SG24-4643-00

International Technical Support Organization

0S/2 Debugging Handbook - Volume IV
System Diagnostic Reference

February 1996

International Technical Support Organization
Boca Raton Center

SG24-4643-00

International Technical Support Organization

0S/2 Debugging Handbook - Volume IV
System Diagnostic Reference

February 1996

—— Take Note!

Before using this information and the product it supports, be sure to read the general information under
“Special Notices” on page xuvii.

First Edition (February 1996)
This edition applies to IBM OS/2 Warp Version 3.0.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications
are not stocked at the address given below.

An ITSO Technical Bulletin Evaluation Form for reader's feedback appears facing Chapter 1. If the form has been
removed, comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. JLPC Building 014-1 Internal Zip 5220

1000 NW 51st Street

Boca Raton, Florida 33431-1328

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

O Copyright International Business Machines Corporation 1996. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

The OS/2 Debug Handbook Library

The following information describes the four volumes that comprise the 0OS/2
Debug Handbook library. The graphic of the opened book denotes the volume
that you are currently reading.

& Volume |, Basic Skills and Diagnostic Techniques, SG24-4640.

This volume introduces the concepts of debugging with practical examples. Also
contained in this book is a CDROM version of the entire library, which is
viewable via the OS/2 INF View utility.

% Volume I, Using the Debug Kernel and Dump Formatter, SG24-4641.

This volume provides necessary information to set up and use the Kernel Debug
and Dump Formatter tools. Also this guide serves as a command reference for
these products.

% \olume Ill, System Trace Reference, SG24-4642.

This volume includes all system tracepoints contained within OS/2.

Volume IV, System Diagnostic Reference, SG24-4643.

This volume provides details of internal structures used by OS/2.

[J Copyright IBM Corp. 1996 iii

iv o0s/2 Debugging

Abstract

This publication is volume four, which is one of four volumes that together
provide information and reference materials intended to help perform OS/2
debugging.

This volume provides system reference and control block information that is
used within OS/2. It is intended that this volume be used only in conjunction

with the other volumes in the library.

This document is intended for use by service personnel, system programmers
and software developers.

(286 pages)

[J Copyright IBM Corp. 1996

Vi 0S/2 Debugging

Contents

The OS/2 Debug Handbook Library
Abstract L
Special Notices

Preface
How This Document is Organized
Related Publications
International Technical Support Organization Publications
ITSO Redbooks on the World Wide Web (WWW)
Acknowledgments L

Chapter 1. CONFIG.SYS RAS Commands
1.1 AUTOFRAIL . . e
1.2 DUMPPROCESS e
1.3 REIPL
1.4 SHAPIEXCEPTIONHANDLER
1.5 SHELLEXCEPTIONHANDLER
1.6 SUPPRESSPOPUPS e
1.7 TRACE
1.8 TRACEBUF
1.9 TRACERFMT
1.10 TRAPDUMP

Chapter 2. OS/2 RAS Application Programming Interfaces
2.1 DosSysTrace (Static Trace Event Recording)
2.1.1 DosSysTrace (Add a Trace Record to the System Trace Buffer)
2.1.2 DevHIp_SysRAS (Add a Trace Record to the System Trace Buffer) .
2.2 DosGetSTDA (Get the System Trace Data Area)
2.2.1 Trace Buffer Structureso
2.3 DosForceSystemDump (Force a System Stand-Alone Dump)
2.4 DosDumpProcess (Enable/Disable ProcessDump)
2.5 DosSuppressPopUps (Suppress Trap Exception Pop-Up Messages) .
2.6 DosQueryRASInfo (Query RAS Information)
2.7 16-Bit Error Logging APIs for IBM OS/2 Version 2.1
2.7.1 Dynamic vs. Static Error Log Record ID Registration
2.7.2 DosLogRegister
2.7.3 DosLogEntry
2.7.4 DosLogRead
2.7.5 Error Log Entry Formatting DLL Routines
2.8 32-Bit Error Logging APIs for IBM OS/2 Version 2.1 and 3.0
2.8.1 LogOpen
2.8.2 LogClose
2.8.3 LogAddEntries
2.8.4 LogGetEntries
2.8.5 32-Bit Error Log Entry Formatting DLL Routines
2.8.6 DevHIp_LogEntry Device Driver Interface
2.9 RAS API Prototypes

Chapter 3. OS/2 System Control Block Reference

[J Copyright IBM Corp. 1996

41

Vii

viii

OS/2 Debugging

3.1 Overview of Kernel Components and Interfaces 43

3.1.1 Kernel Components 43
3.1.2 Kernel Interfaces 45
3.2 Miscellaneous System Control Block Reference 47
3.2.1 Miscellaneous System Diagrams 47
3.2.2 System Anchor Segment (SAS) for OS/2 Warp V3.0 49
3.2.3 Record Management Package (RMP) for OS/2 Warp V3.0 52
3.3 Semaphore Control Block Reference 55
3.3.1 FastSafeRamSemsStruc 55
3.3.2 FastSafeRamSemsStruc PM Version 55
3.3.3 MuxTableEntry 56
3.3.4 RamSemsStruc 56
3.3.5 KSEM Structures for OS/2 Warp V3.0 ALLSTRICT Kernel 57
3.3.6 32-Bit Semaphore Structures for OS/2 Warp V3.0 ALLSTRICT Kernel 59
3.3.7 System Semaphore Structures 66
3.3.8 PM/GRE Semaphore Structure 68
3.4 Memory Management Control Block Reference 69
3.4.1 Memory Management Control Block Diagrams 69
3.4.2 Page Frame Structure 80
3.4.3 VM Arena Header 81
3.4.4 VM Alias Record 82
3.45 VM Arena Record 83
3.4.6 VM Arena Type Information Record 85
3.4.7 VM Context Record 86
3.4.8 VM Object Record 86
3.4.9 Virtual Page Structure 88
3.5 Scheduler Thread and Process Control Block Reference 89
3.5.1 Scheduler and Task Management Control Block Diagrams 89
3.5.2 Thread Control Block OS/2 Warp V3.0 98
3.5.3 Thread Swappable Data for OS/2 Warp V3.0 ALLSTRICT Kernel . . 121
3.5.4 Per-Task Data Area for OS/2 Warp V3.0 ALLSTRICT Kernel 125
3.5.5 Local Information Segement 147
3.5.6 Global Information Segement 148
3.5.7 Process Information Block 150
3.5.8 Thread Information Block 151
3.5.9 System Stack Frames Client Register Information 152
3.5.10 Exit List Entry Data Structure 161
3.5.11 Exception Handler Structures 161
3.6 Loader Control Block Reference 165
3.6.1 Module Table Entry for OS/2 Warp V3.0 165
3.6.2 Swappable Module Table Entry for OS/2 Warp V3.0 167
3.6.3 Object Table Entry for OS/2 Warp V3.0 169
3.6.4 Segment Table Entry for OS/2 Warp V3.0 170
3.6.5 Loader Demand Load Data OS/2 Warp V3.0 171
3.7 File System Block Reference 172
3.7.1 File System Control Block Diagrams 172
3.7.2 File System Control Block for OS/2 Warp V3.0 178
3.7.3 System File Table Entry for OS/2 Warp V3.0 182
3.7.4 Master File Table Entry for OS/2 Warp V3.0 ALLSTRICT Kernel .. 186
3.7.5 Record Lock Record for OS/2 Warp V3.0 188
3.7.6 Volume Parameter Block for OS/2 Warp V3.0 189
3.7.7 Drive Parameter Block for OS/2 Warp V3.0 193
3.7.8 Current Directory Structure for OS/2 Warp V3.0 195
3.7.9 File System Buffer for 0S/2 Warp V3.0 197
3.7.10 Named Pipe Structures for OS/2 Warp V3.0 199

3.7.11 Anonymous Pipe Structures for OS/2 Warp V3.0 203

3.8 1/O System Control Block Reference 205
3.8.1 I/O System Control Block Diagrams 205
3.8.2 Physical Device Driver Header (DEV) for OS/2 Warp V3.0 209
3.8.3 PDD IQR Information Blocks (DIRQ) for OS/2 Warp V3.0 210
3.8.4 Virtual Device Driver Entry Point Structures 211
3.8.5 Device Driver (Strategy 1) Request Packet (REQ) for OS/2 Warp V3.0 213
3.8.6 BIOS Parameter Block (BPB) for OS/2 Warp V3.0 215

Chapter 4. Reference Tables 217

4.1 System Error Codes 217

4.2 0OS/2 System Exception Codes 237

4.3 Trap Screen Reference Lo 241

4.4 Standard GDT Assignments 245

4.5 Standard LDT Assignments 248

4.6 VM System Object Owner IDs 249

4.7 DevHIp Function Cross-Reference 255

4.8 System Ordinal Cross-Reference 257

4.9 0OS/2 FixPak to Build Level Cross-Reference 280

Index . . . oL 281

Contents iX

X 0OS/2 Debugging

Figures

©CXNTRA~ONE

WWWWwWowWowWwwWwwWwWwWNNNNNNNNNNERRRRR R R R B R
CONSTEORFOOPIDITROINPOOD®NDONEWNEO

[J Copyright IBM Corp. 1996

Circular Trace Buffer (STDA) 11
Buffer Returned by DosGetSTDA 13
Unformatted Trace Buffer 13
STDA Spare Bytes 14
Log Registry Buffer Format Description 20
Error Log Data Buffer Format Description 22
Error Log Entry Buffer Format Description 30
0S/2 Kernel Interfaces 46
The System Anchor Segment 48
Virtual Address Space Regions 70
Virtual Address Space Management 71
Private Arena Private Data 72
Private Arena Shared Data 73
Shared Global Data 74
Shared Arena Instance Data 75
Virtual/Physical Page Management - Backed Storage 76
Virtual/Physical Page Management - Swapped Storage 77
CS Alias of Shared Instance Data 78
Memory Alias in Multiple Processes 79
Process Managemento 90
Thread Management 91
Scheduler Finite State Machine 92
Thread Tree for a Process 93
Process Trees, Subtrees and Zombies 94
Orphaned and Adopted Processes 95
Exception Management Overview 96
Exception Handler Stack Frames 97
Open Files - Application to System 173
Open Files - System View 174
Open Device - System View 175
Shared Files with Locked Ranges, 176
Anonymous and Named Pipes 177
Physical Device Driver Communication 206
Physical Device Driver IRQ Sharing 207
Virtual Device Driver Communication 208
Exception Values Layout 237
Application Trap 241
Formatted Regsister Dump for a System Trap 243
IPE Trap Screen 243

Xi

Xii 0S/2 Debugging

Tables

©CXNTRA~ONE

OO DNDMAMAMAMAMAMAMAMDNWWWWWWWWWWRNRNRNNNNNNNNRRRRRREBRRRR
POO®ONODTORARWOWNEOOONDIITRARWNEOO®ONDDITRAWNEOO®NDORAWNREO

[J Copyright IBM Corp. 1996

Field Descriptions: Trace Control Record
Field Descriptions: Trace Event Trailer Record (with Timestamp) .
SAS Base Section
SAS_tables_section Protected Mode Tables
SAS_config_section Configuration Section
SAS_dd_section Device Driver Section
SAS_vm_section Virtual Memory Management Section
SAS_task_section Tasking Section
SAS_RAS section RAS Section
SAS file_section: File System Section
SAS_info_section Information Segment Section
rbheadr RMP Header Structure
rbfree RMP Free Record Structure,
rparm RMP Handle Structure,
rp_flags Flag Definitions 0oL
MuxType Flag Definitions
RamSemFlag Definitions
KSEMSHR Shared Kernel Semaphore
KSEMMTX MUTEX Kernel Semaphore
KSEMEVT Event Kernel Semaphore
Ksem Flag Definitions
KSEMSHR Shared Kernel Semaphore
KSEMMTX MUTEX Kernel Semaphore
KSEMEVT Event Kernel Semaphore
SEVENT Shared Event Semaphore,
PEVENT Private Event Semaphore
SMUTEX Shared Mutex Semaphore
PMUTEX Private Mutex Semaphore
SMUX Shared Mux Wait Semaphore
PMUX Private Mux Wait Semaphore
OPENQ Open Queue Node Structure
MUXQ Mux Queue Node Structure
SEMRECORD Semaphore Record Structure for MUX Wait Semaphores

SEMSTRNODE Semaphore String Node
SEMTBLNODE Semaphore String Node Table Entry
usFlags Field Definitions
SEVENT Shared Event Semaphore,
PEVENT Private Event Semaphore
SMUTEX Shared Mutex Semaphore
PMUTEX Private Mutex Semaphore
SMUX Shared Mux Wait Semaphore
PMUX Private Mux Wait Semaphore
OPENQ Open Queue Node Structure
MUXQ Mux Queue Node Structure
SEMSTRNODE Semaphore String Node
SysSemHandleStruc System Semaphore Handle Structure
SysSemTbIStruc System Semaphore Table Structure
SysSemFlag Flag Field Definitions
GRESEM PM/GRE Semaphore
pf_flag Flag Definitions
ah_fl Flag Definitions o000

Xiv

0OS/2 Debugging

52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.
101.

102.
103.
104.
105.

al_f Flag Definitions o
sal_f Flag Definitionso
ar_f Flag Definitionso
ar_xf Flag Definitionso 000
at_fllnit Flag Definitions oo
co_fb Flag Definitions
ob_fs Flag Definitions
ob_xflags Flag Definitions
vp_flag Flag Definitions
TCBForcedActions Flag Definitions
TCBEntryActions Flag Definitions
TCBWakeFlags Flag Definitions
TCBState and TCBQState Definitions
TCBPriClassMod Definitions
TCBPriClass Definitions
TCBSchFIg Flag Definitions
TCBfSwapping Flag Definitions
TCBMiscFlags Flag Definitions
TCBMSpareFlags Flag Definitions
TCBReqPktFIg Flag Definitions
TCBLibiFlags Flag Definitions
TCBLibiFlags Flag Definitions
ptda_ForcedActions Flag Definitions
InfoSegLDT
LIS_ProcStatus Flag Definitions L.
LIS_ProcType Flag Definitions
InfoSegGDT
SIS_SyslLog Flag Definitions
PIB Process Information Block
pib_flstatus Flag Definitions
pib_ultype Flag Definitions
CRI Client Register Information,
RIP Register Information Packet
rip_flags Flag Definitions
ISF Interrupt Manager Stack Frame
TSF Trap or Exception Stack Frame
KSF Kernel Stack Frame
VSF VDM Process Stack Frame L.
SEF System Entry Stack Frame
SCI System Call Interpreter Call Gate Stack Frame
DHF Device Help Stack Frame
TF Hardware Exception Trap Stack Frame
EXENT . . o
exl_type Values
CONTEXTRECORD Exception Handler Context Record
FPREG Floating Point Register Stack Element
ContextFlags Flag Definitions
EXCEPTIONREPORTRECORD Exception Handler Report Record .
fHandlerFlags Flag Definitions
EXCEPTIONREGISTRATIONRECORD Exception Handler Registration
Record
mte_flagsl Flag Definitions
mte_flags2 Flag Definitions 0oL
ote_flags Flag Definitions
ste_flags Flag Definitions 0.

106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.

FSCSEG 178
FS_ENTRY . . . 178
FS_ATTRIBUTE Flag Definitions 180
FS_COMMIT Flag Definitions 180
Euqates for Close Type 180
fscnameentstruc 180
MFES_ENTRY 180
uncfscentrstruc 181
uncliststruc L 181
SFT 182
sf_entry . . . 182
sf_flags Flag Definitions 184
sf_flags2 Flag Definitions 184
sfAFATFS . . . 185
sftfsd . . . 185
sftsfi . . o 185
sfi_type Flag Definitions 186
mft_flags Flag Definitions oL 187
mft_opflags Flag Definitions 187
Master File Table Entry for OS/2 Warp V3.0 RETAIL Kernel 188
rlr_flags Flag Definitions 189
vpb Format 189
vpb_signature Values 190
vpb_ID Values 190
vpb_falgs Flag Definitions 0oL 190
vpb_fMisc Flag Definitions 191
vpbfsd Format 191
vpbfsi Table 191
VpdFATFES Table 192
vpdFAT_eaflags Flag Definitiions 193
DPB Format 193
dpb_flags Flag Definitions 194
DPB3X Table 194
DPB4X Table 194
CddFATFS Table 196
cdfsd Table 196
cdfsi Table 196
curdir Table 196
cd_flags Flag Definitions 196
cdi_flags Flag Definitions oL 197
BUFSEG Format 197
BUFFINFO Format 198
buf_falgs Flag Definitions 199
SDevCaps Flag Definitions 209
Device Driver Type defininitions 210
Level Definitions for Devices 210
IRQI Table 211
irgi_usFlags Flag Definitions 211
DIRQ Table 211
VDDEP Format 212
VDDPROC Table 212
HDLVDD Table 213
PDDEP Table 213
PktStatus Word Masks 215
PktFlag Flags 215

Tables XV

XVi

0OS/2 Debugging

161.
162.
163.
164.
165.
166.
167.
168.
169.

BPB Format 216

0S/2 System Error Codes 217
DOS INT 24 Critical Error Codes 235
GDT Assignments 245
Standard LDT Assignments 248
System Object IDs 249
DevHIp Function Cross-Reference 255
System Ordinal Cross-Reference, 258
FixPak to Build Level Cross-Reference 280

Special Notices

This publication is intended to help service personnel, system programmers and
software developers to understand the concepts and application of debugging
techniques. The information in this publication is intended as a supplement to
already published specifications of any programming interfaces that are provided
by IBM Warp OS/2 Version 3. See the PUBLICATIONS section of the IBM
Programming Announcement for IBM Warp OS/2 Version 3 for more information
about what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM's product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM's intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(VENDOR) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer's ability to evaluate and integrate
them into the customer's operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in other
operating environments may vary significantly. Users of this document should
verify the applicable data for their specific environment.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes available
to each customer according to the normal IBM PTF distribution process.

[J Copyright IBM Corp. 1996 XVili

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

IBM 0s/2
Presentation Manager Workplace Shell

The following terms are trademarks of other companies:

PC Direct is a trademark of zZiff Communications Company and is
used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Windows is a trademark of Microsoft Corporation.

MicroFocus Cobol MicroFocus Corporation

Other trademarks are trademarks of their respective companies.

XViii 0S/2 Debugging

Preface

This volume of the OS/2 Debugging Handbook Library is a reference to the
Reliability Availability and Serviceability interfaces, OS/2 system control blocks
and other reference tables. This book should only be used in conjunction with
the other volumes in this library.

This document is intended for use by service personnel, system programmers
and software developers.

How This Document is Organized

The document is organized as follows:

Chapter 1, “CONFIG.SYS RAS Commands”

Details of the commands are in this chapter if they are not mentioned in the
0S/2 Command Reference manual.

Chapter 2, “OS/2 RAS Application Programming Interfaces”

Information pertaining to the application programming interfaces are
described in this chapter.

Chapter 3, “OS/2 System Control Block Reference”

This large section documents major control blocks that are defined by the
base OS/2 system.

Chapter 4, “Reference Tables”

This section documents various system tables, system error codes and other
miscellaneous tables.

Related Publications

Throughout this book we assume the availability and familiarity with three
co-requisite publications:

The INTEL486 Microprocessor Programmer's Reference Manual, ISBN
1-55512-159-4

The Intel Pentium Family User's Manual, Volume 3: Architecture and
Programming Manual, ISBN 1-55512-227-2

The Design of OS/2 by H.M. Deitel and M.S. Kogan, ISBN 0-201-54889-5

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this document.

[J Copyright IBM Corp. 1996

The OS/2 Technical Library Control Program Programming Reference Version
2.00, S10G-6263-00

0OS/2 2.0 Proc Lang 2/REXX Ref, S10G-6268-00

0S/2 2.0 Proc Lang 2/REXX User Guide, S10G-6269-00

0S/2 WARP Control Program Programming Guide, G25H-7101-00
0S/2 WARP Control Program Programming Ref, G25H-7102-00
0S/2 WARP PM Basic Programming Guide, G25H-7103-00

XiX

0S/2 WARP PM Advanced Programming Guide, G25H-7104-00
0S/2 WARP GPI Programming Guide, G25H-7106-00

0S/2 WARP GPI Programming Ref, G25H-7107-00

0S/2 WARP Workplace Shell Programming Guide, G25H-7108-00
0S/2 WARP Workplace Shell Programming Ref, G25H-7109-00

0S/2 WARP IPF Programming Guide, G25H-7110-00

0S/2 WARP Tools Reference, G25H-7111-00

0S/2 WARP Multimedia App Programming Guide, G25H-7112-00
0S/2 WARP Multimedia Subsystem Programming, G25H-7113-00
0S/2 WARP Multimedia Programming Ref, G25H-7114-00

0S/2 WARP PM Programming Ref Vol I, G25H-7190-00

0S/2 WARP PM Programming Ref Vol Il, G25H-7191-00

Technical Reference - Personal Computer AT, Part Number 1502494
PS/2 and PC BIOS Interface Technical Reference, Part Number 68X2341

International Technical Support Organization Publications

XX

0S/2 Debugging

0OS/2 Warp Connect, GG24-4505

0OS/2 Warp Generation, Vol.1, SG24-4552

0S/2 Warp Version 3 and BonusPak, GG24-4426

Multimedia in Warp, GG24-2516

The Technical Compendium Volume 1 - Control Program, GG24-3730

The Technical Compendium Volume 2 - DOS and Windows Environment,
GG24-3731

The Technical Compendium Volume 3 - Presentation Manager and Workplace
Shell, GG24-3732

The Technical Compendium Volume 4 - Application Development, GG24-3774
A complete list of International Technical Support Organization publications,
known as redbooks, with a brief description of each, may be found in:

International Technical Support Organization Bibliography of Redbooks,

GG24-3070.

To get a catalog of ITSO redbooks, VNET users may type:
TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG

A listing of all redbooks, sorted by category, may also be found on MKTTOOLS
as ITSOCAT TXT. This package is updated monthly.

—— How to Order ITSO Redbooks

IBM employees in the USA may order ITSO books and CD-ROMs using
PUBORDER. Customers in the USA may order by calling 1-800-879-2755 or by
faxing 1-800-445-9269. Most major credit cards are accepted. Outside the
USA, customers should contact their local IBM office. Guidance may be
obtained by sending a PROFS note to BOOKSHOP at DKIBMVM1 or E-mail to
bookshop@dk.ibm.com.

Customers may order hardcopy ITSO books individually or in customized
sets, called GBOFs, which relate to specific functions of interest. I1BM
employees and customers may also order ITSO books in online format on
CD-ROM collections, which contain redbooks on a variety of products.

ITSO Redbooks on the World Wide Web (WWW)

Internet users may find information about redbooks on the ITSO World Wide Web
home page. To access the ITSO Web pages, point your Web browser (such as
WebExplorer from the OS/2 3.0 Warp BonusPak) to the following URL:

http://www.redbooks.ibm.com/redbooks

IBM employees may access LIST3820s of redbooks as well. Point your web
browser to the IBM Redbooks home page:

http://w3.itsc.pok.ibm.com/redbooks/redbooks.html

Preface XXi

Acknowledgments

XXii 0S/2 Debugging

The authors of this book are:

Pete Guy
IBM SDO, Austin

Richard Moore
IBM PSP EMEA

Redbook project developed by:

Tim Sennitt
ITSO Boca Raton, Center

This book could not have reached publication without the encouragement, help
and support from a number of colleagues and friends. In particular we would
like to thank the following:

Tim Sennitt for his help in preparing the printed material and doing much of
the donkey-work to bring this to publication.

Joanne Rearnkham, Barry Bryan and David Jaramillo for their support in
enabling access to the materials necessary to produce this book.

Chris Perritt and Glen Brew for making available the original Design
Workbook and Functional Specifications for OS/2 2.0.

Charlie Schmitt for his original work on converting the kernel debugger code
into a dump formatter.

Jeff Mielke and David Jaramillo for their work on PMDF, the structure
compiler and continued work on the dump formatter.

Allen Gilbert for making available documentation on System Trace, which
has been reproduced in an edited form in this book. Also, for making
available an early version of the dump formatter without which it would not
have been possible to develop the original Dump Formatter class.

Doug Azzarito for supplying the material on Kernel Debugger Remote Debug
Setup.

James Taylor for providing the basis of the lab exercises relating to PM
hangs.

Marie Jazynka, one of the first OS/2 debuggers, for patient encouragement of
a great many OS/2 debugging people.

Our management teams, without whose foresight and support none of this
work would ever have started. These include:

Hermann Lamberti General Manager for PSM EMEA; Gordon Bell -
director PSM EMEA Technical Marketing; Chris Brown - manager PSM
OEM and Enterprise Technical Marketing and Brian Rose - manager PSM
Project Office; Roy Aho - Director of the Solution Developer Technical
Support Center, for encouraging the beginnings of this several years ago;
Terry Gray, manager of Platform Competency and Operation, within
Solution Developer Technical Support, Austin.

Finally to Sarah-Jane and Shelly, for supporting many very extended working
days and weeks.

Chapter 1. CONFIG.SYS RAS Commands

0OS/2 provides a number of CONFIG.SYS commands and settings specifically for
RAS purposes. Some of these are described in the 0OS/2 Command Reference
and will not be discussed in detail here. A number of commands were
introduced or enhanced in APAR PJ12258, which is applicable to 0S/2 2.11. All
the commands described here are available with OS/2 Warp 3.0.

The following CONFIG.SYS commands comprise the RAS set. Those not
completely documented in the OS/2 Command Reference are now discussed in
detail.

AUTOFAIL (see OS/2 Command Reference, autofail)
1.2, “DUMPPROCESS”

1.3, “REIPL” on page 2

1.4, “SHAPIEXCEPTIONHANDLER” on page 2

1.5, “SHELLEXCEPTIONHANDLER” on page 3

1.6, “SUPPRESSPOPUPS” on page 4

TRACE (see the 0S/2 Command Reference). Also see the System Trace User
Guide in Volume 3 of The OS/2 Debugging Library.

TRACEBUF (see the OS/2 Command Reference).
TRACEFMT (see the OS/2 Command Reference).
See also 1.10, “TRAPDUMP” on page 5.

1.1 AUTOFAIL

AUTOFAIL modifies the processing of media errors. See the OS/2 Command
Reference, AUTOFAIL command.

1.2 DUMPPROCESS

This command allows the user to activate the process dump facility. When
active, any ring 3 (application) process that traps will result in a memory dump
being written to a unique dump file. The dump file takes a name of the form
PDUMP.nnn where nnn is an index that is incremented each time a new process
dump is created.

The contents of the dump comprise unformatted system and user storage that
relates to the trapping process. Included in this are:

PTDA

TCB and TSD

Registers

Arena records

MTE and SMTEs

LDT

Ring O stack

[J Copyright IBM Corp. 1996 1

Ring 3 stack
Syntax.

DUMPPROCESS=x

Parameters

X This specifies the drive letter (excluding the colon) to which process dump
data sets will be written. These take the name PDUMP.nnn and reside in the
root directory of the drive specified. The name and directory cannot be
overridden by the user.

Note: See the Process Dump Formatter section of the Dump Formatter User
Guide for information on formatting process dumps.

1.3 REIPL

The REIPL command allows the user to automate the re-booting (re-IPLing) of
the system following an IPE.

Syntax

REIPL=ON | OFF

Parameters

ON
This specifies the system to be automatically re-booted following an IPE.

OFF
This specified that the system is not to be automatically re-booted following
an IPE. The system will remain hung until manually restarted.

Notes: REIPL only applied to pre-WARP systems if APAR PJ12258 has been
applied.

REIPL has no effect when TRAPDUMP=0ON|RO is specified. Whether the
system is re-booted following a stand-alone dump is governed by the
OS2DUMP module. If the the dump is to hard-disk then automatic re-boot
occurs, otherwise not.

1.4 SHAPIEXCEPTIONHANDLER

2

0OS/2 Debugging

This command disables or enables the registration of the exception handler in
the PMSHAPI.DLL module.

Syntax.

SET SHAPIEXCEPTIONHANDLER=ON|OFF

Parameters

ON
This is the default setting. The shell API DLL exception handler is enabled
and normal error recovery takes place whenever a user PM application or
the desktop traps.

OFF
The shell API DLL exception handler is disabled. No additional error
recovery provided by the shell takes place when a user application or the
desktop traps.

Notes: Exception handler registration only occurs during PMSHAPI.DLL
initialization. Therefore, a change to the specification of
SHAPIEXCEPTIONHANDLER will require the system to be re-booted.

The shell APl DLL exception handler will attempt to clean up an
application’'s PM resources.

Under certain circumstances application traps can be pervasive. Either
the default error recovery is too efficient to allow the trap to be
intercepted or analyzed, or the trap recurses to a more serious problem,
from which it is also difficult to determine the underlying cause.
SHAPIEXCEPTIONHANDLER may be used under these circumstances to
allow the problem to be intercepted closer to the point of occurrence.

SHAPIEXCEPTIONHANDLER may be used with TRAPDUMP to force a
system dump at the point of failure.

Hangs in the shell during initialization may be the result of a recursive
trap. SHAPIEXCEPTIONHANDLER may be used to intercept this condition.

Since it is difficult to determine whether a potential shell problem involves
PMSHELL.EXE or PMSHAPI.DLL, it is recommended to use
SHAPIEXCEPTIONHANDLER with SHELLEXCEPTIONHANDLER.

1.5 SHELLEXCEPTIONHANDLER
This command disables or enables the registration of the exception handler in
the PMSHELL.EXE module.
Syntax.

SET SHELLEXCEPTIONHANDLER=ON|OFF

Parameters

ON
This is the default setting. The shell's exception handler is enabled and
normal error recovery takes place whenever a user PM application or the
desktop traps.

OFF
The shell's exception handler is disabled. No additional error recovery
provided by the shell takes place when a user application or the desktop
traps.

Chapter 1. CONFIG.SYS RAS Commands 3

Notes:

Exception handler registration only occurs during PMSHELL.EXE
initialization. Therefore, a change to the specification of
SHELLEXCEPTIONHANDLER will require the system to be re-booted.

The shell's exception handler will attempt to clean up an application’'s PM
resources. In addition if the application is the desktop (or whatever is
specified in RUNWORKPLACE), then it is restarted.

Under certain circumstances application traps can be pervasive. Either
the default error recovery is too efficient to allow the trap to be
intercepted or analyzed, or the trap recurses to a more serious problem,
from which it is also difficult to determine the underlying cause.
SHELLEXCEPTIONHANDLER may be used under these circumstances to
allow the problem to be intercepted closer to the point of occurrence.

SHELLEXCEPTIONHANDLER may be used with TRAPDUMP to force a
system dump at the point of failure.

Hangs in the shell during initialization may be the result of a recursive
trap. SHELLEXCEPTIONHANDLER may be used to intercept this condition.

Since it if difficult to determine whether a potential shell problem involves
PMSHELL.EXE or PMSHAPI.DLL, it is recommended to use
SHELLEXCEPTIONHANDLER with SHAPIEXCEPTIONHANDLER.

