
International Technical Support Organization

The OS/2 Debugging Handbook - Volume I
Basic Skills and Diagnostic Techniques

February 1996

SG24-4640-00





International Technical Support Organization

The OS/2 Debugging Handbook - Volume I
Basic Skills and Diagnostic Techniques

February 1996

SG24-4640-00

IBML



Take Note!

Before using this information and the product it supports, be sure to read the general information under
“Special Notices” on page xiii.

First Edition (February 1996)

This edition applies to IBM OS/2 Warp Version 3.0.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications
are not stocked at the address given below.

An ITSO Technical Bulletin Evaluation Form for reader′s feedback appears facing Chapter 1. If the form has been
removed, comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. JLPC Building 014-1 Internal Zip 5220
1000 NW 51st Street
Boca Raton, Florida 33431-1328

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

  Copyright International Business Machines Corporation 1996. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.



The OS/2 Debugging Handbook Library

The following information describes the four volumes that comprise the OS/2
Debugging Handbook library. The graphic of the opened book denotes the
volume that you are currently reading.

 Volume I, Basic Skills and Diagnostic Techniques, SG24-4640.

This volume introduces the concepts of debugging with practical examples. Also
contained in this book is a CDROM version of the entire library, which is
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 Volume II, Using the Debug Kernel and Dump Formatter, SG24-4641.
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This volume includes all system tracepoints contained within OS/2.

 Volume IV, System Diagnostic Reference, SG24-4643.
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Abstract

This publication is one of four volumes which together provide information and
reference materials intended to help perform OS/2 debugging.

This volume provides an introduction to OS/2 debugging with a section of worked
examples. The later worked examples provide an aid to the understanding of
the debug process.

This document is intended for use by service personnel, system programmers
and software developers.

Note that this book has been used in conjunction with a hands-on OS/2
debugging class run by IBM.

(361 pages)

  Copyright IBM Corp. 1996 v
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Special Notices

This publication is intended to help service personnel, system programmers and
software developers to understand the concepts and application of debugging
techniques. The information in this publication is intended as a supplement to
already published specifications of any programming interfaces that are provided
by IBM Warp OS/2 Version 3. See the PUBLICATIONS section of the IBM
Programming Announcement for IBM Warp OS/2 Version 3 for more information
about what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM′s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM′s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(VENDOR) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer′s ability to evaluate and integrate
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Preface

Debugging problems is essentially an iterative process of hypothesis, test and
conclusion that aims to eliminate the irrelevant and therefore focus on the
probable causal area.

To engage this process successfully one needs to be equipped with an innate
ability to think laterally coupled with sufficient knowledge of the environment in
which the problem persists and above all else to be able to use the tools that
extract information from the system under diagnosis.

This scenario applies as much to first level problem determination (PD) as it
does to the software developer who is engaged in detailed analysis of his
programs ′ behavior.

Information and tools to aid first level problem determination is relatively
accessible. Technical literature is available from IBM and book stores that will
fulfill the needs of the first level PD analyst. For example, the reader is invited to
consult the following IBM redbook publications to achieve an all-round high-level
technical appreciation of the OS/2 environment:

The Technical Compendium Volume 1 - Control Program

The Technical Compendium Volume 2 - DOS and Windows Environment

The Technical Compendium Volume 3 - Presentation Manager and Workplace
Shell

The Technical Compendium Volume 4 - Application Development

The Technical Compendium Volume 5 - The Print Sub-system

The problem analysis level that is less well provided for is that which involves
internal knowledge of the OS/2 operating system and its diagnostic tools. This is
the level at which service personnel, system programmers and software
developers work. It is this audience to which the OS/2 Debugging Handbooks
are directed.

An inevitable consequence of working at a deep technical level is that the
amount of information one could amass is vast. Given time constraints and the
need to publish useable material before it became obsolete we had to make
certain compromises for the first edition. The following principles guided us in
making decisions about which material to include:

Material that is adequately documented elsewhere is referenced, but not
included.

Accurate reference documentation for the diagnostic tools and facilities
available for OS/2 has been given priority over worked examples and OS/2
Internals reference material.

Internals information has centered around the base operating system, that is,
the kernel.

It is hoped to remedy some of these short-comings in future revisions of this
book and in companion volumes.

The current printed edition contains full reference material for the following OS/2
System diagnostic facilities:
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System Trace

System Dump

Kernel Debugger

In addition to these topics, included is an introductory guide to problem
determination. This provides a resumé of the hardware and software
environment and an introduction to using the dump formatter and kernel
debugger.

Throughout this book it is assumed the availability and familiarity with two
co-requisite publications:

The Intel Pentium Family User′s Manual, Volume 3: Architecture and
programming manual, ISBN 1-55512-227-2, Intel order number 241430-003.

This should be consulted as the authoritative source for hardware
architectural information.

The Design of OS/2 by H.M. Deitel and M.S. Kogan.

This should be consulted for an overview of the internal operation and
architecture of OS/2.

This book is supplied with a CD-ROM whose contents are:

• Sample exercises to accompany Chapter 1, “Approach to Problem Solving”
on page 1. These take the form of system dumps of typical problems in
application programs.

• Online version of this book. This is slightly more advanced than the printed
version and includes more worked examples. This is an .INF file and should
be viewed using the OS/2 VIEW.EXE program. Much use has been made of
hypertext links, which direct the user to the glossary. From the glossary it is
possible to link to related material in other sections of the book.

• The OS/2 Problem Determination Package (OS2PDP), which includes the
dump formatter, symbol files and trace customizer (TRCUST).

Unless otherwise stated the material in this book may be assumed to be
applicable to OS/2 Warp version 3.0 (ALLSTRICT Kernel).

As indicated above, work on this subject matter can never be complete. It is
intended to build on and update the material in this edition. In order to address
the areas in most need of attention you the reader are invited to fill in the
Reader ′s Comment Form with your suggestions.
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How This Document is Organized
The document is organized as follows:

• Chapter 1, “Approach to Problem Solving”

This chapter provides an introduction to debugging and an approach to
problem solving.

• Chapter 2, “The Address Space Picture”

This chapter describes the address space picture of OS/2.

• Chapter 3, “OS/2 Implementation Details”

This section details the memory implementation and information about
thunking.

• Chapter 4, “Stacks”

This chapter describes how most OS/2 applications use the stack.

• Chapter 5, “Application Documentation”

Documentation that the compiler can optionally generate is described in this
chapter.

• Chapter 6, “Steps to Diagnose a Trap”

A brief introduction to diagnosing a trap.

• Chapter 7, “The OS/2 System Trace”

This chapter talks about the trace facility that OS/2 has and how it is enabled
via the CONFIG.SYS file.

• Chapter 8, “TRCUST, the Dynamic Trace Customizer”

Shows how OS/2 provides a mechanism by which developers may
dynamically apply trace points in their application modules.

• Chapter 9, “The Layout of a Trace Source File”

This Chapter describes the source code file in detail.

• Chapter 10, “Steps to Diagnose a Hang”

A brief introduction to diagnosing a hang.

• Chapter 11, “Serialization and Priorities in OS/2”

This section describes the various ways to serialize access to resources.

• Chapter 12, “A Form to Use for Unwinding Stacks”

A form for documenting the unwinding of stacks.

• Chapter 13, “Advanced Guide to Hang Analysis”

This section describes the various features of a hang.

• Chapter 14, “Worked Examples”

This chapter contains worked examples to illustrate the use of some of the
debugging tools.

• Appendix A, “Minimal Command Reference”

This appendix contains a small command reference.
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Related Publications
Throughout this book we assume the availability and familiarity with two
co-requisite publications:

• The INTEL486 Microprocessor Programmer′s Reference Manual, ISBN
1-55512-159-4

• The Intel Pentium Family User′s Manual, Volume 3: Architecture and
Programming Manual, ISBN 1-55512-227-2
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• The OS/2 Technical Library Control Program Programming Reference Version
2.00, S10G-6263-00
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• OS/2 WARP Multimedia Programming Ref, G25H-7114-00

• OS/2 WARP PM Programming Ref Vol I, G25H-7190-00

• OS/2 WARP PM Programming Ref Vol II, G25H-7191-00

• Technical Reference - Personal Computer AT, Part Number 1502494

• PS/2 and PC BIOS Interface Technical Reference, Part Number 68X2341

International Technical Support Organization Publications
• OS/2 Warp Connect, GG24-4505

• OS/2 Warp Generation, Vol.1, SG24-4552

• OS/2 Warp Version 3 and BonusPak, GG24-4426

• Multimedia in Warp, GG24-2516
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• The Technical Compendium Volume 2 - DOS and Windows Environment,
GG24-3731

• The Technical Compendium Volume 3 - Presentation Manager and Workplace
Shell, GG24-3732

• The Technical Compendium Volume 4 - Application Development, GG24-3774

A complete list of International Technical Support Organization publications,
known as redbooks, with a brief description of each, may be found in:

International Technical Support Organization Bibliography of Redbooks,
GG24-3070.

To get a catalog of ITSO redbooks, VNET users may type:

TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG

A listing of all redbooks, sorted by category, may also be found on MKTTOOLS
as ITSOCAT TXT. This package is updated monthly.

How to Order ITSO Redbooks

IBM employees in the USA may order ITSO books and CD-ROMs using
PUBORDER. Customers in the USA may order by calling 1-800-879-2755 or by
faxing 1-800-445-9269. Most major credit cards are accepted. Outside the
USA, customers should contact their local IBM office. Guidance may be
obtained by sending a PROFS note to BOOKSHOP at DKIBMVM1 or E-mail to
bookshop@dk.ibm.com.

Customers may order hardcopy ITSO books individually or in customized
sets, called GBOFs, which relate to specific functions of interest. IBM
employees and customers may also order ITSO books in online format on
CD-ROM collections, which contain redbooks on a variety of products.

ITSO Redbooks on the World Wide Web (WWW)
Internet users may find information about redbooks on the ITSO World Wide Web
home page. To access the ITSO Web pages, point your Web browser (such as
WebExplorer from the OS/2 3.0 Warp BonusPak) to the following URL:

http://www.redbooks.ibm.com/redbooks

IBM employees may access LIST3820s of redbooks as well. Point your web
browser to the IBM Redbooks home page:

http://w3.itsc.pok.ibm.com/redbooks/redbooks.html

Preface xix



Acknowledgments
The authors of this book are:

Pete Guy
IBM SDO, Austin

Richard Moore
IBM PSP EMEA

Redbook project developed by:

Tim Sennitt
ITSO Boca Raton, Center

This book could not have reached publication without the encouragement, help
and support from a number of colleagues and friends. In particular we would
like to thank the following:

Tim Sennitt for his help in preparing the printed material and doing much of
the donkey-work to bring this to publication.

Joanne Rearnkham, Barry Bryan and David Jaramillo for their support in
enabling access to the materials necessary to produce this book.

Chris Perritt and Glen Brew for making available the original Design
Workbook and Functional Specifications for OS/2 2.0.

Charlie Schmitt for his original work on converting the kernel debugger code
into a dump formatter.

Jeff Mielke and David Jaramillo for their work on PMDF, the structure
compiler and continued work on the dump formatter.

Allen Gilbert for making available documentation on System Trace, which
has been reproduced in an edited form in this book. Also, for making
available an early version of the dump formatter without which it would not
have been possible to develop the original Dump Formatter class.

Doug Azzarito for supplying the material on Kernel Debugger Remote Debug
Setup.

James Taylor for providing the basis of the lab exercises relating to PM
hangs.

Marie Jazynka, one of the first OS/2 debuggers, for patient encouragement of
a great many OS/2 debugging people.

Our management teams, without whose foresight and support none of this
work would ever have started. These include:

• Hermann Lamberti General Manager for PSM EMEA; Gordon Bell -
director PSM EMEA Technical Marketing; Chris Brown - manager PSM
OEM and Enterprise Technical Marketing and Brian Rose - manager PSM
Project Office; Roy Aho - Director of the Solution Developer Technical
Support Center, for encouraging the beginnings of this several years ago;
Terry Gray, manager of Platform Competency and Operation, within
Solution Developer Technical Support, Austin.

Finally to Sarah-Jane and Shelly, for supporting many very extended working
days and weeks.

xx OS/2 Debugging 



Chapter 1. Approach to Problem Solving

In order to succeed at low-level program problem diagnosis, one must have
several skills. None of these is particularly difficult, but many are foreign to
today′s programmers.

At first, it will appear that each problem is solved with a different technique.
Study of the methods used to solve problems yields the fact that the several
skills are used as appropriate, virtually as subroutines, and without thought, by
experienced analysts.

The intent of this material is to provide the basic knowledge and to illustrate
each of the skills separately, to aid understanding. Trying to solve problems
without the basic skills can be extremely frustrating, at best.

The fundamentals include knowledge of hardware operation, software
conventions, and basic use of tools to display the data sought. Once the
fundamentals are understood, it is time to begin using them to solve problems,
because one can then concentrate on building the problem solving skill.

Application traps are perhaps the easiest problems to approach, so they are
explained after the basic skills. Similarly, traps in privileged code are only
incrementally more difficult.

Once some experience in solving traps has been gained, it is reasonable to
extend one′s skills by exploring reasons for waits and loops, collectively known
as hangs, or to learn the additional functions provided by Symmetric
Multiprocessor (SMP) systems, as well as the challenges in properly serializing
them when needed.

1.1 List of Necessary Skills
The following are fundamental skills needed:

A good knowledge of how the hardware protection mechanisms work.

A good knowledge of what any instruction actually does.

A good knowledge of a few primary software conventions:

How a stack is used and what information is in it.

How to use the stack data for debugging.

How to use optional program documentation to get from a failing
instruction to the actual line of the program which contains it.

How to find the program′s variables in storage.

How to obtain the above documentation for some IBM languages.

How to collect a dump of a system at the point of failure.

How to use the available analysis tools.

How to determine the owner of a part of storage,
and which processes have access to that storage.

And that′s what this material is designed to teach!
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1.2 Collecting Documentation
If the problem can be reliably reproduced in a development environment, do it.
This is the fastest way to get the problem fixed. When you cannot, try to get a
good set of starting documentation.

It is possible to acquire and install a replacement for the OS/2 kernel which is
the same as the one being replaced, except that it has debugging facilities and a
debug interface to a serial port, COM2. If you install the wrong debug kernel, no
one can predict the results. If you install the correct version, you will need to
have a terminal emulation program (or ASCII terminal) to access the debug
interface. The capabilities of this debug tool are essentially unlimited, and there
is no protection from accidental entry errors. Its use is not a trivial task, nor one
to be lightly undertaken.

It is often possible to collect enough information about a problem to diagnose its
cause by creating customized trace entries specifically for that particular
problem. For this to work well, the problem must be reproducible, and the trace
buffer must be captured while the data gathered is still present.

Most people who have worked in a technical support role will agree that often
the largest obstacle to solving a problem is collecting enough useful information
about it. We will briefly discuss how to get enough useful data that problem
solving can start in most cases. Be aware that frequently there will be some
additional useful information, which can be gathered when the need for it is
discovered, and that what is outlined here is not a complete list, by any means.

It is important to collect as complete a set of volatile data as possible from a
single failure. If it is not gathered, it will be lost, perhaps requiring another
occurrence of the problem in order to get needed information.

It is generally possible to use either an interactive debugger or a dump to
diagnose either traps or hangs in an application.

For application problems, particularly traps, a good set of documentation
includes the following:

• A statement of what sequence of events leads to the problem

• The trap screen, if a trap is involved

• A storage dump, with system trace data

• All the executable modules involved in the failure

• Optional application documentation, including:

− all source files

− .map files, produced by the linker

− .LST and .COD or .ASM files, produced by the compiler

The storage dump is the only thing which is volatile. The rest can be collected
whenever the need is discovered. To collect the first item, perform the following
steps:
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 Warning 

This will drastically change OS/2 behavior when a trap occurs. OS/2 will not
control the failure, but will instantly and irrevocably stop the system, and
initiate a storage dump. There will be no shutdown of the Workplace shell,
databases, file systems (or lazy-write buffers) or anything else. It can be as
disruptive as a power failure. It is possible to lose files or parts of files, but
unlikely.

Prior to WARP: execute the command CREATEDD A:
This will prepare a diskette for taking a dump. The diskette will work only once.
This is not required for WARP, nor for later levels of 2.11. A quick way to
discover if it is required is to read the prompt which asks for the diskette at the
beginning of the process. If CREATEDD is required, the prompt asks for the
diskette prepared by CREATEDD, otherwise it asks for a formatted diskette.

Preparation:

 1. Save the current CONFIG.SYS

 2. Edit CONFIG.SYS

a. If the line is not already present, add a line which reads TRAPDUMP=ON

b. Add a line which reads TRACEBUF=63 to enable the system trace

 c. Add a line which reads TRACE=ON to turn on the system trace

d. Optionally, add a line which reads TRACE=OFF,4,6,7

e. Optionally, turn LAZYWRITE off, so data goes directly to disk.

 3. Locate some formatted diskettes to use for a storage dump.

Estimate about 2MB of RAM per diskette; usually one diskette more than that
number is needed. For very large systems, estimate 1.5MB per diskette.
The dump process will not format.

 4. Reboot the system so that the changes take effect.

 5. Restore the original CONFIG.SYS, so you do not have to reboot an extra time
to put things back to normal, after collecting the dump.

Acquiring the storage dump:

 1. Cause the application to trap, that is, reproduce the problem.

 2. Insert the CREATEDD diskette, if created, otherwise insert the first formatted
diskette.

 3. If you can read the screen, follow directions every time you hear one or
more beeps.

 4. If you cannot read the screen, you can still successfully get a dump, by
listening for a beep. Insert the next diskette every time you hear a single
short beep. When the dump is almost complete, there will be a very
distinctively different series of beeps. At this point, reinsert the first diskette.

 5. Very soon after the first diskette is reinserted, the dump wil l complete.
Remove the diskette.

 6. OS/2 will reboot automatically in most cases. Expect autocheck to run on
HPFS drives during the boot.
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 7. Run CHKDSK on the drives as soon as convenient.

1.3 Hardware Architecture
This section explains how the hardware operates in protected mode, what forms
of protection exist, how they operate, and what happens when a program
attempts to violate one or more of the protection mechanisms.

The three protection mechanisms in 32-bit OS/2 are:

 1. Privilege

 2. Description

 3. Address mapping

All three are active at all times when 32-bit OS/2 is running protected mode
programs. Only address mapping is active when 32-bit OS/2 is running a VDM in
V86 mode.

1.3.1 Address Components
All addresses in x86 processors are composed of two parts:

Addresses are usually written with a colon separating the two parts, for
example, selector:offset.

 1. A segment or selector

 2. An offset

The offset part will be covered during the review of typical machine
instructions, because it is straightforward, and the same in real and
protected modes.

These two parts are implicitly or explicitly specified by every instruction that
references memory for either or both operands. Generally, the selector is
implied and the offset is specified but there are exceptions to this.

1.3.1.1 NEAR and FAR Addresses
Because there are two parts of an address and an item may or may not be in a
current segment, there are two ways to specify the address of a data item.

A NEAR address is an offset without specifying a selector. This is a very efficient
way to address data because the overhead of loading a selector register and
fetching the descriptor is avoided. The selector to use is implied, and is
normally already loaded.

A FAR address contains both a selector and an offset in protect mode. This is
slower and more cumbersome because both address components must be
specified as well as causing the overhead of altering a selector register. When a
far address is displayed from storage (as two words), the offset will be seen in
the left word, and the segment or selector in the right word.

A FAR address contains a segment and an offset in real or V86 mode. The
overhead is not so bad as in protect mode, because there are no descriptors to
fetch when a segment register is loaded.
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1.3.1.2 Real Mode and V86 Mode
Real and V86 Modes

CS = Code Segment SS = Stack Segment
DS = Data Segment ES = Extra Segment

for 386 and later,

FS = another data segment GS = another data segment

In REAL or V86 modes, say ′ segment registers′
In PROTECT MODE, say ′ selector registers′

Note: In real mode each segment register has a 16-bit number. The segment
number is shifted left 4 bits, then added to the offset value. There is no checking
of any kind.

DS=1234, offset=5678

12340
5678
-----
179B8

This is equivalent to any of the following:

segment 179B, offset 8;

segment 1790, offset B8;

segment 1267, offset 5348;

or many other possibilities.

1.3.2 Protected Mode
In protected mode, all storage is described by the hardware, using tables
maintained by the software. The description includes the location, and size of
the storage segment, as well as the type of storage. The storage type further
constrains how it may be used.

This section concentrates on the selector part of the address because the offset
is handled in a very simple and consistent fashion once the memory segment
has been located and the validity of the access has been verified.

1.3.2.1 Descriptors
A selector specifies a descriptor, which describes a memory segment. The
attributes described include the base or starting address of the memory
segment, the size of the segment and what accesses are allowed.

Protected mode addressing in a 386 or later begins with Descriptor Tables which
are described by hardware registers. There are three Descriptor Tables, each of
which is discussed below after supplying the format of individual descriptors.
The tables contain the descriptors and the descriptors are selected by an
interrupt number or by the content of a selector register.
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An application descriptor is required for all accesses to instructions and to data.
For most segments, the limit is the largest valid offset. If the offset is larger than
the limit, a general protection exception occurs. The exception to this rule
occurs for data segments which are expand down. In this case, the offset must
be greater than the content of the limit field. The system stack (ring 0) is an
example of an expand down segment.

To find the linear address of the data element, the processor adds the offset
(obtained from the instruction) to the base address of the segment. That′s the
end of the discussion for offsets!

There are three distinct kinds of data recognized by the processor:

Stack, which holds temporary data, parameters and return addresses.

Code, which is instructions for the processor to execute.

Data, which is used to hold data that is available for longer than the lifetime
of any one function or routine.

The primary distinction between stack and data is that data segments begin at
offset zero and expand upward (to the limit) while stack segments begin at the
highest offset and expand downward (to just greater than the limit). Many
language implementations use data segments for their stack, which is perfectly
acceptable, but it makes it impossible to grow the stack.

The descriptor for a memory reference is found by using the appropriate selector
as the index to a table or, if you ignore the 3 lower bits, as an offset to the table,
since descriptors are 8 bytes long.

1.3.3 Selector Format
In protect mode, a Selector has three fields:

 1. Index, the left 13 bits, bits numbered 15-3

This is an index into a descriptor table

 2. Table indicator, one bit, bit number 2

0 means GDT

1 means LDT

 3. RPL, the right 2 bits, numbered 1 and 0.

Requested Privilege Level.

Perceived as a two bit value, range 0 to 3

00=most privileged, or ring 0; 11=least privileged, or ring 3.

The position of the bits makes a selector (with its 3 low order bits turned off) the
offset into the table.

┌──────────────────────────────────────┬──┬──┬──┐
│ I N D E X TI RPL │ fields
└──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘
 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 bit numbers
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1.3.4 Privilege Levels
The point of privilege levels is to prevent a program from accessing a storage
object that is more privileged than the program itself. Generally, this means that
application programs are not able to access storage used by supervisory
programs in any way. This also means it is safe to keep descriptions of storage
used by the system in a descriptor table that can be accessed by applications,
because the application cannot use those descriptors.

There are actually three distinct privilege levels associated with every storage
access, and testing privilege level is a two-step process. The privilege level
used to access a storage operand is the less privileged of CPL and RPL. The
first step is to determine the actual privilege level with which to attempt the
access. The second step is to compare the privilege level of the storage object
(from the descriptor) to the result of the first step.

A more privileged (lower numbered) program may access the storage objects of
a less privileged program. This is how the operating system returns structures
and fills in data areas for an application.

Any attempt by a less privileged (higher numbered) program to access in any
way a storage object which is more privileged generates a general protection
exception.

DPL Descriptor
Privilege Level.

Bits 45 and 46 of descriptor.

RPL Requested
Privilege Level.

2 low order bits of selector.

CPL Current Privi lege
Level.

2 low order bits of CS.
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┌──────────────────────────────────────────┐
│ │
│ │
│ RING 3 │
│ ┌────────────────────────────────────┐ │
│ │ │ │
│ │ │ │
│ │ RING 2 │ │
│ │ ┌─────────────────────────┐ │ │
│ │ │ │ │ │
│ │ │ │ │ │
│ │ │ │ │ │
│ │ │ RING 0 │ │ │
│ │ │ │ │ │
│ │ │ │ │ │
│ │ │ │ │ │
│ │ └─────────────────────────┘ │ │
│ │ │ │
│ │ │ │
│ │ │ │
│ │ │ │
│ └─┬──────────┬──────────┬──────────┬─┘ │

 │ │ │ │
 │ │ │ │ │ │
 │ │ appl 1 │ shared │ appl 2 │ │
 │ │ │ │ │ │
 │ │ │ │
 └────┴──────────┴──────────┴──────────┴────┘

Figure 1. Ring Protection Diagram

1.3.5 Descriptor Tables
There are three tables which hold descriptors.

The three tables are:

 1. The Global Descriptor Table or GDT, describes memory objects which are
accessible to all processes.

The GDT is located by means of a hardware register called the GDTR which
contains the linear address and length of the GDT.

 2. The Local Descriptor Table or LDT, describes memory objects which are
unique to one process or are shared among a few processes by design.

The LDT is located by means of a hardware register called the LDTR which
contains a selector. The descriptor referenced by this selector must be a
system descriptor which describes an LDT.

 3. The Interrupt Descriptor Table or IDT, has gates that specify interrupt handler
entry points.

The IDT is located by means of a hardware register called the IDTR which
contains the linear address and length of the IDT. The interrupt number is
used to index into this table when an interrupt occurs.
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1.3.5.1 Descriptor Fields
Type Tells what kind of object is described

Application types:  Code, Data

System types:  LDT, TSS, Call Gate, Irpt Gate

Base Linear address of object

Limit Defines the size of a storage object

DPL Privilege level defines which ring(s) can access the described object

┌─────┬──────┬───┬────┬───┬───────────┬─────────────────┬──────────┐
 LIMIT 00-15 BASE 0-23 TYPE S DPL P LIMIT 16-19 FLAGS BASE 24-31
└─────┴──────┴───┴────┴───┴───────────┴─────────────────┴──────────┘
 0 1 2 3 4 5 6 7

byte offsets
Display a descriptor with ′ DB′  to see it in this form.

Notes:
 TYPE is what kind of object is described

S is descriptor category; 0=system, 1=code or data
PL is privilege level of object described
P is the present bit; 1=present, 0=not present

1.3.5.2 Descriptor Flags
Bit 55 Granularity: (G) 0=limit is in bytes, 1=limit is in 4K pages

Bit 54 Default address size: 0=16 bit ,  1=32 bit

Bit 53 Default operand size: 0=16 bit ,  1=32 bit

Bit 52 Unused by hardware, used by OS/2 to indicate UVirt

Bit 47 Present: (P) 1=segment is present, 0=segment is not present

Bits 46 and 45  Privi lege Level: 00=most, 11=least

Bit 44 Segment type: 0=system segment, 1=application segment

Bit 40 Accessed: (A) 0=not accessed, 1=accessed

Note: If application segment, (Bit 44 = 1), used to store program code and
data.

Bit 43=0 is Data Segment

Bit 42: Expansion: 0=Expand Up, 1=Expand Down

Bit 41: Writeable: 0=Read Only,  1=Read/Wri te

Bit 43=1 is Code Segment

Bit 42: Conforming: 0=Nonconforming, 1=Conforming

Bit 41: Readable: 0=Execute Only, 1=Read/Execute

Note: If system segment, (Bit 44 = 0)

Bits 39-42 Type of segment

00 RESERVED

01 Available 286 TSS (16-bit)

02 LDT

03 Busy 286 TSS (16-bit)
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04 286 Call Gate (16-bit) (Parm Count is words)

05 Task Gate

06 286 Interrupt Gate (16-bit)

07 286 Trap Gate (16-bit)

08 RESERVED

09 Available 386 TSS (32-bit)

10 RESERVED

11 Busy 386 TSS (32-bit)

12 386 Call Gate (32-bit) (Parm count is doublewords)

13 RESERVED

14 386 Interrupt Gate (32-bit)

15 386 Task Gate (32-bit)

1.3.5.3 Descriptor Table Summary
There are three descriptor tables at any instant:

 1. Global Descriptor Table

Located via GDTR

1 per system

Accessible to all processes

Describes objects common to all processes

 2. Local Descriptor Table

LDTR is selector

GDT Descriptor Locates LDT

1 per process except VDM

Describes data unique to one process

 3. Interrupt Descriptor Table

Located via IDTR

1 per VDM + 1 per system for protect mode

Describes interrupt routine entry points

1.3.6 The Selector Registers
Each selector register appears to be 16 bits long. The six application selector
registers and a brief description of the use for each follow:

SS: Stack Selector, specifies the descriptor used for stack references.

CS: Code Selector, specifies the descriptor used for instruction references.

DS: Data Selector, specifies the descriptor used for most data references.

ES: Extra Selector, specifies another descriptor used for data references.

FS: This is a selector which can be used for data references if explicitly
specified.

GS: This is a selector which can be used for data references if explicitly
specified.

10 OS/2 Debugging 



The two system selector registers and a brief description of the use for each
follow:

LDTR: The LDT register selects the LDT descriptor from the GDT.

TR: The Task Register selects the descriptor used for the TSS.

1.3.7 When Checking is Done
When a program moves data into a selector register, that data becomes a
selector and the processor fetches the content of the appropriate entry from the
specified table into onboard registers which are not accessible to the
programmer. The processor verifies the validity of the attempted access to the
memory whenever a selector register is updated. This makes the protection
overhead occur as part of the instruction which modifies a selector register, but
eliminates it for further use of the selector.

If the RPL of the SS register is not the same as CPL, or if an attempt is made to
move the null selector into SS, a general protection exception occurs.

etc etc
30 │ │ │ │ 36 (pl=2) limit

├──────────────┤ ├──────────────┤ ┌──────────┐ ══╤══
LDTR = 28 │ │───┐ │ │ 2F │ │ │

├──────────────┤ │ ├──────────────┤ │ │ │
20 │ │ │ │ │ 27 │ │ │

├──────────────┤ │ ├──────────────┤ │ │ │
18 │ │ │ DS │ │ 1F──┐ │══╤══ │ │

├──────────────┤ │ ├──────────────┤ │ │ │ │ │
TR = 10 │ │ │ │ │ 17 │ │ │ │ │

├──────────────┤ │ ├──────────────┤ │ │ offset │ │
 08 │ │ │ │ │ 0F │ │ │ │ │

├──────────────┤ │ ├──────────────┤ │ │ │ │ │
00 │ useless │ │base│ │ 07 │base │ │ │ │

GDTR ────>└──────────────┘ └───>└──────────────┘ └────>└──┴───────┘ ───
GDT LDT

Note: The first descriptor in the GDT is reserved, by definition, and cannot be
used. Any selector which would reference it is called the NULL selector;
possible values are 0000, 0001, 0002, and 0003.

By definition, the null selector may be placed in DS, ES, FS, or GS, but any
attempt to form an address with it is a general protection fault.

The LDTR is a register that contains a selector. It can be accessed only by
privilege level 0 instructions. It must contain a selector that references the GDT,
and a descriptor whose type is LDT.

It is not unusual for a GDT selector to describe the same storage as an LDT
selector does. In OS2 2.x, application selectors in the GDT happen to describe
one 448 Meg segment, not just a 64K segment like the LDT selectors describe.
The linear address assigned to each LDT descriptor is extremely convenient for
changing one form of an address to another, called thunking, which will be
discussed later.
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1.3.8 Descriptor Examples
These examples come from DUMP01, which is used for several exercises.

DL 7 37
0007 Data Bas=ac6d7000 Lim=0000ffff DPL=3 P RO
000f Code Bas=00010000 Lim=00002e77 DPL=3 P RE A
0017 Data Bas=00020000 Lim=0000290f DPL=3 P RW A
001f Data Bas=00030000 Lim=000018af DPL=3 P RW A
0027 Data Bas=00040000 Lim=0000030a DPL=3 P RW A
002f Data Bas=00050000 Lim=00000fff DPL=3 P RW
0036 Data Bas=00060000 Lim=00000fff DPL=2 P RW A

DL BECF
bece Code Bas=17d90000 Lim=00000010 DPL=2 P RE A

DL BFD7 BFEF
bfd7 Data Bas=17fa0000 Lim=0000ffff DPL=3 P RW A
bfdf Data Bas=17fb0000 Lim=0000ffff DPL=3 P RW A
bfee Code Bas=17fd0000 Lim=00000aa2 DPL=2 P RE A

DG 20 78
0020 Data Bas=ffe5b000 Lim=000003ff DPL=0 P RW UV
0028 LDT Bas=ac6d7000 Lim=0000ffff DPL=0 P
0030 Data Bas=ffe09de4 Lim=0000421b DPL=0 P RW ED A UV
003b Data Bas=ff4cbe2c Lim=00000073 DPL=3 P RW
0040 Data Bas=ffe5a400 Lim=000003bf DPL=0 P RW UV
004a Data Bas=00000000 Lim=1bffffff DPL=2 P RW A G4k BIG UV
0053 Data Bas=00000000 Lim=1bffffff DPL=3 P RW A G4k BIG UV
005a Code Bas=00000000 Lim=1bffffff DPL=2 P RE C A G4k C32 UV
0063 Data Bas=00000000 Lim=1fffffff DPL=3 P RW G4k BIG UV
006b Data Bas=00000000 Lim=1bffffff DPL=3 P RW A G4k BIG UV
0070 Data Bas=ffe22000 Lim=000074e4 DPL=0 P RO A
0078 Data Bas=ffe22000 Lim=000074e4 DPL=0 P RW

DG 148 L 4
0148 Code Bas=fff39000 Lim=00009262 DPL=0 P RE A
0150 Code Bas=fff43000 Lim=0000e137 DPL=0 P RE A
0158 Data Bas=00000000 Lim=ffffffff DPL=0 P RW A G4k BIG
0160 Code Bas=00000000 Lim=ffffffff DPL=0 P RE A G4k C32

The top section of the above output was created by entering the command
DL 7 37

By inspecting the type, base, and limit fields in the above output, we can see the
following about the descriptor referenced by 002F:

The storage is described as data having a base or linear, address of 00050000.
The linear address is not normally written with leading zeros. If there were any
chance that the address might be mistaken for physical, a percent sign would be
used, for example, %50000. The limit is FFF, which means that the segment is
4K or 1000(hex) long. The privilege level is 3, the segment is present, and the
flags indicate Read/Write storage. It has not been accessed, because the ′ A′
flag is not present and OS/2 no longer uses this flag; once set by the hardware,
it remains set.
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Examples related to privilege level protection follow below:

CS:IP CPL DS:xxxx RPL lesser DPL Access
privilege (from allowed?
CPL and RPL descriptor)

000F:xxxx 3 17:xxxx 3 3 3 Yes
000F:xxxx 3 16:xxxx 2 3 3 Yes
000F:xxxx 3 14:xxxx 0 3 3 Yes
000F:xxxx 3 37:xxxx 3 3 2 No
000F:xxxx 3 36:xxxx 2 3 2 No
000F:xxxx 3 34:xxxx 0 3 2 No
000F:xxxx 3 43:xxxx 3 3 0 No
000F:xxxx 3 42:xxxx 2 3 0 No
000F:xxxx 3 40:xxxx 0 3 0 No

BECE:xxxx 2 17:xxxx 3 3 3 Yes
BECE:xxxx 2 16:xxxx 2 2 3 Yes
BECE:xxxx 2 14:xxxx 0 2 3 Yes
BECE:xxxx 2 37:xxxx 3 3 2 No
BECE:xxxx 2 36:xxxx 2 2 2 Yes
BECE:xxxx 2 34:xxxx 0 2 2 Yes
BECE:xxxx 2 43:xxxx 3 3 0 No
BECE:xxxx 2 42:xxxx 2 2 0 No
BECE:xxxx 2 40:xxxx 0 2 0 No

0150:xxxx 0 17:xxxx 3 3 3 Yes
0150:xxxx 0 16:xxxx 2 2 3 Yes
0150:xxxx 0 14:xxxx 0 0 3 Yes
0150:xxxx 0 37:xxxx 3 3 2 No
0150:xxxx 0 36:xxxx 2 2 2 Yes
0150:xxxx 0 34:xxxx 0 0 2 Yes
0150:xxxx 0 43:xxxx 3 3 0 No
0150:xxxx 0 42:xxxx 2 2 0 No
0150:xxxx 0 40:xxxx 0 0 0 Yes

In each case, as you read across you will see that CPL comes from the value of
the CS register, RPL comes from the two low-order bits of the selector, and DPL
comes from the descriptor. The column titled ′ lesser privilege′ is calculated
remembering that higher numbers are lower privilege. The final column is
obtained by following the access rules, a short way back.
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1.4 Exercise 1: Selectors and Descriptors
Objectives:

 1. Learn how to load a dump for analysis.

 2. Introduction to the dump formatter.

 3. Learn how to display descriptors.

Start the lab at a full-screen or windowed command prompt.

A full-screen session is faster, but a windowed session can be made 100
lines high by entering

MODE CO80,100
This can be very useful, because you can look back quite a ways by using
the scroll bar.

Change to directory HANDS-ON\UTILS

Make diskette one by typing OS2IMAGE ..\IMAGES.162\LAB01.001 A:

Make diskette two by typing OS2IMAGE ..\IMAGES.162\LAB01.002 A:

Load the dump into a new file which will be named DUMP01.DMP by typing

DCOMP A: X:\DUMP01.DMP and pressing enter, then following the prompts.

When the dump is loaded, it should have a file size of 4194816.

Start the dump formatter by typing DF_RET X:\DUMP01.DMP

or by (X is the CD-ROM drive)
X:HANDS-ON8162.DFDF_RET X:HANDS-ON\DUMPS.162\DUMP01.DMP

You should see 6 or 7 informational lines at the top, followed by a pair of
lines which start ″Slot″, and ″*0023#″, followed by a set of registers.
*** We are not yet concerned with any of these. ***

You should get a prompt, which is the character #

Note: You can always document what you are thinking by simply typing it in
as an evaluation for the dump formatter to perform. You can access the
evaluation function by typing ? followed by whatever you want echoed to the
screen and to the log. You can also type in ? and any expression to have it
evaluated and output in hex, decimal, octal, binary, character and Boolean
forms.

? by itself is a simple request for what commands are recognized.

Use the dump formatter to look at descriptors and answer these questions.

The dump formatter is not case sensitive.

Descriptors may be displayed using DG or DL followed by the selector. Try it
both ways for several selectors, such as F, 160, DFFF, 158.

Use the miniature command reference in the appendix, if necessary.

There are a great many things we will not do in this exercise. We are using
only a tiny part of the dump formatter′s capabilities for this class. For
example, we will ignore the IDT in this class; one can enter DI followed by
the interrupt number to see the descriptor from the IDT.

Questions to answer:

 1. Which table contains the descriptor data for selector 000F?

14 OS/2 Debugging 



 2. Which command is preferred to display only the descriptor for 000F?

 3. What alternative command wil l also display only the descriptor for 000F?

 4. What type of memory is described by selector 000F?

Hint: It is one of the first things displayed in the output for each descriptor.

 5. What is the largest valid offset within segment 000F?

 6. What is the size of segment 000F?

Hint: Not quite the same as the previous answer.

 7. What is the linear (virtual) address of segment 000F?

 8. What privilege level is segment 000F?

 9. What is the Requested Privilege Level of selector 000F?

Hint: RPL is not in the descriptor.

10. What is the type and limit of segment 0017?

11. What is the linear (virtual) address of segment 0017?

12. Which table contains descriptor 0017?

13. Will the aplication program be able to access the segment selected by 000F?

Explain._______________________________________________

14. Will the program be able to store into segment 000F?

Explain._______________________________________________

15. Will the application program be able to access storage using selector 0037?

Explain._______________________________________________
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16. Will the program be able to write into storage using selector 0038?

Explain._______________________________________________

17. Will the program be able to write into storage using selector 0007?

Explain._______________________________________________

18. Enter the following command: DG 70 L 2

Compare and contrast the base, limit, privilege level and flags for each.

19. Enter the following command: DG 5A;DG 5B

Compare and contrast the base, limit, privilege level and flags for each.

20. Enter the following command: DG 28;DL 7

Compare and contrast the base, limit, privilege level and flags for each.

The dump formatter will exit in response to the command Q

1.5 Address Mapping
This section describes the method used to transform addresses from linear
addresses to physical addresses.

1.5.1 Paging Overview
OS/2 V2 uses paging in addition to the above logical addressing. Paging is a
mechanism which converts linear addresses to physical addresses and allows a
consistent size (4K) to be moved back and forth to auxiliary storage
(SWAPPER.DAT) when the demand for virtual memory exceeds the physical
memory installed on the machine. Another hardware register, Control Register 3
or CR3, is used to locate a page directory which contains table entries that
locate page tables. The page tables are used to locate the physical memory
where the data really resides. Physical memory is sometimes referred to by
page number. A page number is simply the twenty high-order bits of an
address. The twelve low-order bits of a page address are all zero. One can
convert a page number to an address by simply appending three hex zeros to it.

The result of combining a segment number and an offset, or the addition of an
offset to the base address from a descriptor, is a linear address. Under OS/2
1.x, these would be physical addresses. Under OS/2 2.0 and following, these are
linear or virtual addresses.
The picture below shows how linear addresses are converted to physical
addresses. Only the top line in the picture below is a linear address - the rest
are physical.
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The ten high order bits of the linear address are used to index into the Page
Directory which has the twenty high order bits of the page table′s physical
address (page number). The next ten bits of the linear address are used to
index into the page table. The twenty high order bits of the page frame′s
physical address (page number) are retrieved. The twelve low order bits of the
linear address are also the twelve low order bits of the physical address.
Therefore, the physical address is the twenty bits from the page table entry,
followed by the 12 low-order bits from the linear address.

LINEAR ADDRESS

┌─────────────────┬─────────────────┬─────────────────┐
│ bits 31-22 │ bits 21-12 │ bits 11-00 │
└──────┬──────────┴─────┬───────────┴──────┬──────────┘

│ │ │
┌─────┘ │ └─────────────┐
│ page │ page page │
│ directory │ table frame │
│ ┌────────────┐ │ ┌───────┐ ┌────────┐ │
│ │ │ │ │ │ │ │ │
│ ├────────────┤ │ ├───────┤ │ │ │
│ │ │ └────>│ ├──┐ │ │ │
│ ├────────────┤ ├───────┤ │ │ data │ │
└───>│ ├──────┐ │ │ │ │ │ │ │
 ├────────────┤ │ ├───────┤ │ │ │ │ │

│ │ │ │ │ │ │ │<──────┘
 ├────────────┤ │ ├───────┤ │ │ │ │

│ │ │ │ │ │ │ │ │
┌──>└────────────┘ └──>└───────┘ └──>└────────┘
│

CR3
CR3 and the table entries all have physical addresses!

1.5.2 Page Table Entries
The page directory entries are identical to the page table entries.

Each entry is 4 bytes, making 1K entries in each page table.

Bits 31-12 Physical address of page or page frame address

Bits 11-09 Ignored by hardware, used by OS2. See Note.

Bits 08-07 Reserved, must be zero

Bit 6 Dirty (D) 0=not changed (clean), 1=changed (dirty)

Bit 5 Accessed (A) 0=not accessed, 1=accessed

Bit 4 Page Cache Disable 0=allow cache use, 1=bypass cache

Bit 3 Page Write-Through 0=cache write-into, 1=write through to RAM

Bit 2 Supervisor (S/U) 0=Supervisor (PL=0,1,2), 1=user (PL=3)

Bit 1 Write enable (RO/RW) 0=Read Only, 1=Read/Write

Bit 0 Present (P) 0=not present, 1=present

Note: The left 5 hex digits of the entry are the left 5 hex digits of the physical
page; while the right 3 hex digits are mostly flags.
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If Bit 0 is zero, (page invalid) the remaining bits are not inspected by the
hardware. OS/2 uses them to identify the virtual page associated with this
address.
Bits 09 and 10 are used to track the state of the page frame.

Three of the possible four combinations are used:

0 - Pageable

1 - UVirt

2 - Resident

1.5.3 Page Table Contents
To look at the contents of the page directory and page table(s), use the
command DP, followed by the address of interest.

DP F:0
linaddr frame pteframe state res Dc Au CD WT Us rW Pn state
%00010000* 001e0 frame=0009e 0 0 c A U r P pageable
%00010000 0009e frame=0009e 0 0 c A U r P pageable
%00011000 vp id=012ae 0 0 c u U r n pageable
%00012000 00292 frame=00292 0 0 c A U r P pageable

DP 17:0
linaddr frame pteframe state res Dc Au CD WT Us rW Pn state
%00020000* 001e0 frame=00181 0 0 D A U W P pageable
%00020000 00181 frame=00181 0 0 D A U W P pageable
%00021000 003d4 frame=003d4 0 0 D A U W P pageable
%00022000 0005a frame=0005a 0 0 D A U W P pageable

DP 1F:0
linaddr frame pteframe state res Dc Au CD WT Us rW Pn state
%00030000* 001e0 frame=003ae 0 0 D A U W P pageable
%00030000 003ae frame=003ae 0 0 D A U W P pageable
%00031000 001b5 frame=001b5 0 0 D A U W P pageable

DP 27:0
linaddr frame pteframe state res Dc Au CD WT Us rW Pn state
%00040000* 001e0 frame=00052 0 0 c A U W P pageable
%00040000 00052 frame=00052 0 0 c A U W P pageable

DP 2F:0
linaddr frame pteframe state res Dc Au CD WT Us rW Pn state
%00050000* 001e0 frame=00075 0 0 D A U W P pageable
%00050000 00075 frame=00075 0 0 D A U W P pageable

DP 37:0
linaddr frame pteframe state res Dc Au CD WT Us rW Pn state
%00060000* 001e0 frame=002ae 0 0 D A U W P pageable
%00060000 002ae frame=002ae 0 0 D A U W P pageable

In each case, the first line of output is the data from the page directory.

The field labelled ′ frame ′ is the physical page frame which holds the data at the
referenced address.

The ′vp id′ is the virtual page identifier for the entry %11000.
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′Dc′ is Dirty or Clean. ′Au ′ is Accessed or unaccessed.

′Us′ is User (Ring 3) or supervisor (Rings 0 and 2).

′rW′ indicates read-only or Writeable. ′Pn′ indicates Present or not present.

1.6 Data Format in Storage
Data format is least significant byte at lowest address!

This arrangement is not intuitive for many people, because when you read bytes,
the data placement seems reversed. The tools will let you display storage as
bytes, words, and doublewords; the data will be re-arranged to suit the format
requested. This can be good or bad.

For example:
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DB 1F:1608 L 20
001f:00001608 42 4f 4f 4b 53 48 45 4c-46 3d 43 3a 5c 4f 53 32 BOOKSHELF=C:\OS2
001f:00001618 5c 42 4f 4f 4b 3b 00 43-4f 4d 53 50 45 43 3d 43 \BOOK;.COMSPEC=C

DA 1F:1608
001f:00001608 BOOKSHELF=C:\OS2\BOOK;

DB 17:0 L40
0017:00000000 02 00 03 00 05 00 07 00-0b 00 0d 00 11 00 13 00 ................
0017:00000010 17 00 1d 00 1f 00 25 00-29 00 2b 00 2f 00 35 00 ......%.).+./.5.
0017:00000020 3b 00 3d 00 43 00 47 00-49 00 4f 00 53 00 59 00 ;.=.C.G.I.O.S.Y.
0017:00000030 61 00 65 00 67 00 6b 00-6d 00 71 00 7f 00 83 00 a.e.g.k.m.q.....

DW 17:0 L20
0017:00000000 0002 0003 0005 0007 000b 000d 0011 0013
0017:00000010 0017 001d 001f 0025 0029 002b 002f 0035
0017:00000020 003b 003d 0043 0047 0049 004f 0053 0059
0017:00000030 0061 0065 0067 006b 006d 0071 007f 0083

DW 17:1 L 20
0017:00000001 0300 0500 0700 0b00 0d00 1100 1300 1700
0017:00000011 1d00 1f00 2500 2900 2b00 2f00 3500 3b00
0017:00000021 3d00 4300 4700 4900 4f00 5300 5900 6100
0017:00000031 6500 6700 6b00 6d00 7100 7f00 8300 8900

DD 17:0 L 10
0017:00000000 00030002 00070005 000d000b 00130011
0017:00000010 001d0017 0025001f 002b0029 0035002f
0017:00000020 003d003b 00470043 004f0049 00590053
0017:00000030 00650061 006b0067 0071006d 0083007f

DD 17:1 L 10
0017:00000001 05000300 0b000700 11000d00 17001300
0017:00000011 1f001d00 29002500 2f002b00 3b003500
0017:00000021 43003d00 49004700 53004f00 61005900
0017:00000031 67006500 6d006b00 7f007100 89008300

DD 17:2 L10
0017:00000002 00050003 000b0007 0011000d 00170013
0017:00000012 001f001d 00290025 002f002b 003b0035
0017:00000022 0043003d 00490047 0053004f 00610059
0017:00000032 00670065 006d006b 007f0071 00890083

You need to know what you are looking at!

1.7 Exercise 2: Paging, Addresses, Data
Objectives:

 1. Reinforce the knowledge from exercise 1.

 2. Learn how to display page table data.

 3. Learn how to convert a logical address to a linear address.

 4. Learn how to convert a linear address to a physical address.

 5. Learn how to display storage as ASCII, bytes, words and doublewords.
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Startup directions:

 1. Start the dump formatter by typing (X is the CD-ROM drive)
X:HANDS-ON8162.DFDF_RET X:HANDS-ON\DUMPS.162\DUMP01.DMP

 2. You should see the standard startup messages.

 3. The initial register display is what the application registers were at the time
the application (ring 3) program trapped.

 4. You can see these at any time by entering the .R command.

 5. Use the dump formatter to look at the dump and answer these questions.
The dump formatter is NOT case sensitive.

Note: Paging data may be displayed using the DP command, followed by the
address.
The dump process destroys the first entry of the page directory. You will get
quite confused if you try to follow the hardware method to look at paging
information for addresses 0 - 3FFFFF.
If you must, use the .N command to find ″savepage″, which will tell you the
physical address of the page table for that address range.

This may well be the last time you use a physical address in an OS/2 debugging
session. With the notable exceptions of physical memory management and
physical device drivers, OS/2 is almost completely unaware of physical
addresses. The 32-bit virtual address, also called a linear address, and a flat
address, is what is used in general throughout OS/2.

Assuming these registers, answer the following questions:

eax=0000c8cf ebx=00002910 ecx=000000df edx=00000000 esi=00000030 edi=00000060
eip=000000be esp=000014be ebp=000014e6 iopl=2 rf -- -- nv up ei pl zr na pe nc
cs=000f ss=001f ds=001f es=0017 fs=150b gs=0000 cr2=00000000 cr3=001a7000

 1. What are the base and limit fields for selector 000F?
(the base is the linear address)

 2. How many 4K pages are in this segment? Hint: Look closely at the limit
field.

 3. How many physical pages are allocated for the virtual memory segment
starting at F:0?

Hint: DP 0F:0 or DP %10000

 4. Why are the above two answers different?

 5. What is the physical address of the data at F:0?

Observation: You now have three ways to address the data.

a. Real or V86 (&selector:offset)

b. Logical (#selector:offset)

 c. Linear (%address)

d. Physical (%%address)

We will now display the same storage many ways, to confirm we know how.
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 6. What is the command to display the storage at SS:BP in words using a
logical address?

 7. What is the command to display the storage at SS:BP in words using a linear
address?

 8. What is the command to display the storage at SS:BP in words using a
physical address?

For each of the following, study the results until you understand.

 9. Display the data at 7:0 as bytes, and words.

10. Display the data at 7:1 as bytes and words.

11. Display the data at 7:0 and 7:1 as words.

12. Display the data at 7:0 as words and doublewords.

13. Display the data at 1F:15C6 as bytes and ASCII. Also look at 1F:15DA as
bytes and ASCII.
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1.8 Instruction Set
This section discusses the Intel 86 registers and some common instructions from
the instruction set.

1.8.1 Register Review
Registers discussed so far:

CR3 32-bit physical address of the Page Directory

IDTR 32-bit linear address of IDT, 16-bit size of IDT

GDTR 32-bit linear address of GDT, 16-bit size of GDT

LDTR 16-bit selector for an entry ( type 2 ) in the GDT

SS 16-bit selector, used for stack operations

CS 16-bit selector, used to locate instructions

DS 16-bit selector, used to locate data, generally the default

ES 16-bit selector, used to locate data, string destination

FS 16-bit selector, used to locate data explicitly

GS 16-bit selector, used to locate data explicitly

1.8.2 Execution
The 386 execution consists of the classic pattern of fetching an instruction from
memory and executing it, then repeating the process. The instructions are
always found in a code segment accessed via the descriptor designated by the
selector in the CS register. The current privilege level of the program is
contained by the two low order bits in the CS register. The offset of the next
instruction is contained in the instruction pointer, (IP or EIP) which is
incremented as each instruction is fetched. The 386 and following generations
recognize a great number of instructions, but compilers generate a very small
subset of the whole instruction set. Much of that subset will be discussed here.
If you cannot ascertain what an instruction does when you encounter it, look it
up in the appropriate reference manual. Instructions are generally executed
sequentially, and the processor attempts to fetch instructions well in advance, to
increase execution speed. The flow of control departs from sequential when a
jump, call, return, interrupt or interrupt return is encountered. Jumps are
conditional or unconditional. Conditional jumps are used to implement decisions
and contain a relative offset which is combined with IP by signed addition to
cause a different instruction in the same segment to be executed next. Calls,
returns and unconditional jumps come in two varieties: NEAR and FAR. The
NEAR variety update only IP and leave CS untouched. The FAR variety update
both CS and IP and are potentially quite complex. CALL, RETurn and interrupts
require a stack. Most instructions reference the registers.
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1.8.3 General Registers
┌─────────────────────────────────────────────────────┐
│ EAX │ ALL 32 BITS
└────────────────────────────┬────────────────────────┤

( part of EAX ) │ AX │ LOW 16 BITS
├────────────┬───────────┘

( part of AX ) │ AH │ HIGH 8 BITS
└────────────┼───────────┐

( part of AX ) │ AL │ LOW 8 BITS
└───────────┘

Registers EBX, ECX and EDX also subset in the same way.
There are two byte-sized pieces, which can be collectively
referenced as a word-sized item.

┌─────────────────────────────────────────────────────┐
│ EIP │ ALL 32 BITS
└────────────────────────────┬────────────────────────┤

( part of EIP ) │ IP │ LOW 16 BITS
└────────────────────────┘

IP and EIP are always offsets into CS.
They always contain the address of the next instruction to execute.

┌─────────────────────────────────────────────────────┐
│ ESP │ ALL 32 BITS
└────────────────────────────┬────────────────────────┤

( part of ESP ) │ SP │ LOW 16 BITS
└────────────────────────┘

SP and ESP are always offsets into SS.
They contain the address of the last item pushed into the stack.

REGISTERS EBP, ESI and EDI also subset in this way.
They have no 8 bit parts.

1.8.4 Machine Instructions
There are several fields which may be present in an instruction. Additionally,
there are a few easy-to-learn generalities which will make understanding what
an instruction does much easier. Data definitions will not be covered here.

There are many fields possibly present in an instruction.

 1. The label.

The label is optional, but must be first. It is followed by a colon. It is used
so the programmer can refer to the instruction symbolically. A label does
not require an instruction.

Labels which are Public become symbols at link time.

 2. The mnemonic operation code, or opcode, is next.
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It defines what operation will be attempted, and therefore what operands
need to be specified. Instructions have zero to three specified operands;
many instructions also imply operands.

 3. The operands are next, separated by commas.

The first operand is always the result, or target, of the operation.

An operand may be a value, a register, or storage. When the operand is a
value, it is called immediate, because the operand is immediately available if
the instruction has been fetched. When a register is named, it is the
operand. If an expression is contained in brackets, it is evaluated and the
result is used as a offset into some segment.

A storage operand is in some segment by default. Data references default to
the data segment or DS, unless (E)BP or (E)SP are present in the address
expression. In this case, the default segment is the stack segment (SS).
(E)IP is always in the CODE segment (instructions). (E)SP is always in the
STACK segment (data). (E)BP is usually in the STACK segment (data).

The default segment can usually be overridden by specifying the selector as
part of the address, for example, DS:[B P + 8 ].

You will come across helper words within operands, such as byte, word and
dword which are there to remind you of the size of the data item referenced.
You will also come across the helper word ″ptr″, which is to remind you that
the addressed data is in storage, and that the offset, in brackets, is a pointer
to the data.

 4. The last item you may find is an optional comment.

A comment is preceded by a semicolon. Anything following is a comment.
Comments are sparse in the output of the Unassemble command.

The debug kernel will use a comment to identify a breakpoint.

Both the debug kernel and the dump formatter will supply a symbol anytime
a number matches the symbol in an active file.

1.8.5 Typical Instructions
MOV CL,DH

The opcode is MOV, the first operand is the CL register, and the
second operand is the DH register. This instruction will copy (MOVe)
all 8 bits from the DH register to the CL register.

MOV DX,8

The opcode is MOV, the first operand is the DX register, the second
operand is the immediate value of 8. This instruction puts the value 8
into the DX register.

MOV EBP,ESP

Again, the opcode is MOV, and the instruction will copy all 32 bits of
ESP into EBP.

MOV AX,BX

You should be able to tell by now that this instruction will copy 16 bits
from BX to AX. Note that instructions which reference only registers
are extremely unlikely to cause an exception.
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MOV AX,word ptr [BX ]

This instruction is different from the one above because there are
brackets around the second operand. This means that the operand,
BX in this case, is in storage, and the BX register holds the offset into
the DS segment. If BX is outside the limit of the DS segment, a
general protection fault will occur.

MOV word ptr [BX ],AX

This instruction is similar to the preceding one, but moves data into
storage, rather than from storage. The same exceptions might occur,
and if the DS segment is read-only, this instruction would also fail.

MOV word ptr ES: [BX ],DI

This is an example of overriding the default segment, DS, by explicitly
specifying that the offset in the BX register applies to the ES segment.

ADD word ptr DS: [BP ],AX

This would add the 16 bits from AX into storage at DS:BP, developing
the sum directly in storage. The override is needed because the use
of BP means that the default segment is SS.

DEC word ptr [BP-2]

Some instructions have only one operand. In this case it is in storage
at an offset calculated by subtracting 2 from the BP value, in the
segment defined by the SS register, because BP is used.

Also SUB, CMP, AND, OR, XOR, XCHG, INC, SHL, etc.

It is extremely common for 16-bit code to use FAR addresses. When they are in
storage, it would require several instructions to get a FAR address into the
registers, if it were not for several instructions whose purpose is specifically to
fetch a FAR address from storage into a selector and another register. These
instructions may be recognized by the opcode, which is the letter L followed by a
selector register name other than CS. The apparent first operand is the general,
base, or index register which will hold the offset part of the far address. Both
registers will be loaded, with the first operand coming from the address
specified, and the selector coming from the following word.

LES BX,dword ptr [B P + 6 ]

This instruction loads both BX and ES. BX comes from BP+6 and ES comes
from BP+8, both in the stack segment.

LDS SI,dword ptr [BP-12]

This instruction loads both SI and DS, SI is loaded from BP-12 and DS is loaded
from BP-10.

LEA EDI,[EBP+ECX*4-12 ]

Load Effective Address DOES NOT actually reference storage.
Instead, once the offset has been calculated, it is put into the target
register, EDI in this case. Address expressions like this are possible,
but not often seen while actually debugging. The scale factor can be
1, 2, 4, or 8; not any arbitrary value.
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1.8.6 The System Flags
The flags not only control system operation, but also hold the result of
instructions such as CMP (compare). At times, you will find the flags have been
copied to a register, or to memory. The following figure gives the format of the
flags in such cases:

Bit Hex Flag name Comments
 18 00040000 AC Alignment Check, if the alignment mask is 1 (CR0).
 17 00020000 VM V86 mode. Turned on for Virtual DOS Machines.
 16 00010000 RF Resume Flag. Suppress debug exceptions for 1 instruction.
 14 00004000 NT Nested Task. Involved with hardware task switching.
13/12 3000 IOPL The least privileged code which has unrestricted I/O access.
 11 0800 OF Overflow. An arithmetic result does not fit.
 10 0400 DF Direction of string instructions. 0=up, 1=down.
 09 0200 IF Interrupt flag. 1=enabled, 0=disabled.
 08 0100 TF Trap flag. Generate a debug exception after each instruction.
 07 0080 SF Sign. 1=minus, 0=plus.
 06 0040 ZF Zero or Equal. 1=zero result, 0=non-zero result.
 04 0010 AF Auxiliary flag. Used in BCD arithmetic.
 02 0004 PF Parity flag. 0=even, 1=odd.
 00 0001 CF Carry flag. 0=no carry, 1=carry.
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1.8.7 Unassembled Instructions
U CS:IP-22 IP-18
000f:0000009c f1 db f1
000f:0000009d 8946fc mov word ptr [bp-04],ax
000f:000000a0 f7e1 mul cx
000f:000000a2 8946f4 mov word ptr [bp-0c],ax
000f:000000a5 3946f6 cmp word ptr [bp-0a],ax

U CS:IP-23 IP-18
000f:0000009b f7f1 div cx
000f:0000009d 8946fc mov word ptr [bp-04],ax
000f:000000a0 f7e1 mul cx
000f:000000a2 8946f4 mov word ptr [bp-0c],ax
000f:000000a5 3946f6 cmp word ptr [bp-0a],ax

U CS:IP-24 IP-18
000f:0000009a ee out dx,al
000f:0000009b f7f1 div cx
000f:0000009d 8946fc mov word ptr [bp-04],ax
000f:000000a0 f7e1 mul cx
000f:000000a2 8946f4 mov word ptr [bp-0c],ax
000f:000000a5 3946f6 cmp word ptr [bp-0a],ax

U CS:IP-25 IP-18
000f:00000099 56 push si
000f:0000009a ee out dx,al
000f:0000009b f7f1 div cx
000f:0000009d 8946fc mov word ptr [bp-04],ax
000f:000000a0 f7e1 mul cx
000f:000000a2 8946f4 mov word ptr [bp-0c],ax
000f:000000a5 3946f6 cmp word ptr [bp-0a],ax

U CS:IP-26 IP-18
000f:00000098 8b56ee mov dx,word ptr [bp-12]
000f:0000009b f7f1 div cx
000f:0000009d 8946fc mov word ptr [bp-04],ax
000f:000000a0 f7e1 mul cx
000f:000000a2 8946f4 mov word ptr [bp-0c],ax
000f:000000a5 3946f6 cmp word ptr [bp-0a],ax

U CS:IP-27 IP-18
000f:00000097 ec in al,dx
000f:00000098 8b56ee mov dx,word ptr [bp-12]
000f:0000009b f7f1 div cx
000f:0000009d 8946fc mov word ptr [bp-04],ax
000f:000000a0 f7e1 mul cx
000f:000000a2 8946f4 mov word ptr [bp-0c],ax
000f:000000a5 3946f6 cmp word ptr [bp-0a],ax

U CS:IP-10 IP
000f:000000ae 3976f0 cmp word ptr [bp-10],si
000f:000000b1 77df ja 0092
000f:000000b3 3976f0 cmp word ptr [bp-10],si
000f:000000b6 7510 jnz 00c8
000f:000000b8 c45ede les bx,dword ptr [bp-22]
000f:000000bb 8b46f6 mov ax,word ptr [bp-0a]
000f:000000be 268907 mov word ptr es:[bx],ax
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1.8.8 Observations About Unassembling from an Unknown Starting Place
Instructions are of variable length, from one to fifteen bytes long.

This means the address you provided may not actually be the start of an
instruction. This also means, therefore, that the first few instructions you see
may not actually be what the machine saw.

If you look at the output of several unassemblies starting at sequential
addresses, you will see that after typically three to five tries, the unassembly will
agree with previous ones, for some point after the unassembly started.

This is typically within four or five lines, but not always. Be cautious, and see if
the sequence looks reasonable. If it does, you have most likely found an
instruction boundary. Experience will help this process.

Some common sense will help as well. Obviously, an application in ring 3
cannot perform I/O directly. Likewise, the db means that the unassembler did
not have a way to interpret this as an instruction.

The last command entered looks at a few of the instructions which actually
preceded a failure.

Can you discover which instruction put the data into the ES and BX registers?
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1.9 Exercise 3: Unassembling and Reading Instructions
Objectives:

 1. Reinforce the preceding lab exercises

 2. Learn how to unassemble instructions

 3. Learn how to read instructions

 4. Learn about variable length instructions

We will now look at instructions.

 1. In what type of segment are instructions found?

 2. Are instructions ever executed in any other segment type?

 3. Unassemble the instructions which would have been next to execute (if the
application hadn′ t trapped) by entering U. The default address is CS:IP
initially. You can unassemble further with repeated use of U. To unassemble
at a particular place, specify the address; for example CS:IP.

 4. What was the next instruction which would have executed?

 5. Unassemble using an address range to see some previous instructions.
Type U CS:IP-20 IP-10. This wil l unassemble from ip-20 to ip-10. Now type U
CS:IP-21 IP-10 and U CS:IP-22 IP-10. Observe what is happening by closely
observing the address at which each instruction begins.

 6. Now type U CS:IP-18 IP to see the two instructions immediately before the
failing instruction

(at CS:IP!). What are they?

 7. Which one loaded the address used in the next (failing) instruction?

 8. Did the address come from this routine ′s private data, or was it a parameter
passed by the caller?

This is presented in detail later.

 9. Circumstantially at least, what seems to be wrong?

Also presented later.

of pages will face each other.
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1.10 Exceptions
Events sometimes occur which disrupt the normal sequence of instruction.
These are called exceptions and interrupts. Intel defines exceptions in relation
to an unsuccessful attempt to execute an instruction. Interrupts are defined as a
hardware response to a event unrelated to program execution.

Trap Hex Type B/C Error
Code

Source Cause

Hex CODE CAUSE
0 Fault C No Divide Overflow ( perhaps by zero )
1 DR6 B No Debug Exception
2 Int B No NMI ( Non-Maskable Interrupt ), normally hardware

fault
3 Trap B No Breakpoint ( INT 3 instruction )
4 Trap B No Overflow ( INTO instruction )
5 Fault B No Bounds Check ( BOUND instruction )
6 Fault B No Invalid Opcode
7 Fault B No Co-processor not available, see note
8 Abort Abort Always

Zero
Double Fault, any instruction

9 Fault C Yes Co-processor Segment Overrun (286,386 only) (Fault D
in  486+)

A Fault C Yes Invalid TSS
B Fault C Yes Segment Not Present ( swapped out )
C Fault C Yes Stack Exception
D Fault C Yes General Protection
E Fault PF Yes Page Fault ( paged out )
F ( reserved )
10 Fault B No Co-processor Error
11 Fault ? Always

Zero
Alignment Check

12 Abort ?? Machine
Check

13-1F ( reserved )
20-FF Trap N/A No Available for Hardware Interrupts Via ′ INTR′ Pin
00-FF Trap N/A No The INT instruction is actually a trap.
Note:

Co-processor not available may be due to not having one, or because the content of the co-processor belongs to
another thread. The co-processor data needs to be saved and restored only when more than one thread is using
it.
Bit 3 in CR0 indicates that a thread switch has occurred and will cause a trap 7 when a co-processor instruction is
decoded.

Explanation of B/C column

B - Benign, means it is ok with any other exception.

C - Contributary, means it will contribute to a double fault.

PF - Page Fault, means a referenced address is not present.

1.10.1 Definition of Fault, Trap, Aborts and Interrupts
 1. Faults

CS and EIP point to the instruction which generated the fault.

 2. Traps

CS and EIP point to the instruction to be executed after the instruction which
caused the trap.
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INT3, INTO, BOUND, and INT nn are examples of traps.

 3. Aborts

In general, these exceptions do not permit locating the failing instruction, nor
restart of the thread which caused the abort. Aborts are used to report
inconsistent or illegal values in system tables, and hardware errors.

 4. Interrupts

Unlike the preceding exceptions, interrupts are not related to the program
being executed, but to an external condition.

1.10.2 Hardware Error Codes
Selector Related Error Code

Bits 31-15: Reserved.
Bits 15-03: The index part of the selector involved.
Bit 02: The table indicator bit,

if neither bit 01 nor bit 00 are 1.
Bit 01: IDT selector bit,

if on, the selector is in the IDT.
Bit 00: External bit,

if on, not caused by the program

Page Fault Error Code

Bits 31-04: Reserved.
Bit 03: RSV. A 1 bit was detected in a reserved

bit of a page directory or page table entry.
Bit 02: U/S.

0: The program was in supervisor mode.
1: The program was in user mode.

Bit 01: W/R.
0: The access was a read.
1: The access was a write.

Bit 00: Level.
0: The fault is because of a not-present page.
1: The fault is because of page-level protection.
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1.10.3 Simultaneous Exceptions
It is possible for more than one exception to occur while attempting to execute
an instruction. In order to determine what will happen if two simultaneous
exceptions occur on the same instruction, use the following table:

First Exception Second Exception Resulting Action

Benign Benign OK

Benign Contributory OK

Benign Page Fault OK

Contributory Benign OK

Contributory Contributory Double Fault

Contributory Page Fault OK

Page Fault Benign OK

Page Fault Contributory Double Fault

Page Fault Page Fault Double Fault

Note:

OK means the faults are processed consecutively.

Double Fault means the faults are reported together.

If any other exception occurs trying to enter the DoubleFault handler, the processor shuts down until RESET;
although, if the NMI handler has not been entered, NMI will be recognized and accepted.

A trap C in Ring 0 is usually a double fault.

When the processor detects a Stack Exception it needs to push an error code and a return address onto the
stack of the exception handler. If this happens in Ring 0, there will be no privilege level transition, which
includes switching to a new, protected stack. If the exception is due to stack growth, there is no place to push
the error code or return address.

RESULT: TRAP 8
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Chapter 2. The Address Space Picture

This is a picture of what the address space looks like for several processes.

FFFFFFFF ┌─────────────────────────────────────────────────────┐
│ KERNEL │
│ OS2 SYSTEM CONTROL BLOCKS │
│ │
│ SYSTEM REGION │
│ │
│ │

20000000 │ │
│-----------------------------------------------------│

1FFFFFFF │ │
│ │
│ │
│ SHARED REGION │
│ │

13000000 │ │
│- - - - - - - - - - - - - - - - - - - - - - - - - - -│
│ │
│ EXPANSION REGION │
│ ( SHARED and PRIVATE ) │

04000000 │ │
│- - - - - - - - - - - - - - - - - - - - - - - - - - -│

03FFFFFF │ | | | | │
│ Pid 1 | | | Pid 18 | │

PRIVATE │ | Pid 2 | | | │
REGION │ | | | | Pid 12 │

│ | | Pid 3 | | │
│ | | | | │

00010000 ├─────────────────────────────────────────────────────┤
│ I N V A L I D A D D R E S S R A N G E │

00000000 └─────────────────────────────────────────────────────┘

Within the private region you must know the Process ID, as well as the linear
address to define a piece of virtual storage. All regions except the private
region are shared among all processes. Above the private region in the shared
regions, there is only one version of a given address, so you do not need the
Process ID.

The boundary at 03FFFFFF is an initial value. If some application allocates over
03FFFFFF of private space, this boundary will move upward. It moves in steps of
00400000, because another page table is allocated.

DLL′s are initially loaded beginning at the 1BFFFFFF boundary, and to
successively lower addresses. This water mark moves downward in steps of
00400000, too.

Addresses not assigned to a memory object are invalid. Any attempt to use
them will generate an exception.

The address space picture discussed here is a simplified overview. A more
detailed description may be found in the Advanced Guide to Hang Analysis
chapter, under Memory Management and Ownership Topics.
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Chapter 3. OS/2 Implementation Details

This section discusses some of the implementation details of OS/2 which
particularly involve debugging.

3.1 Shared Memory
This highlights how memory is shared among a few processes.

The same selector is allocated in each process that shares the storage. Each
process therefore uses the same offset in the LDT, and the LDT entries are the
same, so the same linear address is also used.

Note: The page table entries used for the shared storage are the same for both
processes, too.

LDT 1 LDT 2
┌────────────┐ ┌────────────┐
│ │ │ │
├────────────┤ ├────────────┤
│ ├───┐ │ ├───┐
├────────────┤ │ ├────────────┤ │
│ │ │ │ │ │
├────────────┤ │ ├────────────┤ │
│ │ │ │ │ │
├────────────┤ │ ├────────────┤ │
│ │ │ │ │ │
├────────────┤ │ ├────────────┤ │
│ │ │ │ │ │

│ │
┌──────────────────┘ │
│ ┌───────────────────┐ │
│ │ │ │
│ │ SHARED │ │
│ │ DATA │ │
│ │ │ │
└─────────────>└───────────────────┘<────────┘

DLLs are a good example of shared storage.

DLLs are loaded into the shared address range. The boundary is dynamic, and
moves downward as DLLs are loaded.

The boundary of private addresses move upward as private storage is allocated.
There is a guarantee of 64 Meg for private, and 64 Meg for shared.

3.2 Address Tiling
Address tiling refers to the practice of creating a mathematical or algorithmic
relationship between an LDT selector and the base, or virtual address in the
descriptor.

By using address tiling, OS/2 avoids the need to move memory blocks because
of reallocation, and also makes it very fast to convert an LDT Selector:Offset to a
flat, or Linear Address. The implementation is simply to allocate 64K of virtual
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address space to each selector, starting with selector 000F, at virtual address
64K or %10000.

Note: Selector 0007 is used to map the LDT as read-only data.

3.3 Why Thunk?
It is still common to have applications which have some 32-bit parts, and some
16-bit parts. The 32-bit parts try to avoid using 16-bit selector:offset addressing,
because of the overhead of loading the selector registers, as well as to avoid the
challenge of correctly dealing with storage references in both modes.

A typical example is a 32-bit application calling a 16-bit DLL.

Since storage is (must be) the same for all parts of a process, there has to be a
way to convert one form of an address to the other.

Only 16-bit application selectors from the LDT are eligible for this quick form of
the conversion, and only linear addresses less than %20000000 can be
converted to 16:16 format.

Additionally, addresses in the packed region may not be converted by this quick
method, but by a search of the LDT descriptor base (linear) addresses, followed
by a calculation.

The top of normal application space, at %1BFFFFFF, is mapped to selector DFFF.
The top of protected shared addresses at %1FFFFFFF maps to selector FFFF, if
used.

3.4 Address Transformations (Thunks)
This section tells you how to change from 16:16 to 0:32-bit mode, or vice versa.
There are two parts to thunking, the address transformation, and properly
aligning the stack, if necessary. The stack alignment is usually done by a
subroutine which detects the need to do this, and builds an extra frame in the
new mode, properly aligned by making a copy of the incoming parms,
transforming the addresses as part of this process.

This works only because the specific implementation within OS/2 which was
designed to use address tiling for LDT selectors.

3.4.1 16:16 to 0:32 Thunk
The selectors which are eligible for this thunk are LDT selectors which are
P L = 3 .
In this case, all three low-order bits are 1. Because of this, one can shift the
selector 3 bits to the right, or divide by 8, without loss of information. The
resulting number is the high-order word of the 32-bit address because of address
tiling. For example, address 000F:00BA can be thunked from 16:16 to 0:32 as
follows:
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0 0 0 F : 0 0 B A <--- Hex Sel:Offset
0000 0000 0000 1111 0000 0000 1011 1010 <--- Binary
shift the selector 3 bits to the right, which gives
0000 0000 0000 0001 0000 0000 1011 1010 <--- Binary
0 0 0 1 0 0 B A <--- Linear Address
Note that the lower 16 bits, or offset, are unchanged.

A stack may require alignment, because a 32-bit stack is built on doubleword
boundaries, with two low order zero bits in the address of each element,
whereas a 16-bit stack is aligned only on a word boundary.

3.4.2 0:32 to 16:16 Thunk
Because the range of LDT selectors is only 512 Meg, addresses less than this
can be transformed to use an LDT selector, with restrictions. The transformation
is to append three low-order 1 bits to the value, and to discard three high order
zero bits. An alternative way of stating this is to multiply by 8, then add 7. The
three low order one bits are LDT (table indicator=1) and PL=3. The restrictions
are that the storage must be PL=3 application storage, must not span a 64K
boundary in the linear address space, and the value must be less than hex 2000
0000.

0 0 0 2 1 4 B 0 <--- Linear Address
0000 0000 0000 0010 0001 0100 1011 0000 <--- Binary
shift the left half 3 bits to the left, which gives
0000 0000 0001 0000 0001 0100 1011 0000 <--- Binary
add 7 to the left half ( 0111 binary )
0000 0000 0001 0111 0001 0100 1011 0000 <--- Binary
0 0 1 7 : 1 4 B 0 <--- Hex Sel:Offset

Note that the lower 16 bits, or offset, are unchanged.
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3.4.3 Simultaneous 16-Bit and 32-Bit Descriptions of Virtual Storage
GDT RAM LDT

┌───────┐ ┌───────┐ ┌───────┐
53=es->│ 50├────┐ A0000 │ │<──────│ 50│

├───────┤ │ ├───────┤ ├───────┤
│ 48│ │ 90000 │ │<──────│ 48│
├───────┤ │ ├───────┤ ├───────┤
│ 40│ │ 80000 │ │<──────│ 40│
├───────┤ │ ├───────┤ ├───────┤
│ 38│ │ 70000 │ │<──────│ 38│<- ds=3F
├───────┤ │ ├───────┤ ├───────┤
│ 30│ │ 60000 │ │<──────│ 30│<- ss=37
├───────┤ │ ├───────┤ ├───────┤

 ldtr ->│ 28├─┐ │ 50000 │ │<──────│ 28│
├───────┤ │ │ ├───────┤ ├───────┤
│ 20│ │ │ 40000 │ │<──────│ 20│
├───────┤ │ │ ├───────┤ ├───────┤
│ 18│ │ │ 30000 │ │<──────│ 18│
├───────┤ │ │ ├───────┤ ├───────┤

tr ->│ 10│ │ │ 20000 │ │<──────│ 10│
├───────┤ │ │ ├───────┤ ├───────┤
│ 08│ │ │ 10000 │ │<──────│ 08│<- cs=0F
├───────┤ │ │ ├───────┤ ├───────┤
│ ** 00│ │ └───────>│invalid│ │ 00│

 gdtr->└───────┘ │ └───────┘ ┌───>└───────┘
│ │
└──────────────────────┘

** useless, null selector

The digits within the tables are the offsets to each descriptor. The selector
values (CS=0F) indicate which selector normally accesses the descriptor.

Any selector containing the value 0-3 is the NULL selector which does not
specify the first entry in the GDT. It is a place holder when a selector does not
specify a descriptor. Any attempt to use the null selector results in a general
protection exception.

The descriptors in the LDT are 16-bit descriptors. This is one of the reasons that
16-bit programs still execute and fail in exactly the same manner as on previous
versions of OS/2.
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Chapter 4. Stacks

This section describes how most OS/2 programs use the stack.

Understanding the stack is generally straightforward. The stack is defined by the
descriptor selected by the Stack Selector register or SS, and the stack pointer or
SP. Stacks are always read/write. There are two basic operations on a stack,
PUSH and POP. PUSH decrements the stack pointer and then stores the
operand at the offset provided by SP in the stack segment. POP moves the data
item at the offset provided by SP to the operand and then increments SP. SP
always points to the last item PUSHed. Stacks grow downward from higher
addresses to lower addresses.

4.1 Near CALL and RETurn
The near CALL instruction is used to invoke a subroutine. The instruction first
pushes IP into the stack and then updates IP so that it contains the offset of the
first instruction in the subroutine.

The near form of the RETurn instruction is really just a POP IP, which restores
the saved content of IP. Execution continues at the instruction following the
CALL.

4.2 Far CALL and RETurn
The far CALL instruction is used to invoke a subroutine. The instruction first
pushes CS into the stack, and then pushes IP. Next, it updates CS and IP so that
they contain the selector:offset of the first instruction in the subroutine.

The far form of the RETurn instruction first pops IP, which restores the saved
content of IP, and then pops CS, restoring it as well. Execution continues at the
instruction following the CALL.

4.3 Passing Parameters
Parameters are generally passed to a subroutine by putting them on the stack
with PUSH instructions prior to the CALL. Parameters are removed from the
stack in one of two ways:

By the caller (C convention), generally by adding a constant to SP.

By the subroutine (PASCAL convention), by specifying the operand for the
RETurn which is added to SP after the return address is POP′ed.

Note: C convention PUSHes parameters from right to left.
PASCAL convention PUSHes parameters left to right.

Because the NEAR versions of jump (JMP), CALL and RETurn DO NOT touch CS,
there can be no change of privilege level during execution of any of them. The
FAR versions of them do provide a new value for CS. If the new CS is the same
privilege level as the current level, the only change from above is that CALL
PUSHes CS before PUSHing IP. RETurn POPs IP before POPing CS.
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4.4 Receiving Parameters
There is a register which can be used by a subroutine to access parameters
very efficiently. This register is the Base Pointer. When it is used to obtain an
offset, the default segment is the STACK segment. If the entry to a subroutine
begins with these instructions the stack will look like the picture on the next
page.

PUSH BP

MOV BP,SP

SUB SP,sizeof( LOCAL DATA ITEMS )

This sequence is so common that there is a single instruction equivalent:

ENTER sizeof( LOCAL DATA ITEMS ), 0

This allows all parameters to be accessed as BP plus the appropriate offset and
local data elements to be accessed as BP minus the appropriate offset.

The instructions to exit are either:

MOV SP,BP

POP BP

RET

or:

LEAVE

RET

4.5 Why do we Care About the Pascal Convention?
The Pascal convention was used by OS/2 1.x for those calls that access system
functions that are implemented in a higher privilege level (ring) than the
application. It is also used to call 16-bit Window Procedures.

Two examples are DosAllocSeg and DosRead. The decision was made to use
the Pascal convention because of the way the hardware protects access to
instructions and storage which is more privileged. This type of interface,
including hardware operation, is discussed in detail after basic stack operation
has been discussed.
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4.6 Single Stack Frame
STACK

┌───────────────────┐ ( higher addresses )
│ previous bp │<───up here ──────┐
├───────────────────┤ │
├───────────────────┤ │
├───────────────────┤ │
│ parameter │ │
├───────────────────┤ │
│ parameter │ │
├───────────────────┤ │
│ return │ │
├───────────────────┤ │

 bp ───> │ caller′ s bp │ ( caller′ s bp points)
├───────────────────┤
│ local data │
├───────────────────┤
│ local data │
├───────────────────┤

 sp ───> │ local data │ ( lower addresses )
└───────────────────┘

Note: A stack grows downward (expand down).

When this convention is followed the stack can be viewed as a series of stack
frames. Each stack frame has parameters and local data for some routine and
linkage to the stack frames used by the caller of that routine, etc. The saved BP
values create a linked list in the stack segment which has all the information
about each call including the return address. The process of following the chain
back is referred to as unwinding the stack and is an important aid to diagnosis
when working on a problem.
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4.7 An Example of Using the Stack
This is a trivial example of how to pass and receive parameters, which is used to
document where the stack pointer and base pointer are at the end of each
instruction.

The example is 32-bit non-optimized code.

The subroutine, SUB, is designed to return the difference obtained by subtracting
the second parameter from the first.

First, the relevant C code:

( main ) ( sub )
.

z=sub(A,B); int sub(int x, int y)
. {
. return x-y;
. }

Next, the assembler code

. ( i ) initial condition
PUSH B ; (01) SUB: PUSH EBP ; (04)
PUSH A ; (02) MOV EBP,ESP ; (05)
CALL SUB ; (03) SUB ESP,nn ; (06)

 ADD ESP,8 ; (12) .
 MOV Z,EAX ; ( f ) final condition . ( NOTE )

.
MOV EAX,[EBP+8] ; (07)
SUB EAX,[EBP+12] ; (08)
.
MOV ESP,EBP (09)
POP EBP (10)
RET (11)

Note: At this point, the stack frame is established. If another, lower-level
routine is called, the code to do so will look like the code seen in main, and a
new stack frame will be established by that routine as soon as it receives
control.

The new frame will be just below the current one.

44 OS/2 Debugging 



4.8 Stack Example
This example shows a stack, with ESP on the left, and EBP on the right.

ESP EBP
( higher addresses ) ( i,10 )

┌───────────────────────┐
( i,12 ) │ ? │

├───────────────────────┤
( 1 ) │ B │

├───────────────────────┤
( 2,11 ) │ A │

├───────────────────────┤
( 3,10 ) │ address of ADD │

├───────────────────────┤
( 4,9 ) │ EBP ( used by main ) │ ( 5 )
.──────├───────────────────────┤
. │ automatic │
. ├───────────────────────┤

 nn bytes │ data │
. ├───────────────────────┤
. │ for ′ sub′ │
. ├───────────────────────┤

( 6 ) │ ( if used ) │
──────├───────────────────────┤

│ │ <-- where parameters for the
└───────────────────────┘ next subroutine are put

( lower addresses )

Note: The numbers in parentheses indicate where the register points
immediately after the numbered instruction on the previous page completes.
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4.9 Multiple Stack Frames
STACK SEGMENT

┌───────────────────────┐ high addresses
│ │
│ │
├───────────────────────┤ ---------------
│ │
│---PARMS FROM ASTART---│
│---RETURN TO ASTART----│ MAIN′ s FRAME
│-ASTART′ S BASE POINTER-│
│ │
├───────────────────────┤ ---------------
│ │
│---PARMS FROM MAIN-----│
│---RETURN TO MAIN------│ SUB 1 FRAME
│---MAIN′ s BASE POINTER-│
│ │
├───────────────────────┤ ---------------
│ │
│---PARMS FROM SUB 1----│
│---RETURN TO SUB 1-----│ SUB 2 FRAME
│---SUB 1 BASE POINTER--│
│ │
├───────────────────────┤ ---------------
│ │
│---PARMS FROM SUB 2----│
│---RETURN TO SUB 2-----│

BP --> │---SUB 2 BASE POINTER--│ SUB 3 FRAME
│ │
├───────────────────────┤ ---------------
│ │

SP --> └───────────────────────┘ low addresses

46 OS/2 Debugging 



4.10 A Stack From a Dump
In this example you could use DUMP01.DMP in the DUMPS.162 subdirectory.

DW SS:BP L10
001f:000014e6 1550 00f1 000f 02e8 18ae 0000 0000 0000
001f:000014f6 0000 0000 0000 0000 0000 0000 0000 0000

The first word, which is addressed by the current value in the
BP register, is the near address of the next stack frame, 1550.

The next two words are a far return address, with the offset to
the left of the selector. The return is to address F:F1.

The words following the return address are the parameters, if any
were passed. There is no direct way to tell from the stack how
many parameters were passed, or expected. To see the next frame,

DW 1550 L 10
001f:00001550 0000 0300 000f 0001 1560 001f 156e 001f
001f:00001560 1568 001f 0000 0000 4544 4f4d 0000 15c6

In this stack frame, the BP chain pointer is zero. This usually
means that you have found all of the frames on this stack.

