
- ---- - ---- - - ----------_.- Personal Com/wIer
Computer Language
Series

USERS' GUIDE
for the UCSD p-System'· Version IV.O

Produced by SofTech Microsystems, Inc.
Edited by Keith Shillington, Gillian Ackland,
Randy Clark and Stan Stringfellow

First Edition (January 1982)

Changes are periodically made to the information herein;
these changes will be incorporated in new editions of this
publication.

Products are not stocked at the address below. Requests for
copies of this product and for technical information about the
system should be made to your authorized IBM Personal
Computer Dealer.

A Product Comment Form is provided at the back of this
publication. If this form has been removed, address comment
to: IBM Corp., Personal Computer, P.O. Box 1 328-C, Boca
Raton, Florida 33432. IBM may use or distribute any of the
information you supply in any way it believes appropriate
without incurring any obligations whatever.

© Copyright International Business Machines Corporation 1982
© Copyright Regents of the University of California 1978

© Copyright SofTech Microsystems, Inc. 1979, 1980, 1981

UCSD, UCSD Pascal, and UCSD p-System are all trademarks
of the Regents of the University of California.

CONTENTS

BOOK 1 OPERATIONS

CHAPTER 1. HARDWARE
REQUIREMENTS....................... 1-1

Configuration 1-3

CHAPTER 2. GETTING STARTED 2-1
Using the System 2-3
Powering-up with the p-System 2-4
Backing up your diskettes. 2-5

Formatting a new diskette 2-5
Making backups 2-7

Important keys on the IBM Personal
Computer Keyboard 2-9

Running the STARTUP: diskette 2-11

CHAPTER 3. MAKING USE OF THE
p-SYSTEM 3-1

Making Use of the p-System 3-3
Software components 3- 3

Operating System 3-4
Filer 3-4
Editor 3-5
Compilers 3-5
Libraries 3-8
Utilities 3-8

How to create and run a simple
program 3-9

Error Messages 3-15
Ways to configure your diskettes 3-16
Large programs 3-21

iii

CHAPTER 4. MAKING USE OF THE IBM
PERSONAL COMPUTER HARDWARE ... 4-1

The Display 4-3
The Printer• , . . 4-4
Remote Devices•. 4-5
Making Use of IBM Personal Computer

Hardware 4-6
Dual-Sided Diskette Drives 4-7

Formatting Your Diskettes 4-7
Creating System Diskettes 4-7
Creating Storage Diskettes 4-9

Serial Printer Support 4-10
Connecting Your Printer 4-11
Reconfiguring Your System

Diskette 4-12
RS232SET Utility 4-15

APPENDIXA. THE p-SYSTEM PACKAGE ... A-I
Documents shipped with the p-System ... A-3
Diskettes and files shipped with the

p-System A-4

iv

CHAPTER 1. HARDWARE
REQUIREMENTS

Contents

Configuration 1- 3

1-1

NOTES

1-2

20NFIGURATION
To run the p-System on the IBM Personal
Computer, your IBM Personal Computer
configuration must include:

• At least 64K bytes of main memory.

• Two diskette drives.

• IBM Personal Computer Monochrome Display
or video monitor or color TV with RF
modulator.

1-3

NOTES

1-4

CHAPTER 2. GETTING STARTED

Contents

U sing the System 2- 3
Powering up with the p-System 2-4
Backing up your diskettes. 2-5
Formatting a new diskette 2-5
Making backups 2-7
Important keys on the IBM Personal

Computer Keyboard 2-9
Running the STARTUP: diskette 2-11

2-1

NOTES

2-2

U sing the System
N ow that you have an IBM Personal Computer and a
UCSD p-System, you are probably wondering how
to use them. Once you have become familiar with
the IBM Personal Computer hardware, and are ready
to use the p-System, you should read this Operations
Guide FIRST.

We are going to talk about three things:

1) How to power up the p-System and begin
using it.

2) Ways of using the p-System effectively.

3) How the p-System uses some of the IBM
Personal Computer hardware.

It is important that you read through this Operations
Guide. If you don't understand some of it, you may
be in danger of LOSING programs. If you have
programmed before, you know that means losing a
lot of time (and maybe even money, if you happen to
destroy the diskettes on which your p-System is
shipped).

Moral: keep reading.

(We do occasionally mention a topic for more
experienced p-System users. But essentially you
should read this Operations Guide cover-to-cover.)

Enough preaching. You're eager to get your
p-System running. That's what the next section tells
how to do.

2-3

Powering-up with the p-System

2-4

First, take a look at the Appendix in the back of this
Operations Guide. It lists all of the documents and
diskettes that you should have received with the
p-System. Make sure that all of it is there for the
p-System you have purchased (Pascal, or
FORTRAN, or both).

There are three diskettes that will "bootstrap" on
the IBM Personal Computer. For now, we need only
one. "Bootstrapping" means bringing the p-System
up: most of this work is done by the System itself,
hence the term (as in "pulling yourself up by the
bootstraps").

Take the diskette that is labeled SYSTEM2:. If your
IBM Personal Computer is on right now, turn it off,
and wait at least 6 seconds. Put SYSTEM2: in the
LEFT-HAND diskette drive. The label should be
facing up, and the oblong slot that exposes the
diskette itself should be pointed away from you.
Close the small door. Now turn the power on.

Don't panic if it takes a while! You should hear the
speaker beep, then the light should come on in front
of the left-hand diskette drive, and you should hear
the diskette drive reading information from the
diskette. After about a minute, if everything goes
well, the IBM logo will appear on the display, and
above it will be the main promptline of the p-System.

The promptline is the outer level of the "Operating
System," and it shows most of the major p-System
commands. For now, you don't need to worry about
what they mean (you will get to see how some of
them are used in the next section).

If you don't get a promptline after two minutes, then
turn off the IBM Personal Computer. Read over the
preceding few paragraphs and make sure you did

everything correctly (be sure you are using the
SYSTEM2: diskette!). Then try it again. ALWAYS
wait at least 6 seconds between turning off the IBM
Personal Computer and turning it on again.

If you continue to have trouble, stop right here and
call your dealer. Resume at this point once you have
bootstrapped your p-System (or, if you like, read
ahead while you are waiting for help, and learn what
to expect).

When you bootstrap for the first time with a color
card, and the dipswitches on your computer are set
to default to the 40-column mode, the screen you see
is only the right-hand half of the full p-System
display. Later on in this chapter, we will tell you how
to deal with this.

If the dipswitches on your computer are set to
default to the 80-column mode, you will see the full
screen when you bootstrap.

All righ t, now you have bootstrapped your p-System.
The next thing to do is play it safe and make backup
copies of ALL your diskettes.

Backing up your diskettes
Formatting a new diskette

A brand new diskette must be formatted before you
can use it on the IBM Personal Computer. This is
done by running a small "utility program" called
DISKFORMAT.CODE.

A "utility program" is a program that comes with the
p-System, and is run like any user's program.

2-5

2-6

The p-System is shipped on six or seven diskettes
depending on what you have purchased, and you
must make a backup copy of each of them. The first
step is to format seven new diskettes.

For your protection, the p-System diskettes that are
shipped cannot be written on. Making backups is
necessary. It allows you to use your p-System more
freely, and to configure the files on your diskettes in
a more convenient manner, as we describe i.n the
next chapter.

When using the p-System, the left-hand drive on the
Personal Computer is referred to as" drive #4", and
is always used to bootstrap the p-System. The
right-hand drive is referred to as "drive #5".

We assume that you have bootstrapped your
p-System, and are looking at the main promptline.
To run DISKFORMAT.CODE, place the diskette
called UTILITY: in the right-hand diskette drive,
and type "X" for eX(ecute. The p-System will ask
you:

Execute what file?

Now type "#5:DISKFORMAT" and then press the
enter key. (The enter key is to the right of the alphabet
keys, and looks like an arrow pointing down and to
the left.)

DISKFORMAT should reply with the following
prompt:

Enter unit number of diskette to be formatted (4 .. 5):

REMOVE both the diskette SYSTEM2: and the
diskette UTILITY:. Put a BLANK diskette into the
right-hand drive, and type "5" followed by enter.

DISKFORMAT will respond:

Insert disk in unit 5 and press <enter> ...

Since you have already put the blank diskette in the
right-hand drive (drive #5), simply press enter.
DISKFORMAT takes a while to run, and informs
you when it has finished.

Once you have formatted a diskette, you have five or
six more to go. Once DISKFORMAT is finished,
type "u" for U(ser-restart to start DISKFORMAT
over again. Put another blank diskette into drive #5,
and answer DISKFORMAT's prompts in the same
way we have shown.

If DISKFORMAT gives you an error message while
trying to format a diskette, there is probably
something wrong with the diskette. Set it aside and
try another.

Now that you have formatted all your diskettes, it is
time to back up the p-System diskettes.

Making backups

You should put SYSTEM2: (the disk you
bootstrapped with) back into drive #4. Now type
"F" for F(iler. This command puts you at another
"level" of the p-System, where the letters you type
are now commands to the Filer.

Type "T" for T(ransfer. The filer will ask you:

Transfer what file?

N ow REMOVE the System diskette, place one of the
six or seven p-System diskettes in the left-hand drive
(drive #4) and one of the formatted blank diskettes
in the right-hand drive (drive #5).

2-7

2-8

Answer the prompt with "#4,#5", and press the enter
key.

The Filer then asks:

Transfer 320 blocks? (YIN)

Type "y", and press the enter key. (320 blocks is the
size of the entire diskette.)

The Filer will transfer the contents of the diskette in
drive #4 onto the diskette in drive #5. When it is
finished, it displays a message to that effect.

When the transfer is complete, remove both
diskettes, label the new backup copy appropriately,
type "T" again, and repeat these steps (placing your
original diskette in drive #4, and your backup in
drive #5) until you have made backup copies of all
your p-System diskettes.

Warning: If you put the diskettes in
backwards (i.e., the blank diskette in drive #4
and the good diskette in drive #5), the Filer will
display a message such as:

Destroy SYSTEM2: ?

You should type "N" or "n", and correct the
mistake.

You are now ready to use your backup copies for
everyday work. Keep the diskettes that were
originally shipped in a safe place.

Important keys on the IBM Personal
Computer Keyboard

When you run your p-System, there are some
important keys that you should know about. This
section describes them briefly. You probably will
not want to absorb all of the information here on
first reading, but do read through the section, and
refer back to it when you need this information.

First, there is the enter key (it looks like an arrow
pointing down and to the left). Whenever you
answer a prompt in the p-System (except for
single-letter commands), you should follow it with
an enter. When you are using the Editor, the enter key
acts as a carriage return on a typewriter.

To type all capital letters, you can press the CAPS
LOCK key (as on a typewriter keyboard). To type
lower case letters again, press CAPS LOCK a second
time.

Once the p-System has been bootstrapped, it is not
necessary to turn off the IBM Personal Computer in
order to bootstrap it again. You can insert the
diskette you want to bootstrap from in drive #4 (or
leave it there if it is already there), hold down the
Ctrl and AL T keys, and press the "DEL" on the
numeric pad. The IBM Personal Computer will
re-bootstrap your p-System. Since you need to press
three keys at once, using two hands, the danger of
bootstrapping accidentally is negligible.

When a program is sending output, it is possible to
stop and start that output by holding down the
Ctrl key and pressing "S". The first time you type
Ctrl S, output stops, the next time you type it,
output begins again, and so forth.

2-9

2-10

If you no longer want the program to send any
output, hold down the Ctrl key and press "F".
F stands for "flush". The program will continue to
run, but will not send any output, and should soon
terminate.

If something goes wrong while a program is running,
and you wish to halt it completely, holding down the
Ctrl key and pressing"@" causes a BREAK. The
p-System displays an error message, then
re-initializes itself. Another way to halt a program is
to hold down Ctrl and press BREAK (the BREAK
key is the same as the SCROLL LOCK key). This
causes a hardware BREAK, which is more difficult
for the p-System to recover from. The rule of thumb
is: use Ctrl @, and if that fails, use Ctrl BREAK.
After a Ctrl BREAK, it will often be necessary to
re-bootstrap.

When you are typing input to the p-System, you can
correct errors by backspacing over them. The
backspace key is on the top row, and looks like an
arrow pointing left. You can also erase an entire line
of input by typing Ctrl backspace.

The vector keys (four arrows) occupy the same keys
as the numeric pad. Normally you will be using the
vector keys. To use the numeric pad as a numeric
pad, press NUM LOCK. This works in much the
same way as CAPS LOCK. To use the vector keys
again, press NUM LOCK a second time.

The vector keys are usually used within the p-System
Editor. They are used to move the cursor, along with
backspace, enter, tab, and some other commands
(the cursor is the flashing underline that appears on
most screens).

When the Editor is in eX(change mode, INS inserts a
single space, and DEL deletes a single character.

Another character you must use while in the Editor is
called etx. This is the character that accepts
insertions and deletions. To send an etx, hold down
the Ctrl key and press "C". If you do NOT want to
accept an insertion or deletion, you may press the
ESC key (for "escape").

If the display you are using is in half-screen mode (40
columns of characters), then you can use the
left-arrow and right-arrow keys to view the hidden
portion of the display. The rule is that the p-System
always displays the columns that surround the
cursor.

That should be enough information for now.

Running the STARTUP: diskette
If you have never used the p-System before then we
recommend that you become familiar with it by
using Ken Bowles' Beginners' Guide for the UCSD
p-System (which is supplied with all p-Systems). This
guide uses a number of programs, and these
programs are supplied on the diskette labeled
STARTUP:.

STARTUP: can be bootstrapped. It contains a
p-System with an Editor, but not a Compiler. To use
a Compiler, see Chapter 3 in this Operations Guide.
STARTUP: also contains the following files:

NAMEFILE

SCDEMO.CODE

COPYSCUNIT.CODE

UPDATE. CODE

COMPDEMO.TEXT

EDITDEMO. TEXT

UPDATE. TEXT
2-11

2-12

The use of these files is explained in the Beginners'
Guide.

When you bootstrap on the STARTUP: diskette,
you will find yourself in the middle of a program.
This is a demonstration program that is meant to
give you some of the feel of using the p-System. The
Beginners' Guide tells you how to use it and what to
expect.

CHAPTER 3. MAKINGUSEOFTHE
p-SYSTEM

Contents

Making Use of the p-System 3-3
Software components 3-3
Operating System 3-4
Filer 3-4
Editor. 3-5
Compilers 3-5
Libraries 3-8
Utilities 3-8
How to create and run a simple

program 3-9
Error Messages 3-16
Ways to configure your diskettes 3-15
Large programs. .. 3-21

3-1

NOTES

3-2

MAKING USE OF THE p-SYSTEM
This chapter should be more interesting than the
previous chapter, since it describes the major
components of the p-System, and some of the more
effective ways to use them.

Software components

What is a p-System, anyway? It's a collection of
software components that come in the form of files
saved on diskettes. This software is used for writing
and running programs. The programs you write will
use the IBM Personal Computer's hardware in
various ways.

When you use the p-System, you begin by
bootstrapping it. When you have bootstrapped, you
see a System promptline that looks like this:

Command: E(dit, R(un, F(ile, Clomp, L(ink, X(ecute, A(ssem,? [IV.02 R3j-A]

Each capital letter shown on the promptline is a
command to the p-System. Typing one of these
letters causes something to happen. Some of the
commands, such as E(dit and F(iler, call other
programs that in turn have their own promptlines
and their own set of commands.

In other words, each component of the p-System
serves a particular purpose. All of them are fairly
self-explanatory, and all of them are meant to be
used by a single user sitting in front of the IBM
Personal Computer display (in other words,
"interactively") .

This section gives some brief descriptions of the
major components of the p-System.

3-3

Operating System

Filer

3-4

Very little of the Operating System is actually seen
by the user. The Operating System is essentially the
program that controls the IBM Personal Computer's
resources and calls various other programs.

The part of the Operating System that IS important
to the user is the main promptline: the one you see
when the p-System is first bootstrapped. This set of
commands allows you to call other portions of the
p-System, and to run programs that you have written
yourself.

The Operating System is called SYSTEM. PASCAL.
It cannot run unless the files SYSTEM.MISCINFO,
SYSTEM.INTERP, and the invisible bootstrap code
are also on the disk that you bootstrap. These files all
appear on the diskettes STARTUP:, SYSTEM2:, and
SYSTEM4:, which are shipped with the p-System.
Any ONE of these diskettes can bootstrap the
p-System, when placed in the left-hand disk drive, as
described in Chapter 1.

The Operating System and its commands are
described in Chapter 2 of the User's Guide for the
UCSD p-System.

You have already used the Filer briefly to make
backup copies of your p-System diskettes. The Filer
is used for maintaining the collection of files on a
diskette, and transferring them from one location to
another.

SYSTEM. FILER is the Filer program. It is shipped
on STARTUP:, SYSTEM2:, and SYSTEM4:.

The use of the Filer is described in Chapter 3 of the
User's Guide.

Editor

The Editor allows you to create new files such as
programs or documen ts. It also allows you to modify
old files. The Editor makes use of the entire display
screen, so it is easy to see the text you are working
on, and modify it as necessary.

The Editor is called SYSTEM. EDITOR, and it is also
shipped on the three bootstrap disks.

Using the Editor is described in Chapter 4 of the
User's Guide.

Compilers

With the UCSD p-System on the IBM Personal
Computer, you can program in UCSD Pascal or in
FORTRAN. Programming in one of these languages
means creating a text file with the Editor, and then
"compiling" it by calling the appropriate compiler.
The compiler translates the program text into a form
that the p-System can execute on the IBM Personal
Computer.

There are two UCSD Pascal compilers, and two p
Systems. The ONLY difference between the two is
that one set uses real numbers that are two words
long (32 bits), and one set uses real numbers that are
four words long (64 bits). If you don't understand the
difference, for now you only need to remember that
four-word real numbers are more accurate.

The UCSD Pascal compilers are shipped on the
diskette PASCAL:. The two-word compiler is called
SYSTEM. COMPILER, and the four-word compiler
is called P ASCAL4. COMPILE. The p-System that
supports two-word reals is the SYSTEM2:
diskette that you have already bootstrapped. The
p-System that supports four-word reals is on the

3-5

3-6

SYSTEM4: diskette. The ONLY difference between
these two System disks is the size of their real
numbers.

We recommend that if you use real numbers, you
use four-word reals (although the two-word reals run
somewhat faster). Since these are more accurate, we
will eventually phase out two-word reals.

When you compile a program in UCSD Pascal, the
name of the compiler file must be
SYSTEM. COMPILER. The p-System is shipped with
the two-word Pascal compiler named
SYSTEM. COMPILER. If you intend to use Pascal
with four-word reals (PASCAU. COMPILE) or one of
the FORTRAN compilers (FORTRAN2.CODE or
FORTRAN4.CODE), you must use the Filer to
change file names. Change the name of
SYSTEM. COMPILER to PASCAL2.COMP, and the
name of the compiler you wish to use to
SYSTEM. COMPILER.

Also, when you compile a UCSD Pascal program, the
file SYSTEM. SYNTAX should be on the System
disk (the diskette you bootstrap with). This file
contains all the error messages that the Pascal
compiler needs if (alas) it encounters a syntax error
while compiling your program. SYSTEM. SYNTAX
is shipped on SYSTEM2: and SYSTEM4:.

The UCSD Pascal language is described in the
PASCAL Reference for the UCSD p-System.

The FORTRAN compilers are on the FORTRAN:
diskette. As with UCSD Pascal, there are two of
them. FORTRAN2.CODE has two-word real
numbers and is used along with FORTLIB2.CODE.
FORTRAN4.CODE has four-word real numbers,
and is used along with FORTLIB4.CODE.

When you compile a FORTRAN program, the name
of the compiler you use must be changed to
SYSTEM. COMPILER (as described above), and the
name of the matching library must be changed to
SYSTEM. LIBRARY in a similar fashion. We will say
more about this in the section below on "Ways to
configure your diskettes."

FORTRAN does not have a file that corresponds to
Pasca1's SYSTEM. SYNTAX.

Information on the FORTRAN language, and using
the LIB files that accompany each FORTRAN
compiler, may be found in the FORTRAN-77
Reference for the UCSD p-System.

It is also possible to program directly for the IBM
Personal Computer's 8088 processor. These
programs are said to be "assembled" rather than
compiled, and the p-System program that does this is
SYSTEM.ASSMBLER.

SYSTEM.ASSMBLER is shipped on the diskette
EXTRAS:, along with the files 8086.0PCODES and
8086.ERRORS. These two files must be present
whenever the assembler is run.

We expect that only programmers already familiar
with assembly language will attempt to use
SYSTEM.ASSMBLER, and then only when they
have a good reason to. It is far easier to program in a
"high-level" language such as UCSD Pascal.

When you write a UCSD Pascal or FORTRAN
program that calls assembly-language routines (yes,
it's possible), you will need to use the Linker
program, which is shipped on the EXTRAS: diskette
as SYSTEM. LINKER.

The assembly language for the 8086/87/88
processor is described in the Assembler Reference for the
UCSD p-System.

3-7

Libraries

Utilities

3-8

Frequently, a number of programs will need to
perform the same operations. It is not necessary to
"re-invent the wheel" and write the same code over
for every program that needs it. The programmer
can write a portion of code called a "UNIT," and
compile it separately from the programs that use it.
A disk file that contains one or more UNITs for use
by several programs is called a "library".

The most important library is called
SYSTEM. LIBRARY, and such a file appears on both
SYSTEM2: and SYSTEM4:. SYSTEM. LIBRARY
contains the units IBMSPECIAL and
TURTLEGRAPHICS, which allow you to use
certain features of the IBM Personal Computer
hardware. It also contains the unit LONGOPS,
which is the code that performs operations on UCSD
Pascal long integers.

A description of IBMSPECIAL and
TURTLEGRAPHICS, and how to create your own
library, is described in the User's Guide, Chapter 5.
That chapter also describes the utility LIBRARY,
which is used for creating and maintaining software
libraries.

We have just mentioned the utility LIBRARY, and in
Chapter 2 we used the utility DISKFORMAT.
Utilities are programs, and they are run in just the
same way as a user's program. They are shipped with
the p-System, and in general, they provide important
services, but are not used as frequently as the
programs (like the Filer, Editor, or Compiler) that
are called directly from the Operating System.

Most of the p-System utilities are shipped on the
diskette UTILITY:. A few of them are shipped on
EXTRAS:. They are described in the Users' Guide,
Chapter 7.

EXTRAS: also contains some files to be used by
programmers who are a bit more experienced. We
will talk about these later.

How to create and run a
simple program

In this section, we will "walk you through" creating a
simple program, compiling it, and running it.

(FORTRAN programmers note: this sample uses a
brief Pascal program. What we are really trying to
illustrate is the use of the Editor to create a workfile,
the use of the R(un command to compile it, and the
use of the Filer to change its name. All these aspects
of the p-System are the same whether you are
programming in Pascal or in FORTRAN.)

First, bootstrap the p-System if you haven't already
done so. (We assume that you are a new user who has
not yet created a workfile. If you do have a workfile,
you should save it before going through this
demonstration.)

Now type "E" for E(dit. You should get a display that
looks like this:

>Edit:
No workfile is present. File? «ent> for no file)

Since we are creating a new program, press enter to
continue.

3-9

3-10

Now type "I" for I(nsert, and type the following text
as shown. To end a line, press the enter key (as you
would use the carriage return on a typewriter).
Notice that once you have indented a line, the lines
that follow it are indented automatically:

PROGRAM EASY;
BEGINN

WRITELN('HELLO, THERE!');
WRITELNj
WRITELN('YOU'VE JUST RUN YOUR FIRST PROGRAM'.);

END

If you make a mistake while typing, backspace over it
and re-type the correct characters. When you have
finished typing in the program, type Ctrl C (you
must hold down the Ctrl key and then press "C").
This should get you out of I(nsert, and back to the
Editor's main promptline.

Ah, but the program we made you type contains an
error (if you didn't type it just the way it's shown
here, it may contain more than one!). The "BEGIN"
in the second line should contain one "N", not two.

To remove this extra letter, move the cursor (that's
the flashing underline) back to the FIRST "N" by
using the" cursor keys" or "arrow keys." These are
the four arrows that appear on the numeric pad on
the right-hand side of the keyboard. Try moving
around your program until you get the feel for it.
The enter key, backspace key, and tab key can also
be used to move the cursor.

If you try to use the cursor keys, and get a message
that looks something like this:

ERROR: Repeatfactor > 10,000
Please press <spacebar> to continue .

... don't panic! This simply means that the NUM
LOCK key has been pressed, and you were typing
numbers instead of typing cursor arrows. To use the

cursor keys, press space, then press NUM LOCK,
and the cursor keys should work again.

N ow, is the cursor at the first "N" in the second line?
Good. To remove the "N", press "D" for D(elete,
then type a space. This should delete the first "N".
Then type Ctrl C, which should close up the line
and return you to the main Editor prompt. If this
worked, we can go on.

Type "Q" for Q(uit (sound familiar?), and you will
see a prompt that looks like this:

>Ouit:
U(pdate the workfile and leave
E(xit wit hut updating
R(eturn to the editor without updating
W(rite to a file name and return

Type "U" for U(pdate. What this does is create a
temporary file called SYSTEM. WRK. TEXT. This
file is on your System disk, and it contains the text
that you just typed in. It is referred to as the
"workfile," and a little later we will show you how to
save it under a different name.

Now that we have a program, we want to run it. But
we have to compile it first. To do so, take YOUR
backup copy of the disk PASCAL:, and put it in the
right-hand disk drive. Type "R" for R(un. The
Operating System will recognize that your workfile
hasn't been compiled, and so it will call the compiler
SYSTEM. CO MPILER that is on the disk in drive #5.
When the compiler is finished, the Operating
System will run your program. While the compiler is
compiling, it displays some progress information:

Pascal compiler· release level IV.O c2·4
< 0> ..
EASY
< 2> ...

5 lines compiled

EAS,'
3-11

'" and when it is finished, it should run your
program, creating some output that looks like this:

Command: E(dit, R(un, f(ile, Clomp, L(lnk, X(ecute, A(ssem,7 [IV.02 83j-AJ
Running ...
HELLO, THEREI

YOU HAVE JUST RUN YOUR fiRST PROGRAM.

3-12

The compiler creates another portion of the
workfile called SYSTEM.WRK.CODE. As long as
SYSTEM.WRK.CODE exists, using the R(un
command will run your program over again without
re-compiling it.

(There is little difference between the expressions
"running a program" and "executing a program."
But there is a large difference between the Operating
System command R(un and the Operating System
command eX(ecute, as you will discover if you read
Chapter 2 of the Users' Guide.)

If there had been a "bug" or mistake in the program
you were compiling (and there might be, if you typed
it differently from the program in this booklet), the
compiler would display a message something like
this:

Compiling ...

Pascal compiler - release level IV.O c2-4
< 0> ..
EASY
< 2> ..

WRITELN;
WRITELN('YOU'VE <---

Illegal symbol (terminator expected)
Une 5
Type <sp> to continue, <esc> to terminate, or 'e' to edit

When the compiler tells you there is an error, there
are three things you can type:

1) ESC ends the compilation;

2) space or enter continues the compilation and
allows you to see what other bugs the Compiler
might report;

3) "E" or "e" gets you back into the Editor and
allows you to fix the bug on the spot.

Now, we could show you more about the Editor, but
the introduction to Chapter 4 in the Users' Guide
does a good job of that. So for now, we will just save
the workfile that you have created.

Go back into the Filer (by pressing "F" at the main
promptline). Now type "S" for S(ave. The filer will
ask you:

Save as what file ?

Type the filename "TESTING", and then press enter.
When the workfile has been saved, we get this message:

Filer: G(et, Slave, W(hat, N(ew, L(dir, R(em, C(hng, T(rans, D(ate,? [C.11)
Text file saved & Code file saved

The files SYSTEM. WRK. TEXT and
SYSTEM. WRK. CODE are renamed
TESTING. TEXT and TESTING. CODE,
respectively. These files are now your current
workfile.

Notice that we didn't need to type ".TEXT" or
".CODE". The Filer supplies these suffixes. This is a
convenient shortcut, but in the Filer it only applies
to the workfile commands G(et and S(ave. For any
other Filer command, you must type the entire
filename.

3-13

3-14

Now that the TESTING files are considered the
workfile, we can go back into the Editor (you should
also be able to do this by now), and the Editor will
automatically read in TESTING. TEXT for you to
work on.

And so on.

When you get tired of your TESTING files, go into
the Filer and type "R" for R(emove. The Filer will
ask:

Remove what file?

Type "TESTING. TEXT" enter. The display will
now look like this:

Remove what file? TESTING.TEXT
IBM02:TESTING.TEXT ---> removed
Update directory?

If you are really determined to get rid of
TESTING. TEXT, type "Y" or "y". Any other
character will leave your disk unchanged.

You can remove TESTING. CODE in the same
manner. There is also a shortcut, by which you can
remove both TESTING files at once. Can you
discover what this is by looking at the section on
"wildcards" in Chapter 3 of the Users' Guide?

At this point, it is time for you to play with the
p-System on your own. Or take a break. Or, if you
feel like reading some more, look at the sections in
the Users' Guide that we have recommended.

Error Messages
You may, while compiling or executing your
programs, encounter error messages which cause
processing to halt, usually displaying an error
message on the screen. There are basically four kinds
of error messages which you will encounter:

Compiler Errors
These occur while you are compiling a program, and
are listed in Appendix D of the UCSD PASCAL
Reference or Appendix A of the FORTRAN-77
Reference manuals.

Assembler Errors

Occur when using SYSTEM.ASSMBLER and are
listed in the Appendix of the Assembler Reference
manual.

Runtime, or Execution Errors

These occur when a program is running or when
using the facilities of the file handler, and are listed in
Appendix A of the User's Guide, and Appendix A of
the FORTRAN-77 Reference.

I/O Errors

Usually occur when a program is running, or when
using the facilities of the file handler, and which are
listed in Appendix B of the User's Guide.

3-15

Ways to configure your diskettes

3-16

The entire p-System will not fit on a single diskette
(you may have guessed this from the fact that we ship
it on six diskettes!). While you are using your
p-System, you will want to create a set of diskettes to
work with. The files on these diskettes (both
p-System files and the files you create) should be
arranged so that you can do your work without too
much "shuffling" of diskettes in and out of the
drives.

For this reason, none of your diskettes should be
"packed" with files. It is often convenient to save a
file on the nearest available diskette, and leaving
some space on all your diskettes allows you to do
this.

We recommend that you arrange your p-System in
the following way:

1) A System diskette for bootstrapping.

2) A Language diskette for preparing programs.

3) A Utility diskette for frequently-used utility
programs.

4) Any number of diskettes that contain your own
work.

Example: SYSTEM:
SYSTEM. PASCAL
SYSTEM.MISCINFO
SYSTEM.lNTERP
SYSTEM. SYNTAX
SYSTEM. LI BRARY
SYSTEM. FILER
SYSTEM. EDITOR
SPOOLER.CODE

PASCAL:
SYSTEM.COMPILER
SYSTEM. LINKER
LIBRARY. CODE

FORTRAN:
SYSTEM. COMPILER
SYSTEM.LlNKER
LIBRARY. CODE

ASSEM:
SYSTEM.ASSMBLER
8086.0PCODES
8086.ERRORS
SYSTEM.LlNKER
COMPRESS.CODE

UTILS:
DISKFORMAT.CODE
PRNCONFIG.CODE
TVADJUST.CODE
SETBAUD.CODE
COPYDUPDIR.CODE
MARKDUPDIR.CODE
RECOVER. CODE
PATCH.CODE
DECODE. CODE
XREF.CODE

3-17

3-18

The first thing to create is a diskette that will
bootstrap the p-System. We often refer to this
simply as the "System disk." There are certain files
that MUST be on the System disk. These are:

• SYSTEM. PASCAL {the Operating System}

• SYSTEM.MISCINFO {configuration data}

• SYSTEM.INTERP {the Interpreter}

• SYSTEM. LIBRARY {the main library}

A System disk must also contain a bootstrap. The
invisible bootstrap code is located at the beginning
of the diskette, before all other files. It is transferred
to another diskette ONLY when you transfer an
ENTIRE System disk onto another diskette by using
the T(ransfer command in the Filer.

Thus, if you want to create a System disk that has a
different assortment of files than the System disks
that we ship, T(ransfer a System disk (either
SYSTEM2: or SYSTEM4:) onto a new diskette. Then
R(emove those files you don't want from the new
diskette, and T(ransfer other files that you do want
onto the new diskette (one at a time). Filer
commands are described in the Users' Guide,
Chapter 3; the Filer is also discussed in Bowles's
Beginners' Guide.

When you create a new System disk, remember
three things. (1) You have to DISKFORMAT a
brand new disk before you can use it. (2) The files
listed above MUST be on the System disk. (3)
SYSTEM2: is used for two-word real numbers and
SYSTEM4: is used for four-word real numbers;
otherwise, they contain the same information.

If the file SYSTEM. SYNTAX is on your System disk
when you compile a UCSD Pascal program, the
compiler will produce full error messages (when
necessary). You can save some space by leaving this
file off your System disk, but then the Pascal
compiler will only provide error numbers, which you
must look up (they are listed in an appendix to the
PASCAL Reference for the UCSD p-System.

If you want to save six blocks on your System disk,
the SYSTEM. STARTUP and SYSTEM.LOGO files
can safely be removed. They are there to display the
IBM logo when you bootstrap.

If you wish to use the Spooler (SPOOLER.CODE),
then this file must be on the System disk. This is how
SYSTEM2: and SYSTEM4: are shipped.

Once you have a System disk that suits your
requirements, it is easy to go on to other things.

One "secret" to creating your set of diskettes was
illustrated in the previous section. When we called
the compiler by using the Operating System's R(un
command, the file SYSTEM. COMPILER was on the
diskette in drive #5, and NOT on the System disk.

Operating System commands like F(ile, E(dit, and
C(ompile call programs that have names like
SYSTEM. FILER, SYSTEM. EDITOR, and
SYSTEM. COMPILER. When you use a command
that requires one of these SYSTEM. xxx files, the file
itself does NOT need to be on the System disk: it can
be on a diskette in either drive #4 or drive #5
(except, of course, for the files already mentioned
that must be on the System disk). This gives you
some flexibility when you decide which files to place
on a certain diskette.

With this in mind, you can create a diskette for each
of the languages you plan to be using. Notice that in

3-19

3-20

the example, we have named the compiler
SYSTEM. COMPILER on both the PASCAL: and the
FORTRAN: diskettes. The files are different, but
their names have been made the same for
convenience. To compile a program in UCSD
Pascal, place the diskette PASCAL: in drive #5, and
use the C(ompile command or the R(un command.
To compile a FORTRAN program, place
FORTRAN: indrive#5, and use C(ompile or R(un in
just the same way.

To run a FORTRAN program, the file
SYSTEM. LIBRARY on SYSTEM: must contain
certain portions of program code (" code
segments"). Although the example does not show
this, if you are going to use FORTRAN frequently,
the SYSTEM. LIBRARY on the SYSTEM: disk will
be a combination of the original SYSTEM. LIBRARY
plus the code segments in FORTLIB2.CODE or
FORTLIB4.CODE (whichever is appropriate to the
real number size you are using). The utility
LIBRARY is used to combine libraries in this way.
See the FORTRAN-77 REFERENCE and the User's
Guide (Chapter 5) for more details.

Remember that the System disk works for a
particular size of real numbers (either two-word or
four-word), and that the compilers you use (whether
UCSD Pascal or FORTRAN:) must match that real
number size.

Since the language diskettes as we have shown them
still contain a lot of room, this is a good area to keep
work-in-progress. This could consist of programs
that are not yet completed. It could also consist of
portions of larger programs, where the entire
program is stored on some other diskette.

As you become more experienced with the
p-System, you may find other arrangements that
work better for your particular style of

programming, or your particular use of the IBM
Personal Computer. The rule of thumb is, do what
works best for you. In this section, we have made
suggestions that should be generally useful. We
have also pointed out some requirements of the
p-System that apply regardless of what diskette
configuration you eventually choose.

Large programs
This section is a little more advanced than the
previous sections, and you may want to skim it on
first reading. But it is probably a good idea just to
read through it, in order to get an idea of some of the
p-System's facilities.

As you become more experienced with the p-System,
it is likely that the programs you write will become
larger and more sophisticated. The larger a program
is, the more cumbersome it is to keep it in a single
file. On the p-System, both UCSD Pascal and
FORTRAN allow the programmer to compile a
program in separate portions, called "units." These
units can be located in files of their own, as we will
explain below.

A unit is a package of routines (for example,
PROCEDUREs, FUNCTIONs, SUBROUTINEs,
and so on), together with any appropriate variable
and type declarations. Any number of programs may
"use" a unit. Using a unit means that the program
can use the unit's declarations and call the unit's
routines, just as if those declarations and routines
had been written into the program itself.

Much of a unit is invisible to the program that uses it.
The program cannot know how the unit implements
the routines that the program can use. In fact, the
unit may contain other declarations that the
program does not know about at all.

3-21

3-22

The advantage of this is modularity. It is possible to
recompile a unit -- perhaps to fix a bug or improve an
algorithm. If the unit's "interface" declarations (the
ones that another program may use) are not
changed, then it is NOT necessary to recompile any
programs that use the unit. It should be evident that
this can save a lot of time.

It is also possible for a unit to use another unit.

A codefile may contain a single program, a single
unit, or a number of units. A codefile that contains a
number of units is called a "library." Libraries are
especially useful organizing the routines of a large
program (especially one that involves several
programmers), or organizing a number of
general-purpose routines that many programs will
use.

The library you have already encountered is
SYSTEM. LIBRARY. This contains general-purpose
routines for handling the IBM Personal Computer
hardware. If you are using FORTRAN,
SYSTEM. LIBRARY also contains routines that the
p-System must use when a FORTRAN program is
running.

SYSTEM. LIBRARY must reside on the System disk.
But it is possible to create any number of libraries of
your own, and they may reside on any diskette.

When a textfile that consists of a number of units is
compiled, a library is created. It is also possible to
create a library from several codefiles by using the
utility LIBRARY. LIBRARY can also be used to
maintain library files that have already been created.

If the unit your program uses is not in
SYSTEM. LIBRARY, then the program must declare
which file contains the unit. This filename must also
appear in a file called a "library text file." This is
simply a textfile that contains names of user's library

files. The default library text file is called
USERLIB.TEXT, and must reside on the System
disk.

When a program is run, the p-System searches for
each unit that the program uses. First it searches the
files named in USERLIB.TEXT, and then the units
in SYSTEM. LIBRARY. If it cannot find the unit at
all, it gives an error message.

It is actually possible to have more than one library
text file. When you eX(ecute a program, you can
specify which library text file the p-System is to use
(this is done with an "execution option string": see
Chapter 2 in the Users' Guide). Since the files named
in a library text file are searched in the order they
appear, it is possible to arrange different library text
files that are more efficient for running certain
programs.

All these facilities make it possible to break a large
program into smaller pieces. Many of the pieces can
be made general-purpose, which saves much effort
when you are developing programs at a later time. By
breaking down a large program in this way, you can
make it easier to debug and faster to compile, and
avoid running out of space on your diskettes.

For more information on these topics, see Chapter 5
in the Users' Guide. Units in UCSD Pascal are
described in the PASCAL Reference, and units in
FORTRAN are described in the FORTRAN-77
Reference manual.

3-23

NOTES

3-24

CHAPTER 4. MAKINGUSEOFTHE
IBM PERSONAL
COMPUTER
HARDWARE

Contents

The Display 4- 3
The Printer 4-4
Remote Devices .. 4-5
Extended Memory 4-6

4-1

NOTES

4-2

This chapter talks about some p-System utilities that
allow you to control the IBM Personal Computer
hardware. The utilities mentioned here are
described in Chapter 7 of the User's Guide. Most of
them are shipped on the UTILITY: diskette.

The Display
If the display you use for your IBM Personal
Computer is a television set with an RF modulator,
then you may need to adjust it whenever you
bootstrap the p-System. This is done with the utility
TVADJUST.

You will need to adjust your TV set if, when you
bootstrap, there are one to three columns of
characters MISSING on the left-hand side of your
screen. To fix this, put the UTILITY: diskette in
drive #5. Type "X" for eX(ecute, and when the
p-System says:

Execute what file ?

... type "#5 :TVADJUST" and press enter. You will
see a scale on the screen. Type the right-arrow key
until the first column of text is visible on the left. If
you go too far, use the left-arrow key to adjust in the
other direction. When the display is properly
centered, type enter.

If the display is adjusted too far to the left, the TV's
timing synchronization may be lost, and the image
will start to "roll". Don't panic, simply adjust the
display back to the right with the right-arrow key.

The display will function properly until you turn the
IBM Personal Computer off or bootstrap again. You
will need to use TV ADJUST every time that you
bootstrap the p-System.

4-3

The file SYSTEM.MISCINFO contains information
about the IBM Personal Computer, the display, and
the use of various characters on the keyboard. It is
possible to alter SYSTEM.MISCINFO by using the
utility SETUP.

It is possible to use SETUP to alter the data items in
SYSTEM.MISCINFO that describe the keyboard
configuration, and so forth. However, we do not
anticipate that you will need to do so, since the
SYSTEM.MISCINFO file that is shipped with the
p-System is tailored to the IBM Personal Computer
and its keyboard.

The Printer

4-4

There are a number of ways to use the IBM Personal
Computer printer from the p-System.

The printer is a standard p-System device called
PRINTER: or device #6. Programs may write to this
device. A textfile may be printed by simply entering
the Filer and using T(ransfer to send the file to
PRINTER:

The SPOOLER utility allows the user to create a
"queue" of files to be printed, and print them
concurrently with other p-System activities. For
example, the user selects three files to print,
eX(ecutes SPOOLER, and places the three
filenames in the queue. When the user Q(uit's
SPOOLER, it begins printing the files. In the
meantime, the user may be editing a fourth file using
the p-System Editor.

Note: To use the SPOOLER, you must first
eX(ecute the "SETUP utility". See "SETUP
Utility" in Chapter 7 and set "HAS
SPOOLING" to true, then replace your
SYSTEM.MISCINFO file as directed.

Because SPOOLER is frequently useful, it is shipped
on the diskettes SYSTEM2: and SYSTEM4:.

When you bootstrap your p-System, the printer is
set to type 80 characters per line (like the display).
When you make listings of compiled programs, you
should have the printer type 132 characters per line
(if you do not do this, you will get some overprinting).
This can be done by using the utility PRNCONFIG.
PRNCONFIG may also be used to adjust other
printer settings, such as tab stops or the number of
lines per inch.

If you use PRNCONFIG, you musteX(ecute it every
time that you bootstrap the p-System. An alternative
method of changing the printer to 132-character
lines is to send it the character ASCII 15. This can be
done from within a program, or by creating a file that
contains this character, and T(ransfer'ring it to the
printer.

Note: If you intend to use the printer, it must
be turned on when you bootstrap the system.
Otherwise, it will not appear in the p-System's
inventory of volumes on line, and you will get an
error message when you try to use it.

Remote Devices

The p-System device ports called REMIN: and
REMOUT: may be connected with remote devices,
or the same remote device (such as a Modem). These
are connected via the standard RS-23 2 adapter
available for the IBM Personal Computer, and
connect through that part to devices that the user
may supply. The baud rate of these ports may be set
by the utility SETBAUD, in order to adjust to the
requirements of different remote hardware.

4-5

Making Use of IBM Personal
Computer Hardware

4-6

Extended Memory

If you have installed the optional 32K or 64K
Memory Expansion options in your IBM Personal
Computer, you will want to take advantage of that
additional memory (you will notice a speed
advantage in running certain programs, for example,
the SYSTEM. COMPILER).

In order to reconfigure your system in this manner,
you will need to X(ecute the utility SETUP which is
included on your UTILITY: diskette. You should
read through the discussion of the setup utility in
Chapter 7 of your User's Guide for the UCSD p-System.

If you have installed the 64K Memory Expansion
option, you should C(hange the following fields:

• Set the field' code pool baser first word], to 1
(default is 0).

• Set the field 'has extended memory' to true
(default is false).

If you have installed the 32K Memory Expansion
option, you should C(hange the following fields:

• Set the field' code pool size' to H3 FFF (the
default value of this field is H4FFF - the field is
ignored unless has extended memory is true.