1.6 SUPPRESSPOPUPS

This command allows the user to suppress the display of trap information pop-up
messages and instead, direct trap information to a log data set.

Syntax

SUPPRESSPOPUPS=x

Parameters

X This specifies the drive letter (excluding the colon) to which the pop-up log
data set will be written. The log takes the name POPUPLOG.0OS2 and
resides in the root directory of the drive specified. The name and directory
cannot be overridden by the user.

1.7 TRACE

4

0OS/2 Debugging

TRACE specifies whether tracing of static trace events is to be active from
system initialization or not. See the OS/2 Command Reference, TRACE
command for details. Also see the System Trace User Guide in Volume 3 of The
OS/2 Debugging Library.

1.8 TRACEBUF

TRACEBUF specifies the size of the system trace buffer. See the 0S/2 Command
Reference, TRACEBUF command for details.

1.9 TRACEFMT

The TRACEFMT utility is used to extract and format the system trace from the
either a saved trace buffer or the currently active trace buffer. See the 0S/2
Command Reference, TRACEFMT command for details.

1.10 TRAPDUMP

—— Potential Data Loss

Misuse of this facility may cause loss of vital data. Please read carefully the
complete description before use.

The TRAPDUMP command controls the stand-alone (system) dump facility of
0OS/2. It will enable initiation of a stand-alone dump at the instant a ring 3 trap
occurs for which no exception handler has intervened.

Ring 0 traps may be also intercepted only on 2.11 systems to which APAR
PJ12258 has been applied, or on OS/2 Warp.

Pre-Warp considerations:

The dump process is performed by the hidden module OS2DUMP, which resides
in the root directory of the boot drive. OS2DUMP as supplied with GA versions
of OS/2 2.x dumps only to diskette. It may be replaced with a version supplied
with OS/2 Problem Determination Package (OS2PDP) which will dump to a hard
disk FAT partition that has the volume label SADUMP or to diskette, depending
upon TRAPDUMP command specification.

The GA 2.x version of OS2DUMP requires the first dump diskette be freshly
prepared using the CREATEDD command and subsequent diskettes to be formatted.
See the on-line 0S/2 Command Reference for details of CREATEDD command.

The OS/2 Problem Determination Package (OS2PDP) version of OS2DUMP only
requires formatted diskettes, the use of CREATEDD being redundant.

When dumping to hard disk the dump partition must to be made known to
TRAPDUMP. This is done by specifying an optional second parameter.

0OS/2 Warp considerations:
Under OS/2 Warp the CREATEDD command is unnecessary and is not distributed
with the system. Ordinarily formatted diskettes may be used. Furthermore the

enhanced version of OS2DUMP which allows dumping to a hard-disk FAT
partition is standard. The partition volume label must be SADUMP.

Syntax

TRAPDUMP=[ON|OFF|RO] [,]X:

Chapter 1. CONFIG.SYS RAS Commands 5

6

0OS/2 Debugging

Parameters

ON

Specifies that the stand-alone dump process will be automatically initiated
whenever an unrecoverable ring 3 trap occurs. For 2.11 systems with APAR
PJ12258 or OS/2 Warp, any system IPE (including ring O traps) will also
initiate a dump when ON is specified.

OFF

RO

Specifies that the stand-alone dump process will not initiate automatically
when an unrecoverable trap occurs. This is the default option. It does not
prohibit the use of the Ctrl-Alt-Numlock-Numlock key sequence or the use of
DosForceSystemDump to force a stand-alone dump to be initiated.

Specifies that only ring zero traps and IPEs will automatically initiate the
stand-alone dump process. This option applies only to 2.11 systems with
APAR PJ12258 or OS/2 Warp.

Note: When an IPE occurs the dump is taken immediately on displaying the
IPE trap screen. For the purposes of dump analysis the formatted
registers from the IPE screen should be located from the video buffer,
which may be viewed using the analyze option from the PMDF.

specifies the hard-disk FAT partition to which OS2DUMP will write a
stand-alone dump. The partition letter must have the colon suffix.

Note: The partition may be specified with either ON or OFF. When specified

— Attention

with OFF it will allow a stand-alone dump initiated by
Ctrl-Alt-Numlock-Numlock to be written to the dump partition.

Mountable media other than diskette drives are not detectable by
OS2DUMP. The letter specifying the dump partition must be calculated as
if any such media were not present.

Only hard disk logical drives and primary partitions may be specified.

When dumping to a hard disk partition is selected the system is
automatically re-booted on completion of the dump.

The stand-alone dump process will erase all data on the dump media (disk
partition or diskettes) before writing the dump.

Do not specify a disk partition or use diskettes that contain vital data.

Chapter 2. OS/2 RAS Application Programming Interfaces

This chapter describes the subset of OS/2 RAS APIs for use by application
programmers, which are not described in the OS/2 Technical Library, Control
Programming Reference.

— Caution

Some RAS programming interfaces may be specific to a particular release of
0OS/2 or have a release specific function.

The APIs discussed in this section are:
2.1, “DosSysTrace (Static Trace Event Recording).”
2.2, “DosGetSTDA (Get the System Trace Data Area)” on page 10.

2.3, “DosForceSystemDump (Force a System Stand-Alone Dump)” on
page 14.

2.4, “DosDumpProcess (Enable/Disable ProcessDump)” on page 15.

2.5, “DosSuppressPopUps (Suppress Trap Exception Pop-Up Messages)” on
page 16.

2.6, “DosQueryRASInfo (Query RAS Information)” on page 17.
2.7, “16-Bit Error Logging APIs for IBM OS/2 Version 2.1” on page 18.
2.7.2, “DosLogRegister” on page 19.
2.7.3, “DosLogEntry” on page 21.
2.7.4, “DosLogRead” on page 23.
2.8, “32-Bit Error Logging APIs for IBM OS/2 Version 2.1 and 3.0” on page 26.
2.8.1, “LogOpen” on page 27.
2.8.2, “LogClose” on page 28.
2.8.3, “LogAddEntries” on page 28.
2.8.4, “LogGetEntries” on page 32.

2.1 DosSysTrace (Static Trace Event Recording)

Static trace recording is available as both an API and a DevHlIp routine.

2.1.1 DosSysTrace (Add a Trace Record to the System Trace Buffer)

DosSysTrace allows a subsystem or system extension to add information to the
system trace buffer.

Note: DosSysTrace is a 16-bit API.

Coding Examples

[J Copyright IBM Corp. 1996 7

8

0OS/2 Debugging

EXTRN DosSysTrace:FAR

PUSH WORD MajorCode ; major trace event code (240-255)
PUSH WORD Length ; length of the variable length
; area to be recorded (0-512)
PUSH WORD MinorCode ; minor trace event code (0-255)
PUSH@ OTHER Data ; pointer to the area to be traced
; (address parameter)
CALL DOSSYSTRACE

16-bit MASM Example

APIRET16 APIENTRY16 DosSysTrace(USHORT MajorCode, USHORT Length,
USHORT MinorCode, PCHAR pData);

32-bit code Example using CSet/2

Parameters

MajorCode
The major code to be placed in the trace buffer. Only the low order byte is
used. The high order byte should be 0 for future compatibility reasons, but
no error checking of the high order byte is performed.

Length
The length of the area pointed to by the address parameter. If a length
greater than 512 is specified, only 512 bytes will be recorded. If a length of O
is specified, the address parameter will not be used; however, a dummy
doubleword must be pushed on the stack so that all calls use the same stack
space.

MinorCode
The minor code to be placed in the trace buffer. This code identifies the
specific trace event. Only the low order byte is used. The high order byte
should be 0 for future compatibility reasons, but no error checking of the
high order byte is performed.

pData
The address of the variable length data area which contains additional
information that the system trace function will add to the trace buffer. If a
length of 0 is specified, the address will not be used, but a value must still be
added to the stack.

Results

DosSysTrace returns the following values:
0 NO_ERROR

150
ERROR_SYSTEM_TRACE (trace is disabled for that event)

IFAX =0
Data traced
ELSE
AX = Error_System Trace
Data not traced

Note: An example of when data would not be traced is if the major event code
is not currently selected for tracing.

Remarks

All trace records consist of a header and optional data. The header record is
built by DosSysTrace and contains:

Major event code

Minor event code

Process ID of caller

Timestamp when the time is different from the previous trace record
Flag field

Data field (optional)

The optional data field contains the variable-length data as passed by the caller.

The trace facility maintains an array of 32 bytes (256 bits), in which each bit
represents a major event code. This array is updated each time the user
enables or disables tracing of a major event. The trace facility checks this array
each time it is called to ensure that the major event specified is currently
enabled for tracing. The array is located in the Global Information Segment.

A prototype definition for DosSysTrace may be found under 2.9, “RAS API
Prototypes” on page 37.

2.1.2 DevHIp_SysRAS (Add a Trace Record to the System Trace Buffer)

The DevHIp_SysTrace function provides a service for device drivers to add
information to the system trace buffer.

Note: DevHIp_SysTrace is a 16-bit API.

Coding Example

MOV AX,MajorCode ; major trace event code (240-255)
MOV BX,Length ; length of data area (0-512 bytes)
MOV CX,MinorCode ; minor trace event code (0-255)
LDS SI,pData ; pointer to trace data

MOV DL,28H ; DevH1p_SysRAS function code

CALL [Device Help] invoke device helper

16-bit MASM Example

Parameters

MajorCode
The major code to be placed in the trace buffer. Only the low order byte is
used. The high order byte should be 0 for future compatibility reasons, but
no error checking of the high order byte is performed.

Length
The length of the area pointed to by the address parameter. If a length
greater than 512 is specified, only 512 bytes will be recorded. If a length of O
is specified, the address parameter will not be used; however, a dummy
doubleword must be pushed on the stack so that all calls use the same stack
space.

MinorCode
The minor code to be placed in the trace buffer. This code identifies the
specific trace event. Only the low order byte is used. The high order byte
should be 0 for future compatibility reasons, but no error checking of the
high order byte is performed.

Chapter 2. OS/2 RAS Application Programming Interfaces 9

pData
The address of the variable length data area which contains additional
information that the system trace function will add to the trace buffer. If a
length of O is specified, the address will not be used, but a value must still be
added to the stack.

Results

If CF=0

Trace record placed in trace buffer
Else

Data not traced

The possible errors are as follows:

Tracing suspended

Minor code not being traced
PiD not being traced

Trace overrun

Remarks

The trace facility maintains an array of 32 bytes (256 bits), in which each bit
represents a major event code. This array is updated each time the user
enables or disables tracing of a major event. The device driver must check this
array before calling DevHIp_SysTrace to ensure that the major event specified is
currently enabled for tracing. This array is located in the Global Information
Segment.

All registers are preserved. Interrupts are disabled while the trace data is saved
and then re-enabled if they were initially enabled.

2.2 DosGetSTDA (Get the System Trace Data Area)

The DosGetSTDA API is a 16-bit API that returns a copy of the system trace
buffer (STDA).

Syntax

The following 16-bit C language function prototype can be used to call the
DosGetSTDA API:

// 16 bit compiler
extern unsigned far pascal DosGetSTDA(SEL, SHORT, SHORT);

// 32 bit compiler
APIRET16 APIENTRY16 DosGetSTDA(SEL, SHORT, SHORT);

Where: SEL is the selector to the private buffer
SHORT is the offset to the private buffer
SHORT is the size of the buffer
(maximum value = 64KB)
records

Returns: 0 - indicates correct operation, buffer is now filled

with copy of the system trace buffer
ERROR_SYSTEM_TRACE - System trace is not enabled

10 osr2 Debugging

Linker Considerations

In order to successfully resolve DosGetSTDA function calls in your program, the
following lines must be added to the Linker Definition (DEF) file:

IMPORTS
DOSGETSTDA=DOSCALL1.119

Remarks

DosGetSTDA returns a buffer that contains a copy of the system trace buffer.
The buffer is circular with a header record that contains pointers to the first and
last data bytes and a pointer to the next byte that was available for writing (the
buffer is a snapshot of the system trace buffer at the time that the API was
called). A set of trace records follows the header. Each trace record contains a
trace event trailer and optionally a timestamp and/or a data field. A timestamp
record is optional and will only exist if bit 2 of the flag field in the Trace Event
Trailer is set to OFF.

The trace event data contains the information describing each individual trace
event. The events traced may be from OS/2 system supplied or other user
supplied trace points. In either case the data is dependent on each individual
trace point. Descriptions of the data and formatting instructions for the OS/2
system supplied trace points can be found in the OS/2 Debugging Library,
Volume 3 - System Trace Points Reference.

2.2.1 Trace Buffer Structures

Note: From the OS/2 2.11 FixPak 91 and OS/2 3.0 FixPak 8 the format of the
STDA has changed to allow more meaningful timestamp information. See
2.2.1.1, “New STDA Format” on page 14 at the end of this section for

details.
Pointer to Pointer to Pointer to
First (#1) Next (#3) Last (#2)
Entry #3 Entry #10
T
SYSTRACE | . ol |... 2
|
> > > > > > > > > | N N N N 2
Pointer 1 — | | || | | | | | & Major Code
Pointer 2 —— | | | | | | | Y—— Length
Pointer 3 ———— | | | | Y——— Minor Code
| | | | b———— Process ID
Timestamp —! | L—— Flags
Flags — ' Timestamp
Process 1D ———— Data (2 bytes)
Minor Code
Length
Major Code

Figure 1. Circular Trace Buffer (STDA)

Chapter 2. OS/2 RAS Application Programming Interfaces 11

Table 1. Field Descriptions: Trace Control Record

Name #Bytes Description

ID of Data Area 8 Contains ASCII 'SYSTRACE'

Pointer 1 2 Offset of first byte of the trace buffer

Pointer 2 2 Offset of last byte of the trace buffer

Pointer 3 2 Offset of next available byte in the trace buffer

Table 2. Field Descriptions: Trace Event Trailer Record (with Timestamp)

Name #Bytes Description
Timestamp (Conditiopallimestamp in seconds and hundredths of
on bit seconds (Conditional on bit 2 in the Flags byte)
1lin
the
flags
byte)
Flags 1 Trace record flag
Bit 0: 0 indicates an internal kernel generated
trace record.
Bit 1: 0 indicates that a timestamp is present.
Bit 2: 1 signifies that the trace record was
generated in protect mode.
Bit 3: 0 signifies a static trace record, 1 a
dynamic trace record.
Bit 4: 1 indicates an incomplete dynamic trace
record.
Bit 5 - 7: reserved.
PID 2 ID of the process calling the API being traced
Minor Code 2 Minor Event Code
Length 2 Length of data for the traced API
Major Code 1 Major Event Code

12 osn2 Debugging

Remarks

The buffer returned by DosGetSTDA is a simple circular buffer that is a snapshot
of the OS/2 System Trace buffer at the time that the APl was called. The actual
System Trace buffer is emptied by the call. The buffer contains a header record
that has pointers to the First, Last and Next bytes in the buffer. The offsets of the
First and Last bytes are constant and the offset to next is used to indicate the
last (most recent) trace record in the buffer. This pointer is logically moved
backwards as the buffer is traversed. Since it is possible for a trace record to
wrap back to the end of the buffer, it is necessary to look at each part of the data
individually (trailer, timestamp and data) to determine whether the length of the
data is greater than the distance between Next and First. If the length is greater,
then the data is continued at the offset to Last.

For example (see figure below), the buffer has been traversed until the pointer to
Next is at byte 26. The event trailer record is 8 bytes and the distance from Next
to Firstis 12, so the trailer is in contiguous memory. The pointer to Next is then

set to byte 18. There is a timestamp which is two bytes. Our distance to First is
now 4 so the timestamp is contiguous and the pointer to Next is reset to 16. This
record has 4 bytes of data attached to it. The distance to First at this point is 2,
so the data is wrapped: 2 bytes are adjacent to the Next, and the other 2 bytes
begin at the pointer to Last.

First (Byte 14) Next (byte 26) Last
|
I
TRACE HEADER| T |EVENT TRAILER EVENT TRAILER | (other trace
(14 BYTES) |DATA S|DATA LENGTH: 4| S|DATA LENGTH: O records) DATA
|
» »
| |
2 Bytes 2 Bytes

Figure 2. Buffer Returned by DosGetSTDA

The end of data in the trace buffer is indicated by a trace event trailer that
contains a major code field of zero and a length field of zero.

The display format of the OS/2 system supplied tracepoint data is described in
the OS/2 Debugging Library, Volume 3 - System Trace Points Reference. Note
that for data using the %S (ASCIIZ string) format type, the first byte of the data is
reserved, bytes two and three contain the actual length of the string and the
string begins at byte 4.

TRACEFMT Unformatted Trace Buffer

The trace formatter (TRACEFMT) is able to save the unformatted STDA buffer for
formatting at a later date. The format of this buffer is as follows:

File Header

T T T T T T T T T TT T T T T T T T 17T
STDAIN| DATETIME CHECK KEY
L1 1 I I S | I I S |
0 4 f la
STDA
T T T T T T T T T°71 I
SYSTRACE|STA|END|NXT| TRACE RECORDS
I I |
la 22 24 26 28

Figure 3. Unformatted Trace Buffer

Remarks

STDA LN
ULONG length of the STDA read by DosGetSTDA. Length is 1 greater than
the STDA end offset.

Chapter 2. OS/2 RAS Application Programming Interfaces 13

DATETIME
A DATETIME structure returned by DosGetDateTime when this file buffer is
created.

CHECK KEY
The DATETIME filed exclusively ORed with the string constant
"TRCFMTBUFF$".

STDA
The STDA returned by DosGetSTDA.

Note: DosGetSTDA resets the internal start, end and next offsets after the STDA
has been read. This allows trace formatting programs to detect an empty
buffer.

For GA 0OS/2 2.x and OS/2 3.x the default start offset is 0x000e.

After FixPak 91 (0S/2 2.11) and FixPak 8 (OS/2 3.) the default start offset is
0x001e.

2.2.1.1 New STDA Format

From FixPak 8 (0S/2 3.0) and FixPak 91 (OS/2 2.11) the system trace was
enhanced to provide improved timestamp information. Each trace records is
timestamped in hours, minutes, seconds and 1/100 seconds. The trace logging
start and stop times are also logged and displayed by the TRACEFMT command.

The spare bytes between the end of the STDA header and first trace record have
been reserved for storing trace start and stop times. These are of the following
format:

STDA
| |
y y|m{d|h|n|s|c|Y Y|M|D|H|N|S|C|TRACE RECORDS
| |
28 30 38

Figure 4. STDA Spare Bytes

Where:

yymdhnsc is the TRACE ON date and time in years, month day, hours,
seconds and 100th seconds.

YYMDHNSC is the TRACE OFF date and time in years, month day, hours,
seconds and 100th seconds.

2.3 DosForceSystemDump (Force a System Stand-Alone Dump)

14

0S/2 Debugging

DosForceSystemDump allows an application to initiate a stand-alone system
dump.

Syntax

APIRET APIENTRY DosForceSystemDump (ULONG reserved);
32-bit code Example using CSet/2

Parameters

reserved
Reserved doubleword field that is set to OL.

Returns
There is no return from this API.
Remarks

The system is halted abruptly and a stand-alone dump is initiated. After the
stand-alone dump process has completed the system must be re-booted.

No shut down activity is performed when this API is called. File system buffers
are not written to disk, cache is not flushed and files are not closed, data loss
may result.

DosForceSystemDump is equivalent to using the Ctrl-Alt-Numlock-Numlock key
sequence.

C Language prototype definitions for the DosForceSystemDump APl may be
found under 2.9, “RAS API Prototypes” on page 37.

To format a system dump, see the OS/2 Debugging Library, Volume 2.

For related information see:
1.10, “TRAPDUMP” on page 5.
CREATEDD command in the OS/2 Command Reference.

2.4 DosDumpProcess (Enable/Disable ProcessDump)
DosDumpProcess allows an application:
To enable or disable dynamically the process dump facility.
To force a process dump for a given process.

The default setting is for process dump to be disabled unless overridden by the
DUMPPROCESS CONFIG.SYS command in 1.6, “SUPPRESSPOPUPS” on page 4.

Syntax

APIRET APIENTRY DosDumpProcess(ULONG Flag, ULONG Drive, PID pid);
32-bit code Example using CSet/2

Parameters

Flag
Doubleword field that may take one of the following values:

(DDP_DISABLEPROCDUMP 0x00000000L)
Disable process dumps.
(DDP_ENABLEPROCDUMP 0x00000001L)

Enable process dumps to be taken to a file in the root directory of a drive
specified by the Drive parameter.

(DDP_PERFORMPROCDUMP 0x00000002L)

Chapter 2. OS/2 RAS Application Programming Interfaces 15

Drive
Doubleword containing the ASCII value of the drive letter to which the
PDUMP.nnn dump files will be written when DDP_ENABLEPROCDUMP is
specified. For DDP_DISABLEPROCDUMP this parameter is ignored.

pid
Doubleword containing the process Id of the process to be dumped.

This option is valid only with DDP_PERFORMPROCDUMP. If zero is specified
for PiD then the current process is dumped.

Returns.

Return Code

DosDumpProcess returns the following values:
0 NO_ERROR
87 ERROR_INVALID_PARAMETER

303
ERROR_INVALID_PROCID

Remarks

When process dump is enabled a dump file is written whenever a ring 3 process
traps. The file takes the name PDUMP.nnn where nnn is incremented
sequentially (staring from 000) for each successive dump.

The directory to which PDUMP.nnn will be written is always the root directory of
Drive.

C Language prototype definitions for the DosDumpProcess may be found in 2.9,
“RAS API Prototypes” on page 37.

The content of a process dump comprise register information at time of trap,
system control blocks (TCB, TSD, PTDA, MTE, SMTE, OTE, VMAR, VMOB and
LTD) that describe the state of the process at the time of error, ring 0 and ring 3
stack data for the trapping process.

See the process Dump Formatter section of the Dump Formatter User Guide for
information on formatting Process Dumps.

Note: DDP_PERFORMPROCDUMP is not available in some early releases of
0S/2 V2.11.

2.5 DosSuppressPopUps (Suppress Trap Exception Pop-Up Messages)

16

0S/2 Debugging

DosSuppressPopUps allows an application to enable or disable dynamically trap
exception pop-up suppression and to specify the drive where the pop-up
suppression log will be recorded.

The default setting is for disabled pop-up suppression unless overridden by the
SUPPRESSPOPUPS CONFIG.SYS command in 1.6, “SUPPRESSPOPUPS” on
page 4.

Syntax

APIRET APIENTRY DosSuppressPopUps(ULONG Flag, ULONG Drive);
32-bit code Example using CSet/2

Parameters

Flag
Doubleword field that may take one of the following values:

(SPU_DISABLESUPPRESSION 0x00000000L)
Disable pop-up suppression.
(SPU_ENABLESUPPRESSION 0x00000001L)

Enable pop-up suppression and pop-up logging to file POPUPLOG.OS2 on
the drive specified by the Drive parameter.

Drive
Doubleword containing the ASCII value of the drive letter to which the
POPUPLOG.OS2 log file will be written when SPU_ENABLESUPPRESSION is
specified. With SPU_DISABLESUPPRESSION, Drive is ignored.

Returns
Return Code.

DosSuppressPopups returns the following values:
0 NO_ERROR

87 ERROR_INVALID_PARAMETER
Remarks

The directory to which POPUPLOG.OS2 will be written is always the root
directory of Drive.

A prototype definition of DosSuppressPopUps may be found in 2.9, “RAS API
Prototypes” on page 37.

See also the DosError APl in the OS/2 Control Program Programming Reference.

2.6 DosQueryRASInfo (Query RAS Information)

DosQueryRASInfo returns information about active trace event recording and
System Logging facility from the Global Information segment (InfoSegGDT) dump.

Syntax

APIRET APIENTRY DosQueryRASInfo(ULONG Index, PPVOID Addr);
32-bit code Example using CSet/2

Parameters

Index
Doubleword field that may take one of the following values:

(SPU_SIS_MEC_TABLE 0x00000001L)

Chapter 2. OS/2 RAS Application Programming Interfaces 17

Return the address of the table of actively traced major event codes in
the InfoSegGDT. The table is 32 bytes long and each bit represents each
major event code from 0 to 255.

(SIS_SYS_LOG 0x00000002L)

Return the address of the SYSLOG status word from InfoSegGDT. The
status may contain a combination of:

- (LF_LOGENABLE 0x0001) Logging enabled
- (LF_LOGAVAILABLE 0x0002) Logging available

Returns

Return Code.

DosQueryRASInfo returns the following values:
0 NO_ERROR
5 ERROR_ACCESS_DENIED

87 ERROR_INVALID_PARAMETER

Remarks

For related information see:
Logging facility
The OS/2 Trace facility

2.7 16-Bit Error Logging APIs for IBM OS/2 Version 2.1

18

0S/2 Debugging

This section describes the "Logging Facility for OS/2 2.1". This comprises a set
of three APIs, the logging deamon (LOG.SYS) and the log formatter (SYSLOG).

Both the Logging Deamon and Log Formatter are described in the 0S/2
Command Reference Manual (see LOG.SYS under DEVICE statement of
CONFIG.SYS and the SYSLOG command.

Note: C Language prototype definitions for the error logging APIs may be found
under 2.9, “RAS API Prototypes” on page 37.
The following topics are described in this section:
2.7.1, “Dynamic vs. Static Error Log Record ID Registration” on page 19.
2.7.2, “DosLogRegister” on page 19.
2.7.3, “DosLogEntry” on page 21.

2.7.4, “DosLogRead” on page 23.

2.7.5, “Error Log Entry Formatting DLL Routines” on page 24.

2.7.1 Dynamic vs. Static Error Log Record ID Registration

0S/2 2.0 users of the DosLogEntry API will not need to use the DosLogRegister
API. The DosLogRegister API is only maintained on OS/2 2.0 to support existing
0S/2 1.3 programs that did need to use the API.

The OS/2 2.0 Version of the DosLogRegister APl will always return a default
Error Log record ID. It will accept a format template string as an input, but it will
do nothing with the string since format template strings will not be saved within
the OS/2 2.0 Version of the Error Log file.

The OS/2 2.0 Version of the DosLogEntry API will behave similarly to the OS/2
1.3 Version of the API. Since the OS/2 2.0 Version of the system Error Logging
facility no longer supports the saving of format template strings within the Error
Log file, it is necessary to provide a method by which DosLogEntry callers can
associate their Error Log entry with a formatting (.DLL) routine. The OS/2 2.0
Version of the DosLogEntry API will make a special interpretation of the
Originator Name field within the packet header. It will be assumed that this
name field (if not NULL) contains the name of a Error Log formatting .DLL
module.

2.7.2 DosLogRegister
There are two major differences between the OS/2 2.0 Version of
DosLogRegister and the 1.3 version of the API:

DosLogRegister no longer supports dynamic registration of Error Log record
IDs. Instead, the API always returns a single default value.

DosLogRegister no longer supports entry format template registration. While
the API still accepts a format template as part of its input data packet, the
format template will not be acted upon in any way.

DosLogRegister continues to support the existing alert notification registration
function.

The description of the OS/2 2.0 Version of the DosLogRegister API follows:

Syntax.
APIRET16 APIENTRY16 DosLogRegister((PUSHORT) LogHandle,
(PVOID) LogReglList,
(PUSHORT) RequestID)
32-bit code Example using CSet/2
Parameters
LogHandle

The address of the word in which the system will return the handle of a
named pipe that will be transparently used in subsequent DosLogRead calls.

LogRegList
The address of the log registry buffer.

RequestID
The address of the word that the system will fill in with a default Error Log
record ID (if the "Error Log record ID' field in the log registry buffer is set by
the caller to -1)

Chapter 2. OS/2 RAS Application Programming Interfaces 19

Returns
Return code

DosLogRegister returns the following values:
0 Success

non-zero
Failure

Possible reasons for failure are:

Facility unavailable

Record ID in use

Registration failed (general failure)
Invalid ID

Too many open files

Too many semaphores

Semaphore not found

User semaphore limit reached
Request timed out without satisfaction

Error Log buffer temporarily full

Remarks
Length of the registration data 2
Reserved 2
Error Log record ID 2

Offset to the format template Tayout field 2

Semaphore name string variable length

Format template layout variable length

Figure 5. Log Registry Buffer Format Description

Where:

Length of the registration data
Is the total number of bytes in the current Log Registry Buffer (this length
includes the two byte length field itself)

Reserved
Is a two byte reserved field

20 os2 Debugging

Error Log record 1D
Contains the Error Log record ID that caller wishes to be registered for. If
the field is set to OxFFFF (-1), then a "default” record ID is returned in the
word pointed to by the 'RequestID’' parameter. This field can be used to
specify an alert notification record ID (that is, the caller wishes to be alerted
whenever an Error Log Entry containing this record ID is logged).

Offset to the format template layout field
Is the offset within the Log Registry Buffer to the start of the format template
layout area.

Semaphore name string
Is the name of a system semaphore, created with the nonexclusive option,
that will be used to alert the caller's process when an Error Log entry
containing the specified 'Error Log record ID' is logged. The name string is
an ASCIIZ string.

Format template layout
Is an area within the Log Registry Buffer that contains the formatting
structure information that is placed within the 1.3 Error Log file. This area is
not used in the OS/2 2.0 Version of the DosLogRegister call. However, the
"length of the registration data’ field should reflect the size of this area.

In order to successfully resolve DosLogRegister function calls in your program,
the following lines must be added to the Linker Definition (DEF) file:

IMPORTS
DOSLOGREGISTER=DOSCALL1.195

2.7.3 DosLogEntry

There are two major differences between the OS/2 2.0 Version of DosLogEntry
and the 1.3 Version of the API:

Since the DosLogRegister API will only return a "default” Error Log record ID
to its caller, the DosLogEntry caller must override this "default” record with
the appropriately statically allocated record ID if the caller wishes to see the
"correct” record ID in the Error Log record.

Since there is no explicit "Error Log record formatting DLL module name”
field in the DosLogEntry log data packet, the API will attempt to interpret the
'Originator Name' field in the packet's header portion as a formatting DLL
module name.

The description of the OS/2 2.0 Version of the DosLogEntry API is as follows:

Syntax
APIRET16 APIENTRY16 DosLogEntry((USHORT) Function,
(PVOID) LogData)
32-bit code Example using CSet/2
Parameters
Function

This specifies the type of log entry as follows:

OH Reserved
1H Error Logging

Chapter 2. OS/2 RAS Application Programming Interfaces 21

2H-FFFFH Reserved

LogData
This is the address of the log data buffer that contains one or more variable
length log packets.