The return address for this frame is F:300. The parameters
seem to be an integer, 1, and three far addresses, 1F:1560,
1F:156e, and 1F:1568. A little further inspection shows that
the third address 1F:1568 is pointed to by the first, which is
highly unusual. Actually, this is the stack frame received by ′ main′ .
Main′ s parameters are as follows:

 1. An integer, which tells it how many strings were found on the command line

 2. The far address of a list of addresses, each of which points to one of
the strings

 3. The far address of a second list of addresses, each of which points to
an environment variable. This list is terminated with a NULL POINTER, a far
address in which both the selector and offset are zero.

Chapter 4. Stacks 47



Let′ s look at them.
1F:1560 has the address 1f:1568. Near addresses default to the
last selector used, so we are not required to supply it every time.

DA 1568
#001f:00001568 DEMO

Right, the name of the program was the first string on the command line.
The first parameter indicates that there is only one string.

Let′ s look at a few of the environment variables.

DW 156E L8
001f:0000156e 15c6 001f 15da 001f 1608 001f 161f 001f

This gets us four far addresses. To see them all with only one
input line, use the semicolon as a command delimiter and type away.

DA 15C6;DA 15DA;DA1608;DA 161F
001f:000015c6 WP_OBJHANDLE=132739
001f:000015da AUTOSTART=PROGRAMS,TASKLIST,FOLDERS,LAUNCHPAD
001f:00001608 BOOKSHELF=C:\OS2\BOOK;
001f:0000161f COMSPEC=C:\OS2\CMD.EXE

Notice that the tools are not very particular about spaces in the commands.

Lastly, to see the local data for the failing routine,
DW SS:SP BP-2
001f:000014be 02e8 18ae 00e3 2910 0017 0060 0017 0000
001f:000014ce 0004 0017 c8cf 0000 0030 c949 c85a c8cf
001f:000014de 0002 0000 00e6 1488
and now you have it, displayed above.
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Chapter 5. Application Documentation

We will briefly discuss what files are optionally generated by most compilers,
and how to tell the linker to create the MAP file. After an explanation of the
contents, and why some of the numbers are what they are, we will answer some
questions using various parts of the optional application documentation.

5.1 The .MAP File
When you look at a 16-bit MAP file, you will discover that it may have at least
three sections. A 32-bit MAP file can have at least four.

 1. The first section is built in the same sequence as the executable.

 2. The second section contains a list of all external symbols, sorted by the
name of the symbol.

This is particularly useful when a programmer wants to find where some
particular variable or routine is located.

 3. The third section contains a list of the same symbols, sorted by the location
of the symbol.

This is particularly useful when you know where something is, and want to
find out if it has an external name, or what routine encompasses the address
of interest.

 4. The fourth section of a 32-bit MAP file contains a list of locations where the
compiled code for each input line begins. This can tell you almost
immediately which line of code failed, once you know which program, and
where within the program the failing instruction was located.

5.2 The .COD File
Many 16-bit compilers will produce a file similar to a .COD file, although it may
have a different file extension. For example, MicroFocus Cobol can produce a
.GRP file, which has the same organization as the .COD file.

The format of this file is that of a mixed listing.

The listing generally contains an input line, identified by line number, followed by
the machine instructions generated by the compiler, with the address to the left,
the hex instruction in the middle, and an assembler form of the instruction on the
right. Some of these files will actually be accepted as is by an assembler, but
most compilers document the fact that this is not a supported feature of the
compiler.

Obviously, if you know the offset of some instruction, perhaps one that caused a
failure, you can use this listing to identify which line of the input program caused
the generation of the failing instruction.
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5.3 Exercise 4: Application Documentation
Some typical files associated with 16- and 32-bit applications

5.3.1 A 16-Bit Map File
Part 1: Same sequence as executable.

DEMO

Start Length Name Class
 0001:0000 00292H DEMO_TEXT CODE
 0001:0292 02BE6H _TEXT CODE
 0001:2E78 00000H C_ETEXT ENDCODE
 0002:0000 02910H FAR_BSS FAR_BSS
 0003:0000 00042H NULL BEGDATA
 0003:0042 007D8H _DATA DATA
 0003:081A 0000EH CDATA DATA
 0003:0828 00000H XIFB DATA
 0003:0828 00000H XIF DATA
 0003:0828 00000H XIFE DATA
 0003:0828 00000H XIB DATA
 0003:0828 00000H XI DATA
 0003:0828 00000H XIE DATA
 0003:0828 00000H XPB DATA
 0003:0828 00004H XP DATA
 0003:082C 00000H XPE DATA
 0003:082C 00000H XCB DATA
 0003:082C 00000H XC DATA
 0003:082C 00000H XCE DATA
 0003:082C 00000H XCFB DATA
 0003:082C 00000H XCF DATA
 0003:082C 00000H XCFE DATA
 0003:082C 00006H CONST CONST
 0003:0832 00008H HDR MSG
 0003:083A 000FAH MSG MSG
 0003:0934 00002H PAD MSG
 0003:0936 00001H EPAD MSG
 0003:0938 00226H _BSS BSS
 0003:0B5E 00000H XOB BSS
 0003:0B5E 00000H XO BSS
 0003:0B5E 00000H XOE BSS
 0003:0B60 00000H c_common BSS
 0003:0B60 00A00H STACK STACK

 Origin Group
 0003:0 DGROUP

Note: The numbers to the left of the colon look like the selector part of a far
address, because that is what they will become. The linker has no idea what
selectors will be assigned by the loader, so it simply calls the first segment 1,
the next segment 2, and so on.

The loader actually builds a table that shows the relationship between the
selector assigned and the segment number from the map.
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Part 2: Sorted by the name of the symbol

Address Publics by Name

0000:0000 Imp DOSALLOCSEG (DOSCALLS.34)
0000:0000 Imp DOSCHGFILEPTR (DOSCALLS.58)
0000:0000 Imp DOSEXIT (DOSCALLS.5)
0000:0000 Imp DOSGETDBCSEV (NLS.4)
0000:0000 Imp DOSGETMACHINEMODE (DOSCALLS.49)
0000:0000 Imp DOSGETVERSION (DOSCALLS.92)
0000:0000 Imp DOSQHANDTYPE (DOSCALLS.77)
0000:0000 Imp DOSREAD (DOSCALLS.137)
0000:0000 Imp DOSREALLOCSEG (DOSCALLS.38)
0000:0000 Imp DOSSETVEC (DOSCALLS.89)
0000:0000 Imp DOSWRITE (DOSCALLS.138)
0003:06E6 STKHQQ
0001:2D3E _brkctl
0003:0938 _edata
0003:0B60 _end
0003:069B _environ
0003:0662 _errno
0001:057A _exit
0001:24E6 _fflush
0001:03F0 _fgets
0001:295C _flushall
0001:275C _free
0001:0000 _gen
0001:2836 _isatty
0001:29A0 _lseek
0001:00E2 _main
0001:2771 _malloc
0001:285A _memset
0002:0000 _prime
0001:0394 _printf
0001:2618 _read
0001:0492 _sscanf
0001:2E64 _stackavail
0001:2024 _strlen
0001:282C _ultoa
0001:2576 _ungetc
0001:29DE _write
0003:06E2 __aaltstkovr
0003:04D6 __abrkp
0003:00D6 __abrktb
0003:04D6 __abrktbe
0003:04D8 __acfinfo
0003:00CC __acmdln
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0000:9876 Abs __acrtmsg
0000:9876 Abs __acrtused
0000:D6D6 Abs __aDBdoswp
0003:06A6 __adbgmsg
0000:D6D6 Abs __aDBused
0003:00CE __aenvseg
0003:00D4 __aexit_rtn
0001:2E58 __aFlshl
0001:28A2 __aFNalshl
0000:0000 Imp __AHINCR (DOSCALLS.136)
0001:2BDD __amalloc
0001:2D1C __amallocbrk
0003:0816 __amblksiz
0001:2CC0 __amexpand
0001:2CFA __amlink
0001:0310 __amsg_exit
0003:0042 __anullsize
0003:0810 __aseg1
0003:0806 __asegds
0003:04E6 __aseghi
0003:04E8 __aseglo
0003:0812 __asegn
0003:0814 __asegr
0003:00D0 __asizds
0003:0702 __asizeC
0003:0703 __asizeD
0001:02A2 __astart
0003:00D2 __atopsp
0002:2710 __bufin
0003:06EA __cfltcvt_tab
0003:06E8 __cflush
0003:06A3 __child
0001:2244 __chkstk
0001:04F0 __cinit
0001:0306 __cintDIV
0001:2DF4 __cltoasub
0001:05CA __ctermsub
0003:0704 __ctype
0003:0704 __ctype_
0001:2E01 __cxtoa
0003:0669 __doserrno
0003:0668 __dosmode
0001:291F __dosret
0001:2910 __dosretf
0003:0666 __dosvermajor
0003:0667 __dosverminor
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0001:0591 __exit
0003:065A __fac
0001:275C __ffree
0001:05EC __FF_MSGBANNER
0001:0702 __filbuf
0001:22D0 __flsbuf
0001:2771 __fmalloc
0003:081C __fpinit
0001:223E __fptrap
0001:08E0 __ftbuf
0001:2458 __getbuf
0001:098C __input
0003:04EE __iob
0003:05DE __iob2
0003:0656 __lastiob
0003:066B __nfile
0001:2B82 __nfree
0001:2B94 __nmalloc
0001:069C __NMSG_TEXT
0001:06CC __NMSG_WRITE
0001:2268 __nullcheck
0003:0669 __oserr
0003:066D __osfile
0003:0666 __osmajor
0003:0667 __osminor
0003:0668 __osmode
0003:0666 __osversion
0001:156A __output
0003:069F __pgmptr
0003:0681 __pipe
0001:203C __setargv
0001:0610 __setenvp
0003:0700 __sigintoff
0003:06FE __sigintseg
0001:07FE __stbuf
0001:228E __stdalloc
0003:06AE __stdbuf
0003:0664 __umaskval
0003:04EC ___aDBrterr
0003:04EA ___aDBswpflg
0003:0695 ___argc
0003:0697 ___argv

Part 3: Sorted by location in storage
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Address Publics by Value

0000:0000 Imp DOSGETMACHINEMODE (DOSCALLS.49)
0000:0000 Imp DOSGETVERSION (DOSCALLS.92)
0000:0000 Imp DOSREAD (DOSCALLS.137)
0000:0000 Imp __AHINCR (DOSCALLS.136)
0000:0000 Imp DOSEXIT (DOSCALLS.5)
0000:0000 Imp DOSALLOCSEG (DOSCALLS.34)
0000:0000 Imp DOSREALLOCSEG (DOSCALLS.38)
0000:0000 Imp DOSCHGFILEPTR (DOSCALLS.58)
0000:0000 Imp DOSWRITE (DOSCALLS.138)
0000:0000 Imp DOSSETVEC (DOSCALLS.89)
0000:0000 Imp DOSQHANDTYPE (DOSCALLS.77)
0000:0000 Imp DOSGETDBCSEV (NLS.4)
0000:9876 Abs __acrtmsg
0000:9876 Abs __acrtused
0000:D6D6 Abs __aDBdoswp
0000:D6D6 Abs __aDBused
0001:0000 _gen
0001:00E2 _main
0001:02A2 __astart
0001:0306 __cintDIV
0001:0310 __amsg_exit
0001:0394 _printf
0001:03F0 _fgets
0001:0492 _sscanf
0001:04F0 __cinit
0001:057A _exit
0001:0591 __exit
0001:05CA __ctermsub
0001:05EC __FF_MSGBANNER
0001:0610 __setenvp
0001:069C __NMSG_TEXT
0001:06CC __NMSG_WRITE
0001:0702 __filbuf
0001:07FE __stbuf
0001:08E0 __ftbuf
0001:098C __input
0001:156A __output
0001:2024 _strlen
0001:203C __setargv
0001:223E __fptrap
0001:2244 __chkstk
0001:2268 __nullcheck
0001:228E __stdalloc
0001:22D0 __flsbuf
0001:2458 __getbuf
0001:24E6 _fflush
0001:2576 _ungetc
0001:2618 _read
0001:275C _free
0001:275C __ffree
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0001:2771 __fmalloc
0001:2771 _malloc
0001:282C _ultoa
0001:2836 _isatty
0001:285A _memset
0001:28A2 __aFNalshl
0001:2910 __dosretf
0001:291F __dosret
0001:295C _flushall
0001:29A0 _lseek
0001:29DE _write
0001:2B82 __nfree
0001:2B94 __nmalloc
0001:2BDD __amalloc
0001:2CC0 __amexpand
0001:2CFA __amlink
0001:2D1C __amallocbrk
0001:2D3E _brkctl
0001:2DF4 __cltoasub
0001:2E01 __cxtoa
0001:2E58 __aFlshl
0001:2E64 _stackavail
0002:0000 _prime
0002:2710 __bufin
0003:0042 __anullsize
0003:00CC __acmdln
0003:00CE __aenvseg
0003:00D0 __asizds
0003:00D2 __atopsp
0003:00D4 __aexit_rtn
0003:00D6 __abrktb
0003:04D6 __abrktbe
0003:04D6 __abrkp
0003:04D8 __acfinfo
0003:04E6 __aseghi
0003:04E8 __aseglo
0003:04EA ___aDBswpflg
0003:04EC ___aDBrterr

Chapter 5. Application Documentation 55



0003:04EE __iob
0003:05DE __iob2
0003:0656 __lastiob
0003:065A __fac
0003:0662 _errno
0003:0664 __umaskval
0003:0666 __osmajor
0003:0666 __dosvermajor
0003:0666 __osversion
0003:0667 __osminor
0003:0667 __dosverminor
0003:0668 __osmode
0003:0668 __dosmode
0003:0669 __doserrno
0003:0669 __oserr
0003:066B __nfile
0003:066D __osfile
0003:0681 __pipe
0003:0695 ___argc
0003:0697 ___argv
0003:069B _environ
0003:069F __pgmptr
0003:06A3 __child
0003:06A6 __adbgmsg
0003:06AE __stdbuf
0003:06E2 __aaltstkovr
0003:06E6 STKHQQ
0003:06E8 __cflush
0003:06EA __cfltcvt_tab
0003:06FE __sigintseg
0003:0700 __sigintoff
0003:0702 __asizeC
0003:0703 __asizeD
0003:0704 __ctype
0003:0704 __ctype_
0003:0806 __asegds
0003:0810 __aseg1
0003:0812 __asegn
0003:0814 __asegr
0003:0816 __amblksiz
0003:081C __fpinit
0003:0938 _edata
0003:0B60 _end

Program entry point at 0001:02A2
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5.3.2 A 16-Bit Code File
; Static Name Aliases
;
; $S180_inbuf EQU inbuf

TITLE DEMO.C
.286p
.287

DEMO_TEXT SEGMENT WORD PUBLIC ′ CODE′
DEMO_TEXT ENDS
_DATA SEGMENT WORD PUBLIC ′ DATA′
_DATA ENDS
CONST SEGMENT WORD PUBLIC ′ CONST′
CONST ENDS
_BSS SEGMENT WORD PUBLIC ′ BSS′
_BSS ENDS
DGROUP GROUP CONST, _BSS, _DATA

ASSUME CS: DEMO_TEXT, DS: DGROUP, SS: DGROUP
EXTRN __acrtused:ABS
EXTRN _printf:FAR
EXTRN _sscanf:FAR
EXTRN _fgets:FAR
_BSS SEGMENT
COMM NEAR _prime: 2: 5000
_BSS ENDS
EXTRN __iob:BYTE
_DATA SEGMENT
$SG188 DB ′ there are %u primes less than 65536′ , 0aH, 00H
$SG191 DB ′%u′ , 00H
$SG195 DB ′ Enter number to factor: ′ , 00H
$SG197 DB ′%u′ , 00H
$SG198 DB ′ Unable to convert number. Please try again′ , 0aH, 00H
$SG207 DB ′%u is prime′ , 0aH, 00H
$SG208 DB ′%u=%u′ , 00H
$SG212 DB ′ *%u′ , 00H
$SG213 DB 0aH, 00H
_DATA ENDS
_BSS SEGMENT
$S180_inbuf DW 028H DUP (?)
_BSS ENDS
CONST SEGMENT
$T20004 DW SEG _prime
CONST ENDS
DEMO_TEXT SEGMENT

ASSUME CS: DEMO_TEXT
;|***
;|*** #include <stdio.h>
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; Line 2
;|*** #define INBUFSIZE 80
;|*** #define NPRIME 5000
;|*** unsigned short prime[NPRIME];
;|***
;|*** int gen(void)
;|*** {
; Line 8

PUBLIC _gen
_gen PROC FAR

*** 000000 c8 24 00 00 enter WORD PTR 36,0
*** 000004 57 push di
*** 000005 56 push si

; ix = -6
; l = -16
; ll = -14
; npr = -2
; q = -4
; t = -10
; tp = -8
; tt = -12
;|*** unsigned short ix,l=2,ll=25,npr=3,q,t,tp=2,tt;
; Line 9

*** 000006 c7 46 f0 02 00 mov WORD PTR [bp-16],2 ;l
*** 00000b c7 46 f2 19 00 mov WORD PTR [bp-14],25 ;ll
*** 000010 c7 46 fe 03 00 mov WORD PTR [bp-2],3 ;npr
*** 000015 c7 46 f8 02 00 mov WORD PTR [bp-8],2 ;tp

;|*** prime[0]=2;
; Line 10

*** 00001a 8e 06 00 00 mov es,$T20004
*** 00001e 26 c7 06 00 00 02 00 mov WORD PTR es:_prime,2

;|*** prime[1]=3;
; Line 11

*** 000025 26 c7 06 02 00 03 00 mov WORD PTR es:_prime+2,3
;|*** prime[2]=5;
; Line 12

*** 00002c 26 c7 06 04 00 05 00 mov WORD PTR es:_prime+4,5
;|*** for ( t=7 ; t<65530 ; t+=tp )
; Line 13

*** 000033 c7 46 f6 07 00 mov WORD PTR [bp-10],7 ;t
*** 000038 c7 46 e2 04 00 mov WORD PTR [bp-30],OFFSET _prime+4
*** 00003d c7 46 e4 00 00 mov WORD PTR [bp-28],SEG _prime
*** 000042 c7 46 de 06 00 mov WORD PTR [bp-34],OFFSET _prime+6
*** 000047 c7 46 e0 00 00 mov WORD PTR [bp-32],SEG _prime

$L20002:
;|*** {
; Line 14
;|*** tp=6-tp;
; Line 15

*** 00004c b8 06 00 mov ax,6
*** 00004f 2b 46 f8 sub ax,WORD PTR [bp-8] ;tp
*** 000052 89 46 f8 mov WORD PTR [bp-8],ax ;tp
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;|*** if ( ll<=t )
; Line 16

*** 000055 8b 46 f6 mov ax,WORD PTR [bp-10] ;t
*** 000058 39 46 f2 cmp WORD PTR [bp-14],ax ;ll
*** 00005b 77 15 ja $I170

;|*** {
; Line 17
;|*** l++;
; Line 18

*** 00005d 83 46 e2 02 add WORD PTR [bp-30],2
*** 000061 ff 46 f0 inc WORD PTR [bp-16] ;l

;|*** ll=prime[l]*prime[l];
; Line 19

*** 000064 c4 5e e2 les bx,DWORD PTR [bp-30]
*** 000067 26 8b 07 mov ax,WORD PTR es:[bx]
*** 00006a 89 46 dc mov WORD PTR [bp-36],ax
*** 00006d f7 e0 mul ax
*** 00006f 89 46 f2 mov WORD PTR [bp-14],ax ;ll

;|*** }
; Line 20
;|*** for ( ix=2 ; ix<l ; ix++ )
; Line 21

$I170:
*** 000072 be 02 00 mov si,2
*** 000075 39 76 f0 cmp WORD PTR [bp-16],si ;l
*** 000078 76 39 jbe $FB173
*** 00007a 8b 46 f6 mov ax,WORD PTR [bp-10] ;t
*** 00007d 89 46 ec mov WORD PTR [bp-20],ax
*** 000080 c7 46 ee 00 00 mov WORD PTR [bp-18],0
*** 000085 c7 46 e8 04 00 mov WORD PTR [bp-24],OFFSET _prime+4
*** 00008a c7 46 ea 00 00 mov WORD PTR [bp-22],SEG _prime
*** 00008f c4 7e e8 les di,DWORD PTR [bp-24]

$L20000:
;|*** {
; Line 22
;|*** q=t/prime[ix];
; Line 23

*** 000092 26 8b 0d mov cx,WORD PTR es:[di]
*** 000095 8b 46 ec mov ax,WORD PTR [bp-20]
*** 000098 8b 56 ee mov dx,WORD PTR [bp-18]
*** 00009b f7 f1 div cx
*** 00009d 89 46 fc mov WORD PTR [bp-4],ax ;q

;|*** tt=q*prime[ix];
; Line 24

*** 0000a0 f7 e1 mul cx
*** 0000a2 89 46 f4 mov WORD PTR [bp-12],ax ;tt

;|*** if ( t==tt ) break;
; Line 25

*** 0000a5 39 46 f6 cmp WORD PTR [bp-10],ax ;t
*** 0000a8 74 09 je $FB173
*** 0000aa 83 c7 02 add di,2
*** 0000ad 46 inc si
*** 0000ae 39 76 f0 cmp WORD PTR [bp-16],si ;l
*** 0000b1 77 df ja $L20000

$FB173:
;|*** }
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;|*** if ( l==ix ) prime[npr++]=t;
; Line 27

*** 0000b3 39 76 f0 cmp WORD PTR [bp-16],si ;l
*** 0000b6 75 10 jne $I175
*** 0000b8 c4 5e de les bx,DWORD PTR [bp-34]
*** 0000bb 8b 46 f6 mov ax,WORD PTR [bp-10] ;t
*** 0000be 26 89 07 mov WORD PTR es:[bx],ax
*** 0000c1 83 46 de 02 add WORD PTR [bp-34],2
*** 0000c5 ff 46 fe inc WORD PTR [bp-2] ;npr

;|*** }
; Line 28

$I175:
*** 0000c8 8b 46 f8 mov ax,WORD PTR [bp-8] ;tp
*** 0000cb 01 46 f6 add WORD PTR [bp-10],ax ;t
*** 0000ce 83 7e f6 fa cmp WORD PTR [bp-10],-6 ;t
*** 0000d2 73 03 jae $JCC210
*** 0000d4 e9 75 ff jmp $L20002

$JCC210:
*** 0000d7 89 76 fa mov WORD PTR [bp-6],si ;ix

;|*** return npr;
; Line 29

*** 0000da 8b 46 fe mov ax,WORD PTR [bp-2] ;npr
*** 0000dd 5e pop si
*** 0000de 5f pop di
*** 0000df c9 leave
*** 0000e0 cb ret
*** 0000e1 90 nop

_gen ENDP
;|*** }
;|***
;|*** int main(int argc, char *argv[])
;|*** {
; Line 33

PUBLIC _main
_main PROC FAR

*** 0000e2 c8 60 00 00 enter WORD PTR 96,0
*** 0000e6 57 push di
*** 0000e7 56 push si

; argc = 6
; argv = 8
; ix = -6
; last = -10
; nf = -8
; fact = -76
; input = -2
; is = -12
; q = -4
;|*** static char inbuf[INBUFSIZE];
;|*** int ix,last,nf;
;|*** unsigned short fact[32],input=0,is,q;
; Line 36

*** 0000e8 c7 46 fe 00 00 mov WORD PTR [bp-2],0 ;input
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;|*** last=gen();
; Line 37

*** 0000ed 0e push cs
*** 0000ee e8 00 00 call NEAR PTR _gen
*** 0000f1 89 46 f6 mov WORD PTR [bp-10],ax ;last

;|*** printf(″there are %u primes less than 65536\n″ ,last);
; Line 38

*** 0000f4 50 push ax
*** 0000f5 1e push ds
*** 0000f6 68 00 00 push OFFSET DGROUP:$SG188
*** 0000f9 9a 00 00 00 00 call FAR PTR _printf
*** 0000fe 83 c4 06 add sp,6

;|*** if ( 1<argc )
; Line 39

*** 000101 83 7e 06 01 cmp WORD PTR [bp+6],1 ;argc
*** 000105 7e 25 jle $I190

;|*** if ( 0==sscanf(argv[1],″%u″,&input) ) argc=1;
; Line 40

*** 000107 8d 46 fe lea ax,WORD PTR [bp-2] ;input
*** 00010a 16 push ss
*** 00010b 50 push ax
*** 00010c 1e push ds
*** 00010d 68 25 00 push OFFSET DGROUP:$SG191
*** 000110 c4 5e 08 les bx,DWORD PTR [bp+8] ;argv
*** 000113 26 ff 77 06 push WORD PTR es:[bx+6]
*** 000117 26 ff 77 04 push WORD PTR es:[bx+4]
*** 00011b 9a 00 00 00 00 call FAR PTR _sscanf
*** 000120 83 c4 0c add sp,12
*** 000123 0b c0 or ax,ax
*** 000125 75 05 jne $I190
*** 000127 c7 46 06 01 00 mov WORD PTR [bp+6],1 ;argc

;|*** while ( 2>argc )
; Line 41

$I190:
*** 00012c 83 7e 06 02 cmp WORD PTR [bp+6],2 ;argc
*** 000130 7d 4b jge $FB194
*** 000132 8b 76 06 mov si,WORD PTR [bp+6] ;argc

$L20005:
;|*** {
; Line 42
;|*** printf(″Enter number to factor: ″ ) ;
; Line 43

*** 000135 1e push ds
*** 000136 68 28 00 push OFFSET DGROUP:$SG195
*** 000139 9a 00 00 00 00 call FAR PTR _printf
*** 00013e 83 c4 04 add sp,4

;|*** fgets(inbuf,INBUFSIZE,stdin);
; Line 44

*** 000141 1e push ds
*** 000142 68 00 00 push OFFSET __iob
*** 000145 6a 50 push 80
*** 000147 1e push ds
*** 000148 68 00 00 push OFFSET DGROUP:$S180_inbuf
*** 00014b 9a 00 00 00 00 call FAR PTR _fgets
*** 000150 83 c4 0a add sp,10
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;|*** if ( 0==sscanf(inbuf,″%u″,&input) )
; Line 45

*** 000153 8d 46 fe lea ax,WORD PTR [bp-2] ;input
*** 000156 16 push ss
*** 000157 50 push ax
*** 000158 1e push ds
*** 000159 68 41 00 push OFFSET DGROUP:$SG197
*** 00015c 1e push ds
*** 00015d 68 00 00 push OFFSET DGROUP:$S180_inbuf
*** 000160 9a 00 00 00 00 call FAR PTR _sscanf
*** 000165 83 c4 0c add sp,12
*** 000168 0b c0 or ax,ax
*** 00016a 75 11 jne $FB194

;|*** printf(″Unable to convert number. Please try again\n″ ) ;
; Line 46

*** 00016c 1e push ds
*** 00016d 68 44 00 push OFFSET DGROUP:$SG198
*** 000170 9a 00 00 00 00 call FAR PTR _printf
*** 000175 83 c4 04 add sp,4

;|*** else break;
;|*** }
; Line 48

*** 000178 83 fe 02 cmp si,2
*** 00017b 7c b8 jl $L20005

$FB194:
;|*** for ( ix=nf=0,is=input ; ix<last ; ix++ )
; Line 49

*** 00017d 2b c0 sub ax,ax
*** 00017f 89 46 f8 mov WORD PTR [bp-8],ax ;nf
*** 000182 89 46 fa mov WORD PTR [bp-6],ax ;ix
*** 000185 8b 46 fe mov ax,WORD PTR [bp-2] ;input
*** 000188 89 46 f4 mov WORD PTR [bp-12],ax ;is
*** 00018b 83 7e f6 00 cmp WORD PTR [bp-10],0 ;last
*** 00018f 7f 03 jg $JCC399
*** 000191 e9 8e 00 jmp $FB202

$JCC399:
*** 000194 8b 46 fa mov ax,WORD PTR [bp-6] ;ix
*** 000197 d1 e0 shl ax,1
*** 000199 05 00 00 add ax,OFFSET _prime
*** 00019c 89 46 a6 mov WORD PTR [bp-90],ax
*** 00019f c7 46 a8 00 00 mov WORD PTR [bp-88],SEG _prime
*** 0001a4 8d 46 b4 lea ax,WORD PTR [bp-76] ;fact
*** 0001a7 89 46 a2 mov WORD PTR [bp-94],ax
*** 0001aa 8c 56 a4 mov WORD PTR [bp-92],ss
*** 0001ad 8b 46 f6 mov ax,WORD PTR [bp-10] ;last
*** 0001b0 2b 46 fa sub ax,WORD PTR [bp-6] ;ix
*** 0001b3 89 46 a0 mov WORD PTR [bp-96],ax
*** 0001b6 01 46 fa add WORD PTR [bp-6],ax ;ix
*** 0001b9 8b 4e fe mov cx,WORD PTR [bp-2] ;input

$L20008:
;|*** {
; Line 50
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;|*** q=input/prime[ix];
; Line 51

*** 0001bc c4 5e a6 les bx,DWORD PTR [bp-90]
*** 0001bf 26 8b 07 mov ax,WORD PTR es:[bx]
*** 0001c2 89 46 aa mov WORD PTR [bp-86],ax
*** 0001c5 8b c1 mov ax,cx
*** 0001c7 2b d2 sub dx,dx
*** 0001c9 f7 76 aa div WORD PTR [bp-86]
*** 0001cc 89 46 fc mov WORD PTR [bp-4],ax ;q

;|*** while ( q*prime[ix]==input )
; Line 52

*** 0001cf 8b 46 aa mov ax,WORD PTR [bp-86]
*** 0001d2 f7 66 fc mul WORD PTR [bp-4] ;q
*** 0001d5 3b c1 cmp ax,cx
*** 0001d7 75 3d jne $FB205
*** 0001d9 26 8b 07 mov ax,WORD PTR es:[bx]
*** 0001dc 89 46 b2 mov WORD PTR [bp-78],ax
*** 0001df 8b f0 mov si,ax
*** 0001e1 8b 46 a2 mov ax,WORD PTR [bp-94]
*** 0001e4 8b 56 a4 mov dx,WORD PTR [bp-92]
*** 0001e7 89 46 ac mov WORD PTR [bp-84],ax
*** 0001ea 89 56 ae mov WORD PTR [bp-82],dx
*** 0001ed c4 7e ac les di,DWORD PTR [bp-84]

$L20006:
;|*** {
; Line 53
;|*** fact[nf++]=prime[ix];
; Line 54

*** 0001f0 26 89 35 mov WORD PTR es:[di],si
*** 0001f3 83 c7 02 add di,2
*** 0001f6 83 46 a2 02 add WORD PTR [bp-94],2
*** 0001fa ff 46 f8 inc WORD PTR [bp-8] ;nf

;|*** input/=prime[ix];
; Line 55

*** 0001fd 8b c1 mov ax,cx
*** 0001ff 2b d2 sub dx,dx
*** 000201 f7 f6 div si
*** 000203 8b c8 mov cx,ax

;|*** q=input/prime[ix];
; Line 56

*** 000205 2b d2 sub dx,dx
*** 000207 f7 f6 div si
*** 000209 89 46 fc mov WORD PTR [bp-4],ax ;q

;|*** }
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; Line 57
*** 00020c 8b 46 b2 mov ax,WORD PTR [bp-78]
*** 00020f f7 66 fc mul WORD PTR [bp-4] ;q
*** 000212 3b c1 cmp ax,cx
*** 000214 74 da je $L20006

$FB205:
;|*** }
; Line 58

*** 000216 83 46 a6 02 add WORD PTR [bp-90],2
*** 00021a ff 4e a0 dec WORD PTR [bp-96]
*** 00021d 75 9d jne $L20008
*** 00021f 89 4e fe mov WORD PTR [bp-2],cx ;input

$FB202:
;|*** if ( nf<2 ) return printf(″%u is prime\n″ ,is);
; Line 59

*** 000222 83 7e f8 02 cmp WORD PTR [bp-8],2 ;nf
*** 000226 7d 14 jge $I206
*** 000228 ff 76 f4 push WORD PTR [bp-12] ;is
*** 00022b 1e push ds
*** 00022c 68 70 00 push OFFSET DGROUP:$SG207
*** 00022f 9a 00 00 00 00 call FAR PTR _printf
*** 000234 83 c4 06 add sp,6
*** 000237 5e pop si
*** 000238 5f pop di
*** 000239 c9 leave
*** 00023a cb ret
*** 00023b 90 nop

$I206:
*** 00023c ff 76 b4 push WORD PTR [bp-76] ;fact
*** 00023f ff 76 f4 push WORD PTR [bp-12] ;is
*** 000242 1e push ds
*** 000243 68 7d 00 push OFFSET DGROUP:$SG208
*** 000246 9a 00 00 00 00 call FAR PTR _printf
*** 00024b 83 c4 08 add sp,8

;|*** printf(″%u=%u″ ,is,fact[0]);
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;|*** for ( ix=1 ; ix<nf ; ix++ )
; Line 61

*** 00024e c7 46 fa 01 00 mov WORD PTR [bp-6],1 ;ix
*** 000253 83 7e f8 01 cmp WORD PTR [bp-8],1 ;nf
*** 000257 7e 29 jle $FB211
*** 000259 8d 46 b6 lea ax,WORD PTR [bp-74]
*** 00025c 89 46 a2 mov WORD PTR [bp-94],ax
*** 00025f 8c 56 a4 mov WORD PTR [bp-92],ss
*** 000262 8b 76 f8 mov si,WORD PTR [bp-8] ;nf
*** 000265 4e dec si
*** 000266 01 76 fa add WORD PTR [bp-6],si ;ix

$L20010:
;|*** printf(″*%u″ ,fact[ix]);
; Line 62

*** 000269 c4 5e a2 les bx,DWORD PTR [bp-94]
*** 00026c 26 ff 37 push WORD PTR es:[bx]
*** 00026f 1e push ds
*** 000270 68 83 00 push OFFSET DGROUP:$SG212
*** 000273 9a 00 00 00 00 call FAR PTR _printf
*** 000278 83 c4 06 add sp,6
*** 00027b 83 46 a2 02 add WORD PTR [bp-94],2
*** 00027f 4e dec si
*** 000280 75 e7 jne $L20010

$FB211:
;|*** return printf(″\n″ ) ;
; Line 63

*** 000282 1e push ds
*** 000283 68 87 00 push OFFSET DGROUP:$SG213
*** 000286 9a 00 00 00 00 call FAR PTR _printf
*** 00028b 83 c4 04 add sp,4
*** 00028e 5e pop si
*** 00028f 5f pop di
*** 000290 c9 leave
*** 000291 cb ret

_main ENDP
DEMO_TEXT ENDS
END
;|*** }

5.3.3 Questions
Please answer the following questions, using the preceding listings:

 1. How large is segment 2 of DEMO.EXE? _____________

 2. What is the segment:offset of the ′ fgets′ routine? _____________

 3. What is the segment:offset of the symbol ′ fpinit′ ? _____________

 4. Does DEMO.EXE call DosOpen? ______ How can you tell? _____________

 5. Which routine begins at address 0001:29DE? _____________

 6. How long is the routine named ′strlen ′ ? _____________
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 7. Which routine contains address 0001:186A? _____________

 8. How far into the routine is the previous address? _____________

 9. What is the program ′s entry point? _____________

10. What is the name of the routine which is the entry point? ____________

11. What instruction mnemonic is at offset 00C5 in DEMO.EXE? _____________

12. What variable is in AX when the return at 00E0 executes? _____________

13. Which line in DEMO.C generated the above return? _____________

14. Offset 0188 in DEMO.C is in which C function? _____________

15. What variable name is used by the instruction at 0055? _____________

16. What is the purpose of the instruction at offset 0234? _____________

Note: In the .COD file, the numbers in the assembler instructions are
decimal.

The lines generated in the .COD file between offsets 00E7 and 00E8 tell you
where the local variables are stored, relatively speaking.

17. To what are the numbers like 8, -10, -76, -12 relative? _____________

18. If a failure were to occur in routine ′gen ′, what command would you use to
display only the variable ′npr ′ ? DW _____________

19. How would you display the variable ′ t′ ? DW _____________

20. Is the variable ′ tp′ in ′gen ′ at the same location as the variable ′nf′ in main?
Yes / No Explain. __________________________________
_______________________________________________________________________
_______________________________________________________________________

21. Check the offsets for ′gen ′ and ′main ′ between the .MAP and the .COD files.
Do they match? _______ Why/why not? ________________ Will the offsets
always behave this way? Yes / No

Explain. _______________________________________________________
____________________________________________________________________
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5.3.4 A 32-Bit Map File
DEMO

Start Length Name Class
 0001:00000000 000001A68H CODE32 CODE 32-bit
 0001:00001A68 000000030H _MSGSEG32 CODE 32-bit
 0002:00000000 00000006CH DDE4_DATA32 DATA 32-bit
 0003:00000000 00000005CH DATA32 DATA 32-bit
 0003:0000005C 0000000B0H CONST32 CONST 32-bit
 0003:0000010C 000000000H BSS32 BSS 32-bit
 0003:00000110 000002000H STACK32 STACK 32-bit

 Origin Group
 0000:0 FLAT
 0003:0 DGROUP

Address Publics by Name

0000:00000000 Imp DOS32FLATTOSEL (DOSCALLS.425)
0001:00001A7A DOS32GETMESSAGE
0001:00001A7A Dos32GetMessage
0000:00000000 Imp DOS32IQUERYMESSAGECP (MSG.8)
0000:00000000 Imp DOS32SELTOFLAT (DOSCALLS.426)
0000:00000000 Imp DOS32TRUEGETMESSAGE (MSG.6)
0000:00000000 Imp DosAllocMem (DOSCALLS.299)
0000:00000000 Imp DosExit (DOSCALLS.234)
0000:00000000 Imp DosFreeMem (DOSCALLS.304)
0001:00001A7A DosGetMessage
0001:00001A7A DOSGETMESSAGE
0000:00000000 Imp DosWrite (DOSCALLS.282)
0001:00000F94 free
0001:00000000 gen
0001:000000AC main
0001:000013F0 malloc
0001:00001A68 sig32
0002:00000008 _argc
0002:0000000C _argv
0001:000001A4 _bufprint
0001:00001850 _DosFlatToSel
0001:00001848 _DosSelToFlat
0003:0000010C _edata
0001:00000F48 _edcGetMessage
0003:00000110 _end
0002:00000004 _exeentry
0002:00000010 _have_freed
0001:00001010 _heapmin
0001:00001108 _heapmin_int
0001:000012E0 _ilog2
0001:0000162C _MesgServ
0002:00000014 _pBucketArr
0001:000017FC _PrintErrMsg
0001:0000017C _printfieee
0001:00000154 _printf_ansi
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0001:00001858 _setuparg
0001:00001304 _split_chunk
0001:00001A40 _terminate
0001:00001A50 _wfloatfmt
0001:000002BC __dofmto
0001:000012E8 __isdigit

Address Publics by Value

0000:00000000 Imp DosFreeMem (DOSCALLS.304)
0000:00000000 Imp DOS32IQUERYMESSAGECP (MSG.8)
0000:00000000 Imp DOS32SELTOFLAT (DOSCALLS.426)
0000:00000000 Imp DosAllocMem (DOSCALLS.299)
0000:00000000 Imp DOS32TRUEGETMESSAGE (MSG.6)
0000:00000000 Imp DOS32FLATTOSEL (DOSCALLS.425)
0000:00000000 Imp DosWrite (DOSCALLS.282)
0000:00000000 Imp DosExit (DOSCALLS.234)
0001:00000000 gen
0001:000000AC main
0001:00000154 _printf_ansi
0001:0000017C _printfieee
0001:000001A4 _bufprint
0001:000002BC __dofmto
0001:00000F48 _edcGetMessage
0001:00000F94 free
0001:00001010 _heapmin
0001:00001108 _heapmin_int
0001:000012E0 _ilog2
0001:000012E8 __isdigit
0001:00001304 _split_chunk
0001:000013F0 malloc
0001:0000162C _MesgServ
0001:000017FC _PrintErrMsg
0001:00001848 _DosSelToFlat
0001:00001850 _DosFlatToSel
0001:00001858 _setuparg
0001:00001A40 _terminate
0001:00001A50 _wfloatfmt
0001:00001A68 sig32
0001:00001A7A DOSGETMESSAGE
0001:00001A7A Dos32GetMessage
0001:00001A7A DOS32GETMESSAGE
0001:00001A7A DosGetMessage
0002:00000004 _exeentry
0002:00000008 _argc
0002:0000000C _argv
0002:00000010 _have_freed
0002:00000014 _pBucketArr
0003:0000010C _edata
0003:00000110 _end
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Line numbers for DEMO.obj(DEMO.C) segment CODE32

Source Src File Flags Seg:Offset
Line Num Index (0X) (0X)
--------- -------- ------ -------------

9 1 00 0001:00000000
11 1 00 0001:00000009
12 1 00 0001:0000001e
13 1 00 0001:00000024
14 1 00 0001:0000002b
15 1 00 0001:00000032
17 1 00 0001:00000040
18 1 00 0001:0000004b
20 1 00 0001:00000050
21 1 00 0001:00000051
23 1 00 0001:0000005a
27 1 00 0001:00000069
28 1 00 0001:00000082
29 1 00 0001:00000087
30 1 00 0001:00000097
31 1 00 0001:000000a4
34 1 00 0001:000000ac
39 1 00 0001:000000b2
40 1 00 0001:000000c8
41 1 00 0001:000000e5
42 1 00 0001:000000f4
43 1 00 0001:00000107
45 1 00 0001:00000114
46 1 00 0001:00000127
47 1 00 0001:00000144
48 1 00 0001:00000149

Record Number of Start of Source: 9
Number of Primary Source Records: 26
Source and Listing Files:
File 1)DEMO.C
File 2)C:\PMG\CSET\INCLUDE\os2.h
File 3)C:\PMG\CSET\INCLUDE\os2def.h
File 4)C:\PMG\CSET\INCLUDE\bse.h
File 5)C:\PMG\CSET\INCLUDE\bsedos.h
File 6)C:\PMG\CSET\INCLUDE\bsememf.h
File 7)C:\PMG\CSET\INCLUDE\bsesub.h
File 8)C:\PMG\CSET\INCLUDE\bseerr.h
File 9)C:\PMG\CSET\INCLUDE\STDIO.H

Program entry point at 0001:00000F6C
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5.3.5 A 32-Bit .ASM File, Produced by CSET/2
TITLE DEMO.C
.386
.387
INCLUDELIB OS2386.LIB
INCLUDELIB dde4nbs.lib

CODE32 SEGMENT DWORD USE32 PUBLIC ′ CODE′
CODE32 ENDS
DATA32 SEGMENT DWORD USE32 PUBLIC ′ DATA′
DATA32 ENDS
CONST32 SEGMENT DWORD USE32 PUBLIC ′ CONST′
CONST32 ENDS
BSS32 SEGMENT DWORD USE32 PUBLIC ′ BSS′
BSS32 ENDS
DGROUP GROUP CONST32, BSS32, DATA32

ASSUME CS:FLAT, DS:FLAT, SS:FLAT, ES:FLAT
EXTRN DosAllocMem:PROC
EXTRN _printfieee:PROC
EXTRN _DosFlatToSel:PROC
EXTRN _DosSelToFlat:PROC
EXTRN _exeentry:PROC

DATA32 SEGMENT
@STAT1 DB ″non-zero return code fro″
DB ″m DosAllocMem=%d″,0aH,0H

ALIGN 04H
@STAT2 DB ″there are %u primes less″
DB ″ than 65536″,0aH,0H

ALIGN 04H
@STAT3 DB ″%6u ″,0H
@STAT4 DB 0aH,0H

DD _exeentry
DATA32 ENDS
BSS32 SEGMENT
BSS32 ENDS
CONST32 SEGMENT
CONST32 ENDS
CODE32 SEGMENT

;***** 9 int gen(int *prime)
ALIGN 04H

PUBLIC gen
gen PROC

PUSH EBP
MOV EBP,ESP
PUSH EBX
PUSH ESI
PUSH EDI
MOV [EBP+08H],EAX; prime

;***** 11 int ix,l=2,ll=25,npr=3,q,t,tp=2,tt;
MOV DWORD PTR [EBP-018H],019H; ll
MOV DWORD PTR [EBP-014H],03H; npr
MOV DWORD PTR [EBP-010H],02H; tp
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;***** 12 prime[0]=2;
MOV DWORD PTR [EAX],02H

;***** 13 prime[1]=3;
MOV DWORD PTR [EAX+04H],03H

;***** 14 prime[2]=5;
MOV DWORD PTR [EAX+08H],05H

;***** 15 for ( t=7 ; t<65530 ; t+=tp )
MOV ECX,[EBP-01cH]; ix
MOV EBX,07H
MOV EDI,02H
ALIGN 04H

FELB6:

;***** 16 {
;***** 17 tp=6-tp;

MOV EDX,[EBP-010H]; tp
NEG EDX
ADD EDX,06H
MOV [EBP-010H],EDX; tp

;***** 18 if ( ll<=t )
CMP [EBP-018H],EBX; ll
JG FELB7

;***** 19 {
;***** 20 l++;

INC EDI
;***** 21 ll=prime[l]*prime[l];

MOV EDX,DWORD PTR [EAX+EDI*04H]
IMUL EDX,EDX
MOV [EBP-018H],EDX; ll

;***** 22 }
FELB7:

;***** 23 for ( ix=2 ; ix<l ; ix++ )
MOV ECX,02H
CMP EDI,02H
JLE FELB8
ALIGN 04H

FELB9:
MOV [EBP-020H],EDI; @CBE17
MOV ESI,EAX

;***** 24 {
;***** 25 q=t/prime[ix];
;***** 26 tt=q*prime[ix];
;***** 27 if ( t==tt ) break;

MOV EDI,DWORD PTR [ESI+ECX*04H]
MOV EAX,EBX
CDQ
IDIV EDI
MOV EDX,EDI
MOV EDI,[EBP-020H]; @CBE17
XCHG ESI,EAX
IMUL EDX,ESI
CMP EDX,EBX
JE FELB8
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;***** 28 }
INC ECX
CMP ECX,EDI
JL FELB9

FELB8:

;***** 29 if ( l==ix ) prime[npr++]=t;
CMP EDI,ECX
JNE FELB12
MOV EDX,[EBP-014H]; npr
MOV DWORD PTR [EAX+EDX*04H],EBX
INC EDX
MOV [EBP-014H],EDX; npr

FELB12:
MOV EDX,EBX

;***** 30 }
MOV EBX,[EBP-010H]; tp
ADD EBX,EDX
CMP EBX,0fffaH
JL FELB6

;***** 31 return npr;
MOV EAX,[EBP-014H]; npr
POP EDI
POP ESI
POP EBX
LEAVE
RET

gen ENDP

;***** 34 int main(int argc, char *argv[])
ALIGN 04H

PUBLIC main
main PROC

PUSH EBX
PUSH ESI
PUSH EDI
SUB ESP,0cH
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;***** 39 rc=DosAllocMem(&mem,16384,PAG_READ+PAG_WRITE+PAG_COMMIT);
PUSH 013H
PUSH 04000H
LEA ECX,[ESP+010H]; mem
PUSH ECX
MOV AL,03H
CALL DosAllocMem
ADD ESP,0cH

;***** 40 if ( rc ) return printf(″non-zero return code from DosAllocMem=%d\n″ ,rc);
OR EAX,EAX
JE FELB18
PUSH EAX
MOV EAX,OFFSET FLAT: @STAT1
SUB ESP,04H
CALL _printfieee
ADD ESP,014H
POP EDI
POP ESI
POP EBX
RET

FELB18:

;***** 41 last=gen(p=mem);
MOV EAX,[ESP+08H]; mem
MOV [ESP+04H],EAX; p
CALL gen
MOV ESI,EAX

;***** 42 printf(″there are %u primes less than 65536\n″ ,last);
PUSH ESI
MOV EAX,OFFSET FLAT: @STAT2
SUB ESP,04H
CALL _printfieee
MOV EAX,ESI
ADD ESP,08H

;***** 43 for ( ix=0 ; ix<last ; ix++ )
OR EAX,EAX
JLE FELB20
MOV EBX,EAX
MOV EDI,[ESP+04H]; p
XOR ESI,ESI
ALIGN 04H
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FELB21:

;***** 44 {
;***** 45 printf(″%6u ″ ,p[ix]);

PUSH DWORD PTR [EDI+ESI*04H]
MOV EAX,OFFSET FLAT: @STAT3
SUB ESP,04H
CALL _printfieee
ADD ESP,08H

;***** 46 if ( 9==(ix%10) ) printf(″\n″ ) ;
MOV EAX,ESI
MOV ECX,0aH
CDQ
IDIV ECX
CMP EDX,09H
JNE FELB22
MOV EAX,OFFSET FLAT: @STAT4
CALL _printfieee

FELB22:

;***** 47 }
INC ESI
CMP ESI,EBX
JL FELB21

FELB20:

;***** 48 return 0;
XOR EAX,EAX
ADD ESP,0cH
POP EDI
POP ESI
POP EBX
RET

main ENDP
CODE32 ENDS
END

5.3.6 Questions
Please answer the following questions, using the preceding listings:

 1. How large is segment 1 of DEMO.EXE? _____________

 2. What is the segment:offset of the ′bufprint′ routine? _____________

 3. What is the segment:offset of the symbol ′have_freed′ ? _____________

 4. Does DEMO.EXE call DosWrite? ______ How can you tell? _____________

 5. Which routine begins at address 0001:12E8? _____________

 6. How long is the routine named ′ terminate ′ ? _____________

 7. Which routine contains address 0001:1888? _____________

74 OS/2 Debugging 



 8. What is the program ′s entry point? _____________

 9. What is the name of the routine which has the entry? _____________

10. How far into this routine is the actual entry point? _____________

11. What is the first instruction mnemonic generated by line 28? _____________

12. What variable is in EAX when the return at line 31 executes? _____________

13. Offset 0124 in DEMO.C is in which C function? _____________

14. What variable name is used by the instruction at 0040? _____________

15. Where does the code for line 34 start? _____________

Note: In the .ASM file, the numbers in the assembler instructions are hex.
You can tell because they are suffixed with ′H′.

The assembler code generated has the variable name following each line
where it is referenced. This makes it easy to locate the variables, because
you simply use the address expression in the instruction.

16. Look at line 11. To what are the numbers -18, -14, -10 relative?

 ___________________

17. Look at the code generated for line 15.

Where will the variable ′ t′ be found? __________________

18. If a failure were to occur in routine ′gen ′, what command would you use to
display only the variable ′npr ′ ? DD _____________

19. How would you display the variable ′ t′ ? DD _____________

20. Is the variable ′ l′ in ′gen ′ at the same location as the variable ′ ix′ in main?
Yes / No Explain. __________________________________
_______________________________________________________________________
_______________________________________________________________________
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5.4 Exercise 5: Unwinding a 16-Bit Stack
Objectives:

 1. To learn how to unwind a stack. This is how to find the call ing hierarchy
which existed at some particular point, such as at the point of failure.

 2. To learn how to mine information from the stack frames.

Normally, every routine which has not returned to its caller will have a stack
frame. Each stack frame normally contains the parameters passed to a routine,
the return address for the routine, and the data which is local for that routine.

Start the dump formatter just as before, on the same dump by typing (X is the
CD-ROM drive)
X:HANDS-ON8162.DFDF_RET X:DUMPS.162DUMP01.DMP

Questions:

 1. The convention states that BP or EBP wil l point to the current stack frame.
SP will point to the lowest address which is in use.

Therefore, note the initial values for SP _______ and BP ________. Since SS
is the selector that defines the stack, note which it is. Some analysts also
note the limit of the SS descriptor, because that value bounds the range of
both SP and BP.

SS ________ SSLIM _______

 2. Display the current stack frame using DW SS:BP. This wil l show you only part
of the frame, but most analysts do this because it makes following the chain
so easy.

The first word is the offset, or near address, of the next frame. The second
word is the offset part of the return address. If the call was a far call, the
return must also be a far call. If this is the case, the third word is the
selector part of the return address.

next stack frame ________ return offset ________ selector ________

 3. Some number of words following the return address are the parameters
passed. There is no way to know for certain how many parameters there
are, unless you know how both the caller and the routine are written.
Analysts typically write down a few words, as convenient.

parameter word# 1 ________ 2 ________ 3 ________ 4 ________

 4. At this point we have gleaned what we can from this frame. Now you need
to repeat the process for the rest of the stack frames.

Many analysts will follow the entire chain of stack frames before going to the
system or application documentation to find the names of the routines involved,
and the line numbers. Others choose to go back and forth, and put in the
routine names and line numbers for each frame as they go.
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The application documentation will tell you where variables are stored.
Remember that each routine uses its own stack frame, so be certain to use the
numeric value rather than the register name ′BP′ to look at local data for
routines other than the failing one.

If you display from SP to BP-2, or ESP to EBP-4, you will see the entire local data
for the routine using the current stack frame. This can be quite nice for locating
the individual variables.

Find the routine which failed by looking at the .MAP file.

Find the line number that failed by looking next at the .COD file.

The following variables are involved in the failure: ′npr ′ and ′ t′. their locations
can be found in the .COD file.

Find the location of npr,________ then display its value ________

Find the location of t,________ then display its value ________

You may want to look at the call to the failing routine, before going away to find
the programmer.
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5.5 Exercise 6: Unwinding a 32-Bit Stack
Objectives:

 1. To learn how to unwind a stack. This is how to find the call ing hierarchy
which existed at the point of failure.

 2. To learn how to mine information from the stack frames.

Normally, every routine which has not returned to its caller will have a stack
frame. Each stack frame normally contains the parameters passed to a routine,
the return address for the routine, and the data which is local for that routine.

Start the dump formatter by typing (X is the CD-ROM drive)
X:HANDS-ON8162.DFDF_RET X:DUMPS.162DUMP04.DMP

Questions:

 1. The convention states that BP or EBP wil l point to the current stack frame.
ESP will point to the lowest address which is in use.

Therefore, note the initial values for ESP _______ and EBP ________. Since
SS is the selector that defines the stack, note which it is.

SS ________ SSLIM _______ (not generally useful when SS is 53)

 2. Display the current stack frame using DD SS:EBP. This wil l show you only
part of the frame, but most analysts do this because it makes following the
chain so easy.

The first doubleword is the offset, or near address, of the next frame. The
second doubleword is the offset part of the return address. If the call was a
far call, the return must also be a far call. If this is the case, the third
doubleword is the selector part of the return address.
It is rare for 32-bit programs to use FAR addresses.

next stack frame ________ return offset ________

 3. Some number of doublewords following the return address are the
parameters passed. There is no way to know for certain how many
parameters there are, unless you know how both the caller and the routine
are written. Analysts typically write down a few doublewords, as convenient.

parameter doubleword# 1 ________ 2 ________ 3 ________ 4 ________

 4. At this point we have gleaned what we can from this frame. Now you need
to repeat the process for the rest of the stack frames.
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eax=00080000 ebx=000097eb ecx=0000002d edx=00001000 esi=000000c5 edi=0000002d
eip=0001008e esp=000320c0 ebp=000320cc iopl=2 rf -- -- nv up ei pl zr na pe nc
cs=005b ss=0053 ds=0053 es=0053 fs=150b gs=0000 cr2=00000000 cr3=001a7000
005b:0001008e 891c90 mov dword ptr [eax+edx*27],ebx ds:00084000=invalid

DD SS:ESP EBP-4
0053:000320c0 00000000 00000000 00000000

DD SS:EBP L18
0053:000320cc 000320f8 000100f2 00080000 00080000
0053:000320dc 00080000 00000000 00000000 00000000
0053:000320ec 00010f8e 00000001 00070010 00000000
0053:000320fc 1bfbbf68 0000036d 00000000 00040000
0053:0003210c 0004030b 00000000 00000000 00000000
0053:0003211c 00000000 00000000 00000000 00000000

DD 330F8 L 10
0053:000320f8 00000000 1bfbbf68 0000036d 00000000
0053:00032108 00040000 0004030b 00000000 00000000
0053:00032118 00000000 00000000 00000000 00000000
0053:00032128 00000000 00000000 00000000 00000000

The first parameter passed by OS/2 is the load module handle.

.LMO 36D
hmte=036d pmte=%ff652c6c mflags=00903150 c:\pmg\classes\labs\lab4\demo.exe
obj vsize vbase flags ipagemap cpagemap hob sel
0001 00001a98 00010000 80002025 00000001 00000002 0361 000f r-x shr big
0002 0000006c 00020000 80002003 00000003 00000001 0000 0017 rw- big
0003 00002110 00030000 80002003 00000004 00000001 0000 001f rw- big

Wonder what the 00040000 and 0004030B are? Display them to see!

DB %40000
%00040000 57 50 5f 4f 42 4a 48 41-4e 44 4c 45 3d 31 33 32 WP_OBJHANDLE=132
%00040010 37 33 39 00 41 55 54 4f-53 54 41 52 54 3d 50 52 739.AUTOSTART=PR
%00040020 4f 47 52 41 4d 53 2c 54-41 53 4b 4c 49 53 54 2c OGRAMS,TASKLIST,
%00040030 46 4f 4c 44 45 52 53 2c-4c 41 55 4e 43 48 50 41 FOLDERS,LAUNCHPA
%00040040 44 00 42 4f 4f 4b 53 48-45 4c 46 3d 43 3a 5c 4f D.BOOKSHELF=C:\O
%00040050 53 32 5c 42 4f 4f 4b 3b-00 43 4f 4d 53 50 45 43 S2\BOOK;.COMSPEC
%00040060 3d 43 3a 5c 4f 53 32 5c-43 4d 44 2e 45 58 45 00 =C:\OS2\CMD.EXE.
%00040070 44 50 41 54 48 3d 43 3a-5c 50 4d 47 5c 4f 53 32 DPATH=C:\PMG\OS2

DB %4030B L 20
%0004030b 4c 41 42 34 5c 44 45 4d-4f 00 00 55 f0 8b c7 e8 LAB4\DEMO..Up.Gh
%0004031b d5 1d 01 00 ff 75 e8 e8-19 1e 01 00 83 c4 14 89 U....uhh.....D..
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Frame at Next Frame at Return address parameters:

__________ __________ _______________ ________ ________ ________ ________

Frame at Next Frame at Return address parameters:

__________ __________ _______________ ________ ________ ________ ________

Frame at Next Frame at Return address parameters:

__________ __________ _______________ ________ ________ ________ ________

Many analysts will follow the entire chain of stack frames before going to the
system or application documentation to find the names of the routines involved,
and the line numbers. Others choose to go back and forth, and put in the
routine names and line numbers for each frame as they go.

The application documentation will tell you where variables are stored.
Remember that each routine uses its own stack frame, so be certain to use the
numeric value rather than the register name BP to look at local data for routines
other than the failing one.

If you display from ESP to EBP-2, or ESP to EBP-4, you will see the entire local
data for the routine using the current stack frame. This can be quite nice for
locating the individual variables.

Find the routine which failed by looking at the .MAP file.

Find the line number that failed by looking again at the .MAP file.

The following variables are involved in the failure: ′npr ′ and ′ t′. Their locations
can be found in the .ASM file.

Find the location of npr,________ then display its value ________

Find the location of t,________ then display its value ________ Hint: t has been
optimized, and is in a register.

You may want to look at the call to the failing routine, before going away to find
the programmer.
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5.6 Requesting Kernel Services
If CALL targets a less privileged CS, or RET (RETURN) a more privileged CS, a
general protection exception occurs by definition; a trusted program cannot
directly invoke a less trusted one.

If CALL targets a more privileged CS, a general protection exception occurs
because a less privileged program cannot access a more privileged object (code
segment).
It is impossible to directly call a code segment which is a different privilege level
than the caller.
It is possible to indirectly call a more privileged code segment.

5.6.1 The Task State Segment (TSS)
This hardware control block is used to control hardware multitasking, I/O access,
and privilege transitions.

5.6.1.1 How to Find the TSS
There is a selector register named the task register (TR). This register has a
GDT selector that chooses a descriptor whose type is TSS. This descriptor
contains the base and limit for the TSS.
The fields from offset 4 to 1F are not changed by the hardware.

Table 1. Task State Segment Format

Offset(size) Content Offset(size) Content

00(2) link - previous tss selector
04(4) Ring 0 ESP 08(2) Ring 0 SS
0C(4) Ring 1 ESP 10(2) Ring 1 SS
14(4) Ring 2 ESP 18(2) Ring 2 SS
1C(4) CR3. 20(4) EIP
24(4) EFLAGS 28(4) EAX
2C(4) ECX 30(4) EDX
34(4) EBX 38(4) ESP
3C(4) EBP 40(4) ESI
44(4) EDI
48(2) ES 4C(2) CS
50(2) SS 54(2) DS
58(2) FS 5C(2) GS
60(2) LDT selector

5.6.2 The Call Gate
This section gives an explanation of what a call gate provides, and how it works.

5.6.2.1 Why Have a Call Gate?
The CALL GATE is the mechanism by which an application requests services
from the operating system. Integrity has several requirements which are not
immediately obvious to most people.

 1. The caller must be forced to use a designed entry point to prevent entry at
an arbitrary location; for example, at a point after the parameters have been
validated. This might cause the operating system to violate its own integrity
or that of another application.
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 2. The parameters, as well as the rest of the stack, must be protected from the
application while in use by the operating system to prevent changes by
another thread in that application.

 3. The return address must be protected from the application while the
operating system is running to prevent other threads of the application from
altering it in a way that would cause a return to the application in a
privileged mode.

Note: A CALL GATE implements all of the above requirements.

Note: A CALL GATE is a system descriptor which describes an entry point in a
more privileged program which is accessible to less privileged programs.

5.6.3 Another View
A Gate is a service window which describes the entry point of the gate and what
size package is passed into the more protected ring.

┌───────────────────────────────────────────────┐
│ RING 3 │
│ ┌───────────────────\ ──────────────┐ │
│ │ \ <────Gate │ │
│ │ RING 2 \ │ │
│ │ ┌──────\ ─────────────────┐ │ │
│ │ │ \ <────Gate │ │ │
│ │ │ \ │ │ │
│ │ │ RING 0 │ │ │
│ │ │ │ │ │
│ │ │ │ │ │
│ │ └──────────────────────────┘ │ │
│ │ │ │
│ └────────────────────────────────────┘ │
│ │
└───────────────────────────────────────────────┘

5.6.4 Call Gate Contents
CALL GATE

┌───────────────────────┐
 │ PL of Gate │ Can I see this gate?
 ├───────────────────────┤
 │ CS of entry │ Where is the entry?
 ├───────────────────────┤
 │ EIP of entry │ Where is the entry?
 ├───────────────────────┤
 │ Parm Count │ What gets passed?
│ WC or DWC │
└───────────────────────┘

A Descriptor

Note: Observe that the privilege level of the gate controls which privilege level
programs can access the gate; the target privilege level is contained in the entry
point CS value.
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5.6.4.1 Call Gate Overview
When a FAR CALL contains a target code selector (CS) which is a CALL GATE,
the processor ignores the offset (IP) contained in the instruction and gets the
true target CS and offset (IP) from the CALL GATE. In addition, if the call is to a
more privileged program, the processor locates a fresh stack for it to use, stores
the current stack selector and stack pointer in the new, more privileged stack,
copies the parameters from the old stack to the new one, and finally saves the
return information in the new stack. All this happens during the execution of the
call instruction.

Briefly, when the return occurs, all this gets undone.

5.6.4.2 Call Gate Detail
From less to more privileged, for example, Ring 3 to Ring 0.

 1. Verify new stack wil l hold linkage data. If not, stack fault, error code 0.

 2. New SS, SP from TSS, based on PL of new CS.

 3. Old SS:SP copied to new stack.

 4. Parameters (up to 15 words or doublewords) copied from old to new stack.

 5. Former CS:IP copied to new stack; SP now points here.

 6. New CS, IP from Call Gate.

5.6.4.3 A Ring Transition Picture
The following is how the stacks look at entry to the more privileged program:

RING 3 STACK RING 0 STACK <-- INITIAL R0 ESP
┌───────────────┐ high ┌───────────────┐

 │ │ addresses │ SS │
 ├───────────────┤ ├───────────────┤
 │ P3 │ │ ESP │
 ├───────────────┤ ├───────────────┤
 │ P2 │ │ P3 │
 ├───────────────┤ ├───────────────┤
 │ P1 │ │ P2 │
 ├───────────────┤ ├───────────────┤
 │ P0 │ │ P1 │
 ├───────────────┤ ├───────────────┤
 │ │ │ P0 │
 ├───────────────┤ ├───────────────┤
 │ │ │ CS │
 ├───────────────┤ ├───────────────┤
 │ │ │ EIP │
 ├───────────────┤ ├───────────────┤
│ │ low │ │

addresses
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 Notes 

There is no return address on the less privileged stack.

The two items at the top of the more privileged stack are the less privileged
SS and ESP.

Subtract 8 from the SP value found in the TSS to find where the less
privileged ESP and SS are stored. The values in the TSS are initial values,
not the address of the first item pushed.

A trap C in Ring 0 is usually a double fault.

When the processor detects a Stack Exception it needs to push an error code
and a return address onto the stack of the exception handler. If this happens in
Ring 0, there will be no privilege level transition, which includes switching to a
new, protected stack. If the exception is due to stack growth, there is no place
to push the error code or return address.

RESULT: TRAP 8

5.6.4.4 Return Detail
From more to less privileged, for example, Ring 0 to Ring 3.

 1. Verify that all steps below wil l work. If not, general protection fault.

 2. Pop IP, CS

 3. Add immediate value to old SP

 4. Pop SP, SS

 5. Add immediate value to new SP

 6. Zero every selector which has PL more privileged than the new CPL. This is
required to maintain integrity because access validation is done only when a
selector register is changed - not when it is used.
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5.7 Exercise 7: Looking at a Ring Transition
Objectives:

 1. Introduction

To review previous knowledge of analyzing traps

To begin getting familiar with the debug kernel

To learn how to identify the API targeted by a call gate

 2. Techniques

To learn about the PATCH program

To learn about getting control when a module is loaded

 3. Finding the TSS and the privileged stacks

To learn when you may need to find the TSS

To learn how to find the TSS

To learn how to find privileged stacks

 4. Watching a ring transition

Look at the ring 0 stack before

Look at the ring 3 stack before

Actually execute a far call from ring 3 to ring 0.

Look at both stacks afterwards.

5.7.1 Part 1: Introduction to the Debug Kernel
Procedures:

Introduction

 1. Change to directory HANDS-ONPROBLEMS.LABLAB09

 2. Execute OSPREY, see the failure, and the trap screen.

At the failure, record CS:EIP from the trap screen.

CS _________ EIP _____________

At this point, it is too late to cause a dump. Dismiss the trap screen.

We will refer to the system on which the problem occurs at the Machine
Under Test, or the MUT. The MUT is connected via a null modem cable to
an adjacent machine, which we will call the debug terminal. Most of the
debugging actions will occur from the debug terminal, on which we will run a
public domain terminal emulation program, LOGICOMM. If you like
LOGICOMM and intend to use it frequently, you should register it, which will
also get you an improved version.

Let′s use the debug kernel for the first time. First, we need to get its
attention. The way to do this is to enter Ctrl-C on the debug terminal, after
starting LOGICOMM. The debug kernel defaults to settings

9600, N , 8, 1

 3. Start LOGICOMM on the debug terminal, then type Ctrl-C.

The default response of the debug kernel is the registers at whatever point
OS/2 was interrupted by the Ctrl-C. This is not generally very useful. We
need to get control where we want it, not at a random place.
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 4. Enter the command VSF*

This tells the debug kernel that you want control on any interrupt which may
be Fatal to a thread. The ′F′ is for fatal, the ′*′ is for ′any′.

Enter the command G(Go), so OS/2 can continue.

 5. On the MUT, rerun OSPREY.

This time, you should get a group of lines on the debug terminal which tell
you that a fatal failure has occurred.

Enter the command DG CS You will find that this is in ring 0.

Before we look at ring 0, let us find where ring 3 called ring 0, and also
identify the API which was called.

Enter the command .R (the period is very significant!)

.R shows you the ring 3 registers, whereas R shows you the current ones.

CS=__________ EIP=_____________ Does this match the trap screen?

eax=00000000 ebx=0000405c ecx=00000000 edx=00000001 esi=00000000 edi=000016b0
eip=00001bc3 esp=000011e4 ebp=0000120e iopl=2 -- -- -- nv up ei pl zr na pe nc
cs=000f ss=001f ds=001f es=001f fs=150b gs=0000 cr2=00000000 cr3=001a7000
000f:00001bc3 0bc0 or ax,ax

We already know this instruction did not trap; the trap is in ring 0.

 6. If we unassemble prior to 000f:1bc3, we wil l find a far call.

...1BBE call ___________:0000

The instruction as hex data is _____ _____ _____ _____ _____

 7. If you inquire about the descriptor by entering DG and the selector, You
should see something similar to this

# DG 1xxx
1xxx CallG32 Sel:Off=0148:0000550a DPL=3 P DWC=7

Write down CS ______ EIP__________ DPL________ DWC________

If you enter the LN command with the values of CS and EIP from the call
gate, you will identify the API which is called via this gate.

 8. We know how to find parameters on the ring 3 stack, DW SS:SP

We can also find them on the ring 0 stack, but at this point, the kernel has
already manipulated some of the addresses, so there is not an exact match.
We need to get control at the point of the call at 1BBE.

 9. Enter the command GT which wil l GoThrough the trap.

5.7.2 Part 2: Some Techniques
Procedures to get control at a point other than a trap:

One approach is to use clever breakpoints within OS/2.

Stopping at the first executable instruction of a program

 1. We wil l make use of a couple of breakpoint commands

This command tells the debug kernel that we want control on the debug
terminal at some specific point. The problem is that the place where we
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would like to get control is not loaded into memory until we run the program,
and it is difficult at best to type Ctrl-C at just the right time.

 2. The initial breakpoint uses the fact that almost all programs use the
DOSCALL1 DLL, which appears to have instance initialization.

Enter the command BP DosLibIDisp,′ . p*′

The content of the quoted string is the command to execute when we arrive
at the breakpoint. This will assure us that we are in the correct context,
because the output of ′.p′ includes the module name.

Let the MUT run, and execute OSPREY once again.

You will probably get control in the context of OSPREY. If not, issue G again
a time or two until you are.

 3. At this point, OSPREY has been loaded, so we can set a breakpoint.

If you simply try the command BP 0F:1BBE you will discover that the page is
not yet loaded.

There are two ways around this problem.

a. Use a register breakpoint, BR E,0F:1BBE

b. Cause OS/2 to bring the page in with .I 0F:1BBE

Then reenter the BP command from above.

 4. However, this is ′cheating′ because we already knew where to stop.

To find the address of the first instruction at this point, enter the command
.M 0F:0 Find the MTE handle, hmte.

Issue the .LMO command with the HMTE as the parameter.

Alternatively, try .LMO ′ OSPREY′  which works sometimes.

The output of the .LMO command includes the linear address of the MTE.

Display the MTE as doublewords, and get the address of the SMTE from the
output; it is in the second doubleword.

Display the SMTE as doublewords, and you can find the entry point in the
second and third words displayed.

Now you can set a breakpoint at the entry to any module.

The PATCH program

 1. On the MUT, execute the EXEHDR utility against OSPREY.EXE.

EXEHDR is distributed with the developers′ toolkit.

The output will provide you information you need to patch a program
successfully. The last part of the output should look like
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Module: OSPREY
Description: OSPREY.EXE
Data: NONSHARED
Initial CS:IP: seg 1 offset 0088
Initial SS:SP: seg 3 offset 0000
Extra stack allocation: 0a00 bytes
DGROUP: seg 3

no. type address file mem flags
1 CODE 00000200 0247d 0247e
2 DATA 00000000 00000 00200
3 DATA 00002800 007cb 00960

There are two things we will need in this listing.

 2. The entry point, or initial CS:IP is _________:________

 3. The location in the file where that segment begins _________

The columns labelled ′ file′ and ′mem ′ are the sizes of the segment in the
file, and in memory. The difference is due to un-initialized data, which is not
stored, saving space and reducing program load time.

To find the location of an instruction in the file, add the offset to the file
address.

 4. To get control, we will replace a byte with the hex value ′CC′, which is a
special one-byte instruction, Int 3, or BreakPoint.

 5. We wil l patch the call instruction at 1BBE.

Add the offset, 1BBE to the file address 0200 _________

If you cannot add hex, get the debug kernel′s attention, and then type in ?
1BBE+0200 ? is a general purpose evaluation command.

 6. We now know where we want to patch the program. Let′s do it.

On the MUT, enter the command PATCH OSPREY.EXE

The patch address was calculated above; enter it.

The byte you are about to replace is hex ______

Type CC then press enter, and complete the confirmations.

We have now patched the program.

 7. Execute the program on the MUT; you get control at the INT 3.

We need to put back the hex data which was originally there, so as not to
introduce another problem. We will use the enter command.

Type the command E CS:IP

You will see the ′CC′, type the original data value and press enter.

Type the command .R and you should see the original far call.

 8. This is one way to get control.

It has problems if the MUT is not where you can touch it.

Type the commands G then GT to let OSPREY finish.

 9. Patch OSPREY back to its original content if you wish.
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5.7.3 Part 3: Finding the TSS
It is relatively simple to find and display this critical control block which is used
by the hardware for ring transitions.

 1. Get the debug kernel ′s attention, so you can display data.

 2. The TSS is located via the Task Register (TR), which is a selector.

You can find the value in TR by entering ? TR

Entering RT toggles register terse mode. Try R before and after entering RT.
You can look for TR in the output.

You really do not want TR, but the TSS, which is at TR:0.

 3. Enter

DD TR:0 to display the TSS as doublewords

DT TR:0 to format the TSS.

 4. The first doubleword is the link field.

It indicates which TSS called this one through a task gate.

The next two doublewords are the ESP and SS for entry to ring 0.

The next pair of doublewords are unused by OS/2; they would have the ESP
and SS for entry into ring 1.

The next pair of doublewords are the ESP and SS for entry to ring 2.

 5. To display the stack used at entry to ring 0,

Use the DD command with the SS and ESP values from the TSS; BUT Stacks
grow downward, so put -80 after the ESP value. 80 is the number of bytes
displayed by default; this will show you the top of the stack for ring 0, with
the saved SS value as the last item shown.

5.7.4 Part 4: Watching a Ring Transition
We will watch a ring transition by stopping on an instruction which we know
causes a ring transition, display both stacks, then single step the instruction, and
look at both stacks again.

Get control in OSPREY so that the next instruction is at 0F:1BBE.

 1. Display the call gate by using DG and the selector from the call.

Write down the target CS______ EIP____________ DWC_____ PL____

 2. Display the ring 3 stack as WORDS

so you can see as many DOUBLEWORDS as are passed through the gate.

Display the ring 0 stack as words, too. It is technically incorrect to do this,
but for the purposes of this exercise, it makes things easy.

 3. Use the command T to execute the call instruction.

Now, again display the ring 0 stack as words again.

 4. Compare the ring 0 content now with the content of the ring 3 stack.

Do not overlook the ring 3 SS and ESP at the top of the ring 0 stack.

Do not overlook the return address in the ring 0 stack, following the
parameters which were copied by the hardware as it executed the call.
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 5. TIMESAVER:

If you know what API will be called, you can simply set the breakpoint at the
API, by using its name. A side effect is that every thread which calls the API
will stop, so you may want to use something like ′.p*′ as the command to
execute at the breakpoint, which makes it easy to see when the thread of
interest is there.

This lab is now complete. However, if you let it run to the failing instruction, you
will find an additional detail about this API, namely that because only 13 words
were pushed, and 7 doublewords are needed to get them all copied into the ring
0 stack, there is one more detail we can see, namely how the difference (two
bytes) is handled.

If you display the ring 0 stack once again, it has been changed!

The return will need to add enough to the ring 0 stack pointer that it can find the
ring 3 stack successfully; this is also what is added to the ring 3 stack pointer,
because both stacks must be cleaned up. In order that this not be destructive of
what is already on the ring 3 stack, the ring 0 entry code has adjusted the saved
ring 3 ESP downward by 2 before the trap occurs. This is an example of some of
the work that has been done within the ring 0 stack by the privileged code.
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5.8 Exercise 8: Identifying the Owner of Storage
Objectives:

 1. To learn how to find out where a part of storage originated

 2. To learn how to find out what module contains it, if not dynamically acquired

Every piece of storage has an owner. Storage owned by OS/2 may not have all
the storage accounting information which is kept for storage used by
applications. The most common clue that this situation has occurred is the
presence of the UVirt flag (bit 52) in the descriptor. The next most common clue
is that the procedure below may fail if complete storage accounting has not been
done.

Within OS/2, handles are used extensively. Generally, a handle is nothing more
than an index into some table or other. For diagnostic purposes, one can treat it
as a magic number that can be used as an operand on certain commands.

The initial objective is to find the module table entry which the loader built when
the module was loaded. This will relate storage to the far addresses in the link
map.

The procedure is slightly different for private and shared storage.

With practice, one learns quickly what selectors are likely to be private, and
which are likely to be shared. Refer to the address space picture which appears
earlier, to refresh your memory about private and shared storage.

One way to tell is to display the entire LDT (using DL), and to look for the gap
between low numbered and high numbered selectors.

If the address is private, there will likely be many processes that define the
address, and the data is likely different for each. You will need to find which
process is the one you want.

The dump formatter command .I will show you not only the handle of the
module table entry for the executable which caused this process to exist, but
also will show you the handle of the ′PTDA′, which is the key control block
for a process.

The command usually used to identify storage is the .M command.

If issued with a shared address, the output has the handle of the module
table entry. If issued for a private address, you get a set of output lines for
every process which contains the address. In this case, you will need to use
the hPTDA, or PTDA handle from the .I command to determine which set of
output lines to use.

Once you have the handle of the module table entry, issue the command
.LMO <handle>

The command will not only give you the full path name of the module, but
will also format a table which has a column (toward the right) titled ′sel′.
This is the selector assigned. The first line of output is for the first segment
in the link map, the second line is for the second segment, and so on. Thus,
you can convert the selector:offset in the dump to a segment:offset in the
correct link map.
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.I
PROCESS slot:23 Pid:0008 Ord:0001
PTDA handle=032e address=%ad6d97f0
MTE handle=0363 address=%ff666d4c (DEMO)
SMTE address=%fe14abe8
LDT handle=035c address=%ac6d7000
CODE: user (cs:eip)#000f:000000be cbargs=
STACKS: user (ss:esp)#001f:000014be(active)

ring2(ss:esp)#0036:00001000(bottom)
ring0 tcbframe=%fe023f58 bottom=%fe023f9c

.M CS:IP
*har par cpg va flg next prev link hash hob hal
 01f5 %ff821b18 00000010 %00010000 1c9 01f6 01f3 00fa 0000 0131 0000 hptda=0240
 00fa %ff820586 00000010 %00010000 1d9 0102 00f9 0000 0000 0131 0000 hptda=0117
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 0131 01f5 0000 0838 0132 0132 0000 00 00 00 00 shared c:pmshell.exe

*har par cpg va flg next prev link hash hob hal
 0177 %ff821044 00000010 %00010000 179 0178 0175 0000 0000 01be 0000 hptda=01b9
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 01be 0177 0000 002c 01b9 01bf 0000 00 00 00 00 UNKNOWN

*har par cpg va flg next prev link hash hob hal
 01f5 %ff821b18 00000010 %00010000 1c9 01f6 01f3 00fa 0000 0131 0000 hptda=0240
 00fa %ff820586 00000010 %00010000 1d9 0102 00f9 0000 0000 0131 0000 hptda=0117
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 0131 01f5 0000 0838 0132 0132 0000 00 00 00 00 shared c:pmshell.exe

*har par cpg va flg next prev link hash hob hal
 02b5 %ff822b98 00000010 %00010000 1d9 02b6 02b2 0000 0000 0322 0000 hptda=031c
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 0322 02b5 0000 0838 0327 0327 0000 00 00 00 00 shared c:cmd.exe

*har par cpg va flg next prev link hash hob hal
 02e6 %ff822fce 00000010 %00010000 1d9 02e7 02e5 0000 0000 0362 0000 hptda=032e
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 0362 02e6 0000 0838 0363 0363 0000 00 00 00 00 shared c:demo.exe

.LMO 363
hmte=0363 pmte=%ff666d4c mflags=00803142 c:\pmg\pete\demo16\demo.exe
seg sect psiz vsiz hob sel flags
0001 0001 2e78 2e78 0362 000f 2d20 code shr rel
0002 0000 0000 2910 0000 0017 0c01 data
0003 0019 0937 1560 0000 001f 0d01 data rel

Start the dump formatter by typing (X is the CD-ROM drive):
X:HANDS-ON8162.DFDF_RET X:&bslHANDS-ON\DUMPS.162\DUMP01.DMP

Procedure:

 1. Enter the command .I

The PDTA handle is __________, the module table entry handle is _________

 2. Enter the command .M CS:IP to identify Memory at CS:IP.

Which ′har ′ line is for our process? har=_________

What is the hmte value from this set of lines? hmte=______________
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Note: This is exactly what the .I command showed you, because this is what
the .I command does internally.

 3. Enter the command .LMO followed by the hmte value.

What is the full path name of the module that contains CS:IP?

_________________________________________________________

 4. What is the segment number which has been assigned selector 000F? ______

 5. What address would you look for in the link map to find CS:IP?

___________________________

 6. Now, repeat the same steps using the data in the next few displays. The
address of interest is DFDF:9324

 7. What is the privilege level of this segment? ________

 8. What is its size? ___________

 9. What is the command to identify memory at this address?
__________________

Issue it. The lines which start hco= are context records, which indicate all
of the contexts (processes) that can reference this address. It is extremely
likely to be a shared address.

10. Issue the .LMO command for the module table entry handle.

11. What module is this? Full path name is ______________________

12. Which segment in the module contains this address? _________

13. Therefore, in the .MAP file, the address will be ______:_______

DG DFDF
LDT
dfdf Code Bas=1bfb0000 Lim=0000d4ef DPL=2 P RE C A

.M DFDF:9324
*har par cpg va flg next prev link hash hob hal
 00b7 %ff81ffc4 00000010 %1bfb0000 3d9 0075 00b8 0000 00b4 00c5 0000 hco=0026c
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 00c5 00b7 0000 0838 00bf 00bf 0000 00 00 00 00 shared c:doscall1.dll
 hco=026c pco=ffe62c37 hconext=00184 hptda=032e f=1c pid=
 hco=0184 pco=ffe627af hconext=00014 hptda=031c f=1c pid=
 hco=0014 pco=ffe6207f hconext=00089 hptda=0240 f=1c pid=
 hco=0089 pco=ffe622c8 hconext=00021 hptda=01b9 f=1c pid=
 hco=0021 pco=ffe620c0 hconext=00000 hptda=0117 f=1c pid=

.LMO BF
hmte=00bf pmte=%ff66ef3c mflags=0498b594 c:\os2\dll\doscall1.dll
obj vsize vbase flags ipagemap cpagemap hob sel
0001 00000360 1bf80000 80009025 00000001 00000001 00c8 dfc6 r-x shr alias iopl
0002 0000aa30 1bf90000 80002025 00000002 0000000b 00c7 dfcf r-x shr big
0003 0000d519 1bfa0000 8000d025 0000000d 0000000e 00c6 dfd6 r-x shr alias conf iopl
0004 0000d4f0 1bfb0000 8000d025 0000001b 0000000e 00c5 dfde r-x shr alias conf iopl
0005 00001140 13f90000 80001023 00000029 00000002 00c4 9fcf rw- shr alias
0006 00001af0 13fa0000 80001003 0000002b 00000002 0000 9fd7 rw- alias
0007 00000e44 13fb0000 80001023 0000002d 00000001 00c2 9fdf rw- shr alias
0008 00000550 13fc0000 80001003 0000002e 00000001 0000 9fe7 rw- alias
0009 00001000 13fd0000 80001023 0000002f 00000000 00c0 9fef rw- shr alias
000a 00001000 13fe0000 80001023 0000002f 00000000 00be 9ff7 rw- shr alias
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Chapter 6. Steps to Diagnose a Trap

The intent of the following material is to illustrate a proven method for finding
the cause of a trap in an application program. By first learning how to solve the
simplest problems, one will have a much better basis for approaching more
difficult problems. Historically, problem solving skills have been largely
self-taught. Much can be learned by observing others solve problems. Many
problems can be solved quickly by using significant short-cuts and assumptions
and then verifying them. When a novice observes an experienced diagnostician,
the activities are difficult to understand, and may lead to the opinion that each
problem has its own special method for solution, which in turn leads to questions
about when to use which method.

The following process will lead you to the cause of a trap.

Remember to take notes as you proceed. This will help if you are interrupted,
and want to continue later, or if you need to explain to someone else what you
found, and what facts led you to a particular analysis of the situation. You can
obviously do this manually, but you can use a log file more easily. Just type ?
followed by whatever you wish to log. The tools will evaluate the string,
supplying the trailing quote, and show you the string, thus adding your thoughts
to the log.

 1. Locate the failing instruction.

If you cannot do this, you have no place to start. Most operating systems
will provide at least an excellent clue to the location of the failing instruction,
if not its exact address.

 2. Determine why the failing instruction wil l not execute.

A knowledge of hardware operation, or a reference manual kept handy, is
essential for this step. At the very worst, each of the possible exceptions
described in the manual can be eliminated one by one until the cause is
found.

Until you know why the instruction will not execute, you do not know what
went wrong at the machine level. Conversely, as soon as you do know, you
are prepared to begin the diagnosis of how things got into such a state.
Observe that this does not require knowledge of C, FORTRAN, COBOL,
SMALLTALK, etc. It requires only hardware knowledge.

 3. Analyze how the conditions for failure occurred. It may be that an address
calculation was done incorrectly, or that the failure was due to an invalid
parameter. If the former, you now need only to discover what program has
done this, and where in that program the error occurred. Skip the next two
steps.

 4. If an invalid parameter has been received, you must now update your notion
of the cause of the problem. You need to consider the call as the location of
the failure, and the specific parameter value as the reason why the called
routine did not execute.

 5. You must now analyze how the parameter was created, and where it came
from. Unwind one stack frame, and return to step 3.

 6. You now know what caused the problem, and now it is t ime to identify the
failing program, locate the failing line, find the value of the program′s
variables, and, in general, collect all the data the programmer would have
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had if the failure had occurred at his desk. This step is usually a mechanical
one.

Once this is done, go find the programmer, and turn over all you know about
the problem. Be prepared to continue helping, or to show the programmer
how to get additional information.
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Chapter 7. The OS/2 System Trace

The System Trace facility is used to record a sequence of system events,
function calls, or data in a fixed-size circular buffer as requested by calls to its
API′s. The buffer must be allocated during the processing of CONFIG.SYS.

If you have a TRACEBUF statement in CONFIG.SYS, a trace buffer is allocated,
allowing you to use the TRACE command successfully later.

If any valid TRACE statements are in CONFIG.SYS (including TRACE=OFF), a
trace buffer will be allocated for the default size of 4K, if TRACEBUF is not
specified. This means that the statement TRACE=OFF will actually enable
system tracing, which seems counter-intuitive to many people.

