
--- ------ - - --- ---- - ---- ------------_.- Personal Computer
Computer Language
Series

INTERNAL
ARClllTECTURE
GUIDE
for the UCSD p-System'" Version IV.O

Produced by SofTech Microsystems, Inc.

ii

First Edition (january 1982)

Changes are periodically made to the information herein;
these changes will be incorporated in new editions of this
publication.

Products are not stocked at the address below. Requests for
copies of this product and for technical information about the
system should be made to your authorized IBM Personal
Computer Dealer.

A Product Comment Form is provided at the back of this
publication. If this form has been removed, address comment
to: IBM Corp., Personal Computer, P.O. Box 1328-C, Boca
Raton, Florida 33432. IBM may use or distribute any of the
information you supply in any way it believes appropriate
without incurring any obligations whatever.

© Copyright International Business Machines Corporation 1982
© Copyright Softech Microsystems, Inc. 1981

UCSD, UCSD Pascal, and UCSD p-System are all trademarks
of the Regents of the University of California.

CONTENTS

CHAPTER 1. INTRODUCTION 1-1
Purpose of this Guide. 1-3
A Brief History of the System 1-4

CHAPTER 2. THE P-MACHINE 2-1
Overview. 2-2

Interpretive Execution 2-2
The Stack and the Heap 2-2
Code Segments 2- 3
Device I/O 2-4

Program Code............... 2-5
Code Segments 2-5

Routine Dictionaries 2-7
Routine Code 2-7
The Constant Pool 2-8
The Relocation List 2-12
Segment Reference List 2-14
Linker Information 2-17

Codefile Organization 2-22
The Segment Dictionary 2-22
Assembler-Generated

Code files 2-29
Code Segment Environments 2- 30

Segment Information Blocks
(SIBs) 2-30

Environment Records
(E_RECs) 2-34

Task Environments 2-38
P-Machine Instructions 2-42

The Intrinsic P_MACHINE 2-42
P-Code Instruction Set 2-43

Operands and Notation 2-43
Individual Instructions 2-49

iii

CHAPTER 3. LOW-LEVEL I/O 3-1
Introduction to the I/O Subsystem 3- 3
The Language Level: Device

I/O Routines 3-5
Calling the RSP/IO 3-6

Devices and Device Numbers. . 3-6
CONTROL Parameters 3-7

10RESUL T and Completion
Codes 3-8

Logical Disk Structure 3-10
The Interpreter Level: The RSP/IO ... 3-12

Calling Mechanisms 3-12
Semantics 3-15

The Machine Level: The BIOS 3-18
Design Goals 3-18
Completion Codes 3-19
Calling Mechanisms 3-19
Character Codes 3-21
Semantics 3-21
Special BIOS Calls 3- 31

CHAPTER4. THE OPERATING SYSTEM ... 4-1
Organization 4- 3

Structured Overview of the
System 4-3

P-Machine Support 4-5
The Heap 4-5
The Codepool 4-11
Fault Handling 4-15
Concurrency 4-16

I/O Support 4-19
FIBs (File Information Blocks) 4-19
Directories 4-20
Varieties of I/O 4-20

iv

CHAPTER 5. PROGRAM EXECUTION ... 5-1
Runtime Environment 5-3

APPENDIX A. SUMMARY OF BIOS
CALLING SEQUENCES A-I

APPENDIX B. IBM PERSONAL COMPUTER
SPECIFICS B-1

APPENDIX C. P-CODES C-l

APPENDIX D. ASCII CHART D-I

GLOSSARY Glossary-I

INDEX X-I

v

vi

CHAPTER 1. INTRODUCTION

Contents

Purpose of this Guide 1-3
A Brief History of the System 1-4

1-1

NOTES

1-2

Purpose of this Guide

This guide describes the internal design of the UCSD
p-System: the P-machine, Operating System, basic
I/O, and the way in which these elements are
organized to support the running of a program
written in UCSD Pascal (or FORTRAN).

It should serve as a guide and reference for more
advanced users of the System, but is not intended to
be a standalone definition for the use of
implementors. Such a definition does not yet exist; if
one is written, it will probably be based on the
format of this book.

Perhaps the best way to use this guide is to read it
sequentially, skipping those sections (such as the list
of P-codes) that go into very specific detail. This
should give the reader a fairly complete picture of
what goes on within the System. If the user then
needs to know specific internal details, the relevant
section can be referred to later.

While few users will want or need to implement a
p-System from scratch, the internal descriptions
provided in this guide should be useful to a number
of audiences.

The largest audience is probably those who will
make no specific use of the information. To these
users, the benefit will be a better understanding of
the System's operation and a general improvement
in their ability to engineer programs for effective
execution in the p-System environment.

Second, there are the implementors of system
software facilities that complement existing System
capabilities: for instance, new language translators,
new System utilities, or Interpreters for additional
processors.

1-3

Finally, there are the implementors with a
compelling need to use facilities such as the ability to
explicitly generate P-codes in a Pascal program,
where an ordinary Pascal construct would not suffice
(we take it for granted that only a compelling need
would lead a user to take such steps).

A Brief History of the System

1-4

The software system that is now called the UCSD
p-System began when Kenneth Bowles was
responsible for teaching the introductory
programming course at the University of California,
San Diego. In late 1974, under Bowles' direction, a
group of undergraduate and graduate students
began to implement Pascal for microcomputers.

Before this time, the introductory programming
course had been taught using a large time-shared
computer (on campus it was popularly called "The
Beast"). This presented a bottleneck: many people
used the machine, so its turnaround was sometimes
quite slow, and a student's productivity was to some
extent limited by the availability of the card
punches. Furthermore, the machine's time-sharing
environment, its accounting system, its complexity,
and the amount of sensitive information that it
stored prevented the student from any extensive
"hands on" use of the machine or its facilities. In
brief, the Beast was intimidating.

These were the main reasons for the decision to
change the nature of the beginning programming
course. It would be self-paced, to accommodate the
large number of students, and each individual
student's study habits (UC Irvine's physics program
had been doing this successfully for a couple of
years). It would use Pascal, rather than the dialect of
Algol that was specific to the University's large
time-sharing computer. And it would use
microcomputers.

The decision to use small computers was motivated
partly by their low cost, and partly by the desire to
give students an opportunity to program in an
interactive environment. Students were expected to
buy their own floppy d\sk, and use it for storing the
System and their own programs.

It was the interactive environment that led to some
of UCSD Pascal's deviations from the standard
language, mostly as regards INTERACTIVE files
and the handling of EOF and EOLN. The type
STRING came about from the desire to teach basic
programming concepts without recourse to
numerical problems (which distracted many
students from the actual problems of programming).

The user interface of the System, by which we mean
the philosophy of displaying a promptline at every
level of the System, and organizing these
promptlines in a tree structure, was intended to be
easy to learn for the complete novice, yet usable
(i.e., not cumbersome) for the experienced user.
This proved very successful, and has been retained.

The interpretive approach to executing Pascal was
present from the beginning. P-code, adapted from
the original design by Urs Amman of the
Eidgenossische Technische Hochschule in Zurich,
was designed to be compact and easily generated by a
Compiler; because of the constraints of the
microprocessor environment, the goal was to keep
the Compiler and the codefiles as small as possible.
The tradeoff in execution time was felt to be an
affordable cost (time has borne out this decision).

The UCSD p-System is implemented on the IBM
Personal Computer, with an Interpreter tailored to
the 8088/87 processor.

1-5

NOTES

1-6

CHAPTER 2. THE P-MACHINE

Contents

Overview 2-2
Interpretive Execution 2-2
The Stack and the Heap 2-2
Code Segments 2- 3
Device I/O 2-4
Program Code 2-5
Code Segments 2-5
Code file Organization 2-22
Code Segment Environments 2- 30
Task Environments 2- 38
P-Machine Instructions 2-42
The Intrinsic P_ MACHINE 2-42
P-Code Instruction Set 2-43

2-1

Overview
The P-machine is an idealized machine. The
Operating System itself, System programs such as
the Filer, and compiled user programs all run on the
P-machine. Code for the P-machine is known as
P-code, and all codefiles in the System consist of
either P-code or native code (that is, 8088 machine
code).

P-code is designed to be compact, so that programs
in P-code are much shorter than equivalent
programs in native code. P-code is also designed to
be easily generated by a compiler.

Interpretive Execution

The "P" in "P-code" and "P-machine" stands for
"pseudo." The Interpreter is a program written in
8088/87 code. It is responsible for executing P-code
instructions, and controlling I/O.

At runtime, the user's program (or a portion of it) is
in main memory. The Interpreter fetches each
P-code instruction, in sequence, and performs the
appropriate action. The process of bootstrapping
involves loading the Interpreter and starting its
execution (the next step is to call the Operating
System, which runs on the P-machine).

The Stack and the Heap

2-2

The system maintains memory-resident data in two
dynamic structures called the Stack and the Heap.
The Stack is used for static variables, bookkeeping
information about procedure and function calls, and
evaluation of expressions. The Heap is used for
dynamic variables, including the structures that
describe a program's environment.

The Stack can be considered part of the P-machine.
Most P-code instructions affect the Stack in one way
or another.

The Heap is an integral part of the System, but is
primarily supported by the Operating System,
rather than the P-machine.

Both the Stack and the Heap reside in main memory,
and grow toward each other in a (largely)
Last-In-First-Out manner. Between them is an area
of memory that is partly unused, but may also
contain the Codepool (see below).

The Heap is more fully described in Chapter 4. The
Codepool is also described in Chapter 4.

Code Segments

In the p-System, program code is stored in one or
more segments. A code segment may contain either
P-code or native code (or both). Besides the code
itself, each code segment contains bookkeeping
information for the System's use, and (usually) a
pool of constants.

Every "compilation unit" (a separately compiled
Pascal PROGRAM or UNIT) results in a "principal
segment" of code. In addition, there may be
"subsidiary segments," if the program or unit
contained SEGMENT routines or EXTERNAL
native code routines. Information embedded in the
compilation's codefile contains the references
among the (possibly) various compilation units that
are part of the full program.

When a program is eX(ecuted), the Operating
System reads this reference information and resolves
the references by finding the location of all
compilation units needed by the program (including
subsidiary segments and indirect references, such as

2-3

a UNIT using another UNIT). Tables are built that
may be used at runtime to make references (such as
procedure calls) from one segment to another.

The segments of a running program compete
with each other for space in main memory. If the
System's Codepool is internal (between the Stack
and the Heap) then the segments also compete with
the Stack and the Heap. The principal constraint (as
far as code segments are concerned) is that both the
calling and called segment must both be present in
main memory for an inter-segment call to succeed.

Segments in main memory are all stored
contiguously in an area called the Codepool. The
Codepool resides either between the Stack and the
Heap (an internal pool) and may be moved about to
create more room, or outside the Stack/Heap space
(an external pool) and may not be moved.

Code segments are described in this chapter.
Codepool handling is described in Chapter 4.

Device I/O

2-4

Device I/O and control is accomplished by calls from
the language level to routines within the Interpreter.
The device I/O routines then call on the routines of
the Interpreter's BIOS (for Basic I/O Subsystem),
and the BIOS routines control the peripheral
hardware directly. I/O environment dependencies
are thus isolated in the BIOS for convenience. The
BIOS is dealt with in Chapter 3.

Program Code

Code Segments

A code segment is a collection of routines, together
with descriptive information. The code and
information in a segment is contiguous, since the
code segment is the "unit of movement" for code;
code is loaded into memory a segment at a time.

There are up to 255 routines within a segment,
numbered 1..255.

At compile time, segments are assigned a name and a
number. The name is 8 characters long. It is used by
the Operating System to handle inter-segment
references at associate time. It is also used when
maintaining codefiles with LIBRARY. The number
is used to reference the segment at runtime.

The beginning (low address) of a code segment is a
record that contains the following information
about the segment:

• pointer to the routine dictionary

• pointer to the relocation list

• the 8-character name of the segment (4 words)

• byte sex indicator word

• pointer to the constant pool

• real size word

• space reserved for future use (2 words)

2-5

2-6

Figure 2-1 illustrates a code segment as it would be
loaded into memory. The various substructures of a
code segment are described below.

procedure
dictionary

procedure
code for
procedure

#2

\
t

high address
odd even

relocation list

number of procedures

pointer to procedure 1

pointer to procedure 2

...
pointer to procedure N

Constant Pool

~Z/:>~~~;:>:;::%%
~ "Jl~C~d ~re" cod; ;3;;;:3-:>}:
~~~~;>:-:~/;;>:::;;;;?: •. ";: 

/" / / /" / //.. //" / 

procedure #2 ..-
object code 

datasize 

exitic f---

§f~~"/;~ / //"~ 
~~~~~~:"~:E{~~/~/J%l 

reserved for future use

reserved for future use

realsize

constant pool pointer

byte sex indicator word = 1

8 character symbolic
name of segment

relocation list pointer

proc dictionary pointer

low address

Figure 2-1. Executable Code Segment Format

I

Routine Dictionaries

The first word in a code segment points to word a of
the segment's routine dictionary (also called the
"procedure dictionary"). The routine dictionary is a
list of pointers to the code for each routine in the
segment. Each routine dictionary pointer is a
seg-relative word pointer.

Routines within a segment are numbered 1..255. A
routine's number is an index into the routine
dictionary: the n'th word in the dictionary contains a
pointer to the code for routine n.

The first word {word a) of the dictionary contains the
number of routines in the segment.

In the case of EXTERNAL and FORWARD
routines, the source code may contain a routine's
declaration but not its code. The corresponding
routine dictionary entry is zero (at least, before
linking).

Routine Code

The code of a routine consists of two words:
DATASIZE and EXITIC, followed by the executable
object code. The object code may be entirely P-code,
entirely native code, or a mixture of the two.

DA TASIZE is the number of words of local data
space that must be allocated when the procedure is
called. DA T ASIZE does not include parameters: the
routine's parameters are assumed to already be on
the Stack. The first executable instruction starts at
the byte or word immediately following the
DA TASIZE word. If the first executable instruction
is native code, DATASIZE is one's-complemented.

2-7

2-8

If this first instruction is a P-code instruction, then
EXITIC is a seg-relative byte pointer to the code that
must be executed when the procedure is exited. If
this first instruction is a native code instruction, then
EXITIC is undefined at runtime.

If the code of the routine contains both P-code and
native code, it is still the first instruction of the
routine that determines these conditions.

The Constant Pool

Multi-word constants are stored together in a single
constant pool for the entire segment. The constant
pool begins immediately after the last body of
procedure code in the segment.

The location of the constant pool is contained in the
constant pool pointer, a seg-relative word pointer
that immediately follows the byte sex indicator word
at the beginning of the segment. It points to the low
address of the constant pool. If the constant pool
pointer is equal to zero, the segment does not
contain a constant pool.

Constants are referenced by word offsets relative to
the beginning {low address) of the constant pool.

The constant pool is divided into two subpools: the
real pool and the main pool.

The first word of the constant pool points to the
beginning of the real pool. This is a word pointer
relative to the start of the constant pool; if there are
no real constants in the code segment, this word
must be o. The first word of the real pool contains
the number of real constants in the real pool.

high
address

low
address

Figure 2-2 illustrates a constant pool with an
embedded real sub pool.

pointer to procedure N

real subpool

number of
real constants

real support ptr

Figure 2-2. Constant Pool

constant
pool
ptr

2-9

2-10

Real constants are generated for either 32- or 64-bit
floating point formats. Both the 32-bit and the
64-bit formats are available on the IBM Personal
Computer.

The Pascal Compiler is configured (when it is
compiled) to default either to 32-bit or 64-bit reals.
A directive is available to override the default:

($R2)
sats raalsiza to 2 words (32 bits)

{$R4)
sats raalsiza to 4 words (64 bits)

This directive must occur before the first symbol in a
compilation that is not a comment. The active
realsize for a particular compilation is displayed after
the Compiler's version number at the beginning of
the console output during a compilation (and in a
compiled listing).

The realsize at compilation time is also embedded in
every code segment (even if it does not reference any
reals). The word REALSIZE at the base of the
segment contains this value.

A 32-bit real constant is represented by a three-word
record (when it is read into memory it is packed into
a two word form). The first word contains a signed
integer representing the exponent value. The
following two words contain the mantissa digits. A
mantissa word representing significant mantissa
digits contains an integer whose absolute value is
between 0 and 9999; its value corresponds to four
mantissa digits. The first mantissa word is signed,
and thus contains the mantissa sign. The second
mantissa word may contain a negative value; in this
case, it does not contain any significant digits and is
disregarded when constructing the internal
representation of the real constant. It serves as a
terminator word for the constant conversion
routines. The decimal point is defined to lie to the

right of the four digits in the last valid (used)
mantissa word. The digits in the last mantissa word
are left-justified.

For example, if the real value is 1.1, the first mantissa
word contains 11 decimal. The second mantissa
word contains a negative value. And the exponent
word is -1:

1 .. 4 significant mantissa digits:
The first mantissa word contains a signed value
between 0 and 9999. The second word contains
a negative value. The implied decimal point
position is at the end of the first word.

5 .. 8 significant mantissa digits:
The second mantissa word contains a positive
value between 1 and 9999, and represents up to
4 low-order digits. The first word contains a
signed value between 1 and 9999; it represents
the 4 high-order digits. The implied decimal
point position is at the end of the second word.

A 64-bit real constant is represented by a record
whose length may vary between 4 and 6 words,
depending upon the number of significant digits in
the constant (when read into memory it is always
packed into a 4-word form). The first 2 words of a
64-bit constant are identical in format to those of a
32-bit real constant; thus, the format always contains
an exponent word and a first mantissa word. An
enumeration of the remaining words for all cases
follows:

1 .. 4 significant mantissa digits:
Mantissa word 2 contains a negative terminator.
Mantissa word 3 is zeroed and is present solely
to provide sufficient space for the native
format.

2-11

2-12

5 .. 8 significant mantissa digits:
Mantissa word 2 contains 1 to 4 digits
(left-justified). Mantissa word 3 contains a
negative terminator.

9 .. 12 significant mantissa digits:
Mantissa word 2 contains 4 digits. Mantissa
word 3 contains 1 to 4 digits (left-justified).
Mantissa word4 contains a negative terminator.

13 .. 16 significant mantissa digits:
Mantissa words 2 - 3 contain 4 digits. Mantissa
word 4 contains 1 to 4 digits. Mantissa word 5
contains a negative terminator.

17 .. 20 significant mantissa digits:
Mantissa words 2 - 4 contain 4 digits. Mantissa
word 5 contains 1 to 4 digits.

Real constants are converted to native machine
format when a code segment is loaded into memory;
this may result in a significant runtime overhead for
programs that are memory-bound.

The Relocation List

The last (high address) body of information in a
(memory-resident) code segment is the relocation
list. The second pointer at the beginning of the code
segment points to the last (highest address) word in
the relocation list. This pointer is a seg-relative word
pointer; if there is no relocation list, it is equal to
zero.

The relocation list contains all the information
necessary to fix any absolute addresses used by
code within the segment, whenever the segment is
loaded or moved in memory. Such absolute
addresses are only needed by native code. Segments
containing exclusively P-code are completely
position-independent; no relocation list is needed.

A relocation list consists of zero or more relocation
sub lists. Each sublist contains code offsets for
objects that must be relocated, and specifies the type
of relocation that must be done. Sublists can occur in
any order, and more than one sub list can have the
same type of relocation.

The following code fragment shows the format of
the heading of a sub list:

LocTypes=
(RelocEnd,

SegRel,

BaseRel,

InterpRel,

ProcRel);

{signals end of entire
relocation list}

{relative to address of
base of this segment}

{relative to data segment
given in DATASEGNUM}

{relative to Interpreter's
interp·relative table}

{relative to address of 1 st
instruction in proc}

ListHeader= PACKED RECORD
ListSize: integer; {number of pointers

in sublist}
DataSegNum: 0 .. 255; {local segment

number for
BaseRel}

RelocType: LocTypes; {relocation type of
sublist entries}

END;

Each sub list contains a ListHeader and zero or more
seg-relative byte pointers to the objects which must
be relocated. The RelocType field in the ListHeader
defines what kind of relocation will be applied to all
objects deSignated by the sublist.

The relocation type ProcRel is generated by the
Assembler, but changed by the Linker into SegRel.
ProcRel sub lists should never be encountered when
loading and relocating assembly code.

2-13

2-14

The DataSegNum field in the ListHeader is only
used in sublists with a RelocType of BaseRel, and in
all other cases should be zeroed. It specifies the local
segment number of the data segment that all of the
sublist's pointers are relative to. Since the Assembler
cannot know this segment number in advance, it
should zero-fill the field and leave the responsibility
for correctly setting this field to the Linker.

The ListSize field in the ListHeader contains the
number of pointers in the sub list.

Figure 2-3 illustrates a relocation list with multiple
sub lists:

The relocation list is intended to be used from high
address down to low address. Each sub list in turn
from high to low is processed until a sub list with a
relocation type of RelocEnd is encountered. The
DataSegNum and ListSize should be 0 for this
terminating entry.

The relocation list is located at the end of the code
segment, since it is sometimes possible to discard the
relocation information after the segment has been
loaded into memory.