Returns
Return Code

DosLogEntry returns the following values:
0 Success

non-zero
Failure

Possible reasons for failure:
Invalid function

Facility unavailable
Facility suspended

Error Log buffer temporarily full

Remarks
Error Log Data Buffer format description:

Multiple log packets can be included within a single log data buffer. In the
following diagram, the size of each field is indicated in bytes:

of log packets (within the buffer) 2

length of the current log packet 2| <—

Error Log record ID 2

Time of Togging 4 multiple
log packets

Date of Togging 4 within a
single log

Originator name 8 data buffer

Qualifier name 4

Error Log entry data <= 1024 |<—

Figure 6. Error Log Data Buffer Format Description

Where:

of log packets
Is the number of separate packets contained within the user's buffer

22 0s/2 Debugging

Length of the current log packet
Is the number of bytes in the current log packet within the user’'s log data
buffer (this length includes the length of all the log packet control fields and
the size of the Error Log entry data).

Error Log record 1D
Is the record ID for the current Error Log entry (ID registration will be
statically registered by the OS/2 development organization). The caller may
pass in the "default” Error Log record ID that is returned by the
DosLogRegister API.

Time of logging
Is filled in by the system Error Logging facility)

Date of logging
Is filled in by the system Error Logging facility

Originator name
Is a primary name field that is provided by the caller

Qualifier name
is a secondary name field that is provided by the caller

Error Log entry data
Is an optional variable length set of data that can be supplied by the caller
(the format of the data is under the control of the caller).

In order to successfully resolve DosLogEntry function calls in your program, the
following lines must be added to the Linker Definition (DEF) file:

IMPORTS
DOSLOGENTRY=DOSCALL1.193

2.7.4 DosLogRead
The description of the OS/2 2.0 Version of the DosLogRead API follows:

APIRET16 APIENTRY16 DoslLogRead((USHORT) LogHandle,
(USHORT) Length,
(PVOID) LogBuffer,
(PUSHORT) ReadSize)
32-bit code Example using CSet/2

Parameters

LogHandle
This is the named pipe handle returned by DosLogRegister()

Length
This is the length (in words) of the caller's log buffer

LogBuffer
This is the address of the caller’'s buffer, into which the system Error Logging
facility will place a single Error Log entry packet (formatted in the manner of
the 16-bit DosLogEntry API).

ReadSize
This is the address of a word, into which the system Error Logging facility
will place the number of bytes that it wrote into the caller's log buffer. If a
zero is returned here, then there was no Error Log packet to return.

Chapter 2. OS/2 RAS Application Programming Interfaces 23

Returns
Return code

DosLogRead returns the following values:
0 Indicating success.

non-zero
Indicating error

Possible reasons for failure:

Invalid log handle
Facility unavailable

Buffer too small

In order to successfully resolve DosLogRead function calls in your program, the
following lines must be added to the Linker Definition (DEF) file:

IMPORTS
DOSLOGREAD=DOSCALL1.196

DosLogRead returns Error Log entries that are formatted in the manner of the
16-bit DosLogEntry API.

2.7.5 Error Log Entry Formatting DLL Routines

24

0S/2 Debugging

Each Error Log record within an Error Log file can contain the name of a
formatting DLL module. A formatting DLL module is invoked by the SYSLOG
utility when SYSLOG encounters an Error Log record that contains the name of
the DLL module.

Each formatting module contains a single formatting routine that can be
identified by an ordinal value of 1. The formatting routine can be designed to
handle a single type of Error Log entry or to handle multiple types of Error Log
entries. When SYSLOG passes control to a formatting routine, it passes the
entire Error Log record (both header portion and data portion) to the formatting
routine. The formatting routine has the complete flexibility to format an Error
Log entry as it deems appropriate.

SYSLOG uses the DosLoadModule API to create a run-time link to the specified
formatting DLL module. It uses the DosFreeModule API to free the DLL module
after it receives its response from the formatting routine.

There are no specific rules that govern the naming of a formatting DLL module.
However, since it is desirable to reduce the possibility of colliding with another
DLL module of the same name, it is suggested that a formatting DLL module be
labelled with a name that adheres to the following standard form:

ELGxxxxx.DLL (where "xxxxx" corresponds to the Error
Log record ID (in decimal) of any one
of the types of records that the formatting
routine is designed to handle)

For example,

"ELGO0127.DLL" is a standardized name for a formatting DDL
module that recognizes (among other things)
Log records with ID of 127 (decimal)

This standard naming convention is suggested because it is assumed that the
Error Log records of any one ID will only be recognized by a single formatting
routine. Therefore the use of the "xxxxx" suffix (based on record ID) should
assure uniqueness for the formatting module name.

The static Error Log record ID registration mechanism that is enforced by the
0OS/2 development organization will attempt to keep a list not only of the Error
Log record IDs in use, but also the names of the formatting DLL modules that
correspond to each record ID. This will also help to reduce the possibility of

formatting DLL module names colliding.

In addition to its single formatting routine, each formatting DLL module must
contain a global variable named "ELOG_FORMAT". For OS/2 2.0, this exported
global variable must be set to a value of 1. When SYSLOG loads a prospective
formatting DLL module it attempts to access this global variable and check
whether it has the expected value of 1. If the global variable check fails, then
SYSLOG can conclude that it has accidentally loaded another DLL module with
the same name as the formatting module that is mentioned in the Error Log
entry. This check is intended as a form of protective validation for SYSLOG. The
variable will in future releases be used as a revision level for the
SYSLOG/formatting DLL module interface specification.

When a user constructs a Error Log entry formatting DLL module, care should be
taken not to export the names of its constituent formatting routine (though the
required ELOG_FORMAT global variable must be exported). Not exporting the
module name will save storage space within the OS/2 kernel. The SYSLOG
utility will be written to use the ordinal version of the DosGetProcAddr API.

Error Log record formatting DLL routines must be written as 32-bit procedures.
A typical Error Log record formatting DLL routine will have to accept the
parameters:

ULONG ELGxxxxx((PVOID) Log Record, (PVOID) String Buffer,
(ULONG) Buffer Length, (PULONG) String_Length)

Parameters

Log_Record
A linear pointer to an Error Log record that is being passed from SYSLOG to
the formatting routine. The Error Log record adheres to the format that is
described in the section that follows entitled "Error Log File Entry Format”,
except that the linear pointer points to the "TOT_LENGTH" field (since the
"PREV_PTR" and "PREV_SIZE" fields are of no interest to a formatting
routine).

String_Buffer
Is a linear pointer to a buffer provided by SYSLOG so that the formatting
routine can return a series of ASCIIZ strings to SYSLOG. Each ASCIIZ string
should correspond to a line of formatted display. Each ASCIIZ string should

Chapter 2. OS/2 RAS Application Programming Interfaces 25

be limited to a maximum of 80 characters. SYSLOG will paint each string
"line" within its client window. The strings should not contain NEWLINE
characters. SYSLOG will automatically format the header portion of the
Error Log entry. The formatted output prepared by this routine will follow the
formatted header display.

Buffer_Length
Is a 32-bit integer that contains the maximum size of the 'String_Buffer’.

String_Length
Is a pointer to a 32-bit integer that is set by the formatting routine to the total
length of the ASCIIZ strings that have been placed in the 'String_Buffer'.

Returns

ELGxxxxx returns the following:
0 Indicating success

-1 Indicates insufficient space in the 'String_Buffer’, positive values indicate
formatting routine errors.

If a formatting DLL routine returns a positive error code to SYSLOG, SYSLOG
will format the header portion of the Error Log record in the standard manner,
display the returned formatting routine error code (as a line within the formatted
display), and then format the data portion of the Error Log record as a
hexadecimal dump.

If an Error Log record fails to point to a formatting DLL module, or if the
formatting DLL module cannot be successfully loaded and validated, then
SYSLOG will format the header portion of the Error Log record in the standard
manner, display a message that a formatting routine was not specified or could
not be successfully invoked (as a line within the formatted display), and then
format the data portion of the Error Log record as a hexadecimal dump.

If there is insufficient space in the 'String_Buffer’, then the formatting routine will
return a -1 status code, and will place the required length of the formatted
display string in the caller's output length variable. SYSLOG can react to this
error by recalling the formatting routine with a larger 'String_Buffer'.

SYSLOG will contain logic to format the standard SNA Generic Alert entry (that
is, Error Log record ID of 2). This is necessary since most of the existing Error
Log calls are used to pass generic alerts (and the existing calls can not pass in
formatting DLL routine names). This design choice does not prevent future Error
Log callers to specify a record ID of 2 and also to pass in the name of a
formatting DLL routine that knows how to specially format that Generic Alert
entry.

2.8 32-Bit Error Logging APIs for IBM OS/2 Version 2.1 and 3.0

26

0S/2 Debugging

This section describes the "Logging Facility for 0OS/2 2.1 and 3.0". This
comprises a set of four APIs, a DevHIp function, the logging deamon
(LOGDAEM.EXE), the logging device driver (LOG.SYS) and the log formatter
(SYSLOG).

2.8.1 LogOpen

The Logging Deamon, Device Driver and Log Formatter are described in the
0S/2 Command Reference - see LOG.SYS under the DEVICE statement of
CONFIG.SYS and the SYSLOG command.

Note: C Language prototype definitions for the Error Logging APIs may be found
in 2.9, “RAS API Prototypes” on page 37.

The following topics are described in this section:
2.8.1, “LogOpen”
2.8.2, “LogClose” on page 28
2.8.3, “LogAddEntries” on page 28
2.8.4, “LogGetEntries” on page 32
2.8.5, “32-Bit Error Log Entry Formatting DLL Routines” on page 33
2.8.6, “DevHIp_LogEntry Device Driver Interface” on page 36

The set of four 32-bit logging APIs provide equivalent functionallity to the three
16-bit logging APIs discussed in the previous section. They may be used as a
complete replacement to the 16-bit set.

LogOpen is a 32-bit system Error Logging facility high level API. It is used to
open a connection to the facility (through the System Logging Service device
driver).

The description of the LogOpen API call follows:

Syntax.

APIRET APIENTRY LogOpen(PHFILE phf);

Parameters

phf
This points to a file handle holder that on return will hold an open file handle

Returns
Return code

LogOpen returns the following values:
0 Success

non-zero
Facility not available

Remarks

The file handle that is returned by the LogOpen API is required in all subsequent
high level system Error Logging facility API calls.

In order to resolve successfully LogOpen function calls in your program, the
following lines must be added to the Linker Definition (DEF) file:

Chapter 2. OS/2 RAS Application Programming Interfaces 27

2.8.2 LogClose

IMPORTS
LogOpen=DOSCALL1.430

LogClose is a 32-bit system Error Logging facility high level API. It is used to
close a connection to the facility.

The description of the LogClose API call follows:
Syntax

APIRET APIENTRY LogClose(HFILE hf);

Parameters

hf Is the file handle returned by LogOpen()
Returns
Return code

LogClose returns the following values:
0 Success

non-zero
Failure, possible reason: facility not open

Remarks

In order to resolve successfully LogClose function calls in your program, the
following lines must be added to the Linker Definition (DEF) file:

IMPORTS
LogClose=DOSCALL1.431

2.8.3 LogAddEntries

28

0S/2 Debugging

LogAddEntries is a 32-bit system Error Logging facility high level API. It is used
to allow application processes to add Error Log entries to the internal Error Log
buffer that is maintained by the System Logging Service device driver.

The description of the LogAddEntries API call follows:

Syntax
APIRET APIENTRY LogAddEntries(HFILE hf, ULONG service,
PVOID Tog data address);
Parameters

hf Is the file handle returned by LogOpen()

service
Specifies the class of logging facility:

0x0 Reserved
0x1 Error Logging
0x2 - Oxffff Reserved

log_data_address
Is the address of a buffer that contains a variable length Error Log entry.
The first word of the buffer contains the number of packets in the Error Log
entry

Returns
Return code

LogAddEntries return the following values:
0 Success

non-zero
Failure

Possible reasons for failure are:
Invalid log type
Facility unavailable
Facility suspended
Facility not open

Error Log buffer temporarily full

Remarks

Error Log Entry Buffer format description:

Multiple Error Log packets can be included within a single Error Log entry buffer.

If multiple packets are included within a single buffer, each individual packet

should be aligned on a double word boundary. In the following diagram, the size

of each field is indicated in bytes:

Chapter 2. OS/2 RAS Application Programming Interfaces

29

Packet revision number 2

of Error Log entry packets 2

Length of this Error Log entry packet 2|<—

Error Log record ID 2

Status flags 4

Qualifier name 4 multiple
Error

Reserved 4 Log entry
packets

Time of logging 4 within a
single

Date of Togging 4 Error Log
Entry Buffer

Originator name 8 or 256

Process name (optional) 0 or 260

Formatting DLL module name (optional) 12

Error Log entry data <= 3400|<—

Figure 7. Error Log Entry Buffer Format Description

30

Where

Packet revision number
Is an integer value that can be used to distinguish error logging packets that
are intended to be handled by different revisions of the LogAddEntries API.
For the initial version of the API, this field should be set to a value of 1. This
field is included in the packet to support future backward compatibility.

of Error Log entry packets
Is the number of separate packets contained within the user's buffer.

Length of this Error Log entry packet
Is the number of bytes in the current Error Log entry packet within the user's
Error Log Entry Buffer (this length includes the length of all the Error Log
entry packet control fields and the size of the Error Log entry text). To
support efficient logging execution, this length should be a multiple of 4 bytes
(i.e. if necessary the user should pad the Error Log entry packet).

Error Log record 1D
Is the record ID for the current Error Log entry (ID registration will be
statically registered by the OS/2 development organization).

Status flags
Is a two byte flag holder that contains three single bit flags:

(BIT 0) is used to indicate whether the current Error Log entry packet

0S/2 Debugging

contains space in which the Error Logging facility can place a long process
name ("on” indicates YES, "off" indicates NO);

(BIT 1) is used to indicate whether the current Error Log entry packet
contains an 8 byte originator name or a 256 byte originator name ("on”
indicates a 256 byte originator name, "off" indicates an 8 byte originator
name);

(BIT 2) is used to indicate that the caller has placed time and date values in
the Error Log entry packet and does not wish to have those values modified
during the logging process ("on"” indicates that the Error Log entry packet
already contains time and date values, "off" indicates the packet does not
already contain time and date values);

All the other 29 bits in 'status flags' are considered reserved at this time
and will be zeroed by the LogAddEntries API.

Qualifier name
Is a secondary name field that is provided by the caller

Reserved
Is a four byte reserved field

Time of logging
Is filled in by the system Error Logging facility (unless BIT 2 of the 'status
flags field is "on", indicating that the caller has preset a time value).

Date of logging
Is filled in by the system Error Logging facility (unless BIT 2 of the 'status
flags field is "on", indicating that the caller has preset a date value);

Originator name
Is a primary name field that is provided by the caller.

Process name
Is an optional long process name field that will be filled in by the Error
Logging facility if the field is provided by the caller in the Error Log entry
packet.

Formatting DLL module name
Is the optional name of a DLL module that houses a formatting routine that
recognizes this type of Error Log entry and can format it for display by the
SYSLOG utility. The name is specified as an ASCIIZ string that can be up to
eight characters in length. If no module name is specified in this field, then
SYSLOG will display the data portion of the Error Log entry as a hexadecimal
dump.

Error Log entry data
Is an optional variable length set of data that can be supplied by the caller
(the format of the string is under the control of the caller).

The format and function of the LogAddEntries API call is very similar to that of
the 16-bit DosLogEntry call. There are several functional differences from the
DosLogEntry call:

The user-supplied error log entry Record ID will now be a statically allocated
value rather than a dynamically allocated value.

The maximum size of the originator name field in the caller's packet has
been increased from 8 bytes to 256 bytes. The caller can specify whether

Chapter 2. OS/2 RAS Application Programming Interfaces 31

the packet contains an 8 byte originator name field or a 256 byte originator
name field.

The maximum size of the variable length data portion within the caller's
packet has been increased from 1024 bytes to 3400 bytes

The order of the fields within the Error Log entry has been slightly
rearranged to support the creation of smaller internal control messages.

In order to resolve successfully LogAddEntries function calls in your program,
the following lines must be added to the Linker Definition (DEF) file:

IMPORTS
LogAddEntries=DOSCALL1.432

2.8.4 LogGetEntries

32

0S/2 Debugging

LogGetEntries is a 32-bit system Error Logging facility high level API. It is used
to allow application processes to obtain Error Log entries from the internal Error
Log buffer that is maintained by the System Logging Service device driver.

LogGetEntries description:
Syntax.

APIRET APIENTRY LogGetEntries(HFILE hf, ULONG service,
ULONG type, PVOID buffer,
ULONG buffer length);

Parameters
hf is the file handle returned by LogOpen()

service
Specifies the class of logging facility:

0x0 Reserved
0x1 Error Logging
0x2 - Oxffff Reserved
type
Specifies the class of internal logging buffer to read:
0x0 Reserved
0x1 Buffer that contains all logged entries
0x2 Buffer that only contains entries that were logged by device
drivers
0x3 - Oxffff Reserved
buffer

Is a pointer to a buffer that will receive entries copied from the internal
logging service buffer (if the caller's buffer is too small to fit all the current
entries in the device driver Error Log buffer, then on return the first double
word of the buffer will be set to the size of the Error Log buffer, expressed as
a number of bytes).

buffer_length
Thi is the length of the caller's buffer.

Returns
Return Code

LogGetEntries returns the following values:
0 Success

non-zero
Failure

Possible reasons for failure:

Facility not open
Facility unavailable

Buffer too small

Remarks

The format and function of the LogGetEntries API call is very similar to that of
the 16-bit DosLogGetBuffer call.

In a similar fashion to the DosLogGetBuffer API, if the caller's buffer is too small
to fit all the current entries in the device driver Error Log buffer, an error return
code is set indicating this problem, and no Error Log entries are placed in the
caller's buffer. In this case, the first doubleword of the buffer is set to the size of
the Error Log buffer (expressed as a number of bytes). If this error occurs, the
caller should repeat the LogGetEntries call with a larger buffer.

In order to resolve successfully LogGetEntries function calls in your program, the
following lines must be added to the Linker Definition (DEF) file:

IMPORTS
LogGetEntries=DOSCALL1.433

2.8.5 32-Bit Error Log Entry Formatting DLL Routines
Each Error Log record within an Error Log file can contain the name of a
formatting DLL module. A formatting DLL module is invoked by the SYSLOG
utility when SYSLOG encounters an Error Log record that contains the name of
the DLL module.

Each formatting module contains a single formatting routine that can be
identified by an ordinal value of 1. The formatting routine can be designed to
handle a single type of Error Log entry or to handle multiple types of Error Log
entries. When SYSLOG passes control to a formatting routine, it passes the
entire Error Log record (both header portion and data portion) to the formatting
routine. The formatting routine has the complete flexibility to format an Error
Log entry as it deems appropriate.

SYSLOG uses the DosLoadModule API to create a run-time link to the specified
formatting DLL module. It also uses the DosFreeModule API to free the DLL
module after it receives its response from the formatting routine.

Chapter 2. OS/2 RAS Application Programming Interfaces 33

34

0S/2 Debugging

There are no specific rules that govern the naming of a formatting DLL module.
However, since it is desirable to reduce the possibility of colliding with another
DLL module of the same name, it is suggested that a formatting DLL module be
labeled with a name that adheres to the following standard form:

ELGxxxxx.DLL (where "xxxxx" corresponds to the Error
Log record ID (in ecimal) of any one
of the types of records that the formatting
routine is designed to handle)

For example,

"ELGO0127.DLL" is a standardized name for a formatting
DDL module that recognizes (among other things) Error
Log records with ID of 127 (decimal)

This standard naming convention is suggested because it is assumed that the
Error Log records of any one ID will only be recognized by a single formatting
routine. Therefore the use of the "xxxxx" suffix (based on record ID) should
assure uniqueness for the formatting module name.

The static Error Log record ID registration mechanism that is enforced by the
0S/2 RAS development group will attempt to keep a list not only of the Error Log
record IDs in use, but also the names of the formatting DLL modules that
correspond to each record ID. This may also help to reduce the possibility of
formatting DLL module names colliding.

In addition to its single formatting routine, each formatting DLL module must
contain a global variable named "ELOG_FORMAT". This exported global
variable must be set to a value of 1. When SYSLOG loads a prospective
formatting DLL module it will attempt to access this global variable and check
whether it has the expected value of 1. If the global variable check fails, then
SYSLOG can conclude that it has accidentally loaded another DLL module with
the same name as the formatting module that is mentioned in the Error Log
entry. This check is intended as a form of protective validation for SYSLOG. The
variable may in future releases be used a sort of revision level for the
SYSLOG/formatting DLL module interface specification. That is why it will
initially be forced to a value of 1.

When a user constructs a Error Log entry formatting DLL module, care should be
taken not to export the names of its constituent formatting routine (though the
required ELOG_FORMAT global variable must be exported). Not exporting the
module name will save storage space within the OS/2 kernel.

Error Log record formatting DLL routines must be written as 32-bit procedures.
A typical Error Log record formatting DLL routine will have to accept the
parameters:

APIRET APIENTRY ELGxxxxx(PVOID Log Record,
PVOID String Buffer,
ULONG Buffer_Length,
PULONG String_Length);

Parameters

Log_Record
Is a linear pointer to an Error Log record that is being passed from SYSLOG
to the formatting routine. The Error Log record adheres to the format that is
described in the section that follows entitled "Error Log File Entry Format”,
except that the linear pointer points to the "TOT_LENGTH" field (since the
"PREV_PTR" and "PREV_SIZE" fields are of no interest to a formatting
routine).

String_Buffer
Is a linear pointer to a buffer provided by SYSLOG so that the formatting
routine can return a series of ASCIIZ strings to SYSLOG. Each ASCIIZ string
should correspond to a line of formatted display. Each ASCIIZ string should
be limited to a maximum of 80 characters. SYSLOG will paint each string
"line" within its client window. The strings should not contain NEWLINE
characters. SYSLOG will automatically format the header portion of the
Error Log entry. The formatted output prepared by this routine will follow the
formatted header display.

Buffer_Length
Is a 32-bit integer that contains the maximum size of the the 'String_Buffer'.

String_Length
Is a pointer to a 32-bit integer that is set by the formatting routine to the total
length of the ASCIIZ strings that have been placed in 'String_Buffer'.

Returns

ELGxxxxx returns the following:
0 Indicating success.

-1 Indicates insufficient space in 'String_Buffer’' positive values indicate
formatting routine errors.

Remarks

If a formatting DLL routine returns a positive error code to SYSLOG, SYSLOG
will format the header portion of the Error Log record in the standard manner,
display the returned formatting routine error code (as a line within the formatted
display), and then format the data portion of the Error Log record as a
hexadecimal dump.

If an Error Log record fails to point to a formatting DLL module, or if the
formatting DLL module cannot be successfully loaded and validated, then
SYSLOG will format the header portion of the Error Log record in the standard
manner, display a message that a formatting routine was not specified or could
not be successfully invoked (as a line within the formatted display), and then
format the data portion of the Error Log record as a hexadecimal dump.

If there is insufficient space in the 'String_Buffer’, then the formatting routine will
return a -1 status code, and will place the required length of the formatted
display string in the caller's output length variable. SYSLOG can react to this
error by recalling the formatting routine with a larger 'String_Buffer'.

SYSLOG contains logic to format the standard SNA Generic Alert entry (For
example, Error Log record ID of 2). This is necessary since most of the existing

Chapter 2. OS/2 RAS Application Programming Interfaces 35

Error Log calls are used to pass generic alerts (and the existing calls can not
pass in formatting DLL routine names). This design choice does not prevent
future Error Log callers to specify a record ID of 2 and also to pass in the name
of a formatting DLL routine that knows how to specially format that Generic Alert
entry.

2.8.6 DevHIp_LogEntry Device Driver Interface

DevHIp_LogEntry provides a device driver interface to the logging facility.

The description of the LogEntry DevHIp function follows:

Calling sequence - LES BX,log_data_address
MOV~ CX,service
MOV DL,DevHlp_LogEntry /* LogEntry function
code 0x3b */
CALL [Device Help]

Parameters

log _data_address
This is the address of a buffer that contains a variable length Error Log entry.
(See the section on the LogAddEntries high level API for further details.)
level API for further details.)

service
This is the class of logging facility:

0x0 Reserved

0x1 "Old-Style"” Error Logging call ("old" 16-bit (DosLogEntry-style)
data packet provided).

0x2 - Ox2f Reserved for future use.

0x80 - Ox8f Reserved for internal use by the System Logging Service device
driver.

0x90 "New_Style” Error Logging call ("new" 32-bit
(LogAddEntries-style) data packet provided).

0x91 - Oxffff Reserved for future use.

Returns

Return code in AX:
0 Success

non-zero
Failure

Possible errors:

Invalid log type
Facility unavailable

Facility suspended

Remarks

36 o0s2 Debugging

When CX is set to 80H, DS:Sl is set to point to the device driver header block of
the System Logging Service device driver.

2.9 RAS API Prototypes

The following is a sample C language header file that contains sample prototype
definitions for the RAS APIs.

/* definitions for DosDumpProcess */

#define DDP_DISABLEPROCDUMP 0x00000000L /* disable process dumps */
#define DDP_ENABLEPROCDUMP 0x00000001L /* enable process dumps */
#define DDP_PERFORMPROCDUMP 0x00000002L /* perform process dump */

/* definitions for DosSuppressPopUps */
#define SPU_DISABLESUPPRESSION 0x00000000L /* disable popup suppression */
#define SPU_ENABLESUPPRESSION 0x00000001L /* enable popup suppression */

/* definitions for DosQueryRASInfo Index */

#define SIS MMIOADDR 0

#define SIS_MEC_TABLE 1

#define SIS_SYS_LOG 2

#define LF_LOGENABLE 0x0001 /* Logging enabled */

#define LF_LOGAVAILABLE 0x0002 /* Logging available */

APIRET APIENTRY DosQueryRASInfo(ULONG Index, PPVOID Addr);

APIRET APIENTRY DosForceSystemDump (ULONG reserved);

APIRET APIENTRY DosDumpProcess (ULONG Flag, ULONG Drive, PID Pid);
APIRET APIENTRY DosSuppressPopUps (ULONG Flag, ULONG Drive);

APIRET16 APIENTRY16 DosSysTrace (USHORT Majorcode, USHORT Length,
USHORT Minorcode, PCHAR pData);

APIRET16 APIENTRY16 DosGetSTDA(SEL, SHORT, SHORT);

/* 32-bit Logging Facility Function Prototypes */
/* __ */

/* Logging Defines */

/* __ */

#define ERRLOG_SERVICE 1L

#define ERRLOG_VERSION 1

/* __ */

/* LogRecord status bits */

/* __ */

#define LF_BIT _PROCNAME 0x0001L
#define LF_BIT ORIGIN 256 0x0002L
#define LF_BIT DATETIME 0x0004L
#define LF_BIT_SUSPEND 0x0008L
#define LF_BIT RESUME 0x0010L
#define LF_BIT REDIRECT ~ 0x0020L
#define LF_BIT GETSTATUS 0x0040L
#define LF_BIT REGISTER 0x0080L
#define LF_BIT REMOTE_FAIL 0x0100L

Chapter 2. OS/2 RAS Application Programming Interfaces 37

38

0S/2 Debugging

/* __ */

/* Log Entry Record Header for 2.X */
/* This is format used by 2.0 device */
/* drivers and callers of LogAddEntries */
/* __ */
typedef struct LogRecord
{
USHORT Ten ; /* this record Tength(includes len field)*/
USHORT rec_id ; /* record id */
ULONG status ; /* record status bits(see LF BIT) */
UCHAR qualifier[4] ; /* qualifier tag */
ULONG reserved ;
ULONG time ; /* hours minutes seconds hundreds */
ULONG date ; /* day month (USHORT)year */
UCHAR data[1] ; /* begin of variable data that includes: */
/* Originator(256 bytes if LF_BIT ORIGIN 256)*/
/* else 8 bytes long */
/* Processname(260 bytes) only if status */
/* LF_BIT_PROCNMAME set */
/* FormatDLLName(12 bytes) */
/* Variable data */

} LOGRECORD ;
typedef LOGRECORD far *PLOGREC ;

/* __ */

/* Format of buffer sent to LogAddEntries */

/* __ */

typedef struct LogEntryRec

{
USHORT version ; /* this version is 1 */
USHORT count ; /* number of log records in this buffer*/
LOGRECORD Togrec ; /* repeated count times */

} LOGENTRYREC ;
typedef LOGENTRYREC far *PLOGENTRYREC ;

/* __ */
/* Logging facility Function prototypes */
/* __ */

APIRET APIENTRY LogOpen(PHFILE phf);
APIRET APIENTRY LogClose(HFILE hf);
APIRET APIENTRY LogAddEntries(HFILE hf, ULONG ulService, PVOID pLogEntries);

APIRET APIENTRY LogGetEntries(HFILE hf, ULONG ulService, ULONG ulType,
PVOID pLogBuffer, ULONG ulBufferLen);

/* 16-bit Logging Facility Function Prototypes */
APIRET16 APIENTRY16 DosLogRegister(PUSHORT LogHandle,

PVOID LogReglist,
PUSHORT RequestID);

APIRET16 APIENTRY16 DosLogEntry (USHORT Function,
PVOID LogData);

APIRET16 APIENTRY16 DosLogRead (USHORT LogHandle,

USHORT Length,
PVOID LogBuffer,
PUSHORT ReadSize);

Chapter 2. OS/2 RAS Application Programming Interfaces 39

40 os2 Debugging

Chapter 3. OS/2 System Control Block Reference

This chapter contains details of some of the more important system control
blocks used in debugging.

Where major differences in format exist between ALLSTRICT and RETAIL, and
between versions of OS/2 then each version of the control block is given.
Otherwise only OS/2 Warp V3.0 ALLSTRICT Kernel versions of the control blocks
are given and may be assumed to be applicable to also RETAIL and earlier
versions of OS/2.

— Attention

The information given in this chapter is for debugging purposes only. The
layout of the control blocks may change from one release of OS/2 to the next.
They are not to be considered a programming interface.

The following system components are included in this chapter and an overview
is provided in the next section, 3.1, “Overview of Kernel Components and
Interfaces” on page 43.

3.2, “Miscellaneous System Control Block Reference” on page 47
This section describes system structures that are common to all
components. These include SAS and RMP.

3.3, “Semaphore Control Block Reference” on page 55
This section describes the control blocks used for RamSem, FSRamSem
Ksem, SysSem, PM/GRE, 32-bit, and MuxWait Semaphores.

3.4, “Memory Management Control Block Reference” on page 69
This section describes the following control blocks used by memory
management:

VMAL, VMOB, VMAR, VMCO, VMAT, VMAH, PF and VP

3.5, “Scheduler Thread and Process Control Block Reference” on page 89
This section describes the following control blocks used by thread and
process management:

PTDA, TCB, TSD, GISEG, LISEG, PIB, TIB, EXENT and exception handler
structures

3.6, “Loader Control Block Reference” on page 165
This section describes the following control blocks used by the system
loader component:

MTE, SMTE, OTE, STE
3.7, “File System Block Reference” on page 172

This section describes the following control blocks used by the file system
component:

SFT, MFT, FSC, RLR, VPB, DBP, CDS, BUF, Named and Anonymous Pipes
3.8, “I/O System Control Block Reference” on page 205
This section describes the structures that relate to low level I/0. These

include: Request Packets, BIOS Parameters Blocks and Device Driver
Headers, Virtual Device Driver Entry Points.

