
Designing High-Powered
Accredited 05/2® Warp Applications

The Anatomy-of ··'Multithreaded Program,s

David E. Reich

.... ~
.......... ~

...... ·· ...
.. ·

• ·--... -· -----.

\

DESIGNING
HIGH-POWERED OS/2®
WARP APPLICATIONS

The Anatomy of
Multithreaded
Programs

David E. Reich

John Wiley & Sons, Inc.

New York • Chichester • Brisbane • Toronto • Singapore

Publisher: Katherine Schowalter

Editor: Theresa Hudson

Managing Editor: Maureen B. Drexel

Text Design & Composition: Integre Technical Publishing Co., Inc.

Designations used by companies to distinguish their products are often claimed as trademarks.
In all instances where John Wiley & Sons, Inc. is aware of a claim, the product names appear in
initial capital or all capital letters. Readers, however, should contact the appropriate companies
for more complete information regarding trademarks and registration.

This text is printed on acid-free paper.

Copyright © 1995 by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

This publication is designed to provide accurate and authoritative information in regard to the
subject matter covered. It is sold with the understanding that the publisher is not engaged in
rendering legal, accounting or other professional service. If legal advice or other expert assistance
is required, the services of a competent professional person should be sought.

Reproduction or translation of any part of this work beyond that permitted by section 107 or
108 of the 1976 United States Copyright Act without the permission of the copyright owner is
unlawful. Requests for permission or further information should be addressed to the Permissions
Department, John Wiley & Sons, Inc.

This book is not sponsored in any part or in any manner by IBM. IBM does not endorse the accuracy
or appropriateness of any information contained herein. In addition, this book is not intended
to replace IBM documentation or personnel in determining the specifications or capabilities of
the referenced products. You are responsible for choice of all configurations and applications of
computer hardware and software. You should discuss these choices with your IBM representative.

This manuscript represents the opinions of the author only and in no way expresses any view or
opinion of the IBM Corporation.

ISBN 0-471-11586-X

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

TRADEMARKS

IBM is a registered trademark of International Business Machines Cor
poration.

Operating System/2, OS/2, Presentation Manager, Workplace Shell, In
formation Presentation Facility, Systems Application Architecture (SAA),
Common User Access (CUA), PS/2, VisualAge, and Hyperwise are trade
marks or registered trademarks of International Business Machines
Corporation.

CIL is a trademark of Component Integration Laboratories.

PowerPC is a trademark of IBM Corporation.

Mach3 is a trademark of Carnegie Mellon University.

Intel is a registered trademark of Intel Corporation.

Lotus is a trademark of Lotus Development Corporation.

Aldus is a trademark of Aldus Corporation.

PageMaker is a registered trademark of Aldus Corporation.

KASE:PM VIP is a trademark of Kase Systems, Inc.

SmallTalk is a registered trademark of Digitalk Inc.

GPF is a trademark of Microformatic Inc.

Microsoft is a registered trademark of Microsoft Corporation.

Mirrors and SMART are trademarks of One Up Corporation.

VX/Rexx is a registered trademark of Watcom, Inc.

Vis/Pro REXX is a trademark of Hockware, Inc.

Windows is a trademark of Microsoft Corporation.

To Stacy, whose constant love and support keep me

going and for Liora, who will always be my light.

FOREWORD

I n April 1992, IBM opened a whole new world of computing with the
introduction of 32-bit OS/2. OS/2 is the integrating platform. For the
first time, computer users can run virtually any application written

for DOS, Windows, or OS/2 and run them simultaneously. Moreover,
OS/2 provides the facilities for you, the application designers and devel
opers, to create faster, more powerful, more flexible applications than
ever before. With the introduction of OS/2 Warp, this power has been
updated and enhanced to run faster, use less memory, and provide vastly
more functions than ever before.

All this power lies waiting for you to utilize in your full-fledged 32-bit
applications. You are free of 64k segments and 640k boundaries, mem
ory extenders, and other add-ons loaded on top of each other. You want
memory? You got it. You have the facilities of powerful graphical user
and programming interfaces at your fingertips. One of the less tangible
yet most powerful features of OS/2 is its preemptive, prioritized multi
threading model. Other systems simulate multitasking through simple
time slicing. OS/2 brings program execution to the thread, allowing you
to write different parts of your application to run in parallel, creating
better throughput for the application and higher productivity for the
end user through more efficient use of the computer hardware. These,
along with the other technological advances of OS/2, are wrapped in a
state-of-the-art, object-oriented user shell.

In working with developers all over the world, David has heard the
questions, seen the hurdles, and helped overcome them. Through his

vii

Viii FOREWORD

work in the OS/2 development organization, as well as his work with
developers, he has gained insight into what is needed to design and
develop high-performance applications that exploit all that OS/2 has to
offer.

This book contains that insight and answers the questions of how
to structure and design your applications to take the best advantage
of OS/2's features. You don't have to use everything that is in OS/2
just because it is there. Throughout this book you will be shown how
to effectively break tasks into threads and which functions are more
appropriate in different situations. Once you decide on a task, you are
shown how to optimize your usage of system functions and resources to
create the fastest, most robust applications possible.

We at IBM are committed to OS/2 and proud of our technical ac
complishments with OS/2 Warp. We also know that we need you and
your applications to make our system really shine. David has the ability
to explain the most technically involved topics in ways that everyone
can understand. Use his experience, and this book, as you advisor in
creating the 32-bit applications of the future.

Lee Reiswig
President, IBM Personal Software Products Division

ABOUT THE AUTHOR

David E. Reich is currently an OS/2 Development Manager with IBM in
Boca Raton, Florida and has been with the OS/2 development team since
1987. In that time, he has worked on many parts of the operating system,
supported customers and application developers, and has traveled the
world teaching classes and helping developers write OS/2 applications.
Mr. Reich has a Master of Science degree in computer science from the
State University of New York at Albany, and is a contributing editor to
OS/2 Magazine and OS/2 Developer magazine.

ACKNOWLEDGMENTS

F irst and foremost, thanks to all the designers, developers, testers,
writers, and everyone who is part of the OS/2 development team.
You are the most talented, dedicated, and craziest bunch of people

I've ever had the pleasure of working with. Due to your hard work, long
hours, and sleepless nights, OS/2 is the step into the future the PC world
needs. OS/2 turned from a software product into a labor of love, and
you made it happen.

Special thanks go to the following:
Darren Miclette, a good friend and an amazing talent. We will all

miss you, but your work lives on as does the memory of all the good
times.

Kelvin Lawrence, for whom there are no words. All I can say to the
man who believes "sleep is for the weak" is that you have to be the most
knowledgeable person on OS/2 there is. Thank you for your friendship
and for being there to help with those questions too numerous, obscure,
and involved for anyone else to understand what I was talking about,
and for your immeasurable contribution to the product.

James Taylor and Brett Adams, for being good friends and for being
there.

Dan Kehn, for introducing me to the architecture of SOM and the
Workplace Shell during that great seafood lunch.

Peter Magid, for being my sounding board on all of my questions
and crazy ideas on the shell and what it can really do.

Ari Erev, for all those questions you always ask me that make me
take a look deep into how the functions work; that educates me as well.

xi

Xii ACKNOWLEDGMENTS

Glen Brew, Paul Devriendt, and Edd Doutre, for helping with all
those nuances of memory management and how OS/2 starts and man
ages the millions of things going on in the system every second.

David Kerr, whose expertise never ceases to amaze me. Thank you
for your advice on techniques and all those tips that are so often over
looked when putting code together.

Michelle Vaghari and Laura Sanders, for giving me a chance and
your support of all my activities, including my writing work.

Joe Tano and Ken Christopher for your perseverence and faith in my
abilities.

Kevin Maier, for all kindsa stuff.
David Moskowitz, for always keeping me on my toes.
Of course, I can't forget Mike Santivenere and Ed Potts.
To TEAMOS2, application developers, IBMers, and OS/2 supporters

alike. Without your tireless efforts, OS/2 would not have achieved the
levels of success it has in so short a time. You are visionaries, and the
world will look back and ask you how you knew what the future would
be before it happened.

Finally, and most importantly, to all the families of the entire OS/2
team for sacrificing the time apart from your loved ones to make the
OS/2 dreams reality. Without your support, none of us would have made
it through with what little sanity we have left intact.

CONTENTS

Introduction xxiii
About This Book xxv
Overall Design xxvi
Features xxvii
Maintainability xxviii
Tools xix
Testing and Code Change xxx
Install Programs xxx

Section I Why OS/2? 1

Chapter 1 OS/2 as an End-User Platform 3

Multiprocessing 4
Using Several Applications at Once 4

Sharing and Communicating Data 5
Multithreading 6

Dividing Applications into Parallel Pieces 6
Increased User Productivity 7
Better Performance 7

32-Bit Memory Management 8
Flat Memory Model 8

Independence from Physical Memory 9
Up to 512 Meg per Program 9
Paging versus Swapping 10

xiii

xiv CONTENTS

Better Application Performance 1 O
Better System Performance 11

Intuitive User Interface 11
Users Can View Many Applications at Once 12
Workplace Shell 13

Consistent Behavior 13
Lower Learning Curve 13
Object-Oriented 13
Works the Way People Work 14

Contextual Help 15
Learning Is Easy 15

Device Independence 16
Applications See Generic Output Space 16
New Devices Only Need New Drivers, Not New Applications 16

IBM Compatibility to Future Releases 17
Symmetric Multiprocessing 17

Portability to PowerPC 18
Summary 19

Chapter 2 Why Program for OS/2? 21

Powerful and Flexible API 21
Function Call Interface to All System Services 23
Consistent, Easy Coding 23
Portability, Flexibility, Expandability 24
Easy to Modularize and Maintain 25
System Coding Conventions 26
Fast Prototyping 27
OS/2 Development: The Next Generation 27

Summary 28

Chapter 3 OS/2 as a Development Platform 29

Multitasking for Development 30
Debugger Support 30
Crash Protection 32
Summary 32

CONTENTS XV

Section II Overall Application Design 33
Chapter 4 Good Programs Have Good Up-Front Design 37

Understanding the Target Environment 38
60 Percent Design, 30 Percent Code, 10 Percent Test 38

60 Percent Design 39
30 Percent Code 40
10 Percent Test 41

Summary 42

Chapter 5 OS/2 Kernel Architecture 43
Overview of the Kernel 44

Structure 44
Scheduler/Dispatcher 47
Scheduling on SMP 48
Loader 49
System Services Flow 50

Digging Deeper 53
Protection Mechanism 54
Process/Thread Model 55
Priority 57
Thread Management 59
Memory Management 60
File System 68
Device Drivers 69
DLL Mechanism 72
Base Subsystems 73

Summary 74

Chapter 6 Presentation Manager, Graphics, and the User Interface 75
Presenting Data 76
Presentation and Translation Flow 78

Device Context 78
Presentation Space 80

Tracing a Drawing Call 80

XVi CONTENTS

Graphics Engine 81
Presentation Drivers 84

Brute-Force versus Full-Function Drivers 84
Printer Drivers 85
Screen Drivers 85

Window Manager 86
Input 86

Workplace Shell 89
Summary 93

Chapter 7 OS/2 Warp for the PowerPC 95

What Is Workplace? 96
Comparing and Contrasting with Intel OS/2 97
Microkernel 1 00
Personality-Neutral Services 102
Out-of-Kernel Device Drivers 104
Personalities 105
The OS/2 Personality 106