Segment Reference List

In the P-machine each code segment is associated at
runtime with an "environment vector" that defines
the mapping of each segment number to the
segment or unit that it designates. Each compilation
unit has its own independent (i.e., local) series of
segment numbers, and its own environment vector.
In this way, a particular unit may be referenced by
more than one unit, and each unit that references it
may use a different segment number. (More about
environment vectors appears in "Code Segment
Environments" in this chapter.)

'elocation
sublist

high address

reloctype datasegnum

listsize

relocation pointers

reloctype=
RELOCEND

datasegnum=O

low address

Figure 2-3. Relocation List

relocation
list

pointer

2-15

2-16

When a compilation unit references one or more
other compilation units, the principal segment of
the compilation contains a segment reference list.
This list defines the connection between the
segment numbers that appear in the object code
(they are created by the Compiler), and the names of
the units to which they refer. Only principal
segments contain segment reference lists.

The segment reference list, when present, is located
above the relocation list (it grows toward higher
memory addresses). The list is used by the Operating
System at associate time. It does not occupy any
space in memory during the program's execution.

The segment reference list associates the name of
each compilation unit (which does not change) with
the number by which that compilation unit is
referenced.

The following fragment of Pascal code describes a
record in the segment reference list:

SegRee=PACKED RECORD

END;

SegName: PACKED ARRAY [0 .. 7] OF CHAR;
{referenced segment name}

SegNum: 0 .. 255; {associated segment number}
Filler: 0 .. 255; {reserved for future use}

the Seg_Refs entry in the segment dictionary
(described below) contains the number of words in
the segment reference list. The Code_Leng field in
the segment dictionary can be used as a seg-relative
word pointer to the start of the segment reference
list. The segment reference list consists of one or
more SegRec's, starting directly above the
relocation lists and continuing towards higher
memory addresses. A SegRec consists of SegName,
which contains the name of the segment, SegNum,

which contains the number by which the segment is
referenced within this current code segment, and
some Filler.

The segment reference list is terminated by a SegRec
with a blank-filled SegName and a SegNum of zero.

SegRec's with a SegName of*** are generated so the
Operating System can execute the initialization and
termination code sections of a unit: before
executing a host program, the Operating System
constructs a list of all used units that contain a
reference to ***, and uses this list to execute the
initialization/termination sections of all used units
before/after the invocation of the host program.

When the ini tializa tion! termina tion section of a unit
(which is procedure 1) is compiled, a <CXG <***'s
SegNum>, 1> instruction is emitted between the
initialization and termination parts. A local segment
number is reserved for the *** segment reference,
and the Operating System creates a linear list that
links together the units of a program that require
initialization. At the end of this list is the outer body
of the main program. The Operating System invokes
the program by calling the first initialization code on
this list, which calls the next, and so forth up to the
body of the main program itself. When the main
program terminates, the calling chain is "popped",
and termination sections are executed in the reverse
order.

Linker Information

Linker information (Linker info) is a portion of a
code segment that allows the Linker to resolve
references between P-code and native code.
Segments output by an assembler always have
Linker info. Segments output by a compiler have
Linker info only if they contain an EXTERNAL

2-17

2-18

routine. Only principal segments may contain
EXTERNAL routines.

Linker info is a sequence of 8-word records, starting
on the block boundary following the end (high
address) of the segment reference list. The end of the
sequence contains the value EOFMark. Linker info
records are always 8 words long: unused records and
unused fields are zero-filled.

If a code segment has Linker info, the HasLinkerInfo
Boolean in Seg _Misc in the segment dictionary is
TRUE. The starting block of Linker info, relative to
the start of the codefile, can be calculated from the
formula:

Code_Addr + ((Code_Leng + Seg_Refs + 255) DIV 256)

... where Code_Addr, Code_Leng, and Seg_Refs
are all values in the segment dictionary (see below).

Two fields are common to all Linker info records.
The Name field contains an 8-character segment
name. The LIType field determines the nature of the
Linker information in the remainder of the record.

The following fragment of pseudo-Pascal code
describes a Linker info record:

PtrRecNum = (an integral number of B-word
pointer records)

(this is variable from record
to record);

LlTypes = (EOFMark, GlobRef, PublRef, PrivRef,
ConstRef, GlobDef, PublDef, ConstDel,
ExtProc, ExtFunc, SepProc, SepFunc);

LlEntry =

RECORD
Name: PACKED ARRAY [0 .. 7] OF CHAR;
CASE LlType: LlTypes OF

GlobRef, PublRef, ConstRef
: (Format: (Word, Byte, Big);

NRefs: integer);

PrivRef: (Format: (Word, Byte, Big);
NRefs: integer;
NWords: integer);

ExtProc, ExtFunc
: (SrcProc: integer;

NParams: integer);

SepProc, SepFunc
: (SrcProc: integer;

NParams: integer;
KoolBit: Boolean);

GlobDef: (Home Proc: integer;
ICOffSet: integer);

PublDef: (BaseOffset: integer;
PubDataSeg: integerl;

ConstDef: (ConstVal: integer);

EOFMal'k:
END (CASEI;

Ptrlist: ARRAY [O .. PtrRecNum] Of
ARRAY [0.,1] Of integer

END {LiEntry};

GlobRef, PublRef, ConstRef, and PrivRef are all
Linker info types generated by an assembler. They
all consist of two fields that precede a list (PtrList)
of seg-relative byte pointers into the associated
segment. Format contains the size of the fields
pointed to by the accompanying list. NRefs contains

2-19

2-20

the number of pointers in the list. PtrList contains
multiples of 8 words; all unused words should be
zero.

For these types of Linker info records, PtrRecNum =
ceiling(NRefs/8), where ceiling(n) is the smallest
integer> = n.

GlobRef is used to link identifiers in two or more
assembled routines. Name is an identifier that is
referenced within the segment, and defined in some
other assembled routine. Format should always be
Word. The Linker must add the final segment offset
of the referenced object to all words pointed at by
PtrList. This offset must be in the correct addressing
mode: i. e., bytes or words, depending on the
processor being used.

PublRef is used to link an identifier in an assembled
routine to a global variable in a compilation unit.
Name is an identifier that is referenced in the
segment, and defined as a global variable in some
other compilation unit. Format should always be
Word. The Linker must add the offset of the
referenced object to all words pointed at by PtrList.

ConstRef is used to link an identifier in an assembled
routine to a global constant in a compilation unit.
Name is an identifier that is referenced in the
segment, and defined as a global constant in some
compilation unit. Format may be either Byte or
Word. The Linker must place the constant value into
all locations pointed at by PtrList.

PrivRef is used to allocate space in the global data
segment. Format should always be Word. NWords
specifies the number of words to allocate. The
Linker must add the offset of the start of the
allocated area within the global data segment to all
words pointed at by PtrList.

ExtProc and ExtFunc are generated by a compiler to
reference EXTERNAL routines. There is no PtrList.
SrcProc is the number assigned to the routine.
NParams is the number of words allocated for
parameter passing.

SepProc and SepFunc are generated by an assembler
for routine declarations. There is no PtrList. SrcProc
is the number assigned to the routine. NParams is
the number of words allocated for parameter
passing. KoolBit is TRUE if the routine is
relocatable, FALSE otherwise. Thus, .PROC and
.FUNC generate SepProc or SepFunc records with
KoolBit = FALSE, and .RELPROC and .RELFUNC
generate SepProc or Sepfunc records with KoolBit=
TRUE.

GlobDef declares a global identifier in an assembled
routine. A GlobDef record is generated for each
label defined by a .DEF, .PROC, .FUNC,
.RELPROC, or .RELFUNC directive. There is no
PtrList. Name is an identifier defined within the
segment, and may be referenced by any other
assembled routines within the same segment.
HomeProc contains the number of the routine in
which Name is defined. ICOffset is a byte offset to
Name, relative to the start of the routine in which
Name is defined.

PublDef declares a global variable in a compilation
unit. A PublDef record is generated for each global
variable in a compilation unit that is visible to any
EXTERNAL routines. There is no PtrList.
BaseOffset is the word offset of the variable, relative
to the start of the data segment that contains it.
PubDataSeg is the local number of the data segment
that contains the variable.

ConstDef declares a global constant in a compilation
unit. A ConstDef record is generated for each global
constant in a compilation unit that is visible to any
EXTERNAL routines. There is no PtrList. ConstVal
contains the value of the constant.

2-21

PrivRel

ExtFunc

EOFMark indicates the end of used Linker info
records. Name should be blank-filled.

The following table shows the types of segments (as
defined in the segment dictionary), and the types of
segment reference records that can be contained in
the associated Linker info. Note that Proc_Seg's
cannot have Linker info at all:

Prog_Seg Unit_Seg Seprt_Seg
GlobRe. yes
PublRef yes
PrlvRef yes
ConstRef yes
ExtProc yes yes
ExtFunc yes yes
SepProc yes
SepFunc yes
GlobDef yes
PublDef yes yes
ConstDef yes yes
EOFMark yes yes yes

Codefile Organization

2-22

The Segment Dictionary

The first block of a codefile contains the first record
of that file's segment dictionary. A segment
dictionary consists of a linked list of dictionary
records; if the dictionary is longer than one record,
subsequent records are embedded in the codefile.
These are each one block long, and are located
between code segments.

A single dictionary record can describe up to 16
distinct segments. The information describing a
segment is contained in 6 different arrays: the
information describing a segment is found by using a
single index value to select a component from each
of these arrays. Entries in the segment dictionary
describe only segments whose code bodies are
included in the codefile.

The following fragment of Pascal code describes a
segment dictionary record:

CONST
Max_Dic_Seg = 15; {maximum segment

dictionary record
entry}

TYPE
Seg_ Dic_Range = O .. Max_Dic_Seg;

{range for segment
dictionary entries}

Segment_ Name = PACKED ARRAY [0 .. 7] OF CHAR;
(segment name}

{segment types}
Seg_ Types = (No_Seg, {empty dictionary entry}

Prog _ Seg,{ program outer segment}
Unit_ Seg,{unit outer segment}
Proc_ Seg,{segment procedure

inside program or unit}
Seprt_ Seg); {native code segment}

{machine types}
M_ Types=(M_Pseudo, M_6809, M_PDP _11, M_8080,

M_l_80, M_GA_440, M_6502,
M_6800, L9900, M_8088,
M _l8000, M_68000);

{p·machine versions}
Versions = (Unknown, II, "_1, III, IV,

V, VI, VII);

{segment dictionary record}
Seg_Dict = RECORD

Disk_Info:
ARRAY [Seg_ Dic_ Range) OF (disk info entries)

RECORD
Code_Addr: integer;{segment starting block)

Code_ Leng: integer;{number of words
in segment}

END {of RECORD};

2-23

2-24

Sag_Nama:
ARRAY [Sag _ Die _ Range] OF Sagmant _Name;

{sagmant name antries)
Sag_Misc:

ARRAY [Seg_Dic_Range] OF (misc antries)
PACKED RECORD

Sag_Typa: Sag_Types;{sagmant type}
Fillar: 0 .. 31;

(reservad for future use)
Has_link_Info: Boolaan;

{need to be linked?}
Ralocatabla: Boolaan;

(segment relocatable?)
END {of PACKED RECORD};

Seg_Text:
ARRAY [Seg _ Dlc_ Range] OF integer;

{start blk of interface taxt}
Sag_Info:

ARRAY [Seg_Dic_Range] OF
(segmant information entries)

PACKED RECORD
Sag _ Num: 0 .. 255;

{local segment number}
M_Type: M_Types; (machine type)
Fillar: 0 .. 1;

(reserved for future use)
Major _ Version: Versions;

END {of PACKED RECORD};
Sag_Family:

{P-machine version}

ARRAY [Seg_Dic_Range] OF
(sagment family entries)

RECORD
CASE Seg_Types OF

Unit_Sag, Prog_Seg:
(Data_Size: integer; {data size}
Sag_Refs: Integer;

{segmants in compilation unit}
Max_Sel_Num: Intagar;

{numbar of segmants in fila}
Taxt_Slze: integar);

{# of blks Interface taxt}
Saprt_Seg, Proc_Seg:
(Prog_Nama: Sagment_Name);

{outar program/unit nama}
END {of Sal_Family};

Next _Diet: integer;
{block number of next
dictionary record}

Filler: ARRAY [0 .. 6J OF integer;
{reserved for future use}

Copy_Note: string[77]; {copyright notice}
Sex: integer; {machine sex (Sex = 1)}

END {of SEG_DlCT};

Disk_ Info contains information about the
segment's location within the file. Segment code
always starts on a block boundary. Code _ Addr is the
number of the block where the segment code starts
(relative to the start of the codefile). Code _ Leng is
the number of16-bitwords in the segment. This size
includes the relocation list but does not include the
segment reference list. All unused entries in this
array should be zeroed.

Seg_Name contains the first 8 characters of the
program, unit, segment, or assembly procedure
name. Unused entries should be blank-filled.

Seg_Misc contains miscellaneous information about
the segment. Seg_Type indicates the type of
segment: Prog_Seg and Unit_Seg are outer
segments of programs and units respectively;
Proc_ Seg is a segment routine within either a unit
or a program outer segment; Seprt_Seg is an
unlinked native code segment. Has_Link_Info
indicates whether Linker information has been
generated for this segment. Linker info resides in the
blocks that directly follow the segment reference
list. Linker info starts on a block boundary. The
Boolean Relocatable specifies whether a code
segment is statically or dynamically relocatable.

Dynamically relocatable code segments reside in the
Codepool; their position in memory may change
many times during execution. Statically relocatable
code segments are loaded only once, in a fixed

2-25

2-26

position on the system heap: they remain
position-locked and memory-locked throughout
their lifetime.

All segments that contain only P-code are
position-independent and thus dynamically
relocatable. Segments that contain native code may
be dynamically relocatable provided they make no
assumptions about either the lifetime of any
modifications made to the segment body itself, or
the exact location of the segment body in memory
across the execution of a single P-code.

Dynamically relocatable native code is generated by
assembling routines using the RELPROC or
RELFUNC assembler directives; a linked code
segment containing assembly routines is
dynamically relocatable only if all of its assembly
routines were originally specified as dynamically
relocatable. Note that the use of these assembler
directives is an assertion by the programmer that the
routines they declare behave properly; the System
does not enforce this, so caution must be used. If a
routine is to be dynamically relocatable, it cannot
store information into the segment body, be
self-modifying, or store any pointers to the code
segment in data variables, and then assume that
things will behave correctly the next time it is called.

The Boolean Relocatable is unaffected by the
presence or absence of relocation lists, and is not
relevant to concurrency considerations.

Seg_ Text contains the starting block of the
segment's INTERFACE text section, relative to the
start of the codefile. The INTERFACE text section
can appear anywhere within the codefile that
contains the code segment it describes. The
Seg_ Text array entry, in conjunction with the
TeXL-Size field in the Se~Famly record, indicates
the address and length of the INTERFACE section in

blocks. The INTERFACE text section always starts
on a block boundary and follows all of the
conventions of a textfile, with the exception that the
last page of the section may be either 1 or 2 blocks
long. Only segments with a Seg_ Type ofUnit_Seg
have INTERFACE sections. All other segments and
unused entries should be zero-filled.

Seg_Info contains further information about the
segment. Seg_Num is the segment number. M_Type
tells what kind of object code is in the segment. If
there is any native code in the segment, thenM_Type
will be M_8088. If the segment consists exclusively
of P-code, then its M Type is M Pseudo.
Majoc Version gives the version of the P-machine on
which the codefile is intended to run.

Seg Famly contains information about the code
segment's compilation unit. The information
contained in this array depends on whether
Seg_Type indicates a principal or a subsidiary
segment.

If the segment is a subsidiary segment, then
Seg Famly contains the first 8 characters of the
parent compilation unit's name, stored in
Prog_Name. If this name is not known at codefile
generation time (as is the case with SeprLSeg's), the
field should be blank-filled.

2-27

2-28

If segment is a principal segment, then the
information in Seg _Famly consists of four fields:

Data_Size is the number of words in this
segment's base data segment. The variables of
principal segments are referenced from any
location, including their own outer routine
bodies, via global loads and stores (rather than
local operations). Therefore, the Data_Size
field associated with the body of an outer
routine in a code segment should be zero, so
that no superfluous memory will be allocated in
an unused local data area.

Seg_Refs is the size in words of the segment
reference list for this segment.

Max_Seg_Num is the total number of segment
numbers assigned to this compilation unit.
Max_Seg_Num includes all segments with
assigned numbers, regardless of whether the
segment body is contained in this file or not.

Text Size is the number of blocks of
INTERFACE text within the compilation unit.
TexCSize is used in conjunction with the
Seg_Text array to specify the INTERFACE text
for a compilation unit of type UnicSeg; it is
zero-filled for all other compilation unit types.

If the segment is unused (Seg_Type = No_Seg), then
Seg_Famly should be zero-filled.

NexCDict contains the block number of the next
segment dictionary record, relative to the start of the
codefile. In the last record of the segment dictionary,
N excDict is zero.

Filler is reserved for future use and is always
zero-filled.

Copy_Note is reserved for a copyright message,
which can be created with either the LIBRARY
utility or a Compiler directive.

Sex corresponds to the byte sex of the codefile. It is a
full word that contains the value 1, with the same
byte sex as the rest of the dictionary record. Thus,
when this word is examined by a program running on
a machine with the same byte sex as the codefile, it
will appear as a 1; on a machine of opposite sex, it will
appear as a 256. System programs use this word to
detect the sex of the codefile, and if necessary,
byte-swap the word-oriented fields of the dictionary.
As long as all programs are compiled and run on an
IBM Personal Computer, the byte sex will be
consistent (least significant byte first).

Assembler-Generated Code files

Code files generated by the 8088/87 Assembler have
a slightly different structure from those generated
by a compiler. A relocation list is generated for each
procedure in an assembler-generated segment
(instead of one relocation list for the whole
segment). These are the only sort of lists that may
contain ProcRel relocation. These lists are placed
immediately after the body of the procedure they
describe. The start or high end address of each list is
pointed at by the seg-relative word pointer
contained in the ExitIC field of each
assembler-generated procedure.

An assembler-generated segment is also unique in
that during the linking process, the code bodies of all
its procedures and functions may be copied into one
of the segments of the compilation unit it is being
bound to. Further, the name of the segment or
segments that the assembly code may be linked to is
never known at assembly time. It is, however, always
assumed that any number of assembly procedures or

2-29

functions that communicate via REFs and DEFs are
always bound into the same segment, regardless of
whether they were assembled together.

The Data_Size word generated by the assembler for
each routine should have a value of -1 (OFFFF
HEX): this indicates a data size of zero that is one's
complemented, to signal that the first instruction of
the code body is native code.

Finally, since the assembler-generated code
segments cannot know what program or unit they
are to be linked to, the Prog_Name entry in the
Seg_Famly array of the segment dictionary is
blank-filled, and the DataSegNum field in the
ListHeader record of all BaseRel relocation sublists
is zero-filled.

It is the Linker's responsibility, when linking
assembler-generated segments, to convert all
ProcRel relocation sublists into SegRel relocation
lists, to correctly set the DataSegNum field in the
ListHeader of all BaseRel relocation sub lists, and to
collect all relocation sublists and place them after
the procedure dictionary of the code segment. The
Linker also updates the Relocatable bit in the
Seg_Misc array, depending on the information
supplied in Linker info.

Code Segment Environments

2-30

Segment Information Blocks (SIBs)

A Segment Information Block (SIB) is a record that
contains information about an "active" code
segment. A code segment is active if it may be used
by a program that is running. An SIB is allocated on
the Heap, and remains there as long as the segment is

active. There is only one SIB for each code segment,
no matter how many other segments may be using it.

Note: A code segment need not be in memory
to be active: an active code segment may be on
disk or in the Codepool, but its SIB will always
be on the Heap.

The following fragment of Pascal code describes an
SIB:

SIB = RECORD

ReCCount: integer;
Activity: integer;
Link_Count: integer;
Residency: ·1..maxint;

(points to the description
of the Code pool where the
segment resides; is NIL if
segment is on heap)

(byte offset within pool
of segment's memory locn)

(# of active calls to the seg)
(memory swap activity)
(number of links to the SIB)
(-1 = PosLock, 0 = Swap,
n = MemLock)

Seg_Name: PACKED ARRAY (0 .. 7] OF CHAR;
Seg_Leng: integer; (# of words in segment)
Seg_Addr: integer; (disk address of segment)
VoUnfo: VLPtr; (pointer to disk drive info)
Data_Size: integer; (number of words in data seg)
Res_SIBs: RECORD {code pool management record}

NexCSIB: SIB_P; (next SIB in list)
Prev_SIB: SIB_P; (previous SIB in list)
CASE Boolean OF (scratch area)

TRUE: (SorCSIB: SIB_P);
(next SIB in sort list)

FALSE: (New_Loc: Mem_Ptr);
{temporary address}

END {of Res_SIBs);
MType: integer;

END {of SIB};

2·31

2-32

Seg_Pool points to a description of the codepool
where the segment resides. IfSeg_Pool is nil then the
segment is position-locked on the Heap. The fields
of the Codepool descriptor are described in Chapter
4.

Seg_Base contains the byte offset within the
codepool of the code segment. If the code segment is
not in memory, Seg_Base contains NIL.

ReLCount contains the number of outstanding calls
to the segment. It is incremented whenever a routine
outside the segment executes a CXG to a routine
within the segment. It is decremented whenever an
RET from a routine within the segment returns to a
routine outside the segment.