[J Copyright IBM Corp. 1996 41

42

0S/2 Debugging

—— Format

The control block formatting conventions have been chosen to aid the user of
the Kernel Debugger and Dump Formatter.

Each control block is presented in tabular form with five columns used as
follows:

name
Field name, usually taken from the C header or MASM include file
definition.

Off Offset from the beginning of the structure. The offset is of the form x.y
where x is the signed hexadecimal byte offset from the beginning of the
structure and y is the bit offset from the high-order bit of the byte.

Leng
Hexadecimal length of the field.

Type
The field type, for the purposes of displaying storage using the D
command. The following values are used:

S Complex structure. Choose display command to best suit your
needs.

D Double word. Use DD to format the field correctly.

w Word. Use DW to format the field correctly.

B Byte. Use DB to format the field correctly.

A ASCII byte string. Use DA to format the field correctly.

blank A blank value appears when a field does not begin or end on
a byte boundary. In this case format the field from the
previous field for which a type value is given. Such bit fields
are presented in an order assuming this instruction is
followed. Attempts to display bit fields in other ways may lead
to a great deal of confusion!

Description
field description taken usually from the header or include file.

A null row is used to indicate an overlay definition of the same control block.

Flag fields are separately formatted in tabular form.

Where a flag field represents a bit mask, the mask is given in
hexadecimal and is assumed to indicated that corresponding bits are set
to be in effect. Exceptions are specifically notes in the description.

When the flag field take numerical values then they will be shown in
either hexadecimal (prefixed with 0x) or decimal depending on the C or
MASM definitions.

3.1 Overview of Kernel Components and Interfaces

The OS2KRNL modules lies at the heart of OS/2; it is essentially the operating
system.

The kernel comprises of a number of internal components, each responsible for
a different aspect of running the system. It also has a number of interfaces that

provide services to applications, device drivers and file systems.

These aspects are now considered in a little more detail and are summarized in

the diagram shown in Figure 8 on page 46.

3.1.1 Kernel Components

Task management and the Scheduler
This is responsible for thread and process management. The functions
performed include:

Thread and process creation and termination
Thread scheduling (priority and state management)
Preparing threads for dispatching

Blocking and running

Implementing the thread and process related APIs

The scheduler's principle control blocks are:

PTDA Per Task Data Area

TCB Thread Control Block
TSD Thread Swappable Data
TSS Task State Segment (H/W)

System Loader
This is responsible for load module management. The loader's principle
responsibilities include:

Bringing modules into memory and performing fixups
Managing modules resources

Managing dynamic linking

Tracking module references

Deleting modules from memory

Managing the discarding and swapping of module pages

Implementing module related APIs

The loader's principle control blocks are:

MTE Module Table Entry

SMTE Swappable Module Table Entry
OTE Object Table Entry

STE Segment Table Entry

Chapter 3. OS/2 System Control Block Reference

43

Memory Management
Memory management is responsible for managing physical, virtual, and
swapper memory. Its principle roles include:

Allocation and assighment of physical pages of memory
Allocation and assignment of virtual storage

Managing the swapper

Memory locking

Implementing memory related APIs
The principle control blocks of memory management are:

VMAR Virtual Memory Arena Record
VMOB Virtual Memory Object Record

PF Page Frame Structure

VP Virtual Page Structure

PTE Page Table Entry (H/W)
File System

The file system kernel component responsibilities include:

Access to FAT formatted media.

Interfacing with file system drivers for accessing non-FAT media
Managing and tracking the status of all open files.

Path management

File sharing and serialization.

Providing helper kernel services for FSDs.

Implementation of all file system APIs.

The principle control blocks of the file system include:

MFT Master File Table Entry
SFT System File Table Entry
CDS Current Directory Structure
FSC File System Control Block

Device and I/O Management
This component is responsible for interfacing with physical device drivers.
Its responsibilities include:

Routing requests to PDDs from applications
Managing interrupts
Providing helper kernel services for PDDs
The principle control blocks for device management include:
IRQI IRQ Information Array
DIRQ Device IRQ Information

44 os/2 Debugging

REQ PDD request Packet.
DEV PDD device header

Virtual Dos Machine
This component is responsible for providing the entire DOS Machine
emulation. This has not been covered in this book, except for the Virtual
Device Driver interface.

3.1.2 Kernel Interfaces
The Kernel provides the following external interfaces:

Application (R3/2) Interface
Application access kernel services via GDT call gates. These are called
either directly from the application program or via the DOSCALL1.DLL
module, where additional Ring 3 processing is required before calling the
kernel. Some system interfaces are able to be implemented entirely within
Ring 2/3. In these cases, DOSCALL1.DLL does not make any kernel calls.

The kernel interfaces are represented by a fictitious module called
DOSCALLS.DLL.

File System Driver (FSD)
The FSDs run in ring 0 as separately loaded modules. They provid a set of
interfaces to the kernel via the FSD_HIp (File System Helper) calls.

Physical Device Driver (PDD)
The PDDs run in ring 0 as separately loaded modules. They provid a set of
interfaces to the kernel via the Dev_HIp (Device Helper) calls.

Virtual Device Driver (VDD)
The VDDs run in ring 0 as separately loaded modules. They provid a set of
interfaces to the kernel via the VDD_HIp (Virtual Device Driver Helper) calls.

Compatibility BIOS
The compatibility BIOS resides within the OS2LDR module. It provides a
hardware implementation independent layer through which the kernel
accesses the BIOS. The interface to the CBIOS from the kernel is provided
by the Dos_HIp (Dos Helper Services). These are not available for access by
PDDs, VDDs or FSDs, however a limited set of Dos_HIp calls are provided via
the TESTCFG.SYS and OEMHLPS$ device drivers.

Notes: OEMHLPS$ is not a separately loaded module; it is resident within the
OS2LDR module.

OS2LDR is responsible for loading the Kernel at system initialization
time. It does not get involved with the loading of application
programs, PDDs, VDDs for FSDs during normal running; that function
is performed by the system loader component of the Kernel.

Chapter 3. OS/2 System Control Block Reference 45

3.1.2.1 The OS/2 Kernel's Interfaces

0S/2 Kernel Interfaces

The 0S/2 Kernel's Interfaces

(steady state)

- FileSys
s ,ch Task <~
= = i
Y o | T
- Ol O o 0
< g A1 o Loader FAT T (7]
Q il = 0| w
3 < v 3|
> o T
= |2 —
M N
S |_|8|——| .. emory -
o. "% II
> g
o DEV <> 8
§ — | 10 | |*
4]
o
]
s | I
OS2KRNL || 5 |8 |g|<|q
3 |5 2
V86code] <=
| (I
VDM
DosHIp
\Li CBIOS -
OS2LDR ~|a
BIOS 5

Hardware

| RJM 28th Aug 95 - krnllface

Figure 8. OS/2 Kernel Interfaces

46

0S/2 Debugging

3.2 Miscellaneous System Control Block Reference
The following control blocks are described in this section:
3.2.2, “System Anchor Segment (SAS) for OS/2 Warp V3.0” on page 49
3.2.3, “Record Management Package (RMP) for OS/2 Warp V3.0” on page 52

An overview of the miscellaneous system control blocks is as follows:

3.2.1 Miscellaneous System Diagrams
The following diagram illustrates the System Anchor Segment.

Chapter 3. OS/2 System Control Block Reference 47

3.2.1.1 The System Anchor Segment

The System Anchor Segment

SAS Header Section

+4
+8
+c

+10

+14

#70:0 [8 A s |
—— +4 : tables
+6 # 4G
+8 : Config
+a : Dev Drvj
+c : VM
+e : Task
+10 : RAS
+12 : Filesys
+14 : Infoseg
SAS Protect Mode Tables
L s
+0 # GDT
+2
+4 | 4 IDT
+6 # GDTPOOL

SAS H/W Config Section

L > 40 |:

Dev Config Tab

Ly +0 : 1st DD
+2
+4 # DPB seg|
+6 # CDA
+8 & CDA

+a # FSC seg|

+0 # STDA

+2 & STDA

+4 : MEC Tab

RJM 28th Aug 95 - sas

SAS RAS Section

SAS Device Driver Section

+18
+1lc
+20
+24
+28

+2¢

L > +0
+2
+6
+a

t+e

SAS VM Section

_parvmOne

_pobvmOne

_pcovmOne

of| o] o] o¢

—DOSModMTE

1st DLL MTE

_pft

_pgPagablePAT

_smbmDF

_pgIdleList

o] of| o] @] o9 ¥

_pgFreelist

_apkht

of| o

_mte_h

#TASKAREq

SAS Task Section

% _pPTDAFirst

% _papTCRBSlots

_TaskNumber

ES
% ThreadCount

SAS File System Section

—> +0

+4
+6
+8

+a

l—> +0

+2
+4
+6

+a

% MFT PTree

SFT seg

CDS RMH
Buffersg

GISEG

LISEG

SAS InfoSeg Section

CDIB |

Figure 9. The System Anchor Segment

48

0S/2 Debugging

3.2.2 System Anchor Segment (SAS) for OS/2 Warp V3.0

The SAS is the common anchor for many system control blocks and control
block chains.

Pointers
70:0 maps the SAS as a read-only segment.

78:0 maps the SAS as a read/write segment.

Locations
Built statically within the OS2KRNL load module.

VM Owner
os2krnl (Oxffaa)

Format

Table 3. SAS Base Section

Field Name Offset Length Type Description

SAS_signature +0 4 A "SAS "

SAS_tables_data +4 2 w offset to tables section

SAS_flat_sel +6 2 w FLAT selector for kernel
data

SAS_config_data +8 2 w offset to configuration
section

SAS_dd_data +a 2 W offset to device driver
section

SAS_vm_data +cC 2 w offset to Virtual Memory
section

SAS_task_data +e 2 w offset to Tasking section

SAS_RAS_data +10 2 w offset to RAS section

SAS_file_data +12 2 W offset to File System section

SAS_info_data +14 2 w offset to infoseg section

section.

Table 4. SAS tables_section Protected Mode Tables

Field Name Offset Length Type Description
SAS_tbl_GDT +0 2 W selector for GDT
SAS_tbl_LDT +4 2 w selector for LDT
SAS_tbl_IDT +6 2 W selector for IDT
SAS_tbl_GDTPOOL +8 2 w selector for GDTPOOL

Chapter 3. OS/2 System Control Block Reference 49

section.

Table 5. SAS config_section Configuration Section

Field Name Offset Length Type Description

SAS_config_table +0 2 w offset for Device
Configuration Table
(DevConfigThbl)

Table 6. SAS_dd_section Device Driver Section

Field Name Offset Length Type Description

SAS_dd_bimodal_chain +0 2 W offset for the first bimodal
device driver's device
header

SAS_dd_real_chain +2 2 w offset for the address of the
first real mode device
driver's device header

SAS_dd_DPB_segment +4 2 w selector for Drive Parameter
Block (DPB) segment

SAS_dd_CDA_anchor_p +6 2 w selector for ABIOS
protected mode Common
Data Area

SAS_dd_CDA_anchor_r +8 2 W segment for ABIOS real
mode Common Data Area

SAS_dd_FSC +a 2 w selector for FSC

Table 7 (Page 1 of 2). SAS_vm_section Virtual Memory Management Section

Field Name Offset Length Type Description

SAS_vm_arena +0 4 D Flat offset of arena records

SAS_vm_object +4 4 D Flat offset of object records

SAS_vm_context +8 4 D Flat offset of context
records

SAS_vm_krnl_mte +cC 4 D Flat offset of kernel MTE
records

SAS_vm_glbl_mte +10 4 D Flat offset of global MTE
linked list. Note this field
points into the chain to pick
up global MTEs only. Use
SAS_vm_all_mte to find all
the MTEs.

SAS_vm_pft +14 4 D Flat offset of page frame
table

SAS_vm_prt +18 4 D Flat offset of page range

table

50 osr2 Debugging

Table 7 (Page 2 of 2). SAS_vm_section Virtual Memory Management Section

Field Name Offset Length Type Description

SAS_vm_swap +1c 4 D Pointer to flat offset of
swapper disk frame bit map
followed by the size of the
bit map in bits WARNING,
the bit map offset and size
are volatile

SAS_vm_idle_head +20 4 D Flat offset of Idle Head

SAS_vm_free_head +24 4 D Flat offset of Free Head

SAS_vm_heap_info +28 4 D Flat offset of Heap Array

SAS_vm_all_mte +2cC 4 D Flat offset of all MTEs linked
list

Table 8. SAS_task _section Tasking Section

Field Name Offset Length Type Description

SAS_task_PTDA +0 2 W selector for current PTDA

SAS_task_ptdaptrs +2 4 D FLAT offset for process tree
head

SAS_task_threadptrs +6 4 D FLAT address for TCB
address array

SAS_task_tasknumber +a 4 D offset for current TCB
number

SAS_task_threadcount +e 4 D offset for ThreadCount

Table 9. SAS_RAS_section RAS Section

Field Name Offset Length Type Description

SAS_RAS_STDA_p +0 2 W selector for System Trace
Data Area (STDA)

SAS_RAS_STDA_r +2 4 D segment for System Trace
Data Area (STDA)

SAS_RAS_event_mask +6 4 D offset for trace event mask

Table 10 (Page 1 of 2). SAS file_section: File System Section

Field Name Offset Length Type Description

SAS_file_MFT +0 4 D handle to MFT PTree

SAS_file_SFT +4 2 W selector for System File
Table (SFT) segment

Chapter 3. OS/2 System Control Block Reference 51

Table 10 (Page 2 of 2). SAS file_section: File System Section

Field Name Offset Length Type Description

SAS_file_VPB +6 2 W selector for Volume
Parameter Block (VPB)
segment

SAS_file_CDS +8 2 w selector for Current
Directory Structure (CDS)
segment

SAS_file_buffers +a 2 w selector for buffer segment

Table 11. SAS_info_section Information Segment Section

Field Name Offset Length Type Description

SAS_info_global +0 2 w selector for global info seg

SAS_info_local +2 4 D address of curtask local
infoseg

SAS_info_localRM + 6 4 D address of DOS task's
infoseg

SAS_info_CDIB +a 2 w selector for Codepage Data

3.2.3 Record Management Package (RMP) for OS/2 Warp V3.0
The RMP is used to manage tables of variable length entities. It appears in a
number of situations, particularly those that required ASCII strings, such as file
names, to be managed.

Pointers
rp_selector of the RMP handle maps the RMP segment.

Locations
RMP handles are located at the following labels:

CharDevRMPRec Character Device Drivers
SpoolDevRMPRec Spooler Device Drivers
NmpRmpHand Named Pipes

hDiscSegRmpStruc Discardable Segments

ShareRmpStruc Named Shared Memory

SysSemRmpHdl System Semaphores
VM Owner

CharDevRMPRec chardevrmp (0xff35)

SpoolDevRMPRec spldevrmp (0xff34)
NmpRmpHand npipenpn (0xff30)

52 osnr2 Debugging

hDiscSegRmpStruc

discard (0xff6c)

ShareRmpStruc mshrmp (Oxff83)
SysSemRmpHdI syssemrmp (0xff36)
Format
Table 12. rbheadr RMP Header Structure
Field Name Offset Length Type Description
rb_size +0 2 w total size of segment
rb_free_size +2 2 w amount of free space
rb_1st_free +4 2 w link to first free block in seg
rb_last_free +6 2 W start of last free block
rb_hkh +8 4 D heap handle
rb_flags +c 4 D PG alloc/realloc flags
rb_hobowner +10 2 w hobowner
rb_hobmte +12 2 W hobmte
rb_first +14 n S start of first record
rb_sz_field +n+0 2 w size of 'record size field’
+n+2 n-2 S record data
Table 13. rbfree RMP Free Record Structure
Field Name Offset Length Type Description
rf_size +0 2 w free block size (high bit set)
rf_prev_free +2 2 w link to prev free block in seg
rf_next_free +4 2 w link to next free block in seg
Table 14. rparm RMP Handle Structure
Field Name Offset Length Type Description
rp_flags +0 1 B flags
+1 1 B unused
rp_selector +2 2 w GDT selector to use

Chapter 3. OS/2 System Control Block Reference 53

Table 15. rp_flags Flag Definitions

Name Bit Mask Description

RPF_BUSY 0x01 Segment busy flag
RPF_WAITING 0x02 Somebody waiting flag
RPF_ALLOC 0x04 Segment allocated flag

54 os2 Debugging

3.3 Semaphore Control Block Reference

The following control blocks are described in this section:

3.3.1, “FastSafeRamSemStruc”

3.3.2, “FastSafeRamSemStruc PM Version”

3.3.3, “MuxTableEntry” on page 56
3.3.4, “RamSemStruc” on page 56

3.3.5, “"KSEM Structures for OS/2 Warp V3.0 ALLSTRICT Kernel” on page 57

3.3.6, “32-Bit Semaphore Structures for OS/2 Warp V3.0 ALLSTRICT Kernel”

on page 59

3.3.7, “System Semaphore Structures” on page 66

3.3.8, “PM/GRE Semaphore Structure” on page 68

3.3.1 FastSafeRamSemStruc

Pointers
TCB_Seminfo points to fs_RAMSem

Locations
Multiple, in user storage.

VM Owner
Multiple user storage owners.

Format
Field Name Offset Length Type Description
FastSafeRamSemStruc -a e S Fast Safe Ram Semaphore
fs_Length -a 2 w Length of this structure
fs_ProclD -8 2 W Process ID of owner or zero
fs_ThrdID -6 2 W Thread ID of owner or zero
fs_Usage -4 2 W reference count
fs_Client -2 2 W 16-bit field for use by owner
fs_ RAMSem +0 4 S 0S/2 RAM Semaphore

3.3.2 FastSafeRamSemStruc PM Version

Pointers
TCB_Seminfo points to fs_RAMSem

Locations
Multiple, in user storage.

VM Owner
Multipl user storage owners.

Format

Chapter 3. OS/2 System Control Block Reference 55

Field Name Offset Length Type Description

FastSafeRamSemStruc -e 12 S PM Fast Safe Ram
Semaphore

fs_Length -e 2 w Length of this structure

fs_ProclD -C 2 W Process ID of owner or zero

fs_ThrdID -a 2 W Thread ID of owner or zero

fs_Usage -8 2 W reference count

fs_Client -6 2 W 16-bit field for use by owner

fs_Timeout -4 4 D Timeout value

fs_RAMSem +0 4 S 0S/2 RAM Semaphore

3.3.3 MuxTableEntry
Locations

At label MuxTable in system storage

VM Owner

os2krnl (Oxffaa)

Format
Field Name Offset Len Type Description
MuxTableEntry +0 9 S Mux Table Entry
MuxLink +0 2 w Selector Link to next entry.

Used to chain entries for a
MuxWait request
MuxThreadID +2 2 w Thread Slot ID of waiter
MuxType +4 1 B Semaphore type.
MuxSemID +5 4 D Mux Semaphore handle.
Table 16. MuxType Flag Definitions
Name Value Description
MUXTYPE_CLEAR 0 the mux table entry is clear
MUXTYPE_SYSSEM 1 the ID is a system sem address
MUXTYPE_RAMHANDLE 2 the ID is a ram sem handle:offset
MUXTRYE_RAMPHYS 3 the ID is a ram sem physical address
MUXTYPE_EVENTSEM 4 the ID for a 32-bit event sem
3.3.4 RamSemsStruc
Pointers
TCB_Seminfo
Locations

56 osn2 Debugging

Multiple, in user storage.

VM Owner

Multiple user storage owners.

Format

Field Name Offset Length Type Description

RamSemStruc +0 4 S Ram Semaphore

RamSemOwner +0 1 B Ownership flag

RamSemFlag +1 1 B Ram Semaphore flag bit
field

RamSemID +2 2 w RamSem Block/Run ID low
word

Table 17. RamSemFlag Definitions

Name Value Description

RAMSEM_WAITING 0x01 a thread is waiting on the sem

RAMSEM_MUXWAITING 0x02

a thread is muxwaiting on the sem

Notes:

The high-order 4 bit of the RamSemFlag are used as an extended owner

field (to cater for more than 512 threads).

Only kernel code sets the RamSemOwner field to a thread slot number.
Ring 3 RamSems have 0xff value for an owned RamSem

3.3.5 KSEM Structures for OS/2 Warp V3.0 ALLSTRICT Kernel

For KSEM formats for other versions of OS/2 see:

3.3.5.1, “KSEM Structures for OS/2 Warp V3.0 RETAIL Kernel” on page 58

Locations

Multiple, either imbedded in system structures, for example PTDA, MFT, or

dynamically allocated from the kernel heaps.

VM Owner

Imbedded KSEMs assume the Owner Id of the imbedding structure.
Stand-alone KSEMs allocated from the kernel heaps use id: ksem (Oxff7e)

Format

Table 18 (Page 1 of 2). KSEMSHR Shared Kernel Semaphore

Field Name Offset Length Type Description
ks_Signature +0 4 D
ks_bFlags +4 1 B
ks_bType +5 1 B
ks_Owner +6 2 w
ks_cusPendingWriters +8 2 w

Chapter 3. OS/2 System Control Block Reference 57

Table 18 (Page 2 of 2). KSEMSHR Shared Kernel Semaphore

Field Name Offset Length Type Description
ks_cusNest +a 2 W

ks_cusReaders +cC 2 w

ks_cusPendingReaders +e 2 w

Table 19. KSEMMTX MUTEX Kernel Semaphore

Field Name Offset Length Type Description
ksm_Signature +0 4 D

ksm_bFlags +4 1 B

ksm_bType +5 1 B

ksm_Owner +6 2 w

ksm_cusPendingWriters +8 2 w

ksm_cusNest +a 2 W

Table 20. KSEMEVT Event Kernel Semaphore

Field Name Offset Length Type Description
kse_Signature +0 4

kse_bFlags +4 1 B

kse_bType +5 1 B

kse_Owner +6 2 W

kse_cusPendingWriters +8 2 w

Table 21. Ksem Flag Definitions

Name Bit Mask Description
KSEM_NOINTERRUPT Ox1
KSEM_WRITER 0x2
KSEM_DISPLAYID 0x4
KSEM_NOBLOCK 0x8

3.3.5.1 KSEM Structures for OS/2 Warp V3.0 RETAIL Kernel

Table 22 (Page 1 of 2). KSEMSHR Shared Kernel Semaphore

Field Name Offset Length Type Description
ks_bFlags +0 1 B
ks_bType +1 1 B

58 osn2 Debugging

Table 22 (Page 2 of 2).

KSEMSHR Shared Kernel Semaphore

Field Name Offset Length Type Description
ks_Owner +2 2 W
ks_cusPendingWriters +4 2 w
ks_cusNest +6 2 w
ks_cusReaders +8 2 w
ks_cusPendingReaders +a 2 w

Table 23. KSEMMTX MUTEX Kernel Semaphore

Field Name Offset Length Type Description
ksm_bFlags +0 1 B
ksm_bType +1 1 B
ksm_Owner +2 2 w
ksm_cusPendingWriters +4 2 w
ksm_cusNest +6 2 w

Table 24. KSEMEVT Event Kernel Semaphore

Field Name Offset Length Type Description
kse_bFlags +0 1 B
kse_bType +1 1 B
kse_Owner +2 2 W
kse_cusPendingWriters +4 2 w

3.3.6 32-Bit Semaphore Structures for OS/2 Warp V3.0 ALLSTRICT Kernel

For 32-bit Semaphore formats for other versions of OS/2 see:

3.3.6.1, “32-bit Semaphore Structures for OS/2 Warp V3.0 RETAIL Kernel” on
page 64

Pointers

TCB_Sleepld points to SEVENT, PEVENT, SMUTEX, PMUTEX, SMUX or PMUX
when waiting on the semaphore.

PTDA field pPrSemTbl points to the private semaphore table, which is
indexed by the semaphore handle.

pShSemTbl points to the shared semaphore table, which is indexed by the
low-order word of the semaphore handle. Each entry is a pointer to a
semaphore main structure.

Chapter 3. OS/2 System Control Block Reference 59

PTDA field pPrSemTbl points to the per-process private semaphore table,
which is indexed by the low-order word of the semaphore handle. Each
entry is a pointer to a semaphore main structure.

pShSemStrTbhl points to the table of SEMTBLNODE entries. Each of these
points to a hashed chain of SEMSTRNODE structures.

Note: Names are hashed by treating each name as table of null padded
ULONGs and successively adding.

Locations

Structures are allocated from the kernel heaps.

VM Owners

SEVENT
PEVENT
SMUTEX
PMUTEX
SMUX

PMUX
OPENQ
MUXQ
SEMRECORD
SEMTBLNODE
SEMSTRNODE

Semaphore name

Format

semstruc (0xffc2)
semstruc (0xffc2)
semstruc (0xffc2)
semstruc (0xffc2)
semstruc (0xffc2)
semstruc (0xffc2)
semopenq (0xffbf)
semmuxq (Oxffbe)
semrec (0xffc0)

semtable (0xffc3)
semtable (Oxffc3)

semstr (0xffcl)

Table 25. SEVENT Shared Event Semaphore

Field Name Offset Length Type Description

usFlags +0 2 w attributes

pMuxQ +2 4 D pointer to the mux queue

usPostCt +6 2 w number of posts

pOpenQ +8 4 D pointer to the open queue

pszName +C 4 D name of semaphore, null if
anonymous

pulCreatAddr +10 4 D Address passed in by app
during create

ulSig +14 4 D 0x54564553 "SEVT"

ptcb +18 4 D ptcb of caller

60 os2 Debugging

Table 26. PEVENT Private Event Semaphore

Field Name Offset Length Type Description

usFlags +0 2 w attributes

pMuxQ +2 4 D pointer to the mux queue

usPostCt +6 2 w number of posts

pOpencCt +8 2 w number of opens

pulCreatAddr +a 4 D Address passed in by app
during create

ulSig +e 4 D 0x54564550 "PEVT"

Table 27. SMUTEX Shared Mutex Semaphore

Field Name Offset Length Type Description

usFlags +0 2 w attributes

pMuxQ +2 4 D pointer to the mux queue

usRequestCt +6 2 w number of requests

usSlotNum +8 2 w slot number of the owning
thread

usRequesterCt +a 2 w number of requesters

pOpenQ +cC 4 D pointer to the open queue

pszName +10 4 D name of semaphore, null if
anonymous

pulCreatAddr +14 4 D Address passed in by app
during create

ulSig +18 4 D 0x58544D53 "SMTX"

Table 28. PMUTEX Private Mutex Semaphore

Field Name Offset Length Type Description

usFlags +0 2 w attributes

pMuxQ +2 4 D pointer to the mux queue

usRequestCt +6 2 w number of requests

usSlotNum +8 2 w slot number of the owning
thread

usRequesterCt +a 2 w number of requesters

usOpenCt +c 2 w number of opens

pulCreatAddr +e 4 D Address passed in by app
during create

ulSig +12 4 D 0x58544D50 "PMTX"

Chapter 3. OS/2 System Control Block Reference

61

Table 29. SMUX Shared Mux Wait Semaphore

Field Name Offset Length Type Description

usFlags +0 2 w attributes

cSemRec +2 2 w count of semaphore records

pSemRec +4 4 D array of semaphore record
entries

usWaitCt +8 2 w number of threads waiting
on the mux

pOpenQ +a 4 D pointer to the open queue

pszName +e 2 w name of semaphore, null if
anonymous

pulCreatAddr +10 4 D Address passed in by app
during create

ulSig +14 4 D 0x58554D53 "SMUX"

Table 30. PMUX Private Mux Wait Semaphore

Field Name Offset Length Type Description

usFlags +0 2 w attributes

cSemRec +2 2 w count of semaphore records

pSemRec +4 4 D array of semaphore record
entries

usWaitCt +8 2 w number of threads waiting
on the mux

usOpenCt +a 2 w number of opens

pPTDA +c 4 D pointer to PTDA of creator

pulCreatAddr +10 4 D Address passed in by app
during create

ulSig +14 4 D 0x58554D50 "PMUX"

Table 31. OPENQ Open Queue Node Structure

Field Name Offset Length Type Description

pidOpener +0 2 w process id of opening
process

usOpenCt +2 2 w number of Opens for this
process

pNextOpen +4 4 pointer to next node in list

ulSig +8 4 D 0x514E504F "OPNQ"

62 o0s2 Debugging

Table 32. MUXQ Mux Queue Node Structure

Field Name Offset Length Type Description

pMux +0 4 D pointer to a mux (shared or
private)

pNextMux +4 4 D pointer to next mux waiter
in list

ulSig +8 4 D 0x5158554D "MUXQ"

Table 33. SEMRECORD Semaphore Record Structure for MUX Wait Semaphores

Field Name Offset Length Type Description

hsemCur +0 4 D semaphore handle

ulUser +4 4 D user value

Table 34. SEMSTRNODE Semaphore String Node

Field Name Offset Length Type Description

hsem +0 4 D semaphore handle

psz +4 4 D pointer to the string

pNext +8 4 D pointer to next string node

ulSig +cC 4 D 0x444F4E53 "SNOD”

Table 35. SEMTBLNODE Semaphore String Node Table Entry

Field Name Offset Length Type Description

ulKey +0 4 D hash key

pStrNode +4 4 D pointer to string node

Table 36 (Page 1 of 2). usFlags Field Definitions

Name Bit Mask Description

DE_POSTED 0x0040 The event sem APIs set this flag if the
event is in the posted state

DM_OWNER_DIED 0x0080 The process died while owning the mutex
semaphore

DMW_MTX_MUX 0x0100 The muxwait semaphore APIs set this

flag if the mux contains mutex sems

Chapter 3. OS/2 System Control Block Reference

63

Table 36 (Page 2 of 2). usFlags Field Definitions

Name Bit Mask Description

DHO_SEM_OPEN 0x0200 dh_OpenEventSem sets this flag to
indicate that device drivers have opened
the given semaphore

DE_16BIT_MW 0x0400 Part of a 16-bit MuxWait if this flag is set

3.3.6.1 32-bit Semaphore Structures for OS/2 Warp V3.0 RETAIL
Kernel

Table 37. SEVENT Shared Event Semaphore

Field Name Offset Length Type Description

usFlags +0 2 w attributes

pMuxQ +2 4 D pointer to the mux queue

usPostCt +6 2 w number of posts

pOpenQ +8 4 D pointer to the open queue

pszName +cC 4 D name of semaphore, null if
anonymous

ptch +10 4 D ptcb of caller

Table 38. PEVENT Private Event Semaphore

Field Name Offset Length Type Description

usFlags +0 2 w attributes

pMuxQ +2 4 D pointer to the mux queue

usPostCt +6 2 w number of posts

pOpencCt +8 2 w number of opens

Table 39. SMUTEX Shared Mutex Semaphore

Field Name Offset Length Type Description

usFlags +0 2 w attributes

pMuxQ +2 4 D pointer to the mux queue

usRequestCt + 6 2 w number of requests

usSlotNum +8 2 w slot number of the owning
thread

usRequesterCt +a 2 w number of requesters

pOpenQ +cC 4 D pointer to the open queue

pszName +10 4 D name of semaphore, null if
anonymous

64 os/2 Debugging

Table 40. PMUTEX Private Mutex Semaphore

Field Name Offset Length Type Description

usFlags +0 2 w attributes

pMuxQ +2 4 D pointer to the mux queue

usRequestCt +6 2 w number of requests

usSlotNum +8 2 w slot number of the owning
thread

usRequesterCt +a 2 w number of requesters

usOpenCt +C 2 w number of opens

Table 41. SMUX Shared Mux Wait Semaphore

Field Name Offset Length Type Description

usFlags +0 2 w attributes

cSemRec +2 2 w count of semaphore records

pSemRec +4 4 D array of semaphore record
entries

usWaitCt +8 2 w number of threads waiting
on the mux

pOpenQ +a 4 D pointer to the open queue

pszName +e 2 w name of semaphore, null if
anonymous

Table 42. PMUX Private Mux Wait Semaphore

Field Name Offset Length Type Description

usFlags +0 2 w attributes

cSemRec +2 2 w count of semaphore records

pSemRec +4 4 D array of semaphore record
entries

usWaitCt +8 2 w number of threads waiting
on the mux

usOpenCt +a 2 w number of opens

pPTDA +cC 4 D pointer to PTDA of creator

Chapter 3. OS/2 System Control Block Reference

65

Table 43. OPENQ Open Queue Node Structure

Field Name Offset Length Type Description

pidOpener +0 2 w process id of opening
process

usOpenCt +2 2 w number of Opens for this
process

pNextOpen +4 4 D pointer to next node in list

Table 44. MUXQ Mux Queue Node Structure

Field Name Offset Length Type Description

pMux +0 4 D pointer to a mux (shared or
private)

pNextMux +4 4 D pointer to next mux waiter
in list

Table 45. SEMSTRNODE Semaphore String Node

Field Name Offset Length Type Description

hsem +0 4 D semaphore handle

psz +4 4 D pointer to the string

pNext +8 4 D pointer to next string node

3.3.7 System Semaphore Structures
Pointers

66 o0s/2 Debugging

SysSemRmpHdI| contains the selector that points the system semaphore

names RMP.

