destination

Operands: 2-bytes

Exceptions: none

Example: FSTSW SAVE_STATUS

FSUB (Subtract real)

Format: FSDB //source/destination,source

Operands: //ST,ST(i)/ST(i),ST
short-real
long-real

Exceptions: I, D, 0, D, P

Example: FSUB BASE _VALUE

4-104

FSUBP (Subtract real and pop)

Format: FSUBP destination, source

Operands: ST(i),ST

Exceptions: I, D, 0, U, P

Example: FSUBP SI(2),SI

FSUBR (Subtract real reversed)

Format: FSUB //source/destination, source

Operands: //ST,ST(i)/ST(i),ST
short-real
long-real

Exceptions: I, D, 0, U, P

Example: FSUBR (BXl.INDEX

4-105

FSUBRP (Subtract real reversed and
pop)

Format: FSUBRP destination, source

Operands: ST(i),ST

Exceptions: I, D, 0, U, P

Example: FSUBRP ST(2),ST

FTST (Test stack top against 0.0)

Format: FTST

Operands: none

Exceptions: I, D

Example: FTST

4-106

FWAIT (CPU wait while 8087 is busy)

Format: FW AIT

Operands: none

Exceptions: none (CPU instruction)

Example: FWAIT

FXAM (Examine stack top)

Format: FXAM

Operands: none

Exceptions: none

Example: FlAM

4-107

FXCH (Exchange registers)

Format: FXCH //destination

Operands: / /ST(i)

Exceptions: I

Example: FXCH ST(2)

FXTRACT
(Extract exponent and significand)

Format: FXTRACT

Operands: none

Exceptions: I

Example: FXTRACT

4-108

FYL2X (Y * Log (base 2) of X)

Format: FYL2X

Operands: none

Exceptions: P (operands not checked)

Example: FYl2X

FYL2XPl (Y * Log (base 2) of (X+l»

Format: FYL2XP1

Operands: none

Exceptions: P (operands not checked)

Example: FYl2XPl

4-109

NOTES

4-110

APPENDIX A. ASSEMBLER ERROR
MESSAGES

A-l

A-2

1: Undefined label

2: Operand out of range

3: Must have procedure name

4: Number of parameters expected

5: Extra garbage on line

6: Input line over 80 characters

7: Not enough ifs

8: Must be declared in ASECT before use

9: Identifier previously declared

10: Improper format

11: EQU expected

12: Must EQU before use if not to a label

13: Macro identifier expected

14: Word addressed machine

15: Backward ORG not allowed

16: Indentifier expected

17: Constant expected

18: Invalid structure

19: Extra special symbol

20: Branch too far

21: Variable not PC relative

A-3

22: Invalid macro parameter index

23: Not enough macro parameters

24: Operand not absolute

25: Invalid use of special symbols

26: Ill-formed expression

27: Not enough operands

28: Cannot handle this relative

29: Constant overflow

30: Invalid decimal constant

31: Invalid octal constant

32: Invalid binary constant

33: Invalid key word

34: Unexpected end of input - after macro

35: Include files must not be nested

36: Unexpected end of input

37: Bad place for an include file

38: Only labels & comments may occupy
column one

39: Expected local label

40: Local label stack overflow

41: String constant must be on 1 line

42: String constant exceeds 80 chars

A-4

43: Invalid use of macro parameter

44: No local labels in ASECT

45: Expected key word

46: String expected

47: Bad block, parity error (CRC)