Activity contains a value based on the number of
times a segment is used; it increases over time.
It is incremented by 6 whenever a call is made to a
routine outside the segment. It is also incremented
by 6 whenever a routine within the segment returns
to a routine outside the segment. Finally, it is
incremented by 6 whenever a task switch suspends
the segment that is currently executing.

Link_Count contains the number oflinks to the SIB
from other Operating System data structures. When
Link_Count becomes zero, the SIB is removed from
the Heap (the space it occupied is available again).

Residency contains a value between -1 and maxint. A
-1 indicates that the segment is Position_locked (this
occurs when the Boolean Relocatable in the
segment dictionary is TRUE). A zero indicates that
the segment is Swappable (that is, it can be removed
from memory if necessary). A value greater than zero
indicates that the segment is Memory_Locked. In
this case, the value is a count of the number of
memory lock operations that have been applied tG)

that segment. Residency is incremented when a

program declares the segment to be
Memory_Locked, and decremented when a program
declares it to be Swappable. It becomes actually
Swappable when Residency is equal to zero (i.e.,
when no outstanding Mem_Lock operations
remain). Programs can control the residency of
segmen ts by using the intrinsics MEMLOCK and
MEMSWAP.

Segflame contains the first 8 characters of the
segment's name.

Seg_Leng contains the number of words that the
code segment occupies (including any relocation
lists, but excluding segment reference lists).

Seg_Addr contains the segment's first block number
on disk.

VoLInfo contains a pointer (VLPtr) to a volume
information record that contains the drive number
and volume name of the disk on which the segment is
resident.

Data_Size contains the number of words in the code
segment's data segment. This only applies to
principal segments: otherwise, Data_Size should be
zero.

Res_SIBs is used to maintain the Codepool. All SIBs
of segments in the Codepool are on a doubly-linked
list formed by the Prev_SIB and NexCSIB pointers.
The SorCSIB and N ew_Loc fields are used for
temporary values while managing the Codepool.

The Operating System uses several data structures to
manage code segments by maintaining active SIBs
and managing the Codepool. All of these data
structures refer to SIBs through pointers.

2-33

2-34

When a program being prepared for execution
requires a code segment that is not yet active, the
appropriate SIB is allocated on the Heap and
initialized. The Operating System creates a pointer
to the SIB, and the SIB's Link_Count is incremented.
When the segment is no longer needed, the pointer
is removed, and the Link_Count is decremented.
When Link_Count becomes zero, the SIB is
removed from the Heap.

Environment Records (E_RECs)

A code segment's "environment" is the mapping of
segments it may access into local segment numbers.
Segment numbers only have local meaning; a
segment may only refer to segments that have been
assigned local segment numbers. It may not refer to
segments outside of this scope.

For each segment, there is an Environment Record
(E_Rec). This record designates an Environment
Vector (E_ V ec) that describes the mapping of local
segment numbers to actual code segments.

The following fragment of pseudo-Pascal describes
environment records and vectors:

E_VacCP = A E_Vact;
E_Rac_P = A E_Rac;

LVact RECORD
Vac_Length: intagar;(numbar of local sagments}
Map: ARRAY [1 .. Vec_Length) OF E_Rec_P;

(local anvironmant mapping)

LRee RECORD
Env_Data: Mem_Ptr; {pointer to global data}
Env_SIB: SIB_P; {pointer to SIB for seg num}
Env_Veet: E_VeecP; {pointer to environment}

CASE Boolean OF
TRUE: (Link_Count: integer;

{number of links to LRee}
NexCRee: LRee_P);
{next environment record}

END {of E_Ree};

Env_Data points to the segment's global data. (The
data segment is allocated on the Heap when the
program is invoked.)

Env_SIB points to the segment's SIB. (Also placed
on the Heap when the program is invoked.)

Env_Vect is an array of pointers to E_Rec's. It is
indexed by a segment number: the pointer indicates
an E_Rec that describes a code segment. In this way,
a mapping from local segment numbers to actual
segments is accomplished.

Link_Count indicates the number of active
compilation units that are currently USE'ing the
segment. This only applies to the principal E_Rec of
a compilation unit. Link_Count is maintained in the
same wayan SIB's Link_Count is maintained.

NexcRec is a pointer on a chain of all active
compilation units. This chain is called UnicList.
This field also applies only to the principal E_Rec's
of a compilation unit.

In order to minimize index manipulations, the Map
array in an E_ Vect record starts at 1. Thus it may be
indexed by local segment numbers (these must be 1
or greater). The Vec_Length field of the record may
be considered to occupy the zero'th position of the
map.

2-35

2-36

The Operating System uses a recursive routine to
construct the environments of a program's USEd
units, and then its subsidiary segments and principal
segment (its "native segments"). The algorithm is
roughly:

FUNCTION BUlld_Env (Seg_Dlct): E_Rec_P;
BEGIN
IF outer block segment E_Rec exists In Un'ellst THEN

BEGIN
increment link_Count;
return existing E_Re,--p

END ELSE BEGIN
create LVect;

E_Vect;

create Env_Data for outer block data space;
IF there are USEd units Indicated In Seg_Dict THEN

FOR all USEd units DO
Install Build_Env(New_Seg_Dlct)lnto current

FOR all native segments DO
BEGIN

create E_Rec and SIB for native segment;
Install LVect, SIB, and Env_Data In LRec;
Install E_Rec for native segments In LVect

END;
Install E_Rec for outer block segment on UnlClIst;
return E_Rec_P for outer block segment

END
END

The Build_Env function returns a pointer to the
E_Rec for the outer block of the program being
executed. This pointer is installed into the
Operating System's UsecProgram E_Vect entry.

After a program's execution, a recursive routine is
used to de-link the environment for the program's
outer block and all subsidiary units and segments.
The algorithm is roughly:

PROCEDURE Dump_Env (LRee_P);
BEGIN
decrement Link_Count;
IF Link_Count = 0 THEN
BEGIN

de-link from UniCList;
DISPOSE (Env_Data);
FOR all E_Ree's on E_Veet whose Seg_Veet

<> E_Rec.Seg_Veet DO
Dump_Env (those LRee's);

FOR all E_Ree's on LVeet whose Seg_Veet
= LRee.Seg_Veet DO

BEGIN
de_link E_REC~SEG_SIB;
DISPOSE (those LRees);

END;
DISPOSE (E_Ree.Seg_Veet);

END
END

The Operating System sets its E_Vect entry for the
terminating program to NIL, and calls Dump_Env
for the outer block's E_Rec. After Dump_Env
returns, a pass is made through the Res_SIBs list to
find all segments whose Link_Count = 1, and remove
them from the Heap.

2-37

Task Environments

2-38

A task is a routine that is executed concurrently with
other routines. A task is implemented by three data
structures: the body, the Task Information Block
(TIB), and the task stack. In Pascal, a task is known as
a PROCESS.

The "main task" of the p-System is the thread of
execution that runs from Operating System
initialization and all System utility or user program
executions to the termination of the Operating
System. A program may have subsidiary tasks.

During execution, each subsidiary task uses its own
stack instead of the System Stack. The task's
activation record is actually contained in the task
stack: both are allocated on the Heap, along with an
amount of free space into which the stack may grow.

The task body is a portion of a P-code segment. In
structure it is no different from the body of a
procedure or function.

The amount of space allocated to the task stack
depends on the STACKSIZE parameter of the
START intrinsic. The default is 200 words.

The main task uses the System Stack for expression
evaluation and activation records. The Heap is
shared by the main task and all subsidiary tasks.

The TIB of a subsidiary task is allocated on the Heap
when the task is started. It contains information
about a task's execution environment. This must be
maintained, and restored whenever a task is
restarted after having been idle.

At any given time, the P-machine may have:

• one task running

• several tasks ready to run, and

• several tasks waiting for semaphores.

The tasks that are ready to run are organized into a
queue. There is also a queue of waiting tasks for each
semaphore (it may be empty). Tasks in queues are
ordered by their priority.

The P-machine register CURTSK always points to
the TIB of the currently executing task.

The register READYQ points to the first in the list of
tasks ready to run.

The following fragment of Pascal code describes a
TIB:

TlB = RECORD (Task Information Block}
Regs: PACKED RECORD

WaiCO: TIB_Ptr;
Prior: byte;
Flags: byte;
SP_Low: Mem_Ptr;
SP_Upr: Mem_Ptr;
SP: Mem_Ptr;
MP: MSCW_Ptr;
BP: MSCW_Ptr;
IPC: integer;
Env: ERec_Ptr;
ProcNum: byte;
TIBIOResult: byte;
Hang_Ptr: Sem_Ptr;
M_Depend: integer;

END {of Regs}
MainTask: Boolean;
StarCMSCW: MSCW_Ptr;

END (of TIB}

2-39

2-40

SP is the P-machine Stack Pointer. SP_Low and
SP_Upr are the limits on SP for this task.

MP and BP designate (respectively) the local and
global activation records for this task.

IPC is the P-code Instruction Counter (a seg-relative
byte pointer), and ProcNum is the number of the
executing routine.

Priority contains the task's priority. This is a number
from 0 .. 255. The lower the value, the more urgent
the priority.

WaicQ is used when the task is waiting to run, or
waiting on a semaphore. WaicQ is one link in a
linked list of TIBs.

When a task is waiting on a semaphore, Hang_Ptr
points to that semaphore. If the task is not waiting
on a semaphore, Hang_Ptr is NIL. Hang_Ptr allows a
task to be removed from a semaphore's wait queue if
the task is being terminated.

Flags is reserved for future use.

Env is a pointer to the task's E_Rec. The task's SIB
(Segment Information Block) may be found through
the E_Rec.

TIBIOResult contains the IORESULT that is local
to the task.

M_Depend contains machine-dependent data
maintained by the Interpreter. It is initialized to o.

MainTask, if TRUE, indicates that this is the TIB of a
" " (" ") k root parent tas.

StartMSCW points to the MSCW (Mark Stack
Control Word) of the routine that START'ed this
task.

Further information about tasks appears in Chapter
4. Figure 2-4 shows the layout of main memory while
the System is running, including the location of task
stacks as discussed in this section.

High address

Odd Even

OPERATING SYSTEM
(subset always resident)

STACK

HEAP

PROCESS 1 STACK

GLOBAL DATA SEG1

GLOBAL DATA SEG2

INTERPRETER Low address '----_______ --1

Figure 2-4. Main Memory Usage

2-41

P-Machine Instructions
The Intrinsic P_MACHINE

2-42

A Pascal compilation unit may directly generate
in-line P-code. This is done by calling the intrinsic
procedure P_MACHINE. Producing in-line P-code
may be useful in very low-level system programming.
Absolutely no protection is provided by this
intrinsic or the System; it can only be used at the
user's risk, and extreme caution should be exercised.

The form of a call to P_MACHINE may be sketched
as follows:

P_MACHINE
(<P·machine item> (, <P·machine Item>))

... that is, the parameters to the procedure are a list of
one or more <P-machine item>s. A <P-machine
item> describes a portion of P-code, and causes one
or more bytes to be generated.

There are three varieties of <P-machine item>:

1) P-code syllable: the simplest item is a (non-real)
scalar constant. This item produces a single
byte ofP-code which is the least Significant byte
of the specified constant.

2) Expression value: if the item is an expression
enclosed in parentheses, then a P-code
sequence is generated which will compute the
value of the expression and leave it on the stack.

3) Address Reference: if the first token of the item
is "', then the item is the specification of a
variable, and P-code is generated which leaves
the address of that variable on the stack.

... A <P-machine item> may not be a string constant.

Example:
Given these declarations:

CONST STO = 196;

TYPE Records = RECORD
FirstField, Second Field: integer

END;
PRecords = A Records;

VAR Vector: ARRAY [0 .. 9] OF PRecord;
i: integer;

... the following call to P_MACHINE ...

PMACHINE (A Vector[5r.FirstField, (i*i), STO)

... would cause the square of i to be stored in the first
field of the record designated by the sixth element of
the array Vector.

P-Code Instruction Set

Operands and Notation

Instruction Parameters. The parameters to a
P-code instruction contain information about the
location and size of that instruction's operands.
They are generated at compile time, and are
therefore static. Each P-code uses some (fixed)
combination of these parameters.

2-43

2-44

These are the five possible parameter formats (there
are no others):

UB - Unsigned Byte
Represents a positive integer in the range
0 .. 255. When converted to a 16-bit two's
complement value, the most significant byte is
zeroed.

SB - Signed Byte
Represents a two's complement 8-bit integer in
the range -128 .. 127. When converted to a
16-bit two's complement value, the most
significant byte is a sign extension (all bits equal
bit 7 of the low byte (SB».

DB - Don't care Byte
Represents a positive integer in the range
0 .. 127. It may thus be treated as either an SB or
UB. Bit 7 is always o.

B- Big
This is a parameter with variable length. Ifbit 7
of the first byte is 0, the remaining 7 bits
represent a positive integer in the range 0 .. 127.
If bi t 7 of the first byte is 1, then bit 7 should be
cleared; the first byte is the high-order byte of a
16-bit word, and the following byte is the
low-order byte of that word. The Big format
may represent positive integers in the range
0 .. 32767.

W - Word
This is a two-byte parameter. It is a 16-bit two's
complement value that represents an integer in
the range -32768 .. 32767. The word is always
least-significan t-byte- first.

Dynamic Operands. In the P-machine instruction
descriptions below, stack-oriented dynamic
operands of the P-codes will be discussed. This
section describes those operands.

Activation Record
See the following section.

Addr (address)
A 16-bit hardware word address (on
byte-addressable processors, this is typically an
even quantity).

Bool (Boolean)
A 16-bit quantity treated as a logical value.

Byte-ptr (byte pointer)
A 32-bit quantity. TOS is an index into an array
of bytes. TOS-l is the word address of the base
of the byte array. Two words are used in a
byte-ptr so that individual bytes may be
specified even on word-addressed processors.

Int (integer)
A 16-bit two's complement integer.

Nil
A constant that references an invalid address.
The actual value varies from processor to
processor.

Offset
An offset into a code segment. This is either a
word or a byte offset, depending on the natural
addressing unit of the host processor.

Pack-ptr (packed array pointer)
Three words that designate a bit field within a
16-bit word. TOS is the number of the
rightmost bit of the field, TOS-l is the number
of bits in the field, and TOS-2 is the address of
the word.

2-45

2-46

Real
A 32-bit or 64-bit floating point quantity.

Set
A set is 0 .. 255 words of bit flags, preceded by a
word that contains the number of words in the
set.

Word
A 16-bit quantity that may be treated in any
way: as an integer, Boolean, address, etc.

Word-block
A group of zero or more words.

Activation Records. An activation record is
created for each invocation of an active routine.
Figure 2-5 illustrates an activation record.

The parts of an activation record are:

1) Mark Stack. Five (full) words of housekeeping
information:
a) MSSTAT - pointer to the activation record of

the lexical parent.

b) MSDYN - pointer to the activation record of
the caller.

c) MSIPC - seg-relative byte pointer to point of
call in the caller.

d) MSENV - E....Rec pointer of the caller.

e) MSPROC - procedure number of caller.

2) Local and temporary variables. This area is
DataSize words long.

Mark
Stack

High address

Function value

Parameters

Locals
and

temporaries

MSPROC

MSENV

MSIPC

MSDYN

MSSTAT

Low address

DATASIZE
words

Least significant
byte

Figure 2-5. Procedure Activation Record

2-47

2-48

3) Parameters. This area (which may be empty)
contains:

a) Addresses - for V AR parameters, and record
and array value parameters.

b) Values - for other value parameters.

4) Function value. This area is present only for
functions, and is either one or two words (or
four words, if reals are that size).

Conventions. The individual P-code instructions
are grouped by the nature of their operation.

On the left is the mnemonic for the instruction,
followed by its value (all P-code instructions are
represented by a single byte). This is followed by the
format for the parameters, if any.

If the instruction has more than one parameter of
the same format, then they are distinguished by an
underscore followed by a number (parameters of a
given kind are numbered left to right, starting from
1).

On the right is a verbal description of the
instruction.

Below the opcode value is a notational description of
the P-machine Stack before and after the P-code's
execution. Only the expression-evaluation portion
(the top words of the stack) is shown.

On the left is a depiction of the Stack before the
opcode is executed, followed by a colon (:), followed
by a depiction of the stack after the ope ode is
executed. Each depiction of the Stack is enclosed in
angle brackets (<>). Within the brackets, the stack
grows from left to right. Individual operands are
separated by commas, and vertical bars represent

exclusive alternatives (one or the other value, but
not both). Thus the operand closest to the right
bracket (>) is the top-of-stack (TOS). Brackets that
do not enclose any operands represent an empty
evaluation stack.

The Individual P-Code Instructions

Constant One-Word Loads.

SLDC

LDCN

LDCB

LDCI

LCO

0 .. 31
<>:<word>

152
<>:<NIL>

128 UB
<>:<word>

129 W
<>:<word>

130 B
<>:<offset>

Short Load Word
Constant. Push the
opcode, with the high
byte zero.

Load Constant NIL.
Push NIL.

Load Constant Byte.
Push UB, with high
byte zero.

Load Constant Word.
Push W.

Load Constant Offset.
B is a word offset into
constant pool of the
current segment.
Convert B to a
seg-relative word offset.
If operating on a byte­
addressed machine, then
convert to a byte offset.
Push the offset on the
Stack.

2-49

Local One-Word Loads and Stores

SLDLI 32 Short Load Local Word.
SLDLx: fetch the word

SLDL16 47 with offset x in the local
<>:<word> activation record and

push it.

LDL 135 B Load Local Word. Fetch
<>:<word> the word with offset B

in the local activation
record and push it.

SLLAI 96 Short Load Local
Address. Push the

SLLAS 103 address of the indicated
<>:<addr> offset in the local

activation record.

LLA 132 B Load Local Address.
<>:<addr> Calculate address of the

word with offset B in
the local activation
record and push it.

SSTLI 104 Short Store Local Word.
Store TOS in the

SSTLS 111 indicated offset in the
<word>:<> local activation record.

STL 164 B Store Local Word. Store
<word>:<> TOS into word with

offset B in the local
activation record.

2-50

Global One-Word Loads and Store.

SLDOI 48

SLD016 63
<>:<word>

LDO

LAO

SRO

133 B
<>:<word>

134 B
<>:<addr>

165 B
<word>:<>

Short Load Global
Word. SLDOx: fetch
the word with offset x
in the global data area
of the current segment
and push it.

Load Global Word.
Fetch the word with
offset B in the global
data area of the current
segment and push it.

Load Global Address.
Push the word address
of the word with offset
B in the glo bal da ta area
of the current segment.

Store Global Word.
Store TOS into the
word with offset B in
global data area of the
current segment.

Intermediate One-Word Loads and Store.

SLOD1
SLOD2

173 B
174 B
<>:<word>

Short Load Intermediate
Word. Push the word at
offset B in the activation
record of the parent
(LOD1) or grandparent
(LOD2) of the local
activation record.

2-51

2-52

LOD 137 DB, B Load Intermediate
<>:<word> Word. DB indicates the

number of static links
to traverse to find the
activation record to use.
Push the word at offset
B in that activation
record.

LDA 136 DB, B Load Intermediate
<>:<addr> Address. DB indicates

the activation record as
for LOD. Push the
address of offset B in
that record.

STR 166 DB, B Store intermediate
<word>:<> word. Store TOS at

offset B in the activation
record indicated by DB.

Extended One-Word Loads and Store.

LDE

LAE

STE

154 DB, B
<>:<word>

155 DB, B
<>:<addr>

217 DB, B
<word>:<>

Load Extended Word.
Push the word at offset
B in the global data area
of local segment DB.

Load extended address.
Push the address of the
word at offset B in the
global data area oflocal
segment DB.

Store extended word.
Store TOS at offset Bin
the global data area of
local segment DB.

Indirect One-Word Loads and Store.

SINDO 120 Short Index and Load
Word. TOS is the

SIND7 127 address of a record.
<addr>:<word> SINDx: replace it with

word x of the record.

IND 230 B Index and Load Word.
<addr>:<word> TOS is the address of a

record. Replace it with
the B'th word in the
record.

STO 196 Store Indirect. Store
<addr, word>: TOS into the word
<> pointed to by TOS-l.

Multiple-Word Loads and Stores.

LDC 131 UB_l, B,
UB_2 <>:
<word-block>

Load Multiple Word
Constant. B is a word
offset into the constant
pool of the current
segmen t. Push the
UB_2 words starting at
that offset onto the
evaluation Stack. If
UB_l, the mode, is 2,
and the current segment
is of opposite byte sex
from the host, swap the
bytes of each word as it
is pushed. If less than
B+20 words available to
the Stack, issue a Stack
fault.

2-53

LDM 208 UB Load Multiple Words.
<addr>: TOS is a pointer to the
<word-block> beginning of a block of

UB words. Push the
block onto the Stack,
preserving the order of
words in the block. If
less than UB+20 words
available to the Stack,
issue a Stack fault.

STM 142 UB Store Multiple Words.
<addr, word- TOS is a block of UB
block>:<> words. Transfer the

block from the Stack to
the destination block
starting at the address
TOS-1, preserving the
order of words in the
block.