Locations
SysSemDataTable is the location of the global system semaphores table.

VM

Each entry is a SysSemTblIStruc structure.

PTDA field SysSemPTDATbI is the location of the per-process semaphore

table.

PTDA per-process semaphore contains byte-length entities, which are

per-semaphore use counts.

The semaphore handle indexes both the per-process and global semaphore

tables.

SysSemHighTable locates the table of SysSemHighTableS structures.

Owner

syssemrmp (0xff36) for the RMP that contains the semaphore names.

Other global tables are owned by os2krnl (Oxffaa) .

Format

Table 46. SysSemHandleStruc System Semaphore Handle Structure

Field Name Offset Length Type Description

SysSemHighWord +0 2 w 0x8000 for sys sems

SysSemPTDAIndex +2 2 w Index into the PTDA open
sem table

Table 47. SysSemTblIStruc System Semaphore Table Structure

Field Name Offset Length Type Description

SysSemOwner +0 2 w thread owning this
semaphore

SysSemFlag +2 1 B system semaphore flag bit
field

SysSemRefCnt +3 1 B number of references to this
Sys sem

SysSemProcCnt +4 1 B number of requests for this
owner

SysSemPad +5 1 B pad byte to round structure
up to word

SysSemHighTableS System Semaphore Table Extension Structure.

This is an extension of the SysSemTblStruc that is put into high memory so we
don't impact the low data segment. It is only used in protected mode during
process/thread termination.

Field Name Offset Length Type Description
SysSemPidOwner +0 2 w pid owner, the thread owner
has died

SysSemNamesStruc System Semaphore Name table structure, managed by an
RMP.

Field Name Offset Length Type Description

SysSemPtr +0 2 w

Chapter 3. OS/2 System Control Block Reference 67

Table 48. SysSemFlag Flag Field Definitions

Name Bit Mask Description

SYSSEM_WAITING 0x01 a thread is waiting on the sem
SYSSEM_MUXWAITING 0x02 a thread is muxwaiting on the sem
SYSSEM_OWNER_DIED 0x04 the process/thread owning the sem died
SYSSEM_EXCLUSIVE 0x08 indicates a exclusive system semaphore
SYSSEM_NAME_CLEANUP 0x10 name table entry needs to be removed
SYSSEM_THREAD_OWNER_DIED 0x20 the thread owning the sem died
SYSSEM_EXITLIST_OWNER 0x40 the exitlist thread owns the sem

3.3.8 PM/GRE Semaphore Structure

Locations

pmsemaphores

VM Owne

r

locates the table of PM/GRE semaphores.

PMMERGE.DLL hmte

Format

Table 49. GRESEM PM/GRE Semaphore

Field Name Offset Length Type Description

acldent +0 7 A GRESEM or PMSEM

fcSet +7 1 B 386 Actual Semaphore

ulProcessThread +8 4 D owner process and thread id
(PTid)

ulNestedUseCount +cC 4 D # of times same PTid has
accessed sem

ulWaitingCount +10 4 D # of PTids waiting on
semaphore

ulUseCount +14 4 D # of times semaphore has
been used

ulEventHandle +18 4 D Event Handle Semaphore

ulCallerAddr +1c 4 D Semaphore Caller

68 o0s2 Debugging

3.4 Memory Management Control Block Reference
The following control blocks are described in this section:
3.4.2, “Page Frame Structure” on page 80
3.4.4, “VM Alias Record” on page 82
3.4.3, “YM Arena Header” on page 81
3.4.5, “VM Arena Record” on page 83
3.4.6, “VM Arena Type Information Record” on page 85
3.4.7, “VM Context Record” on page 86
3.4.8, “VM Object Record” on page 86

3.4.9, “Virtual Page Structure” on page 88

An overview of the memory management control blocks is as follows:

3.4.1 Memory Management Control Block Diagrams

The following diagrams illustrate the relationships between various memory
management control blocks:

3.4.1.1, “Virtual Address Space Regions” on page 70

3.4.1.2, “Virtual Address Space Management” on page 71

3.4.1.3, “Private Arena Private Data” on page 72

3.4.1.4, “Private Arena Shared Data” on page 73

3.4.1.5, “Shared Global Data” on page 74

3.4.1.6, “Shared Arena Instance Data” on page 75

3.4.1.7, “Virtual/Physical Page Management - Backed Storage” on page 76
3.4.1.8, “Virtual/Physical Page Management - Swapped Storage” on page 77
3.4.1.9, “CS Alias of Shared Instance Data” on page 78

3.4.1.10, “Memory Alias in Multiple Processes” on page 79

Chapter 3. OS/2 System Control Block Reference 69

3.4.1.1 Virtual Address Space Regions

4G

%$10000C000

4G-256K

-
-1
512M

System Arena

\

L~ . -1
Reserved Regions |

%0LLLAC000

¥60000000

\\

%20000000

512M-64K

448M

416M

384M

320M

.

Shared Arena

Protected Region

Global Shared Region

"RAN Basing Hegion™) v

FLELL0000

%¥1c0C0000

%1a0C00000

18000000

214000000

304M

64M

l

Expansion Region

I

%13000000

204000000

Virtual Address Space Regions

#¥1£££: 0000

$2007:0000

#4007:0000

$c007: 0000

#a007:
#9807:

0000
0000

#2007:0000

64K

Private Arena
process 1

%0001000C

Private Arena
process 2

#000£:0000

Reserved Region

Private Arena
process 3

(VDM)

RJM 13th Oct 95 - vmregions

Figure 10. Virtual Address Space Regions

70 os2 Debugging

3.4.1.2 Virtual Address Space Management

4G-4M

System Arena

304M

64M

Virtual Address Space Management

f££c0000

. _ahvmSys
\ VMAL

Range In Use +20

+24 8

sentinel

20000000

Range In Use

04000000 T

_ahvmchr

VMAH
—

VMAR

boundary

[

Private Arena
process 1

Private Arena

process 2

Private

BRI

process 3

Arena

N

+40

VMAH

PTDA

RJM 13th Cot 85 - vmaddrspe

-
o[o[
7 M
VMAH 9

PTDA

4
L

<«

Figure 11. Virtual Address Space Management

Chapter 3. OS/2 System Control Block Reference

71

3.4.1.3 Private Arena Private Data

Private Arena Private Data

cpg

Private Arena

va

prev ar| | next ar

physical mapplng

pg

data
o
-
)
b=

B

VMOB

T {pseudo-cbject)

VMOB

T (pseudo-object)

own {hptda) ‘ hmte

RJM 28th Aug 95 - vmprpriv

har

Figure 12. Private Arena Private Data

72

0S/2 Debugging

3.4.1.4 Private Arena Shared Data

Private Arena Shared Data

Private Arena Private Arena
°pg Procegs 1 Procegs 2
ﬁ?—jy..‘..‘.......‘............ %%.......................
ﬁ N

Y Y
™ e F t [
n va E E : o
u e va L
4] [4/]
[=1 [=
<
i / link N / o
B &
I : o
2 hob hob ! link “
...................... >
hptda hptda

har
VMOB — — VMOR
va l {pseudo-cbject) J l (pseudo-object) l/ va
VMOB
PTDA PTDA

va l {pseudo-object)

MTE

RJM 28th Aug 95 - vmprshr

Figure 13. Private Arena Shared Data

Chapter 3. OS/2 System Control Block Reference 73

3.4.1.5 Shared Global Data

prev ar next ar

Shared Global Data

va

g\>\§

Shared Arena

hco

{pseudo-object)

PTDA

RJM 28th Aug 85 - vimshrgbl

[pseudo-cbject)

PTDA

hob hmte
VMOB MTE
{peeudo-object)
heonext heconext
| |
J, hptda lhptda l hptda
VMOB VMOB VMOB

{pseudo-object)

PTDA

Figure 14. Shared Global Data

74 os/2 Debugging

3.4.1.6 Shared Arena Instance Data

cpg

Shared Arena Instance Data

Shared Arena

! phys

prev ar | next ar

ical mapping

va

VMOB

ownl (hptda)

hobnext

VMOB

Town {hptda)

har\l, | hmte

hobnext
W _

hmte | \l, har

MTE

va

VMOB

l

l

{pseudo-object)

RJM 28th Aug 85 - vmshrinst

Figure 15. Shared Arena Instance Data

Chapter 3. OS/2 System Control Block Reference

75

3.4.1.7 Virtual/Physical Page Management - Backed Storage

Page Management

Backed Virtual Storage

physical PF VP
gtorage table table v o1
| | | | | S
/ 7, 7 7 7 A l
/ / / / / / virtual
storage
4K | pF |22 [vp 22
frame Block _— 4K
I o HobPg
£ ; page
/ 7, / A Y s
A BN |
I I O I
frame - |

(P2 [| | O
A gwapper

RJM 28th Aug 95 - physmgmt

Figure 16. Virtual/Physical Page Management - Backed Storage

76 o0s/2 Debugging

3.4.1.8 Virtual/Physical Page Management - Swapped Storage

Unbacked Virtual Storage
physical PF
storage table
Lo
/ / / s
A Y
4K PF
frame
/ 7 / s
S i v s
| | | |
vpid
| PTE I

Page Management

physical mapping

RJM 28th Aug 95 - pgswap

VP
table

NN\

N\

Block

Hob|

VP

swapper

HobPg

— V808

v o1

virtual
storage

4K
page

Figure 17. Virtual/Physical Page Management - Swapped Storage

Chapter 3. OS/2 System Control Block Reference

77

3.4.1.9 CS Alias of Shared Instance Data

CS Alias of Shared Instance Data

RJM 28th Aug 95 - vmalcs

Physical
Storage

Instance Data CS Alias
va link va
VMAR N VMAR
hob
hobT har hal l T har
VMOB VMAL
hobnext Dg cg
har
VMOB
hobnext
VMOB
 physical mapping | physical mapping
Data Code
Object Object

Figure 18. CS Alias of Shared Instance Data

78

0S/2 Debugging

3.4.1.10 Memory Alias in Multiple Processes

Memory Aliages in Multiple Processes

v
va hecb
VMAR —> | VMOB
har
link
hobd 9 5mx hob link
_—
VMAR o VMAR _
hal hal
l T har l T har
pgoff pgoff
VMAL —| VMAL
hptda l hptda l
PTDA PTDA
Y
Data e Aliag
Object Data
L .
Physical
pryeida mapping | StoTage
Aliag
O R Aot S >| 8w | < Data
-
m oo
28
o m

RJM 28th Aug 95 - vimalmem

Figure 19. Memory Alias in Multiple Processes

Chapter 3. OS/2 System Control Block Reference

79

3.4.2 Page Frame Structure

VM Owner
pagpf (0Oxffb4)

System Arena

_pft points to the table of Page Frame Structures.

Field Name Offset Length Type Description
apf_s +0 c S active pf
pf_pvp +0 4 D vp cross link
pf_refcount +4 2 w count of ptes marked
present
pf_flags +6 0.4 B flags
+6.4 0.4 pad
pf_llock +7 1 B count of long term locks
pf_slock +8 1 B count of short term locks
+9 3 B pad
ipf_s +0 c S idle page frame
+0 4 D pad
pf_flinkl +4 1 D forward link part 1
pf_flags +6 0.4 flags
vp_blink +6.4 2.4 backward link
+8 1.4 D pad
pf_flink2 +8.4 2.4 forward link part 2
fpf_s +0 c free page frame
+0 4 pad
pf_flinkl +4 1 D forward link part 1
pf_flags +6 0.4 flags
vp_blink +6.4 2.4 backward link
+8 1.4 D pad
pf_flink2 +8.4 2.4 forward link part 2

Table 50 (Page 1 of 2). pf flag Flag Definitions

Name Bit Mask Description
PF_FAST 0x1 frame is fast memory
PF_BUSY 0x2 frame is busy

80 os2 Debugging

Table 50 (Page 2 of 2). pf_flag Flag Definitions

Name Bit Mask Description
PF_FREE 0x4 frame is free
PF_RES 0x8 reserved

3.4.3 VM Arena Header

Locations
_ahvmSys locates the System Arena VMAH.

_ahvmShr locates the Shared Arena VMAH.
PTDA field ptda_ah locates each Private Arena VMAH.

VM Owner
For shared and system arenas: os2krnl (Oxffaa)

For private arenas: ptda (Oxffcb)

Format

Field Name Offset Length Type Description

ah_pahNext +0 4 D Link to next arena

ah_pahPrev +4 4 D Link to previous arena

ah_parSen +8 4 D Handle of arena sentinel

ah_parFree +cC 4 D Hint of 1st free block in
arena

ah_papbm +10 4 D Pointer to bitmap directory

ah_paharHash +14 4 D Hash table pointer

ah_pat +18 4 D Pointer to per-type info

ah_fl +1c 4 D Flags

ah_laddrMin +20 4 D Minimum address currently
mapped

ah_laddrMax +24 4 D Max address currently
mapped

ah_car +28 4 D Count of arena entries

ah_carBitmap +2cC 4 D Max entry count to need
bitmap

ah_IbmNumbMax +30 4 D Max bitmap number

ah_IbmeNumbMax +34 4 D Max bitmap entry number

ah_IHashNumbMax +38 4 D Max hash table index

ah_hob +3c 2 w Arena header
pseudo-handle

ah_filler +3e 2 w Make structure 4-byte
multiple

Chapter 3. OS/2 System Control Block Reference

Table 51. ah_fl Flag Definitions

Name Bit Mask Description
VMAH_BITMAP_BYPASS 0x00000001 Worth bypassing bitmap
VMAH_NO_HASH_WRAP 0x00000002 No hash table wraparound yet
VMAH_GROW_DOWN 0x00000004 Arena grows down

3.4.4 VM Alias Record

Pointers

_palVMAliases points to the VMAL

VM Owner

vmal (Oxffe2)

table.

Format

Field Name Offset Length Type Description

vmal +0 8 S VM alias record

al_har +0 2 W handle to alias’' arena
record

al_hobptda +2 2 w context the alias is created
from

al_pgoff +4 2.4 D page offset of the alias from
start of object

al_f +4 1.4 flags indicating type of alias

vmsal +0 8 S SEL alias record

sal_har +0 2 w handle to alias’' arena
record

sal_selcode +2 2 W code selector if cs alias

al_hobptda +2 2 W context the alias is created
from if MEMMAP alias

sal_cref +4 1.2 D reference count

sal_f +4 0.6 flags

sal_seldata +6 2 W data selector if cs alias
(unused for MEMMAP)

Table 52 (Page 1 of 2). al_f Flag Definitions

Name Bit Mask Description

AL_ISBUSY Ox1 Set if record is busy

AL_CSALIAS 0x2 Set if cs alias record

AL_MEMMAP 0x4 Set if MemMapAlias record

AL_DBGALIAS 0x8 Set if debug alias

AL_CSDSVALID 0x10 Set if ds selector valid

AL_DEVHLP 0x20 Set if Devhlp alias

AL_PRIV 0x40 Set if privatized alias

82 osn2 Debugging

Table 52 (Page 2 of 2). al_f Flag Definitions

AL_VDM

0x80

Set if VDM alias

AL_NOALIAS

0x100

Set if UVIRT mapping in VDMs

Table 53. sal_f Flag Definitions

Name Bit Mask Description

SAL_CSALIAS AL_CSALIAS

SAL_MEMMAPALIAS AL_MEMMAP

SAL_CSDSVALID 0x10 should not coincide with other alias types
SAL_ALIASREFSHIFT 0x6 Low six bits reserved for flags
SAL_ALIASREFMASK 0x0ffcO reference count bits mask

3.45 VM Arena Record

Pointers

_parvmOne points to the VMAR table.

VM Owner
vmar (0xffe3)

Format

Field Name Offset Length Type Description

vmar_reg +0 16 S Regular Arena Record

ar_xf +0 1.4 D Extra flags

ar_cpg +1.4 2.4 Size in pages

ar_ipg +4 2.4 D Virtual page no.

ar_f +6.4 1.4 Flags

ar_harnext +8 2 W Handle of next Arena
Record

ar_harprev +a 2 w Handle of previous Arena
Record

ar_harlink +cC 2 w Handle of associated Arena
Record

ar_harhash +e 2 w Hash table link

ar_hob +10 2 w Handle of Object Record

ar_hco +12 2 w Context record handle
(shar+shr data)

ar_hobptda +12 2 w PTDA handle or NULL (prvar
or shar + instance data)

ar_sel +12 2 w Selector (sysarena only)

ar_hal +14 2 W Alias record handle, * =
means not an alias

vmar_sen +0 16 Sentinel Arena Record

ar_xf +0 1.4 D Extra flags

Chapter 3. OS/2 System Control Block Reference 83

Field Name Offset Length Type Description

ar_cpg +1.4 2.4 Size in pages

ar_ipg +4 2.4 D Virtual page no.

ar_f +6.4 1.4 Flags

ar_harnext +8 2 W Handle of next Arena
Record

ar_harprev +a 2 w Handle of previous Arena
Record

ar_harlink +c 2 w Handle of associated Arena
Record

ar_harhash +e 2 w Hash table link

ar_ipgmax +10 4 D Maximum large no. in the
arena

ar_unused +14 2 w reserved

Table 54. ar_f Flag Definitions

Name Bit Mask Description

AR_INUSE 0x001 Record not on free list

AR_TAG 0x006 Record type mask

AR_TAGREG 0x000 Regular record

AR_TAGSEN 0x002 Sentinel

AR_TAGBSEN 0x006 Boundary sentinel

AR_SELMAP 0x008 Memory mapped by selector

AR_SELBASEALL 0x00c Base selector map all

AR_SELMASK 0x00c Selector map mask

AR_RELOAD 0x010 Pre-reserved for huge item or

AR_WRITE 0x020 Write permission

AR_USER 0x040 User pages

AR_EXEC 0x080 Executable Pages

AR_READ 0x100 Read permission

AR_HCO 0x200 Record linked to Context List

AR_GUARD 0x400 Guard pages

AR_SGS 0x800 Registered under Screen Group Switch

Table 55. ar_xf Flag Definitions

Name Bit Mask

Description

AR_HCOH 0x001

context record handle > 64K

84 os2 Debugging

3.4.6 VM Arena Type Information Record

Pointers
VMAH field ah_pat points to the associated VMAT.

Locations
_atvm locates the table of VMATS.

VM Owner
os2krnl (Oxffaa)

Format
Field Name Offset Length Type Description
at_laddrlnitMin +0 4 D Initial minimum
at_laddrlnitMax +4 4 D Initial maximum
at_laddrAbsMin +8 4 D Abs minimum boundary
at_laddrAbsMax +cC 4 D Abs minimum boundary
at_cblInitBetween +10 4 D Spacer between arenas
at_IHashNumbMask +14 4 D Hash number mask
at_IHashNumbShift +18 4 D Hash number shift
at_IHashNumbAbsMax +1c 4 D Max hash table index
at_IHashMinSize +20 4 D Min hash table size
at_IlbmNumbMask +24 4 D Bitmap number mask
at_IlbmNumbShift +28 4 D Bitmap number shift
at_IbmNumbAbsMax +2c 4 D Abs Max bitmap #
at_lbdMinSize +30 4 D Min bitmap dir size
at_lbmeNumbMask +34 4 D Bitmap entry # mask
at_IbmeNumbShift +38 4 D Bitmap entry # shift
at_lbmeNumbAbsMax +3c 4 D Abs Max bitmap entry
at_IlbmeBitNumbMask +40 4 D Bit number mask
at_IbmeBitNumbShift +44 4 D Bit number shift
at_flInit +48 4 D Initial flags
at_IGran +4c 4 D Granularity
at_laddrMinNoWrap +50 4 D Min no-hash wrap laddr
at_laddrMaxNoWrap +54 4 D Max no-hash wrap laddr
at_harParent +58 2 W Parent arena

Table 56. at_flinit Flag Definitions

Name Bit Mask Description
VMAT_PRIV_TILED 0

VMAT_PRIV_VDM 1

VMAT_SHR_TILED 2

VMAT_SYS 3

VMAT_MAX VMAT_SYS

Chapter 3. OS/2 System Control Block Reference

85

3.4.7 VM Context Record

Pointers

_pcovmOne points to the table of VMCOs.

Locations

System Arena.

VM Owner

vmco (Oxffeb)

Format
Field Name Offset Length Type Description
co_hconext +0 2 w Index of next Context
Record
co_hobptda +2 2 w PTDA handle
co_fb +4 1 B Context record flags
Table 57. co_fb Flag Definitions
Name Bit Mask Description
CO_CREATOR 0x01 originating context
CO_PRIV 0x80 Privatized context
CO_HCOH 0x20 Next context record handle > 64K
CO_WRITE 0x02 Write permission
CO_USER 0x04 User storage
CO_EXEC 0x08 Executable
CO_READ 0x10 Read permission
CO_GUARD 0x40 Guard page

3.4.8 VM Object Record

Pointers

_pobvmOne points to the table of VMOBs.

Locations

System Arena.

VM Owner

vmob (Oxfff1)

Format
Field Name Offset Length Type Description
ob_har +0 2 w Arena Record handle
ob_hobnext +2 2 w Associated Object Record
handle
ob_va +0 4 D Pseudo-object’'s virtual
address

86 os2 Debugging

Field Name Offset Length Type Description

ob_fs +4 2 w Flags

ob_hobowner +6 2 W Owner ID

ob_hobmte +8 2 w MTE handle

ob_wsemowner +a 2 w ID of thread owning
semaphore

ob_bsemcnt +C 1 B Counter and waiting flag

ob_cllock +d 1 B Count of all long-term locks

ob_cslock +e 1 B Count of all short-term locks

ob_xflags +f 1 B Extra flags

Note:

A complete list of system owner IDs may be found under VM System
Object Owner IDs in the Reference Tables section of the System

Reference.

Table 58. ob_fs Flag Definitions

Name Bit Mask Description

OB_PSEUDO 0x8000 Pseudo-object

OB_API 0x4000 API allocated object
OB_LOCKWAIT 0x2000 Some thread to wake in VMUnlock
OB_LALIAS 0x1000 Object has aliases

OB_SHARED 0x0800 Object's contents are shared
OB_UVIRT 0x0400 UVirt object

OB_ZEROINIT 0x0200 Object is zero-initialized
OB_RESIDENT 0x0100 Initial allocation was resident
OB_LOWMEM 0x0040 Object is in low memory
OB_GUARD 0x0080 Page attribute/permission flags
OB_EXEC 0x0020 Executable

OB_READ 0x0010 Read permission

OB_USER 0x0008 User Storage

OB_WRITE 0x0004 Write permission

OB_HUGE 0x0002 Object is huge

OB_SHRINKABLE 0x0001 Object is Shrinkable
OB_DHSETMEM 0x0001 DevHIp_VMSetMems are allowed

Table 59. ob_xflags Flag Definitions

Name Bit Mask Description

VMOB_SLOCK_WAIT 0x01 Waiting on short term locks to clear
VMOB_LLOCK_WAIT 0x02 Waiting on long term locks to clear
VMOB_DISC_SEG 0x04 Object is part of a discardable seg
VMOB_HIGHMEM 0x08 Object was allocated via dh_vmalloc

Chapter 3. OS/2 System Control Block Reference 87

3.4.9 Virtual Page Structure

Pointers
pf_pvp points to the head of the VP array.

Locations
System Arena.

VM Owner
pavp (0xffb3)

Format
Field Name Offset Length Type Description
avp_s +0 c S active vp
vp_frame +0 2.4 D frame, swp or Idr block #
vp_flags +2.4 1.4 flags
vp_obpg +4 2 w object relative page number
vp_hob +6 2 w handle to object record
vp_refcount +8 2 w virtual page reference count
vp_semowner +a 2 w Slot number of semaphore
owner

fvp_s +0 a D Free vp
vp_flink +0 4 S forward link
vp_blink +4 4 D backward link

+8 2 w pad
Table 60. vp_flag Flag Definitions
Name Bit Mask Description
VP_BUSY 0x001 page semaphore taken
VP_WANTED 0x002 page semaphore requested
VP_CACHE 0x004 search page cache for pf
VP_PFIDLE 0x008 cross linked to idle pf
VP_PF 0x010 cross linked to pf
VP_DF 0x020 has swap file disk frame
VP_DIRTY 0x040 contents written to - from pte
VP_SHDIRTY 0x080 shadow dirty bit (for VDMs)
VP_SOW 0x100 change to swappable on write
VP_PRIVATIZED 0x200 vp privatized
VP_RESIDENT 0x400 cannot be moved - value from pte
VP_DISCARDABLE 0x800 1 = discardable, 0 = swappable

88 osn2 Debugging

3.5 Scheduler Thread and Process Control Block Reference
The following control blocks are described in this section:
3.5.2, “Thread Control Block OS/2 Warp V3.0” on page 98

3.5.3, “Thread Swappable Data for OS/2 Warp V3.0 ALLSTRICT Kernel” on
page 121

3.5.4, “Per-Task Data Area for OS/2 Warp V3.0 ALLSTRICT Kernel” on
page 125

3.5.5, “Local Information Segement” on page 147

3.5.6, “Global Information Segement” on page 148

3.5.7, “Process Information Block” on page 150

3.5.8, “Thread Information Block” on page 151

3.5.9, “System Stack Frames Client Register Information” on page 152
3.5.10, “Exit List Entry Data Structure” on page 161

3.5.11, “Exception Handler Structures” on page 161

An overview of the scheduler control blocks is as follows:

3.5.1 Scheduler and Task Management Control Block Diagrams

The following diagrams illustrate the relationships between various scheduler
and task management control blocks:

3.5.1.1, “Process Management” on page 90

3.5.1.2, “Thread Management” on page 91

3.5.1.3, “Scheduler Finite State Machine” on page 92

3.5.1.4, “Thread Tree for a Process” on page 93

3.5.1.5, “Process Trees, Subtrees and Zombies” on page 94
3.5.1.6, “Orphaned and Adopted Processes” on page 95
3.5.1.7, “OS/2 Exception Management - Overview” on page 96
3.5.1.8, “Exception Handler Stack Frames” on page 97

Chapter 3. OS/2 System Control Block Reference 89

3.5.1.1 Process Management

TCB
+8
SFTs
- E—
L >
%
St <
[N
p—]
g8
SE —
(=]
= A
S
-
=
wm o
RJM 28th Aug 95 - procmgmmt

Process Management

PTDA PIB
—
+28
+40
VMAH VMAR [—>| VMAR| —> | VMAR
Sentinel] Regular Regular
-
+80 PTEs
pgData . PDEs
TSS
geltss
JFN_Table | T
MTE
—>
............................ MTE
9 1LDT
1= | | | |
ptda_ldtaddr [R
OTE /STE
JFN_pTable | | —>[
Local - B
InfoSeg | | pl |
= |

0S/2 Debugging

Figure 20. Process Management

3.5.1.2 Thread Management

Thread management

TSD

SAS Tagk Section

_l _PapTCBSlots
o -

_TaskNumber

—~

TSDPTCB
1 ThreadCount KernelESP
Desc 28
Desc 30
Desc 38
Desc 150b
Thread Slot Table
0
%
% TCB
% +0 Ord.|Slot
%
i Current TCB +B
% | +c
% PTDA +10
%
+38
L |
+3c
+1b8
R2 ESP
+1bec |R2 88
R2 Stack

CRI
TIB
y
+0
TIB2
Exception
reg. records
+0
4 Last %
] «—
g 3
5 4
=8
g % +0
&
U
o g
U
&
First [PXEEEEEEEE] 40
b

RJM 28th Aug 95 - thrdmgmt

Figure 21. Thread Management

Chapter 3. OS/2 System Control Block Reference

91

3.5.1.3 Scheduler Finite State Machine

uowsep Jefed FELL TR |

peaIy pesp (proa) - Ps3STOPSTs (°9°)

TOWILP PS); ANPRYos :ps)
Suruuna ;unx

Lpuoa :Apx

(P%1) Jows (19T 158

” UOZOJJ (ZIJ

dn-ayem pakejop :A1p

TOTI28S [edNLA £q POYOOYq 110
1500q Aorad + Apear 9sq

®

ur-ofed

A) \ b
% \ 5 ;,. pst 1sonbax
3 _
g

~ paYoolq ;g ,
Nows peq :peq \ S : y
: / \.\wun.. ﬁf J,K
SPOY Io1u5] / P 1
................... : “Wn\ @x\&i..,f./
uni P %ﬁ.ﬁ CN Mww
SPOY 1T¥H \
d
s
/S
/g
4 R
Ve
Vv
e

User Mode

S)ETIUITI)

QUIYIEN 2Je)§ UL 12[0paygds /SO

Figure 22. Scheduler Finite State Machine

0S/2 Debugging

92

3.5.1.4 Thread Tree for a Process

Thread Tree for a Process
PTDA
+20 TCB TSD
> —>
prda proRcritsec "
e
TCB TSD
—>
+158
&
TCB TSD
—>
e
TCB TSD
—
—
+15c
D

Thread 3 is in critical section

Thread 2 and Thread 1 are waiting for Thread 4 to die

RJM 28th Aug 95 - thdtree

Thread 1

Thread 2

Thread 3

Thread 4

Figure 23. Thread Tree for a Process

Chapter 3. OS/2 System Control Block Reference

93

3.5.1.5 Process Trees, Subtrees and Zombies

The Process Tree, Subtrees and Zombies

PTDA
e
—>>
tc :'E T +l4 P TRTTTIT
=}
CSID 2
[_ _ _
| & +14] oy
m|le—| 2| «— | = — (X
B s 2 ~
© ™~
Bl | w
=3 =
.. I Y 3
_PpPTDAFirstZombie ©
— | o 0 | e — o| — s
ptda_ulExitCode =P o »
ptda_ulExitType A &
ptda_ulExitTID
Pid 1 ig Detached (no parent)
Other Detached Processes are Siblings of Pid 1
Pids 1 — 7 are active
Pids 8 — 11 are dead (zombies)
Pid 4 may DosWaitChild on Pids 8 — 10
Pid 5 may DogWaitChild on Pid 11 RJM 28th Aug 85 - priree

Figure 24. Process Trees, Subtrees and Zombies

94 os2 Debugging

3.5.1.6 Orphaned and Adopted Processes

Orphaned and Adopted Processes

PTDA

Pid 2 dies

RJM 28th Aug 95 - prorphan

Figure 25. Orphaned and Adopted Processes

Chapter 3. OS/2 System Control Block Reference 95

3.5.1.7 0OS/2 Exception Management - Overview

Exception Handling - Overview

Interrupt Descriptor Table

SRR EEE

Specific lst Level Trap Handlers Are Entered

{trapl0, trapfl, ...)
| IRET
/ (Fault Handled)
TrapCommonFaultEntry

8086 Emulation é///’ ‘\\\\\\\\\\\5
Trace etc
VDM

Kernel Fault

Procegs Fault

-~ i

Enter Debugger TSDpfnFault ?

for VSF/VTF L T
Ent Dek
Local Fault nher beondger
Handler ¢
Call DelayHardErr Call DD SFF Exits

Asynchronous Enter Panic (IPE)

Notificaticn

Continue
_XCPTBuildR3DispatcherStack

éf,/'_xcptExcptionCallBack

Kernel Mode Terminate
User Mgde
_xcptr3ExceptionDigpatcher Dos32ExceptionCallBack
HardErr ¢ T T
Exception Handler
Process

(Display Trap Screen)
DosRaiseException

RJM 22th Jan 85 - xeptflow

Figure 26. Exception Management Overview

96 os2 Debugging

3.5.1.8 Exception Handler Stack Frames

TCB

Exception

low address

TIB

—

—>

Exception Reg Rec

P —

Exception Reg Rec

high address

RJM 24th Nov 95 - xcptstk

Handler Stack Frames

EBP

pRepRec

pRegRec

pCtxRec

52 bytes of NULLs

exception handler ESP

EEP

pRepRec

pCtxRec

256 bytes of NULLs

EBP

Trap number

pRepRec

pCtxRec

Report Record

Context Record

128 bytes of NULLg/

_xcptR3ExceptionDispatcher
ESP
-
XCPTBuildR2DispatcherStack
ESP
- This exception frame is
| repeated for nested RO
< exceptions
%
<«

- Stack at time of
exception

Figure 27. Exception Handler Stack Frames

Chapter 3. OS/2 System Control Block Reference

97

3.5.2 Thread Control Block OS/2 Warp V3.0

For TCB formats for other versions of OS/2 see:
3.5.2.1, “Thread Control Block for OS/2 Warp V3.0 with FixPak” on page 105

3.5.2.2, “Thread Control Block for OS/2 Warp V3.0 with FixPak 11 or Later” on
page 109

3.5.2.3, “Thread Control Block for OS/2 V2.11 with FixPak 90 or Later” on
page 113

3.5.2.4, “Thread Control Block for OS/2 V2.11" on page 117

Pointers
_papTCBSlots points to the thread slot table of TCB pointers.