• Set the field 'has extended memory' to true.

After you have Q(uit the SETUP program, make
sure that you update the SYSTEM.MISCINFO file
by changing the name of the NEW.MISCINFO to
SYSTEM.MISCINFO, to record the changes you
have made.

Dual-Sided Diskette Drives
The p-System takes advantage of all of the storage
space available on a dual-sided diskette. If you have
dual-sided diskette drives installed in your IBM
Personal Computer, you should proceed as follows:

Formatting Your Diskettes

The DISKFORMAT utility which was outlined in
this manual automatically formats both sides of your
diskette.

If you have a dual-sided diskette drive in your
system, you will see the following message when the
program has completed formatting the diskette:

640 block disk formatted

Creating System Diskettes

To create a dual-sided SYSTEM2: or SYSTEM4:
diskette, you should first use the DISKFORMAT
utility to format a new diskette, and then follow the
instructions for creating a backup diskette,
answering "Y" to the prompt:

Transfer 320 blocks? (Y/N)

After you have successfully transferred the p-System
to the dual-sided diskette, Q(uit the Filer, remove
the new system diskette from drive #5 and insert the
UTILITY: diskette into drive #5.

You can now eX(ecute a utility program called
DISKSIZE, that changes the information contained
in the diskette directory that records the size of the
diskette (in blocks).

4-7

4-8

To do this, from the system level, type "X" and when
you see the prompt:

Execute what file?

Type "#5:DISKSIZE" and press the Enter key.

DISKSIZE should respond as follows:

DISK SIZE CHANGER [A2]

Change directory size on what unit? (4,5)

At this point, insert the SYSTEM diskette into drive
#4 with the newly created SYSTEM diskette.

Now type "4" and press Enter.

DISKSIZE should then ask:

What is the new directory size in 512 byte blocks?

You should type in "640" and press Enter.

The program changes the size information
contained in the directory of the new disk. When it is
finished, it will prompt:

Insert system disk and press enter

Insert the SYSTEM diskette into drive #4 (if it is not
already there) and press Enter. You now have a fully
formatted dual-sided diskette.

Crea ting Storage Diskettes

The procedure just described can also be used for
backing up the diskettes that were shipped with the
p-System for use on dual-sided disk drives (it must be
used for system diskettes, since the bootstrap record
should be transferred by T(ransferring an entire
diskette.

To reconfigure your compiler diskette, or create
storage diskettes for your files, you should proceed
as follows:

1. Use DISKFORMAT to format a new diskette.

2. Enter the filer and type "Z" for Z(ero, to setupa
directory on that volume (see the User's Guidefor
the UCSD p-System for information on the Z(ero
command). When the program prompts:

of blocks on ttt' disk?

3. Type "640" and press Enter.

4. Continue to respond to the prompts as
instructed in the User's Guide for the UCSD
p-System.

You now have a fully formatted dual-sided diskette.
If you ask for a L(isting of the directory on that
diskette, the number of unused blocks will be based
on a total of 640.

Note: Remember that you are still limited to a
total of 77 files on a diskette.

4-9

Serial Prin ter Support

4-10

The UCSD p-System for the IBM Personal
Computer is configured so that output directed to
the device PRINTER: (#6:) is sent to the Parallel
Printer Adapter. Output to the device REMOUT:
(#8) is sent to the Asynchronous Communications
Adapter (serial interface). The default configuration
for the REM IN: and REMOUT: ports is as follows:

• Baud rate = 300

• Parity = none

• Number of stop bits = 1

• Word length = 8

If you have a modem (modulator/demodulator), or
another communication device connected to the
Asynchronous Communications Adapter, these
parameters normally do not need to be changed,
with the exception of the baud rate, which can be
changed by eX(ecuting the SETBAUD utility (see
"SETBAUD Utility" in Chapter 7.)

If you have a serial printer connected to the
Asynchronous Communications Adapter, and wish
to send output to that device, you have two options:

1. You can send your output to the serial printer
via the REMOUT: device, using the RS232SET
utility (shipped on the EXTRAS: diskette) to
configure the port for your printer.

2. You can reconfigure your system diskette so
that output sent to the device PRINTER: will
automatically be routed through the
Asynchronous Communications Adapter to
your serial printer. You will need to eX(ecute
the RS2 32 SET utility to configure the system to
your printer specifications.

The remainder of this section describes the
procedures for configuring your system to either of
these options. To use a serial printer with the
p-System, you must follow these steps:

1. Connect your printer to the Asynchronous
Communications Adapter.

2. Configure a system diskette to support your
serial printer.

3. Use the RS232SET utility to configure the
serial interface to the parameters that match
your printer.

Connecting Your Printer

Before you start, we suggest that you read the
manual that accompanied your printer to familiarize
yourself with the printer's configuration. Note that
the printer must have a standard RS232 interface
and that the Clear To Send (CTS) line must indicate
that the printer can accept a character to print. If the
printer cannot accept a character to print (buffer
full, etc.), it must not assert the CTS signal. If your
serial printer connection does not match this
description, you must modify the pin connections
accordingly, or the printer will not work correctly.
(Consult your IBM Personal Computer Dealer for
additional information.)

4-11

Reconfiguring Your System Diskette

4-12

The following files, included on your EXTRAS:
diskette, are needed to reconfigure your system for a
serial printer:

• INTERPX.2.CODE or INTERPX.4.CODE

• RSP.CODE

• BIOS. CODE or BIOS.S.CODE

• TERTBOOT.CODE

• RS232SET.CODE

• SYSTEM. LINKER

• COMPRESS. CODE

To avoid running out of space on your diskette,
T(ransfer all of these files to a scratch diskette, so
that you will have enough space left on the diskette
to do the reconfiguration. Notice that you must
make two file selections based on your individual
requirements: you must first decide whether you
want to configure your diskette for 2 or 4 word real
numbers. Use INTERPX.4. CODE for four word real
numbers, and INTERPX.2.CODE for two word real
numbers. Remember that you must use the
corresponding SYSTEM. PASCAL,
SYSTEM. COMPILER and SYSTEM. LIBRARY. The
choice between BIOS.S.CODE and BIOS. CODE
should be made as follows:

• BIOS.S.CODE should be used if you want to
redirect the output for device PRINTER: to the
Asynchronous Communications Adapter.

• BIOS. CODE should be used if you want to
continue to use PRINTER: to refer to the
Parallel Printer Adapter, but wish to attach a
serial printer to your REMOUT: port (the
Asynchronous Communications Adapter).

To reconfigure your diskette, proceed as follows:

Insert your scratch diskette containing the files
previously listed into drive #5:. Enter the F(iler and
change the default Prefix to #5: by typing "P" and
then answering #5: to the prefix prompt. Q(uit the
F(iler and type "L" from the system level to call the
L(inker.

The L(inker will respond with a series of questions.
Your responses are noted on the right below:

Linker IV.O [x7]

Program prompt:

Host file?
Opening INTERPX.4.CODE

Lib file?
Opening RSP.CODE

Lib file?
Opening BIOS.S.CODE

Lib file?
Opening TERTBOOT.CODE

Lib file?

Map name?
Reading INTERP86
Reading RSP
Reading BIOS.S
Reading TERTBOOT
Output file?
Linking INTERP86 # 1

Copying proc INTERP86
Copying proc RSP
Copying BIOS.S
Copying TERTBOOT

User Response:

INTERPX.4 (or
INTERPX.2)

RSP

BIOS.S (or BIOS)

TERTBOOT

<ENTER>

<ENTER>

LINKER. OUT

4-13

4-14

You should then see the system promptline at the
top of your screen. Now press "X" and when you see:

Execute what file?

Type COMPRESS. COMPRESS prompts with a
series of questions to which you should respond as
follows:

Assembly Code File Compressor IV.O [g4]

Type "!" to escape

Do you wish to generate relocatable code file: N
Base address of relocation (hex): 0
File to compress: LINKER OUT
Output file «ent> for same): SYSTEM.INTERP
Procedure #0: OOOOH - 21 B5H 8630 bytes
Procedure #1: 21 B6H - 2521 H 876 bytes
Procedure #2: 2522H - 329FH 3454 bytes
Procedure #3: 32AOH - 35EBH 844 bytes

Highest code address is 35EBH.
Output file is 13804 bytes long.

Note: Prompts are in green. Your responses
are indicated after the prompts.

After this operation is completed, return to the Filer
and T(ransfer the newly created SYSTEM.INTERP
file to your SYSTEM diskette, to replace the old
SYSTEM.INTERP file. Make sure that, if you have
used the INTERPX.2.CODE, you replace the
SYSTEM.INTERP file on your SYSTEM2: diskette
and, if you need the INTERPX.4.CODE, you
T(ransfer it to the SYSTEM4: diskette. An attempt
to use floating-point numbers of mismatched size
will result in the termination of the program.

If you have two Asynchronous Communications
Adapters, you will need to make some modifications
to the second card. If you are unfamiliar with how to
do this, you should consult your authorized IBM
Personal Computer dealer.

The RS2 32SET utility refers to the serial interfaces
as 0 and 1. 0 is the primary card, and 1 is the
secondary (modified) card. Each can be configured
separately. Output to the serial port always defaults
to the primary interface. If you wish to direct output
to the secondary serial interface from within a
program, you must use the SelecCRemote
procedure in the IBMSPECIAL Unit (parameter to
the procedure is either 0 or 1). (Similarly, the
SelecCPrinter procedure in the IBMSPECIAL unit
directs output to a secondary parallel interface.)

RS232SET Utility
You are now ready to configure the serial interface
to the parameters required by your printer, using the
RS232SET utility supplied on your EXTRAS:
diskette. This information should be contained in
the manual that accompanied your printer. Make
sure that the SYSTEM diskette in drive #4 contains
the SYSTEM.INTERP file configured for serial
printers which you just created. Insert your scratch
diskette containing the RS232SET utility into drive
#5. Press 'X' from the system promptline. You
should see:

Execute what file?

4-15

4-16

Type #5:RS232SET and press Enter. RS232SET
should display:

RS232SET: B(aud rate, S(top bits, P(arity,
W(ord length, O(uit, ? [a.1]

Current RS232 configuration (port 0) is:
baud rate = 300
parity = none
number of stop bits = 1
word length = 8

The B(aud rate, S(top bits, P(arity and W(ord length
commands are used to change the configuration.
Commands are listed below, together with the
menus that are presented to you when you invoke
them.

B(aud rate

Type "B" from the initial promptline. The program
should display:

Baud rate choices:
A) 110 baud
B) 150 baud
C) 300 baud
0) 600 baud
E) 1200 baud
F) 2400 baud
G) 4800 baud
H) 9600 baud

Enter baud rate choice:

Type the letter corresponding to the baud rate
required by your printer.

S(top bits

Type "S" from the initial promptline. You should
see:

Stop bit choices:
A) 1 stop bit
B) 2 stop bits

Enter stop bit choice:

Type the letter corresponding to the number of stop
bits required by your printer.

P(arity

Type "P" from the initial promptline. You should
see:

Parity choices:
A) no parity
B) odd parity
C) even parity

Enter parity choice:

Type the letter corresponding to the appropriate
choice.

T(oggle port

Note: T(oggle port is not shown on the initial
promptline.

This command toggles between serial port 0 and
serial port 1, if you have two Asynchronous
Communication Adapters installed and wish to
configure both of them.

4-17

4-18

When you execute the RS2 32 SET utili ty, the defa ul t
configuration of the primary interface (port 0) is
displayed. Pressing "T" will display the current
configuration of the secondary interface (port 1).

You can then proceed to reconfigure the other port
with the B(aud rate, S(top bits, P(arity and W(ord
length commands.

D(efault

Note: D(efault is not shown on the initial
promptline.

Ensure that the SYSTEM diskette that you have
configured for serial printers is in drive #4. Type "D"
from the initial promptline.

The D(efault command permanently changes the
configuration of the serial port to conform to the
parameters that you have established with the
RS232SET utility. Once the D(efault command has
been completed, the displayed configuration will be
the default at subsequent bootstrapping of the
system.

The D(efault command only changes the permanent
configuration of the serial port displayed (0 or 1). To
change the default configuration of the other serial
port, you must first use the T(oggle command to
switch to the other port, and then press "D" again.

APPENDIX A. THE p-SYSTEM
PACKAGE

Contents

Documents shipped with the
p-System A-3

Diskettes and files shipped with the
p-System A-4

A-I

NOTES

A-2

Documents shipped with the
p-System

• Operations Guide for the U CSD p-System (Part 1)

• User's Guide for the UCSD p-System (Part 2).

• Beginner's Guide for the UCSD p-System.

• Internal Architecture for the UCSD p-System.

• Assembler Reference for the UCSD p-System.

• UCSD PASCAL Reference for the UCSD p-System
(shipped only with UCSD Pascal).

• FORTRAN-77 Reference for the UCSD p-System
(shipped only with FORTRAN-77).

A-3

Diskettes and files shipped with the
p-System

A-4

STARTUP:
SYSTEM.PASCAL
SYSTEM.MISCINFO
SYSTEM.INTERP
SYSTEM. FILER
SYSTEM. EDITOR
SYSTEM. STARTUP
SYSTEM. SYNTAX
NAMEFILE
SCDEMO.CODE
COPYSCUNIT.CODE
UPDATE. CODE
COMPDEMO. TEXT
EDITDEMO. TEXT
UPDATE. TEXT

SYSTEM2:
SYSTEM. PASCAL
SYSTEM.MISCINFO
SYSTEM.INTERP
SYSTEM. FILER
SYSTEM. EDITOR
SYSTEM. STARTUP
SYSTEM. LOGO
SYSTEM. SYNTAX
SYSTEM. LIBRARY
SPOOLER.CODE

SYSTEM4:
lfiles are the same as SYSTEM2:, but the System
defaults to 4-word real numbers}

UTILITY:
XREF.CODE
TAPE. CODE
CODEGEN.CODE
LIBRARY. CODE
PATCH. CODE
DECODE.CODE
SETUP. CODE
COPYDUPDIR.CODE
MARKDUPDIR. CODE
RECOVER. CODE
PRNCONFIG.CODE
TVADJUST.CODE
SETBAUD.CODE
DISKFORMAT.CODE
DISKSIZE.CODE

EXTRAS:
SYSTEM. LINKER
SYSTEM.ASSMBLER
8086.0PCODES
8086.ERRORS
COMPRESS. CODE
GOTOXY.CODE
GOTOXy. TEXT
SPOOLOPS.CODE
COMMANDIO.CODE
KERNEL. CODE
SCREENOPS. CODE
8087.FOPS
INTERPX.2.CODE
INTERPX.4. CODE
RSP.CODE
BIOS.CODE
BIOS. S. CODE
TERTBOOT.CODE
RS232SET.CODE

A-5

PASCAL: (shipped only with UCSD Pascal)
SYSTEM. COMPILER
PASCAL4. COMPILE

FORTRAN: (shipped only with FORTRAN-77)
FORTRAN2.CODE
FORTLIB2.CODE
FORTRAN4.CODE
FORTLIB4.CODE

A-6

First Edition (January 1982)

Changes are periodically made to the information herein;
these changes will be incorporated in new editions of this
publication.

Products are not stocked at the address below. Requests for
copies of this product and for technical information about the
system should be made to your authorized IBM Personal
Computer Dealer.

A Product Comment Form is provided at the back of this
publication. If this form has been removed, address comment
to: IBM Corp., Personal Computer, P.O. Box 1328-C, Boca
Raton, Florida 33432. IBM may use or distribute any of the
information you supply in any way it believes appropriate
without incurring any obligations whatever.

© Copyright International Business Machines Corporation 1982
© Copyright Regents of the University of California 1978

© Copyright SofTech Microsystems, Inc. 1979, 1980, 1981

UCSD, UCSD Pascal, and UCSD p-System are all trademarks
of the Regents of the University of California.

:ONTENTS

BOOK 2 USER'S GUIDE

CHAPTER 1. INTRODUCTION
How to Use this Manual
Overview

System Rationale and
Organization

File Organization
Device and Volume Organization .
Program and Library

Organization
Note on Bug Reporting

CHAPTER 2. THE SYSTEM
COMMANDS

Booting and Promptlines
Diskette Swapping
Execution Option Strings

Alternate Prefixes and Libraries .. .
Redirection
Function Redirect
Procedure Exception
Procedure Chain

Individual Commands Alphabetically .. .
Prompts for Filenames
ASSEMBLE
COMPILE

1-1
1-3
1-5

1-5
1-9

1-14

1-18
1-23

2-1
2-3
2-6
2-7
2"8

2-10
2-13
2-14
2-14
2-16
2-16
2-17
2-18

iii

EDIT 2-19
FILE 2-19
HALT 2-20
INITIALIZE 2-21
LINK 2-21
MONITOR 2-22
RUN 2-24
USER RESTART 2-24
EXECUTE 2-25

CHAPTER 3. FILES AND FILE
HANDLING 3-1

Types of Files 3- 3
File Formats 3-3
Volumes 3-5
The W orkfile 3-6
Filenames 3-6
Using the Filer 3-8

Prompts in the Filer 3-8
Names of Files 3-10
Filer Commands 3-12

B(ad blocks 3-13
C(hange 3-14
D(ate 3-17
E(xtended list. 3-18
G(et 3-20
K(runch 3-21
L(ist directory 3-22
M(ake 3-26
N(ew 3-27
P(refix 3-28
Q(uit 3-28
R(emove 3-29
S(ave 3-31
T(ransfer 3-32
V(olumes 3-38
W(hat 3-38
eX(amine 3-39
Z(ero 3-40

Recovering Lost Files 3-42
Lost Directories 3-44

iv

CHAPTER 4. THE SCREEN ORIENTED
EDITOR................................ 4-1

Introduction 4-3
The Concept of a Window into

the File. 4-3
The Cursor 4-4
The Promptline 4-4
Notation Conventions 4-5
The Editing Environment

Options 4-5
Getting Started 4-5

Entering the Workfile and Getting
a Program 4-6

Moving the Cursor 4-7
Using Insert 4-8
Using Delete. 4-9
Leaving the Editor and Updating

the Workfile 4-10
Using the Editor 4-11

Command Hierarchy 4-11
Repeat Factors 4-12

The Cursor 4-12
Direction 4-12
Moving the Cursor 4-13
Entering Strings in F(ind and

R(eplace 4-15
Screen Oriented Editor Commands 4-16

A(djust 4-16
C(opy 4-18
D(elete 4-20
F(ind 4-22
I(nsert 4-25
](ump 4-29
K(olumn 4-30
M(argin 4-31
P(age 4-33
Q(uit 4-33
R(eplace 4-36
S(et 4-38
V(erify 4-44
eX(change 4-44
Z(ap 4-46

v

CHAPTER 5. SEGMENTS, UNITS,
AND LINKING......................... 5-1

Overview 5 -5
Main Memory Management....... 5-5
Separate Compilation 5-6
General Tactics 5-8

Segments 5-11
Units 5-13
The Linker 5-18

Using the Linker 5-19
The Utility LIBRARY 5-21

Using LIBRARY 5-23
SYSTEM. LIBRARY Routines 5-26

Screen Control Unit 5-26
Unit Commandio 5-33
Unit IBMSPECIAL 5-33
Turtlegraphics 5-40

CHAPTER6. CONCURRENT
PROCESSES 6-1

Introduction 6-3
Semaphores 6-6
Mutual Exclusion 6-8
Synchronization 6-9
Other Features 6-11

CHAPTER 7. UTILITIES 7-1
Preparing Assembly Codefiles 7-5

Preparing Codefiles for
Compression 7-6

Running COMPRESSOR......... 7-7
Action and Output Specification ... 7-8

PATCH 7-10
EDIT Mode 7-10
TYPE Mode 7-12
DUMP Mode 7-13
A Note on Prompts 7-16

DECODER 7-16
Duplicating Directories 7-22

COPYDUPDIR 7-22
MARKDUPDIR 7-23

vi

Procedural Cross-Referencer -- XREF .. 7-24
Introduction 7-24
Referencer's Output 7-25
Using Referencer 7-28
Limitations 7-30

The Debugger 7-31
Invoking and Exiting the

Debugger 7-33
Displaying and Altering Memory ... 7-35
Further Single-Stepping Options ... 7-36
Example of Debugger Usage 7-38
Summary of the Commands 7-39

The RECOVER Utility 7-41
The TAPE Utility 7-43
The Print Spooler 7-44
The Native Code Generator 7-45
The TV Adjust Utility 7-48
the SETBAUD Utility 7-49
The Printer Configuration Utility 7-49
The Disk Format Utility 7-50
SETUP 7-51

APPENDIX A. EXECUTION ERRORS. . . . A-I

APPENDIX B. I/O RESULTS............. B-1

APPENDIX C. DEVICE NUMBERS....... C-l

APPENDIX D. AMERICAN STANDARD
CODE FOR INFORMATION
INTERCHANGE (ASCII) D-l

APPENDIX E. SPECIAL KEYS ON THE
IBM PERSONAL COMPUTER............ E-l

vii

NOTES

viii

CHAPTER 1. INTRODUCTION

Contents

How to use this Manual
Overview
p-System Rationale and

Organization
File Organization
Device and Volume Organization
Program and Codefile Organization .. .
Note on Bug Reporting

1-3
1-5

1-5
1-9

1-14
1-18
1-23

1-1

NOTES

1-2

How to use this Manual
This is the basic reference for the UCSD p-System on
the IBM Personal Computer. It should contain
answers to your questions concerning the p-System
but it is not meant to be a tutorial about the use of
the p-System. If you have never used the UCSD
p-System before, you should consult Ken Bowles'
Beginner's Guide for the UCSD p-System. For a
description of UCSD Pascal see the PASCAL
Reference for the UCSD p-System by Clark and
Koehler.

Although this Manual is not a tutorial, this
introduction is designed as a description of the
overall structure of the p-System, and you should
read it before doing any extensive work. Once you
have worked through Bowles' book and gained some
experience, especially a feel for the Text Editor and
file-handling, then you should approach this
manual. Booting is explained in Chapter 2, and the
IBM Personal Computer Keyboard is described in
Appendix E. The chapters on the Filer and the
Screen Oriented Editor will prove useful. If you
intend to work with large programs, you should
definitely read Chapter 5: Segments, Units, and
Linking.

Much of the manual -- for example, sections on
utilities, and the appendixes -- is best used as a
reference when you need some specific information,
such as the use of a utility, the meaning of a
particular error message, and so forth.

FORTRAN is described in the FORTRAN-77
Reference for the UCSD p-System.

The 8086/88/87 Assembler is described in the
Assembler Reference for the UCSD p-System.

1-3

1-4

Details concerning the internal workings of the
p-System are discussed in the Internal Architecture
Guide.

It is best to start slowly. If you do that, your progress
will in fact be rapid; it is most confusing to try to do
too much at once. The p-System is designed for easy
use, and you will find that most tasks can be
accomplished with relatively few simple commands.

In any case, we believe that the best way to learn the
p-System is to temper use of all this documentation
with liberal use of the software while it is running -
whether you begin with rudimentary but useful
programs, or out-and-out play. This is the only way
to develop a personal feel for the environment,
which will allow you to develop your own ways of
using the p-System. In time you will learn to use
subtler forms of the commands, and develop your
own shortcuts.

We hope that you are creative in your use of the
p-System, since such work is capable of benefitting
all of us, and since enjoyment and productivity go
hand in hand.

Note: We have tried to keep this manual free
from arcane conventions. A couple of things
seem worth mentioning, however. Angle
brackets (< and>) are used throughout in their
common sense of indicating a meta-object or
the generic name of something; thus, single
keystrokes with long names are represented
this way «enter> or <escape», and names of
things within a literal description are
represented this way as well:

IF <Boolean expression> THEN <statement>

... and so forth. Also, ranges of numbers are shown as
in Pascal syntax, with a two-dot (rather than
three-dot) ellipsis, for example:

0 .. 9
-32768 .. 32767
5 .. 70
-1.99~.\+1.999

Overview

This section discusses the general organization of
the p-System, its file and device structures, and
general mechanisms for organizing programs. This is
not an introduction to using the p-System, but it
should give you a perspective on the p-System' s aims
and rationales.

p-System Rationale and Organization

The UCSD p-System was initially designed as a
program development system for microcomputers.
Originally it was used to teach programming, but
was soon put to a variety of uses, including its own
development.

The Operating System, Filer, and Editors are all
"menu-driven" -- a promptline is continually
displayed at the top of the screen with all (or nearly
all) of the current commands visible. These
commands are invoked by a single keystroke, and
the organization is hierarchical. That is, typing a key
generally causes either an action to be performed, or
another promptline to be displayed which details
new commands at a different and "lower" level.

This manual, particularly Chapter 2, talks about the
"command level". That is the highest level of the
Operating System, and the one visible to the user as
the promptline which appears when the system is

1-5

1-6

first booted. The commands at this level are
straightforward and self-explanatory: R(un,
C(ompile, E(dit, F(ile, and so forth. Some of them,
such as R(un and C(ompile, cause actions to be
performed directly on a file. Others, such as E(dit
and F(ile, invoke those particular programs, which
are themselves menu-driven.

The Filer and Linker and certain utilities perform
functions traditionally performed by larger
operating systems. In the UCSD p-System they are
treated as separate programs (just as user programs
are), and so are not properly part of the Operating
System. Below the "outer" or "highest" command
level, the Operating System is not visible to the
user, but remains an important component of the
p-System by being available for continual
monitoring and control of running programs and
I/O devices.

The p-System runs on top of an 8086/88/87
assembly language Interpreter which executes all
programs written in high-level language. While the
Assembler generates machine language for the
8086/88 and 8087 processors, the p-System's
high-level languages, Pascal and FORTRAN, are
compiled to an intermediate language called P-code.
This code is in the form of machine code for an
idealized "P-machine".

This introduction has now enumerated all of the
components of the p-System, albeit in a very cursory
way. The following two illustrations should clarify
the relation between the Operating System and the
remaining p-System components. Figure 1 shows a
tree which represents the command structure:
typing various commands within the p-System
amounts to a traversal of this tree. Figure 2 is a more
detailed picture of various major components and
their interrelationships.

F(iler

Figure 1. Command structure.

1-7

1-8

o Portable •
Tailored for new
Display Control

Figure 2. Interrelationships among components.

For more detailed information on the various
p-System commands, refer to Chapter 2.

All components of the p-System exist as files which
are stored on floppy disks. The same is true for all
user-generated software. The logical next step, then,
is to examine the p-System's treatment and
organization of files.

File Organization

A file, to the UCSD p-System, is a collection of data.
It may reside on a disk, and be brought into main
memory only when it is being directly used by the
System or a user program. It may be data that a
program reads from a peripheral device, or sends to a
peripheral device.

A file may contain any sort of data and be organized
in any way, but the p-System will treat certain files in
very specific ways, and there are naming conventions
which support this special treatment. The naming
conventions inform the p-System how to treat a
given file, and also serve as mnemonics for the user.

Before discussing the individual file types, it should
be mentioned that "disk files" are stored on floppy
disks. Each such disk contains a directory which
describes up to 77 files.

File manipulation is usually done with the Filer. The
Filer is a program which is invoked at the outer
command level. It provides a variety of commands
which allow for the creation, naming, and fenaming
of files, their removal, and their transfer between
different devices (disk drives, the printer, the CRT,
and so forth). It also provides for some management
of storage units themselves. More information on
this is provided in "Device and Volume

1-9

1-10

Organization" in this Chapter, and the Filer is
described thoroughly in Chapter 3.

Note: Bootstrapping the p-System involves
reading files off of a particular disk. That disk
is called the" System disk", "default disk",
or "bootstrap disk." In the p-System's syntax
for filenames, it is called *, and when a file
name is shown preceded by a star (for example,
* SYSTEM. PASCAL) , that means the file is on
the bootstrap disk. This convention is used
throughout this ManuaL More information on
device names and filenames appears in
Chapter 3.

System Files

The files which comprise the major portions of the
p-System itself are identified by the prefix SYSTEM ..
Thus, important files are SYSTEM. PASCAL,
SYSTEM. EDITOR, SYSTEM.ASSMBLER, and so
forth. This section gives a general description of the
names of the major pieces of the p-System.

The Operating System itself is SYSTEM. PASCAL.
Some of its major pieces are:

• SYSTEM. FILER

• SYSTEM. EDITOR

• SYSTEM. LINKER

• SYSTEM. COMPILER

• SYSTEM.ASSMBLER (note the missing E)

... all of these programs are directly called by
single-letter commands at the outer command level.

SYSTEM. COMPILER is not necessarily Pascal-- it
could be the FORTRAN compiler. In this way,
by changing the appropriate file to
SYSTEM. COMPILER, a user may invoke that
compiler with a single keystroke.

SYSTEM. SYNTAX

... contains all the Compiler's error messages.

SYSTEM. LI BRARY

... contains previously compiled or assembled
routines to be linked into, libraried into or used
by other programs.

SYSTEM.STARTU P

... is an executable codefile. If a file with this name
exists when the System is bootstrapped or
I(nitialize'd, that file is executed before the main
System promptline is displayed.

SYSTEM.MISCINFO

... is a data file containing miscellaneous data items
pertaining specifically to the IBM Personal
Computer hardware -- most of it is devoted to
terminal-handling information.

SYSTEM.INTERP

... is the P-machine emulator on which the rest of the
system runs.

There are three other SYSTEM. files that are
commonly, though not always, present. These are
the files that make up the user's workfile, and since
they are handled in a special way, and relate directly
to individual use of the System, they are discussed
separately in "W orkfile" in this chapter. Before
discussing workfiles, we will talk about more
ordinary user files.

1-11

1-12

When the p-System is bootstrapped, certain System
files must be on the disk it is bootstrapped from.
These are SYSTEM. PASCAL, SYSTEM.INTERP,
and SYSTEM.MISCINFO. Also, SYSTEM. LIBRARY
whenever it is to be used, must be on the boot dis1
unless a library text file specifies a SYSTEM. LIBRAR):
on another disk (see Chapter 5 for a description 01

library text files). Other System files may be
anywhere. The p-System will search for them
whenever it is bootstrapped or I(nitialized (see
Chapter 2). Whenever it needs them and they are not
on the device where it previously found them, it will
again search for them. First the p-System will search
the System disk, and then any other disks that are
on-line.

User Files

User files are generally one of three things: program
or document text, compiled or assembled program
code, or other data in any sort of user-defined
format. Some naming conventions cover these files
as well, and in particular, correspond to these three
types -- the suffix of a filename indicates which type
of file it is .

. TEXT files, such as SORTER.TEXT, GAME.TEXT,
or even SYSTEM.WRK.TEXT, are human-readable
files, formatted for use by the p-System's Editor.
They include a header block, and follow certain
internal conventions .

. CODE files, such as SORTER.CODE,
GAME.CODE, or SYSTEM. WRK.CODE, are either
P-code or native code. P-code is the code generated
by the p-System's compilers and executed on the
P-machine Interpreter. Native code refers to
assembly language code that is ready to run on the
8086/88 processor. .CODE files are typically the
output of a compiler or an assembler; they may also

be generated by the Linker or Library from a group
of previously existing codefiles .

. DATA files such as FOR.SORT.DATA contain
information for user programs, in some format
known to the user.

These naming conventions in general do not matter
to the Filer; Filer commands refer to any file
regardless of name. The exceptions to this are the
G(et, S(ave, and N(ew commands, which deal with
the workfile -- these are described below.

These naming conventions do matter to certain
other System programs -- for example, the Editor
will only edit. TEXT files. A codefile must be created
with the .CODE suffix; once it is created, the name
can be changed to something else, and it will still be
executable. The compilers and assemblers
automatically append .CODE to the names of
output files you specify. This Manual describes these
and other such conventions wherever they are
relevant.

Other suffixes you may encounter include .BACK
files, which are backups of . TEXT files, and .BAD
files, which are immobile files used to cover
physically damaged portions of a disk.

More details about file formats are given at the
beginning of Chapter 3.

The W orkfile

The user may designate a workfile, which can be
thought of as a scratchpad area for keeping new and
unnamed material. Many System programs assume
you are working on the workfile unless you specify
otherwise. The workfile may be created by
designating existing files, or by Cl, ';\ting a new file
with the Editor.

1-13

Modifying the workfile can cause temporary copies
to be generated, which (until they are saved) are
named:

• SYSTEM. WRK.TEXT

• SYSTEM.WKR.CODE and

• SYSTEM.LST. TEXT

SYSTEM. WRK. TEXT can be created upon leaving
the Editor; if it happens to contain a program, then a
successful C(ompile or R(un will create
SYSTEM.WRK.CODE. If the compilation is
successful, the R(un command goes on to execute
the code immediately. SYSTEM.LST.TEXT, which
is the default name for a compiled listing, may
optionally be created by the Compiler.

Whenever a program contained in
SYSTEM. WRK. TEXT is altered by the Editor, R(un
will recompile it in order to keep
SYSTEM.WRK.CODE up to date.

The File can S(ave these files under permanent
names. The Filer is also used to designate a new
workfile with the G(et command, or remove an old
ofie with N(ew.

The ways in which you can use a workfile will become
more apparent from using Ken Bowles' Beginner's
Guide, reading the chapters on p-System commands
and the Filer, and of course, playing with the
p-System yourself.

Device and Volume Organization

1-14

The various peripherals that the p-System may use
are referred to as "devices". When this document
refers to a "volume", it means the" contents" of a

device. A single disk drive (a device) may be the
home for several floppy disks (volumes).

The p-System distinguishes between block-structured
and non-block-structured devices. Block-structured
devices are usually disks. They contain removable
volumes which each contain a directory and various
files. Internally a volume is organized into randomly
accessible fixed-size areas of storage called "blocks";
a block is 512 bytes. Files may be of variable size, but
are always allocated an integral number of blocks.
Non-block-structured devices include printers and
keyboards and remote lines. They have no internal
structure, and deal with serial character streams.
Non-block-structured devices may perform input,
output, or both; the physical interface to them may
be either serial or parallel.

A device or a file may be either a source of data or a
sink for data. Many of the Filer's data transfer
operations apply to devices as well as to files.

The p-System and its intrinsics refer to devices by
both name and number. Standard devices have
standard names, and removable volumes like floppy
disks have their names recorded on them. Names
and numbers are usually interchangeable. Device
names are followed by a: (for example, PRINTER:)
to distinguish them from file names, and so they
can be prefixed to filenames (e.g.,
SYSTEM: SA VEME. TEXT).

The name of a device that contains removable
volumes (such as a floppy drive) is the name of the
volume it contains at any give time. The number of
that device never changes.

The name of a disk file includes (as a prefix) the disk
it resides on. The System always has one default
prefix (when the p-System is booted it is *, the
System disk) so that the user need not type out the
prefix every time a file is needed.

1-15

1-16

For example, SYSTEM:SAVEME.TEXT and
TABLES:SAVEME.TEXT name two different files
on two different disks (both files are called
SAVEME). These might also be specified as
#4:SAVEME. TEXT and #5 :SAVEME. TEXT. If the
default prefix had been changed by the user to
TABLES:, then typing SAVEME. TEXT would be
understood to mean TABLES:SAVEME.TEXT.

Here is the complete list of predefined device
numbers and names:

Device Volume Name Description
Number

1 CONSOLE: screen and keyboard
with echo

2 SYSTERM: screen and keyboard
without echo

4 <disk name>: the system disk

5 <disk name>: the alternate disk

6 PRINTER: a parallel printer
output line

7 REMIN: a serial input line

8 REMOUT: a serial output line

9 .. 12 <disk name>: additional drives

This table is given, with some further exposition, in
Chapter 3 on the Filer. Note that REMIN: and
REMOUT: often refer to the same device (for
example, a phone line with a MODEM).

This summarizes the p-System's treatment of
devices. Most use of the p-System does not require
more hardware knowledge than that outlined here.

From time to time, however, it may be necessary to
do some direct device control, some modification of
device characteristics, or some messy on-disk file
manipulation (such as rescuing partially bad files).

The p-System accomplishes device control through
a portion of the Interpreter called the BIOS (for
Basic I/O Subsystem). The BIOS contains the device
drivers.

The p-System's knowledge of CONSOLE: comes
from a file named SYSTEM.MISCINFO and a
procedure within the Operating System called
GOTOXY. SYSTEM.MISCINFO can be modified
using a utility program called SETUP, and
GOTOXY can be rewritten and bound into the
Operating System using the utility LIBRARY.
Generally, users of the IBM Personal Computer
should have no need to alter SYSTEM.MISCINFO
or GOTOXY, however.

The p-System's standard input and output come
from CONSOLE:. A user sits at the console, types
commands and other input, and watches the
console's screen for promptlines and other
information from the p-System. The Filer can
communicate with other devices, and so can a user's
program (either using a language's standard I/O
routines, or using special p-System intrinsics which
can be much more efficient).

It is also possible to temporarily redirect the input or
output of a program or the p-System itself: using
either files other than the standard ones, or scratch
buffers in main memory. This feature allows
programs to be used as file "filters", and programs or
the p-System itself to be driven by script files (a
useful test tool). Refer to the eX(ecute and M(onitor
commands in Chapter 2, and the UCSD intrinsics
REDIRECT, EXCEPTION, and CHAIN also
described in Chapter 2.

1-17

Program and Codefile Organization

1-18

A reasonably long program can fit into a single text
file, be compiled in one piece, and executed as one
block of code. But since many users require
programs of substantial size, it is frequently
necessary to break a program up and compile it in
two or more pieces.

There are other advantages to separate compilation.
A single procedure may be used by several different
programs, and so it might be most convenient to
compile that procedure once and use it several
times. The same might be true of a collected set of
procedures, or some particular data structure.
Judicious use of separate compilation can contribute
to the organization of a large programming project.

The $Include option of the compiler allows a
programmer to store parts of program text in
separate files. The compiler reads them and
compiles the entire program at one time. This is
often a useful thing to do, especially if the included
portions are not too long, and shared by more than
one program. But using $Include does not address
the problem of creating a program which is too large
to compile in one piece.

Furthermore, it may be advantageous to embed
procedures of a different language within a host
program. This is the case when a program is not
generally time-critical, but contains some
time-critical sections -- the real-time sections may
be isolated and written as assembly language
routines.

This section and the rest of the manual use the term
"routine" to mean a procedure, function, or process,
and the term compilation unit to refer to a program or

UNIT. A compilation unit which uses separately
compiled routines is called a "host compilation" or
" c1ien t" .

Note: Though this section uses Pascal for its
program examples, the separate compilation
and memory-management features available in
Pascal have their analogs in the other high-level
languages provided with the p-System. See
documentation for the appropriate language.

A UNIT is a collection of routines and data
structures. It may also contain initialization and
termination code. Like a program, it may be
compiled by itself, but unlike a program, it cannot
be executed, except when invoked from a program.
Programs and other UNITs may use UNITs that
have already been compiled.

In the p-System, a codefile is organized into
"segmen ts". A compilation unit con tains a tleast one
segment -- the routines and data of the compilation
unit itself. This segment is called the "principal
segment". If the compilation unit contains
SEGMENT routines (see below), each segment
routine will be a "subsidiary segment" that
accompanies the principal segment. If the
compilation unit references separately compiled
UNITs, those are not considered subsidiary
segments, but are named in a list of segment
references that accompanies the principal segment.
Segments are the basic unit of transfer when code is
read from a disk or removed from memory.

The utility LIBRARY may be used to group
compilation units together in a single codefile, and
modify the organization of existing codefiles.
Codefiles are often referred to as "libraries",
especially when they don't contain a program.

1-19

1-20

When a host program that uses other units is
executed, the p-System searches for the proper
code, using the host segment's segment reference
list.

The user may maintain one or more "library text
files", which are files that contain a list of codefiles
that a host compilation may need. When the
p-System searches for a needed unit, it looks first (in
order) at the codefiles named in the user's default
library text file, and if that search fails, it looks in
*SYSTEM.LIBRARY. The default name for the
user's library text file is *USERLIB.TEXT; this can
be changed by an execution option (see Chapter 2).
A compilation unit can also specify the library it
needs by using the $U Compiler option (see
PASCAL REFERENCE for the UCSD p-System).
Libraries are discussed in detail in Chapter 5.

In the source code, a "client" compilation unit
specifies that it needs a certain UNIT (or more
UNITs) by a declaration immediately after the
program (or UNIT) identification. For example:

PROGRAM W_CONTROL;
USES SYNCHPROCS, TREES;

A UNIT itself may be outlined in the following way:

UNIT SYNCHPROCS:

INTERFACE
{data declarations and procedure declarations)

IMPLEMENTATION
{data declarations and procedure code}

begin (initialization and termination block)

***. ,

end.

(initial ization code)

(termination code)

There are two main parts. The INTERFACE part
contains declarations of procedures and data that
may be used by the client. The IMPLEMENTATION
part contains code for the procedures declared in the
INTERFACE part, as well as data declarations and
other procedures that are used by the procedures
declared in the INTERFACE part, but which may
not be used by the client. Finally, there is an optional
section of Pascal code which contains two parts: an
initialization part, which is code that is executed
before any of the main body of the host program is
executed, and a termination part, which is code
executed after the host program's code has
completed. These two parts are separated by ***;.

When routines are assembled rather than compiled,
they are declared EXTERNAL in the host program,
for example:

PROCEDURE HANDSHAKE (VAR WHICH:
STRING: SEM: INTEGER);
EXTERNA~

The assembled routines must carefully adhere to
Pasca1's calling and parameter-passing conventions,
and respect p-System constraints on the use of
machine resources such as registers. See
Assembler Reference for the UCSD p-System.

External routines (assembled code) must be bound
into a host by the Linker; once bound in, they remain
part of the program. If the host program uses
external routines contained in codefiles other than
SYSTEM. LIBRARY, the Linker must be run
explicitly (using the L(ink command).

1-21

1-22

To partition a program or UNIT in to separate pieces
that are independently loaded from disk as needed,
the us'er may designate routines as SEGMENT
routines, for example:

SEGMENT PROCEDURE FILL_CORE;
SEGMENT FUNCTION MUDDLE (MEDDLE,

MIDDLE: INTEGERS): REAL;
SEGMENT PROCESS RUNAWAY

(LOCK_IT: SEMAPHORE);

Each segment routine occupies one subsidiary
segment in a codefile.

While a program is running, all code segments, both
principal and subsidiary, compete for main memory
on a dynamic basis. Segments are loaded only when
they need to be executed. When they are no longer
needed, they remain in memory until the space they
occupy is needed for some other use.

Using segment routines allows the p-System to
better allocate memory, since only those segments
that are being used need to be in memory at any
given time. The intrinsics MEMLOCK and
MEMSW AP can be used to directly control the
residence of a segment (see both PASCAL Reference
for the UCSD p-System, and the Internal Architecture
Guide for the UCSD p-System).

Such things as a program's routines for initialization
and termination are prime candidates for declaring
as SEGMENTs, since they are often bulky, and are
called only once. There is no need for them to take
up memory space after (or before) they have served
their purpose.

Programs may be "chained", that is, a program may
designate another program to be executed when the
"chaining" program has finished executing. See the
intrinsic CHAIN in Chapter 2.

Using the p-System, standalone assembly language
programs can be created, linked, loaded, and run.
See the Assembler Reference and Chapter 7 on the
COMPRESSOR utility.

A fuller discussion of the questions of separate
compilation, linking, and memory management, is
given in Chapter 5.

Note on Bug Reporting
Reporting problems is a practice that benefits
everyone. Customers can learn that the problem or
bug has already been solved, and what the fix is, or
that it was previously unknown, and that steps will
be taken to fix it in future versions. Software authors
benefit from the reports -- not everyone is familiar
with all the problems which users discover, nor all
the applications for which the System might be used.
New uses lead to new problems, which lead in turn to
new improvements.

Some users try to fix problems on their own, without
consulting their supplier. We ask that you do report
problems, even if you think they may already be
known (it's not necessarily true), or if you have
found some private solution.

What is required in a bug report? A phone call, or
letter, or a Problem Report mailed to your dealer,
may all be adequate, but only if they contain certain
information. One report with no evidence is
regarded with suspicion, many reports with no
evidence will nevertheless spark an investigation,
and a single report which contains evidence and a
thorough description will be believed and closely
pursued.

There is a pragmatic difference between a "bug" and
a "glitch" -- a bug is dependable, a glitch is
intermittant. If a problem can be duplicated, then it

1-23

1-24

is a bug, and much more time which is much morE
productive will be spent on tracking it down. That is
why we encourage you to send thorough problem
reports.