LDCRL 242 B Load Real Constant.
<>:<real> Push the real constant

designated by the
constant pool index B
in the current segment.
The constant is
guaranteed to be in the
native byte sex of the
host, so no byte flipping
is necessary during the
load.

LDRL 243 Load Real. TOS is the
<addr>:<real> address of a real

variable. Replace the
address by the value of
the variable.

2-54

STRL 244 Store Real. TOS is the
<addr,real>:<> value of a real variable.

TOS-I is an address.
Store TOS at the
address in TOS-I.

String and Packed Array of Char Parameter
Copying. To copy value parameters of type string
or packed array of char into the activation record of a
called routine, the calling routine generates a
"parameter descriptor." This descriptor is a 2-word
record. The first (low address) word is either NIL, or
a pointer to an E_Rec. If the first word is NIL, the
second word is the address of the parameter. If the
first word points to an E_Rec, the second word is an
offset relative to the designated segment (the offset
is generated by an LCO instruction).

The called routine uses a CAP or CSP instruction to
copy the parameter into its activation record. CAP
and CSP use the parameter descriptor to do this.

CAP 171 B Copy Array Parameter.
<addr,addr>:<> TOS is the address of

the parameter
descriptor for a packed
array of characters.
Cause a segment fault if
the parameter
descriptor designates a
non-resident segment.
Otherwise, copy the
source (which is B words
big) into the destination
address at TOS-l.

2-55

2-56

CSP 172 UB Copy String Parameter.
<addr,addr>:<> TOS is the address of

the parameter
descriptor for a string.
Cause a segment fault if
the descriptor
designates a non-resident
segment. Otherwise,
.compare the dynamic
length of the designated
string to UB, the
declared size (in bytes)
of the destination
formal parameter
causes a string overflow
fault if the length of the
source is greater than
the capacity of the
destination. Otherwise,
copy, for the length of
the source, into the
destination, whose
address is in TOS-l.

Byte Load and Store.

LDB

STB

167
<byte-ptr>:
<word>

200
<byte-ptr,
word>:<>

Load Byte. TOS is a byte
pointer. Pop it and push
a word with the byte it
designated in the least
significant bits and a
most significant byte of
zero.

Store Byte. Store byte
TOS into the location
specified by byte
pointer TOS-I.

Packed Field Load and Store.

LDP

STP

201
<pack-ptr>:
<word>

202
<pack-ptr,
word >:<>

Load a Packed Field.
Replace the packed field
pointer TOS with the
field it designates.
Before being pushed on
the Stack, the field is
right-justified and
zero-filled.

Store into a Packed
Field. TOS is the
right-justified data,
TOS-1 a packed field
pointer. Store TOS into
the field described by
TOS-1.

Record and Array Indexing and Assignment.

MOV

INC

197 DB, B
<addr,
addr>:<>

231 B
<addr>:<addr>

Move. Move B words
from the source
designated by TOS to
the location designated
by TOS-l. TOS is either
the address of a word
block (if DB is zero) or
the offset of a constant
word block in the
current segment. If DB
is 2, and the current
segment has opposite
byte sex from the host,
swap the bytes of each
word as it is moved.

Increment Field
Pointer. The word
pointer TOS is indexed
by B words and the
resultant pointer is
pushed.

2-57

2-58

IXA

IXP

215 B
<addr, word>:
<addr>

216
UB_1, UB_2
<addr, word>:
<pack-ptr>

Index Array. TOS is an
integer index, TOS-1 is
the array base word
pointer, and B is the
size (in words) of an
array element. Push a
word pointer to the
indexed element.

Index Packed Array.
TOS is an integer index,
TOS-1 is the array base
word pointer. UB_1 is
the number of elements
per word, and UB_2 is
the field-width (in bits).
Compute and push a
packed field pointer.

Logical Operators.

LAND

LOR

161
<word, word>:
<word>

160
<word, word>:
<word>

Logical And. AND TOS
into TOS-I.

Logical Or. OR TOS
into TOS-I.

LNOT 229 Logical Not. Take one's
<word>:<word> complement of TOS.

BNOT 159 Boolean Not.
<Bool>:<Bool> Complement the low

bit and clear the
remainder of TOS.

LEUSW 180
<word, word>:
<Boo1>

Less Than or Equal
Unsigned. Push Boolean
result of unsigned
comparison TOS-1
< = TOS.

GEUSW 181
<word, word>:
<Bool>

Integer Arithmetic.

ABI 224
<int>:<int>

NGI 225
<int>:<int>

INCI 237
<int>:<int>

DECI 238
<int>:<int>

ADI 162
<int,int>:<int>

SBI 163
<int,int>:<int>

MPI 140
<int,int>:<int>

Greater Than or Equal
Unsigned. Push Boolean
result of unsigned
comparison TOS-1
> = TOS.

Absolute Value Integer.
Take absolute value of
integer TOS. Result is
undefined if TOS is
initially -32768.

Negate Integer. Take
the two's complement
of TOS.

Increment Integer. Add
1 to TOS.

Decrement Integer.
Subtract 1 from TOS.

Add Integers. Add TOS
into TOS-l.

Subtract Integers.
Subtract TOS from
TOS-l.

Multiply Integers.
Multiply TOS into
TOS-1. This instruction
may cause overflow if
result is larger than 16
bits.

2-59

DVI 141 Divide Integers, Divide
<int,int>:<int> TOS-1 by TOS and push

quotient. If TOS is 0,
cause an execution
error.

MODI 143 Modulo Integers.
< int, in t>: <int> Divide TOS-1 by TOS

and push the remainder.

CHK 203 Check Subrange
< in t, in t, in t>: Bounds. Ensure that
<int> TOS-1 < = TOS-2

< = TOS, leaving
TOS-2 on the Stack. If
conditions are not
satisfied, cause a
runtime error.

EQUI 176 Equal Integer. Push
<int,int>: Boolean result of
<Bool> integer comparison

TOS-1 = TOS.

NEQI 177 Not Equal Integer.
<int,int>: Push Boolean result of
<Bool> integer comparison

TOS-1 <> TOS.

LEQI 178 Less than or Equal
<int,int>: Integer. Push Boolean
<Bool> result of integer

comparison TOS-1
< = TOS.

GEQI 179 Greater than or Equal
<int,int>: Integer. Push Boolean
<Bool> result of integer
<Bool> comparison TOS-1

> = TOS.

2-60

Real Arithmetic. All overflows and underflows
cause a runtime error.

FLT 204 Float Top-of-Stack.
<int>:<reai> Convert the integer

TOS to a floating point
number.

TNC 190 Truncate Real. Convert
<real>:<int> the real TOS to an

integer by truncating.

RND 191 Round Real. Convert
<real>:<int> the real TOS to an

integer by rounding.

ABR 227 Absolute Value of Real.
< real>: < real> Take the absolute value

of the real TOS.

NGR 228 Negate Real. Negate
<real>:<real> the real TOS.

ADR 192 Add Reals. Add TOS
<real, real>: into TOS-l.
<real>

SBR 193 Subtract Reals.
<real, real>: Subtract TOS from
<real> TOS-l.

MPR 194 Multiply Reals.
< real, real>: Multiply TOS into
<real> TOS-l.

DVR 195 Divide Reals. Divide
<real,real>: TOS into TOS-l. If
<real> TOS is 0, cause a

runtime error.

I 2-61

2-62

EQREAL 205
<real, real>:
<Bool>

LEREAL 206
<real,real>:
<Bool>

GEREAL 207
<real, real>:
<Bool>

Set Operations.

AD] 199 VB
<set>:<word­
block>

Equal Real. Push
Boolean result of real
comparison TOS-l =

TOS.

Less than or Equal Real.
Push Boolean result of
real comparison
TOS-l < = TOS.

Greater than or Equal
Real. Push Boolean
result of real
comparison TOS-l
< = TOS.

Adjust Set. Force the
set TOS to occupy VB
words, either by
expansion (adding
zeroes "between" TOS
and TOS-l) or
compression (chopping
of high words of set),
and discard its length
word. After this
operation, if less than
20 words are available
to the Stack, cause a
Stack fault.

SRS 188 Build a Subrange Set.
<int,int>:<set> The integers TOS and

TOS-l must be in
[0 . .4079).lfnot, cause a
runtime error, else
push the set
[TOS-l..TOS). If
TOS-l > TOS, push the
empty set. Before this
operation, if less than
20 words available to
the Stack, cause a Stack
fault.

INN 218 Set Membership. Push
<int,set>: Boolean result of
<Bool> TOS-l in TOS.

UNI 219 Set Union. Push the
<set,set>: union of sets TOS and
<set> TOS-l (TOS OR

TOS-l).

INT 220 Set Intersection. Push
<set,set>: the intersection of sets
<set> TOS and TOS-l

(TOS AND TOS-l).

DIF 221 Set Difference. Push
<set,set>: the difference of sets
<set> TOS and TOS-l

(TOS-l AND NOT
TOS).

EQPWR 182 Equal Set. Push the
<set,set>: Boolean result of set
<Bool> comparison TOS-l =

TOS.

2-63

2-64

LEPWR 183
<set,set>:
<Bool>

GEPWR 184
<set,set>:
<Bool>

Byte Array Comparisons.

EQBYT 185
UB_1 UB_2 B
<addrloffset,
addr loffset>:
<Bool>

Less than or Equal Set.
Push true if TOS-1 is a
subset of TOS, else
push false.

Greater than or Equal
Set. Push true if TOS is
a superset of TOS, else
push false.

Equal Byte Array. TOS
and TOS-1 are each a
pointer to a byte array
(if the corresponding
UB is zero) or the offset
of the constant byte
array in the current
segment. B is the size
(bytes) of that array.
UB_1 and UB_2 are
mode flags. They refer
to TOS and TOS-1,
respectively. If the byte
sex of the segment is
different from the host,
and the corresponding
mode is 2, swap the
bytes of each word of
that operand, before
doing the comparison.
Push the Boolean result
of the byte array
comparison TOS-1 =
TOS.

LEBYT 186
UB_1 UB_2 B
<addrloffset,
addr loffset>:
<Bool>

Less than or Equal Byte
Array. TOS and TOS-1
each point to a byte
array (if the
corresponding UB is
zero) or the offset of the
constant byte array in
the current segment. B
is the size (in bytes) of
that array. UB_1 and
UB_2 are mode flags.
They refer to TOS and
TOS-1, respectively. If
the byte sex of the
segment is opposite
from the host, and the
corresponding mode is
2, swap the bytes of
each word of that
operand before doing
the comparison. Push
Boolean result of the
byte array comparison
TOS-1 <= TOS.

2-65

2-66

GEBYT 187

Jumps.

UJP

FJP

TJP

UBJ UB_2 B
<addrloffset,
addrloffset>:
<Bool>

138 SB
<>:<>

212 SB
<Bool>:<>

241 SB
<Bool>:<>

Greater than or Equal
Byte Array. TOS and
TOS-l each point to a
byte array. The
corresponding UB is
zero or the offset of a
constant byte array in
the current segment. B
is the size (in bytes) of
that array. UB_l and
UB_2 are mode flags.
They refer to TOS and
TOS-l, respectively. If
the byte sex of the
segment is opposite the
host, and the
corresponding mode is
2, swap the bytes of
each word of that
operand before doing
the comparison. Push
the Boolean result of
the byte array
comparison TOS-l
<= TOS.

Unconditional Jump.
Jump by byte offset SB.

False Jump. Jump by
byte offset SB if TOS is
false.

True Jump. Jump by
byte offset SB is TOS is
true.

EFJ

NFJ

JPL

FJPL

XJP

210 SB
<int,int>:<>

211 SB
<int,int>:<>

139 W
<>:<>

213 W
<Bool>:<>

214 B
<int>:<>

Equal FalseJump.Jump
by byte offset SB if
TOS <> TOS-l.

Not Equal False Jump.
Jump by byte offset SB
ifTOS = TOS-l.

Unconditional Long
Jump. Jump W bytes
from current location.

False Long Jump.
Jump W bytes from
current location ifTOS
is false.

Case jump. The first
word, WI, with word
offset B in the constant
pool of the current
segment is word-aligned
and is the minimum
index of the table. The
next word, W2, is the
maximum index. The
case table is the next
(W2-Wl)+ 1 words. If
the byte sex of the
segment is opposite to
the host, any of these
words must be byte­
swapped before they
are used.

IfTOS, the actual index,
is in the range Wl..W2,
then jump W3 words
from the current
location, where W3 is
the contents of the
word pointed at by TOS.
Otherwise do nothing.

2-67

2-68

Routine Calls and Returns. For all procedure call
instructions, after the MSCW and Datasize words
have been pushed on the Stack, a check is made to
see that there are still at least 40 words available
between the Stack and the Codepool. If there are
not, a Stack fault is issued.

For all calls to external procedures, issue a segment
fault if the desired segment is not already in memory.

CPL

CPG

SCPIl
SCPI2

144 DB
<param>:
<activation>

145 DB
<param>:
<activation>

239 DB
240 DB
<param>:
<activation>

Call Local Procedure.
Call procedure DB,
which is an immediate
child of the currently
executing procedure
and in the same
segment. Static link of
the new MSCW is set to
old MP.

Call Global Procedure.
Call procedure DB,
which is at lex level 1
and in the same
segment. The static link
of the MSCW is set to
BASE.

Short Call Intermediate
Procedure. Set the static
chain to point to the
lexical parent (CPl1) or
grandparent (CPI2) of
the calling
environment. Call
procedure DB.

CPI 146 DB,UB Call Intermediate
<param>: Procedure. Call
<activation> procedure UB, which is

at lex level DB less than
the currently executing
procedure and in the
same segment. Use that
activation record's static
link as the static link of
the new MSCW.

CXL 147 Call Local External
UB_l, UB_2 Procedure. Call
<param>: procedure UB_2, which
<activation> is an immediate child of

the currently executing
procedure and in the
segment UB_I.

SCXGl 112 UB Short Call External
Global Procedure. The

SCXG8 119 UB segment number is
<param>: indicated by the opcode
<activation> (1-8) and UB is the

procedure number.
SCXGl may refer to a
procedure embedded in
the Interpreter. If this is
the case, an Interpreter
table contains the
procedure's location.

CXG 148 Call Global External
UB_l, UB_2 Procedure. Call
<param>: procedure UB_2, which
<activation> is at lex level 1 and in

the segment UB_l. If
the segment number is
1, then the procedure
code may be embedded
in the Interpreter; an
Interpreter table
contains its location.

2-69

CXI 149 Call Intermediate
VB_I, DB, External Procedure.
VB_2 Call procedure VB_2,
<param>: which is at lex level DB
<activation> less than the currently

executing procedure,
and in the segment
VB_I.

CPF 151 Call Formal Procedure.
<param, TOS contains a
proc-ptr>: procedure number.
<activation> TOS-1 contains an

E_Rec pointer. TOS-2
contains a static link.
Call the indicated
procedure.

RPV 150 B Return from Procedure.
<activation>: Restore state of calling
<func> procedure from MSCW

and discard. Pop MSCW
from Stack. Cut back an
additional B words from
Stack, leaving function
value, if appropriate. If
returning to different
segment (Mark Stack
E_Rec <> current
E_Rec) then issue a
segment fault if
necessary. If procedure
numberinMSCW is< 0,
return to EXITIC
procedure, not
MSCW's IPC.

LSL 153 DB Load Static Link onto
<>:<addr> Stack. DB indicates the

number of static links
to traverse. Push the
indicated static link.

2-70

BPT 158
<>:
<activation>

Concurrency Support.

SIGNAL 222
<addr>:<>

WAIT 223
<addr>:<>

String Instructions.

EQSTR 232
UB_l, UB_2
<addr loffset,
addr loffset>:
<Bool>

Breakpoint.
Unconditionally call
execution error
procedure.

Signal. TOS is a
semaphore address.
Signal this semaphore.

Wait. TOS is a
semaphore address.
Wait on this semaphore.

Equal String. TOS and
TOS-l each point to a
string variable (if the
corresponding UB is
zero) or the offset of a
constant string in the
current segment. UB_l
and UB_2 refer to TOS
and TOS-l,
respectively. Push the
Boolean result of the
string comparison
TOS-l = TOS.

2-71

2-72

LESTR 233
VB_I, VB_2
<addr loffset,
addr loffset>:
<Bool>

GESTR 234
VB_I, VB_2
<addrloffset,
addr loffset>:
<Bool>

Less or Equal String.
TOS and TOS-I each
point to a string variable
(if the corresponding
VB is zero) or the offset
of a constant string in
the current segment.
VB_I and VB_2 refer to
TOS and TOS-I,
respectively. Push the
Boolean result of the
string comparison
TOS-I <= TOS.

Greater or Equal String.
TOS and TOS-I each
point to a string variable
(if the corresponding
VB is zero) or the offset
of a constant string in
the current segment.
VB_I and VB_2 refer to
TOS and TOS-I,
respectively. Push the
Boolean result of the
string comparison
TOS-I > = TOS.

ASTR 235 Assign String. TOS-I is
UB_I, UB_2 the address of the
<addr,addr destination string
offset>:<> variable. UB.-2 is the

declared size of that
string. TOS represents
the source for the
assignment. It is either
the address of a string
variable (if the mode,
UB_I, is 0) or the offset
of a string constant in
the current segment.
Cause a string overflow
if the dynamic size of
the source string is
greater than the
declared size of the
destination. Otherwise,
copy the source into
the destination.

CSTR 236 Check String index.
<>:<> TOS-I is the address of

a string variable. TOS is
an index into that
variable. Check that the
index is between I and
the current dynamic
length of the variable. If
not, cause a range-check
execution error.

2-73

Miscellaneous Instructions.

LPR 157 Load Processor
<int>:<word> Register. TOS is a

register number. Push
the contents of the
register indicated in
this fashion (for SPR,
also):
a) register number is

positive: it is a word
index into the
current TIB.

b) register number is
negative:
-1 indicates the

pointer to the
TIB of the
currently running
task

-2 indicates the
current E_VecP

-3 indicates the
pointer to the TIB
at the head of the
ready queue.

SPR 209 Store Processor
<int, word>:<> Register. TOS-1 is a

register number
(defined as for LPR).
Store TOS in indicated
register.

DUP1 226 Duplicate One Word.
<word>: Duplicate one word on
<word, word> TOS.

DUPR 198 Duplicate Real.
<word-block>: Duplicate the real value
<word-block> on TOS.

2-74

SWAP 189
<word,word>:
<word, word>

NOP 156
<>:<>

NAT 168
<>:<>

NAT- 168 B
INFO <>:<>

RESERVE1 250

RESERVE6 255

Swap. Swap TOS with
TOS-l.

No Operation.
Continue execution.

Native Code. Transfer
control to native code
that begins directly
after this instruction.
Details are
8088-dependent.

Native Code
Information. Ignore
the next B bytes in the
P-code stream. This
information is used in
the generation of native
code. Treat it as a long
form of NOP.

These codes are
reserved for use by the
compiler to identify
embedded compiler
directives. They must
not be explicitly
generated by programs.

2-75

NOTES

2-76

CHAPTER 3. LOW-LEVEL I/O

Contents

Introduction to the I/O Subsystem 3- 3
The Language Level: Device I/O

Routines 3-5
Calling the RSP/IO 3-6
IORESUL T and Completion Codes 3-8
Logical Disk Structure 3-10
The Interpreter Level: The RSP/IO ... 3-12
Calling Mechanisms 3-12
Semantics 3-15
The Machine Level: The BIOS 3-18
Design Goals 3-18
Completion Codes 3-19
Calling Mechanisms 3-19
Character Codes 3-21
Semantics 3-21
Special BIOS Calls 3- 31

3-1

NOTES

3-2

Introduction to the I/O Subsystem
Besides emulating the P-machine, the Interpreter
must contain some native code to perform certain
time-critical operations, and deal with such things as
the hardware I/O devices. The body of code that is
not devoted to emulating P-code is called the
Runtime Support Package (RSP). The portion of the
RSP that is responsible for I/O is called the RSP/IO.

The RSP/IO is machine-independent, except for a
portion called the Basic Input/Output Subsystem
(BIOS). The BIOS is specific to the IBM Personal
Computer hardware. Calls to routines in the BIOS
are clearly defined.

Thus, we have the I/O Hierarchy shown in Figure
3-1. Theuser'sI/Ocalls(e.g.,READLN, WRITELN)
are mapped by the Compiler and Operating System
into calls to the RSP (i.e., UNITREAD,
UNITWRITE). The RSP/IO itself calls the BIOS
which controls the actual device operations. It is
important for the reader to recognize that here we
are discussing a synchronous I/O system. In other
words, when an I/O request has been initiated by a
user program, control does not return to that
program until the I/O operation is completed.

This chapter describes the behavior and interfaces of
the RSP/IO and BIOS.