Multiple chain pointers between, TSD, TCB and PTDA.
CurrTCB points to the current TCB.

Locations
System Arena.

VM Owner
tcb (Oxffcc)

Format

Field Name Offset Length Type Description

TCBOrdinal +0 2 w Ordinal number of thread in
PTDA

TCBNumber +2 2 w Thread slot number

TCBForcedActions +4 4 D Bit vector of forced actions

TCBpPTDA +8 4 D Pointer to the PTDA

TCBpTSD +cC 4 D Pointer to thread swappable
data

TCBptib +10 4 Pointer to thread info block

TCBpTCBNext +14 4 D forward link to next (active)
TCB

TCBcbStackMax +18 4 D Virtual size of stack object

TCBcbStackCur +1c 4 Committed size of stack
object

TCBpStack +20 4 D Virtual base of stack

TCBpStackl6Lo +24 4 D Virtual base of 16-bit stack

TCBpStackl16Hi +28 4 D Virtual limit of 16-bit stack

TCBpLibiHead +2cC 4 D Link to libi load data area

TCBpLibiCurr +30 4 D Link to libi load data area

TCBpLibiFree +34 4 D Link to libi free data area

TCB_pcriFrameType +38 4 D stack frame type

TCB_pFrameBase +3c 4 D stack frame base pointer

98 os2 Debugging

Field Name Offset Length Type Description

TCB_hookheadLocal +40 8 D local context hook head

TCB_phookOwnerHead +48 4 D linked list of hook blocks

TCBpteKStackTCBO +4c 4 D KStack page 0 of TCB

TCBpteKStackTCB1 +50 4 D KStack page 1 of TCB

TCBpteKStackTSD +54 4 D KStack TSD page

TCBpteKStackPTDAO +58 4 D KStack page 0 of PTDA

TCBpteKStackPTDAL +5c 4 D KStack page 1 of PTDA

TCBpteKStackPTDA2 +60 4 D KStack page 2 of PTDA

TCBCurrTCB +64 4 D SS-relative offset of Current
TCB

TCBCurrTSD +68 4 D SS-relative offset of Current
TSD

TCBBiasTCB +6¢C 4 D stack-to-flat TCB conversion
value

TCBBiasTSD +70 4 D stack-to-flat TSD conversion
value

TCBTLMA +74 80 D Thread local memory area

TCBDMAAdd +f4 4 D User's I/O transfer address

TCBSecPos +f8 4 D Position of first sector
accessed within file

TCBThisSFT +fc 4 D pointer to SFT we're
working with

TCBValSec +100 4 D Number of valid (previously
written) sectors

TCBpRTCB +104 4 D Redirector TCB (Used by
LANMAN)

TCBProc_ID +108 2 w process ID for file sharing
checks

TCBUser_ID +10a 2 w user ID for file sharing
checks

TCBfSharing +10c 1 B non-zero ==> no
redirection

TCBSrvAttrib +10d 1 B see SetAttrib/file.asm

TCBJfnFlag +10e 1 B JFEN flag bits for current file
handle

TCBAIllowed +10f 1 B Allowed | 24 answers (see
allowed_)

TCBOpCookie +110 4 D server's per file cookie

TCBOpFlags +114 2 w whether server wants
oplock, etc.

TCBCurBuf +116 4 D currently assigned buffer

TCBThishVPB +11a 2 W handle of current VPB

TCBNextAdd +1l1c 2 w

TCBBytSecPos +1le 2 w position of first byte within
sector

TCBClusNum +120 2 w

Chapter 3. OS/2 System Control Block Reference

99

Field Name Offset Length Type Description

TCBLastPos +122 2 w

TCBBytCntl +124 2 w Number of bytes in 1st
sector

TCBBytCnt2 +126 2 w # of bytes in last sector

TCBSecCnt +128 2 W number of whole sectors

TCBSecClusPos +12a 1 B posit of first sector within
cluster

TCBBuUfHE +12b 1 B How to handle a HardError

TCBactBufHE +12c 1 action response from user
on HardErr

TCBflOLock +12d 1 B NZ if TCBLockHndI is valid

TCBLockHndI +12e C S Lock handle of user mem

TCBThisCDS +13a 4 D Address of current CDS

TCBThiskFSC +13e 4 D address of current FSC

TCBpTmpCDS +142 4 D Address of dummycds

TCBpOpenBuf +146 2 w Address of current OpenBuf

TCBpSearchBuf +148 2 w Address of SearchBuf

TCBFailErr +14a 2 w NZ if user did FAIL on | 24

TCB_Seminfo +14c 4 D 16-bit addr of the ramsem
blocked upon

TCB_SemDebugAddr +150 4 D debugger display address
for ksems

TCB_NPX_Buffer +154 4

TCBpTCBWaitNext +158 4 Next waiting TCB

TCBpTCBWaitList +15c 4 D Threads waiting for me to
die

TCBQState +160 1 B Scheduler queue location
(actual)

TCBState +161 1 B Current scheduler state
(desired)

TCBWakeFlags +162 1 B TKSleep/TKWakeup Flags

TCBcWindowBoost +163 1 B Window Boost count

TCBPriClass +164 1 B Priority Class (user)

TCBPriLevel +165 1 B Priority Level (user)

TCBPriClassMod +166 1 B Priority Class modifier bits

TCBSchFlags +167 1 B Misc. Scheduler flags

TCBPriority +168 2 w Calculated Priority

TCBPriorityMin +16a 2 w Minimum Scheduling priority

TCBcBoostLock +16¢ 4 D Kernel Boost Lock nesting
count.

TCBpTCBPriNextQ +170 4 D Next priority queue in chain

TCBpTCBPriPrevQ +174 4 Previous priority queue in
chain

TCBpTCBPriHigher +178 4 D Higher priority thread

100 osi2 Debugging

Field Name Offset Length Type Description

TCBpTCBPriLower +17c 4 D Lower priority thread

TCBpTCBPriNext +180 4 D Next same-priority thread

TCBpTCBPriPrev +184 4 D Prev same-priority thread

TCBpTCBWakeup +188 4 D TKQueryWakeup TCB list

TCBSleeplID +18¢c 4 D Sleep ID this TCB is
sleeping on

TCBtoe +190 10 S Timeout/Starvation Timeout
element

TCBCheckedSig +1a0 1 B Used by the loader

TCBfSwapping +lal 1 B status of swapping

TCBVollONest +la2 1 B nesting level of
FSH_DoVollO

TCBRegPktFIg +la3 1 B Flag to indicate if request
pkt in use

TCBRegPkt +la4 4 D I1/0 request packet for
thread

TCBSysTime +1a8 4 D time spent in system code

TCBUserTime +lac 4 D time spent in user code

TCB_pPVDBThd +1b0 4 D Ptr to Perfview Data Block
for this thread (pvdb_thd_s).

TCB_fIDbg +1b4 4 D

TCBCpl2_ESP +1b8 4 D Saved TSS CPL2 stack
pointer.

TCBCpl2_SS +1lbc 2 w Saved TSS CPL2 stack
segment.

TCBNewFlags +1be 1 B Value copied from
ptda_NewFiles

TCBEnNtryActions +1bf 1 B Kernel entry force flags

TCBSig_pend +1cO 2 w bit vector of pending signals

TCBSig_holding +1c2 2 w bit vector of postponed
signals

TCBSig_cur +1c4 2 w bit vec of signals being
processed

TCBXcptRepRec +1c6 4 D report record of active
exception

TCBSig_termtid +1ca 2 w tid of terminator -75797

TCBSechits +1cc 1 B Security bits 54735

TCBspbytes +1cd 1 B To keep size 4*N 54735

TCB_ulSRIndex +1ce 4 D Last semaphore cleared in
MUX 72485

TCBMiscFlags +1d2 1 B Used for hard error
processing

TCBModeFlags +1d3 2 w Mode flags for OPEN - for
WhatVolume

TCBSpareFlags +1d5 1 B Spare flags

TCBLibiFlags +1d6 1 B 84537

Chapter 3. OS/2 System Control Block Reference

101

Field Name Offset Length Type Description

TCBFiller +1d7 1 B To keep size 4*N

TCB_ProcNameBuf +1d8 4 D Pointer to procedure name

TCB_ObjNameBuf +1dc 4 D Pointer to object name
buffer

TCB_TmpNameBuf +1e0 4 D aka TCB_TgtModNameBuf

TCB_SrcModNameBuf +1le4d 4 D Used by loader

TCB_FaultBuf +1e8 4 D

TCB_ObjNameBufL +lec 2 w Length of object name
buffer

TCB_TmpNameBufL +lee 2 w

TCB_SrcModNameBufL +1f0 2 w

TCB_FaultBufL +1f2 2 W

TCBSecchild +1f4 4 D Child Security data 54735

Table 61. TCBForcedActions Flag Definitions

Name Bit Mask Description

TK_FF_BUF 0x00000001 Buffer must be released

TK_FF_EXIT 0x00000002 Call TKExit (old FF_DES)

TK_FF_CRITSEC 0x00000004 Enter Per-task critical section

TK_FF_ICE 0x00000008 Freeze thread

TK_FF_NPX 0x00000010 NPX Error

TK_FF_TIB 0x00000020 Update the TIB

TK_FF_TRC 0x00000040 Enter Debug

TK_FF_SIG 0x00000080 Signal pending

TK_FF_CTXH 0x00000100 Pending local context hooks

TK_FF_STIH 0x00000200 Execute STI hooks

TK_FF_VDMBP 0x00000400 Execute VDM BP hooks

TK_FF_RTRY 0x00000800 Retry V86 system call

TK_FF_PIB 0x00001000 Update the PIB

TK_FF_SCH 0x00002000 Do Scheduler Processing

TK_FF_TFBIT 0x00004000 Validate user eflags TF bit

TK_FF_TIBPRI 0x00008000 Update only the priority fields in TIB 59463

Table 62. TCBEntryActions Flag Definitions

Name Bit Mask Description

TK_EF_PFCLI 1 Page fault inside CLI

TK_EF_TRC 2 DosDebug action pending
102 osi2 Debugging

Table 63. TCBWakeFlags Flag Definitions

Name Bit Mask Description
TK_WF_INTERRUPTED 0x01 Sleep was interrupted
TK_WF_TIMEEXP 0x02 Timeout expired
TK_WF_INTPENDING 0x04 Interrupt pending
TK_WF_SINGLEWAKEUP 0x08 Thread wants single wakeup
TK_WF_INTERRUPTIBLE 0x10 Thread blocked interruptibly
TK_WF_TIMEOUT 0x20 Thread blocked with timeout
TK_WF_SLEEPING 0x40 In TKSleep()

Table 64. TCBState and TCBQState Definitions

Name Value Description

STATE_VOID 0 Uninitialized

STATE_READY 1 Ready to run

STATE_BLOCKED 2 Blocked on an ID
STATE_SUSPENDED 3 Suspended (DosSuspendThread)
STATE_CRITSEC 4 Blocked by another CritSec thread
STATE_RUNNING 5 Thread currently running
STATE_READYBOOST 6 Ready, but apply an 10 boost
STATE_TSD 7 Thread waiting for TSD
STATE_DELAYED 8 Delayed TKWakeup (Almost Ready)
STATE_FROZEN 9 Frozen Thread (FF_ICE)
STATE_GETSTACK 10 Incoming TSD
STATE_BADSTACK 11 TSD failed to swap in

Table 65. TCBPriClassMod Definitions

Name Value Description
CLASSMOD_KEYBOARD 0x04 Keyboard boost
CLASSMOD_STARVED 0x08 Starvation boost
CLASSMOD_DEVICE 0x10 Device 1/0O Done Boost
CLASSMOD_FOREGROUND 0x20 Foreground boost
CLASSMOD_WINDOW 0x40 Window Boost
CLASSMOD_VDM_INTERRUPT 0x80 VDM simulated interrupt boost

Table 66 (Page 1 of 2). TCBPriClass Definitions

Name Value Description
CLASS_NOCHANGE 0x00 No priority class change
CLASS_IDLE_TIME 0x01 Idle-Time class
CLASS_REGULAR 0x02 Regular class
CLASS_TIME_CRITICAL 0x03 Time-Critical class

Chapter 3. OS/2 System Control Block Reference

103

Table 66 (Page 2 of 2). TCBPriClass Definitions

Name Value Description

CLASS_SERVER 0x04 Client/Server Server class

Table 67. TCBSchFlg Flag Definitions

Name Bit Mask Description

SCH_PROTECTED_PRI 0x0001 Only Intra-process SetPri allowed
SCH_WINDOWBOOST_LOCK 0x0002 Lock out windoboost changes
SCH_MINSLICE 0x0004 Use minimum timeslice
SCH_PAGE_FAULT 0x0008 Dynamic timeslicing ###
SCH_PAGE_FAULT_BIT 0x03 Dynamic timeslicing P728371

Table 68. TCBfSwapping Flag Definitions

Name Bit Mask Description
SM_TCB_SWAPPING 0x01 swap I/O underway
SM_TCB_RESIZING 0x02 data structures are growing

Table 69. TCBMiscFlags Flag Definitions

Name Bit Mask Description

TMF_CMapFailed (0x01) Set if alloc/realloc failed on a cluster
map (mft_selCMap).

TMF_IGNORE_HE (0x02) If set, ignore (auto fail) hard error

TMF_MULT_XCPT (0x04) Set if multiple ring 0 exceptions

TMF_NoFwd (0x08) Set if inhibiting forwarders

TMF_EXIT_TERM (0x10) TK_FF_EXIT means TKTermThread

TMF_NO_EXCEPT (0x20) Indicates TIB exception field invalid

TMF_XCPT_HE (0x40) Indicates an exception harderr is pending

Table 70. TCBMSpareFlags Flag Definitions

Name Bit Mask Description

SPFLAGS_FGND_DISKIO 0x0080 Foreground Disk 1/0

Table 71. TCBReqPktFlg Flag Definitions

Name Bit Mask Description
TK_RP_ALLOCATED 0x01
TK_RP_INUSE 0x02

104 os/i2 Debugging

3.5.2.1 Thread Control Block for OS/2 Warp V3.0 with FixPak

See FixPak 09 for details of the changes introduced in this FixPak.

Field Name Offset Length Type Description

TCBOrdinal +0 2 W Ordinal number of thread in
PTDA

TCBNumber +2 2 w Thread slot number

TCBForcedActions +4 4 D Bit vector of forced actions

TCBpPTDA +8 4 D Pointer to the PTDA

TCBpTSD +C 4 D Pointer to thread swappable
data

TCBptib +10 4 D Pointer to thread info block

TCBpTCBNext +14 4 forward link to next (active)
TCB

TCBcbStackMax +18 4 Virtual size of stack object

TCBcbStackCur +1lc 4 D Committed size of stack
object

TCBpStack +20 4 D Virtual base of stack

TCBpStackl6Lo +24 4 D Virtual base of 16-bit stack

TCBpStack16Hi +28 4 D Virtual limit of 16-bit stack

TCBpLibiHead +2cC 4 D Link to libi load data area

TCBpLibiCurr +30 4 D Link to libi load data area

TCBpLibiFree +34 4 D Link to libi free data area

TCB_pcriFrameType +38 4 D stack frame type

TCB_pFrameBase +3c 4 D stack frame base pointer

TCB_hookheadLocal +40 8 D local context hook head

TCB_phookOwnerHead +48 4 D linked list of hook blocks

TCBpteKStackTCBO +4c 4 D KStack page 0 of TCB

TCBpteKStackTCB1 +50 4 D KStack page 1 of TCB

TCBpteKStackTSD +54 4 D KStack TSD page

TCBpteKStackPTDAO +58 4 D KStack page 0 of PTDA

TCBpteKStackPTDA1L +5c¢ 4 D KStack page 1 of PTDA

TCBpteKStackPTDA2 +60 4 D KStack page 2 of PTDA

TCBCurrTCB +64 4 D SS-relative offset of Current
TCB

TCBCurrTSD +68 4 D SS-relative offset of Current
TSD

TCBBiasTCB +6¢C 4 D stack-to-flat TCB conversion
value

TCBBiasTSD +70 4 D stack-to-flat TSD conversion
value

TCBpDHRetAddr +74 4 D 82818 Pointer to DHRouter
return address

TCBTLMA +78 80 Thread local memory area

TCBDMAAdd +f8 4 D User's I/O transfer address

Chapter 3. OS/2 System Control Block Reference

105

Field Name Offset Length Type Description

TCBSecPos +fc 4 D Position of first sector
accessed within file

TCBThisSFT +100 4 D pointer to SFT we're
working with

TCBValSec +104 4 D Number of valid (previously
written) sectors

TCBpRTCB +108 4 D Redirector TCB (Used by
LANMAN)

TCBProc_ID +10c 2 w process ID for file sharing
checks

TCBUser_ID +10e 2 w user ID for file sharing
checks

TCBfSharing +110 1 B non-zero ==> no
redirection

TCBSrvAttrib +111 1 B see SetAttrib/file.asm

TCBJfnFlag +112 1 B JFEN flag bits for current fil
handle

TCBAllowed +113 1 B Allowed | 24 answers (see
allowed_)

TCBOpCookie +114 4 D server's per file cookie

TCBOpFlags +118 2 w whether server wants
oplock, etc.

TCBCurBuf +11la 4 D currently assigned buffer

TCBThishVPB +1le 2 w handle of current VPB

TCBNextAdd +120 2 w

TCBBytSecPos +122 2 w position of first byte within
sector

TCBClusNum +124 2 w

TCBLastPos +126 2 w

TCBBytCntl +128 2 w Number of bytes in 1st
sector

TCBBytCnt2 +12a 2 w # of bytes in last sector

TCBSecCnt +12c 2 w number of whole sectors

TCBSecClusPos +12e 1 B posit of first sector within
cluster

TCBBUfHE +12f 1 B How to handle a HardError

TCBactBufHE +130 1 B action response from user
on HardErr

TCBflOLock +131 1 B NZ if TCBLockHndl is valid

TCBLockHndlI +132 C S Lock handle of user mem

TCBThisCDS +13e 4 D Address of current CDS

TCBThisFSC +142 4 D address of current FSC

TCBpTmpCDS +146 4 D Address of dummycds

TCBpOpenBuf +14a 2 w Address of current OpenBuf

TCBpSearchBuf +14c 2 w Address of SearchBuf

106 os/2 Debugging

Field Name Offset Length Type Description

TCBFailErr +14e 2 w NZ if user did FAIL on | 24

TCB_Seminfo +150 4 D 16bit addr of the ramsem
blocked upon

TCB_SemDebugAddr +154 4 D debugger display address
for ksems

TCB_NPX_Buffer +158 4 D

TCBpTCBWaitNext +15¢c 4 Next waiting TCB

TCBpTCBWaitList +160 4 D Threads waiting for me to
die

TCBQState +164 1 B Scheduler queue location
(actual)

TCBState +165 1 B Current scheduler state
(desired)

TCBWakeFlags +166 1 B TKSleep/TKWakeup Flags

TCBcWindowBoost +167 1 B Window Boost count

TCBPriClass +168 1 B Priority Class (user)

TCBPriLevel +169 1 B Priority Level (user)

TCBPriClassMod +16a 1 B Priority Class modifier bits

TCBSchFlags +16b 1 B Misc. Scheduler flags

TCBPriority +16¢ 2 w Calculated Priority

TCBPriorityMin +16e 2 W Minimum Scheduling priority

TCBcBoostLock +170 4 D Kernel Boost Lock nesting
count.

TCBpTCBPriNextQ +174 4 Next priority queue in chain

TCBpTCBPriPrevQ +178 4 D Previous priority queue in
chain

TCBpTCBPriHigher +17c 4 D Higher priority thread

TCBpTCBPriLower +180 4 D Lower priority thread

TCBpTCBPriNext +184 4 D Next same-priority thread

TCBpTCBPriPrev +188 4 D Prev same-priority thread

TCBpTCBWakeup +18¢c 4 D TKQueryWakeup TCB list

TCBSleeplID +190 4 D Sleep ID this TCB is
sleeping on

TCBtoe +194 10 S Timeout/Starvation Timeout
element

TCBCheckedSig +la4 1 B Used by the loader

TCBfSwapping +1lab 1 B status of swapping

TCBVollONest +1a6 1 B nesting level of
FSH_DoVollO

TCBRegPktFIg +la7 1 B Flag to indicate if request
pkt in use

TCBRegPkt +1a8 4 D I1/0 request packet for
thread

TCBSysTime +lac 4 D time spent in system code

TCBUserTime +1b0 4 D time spent in user code

Chapter 3. OS/2 System Control Block Reference 107

Field Name Offset Length Type Description

TCB_pPVDBThd +1b4 4 D Ptr to Perfview Data Block
for this thread (pvdb_thd_s).

TCB_fIDbg +1b8 4 D

TCBCpl2_ESP +1bc 4 D Saved TSS CPL2 stack
pointer.

TCBCpl2_SS +1cO 2 w Saved TSS CPL2 stack
segment.

TCBNewFlags +1c2 1 B Value copied from
ptda_NewFiles

TCBEnNtryActions +1c3 1 B Kernel entry force flags

TCBSig_pend +1c4 2 w bit vector of pending signals

TCBSig_holding +1c6 2 w bit vector of postponed
signals

TCBSig_cur +1c8 2 w bit vec of signals being
processed

TCBXcptRepRec +1lca 4 D report record of active
exception

TCBSig_termtid +1ce 2 w tid of terminator -75797

TCBSechits +1d0 1 B Security bits 54735

TCBspbytes +1d1 1 B To keep size 4*N 54735

TCB_ulSRIndex +1d2 4 D Last semaphore cleared in
MUX 72485

TCBMiscFlags +1d6 1 B Used for hard error
processing

TCBModeFlags +1d7 2 w Mode flags for OPEN - for
WhatVolume

TCBSpareFlags +1d9 1 B Spare flags

TCBLibiFlags +1da 1 B 84537

TCBFiller +1db 1 B To keep size 4*N

TCB_ProcNameBuf +1ldc 4 D Pointer to procedure name

TCB_ObjNameBuf +1e0 4 D Pointer to object name
buffer

TCB_TmpNameBuf +le4 4 D aka TCB_TgtModNameBuf

TCB_SrcModNameBuf +1le8 4 D Used by loader

TCB_FaultBuf +lec 4 D

TCB_ObjNameBufL +1f0 2 w Length of object name
buffer

TCB_TmpNameBufL +1f2 2 w

TCB_SrcModNameBufL +1f4 2 w

TCB_FaultBufL +1f6 2 W

TCBSecchild +1f8 4 D Child Security data 54735

108 os/i2 Debugging

Table 72. TCBLibiFlags Flag Definitions

Name Bit Mask

Description

INIT_ROUTINE_FAILED (0x01)

84537 Set if dll init routine failed

3.5.2.2 Thread Control Block for OS/2 Warp V3.0 with FixPak 11 or

Later

Field Name Offset Length Type Description

TCBOrdinal +0 2 w Ordinal number of thread in
PTDA

TCBNumber +2 2 W Thread slot number

TCBForcedActions +4 4 D Bit vector of forced actions

TCBpPTDA +8 4 D Pointer to the PTDA

TCBpTSD +cC 4 D Pointer to thread swappable
data

TCBptib +10 4 Pointer to thread info block

TCBpTCBNext +14 4 forward link to next (active)
TCB

TCBcbStackMax +18 4 Virtual size of stack object

TCBcbStackCur +1c 4 D Committed size of stack
object

TCBpStack +20 4 D Virtual base of stack

TCBpStackl6Lo +24 4 D Virtual base of 16-bit stack

TCBpStack16Hi +28 4 D Virtual limit of 16-bit stack

TCBpLibiHead +2c 4 D Link to libi load data area

TCBpLibiCurr +30 4 D Link to libi load data area

TCBpLibiFree +34 4 D Link to libi free data area

TCB_pcriFrameType +38 4 D stack frame type

TCB_pFrameBase +3c 4 D stack frame base pointer

TCB_hookheadLocal +40 8 D local context hook head

TCB_phookOwnerHead +48 4 D linked list of hook blocks

TCBpteKStackTCBO +4c 4 D KStack page 0 of TCB

TCBpteKStackTCB1 +50 4 D KStack page 1 of TCB

TCBpteKStackTSD +54 4 D KStack TSD page

TCBpteKStackPTDAO +58 4 D KStack page 0 of PTDA

TCBpteKStackPTDAL +5c¢ 4 D KStack page 1 of PTDA

TCBpteKStackPTDA2 +60 4 D KStack page 2 of PTDA

TCBCurrTCB +64 4 D SS-relative offset of Current
TCB

TCBCurrTSD +68 4 D SS-relative offset of Current
TSD

TCBBiasTCB +6¢C 4 D stack-to-flat TCB conversion
value

Chapter 3. OS/2 System Control Block Reference

109

Field Name Offset Length Type Description

TCBBiasTSD +70 4 D stack-to-flat TSD conversion
value

TCBpDHRetAddr +74 4 D 82818 Pointer to DHRouter
return address

TCBTLMA +78 80 D Thread local memory area

TCBDMAAdd +f8 4 D User's I/O transfer address

TCBSecPos +fc 4 D Position of first sector
accessed within file

TCBThisSFT +100 4 D pointer to SFT we're
working with

TCBValSec +104 4 D Number of valid (previously
written) sectors

TCBpRTCB +108 4 D Redirector TCB (Used by
LANMAN)

TCBProc_ID +10c 2 w process ID for file sharing
checks

TCBUser_ID +10e 2 W user ID for file sharing
checks

TCBfSharing +110 1 B non-zero ==> no
redirection

TCBSrvAttrib +111 1 B see SetAttrib/file.asm

TCBJfnFlag +112 1 B JFEN flag bits for current fil
handle

TCBAllowed +113 1 B Allowed | 24 answers (see
allowed_)

TCBOpCookie +114 4 D server's per file cookie

TCBOpFlags +118 2 w whether server wants
oplock, etc.