We do ask that you be aware of the difference
between a bug report and a suggestion. Some people
will inevitably object to things that are intended
"features" of the System. There is nothing wrong
with that -- the design process itself involves debate
and compromise. If you have a suggestion, please
report it -- only through feedback can the System
improve. But please do not claim that your
suggestion reports a bug -- that only confuses the
issue. Your standard here is the Users' Guide. It
attempts to describe the p-System that is sent out. If
there are discrepancies between the manual and
your software, then you should submit a problem
report. If the manual accurately describes the
situation you object to, then report your
dissatisfaction, but realize that the way the System
operates is already known.

When you report a problem, the rule of thumb is:
the more information, the better. These are the
things that should be specifically stated:

Environment:

What part of the system was running?
What version of the p-System were you using?
What processor do you use?

Actions:

What were you trying to do?
What were you doing immediately before the

problem appeared?
What exactly happened that was a problem? ...

and in what order?

Reactions:

Have you figured out a workaround?
How seriously does the problem affect your work?
Have you had this problem before (even

transien t1 y)?

If you think it would help, you might include a listing
with your report. Sometimes a listing will be needed
to understand a problem.

Remember that debugging is the slowest part of any
software development, so do not expect problems to
disappear overnight. Nonetheless, we fully
appreciate the time you take to fill out a useful
report. Your concern for the System is what keeps it
maturing.

1-25

NOTES

1-26

CHAPTER 2. THE SYSTEM
COMMANDS

Contents

Booting and PromptHnes 2- 3
Diskette Swapping 2-6
Execution Option Strings 2-7
Alternate Prefixes and Libraries 2-8
Redirection 2-10
Function REDIRECT 2-13
Procedure EXCEPTION 2-14
Procedure CHAIN 2-14
IndividualCommandsAlphabetically ... 2-16
Prompts for Filenames. 2-16

2-1

NOTES

2-2

This chapter describes the bootstrapping process for
the UCSD p-System on the IBM Personal Computer.
It includes a discussion of the commands at the
System level, and a full description of each
command. This is the outer level of System control,
and these commands invoke basic p-System
functions such as calling the Compiler, the Editor,
the Filer, etc.

You may think of the System command level (the
"outer" level) as the chief control for the entire
p-System, which indeed it is -- you have already (in
Figure 1) seen the p-System diagrammed as a tree of
command levels, with the System commands as the
outer level available from the root node.

It is also convenient, and in some ways more useful,
to think of the System level as the communications
interface between the sub modules. Thus, the Filer
initializes a workfile which the Editor uses to create a
textfile which the compiler uses to create a piece of a
program which the Linker uses to create a runnable
file which the eX(ecute command sets into
operation. This sequence of events is controlled by
the System commands. It is done "by hand", since
the p-System was from the start conceived as an
interactive environment. The point is that the
p-System commands are what you must use to
accomplish interaction between the various
p-System components.

Booting and Promptlines
In order to boot the UCSD p-System on the IBM
Personal Computer position the system unit switch
to off. Insert either of the system diskettes
(SYSTEM2 or SYSTEM4), label up, into the left disk
drive (which is referred to as #4: or drive A). Position
the system unit switch to on and the p-System will
boot automatically. In order to re-boot, you may

2-3

either turn the power off and on again or, while
holding down the two keys Ctrl and ALT, press the
DEL key on the number pad. When the booting
process has completed, the IBM Personal Computer
display will appear along with the Command:
promptline of the UCSD p-System.

A promptline (sometimes called a menu) shows the
command options at any given level of the p-System.
Each command is invoked by a single letter -- E for
Edit, S for Save, and so forth. Some things all
promptlines have in common are:

... the name of the level or p-System module at
the beginning;

... a list of available commands, with the calling
letter capitalized and separated from the rest
of the word by (;

... the version number of the program at the end
of the line, in square brackets.

Here are a few representative promptlines:

Command: E(dit, R(un, F(ile, Clomp, l(ink, X(ecute, A(ssem,? [IV.02 R3i-D]

Filer: G(et, Slave, W(hat, N(ew, L(dir, R(em, C(hng, T(rans, D(ate,? [C.ll]

>Edit: A(djs' C(py D(let FUnd I(nsrt J(mp K(ol R(plc O(uit X(ch Z(ap [E.1nJ

2-4

Anywhere in the p-System, a promptline will almost
always be displayed at the top of the screen, and let
you know what your options are. It is not always
visible when you are using the Editor to insert text,
and it is never visible while a user program is
running. Typing unintelligible commands at any
level may cause the promptline to go away: in this
case, a space will cause the screen to be cleared and
the correct promptline to be displayed.

Some promptlines include a ? There are often more
commands than can fit onto one line, and typing?
will display those commands. For example:

Filer: O(uit, B(ad-blks, E(xt-dir, K(rnch, M(ake, P(refix, V(ols,? [C.ll]

... is the remainder of the Filer's menu.

At the System command level, typing a command
letter does one of four things: it calls a program
such as the Filer, it does an operation on the workfile
(such as C(ompile or R(un), it begins a file operation
which will prompt you directly for one or more
filenames (such as eX(ecute or L(ink), or it somehow
alters the System state (such as H(alt). When you are
prompted for filenames, you can usually omit the
conventional suffix. For example, you wish to run
GRISWICH.CODE. Type X for eX(ecute. You will
then be prompted:

Execute what file?

... and you type

GRISWICH <enter>

The. CODE will be assumed.

You may have already seen the System promptline
and screen as it appears after booting, and may have
played with the p-System on your own or in
conjunction with Ken Bowles' book. This is all the
familiarity with promptlines that you need in order
to start productively using the various p-System
commands.

2-5

Diskette Swapping

2-6

Since the IV.O Operating System does a good deal of
swapping code segments into and out of main
memory during the execution of a program, and
since the user may change diskettes at various times
(especially while running the p-System itself), the
Operating System has various checks to aid disk
handling, and reduce the possibility of error.

When a program requires a code segment that is on
disk, and it is no longer on the disk in the drive from
which it was originally read, the Operating System
will display a prompt that looks something like this:

Segment SEGNAME not found on device #5
Put volume DSEHl in unit 4
type <space> to continue

... in this example, the p-System requests the disk
USERl:, and will wait until the user types space. (If
the user types space but has not replaced USERl:,
the p-System will redisplay the prompt.)

If at any time during the execution of a program, a
device is found to contain a volume that the
p-System did not expect, the p-System considers the
device" questionable" for the remainder of that
program's execution. All subsequent reads and
writes that the Operating System does to that device
will check to see that the volume name is correct
(provided the correct volume name is known). If the
volume name is deemed incorrect, the p-System
displays a prompt of the following sort:

Please replace volume DSER2 in device #5
Type < space> to continue

... in this case, the p-System expected the disk
USER2:, did not find it, and therefore requested it.

These situations should not often arise, but will
occur when a program requires more disk storage
space than is available from on-line disk drives.

This sort of checking is not done for explicit
UNITREADs and UNITWRITEs that may appear in
a user program.

Execution Option Strings
The eX(ecute command allows the user to specify
some options that modify the System's
environment. These include redirecti1;1g standard
program 1/0 or standard System I/O, changing the
default prefix (i.e., the volume name part of a
filename; see Chapter 3 and Chapter 1), and changing
the default library text file (see Chapter 1 or Chapter
5). These options are also available from within a
user program.

All of these options are specified by means of
"execution option strings". An execution option
string is a string that contains (optionally) one
filename, and zero or more option specifications. An
option specification consists of one or two letters
followed by an equals sign (=), possibly followed by a
filename or literal string.

These are the possible execution options, with a
summary of their uses:

L= change the default Library text file

P= change the default Prefix

PI= redirect Program Input

PO= redirect Program Output

1= redirect System Input

0= redirect System Output

... either capital or lower-case letters may be used.

2-7

Several different execution options may be entered
at a single time. If this is the case, they must be
separated by one or more spaces. There may
optionally be a single space between the = and the
following filename or string.

These options are described in full detail below.
They may be invoked by using the eX(ecute
command. Causing redirection from within a user
program requires the use Qf the REDIRECT intrinsic
(Chapter 2) and possibly the EXCEPTION intrinsic
(Chapter 2). The intrinsic CHAIN (Chapter 2) also
makes use of execution option strings.

Redirecting System input to come from a file or
main memory amounts to driving the System from a
script of commands. This is a useful tool, especially
in testing or turnkey applications. One way to create
a script for the System is to use the M(onitor
command, which records keystrokes by writing
them to a file while they are performed. M(onitor is
described in Chapter 2.

Note: Redirection applies only to the
standard files input and output, and therefore
has no effect on low-level device I/O intrinsics
such as UNITWRITE, BLOCKREAD, etc.

Alternate Prefixes and Libraries

2-8

The user can change the default prefix with the
P= execution option string. After this is done, all
filenames that do not explicitly name a volume will
be prefixed by the default prefix. This is equivalent
to using the P(refix command in the Filer (see
Chapter 3).

Example (user inputs are underlined):

Type 'X':

Execute what file? p=zoom

... the default prefix is now lOOM:.

In a similar fashion, the default "library text file" can
be changed. The library text file is a file that contains
the names of a number of user libraries. When a
program with separately compiled units is run, the
System searches for them first in the files named in
the library text file, and then in
*SYSTEM.LIBRARY. When the System is booted,
the default library text file is *USERLIB.TEXT.
More information about libraries may be found in
Chapter 5.

To change the default library text file, use the
execution option string L=.

Examples: Execute what file? L=mylib

... makes the file MYLIB. TEXT the new default
library text file.

Execute what file? advent I=mylib

... makes the file MYLIB. TEXT the new library text
file, and executes the file ADVENT.CODE.

Important note: The order in which execution
options are performed is:

1) Change prefix (if the P= option is present);

2) Change library text file (if the L= option is
present);

3) Do the I/O redirections (if any present) (the
order of redirection options is irrelevant).

2-9

Redirection

2-10

The following execution option strings control
redirection:

PI=/ilename

PI=string

PO=/ilename

I=/ilename

I=string

O=/ilename

PI= redirects program input. PI=Jilename causes the
input to a program to come from the file named.
PI=string causes the input to a program to come
from the program's scratch input buffer, and
appends the string given to the scratch input buffer
(scratch input buffers are discussed below).

PO= redirects program output. PO=filename causes
program output to be sent to the file named.

PI= overrides any previous input redirection.
Likewise, PO= overrides any previous output
redirection. Using PI= (PO=) without a filename
makes program input (output) the same as System
input (output).

1= redirects System input. I=/ilename causes System
input to come from the file named. I=string causes
System input to come from the System's scratch
input buffer, and appends the string to the scratch
input buffer.

0= redirects System output. O=Jilename causes
System output to be sent to the file named.

Like PI=, 1= overrides any previous 1=, and like
PO=, 0= overrides any previous 0=. Using 1=
without a filename resets System input to
CONSOLE:. Using 0= without a filename resets
System output to CONSOLE:.

For PI=filename and I=filename, the filename may
specify either a disk file or an input device that sends
characters. If the file is a disk file, redirection ends at
EOF; the System performs the equivalent of an input
redirection with no filename, thus resetting input. If
the file is a device, redirection continues until
explicitly changed by the user. This allows a user to
control the System from a remote port (such as
REMIN:).

For PO=filename and O=filename, the filename may
specify either a disk file or an output device that
receives characters. If the file is a disk file, it is named
literally as shown (i.e., to make it a textfile, the user
must explicitly type. TEXT). Whenever output
redirection is changed, the file is closed and locked.

For PI=string and I=string, the string may be any
sequence of characters enclosed in double quotes
("). Any double quote embedded in the string must
be typed twice. Scratch input buffers are located in
main memory. Program or System input may be
redirected to come from both a file and the
appropriate scratch input buffer, but if this is the
case, the scratch buffer will be used first (until it is
empty). Strings are always appended to scratch input
buffers, so that they are read in order (i.e., first in,
first out). Commas in scratch input buffers are
treated as carriage returns (enter).

Program redirection ends when the program
terminates. If there are still characters in the
program's scratch input buffer, they are lost.

2-11

System redirection ends when the System
terminates with a Halt or a runtime error. An
ordinary I(nitialize will not alter System redirection.
The System's scratch input buffer is lost.

Note that redirection applies only to the standard
files called input and output in Pascal (which have
their analogs in the p-System's other high-level
languages). It affects file-level operations and
intrinsics, but not device-level intrinsics such as
UNITREAD, UNITWRITE, BLOCKREAD,
BLOCKWRITE, and so on. It also cannot affect calls
of the form:

WRITE(MY_FILE,'CONSOLE:')j
WRITE(MY_FILE, LOTS_OLTEXT)

... and so forth, because these calls do not involve the
standard input and output files.

Examples: Execute what file? YEEN PI=IN PO=OUT

2-12

... redirects program input to the file IN, and
program output to the file OUT. The program is
YEEN.CODE.

Execute what file? 1=

... stops System input redirection.

Execute what file? l="fgRUNME,qr"

... this would:

f: enter the Filerj
gRUNME,: G(et the workfile

RUNME.TEXT
and RUNME.CODE;
(note that the comma acts as a
carriage return <enter»

q: O(uit the Filer, and ...
r: R(un the program RUNME.CODE

A user program can also take advantage of
redirection with the intrinsic REDIRECT, and clear
redirection with the intrinsic EXCEPTION. The
CHAIN intrinsic allows the user to "queue" an
execution option string for execution after the
program that contains it has finished executing.
These routines are described in the following three
sections.

Function REDIRECT

Function REDIRECT has the following declaration:

FUNCTION REDIRECT (EXEC_OPTIONS:
STRING):BOOLEAN;

EXEC_OPTIONS is an execution option string as
defined above. It should contain only option
specifications, and not the name of a file to execute
(to execute a program from another program, see
the CHAIN intrinsic).

REDIRECT causes redirection by performing all the
options specified in EXEC_OPTIONS. If all goes
well, it returns TRUE. If an error occurs, it returns
FALSE.

If an error occurs during a call to REDIRECT, the
state of redirection is indeterminate; this is a
dangerous condition. If REDIRECT returns FALSE,
the user's program should follow it with a call to
EXCEPTION, in order to turn off all redirection. If
the user does not do this, the results are
unpredictable. See the intrinsic EXCEPTION.

REDIRECT is a procedure in the Operating
System's COMMANDIO unit; to use it, a program or
unit must contain the declaration USES
COMMANDIO.

2-13

Procedure EXCEPTION

Procedure EXCEPTION has the following
declaration:

PROCEDURE EXCEPTION (STOPCHAINING:
BOOLEAN);

EXCEPTION turns off all redirection. If
STOPCHAINING is TRUE, then the queue of
EXEC_OPTIONS created by CHAIN is also cleared
(see the intrinsic CHAIN).

Whenever an execution error occurs, an
EXCEPTION(TRUE) call is made (to leave
redirection on after an error would leave the System
in an indeterminate state).

EXCEPTION is a procedure in the Operating
System's COMMANDIO unit; to use it, a program or
unit must declare USES COMMANDIO.

Proced ure CHAIN

2-14

Procedure CHAIN has the following declaration:

PROCEDURE CHAIN (EXEC_OPTIONS:STRING);

EXEC OPTIONS is an execution option string as
defined above.

A call to CHAIN causes the System to eX(ecute
EXEC_OPTIONS after the calling program (the
"chaining program") has terminated. The effect is
that of manually typing X for eX(ecute, and then
entering the characters in EXEC_OPTIONS.
Neither the System promptline nor the eX(ecute
prompt are displayed; the System goes on to
immediately perform the actions indicated by
EXEC_OPTIONS.

If a program (or sequence of programs) contains
more than one call to CHAIN, the EXEC_OPTIONS
are saved in a queue, and performed in a
first-in-first-out fashion before control of the
System is returned to the user.

A call to CHAIN with an empty string (for example,
"CHAIN(");") clears the queue.

An execution error or an error in an
EXEC_OPTIONS string clears the queue, and
returns the System to the user. A call to
EXCEPTION may also clear the queue; see the
intrinsic EXCEPTION.

CHAIN is a procedure in the Operating System's
COMMANDIO unit; to use it, a program or unit
must declare USES COMMANDIO.

2-15

Individual Commands Alphabetically
Prompts for Filenames

Several of the p-System commands prompt for
filenames. The conventions are the same for all
responses to filename prompts throughout the
p-System. A filename is typed in as letters, and
followed by an enter. Before enter is typed, the name
may be corrected by using backspace or
ctrt-backspace and re-typing. Prompts often expect
.TEXT or .CODE files, and these standard suffixes
may be omitted from the filename -- the System
programs will append them automatically. To
prevent this automatic appending, follow the
filename with a ..

When a program (such as a compiler) requires both a
source and a codefile name, the codefile name may
be given as $, which is the same name as the source
file with .CODE appended, or as $., which is the
source file name only.

Example: (underlined portions are user input):

Example:

2-16

Assemble what file? GRISWICH
Code file name? $

... causes the file GRISWICH.TEXT to be
assembled, and the resulting code placed in
GRISWICH.CODE.

Device names may also be used.

Listing file? PRINTER:

Responding to a filename prompt with just enter
causes some default filename to be used (for example,
*SYSTEM.WRK.CODE). If there is no default
value, the program will go on to the next action (or
abort, because there is nothing left for it to do).

ASSEMBLE

On the promptline:

A(ssem.

Causes SYSTEM.ASSMBLER (note no E) to be
executed. If a workfile is present, then either
*SYSTEM. WRK. TEXT or the designated. TEXT
file is assembled to a file of native code. If there is no
workfile, the user is prompted for a source file. The
user is also prompted for a codefile and a listing file;
the defaults for these are *SYSTEM.WRK.CODE
and no listing file.

If the Assembler encounters a syntax error, it
displays the error number, the source line in
question, and (if the file *8086.ERRORS is present)
an error message; finally, it displays the promptline:

Line ##, error ###: <sp>(continue),
<esc>(terminate), E(dit

The user has the choice of continuing assembly
(space), aborting assembly (esc), or returning
directly to the Editor to correct the source file (E).

The Assembler Reference for the UCSD p-System
describes the assembler in detail.

2-17

COMPILE

2-18

On the promptline:

Clomp.

Causes SYSTEM. COMPILER to be executed. If a
workfile is present, then either
*SYSTEM.WRK.TEXT or the designated .TEXT
file is compiled to P-code. If there is no workfile, the
user is prompted for a source file. The user is also
prompted for a codefile name; the default for this is
*SYSTEM. WRK. CODE.

If the Compiler encounters a syntax error, it displays
the error number, the source line in question, and
the promptline:

Line ##, error ###: <sp>(continue),
<esc>(terminate), E(dit

The user has the choice of continuing compilation,
aborting compilation, or returning directly to the
Editor to correct the source file. In the latter case,
the cursor will be positioned at the point of error
detection, and if the file *SYSTEM.SYNTAX is
present, an error message will be displayed.

The PASCAL Reference/or the UCSD p-System
describes UCSD Pascal in detail. FORTRAN is
described in the FORTRAN-77 Reference/or the UCSD
p-System.

EDIT

On the promptline:

E(dit.

Causes SYSTEM. EDITOR to be executed. If a
.TEXT workfile is present, this is displayed and
available for editing. If no workfile is present, the
user is prompted for a filename, with the additional
options of either escaping the Editor, or entering the
Editor with no file at all (with the intent of creating a
new one).

The Editor is used for creating program or document
textfiles, or altering and adding to existing ones. It is
described in detail in Chapter 4.

FILE

On the promptline:

F(ile.

Causes SYSTEM. FILER to be executed. The Filer
provides commands for maintaining the workfile,
moving files, and maintaining disk directories. It is
described in detail in Chapter 3.

2-19

HALT

On the promptline:

H(alt.

Causes the p-System to stop execution. The only
way to restart the System after a H(alt is by doing a
hardware bootstrap.

INITIALIZE

2-20

On the promptline:

I(nit.

Causes the file *SYSTEM.STARTUP, if present, to
be executed. SYSTEM. STARTUP must be a
codefile; it is executed automatically after a
bootstrap or an I command.

There is a SYSTEM. STARTUP on the STARTUP
disk which accompanies the Beginners Guide for the
UCSD p-System. You may also create your own
SYSTEM. STARTUP. Some applications of this
might be displaying reminders for the next session
with the p-System, or crating a program to run in a
turnkey mode. To create a SYSTEM. STARTUP, you
must create a .CODE file, and then change its name
to SYSTEM. STARTUP.

INITIALIZE
All runtime errors that are not "fatal" (see Appendix
A) cause the p-System to do an initialize. At initialize
time, much of the p-System' s internal data is rebuilt,
and SYSTEM.MISCINFO is reread.

An I(nitialize will not clear any redirections (see
Chapter 2), but any runtime error will.

LINK

On the promptline:

L(ink.

Causes the file SYSTEM. LINKER to be executed.
The Linker allows you to link native code
(assembled) routines into host compilation units
(compiled from a high-level language). It also allows
you to link native code routines together. It is
described in detail in Chapter 5.

2-21

MONITOR

2-22

On the promptline:

M(on.

Redirecting the p-System's input (see Chapter 2)
amounts to driving the p-System with a script; one
convenient way to create such a script is to use
M(onitor. While in M(onitor mode, the user may use
the p-System in a normal manner, but all user input
is saved in a file. Thus, to automate a sequence of
System commands, the user B(egins a monitor, and
goes through all the commands that are to be
remembered. Then the user E(nds the monitor, and
all user input is saved as a file. This file can be used by
redirecting p-System input to the monitor file with
the 1= execution option string.

When M is typed to enter M(onitor, the following
prompt is displayed:

Monitor: 8(llin, E(nd, A(bort, S(uspend, R(esume

The B(egin prompt starts a monitor. The user is
prompted for a filename. This file becomes the
monitor file. The user can then begin monitoring
(and return to the System promptline) by using
R(esume. If a monitor file has already been opened,
an error message is displayed.

E(nd ends a monitor and saves the monitor file. The
user may start another monitor with B(egin, or
simply return to the System promptline with
R(esume. If no monitor file is open, an error message
is displayed.

MONITOR
A(bort ends the current monitor and does NOT save
the monitor file. The user may start another monitor
with B(egin, or return to the System promptline with
R(esume.

S(uspend turns off monitoring bu t does not close the
monitor file. In other words, the user is returned to
the System promptline and can now type commands
without recording them, but the monitor file
remains open, and more can be added to it by using
R(esume.

R(esume starts monitoring again, and returns the
user to the System promptline. If monitoring had
not been S(uspend' ed, nothing will happen. If no
monitor file is open, R(esume displays an error
message to that effect (this is simply for the user's
convenience).

The monitor file can be either a . TEXT file or a
da tafile. If it is . TEXT, the user can use the Editor to
alter it -- but not if the monitoring has recorded
special characters which the Editor does not allow a
user to type.

The M(onitor command itself can never be recorded
in a monitor file.

2-23

RUN

On the promptline:

R(un.

Causes the current workfile to be executed. If there
is no current codefile in the workfile, R(un calls the
Compiler, and if the compilation is successful, runs
the resulting code. If there is no workfile at all, R(un
calls the Compiler, which then prompts for the name
of a textfile to compile.

If the codefile requires linking to one or more
external codefiles, then the Linker is automatically
called, and searches * SYSTEM. LIBRARY. If the
external files cannot be found there, an error results.

USER RESTART

2-24

On the promptline:

O(sar rastart.

Causes the last program executed to be executed
over again, with all file parameters equal to what
they were before. U(ser restart will not restart the
Compiler or Assembler. Other than that, it is useful
for multiple runs of a user program, returning to the
Editor after a workfile U(pdate, and so forth.

EXECUTE

On the promptHne:

X(ecute.

eX(ecute displays the following prompt:

Execute what file?

... and the user should respond with an execution
option string (see Execution Option Strings in this
Chapter). In the simplest case, this string contains
nothing but the name of a codefile to be executed (as
described in Chapter 2).

If the codefile cannot be found, the message Can't
find filename is displayed. If all the code necessary to
execute the codefile has not been linked in, the
message Must L(ink first is displayed. If the codefile
contains no program (i.e., all its segments are units
or segment routines), the message No program in
filename is displayed.

If the execution option string contains only option
specifications, they are treated as described in
Chapter 2, above. If it contains both option
specifications and a codefile name, the options are
handled first, a'nd then the codefile is executed
(unless one of the errors named in the preceding
paragraph occurs).

eX(ecute is commonly used to call programs that
have already been compiled. It may also be used
simply to take advantage of the execution options.

The codefile must have been created with a .CODE
suffix, even if its name has subsequently been
changed.

2-25

NOTES

2-26

CHAPTER 3. FILES AND
FILE HANDLING

Contents
Types of Files 3-3
File Formats 3-3
Volumes 3-5
Device numbers and descriptions 3-5
The W orkfile 3-6
Filenames 3-6
Using the Filer 3-8
Prompts in the Filer 3-8
Names of Files 3-10
Filer Commands 3-12
Recovering Lost Files 3-42

3-1

NOTES

3-2

Types of Files
A file is a collection of information which is stored on
a disk and referenced by a filename. Each disk has a
directory which contains the filename and location
of each file on the disk. The Filehandler, or Filer,
uses the information contained in the disk directory
to manipulate files.

One of the attributes of a file is its type. The type of
the file determines the way in which it can be used.
Filetypes are indicated by the suffix to the filename
(if one is present; the directory maintains a filetype
field for each file). Reserved type suffixes for
filenames are:

.TEXT

. BACK

.CODE

. DATA

.FOTO

.BAD

File Formats

Human readable text, formatted for the
editors .

Executable code, either P-code or
machine code.

Data in a user-specified format .

A file containing one graphic screen
image.

An unmovable file covering a physically
damaged area of a disk.

.TEXT and .BACK files contain a header page
followed by the user-written text, interspersed with
blank-compression codes. The header page contains
internal information for the editors. The Filer will
transfer the header page from disk to disk, but never
from disk to an output device (for example,
PRINTER: or CONSOLE:).

3-3

3-4

Note that all files created with a suffix of. TEXT will
have the header attached to the front, and so they
will be treated as textfiles throughout their life.

The header page is two blocks long (1024 bytes), and
the remainder of the file is also organized into
two-block pages. A pagecontains a series of
complete text lines, and is padded with NULs. A
complete text line is 0 .. 1024 characters -- the last of
those characters must be an enter (ASCII CR), and
the first two may be a blank-compression pair. The
optional blank-compression pair consists of an
ASCII DLE followed by a byte whose value is 32+n,
where n is the number of characters to indent. Text
lines are typically 0 .. 80 characters in length, so as to
fit on the CRT.

Textfiles are considered to be unstructured files, and
so the intrinsic SEEK will not work with them (SEEK
is described in PASCAL Reference for the UCSD
p-System.)

.CODE files contain either compiled or assembled
code. They begin with a single block called the
segment dictionary, which contains internal
information for the Operating System and Linker.
Codcfiles may also contain embedded information.
They are described in detail in the Internal
Architecture Guide .

. DATA files have any format that their creator
chooses. The p-System knows nothing about the
internals of a datafile .

. FOTO files have an internal format which is of no
concern to users. Foto files are manipulated by the
TURTLE GRAPHICS Unit.

Volumes

A volume is any I/O device, such as the printer, the
keyboard, or a disk. A block-structured device is one
that can have a directory and files, usually a disk of
some sort. A non-block-structured device. does not
have internal structure; it simply proauces or
consumes a stream of data. The printer and the
keyboard, for example, are non-block-structured.
The table below illustrates the reserved volume
names used to refer to non-block-structured
devices, the device number associated with each
device, and the device names associated with the
System disk and other peripherals.

Device numbers and descriptions

Device
Number Volume ID

1 CONSOLE:

2 SYSTERM:

4 <volume name>:

5 <volume name>:

6 PRINTER:

7 REMIN:

8 REMOUT:

9-12 <volume name>:

Description

screen and keyboard
with echo

screen and keyboard
without echo

the System disk

the alternate disk

the parallel line
printer

serial line input

serial line output

additional disk drives

3-5

The W orkfile
The workfile is described in Chapter 1. It is a
scratchpad for creating files, and testing those files if
they contain program text. The workfile is often
stored temporarily in the files SYSTEM. WRK. TEXT
and SYSTEM.WRK.CODE. These may be either
newly-created files, or copies of existing disk files
which have been designated as the new workfile.

The Filer is the means of saving a work file under
permanent filenames (the S(ave command),
designating existing files as the current workfile (the
G(et command), or clearing a workfile for new work
(the N(ew command). More detail on these
functions is provided in the description of each of
these commands, and you should refer to those
discussions below.

Filenames

3-6

Many Filer commands, System prompts, and System
Intrinsics require the user to respond with at least
one file specification.

The diagram below illustrates the syntax of file
specification.

< file specification>

Volume ID syntax can be expanded as follows:

volume
name

As shown in the table above, the volume name (for
example, CONSOLE:) and the physical device
number (for example, #1:) may both be used, and are
in fact interchangeable.

Volume names for block-structured volumes can be
assigned by the user. A volume name must be 7
characters long or less and may not contain =, $, ? or
,. Reserved volume names for non-block-structured
devices are given in Table 3.1. The character * is
shorthand for the volume ID of the System disk. The
character: is shorthand for the volume ID of the
default disk. The System disk and default disk are
equivalent unless the default prefix has been
changed. This can be done with the P(refix
command (see below). The System disk is also called
the root disk here and there. #device number is
equivalent to the name of the volume in the drive at
that time.

A legal filename can consist of up to 15 characters,
including the .TEXT and .CODE suffixes, which are
appended to a filename when the file is created, and
reflect the internal organization of the file.
Lower-case letters are translated to upper-case, and
blanks and non-printing characters are removed

3-7

from the filename. Legal characters for filenames are
the alphanumerics and the special characters-, /, , ,
and .. These special characters may be used as
mnemonics to indicate relationships among files
and! or to distinguish several related files of differen t
types.

Filenames must not contain the following special
characters: $, :, =, ?, and ,. The reason will become
apparent in the next section.

Using the Filer
Filer commands are described in detail below, in
Chapter 3. They are listed in alphabetical order. It is
recommended that you read the following two
sections as background for using the Filer
commands; this entire chapter is meant to serve both
as instruction and as a reference.

Prompts in the Filer

Type "F" at the Command level to enter the Filer.
The following prompt is displayed:

Filer: G(et, Slave, W(hat, N(ew, L(dir, R(em, C(hng, T(rans, D(ate,? [C.ll]

Typing? in response to this prompt displays more
Filer commands:

Filer: O(uit, B(ad-blks, E(xt-dir, K(rnch, M(ake, P(refix, V(ols? [C.l1]

3-8

The individual Filer commands are invoked by
typing the letter found to the left of the parenthesis.
For example, S would invoke the Save command.

In the Filer, answering a Yes/No question with any
character other than Y constitutes a No answer.
Typing an esc will return the user to the outer level
of the Filer.

Many commands will prompt you for a filename. The
full syntax for a file specification (which is either a
single filename or an expression using wildcards) is
given in "Filename" previously described. Always
follow file specifications with an enter. The wild cards
are described below:

Should you specify a file on a volume (or just a
volume) that the Filer cannot find, it will respond
with:

No such vol on line

If more than one volume on line has the same name,
the Filer will continually display a warning to that
effect. The user must be careful to specify which
volume a file is on (usually using device numbers,
e.g. #4, #5) in order to avoid confusion. The
situation is especially confusing when both disks are
System disks. In general, although it may sometimes
be necessary to have two volumes with the same
name on line together, the user should try to avoid
this situation.

Whenever a Filer command requests a file
specification, the user may specify as many files as
described, by separating the file specifications with
commas, and terminating this file list with an enter.
Commands operating on single filenames will keep
reading filenames from the file list and operating on
them until there are none left. Commands operating
on two filenames (such as C(hange and T(rans) will
take file specifications in pairs and operate on each
pair until only one or none remains. If one filename
remains, the Filer will prompt for the second
member of the pair. If an error is detected in the list,
the remainder of the list will be flushed.

3-9

Names of Files

3-10

General Filename Syntax

For the Filer, filename syntax is the same as for the
p-System in general, as described above in Chapter 3.
In addition, a filename may be followed by a size
specification of the form [n] where n is an integer
specifying the number of blocks that the file must
occupy. Size specifications are dealt with below, in
the description of those commands that are affected
by them.

All of the Filer commands except G(et and S(ave
require full filenames, including suffixes such as
.TEXT and .CODE. G(et and S(ave supply these
suffixes automatically, so that using the workfile will
be convenient.

Wildcards

The wildcard characters, = and?, are used to specify
subsets of the directory. The Filer performs the
requested action on all files meeting the
specification. A file specification containing the
subset-specifying string DOC=TEXT notifies the
Filer to perform the requested action on all files
whose names begin with the string DOC and end
with the string TEXT. If a ? is used in place of an =,
the Filer requests verification before performing the
command on each file meeting the specified criteria.
A subset specification of the form =string or string=
or even = is valid. This last case, where both
subset-specifying strings are empty, is understood to
specify every file on the volume, so typing = or ?
alone causes the Filer to perform the appropriate
action on every file in the directory.

Example: Given this directory for the volume MYDISK:

FILEl
GAME.TEXT
SYS.CODE
GAME.CODE
PROGRAM2.TEXT
G.FILE

6
4

10
4

12
5

Prompt: Remove what file?

1·Jan·82
1·Jan·82
1·Jan·82
1·Jan·82
1·Jan·82
1·Jan·82

Response: Typing G = generates the message:

MYDlSK:GAME.TEXT
MYDlSK:GAME.CODE
MYDlSK:G. FI LE

Update directory?

removed
removed
removed

(At this point the user can type Y to remove or type
N, in which case the files will not be removed. The
filer always requests verification on removes.)

Example: Prompt: Dir listing of what vol?

Response: Typing = TEXT causes the Filer to list:

GAME.TEXT
PROGRAM2.TEXT

4
12

1·Jan·82
1·Jan·82

In any filename pair, the character $ may be used to
signify the same filename as the first name, perhaps
with a different volume id or size specification.

3-11

Example: Prompt: Transfer what file?

Response: #5:RE .USE .TEXT,*$

... transfers the file RE.USE.TEXT on device #5 (a
disk drive) to the System disk (*, which is also device
#4). The name is not changed. The filer would reply
with:

DISK2:RE.USE.TEXT •. > SYSTEM:RE.USE.TEXT

Filer Commands

3-12

This section contains complete descriptions of all
Filer commands, together with examples of their
use. Commands are listed in alphabetical order. The
text is meant to be used both as instruction and as a
reference.

B(ad blocks

Scans the disk and detects blocks that are unusable
for some physical reason (fingerprints, warping, dirt,
etc.).

This command requires the user to type a volume
ID. The specified volume must be on-line.

Prompt: Bad block scan of what vol?

Response: <volume ID>

Prompt: Scan for 320 blocks? <v/n>

Response may be "Y" for yes if you want to scan for
the entire length of the disk. If you only wish to
check a smaller portion of the disk, type "N" and you
will then be prompted for the number of blocks you
want the Filer to scan for.

Checks each block on the indicated volume for
errors and lists the number of each bad block. Bad
blocks can often be fixed or marked (see eX(amine).

3-13

C(hange

3-14

Changes file or volume name.

This command requires two file specifications. The
first of these specifies the file or volume name to be
changed, the second, the new name. The first
specification is separated from the second
specification by either an enter or a comma (,). Any
volume ID information in the second file
specification is ignored, since obviously the old file
and the new file are on the same volume! Size
specification information is ignored.

Actual movement of files from volume to volume is
done with the T(ransfer command.

Given the example file F5.TEXT, residing on the
volume occupying device 5:

Prompt: Change what file?

User Response: #5:F5.TEXT,H.FILE

... changes the name in the directory from F5. TEXT
to H.FILE. Filetypes are originally determined by
the filename; the C(hange command does not affect
the filetype. In the above case, H.FILE would still be
a textfile. However, since the G(et command
searches for the suffix. TEXT in order to load a
textfile into the workfile, H.FILE would need to be
renamed H.FILE.TEXT in order to be loaded into
the workfile.

The user response #5:F5=,H.FILE=, on the other
hand would preserve the . TEXT suffix.

C(hange
Wildcard specifications are legal in the C(hange
command. If a wildcard character is used in the first
file specification, then a wildcard must be used in the
second file specification. The subset-specifying
strings in the first file specification are replaced by
the analogous strings (henceforth called replacement
strings) given in the second file specification. The
Filer will not change the filename if the change
would have the effect of making the filename too
long (>15 characters).

Example: Given a directory of example disk MYDISK:
containing the files:

POEMS. TEXT
LETTER. TEXT
NAME.FILE
LIST. TEXT

Prompt: Change what file?

User response: MYDISK:L=TEXT,S.L=BACK

Causes the Filer to report:

MYDISK:LETTER.TEXT··> S.LETTER.BACK
MYDlSK:UST.TEXT .. > S.UST.BACK

The subset-specifying strings may be empty, as may
the replacement strings. The Filer considers the file
specification = (where both subset-specifying strings
are empty) to specify every file on the disk.
Responding to the C(hange prompt with =,Z=Z
would cause every filename on the disk to have a Z
added at front and back. Responding to the prompt
with 2=2,= would replace each terminal and initial 2
with nothing.

3-15

C(hange
Example: Given the filenames:

THIS.TEXT
THAT.TEXT

Prompt: Change what file?

User Response: T= T,=

The result would be to change THIS. TEXT to
HIS.TEX, and THAT. TEXT to HAT. TEX.

The volume name may also be changed by specifying
a volume ID to be changed, and a volume ID to
change to:

Example: Prompt: Change what file?

User Response: MYDISK:,WRKDISK:

MYDISK: - -> WRKDISK:

3-16

D(ate

Lists current system date, and enables the user to
change the date.

Prompt:

Date Set: <1 .. 31>-<JAN .. DEC>-<OO.99>
Today is l-Jan-82
New date?

The user may enter the correct date in the format
given. After typing enter, the new date will be
displayed. Typing only an enter does not affect the
current date. The hyphens are delimiters for the day,
month and year fields, and it is possible to affect only
one or two of these fields. For example, the year
could be changed by typing --83, the month by
typing -Feb, etc. The entire month-name can be
entered, but will be truncated by the Filer. The most
common input is a single number, which is
interpreted as a new day. For example, if the date
shown is the first of]anuary, and today is the second,
the user would type 2 enter. The day-month-year
order is required.

This date will be associated with any files saved or
created during the current session and will be the
date displayed for those files when the directory is
listed.

The date is saved in the directory of any disk that has
been placed in the booted device. It remains the
same until it is changed by using the D(ate command
again.

3-17

E(xtended List

3-18

Lists the directory in more detail than the L(dir
command.

All files and unused areas are listed along with (in this
order) their block length, last modification date, the
starting block address, the number of bytes in the
last block of the file, and the filetype. All wildcard
options and prompts are as in the L(dir command.

Since this command shows the complete layout of
files and unused space on the disk, it is useful in
conjunction with the M(ake command. Refer to
"M(ake", and "Recovering Lost Files" on recovering
lost files.

An E(xtended list is often longer than will fit on one
screen. In this case, the Filer displays one full screen
and then prompts:

Type <space> to continue

... at this point, a space causes the rest of the
directory to be listed, and an esc aborts the listing.

Extended List

Example:
Filer: G(et, Slave, W(hat, N(ew, L(dir, R(em, C(hng, T(rans, D(ale,? [C.ll]
MYDISK:
F2.TEXT 28 1·Jan·82 6 512 Textfile
ABS12.CODE 18 1·Jan·82 34 512 Codefile
< UNUSED> 10 52
ABSl23 4 1·Jan·82 62 512 Datafile
HTYPE.CODE 21 1·Jan·82 66 512 Codefile
STATS.TEXT 8 1·Jan·82 87 512 Textfile
LETl.TEXT 18 1·Jan·82 95 512 Textfile
ASSEM.TEXT 20 l-Jan-82 113 512 Textfile
F.TEXT 24 1-Jan-82 133 512 Textfile
< UNUSED> 20 157
STATS.CODE 6 1-Jan·82 171 512 Codefile
< UNUSED> 137 183
~/9 files<listed/in·dir>, 153 blocks used, 167 unused, 137 in largest

3-19

G(et

Loads the designated file into the workfile.

The entire file specification is not necessary. If th(
volume ID is not given, the default disk is assumed
Wildcards are not allowed, and the size specificatior
option is ignored.

Example: Given the directory:

3-20

FILERDOC2. TEXT
ABS123.CODE
HYTYPER. CODE
STATIS. TEXT
LETTERl. TEXT
FILER. DOC. TEXT
STATIS.CODE

Prompt: Get what file?

Response: STATIS

The Filer responds with the message:

'Text & Code file loaded'

... since both text and code file exist. Had the use]
typed STATIS.TEXT or STATIS.CODE, the resul'
would have been the same -- both text and code
versions would have been loaded. In the event tha'
only one of the versions exists, as in the case of
ABS12 3, then that version would be loaded,
regardless of whether text or code was requested.
typing ABSl23.TEXT in response to the prompt
would generate the message: Code file loaded.

G(et
Working with the file may cause the files
SYSTEM.WRK.xxxx to be created, as part of the
workfile. These files will go away when the S(ave
command is used. If the System is rebooted before
the S(ave command is used, the name of the workfile
will be forgotten.

K(runch

Moves the files on the specified (disk) volume so that
they are adjacent, and unused blocks are combined
into one large area.

K(runch first prompts for the name of a volume. It
then asks if it should crunch from the end of the disk.
This leaves all files at the front of the disk, and one
large unused area a t the end. If the user answers no to
this prompt, K(runch asks which block the crunch
should start from. Doing a K(runch from a block in
the middle of the disk leaves the large unused area in
the middle of the disk, with files clustered toward
either end (as space permits).

As each file is moved, its name is displayed on the
console.

If the disk contains a bad block that has not been
marked (see B(ad and eX(amine), K(runch may write
a file on top of it -- that file is then irrecoverable. It
is generally a good idea to scan for bad blocks with

3-21

K(runch
B(ad before doing a K(runch, unless all files are also
backed up on a different disk.

If K(runch must move SYSTEM.PASCAL or
SYSTEM. FILER on the boot disk, it will then display
a prompt which asks you to reboot the p-System.

Example: Prompt: Crunch what vol?

3-22

Response: MYDISK:

... if MYDISK: is on-line, K(runch then prompts:

Prompt: From end of disk, block 320 ? (v/n)

Response: A Y starts the K(runch, an N causes
the prompt:

Prompt: Starting at block # ?

Response: The block number at which you wish
the K(runch to start.

L(dir

Lists a disk directory, or some subset thereof, to the
volume and file specified (default is CONSOLE:).

Each filename is followed by the file's length in
blocks, and the date of its last modification. (A block
is 512 bytes).

The user may list any subset of the directory, using
the wildcard option, and may also write the
directory, or any subset thereof, to a volume or
filename other than CONSOLE. The first
specification is the source file specification and the
second is the output file specification.

Source file specification consists of a mandatory
volume rD, and optional subset-specifying strings,
which may be empty. Source file specifications are
separated from destination file specifications by a
comma (,).

Destination file specification consists of a volume
rD, and, if the volume is a block-structured device, a
filename.

The most frequent use of this command is to list the
entire directory of a volume.

If the directory listed is too long to fit on one screen,
the Filer lists as much as it can, and then prompts:

Type < spaca> to continua

... typing a space causes the rest of the directory to
be listed; typing an esc aborts the listing.

3-23

L(dir
Example: The following display, which represents a

complete directory listing for the example disk
MYDISK, would be generated b.y typing any vali(
volume ID for MYDISK (see Figure 5) in respons(
to the prompt,

Olr listing of what vol?

Flier: Glet, Slave, W(hat, N(ew, Lldlr, R(em, C(hng. T(rans, O(ate,? [C.11:
MYOISK:
FILEROOC2.TEXT 38 l-Jan-82
ABS123.COOE 18 1·Jan·82
HYTPER.COOE 12 l-Jan·82
STATIS.TEXT 8 l-Jan-82
LETTER1. TEXT 18 1·Jan-82
FILEROOC1.TEXT 12 l-Jan-82
LETTER2. TEXT 12 l-Jan-82
STAllS. CODE 6 l-Jan-82
GAME-TEXT 10 1·Jan·82
TEMP 4 l-Jan·82
10/10 files<listed/in-dir>, 144 blocks used, 176 unused, 156 in larges

The bottom line of the display informs the user tha
10 files out of 10 files on the disk have been listed
that 144 disk blocks have been used, that 176 disl
blocks remain unused, and that the largest area
available is 156 blocks.