3-3

"Language Level"

"Interpreter Level"

A USER

I
I

THE SYSTEM

device no., data area address,
byte count
L block no., control wurd]

DEVICE liD
(parameter checking)

I

+ --- - - -------- + ------------+ ----- ----- +------------ +

Console

SPECIAL CHAR
HANDLING

(OLE's, CR's, EOF
& alphalock)

I
write I

single I
data byte I

"BIOS
Level"

I

I
I
I
I
I

read

single
data byte

+------+

I

: Printer

I

SPECIAL CHAR
HANDLING

(OLE's, CR's, EOF
& alphalock)

I
I
I single
I data byte

I
I
I
I
I
I

PRINTER
PRIMITIVES

I
I
I
I

TYPE-AHEAD
QUEUE

I
I

I v
1<-- -- -SPECIAL CHAR

I (start/~::' ~1~:~,Gbreak)
I

SCREEN
PRIMITIVES

v
KEYBOARD
PRIMITIVES

Disk Remote

SPECIAL CHAR
HANDLING

(OLE's, CR.s, EOF
& alphalock)

v

drive no.,

data area

address,

byte count,

logical

block no.

DISK
MAPPER

(Map logical
blocks into

track & sector)

DISK
PRIMITIVES

I
I
I single
I data byte

I
I
I
I
I-
I

SERIAL LINE
PRIMITIVES

I User·defined

I Devices

I
I
I
I
I
I
I device no.,

I data area

I address,

I byte count,

I logical

I block no.

j - -----
I
I

MISCELLANEOUS
DEVICE

DRIVERS

Figure 3-1. I/O Subsystem Hierarchy

3-4

The Language Level: Device I/O
Routines

As mentioned above, all language-level I/O requests
are eventually mapped by the Compiler and
Operating System into calls to a group of intrinsic
routines known as the Device I/O Routines. The
programmer may call the Device Routines directly,
or may use the standard I/O syntax of the language in
use. The exact details of how this mapping is
accomplished do not concern us here. The Device
I/O Routines are not written in Pascal, but in fact are
the native code procedures that comprise the
RSP/IO. The way that these procedures are called is
described next.

Throughout this chapter, it should be realized that
all I/O support at or below the device I/O level is
implemented in 8086 assembly language.

The RSP/IO routines are implemented and accessed
as routines of the Operating System's unit KERNEL.
KERNEL is accessible as segment 1 of every
compilation unit. The actual code for the routines
may reside in the Interpreter itself, instead of in
KERNEL.

3-5

Calling the RSP/IO

3-6

To the user making direct calls to Device I/O
Routines, they look like any other intrinsic routine.
If they actually were declared in Pascal, the
declarations would have the following format
(allowing a few "invalid" constructions such as
optional parameters and variable-length arrays):

PROCEDURE UNITREAD (UNITNUMBER: INTEGER;
VAR DATAAREA: PACKED ARRAY
[0 .. BYTESTOTRANSFER·l J OF 0 .. 255;

BYTESTOTRANSFER: INTEGER
[; LOGICALBLOCK: INTEGER]
[; CONTROl.: INTEGER));

PROCEDURE UNITWRITE « same as for UNITREAD>);

PROCEDURE UNITCLEAR (UNITNUMBER: INTEGER);

Remember that no such declarations actually exist
in the System. They are intended to model the
parameters passed and returned by the native code
RSP/IO routines.

Devices and Device Numbers

As described elsewhere, each device is referred to in
the System by a given number. The formal
parameter UNITNUMBER in the declarations
above determines which physical unit the operation
is intended for. Thus, the Device I/O Routines are
device-transparent to the Pascal programmer; the
same procedure will handle any physical uni t. Figure
3-2 is a list of the pre-defined unit numbers
associated with each physical unit. The meaning of
the other parameters is discussed later in this
chapter.

Unitnumber

o
1
2

3
4
5
6
7
8

9-127

Volume Name

<Reserved for the System>
CONSOLE:
SYSTERM:
<Reserved for the System>
<System disk>
<User disk>
PRINTER:
REMIN:
REMOUT:
<Reserved for future
expansion>

Figure 3-2. Unitnumbers

High Device Numbers. The System reserves all
device numbers above 8 for future expansion and
special devices.

CONTROL Parameters

The CONTROL parameter to UNITREAD and
UNITWRITE is a word used to pass special
information to the RSP/IO and BIOS regarding the
handling of the I/O request. The formats of the
CONTROL words are shown in Figures 3-3 and 3-4.

3-7

MSB LSB
/ 12-4 3 2 1 0 I
I / I I I I
I (Reserved) I NOCRLF I NOSPEC I PHYS SECTIASYNC/
I I / I I I
I I 8 /41 2 /11

VALUE

Bit 0 ASYNC
Set (1) implies asynchronous I/O request. Reset
(0) implies synchronous I/O request. (This bit
should always be reset.)

Bit 1 PHYSSECT
Set implies "Physical Sector Mode" for disk
I/O. Reset implies "Logical Block Mode" for
disk I/O.

Bit 2 NOSPEC
Set implies" no special character handling".
Reset implies" special character handling".

Bit 3 NOCRLF
Set implies no LFs are to be appended CRs
during non-disk I/O. Reset implies LFs are to be
appended to CRs during non-disk I/O.

Bits 4-15
Reserved for future expansion.

The default setting for all these bits is reset (0).

Figure 3-3. CONTROL word format for
UNITREAD and UNITWRITE

IORESUL T and Completion Codes

3-8

At times, an I/O request will terminate abnormally.
To handle error conditions, a program may use the
intrinsic 10RESULT. The integer value returned by
10RESULT describes the status of the last I/O
request.

Each call to UNITREAD, UNITWRITE, or
UNITCLEAR causes a "completion code" to be set

in the SYSCOM data area (SYSCOM, for SYStem
COMmunication area, is conventionally the only
data space that may be directly accessed by both the
Operating System and the Interpreter).
Programmers may test the completion code by using
IORESULT.

The standard completion codes are given in Figure
3-4 below.

Code

o
1
2
3
4
5
6
7
8
9

10
11
12

13

14

15
16
17
18

19 - 255

Meaning

No error
Bad block, CRC error (parity)
Bad device number
Invalid I/O request
Data-com timeout
Volume is no longer on-line
File is no longer in directory
Invalid filename
No room; insufficient space on disk
No such volume on-line
No such filename in directory
Duplicate file
Not closed; attempt to open an
open file
Not open; attempt to access a
closed file
Bad format; error reading real or
integer
Ring Buffer Overflow
Write attempt to protected disk
Invalid block number
Invalid buffer address
Reserved for future expansion

Figure 3-4. I/O Completion Codes

3-9

Logical Disk Structure

3-10

The System views a disk as a zero-based linear array
of 512-byte logical blocks. The physical allocation
units of a disk are known as sectors. The BIOS is
responsible for mapping the logical structure of a
System disk onto the physical structure of the
device, i.e., mapping logical blocks onto physical
sectors. It happens that on the IBM Personal
Computer, physical sectors also have a size of 512
bytes.

Physical Sector Addressing Mode

To provide enhanced flexibility for systems
programming at a machine-specific level, a
mechanism has been provided for directly accessing
the physical sectors of the disk. When the
PHYSSECT bit (bit 1, value 2) of the CONTROL
word is set on a call to UNITREAD or UNITWRITE
involving a disk unit, the I/O is performed in
Physical Sector Mode. This has the following effects:

1) The parameter LOGICALBLOCK is
interpreted by the BIOS as the physical sector
number (PSN).

2) The parameter BYTESTOTRANSFER must
be O.

Physical Sector Numbers. Typically, the physical
sectors of a disk are addressed by specifying both
track and sector numbers. That is, the disk is viewed
as an array of tracks where each track is an array of
sectors. If this data structure were declared in Pascal,
it would look like this:

type

BYTE = 0 .. 255;

SECTOR = array[0 .. 51cl {BYTESperSECTOR-l))
of BYTE;

TRACK = array[1..8 {SECTORSperTRACK))
of SECTOR;

DISK = array[0 .. 39 {TRACKSperDISK-l))
of TRACK;

(Note that here, we are using the convention that
track numbers are zero-based but sector
numbers start from one.)

type

We can convert the type DISK into a linear array
of SECTOR as follows:

DISK = array
[0 .. (TRACKSperDISK * SECTORSperTRACK) -1)
of SECTOR;

We use this linear representation for addressing
the disk by physical sector number (PSN). The
relations between the PSN, and track and sector
numbers are:

PSN = (TRACKNUMBER * SECTORSperTRACK) +
SECTORNUMBER-l ;

TRACKNUMBER = PSN div SECTORSperTRACK;
SECTORNUMBER = (PSN mod SECTORSperTRACK)+ 1;

Physical Sector Size. An I/O request in Physical
Sector Mode simply causes a full sector (512 bytes)
to be transferred. The programmer is responsible for
ensuring that the data area is at least large enough for
one physical sector.

3-11

The Interpreter Level: The RSP/IO
This section details the design and operation of the
Input/Output portion of the Runtime Support
Package (RSP/IO). While the design itself is
processor- and hardware-independent, it is
implemented in 8088 native code. Thus, the final
product is 8088-specific but still independent of the
exact peripherals used.

Calling Mechanisms

3-12

This section now discusses how each routine in the
RSP /10 is called from the Pascal level (or the level of
another compiled language). The level of detail is
such that an implementor of the RSP would know
how to pop parameters off the Stack when the RSP is
called, and how the Stack should look when the RSP
returns. The detailed semantics of each routine are
discussed in "Semantics" in this chapter.

UNITREAD and UNITWRITE

PROCEDURE UNITREAD (UNITNUMBER: INTEGER;
VAR DATAAREA: PACKED ARRAY

[0 .. BYTESTOTRANSfER·l]
Of 0 .. 255;
BYTESTOTRANSfER: INTEGER
[; LOGICALBLOCK: INTEGER]
[; CONTROl.: INTEGER]);

PROCEDURE UNITWRITE (<same as for UNITREAD>);

Parameter Description. UNITNUMBER has
already been discussed.

DA TAAREA is the user's buffer to or from which the
data will be transferred. Describing it as a VAR
parameter signifies that UNITREAD and
UNITWRITE are passed a pointer to the start of the
data area. This pointer is actually represented as an
address couple, consisting of a word base and a byte
offset. The effective address is computed by simply
adding the base and the offset. Generally, the
address of the start of the data area mayor may not
be on a word boundary. In the case of disk units,
however, it is only defined in the case that it is on a
word boundary; that is, a Pascal programmer must
not allow actual parameters with odd-numbered
indices (like A[3]) to occur when transferring to or
from the disk. The reason for this inconsistency is to
avoid restricting disk data to being moved
byte-by-byte.

The third item in the parameter list,
BYTESTOTRANSFER, contains the number of
bytes to move between the user's data area and the
physical unit.

Two optional parameters follow for UNITREAD
and UNITWRITE: LOGICALBLOCK and
CONTROL. These parameters are optional for the
Pascal programmer; if absent, the Compiler assigns
them both the default value zero. LOGICALBLOCK
is only relevant for disk reads or writes; as discussed
in "Logical Disc Structure" in this chapter, it
specifies the Pascal logical block to be accessed.

3-13

3-14

Parameter Stack Format. UNITREAD and
UNITWRITE (see Figure 3-5) receive their
parameters on the evaluation stack in the following
order (each box represents a 16-bit quantity):

++++ 1/ / / / / / / / / / / / / / / / 1 < ---(on retu rn, SP
1 - - - - - - - - - - - - - - - - - - 1 points here)
1 Unit Number 1
1------------------1
1 Word Base 1

1------------------1
I Byte Offset 1

1------------------1
1 Byte Count 1

1------------------1
1 Block Number I (The stack shown here
1 - - - - - - - - - - - - - - - - - - 1 grows down)
1 Control 1 < - -- - - -- - - - - SP
1------------------1

Figure 3-5. Stack State on Entering UNITREAD
or UNITWRITE

Like ordinary Pascal procedures, these RSP routines
pop their parameters from the stack when they are
finished.

UNITCLEAR

PROCEDURE UNITCLEAR (UNITNUMBER:
INTEGER);

UNITCLEAR restores the specified unit to its
"initial" state. At the RSP level, this means clearing
any state flags pertaining to the specified device (see
"Parameter Description" and "Parameter Stack
Format" in this chapter). The "initial" state for each
device at the BIOS level is defined in "Semantics" in
this chapter. The stack format is as shown in Figure
3-6:

++ 111111111111111111 sp - > 1 I II I II I I I I I

Semantics

1------------------1
1 Device Number 1 <- sp
1------------------1

before

1------------1
1 < empty> I
1------------1

after

Figure 3-6. Stack States for UNITCLEAR

This section details the processing performed by the
RSP/IO. The primary function of the RSP/IO is to
manage calls to the BIOS. Its secondary function is
to handle some odd details that are described in this
section.

Special Character Handling on Output

Output to the printer, console or remote units must
properly handle Blank Compression Codes and
Carriage Returns.

Blank Compression Code (DLE's). The System
supports textfiles that contain a two-byte blank
compression code (only at the beginning of a line). It
is the responsibility of the RSP/IO to decode the
blank compression code and send an appropriate
number of blanks. The first byte is an ASCII DLE
(decimal 16) which signals that the next byte
contains the excess-32 number of blanks to insert
(Le., it should be interpreted as being the <number
of blanks to be sent>+32). Therefore, the next byte
following the DLE should be processed by
subtracting 32 from its value and sending that
number of blanks. Note that negative results,
obviously in error, are translated to a value of zero.
Note also that the blank-count byte may not be the
next input byte processed, due to device switching.

3-15

3-16

This, therefore, requires the maintenance of a flag
for each device to indicate that it is currently
processing a DLE. The DLE character and the
blank-count byte are not normally sent to the device
(see NOSPEC Bit in CONTROL Parameter).

Carriage Return -- Line Feed. Textfiles contain
ASCII CR's (decimal 1 3) at the end of lines. We
define this character as meaning "New Line", i.e., a
carriage return followed by a line feed. Thus, it is the
responsibility of the RSP/IO to send an ASCII LF
(decimal 10) after sending each CR.

NOCRLF Bit in CONTROL Parameter. When bit
3 (value 8) of the CONTROL parameter is set, the
special handling accorded CR's is turned off, i.e., a
LF is not automatically appended, and they are sent
out like other characters.

Special Character Handling on Input

There are several characters which receive special
treatment when received from the console, the
printer or the remote devices. All but two of them,
however, are handled by the BIOS. Those which are
handled in the RSP/IO are the EOF and
ALPHALOCK characters.

EOF Character. The EOF character, when
received from the console, printer or remote
devices, signals that the "end-of-file" has been
reached on that particular unit. Rather than being a
fixed ASCII code, this is a "soft character". That is,
the exact character code which will be interpreted as
"End-Of-File" may be changed during system
execution by the Pascal user. On the IBM Personal
Computer it is <ctrl-C>. Further discussion of the

soft characters used by the I/O Subsystem may be
found in" Character Codes". The EO F character is in
the SYSCOM data area and must be accessed by the
RSP/IO to determine what character to look for.
When the EOF character is found in the input
stream, the action to be taken depends somewhat
upon which device was referenced. If we are reading
from UNIT 1 (CONSOLE:), then the rest of the
user's buffer, starting at the current position, is
packed with nulls (decimal 0). For UNIT 2
(SYSTERM:), the printer and the remote, the EOF
character is put into the user's buffer. In all cases, no
further characters are transferred to the buffer and
control returns immediately.

ALPHALOCK Character. The ALPHALOCK
character, when received from a device by the
RSP/IO, signals a default case change for all
alphabetic characters. All lower case alphabetic
characters (i.e., a to z) received after the
ALPHALOCK character will be converted to upper
case. Receipt of another ALPHALOCK character
will cause the case to revert back to non-converting
mode (the default mode). As for DLE handling
described above, a flag for each device to indicate
that it is currently in the ALPHALOCK state should
be maintained to ensure proper handling when
devices are switched. The ALPHALOCK character is
not normally returned in the buffer.

BIOS Functions. The remaining special input
characters BREAK, START/STOP and FLUSH are
used only for input from the console, not from the
printer or remote devices. They are handled by the
BIOS and are described in "Input Options".

3-17

NOSPEC Bit in CONTROL Parameter

When bit 2 (value 4) of the CONTROL parameter is
set, the special handling accorded DLE's, and the
EOF and ALPHALOCK sensing functions described
above are turned off. These characters should then
be transferred as any other character. The BIOS
functions are not affected.

The Machine Level: The BIOS
As explained above, the Basic Input/Output
Subsystem is responsible for providing the actual
access to I/O devices. This section describes the
BIOS in detail.

The general scheme discussed below uses vectors
from the RSP/IO to the BIOS subroutines for
reading, writing, initializing and controlling, and
answering status requests. The exact vector scheme
and means of passing parameters on the IBM
Personal Computer are shown in Appendix B for this
chapter.

Design Goals

3-18

The speed of the BIOS code is fairly insignificant
compared to the (slow) speed of the I/O devices that
it handles. Since the BIOS always resides in main
memory, each byte it occupies is one less available to
the programmer. For these reasons, the major
design goals for a BIOS (assuming correctness!) are
(1) compactness and (2) clarity.

Completion Codes

All read, write, and initialization calls to the BIOS
return a byte to the RSP that contains status
information about the I/O request just serviced. The
value of this byte is the" completion code" discussed
in "IORESUL T and Completion Codes" in this
chapter. Most of the standard completion codes are
not relevant to the BIOS -- they are returned by the
Operating System for file errors and the like. The
following standard errors can be returned by the
BIOS:

o No error
1 CRC error
2 Invalid device number
3 Invalid operation on device
4 Undefined hardware error
5 Ring Buffer Overflow
6 Write protect; write attempt to protected

disk
7 Invalid block number
8 Invalid buffer address
9 Device not on line

All other errors are considered hardware-dependent.
For these, the BIOS returns codes in the range
128 .. 255 (most are unused).

Calling Mechanisms

In this section we discuss the parameters required in
the BIOS calls for each device. Each device has four
BIOS calls associated with it: READ, WRITE,
CONTROL and STATUS. Each device has varying
needs for information associated with these
functions. Remember that all calls return a
completion-code byte. For a summary of the BIOS
calling requirements, see Appendix A to this
chapter.

3-19

3-20

Console

Only one parameter is used for reading and writing:
the data byte itself. The status request uses two
parameters: the CONTROL word and the pointer to
the status record. For initialization and control of
the console, the BIOS uses a number of special
control characters. These are provided by passing
the BIOS console initialization routine a pointer to
the base of the SYSCOM data area, and a pointer to a
break-handler routine.

Printer

To read and write to the printer, a single parameter is
used: the data byte itself. To check the status, the
CONTROL word and the pointer to the status
record are used. For initialization and control, no
parameters are used.

Disks

Reading and writing with disk devices uses five
parameters:

1) A starting logical block number as described
above.

2) A count of the number of bytes to transfer
(positive signed 16 bits, i.e., 0 to 32K-l).

3) The address of the data area in main memory.

4) A drive number (0 .. 1).

5) The CONTROL parameter.

To check the status, the CONTROL word and a
pointer to the status record are passed as parameters.
For initialization and control, the drive number is
passed.

Remote

The remote device uses a single parameter for
reading and writing: the data byte itself. As with the
devices just described, the status call uses the
CONTROL word and the pointer to the status
record. Initialization and control of the remote
device uses no parameters.

Character Codes

The System assumes that the printer and console
devices support the use of printable ASCII
characters and a few standard control codes (CR, LF,
SP, NUL and BEL). The remaining control codes
that may be useful (such as cursor positioning and
screen erasure) are "soft" characters that may be
changed by the user (using the utility SETUP) to
meet the requirements of some particular hardware.

These soft characters, along with all other
information that is entered using SETUP, are stored
in the file *SYSTEM.MISCINFO.
SYSTEM.MISCINFO is read into a portion of the
global data area SYSCOM whenever the System is
booted or re-initialized.

Semantics

Console

In the following discussion, the console device is
assumed to be a CRT display (as on the IBM Personal
Computer).

3-21

3-22

Output Requirements. As noted in above, we
depend on the action of certain ASCII control codes.
These are the minimum requirements for a console
device:

CR <carriage return> (hex OD)
Moves cursor to the beginning of the current
line (column 0).

LF <line feed> (hex OA)
Moves cursor down one line while the column
position remains the same. Starting from any
but the last line on the screen, the contents of
the screen remain the same while the cursor
moves downward. If the cursor is on the last line
when the LF is issued, it remains in the same
position while the rest of the display scrolls
upward one line and the bottom line clears.

BEL <bell> (hex 07)
Sounds the speaker.

SP <space> (hex 20)
Writes a space at the current cursor position
(erasing whatever is there) and advances the
cursor position by one column. If the cursor is
already at the last position in a line, it remains in
its prior position. If the cursor is in the last
column of the last line on the screen it remains
where it was and the screen does not scroll.

NUL <null> (00)
Delays for the time required to write one
character. The state of the console does not
change.

any printable character
Writes the character, handling the console as
described for SP.

Note: The effect of sending non-printable
characters other than those described above is
not defined.

Output Options. The following set of cursor and
screen functions are optional in the sense that
almost all major functions of the System will still be
available even if they are not provided. The display
of the IBM Personal Computer provides them.

The control characters or sequences of characters
which provide these functions are left unspecified
(these are soft characters). Their definition is stored
in the SYSCOM data area (in main memory).

Reverse Line Feed
Moves the cursor to the next line higher on the
screen without changing the column or the
contents of the screen. If the cursor is already
on the top line, the screen is redisplayed with
the proper cursor location.

Non-destructive Forward and Backward Space
Moves the cursor in the direction indicated
without changing the contents of the screen
(hence" non-destructive"). If the cursor is at the
beginning or end of a line, it remains where it
was.