If you do not specify TRACE or TRACEBUF statements in CONFIG.SYS, OS/2
does not allocate a trace buffer and system tracing is disabled.

After the trace data is recorded, the trace formatter is used to retrieve the data
from the system trace buffer and present it on your display, and optionally, to
print it, or save it in a file.

7.1 TRACEBUF and TRACEFMT
TRACEBUF=x

TRACEBUF sets the size of the trace buffer in the CONFIG.SYS file.

The parameter x specifies a circular trace buffer size of up to 63K. If you have a
TRACEBUF statement without a TRACE statement in CONFIG.SYS, the trace
buffer size requested is specified and tracing is turned off (the same as if you
specify TRACE=OFF).

If you need to use the System Trace facility, use the largest size, if possible.
TRACEBUF=63

TRACEFMT displays formatted trace records in reverse time-stamp order. It is
intended to be used to format the trace data so that you can analyse the content
of the trace buffer. The most recent entry is displayed first. TRACEFMT
numbers each event as it is formatted. The event numbers are unrelated to the
trace data, and are useful when discussing a trace with someone else, for easy
reference to events.

TRACEFMT works without a filename only if you have a trace buffer defined in
the running system.

TRACEFMT works with a filename only if the file is a hex image of a trace buffer
from a system for which you have Trace Formatting Files. If the .TFF file is not
correct, the entries which are different will be formatted incorrectly with little or
no indication of an error.

The file is typically created by the dump formatter by using the command .TS
filename but TRACEFMT will also save the trace buffer in unformatted form. This
is much smaller than the formatted form.
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7.2 TRACE and TRACE Processing
The TRACE command is used to control the system trace.

Command line: CONFIG.SYS:

TRACE ON TRACE=ON
TRACE OFF TRACE=OFF

(you can specify only static TRACE in the CONFIG.SYS file).

The above is optionally followed by one or more major code specifications, or
one or more trace definition file specifications, or keywords. Next, you may
optionally specify one or more process identifiers. Finally, you may specify that
the trace buffer be cleared, and that trace activity be suspended, or resumed.

OS/2 processes trace statements in the order in which they appear from any
source. TRACE commands in CONFIG.SYS are processed in the order they
appear. The effects of the statements are cumulative for the duration of OS/2′s
execution. If any part of a statement is incorrect, OS/2 ignores the statement.

Process Id is specified by /P:nn,nn,nn (where nn is in hex)

Clearing the trace buffer is specified by using /C.

Resuming trace activity is specified by using /R.

Suspending trace activity is specified by using /S.

Major and minor event codes are associated with all trace events. Some of the
major codes are the following:

Machine Exceptions Major Code: 3

Hardware Interrupts Major Code: 4

Device Helper Routines Major Code: 6

Disk Device Driver Major Code: 7

Major codes may be specified by listing them separated by commas, or as a
range, for example, 2-7 specifies codes 2,3,4,5,6,7 Both methods may be
combined, as in 5,7,12-18,2,27-32,9

If you do not specify TRACE in CONFIG.SYS, event tracing is not started by
CONFIG.SYS processing, but may be started later if TRACEBUF has been
specified.

Records in the buffer are identified by major and minor codes. Some of the data
that may be recorded in the circular buffer includes system events such as
interrupts, exceptions, and thread switches.

OS/2 contains a mixture of static tracepoints and dynamic tracepoints.

Static tracepoints are implemented as trace function calls within individual
software modules. The TRACE command can be used to turn on and off static
tracepoints by specifying them by major code and, optionally, by minor code.
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Dynamic tracepoints are implemented by implanting an INT 3 instruction at the
specified location, and gathering data when the interrupt occurs.

7.3 TRACEFMT Processing
When the trace is complete, you can use the trace formatter (TRACEFMT) to
format the data into a report. This helps you to isolate causes of problems in the
OS/2 system by making the data in the trace buffer available for analysis.

7.4 Static and Dynamic Trace, and Files Used
Trace format files (.TFF) and trace definition files (.TDF)

Static tracing occurs when a program developer has coded an API call to the
system trace interface, which means you cannot specify at what point in the
program flow tracing occurs, nor can you control what data is collected.

Trace format files are used by TRACEFMT. They specify how the trace data
should be formatted. The filename implies which major code is described, and
TRACEFMT generates the filename for the .TFF file from the major code of the
event about to be formatted. If no description is found, or if the description does
not describe all of the trace entry, TRACEFMT defaults to hexadecimal bytes for
a default formatting. This will be covered in detail by hands-on exercises.

Trace definition files are used for dynamic tracing, and specifying one of them
requires you to name the .DLL involved, or KERNEL. You may optionally a type
or list of types and a group or list of groups. The .TDF file is used by TRACE to
define where to collect data, and what data to collect.

Dynamic tracing occurs when trace definition files (.TDF) are used by the TRACE
command. The implementation is that OS/2 inserts actual breakpoint
instructions at the specified locations, and collects the data specified when the
breakpoint is executed. There is no overhead for dynamic tracing when it is not
in use, and a technician can be very creative when defining where to collect
trace data, and what data to collect. We will create custom dynamic trace
entries during hands-on exercises.

The OS/2 static tracepoints do not have associated TDF files, but may have
associated TFF files that are used by the TRACEFMT.

7.5 Dynamic Trace Processing
Dynamic tracepoints are implemented as trace definition file (TDF) entries. The
TRACE command can be used to insert (and turn on) a dynamic tracepoint by
patching it into its corresponding software module. Dynamic tracepoints are
specified by the dynamic link library (DLL) filename and minor code.

Individual dynamic tracepoints can be qualified by separate type and group
qualifiers. These qualifiers exist so that you can more easily turn on and off sets
of related dynamic tracepoints. For example, all the dynamic tracepoints that
are associated with pre-invocation events might have a type of PRE. Similarly,
all the dynamic tracepoints that are involved in semaphore processing might
have a group of SEM. In the TRACE command syntax, group is considered to
have a stronger binding than type. This means that you can ask to turn on all
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events that are of a specified group that are also of one or more specified types.
You do not need to use these qualifiers; they are there simply to make it easier
to control related sets of dynamic tracepoints.

TDF files are typically found in the \OS2\SYSTEM\TRACE directory. They are
identified by .TDF file name extensions. There are also trace formatting files
(TFF) found within that directory. These files are used by the OS/2 Trace
Formatter (TRACEFMT) utility to format the entries that are logged within the
system trace buffer.

Commonly Used Abbreviations for OS/2 Groups and Types:

Groups Types
FS- file system API- application programming interface
KBD- keyboard I/O INT- internal
LDR- resource loader PRE - pre-processing invocation
LNK- environment management POST- post-processing invocation
MOU- mouse I/O
MSG- message management
MSP- virtual memory management
NLS- national language support
PIP- pipe support
SEL- selector-related
SEM- semaphore support
SIG- signal handling
TIM- timer support
TK - task management
TSK- monitor support
VIO- video I/O
VM - virtual memory management
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7.5.1 OS/2 Predefined Dynamic Trace Events
The file SYSTEM.TDF file supports dynamic tracing for the following:

TRACE ON KERNEL Major Code: 5 (decimal) 5 (hex)
Groups: FS, LDR, NLS, PIP, SEL, SEM, SIG, TIM, TK, VM
Types: PRE, POST, API, INT
Purpose: Tracepoint definitions for APIs in the OS/2 kernel

TRACE ON DOSCALL1 Major Code: 16 (decimal) 10 (hex)
Groups: FS, LDR, LNK, MSG, MSP, NLS, SEM, TSK
Types: PRE, POST, API
Purpose: Tracepoint definitions for APIs in DOSCALL1.DLL

TRACE ON QUECALLS Major Code: 22 (decimal) 16 (hex)
Groups: None
Types: API, PRE, POST, INT
Purpose: Tracepoint definitions for APIs in QUECALLS.DLL

TRACE ON SESMGR Major Code: 23 (decimal) 17 (hex)
Groups: None
Types: API, PRE, POST
Purpose: Tracepoint definitions for APIs in SESMGR.DLL

TRACE ON OS2CHAR Major Code: 24 (decimal) 18 (hex)
Groups: KBD, MOU, VIO
Types: API, PRE, POST
Purpose: Tracepoint definitions for APIs in OS2CHAR.DLL

TRACE ON PMSHAPI Major Code: 192 (decimal) C0 (hex)
Groups: None
Types: None
Purpose: Tracepoint definitions for APIs in PMSHAPI.DLL

TRACE ON PMWIN Major Code: 194 (decimal) C2 (hex)
Groups: None
Types: None
Purpose: Tracepoint definitions for APIs in PMWIN.DLL

TRACE ON PMGRE Major Code: 195 (decimal) C3 (hex)
Groups: None
Types: None
Purpose: Tracepoint definitions for APIs in PMGRE.DLL

TRACE ON PMGPI Major Code: 197 (decimal) C5 (hex)
Groups: None
Types: None
Purpose: Tracepoint definitions for APIs in PMGPI.DLL

The file SYSTEM.TFF file provides formatting information for OS/2 events.
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Chapter 8. TRCUST, the Dynamic Trace Customizer

OS/2 provides a mechanism by which developers may dynamically apply
tracepoints in their module at run time. This method eliminates all overhead of
tracing when tracing is disabled. It also allows the developer to add tracepoints
without modifying source code. This reduces the possibility that adding a
tracepoint will induce errors into one′s code. OS/2 needs a binary file, for each
module being dynamically traced, which defines the tracepoints for the module.

TRCUST converts tracepoint definitions from a trace source file (TSF) into
dynamic tracepoints for the trace definition file (TDF), and into formatting rules in
the trace format file (TFF).

---> .TDF ---> trace ( set tracepoints )
.TSF ---> trcust tracepoint data collected in buffer

---> .TFF ---> tracefmt formats data from the buffer
produces formatted output

.TSF An ASCII file created by a developer which defines all dynamic
tracepoints for a given module. TRCUST currently allows at most
only one major code per TSF.

.TDF A binary file, created by TRCUST, using the .TSF file as input.
This file defines all tracepoints in the module in a manner
acceptable to OS/2. This is used by the Trace Utility, TRACE.

.TFF A binary file also created by TRCUST using the .TSF file.
This file defines how all tracepoints will be formatted. This
is used by the Trace Formatter, TRACEFMT.

To trace a module do the following:

 1. Define the tracepoints and data to be traced in the TSF.

 2. Invoke the Trace Customizer using the TSF as input. This produces two files,
a TDF and a TFF.

 3. Put the TDF file in the current directory, a directory in the DPATH, or
\OS2\SYSTEM\TRACE.

 4. Invoke the OS/2 TRACE command using the name of the TDF instead of the
major code value. This activates the tracepoints, causing the trace data to be
saved in the system trace buffer.

 5. The OS/2 TRACE command can be used to turn tracing off at any time.

 6. Put the TFF file in the directory OS/2 uses, \OS2\SYSTEM\TRACE.

Many versions of TRACEFMT appear to search directories named in DPATH.

 7. To display the contents of the trace buffer, invoke TRACEFMT. TRACEFMT
uses the major code to determine the TFF file and uses the formatting string
corresponding to the minor code value to format the data in the RAS trace
buffer and output it to the screen, file or printer.
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8.1 File Naming Convention
The TDF file name is the same as the module to be traced, but has a file
extension of TDF. The TFF has a name of the form TRC00xx.TFF where xx is the
major code, for example, a module with major code 0xC2 will generate a TFF
with the name TRC00C2.TFF. This naming convention is used to allow TRACEFMT
to dynamically generate the TFF name given only the major code.

TRCUST can be invoked to process a TSF or to combine several TFF files into a
single TFF. For processing a TSF, TRCUST is given the name of a TSF, and
optionally the desired name of the resulting TDF, the MAP file name, and the
error message level.

For combining TFF files that use the same major code, TRCUST is given the
name of the file containing the TFF filenames to combine and the name of the file
to contain the combined trace format statements.

Combine TFF files when several modules that use dynamic tracing use the same
major code. The Trace formatter can only use one TFF file per major code to get
formatting information. After the TSF file for each module is run through
TRCUST to produce TDF and TFF files, TRCUST can be invoked again, this time
using the combine TFF files option and a file that only contains the paths to all
the TFF files using the same major code. TRCUST will read all the TFF files.
TRCUST will read each trace format record from the TFF files and write them in
ascending order according to minor code to the destination TFF file given.

TRCUST will store the TSF tracepoint formatting specifications in the TFF file and
if the tracepoint specified was for a dynamic tracepoint, the TSF tracepoint
definition will be converted into the format required by TRACE and stored in the
TDF file. On errors, TRCUST will display appropriate messages, skip any
tracepoint with errors in its definition, and continue processing the next
tracepoint definition.

TRCUST will issue an error message and abort processing under the following
conditions:

• The TSF cannot be opened.

• When combining TFF files, if any TFF input files cannot be read, or if all TFF
input files do not use the same major code.

• When defining dynamic tracepoints, if the executable module to contain the
tracepoints cannot be read.

• The TDF, or TFF files cannot be written to.

• An error in the header definition in the TSF.

• A missing ending quote in the TSF.

TRCUST always returns 0 so that, when invoking it from a makefile, processing
of the rest of the makefile can continue if TRCUST aborts.
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8.2 The Syntax for Processing a TSF File
The syntax for processing is as follows:

[d:] [path]TRCUST [d:] [path]tsf [[d:][path]tdf] [/M=mapfile] [/Wn]

where:

TRCUST
is the name of the Trace Customizer program. A drive and path may
optionally be specified to explicitly define the location of the
Trace Customizer program, otherwise the program is searched for in
the current directory, followed by looking along the path defined
by the PATH environment variable.

[d:][path].tsf
is the name of the trace source file. If no file extension is
provided then an extension of TSF is assumed. If no path is
provided the trace source file is searched for in the current
directory, followed by using the current value of DPATH.

[d:][path].tdf (optional)
is the name of the trace definition file to store the dynamic
tracepoint definitions. If not specified, the TSF filename is
used with an extension of TDF. If no file extension is provided
then an extension of TDF is assumed.

/M=mapfile (optional)
defines mapfile as the MAP file for this module. The name may be
qualified by a drive/directory, otherwise it will be searched for
in the current directory followed by the path specified by the
DPATH environment variable. If specified as an option, the MAP
file must exist and the filename extension must be MAP or TRCUST
will abort processing. The mapfile will only be used if a symbol
is not found in the symbolic debug information stored in the
executable module.

/Wn (optional)
is the level of error messages to be displayed. n is 0, 1, or 2.
A message level of 2 is the default. The possible message levels
are shown below along with the messages that each displays:

0 fatal and severe messages
1 fatal, severe, and error messages
2 all (fatal, severe, error, and warning) messages

8.3 The Syntax for Combining .TFF Files
The syntax for combining is as follows:

[d:] [path]TRCUST [d:] [path]tffsource /C=[d:][path]tffdest [/Wn]

where:

TRCUST
is the name of the Trace Customizer program. A drive and path may
optionally be specified to explicitly define the location of the
Trace Customizer program, otherwise the program is searched for
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in the current directory, followed by looking along the path
defined by the PATH environment variable.

[d:][path]tffsource
is the name of a file containing fully qualified pathnames of
TFF files including extensions to combine. Each TFF file must
use the same major code and each filename in the tffsource
file is separated by white space.
This will combine all TFF files for the same major code into a
single TFF file. If duplicate minor code format definitions are
found, the first format definition for the minor code remains
valid, the duplicates are discarded and a warning message is
issued. If no path is provided the tffsource file is searched for
in the current directory, followed by using the current DPATH.

[d:][path]tffdest
is the name of the trace format destination file to store the
combined trace format definitions.

/Wn (optional)
is the level of error messages to be displayed. n is 0, 1, or 2.
A message level of 2 is the default. The possible message levels
are shown below along with the messages that each displays:

0 fatal and severe messages
1 fatal, severe, and error messages
2 all (fatal, severe, error, and warning) messages
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Chapter 9. The Layout of a Trace Source File

The layout of a trace source file is:

Header

Type List Definition
Group List Definition

(both optional)

Tracepoint Definitions

This section details the statements that can appear within a trace source file.

[...] denotes optional items.
[... | ... | ...] denotes a list of optional items, zero or more of

which may be chosen.
{... | ... | ...} denotes a list of items of which ONE must be chosen.
item... denotes that item is repeated zero or more times.
statement,..... denotes this example is incomplete.
nnn is a number in the range 0-255 inclusive.
nnnnn is a number in the range 0-65535 inclusive.
All numbers and values can be entered in decimal form or
in C hexadecimal form (0x....).

Comments may be freely inserted anywhere in the trace source file. A comment
is identified by a ′;′ or by using C syntax comments anywhere in the file.
A C comment has start and end delimiters, namely /* and */.
C type comments may span lines, and may be nested.

9.1 The Trace Source File Header
Examples of TRACE statements in the header are given as follows:

The TSF header defines common information for the module to be traced.
The format is:

MODNAME = [d:][path]Name
MAJOR = nnn

[MAXDATALENGTH = nnnn]

where:

d: is the drive containing the module. If not specified the current drive is used.

path is the path to the module. If not specified the current path is used.
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Name is the name of the executable module to be traced. If an extension is not
specified and the Name is not OS2KRNL, an extension of DLL is appended to
Name.

MAJOR=nnn defines the major trace ID allocated to this module. It may be in the
range 1 to 255 decimal or specified 0x1 to 0xFF hex. The default value is 1. The
major trace ID is part of the data placed in the trace buffer when a tracepoint is
executed. Only one major code is permitted per module.

Note: OS/2 only supports major codes 0x1 - 0x00FF.

MAXDATALENGTH=nnnn (optional) defines the maximum amount of data that a single
tracepoint call will insert into the trace buffer. The length may be in the range 20
to 512 decimal or specified 0x14 to 0x200 hex. The default value is 512. This
limit on the amount of data to trace is to avoid yielding the processor when
doing dynamic tracing.
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9.2 TYPELIST and GROUPLIST Statements
Both the TYPELIST and the GROUPLIST statements are optional.

If you want to be able to control sets of tracepoints by type, or by group, you
must list the names you plan to use in a TYPELIST or GROUPLIST statement.
Failure to have the name in the appropriate LIST will result in an error when
processing the tracepoint, and that tracepoint not be defined.

TYPELIST
NAME=Typename
defines a 1-8 byte character string used to reference the TypeValue
in the tracepoint definitions. All TypeNames and GroupNames within
a TSF must be unique.

ID=TypeValue
defines a bit value of the form 2**y where y in range 0 to 15,
permitting a maximum of 16 types to be defined in a single TSF.
This can be decimal or specified 0xnnnn for hex.

An example TYPELIST definition follows:

TYPELIST NAME=PRE,ID=1,
[NAME=SYS,ID=0x40,]
[NAME=API,ID=128,]
[NAME=POST,ID=0x8000,... ]

GROUPLIST

NAME=GroupName
defines a 1-8 byte character string used to reference the
GroupValue in the tracepoint definitions. There are a maximum of
48 GroupNames allowed in a TSF file. All TypeNames and GroupNames
within a TSF must be unique.

ID=GroupValue
defines a word value in the range 1 to 65535 or 0x1 to 0xFFFF hex.

An example GROUPLIST definition follows:

GROUPLIST NAME=MEM,ID=2,
[NAME=FS,ID=0x5,]
[NAME=MOU,ID=13,... ]

Chapter 9. The Layout of a Trace Source File 109



9.3 The Tracepoint Definition
The tracepoint address and the data to be traced are specified by the TRACE
statement.

There are at most 65535 tracepoints permitted in a trace source file. Minor code
zero is not allowed.

 The format of the TRACE statement is:

TRACE [MINOR=minorcode,]
TP={@STATIC,|@filename,linenum,|.name[{+|-}offs][,RETEP]},
[OPCODE=0xnn,]
[TYPE=(typename[,typename...]),]
[GROUP=groupnam,]
DESC=″Tracepoint description″ ,
[FMT=″Formatting string″ , ] . . .
[LEN=(length_spec,flag),]
[DATA_STMT,]...

The TRACE keyword delimits a tracepoint definition statement. The definition is
considered complete when the next TRACE keyword is encountered or the end of
file is reached. There is one TRACE statement for each tracepoint.

MINOR parameter is an optional keyword parameter. If it is specified in the first
tracepoint definition, it must be specified in every tracepoint definition. If it is not
specified in the first tracepoint definition, it cannot be specified in any of the
subsequent tracepoint definitions. It should be coded as:

MINOR=nnnnn,

where:

nnnnn is a decimal number from 1 to 65535 or a hex number from 0x1 to 0xFFFF.
This represents the minor code for the tracepoint, which must be unique for the
major code specified for this module. When tracepoints with duplicate minor
codes are encountered, the first is saved and the rest are discarded, and an
error message is issued.

If minor codes are not specified in the TSF, TRCUST provides them sequentially,
starting with 1, for each tracepoint definition processed.
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9.3.1 TRCUST and Debugging Options
If the module has been compiled and linked with the debug options, then the
trace customizer can look into the module to extract symbolic information. In
this case symbolic addresses may be used.

Note: Symbolic names are case sensitive. Leading underscore characters must
be used, if part of the symbol.

 1. /Ti on the C/Set2 language compiler for C source files

 2. /CO on the link command

Note: Not all source files must be C language, although only public labels from
assembler routines will be found in the symbolic information. You may specify
filename and line number, a local variable name or a global variable name when
using C routines.

The trace customizer can also use the symbolic information in the MAP file
produced by the linker. All public symbols will be listed with their offsets in the
module being traced. This is not as complete a support as offered by the debug
compile option for C language source files, but it does allow entry points, public
labels and global data to be referenced symbolically within the TSF. Note that
the use of a MAP file is NOT language dependent.

To trace only public procedures, you only need the MAP file that was generated
by linking the module.

It is quite simple to counterfeit a MAP file which has an entry which describes an
invented symbol at the address of interest, for example, a file which looks like
this

0002:0008 RIGHT_HERE

will allow you to use symbol RIGHT_HERE to define a tracepoint.

To trace local variables in C language routines, compile the C programs with the
debug option and assemble the ASM routines with public symbols. Link all the
OBJs together with the debug option(/CO) and run TRCUST on the executable
module. You can now strip the debug information from the executable file by
either relinking the OBJs without the debug option or by using a tool to delete
the debug information from the executable module file.

9.3.2 Specifying Where to Cause the Trace Event
TP is a required keyword that defines where a tracepoint is located. There are
three ways to specify the tracepoint, as follows:

 1. Static tracepoint

TP=@STATIC,

 2. Dynamic, using debugging information

TP=@fi lename,l inenum,

 3. Dynamic, using names from a map file

TP=.name [{ + | - } o f f s ] [ ,RETEP],
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9.3.3 The TP Parameter - Define Where a Tracepoint Occurs
The TP parameter is a required keyword parameter. If TP is specified more than
once for a single tracepoint definition, the tracepoint is discarded.

Note: In no case can two tracepoints be applied at the same address.

TP=@STATIC, ...

The @STATIC defines this tracepoint entry to be used only for creating a trace
format statement for the TFF file. No tracepoint definition is created for the TDF,
and the only other TRACE parameters that will be used are DESC, MINOR and
FMT. This is used to create trace formatting information for static tracepoints. If
the TSF contains only @STATIC directives, no TDF files are created.

An example of defining a static tracepoint follows:

 TRACE MINOR=0x70C2,TP=@STATIC, ...

TP=@fi lename,l inenum,

The filename is an ASCII string specifying the name (including extension) of a
source filename used in creating the module. The source filename is stored in
the debug information contained in the executable module, so debug information
must exist to use this parameter. The filename is not case sensitive.

Linenum is a decimal number specifying the line number in the given source file
name to place the tracepoint.

Note: Debug information must exist to use this option. The statement at the
given source linenumber may have been rearranged during compiler
optimization, so the developer must use this with caution. If the lin enumber is
not found in the debug information, the tracepoint is applied at the next line
number defined in the debug information and a warning message is issued to
the user.

The module must include information supplied by the debug compile option (see
Symbolic Debug Support), meaning that the source language must have been C,
otherwise an error message will be generated and this tracepoint discarded.

When the RETEP is used, the name must be a valid entry point to a procedure.

Note: For ASM functions to accomplish tracing, a label must be made public to
have a tracepoint applied. Therefore, to accomplish POST tracing, a label must
be made public at the return statement.

An example to apply a tracepoint to line 35 of file STUBFILE.C is:

TRACE MINOR=0X70C3,TP=@stubfile.c,35, ...

TP= .name [{ + | - } o f f s ] [ ,RETEP],

Where name is a public label or an entry point name of a procedure to be
traced. The ″.″ preceding name is required. Name must be found in the debug
information in the module or name must be a public symbol as found in the MAP
file. If debug information is used, the address of this tracepoint will be
immediately following the prologue of the procedure. If MAP information is used,
this address points to the opcode at the given label. If the procedure was
compiled with debug support, Name is case sensitive. If not, C language
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functions will be case sensitive and begin with an underscore ″_″ character
unless the function is declared with the Pascal calling convention, in which case
the underscore is omitted and the name is capitalized.

Offs (optional) is a decimal (specified as nnnnnnnn) or hex (specified as
0xnnnnnnnn) offset from the entry point address.

RETEP (optional) specifies that the tracepoint will be inserted at the return
address corresponding to this entry point. This is just before the procedure
epilogue is executed and at this point the procedure′s automatic data is still
addressable from register (E)BP and the return code (if any) is set up in (E)AX.

An example to apply a tracepoint at map symbol MYENTRY is:

TRACE MINOR=0x70FF,TP=.MYENTRY,...

9.3.4 OPCODE, TYPE and GROUP Statements
These statements are all optional.

An example of the optional keyword parameter OPCODE follows:

OPCODE=0x9A, where:

9A is the expected one byte hex opcode to be found at the tracepoint address
and TRCUST verifies the value with that in the module. The opcode of the
instruction being traced must be the same as this value or an error message is
issued and the tracepoint is rejected. This is used to verify the opcode expected
at the address specified by the TP parameter. This is useful when using TP =
@filename,linenum to ensure the requested instruction is traced.

Note: It is not possible to set dynamic tracepoints on the following machine
instructions:

0xCC INT 3 0xCD INT n 0xCE INTO
0x62 BOUND 0x9C PUSHF
0x69 IMUL 0x6B IMUL
0xF6 DIV, IDIV, MUL, IMUL, NEG, NOT, TEST (immediate)
0xF7 DIV, IDIV, MUL, IMUL, NEG, NOT, TEST (immediate)

TRCUST gives an error for these opcodes and the tracepoint is rejected.

9.3.5 TYPE and GROUP Statements
The TYPE parameter is an optional keyword parameter that defines the event
types of this tracepoint. For more description and examples of event types see
the online help for the trace command.

TYPE=(typename [,typename...]),

Where typename is an ASCII string specifying the type of this tracepoint. The
typename symbol must have been previously defined by the TYPELIST
statement. If an invalid typename is given, the tracepoint will be discarded and
a message issued.

The final type value is obtained by logically combining each type name value
using the OR operator. If TYPE is omitted, the trace statement will have a
typevalue of 0.
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The GROUP parameter is an optional keyword parameter that defines the group
this tracepoint belongs to. For more description and examples of groups see the
online help for the trace command.

GROUP=Groupnam,

Where Groupnam is an ASCII string specifying which group this tracepoint
belongs. The groupname symbol must have been previously defined by the
GROUPLIST statement. If an invalid groupname is given, the tracepoint will be
discarded and a message issued.

If GROUP is omitted, the trace statement will have a groupvalue of 0.

9.3.6 The Description of the Tracepoint
The DESC parameter is used to produce a description for the tracepoint that is
output as the first line of formatted data. It should include the entry point name
of the procedure being traced and whether this is an entry or return point. The
descriptive string is enclosed in double quotes as for a C language string. The
DESC parameter is required if any FMT specifications are present, but may be a
null string.

The recommended formats for such strings are as follows:
DESC= ″name Pre-Invocation″,
DESC= ″name Post-Invocation″,

Where name is the system component (in parentheses) followed by the entry
point name of the procedure.

Pre-Invocation identifies this tracepoint as an entry point, that is, before the
function has been executed.

Post-Invocation identifies this tracepoint as a return point from the function. The
words Pre-Invocation and Post-Invocation are not mandatory, merely
recommendations to be compatible with the base OS/2 tracepoints, when
formatted. If a tracepoint is inserted in the middle of a procedure it will be
appropriate to use different wording. The trace customizer does not check the
wording.

An example of pre-invocation and post-invocation tracepoints follow:

TRACE MINOR=0x0001,
TP=.DosOpen,TYPE=(PRE),
DESC=″(OS) DosOpen Pre-Invocation″ , . . . . .

TRACE MINOR=0x8001,
TP=.DosOpen,RETEP,TYPE=(POST),
DESC=″(OS) DosOpen Post-Invocation″ , . . . . .

9.4 Using FORMAT Strings to Format the Trace Data
The optional FMT parameter is used to produce the formatting string for the
trace data. The developer should use these to control formatting the output
produced by the Trace Formatter. Each FMT keyword causes CR/LF to be
appended to the format string. The formatting string is similar to a C library
printf string. It consists of ASCII characters and formatting controls enclosed in
double quotes as for a C language string. Each formatting primitive describes
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the format of the data in the trace buffer at the formatting position and must
match the data stored in the trace buffer by the data statements described later.
See Formatting Trace Data for a description of how the data is stored in the
trace buffer and subsequently formatted.

The formatting controls are as follows:

%Innn Ignore nnn number of bytes in the trace buffer.

This tells the trace formatter to skip over the next nnn bytes in the current trace
record. This could be used for example to skip over unimportant data, traced as
a block, and only output the data of interest. When using this control, nnn
represents an ASCII decimal number and must be followed by a space.

statement: FMT = ″ignore ten bytes %I10 here″ ,
FMT = ″ and two more %I2 here″ ,

generates: ignore ten bytes here
and two more here

%P Process the data prefix bytes associated with the trace data.

This tells the trace formatter that the next bytes in the trace record are the prefix
or header bytes for data logged by the dynamic tracing mechanism. This is
required to precede any format control describing data logged from memory. Do
not use this before data that was logged from a register and never use it with
static tracepoints.

statement: FMT=″memory byte = %P%B″ ,
generates: memory byte = C2

%R Repeat the following format control for the rest of the memory that was
logged. This is used for formatting variable length records. Use this in place of
the prefix parameter %P to log the rest of the record in the format specified
following the repeat code.

statement: FMT = ″log a variable number of words from memory = %R%W″
generates: log a variable number of words from memory = 0001 0004

%B Output a byte of data.

statement: FMT = ″memory byte = %P%B″
generates: memory byte = 01

%W Output a word of data.

statement: FMT = ″register word = %W″
generates: register word = 0001

statement: FMT = ″memory word = %P%W″
generates: memory word = 0001

%D Output a double word of data.

statement: FMT = ″double word EAX = %D″
generates: double word EAX = 0000 4B2C

statement: FMT = ″double memory word = %P%D″
generates: double memory word = 0000 4B2C

%Q Output a quad word of data.
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statement: FMT = ″quad word from regs EAX and EBX = %Q″
generates: quad word from regs EAX and EBX = 00004B2C 00000001

%F Output a Flat (0:32 bit) address.

statement: FMT = ″flat address EAX = %F″
generates: flat address EAX = 00004B2C

%A Output a segmented(16:16 bit) address.

statement: FMT = ″segmented address in SS:SP = %A″
generates: segmented address in SS:SP = 00B7:0001

statement: FMT = ″segmented address in memory = %P%A″
generates: segmented address in memory = 00B7:0001

% S Output an ASCIIZ string.

The prefix formatting control should always precede this for
dynamic tracepoints because the data was logged from memory.
Note: If the tracepoint is static, then %P should not be used
because the string is terminated with a null byte.

statement: FMT = ″string = %P%S″
generates: string = c:\os2\os2.ini

%X Output the major event code.

statement: FMT = ″major code = %X″
generates: major code = 00C2

%Y Output the minor event code.

statement: FMT = ″minor code = %Y″
generates: minor code = 0081

% U Format the remainder of the trace record as a sequence of bytes.

This will output the remaining of the traced data, including any
prefix bytes.

statement: FMT = ″garbage = %U″
generates: garbage = 00 00 00 03 c2 c1 c4 ff 04 00 09 c0 18

Note: To avoid conflicts with source file control information, all formatting
specifications can be in upper or lower case. Also, prefix format specifications
may be combined with data format specifications. For example, the following
three statements create the same format controls in the TFF:

FMT = ″%P%W here″
FMT = ″%p%w here″
FMT = ″ %P %W here″

9.4.1 Specifying the Data to Trace
There are three types of data that may be traced as part of the optional
DATA_STMT section of the TRACE statement, Registers, Memory, and ASCIIZ
strings. The keywords for tracing the three types of data are REGS, (MEM32 and
MEM),and (ASCIIZ32 and ASCIIZ).
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9.4.1.1 Registers
The REGS keyword identifies which registers are to be recorded in the trace
buffer.

REGS=(register[,register]...),

Where register is one of the following or the symbolic name of a C language
variable declared with the register storage-class specifier as, .symbolic_name

SS,CS,DS,ES,FS,GS

AX, BX, CX, DX, SI, DI, FLAGS, IP, SP, BP

EAX,EBX,ECX,EDX,ESI,EDI,EFLAGS,EIP,ESP,EBP

The same register may appear multiple times in the register list. It will be
traced as many times as it appears. Extended registers (E) are 32 bits and
logged as two words. All other registers are 16 bits and logged as one word.

Example of the REGS statement follows:
/* Given the following declaration in a C language source file: */
register int ret_code;
/* To log registers AX, CX and the register variable ret_code: */
TRACE MINOR=.....

REGS=(AX,CX,.ret_code),
FMT=″AX=%W CX=%W ret_code=%W″

Note: When formatting the data logged from a register variable, remember that
there are no memory prefix bytes put into the log buffer.

9.4.1.2 Memory
The MEM32 keyword is used to record sections of memory in the trace buffer by
specifying 32-bit flat addresses. The MEM keyword is also used to record
sections of memory in the trace buffer, but by specifying a segment:offset
address form.

The ASCIIZ32 keyword is used to record an ASCIIZ string in the trace buffer.
This is a special form of the MEM32 keyword. The ASCIIZ keyword is also used
to record an ASCIIZ string in the trace buffer. This is a special form of the MEM
keyword.

More than one keyword is permitted in a tracepoint definition. The order of the
statements defines the order in which the data is inserted into the trace buffer.
The combined amount of data to be traced for a single tracepoint cannot exceed
MAXDATALENGTH. If TRCUST determines that the maximum data size might be
exceeded, a warning message is issued but the tracepoint definition will remain
valid.

9.4.2 Gathering Data from Memory: Address Specifications
All statements that specify memory data must have an address specification one
of the following forms:

 1. Symbolic name form can be used for MEM32, MEM, ASCIIZ32, and ASCIIZ.

The symbolic name form is coded as follows:

.name [{+ | - }nnnnnnnn ]...[{+ | - } ( i i i i i i i i ) ],

Where name is a symbolic name of a memory location. The ″.″ is required
before the name. The debug information in the module is checked for the
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name and if not found and a MAP was given, the MAP is checked. An error
message is output by the Trace Customizer if the symbol is not found and
the trace definition is ignored.

nnnnnnnn is an optional displacement from the symbolic address. If hex the
syntax is 0xnnnnnnnn.

iiiiiiii is an optional displacement from the indirect address. If hex the syntax
is 0xiiiiiiii. This specifies a displacement from the final address when using
INDIRECT, IF(Indirect Flat) or IS(Indirect Segmented) addressing. This form
of address is calculated at run time.

 2. Flat register form can be used only for MEM32 and ASCIIZ32.

Flat register form coded as:

Fbreg [{ + | - } i r e g ]...[{+ | - }nnnnnnnn ]...[{+ | - } ( i i i i i i i i ) ],

Wwhere breg is a flat model(0:32 bit) base register and is one of:

EAX,EBX,ECX,EDX,ESP,EBP,ESI,EDI

ireg (optional) is an extended data, base or index register. More than one
ireg may be used to define a displacement from the flat register value to the
memory location.

It may be one of: EAX,EBX,ECX,EDX,EBP,ESI,EDI

nnnnnnnn and iiiiiiii are the same as above.

 3. Segment register form can be used only for MEM and ASCIIZ .

The segment register form of an address is coded as:

Rsreg [{ + | - } d r e g ]...[{ + | - } n n n n n ]...[{+ | - } ( i i i i i ) ],

Where sreg is a segment register and is one of:

CS,DS,SS,ES,FS,GS

dreg is an optional data, base or index register. More than one dreg may be
used to define a displacement from the segment register value to the
memory location.

It is one of: BP,SP,SI,DI,AX,BX,CX,DX

nnnnn and iiii are as above, but limited to 16 bits (0 to 65535).

9.4.3 Gathering Data from Memory: Length Specifications
Each memory specfication must have a length specification. In the cases of
MEM and MEM32, it specifies the length. In the cases of ASCIIZ and ASCIIZ32, it
specifies the maximum length.

The length may be specified as a number, for fixed-length data, or by use of the
LEN parameter for variable-length memory data. In the case of variable-length
data, the length must be specified by a LEN statement which immediately
precedes the data statement itself. The LEN statement gives the location of a
one word field containing the number of bytes to log in the following data
statement.

Length is the number of bytes at the memory location to be saved in the trace
buffer. If length is too big, a warning message will be given, and length will be
set to MAXDATALENGTH. If length is 0 an error message will be given, and this
tracepoint will be ignored.
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LEN=(length_spec,flag),

Where length_spec is an address specification that points to the one word length
field of the next memory specification. This format can be
symbolic_name+nnnnnnnn where symbolic_name is a symbolic memory
location and nnnnnnnn is the offset from that symbolic address. The length_spec
can also be Flat Register Form or Segment Register Form.

Flag is a mandatory parameter that identifies the level of indirection to be used
on the length_spec.

It is either D [IRECT]

DIRECT implies that the length_spec specifies a memory location that contains
the length of the variable length record.

Or I[NDIRECT] [ *[{+ | - } i i i i i i i i ]] ...

INDIRECT means that the length_spec contains an address and is dereferenced
to obtain the memory location. The optional asterisks denote the level of
indirection, one for each level. The indirect offsets iiiiiiii are added to or
subtracted from the value found at the given level of indirection.

TRACE ...,
/* Symbol vrecord is a record whose first field is a one */
/* WORD value that is the total length of the entire record */

LEN=(vrecord,DIRECT),
MEM=(.vrecord,DIRECT,LEN),

/* Symbol vrec_ptr is a pointer to a variable length record.*/
/* The second field (2 bytes from beginning of record) is */
/* total length of the variable length record. */

LEN=(vrec_ptr,INDIRECT*+2),
MEM=(.vrec_ptr,INDIRECT,LEN),

/* Registers DS:DI are a pointer to a structure. The */
/* third field in the structure (6 bytes from beginning) is */
/* a pointer to a variable record. The fourth field in the */
/* variable length record(8 bytes from beginning) is the */
/* total length of this variable length record. */

LEN=(RDS+DI,INDIRECT*+6*+8),
MEM=(RDS+DI,INDIRECT*+6*,LEN)

9.4.4 Specifying Data from Memory
The MEM32 keyword is used to log memory using 32-bit flat addressing and is
coded as follows:

MEM32=(address_spec,flag,{length|LEN}),

Where address_spec is a flat memory address as described above

flag is a mandatory parameter that identifies the level of indirection to be used
on the address. It is the same as for LEN, described above, or

IS(Indirect Segmented) means that the address contains a segmented
address that is dereferenced to obtain the memory location.
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Only far pointers may be dereferenced when using segmented addressing.
Either length or LEN must be specified, but not both. ′LEN′ specifies that this is
a variable length record to log and the length was specified by the preceding
LEN statement. If there was no preceding LEN statement, this tracepoint is
rejected.

The following are example LEN statements followed by the memory statement
whose length they describe.

The MEM keyword is used to log memory in a function compiled using 16-bit
segment:offset addressing and is coded as follows:

MEM=(address_spec,flag,{length|LEN}),

where: address_spec is a segmented memory address specification as
described above.

flag is a mandatory parameter that identifies the level of indirection to be used
on the address. It is the same as LEN, above, or IF (Indirect Flat) means that the
address contains a flat address that is dereferenced to obtain the memory
location.

LEN is described above.

The ASCIIZ32 keyword is used to log a string using 32-bit flat addressing and is
coded as follows:

ASCIIZ32=(address_spec,flag,maxlength),

Where address_spec, flag and maxlength are as described above, under MEM32.

The ASCIIZ keyword is used to log a string in a function compiled using 16-bit
segment:offset addressing and is coded as follows:

ASCIIZ=(address_spec,flag,maxlength),

Where address_spec, flag and maxlength are as described above, under MEM.

When using dynamic tracing, the OS/2 kernel does not place the terminating null
byte into the trace buffer; therefore the prefix byte must be used by the Trace
Formatter to obtain the length of the string.

9.5 Examples
This section gives a brief description of the formatting process as an aid to
generating correct formatting strings.

Each trace record stored in the RAS buffer consists of a header followed by a
number of variable length trace data records. The header identifies the major
and minor code, time stamp, process ID, etc., and the total length of the trace
data for that trace record.

Each MEM32, MEM, ASCIIZ32, or ASCIIZ data statement, coded in the trace
source file for a tracepoint, produces an associated data record to be stored in
the trace buffer. The data records consist of a 3-byte prefix followed by the trace
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data. This prefix consists of a status byte followed by the length of the data for
that statement. The status byte indicates whether valid data has been traced.

Dynamic trace can only trace data that is resident in memory at the time that the
tracepoint is executed. Data may not be able to be traced for two reasons: it
resides in a page that is currently paged out or the address specified is invalid.
This latter case usually occurs due to tracing indirectly via invalid pointer
variables. In either of these two cases dynamic trace sets the status byte
accordingly and stores the pointer in the place of the wanted data. No more
data is attempted to be traced for this invocation of the tracepoint, but tracing
will resume the next time this tracepoint is encountered.

Since the position of these prefix bytes, within a trace record, is dependent on
the data being traced and the number of MEM32, MEM, ASCIIZ32, or ASCIIZ
statements, the trace formatter must be told when to expect the prefix in the
trace record. This is the purpose of the %P formatting control. It must be coded
in the formatting string at every place a data record is expected. Note: With
ASCIIZ and ASCIIZ32 commands, the prefix must be used to obtain the length of
the string since the string is not null terminated.

This section gives sample TSF files. The first is for a module written in a mix of
C and MASM and compiled with 16:16 segmented addressing. The second was
compiled with 0:32 flat addressing. The third module consists of routines, some
which were compiled using 16-bit segmented addressing and some that were
compiled using 32-bit flat addressing. The fourth is for monitoring function
references in a module.

9.5.1 Example 1
A 16-bit example.

; Trace source file for the xxx DLL. 16-bit compilation.
; We will want to trace up to 200 bytes in any one trace call.
 MODNAME=\c\src\xxx.dll, MAJOR=0xC5, MAXDATALEN=200,
 TYPELIST NAME=API,ID=08, NAME=SYS,ID=04, NAME=PRE,ID=02, NAME=POST,ID=64
 GROUPLIST NAME=MEM,ID=1, NAME=FS,ID=3

/* The following tracepoint does not need debug info, only a MAP file is
necessary with label xxalloc public in it. The program must be compiled
in 16-bit mode because segmented addressing is used (ASCIIZ instead of
ASCIIZ32). This logs the word registers AX and BX and the string pointed
at by DS:DI for a max of 20 bytes. */

TRACE MINOR=25, TP=.xxalloc,
OPCODE=0x8B, /* the opcode is optional */
TYPE=(API,PRE), GROUP=MEM,
DESC=″(OS) xxalloc Pre-Invocation″ ,
FMT =″ AX = %W ″ ,
FMT =″ upper BX = %B″ ,
FMT =″ lower BX = %B″ ,
FMT =″ param = %P%S″ ,
REGS=(AX,BX),
ASCIIZ=(RDS+DI,DIRECT,20)

/* This defines a tracepoint at Foo label. The ten words to log are
found indirectly through SS:SP. Note that each word needs a
format control but since only one memory access was done, one prefix
control is needed. */

TRACE MINOR=0xB0, TP=.Foo, TYPE=(SYS), GROUP=FS,

Chapter 9. The Layout of a Trace Source File 121



DESC=″(OS) Foo Pre-Invocation″ ,
FMT=″ First Five words = %P%W%W%W%W%W″ ,
FMT=″ Three words ignored %I6″ ,
FMT=″ Last Two Words = %W%W″ ,
MEM=(RSS+SP,INDIRECT,20)

/* This defines a tracepoint at Goo label. DS:DI points to a structure
whose second field is a pointer to an ASCIIZ string. The offset from the
first field in the structure is 4 bytes. Max string size is 40 bytes. */

TRACE MINOR=0xB1, TP=.Goo, TYPE=(SYS), GROUP=FS,
DESC=″(OS) Goo Pre-Invocation″ ,
FMT=″ Second field in struct points to %P%S″ ,
ASCIIZ=(RDS+DI+4,INDIRECT,40)

/* This defines a tracepoint at Hoo label. DS:DI points to memory that
contains a pointer to a structure. We want to log the third field in the
structure (offset 6 from begin of structure). */

TRACE MINOR=0xB2, TP=.Hoo, TYPE=(SYS), GROUP=FS,
DESC=″(OS) Hoo Pre-Invocation″ ,
FMT=″ Third field in struct is doubleword = %P%D″ ,
MEM=(RDS+DI,INDIRECT*+6,4)

/* This defines a tracepoint at Zoo label. DS:DI points to memory
that contains a pointer to end of a structure. We want to log the last
field in the structure (offset -2 from end of structure). */

TRACE MINOR=0xB3, TP=.Zoo, TYPE=(SYS), GROUP=FS,
DESC=″(OS) Zoo Pre-Invocation″ ,
FMT=″ Last field in struct is word = %P%W″ ,
MEM=(RDS+DI,INDIRECT*-2,2)

/* This defines a tracepoint at procedure CheckIt. This is a C routine
compiled with debug information. The data to log is an ASCIIZ string
called NameIt. */

TRACE MINOR=0xB3, TP=.CheckIt, TYPE=(PRE), GROUP=FS,
DESC=″(OS) CheckIt Pre-Invocation″ ,
FMT=″ NameIt = %P%S″ ,
ASCIIZ=(.NameIt,DIRECT,64)

/* This defines a tracepoint at the return point of the procedure CheckIt,
a C routine compiled with debug. Status_Rec is a record variable. We want
to log the age field(four bytes from the begin of Status_Rec), the name
(six bytes from Status_Rec that points to an ASCIIZ string), the age of
the next Status_Rec (a pointer to the next Status_Rec is ten bytes from
the begin of Status_Rec, the age is four bytes from the begin of the
next Status_Rec). */

TRACE MINOR=0x80B3, TP=.CheckIt,RETEP, TYPE=(POST), GROUP=FS,
DESC=″(OS) CheckIt Post-Invocation″ ,
FMT=″ Status_Rec.age = %P%W″ ,
FMT=″ Status_Rec.name = %P%S″ ,
FMT=″ Status_Rec.next->age = %P%W″ ,
MEM=(.Status_Rec+4,DIRECT,2),
ASCIIZ=(.Status_Rec+6,INDIRECT,64),
MEM=(.Status_Rec+10,INDIRECT*+4,2)

/* This defines a tracepoint at line 58 in the source file check.c
Debug info is needed to use this type of tracepoint. v_ptr is a pointer to
a variable sized record. The length is 4 bytes past the beginning of the
record. Log that record. */

TRACE MINOR=0x71B4, TP=@check.c,58, TYPE=(SYS), GROUP=FS,
DESC=″(OS) CheckIt before allocation″ ,
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FMT=″ Variant Record = %P%W%D%U″ ,
LEN=(v_ptr,INDIRECT*+4),
MEM=(.v_ptr,INDIRECT,LEN)

/* This does not define a tracepoint, it only defines a trace
formatting string for minor code 181(B5 hex). */

TRACE MINOR=0xB5, TP=@STATIC,
DESC=″(OS) StaticProcedure Pre-Invocation″ ,
FMT=″ DI = %W FLAGS = %W″

/* This defines a tracepoint at routine LookUp, but no data is to be
logged, only the DESC will show up in the Trace log when the tracepoint
is formatted. */

TRACE MINOR=0xB6, TP=.LookUp, TYPE=(SYS), GROUP=FS,
DESC=″(APP) LookUp Pre-Invocation″ ,

9.5.2 Example 2
A 32-bit example

; Trace source file for the NEW DLL. 32-bit compilation.
; We will want to trace up to 200 bytes in any one trace call.
 MODNAME=NEWCALLS.DLL MAJOR=241 MAXDATALEN=200
 TYPELIST NAME=API,ID=08, NAME=SYS,ID=04, NAME=PRE,ID=02, NAME=POST,ID=64
 GROUPLIST NAME=MEM,ID=1, NAME=FS,ID=3

/* The following tracepoint does not need debug info, only a MAP file
is necessary with label NewAllocSeg public in it. The program must be
compiled in 32-bit mode because flat addressing is used (ASCIIZ32
instead of ASCIIZ). This logs lower word of EAX, the double word of
EBX and the string at the address specified by ESP with offset ESI. */

TRACE MINOR=45, TP=.NewAllocSeg, TYPE=(API,PRE), GROUP=MEM,
DESC=″(NEW) NewAllocSeg Pre-Invocation″ ,
FMT =″ AX = %W ″ ,
FMT =″ EBX = %F″ ,
FMT =″ param = %P%S″ ,
REGS=(AX,EBX),
ASCIIZ32=(FESP+ESI,DIRECT,20)

/* This defines a tracepoint at Foo label. The ten words to log are found
indirectly by using EBP with offset EDI. Note that each value logged needs
a format control. */

TRACE MINOR=0xD0, TP=.Foo, TYPE=(SYS), GROUP=FS,
DESC=″(NEW) Foo Pre-Invocation″ ,
FMT=″ First Five words = %P%W%W%W%W%W″ ,
FMT=″ Three words ignored %I6″ ,
FMT=″ Last Two Words = %W%W″ ,
MEM32=(FEBP+EDI,INDIRECT,20)

/* This defines a tracepoint at Goo label. EAX + EDI points to a structure
whose second field is a pointer to an ASCIIZ string. The offset from the
first field in the structure is 4 bytes. Max string size is 40 bytes. */

TRACE MINOR=0xD1, TP=.Goo,
TYPE=(SYS),
GROUP=FS,
DESC=″(NEW) Goo Pre-Invocation″ ,
FMT=″ Second field in struct points to %P%S″ ,
ASCIIZ32=(FEAX+EDI+4,INDIRECT,40)
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/* This defines a tracepoint at Hoo label. EBP + EDI points to memory
that contains a pointer to a structure. We want to log the third field
in the structure(offset 6 from begin of structure). */

TRACE MINOR=0xD2, TP=.Hoo, TYPE=(SYS), GROUP=FS,
DESC=″(NEW) Hoo Pre-Invocation″ ,
FMT=″ Third field in struct is doubleword = %P%D″ ,
MEM32=(FEBP+EDI,INDIRECT*+6,4)

/* This defines a tracepoint at Zoo label. EAX + EDI points to memory that
contains a pointer to end of a structure. We want to log the last field in
the structure(offset -2 from end of structure). */

TRACE MINOR=0xD3, TP=.Zoo, TYPE=(SYS), GROUP=FS,
DESC=″(OS) Zoo Pre-Invocation″ ,
FMT=″ Last field in struct is word = %P%W″ ,
MEM=(FEAX+EDI,INDIRECT*-2,2)

/* This defines a tracepoint at procedure CheckIT. This is a C routine
compiled with debug data. The data is an ASCIIZ string called NameIt. */

TRACE MINOR=0xD3, TP=.CheckIt, TYPE=(PRE), GROUP=FS,
DESC=″(NEW) CheckIt Pre-Invocation″ ,
FMT=″ NameIt = %P%S″ ,
ASCIIZ32=(.NameIt,DIRECT,64)

/* This defines a tracepoint at the return point of the procedure CheckIt,
a C routine compiled with debug. Status_Rec is a record variable. We want
to log the age field(four bytes from the begin of Status_Rec) the name
(six bytes from Status_Rec that points to an ASCIIZ string) and the age
of the next Status_Rec (a pointer to the next Status_Rec is ten bytes
from the begin of Status_Rec, the age is four bytes from the begin of
the next Status_Rec). */

TRACE MINOR=0x80D3, TP=.CheckIt,RETEP, TYPE=(POST), GROUP=FS,
DESC=″(NEW) CheckIt Post-Invocation″ ,
FMT=″ Status_Rec.age = %P%W″ ,
FMT=″ Status_Rec.name = %P%S″ ,
FMT=″ Status_Rec.next->age = %P%W″ ,
MEM32=(.Status_Rec+4,DIRECT,2),
ASCIIZ32=(.Status_Rec+6,INDIRECT,64),
MEM32=(.Status_Rec+10,INDIRECT*+4,2)

/* This does not define a tracepoint, it only defines a
trace formatting string for minor code 223(DF hex). */

TRACE MINOR=0xDF, TP=@STATIC,
DESC=″(NEW) StaticProcedure Pre-Invocation″ ,
FMT=″ DI = %W FLAGS = %W″

 /* This defines a tracepoint at routine LookUp, but no data is to be
 logged, only the DESC will show up in the Trace log when the tracepoint
 is formatted. LookUp is a C language routine not compiled with debug
 and not declared with Pascal calling conventions; the underscore is
 needed for this label. */

TRACE MINOR=0xE0, TP=._LookUp, TYPE=(SYS), GROUP=FS,
DESC=″(NEW) LookUp Pre-Invocation″
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9.5.3 Example 3
; Trace source file for the MIXED DLL. Parts were compiled with 16-bit
; compiler, some with 32-bit compiler. The developer must know how the
; parameters are to be addressed, whether segmented or flat addresses.
; We will want to trace up to 200 bytes in any one trace call.
 MODNAME=MIXCALLS.DLL MAJOR=250 MAXDATALEN=200
 TYPELIST NAME=API,ID=08, NAME=SYS,ID=04, NAME=PRE,ID=02, NAME=POST,ID=64
 GROUPLIST NAME=MEM,ID=1, NAME=FS,ID=3

/* The following tracepoint is for the routine MixStub. This was compiled
using segmented addressing and one of the parameters to it is a pointer
to a control block called mix_ctrl. This pointer, found at SS:SP,
is a flat address because the routine that sent it was compiled with the
flat addressing specification. This logs the mix_ctrl block for 6 bytes. */

TRACE MINOR=95, TP=.MixStub, TYPE=(API,PRE), GROUP=MEM,
DESC=″(OS) MixStub Pre-Invocation″ ,
FMT =″ mix_ctrl = %P%W %W %W″ ,
MEM=(RSS+SP,IF,6) /* is an indirect flat address */

/* The following is for the routine FlatStub. This was compiled using
32-bit flat addresses. A parameter to flatstub is a pointer called
p_seg_info. This pointer is a segmented address because the routine
calling flatstub was compiled using 16-bit segmented addressing.
Value p_seg_info is a 16-bit segmented address.
Log where p_seg_info points for 2 bytes. */

TRACE MINOR=0xf0, TP=.FlatStub,
TYPE=(SYS),
GROUP=FS,
DESC=″(OS) FlatStub Pre-Invocation″ ,
FMT=″ seg_info = %P%W″ ,
MEM32=(.p_seg_info,IS,2)
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Chapter 10. Steps to Diagnose a Hang

Problems which are called hangs fall into several categories.

The term hang has come into use because there is frequently no way for a user
of OS/2 to determine whether the problem is a loop or a wait. The term hang is
used in a generic way to mean ′ the system does not respond as I expect′, or ′ I
am unable to interact with the system′. The problem may be a loop, or it may
be a wait.

Diagnosing any hang will likely be much quicker if the system trace was used to
collect appropriate data related to the symptoms.

10.1 Steps to Diagnose a Wait
Waits are recognized by the fact that no thread is ready. If the scope of the
problem is a single application, we need only find out which thread is expected
to run, and then analyze why it will not. If we cannot find out which thread we
expect to run, we will need to do the analysis for each thread in the process,
which will take somewhat more effort. Frequently, the application can be
removed by using the window list to end it. If this has been attempted, and has
not worked, one must find out why thread 1 will not execute.

If the scope of the problem is the user interface, one needs to examine it, as
discussed above. The Workplace shell is discussed elsewhere; remember that
from the kernel′s viewpoint, it is just another application. This used to be a
much more common symptom than in relatively current releases. It was
typically noticed on a LAN server, when requesters received normal service
responses, but the system administrator could not use the keyboard or mouse.

Frequently, if you haven′ t a well defined place to start, it works reasonably often
to look at the blocking data for all threads, and to choose a resource which is
needed by many threads. Pragmatically, if that resource could be made
available, many threads would unblock. Therefore, choose one of the more
popular BlockID′s, and proceed to find out what thread owns it, why that thread
will not run, and so on. You may need to do this for only one or two resources
before you discover the key thread, and can focus your efforts on it.

If the scope of the problem is that OS/2 refuses to run any thread, the problem
must be extremely basic, for example, the drive containing SWAPPER.DAT is no
longer available due to a hardware problem, or the system has actually
terminated, but has been unable to display that fact.

10.2 Steps to Diagnose a Loop
Loops are also relatively easy to recognize. When one inspects the collective
status of all threads in the system, one thread will be in ′run ′ status, (if an SMP,
one on each processor) and it is likely that many more threads are ready. If the
priority of the thread is normal, an application may loop for a long time without
the user being aware of the loop, although system performance may suffer
somewhat.
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To analyze a loop, follow one iteration of it. This is much easier to do with an
interactive debugger than it is in a dump.

If the priority of the running thread is in the time-critical class, the dispatcher is
designed to prevent OS/2 from dispatching other threads. The looping thread is
the cause of the problem, unless the loop is the correct response to another
problem. In this case, contact the developer to find out why the thread must be
such a high priority, and while you are talking, ask what could cause it to enter a
non-ending loop. To diagnose a loop, use an interactive debugger to step
through the loop, and try to understand what each conditional jump is really
trying to accomplish. You can use an interactive debugger to lower the priority
of an offending thread, and observe the results. Recognize that this is quite
legitimate, but that the application′s integrity may actually depend on the
behavior you have just altered.
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Chapter 11. Serialization and Priorities in OS/2

This section describes the various ways to serialize access to resources, which
is often required in a pre-emptive multitasking environment.

11.1 Brute Force Serialization
There are several serialization methods which attempt unilateral control over the
dispatcher. Each has it own advantages and disadvantages. They will each be
explained here before going on to semaphores, which are much more granular,
and therefore less intrusive than these serialization methods.

11.1.1 Uniprocessor Method - Disable Interrupts
There is a way for privileged code to guarantee serialization in a
single-processor environment, namely to disable interrupts during the actual
inspection and update of the protected resource, and then to enable interrupts
promptly. The overhead of this method is practically nil, but it is potentially
dangerous because it disables pre-emption, which reduces the responsiveness
of the system to the user. It also represents a barrier to running successfully on
a multiprocessor, because all other processors are unaffected by this, and it
therefore requires the developer to re-examine parts of a program which are no
longer serialized, but may well be thought to be properly serialized.

11.1.2 Multiprocessor Methods - Spin Locks
In a multiprocessor environment, there are additional problems, namely how to
control the additional processors, which may be executing exactly the same
instruction at the same cycle. The solution to successfully serializing access to
critical structures is solved by using a special instruction prefix, LOCK, which
guarantees that all accesses to memory for the following instruction occur as a
unit, with no intervening cycles by other processors, DMA devices, or bus
masters.

Instructions such as:

Increment(INC), Decrement(DEC), Add(ADD,ADC), Subtract(SUB,SBB),

Logical operations, (AND,OR,XOR,NOT,NEG),

Exchange(XCHG), Exchange&Add(XADD), Compare&Exchange(CMPXCHG)

can be used to claim a resource, add a node to a linked list, and perform other
atomic events which normally require serialization, like selecting a ready thread
to run. Each processor will use the appropriate method to attempt its task, and if
the condition code does not indicate success, it will simply retry the operation
until it does complete. This is called a spin loop, and this method of serialization
is called a spin lock. It is used when it is expected to be able to access the lock
in less time than it will take to save the current context and find another thread
to run.

One should not expect to discover the presence of spin locks in a
non-multiprocessor environment, because they should always be available, and
the spinning should never occur.

  Copyright IBM Corp. 1996 129



11.1.3 DosEnterCriticalSection and DosExitCriticalSection
These API′s will serialize all threads in a process. They have no effect on
threads in another process. At the time control returns from
DosEnterCriticalSection, no other thread in the process is allowed to execute.
Looking at the threads′ status, one will see ′crt ′ for all threads in the process
which did not issue the DosEnterCriticalSection. The only thread which is not
marked ′crt ′ is the one which has serialized the process. Only when that thread
issues the DosExitCriticalSection are the other threads released, and again
allowed to compete for use of the processor. This is really too much
serialization for most situations, because it temporarily disables multithreading
in the process, regardless of the other threads′ design, or current actual
processing.

11.1.4 DosSuspendThread and DosResumeThread
Some applications are designed such that there is a limited number of threads
which will access some shared resource, and others never will.

To access a resource in a protected way, one can simply suspend the other
threads which represent a possibility of simultaneous update, and leave the
remaining threads alone. This is therefore less intrusive than the critical section
API′s, but still may affect threads which do not represent a threat at this instant,
due to other processing, timing, and so on.

DosSuspendThread API will cause a specific thread to no longer compete for the
processor, until DosResumeThread is issued. A thread in this situation will have
the status of ′ frz′. It may not be possible, without an appropriate trace, to find
out which thread suspended another.

11.2 Semaphores
The least intrusive way to guarantee serial access to a shared resource is to
associate a semaphore with it, and to acquire ownership of the semaphore
before accessing the resource. The application threads will be suspended only
when there is actual contention for the resource.

This does require all of the programmers involved to be careful to request the
semaphore before accessing the resource, and to remember to free it when
done. The classic solution to this is to build a low-level function which includes
the serialization.

Semaphores are of three categories:

 1. Kernel Semaphores, or KSEMS.

KSEMS will be discussed later, because we will focus first on items available
to the application programmer.

 2. 16-bit Semaphores.

There are two basic kinds of 16-bit semaphores, and an add-on structure
which makes a third type by aggregation.

They are the System Semaphore, the RamSem, and the FastSafe RamSem,
which is an accounting structure prefixed onto a RamSem.

 3. 32-bit Semaphores.
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There are two types of 32-bit semaphores, Mutual Exclusion, or MutEx and
Event Semaphores. It is also possible to wait on a list of EventSems or
MutexSems, but all semaphores in a list must be of the same type.

11.2.1 16-Bit Semaphores
There are three types of 16-bit semaphores, namely system, RAM, and fast-safe
RAM semaphores. There are compromises involved in using each.

System Semaphores

These are the most robust of the three, and have the most overhead.

One thread must create the semaphore, with DosCreateSem, which has a
name in a format similar to a file name, but in root directory ′SEM′. Other
threads must open it with DosOpenSem to get its handle.

Use is to issue DosSemRequest, use the resource, and then to issue
DosSemClear so that other threads can access the resource. All threads
should issue DosCloseSem before ending.

If a thread ends while owning a system semaphore, the first requestor is
given a return code that indicates the situation, so that it is warned of a
possibly incomplete update, and may take whatever action is necessary to
recover, or terminate.

To find out which thread owns a system semaphore, display a word at the
address provided in the blocking data. The address will be a logical address
using a GDT selector, generally 400:xxxx. The 12 low order bits are the slot
number of the thread which owns the semaphore. If unowned, the value is
zero.

RAM Semaphores (RamSems)

At the opposite end of the scale is the extremely fast RamSem.

Most of the speed comes from the following facts:

API′s use the address of the RamSem as the handle.

OS/2 assumes a RamSem is local to a process.

OS/2 does absolutely no accounting for a RamSem.

OS/2 can not provide any recovery for a RamSem.

A RamSem is owned by a user thread if the first byte is hex ′FF′, otherwise it
is not owned by a user thread. Unless you have a trace, there is no way to
determine which thread owns a RamSem.

Fast-Safe RAM Semaphores (FSRamSems)

The FSRamSem is a compromise between the two earlier types.

The FSRamSem is nothing more than a structure which includes a RamSem.
The fields of the structure record the process ID (Pid) and thread ID (Tid) of
the thread which owns the semaphore, or zero if unowned. They also
include a use count, which is incremented if the owning thread again
requests the semaphore. This allows recursive functions to serialize without
being blocked, waiting for a resource the thread already owns.

The DosFSRamSemRequest API is used to request the semaphore. It
returns when the resource is owned by the thread.

The DosFSRamSemClear API is used to release the semaphore. If the use
count is not zero after being decremented, the semaphore is NOT released.
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There must be as many ′Clear ′ as ′Request′ API calls to actually release the
semaphore, and allow other threads to compete for it.

11.2.2 32-Bit Semaphores
There are two classes of 32-bit semaphores, private and shared. There are
three types of semaphore in each class, Event, MUTual EXclusion, and multiple
wait semaphores.

MUTEX semaphores correspond to one of the most common uses of the 16-bit
semaphores, namely to allow competing threads to mutually exclude others from
accessing a shared resource.

A MUTEX semaphore includes the slot number of its owner, if owned, or zero if
unowned.

An EVENT semaphore contains a post count which is incremented each time it is
POSTED, and decremented each time a WAIT for it is completed successfully.
This type provides a way to insure that some processing occurs exactly once for
each POST.

A multiple wait semaphore is nothing more than a list of semaphores, of the
same type. A thread may wait on either ′ANY′ or ′ALL ′ of the semaphores in the
list.

All Semaphores must first be created with DosCreate???Sem, where ′???′  is the
semaphore type. Other processes must open them with DosOpen???Sem to
have access to them. Private semaphores have a null pointer to their name, and
thus no name. Public ones have a name in the same format as that used for the
16-bit semaphores. DosClose???Sem is used when a thread is through using it.

DosRequestMutexSem and DosReleaseMutexSem are used to access the mutual
exclusion semaphores.

DosPostEventSem and DosWaitEventSem are used to access an event
semaphore. DosResetEventSem will allow immediate access, and return the
post count, which is cleared by this API.

DosQuery???Sem will allow the retrieval of information about each type of
semaphore.

DosAddMuxWaitSem and DosDeleteMuxWaitSem are used to add and delete
semaphores from a multiple wait semaphore list, respectively.

11.3 Dispatching Priorities
This section describes how the priority of a thread is set, and defines what the
classes mean for debugging.
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11.4 The Dispatcher, Priorities and Dispatching Classes
The dispatcher′s task is to give control to the proper thread. The definition of
proper thread can be difficult to state. My approach to this problem is to state
the obvious cases, and then to focus on what is left. In a sense, this discussion
parallels the logic in the dispatcher.

 1. Idle Class.

No other class will be pre-empted in order to run an idle class thread. The
notion of starved, and the MAXWAIT parameter do NOT apply to Idle Class
threads. OS/2 by design will not execute a ready Idle Class thread as long
as threads in other classes are ready.

 2. Regular Class.

Most threads are expected to be in this class. All dispatching options and
parameters apply to scheduling this thread.

 3. Time-Critical Class.

As long as any thread in this class is ready, OS/2 will give control to it. By
design, this may prevent threads in other classes from running. You cannot
use priority as a serialization method.

For example, a page fault will result in temporarily blocking this priority
thread.

 4. Fixed-High, or Server Class.

The threads in this class are at a somewhat higher priority than those in the
regular class which do not have the focus, but below time-critical.

Note: The numbers above are what the programmer specifies in DosSetPriority,
or the 16-bit API DosSetPrty, and are what is returned by DosGetPriority. OS/2
processes these class numbers to create an internal dispatching priority. There
are 32 priority levels in each class, which range from 00 to 1F. The priority
levels, or deltas, stay the same as the programmer specified initially, if
PRIORITY=ABSOLUTE is specified.

The internal priorities have a range from 01 to 08, with 01 usually used for
idle-class threads, and 08 usually used for time-critical threads. If
PRIORITY=DYNAMIC was specified or defaulted, there are priority boosts given
for the following reasons:

• Being the foreground process and for owning the keyboard.

• Yielding the processor before the end of the time slice.

• I/O completion.

• Being starved, that is, ready status and not dispatched for MAXWAIT
seconds.

Dispatching is the process of finding the correct ready thread, and then giving
control to it. Within each class, the priority delta is used to choose which thread
should have control. When several ready threads have the same priority, control
is given in turn to each of them, based on the TIMESLICE parameter. The
minimum value of this parameter is the duration of the priority boosts which may
be applied. The maximum value is the longest a thread can execute before
being pre-empted for other threads which have the same internal dispatching
priority.

Chapter 11. Serialization and Priorities in OS/2 133



As long as a group of threads at some priority use all the processor, control is
not given to lower priority threads. What happens is that the other waiting
threads become starved after MAXWAIT seconds have elapsed, and their priority
increases until they receive at least a minimum timeslice.

Idle-class threads are never starved, and so will not receive this boost.

11.4.1 How to Display Dispatching Priority
Use the &PERIOD.p command on the slot of interest, and find the pTCB, which is
the linear address of the Thread Control Block.

For slot F, below, we see the following for &PERIOD.p output:

*
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
000c 0005 0000 0005 0001 blk 0200 7cf7f000 7d1858a4 7d16a0d8 1eb8 00 pgma
0008 0005 0000 0005 0002 blk 081f 7cf77000 7d1858a4 7d169a28 1ea8 00 pgma
000e 0005 0000 0005 0003 blk 021f 7cf83000 7d1858a4 7d16a430 1ea8 00 pgma
000f 0005 0000 0005 0004 blk 061f 7cf85000 7d1858a4 7d16a5dc 1ea8 00 pgma
0010 0005 0000 0005 0005 blk 0200 7cf87000 7d1858a4 7d16a788 00 pgma
000d 0006 0000 0006 0001 blk 0200 7cf81000 7d1860d0 7d16a284 1eb8 00 pgmb
000a 0006 0000 0006 0002 blk 021f 7cf7b000 7d1860d0 7d169d80 1eb8 00 pgmb
0013 0006 0000 0006 0003 blk 0800 7cf8d000 7d1860d0 7d16ac8c 1eb8 00 pgmb

DB %7D16A5DC+164 L 6 would show ( for slot f )
SEE CAUTION, BELOW

%7D16A740 02 1F xx xx 1F 06
class / / ------ the word value 061F
level / actually used by the dispatcher

CAUTION: the offset used is correct for Warp CONNECT, but the addresses are
what were used in OS/2 2.11, so this is a somewhat mixed example. Any offset
in any control block may change any time a fix or new version is installed.
Please refer to the Thread Control Block in the System Diagnostic Reference for
offsets relating to other versions.

The first byte is the programmer′s priority class, ranging from 1 to 4. The
second byte is the level within the class, ranging from 00 to 1F. The third and
fourth bytes are not useful. The fifth and sixth bytes are OS/2′s computed
dispatching priority. This field is a word, so the high order part is byte 6. 081F is
the highest possible value and 0100 is the lowest possible value.

On a uniprocessor, using DosSetPriority to make yourself time-critical at the
highest delta value would give you an extremely good chance of not being
pre-empted, and was occasionally misused for serialization. This will never
work on a multiprocessor, and is risky even on a uniprocessor, because a page
fault will cause you to lose control while the page is processed, just as doing I/O
to a file will cause a thread to block if access to the actual device is required.

11.4.2 The Status of a Thread
A thread can be in one of several states. The following list is an attempt to list
all the possible states, and to briefly discuss each.

run This thread is currently executing.
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rdy This thread would like to run, but higher priority thread(s) are
executing, which prevents this thread from running.

blk This thread is blocked. Use the .pb command to find out what
resource (BlockID) it is blocked on (waiting for).

crt This thread cannot be run because another thread in this process is
currently in a critical section. You can identify that thread because it
will be the only thread not marked ′crt ′.

frz This thread is frozen, that is, some other thread has called the API
DosSuspendThread and passed the ID of this thread. This thread
cannot execute until some thread issues DosResumeThread to inform
OS/2 that this thread is once again eligible to be dispatched. There is
no way to discover what thread suspended it.
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Chapter 12. A Form to Use for Unwinding Stacks

Frame Caller′ s Return Parameters
at Frame Offset Selector

________ ________ ________ ________ ________ ________ ________ ________

________ ________ ________ ________ ________ ________ ________ ________

________ ________ ________ ________ ________ ________ ________ ________

________ ________ ________ ________ ________ ________ ________ ________

________ ________ ________ ________ ________ ________ ________ ________

________ ________ ________ ________ ________ ________ ________ ________

________ ________ ________ ________ ________ ________ ________ ________

________ ________ ________ ________ ________ ________ ________ ________

________ ________ ________ ________ ________ ________ ________ ________

________ ________ ________ ________ ________ ________ ________ ________

________ ________ ________ ________ ________ ________ ________ ________

________ ________ ________ ________ ________ ________ ________ ________

________ ________ ________ ________ ________ ________ ________ ________

________ ________ ________ ________ ________ ________ ________ ________

________ ________ ________ ________ ________ ________ ________ ________

________ ________ ________ ________ ________ ________ ________ ________

________ ________ ________ ________ ________ ________ ________ ________
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Chapter 13. Advanced Guide to Hang Analysis

What is a hang?

It′s an external symptom or a user perception that little or no work is being
done. It could be a case of extremely poor performance. The hang symptom
categorizes itself into three distinct cases:

Wait
Threads and processes are not being dispatched by the operating system.
Thread status gives the initial clue. Use of the .P command determines
status.

Blocking
Threads may wait voluntarily for a resource or an event, in which case
they will probably be blocked. They might poll for the resource, in which
cases they will cycle through blocking, being ready and running until the
resource becomes available.

A notoriously problematic case of blocking is the deadlock. This is
where two threads are each own exclusively a resource and block
waiting for ownership of the other′s resource.

Suspension
Another thread may have deliberately debarred a thread from being
scheduled, in which case we will see the waiting thread in a crt or frz
state.

Preemption
Another thread monopolizes the system. Typically the hanging threads
will be ready for dispatch (rdy), but will never or rarely receive a
minimum time-slice. We look for running and ready threads with an
excessively high priority. The .P will give the calculated priority of each
thread.

Disabled wait
Looks rather like a hardware freeze. Last instruction executed was a
HLT having sometime previously disabled interrupts using CLI. This
usually happens only when ring 0 code detects an terminal condition.
One would hope that some form of diagnostic information had been
displayed prior to this particularly if NMIs have been disabled also! If
NMIs have not been disabled then an artificially generated channel check
may be used to cause an NMI, which would allow one to break into the
kernel debugger. However the KDB to allows only one NMI channel
check per boot. If NMIs are disabled then hardware analysis techniques
may be the only recourse.

Loop
A thread is running more or less permanently. It′s state will mostly be rdy
or run. Similar analysis techniques to trap apply here. We examine the
registers of the running thread by using .R. From the we can determine in
which module the thread is running by looking at the owner of the executing
code segment. If necessary we unwind the stack and determine the caller
etc.. Analysis is very similar to trap analysis.

  Copyright IBM Corp. 1996 139



Hardware Freeze
The processor fetch-execute cycle has been suspended. Not even an NMI
interrupt will resume instruction fetch. This is almost certainly a hardware
problem. Timing/clocking problems caused by incompatible cards,
overloaded busses, incorrect bus terminations, faulty processor or controller
chips. Use hardware techniques such an ICE machine or Logic Analyzer.

The following Theory Topics are now covered in detail:

• See 13.1, “The Wait Condition - Diagnostic Techniques.”

This is further subdivided into two topics of discussion:

13.1.1, “Memory Management and Ownership Topics.”

13.1.2, “Thread Scheduling and Dispatching Topics” on page 175.

• 13.2, “Program Design Issues and Weaknesses” on page 211.

The final section of this Guide is a collection of Chapter 14, “Worked Examples”
on page 213 that explore memory management, the file system, Presentation
Manager and Ring 0 loops from a dump.

13.1 The Wait Condition - Diagnostic Techniques
In most problem analyses the question of memory ownership or use will arise.
For example:

To which module does this instruction belong?

Which process executed this module?

Who allocated this storage?

Who passed these parameters?

What control block does this address point to?

In fact the frequency with which this question is asked makes it a fundamental
aspect of analytical technique.

For hang analysis this is no less true.

In the case of loops, analysis proceeds in a similar manner to that of traps.

In the case of waits, a key piece of information is the BlockID. In many
cases this is an address of a system control block that relates closely to the
reason for waiting. Discovery of the owner of storage pointed to by a
BlockID is therefore of prime interest.

We start by reviewing memory management in OS/2 and in particular memory
ownership.

13.1.1 Memory Management and Ownership Topics
Memory allocation in a demand-paging virtual storage operating system such as
OS/2 embodies the allocation of a number of system resources with certain
attributes applied:

Resources

Virtual address space
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Real address space

Auxiliary address space (SWAPPER)

Attributes

Exclusion (privacy)

Inclusion (sharing)

Owner (Where is was allocated from or who it was allocated to)

Requestor (who made the request on behalf of the owner)

Permissions (Read-only, Read/Write, Executable)

Use of the resources and the attributes applied is tracked by the system in its
VM control blocks. The most important of these are the following&cvolon.

VMAH The Virtual Memory Arena Header Record

VMOB The Virtual Memory Object Record

VMAR The Virtual Memory Arena Record

VMCO The Virtual Memory Context Record

PF The Page Frame Structure

VP The Virtual Page Structure

13.1.1.1 Virtual Address Space Arenas and Regions
OS/2 partitions the 4GB virtual address space into three types of arena:

System

Shared

Private

The system arena is common to all processes. It starts at the 512MB boundary
and occupies the address space up to 4GB. Only system code (and device
drivers) can access data in the system arena directly. User code must use APIs
invoked by the call gate mechanism to access system arena code and data.
Nearly all system arena data is global, that is, managed by a common set of
page tables, whatever the current thread/process context. The exception to this
is in the memory area mapped by selector 30. Page table entries are adjusted
as part of context switching so that selector 30 addresses the current PTDA, TCB
and TSD.

The shared arena address range is common to all processes, but it comprises
data that is both global and instance. Instance data occurs where a separate set
of page table entries are used per context to map the same linear address
range.

Instance data is used when the same type of data needs to be allocated as
multiple private copies to each process. An example of this would be a logical
screen buffer. The shared arena starts initially at the 304MB boundary and ends
at 512MB. User programs may access the shared arena. DLL code and data is
located in the shared arena. DLL code segments are always global, but DLL
data segments may be instance or global and are usually a mixture of both.
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The shared arena is further subdivided into a number of regions:

Region  Description

Protected This region is reserved for protected data segments of
protected DLLs. In General 16- and 32-bit applications
do not have addressability above the 448MB boundary.
Potentially 32-bit applications are able to modify all
read/write global data, whether intended by the owning
DLL or not. The protected region is provided so that
protected DLLs can isolate their data from general
access. Only protected DLLs have addressability to the
protected region by being assigned data selector 63.

32-bit DLLs become protected through use of the protect
option at compile time.

16-bit DLLs may also use the protected region, if
explicitly coded to do so and listed in CONFIG.SYS
using:

PROTECT16=dll1,dll2,....

The protected region may be subsumed into the based
region (see below) by coding in CONFIG.SYS the
NOPROTECT option on the MEMMAN statement.

The default is MEMMAN=PROTECT

Based The based region is reserved for non-protected DLLs
that have a preferential base address assigned by the
linkage editor by using the BASE option.

The purpose of the based region is to improve
performance of module loading, by avoiding the need for
the system loader to do fix-up processing.

Note: Under OS/2 2.x, MEMMAN=NOPROTECT would
cause the based and packed regions to move up 64M
bytes - effectively giving another 64M bytes for general
purpose use in the shared arena.

Packed The packed region is reserved for 16-bit DLL code
segments. Within the packed region the compatibility
region mapping algorithm does not apply. Code
segments are packed contiguously to make best use of
physical pages.

Potentially, tiny DLL code segments can deplete physical
storage very rapidly if not packed. However, when
packing is used there is no general algorithm that will
convert 16-bit addresses into 32-bit addresses within the
Packed Region. The system has to scan the LDT, over
the packed region, to make this conversion.

Packing may be disabled by specifying the NOPACK
option of the MEMMAN statement in CONFIG.SYS. The
default is PACK. When packing is disabled up to 32M
bytes is made available to the Global Shared Region.
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 Notes 

Under OS/2 2.x only MEMMAN=NOPACK would tend
to reduce the Swapper Size where a great many
16-bit code segments are in use. This is because
code segments outside the Packed Region are
normally discardable (they are not swapped). Within
the packed region they are swappable since a 4K
page may contain code from a number of different
modules.

Under OS/2 2.x MEMMAN=NOPACK would provide
up to 32M bytes extra virtual address space for
general purpose use in the Shared Arena.

Packing does not affect the availability of LDT
selectors for allocations in the Packed Region, just
the base linear address boundaries on which they
are deployed.

Packing should not be confused with either the
LINK386 PACK option or the PACK.EXE utility.

Global Shared This region has a lower boundary at 320MB and includes
the packed, based and protected regions. This is
reserved for Global Read-Only allocations only. Since
no read/write data is allocated in the global shared
region some page table economies are possible. Also
process context switching performance is improved.

 Notes 

The Global Shared Region is not configurable.

The Global Shared Region is only implemented in
OS/2 WARP version 3.

Under OS/2 2.x read/write segments would be
allocated in the based region.

Read/Write Basing The read/write basing region is the preferred region for
locating read/write DLL data segments where a base
address has been assigned to a DLL module by the
linkage editor. The purpose of this region is to keep
read/write segments out of the Global Shared Region
and thus retain its performance advantages. It also
places an upper bound on the location of dynamic
shared allocations, namely the Minimum Read/Write
Basing Region address.
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 Notes 

The Read/Write Basing Region is not defined in OS/2
versions prior to version 3.

Based DLLs under OS/2 2.x, by preference, have
their segments loaded sequentially starting with
segment 1 at the base address. With the
implementation of the Global Shared Region only
Read-Only segments can be loaded sequentially from
the base address.

Expansion The shared arena is an expand-down arena, that is,
allocation searches for free regions from the high
addresses to low. The shared arena therefore expands
from the minimum read/write basing region address
towards the highest upper bound of all the private
arenas. This area is the expansion region for both the
shared arena and all the private arenas.

The shared arena will not contract to an address higher
than the minimum read/write basing address.

Note:

The expansion region for OS/2 2.x is from the
lower boundary of the packed region, if present.
If not, then from the lower boundary of the
protected region, if present. If both the protected
and packed regions are removed (using
MEMMAN=NOPACK,NOPROTECT) then
expansion occurs from the top of the shared
arena.

Each private arena occupies the lowest range of virtual address space from 0 -
64MB expanding up to a maximum of 304MB, the minimum read/write basing
address. None of the private arenas will be allowed to expand beyond the
lowest allocation in the shared arena, that is private and shared arenas may not
overlap.

In general each process uses a separate set of page table entries to map each
page of its private arena. Thus the data in the private arena is private to each
process. Code (.EXE files) however is treated differently. Since code is read
only an economy is made whenever more than one process runs the same .EXE.
Where this happens the same page table entries are used among the processes
sharing the common .EXE file. User programs may only access the private
arena of the process they are running in (a special exception to this is possible
through the DosDebug API by defining memory aliases).

Virtual memory arenas and regions may be presented pictorially as in the
following diagram.
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 Notes 

Some regions of the 4GB address space are reserved. This is done for a
variety of reasons which include:

Hardware and BIOS restrictions.

Enforced segregation between Arenas.

Guaranteed reserved address ranges.
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Figure 2. Virtual Address Space Regions
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13.1.1.2 Virtual Address Space Management
Each of the three types of arena discussed in the previous section is managed
by:

An Arena Header Record (VMAH)

A Sentinel Arena Record (VMAR)

The VMAHs are maintained in a double-linked list. They contain information
about the extent to which an arena has been used. Of particular interest are the
following fields:

+0x0
Pointer to the next VMAH.

+0x4
Pointer to the previous VMAH.

+0x8
Pointer to the Sentinel Arena Record for this arena.

+ 0 x c
Pointer to the VMAR adjacent to the 1st free area.

In the case of expand down arenas (the shared arena), this is the VMAR for
the region of memory allocated above the first free area below the minimum
read/write basing region.

In the case of expand-up arenas (system and private) this is the VMAR for
the region of memory allocated just below the lowest free area.

+0x20
Current minimum linear address allocated.

+0x24
Current Maximum linear address allocated.

VMAHs  are located:

At _vmahSys for the System Arena

At _vmahShr for the System Arena

Imbedded at +0x40 in each PTDA for Private Arenas

Arena Records (VMARs) are used to describe virtual storage reservations.
These are described in more detail in 13.1.1.3, “Virtual Memory Arena Records”
on page 150.

A special form of the VMAR is the Sentinel Arena Record. This serves two
purposes:

To track the theoretical size limits of an arena.

To act as the head to a double-linked list of regular VMARs, each of which
describes a specific allocation.

The sentinel VMAR for the Shared Arena is called the Boundary Sentinel, since it
determines where the (dynamic) boundary between shared an private arenas
lies. The boundary is adjusted to reflect the current highest private arena
address.
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The manner in which VMARs and VMAHs are organized to manage the three
types of arena is shown in the following diagram:
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Figure 3. Virtual Address Space Management
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13.1.1.3 Virtual Memory Arena Records
VMARs are 24-byte records that describe virtual address space allocation, or
reservation. They are located in a table in system memory. The principle use of
the VMAR is to track the allocation of virtual memory, which may or may not be
backed in RAM or on the SWAP file.

Arena records appear in a number of guises depending on the area storage they
describe and whether the storage is shared, instance or private data. They are
formatted by the KDB and DF .MA command. The .MA command takes either the
handle or address or the VMAR as a parameter, or if no parameters are
specified then the entire VMAR table is formatted.

# .ma
 har par cpg va flg next prev link hash hob hal
 0001 %feeef020 00000100 %ff050000 001 001f 0002 0000 0000 0001 0000 =0000
 0002 %feeef036 00000161 %feeef000 001 0001 0003 0000 0003 0002 0000 =0000
 0003 %feeef04c 00001000 %fdeef000 001 0002 0021 0000 0000 0003 0000 =0000
 0004 %feeef062 00000000 %60000000 003 05d3 0015 0000 0000 ffc0 0000 max=%fffc0000
 0005 %feeef078 0000cc40 %04000000 007 0617 0072 0000 0000 fff0 0000 max=%1fff0000
 0006 %feeef08e 00000003 %fff1b000 009 000f 03ad 0000 0000 0007 0000 sel=0100
 0007 %feeef0a4 0000000c %ffe22000 009 0008 0019 0000 0000 0008 0000 sel=0400
 0008 %feeef0ba 0000000d %ffe2e000 009 0009 0007 0000 0000 0009 0000 sel=1000
 0009 %feeef0d0 00000010 %ffe3b000 009 01e2 0008 0000 0000 000a 0000 sel=0120
 000a %feeef0e6 000001c1 %ac624000 121 002a 003a 0000 0000 000b 0000 =0000
 000b %feeef0fc 00000006 %ffe4d000 009 000c 01df 0000 0000 000c 0000 sel=0130
 000c %feeef112 00000003 %ffe53000 009 0094 000b 0000 0000 000d 0000 sel=0138
 000d %feeef128 00000010 %11450000 379 0394 02d6 0000 0000 000e 0000 hco=00174
 000e %feeef13e 00000001 %fff10000 001 03d3 0020 0000 0000 000f 0000 =0000
 .
 .
 00b6 %feeeffae 00000080 %00110000 169 03df 0076 0000 0000 041f 0000 hptda=03c9

The fields of principle interest are:

har
The arena record handle. This is a unique identifier assigned to each VMAR.

cpg
The number of pages (4K bytes) allocated or reserved.

va The address of the first page in the reservation.

hob
The handle of the VMOB that occupies the virtual address range covered by
va and cpg.