OS/2 Client Library 106
Presentation Manager and Other Libraries 107
The OS/2 Server 108

Single-Source Applications 109
Summary 110

Chapter 8 Features for Your Application 113

What Is the Main Function or Objective of the Application? 114
How Will the Application Be Presented? 115

Presentation Manager Graphics/Text 115
AVIO Windows 118
Text-Based 119
Workplace Shell Objects and Templates 121

Choosing Features to Include 123
Data Communications with Other Programs

(Open Application) 124

CONTENTS XVii

Dynamic Data Exchange 124
Clipboard 126
Pipes and Queues 127
Data Interchange Formats and Filters 129

REXX Hooks 130
Printing 131
Fonts and WYSIWYG 131

Summary 132

Chapter 9 Application Structure 133
Isolate from Underlying Hardware 134

Use OS/2's Device Independence 135
Stick with Portable Languages and Tools 136

Modular Design and Threads 138
Using Multiple Processes 141
Using DLLs and Code Sharing 142
Resource Sharing and Synchronization 143
Keep Upgradability, Portability, and Serviceability in Mind 145
Summary 145

Section Ill Use Building Blocks or Your App
Will Crumble

Chapter 10 Block Design and Architecture

Taking the Black-Box Approach 149
Letting the Operating System Do It for You 152
Summary 153

Chapter 11 Designing the User Interface

Window Design 155
CUA 156
Presenting Data 157

Window Controls 158
Dialogs 159

147

149

155

xviii CONTENTS

Application Defaults 163
Application Development Tools for OS/2 164

Object Technologies 170
Workplace Shell 172

Objects and Templates 173
Step 1-Simple Drag-and-Drop 173
Step 2-Associations 17 4
Step 3-Writing an Object 176

Application Launching 176
Single-Process Model Considerations 178

Interprocess Objects and Agents 179
Subset Function 180

Object-Oriented Printing 180
To Write an Object, or Not to Write an Object 183

Summary 183

Chapter 12 Where's the Beef? 185
Designing the Core 186

Modularizing the "Worker" Code 187
Memory Management 188
Device Drivers and Device Independence 192

File Layout 195
HPFS and FAT Features 196
• EXEs and . DLLs 197
INI Files 199

Multiprocess (Multiprogram) Applications 200
Summary 202

Section IV Making It Happen 203

Chapter 13 The Development Environment 205
Source Code Control 206

Platform 206
Function 207
Problem Tracking 208

CONTENTS xix

Tree Structures 209
Tools 210
Summary 211

Chapter 14 Prototyping the User Interface 213
Paint Your Windows 214
Multithreading Considerations 218

Handling Long Jobs 221
Using PM's Thread Handling 222
Object Windows 223

User-Defined Window Messages 225
WinPostQueueMsg 226

Keeping the User Interface Thread Responsive 228
Summary 229

Chapter 15 Building the Core Function 231
Memory Manager Package 233

Memory Suballocation 234
Guard Pages and Exceptions 237
16- and 32-Bit Techniques and Coexistence 238

Multithreading 240
Synchronizing Threads 241

Semaphores 242
Critical Sections 246

Should You Even Use Another Thread? 247
IPC 248

Queues 248
Pipes 249
Shared Memory 250

File Functions 251
Internal File Formats 251
Taking the LAN into Account 252
Using File System Structures 253

Summary 254

XX CONTENTS

Chapter 16 Using Advanced Functions

258 Clipboard
Text Data
Metafile Data

259
259

Application-Defined Data 260
Dynamic Data Exchange (ODE) 260
Printing 262

Print Destinations 264
Fonts 266
Help Facilities 267
Help and Multimedia 269
Summary 270

Chapter 17 Non-English-Language Support

Flexibility in Your Code 273
Message Files 27 4
Windows and Dialogs 275

Stringtables 275
Building Windows on-the-Fly 276
Using Lengths and Proportions 277

Resources in DLLs 279
Structuring Your Development 280

Summary 282

Section V Performance

Chapter 18 Base Tuning

Memory Tuning 287
Code and Data Working Sets 288
Locality of Reference and Data Positioning
Code Size versus Path 289

Dynamic Link Considerations 290
Messages and Other Resources 294

257

273

285

287

288

CONTENTS XX.i

Throughput Using Threads 295
Thread Priority 295

Packing the Executable 298
DLL Placement 298
Summary 300

Chapter 19 Visual Tuning 301
Window Tuning Tips 301

Keeping Windows Around 302
Filling Windows Invisibly 302

Letting PM Manage Work 303
Your Own Multipurpose Classes 304
Summary 306

Section VI Testing and Code Change 307

Chapter 20 Testing Methodology 309
Scaffolding 31 O
Testing Units 310
Testing Modules and Components 311
Testing the System 311
Summary 313

Chapter 21 Code Change 315
Code Change According to Design 316
When There Are Too Many for Comfort 317
Summary 317

Section VII Installation Programs 319
Chapter 22 Designing the Installation Program 321

Just Another (Small) Application 321
User Interface 322

xxii CONTENTS

Multithreading 323

Multiple Installations

Media Considerations

Packing Your Code

"Series" Applications

Summary 326

Summary and Conclusion

Bibliography

Index

324
325

326

326

329

331

333

INTRODUCTION

0 S/2 is the first true multitasking, virtual memory, multiprocess
operating system for IBM PCs, PS/2s, and compatibles. OS/2 pro
vides threads, huge memory objects, and myriad functions and

structures to create applications that were never even thought of be
fore. That means that all you were able to make a computer do before,
you can now make it do faster and more efficiently.

OS/2 will run virtually any program written for DOS or Windows.
OS/2 obviously, will run any program written for the current release
of OS/2 or any prior version. So really, OS/2 will run any application
written for the PC.

This is a big advantage for developers, because users can continue
to run the current levels of your applications while you build the more
advanced OS/2 versions. OS/2, with its interprocess communication
features, will let all of these applications talk to each other even if they
are a combination of DOS, Windows, and OS/2 applications, allowing
users to migrate to the more powerful applications easily.

While OS/2 for Intel systems runs your applications on Intel-based
computers, OS/2 Warp for the PowerPC will run them on PowerPC
based computers. The underlying goal of OS/2 is to isolate users and
applications from hardware by providing device independence for ap
plications, and consistent interfaces for users.

xxiii

XXiV INTRODUCTION

Not only is OS/2 an excellent platform to run end-user applications,
but it is an excellent development platform. How many times have you
grown impatient waiting for your computer to finish a compile, knowing
all the while you could have been doing something, anything, else with it,
such as working on another part of the project or even sending electronic
mail? Well, OS/2 solves all that.

OS/2 provides a platform for users to run many applications at once.
These applications can be a combination of DOS, Windows, or OS/2
programs. However, OS/2 provides not only the facilities for running
many varied programs at once, it also provides system services to native
OS/2 programs unlike any other before it, or even those currently trying
to mimic its function.

Programs that are written specifically for OS/2 have access to large,
flat memory objects. This smashes the long-imposed 64K segment limit
introduced with the original PC and DOS, and which still hampers de
velopment in these environments. Among a variety of other services,
OS/2 also offers true protection between programs, interprocess com
munication services, multiple threads of execution within a process,
built-in spooling functions, and a powerful graphical subsystem, all
wrapped up in an easy-to-use, object-oriented user shell. Best of all,
it is a full 32-bit system with a consistent 32-bit programming interface,
with the 32-bit and object technologies underneath supporting it all.

Writing programs is a generally straightforward task. Once you de
cide what your program will do, you generally sit down and write the
code. Of course, there are a variety of algorithms you may choose to ac
complish all of the tasks the program will perform, but coding is mostly
a matter of learning a language such as C, and writing the code. How
ever, as programs become more powerful and complex, they also grow.
As they grow, it becomes more and more important to structure them
so that they are efficient, expandable, maintainable, and make the most
efficient use of all their operating system has to offer. This has to be the
most important aspect of writing software today.

Proper design of an application (or series of applications) means
code that is easily enhanced, maintained, and ported to other environ
ments and code that can interface with other applications easily. This

INTRODUCTION XXV

translates into productivity gains for developers and cheaper and faster
development cycles. Case in point is OS/2 Warp for the Power PC, which
as you will see in Chapter 7 is a virtually no-work-required port assum
ing you've designed the application well.

Failure to properly design an application means code that has to be
frequently rewritten, that is hard to read, and difficult to maintain. This
translates into long development cycles and programmer frustrations.

One of the reasons that OS/2 Warp for the PowerPC has been devel
oped in such a relatively short period of time is because the subsystems
of OS/2 such as the Workplace Shell and graphics subsystems were
designed well, and written in high-level languages. Although they are
system-level code, moving them over to the PowerPC has been much
easier and faster than if they were written in assembler, or coded to
specifics of the Intel processor.

I have seen my share of poorly designed (or hacked-together) code.
I've also witnessed code that was so well designed that it was ported to
the Power PC in a day. In many cases, however, I have seen applications
where the designers tried to do it right, but fell somewhat short. The
main cause for this is that they were not aware of all the system had
to offer, they were not aware of theories that help performance and
maintainability and in general, they just lack the experience needed to
make the most of their application running under OS/2.

This book will help you do it right-the first time.

ABOUT THIS BOOK
This is a book about designing applications. OS/2 is full of functions
and features, and with them go decisions about which to use and when.
Once you have decided on the functions you want to provide to your
users, there are considerations about the implementation of each.

By the time you have finished this book, you will have walked through
OS/2 application design, A to Z. Note that this is not a programming
book. Programming books tell you how to write functions and how to

xxvi INTRODUCTION

make things work. This book shows you the functions that are available

in the system and how they work, providing examples and scenarios

describing which is best when. That is why there is virtually no code in

this book.
The design of an application entails when to put functions on sepa

rate threads, how to manage those threads, how to structure memory,

and which communications mechanisms to use. You may know that you

need to use a huge multidimensional matrix for a function. How should

you allocate memory for it to maximize performance in all situations?

This book will help you make that decision. You know you need to com

municate between application windows. Should you send messages?

Post messages? What is the difference? When communicating between

processes, should you use Dynamic Data Exchange, pipe, queues, or

the clipboard? What types of semaphores are there to coordinate access

to shared data structures? This book will answer these questions and

more.
Programming without design is doomed. By following the topics and

examples in this book, you will see how you can take advantage of the

features OS/2 offers while leaving the implementation decisions such as

which windows should be subclassed or which API to use in a specific

situation, to the programming stage of application development, where

it belongs. In doing so, you create code upon which you can build rather

than have to figure out how to add to or modify it.
This book will take you through application design from the time

you get an idea for an application all the way through the finishing

touches such as media packaging, non-English-language support, and

the installation program.

OVERALL DESIGN

The design of an application does not only mean to evaluate and decide

on various methods, algorithms, and features your programs will use

and provide; it also means to do all of this and other work before any

INTRODUCTION XXVii

coding begins. This includes understanding all of the functions provided
by the host environment, how they relate to what you want to provide
to your end users and how you can make the most of each function.