Cursor HOME
Moves the cursor to the upper left-hand corner
of the screen without changing the contents of
the screen. This is position (0,0).

Cursor X, Y Positioning
Moves the cursor to some absolutely
determined row and column without altering
the contents of the screen. X is the column
co-ordinate (0 .. 79) and Y the row co-ordinate
(0 .. 23). If X or Y is out of range, the cursor is
moved to the closest edge of the screen.

Erase to End of Screen
Erases from the cursor position to the end of the
screen, leaving the cursor where it started and
the other contents of the screen unchanged.

3-23

3-24

Erase to End of Line
Erases from the cursor position to the end of the
current line, leaving the cursor where it started
and the rest of the screen unchanged.

Input Requirements. Input from the console is
not echoed to the screen by the BIOS; this function
is handled by RSP/IO. Keys that represent ASCII
characters generate 8-bit codes between 0 and 127.

Input Options. The console input BIOS also
handles the following special functions:

START/STOP. The START/STOP character
controls console output (it is <ctrl-S> on the IBM
Personal Computer). When START/STOP (a soft
character) is received, console output is suspended
until (a) another START/STOP character is
received, (b) a FLUSH character is received, (c) the
console BIOS is reinitialized, or (d) the BREAK
character is received. The actions of the last three
cases are discussed below. Should another
START/STOP character be received, the suspended
activities resume exactly as they left off. The chief
benefit of this arrangement is that the user can
suspend output processes that are proceeding too
fast: e.g., a text file is scrolling across the screen at
9600 baud, or a printer must be brought online
before the program starts sending it characters. The
suspension process takes place wholly within the
BIOS, and requires no communication to the RSP.
(Note that the START/STOP character is never
returned to the RSP. The queuing of keyboard input
continues during the suspension.)

FLUSH. FLUSH is another soft control character
«ctrl-F». When FLUSH is typed, the console
outpu t BIOS discards all ou tput characters (i. e., does
not display them) until (a) FLUSH is typed again,
(b) input is requested from the console BIOS, (c) the
console BIOS is re-initialized or (d) the BREAK

character is received. The FLUSH character is never
returned to the RSP. If FLUSH is received while a
START/STOP suspension is pending, the
suspension is cancelled and FLUSH has its usual
effect. This feature is useful when a long textfile is
being displayed on the console and you're tired of
looking at it. Push FLUSH and it terminates rather
quickly. It is also useful when a process is generating
console output that is irrelevant, but slows down the
process. Note that FLUSH applies only to console
output.

BREAK. When BREAK «ctrl-@» is typed, the
console input BIOS immediately gives control to a
special Interpreter routine. The vector to this
routine is passed at console initialization time. After
execution of the BREAK routine, the BIOS
continues as before. The BREAK routine is
responsible for notifying the Interpreter that a
BREAK must be executed before the next P-code is
interpreted.

Note: The BREAK character is never
returned to the RSP.

Receipt of BREAK should terminate any
START/STOP or FLUSH suspension pending.
(BREAK is also a soft character.)

Type-Ahead. When non-special characters (i.e.,
not described in the sections above) are received
from the keyboard when no read request is pending,
they are queued until the next read request. The
next read request removes the first character from
the queue. When characters in excess of the
maximum queue size are received, they are ignored
and the queue remains intact. On the IBM Personal
Computer, the queue is at least 40 characters long.
The speaker sounds for each character that is typed
after the queue is full.

3-25

3-26

Initialization and Control. The initialization and
control part of the console BIOS is fesponsible for
the following tasks:

Soft character recognition
The System stores the soft characters
START/STOP, FLUSH and BREAK in a data
area called SYSCOM. One parameter to console
initialization and control is a pointer to the start
of the SYSCOM area. The offsets to these
characters from that pointer are (expressed as
positive byte offsets):

FLUSH
83 decimal (53 hex and 123 octal)

BREAK
84 decimal (54 hex and 124 octal)

STOP/START
85 decimal (55 hex and 125 octal)

BREAK vector
Another initialization and control parameter is
the address of the Interpreter routine which
handles BREAK. The console initialization
code sets up a vector to this address via its
private data area and the BIOS calls this routine
when the BREAK character is received.

Flags
Initialization causes the START/STOP and
FL USH flags to be cleared.

Type-ahead queue
Initialization discards any characters currently
waiting in the type-ahead queue.

Printer

The printer is conceived as being a line printer or
other hardcopy device. In actual practice, any ASCII
display may be used.

Output Requirements. In order to serve the
widest variety of hardcopy devices, the RSP/IO does
not buffer a line of text and send it all at once.
Rather, it sends the printer BIOS a single character
at a time. Many line printers must buffer a line and
then print it all at once: if this is the case, it is the
BIOS that must do so. If this is the case, the BIOS
must recognize the end of a line. EOLN is signalled
by a certain character: the possibilities are listed
below:

CR <carriage return> (hex OD)
Print the line and return the carriage to the first
column. An automatic line feed should not be
done.

LF <line feed> (hex OA)
In normal operation, the RSP/IO will only send
an LF to the BIOS immediately after a CR. If the
hardware allows a simple line feed to be
performed (without a return) then this should
be done. If a complete "new line" operation
(i.e., return and line feed) is the only way your
printer can print a line, then do so at an LF:
don't do anything about a CR.

FF <form feed> (hex oC)
The printer should advance the paper to
top-of-form, if possible, and perform a carriage
return. If no such feature is available, the
printer may execute a "new line" operation,
i. e., a return followed by a line feed.

3-27

3-28

Input Requirements. There are no strict
requirements for input from the printer device. If
the printer device has the capability to transmit data,
then the printer input BIOS returns all eight data
bits unchanged.

Initialization and Control. Initialization of the
printer device makes it ready to print at the
begininng of a blank line. Any characters that have
been buffered but not printed are lost. The printer
does not do a form feed each time it is initialized.

Disk

This discussion is general, and meant to describe the
BIOS, not the particulars of the IBM Personal
Computer disks.

Mapping Pascal Logical Blocks onto Physical
Sectors. The disk device may be any type of disk
drive (e.g., floppy or hard disk). The actual sectoring
arrangements of the disk are immaterial. The System
addresses the disk in terms of consecutive logical
blocks of 512 bytes each. A primary function of the
disk BIOS, therefore, is to provide an appropriate
mapping scheme into the actual (physical) sectors'
used on the disk. The sector interleaving algorithm
should be optimal for the hardware.

The System makes no assumptions about the
interleaving method used by the BIOS (except that it
works!).

Bootstrap Location. While bootstrap schemes
vary, typical implementations make use of a
hardware (usually ROM) bootstrap to load and
execute a primary software bootstrap which, in turn,
loads and executes a secondary software bootstrap.

The secondary bootstrap then loads the Interpreter
and Operating System, performs required
initializations, and starts the System.

To be accessible to the hardware bootstrap, the
primary software bootstrap must reside at a location
on the disk which is predetermined by the hardware
vendor. Since these locations can vary widely, it is
necessary that the System's requirements for a
physical disk format be flexible in this regard.

The primary bootstrap area must not overlap disk
data structures maintained by the System (chiefly
the directory and the bootstrap itself).

Logical blocks 0 and 1 of each disk are reserved for
bootstrap code (a total of 1024 bytes).

Physical Sector Mode. When bit 1 (value 2) of the
CONTROL word is set, disk access should be
performed in Physical Sector Mode, as described in
Physical Sector Addressing Mode.

Output Requirements. The disk device BIOS
transfers as many actual sectors as are needed to
accommodate the data. To simplify a disk-write in
which (BYTESTOTRANSFER) mod 512 is not
equal to zero (i.e., a block is partially written to), the
remaining contents of the last block are undefined.
This makes it possible to write as much of whatever
garbage remains in the buffer, if that is most
convenient, to fill up a whole sector. Figure 3-7
illustrates this situation. The language level is
responsible for keeping track (in logical block
numbers and byte counts) of where the good data is.

3-29

Example: Write to disk.

Block 72
(512 bytes)

Number of bytes to transfer = 1174
Starting logical block number = 72
Data area address = DATAAREA

Block 73
(512 bytes)

I
I Block 74
I 150 : (362 bytes)

I

I I I bytes:

I
I
I
I
I

I < -------------------data . - - - - - - - - - - - - - - - - - - > : <undefined>

I I I . .
A "

start of data area end of data area

I
I
I

3-30

end of last block

Figure 3-7. State of Blocks on Disk After a Write

Input Requirements. On input from a disk device,
it is not permissible to over-write the end of the
assigned data area. Therefore, the BIOS transfers no
more than the number of bytes requested.

Initialization and Control. Initialization of a disk
device brings it to a state in which it is ready to read
or write from any given track or sector. Any buffered
data is lost.

Remote

This unit is intended to be an RS-232 serial line for
supporting various types of communication. It is
important that it transfer raw data without changing
it in any way. All eight bits of the transferred byte
should be considered significant. The transfer rate is
usually set to 9600 baud.

Output Requirements. As noted above, all eight
bits of the data byte are transmitted. The remote
BIOS driver is sent one byte at a time.

Input Requirements. Input from a remote device
is buffered as with the type-ahead queue. As noted
above, all eight data bits are returned.

Initialization and Control. Initialization of the
remote device brings it to a state in which it is ready
to read or write.

Special BIOS Calls

These functions are provided by the BIOS to make
configuration-specific functions accessible to the
Interpreter. Although these functions are not
related to Input/Output, they are put into the BIOS
as the repository for configuration-specific code.

As with all other routines in the BIOS, each returns a
completion code.

System Output

This is reserved for future expansion.

System Input

This is also reserved for future expansion.

System Initialization and Control

The System Initialization and Control BIOS routine
initializes the interrupt system.

3-31

3-32

System Status

The System Status BIOS routine returns the
following information in the status record:

Word 1 - The address of the last word in
accessible contiguous Random Access Memory,
e.g., on a system with 64K bytes of Random
Access Memory, the last byte address may be
FFFF, but the last word address is FFFE.

Word 2 - Equals o.

Word 3 - Equals o.

CHAPTER 4. THE OPERATING
SYSTEM

Contents

Organization 4- 3
Structured Overview of the System 4- 3
P-Machine Support 4-5
The Heap 4-5
The Codepool 4-11
Fault Handling 4-15
Concurrency 4-16
I/O Support 4-19
FIBs 4-19
Directories 4-20
Varieties of I/O 4-20
Making Use of IBM Personal

Computer Hardware 4-23

4-1

NOTES

4-2

Organization
Structured Overview of the System

The IV.O Operating System is a collection of Pascal
UNITs. The organization of UNITs in the Operating
System was determined by three considerations:
functional grouping, space and language restrictions,
and necessary code-sharing with other portions of
the System. Some UNITs (such as SCREENOPS) are
intended to be accessible to user programs as well.
The name of a UNIT in the Operating system
generally reflects its function. This is a full1ist of
Operating System UNITs:

Unit Name

HEAPOPS
EXTRAHEAP
PERMHEAP

SCREENOPS

FILEOPS

PASCALIO
EXTRAIO
SOFTOPS

SMALLCOMMAND
COMMANDIO

STRINGOPS

OSUTIL

CONCURRENCY

REALOPS

Function

Heap operators

Screen control

File and Directory
operations

File-level I/O

I/O redirection and
chaining

String intrinsics

Conversion utilities

Concurrency

Floating Point Functions
and Real Number I/O

4-3

4-4

Unit Name

LONGOPS

GOTOXY

KERNEL

GETCMD
USERPROG
INITIALIZE
PRINTERROR

Function

Long Integer operations

Screen cursor control
(may be user-supplied)

Nonswappable central
facilities of Op. System
(always resident in main
memory)

Subsidiary segments of
KERNEL (swappable)

KERNEL contains the resident code necessary to
maintain the Codepool, handle faults, and read
segments. The Kernel also contains four subsidiary
segments, which are swappable:

GETCMD processes user input at the main
command level, and builds a user program's
runtime environment;

USERPROG is the reserved segment slot for
the user's program (at bootstrap time it
contains the Pascal-level code which builds the
initial runtime environment for the Operating
System);

INITIALIZE is called when the System is
booted or re-initialized: it reads
SYSTEM.MISCINFO, locates the System
codefiles, and sets up the table of devices;

PRINTERROR prints runtime error messages.

The Operating System UNITs are compiled
separately. They are bound together in a single
codefile, SYSTEM.P ASCAL, by using the utility
LIBRARY.

Because of certain bootstrap restrictions, KERNEL
must always reside in segment-slot 0 and
USERPROG must always reside in slot 15. There are
no other restrictions on the location of units within
SYSTEM. PASCAL.

P-Machine Support
The Heap

Overview

The Heap is an area in low memory used for the
allocation of dynamically stored variables. The
upper bound of the Heap depends upon the size of
the Stack and the Codepoo1 if the Codepoo1 is
internal. The area between the Heap and the
Codepoo1 (or the heap and the stack if Codepoo1 is
external) is provisionally available to the Heap.
Stack faults and segment faults may change the size
of this area. Heap faults are used by the Heap
operators to request that more space be allocated to
the heap.

The Heap is manipulated by a number of intrinsic
routines. These either allocate or deallocate Heap
space in a particular way. The rest of this section is an
introduction to these routines.

MARK and RELEASE. MARK saves the location
of the current top of the Heap. RELEASE cuts the
Heap back to the location of the corresponding
mark. Variables which were allocated between the
time of the MARK and the time of the RELEASE are
removed from the Heap, except for variables
allocated by PERMNEW. MARK and RELEASE
may be nested; the integrity of the Heap requires
that they be correctly paired.

4-5

4-6

NEW and VARNEW. NEW and V ARNEW cause
variables to be allocated on the Heap above the
"topmost" mark. NEW(P), where variable P is a
pointer to type T, causes the number of words in
type T to be allocated. P is assigned the address of the
first location allocated to P on the Heap. If T is a
record with variants, space for the largest variant is
allocated. In Pascal, a call to NEW may designate a
particular variant, so that space for this particular
variant is allocated (which may be less than the
largest variant in that record).

VARNEW(P,NWords), where P is a pointer to type
T, causes NW ords to be allocated on the Heap. T
would most commonly be an array. NWords
(indirectly) determines how many elements of the
array are actually available in this instance. P returns
the address of the first location allocated on the
Heap.

V ARNEW is a function, and returns the number of
words that actually were allocated: this should equal
NWords; if it is 0, then there was less than NWords
of available space, and if it is some other number,
something went wrong.

DISPOSE and V ARDISPOSE. DISPOSE and
V ARDISPOSE deallocate space reserved by
NEW and V ARNEW, respectively. DISPOSE(P)
frees the number of words pointed to by P.
V ARDISPOSE(P,NW ords) frees NW ords words.
In both cases, P is assigned the value NIL. .

CAUTION: To avoid destroying important
information that is on the Heap, extreme caution
should be used with these intrinsics, which do little
error-checking of their own. Heap space allocated by
a V ARNEW should be freed only by a V ARDISPOSE
with the same NWords parameter, and
MARK/RELEASE pairs should always match.
Furthermore, if the NEW is called for a specific

variant, the same variant should be used to
DISPOSE that area.

If these intrinsics are misused, the System is likely to
crash: this is the least mysterious of the symptoms
that may occur.

PERMNEW and PERMDISPOSE. A variable can
be allocated on the Heap by PERMNEW(P), where P
is a pointer to the variable's type. A variable
allocated by PERMNEW can only be deallocated by
PERMDISPOSE(P). Even a RELEASE cannot
remove it. These routines are meant for System use,
and are not user routines.

The Operating system uses these routines to allow
variables to remain defined across MARK/RELEASE
pairs. Program CHAIN commands are saved on the
Heap with PERMNEW, so that even after the
chaining program terminates, and its Heap space is
released, these commands are still available to
determine the further actions of the System.

Heap Implementation

Operating System Interface

Unit Organization. Code for the Heap operators
is contained in three units: HEAPOPS,
EXTRAHEAP, and PERMHEAP. HEAPOPS
contains MARK, RELEASE, and NEW.
EXTRAHEAP contains DISPOSE, V ARNEW,
VARAVAIL, MEMLOCK, and MEMSWAP.
PERMHEAP contains PERMNEW,
PERMDISPOSE, and PERMRELEASE.
(V ARA V AIL, MEMLOCK, and MEMSW AP are for
segment management and are discussed elsewhere.)

4-7

4-8

Heap Globals. The Operating System uses several
variables to manage the Heap. The Heap is
maintained by a linked list of MARKs. The topmost
MARK is indicated by HeapInfo. TopMark. A MARK
(also called an HMR, for Heap Mark Record) has the
following structure:

TYPE
MemLlnk=RECORD

Avail_list: MemPtr;
NWords: Integer;
CASE Boolean OF

END;

true:(LasLAvail,
Prev_Mark: Mem Ptr);

In a MARK, NWords is always 0, and the variant is
always TRUE. NWords is ° because the MARK
merely marks a location on the Heap, and does not
reserve any space.

Each MARK points to an Avail_List, which is a list of
records of type MemLink. These records are FALSE
variants of MemLink, and NW ords contains the
number of words of available space (including the
two words of the record itself). The Avail_List chain
is ended by an Avail_List of NIL.

The first MARK on the Heap contains a Prev_Mark
of NIL. All successive MARKs point back to their
predecessor, so that the MARK chain can be
traversed.

For each MARK, the first Avail_List record is the
lowest unallocated space above the MARK.
LascAvail points to the last of the available space.
This is typically bounded by allocated Heap space or
by another MARK; if the MARK is TopMark,
LasCAvail is bounded by the Codepool if the pool is
internal or possibly by the low bound of the stack if
the pool is external.

The Heap maintenance variables have the following
structure:

VAR
Heaplnfo: RECORD

END;

Lock: semaphore;
TopMark,
HeapTop: MemPtr;

Perm List: MemPtr;

The Lock semaphore guarantees that the Heap is
modified by only one process at a time. TopMark
points to the highest MARK. HeapTop points to the
highest allocated space on the Heap. The fault
handler uses HeapTop to determine how close the
Codepool can be to the Heap. A base value is
computed and is either the base of the codepool (if
internal) or SP-LOW (if external). PermList points
to a linked list of PERM NEW' ed variables. The list is
identical in structure to an Avail_List, but each
NWords indicates the number of words allocated by
a PERMNEW. IfPermList is NIL, then no variables
have been PERMNEW' ed.

Tactics. In general, a request for Heap space
through a MARK, NEW, VARNEW, or PERMNEW
causes HeapTop to be set to the new top of the
Heap. The fault handler always places the Codepool
(located at PoolBase) above Heaptop if the pool is
internal. If the pool is external then the stack and the
heap are allowed to grow towards each other. If they
meet, a STACK OVERFLOW condition exists.
Thus, HeapTop reserves space for the Heap as soon
as a Heap operator requests it. This is necessary
because of possible interactions between Stack fault
handling and Heap space allocation.

The Operating System uses the global variable
SysCom". G DirP (global directory pointer) to
allocate a disk directory on the Heap. The Operating
System's use of this Heap space is meant to be

4-9

4-10

invisible to the user. Therefore, before any Heap
operation (except DISPOSE), SysCont GDirP is
DISPOSE'd to make the space occupied by the
directory available again.

Runtime Environment. Since both the user and
the Operating System use the Heap, the Operating
System MARK's the Heap immediately before the
execution of a user program by the call:

MARK (EMPTYHEAP);

... after the user program terminates, the Operating
System calls:

RELEASE (EMPTYHEAP);

Thus, all user space is freed after the program
terminates, unless space has been allocated by one or
more calls to PERMNEW.

MARK (EMPTYHEAP) occurs after the runtime
environment for the user program has been built.
The program's runtime environment structures
such as SIBs, E_Rec's, and E_Vec's, are for the use of
the Operating System, and are allocated space
before EMPTYHEAP. Data that is global to the user
program and any units it USES also appears before
EMPTYHEAP. Heap space that follows
EMPTYHEAP is intended only for the local use of
the user program.

The Heap is shared by all tasks in the System.

The Codepool

The Codepool may reside in main memory between
the Stack and the Heap or in memory external to the
Stack/Heap space. The behavior of the pool depends
on whether it is internal (between Stack and Heap)
or external (outside Stack/Heap space). It contains
executable code segments that may possibly be
discarded, or swapped in from disk again. Thus, the
size, the contents and the position of the codepool
only changes if it is located between the Stack and
the Heap. The flexibility of the Codepool handling
can provide a running program with more free
memory space than in previous versions previous to
IV.O.

A segment in the Codepool must be either P-code or
relocatable native code. Nonrelocatable native code
segments reside on the Heap: they are placed there
at associate time.

The Codepool is a contiguous block of code
segments: whenever a segment is discarded, the
surrounding segments are moved together.
Segments being swapped in are given space at either
end of the Codepool.

Segments in the Codepool are organized into a
doubly-linked list by pointers in each segment's SIB
(described in Chapter 1).

The routines that manage the Codepool are in the
Operating system's KERNEL unit. They make use of
the pointers within the SIB. The following Pascal
fragment shows declarations for the Codepool
description and the global pointer to that
description.

4-11

4-12

TYPE
Code Pool: '" Pooldes;

(Points to a description of the Codepool.)