The right-hand column gives descriptive information about the use of the
address range in a VMAR. Of particular interest are:

sel=ssss
Indicates system storage mapped by a GDT selector.

hco=hhhh
Indicated shared global storage. The hco  is the handle of the VMCO at the
head of the list representing accessors to an allocation in the Shared Arena.

hptda=pppp
Indicated private memory allocated in the private arena of a process whose
PTDA handle is pppp.
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13.1.1.4 Virtual Memory Object Records
VMOBs are 16-byte records allocated contiguously in a table in system memory.
Each table entry is numbered from 1 and is referred to as a memory object
handle, or more simple as a hob.

VMOBs are use to store information about the allocation request. Of particular
interest are:

• The Requestor

• The Owner

• The Permissions

The VMOB also has links to other related control blocks. Of these the important
ones are:

The associated VMAR.

The associated VMCOs.

The associated VMOBs.

VMOB is formatted by using the KDB or DF .MO command. The .MO command
takes either the handle or address or the VMOB as a parameter, or if no
parameters are specified then the entire VMOB table is formatted.

##.mo
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 0001 0001 fec8 0000 fff1 0000 0000 00 00 00 00 vmob
 0002 0002 fec8 0000 ffe3 0000 0000 00 00 00 00 vmar
 0003 0003 fec8 0000 ffec 0000 0000 00 01 00 00 vmkrhrw
0004 %fff13238 8000 ffe1 0000 0000 00 00 00 00 vmah
0005 %fff13190 8000 ffe1 0000 0000 00 00 00 00 vmah
0006 %fff0a891 8000 ffa6 0000 0000 00 00 00 00 mte doscalls.dll
 0007 0006 0000 0000 ff6d 0000 0000 00 00 00 00 doshlp
 0008 0007 0000 0000 ffaa 0006 0000 00 00 00 00 os2krnl
 0009 0008 0000 0000 ffaa 0006 0000 00 00 00 00 os2krnl
 000a 0009 0000 0000 ffaa 0006 0000 00 00 00 00 os2krnl
 000b 000a 0000 0000 ffaa 0006 0000 00 00 00 00 os2krnl
 000c 000b 0000 0000 ffaa 0006 0000 00 00 00 00 os2krnl
 000d 000c 0000 0325 ffba 0000 0000 00 00 00 00 lock
 000e 000d 0000 0000 ffaa 0006 0000 00 00 00 00 os2krnl
 000f 000e 0000 0000 ffaa 0006 0000 00 00 00 00 os2krnl
 0010 008f 0000 402c 00ae 0115 0000 00 00 00 00 priv 0002 c:pmshell.exe
 0011 0010 0000 0000 ff37 0000 0000 00 00 00 00 romdata
 0012 0011 0000 0000 ffaa 0006 0000 00 00 00 00 os2krnl

One VMOB is formatted per line with the hob in the left-hand column.

The owner is shown under the own  column and is given as a hob that is
associated with and uniquely identifies where the allocation is made from. For
example:

Memory dynamically allocated within a Private arena uses the handle of the
PTDA (hptda) as the owner.

The PTDA has a number of characteristics that make it an ideal choice for an
owner:

Each process has a unique PTDA
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The PTDA is the central control block from which all information about a
process is obtained.

Each PTDA is allocated from a unique memory object so has a unique
hob, which defined to be the hptda.

For storage allocated for a load module segment the module MTE handle
(hmte) is used.

The MTE has a number of characteristics that make is an ideal choice for an
owner:

Each loaded module is represented in the system by an unique MTE.

Each MTE is allocated from a unique memory object so has a unique
associated hob, which is defined to be the hmte.

Memory allocated in the shared arena which is not specific to a particular
process uses the following conventions for owner:

• For DLL instance and global data the owner is the hmte of the owning
DLL.

• For giveable shared storage, the owner is (0xfff5).

• For gettable shared storage, the owner is (0xfff6).

• For giveable and gettable shared storage, the owner is (0xfff7).

• For named shared storage, the owner is (0xff82).

See DosAllocSeg, DosGiveSeg, DosGetSeg and DosAllocSharedMem APIs in
the Control Program Programming References for OS/2 1.x, 2.x and 3.x.

Memory allocated or suballocated from the system arena uses an artificial
system owner id (ffxx) that doesn′ t actually correspond to a VMOB but is a
conventional handle used to indicate the type of system object which has
been allocated. An example this is hob 1 which is the table of VMOBs.

The requestor′s id is shown in the hmte column. This field is either:

The hmte of the module making the request.

An associated system object

zero where there is no associated requestor.

To the right of each line appears a textual interpretation of the own and hmte
fields.

The handle of the associated VMAR is shown in the har  column.

Associated VMOB′s that share the same virtual address (that is, instance data)
are linked from the hobnxt field.

Not every VMOB is linked to an associated VMAR, as seen in hobs 4 and 5 in the
example. These are known as pseudo-objects. They are used for some small
system control blocks that are allocated, as required, from system storage but
are too small to warrant the overhead of the minimum allocation of 1 page,
which an arena records implies. PTDAs and MTEs are the most frequently
encountered pseudo-objects. The va field replaces the har and hobnxt and
points directly at the object itself.
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13.1.1.5 The Virtual Memory Context Record
VMCOs are small control blocks that serve as extensions to the VMAR for
shared arena, shared data. Whenever a process is given access to a shared
global data object (most frequently DLL code and global data) then a VMCO is
used to record the handle of the process (hptda) of the accessing process. Each
process that shares a global data object will have a VMCO chained in a
single-linked list from the object′s VMAR.

VMCOs may be formatted using the KDB and DF .MC command, however they
are usually displayed with their corresponding VMOB and VMAR by using either
the .MOC or .MAC commands.

#.mac 297

*har par cpg va flg next prev link hash hob hal
 0297 %feef2904 00000660 %11fb0000 369 0312 0295 0000 009e 02a1 0000 hco=0057f
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 02a1 0297 0000 4a2d fff5 0302 0000 00 00 00 00 give
 hco=057f pco=ffe70b96 hconext=00241 hptda=06d1 f=1e pid=0059
 hco=0241 pco=ffe6fb60 hconext=004ce hptda=04b2 f=1e pid=0043 c:pmspool.exe
 hco=04ce pco=ffe70821 hconext=0034c hptda=05c3 f=1e pid=0016 c:pawn.exe
 hco=034c pco=ffe70097 hconext=001e4 hptda=04ca f=1e pid=000f c:pmshell.exe
 hco=04ca pco=ffe7080d hconext=00348 hptda=05c3 f=16 pid=0016 c:pawn.exe
 hco=0348 pco=ffe70083 hconext=0017a hptda=04ca f=16 pid=000f c:pmshell.exe
 hco=017a pco=ffe6f77d hconext=00177 hptda=03d9 f=16 pid=000b c:spdaemon.exe
 hco=0177 pco=ffe6f76e hconext=00148 hptda=03ec f=16 pid=000c
 hco=0148 pco=ffe6f683 hconext=000b2 hptda=03c9 f=16 pid=000a c:ddaemon.exe
 hco=00b2 pco=ffe6f395 hconext=00083 hptda=0359 f=16 pid=0009 c:harderr.exe
 hco=0083 pco=ffe6f2aa hconext=00081 hptda=02e1 f=16 pid=0007 c:landll.exe
 hco=0081 pco=ffe6f2a0 hconext=0007d hptda=02ad f=16 pid=0006 c:lanmsgex.exe
 hco=007d pco=ffe6f28c hconext=00037 hptda=027a f=16 pid=0008 c:pmshell.exe
 hco=0037 pco=ffe6f12e hconext=00000 hptda=02ac f=16 pid=0004 c:gambit.exe

13.1.1.6 Private Arena Private Data
Private data, that is data in a private arena not accessible from any other
context, is managed by VMARs and VMOBs as depicted by the following
diagram.

Control blocks and data that directly represent the allocation are shown shaded.
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Figure 4. Private Arena Private Data
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13.1.1.7 Private Arena Shared Data
This is the case where .EXE program Read/Only segments are shared across
multiple private arenas.

The following diagram depicts this situation.

Note that only one VMOB is used, but there are multiple VMARs, one for each
process accessing the allocation. Each VMAR is linked using the link field.

Control blocks and data that directly represent the allocation are shown shaded.
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Figure 5. Private Arena Shared Data
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13.1.1.8 Shared Arena Global Data
DLL global data and named shared, giveable and gettable allocations are
potentially shareable among multiple processes. With these types of allocations
data and address range is common to all who access it. Those that are given
access are recorded by the VMCO chain.

With this type of allocation, there is only one VMAR and VMOB.

Note that the own field of the VMOC, which is interpreted on the right hand side
of the .MO display, may be one of five possibilities:

hmte Data is global data or code segment of a DLL.

Give Data is allocated with the give attribute.

Get Data is allocated with the get attribute.

GiveGet Data is allocated with both the give and get attributes.

Mshare Data is named shared storage.

The following diagram depicts this situation. Control blocks and data that
directly represent the allocation are shown shaded.
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Figure 6. Shared Global Data
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13.1.1.9 Shared Arena Instance Data
A DLL Instance data allocation shares only its address range among its
accessors. The data is mapped to a different set of physical pages for each
process.

This type of allocation is represented by a single VMAR with a chained list of
VMOBs, one for each accessor. This is the only case where VMOBs are linked
by the hobnxt field.

The following diagram depicts this situation. Control blocks and data that
directly represent the allocation are shown shaded.
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Figure 7. Shared Arena Instance Data
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13.1.1.10 The Page Frame Structure
Occasionally we need to enquire into the ownership and disposition of real
storage. The PF is used to track the use of all frames of real storage, whether
allocated, idle (pending freeing) or free.

The PF is formatted using the .MP KDB and DF command. .MP will optionally
take the frame number (real address MOD 4K) as a parameter.

# .mp
ffe1b000 InUse: pVP=ff406000 RefCnt=0001 Flg=0 ll=00 sl=00 Blk=00000 Frame=00000
ffe1b00c InUse: pVP=ff406050 RefCnt=0001 Flg=0 ll=00 sl=00 Blk=00000 Frame=00001
ffe1b018 InUse: pVP=ff40605a RefCnt=0001 Flg=0 ll=00 sl=00 Blk=00000 Frame=00002
ffe1b024 InUse: pVP=ff406064 RefCnt=0002 Flg=0 ll=00 sl=00 Blk=00000 Frame=00003
ffe1b030 InUse: pVP=ff40606e RefCnt=0001 Flg=0 ll=00 sl=00 Blk=00000 Frame=00004

Of particular interest are:

Frame=fffff
The real storage frame number represented by this PF.

pVP
The address of the related Virtual Page Structure (non-free PFs only). See
next section.

ll The long term lock count.

This is non-zero when an otherwise non-resident page is long-term locked,
that is prohibited from being discarded or swapped, and expected to be so
for a relatively long time.

sl The short term lock count.

This is non-zero when an otherwise non-resident page is short-term locked,
that is prohibited from being discarded or swapped, but temporarily so
(much less than ten seconds).

13.1.1.11 The Virtual Page Structure
VPs track the disposition of every page of virtual storage of every object. They
enable the system to locate the data for the page, whether it is in RAM or on the
swap file.

VPs are formatted using the .MV KDB and DF command, which takes as a
parameter the address of the VP, which may be obtained from the PF structure.

.mv %ff4060f0 l5
VPI=0018 pVP=ff4060f0 Res Frame=0011 Flg=410 HobPg=0001 Hob=0009 Ref=001
VPI=0019 pVP=ff4060fa Res Frame=0012 Flg=410 HobPg=0002 Hob=0009 Ref=001
VPI=001a pVP=ff406104 Res Frame=0013 Flg=410 HobPg=0003 Hob=0009 Ref=002
VPI=001b pVP=ff40610e Swp Block=08cc Flg=0a0 HobPg=027b Hob=0026 Ref=001
VPI=001c pVP=ff406118 Swp Block=0001 Flg=000 HobPg=0000 Hob=00e7 Ref=001

Of particular interest are:

Hob=nnnn
The hob of the object to which this page belongs.

HobPg=nnnn
The page number within the object.
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Frame=ffff
The real storage frame number that backs this virtual page.

Block=bbbb
The Swap file 4K block that contains the data for this virtual page.

13.1.1.12 Page Management
The relationship between PF structures, page table entries, swap file blocks and
memory objects is shown in the following diagrams.

The relationship between PF structures, VP structures, page table entries, swap
file blocks and memory objects is shown in the following two diagrams

The first of these depicts the situation where storage is backed or committed by
physical memory.
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Figure 8. Page Management

The next diagram shows how this situation changes when storage is paged out.
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Note that the page table entry is used to record the swapper block number when
the page is not present.
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Figure 9. Page Management, Storage Paged Out
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13.1.1.13 Aliasing
The situation described thus far can be further complicated by a technique
known as aliasing. This is where one or more pages of an object may be
mapped by page table manipulation to one or more pages of another object. In
effect, this is partial object sharing.

This can occur between processes or within a process and is usually done for
the following reasons:

A device driver needs to create an I/O buffer to receive data at interrupt time
and therefore in any context. The application that called the device driver
also needs to have access to the results. This is commonly solved by the
device driver making a UVIRT allocation in the system arena which aliases
an application data buffer.

A debugging application needs to access or even modify data and code of
the debugee. This is achieved through CS and DS selector aliasing.

A Dos Virtual Machine needs to simulate the A20 line wrap-around. Storage
addressed above the A20 line aliases to addresses module 2**20.

A Dos Virtual Machine′s Private Arena address space is aliased in the
system arena so that it may be accessed by Virtual Device Drivers in a
context other than that of the VDM. The VDM handle (HVMD) is the alias
address, which the VDD may add to any Private Arena Address to obtain a
context independent access to a location in a given VDM.

These situations require the introduction of another memory management
control block: the alias record (VMAL). Each VMAL has a unique handle or hal,
which is the table entry from which the VMAL is allocated.

Where aliasing occurs, the handle to the alias record (hal) is saved in the VMAR
of the aliasing address range.

In the case of memory aliasing the VMAL contains the handle to the PTDA of the
aliasing process.

In the case of CS/DS aliasing within a process the VMAL contains the CS
selector.

The link field of the VMAR is used to link together aliasing and aliased address
ranges.
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Alias records may be formatted using the .ML command as shown in the
following example:

##.ml
 hal=0001 pal=%fc5de020 har=00af hptda=00ae pgoff=00000 f=001
 hal=0002 pal=%fc5de028 har=00b0 hptda=00ae pgoff=00000 f=001
 hal=0003 pal=%fc5de030 har=007a hptda=00ae pgoff=00000 f=001
 hal=0004 pal=%fc5de038 har=0160 cs=00e6 ds=d446 cref=001 f=13
 hal=0005 pal=%fc5de040 har=017f hptda=00ae pgoff=00000 f=001
 hal=0006 pal=%fc5de048 har=0197 hptda=00ae pgoff=00000 f=021
 hal=0007 pal=%fc5de050 har=0198 hptda=00ae pgoff=00000 f=021
 hal=0008 pal=%fc5de058 har=0199 hptda=00ae pgoff=00000 f=021
 hal=0009 pal=%fc5de060 har=01c8 hptda=00ae pgoff=00000 f=001
 hal=000a pal=%fc5de068 har=01db cs=0056 ds=d446 cref=001 f=13
 hal=000b pal=%fc5de070 har=020b cs=0056 ds=d446 cref=001 f=13
 hal=000c pal=%fc5de078 har=0242 cs=0056 ds=d446 cref=001 f=13
##

CS aliasing is depicted in the following diagram.
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Figure 10. CS Alias of Shared Instance Data

The following diagram depicts multiple process memory aliasing.
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Figure 11. Multiple Alias in Mult iple Processes
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13.1.1.14 Who Owns Virtual Memory?
Given a virtual address, the procedure for determining who owns and is using
this memory essentially amounts to the following steps:

 1. If the question of ownership relates to a known process′s private storage
then determine its hptda.

 2. Locate the arena record(s) that encompass the address.

 3. If more than one then select the one that relates to the process of interest (if
known) by matching the hptda.

 4. Locate the object records that are chained to the arena record.

 5. If more than one then select the process of interest by matching the hptda.

 6. Note the own and hmte values and their interpretation on the right-hand side
of the VMOB display.

 7. If necessary format the own and hmte VMOBs.

 8. If either is an MTE then use .LM or .LMO, with the hob as parameter, to format
the MTE.

 9. If the memory is shared (hco=nnnnn appears in the arena record display)
then format the chain of VMCOs and select the one that matches hptda from
step 1.

Fortunately this task is reduced in complexity because of the M or match option
that exists with both the .MO and .MA commands.

.MOM addr will display the VMOB of a pseudo-object that matches the addr if it
exists. PTDAs are pseudo-objects and their addresses are listed by the .P
command.

.MAM addr will search for all arena records whose address range encompasses
addr. Under the kernel Debugger this search is restricted to the current context
unless the A option (all contexts) is also specified. Under the dump formatter A
in always in effect.

The C option further reduces the effort. This is the chain option and is
applicable to .MO, .MA, .MC and .ML commands. Chaining formats all VMOBs,
VMARs, VMCO and VMALs that are chained from each VMAR associated with
the VM control block being formatted.

.MAMC (or .MAMAC under the DF) are the default options if just .M is specified.
Furthermore the matching address defaults to the current CS:EIP.

The following sections illustrate memory ownership in:

Shared Arena Global Data

Shared Arena Instance Data

Private Arena Shared and Private Data

Physical Storage.

Further examples in memory management exploration, including looking at
aliasing may be found in 14.1.2, “Exploring Memory Management” on page 245.

Shared Global Data: Who owns %12123456 ?
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#.m %12123456

*har par cpg va flg next prev link hash hob hal
 0297 %feef2904 00000660 %11fb0000 369 0312 0295 0000 009e 02a1 0000 hco=0057f
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 02a1 0297 0000 4a2d fff5 0302 0000 00 00 00 00 give
 hco=057f pco=ffe70b96 hconext=00241 hptda=06d1 f=1e pid=0059
 hco=0241 pco=ffe6fb60 hconext=004ce hptda=04b2 f=1e pid=0043 c:pmspool.exe
 hco=04ce pco=ffe70821 hconext=0034c hptda=05c3 f=1e pid=0016 c:pawn.exe
 hco=034c pco=ffe70097 hconext=001e4 hptda=04ca f=1e pid=000f c:pmshell.exe
 hco=04ca pco=ffe7080d hconext=00348 hptda=05c3 f=16 pid=0016 c:pawn.exe
 hco=0348 pco=ffe70083 hconext=0017a hptda=04ca f=16 pid=000f c:pmshell.exe
 hco=017a pco=ffe6f77d hconext=00177 hptda=03d9 f=16 pid=000b c:spdaemon.exe
 hco=0177 pco=ffe6f76e hconext=00148 hptda=03ec f=16 pid=000c
 hco=0148 pco=ffe6f683 hconext=000b2 hptda=03c9 f=16 pid=000a c:ddaemon.exe
 hco=00b2 pco=ffe6f395 hconext=00083 hptda=0359 f=16 pid=0009 c:harderr.exe
 hco=0083 pco=ffe6f2aa hconext=00081 hptda=02e1 f=16 pid=0007 c:landll.exe
 hco=0081 pco=ffe6f2a0 hconext=0007d hptda=02ad f=16 pid=0006 c:lanmsgex.exe
 hco=007d pco=ffe6f28c hconext=00037 hptda=027a f=16 pid=0008 c:pmshell.exe
 hco=0037 pco=ffe6f12e hconext=00000 hptda=02ac f=16 pid=0004 c:gambit.exe

# .mo 302
hob va flgs own hmte sown,cnt lt st xf
0302 %fdf40844 8000 ffa6 0000 0000 00 00 00 00 mte c:pmmerge.dll
#

This is shared arena global data because of the presence of the hco chain. The
storage was dynamically allocated by PMMERGE.DLL as giveable storage. It is
currently being referenced by 14 processes.

Shared Instance Data  Who allocated %13fa1234 ?

# .m %13fa1234
*har par cpg va flg next prev link hash hob hal
 009c %feeefd72 00000010 %13fa0000 179 009b 009d 0000 0000 063f 0000 =0000
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 063f 009c 0497 002c 06d1 00a3 0000 00 00 00 00 priv 0059
 0497 009c 05c4 002c 04b2 00a3 0000 00 00 00 00 priv 0043 c:pmspool.exe
 05c4 009c 04ce 002c 05c3 00a3 0000 00 00 00 00 priv 0016 c:pawn.exe
 04ce 009c 03f0 002c 04ca 00a3 0000 00 00 00 00 priv 000f c:pmshell.exe
 03f0 009c 03dd 002c 03ec 00a3 0000 00 00 00 00 priv 000c
 03dd 009c 03cd 002c 03d9 00a3 0000 00 00 00 00 priv 000b c:spdaemon.exe
 03cd 009c 035d 002c 03c9 00a3 0000 00 00 00 00 priv 000a c:ddaemon.exe
 035d 009c 02f4 002c 0359 00a3 0000 00 00 00 00 priv 0009 c:harderr.exe
 02f4 009c 02e5 002c 027a 00a3 0000 00 00 00 00 priv 0008 c:pmshell.exe
 02e5 009c 02ae 002c 02e1 00a3 0000 00 00 00 00 priv 0007 c:landll.exe
 02ae 009c 02a8 002c 02ad 00a3 0000 00 00 00 00 priv 0006 c:lanmsgex.exe
 02a8 009c 0000 002c 02ac 00a3 0000 00 00 00 00 priv 0004 c:gambit.exe

# .mo a3
hob va flgs own hmte sown,cnt lt st xf
00a3 %fdef5f70 8000 ffa6 0006 0000 00 00 00 00 mte c:doscall1.dll

# .lmo a3
hmte=00a3 pmte=%fdef5f70 mflags=0498b594 c:\os2\dll\doscall1.dll
obj vsize vbase flags ipagemap cpagemap hob sel
0001 00000360 1bf80000 80009025 00000001 00000001 00ac dfc6 r-x shr alias iopl
0002 0000aa34 1bf90000 80002025 00000002 0000000b 00ab dfcf r-x shr big
0003 0000d499 1bfa0000 8000d025 0000000d 0000000e 00aa dfd6 r-x shr alias conf iopl
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0004 0000d4f0 1bfb0000 8000d025 0000001b 0000000e 00a9 dfde r-x shr alias conf iopl
0005 00001140 13f90000 80001023 00000029 00000002 00a8 9fcf rw- shr alias
0006 00001af0 13fa0000 80001003 0000002b 00000002 0000 9fd7 rw- alias
0007 00000e44 13fb0000 80001023 0000002d 00000001 00a6 9fdf rw- shr alias
0008 00000550 13fc0000 80001003 0000002e 00000001 0000 9fe7 rw- alias
0009 00001000 13fd0000 80001023 0000002f 00000000 00a4 9fef rw- shr alias
000a 00001000 13fe0000 80001023 0000002f 00000000 00a2 9ff7 rw- shr alias
#

%13fa1234 is the shared arena (there is no hptda associated with the arena
record).

This is shared instance data because of the chain of related object records.

The storage was allocated by hmte=a3, but their are multiple owners.

mte a3 is DOSCALL1.DLL

%13fa1234 is within object 6 of the module. It is DLL RW instance data.

Private Data  Who owns #17:0 in thread slots 8 and 9?

>> First find the hptda′ s for each of the slots of interest since we are
>> looking at private arena storage

# .p8
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 0008 0008 0001 0008 0007 blk 0200 abd2f000 abe497f0 abe28bf0 01 PMSHL32
# .mom %abe497f0
hob va flgs own hmte sown,cnt lt st xf
027a %abe497f0 8000 ffcb ff79 0000 00 00 00 00 ptda 0008 c:pmshell.exe

# .p 9
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 0009 0004 0001 0003 0001 blk 081f abd30000 abe48614 abe28de8 00 GAMBIT
# .mom %abe48614
hob va flgs own hmte sown,cnt lt st xf
02ac %abe48614 8000 ffcb 02a8 0000 00 00 00 00 ptda 0004 c:gambit.exe

>> Next list all the owners of 17:0

# .m #17:0
*har par cpg va flg next prev link hash hob hal
 026d %feef2568 00000010 %00020000 1d9 029a 026c 0000 0000 029d 0000 hptda=02ad
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 029d 026d 0000 0838 029e 029e 0000 00 00 00 00 shared c:lanmsgex.exe

*har par cpg va flg next prev link hash hob hal
 0277 %feef2644 00000010 %00020000 1d9 0276 0272 0000 0000 02b0 0000 hptda=02ac
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 02b0 0277 0000 0838 02b1 02b1 0000 00 00 00 00 shared c:gambit.exe

*har par cpg va flg next prev link hash hob hal
 02a0 %feef29ca 00000010 %00020000 179 02a4 029f 0000 0000 02e8 0000 hptda=02e1
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 02e8 02a0 0000 002c 02e1 02e7 0000 00 00 00 00 priv 0007 c:landll.exe

*har par cpg va flg next prev link hash hob hal
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 02aa %feef2aa6 00000010 %00020000 179 02ab 02a9 0000 0000 02f8 0000 hptda=027a
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 02f8 02aa 0000 002c 027a 02f7 0000 00 00 00 00 priv 0008 c:pmshell.exe

*har par cpg va flg next prev link hash hob hal
 02fc %feef31b2 00000010 %00020000 1d9 02fd 02fb 0000 0000 0360 0000 hptda=0359
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 0360 02fc 0000 0838 035f 035f 0000 00 00 00 00 shared c:harderr.exe

*har par cpg va flg next prev link hash hob hal
 0360 %feef3a4a 00000010 %00020000 1d9 0361 035f 0000 0000 03d0 0000 hptda=03c9
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 03d0 0360 0000 0838 03cf 03cf 0000 00 00 00 00 shared c:ddaemon.exe

*har par cpg va flg next prev link hash hob hal
 036b %feef3b3c 00000010 %00020000 1d9 036c 036a 0000 0000 03e0 0000 hptda=03d9
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 03e0 036b 0000 0838 03df 03df 0000 00 00 00 00 shared c:spdaemon.exe

*har par cpg va flg next prev link hash hob hal
 0378 %feef3c5a 00000010 %00020000 1d9 0379 0377 0000 0000 03f3 0000 hptda=03ec
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 03f3 0378 0000 0838 03f2 03f2 0000 00 00 00 00 shared

*har par cpg va flg next prev link hash hob hal
 040e %feef493e 00000010 %00020000 179 045c 040f 0000 0000 04c6 0000 hptda=04b2
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 04c6 040e 0000 002c 04b2 0522 0000 00 00 00 00 priv 0043 c:pmspool.exe

*har par cpg va flg next prev link hash hob hal
 0427 %feef4b64 00000010 %00020000 179 0428 0426 0000 0000 04cf 0000 hptda=04ca
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 04cf 0427 0000 002c 04ca 02f7 0000 00 00 00 00 priv 000f c:pmshell.exe

*har par cpg va flg next prev link hash hob hal
 04e8 %feef5bfa 00000010 %00020000 179 04e6 04e5 0000 0000 05d4 0000 hptda=05c3
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 05d4 04e8 0000 002c 05c3 05cf 0000 00 00 00 00 priv 0016 c:pawn.exe

*har par cpg va flg next prev link hash hob hal
 0502 %feef5e36 00000010 %00020000 1d9 059f 0598 0000 0000 0507 0000 hptda=06d1
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 0507 0502 0000 0838 05b3 05b3 0000 00 00 00 00 shared

*har par cpg va flg next prev link hash hob hal
 0507 %feef5ea4 00000010 %00100000 1e1 056c 05cb 05d4 0000 0678 0018 hptda=04af
 hal=0018 pal=%fddae0d8 har=0507 hptda=04af pgoff=00000 f=081
 har par cpg va flg next prev link hash hob hal
 05d4 %feef7042 00000040 %00000000 1e1 05bf 0461 0000 0000 0678 0000 hptda=04af
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 0678 0507 0000 103c 04af 0000 0000 00 00 00 00 priv 005b *vdm

>> Slot 8:

# .mo 2b1
hob va flgs own hmte sown,cnt lt st xf
02b1 %feeeef38 8000 ffa6 02a7 0000 00 00 00 00 mte c:gambit.exe
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# .lmo 2b1
hmte=02b1 pmte=%feeeef38 mflags=00003140 c:\dcaf13\gambit.exe
seg sect psiz vsiz hob sel flags
0001 0002 1fe0 1fe0 02b2 000f 2d20 code shr rel
0002 0013 002a 002c 02b0 0017 2d20 code shr rel
0003 0014 19ae 19ae 0000 001f 0d01 data rel
0004 0022 0002 0002 02a9 0027 2c20 code shr
0005 0000 0000 3400 0000 002f 0c01 data

#

>> Slot 9

# .mo 2f7
hob va flgs own hmte sown,cnt lt st xf
02f7 %fdf40a18 8000 ffa6 0000 0000 00 00 00 00 mte c:pmshell.exe
#

This is private arena data of some sort, whose address range in present in 13
processes.

The hptda for Pid 4 (slot 9 is 2ac)

The second major entry from .M output (har=277, hptda=2ac) is for
GAMBIT.EXE in Pid 4.

The owner and hmte are the same (2b1). This indicates a code segment within
the module GAMBIT.EXE.

.LMO 2b1 show this to be in segment 2 of GAMBIT.EXE

The storage in Pid 8 (slot 8) is shown in the 4th entry, har=2aa.

Here own=27a and hmte=2f7.

The owner is shown to the right of the VMOB as being Pid 8. We can check this
by displaying hob 27a. This turns out to be a ptda for Pid 8, as we saw when we
used .mom against the PTDA address.

.LMO 2f7 shows this to be the MTE for PMSHELL.EXE. We concluded that
pmshell has allocated private memory in Pid 8 at this address.

Physical Memory: Who owns physical address %%90123 ?

# .mp 90
ffe1b6c0 InUse: pVP=ff408576 RefCnt=0001 Flg=1 ll=00 sl=00 Blk=00272 Frame=00090

# .mv %ff408576
VPI=03bf pVP=ff408576 Swp Frame=0090 Flg=030 HobPg=0011 Hob=0282 Ref=001

# .moc 282

*har par cpg va flg next prev link hash hob hal
 0263 %feef248c 00000060 %a8650000 001 0262 0267 0000 0001 0282 0000 =0000
 hob har hobnxt flgs own hmte sown,cnt lt st xf
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 0282 0263 0000 0000 ffd4 0000 0000 00 00 00 00 vddheap

# dp %a8650000+11000 l1
linaddr frame pteframe state res Dc Au CD WT Us rW Pn state
%a8661000* 0055d frame=00090 0 0 c A s r P pageable
%a8661000 00090 frame=00090 0 0 c A s r P pageable
#

Physical address %%90123 is in frame 90.

This is currently assigned to VP at %ff408576 and is on the swap file at block
272.

The VP tells us the hob and page within the hob.

.MOC will format the VMOB and associated VMAR.

We can check that this is correct from the page table entries for the 17th (0x11th)
page of the object′s virtual address.

13.1.2 Thread Scheduling and Dispatching Topics
Part two of our discussion on the wait condition centres on the scheduler and
dispatcher and the mechanisms that govern when threads will or will not run.

This is considered from the perspective the system, which leads us to divide the
discussion into two cases:

13.1.2.1, “Blocking - Voluntary Suspension.”

13.1.2.2, “Involuntary Suspension” on page 202.

13.1.2.1 Blocking - Voluntary Suspension
We now turn our attention to blocking, which is the mechanism that threads use
to give up processor time voluntarily to wait for an event to occur or a resource
to become available.

The term voluntary is chosen from the perspective of the scheduler and not
necessarily from the application′s perspective. In this context voluntary
suspension refers to an action taken by a thread to give up its time-slice. This
will include direct actions such as waiting on semaphores as well as calling
APIs, which for internal reasons need to wait for a resource or an event.

PROCBLOCK and its counterpart PROCRUN are the two kernel routines at the
heart of the block/run mechanism. These are callable directly by kernel
component and also by device drivers and file system drivers through a small
interface layer. Application code only gets to call PROCBLOCK and PROCRUN
indirectly through system APIs and in particular through the semaphore APIs.

The block/run mechanism is designed with the following criteria:

A thread should be able to block without the waking thread having to know
whether anyone, or who, had blocked on a resource

Multiple threads should be able to wake when an event or resource becomes
available.

This is achieved by having an abstract token, known as the BlockID, associated
with the resource or event. The BlockID is passed to PROCBLOCK when a
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thread blocks. Similarly when another thread wishes to wake threads waiting for
a resource or event the BlockID that represents the resource or event is passed
to PROCRUN.

In addition to the BlockID, callers of PROCRUN receive a flag that indicates
whether all or just the highest priority thread waiting on the BlockID should
wake.

This mechanism has shortcomings unless certain constraints are applied:

BlockIDs need to be subject to a convention that gives uniqueness otherwise
it is possible that threads will incorrectly block and run. A solution is to use
the address of a control block memory object that relates uniquely to the
resource or event.

If addresses are to be used for BlockIDs then they must point to global data
for reasons of uniqueness. Furthermore, if they are to be reference by
disabled code then the storage needs to be in resident memory. This more
or less implies that addresses must be taken from within the System Arena.

If BlockIDs are in use that do not represent addresses then they must not
conflict with any potential addresses used as BlockIDs.

Even if addresses are use there is no accounting information that says who
owns the related resource.

A workable scheme is implemented by limiting the direct use of PROCBLOCK
and PROCRUN to system code, device drivers and file system drivers, all of
which have access to the System Arena.

Apart from three special conventions the system and most device drivers use
addresses as BlockIDs. There are three system defined conventional BlockIDs
are:

fffe....
Results from a RAMSEM wait.

fffd....
Results from a MUXWAIT.

ffca....
Results from a child wait.

x....... (x=a - f)
Linear address of the memory object of control block that relates to the
resource.

........
Probably selector:offset address of the memory object or control block that
relates to the resource.

This scheme could be subverted by device drivers, but in general they will
choose to block on addresses of resources they own, which are usually allocated
out of the system arena and addressed using a GDT select:offset.

Accountability remains an exposure. For BlockIDs that are addresses the owner
of the memory that the BlockID points to gives a big clue. For conventional
BlockIDs we have to do more work. These are discussed in detail later. We will
first we look at an example of a BlockID that is an address.
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Basic Technique:

The technique for analyzing blocked threads is two-pronged:

 1. We can look at the wait from the application perspective by examining the
current user registers and by trying to identify the API issued. This is usually
relatively easy but often gives no clue as to the underlying wait since any
single API may block on many occasions for many reasons.

 2. Examine the problem from the internal or kernel perspective to determine
what an API might be waiting for. This process starts with finding the
associated BlockID.

When a thread blocks its BlockID is stored in the TCB TCBSleepId field.
Conveniently, this is formatted by using the .PB KDB and DF command.

Note: .PB under DF lists non-blocked threads. BlockIDs are irrelevant for such
threads.

.PB also attempts to interpret the BlockID. The full details of these are given in
the Kernel Debugger and Dump Formatter Command Reference (Volume 2). In
addition to classifying the BlockID, .PB examines TCB_SemInfo and
TCB_SemDebugAddr.

For many semaphore originated BlockIDs TCB_SemInfo is used to store the
address or handle of the user′s semaphore that lead to the thread blocking. The
.PB command will attempt to locate a near symbol to the semaphore address
and display it.

Under the kernel debugger, TCB_SemDebugAddr is used to store the address of
the caller to the Semaphore API when the thread blocked. If this field is not
0xffffffff .PB attempts to locate a near symbol to the caller and display it.

Once we have the BlockID, TCB_SemInfo and TCB_SemDebugAddr we are able
to begin searching for information associated with reason for blocking.

The next step is to decide whether the BlockID is one of the three special
categories or to be treated as an address.

Blocking on the Address of a Resource: The initial analysis of BlockIDs that are
linear addresses uses the .M command to determine ownership.

If we have appropriate symbols loaded, the LN command against the BlockID can
also be very informative.

As mentioned in the previous section, for addresses to be effective BlockIDs they
must be unique and so are generally allocated from the system arena. Most
allocations from the system arena are labelled with a system object Id. If the .MO
command is used against a system object Id it will display a meaningful
mnemonic for the Owner Id. In many cases the mnemonic is for a system
control block or buffer. BlockIDs that address the beginning of a control block
tend to be used for serializing updates to the control block. There may be
processes that a control block is associated with. These are often serialized by
using the address of a field within the control, that is specifically associated with
the process.

A complete list of system object Ids may be found in the under the Kernel
Debugger Command Reference under the .MO command description.
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We now look at some examples:

File System - Device Driver

# .pb41
Slot Sta BlockID Name Type Addr Symbol
 0041 blk 04085ca7 DEMO1
# ln 408:5ca7
No Symbols Found
# .m 408:5ca7

*har par cpg va flg next prev link hash hob hal
 0079 %fef1fa70 00000010 %7bf27000 129 0078 0077 0000 0000 007b 0000 sel=0408
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 007b 0079 0000 0324 ffa1 0000 0000 00 00 00 00 sft

# .d sft 408:5ca7
sf_ref_count: 0000 sfi_mode: 0092
sf_usercnt: 0000 sfi_hVPB: 0000
reserved: 00 sfi_ctime: 0000

sf_flags(2): 02c0:0000 sfi_cdate: 0000
sf_devptr: #0928:001c sfi_atime: 0000

sf_FSC: #00c8:ff40 sfi_adate: 0000
sf_chain: #0000:0000 sfi_mtime: 3ce1
sf_MFT: ffffffff sfi_mdate: 1eb0

sfdFAT_firFILEclus: 0000 sfi_size: 00000000
sfdFAT_cluspos: 0000 sfi_position: 000013c0
sfdFAT_lstclus: 0000 sfi_UID: 0000
sfdFAT_dirsec: 00000000 sfi_Pid: 0012
sfdFAT_dirpos: 00 sfi_PDB: 0000
sfdFAT_name: DEMODEV2 sfi_selfsfn: 00b5

sfdFAT_EAHandle: 0000 sfi_tstamp: 00
sf_plock: 0000 sfi_DOSattr: 00

sf_NmPipeSfn: 0000
sf_codepage: 0000

# .p41
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 0041 0012 000f 0012 0001 blk 0300 7bd19000 7bdfc218 7bddfc68 0ebc 13 DEMO1

# .s41
Current slot number: 0041

# .r
eax=00000000 ebx=00000002 ecx=00000000 edx=4d3409ea esi=d02f0021 edi=000009ea
eip=00000134 esp=0000a424 ebp=0000a43e iopl=2 -- -- -- nv up ei pl nz ac po nc
cs=000f ss=005f ds=005f es=004f fs=150b gs=0000 cr2=00000000 cr3=001ac000
000f:00000134 8946fe mov word ptr [bp-02],ax ss:a43c=0d16

# u cs:ip-20
000f:00000114 681f00 push 001f
000f:00000117 682d00 push 002d
000f:0000011a 0e push cs
000f:0000011b e87c19 call 1a9a
000f:0000011e 83c40a add sp,+0a
000f:00000121 8e06ee09 mov es,word ptr [09ee]
000f:00000125 8b5ef8 mov bx,word ptr [bp-08]
000f:00000128 d1e3 shl bx,1
000f:0000012a 26ffb764d2 push word ptr es:[bx+d264]
000f:0000012f 9a0000ab1d call 1dab:0000
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000f:00000134 8946fe mov word ptr [bp-02],ax
000f:00000137 8e06ee09 mov es,word ptr [09ee]

# dg 1dab
1dab CallG32 Sel:Off=0148:00004414 DPL=3 P DWC=1

# ln 148:4414
0148:00004414 OS2KRNL DOSCLOSE

Slot 41 is waiting on BlockID 04085ca7. This is too low to be a linear address.
We assume selector:offset.

.M 408:5ca7 reveals the owner to be sft. This is a System File Table structure.

The .D command will format STFs, so we do so using the BlockID as the SFT
address.

This SFT represents a device driver called DEMODEV2. We can tell because
there is no MFT pointer in the SFT and the flags indicate a device.

From the application side we unassemble back from the CS:IP.

The application has just issued a call-gate instruction.

Examination of the call-gate GDT descriptor show we were calling DOSCLOSE in
the kernel.

We are waiting for the close to complete, possibly the device driver has not
returned completion status to the last I/O request.

Named Pipes

#.s 18
Current slot number: 0018
# .pb#
Slot Sta BlockID Name Type Addr Symbol
 0018# blk 06700012 EPWPSI
#

#.m 670:12

*har par cpg va flg next prev link hash hob hal
 00a8 %fef1fe7a 00000010 %7b563000 129 00a7 00a9 0000 0000 00b4 0000 sel=0670
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 00b4 00a8 0000 0124 ff31 0000 0000 00 00 00 00 npipenp

#.p#
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 0018# 000c 0000 000c 0001 blk 0200 7bc70000 7bd79964 7bd5b5f0 0ec8 00 EPWPSI

# .r
eax=00000000 ebx=00005552 ecx=00050000 edx=0000f020 esi=00000446 edi=00000302
eip=000014bb esp=000063da ebp=000063de iopl=2 -- -- -- nv up ei pl nz na po nc
cs=d01f ss=002f ds=beb7 es=0077 fs=150b gs=0000 cr2=00000000 cr3=001ac000
d01f:000014bb c9 leave
# u.cs:ip-10
Expression error
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# u cs:ip-10
d01f:000014ab c9 leave
d01f:000014ac ca0a00 retf 000a
DOSCALL1 DOSCONNECTNMPIPE:
d01f:000014af c8000000 enter 0000,00
d01f:000014b3 ff7606 push word ptr [bp+06]
d01f:000014b6 9a0000131c call 1c13:0000
d01f:000014bb c9 leave
d01f:000014bc ca0200 retf 0002
DOSCALL1 DOSDISCONNECTNMPIPE:
d01f:000014bf c8000000 enter 0000,00
d01f:000014c3 ff7606 push word ptr [bp+06]
d01f:000014c6 9a00001b1c call 1c1b:0000
d01f:000014cb c9 leave
d01f:000014cc ca0200 retf 0002

# dg 1c13
1c13 CallG32 Sel:Off=0148:0000540c DPL=3 P DWC=1
# ln 148:540c
0148:0000540c OS2KRNL DOSCONNECTNMPIPE
#

In this example the BlockID is 06700012. This is unlikely to be a linear address.
We assume that it is 670:12.

.M 670:12 shows the owner to be npipenm. This is a named pipe name segment.
Could the process be waiting for a pipe connection?

Looking at the application side we see that the last ring 3 instruction to be
executed was a call-gate, which turns out to be DOSCONNECTNMPIPE in the
Kernel.

These last two examples were reasonably revealing. More often than not we
use .M against a BlockID (and other system data) and we get one of:

vmkshrw

vmkshro

vmkrhrw

vmkrhro

These are, so called public kernel heaps. Fortunately each allocated heap block
is imbedded in a structure that reveals the owner of the block. This is discussed
next.

Kernel Public Heaps: The kernel has seven heaps for general use by itself,
device drivers and file system drivers. They have the following object id
mnemonics:

vmkshro Swappable read-only heap

vmkshrw Swappable read/write heap

vmkrhro Resident read-only heap

vmkrhrw Resident read/write heap

krhro1m Resident read-only < 1Mb heap
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krhrw1m Resident read/write < 1Mb heap

kbdsym Resident kernel debugger symbol heap

Not all heaps are always built. Note in particular:

The hdbsym heap is not present under the RETAIL kernel.

The vmkshrw is used for the krhro1m, krhrw1m, vmkshrw and vmkshro heaps
under the RETAIL kernel.

The vmkrhrw heap is used for both vmkrhrw and vmkrhro under the RETAIL
kernel.

Notice that each of the heaps is either resident or swappable.

Each heap is partitioned into blocks.

Swappable heap blocks have an 8 byte prefix followed by the block data.

Resident heap blocks have two forms:

Regular: for smaller allocation. These have a 4 byte prefix.

Attributed or extended: These use a 4 byte prefix and an 8 byte suffix.

Swappable Heap Blocks: Kernel swappable heap blocks for allocated blocks
have the following layout:

<size><owner><selector><data>

Field Bits Description

size in bytes 63-32 Size of the block including the
header in bytes ORed with signature
0x52000000.

owner 31-16 Owner of heap block. This is
either a system owner (value between
0xff2d and 0xfff8, or a
memory handle/pseudo handle such as
an MTE pseudo-handle.

selector 15-0 GDT selector mapping block′ s data
else null.

Finding the owner of a Swappable Head Selector

# .m 8f0:0

*har par cpg va flg next prev link hash hob hal
 0021 %fef1f2e0 00001400 %fca5f000 121 0020 0022 0000 0020 0022 0000 =0000
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 0022 0021 0000 0225 ffef 0000 0000 00 04 00 00 vmkshrw

# dl 8f0
GDT
08f0 Code Bas=fca95000 Lim=00008ed3 DPL=0 P RE A

# dd %fca95000-10
%fca94ff0 00000000 00000000 52008ee0 08f0ff49
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%fca95000 08e8b81e 32b8d88e 16ca1f00 06c89000
%fca95010 1e560000 8e08e8b8 a23e83d8 06740009
%fca95020 eb63a5e8 c02b9003 0bfe4689 e90374c0
%fca95030 468b017e 10568b0e 52000805 6aff6a50
%fca95040 13969aff 5f3d1000 c4e77400 83260e5e
%fca95050 74000e7f 0142e903 0c47ff26 261276c4
%fca95060 2616448b 8918548b 5689fa46 0e468bfc

# .mo ff49
ff49 fsd2
# .lml
hmte=0982 pmte=%fe0e1a14 mflags=0408b186 e:\ibmlan\netlib\spl1a.dll
hmte=097e pmte=%fe0e1a54 mflags=0408b186 e:\ibmlan\netlib\lrhm1.dll
hmte=0979 pmte=%fe0e1bac mflags=0408b186 e:\ibmlan\netlib\lrns1.dll
hmte=096b pmte=%fe0e1d60 mflags=0408b186 e:\ibmlan\netlib\netibm.dll
hmte=0164 pmte=%fe02cc40 mflags=0498b1c8 e:\os2\dll\sysmono.fon
.
.
.
.
hmte=0181 pmte=%fe02ccb0 mflags=4498b1d5 e:\os2\dll\pmatm.dll
hmte=031b pmte=%fe02af18 mflags=0428a1c9 e:\ibmlan\netprog\netwksta.200
hmte=0306 pmte=%fe059f90 mflags=0428a1c9 e:\netware\nwifs.ifs
hmte=0160 pmte=%fe01ff4c mflags=0428a1c9 d:\dataex2\iwsfsd2.ifs
hmte=0117 pmte=%fdf5df60 mflags=0428a1c9 e:\os2\cdfs.ifs
hmte=00d2 pmte=%fdf53990 mflags=0428a1c9 e:\os2\hpfs.ifs

# .lmo 117
hmte=0117 pmte=%fdf5df60 mflags=0428a1c9 e:\os2\cdfs.ifs
seg sect psiz vsiz hob sel flags
0001 0002 8ed3 8ed4 0000 08f0 8d60 code shr prel rel
0002 004a 0964 0ad0 0000 08e8 8c41 data prel
#

We use .M command to find that the owner of 8f0:0 is vmkshrw.

So, we look at the descriptor for 8f0 to find it′s base address. Note that the
selectors assigned to kernel heap blocks address the data portion only.

We dump out 0x10 bytes before the selector base to show the block header to be
0x52008ee0 0x08f0ff49. This tells us the length of the block including header is
8ee0. (Data sizes are rounded up to the next quad-word). The user of the block
is ff49.

Note:

The following short cut could have been used:

dd %(8f0:0)-10

.MO ff49 shows fsd2. This is the second file system driver to initialise.

.LML will list DLLs, Fonts and FSDs, newest first. Counting back from the end we
see FSD1 is HPFS and FSD2 is CDFS.

.LMO 117 confirms that 8f0:0 does blong to CDFS.IFS.
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Resident Heap Blocks: Kernel resident heap blocks are of two types, regular
and attributed.

Regular blocks are the simplest and most common type. They have the form:

<simple header><data>

<simple header> is a dword (32-bits) having the following layout

<owner><prev block free flag><size in dwords><yielded flag><type flag>

Field Bits Description

owner 31-16 Owner of heap block. This is
either a system owner (value between
0xff2d and 0xfff8, or a
memory handle/pseudo handle such as
an MTE pseudo-handle.

previous block 15 1 if previous block is free, else 0
free flag
size in dwords 14-2 Size of the block including the

header in dwords.
yielded flag 1 1 if a free block search yielded

the CPU while looking at this block,
else 0

type flag 0 0 (indicates Regular Block)

Extended blocks contain a two-part header and have the following form:

<size header><data><header extension>

<size header> is a dword (32-bits) having the following layout

<extra flags><size in dwords><yielded flag><type flag>.

Field Bits Description

extra flags 31-24 Additional flags.
Bit 31 - set if block is free
Bit 30 - set if prev block is free
Bits 29-24 - reserved and 0

size in dwords 23-2 Size of the block including the
header in dwords.

yielded flag 1 1 if a free block search yielded
the CPU while looking at this block,
else 0

type flag 0 1 (indicates Extended Block)

<data> is the data area available for use by the client and is
always dword granular and dword aligned.

<header extension> is a dword-granular structure containing
the following information

<owner><selector><hmte><pad>
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Field Bits Description

owner 63-48 Owner of heap block. This is
either a system owner (value between
0xff2d and 0xfff8, or a
memory handle/pseudo handle such as
an MTE pseudo-handle.

selector 47-32 GDT selector mapping block′ s data
else null.

hmte 31-16 hmte associated with this heap block?

pad 15-0 padding for double word alignment

When a block is free, its data portion contains additional information. The first
two dwords contain forward and backward pointers to the next and previous
blocks on the free list. The last dword contains a copy of the previous block
pointer. Note that extended free blocks do not have an owner field, so bit 31 of
their header is set indicating that they are free.

The hmte  field of the header extension is no longer used for any specific
purpose.

Now for an example of a regular heap block.

# .s 47
Current slot number: 0047

# .pb #
Slot Sta BlockID Name Type Addr Symbol
 0047# blk fe04c8e8 PMSHL32

# .m %fe04c8e8

*har par cpg va flg next prev link hash hob hal
 0003 %fef1f04c 00001000 %fdf1f000 001 0002 0020 0000 0000 0003 0000 =0000
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 0003 0003 ff08 0000 ffec 0000 0000 00 06 00 00 vmkrhrw
# dd %fe04c8e8-10
%fe04c8d8 00031c3f 00000000 00000000 ffc20010
%fe04c8e8 00000010 00000000 fe040001 ffc20010
%fe04c8f8 00000010 00000000 fe040001 ffe900a8
%fe04c908 fe0c767c fe0c0ee0 00000000 00000000
%fe04c918 00000000 00000000 00000000 00000000
%fe04c928 00000000 00000000 00000000 00000000
%fe04c938 00000000 00000000 00000000 00000000
%fe04c948 00000000 00000000 00000000 00000000

# .mo ffc2
ffc2 semstruc

# .d sem32 %fe04c8e8

Type: Private Event
Flags: Reset
pMuxQ: 00000000

Post Count: 0000
Open Count: 0001

 Create Addr: 0010fe04
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# .p#
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 0047# 000d 000a 000d 0004 blk 0200 7bd1f000 7bdfa188 7bde06b8 11 PMSHL32

In this example we are interested in slot 47. Its BlockID is owned by vmkrhrw.

We dump the heap block from 0x10 bytes before the start.

Note that the low order bit of the header is 0, therefore a regular block.

Since the two low order bit are flags and the size is in double words we
conveniently ignore these to obtain the size in bytes, which happens to be 0x10.

The block is owned by ffc2, which the .MO command tells us is semstruc.

This is very good news because all the semstruc owner relates to the 32-bit
semaphore APIs. The .D command formats these for us.

Finally note that if we attempt to look at this from the application perspective we
see from .P that the TSD is swapped out (Disp is blank). This means that the
user registers for slot 47 can′ t be loaded. Furthermore attempts to look at the
registers are unpredictable as DF and KDB will have not changed the values
since they last loaded registers.

This is a case where BlockID analysis will give us a clue even if the application
data is unavailable.

Lastly we look at an extended heap block.

# .s 4b
Current slot number: 004b

# .pb #
Slot Sta BlockID Name Type Addr Symbol
 004b# blk 21a0ade0 WKSTAHLP

# .m 21a0:ade0

*har par cpg va flg next prev link hash hob hal
 0003 %fef1f04c 00001000 %fdf1f000 001 0002 0020 0000 0000 0003 0000 =0000
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 0003 0003 ff08 0000 ffec 0000 0000 00 06 00 00 vmkrhrw

# dg 21a0
21a0 Code Bas=fe070000 Lim=0000bd5b DPL=0 P RE A

# dd %fe070000-10
%fe06fff0 00000000 00000000 fe06fd72 4000bd6d
%fe070000 10d0006b 9090cbcb 9090cb90 000af390
%fe070010 3c600104 6aec8b55 8d026a01 16ebd866
%fe070020 6aec8b55 8d026a02 0aebd866 6aec8b55
%fe070030 8d026a00 46c6d866 561e00ee 21906857
%fe070040 1e7ec41f f714568b 750001c2 568b520e
%fe070050 27e2830e 29558826 2605eb5a 002945c6
%fe070060 4000c2f7 c0330574 f70d39e9 748000c2
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# dd %fe070000-4+bd6c-10
%fe07bd58 fee2e9de 00000000 ff4c21a0 fdf1ff32
%fe07bd68 ffe9008c fe06fd70 fe02aa70 00000000
%fe07bd78 00000000 00000000 00000000 00000000
%fe07bd88 00000000 00000000 00000000 00000000
%fe07bd98 00000000 00000000 00000000 00000000
%fe07bda8 fe07bd6a ffe90048 00000201 00000000
%fe07bdb8 00000000 00000000 00000000 02010000
%fe07bdc8 00000000 00000000 00000000 000000ed
#

# .mo ff4c
ff4c fsd5

# .lml
hmte=0982 pmte=%fe0e1a14 mflags=0408b186 e:\ibmlan\netlib\spl1a.dll
hmte=097e pmte=%fe0e1a54 mflags=0408b186 e:\ibmlan\netlib\lrhm1.dll
hmte=0979 pmte=%fe0e1bac mflags=0408b186 e:\ibmlan\netlib\lrns1.dll
hmte=096b pmte=%fe0e1d60 mflags=0408b186 e:\ibmlan\netlib\netibm.dll
hmte=0164 pmte=%fe02cc40 mflags=0498b1c8 e:\os2\dll\sysmono.fon
.
.
.
.
hmte=0181 pmte=%fe02ccb0 mflags=4498b1d5 e:\os2\dll\pmatm.dll
hmte=031b pmte=%fe02af18 mflags=0428a1c9 e:\ibmlan\netprog\netwksta.200
hmte=0306 pmte=%fe059f90 mflags=0428a1c9 e:\netware\nwifs.ifs
hmte=0160 pmte=%fe01ff4c mflags=0428a1c9 d:\dataex2\iwsfsd2.ifs
hmte=0117 pmte=%fdf5df60 mflags=0428a1c9 e:\os2\cdfs.ifs
hmte=00d2 pmte=%fdf53990 mflags=0428a1c9 e:\os2\hpfs.ifs

# .lmo 31b
hmte=031b pmte=%fe02af18 mflags=0428a1c9 e:\ibmlan\netprog\netwksta.200
seg sect psiz vsiz hob sel flags
0001 0003 2a8a ffdc 0000 2190 8d41 data prel rel
0002 0019 1d93 1d94 0000 2198 8d60 code shr prel rel
0003 0028 bd5c bd5c 0000 21a0 8d60 code shr prel rel
0004 0088 fd62 fd62 0000 21a8 8d60 code shr prel rel
0005 0108 606a 606a 0000 21b0 8d60 code shr prel rel
0006 0139 3492 3492 0000 21b8 8d60 code shr prel rel
0007 0154 002e 002f 0000 21c0 8c41 data prel
0008 0155 04bb 04bb 0000 21c8 8d60 code shr prel rel
#

What does BlockID 0x21a0ade0 represent?

We assume selector:offset and discover the owner is vmkshrw.

We dump the descriptor for selector 21a0 to find its base address.

Next we dump 0x10 bytes before the descriptor base to see the heap block
header.

In this example the low order bit of the header is 1 so we have to look at the
header extension for the owner information.

Adding the length to the base and backing off 0x10 bytes again we uncover the
block header extension.
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Note: The following short cut could have been used:

dd %(21a0:0)-4+bd6c-10

In this case the owner is ff4c or fsd5. This is the 5th FSD to initialise.

We list the FSDs by using .LML and pick the 5th from the bottom. This turns out
to be NETWKSTA.200.

Blocking on a ChildWait: When a process calls DosWaitChild and blocks waiting
for a child process to terminate, the BlockID is of the form:

ffcapppp where pppp is the process id of the waiting
thread.

The BlockID doesn′ t help us pin-point the processes being waited for.

All the child process have to be examined. The process status byte at offset 0xa
into the local information segment has either of the following bits set if the
parent cares about termination of the child:

0x10 The parent cares

0x20 The parent did an exec-and-wait

The local information segment is embedded in the PTDA at the following offsets:

0x7ee Retail 2.11

0x7f6 Debug 2.11

0x5be Retail 3.0

05c6 Debug 3.0

Blocking on a RAMSEM: Potentially this is the most problematical type of wait
to deal with. The BlockID is conventional and of the form:

fffexxxx where xxxx is taken from the low order word
of the user′ s RAMSEM.

There is no accountability associated with this type of semaphore. It is the
responsibility of the user to manage their own accounting information.
Accordingly most applications tend to imbed RAMSEMs into larger structures,
which contain information such as use counts, owner identification and timeouts.

Two structures in particular are in common use:

The Fast Safe RAMSEM.

The PM Fast Safe RAMSEM.

The first step with RAMSEM BlockIDs is to locate the user′s RAMSEM address.

Next check ownership just in case this gives a clue to the associated process.
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Ownership is indicated by a non-zero value in byte 0 of the RAMSEM. Very
occasionally a RAMSEM is owned by the system. When this happens happens
the ownership flags takes the value of the owning process.

We hope that the RAMSEM is embedded in either a Fast Safe RAMSEM or PM
Fast Safe RAMSEM.

Both of these structures have a length prefix. The PM version is 0x12 and the
non-PM version 0x0e.

Display storage before the RAMSEM and examine offset -0x12. Is this word
0x0012? If not then this is not a PM FSRS. Try -0xe. Does that contain 0x000e? If
not then we will have to resort to more speculative analysis.

If either of these lengths correspond, look at the next two words, these contain
the owning Pid and Tid. See whether this process and thread exists and what it
is doing.

Note: Tid is sometimes 0 when there is only one thread in a process. 

If this technique fails us then check the owner of the semaphore address, which
is saved in TCB_SemInfo  and displayed by the .PB command. The owner of the
semaphore, if it has not died, has to one of its accessors. If the RAMSEM is
located in a Private Arena, then the owner is limited to one of the threads of the
process that has blocked. If it is in shared storage, then the owned will be a
thread in one of the processes on the VMCO chain. If we are lucky, the number
of possibilities will be small, though this is not guaranteed.

The following example illustrates this technique:

>>> Slot 31 is blocked. Why?

.pb 31
 Slot Sta BlockID Name Type Addr Symbol
 0031 blk fffe01ba aires RamSem e69f:000a

>>> Bad news! a RamSem. First check to see if its imbedded in a
>>> FastSafeRamSem. We look at the RamSem address, back a few bytes

##.s 31

##dw e69f:000a-10
Past end of segment: e69f:fffffffa

>>> It can′ t be a PM FSRamSem

##dw e69f:000a-a
e69f:00000000 000e 0019 0000 0000 0000 01ff 01ba 0000
e69f:00000010 0000 0000 0000 0000 0000 0000 0000 0000
e69f:00000020 0000 0000 0000 0000 0000 0000 0000 0000
e69f:00000030 0000 0000 0000 0000 0000 0000 0000 0000
e69f:00000040 0000 0000 0000 0000 0000 0000 0000 0000
e69f:00000050 0000 0000 0000 0000 0000 0000 0000 0000
e69f:00000060 0000 0000 0000 0000 0000 0000 0000 0000
e69f:00000070 0000 0000 0000 0000 0000 0000 0000 0000
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>>> But it does look like a normal Fast Safe RamSem
>>> Pid 19, Tid=0 (this is OK if just one thread in process 19).

##.p
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 0001 0001 0000 0000 0001 blk 0100 ffe3a000 ffe3c7d4 ffe3c620 1e7c 00 *ager
 0002 0001 0000 0000 0002 blk 0200 7b92a000 ffe3c7d4 7bb28020 1f3c 00 *tsd
 0003 0001 0000 0000 0003 blk 0200 7b92c000 ffe3c7d4 7bb281d4 1f50 00 *ctxh
 0004 0001 0000 0000 0004 blk 081f 7b92e000 ffe3c7d4 7bb28388 1f48 00 *kdb
 0005 0001 0000 0000 0005 blk 0800 7b930000 ffe3c7d4 7bb2853c 1f20 00 *lazyw
 0006 0001 0000 0000 0006 blk 0800 7b932000 ffe3c7d4 7bb286f0 1f3c 00 *asyncr
*0008# 0006 0001 0006 0001 blk 0500 7b936000 7bb460d0 7bb28a58 1eb8 01 pmshell
 000d 0006 0001 0006 0002 blk 0800 7b940000 7bb460d0 7bb292dc 1ed4 01 pmshell
 000e 0006 0001 0006 0003 blk 0800 7b942000 7bb460d0 7bb29490 01 pmshell
 000f 0006 0001 0006 0004 blk 0800 7b944000 7bb460d0 7bb29644 01 pmshell
 0010 0006 0001 0006 0005 blk 0800 7b946000 7bb460d0 7bb297f8 01 pmshell
 0007 0006 0001 0006 0006 blk 0200 7b934000 7bb460d0 7bb288a4 1ecc 01 pmshell
 0013 0006 0001 0006 0007 blk 0200 7b94c000 7bb460d0 7bb29d14 1ecc 01 pmshell
 0015 0006 0001 0006 0008 blk 0200 7b950000 7bb460d0 7bb2a07c 01 pmshell
 0016 0006 0001 0006 0009 blk 0200 7b952000 7bb460d0 7bb2a230 01 pmshell
 0017 0006 0001 0006 000a blk 0800 7b954000 7bb460d0 7bb2a3e4 01 pmshell
 0018 0006 0001 0006 000b blk 0800 7b956000 7bb460d0 7bb2a598 01 pmshell
 0019 0006 0001 0006 000c blk 0800 7b958000 7bb460d0 7bb2a74c 1eb8 01 pmshell
 001a 0006 0001 0006 000d blk 0804 7b95a000 7bb460d0 7bb2a900 1ea8 01 pmshell
 001b 0006 0001 0006 000e blk 0804 7b95c000 7bb460d0 7bb2aab4 1eb0 01 pmshell
 001c 0006 0001 0006 000f blk 0500 7b95e000 7bb460d0 7bb2ac68 1ea8 01 pmshell
 001d 0006 0001 0006 0010 blk 0800 7b960000 7bb460d0 7bb2ae1c 1bb0 01 pmshell
 001e 0006 0001 0006 0011 blk 0800 7b962000 7bb460d0 7bb2afd0 1b8c 01 pmshell
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 001f 0006 0001 0006 0012 blk 0200 7b964000 7bb460d0 7bb2b184 1eb8 01 pmshell
 0009 0007 0006 0007 0001 blk 0800 7b938000 7bb44020 7bb28c0c 00 harderr
 0011 0007 0006 0007 0002 blk 0800 7b948000 7bb44020 7bb299ac 00 harderr
 0012 0007 0006 0007 0003 blk 0800 7b94a000 7bb44020 7bb29b60 00 harderr
 000a 0003 0000 0003 0001 blk 0200 7b93a000 7bb4484c 7bb28dc0 00 lanmsgex
 000b 0004 0000 0004 0001 blk 080b 7b93c000 7bb45078 7bb28f74 1cf0 00 landll
 000c 0005 0000 0005 0001 blk 0200 7b93e000 7bb458a4 7bb29128 00 lsdaemon
 0014 0008 0000 0008 0001 blk 0200 7b94e000 7bb468fc 7bb29ec8 01 stoplan
 0020 0009 0006 0009 0001 blk 0200 7b966000 7bb47128 7bb2b338 10 cmd
 0021 000a 0006 000a 0001 blk 0500 7b968000 7bb47954 7bb2b4ec 1eb8 11 pmshell
 0023 000a 0006 000a 0002 blk 0200 7b96c000 7bb47954 7bb2b854 1ecc 11 pmshell
 0024 000a 0006 000a 0003 blk 0200 7b96e000 7bb47954 7bb2ba08 1eb8 11 pmshell
 0025 000a 0006 000a 0004 blk 0200 7b970000 7bb47954 7bb2bbbc 11 pmshell
 0026 000a 0006 000a 0005 blk 0200 7b972000 7bb47954 7bb2bd70 1ecc 11 pmshell
 0027 000a 0006 000a 0006 blk 0200 7b974000 7bb47954 7bb2bf24 11 pmshell
 0028 000a 0006 000a 0007 blk 0200 7b976000 7bb47954 7bb2c0d8 11 pmshell
 0029 000a 0006 000a 0008 blk 0200 7b978000 7bb47954 7bb2c28c 11 pmshell
 002a 000a 0006 000a 0009 blk 0200 7b97a000 7bb47954 7bb2c440 11 pmshell
 002c 000a 0006 000a 000b blk 0200 7b97e000 7bb47954 7bb2c7a8 1eac 11 pmshell
 002d 000a 0006 000a 000c blk 0200 7b980000 7bb47954 7bb2c95c 1eb8 11 pmshell
 002b 000d 0006 000d 0001 blk 0200 7b97c000 7bb48180 7bb2c5f4 1eb8 12 mrfilepm
 0022 000d 0006 000d 0002 blk 0200 7b96a000 7bb48180 7bb2b6a0 1ecc 12 mrfilepm
 002e 000f 000e 000f 0001 blk 0200 7b982000 7bb491d8 7bb2cb10 13 fvp
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 002f 000e 0006 000e 0001 blk 0200 7b984000 7bb489ac 7bb2ccc4 13 cmd
 0030 0010 0006 0010 0001 blk 0200 7b986000 7bb49a04 7bb2ce78 1ed4 14 cmd
 0031 0018 0010 0018 0001 blk 0200 7b988000 7bb4a230 7bb2d02c 1f00 14 aries
 0032 0017 0006 0017 0001 blk 0400 7b98a000 7bb4aa5c 7bb2d1e0 1ed4 15 cmd
 0033 0019 0017 0019 0001 blk 0300 7b98c000 7bb4b288 7bb2d394 1f00 15 orian
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>>> Pid 19 is single threaded and is blocked. See what its Block-Id is.

##.pb 33
 Slot Sta BlockID Name Type Addr Symbol
 0033 blk fffe01bb orian RamSem e66f:0000

>>> Once again a RamSem. This time there′ s no point in looking back
>>> a few bytes to see if it′ s imbedded in a FastSafeRamSem because
>>> the RamSem is allocated at the beginning of segment e66f.

>>> Our only hope is to see who else has access to this semaphore.

##.m e66f:0000

*har par cpg va flg next prev link hash hob hal
 0420 %fed03aca 00000010 %1ccd0000 369 03f1 0075 0000 0000 051b 0000 hco=007ff
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 051b 0420 0000 4a2c ff82 04f1 0000 00 00 00 00 mshare
 hco=007ff pco=fe85f816 hconext=007b6 hptda=04d1 f=16 pid=0019 a:orian.exe
 hco=007b6 pco=fe85f6a9 hconext=00000 hptda=04fd f=17 pid=0018 a:aries.exe

>>> The RamSem is allocated in Named Shared Storage (mshare is the
>>> owner). The only two processes able to access this are Pids 19 and
>>> 18. Pid 19 is this thread, which we know doesn′ t own this RamSem
>>> since it′ s waiting for it. This leaves 18.

>>> We can′ t be certain from the evidence presented so far but we can
>>> say:
>>> Either the RamSem is owned by 18, or it was owned by another
>>> thread that has since terminated. If it is owned by 18 then we
>>> have a deadlock between 18 and 19:
>>> orian.exe owns the FSRamSem and is waiting for the RamSem.
>>> aries.exe owns the RamSem and is waiting for the FSRamSem.

Fortunately simple RAMSEMs are becoming something of the past. And now that
PM is 32-bit we will not see many Fast Safe RAMSEM either. We will look in
detail later on at the semaphore structure that has replaced the FSRSEM in PM:
the PMSEM and GRESEM.

The MUX Wait: The last category of BlockIDs to consider is the MUXWAIT. This
has a BlockID of the form:

fffdssss where ssss is the slot id of the waiting thread.

A MUXWAIT is a multiplex semaphore wait. The semaphore comprising the
MUX list may be:

RAMSEMs

SYSSEMs

32-bit Event and Mutex SEMs
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We will consider each of these in turn.

The first step is to format the muxtable. This comprises 9-byte entries. +0x2 is
the slot number of the waiter. +0x5 indicates the type of semaphore. +5 is the
semaphore handle, which is interpreted according to type as follows:

0x00 Entry unused

0x01 handle is offset of SYSSEM from selector 400

0x02 Entry is a hob:offset of RAMSEM

0x03 Entry is a physical address of a RAMSEM

0x04 Entry points to a 32-bit Event SEM.

The following shows an example formatted muxtable. There are up to 255
entries, but in practice the entries in use are grouped at the beginning of the
table.

# db muxtable+(9*0) l9
0400:000048be c7 48 14 00 02 1a 07 be-00 GH.....>.
# db muxtable+(9*1) l9
0400:000048c7 d0 48 15 00 02 5c 07 be-00 PH...\.>.
# db muxtable+(9*2) l9
0400:000048d0 ff ff 15 00 02 78 07 be-00 .....x.>.
# db muxtable+(9*3) l9
0400:000048d9 e2 48 1f 00 02 58 07 fa-03 bH...X.z.
# db muxtable+(9*4) l9
0400:000048e2 fd 48 1f 00 02 5c 07 fa-03 }H...\.z.
# db muxtable+(9*5) l9
0400:000048eb c3 49 1f 00 02 50 07 fa-03 CI...P.z.
# db muxtable+(9*6) l9
0400:000048f4 57 49 58 00 02 61 01 64-07 WIX..a.d.
# db muxtable+(9*7) l9
0400:000048fd 06 49 1f 00 02 60 07 fa-03 .I...`.z.
# db muxtable+(9*8) l9
0400:00004906 0f 49 1f 00 02 64 07 fa-03 .I...d.z.
# db muxtable+(9*9) l9
0400:0000490f 18 49 1f 00 02 68 07 fa-03 .I...h.z.
# db muxtable+(9*a) l9
0400:00004918 a8 49 1f 00 02 6c 07 fa-03 (I...l.z.
# db muxtable+(9*b) l9
0400:00004921 2a 49 58 00 01 f0 53 00-00 *IX..pS..
# db muxtable+(9*c) l9
0400:0000492a cc 49 30 00 03 02 a7 f1-00 LI0...′ q.
# db muxtable+(9*d) l9
0400:00004933 3c 49 1b 00 01 9c 53 00-00 <I....S..
# db muxtable+(9*e) l9
0400:0000493c be 48 1b 00 03 da a6 f1-00 >H...Z&q.
# db muxtable+(9*f) l9
0400:00004945 4e 49 63 00 01 fc 53 00-00 NIc..|S..
# db muxtable+(9*10) l9
0400:0000494e eb 48 63 00 01 32 54 00-00 kHc..2T..
# db muxtable+(9*11) l9
0400:00004957 60 49 58 00 01 e4 53 00-00 `IX..dS..
# db muxtable+(9*12) l9
0400:00004960 ba 49 58 00 01 ea 53 00-00 :IX..jS..
# db muxtable+(9*13) l9
0400:00004969 72 49 57 00 01 ba 53 00-00 rIW..:S..
# db muxtable+(9*14) l9
0400:00004972 7b 49 57 00 01 c0 53 00-00 {IW..@S..
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# db muxtable+(9*15) l9
0400:0000497b 84 49 57 00 01 c6 53 00-00 .IW..FS..
# db muxtable+(9*16) l9
0400:00004984 8d 49 57 00 01 cc 53 00-00 .IW..LS..
# db muxtable+(9*17) l9
0400:0000498d 96 49 57 00 01 d2 53 00-00 .IW..RS..
# db muxtable+(9*18) l9
0400:00004996 9f 49 57 00 01 d8 53 00-00 .IW..XS..
# db muxtable+(9*19) l9
0400:0000499f f4 48 57 00 01 de 53 00-00 tHW..^S..
# db muxtable+(9*1a) l9
0400:000049a8 b1 49 21 00 02 a8 07 fa-03 1I!..(.z.
# db muxtable+(9*1b) l9
0400:000049b1 33 49 21 00 03 ee a6 f1-00 3I!..n&q.
# db muxtable+(9*1c) l9
0400:000049ba 45 49 58 00 01 f0 53 00-00 EIX..pS..
# db muxtable+(9*1d) l9
0400:000049c3 d9 48 1f 00 02 54 07 fa-03 YH...T.z.
# db muxtable+(9*1e) l9
0400:000049cc d5 49 00 00 00 00 00 00-00 UI.......
# db muxtable+(9*1f) l9
0400:000049d5 de 49 00 00 00 00 00 00-00 ^I.......
# db muxtable+(9*20) l9
0400:000049de e7 49 00 00 00 00 00 00-00 gI.......
# db muxtable+(9*21) l9
0400:000049e7 f0 49 00 00 00 00 00 00-00 pI.......
# dp %%f1a6da l2

In this example there are only semaphore types 0, 1, 2 and 3. We will illustrate
unravelling each of these in turn. For type 4 see the later section on 32-Bit
semaphores.

The SYSSEM: The SYSSEM BlockID points to a SYSSEM table entry.

Note: In a MUXWAIT only the offset is recorded in the MUX table entry. This
should be used with selector 400.

In a single SYSSEM, the BlockID is the selector:offset to the SYSSEM
Table Entry. The .PB command will display the SYSSEM name.

The example below is from a MUXWAIT which includes a SYSSEM
>> The MUXTABLE entry for slot 58. SYSSEM offset = 53f0
# db muxtable+(9*b) l9
0400:00004921 2a 49 58 00 01 f0 53 00-00 *IX..pS..

# .p 58
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 0058 0014 0000 0014 0004 blk 021f 7bd30000 7bdfd260 7bde23f0 0eac 10 WKSTA

# .pb 58
Slot Sta BlockID Name Type Addr Symbol
 0058 blk fffd0058 WKSTA MuxWait

>> The SYSSEM Data Table Entry
>> slot = 0058
>> flag = 02
>> 01= waiting
>> 02= mux waiting
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>> 04= owner (Pid/Tid) died
>> 08= exclusive syssem
>> 10= name entry needs removing
>> 20= Tid owner died
>> 40= exit list thread owns this sem

>> reference count = 01
>> request count (by this owner) = 0
>> padding=00

# db 400:53f0 l6
0400:000053f0 58 00 02 01 00 00 X.....

>> SYSSEM names are stored in a Record Management Package (RMP)
>> whose selector is the high word of:
# dd syssemrmphdl l1
0400:0000595a 04d00004

>> The RMP has a 0x14 byte header followed by variable length entries.
>> Each entry is prefixed with a word length followed by the entry data.
>> The entry data is the word offset of the corresponding SYSSEM Data Table
>> followed by offset 2 - n of the semaphore name. (the offset overlays
>> the first two bytes of the name which are always ′ SE′ ) .

>>Scan the table looking for entry with offset 53f0...
# db 4d0:0
04d0:00000000 00 06 d0 02 0d 01 5b 03-01 00 00 00 00 04 00 00 ..P...[.........
04d0:00000010 36 ff 00 00 10 00 5a 53-45 4d 5c 56 49 4f 50 4f 6.....ZSEM\VIOPO
04d0:00000020 50 55 50 00 10 00 60 53-45 4d 5c 56 49 4f 50 52 PUP...`SEM\VIOPR
04d0:00000030 54 53 43 00 12 00 66 53-45 4d 5c 44 41 54 41 45 TSC...fSEM\DATAE
04d0:00000040 58 2e 45 52 52 00 12 00-6c 53 45 4d 5c 44 41 54 X.ERR...lSEM\DAT
04d0:00000050 41 45 58 2e 4c 4f 47 00-14 00 72 53 45 4d 5c 49 AEX.LOG...rSEM\I
04d0:00000060 50 43 51 55 45 55 45 2e-53 45 4d 00 12 00 78 53 PCQUEUE.SEM...xS
04d0:00000070 45 4d 5c 50 4d 44 52 41-47 2e 53 45 4d 00 14 00 EM\PMDRAG.SEM...
# d
04d0:00000080 7e 53 45 4d 5c 4c 4b 4e-45 44 30 30 30 2e 53 45 ˜SEM\LKNED000.SE
04d0:00000090 4d 00 14 00 84 53 45 4d-5c 4c 4b 4e 45 44 30 30 M....SEM\LKNED00
04d0:000000a0 31 2e 53 45 4d 00 14 00-8a 53 45 4d 5c 4c 4b 4e 1.SEM....SEM\LKN
04d0:000000b0 45 44 30 30 32 2e 53 45-4d 00 14 00 90 53 45 4d ED002.SEM....SEM
04d0:000000c0 5c 4c 4b 4e 45 44 30 30-33 2e 53 45 4d 00 13 00 \LKNED003.SEM...
04d0:000000d0 96 53 45 4d 5c 53 4d 47-43 4f 4e 54 2e 53 45 4d .SEM\SMGCONT.SEM
04d0:000000e0 00 13 00 9c 53 45 4d 5c-50 4d 48 44 45 52 52 2e ....SEM\PMHDERR.
04d0:000000f0 53 45 4d 00 19 00 a2 53-45 4d 5c 4e 50 49 50 45 SEM...″SEM\NPIPE
# d
04d0:00000100 53 5c 52 49 50 56 41 4e-2e 57 4e 4b 00 19 80 00 S\RIPVAN.WNK....
04d0:00000110 00 79 02 5c 49 42 4d 4c-41 4e 5c 53 49 4e 47 4c .y.\IBMLAN\SINGL
04d0:00000120 45 2e 52 43 46 00 19 00-ae 53 45 4d 5c 54 49 4d E.RCF....SEM\TIM
04d0:00000130 45 58 45 43 5c 49 53 5c-4c 4f 41 44 45 44 00 17 EXEC\IS\LOADED..
04d0:00000140 00 b4 53 45 4d 5c 4d 41-47 4e 55 4d 5c 4d 41 49 .4SEM\MAGNUM\MAI
04d0:00000150 4e 2e 53 45 4d 00 16 00-ba 53 45 4d 5c 4e 45 54 N.SEM...:SEM\NET
04d0:00000160 5c 42 52 4f 57 53 4e 43-42 2e 30 00 16 00 c0 53 \BROWSNCB.0...@S
04d0:00000170 45 4d 5c 4e 45 54 5c 42-52 4f 57 53 4e 43 42 2e EM\NET\BROWSNCB.
# d
04d0:00000180 31 00 16 00 c6 53 45 4d-5c 4e 45 54 5c 42 52 4f 1...FSEM\NET\BRO
04d0:00000190 57 53 4e 43 42 2e 32 00-16 00 cc 53 45 4d 5c 4e WSNCB.2...LSEM\N
04d0:000001a0 45 54 5c 42 52 4f 57 53-4e 43 42 2e 33 00 16 00 ET\BROWSNCB.3...
04d0:000001b0 d2 53 45 4d 5c 4e 45 54-5c 42 52 4f 57 53 4e 43 RSEM\NET\BROWSNC
04d0:000001c0 42 2e 34 00 16 00 d8 53-45 4d 5c 4e 45 54 5c 42 B.4...XSEM\NET\B
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04d0:000001d0 52 4f 57 53 4e 43 42 2e-35 00 16 00 de 53 45 4d ROWSNCB.5...^SEM
04d0:000001e0 5c 4e 45 54 5c 42 52 4f-57 53 4e 43 42 2e 36 00 \NET\BROWSNCB.6.
04d0:000001f0 18 00 e4 53 45 4d 5c 4e-45 54 5c 48 4f 53 54 41 ..dSEM\NET\HOSTA
# d
04d0:00000200 4e 4e 43 2e 53 45 4d 00-1d 00 ea 53 45 4d 5c 4e NNC.SEM...jSEM\N
04d0:00000210 45 54 5c 57 4b 53 54 41-5c 49 4e 54 45 52 47 54 ET\WKSTA\INTERGT
04d0:00000220 2e 53 45 4d 00 1d 00 f0-53 45 4d 5c 4e 45 54 5c .SEM...pSEM\NET\
04d0:00000230 57 4b 53 54 41 5c 52 45-4c 4f 47 4f 4e 2e 53 45 WKSTA\RELOGON.SE
04d0:00000240 4d 00 0f 00 f6 53 45 4d-5c 4d 53 52 56 57 55 30 M...vSEM\MSRVWU0
04d0:00000250 00 14 00 a8 53 45 4d 5c-4c 4b 4e 45 44 30 30 34 ...(SEM\LKNED004
04d0:00000260 2e 53 45 4d 00 14 00 02-54 45 4d 5c 4c 4b 4e 45 .SEM....TEM\LKNE
04d0:00000270 44 30 30 35 2e 53 45 4d-00 12 80 0d 01 5b 03 4e D005.SEM.....[.N

>> We find the entry at 4d0:227
>> The semaphore name is SEM\NET\WKSTA\RELOGON.SEM

The MUX RAMSEM: In a MUX wait the RAMSEM id is recorded as a hob:offset.

In this example we look at the RAMSEM being waited on by slot 1f.

>> The MUX table entry:
>> slot = 1f, type = 2, hob= 03fa, offset=0758
0400:000048d9 e2 48 1f 00 02 58 07 fa-03 bH...X.z.
# db muxtable+(9*4) l9

>> Use .MOC to find the linear address
# .moc 3fa
*har par cpg va flg next prev link hash hob hal
 039b %fef23f5c 00000010 %1a350000 379 0413 039c 0000 0000 03fa 0000 hco=00c45
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 03fa 039b 0000 082c 03fb 03fb 0000 00 00 00 00 shared e:pmshapi.dll
 hco=0c45 pco=ffe77d74 hconext=00ee0 hptda=0873 f=16 pid=00e0 e:cmd.exe

>> This is owned by PMSHAPI. LN gives a lable.
# ln %1a350758
%1a350750 PMSHAPI ASEMRS + 8
#

MUX Physical RAMSEM: In this example the MUX wait entry is for a physical
address of a RAMSEM. A physical address would be used where the RAMSEM
is in instance data - that makes it unique among RAMSEMs providing the
RAMSEM is not swappable.

In this example the waiting slot is 1b

>> Mux table entry for slot 1b, type=3 (physical RAMSEM)
>> The physical address of the RAMSEM is %%00f1a6da
>> We need to determine the owner of this address.

# db muxtable+(9*e) l9
0400:0000493c be 48 1b 00 03 da a6 f1-00 >H...Z&q.

>> Display the page frame structure for frame 00f1a:
# .mp f1a
ffe24538 InUse: pVP=ff4076ce RefCnt=0003 Flg=0 ll=01 sl=00 Blk=0006a Frame=00f1a

>> Now display the virtual page structure to see who has backed this
>> frame:
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# .mv %ff4076ce
VPI=057b pVP=ff4076ce SOW Frame=0f1a Flg=9d0 HobPg=0000 Hob=03df Ref=011

>> Now we have the hob and page offset into the hob. Display the
>> linear address of the Hob using .MOC, add the page offset and
>> the byte index from the physical address to obtain the
>> virtual address of the RAMSEM

# .moc 3df

*har par cpg va flg next prev link hash hob hal
 0382 %fef23d36 00000010 %1a260000 379 0381 0383 0000 0000 03df 0000 hco=00f37
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 03df 0382 0000 082c 03da 03da 0000 00 01 00 00 shared e:pmwin.dll
 hco=0f37 pco=ffe78c2e hconext=00e8b hptda=0873 f=16 pid=00e0 e:cmd.exe

>> RAMSEM is at %1a260000+00000000+6da
>> RAMSEM is owned by pmwin.dll

# ln %1a2606da
No Symbols Found

>> LN doesn′ t work so thunk to a selector:offset and try again
>> cheat by looking up the selector assigned to pmwin in its
>> segment table:
# .lmo 3da
hmte=03da pmte=%fdf21c14 mflags=0498b194 e:\os2\dll\pmwin.dll
obj vsize vbase flags ipagemap cpagemap hob sel
0001 0000f6f8 1a1b0000 80005025 00000001 00000010 03e9 d0df r-x shr alias conf
0002 0000c24e 1a1c0000 80005025 00000011 0000000d 03e8 d0e7 r-x shr alias conf
0003 00008c84 1a1d0000 80005025 0000001e 00000009 03e7 d0ef r-x shr alias conf
0004 0000b6e2 1a1e0000 80005025 00000027 0000000c 03e6 d0f7 r-x shr alias conf
0005 0000eb10 1a1f0000 80005025 00000033 0000000f 03e5 d0ff r-x shr alias conf
0006 00006292 1a200000 8000d025 00000042 00000007 03e4 d106 r-x shr alias conf iopl
0007 00003738 1a210000 8000d025 00000049 00000004 03e3 d10e r-x shr alias conf iopl
0008 000010c5 1a220000 80009025 0000004d 00000002 03e2 d116 r-x shr alias iopl
0009 000124d4 1a230000 80003025 0000004f 00000013 03e1 d11f r-x shr alias big
000a 000070ca 1a250000 80001025 00000062 00000008 03e0 d12f r-x shr alias
000b 00000ada 1a260000 80001063 0000006a 00000001 03df d137 rw- shr prel alias
000c 00001478 1a270000 80003063 0000006b 00000002 03de d13f rw- shr prel alias big
000d 000023f8 1a280000 80001063 0000006d 00000003 03dd d147 rw- shr prel alias
000e 00006444 1a290000 80001063 00000070 00000002 03dc d14f rw- shr prel alias
000f 00000142 1a2a0000 80001063 00000072 00000001 03db d157 rw- shr prel alias
0010 00000018 1a2b0000 80002063 00000073 00000001 03d9 d15f rw- shr prel big
0011 000003b8 16100000 80002079 00000074 00000001 051e b087 r-- rsrc disc shr prel big
0012 00000dcc 161c0000 80002069 00000075 00000001 0509 b0e7 r-- rsrc shr prel big
0013 0000ffbc 16210000 80002029 00000076 00000010 0504 b10f r-- rsrc shr big
0014 000002f0 00000000 00002039 00000086 00000001 0000 0000 r-- rsrc disc shr big
0015 00003524 16120000 80002029 00000087 00000004 051b b097 r-- rsrc shr big

# ln d137:6dad137:000006da PMWIN MSGQUEUESEM1

Structured Semaphores: We have discussed the following types of semaphore:

RAMSEM

SYSSEM

FSRAMSEM

PMFSRAMSEM
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There are three others that occur with regularity in the system:

KSEM

32-bit SEM

GRESEM/PMSEM

The Kernel Semaphore (KSEM): The kernel semaphore is a RAMSEM and
EVENT SEM with accountability in-built.