Not only does proper design include quantitative functionality, but
this design also includes structuring your modules to make the best of
the environment. This includes modularizing your code, designing your
thread and process models, prototyping, performance, code size, and
flexibility.

Now we also all know that requirements of a software project change
during the development cycle. If you set down your functional require·
ments first, then hea:ds·down code it to completion, it will likely be ob·
solete before you ever release it. If you do not take this fact into account,
you may wind up writing your application forever, never releasing
it. However, if you do your design right from the start, new requirements
during development should be a trivial thing you can easily handle.

This book will show you techniques to structure your applications to
make them as flexible and updatable as possible.

FEATURES
As mentioned before, OS/2 provides features to applications never be·
fore seen in the personal computing arena, and some not previously in
any computing arena. You need to understand the features and functions
available to you, the application designer and programmer, in order to
make intelligent choices as to which ones you wish to take advantage
of and how to make the most efficient use of each. Sections III and IV
will show you what the functions are, which ones fit better in different
situations and how you can make the most of each in your designs.

The most important thing you will do in your application design is
break tasks into subtasks as you would with any good program, but with
OS/2, you will be doing it with parallel processing in mind as well. By
subdividing your tasks appropriately, understanding concurrency and
control issues, your application will run reliably on Intel.based, SMP, as

XXViii INTRODUCTION

well as PowerPC-based systems. The theory is the same. Simply design
according to the guidelines given herein, and you're all set.

Some of these features include how to manage your program's mem
ory and input/output services. Other topics are interprocess communi
cations methods such as Dynamic Data Exchange (DDE), Clipboard,
queues, pipes, and shared memory. You see, OS/2 protects applications
from one another, so unlike DOS or Windows, programs cannot inad
vertently (or on purpose in the case of some viruses) step on one another.
It is very useful, however, for programs to be able to communicate with
each other such as in the case of multiple-process applications or a se
ries of related applications. Which methods are more appropriate and
efficient in different situations is very important not only in terms of
performance, but also in terms of application usability.

Reading a list or programming guide for OS/2 to determine which
features are available in different situations is not a very efficient way
of figuring out what to incorporate into your programs.

It takes someone with experience to analyze which features you
would like to incorporate into your programs and to recommend the
best way to implement them given the operating environment.

This book will serve as your experienced advisor when designing
your applications.

MAINTAINABILITY
Another important aspect of a good application, as mentioned earlier, is
maintainability. No one wants to pick up spaghetti code and have to fix
a bug or add a new feature.

Creating maintainable code is more than just modularizing your
functions or using meaningful variable names. It is more than just map
ping out flow diagrams or control blocks.

Under OS/2, many of the features available to make code perform
better and more efficiently can also be used to make your code main
tainable, updatable, and serviceable. You will see how to use various

TOOLS

INTRODUCTION nix

compiler options, tree structures, and module structures such as DLLs
to make it less expensive to maintain.

An often neglected piece of application design is a good set of design
and programming tools. One of your first choices should not even really
be a choice, and that is which operating environment you should target.

Obviously, since you are reading this book, you are looking at OS/2
mode. But remember, OS/2 supports 16- as well as 32-bit programs.
I'm sure one of the primary reasons you are writing for OS/2 is the
ability to use flat, 32-bit memory model programming and never worry
about segmentation ever again. So that step is already decided and
taken.

The next step in your choice of tools should be which of the variety
of tools you would like to use to aid your design and prototype phases of
your product's development. Now, granted, there is not a large number
of CASE tools available for OS/2 at the time of this writing, but the sev
eral that are out there are worth looking at. None of the ones discussed
in this book target optimizing for 32-bit OS/2, but they are very good
at helping you structure your program and prototype functions quickly.
The other things you will need to effectively decide how to build your
whole application will be described in this book.

In addition to CASE tools, you will inevitably need a compiler, which
leads to another set of choices. First, which programming language you
should use is a good place to start. Once you decide on that, you need to
pick a compiler and set of tools that complement this choice. As will be
discussed later on, the C language is the natural choice for OS/2.

Along with the language compiler, you'll need to pick a set of related
tools such as MAKE, and a source code tree structure to make code
updates and revisions as easy as possible. You will see techniques to
help you develop versions for your code to work in languages other
than English with only one source code tree.

XXX INTRODUCTION

TESTING AND CODE CHANGE
Throughout this book, I will be stressing the importance of design over
testing. However, testing is, nonetheless, a vital part of the development
process. Your code should, for the most part, undergo the most stringent
testing during the design phase. Once the code is done, however, you
must ensure that it behaves according to the design you set out for it.

If you think about this up front, the majority of your testing will be
to ensure that the code works the way you intended. Many times I have
seen applications that had quality code, performing to the specification
to which it was designed. Unfortunately, the design did not take many
things into account and as a result, the code appeared buggy.

Another item of importance is code change. As with anything else,
there is a right way to do it, a wrong way to do it, and a decision point
for when to cut your losses and rewrite the module in question.

We will discuss different ways to change code so as to avoid breaking
the design and adding more bugs each time you fix one. You will also see
suggestions on when it's time to just trash the bug-prone module and
rewrite it, taking into account all you've learned from the failed module.
It's important to throw away virtually all of the failed module when you
do this. We will elaborate on this topic later.

INSTALL PROGRAMS
An often overlooked piece of an application is the installation program.
These programs are a user's first impression of your product and with
just a little bit of work can add snap to your product, not to mention
aid in allowing users to upgrade versions or install fixes without either
messing up their system or having to learn some messy set of instruc
tions.

Also, a well-structured installation program will allow you to create a
common look and feel for all your applications. Then, each program you

INTRODUCTION xxxi

write will be easier for your users to install than the one before, because
they all look alike. Large data center or administrative managers like
this as well because their employees do not have to learn a new interface
to use your latest technological breakthroughs.

The installation program for your application should be flexible
enough to accommodate any of your user's needs such as installing
on various drives or over a LAN.

Aesthetically, the installation program should resemble the applica
tion. A simple, graphical interface should do the trick, but you want to
keep portability, expandability and code reuse in mind.

Use this book as your reference and advisor in writing your OS/2
applications. This book will be your guide to designing effective, effi
cient applications that are easy to code, test, and maintain. Many of the
concepts here are applicable to any environment, not only OS/2-so,
use the concepts in any software project you work on.

SECTION a

Why OS/2?

0 S/2 is a powerful system, but the power of the system can be
demonstrated only by powerful applications. OS/2 provides appli
cation developers with the tools and resources to build powerful,

flexible applications. Users can see this power in the applications.
OS/2 by itself does not show its power. By running the variety of ap

plications on the market, OS/2 gives developers the freedom to develop
these powerful applications. It provides this freedom in several ways.
First and foremost, developers are not precluded from selling their ex
isting applications for DOS and Windows systems while developing the
OS/2 versions, because OS/2 runs the vast majority of DOS and Windows
code.

In OS/2 Warp, the user interface is the most advanced anywhere,
the performance enhanced to run in lower-memory systems, making it
available to a wider audience and hence, a larger market for you! That,
in addition to the tools and utilities in the BonusPak, gives you even
more features and functions for you to use in your applications.

Next, OS/2 gives developers the structure and flexibility to write
virtually any kind of software. Developers can access hardware through
a standard interface, or they can write their own. Through multi-

2 WHYOS/2?

threading, applications can gain performance benefits and give the user
throughput never before possible in the single-tasking DOS and Win
dows world. Using the threading information and theories described
in this text, you can be assured of exceptional performance on single
processor systems and SMP machines with no changes to your code. The
SMP information herein will enable you to write code to safely exploit
SMP, and will make your code running on uniprocessors more robust
as well.

All of this means that users can do things with their computers and
in their businesses that they could not do before. All they need are the
applications. This capability opens a whole new world of software devel
opment and, with that, a whole new market for productivity-enhancing
applications.

CHAPTER

OS/2 as an End-User
Platform

0 S/2 is the first fully preemptive, prioritized, multitasking, multi
threaded operating system for the personal computer. This means
that users can now run many programs at the same time on a sin

gle machine, all with better performance and more efficient use of the
hardware than ever before. OS/2 also allows users to use more memory
than is physically in the computer. A graphical, window-based subsys
tem is provided to present multiple applications on the same screen,
or desktop, at one time. This alone enables users to be more produc
tive than with other systems. Another feature is device independence,
which will be discussed in depth later on. For users, this means that,
in contrast to DOS, when a new piece of hardware is installed into the
computer (a display, for instance), the application software need not
be reconfigured or reinstalled. All of this and more is wrapped up in
a state-of-the-art, object-oriented user shell called the Workplace Shell.
OS/2 Warp has further enhanced this interface based on more than two

3

4 WHYOS/2?

years of user feedback and in-depth usability studies, as well as advances
in technology.

In this chapter, end-user benefits of OS/2 will be explored. If you are
only considering programming for OS/2, this chapter alone will help
you make your decision.

MULTIPROCESSING

The discussion of the advantages of OS/2 to the end user will begin at
the top level and work downward into the core of the system. At this top
level is the concept of multiprocessing.

Using Several Applications at Once
Multiprocessing is the ability to run many programs, or processes, at
the same time. Each program that has been started is allocated its own
virtual console. This means that each program has its own keyboard,
mouse, memory, files, and display. Herein lies the entire foundation for
OS/2 's complexity and power.

This type of operation is fraught with danger for applications. OS/2
goes to great lengths to protect applications from interfering with each
other, either intentionally or by chance. When running under DOS, a
program had no problem simply using any part of the computer; it could
accidentally step on anything that it was not using. With many programs
running around the system at once, all of the services of the computer
must be controlled, or chaos will ensue. OS/2 manages all of this so that
all the currently executing applications can peacefully coexist in a single
machine. Along with this management, many features for applications
have been built into the system.

Other systems may claim the ability to run multiple applications at
once, but when you look closely at how they accomplish it, you will see
problems in certain areas. For example, some systems will slow con
siderably when printing in the background and cannot hold high-speed
communications lines while performing multiple tasks. OS/2 multitask-

OS/2 AS AN ENO-USER PLATFORM 5

ing is robust and makes efficient use of the processor to avoid these
problems.

Not only can users run all of their applications at once, but with the
graphical interface they can see them all at once as well. To top that
off, they can switch between them simply with the click of a mouse. No
longer do users have to spend time loading and unloading applications.
All they need to do is click, switch to another program, click, and switch
back, and thus become more productive instantly.

Sharing and Communicating Data
Another prominent feature that OS/2 affords to applications is the ability
to communicate data. OS/2 provides many different ways for applica
tions to talk to each other. Some are provided by the kernel services in
rudimentary structures such as queues, pipes, and semaphores. Other
higher-level and more powerful mechanisms are the Clipboard and Dy
namic Data Exchange (DDE).

Users have different preferences in what they want to see in the pro
grams they use. Application designers also have different preferences of
which functions are provided and how these functions are presented.
Also, as technology advances and as programmers come up with new
functions, new applications are created.

Not all users will want the same suite of applications to get their job
done. As such, it is vital to the success of any of your applications that it
be able to share data with others.