The following is an example of the use of L(dir
involving wildcards:

Prompt: Oir listing of what vol?

User response: #4:FIL= TEXT

... generates the following display:

Filer: G(et, Slave, W(hat, N(ew, Lldir, R(em, C(hng, T(rans, O(ate,? [C.l1
MYOISK:
FILEROOC2. TEXT 38 l-Jan-82
FI LEROOC1. TEXT 12 1·Jan-82
2/10 files<listed/in-dir>, 56 blocks used, 176 unused, 156 In largest

3-24

L(dir

The following L(dir example involves writing the
directory subset to a device other than CONSOLE:

Prompt: Dir listing of what vol?

User response: *FIl= TEXT,PRINTER:<enter>

causes:

Filar: G(at, Slave, W(hat, N(ew, Lldir, Rlem, e(hng, T(rans, O(ale,? [&.11]
MYDlSK:
FILERDOC2.TEXT 38 1·Jan·82
FILERDOC1.TEXT 12 1·Jan-82
2/10<listed/in-dir>, 56 blocks used, 176 unused, 156 in largest

... to be written to the printer.

The following L(dir example involves writing the
directory subset to a block-structured device:

Prompt: Dir listing of what vol?

User response: #4:FII.= TEXT,#5:L.TEXT

Creates the file L. TEXT on the volume associated
with device 5. L. TEXT would contain:

Filer: Glet, Slave, Wi hat, N(ew, I.(dir, R(em, C(tmg, T(rans, O(ale,? [&.11]
MYDISK:
FILERDOC2.TEXT 38 1·Jan·82
FILERDOC1. TEXT 12 1·Jan·82
2/10 files < listed/in-dir>, 56 blocks used, 176 unused, 156 in largest

3-25

M(ake

Creates a directory entry with the specified filename.

This command requires the user to type a file
specification. Wildcard characters are not allowed.
The file size specification option is extremely
helpful, since, if it is omitted, the Filer creates the
specified file by consuming the largest unused area
of the disk. The file size is determined by following
the filename with the de~sired number of blocks,
enclosed in square brackets [and]. Some special
cases are:

[0] Equivalent to omitting the size specification.
The file is created in the largest unused area.

[*] The file is created in the second largest area, or
half the largest area, whichever is larger.

Textfiles must be an even number of blocks, and the
smallest possible textfile is four blocks long (two for
the header, and two for text). M(ake enforces these
restrictions: if the user tries to M(ake a textfile with
an odd number of blocks, M(ake will round the
number down.

M(ake can be used to create a file (with garbage data)
for future use, to extend the size of a file (using the
size specification), or to recover a lost file (see
"Recovering Lost Files").

Example: Prompt: Make what file?

3-26

Response: MYDlSK: FARKLE. TEXT[28]

Creates the file FARKLE.TEXT on the volume
MYDISK: in the first unused 28-block area
encountered.

N(ew

Clears the workfile and creates a blank, unnamed
workfile, which remains unnamed until it is saved.

If there is already a workfile present, the user is
prompted:

Throwaway current workfile?

Response: Y clears the workfile, while N returns
the user to the outer level of the Filer.

If work/ile name.BACK exists, then the user is
prompted:

Remove <workfile name>.BACK?

Response: Y removes the file in question, while N
leaves the .BACK file alone, but does create a new
workfile.

A successful N(ew returns the message:

Workfile cleared

3-27

P(refix

Q(uit

3-28

Changes the current default volume to the volume
name specified.

This command requires the user to type a volume
ID. An entire file specification may be entered, but
only the volume ID will be used. It is not necessary
for the specified volume to be on-line.

If the user specifies a device number (say, #5), then
the new default prefix is the name of the volume
(e.g., MYDISK:) in that device. If no volume is in the
device when prefix is used, the default prefix
remains the device number (e.g., #5 :), and thereafter,
any volume in the default device is the default
volume.

To determine the current default volume, the user
may respond to the prompt with: (see also the
V(olume command). To return the prefix to the
booted or "Root" volume, user may respond with
"*,,

Returns the user to the System (outermost)
command level.

R(emove

Removes file entries from the directory.

This command requires one file specification for
each file the user wishes to remove. Wildcards are
legal. Size specification information is ignored.

Example: Given the example files (assuming that they are on
the default volume):

A.GAME.CODE
AUTO.TEXT
GAME.TEXT
AUTO. CODE

Prompt: Remove what file?

User Response: AUTO. CODE

... removes the file AUTO. CODE from the volume
directory.

Note: To remove SYSTEM.WRK.TEXT
and/or SYSTEM.WRK.CODE, the N(ew
command should be used, not R(emove, or the
System may get confused. Fortunately, before
finalizing any removes, the Filer prompts the
user with

Prompt: Update directory?

Response: Y causes all specified files to be
removed. N returns the user to the outer level
of the Filer without any files having been
removed.

3-29

R(emove

As noted before, wildcards in R(emove commands
are legal.

Example: Prompt: Remove what file?

3-30

User Response: A=CODE

... causes the Filer to remove AUTO.CODE and
A.GAME.CODE.

Typing the wildcard? causes R(emove to prompt for
the removal of each file on a volume. This is useful
for cleaning out a directory, and for removing a file
which has (inadvertently) been created with a
nonprinting character in its name.

Warning: Remember that the Filer considers
the file specification = (where both
subset-specifying strings are empty) to specify
every file on the volume. Typing an = alone will
cause the Filer to remove every file on your
directory! (Fortunately, typing N in response to
the Update directory? prompt will save your
disk from this fate.)

S(ave

Saves the workfile under the filename specified by
the user.

The entire file specificaiton is not necessary. If the
volume ID is not given, the default disk is assumed.
Wildcards are not allowed, and the size specification
option is ignored.

Example: Prompt: Save as what file?

Response: Type a filename of 10 characters or
less. This causes the Filer to automatically remove
any old file having the given name, and to save the
workfile under that name. For example, typing
"X" in response to the prompt causes the workfile
to be saved on the default disk as X.TEXT. If a
code file has been compiled since the last update of
the workfile, that codefile will be saved as
X.CODE.

If a file already exists with the name given, S(ave will
respond: Destroy old filename? A Y response causes
the old file to be replaced, any other reply exits the
S(ave.

The Filer automatically appends the suffixes .TEXT
and .CODE to files of the appropriate type.
Explicitly typing AFILE. TEXT in response to the
prompt will cause the Filer to save this file as
AFILE. TEXT. TEXT. Any illegal characters in the
filename will be ignored, with the exception of:. If
the file specification includes a volume id, the Filer

3-31

S(ave

assumes that the user wishes to save the workfile on
another volume. For example, typing:

DISK2:PROG

... in response to Save as what file? will generate

MYDISK:SYSTEM. WRK. TEXT •• >
DISK2:PROG.TEXT

T(ransfer

3·32

Copies the specified file or volume to the given
destination.

This command requires the user to type two file
specifications: one for the source file, and one for
the destination file, separated by either a comma or
enter. Wildcards are permitted, and size specification
information is recognized for the destination file.

T(ransfer

Example: Assume that the user wishes to transfer the file
FARKLE.TEXT from the disk MYDISK to the
disk BACKUP.

Prompt: Transfer what file ?

User Response: MYDlSK:FARKLE.TEXT

Prompt: To where?

User Response: BACKUP:NAME.TEXT

The Filer then notifies the user:

MYDISK:FARKLE.TEXT •. >
BACKUP:NAME.TEXT

The Filer has made a copy of FARKLE and has
written it to the disk BACKUP giving it the name
NAME. TEXT.

It is often convenient to transfer a file without
changing the name, and without retyping the
filename. The Filer enables the user to do this by
allowing the character $ to replace the filename in
the destination file specification. In the above
example, had the user wished to save the file
FARKLE.TEXT on BACKUP under the name
FARKLE.TEXT, she could have typed:

MYDISK:FARKLE.TEXT,BACKUP:$

Warning: Avoid typing the second file
specification with the filename completely
omitted! For example, a response to the
Transfer prompt of the form:

MYDISK:FARKLE,TEXT,BACKUP:

generates the message:

Destroy BACKUP: ?
3-33

T(ransfer

... a Y answer causes the directory of BACKUP to be
wiped out! See "Recovering Lost Files" for a way to
recover.

Note: If the file you are T(ransfer'ring is two
blocks long or less, you will not receive the
warning prompt.

Files may be transferred to volumes that are not
block structured, such as CONSOLE: and
PRINTER:, by specifying the appropriate voume ID
(see Figure 5) in the destination file specification. A
filename on a non-block-structured device is
ignored. It is generally a good idea to make certain
beforehand that the destination volume is on-line.

Example: Prompt: Transfer what file?

3-34

User Response: FARKLE.TEXT

Prompt: To where?

User Response: PRINTER:

... causes FARKLE.TEXT to be written to the
printer.

The user may also transfer from non-block-structured
devices, provided they are input devices (the source
file must end with an eo! (ASCII ETX) or the Filer
will not know when to stop transferring!). Filenames
accompanying a non-block-structured device ID are
ignored.

The wildcard capability is allowed for T(ransfer. If
the source file specification contains a wildcard
character, and the destination file specification
involves a block-structured device, then the
destination file specification must also contain a

T(ransfer

wildcard character. The subset-specifying strings in
the source file specification will be replaced by the
analogous strings in the destination file specification
(henceforward known as replacement strings). Any
of the subset-specifying or replacement strings may
be empty. Remember that the Filer considers the file
specification = to specify every file on the volume.

~xample: Given the volume MYDISK containing the files
I.l.TEXT, I.1A.TEXT, and I.2.TEXT, and the
destination DISK2:

Prompt: Transfer what file?

User Response: I=TEXT,DISK2:0LDI=BACK

would cause the Filer to reply:

MYDISK:I.1.TEXT -->
DISK2:0LDI.1.BACK

MYDISK:1.1 A.TEXT .. >
DISK2:0LDl.l A.BACK

MYDISK:1.2.TEXT .. >
DISK2:0LDI.2.BACK

Using = as the source filename specification will
cause the Filer to attempt to transfer every file on the
disk. This will probably overflow the output buffer.
(There are easier ways to transfer whole disks. If you
wish to do this, please refer to the material in this
section on volume-to-volume transfers.)

Using = as the destination filename specification will
have the effect of replacing the subset-specifying
strings in the source specification with nothing. A
brief reminder: ? may be used in place of =. The only
difference is that? causes the user to be asked for
verification before the operation is performed.

3·35

T(ransfer
A file can be transferred from a volume to the sam€
volume by specifying the same volume ID for bod
source and destination file specifications. This is
frequently useful when the user wishes to relocate ~
file on the disk. Specifying the number of blocks
desired will cause the Filer to copy the file in the
first-fit area of at least that size. If no size
specification is given, the file is written in the larges:
unused area.

If the user specifies the same filename for both
source and destination on a same-disk transfer, ther
the Filer rewrites the file to the size-specified area,
and removes the older copy.

Example: Prompt: Transfer what file?

3-36

User Response:
#4:QUIZZES.TEXT,#4:QUIZZES.TEXT[20]

... causes the Filer to rewrite QUIZZES. TEXT in the:
first 2o-block area encountered (counting from
block 0) and to remove the previous version of
QUIZZES. TEXT.

It is also possible to do entire volume-to-volume
transfers. The file specifications for both source and
destination should consist of volume ID only.
Transferring a block-structured volume to anothet
block-structured volume causes the destination
volume to be wiped ut so that it becomes an exact
copy (including directory) of the source volume.

T(ransfer

Example: Assume that the user desires an extra copy of the
disk MYDISK: and is willing to sacrifice disk
EXTRA:

Prompt: Transfer what file?

User Response: MYDISK:,EXTRA:

Prompt: Destroy EXTRA: ?

Warning: If the user types Y, the directory of
EXTRA: is destroyed! An N response returns
the user to the outer level of the Filer, and a Y
causes EXTRA to become an exact copy of
MYDISK. Often this is desirable for backup
purposes, since it is relatively easy to copy a disk
this way, and the volume name can be changed
(see C(hng) if desired.

Although it is possible to transfer a volume (disk) to
another using a single disk drive, it is a tedious
process, since the transfer in main memory reads the
information in rather small chunks, and a great deal
of disk juggling is necessary for the complete
transfer to take place.

3-37

V(olumes

W(hat

Lists volumes currently on-line, with their
associated volume (device) numbers.

A typical display might be:

Volumes on-line:
1 CONSOLE:
2 SYSTERM:
4 # MYDISK:
5 # BIG:
6 PRINTER:
7 REM IN:
8 REMOUT:
Root vol is - MYDlSK:
Prefix is - MYDISK:

The system volume (Root vol) is the default volume
unless the prefix (see P(refix) has been changed.
Block-structured devices are indicated by #.

Identifies the name and state (saved or not) of the
workfile.

Example: Workfile is DOCl :STUFF

3-38

eX(amine

Attempts to physically recover suspected bad
blocks.

The user must specify the name of a volume that is
on-line.

Example: Prompt: Examine blocks on what volume?

Response: <volume ID> generates the

Prompt: Block-range?

The user should have just done a bad block scan, and
should enter the block number(s) returned by the
bad block scan. If any files are endangered, the
following prompt should appear:

Prompt: File(s) endangered:
<filename>
Fix them?

Response: Y will cause the Filer to examine the
blocks and return either of the messages:

Block <block-number> may be ok

... in which case the bad block has probably been
fixed, or

Block <block-number> is bad

... in which case the Filer will offer the user the
option of marking the block(s) BAD. Blocks which
are marked BAD will not be shifted during a K(runch,
and will be rendered unavailable and effectively
harmless (though they do reduce the amount of
room on your disk).

3-39

eX(amine

Z(ero

An N response to the fix them? prompt returns the
user to the outer level of the Filer.

Warning: A block which is fixed may contain
garbage. May be ok should be translated as is
probably physically ok. Fixing a block means
that the block is read, is written back out to the
block and is read again. If the two reads are the
same, the message is may be ok. In the event
that the reads are different, the block is declared
bad and may be marked as such if so desired.

Sets up an empty directory on the specified volume.
The previous directory is rendered irretrievable.

Example: Prompt: Zero dir of what vol?

3-40

Response: volume ID

Prompt: Destroy <volume name> ?

Response: A Y response generates ...

Prompt: Duplicate dir ?

Response: if a Y is typed, then a duplicate
directory will be maintained. This is advisable

Z(ero
because, in the event that the disk directory is
destroyed, a utility program called
COPYDUPDIR can use the duplicate directory to
restore the disk.

The following two prompts only appear if there was a
directory on the disk before the Z(ero command was
used:

Prompt: Are there 320 blks on the disk? (v/n)

Response: N generates ...

Prompt: # of blocks on the disk?
(this also appears if the disk was blank.)

Response: User types the number of blocks
desired.

Y generates ...

Prompt: New vol name?

Response: User types any valid volume name.

Prompt: <new volume name> correct?

Response: Y causes the Filer, if it succeeds in
writing the new directory on the disk, to respond
with the message:

<new volume name> zeroed

3-41

Recovering Lost Files

3-42

Sometimes a file is removed by accident, or its
directory entry is written over for one reason or
another. There are often ways to recover the
information that has apparently been lost. This
section outlines some of the ways to recover files
that have been lost, and also describes what may be
done if the user loses an entire directory.

When a file is removed, it is still on disk, but no
longer in the directory. The information that it
contained remains there until another file is written
over it (which could happen at any time, since the
Filer considers it usable space). If a file is accidentally
removed, the user must be careful not to perform
any actions (whether from the System or from a user
program) that write to the disk, since it is possible
they will overwrite the lost file.

The E(xtended list command in the Filer will display
both files in the directory and UNUSED blocks
that have once contained files. Usually, by looking at
the length of an unused portion and its location in
the directory, the user will be able to tell where the
lost file is; using the M(ake command to re-create a
file in the same location will recover the lost file.

To recover a lost file with M(ake, the size
specification should be equal to the size of the file
that was lost. If the user remembers this, or if the lost
file was adjacent on both sides to files that are still
listed in the directory, this presents no difficulty. If
the user does not remember where the file was or
how large it was, see below.

Since M(ake makes a file of the specified size in the
first available location, it may be necessary to M(ake
dummy files that fill up unused (and unwanted)
space which precedes the location of the file that was
lost. These dummy files may later be removed.

Example:

Filer: G(et, Slave, W(hat, N(ew, L(dir, R(em, C(hng, l(rans D(ate,? [C.ll]
WORK:
DATA 1 l-Jan-82 6 512 Datafile
< UNUSED> 1 7
SYNTAX 14 l-Jan-82 8 512 Datafile
R~M.CODE 4 l-Jan-82 22 512 Codefile
< UNUSED> 75 26
MYFILE.TEXT 20 l-Jan-82 101 512 Textfile
< UNUSED> 199 121
4/4 files<listed/in-dir>, 45 blocks used, 275 unused, 199 in largest

If MYFILE.CODE was 4 blocks long and used to be
located just after MYFILE.TEXT, it can be re
created by M(aking FILLER[75] in order to fill up
the 75-block unused space on the disk. Next, M(ake
MYFILE.CODE[4]. MYFILE.CODE will again be
located immediately following MYFILE. TEXT.
Finally, R(emove FILLER from the directory. The
resulting E(xtended directory listing is:

Filer: Glet, Slave, W(hat, N(ew, L(dir, R(em, C(hng, T(rans, D(ate,? [C.ll]
WORK:
DATA 1 l-Jan-82 6 512 Datafile
< UNUSED> 1 7
SYNTAX 14 l-Jan-82 8 512 Datafile
REM. CODE 4 l-Jan-82 22 512 Codefile
< UNUSED> 75 26
MYFILE.TEXl 20 l-Jan-82 101 512 Textfile
MYFILE.CODE 4 l-Jan-82 121 512 Codefile
< UNUSED> 195 125
5/5 files<listed/in-dir>, 49 blocks used, 271 unused, 195 in largest

If the user cannot determine or remember where the
file was located on the disk the RECOVER program
should be used. RECOVER will scan the directory
for entries whic1:.llook valid. If that search does not
yield the desired file, it will attempt to read the entire
disk looking for areas which resemble files, and ask
the user if it should attempt to re-create them.
RECOVER is described in detail in Chapter 7 of this
document.

3-43

3-44

If RECOVER fails to find desired information, th€
user's last resort is to use the PATCH utility to
manually search through the disk. Once data has
been found, a Pascal program may be written to rea(
data with the UNITREAD or BLOCKREAD
intrinsics, and write it to a newly created file.

If a directory entry seems erroneous or inexplicable
the PATCH utility may be used to examine the exac
contents of the directory. Similarly, if the user
desires to examine a particular block on a disk to
determine whether it is part of a lost file, the PATCH
utility may be used. A detailed description of
PATCH appears in Chapter 7. The following
paragraph outlines the use of PATCH in this
particular context; the reader should also refer to
Chapter 7.

In order to look at a directory using PATCH, the usel
should eX(ecute PATCH, then type an enter in
response to PATCH's G(et command. PATCH then
prompts for the device number of the disk in
question. Answer this prompt, then R(ead block 2:
this is the beginning of the directory. In order to see
the directory printed out in characters (as opposed
to hex, octal, or decimal digits, which in this context
are not very useful!), type M(ix V(iew. In order to
examine the remainder of the directory, use the
F(orward command. The directory spans blocks 2,3,
4, and 5. If a duplicate directory is present, it
occupies blocks 6 .. 10.

Examining other blocks of a disk is a routine use of
PATCH, described fully in Chapter 7.

Lost Directories

Losing a disk directory can prove even more
frustrating than losing a single file. If there were no
software· tools for doing so, many hours could be

spent trying to recreate a lost disk. This section
describes some of the things that can be done, and
should help ease the pain of re-creating a directory
that has been lost.

Recovering a disk is simplest when the disk contains
a duplicate directory. The directory spans blocks
2 .. 5 on a disk. If a duplicate directory is present, it
spans blocks 6 .. 9. Every time the directory is altered,
the duplicate directory is updated as well, thus
providing a convenient backup.

if a directory is lost on a disk that has a duplicate
directory, the COPYDUPDIR utility may be used to
simply move the duplicate directory to the location
of the standard disk directory. This should be all the
recovery that is necessary.

If after reading this you decide to put duplicate
directories on all of your disks, there are two
methods available. The first is to use the Z(ero
command when first creating a disk with the F(iler.
When the prompt Duplicate dir? appears, answer Y
for yes.

If a disk is already in use and contains only one
directory, the utility MARKDUPDIR will create a
duplicate directory. However, caution must be
exercised when using this utility: blocks 6 .. 9 of the
disk (the location of the duplicate directory) must be
unused, or file information will be lost.

The use of COPYDUPDIR and MARKDUPDIR is
fully described in Chapter 7.

In the unhappy event that a directory is lost, and no
duplicate directory was present, the user should use
the RECOVER utility already mentioned.
RECOVER is described in Chapter 7.

3-45

If the Filer E(xtended list or L(ist commands are
used, and specify an optional output file, and the
filename given for the output file is a disk volume
without a filename, the directory is destroyed.

Example: L(ist directory will prompt:

3-46

Dir listing of what vol?

Response: MYDISK:, MYDlSK: <enter>
Response: MYDISK:,: <enter>

... either of these responses cause the first few blocks
(approximately 6) of MYDISK: to be overwritten
with a listing of the directory of MYDISK:.

Response: MYDlSK:, DISK2:

... causes the directory ofDISK2: to be overwritten.

In the latter case, the disk recovery methods already
described must be used. In the first two cases,
recovery is not so difficult, even if there was no
duplicate directory, since MYDISK:'s directory has
been overwritten with what is essentially a copy of
itself.

First, get a copy of the directory listing of MY DISK:.
(If MYDISK: was your System disk, you will have to
boot another System.) Use the Filer to T(ransfer
MYDISK: to an output device: PRINTER:,
REMOUT:, or CONSOLE:.

Once you have a hard copy of the directory (if you
transferred to CONSOLE:, write it down!), use the
Filer to Z(ero MYDISK:. The Z(ero command will
not alter the contents of MYDISK:, only the
directory itself. Now use the M(ake command to
remake all of the files on the disk (as described
above).

CHAPTER 4. THE SCREEN
ORIENTED EDITOR

Contents

Introduction 4- 3
The Concept of a Window into

the File 4-3
The Cursor 4-4
The Promptline 4-4
Notation Conventions 4-5
The Editing Environment Options 4-5
Getting Started 4-5
Entering the Workfile and Getting

a Program 4-6
Moving the Cursor 4-7
Using Insert 4-8
Using Delete 4-9
Leaving the Editor and Updating

the Workfile 4-10
Using the Editor 4-11
Command Hierarchy 4-11
Repeat Factors 4-12
The Cursor 4-12
Direction 4-12
Moving the Cursor 4-13
Entering Strings in F(ind and

R(eplace 4-15
Screen Oriented Editor Commands 4-16

4-1

NOTES

4-2

Introduction
This introduction describes the general environment
of using the Screen Oriented Editor (called the
Editor throughout this chapter). "Getting Started"
is a tutorial for the novice, "Using the Editor"
describes general conventions of the Editor, and
"Screen Oriented Editor Commands" contains a
detailed description of each command, with
examples, in alphabetical order.

Ken Bowles' Beginner's Guide for the UCSD p-System
is another good introduction to the Screen Oriented
Editor, and we recommend that you use it.

The Concept of a Window into the File

The Screen Oriented Editor is specifically designed
for use with the Video Display Terminal (or Cathode
Ray Tube -- CRT). On entering any file, the Editor
displays the start of the file on the second line of the
screen. If the file is too long for the screen, only the
first lines of it are displayed. The CRT which
accompanies your IBM Personal Computer has 25
lines, and in the Editor one line is used for the
prompts; thus, the Editor typically displays only 24
lines of a file at anyone time. This is the concept of a
"window." The whole file is there and is accessible
through Editor commands, but only a portion of it
can be seen through the "window" of the screen.
When any Editor command takes the user to a
position in the file which is not already displayed, the
window is updated to show that new portion of the
file.

4-3

The Cursor

The cursor represents the user's exact position in the
file, and can be moved to any position. The window
shows the portion of the file that surrounds the
cursor; to see another portion of the file, move the
cursor. Action always takes place at the cursor. Some
of the commands permit additions, changes or
deletions of such length that the screen cannot hold
the whole portion of the text that has been changed.
In these cases, the portion of the screen where the
cursor finally stops is displayed. In no case is it
necessary for the user to operate on portions of the
text not seen on the screen, but in some cases it is
optional.

In this chapter, all text examples are shown in upper
case, and the cursor is denoted by an underline or a
lower case character.

The Promptiine

The Editor displays a promptline to remind the user
of the current command and the options available
for that command. Only the most commonly used
options appear on the promptline. The promptline
is always displayed at the top of the screen, and the
Editor's outer promptline looks like this:

>Edit: A(djust C(py D(let F(ind I(nsrt J(mp K(ol R(plc O(uit X(ch X(ap [E.7n)

4-4

Notation Conventions

The notation used in this chapter corresponds to the
notation used by the Editor to prompt the user. Any
input that is enclosed between and is requesting
that a particular key be used, not that the particular
word be typed out. For example, ent means that the
enter key should be typed at that point. Either lower
or upper case may be used when typing Editor
commands.

The Editing Environment Options

The Editor has two chief environments: one for
entering and modifying programs, and one for
entering and modifying English (or language of your
choice) text. The first mode includes automatic
indentation and search for isolated tokens, the
second mode includes automatic text filling. For
more detail on these two options, see the description
below of the E(nvironment option of the S(et
command (S(et).

Getting Started
The Editor is designed to handle any textfiles,
whether programs, data, or documents. This tutorial
section uses a sample program to illustrate the use of
the most basic Editor commands. You may find it
easier to follow if you have the p-System running in
front of you, and can duplicate the examples on
your own.

4-5

Entering the W orkfile and Getting a Program

4-6

When you enter the Editor, the text of the workfile
is read and displayed. If you have not already created
a workfile, then this prompt appears:

No workfile is present. File? (<ent> for no
file <esc> to exit)

There are three ways to answer this question:

1) With the name, for example STRING1 enter.
The file named STRING1.TEXT will now be
retrieved. The file STRING 1 could contain a
program, also called STRING1, as in Figure 4-
4-1. After typing the name, a copy of the text of
the first part of the file appears on the screen.

PROGRAM STRING1;
BEGIN

END.

WRITE{'TOO WISE');
WRITE{'YOU ARE');
WRITELN{',');
WRITELN{,TOO WISE');
WRITELN{'YOU BE')

Figure 4-1. Getting a program.

2) With an enter. This implies that a new file is to
be started. The only thing visible on the screen
after doing this is the Editor promptline. A new
workfile is opened and currently has nothing in
it. Type I to begin inserting a program or text.

3) With escape. This causes the Editor to quit and
return you to the System command level.
Useful when you didn't mean to type E.

Moving the Cursor

In order to edit, it is necessary to move the cursor.
On the keyboard are four keys with arrows: these
move the cursor. The up-arrow moves the cursor up
one line, the right-arrow moves the cursor right one
space, and so forth.

The cursor cannot be moved outside the text of the
program. For example, after the N in BEGIN in
Figure 4-2, push the right-arrow and the cursor will
move to the W in WRITE. Similarly, at the W in
"WRITE(TOO WISE);" use left-arrow to move to
after the N in BEGIN.

BEGIN
WRITE('TOO WISE');

BEGIN
wRITE('TOO WISE');

Figure 4-2. Cursor movement (left-arrow).

If it is necessary to change the "WRITE(TOO
WISE);" found in the third line to a "WRITE(TOO
SMART);", the cursor must first be moved to the
right spot.

For example: if the cursor is at the P in PROGRAM
STRIN G 1;, go down two lines by pressing the down
arrow twice. To mark the positions the cursor
occupies, labels a,b,c are used in Figure 4- 3. The a is
the initial position of the cursor; b is where the
cursor is after the first down-arrow; c, after the second
down-arrow.

aROGRAM STRINGl
bEGIN
c WRITE(TOOWISE);

Figure 4-3. Cursor movement (down-arrow) 4-7

Now, using the right-arrow, move the cursor until it
it sits on the W of WISE. Note that with the use of
down-arrow the cursor appears to be outside the text
(c). Actually it is at the W in WRITE, so do not be
surprised when on typing the first left-arrow the
cursor jumps to the R in WRITE. The point is that
when the cursor is displayed outside the text, it is
conceptually on the closest character to the right or
left.

Using Insert

4-8

The Editor promptline shows that you may I(nsrt
(insert) text by typing I. The cursor must be in the
correct position before typing I. Earlier, the cursor
was moved to the W in TOO WISE; now, on typing I,
an insertion will be made before the W. The rest of
the line from the point of insertion will be moved to
the right hand side of the screen. If the insertion is
lengthy, that part of the line will be moved down to
allow room on the screen. After typing I the
following promptline will appear on the screen:

>Insert: text { <hs> a char, a line)
[<etx> accepts, <esc> escapes]

If this promptline does not appear at the top of the
screen, then you may have accidentally typed some
character other than I.

If the cursor is at the W in WISE, and typing I causes
the insert promptline to appear, SMART may be
inserted by typing those five letters. They will appear
on the screen as they are typed.

There remains one more important step. The choice
at the end of the prompt line indicates that pushing
the etx key (Ctrl-C) accepts the insertion, while

pushing the esc key rejects the insertion and the
text remains as it was before typing 1.

BEGIN
WRITE(TOO SMART WISE);

Figure 4-4. Screen after typing SMART.

BEGIN
WRITE(TOO SMARTWISE);

Figure 4-5. Screen after Ctrl-C.

BEGIN
WRITE(TOO WISE);

Figure 4-6. Screen after esc.

It is possible, and indeed often necessary, to insert a
carriage return. This is done by typing enter while in
I(nsert. This causes the Editor to start a new line.
Notice that a carriage return starts a new line with
the same indentation as the previous one. This is
intended as a programming aid.

Using Delete

D(elete works like I(nsert. Having inserted SMART
into the STRING 1 program and having pushed etx
(Ctrl-C), WISE must be deleted. Move the cursor
to the first of the items to delete and type D to use
the D(elete command. The following promptline
should appear:

>Delete: < > <Moving commands> {<etx> to
delete, < esc> to abort}

4-9

Each time space is typed a letter disappears. In this
example typing 4 spaces will cause WISE to
disappear. The backspace character will undo the
deletion one character at a time. Now the same
choice must be made as in I(nsert. Type CTRL-C and
the proposed deletion is made or type esc and the
proposed deletion reappears and remains part of the
text.

It is possible to delete a carriage return. At the end of
the line, enter D(elete, and space until the cursor
moves to the beginning of the next line.

These commands alone are sufficient to edit any file
desired. The next section describes many more
commands in the Editor which make editing much
easier.

Leaving the Editor and Updating the Workfile

4-10

When all the changes and additions have been made,
exit the Editor and save a copy of the modified
program. This is done by typing Q which will cause
the prompt shown in Figure 4-7.

>Quit:
U(pdate the workfile and leave
E(xit without updating
R(eturn to the editor without updating
W(rite to a file name and return

Figure 4-7. Save a copy of the modified program.

The most elementary way to save a copy of the
modified file on disk is to type U for U(pdate
which causes the workfile to be saved as
SYSTEM. WRK. TEXT. With the workfile thus
saved, it is possible to use the R(un command,
provided of course the file is a program. It is also

possible to use the S(ave option in the Filer to save
the modified workfile under a different name before
using the Editor to modify or create another file.

"Q(uit" explains in greater detail the options
available at Q(uit.

Using the Editor

Command Hierarchy

Some commands in the Editor perform a function
directly, but most constitute a "second level" of
command. These are commands which display a
promptline of their own, with another set of
commands you may use. All of these subordinate
commands, even Q(uit, allow you to return to the
outer Editor level, either after performing some
special function, or without having affected
anything (possibly as an escape from accidentally
invoking the command).

Each description of a second level command includes
a sample of the secondary promptline. Some
commands, like S(et, even have third level prompts.
In all cases, you may move both down the command
tree and up it, returning to the "root" of the outer
Editor prompt. This root is itself just one branch of
the System command tree, as pictured in Chapter 1.

This is a possibly too-wordy description of a concept
which is very easy to visualize if you are sitting at a
terminal and using the Editor.

4-11

Repeat Factors

Most of the commands allow repeat factors. A repeat
factor is applied to a command by typing a number
immediately before the command's letter. The
command is then repeated for the number of times
indicated by the repeat factor. For example: typing
2 down-arrow will cause the down-arrow command
to be executed twice, moving the cursor down two
lines. Commands which allow a repeat factor assume
the repeat factor to be 1 if no number is typed before
the command. A / can be used as a repeat factor, and
means repeat the command until the end (or
beginning) of the textfile is encountered.

The Cursor

The cursor is displayed" on top of' a character, but it
is conceptually in front of that character. In other
words, the cursor is never "at" a character, but
always between two characters. This is a convention
which you must remember in order to use the I(nsert
and D(elete commands.

Direction

4-12

There is a global direction for all commands in the
Editor. It affects certain commands, and certain
methods of cursor movement. This direction is
indicated by the first character in the promptline:
either> or<, for forward and backward, respectively.
The direction can be changed by the characters
indicated in the next section below.

When the Editor is first entered, the global direction
is forward.

Moving the Cursor

The Cursor can be moved by a number of means.
One obvious method is to use the four arrows on the
key pad. Another method is to use traditional
typewriter characters, i. e., space bar, enter, tab, and
backspace. the former three are affected by the global
direction. The arrow keys and backspace are not.

Typing an = causes the cursor to jump to the
beginning of the last section of text which was
inserted, found, or replaced, and sets the equals
mark to the cursor's location. Equals works from
anywhere in the file and is not affected by the global
direction. An I(nsert, F(ind, or R(eplace causes the
position (within the workfile) of the beginning of the
insertion, find, or replacement to be saved. Typing =
causes the cursor to jump to that position, and saves
the cursor location. If a C(opy or a D(elete has been
made between the beginning of the file and that
absolute position, the cursor will not jump to the
start of the insertion, as that absolute position will
have been lost.

Two alphabetic commands are meant explicitly for
moving the cursor. J(ump will move it to the
beginning or end of the file, or to a marker which the
user has previously defined. P(age moves the
window forward (or backward) one screenful, and
positions the cursor at the beginning of the line.
Refer below to the full descriptions of these
commands.

A variety of other commands reposition the cursor
in addition to performing their specific actions.
Thus, A(djust moves the cursor along with the entire
line, C(opy and I(nsert move the cursor to the end of
their insertions, and F(ind and R(eplace leave the
cursor after their last successful hit. Full details of all
these actions are found below.

4-13

4-14

The following is a summary of cursor-moving
characters:

Not sensitive to the current global direction:

down-arrow
up-arrow
right-arrow
left-arrow
backspace

< or, or-

> or. or +

Moves cursor down
Moves cursor up
Moves cursor right
Moves cursor left
Moves cursor left

Changes the global direction
to backward

Changes the global direction
to forward

Sensitive to the global direction:

space

tab

enter

Moves cursor one space in the
global direction

Moves cursor to the next tab
stop; tab stops are usually

every 8 spaces, starting at the
left of the screen

Moves cursor to the beginning
of the next line

Repeat factors can be used with any of the above
commands.

For user convenience, the Editor maintains the
column position of the cursor when using up-arrow
and down-arrow. When the cursor is outside the text,
the Editor treats the cursor as though it were
immediately after the last character, or before the
first, in the line.

Entering Strings in F(ind and R(eplace

Both F(ind and R(eplace operate on delimited
strings. The Editor has two string storage variables.
One, called targ by the promptlines, is the target
string and is used by both commands, while the
other, called sub by R(eplace's promptline, is the
substitute string and is used only by R(eplace.

These strings are entered when you use F(ind or
R(eplace. Once entered, they are saved by the Editor
and may be re-used.

When you enter a string, it must be delimited by two
occurrences of the same character. For example,
!fun!, $work$, and "gismet" represent the strings
fun, work, and gismet, respectively. The Editor
allows any character which is not a letter, number or
space to be used as a delimiter.

There are two search modes -- Literal and Token.
These modes are stored by the S(et E(nvironment
command, and can be changed by it (see below), or
they may be temporarily overridden when you use
F(ind or R(eplace (refer to descriptions of these
commands).

In Literal mode, the Editor looks for any occurrences
of the target string. In Token mode the Editor looks
for isolated occurrences of the target string. The
Editor considers a string isolated if it is surrounded
by spaces or other punctuation. For example, in the
sentence Put the book in the bookcase., using the
target string book, Literal mode will find two
occurrences of book while Token mode will find
only one -- the word book, isolated by space space.

In addition, Token mode ignores spaces within
strings, so that both (",") and (" ,") are considered
to be the same string.

4-15

When using either F(ind or R(eplace, you may use
the strings you have previously entered by typing S.
For example, typing: RS/any-string/ causes the
R(eplace mode to replace the previous target string,
while typing: R/any-string/S causes the target string
to be replaced with the previous substitute string.

To see what the targ and sub strings are at any given
time, use the S(et E(nvironment command.

More specific information on this topic is given
below under the descriptions ofF(ind, R(eplace, and
S(et E(nvironment.

Screen Oriented Editor Commands
Each command (and its sub-commands, if any) is
fully described below. Commands are listed in
alphabetical order, and the descriptions, which
include examples, are meant to be used both for
reading and for reference.

A(djust

4-16

On the promptline: A(djst.

Repeat factors are allowed.

A(djust displays the following prompt:

>Adiust: LUuSI RUust C(enter
<ieft,right,up,down-arrows> {<etle> to leave}

A(djust

A(djust is used to adjust indentation. The right-arrow
and left-arrow commands move the line on which the
cursor is located. Each time a right-arrow is typed the
whole line moves one space to the right. Each
left-arrow moves it one space to the left.

To adjust a whole sequence of lines, adjust one line,
then use up-arrow (or down-arrow) commands and the
line above (below) will be automatically adjusted by
the same amount.

This feature can be used to align a whole set oflines.
If you adjust a line horizontally, then using up-arrow
(or down-arrow) now causes the line above (below) to
be adjusted by the sum of previous adjustments. In
other words, the horizontal offset accumulates until
A(djust is exited with etx (Ctrl-C).

The character L justifies the line to the left margin, R
justifies it to the right margin, and C centers the line
between the margins. up-arrows and down-arrows can
be used to duplicate the adjustment on preceding
(succeeding) lines, as above. Trailing blanks are not
affected.

The margins can be altered with the S(et
E(nvironment command. See "S(et E(nvironment".

The cursor is repositioned at the beginning of the
last line adjusted. etx (Ctrl-C) is the only way to exit
the A(djust command; esc will not work.

4-17

C(opy

4-18

On the promptline: C(py.

Repeat factors not allowed.

C(opy displays the following promptline:

>C(opy: B(uffer F(ile <esc>

To copy the text in the copy buffer, type B. The
Editor immediately copies the contents of the copy
buffer into the file, starting from the location of the
cursor when C was typed. Use of the C(opy command
does not change the contents of the copy buffer.

After the C(opy, the cursor is placed immediately
after the text which was copied.

The copy buffer is affected by the following
commands:

1) D(elete: On accepting a deletion, the buffer is
loaded with the deletion; on escaping from a
deletion, the buffer is loaded with what would
have been deleted.

2) I(nsert: On accepting an insertion, the buffer is
loaded with the insertion; on escaping from an
insertion, the copy buffer is empty.

3) Z(ap: If the Z(ap command is used, the buffer is
loaded with the deletion.

C(opy
The copy buffer is of limited size. Whenever the
deletion is greater than the buffer available, the
Editor will issue the following warning:

There is no room to copy the deletion.
Do you wish to delete anyway? (yin)

A Y or y is a yes answer; any other character escapes
D(elete.

To copy text from another file, type F and another
prompt appears:

>C(opy: FROM WHAT FILE [MARKER,MARKER]?

Any file may now be specified; .TEXT is assumed.
The markers (in brackets -- []) are optional, and used
for copying only part of a file.

To copy part of a file, markers must be preset in that
file to bracket the desired text. Two markers can be
used, or the file's beginning or end may be part of the
bracket.lf[,marker] or [marker,] is used in C(opy,
the file will be copied from the start of the file to the
marker, or from the marker to the end of the file.
Use ofC(opy does not change the contents of the file
being copied from.

4-19

D(elete

4-20

On the promptline: D(lete.

Repeat factors not allowed.

After entering D(elete, the following promptline
appears:

>Oelete: < > <Moving commands> «etx> to
delete, <esc> to abort}

The cursor must be positioned at the first character
to be deleted. On typing D and entering D(elete, the
Editor remembers where the cursor is. That position
is called the anchor. As the cursor is moved from the
anchor using the normal moving commands, text in
its path disappears. Within D(elete, all
cursor-moving commands are valid, including
repeat factors and changes of direction.

Backing up over portions of the deletion restores
those characters to the textfile.

To accept the deletion, type etx (Ctrl-C); to escape,
type esc.

In Figure 4-8:

1) Move the cursor to the E in END.

2) Type < (This changes the direction to
backward).

3) Type D to enter D(elete.

D(elete
4) Type enter enter. After the first enter the cursor

moves to before the W in WRITELN, and
WRITELN(TO BE.); disappears. After the
second enter the cursor is before the W in
WRITE, and that line has disappeared.

5) Now press etx (Ctrl-C). the program after
deletion appears as shown in Figure 4-9.

The two deleted lines have been stored in the copy
buffer and the cursor has returned to the anchor
position. Now C(opy may be used to copy the two
deleted lines at any place to which the cursor is
moved.

PROGRAM STRING2;
BEGIN

WRITE('TOO WISE');
WRITELN('TO BE.')

END.

Figure 4-8. Before deletion.

PROGRAM STRING2:
BEGIN
END.

Figure 4-9. After deletion.

4-21

F(ind

4-22

On the promptline: F(ind.

Repeat factors are allowed.

On entering Find, one of the promptlines in Figure
4-10 appears:

>Find[n): L(it <target> =>
>Find[n]: T(ok <target> =>

{ Which line appears depends
on the global mode (see Slet) }

Figure 4-10. F(ind promptline.

(Where n is the repeat factor given before typing F
for F(ind; this number is one if no repeat factor was
given.)

F(ind finds the n-th occurrence of the target string,
starting from the cursor's posi tion and moving in the
global direction (shown by the arrow at the beginning
of the promptline). The cursor is positioned
immediately after this occurrence. F(ind
distinguishes between upper and lower case letters
within the target string.

If you desire to search in other than the global mode
(either Token or Literal), type the appropriate
character (either L or T, respectively), before you
enter the target string.

F(ind

If the string is not present, the prompt:

ERROR: Pattern not in the file.
Please press <spacebar> to continue .

... appears.

Example 1: In the STRINGl program (shown in Figure4-11},
with the cursor at the first P in PROGRAM
STRINGl, type F. When the prompt appears type
'WRITE'. The single quote marks must be typed.
The promptline should now be:

>Find[l): L(it <target> =>'WRITE'

Immediately after typing the last quote mark, the
cursor jumps to the character following the E in
the first WRITE.

Example 2: In the STRINGl program with the cursor at the E
of END. type: <3F. This will find the third
occurrence of the pattern in the reverse direction.
When the promptline appears type/WRITELN/.
The promptline should read:

<Find[3]: L(it <target> =>/WRITELN/

The cursor will move to immediately after the N in
WRITELN.

4-23

F(ind

PROGRAM STRING1;
BEGIN

WRITE ('TO WISE ');
{cursor ends here in Ex. 1)

WRITE ('YOU ARE');
{cursor ends here in Ex. 3)

WRITELN(, ,');
(cursor ends here in Ex. 2)

WRITELN('TOO WISE ')j
WRITELN('YOU BE.')

END. {cursor starts here in Ex. 2}

Figure 4-11. Repeat F(ind.

Example 3: On the first find we type F/WRITE/. This locates
the first WRITE. Now typing FS will make the
promptline flash:

4-24

>Find[l]: L(it <target> =>S

... and the cursor will appear after the second
WRITE.