Pool des: RECORD
Pool Base: FuliAddress;

(The first address in the Codepool.
A 32·bit quantity.)

Pool Size: Integer;
(Size of the Code pool in words.
This value is only referenced
if the pool is external to the
Stack/Heap space.)

MinOffset: Memptr;
{Byte offset of the lowest
useable value in the pool.
If the pool is internal this
value is dependent on Heaptop;
otherwise it is dependent only
on segment alignment
requirements (if any).)

MaxOffset: Memptr;
(Byte offset one

word passed the segment in
the highest position in the
codepool. If the pool is
internal, it is also equal
to the SP_LOW value of the
maintask.)

Resolution: Integer;
(Segment alignment

requirements (machine
dependent) in bytes.)

Pool Head: SIB_P;
(Points to the SIB of the

segment at the base of the
Codepool. If Codepool is
internal, this is the segment
nearest the Heap.)

PermSIB: SIB_P;
(Points to the SIB of the

segment that is always resident
in the Codepool.)

SP _Low: Mem_Ptr;
{The lowest possible bound of
the Stack; this points to the
address which is one word above
the top of the Codepool if the
Codepool is in between the
Stack and the Heap.}

HeapTop: Mem_Ptr;
{Points to the top of the Heap.}

Extended: Boolean;
{True if the Codepool is external
to the Stack/Heap area.}

If the pool is internal when space is requested either
for the Heap or the Stack, the Codepool
management routines first attempt to reposition the
Codepool without swapping out any segments.

The actual bounds of the Codepool are in MinOffset,
which points to the low end of the Codepool, and
MaxOffset, which points to one word above the top
of the Codepool. The Codepool operators may move
it all the way to HeapTop on the Heap side, or up to
SP minus a40-word margin on the Stack side (if pool
is internal). MaxOffset is the same as SP_LOW if the
Codepool is internal.

The Codepool may be modified by any of the
following circumstances (if an only if it resides
between Stack/Heap):

1) A Heap fault is detected, and the Codepool is
moved up in memory toward the Stack to free
the needed number of words for the Heap.

2) A Stack fault is detected, and the Codepool is
moved down in memory toward the Heap to
free the needed number of words for the Stack.

4-13

4-14

3) A Heap fault or Stack fault is detected, and the
Codepool cannot be moved to allocate the
space: one or more segments are swapped out,
the remaining segments are moved together,
and the Codepool is positioned to allow for the
needed Heap or Stack space.

4) A Heap or Stack fault is detected, and even after
swapping out all of the swappable segments, not
enough space is available: a STACK
OVERFLOW is reported, and the System is
re- ini tialized.

5) A segment fault is detected. The Codepool
management routines first try to read the
segment in at either end of the Codepool
without moving it. If this is impossible and if the
pool is internal they attempt to create more
room by moving the Codepool toward either
the Stack or the Heap, and then read the
segment. If this too is impossible or the pool is
external, segments are swapped out to make
room, and the new segment is then read in. If
this last effort also fails, a POOL OVERFLOW
is reported, and the System is re-initialized, if
the pool is external. A STACK OVERFLOW is
reported if the pool is internal.

The Codepool management routines are only called
by the Faulthandler. Since the Faulthandler is a
subsidiary task, its own stack is statically allocated.
Thus, the Faulthandler can manipulate the
Codepool freely, without fear of causing a Stack
fault.

Fault Handling

When memory space is required by the Stack or
Heap, or entry into a non-resident segment is
attempted, a fault is issued. The Faulthandler
process is activated, and uses the Codepool
managemen t rou tines to rearrange main memory (as
described in the previous section).

The Faulthandler is a process that is START'ed at
bootstrap time. Most of the time it is idle, WAIT'ing
on a semaphore. When the semaphore is
SIGNAL'ed, the Faulthandler is activated and
performs its memory management functions.

Faults can be SIGNAL'ed by the Interpreter (Stack
and segment faults), or by the EXECERROR
procedure in the Operating System (Heap faults and
one segment fault).

The semaphore record used by the Faulthandler
resides in SYSCOM. It is declared as follows:

Fault Message = RECORD
FauICTIB: TIB_Ptr;
FaulCE Rec: E_REC_Ptr;
FaulCWords: integer;
FaulCType: Seg_Fault .. Heap_Fault;

END;

Fault Sem: RECORD
Real_Sem, Message_Sem: semaphore;
Message: FaulCMessage;

END;

The Interpreter detects only Stack and segment
faults. When the Interpreter detects a fault, it places
the appropriate information in FaulCSem.Message
and SIGNAL's FaulCSem.Message_Sem. The
SIGNAL causes a task switch to the Faulthandler,
and the fault is processed. After it has dealt with the
Codepool, Faulthandler WAIT's: this causes a task
switch back to the previously running process. The
instruction that caused the fault is re-executed.

4-15

The Operating System issues Heap faults, and in one
instance, a segment fault. Heap faults are detected
by the Heap operators when requests are made for
Heap space by MARK, NEW, VARNEW, and
PERMNEW. The one segment fault is issued by
MEMLOCK if a segment to be locked in the
Codepool is not already resident.

To issue a fault, the Operating System calls the
execution error procedure (EXECERROR), and
passes it the needed information. EXECERROR
then performs a SIGNAL on Message_Sem.

The Faulthandler first ensures that the currently
running segment is not swapped out, and then uses
the Codepool management routines to adjust the
main memory layout.

If a Stack fault is caused by a call to a routine in a
different segment, Faulthandler must lock both
calling and called segments into memory.

Concurrency

4-16

Operating System routines support concurrency
only by the activation and de-activation of processes:
actual task switching is accomplished by the
P-machine operations SIGNAL and WAIT, the
BIOS routines ATTACH, QUIET, and ENABLE,
and the Interpreter routine EVENT.

Concurrency support in Version IV.O is intended for
low-level tasks. Most System-level facilities,
particularly I/O, are synchronous.

For instance, a READ or UNITREAD from the
console does not return to the caller until a character
is available. No task switch can occur during the
waiting period.

The Operating System global variable Task_Info is
used to keep track of some of the data for subsidiary
processes. Its structure is as follows:

Task_Info: RECORD
Lock,
Task_Done: semaphore;
N_Tasks: integer;

END (of Task_Info);

Task_Info.Lock is used to ensure mutual exclusion
while changing the values of other Task_Info fields.
Task_Done is used to WAIT on the termination of
any subsidiary processes. N_Tasks is the number of
subsidiary tasks that have been START'ed.

The unit CONCURRENCY has three routines:
START, STOP, and BLK_EXIT. For each process
initiation, the Compiler emits initialization code
that signals the semaphore passed to START. The
Compiler also emits a call to STOP in the exit code of
each process; a call to BLK_EXIT is part of the exit
code of a main process.

START builds the data structures for a new task and
sets it in execution. The task's TIB, activation
record, and stack space are allocated on the Heap,
and the Operating System forces a task switch by
issuing aWAIT. Presumably, the new process starts
executing, and switches back to START by doing a
SIGNAL after its parameters have been copied.
Actually, when START performs the WAIT, it is the
process with the highest priority that begins
executing.

STOP records the termination of a process. It
decrements Task_Info.N_Tasks, SIGNAL's
Task_Info.Task_Done, and then initializes and waits
on a dummy semaphore in order to force a
permanent task switch from the terminating
process.

4-17

4-18

BLK_EXIT is called by a main task, and waits for the
termination of all subsidiary tasks. It waits on
Task Done, and terminates the main task when
N Tasks equals zero.

ATTACH is a Pascal-level intrinsic that can also be
accessed by a CXG 29 instruction. QUIET is called
by a CXG 27, and ENABLE by a CXG 28.

QUIET inhibits all Pascal-level events. ENABLE
restores the prior event state. Calls to them must be
paired, and not nested.

ATTACH may be called to associate a semaphore
with an event number. When an event occurs, the
BIOS calls the Interpreter routine EVENT. If the
event has been ATTACH' ed, EVENT signals the
appropriate semaphore. EVENT can be called only
after a call to QUIET.

These are the event numbers on the IBM Personal
Computer:

0 .. 16 reserved for the System;
17 break;
18 execution error;
19 keysready (used by the print spooler)

Only event 19 is accessible to a user program. Other
events are reserved for the System.

I/O Support
FIBs

File I/O is controlled with a structure called a FIB
(File Information Block). When a user declares a file,
the Compiler emits code to initialize a FIB for that
file. A FIB is declared as follows:

FIB=RECDRD
FWindow: Window_P;
FEDF, FEDLN: Boolean;
FState: (FJandW, FNeedChar, FGotChar);
FRecSize: integer;
Flock: semaphore;
CASE FlsDpen: Boolean OF
true:(FlsBlkd: Boolean;

FDev: DevNum;
FVoIID; VoIlD;
FReptCnt,
FNxtBlk,
FMaxBlk: integer;
FModified: Boolean;
FHeader: DirEntry;
CASE FSoftBuf: Boolean OF

END /of FIB}

true: (FNxtByte, FMaxByte: integer;
FBufChngd: Boolean;
FBuffer: PACKED ARRAY
[0 .. FBlkSize]
OF CHAR))

FWindow points to the current character in the file's
buffer. FEOF and FEOLN are the EOF and EOLN
flags. FState indicates that the file is either a standard
Oensen & Wirth) file, an INTERACTIVE file
awaiting a character, or an INTERACTIVE file with
a character. FRecSize is 0 for untyped files, 1 for
INTERACTIVE files and textfiles; if it is larger than
zero, it indicates the size (in bytes) of a record. FLock
is used to ensure that only one process at a time may
modify the file. FIsOpen is TRUE only when the file
is open.

4-19

If FIsOpen is TRUE, then several other fields
become relevant. FIsBlkd is TRUE if the file resides
on a block-structured device. FDev is the number of
that device, and FVolID the name of the volume.
FReptCnt contains a count of the number of times
the window value is valid before another GET is
needed. FNxtBlk is the next (relative) block to
access. FMaxBlk is the maximum (relative) block
that can be accessed. FModified becomes TRUE if
the file is modified: a new date is then set in the
directory. FHeader is a copy of the file's directory
entry. FSoftBuf is TRUE if soft-buffered I/O is used:
this is the case for all files on block-structured
volumes, except untyped files.

If FSoftBuf is TRUE, then the last set of FIB fields
are used: FNxtByte and FMaxByte are used for
buffer handling, FBufChngd indicates that the
buffer contents have been modified, and FBuffer is
the buffer itself.

Directories

Figure 4-1 illustrates the structure of a directory (as
on a disk or other block-structured volume):

Varieties of I/O

4-20

Record I/O
Record I/O applied to typed Pascal files, using
the intrinsics GET and PUT.

Screen I/O
Screen I/O may be handled by the unit
SCREENOPS, whose routines are described in
the UCSD p-System User's manual.

dVid}

status
bit

dtid

'"
I,
I
f

DIRENTRY RECORD (0)
for dfkind=securedir, untyped file (didO])

dfirstblk
dlastblk
filler _1 I dfkind
length (7) 1
2 3
4 5
6 7
deovblk
dnumfiles
dloadtime

(year) I (month) I (day) ~ dlastboot

DIRENTRY RECORD (1-77)

dfirstblk
dlastblk
I filler_2 I dfkind
length (15) 1

2 3

4 5
6 7
8 9
10 11

12 13

14 15
dlastbyte

(year) I (month) I (day) ~ daccess

DIRECTORY: array [0 .. 77] of direntry;

•••

Figure 4-1. Directory Format

4-21

4-22

Input from the screen is accomplished by the
procedure CHAR_DEV_GET, which uses
SC_CHECK_CHAR (in SCREENOPS) and
SYSCOM' .MISCINFO to determine whether
any special handling needs to be done.

Output to the screen is accomplished by a
simple UNITWRITE.

Block I/O
Block I/O applies to untyped files. The routines
BLOCKREAD and BLOCKWRITE are used.
These are part of the System routine
FBLOCKIO in the EXTRAIO unit.

When a file is accessed as an untyped file, all
other file formatting is disabled.

Text I/O
A textfile is a file of ASCII characters. It has a
2-block header that contains formatting
information used by the Screen Oriented
Editor. When a textfile is used by a System
program other than the Editor, the Operating
System ignores this header. When a new textfile
is created, the Operating System writes a
2-block header filled with NULs.

Textfiles always have an even number of blocks.
Thus, the smallest possible textfile is 4 blocks
long. Any extra space is padded with NULs.

Each record in a textfile is one line of text,
terminated by a <return> character. If the first
character in a textfile record is a DLE (decimal
16), it is interpreted as a blank-compression
code: the following byte is (32+n), where n is
the number of leading blanks. This
blank-compression code is generated by the
Editor (chiefly for the purpose of saving space in
indented program source).

User programs typically handle textfiles with
READ, READLN, WRITE, and WRITELN.
GET and PUT may be used, and follow the
Jensen & Wirth standard for files of type TEXT.

4-23

NOTES

4-24

CHAPTER 5. PROGRAM
EXECUTION

Contents

Runtime Environment 5-3

5-1

NOTES

5-2

R.untime Environment

The runtime environment for a user program is
created by the Operating System's GETCMD unit.
GETCMD starts the execution of System programs
such as the Compiler, Linker, Filer, etc., and user
programs named in the eX(ecute command. In all
such cases, GETCMD calls the procedure
ASSOCIATE, which finds the appropriate codefile,
and then calls BUILDENV. BUILDENV constructs
a program's runtime environment, as outlined in
Chapter 1.

BUILDENV recursively traverses the segments used
by a program. For each segment, it initializes an
E_Vec, E_Rec, and SIB. As each E_Rec is created, it is
linked to a chain of segments that are already active:
in this way, the Operating System can keep track of
all active segments. Before BUILDENV initializes
segment information, it checks to see if that segment
is already active, and if it is, it does nothing but
initialize the proper pointers. Otherwise, the E_ Vee,
E~ec, and SIB must be created from information
present in the codefile.

SEGREFs are segment reference assignments
emitted by the Compiler. Segment numbers are
local to a code segment. The main program is
segment 2, and subsidiary segments, if any, are
numbered starting from 3. Segment 1 is always the
Operating System's KERNEL unit. SEGREFs are
emitted for any principal segments used by the
compilation (such as a used unit). At associate time,
BUILDENV uses the SEGREF list to find the
segments that the program uses.

All runtime errors detected by the System cause the
current program to halt. The System displays an
error message, and when the user types a <space>,
the System is reinitialized. The program's runtime
environment is lost.

5-3

5-4

When a program terminates, control returns to
GETCMD, which waits for further instructions.
When a program terminates normally, its
environment is not lost, and the program can be re­
re-started with the U(ser restart command. The
System mayor may not need to call BUILDENV
again.

APPENDIXES

Contents

Appendix A. Summary of BIOS Calling
Sequences A-I

Appendix B. IBM Personal Computer
BIOS Calls B-1

Appendix C. P-Codes C-l
Appendix D. ASCII Chart D-l
Glossary Glossary-l

Appendixes 1

Appendixes 2

APPENDIX A. SUMMARY OF BIOS
CALLING
SEQUENCES

The following is a summary of the calling
conventions described in "Calling Mechanisms" in
Chapter 3. Specific protocols for the IBM Personal
Computer are shown in the following section. All
calls to the BIOS return a completion code.

Entry Point

CONSOLEREAD
CONSOLEWRITE
CONSOLECTRL

CONSOLEST AT

PRINTERREAD
PRINTERWRITE
PRINTERCTRL
PRINTERSTA T

DISKREAD

DISKWRITE
DISKCTRL
DISKSTAT

Parameters

single data byte
single data byte
BREAK vector
SYSCOM pointer
STATREC pointer
CONTROL word
single data byte
single data byte
(none)
STATREC pointer
CONTROL word

block number
byte count
data area address
drive number
CONTROL word
(same as DISKREAD)
drive number
drive number
STATREC pointer
CONTROL word

A-I

A-2

Entry Point

REMOTEREAD
REMOTEWRITE
REMOTECTRL
REMOTESTAT

USERREAD

USERWRITE
USERCTRL
USERSTAT

SYSREAD

SYSWRITE
SYSCTRL
SYSSTAT

Parameters

single data byte
single data byte
(none)
STATREC pointer
CONTROL word

block number
byte count
data area address
device number
CONTROL word
(same as USERREAD)
device number
device number
STATREC pointer
CONTROL word

block number
byte count
data area address
device number
CONTROL word
(same as SYSREAD)
device number
ST A TREC pointer
CONTROL word

APPENDIX B. IBM PERSONAL
COMPUTER BIOS
CALLS

Entry Points: All BIOS entry points are given as
positive offsets from the beginning of the BIOS code
space. These locations contain appropriate
addresses of routines within the BIOS.

Parameters: When parameters are not being passed
in a specified register, they are pushed on the stack.
Offsets from top-of-stack are given, recognizing that
the stack grows down.

Completion Code: Return in register AH.

Calling Sequence: The RSP will use the CALL
instruction to call the BIOS. Thus the return address
is at (SP),(SP)+ 1. All registers are available for use by
the BIOS. The BIOS should clean off the stack
before returning to the RSP.

Offset
Entry Point (hex) Parameters

CONSOLEREAD 00

CONSOLEWRITE 02
CONSOLECTRL 04

CONSOLESTAT 06

return data byte in Reg
AL
write data byte in Reg AL
BREAK vector at
(SP)+2,(SP)+3
SYSCOM pointer at
(SP)+4,(SP)+5
STATREC pointer at
(SP)+2,(SP)+3
CONTROL word at
(SP)+4,(SP)+5

B-1

Offset
Entry Point (hex) Parameters

PRINTERREAD 08 return data byte in Reg
AL

PRINTERWRITE OA write databyte in Reg AL
PRINTERCTRL OC (none)
PRINT ERST AT OE STATREC pointer at

(SP)+2,(SP)+3
CONTROL word at
(SP)+4,(SP)+5

DISKREAD 10 block number at
(SP)+2,(SP)+3
byte count at
(SP)+4,(SP)+5
data area address at
(SP)+6,(SP)+7
drive number at
(SP)+8,(SP)+9
CONTROL word at
(SP)+A,(SP)+B

DISKWRITE 12 (same as DISKREAD)
DISKCTRL 14 drive number in Reg CL
DISKSTAT 16 drive number in Reg CL

STATREC pointer at
(SP)+2,(SP)+3
CONTROL word at
(SP)+4,(SP)+5

REMOTEREAD 18 return data byte in Reg AL
REMOTEWRITE lA write data byte in Reg AL
REMOTECTRL lC (none)
REMOTESTAT IE STATREC pointer at

(SP)+2,(SP)+3
CONTROL word at
(SP)+4,(SP)+5

B-2

Entry Point

USERREAD

USERWRITE
USERCTRL
USERSTAT

SYSREAD

SYSWRITE

SYSCTRL
SYSSTAT

Offset
(hex) Parameters

20 block number at
(SP)+2,(SP)+3
byte count at
(SP)+4,(SP)+5
data area address at
(SP)+6,(SP)+ 7
device number at
(SP)+8,(SP)+9
CONTROL word at
(SP)+A,(SP)+B

22 (same as USERREAD)
24 device number in Reg CL
26 device number in Reg CL

STATREC pointer at
(SP)+2,(SP)+3
CONTROL word at
(SP)+4,(SP)+5

28 programmed halt (see
"System Input" in Chapter 3)

3F programmed halt (see
"System Output" in
Chapter 3)

2C (none)
2E STATREC pointer at

(SP)+2,(SP)+3
CONTROL word at
(SP)+4,(SP)+5

B-3

B-4

APPENDIX C. P-CODES

SLDC 0 .. 31 Short Load Word Constant
LDCN 152 Load Constant NIL
LDCB 128 Load Constant Byte
LDCI 129 Load Constant Word
LCO 130 Load Constant Offset

SLDL1 32 Short Load Local Word

SLDL16 47

LDL 135 Load Local Word

SLLA1 96 Short Load Local Address

SLLA8 103

LLA 132 Load Local Address

SSTL1 104 Short Store Local Word

SSTL8 111

STL 164 Store Local Word

SLD01 48 Short Load Global Word

SLD016 63

LDO 133 Load Global Word
LAO 134 Load Global Address
SRO 165 Store Global Word

C-l

SLOD1 173 Short Load Intermediate Word
SLOD2 174
LOD 137 Load Intermediate Word
LDA 136 Load Intermediate Address
STR 166 Store Intermediate Word

LDE 154 Load Extended Word
LAE 155 Load Extended Address
STE 217 Store Extended Word

SINDO 120 Short Index and Load Word

SIND7 127

IND 230 Index and Load Word
STO 196 Store Indirect

LDC 131 Load Multiple Word Constant
LDM 208 Load Multiple Words
STM 142 Store Multiple Words
LDCRL 242 Load Real Constant
LDRD 243 Load Real
STRL 244 Store Real

CAP 171 Copy Array Parameter
CSP 172 Copy String Parameter

LDB 167 Load Byte
STB 200 Store Byte

LDP 201 Load a Packed Field
STP 202 Store into a Packed Field

MOV 197 Move
INC 231 Increment Field Pointer
IXA 215 Index Array
IXP 216 Index Packed Array

C-2

LAND 161 Logical And
LOR 160 Logical Or
LNOT 229 Logical Not
BNOT 159 Boolean Not