TCBCurBuf +11la 4 D currently assigned buffer

TCBThishVPB +1l1le 2 W handle of current VPB

TCBNextAdd +120 2 w

TCBBytSecPos +122 2 w position of first byte within
sector

TCBClusNum +124 2 w

TCBLastPos +126 2 W

TCBBytCntl +128 2 w Number of bytes in 1st
sector

TCBBytCnt2 +12a 2 w # of bytes in last sector

TCBSecCnt +12c 2 w number of whole sectors

TCBSecClusPos +12e 1 B posit of first sector within
cluster

TCBBuUfHE +12f 1 B How to handle a HardError

TCBactBufHE +130 1 B action response from user
on HardErr

TCBflOLock +131 NZ if TCBLockHndl is valid

TCBLockHnNdI +132 C S Lock handle of user mem

110 osi2 Debugging

Field Name Offset Length Type Description
TCBThisCDS +13e 4 Address of current CDS
TCBThisFSC +142 4 D address of current FSC
TCBpTmpCDS +146 4 D Address of dummycds
TCBpOpenBuf +14a 2 w Address of current OpenBuf
TCBpSearchBuf +14c 2 w Address of SearchBuf
TCBFailErr +1l4e 2 w NZ if user did FAIL on | 24
TCB_Seminfo +150 4 D 16bit addr of the ramsem
blocked upon
TCB_SemDebugAddr +154 4 D debugger display address
for ksems
TCB_NPX_Buffer +158 4 D
TCBpTCBWaitNext +15c 4 Next waiting TCB
TCBpTCBWaitList +160 4 Threads waiting for me to
die
TCBQState +164 1 B Scheduler queue location
(actual)
TCBState +165 1 B Current scheduler state
(desired)
TCBWakeFlags +166 1 B TKSleep/TKWakeup Flags
TCBcWindowBoost +167 1 B Window Boost count
TCBPriClass +168 1 B Priority Class (user)
TCBPriLevel +169 1 B Priority Level (user)
TCBPriClassMod +16a 1 B Priority Class modifier bits
TCBSchFlags +16b 1 B Misc. Scheduler flags
TCBPriority +16¢C 2 w Calculated Priority
TCBPriorityMin +16e 2 w Minimum Scheduling priority
TCBcBoostLock +170 4 D Kernel Boost Lock nesting
count.
TCBpTCBPriNextQ +174 4 D Next priority queue in chain
TCBpTCBPriPrevQ +178 4 Previous priority queue in
chain
TCBpTCBPriHigher +17c 4 D Higher priority thread
TCBpTCBPriLower +180 4 D Lower priority thread
TCBpTCBPriNext +184 4 D Next same-priority thread
TCBpTCBPriPrev +188 4 D Prev same-priority thread
TCBpTCBWakeup +18¢ 4 D TKQueryWakeup TCB list
TCBSleeplID +190 4 D Sleep ID this TCB is
sleeping on
TCBtoe +194 14 S Timeout/Starvation Timeout
element
TCBCheckedSig +1a8 1 B Used by the loader
TCBfSwapping +1a9 1 B status of swapping
TCBVollONest +laa 1 B nesting level of
FSH_DoVollO

Chapter 3. OS/2 System Control Block Reference 111

Field Name Offset Length Type Description

TCBReqgPktFIg +1lab 1 B Flag to indicate if request
pkt in use

TCBRegPkt +lac 4 D I1/0 request packet for
thread

TCBSysTime +1b0 4 D time spent in system code

TCBUserTime +1b4 4 D time spent in user code

TCB_pPVDBThd +1b8 4 D Ptr to Perfview Data Block
for this thread (pvdb_thd_s).

TCB_fIDbg +1bc 4

TCBCpl2_ESP +1cO 4 D Saved TSS CPL2 stack
pointer.

TCBCpl2_SS +1c4 2 w Saved TSS CPL2 stack
segment.

TCBNewFlags +1c6 1 B Value copied from
ptda_NewFiles

TCBEnNtryActions +1c7 1 B Kernel entry force flags

TCBSig_pend +1c8 2 w bit vector of pending signals

TCBSig_holding +1lca 2 w bit vector of postponed
signals

TCBSig_cur +1cc 2 w bit vec of signals being
processed

TCBXcptRepRec +1lce 4 D report record of active
exception

TCBSig_termtid +1d2 2 w tid of terminator -75797

TCBSechits +1d4 1 B Security bits 54735

TCBspbytes +1d5 1 B To keep size 4*N 54735

TCB_ulSRIndex +1d6 4 D Last semaphore cleared in
MUX 72485

TCBMiscFlags +1da 1 B Used for hard error
processing

TCBModeFlags +1db 2 w Mode flags for OPEN - for
WhatVolume

TCBSpareFlags +1dd 1 B Spare flags

TCBLibiFlags +1de 1 B 84537

TCBFiller +1df 1 B To keep size 4*N

TCB_ProcNameBuf +1e0 4 D Pointer to procedure name

TCB_ObjNameBuf +le4d 4 D Pointer to object name
buffer

TCB_TmpNameBuf +1le8 4 D aka TCB_TgtModNameBuf

TCB_SrcModNameBuf +lec 4 D Used by loader

TCB_FaultBuf +1f0 4 D

TCB_ObjNameBufL +1f4 2 w Length of object name
buffer

TCB_TmpNameBufL +1f6 2 w

TCB_SrcModNameBufL +1f8 2 w

112 osi2 Debugging

Field Name Offset Length Type Description
TCB_FaultBufL +1fa 2 w
TCBSecchild +1fc 4 D Child Security data 54735
3.5.2.3 Thread Control Block for OS/2 V2.11 with FixPak 90 or Later
Feature 82818 introduces the Kernel Debugger .MK command. 82818 is supplied
as an APAR fix to:
0OS/2 Warp V3.0 as PJ18364 in FixPak 7.
0S/2 V2.11 as PJ16805 in FixPak 90.
Field Name Offset Length Type Description
TCBOrdinal +0 2 w Ordinal number of thread in
PTDA
TCBNumber +2 2 W Thread slot number
TCBForcedActions +4 4 D Bit vector of forced actions
TCBpPTDA +8 4 D Pointer to the PTDA
TCBpTSD +cC 4 D Pointer to thread swappable
data
TCBptib +10 4 D Pointer to thread info block
TCBpTCBNext +14 4 forward link to next (active)
TCB
TCBcbStackMax +18 4 Virtual size of stack object
TCBcbStackCur +1c 4 D Committed size of stack
object
TCBpStack +20 4 D Virtual base of stack
TCBpStackl6Lo +24 4 D Virtual base of 16-bit stack
TCBpStackl16Hi +28 4 D Virtual limit of 16-bit stack
TCBpLibiHead +2c 4 D Link to libi load data area
TCBpLibiCurr +30 4 D Link to libi load data area
TCBpLibiFree +34 4 D Link to libi free data area
TCB_pcriFrameType +38 4 D stack frame type
TCB_pFrameBase +3c 4 D stack frame base pointer
TCB_hookheadLocal +40 8 D local context hook head
TCB_phookOwnerHead +48 4 D linked list of hook blocks
TCBpteKStackTCBO +4c 4 D KStack page 0 of TCB
TCBpteKStackTCB1 +50 4 D KStack page 1 of TCB
TCBpteKStackTSD +54 4 D KStack TSD page
TCBpteKStackPTDAO +58 4 D KStack page 0 of PTDA
TCBpteKStackPTDAL +5c 4 D KStack page 1 of PTDA
TCBpteKStackPTDA2 +60 4 D KStack page 2 of PTDA
TCBCurrTCB +64 4 D SS-relative offset of Current
TCB
TCBCurrTSD +68 4 D SS-relative offset of Current
TSD

Chapter 3. OS/2 System Control Block Reference 113

Field Name Offset Length Type Description

TCBBiasTCB +6¢C 4 D stack-to-flat TCB conversion
value

TCBBiasTSD +70 4 D stack-to-flat TSD conversion
value

TCBpDHRetAddr +74 4 D 82818 Pointer to DHRouter
return address

TCBDMAAdd +78 4 D User's I/O transfer address

TCBSecPos +7c¢C 4 D Position of first sector
accessed within file

TCBThisSFT +80 4 D pointer to SFT we're
working with

TCBValSec +84 4 D Number of valid (previously
written) sectors

TCBpRTCB +88 4 D Redirector TCB (Used by
LANMAN)

TCBProc_ID +8c 2 w process ID for file sharing
checks

TCBUser_ID +8e 2 w user ID for file sharing
checks

TCBfSharing +90 1 B non-zero ==> no
redirection

TCBSrvAttrib +91 1 B see SetAttrib/file.asm

TCBJfnFlag +92 1 B JFEN flag bits for current fil
handle

TCBAllowed +93 1 B Allowed | 24 answers (see
allowed_)

TCBOpCookie +94 4 D server's per file cookie

TCBOpFlags +98 2 w whether server wants
oplock, etc.

TCBCurBuf +9a 4 D currently assigned buffer

TCBThishVPB +9e 2 W handle of current VPB

TCBNextAdd +a0 2 w

TCBBytSecPos +az2 2 w position of first byte within
sector

TCBClusNum +a4d 2 w

TCBLastPos +a6 2 W

TCBBytCntl +a8 2 w Number of bytes in 1st
sector

TCBBytCnt2 +aa 2 w # of bytes in last sector

TCBSecCnt +ac 2 w number of whole sectors

TCBSecClusPos +ae 1 B posit of first sector within
cluster

TCBBuUfHE +af 1 B How to handle a HardError

TCBactBufHE +b0 1 B action response from user
on HardErr

TCBflOLock +b1l 1 B NZ if TCBLockHndI is valid

114 osi2 Debugging

Field Name Offset Length Type Description
TCBLockHndI +b2 C S Lock handle of user mem
TCBThisCDS +be 4 D Address of current CDS
TCBThisFSC +c2 4 D address of current FSC
TCBpTmpCDS +c6 4 D Address of dummycds
TCBpOpenBuf +ca 2 w Address of current OpenBuf
TCBpSearchBuf +cc 2 w Address of SearchBuf
TCBFailErr +ce 2 w NZ if user did FAIL on | 24
TCB_Seminfo +d0 4 D 16bit addr of the ramsem
blocked upon
TCB_SemDebugAddr +d4 4 D debugger display address
for ksems
TCB_NPX_Buffer +d8 4 D
TCBpTCBWaitNext +dc 4 Next waiting TCB
TCBpTCBWaitList +e0 4 Threads waiting for me to
die
TCBQState +e4 1 B Scheduler queue location
(actual)
TCBState +eb5 1 B Current scheduler state
(desired)
TCBWakeFlags +eb 1 B TKSleep/TKWakeup Flags
TCBcWindowBoost +e7 1 B Window Boost count
TCBPriClass +e8 1 B Priority Class (user)
TCBPriLevel +e9 1 B Priority Level (user)
TCBPriClassMod +ea 1 B Priority Class modifier bits
TCBSchFlags +eb 1 B Misc. Scheduler flags
TCBPriority +ec 2 w Calculated Priority
TCBPriorityMin +ee 2 w Minimum Scheduling priority
TCBcBoostLock +f0 4 D Kernel Boost Lock nesting
count.
TCBpTCBPriNextQ +f4 4 D Next priority queue in chain
TCBpTCBPriPrevQ +f8 4 D Previous priority queue in
chain
TCBpTCBPriHigher +fc 4 D Higher priority thread
TCBpTCBPriLower +100 4 D Lower priority thread
TCBpTCBPriNext +104 4 D Next same-priority thread
TCBpTCBPriPrev +108 4 D Prev same-priority thread
TCBpTCBWakeup +10c 4 D TKQueryWakeup TCB list
TCBSleeplID +110 4 D Sleep ID this TCB is
sleeping on
TCBtoe +114 14 S Timeout/Starvation Timeout
element
TCBCheckedSig +128 1 B Used by the loader
TCBfSwapping +129 1 B status of swapping

Chapter 3. OS/2 System Control Block Reference 115

Field Name Offset Length Type Description

TCBVollONest +12a 1 B nesting level of
FSH_DoVollO

TCBRegPktFIg +12b 1 B Flag to indicate if request
pkt in use

TCBRegPkt +12c 4 D I1/0 request packet for
thread

TCBpMemStatCur +130 4 D Current structure being
filled in

TCBMemStat +134 3C S statistics structure

TCBSysTime +170 4 D time spent in system code

TCBUserTime +174 4 D time spent in user code

TCB_pPVDBThd +178 4 D Ptr to Perfview Data Block
for this thread (pvdb_thd_s).

TCB_fIDbg +17c 4

TCBCpl2_ESP +180 4 Saved TSS CPL2 stack
pointer.

TCBCpl2_SS +184 2 w Saved TSS CPL2 stack
segment.

TCBNewFlags +186 1 w Value copied from
ptda_NewFiles

TCBEnNtryActions +187 1 B Kernel entry force flags

TCBSig_pend +188 2 w bit vector of pending signals

TCBSig_holding +18a 2 w bit vector of postponed
signals

TCBSig_cur +18c 2 w bit vec of signals being
processed

TCBXcptRepRec +18e 4 D report record of active
exception

TCBSig_termtid +192 2 w

TCBSecbits +194 1 B Security bits 54735

TCBspbytes +195 1 B To keep size 4*N 54735

TCB_ulSRIndex +196 4 D

TCBMiscFlags +19a 1 D Used for hard error
processing

TCBModeFlags +19b 2 D Mode flags for OPEN - for
WhatVolume

TCBSpareFlags +19d 1 B Spare flags

TCBLibiFlags +19e 1 B

TCBFiller +19f 1 B

TCB_ProcNameBuf +1a0 4 D Pointer to procedure name

TCB_ObjNameBuf +la4 4 D Pointer to object name
buffer

TCB_TmpNameBuf +1a8 4 aka TCB_TgtModNameBuf

TCB_SrcModNameBuf +lac 4 Used by loader

TCB_FaultBuf +1b0 4 D

116 osi2 Debugging

Field Name Offset Length Type Description

TCB_ObjNameBufL +1b4 2 W Length of object name
buffer

TCB_TmpNameBufL +1b6 2 w

TCB_SrcModNameBufL +1b8 2 w

TCB_FaultBufL +1ba 2 W

TCBSecchild +1bc 4 D Child Security data 54735

Table 73. TCBLibiFlags Flag Definitions

Name Bit Mask Description

INIT_ROUTINE_FAILED (0x01) 84537 Set if dll init routine failed

3.5.2.4 Thread Control Block for OS/2 V2.11

Field Name Offset Length Type Description

TCBOrdinal +0 2 w Ordinal number of thread in
PTDA

TCBNumber +2 2 W Thread slot number

TCBForcedActions +4 4 D Bit vector of forced actions

TCBpPTDA +8 4 D Pointer to the PTDA

TCBpTSD +c 4 D Pointer to thread swappable
data

TCBptib +10 4 D Pointer to thread info block

TCBpTCBNext +14 4 forward link to next (active)
TCB

TCBcbStackMax +18 4 Virtual size of stack object

TCBcbStackCur +1c 4 D Committed size of stack
object

TCBpStack +20 4 D Virtual base of stack

TCBpStackl6Lo +24 4 D Virtual base of 16-bit stack

TCBpStack16Hi +28 4 D Virtual limit of 16-bit stack

TCBpLibiHead +2c 4 D Link to libi load data area

TCBpLibiCurr +30 4 D Link to libi load data area

TCBpLibiFree +34 4 D Link to libi free data area

TCB_pcriFrameType +38 4 D stack frame type

TCB_pFrameBase +3c 4 D stack frame base pointer

TCB_hookheadLocal +40 8 D local context hook head

TCB_phookOwnerHead +48 4 D linked list of hook blocks

TCBpteKStackTCBO +4c 4 D KStack page 0 of TCB

TCBpteKStackTCB1 +50 4 D KStack page 1 of TCB

TCBpteKStackTSD +54 4 D KStack TSD page

TCBpteKStackPTDAO +58 4 D KStack page 0 of PTDA

Chapter 3. OS/2 System Control Block Reference 117

Field Name Offset Length Type Description

TCBpteKStackPTDAL +5¢ 4 D KStack page 1 of PTDA

TCBpteKStackPTDA2 +60 4 D KStack page 2 of PTDA

TCBCurrTCB +64 4 D SS-relative offset of Current
TCB

TCBCurrTSD +68 4 D SS-relative offset of Current
TSD

TCBBiasTCB +6¢C 4 D stack-to-flat TCB conversion
value

TCBBiasTSD +70 4 D stack-to-flat TSD conversion
value

TCBDMAAdd +74 4 User's I/O transfer address

TCBSecPos +78 4 D Position of first sector
accessed within file

TCBThisSFT +7c¢C 4 D pointer to SFT we're
working with

TCBValSec +80 4 D Number of valid (previously
written) sectors

TCBpRTCB +84 4 D Redirector TCB (Used by
LANMAN)

TCBProc_ID +88 2 W process ID for file sharing
checks

TCBUser_ID +8a 2 w user ID for file sharing
checks

TCBfSharing +8c 1 B non-zero ==> no
redirection

TCBSrvAttrib +8d 1 B see SetAttrib/file.asm

TCBJfnFlag +8e 1 B JFN flag bits for current fil
handle

TCBAIllowed +8f 1 B Allowed | 24 answers (see
allowed_)

TCBOpCookie +90 4 server's per file cookie

TCBOpFlags +94 2 w whether server wants
oplock, etc.

TCBCurBuf +96 4 D currently assigned buffer

TCBThishVPB +9a 2 w handle of current VPB

TCBNextAdd +9c 2 W

TCBBytSecPos +9e 2 w position of first byte within
sector

TCBClusNum +a0l 2 w

TCBLastPos +a?2 2 W

TCBBytCntl +a4d 2 w Number of bytes in 1st
sector

TCBBytCnt2 +ab 2 w # of bytes in last sector

TCBSecCnt +a8 2 w number of whole sectors

TCBSecClusPos +aa 1 B posit of first sector within

cluster

118

0S/2 Debugging

Field Name Offset Length Type Description
TCBBuUfHE +ab 1 B How to handle a HardError
TCBactBufHE +ac 1 B action response from user
on HardErr
TCBflOLock +ad 1 B NZ if TCBLockHndl is valid
TCBLockHndI +ae C S Lock handle of user mem
TCBThisCDS +ba 4 D Address of current CDS
TCBThisFSC +be 4 D address of current FSC
TCBpTmpCDS +c2 4 D Address of dummycds
TCBpOpenBuf +c6 2 w Address of current OpenBuf
TCBpSearchBuf +c8 2 w Address of SearchBuf
TCBFailErr +ca 2 w NZ if user did FAIL on | 24
TCB_Seminfo +cc 4 D 16-bit addr of the ramsem
blocked upon
TCB_SemDebugAddr +d0 4 D debugger display address
for ksems
TCB_NPX_Buffer +d4 4 D
TCBpTCBWaitNext +d8 4 D Next waiting TCB
TCBpTCBWaitList +dc 4 D Threads waiting for me to
die
TCBQState +e0 1 B Scheduler queue location
(actual)
TCBState +el 1 B Current scheduler state
(desired)
TCBWakeFlags +e2 1 B TKSleep/TKWakeup Flags
TCBcWindowBoost +e3 1 B Window Boost count
TCBPriClass +e4d 1 B Priority Class (user)
TCBPriLevel +eb 1 B Priority Level (user)
TCBPriClassMod +eb 1 B Priority Class modifier bits
TCBSchFlags +e7 1 B Misc. Scheduler flags
TCBPriority +e8 2 w Calculated Priority
TCBPriorityMin +ea 2 w Minimum Scheduling priority
TCBcBoostLock +ec 4 D Kernel Boost Lock nesting
count.
TCBpTCBPriNextQ +f0 4 D Next priority queue in chain
TCBpTCBPriPrevQ +f4 4 D Previous priority queue in
chain
TCBpTCBPriHigher +f8 4 D Higher priority thread
TCBpTCBPriLower +fc 4 D Lower priority thread
TCBpTCBPriNext +100 4 D Next same-priority thread
TCBpTCBPriPrev +104 4 D Prev same-priority thread
TCBpTCBWakeup +108 4 D TKQueryWakeup TCB list
TCBSleeplID +10c 4 D Sleep ID this TCB is
sleeping on

Chapter 3. OS/2 System Control Block Reference

119

Field Name Offset Length Type Description

TCBtoe +110 14 S Timeout/Starvation Timeout
element

TCBCheckedSig +124 1 B Used by the loader

TCBfSwapping +125 1 B status of swapping

TCBVollONest +126 1 B nesting level of
FSH_DoVollO

TCBReqgPktFIg +127 1 B Flag to indicate if request
pkt in use

TCBRegPkt +128 4 D I1/0 request packet for
thread

TCBpMemStatCur +12c 4 D Current structure being
filled in

TCBMemStat +130 3C S statistics structure

TCBSysTime +16¢ 4 D time spent in system code

TCBUserTime +170 4 D time spent in user code

TCB_pPVDBThd +174 4 D Ptr to Perfview Data Block
for this thread (pvdb_thd_s).

TCB_fIDbg +178 4

TCBCpl2_ESP +17c 4 Saved TSS CPL2 stack
pointer.

TCBCpl2_SS +180 2 w Saved TSS CPL2 stack
segment.

TCBNewFlags +182 1 w Value copied from
ptda_NewFiles

TCBEnNtryActions +183 1 B Kernel entry force flags

TCBSig_pend +184 2 w bit vector of pending signals

TCBSig_holding +186 2 w bit vector of postponed
signals

TCBSig_cur +188 2 w bit vec of signals being
processed

TCBXcptRepRec +18a 4 D report record of active
exception

TCBSig_termtid +18e 2 w

TCBSechbits +190 1 B Security bits 54735

TCBspbytes +191 1 B To keep size 4*N 54735

TCB_ulSRIndex +192 4 D

TCBMiscFlags +196 1 D Used for hard error
processing

TCBModeFlags +197 2 D Mode flags for OPEN - for
WhatVolume

TCBSpareFlags +199 1 B Spare flags

TCBLibiFlags +19a 1 B

TCBFiller +19b 1 B

TCB_ProcNameBuf +19c 4 D Pointer to procedure name

TCB_ObjNameBuf +1a0 4 D Pointer to object name

buffer

120 osi2 Debugging

Field Name Offset Length Type Description

TCB_TmpNameBuf +la4 4 D aka TCB_TgtModNameBuf

TCB_SrcModNameBuf +1a8 4 D Used by loader

TCB_FaultBuf +lac 4 D

TCB_ObjNameBufL +1b0 2 w Length of object name
buffer

TCB_TmpNameBufL +1b2 2 w

TCB_SrcModNameBufL +1b4 2 W

TCB_FaultBufL +1b6 2 W

TCBSecchild +1b8 4 D Child Security data 54735

3.5.3 Thread Swappable Data for OS/2 Warp V3.0 ALLSTRICT Kernel

For TSD formats for other versions of OS/2 see:

3.5.3.1, “Thread Swappable Data for OS/2 Warp V3.0 RETAIL Kernel” on

page 122

3.5.3.2, “Thread Swappable Data for OS/2 V2.11 ALLSTRICT Kernel” on

page 123

3.5.3.3, “Thread Swappable Data for OS/2 V2.11 RETAIL Kernel” on page 124

Pointers

TCBpTSD points to the TSD associated with a TCB

CurrTSD points to the current TSD.

Locations

System Arena.

VM Owner

tsd (Oxffcd)

Format

Field Name Offset Length Type Description

TSDpad +0 1000 Dummy page to catch faults

TSDUserStack +1000 F98 w Thread's kernel stack

TSDUserESP +1f98 4 D Saved user stack pointer

TSDUserSS +1f9c 2 w Saved user stack segment

TSDUserSSPad +1f9e 2 w Pad word pushed by gate

TSDKernelESP +1fa0 4 D Saved kernel stack pointer.

TSDpTCB +1fa4d 4 D Link to TCB

TSDpfnFault +1fa8 4 D ptr to local fault handler in
effect

TSDTrapNum +1fac 4 D TrapNum from the last fault

TSDerrcFault +1fb0 4 error code from the last
fault

Chapter 3. OS/2 System Control Block Reference 121

Field Name Offset Length Type Description

TSDpljmp +1fb4 4 D Buffer saved by
TKCatchFault

TSDselFault +1fb8 2 w faulting selector

TSDCpl2_SSSize +1fba 2 w Size of ring 2 stack - at
least that's what the user
believes

TSDdescLDT +1fbc 8 D LDT table descriptor

TSDdescKStackSS +1fc4 8 D SS descriptor

TSDdescFPEM +1fcc 8 D reserved descriptor slot

TSDdescTIB +1fd4 8 D FS mapping to TIB

TSDulExitCode +1fdc 4 D Proposed Thread Exit code
(for dbg)

TSDerridFault +1fe0 4 error id from page fault

TSDPFErr +1fed 4 actual error from
PGPagefault

TSDIDbgRangeStart +1fe8 4 D

TSDIDbgRangeEnNd +1fec 4 D

TSDIDbgLastAddr +1ff0 4 D

TSDpPCB +1ff4 4 D Pointer to Profile Control
Block

TSDpDLLTerm +1ff8 4 Pointer to data buffer

TSDcObjSem +1ffc 4 Count of object semaphores
held

3.5.3.1 Thread Swappable Data for OS/2 Warp V3.0 RETAIL Kernel

Field Name Offset Length Type Description

TSDUserStack +0 FoC w Thread's kernel stack

TSDUserESP +f9c 4 D Saved user stack pointer

TSDUserSS +fa0 2 w Saved user stack segment

TSDUserSSPad +fa2 2 w Pad word pushed by gate

TSDKernelESP +fa4 4 D Saved kernel stack pointer.

TSDpTCB +fa8 4 D Link to TCB

TSDpfnFault +fac 4 D ptr to local fault handler in
effect

TSDTrapNum +fb0 4 TrapNum from the last fault

TSDerrcFault +fb4 4 error code from the last
fault

TSDpljmp +fb8 4 D Buffer saved by
TKCatchFault

TSDselFault +fbc 2 w faulting selector

TSDCpl2_SSSize +fbe 2 w Size of ring 2 stack - at

least that's what the user
believes

122 osi2 Debugging

Field Name Offset Length Type Description

TSDdesclLDT +fcO 8 D LDT table descriptor

TSDdescKStackSS +fc8 8 D SS descriptor

TSDdescFPEM +fd0 8 D reserved descriptor slot

TSDdescTIB +fd8 8 D FS mapping to TIB

TSDulExitCode +fe0 4 D Proposed Thread Exit code
(for dbg)

TSDerridFault +fe4 4 error id from page fault

TSDPFErr +fe8 4 actual error from
PGPagefault

TSDIDbgRangeStart +fec 4 D

TSDIDbgRangeEnd +ff0 4 D

TSDIDbgLastAddr +ff4 4 D

TSDpPCB +ff8 4 D Pointer to Profile Control
Block

TSDpDLLTerm +ffc 4 D Pointer to data buffer

3.5.3.2 Thread Swappable Data for OS/2 V2.11 ALLSTRICT Kernel

Field Name Offset Length Type Description

TSDpad +0 1000 Dummy page to catch faults

TSDUserStack +1000 F98 w Thread's kernel stack

TSDUserESP +1f98 4 D Saved user stack pointer

TSDUserSS +1f9c 2 w Saved user stack segment

TSDUserSSPad +1f9e 2 w Pad word pushed by gate

TSDKernelESP +1fa0 4 D Saved kernel stack pointer.

TSDpTCB +1fa4 4 D Link to TCB

TSDpfnFault +1fa8 4 D ptr to local fault handler in
effect

TSDTrapNum +1fac 4 D TrapNum from the last fault

TSDerrcFault +1fb0 4 error code from the last
fault

TSDpljmp +1fb4 4 D Buffer saved by
TKCatchFault

TSDselFault +1fb8 2 w faulting selector

TSDCpl2_SSSize +1fba 2 w Size of ring 2 stack - at
least that's what the user
believes

TSDdescLDT +1fbc 8 D LDT table descriptor

TSDdescKStackSS +1fc4 8 D SS descriptor

TSDdescFPEM +1fcc 8 D reserved descriptor slot

TSDdescTIB +1fd4 8 D FS mapping to TIB

TSDulExitCode +1fdc 4 D Proposed Thread Exit code
(for dbg)

Chapter 3. OS/2 System Control Block Reference

123

Field Name Offset Length Type Description

TSDerridFault +1fe0 4 D error id from page fault

TSDPFErr +1fe4 4 D actual error from
PGPagefault

TSDIDbgRangeStart +1fe8 4 D

TSDIDbgRangeEnNd +1fec 4 D

TSDIDbgLastAddr +1ff0 4 D

TSDpPCB +1ff4 4 D Pointer to Profile Control
Block

TSDpDLLTerm +1ff8 4 Pointer to data buffer

TSDcObjSem +1ffc 4 Count of object semaphores
held

3.5.3.3 Thread Swappable Data for OS/2 V2.11 RETAIL Kernel

Field Name Offset Length Type Description

TSDUserStack +0 FoC w Thread's kernel stack

TSDUserESP +f9c 4 D Saved user stack pointer

TSDUserSS +fa0 2 w Saved user stack segment

TSDUserSSPad +fa2 2 w Pad word pushed by gate

TSDKernelESP +fa4 4 D Saved kernel stack pointer.

TSDpTCB +fa8 4 D Link to TCB

TSDpfnFault +fac 4 D ptr to local fault handler in
effect

TSDTrapNum +fb0 4 TrapNum from the last fault

TSDerrcFault +fb4 4 error code from the last
fault

TSDpljmp +fb8 4 D Buffer saved by
TKCatchFault

TSDselFault +fbc 2 w faulting selector

TSDCpl2_SSSize +fbe 2 w Size of ring 2 stack - at
least that's what the user
believes

TSDdescLDT +fcO 8 D LDT table descriptor

TSDdescKStackSS +fc8 8 D SS descriptor

TSDdescFPEM +fd0 8 D reserved descriptor slot

TSDdescTIB +fd8 8 D FS mapping to TIB

TSDulExitCode +fe0 4 D Proposed Thread Exit code
(for dbg)

TSDerridFault +fe4 4 error id from page fault

TSDPFErr +fe8 4 actual error from
PGPagefault

TSDIDbgRangeStart +fec 4 D

TSDIDbgRangeEnd +ff0 4

TSDIDbgLastAddr +ff4 4

124 os/i2 Debugging

Field Name Offset Length Type Description

TSDpPCB +ff8 4 D Pointer to Profile Control
Block
TSDpDLLTerm +ffc 4 D Pointer to data buffer

3.5.4 Per-Task Data Area for OS/2 Warp V3.0 ALLSTRICT Kernel

For PTDA formats for other versions of OS/2 see:
3.5.4.1, “Per-Task Data Area for OS/2 Warp V3.0 RETAIL Kernel” on page 131
3.5.4.2, “Per-Task Data Area for OS/2 V2.11 ALLSTRICT Kernel” on page 136
3.5.4.3, “Per-Task Data Area for OS/2 V2.11 RETAIL Kernel” on page 141

Pointers
TCBpPTDA points to the PTDA associated with a TCB

CurrTSD points to the current TSD.
pPTDASelf points to the current PTDA.

Locations
System Arena.