From the user's standpoint, the primary concern is how easy it is to
transfer the data. In many of the current DOS applications, users must
use a variety of file formats to save a file and then import it, sometimes
using a filter, into the target application. This is a cumbersome process.
With the mechanisms provided by OS/2, you can implement public data
sharing through the clipboard or a published DDE protocol, or you can
implement a private mechanism for use by your series of applications
only. The choices are up to you.

Another little-known feature of OS/2 interprocess communications
is the ability for DOS applications to talk to OS/2 applications. This

6 WHYOS/2?

is accomplished through named pipes. DOS applications cannot create
named pipes, but if a named pipe is created by an OS/2 program, it can
be used by a DOS program. Each of these features is available to the
applications; how they are used is up to the programmers.

The main point of sharing data is that the user should only have to
know how to ask other applications (1) if they share data and (2) to place
the data into the target application.

Multithreading
Not only is OS/2 a multiprocessing system, it is also a multithreading
system. More precisely, OS/2 accomplishes multiprocessing through the
use of multithreading.

The thread is the unit of execution within OS/2. Every program that
runs has at least one thread of execution. The process, or program, owns
resources such as files and memory. The thread executes instructions
that manipulate those resources of the process. Each process can have
many of these threads.

What does this mean to users? Users can't see or touch threads,
and most likely they don't know that threads are there. DOS programs
don't use threads as such, but every DOS program conceptually has one
thread, that being the only thread in DOS; hence the restriction that
only one DOS program may run at a time under DOS. Under OS/2,
each DOS program is treated as one thread so that many can run at the
same time.

Dividing Applications
into Parallel Pieces
What this really means to the user is not only that OS/2 uses threads
to allow many programs to run at once, but also that users gain even
more productivity because developers can divide their applications into
parallel pieces that function independently. For instance, imagine an
application that has significant overhead loading into memory, setting
itself up, reading configuration files, and so on. Now picture that ap-

OS/2 AS AN END-USER PLATFORM 7

plication having the ability to allow the user to begin working with it
before it has even finished initializing. Now imagine a large spread
sheet with complicated calculations that takes a significant amount of
time to reformat and recalculate. Picture the user of this spreadsheet
working on another part of the spreadsheet, or even an entirely differ
ent one within the same application, rather than sitting and waiting for
the recalculation to finish.

Increased User Productivity
Using threads properly, you can write pieces of your applications to
run in parallel. Of course, there are some things you can't do, such
as allowing the user to print a document on one thread and change
it on another. However, with proper design, you can subdivide your
applications into separate pieces that can run in parallel, providing
users with productivity that under DOS could be provided only by using
multiple computers, which is not a very cost-effective solution.

Better Performance
More efficient and streamlined application throughput is only one ad
vantage of threads. Remember that every process has at least one thread;
some have many. OS/2 manages execution and CPU time with threads.

The OS/2 scheduler coordinates CPU time at the thread level. Each
thread has a priority and a context, which is its state of execution. The
scheduler dispatches threads according to priority. These priorities are
modified based on many factors that will be discussed in detail later
on. The result is that OS/2 makes more efficient use of the CPU than
does DOS or Windows; this efficiency translates into productivity gains
for the user. While one application may be waiting for a disk access
to complete, another may be running at the same time that can use
the CPU to reformat a document and yet another can be printing. As
such, the overall system throughput is enhanced through the use of
multi threading.

This function presents interesting challenges for programmers that
are thoroughly explored in Sections IV and V. If threads are being

8 WHY OS/2?

switched into and out of the processor very quickly, and being pre
empted at any moment, coordinating access to code and data can get
tricky. This can be even further complicated by SMP machines where
threads can be physically executing at the same instant in time. By us
ing these features well, you can create applications that outperform any
others.

Users can't see multiple threads, but they benefit from them in nu
merous ways. The more the applications take advantage of this, the more
benefit the users derive.

32-BIT MEMORY MANAGEMENT
A feature of OS/2 is 32-bit memory management. Previous versions of
OS/2 were 16-bit systems; that is, all processing was done with 16-
bit words. Now OS/2 uses 32-bit words, freeing applications from the
segmented memory model.

OS/2 can use memory in chunks of any size up to 512 megabytes.
Previously, the largest memory object you could use was 64K bytes,
unless you went through some contortions to simulate larger objects.
OS/2 removes this longtime constraint.

With other hardware platforms coming into play, such as Power PC,
it is important to not make assumptions about available memory or even
page sizes; later on in Sections IV and V, you will see how to design your
applications to simply read the operating system and tune on-the-fly.

Flat Memory Model
DOS and previous versions of OS/2 used a segmented memory model
in which all memory was segmented into 64K chunks; memory was
addressed with a segment (or paragraph) address and an offset within
that segment. OS/2 now presents memory to applications in a large,
flat address space, using a flat, 32-bit address which, to applications,
is just an offset somewhere between the beginning of memory and 512
megabytes.

Independence from
Physical Memory

OS/2 AS AN END-USER PLATFORM 9

Most personal computers do not have 512 megabytes of memory. Most
do not even have 16 megabytes. However, OS/2 allows applications and
users to access much more memory than is physically in the machine.

Many times, under DOS, applications have run up against the end of
memory, or applications needed to be written to perform unnatural acts
to squeeze into the 640K limit. Programs running under OS/2 simply
need to ask the computer for more memory whenever it is needed. OS/2
has the responsibility of providing that memory.

Users of DOS systems have often encountered the message stating
that there is not enough memory to run an application. With OS/2 mem
ory management and its independence from physical memory, the user
will rarely, if ever, be told that he or she cannot run an application
because of insufficient memory.

Up to 512 Meg per Program
Using virtual memory, each application can have an address space of
up to 512 megabytes. The limit is restricted only by the amount of hard
disk space on the swap drive.

Swapping is the mechanism by which OS/2 accomplishes the feat of
virtualizing memory. When a memory request cannot be filled because
there are no free memory blocks of the requested size, OS/2 examines
memory and selects a piece to be written to the hard disk and taken out
of its memory, which is now free to be allocated to the requestor. If the
program that owns the chunk just swapped out subsequently needs to
use it, OS/2 moves another chunk of memory out to the hard disk to
make room to bring that chunk back in.

Swapping (and paging) take place completely transparently to appli
cations. That is the beauty of allowing OS/2 to manage things and having
applications request services. OS/2 lets programs think they have the
same addresses throughout their execution, although, under the covers,
OS/2 manages the pointers and whether the information is in memory
or currently on disk.

10 WHY OS/2?

Paging versus Swapping
Swapping is the technique whereby the operating system will take pieces
of memory not currently in use and write them to the disk in a swap file

when another memory request needs to be filled. This was introduced
in OS/2 version 1.0.

Beginning with OS/2 version 2.0, OS/2 took swapping a step further.
Since OS/2 became a 32-bit-only operating system and no longer needed
to restrict functions to a common denominator of the 80286 chip, paging
could be used.

Swapping in 16-bit versions of OS/2 worked on chunks of memory
in any size increments up to the segment size of 64K. This was very
inefficient. Paging is more or less the same as swapping, except that the
chunks are the same size: 4K. Additionally, memory is managed a bit
differently in a paged system. (This will be discussed in more detail in
Chapter 5.)

What all of this means to the user is better performance.

Better Application Performance
Applications can use about as much memory as they like under OS/2.
This means larger spreadsheets, bigger documents, and more graphics,
with the same performance as the smaller ones. You don't need to code
overlays; if you need memory, you use it, and OS/2 does the rest. This
means consistency for coders and performance for users.

Part of the performance gain stems from the fact that segments are
a thing of the past. Because OS/2 uses the flat memory model, segment
registers are no longer needed. This was one of the biggest performance
inhibitors of previous releases. In the OS/2 protection model, when
ever a segment register was loaded, permission checks were done to
ensure that a violation was not taking place. For example, if an appli
cation loaded the code segment register with a data segment pointer, a
protection exception occurred; likewise for a segment number that the
application did not own.

This permission-checking overhead made it expensive to keep load
ing segment registers, but it had to be done for all intersegment jumps,

OS/2 AS AN END-USER PLATFORM 11

such as when a program called system services. With the flat memory
model, there is one segment value, which represents the entire flat mem
ory object of system memory. The end of segment register loads equals
better performance.

Better System Performance
Along with better application performance due to 32-bit flat memory
comes better overall system performance. The biggest reason for this
is that OS/2 is using fixed-size, 4K pages rather than variable size seg
ments. Because OS/2 is using 4K pages, there no longer needs to be
memory compaction due to holes in memory of inadequate size. Every
space left vacant in memory is 4K in size, and every memory allocation
is 4K in size. This translates into better memory performance due to low
overhead.

This arrangement does create a challenge for the programmer, how
ever. It used to be convenient and economical to allocate memory in
small chunks and only when needed. With this 32-bit, 4K page scheme,
the small-allocation approach will waste memory. Every allocation is
4 K in size, so if you need 10 bytes and ask for an allocation of 10 bytes,
you'll actually get 4K. As you will see later on, this is not necessarily a
bad thing. Used correctly, it can actually help you in managing memory
within your application.

The flat memory model, along with the 4K fixed-page-size paging
algorithms, helps applications perform better than they do on other
systems on the market and helps the system itself perform better.

INTUITIVE USER INTERFACE
One of the first things a user sees after booting up an OS/2 system is a
screen with pictures. These pictures are representative of all the actions
you can take with your computer. You can open objects such as folders
and documents; move objects from place to place, such as from folder

12 WHY OS/2?

to folder or to a printer; and access various parts of these objects in a
consistent way.

For example, all OS/2 objects bring up a context menu when the user
clicks button 2 on the object. Double-clicking button 1 on the object
will open it. It is this type of consistency, combined with the graphical
representation of these objects, that makes the interface easy to learn
and use.

OS/2 Warp introduced enhancements to this user interface, includ
ing a launch pad for starting the most frequently used applications with
a single button click. An open folder now shows not only an in-use em
phasis, but changes to a picture of an open folder too. In addition, many
of the formerly private programming interfaces to the shell are exposed
for your use.

Users Can View Many
Applications at Once

The biggest user benefit of a graphical user interface (GUI) is the ability
to view all of the currently running applications at the same time.

With a pure character-based system, an application consumes the
screen. For instance, in OS/2 version 1.0, although many applications
could be running at the same time, only one was visible at a time. With
a GUI, each application is given its own real estate on the screen, called
a window.

Applications present their data within their windows. Users can
change the size and position of each window or make them invisible.
Even applications that are text-based can run within a window. OS/2 just
maps their I/0 calls to the screen to a window, so users can see all ap
plications at once, not just the ones written to the GUI. What this means
to users is that they can see what is going on with all their applications
all the time, or for as much of the time as they wish.

OS/2 did not invent the GUI, but it has refined it into a more effi
cient, integrated environment that permeates and works tightly with the
operating system itself.