Many system control block have imbedded KSEMs. Included among these are
the PTDA and MFT.

Some KSEMs are allocated out of the kernel heaps and have the owner
mnemonic KSEM.

When a thread blocks on a KSEM the address of the KSEM is used as the
BlockID.

Under the debug (ALLSTRICT) kernel the KSEM contains an additional signature
′KSEM′. Always check a BlockID address to see if the ′KSEM′ signature is
present.

.D KSEM will format the KSEM.

In this example we look at Slot 6c to find out why it will not run.

# .pb 6c
Slot Sta BlockID Name Type Addr Symbol
 006c blk 7bdfc910 DEMO1

# .m 7bdfc910
*har par cpg va flg next prev link hash hob hal
 0087 %fef1fba4 00000082 %7bdf5000 121 0085 0088 0000 0000 0089 0000 =0000
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 0089 0087 0000 0325 ffcb 0000 0000 00 00 00 00 ptda

>> This thread is blocked on an address in (its) PTDA. All PTDA
>> semaphores are KSEMs.

# .d KSEM %7bdfc910
Signature : KSEM Nest: 0001
Type : MUTEX
Flags : 00
Owner : 0041 PendingWriters: 0001

>> So the owner is Slot 41. Lets look at him to see what he′ s up to.

# .pb 41
Slot Sta BlockID Name Type Addr Symbol
 0041 blk 04085ca7 DEMO1
# .m #408:5ca7
*har par cpg va flg next prev link hash hob hal
 0079 %fef1fa70 00000010 %7bf27000 129 0078 0077 0000 0000 007b 0000 sel=0408
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 007b 0079 0000 0324 ffa1 0000 0000 00 00 00 00 sft
#
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>> Slot 41 is blocked waiting for some file system activity to complete.
>> We looked at this slot some time ago and found out that it was
>> waiting to close a device driver.

The 32-Bit Semaphore Event and Mutex Semaphores: BlockIDs for 32-bit sems
point to kernel heap allocated structure with object mnemonic semstruc.

.PB under the KDB usually identifies these as SEM32, but DF doe not.

The &peirod.D SEM32 command will format a 32-bit semaphore structure.

There are several structures that relate to 32-bit semaphores. Each of these is
allocated from the kernel heaps and is assigned the following meaningful owner
id mnemonics:

semmuxq (0xffbe) Semaphore Mux Queue. This records instances of single
event or mutex semaphores being also waited on in a mux
wait.

semopenq (0xffbf) Semaphore Open Queue. This tracks all processes that
have opened a 32-bit semaphore.

semrec (0xffc0) SemRecord. This is a system copy of the user′s
SemRecord structure, which was created when a Mux wait
was declared. It correlates user semaphore Ids with
semaphore handles.

semstr (0xffc1) The semaphore name string.

semstruc (0xffc2) The main 32-bit structure. The address of this forms the
BlockID when a thread waits on a 32-bit semaphore.

Of the associated structures listed above the Open Queue and Mux Queue may
be formatted using:

:.D OPENQ

.D MUXQ

In this example we look at the BlockID slot 42 is waiting on.

# .p 42 Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 0042 000d 000a 000d 0002 blk 0200 7bd1a000 7bdfa188 7bddfe20 0ed4 11 PMSHL32

# .pb42
Slot Sta BlockID Name Type Addr Symbol
 0042 blk fe0bf91c PMSHL32

>> check owner of BlockID
# .m %fe0bf91c

*har par cpg va flg next prev link hash hob hal
 0003 %fef1f04c 00001000 %fdf1f000 001 0002 0020 0000 0000 0003 0000 =0000
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 0003 0003 ff08 0000 ffec 0000 0000 00 06 00 00 vmkrhrw

>> kernel swappable heap. Check current user of heap block.

# dd %fe0bf91c-10
%fe0bf90c ffbf000c 00010008 fe0bff20 ffc20014
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%fe0bf91c 00000011 00000000 fef1ef94 fcae5a28
%fe0bf92c ffbf0010 00010006 fe08f24c fe0bf92e
%fe0bf93c ffbf000c 00010006 fe08f7c0 ffa4000c
%fe0bf94c fe0567d0 00010494 ffbf000c 0001000a
%fe0bf95c 00000000 ffa4000c fe0bf970 000104ec
%fe0bf96c ffa4000c fef1ef4c 000200ba ffbf000c
%fe0bf97c 00010005 fe0bf758 ffbf000c 00010005

# .mo ffc2
ffc2 semstruc

>> This is a 32-bit Semaphore

# .d sem32 %fe0bf91c
Type: Shared Event
Flags: Reset
pMuxQ: 00000000

Post Count: 0000
pOpenQ: fef1ef94
pName: fcae5a28

 Create Addr: ffbf0010

# .d openq %fef1ef94

Pid Open Count
----------------
000d 0001
000a 0001

# da %fcae5a28
%fcae5a28 WORKPLAC\LAZYWRIT.SEM

>> For interest look for the owner of the OPENQ:

# .m %fef1ef94
*har par cpg va flg next prev link hash hob hal
 0003 %fef1f04c 00001000 %fdf1f000 001 0002 0020 0000 0000 0003 0000 =0000
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 0003 0003 ff08 0000 ffec 0000 0000 00 06 00 00 vmkrhrw

# dd %fef1ef94 -10
%fef1ef84 00000000 00000000 fef10001 ffbf000c
%fef1ef94 0001000d fe0bf958 ffc20018 00000009
%fef1efa4 00000000 00000000 fef1ef58 fcb18478
%fef1efb4 ffbf000c 0001000d 00000000 ffc20018
%fef1efc4 00000009 00000000 00000000 fef1efb8
%fef1efd4 fcb18458 ff910024 00000007 00000000
%fef1efe4 00000000 00000000 00000000 00000000
%fef1eff4 00000000 00000000 ffea0004 fef2a128
# .mo ffbfffbf semopenq

>> For interest look for the owner of the pName:

# .m %fcae5a28

*har par cpg va flg next prev link hash hob hal
 0021 %fef1f2e0 00001400 %fca5f000 121 0020 0022 0000 0020 0022 0000 =0000
 hob har hobnxt flgs own hmte sown,cnt lt st xf
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 0022 0021 0000 0225 ffef 0000 0000 00 04 00 00 vmkshrw
# dd %fcae5a28-10
%fcae5a18 003f1d1a 0007004a 52000020 0000ffc1
%fcae5a28 4b524f57 43414c50 5a414c5c 49525759
%fcae5a38 45532e54 5412004d 520000c8 0000ff60
%fcae5a48 005d004a 1b131b12 1b151b14 1b171b16
%fcae5a58 1b191b18 1b1b1b1a 1b1d1b1c 1b1f1b1e
%fcae5a68 1b211b20 1b231b22 1b251b24 1b271b26
%fcae5a78 1b291b28 1b2b1b2a 1b2d1b2c 1b2f1b2e
%fcae5a88 1b311b30 1b331b32 1b351b34 1b371b36

# .mo ffc1
ffc1 semstr

PMSEM/GRESEM: 32-bit PM (WARP) and Graphics Engine use a composite
semaphore structure to serialize their resources.

This semaphore has the structure:

+0x0 7 byte Signature. ′PMSEM′ for PMWIN and ′GRESEM′ for PMGRE.

+0x7 386 semaphore byte (PM uses the bts instruction on this under 386
processors otherwise it uses the 486 cmpxchg on the Pid/Tid).

+0x8 Owner Pid (word).

+ 0 x a Owner Tid (word).

+ 0 x c Owner nested use count (long).

+0x10 Number of waiters.

+0x14 Number of times sem used (zero unless Debug version of PM).

+0x18 Handle for event semaphore.

+0x1c Address of caller (zero unless Debug version of PM).

PM uses a technique of polling this semaphore by waiting on the imbedded
event semaphore handle for a limited time.

This technique has the advantage of speed combined with accountability but a
thread waiting for a PMSEM or GRESEM may appear blocked, ready or running
depending on the polling cycle. However it will be executing in a routine with a
name such as PMRequestMutexSem. If the PMMERGE symbols are loaded this
is readily detected.

The PM and GRE SEMs are contiguous and located at label pmSemaphores .

The handle (linear address) of the PM/GRE Semaphore is passed on entry to
PMREquestMutexSem and tends to be retained in the EDX register.

The following semaphores are defined by PM:

0 PMSEM ATOM

1 PMSEM USER

2 PMSEM VISLOCK

3 PMSEM DEBUG

4 PMSEM HOOK

5 PMSEM HEAP
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6 PMSEM DLL

7 PMSEM THUNK

8 PMSEM XLCE

9 PMSEM UPDATE

10 PMSEM CLIP

11 PMSEM INPUT

12 PMSEM DESKTOP

13 PMSEM HANDLE

14 PMSEM ALARM

15 PMSEM STRRES

16 PMSEM TIMER

17 PMSEM CONTROLS

18 GRESEM GreInit

19 GRESEM AutoHeap

20 GRESEM PDEV

21 GRESEM LDEV

22 GRESEM CodePage

23 GRESEM HFont

24 GRESEM FontCntxt

25 GRESEM FntDrvr

26 GRESEM ShMalloc

27 GRESEM GlobalData

28 GRESEM DbcsEnv

29 GRESEM SrvLock

30 GRESEM SelLock

31 GRESEM ProcLock

32 GRESEM DriverSem

33 GRESEM semIfiCache

34 GRESEM semFontTable

In this example one of the shell threads seems to be getting very little CPU,
though is frequently ready:

# .p 3a
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
*003a# 000d 0005 000d 000a rdy 0200 abd61000 abe4b5b4 abe2ee60 0ee4 11 PMSHL32

# .r
eax=13e30025 ebx=00000000 ecx=000a000d edx=13e7b4d4 esi=ffffffff edi=0068e55c
eip=1bd0d7ea esp=00637f44 ebp=00637f60 iopl=2 -- -- -- nv up ei pl nz na po nc
cs=005b ss=0053 ds=0053 es=0053 fs=150b gs=0000 cr2=00000000 cr3=001ad000
005b:1bd0d7ea ff4a10 dec dword ptr [edx+10] ds:13e7b4e4=00000006
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# ln
%1bd0d770 PMMERGE PMREQUESTMUTEXSEM + 7a

# db %edx
%13e7b4d4 50 4d 53 45 4d 00 00 00-10 00 01 00 02 00 00 00 PMSEM...........
%13e7b4e4 06 00 00 00 00 00 00 00-05 00 01 80 00 00 00 00 ................
%13e7b4f4 50 4d 53 45 4d 00 00 00-00 00 00 00 00 00 00 00 PMSEM...........
%13e7b504 00 00 00 00 00 00 00 00-06 00 01 80 00 00 00 00 ................
%13e7b514 50 4d 53 45 4d 00 00 00-00 00 00 00 00 00 00 00 PMSEM...........
%13e7b524 00 00 00 00 00 00 00 00-07 00 01 80 00 00 00 00 ................
%13e7b534 50 4d 53 45 4d 00 00 00-00 00 00 00 00 00 00 00 PMSEM...........
%13e7b544 00 00 00 00 00 00 00 00-08 00 01 80 00 00 00 00 ................

>> PMSEM owner is Pid 10 Tid 1 and it has been requested twice by
Tid/Pid 10/1. There are 6 waiting threads.

# .p 42
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 0042 0010 0005 0010 0001 blk 0500 abd69000 abe4c19c abe2fe20 0ed8 13 MRFILEPM

# .pb 42
Slot Sta BlockID Name Type Addr Symbol
 0042 blk fdf8841c MRFILEPM

>> The owner is blocked.

# .m %fdf8841c

*har par cpg va flg next prev link hash hob hal
 0003 %feeef04c 00001000 %fdeef000 001 0002 0021 0000 0000 0003 0000 =0000
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 0003 0003 ff05 0000 ffec 0000 0000 00 02 00 00 vmkrhrw

# dd %fdf8841c-10 l4
%fdf8840c 000101c1 00000000 fdf88406 ffc20018

# .mo ffc2
ffc2 semstruc

# .d sem32 %fdf8841c
Type: Shared Event
Flags: Reset
pMuxQ: 00000000

Post Count: 0000
pOpenQ: fde305f8
pName: NULL (anonymous)

 Create Addr: abe2fe20

# .d openq %fde305f8

Pid Open Count
----------------
0010 0001

#
# ln pmsemaphores
9f3f:0000b4b4 PMMERGE PMSEMAPHORES
# dl 9f3f
9f3f Data Bas=13e70000 Lim=0000ffff DPL=3 P RW A
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#
>> The sem we were waiting on was at %13e7b4d4 so must be the
>> USER SEM.

13.1.2.2 Involuntary Suspension
In this section we discuss the mechanisms involved when a thread involuntarily
gives up CPU processing time. That is, another thread independently causes a
thread not to receive or to give up its time-slice.

The mechanisms available that cause suspension are:

Preemption Another thread of a high priority becomes ready.

The suspended thread becomes ready and the
pre-empting thread runs.

Critical Section Another thread in the same process enters critical
section.

The critical section thread runs and none of the other
threads will run except if a signal fires. If another ready
thread in the same process is selected by the dispatcher
for running it is helped on a temporary queue with its
status set to crt .

Note: The critical section thread has run status. 

DosSuspendThread Another thread in the same process has issued
DosSuspendThread.

The suspending thread runs and the suspended thread
enters frz state.

Freeze Process Either a Session Manager switch is in progress, a new
process has been created suspended, a Virtual Device
Driver has called the VDHFreezeVDM helper routine or
the DosDebug DBG_C_Freeze command has been
executed against a debugee process.

The frozen process has a state of frz in all its threads.

Voluntary suspension is indicated by the blk state.

When a thread is suspended involuntarily it will normally be in one of the
following states:

rdy Ready and waiting to run.

crt Ready but prohibited from dispatch by a critical section thread.

frz Frozen or Suspended by freeze-process or DosSuspendThread.

The remaining six thread states related to transient system processing on behalf
of a thread. These are the following:

dly Delayed wake-up. Multiple threads have been woken from a blocked
state because they were all waiting on the same BlockID and a
multiple wake-up was specified to ProcRun. Each delayed thread is
queued pending scheduling where priority recalculation and the
thread ′s ring 0 stack is checked for presence in memory. If all is well
then the thread is placed on the ready queue pending dispatch. If
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not, then the thread is placed on the TSD Daemon′s queue for paging
in the thread′s TSD (ring 0 stack).

tsd The thread is on the TSD Daemon′s queue waiting for ring 0 stack
page-in. The Daemon runs as an internal thread, which is labelled
*tsd by the .P command. This thread is responsible for calling the
page manager to page in a thread′s TSD. Because a paging
operation involves I/O and is therefore relatively slow, this operation
is performed under the control of a separate thread. This allows
other threads to be processed while the paging operation takes place.

gsk Get Stack request in progress. The TSD Daemon is waiting for the
Page Manager to signal completion of the paging I/O operation.
Effectively a thread in this state is blocked waiting for completion of a
TSD paging I/O request.

bst Boosted Ready State. When the TSD page-in completes successfully,
the thread is placed on the dispatchers ready queue with a priority
boost. This condition is indicated by the boosted ready state. Strictly
speaking this is not an independent state since no operation is
required to take the thread from bst to rdy.

bad TSD page-in request has failed. This is a serious and terminal
condition, which is not expected to occur. It is possible that an I/O
error has occurred during the TSD page-in request.

--- The null state occurs very fleetingly during thread creation and
termination. It signifies that the thread′s environment is incomplete.

The complete set of scheduler states for a finite state machine, which is
illustrated in the following diagram.
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Figure 12. Scheduler States for a Finite State Machine

Preemption and Priority Calculation: A thread is preempted when higher
priority work becomes ready to process. Under normal circumstances the
preempting thread will run then give up its time-slice and eventually the original
thread will be re-scheduled.
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It is possible for a thread not to be re-scheduled if a higher priority thread will
not give up the processor. However, the OS/2 scheduler applies dynamic boost
to priorities according to resource requirements and makes priority comparisons
based on a calculated priority. The elements involved in the priority calculation
are the following:

TCBPriClass
The thread′s priority class. There are four classes, which in order of priority
are:

3 Time-critical

4 Foreground Server (or fixed high)

2 Regular

1 Idle

TCBPriLevel
The priority delta which may range from 0x00 to 0x1f.

TCBPriClassMod
The priority boosts which may be any of the combined values:

0x04 Keyboard Boost

0x08 CPU Starvation Boost

0x10 Device I/O Boost

0x20 Foreground Boost

0x40 Window Boost

0x80 VDM Simulated Interrupt

TCBPriorityMin
The minimum allowed priority. Normally 0 but set when priority inversion
becomes a possibility. This is discussed later.

Priority is calculated by forming an index by ORing TCBPriClass and
TCBPriClassMod and reading a constant value from the priority table. The low
byte of this is then further ORed with the TCBPriLevel.

The following diagram shows the priority table.
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┌───────────────────────────────────────────────────────────────────────────┐
│ Table Index = (TCBPriClass | TCBPriClassMod) │
│ │
│ Starved 08 --------------------------------------------------+│
│ Device I/O 10 -------------------------------------------------+|│
│ Foreground 20 ------------------------------------------------+||│
│ Window 40 -----------------------------------------------+|||│
│ VDM Interrupt 80 ----------------------------------------------+||||│
│ |||||│
│ +-- TCBPriClass |||||│
│ | |||||│
│ | ============================================================ |||||│
│ | Not Keyboard || Keyboard |||||│
│ | || │
│ +-> Server Idle Regular TC || Server Idle Regular TC IWFDS│
│ │
│ │
│ 0x300, 0x100, 0x200, 0x800, 0x300, 0x100, 0x200, 0x800,// -----│
│ 0x62f, 0x100, 0x61f, 0x800, 0x62f, 0x100, 0x61f, 0x800,// ----S│
│ 0x72f, 0x100, 0x71f, 0x800, 0x72f, 0x100, 0x71f, 0x800,// ---D-│
│ 0x72f, 0x100, 0x71f, 0x800, 0x72f, 0x100, 0x71f, 0x800,// ---DS│
│ 0x300, 0x100, 0x300, 0x800, 0x300, 0x100, 0x400, 0x800,// --F--│
│ 0x62f, 0x100, 0x61f, 0x800, 0x62f, 0x100, 0x61f, 0x800,// --F-S│
│ 0x74f, 0x100, 0x73f, 0x800, 0x74f, 0x100, 0x73f, 0x800,// --FD-│
│ 0x74f, 0x100, 0x73f, 0x800, 0x74f, 0x100, 0x73f, 0x800,// --FDS│
│ 0x500, 0x100, 0x500, 0x800, 0x500, 0x100, 0x500, 0x800,// -W---│
│ 0x62f, 0x100, 0x61f, 0x800, 0x62f, 0x100, 0x61f, 0x800,// -W--S│
│ 0x74f, 0x100, 0x73f, 0x800, 0x74f, 0x100, 0x73f, 0x800,// -W-D-│
│ 0x74f, 0x100, 0x73f, 0x800, 0x74f, 0x100, 0x73f, 0x800,// -W-DS│
│ 0x500, 0x100, 0x500, 0x800, 0x500, 0x100, 0x500, 0x800,// -WF--│
│ 0x62f, 0x100, 0x61f, 0x800, 0x62f, 0x100, 0x61f, 0x800,// -WF-S│
│ 0x74f, 0x100, 0x73f, 0x800, 0x74f, 0x100, 0x73f, 0x800,// -WFD-│
│ 0x74f, 0x100, 0x73f, 0x800, 0x74f, 0x100, 0x73f, 0x800,// -WFDS│
└───────────────────────────────────────────────────────────────────────────┘

Notes:

VDM Simulated interrupts always result in a value of 0x800

Foreground server class is not affected by the keyboard boost.

Time-critical class is not affected by any boosts.

Idle class is not affected by any boosts.

By examining the priority table it is clear that idle class will always be
preempted by any other class.

Time-critical class can never be preempted by any other class.

Time-critical threads can only be preempted by other time-critical threads
with a higher delta.

Server and regular class threads may preempt each other depending on
priority boosts and delta.

The key to looking at preemption problems is to look for other CPU bound
threads of a higher priority. In particular time-critical threads.
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The .P command displays the current calculated priority for each thread.

Critical Sections: When a thread enters critical section it effectively suspends
all other threads in its process. There is an exception to this. If a signal is sent
to the process and a signal handler is registered, then thread 1 will be
dispatched to run the signal handler regardless of critical section.

The critical section thread may voluntarily block.

Other threads may attempt to become ready. If this happens the dispatcher will
temporarily suspend them in crt state.

The appearance of the crt state certainly guarantees that another thread in the
same process is in critical section. However, the converse in not true: the
absence of crt does not preclude another thread from being in a critical section.

If a thread running in critical section blocks on a resource owned by any other
thread in the same process then a deadlock will result. Because of this it is
unwise to call any system API when in critical section.

Thread running in critical section have their TCB address stored in their
process ′s PTDA at ptda_pTCBCritSec.

The following example illustrates locating the critical section thread in a process.

# .p
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 0001 0001 0000 0000 0001 blk 0100 ffe4b000 ffe4c7dc ffe4c624 0e84 00 *ager
 0002 0001 0000 0000 0002 blk 0200 7a49e000 ffe4c7dc 7b49c020 0f44 00 *tsd
 0003 0001 0000 0000 0003 blk 0200 7a49f000 ffe4c7dc 7b49c1d8 0f54 00 *ctxh
 0004 0001 0000 0000 0004 blk 0800 7a4a0000 ffe4c7dc 7b49c390 0f24 00 *kdb
 0005 0001 0000 0000 0005 blk 0800 7a4a1000 ffe4c7dc 7b49c548 0f40 00 *lazyw
 000a 0004 0000 0004 0001 blk 0200 7a4a6000 7b655068 7b49cde0 00 LANMSGEX
*000c# 0006 0000 0006 0001 blk 0804 7a4a8000 7b6560b0 7b49d150 0c94 00 CNTRL
 000d 0006 0000 0006 0002 blk 0804 7a4a9000 7b6560b0 7b49d308 00 CNTRL
 000e 0006 0000 0006 0003 blk 0804 7a4aa000 7b6560b0 7b49d4c0 0f04 00 CNTRL
 000f 0006 0000 0006 0004 blk 0804 7a4ab000 7b6560b0 7b49d678 0f04 00 CNTRL
 0010 0006 0000 0006 0005 blk 0804 7a4ac000 7b6560b0 7b49d830 00 CNTRL
 0011 0006 0000 0006 0006 blk 0804 7a4ad000 7b6560b0 7b49d9e8 0cc4 00 CNTRL
 0012 0006 0000 0006 0007 blk 0804 7a4ae000 7b6560b0 7b49dba0 0f04 00 CNTRL
 0013 0006 0000 0006 0008 blk 0804 7a4af000 7b6560b0 7b49dd58 0cb0 00 CNTRL
 0007 0007 0001 0007 0001 blk 0500 7a4a3000 7b6568d4 7b49c8b8 0ebc 01 PMSHL32
 000b 0007 0001 0007 0002 blk 0800 7a4a7000 7b6568d4 7b49cf98 01 PMSHL32
 0009 0007 0001 0007 0003 blk 0800 7a4a5000 7b6568d4 7b49cc28 01 PMSHL32
 0014 0007 0001 0007 0004 blk 0800 7a4b0000 7b6568d4 7b49df10 01 PMSHL32
 0015 0007 0001 0007 0005 blk 0800 7a4b1000 7b6568d4 7b49e0c8 01 PMSHL32
 0006 0007 0001 0007 0006 blk 0200 7a4a2000 7b6568d4 7b49c700 01 PMSHL32
 0018 0007 0001 0007 0007 blk 0200 7a4b4000 7b6568d4 7b49e5f0 0ed4 01 PMSHL32
 0019 0007 0001 0007 0008 blk 0200 7a4b5000 7b6568d4 7b49e7a8 01 PMSHL32
 001a 0007 0001 0007 0009 blk 0200 7a4b6000 7b6568d4 7b49e960 01 PMSHL32
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 001b 0007 0001 0007 000a blk 0800 7a4b7000 7b6568d4 7b49eb18 01 PMSHL32
 001c 0007 0001 0007 000b blk 0800 7a4b8000 7b6568d4 7b49ecd0 01 PMSHL32
 001d 0007 0001 0007 000c blk 0800 7a4b9000 7b6568d4 7b49ee88 01 PMSHL32
 001e 0007 0001 0007 000d blk 0804 7a4ba000 7b6568d4 7b49f040 01 PMSHL32
 001f 0007 0001 0007 000e blk 0804 7a4bb000 7b6568d4 7b49f1f8 01 PMSHL32
 0020 0007 0001 0007 000f blk 0500 7a4bc000 7b6568d4 7b49f3b0 01 PMSHL32
 0021 0007 0001 0007 0010 blk 0200 7a4bd000 7b6568d4 7b49f568 0ebc 01 PMSHL32
 002f 0012 0007 0012 0001 blk 0200 7a4cb000 7b658140 7b4a0d78 15 CMD
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 002e 0011 0007 0011 0001 blk 0200 7a4ca000 7b65791c 7b4a0bc0 14 CMD
 0026 000b 0007 000b 0001 blk 0400 7a4c2000 7b6570f8 7b49fe00 0ebc 12 CMD
 0023 000a 0007 000a 0001 blk 0500 7a4bf000 7b654844 7b49f8d8 0ebc 11 PMSHL32
 0024 000a 0007 000a 0002 blk 0200 7a4c0000 7b654844 7b49fa90 11 PMSHL32
 0025 000a 0007 000a 0003 blk 0200 7a4c1000 7b654844 7b49fc48 0ebc 11 PMSHL32
 0022 000a 0007 000a 0004 blk 0200 7a4be000 7b654844 7b49f720 11 PMSHL32
 0027 000a 0007 000a 0005 blk 0200 7a4c3000 7b654844 7b49ffb8 0ed4 11 PMSHL32
 0028 000a 0007 000a 0006 blk 0200 7a4c4000 7b654844 7b4a0170 11 PMSHL32
 0029 000a 0007 000a 0007 blk 0200 7a4c5000 7b654844 7b4a0328 11 PMSHL32
 002a 000a 0007 000a 0008 blk 0200 7a4c6000 7b654844 7b4a04e0 11 PMSHL32
 002c 000a 0007 000a 000a blk 0200 7a4c8000 7b654844 7b4a0850 0eb0 11 PMSHL32
 002d 000a 0007 000a 000b blk 0200 7a4c9000 7b654844 7b4a0a08 0ebc 11 PMSHL32
 0008 0008 0007 0008 0001 blk 0800 7a4a4000 7b654020 7b49ca70 00 HARDERR
 0016 0008 0007 0008 0002 blk 0800 7a4b2000 7b654020 7b49e280 00 HARDERR
 0017 0008 0007 0008 0003 blk 0800 7a4b3000 7b654020 7b49e438 00 HARDERR
 002b 0013 0011 0013 0001 blk 0200 7a4c7000 7b65588c 7b4a0698 14 DEMORUN
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 0030 0014 0013 0014 0001 blk 0200 7a4cc000 7b658964 7b4a0f30 14 CMD
 0031 0015 0014 0015 0001 crt 0809 7a4cd000 7b659188 7b4a10e8 0f24 14 DEMOCRT
 0032 0015 0014 0015 0002 crt 080b 7a4ce000 7b659188 7b4a12a0 0f0c 14 DEMOCRT
 0033 0015 0014 0015 0003 blk 080b 7a4cf000 7b659188 7b4a1458 0cc4 14 DEMOCRT
 0034 0015 0014 0015 0004 crt 011e 7a4d0000 7b659188 7b4a1610 0f20 14 DEMOCRT
 0035 0015 0014 0015 0005 crt 080f 7a4d1000 7b659188 7b4a17c8 0f0c 14 DEMOCRT
 0036 0015 0014 0015 0006 blk 080a 7a4d2000 7b659188 7b4a1980 0c04 14 DEMOCRT
 003c 0015 0014 0015 0007 blk 080a 7a4d8000 7b659188 7b4a23d0 0eb8 14 DEMOCRT
 0038 0015 0014 0015 0008 blk 080a 7a4d4000 7b659188 7b4a1cf0 14 DEMOCRT
 0039 0015 0014 0015 0009 blk 080a 7a4d5000 7b659188 7b4a1ea8 14 DEMOCRT
 003a 0015 0014 0015 000a crt 080c 7a4d6000 7b659188 7b4a2060 0f0c 14 DEMOCRT
 003b 0015 0014 0015 000b blk 080c 7a4d7000 7b659188 7b4a2218 0c80 14 DEMOCRT

# dd %7b659188+ptda_ptcbcritsec-ptda_start l1
%7b6596c0 7b4a23d0

# dw %7b4a23d0 l2
%7b4a23d0 0007 003c

# .pb 3c
Slot Sta BlockID Name Type Addr Symbol
 003c blk fffe0027 DEMOCRT RamSem 00bf:0024

In this example Pid 15 is stuck, threads are either blocked or suspended by
critical section.

From the PTDA we find the critical section TCB address. From this we can
either scan the .P command output listing for the TCB address or look at the
second word, which contains the slot number for the thread.

The critical section thread has blocked on a RAMSEM whose address is
00bf:0024. Since the selector is less than 2007 this has to be in its private arena.
This is significant; only another thread in the same process could possibly post
this semaphore.

Suspension and Freezing: Suspension is achieved by any thread in a process
calling DosSuspendThread. There is no accounting information associated with
this API. One must examine all threads in the process to see if they are
functioning correctly.

Freezing occurs for a number of reasons:
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A new process has been created with the thread initially suspended.

The Session Manager (Shell Process 1) has used DosSystemService to
freeze all threads of a process while a screen group switch occurs.

A Virtual device driver has called VDHFreezeVDM.

A Debug thread has called DosDebug using the DBG_C_Freeze command.

Again, there is no accounting information kept for this state.

If a single thread exists in the frozen process, check the parent process′s
threads for correct functioning.

If all threads are frozen check the Shell process 1 for correct processing.

13.1.2.3 Priority Inversion
Priority inversion is a hybrid situation that involves both the involuntary and
voluntary suspension of two threads.

Consider the following:

A high priority thread is blocked on a resource.

A low priority thread owns the resource on which the high priority thread is
blocked.

An independent thread of intermediate priority is running.

┌─────────────────────────────────────────────────┐
│ │
│ ┌──────────┐ │
│ │ Thread 1 │ │
│ │ High │ │
│ │ blk │ │
│ └──────────┘ │
│ │
│ ║ │
│ ║ │
│ ║ │
│ waits ║ │

 │ on ║ ┌─────────┐ │
│ SEM ║ │Thread 3 │ │
│ owned ║ < - - - - - - - - │ Medium │ │

 │ by ║ │ run │ │
│ thd 2 ║ └─────────┘ │
│ ║ │
│ V │
│ │
│ ┌─────────┐ │
│ │Thread 2 │ │
│ │ Low │ │
│ │ rdy │ │
│ └─────────┘ │
│ │
└─────────────────────────────────────────────────┘

Thread 1 will not run until thread 2 gets a time-slice that allows it to run and
release the semaphore thread 1 is waiting for.
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Since thread 3 is a higher priority than thread 2 and is CPU bound, thread 2
never runs, nor does thread 1.

Thread 1′s priority has effectively been reduced to that of thread 2′s by a lower
priority thread, thread 3. Thread 1 is said to have its priority inverted with
respect to thread 3.

The Kernel implements an automatic inversion protection mechanism whenever
a process blocks using a KSEM. This mechanism is implemented by the
following three routines:

TKEnterInversion
Called to protect against priority inversion. For example, when a mutex
KSEM is obtained increments TCBcBoostLock.

TKExitInversion
When an inversion protected KSEM is released TCBcboostlock is
decremented. When TCBcBoostlock is zero and TCBPriorityMin is not zero
then is set to zero and priority recalculated

TKDeclareInversion
Used to set the minimum priority of a thread to be waited on. If the owner′s
TCBPriori tyMin < waiter ′s and owner is in ready state then TCBPriority then
set the owner′s TCBPriorityMin to our priority +1.

For this mechanism to work, it must be possible to determine ownership from
the semaphore so that TKDeclareInversion can determine which thread′s priority
to alter. It is also necessary to be able to determine whether raising the priority
of thread will lead to other synchronization problems or deadlocks through race
conditions. Since the kernel is a special case and preemption cannot occur
while running in kernel mode, the kernel limits inversion protection to the KSEM
only.
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13.2 Program Design Issues and Weaknesses
The following hit-list identifies potential weaknesses in program design that can
lead to hang symptoms or serialization problems:

 1. Manipulation of thread priorit ies for the purpose of serialization or
sequencing execution is haphazard at best. At worst the performance of the
entire system can be jeopardized.

The following guidelines should be applied when considering priority
manipulation:

• Use priority delta to tell the system the relative importance of an
application′s threads.

• Avoid priority class manipulation. Priority class tends to specify the
relative importance of a thread with respect to all other threads in the
system.

• Avoid the use of time-critical priority. By setting this class, a thread is
assuming the position of utmost importance in the system. This may not
be a valid assumption for some system configurations and some users.

• If priority class manipulation is desirable under some circumstances,
then it should be parameterized so that it can be controlled as an option
by the user.

 2. If a window of exposure exists it wil l be exposed.

 3. Any common resource that is ever modified must have an associated lock or
serialization mechanism.

 4. Locks (serialization techniques such as semaphores) that are concurrently
held and waited on must be obtained in an established order.

 5. Simplistic approach (one lock) forces work to be channelled through a
single-queue. Therefore design locks at the lowest level of contention.

 6. Distinguish process/data/repository serialization otherwise an inconsistent
system of locks may result:

• Process locks are required where a only single instance of a process is
allowed to operate. For example:

Finite State Machine state transitions;

Some FSM state users;

Any non-reentrant process.

• Distinguishing Repository locks allows the repository is updated:

Disk/directory reorganization while file data is in use.

Physical page assignments are allowed to change while data is in
use - swapping.

 7. Data optimization: Artificial association of unrelated data items imposes
serialization constraints that will have two possible effects:

• This necessitates unrelated processes to serialize.

• Serialization may lead to unavoidable deadlocks.

 8. Code optimization: imposes process lock constraints in a similar way that
data optimization does.
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 9. O-O tends to hide the data repository and structure. May even hide the
process. Therefore designers need to consider whether locks are managed
internally, within the object or explicitly. It may not be possible to handle the
locks internally, because the context in which an instance method is being
use (that is, the process) is not discernible from within the object.
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Chapter 14. Worked Examples

The following collection of worked examples illustrate how to use the debugging
tools, in particular the Dump Formatter and Kernel Debugger to obtain
information from a system under diagnosis.

The following topics are included:

14.1.1, “How to Find File System Information.”
This gives techniques for obtaining open file information and correlating
open file names to handles and vice versa and finding out about record
locking.

14.1.2, “Exploring Memory Management” on page 245.
This gives techniques for obtaining memory owner ownership and
discovering who allocated a particular memory object. Name shared
memory and kernel heap memory are also discussed.

14.1.3, “Exploring 32-bit Presentation Manager Under WARP” on page 273.
This give techniques for finding message queues, window procedures and
window structures.

14.1.4, “Dump Analysis of Loops in Ring 0 Code” on page 318.
Dealing with ring 0 loops is relatively straight forward from the Kernel
Debugger. It is also possible to diagnose Ring 0 problems from a dump if
the current registers can be determined. This section given an example of
using this technique in a file system driver loop.

14.1.1 How to Find File System Information
This section gives a basic overview of the file system control blocks, and shows
how to answer the following questions:

 1. What file system objects are open in a given process?

 2. What file system objects are open in a VDM?

 3. What file corresponds to a given handle?

 4. What processes have opened a given file system object?

If the reader is unfamiliar with this subject then the sections that follow should
be read in order:

These topics now follow:

Finding files from handles

Finding files from handles in a VDM

Finding handles from file names

The Record Lock Record

Note: The examples included in this section are worked on an OS/2 2.11
system. For OS/2 WARP the same techniques work, however the SFTs,
whilst they may be located from the SAS in the same manner, they are
allocated in segments that are mapped by different selectors. The effect
of this is that short-cut techniques used to locate WARP SFTs may need to
be re-worked.
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14.1.1.1 Finding Files from Handles
Open file system objects (files, named pipes, devices etc.) are represented by
the SFT control block. The SFT contains three sections:

• Kernel data

• File system independent data

• File system dependent data

The kernel data section contains information to link the SFT to other system
control blocks and to make the SFT usable by kernel APIs. Of principle interest
in this section are flags, handle and pointer to the MFT and a chain pointer to
other SFTs that represent other open instances of the same object. The kernel
data is split into two discontiguous sections at each end of the SFT.

The file system independent data section contains information common to all
FSDs needed to drive the file system. Of principle interest are the file attributes,
open mode flags, opening process id and handle to the associated VPB.

The file system dependent data section is, as the name suggests a work area
private to the FSD that manages the file system object.

Note: The .D SFT command formats the SFT always as if it is a FAT file. The
information displayed in the file system dependent section may be
misleading for non-FAT objects. The names of the fields formatted by .D
SFT command are prefixed by sfdFAT_ for the file system dependent data
so make it clear which information to treat with circumspection. The
kernel and file system independent data name are prefixed with sf_ and
sfi_ respectively.

When a file system object is opened, DosOpen returns a handle that represents
the open object for all subsequent file system manipulation by the process until
the object is closed. This handle is unique only within process and is referred to
as the JFN. In protect mode processes the JFN is a 16-bit entity. In VDMs,
however, to be consistent with DOS the JFN is an 8-bit entity, which may be
correlated to the real JFN through a table in the PDB. This is illustrated later.

Each open file system object is also known by a system-wide unique handle, the
SFN. Once the SFN is known then the corresponding SFT may be located and
thence all file system information relating to the object.

Each process is assigned by default a table of 20 words, which is indexed by the
JFN. Each word of the JFN_table contains the corresponding SFN for the open
file. The default JFN_table is imbedded within the PTDA. Prefixing the JFN_table
is a double-word pointer (JFN_ptable) that points to this table. If the table is
expanded (using DosSetMaxFH) then JFN_ptable is updated to point to the
current JFN_table.

The key to finding information about open object in a given process is to locate
JFN_ptable and JFN_table. Since both of these fields are part of the PTDA they
may be refered to by name as symbols for the current (system) context only. For
other contexts we may still use the PTDA symbols but in a relative fashion. The
PTDA symbols are defined for the current process, which means that to use
them successfully for another process, one must relocate them to the PTDA one
wishes to reference. This is easily done by subtracting the label PTDA_START
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from the desired symbol, then adding the address of the PTDA one wishes to
see. For example, to see the jfn_table field, enter

dw <ptda address>+jfn_table-ptda_start L2.

The relationships between the JFN_table, PTDA and the SFT is illustrated in the
following diagram:
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Figure 13. Open File, Application to System
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In the examples that follow, we explore the relationships between each of the
major file-system control blocks. These relationships are illustrated in the
following diagrams.
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Figure 14. Open File, System View
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Figure 15. Open Device, System View
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14.1.1.2 Finding Files from Handles - An Example

In the following example we choose to discover all the open file system objects
in process 19, which happens to be running the IPFC compiler.

>>> List all the thread slots in the system to find IPFC
# .p
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 0001 0001 0000 0000 0001 blk 0100 ffe3a000 ffe3c7d4 ffe3c61c 1e7c 00 *ager
 0002 0001 0000 0000 0002 blk 0200 7b7aa000 ffe3c7d4 7b9a8020 1f3c 00 *tsd
 0003 0001 0000 0000 0003 blk 0200 7b7ac000 ffe3c7d4 7b9a81d8 1f50 00 *ctxh
 0004 0001 0000 0000 0004 blk 081f 7b7ae000 ffe3c7d4 7b9a8390 1f48 00 *kdb
 0005 0001 0000 0000 0005 blk 0800 7b7b0000 ffe3c7d4 7b9a8548 1f20 00 *lazyw
 0006 0001 0000 0000 0006 blk 0800 7b7b2000 ffe3c7d4 7b9a8700 1f3c 00 *asyncr
 0009 0002 0000 0002 0001 blk 021f 7b7b8000 7b9c4020 7b9a8c28 00 LOGDAEM
 0008 0003 0001 0003 0001 rdy 061f 7b7b6000 7b9c484c 7b9a8a70 1eb8 01 PMSHL32
 000b 0003 0001 0003 0002 blk 0800 7b7bc000 7b9c484c 7b9a8f98 01 PMSHL32
 000c 0003 0001 0003 0003 blk 0800 7b7be000 7b9c484c 7b9a9150 01 PMSHL32
 000d 0003 0001 0003 0004 blk 0800 7b7c0000 7b9c484c 7b9a9308 01 PMSHL32
 000e 0003 0001 0003 0005 blk 0800 7b7c2000 7b9c484c 7b9a94c0 01 PMSHL32
 0007 0003 0001 0003 0006 blk 0200 7b7b4000 7b9c484c 7b9a88b8 1ecc 01 PMSHL32
 0011 0003 0001 0003 0007 blk 0200 7b7c8000 7b9c484c 7b9a99e8 1ecc 01 PMSHL32
 0012 0003 0001 0003 0008 blk 0200 7b7ca000 7b9c484c 7b9a9ba0 01 PMSHL32
 0013 0003 0001 0003 0009 blk 0200 7b7cc000 7b9c484c 7b9a9d58 01 PMSHL32
 0014 0003 0001 0003 000a blk 0800 7b7ce000 7b9c484c 7b9a9f10 01 PMSHL32
 0015 0003 0001 0003 000b blk 0800 7b7d0000 7b9c484c 7b9aa0c8 01 PMSHL32
 0016 0003 0001 0003 000c blk 0800 7b7d2000 7b9c484c 7b9aa280 01 PMSHL32
 0017 0003 0001 0003 000d blk 0804 7b7d4000 7b9c484c 7b9aa438 1ea8 01 PMSHL32
 0018 0003 0001 0003 000e rdy 0804 7b7d6000 7b9c484c 7b9aa5f0 01 PMSHL32
 0019 0003 0001 0003 000f blk 0500 7b7d8000 7b9c484c 7b9aa7a8 01 PMSHL32
 001a 0003 0001 0003 0010 rdy 0801 7b7da000 7b9c484c 7b9aa960 1bac 01 PMSHL32
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 001b 0003 0001 0003 0011 blk 0800 7b7dc000 7b9c484c 7b9aab18 01 PMSHL32
*001c# 0003 0001 0003 0012 run 0800 7b7de000 7b9c484c 7b9aacd0 1b8c 01 PMSHL32
 001d 0003 0001 0003 0013 blk 0200 7b7e0000 7b9c484c 7b9aae88 01 PMSHL32
 0023 0018 0003 0018 0001 rdy 061f 7b7ec000 7b9c7128 7b9ab8d8 1eb8 13 EPM
 0038 0018 0003 0018 0002 blk 0200 7b816000 7b9c7128 7b9adcf0 1ecc 13 EPM
 0037 0013 0003 0013 0001 blk 0200 7b814000 7b9c9a04 7b9adb38 19 IBMAVSD
 0033 0012 0003 0012 0001 blk 0200 7b80c000 7b9c89ac 7b9ad458 1eb8 17 PMDRAW
 0035 0012 0003 0012 0002 blk 0200 7b810000 7b9c89ac 7b9ad7c8 1eb8 17 PMDRAW
 0036 0012 0003 0012 0003 blk 0200 7b812000 7b9c89ac 7b9ad980 17 PMDRAW
 0034 0010 0003 0010 0001 blk 0400 7b80e000 7b9c91d8 7b9ad610 1ed4 12 CMD
 002e 000d 0003 000d 0001 blk 0200 7b802000 7b9c8180 7b9acbc0 1eb8 16 PULSE
 0030 000d 0003 000d 0002 rdy 0100 7b806000 7b9c8180 7b9acf30 1f28 16 PULSE
 002f 000d 0003 000d 0003 rdy 081f 7b804000 7b9c8180 7b9acd78 1f00 16 PULSE
 002d 000c 0003 000c 0001 blk 0200 7b800000 7b9c7954 7b9aca08 1eb8 15 DINFO
 0032 000c 0003 000c 0002 rdy 061f 7b80a000 7b9c7954 7b9ad2a0 1f00 15 DINFO
 002c 000b 0003 000b 0001 blk 0200 7b7fe000 7b9c58a4 7b9ac850 1eb8 14 MRFILE32
 0031 000b 0003 000b 0002 blk 0200 7b808000 7b9c58a4 7b9ad0e8 1ecc 14 MRFILE32
 0029 000a 0003 000a 0001 rdy 061f 7b7f8000 7b9c68fc 7b9ac328 1eb8 10 PMDIARY
 001f 0006 0003 0006 0001 rdy 062f 7b7e4000 7b9c60d0 7b9ab1f8 1eb8 11 PMSHL32
 0021 0006 0003 0006 0002 blk 0200 7b7e8000 7b9c60d0 7b9ab568 11 PMSHL32
 0022 0006 0003 0006 0003 blk 0200 7b7ea000 7b9c60d0 7b9ab720 1eb8 11 PMSHL32
 0020 0006 0003 0006 0004 blk 0200 7b7e6000 7b9c60d0 7b9ab3b0 11 PMSHL32
 001e 0006 0003 0006 0005 blk 0200 7b7e2000 7b9c60d0 7b9ab040 1ecc 11 PMSHL32
 0024 0006 0003 0006 0006 blk 0200 7b7ee000 7b9c60d0 7b9aba90 11 PMSHL32
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 0025 0006 0003 0006 0007 blk 0200 7b7f0000 7b9c60d0 7b9abc48 11 PMSHL32
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 0026 0006 0003 0006 0008 blk 0200 7b7f2000 7b9c60d0 7b9abe00 11 PMSHL32
 0027 0006 0003 0006 0009 blk 0200 7b7f4000 7b9c60d0 7b9abfb8 11 PMSHL32
 0028 0006 0003 0006 000a blk 0200 7b7f6000 7b9c60d0 7b9ac170 11 PMSHL32
 002a 0006 0003 0006 000c blk 021f 7b7fa000 7b9c60d0 7b9ac4e0 1eac 11 PMSHL32
 002b 0006 0003 0006 000d blk 0200 7b7fc000 7b9c60d0 7b9ac698 1eb8 11 PMSHL32
 000a 0004 0003 0004 0001 blk 0800 7b7ba000 7b9c5078 7b9a8de0 00 HARDERR
 000f 0004 0003 0004 0002 blk 0800 7b7c4000 7b9c5078 7b9a9678 00 HARDERR
 0010 0004 0003 0004 0003 blk 0800 7b7c6000 7b9c5078 7b9a9830 00 HARDERR
 0039 0019 0010 0019 0001 rdy 061f 7b818000 7b9ca230 7b9adea8 1f0c 12 IPFC

>>> IPFC is running in slot 39, but this is not the current system
>>> slot so we have to refer to PTDA symbols relative to pPTDA
>>> First establish whether JFN_table has been expanded?

# dw %7b9ca230 + jfn_ptable-ptda_start l2
%7b9caa18 fd8a 0030

>>> No it hasn′ t - it′ s still based on selector 30 and therefore
>>> still imbedded in the PTDA at label JFN_table.
>>> Note: we can′ t display it as 30:fd8a since selector 30
>>> aliases the current system PTDA, hence:

# dw %7b9ca230 + jfn_table-ptda_start l14
%7b9ca7e6 0027 0027 0027 0074 002a 0072 0077 0068
%7b9ca7f6 0015 0041 0069 007f ffff ffff ffff ffff
%7b9ca806 ffff ffff ffff ffff

>>> These are the SFNs that correspond to JFNs 0000 through 0014.
>>> In fact the highest JFN currently open in this process is 000b
>>> which corresponds to SFN 007f

>>> Next we locate the STF. From the SAS we look for the SFT selector:

# .a
--- SAS Base Section ---

SAS signature: SAS
offset to tables section: 0016

FLAT selector for kernel data: 0168
offset to configuration section: 001E
offset to device driver section: 0020
offset to Virtual Memory section: 002C

offset to Tasking section: 005C
offset to RAS section: 006E

offset to File System section: 0074
offset to infoseg section: 0080

--- SAS Protected Modes Tables Section ---
selector for GDT: 0008
selector for LDT: 0000
selector for IDT: 0018

selector for GDTPOOL: 0100
--- SAS Device Driver Section ---

offset for the first bimodal dd: 0CB9
offset for the first real mode dd: 0000

sel for Drive Parameter Block: 04C8
sel for ABIOS prot. mode CDA: 0000
seg for ABIOS real mode CDA: 0000

selector for FSC: 00C8
--- SAS Task Section ---
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selector for current PTDA: 0030
FLAT offset for process tree head: FFF10910

 FLAT address for TCB address array: FFF06BB6
offset for current TCB number: FFDFFB5E

offset for ThreadCount: FFDFFB62
--- SAS File System Section ---

handle to MFT PTree: FE72CFBC
selector for System File Table: 00C0
sel. for Volume Parameter Bloc: 0788

sel. for Current Directory Struc: 07B8
selector for buffer segment: 00A8

--- SAS Information Segment Section ---
selector for global info seg: 0428

address of curtask local infoseg: 03C80000
address of DOS task′ s infoseg: FFFFFFFF

selector for Codepage Data: 07CB
--- SAS RAS Section ---
selector for System Trace Data Area: 04B0
 segment for System Trace Data Area: 04B0

offset for trace event mask: 0B28
--- SAS Configuration Section ---

offset for Device Config. Table: 0D50
--- SAS Virtual Memory Mgt. Section ---

Flat offset of arena records: FFF13304
Flat offset of object records: FFF1331C
Flat offset of context records: FFF1330C

Flat offset of kernel mte records: FFF0A891
Flat offset of linked mte list: FFF07934
Flat offset of page frame table: FFF11A70
Flat offset of page range table: FFF111EC
Flat offset of swap frame array: FFF03BAC

Flat offset of Idle Head: FFF10090
Flat offset of Free Head: FFF10080
Flat offset of Heap Array: FFF11B78

Flat offset of all mte records: FFF12E04

>>> We see this is assigned to selector c0.
>>> This is not quite the SFT but a table of selectors that point to
>>> each extent of the SFT. Each extent holds up to 500 STF entries.
>>> All the SFN′ s we′ re interested in are less than 500 so occupy the
>>> first extent. Note: we could have obtained the SFT selector from:

# ln GDT_SFT
138:000000c0 os2krnl DOSGDTDATA:GDT_SFT
#

>>> List the table of extents:

# dw c0:0
00c0:00000000 0438 0000 0000 0000 0000 0000 0000 0000
00c0:00000010 0000 0000 0000 0000 0000 0000 0000 0000
00c0:00000020 0000 0000 0000 0000 0000 0000 0000 0000
00c0:00000030 0000 0000 0000 0000 0000 0000 0000 0000
00c0:00000040 0000 0000 0000 0000 0000 0000 0000 0000
00c0:00000050 0000 0000 0000 0000 0000 0000 0000 0000
00c0:00000060 0000 0000 0000 0000 0000 0000 0000 0000
00c0:00000070 0000 0000 0000 0000 0000 0000 0000 0000

>>> Now list the first extent:
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# dw 438:0
0438:00000000 0000 0000 0000 0000 0001 0000 0000 0001
0438:00000010 0000 0000 0800 c800 0000 0000 0000 0000
0438:00000020 7000 860e c6fe 6821 0008 0000 0000 0000
0438:00000030 0000 0000 0000 0000 0000 0000 0000 0000
0438:00000040 0000 0000 0000 0000 0000 8a30 007a 0000
0438:00000050 0000 0000 0000 a000 0000 1200 0000 0000
0438:00000060 0000 0000 0000 0000 e700 0110 6000 00ee
0438:00000070 0000 0000 0000 0000 0000 0000 0000 0000

>>> There is an 8 byte header to each extent. It followed by one or
>>> more 131 (hex 83) byte SFT entries. The first word of the header
>>> contains the selector for the next extent. In this case there
>>> isn′ t one.

>>> To locate the SFT entry corresponding to SFN we use the formula
>>> 438:(8+(83*SFN))
>>> We can dump this out directly or by using the .D SFT command:
>>> Start by examining SFN 0077 (JFN 0006 for slot 39)

# .d sft 438:(8+(83*77))
sf_ref_count: 0001 sfi_mode: 20a2
sf_usercnt: 0000 sfi_hVPB: 0012
reserved: 00 sfi_ctime: 0000

sf_flags(2): 0000:0000 sfi_cdate: 0000
sf_devptr: #0000:0000 sfi_atime: 0000

sf_FSC: #00c8:0008 sfi_adate: 0000
sf_chain: #0000:0000 sfi_mtime: 6000
sf_MFT: fe87ebf0 sfi_mdate: 1b0b

sfdFAT_firFILEclus: 57e4 sfi_size: 00000000
sfdFAT_cluspos: 0ff8 sfi_position: 00000000
sfdFAT_lstclus: 0038 sfi_UID: 0000
sfdFAT_dirsec: 00002cad sfi_Pid: 0019
sfdFAT_dirpos: 09 sfi_PDB: 0000
sfdFAT_name: FCLDLGP DLL sfi_selfsfn: 0077

sfdFAT_EAHandle: 0000 sfi_tstamp: 00
sf_plock: 0000 sfi_DOSattr: 20

sf_NmPipeSfn: 0000
sf_codepage: 0000

>>> Fully qualified file system names are maintained in the Master
>>> File Table entries. Lets check out the MFT for this SFT, which
>>> is pointed to by sf_MFT.
>>> Under the Kernel debugger we could use .D MFT to format an MFT
>>> entry. Under the dump formatter .D MFT does not work correctly:

# db %fe87ebf0
%fe87ebf0 4b 53 45 4d 01 02 00 00-00 00 00 00 00 00 00 00 KSEM............
%fe87ec00 00 00 ed 3c 38 04 00 00-00 00 4b 53 45 4d 01 02 ..m<8.....KSEM..
%fe87ec10 00 00 00 00 00 00 00 00-00 00 00 00 1c 0e 00 00 ................
%fe87ec20 6d 46 12 00 43 3a 5c 24-30 30 30 30 24 00 87 fe mF..C:\$0000$..˜
%fe87ec30 14 00 9e ff 29 00 0b 00-dc eb 87 fe 08 43 83 fe ....)...\k.˜.C.˜
%fe87ec40 f0 eb 87 fe 48 00 9e ff-4b 53 45 4d 01 02 00 00 pk.˜H...KSEM....
%fe87ec50 00 00 00 00 00 00 00 00-00 00 5e 3a 38 04 00 00 ..........^:8...
%fe87ec60 00 00 4b 53 45 4d 01 02-00 00 00 00 00 00 00 00 ..KSEM..........
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>>> The file name is at MFT+34 in the ALLSTRICT kernel and 2a in the
>>> RETAIL kernel. There are two imbedded KSEMs, which only only
>>> contain the signature KSEM in the ALLSTRICT kernel, also the MFT
>>> contains the signature mF at +30 in the ALLSTRICT kernel.
>>> The first KSEM used for serialising read/single write access to
>>> the file. The second KSEM is used for updating the cluster map.

>>> These KSEMs can be formatted using .d KSEM

# .d ksem %fe87ebf0
Signature : KSEM Nest: 0000
Type : SHARE Readers: 0000
Flags : 01 PendingReaders: 0000
Owner : 0000 PendingWriters: 0000
# .d ksem %fe87ebf0+1a
Signature : KSEM Nest: 0000
Type : SHARE Readers: 0000
Flags : 01 PendingReaders: 0000
Owner : 0000 PendingWriters: 0000
#
>>> In this case they are unowned.

>>> The file name in the MFT does not agree with the sfdFAT_name.
>>> We suspect that this is not a FAT file. This can be verified by
>>> examining the file system control block entry for the FSD that′ s
>>> managing this file. The FSC entry address appears in the SFT at
>>> sf_FSC. In this case it is 00c8:0008.

# dw c8:8
00c8:00000008 0b68 0840 0b6c 0840 0000 0828 01fc 0828
00c8:00000018 0010 0828 05b4 0820 0570 0828 0580 0828
00c8:00000028 0634 0828 0640 0828 0e3c 0828 1120 0828
00c8:00000038 0834 0828 090c 0828 09f8 0820 1130 0828
00c8:00000048 1f24 0828 1f6e 0828 2122 0828 16e4 0828
00c8:00000058 1b10 0828 1b38 0828 1bec 0828 1dc8 0828
00c8:00000068 0c60 0820 0d70 0820 1f14 0828 215c 0828
00c8:00000078 22a0 0828 2294 0828 111c 0820 25fc 0828

>>> Each FSC enrty is a table of far16 pointers. The first points the
>>> The FSD attributes, the second to the name and the remainder are
>>> standard FSD entry points. (See OEMI IFS Documentation).
>>> the name of this FSD is....

# da 840:b6c
0840:00000b6c HPFS

>>> The word prefixing the file name in the MFT is the handle to the
>>> Volume Parameter Block (hVPB). This also appears in the SFT under
>>> sfi_hVPB. In this instance the hVPB is 0012.
>>> To format the VPB we need to obtain the selector for the VPB
>>> segment. N.B. this is not stored in the SAS under Volume Parameter
>>> Block. We have to locate this using:

# ln GDT_VPB
138:00000098 os2krnl DOSGDTDATA:GDT_VPB
#

>>> The hVPB is an offset into the VPB segment. Format a VPB
>>> using .D VPB
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# .d vpb 98:12
vpb_flink: 0000 vpdFAT_cluster_mask: 02
vpb_blink: 008d vpdFAT_cluster_shift: 00

vpb_ref_count: 0057 vpdFAT_first_FAT: 0000
 vpb_search_count: 0004 vpdFAT_FAT_count: 00
 vpb_first_access: 00 vpdFAT_root_entries: 0030

vpb_signature: 444a vpdFAT_first_sector: 06001100
vpb_flags(2): 02:00 vpdFAT_max_cluster: 7d5c

vpb_FSC: #00c8:0008 vpdFAT_FAT_size: b213
vpi_ID: 25be2014 vpdFAT_dir_sector: fc04b800

vpi_pDPB: #04c8:0038 vpdFAT_media: 0a
vpi_cbSector: 0200 vpdFAT_next_free: 00b2
vpi_totsec: 00049020 vpdFAT_free_cnt: 04b8
vpi_trksec: 0023 vpdFAT_FATentrysize: b2
vpi_nhead: 000c vpdFAT_IDsector: 00000000
vpi_pDCS: #0000:0000 vpdFAT_access: 0000
vpi_pVCS: #0000:0000 vpdFAT_accwait: 0000
vpi_drive: 02 vpdFAT_pEASFT: #0000:0000
vpi_unit: 02
vpi_text: UNLABELED
vpi_flags: 0003

#
>>> Two important pieces of information in the VPB: vpi_drive and
>>> vpi_text. The drive number is the logical drive, numbering from
>>> 0, Thus 02 is drive C:
>>> vpi_text is the volume label. in this case UNLABELED.
>>> The VPB contains a signature which when dumped as bytes appears as
>>> JD. Each VPB is 7b bytes, the first starts at +12. Each VPB can
>>> be dumped using the formula: 98:(12+(7b*entry))

# db 98:12+(7b*0) l7b
0098:00000012 00 00 8d 00 57 00 04 00-00 4a 44 02 00 08 00 c8 ....W....JD....H
0098:00000022 00 02 00 00 00 00 30 00-00 11 00 06 5c 7d 13 b2 ......0.....\}.2
0098:00000032 00 b8 04 fc 0a b2 00 b8-04 b2 00 00 00 00 0a 11 .8.|.2.8.2......
0098:00000042 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................
0098:00000052 00 00 00 00 00 00 00 00-00 00 00 9a 7b 4c 5c 00 ............{L\.
0098:00000062 00 14 20 be 25 38 00 c8-04 00 02 20 90 04 00 23 .. >%8.H... ...#
0098:00000072 00 0c 00 55 4e 4c 41 42-45 4c 45 44 00 00 00 00 ...UNLABELED....
0098:00000082 00 00 00 00 00 00 00 02-02 03 00 ...........

>>> The word at +2 is a chain pointer offset to the next VPB. In this
>>> case 008d (=7b+12)

>>> We can also obtain a link to disk device driver information from
>>> the VPB via vpi_pDPB (the disk parameter block). Under the
>>> kernel debugger this may be formatted using .D DPB, but gives
>>> erroneous results under DF.

##.d dpb 4c8:38
dpb_drive: 02
dpb_unit: 02

dpb_driver_addr: #0738:0000
dpb_next_dpb: #04c8:0054
dpb_cbSector: 0200
dpb_first_FAT: 0001

dpb_toggle_time: 00000000
dpb_hVPB: 0012
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dpb_media: f8
dpb_flags: 20

dpb_drive_lock: 0000
dpb_strategy2: #0740:135e

>>> From here we can locate the device driver header, but note: that
>>> the strategy2 routine address is located from the DPB.

##.d dev 738:0
DevNext: 0588:0000
DevAttr: 2880
DevStrat: 0d7e
DevInt: 0000

NumUnits: 08
DevProtCS: 0740
DevProtDS: 0738
DevRealCS: 0000
DevRealDS: 0000

>>> Returning to the JFN_table for slot 36. We now examine JFN 0004
>>> which correlates with SFN 002a
>>> Dump the SFT as before:

# .d sft 438:(8+(83*2a))
sf_ref_count: 000c sfi_mode: 0042
sf_usercnt: 0000 sfi_hVPB: 0000
reserved: 00 sfi_ctime: 0000

sf_flags(2): 00c1:0000 sfi_cdate: 0000
sf_devptr: #04f8:0000 sfi_atime: 0000

sf_FSC: #00c8:ff40 sfi_adate: 0000
sf_chain: #0438:0f62 sfi_mtime: 3c83
sf_MFT: fe73ecfc sfi_mdate: 1d62

sfdFAT_firFILEclus: 0000 sfi_size: 00000000
sfdFAT_cluspos: 0000 sfi_position: 00000000
sfdFAT_lstclus: 0000 sfi_UID: 0000
sfdFAT_dirsec: 00000000 sfi_Pid: 0003
sfdFAT_dirpos: 00 sfi_PDB: 0000
sfdFAT_name: KBD$ sfi_selfsfn: 002a

sfdFAT_EAHandle: 0000 sfi_tstamp: 00
sf_plock: 0000 sfi_DOSattr: 00

sf_NmPipeSfn: 0000
sf_codepage: 0000

>>> The first flag word is 00c1 = 0000 0000 1100 0001
>>> . ..
>>> . ..
>>> Device ..
>>> ..
>>> .console input dev
>>> .
>>> not console output dev
>>> Note: the hVPB is 0000 but sf_devptr is not and points to the
>>> device driver header for KDB$ thus:

##.d dev 4f8:0
DevNext: 04e8:0000
DevAttr: c981

226 OS/2 Debugging 



DevStrat: 0000
DevInt: 2a29
DevName: KBD$

DevProtCS: 0500
DevProtDS: 04f8
DevRealCS: 0000
DevRealDS: 0000

>>> The MFT entry for this device is:
# db %fe73ecfc
%fe73ecfc 4b 53 45 4d 01 02 00 00-00 00 00 00 00 00 00 00 KSEM............
%fe73ed0c 00 00 33 1d 38 04 00 00-00 00 4b 53 45 4d 01 02 ..3.8.....KSEM..
%fe73ed1c 00 00 00 00 00 00 00 00-00 00 00 00 2a 00 00 00 ............*...
%fe73ed2c 6d 46 00 00 5c 44 45 56-5c 4b 42 44 24 00 73 fe mF..\DEV\KBD$.s˜
%fe73ed3c 30 00 a6 ff 02 00 f9 00-48 2f 1c fd 60 ed 73 fe 0.&...y.H/.}`ms˜
%fe73ed4c 94 ed 73 fe 88 b1 98 04-01 00 00 00 1f 00 00 00 .ms˜.1..........
%fe73ed5c a4 dc 72 fe 08 42 4d 53-43 41 4c 4c 53 ec 73 fe $\r˜.BMSCALLSls˜
%fe73ed6c 18 00 9e ff 3c 00 0b 00-d4 ef 73 fe cc 14 86 fe ....<...Tos˜L..˜
#
>>> Note: the name of the KBD$ device driver known to the file system is
>>> \DEV\KDB$

>>> Finally, using the .D MFT command (under the KDB) this MFT formats as:

##.d mft %fe73ecfc
mft_ksem:

Signature : KSEM Nest: 0000
Type : SHARE Readers: 0000
Flags : 01 PendingReaders: 0000
Owner : 0000 PendingWriters: 0000

mft_lptr: 0000 mft_sptr: 0438:1586
mft_pCMap: 00000000 mft_serl: 002c mft_signature: 466d

 mft_CMapKSem:
mft_hvpb: 0000 mft_opflags: 0000 mft_flags: 0000
mft_name: \DEV\KBD$

>>> Note: mft_sptr points to the associated SFT

Finding Files from Handles in a VDM: The situation in a VDM is slightly more
complex, since it required the JFN to be compatible with DOS and therefore an
8-bit entity. Furthermore, the JFN_table in DOS is traditionally imbedded or
chained from the DOS PDB (or PSP). For this reason a second level of
indirection is employed.

The JFN returned from a VDM open indexes the byte array of virtual system file
number (VSFNs). The VSFN ranges from 0 - 255. The high 47 (from 0xd0 though
0xfe) are used as real mode device handles. 0xff indicates an unused handle.
When a VDM is created the initial PDB contains the default array of 20 handles
at label PDB_JFN_table (PDB  + 0x18). This current array′s far segment address
is at PDB_JFN_pointer (PDB  + 0x34) and the size of the array is a word at
PDB_JFN_Length (PDB  + 0x32). The PDB lies on a paragraph boundary (16-byte
boundary) and its segment address is saved in the PTDA at &currentpdb. Once
again the usual precaution applies when referencing PTDA fields: their symbols
are publicly defined for the current system context only. Therefore, to reference
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a CurrentPDB out-of-context must be done relative to the PTDA address for that
context.

These points are illustrated in the following example:

##.p 46
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 0046 001d 0007 001d 0001 blk 0200 7b732000 7b8c9a04 7b8af720 1f08 17 *vdm
##.s 46

>>> Slot 46 is a VDM but not the current context, so we locate the PDB
>>> relative to the PTDA (otherwise we could have just used
>>> dw currentpdb l1)

##dw %7b8c9a04+currentpdb-ptda_start l1
0030:0000fd16 0e01

>>> This is a segment address so use the & operator to display the
>>> PDB.

##db &e01:0
&0e01:00000000 cd 20 00 a0 00 9a f0 fe-1d f0 f5 01 99 0d 08 02 M . ..p˜.pu.....
&0e01:00000010 28 08 65 07 28 08 99 0d-d1 d1 d1 d0 d2 ff ff ff (.e.(...QQQPR...
&0e01:00000020 ff ff ff ff ff ff ff ff-ff ff ff ff d7 00 e4 03 ............W.d.
&0e01:00000030 11 0e 30 00 00 00 40 09-ff ff ff ff 00 00 00 00 ..0...@.........
&0e01:00000040 14 0b 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................
&0e01:00000050 cd 21 cb 72 6e 6c 20 2d-20 4e 6f 74 00 20 20 20 M!Krnl - Not.
&0e01:00000060 20 20 20 20 20 20 20 20-00 00 00 00 00 20 20 20 .....
&0e01:00000070 20 20 20 20 20 20 20 20-00 00 00 00 e7 08 50 03 ....g.P.

>>> Word at PDB+0x32 is 0030. This is the number of file handles
>>> supported in this VDM. The default is 0014. So the PDB_JFN_table
>>> has been expanded.
>>> Far pointer at PDB+34 is &0940:0000. This is the current
>>> PDB_JFN_table address. (By default this would have pointed to
>>> PDB+0x18, but the table has been expanded.)

>>> Now dump the current PDB_JFN_table.

##db &940:0
&0940:00000000 d1 d1 d1 d0 d2 00 01 02-03 04 05 06 07 08 09 ff QQQPR...........
&0940:00000010 0b ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff ................
&0940:00000020 ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff ................
&0940:00000030 4d 00 00 08 00 00 00 00-00 00 00 00 00 00 00 00 M...............
&0940:00000040 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................
&0940:00000050 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................
&0940:00000060 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................
&0940:00000070 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................

>>> JFNs 0 - 4 correspond to VSFNs d1, d1, d1, d0 and d2. Each of these
>>> is greater than 0xcf and therefore a real mode device handle
>>> and not managed by the protect mode file system.
>>> JFN 5 is the first open file in this VDM. It has VSFN 00. This
>>> may be used as an index into the protect mode JFN_table to
>>> find the corresponding SFT, MFT and file name. The technique from
>>> this point is the same as in the preceding section.
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>>> Dump the JFN_table from the PTDA.

##dw %7b8c9a04 jfn_ptable-ptda_start l2
0030:0000ffbc 0000 1ea8

>>> We are no longer based on selector 30 so the JFN table has been
>>> expanded. Now dump the current table...

##dw #1ea8:0
1ea8:00000000 006a 0069 0075 008c 008b 005e 0089 0088
1ea8:00000010 008a 0097 ffff 008d ffff ffff ffff ffff
1ea8:00000020 ffff ffff ffff ffff ffff ffff ffff ffff
1ea8:00000030 ffff ffff ffff ffff ffff ffff ffff ffff
1ea8:00000040 ffff ffff ffff ffff ffff ffff ffff ffff
1ea8:00000050 ffff ffff ffff ffff ffff ffff ffff ffff
1ea8:00000060
Past end of segment: 1ea8:00000060

>>> VSFN 00 corresponds to SFN 006a. Now dump the SFT...

##.d sft 438:(8+(83*6a))
sf_ref_count: 0001 sfi_mode: 00a0
sf_usercnt: 0000 sfi_hVPB: 0012
reserved: 00 sfi_ctime: 0000

sf_flags(2): 0000:0000 sfi_cdate: 0000
sf_devptr: #0000:0000 sfi_atime: 0000

sf_FSC: #00c8:0008 sfi_adate: 0000
sf_chain: #0000:0000 sfi_mtime: 0000
sf_MFT: fe7c8b54 sfi_mdate: 0000

sfdFAT_firFILEclus: 4d58 sfi_size: 00000594
sfTrap 13 (0DH) - General Protection Fault 0000 - In Debugger

eax=90000000 ebx=ffdd55ba ecx=00000000 edx=013c0000 esi=00006373 edi=ffff2940
eip=000054ae esp=00003b0a ebp=00003b14 iopl=0 rf -- -- nv up di pl zr na pe nc
cs=0120 ss=0128 ds=0128 es=0128 fs=0168 gs=0000 cr2=16ea2000 cr3=001d9000
0120:000054ae ff56fe call word ptr [bp-02] ss:3b12=b23b

>>> Oops! the debugger had a problem. Not to worry, he told us
>>> the MFT address, so dump that ... (this also appears at SFT+0x19)

>>> the SFT again ...
##dw 438:(8+(83*6a))
0438:00003646 0001 0000 0000 0000 0000 0000 0800 c800
0438:00003656 0000 0000 0000 0000 5400 7c8b 58fe 484d
0438:00003666 001f 0000 0000 0000 0000 0000 0000 0000
0438:00003676 0000 0000 0000 0000 0000 0000 0000 0000
0438:00003686 0000 7830 007a 0000 0000 0000 0000 a000
0438:00003696 0000 1200 0000 0000 0000 0000 0000 0000
0438:000036a6 9400 0005 9400 0005 0000 1d00 0100 6a0e
0438:000036b6 0000 0000 0000 0000 0020 0000 0000 0000

>>> MFT
##db %fe7c8b54
%fe7c8b54 4b 53 45 4d 01 02 00 00-00 00 00 00 00 00 00 00 KSEM............
%fe7c8b64 00 00 46 36 38 04 00 00-00 00 4b 53 45 4d 01 02 ..F68.....KSEM..
%fe7c8b74 00 00 00 00 00 00 00 00-00 00 00 00 ba 0f 00 00 ............:...
%fe7c8b84 6d 46 12 00 43 3a 5c 4f-53 32 5c 4d 44 4f 53 5c mF..C:\OS2\MDOS\
%fe7c8b94 57 49 4e 4f 53 32 5c 53-59 53 54 45 4d 5c 4b 42 WINOS2\SYSTEM\KB
%fe7c8ba4 44 55 4b 2e 44 4c 4c 00-52 8b 7c fe 3c 00 7d ff DUK.DLL.R.|˜<.}.
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%fe7c8bb4 00 00 00 00 00 00 00 00-f0 8b 7c fe 20 f7 8a 7b ........p.|˜ w.{
%fe7c8bc4 f0 f1 f9 78 00 04 00 00-48 4f 4f 4b 60 bf f9 ff pqyx....HOOK`?y.

>>> The file name is: C:\OS2\MDOS\WINOS2\SYSTEM\KBDUK.DLL

Finding Handles from File Names: File system names are recorded in the MFT
control block. Each MFT has a handle, which is its linear address and a key
which is the concatenation of the hVPB with the file name considered as a string
of bytes. The MFT keys are managed in a Patricia Tree structure similar to that
described by ′Knuth ′ in The Art of computer Programming, Volume 3, Sorting and
Searching Algorithms However, note that the implementation of the PTree in
OS/2 is slightly modified from the ′Knuth ′ treatment.

The SAS gives us the address of the header node for the MFT PTree. The
header node points to the first PTree entry. Each entry comprises a bit index, a
key length, a left pointer, a right pointer and an MFT handle. The bit-index is
used to specify the bit in the key to be tested. If the bit 0 then the left pointer is
taken, otherwise the right pointer is taken. When the selected pointer points
back to the same PTree entry then the search stops and the required MFT is
found from the MFT handle. The bit index count the bits of each byte of the key
from left to right.

This technique is now illustrated in the following example:

>>> Who′ s got C:\OS2\HELP\HMHELP.HLP open?

>>> First look through VPBs to find hVPB for C:
>>> Find the VPB segment and chain through them starting with the
>>> first at offset 0x12.

# ln gdt_vpb
0138:00000098 OS2KRNL GDT_VPB
# .d vpb 98:12

vpb_flink: 0000 vpdFAT_cluster_mask: 02
vpb_blink: 008d vpdFAT_cluster_shift: 00

vpb_ref_count: 0057 vpdFAT_first_FAT: 0000
 vpb_search_count: 0004 vpdFAT_FAT_count: 00
 vpb_first_access: 00 vpdFAT_root_entries: 0030

vpb_signature: 444a vpdFAT_first_sector: 06001100
vpb_flags(2): 02:00 vpdFAT_max_cluster: 7d5c

vpb_FSC: #00c8:0008 vpdFAT_FAT_size: b213
vpi_ID: 25be2014 vpdFAT_dir_sector: fc04b800

vpi_pDPB: #04c8:0038 vpdFAT_media: 0a
vpi_cbSector: 0200 vpdFAT_next_free: 00b2
vpi_totsec: 00049020 vpdFAT_free_cnt: 04b8
vpi_trksec: 0023 vpdFAT_FATentrysize: b2
vpi_nhead: 000c vpdFAT_IDsector: 00000000
vpi_pDCS: #0000:0000 vpdFAT_access: 0000
vpi_pVCS: #0000:0000 vpdFAT_accwait: 0000
vpi_drive: 02 vpdFAT_pEASFT: #0000:0000
vpi_unit: 02
vpi_text: UNLABELED
vpi_flags: 0003
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>>> We get lucky the first time. This VPD is for drive 2, that is C:
>>> So the hVPB=0012 (i.e the offset into the VPD segment).

>>> We now need to form the MFT key for the file name we wish to
>>> look up. So convert the file name to ASCII and concatenate to the
>>> hVPB (as a byte pair, that is, reversed)
>>> C : \ O S 2 \ H E L P \ H M H E L P . H L P
>>> 12 00 43 3a 5c 4f 53 32 5c 48 45 4c 50 5c 48 4d 48 45 4c 50 2e 48-4c 50

>>> Locate the MFT PTree head from the SAS - in a dump use .A
>>> otherwise unravel the SAS from selector 70

# .a
--- SAS Base Section ---

SAS signature: SAS
offset to tables section: 0016

FLAT selector for kernel data: 0168
offset to configuration section: 001E
offset to device driver section: 0020
offset to Virtual Memory section: 002C

offset to Tasking section: 005C
offset to RAS section: 006E

offset to File System section: 0074
offset to infoseg section: 0080

--- SAS Protected Modes Tables Section ---
selector for GDT: 0008
selector for LDT: 0000
selector for IDT: 0018

selector for GDTPOOL: 0100
--- SAS Device Driver Section ---

offset for the first bimodal dd: 0CB9
offset for the first real mode dd: 0000

sel for Drive Parameter Block: 04C8
sel for ABIOS prot. mode CDA: 0000
seg for ABIOS real mode CDA: 0000

selector for FSC: 00C8
--- SAS Task Section ---

selector for current PTDA: 0030
FLAT offset for process tree head: FFF10910

 FLAT address for TCB address array: FFF06BB6
offset for current TCB number: FFDFFB5E

offset for ThreadCount: FFDFFB62
--- SAS File System Section ---

handle to MFT PTree: FE72CFBC
selector for System File Table: 00C0
sel. for Volume Parameter Bloc: 0788

sel. for Current Directory Struc: 07B8
selector for buffer segment: 00A8

--- SAS Information Segment Section ---
selector for global info seg: 0428

address of curtask local infoseg: 03C80000
address of DOS task′ s infoseg: FFFFFFFF

selector for Codepage Data: 07CB
--- SAS RAS Section ---
selector for System Trace Data Area: 04B0
 segment for System Trace Data Area: 04B0

offset for trace event mask: 0B28
--- SAS Configuration Section ---
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offset for Device Config. Table: 0D50
--- SAS Virtual Memory Mgt. Section ---

Flat offset of arena records: FFF13304
Flat offset of object records: FFF1331C
Flat offset of context records: FFF1330C

Flat offset of kernel mte records: FFF0A891
Flat offset of linked mte list: FFF07934
Flat offset of page frame table: FFF11A70
Flat offset of page range table: FFF111EC
Flat offset of swap frame array: FFF03BAC

Flat offset of Idle Head: FFF10090
Flat offset of Free Head: FFF10080
Flat offset of Heap Array: FFF11B78

Flat offset of all mte records: FFF12E04

>>> MFT Ptree is at %fe72cfbc
>>> each entry including the header has the following format:
>>> +0 W Bit index
>>> +2 W key length
>>> +4 D left link
>>> +8 D right link
>>> +c D MFT handle (MFT pointer)

>>> dump the header and the first entry pointed to by the left link
# dd %FE72CFBC l4
%fe72cfbc ffffffff fe867f10 fe72cfbc 00000000
# dd %FE867f10 l4
%fe867f10 00100000 fe861454 fe861470 fe721a04
>>> ----.... -------- -------- --------
>>> Kl BI left right MFT
>>>
>>> Note the word reversal of the Bit index and the Key length because
>>> we dumped double-words.
>>> BI tells us to test bit 0 of the key (numbering from the left
>>> starting with 0). 12 00 .. .. .. = 0001 0010 0000 0000 .... ....
>>> Bit zero is 0 so take the left link.

# dd %FE861454 l4
%fe861454 00100001 fe73d194 fe845370 fe72196c

>>> Now test bit 1. This is still zero. Again take the left link.

# dd %FE73d194 l4
%fe73d194 00190003 fe72cf3c fe87ec34 fe72dea4

>>> Now test bit 3. This is 1 so take the right link.

# dd %FE87ec34 l4
%fe87ec34 000b0029 fe87ebdc fe834308 fe87ebf0

>>> Now test bit 29. ..... 4f .... = 0100 1111
>>> This is 1 so take the right link.

# dd %FE834308 l4
%fe834308 0019002b fe869f30 fe834254 fe834274

>>> Test bit 2b. This is 0. Turn left.
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# dd %FE869f30 l4
%fe869f30 0017002c fe885ac4 fe87ec90 fe869ee0

>>> Test bit 2c. This is 1. Turn right.

# dd %FE87ec90 l4
%fe87ec90 000f002d fe87ec90 fe834ac8 fe87ec48

>>> Test bit 2d. This is 1. Turn right.

# dd %FE834ac8 l4
%fe834ac8 001a0044 fe845ef8 fe724fe4 fe845c0c

>>> Test bit 44. .....5c.... = 0101 1100.
>>> This is 1. Turn right.

# dd %FE724fe4 l4
%fe724fe4 001b004b fe801414 fe862de8 fe722fac

>>> Test bit 4b. .....48..... = 0100 1000
>>> This is 0. Turn left.

# dd %FE801414 l4
%fe801414 0017004c fe801d90 fe7cef84 fe7dffb0

>>> Test bit 4c. This is 1. Turn right.

# dd %FE7cef84 l4
%fe7cef84 00180073 fe7cef84 fe801414 fe7cef30

>>> Test bit 73. .....48.... = 0100 1000
>>> This is zero and the left link points to the same node.
>>> Therefore the search ends and we should have found the MFT
>>> for our file name. Dump the MFT to check .....

# db %FE7cef30 l50
%fe7cef30 4b 53 45 4d 01 02 00 00-00 00 00 00 00 00 00 00 KSEM............
%fe7cef40 00 00 28 31 38 04 00 00-00 00 4b 53 45 4d 01 02 ..(18.....KSEM..
%fe7cef50 00 00 00 00 00 00 00 00-00 00 00 00 69 03 00 00 ............i...
%fe7cef60 6d 46 12 00 43 3a 5c 4f-53 32 5c 48 45 4c 50 5c mF..C:\OS2\HELP\
%fe7cef70 48 4d 48 45 4c 50 2e 48-4c 50 00 00 16 e6 7c fe HMHELP.HLP...f|˜

>>> The MFT + 0x22 points is the SFT segment′ s offset. So dump the
>>> SFT ....

# ln gdt_sft
0138:000000c0 OS2KRNL GDT_SFT
dw c0:0l1
#00c0:00000000 0438

# .d sft 438:3128
sf_ref_count: 0001 sfi_mode: 00a0
sf_usercnt: 0000 sfi_hVPB: 0012
reserved: 00 sfi_ctime: 0000

sf_flags(2): 0000:0000 sfi_cdate: 0000
sf_devptr: #0000:0000 sfi_atime: 0000

sf_FSC: #00c8:0008 sfi_adate: 0000
sf_chain: #0438:33b7 sfi_mtime: 0000
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sf_MFT: fe7cef30 sfi_mdate: 0000
sfdFAT_firFILEclus: 3344 sfi_size: 00007058

sfdFAT_cluspos: 0f10 sfi_position: 00000a90
sfdFAT_lstclus: 0000 sfi_UID: 0000
sfdFAT_dirsec: 00000000 sfi_Pid: 0012
sfdFAT_dirpos: 00 sfi_PDB: 0000
sfdFAT_name: sfi_selfsfn: 0060

sfdFAT_EAHandle: 0000 sfi_tstamp: 00
sf_plock: 0000 sfi_DOSattr: 00

sf_NmPipeSfn: 0000
sf_codepage: 0000

>>> sfi_Pid tells us Pid 12 has opened this file. But the
>>> sf_chain is not zero, so other processes have also opened
>>> this file. Follow the sf_chain .....

# .d sft 438:33b7
sf_ref_count: 0001 sfi_mode: 00a0
sf_usercnt: 0000 sfi_hVPB: 0012
reserved: 00 sfi_ctime: 0000

sf_flags(2): 0000:0000 sfi_cdate: 0000
sf_devptr: #0000:0000 sfi_atime: 0000

sf_FSC: #00c8:0008 sfi_adate: 0000
sf_chain: #0438:2d10 sfi_mtime: 0000
sf_MFT: fe7cef30 sfi_mdate: 0000

sfdFAT_firFILEclus: 284a sfi_size: 00007058
sfdFAT_cluspos: 0f10 sfi_position: 00000a90
sfdFAT_lstclus: 0000 sfi_UID: 0000
sfdFAT_dirsec: 00000000 sfi_Pid: 000c
sfdFAT_dirpos: 00 sfi_PDB: 0000
sfdFAT_name: sfi_selfsfn: 0065

sfdFAT_EAHandle: 0000 sfi_tstamp: 00
sf_plock: 0000 sfi_DOSattr: 00

sf_NmPipeSfn: 0000
sf_codepage: 0000

# .d sft 438:2d10
sf_ref_count: 0001 sfi_mode: 00a0
sf_usercnt: 0000 sfi_hVPB: 0012
reserved: 00 sfi_ctime: 0000

sf_flags(2): 0000:0000 sfi_cdate: 0000
sf_devptr: #0000:0000 sfi_atime: 0000

sf_FSC: #00c8:0008 sfi_adate: 0000
sf_chain: #0438:2e16 sfi_mtime: 0000
sf_MFT: fe7cef30 sfi_mdate: 0000

sfdFAT_firFILEclus: 1986 sfi_size: 00007058
sfdFAT_cluspos: 0f10 sfi_position: 00000a90
sfdFAT_lstclus: 0000 sfi_UID: 0000
sfdFAT_dirsec: 00000000 sfi_Pid: 000b
sfdFAT_dirpos: 00 sfi_PDB: 0000
sfdFAT_name: sfi_selfsfn: 0058

sfdFAT_EAHandle: 0000 sfi_tstamp: 00
sf_plock: 0000 sfi_DOSattr: 00

sf_NmPipeSfn: 0000
sf_codepage: 0000

# .d sft 438:2e16
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sf_ref_count: 0001 sfi_mode: 00a0
sf_usercnt: 0000 sfi_hVPB: 0012
reserved: 00 sfi_ctime: 0000

sf_flags(2): 0000:0000 sfi_cdate: 0000
sf_devptr: #0000:0000 sfi_atime: 0000

sf_FSC: #00c8:0008 sfi_adate: 0000
sf_chain: #0000:0000 sfi_mtime: 3ca2
sf_MFT: fe7cef30 sfi_mdate: 1d62

sfdFAT_firFILEclus: 050c sfi_size: 00007058
sfdFAT_cluspos: 0f10 sfi_position: 00000a90
sfdFAT_lstclus: 0000 sfi_UID: 0000
sfdFAT_dirsec: 00000000 sfi_Pid: 000d
sfdFAT_dirpos: 00 sfi_PDB: 0000
sfdFAT_name: SINGLEQ$ sfi_selfsfn: 005a

sfdFAT_EAHandle: 0000 sfi_tstamp: 00
sf_plock: 0000 sfi_DOSattr: 00

sf_NmPipeSfn: 0000
sf_codepage: 0000

>>> In all, PIDs 0012, 000c, 000b and 000d have opened
>>> C:\OS2\HELP\HMHELP.HLP

14.1.1.3 The Record Lock Record
In this example we investigate the RLR and how it records a locked range within
a file. We will also see how the BlockID of a thread waiting for access to a
locked file range directly leads to discovery of the RLR.