48: Bad unit number

49: Bad mode, invalid operation

50: Undefined hardware error

51: Lost unit, no longer on-line

52: Lost file, no longer in directory

53: Bad title, invalid file name

54: No room, insufficient space

55: No unit, no such volume on-line

56: No file, no such file on volume

57: Duplicate file

58: Not closed, attempt to open an open file

59: Not open, attempt to access a closed file

60: Bad format, error in reading real or integer

61: Nested macro definitions not allowed

62: = or <> expected

63: May not EQU to undefined labels

64: Must declare . ABSOLUTE before first .PROC

A-5

76: Had label, open parenthesis then invalid

77: Expected absolute expression

78: Both operands cannot be a segment register

79: Invalid pair of index registers

80: Have to use BX, BP, SI or DI

81: Invalid constant as first operand

82: The first operand is needed

83: The second operand is needed

84: Expected comma before 2 nd operand

85: Registers stand alone except in indirect

86: Only 2 registers per operand

87: Expected label or absolute

88: Invalid to use BP indirect alone

89: Close parenthesis expected

90: Cannot POP CS

91: Cannot have exchange of r8 with r16

92: Segment registers not allowed

93: ESC external op on left must be const < 64

94: Only one of the operands can have segment
override

95: Right operand must be a memory location

96: Left operand must be a 16-bit register

A-6

97: Left operand must be memory or register
alone

98: Op cannot be a segment register or
immediate

99: Count must be 1 or in CL

100: A byte constant operand is required

101: Operand must use ()or be a label

102: LOCK followed by something invalid

103: REP precedes only string operations

104: Not implemented

105: Expected a label

106: Not implemented

107: Open parenthesis expected

108: Expected register alone as right operand

109: Segovpre then regalone, that's invalid

110: Only one operand allowed

111: Operands are AL,op2 for byte MDL, etc.

112: SP can only be used with the SS segment

113: MOVBIM only for immediate to memory

114: BIMs must be immediate bytes to memory

115: Seg override on repeated instruction not ok

116: Segment register expected

A-7

A-8

117: (8087) Invalid two-operand format

118: (8087) Invalid single operand format

119: (8087) Improper operand field

120: (8087) Instruction has no operands

121: No override of ES on string destination

122: Interseg needs 2 constant or external
operands

123: 110 port must be immediate byte or DX

124: 110 source/dest register must be AL or AX

INDEX

A
.ABSOLUTE 2-29
absolute sections 1-17
addressing modes 3-8
.ALIGN 2-14
.ASCII 2-10
.ASCIILIST 2-16
.ASECT 2-29
assembler directives 4-3
assembler output 2-59

B
based addressing 3-10
based indexed
addressing 3-10

.BLOCK 2-11

.BYTE 2-10
byte organization 1-4

c
calling assembly

routines 1-16
.CONDLIST 2-16
conditional assembly 2- 31
.CONST 2-22
constants 1-6

D
.DEF 2-24
data register group 3-4
direct addressing 3-9

E

.ELSE 2-26

.ENDC 2-25

.ENDM 2-27

.EQU 2-13
error prompt 2-57
expressions 1-9
external references 2-62

F
flags 3-6
floating point ops 4-74
forward references 2-61
.FUNC 2.-8

G
general registers 3-3
global declarations 1-16

X-1

I

identifiers 1-5
.IF 2-25
immediate operands 3-8
.INCLUDE 2-28
intel standard,

differences 4- 3
instruction set 8086/88 4-9
instruction set 8087 4-8
.INTERP 2-23

labels 1-13
linking 2-38

L

linking directives 2-41
linking example 2-48
.LIST 2-19

M

.MACRO 2-27
macro language 2-33
.MACROLIST 2-20
multiple code lines 2-62

X-2

N
.NARROWPAGE 2-18
.NOASCIILIST 2-16
.NOLIST 2-19
.NOMACROLIST 2-20
.NOPATCHLIST 2-21
.NOSYMTABLE 2-17

o
.ORG 2-14

p

P $ I register group 3-3
.PAGE 2-18
.PAGEHEIGHT 2-17
parameter passing 2-46
.PATCHLIST 2-21
.PRIVATE 2-23

w
word organization 1-4

--- ------ - ---- ---- - ---- - - ----------_.-

Product Comment Form

Assembler Reference

Personal Computer
Computer Language Series

6936562

Your comments assist us in improving our products. IBM
may use and distribute any of the information you supply
in anyway it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use
the information you supply.

Comments:

If you wish a reply, provide your name and address in
this space.