I(nsert

On the promptline: I(nsrt.

Repeat factors not allowed.

On entering I(nsert, the following promptline
appears:

>Insert: Text {<bs> a char, a line}
[<etD accepts, <esc> escapes]

Characters are entered into the textfile as they are
typed, starting from the position of the cursor. This
includes the character enter. Non-printing
characters are echoed with the non-printing
character symbol (usually a?; this can be changed by
using SETUP). To make corrections while still in
I(nsert, use backspace to remove one character at a
time, or Ctrl-BACKSPACE to remove an entire line.
If you try to backspace past the beginning of the
insertion, you will receive an error message.

The textfile that is actually created as you use I(nsert
is to some extent dependent on the modes you have
selected with the S(et E(nvironment commands. S(et
E(nvironment is the means for selecting the
Auto-indent and the Filling options.

Using Auto-indent

If Auto-indent is True, an enter causes the cursor to
start the next line with an indentation equal to the
indentation of the line above. If Auto-indent is False,
an enter returns the cursor to the first position of
the next line. If Filling is True, the first position is

4-25

I(nsert

4-26

the left margin (or the paragraph margin; see
immediately below), otherwise it is the left-hand side
of the screen.

Using Filling

If Filling is True, the Editor forces all insertions to be
between the right and left margins. It does this by
automatically inserting enter's between "words"
whenever the right margin would have been
exceeded, and by indenting to the left margin
whenever a new line is started. The Editor considers
anything between two spaces, or between a space
and a hyphen, to be a word.

A new paragraph is created when two enter's are
typed in succession. In other words, a paragraph is a
block of text delimited by blank lines (or command
lines (see S(et, or the beginning or end of the
textfile). The first line of a paragraph may be
indented differently than the remaining text (see
S(et E(nvironment.

If both Auto-indent and Filling are True,
Auto-indent controls the Left-margin while Filling
controls the Right-margin. The level of indentation
may be changed by using the space and backspace
keys immediately after an enter. Important: This can
only be done immediately after an enter.

I(nsert

Example 1: With Auto-indent true, the following sequence
creates the indentation shown in Figure 4-12.

ONE enter space space TWO
enter THREE enter backspace FOUR

ONE
TWO
THREE
FOUR

Figure 4-12. Auto-indent true.

Example 2: With Filling True (and Auto-indent False) the
following sequence creates the indentation shown
in Figure 4-13:

ONCE UPON A TIME THERE· WERE.

(Very narrow margins have been used for
simplicity.)

ONCE UPON A
TIME THERE·
WERE

Level of left margin

Figure 4-13. Filling true.

The cursor may be forced to the left margin of the
screen by typing control-Q (ASCII DCI) twice.

Filling also causes the Editor to adjust the margins
on the portion of the paragraph following the
insertion. Any line beginning with the Command

4-27

I(nsert

4-28

character (see S(et) is not affected by this adjustment,
and such a line is considered to terminate a
paragraph.

A filled paragraph may be re-adjusted by using the
M(argin command. See "M(argin". This may be very
useful if the user wishes to change the margins of a
document (which may be done with S(et
E(nvironment).

The global direction does not affect I(nsert, but is
indicated by the direction of the arrow on the
promptline.

If an insertion is made and accepted, that insertion is
available for use in C(opy. However, if esc is used,
there is no string available for C(opy.

](ump

On the promptline:](mp.

Repeat factors not allowed.

On entering](ump, the following promptline
appears:

>JUMP: B(eginning E(nd M(arker <esc>

Typing B (or E) moves the cursor to the beginning
(or the end) of the file. Typing M causes the Editor to
display the promptline:

Jump to what marker?

Markers are user-defined names for positions in the
textfile. See the M(arkers option of the S(et
command for more details.

4-29

K(olumn

4-30

On the promptline: K(01.

Repeat factors are not allowed.

K(olumn displays the following prompt:

>K(olumn: <vector keys> <elx>

All of a line to the right of the cursor may be moved
left or right by using left-arrow and right-arrow.
Using up-arrow or down-arrow applies the same
column adjustment to the line above (below). etx
(Ctrl-C) must be used to leave K(olumn; esc will
not work.

Any characters at the cursor when K(olumn is used
will be deleted by a left-arrow. The user should be
careful not to delete things unintentionally.

M(argin

Not on the promptline; type M to use M(argin
(which is also called M(unch).

Repeat factors not allowed.

M(argin realigns the paragraph where the cursor is
located to fit within the current margins. All of the
lines within the paragraph are justified to the left
margin, except the first line, which is justified to the
paragraph margin. All these global margins may be
set with the S(et E(nvironment command.

When you type M, the cursor may be located
anywhere within the paragraph.

Example: The paragraph in Figure 4-14 has been M(argin' ed
with the parameters on the left while the same
paragraph in Figure 4-15 has been M(argin' ed with
the parameters on the righ t.

Left-margin 0
Right-margin 40
Paragraph-margin 8

Left-margin 10
Right-margin 40
Paragraph-margin 0

This quarter, the equipment is
different, the course materials are
substantially different, and the
course organization is different from
previous quarters. You will be misled
if you depend upon a friend who took
the course previously to orient you to
the course.

Figure 4-14. M(argin with left parameters.

4-31

M(argin

4-32

This quarter,the equipment is
different, the course
materials are substantially
different, and the course
organization is different
from previous quarters. You
will be misled if you depend
upon a friend who took the
course previously to orient
you to the course.

Figure 4-15. M(argin with right parameters.

A paragraph is any block of text delimited by blank
lines or the beginning or end of the textfile. If the
textfile or the paragraph is especially long, the
screen may remain blank for several seconds while
M(argin completes its work. When M(argin is done,
the screen is redisplayed. M(argin never splits a
word; it breaks lines at spaces or at hyphens.

Command Characters

A line can be protected from being M(argin' ed by
using the Command Character. The Command
Character must be the first non-blank character in
the line. M(argin (like Auto-fill) treats lines
beginning with the Command Character as blank
lines. The Command Character itself is any character
so designated using the S(et E(nvironment
command.

Warning: If you use the M(argin command
when in a line beginning with the Command
character, M(argin will ignore the Command
Character and M(argin the whole line, along
with whatever is adjacent to it.

P(age

Not on the promptline; type P to use P(age.

Repeat factors are allowed.

Moves the cursor one screenful in the global
direction. The cursor remains on the same line on
the screen, but is moved to the start of the line.

Q(uit

On the promptline: Q(uit.

Repeat factors not allowed.

Q(uit displays the following prompt:

>Ouit:
U(pdate the workfile and leave
E(xil without updating
R(eturn to the editor without updating
W(rite to a file name and return

Figure 4-16. Q(uit options.

One of the four options must be selected by typing
D, E, R, or W. All other characters are ignored.

4-33

Q(uit

4-34

U(pdate:

Stores the file just modified as SYSTEM. WRK. TEXT,
then leaves the Editor. SYSTEM. WRK. TEXT is the
text portion of the workfile, and can be used as
described in Chapters 1, 2 and 3.

E(xit:

This leaves the Editor immediately. Any
modifications made since entering the Editor are not
recorded in the permanent workfile. All editing
during the session is irrecoverably lost, unless you
have already used the W(rite option of Q(uit to save
your work.

R(eturn:

Returns to the Editor without updating. The cursor
is returned to the exact place in the file it occupied
when "Q" was typed. This command is often used
after unintentionally typing "Q". It is also useful
when you wish to make a backup to your file in the
middle of a session with the Editor.

W(rite:

This option puts up a further prompt:

>Ouit:
Name of output file «ent> to return) .>

Figure 4-17. Woption.

Q(uit
The modified file may now be written to any
filename. If it is written to the name of an existing
file, the modified file will replace the old file. If the
file you are editing already existed before the edit
session, you may specify $, which will write the file to
the same name it had originally. Q(uit can be aborted
at this point by typing enter instead of a filename;
you will return to the Editor. If the file is written to
disk, the Editor displays the following:

>Ouit
Writing ,
Your file is 1978 bytes long.
Do you want to E(xit from or R(eturn

to the Editor?

Figure 4-18. E option.

Typing E exits from the Editor and returns to the
System command level, while typing R returns the
cursor to the exact position in the file as when Q was
typed. Q(uit W(rite to $ followed by R(eturn is a
good way to back up your textfiles while you are
working on them.

4-35

R(eplace

4-36

On the promptline: R(plc.

Repeat factors are allowed.

On entering R(eplace one of the two promptlines in
Figure 4-19 appears. In this example, a repeat factor
of four is assumed:

>Replace[4]: L(it V(ly <targ> <sub> =>
>Replace(4]: T(ok V('y <targ> <sub> =>

I Which one is used depends on the
global mode (see Slet) }

Figure 4-19. R option.

R(eplace finds the target string (torg) exactly as F(ind
would, and replaces it with the substitution string
(sub). R(eplace distinguishes between upper and
lower case letters in both the target string and the
substitution string.

The verify option (V(fy) permits examination of
each torg string found in the text (up to the limi t set
by the repeat factor) so the user can decide if it is to
be replaced. To use this option, type V before typing
the target string.

The following promptline appears whenever
R(eplace has found the torg pattern in the file and
verification has been requested:

>lIeplace: <esc> aborts, II replaces, ' ,
doesn't

R(eplace

Typing an R at this point causes the replacement to
take place, and the next target to be searched for.
Typing a space causes the next occurrence of the
target to be searched for. An esc at any point aborts
the R(eplace.

With V(erify, this operation continues until the
repeat factor is reached, or the target string can no
longer be found.

With R(eplace in general, if the target string cannot
be found, the prompt:

ERROR: Pattern not in the file. Please
press <spacebar> to continue .

... appears.

R(eplace places the cursor after the last string which
was replaced.

Example 1: Type RLlQX//YZ/; the promptline appears as:

>Replace[1j: L(it "(fy <targ> <sub>
=>UOXl/YZ/

This command will change: V AR
SIZEQX:INTEG ER; to V AR SIZEYZ:INTEG ER;.
Literal is necessary because the string QX is not a
token, but part of the token SIZEQX.

4-37

R(eplace

Example 2: In Token mode, R(eplace ignores spaces between
tokens when finding patterns to replace. For
example, given the lines on the left-hand side of
Figure 4-20, type "2RT/(,)/.LN." The promptline
appears as:

S(et

4-38

>Replace: L(it V(fy <targ> <sub>
=>/(',')/.LN.

Immediately after the last period was typed the
two lines on the left of Figure 4-20 would change
to those on the right-hand side.

WRITE(' ,');
WRITE(',');

Figure 4-20. R(eplace.

WRITELN;
WRITELN;

Not on the promptline; type S to use S(et.

Repeat factors not allowed.

On entering S(et, the following promptline appears:

>Set: M(arker E(nvironment <esc>

S(et M(arker

When editing, it is particularly convenient to be able
to jump directly to certain places in a long file by
using markers set in the desired places. Once a
marker is set, it is possible to jump to it using the
M(arker option inJ(ump.

Move the cursor to the desired marker position,
enter S(et, and type M for M(arker. The following
promptline appears:

Name of marker?

Markers may be given names of up to 8 characters
followed by an enter. Marker names are case-sensitive,
so that lower and upper cases of the same letter are
considered to be different characters. The marker
will be entered at the position of the cursor in the
text. If you use the name of a marker which already
exists, it will be repositioned.

Only ten markers are allowed in a file at anyone
time. If on typing "SM", the prompt:

Markel' ovflw.
Which one to replace.
0) namel
1) name2

9) n .. melD

Figure 4-21. S(et M(arker.

4-39

S(et M(arker

4-40

... appears, it is necessary to eliminate one marker in
order to replace it. Choose a number 0 through 9,
type that number, and that space will now be
available for use in setting the desired marker.

If a copy or deletion is made between the beginning
of the file and the posi don of the marker, a J(ump to
that marker may not subsequently return to the
desired place, as the marker's absolute position has
changed.

S(et E(nvironment

The editing environment can be set to a mode which
is most convenient for the editing being done -
whether on program text, document text, or data
before processing. When in S(et type E for
E(nvironment; the screen display is replaced with
the following prompt:

>Environment: {options} <spacebar> to leave
A(uto indent True
F(illing False
L(efl margin 1
R(ight margin 80
P(ara margin 6
C(ommand ch
S(et tabstops
T{oken def True
5415 bytes used, 26329 available.

Patterns:
<target> = 'one string', <subst> = 'another string'

Created March 1, 1982; Last updated March 1, 1982 (Revision 0).
Editor Version E.7n IV.02.

Figure 4-22. S(et E(nvironment Display

(The parameters in this menu are samples, and will vary
from file to file. The parameters shown for the letter
options (e.g., C(ommand ch) are the default values.)

By typing the appropriate letter, any or all of the options
may be changed.

4-41

E(nvironment Options

4-42

A(uto indent:

Auto-indent affects only insertions. Refer to the
section on I(nsert. Auto-indent is set to True (turned
on) by typing AT and to False (turned off) by typing
AF.

F(illing:

Filling affects I(nsert and M(argin. You should refer
to those sections. Filling is set to True (turned on) by
typing FT and to False by typing FF.

L(eft margin
R(ight margin
P(ara margin:

When Filling is True, the margins set in
E(nvironment are the margins which affect I(nsert
and M(argin. They also affect the Center and
justifying commands in A(djust. To set a margin,
type L, R, or P, followed by a positive integer and a
space. The positive integer typed replaces the
previous value. Margin values must be four digits or
less.

C(ommand ch:

The Command character affects the M(argin
command and the Filling option in I(nsert. Refer to
those sections. Change the Command character by
typing C followed by any character. For example,
typing C* will change the Command character to *.
This change will be reflected in the prompt. The
Command Character was principally designed as a

E(nvironment Options
convenience for users of text formatting programs
whose commands are indica ted by a special character
at the beginning of a line.

S(et tabs tops:

This command allows the posi tions of tab stops to be
alerted. Tab stops default to every eight columns.
When you enter this option, an 80 column dashed
line will appear. Wherever a current tab stop exists, a
letter (R, L, or D) will be displayed instead of a dash.
By using the right or left arrow keys you may
position the cursor at any position along the dashed
line. (Alternatively, the C(ol command can be used
to position the cursor at a specified column.) At any
position, a tab stop may be created by typing R, L, or
D (there is no difference between the different kinds
of tab stops in the current release). A tab stop may be
removed by positioning the cursor over it and typing
N(o. ETX (Ctrl-C) is used to return to the
E(nvironment level.

T(oken def:

This option affects F(ind and R(eplace. Token is set
to True by typing "TT" and to False by typing "TF".
If Token is True, Token is the default and if Token is
False, Literal is the default. See "Entering Strings in
F(ind and R(eplace" for more information.

4-43

V(erify

Not on the promptline; type V for V(erify.

Repeat factors not allowed.

The current window is redisplayed.

eX(change

4-44

On the promptline; X(ch.

Repeat factors not allowed.

On entering eX(change the following promptline
appears:

>eXchange: TEXT {<vector keys>} [<etx> <esc>
CURRENT line]

Starting from the cursor position, eX(change
replaces characters in the file with characters typed.

For example, in the file in Figure 4-23, with the
cursor at the W in WISE, typing XSM replaces the W
with the S and then the I with the M, leaving the line
as shown in Figure 4-24, with the cursor before the
second S.

eX(change

WRITE('TOO wiSE 'I;

Figure 4-23. Before exchange.

WRITE('TOO SM.!E 'I;

Figure 4-24. After exchange.

etx (CTRL-C) accepts the actions of eX(change,
while esc leaves the command with no changes
recorded in the last line altered.

eX(change ignores the global direction -- exchanges
are always forward.

The arrow keys, backspace, enter, and tab may be
used to move the cursor about the screen.
eX(changes move forward from wherever the cursor
is moved to.

While in eX(change, the terminal's INS key inserts
one space at the cursor's location, and DEL deletes a
single character at the cursor's location.

4-45

Z(ap

4-46

On the promptline: Z(ap.

Repeat factors not allowed.

Deletes all text between the start of what was
previously found, replaced, or inserted and the
current position of the cursor. This command is
designed to be used immediately after a F(ind,
R(eplace or I(nsert. If more than 80 characters are
being zapped, the Editor asks for verification.

The position of the cursor after the previous F(ind,
R(eplace, or I(nsert is called the" equals mark".
Typing = will place the cursor there.

Whatever was deleted by using the Z(ap command is
available for use with C(opy, unless there is not
enough room in the copy buffer. If this is the case,
the Editor will ask if you want to Z(ap anyway.

After certain commands which might scramble the
buffer, Z(ap is not allowed. These commands are:
A(djust, D(elete, K(olumn, and M(argin.

CHAPTER 5. SEGMENTS, UiNITS,
LIBRARIES AND
LINKING

Contents

Overview 5-5
Main Memory Management 5-5
Separate Compilation 5-6
General Tactics 5-8
Segments 5-11
Units. 5-13
The Linker 5-18
Using the Linker 5-21
The Utility LIBRARY 5-23
Using LIBRARY 5-26
The Standard SYSTEM. LIBRARY

Routines 5-26
The Screen Control Unit. 5-27
PROCEDURE SC_Init 5-27
PROCEDURE SC_Clr_CucLine 5-27
PROCEDURE SC_CIcLine

(Y: integer) 5-27
PROCEDURE SC_ClcScreen 5-27
PROCEDURE SC_Erase_to_EOL

(X, Line: integer) 5-28
PROCEDURE SC_ErasJ:OS

(X, Line: integer) 5-28
PROCEDURE SC_Left 5-28
PROCEDURE SC_Right 5-28
PROCEDURE SC_Up 5-28
PROCEDURE SCJ)own 5-28
PROCEDURE SC_Home 5-28
PROCEDURESC_GOTO_XY

(X, Line: integer) 5-28
FUNCTION SCYind_X: integer 5-29
FUNCTION SC_Find_Y: integer 5-29

5-1

5-2

PROCEDURE SC_GetC_CH (VAR CH:
char; Return_on_Match:
SC_ChSet) 5-29

FUNCTION Space_Wait
(Flush: Boolean): Boolean 5-29

FUNCTION SC_Prompt
(Line: SC_Long_String; X_Cursor,
Y_Cursor, X_Pos, Where: integer;
Return_on_Match: SC_ChSet;
No_Char_Back: Boolean; Break_Char:
char): char 5-30

FUNCTION SC_Check_Char
(VAR Buf: SC_Window; V AR BuCIndex,
Bytes_Left: integer): Boolean 5-30

FUNCTION SC_Map_CRT_Command
(VAR K_CH: char):
SC_Key_Command 5-31

FUNCTION SC_Scrn_Has
(What: SC_Scrn_Command):
Boolean 5-31

FUNCTION SC_Has_Key
(What: SC_Key_Command):
Boolean 5-31

PROCEDURE SC_Use_Info (Do_What:
SC_Choice; V AR T_Info:
SC_Info_Type) 5-32

PROCEDURE SC_Use_Port (Do_What:
SC_Choice; V AR T_Port:
SC_TX_Port) 5-32

Unit COMMANDIO 5-33
Unit IBMSPECIAL 5-33
Function Button. .. 5-35
Procedure Paddle. 5-35
Procedure Note 5-35
Function Lightpen 5-36
Procedure Setkeys (tableptr: key_ptr) ... 5-36
Procedure Videomode

(mode: threebits) 5-37
Procedure Setfont (table: font_ptr) 5- 38
Procedure Bkgnd_Color

(color: fourbits) 5-38

Procedure Palette (color: onebit) 5- 39
Procedure Settime

(hour, minute: integer) 5-39
Procedure Gettime 5- 39
The Turtle Graphics Unit 5-40
Procedure Move (distance: real) 5-42
Procedure Moveto (x,y: real) 5-42
Procedure Turn (rotation: real) 5-42
Procedure Turnto (heading: real) 5-43
Proedure Pen_color (shade: integer) ... 5-43
Procedure Pe~mode

(mode: integer) 5-44
Function Turtle_x: real 5-45
Function Turtle_y: real 5-45
Function Turtle_angle: real 5-45
Procedure Activate_Turtle 5-45
Procedure Fillscreen 5-46
Procedure Background 5-47
Procedure Align_cursor (x,y: real) 5-47
Procedure Display_scale 5-48
Function AspectJatio: real 5-49
Function Create_figure 5-50
Procedure DeleteJigure 5-51
Procedure Getfigure 5-51
Procedure Putfigure 5-52
Procedure Viewport 5-53
Pixels 5-53
Function ReadJ>ixel 5-54
Procedure Set_pixel 5-54
Function ReadJigureJile 5-55
Function WriteJigureJile 5-55
Function LoadJigure 5-55
Function StoreJigure 5-55

5-3

NOTES

5-4

Overview
Segments, units, and linking are three major facilities
which help the user manage program files and the
use of main memory. These facilities permit the
developmen t of very large programs in a
microsystem environment, and in fact have been
used extensively in the development of the System
itself.

The techniques offered by the System fall broadly
into two categories: run-time main memory
management, and separate compilation.

Main Memory Management

Not all of a program need be in main memory at
runtime. Most programs can be described in terms of
a "working-set" of code which is required over a
given period of time. For most (if not all) of a
program's execution time, the working-set is a
subset of the entire program -- sometimes a very
small one. Portions of a program which are not part
of the working-set can reside on disk, thus freeing
main memory for other uses.

When the p-System executes a codefile, it reads code
into main memory and runs it. When the code has
finished running, or the space it occupies is needed
for some action of higher priority, the space it
occupies may be overwritten with new code or new
data. Code is "swapped" into main memory a
segment at a time.

In its simplest form, a code segment includes a main
program and all of its routines. A routine may
occupy a segment of its own: this is accomplished by
declaring it a SEGMENT routine. SEGMENT
routines may be swapped independently of the main
program; declaring a routine to be a SEGMENT is a
useful means of managing the use of main memory.

5-5

Routines which are not part of a program's main
working-set are prime candidates for occupying
their own segment. Such routines include
initialization and wrap-up procedures, and routines
that are used only once or only rarely while a
program is executing.

Reading a procedure in from disk before it is
executed does take time, and so the selection of
which procedures to make disk-resident should be
done judiciously.

The other high-level languages in the p-System use
their own syntax for creating separate segments:
refer to each particular language's manual for
details.

Separate Compilation

5-6

Separate compilation, also referred to as "external
compilation", is a technique whereby portions of a
program are compiled separately from each other,
and subsequently executed as a co-ordinated whole.

Many programs are too large to compile within the
memory confines of a particular microcomputer.
Such programs might comfortably run on the same
machine, especially if they are segmented as
described above. The Operating System is a case in
point. Compiling small pieces of a program
separately is the way to overcome such a memory
problem.

Separate compilation also has the advantage of
allowing only small portions of a program to be
changed without affecting the rest of the code. This
saves much time and is less error prone. Libraries of
correct routines may be built up and used in the
development of other programs. This capability is
important if a large program is being developed, and
invaluable if the project involves several
programmers.

These considerations also apply to assembly
language programs. Large assembly programs (such
as the 8086/88/87 Interpreter) can often be more
effectively maintained in several separate pieces.
When all these pieces have been assembled, a "link
editor" (the System's Linker) stitches them together
by installing the linkages that allow the various
pieces to reference each other and function as a
unified whole.

It may also be desirable to reference an assembly
language routine from a higher-level language host
program (for example, Pascal or FORTRAN). This
may be necessary for performance reasons, or to
provide low-level machine-dependent or
device-dependent handling.

The p-System allows assembly language routines to
be linked in with other assembly routines, or into
higher-level hosts (programs or units). Refer to the
Assembler Reference for the UCSD p-System.

In UCSD Pascal, separate compilation is achieved by
the UNIT construct. A UNIT is a group of routines
and data structures. The contents of a UNIT usually
relate to some common application, such as screen
control or datafile handling. A program or another
UNIT (called a "client module" or "host") may use
the routines and data structures of a UNIT by simply
naming it in a USES declaration. A unit consists of
two main parts: the INTERFACE part, which can
declare constants, types, variables, procedures,
processes, and functions that are public (available to
any client module), and the IMPLEMENTATION
part, in which private declarations can be made.
These private declarations are available only within
the UNIT, and not to client modules. Units can
either be embedded in a host, or compiled
separately.

The code for a UNIT that is used by a program may
reside in *SYSTEM.LIBRARY, or in another

5-7

codefile. If it is in another codefile, the programmer
may inform the Compiler of this by using the $U
compile-time option (see the PASCAL Reference
for the UCSD p-System, and inform the Operating
System by including the codefile's name in a "library
text file." The default library text file is
*USERLIB.TEXT, but this default can be changed
by an execution option. See "Units" and Chapter 2.

For the use of units in FORTRAN, refer to the
FORTRAN-77 Referencefor the UCSD p-System.

General Tactics

5-8

This section offers some advice on the use of
SEGMENTs and UNITs. It presents a scenario for
the design of a large program, with some strategies
that might be used. UNITs and SEGMENTs are
useful means of decomposing large programs into
independent tasks.

On microprocessor systems, the main bottlenecks in
the development oflarge programs are: (1) alarge
number of variable declarations that consume space
while a program is compiling, and (2) large pieces of
code using up memory space while the program is
executing. UNITs address the first problem by
allowing separate compilation, and minimizing the
number of variables that are needed to communicate
between separate tasks. SEGMENTs address the
second problem by allowing only code that is in use
to be present in main memory (while unused code is
disk-resident) at any given time.

A program can be written with runtime memory
management and separate compilations already
planned, or it can be written as a whole and then
tuned to fit a particular system. The latter approach
is feasible when one is unsure about the necessity of
using SEGMENTs, or is quite sure that they will be

used only rarely. The former approach is preferred,
and is usually less painful to accomplish.

A typical scenario for the construction of a relatively
large application program might be as follows:

I} Design the program (user and machine
interfaces).

2} Determine needed additions to the library of
utilities -- both general and applied tools.

3} Write and debug utilities, and add to libraries.

4} Code and debug the program.

S} Tune the program for better performance.

During the deSign, one should try as much as
possible to use existing procedures, so as to decrease
coding time and increase reliability. This strategy
can be assisted by the use of UNITs.

To determine segmentation, the programmer
should consider the expected execution sequence,
and attempt to group routines inside SEGMENTs so
that the SEGMENT routines are called as
infrequently as possible.

It is also important that SEGMENT routines be
independent. They should not call routines in
different segments (including non-SEGMENT
routines); if they do, then both segments must be in
memory at the same time: this eliminates the
advantage of segmentation.

While designing the program, one should also
consider the logical (functional) grouping of
procedures into UNITs. As well as making the
compilation of a large program possible, this can aid
the program's conceptual design (and therefore the
testing of it). UNITs may contain SEGMENT
routines, so the two techniques may be combined.

5-9

5-10

The programmer should be aware that a UNIT
occupies a segment of its own (except possibly for
any SEGMENT routines it may contain). The
UNIT's segment, like other code segments, remains
disk-resident except when its routines are being
called.

Steps (2) and (3) are aimed at capturing some of the
new routines in a form which will allow them to be
used in future programs. At this point the design
should be reviewed (and perhaps modified) with the
objective of identifying those routines which might
be useful in the future. Needed routines might be
made somewhat more general, and put into libraries.

It is usually a good practice to program and test such
utilities before moving on to programming the
remainder of the program. Doing so tends to ensure
that more generally useful procedures are added to
the library, since it helps one avoid the tendency to
tailor them to the particular program being
developed.

The INTERFACE part of a UNIT should be
completed before the IMPLEMENTATION part,
especially if several programmers are working on the
same project.

Tuning a program usually means performance
tuning. Since SEGMENTs offer greater memory
space at reduced speed, it may be that performance is
improved by turning routines into SEGMENT
routines, or by turning SEGMENT routines back
into normal routines. Either route is feasible. Some
attention must be paid to the rules for declaring
SEGMENTs: see the next section of this chapter.

"Segments" and "Units" of this chapter describe the
syntax of using UNITs and SEGMENT routines in
Pascal. For information on other languages, refer to
the appropriate manual.

Segments

The declaration of a segment routine is no different
from other routine declarations (Le., procedures,
functions, and processes), except that it is preceded
by the UCSD reserved word SEGMENT.

Example: SEGMENT PROCEDURE INITIALIZE;
BEGIN

{ Pascal code here}
END;

Declaring a routine as a segment routine does not
change the meaning of the Pascal program, but
affects the time and space requirements of the
program's execution. The segment routine and all of
its nested routines (except a nested routine that is
itself a segment routine) are grouped together in
what is called a "code segment".

A program and its routines are all compiled as a
single code segment, unless some routines have been
declared as SEGMENTs. Since a code segment is
disk-resident until it is used, and since the space it
occupies in memory may be overwritten when it
terminates, declaring once-used or little-used
routines as SEGMENTs may improve a program's
utilization of main memory.

Up to 255 segments may be contained within one
program. The "bodies" (that is, the BEGIN-END
blocks) of all segment routines must be declared
before the bodies of all non-segment routines within
a given code s.egment. This applies to both segment
routines and main programs. If a segment routine
calls a non-segment routine, the non-segment
routine must be forward-declared, because its body
cannot precede the body of any segment routine
(including its caller).

No SEGMENT routines may be declared in the
INTERFACE section of a UNIT; they may be
declared in the IMPLEMENTATION section.

5-11

Example:

5-12

No EXTERNAL routine may be a SEGMENT
routine.

Outside of these restrictions, any routine may be
declared a SEGMENT.

PROGRAM GOLE;
SEGMENT PROCEDURE STRENGAL;

BEGIN

END;

PROCEDURE MYNDAL (FLAK: INTEGER);
FORWARD;

{ MYNDAL is not a SEGMENT routine, and
therefore must be declared FORWARD}

SEGMENT FUNCTION MOAD
(PART, WHOLE: REAL)
: INTEGER;

BEGIN

END;

PROCEDURE MYNDAL;
PROCEDURE EARLY (I: UNREAL);
SEGMENT PROCEDURE LATE

(J: IMAGINARy);
BEGIN
{note that this may be a segment:
it precedes all code bodies within
the enclosing code segment
(i.e., GOLE) }

END {LATE};
BEGIN

END {EARLY};
BEGIN

END {MYNDAL};
BEGIN

END {GOLE}.

Units

A UNIT is a group of interdependent procedures,
functions, processes, and associated data structures,
which are usually related to a common area of
application. Whenever a UNIT is needed within a
program, the program declares it in a USES
statement. A UNIT consists of two main parts: an
INTERFACE part, which declares constants, types,
variables, procedures, functions, and processes that
are public and can be used by the host (program or
other UNIT), and an IMPLEMENTATION part,
which declares labels, constants, types, variables,
procedures, functions, and processes that are
private, not available to the host, and used only
within the UNIT. The INTERFACE part declares
how the program will communicate with the user of
the UNIT, while the IMPLEMENTATION part
defines how the UNIT will accomplish its task.

The syntax of a UNIT may be sketched as follows
(full syntax railroad diagrams may be found in the
PASCAL Reference for the UCSD p-System).

UNIT <unit identifier>;

INTERFACE
USES <unit identifier list>;
<constant definitions>;
<type definitions>;
<variable declarations>;
<routine headings>;

IMPLEMENTATION
USES <unit identifier list>;
<label declarations>;
<constant definitions>;
<type definitions>;
<variable declarations>;
<routine declarations>;

[BEGIN

END

<initialization statements>
***. ,
<termination statements>]

5-13

The INTERFACE part may only contain routine
headings -- no bodies. The bodies of routines
declared in the INTERFACE part are fully defined in
the IMPLEMENTATION part, much as FORWARD
procedures are fully defined apart from their original
declaration.

An INTERFACE part is terminated by the UCSD
reserved word IMPLEMENTATION.

An INTERFACE part may not contain $Include
files (see the PASCAL Reference/or the UCSD p-System
for information on Include files). An INTERFACE
part may be contained within an $Include file,
provided that all of the INTERFACE is in the
$Include file; i.e., an INTERFACE part may not
cross an $Include file boundary. Note that
IMPLEMENTATION terminates an INTERFACE
part, so that if an INTERFACE part is contained in a
$Include file, the $ Include file must contain both the
reserved words INTERFACE and
IMPLEMENTATION.

Example: UNIT GOLE1;
INTERFACE

UNIT GOLE2;
{$I INTER_PART}
IMPLEMENTATION

5-14

($1 INTER DECS}
IMPLEMENTATION

END;
END;

... are not legal forms of a UNIT, while the following
outline is:

UNIT GOLE3;
{$I WHOLE UNIT}

The initialization statements and termination statements
are optional sections of code. Initialization
statements, if present, are executed before any of
the code in a host that USES the UNIT is executed,

and termination statements, if present, are executed
after the host's code has terminated.

Initialization statements are separated from
termination statements by the line ***;. Either the
section of initialization statements, or the section of
termination statements, or both, may be empty.

Example: The following are all legal code bodies of a UNIT:

END {there is no initialization or
termination code};

BEGIN
{this is initialization code}
INIT_ARRAYS;
FlAG := FALSE;
COUNT:= 23;
***. ,
{this is termination code}
SEMINIT (LIGHT, 0);

END {UNIT};

BEGIN
***. ,
{this is all termination code}
INIT_ARRAYS;
FlAG := FALSE;
COUNT:= 23;
SEMINIT (LIGHT, 0)

END {UNIT};

BEGIN
{this is all initialization code}
INIT_ARRAYS;
FlAG := FALSE;
COUNT:= 23;
SEMINIT (LIGHT, 0)

END (UNIT);

5-15

5-16

The statement part of a UNIT should not contain
GOTO statements which branch around the ***;
separator: the effect of executing such statements is
not fully predictable.

A UNIT's statement part may contain statements of
the form: EXIT(PROGRAM) (EXIT(unitname) is not
allowed). An EXIT(PROGRAM) in the initialization
code has the effect of skipping the remainder of the
initialization code (if any) and the host's code:
execution proceeds with the UNIT's termination
section. An EXIT(PROGRAM) in the termination
code skips the remainder of the termination code
(there may be termination code from other hosts
still waiting to execute -- the EXIT does not abort
the execution of these other termination sections).

To use one or more UNITs, a program must name
them in a USES declaration immediately following
the program heading (before the block). Upon
encountering a USES declaration, the compiler
references the INTERFACE part of the UNIT as
though it were part of the host text itself. Therefore
all identifiers declared in the INTERFACE part are
globaL Name conflicts may arise if the host defines
an identifier already defined in the UNIT.

A UNIT may also USE another UNIT. In this case,
the USES declaration may appear at the beginning of
either the INTERFACE part or the
IMPLEMENTATION part. Since USES may be
nested, if they appear in the INTERFACE part, the
ordering of a USES declaration may be important: if
UNIT_A USES UNIT_B, then the host must specify
that it USES UNIT_B before it USES UNIT_A.

Routines declared in the INTERFACE part must not
be SEGMENT routines, but SEGMENT routines
can be declared in the IMPLEMENTATION part.
(Declaring SEGMENTs within UNITs is subject to
the same ordering as within a main program; see
"Segments" in this chapter).

For purposes of listing a program, the Compiler
treats an INTERFACE section as an include leveL
Thus, $Include file nesting is restricted within the
scope of a USES declaration.

The UCSD p-System will compile a Pascal program,
a single UNIT, or a string of UNITs (separated by
semicolons). A Pascal program may define a UNIT
in-line. An in-line UNIT definition must appear
between the program heading and the block. This has
the advantage of simplicity, but if changes are made
to either the program or the UNIT, both must be
recompiled.

UNITs need not be explicitly linked together. At
compile-time a USEd UNIT's INTERFACE part
must be referenced by the Compiler. If the UNIT's
source is in the host program's source, or if the
UNIT's code is in *SYSTEM.LIBRARY, nothing
more need be specified. If the UNIT's code resides in
a different file (a "user library"), the $U Compiler
directive must be used to specify which file (see the
PASCAL Reference for the UCSD p-System).

At runtime, the code (all code, in fact) must be in
either the user program, *SYSTEM.LIBRARY, a
user library, or the Operating System. If a unit is in a
user library, the name of the library file must appear
in a "library text file." To find a UNIT's code, the
System searches first the files named in a library text
file (in order), and then *SYSTEM.LIBRARY. If no
library text file is present, the System searches
*SYSTEM.LIBRARY alone. The default library text
file is called *USERLIB. TEXT; this default may be
changed by an execution option (see Chapter 2).

Example: The following might be the contents of a library
text file:

FUN:ADVENT.LlB
curve
tg: graphics
PLAY

5-17

· .. for each UNIT encountered in the host, the
System searches first ADVENT. LIB (which must
reside on the volume FUN:), then CURVE.CODE
(which must reside on the default volume), and so
forth. Failing to find a UNIT in these four files, the
System searches *SYSTEM.LIBRARY.

As indicated in the example, specifying the .CODE
suffix to a filename is optional in the library text
file's list.

The name *SYSTEM.LIBRARY may be included ina
library text file. If this is the case, it is searched in
order, as it appears.

Changes in a host program require only that the user
recompile the program. Changes in the
IMPLEMENTATION part of a UNIT only require
the user to recompile the UNIT. Changes in the
INTERFACE part of a UNIT require that the user
recompile both the UNIT and all hosts that USE that
UNIT.

The use of UNIT-style mechanisms in the p-System' s
other high-level languages is discussed in the
documentation for each particular language.
External linkages involving assembled routines are
discussed in the Assembler Reference for the UCSD
p-System and in the next section.

The Linker

5-18

The Linker is a System program (accessed by the
L(irik command at the System level) which allows

. EXTERNAL code to be linked into a Pascal or
FORTRAN program. EXTERNAL routines are
routines (procedures, functions, or processes) that
are written in an assembly language and conform to
the p-System's calling and parameter-passing
protocols. They are declared EXTERNAL in the

host program, and must be linked before the
program is run. The Linker may also be used to link
together separately assembled pieces of a single
assembly program.

The Linker is a program of the sort called a "link
editor". It stitches code together by installing the
internal linkages that allow various pieces to
function as a unified whole.

When a program which must be linked is R(un, the
Linker will automatically search * SYSTEM. LIBRARY
for the necessary external routines. In all other cases
(i.e., the user used eX(ecute instead of R(un or the
library is not SYSTEM. LIBRARY) , the user is
responsible for "manually" linking the code before
executing it.

When the Linker is called automatically and cannot
find the needed code in * SYSTEM. LIBRARY, it will
respond with an error message:

Proc,
Func,
Global,

or Public <identifier> undefined

To link code "by hand", call the Linker by typing L at
the command level.

U sing the Linker

The Linker prompts for several filenames, and as it
reads and links code together, displays the names of
what it is linking. The prompts are, in order:

Host file?

5-19

5-20

... the hostfile is the file into which the external
routines are to be linked. Filename conventions
apply here (.CODE is automatically appended to all
filenames except *enter or any filename that ends in
a .). The response *enter or simply enter causes the
Linker to open *SYSTEM.WRK.TEXT. The Linker
then asks for the names of library files in which
external routines are to be found:

Ub file?

... any number of library files may be specified. The
prompt will keep reappearing until enter is typed.
Responding *enter opens * SYSTEM. LIBRARY. The
success of opening each library file is reported.

Example (underlined portions are user input):

Ub file? *<enter>
Opening *SYSTEM.LlBRARY
Ub file? FIX.8<enter>
No file FIX.8.CODE
Type <sp>(continue), <esc>(terminate)
Ub file? FIX.9<enter>
Opening FIX.9.CODE
bad seg name
Type <sp>(continue), <esc>(terminate)
Lib file?

... and so forth.

When the names of all library files have been
entered, the Linker reads all the necessary routines
from the designated codefiles. It then asks for a
destination for the linked code output:

Output file?

... this is a codefile name (often the same as the hoS1
file). The .CODE suffix must be included. If the usel
types just enter, output will be to the workfile
(*SYSTEM.WRK.CODE).

After this last prompt, the Linker commences actual
linking. During linking, the Linker displays the
names of all routines being linked. A missing or
undefined routine causes the Linker to abort with
the identifier undefined message described above.

Iflinking is successful, the user has a unified codefile
that may be eX(ecuted.

The codefile produced by the Linker contains
routines in the order in which they were given as
contained in the library files. This is important to
note if the program is an all-assembly file. The
codefile contains first routines from the host file,
and then library file routines, all in their original
order.

The next section contains more information on
libraries.

The Utility LIBRARY
LIBRARY. CODE is a utility program that allows the
user to group separate compilations (UNITs or
programs) and separately assembled routines into a
single file. A library is a concatenation of such
compilations and routines. Libraries are a useful
means of grouping the separate pieces needed by a
program or group of programs. Manipulating a
single library file takes less time than if the various
pieces it contains were each within an individual file.
Libraries generally contain routines relating to a
certain area of application; they can be used for
functional groupings much as UNITs can. Thus, a
user might want to maintain a math library, and so
forth -- each of these libraries containing routines
general enough to be used by many programs over a
long period of time.

5-21

5-22

Individual programs might also take advantage of
the library construct. If a program uses several
UNITs suitable for compiling separately, but the
UNITs themselves are too small to warrant putting
each into its own file, the user would want to
construct a single library containing all of those
UNITs.

Even if a file contains only a single UNIT or routine,
it is treated as a library when the UNIT or routine is
used by some external host.

LIBRARY is useful for putting UNITs into
SYSTEM. LIBRARY or other libraries, grouping
assembly routines together, and so forth.

This section uses the term "compilation unit". A
program or UNIT and all the SEGMENTs declared
inside it are called a compilation unit. The
SEGMENT for the program or UNIT is called the
host segment of the compilation unit. SEGMENT
routines declared inside the host are called
subsidiary segments. UNITs used by the host are not
considered to be segments belonging to that
compilation unit. UNITS used by the compilation
unit generate information in the host segment called
segment references ("seg refs" for short). The seg
refs contain the names of all segments referenced by
a compilation unit, and the Operating System uses
this information to set up a runtime environment.

Some routines called from hosts exist in UNITs in
the Operating System, and therefore appear in seg
refs, even though there is no explicit USES
declaration. For example, WRITELN resides in the
Operating System UNIT P ASCALIO, so the name
PASCALIO will appear in the seg refs of any host that
calls WRITELN.

Using LIBRARY

When LIBRARY is executed, a prompt asks for an
output filename. The filename must end in. CODE if
the output file is to be an executable codefile.
LIBRARY will remove an old file with the same
name as the new library.

LIBRARY then prompts for the input filename .
. CODE is automatically appended if necessary.

Example: The user specifies SCREENOPS.CODE as an
input file. LIBRARY displays the following:

Library: N(ew, 0-9(slot-Io-slot, E(very,
S(elect, Clomp-unit

Input file? SCREENOPS<enter>
o u SCREENOP 921
1 s SEGSCINI 416
2
3
4
5
6
7

Write to what file? NEW.CODE<enter>
o
1
2
3
4
5
6
7

8
9

10
11
12
13
14
15

8
9
10
11
12
13
14
15

... the display shows that the file SCREENOPS
consists of a UNIT and a SEGMENT routine. There
are four possible types of code that can occupy the
16 "slots" in a library: units, programs, segment
routines, and assembled routines. LIBRARY

5-23

5-24

displays the type, along with the name and length (in
words) of each module.

LIBRARY's promptline shows the various
commands available.

N(ew prompts for a new input file.

A(bort stops LIBRARY without saving the output
file.

Q(uit stops LIBRARY and does save the output file.
When the user Q(uit's LIBRARY, it prompts
Notice? at the bottom of the screen. A copyright
notice to be placed in the output file's segment
dictionary may be typed in (followed by enter).
Simply typing enter exits LIBRARY without writing
a copyright notice.

T(og toggles a switch which determines whether or
not INTERFACE parts of UNITs are copies to the
output file.

R(efs lists the names of each entry in the segment
reference lists of all segments currently in the output
file. The list of names also includes the names of all
compilation units currently in the output file, even
though their names may not occur in any of the
segment references.

The remaining five commands allow code segments
to be transferred from the input file to the output
file.

A given "slot" can be transferred to the output file by
typing a digit (0 .. 9). LIBRARY then prompts: Copy
from slot # ? and displays the digit just typed. If that
is the name of the slot, type space. If that is the first
digit of a two-digit slot number, type in the second
digit and follow it with a space. LIBRARY confirms
your entry before actually copying code. backspace

may be used to correct errors. If enter is typed when
no number is shown, the copy does not happen and
LIBRARY's promptline is redisplayed.