We introduce the RLR by showing its relationship to other file-system control
blocks in the following diagram. This depicts the following situation:

• Three processes have opened the same file, in the order process 1, 2, then
3.

• The MFT heads the chain of SFTs, each representing an open instance of the
same file. The MFT points to the most recent SFT open instance.

• Process 1 and process 2 have each locked a range within the same file.
RLRs 1 and 2 correspond to process 1 and 2.

• The MFT heads the chain of RLRs starting with the most recent. The pointer
from the MFT (lptr) is the offset within the RLR segment.
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Figure 16. Shared File with Two Locked Ranges
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A Hang Problem Involving Locked Records

>>> Problem: Program PAIN running in Slot 4d is hung with a blank
>>> screen. Everything else in the system seems OK. Mouse moves, we
>>> can change focus and so on..

>>> Lets take a look at slot 4d.

# .p 4d
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 004d# 001c 001b 001c 0001 blk 0300 ab80f000 ab99e220 ab980620 1e60 1d PAIN

>>> Blocked!

>>> We can approach this two ways:

>>> 1) Take a look at what the application did

>>> 2) Take a look at the BlockID and try see how far the system got

>>> Looking at the application we examine its registers and determine
>>> what API it called to cause it to block.

# .s 4d
Current slot number: 004d

# .r
eax=00023305 ebx=00000000 ecx=00000006 edx=0002004f esi=00000000 edi=00000000
eip=00010181 esp=0002337c ebp=000233fc iopl=2 -- -- -- nv up ei pl zr na pe nc
cs=005b ss=0053 ds=0053 es=0053 fs=150b gs=0000 cr2=00000000 cr3=001d9000
005b:00010181 83c414 add esp,+14

# u %eip-10

%00010171 e8508d45e0 call %e0468ec6
%00010176 50 push eax
%00010177 ff75f8 push dword ptr [ebp-08]
%0001017a b005 mov al,05
%0001017c e8c762f81b call %1bf96448
%00010181 83c414 add esp,+14
%00010184 0bc0 or eax,eax
%00010186 7404 jz %0001018c
%00010188 ebde jmp %00010168
%0001018a 8bc0 mov eax,eax
%0001018c b858000200 mov eax,00020058
%00010191 e8fa000000 call %00010290
# ln %1bf96448

%1bf96448 DOSCALL1 DOS32SETFILELOCKS

>>> The last call was to DosSetFileLocks and we haven′ t returned. If
>>> we want any more information we have to analyze the BlockID.

# .pb#

Slot Sta BlockID Name Type Addr Symbol
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 004d# blk 00b80029 PAIN
# .m 0b8:29

*har par cpg va flg next prev link hash hob hal
 00dd %feaf0308 00000010 %aa7a3000 129 00dc 00de 0000 00cb 00ea 0000 sel=00b8
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 00ea 00dd 0000 0124 ff47 0000 0000 00 00 00 00 fsreclok

>>> Seems to be blocked on a File System Record Lock (RLR).
>>> This implies that someone else has already locked a
>>> conflicting record range.

>>> We need to dump the RLR and locate the System File Table Entry
>>> associated with it. The BlockID is the address of the RLR.

# dw 0b8:29

00b8:00000029 0000 0000 0020 0000 002f 0000 526b 00d0
00b8:00000039 0000 0018 0000 0002 0000 2000 0000 2f00
00b8:00000049 0000 2000 9806 29ab 1c00 0300 0000 006e
00b8:00000059 0000 0000 0000 0000 0000 0000 0000 0000
00b8:00000069 0000 0000 8500 0000 0000 0000 0000 0000
00b8:00000079 0000 0000 0000 0000 0000 0000 009c 0000
00b8:00000089 0000 0000 0000 0000 0000 0000 0000 0000
00b8:00000099 0000 b300 0000 0000 0000 0000 0000 0000

>>> RLR+c is a far16 pointer to the associated System File Table entry
>>> (SFT).

>>> RLR+4 and RLR+8 are the range of bytes locked. Offset +20 - +2f
>>> has been locked.

>>> We now format the SFT for the process that locked this range:

# .d sft d0:526b

sf_ref_count: 0001 sfi_mode: 0042
sf_usercnt: 0000 sfi_hVPB: 04e0
reserved: 00 sfi_ctime: 0000

sf_flags(2): 0040:0000 sfi_cdate: 0000
sf_devptr: #0000:04e0 sfi_atime: 0000

sf_FSC: #0000:ff40 sfi_adate: 0000
sf_chain: #0000:0000 sfi_mtime: 5df6
sf_MFT: fe87ca0c sfi_mdate: 1f3a

sfdFAT_firFILEclus: 0197 sfi_size: 00000061
sfdFAT_cluspos: 0000 sfi_position: 00000030
sfdFAT_lstclus: 0197 sfi_UID: 0000
sfdFAT_dirsec: 0000009f sfi_Pid: 0018
sfdFAT_dirpos: 0a sfi_PDB: 0000
sfdFAT_name: VIN sfi_selfsfn: 00a1

sfdFAT_EAHandle: 0000 sfi_tstamp: 00
sf_plock: 0000 sfi_DOSattr: 20

sf_NmPipeSfn: 0000
sf_codepage: 0000
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>>> The SFT contains a pointer to the MFT, which contains the fully
>>> qualified file name. If the file is FAT then the short name in the
>>> SFT is also meaningful.

# .d mft % fe87ca0c

mft_ksem:
Signature : KSEM Nest: 0000
Type : SHARE Readers: 0000
Flags : 01 PendingReaders: 0000
Owner : 0000 PendingWriters: 0000

mft_lptr: 0029 mft_sptr: 00d0:5600
mft_pCMap: 00000000 mft_serl: 128f

 mft_CMapKSem:
mft_hvpb: 466d mft_opflags: 0000 mft_flags: 0000
mft_name: A:\LAB19\VIN

>>> So the locked File is a:\lab19\vin

>>> The SFT also contains the Pid of the process that opened, and in
>>> this case locked, this file - Pid 18

# .p
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 0001 0001 0000 0000 0001 blk 0100 ffe3a000 ffe3ca00 ffe3c800 1e7c 00 *ager
 0002 0001 0000 0000 0002 blk 0200 ab779000 ffe3ca00 ab977020 1f3c 00 *tsd
 0003 0001 0000 0000 0003 blk 0200 ab77b000 ffe3ca00 ab977220 1f50 00 *ctxh
 0004 0001 0000 0000 0004 blk 081f ab77d000 ffe3ca00 ab977420 1f48 00 *kdb
 0005 0001 0000 0000 0005 blk 0800 ab77f000 ffe3ca00 ab977620 1f20 00 *lazyw
 0006 0001 0000 0000 0006 blk 0800 ab781000 ffe3ca00 ab977820 1f3c 00 *asyncr
 0009 0002 0000 0002 0001 rdy 0804 ab787000 ab997020 ab977e20 1c88 00 CNTRL
 0008 0002 0000 0002 0002 blk 0804 ab785000 ab997020 ab977c20 00 CNTRL
 000b 0002 0000 0002 0003 blk 0804 ab78b000 ab997020 ab978220 00 CNTRL
 000c 0002 0000 0002 0004 rdy 0804 ab78d000 ab997020 ab978420 1c9c 00 CNTRL
 000a 0003 0000 0003 0001 blk 0800 ab789000 ab997620 ab978020 00 DOSCTL
 000d 0004 0001 0004 0001 rdy 0500 ab78f000 ab997c20 ab978620 1ed0 01 PMSHL32
 000f 0004 0001 0004 0002 blk 0800 ab793000 ab997c20 ab978a20 1ed4 01 PMSHL32
 0010 0004 0001 0004 0003 blk 0800 ab795000 ab997c20 ab978c20 01 PMSHL32
 0011 0004 0001 0004 0004 blk 0800 ab797000 ab997c20 ab978e20 01 PMSHL32
 0012 0004 0001 0004 0005 blk 0800 ab799000 ab997c20 ab979020 01 PMSHL32
 0015 0004 0001 0004 0006 blk 0200 ab79f000 ab997c20 ab979620 1edc 01 PMSHL32
 0016 0004 0001 0004 0007 blk 0200 ab7a1000 ab997c20 ab979820 1edc 01 PMSHL32
 0017 0004 0001 0004 0008 blk 0200 ab7a3000 ab997c20 ab979a20 01 PMSHL32
 0007 0004 0001 0004 0009 blk 0500 ab783000 ab997c20 ab977a20 01 PMSHL32
 0018 0004 0001 0004 000a blk 0800 ab7a5000 ab997c20 ab979c20 01 PMSHL32
 0019 0004 0001 0004 000b blk 0800 ab7a7000 ab997c20 ab979e20 1eb8 01 PMSHL32
 001a 0004 0001 0004 000c blk 0800 ab7a9000 ab997c20 ab97a020 1eb8 01 PMSHL32
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 001b 0004 0001 0004 000d blk 0804 ab7ab000 ab997c20 ab97a220 1ea8 01 PMSHL32
 001c 0004 0001 0004 000e blk 0804 ab7ad000 ab997c20 ab97a420 1eb0 01 PMSHL32
 001d 0004 0001 0004 000f blk 0500 ab7af000 ab997c20 ab97a620 1ea8 01 PMSHL32
 001e 0004 0001 0004 0010 blk 0801 ab7b1000 ab997c20 ab97a820 1bac 01 PMSHL32
 001f 0004 0001 0004 0011 blk 0801 ab7b3000 ab997c20 ab97aa20 01 PMSHL32
 0020 0004 0001 0004 0012 blk 0801 ab7b5000 ab997c20 ab97ac20 01 PMSHL32
 0021 0004 0001 0004 0013 blk 0800 ab7b7000 ab997c20 ab97ae20 01 PMSHL32
 0022 0004 0001 0004 0014 blk 0800 ab7b9000 ab997c20 ab97b020 1b80 01 PMSHL32
 0024 0004 0001 0004 0015 blk 0200 ab7bd000 ab997c20 ab97b420 1ed0 01 PMSHL32
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 0030 0004 0001 0004 0016 blk 0800 ab7d5000 ab997c20 ab97cc20 1eac 01 PMSHL32
 004c 001b 0004 001b 0001 blk 0400 ab80d000 ab99dc20 ab980420 1ed4 1d CMD
 004b 001a 0004 001a 0001 blk 0200 ab80b000 ab99d620 ab980220 1eb8 1c CMD
 004a 0019 0004 0019 0001 blk 0200 ab809000 ab99d020 ab980020 1eb8 14 CMD
 0048 0017 0004 0017 0001 blk 0200 ab805000 ab99a620 ab97fc20 1ed4 04 CMD
 0047 0014 0004 0014 0001 blk 0200 ab803000 ab99c420 ab97fa20 1eb8 11 CMD
 003d 0012 0004 0012 0001 blk 0200 ab7ef000 ab99be20 ab97e620 1ed0 1a IBMAVSD
 0046 0011 0004 0011 0001 blk 0200 ab801000 ab99b820 ab97f820 1ed0 19 FPWMON
 003a 0010 0004 0010 0001 blk 0200 ab7e9000 ab99b220 ab97e020 1ed0 18 PMFAX
 0041 0010 0004 0010 0002 blk 0800 ab7f7000 ab99b220 ab97ee20 1edc 18 PMFAX
 0043 0010 0004 0010 0003 blk 0500 ab7fb000 ab99b220 ab97f220 18 PMFAX
 0045 0010 0004 0010 0005 blk 0500 ab7ff000 ab99b220 ab97f620 1d24 18 PMFAX
 0039 000f 0004 000f 0001 blk 0200 ab7e7000 ab99ac20 ab97de20 1ed0 17 FPWPIMX
 0040 000f 0004 000f 0002 blk 0200 ab7f5000 ab99ac20 ab97ec20 1ed0 17 FPWPIMX
 0042 000f 0004 000f 0003 blk 0200 ab7f9000 ab99ac20 ab97f020 1ed0 17 FPWPIMX
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 0038 000e 0004 000e 0001 blk 0200 ab7e5000 ab99a020 ab97dc20 1ed0 16 DINFO
 003f 000e 0004 000e 0002 blk 0500 ab7f3000 ab99a020 ab97ea20 1f00 16 DINFO
 0037 000d 0004 000d 0001 blk 0200 ab7e3000 ab999a20 ab97da20 1ed0 15 MRFILE32
 003e 000d 0004 000d 0002 blk 0200 ab7f1000 ab999a20 ab97e820 15 MRFILE32
 0033 000c 0004 000c 0001 blk 0200 ab7db000 ab998e20 ab97d220 1ed0 13 PULSE
*003b 000c 0004 000c 0002 run 0100 ab7eb000 ab998e20 ab97e220 1f28 13 PULSE
 003c 000c 0004 000c 0003 blk 081f ab7ed000 ab998e20 ab97e420 1f00 13 PULSE
 0026 0008 0004 0008 0001 blk 0500 ab7c1000 ab999420 ab97b820 1ed0 12 PMSHL32
 002d 0008 0004 0008 0002 blk 0200 ab7cf000 ab999420 ab97c620 1edc 12 PMSHL32
 002e 0008 0004 0008 0003 blk 0200 ab7d1000 ab999420 ab97c820 12 PMSHL32
 002f 0008 0004 0008 0004 blk 0200 ab7d3000 ab999420 ab97ca20 1ed0 12 PMSHL32
 0028 0008 0004 0008 0005 blk 0200 ab7c5000 ab999420 ab97bc20 12 PMSHL32
 0025 0008 0004 0008 0006 blk 0200 ab7bf000 ab999420 ab97b620 1edc 12 PMSHL32
 002c 0008 0004 0008 0007 blk 0200 ab7cd000 ab999420 ab97c420 1ed0 12 PMSHL32
 0031 0008 0004 0008 0008 blk 0500 ab7d7000 ab999420 ab97ce20 1edc 12 PMSHL32
 0032 0008 0004 0008 0009 blk 0200 ab7d9000 ab999420 ab97d020 1edc 12 PMSHL32
 0034 0008 0004 0008 000b blk 0500 ab7dd000 ab999420 ab97d420 12 PMSHL32
 0035 0008 0004 0008 000c blk 0200 ab7df000 ab999420 ab97d620 1eac 12 PMSHL32
 0036 0008 0004 0008 000d blk 0500 ab7e1000 ab999420 ab97d820 1eb8 12 PMSHL32
 0044 0008 0004 0008 000e blk 0200 ab7fd000 ab999420 ab97f420 1ed0 12 PMSHL32
 0023 0006 0004 0006 0001 blk 0200 ab7bb000 ab998820 ab97b220 10 PMSPOOL
 0027 0006 0004 0006 0002 blk 0500 ab7c3000 ab998820 ab97ba20 10 PMSPOOL
 0029 0006 0004 0006 0003 blk 0200 ab7c7000 ab998820 ab97be20 10 PMSPOOL
 002a 0006 0004 0006 0004 blk 0500 ab7c9000 ab998820 ab97c020 10 PMSPOOL
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 002b 0006 0004 0006 0005 blk 0500 ab7cb000 ab998820 ab97c220 10 PMSPOOL
 000e 0005 0004 0005 0001 blk 0800 ab791000 ab998220 ab978820 00 HARDERR
 0013 0005 0004 0005 0002 blk 0800 ab79b000 ab998220 ab979220 00 HARDERR
 0014 0005 0004 0005 0003 blk 0800 ab79d000 ab998220 ab979420 00 HARDERR
 0049 0018 0017 0018 0001 blk 0200 ab807000 ab99ca20 ab97fe20 1cd4 04 FROMAGE
 004d# 001c 001b 001c 0001 blk 0300 ab80f000 ab99e220 ab980620 1e60 1d PAIN

>>> Pid 18 is evidently FROMAGE.

>>> FROMAGE has the VIN and PAIN wants it!

>>> We had better find out why FROMAGE has blocked.

# .s 49
Current slot number: 0049

# .r
eax=00000001 ebx=00020366 ecx=1bf90000 edx=00020004 esi=13fa0000 edi=13fa1052
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eip=0000a0c3 esp=0000324a ebp=00023270 iopl=2 -- -- -- nv up ei ng nz ac pe cy
cs=dfdf ss=0017 ds=9fe7 es=9fe7 fs=150b gs=0000 cr2=00000000 cr3=001d9000

Invalid linear address: dfdf:0000a0c3
# ln

dfdf:0000a053 DOSCALL1 GetCharIn + 70

>>> Looking at this from the application aspect may be difficult since
>>> some of the code has been paged out (The invalid linear address
>>> message).

>>> The near symbol gives a clue. We could try unwinding the stack and
>>> hope that the stack is still paged in.

# dw %ebp
%00023270 b17e dfdf 9fe7 0000 0000 a97a dfdf 0000
%00023280 0000 0366 9fe7 a8ec a48d 1052 a399 32a6
%00023290 203c 0053 9fdf 1052 1052 32c8 32a6 0360
%000232a0 0007 4fa8 32b4 b1f0 dfdf 9fd7 0000 0005
%000232b0 bb2b dfd7 0000 0000 1044 9fd7 1052 9fd7
%000232c0 32c8 0002 0053 1bf9 32f0 0002 1cba 1bf9
%000232d0 0000 0000 0000 0000 1044 13fa 1052 13fa
%000232e0 0000 0000 0360 0002 0360 0002 0042 0008
# d

%000232f0 3334 0002 78cd 0001 0000 0000 0000 0009
%00023300 1000 0000 3330 0002 0000 0000 0360 0002
%00023310 0360 0002 0000 0002 0000 0000 0000 0000
%00023320 0000 0000 0000 0000 0000 0000 0000 0000
%00023330 7000 ab80 3388 0002 2abc 0001 0360 0002
%00023340 0000 0009 1000 0000 33f0 0002 0029 0000
%00023350 0020 0000 0001 0000 0000 0000 0000 0000
%00023360 0000 0000 3388 0002 02c5 0001 339c 0002

>>> This is going to be haphazard. Evidently the code we are currently
>>> executing is not using EBP as a stack frame pointer. All we can do
>>> is scan through the stack looking for a likely stack frame or a
>>> return address to user code.

>>> %232f0 looks like a candidate. Let′ s unassemble the return address
>>> to see if it makes sense.

# u %178cd-10

%000178bd 03ca add ecx,edx
%000178bf 51 push ecx
%000178c0 8b5d08 mov ebx,dword ptr [ebp+08]
%000178c3 ff7320 push dword ptr [ebx+20]
%000178c6 b004 mov al,04
%000178c8 e83ba3f71b call %1bf91c08
%000178cd 83c410 add esp,+10
%000178d0 8bc8 mov ecx,eax
%000178d2 0bc0 or eax,eax
%000178d4 741b jz %000178f1
%000178d6 824b0802 or byte ptr [ebx+08],02
%000178da c705e81302003c000000 mov dword ptr [000213e8],0000003c
# ln %1bf91c08
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%1bf91c08 DOSCALL1 DOS32READ

>>> So far so good. We need to see if this is consistent with the
>>> BlockID, which is the most up-to-date status indicator for this
>>> process.

# .pb#
Slot Sta BlockID Name Type Addr Symbol
 0049# blk 05100604 FROMAGE
# .m 0510:0604

*har par cpg va flg next prev link hash hob hal
 0003 %feaef04c 00000400 %fe6ef000 001 0002 0023 0000 0000 0003 0000 =0000
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 0003 0003 fec5 0000 ffec 0000 0000 00 01 00 00 vmkrhrw

>>> This BlockID points to data within the kernel resident read/write
>>> heap. Heap blocks have headers that tell us more about the user of
>>> the data. The data portion of a help block is usually mapped to a
>>> GDT selector. In this example, selector 510. 510:0 should
>>> be the address of the beginning of the data and therefore point
>>> just after the end of the header. We look at the data before
>>> 510:0 to see the heap block header.

# dg 510
0510 Data Bas=fe6f3000 Lim=00000b2a DPL=0 P RW A
# dd % fe6f3000-10

%fe6f2ff0 ffa4000c feaeef28 0002036f 00000b39
%fe6f3000 05000000 0000c981 424b2d29 20202444
%fe6f3010 05182020 00000510 00020000 00000000
%fe6f3020 a8030ec8 424b0170 19002444 00000000
%fe6f3030 00000000 00000000 00000000 00000000
%fe6f3040 00000000 00061400 001b0014 0a000003
%fe6f3050 00028101 81010500 0a000001 0003c747
%fe6f3060 00000000 00000000 00000000 00000000

>>> For resident heaps the header is a double-word. This one begins
>>> at %fe6f2ffc. The low 2 bits are flags, the remainder is the
>>> length of the heap block in double-words.

>>> If the flag bit 0 is 1 then this is an extended heap. Which it is.
>>> We need to look at the header extension at the end of the block.

>>> The length of the block in bytes is b38 (by mentally AND-ing b39
>>> and 0xffc)

# dd % fe6f3000-4+b38-10

%fe6f3b24 ffff0000 0000ffff ff530510 ff77bd64
%fe6f3b34 ffc2001c 00000008 00000000 00000000
%fe6f3b44 ab240001 4d5000a6 00005854 ff9e0014
%fe6f3b54 001b0083 fe6f3b80 fe701da0 fe8777b0
%fe6f3b64 ffa4000c fe6f3b74 000102e9 ffa4000c
%fe6f3b74 fe7ea73c 0001071f ff9e0014 001b005d
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%fe6f3b84 fe83baa8 fe876eac fe877654 ffc2001c
%fe6f3b94 00000008 00000000 00000000 da680001

>>> The header extension is in the last 2 double-words of the heap
>>> block. The owner Id and the selector are in the first of these (at
>>> %fe6f3b2c).

# .mo ff53

ff53 dd4

>>> This tells us selector 510 was allocated by, or is part of the 4th
>>> device driver to initialize. Listing the physical device driver
>>> MTEs will find this. The are listed last initialized first.

>>> Note: frequently we find that dd16 is the owner. This refers to
>>> all device drivers from the 16th and subsequent. The first 15
>>> device drivers to initialize are assigned unique owner ids from
>>> dd1 to dd15, where the numbers are in decimal.

# .lmp
hmte=0249 pmte=%fe848df4 mflags=0008f1c9 h:\faxpro\fmd.sys
hmte=0242 pmte=%fe856f04 mflags=0008f1c9 c:\os2tools\theseus2.sys
hmte=0240 pmte=%fe848e7c mflags=0008f1c9 c:\os2\vdisk.sys
hmte=0235 pmte=%fe848f58 mflags=0008f1c9 h:\os2\apps\sysios2.sys
hmte=0234 pmte=%fe848f08 mflags=0008f1c9 h:\tcpip\bin\ifndisnl.sys
hmte=011e pmte=%fe83ff84 mflags=0008f1c9 h:\tcpip\bin\inet.sys
hmte=012b pmte=%fe83996c mflags=0008f1c9 h:\mmos2\r0stub.sys
hmte=012a pmte=%fe839da0 mflags=0000f1c1 h:\mmos2\ssmdd.sys
hmte=0123 pmte=%fe83df4c mflags=8008f1c9 c:\os2\com.sys
hmte=0121 pmte=%fe839e64 mflags=8008f1c9 h:\os2\boot\mouse.sys
hmte=0120 pmte=%fe839ef4 mflags=8008f1c9 h:\os2\boot\pointdd.sys
hmte=011d pmte=%fe83afdc mflags=8008f1c9 h:\os2\boot\os2cdrom.dmd
hmte=0111 pmte=%fe83af88 mflags=8008f1ca h:\os2\boot\pmdd.sys
hmte=0087 pmte=%fe839fdc mflags=0008f1c9 h:\os2\boot\dos.sys
hmte=0089 pmte=%fe839f80 mflags=8008f1c9 h:\os2\boot\testcfg.sys
hmte=0103 pmte=%fe71095c mflags=0008f1c9 i:\brew\os20memu.sys
hmte=00e2 pmte=%fe6fefc4 mflags=8008e1c9 h:\os2scsi.dmd
hmte=00e1 pmte=%fe6fdf64 mflags=8008e1c9 h:\os2dasd.dmd
hmte=00de pmte=%fe6f6fb0 mflags=0008e1c9 h:\xdfloppy.flt
hmte=00a9 pmte=%fe6f5fb0 mflags=8008e1c9 h:\fd16-700.add
hmte=00a7 pmte=%fe6f4f3c mflags=8008e1c9 h:\ibm1s506.add
hmte=00a5 pmte=%fe6f3db4 mflags=8008e1c9 h:\ibm1flpy.add
hmte=009c pmte=%feaeeea0 mflags=8008e1c9 h:\print01.sys
hmte=009b pmte=%fe6f1fb8 mflags=8008e1c9 h:\ibmkbd.sys
hmte=009a pmte=%feaeeed8 mflags=8008e1c9 h:\kbdbase.sys
hmte=0099 pmte=%feaeef34 mflags=0008e1c9 h:\screen01.sys
hmte=0098 pmte=%feaeefc0 mflags=8008e1c9 h:\clock01.sys
hmte=0096 pmte=%fe6f1fdc mflags=0008e1c9 h:\resource.sys

>>> Counting backwards, the 4th device driver is KBDBASE.SYS.

>>> We dump its object table.

# .lmo 9a
hmte=009a pmte=%feaeeed8 mflags=8008e1c9 h:\kbdbase.sys
seg sect psiz vsiz hob sel flags
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0001 0001 158c 170e 0000 0510 8c41 data prel
0002 000c 3270 3270 0000 0518 8d60 code shr prel rel
0003 0026 1987 1988 0000 0520 8d60 code shr prel rel
0004 0033 0743 0744 0000 0528 8d60 code shr prel rel

>>> Selector 510 is indeed the first data selector of KBDBASE.SYS and
>>> will contain the device driver header at offset +0

# .d dev 510:0
DevNext: 0500:0000
DevAttr: c981
DevStrat: 0000
DevInt: 2d29
DevName: KBD$

DevProtCS: 0518
DevProtDS: 0510
DevRealCS: 0000
DevRealDS: 0000

>>> We conclude that FROMAGE is waiting for the device driver to
>>> respond to the DosRead - That is, a keyboard interrupt
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14.1.2 Exploring Memory Management
This section gives a basic overview of memory management, and shows how to
answer the following questions:

 1. 14.1.2.1, “Who Owns Virtual Memory and Who Allocated it?”

 2. 14.1.2.2, “How to Correlate Named Memory with its Address” on page 262

 3. 14.1.2.3, “How Memory Aliasing Works” on page 267

If the reader is unfamiliar with this subject then these sections should be read in
order.

14.1.2.1 Who Owns Virtual Memory and Who Allocated it?
In this section we take a look at the primary system structures used in memory
management and how they are located using the Dump Formatter and Kernel
Debugger. These structures are:

The memory arena record (VMAR)

The memory arena header record (VMAH)

The memory object record (VMOB)

The memory context record (VMCO)

The examples worked in this section illustrate:

How to find all memory allocations made by a given process and what
executable made the allocation.

How to determine ownership of non-system memory.

The use of memory objects, pseudo-objects and system objects.

Memory allocations have many attributes, included among which are:

Data or content

Location or address

Size

Ownership

Requestor

The composite set of attributes associated with a memory allocation is referred
to as a memory object. OS/2′s virtual memory manager tracks memory objects
using arena, object and context records.

We start by looking at the arena record, which is used to record virtual address
assignments to memory objects.

The entire system address space of 4GB is partitioned into three types of
memory arena:

System Arena
This is the range of virtual addresses where system information and ring 0
code executes. Typically device drivers, file system drivers and the OS/2
kernel executes and uses data assigned to the system arena. There is just
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one instance of the system arena. It is assigned the virtual address range
from 512MB to 4GB.

Shared Arena
This is the range of virtual addresses assigned to shared objects. Shared
data objects come in the following two varieties:

Global data Such objects exist as unique entities. Their address range
and data content are common to all accessing processes.
This is achieved by using common page tables in all
processes.

Instance data Such objects share the same address range, but exist as
distinct data instances in each accessing process. Page
table entries for instance data are specific to each process.

Code objects from DLL modules are also consigned to the shared arena.

In general processes are not given automatic access to instance or global
data. Access is granted either implicitly by the system loader because of
calls to other DLLs or explicitly by use of the DosGiveXxxx and DosGetXxxx
set of APIs.

There is just one shared arena, which initially reserves virtual memory
addresses from 304MB to 512MB. This may be expanded by lowering the
lower boundary. The current address range assigned to the shared arena is
managed by a special arena record called the boundary sentinel arena
record.

Private Arena
This is the range of virtual addresses used to map objects that are unique to
each process. A private arena therefore exists for each process. In general
the page tables of each private arena will map to unique real storage
frames. An exception to this is with code objects. Since code segments are
always read-only then if more than one process is running the same
executable module their page tables will map to a common set of real
storage frames for the code segments of the executable module.

Private arenas are assigned an initial address range from 64K to 64MB. This
may be expanded upwards as more memory is allocated. The current size
of a private arena is tracked by a special arena record called the sentinel
arena record.

The private arena upper boundary and shared arena lower boundary may grow
towards each other but not overlap.

These worked examples now follow:

Exploring arena records

Exploring object records

Finding who owns memory

Exploring Arena Records: The following example illustrates the use of arena
records:
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>>> We start by asking the question: what ranges of addresses are
>>> currently allocated in the private arena of the process that′ s
>>> running the IPFC complier.

>>> List all processes to find the one of interest

# .p
Slot Pid PPid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 0001 0001 0000 0000 0001 blk 0100 ffe3a000 ffe3c7d4 ffe3c61c 1e7c 00 *ager
 0002 0001 0000 0000 0002 blk 0200 7b7aa000 ffe3c7d4 7b9a8020 1f3c 00 *tsd
 0003 0001 0000 0000 0003 blk 0200 7b7ac000 ffe3c7d4 7b9a81d8 1f50 00 *ctxh
 0004 0001 0000 0000 0004 blk 081f 7b7ae000 ffe3c7d4 7b9a8390 1f48 00 *kdb
 0005 0001 0000 0000 0005 blk 0800 7b7b0000 ffe3c7d4 7b9a8548 1f20 00 *lazyw
 0006 0001 0000 0000 0006 blk 0800 7b7b2000 ffe3c7d4 7b9a8700 1f3c 00 *asyncr
 0009 0002 0000 0002 0001 blk 021f 7b7b8000 7b9c4020 7b9a8c28 00 LOGDAEM
 0008 0003 0001 0003 0001 rdy 061f 7b7b6000 7b9c484c 7b9a8a70 1eb8 01 PMSHL32
 000b 0003 0001 0003 0002 blk 0800 7b7bc000 7b9c484c 7b9a8f98 01 PMSHL32
 000c 0003 0001 0003 0003 blk 0800 7b7be000 7b9c484c 7b9a9150 01 PMSHL32
 000d 0003 0001 0003 0004 blk 0800 7b7c0000 7b9c484c 7b9a9308 01 PMSHL32
 000e 0003 0001 0003 0005 blk 0800 7b7c2000 7b9c484c 7b9a94c0 01 PMSHL32
 0007 0003 0001 0003 0006 blk 0200 7b7b4000 7b9c484c 7b9a88b8 1ecc 01 PMSHL32
 0011 0003 0001 0003 0007 blk 0200 7b7c8000 7b9c484c 7b9a99e8 1ecc 01 PMSHL32
 0012 0003 0001 0003 0008 blk 0200 7b7ca000 7b9c484c 7b9a9ba0 01 PMSHL32
 0013 0003 0001 0003 0009 blk 0200 7b7cc000 7b9c484c 7b9a9d58 01 PMSHL32
 0014 0003 0001 0003 000a blk 0800 7b7ce000 7b9c484c 7b9a9f10 01 PMSHL32
 0015 0003 0001 0003 000b blk 0800 7b7d0000 7b9c484c 7b9aa0c8 01 PMSHL32
 0016 0003 0001 0003 000c blk 0800 7b7d2000 7b9c484c 7b9aa280 01 PMSHL32
 0017 0003 0001 0003 000d blk 0804 7b7d4000 7b9c484c 7b9aa438 1ea8 01 PMSHL32
 0018 0003 0001 0003 000e rdy 0804 7b7d6000 7b9c484c 7b9aa5f0 01 PMSHL32
 0019 0003 0001 0003 000f blk 0500 7b7d8000 7b9c484c 7b9aa7a8 01 PMSHL32
 001a 0003 0001 0003 0010 rdy 0801 7b7da000 7b9c484c 7b9aa960 1bac 01 PMSHL32
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 001b 0003 0001 0003 0011 blk 0800 7b7dc000 7b9c484c 7b9aab18 01 PMSHL32
*001c# 0003 0001 0003 0012 run 0800 7b7de000 7b9c484c 7b9aacd0 1b8c 01 PMSHL32
 001d 0003 0001 0003 0013 blk 0200 7b7e0000 7b9c484c 7b9aae88 01 PMSHL32
 0023 0018 0003 0018 0001 rdy 061f 7b7ec000 7b9c7128 7b9ab8d8 1eb8 13 EPM
 0038 0018 0003 0018 0002 blk 0200 7b816000 7b9c7128 7b9adcf0 1ecc 13 EPM
 0037 0013 0003 0013 0001 blk 0200 7b814000 7b9c9a04 7b9adb38 19 IBMAVSD
 0033 0012 0003 0012 0001 blk 0200 7b80c000 7b9c89ac 7b9ad458 1eb8 17 PMDRAW
 0035 0012 0003 0012 0002 blk 0200 7b810000 7b9c89ac 7b9ad7c8 1eb8 17 PMDRAW
 0036 0012 0003 0012 0003 blk 0200 7b812000 7b9c89ac 7b9ad980 17 PMDRAW
 0034 0010 0003 0010 0001 blk 0400 7b80e000 7b9c91d8 7b9ad610 1ed4 12 CMD
 002e 000d 0003 000d 0001 blk 0200 7b802000 7b9c8180 7b9acbc0 1eb8 16 PULSE
 0030 000d 0003 000d 0002 rdy 0100 7b806000 7b9c8180 7b9acf30 1f28 16 PULSE
 002f 000d 0003 000d 0003 rdy 081f 7b804000 7b9c8180 7b9acd78 1f00 16 PULSE
 002d 000c 0003 000c 0001 blk 0200 7b800000 7b9c7954 7b9aca08 1eb8 15 DINFO
 0032 000c 0003 000c 0002 rdy 061f 7b80a000 7b9c7954 7b9ad2a0 1f00 15 DINFO
 002c 000b 0003 000b 0001 blk 0200 7b7fe000 7b9c58a4 7b9ac850 1eb8 14 MRFILE32
 0031 000b 0003 000b 0002 blk 0200 7b808000 7b9c58a4 7b9ad0e8 1ecc 14 MRFILE32
 0029 000a 0003 000a 0001 rdy 061f 7b7f8000 7b9c68fc 7b9ac328 1eb8 10 PMDIARY
 001f 0006 0003 0006 0001 rdy 062f 7b7e4000 7b9c60d0 7b9ab1f8 1eb8 11 PMSHL32
 0021 0006 0003 0006 0002 blk 0200 7b7e8000 7b9c60d0 7b9ab568 11 PMSHL32
 0022 0006 0003 0006 0003 blk 0200 7b7ea000 7b9c60d0 7b9ab720 1eb8 11 PMSHL32
 0020 0006 0003 0006 0004 blk 0200 7b7e6000 7b9c60d0 7b9ab3b0 11 PMSHL32
 001e 0006 0003 0006 0005 blk 0200 7b7e2000 7b9c60d0 7b9ab040 1ecc 11 PMSHL32
 0024 0006 0003 0006 0006 blk 0200 7b7ee000 7b9c60d0 7b9aba90 11 PMSHL32
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 0025 0006 0003 0006 0007 blk 0200 7b7f0000 7b9c60d0 7b9abc48 11 PMSHL32
 0026 0006 0003 0006 0008 blk 0200 7b7f2000 7b9c60d0 7b9abe00 11 PMSHL32

Chapter 14. Worked Examples 247



 0027 0006 0003 0006 0009 blk 0200 7b7f4000 7b9c60d0 7b9abfb8 11 PMSHL32
 0028 0006 0003 0006 000a blk 0200 7b7f6000 7b9c60d0 7b9ac170 11 PMSHL32
 002a 0006 0003 0006 000c blk 021f 7b7fa000 7b9c60d0 7b9ac4e0 1eac 11 PMSHL32
 002b 0006 0003 0006 000d blk 0200 7b7fc000 7b9c60d0 7b9ac698 1eb8 11 PMSHL32
 000a 0004 0003 0004 0001 blk 0800 7b7ba000 7b9c5078 7b9a8de0 00 HARDERR
 000f 0004 0003 0004 0002 blk 0800 7b7c4000 7b9c5078 7b9a9678 00 HARDERR
 0010 0004 0003 0004 0003 blk 0800 7b7c6000 7b9c5078 7b9a9830 00 HARDERR
 0039 0019 0010 0019 0001 rdy 061f 7b818000 7b9ca230 7b9adea8 1f0c 12 IPFC

>>> From the name printed in the right hand column we see that slot 39
>>> is the one of interest.

>>> Imbedded in each PTDA at offset +0x40 is the VMAH that heads the
>>> private arena. From the VMAH we can obtain the pointer to the
>>> sentinel area record.

>>> Dump out the VMAH for slot 39 using the pPTDA address from the
>>> .p command output...

# dd %7b9ca230+40 L10
%7b9ca270 7b9c7168 fff13190 feb24cae feb261bc
%7b9ca280 fe79ba54 fe87e9a0 fff03e30 00000002
%7b9ca290 00010000 00370000 00000000 00000000
%7b9ca2a0 00000003 00000000 00000041 000005db

>>> The third double word (feb24cae) is the address of the sentinel
>>> record. To format this using the .MA command we need to determine
>>> the handle for this record. Arena records are organized in a
>>> table of 0x16 byte length entries. Their handles are their
>>> corresponding table entry number. The address of the first
>>> arena record is located at symbol _parvmone...

# dd _parvmone l1
%fff13304 feb1f020

>>> Arena record 1 is located at %feb1f020. We wish to determine the
>>> handle for the sentinel, whose address is %feb24cae. We use the
>>> hex calculator facility of the Dump Formatter/Kernel Debugger thus.

# ? (%feb24cae-%feb1f020)/16 +1
%00000436

>>> The handle we require is 436. We can now format the sentinel
>>> for slot 39 ....

# .ma 436
 har par cpg va flg next prev link hash hob hal
 0436 %feb24cae 00000000 %00010000 003 050a 0526 0005 0000 4000 0000 max=%04000000

>>> Note the max=%04000000 to the right indicating the current private
>>> arena maximum address is 64M - 1 and incidentally distinguishing
>>> this as a sentinel or boundary sentinel arena record.
>>> Note also that this is merely a boundary marker and not an indication
>>> of which addresses within the private arena have been allocated.

>>> Regular arena record are chained to the sentinel in a circular
>>> double linked list using the ′ next′  and ′ prev′  pointers.
>>> We can format the entire chain using .MAL (or .MAR) but we have to
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>>> break in using Ctrl-C to stop the chain endlessly traversing the
>>> circular chain.

# .ma 50a
 har par cpg va flg next prev link hash hob hal
 050a %feb25ee6 00000030 %00010000 1d9 0509 0436 0000 0000 05e2 0000 hptda=050c
# .ma 509
 har par cpg va flg next prev link hash hob hal
 0509 %feb25ed0 00000010 %00040000 179 050b 050a 0000 0000 05dd 0000 hptda=050c
# .ma 50b
 har par cpg va flg next prev link hash hob hal
 050b %feb25efc 00000010 %00050000 169 0507 0509 0000 0000 05e9 0000 hptda=050c
# .mal 507
 har par cpg va flg next prev link hash hob hal
 0507 %feb25ea4 00000010 %00060000 169 0506 050b 0000 0000 05ea 0000 hptda=050c
 0506 %feb25e8e 00000010 %00070000 169 050f 0507 0000 0000 05eb 0000 hptda=050c
 050f %feb25f54 00000010 %00080000 169 050c 0506 0000 0000 05ec 0000 hptda=050c
 050c %feb25f12 00000010 %00090000 169 0511 050f 0000 0000 05ed 0000 hptda=050c
 0511 %feb25f80 00000010 %000a0000 169 050e 050c 0000 0000 05f0 0000 hptda=050c
 050e %feb25f3e 00000010 %000b0000 1c9 050d 0511 01c7 0000 05ee 0016 hptda=050c
 050d %feb25f28 00000010 %000c0000 169 0512 050e 0000 0000 05f1 0000 hptda=050c
 0512 %feb25f96 00000010 %000d0000 169 0513 050d 0000 0000 05f2 0000 hptda=050c
 0513 %feb25fac 00000010 %000e0000 169 0514 0512 0000 0000 05f3 0000 hptda=050c
 0514 %feb25fc2 00000010 %000f0000 169 0515 0513 0000 0000 05f4 0000 hptda=050c
 0515 %feb25fd8 00000010 %00100000 169 0516 0514 0000 0000 05f5 0000 hptda=050c
 0516 %feb25fee 00000010 %00110000 169 0517 0515 0000 0000 05f6 0000 hptda=050c
 0517 %feb26004 00000010 %00120000 169 0519 0516 0000 0000 05f7 0000 hptda=050c
 0519 %feb26030 00000010 %00130000 169 0518 0517 0000 0000 05f9 0000 hptda=050c
 0518 %feb2601a 00000010 %00140000 169 051a 0519 0000 0000 05f8 0000 hptda=050c
 051a %feb26046 00000010 %00150000 169 051b 0518 0000 0000 05fa 0000 hptda=050c
 051b %feb2605c 00000010 %00160000 169 051c 051a 0000 0000 05fb 0000 hptda=050c
 051c %feb26072 00000010 %00170000 169 051d 051b 0000 0000 05fc 0000 hptda=050c
 051d %feb26088 00000010 %00180000 169 051e 051c 0000 0000 05fd 0000 hptda=050c
 051e %feb2609e 00000010 %00190000 169 0521 051d 0000 0000 05fe 0000 hptda=050c
 0521 %feb260e0 00000010 %001a0000 169 0520 051e 0000 0000 0601 0000 hptda=050c
 0520 %feb260ca 00000010 %001b0000 169 051f 0521 0000 0000 0600 0000 hptda=050c
 051f %feb260b4 000000f0 %001c0000 169 0523 0520 0000 0000 05ff 0000 hptda=050c
 har par cpg va flg next prev link hash hob hal
 0523 %feb2610c 00000010 %002b0000 169 0527 051f 0000 0000 0603 0000 hptda=050c
 0527 %feb26164 00000010 %002c0000 169 0522 0523 0000 0000 0607 0000 hptda=050c
 0522 %feb260f6 00000020 %002d0000 169 0525 0527 0000 0000 0602 0000 hptda=050c
 0525 %feb26138 00000010 %002f0000 169 0524 0522 0000 0000 0605 0000 hptda=050c
 0524 %feb26122 00000010 %00300000 169 052a 0525 0000 0000 0604 0000 hptda=050c
 052a %feb261a6 00000010 %00310000 169 052d 0524 0000 0000 060a 0000 hptda=050c
 052d %feb261e8 00000010 %00320000 169 0529 052a 0000 0000 060d 0000 hptda=050c
 0529 %feb26190 00000010 %00330000 169 052b 052d 0000 0000 0609 0000 hptda=050c
 052b %feb261bc 00000020 %00340000 169 0526 0529 0000 0000 060b 0000 hptda=050c
 0526 %feb2614e 00000010 %00360000 169 0436 052b 0000 0000 0606 0000 hptda=050c
 0436 %feb24cae 00000000 %00010000 003 050a 0526 0005 0000 4000 0000 max=%04000000
 050a %feb25ee6 00000030 %00010000 1d9 0509 0436 0000 0000 05e2 0000 hptda=050c
 0509 %feb25ed0 00000010 %00040000 179 050b 050a 0000 0000 05dd 0000 hptda=050c

#

>>> Each regular private arena record is distinguished by the appearance
>>> hptda=nnn to the right of each line. This is the handle of the PTDA
>>> of the process to which the arena record belongs. Each of the hptda
>>> values is 50c indicating each of regular arena records above belongs
>>> to the same process. More on the hptda later.
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>>> Each regular arena represents the address range reserved for a
>>> memory object. cpg is the size reservation in pages, but note
>>> that this is only an address space reservation, not necessarily what
>>> is currently committed. Most objects reserve 0x10
>>> pages or 64K, which corresponds to the maximum 16-bit segment size.

>>> va shows the start address of each memory object.
>>> By examining va and cpg we can see that the minimum and maximum
>>> addresses allocated in the private arena of slot 39 is %10000 and
>>> %36ffff (=%360000 + 0x10 pages -1). We can also see that this
>>> allocation is contiguous and therefore the total allocated private
>>> arena virtual address space is 0x360000 bytes or 3.375M

>>> The VMAH records the minimum and maximum +1 allocated addresses
>>> at +0x20 and +0x24, but the allocation might be sparse so the VMAH
>>> does not indicate directly the total memory in use.

>>> We now move onto the shared arena.

>>> The link field of each sentinel points to the boundary sentinel

# .ma 436
 har par cpg va flg next prev link hash hob hal
 0436 %feb24cae 00000000 %00010000 003 050a 0526 0005 0000 4000 0000 max=%04000000
# .ma 5
 har par cpg va flg next prev link hash hob hal
 0005 %feb1f078 00011a20 %04000000 007 0508 0075 0000 0000 fff0 0000 max=%1fff0000

>>> Once again each regular arena record in the shared arena is linked
>>> in a circular double linked list. This time we enter the chain from
>>> the boundary sentinel next and prev fields.

# .mal 508
 har par cpg va flg next prev link hash hob hal
 0508 %feb25eba 00000010 %15a20000 369 0437 0005 0000 0000 05df 0000 hco=008a8
 0437 %feb24cc4 00000010 %15a40000 369 0438 0508 0000 0000 050d 0000 hco=00248
 0438 %feb24cda 00000010 %15a50000 369 0444 0437 0000 0000 050e 0000 hco=0076e
 0444 %feb24de2 00000020 %15a60000 3d9 0441 0438 0000 0000 0518 0000 hco=007aa
 0441 %feb24da0 00000010 %15a80000 3d9 043b 0444 0000 0000 051a 0000 hco=007a9
 043b %feb24d1c 00000010 %15a90000 3d9 043a 0441 0000 0000 0517 0000 hco=002b7
 043a %feb24d06 00000010 %15aa0000 3d9 0443 043b 0000 0000 0511 0000 hco=007a8
 0443 %feb24dcc 00000010 %15ab0000 179 0439 043a 0000 0000 0519 0000 =0000
 0439 %feb24cf0 00000010 %15ac0000 369 0433 0443 0000 0000 050f 0000 hco=00763
 0433 %feb24c6c 00000010 %15ad0000 369 0432 0439 0000 0000 0509 0000 hco=00777
 0432 %feb24c56 00000010 %15ae0000 369 041e 0433 0000 0000 0508 0000 hco=00776
 041e %feb24a9e 00000030 %15af0000 369 041c 0432 0000 0000 04f4 0000 hco=007d8
 041c %feb24a72 00000010 %15b20000 369 03ee 041e 0000 0000 04d1 0000 hco=0075c
 03ee %feb2467e 00000010 %15b30000 349 03eb 041c 0000 0000 04c1 0000 hco=001f6

 .
 .
 .
 .
 .
 .

 0169 %feb20f10 00000010 %1acb0000 179 0168 016a 0000 0000 05e6 0000 =0000
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 0168 %feb20efa 00000020 %1acc0000 379 0077 0169 0000 0000 01af 0000 hco=007c0
 0077 %feb1fa44 00000010 %1bfe0000 349 0075 0168 0000 0000 0077 0000 hco=007a7
 0075 %feb1fa18 00000010 %1bff0000 349 0005 0077 0000 0000 0075 0000 hco=007b8
 0005 %feb1f078 00011a20 %04000000 007 0508 0075 0000 0000 fff0 0000 max=%1fff0000
 0508 %feb25eba 00000010 %15a20000 369 0437 0005 0000 0000 05df 0000 hco=008a8
 0437 %feb24cc4 00000010 %15a40000 369 0438 0508 0000 0000 050d 0000 hco=00248

>>> There are two types of regular arena record that appear in the
>>> Shared arena. These are distinguished by the right-hand column:
>>> hco=nnnnn
>>> =0000
>>> The first type is global shared data. The hco is the context record
>>> handle, which will be discussed later.
>>> The second type represents instance data. Both of these will be
>>> looked at in more detail in the next section.

>>> Finally we look at the system arena. The sentinel for the system
>>> arena is har=4. Once again each regular arena record is linked
>>> in a circular double-linked list.

# .ma 4
 har par cpg va flg next prev link hash hob hal
 0004 %feb1f062 00000000 %60000000 003 0504 0016 0000 0000 ffc0 0000 max=%fffc0000
# .mal 504
 har par cpg va flg next prev link hash hob hal
 0504 %feb25e62 00000010 %79eb7000 121 03d2 0004 0000 0081 05e1 0000 =0000
 03d2 %feb24416 00000010 %79ec7000 121 0363 0504 0000 0080 049e 0000 =0000
 0363 %feb23a8c 00000010 %79ed7000 121 0374 03d2 0000 007f 0434 0000 =0000
 0374 %feb23c02 00000010 %79ee7000 121 02e4 0363 0000 0095 0422 0000 =0000
 02e4 %feb22fa2 00000010 %79ef7000 121 02db 0374 0000 00df 0382 0000 =0000
 02db %feb22edc 00000010 %79f07000 121 02cc 02e4 0000 007c 036e 0000 =0000
 02cc %feb22d92 00000010 %79f17000 121 0405 02db 0000 007b 0350 0000 =0000

 .
 .
 .
 .

 0012 %feb1f196 00000016 %ffefe000 001 0013 0011 0000 0000 0013 0000 =0000
 0013 %feb1f1ac 00000010 %fff14000 009 0014 0012 0000 0000 0014 0000 sel=0150
 0014 %feb1f1c2 0000000a %fff24000 009 0015 0013 0000 0000 0015 0000 sel=0158
 0015 %feb1f1d8 00000010 %fff2e000 009 0016 0014 0000 0000 0016 0000 sel=0160
 0016 %feb1f1ee 00000082 %fff3e000 001 0004 0015 0000 0000 0017 0000 =0000
 0004 %feb1f062 00000000 %60000000 003 0504 0016 0000 0000 ffc0 0000 max=%fffc0000
 0504 %feb25e62 00000010 %79eb7000 121 03d2 0004 0000 0081 05e1 0000 =0000
 03d2 %feb24416 00000010 %79ec7000 121 0363 0504 0000 0080 049e 0000 =0000

>>> Two types of regular record appear, distinguished by the right-hand
>>> column:
>>> =0000
>>> sel=nnnn
>>> The first of these indicates heap data. The second GDT selector
>>> assigned data. Device driver and IFS code and data objects will
>>> appear among these.
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Exploring Object Records: We now explore the memory object record (VMOB)
and the .MO command.

>>> There are two types of object managed by object records:
>>> pseudo-objects
>>> non-pseudo-object

>>> Non-pseudo-objects have an associated arena record. These are by
>>> far the most common type of memory object. They include code and
>>> data segments of application and system code. However, there is
>>> a draw-back in that arena records deal with page size quantities.
>>> For certain system control blocks it is useful to have distinct
>>> objects associated with each instance of them. But these objects
>>> are generally very much smaller than a page. To overcome these
>>> difficulties such objects are sub-allocated from the system
>>> heap and given an object type of pseudo-object. They have
>>> no associated arena record.

>>> We list a few pseudo-objects. Note the ′ p′  parameter of .mo to
>>> do this.

# .mop
hob va flgs own hmte sown,cnt lt st xf
0004 %fff13238 8000 ffe1 0000 0000 00 00 00 00 vmah
0005 %fff13190 8000 ffe1 0000 0000 00 00 00 00 vmah
0006 %fff0a891 8000 ffa6 0000 0000 00 00 00 00 mte doscalls.dll
0072 %ffe3c7d4 8000 ffcb 0000 0000 00 00 00 00 ptda 0001 *sysinit
007a %fff0b3fa 8000 ffa6 0000 0000 00 00 00 00 mte mvdm.dll
007b %fff0b26b 8000 ffa6 0000 0000 00 00 00 00 mte fshelper.dll
007d %fe720f60 8000 ffa6 0000 0000 00 00 00 00 mte a:mini_fsd.fsd
0086 %fe861ee0 8000 ffa6 0000 0000 00 00 00 00 mte c:pmdd.sys
0087 %fe861f30 8000 ffa6 0000 0000 00 00 00 00 mte c:dos.sys
0088 %fe861f58 8000 ffa6 0000 0000 00 00 00 00 mte c:testcfg.sys
008a %fe860f9c 8000 ffa6 0000 0000 00 00 00 00 mte c:pmshapim.dll
0091 %7b9c484c 8000 ffcb ff79 0000 00 00 00 00 ptda 0003 c:pmshell.exe
0096 %fe721fb8 8000 ffa6 0000 0000 00 00 00 00 mte c:clock01.sys
0097 %fe721f1c 8000 ffa6 0000 0000 00 00 00 00 mte c:screen01.sys
0098 %fe721eb0 8000 ffa6 0000 0000 00 00 00 00 mte c:kbd01.sys
0099 %fe7246bc 8000 ffa6 0000 0000 00 00 00 00 mte c:print01.sys
009f %fe724f84 8000 ffa6 0000 0000 00 00 00 00 mte c:ibm1flpy.add
00a1 %fe725f88 8000 ffa6 0000 0000 00 00 00 00 mte c:ibm1s506.add

#

>>> Pseudo-objects apply to four types of control block but in general
>>> we will only be concerned with the PTDA and the MTE.
>>> The pseudo-object record is distinguished by the presence of the
>>> ′ va′  field. The control block name is shown in column 11.
>>> | |
>>> ....... |
>>> | |
>>> V V
# .mo 91
hob va flgs own hmte sown,cnt lt st xf
0091 %7b9c484c 8000 ffcb ff79 0000 00 00 00 00 ptda 0003 c:pmshell.exe
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>>> The ′ va′  field gives the address of the object itself. In this
>>> it′ s a PTDA address. We can find the thread slots which correspond
>>> to this PTDA either by using .P and looking for a match in the
>>> pPTDA field or directly:

# dw %7b9c484c+Pid-ptda_start l1
%7b9c5042 0003
>>> This is the Pid. Note .mo 91 extracts this for us - the Pid appears
>>> after ′ ptda′

# dd %7b9c484c+ptda_pTCBHead-ptda_start l1
%7b9c486c 7b9a8a70
>>> This is the head of the TCB tree for Pid 3.

# dw 7b9a8a70 l2
%7b9a8a70 0001 0008
>>> Words 0 and 1 of the TCB contain the thread ordinal and its slot
>>> number. This is Tid 1 in slot 8.

# .p8
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 0008 0003 0001 0003 0001 rdy 061f 7b7b6000 7b9c484c 7b9a8a70 1eb8 01 PMSHL32

>>> The PTDA for slot 8 has Pid 3, is at %7b9c484c which is hob 91.
>>> The handle of the PTDA (hptda) is defined to be the hob of the
>>> object it occupies. Thus this ptda is also identified by hptda=91

>>> The other most frequently encountered pseudo-object is the mte.

hob va flgs own hmte sown,cnt lt st xf
0193 %fe722dec 8000 ffa6 0000 0000 00 00 00 00 mte c:pmshell.exe

>>> The MTE represents a loaded module. In this case the MTE control
>>> block is located at %fe722dec and is assigned the mte handle of its
>>> hob. In this case the MTE at %fe722dec is also referred to as
>>> hmte=193. The .LM command will respond to either hmte or MTE address
>>> and format the MTE for us ...
# .lm 193
hmte=0193 pmte=%fe722dec mflags=84903150 c:\os2\pmshell.exe

>>> .MO extracts the module name from the MTE and displays this to the
>>> right of ′ mte′

>>> In each object record is the ′ own′  and ′ hmte′  fields. These are used
>>> to attribute ownership and associate a module or part of the system
>>> that was involved with the allocation request. In many cases
>>> these fields contain hobs of related objects. In some cases
>>> attribution needs to be made to a system resource. For this a
>>> number of generic system object Ids have been defined. They all
>>> are greater then 0xff00. .MO will translate system object Ids into
>>> a more meaningful text string. For example: in hob 193 the
>>> owner id ffa6
# .mo ffa6
ffa6 ldrmte

>>> Similarly in hob 91 the owner is ffcb
# .mo ffcb
ffcb ptda
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>>> Both of these give an indication of the type of system object.
>>> In the first case a load MTE, in the second a PTDA. The ′ own′  and
>>> ′ hmte′  interpretation is used to form the description that appears
>>> to the right of each .MO line.

>>> We now turn our attention to non-pseudo objects or normal
>>> memory objects:

.mon
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 0001 0001 fec8 0000 fff1 0000 0000 00 00 00 00 vmob
 0002 0002 fec8 0000 ffe3 0000 0000 00 00 00 00 vmar
 0003 0003 fec8 0000 ffec 0000 0000 00 01 00 00 vmkrhrw
 0007 0006 0000 0000 ff6d 0000 0000 00 00 00 00 doshlp
 0008 0007 0000 0000 ffaa 0006 0000 00 00 00 00 os2krnl
 0009 0008 0000 0000 ffaa 0006 0000 00 00 00 00 os2krnl
 000a 0009 0000 0000 ffaa 0006 0000 00 00 00 00 os2krnl
 000b 000a 0000 0000 ffaa 0006 0000 00 00 00 00 os2krnl
 000c 000b 0000 0000 ffaa 0006 0000 00 00 00 00 os2krnl
 000d 000c 0000 0325 ffba 0000 0000 00 00 00 00 lock
 000e 000d 0000 0000 ffaa 0006 0000 00 00 00 00 os2krnl
 000f 000e 0000 0000 ffaa 0006 0000 00 00 00 00 os2krnl
 0010 0087 0000 402c 0091 019f 0000 00 00 00 00 priv 0003 c:pmshell.exe
 0011 0010 0000 0000 ffaa 0006 0000 00 00 00 00 os2krnl
 0012 0011 0000 0000 ffaa 0006 0000 00 00 00 00 os2krnl
 0013 0012 0000 0000 ffaa 0006 0000 00 00 00 00 os2krnl
 .
 .
 .
 .
 .
 009d 0096 0000 0225 ff8c 0000 0000 00 00 00 00 perfview
 009e 0097 0000 0524 ff88 ff54 0000 00 00 00 00 ptogdt dd5
 00a0 0098 0000 0524 ff88 ff56 0000 00 00 00 00 ptogdt dd7
 00a3 0099 0000 0524 ff88 ff56 0000 00 00 00 00 ptogdt dd7
 00a4 009a 0000 0524 ff88 ff56 0000 00 00 00 00 ptogdt dd7
 00a5 009b 0000 0524 ff88 ff56 0000 00 00 00 00 ptogdt dd7
 00a6 009c 0000 0524 ff88 ff56 0000 00 00 00 00 ptogdt dd7
 .
 .
 .

 00e1 00d5 0000 0324 ff93 0000 0000 00 00 00 00 fsbuf
 00e2 00d6 0000 482c fff7 019f 0000 00 00 00 04 giveget
 00e3 00d7 0000 0124 ff8f 0000 0000 00 00 00 00 resource
 00e4 01c8 0000 0824 0131 0131 0000 00 00 00 00 shared c:display.dll
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 00e6 00d9 0000 082c 00e5 00e5 0000 00 00 00 00 shared c:doscall1.dll
 00e7 00da 0000 0838 00e5 00e5 0000 00 00 00 00 shared c:doscall1.dll
 00e8 00db 0000 0838 00e5 00e5 0000 00 00 00 00 shared c:doscall1.dll
 00e9 00dc 0000 0838 00e5 00e5 0000 00 00 00 00 shared c:doscall1.dll
 00ea 00dd 0000 0838 00e5 00e5 0000 00 00 00 00 shared c:doscall1.dll
 00eb 00de 0000 0830 00e5 00e5 0000 00 00 00 00 shared c:doscall1.dll
 00ec 00f1 0000 422c 0091 01b0 0000 00 00 00 00 priv 0003 c:pmshell.exe
 00ed 010d 0000 402c 0091 01b0 0000 00 00 00 00 priv 0003 c:pmshell.exe
 00ee 00e1 0000 082c 00f1 00f1 0000 00 00 00 00 shared c:os2char.dll
 00f2 01c9 0000 0824 0131 0131 0000 00 00 00 00 shared c:display.dll
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 00f3 00e3 0000 0838 00f1 00f1 0000 00 00 00 00 shared c:os2char.dll
 00f4 00e4 0000 482c fff7 00f1 0000 00 00 00 00 giveget
 00f6 00e5 0000 082c 00fb 00fb 0000 00 00 00 00 shared c:sesmgr.dll
 00fc 00e6 0000 082c 00fb 00fb 0000 00 00 00 00 shared c:sesmgr.dll
 00fd 00e7 0000 0838 00fb 00fb 0000 00 00 00 00 shared c:sesmgr.dll
 00fe 00e8 0000 0838 00fb 00fb 0000 00 00 00 00 shared c:sesmgr.dll
 00ff 00e9 0000 082c 0100 0100 0000 00 00 00 00 shared c:quecalls.dll
 0101 00ea 0000 082c 0100 0100 0000 00 00 00 00 shared c:quecalls.dll
 0102 00eb 0000 082c 0100 0100 0000 00 00 00 00 shared c:quecalls.dll
 0103 00ec 0000 0838 0100 0100 0000 00 00 00 00 shared c:quecalls.dll
 0104 00ed 0000 0838 0100 0100 0000 00 00 00 00 shared c:quecalls.dll
 0105 00ee 0000 0838 0100 0100 0000 00 00 00 00 shared c:quecalls.dll
 0106 01cd 0000 1024 0091 0131 0000 00 00 00 00 priv 0003 c:pmshell.exe
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 0107 00f0 0000 0124 ffc4 0000 0000 00 00 00 00 smdfh
 0108 010f 0000 4a2c fff5 01b0 0000 00 00 00 00 give
 0109 0085 0000 0524 ff88 ff5b 0000 00 00 00 00 ptogdt dd12
 010b 0084 0000 0524 ff88 ff5b 0000 00 00 00 00 ptogdt dd12
 010c 0083 0000 0524 ff88 ff5b 0000 00 00 00 00 ptogdt dd12
 010d 00f2 0000 0524 ff88 ff5b 0000 00 00 00 00 ptogdt dd12
 .
 .
 .

#

>>> Many of these objects have a system ID owners but those of current
>>> interest are objects allocated within the shared and private arenas
>>> by application programs.

>>> Private arena private data:
>>> --------------------------

>>> We start by examining hob 10 in more detail.

>>> We list the object and its associated arena record using the ′ c′
>>> parameter of .MO
# .moc 10

*har par cpg va flg next prev link hash hob hal
 0087 %feb1fba4 00000010 %00070000 169 01a0 019a 0000 0000 0010 0000 hptda=0091
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 0010 0087 0000 402c 0091 019f 0000 00 00 00 00 priv 0003 c:pmshell.exe

>>> We can tell from its location (%70000) that this is a private
>>> arena address in process hptda=91. The ′ own′  field of the object
>>> record is also hob 91 which again implies an object owned by the
>>> process.

# .mo 91
hob va flgs own hmte sown,cnt lt st xf
0091 %7b9c484c 8000 ffcb ff79 0000 00 00 00 00 ptda 0003 c:pmshell.exe

>>> This tells us the owner is a PTDA (that is, a process private arena)
>>> and the Pid is 3, which is executing PMSHELL.EXE
>>> Note: the Pid and executable have been extracted from hob 91 and
>>> displayed in the description area of hob 10.
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>>> Now look at the hmte for hob 10.

# .mo 19f
hob va flgs own hmte sown,cnt lt st xf
019f %fe8629e0 8000 ffa6 0000 0000 00 00 00 00 mte c:pmwin.dll

>>> This is the MTE for pmwin.dll.

>>> The ′ own′  and ′ hmte′  of hob 10 tell us that hob 10 was allocated in
>>> the private arena of process Pid 3 by pmwin.dll as a result of a
>>> direct or indirect call to pmwin from pmshell.

>>> The flags in hob 10 can give us more information on the
>>> characteristics of hob 10
>>> 4 0 2 c

0100 0000 0010 1100
′ ′ ′ ′
′ ′ ′ ′ .  writeable
′ ′ ′ . . . user storage
′ ′ . . . . . . executable
′ . . . . . . . . . . . . . . . . . API located

>>> The combination writeable + executable should be interpreted as
>>> R/W storage rather than executable storage. Looking at the page
>>> table entry for %7000 in slot 8 (Pid 3) will confirm this:
# .s8
Current slot number: 0008
# .p8
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 0008 0003 0001 0003 0001 rdy 061f 7b7b6000 7b9c484c 7b9a8a70 1eb8 01 PMSHL32
# dp %70000
linaddr frame pteframe state res Dc Au CD WT Us rW Pn state
%00070000* 012f3 frame=0120d 0 0 D A U W P pageable
%00070000 0120d frame=0120d 0 0 D A U W P pageable
#
>>> Private arena shared data:
>>> -------------------------

# .moc 192
*har par cpg va flg next prev link hash hob hal
 0249 %feb22250 00000010 %00010000 1c9 024a 0247 014e 0000 0192 0000 hptda=02a6
 014e %feb20cbe 00000010 %00010000 1d9 014f 008e 0000 0000 0192 0000 hptda=0091
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 0192 0249 0000 0838 0193 0193 0000 00 00 00 00 shared c:pmshell.exe

>>> Object 192 has two private arena records pointing to it. One
>>> associated with hptda=2a6 and the other with hptda=91. We established
>>> earlier that hptda=91 is Pid 3 and was running pmshell.exe

#.mo 2a6
hob va flgs own hmte sown,cnt lt st xf
02a6 %7b9c60d0 8000 ffcb 0000 0000 00 00 00 00 ptda 0006 c:pmshell.exe

>>> So hptda=2a6 refers to Pid 6, which is also running pmshell.exe
>>> Note the use of the ′ link′  field in har=249 to point to har=14e. The two
>>> arena records are chained in this way to link all arena records that
>>> share a private data object. The object record points to the head of
>>> the chain.
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>>> The ′ own′  and ′ hmte′  fields both point to object 193. This tells us
>>> that object 192 is not only allocated by the module whose
>>> hmte is 193, but is also part of this load module.
>>> This may be verified as follows:

#.mo 193
hob va flgs own hmte sown,cnt lt st xf
0193 %fe722dec 8000 ffa6 0000 0000 00 00 00 00 mte c:pmshell.exe

# .lmo 193
hmte=0193 pmte=%fe722dec mflags=84903150 c:\os2\pmshell.exe
obj vsize vbase flags ipagemap cpagemap hob sel
0001 00000600 00010000 80002025 00000001 00000001 0192 000f r-x shr big
0002 0000005c 00020000 80002003 00000002 00000001 0000 0017 rw- big
0003 0000fa20 00030000 80002003 00000003 00000001 0000 001f rw- big

>>> We actually discover this is object 1 of the pmshell.exe load
>>> module.

>>> Examining the flags from hob 192 we see:
>>> 0 8 3 8
>>> 0000 1000 0011 1000
>>> ′  ′ ′ ′
>>> ′  ′ ′ ′ . . . . User storage
>>> ′  ′ ′ . . . . . . Readable
>>> ′  ′ . . . . . . . Executable
>>> ′ . . . . . . . . . . . . . . Shared
>>>
>>> This is information summarized in the description field of hob 192.

>>> Finally we take a look at the page table entries for %10000 in Pid 3
>>> and 6. We should see the same real storage frame being accessed by
>>> both processes:
# .s8
Current slot number: 0008
# .p8
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 0008 0003 0001 0003 0001 rdy 061f 7b7b6000 7b9c484c 7b9a8a70 1eb8 01 PMSHL32
# dp %10000
linaddr frame pteframe state res Dc Au CD WT Us rW Pn state
%00010000* 012f3 frame=011cb 0 0 c A U r P pageable
%00010000 011cb frame=011cb 0 0 c A U r P pageable
# .s 1f
Current slot number: 001f
# .p 1f
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 001f# 0006 0003 0006 0001 rdy 062f 7b7e4000 7b9c60d0 7b9ab1f8 1eb8 11 PMSHL32
# dp %10000
linaddr frame pteframe state res Dc Au CD WT Us rW Pn state
%00010000* 0093d frame=011cb 0 0 c A U r P pageable
%00010000 011cb frame=011cb 0 0 c A U r P pageable
#

>>> In both processes %00010000 translates to %%011cb000

>>> Shared Arena, Global Data:
>>> -------------------------
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# .moc e6

*har par cpg va flg next prev link hash hob hal
 00d9 %feb202b0 00000010 %1a060000 379 00d8 00da 0000 0000 00e6 0000 hco=0075d
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 00e6 00d9 0000 082c 00e5 00e5 0000 00 00 00 00 shared c:doscall1.dll
 hco=075d pco=fe6804ec hconext=0084c hptda=050c f=16 pid=0019 e:ipfc.exe
 hco=084c pco=fe680997 hconext=006de hptda=04c6 f=16 pid=0018 c:epm.exe
 hco=06de pco=fe680271 hconext=00660 hptda=049c f=16 pid=0013 d:ibmavsd.exe
 hco=0660 pco=fe67fffb hconext=00497 hptda=0410 f=16 pid=0012 c:pmdraw.exe
 hco=0497 pco=fe67f70e hconext=0036b hptda=0420 f=16 pid=0010 c:cmd.exe
 hco=036b pco=fe67f132 hconext=00327 hptda=0380 f=16 pid=000d c:pulse.exe
 hco=0327 pco=fe67efde hconext=001a0 hptda=036c f=16 pid=000c c:dinfo.exe
 hco=01a0 pco=fe67e83b hconext=002c6 hptda=034e f=16 pid=000b c:mrfile32.exe
 hco=02c6 pco=fe67edf9 hconext=0014c hptda=0317 f=16 pid=000a c:pmdiary.exe
 hco=014c pco=fe67e697 hconext=000a2 hptda=02a6 f=16 pid=0006 c:pmshell.exe
 hco=00a2 pco=fe67e345 hconext=00033 hptda=0205 f=16 pid=0004 c:harderr.exe
 hco=0033 pco=fe67e11a hconext=00029 hptda=0091 f=16 pid=0003 c:pmshell.exe
 hco=0029 pco=fe67e0e8 hconext=00000 hptda=0169 f=16 pid=0002 c:logdaem.exe

>>> We can tell immediately that this is shared arena global data from the
>>> presence of hco= in the arena record. The hco is the handle to the
>>> context record. These record the hptda of the process that is accessing
>>> shared global data. Each of the VMCOs, that′ s sharing the same object
>>> is chained in a single linked list from the arena record.
>>> The description to the right of each VMCO is derived from the hptda object.

>>> Note: the .MC will format a VMCO. Under the Dump Formatter the VMCO chain is
>>> not run to completion so we must run the chain manually by using
>>> hconext= field as the VMCO chain pointer.

>>> The ′ own′  and ′ hmte′  fields being equal indicate that the object is
>>> part of DOSCALL1.DLL. We can check out which object in DOSCALL1 using
>>> .lmo

#.lmo e5
hmte=00e5 pmte=%fe72dfac mflags=8498b594 c:\os2\dll\doscall1.dll
obj vsize vbase flags ipagemap cpagemap hob sel
0001 00001354 1a010000 80009025 00000001 00000002 00eb d00e r-x shr alias iopl
0002 0000ced0 1a020000 80002025 00000003 0000000d 00ea d017 r-x shr big
0003 00001928 1a030000 80001025 00000010 00000002 00e9 d01f r-x shr alias
0004 000002ce 1a040000 80001025 00000012 00000001 00e8 d027 r-x shr alias
0005 000054f8 1a050000 8000d025 00000013 00000006 00e7 d02e r-x shr alias conf iopl
0006 00000280 1a060000 80001023 00000019 00000001 00e6 d037 rw- shr alias
0007 00001b40 1a070000 80001003 0000001a 00000002 0000 d03f rw- alias

>>> hob e6 is load module object 6 of doscall1.dll. Furthermore it is a
>>> read/write object. We can illustrate this by looking at the page table
>>> entries for two of the processes that are accessing hob e6.

# .s8
Current slot number: 0008
# .p8 Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 0008# 0003 0001 0003 0001 rdy 061f 7b7b6000 7b9c484c 7b9a8a70 1eb8 01 PMSHL32
# dp %1a060000
linaddr frame pteframe state res Dc Au CD WT Us rW Pn state
%1a060000* 012fe frame=00e1e 0 0 D u U W P pageable
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%1a060000 00e1e frame=00e1e 0 0 D u U W P pageable
# .s1f
Current slot number: 001f
# .p1f
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 001f# 0006 0003 0006 0001 rdy 062f 7b7e4000 7b9c60d0 7b9ab1f8 1eb8 11 PMSHL32
# dp %1a060000
linaddr frame pteframe state res Dc Au CD WT Us rW Pn state
%1a060000* 0093e frame=00e1e 0 0 c A U W P pageable
%1a060000 00e1e frame=00e1e 0 0 c A U W P pageable
#
>>> As expected the same page frame (00e1e) is being referenced.

>>> Note also: frame e1e of slot 8 is dirty (Dc=D) and unaccessed (Au=u)
>>> while in slot 1f it is clean and accessed. This tends to suggest
>>> that frame e1e and therefore page %1a060000 was most recently
>>> updated by slot 8 and read by slot 1f before the update took place.

>>> Shared Arena, Instance Data:
>>> ---------------------------

#.moc 5ef
*har par cpg va flg next prev link hash hob hal
 01c6 %feb2170e 00000010 %1a890000 139 01c5 01c7 0000 0000 05ef 0000 =0000
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 05ef 01c6 04e8 0024 050c 0131 0000 00 00 00 00 priv 0019 e:ipfc.exe
 04e8 01c6 02ec 0024 04c6 0131 0000 00 00 00 00 priv 0018 c:epm.exe
 02ec 01c6 0457 0024 049c 0131 0000 00 00 00 00 priv 0013 d:ibmavsd.exe
 0457 01c6 0432 0024 0410 0131 0000 00 00 00 00 priv 0012 c:pmdraw.exe
 0432 01c6 03d6 0024 0420 0131 0000 00 00 00 00 priv 0010 c:cmd.exe
 03d6 01c6 0390 0024 0380 0131 0000 00 00 00 00 priv 000d c:pulse.exe
 0390 01c6 03c8 0024 036c 0131 0000 00 00 00 00 priv 000c c:dinfo.exe
 03c8 01c6 03a7 0024 034e 0131 0000 00 00 00 00 priv 000b c:mrfile32.exe
 03a7 01c6 02c7 0024 0317 0131 0000 00 00 00 00 priv 000a c:pmdiary.exe
 02c7 01c6 0112 0024 02a6 0131 0000 00 00 00 00 priv 0006 c:pmshell.exe
 0112 01c6 0000 0024 0091 0131 0000 00 00 00 00 priv 0003 c:pmshell.exe

>>> Object 5ef is an example of shared arena instance data. Each instance
>>> of the object has its own object record (VMOB), but they all share the
>>> same arena record. Each of these VMOBs is chained from the ′ hob′
>>> field of the arena record via their ′ hobnxt′  field.
>>> The VMOBs appear as private arena objects, but the arena record
>>> does not point to a specific hptda, which distinguishes this case as
>>> shared instance data.

>>> As would be expected with shared instance data the owners would differ
>>> for each instance object. They are in-fact the hptda′ s for each owner.
>>> The hmte′ s we would expect to be common to all the VMOBs.

#.mo 131
hob va flgs own hmte sown,cnt lt st xf
0131 %fe860978 8000 ffa6 0127 0000 00 00 00 00 mte c:display.dll

>>> So, %1a890000 has been allocated by display.dll

>>> Again we can illustrate that we are really looking at instance data by
>>> examining the page tables of two examples:
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.s8
Current slot number: 0008
# .p8
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 0008# 0003 0001 0003 0001 rdy 061f 7b7b6000 7b9c484c 7b9a8a70 1eb8 01 PMSHL32
# dp %1a890000
linaddr frame pteframe state res Dc Au CD WT Us rW Pn state
%1a890000* 01291 frame=01066 0 0 D u s W P pageable
%1a890000 01066 frame=01066 0 0 D u s W P pageable
# .s1f
Current slot number: 001f
# .p1f
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 001f# 0006 0003 0006 0001 rdy 062f 7b7e4000 7b9c60d0 7b9ab1f8 1eb8 11 PMSHL32
# dp %1a890000
linaddr frame pteframe state res Dc Au CD WT Us rW Pn state
%1a890000* 0093c frame=008e4 0 0 D u s W P pageable
%1a890000 008e4 frame=008e4 0 0 D u s W P pageable
#
>>> In Pid 3, %1a890000 translates to physical address %01066000, but
>>> in Pid 6, %1a890000 translates to physical address %008e4000.

Finding Who Owns Memory: Having examined various types of arena, object
and context record we now turn our attention to a more commonly asked
question: ″Who owns a particular location of memory?″. To answer this we need
to explore the match parameter of the .MA command.

The .MAM command search for arena records that encompass a given address:

# .mam %123456
 har par cpg va flg next prev link hash hob hal
 008c %feb1fc12 00000080 %00110000 169 00f1 0073 0000 0000 008f 0000 hptda=0091
 023b %feb2211c 00001000 %000c0000 1e9 0238 0266 0000 0000 029f 0000 hptda=02a6
 02fc %feb231b2 00000010 %00120000 169 02fd 02a2 0000 0000 0318 0000 hptda=036c
 0306 %feb2328e 00000010 %00120000 169 0309 0321 0000 0000 03ba 0000 hptda=0380
 0312 %feb23396 00000010 %00120000 169 0313 0311 0000 0000 03cd 0000 hptda=034e
 032f %feb23614 00000080 %00110000 169 034b 02fa 0000 0000 03e4 0000 hptda=0317
 0393 %feb23eac 00000010 %00120000 169 0394 038d 0000 0000 0452 0000 hptda=0410
 0412 %feb24996 00000010 %00120000 169 0414 0411 0000 0000 04ef 0000 hptda=04c6
 0517 %feb26004 00000010 %00120000 169 0519 0516 0000 0000 05f7 0000 hptda=050c

>>> Dump Formatter hard-wires the ′ A′  parameter so .mam=/.mama (or .maam)
>>> Kernel Debugger needs ′ A′  explicitly if all contexts are to be searched.
>>> This only affects results from searching private arena addresses.

>>> We can also add the ′ C′  parameter to chain through the related VMOBs
>>> and VMCOs at the same time.

# .mamc %123456

*har par cpg va flg next prev link hash hob hal
 008c %feb1fc12 00000080 %00110000 169 00f1 0073 0000 0000 008f 0000 hptda=0091
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 008f 008c 0000 422c 0091 01c0 0000 00 00 00 00 priv 0003 c:pmshell.exe
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*har par cpg va flg next prev link hash hob hal
 023b %feb2211c 00001000 %000c0000 1e9 0238 0266 0000 0000 029f 0000 hptda=02a6
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 029f 023b 0000 423c 02a6 01d7 0000 00 00 00 00 priv 0006 c:pmshell.exe

*har par cpg va flg next prev link hash hob hal
 02fc %feb231b2 00000010 %00120000 169 02fd 02a2 0000 0000 0318 0000 hptda=036c
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 0318 02fc 0000 422c 036c 0371 0000 00 00 00 00 priv 000c c:dinfo.exe

*har par cpg va flg next prev link hash hob hal
 0306 %feb2328e 00000010 %00120000 169 0309 0321 0000 0000 03ba 0000 hptda=0380
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 03ba 0306 0000 422c 0380 035c 0000 00 00 00 00 priv 000d c:pulse.exe

*har par cpg va flg next prev link hash hob hal
 0312 %feb23396 00000010 %00120000 169 0313 0311 0000 0000 03cd 0000 hptda=034e
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 03cd 0312 0000 422c 034e 0354 0000 00 00 00 00 priv 000b c:mrfile32.exe

*har par cpg va flg next prev link hash hob hal
 032f %feb23614 00000080 %00110000 169 034b 02fa 0000 0000 03e4 0000 hptda=0317
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 03e4 032f 0000 422c 0317 01c0 0000 00 00 00 00 priv 000a c:pmdiary.exe

*har par cpg va flg next prev link hash hob hal
 0393 %feb23eac 00000010 %00120000 169 0394 038d 0000 0000 0452 0000 hptda=0410
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 0452 0393 0000 402c 0410 ff3e 0000 00 00 00 00 priv 0012 c:pmdraw.exe

*har par cpg va flg next prev link hash hob hal
 0412 %feb24996 00000010 %00120000 169 0414 0411 0000 0000 04ef 0000 hptda=04c6
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 04ef 0412 0000 422c 04c6 04f3 0000 00 00 00 00 priv 0018 c:epm.exe

*har par cpg va flg next prev link hash hob hal
 0517 %feb26004 00000010 %00120000 169 0519 0516 0000 0000 05f7 0000 hptda=050c
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 05f7 0517 0000 422c 050c 05de 0000 00 00 00 00 priv 0019 e:ipfc.exe

>>> .MAMC is such a frequently used command that it is made the default
>>> specification for .M
>>> Further more, .M will take the default CS:EIP as the match
>>> address if no address is given.

>>> Suppose we wish to find out what code is being currently executed in
>>> in slot 39...

# .s 39
Current slot number: 0039
# .p #
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 0039 0019 0010 0019 0001 rdy 061f 7b818000 7b9ca230 7b9adea8 1f0c 12 IPFC
# .r
eax=00000000 ebx=00307d90 ecx=00320000 edx=00000000 esi=00001000 edi=00001000
eip=1a022240 esp=0004d098 ebp=0004d0b4 iopl=2 -- -- -- nv up ei pl nz na pe nc
cs=005b ss=0053 ds=0053 es=0053 fs=150b gs=0000 cr2=00000000 cr3=001d6000
005b:1a022240 83c418 add esp,+18
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# ln
No Symbols Found
# .m

*har par cpg va flg next prev link hash hob hal
 00dd %feb20308 00000010 %1a020000 3d9 00dc 00de 0000 0000 00ea 0000 hco=007ba
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 00ea 00dd 0000 0838 00e5 00e5 0000 00 00 00 00 shared c:doscall1.dll
 hco=07ba pco=fe6806bd hconext=00822 hptda=050c f=1c pid=0019 e:ipfc.exe

>>> The current cs:eip for slot 39 is executing in doscall1.dll and
>>> has been called either directly or indirectly by ipfc.exe

Finally in this section we answer, ″What is the hptda given the PTDA address?″

This required the use of the match parameter with .MO.

.MOM is more restrictive and .MAM. It will only return a result if the supplied
address is a precise match for the beginning of a pseudo-object. Since the
PTDA is a pseudo-object we can use its address with .MOM:

# .p 2a
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 002a 0006 0003 0006 000c blk 021f 7b7fa000 7b9c60d0 7b9ac4e0 1eac 11 PMSHL32
# .mom %7b9c60d0
hob va flgs own hmte sown,cnt lt st xf
02a6 %7b9c60d0 8000 ffcb 0000 0000 00 00 00 00 ptda 0006 c:pmshell.exe

>>> The hptda for Pid 6 is therefore 2a6.

14.1.2.2 How to Correlate Named Memory with its Address
Here ′s how to locate named shared memory, answer who′s sharing it and
whether a particular address in the shared arena is named.

Named memory is managed using a RMP (Record Management Package). This
is a generalized kernel facility for managing global data of variable length. The
RMP facility provides allocation, deletion, add and find services. Each RMP user
references his RMP structure using a handle. The RMP itself is limited to a
maximum of 64K.

>>> First locate the handle of named shared memory′ s RMP:

##dw sharermpstruc l2
0400:00004506 0004 0178

|| |
|| ....... Selector for RMP segment
.......... Flags xxxxxxxx
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.......1 = Segment busy

......1. = Somebody′ s waiting

.....1.. = Segment allocated

>>> The RMP handle is used as the BlockID (by ProcBlock) for serializing
>>> RMP manipulations.
>>>
>>> Now display the named memory RMP segment:
##db 178:0
0178:00000000 00 06 a2 03 5e 02 5e 02-03 00 00 00 00 00 00 00 ..″ .^.^.........
0178:00000010 83 ff 00 00 11 00 00 00-9b 06 01 00 44 4f 53 5c ............DOS\
0178:00000020 43 44 49 42 00 13 00 88-01 47 bd 04 00 50 4d 44 CDIB.....G=..PMD
0178:00000030 52 41 47 2e 4d 45 4d 00-08 00 9f 00 88 01 01 00 RAG.MEM.........
0178:00000040 14 00 91 01 d7 bc 02 00-53 4d 47 5c 53 47 54 49 ....W<..SMG\SGTI
0178:00000050 54 4c 45 00 08 00 9f 00-91 01 01 00 12 00 93 01 TLE.............
0178:00000060 b7 bc 02 00 42 56 53 5c-42 56 53 30 30 00 08 00 7<..BVS\BVS00...
0178:00000070 9f 00 93 01 01 00 12 00-a8 01 8f bc 01 00 42 56 ........(..<..BV
##d
0178:00000080 53 5c 42 56 53 30 31 00-08 00 9f 00 a8 01 01 00 S\BVS01.....(...
0178:00000090 12 00 ab 01 67 bc 01 00-42 56 53 5c 42 56 53 30 ..+.g<..BVS\BVS0
0178:000000a0 33 00 08 00 9f 00 ab 01-01 00 18 00 c4 01 3f bc 3.....+.....D.?<
0178:000000b0 02 00 53 4d 47 5c 50 4d-48 44 45 52 52 2e 44 41 ..SMG\PMHDERR.DA
0178:000000c0 54 00 08 00 af 01 c4 01-01 00 08 00 af 01 91 01 T.../.D...../...
0178:000000d0 01 00 08 00 af 01 93 01-01 00 08 00 9f 00 c4 01 ..../.........D.
0178:000000e0 01 00 12 00 43 02 2f a0-02 00 42 56 53 5c 42 56 ....C./ ..BVS\BV
0178:000000f0 53 31 30 00 08 00 9f 00-43 02 01 00 08 00 4c 02 S10.....C.....L.
##d
0178:00000100 43 02 01 00 08 00 58 02-88 01 01 00 17 00 9c 02 C.....X.........
0178:00000110 cf 9f 01 00 50 4d 57 50-5c 43 4c 41 53 53 2e 54 O...PMWP\CLASS.T
0178:00000120 42 4c 00 08 00 58 02 9c-02 01 00 08 00 fa 02 88 BL...X.......z..
0178:00000130 01 01 00 18 00 13 04 e7-9e 01 00 45 50 4d 5c 45 .......g...EPM\E
0178:00000140 54 4b 45 36 30 30 2e 45-50 4d 00 08 00 fa 02 13 TKE600.EPM...z..
0178:00000150 04 01 00 10 00 15 04 ff-9d 01 00 45 50 4d 47 4e ...........EPMGN
0178:00000160 4c 53 00 08 00 fa 02 15-04 01 00 18 00 03 04 e7 LS...z.........g
0178:00000170 9d 01 00 31 35 35 30 32-33 33 33 5c 45 50 4d 2e ...15502333\EPM.
##d
0178:00000180 45 58 00 08 00 fa 02 03-04 01 00 08 00 56 03 88 EX...z.......V..
0178:00000190 01 01 00 1b 00 f6 02 bf-9d 01 00 31 35 33 39 34 .....v.?...15394
0178:000001a0 39 31 34 5c 45 33 45 4d-55 4c 2e 45 58 00 08 00 914\E3EMUL.EX...
0178:000001b0 fa 02 f6 02 01 00 12 00-90 03 8f 9d 03 00 42 56 z.v...........BV
0178:000001c0 53 5c 42 56 53 31 34 00-08 00 9f 00 90 03 01 00 S\BVS14.........
0178:000001d0 08 00 32 04 90 03 01 00-12 00 43 04 6f 9d 03 00 ..2.......C.o...
0178:000001e0 42 56 53 5c 42 56 53 31-35 00 08 00 9f 00 43 04 BVS\BVS15.....C.
0178:000001f0 01 00 08 00 48 04 43 04-01 00 08 00 57 04 90 03 ....H.C.....W...
##d
0178:00000200 01 00 08 00 62 04 43 04-01 00 12 00 87 04 4f 9d ....b.C.......O.
0178:00000210 03 00 42 56 53 5c 42 56-53 31 36 00 08 00 9f 00 ..BVS\BVS16.....
0178:00000220 87 04 01 00 08 00 8b 04-87 04 01 00 08 00 99 04 ................
0178:00000230 87 04 01 00 12 00 0a 03-ef 9c 03 00 42 56 53 5c ........o...BVS\
0178:00000240 42 56 53 31 38 00 08 00-9f 00 0a 03 01 00 08 00 BVS18...........
0178:00000250 d6 04 0a 03 01 00 08 00-bb 04 0a 03 01 00 a2 83 V.......;.....″ .
0178:00000260 00 00 5e 02 00 00 9a 83-00 00 66 02 00 00 00 00 ..^.......f.....
0178:00000270 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ................