LEUSW 180 Less Than or Equal Unsigned
GEUSW 181 Greater Than or Equal Unsigned

ABI 224 Absolute Value Integer
NGI 225 Negate Integer
INCI 237 Increment Integer
DECI 238 Decrement Integer
ADI 162 Add Integers
SBI 163 Subtract Integers
MPI 140 Multiply Integers
DVI 141 Divide Integers
MODI 143 Modulo Integers
CHK 203 Check Sub range Bounds
EQUI 176 Equal Integer
NEQI 177 Not Equal Integer
LEQI 178 Less Than or Equal Integer
GEQI 179 Greater Than or Equal Integer

FLT 204 Float Top-of-Stack
TNC 190 Truncate Real
RND 191 Round Real
ABR 227 Absolute Value of Real
NGR 228 Negate Real
ADR 192 Add Reals
SBR 193 Subtract Reals
MPR 194 Multiply Reals
DVR 195 Divide Reals
EQREAL 205 Equal Real
LEREAL 206 Less Than or Equal Real
GEREAL 207 Greater Than or Equal Real

C-3

ADJ 199 Adjust Set
SRS 188 Build a Sub range Set
INN 218 Set Membership
UNI 219 Set Union
INT 220 Set Intersection
DIF 221 Set Difference
EQPWR 182 Equal Set
LEPWR 183 Less Than or Equal Set
GEPWR 184 Greater Than or Equal Set

EQBYT 185 Equal Byte Array
LEBYT 186 Less Than or Equal Byte Array
GEBYT 187 Greater Than or Equal Byte

Array

UJP 138 Unconditional Jump
FJP 212 False Jump
TJP 241 True Jump
EFJ 210 Equal False Jump
NFJ 211 Not Equal False Jump
JPL 139 Unconditional Long Jump
FJPL 213 False Long Jump
XJP 214 Case Jump

CPL 144 Call Local Procedure
CPG 145 Call Global Procedure

SCPIl 239 Short Call Intermediate
Procedure

SCPI2 240

CPI 146 Call Intermediate Procedure
CXL 147 Call Local External Procedure

SCXGl 112 Short Call External Global
Procedure

SCXG8 119

C-4

CXG 148 Call Global External Procedure
CXI 149 Call Intermediate External

Procedure
CPF 151 Call Formal Procedure
RPU 150 Return from Procedure
LSL 153 Load Static Link
BPT 158 Breakpoint

SIGNAL 222 Signal
WAIT 223 Wait

EQSTR 232 Equal String
LESTR 233 Less Than or Equal String
GESTR 234 Greater Than or Equal String
ASTR 235 Assign String
CSTR 236 Check String Index

LPR 157 Load Processor Register
SPR 209 Store Processor Register
DUP1 226 Duplicate One Word
DUPR 198 Duplicate Real
SWAP 189 Swap
NOP 156 No Operation
NAT 168 Native Code
NAT-INFO 169 Native Code Information

RESERVE 1 250 reserved

RESERVE6 255

C-5

C-6

APPENDIX D. AMERICAN
STANDARD CODE
FOR INFORMATION
INTERCHANGE

o 000 00 N.L 32 040 20 5P 64 100 40 (8l 96 140 60
1 001 01 5Q-1 33 041 21 65 101 41 A 97 141 61 a
2 002 02 5TX 34 042 22 " 66 102 42 6 98 142 62 b
3 003 03 ETX 35 043 23 1/ 67 103 43 C 99 143 63 c
4 004 04 EOT 36 044 24 $ 68 104 44 0 100 144 64 d
5 005 05 EN] 37 045 25 % 69 105 45 E 101 145 65 e
6 006 06 flO< 38 046 26 & 70 106 46 F 102 146 66 f
7 007 07 BEL 39 047 27 71 107 47 G 103 147 67 9
8 010 08 65 40 050 28 72 110 48 H 104 150 68 h
9 011 09 Hr 41 051 29 73 111 49 I 105 151 69

10 012 OA LF 42 052 2A * 74 112 4A J 106 152 6A j
11 013 DB VT 43 053 2B + 75 113 4B K 107 153 66 k
12 014 CC FF 44 054 2C 76 114 4C L 108 154 f£ I
13 015 CD CR 45 055 2D - 77 11540 M 109 155 6D m
14 016 DE SO 46 056 2E 78 116 4E N 110 156 6E n
15 017 CF 51 47 057 2F 79 117 4F 0 111 157 6F 0

16 020 10 D..£ 48 060 30 0 80 120 50 P 112 160 70 P
17 021 11 CCI 49 061 31 1 81 121 51 Q 113 161 71 q
18 022 12 CC2 50 062 32 2 82 122 52 R 114 162 72 r
19 023 13 CC3 51 063 33 3 83 123 53 5 115 163 73 s
20 024 14 CC4 52 064 34 4 84 124 54 T 116 164 74 t
21 025 15 N!lK 53 065 35 5 85 125 55 U 117 165 75 u
22 026 16 5'tN 54 066 36 6 86 126 56 V 118 166 76 v
23 027 17 ETB 55 067 37 7 87 127 57 W 119 167 77 w
24 030 18 0lN 56 070 38 8 88 130 58 X 120 170 78 x
25 031 19 EJVI 57 071 39 9 89 131 59 Y 121 171 79 y
26 032 lA 9-.B 58 072 3A 90 132 5A Z 122 172 7A z
27 033 16 ESC 59 073 36 ; 91 133 56 [123 173 7B {
28 034 lC F5 60 074 3C < 92 134 5C \ 124 174 7C I
29 035 10 a; 61 075 n 93 135 50] 125 175 7D 1
30 036 IE RS 62 076 3E > 94 136 5E A 126 176 7E -
31 037 IF US 63 077 3F ? 95 137 SF 127 177 7F aL

D-l

D-2

Glossary

This is intended as an aid to readers who are
unfamiliar with many "buzz words" used in this
document, and is not meant to be either
comprehensive or precise.

Associate Time: That part of a program's lifetime in
which the segments and their various references to
each other are associated by the Operating System.
This occurs when the program is prepared for
execution.

Blank-Filled: All 8-bit bytes within the specified
region are filled with blanks (ASCII 32).

Block: An area of memory (usually on a disk) with a
fixed size of 512 contiguous 8-bit bytes (256
contiguous 16 bit-words).

Block Boundary: Byte zero of any block.

Byte Pointer: A byte address (as opposed to a word
address).

Byte Sex: Some processors address 16-bit words
with the most-significant-byte first, others with the
least-significant-byte first. Byte sex refers to this
difference in addressing; two machines with
different addressing styles are said to have different
(or opposite) byte sex.

Compilation Unit: A program or portion of a
program that can be compiled by itself: in other
words, a program or a UNIT.

Compile Time: That part of a program's lifetime in
which it is being compiled (or assembled).

Glossary-1

Glossary-2

Concurrency: The execution of two or more tasks
or processes in parallel, i.e. at the same time.
Synonymous with multitasking.

Dynamic: Information which changes during
program execution (or is not known before
runtime).

Filler: A field in a data structure that is at present
unused. If this area is described as "reserved for
future use" then it usually should be zero-filled. This
avoids confusion when future versions of the System
make use of filler space.

Inter-Segment: The data (or program) in question
occupies more than one segment, or contains
pointers to another segment.

Link Time: That part of a program's lifetime in
which it is being operated on by the Linker.

Multiprogramming: An environment that
supports more than one user, where each user can
perform multitasking. (The p-System does not
support multiprogramming.)

Multitasking: The execution of two or more tasks
in parallel, i.e. at the same time. A task is a PROCESS
from the user's point of view; from the System's
point of view it might be a program. (The p-System
does support multitasking.)

Multiword: Some positive integral number of
words.

Native Code: Assembled code for some physical (as
opposed to ideal) processor. Also called machine
code or (sometimes) hard code.

One's Complement: All bits in the deSignated field
are flipped.

P-code: Assembled code for an ideal processor.
P-code stands for "pseudo-code." The p-System
Interpreter implements a "pseudo-machine."

Postprocessor: A program which is executed after
the completion of some other program, and uses as
input the output of that previous program. A
postprocessor that creates output which can be used
by still another program is often called a "filter".

Principal Segment: A segment that has a segment
reference list, i.e., a segment with a SEG_TYPE of
PROG_SEG or UNIT_SEG. Corresponds to the
outer segment of any compilation unit. UNITs,
FORTRAN programs, and the outermost block of a
Pascal program are all principal segments.

Recursion: The continued repeating of the same
operation or group of operations.

Relocatable: A portion of object code that can be
moved to different locations in memory without
changing its meaning. P-code is relocatable. Native
code mayor may not be.

Runtime: That part of a program's lifetime in which
it is being executed (or "run").

Self-Modifying: Code which overwrites or modifies
itself during execution, thus changing its meaning.
This is not recommended!

Seg-Relative: The address of an object is specified
as an offset from the beginning of the code segment
in which it resides.

Static: Information which does not change
throughout program execution (it is known before
runtime).

GlossarY-3

Glossary-4

Subsidiary Segment: A segment that has no
segment reference list, i.e., a segment with a
SEG_TYPE of PROC_SEG or SEPRT_SEG.
Corresponds to the object code of any segment
whose source text is not separately compilable.
Pascal segment procedures and segments produced
by the UCSD Adaptable Assembler are subsidiary
segments.

TOS: Short for "top-of-stack." The object that is on
the top of the P-machine stack (which is the object
that was most recently pushed).

Upward Compatibility: Code that runs on current
versions of a system will run on future versions of
that system. A more limited and more easily
obtained version of upward compatibility requires
source code to be recompiled on new versions, but
ensures that it will run once recompiled.

Word: 16 bits aligned on an even byte-address
boundary. The byte which is most significant is
determined by the byte sex of the machine for which
it was generated.

Word Poin ter: A word address (as opposed to a byte
address). The address of a word must be even.

Zero-Filled: A field of data that contains nothing
but zeroes (all bits must be 0).

INDEX

ABI 2-59
ABR 2-61

A

activation record 2-46
ADI 2-59
AD] 2-62
ADR 2-61
ALPHALOCK 3-17
ASCII 3-22, D-l
ASTR 2-73
ATTACH 4-16,4-18

B
BIO 2-4, 3-3, 3-18
blank compression, see DLE
BNOT 2-58
bootstrap 3-28
BPT 2-71
BREAK 3-25
BUILDENV 5-3
byte sex 2-5, 2-29

c
CAP 2-55
carriage return 3-16, 3-22
CHAIN 4-7
CHK 2-60
code segment, see segment
codefile 2-23

Codepool 2-3,2-17,2-32,
2-33

compilation unit 2-3,2-16,
2-17

Compiler 1-3, 2-3, 2-10,
2-16, 2-28, 2-29, 5-3

completion code 3-19
concurrency 2-38, 4-16
constant pool 2-6, 2-8
CONTROL 3-7,3-13,3-19,

3-29
copyright message 2-29
CPF 2-70
CPG 2-68
CPI 2-69
CPL 2-68
CSP 2-56
CSTR 2-73
CURTSK 2-39
CXG 2-69
CXI 2-69
CXL 2-69

D
DATASIZE 2-7
DECI 2-59
DIF 2-63
disk directory 4-20
DISPOSE 4-6
DLE 3-15, 4-22
DUPI 2-74
DUPR 2-74
DVI 2-60
DVR 2-61

X-I

E

EFJ 2-67
EMPTYHEAP 4-10
ENABLE 4-16,4-18
environment 2-3

record 2-34, 5-3
vector 2-14, 2-34, 5-3

EOF 3-16,4-19
EOLN 4-19
EQBYT 2-64
EQPWR 2-63
EQREAL 2-62
EQSTR 2-71
EQUI 2-60
E Rec, see environment,

record
E Vee, see environment,

vector
EVENT 4-16,4-18
event number 4-18
EXECERROR 4-15,4-16
EXITIC 2-7, 2-29
external

Codepool 2-4,4-9, 4-11
routine 2-3,2-7,2-20

F
Faulthandler 4-15
FIB (File Information

Block) 4-19
file directory 4-20
file I/O, see Input/Output,

file
FJP 2-66
FJPL 2-67
FLT 2-61
FLUSH 3-24
forward routine 2-7

X-2

G

GEBYT 2-66
GEPWR 2-64
GEQI 2-60
GEREAL 2-62
GESTR 2-72
GET 4-23
GEUSW 2-59

H

Heap 2-3, 2-4, 2-30, 2-32,
2-34,4-7,4-9,4-10

HMR (Heap Mark
Record) 4-8

INC 2-57
INCI 2-59
IND 2-53
INN 2-63

I

Input, see Input/Output
Input/Output 3- 3

block 4-22
console 3-21
device 2-5, 3-6
disk 3-20, 3-28
file 4-19
printer 3-20, 3-27
record 4-23
remote 3-21, 3-30
text 4-23

INTERACTIVE 4-19
internal Codepool 2-4, 4-9,

4-13
Interpreter 1-5,2-2,3-3,3-5,

3-29,4-15

I/O, see Input/Output
IORESULT 2-40, 3-8
IPC 2-40
IXA 2-58
IXP 2-58

J
JPL 2-67

K
KERNEL 3-5,4-4,4-5,4-12

L

LAE 2-52
LAND 2-58
LAO 2-51
LCO 2-49
LDA 2-52
LDB 2-56
LDC 2-53
LDCB 2-49
LDCI 2-49
LDCN 2-49
LDCRL 2-54
LDE 2-52
LDL 2-50
LDM 2-54
LDO 2-51
LDP 2-57
LDRL 2-54
LEBYT 2-65
LEPWR 2-64
LEQI 2-60
LEREAL 2-62

LESTR 2-72
LEUSW 2-58
Librarian, see LIBRARY
LIBRARY 2-4,4-4
Linker 2-13,2-17,2-20,2-30,

5-3
Linker info 2-17, 2-2 5
LLA 2-50
LNOT 2-58
LOD 2-52
LOR 2-58
LPR 2-74
LSL 2-70

M
MARK 4-6,4-16
MEMLOCK 2- 33
MEMSW AP 2-33
MODI 2-60
MOV 2-57
MPI 2-59
MPR 2-61
MSCW 2-40

N
NAT 2-75
NAT-INFO 2-75
native code 2-3,2-9,2-20,

2-26, 2-29,4-11
NEQI 2-60
NEW 4-6,4-16
NFJ 2-67
NGI 2-59
NGR 2-61
NOP 2-75

X-3

o
Operating System 2-5,

2-16,2-17,2-37, 3-5, 3-29,
4-3, 5-3

Output, see Input/Output

p

P-code 1-3, 2-3 2-10 2-12 , , ,
2-17,2-26,2-27,2-38,2-43,
3-3
operands 2-43

PERMDISPOSE 4-7
PERMNEW 4-7,4-8,4-16
P-machine 1-3, 2-42
P_MACHINE Intrinsic 2-42
procedure dictionary 2-7
PROCESS 2- 38
PUT 4-20

Q
QUIET 4-16,4-17

R

READ 4-16,4-23
READLN 3-3,4-23
READYQ 2-39
real constants 2-10
REALSIZE 2-10
RELEASE 4-6,4-7
RELFUNC 2-26
relocation list 2-12,2-29
relocation sublist 2-13,2-30
RELPROC 2-26
RESERVEn 2-76

X-4

RET 2-32
RND 2-61
routine dictionary 2-7
RPU 2-70
RPS (Runtime Support

Package) 3-3

s
SBI 2-59
SBR 2-61
SCPln 2-68
SCXGn 2-69
sector 3-10
segment 2-3, 2-5, 5-3

dictionary 2-22
name 2-5,2-16,2-18,2-25
number 2-5,2-16 2-28 , ,

2-35
reference list 2-16, 2-28

SIB (Segment Information
Block) 2-30,2-35,4-10,5-3

SIGNAL 2-70,4-16
SINDn 2-53
SLDC 2-49
SLDLn 2-50
SLDOn 2-51
SLLAn 2-50
SLODn 2-51
SP 2-40,4-13
SPR 2-74
SRO 2-51
SRS 2-63
SSTLn 2-50
Stack 2-3,2-4,2-38,4-16
ST ACKSIZE 2- 38
START 2-38,4-15,4-16
START/STOP 3-24
STB 2-56
STE 2-52
STL 2-50

STM 2-54
STO 2-53
STP 2-57
STR 2-52
STRL 2-55
SWAP 2-75
SYSCOM 3-9, 3-23,4-15

T
task

environment 2- 38
switching 4-16

TIB (Task Information
Block) 2-37,2-38,2-39

TJP 2-66
TNC 2-61
type-ahead 3-25

UCSD 1-4
UJP 2-66
UNI 2-63
unit 2-4

u

initialization code 2-17
interface part 2-26, 2-28
Operating System units

4-3
termination code 2-17

UNIT CLEAR 3-4, 3-6, 3-8
UNITNUMBER 3-6
UNITREAD 3-3,3-7,3-8,

3-13, 3-14
UNITWRITE 3-3, 3-7, 3-8,

3-13,3-14

v
VARNEW 4-6
V ARDISPOSE 4-6

w
WAIT 2-71,4-15,4-16
WRITE 4-23
WRITELN 3- 3, 4-23

x
XJP 2-67

X-5

X-6

--- ------ - ---- ---- - ---- - - ----------_.-

Product Comment Form

Internal Architecture Guide

Personal Computer
Computer Language Series

6936557

Your comments assist us in improving our products. IBM
may use and distribute any of the information you supply
in anyway it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use
the information you supply.

Comments:

If you wish a reply, provide your name and address in
this space.

~ame ____________________________________ ___

Address __________________________________ __

City __________ _ State --------------
Zip Code ________ _

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 123 BOCA RATON, FLORIDA 33432

POSTAGE WILL BE PAID BY ADDRESSEE

IBM PERSONAL COMPUTER
SALES & SERVICE
P.O. BOX 1328-C
BOCA RATON, FLORIDA 33432

9J94 PIO::!

alde~s ~ou op aseald

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

ade.l

Iltinued from inside front cover

ME STATES DO NOT ALLOW THE
CLUSION OF IMPLIED
\RRANTIES, SO THE ABOVE
CLUSION MAY NOT APPLY TO
IV. THIS WARRANTY GIVES YOU
ECIFlC LEGAL RIGHTS AND YOU
\ Y ALSO HAVE OTHER RIGHTS
-IICH V AR Y FROM STATE TO
ATE.

vI does not warrant that the functions
ttained in the program will meet your
uirements or that the operation of the
19ram will be uninterrupted or error
e.

wever, IBM warrants the diskette(s) or
sette(s) on which the program is fur­
hed, to be free from defects in materials
1 workmanship under normal use for a
'iod of ninety (90) days from the date of
ivery to you as evidenced by a copy of
If receipt.

MIT A nONS OF REMEDIES

VI's entire liability and your exclusive
nedy shall be:

the replacement of any diskette(s) or
cassette(s) not meeting IBM's "Limited
Warranty" and which is returned to

IBM or an authorized IBM PERSONAL
COMPUTER dealer wi th a copy of your
receipt, or

if IBM or the dealer is unable to deliver a
replacement diskette(s) or cassette(s)
which is free of defects in materials or
workmanship, you may terminate this
Agreement by returning the program
and your money will be refunded.

. NO EVENT WILL IBM BE LIABLE
) YOU FOR ANY DAMAGES,
[CLUDING ANY LOST PROFITS,
)ST SAVINGS OR OTHER
rCIDENT AL OR CONSEQUENTIAL

DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE SUCH
PROGRAM EVEN IF IBM OR AN
AUTHORIZED IBM PERSONAL
COMPUTER DEALER HAS BEEN
ADVISED OF THE POSSIBLITY OF
SUCH DAMAGES, OR FOR ANY
CLAIM BY ANY OTHER PARTY.

SOME STATES DO NOT ALLOW THE
LIMITATION OR EXCLUSION OF
LIABILITY FOR INCIDENTAL OR
CONSEQUENTIAL DAMAGES SO
THE ABOVE LIMIT A TION OR
EXCLUSION MAY NOT APPLY TO
YOU.

GENERAL

You may not sublicense, assign or
transfer the license or the program
except as expressly provided in this
Agreement. Any attempt otherwise to

sublicense, assign or transfer any of the
rights, duties or obligations hereunder is
void.

This Agreement will be governed by the
laws of the State of Florida.

Should you have any questions
concerning this Agreement, you may
contact IBM by writing to IBM Personal
Computer, Sales and Service, P.O. Box
1328-W, Boca Raton, Florida 33432.

YOU ACKNOWLEDGE THAT YOU
HA VE READ THIS AGREEMENT,
UNDERSTAND IT AND AGREE TO
BE BOUND BY ITS TERMS AND
CONDITIONS. YOU FURTHER
AGREE THAT IT IS THE COMPLETE
AND EXCLUSIVE STATEMENT OF
THE AGREEMENT BETWEEN US
WHICH SUPERSEDES ANY
PROPOSAL OR PRIOR AGREEMENT,
ORAL OR WRITTEN, AND ANY
OTHER COMMUNICATIONS
BETWEEN US RELATING TO THE
SUBJECT MATTER OF THIS
AGREEMENT.

--- ------- - ---- ---- - ---..:. .:.: :: ';' == ®

International Business Machines Corporation

P.O. Box 1328-W
Boca Raton, Florida 33432

6936557

Printed in United States of America