VM Owner
ptda (Oxffcb)

Format

Field Name Offset Length Type Description

pPTDAParent +0 4 D Parent PTDA

pPTDASelf +4 4 D This PTDA

pPTDAFirstChild +8 4 D Head of child chain PTDA

pPTDAExecChild +c 4 D New Child PTDA (Child
being exec'ed)

pPTDANextSibling +10 4 D Next sibling's PTDA

pPTDAPrevSibling +14 4 D Previous sibling’'s PTDA

ptda_pszproc +18 4 D Pointer to the EXE file this
process is executing. Used
by PerfView

ptda_pTCBHole +1c 4 D Some TCB before first Tid
"hole’

ptda_pTCBHead +20 4 D Head of list of active TCBs
owned by this process

ptda_cTCB +24 2 w Number of TCBs in use

ptda_ctib +26 2 w Count of TIBs allocated

ptda_avatib +28 10 D Pointers to TIB arrays

ptda_pdcb +38 4 D

ptda_fIDbg +3c 4 D

ptda_ah +40 40 S Private arena header

Chapter 3. OS/2 System Control Block Reference 125

Field Name Offset Length Type Description

ptda_pgdata +80 26 S

ptda_environ +ab 2 w Handle to process’s envt
seg

ptda_pBeginLIBPATH +a8 4

ptda_pEndLIBPATH +ac 4 D75220- support dynamic
libpath

ptda_pgpc +b0 1E0 S

ptda_pPVDBPrc +290 4 D

ptda_pSGSList +294 4 D

ptda_pexllist +298 4 D Flat pointer to exit list data

ptda_cdllterm +29c 4 D

WFP_Start +2a0 2 W TASKAREA offset for
working string *REDIR*

Ren_WFP +2a?2 2 w WFB pointer for rename
destination *REDIR*

WFP_Path_End +2a4 2 w End of Path component of
string.

Curr_Dir_End +2a6 2 w

CDS_Handle +2a8 34 w *REDIR*

OEMPTtr +2dc 2 w

LIS_Fgnd +2de 1 B

FgndOnly +2df 1 B Foreground only flag

ptda_pTCBCritSec +2e0 4 D TCB that did enter CritSec

ptda_pTCBPriQCritSec +2e4 4 D TCBs awaiting CritSec
wakeup

ptda_cCritSec +2e8 2 w Critical Section Count

CurrentPDB +2ea 2 Currently active PDB (V86
segment)

DTAddr +2ec 4 D User's I/O transfer address
REDIR

seltss +2f0 2 w

VollD +2f2 1 B 10 if vol ID found in dir
search

NoSetDir +2f3 1 B If TRUE, do not set directory

SpaceFlag +2f4 1 B Embedded spaces allowed
in FCB

VerFlg +2f5 1 B Initialize with verify off

LCurDrv +2f6 1 B Logical current drive -
Default A:

PCurDrv +2f7 1 B Physical drive after assign
mapping

Creating +2f8 1 B

DelAll +2f9 1 B

FoundDel +2fa 1 B

126 os/2 Debugging

Field Name Offset Length Type Description

Found_dev +2fb 1 B True => search found a
device 3.10

fSplice +2fc 1 B True => do a splice in
transpath 3.10

ClusFac +2fd 1 B Sectors/cluster used in dir
search

cMeta +2fe 1 B Components found 3.10

PathNameType +2ff 1

DevPt +300 4 D Address of device found by
DevName *REDIR*

DirSec +304 4 D

DirStart +308 2 w

NxtClusNum +30a 2 w

EntFree +30c 2 w

EntLast +30e 2 W

LastEnt +310 2 W

ProcFlag +312 2 w If == 1 then this is a
special process (swapper or
screen switch); NO
removable media buffer will
be allocated to this process.

ptda_ForcedActions +314 4 D Pending action bits

ptda_ulExitCode +318 4 D Exit code of last task
ptda_ulExitType +31c 4 D Type of exit

ptda_ulExitTID +320 4 D Exit Thread ID (32-bit
exceptions)

ThisCDS +324 4 D Address of current CDS
REDIR 3.10

ptda_pCDS +328 2 w SS relative pointer to a
curdir struct

CDSsize +32a 2 w Size of CDS pointed to by
ThisCDS ONLY used for CDS
entries in RMP seg

Sattrib +32c 2 w Storage for search attrs
REDIR 3.10

sPCB +32e 2 w Selector of Profile Control
Block

ptda_pPCB +330 4 D Pointer to Profile Control
Block

JFEN_Max +334 2 w Highest JFN used so far

NextSrchH +336 2 w Next value to use for search
handle First value used will
be 2.

SrchRmp +338 4 D Handle and Selector for
RMP segment we keep
search handles in.

FNotifyLocal_First +33c 2 w

Chapter 3. OS/2 System Control Block Reference 127

Field Name Offset Length Type Description

FNotifyLocal_Count +33e 2 w

Sig_ignf +340 2 w Bit vector of ignored signals

Sig_hndf +342 2 w Bit vector of handled signals

Sig_errf +344 2 W Bit vector of error
generating signals

Sig_attempted +346 2 w Bit vector of signals we've
tried to handle with 32-bit
exceptions

Sig_arg +348 10 w Byte vector of signal
arguments

Sig_termtid +358 2 w 'Terminator’ TID for
APTERM.

HoldSigCnt +35a 2 w DOSHOLDSIGNAL counter

SigFocusCnt +35¢ 2 w PUBLIB
DOS32SETSIGNALEXCEPTIONROCUS
count

JFN_Table +35e 28 W Default handle table

JFN_Flags +386 14 B Default JFN flags table

ptda_rasflag +39a 2 w RAS trace indicator

SysSemPTDATDbI +39c 100 S

SavedHardErr +49c 4 D

ptda_ptdasem +4a0 C S PTDA semaphore that is,
inter-thread

ptda_DLMsem +4ac C S b732954 Edd PTDA
semaphore that is,
inter-thread

ptda_lidt +4b8 6 w Current IDT limit/base

Csid +4be 2 w Command Subtree ID

Behav_bit +4c0 2 w Program behavior bits

MSW +4c2 2 w CPU matching status word

ptda_rsrclist +4c4 4 D Far pointer to local resource
list

ptda_pldrdidHead +4c8 4 D Loader demand load data
list

pPrSemThl +4cc 4 D (void * => PSEM) pointer
to private semaphore table

ulPrTblSize +4d0 4 D Size of pPrSemThbl in dwords

ulPrTotUsed +4d4 4 D Number of entries in
pPrSemTbl

ulPrNextFree +4d8 4 D Next free slot in pPrSemThbl

hksPrThbl +4dc 4 D Kernel semaphore handle
for private semaphore table

pShSemBmp +4e0 4 D Pointer to private bitmap for
the shared semaphore table

ulShBmpSize +4e4 4 D Size of pShSemBmp in bits

128 os/i2 Debugging

Field Name Offset Length Type Description

hksShBmp +4e8 4 D Kernel semaphore handle
for private semaphore table

ulMtxOwned +4ec 4 D Number of mutex owned by
this process in the two sem
tables

ShareRetriesLeft +4f0 2 w Number of share/lock viol
retries

RetryCount +4f2 2 w Num of share/lock retries to
do

RetryLoop +4f4 2 w Num of share/lock retry
delay loops ceb 75871

ptda_pSrchBuf +4f16 2 w Internal search buffer

ptda_padl +4f8 2 w

ptda_pOpenBuf +4fa 2 w

ptda_TLMA +4fc 4 D In use flag and dword copy
count

ptda_TLMABM +500 4 B Thread local memory

ptda_TLMASizeMap +504 20 B Thread local memory

Cons_Loc +524 A S

SysCallSfcn +52e 1 B Value of AL on system entry

SysCall +52f 1 B Last system call processed

KBD_Mode +530 1 B Keyboard input mode

ptda_NewFiles +531 1 B If bit one is set, process
supports // 54400 new files
(long names)

AutoFail +532 1 B Non-zero if | 24 FAILed
magically

ptda_direntry +533 20

CP_FIgs +553 1 B Default is no codepage in
system.

Sig_vec +554 20 D Signal handlers

Exc_vec +574 1C D OSOLETE exception vectors

ptda_timerhead +590 4 D

Attrib +594 2 w Storage for file attributes
REDIR

ExtFCB +596 1 Extended FCB

ptda_extsig +597 1 B

ptda_lanman_sec +598 4 D Used by LANMAN and HPFS
for security.

ptda_pad2 +59¢ 2 w Alighment

ptda_ppgdata +59e 2 w

ptda_child +5a0 2 w New child PTDA handle
(Child being Exec'ed)

ptda_childalias +5a2 2 w

ptda_handle +5a4 2 w Handle to this segment

Chapter 3. OS/2 System Control Block Reference

129

Field Name Offset Length Type Description

ptda_module +5a6 2 w Program module handle for
process

ptda_ldthandle +5a8 2 w

ptda_ldtpgmap +5aa 2 w Bitmap of valid LDT pages

ptda_ldtaddr +5ac 4 D

CP_CaseMapThbl +5b0 4 D

codepage_tag +5b4 2 w The current code page

JFN_Length +5b6 2 w Size of JFN table in bytes

JFN_pTable +5b8 4 D PM pointer to JFN table

JFEN_Flg_Ptr +5bc 4 D Pointer to JFN flags

Joins +5c0 1 B Number of joins

ExtErr_Locus +5cl 1 B Extended Error Locus
REDIR 3.10

ExtErr +5c2 2 W Extended Error code
REDIR 3.10

ExtErr_Action +5c4 1 B Extended Error Action
REDIR 3.10

ExtErr_Class +5c¢5 1 B Extended Error Class
REDIR 3.10

ptda_infoseg +5c6 24 S

ptda_pad3 +5ea 2 w Alignment

CurrTCB +5ec 2 w Pointer to current TCB

CurrTSD +5ee 2 w Pointer to current TSD

ThisPTDA +5f0 2 w Selector for this ptda

ptda_NPX_em_cs +5f2 2 w b726833 NPX emulator CS
b726833

ptda_NPX_em_eip +5f4 4 D b726833 NPX emulator EIP
b726833

ptda_pad4 +5f8 2 w Alignment b726833

ptda_signature +5fa 2 B Must contain "TD"

Table 74 (Page 1 of 2). ptda_ForcedActions Flag Definitions

Name Bit Mask Description

TK_FF_BUF 0x00000001 Buffer must be released

TK_FF_EXIT 0x00000002 Call TKExit (old FF_DES)

TK_FF_CRITSEC 0x00000004 Enter Per-task critical section

TK_FF_ICE 0x00000008 Freeze thread

TK_FF_NPX 0x00000010 NPX Error

TK_FF_TIB 0x00000020 Update the TIB

TK_FF_TRC 0x00000040 Enter Debug

TK_FF_SIG 0x00000080 Signal pending

TK_FF_CTXH 0x00000100 Pending local context hooks

130 osi2 Debugging

Table 74 (Page 2 of 2). ptda_ForcedActions Flag Definitions

Name Bit Mask Description

TK_FF_STIH 0x00000200 Execute STI hooks

TK_FF_VDMBP 0x00000400 Execute VDM BP hooks

TK_FF_RTRY 0x00000800 Retry V86 system call

TK_FF_PIB 0x00001000 Update the PIB

TK_FF_SCH 0x00002000 Do Scheduler Processing

TK_FF_TFBIT 0x00004000 Validate user eflags TF bit

TK_FF_TIBPRI 0x00008000 Update only the priority fields in TIB 59463

3.5.4.1 Per-Task Data Area for OS/2 Warp V3.0 RETAIL Kernel

Field Name Offset Length Type Description

pPTDAParent +0 4 D Parent PTDA

pPTDASelf +4 4 D This PTDA

pPTDAFirstChild +8 4 D Head of child chain PTDA

pPTDAExecChild +c 4 D New Child PTDA (Child
being exec'ed)

pPTDANextSibling +10 4 D Next sibling's PTDA

pPTDAPrevSibling +14 4 Previous sibling's PTDA

ptda_pszproc +18 4 D Pointer to the EXE file this
process is executing. Used
by PerfView

ptda_pTCBHole +1c 4 D some TCB before first Tid
"hole’

ptda_pTCBHead +20 4 D Head of list of active TCBs
owned by this process

ptda_cTCB +24 2 w Number of TCBs in use

ptda_ctib +26 2 w Count of TIBs allocated

ptda_avatib +28 10 D Pointers to TIB arrays

ptda_pdcb +38 4 D

ptda_fIDbg +3c 4 D

ptda_ah +40 40 S Private arena header

ptda_pgdata +80 26 S

ptda_environ +ab 2 w handle to process's envt
seg

ptda_pBeginLIBPATH +a8 4

ptda_pEndLIBPATH +ac 4 D D75220- support dynamic
libpath

ptda_pgpc +b0 1EO0 S

ptda_pPVDBPrc +290 4 D

ptda_pSGSList +294 4 D

ptda_pexllist +298 4 D Flat pointer to exit list data

Chapter 3. OS/2 System Control Block Reference 131

Field Name Offset Length Type Description

ptda_cdllterm +29c 4 D

WFP_Start +2a0 2 W TASKAREA offset for
working string *REDIR*

Ren_WFP +2a?2 2 w WFB pointer for rename
destination *REDIR*

WFP_Path_End +2a4 2 w End of Path component of
string.

Curr_Dir_End +2a6 2 w

CDS_Handle +2a8 34 w *REDIR*

OEMPTtr +2dc 2 w

LIS_Fgnd +2de 1 B

FgndOnly +2df 1 B foreground only flag

ptda_pTCBCritSec +2e0 4 D TCB that did enter CritSec

ptda_pTCBPriQCritSec +2e4 4 D TCBs awaiting CritSec
wakeup

ptda_cCritSec +2e8 2 w Critical Section Count

CurrentPDB +2ea 2 Currently active PDB (V86
segment)

DTAddr +2ec 4 D User's I/O transfer address
REDIR

seltss +2f0 2 w

VollD +2f2 1 B 10 if vol ID found in dir
search

NoSetDir +2f3 1 B If TRUE, do not set
directory

SpaceFlag +2f4 1 B Embedded spaces allowed
in FCB

VerFlg +2f5 1 B Initialize with verify off

LCurDrv +2f6 1 B Logical current drive -
Default A:

PCurDrv +2f7 1 B physical drive after assign
mapping

Creating +2f8 1 B

DelAll +2f9 1 B

FoundDel +2fa 1 B

Found_dev +2fb 1 B true => search found a
device 3.10

fSplice +2fc 1 B true => do a splice in
transpath 3.10

ClusFac +2fd 1 B sectors/cluster used in dir
search

cMeta +2fe 1 B components found 3.10

PathNameType +2ff 1

DevPt +300 4 D Address of device found by
DevName *REDIR*

DirSec +304 4 D

132 osi2 Debugging

Field Name Offset Length Type Description

DirStart +308 2 w

NxtClusNum +30a 2 w

EntFree +30c 2 W

EntLast +30e 2 w

LastEnt +310 2 w

ProcFlag +312 2 w if == 1 then this is a
special process (swapper or
screen switch); NO
removable media buffer will
be allocated to this process.

ptda_ForcedActions +314 4 D pending action bits

ptda_ulExitCode +318 4 D Exit code of last task
ptda_ulExitType +31c 4 D Type of exit

ptda_ulExitTID +320 4 D Exit Thread ID (32-bit
exceptions)

ThisCDS +324 4 D Address of current CDS
REDIR 3.10

ptda_pCDS +328 2 w SS relative pointer to a
curdir struct

CDSsize +32a 2 w Size of CDS pointed to by
ThisCDS ONLY used for CDS
entries in RMP seg

Sattrib +32c 2 w Storage for search attrs
REDIR 3.10

sPCB +32e 2 w Selector of Profile Control
Block

ptda_pPCB +330 4 D Pointer to Profile Control
Block

JFN_Max +334 2 w highest JFN used so far

NextSrchH +336 2 w Next value to use for search
handle First value used will
be 2.

SrchRmp +338 4 D Handle and Selector for
RMP segment we keep
search handles in.

FNotifyLocal_First +33c 2 W

FNotifyLocal_Count +33e 2 w

Sig_ignf +340 2 w bit vector of ignored
signals

Sig_hndf +342 2 w bit vector of handled
signals

Sig_errf +344 2 w bit vector of error
generating signals

Sig_attempted +346 2 w bit vector of signals we've
tried to handle with 32-bit
exceptions

Sig_arg +348 10 w byte vector of signal
arguments

Chapter 3. OS/2 System Control Block Reference 133

Field Name Offset Length Type Description

Sig_termtid +358 2 w 'Terminator’ TID for
APTERM.

HoldSigCnt +35a 2 w DOSHOLDSIGNAL counter

SigFocusCnt +35c 2 W PUBLIB
DOS32SETSIGNALEXCEPTIONROCUS
count

JEN_Table +35e 28 w default handle table

JFN_Flags +386 14 B default JFN flags table

ptda_rasflag +39a 2 w RAS trace indicator

SysSemPTDATDbI +39c 100 S

SavedHardErr +49c 4 D

ptda_ptdasem +4a0 8 S PTDA semaphore that is,
inter-thread

ptda_DLMsem +4a8 8 S b732954 Edd PTDA
semaphore that is,
inter-thread

ptda_lidt +4b0 6 w current IDT limit/base

Csid +4b6 2 w Command Subtree ID

Behav_bit +4b8 2 w program behavior bits

MSW +4ba 2 w CPU matching status word

ptda_rsrclist +4bc 4 D far pointer to local resource
list

ptda_pldrdidHead +4c0 4 D loader demand load data
list

pPrSemThl +4c4 4 D (void * => PSEM) pointer
to private semaphore table

ulPrTblSize +4c8 4 D size of pPrSemTbl in
dwords

ulPrTotUsed +4cc 4 D number of entries in
pPrSemThbl

ulPrNextFree +4d0 4 D next free slot in pPrSemThbl

hksPrTbl +4d4 4 D kernel semaphore handle
for private semaphore table

pShSemBmp +4d8 4 D pointer to private bitmap
for the shared semaphore
table

ulShBmpSize +4dc 4 D size of pShSemBmp in bits

hksShBmp +4e0 4 D kernel semaphore handle
for private semaphore table

ulMtxOwned +4e4 4 D number of mutex owned by
this process in the two sem
tables

ShareRetriesLeft +4e8 2 w number of share/lock viol
retries

RetryCount +4ea 2 w num of share/lock retries to
do

134 osi2 Debugging

Field Name Offset Length Type Description

RetryLoop +4ec 2 w num of share/lock retry
delay loops ceb 75871

ptda_pSrchBuf +4ee 2 w internal search buffer

ptda_padl +4f0 2 w

ptda_pOpenBuf +4f2 2 w

ptda_TLMA +4f4 4 D in use flag and dword copy
count

ptda_TLMABM +4f8 4 B thread local memory

ptda_TLMASizeMap +4fc 20 B thread local memory

Cons_Loc +51c A S

SysCallSfcn +526 B Value of AL on system
entry

SysCall +527 1 Last system call processed

KBD_Mode +528 1 B Keyboard input mode

ptda_NewFiles +529 1 B If bit one is set, process
supports // 54400 new files
(long names)

AutoFail +52a 1 B Non-zero if | 24 FAILed
magically

ptda_direntry +52b 20

CP_FIgs +54b 1 B Default is no codepage in
system.

Sig_vec +54c¢ 20 D signal handlers

Exc_vec +56¢C 1C D OSOLETE exception vectors

ptda_timerhead +588 4 D

Attrib +58¢ 2 w storage for file attributes
REDIR

ExtFCB +58e 1 B Extended FCB

ptda_extsig +58f 1 B

ptda_lanman_sec +590 4 D Used by LANMAN and
HPFS for security.

ptda_pad2 +594 2 w alignment

ptda_ppgdata +596 2 w

ptda_child +598 2 w New child PTDA handle
(Child being Exec'ed)

ptda_childalias +59a 2 w

ptda_handle +59¢ 2 w handle to this segment

ptda_module +59e 2 w program module handle for
process

ptda_Ildthandle +5a0 2 w

ptda_ldtpgmap +5a2 2 w Bitmap of valid LDT pages

ptda_ldtaddr +5a4 4 D

CP_CaseMapThbl +5a8 4 D

codepage_tag +5ac 2 w the current code page

Chapter 3. OS/2 System Control Block Reference 135

Field Name Offset Length Type Description

JFEN_Length +5ae 2 w Size of JFN table in bytes

JFEN_pTable +5b0 4 D PM pointer to JFN table

JFEN_FIg_Ptr +5b4 4 D pointer to JFN flags

Joins +5b8 1 B number of joins

ExtErr_Locus +5b9 1 B Extended Error Locus
REDIR 3.10

ExtErr +5ba 2 w Extended Error code
REDIR 3.10

ExtErr_Action +5bc 1 B Extended Error Action
REDIR 3.10

ExtErr_Class +5bd 1 B Extended Error Class
REDIR 3.10

ptda_infoseg +5be 24 S

ptda_pad3 +5e2 2 w alignment

CurrTCB +5e4 2 W pointer to current TCB

CurrTSD +5e6 2 w pointer to current TSD

ThisPTDA +5e8 2 w Selector for this ptda

ptda_NPX_em_cs +5ea 2 W b726833 NPX emulator CS
b726833

ptda_NPX_em_eip +5ec 4 D b726833 NPX emulator EIP
b726833

ptda_pad4 +5f0 2 w alignment b726833

ptda_signature +5f2 2 B must contain "TD"

3.5.4.2 Per-Task Data Area for OS/2 V2.11 ALLSTRICT Kernel

Field Name Offset Length Type Description

pPTDAParent +0 4 D Parent PTDA

pPTDASelf +4 4 D This PTDA

pPTDAFirstChild +8 4 D Head of child chain PTDA

pPTDAExecChild +c 4 D New Child PTDA (Child
being exec'ed)

pPTDANextSibling +10 4 Next sibling’s PTDA

pPTDAPrevSibling +14 4 Previous sibling's PTDA

ptda_pszproc +18 4 D Pointer to the EXE file this
process is executing. Used
by PerfView

ptda_pTCBHole +1c 4 D some TCB before first Tid
"hole’

ptda_pTCBHead +20 4 D Head of list of active TCBs
owned by this process

ptda_cTCB +24 2 w Number of TCBs in use

ptda_ctib +26 2 w Count of TIBs allocated

ptda_avatib +28 10 D Pointers to TIB arrays

136 os/i2 Debugging

Field Name Offset Length Type Description

ptda_pdchb +38 4

ptda_fIDbg +3c 4 D

ptda_ah +40 40 S Private arena header

ptda_pgdata +80 26 S

ptda_environ +ab 2 w handle to process's envt
seg

ptda_pgpc +a8 400 S

ptda_pmemstatcur +4a8 4 D

ptda_memstat +4ac 3C S

ptda_pPVDBPrc +4e8 4 D

ptda_pSGSList +4ec 4 D

ptda_pexllist +4f0 4 D Flat pointer to exit list data

ptda_cdllterm +4f4 4 D

WFP_Start +4f8 2 w TASKAREA offset for
working string *REDIR*

Ren_WFP +4fa 2 w WFB pointer for rename
destination *REDIR*

WFP_Path_End +4fc 2 w End of Path component of
string.

Curr_Dir_End +4fe 2 w

CDS_Handle +500 34 W *REDIR*

OEMPtr +534 2 w

LIS_Fgnd +536 1 B

FgndOnly +537 1 B foreground only flag

ptda_pTCBCritSec +538 4 D TCB that did enter CritSec

ptda_pTCBPriQCritSec +53c 4 D TCBs awaiting CritSec
wakeup

ptda_cCritSec +540 2 w Critical Section Count

CurrentPDB +542 2 Currently active PDB (V86
segment)

DTAddr +544 4 D User's I/O transfer address
REDIR

seltss +548 2 w

VollD +54a 1 B 10 if vol ID found in dir
search

NoSetDir +54b 1 B If TRUE, do not set
directory

SpaceFlag +54c¢ 1 B Embedded spaces allowed
in FCB

VerFlg +54d 1 B Initialize with verify off

LCurDrv +54e 1 B Logical current drive -
Default A:

PCurDrv +54f 1 B physical drive after assign
mapping

Creating +550 1 B

Chapter 3. OS/2 System Control Block Reference 137

Field Name Offset Length Type Description

DelAll +551 1 B

FoundDel +552 1 B

Found_dev +553 1 B true => search found a
device 3.10

fSplice +554 1 B true => do a splice in
transpath 3.10

ClusFac +555 1 B sectors/cluster used in dir
search

cMeta +556 1 B components found 3.10

PathNameType +557 1

DevPt +558 4 D Address of device found by
DevName *REDIR*

DirSec +55¢c 4 D

DirStart +560 2 w

NxtClusNum +562 2 w

EntFree +564 2 W

EntLast +566 2 w

LastEnt +568 2 w

ProcFlag +56a 2 w if == 1 then this is a
special process (swapper or
screen switch); NO
removable media buffer will
be allocated to this process.

ptda_ForcedActions +56¢ 4 D pending action bits

ptda_ulExitCode +570 4 D Exit code of last task

ptda_ulExitType +574 4 D Type of exit

ptda_ulEXxitTID +578 4 D Exit Thread ID (32-bit
exceptions)

ThisCDS +57c 4 D Address of current CDS
REDIR 3.10

ptda_pCDS +580 2 w SS relative pointer to a
curdir struct

CDSsize +582 2 w Size of CDS pointed to by
ThisCDS ONLY used for CDS
entries in RMP seg

Sattrib +584 2 w Storage for search attrs
REDIR 3.10

sPCB +586 2 w Selector of Profile Control
Block

ptda_pPCB +588 4 D Pointer to Profile Control
Block

JFN_Max +58¢ 2 w highest JFN used so far

NextSrchH +58e 2 w Next value to use for search
handle First value used will
be 2.

138 osi2 Debugging

Field Name Offset Length Type Description

SrchRmp +590 4 D Handle and Selector for
RMP segment we keep
search handles in.

FNotifyLocal_First +594 2 w

FNotifyLocal_Count +596 2 w

Sig_ignf +598 2 w bit vector of ignored
signals

Sig_hndf +59a 2 w bit vector of handled
signals

Sig_errf +59¢c 2 w bit vector of error
generating signals

Sig_attempted +59e 2 w bit vector of signals we've
tried to handle with 32-bit
exceptions

Sig_arg +5a0 10 w byte vector of signal
arguments

Sig_termtid +5b0 2 w 'Terminator’ TID for
APTERM.

HoldSigCnt +5b2 2 w DOSHOLDSIGNAL counter

SigFocusCnt +5b4 2 w PUBLIB
DOS32SETSIGNALEXCEPTIONH
count

JEN_Table +5b6 28 w default handle table

JFEN_Flags +5de 14 B default JFN flags table

ptda_rasflag +5f2 2 w RAS trace indicator

SysSemPTDATDI +5f4 100 S

SavedHardErr +6f4 4 D

ptda_ptdasem +6f8 C S PTDA semaphore that is,
inter-thread

ptda_DLMsem +704 C S b732954 Edd PTDA
semaphore that is,
inter-thread

ptda_lidt +710 6 w current IDT limit/base

Csid +716 2 w Command Subtree ID

Behav_bit +718 2 w program behavior bits

MSW +71la 2 w CPU matching status word

ptda_rsrclist +71c 4 D far pointer to local resource
list

ptda_pldrdidHead +720 4 D loader demand load data
list

pPrSemThl +724 4 D (void * => PSEM) pointer
to private semaphore table

ulPrTblSize +728 4 D size of pPrSemTbl in
dwords

ulPrTotUsed +72c 4 D number of entries in
pPrSemThbl

ulPrNextFree +730 4 D next free slot in pPrSemThbl

Chapter 3. OS/2 System Control Block Reference 139

OCuUs

Field Name Offset Length Type Description

hksPrTbl +734 4 D kernel semaphore handle
for private semaphore table

pShSemBmp +738 4 D pointer to private bitmap
for the shared semaphore
table

ulShBmpSize +73c 4 D size of pShSemBmp in bits

hksShBmp +740 4 D kernel semaphore handle
for private semaphore table

ulMtxOwned +744 4 D number of mutex owned by
this process in the two sem
tables

ShareRetriesLeft +748 2 w number of share/lock viol
retries

RetryCount +74a 2 w num of share/lock retries to
do

ptda_padl +74c 2 w alignment

ptda_pSrchBuf +74e 2 w internal search buffer

ptda_LibiError +750 2 w reuse same field to hold
library init errors

ptda_pOpenBuf +752 2 w

Cons_Loc +754 A S

SysCallSfcn +75e 1 B Value of AL on system
entry

SysCall +75f 1 B Last system call processed

KBD_Mode +760 1 B Keyboard input mode

ptda_NewFiles +761 1 B If bit one is set, process
supports // 54400 new files
(long names)

AutoFail +762 1 B Non-zero if | 24 FAlLed
magically

ptda_direntry +763 20

CP_FIgs +783 1 B Default is no codepage in
system.

Sig_vec +784 20 D signal handlers

Exc_vec +7a4 1C D OSOLETE exception vectors

ptda_timerhead +7c0 4 D

Attrib +7c4 2 w storage for file attributes
REDIR

ExtFCB +7c6 1 B Extended FCB

ptda_extsig +7c¢c7 1 B

ptda_lanman_sec +7c8 4 D Used by LANMAN and
HPFS for security.

ptda_pad2 +7cc 2 w alignment

ptda_ppgdata +7ce 2 w

ptda_child +7d0 2 w New child PTDA handle

(Child being Exec'ed)

140 os/i2 Debugging

Field Name Offset Length Type Description

ptda_childalias +7d2 2 w

ptda_handle +7d4 2 w handle to this segment

ptda_module +7d6 2 w program module handle for
process

ptda_Ildthandle +7d8 2 w

ptda_ldtpgmap +7da 2 w Bitmap of valid LDT pages

ptda_ldtaddr +7dc 4 D

CP_CaseMapThbl +7e0 4 D

codepage_tag +7e4 2 w the current code page

JFEN_Length +7e6 2 w Size of JFN table in bytes

JFEN_pTable +7e8 4 D PM pointer to JFN table

JFEN_FIg_Ptr +7ec 4 D pointer to JFN flags

Joins +7f0 1 B number of joins

ExtErr_Locus +7f1 1 B Extended Error Locus
REDIR 3.10

ExtErr +7f2 2 w Extended Error code
REDIR 3.10

ExtErr_Action +7f4 1 B Extended Error Action
REDIR 3.10

ExtErr_Class +7f5 1 B Extended Error Class
REDIR 3.10

ptda_infoseg +7f6 24 S

ptda_pad3 +81la 2 w alignment

CurrTCB +81c 2 W pointer to current TCB

CurrTSD +81e 2 w pointer to current TSD

ThisPTDA +820 2 w Selector for this ptda

ptda_NPX_em_cs +822 2 W b726833 NPX emulator CS
b726833

ptda_NPX_em_eip +824 4 D b726833 NPX emulator EIP
b726833

ptda_pad4 +828 2 w alignment b726833

ptda_signature +82a 2 B must contain "TD"

3.5.4.3 Per-Task Data Area for OS/2 V2.11 RETAIL Kernel
Field Name Offset Length Type Description
pPTDAParent +0 4 D Parent PTDA
pPTDASelf +4 4 D This PTDA
pPTDAFirstChild +8 4 D Head of child chain PTDA
pPTDAExecChild +c 4 D New Child PTDA (Child

being exec'ed)

pPTDANextSibl