>>> The first 20 bytes form the RMP header, the remainder is a series of
>>> variable length records.
>>> Examining the header first we have:
>>> +00 00 06 = total size of segment (0600)
>>> +02 a2 03 = amount of free space (03a2)
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>>> +04 5e 02 = link to first free block (025e)
>>> +06 5e 02 = start of last free block (025e)
>>> +08 03 00 00 00 = heap handle (0003 is kernel heap handle from which
>>> RMP is alloc′ d)
>>> +0c 00 00 00 00 = PG alloc/realloc flags
>>> +10 83 ff = hobowner (handle of user of this RMP is ff83)
>>> +12 00 00 = hobmte (hmte of user of this RMP. It′ s the kernel so 0000)

>>> Check out the owner of this RMP

##.mo ff83
ff83 mshrmp

>>> ′ mshrmp′  is named shared memory management

>>> Records follow the header. They are prefixed by a word length that includes
>>> 2 bytes for the length field itself. If the record is free then the high
>>> order bit of the length is set. The data within the record is private to
>>> the owner.

>>> The first record in this RMP is:

....... length 0011
|| ||

>>> 0178:00000010 .. .. .. .. 11 00 00 00-9b 06 01 00 44 4f 53 5c
>>> 0178:00000020 43 44 49 42 00 .. .. ..

>>> The second record in this RMP is:

>>> 0178:00000020 .. .. .. .. .. 13 00 88-01 47 bd 04 00 50 4d 44
>>> 0178:00000030 52 41 47 2e 4d 45 4d 00-.. .. .. .. .. .. .. ..

>>> Named shared memory management uses two forms of RMP record:
>>> Global - to keep the name, handle, selector and total reference count
>>> Local - One for each process sharing the named memory. Contains
>>> hptda, hob and ref count for within the given process.
>>>
>>> Breaking down record 2 we have:

>>> +00 0013 length of record
>>> +02 0188 hob of shared object
>>> +04 bd47 selector of shared object
>>> +06 0004 reference count
>>> +08 PMDRAG.MEM name (with \SHAREMEM\ prefix omitted) and terminated with
>>> a null byte (that is, it′ s an ASCIIZ string)

>>> Check out hob 188
##.moc 188

*har par cpg va flg next prev link hash hob hal
 0140 %fecffb8a 00000010 %17a80000 369 000f 0141 0000 0000 0188 0000 hco=00291
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 0188 0140 0000 482c ff82 017d 0000 00 00 00 00 mshare
 hco=00291 pco=fe85dcf0 hconext=003c8 hptda=02fa f=16 pid=0013 c:epm.exe
 hco=003c8 pco=fe85e303 hconext=00246 hptda=0356 f=16 pid=0009 c:mrfile32.exe
 hco=00246 pco=fe85db79 hconext=00070 hptda=0258 f=16 pid=0005 c:pmshell.exe
 hco=00070 pco=fe85d24b hconext=00000 hptda=009f f=17 pid=0002 c:pmshell.exe
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>>> We see 4 owners in accordance with the reference count
>>> note: the owner of the object is ′ mshare′

>>> Check out the selector in record 2:

##dl bd47
bd47 Data Bas=17a80000 Lim=00000067 DPL=3 P RW A

>>> In this case it′ s within the compatibility region so could have used the
>>> CRMA to get %17a80000 directly

>>> The processes sharing the named storage may be obtained directly from local
>>> records in the RMP. A local record is of the following form:
>>>
>>> +00 word - length of record (always 0008)
>>> +02 word - hptda of user
>>> +04 word - handle of shared memory object
>>> +06 word - reference count for this ptda.

>>> Scanning through the RMP (for object 0188) we find the following local
>>> records:

>>> 0178:00000030 .. .. .. .. .. .. .. ..-08 00 9f 00 88 01 01 00

>>> 0178:00000100 .. .. .. .. 08 00 58 02-88 01 01 00 .. .. .. ..

>>> 0178:00000120 .. .. .. .. .. .. .. ..-.. .. .. 08 00 fa 02 88
>>> 0178:00000130 01 01 00 .. .. .. .. ..-.. .. .. .. .. .. .. ..

>>> 0178:00000180 .. .. .. .. .. .. .. ..-.. .. .. 08 00 56 03 88
>>> 0178:00000190 01 01 00 .. .. .. .. ..-.. .. .. .. .. .. .. ..

>>> This confirms what was shown in the .mo 188 display, but we have in addition
>>> the reference count for each process.

>>> Finally, we can cut the cake a different way by asking what is all the
>>> named storage being referenced by a particular process. For example
>>> EPM.
>>> Start by finding its slot nos.

.p
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
.
.
.
 0027 0013 0002 0013 0001 blk 0200 7b974000 7bb460d0 7bb2bf24 1eb8 12 epm
 0020 0013 0002 0013 0002 blk 0200 7b966000 7bb460d0 7bb2b338 1ecc 12 epm
 .
 .

>>> EPM′ s pPTDA is %7bb460d0. Now find the hptda of this PTDA

##.mom %7bb460d0
hob va flgs own hmte sown,cnt lt st xf
02fa %7bb460d0 8000 ffcb 035b 0000 00 00 00 00 ptda 0013 c:epm.exe
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>>> Answer: 2fa.
>>> Now look through the RMP for local records that begin:
>>> 08 00 fa 02

>>> 0178:00000120 .. .. .. .. .. .. .. ..-.. .. .. 08 00 fa 02 88
>>> 0178:00000130 01 01 00 .. .. .. .. ..-.. .. .. .. .. .. .. ..

>>> 0178:00000140 .. .. .. .. .. .. .. ..-.. .. .. 08 00 fa 02 13
>>> 0178:00000150 04 01 00 .. .. .. .. ..-.. .. .. .. .. .. .. ..

>>> 0178:00000160 .. .. .. 08 00 fa 02 15-04 01 00 .. .. .. .. ..

>>> 0178:00000180 .. .. .. 08 00 fa 02 03-04 01 00 .. .. .. .. ..

>>> 0178:000001a0 .. .. .. .. .. .. .. ..-.. .. .. .. .. .. 08 00
>>> 0178:000001b0 fa 02 f6 02 01 00 .. ..-.. .. .. .. .. .. .. ..

>>> So, 5 named objects, with hobs=0188, 0413, 0415, 0403 and 02f6

>>> Scanning the the RMP for Global records for these objects will reveal
>>> their names: PMDRAG.MEM, EPM\ETKE600.EPM, EPMGNLS, 15502333\EPM.EXE,
>>> 15394914\E3EMUL.EX.

>>> issuing .mo against each of the hobs will reveal whether these are shared
>>> and with whom:

.moc 188

*har par cpg va flg next prev link hash hob hal
 0140 %fecffb8a 00000010 %17a80000 369 000f 0141 0000 0000 0188 0000 hco=00291
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 0188 0140 0000 482c ff82 017d 0000 00 00 00 00 mshare
 hco=00291 pco=fe85dcf0 hconext=003c8 hptda=02fa f=16 pid=0013 c:epm.exe
 hco=003c8 pco=fe85e303 hconext=00246 hptda=0356 f=16 pid=0009 c:mrfile32.exe
 hco=00246 pco=fe85db79 hconext=00070 hptda=0258 f=16 pid=0005 c:pmshell.exe
 hco=00070 pco=fe85d24b hconext=00000 hptda=009f f=17 pid=0002 c:pmshell.exe
##.moc 413

*har par cpg va flg next prev link hash hob hal
 0367 %fed02ae4 00000010 %13dc0000 369 025e 0372 0000 0000 0413 0000 hco=00293
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 0413 0367 0000 4a2c ff82 030c 0000 00 00 00 00 mshare
 hco=00293 pco=fe85dcfa hconext=00000 hptda=02fa f=17 pid=0013 c:epm.exe
##.moc 415

*har par cpg va flg next prev link hash hob hal
 0307 %fed022a4 00000010 %13bf0000 369 037e 02c2 0000 0000 0415 0000 hco=003cc
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 0415 0307 0000 4a2c ff82 0407 0000 00 00 00 00 mshare
 hco=003cc pco=fe85e317 hconext=00000 hptda=02fa f=17 pid=0013 c:epm.exe
##.moc 403

*har par cpg va flg next prev link hash hob hal
 02c2 %fed01cb6 00000030 %13bc0000 369 0307 0262 0000 0000 0403 0000 hco=00309
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 0403 02c2 0000 4a2c ff82 0407 0000 00 00 00 00 mshare
 hco=00309 pco=fe85df48 hconext=00000 hptda=02fa f=17 pid=0013 c:epm.exe
##.moc 2f6
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*har par cpg va flg next prev link hash hob hal
 0273 %fed015ec 00000010 %13b70000 369 027c 02ed 0000 0000 02f6 0000 hco=00308
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 02f6 0273 0000 4a2c ff82 0407 0000 00 00 00 00 mshare
 hco=00308 pco=fe85df43 hconext=00000 hptda=02fa f=17 pid=0013 c:epm.exe
##

>>> We see that except for hob=188 all the others are for the private use of
>>> EPM.

14.1.2.3 How Memory Aliasing Works
Aliasing is a facility in virtual memory management whereby one or more pages
of a memory object may be referenced from an alternative virtual address,
possibly from a different process or arena and possibly with different
read/write/execute characteristics. It is used extensively by device drivers
debugging applications and VDMs.

This example shows how aliasing is represented in the system for a debugging
application and how shared storage becomes privatized. There are many ways
of creating aliases. The application in this example is IPMD, which uses
DosDebug function MapWRAlias to alias the debugee′s storage and
DosCreateCSAlias to map a code selector to one of his own data segments.

We introduce the memory alias record (VMAL) and the .ML command.

>>> For reference list the thread slots in the system...

.p
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
.
.
 001c 0004 0002 0004 0001 blk 0200 7b95e000 7bb45078 7bb2ac68 10 cmd
 .
 .
 0020 0008 0002 0008 0002 blk 0200 7b966000 7bb460d0 7bb2b338 12 mrfile32
 002b# 000b 0002 000b 0001 blk 0200 7b97c000 7bb468fc 7bb2c5f4 1eb8 14 ipmd
 002a 000b 0002 000b 0002 blk 0200 7b97a000 7bb468fc 7bb2c440 1eb8 14 ipmd
 002c 000d 0002 000d 0001 blk 0200 7b97e000 7bb47954 7bb2c7a8 1eb8 16 cmd
 002d 000c 0002 000c 0001 blk 0200 7b980000 7bb47128 7bb2c95c 1e98 15 dpmlines
 002e 000e 0002 000e 0001 blk 0300 7b982000 7bb48180 7bb2cb10 1eb8 17 epm
 002f 000e 0002 000e 0002 blk 0300 7b984000 7bb48180 7bb2ccc4 1ecc 17 epm

>>> Now list all the busy alias records:

##.ml
 hal=0001 pal=%ffe61020 har=00b8 hptda=009f pgoff=00000 f=001
 hal=0002 pal=%ffe61028 har=00b9 hptda=009f pgoff=00000 f=001
 hal=0003 pal=%ffe61030 har=001b hptda=009f pgoff=00000 f=001
 hal=0004 pal=%ffe61038 har=0183 cs=00e6 ds=d446 cref=001 f=13
 hal=0005 pal=%ffe61040 har=0199 hptda=009f pgoff=00006 f=001
 hal=0006 pal=%ffe61048 har=01b8 hptda=009f pgoff=00000 f=021
 hal=0007 pal=%ffe61050 har=01b9 hptda=009f pgoff=00000 f=021
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 hal=0008 pal=%ffe61058 har=01ba hptda=009f pgoff=00000 f=021
 hal=0009 pal=%ffe61060 har=01e7 hptda=009f pgoff=00000 f=001
 hal=000a pal=%ffe61068 har=0208 cs=0056 ds=d446 cref=001 f=13
 hal=000b pal=%ffe61070 har=020b cs=0056 ds=d446 cref=001 f=13
 hal=000c pal=%ffe61078 har=026f cs=007e ds=d446 cref=001 f=13
 hal=000d pal=%ffe61080 har=02bf cs=00ae ds=d446 cref=001 f=13
 hal=000e pal=%ffe61088 har=02df cs=01ae ds=0077 cref=001 f=13
 hal=000f pal=%ffe61090 har=0305 hptda=0389 pgoff=00000 f=049
 hal=0010 pal=%ffe61098 har=0306 hptda=0389 pgoff=00000 f=049
 hal=0011 pal=%ffe610a0 har=030e cs=0056 ds=d446 cref=001 f=13
 hal=0012 pal=%ffe610a8 har=0323 cs=0056 ds=d446 cref=001 f=13
 hal=0013 pal=%ffe610b0 har=032e cs=007e ds=d446 cref=001 f=13

>>> hal f & 10 have f=049 = 0000 0100 1001
>>> | | |... Busy
>>> | |
>>> | ....... Debug
>>> |.......... Privatized
>>>
>>> har=305 is an alias for a linear address in hptda=389
>>> similarly har=306 is an alias for a linear address in hptda=389
>>> Now look closer at hal=f.

##.mlc f
>>> chaining doesn′ t always work so..

##.mac 305

*har par cpg va flg next prev link hash hob hal
 0305 %fed02278 00000010 %00520000 169 0307 0304 00b5 0000 00c1 000f hptda=031a
 hal=000f pal=%ffe61090 har=0305 hptda=0389 pgoff=00000 f=049
 har par cpg va flg next prev link hash hob hal
 00b5 %fecfef98 00000010 %1a030000 3d9 00b4 00b6 0000 0000 00c1 0000 hco=00502
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 00c1 0305 0000 1838 00bd 00bd 0000 00 00 00 00 shared c:doscall1.dll
 hco=00502 pco=fe85e925 hconext=00473 hptda=03cb f=1c pid=000e c:epm.exe
 hco=00473 pco=fe85e65a hconext=00455 hptda=03b9 f=1c pid=000d c:cmd.exe
 hco=00455 pco=fe85e5c4 hconext=0045a hptda=0389 f=9c pid=000c d:dpmlines.exe
 hco=0045a pco=fe85e5dd hconext=00283 hptda=031a f=1c pid=000b d:ipmd.exe
 hco=00283 pco=fe85dcaa hconext=0014a hptda=02d6 f=1c pid=0008 c:mrfile32.exe
 hco=0014a pco=fe85d68d hconext=00133 hptda=0257 f=1c pid=0005 c:pmshell.exe
 hco=00133 pco=fe85d61a hconext=00092 hptda=0248 f=1c pid=0004 c:cmd.exe
 hco=00092 pco=fe85d2f5 hconext=00020 hptda=01ae f=1c pid=0003 c:harderr.exe
 hco=00020 pco=fe85d0bb hconext=00000 hptda=009f f=1c pid=0002 c:pmshell.exe

>>> Ignoring hco=455 for the moment. har=b5 represents linear address range
>>> %1a030000 in the shared arena. This is in fact a shared object (hob=1c)
>>> which is being accessed by 9 different processes. The hco chain lists those
>>> processes that access this object. hob=1c is one of the objects in doscall1.dll

>>> Let′ s verify that %1a030000 is indeed that same data in each of the contexts.
>>> hco=133 is for Pid=4, slot=1c, cmd.exe(1)
##.s 1c
##dp %1a030000 l2
linaddr frame pteframe state res Dc Au CD WT Us rW Pn state
%1a030000* 00236 frame=00236 2 0 D A U W P resident
%1a030000 00a22 frame=00a22 0 0 c u U r P pageable
%1a031000 00a1c vp id=00320 0 0 c u U r n pageable
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>>> %1a030000 equates to real address %%a22000
>>> hco=473 is for Pid=d, slot=2c, cmd.exe (2)
##.s 2c
##dp %1a030000 l2
linaddr frame pteframe state res Dc Au CD WT Us rW Pn state
%1a030000* 00c3c frame=00c3c 2 0 D A U W P resident
%1a030000 00a22 frame=00a22 0 0 c u U r P pageable
%1a031000 00a1c frame=00a1c 0 0 c u U r P pageable

>>> %1a030000 equates to real address %%a22000
>>> hco=502 is for Pid=e, slot=2e, epm.exe
##.s 2e
##dp %1a030000 l2
linaddr frame pteframe state res Dc Au CD WT Us rW Pn state
%1a030000* 00418 frame=00418 2 0 D A U W P resident
%1a030000 00a22 frame=00a22 0 0 c u U r P pageable
%1a031000 00a1c frame=00a1c 0 0 c u U r P pageable

>>> In each of these cases looked so far, linear address %1a030000 is
>>> mapped to the same real address %%a22000.
>>> Now examine the hco flags: 9c = 1001 1100
>>> | | ||.... User
>>> | | |..... Executable
>>> | |....... Read
>>> |.......... Privatized

>>> now turn our attention to har=305, hal=f, address %520000 and hco=455.

>>> hco=455 has the additional Privatized flag set.
>>> Now look at the PTE for this storage in slot=2d, Pid=c, dpmlines.exe
##.s 2d
##dp %1a030000 l2
linaddr frame pteframe state res Dc Au CD WT Us rW Pn state
%1a030000* 005ab frame=005ab 2 0 D A U W P resident
%1a030000 00bda frame=00bda 0 0 c u U r P pageable
%1a031000 vp id=01616 0 0 c u U r n pageable

>>> This is no-longer the same storage as in the other contexts. After DPMLINES
>>> was loaded, IPMD created an alias to object 1c reference by DMPLINES.
>>> The loader/memory had to make a private copy to protect the integrity
>>> of other contexts who were sharing the same object. Having privatized
>>> this object for the one context, the loader will not share it with
>>> other contexts.
>>> If we hadn′ t started with the alias record we could have done a .ml now
>>> and looked for the records which referenced hptda=389. As it happens we
>>> know already that har=305 is an alias of har=b5. We can check this out
>>> by looking at the page tables for %520000 in hptda=031a (pid=b, slot=2c)

##.s 2c
##dp %520000
##.i %520000
##dp %520000 l2
linaddr frame pteframe state res Dc Au CD WT Us rW Pn state
%00520000* 00390 frame=00390 2 0 D A U W P resident
%00520000 00bda frame=00bda 0 0 c u U W P pageable
%00521000 vp id=01616 0 0 c u U W n pageable
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>>> %520000 is %%bda000 which is the same real address as %1a030000 in slot=
>>> 2d. We had to page in %520000 so we should check %1a030000 in slot=2d
>>> again, in case it was discarded.

##.s 2d
##dp %1a030000 l2
linaddr frame pteframe state res Dc Au CD WT Us rW Pn state
%1a030000* 005ab frame=005ab 2 0 D A U W P resident
%1a030000 00bda frame=00bda 0 0 c u U r P pageable
%1a031000 vp id=01616 0 0 c u U r n pageable

> ... and it is the same.
> While we are at it, lets check %1a030000 in slot=2c (IPMD)

##.s 2c
##dp %1a030000 l2
linaddr frame pteframe state res Dc Au CD WT Us rW Pn state
%1a030000* 00611 frame=00611 2 0 D A U W P resident
%1a030000 00a22 frame=00a22 0 0 c u U r P pageable
%1a031000 00a1c vp id=00320 0 0 c u U r n pageable

>>> ... and yes as expected IPMD is referencing the shared %1a030000, in
>>> fact he is referencing both copies.

>>> Now let′ s look at some of the other aliases set up by IPMD
##.mlc 10

*har par cpg va flg next prev link hash hob hal
 0306 %fed0228e 00000010 %00540000 169 0308 0307 02ee 0000 0386 0010 hptda=031a
 hal=0010 pal=%ffe61098 har=0306 hptda=0389 pgoff=00000 f=049
 har par cpg va flg next prev link hash hob hal
 02ee %fed0207e 00000010 %00010000 1d9 02ed 02f0 0000 0000 0386 ffff hptda=0389

>>> Note: hal=ffff for har=2ee. This is a special hal to indicate a
>>> privatized arena - there isn′ t a context record to put the privatized
>>> flag in as this was private arena, shared data.

>>> Check out the hptda Pids as we have forgotten who 31a and 389 are..
##.mo 31a
hob va flgs own hmte sown,cnt lt st xf
031a %7bb468fc 8000 ffcb 02db 0000 00 00 00 00 ptda 000b d:ipmd.exe
##.mo 389
hob va flgs own hmte sown,cnt lt st xf
0389 %7bb47128 8000 ffcb 0000 0000 00 00 00 00 ptda 000c d:dpmlines.exe

>>> Now check the page tables in each processes to prove we are looking
>>> at the same thing...
##.ss 2b
##dp %540000 l1
linaddr frame pteframe state res Dc Au CD WT Us rW Pn state
%00540000* 00390 frame=00390 2 0 D A U W P resident
%00540000 vp id=015f0 0 0 c u U W n pageable
##.i %540000
##dp %540000 l1
linaddr frame pteframe state res Dc Au CD WT Us rW Pn state
%00540000* 00390 frame=00390 2 0 D A U W P resident
%00540000 005d2 frame=005d2 0 0 c u U W P pageable
##.ss 2d
##dp %10000 l2
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##.i %10000
##dp %10000 l2
linaddr frame pteframe state res Dc Au CD WT Us rW Pn state
%00010000* 002b3 frame=002b3 2 0 D A U W P resident
%00010000 005d2 frame=005d2 0 0 c u U r P pageable
%00011000 vp id=015f1 0 0 c u U r n pageable
##.ss 2b
##dp %540000 l1
linaddr frame pteframe state res Dc Au CD WT Us rW Pn state
%00540000* 00390 frame=00390 2 0 D A U W P resident
%00540000 005d2 frame=005d2 0 0 c u U W P pageable

>>> Finally look alias record hal=e. This is a CS Alias of a data
>>> segment within in the same process. The hal flags indicate:

>>> 13=0001 0011
>>> | ||... Busy (in use)
>>> | |.... CS Alias
>>> |........ DS selector valid

##.mlc e

*har par cpg va flg next prev link hash hob hal
 02df %fed01f34 00000010 %00350000 1c9 02e2 02de 029d 0000 031b 000e hptda=031a
 hal=000e pal=%ffe61088 har=02df cs=01ae ds=0077 cref=001 f=13
 har par cpg va flg next prev link hash hob hal
 029d %fed01988 00000010 %000e0000 179 02b9 0293 0000 0000 031b 0000 hptda=031a
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 031b 02df 0000 102c 031a 031e 0000 00 00 00 00 priv 000b d:ipmd.exe

>>> Check out the page tables...
##dp %350000 l2
##.i %350000
##dp %350000 l2
linaddr frame pteframe state res Dc Au CD WT Us rW Pn state
%00350000* 00625 frame=00625 2 0 D A U W P resident
%00350000 00362 frame=00362 0 0 c u U r P pageable
%00351000 vp id=01403 0 0 c u U r n pageable
##dp %e0000 l2
linaddr frame pteframe state res Dc Au CD WT Us rW Pn state
%000e0000* 00625 frame=00625 2 0 D A U W P resident
%000e0000 00362 vp id=01402 0 0 c u U W n pageable
%000e1000 vp id=01403 0 0 c u U W n pageable
##.i %e0000
##dp %e0000 l2
linaddr frame pteframe state res Dc Au CD WT Us rW Pn state
%000e0000* 00625 frame=00625 2 0 D A U W P resident
%000e0000 00362 frame=00362 0 0 c u U W P pageable
%000e1000 vp id=01403 0 0 c u U W n pageable
##dp %350000 l2
linaddr frame pteframe state res Dc Au CD WT Us rW Pn state
%00350000* 00625 frame=00625 2 0 D A U W P resident
%00350000 00362 frame=00362 0 0 c u U r P pageable
%00351000 vp id=01403 0 0 c u U r n pageable
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>>> Check out the segment descriptors ....
##dl 1ae
01ae Code Bas=00350000 Lim=0000f15f DPL=2 P RE C
##dl 77
0077 Data Bas=000e0000 Lim=0000f15f DPL=3 P RW A
##

>>> Because of the existence of CS/DS alias, IPMD can effectively
>>> read, write and execute the same storage. This is how IPMD is able
>>> to implement break points, by copying code, patching in INT 3
>>> instructions and executing the copied code; all from ring 3 privilege
>>> without compromising other processes or the system.
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14.1.3 Exploring 32-bit Presentation Manager Under WARP
In this section we look specifically at the messaging function within Presentation
Manager (PM).

Sending and receiving messages lies at the heart of how PM applications
communicate with each other and the system. Messages may be sent
synchronously and posted asynchronously. The mismanagement of messages
by an application leads frequently to the ′bad application′ pop-up dialog. In
extreme cases deadlocks result.

This topic applies to OS/2 V3, which introduced the 32-bit version of Presentation
Manager. The previous 16-bit environment has analogous concepts which are
briefly explored through a final worked example.

Prerequisites to any PM debugging requires the following:

• Availability of the symbol file (PMMERGE.SYM) for PMMERGE.DLL. This
should be installed in the same directory as PMMERGE.DLL when using the
Kernel Debugger or for dump analysis, in the same directory as the Dump
Formatter.

• Availability of the PM programming reference from the Programmer′s
ToolKit.

• Also of use, is ready access to the C header files from the Programmer′s
Toolkit.

We start by giving an overview of the PM messaging environment in which an
application′s PM thread operates.

14.1.3.1 The PM Messaging Environment
First consider the non-PM application programming model as shown in Figure 17
on page 274.

This diagram illustrates the following points:

• Non-PM application threads run in a relatively unconstrained environment
(compare this with the following situation).

• The operating system provides a black-box set of services and interfaces.

• The hardware is not directly accessible by the application.
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Figure 17. Non-PM Application Program Model
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For PM message threads, the environment is radically different. The key
difference is that application code that runs on a PM message thread is
effectively a subroutine of the WinGetMsg API even though WinGetMsg is called
by the application. The terminology often used to describe this reversal is
Program Inversion. WinGetMsg is said to be inverted with respect to the
application′s message thread.

We see this illustrated in Figure 18 on page 276.

Also illustrated by this diagram are the following points:

• PM message threads act in a cooperative way. They wait for messages and
pass them on to the appropriate application if not for themselves.

• PM message threads should spend most of their elapsed time waiting for
notification of messages, because of their cooperative nature.

• Application code that runs on the message thread should be limited to very
short duration processing. We often speak of the tenth-of-a-second rule,
which is intended to imply the transient nature of application code
processing rather than a precise measure.

• If a message thread communicates with another thread or the operating
system, then this should be done either asynchronously or so as not to
violate the tenth-of-a-second rule.
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Figure 18. PM Application Program Model
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14.1.3.2 PM Message Queues
PM messages are generated either as the result of user interaction with the
system or by the use of various PM APIs. Both PM and non-PM applications
may generate PM messages.

Messages may flow:

Synchronously, that is, require processing by the recipient before the sender
can continue, or

Asynchronously, that is, where no response is required.

They may flow between threads (inter-thread messages) or from a thread to
itself (intra-thread messages).

These characteristics require a message queuing mechanism to be implemented
so that message order may be preserved.

Note: A message ′s meaning may often depend on the outcome of a preceding
message. For example, consider the action of the F4 key after the Alt key
has been pressed.

Each PM message thread has two queues or more strictly speaking a message
queue and a message list. There may be only one instance of these two
structures per thread.

• The message queue is a circular array, the size of which is specified or
defaulted by the application when it creates the queue using
WinCreateMsgQueue.

This queue is used for the receipt of asynchronous messages generated by
use of the WinPostMsg API.

• The message list has no depth and is created implicitly by
WinCreateMsgQueue.

This is used for the receipt of synchronous messages sent using
WinSendMsg.

WinCreateMsgQueue also creates a message event semaphore that is posted
whenever a message, synchronous or asynchronous, is posted; or a message
response is generated. This is the semaphore on which WinGetMsg waits for
message notification.

There is a system queue, which is also a circular array. Messages are
enqueued on the system queue by the PMDD.SYS device driver as the result of
external events deriving directly from the following:

Mouse activity

Keyboard activity

Use of a light pen

Timer ticks

PM maintains knowledge of who the current, mouse, keyboard, pen, and event
receivers are. When an external event causes a message to be queued on the
system queue, PM posts the message event semaphore of the current receiver
of that particular event.
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An application may define Window Procedures - entry points within the message
thread. These are associated with a PM Window and a message queue. They
receive control when a message is dispatched, that is dequeued from the
message queue or message list. More than one window procedure may be
serviced by the same message queue/list. Which one should be dispatched is
determined from the HWND, which is one of the parameters associated with a
message.

When WinGetMsg receives a message event notification, it first checks for the
presence of received synchronous messages, if there are any dispatches them
directly. Next it looks for an application generated (posted) message and finally
for a system queue message.

The application thread explicitly dispatches asynchronous messages using
WinDispatchMsg.

The System Queue entries are SQMSG structures.

The Application Queue entries are QMSG structures.

The Application Send Message List comprises a chain of SMS structures.

This scenario is illustrated in the following diagram:
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Figure 19. PM System Input Queue Processing Overview
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14.1.3.3 An Application Thread ′s Messaging Structures
The previous section introduced the notion of a message queue and list, of
where there is one pair per PM message thread. We now look at these in more
detail, with the associated PM system structures that comprise the application′s
messaging environment.

The Message Queue Header (MQ)
This structure acts an anchor for all the message processing structures of an
application message thread. It is created by WinCreateMsgQueue and the
returned HMQ (message queue handle) is the address of this structure. PM
often refers to the address of a MQ as its PMQ.

The principle fields of interest are:

Offset  Description

+0x14 The current read position of the message queue.

Since the message queue is a circular array, four pointers have to
be maintained: the current read position, current write position,
top and bottom of array.

Each queue entry is a QMSG structure.

Entries are added to the queue in increasing address order, until
the maximum (bottom) is reached then entries are added from the
top.

Removal of entries only involves updating the current read
pointer. Thus, a small trace of past message activity may be
seen by scanning backwards from the current read pointer to the
current write pointer.

+0x18 The current write pointer.

+0x24 The Pid of the message thread to which this MQ belongs.

+0x28 The Tid of the message thread to which this MQ belongs.

+0x44 The most recent SMS on which a response is awaited.

The presence of a non-zero value in this field implies that the
message thread is currently blocked in WinSendMsg waiting for a
response.

If the message thread recurses, for example through the receipt
of a synchronous message, then a subsequent WinSendMsg will
cause this field to be updated. The previous contents are saved
on the stack.

A non-zero value in this field is of prime interest when diagnosing
hangs. It immediately focuses our attention on the recipient of
this message.

+0x48 The current SMS received.

This field is non-zero when an SMS is removed from the receive
list for processing by its associated window procedure.

When this field is non-zero, it implies that the thread′s window
procedure has been dispatched to process a received message.
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+ 0 9 c The Received message list.

SMSs are chained from this location pending dispatch.

Upon dispatch the oldest message is removed from the list and
pointed to from offset +0x48 of the MQ.

+0xa4 The thread slot number of the message thread to which this MQ
belongs.

This is very useful for correlating MQs to threads.

The Send Message Structure (SMS)
The SMS is created for synchronous messages and linked to the receive list
(MQ+0x9c ) when WinSendMsg is called.

The principle fields of interest are:

Offset  Description

+ 0 c Pointer to the next (more recent) SMS in the receive list.

+ 1 4 Pointer to the MQ to which this SMS has been sent.

+ 1 8 Pointer to the MQ of the thread from which this SMS was sent.

+ 2 4 Pointer to the WND the represents the Window to which this
message has been sent.

+ 2 8 The message Id.

+ 2 c Message parameter 1.

+ 3 0 Message parameter 2.

Offsets +0x14 and +0x18 are of prime interest in diagnosing hangs. They
enable us to locate the recipient of a message, of which a response is
pending and therefore the thread which is causing our thread to remain
blocked.

The Queue Message Structure (QMSG)
This is the structure used by applications when calling WinDispatchMsg.

The QMSG is also the form of an entry on the application′s message queue.

The principle fields of interest are:

Offset Description

+ 0 The window handle (HWND). This is an index (ignoring the
high-order bit) in to the handle table. From the handle table we
can obtain the equivalent PWND or pointer to the WND.

+ 4 The message Id.

+ 8 Message parameter 1.

+ c Message parameter 2.

The Handle Table
This is a global table that is used to correlate window handles (HWNDs) with
pointers to WNDs (PWNDs). The table comprises a 0x20 byte header with
8-byte entries. The first word of each entry is a PWND and the second a
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Boolean flag, which if non-zero, indicates that an HWND/PWND combination
is non-deleteable.

The handle table may be located from the address at symbol:

pHandleTable

The Window Structure (WND)
This structure represents a window. It is created by WinCreateWindow.

The WND has two main functions:

> > It acts as the link between the MQ and the thread′s window
procedure

> > It establishes the WND hierarchy.

The principle fields of interest are:

Offset Description

+ 0 Next sibling WND.

+ 4 Parent WND.

+ 8 First Child WND.

+ 2 8 The pointer to the MQ that will queue messages sent and posted
to this window.

+ 2 c The window′s HWND.

+ 3 0 A Boolean, which if non-zero, indicates that the window procedure
address is a 16-bit far pointer.

+ 3 4 The address of the window procedure.

This scenario is illustrated in the following diagram:
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Figure 20. PM Application Message Processing Overview
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14.1.3.4 PM Message Processing Logic
The following sections provide a summary of the essential internal logic of PM′s
message handling. This is provided to give the reader sufficient understanding
that will enable most application problems, especially those that cause hangs, to
be identified. In most cases hangs in the PM environment are caused by a
misuse or misunderstanding of the message thread model, especially the way in
which message threads act in a cooperative manner.

An outline is given for each of the following:

“WinGetMsg Logic.”

“WinSendMsg Logic” on page 287.

“Waiting for Message Activity” on page 289.

“WinSetFocus Logic” on page 289.

Note:

In each of these outlines, the added complication of calling hooks has
been omitted.

WinGetMsg Logic: WinGetMsg operates essentially as a loop that waits for
message activity and returns messages to the user. Conceptually the
application′s code acts as an inverted subroutine of WinGetMsg. This was
illustrated in The PM Messaging Environment.

These are the essential steps in WinGetMsg processing:

• When WinGetMsg wakes, it first unlocks the System Queue if owned or if it is
the active thread.

The MQ of the current system queue owner is pointed to by pmqsyslock.
This is set to zero if this points to the MQ of the current thread.

The active thread is the thread that has the right to unlock to system queue if
locked by another thread. Normally this is the thread that manages the MQ
of the window in focus. Normally the thread that has locked the system
queue is the active thread.

• The received list is checked.

If SMSs are queued then each is removed successively and the
corresponding window procedure is called.

Received messages, that is messages sent via WinSendMsg to this thread,
are not returned by WinGetMsg. The window procedure is called directly.

• The application′s queue is checked for posted messages.

If one is found it is dequeued and returned to the application.

• If no posted message is found then WinGetMsg tries to process the system
queue.
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• We attempt to lock the system queue if free.

If pmqsyslock is zero it is set to the current thread′s MQ address.

• If the lock was successful then we peek the next system queue message.

If the lock was unsuccessful we return to the beginning of the loop and wait
on the message queue semaphore.

• If the next system message is for this thread then it is dequeued and
returned to the application with the system queue lock still held.

The possibility of holding the system queue lock while running in user code
is vital to note. While this happens only active thread can dequeue a system
queue message. The reason for holding the system queue lock is for
performance. It is likely that one system message will be followed by a
sequence for the same thread. If the lock was released, unnecessary
processing on other message queue threads would take place. More
recently queued messages could not be processed out of turn anyway, since
the interpretation of a system message depends upon the outcome of the
preceding system message.

• If the next system message is for another application then the system queue
is unlocked.

• The other application is made the current input receiver.

PM distinguishes between current mouse, keyboard and event receiver.
WinGetMsg makes the other application the current mouse, keyboard or
event receiver depending upon the message category.

• Finally the other application′s message queue semaphore is posted.
WinGetMsg returns to the beginning of its message loop by waiting on its
own message semaphore for more message activity.

This processing is illustrated in the following diagram:
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Figure 21. WinGetMsg Essential Processing

286 OS/2 Debugging 



WinSendMsg Logic

These are the essential steps in WinSendMsg processing:

• We check to see if the message is being sent to the same thread.

WinSendMsg to the same thread is known as an Intra-thread send.

WinSendMsg to another thread is known as an Inter-thread send.

• If intra-thread then the message is dispatched immediately, from within
WinSendMsg.

This behavior implies that a window procedure may recurse many times,
even if waiting for a response to a WinSendMsg.

• If inter-thread then the message is enqueued to the receive list of the
recipient ′s MQ.

• Active thread status is transferred to the receiving thread (if currently
owned).

This allows the receiver to unlock the system queue if it had been locked by
the current thread and the current thread is the active thread.

• The receiver′s message queue semaphore is posted.

• WinSendMsg waits on the current thread′s message queue for a response to
the sent message.

This processing is illustrated in the following diagram:
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Figure 22. WinSendMsg Essential Processing
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Waiting for Message Activity: In order to process synchronous messages as
swiftly as possible, PM always checks the receive list of the current thread for
pending SMSs before waiting on an internal PM semaphore.

If SMSs are found queued, they are successively dispatched.

Only when the receive list has been processed does PM finally wait on a
semaphore.

This applies particularly to the message processing semaphore, but also equally
to semaphores that serialize access to resources such as the .INI files.

WinSetFocus Logic: WinSetFocus has a subtle bearing on message processing
since it selects a new active thread and new current input receivers for system
messages.

Note:

Focus may be changed by a third party.

These are the essential steps in WinSetFocus processing:

• WM_FOCUSCHANGE is sent to the message thread losing the focus.

• The current window in focus is changed.

pwndfocus points to the WND of the focus owner.

• Unlock the system queue if locked.

The MQ of the current system queue owner is pointed to by pmqsyslock.
This is set to zero if it points to the MQ of the current focus owner.

• The target window′s message thread is marked as the new focus owner.

pmqfocus is set to the address of the new focus owner′s MQ.

• The target thread′s message queue is made the current mouse and
keyboard input receiver.

pmqMouseWake and pmqKeyWake are set to the address of the new focus
owner ′s MQ.

• The new focus owner′s message thread is marked as the new active thread.

• A priority boost is applied to the new focus owner′s message thread.

• WM_FOCUSCHANGE is sent to the message thread gaining the focus.

This processing is illustrated in the following diagram:
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Figure 23. Miscellaneous PM Processing
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Application Not Responding to Messages Logic: The application not responding
to messages dialog, or BadApp dialog as it is sometimes referred to, appears
after Ctrl-Esc has been hit and the system has not been able to display the task
list.

The essential logic for this processing is as follows:

• Ctrl-Esc is hit and 5 second timer is started.

• If the task list appears before the time-out then all is well, if not we check for
who might be holding things up.

• We try for 5 seconds to obtain the User PM Semaphore. If unsuccessful then
the Pid, Tid and Session Id of the owner is saved in the QHPSTRUCT.

• If pmqsyslock is owned then the Pid, Tid and Session Id of the owner is
saved in the QHPSTRUCT.

• If pmqfocus is owned then the Pid, Tid and Session Id of the owner is saved
in the QHPSTRUCT.

• We now enter a second wait of a further 3 seconds, after which, we build a
second QHPSTRUCT.

• If the Tid and Pid are different and we have not yet had an acknowledgement
from the task list then we wait a further 12 seconds, on the assumption the
processing is slow, but not hung.

• If the Tid and Pid are the same or we have expired on our third time-out then
we set fBadAppDialog true and reset the cause for the hang:

− If User_Sem held then release User_Sem

− if system queue locked then reset pmqsyslock

− if focus owner hung, then reset pmqfocus

Report the hanging application in the BadApp dialog.

This processing is illustrated in the following two diagrams:
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Figure 24. BadApp Dialog Processing
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Figure 25. Query Hung Process Processing
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The flags in the QHPSTRUCT indicate the detected reason for hanging. These
may be a combination of:

Name Bit Mask Description

QHP_SYSQUEUELOCK 0x0001 System Queue Locked

QHP_SENDMSGLOCK 0x0002 Waiting for a response to WinSendMsg

QHP_CLIPBRDLOCK 0x0004

QHP_WINDOWLOCKED 0x0008

QHP_VISRGNLOCKED 0x0010

QHP_LOCKWINDOWUPDATE 0x0020

QHP_FSRSUSERHANG 0x4000 Waiting for the User_Sem

QHP_INPUTPROCESSED 0x8000

14.1.3.5 Useful Symbols for PM Structures
The following list is a small selection of global symbols from PMMERGE.SYM
that will be of help in locating the structures associated with message handling:

pmsemaphores
This is the label for the table of PMSEM and GRESEM semaphore structures.
Offset +0x20 is the location of the user semaphore. If this is owned and not
released within the time-out period after Ctrl-Esc has been hit, then the
′Application Not Responding to Messages′ reports the semaphore owner as
the culprit.

pmqSyslock
The PMQ of the thread that has locked the system queue.

This is the first place to look when investigating a hang in a PM application.
The system uses this to name a bad application when the ′Application Not
Responding to Messages′ dialog appears.

pmqFocus
The PMQ of the window that has the focus.

If pmqSyslock is zero, the system uses this as a second choice for the bad
application when the ′Application Not Responding to Messages′ dialog
appears.

pmqKeyWake
The PMQ of the current keyboard event receiver.

pmqMouseWake
The PMQ of the current mouse event receiver.

294 OS/2 Debugging 



pmqEventWake
The PMQ of the current miscellaneous event receiver.

pwndFocus
The PWND of the window currently in focus.

pHandleTable
The address of the handle table.

pSysqueue
The MQ of the system input queue.

The system queue is headed by a partial MQ since it does not require the
fields to support a receive list.

pmqShell
The PMQ of the 1st thread of the 1st Shell Process.

This thread is responsible for starting and re-starting the Workplace Shell.

pmqShell2
The PMQ of the 1st thread of the 2nd Shell or Workplace Shell Process.

This thread is the main thread of the desktop PM application.

paAABRegs
The address of the application anchor block registers (AAB).

AAB registers are allocated for each PM application message thread. This
is located in thread local memory, which implies that it is correct only for the
current thread context. The thread local memory area is saved in the TCB
and restored when the thread is made current. Since the TCB may be
located in System storage under any context then a thread′s PMQ may be
found in any context from its TCB.

pwndObject
The PWND of the Object Window.

This is the parent or owner of all non-display windows.

pwndDesktop
The PWND of the Desktop Window.

This is the parent of owner of all displayable windows.

SleepPMQ+nnn
When a thread is blocked at approximately offset +0x155 into SleepPMQ
then it is waiting on the message queue semaphore for new messages or
responses to outstanding sent messages. Offset +0x30 from the current
stack pointer usually contains the PMQ for the current thread.
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pmqList
All MQs are chained on a single linked master list from offset +0x0 of the
MQ. The current head of the master list is pointed to by pmqList.

psmsList
All SMSs are chained on a single linked master list from offset +0x0 of the
SMS. The current head of the master list is pointed to by psmsList.

qhpsBadApp
This is the label of the QHPSTRUCT saved the first time a time-out occurs
after Ctrl-Esc has been hit and the ′Application Not Responding to Messages′
dialog appears.

fBadAppDialog
A Boolean that indicates when the ′Application Not Responding to Messages′
dialog has been displayed.

14.1.3.6 Useful PM Structures
The following diagrams illustrate the main PM structures for the messaging
function. These are laid out as if viewed under the Kernel Debugger or Dump
Formatter by displaying them using the DD command.

“PM Message Queue Header” on page 297.

“PM Window Structure (WND)” on page 298.

“PM Message Structures (SMS, QMSG, SQMSG)” on page 299.

“PM Application Anchor Block Registers” on page 300.

“Stack Layout at Useful Entry Points” on page 301.
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PM Message Queue Header

Figure 26. PM Message Queue Header Viewed as Doublewords
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PM Window Structure (WND)

Figure 27. PM Window Structure (WND) Viewed as Double-words
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PM Message Structures (SMS, QMSG, SQMSG)

Figure 28. PM Send, Queue and Queue Message Structures
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PM Application Anchor Block Registers

Figure 29. PM Application Anchor Block
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Stack Layout at Useful Entry Points

Figure 30. Stack Frames for Common Entry Points Viewed as Doublewords
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14.1.3.7 PM Worked Examples under WARP
We give two examples of diagnosing common application problems:

“Example 1 - A Trap in PMMERGE.DLL” - A trap in PMMERGE.DLL caused by
an application fault.

“Example 2 - A Hang in a PM Application” on page 305 - A hang in the
WorkPlace, again caused by an application fault.

Further techniques are illustrated in:

“How to Find the MQ of any Thread” on page 308.

“How to find the MQ of a BadApp Application” on page 309.

“Finding Application and System Queue Elements” on page 311.

Further examples, with annotated solutions, may be found on the accompanying
CD-ROM in the TURKEY lab exercise.

Example 1 - A Trap in PMMERGE.DLL:

Steps for analyzing traps in PM DLLs:

• Intercept the trap at the point of failure.

• Unwind the stack to the application call.

• Validate the parameters to the API call.

• If necessary, determine how the user routine was invoked by examining the
MQ and looking for dispatched messages or by unwinding the stack further.

This example is of a trap in PMMERGE.DLL, but caused by an application fault.

Because we have a trap E, we set the fatal vector under the Kernel Debugger (or
use TRAPDUMP=ON in CONFIG.SYS to take a dump) then re-create the
problem.

##vsf *
##g
Trap 14 (0EH) - Page Fault 0006, Not Present, Write Access, User Mode
eax=00000007 ebx=00273fcc ecx=00000001 edx=00000007 esi=12d3e089 edi=00000000
eip=1bd3d261 esp=00273ebc ebp=00273f1c iopl=2 rf -- -- nv up ei pl nz ac po cy
cs=005b ss=0053 ds=0053 es=0053 fs=150b gs=0000 cr2=00000000 cr3=001d4000
005b:1bd3d261 f3a5 repe movsd es:00000000=invalid ds:12d3e089=69727453
##ln
005b:00000000 turkey:FLAT:__$dummy$ + 1bd3d261

We have trapped in a DLL, probably PMMERGE.DLL, certainly not in the user′s
.EXE code. We unwind the stack to find the return address in the user′s .EXE

##dd %ebp
%00273f1c 00273f5c 1bd3d05b 00000000 00000005
%00273f2c 00080001 00000000 00080013 00010423
%00273f3c 00190008 00000000 00000001 00000014
%00273f4c 00000000 80000144 00000001 00190008
%00273f5c 00273fa8 1bd03893 80000144 00000071
%00273f6c 00280018 00000000 000103ec 00000000
%00273f7c 00000000 00190008 00273fcc 00000000
%00273f8c 00000000 ffffffff 80000144 12d31630
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##d
%00273f9c 00000000 12d31494 00190008 00273ff4
%00273fac 00010932 00190008 00273fcc 0000000c
%00273fbc 00000004 00000004 00000007 80000144
%00273fcc 80000144 00000071 00280018 00000000
%00273fdc 0092d87d 0000027a 000000f0 00000000
%00273fec 12d31630 00190008 00000000 1bfbbf68
%00273ffc 00022bf4
Invalid linear address: %00274000

Not all the stack was paged in to physical memory, but never mind. Enough is
there to allow us to find the return address to the user′s application code.

Following the base pointer (EBP):

%00273f1c 00273f5c 1bd3d05b

%00273f5c 00273fa8 1bd03893 80000144 00000071

%00273f9c 00273ff4
%00273fac 00010932 00190008 00273fcc 0000000c

The return address is %10932. We inspect the code just before this address.

##u %10932-20
%00010912 25837ddc2a and eax,2adc7d83
%00010917 0f8507000000 jnz %00010924
%0001091d e916000000 jmp %00010938
%00010922 8bc0 mov eax,eax
%00010924 8d45d8 lea eax,[ebp-28]
%00010927 50 push eax
%00010928 ff75fc push dword ptr [ebp-04]
%0001092b b002 mov al,02
%0001092d e8862ecf1b call %1bd037b8
%00010932 83c408 add esp,+08
%00010935 ebc1 jmp %000108f8
%00010937 fc cld
##ln %1bd037b8
%00000000 turkey:FLAT:__$dummy$ + 1bd037b8

This call was to a routine at %1bd037b8. LN doesn′ t give us a useful symbol
(our .EXE is being selected instead of the correct .DLL symbol). We find out who
owns this address from the memory management control blocks.

##.m %1bd037b8

*har par cpg va flg next prev link hash hob hal
 01c0 %feaf168a 00000001 %ffe3c000 101 000d 01e2 01bd 0000 013e 000c =0000
 hal=000c pal=%ffe5c078 har=01c0 hptda=010c pgoff=000d7 f=021
 har par cpg va flg next prev link hash hob hal
 01bd %feaf1648 00000001 %ffede000 101 01a2 01be 0106 0000 013e 0009 =0000
 hal=0009 pal=%ffe5c060 har=01bd hptda=010c pgoff=00000 f=021
 har par cpg va flg next prev link hash hob hal
 0106 %feaf068e 000000f0 %1bd00000 3d9 0105 0107 0000 0000 013e 0000 hco=00307
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 013e 01c0 0000 1838 0139 0139 0000 00 02 00 00 shared c:pmmerge.dll
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 hco=00307 pco=fe64ef3e hconext=00296 hptda=032f f=1c pid=0019 a:turkey.exe
 hco=00296 pco=fe64ed09 hconext=001f9 hptda=0301 f=1c pid=0009 d:cmd.exe
 hco=001f9 pco=fe64e9f8 hconext=00188 hptda=02c9 f=1c pid=0007 d:cmd.exe
 hco=00188 pco=fe64e7c3 hconext=00107 hptda=0291 f=1c pid=0005 c:2000.exe
 hco=00107 pco=fe64e53e hconext=0008e hptda=023b f=1c pid=0004 c:pmshell.exe
 hco=0008e pco=fe64e2e1 hconext=0002a hptda=01b5 f=1c pid=0003 c:harderr.exe
 hco=0002a pco=fe64e0ed hconext=00000 hptda=010c f=1d pid=0002 c:pmshell.exe

We can see that our call was to an entry point in PMMERGE.DLL. We need to
activate PMMERGE′s symbols.

##wa pmmerge
##ln %1bd037b8
%1bd037b8 pmmerge:PM32BIT:WIN32DISPATCHMSG
##ln
005b:1bd3d064 pmmerge:PM32BIT:LoadStrMsg + 1fd
005b:1bd3d2a8 WIN32POSTQUEUEMSG - 47

So we called WinDispatchMsg and some time later we probably called
LoadStrMsg, which is where we trapped. First we need to check the parameters
to WinDispatchMsg. These are:

HAB 00190008

PQMSG 00273fcc

The QMSG at %273fcc is also in the stack we dumped:

%00273fcc 80000144 00000071 00280018 00000000
%00273fdc 0092d87d 0000027a 000000f0 00000000

The first parameter is the HWND. We convert this to a PWND, dump the WND
and look for the window procedure entry point.

##dd phandletable l1
9f3f:0000ab78 12d50000

##dd %12d50000+20+(8*144) l2
%12d50a40 12d31494 00000000

##dd %12d31494
%12d31494 12d31838 12d3c974 00000000 12d3c974
%12d314a4 00c80262 0104029e 80000000 00000008
%12d314b4 12d314f0 00000004 12d31630 80000144
%12d314c4 00000000 000103ec 00000000 00000000
%12d314d4 12d3147c 00000000 00000000 00000000
%12d314e4 00000000 2050534d 00000034 12d31894
%12d314f4 00004b4e 00000000 0000fc4e 00000019
%12d31504 00000000 000103ec 00000000 00000000

Note: We could have used the following more complex single command
construct to achieve the same result:

##dd %(dw(%(dw(phandletable))+20+(8*144)))
%12d31494 12d31838 12d3c974 00000000 12d3c974
%12d314a4 00c80262 0104029e 80000000 00000008
%12d314b4 12d314f0 00000004 12d31630 80000144
%12d314c4 00000000 000103ec 00000000 00000000
%12d314d4 12d3147c 00000000 00000000 00000000
%12d314e4 00000000 2050534d 00000034 12d31894
%12d314f4 00004b4e 00000000 0000fc4e 00000019
%12d31504 00000000 000103ec 00000000 00000000
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The window procedure entry point is at offset +0x34.

We now unassemble this:

##u %103ec
%000103ec 55 push ebp
%000103ed 8bec mov ebp,esp
%000103ef 83ec08 sub esp,+08
%000103f2 8b4508 mov eax,dword ptr [ebp+08]
%000103f5 a32c0d0200 mov dword ptr [00020d2c],eax
%000103fa 8b450c mov eax,dword ptr [ebp+0c]
%000103fd e93a000000 jmp %0001043c
%00010402 8bc0 mov eax,eax
%00010404 ff7508 push dword ptr [ebp+08]
%00010407 b001 mov al,01
%00010409 e8322dcf1b call WIN32QUERYANCHORBLOCK (%1bd03140)
%0001040e 8945fc mov dword ptr [ebp-04],eax
##u
%00010411 6a00 push +00
%00010413 6a14 push +14
%00010415 6a01 push +01
%00010417 6a00 push +00
%00010419 ff75fc push dword ptr [ebp-04]
%0001041c b005 mov al,05
%0001041e e81dccd21b call WIN32LOADSTRING (%1bd3d040)
%00010423 83c418 add esp,+18
%00010426 eb1e jmp %00010446
%00010428 8b4508 mov eax,dword ptr [ebp+08]
%0001042b e8d0fbffff call main (%00010000)
%00010430 eb14 jmp %00010446

We notice that we trapped in an internal routine called LoadStrMsg and that we
have called WinLoadString in the window procedure. Could these be related?

We see from the PM Programming Reference that WinLoadString has five
parameters. The right most is a pointer to a buffer and we see that the window
procedure has pushed 0 on the stack this will surely cause WinLoadString to trap
at some point. How do we make this supposition less circumstantial and more
concrete?

Clearly, for EBP to take us back to a call to WinDispatchMsg, without finding a
stack frame from the window procedure implies that PMMERGE is using
optimised code when the trap occurred. That is, the conventional use of EBP is
not in place - and this does occur in many internal routines in PMMERGE, for
performance reasons. If we scan back through the stack we notice the address
%10423 occurring shortly before (in time) the call to LoadStrMsg. This address
is the return address from the WinLoadString call in the window procedure. It
would seem therefore that we have called that API with the bad parameter as
suspected.

Example 2 - A Hang in a PM Application:

Steps for analyzing hangs in PM applications:

• Determine whether there is a general hang in the PM environment, or a just
in one application. If the latter then proceed with normal hang analysis.
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• Check whether the User_Sem is owned. If it is then this may be an indication
of a problem. Determine the owner and their thread status.

• Check pmqsyslock to see if the system queue is locked. If it is, then
determine the owner of the lock and their thread status.

• Check pmqfocus if neither of the preceding checks reveals anything
informative. Determine the thread in focus and its status.

• If pmqfocus is a shell thread, check fBadAppDialog. If it is non-zero then
analyze the QHPSTRUCT at label qhpsbadapp.

• If none of the preceding steps yields any results then check the shell
processes. In particular pmqshell and pmqshell2. Most of the time these
threads should be waiting for a message to arrive. Any other state should be
transient.

This example is of a hang in the WorkPlace caused by a PM application fault.

First we check out whether the User_Sem is held, whether the system queue is
locked and if necessary who has the focus.

##db pmsemaphores+20 l20
9f3f:0000b4d4 50 4d 53 45 4d 00 00 00-00 00 00 00 00 00 00 00 PMSEM...........
9f3f:0000b4e4 00 00 00 00 00 00 00 00-03 00 01 80 00 00 00 00 ................
##dd pmqsyslock l1
9f3f:0000ed14 12d3128c
##dd %12d3128c
%12d3128c 12d31630 00000020 0000000a 12d31334
%12d3129c 12d31474 12d31334 12d31334 0000a400
%12d312ac 00000000 0000001a 00000009 00000012
%12d312bc 80030059 0097ec67 00000048 00000089
%12d312cc 00000001 12d3ff5c 00000000 00000010
%12d312dc 00000000 00000000 00000000 00000000
%12d312ec 00000000 00000000 00000000 00000000
%12d312fc 00000000 00000000 8000016e 00000000
##d
%12d3130c 0fe90000 00005453 00000325 00000000
%12d3131c 12d31228 0bff0002 00000000 00000000
%12d3132c 00000001 0000002e 00000000 00000000
%12d3133c 00000000 00000000 00000000 00000000
%12d3134c 00000000 00000000 00000000 00000000
%12d3135c 00000000 00000000 00000000 00000000
%12d3136c 00000000 00000000 00000000 00000000
%12d3137c 00000000 00000000 00000000 00000000
##.p2e
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 002e 001a 0002 001a 0009 blk 0500 ab911000 ab9c9408 ab9bc6c0 1ed0 12 turkey
##.s 2e
##.r
eax=80030059 ebx=00008000 ecx=00090000 edx=00000004 esi=ffffffff edi=12d3128c
eip=1bd0c8e1 esp=00293ea8 ebp=00090000 iopl=2 -- -- -- nv up ei pl zr na pe nc
cs=005b ss=0053 ds=0053 es=0053 fs=150b gs=0000 cr2=12d3028c cr3=001d4000
005b:1bd0c8e1 83c40c add esp,+0c
##ln
005b:1bd0c78c pmmerge:PM32BIT:SleepPmq + 155
005b:1bd0c940 CalcWakeBits - 5f

No one Owns the User_Sem since words at offsets +0x8 and +0xa are both
zero.
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We see that the system queue is held by slot 2e, who happens to be blocked in
PMMERGE which is waiting for message activity. We also notice that at MQ+44
there is a non-zero value, which indicates that this thread has called
WinSendMsg and is waiting for a response.

We investigate the WinSendMsg by examining the SMS pointed to by MQ+44

##dd %12d3ff5c
%12d3ff5c 00000000 12d3ff5c 00000000 00000000
%12d3ff6c 0097ec67 12d3128c 12d32cb4 00000000
%12d3ff7c 00000000 12d33168 00000071 00250016
%12d3ff8c 00000000 12d3ff5c 12d3ff5c 00000000
%12d3ff9c 00000000 0092e954 12d3910c 12d3ca34
%12d3ffac 00000000 00000002 12d34fac 00000407
%12d3ffbc 00000000 00000000 12d3ff90 12d3ff5c
%12d3ffcc 00000000 00000000 0092834a 12d3910c

The target MQ for the sent message is at offset +18, i.e. %12d32cb4

We find out who this is (the slot number is at MQ+a4).

##dd %12d32cb4
%12d32cb4 12d34940 00000020 0000000a 12d32d5c
%12d32cc4 12d32e9c 12d32d5c 12d32d5c 04002fff
%12d32cd4 04000400 0000001a 00000001 00000012
%12d32ce4 80030051 0093c378 00000000 00000000
%12d32cf4 00000000 00000000 00000000 00000010
%12d32d04 00000000 00000000 00000000 00000000
%12d32d14 00000000 00000000 00000000 00000000
%12d32d24 00000000 00000000 8000006c 00000000
##d
%12d32d34 0fe90000 00005453 00000325 00000000
%12d32d44 12d33304 0bff0000 00000000 12d3ff5c
%12d32d54 00000001 00000028 00000000 00000000
%12d32d64 00000000 00000000 00000000 00000000
%12d32d74 00000000 00000000 00000000 00000000
%12d32d84 00000000 00000000 00000000 00000000
%12d32d94 00000000 00000000 00000000 00000000
%12d32da4 00000000 00000000 00000000 00000000
##.p 28
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 0028 001a 0002 001a 0001 crt 0500 ab905000 ab9c9408 ab9bbaf0 1f10 12 turkey

Offset +a4 gives us the slot number which turns out to be another thread of the
turkey application. The status of this thread is crt. This indicates that some other
thread in the same process has entered critical section, furthermore slot 28
would be ready to run had it not been for the critical section thread. Clearly this
is why our application has hung the PM messaging function. The real culprit is
the user of critical section, who is it?

The PTDA contains the address of the TCB in critical section. The TCB offset +0
contains the thread id followed by the slot number.

##dd %ab9c9408+ptda_ptcbcritsec-ptda_start l1
%ab9c96e8 ab9bc6c0
##dd %ab9bc6c0 l1
%ab9bc6c0 002e0009
##.p 2e
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
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 002e# 001a 0002 001a 0009 blk 0500 ab911000 ab9c9408 ab9bc6c0 1ed0 12 turkey

Our application has perpetrated one, if not two, faults:

• First, we are using DosEnterCriticalSection in a PM application. This is a
very heavy-handed way of serializing and likely to impact PM message
processing, particularly if one of the other threads in the application holds
the system queue lock.

• Secondly and more seriously, the thread that has entered critical section has
subsequently called an API. The consequences of this are unpredictable and
can lead to a hang as illustrated. Furthermore, this would apply whether or
not the application was running in a PM environment.

How to Find the MQ of any Thread:

This example illustrates a basic technique for finding the MQ for a specific
thread.

We find the MQ for thread slot 8:
##.p8
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
*0008# 0004 0001 0004 0001 blk 0500 ab596000 ab9c7020 ab988bf0 1ed0 01 pmshell
##dd %ab988bf0 +74
%ab988c64 00000000 00070000 00041304 12d2ca34
%ab988c74 12d2ded8 00000000 00000000 00000000
%ab988c84 00000000 00000000 00000000 00000000
%ab988c94 00000000 00000000 00000000 00000000
%ab988ca4 00000000 00000000 00000000 00000000
%ab988cb4 00000000 00000000 00000000 00000000
%ab988cc4 00000000 00000000 00000000 00000000
%ab988cd4 00000000 00000000 00000000 00000000

The TCB address is found from the .P output.

Offset +0x74 into the TCB is the saved thread local memory area.

Offset +0x0c into the TLMA are the AAB registers.

The first is the last PM error to occur on this thread. In this case severity 4 error
code 1304.

The next doubleword is the PMQ.

We can verify this by displaying it and checking the offset +0a4 is the same
thread slot number.

Note: After fix-pack 7 the TCB in WARP is extended by 4 bytes. The TLMA
begins at TCB+0x78.

##dd %12d2ca34
%12d2ca34 00000000 00000020 00000064 12d2cadc
%12d2ca44 12d2d75c 12d2cd3c 12d2cd3c 80002fff
%12d2ca54 80008000 00000004 00000001 00000001
%12d2ca64 80030038 0032bd01 000000ce 00000050
%12d2ca74 00000001 00000000 00000000 00000010
%12d2ca84 12d2c974 00000000 00000000 00000000
%12d2ca94 00000000 00000000 00000000 00000000
%12d2caa4 00000000 00000000 80000006 00000006
##d
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%12d2cab4 00000000 00005453 0000024f 00000000
%12d2cac4 12d2c910 0bff0c02 00000000 00000000
%12d2cad4 00000001 00000008 80000007 00002f43
%12d2cae4 00000004 00000128 0000dc92 00010000
%12d2caf4 00000000 00000000 80000007 00002f43
%12d2cb04 00010001 00000128 0001168e 00010000
%12d2cb14 00000000 00000000 80000007 00002f43
%12d2cb24 00000004 00000128 0001168e 00010000

How to find the MQ of a BadApp Application:

This example illustrates how to find the MQ of the application that causes the
BadApp dialog to appear.

As discussed in “Application Not Responding to Messages Logic” on page 291
pmqsyslock , pmqfocus  and the User_Sem  PM semaphore owner will be reset
when the BadApp  dialog is displayed.

To find the MQ of the bad application under these circumstances we look at the
Query Hung Process Structure (QHPSTRCUT).

##db fbadappdialog l1
9f3f:0000035c 01 .
##dd pmqsyslock l1
9f3f:0000ed14 00000000
##dd pmqfocus l1
9f3f:0000e0fc 12d2b0f0
##dd %12d2b0f0
%12d2b0f0 12d2b344 00000020 0000000a 12d2b198
%12d2b100 12d2b2d8 12d2b198 12d2b198 00002fff
%12d2b110 00010001 00000004 0000000f 00000001
%12d2b120 8003004a 0032e98f 00000021 00000157
%12d2b130 00000001 00000000 00000000 00000000
%12d2b140 00000000 00000000 00000000 00000000
%12d2b150 00000000 00000000 00000000 00000000
%12d2b160 00000000 00000000 80000021 00000000
##d
%12d2b170 10ff0000 00005453 0000024f 00000000
%12d2b180 12d2b08c 0bff0002 00000000 00000000
%12d2b190 00000000 00000018 00000000 00000000
%12d2b1a0 00000000 00000000 00000000 00000000
%12d2b1b0 00000000 00000000 00000000 00000000
%12d2b1c0 00000000 00000000 00000000 00000000
%12d2b1d0 00000000 00000000 00000000 00000000
%12d2b1e0 00000000 00000000 00000000 00000000
##.p 18
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 0018 0004 0001 0004 000f blk 0500 ab5b6000 ab9c7020 ab98ab70 1ed0 01 pmshell

The fbadappdialog  is non-zero, which indicates that the BadApp  dialog has been
displayed.

The pmqsyslock  is not owned.

The pmqfocus  points to a shell thread, in fact the BadApp  dialog thread.

So we look at qhpsbadapp
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##dw qhpsbadapp l4
9f3f:0000e490 0002 000e 0008 0016

##.p
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 0001 0001 0000 0000 0001 blk 0100 ffe38000 ffe3aa04 ffe3a80c 1eb4 00 *ager
 0002 0001 0000 0000 0002 blk 0200 ab58a000 ffe3aa04 ab988020 1f3c 00 *tsd
 0003 0001 0000 0000 0003 blk 0200 ab58c000 ffe3aa04 ab988218 1f50 00 *ctxh
 0004 0001 0000 0000 0004 blk 081f ab58e000 ffe3aa04 ab988410 1f48 00 *kdb
 0005 0001 0000 0000 0005 blk 0800 ab590000 ffe3aa04 ab988608 1f20 00 *lazyw
 0006 0001 0000 0000 0006 blk 0800 ab592000 ffe3aa04 ab988800 1f3c 00 *asyncr
*0008# 0004 0001 0004 0001 blk 0500 ab596000 ab9c7020 ab988bf0 1ed0 01 pmshell
 000a 0004 0001 0004 0002 blk 0800 ab59a000 ab9c7020 ab988fe0 1ed4 01 pmshell
 000b 0004 0001 0004 0003 blk 0800 ab59c000 ab9c7020 ab9891d8 1ea8 01 pmshell
 000c 0004 0001 0004 0004 blk 0800 ab59e000 ab9c7020 ab9893d0 1ea8 01 pmshell
 000d 0004 0001 0004 0005 blk 0800 ab5a0000 ab9c7020 ab9895c8 1eb0 01 pmshell
 0010 0004 0001 0004 0006 blk 0200 ab5a6000 ab9c7020 ab989bb0 1edc 01 pmshell
 0011 0004 0001 0004 0007 blk 0200 ab5a8000 ab9c7020 ab989da8 1edc 01 pmshell
 0012 0004 0001 0004 0008 blk 0200 ab5aa000 ab9c7020 ab989fa0 1eb8 01 pmshell
 0007 0004 0001 0004 0009 blk 0200 ab594000 ab9c7020 ab9889f8 1ea8 01 pmshell
 0013 0004 0001 0004 000a blk 0800 ab5ac000 ab9c7020 ab98a198 1eb8 01 pmshell
 0014 0004 0001 0004 000b blk 0800 ab5ae000 ab9c7020 ab98a390 1eb8 01 pmshell
 0015 0004 0001 0004 000c blk 0800 ab5b0000 ab9c7020 ab98a588 1eb8 01 pmshell
 0016 0004 0001 0004 000d blk 0804 ab5b2000 ab9c7020 ab98a780 1ea8 01 pmshell
 0017 0004 0001 0004 000e blk 0804 ab5b4000 ab9c7020 ab98a978 1eb0 01 pmshell
 0018 0004 0001 0004 000f blk 0500 ab5b6000 ab9c7020 ab98ab70 1ea8 01 pmshell
 001a 0004 0001 0004 0010 blk 0200 ab5ba000 ab9c7020 ab98af60 1ed0 01 pmshell
 0009 0005 0004 0005 0001 blk 0800 ab598000 ab9c761c ab988de8 1eb4 00 harderr
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 000e 0005 0004 0005 0002 blk 0800 ab5a2000 ab9c761c ab9897c0 1ebc 00 harderr
 000f 0005 0004 0005 0003 blk 0800 ab5a4000 ab9c761c ab9899b8 1eb8 00 harderr
 0019 0007 0004 0007 0001 blk 0500 ab5b8000 ab9c8214 ab98ad68 1ed0 11 pmshell
 001c 0007 0004 0007 0002 blk 0800 ab5be000 ab9c8214 ab98b350 1edc 11 pmshell
 001d 0007 0004 0007 0003 blk 080a ab5c0000 ab9c8214 ab98b548 1edc 11 pmshell
 001e 0007 0004 0007 0004 blk 0800 ab5c2000 ab9c8214 ab98b740 1ed0 11 pmshell
 0020 0007 0004 0007 0005 blk 0800 ab5c6000 ab9c8214 ab98bb30 1edc 11 pmshell
 0021 0007 0004 0007 0006 blk 0200 ab5c8000 ab9c8214 ab98bd28 1edc 11 pmshell
 0025 0007 0004 0007 0007 blk 0200 ab5d0000 ab9c8214 ab98c508 1ed0 11 pmshell
 0026 0007 0004 0007 0008 blk 0200 ab5d2000 ab9c8214 ab98c700 1edc 11 pmshell
 0027 0007 0004 0007 0009 blk 0200 ab5d4000 ab9c8214 ab98c8f8 1edc 11 pmshell
 0029 0007 0004 0007 000b blk 0300 ab5d8000 ab9c8214 ab98cce8 1ed0 11 pmshell
 002a 0007 0004 0007 000c blk 021f ab5da000 ab9c8214 ab98cee0 1eac 11 pmshell
 002b 0007 0004 0007 000d blk 0200 ab5dc000 ab9c8214 ab98d0d8 1eb8 11 pmshell
 002f 0007 0004 0007 000e blk 0800 ab5e4000 ab9c8214 ab98d8b8 1ed0 11 pmshell
 001b 0006 0004 0006 0001 blk 0200 ab5bc000 ab9c7c18 ab98b158 1f00 10 pmspool
 001f 0006 0004 0006 0002 blk 0200 ab5c4000 ab9c7c18 ab98b938 1edc 10 pmspool
 0022 0006 0004 0006 0003 blk 0200 ab5ca000 ab9c7c18 ab98bf20 1e6c 10 pmspool
 0023 0006 0004 0006 0004 blk 0200 ab5cc000 ab9c7c18 ab98c118 1edc 10 pmspool
 0024 0006 0004 0006 0005 blk 0200 ab5ce000 ab9c7c18 ab98c310 1edc 10 pmspool
 0028 0008 0004 0008 0001 blk 0200 ab5d6000 ab9c8810 ab98caf0 1ed0 12 cometrun
 002c 0008 0004 0008 0002 blk 0801 ab5de000 ab9c8810 ab98d2d0 1edc 12 cometrun
 002d 0009 0004 0009 0001 blk 0200 ab5e0000 ab9c8e0c ab98d4c8 1ed0 13 fpwmon
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 002e 000b 0004 000b 0001 blk 0400 ab5e2000 ab9c9408 ab98d6c0 1eb8 15 cmd
 0030 000e 0004 000e 0001 blk 0200 ab5e6000 ab9c9a04 ab98dab0 1ed0 16 turkey
 0034 000e 0004 000e 0002 blk 0200 ab5ee000 ab9c9a04 ab98e290 1ed0 16 turkey
 0038 000e 0004 000e 0003 blk 0200 ab5f6000 ab9c9a04 ab98ea70 1ed0 16 turkey
 0037 000e 0004 000e 0004 blk 0200 ab5f4000 ab9c9a04 ab98e878 1ed0 16 turkey
 0031 000e 0004 000e 0005 blk 0200 ab5e8000 ab9c9a04 ab98dca8 1ed0 16 turkey
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 0032 000e 0004 000e 0006 blk 0200 ab5ea000 ab9c9a04 ab98dea0 1ed0 16 turkey
 0033 000e 0004 000e 0007 blk 0200 ab5ec000 ab9c9a04 ab98e098 1ed0 16 turkey
 0035 000e 0004 000e 0008 crt 0500 ab5f0000 ab9c9a04 ab98e488 1f10 16 turkey
 0036 000e 0004 000e 0009 blk 0500 ab5f2000 ab9c9a04 ab98e680 1ed0 16 turkey
 0039 000e 0004 000e 000a blk 0200 ab5f8000 ab9c9a04 ab98ec68 1ed0 16 turkey
 003a 000e 0004 000e 000b blk 0200 ab5fa000 ab9c9a04 ab98ee60 1ed0 16 turkey
 003b 000e 0004 000e 000c blk 0200 ab5fc000 ab9c9a04 ab98f058 1ed0 16 turkey
 003c 000e 0004 000e 000d blk 0200 ab5fe000 ab9c9a04 ab98f250 1ed0 16 turkey
 003d 000e 0004 000e 000e blk 0200 ab600000 ab9c9a04 ab98f448 1ed0 16 turkey
 003e 000e 0004 000e 000f blk 0200 ab602000 ab9c9a04 ab98f640 1ed0 16 turkey

The QHPSTRUCT shows Tid 8, Pid e, flags 2 and SGID 16

.P shows this to be slot 35.

If we use the technique described in “How to Find the MQ of any Thread” on
page 308 we will find the MQ for the bad application.

Finding Application and System Queue Elements:

This example shows how to find the queue element on both the system queue
and an application queue.

A similar technique applies to both types of queue. The system queue header is
located from the address at psysqueue. Location of application queue headers
has been discussed in “How to Find the MQ of any Thread” on page 308.

The queue header contains the current read and write pointers, the queue
element length and number of elements queued.

We illustrate this with the system queue in the following example:

##dd psysqueue l1
deff:00000000 1bdf0ac0
##dd %1bdf0ac0
%1bdf0ac0 00000000 0030001e 00000078 1bdf0ae4
%1bdf0ad0 1bdf18f4 1bdf1840 1bdf0fd0 00060000
%1bdf0ae0 00070007 00000072 00510196 000002fe
%1bdf0af0 00342420 1c0a9c00 01040040 00335362
%1bdf0b00 00700040 015c0000 000000c1 26cf0000
%1bdf0b10 1c000034 00401c0a 53c00104 00000033
%1bdf0b20 00000071 00c1015c 000082fe 003426cf
%1bdf0b30 1c0a9c00 01040040 003353ff 00700040
##dw %1bdf1840
%1bdf1840 0070 0000 0134 0050 0000 0000 1616 0034
%1bdf1850 8e00 0e7f 0040 0104 50f1 0033 0040 0071
%1bdf1860 0000 0134 0050 82fe 0000 172f 0034 1c00
%1bdf1870 1c0a 0040 0104 51cc 0033 0000 0072 0000
%1bdf1880 0134 0050 02fe 0000 180a 0034 9c00 1c0a
%1bdf1890 0040 0104 522a 0033 0040 0070 0000 019f
%1bdf18a0 0052 0000 0000 22c8 0034 1c00 1c0a 0040
%1bdf18b0 0104 5268 0033 0000 0071 0000 019f 0052
##

MQ+0x4 tells us 0x30 elements are queued, of length 0x1e bytes each.
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MQ+0x14 is the current read pointer.

Displaying the queue from the current read pointer we can read off the first few
message IDs since they are located at +0x0 of each entry: 70, 71, 72 and so on.

In an application queue the element length is 0x20.

14.1.3.8 PM Worked Examples under OS/2 2.x
Dealing with PM application problems under OS/2 2.x is similar to WARP. The
principle difference being that the messaging and windowing function in PM is
provided by the 16-bit DLL, PMWIN.DLL.

Most of the message structures are analogous to those of PMMERGE.DLL, their
layouts are similar.

Under PMWIN.DLL most pointers are either offsets from a predefined segments
or selectors. Thus where there are double-word pointers in PMMERGE.DLL
structures, there are word length fields in PMWIN.DLL.

The following three symbol files are required for debugging PM applications
problems under OS/2 2.x:

• PMWIN.SYM

• PMGRE.SYM

• PMSHAPI.SYM

A selection of useful symbols in the OS/2 2.x PM environment, with their
equivalent OS/2 3.0 is listed below:

OS/2 3.0 OS/2 2.x

pmqlist smqlist

pmqsyslock smqsyslock

pmqfocus smqfocus

pmqshell smqshell

pmqshell2 smqshell2

pwndfocus pwndfocus

fBadAppDialog fBadAppDialog

qhpsBadApp qhpsBadApp

Another significant difference between the two environments is in the calling
conventions:

• PMMERGE APIs use the 32-bit C calling convention.

• PMWIN APIs use the 16-bit Pascal calling convention.

In effect this means that parameters on stacks and in some control blocks, are
stored in reverse order.

There are four symbols that do not have equivalents in PMMERGE, these are:

winsel The selector for the AAB regs segment for a process.
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selsms The selector for the SMS segment.

vphheapwnd The table of WND heap pointers.

fsrsuser The PM FastSafe RAMSEM, which is equivalent to the
User_Sem PM Semaphore of PMMERGE.

We now run through a brief sequence of examples that illustrate:

“Finding an MQ and AAB Registers.”

“Finding an SMS from an MQ” on page 314.

“Finding a WND from an HWND” on page 315.

“Finding a BadApp Process and MQ” on page 317.

“Finding the System Queue” on page 317.

Finding an MQ and AAB Registers:

##.s 8
##.p 8
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
*0008# 0006 0001 0006 0001 blk 0500 7b936000 7bb460d0 7bb28a58 1eb8 01 pmshell
##dw winsel l1
fd17:00000032 003f
##dd 3f:0
003f:00000000 00000000 00000000 00000000 00000000
003f:00000010 00081037 0000ebe7 ff3f0000 00000000
003f:00000020 00000000 00000000 00000000 00000000
003f:00000030 00000000 00000000 00000000 00000000
003f:00000040 00000000 00000000 00000000 00000000
003f:00000050 00000000 00000000 00000000 00000000
003f:00000060 00000000 00000000 00000000 00000000
003f:00000070 00000000 00000000 00000000 00000000
##d
003f:00000080 00000000 00000000 00000000 00000000
003f:00000090 00000000 0000e92f 00000000 00000000
003f:000000a0 00000000 0000f827 00000000 00000000
003f:000000b0 00000000 0000e957 00000000 00000000
003f:000000c0 00000000 0000e94f 00000000 00000000
003f:000000d0 00081001 0000f81f e8ff0000 00000000
003f:000000e0 00000000 00000000 00000000 00000000
003f:000000f0 00000000 0000e947 00000000 00000000
##dd ebe7:0
ebe7:00000000 001a0000 00640000 0aaa0082 06e806e8
ebe7:00000010 80002fff 80018001 00010006 06d60001
ebe7:00000020 bf5108b3 02252549 016a0000 00010000
ebe7:00000030 00000000 00000004 00000000 00000000
ebe7:00000040 00000000 00000000 00000000 00000000
ebe7:00000050 00000000 00000000 09d70000 000023cc
ebe7:00000060 00000010 54530000 0000022a 018c0000
ebe7:00000070 1802ec6f 00000bff 00010000 00080000
##dw ebe7:0
ebe7:00000000 0000 001a 0000 0064 0082 0aaa 06e8 06e8
ebe7:00000010 2fff 8000 8001 8001 0006 0001 0001 06d6
ebe7:00000020 08b3 bf51 2549 0225 0000 016a 0000 0001
ebe7:00000030 0000 0000 0004 0000 0000 0000 0000 0000
ebe7:00000040 0000 0000 0000 0000 0000 0000 0000 0000
ebe7:00000050 0000 0000 0000 0000 0000 09d7 23cc 0000
ebe7:00000060 0010 0000 0000 5453 022a 0000 0000 018c
ebe7:00000070 ec6f 1802 0bff 0000 0000 0001 0000 0008
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WinSel gives the AAB segment selector.

Note:

WinSel is allocated in instance data, so must be viewed from a thread slot
of the process in question.

Each entry is 0x10 bytes, one for each thread of the process.

The first entry is reserved.

The first doubleword of each entry is the past PM error for that thread and the
second doubleword contains the selector for the MQ of that thread.

The key fields of interest in the MQ are:

Offset Description

+0x0 chain pointer

+0x2 Queue element length

+0x4 number of elements queued

+0x6 Queue depth

+0x8 Top of queue

+ 0 x a Bottom of queue

+ 0 x c Current read pointer

+ 0 x e Current write pointer

+ 1 8 Pid

+ 1 a Tid

+ 1 c SGID

+ 3 0 SMS on which we are waiting a response

+ 3 2 SMS currently dispatched to our window procedure

+ 7 8 SMS at head of received list

+ 7 e thread slot id

Finding an SMS from an MQ

##dw smqsyslock l1
fd9f:000003d4 e55f
##dw e55f:0
e55f:00000000 e567 001a 0000 000a 0082 0186 0082 0082
e55f:00000010 a400 0006 0006 0006 003d 0009 001e 072a
e55f:00000020 08b3 db25 2549 00f5 0000 005d 0000 0001
e55f:00000030 0094 0000 0010 0000 0000 0000 0000 0000
e55f:00000040 0000 0000 0000 0000 0000 0000 0000 0000
e55f:00000050 0000 0000 0000 0000 0000 0000 4d24 0000
e55f:00000060 0000 0000 ec37 5453 061c 0000 0000 6c4c
e55f:00000070 ec6f 0002 0bff 0000 0000 0001 0000 0048
##.s 48
##.p 48
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
 0048# 003d 0006 003d 0009 blk 0500 7b9b6000 7bb51cc4 7bb2f758 1eb8 1e turkey
##dw selsms l1

314 OS/2 Debugging 



fd9f:00001c2a ec5f
##dw ec5f:94
ec5f:00000094 0000 0094 0000 0000 db25 2549 e55f e557
ec5f:000000a4 0000 0000 0020 0000 0000 0023 002b 0071
ec5f:000000b4 6d2c ec6f 0001 0024 0000 0000 3ae8 253a
ec5f:000000c4 e8df ebe7 0000 0000 0002 1b70 0410 0005
ec5f:000000d4 0000 0051 156c ec6f 0001 0038 01a8 0008
ec5f:000000e4 003c 003c 0082 0172 0000 0000 712c 1ec0
ec5f:000000f4 0172 0082 003c 003c 0172 0082 01ae 00be
ec5f:00000104 0000 0000 0000 0000 0002 0045 0003 0000

##dw e557:0
e557:00000000 e55f 001a 0000 000a 0082 0186 0082 0082
e557:00000010 2fff 0400 0400 0400 003d 000a 001e 072e
e557:00000020 08b3 98f9 2529 0000 0000 0000 0000 0000
e557:00000030 0000 0000 0010 0000 0000 0000 0000 0000
e557:00000040 0000 0000 0000 0000 0000 0000 0000 0000
e557:00000050 0000 0000 0000 0000 0000 0000 4dc0 0000
e557:00000060 0000 0000 ec37 5453 061c 0000 0000 6ce0
e557:00000070 ec6f 0002 0bff 0000 0094 0001 0000 0049

The thread with the system queue locked is waiting for a response to
WinSendMsg. MQ+0x30 has the sent SMS offset.

The SMS selector is found from selsms.

The key fields in the SMS are:

Offset Description

+0x0 Chain pointer offset

+ 0 x c Sending MQ selector

+ 0 x e Receiving MQ selector

+0x1a Message Parameter 2

+0x1c Message Parameter 1

+0x1e Message Id

+0x20 Offset to WND

+0x22 Selector to WND

In this example the message has been sent to slot 49.

We see that the message has yet to be dispatched since it is still queued on the
receive list (MQ+0x78).

Finding a WND from an HWND

##dw hwnddesktop l2
fd9f:0000053a 013c 0020

##dw vphheapwnd l2
fd9f:00001610 00ae ec6f
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##dw ec6f:ae
ec6f:000000ae 0000 ec6f 0000 0000 0000 0000 0000 0000
ec6f:000000be 0000 0000 0000 0000 0000 0000 0000 0000
ec6f:000000ce 0000 0000 0000 0000 0000 0000 0000 0000
ec6f:000000de 0000 0000 0000 0000 0000 0000 0000 0000
ec6f:000000ee 0000 0000 0044 0000 0000 0000 0000 7098
ec6f:000000fe ec6f 0000 0000 0000 0000 0000 0000 0000
ec6f:0000010e 0000 0000 0000 1ffc 0000 ebe7 0010 165e
ec6f:0000011e fd2f 0065 1fad 0000 0000 0000 0000 0000

##dw ec6f:13c
ec6f:0000013c 0000 0000 0000 0000 1250 ec6f 0000 0000
ec6f:0000014c 0000 0000 0400 0300 0004 0000 a000 0000
ec6f:0000015c 1fd8 0000 ebe7 0020 3a24 fd4f 0065 1fad
ec6f:0000016c 0000 0000 0000 0000 0000 0000 0000 0000
ec6f:0000017c 0000 0000 0000 0000 0000 0000 0000 0048
ec6f:0000018c 0354 ec6f 00f4 ec6f 0000 0000 0000 0000
ec6f:0000019c 0000 0000 0000 0000 0000 0000 8000 0000
ec6f:000001ac 1e4c 0000 ebe7 0030 1d42 fd2f 0065 1fad

In this example we find the WND for the desktop from the HWND which is stored
at hwnddesktop.