If the destination slot in the output file is already
filled, a warning says so and no copy takes place. If an
identical code segment is already present anywhere
in the output file, the new code segment is copied
anyway.

E(very causes all of the code in the input file to be
copied to the output file. If, for any code segment,
the corresponding slot in the output file is already
filled, then LIBRARY searches for the next available
slot and places the code there. If, for any code
segment, an identical code segment already exists in
the output file, that segment is not copied over.

S(elect causes LIBRARY to prompt the user for
which code segments to transfer. For each code
segment not already in the output file, LIBRARY
prompts: Copy from slot # _? A Y or N causes the
segment to be copied or passed by, an E causes the
remainder of the code segments to be transferred (as
in E(very), a space or enter aborts the S(elect. If the
corresponding slot in the output file is filled,
LIBRARY searches for the next available slot and
places the code there.

C(omp-unit causes LIBRARY to prompt: Copy what
compilation unit? The compilation unit named is
transferred along with any segment procedures that
it references. Procedures already present in the
output file are not copied.

F(ill does the equivalent of a C(omp-unit command
for all the compilation units referenced by the
segment references in the output file.

5-25

The Standard SYSTEM. LIBRARY
Routines

The SYSTEM. LIBRARY file, as it is delivered to
users of the IBM Personal Computer, contains three
units. These are unit LONGOPS, the IBMSPECIAL,
and the TURTLEGRAPHICS unit. The EXTRAS
diskette contains some additional units including
COMMANDIO.CODE and SCREENOPS.CODE
(which are of interest here).

Unit LONGOPS is used automatically when Long
Integers are declared within a program. (See the
PASCAL Reference for the UCSD p-System for
information about Long Integers.) The next four
sections describe the routines available to users
within the other four units.

The Screen Control Unit

5-26

The Screen Control Unit is located on the EXTRAS
diskette and is called SCREENOPS.CODE. This
section describes how the Screen Control Unit may
be used to perform various CRT-related tasks.

In order to use the Screen Control Unit, a program
must contain the proper USES declaration:

USES ($U screenops.code) SCREENOPS;

or

USES {$U #5:screenops.code} SCREENOPSj

SCREENOPS is actually an Operating System unit,
but the copy of SCREENOPS within
SYSTEM.P ASCAL does not contain the Interface
section (this saves disk space). During compilation
the copy of SCREENOPS within
SCREENOPS.CODE must be available, but during

runtime, just having SYSTEM.PASCAL on the disk
would be sufficient. If desired, SCREENOPS may be
added to SYSTEM. LIBRARY using the LIBRARY
utility. In this case the {$U screenops.code} should
be omitted from the above declaration.

All of the routines described in this section may be
called from your program. The text ports men tioned
below are rectangular portions of the screen which
may be defined to be of a different size than the real
screen. Where text ports are mentioned in this
section, the entire screen should be understood to
be the default.

PROCEDURE SC_Init;

Usually this procedure is only called by the
Operating System. It initializes all the Screen
Control tables and variables.

Erases the current line.

PROCEDURE SC_Clr_Line (Y: integer);

Clears line number Y within the current text port.

Clears the screen.

PROCEDURE SC_Erase_to_EOL
(X, Line: integer);

Starting at position (X, Line) within the current text
port, everything to the end of the line is erased.

5-27

PROCEDURE SC_Eras_EOS (X, Line: integer);

Starting at position (X, Line) witpin the current text
port, everything to the end of the screen is erased.

PROCEDURE SC_Left;

Moves the cursor one character to the left.

PROCEDURE SC~ight;

Moves the cursor one character to the right.

PROCEDURE SC_Up;

Moves the cursor one line up (in the same column).

PROCEDURE SCJ)own;

Moves the cursor one line down.

PROCEDURE SC_Home;

Moves the cursor to position 0,0 within the current
text port.

PROCEDURE SC_GOTO_XY
(X, Line: integer);

Moves the cursor to position (X, Line).

5-28

FUNCTION SC_Find_X: integer;

Returns the column position of the cursor, relative
to the current text port.

Returns the row position of the cursor, relative to
the current text port.

PROCEDURE SC_GetC_CH (V AR CH: char;
Return_on_Match: SC_ChSet);

SC_ChSet is a SET OF CHAR. This procedure
repeatedly reads from the keyboard into CH until
CH is equal to a member of Return_on_Match. The
characters that you pass in this set should all be
capitals (if they are alphabetic). If a lower case
alphabetic character is received from the keyboard,
it will be translated into upper case before it is
compared to the characters within Return_on_Match.

FUNCTION Space_Wait (Flush: Boolean):
Boolean;

This function repeatedly reads from the keyboard
until a space or the AL TMODE character is
received. Before doing this it does a UNITCLEAR(l}
if Flush is TRUE, and writes Type space to continue.
It returns TRUE if a space was not read.

5-29

FUNCTION SC_Prompt (Line: SC_Long_String;
X_Cursor, Y_Cursor, X_Pos, Where: integer;
Return_on_Match: SC_ChSet; No_Char_Back:
Boolean; Break_Char: char): char;

This function displays the promptline, Line
(SC_Long_String is a STRING [255]) in the current
text port at (X_Pos, Where). The cursor is placed at
(X_Cursor, Y_Cursor) after the prompt is printed. If
X_Cursor is less than 0, the cursor is placed at the
end of the prompt. If the prompt is too large to fit
within the current text port, it is broken up into
several pieces, but only at the Break_Char -- the user
can view different parts of the prompt (cycling
through them) by typing '?'. If a character is being
prompted for, No_ChacBack should be sent as
false. The keyboard is repeatedly read until the
character read matches one within
Return_on_Match.

FUNCTION SC_Check_Char (V AR Buf:
SC_ Window; V AR Buf_Index, Bytes_Left:
integer): Boolean;

5-30

While a string is being read, this function may be
called to see if a backspace or a DEL has been read. If
so, the input buffer is altered accordingly, and TRUE
is returned. Buf is a line on the screen, BuLIndex
indicates the cursor position within Buf, and
Bytes_Left is the number of characters to the right of
the cursor.

FUNCTION SC_Map_CRT_Command
(V AR K_CH: char): SC_Key_Command;

SC_Key Command is a type consisting of the
following elements: (SC_Backspace_Key,
SC_DCl_Key, SC_EOF_Key, SC_ETX_Key,
SC_Escape_Key, SC_DEL_Key, SC_Up_Key,
SC_Down_Key, SC_LefcKey, SC_RighcKey,
SC_NocLegal). The character passed is mapped
into one of these elements.

FUNCTION SC_Scrn_Has
(What: SC_Scrn_Command): Boolean;

SC_Scrn_Command is a type consisting of the
following elements: (SC_Home, SC_Eras_S,
SC_Eras_EOL, SC_CleacLne, SC_CleacScn,
SC_Up_Cursor, SC_Down_Cursor, SC_Left_Cursor,
SC_RighCCursor). This function returns TRUE if
the CRT has the control character passed.

FUNCTION SC_Has_Key
(What: SC_Key_Command): Boolean;

SC_Key _Command consists of the elements listed in
the description of SC_Map_CRT Command above.
This function returns true if the CRT generates the
keyboard character passed.

5-31

PROCEDURE SC_Use_Info (Do_What:
SC_Choice; V AR T_Info: SC_Info_Type);

This function is used to pass information back and
forth between a program and the Screen Control
Unit. Do_What may either be SC_Get or SC_Give,
and indicates whether the program is getting or
giving information to the Screen Control Unit.
T_Info contains various items to be either passed or
received. The following information is contained
within T_Info:

SC_ Version: string;
SC_Date: PACKED RECORD

Month: 0 .. 12;
Day: 0 .. 31;
Year: 0 .. 99;

END;
SpecChar: SET OF char; (*Chars not to echo*)
MiscInfo: PACKED RECORD

Height, Width: 0 .. 255;

Can_Break,Slow,XY_CRT,LC_CRT,
Can_U pScroll, Can_DownScroll

: Boolean;
END;

PROCEDURE SC_Use_Port (Do_What:
SC_Choice; V AR T_Port: SC_TX_Port);

5-32

This function works like SC_Use_Info above. The
contents of T_Port are either passed or received
from the Screen Control Unit. T_Port contains the
following information:

Row, Col,
Height, Width,
Cur_X, Cur_Y : integer;

Unit COMMANDIO

COMMANDIO is located on the EXTRAS diskette
and is called COMMANDIO. CODE. COMMANDIO
is a unit within the Operating System. But, like
SCREENOPS, the copy of COMMANDIO within
SYSTEM. PASCAL does not have the Interface
section (again to save disk space). The copy of
COMMANDIO within COMMANDIO.CODE does
have the Interface section and can be used by a
program with the proper declaration:

USES {$U commandio.code} COMMANDlO;
or

USES {$U #5:commandio.code} COMMANDIO;

The using program may then call the routines
REDIRECT (which is used to redirect output and
input), EXCEPTION (which turns off redirection),
and CHAIN (which allows several programs to be
chained together). These routines are described in
Chapter 2.

U ni t IBMSPECIAL

Unit IBMSPECIAL is located within
SYSTEM. LIBRARY and contains routines that are
useful for various tasks including writing game
programs. In order to use this unit, your program
should contain the declaration:

USES IBMSPECIAL;

5-33

5-34

The standard SYSTEM. LIBRARY should be on the
boot disk at compilation time as well as at run time.
The following is the Interface section from this unit:

Unit IBMspecial;
Interface
Type

pitch_range=O;.12;
octave_l'ange=O .. 1;
onebit=O .. l ;
twomax=O .. 2;
twobits=O .. 3;
Uareebits=O .. 7;
fourbits=O" 15;
foncpattern=packed array[O .. 63] of

booleal1;
fonCtable=array[128 .. 255] of

fonCpattern;
fonCptr=""fonCtable;
stcptr="'string;
key_table=array[1..16] of stUl!r;
key-pt r='" key _ ta b I e;

Function Button (select:twobits): Boolean;
Procedure Paddle (select:twobits;

Val' result:lnteger);
Procedure Note (pitch:pitch_range;

octave: octavlu'a nge;
duration: integer);

Function Lightpen (Var charxpos, charypos,
pixelxpos, pixelypos:
integer): Boolean;

Procedure Setkeys (tableptr:key_ptr)j
Procedure Videomode (mode:threebits);
Procedure SeUont (table:fonCptr);
Procedure Bkgnd_Color (color:fourbits);
Procedure Palette (color:onebit);
Procedure Settime (hour, minute: Integer);
Procedure Gettime (Var hour, minute:

Integer);
Procedure SelecCPrinter (unitnum:twom~/"i'
Procedure Select_Remote (unitnum:onebil:);

Function Button (select: twobits): Boolean;

Returns true if the selected game button (0 .. 3) is
depressed. These buttons are located on the paddle
controls which plug into the IBM Personal
Computer Game Control Adapter.

Procedure Paddle (select: twobits;
V AR result: integer);

Returns the position of the paddle control
mechanism specified by the parameter Select. The
value of the parameter Result contains this position.

Procedure Note (pitch: pitch_range;
octave: octave_range; duration: integer);

Causes the speaker to sound a tone. These are the
meanings of the parameters passed to this
procedure:

pitch: 0 = rest
1 = C
2 = C#
3 = D
4= D#
S=E
6=F
7 = F#
8.= G
9= G#

10 = A
11 = A#
12 = B

octave: 0 = lowest
7 = highest

duration: milliseconds, taken as
an unsigned integer.

5-35

Function Ligh tpen (V AR charxpos, charypos,
pixelxpos,pixelypos: integer): Boolean;

Returns true if the lightpen is activated. The
parameters return the position of the lightpen:

charxpos is the X position, 0 .. 79
charypos is the Y position, 0 .. 24
pixelpos is the pixel X pos., 0 .. 639
pixelypos is the pixel Y pos., 0 .. 199

Procedure Setkeys (tableptr: key_ptr);

5-36

Allows the programmer to define the 16 function
keys on the Personal Computer keyboard. There are
10 such keys on the left-hand side of the keyboard
(labeled F1 - FlO), and an additional six keys on the
number pad:

11 Home
12 PageUp
13 End
14 PageDown
15 INS
16 DEL

These keys return default codes (as described in
Appendix E) unless they are redefined by a call to
SetKeys. SetKeys must be passed a pointer to a
table. This table is itself an array (1..16) of pointers
to strings. Each entry in the table corresponds to one
of the 16 function keys: when the key is pressed, the
string that the table entry points to is written, just as
if all the characters it contains were typed by hand. A
table entry should not be NIL if the corresponding
key is to be used.

When the program terminates, the definitions
created by SetKeys disappear.

Procedure Video mode (mode: threebits);

Sets the mode of the screen. The screen may be set to
80 or 40 columns across. And it may be set to
alpha-numeric mode or graphic mode. It is necessary
for the screen to be in graphic mode if graphics are to
be used. Standard alpha-numeric characters can be
sent to the screen when it is in graphics mode, but
this is not recommended since more time is
required. Parameter Mode indicates the following
modes:

0: 40 x 25 b & x alpha-numeric mode
1: 40 x 25 color alpha-numeric mode
2: 80 x 25 b & w alpha-numeric mode
3: 80 x 25 color alpha-numeric mode
4: 40 x 25 color graphic mode (320 x 200)
5: 40 x 25 b & w graphic mode (320 x 200)
6: 80 x 25 b & w graphic mode (640 x 200)
7: Black/White Card

The cursor is not visible in modes 4, 5 and 6.

Note: Mode 7 is for those terminals set up to
display only in black and white. They are always
in mode 7. All other configurations (Le. those
which may display in color) can never be in
mode 7.

5-37

Procedure Setfont (table: font_ptr);

The "upper" 128 ASCII characters (80 .. FF) may be
redefined by the user with a call to Setfont. Setfont is
passed a pointer to a table. The table contains 128
entries (128 .. 255), each of which is an array of bits
(0 .. 63). This Boolean array defines a character: the
bits are arranged in the following pattern:

7 0
15 8
23 16
31 24
39 32
47 40
55 48
63 56

... where each entry represents a single pixel. This
use of the font applies to alphanumeric mode, NOT
graphics mode. The definitions disappear when the
program that called Setfont terminates.

Procedure Bkgnd_Color (color: fourbits);

5-38

Sets the background color in the graphic mode. It
sets the border color in the alpha-numeric mode.
Parameter Color indicates the following colors:

1 Blue
2 Green
4 Red
8 High Intensity

These numbers may be added together to produce
combinations.

Procedure Palette (color: onebit);

Sets the colors to be used in the graphics mode. If
Parameter Color is 0, the following are the colors
that will be produced:

° Background Color
1 Green
2 Red
3 Yellow

If Parameter Color is 1, the following are the colors
that will be produced:

° Background Color
1 Cyan
2 Magenta
3 White

These are the colors that will be indicated by a
variable of Type Color within the Turtlegraphics
Unit (see "The Turtle Graphics Unit" in this
chapter).

Procedure Settime (hour, minute: integer);

Sets the clock to correspond to the indicated hour
and minute.

Procedure Gettime (VAR hour, minute: integer);

Gets the time of day. This procedure will return
meaningless information if Settime has not been
called first. After rebooting, Settime must be called
again if Gettime is to return valid information.

5-39

The Turtlegraphics Unit

5-40

Turtlegraphics is a package of routines for creating
and manipulating images on the graphic display.
These routines can be used to control the
background of the screen, draw figures, alter old
figures, and display figures using viewports and
scaling. It also contains routines that allow the user
to save figures in disk files and retrieve them.

The simplest Turtlegraphics routines are
intentionally very easy to learn and use. Once the
user is familiar with these, more complicated
features (such as scaling and pixel addressing) should
present no problem.

A "pixel," by the way, is a single "picture element"
or point on the display.

Turtlegraphics allows the user to create a number of
"figures," or drawing areas. One such figure is the
display screen itself, and other figures may be saved
in memory. Each figure has a turtle of its own. The
size of a figure may be set by the user (it does not
need to be the same size as the actual display). See
"Figures and the Port" in this chapter.

The actual display is addressed in terms of a display
scale, which may be set by the programmer. This
allows the user's own coordinates to be mapped into
pixels on the display. All other figures are scaled by
the global display scale. See "Scaling" in this
chapter.

The programmer may define a "viewport," or
window on the display. This limits all graphic activity
to within that port. See "Figures and the Port".

Each subsection below is divided into two parts. The
first part is an overview of the topic at hand, and the
second part consists of descriptions of the relevant
Turtlegraphics routines.

For quick reference, "Routine Parameters" contains
a listing of the Interface part of the Turtlegraphics
unit.

"Sample Program" contains a sample program that
illustrates a number of the Turtlegraphics routines.

The Turtlegraphics unit uses the IBMSPECIAL unit
described in "Unit IBMSPECIAL" in this chapter.

The Turtle

The "turtle" is an imaginary creature that resides on
the display screen. It carries with it a "pen," and can
be made to draw lines by moving it about the display.
The possible movements of a turtle are:

move in a straight line (Move);

move to a particular point on the display
(Moveto);

turn, relative to the current direction (Turn);

turn to a particular direction (Turnto).

Thus, the turtle draws straight lines in some given
direction. The color of the lines it draws can be
specified (Pen_color), and so can the nature of the
line drawn (Pen_mode).

Wherever the turtle is located, its position and
direction can be ascertained by three functions:
Turtle_x, Turtle_y, and Turtle_angle.

Note that the turtle may be moved anywhere: it is
not limited by the size of the figure or the size of the
display. But only movements within the figure will
be visible.

5-41

To use the turtle in a figure other than the actual
display, the programmer may call Activate_Turtle.
We will discuss new figures in "Figures and the Port"
in this chapter.

The remainder of this section describes the routines
that handle the turtle. Since this section is meant to
double as a reference, some of the routine
descriptions mention features we have not yet
discussed. Just skim over anything you do not yet
understand.

Procedure Move (distance: real);

Moves the active turtle the specified distance along
its current direction. The turtle leaves a tracing of its
path (unless the drawing mode is' nop'). The distance
is specified in the units of the current display scale
(see "Scaling"). The movement will be visible unless
the current turtle is in a figure that is not currently
on the display.

Procedure Moveto (x,y: real);

Moves the active turtle in a straight line from its
current position to the specified location. The turtle
leaves a tracing of its path (unless the drawing mode
is nop). The x,y coordinates are specified in the units
of the current display scale.

Procedure Turn (rotation: real);

5-42

Turns the active turtle by the amount specified (in
degrees). A positive angle turns the turtle
counterclockwise, and a negative angle turns it
clockwise.

Procedure Turnto (heading: real);

Sets the direction (the "heading") of the active turtle
to a specified angle. The angle is given in degrees;
zero (0) degrees faces the right-hand side of the
screen, and ninety (90) degrees faces the top of the
screen.

Procedure Pen_color (shade: integer);

Selects the color with which the active turtle traces
its movements (unless the pen mode is nap). This
color remains the same until Pen_color is called
again.

The color of the pen depends on the way the video
display is set. See "Unit IBMSPECIAL". If the
palette is set to 0, the colors are:

o = Wildcard Color
1 = Green
2 = Red
3 = Yellow

If the palette is set to 1, the colors are:

o = Wildcard Color
1 = Cyan
2 = Magenta
3 = White

If the display is in the black and white graphics mode
5, the color indicates:

o = Wildcard Color
1 = Gray 1
2 = Gray 2
3 = Gray 3

5-43

If the display is in the black and white graphics mod~
6, the color indicates:

0= Black
1 = White

We use the term "wildcard" to refer to the
background color of the display that is set by the
procedure Bckgnd_Color in IBMSPECIAL. This is a
function of the display hardware, and might be called
a "hard" background. In Turtlegraphics, each
individual figure may have its own "soft"
background color, which we refer to simply as the
"background color" (as in the discussion below). See
"The Display".

Procedure Pen_mode (mode: integer);

5-44

Sets the active turtle's drawing mode. This mode
does not change until Pen_mode is called again.

These are the possible modes:

o = Nap - does not alter the figure.

1 = Substitute - writes the current pen color.

2 = Overwrite - writes the current pen color.

3 = Underwrite - writes the current pen color.
When the pen crosses a pixel that is not of the
background color, that figure is not overwritten.

4 = Complement - the pen complements the color
of each pixel that it crosses. (The complement
of a color is its opposite: the complement of the
complement of a color is the original color.)

Values greater than 4 are treated as Nap.

(These descriptions apply to movements of the
turtle. They have a more complex meaning when a
figure is copied onto a figure that is already
displayed: see "Figures and the Port".

Function Turtle_x: real;

Returns a real value that is the x-coordinate of the
active turtle, in units of the current Display_scale.

Function Turtle_y : real;

Returns a real value that is the y-coordinate of the
active turtle, in units of the current Display_scale.

Function Turtle_ angle : real;

Returns a real value that is the direction (in degrees)
of the active turtle.

Procedure Activate_Turtle (screen: integer);

Specifies to which figure subsequent Turtlegraphics
commands are directed. Each invocation of this
procedure puts the previously active turtle to sleep
and awakens the turtle in the designated figure.
When Turtlegraphics is initialized, the turtle in the
actual display is awake.

The Display

The color of the display itself (or any other figure)
depends in part on settings determined by routines
within the IBMSPECIAL unit. The size, background
color, and color range of the display are set by
Videomode, Bckgnd_Color, and Palette, and these
settings apply whenever Turtlegraphics is used.

5-45

We refer to the initial background of the display as
the wildcard color. The wildcard color (color 0) is set
by Bckgnd_Color in IBMSPECIAL. The default is
black. The background color of a Turtlegraphics
figure may be changed by the programmer with a call
to Background. This" soft" background applies
when drawing mode is used, as indicated above.

A figure can be filled with a single color (not
necessarily the background color) by calling
Fillscreen.

Note: When Turtlegraphics is initialized, the
video mode is set to 4. The programmer may
call Videomode in IBMSPECIAL to change this,
but the display is cleared, and if the new mode is
other than 4, Display_scale must be called
immediately to re-initialize the display. There is
no termination code in Turtlegraphics to reset
the video mode to whatever it was before the
user program started (since it is not possible to
determine what that mode was). It is therefore
the responsibility of the programmer to reset
the video mode, if desired, at the end of his or
her program with another call to Videomode.

Procedure Fillscreen
(screen: integer, shade: integer);

5-46

Fills the specified figure ("screen") with the
specified color ("shade"). If screen = 0, which
indicates the actual display screen, then only the
current viewport is shaded. For user-created figures,
the en tire figure is shaded.

Procedure Background
(screen: integer; shade: integer);

Specifies the background color for a figute. The
initial background color of all figures is the wildcard
color.

Labels

It is possible to draw legends, labels, and so forth on
the display while using the Turtlegraphics unit.
Position the cursor in the desired location with the
Align_cursor routine, and write to the console using
WRITE or WRITELN.

Procedure Align_cursor (x,y: real);

Positions the cursor at the specified location. The
x,y co-ordinates are specified in the units of the
current display scale (see "Scaling"). The cursor is
positioned over the x,y point. Text may now be
written to the screen in the usual manner. It is not
confined to the viewport. However, if x,y falls
outside the current viewport, the cursor is initially
positioned at the nearest point within the viewport,
and writing begins at that location.

Scaling

When a programmer wishes to display data without
altering the input data itself, it is possible to set
scaling factors that translate data into locations on
the display. This is done with Display_scale. The
display scale applies globally to all figures.

Because of the shape of the actual display, data for
particular shapes (especially curved figures) might
become distorted when using a "straight" display
scale. In this case, the function AspectJatio can be
used to preserve the "squareness" of the figure.

5-47

Procedure Display_scale
(min_x,min_y,max_x,max_y: real);

5-48

Defines the range of input co-ordinate positions that
are to be visible on the display. Turtlegraphics maps
the user's co-ordinates into pixel locations
according to the scale specified in Display_scale.

This procedure sets the viewport (see "Figures and
the Port") to encompass the whole display. The
display bounds apply to input data. For the actual
display, these bounds can be any values the user
requires, but user-created figures always have (0,0)
as their lower left-hand corner.

The default display scale is:

min_x = 0, max_x = 319
min_y = 0, max_y = 199

... which is simply the array of pixels on the full
display.

As an example, if a user wishes to graph a financial
chart from the years 1970 to 1980 along the x axis,
and from 500,000 to 500,000,000 along the y axis,
the following call could be used:

Display-scale(1970, 5.0E5, 19aO, 5.0E8)

After this, calls to turtle operations could be done
using meaningful numbers rather than quantities of
pixels.

Function Aspect_ratio: real;

Returns a real number that is the width/height ratio
of the CRT. This can be used to compute parameters
for Display_Scale that provide square aspect ratios.

If an application is designed to show information
where the aspect ratio of the display is critical (e.g.,
circles, squares, pie-charts, etc.) it must insure that
the ratio:

... is the same as the aspect ratio of the physical
screen upon which the image is being displayed.
When the Turtlegraphics unit is initialized, min_x
and min_yare set to o. max_x is initialized to the
number of pixels in the x direction, and max_y is
initialized to the number of pixels in the y direction.
In order to change to different units that still have
the same aspect ratio, a call similar to the following
can be used:

DisplaLscale(O, 0, 100*ASPECLRATIO, 100);

This utilizes Function Aspeccratio described above,
and makes the yaxis 100 units long.

Turtlegraphics always treats the turtle as being in a
fixed pixel location. Changing the scaling of the
system with a call to this routine in the middle of a
program does not alter the pixel position of any of
the turtles in the figures. However, the values
returned from X_pos and Y_pos may change.

5-49

Figures and the Port

The programmer can create and delete new figures,
each with its own turtle. When a new figure is
created, it is assigned an integer, and this integer
refers to that figure in subsequent calls to
Turtlegraphics procedures. New figures can be
saved (Putfigure) or displayed on the screen
(Getfigure) .

The actual display is always referred to as figure 0.

The active portion of the display can be restricted by
calling Viewport, which creates a "window" on the
screen in which all subsequent graphics activity
takes place. The user might create a figure, specify
the port, then display that figure (or a portion of it)
within the port. Specifying a viewport does not
restrict turtle activity, it merely restricts what is
displayed on the screen.

User-created figures can be saved in p-System disk
files. See" F otofiles".

Function Create_figure
(x_size,y_size: real): integer';

5-50

Creates a new figure which is rectangular, and has the
dimensions (x_size, y_size), where (0,0) designates
the lower left-hand corner. The dimensions are in
units of the current display scale. The figure is
identified by the integer returned by Create_figure.

When a figure is created it contains its own turtle,
which is at 0,0 and has a direction of ° (it faces the
right-hand side of the figure). The turtle in a
user-created figure can be used by calling
Activate_Turtle (described in "The Turtle").

Procedure Delete_figure (screen: integer);

Discards a previously created display figure area.

Though figures may be created and destroyed,
indiscriminate use of these constructs may rapidly
exhaust the memory available in the p-System due to
Heap fragmentation. For example, a figure may be
created using Create_figure (or it may be read in
from disk using Function Load_Figure, described
below). If possible, after that figure is used (for
example, with a Getfigure, Putfigure, Load_figure
or Store_figure operation) it should be deleted
before other figures are created. If many figures are
created, and randomly deleted, the Heap
fragmentation problem may occur.

Procedure Getfigure (source_screen: integer;
corner_x,corner_y: real; mode: integer);

Transfers a user-created figure (the "source") to the
display screen (the "destination") using the drawing
mode specified. The figure is placed on the display
such that its lower left-hand corner is at (cornecx,
cornecy). The x and y positions are specified in the
units of the current display scale. If the display scale
has been modified since the figure was created, the
results of this procedure are unpredictable.

5-51

These are the effects of the drawing mode:

0= Nop - does not alter the destination.

1 = Substitute - each pixel in the source replaces thf
corresponding pixel in the destination.

2 = Overwrite - each pixel in the source that is no1
of the source's background color replaces the
corresponding pixel in the destination.

3 = Underwrite - each pixel in the source that is no1
of the source's background color is copied to
the corresponding pixel in the destination only
if the corresponding pixel is of the destina tion' s
background color.

4 = Complement - for each pixel in the source that
is not of the source's background color, the
corresponding pixel in the destination is
complemented.

Values greater than 4 are treated as Nop.

If a portion of the source figure falls outside the
display or the window, it is set to the source's
background color.

Proced ure Pu tfigure
(destina tion_screen: integer;
corner_x,corner_y: real; mode: integer);

5-52

Transfers a portion of the display screen to a
user-created figure using the drawing mode
specified (see above). The portion transferred to the
figure is the area of the display that the figure covers
when it is placed on the display with its lower
left-hand corner at (cornecx, cornecy). If the

display scale has been modified since the figure was
created, the results of this procedure are
unpredictable.

Note: When a figure is moved to the display
by Getfigure, further modifications to the
display do not affect the copy of the figure that
is saved in memory. If the user wishes to save the
results of graphics work on the display, it is
necessary to call Putfigure.

Procedure Viewport
(min_x,min_y, max_x,max_y: integer);

Pixels

Defines the boundaries of a "window" which
confines subsequent graphics activities. The
Viewport procedure applies only to the actual
display. When a window has been defined, graphics
activities outside of it are neither displayed nor
retained in any way. Therefore, lines, or portions
thereof, that are drawn outside the window are
essentially lost and will not be displayed (this is true
even if the window is subsequently expanded to
encompass a previously drawn line). The viewport
boundaries are specified in the units of the current
display scale. If the specified size of the viewport is
larger than the current range of the display, the
Viewport is truncated to the display limits.

It is possible to ascertain (Read-pixel) or write
(Set-pixel) the color of an individual pixel within a
given figure. These routines are more specific than
the turtle-moving routines. They are less
straightforward to use, but give the programmer
greater control.

5-53

Function Read_pixel
(screen: integer; x,y: real): integer;

Returns the value of the color of the pixel at the x,y
location in the specified figure. The x,y location is
specified in the units of the current Display_scale.

Procedure Set_pixel (screen: integer; x,y: real;
shade: integer);

5-54

Sets the pixel at the x,y location of the specified
figure to the specified color. The x,y location is
specified in the units of the current Display_scale.

Fotofiles

The programmer may create disk files that contain
Turtlegraphics figures. New figures may be written
to a file, and old figures restored for viewing or
modification.

When figures are written to a file, they are written
sequentially, and assigned an index that is their
location in the file. They may be retrieved
"randomly" by using this index value.

The p-System name for files of figures always
contains the suffix .FOTO. It is not necessary to use
this suffix when calling Read_figure_file or
Write_figureJile (if absent, it will be supplied
automatically).

Function Read_figure_file (title: string): integer;

Specifies the title of a file from which all subsequent
figures will be loaded. If a figure file is already open
for reading when this function is called, it is closed
before the new file is opened. Only one figure file
may be open for reading at a single time. This
function returns an integer value which is the
IORESUL T of opening the file.

Function W ri te_figure_file
(ti tle: string): integer;

Creates an output file into which user-created
figures may be stored. If another figure file is open
for writing when this function is called, it is closed,
with lock, before the new file is created. Only one
figure file may be open for writing at a single time.
This function returns an integer result which is the
IORESUL T of the file creation.

Function Load_figure (index: integer): integer;

Loads the indexed figure from the current input
figure file and assigns it a new, unique, figure
number. An automatic Create_figure is performed.
If the operation fails for any reason, a Figure_number
of zero (0) is returned.

Function Store_figure (figure: integer): integer;

Sequentially writes the designated figure to the
output figure file. The function returns an integer
that is the figure's positional index in the current
output figure file. Positional indexes start at one (1).
If the index returned equals zero (0), Turtlegraphics
did not successfully store the figure.

5-55

5-56

Routine Parameters

The following is the interface section for the
Turtlegraphics unit, showing the parameters to all
Turtlegraphics routines:

Unit Turtlegraphics;

Interface

Procedure DisplaLscale(min_x, min_v,
max_x, ma]UI: real);

Function AspecCratio : real;
Function Create_figurel x_size, v_size:

real) : integer;
Procedure Delete_figure(screen:

integer);
Procedure Viewport(min_x, min_v, max_x,

mIX_y : real);
Procedure Aliui'u:ursor(x,v: real);
Procedure Fillscreen(screen:

integer; shade:
integer);

Procedure Background(screen: integer;
shade: integer);

Function Read_pixel(screen: integer;
X, y : real) :integer;

Procedure SeCpixel(screen:integer;
x,y:real; shade:color);

Procedure GeUigure(source_screen:
integer,
cornecx, corner_ y: real;
mode: integer);

Procedure Putfigure(destination_screen:
integer,
cornecx, corneey: real;
mode: integer);

Function Read_figure_fUe(title: string):
integer;

Function Write_figura_file(title: string):
integer;

Function Load_figurel index: integer):
integer;

Function Store_figural figure: integer):
integer;

Procedure Activate_Turtle(screen:
integer);

Function Turtle_x: real;
Function Turtle_y : real;
Function Turtle_angle: real;
Procedure Move(distance: real);
Procedure Moveto(x,v : real);
Procedure Turn(rotation: real);
Procedure Turnto(heading: real);
Procedure Pen_model mode: integer);
Procedure Pen_color(shade: integer);

Sample Program

Here is a sample program that illustrates a number of
Turtlegraphics routines:

PROGRAM SPIRALDEMO;

USES IBMspeciai, Turtlegrapl'iics;

liAR I,J,MODE: INTEGER;
C: CHAR;
COLOR: INTEGER;
SEED: INTEGER;
LX,LY,IJX,IJY: REAl.;

FUNCTION RANIlOM(RANGE:INTEGER) : INTEGER;
BEGIN
SHIl:= SHIl*233+ 113;
RANDOM:= SEED MOD RANGE;
SEED:= SEED MOD 256;
ENIl;

PROCEDURE ClEARBOnOM;
{clears bottom line of screen

for prompts)
BEGiN
AlIGtLCLIRSOR(O,O);
WRITE
(I;

AlIGtLCIJRSOR(O,O);
END;

5-57

BEGIN
CLEARBOTTOM; {various initializations}
WRITE(ENTER RANDOM NUMBER:);
READ(SEED);
CLEARBOTTOM;
DISPLAY_SCALE(0,0,200* ASPECLRATI0,200);

{AspecL_Ratio used so
pattern will be round}

COLOR:= 0;
WRITE(ENTER VIEWPORT LL CORNER:);
READ(LX,Ly);
CLEAR BOTTOM;
WRITE(ENTER VIEWPORT UR CORNER:)
READ(UX, Uy);
CLEARBOTTOM;
WRITE(PENMODE=);
READ(MODE);

VIDEOMODE(4);
{put display in graphics mode}

PALETTE(O);
{O=black, l=green, 2=red, 3=yellow}

VIEWPORT(LX,LY,UX,Uy); {create port}
PENMODE(O);

{use blank pen while moving it}
MOVETO(l 00* ASPECLRATlO, 1 00);

{put turtle in center of port}
{AspecL_Ratio ensures that it will be

correctly centered}
PENMODE(MODE);

{set pen to selected color}
J:= RANDOM 0)+90;

{angle by which turtle will move
note that turtle begins facing right
and will move counterclockwise
(J is positive) }

FOR 1:= 2 TO 200 DO
{draw spiral in 200 segments

of increasing length}
BEGIN

{cycle throught the colors}
COLOR:= COLOR+l;
IF COLOR> 3 THEN COLOR:= 1;
PENCOLOR(COLOR);
MOVE(I);
TURN(J);

5-58 END;

1:= CREAlL_FIGURE (UX-LX, UY-Ly);
{create figure the size of the port)

PUTFIGURE(I,LX,LY,l);
{save it; mode overwrites

old figure (if any) }
VIEWPORT(O,O,ASPECLRATlO*200,200);

{re-specify viewport in
the lower left corner}

GETFIGURE(I,O,O,l);
(display finished spiral)

READLN;
(clear user input buffer}

VIDEOMODE(2);
(reset terminal to

80*24 character mode)
END.

If you have further questions about this program, or
Turtlegraphics in general, we suggest you
experiment. Playing with graphics can be agood deal
more satisfying than playing with invisible code!

5-59

NOTES

5-60

CHAPTER 6. CONCURRENT
PROCESSES

Contents

Concurrent Processes 6- 3
Introduction 6- 3
Semaphores 6-6
Mutual Exclusion 6-8
Synchronization 6-9
Other Features 6-11

6-1

NOTES

6-2

Concurrent Processes

UCSD Pascal allows the user to declare and initiate
concurrent processes. A process is a procedure
whose execution appears to proceed at the same
time as (i.e., concurrently with) the main program.
Processes are declared as procedures are declared,
and set into action by the intrinsic START. Thus,
more than one process may run at once, and the
same process may be START'ed several times.

The System shares the 8086/88/87 processor
between various Pascal processes. This switching
may lead to an overall increase in program execution
time. Processes are nonetheless useful in a variety of
applications, particularly interrupt handling.

For further information on concurrent processes see
the PASCAL Reference for the UCSD p-System.

Introduction

Examples:

A process is declared exactly as a procedure would
be, with the UCSD reserved word PROCESS
replacing the reserved word PROCEDURE.

PROCESS ZIP;
BEGIN ... END;

PROCESS DINNER
(val' SPUT, BLACKEYED : peas);
begin ... end;

6-3

6-4

A process is started by the UCSD intrinsic START.
The principal parameter passed to START is a call to
a process, e.g., START(ZIP) or
START(DINNER(7,234». START also takes three
optional parameters, which are explained after the
following example:

PROGRAM DUFFER;
var PID : processid;

I, J : Integer;

PROCESS BLUE;
begin

end;

PROCESS RED (X, Y : integer);
begin

end;

begin
start(BLUE);
1:= 1; J := 2;
start(RED(I, i));
start(RED(3, 4), PID);
start(RED(5, 5), PID, 300);
start(RED(J, 1), PID, I+J, 10);

end.

In the example above, program DUFFER starts
processes RED and BLUE. In fact, RED is started
several times. The five processes started will each
run to completion, as will the main program, and the
(physical) processor will share time among them.
Note that the four invocations of RED result in four
different versions of RED being started, each (in this
example) with different parameter values.

Each invocation of a process is assigned an internal
PROCESSID. PROCESSID is a UCSD predeclared
type. The user may learn what processid has been
assigned a given process invocation by using an
optional second parameter. Thus, in
START(RED(3,4), PID); the variable PID is set to a
new PROCESSID value. Processids are chiefly for
the use of the System and system programmers.

The optional third parameter to START is the
stacksize parameter. It determines how much
memory space is allocated to the process invocation
(the default is 200 words).

The optional fourth parameter to START is a
priority value. This determines the proportion of
processor time that the process will receive before it
is completed. The priorities assigned to processes
are used by the System to decide which active
process gets to use the available processor. Higher
priority processes are given the processor more
often than lower priority processes. If no priority
value is given in START, the new process inherits the
priority value of its caller.

See START in the PASCAL Reference for the UCSD
p-System.

6-5

Semaphores

6-6

Semaphores may be used in two basic ways:

1) for mutual exclusion problems: controlling
access to "critical sections" of code;

2) for synchronization between" cooperating
processes" .

An extremely common application employing both
of these capabilities is resource allocation. In UCSD
Pascal it is also possible to associate semaphores with
hardware interrupts and use them to write interrupt
handlers in Pascal. We shall discuss these uses below.

The name "semaphore" was coined by E. W. Dijkstra
as an analogy to a railroad traffic signal. The railroad
semaphore controls whether or not a train may enter
the next section of track; a train passing the
semaphore when it is "green" automatically
switches it to "red", preventing further trains from
entering that section of track until the privileged
train has exited, at which time the semaphore is
swi tched to "green" again.

Semaphores themselves may be divided into two
classes: Boolean and counting semaphores. A
semaphore which has only two states (e.g., red and
green) is referred to as a Boolean semaphore. If more
than two states are allowed, it is called a counting
semaphore. In UCSD Pascal, counting semaphores
may span the range [O .. maxint]. The zero is
analogous to the "red" or stop value. It is possible to
use counting semaphores as Boolean semaphores if
one is careful to restrict oneself to only the values 0
and 1.

Given a set of concurrent processes and a single
semaphore variable which they test, we can imagine
that each process (or "train") is running on a private

processor ("track") with separate indicators of the
semaphore value under some central control. For
example, there may be a section of track which must
be shared by all the trains, but only a single train is to
be allowed in that section at a time. When the value
of the semaphore is zero, the central control will
cause any trains that approach the semaphore to
stop and wait until they are individually signalled to
proceed. When the central control determines that
it is safe for a train to continue (i.e. when some other
train has left the common section of track) it will
select one (only) of the trains waiting and signal it to
go on.

The UCSD intrinsics which manipulate semaphores
are SEMINIT, WAIT, SIGNAL, and ATTACH. They
are described fully in the PASCAL Reference for the
UCSD p-System.

SEMINIT initializes a sempahore by assigning it a
count and an empty queue. All semaphores must be
initialized in this way, or their value (and hence the
results of a program!) is unpredictable.

WAIT causes a process to wait for a given
semaphore.

SIGNAL informs the System that a semaphore is
again available.

ATTACH associates a semaphore with an external
interrupt. When that interrupt occurs, the
semaphore is signaled. A process may synchronize
with the interrupt by waiting on the semaphore.

6-7

Mutual Exclusion

Example:

6-8

When concurrent processes must share resources, it
may often be essential for only one process to access
a particular resource at a given time. This is known as
"mutual exclusion". It may be achieved by allowing
the resource to be accessed only in "critical
sections" of code to which the mutual exclusion
criteria are applied.

Suppose, for example, that two processes must both
display information on the console and request
input from the operator, but only one process may
be allowed to do so at a time. These two processes
must therefore practice mutual exclusion with
respect to the operator's console.

Critical sections may be implemented using Boolean
semaphores by enclosing the critical section
between WAIT(sem) and SIGNAL(sem). The
semaphore should be initialized to 1.

Initialize: SEMINIT(bridge_empty, 1);

Critical Section:
Procedure CROSSBRIDGE;

begin
WAIT(bridge_emtpy);

{critical section code}

SIGNAL(bridge_empty);
end (* CROSSBRIDGE *J;

In this example, processes (e.g., "trains") seeking to
use the critical section (e.g., to cross a bridge that
holds only one train at a time) will simply call
CROSSBRIDGE, which takes care of mutual
exclusion internally via the global semaphore
bridge_empty.

Synchroniza tion
When concurrent processes are cooperating, the
programmer will frequently want one process to wait
at a certain point in its execution until another
process has caused some event to occur, such as
filling a buffer. A counting semaphore may be used
as an "eventname" in this case. In the example on
the next page, two distinct" events", the filling or
emptying of a buffer, are used to synchronize two
concurrent processes.

6-9

Example:

6-10

PROGRAM BLUFF;
const N = (*Number of available

buffers *);
val' bulLfull,

buff_avail: semaphore;

PROCESS FILLBUFFER;
begin

repeat
waitl bufLavaii);

(* Select and fill a buffer *)

signal(bufLfull)
until false;

end;

PROCESS SENlumFFER;
begin

repeat
wail(bulLlull);

(* Select and send a buffer *)

signal(InlfLavaii)
until false;

end;

begin (* BLUFF *)
seminit(buff_full, (I);

seminit(buff_avail, N);
startl Fill_BUFFER);
start(SEND_BUFFER);

end.

Dther Features
As noted above, there is a predefined type
PROCESSID; a value of type PROCESSID may be
returned upon the invocation of a process. In the
present implementation, processid's are not
considered a user-oriented feature, but are used for
Operating System work. Variables of type processid
may be used in expressions in the same way as
pointer variables. That is, only the operators <>, =,
and := are legal.

All processes must be declared at the outer (global)
block of a program. They may not be declared within
a procedure or another process. Process initiation
must occur in the principal task of a program. That
is, a process may not be started from any of a
program's subsidiary processes.

Users interested in using processes at a fairly low
level, especially using them in conjunction with the
System's facilities for memory management and
Heap control, should refer to the Internal Architecture
Guide for the UCSD p-System for further details.