~ame ________________ ~ ____________________ __

Address __________________________________ __

City __________ _ State --------------

Zip Code ---------

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 123 BOCA RATON, FLORIDA 33432

POSTAGE WILL BE PAID BY ADDRESSEE

IBM PERSONAL COMPUTER
SALES & SERVICE
P.O. BOX 1328-C
BOCA RATON, FLORIDA 33432

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

...
9J94 PIO:!

9lde~s ~ou op 9se91d 9de.L

mtinued from inside front cover

)ME STATES DO NOT ALLOW THE
{CLUSION OF IMPLIED
ARRANTIES, SO THE ABOVE
(CLUSION MAY NOT APPLY TO
JU. THIS WARRANTY GIVES YOU
'ECIFIC LEGAL RIGHTS AND YOU
A Y ALSO HAVE OTHER RIGHTS
HICH VARY FROM STATE TO
~ATE

,M does not warrant that the functions
ntained in the program will meet your
quirements or that the operation of the
'ogram will be uninterrupted or error
ee.

OWCVCf, IBM warrants the disketlc(s) or
ssette(s) on which thc pro~ram is fur
shed, to be free [rom defects in materials
ld workmanship under normal use [or a
~riod of ninety (90) days from the date of
'livery to you as evidenced hy a copy of
mr receipt.

IMITATIONS OF REMEDIES

1M's entire liability and your exclusive
:medy shall be:

tht' replacement o[any diskette(s) or
cassette(s) not meetin~ IB:\I's "Limited
\Vananty" and which is returned to
IBM or an authorized IBM PERSO:\lAL
COMPUTER dealer with a copy of your
receipt, or

i[IBM or thc dealer is unable to deliver a
replacement diskette(s) or cassette(s)
which is free of defects in materials or
workmanship, you may terminate this
Agreement by returning the program
and your money will be refunded.

N NO EVENT WILL IBM BE LIABLE
~O YOU FOR ANY DAMAGES,
NCLUDING ANY LOST PROFITS,
.oST SAVINGS OR OTHER
NCIDENTAL OR CONSEQUENTIAL

DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE SUCH
PROGRAM EVEN IF IBM OR AN
AUTHORIZED IBM PERSONAL
COMPUTER DEALER HAS BEEN
ADVISED OF THE POSSIBLITY OF
SUCH DAMAGES, OR FOR ANY
CLAIM BY ANY OTHER PARTY.

SOME STATES DO NOT ALLOW THE
LIMIT A TION OR EXCLUSION OF
LIABILITY FOR INCIDENTAL OR
CONSEQUENTIAL DAMAGES SO
THE ABOVE LIMIT A TION OR
EXCLUSION MAY NOT APPLY TO
YOU.

GENERAL

You may not sublicense, assign or
transfer the license or the program
except as expressly provided in this
Agreement. Any attempt otherwise to
sublicense, assign or transfer any of the
rights, duties or obligations hereunder is
void.

This Agreement will be governed by the
laws of the State of Florida.

Should you have any questions
concerning this Agreement, you may
contact IBM by writing to IBM Personal
Computer, Sales and Service, P.O. Box
1328-W, Boca Raton, Florida 33432.

YOU ACKNOWLEDGE THAT YOU
HA VE READ THIS AGREEMENT,
UNDERSTAND IT AND AGREE TO
BE BOUND BY ITS TERMS AND
CONDITIONS. YOU FURTHER
AGREE THAT IT IS THE COMPLETE
AND EXCLUSIVE STATEMENT OF
THE AGREEMENT BETWEEN US
WHICH SUPERSEDES ANY
PROPOSAL OR PRIOR AGREEMENT,
ORAL OR WRITTEN, AND ANY
OTHER COMMUNICATIONS
BETWEEN US RELATING TO THE
SUBJECT MATTER OF THIS
AGREEMENT.

--- ------- - ---- ---- - ---- - - ---==-=':'=®
International Business Machines Corporation

P.O. Box 1328-W
Boca Raton, Florida 33432

6936562

Printed in United States of America