OS/2 AS AN END-USER PLATFORM 13

Workplace Shell
The OS/2 graphical subsystem is called the Presentation Manager. The
GUI, however, is the Workplace Shell. The shell is what wraps up all the
functions of the interface into an integrated package, providing easy,
consistent access to all system services. This includes managing files,
configuring the system, and manipulating objects, as well as the pri
mary function of a shell: launching programs. The Workplace Shell is
built on top of the Presentation Manager, which provides the graphics
functions, screen management, and communications facilities such as
the Clipboard and DDE.

Consistent Behavior
As stated earlier, one of the biggest advantages of the Workplace Shell
is that all objects behave in a consistent manner. Every object behaves
in generally the same manner given a set of inputs. Of course, objects
can be created and modified by programmers, but the extent of these
modifications should be no more than to perform a function specific to
that object.

Lower Learning Curve
Consistent behavior means that once users learn how a basic object
behaves, they know how all objects behave. Once they learn how to
drag one folder to another place, they know how to drag any object to
any other object. Once users learn the paradigm of drag-and-drop, they
know how to start programs, open objects, and configure the system.

Consistency in the entire operating system means shorter learning
times and more productive people. Not only that, but the graphical
interface actually becomes fun to use.

Object-Oriented
The Workplace Shell is an object-oriented interface. Everything is repre
sented by an object. There are printer objects, data file objects, program

14 WHYOS/2?

objects, a font palette object, and even a shredder object. All actions are
performed on objects.

Each object represents something real in your computer. A data file
object represents a data file, and a program object represents a program.
Users need only learn the basic behaviors of objects and then manipulate
them to do their jobs. For example, a printer object is represented by an
icon of a printer and a folder is represented by an icon of a folder. Once
users understand how the basic objects behave and how to manipulate
them, they know how to use any of the applications.

Object technology in OS/2 has not stood still, either. OS/2 Warp
includes System Object Model (SOM) release 2 which is CORBA-com
pliant and forms the foundation of object technology in many other (not
only IBM) products.

The SOM object engine underneath the Workplace Shell provides
the extensibility for not only programmers, but also users to create new
instances of classes and cause behaviors to be inherited through a class
hierarchy.

Works the Way People Work
The object-oriented paradigm is fairly awkward to explain on paper.
The best way to describe why object-oriented systems are needed for
productivity is that they work the way people work. People open folders
to look at and use things in them. People open documents to create, read,
modify, and print them. An object-oriented interface mimics the way
people use everyday objects, representing them on a computer where
the objects are stored in a convenient fashion.

For example, to print a document, a user can open a folder, drag
the document in the folder to the printer, and drop it there. To change
the color of an object such as a folder, users need only open the color
palette, drag a color to the folder, and drop it there.

No longer do users need to start an application, feed it a data file,
ask it to manipulate the data, and ask it to spit the results back out into
a file. That process requires a lot of knowledge on the users' part, such
as where the document resides on the disk, how to open a file within the
application, and where to put the file being saved, among other things.

OS/2 AS AN END-USER PLATFORM 15

Using the object-oriented Workplace Shell, users now need only
open a document. The shell will invoke the application and feed it
the data file, thus presenting the document in the way the user is ac
customed to looking at it-in the application's window. The shell han
dles knowing where the file actually resides on the disk and how to
present it.

Of course, this depends on you, the application designer and pro
grammer. The function is there for you to use and is straightforward to
implement. Using it will make your applications much easier to use. We
will discuss ways to implement these functions in Chapter 7.

Contextual Help
Another feature of OS/2 that is of great benefit to users is contextual
help. OS/2 has the Information Presentation Facility (IPF), which is a
fancy name for a subsystem that allows you to code help panels and
even online books for OS/2.

Help is important in any computer system. OS/2 provides help for
virtually any action through several mechanisms. The easiest way to find
help on any item is to press the F 1 key. OS/2 also includes several online
help documents, such as the Master Help Index. All of these objects have
a consistent interface, because they all use the IPF to present panels and
provide links between topics.

Learning Is Easy
With the online books such as the Master Help Index and Command
Reference at their fingertips, along with the contextual help obtainable
at any time with the F 1 key, users can learn how to use applications and
the operating system with ease.

These facilities for learning are provided for you, the application
designer and programmer, to enable fast, easy learning for your users.
With just a few simple function calls, you can display help panels on
exactly the topic you want. As a matter of fact, you can even choose
to create an application consisting solely of online books. All this is
possible using the tools provided by OS/2.

16 WHY OS/2?

DEVICE INDEPENDENCE
OS/2 has enormous graphics capabilities. Anyone designing applica
tions should take a lesson from the OS/2 graphical subsystem, because
it provides a modular design, isolating the application from the under
lying hardware. What this means to applications is that they don't have
to know about the underlying hardware to take full advantage of the
graphical capabilities of the display or printer. What this means to end
users is that when they upgrade their computers, they only need to tell
OS/2 what the new hardware is. Under DOS, applications had to be
reconfigured or reinstalled; sometimes users had to go so far as to pur
chase upgraded versions of their favorite applications to take advantage
of the new hardware. With OS/2, applications don't have to be changed
at all. As hardware technology advances, or even as users just upgrade
their systems, applications stay the same.

OS/2 Warp contains more drivers for more devices than ever before.
What this means to you is that your programs are accessible to more
users on more of the latest hardware without any more work on your
part.

Applications See Generic Output Space
As you will see later, applications write to a device-independent Pre
sentation Space. The OS/2 graphics subsystem takes care of all device
translation. Under the Presentation Space is the Device Context. This is
really where the mapping to the physical device takes place. Users don't
have to touch the applications.

Device Contexts exist for any Presentation Manager output device.
The two devices most often changed by users are screens and printers,
which share a common presentation driver architecture.

New Devices Only Need New Drivers,
Not New Applications

This type of architecture means that users need only to install new dis
play or printer drivers to take advantage of new hardware. Under DOS,

OS/2 AS AN END-USER PLATFORM 17

there was no standardization of access to devices such as displays, so
every application had its own device drivers and its own unique way of
communicating with them. Therefore, applications were dependent on
their own device drivers to take advantage of hardware, and they had
to keep up with all new hardware.

Under OS/2, users have only one driver for the screen, for example.
Using the consistent function call interface, all applications access it the
same way. New hardware requires a new driver, and all applications
immediately take advantage of it with no changes to them on the part of
the user.

IBM COMPATIBILITY
TO FUTURE RELEASES

The other prominent advantage to coding for OS/2 is IBM's consistent
direction when it comes to the desktop platform, and IBM's commit
ment to compatibility. Any program that runs on OS/2 will run on any
subsequent release of OS/2, unchanged, which guarantees that what you
write will be viable for as long as you want it to be. This means that users
will not have to purchase new versions of applications just because a
new version of OS/2 is available. Of course, as you add new features and
functions, they will purchase new versions of your applications because
they want to, not because they have to. This makes for more satisfied
users.

Symmetric Multiprocessing
Symmetric Multiprocessing (SMP) machines have come onto the scene
sporting two or more independent, but tightly coupled processors.
While many systems have dedicated processors to handle, say, video
operations, SMP machines have several main processors that handle
the general-purpose computing. OS/2 for SMP is written to provide
the scalability and performance gains that adding these processors
provides.

18 WHYOS/2?

No specific action needs to be taken to ensure portability to OS/2
SMP systems, but to realize the full benefits of SMP scalability, you need
to carefully follow the discussions on threads and scheduling. There is
more one can get away with on uniprocessor systems that can cause
significant problems on SMP systems. The discussions on threading
will help you avoid these problems while realizing the full benefits of
SMP.

Portability to PowerPC
The next generation of RISC processor chip, the PowerPC, is a vastly
different architecture from the Intel chips. Object code compiled for
Intel chips will not run on most Power PC RISC chips. Additionally, OS/2
for the Power PC has a different architecture from that of its current Intel
counterpart. You might start to think that you have to rewrite for OS/2
for the Power PC if you want your applications to run. Not so.

IBM is working to make application porting as easy as possible. The
OS/2 API set is structured so that the underlying implementation is of
very little concern to application developers. Of course there are those
such as device driver writers who will need to do some more work to
port to Power PC, but the vast majority of OS/2 application vendors will
have to do little more than run the same 32-bit source code through the
cross-compiler to generate 32-bit OS/2 for PowerPC programs. Herein
lies the beauty of good design. By designing OS/2 with a set of standard
interfaces, IBM has been able to insulate you from underlying changes
in the operating system.

On the other side, with your good design and modular, high-level
source code, you need only to recompile your code for the new target
processor. This provides your users with their favorite applications on
whatever platform they choose, because of the consistency of the sys
tems. In contrast to others, with sets and subsets of APis, this gives your
users the consistency without you having to rewrite code to exploit the
set or subset of function depending on which version of the operating
system you may be on.

OS/2 AS AN END-USER PLATFORM 19

SUMMARY
OS/2 provides many advantages for end users. Better performance,
consistency, the ability to run multiple applications, ease of use and
learning, device independence, and maintainability are only some of the
benefits OS/2 offers users.

All this translates into better productivity: Users can do more things
at once; users do not have to reconfigure applications every time they
upgrade their systems; users do not have to purchase or install new
revisions of software just to upgrade operating system software; and the
system itself works more efficiently.

By choosing to write your applications for OS/2, you are choosing
a platform that will allow your users and your applications to do more
than ever before. Users will want the power of OS/2. If you have the
applications that use that power, yours will be the applications they'll
buy.

Why Program
for OS/2?

CHAPTER

A s you have just seen, OS/2 has many advantages for users. OS/2
also offers many advantages to programmers and designers. OS/2
was designed to provide productivity gains not only to users, but

to programmers as well.
OS/2 is designed to make it easy to access system services and ma

nipulate resources. All of the constructs you will use lend themselves
well to portable, modularized code. Well-designed OS/2 code can be ex
panded and maintained with ease and will run on all future versions of
OS/2.

POWERFUL AND FLEXIBLE API
API stands for Application Programming Interface. This is the way ap
plications request all system services under OS/2. Under DOS, applica
tions would load some of the registers in the processor and then call an

21

22 WHYOS/2?

interrupt, such as INT 21. The interrupt service routine would read the
registers and perform the requested operation. Each interrupt routine
had a specific purpose that could involve several subfunctions selected
by loading different values into some of the registers.

As time went on, and high-level language compilers were developed
for DOS, more and more of the system services could be accessed by
simple high-level function calls. For example, a C compiler has a func
tion called read () that could read from a file or a port. When the C
code was compiled, it would translate down to the interrupt-level in
terface, where the actual function was implemented. Programs became
more portable, as long as the same particular language compiler was
available on many platforms. This made programming easier but, in
many cases, less flexible. Designers and programmers were restricted
to whatever the language compiler designers wished to put in as far as
how flexible the read () was.

In general, OS/2 language compilers encapsulate the OS/2 APL For
example, a C language call to read () translates down to a call to Dos
Read. Sometimes you are given more power through these high-level
language functions, but sometimes not. You should use a mixture of
the OS/2 API calls and the high-level language functions to suit your
purposes. OS/2 API functions are readable but less portable to other
environments such as UNIX. However, since OS/2 provides functions
that almost no other systems do (such as threading), you can choose to
code the functions unique to the OS/2 API directly and code the portable
pieces with your chosen language's runtime functions. Of course, you
could always write the interrupt-level code, too, but this is cumbersome
and difficult to maintain.