The HWND comprises an offset then concatenated with an identifier, the low
order nibble of which is a heap index. Thus, for the desktop:

##dw hwnddesktop l2
fd9f:0000053a 013c 0020

. . .

. . .

. . .
offset... . .
id............ .
index............

vphheapwnd points to a table of heaps. Each entry is a far pointer and there are
at most 16. The index nibble of the HWND is used to select the heap pointer. In
this example there is just one entry: ec6f:0000

We use the offset from the HWND with the heap selector to get the PWND. In
this case ec6f:13c.

The key fields of interest in the WND are:

Offset Description

+0x0 Next Sibling WND far pointer

+0x4 Parent WND far pointer

+0x8 Child WND far pointer

+ 0 x c Owner WND far pointer

+0x24 MQ selector that services this window

+0x26 ID and Index portion of the HWND for this WND.

+0x28 16-bit far pointer to the Window Procedure.

+0x2c 32-bit pointer to the Window Procedure.
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Finding a BadApp Process and MQ

##db fbadappdialog l1
%1f8d07ae 01 .
##dw qhpsbadapp
%1f8d16b8 0002 003d 000a 001e 000c 0000 0000 0000
%1f8d16c8 0000 0000 0000 0000 0000 0000 0000 0000
%1f8d16d8 0000 0000 0000 0000 0000 0000 0000 0000
%1f8d16e8 0000 0000 0000 0000 0000 0000 0000 0000
%1f8d16f8 0000 0000 0000 0000 0000 0000 0000 0000
%1f8d1708 0000 0000 0000 0000 0000 0000 0000 0000
%1f8d1718 0000 0000 0000 0000 0000 0000 0000 0000
%1f8d1728 0000 0000 0000 0000 0000 0000 0000 0000

The fields of the QHPSTRUCT are in the same order to the PMMERGE version:

Offset Description

+0x0 Flags

+0x2 Pid

+0x4 Tid

+0x6 SGID

Finding the System Queue

##dw mqhsysqueue
fd87:00000000 0000 001c 001a 0078 0ad6 17f6 0ee2 11ba
fd87:00000010 0000 0006 0007 0007 0000 0001 0001 ebe7
fd87:00000020 06d6 0008 0ba5 0000 0000 e55f 072a 0048
fd87:00000030 000f 000b 0002 0000 0300 0000 0000 0000
fd87:00000040 0000 fffe ee6f 2549 0000 0000 0000 0588
fd87:00000050 0339 032c 00ac 00bc 00cc 00dc 00ec 00fc
fd87:00000060 010c 012c 011c 013c 014c 015c 0000 0000
fd87:00000070 0000 0000 0000 0000 0000 0000 0000 0000
##dw ee2
fd87:00000ee2 0072 00f5 005d 02fe 0000 dbc2 2549 8000
fd87:00000ef2 0000 8000 0000 9150 08a8 08a8 0070 0032
fd87:00000f02 00ec 0000 0000 dfaa 2549 0000 c3b7 fff6
fd87:00000f12 2002 0000 0012 08a8 0071 0032 00ec 83fe
fd87:00000f22 0000 e007 2549 fff6 2002 0000 0012 08a8
fd87:00000f32 e007 08a8 0072 0032 00ec 03fe 0000 e065
fd87:00000f42 2549 2006 0000 0016 0000 2006 08a8 08a8
fd87:00000f52 0071 0032 00ec 82fe 0000 e0c3 2549 0000

mhsysqueue points directly at the system queue.

The queue pointers are offsets from the same segment as the MQ.

The current read pointer at +0x0e, is 0x0ee2.

The queue entry length at +0x02, is 0x001c.

Displaying the queue from the read pointer shows the first few elements queued
are for message IDs, 72, 70, 71, 72 and so on.

Each entry on the system queue is a SQMSG. The key fields are:
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Offset Description

+0x0 Message ID

+0x2 Message Parameter 1

+0x6 Message Parameter 2

For an application queue, the entries are QMSG structures. the key fields of
these are:

Offset Description

+0x0 HWND

+0x4 Message Id

+0x8 Message Parameter 1

+ 0 x c Message Parameter 2

14.1.4 Dump Analysis of Loops in Ring 0 Code
Ring zero loops can sometimes be successfully analyzed from a dump. The trick
is knowing how to locate the register set at the time the dump was taken.

The Dump Formatter only implements the .R command, which obtains the
registers from a stack frame on the thread′s ring 0 stack. Under the kernel
Debugger there is no problem: the R command will display the current system
registers.

Note:

If a thread never runs in User Mode, such as the internal Pid 0 threads
then a stack frame is never built and .R will be unsuccessful in formatting
the registers.

Fortunately there is a way of obtaining the current registers:

When a dump is initiated using Ctrl-Alt-NumLock-NumLock a keyboard
interrupt is initiated by the processor hardware.

Via the IDT control passes to the interrupt router who is responsible for
switching to the interrupt stack before passing control to the appropriate
interrupt handler.

The interrupt router checks to see if the system is already running from the
interrupt stack.

If it isn′ t then an interrupt stack frame is built on the current stack and
the stack frame pointer is saved in fpoldstack. Then the SS selector is
switched to the interrupt stack selector (E8).

If it is then a nested interrupt has occurred and the interrupt stack frame
is built on the interrupt stack itself.

It is from fpoldstack that we are able to obtain the registers before any interrupt
occurred. The following debug log illustrates this and many of the techniques
previously discussed.
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14.1.4.1 Ring 0 Loop Dump Analysis Example
This example finds a loop in a file system driver from a system dump. For
reference, we note the format of the interrupt stack frame as pointed by
fpoldstack as follows:

+0x0 Current interrupt level when prior to interrupt.

+0x4 GS

+0x8 FS

+ 0 x c ES

+0x10 DS

+0x14 EDI

+0x18 ESI

+0x1c EBP

+0x20 padesp

+0x24 EBX

+0x28 EDX

+0x2c ECX

+0x30 EAX

+0x34 pad

+0x3c EIP

+0x40 CS

+0x44 EFLAG

+0x48 ESP

+0x4c SS

+0x4c SS

>>Who′ s the current thread?
# .p*
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name
*00a3# 006c 000a 006c 0001 run 0200 7b720000 7bb025c0 7ba8f9e0 0894 25 FRNOLBMG

>>Probably a loop of some kind, could be a hot I/O or even dispatcher
bug (unlikely).

>> Where are we?
# .r
eax=001fe624 ebx=00002022 ecx=00000029 edx=00000007 esi=00000000 edi=0003e77c
eip=00000179 esp=0003e624 ebp=0003e68c iopl=2 -- -- -- nv up ei pl nz na po nc
cs=d02f ss=001f ds=0053 es=0053 fs=150b gs=0000 cr2=00000000 cr3=001bb000
d02f:00000179 66ea4102021a5b00 jmp 005b:1a020241
# .m

*har par cpg va flg next prev link hash hob hal
 00b1 %fee13f40 00000010 %1a050000 3d9 00b0 00b2 0000 0000 00bd 0000 hco=02c2c
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 00bd 00b1 0000 0838 00bb 00bb 0000 00 00 00 00 shared c:doscall1.dll
 hco=2c2c pco=ffe71cf7 hconext=02c20 hptda=18c9 f=1c pid=00bc c:cmd.exe

>> We are in DOSCALL1. Let′ s see what function was called.
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# dw ss:bp
001f:0000e68c e6bc 0003 ae60 1a02 e77c 0003 e728 0003
001f:0000e69c e70c 0003 0000 0000 0000 0000 0010 0000
001f:0000e6ac 2022 0000 0000 0000 28a4 111b e697 0003
001f:0000e6bc e740 0003 4a6d 1113 e77c 0003 e728 0003
001f:0000e6cc e70c 0003 0000 0000 0000 0000 0010 0000
001f:0000e6dc 2022 0000 0000 0000 0010 0000 ab18 1111
001f:0000e6ec e77c 0003 0002 0000 0000 0000 0000 0000
001f:0000e6fc 0001 0000 0007 0000 0000 0000 0180 0000

# ln %11134a6d
No Symbols Found

# .m %11134a6d

*har par cpg va flg next prev link hash hob hal
 0e82 %fee26f36 00000030 %11110000 3d9 09af 09f1 0000 0000 15b1 0000 hco=02c17
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 15b1 0e82 0000 0838 08fe 08fe 0000 00 00 00 00 shared c:frnococl.dll
 hco=2c17 pco=ffe71c8e hconext=02de0 hptda=1938 f=1c pid=00bb c:frnosa.exe

# .lmo 8fe
hmte=08fe pmte=%fdef0c68 mflags=4498b186 c:\frnv1r0\dll\frnococl.dll
obj vsize vbase flags ipagemap cpagemap hob sel
0001 00026ee8 11110000 80002025 00000001 00000027 15b1 888f r-x shr big
0002 0000001f 11180000 80001025 00000028 00000001 0caf 88c7 r-x shr alias
0003 00000030 11190000 80002025 00000029 00000001 15a4 88cf r-x shr big
0004 00000008 111a0000 80001003 0000002a 00000000 0000 88d7 rw- alias
0005 00004e74 111b0000 80002003 0000002a 00000005 0000 88df rw- big

# u %11134a6d-10%11134a5d 085657 or byte ptr [esi+57],dl
%11134a60 6a00 push +00
%11134a62 51 push ecx
%11134a63 8b4dac mov ecx,dword ptr [ebp-54]
%11134a66 52 push edx
%11134a67 51 push ecx
%11134a68 e8af63ef08 call %1a02ae1c
%11134a6d 8bc8 mov ecx,eax
%11134a6f 8b45ac mov eax,dword ptr [ebp-54]
%11134a72 83c420 add esp,+20 ;′  ′
%11134a75 894ddc mov dword ptr [ebp-24],ecx
%11134a78 83f904 cmp ecx,+04

# ln %1a02ae1c
%1a02ae1c DOSCALL1 DOS32OPEN

>> So we′ re in DOSOPEN

>> We′ ve almost certainly call-gated into the kernel.
>> Check this out ...

# u cs:eip -10
d02f:00000169 268805 mov byte ptr es:[di],al
d02f:0000016c 8bc3 mov ax,bx
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d02f:0000016e 8cc2 mov dx,es
d02f:00000170 5f pop di
d02f:00000171 c9 leave
d02f:00000172 c3 ret
d02f:00000173 90 nop
d02f:00000174 9a00000a1b call 1b0a:0000
d02f:00000179 66ea4102021a5b00 jmp 005b:1a020241
d02f:00000181 9a00001a1b call 1b1a:0000
d02f:00000186 66ea3b05021a5b00 jmp 005b:1a02053b
d02f:0000018e 9a0000631b call 1b63:0000
# dg 1b0a
1b0a CallG32 Sel:Off=0148:0000529f DPL=3 P DWC=8
# ln 148:529f
0148:0000529f OS2KRNL DOSOPEN2
#

>> Yes, that′ s where we are.
>> Now let′ s see if we can find out where in R0 DOSOPEN has got...

# dw interruptlevel l1
0400:00006382 0000
# dd currintlevel l1
0148:0000529f OS2KRNL DOSOPEN2
#
>> So, no nested interrupts, but we are handling one
>> (interruptlevel=0000).
>> The current interrupt came from IRQ 1 (currintlevel=1)
>> So a keyboard interrupt, not surprising because the customer was
>> asked to take a dump using ctrl-alt-numlock-numlock, furthermore
>> he obeyed!

>> Lets look at the interrupt stack saved by the interrupt router
>> (prior to switching stacks).

# dd fpoldstack l2
%fff27310 00004b0c 00000030

>> So, the Interrupt Stack Frame maps the frame at 30:4b0c

# dw 30:4b0c
0030:00004b0c ffff ffff 0000 0000 03b8 0000 2410 0000
0030:00004b1c 23f8 0000 4c66 7b61 0000 7b61 4b5e 0003
0030:00004b2c 4b40 0000 0000 0000 24d0 0000 ffff 0000
0030:00004b3c 0000 0000 0000 0000 0000 0000 be93 0000
0030:00004b4c 23d0 0000 2292 0000 23f8 0000 006c 0000
0030:00004b5c 00a3 4b8c b541 23d0 23f8 0000 4c66 0000
0030:00004b6c 4baa 0029 2b00 0000 0004 0001 2101 2d76
0030:00004b7c 0001 0094 0022 003f 0000 0000 20d4 4be8

>> bp is at +1c, sp at +20, cs at +40, eip at +3c
>> We took the dump at when cs:eip=23d0:be93
>> who is this?

# .m 23d0:0

*har par cpg va flg next prev link hash hob hal
 0021 %fee132e0 00001400 %fc953000 121 0020 0022 0000 0020 0022 0000 =0000
 hob har hobnxt flgs own hmte sown,cnt lt st xf
 0022 0021 0000 0225 ffef 0000 0000 00 04 00 00 vmkshrw
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>> 23d0 is allocated out of the Kernel Swappable Read/Write heap.
>> Lets see who owns this heap block. Need to look at the VMKSHB
>> shared heap block header...

# dg 23d0
23d0 Code Bas=fca15000 Lim=0000ff5f DPL=0 P RE A
# dw %face15000-10
%fca14ff0 0000 0000 0000 0000 ff68 5200 ff4d 23d0
%fca15000
Invalid linear address: %fca15000

>> VMKSHB is an 8 byte prefix of the form:
>> ulong size || 0x520000
>> ushort hob
>> ushort sel

>> check the owner hob

# .mo ff4d
ff4d fsd6
#

>> This was allocated by/for the 6th loaded FSD.
>> N.B fsd8 is used for the 8th and subsequent FSDs
>> in the same way dd16 is used for the 16th and subsequent
>> device driver.

>> Who is fsd6?
>> There are two ways to home in on this.

>> First method.
>> List all library modules (includes DLLs IFSs FONs etc)

# .lml
hmte=18e2 pmte=%fe1a1000 mflags=0498b188 c:\frnv1r0\dll\frnolgar.dll
hmte=193e pmte=%fe1a13ac mflags=0498b188 c:\frnv1r0\dll\frnosars.dll
hmte=18fd pmte=%fe1a18d4 mflags=4498b186 c:\frnv1r0\dll\frnofo2.dll
hmte=1933 pmte=%fe1a194c mflags=4498b186 c:\frnv1r0\dll\frnofios.dll
hmte=18f2 pmte=%fdebd1c4 mflags=4498b186 c:\frnv1r0\dll\frnoutil.dll
hmte=0fc7 pmte=%fdedf550 mflags=4498b1c6 c:\frnv1r0\dll\frnollmn.dll
.
.
>> 200 hundred lines later
.
.
hmte=0b0a pmte=%fe0bb6f8 mflags=0408b1c8 c:\cmlib\dll\acshpres.dll
hmte=0af9 pmte=%fe0bb864 mflags=0408b1c8 c:\cmlib\redj.pml
hmte=0af6 pmte=%fe0bb8f0 mflags=0408b1c8 c:\cmlib\redj.pdl
hmte=08f7 pmte=%fe0bcf8c mflags=0408b1c8 c:\cmlib\redj2.pml
hmte=094d pmte=%fe11dc44 mflags=0408b1c8 c:\cmlib\redj2.pdl
hmte=0a8a pmte=%fe098ea4 mflags=0408b1c8 c:\cmlib\cm20sys.pml
hmte=0a87 pmte=%fe098f5c mflags=0408b1c8 c:\cmlib\cm20sys.pdl
hmte=04c7 pmte=%fde5ff60 mflags=0498b1c8 c:\os2\dll\times.fon
hmte=04c5 pmte=%fde5fa7c mflags=0498b1c8 c:\os2\dll\helv.fon
hmte=04c3 pmte=%fde5fb44 mflags=0498b1c8 c:\os2\dll\courier.fon
hmte=04c1 pmte=%fde5fbb4 mflags=0498b1c8 c:\os2\dll\sysmono.fon
hmte=04b9 pmte=%fde5fc8c mflags=4498b1c5 c:\os2\dll\pmatm.dll
hmte=0324 pmte=%fe134f54 mflags=0428a1c9 d:\ibm3995\demoifs.ifs

322 OS/2 Debugging 



hmte=02ff pmte=%fe0fff90 mflags=0428a1c9 c:\netw\nwifs.ifs
hmte=01b9 pmte=%fe0dbcb4 mflags=0428a1c9 c:\showcase\sdcfs.ifs
hmte=0109 pmte=%fe0befa0 mflags=0428a1c9 c:\os2\cdfs.ifs
hmte=00e0 pmte=%fde46d3c mflags=0428a1c9 c:\os2\hpfs.ifs
hmte=0076 pmte=%fde14f68 mflags=0428a1c9 a:\mini_fsd.fsd

>> FSDs were installed in order, 76, e0, 109, 1b9, 2ff and 324.

>> fsd6 is therefore hmte=324. Lets check for certain:

# .lmo 324
hmte=0324 pmte=%fe134f54 mflags=0428a1c9 d:\ibm3995\demoifs.ifs
seg sect psiz vsiz hob sel flags
0001 0003 d7ba d7ba 0000 2398 8d60 code shr prel rel
0002 0070 2325 2325 0000 23a0 8d60 code shr prel rel
0003 0083 ec66 ec66 0000 23a8 8d60 code shr prel rel
0004 00fa f7a6 f7a6 0000 23b0 8d60 code shr prel rel
0005 0176 b1e4 b1e4 0000 23b8 8d60 code shr prel rel
0006 01d0 f3e6 f3e6 0000 23c0 8d60 code shr prel rel
0007 024b eeda eeda 0000 23c8 8d60 code shr prel rel
0008 02c3 ff60 ff60 0000 23d0 8d60 code shr prel rel
0009 0343 fe82 fe82 0000 23d8 8d60 code shr prel rel
000a 03c3 4b4e 4b4e 0000 23e0 8d60 code shr prel rel
000b 03e9 002a 002a 0000 23e8 8c60 code shr prel
000c 03ea 4298 4298 0000 23f0 8d60 code shr prel rel
000d 040c 9dfd 9dfe 0000 23f8 8d41 data prel rel
000e 0000 0000 1964 0000 2400 8c41 data prel
000f 0000 0000 fe88 0000 2408 8c41 data prel
0010 0000 0000 d75e 0000 2410 8c41 data prel

>> and yes we find selector 23d0 in object 8 of demoifs.ifs

>> Second method
>> We could approach this from the FSC control block, which is similar
>> in purpose to the DD header chain.
>> The FSC is a table of FSD entry point tables. We might spot the
>> selector in question being referenced in the FSC. If not, we can
>> unwind the R0 stack until we do find a reference.

>> First the FSC. Dump the SAS for the FSC selector

# .a
--- SAS Base Section ---

SAS signature: SAS
offset to tables section: 0016

FLAT selector for kernel data: 0158
offset to configuration section: 001E
offset to device driver section: 0020
offset to Virtual Memory section: 002C

offset to Tasking section: 005C
offset to RAS section: 006E

offset to File System section: 0074
offset to infoseg section: 0080

--- SAS Protected Modes Tables Section ---
selector for GDT: 0008
selector for LDT: 0000
selector for IDT: 0018

selector for GDTPOOL: 0100
--- SAS Device Driver Section ---
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offset for the first bimodal dd: 0CB9
offset for the first real mode dd: 0000

sel for Drive Parameter Block: 0520
sel for ABIOS prot. mode CDA: 0468
seg for ABIOS real mode CDA: 6800

selector for FSC: 00C8
--- SAS Task Section ---

selector for current PTDA: 0030
FLAT offset for process tree head: FFF29714

 FLAT address for TCB address array: FFF26BDA
offset for current TCB number: FFE23A0E

offset for ThreadCount: FFE23A12
--- SAS File System Section ---

handle to MFT PTree: FDE55FB4
selector for System File Table: 00C0
sel. for Volume Parameter Bloc: 0678

sel. for Current Directory Struc: 06A8
selector for buffer segment: 00A8

--- SAS Information Segment Section ---
selector for global info seg: 0428

address of curtask local infoseg: 03B80000
address of DOS task′ s infoseg: FFFFFFFF

selector for Codepage Data: 06BB
--- SAS RAS Section ---
selector for System Trace Data Area: 0508
 segment for System Trace Data Area: 0508

offset for trace event mask: 09D6
--- SAS Configuration Section ---

offset for Device Config. Table: 0D40
--- SAS Virtual Memory Mgt. Section ---

Flat offset of arena records: FFF2C314
Flat offset of object records: FFF2C32C
Flat offset of context records: FFF2C31C

Flat offset of kernel mte records: FFF27E68
Flat offset of linked mte list: FFF273B8
Flat offset of page frame table: FFF2A768
Flat offset of page range table: FFF29CC0
Flat offset of swap frame array: FFF260B0

Flat offset of Idle Head: FFF294D4
Flat offset of Free Head: FFF294C4
Flat offset of Heap Array: FFF2A770

Flat offset of all mte records: FFF2BE24
#

>> FSC selector is c8. Now dump the FCS segment.

# dw c8:0
00c8:00000000 03c8 0000 0000 fde1 0b68 0738 0b6c 0738
00c8:00000010 0000 0720 01fc 0720 0010 0720 05b4 0718
00c8:00000020 0570 0720 0580 0720 0634 0720 0640 0720
00c8:00000030 0e3c 0720 1120 0720 0834 0720 090c 0720
00c8:00000040 09f8 0718 1130 0720 1f24 0720 1f6e 0720
00c8:00000050 2122 0720 16e4 0720 1b10 0720 1b38 0720
00c8:00000060 1bec 0720 1dc8 0720 0c60 0718 0d70 0718
00c8:00000070 1f14 0720 215c 0720 22a0 0720 2294 0720
# d
00c8:00000080 111c 0718 25fc 0720 26b0 0720 117c 0718
00c8:00000090 0fdc 0718 0000 0718 0000 0000 0000 0000
00c8:000000a0 0000 0000 03b0 0720 062c 0718 137c 0720
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00c8:000000b0 0bb4 0718 26bc 0720 0000 0000 0000 0000
00c8:000000c0 0000 0000 0000 0000 0000 0a58 0004 0a58
00c8:000000d0 0000 0a50 01b6 0a50 000e 0a50 04c4 0a50
00c8:000000e0 060e 0a50 061c 0a50 065c 0a50 0666 0a50
00c8:000000f0 1198 0a50 1224 0a50 086e 0a50 0e0e 0a50
# d
00c8:00000100 09e6 0a50 125a 0a50 299a 0a50 29a8 0a50
00c8:00000110 29b6 0a50 263e 0a50 278c 0a50 27aa 0a50
00c8:00000120 2842 0a50 288a 0a50 28fc 0a50 298c 0a50
00c8:00000130 297e 0a50 29c4 0a50 2cf6 0a50 2cb8 0a50
00c8:00000140 2f0c 0a50 34b2 0a50 34f2 0a50 350c 0a50
00c8:00000150 5029 1000 9cab 0140 1232 0a50 1240 0a50
00c8:00000160 0000 0000 0602 0a50 9d8c 0140 1568 0a50
00c8:00000170 124e 0a50 3500 0a50 0000 0000 0000 0000
# d
00c8:00000180 0000 0000 0000 0000 0090 1028 008a 1028
00c8:00000190 00be 1018 03e6 1018 05da 1018 0766 1018
00c8:000001a0 09ee 1018 0c38 1018 0db6 1018 0dc2 1018
00c8:000001b0 0fa4 1018 1488 1018 1496 1018 158a 1018
00c8:000001c0 1998 1018 1cae 1018 1f92 1018 1fa0 1018
00c8:000001d0 1fae 1018 2998 1018 2bf0 1018 2c9c 1018
00c8:000001e0 2caa 1018 2f90 1018 2f9e 1018 31c4 1018
00c8:000001f0 332c 1018 333a 1018 3950 1018 3e9c 1018
# d
00c8:00000200 3fa2 1018 419a 1018 4318 1018 4332 1018
00c8:00000210 5029 1000 9cab 0140 0000 0000 0000 0000
00c8:00000220 0000 0000 08aa 1018 9d8c 0140 2114 1018
00c8:00000230 1fbc 1018 4326 1018 0000 0000 0000 0000
00c8:00000240 0000 0000 0000 0000 0098 22a8 0090 22a8
00c8:00000250 01b0 22b0 1500 22b0 7470 22b0 1650 22b0
00c8:00000260 18e0 22b0 51b0 22b0 25d0 22b0 344d 22b0
00c8:00000270 3ca7 22b0 469a 22b0 28ac 22b0 279b 22b0
# d
00c8:00000280 4316 22b0 28c5 22b0 4343 22b0 4347 22b0
00c8:00000290 434d 22b0 3b30 22b0 43c0 22b0 4353 22b0
00c8:000002a0 195d 22b0 4310 22b0 6e50 22b0 4c10 22b0
00c8:000002b0 4d20 22b0 4ec6 22b0 5bc2 22b0 4359 22b0
00c8:000002c0 6d27 22b0 1aab 22b0 43a1 22b0 8740 22b0
00c8:000002d0 5029 1000 9cab 0140 4a70 22b0 4a7f 22b0
00c8:000002e0 84c0 22b0 17bb 22b0 9d8c 0140 37f0 22b0
00c8:000002f0 25f0 22b0 7570 22b0 0000 0000 0000 0000
# d
00c8:00000300 0000 0000 0000 0000 0c96 23f8 8880 23f8
00c8:00000310 00de 23a0 0152 23a0 01bd 23a0 0228 23a0
00c8:00000320 02f2 23a0 0369 23a0 03d1 23a0 042d 23a0
00c8:00000330 049e 23a0 050f 23a0 0580 23a0 05df 23a0
00c8:00000340 066b 23a0 06eb 23a0 075f 23a0 07b5 23a0
00c8:00000350 083e 23a0 0982 23a0 09e7 23a0 0a4c 23a0
00c8:00000360 0acf 23a0 0b40 23a0 0bab 23a0 0c1f 23a0
00c8:00000370 0c87 23a0 0cfb 23a0 0d8d 23a0 0e04 23a0
# d
00c8:00000380 0e5d 23a0 0ecb 23a0 0f33 23a0 0f92 23a0
00c8:00000390 5029 1000 9cab 0140 0000 0000 0000 0000
00c8:000003a0 0000 0000 028d 23a0 9d8c 0140 0905 23a0
00c8:000003b0 08ac 23a0 1000 23a0 0000 0000 0000 0000
00c8:000003c0 0000 0000 0000 0000
Past end of segment: 00c8:000003c8
#
>> The FSC starts with an 8 byte header. Word 1 is the length.
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>> Each entry is for each FSD starting with fsd2 (fsd1 is OS2BOOT
>> and not used once the kernel is loaded). Each FSD entry comprises
>> a table of far16 pointers. The first two are a) pointer to FSD
>> attributes and b) FSD name. The remaining are the function entry
>> points (See IFS OEM reference). There are 46 of these. In other
>> words the first fsd entry is at c8:8 and ever subsequent entry is
>> every 12 lines of display. fsd 6 entry starts at c3:308

>> what′ s fsd6 called?

# db 23f8:8880 l8
23f8:00008880 4f 50 54 4c 49 42 00 00 OPTLIB..

>> The evidently is the optical library fsd.
>> We didn′ t find the current cs:eip in the fsd function table so
>> we unwind the r0 stack ....

# dw 30:4b8c l8
0030:00004b8c 4be8 7426 23a8 4bb2 0030 4bb0 0030 4bd8
# dw 30:4be8 l8
0030:00004be8 4c0a 738a 23a8 0000 1004 0000 2f48 4c2c
# dw 30:4c0a l8
0030:00004c0a 4c3a bb28 23a8 d7ce 0001 4c2c 0030 0000
# dw 30:4c3a l8
0030:00004c3a 4c6c 1b8f 23b0 0000 0000 0000 d7ce 0001
# dw 30:4c6c l8
0030:00004c6c 4c7e 1e87 23b0 0300 24f8 4ca8 0030 23f8
# dw 30:4c7e l8
0030:00004c7e 4cca 08ed 23b0 0300 24f8 4ca8 0030 4cb0
# dw 30:4cca l8
0030:00004cca 4cf6 011e 23b0 0100 24f0 0073 2520 0000
# dw 30:4cf6 l8
0030:00004cf6 4d36 7314 23b0 04d3 2408 0073 2520 0000
# dw 30:4d36 l8
0030:00004d36 4d70 5be8 23b0 006a 2520 0000 04d3 2408
# dw 30:4d70 l8
0030:00004d70 4dbc 04e3 23a8 0000 04d3 2408 0020 2022
# dw 30:4dbc l8
0030:00004dbc 4e46 2b1f 2398 4eb6 0030 0000 0003 0020
# dw 30:4e4d l8
0030:00004e4d 304e 0000 0300 2000 bc00 304e 1000 2200
# dw 30:304e l8
Invalid linear address: 0030:0000304e

>> The problem here is that the kernel is not using ebp
>> before calling the fsd. So dump the R0 stack from
>> the last recognisable fsd selector. Look for the
>> first selector that matches one used in fsd6′ s
>> function table.

dw 30:4dbc
0030:00004dbc 4e46 2b1f 2398 4eb6 0030 0000 0003 0020
0030:00004dcc 4ebc 0030 0010 2022 0000 41a5 2cf0 4df2
0030:00004ddc 0030 ffff 04d0 2408 4edb 0030 0000 2f40
0030:00004dec 23f8 8bfc 0308 2022 0000 1004 8ce8 1c63
0030:00004dfc 8ce8 1c63 8ce8 1c63 0000 0000 0000 0000
0030:00004e0c 0000 006c 0000 0274 0000 0000 0000 2100
0030:00004e1c 0001 4e3e 0006 0004 0000 2f40 039c 2408
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0030:00004e2c 0345 0098 006c 0003 0001 0000 04d0 2408
# d
0030:00004e3c 02f4 0305 0098 2f40 1004 4e84 0d6e 23a0
0030:00004e4c 4eb6 0030 0000 0003 0020 4ebc 0030 0010
0030:00004e5c 2022 0000 41a5 2cf0 41d7 2cf0 ffff 4fee
0030:00004e6c 0030 4edb 0030 4ee3 0030 0308 8bfc 510d
0030:00004e7c 0000 9410 00c8 0030 4ec0 9a09 0140 4eb6
0030:00004e8c 0030 0000 0003 0020 4ebc 0030 0010 2022
0030:00004e9c 0000 41a5 2cf0 41d7 2cf0 ffff 4fee 0030
0030:00004eac 4edb 0030 4ee3 0030 0000 0000 04d0 0007

>> at 30:4e48 we have 23a0:d6e. Looking at the function
>> table we see entry point 26 at 23a0:cfb is the closest.
>> fsd entry point 26 is FS_OPENCREATE. This seems to be
>> consistent with what ring 3 was doing.
>> Finally for future reference the FSD entry structure is
>> as follows:

>>+0 FS_ATTRIBUTE; /* -> FSD attribute. (in FSD memory) */
>>+4 FS_NAME; /* -> FSD name. (in FSD memory) */
>>+8 FS_ATTACH; /* DosQFsAttach, DosFsAttach */
>>+c FS_CHDIR; /* DosChdir */
>>+10 FS_CHGFILEPTR; /* DosChgFilePtr */
>>+14 FS_CLOSE; /* DosClose */
>>+18 FS_COPY; /* DosCopy */
>>+1c FS_DELETE; /* DosDelete */
>>+20 FS_EXIT; /* DosExit */
>>+24 FS_FILEATTRIBUTE; /* DosFileInfo, DosSetFileMode */
>>+28 FS_FILEINFO; /* DosQFileInfo, DosSetFileInfo */
>>+2c FS_FILEIO; /* DosFileIO */
>>+30 FS_FINDCLOSE; /* DosFindClose */
>>+34 FS_FINDFIRST; /* DosFindFirst */
>>+38 FS_FINDFROMNAME; /* DosFindFromName-Private to server */
>>+3c FS_FINDNEXT; /* DosFindNext */
>>+40 FS_FINDNOTIFYCLOSE; /* DosFindNotifyClose */
>>+44 FS_FINDNOTIFYFIRST; /* DosFindNotifyFirst */
>>+48 FS_FINDNOTIFYNEXT; /* DosFindNotifyNext */
>>+4c FS_FSINFO; /* DosQFsInfo, DosSetFsInfo */
>>+50 FS_INIT; /* -- No corresponding API */
>>+54 FS_IOCTL; /* DosDevIoctl */
>>+58 FS_MKDIR; /* DosMkdir */
>>+5c FS_MOUNT; /* -- No corresponding API */
>>+60 FS_MOVE; /* DosMove */
>>+64 FS_NEWSIZE; /* DosNewsize */
>>+68 FS_NMPIPE; /* All named pipe related API′ s */
>>+6c FS_OPENCREATE; /* DosOpen */
>>+70 FS_PATHINFO; /* DosQPathInfo, DosSetPathInfo */
>>+74 FS_PROCESSNAME; /* -- No corresponding API */
>>+78 FS_READ; /* DosRead, DosReadAsync */
>>+7c FS_RMDIR; /* DosRmdir */
>>+80 FS_SETSWAP; /* -- No correcponding API */
>>+84 FS_WRITE; /* DosWrite, DosWriteAsync */
>>+88 FS_OPENPAGEFILE; /* init time only */
>>+8c FS_ALLOCATEPAGESPACE; /* size swap file */
>>+90 FS_CANCELLOCKREQUEST; /* DosCancelLockRequest */
>>+94 FS_FILELOCKS; /* DosSetFileLocks */
>>+98 FS_VERIFYUNCNAME; /* Used to save function addresses */
>>+9c FS_COMMIT; /* DosBufReset, DosClose */
>>+a0 FS_DOPAGEIO; /* perform paging */
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>>+a4 FS_FSCTL; /* DosFsCtl */
>>+a8 FS_FLUSHBUF; /* DosBufReset */
>>+ac FS_SHUTDOWN; /* DosShutdown */
>>+b0 FS_SDCHGFILEPTR; /* Used to save function addresses */
>>+b4 FS_SDFSINFO; /* at shutdown time. These functions */
>>+b8 FS_SDREAD; /* will only be called by shutdown */
>>+bc FS_SDWRITE; /* filters. */
>>
>> * Bit masks for FS_ATTRIBUTE (remember FS_ATTRIBUTE points to the
>>attribute
>> * word rather than containing it directly.)
>>
>> FS_ATTR_REMOTE 0x0001 /* 0 = local FSD, 1 = remote FSD */
>> FS_ATTR_UNC 0x0002 /* 0 = normal, 1 = this is UNC FSD */
>> FS_ATTR_LOCKINFO 0x0004 /* 0 = no notice, 1=notify filelocks */
>> FS_ATTR_LVL7 0x0008 /* 0 = no level 7 requests, 1 = yes */
>> FS_ATTR_PIPESVR 0x0010 /* 0 = don′ t FSD on PIPE req,1 = yes */
>>
>> /* bit masks for FS_ATTRIBUTE (High Word) */
>> FS_ATTR_VERNO 0x7000 /* bits 28-30 version no */
>> FS_ATTR_EA 0x8000 /* bit 31 -> 1 = extended attribute */
>>
>> /* equates for commit type */
>> FS_COMMIT_ALL 2 /* all handles commit */
>> FS_COMMIT_ONE 1 /* one handle commit */
>>
>> /* equates for close type */
>> FS_CL_ORDINARY 0 /* ordinary close */
>> FS_CL_FORPROC 1 /* final close for process */
>> FS_CL_FORSYS 2 /* final close for system */
----------------------------------------------------------------------
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Appendix A. Minimal Command Reference

This reference provides some minimal guidance for using the dump formatter,
and the debug kernel, which share a common command set.

A.1 To Display Descriptors
The following commands can be used to display descriptor information. Use
them when you want to find out what type of storage is described, what linear
address contains the data at a logical address, the limit (or size) of a piece of
memory, or what privilege level contains it.

• The operands for these commands follow:

< n o n e > Display the whole table.

<selector> Display a single descriptor from the appropriate table.

<selector1> <selector2> Display descr iptor informat ion f rom ″selector1″
through ″selector2″.

< s e l e c t o r >  L  < n u m b e r > Display up to ″number″ descriptors, starting with
″selector″. Invalid selectors are not normally displayed, but are counted.

• DI - Display descriptors from the IDT

In the IDT, the interrupt number is used, rather than a selector.

• DG - Display descriptors from the GDT

• DL - Display descriptors from the LDT

• Example 1: DL 7 2F

This will show you the first 6 descriptors in the LDT.

• Example 2: DG 7 2F

This will show you the first 6 descriptors in the LDT, after indicating that the LDT
is the correct table.

• Example 3: DL 7 L6

This will show you the first 6 descriptors in the LDT.

• Example4: DGA 0 18

This will show you the first 4 descriptors in the GDT, whether they are valid
(useable) or not.

A.2 To Display Page Table Entries
This explains how to display entries from the page directory and page tables.
Note that the direct hardware approach using ″dd %%cr3″ does not work as
expected for the lowest 4 megabytes. This is because the dump program uses
the first entry in the page directory. The content that was there during execution
may be found using the ″.N″ command, labelled ″savepage″.

• D P  < a d d r e s s >

The first line of output pertains to the entry in the page directory.
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The remaining lines pertain to the successive pages. The column heading
″frame″ will tell you what physical address has been assigned. A blank, or
missing entry indicates that the page in question is not in real storage. The
column heading pteframe will give you the same information, as the previous
column, if the address is paged in. If it is paged out, it will have the virtual page
id, which is generally where it exists in the file SWAPPER.DAT, if it has been
paged out.

If you use a logical address (#sel:offset), limit checking is performed for you; if
you use a linear address, the entries for the next available address range are
displayed without indication that what you asked for does not exist. Read the
output.

A.3 To Display Storage Itself
This explains how to display data storage in several formats.

• The operands for these commands are as follow:

• <address> displays hex 80 bytes beginning at ″address″, if possible.

• <address1> <address2> d isp lays data  f rom ″address1″ through
″address2″, if possible. If ″address1″ is a logical address, ″address2″ must
be an offset only (near address).

• <add ress>  L  <numbe r>  d i sp l ay  ″number″ items beginning at ″address″.

• DA - display in ASCII only, no hex. Display is to the null ( hex ′00′ ) at the
end of string.

• DB - display hex bytes, and ASCII on the right, as well.

• DW - display data as words. The bytes will be exchanged and formatted in
pairs, so you see what would be used for word accesses to storage in a
more ′natural ′ manner.

• DD - display data as doublewords. The bytes will be reversed and displayed
in groups of 4, so you see what would be used for doubleword accesses in a
more ′natural ′ manner.

• D - display further in the same format.

• U - display storage as instructions, creating the assembler mnemonics and
operands from the raw hex data. The raw data is also shown.

If ″U″ is entered repetitively without operands, it will continue to unassemble
forward from the end of the last output. Either use an operand, or use ″.R″ to
refresh the registers. U updates EIP internally, which may confuse you or the
dump formatter, depending on your perspective.

A.4 Miscellaneous Commands
There are several other useful commands, listed here in no particular order:

• Q - quit the dump formatter

• ? - evaluate an expression

any expression entered after the question mark will be evaluated, and the result
will be displayed in hex, decimal, octal, binary, character and Boolean formats.

?′ - actually evaluates the following string. Useful for commenting the log file.
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• ? - internal help

The question mark by itself will provide a brief list of possible internal
commands, with which operands are acceptable.

• .? - external help

A period followed by a question mark will give a brief list of external commands,
followed by their operands.

Note: The distinction between internal and external commands is that the
internal commands function without any knowledge of OS/2 control blocks, or
structures, providing direct access to hardware information.

The external commands need to know how the content of OS/2 structures and
how to find them in order to function.

• .R - display the ring 3 registers for the current thread

• .S nn - change to slot nn.

This is how you look at another thread. Be sure to issue .R after using .S
because the .R command sets the symbolic registers.

• .P* - display information about the current thread.

One of the columns is headed ″Pid″, this is the process ID.

One of the columns is headed ″ORD″, this is the thread number.

• .I (dump formatter only) will give you basic information about the current
process.

• .M <address> - identify the owner of a storage address.

This frequently results in 20-40 lines of output. You must look through it until you
find the group you want. Generally, the easy way is to match the program short
name from .P* to a set of lines.

• .LMO <handle> - display the load module objects for the module that is
identified by the ″handle″. The handle may be found by inspecting the correct
group of .M output for the column headed ″hmte″, which will be in the last
line of each output group.

A.5 Controlling Execution with the Debug Kernel
This explains how to display get control at the debug terminal at a particular
place or situation.

• VL

List the vectors (interrupts) monitored

• VC n, or *

Clear one or move vectors

• VSF n or *

Get control when an interrupt in ring 3 will be fatal to a thread

• VTF n or *

Get control when a trap occurs in Ring 0

• B P  < a d d r e s s > [,″commands″]
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Install a breakpoint instruction at <address>, when execution arrives there,
execute ″command″.

• BR x ,<add ress> [,″commands″]

This sets a breakpint using the hardware debug registers

BR E,... triggers when Executed

BR R,... triggers on data read or write

BR W,... triggers on data write only

E, R, or W may be followed by 1, 2, or 4; size of area monitored. The area must
be on the appropriate boundary if 2 or 4 is used.

• .REBOOT

Cause the machine under test to reboot, if possible.

A.6 Device Driver Mini-Reference
This explains the format of the DD header, the required segments of a devuce
driver, and most of the Device Help (DevHlp) codes.
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Physical Device Driver Header

Offset Size Content
0 4 16:16 address of next DD header
4 2 Device Attribute bit

8000 0=block, 1=character;
4000 1=Inter DeviceDriverCommunication ok
2000 0=IBM driver, 0=OEM driver; 1000=sharing handled by DD
0800 Block: removable media Character: must Open & Close
0380 =1 OS/2 driver; =2 IOCtl2 & Shutdown; =3 Capabilities bits
0008 if clock device 0004 if NUL device
0002 if STDOUT 0001 if STDIN

6 2 offset to strategy routine
8 2 offset to IDC routine
A 8 device name, if character; number of units if block
12 8 Reserved
1a 4 Capabilities bit strip

Request Packet Header

Offset Size Content
0 1 Length of packet
1 1 Block device unit code
2 1 Command code
3 2 Packet Status
5 4 Reserved
9 4 Queue linkage
D ? Command-specific data

Status Code: 8000 (bit)=error, 0200 (bit)=busy, 0100 (bit)=Done
low byte is error code:
00=write protect, 01=unknown unit, 02=device not ready,
03=unknown command, 04=CRC error, 05=Bad Drive request structure length,
06=seek error, 07=unknown media, 08=sector not found, 09=out of paper,
0A=write fault, 0B=read fault, 0C=general failure, 0D=Change disk,
10=uncertain media, 11=character I/O interrupted, 12=monitor not supported,
13=invalid parameter, 14=device already in use, 15=initialization failed

Command Function Command Function
00 Init 10 Generic IOCTL
01 Media Check 11 Reset Media
02 Build BPB 12 Get logical drive map
03 reserved 13 Set logical drive map
04 Read (input) 14 Deinstall
05 Peek Nowait 15 Reserved
06 Input Status 16 Partitionable hard drives
07 Input Flush 17 Get hard drive unit map
08 Write (output) 18 Reserved
09 Write + Verify 19 Reserved
0A Output Status 1A Reserved
0B Output Flush 1B Reserved
0C Reserved 1C Shutdown
0D Open Device 1D Get Driver Capabilities
0E Close Device 1E Reserved
0F Removable Media 1F Initialization Complete

Appendix A. Minimal Command Reference 333



A.7 Device Help function Numbers
This is a simple table of DevHlp functions. The function is put into DL prior to
calling DevHlp.

Code Service Code Service Code Service
00 SchedClockAddr 10 QueueFlush 20 Register
01 DevDone 11 QueueWrite 21 DeRegister
02 Yield 12 QueueRead 22 MonWrite
03 TCYield 13 Lock 23 MonFlush
04 ProcBlock 14 Unlock 24 GetDosVar
05 ProcRun 15 PhysToVirt 25 SendEvent
06 SemRequest 16 VirtToPhys 26 not used
07 SemClear 17 PhysToUVirt 27 VerifyAccess
08 SemHandle 18 AllocPhys 28 reserved
09 PushReqPacket 19 FreePhys 29 reserved
0A PullReqPacket 1A not used 2A AttachDD
0B PullParticular 1B SetIRQ 2B InternalError
0C SortReqPacket 1C UnSetIRQ 2C reserved
0D AllocReqPacket 1D SetTimer 2D AllocGDTSelector
0E FreeReqPacket 1E UnSetTimer 2E PhysToGDTSelector
0F QueueInit 1F Monitor Create 2F not used

Code Service Code Service Code Service
30 not used 50 RegisterPDD 60 PageListToGDTSelector
31 EOI 51 RegisterBeep 61 RegisterTmrDD
32 UnPhysToVirt 52 Beep 62 reserved
33 TickCount 53 FreeGDTSelector 63 AllocCtxHook
34 GetLIDEntry 54 PhysToGDTSel 64 FreeCtxHook
35 FreeLIDEntry 55 VMLock 65 ArmCtxHook
36 ABIOSCall 56 VMUnlock 66 VMSetMem
37 ABIOSCommonEntry 57 VMAlloc 67 OpenEventSem
38 GetDeviceBlock 58 VMFree 68 CloseEventSem
39 reserved 59 VMProcessToGlobal 69 PostEventSem
3A RegisterStackUsage 5A VMGlobalToProcess 6A ResetEventSem
3B reserved 5B VirtToLin 6B reserved
3C VideoPause 5C LinToGDTSelector 6C DynamicAPI
3D SaveMessage 5D GetDescInfo 6D reserved
3E reserved 5E LinToPageList 6E reserved
3F reserved 5F PageListToLin 6F reserved

A.8 Partial Content of the System Anchor Segment (SAS)
This is an extract of the SAS content. The full content is beyond the scope of
this document. Word fields are offsets within the SAS, unless otherwise noted.

Offset Length Contains

00 4 EYECATCHER ‘SAS’

+ 0 A 2 Offset of DD section

DD sect ion + 0 2 Offset of first DD header

DD sect ion + A 2 Selector for FSC
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A.9 Partial Content of the File System Control Block (FSC)
This is an extract of the FSC content. The full content is beyond the scope of this
document.

Generally, selector C8 is the selector for the first FSC.

This is the way the data will appear if the DD command is used.

Each field is a 16 bit FAR ADDRESS of the named function unless specifically
stated otherwise.

OFFSET + 0 0 + 0 4 + 0 8 + 0 C

+ 0 0 actual size of FSC Address of FSD
Attr ibutes

Address of FSD
Name

+ 1 0 FSAttach ChDir ChFilePtr Close

20 Copy Delete Exit SetFileMode

30 SetFileInfo FileIO FindClose FindFirst

40 FindFromName FindNext FindNotifyClose FindNotifyFirst

50 FindNotifyNext QFSInfo ( Init ) DecIOCyl

60 MkDir ( no api ) Move NewSize

70 Named Pipe API′s Open SetPathInfo ( no api )

80 Read RmDir ( no api ) Write

90 ( no api ) ( no api ) CancelLockRequest SetFileLocks

A0 VerUNCName Commit PageIO FSCtl
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Glossary

Application Anchor Block (AAB) .  A PM Application Anchor Block  is allocated in the
Thread Local Memory Area (TLMA) when a PM application thread creates a message
queue. The AAB contains a pointer to the MQ which allows PM to find the MQ in any
context. This is particularly useful to the debugger since it also allows the MQ of any PM
thread in the system since the TLMA is saved in a thread′s TCB.

See 14.1.3, “Exploring 32-bit Presentation Manager Under WARP” on page 273 for more
information.

BlockIDs .  BlockIDs are conventional tokens used to represent the reason for a thread
that blocks. This occurs as the result of the kernel entering TKSleep (either directly or
via ProcBlock). The address of the BlockID is passed to TKSleep and stored in
TCBSleepID. A thread wakes when the kernel calls TKWakeup (or ProcRun) with a
corresponding BlockID. All, zero or the highest priority thread blocked on the BlockID will
be woken depending on parameter flags. This mechanism is used by most functions and
APIs that cause thread execution to be suspended, either for an event or serialization.

Examples are:

DosSleep

DosSemWait

DosWaitChild

DosRead

DevHlp_ProcBlock

BIOS Parameter Block .  A BIOS Parameter Block is used for low level Disk I/O calls to
the BIOS.

For further information see:

The .D BPB Command in the Kernel Debugger and Dump Formatter Command
Reference.

The BPB Structure in the System Reference.

Breakpoint .  A breakpoint is a location in a program where execution is suspended and
control is given to a debugging tool.

The INTEL architecture supports two implementations of breakpoints for debugging
purposes:

The software generated breakpoint using the INT 3 instruction;

The hardware generated breakpoint using the Debugging Registers.

The use of software breakpoints require code modification, whereas the use of debugging
registers does not. However, the number of predefined software breakpoints is
potentially unlimited whereas there are only 4 breakpoints specifiable using Debugging
Registers.

A further distinction between the two types is that software breakpoints only intercept the
execution of a particular instruction path, whereas Debugging Registers may be used, in
addition, to intercept data fetches and stores from a particular location in virtual memory.

The Kernel Debugger supports both implementations of breakpoints through the use of
the:

The BR command, which uses Debugging Registers.

The BP command, which uses INT 3 instructions.

The Kernel Debugger limits the predefinition of BP breakpoints to 10, however the
programmer may code as many additional INT 3 instructions into their program as
desired.
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The Kernel Debugger refers to breakpoints explicitly set by the BP and BR commands as
sticky  (implying a certain permanence about them). The G command may have one or
more temporary breakpoints established when one or more stop addresses are specified.
These are referred to as go  breakpoints. Once the Kernel Debugger breaks in go
breakpoints are removed. The internal operation of the Kernel Debugger may also
necessitate the use of the occasional temporary breakpoints when instruction tracing (see
the T and P commands). These are set implicitly and discarded without the user being
aware of their existence. Go and temporary breakpoints are created using the INT 3
instruction. Go and sticky BP breakpoints count towards the Kernel Debugger imposed
limit of 10, but temporary breakpoints only ever exist singly so do not.

Block Management Package (BMP) .  A Block Management Package (BMP) is a data
structure used to manage a pool of fixed length blocks using a bit string. Each bit in the
bit string corresponds to an entry. A set bit indicates whether the entry is in use.

Typically this is used for:

Kernel Heap allocation
Memory object allocation

cbargs .  cbargs is the argument count associated with the hardware defined call gate
mechanism. The count is the number of words or double-words (as defined by the gate
descriptor) that are inserted into a ring 0 stack when ring 2 or ring 3 code executes a call
gate instruction.

CBIOS .  The Compatibility BIOS (CBIOS) is a layer of code in the OS2LDR that presents a
hardware independent interface to the BIOS for the OS2KRNL. The interface to the
OS2KRNL is provided through a set of entry points called Dos Helper Functions.

Codepage Data Information Block (CDIB) .  The Codepage Data Information Block (CDIB)
contains country-specific constant information relating to screen, keyboard and printer
devices. The CDIB is built from information derived directly from CONFIG.SYS
statements.

The CDIB may be located from the SAS.

Client Register Information (CRI) .  The Client Register Information (CRI) is a table of
Register Information Packets (RIPs) that describe the offset and length of each register
that is stored in a ring 0 stack frame on entry to the kernel. This level of indirection
allows kernel routines to access entry registers regardless of the stack frame type, of
which there are a number, for example:

System Entry Frames from API calls

Trap Frames from traps and exceptions

Interrupt Frames from the interrupt manager

VDM Stack Frames

Kernel Stack Frames

Each TCB points to a CRI and the associated stack frame from TCB_pcriFrameType(TCB
+ 0x38) and TCB_pFrameBase(TCB + 0x3c) respectively.

Command Subtree Identifier .  The Command Subtree Identifier is used to represent a
part of a process (or command) tree headed by a particular parent process. The ID used
is the Pid of the process that heads the subtree.

Normally a process has a CSID equal to it′s own Pid. However, when processes become
orphaned they acquire the subtree Id of their original parent and become adopted by
their grand-parents by acquiring their grand-parents ′s Pid as their new parent Pid.

Common ABIOS Data Area (CDA) .  The CDA is the Common ABIOS Data Area.

Refer to the Kernel Debug and Dump formatter guide, external command .C - display
Common ABIOS data area.
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Compatibility Region Mapping Algorithm .  The Compatibil ity Region Mapping Algorithm
(also referred to as the thunking algorithm) is used by thunking code to convert 16:16
addresses to 0:32 addresses and vice versa.

This is achieved by ensuring LDT selectors have their limits set to 64K so that they tile
the compatibility region (0M to 448M). This gives an easy conversion algorithm from the
selector:offset address to the 32-bit linear address. In C language syntax this is
expressed as follows:

l inear_a d d r e s s = ( ( s e l e c t o r > > 3 ) < < 1 6 ) + o f f s e t

selector:offset=(( l inear_address&&0xf f f f0000)>>13) | | 7:(linear_address&&0x0000ffff)

Context (or thread context) .  Context refers that the v iew of the system a given thread
has. Thus switching contexts refers to the process of preparing the system for another
thread to run.

Context switching involves a number of actions, which include:

• Updating GDT descriptor entries 28, 30, 38 and 150b, which point to

the current process ′ LDT ,

the current threads ring 0 stack,

the current thread ′s floating point emulator work area,

the current thread ′s TIB. (By default the FS selector is loaded with 150b).

The LDT  selector is only updated when the process changes with a context switch,
that is, for a process context switch.

• Switching pages tables for a process context switch.

• Updating the TR register if the process switch involves a task switch (normally only
VDMs).

• Updating the current TSS ring 0 and ring 2 stack pointers.

• Updating system copies of the Global and Information Segments.

• Copying the Local Information Segment from the incoming PTDA and the Thread
Local Memory Area from the incoming TCB to the segment mapped by LDT selector
dfff .

Besides addressing the current ring 0 stack, selector 30 also addresses the current
thread ′s scheduling control blocks. In particular: the PTDA, TCB and TSD. This is done
by aliasing selected address ranges from selector 30 to those of the true PTDA, TCB and
TSD in the system arena global memory for the current context. The system defines a
dummy module containing a hard-coded PTDA. The symbols of this module have the
same name as those of the fields in the PTDA. The system arranges for this to map the
PTDA addressed by selector 30. This trick allows the system to refer to PTDA fields for
the current context without regard for which process is current, simply by using the field
names as public symbols. The user may use the same symbols for referencing the PTDA
but these are only valid for the current system context. To access PTDA fields in other
contexts the following technique can be used:
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� �Note that the current PTDA is located at PTDA_Start

##.p *
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name

*0025 0004 0002 0004 0001 blk 0300 7b7c8000 7bbc4080 7bbe8a90 1fc4 16 someprog

The current thread slot is 25

We wish to know the thread that has entered critical section in process of
thread slot 40. The address of the critical section TCB is
saved in ptda_pTCBCritSec and the thread ordinal and slot number
are the first two words of the TCB.

##.p 40
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name

 0040 0012 0002 0012 0001 blk 0500 7b7d6000 7b9e4020 7b9c8a70 1eb8 10 userprog

##dw %(DW(%7b9e4020+ptda_ptcbcritsec-ptda_start)) l2
%7b9c8de0 0002 0041

Thread 2 of 12 or thread slot 41 is in critical section
##.p 41
Slot Pid Ppid Csid Ord Sta Pri pTSD pPTDA pTCB Disp SG Name

 0041 0012 0002 0012 0002 blk 0800 7b7da000 7b9e4020 7b9c8de0 1ed4 10 userprog� �

Refer to the Kernel Debugger and Dump Formatter .P and .S commands for more
information.

Current Directory Structure (CDS) .  A Current Directory Structure (CDS) is used to store
file system information about the current directory per drive of each process.

Each CDS is managed in an RMP segment. The PTDA for each process contains an
imbedded array of 26 CDS handles, one for each drive. The CDS RMP segment may be
located from the SAS.

See also related structures:

MFT

SFT

DPB

FSC

VPB

DEM.  DEM is the DOS Emulation component of OS/2.

Driver Parameter Block (DPB) .  A Driver Parameter Block (DPB) contains vital
information about the state and format of a disk drive. The DPBs are chained together
and located in a single segment whose selector may be obtained from the SAS.

See also related structures:

CDS

MFT

SFT

FSC

VPB

DosHlp .  DosHlp services comprise a set of hardware dependent service routines
established during system initialization for use by the OS2KRNL and user programs via
the OEMHLP$ device driver. Many of the DosHlp services deal with device dependent
BIOS behaviour and therefore provide a device independent interface to the BIOS.

File Allocation Table (FAT) .  The File Allocation Table file system is the default filing
system supported by OS/2. Support for FAT is always present, regardless of any
installed file systems.
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File System Control Block (FSC) .  A File System Control Block (FSC) represents an
installed file system (IFS). The FSC contains a table of entry points implemented by the
file system driver (FSD). All FSCs are located in a single segment whose selector may
be obtained from the the SAS.

See also related structures:

CDS

MFT

SFT

DPB

VPB

File System Driver (FSD) .  A File System Driver (FSD) is a special load module that
implements an installed file system (IFS). FSDs are loaded during system initialization
when the .IFS statement of CONFIG.SYS is encountered.

Examples of FSDs are:

HPFS.IFS

HPFS386.IFS

CDROM.IFS

Gate .  A gate descriptor is one that defines to the hardware a means of entering code
that executes at a more privileged level of authority. Four types of gate are defined:

Call Gate The subject of a CALL instruction. Typically used to implement
operating system and device driver application programming
interfaces (APIs). Device drivers may create Call gates dynamically
using the DosDynamicAPI facility.

Task Gate The subject of a call or exception where a (hardware assisted) task
switch is required.

Interrupt Gate The subject of a hardware or software generated interrupt.
Typically an Interrupt gate will switch execution to an interrupt
handler when a device presents an interrupt.

Trap Gate The subject of a trap exception. Used to handle programming
errors.

Global Descriptor Table (GDT) .  The Global Descriptor Table (GDT) is a hardware
architected control block. The GDT is common to all protect mode processes. It contains
descriptors for memory segments common to all protect mode processes.

Global Information Segment (GISEG) .  The Global Information Segment (GISEG) is a
single instance control block that records the current session status, date and time, trace
status and version of the system.

The system maintains two copies of the Global Information Segment to fence against
system damage.

The selector for the GISEG may be located from the SAS. See the Dump Formatter and
Kernel Debugger .A command.

The GISEG is also mapped locally per-process by the LDT descriptor 0xdff4.

hal .  The memory alias record handle (hal) is an index into the table of memory alias
records (VMALs) whose address is located at _parVMAliases.

har .  The memory arena record handle (har) is an index into the table of memory arena
records (VMARs) whose address is located at _parvmOne.

hco .  A hco is a handle for a memory context record. This is an index into the table of
memory arena records (VMCOs) whose address is located at _pcovmOne.
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hmte .  The MTE control block handle (hmte) is the hob of the memory object that
contains the MTE.

MTEs are allocated as pseudo-objects, so do not have Arena Records associated with
them.

hob .  The memory object record handle (hob) is an index into the table of memory
objects records (VMOBs) whose address is located at _pobvmOne.

hptda .  The PTDA control block handle hptda is the hob of the memory object that
contains the PTDA.

PTDAs are allocated as pseudo-objects, so do not have Arena Records associated with
them.

HWND.  An hwnd  is the handle to a WND structure. This is returned to an application
when it uses WinCreateWindow  and is used for subsequent PM API calls that affect the
window.

See 14.1.3, “Exploring 32-bit Presentation Manager Under WARP” on page 273 for more
information.

Interrupt Descriptor Table (IDT) .  The Interrupt descriptor table (IDT) is a hardware
architected structure that comprises a table of gate descriptors, one for each interrupt
vector. The low numbered entries are defined by the hardware architecture and
dedicated to exception management.

The Kernel Debugger′s V command may be used to intercept system exception handlers.

Interrupt Vector .  An interrupt vector is presented to the processor when an interrupt is
generated either externally by the Programmed Interrupt Controller or internally within
the processor chip itself. It is used by the processor as an index into the IDT to determine
which interrupt routine should be dispatched.

The processor reserves vectors 0 - 31 to correspond to hardware architected exceptions
0 through 31. Vectors 32 - 255 are reserved for I/O interrupts, which are presented to the
processor by the Programmed Interrupt Controller when the one of its IRQ lines is
tr iggered. The correspondence between vectors and IRQs is defined during system
initialization as follows:

IRQs 0 - 7 vectors 0x50 - 0x57

IRQs 8 - 15  vectors 0x70 - 0x77

Thus a keyboard interrupt, which is assigned to IRQ 1 under the IBM PC architecture will
be handled by the interrupted handler whose interrupt gate is assigned to IDT descriptor
0x51.

See the Dump Formatter and Kernel Debugger DI command for information on displaying
IDT entries.

Internal Processing Errors (IPEs) .  Internal Processing Errors are unrecoverable error
conditions detected by the system while running in ring 0. The may arise from
inconsistencies detected by the OS/2 Kernel or from traps occurring in any ring 0 code
(Kernel, Installable File System Drivers and Device Drivers).

When the system detects an IPE it enters a routine called panic where an error message
is formatted and displayed and the system is halted.

Job File Number (JFN) .  A Job File Number (JFN) is a handle for open file system
objects, unique within the process that opened the file system object. The JFN is
returned by DosOpen. It is used and an index into the JFN Table to locate the
corresponding SFT handle.

Job File Number Table (JFT) .  A Job File Number Table (JFT) entry is assigned to each
open file system object within a process. The JFT provides a cross-reference to the
handle for the corresponding SFT. The JFT is locatable from the PTDA field JFN_pTable
(PTDA  +0x5b8 (H/R: +0x5b0)) for each process.
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The JFT is initially allocated within the PTDA at label JFN_Table  (PTDA  +0x35e) with 20
entries. If this is expanded by use of the DosSetMaxFH then JFN_pTable is updated to
point to the new table.

See also related structures:

CDS

DPB

MFT

FSC

VPB

Kernel Semaphores .  Kernel Semaphores are a form of semaphore, similar to the
application 32-bit semaphore, used by kernel routines for longer term blocking. Kernel
Semaphores provide addition function over the simple blocking mechanism, which
includes:

Priority inversion protection.

Ownership auditability.

For additional information see the following:

The .D KSEM command.

The .PB command.

The KSEM structures in the System Reference.

Loader Cache .  The Loader Cache is used for saving discardable pages of instance data
segments from DLLs loaded from mountable media. The caches is allocated from the
kernel heap and has a system object owner ID of cache.

Local Descriptor Table (LDT) .  The Local Descriptor Table (LDT) is a hardware
architected table of memory descriptors.

Under OS/2 one LDT is allocated per process.

Local Information Segment .  The Local Information Segment is a per-process control
block that records the current status of the process. It is imbedded in the PTDA and is
also mapped by the LDT descriptor 0xdfff.

Master File Table (MFT) .  A Master File Table (MFT) entry is used to associate path
names with open files (SFTs) and lock records (RLRs). The MFTs are managed in a
PTREE structure, which is locatable from the SAS.

See also related structures:

CDS

DPB

SFT

FSC

VPB

Message Queue Header (MQ) .  A PM Message Queue Header (MQ)  is used as an anchor
for message processing for a given PM Application′s message thread. The MQ is created
when a threads calls WinCreateMsgQueue .

See 14.1.3, “Exploring 32-bit Presentation Manager Under WARP” on page 273 for more
information.

Module Table Entry (MTE) (non-swappable) .  The (non-swappable) Module Table Entry
(MTE) for a loaded module is use to record information about loaded modules. Since the
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MTE is allocated in non-swappable only information that must be resident at all times is
recorded here. Related information that may be paged out is recorded in its sister
control, the Swappable Module Table Entry (SMTE).

The MTE contains the following information:

pointers to related control blocks such as, SMTE, resource and fix-up tables.

attributes of the load module.

Use count for .EXE modules.

Each MTE is identified by a unique handle referred to as the hmte.

Object Table Entry (OTE) .  An Object Table Entry (OTE) describes the address, size and
attributes an object within a loaded 32-bit load module.

The corresponding control block for a 16-bit load module is the STE.

Page Frame Structure (PF) .  A Page Frame Structure (PF) is used by page frame
management to track the status of a physical storage frame. The Page Frame Structures
are allocated in contiguous storage, anchored from the address specified in global
variable:

_pft

Each PF corresponds one to one with a frame of physical storage and provides links to
Virtual Page Structures VPs.

Zero or more PTEs may be pinned to a physical frame, this is reflected in a reference
count maintained in the associated PF.

UVIRT mappings have their corresponding PFs reserved unless aliased by non-UVIRT
storage.

Paragraph .  A paragraph is a unit of memory allocation of 16 bytes. Paragraph aligned
allocations lie on a 16-byte boundary.

Patricia Tree (PTREE) .  A Patricia Tree (PTREE) is a form of tree structure designed to
offer a fast look-up facility for generically specified keys. In OS/2 a modified form of the
PTREE is use to manage MFTs for fast path-name look-up.

Page Table Entry (PTE) .  A Page Table Entry (PTE) is a hardware architected structure
that is used to map virtual addresses to physical storage addresses.

Per-Task Data Area (PTDA) .  The Per-Task Data Area (PTDA) is the anchor point for all
process (task) related control information. One PTDA exists per process and from it is
located the LDT, TCB chain, Page tables and Arena Headers for a process.

All active PTDAs are addressable, whatever the current process, from a global address in
the system arena. However, for the current process an alias address is created using
selector 30 and in addition the many of the PTDA field names are declared as public
symbols. This allows the fields names in the PTDA for the current process to be referred
to directly under the Kernel Debugger and Dump Formatter.

PTDA_Start is the symbol assigned to the beginning of the current PTDA. Using the ?
command against this and other PTDA field names allows relative offsets for PTDA fields
to be calculated and used in other contexts as offsets from the global PTDA address.

Physical Arena Information block (PAI) .  The Physical Arena Information block (PAI)
describes ranges of physical memory to memory management.

Pageable physical memory is described by the PAI pointed to by the SAS.

Process Information Block (PIB) .  The Process Information Block (PIB) is a supplemental
process related control block made accessible to ring 3 programs. It contains process
status information obtained from the process′ PTDA.

The PIB may be located from ptda_avatib(PTDA + 0x28) using the Dump Formatter or
Kernel Debugger.
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A program gains access to the PIB along with the TIB by calling the DosGetInfoBlocks
API.

Process Identifier (Pid) .  The Process Identifier (Pid) is a unique system wide value used
to identify a given process.

Note: It is not the same as the hptda which also uniquely identifies a process.

The Pid is used as a handle in process related APIs such as DosKillProcess and
DosWaitChild.

Program Data Block .  The Program Data Block is the name given to the DOS PSP by the
DEM component of OS/2.

Program Segment Prefix (PSP) .  The Program Segment Prefix (PSP) is a DOS control
block that forms the header of a loaded program. Under OS/2 the DEM component refers
to this as the PDB or Program Data Block.

Process .  A process is a collection of threads that share a common address space.

Each process is primarily represented by a PTDA structure and is assigned a unique
identifier, the Pid.

Processes are organized in hierarchical tree structures known as process or Command
Subtrees.

Pseudo-Objects .  Pseudo-Objects are small system objects that comprise control blocks
and other system areas, which for reasons of virtual memory conservation are not
represented by a corresponding Arena Records. They are allocated out of the kernel
resident heaps and comprise the following types of object:

MTE

VMAH

PTDA

Loader Cache

Queue Message (QMSG) .  A PM Queue Message (QMSG)  is used by WinPostMsg  to
enqueue an asynchronously sent message to a thread′s message queue. QMSGs are
chained from the MQ of the receiver in a circular array.

See 14.1.3, “Exploring 32-bit Presentation Manager Under WARP” on page 273 for more
information.

PWND.  A pwnd  is a 32-bit pointer to a WND structure.

See 14.1.3, “Exploring 32-bit Presentation Manager Under WARP” on page 273 for more
information.

Record Lock Record (RLR) .  A Record Lock Record (RLR) describes a locked region of a
file system record. RLRs are chained from the related MFT and point to the associated
SFT. They record the owner of the record lock.

See also related structures:

CDS

DPB

SFT

FSC

VPB

Record Management Package (RMP) .  A Record Management Package (RMP) is a data
structure designed for tabulating variable length records. Typically OS/2 uses RMPs to
manage:

Named Storage names
Open File names
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Directory names
System Semaphore names

Reliability, Availability and Serviceability (RAS) .  RAS is an acronym that refers to
diagnostic and service support within OS/2. Frequently it is used as a synonym for the
adjective diagnostic.

Register Information Packet (RIP) .  A Register Information Packet (RIP) is an entity used
to describe the size and offset of a register in a system stack frame. RIPs are located in
a CRI.

Scheduler .  The Scheduler component of OS/2 is responsible for managing threads on
queues according to priority and status.

Screen Group .  A Screen Group is a logical full screen buffer and keyboard. A number of
processes may be assigned to run in a given screen group. The workplace shell is one
such screen group. Each screen group is assigned an ID. The screen group assigned to
a process is recorded in its Local Information Segment. The currently active screen
group is recorded in the Global Information Segment.

Screen Groups are represented by SGCB structures.

Under version 2 of OS/2 the screen group concept has been extended to that of a
session.

Screen Group Control Block (SGCB) .  The Screen Group Control Block (SGCB) is used by
the session manager component of the system to represent a Screen Group. It contains
status information for the screen group and acts as a cross reference between the Pid
currently associated with a given screen group and vice versa.

Segment Table Entry (STE) .  A Segment Table Entry (STE) describes the address, size
and attributes of a segment (object) within a loaded 16-bit load module.

The corresponding control block for a 32-bit load module is the OTE.

Session .  Sessions are groups of related processes initiated using DosStartSession API.
Each session is assigned a logical screen buffer or presentation space. Sessions are
identified by a unique ID that corresponds with their Screen Group Id (though the range
of numbers is extended to included PM sessions, which all share then same screen
group).

The following session ID/Screen Group ID ranges are defined:

System Anchor Segment (SAS) .  The System Anchor Segment (SAS) is a central system
control block use to anchor control blocks for major system components such as:

File systems

Device Drivers

Scheduler

SG Usage

0 Hard Error Popups

1 Shell Screen Group

2 Real Mode Screen Group

3 VioPopUp Screen Group

4 First Full Screen Application Session

15 Last Full Screen Application Session

16 First Windowable VIO-Session

31 Last Windowable VIO-Session

32 First PM session

255 Last PM session
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Memory management

The SAS is built at the beginning of the segment addressable from selector 70 and 78.

Send Message Structure (SMS) .  A PM Send Message Structure (SMS)  is used by
WinSendMessage  to enqueue a synchronously sent message. SMSs are chained from the
MQ of both the sender and receiver.

See 14.1.3, “Exploring 32-bit Presentation Manager Under WARP” on page 273 for more
information.

Swappable Module Table Entry (SMTE) .  The Swappable Module Table Entry (SMTE)
contains characteristics of a loaded module that may be page out of memory. The SMTE
is the sister control block to the MTE, which records those characteristics that must be
resident at all times.

The SMTE principally contains:

A pointer to OTE or STE.

A pointer to the fully qualified module name.

The entry point and initial stack pointers.

System File Table (SFT) .  A System File Table (SFT) entry is used to describe the
attributes of each instance of an open file system object. SFTs are stored in a segment
directly locatable from the SAS. SFTs are indirectly locatable from the JFN Table
imbedded in the PTDA of each process that opens a file system object.

See also related structures:

CDS

DPB

MFT

FSC

VPB

System Queue Message (SQMSG) .  A PM System Queue Message (SQMSG)  is used by
the PMDD.SYS device driver to enqueue messages, which represent system input
activity, to the system input queue.

See 14.1.3, “Exploring 32-bit Presentation Manager Under WARP” on page 273 for more
information.

System Trace Data Area (STDA) .  The System Trace Data Area (STDA) is a circular
buffer used to record trace events. The STDA may be located from the SAS.

Symbol .  A symbol is the name given to a program code or data location that has been
made public by the programmer. Such symbolic definitions appear in the map file output
from the linkage editor. They may be referenced in the Dump Formatter and Kernel
Debugger using the L command when the map file is converted to a symbol file using the
MAPSYM utility.

Symbol Absolute .  An Absolute symbol is a symbolized constant value that has been
made public by the programmer. Such symbolic definitions appear in the map file output
from the linkage editor and may be referenced in the Dump Formatter and Kernel
Debugger using the LA command when the map file is converted to a symbol file using
the MAPSYM utility.

Symbol Group .  A symbol group is the set of symbols that are defined within a program
segment. Frequently a program segment is given its own selector at load time.

Symbol Map .  A symbol map is created from symbolic name information generated by a
program compiler and converted for used by the Dump Formatter and Kernel Debugger
by the linkage editor and MAPSYM utilities. This allows program code and data locations
to be referred to by name as well as by address.
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System File Number (SFN) .  A System File Number (SFN) is the system-wide unique
handle by which an open file system object is known. It is the offset into the SFT
segment that locates the corresponding SFT entry.

Task .  A task is a hardware architected thread of execution. The INTEL architecture
allows for multiple independent tasks to coexist and provides the task gate mechanism as
a means of switching between tasks. Tasks are represented to the hardware by the TSS.

The characteristics of a task are very similar to that of the OS/2 process. Protect-mode
processes however, tend to run under a single task in OS/2 and implement switching
through the more efficient software managed context switching mechanism.

Only VDMs and error recovery processes run as independent tasks.

See the INTEL486 Programmer′s Reference for more information.

Task State Segment (TSS) .  The Task State Segment (TSS) is a hardware architected
control block that is used for two purposes:

 1. To implement the privi leged level transit ion mechanism init iated with a Call Gate
instruction.

 2. To provide a register save area for hardware task switching init iated with a call to a
Task Gate.

In general OS/2 does not use the hardware task switching mechanism, so TSSs are few.
It does however use the TSS for implementing Application Programming Interfaces (APIs)
in the system.

A TSS may be formatted using the Kernel Debugger and Dump Formatter DT command.

Translation Lookaside Buffer (TLB) .  The Translation Lookaside Buffer (TLB) is a
hardware implemented buffer used for caching linear to physical address mappings.

The Intel486(TM) processor provides test registers for manipulating the TLB.

Thrashing .  Thrashing refers to the state of a system where most of the CPU time is
spent paging in and out memory from the swap file. This happens when real storage is
heavily over committed and storage references encompass a wide range of virtual pages
over a short processing time.

Such a condition can indicate a poorly tuned application where paging is caused by the
process of accessing data the application needs. A typical scenario is where work data is
chained in a single, very extended, queue and no mechanism exits to access the required
data without scanning the entire chain. Use of hashing techniques greatly reduce this
problem.

Thread .  A thread is a independently scheduleable entity that competes for processor
resource with other threads.

Each thread is represented by a TCB and TSD structure.

Threads are organized within processes and assigned a unique identifier within the
owning process known as the Tid.

All threads within the system are assigned a system wide unique identifier known as the
Thread Slot Number.

Thread Control Block (TCB) .  The Tread Control Block (TCB) contains per-thread control
and status information that must be resident at all times. The swappable counterpart to
the TCB is the TSD

Thread Identifier (Tid) .  The Thread Identifier (Tid) is a value, unique within the owning
processes, used to identify the thread. It is not the same as the Thread Slot Number,
which uniquely identifies a thread, system-wide.

The Tid is used in thread related APIs such as DosKillThread and DosSetPriority.

Thread Information Block (TIB) .  The Thread Information Block (TIB) is a supplemental
thread related control block made accessible to ring 3 programs. It contains thread
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information obtained from the thread ′s TCB and acts as an anchor for exception-handlers
registered for the thread.

The TIB may be located from TCBptib(TCB + 0x10) using the Dump Formatter or Kernel
Debugger.

A program gains access to the TIB along with the PIB by calling the DosGetInfoBlocks
API.

Thread Local Memory Area (TLMA) .  The Thread Local Memory Area (TLMA)  a an area of
private arena memory that is instanciated at a thread level. This is achieved by copying
the contents of the TLMA to dfff:0024 when a thread switch occurs. The TLMA contents
are saved in the TCB at TCBTLMA .

Storage is allocated from the TLMA by using the DosAllocThreadLocalMemory  API.

Thread Slot Number .  The Thread Slot Number is a system wide unique identifier
assigned to each thread in the system.

Threads are located from the thread slot table whose linear address is at global symbol:

_papTCBSlots

Each slot is a double-word linear address of the corresponding thread′s TCB. The first
slot (slot=0) is reserved.

Under the Kernel Debugger and Dump Formatter the following symbols may be used to
represent particular threads in many of the commands that accept a slot number as a
parameter:

* The current or last dispatched thread as recorded in word global variable
_TaskNumber

# The default thread slot used by the Dump Formatter and Kernel Debugger.

Thread Swappable Data (TSD) .  The Thread Swappable Data (TSD) control block contains
per-thread status and control information that resides in swappable memory and
therefore is not required for reference out of context of the related thread. The resident
memory counterpart to the TSD is the TCB (Thread Control Block).

The vast majority of the TSD is used as the ring 0 stack when a thread makes a privilege
level transition to ring 0 via a call gate descriptor. The base of the ring 0 stack will
therefore include the ring 3 call gate stack frame on entry to ring 0 (which is usually
kernel or device driver code).

In the debug kernel a dummy page prefixes the used part of the TSD in order to catch
ring 0 stack faults.

Other information contained in the TSD includes GTD instance data for the corresponding
thread ′s context. This comprises descriptors for:

28: The LDT descriptor.

30: Base selector for ring 0 process instance data, which includes the ring 0 stack,
TCBs and PTDA.

38: Floating point emulator instance data

40: FS mapping to the TIB

When an an inter-process thread context switches, descriptors 30 - 40 are loaded into the
GDT from the TSD. When an intra-process thread context switches, descriptors 28 - 40
are loaded into the GDT from the TSD.

Thunking .  Thunking is the process of calling 16-bit code from 32-bit code and vice versa.
Thunking consists of applying the CRMA to convert from one form of address to the other
and making any stack parameter adjustments either by padding 16-bit operands to 32-bit
with leading zeros (16- to 31-bit conversion) or truncating the padded 32-bit value to 16
bits (32- to 16-bit conversion).

Tracepoint .  A tracepoint  is designated location in system or application code where the
System Trace Facility will gather data for logging by the STDA.
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Tracepoints may be implemented statically by use of the DosSysTrace  API or dynamically
through use of the Dynamic Trace Customiser.

System defined tracepoints are documented in the System Tracepoints Reference.

UVIRT.  The UVIRT attribute signifies virtual storage mapping to a pages of physical
storage.

The full set of memory management structures associated with virtual storage allocation
may not exist for UVIRT storage.

The UVIRT attribute may be associated with a number of structures, for example:

PTE

LDT and GDT descriptors

VMAL

In general UVIRT allocations are ′convenience ′ mappings memory to selectors. Typically
they are created by device drivers using the DevHlp_PhysToUvirt facility.

Virtual DOS Machine (VDM) .  A Virtual DOS Machine (VDM) is a type of process that runs
in an emulated DOS environment using the DOS Emulation (DEM) component of OS/2.

Virtual Page Structure (VP) .  A Virtual Page Structure (VP) is used by memory
management to track the status of a virtual storage frame, whether backed by physical
storage, cached by the loader or paged out to the swapper. The Virtual Page Structures
are allocated in contiguous storage, anchored from the address specified in global
variable:

_pgpVPBase

Virtual Memory Arena Header Record (VMAH) .  One Virtual Memory Arena Header
Record (VMAH) is allocated per arena to record information about the address range of
an arena. The VMAH points to its sentinel arena record (VMAR).

Each VMAH chained in a double linked list.

The system arena VMAH is located at global symbol:

_ahvmSys

The shared arena VMAH is located at global symbol: _ahvmShr

For each private arena the VMAH is imbedded in the PTDA at label &ptdaah..

Under OS/2 2.1 the system and shared arena VMAHs are assigned to objects 4 and 5
respectively.

Virtual Memory Alias Record (VMAL) .  The Virtual Memory Alias Record (VMAL) is used
to represent aliased regions of virtual memory. These are either:

regions of physical storage that may be addressed by more than one virtual or

linear address that are not associated with a memory object, such as VDM UVIRT
allocations.

When two memory objects are aliases of each other then they need not have coincident
sizes or origins within the aliased arena record. Aliases are designed to provide
alternative attributes for accessing the same piece of data within or across processes.
Compare this with shared instance data within the shared arena, where multiple object
records share a common arena record. In this case each object is associated with a
unique process and is not considered an alias.

Each VMAL is identified by a unique handle referred to as the hal.

Virtual Memory Kernel Heap (VMKH) .  The Virtual Memory Kernel Heap (VMKH)
structures are used to describe system heap memory. Many objects allocated out of the
kernel heap are assigned a System Object identifier.
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Virtual Memory Arena Record (VMAR) .  The Virtual Memory Arena Record (VMAR) is
used to represent a contiguous region of virtual memory allocated in page quantities.
Such storage may or may not be committed or resident.

Arena records are chained in a doubly linked lists, one for each arena type. That is, the
chain chain exists separately for each private arena, the shared arena and system arena.

Special arena records, known as Sentinels head each chain. They describe the entire
arena which they head.

All virtual memory is described by by at least one arena record.

Each VMAR is identified by a unique handle referred to as the har.

Arena also records point to the following related memory structures:

VMOB

VMAL

VMCO

Virtual Memory Context Record (VMCO) .  A Virtual Memory Context Record (VMCO) is
used to record the association of shared arena, shared data objects with processes that
are using.

Each VMCO is identified by a unique handle referred to as the hco.

Virtual Memory Object Record (VMOB) .  The Virtual Memory Object Record (VMOB) are
used to represent memory objects, that is the instance data associated with a particular
virtual address. VMOBs contain pointers to the the owning and requesting objects as
well as the corresponding arena record (VMAH).

Each VMOB is identified by a unique handle referred to as the hob.

Volume Parameter Block (VPB) .  A Volume Parameter Block (VPB) is used to store
volume information associated with a file system object. All VPBs are contained within a
single segment locatable from the SAS. Most file system structures contain a VPB
handle for an associated volume. The handle is used as an offset into the VPB segment.

See also related structures:

CDS

MFT

SFT

DBP

FSC

Window Structure (WND) .  A PM Window Structure (WND)  is used by PM to represent a
window. When an application uses WinCreateWindow  the WND is created and the HWND
is returned to the user. The WND contains information about a window′s hierarchy, and
associated MQ.

See 14.1.3, “Exploring 32-bit Presentation Manager Under WARP” on page 273 for more
information.

Zombie .  The term Zombie  is used to describe a.Z terminal condition of a thread or
process. There is a strict operating system definition and two colloquial uses:

•

• The strict system definition refers to a process that has terminated but whose PTDA

has been retained on the zombie queue (_pPTDAFirstZombie ) because the process
status byte (LISEG+0xa) indicates that its parent wishes to collect
termination information through DosWaitChild . The dead child is retained on
the zombie queue until either the parent dies or issues DosWaitChild .

•  Zombie is also commonly used to refer to a terminating thread or process
that has blocked after the application has returned to the operating system.
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Usually this implies a problem freeing memory because one or more pages
have been long-term locked by a device driver.

•  The third use of zombie refers to any process that is anonymous. Internal
thread, VDMs, and terminating threads can be anonymous.
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List of Abbreviations

AAB Application Anchor Block

BMP Block Management Package

CDA Common ABIOS Data Area

CDIB Codepage Data Information Block

CDS Current Directory Structure

CRI Client Register Information

DEM DOS Emulation

DPB Driver Parameter Block

FAT File Allocation Table

FSC File System Control Block

FSD File System Driver

GDT Global Descriptor Table

GISEG Global Information Segment

IBM International Business Machines Corporation

IDT Interrupt Descriptor Table

IPE Internal Processing Errors

ITSO International Technical Support Organization

JFN Job File Number

JFT Job File Number Table

LDT Local Descriptor Table

MQ Message Queue Header

MFT Master File Table

MTE Module Table Entry

OTE Object Table Entry

PAI Physical Arena Information block

PF Page Frame Structure

PIB Process Information Block

Pid Process Identifier

PSP Program Segment Prefix

PTDA Per-Task Data Area

PTE Page Table Entry

PTREE Patricia Tree

QMSG Queue Message

RAS Reliability, Availability and Serviceability

RIP Register Information Packet
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RLR Record Lock Record

RMP Record Management Package

SAS System Anchor Segment

SDTA System Trace Data Area

SFN System File Number

SFT System File Table

SGCB Screen Group Control Block

SMS Send Message Structure

SMTE Swappable Module Table Entry

SQMSG System Queue Message

STE Segment Table Entry

TCB Thread Control Block

TIB Thread Information Block

Tid Thread Identifier

TLMA Thread Local Memory Area

TLB Translation Lookaside Buffer

TLMA Thread Local Memory Area

TSD Thread Swappable Data

TSS Task State Segment

VDM Virtual DOS Machine

VMAH Virtual Memory Arena Header Record

VMAL Virtual Memory Alias Record

VMAR Virtual Memory Arena Record

VMCO Virtual Memory Context Record

VMKH Virtual Memory Kernel Heap

VMOB Virtual Memory Object Record

VP Virtual Page Structure

VPB Volume Parameter Block

WND Window Sturcture
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Command Reference, Minimal 329
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F
FAT 340, 353
File Allocation Table (FAT) 340
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Finding a WND from an HWND 315
Finding an MQ and AAB Registers 313
Finding an SMS from an MQ 314
Finding Application and System Queue

Elements 311
Finding Files from Handles 214
Finding Files from Handles - Example 220
Finding Files from Handles in a VDM 227
Finding Handles from File Names 230
Finding the System Queue 317
Finding Who Owns Memory 260
Frame Structure, Page 161
Freeze, Hardware 140
Freezing, Suspension and 208
FSC 341, 353
FSD 341, 353
function Numbers, Device Help 334

G
Gate 341
GDT 341, 353

356 OS/2 Debugging 



GISEG 341, 353
Global Data, Shared 170
Global Data, Shared Arena 157
Global Descriptor Table 6, 8, 11, 23, 40, 81, 131
Global Descriptor Table (GDT) 341
Global Information Segment (GISEG) 341
glossary 337
Group Control Block, Screen 346
Group, Screen 346
Group, Symbol 347
Guide, Advanced 139

H
hal 341
Handles from File Names, Finding 230
Handles in a VDM, Finding Files from 227
Handles, Finding Files from 214
Hang Analysis 139
Hang in a PM Application, Example 2 305
Hang Problem Involving Locked Records 237
har 341
Hardware Freeze 140
hco 341
Header, PM Message Queue 297
Heap Blocks, Resident 183
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