6-11

NOTES

6-12

CHAPTER 7. UTILITIES

Contents

Utilities 7-5
Preparing Assembly Codefiles For

Use Outside of the System. 7-5
Preparing Codefiles For Compression. . . 7-6
Running COMPRESSOR 7-7
Action and Output Specification 7-8
Patch 7-10
EDIT Mode 7-10
TYPE Mode 7-12
DUMP Mode 7-12
A Note on Prompts 7-16
The Decoder Utility 7-16
Duplicating Directories 7-22
COPYDUPDIR 7-22
MARKDUPDIR 7-23
XREF -- The Procedural

Cross-Referencer 7-24
Introduction 7-24
Referencer's Output 7-25
Lexical Structure Table 7-25
Using Referencer 7-28
Limitations 7-30
The Debugger... 7-31
Invoking and Exiting the Debugger ... 7-33
Displaying and Altering Memory 7-35
Further Single-Stepping Options 7-36
Example of Debugger Usage 7-38
Summary of the Commands 7-39
The RECOVER Utility. 7-41
The Tape Utility. 7-43
The Print Spooler 7-44
The Native Code Generator 7-45
The TV Adjust Utility 7-48
The SETBAUD Utility 7-49
The Printer Configuration Utility 7-49

7-1

The Disk Format Utility 7-50
SETUP 7-51
Running SETUP 7-51
Miscellaneous Notes for SETUP 7-53
The Data Items in

SYSTEM.MISCINFO 7-54
BACKSPACE 7-55
CODE POOL BASE[First Word] 7-55
CODE POOL BASE[Second Word] ... 7-55
CODE POOL SIZE 7-55
EDITOR ACCEPT KEY 7-55
EDITOR ESCAPE KEY... 7-55
EDITOR EXCHANGE-DELETE

KEy 7-56
EDITOR EXCHANGE-INSERT

KEy 7-56
ERASE LINE 7-56
ERASE SCREEN 7-56
ERASE TO END OF LINE 7-56
ERASE TO END OF SCREEN 7-56
HAS 8510A 7-57
HAS BYTE FLIPPED MACHINE 7-57
HAS CLOCK.... 7-57
HAS EXTENDED MEMORY 7-57
HAS LOWER CASE 7-57
HAS RANDOM CURSOR

ADDRESSING.. 7-57
HAS SLOW TERMINAL 7-57
HAS SPOOLING 7-57
HAS WORD ORIENTED

MACHINE 7-58
KEY FOR BREAK 7-58
KEY FOR FLUSH 7-58
KEY FOR STOP 7-58
KEY TO ALPHA LOCK 7-58
KEY TO DELETE CHARACTER 7-59
KEY TO DELETE LINE 7-59
KEY TO END FILE 7-59
KEY TO MOVE CURSOR DOWN ... 7-59
KEY TO MOVE CURSOR LEFT 7-59
KEY TO MOVE CURSOR RIGHT. . .. 7-59

7-2

KEY TO MOVE CURSOR UP 7-59
LEAD IN FROM KEyBOARD 7-60
LEAD IN TO SCREEN 7-60
MOVE CURSOR HOME 7-60
MOVE CURSOR RIGHT 7-60
MOVE CURSOR UP 7-60
NON PRINTING CHARACTER 7-61

PREFIXED [itemname> 7-61
SCREEN HEIGHT 7-61
SCREEN WIDTH 7-61
SEGMENT ALIGNMENT 7-61
STUDENT 7-61
VERTICAL MOVE DELAY 7-62

7-3

NOTES

7-4

Utilities
The UCSD p-System's utilities are various
precompiled programs that may be run with the
eX(ecute command. They supply some functions
that are sufficiently useful to be included in the
p-System, yet not used frequently enough to warrant
their being included among the System commands.

Preparing Assembly Codefiles For
Use Outside Of The System

The utility program COMPRESSOR inputs
codefiles consisting of one or more linked assembly
procedures, and produces object files suitable for
applications outside of the UCSD p-System's
runtime environment.

COMPRESSOR can produce either relocatable or
absolute object files. Absolute codefiles are
relocated to the base address specified by the user,
and contain pure machine code. Relocatable
codefiles include a simplified form of relocation
information (a description of its format is in a
following section). Both kinds of output files are
stripped of all file information normally used by the
System, and must be loaded into memory by the user
(or a user program) in order to execute properly.

7-5

Preparing Codefiles For Compression

7-6

The assembly procedure(s) must be assembled with
the 8086/88/87 Assembler, and linked with the
Linker (see the Assembler Reference for the U CSD
p-System, and Chapter 5 of this manual). Codefiles
containing anything other than one segment of
linked assembly code will cause COMPRESSOR to
abort. Routines to be compressed should not
contain any of the following assembler directives:

.ORG

.ABSOLUTE

.PUBLIC

. PRIVATE

.CONST

.INTERP

.ORG and .ABSOLUTE are intended for producing
absolute codefiles directly from the assembler (see
the ASSEMBLER REFERENCE for the UCSD
p-System) .. ABSOLUTE' d codefiles can be
compressed, but the code produced will be
incorrect .

. PUBLIC, .PRIVATE, .CONST and .INTERP are
expressly designed for communication between
assembly procedures and a host compilation unit
(whether Pascal or some other language). These
have no intended uses outside of the System's
runtime environment. Their inclusion in an
assembly program generates relocation information
in formats that will cause COMPRESSOR to abort.

Running COMPRESSOR

The codefile name is COMPRESSOR. CODE. At the
command level, eX(ecute COMPRESSOR. It will
respond with the following prompt:

Assembly Code File Compressor <version>

Type ! to escape

Do you wish to produce a relocatable object
file? (YIN)

Unless the characters Y or yare typed, the following
prompt appears:

Base Address of relocation (hex) :

This is the starting address of the absolute codefile to
be produced. It should be entered as a sequence ofl
to 4 hexadecimal digits followed by an enter. The
prompt will reappear if an invalid number is entered.

The following prompts always appear:

File to compress:

Enter the name of the file to be compressed. It is
not necessary to type the .CODE suffix. If the
file cannot be found, the prompt will reappear.

Output file «ent> for same) :

Enter the name of the output file, which can be
any legal filename (COMPRESSOR does not
append a .CODE suffix). Typing an enter here
causes the output file to have the same name as
the input file, thus eliminating the input file. If
the file cannot be opened, COMPRESSOR will
print an error message and abort.

7-7

In all the previous prompts, typing the character!
causes COMPRESSOR to abort.

After receiving information from the prompts,
COMPRESSOR reads the entire source file,
compresses the procedures, and wt;ites out the entire
destination file. Large codefiles may cause
COMPRESSOR to abort, if the system does not have
sufficient memory space.

While running, COMPRESSOR displays for each
procedure the starting and ending addresses (in hex),
and the length in bytes. After finishing, the total
number of bytes in the output file is displayed. If an
absolute codefile was produced, the highest memory
address to be occupied by the loaded codefile is
displayed.

The output of COMPRESSOR is a file of pure code,
which must be loaded and executed directly by uset
software.

Action and Output Specification

7-8

COMPRESSOR removes the following informatiol1
from input files:

• The segment dictionary (block 0 of codefile).

• Relocation list and procedure dictionary
pointers.

• Symbolic segment name and code sex word.

• Embedded procedure DATASIZE and EXITIC
words.

• Procedure dictionary and number of procs
word.

• Standard relocation list.

Procedure code in the output file is contiguous,
except for pad bytes which are emitted (when
necessary) to preserve the word-alignment of all
procedures. Codefiles contain integral numbers of
blocks of data; space between the end of the actual
code and the end of the codefile is zero-filled.

Relocatable object files have the following format:

The relocatable code is immediately followed
by relocation information. The last word in the
last block of the codefile contains the
code-relative word offset of the relocation list
header, for example:

<starting byte address of loaded code>
+ <word offset * 2>

= < byte address of relocation list
header word>

The list header word contains the decimal value
256. The next-lower-addressed word contains
the number of entries in the relocation list. This
word is followed (from higher addresses to
lower addresses) by the list of relocation entries.

Beneath the last relocation entry is a zero-filled
word which marks the end of the relocation
info. Each relocation entry is a word quantity
containing a code-relative byte offset into the
loaded code, for example:

<starting byte address of loaded code>
+ < byte offset>
= <byte address of word to be
relocated>

Each byte address pointed to by a relocation
entry is a word quantity which is relocated by
adding the byte address of the front of the
loaded code.

7-9

Patch

Important Note: If you are relocating your file
towards the high end of the 16-bi t address space, you
must ensure that the relocated file will not wrap
around in to low memory (i. e., relocation base address +
codefile size must be less than or equal to FFFF(hex)).
COMPRESSOR performs no internal checking for
this case.

PATCH is a utility which allows hands-on viewing
and altering of files. PATCH is meant for
bit-diddling and other such messy but sometimes
useful tasks. It was written as a personal utility, but
was quickly incorporated into the standard set of
System tools.

There are two main facilities in PATCH: a mode for
editing files on the byte level, and a mode for
dumping files in various formats.

The byte-editing capability allows the user to edit
not only textfiles, but also to do quick fixes to
codefiles and create specialized test data.

The dump capability provides formatted dumps in
various radices. It also allows dumps from main
memory.

EDIT Mode

7-10

When PATCH is first eX(ecuted, the user is in EDIT
mode. DUMP is reached by typing D. No
information is lost in toggling back and forth
between the two modes.

EDIT allows the user to open a file or device, read
selected blocks (specified by relative block number)
into an edit buffer, then either view that buffer, or

modify it (with TYPE) and write the modified block
back to the file. Buffers are displayed on the screen
in desired format, and edited in a manner similar to
the Screen Oriented Editor.

The individual commands of EDIT are explained in
some detail below. When it is impossible to perform
a command, PATCH responds with self-explanatory
error messages.

The promptlines for EDIT are:

EDIT: D(ump, G(et, R(ead, Slave, M(ix,
T(ype, I(nfo, F(or, B(ack, ?

EDIT: V(iew, W(ipe, O(uit, ?

D(ump - calls DUMP.

G(et - opens the file or device that one wishes to use,
and reads block zero into the buffer.

R(ead - reads a specified block from the current file.

S(ave - writes the contents of the buffer out to the
current block.

M(ixed - changes the display format for the current
block. Typing M toggles between the two formats
mixed and hex. Mixed displays printable ASCII
characters, and the hexadecimal equivalent of
nonprintable characters. Hex displays the block in
hexadecimal digits.

I(nformation - displays information about the
current file. This includes the filename, the file
length, the number of the current block, whether
the file is open, whether UNITREADs are allowed,
the device number (-1 ifUNITIO is False), the byte
sex of the current machine.

7-11

F(orward - gets the next block in the file.

B(ackward - gets the preceding block in the file.

V(iew - displays the current block, (see M(ixed).

W(ipedisplay - clears the display of the block off the
screen.

Q(uit - quits the PATCH program.

T(ype - goes into the typing mode, which allows the
buffer to be edited. (described immediately below).

TYPE Mode

7-12

TYPE, like the Screen Oriented Editor, allows the
information on the screen to be modified by moving
the cursor around and typing over existing
information. If you make errors while using TYPE,
do not S(ave the buffer while in EDIT mode, but
R(ead the block over and try again.

The promptline for TYPE is:

TYPE: C(har, H(ex, F(ill, U(p, D(own, L(eft,
R(ight, <vector arrows>, O(uit

C(haracter - exchanges bytes in the buffer for ASCII
characters as they are typed, starting from the cursor
and continuing until an etx is typed. Only printable
characters are accepted.

H(ex - exchanges bytes in the buffer for hex digits as
they are typed, starting from the cursor and
continuing until a Q is typed. (Hex digits can be
either upper or lower case.)

F(ill- fills a portion of the current block with the
same byte pattern. Accepts either ASCII characters

or hexadecimal digits for the pattern. When
finished, the cursor will be positioned after the last
byte filled.

The following commands move the cursor around
within the block of data being displayed. The cursor
is always at a particular byte. Rather than moving off
the screen, the cursor wraps around from side to side
and from top to bottom.

U(p - moves the cursor up one row.

D(own - moves the cursor down one row.

L(eft - moves the cursor left one column.

R(ight - moves the cursor right one column.

vector arrows - these are the vector arrows as used in
the Screen Editor. They will do the same respective
actions as U,D,L,R.

Q(uit - quits the TYPE mode and returns to the
EDIT mode.

DUMP Mode

Dumps can be generated in the following formats:
decimal, hexadecimal, octal words, ASCII characters
(if printable), decimal bytes (BCD), and octal bytes.

DUMP is also capable of flipping the bytes in a word
before displaying it, or simultaneously displaying a
line of words in both flipped and non-flipped form.

Input to DUMP can be from a diskfile specified by
the user, or directly from main memory (this is
primarily used to examine the Interpreter and! or the
BIOS).

7-13

7-14

The width of the output can be controlled; a line may
contain any number of machine words. 15 words fill
a 132-character line, and 9 fill an SO-character line.

When the user enters DUMP, the screen shows a
brief promptline - D(o it and Q(uit, and a lengthy
menu of format specifications which are modifiable
by typing the letter of the item and then entering the
specification.

The Specifications:

A) : the input: a disk file or device.

B) : the number of the block from which dumping
starts. If (A) is a device, this number is not
range-checked.

C) : the number of blocks to print out. If this is too
large, DUMP merely stops when there are no
more blocks to output.

D) : Typing D starts the dump.

E): a toggle: if True, then reads from main memory,
if False, reads from the file in (A).

F): an offset: the dump may start with a byte that is
past byte zero. a <= (F) <= maxint.

G) : the number of bytes to print. a <= (G) <=
maxint.

H) : the output file, opened as a textfile.

I): the width of the output line, in machine words.
1 <= (i) <= 15.

The following six items have three associated
Booleans that must be specified: USE, FLIP, and
BOTH.

USE tells DUMP whether or not to use the format
associated with that item.

FLIP tells DUMP whether or not to flip the bytes
before displaying words in that format.

BOTH tells DUMP to simultaneously display both
Flipped and non-Flipped versions of the line. If
BOTH is True, the value of FLIP does not matter.

J): display each word as a decimal integer.

K) : display each word as hexadecimal digits in byte
order.

L): display each word as an octal integer. This is the
octal equivalent of G).

M) : display each word as ASCII characters in byte
order. Unprintable characters are displayed as
hex digits.

N) : display each word as decimal bytes (BCD) in
byte order.

0) : display each word as octal digits in byte order.

Q) : typing Q returns to EDIT mode. DUMP
remembers the current specifications.

S): put a blank line after the non- Flipped version of
a line.

T) : put blank lines between different formats of a
line.

Both EDIT and DUMP modes remember all their
pertinent information when the other mode is
operating.

7-15

A Note on Prompts

All user-supplied numbers used by PATCH are read
as strings and then converted to integers. Only the
first five characters of the string are considered. If
there are any non-numeric characters in the. string,
the integer defaults to zero. If integer overflow
occurs, the integer defaults to maxint. (Since integer
overflow can only be detected by the presence of a
negative number, integers in the range 65536 ..
98303 will come out modulo 32768.)

The Decoder Utility

7-16

The Decoder utility is called DECODE.CODE. It
provides access, in symbolic form, to all useful items
contained in code files. Among the information
available is the following:

1) Names, types, global data size, and other
general information about all code segments in
the file;

2) INTERFACE section text (if present) for all
UNITs in the file;

3) Symbolic listing of any (or all) P-code
procedures in any (or all) segments of the file;

4) Segment references and linker directives
associated with code segments.

Decoder should be used whenever detailed
knowledge of the internal contents of a codefile are
desired (for instance, an implementor of a
P-machine would decode test programs so that
step-by-step execution of the object code could be
done easily). The Internal Architecture Guide may
be useful reading if detailed use of Decoder is
planned.

Example:

If a program USES a UNIT, the UNIT will be
decoded only if it is within the host file; Decoder will
not search the disk for UNITs to decode. Assembly
routines linked into a higher-level host will not be
disassembled when the host is decoded.

When Decoder is eX(ecuted, the first prompt asks
for the input codefile (the suffix. CODE is
automatically appended if necessary). The next
prompt asks for the name of a listing file to which
Decoder's output may be written. This may be
CONSOLE: (indicated by typing enter), REMOTE:,
PRINTER:, or a disk file. The following prompt is
then displayed:

Segment Guide: Alii), #(dct index),
D(ictionary), O(uit)

The D(ictionary option displays the code file's
segment dictionary. A(ll disassembles all segments.
A number of a dictionary index followed by enter
disassembles a given segment (if present), and Q(uit
leaves the Decoder.

Given the following Pascal program:

1 O:d 1 ($L LlSn.TEXT)
2 l:d 1 PROGRAM DEMO;
3 1 :d 1 VAR I:INTEGER;
4 l:d 2
5 l:d 2 SEGMENT PROCEDURE ADDI;
6 1:0 BEGIN
7 3 1:1 0 1:=1+1;
8 3 1:0 5 END;
9 3 1:0 7

10 2 1:0 0 BEGIN
11 2 1:1 0 1:=50;
12 2 1:1 4 REPEAT
13 2 1:2 4 ADDI;
14 2 1:1 7 UNTIL 1=400;
15 :0 14 END.

7-17

7-18

· .. Decoder would prompt for input and output
filenames. Then, if D(ictionary was typed, the
following would be displayed:

INDEX NAME START SIZE VERSION M_TVPE SG# SEG_TYPE RL FMY NAME or
OSllE SGRF HISG

0 DEMO 2 20 IV.O M_PSELOO 2 PROG_SEG R 1 10 4
1 AOOI 1 14 IV.O M_PSELOO 3 PROC_SEG R DEMO
2 NO_SEG
3 NO_SEG
4 NO_SEG
5 NO_SEG
6 NO_SEG
7 NO_SEG
8 NO_SEG
9 NO_SEG
10 NO_SEG
11 NO_SEG
12 NO_SEG
13 NO_SEG
14 NO_SEG
15 NO_SEG
(e):
Sex: LEAST signilicant byte lirst
Segment Guide: A(II, #(index of dictionary entry. Oluit

. Figure 7-1. Dictionary Entry .

... and Decoding A(ll of this program would produce
the following disassembly:

DATA POOl.; SEGMENT DEMO PROCEDURE 1 BLOCK 2 BLOCK OFFSET 0

0:0013. 0000. 4544.ED 4F4D.DM 2020. 2020. DOlE. 0000.
block # 2 offsel in block 16

OFFSET HEX COOE
0(000): LOCB 50 8032
2(002): SHO 1 A501
4(004): CXG 3 940301
7(007): SLDO 1 30
8(008): LOCI 400 819001

11 (OOB): EQUI BO
12(00C): FJP 4 D4F6
14(00E): CXG 4 2 940402
17(011): RPU 0 9600

DATA POOl.; SEGMENT ADD! PROCEDURE 1 BLOCK 1 BLOCK OFFSET 0

O:OOOd. 0000. 4441.0A 4944.10 2020. 2020. 0015. 0000.
block # 1 offset in block 16

OFFSET HEX CODE
0(000): SLOO 30
1(001): SLOD 30
2(002): AD! A2
3(003): SRO A501
5(005): RPU 9600

Figure 7-2. Disassembled Output.

Decoder's D(ictionary display is a pretty format of
the codefile's segment dictionary. The following
information is given:

INDEX is Decoder's name for each segment.
Individual segments may be disassembled by typing
their number followed by enter; e.g., 0 enter for this
sample would cause only DEMO to be disassembled.

NAME contains the names of each segment.

START contains each segment's starting block
(relative within the codefile).

SIZE is the length (in words) of each segment.

VERSION is the UCSD p-System version number of
the segment.

M_TYPE is the machine type. Usually this is
M_PSEUDO, indicating a P-code segment, but
assembled segments will be designated M_8086.

SEG_ TYPE can be: NO_SEG, PROG_SEG,
UNIT_SEG, PROC_SEG, or SEPRT_SEG.
NO_SEG is an empty segment" slot", PROG_SEG is
a program segment, UNIT_SEG is a UNIT segment,
PROC_SEG is a SEPARATE routine segment, and
SEPRT_SEG is an assembled segment.

The RL columns indicate whether or not the
segment is relocatable, and whether it needs to be
linked. An R indicates a relocatable segment. An L
indicates a segment that must be linked.

If the segment is declared within a program or unit,
then the FMY_NAME column will contain its
"family name", i.e., the name of the program or unit.
Otherwise, the DSIZE SGRF HISG columns are
displayed, and contain respectively the compilation
module's data size, segment references, and
maximum number of segments.

7-19

7-20

At the bottom of the screen, (C): is followed by
whatever copyright notice the codefile may have.

The next line indicates the byte sex of the codefile.

The promptline is the last line on.. the screen.

The first line of the disassembled listing shows the
segment name, procedure number, block number
and block offset of the code for that segment and
procedure.

The next line contains a variable number of words.
Each word is displayed as a hexadecimal number,
most-significant-byte-first, and is followed by a
period. After the period is a character representation
of the word (if printable). The first word is the
PROCEDURE DICTIONARY POINTER, followed
by the RELOCATION LIST POINTER, and then
the eight byte segment name. After the segment
name is a variable number of words. The next-to-Iast
word is the segment's EXITIC, followed by its
DATASIZE. If the codefile is for a
least-significant-byte-first machine, the ordering of
characters may be reversed. The information
represented here is described more fully in the
Internal Architecture Guide for the UCSD p-System.

The disassembled code itself is displayed in blocks.
The OFFSET column shows the offset in bytes from
the front of the procedure (the count is in both
decimal and hex). Then the P-code mnemonic is
displayed, followed by the operands, if any, and
finally the HEX CODE for that particular
instruction.

The OFFSET column corresponds to the fourth
column in a compiled listing.

Jump operands are displayed as offsets relative to thE
start of the procedure, rather than IPC-relative
(IPC = Interpreter program counter). This is to mak

the disassembly more readable. Thus, the operand
shown is the offset of some line; in the example, the
false jump (FJP) on line 12 shows 4, which means line
4 -- the CXG 3 1 instruction; the HEX CODE
indicates that the offset is actually F6 (= -10) (which
is IPC-relative).

If a single segment were to be disassembled (rather
than using the A(ll) command), a line similar to the
following would be displayed:

There is 1 procedure in segment DEMO.
Procedure Guide: A(II), #(of procedure), L(inker

info), S(egment references), I(nterface
text), O(uit)

Selecting A(ll) will disassemble all of the procedures
in the segment (in the example there is only one).
Typing a number of a procedure followed by enter
will disassemble that procedure. L(inker
information, S(egment references and I(nterface
text may also be displayed if they are present.

For example, if the segment were a unit with
interface text and I was typed, the following might
be displayed:

Interface text for segment SOMEUNIT:

PROCEDURE A_PROC;
PROCEDURE ANOTHER PROC(I: INTEGER);
FUNCTION A_FUNCTION:BOOLEAN;
IMPLEMENTATION

If the segment had references to other segments and
S was typed, the following might be displayed:

Segment references list for segment KERNEL:
14: *** 5: SYSCMND
13: CONCURRE 4: DEBUGGER
12: PASCALIO 3: FILEOPS
11: HEAPOPS 2: SCREENOP
10: STRINGOP 0:

7-21

If the segment had linker information and L was
typed, the following might be displayed:

Linker information for segment SOMESEG:

SOMEPROC EXTPROC srcproe=4 nparams=O
kool bit= false

Duplicating Directories

It is a sometimes worthwhile precaution to keep a
duplicate directory on a disk. In certain situations,
this may help rescue directory information that is
lost or garbled, and help restore a disk or the files on
it to some desired state. The Z(ero command of the
Filer will create a duplicate directory, and so will the
MARKDUPDIR utility described below. Once a
duplicate directory has been created, the Filer
maintains it along with the primary directory. The
COPYDUPDIR utility copies a duplicate directory
into the primary directory location.

COPYDUPDIR

7-22

This program copies the duplicate directory of a disk
into the primary directory location. eX(ecute
COPYDUPDIR.It asks for the drive in which the
copy is to take place (4 or 5). If the disk is not
currently maintaining a duplicate directory,
COPYDUPDIR tells you so. If the duplicate is
found, then COPYDUPDIR asks if you are sure you
want to destroy the directory in blocks 2-5. A Y
executes the copy; any other character aborts the
program.

MARKDUPDIR

MARKDUPDIR marks a disk that is not currently
maintaining a duplicate directory so that it will.

The user must be sure that blocks 6 .. 9 are free for
use. If they are not, the user must re-arrange the files
on the disk so as to make blocks 6 .. 9 free. One can
tell if they are available by doing an E(xtended listing
in the Filer and checking to see where the first file
starts. If the first file starts at block 6 or the first file
starts at block 10 but there is a 4-block unused
section at the top, then the disk has not been
marked. If, however, the first file starts at block 10
and there are no unused blocks at the beginning of
the directory, then the disk has already been marked,
and a duplicate directory may already exist.

Example: SYSTEM. PASCAL 121 15·Nov·81 6 Datafile

OR

<unused> 4 6
SYSTEM. PASCAL 121 15·Nov·81 10 Datafile

... both of the above cases indicate disks that have
not been marked. Below is the directory of a
properly marked disk:

SYSTEM. PASCAL 121 15·Nov·81 10 Datafile

7-23

To execute this program, X(ecute MARKDUPDIR.
It will ask which drive contains the disk to be marked
(4 or 5). MARKDUPDIR checks to see if blocks 6-9
are free. If they seem to not be free, it asks if you are
sure they are free? Typing Y executes the mark, any
other character aborts the program. Be sure that the
space is free before marking it as a duplicate
directory, otherwise file information will be
irretrievably lost.

XREF -- The Procedural
Cross-Referencer
Introduction

7-24

The Procedural Cross-Referencer was developed
from an original cross-referencer written by Arthur
Sale. It is a software tool to assist programmers in
finding their way around Pascal program listings of
non-trivial size. In keeping with a basic philosophy
that software tools should have distinct and clear
purposes, the function of the Referencer is to
provide: a compact summary of the procedure
nesting in a program; a list of the procedures and, for
each, the procedures which call them; and a table of
calls made by each procedure along with all non
non-local variable references. It thus provides
information about the inter-procedural
dependencies of a program.

Referencer's Output

The Referencer produces five tables and an optional
warnings file:

1) Lexical Structure Table: Static procedure
nesting.

2) Call Structure Table: Procedures and the
procedures that they call.

3) Procedure Call Table: Procedures and the
procedures that call them.

4) Variable Reference Table: Each procedure and
the variables it references.

5) Variable Call Table: Each variable and the
procedures which reference or modify it.

6) Warnings file { if desired l: Indicates possible
problems in the source program.

Lexical Structure Table

The first table displays the lexical structure and the
procedure headings. (The term procedure means
procedure, function, process or program in this
document unless otherwise stated.) As the input
program is read, each heading is printed out with the
line numbers of the lines in which it occurs. The text
is indented so as to display the lexical nesting. (This
indentation must sometimes be crunched to fit on an
output line.)

Referencer considers a procedure heading to be any
text between the words Procedure, Function,
Process, or Program, and the following semicolon.
This isn't the Pascal definition, but is more useful in
debugging programs. If these reserved words are
embedded within comments, they are ignored.

7-25

7-26

The Call Structure Table

The second table is produced after the program has
been scanned completely, and is the result of
examining the internal data. For each procedure
listed in alphabetical order, the table holds:

• The line-number of the line on which its
heading starts.

• Unless it was EXTERNAL or formal (and had no
corresponding block), the line number of the
BEGIN that starts its statement-part.

• The characters ext if the procedure has an
external body (declared with a directive other
than FORWARD), the characters fml if it is a
formal procedural or functional parameter, or
eh? if it is declared forward with no associated
forward block or BEGIN. If a number appears,
the procedure has been declared FORWARD
and this is the line number of the line where the
block of the procedure begins (i.e., the second
part of the two-part declaration).

• A list of all user-declared procedures directly
called by this procedure. (In other words, their
call is contained in the statement-part.) This list
is in order of occurrence in the text; a procedure
is not listed more than once.

The Procedure Call Table

This is a list of procedures, in alphabetical order,
and, for each procedure, the procedures which call
it.

Variable Reference Table

This is a list of procedures, in alphabetical order, and
for each procedure, the variables which that
procedure examines or modifies in any way. If the
variable is not local to the procedure in question,
then the procedure in which it was declared is listed.

Variable references are shown in three forms:

variable name ::= a local variable

procedure name variable name ::= a variable defined
in procedure which is used but not modified.

procedure name * variable name ::= a variable
defined in procedure which is modified.

Variable Call Table

This table is of the form:

procedure name variable name: procedure name
[procedure name]

The first procedure name is the procedure which
owns the variable name, and the following
procedure(s) either examine or modify that variable.

Warnings F He

A file of warning messages. There are three types of
warnings:

Symbol may be undeclared line# xxxx.

Symbol may not be initialized line# xxxx.

Not standard, Nested comments line# xxxx.

7-27

Symbol is an identifier, and xxxx is the number of
the line on which it occurs.

Referencer only catches initializations done by
replacement statements (:=), so variables which are
initialized by procedure calls (including READ, etc.)
will be flagged as possibly uninitialized. There may
be a surplus of such warning messages, depending on
the program.

The Not standard, Nested comments warning refers
to the nesting of comments of different bracket
types: (* like this { verstehen Sie? } *), which is
accepted by the UCSD Pascal Compiler, but not the
current ISO draft standard.

The warnings file may only be generated if the
Variable Reference Table is also generated.

Using Referencer

7-28

When the Referencer is run, it should be on the same
disk as the program it is analyzing.

The Referencer has options that are user-defined at
runtime. When the user eX(ecute's XREF,
Referencer prompts for answers for the following
questions:

Length of the output line [40 .. 132]:
This is the length of the output line for the
terminal/printer that you have available.
Suggested output width is 80 characters.

Input File:
The name of the text file that contains the
Pascal program to be Referenced. If the
specified file cannot be successfully opened, the
prompt is repeated until the user either types a
valid input file name, or simply enter. Typing an
empty filename (enter) exits Referencer.

Do you want intrinsics listed? [yin]:
This allows identifiers such as WRITELN,
PRED, GET, to be accepted as valid symbols.
These are then cross-referenced as procedures
listed outside the lexical nesting and therefore
are not expected to have a BEGIN associated
with them. This includes the special UCSD
intrinsics listed in the UCSD Pascal Users
Manual.

Do you want initial procedure nestings? [yin]:
This causes the Lexical Structure Table to be
generated. This table shows the procedure
headings and, for each procedure, the list of
procedures which it calls.

Do you want procedure called by trees? [yin]:
This option is offered only if the Lexical
Structure Table is desired. A y causes both the
Call Structure Table and the Procedure Call
Table to be generated. The Procedure Call
Table lists each procedure, and all of the
procedures which call it. (A warning is displayed
ifless than 10000 words of memory are available
to generate these trees; no provision is made for
possible stack overflow.)

Do you want variables referenced? [yin]:
A y causes the Variable Reference Table to be
generated.

Do you want variable called by trees? [yin]:
A y causes the Variable Call Table to be
generated.

Do you wish warnings? [yin]
Y causes the Warnings File to be generated.
This option is offered only if the preceding
selection was made.

7-29

Please enter the name of the warning file:
If warnings are selected, then you have the
option of directing them to any file. If the file is
a disk file, the name should have .TEXT
appended to it.

Output File:
The name of the file to which you would like the
output directed. If the file is a disk file, the name
should have .TEXT appended to it.

The referencer expects to read a complete and
syntactically correct Pascal program. Although
results with syntactically incorrect programs are not
guaranteed, Referencer is not sensitive to most
flaws. It cares about procedure, function, and
program headings, and about proper matching of
BEGINs and CASEs with ENDs in the
statement-parts.

Referencer does not try to format procedure and
function headings; it leaves them as they were
entered in the program, except for indentation
alignment.

The tables are all as wide as the output line length (as
specified by the user). Eighty characters is usually
sufficient. For large programs, the first table
(Lexical Structure Table) will be clearer with a larger
print line.

Limitations

7-30

As mentioned before, the behavior of Referencer
when presented with incorrect Pascal programs is
not guaranteed. However, it has been designed to be
fairly robust, and there are few flaws that will cause it
to fail. The most critical features, and therefore
those likely to cause failure if not correct, are the
general structure of procedure headings, and the
correct matching of an END with each BEGIN or

CASE in each statement-part (since this information
is used to detect the end of a procedure).

If an error IS explicitly detected (and Referencer has
very few explicit error checks and minimal
error-recovery), a message is printed out that looks
like this:

FATAL ERROR· No identifier after
prog/proc/func· At Line No. ###

The line number displayed (###) is where the
program ran into trouble; like all diagnoses this does
not guarantee that the correct parentage is ascribed
to the error. Processing continues for a while despite
the fatal error, but only the Lexical Structure Table
is produced.

Referencer is believed to accept standard Pascal
programs, UCSD Pascal Programs, and UCSD Units,
and process each correctly.

The Debugger
This section describes the Debugger utility. The
Debugger can be used as an aid to debugging
compiled programs. It can be invoked from the main
System promptline, or during the execution of a
program (when a breakpoint is encountered).
Memory may be displayed and altered, P-code may
be Single-stepped, Markstack chains may be
displayed and traversed, and so forth.

There are no promptlines explaining the Debugger
commands because such prompts would detract
from the information displayed by the Debugger
itself. (The commands are detailed in the sections
below.) When a command is entered, there are
usually several prompts which may ask for further
information such as a segment name, variable offset

7-31

7-32

etc. If a space is typed for any of these, the command
is exited. The exception to this is the Breakpoint
command as described below. If an inappropriate
response is given to any prompt (such as proc Num?
3000) then the response will not be accepted.

In order to properly use the Debugger, it is necessary
to be familiar with the UCSD P-machine
architecture. The user should understand the P-code
operators, Stack usage, variable and parameter
allocation, etc. These topics are discussed in the
Internal Architecture Guide. It is possible to cause
the System to die if the Debugger is used incorrectly.
Also, in order to use the Debugger, it is useful to
have a compiled listing of the program being
debugged. This listing is helpful in determining
P-code offsets etc., and should be current.

The Debugger can be used more easily if the code
being debugged is compiled with the $D+ option
(the PASCAL Reference for the UCSD p-System
describes compiler options in detail). The $D option
(which defaults to $D-) instructs the compiler to
output symbolic debugger information for those
portions of a program which are compiled with $D+
turned on. Variables within a given routine may be
specified by name (rather than data segment offset
number) if at least one statement within that routine
is compiled $D+. Breakpoints may be specified by
line number (rather than P-code offset number) for
all statements covered by the $D+ option. Once a
program is debugged, however, it should be
recompiled without symbolic debugger information.
This is because that information increases the size of
the codefile.

Invoking and Exiting the Debugger

The Debugger may be entered from the main System
promptline by typing D. Whenever the debugger is
entered in a fresh state, the prompt, DEBUG
[version #], will appear and a (will be displayed on
the second line. If the Debugger is entered in a
non-fresh state, only the (will appear. Being in a
fresh state means that the Debugger was not
previously active and no breakpoints are currently
enabled.

The Debugger may be exited by typing Q(uit,
R(esume or S(tep. If the Debugger is exited using
the Q(uit option, it will be disabled. If it is later
re-invoked, it will be in a fresh state. If the Debugger
is exited using the R(esume option, execution will
continue from where it left off and the Debugger will
still be active. If it is then re-invoked, it will be in a
non-fresh state. If the Debugger is exited by using
the S(tep option, a single P-code operator will be
executed and then the Debugger will be re-invoked
(in a non-fresh state).

Breakpoints are handled by typing B(reakpoint.
After B is typed, one of the following characters
must be typed: S(et, R(emove or L(ist.

Note: There are several two-character
commands like this which are used in the
Debugger. If, after typing the first character, it
is decided to exit from that command, simply
type space and the main mode of the Debugger
will be re-invoked.

If S is typed (after the B) then a breakpoint may be
set. The user may have, at most, five breakpoints
numbered 0 through 4. The first prompt is
Set Break#?: a digit 0 . .4 should be typed followed by
space. The next prompt is Segname?: the name of the
desired segment should be typed followed by space.

7-33

7-34

Then Procname or #? appears: the number of the
desired procedure or the first eight characters of the
valid procedure name should be typed followed by
space. If a procedure number is entered, then
Offset #? appears: the desired offset within the
procedure should be typed followed by space. If a
procedure name is entered after the Procname or #
prompt, the following line will be displayed:
First # _last # _ Line #? The underlines will actually
be numbers which indicate the first and last line
numbers. The desired line number within the
specified range should be entered. (Note: The
"First # _ Last # _" information is displayed only if
symbolic debugger information is found). A
breakpoint is then set and if, during execution
resumption, that segment, procedure and offset are
encountered, the Debugger will be automatically
re-invoked.

When setting a breakpoint, a space may be typed for
the break number, segment name etc. Rather than
exiting the breakpoint command (as would happen
with other commands), the previous breakpoint's
information will be used. For example, if it is desired
to break in the same segment and procedure but
with a different offset, a space may be typed for
everything except the offset.

If, after typing B(reakpoint, an R is typed, a
breakpoint may be removed. The prompt
Remove break #? appears. The number of the
breakpoint, 0 . .4, should be typed followed by space:
the indicated breakpoint is removed.

If after typing B(reakpoint, an L is typed, the current
breakpoints are listed.

The Debugger may be memlocked or memswapped
(see the descriptions of those intrinsics) by using the
M(emory command at the outer level. ML will
memlock and MS will memswap the Debugger.

Displaying and Altering Memory

By typing V(ar, data segment memory may be
displayed. This is another two-character command
and may be followed by G(1obal, L(ocal,
I(ntermediate, E(xtended or P(rocedure. If G or L is
typed, the prompt Varname or Offset #? appears: the
desired offset into the data segment or variable name
should by typed. (Note: Only Offset # appears if
symbolic debugger information cannot be found.) If
I is typed, Delta Lex Level? is also prompted (when
an offset number is input). IfE is typed, the prompts
Seg # and Offset # are displayed (extended variables
may not be specified symbolically). If P is typed, an
offset within a specified procedure may be displayed:
Segment name?, Procname or #? and Varname or
Offset #? are all prompted in sequence.

When any of the non-symbolic options are used, a
line similar to the following is displayed:

(1) S=INIT P#l VO#l 2C1A: DB 05 5343
41 4C 43 61 -SCALCa

... in this example, a Local (I) segment of memory is
displayed. The segment is INIT, procedure 1,
variable offset 1 at absolute hex location 2C1A.
Following this, eight bytes are displayed, first in
HEX and then in ASCII (a - indicates that the
character is not a printable ASCII character).

If the desired variable had been entered symbolically,
the same line might appear:

(I) S=INIT P=FILLTABL V= TABLE1 2C1 A:
DB 05 53 43 41 4C 4361 -SCALCa

It is possible to change the frame of reference from
which the global, local and intermediate variables
are viewed. This can be done by using the C(hain
command. After C is typed the following three

7-35

options are available: U(p, D(own and L(ist. IfL(ist is
invoked, all of the currently existing mark stacks will
be displayed, with the most recently created one
first. An entry in the list will resemble the following:

(ms) S=HEAPOPS P#3 0#23 msstat=341C
msdYIl=FOAO mSiplPOl DA msenv=FEE8

If the U(p or D(own options are used, the frame of
reference moves up or down one link and variable
listings (using the V command) change accordingly.

After a line has been displayed by the V(ar command,
a + or - may be typed. This displays the succeeding or
preceding eight bytes of memory. If a/ is typed, then
the line displayed above it may be altered in hex
mode. When altering in hex mode, any characters
which are to be left unchanged may be skipped by
typingspace. In the ASCII mode, any characters to be
left unchanged may be skipped by typing enter.

A text file may be viewed from the debugger by
typing F(ile. The Filename? First line #? and Last
line #? prompts are then displayed. This command
will list as many lines as possible in the window
between first line and last line of the indicated file.

Further Single-Stepping Options

7-36

When the single-stepping mode (described in
"Invoking and Exiting the Debugger") is used, one
P-code operator is executed at a time. When control
is returned to the Debugger, it displays various
pieces of information if they are desired. In order to
select what will be displayed, the E(nable mode
should be used. After typing E, the following options
are available: R(egister, P(code, M(arkstack,
A(ddress and L(oad. Any or all of these options may
be enabled at the same time.

If R(egister is enabled, a line such as the following
will be displayed after each single step:

(rg) mp=F082 sp=F09C erec=FEE8 se0=9782
ipc=Ol C3 tib=0493 rdyq=2EBC

If P(code is enabled, a line such as the following will
be displayed after each step:

(cd) S=HEAPOPS P#3 0#23 LLA 1

IfM(arkstack is enabled, a line such as the following
will be displayed after each step:

(ms) S=HEAPOPS P#3 0#23 msstat=347C
msdyn=FOAO msipc=OlDA msenv=FEE8

If A(ddress is enabled, a line such as the following will
be displayed after each step:

(a) S=HEAPOPS P#3 0#23 2C1A: DB 05 53
4341 4C 43 61 ·SCALCa

In order to initialize this address to a given value,
there is an A(ddress mode at the outer level. When A
is typed, Address? appears. An absolute address, in
hex, should be typed in. At this point, eight bytes are
displayed starting at that address. Also, that address
is now displayed if the E(nable A(ddress option is on.

Enabling E(verywill cause all of the above options to
be enabled.

The D(isable mode disables any of the options just
described. The L(ist mode lists any of the above
options.

Also, at the outer level, there is a P(code option. This
option asks for Segmen t name? , Procname or #? , and
either First#_ Last#_ Start Line #?, End Line#? or
Start Offset #?, End Offset #? This command

7·37

disassembles the indicated portion of code. This may
be useful during single-step mode if it is desired to
look ahead in the P-code stream. This mode may be
exited before it reaches the ending offset by typing
break -- control returns to the Debugger.

Example of Debugger Usage

7-38

Suppose the following program is to be debugged:

Pascal Compiler IV.O

1 0 O:d 1 {$L LlST.TEXT}
2 2 l:d 1 PROGRAM NOLDEBUGGED;
32 l:dl VAR I,J,K:INTEGER;
42 1:d4 Bl,B2:BOOLEAN;
52 1:00 BEGIN
62 1:10 1:=1;
72 1:13 J:=l;
8 2 1:16 IF K <> 1 THEN WRITELN

('Whats wrong?');
9 2 :00 END.

End of Compilation.

First we enter the Debugger and set a breakpoint at
the beginning of the IF statement:

(BS) Set break #? 0 Segname? NOTDEBUG
Procname or #? 1 Offset #? 6

(EP)
(R)

After setting the break point we enable P-code (EP)
and resume (R). Now we execute the program
above, and when it reaches offset 6, the Debugger is
entered. We single-step twice:

Hit break #0 at S=NOTDEBUG P#l 0#6
(cd) S=NOTDEBUG P#l 0#6 SLDOl
(cd) S=NOTDEBUG P#l 0#7 SLDCl
(cd) S=NOTDEBUG P#l 0#8 NEOUI

We see that our first single-step did a short load
global 1. (Note: This put K on the stack. K is not
global 3; I is global3,J is global 2, and K is global 1.
Every string of variables such as IJ,K is allocated in
reverse order. Boolean B1, which follows, is at offset
5, and B2 is at offset 4. Parameters, on the other
hand, are allocated in the order in which they
appear.) The second single-step did a short load
constant 1 onto the stack. Now we are about to do an
integer comparison «». But that is where our error
shows up, so we decide to look at what is on the stack
before doing this comparison:

(LR)
(rg) mp:=EB62 sp:=EB82 eree= ...
(A) Address? EB82
(8) EB82: 01 00 C5 14 ...

We list the registers and then look at the memory
address that sp points to. What we discover is a 1 on
top of the stack (01 00: this is a
least-significant-byte-first machine) followed by a
word of what appears to be garbage. This leads us to
suspect that K was not initialized. Looking over the
listing, we quickly realize that this is the case.

Summary of the Commands

D(ebug

Q(uit

R(esume

S(tep

Enters Debugger from main
promptline.

Quits the Debugger, fresh state if
re-entered.
Exits Debugger, Debugger remains
active, non-fresh.
Single steps P-code and returns to
Debugger.

7-39

B(reak point Segment, procedure and offset
must be specified.

S(et Allows a break point (0 through 4
to be set.

R(emove Allows a break point to be remove<
L(ist Lists current break points.

V(ariable
G(1obal Displays global memory.
L(ocal Displays local memory.
I(nter Displays intermediate memory.
P(roc Displays data segment of given

procedure.
E(xtended Displays variables in another

segment.

C(hain Changes frame of reference for
V(ariable command.

U(p Chains up mark stack links.
D(own Chains down mark stack links.
L(ist Lists current mark stacks.

E(nable Enables the following to be
displayed during single step.

D(isable Disables the following from being
displayed.