One thing I have always liked is readable code. Coding INT 15 and
INT 21 is not all that readable. In that type of code you must rely on
comments to understand quickly what the code does. This can lead to
inconsistency, because not everyone comments their code, and some
people comment differently than others.

As you can see, there are many drawbacks and inconsistencies in
coding for DOS. Many tools have been created to isolate the low-level
constructs from programmers, but again, these are add-ons that them-

WHY PROGRAM FOR OS/2? 23

selves lead to inconsistencies due to the wide variety of interfaces and
functions. By contrast, OS/2's API is consistent, powerful, flexible, ex
pandable, and readable.

Function Call Interface to All System Services
As discussed earlier, the DOS programming interface with its interrupts
and subfunctions is both clunky and difficult to read. Language com
pilers such as C have been written to provide a function call interface
whereby a programmer can call malloc () to allocate memory and read ()
to read a file.

OS/2 has taken this high-level concept and applied it to the basic op
erating system programming interface. Where DOS has interrupts, OS/2
has functions. All system services must be requested through OS/2, as
discussed in the previous chapter. These system services are accessed
through function calls in much the same way as the C language imple
ments functions.

When an OS/2 application needs to read a file, it will call DosRead.
When a window needs to be created, WinCreateWindow is called. The first
advantage of this is obvious: readability. It is much easier to pick up
some code and see what it is doing if it calls GpiPlayMetafile or if it calls
INT18. (Note: INT18 not a "playmetafile" call in DOS.)

This kind of convention increases programmer productivity by mak
ing code easier to write, allowing programmers to leave their reference
manuals on the shelf longer because they don't have to look up each
function they need.

It also increases programmer productivity by making code easier to
maintain and enhance, especially if the person working on the code is
not the one who originally wrote it. Learning code written by someone
else is more difficult than writing the code from scratch.

Consistent, Easy Coding
The function call interface makes coding easy, not only in terms of read
ability, but also in terms of being able to "know" what function to use.

24 WHYOS/2?

Once you get used to the naming conventions, it is highly likely that you
will be able to know what function to use even if you have never used it
before.

Programming OS/2 applications is not trivial. To the uninitiated,
it can be overwhelming. However, once you get used to the naming
conventions, such as WinQueryXXX or DosQXXX (to query windows or kernel
functions respectively), or WinDestroyXXX to remove allocated window
management structures, you will be able to figure out quickly what
functions you need to perform the tasks you wish.

There are hundreds of function calls in the OS/2 API, but consistency
is the key that keeps it manageable. Even through the releases, IBM has
kept a consistent interface and set of names for the functions, making
coding that much easier.

Portability, Flexibility, Expandability
Another important aspect of the OS/2 API is the expandability built
into it. Because of the ever-increasing function of OS/2 from release
to release, new functions have been added. Some APis, however, have
simply had their functions enhanced. In some cases, new parameters
need to be added.

Now you will agree that by adding new parameters to a function,
you destroy its compatibility with existing code. After all, if you pass five
parameters to a function that now requires six, your code will no longer
work. I agree. OS/2 has designed a way around this from the beginning.

Many APis in OS/2 may look annoying at first glance. I thought so
at first, too. I mean, why pass as parameters a pointer to a buffer, the
length of the buffer, and an indicator of what info level is being queried
or set?

After a short time (about five minutes) I understood. By using this
structure for parameter passing, OS/2 has built virtually limitless ex
pandability into each single APL For example, querying file information
is easy with DosQFileinfo. With the pointer to a FileinfoBuf and the info
level parameter, one can get any set or subset of information about a
file. When new functions are added, such as the High-Performance File

WHY PROGRAM FOR OS/2? 25

System added in version 1.2, new information is easy to build into the
function: OS/2 simply added a new info level and a new FileinfoBuf.
Inside the function DosQFileinfo, the info level is examined to tell the
function what the structure of the FileinfoBuf is like. By adding the new
info level in a new OS/2 version, OS/2 has expanded the function without
having to change the format of the API, ensuring upward compatibility.

Of course, this does not ensure backward compatibility. For example,
if info level 6 was added to an API in OS/2 version 2.0, an application
calling the API with info level 6 would not work under version 1.3. This
is a pitfall of upward compatibility, but there are ways to take this into
account, as we will discuss later.

Along with the flexible and expandable functions, OS/2's function
call interface is portable and not hardware-dependent. As previously
mentioned with OS/2 for PowerPC, and OS/2 for SMP, and with the
OS/2 API, porting to other hardware platforms is little more than a
recompile.

You'll notice, from the few APis mentioned here as well as all the
other OS/2 APis, that application source code is not at all hardware
dependent. Of course, some parts of OS/2, and some applications such
as device drivers are by nature hardware-dependent, but the majority
of application code is not hardware-specific. This means that most of
the code you will be writing would need only be recompiled to run on
another platform.

The OS/2 function call interface is one of the easiest in the industry
to code for. Many developers I have spoken with echo this sentiment.
There is a single base API that is of course always being expanded, but
subsets of one working on one system and other possibly disjoint subsets
targeted for another version of OS/2 as is seen on some other systems,
is not in IBM's vocabulary.

Easy to Modularize and Maintain
Along with readability, the function call interface of OS/2 lends itself well
to modularized code. With proper design, code written for OS/2 can be
subdivided and modularized to make maintenance almost trivial.

26 WHYOS/2?

The function call interface works along the C language paradigm of
functions and so works well in modularized designs. As opposed to a sys
tem like DOS, where system services need to be called via an interrupt
mechanism, OS/2 code is easily modularized. The interrupt mechanism
goes hand-in-hand with an assembly language way of programming that
is more or less top-down, not modularized. Extra work is required to
modularize assembler code in the way you think of modularized C code.

In addition to the function call mechanism, Dynamic Link Libraries
(DLLs) also lend themselves to modularized code. By isolating com
mon functions to save memory and placing them in DLLs, you are also
modularizing your code. As a matter of fact, most of the OS/2 APis are
implemented in DLLs.

DLLs are themselves just libraries of functions. If you code each
function to be used by potentially many different routines in your appli
cations, your code becomes well tested and efficient, as well as memory
saving. If a function has to be modified, you need only modify that one
function in that one DLL and replace that one DLL on the machine.

In Chapter 7, you will see how this concept of modularity makes
OS/2 for the PowerPC portable and expandable, taking the concept of
DLLs further, using the Workplace architecture to make it not only main
tainable, but also scalable so that users need to purchase only those parts
of the system they want.

System Coding Conventions
The OS/2 system coding conventions are yet another way to make you
more productive. This goes beyond the function call interface.

OS/2 has implemented a set of coding conventions used through
out the system. These are evident in the OS/2 toolkit header files, as
well as the OS/2 programming reference documentation and the online
reference files. In fact, OS/2 itself is developed using these coding con
ventions. You can see these conventions, and how they can help you, in
the OS/2 programming toolkit sample programs.

These conventions are not limited to OS/2; they can be used any
where, on any system, by anyone. However, OS/2 code is built around
these conventions, and by adhering to them you will quickly become

WHY PROGRAM FOR OS/2? 27

more productive. Again, you do not have to follow them, but by doing it
you are helping yourself immensely.

Without getting into too much detail here, the conventions are simply
a way of naming variables and identifying structures in a consistent
way so that you can look at the name ulcbNameList and know that it is
an unsigned long variable, representing the number of bytes in a name
list (ul for unsigned long, cb for count of bytes, and NameList is self
explanatory). This convention is used throughout the OS/2 system and
will make your code more consistent, readable, and maintainable than
ever before.

Fast Prototyping
Another important result of all these productivity gains is in prototyping
interfaces faster. By using the functions provided along with the other
advantages mentioned here, you can develop prototypes of your code
much faster than ever before.

Once you get a couple of functions working, you can build on them
very quickly. With the OS/2 programming model, once you get the basic
skeleton of a program done, you can quickly add functions and try out
new things. This leads to fast prototyping for evaluation-even after
your design is done and you simply want to compare various algorithms
for a particular task.

As OS/2 's momentum has picked up, many tool vendors have written
software development packages that do everything from paint dialogs to
generate source code to generating an entire application using objects
and parts.

OS/2 Development: The Next Generation
The future of software development lies with objects, reuse, and pro
gram development environments. The environments for OS/2 can assist
you in prototyping, coding, and even testing. As with most development
environments, code generation tools, and such, you have a trade-off
between speed of development and fine control of the code for perfor
mance and working set tuning.

28 WHY OS/2?

In Section II, you will see what these environments and tools can

give you and what you give up when you use them. Some will give

you speed of development while increasing application working set size

through runtime libraries. Others can generate or even port source code

from other platforms for you. There are many such tools now available

and for whatever reason, they seem to be appearing on OS/2 first, before

many other systems.
With the advances of SOM, its CORBA compliance and acceptance

by CIL and vendors, along with the advances and acceptance of

OpenDoc and its OS/2 implementation, OS/2 is more on the techno

logical forefront than ever before.
The real key to all of this is IBM's plan to keep not only the user, but

also the application developer insensitive to the underlying impementa

tion, whether it be the IBM Microkernel at the core, or the Intel-based

architecture, or an SMP machine. By using the consistency of the API
and the fundamentals you will see here, you can write code that runs on

just about anything running OS/2, with a minimum of work.

SUMMARY
All this leads to the fact that OS/2 is a highly desirable platform for

which to write programs. OS/2 was designed not only as a system for
end users, but programmers were also in mind when OS/2 was designed

and are still in mind when the system is enhanced.
The OS/2 Application Programming Interface is neither trivial nor

simple. However, the OS/2 development team takes pains to make func
tions easy for end users to perform while keeping them flexible and

powerful for application developers. The high-level language function

call interface, along with functions that are expandable and flexible and

a consistent programming interface, all lead to a system that is powerful,

flexible, and expandable.
With the new tools that generate all or parts of applications for you,

OS/2 development has become even easier and more convenient.

CHAPTER

OS/2 as a Development
Platform

A s you have seen, OS/2 provides flexibility and expandability to
users and will run virtually all applications written for the PC. You
have also seen that OS/2 is one of the best systems in the industry

for which to write, with its flexible, expandable function call API as well
as modularized system services second to none.

But, not only is OS/2 an ideal environment for users and an excellent
system to code for, it is also an excellent development platform-that is,
the system you will write, test, and debug on.

First, OS/2 offers developers the same productivity it offers other
users in being able to run many productivity applications at once. ·
E-Mail, editors, LAN, and utilities can all be running simultaneously.
Not only can you run the everyday productivity applications, but all of
your development tools can be run simultaneously as well.

29

30 WHY OS/2?

MULTITASKING FOR DEVELOPMENT
OS/2 's multitasking extends beyond spreadsheet recalculations or data
base sorts and searches. Since OS/2 runs all of your programs at the
same time, you can be editing one file while another is being compiled
in the background, while you run some GREPs in yet another window.

OS/2 increases programmer productivity immensely. In the days be
fore OS/2, I remember having two or three computers to get work done.
Of course, there was one to do the editing and programming work. An
other was for debugging and testing. The third was just there to run
compiles. Each machine consumed desk space, power, and most im
portantly, the cost of each machine. Multiply this by the number of
developers, and you get ridiculous overhead on your projects.

With OS/2 you can develop, compile, and do all your daily work
on the same machine. This is cost- and space-effective-not to mention
the logistics of having to configure environments on each machine and
having to maintain them. This translates into savings across the entire
project in terms of time, work, money, and even space.

DEBUGGER SUPPORT
Multitasking extends even beyond the obvious advantages of running
compiles in the background while you do other work. Application de
bugging takes on a whole new look under OS/2.

One of the problems of debugging programs on DOS-based ma
chines was the fact that when an application crashed or hung, you usu
ally had to reboot the machine. Sometimes the crash was so bad that
the application ate part of DOS and you actually had to power off the
computer.

OS/2 relieves the problem of having to reboot your machine during
debug sessions. Since these programs also run in separate sessions from

OS/2 AS A DEVELOPMENT PLATFORM 31

any others, such as your editors or compilers, you can debug with im
punity and not have to worry about trashing your system. At the worst,
you'll hang the debug session and have to restart it.

There are some exceptions to this rule, however. OS/2 applications
generally run at ring 3 or user mode, the least privileged level. As such,
nothing running at this level can touch anything else, so the only thing
it can mess with is its own session. However, developers may need to
write device drivers to support specific hardware, such as scanners.
OS/2 device drivers run at ring 0 on Intel, and, as such, are just as
privileged as the OS/2 kernel. These programs can inadvertently step
on any part of the system and possibly force a reboot. This is a pitfall of
developing device drivers.

However, in general, most developers are writing user applications
and don't suffer the problems associated with writing ring 0 code. Writ
ing user level code is easy and convenient to debug. In fact, you could go
so far as to write several variations in your code to test out function,
fixes, or performance and debug them side by side in different ses
sions. OS/2 allows this because of the protection and virtualization in
the system.

Not only does OS/2 provide applications the ability for smooth de
bugging of applications, but there is also a set of APis specifically geared
to support debuggers. Debugger authors have the tools to start programs
"underneath" them so that they can manage execution, modify registers,
and even restart the program being debugged upon command.

These functions provide you with complex application development
support while allowing the system to continue running even if the ap
plication hangs its session. Debuggers become an integral part of the
operating system with the debugging APis as well. All this helps you
efficiently debug your code.

Recent functional enhancements in OS/2 include not only system
dump support, which has been there all along, but now also process
dump support for those instances where you may encounter a timing
problem and real-time debugging can mask the problem. You can tell
the system when a certain error occurs to take a process dump for later
analysis.

32 WHYOS/2?

CRASH PROTECTION
The other prominent feature of OS/2 that appeals to developers was
just mentioned in the preceding paragraphs: crash protection. OS/2
has this unique feature-an advantage over any other PC operating
environment.

Of course, this has the advantage for users in that an application that
has bugs undiscovered during test will not hang the user's system. This
protection extends to the developer's desk to prevent system crashes
during program development and testing. This translates into fewer
reboots and increased productivity.

SUMMARY
Just because OS/2 provides a wealth of features to end users does not
mean that developers are excluded. OS/2 affords everyone equal protec
tion.

Protection, along with multitasking and debugger APls, makes OS/2
an ideal development platform. And, you are not restricted to developing
OS/2 applications on OS/2; OS/2 runs all of your Windows and DOS
applications. This includes being able to debug these applications under
development.

Of course, OS/2 applications can take advantage of all of the features
of OS/2, thus making them more powerful than the other classes of
applications although OS/2 will support them all. In fact, I have heard of
many developers who are using OS/2 to develop their DOS and Windows
as well as their OS/2 versions.

OS/2 will do it for you as well as your users.

SECTION aa

Overall Application
Design

0 ne thing that I stated previously, and will continue to state through
out this book, is that most applications are not designed well.
Please don't get offended at this comment-there are many fac

tors that hold all of us back from designing our applications well.
One of the biggest inhibitors of good, thorough design is something

all programmers hate to hear: schedules. Often good design plans get
tossed aside for the sake of schedules. Companies are in business to
make money, and timing is quite often the most critical factor in devel
oping a product. The one thing all project managers must understand
is that although they can say that the code must be done on a date that
leaves little time for design, that lack of design will come back to haunt
them later. A favorite saying of mine is, "There's never enough time to
do it right the first time, but there's always time to do it over."

Sadly enough, this is true of many software projects. People will
forsake quality in design for expediency. This never works.

34 OVERALL APPLICATION DESIGN

Another item that looms large in the excuse for poor or lack of de
sign is its overhead. It is limiting. It hinders a programmer's creative
freedom. It locks us down and binds us. Nothing is further from the
truth.

Contrary to these common claims and misconceptions, good design
allows a great deal of freedom. With a good design, you have time to
do all those things you really want to do. Because you have set up your
objectives and how you will divide and conquer the tasks, you have the
freedom to decide how you want to accomplish those tasks.

Good design frees you from figuring things out as you go along.
You will have your tasks set out before you and will have the interfaces
between tasks defined. This allows you the freedom to optimize these
interfaces before you get to the point of having to do so out of necessity.

Good design does not lock you down, either. Obviously, you have to
have a set of objectives fairly well set when you design your applications,
but those objectives can change. With good design, additional functions
and modified objectives are trivial. One of the main design points of
software is that anything you do must remain flexible. Functionality
should be able to be added and modified with little impact on the rest of
the system.

Notice that all these points are real design. This is not modularized
code design. This is not meaningful variable names. This is application
level and functional design.

No task is too large if you tackle it properly. Football players can
tackle others much larger than themselves with a good overall plan.
Trying to overpower something too large is futile. However, like a foot
ball player wanting to tackle a much larger player, knowing that you
want to grab this problem by the ankles is the first place to start. How
you will get to the ankles, where and how you will take hold, and how
you plan to hold on are just details. The point is that you've developed
an overall strategy.

You have assimilated the facts about the environment. You under
stand the objectives. You understand the tools available to you and your
limitations. You begin to develop a strategy about what functions you
will exploit and how they will help you accomplish the functions you

OVERALL APPLICATION DESIGN 35

want to provide in your application. Like the smaller football player,
you see which cleats to wear, if the field is muddy, and how best to
exploit your physical abilities-your tools.

This section will cover overall design and strategy. The advantages
and philosophies of good design will be discussed, along with the envi
ronment and the functions provided for you to use.

The design of an application requires that you not only understand
the concepts of application design, but also know the environment. OS/2
is not well understood yet, simply due to the relatively short time it has
been around compared to some other systems. I will show you OS/2's
architecture to give you a better underst~mding of how it works and how
to make your application part of it.

We will also discuss the features OS/2 provides applications, which
features work better in certain situations, and how you can choose
which fits best for you. OS/2 provides several ways to accomplish func
tions-some easier to code, some more difficult, some more fundamen
tal, some more powerful-each with its own set of advantages and dis
advantages. We will discuss how to choose the best ones for you.

In later sections, we will delve deeper into the design process and
work on the function-level design. Just like the football player, we'll
work on the game strategy, learn the field and stadium conditions, and
then work on the play selection.

CHAPTER

Good Programs Have
Good Up-Front Design

I f you couldn't tell from the introduction to this section, I am a big
proponent of doing things right the first time rather than fixing or
doing them over later on.
By getting your applications designed before coding begins, you run

a much better chance of catching any mistakes or omissions before they
become more expensive to fix. Once coding starts, any changes to the
design become more expensive, both in terms of having to recode and
in terms of subsequently introducing more design holes and bugs.

If you maintain the patience and discipline to write your application
in design first rather than code, you'll reap the rewards in the long run.
Your application will be more flexible, maintainable, and, more than
likely, easier to fix should there be problems in the code.

37

38 OVERALL APPLICATION DESIGN

UNDERSTANDING THE TARGET
ENVIRONMENT

The first part of designing an application is to understand the environ
ment. This is even more important than what the application itself will
do. You must know the environment before you think about what your
application will do.

Different environments are better suited to different types of pro
grams, user interfaces, file mechanisms, and features provided to the
users. By understanding the environment, you make the best choices
for the application, given the parameters it has to work with.

You must understand the environment for beginning any application
design. The worst thing you will see is someone spending time designing
an interface or function and finding out that the environment supports
it elegantly and easily, negating the work just done and forcing other
interfaces to be reworked. Understanding the environment is important
for any applications design, not just under OS/2.

60 PERCENT DESIGN,
30 PERCENT CODE,
10 PERCENT TEST

60, 30, 10 is the formula for software project success. All too many soft
ware projects use this formula, but in reverse-10, 30, 60. Quite simply,
if software is done right, most of your time will be spent designing. You'll
then code it and spend a little time at the end testing.

Some people balk at this and ask how anyone can put out a piece
of software in good conscience with only 10 percent of the time on the
project spent testing. The answer is quite simple.

First, 60, 30, 10 are not hard and fast numbers. I did not derive them
from any scientific formula nor from empirical evidence. They are there

GOOD PROGRAMS HAVE GOOD UP-FRONT DESIGN 39

only to demonstrate a point. That point is: By spending the bulk of your
time designing, using coding to implement the design, and testing to
test the code's implementation, you will have a much more productive
project than if you just start slinging code and wring out problems as
you test.

By following the 60-30-10 formula, you have already gone through
every possible scenario that a test program could, and you've nipped the
potential problems even before the code was written. By catching these
things up front rather than later, you run less risk of introducing more
problems just by fixing one problem after the code is written.

No matter how good you are, if you have to fix problems after you've
coded, you are likely to introduce more problems than you are fixing.
The reason for this too is simple. When you are fixing the problems in the
code, you see that piece of code alone, and without looking at the entire
picture while you are doing the fix (which is unlikely), you are likely
to introduce some other problems. This takes the 10-percent testing to,
say, 50 percent.

You may notice that this turns your project into 140 percent. That's
why most projects neglect the important items up front and wind up
doing them over later. Remember, "There's never time to do it right, but
there's always time to do it over."

To avoid spending 140 percent of your time on a project, you must
have the discipline to design the entire project before you start coding.
Changes later on can be handled easily if the design is done properly,
and they do not have to affect the rest of the project.

Many times we start thrashing, getting nothing done because re
quirements and new function requests keep rolling in with no end in
sight. As soon as you think you are close, more things are heaped on
top. This does not have to be.

60 Percent Design
Stick with the 60-30-10 formula. By spending that 60 percent of the time
first, you make later changes easy. The best way to do this is to design in
your original requirements. Keep in mind the ones gathering up in the

40 OVERALL APPLICATION DESIGN

background. Once the original design is done, you can work on adding
in the new requirements.

Don't get me wrong. This does not mean to schedule 60 percent of
the allocated time for a project and working on the initial requirements
just to say you are spending 60 percent of the time on design. Be sure
to leave time for those late-breaking functions and requirements we all
know will be there.

Another important fact to remember is not to take all requirements
and add them just because they are there. At some point, you will need
to make a cut and say, "Okay, that's it. We need to get this project done.
We can address the rest in the next release."

If you don't do this, you'll be forever adding functions to the design
until you run out of money, because you won't have a product to sell. It
will still be on the drawing board.