L(ist Lists the following.
R(egister The registers: mp, sp, erec, seg, ipc

tib, rdyq.
P(code Current P-code mnemonic.
M(arkstack Mark stack display.
A(ddress A given address.
E(very All of the above.

A(ddress Displays a given address.

P(code Disassembles a given procedure.

M(emory
L(ock Memlocks the Debugger.
S(wap Memswaps the Debugger.

F(ile Allows viewing of text files.

7-40

The RECOVER Utility

RECOVER is a utility which attempts to recreate the
directory of a disk whose directory has accidentally
been destroyed. It is shipped as RECOVER.CODE
on the Utility diskette.

RECOVER displays several yes/no prompts. These
must be answered with upper-case letters:
lower-case letters are ignored.

Following is a list of RECOVER's prompts, with a
description of appropriate responses:

RECOVER· Version IV.O.g
ENTER TODAY'S DATE MM·DD·YY

... the user should enter a valid date, followed by
enter. Entering an incorrect date may cause
RECOVER to abort with a value range error.
Once a hyphen has been typed, it may not be
backed over -- previous portions of the date may
not be changed. The date that is entered is
assigned to any files that RECOVER finds,
which were not in the directory.

USER'S DISK IN DRIVE:

.. , the user should type the number of the drive
which contains the disk to be RECOVERed
(Le., a number in [4,5,9 .. 12] followed by enter).

USER'S VOLUME 10:

... the user should type a volume name, which is
recorded on the disk. The name should be in
upper-case letters. Lower-case letters are
accepted, but then the volume name is recorded
with lower-case letters, which contradicts
System standards.

7-41

7-42

HOW MANY BLOCKS ON DISK?

... this prompt is only displayed if the number of
blocks recorded in the (damaged) directory is
not a valid number. On the IBM Personal
Computer, each disk contains 320 blocks.

At this point, RECOVER reads each entry in the
disk's directory, and checks it for validity. Entries
with errors are removed. Entries that are valid are
saved, and RECOVER displays: ENTRY.NAME
found (or something similar).

When all the directory entries have been checked,
and either saved or discarded, RECOVER prompts:

Are there still IMPORTANT files missing
(YIN)?

... responding N causes RECOVER to prompt:

GO AHEAD AND UPDATE DIRECTORY (YIN)?

... an N exits RECOVER without doing anything. A
"Y" causes the reconstructed directory to be saved.
RECOVER displays:

WRITE OK

... and then terminates.

On the other hand, a Y response to the" Are there
still IMPORTANT files missing?" prompt causes
RECOVER to search those areas of the disk still not
accounted for by the (partially) reconstructed
directory. Textfiles and codefiles are detected, and
appropriate directory entries created for them. If
RECOVER cannot determine the original name of a
textfile it has found, it creates a directory entry for
DUMMY##.TEXT or DUMMY##.CODE (where
the ## are two unique digits). If a codefile has a
PROGRAM name, it is given that name; if this would

create a duplicate entry in the directory, digits are
used (for example, RECOVER restores first
SEARCH. CODE, and then SEARCHOO.CODE).

Data files cannot be detected by RECOVER, since
their format is not System-defined. To recover data
files, a user must resort to the PATCH utility
(described in this chapter).

If RECOVER restores a textfile with an odd number
of blocks, this probably means that the end of the
textfile was lost: the user should use the Editor to
make sure.

RECOVERed codefiles should be L(inked again, if
that was originally necessary.

When RECOVER has finished its pass over the
entire disk, it prompts:

GO AHEAD AND UPDATE DIRECTORY (YIN)?

... and so forth, as described above.

The Tape Utility
The tape utility is called TAPE. CODE. It is used to
transfer a file between cassette tape and disk. When
TAPE is eX(ecuted it will ask whether a transfer is to
be made to tape or from tape with the following
prompt:

R(ead from tape, W(rite to tape, O(uit

It will then prompt for the file name:

Filename?

This file name will either be the file to be transferred
from disk to tape, or it will be the name the file will
be given when it is read from tape and placed on disk.
At most one file may reside on a cassette tape.

7-43

The Print Spooler

7-44

The utility SPOOLER.CODE makes use of the
Operating System unit SPOOLOPS. Within this
unit there is a process called Spooltask. Spooltask i1
started at boot time and runs concurrently with th(
rest of the UCSD p-System. Spooltask looks for a
one block file on disk called SYSTEM. SPOOLER.
This file, if it exists, is a queue of filenames.
Spooltask will send these files to the Printer as the:
user is running the p-System normally.

Utility SPOOLER CODE interfaces with
SPOOLOPS and uses routines within it to generate:

. and alter the print queue within SYSTEM. SPOOLER
When SPOOLER is eX(ecuted, the following
promptline appears:

Spool: P(rint, Olelete, L(ist, S(uspend, R(esume,
A(bort, e(lear, O(uit

P(rint will prompt for the name of the file to be
printed. This name will then be added to the queue.
If SYSTEM. SPOOLER does not exist, it will be
created. In the simplest case, P(rint may be used to
send a single file to the printer. At most 21 files may
be placed in the print queue.

D(elete will prompt for a file name to be taken out of
the print queue within SYSTEM. SPOOLER All
occurrences of that file name will be taken out of the
queue.

L(ist displays the files currently within the queue.

S(uspend temporarily halts the printing of the
curren t file.

R(esume continues the printing of the current file
after a S(uspend. R(esume also starts printing the
next file in the queue after an error or an A(bort.

A(bort permanently stops the printing process of
the current file and takes it out of the queue.

C(lear deletes all file names from the queue.

Q(uit exits the SPOOLER utility and starts
transferring files to the printer.

If an error occurs (e.g. a nonexistent file is specified
in the queue), the error message will appear only
when the p-System is at the main system promptline.
If necessary, SPOOLOPS will wait until the user
returns to the outer level.

Program I/O to the printer may run concurrently
with printer I/O by SPOOLOPS. SPOOLOPS will
finish the current file and then turn the printer over
to the user program. (The user program will be
suspended as it waits for the printer.) The user
program should only do Pascal (or other high level)
writes to the printer. If the user program does
printer I/O using UNITWRITE, the I/O will be sent
immediately and will be randomly interspersed with
the I/O going on in the background.

The Native Code Generator

The Native Code Generator is called
CODEGEN.CODE. It inputs an executable codefile
and produces another executable codefile. The
output file, however, contains a mixture of P-code
and 8086/88/87 Native Code (N-code). The Code
Generator selectively translates embedded sections
of the P-code input file into equivalent N-code.

Generally, N-code executes much more quickly
than P-code, but requires more memory space. Time
critical code may take fuller advantage of the
processor's speed if it is translated into N-code.

7-45

7-46

The selection of which code is translated into native
code has been left under user control. The user
specifies what code he wishes translated to N-code
by enclosing the desired sections with the
compile-time switches $N+ and $N-. When the
compiler encounters the $N+ option, it will begin
emitting additional P-codes containing information
necessary for the Code Generator to perform its
translation. When it encounters the $N- options, it
will discontinue generation of the additional
P-codes. The default setting for this compiler option
is $N-.

An entire routine (Procedure, Function, etc.) is the
smallest unit that can be translated into Native Code
at one time (in the current implementation). The
$N+ must occur before the first BEGIN within that
routine. The Code Generator will not generate any
Native Code unless at least one entire routine is
included between a $N+ and the corresponding $N-.

The object code produced by the compiler from
source containing the $N+ option is executable like
any other P-code file. The only difference is a slight
increase in codefile size due to the extra P-code
hooks placed there for possible code generation.

If there are any references to assembly language
routines within a codefile, these routines must be
linked in before that codefile may be processed
through the Code Generator (see the Assembler
Reference for the UCSD p-System manual for
information about linking assembly language
routines into codefiles).

The Code Generator will not necessarily translate all
P-codes within the section(s) of code specified by the
user into N-code. Due to the unwieldy nature of
their machine code equivalents, some P-codes will
be left in their original P-code form. Also, only those
sections of P-code which encompass an entire
Routine (Procedure, Function or Process in Pascal)
will be translated.

The Code Generator will accept codefiles generated
by any of the compilers released as part of the UCSD
p-System. This includes the Pascal and FORTRAN
compilers. The Code Generator will only fail to
generate an output file if the input file is not a valid
executable codefile.

The Code Generator will produce an object codefile
whose execution behavior is identical to that of the
input codefile, except for differences with respect to
execution speed, object code size, or
implementation dependencies. An example of an
implementation dependency might involve
conditional expression evaluation. If a loop were
constructed in the source program that checked the
value of a variable and used the variable to index into
an array in the same expression, it would be possible
for the P-code object file to give a value-range error
for some value of the variable. The corresponding
N-code however, might short-circuit the array
indexing and subsequent value-range check if the
first test failed.

Concurrency is implemented in such a way that
P-codes are uninterruptable operations. If a
p-machine interrupt occurs during the execution of
a P-code, the event is queued until the P-code
finishes. In this respect, any embedded N-code in the
code file behaves as if it were a single P-code. It is the
case that if the user has any assembly language
routines bound into a codefile, then the execution of
an entire routine appears to the p-machine to be a
single P-code. Any p-machine interrupts occurring
during the execution of the assembly routine would
be queued until the end of the routine, or the
beginning of the next P-code. Since the Code
Generator does not, in general, translate all
P-codes in the selected sections of the input file into
N-code, it is typically a much smaller sequence of
N-code that appears as a single P-code to the
p-machine. If, however, the user desires to force
more frequent or specific limits on the size of these

7-47

N-code sequences (to allow for more frequent event
checking), the $N- options followed immediately by
the $N+ option will enforce a brief return to P-code.

Finally, the Code Generator has an option to give an
assembly language format listing of all routines for
which any translation has been performed.

The TV Adjust Utility

7-48

Utility TV ADJUST modifies the video parameters of
the IBM Personal Computer to compensate for
differences among commercial TV consoles.
Depending on the manufacturer and the condition
of the TV set, some of the first three columns of
characters may not be visible when the Personal
Computer is connected to it. To correct the problem
the TV ADJUST utility may be run. When executed
it displays a column ruler across the display. Hitting
the left and right cursor control arrows reposition
the display relative to the TV screen. Typically the
user should type the right arrow until the first
column becomes visible. If the display is moved too
far right, the left arrow can be used to move it back.
Once the display is properly positioned, the enter key
will terminate execution and save the new display
parameters. The parameters remain in memory until
the system is powered off or re-booted. If your TV
set requires the use of the TVADJUST utility it will
be necessary to execute it every time the system is
booted.

If the display is positioned too far to the left, the
synchronization of the display may be lost and the
picture can start to roll. To correct this problem,
move the display right until the rolling ceases.

The SETBAUD Utility
The SETBAUD utility sets the baud rate of the
REMIN and REMOUT ports in bits per second.
When the utility is run, it displays a list of the
available baud rates. You select the baud rate by
typing the integer associated with the desired rate
and then hitting enter.

The Printer Configuration Utility
The PRNCONFIG utility sets the various printer
options available on the IBM Personal Computer
printer. The options are:

• H)orizontal Tabs

• V)ertical Tabs

• C)hars/Line

• ? (displays remaining prompts)

• L)ines/Inch

• F)orm Length

• Q)uit

H)orizontal and V)ertical Tabs are set by first typing
"H" or "V" and then responding to the next prompt
by typing in a Tab List. A Tab List is a list of integers
(representing columns or rows) separated by
commas.

If "C" for C)haracters per line is typed, two options
will be displayed:

A) 80 columns, B) 132 columns

"A" or "B" should be typed to select one of these.

7-49

If "L" is typed, the L)ines per inch may be chosen
from among the following options:

A) 6 Ipi, B) 8 Ipi, C) 10 Ipl

"A" "B" "c" h ld b ty d , , or s ou e pe.

If"F" is typed, the number oflines per page may be
set by responding to the prompt:

Enter lines per page:

Type in the desired number followed by enter.

"0:' will quit the Printer Configuration Utility and
return to the main p-System promptline.

The Disk Format Utility

7-50

The DISKFORMAT Utility formats a disk so that it
may be used by the UCSD p-System on the IBM
Personal Computer. When it is executed the
following promptline is displayed:

Enter unit number of disk to be
formatted (4 .. 5)

"4" or "5" should be typed indicating drive #4: or
#5:. If you type "5", the next prompt is:

Insert disk in unit 5 and press
<enter> ...

When this is done, the formatting process, which
takes several seconds, will begin. This utility does
not create a p-System directory on the newly
formatted disk. To create a directory, the Z(ero
command of the Filer should be used.

SETUP
SETUP is provided as a System utility (on the Utility
disk) called SETUP. CODE. SETUP changes a file
that contains details about your terminal, and a few
miscellaneous details about the System in general.
SETUP can be run, and the data changed, as many
times as you desire. After running it, it is important
to reboot (or I(nitialize) so that the System will start
using the new information. It is also important to
back up old data.

The file that SETUP uses to store all of this
information is called SYSTEM.MISCINFO. Each
System initialization loads it into main memory.
New versions ofSYSTEM.MISCINFO are created by
SETUP, and are called NEW.MISCINFO. Backups
are created by renaming or copying
SYSTEM.MISCINFO with the Filer.

SYSTEM.MISCINFO contains three types of
information:

1) Miscellaneous data about the System.

2) General information about the terminal.

3) Specific information about the terminal's
various control keys.

Running SETUP

SETUP is a utility program, and is run like any other
compiled program: type X for eX(ecute, and then
answer the prompt with SETUP enter. It will display
the word INITIALIZING followed by a string of
dots, and then the prompt:

SETUP: C(HANGE T(EACH H(ELP
O(UIT [version]

7-51

7-52

To invoke any command, just type its initial letter.

H(ELP gives you a description of the commands that
are visible on any promptline where it appears.

T(EACH gives a detailed description of the use of
SETUP. Most of it is concerned with input formats.
They are mainly self-explanatory, but if this is your
first time running SETUP, you should look through
all of T(EACH.

C(HANGE gives you the option of going through a
prompted menu of all the items, or changing one
data item at a time. In either case, the current values
are displayed, and you have the option of changing
them. If this is your first time running SETUP, the
values given are the system defaults.

Q(UIT has the following options:

• H(ELP),

• M(EMORy) UPDATE, which places the new
values in main memory,

• D(ISK) UPDATE, which creates
NEW.MISCINFO on your disk for future use,

• R(ETURN), which lets you go back into SETUP
and make more changes, and

• E(XIT), which ends the program and returns
you to the System promptline.

Please note that if you have a NEW.MISCINFO
already on your disk, D(ISK) UPDATE will write
over it.

"Miscellaneous Notes for SETUP" contains a
detailed description of the data items in
SYSTEM.MISCINFO.

If you use SETUP to change your character set, don't
underestimate the importance of using keys you can
easily remember, and making dangerous keys like
BREAK and ESCAPE hard to hit.

Once you have run SETUP, you should always
backup SYSTEM.MISCINFO under some other
name (e.g. OLD.MISCINFO), then change the name
of NEW.MISCINFO to SYSTEM.MISCINFO and
reboot or I(nitialize. It is indeed possible to update
to memory alone, and go on using the System
without rebooting, but the results may not always be
what you wanted, and the backup security is more
risky. In general, M(EMORY) UPDATE is a Q(UIT
option that you will use only when experimenting. If
you do get into a bind, remember that the current
in-memory SYSTEM.MISCINFO can be saved by
running SETUP and doing a D(ISK) UPDATE
before you change any data items.

When you reboot or I(nitialize, the new
SYSTEM.MISCINFO will be read into main memory
and its data used by the System, provided it has been
stored under that name on the System disk (the disk
from which you boot).

Miscellaneous Notes for SETUP

The STUDENT bit, one of SYSTEM.MISCINFO's
data items, should always be set to FALSE.

The HAS 8510A bit is always FALSE.

HAS WORD ORIENTED MACHINE is always
FALSE.

HAS BYTE FLIPPED MACHINE is FALSE.

7-53

SETUP and the Manual refer to PREFIXED
[DELETE CHARACTER]. This refers to the
backspace function: read it as PREFIXED
[BACKSPACE]. It will be FALSE.

Your terminal should be set to run in full duplex,
with no auto-echo.

Don't use terminal functions that do a "Delete and
close up" on lines or characters -- not all terminals
have these functions, and so they are supplied
through the Screen Oriented Editor's software.

In general, if SETUP prompts for a fea ture that your
terminal does not have, set the item to NUL (zero).

The Data Items in SYSTEM.MISCINFO

The information in this section is very specific, and
you may skip it on first reading. If you have a
question about a certain data item, look in this
section. Default values are shown, and sometimes
our recommendations. The items are ordered
according to SETUP's menu.

Please note that SETUP frequently makes a
distinction between a character which is a key on the
keyboard, and a character which is sent to the screen
from the UCSD p-System.

There are a few characters which you cannot change
with SETUP. These are CARRIAGE RETURN
(enter), LINE FEED (If), ASCII DLE (Ctrl-P), and
TAB (Ctrl-I). ASCII DLE (data link escape) is used
as a blank compression character. When sent to an
output textfile, it is always followed by a byte
containing the number of blanks which the output
device must insert. If you try to use Ctrl-P for any
other function, you will run into trouble.

BACKSPACE

When sent to the screen, this character should move
the cursor one space to the left. Default: ASCII BS.

CODE POOL BASE[First Word]

Default is O. (See" Extended Memory" in the
Operations Guide (Part 1) of this manuaL)

CODE POOL BASE[Second Word]

Default is O.

CODE POOL SIZE

Default is 32767. (See "Extended Memory" in the
Operations Guide (Part 1) of this manuaL)

EDITOR ACCEPT KEY

This key is used by the Screen Oriented Editor.
When pressed, it ends the action of a command, and
accepts whatever actions were taken. Default: ASCII
ETX (Ctrl-C).

EDITOR ESCAPE KEY

This key is used by the Screen Oriented Editor. It is
the opposite of the EDITOR ACCEPT KEY - when
pressed, it ends the action of a command, and
ignores whatever actions were taken. Default and
Suggested: ASCII ESC (Ctrl-D.

7-55

EDITOR EXCHANGE-DELETE KEY

This key is also used by the Screen Oriented Editor.
It operates only while doing an eX(change, and
deletes a single character. Default: ASCII p.

EDITOR EXCHANGE-INSERT KEY

Like the EDITOR EXCHANGE-DELETE KEY, this
only operates while doing an eX(change in the
Screen Oriented Editor: it inserts a single space.
Default: ASCII o.

ERASE LINE

When sent to the screen, this character erases all the
characters on the line that the cursor is on. Default:
ASCII L.

ERASE SCREEN

When sent to the screen, this character erases the
entire screen. Default: ASCII E.

ERASE TO END OF LINE

When sent to the screen, this character erases all
characters from (and including) the current cursor
position to the end of the same line. Default: ASCII
K.

ERASE TO END OF SCREEN

7-56

When sent to the screen, this character erases all
characters from (and including) the current cursor
position to the end of the screen. Default: ASCII].

HAS 8510A

Is always FALSE.

HAS BYTE FLIPPED MACHINE

Is always FALSE.

HAS CLOCK

Default is FALSE.

HAS EXTENDED MEMORY

Default is FALSE. (See "Extended Memory" in the
Operations Guide (Part 1) of this manual.)

HAS LOWER CASE

Default is TRUE.

HAS RANDOM CURSOR ADDRESSING

Is always TRUE unless your terminal is not a CRT.

HAS SLOW TERMINAL

May be TRUE or FALSE. When this bit is TRUE, the
system's promptlines and messages are abbreviated.
It is suggested that you leave this set at FALSE.
Default: FALSE.

HAS SPOOLING

Default is FALSE.
7-57

HAS WORD ORIENTED MACHINE

Is always FALSE.

KEY FOR BREAK

When this key is pressed while a program is running,
the program will terminate with a runtime error.
Default: ASCII NUL (Ctrl-@).

KEY FOR FLUSH

This key may be pressed while the System is sending
output (writing to the file OUTPUT). The first time
it is pressed, output is no longer displayed, and will
be ignored ("flushed") until FLUSH is pressed again.
This can be done any number of times; FLUSH
functions as a toggle. Note that processing
continues while the output is ignored, so using
FLUSH causes output to be lost. Default and
suggested: ASCII ACK (Ctrl-F).

KEY FOR STOP

This key may be pressed while the System is writing
to OUTPUT. Like FLUSH, it is a toggle. Pressing it
once causes output and processing to stop, pressing
it again causes output and processing to resume, and
so on. No output is lost; STOP is useful for slowing
down a program so the output can be read while it is
being sent to the terminaL Default and suggested:
ASCII DC3 (Ctrl-S).

KEY TO ALPHA LOCK

7-58

This character, when sent to the screen, locks the
keyboard in upper case (alpha mode). Default:
ASCII DC2 (Ctrl-R).

KEY TO DELETE CHARACTER

Deletes the character where the cursor is, and moves
cursor one character to the left. Default and
suggested: ASCII BS (BACKSPACE).

KEY TO DELETE LINE

Deletes the line that the cursor is currently on.
Default and suggested: ASCII DEL
(Ctrl-BACKSPACE).

KEY TO END FILE

Sets the intrinsic Boolean function EOF to TRUE
when pressed while reading from the System input
files (either KEYBOARD or INPUT, which come
from device CONSOLE:). Default and suggested:
ASCII ETX (Ctrl-C).

KEY TO MOVE CURSOR DOWN
KEY TO MOVE CURSOR LEFT
KEY TO MOVE CURSOR RIGHT
KEY TO MOVE CURSOR UP

These keys are recognized by the Screen Oriented
Editor, and are used when editing a document to
move the cursor about the screen. We suggest using
the arrows on the number pad for these functions.
Default (in order): ASCII B, ASCII D, ASCII C,
ASCII A.

7-59

LEAD IN FROM KEYBOARD

Pressing certain keys generates a two-character
sequence. The first character in these cases must
always be a prefix, and must be the same for all such
sequences. This data item specifies that prefix. Note
that this character is only accepted as a lead in for
characters where you have set PREFIXED[itemname]
to TRUE. Default: ASCII DCI (Ctrl-Q).

LEAD IN TO SCREEN

Some terminals require a two-character sequence to
activate certain functions. If the first character in all
these sequences is the same, this data item can
specify this prefix. This item is similar to the one
above. The prefix is only generated as a lead in for
characters where you have set PREFIXED [itemname]
to TRUE. Default: ASCII ESC (Ctrl-[).

MOVE CURSOR HOME

When sent to the terminal, moves the cursor to the
upper left hand corner of the screen (position (0,0».
Default: ASCII H.

MOVE CURSOR RIGHT

When sent to the terminal, moves the cursor
nondestructively one space to the right. Default:
ASCII C.

MOVE CURSOR UP

7-60

When sent to the terminal, moves the cursor
vertically up one line. Default: ASCII A.

NON PRINTING CHARACTER

The character that will be displayed on the screen
when a non-printing character is typed or sent to the
terminal while using the Screen Oriented Editor.
Default and suggested: ?

PREFIXED [<itemname>]

If any two-character sequence must be generated by
a key or sent to the screen, the System will recognize
that if you set PREFIXED[itemname] to TRUE. See
the explanations for LEAD IN FROM KEYBOARD
and LEAD IN TO SCREEN.

SCREEN HEIGHT

The number of lines in your display screen, starting
from 1. Default: 25 (base ten).

SCREEN WIDTH

The number of characters in one line on your
display, starting from 1. Default: 80 (base ten).

SEGMENT ALIGNMENT

Default 16 (base ten).

STUDENT

Should always be FALSE.

7-61

VERTICAL MOVE DELAY

7-62

May be a decimal integer from 0 to 11. Many
terminals require a delay after vertical cursor
movements. This delay allows the movement to be
completed before another character is sent. This
data item specifies the number of nulls that the
System sends to the terminal after every CARRIAG E
RETURN, ERASE TO END OF LINE, ERASE TO
END OF SCREEN, CLEAR SCREEN, and MOVE
CURSOR UP. Default: o.

APPENDIXES

Contents

Appendix A. Error Messages A-I
Appendix B. I/O Results B-1
Appendix C. Device Numbers C-l
Appendix D. ASCII Chart D-l
Appendix E. Special Keys E-l

Appendixes 1

NOTES

Appendixes 2

APPENDIX A. ERROR MESSAGES

0 System error ... FATAL

1 Invalid index, value out of range

2 No segment, bad code file

3 Procedure not present at exit time

4 Stack overflow

5 Integer overflow

6 Divide by zero

7 Invalid memory reference <bus timed out>

8 User break

9 System I/O error ... FATAL

10 User II 0 error

11 Unimplemented instruction

12 Floating point math error

13 String too long

14 Halt, Breakpoint

15 Bad Block

All runtime errors cause the System to I(nitialize
itself; FATAL errors cause the System to
re-bootstrap. Some FATAL errors leave the System
in an irreparable state, in which case the user must
re-bootstrap by hand.

A-1

NOTES

A-2

APPENDIX B. I/O RESULTS

0 No error

1 Bad Block, Parity error (eRC)

2 Bad Device Number

3 Invalid I/O request

4 Data-com timeout

5 Volume is no longer on-line

6 File is no longer in directory

7 Bad file name

8 No room, insufficient space on volume

9 No such volume on-line

10 No such file on volume

11 Duplicate directory entry

12 Not closed: attempt to open an open file

13 Not open: attempt to access a closed file

14 Bad format: error in reading real
or integer

15 Ring buffer overflow

16 Volume is write-protected

17 Invalid block number

18 Invalid buffer
B-1

NOTES

B-2

APPENDIX C. DEVICE NUMBERS

Device Number Volume Name

o <for System use>
1 CONSOLE:
2 SYSTERM:
3
4 <System disk '*'>
5 <other disk>
6 PRINTER:
7 REMIN:
8 REMOUT:
9

10 <user-defined disks
11 or other devices>
12

Devices with numbers 9 .. 12 or greater are
user-defined devices. Devices 4 and 5 are usually
floppies, though they may be other sorts of
block-structured devices. Devices 1 .. 3 are described
in Chapter 3 - Files and Filehandling. REMIN: and
REMOUT: are often set to the same bidirectional
port.

Gl

NOTES

C-2

APPENDIX D. AMERICAN
STANDARD CODE
FOR
INFORMATION
INTERCHANGE

0 000 00 N.L. 32 040 20 5P 64 100 40 @ 96 140 60
1 001 01 5Q-1 33 041 21 65 101 41 A 97 141 61 a
2 002 02 5TX 34 042 22 " 66 102 42 B 98 142 62 b
3 003 03 ETX 35 043 23 /I 67 103 43 C 99 143 63 c
4 004 04 Em 36 044 24 $ 68 104 44 0 100 144 64 d
5 005 05 EI\Q 37 045 25 % 69 105 45 E 101 145 65 e
6 006 06 PO< 38 046 26 & 70 106 46 F 102 146 66 f
7 007 07 BEL 39 047 27 71 107 47 G 103 147 67 9
8 010 08 B5 40 050 28 72 110 48 H 104 150 68 h
9 011 09 HT 41 051 29 73 III 49 I 105 151 69

10 012 ()A. LF 42 052 2A * 74 1124A J 106 152 6A j
11 013 DB VT 43 053 2B + 75 11348 K 107 153 68 k
12 014 DC FF 44 054 2C , 76 114 4C L 108 154 fL I
13 015 [J) CR 45 055 2D - 77 11540 M 109 155 6D m
14 016 DE SC 46 056 2E 78 116 4E N 110 156 6E n
15 017 OF 51 47 057 2F 79 117 4F 0 III 157 6F 0

16 020 10 D.£ 48 060 30 0 80 120 50 P 112 160 70 P
17 021 11 CCI 49 061 31 1 81 121 51 Q 113 161 71 q
18 022 12 CC2 50 062 32 2 82 122 52 R 114 162 n r
19 023 13 CC3 51 063 33 3 83 123 53 5 115 163 73 5

20 024 14 CC4 52 064 34 4 84 124 54 T 116 164 74 t
21 025 15 NllK 53 065 35 5 85 125 55 U 117 165 75 u
22 026 16 5YN 54 066 36 6 86 126 56 V 118 166 76 v
23 027 17 ETB 55 067 37 7 87 127 57 W 119 167 77 w
24 030 18 c:::AN 56 070 38 8 88 130 58 X 120 170 78 x
25 031 19 EM 57 071 39 9 89 131 59 Y 121 171 79 Y
26 032 lA SlB 58 on 3A 90 132 5A Z 122 In 7A z
27 033 18 ESC 59 073 3B ; 91 133 58 [123 173 7B {
28 034 lC F5 60 074 3C < 92 134 5C \ 124 174 7C I
29 035 10 a; 61 075 3D 93 135 50] 125 175 7D f
30 036 IE RS 62 076 3E > 94 136 5E . 126 176 7E -
31 037 IF us 63 077 3F ? 95 137 SF 127 177 7F CEL

D-l

NOTES

D-2

APPENDIX E. SPECIAL KEYS ON
ON THE
IBM PERSONAL
COMPUTER
KEYBOARD

The IBM Personal Computer Keyboard has several
special keys, and key combinations which perform
various tasks. Some of these keys are used for
p-System functions. Others are set aside for user
defined functions. There are also screen related keys
which affect the display on the CRT.

p-System-Related Keys
The following table lists the special keys that are
used by the UCSD p-System on the IBM Personal
Computer:

FUNCTION

ESC

DEL

ENTER

EOF

BACKSPACE

ETX

TAB

KEY

ESC

Ctrl-BACKSPACE

The bent left arrow key

Ctrl-C

The left arrow at the upper right
of the keyboard

Ctrl-C

The left/right arrow key at the
upper left of the keyboard

E-1

BREAK

BREAK

STOP

DCI

LF

FLUSH

INS

DEL

E-2

Ctrl-BREAK - This key is a
"hard" break which forces an
immediate halt in program
execution, followed by System
re-initialization

Ctrl-@ - This key is a "soft"
break which causes a halt in
program execution at the next
I/O operation, followed by
System re-initialization

Ctrl-S - Stops execution at the
next I/O operation until pressed
again

Ctrl-Q - In Editor's I(nsert
mode, pressing this twice jumps
to left margin

Ctrl-RETURN

Ctrl-F - Discards output
waiting to be displayed

INS - Inserts a blank character in
the Editors eX(change mode

DEL - Deletes a character in the
Editors eX(change mode

User-Defined Keys

The keys labeled FI through FlOat the left of the
keyboard return the following code sequences:

Function Key

FI
F2
F3
F4
F5
F6
F7
F8
F9
FlO

Code Sequence

DCI a
DCI b
DClc
DCI d
DCI e
DCI f
DClg
DCI h
DCI i
DCI j

It is as if the indicated code sequences were sent to
the console when one of these function keys is typed.
A user program may assign whatever meaning to
these keys that is desired. These special function
keys may be set to return string values instead of the
indicated code sequences. This can be done using the
Setkeys procedure within the IBMSPECIAL unit
(see Chapter 6). When this is done, typing one of
these keys will actually echo a string to the console.

The following keys on the number pad represent
functions 11 through 16 and may also be defined by
procedure Setkeys:

11 Home
12 PageUp
13 End
14 PageDown
15 INS
16 DEL

E-3

CRT-Related Keys

E-4

The PrtSc key will send whatever is currently
displayed on the CRT to the Printer.

When the screen is in 40 character mode
Ctrl-Right Arrow shifts the window 20 characters
to the right. Ctrl-Left Arrow shifts 20 characters to
the left. These commands cause the screen to wrap
around if the right-most (or left-most) portion of the
screen is already displayed. Also, in 40-character
mode, the usual cursor moving keys (Left Arrow,
Space Bar, etc.) shift the display window one column
at a time whenever the cursor moves off the screen.

For color monitors, ALT-C is a toggle that clears the
screen and turns color on and off.

INDEX

Note: In the following index, PR refers to the PASCAL
Referenceforthe UCSD p-System, AR refers to the Assembler Reference
for the UCSD p-System, and AG to the Internal Architecture Guide for
the UCSD p-System. Users interested in FORTRAN should refer
to the FORTRAN-77 Reference for the UCSD p-System.

Boldface indicates the principal description of an item.

A

A(djust 4-16
array PR
ASCII D-1
A(ssemble 2-17
assembled code and
assemblers AR, 1-6, 1-21,
2-17,AG

ATTACH PR

B

bad blocks 1-13,3-13,3-37
B(ad blocks 3-13
IBMSPECIAL 5-33
BIOS 1-17, AG
block-structured device

1-15,3-5,3-23,3-38
BLOCKREAD PR
BLOCKWRITE PR
bootstrap 1-10, 1-12, 2-20
booting 2-3

c
CASE statement PR
CHAIN 1-17,2-14
C(hange 3-14
CLOSE PR
code segment see segment
codefile 1-10, 1-18, 2-16,

2-17, AG
COMMANDIO 5-33
commands 1-4,2-16, 3-12,

4-16
comments PR
C(ompile 1-6,2-18
compiled listing PR
Compiler 1-18, 2-16, PR
compile-time options PR
COMPRESSOR 7-5
CONCAT PR
concurrent processes 6- 3,

PR
conditional assembly AR
conditional compilation PR
CONSOLE: 1-16,2-11,3-3,

3-23, 3- 38, PR

X-I

C(opy 4-19
COPY PR
COPYDUPDIR 7-22
cross-referencer 7-24
cursor 4-4, 4-7, 4-13

D
D(ate 3-17, AG
D(ebug 7-33
DEBUGGER 7-33
DECODER 7-16
default disk (*) 1-15,2-8,

3-38
D(elete 4-9,4-20
DELETE PR
device numbers 1-16,3-38
devices 1-14
directives PR
directory 1-15,2-19,3-11,

3-18, AG
disks see floppy disks
Disk Format Utility 7-50
diskette, dual 4-7
DISPOSE PR
DLE 3-4
dual-sided diskette 4-7

E
E(dit 2-19
Editor 4-3
EOF PR
EOLN PR
eX(amine 3-39
EXCEPTION 1-17,2-8,2-13
eX(change 4-44
eX(ecute 2-5,2-7,2-25
execution errors A-I, AG
execution option strings 2-7
EXIT PR

X-2

E(xtended list 3-18
EXTERNAL 1-21, PR
external routines 1-21, AG,

AR

F

file 1-9, 3-3, PR, AG
file-handling 3-3, AG
filenames 1-10,1-12,2-16,

3-3, 3-7,4-5
F(ile 1-6, 2-19
Filer 1-6, 1-13, 3-3,3-8
FILL CHAR PR
F(ind 4-15, 4-22
floppy disks 1-9,2-6,3-13,

3-38,7-22, 7-43
FUNCTION see routine

G
G(et 1-13, 3-6, 3-20
GET PR
GOTO PR
GOTOXY PR

H
H(alt 2-20
HALT PR
heap HB, AG

I

IBMSPECIAL 5- 3 3
IMPLEMENTATION 1-21,

5-7,5-8,5-13

$Include 1-18, 5-14, PR
I(nitialize 2-20
initialize disks 3 -41, 7-53
input 2-7, 2-22, PR
INPUT 2-7 PR ,
I(nsert 4-8,4-25
INSERT PR
INTERACTIVE PR
INTERFACE 1-21,5-10
Interpreter 1-11, AG
interrupts AG,

also see ATTACH PR
intrinsics PR
I/O errors B-1, AG
IORESULT PR B-1 ,

]
J(ump 4-13,4-29

K

KEYBOARD 3-5, PR, E-1
K(olumn 4-30
K(runch 3-21,3-39

L

L(dir 3-23
LENGTH PR
library 1-20,5-21, AG
LIBRARY 1-20, 5-21
library text file 1-20,2-7,2-9
L(ink 1-21 2-4 2-21 5-18
Linker 1-21 2-~1 5-18 '
AM,AG' , ,

list directory 3-23
log see M(onitor
long integers PR
lost files 3-42, 7-22, 7-41

M

macro AR
M(ake 3-26, 3-42
M(argin 4-31,4-42
MARK PR
MARKDUPDIR 3-45, 7-23
markers see J(ump and S(et
MEMLOCK PR, AG
memory allocation and

management PR, AR, AG
MEMSW AP PR, AG
M(onitor 1-17,2-22
MOVELEFT PR
MOVERIGHT PR
M(unch 4-31

N
Native Code Generator 7-45
N(ew 1-14, 3-6,3-27
NEW PR

o
Operating System 1-6, 2-6,

2-14, AG, also see System
output 1-17,2-7,PR
OUTPUT 2-7 HB ,

p

PACK PR
packed variables PR, AG
P(age 4-13,4-33
Pascal PR, AM, 5 -5, 6- 3
PATCH 7-10
P-code 1-6, AG
POS PR

X-3

P-machine 1-6, AR, AG
P_MACHINE AG
prefix 1-15,2-7,3-28
P(refix 2-7, 3-28
prefix disk 1-15,2-7
Print Spooler 7-44
priority AG, also see

concurrent processes
PRINTER: 1-15,3-3, PR
Printer Configuration 7-50
printer, serial 4-10
PROCEDURE see routine
program headings PR
PROCESS PR
PROCESSID see START
promptline 1-5,2-3
pseudo comments PR
PUT PR
PWROFTEN PR

R

READ PR
READLN PR
RECOVER 7-43
recovering lost files 3-42,

7-24, 7-41
REDIRECT 2-13
redirection 2-1 °
RELEASE PR
R(emove 3-29
R(eplace 4- 36
RESET PR
residence (in memory)

see memory allocation
REWRITE PR
routine 1-21, PR, AR
R(un 1-6, 1-14,2-4,2-24, PR
RS232SET 4-15

X-4

s
S(ave 1-14, 3-10, 3-31
SCAN PR
Screen Control Unit 5-26
SEEK PR
segment 1-19,5-5, PR, AG
segment routine 5-5
semaphores PR, 6-6
SEMINIT PR
separate compilation 1-21,

5-5, PR
serial printer 4-10
set PR
S(et 4-39
SETBAUD Utility 7-49
SETUP Utility 7-51
SIGNAL PR
SIZEOF PR
size specification (files) 3-26
special keys E-1
stack AG
START PR,6-3
STR PR
strings PR
swapping 5-5, AG, and see

memory allocation
System 1-5,1-7,1-9,2-3, AG
SYSTEM.ASSMBLER 1-10,

2-17, AR, AG
SYSTEM. COMPILER 1-10,

2-18 PR, AG
SYSTEM. EDITOR 1-10,

2-19, AG
SYSTEM. FILER 1-10,2-19,

AG
SYSTEM. LIBRARY 1-10,

1-20, 5-26, AG
SYSTEM. LINKER 1-10,

2-21,5-18, AG

SYSTEM.LST.TEXT AG,
PR

SYSTEM.MISCINFO 1-11,
1-17,2-21,7-54, AG

SYSTEM. PASCAL 1-10,
3-22, AG

SYSTEM. STARTUP 1-10,
2-20, AG

SYSTEM. SYNTAX 2-18,
AG

SYSTEM.WRK.CODE 1-12,
2-17, 3-6, AG

SYSTEM.WRK.TEXT 1-12,
2-17, 3-6,4-34, AG

T
Tape Utility 7-43
text PR
text editing see Editor
textfiles 1-13,3-3,3-31,

4-6, PR
TIME PR
transcendental functions PR
T(ransfer 3-14, 3-33
TRUNC PR
Turtle Graphics 5-40
TV Adjust Utility 7-48

u
U(ser restart 2-24
utility, RS232SET 4-15
UNIT 1-22, 5-7
unit numbers see device

numbers

UNITBUSY PR
UNITCLEAR PR
UNITREAD PR
UNITSTATUS PR
UNITWAIT PR
UNITWRITE PR
UNPACK PR
untyped files PR
updating (a workfile) 4- 34
USERLIB.TEXT 2-9,5-7,

5-16
USES 5-16, PR
utilities 7-5

v
VARAVAIL PR
V ARDISPOSE PR
VARNEW PR
V(erify 4-44
volume 1-14,3-5,3-13,3-23
volume names 1-14, 3-7
volume numbers see device

numbers
V(olumes 3- 38

w
WAIT PR
W(hat 3-38
wildcards 3-10
workfile 1-11
WRITE PR
WRITELN PR

X-5

x
eX(amine 3-39
eX(change 4-44
eX(ecute 2-5,2-7,2-25
XREF 7-24

Z(ap 4-46
Z(ero 3-40

X-6

z

Product Comment Form

Users' Guide 6936526

Your comments assist us in improving our products. IBM
may use and distribute any of the information you supply
in anyway it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use
the information you supply.

Comments:

If you wish a reply, provide your name and address in
this space.

Name --------------------
Address ___________________ _

Ci ty-----""""·'%'--------- State-------
Zip Code _______ _

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 123 BOCA RATON, FLORIDA 33432

POSTAGE WILL BE PAID BY ADDRESSEE

IBM PERSONAL COMPUTER
SALES & SERVICE
P.O. BOX 1328-C
BOCA RATON, FLORIDA 33432

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

...
aJa4 PIO:l

aldelS lOU op aseald ade.l

Continued from inside front cover

SOME STATES DO NOT ALLOW THE
EXCLUSION OF IMPLIED
WARRANTIES, SO THE ABOVE
EXCLUSION MAY NOT APPLY TO
YOU. THIS WARRANTY GIVES YOU
SPECIFIC LEGAL RIGHTS AND YOU
MA Y ALSO HAVE OTHER RIGHTS
WHICH VARY FROM STATE TO
STATE.

IBM does not warrant that the functions
contained in the program will meet your
requirements or that the operation of the
program will be uninterrupted or error
free.

However, IBM warrants the diskette(s) or
cassette(s) on which the program is fur
nished, to be free from defects in materials
and workmanship under normal use for a
period of ninety (90) days from the date of
delivery to you as evidenced by a copy of
your recei pL

LIMITATIONS OF REMEDIES

IBM's entire liability and your exclusive
remedy shall be:

I. the replacement of any diskette(s) or
cassette(s) not meeting IBM's "Limited
Warranty" and which is returned to
IBM or an authorized IBM PERSONAL
COMPUTER dealer with a copy of your
receipt, or

2. if IBM or the dealer is unable to deliver a
replacement diskette(s) or cassette(s)
which is free of defects in materials or
workmanship, you may terminate this
Agreement by returning the program
and your money will be refunded.

IN NO EVENT WILL IBM BE LIABLE
TO YOU FOR ANY DAMAGES,
INCLUDING ANY LOST PROFITS,
LOST SAVINGS OR OTHER
INCIDENT Ai OR CONSEQUENTIAL

DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE SUCH
PROGRAM EVEN IF IBM OR AN
AUTHORIZED IBM PERSONAL
COMPUTER DEALER HAS BEEN
ADVISED OF THE POSSIBLITY OF
SUCH DAMAGES, OR FOR ANY
CLAIM BY ANY OTHER PARTY.

SOME STATES DO NOT ALLOW THE
LIMITATION OR EXCLUSION OF
LIABILITY FOR INCIDENTAL OR
CONSEQUENTIAL DAMAGES SO
THE ABOVE LIMITATION OR
EXCLUSION MAY NOT APPLY TO
YOU.

GENERAL

You may not sublicense, assign or
transfer the license or the program
except as expressly provided in this
Agreement. Any attempt otherwise to
sublicense, assign or transfer any of the
rights, duties or obligations hereunder is
void.

This Agreement will be governed by the
laws of the State of Florida.

Should you have any questions
concerning this Agreement, you may
contact IBM by writing to IBM Personal
Computer, Sales and Service, P.O. Box
1328-W, Boca Raton, Florida 33432.

YOU ACKNOWLEDGE THAT YOU
HA VE READ THIS AGREEMENT,
UNDERSTAND IT AND AGREE TO
BE BOUND BY ITS TERMS AND
CONDITIONS. YOU FURTHER
AGREE THAT IT IS THE COMPLETE
AND EXCLUSIVE STATEMENT OF
THE AGREEMENT BETWEEN US
WHICH SUPERSEDES ANY
PROPOSAL OR PRIOR AGREEMENT,
ORAL OR WRITTEN, AND ANY
OTHER COMMUNICATIONS
BETWEEN US RELATING TO THE
SUBJECT MATTER OF THIS
AGREEMENT.

--- ------- - ---- ---- - ---- - - ---==-=':'=®
International Business Machines Corporation

P.O. Box 1328-W
Boca Raton, Florida 33432

'\

6936526

Printed in United States of America