I will reiterate: This takes discipline and the cooperation of your
sales and management force. It is up to you, as the project designer,
to keep everything in perspective to make this release and all future
releases as easy to produce as possible.

30 Percent Code
This sounds pretty self-explanatory, but there is more to it than just
reading the design and turning it into code. There are many things that
can happen during the coding phase of the project, and again, discipline
is the key in making the best product possible.

The most common problem encountered in the coding phase of an
application is the point when you sit back and look at what you are
doing and realize you are heading down the wrong path. This can be
the realization of design errors or coding errors. In any case, you again
have a hard decision to make.

The decision is whether to continue, knowing that you are saving
time in the short term but are only exacerbating the problem in the
process, or to bite the bullet and fix the root cause of the problem.

It's fairly obvious which is the right thing to do. Of course, business
decisions may dictate otherwise, but the best choice is to fix the errors

GOOD PROGRAMS HAVE GOOD UP-FRONT DESIGN 41

in design or rewrite the code in question, rather than building on an
admittedly problematic base.

I can only sum it up this way: You've spent so much time working
to wring out the design and do it in the smartest way possible. You
understand what it will be like trying to enhance and maintain this code
later on. Also, who knows how much time you will waste in the testing
phase of the project if you are having these problems now? Why throw
it all away if you can catch the errors early?

By catching the problems early and really doing something about
them as soon as you find them, you save time and money not only for
this project, but also for anything built on top of this project.

10 Percent Test
Testing is usually the most focused part of a project. Actually, the test
phase of a project should not consist of much more than a design test, a
unit function test, and an overall system test.

The main part of the test really tests the design. If there are functions
missing or some do not work, the design needs to be examined. If the
application was designed properly, the only things you should need to
look for are mistakes in the code. With proper design, all holes should
be filled before coding starts.

All too often I see applications that did not take this into account or
did not expect users to try to use a function in a slightly different way
than it was implemented. With foresight, you can avoid this and not
have to worry about it in test. This foresight comes from spending that
extra time in design and from not trying to get it into test before it is
ready.

The testing process should test code paths for both normal operation
and error conditions. Remember, the application is already designed.
Any problems caught in test should be simple code mistakes rather than
holes in the product. Should any of these holes be found, that subsystem
should go back to the design step.

The testing of an application should just test to ensure the code meets
the design specifications. If the application was designed in the design

42 OVERALL APPLICATION DESIGN

phase and not the code phase, this should be only about 10 percent of
the whole project schedule.

SUMMARY
The importance of doing most of your work up front cannot be over
stated. This includes defining the requirements for your application and
working on them. Any new requirements should be kept in mind, but
not added into the design until the core or original design is ready for
them.

At some point, you need to stop taking new requirements and start to
code. This should be fairly straightforward, because all of your interfaces
and functional aspects are designed. You can then let the developers
loose to implement these functions as they wish, making sure to stick to
the published design specs.

Once the code is about done, you can run through your test suite. The
testing process should not have to be too involved, since you've wrung
out all the problems and holes in the design so that all you are really
testing is the code quality. Keep in mind that if you run into too many
errors in a certain component, you may want to reevaluate the design
of that component, or possibly just recode it if the design still meets the
requirements.

Sticking to the 60-30-10 formula does not guarantee success. How
ever, it will make your project more manageable and your results more
maintainable.

OS/2 Kernel
Architecture

CHAPTER

U nderstanding an operating environment means understanding
how it works, the functions it performs, and the services it pro
vides. OS/2 is a complex system. It has to be to offer all of the

functionality it does. At the heart of OS/2 is the kernel.
The OS/2 kernel provides all of the core, or kernel, functions such

as protection, the file system, scheduler/dispatcher, base device drivers,
and processor management. The term kernel refers to all of the base
OS/2 systems, such as memory management and the scheduler, along
with the device drivers, such as the driver for the disk drive and the
driver for the parallel ports. Everything in OS/2 goes through the kernel
to get work done.

In a pure sense, device drivers are not part of the kernel but, con
ceptually they become extensions to the kernel when they are loaded.
These are examples of device drivers in the traditional sense: low-level
routines that manage the interaction between the system software and
the hardware.

43

44 OVERALL APPLICATION DESIGN

The base subsystems, such as the video and keyboard subsystems,
are not device drivers or part of the kernel, but they will be discussed
here because they are part of the low-level code that makes up the core
of OS/2.

OVERVIEW OF THE KERNEL
The kernel provides the basic functions needed for operating system
function. Included in the kernel are the base file system, the scheduler/
dispatcher, and all of the protection features, such as the exception
handler and memory management.

Structure
Figure 5.1 shows the basic architecture of OS/2. You will notice that
this diagram shows the Control Program, which includes the kernel
as well as surrounding subsystems. Although the kernel is a separate
physical entity, it encompasses functions of memory management, task
ing/scheduling, and exception management, among others. The Control
Program is really the core of the operating system built around the ker
nel.

It all begins, however, with the hardware. The only software that
interfaces with the hardware is the kernel and the device drivers. All the
rest of the operating system goes through the kernel and device drivers
to get CPU time, read and write files, communicate to output ports,
and write data to the screen. This restricted hardware access is how
OS/2 accomplishes a large part of its protection and coordination of the
operating system and the hardware.

The kernel is constructed from a set of core services upon which
the other kernel and Control Program services are built. Let's start at
the beginning-when the system boots up. Once you understand how
the system loads, you will better understand how the parts of OS/2 in
teract. Remember, though, that this is more of an overview discussion;
each item discussed has many parts, and some items are discussed at a

OS/2 KERNEL ARCHITECTURE 45

Text
Wind.owable
OS/2Mode

Applications

OS/2API

-

Presentation
Manager

Applications

• -•
Workplace Shell t

I
I
I
I

File System
Mechanism

Memory
Management

Multiple I.__ ___ _.
Virtual 1 ..--------.
DOS I
Machine I

Exception
Management

Tasking/
Scheduling

Kernel I'-------' ..._ ___ ___.
1..--------.
I
I
I

Session
Management

I.__ ___ __,

Interprocess
Communication

Figura 5.1 Basic architecture of OS/2.

Presentation Mana er

Presentation
Drivers

Print
Subsystem

Window
Manager

Information
Presentation

Facility

Graphics
Engine

46 OVERALL APPLICATION DESIGN

superficial level. This is not an OS/2 architecture book. This discussion
is intended to aid you in designing your OS/2 applications by helping
you to understand how OS/2 works.

After a PC completes its power-on self-test, it begins reading from
the boot sector of the hard disk. The OS/2 boot sector loads a program
called OS2LDR-the loader that loads the kernel.

Next, CONFIG.SYS is read, and the statements in it are processed. For
example, one of the first statements processed is the IFS to load any file
system drivers. Other statements, needed to build control blocks, are
also read very early. These statements, such as the THREADS, MAXWAIT, and
MEMMAN, instruct the system kernel how to configure itself and allocate
control blocks for the work it needs to perform, such as scheduling. File
system control structures are also built at this time, as well as all of the
tables and pointers to manage system memory.

Once these statements are processed and the systems structures set
up, a large part of the kernel is initialized, and the next step is to load
the device drivers by processing the DEVICE statements. Each OS/2 device
driver is specified to the system in a DEVICE statement. Each device driver
is loaded and called at its initialization routine. Some device drivers will
display a message at this point; others will not. Each device driver is
loaded in turn and becomes, conceptually if not physically, part of the
kernel.

The device drivers are the way the system communicates with pe
ripheral devices, such as displays, disks, and printers. The kernel basi
cally controls the CPU and memory accesses, while the device drivers
manage access to the other devices. For example, the file system is part
of the kernel, but it goes through the disk device driver to talk to the
physical device.

On top of the kernel layer sit the base subsystems, which manage the
virtualization of all console services. Virtualization is what separates
each session's input and output from all others. Virtualization makes
each session a separate console with its own virtual keyboard, mouse,
and display.

The base subsystems consist of device drivers and sets of common
routines, usually contained in DLLs, such as BVHSVGA.DLL (for the base

OS/2 KERNEL ARCHITECTURE 47

video subsystem). First, the device drivers are loaded; then the DLLs are
loaded.

The DLLs that make up the support routines for the base subsys
tems and the Presentation Manager are loaded last. This code is more
like an application that uses the system services of the kernel and base
subsystems. These pieces of OS/2 will be discussed in depth in the next
chapter.

Scheduler/Dispatcher
The OS/2 scheduler/dispatcher component is responsible for managing
all the multitasking of the operating system. Some may think that OS/2
is simply a round-robin time slicer. That may seem true on the surface;
as a matter of fact, any single-processor operating system is something
of a time slicer. The OS/2 scheduler/dispatcher, though, is much more.

The OS/2 scheduler is about the only component that actually loops.
Under this multitasking system, everything needs to be event-driven. If
any program loops, it will burn CPU time, regardless of whether it needs
the CPU and take computing time away from those programs ready to
run that do need it. The scheduler, however, does need to loop.

The scheduler has a fairly straightforward job. It runs a dispatch
loop and determines which thread within the system should get dis
patched next. (Of course, this, too, is oversimplifying the underlying
algorithms.) The scheduler is really the focal point of the kernel, as all
threads must be made ready by the scheduler/dispatcher and subse
quently dispatched.

In a classical queueing, scheduling system, there is a list of tasks,
called the ready list. Depending on the type of system, these tasks can
be programs or, in the case of OS/2, threads. Each thread has a slot
number, identifying it distinctly from all other threads in the system.

Each of these threads has a block of information associated with
it. This block of information includes the thread's priority, which the
scheduler uses to determine which task occupies the CPU. Each thread
also has a state, such as ready or blocked. These different states will be
discussed shortly.

48 OVERALL APPLICATION DESIGN

In general, the highest-priority thread in the ready list that is also
ready to run is the one that is using the CPU. This is the one thread that
is listed as running if you were able to look at the ready list.

The scheduler operates on the principle that any thread that be
comes ready to run and that has a priority higher than that of the thread
currently running will be dispatched as soon as possible. When this hap
pens, the currently running task will be preempted-that is, taken out of
the CPU and placed back on the ready list. This is called preemptive
multitasking. Any thread that becomes ready and is of higher priority
than the currently running thread will cause the running thread to be
preempted. This is how OS/2 maintains the integrity of time-critical
applications, such as communications programs.

Part of the scheduler/dispatcher's job is to manage the priorities of
threads so that no one gets starved out of the system. For example, if
there were high-priority threads that were CPU-bound, they could con
ceivably run forever, starving out all of the other, lower-priority threads.
The scheduler/dispatcher takes care of this as well. As a thread sits on
the ready list, its priority is dynamically modified by OS/2, based on how
much time has elapsed since that thread had CPU time and whether the
thread is part of the foreground process, among others. We will discuss
this in more depth shortly.

The scheduler and threads are really the core of OS/2, but there
are many other facets to the system and understanding how it works.
Threads execute code, which makes up the other OS/2 systems.

Scheduling on SMP
Scheduling threads on symmetric multiprocessor machines is conceptu
ally not much different than uniprocessors. There are many extra things
that the operating system must account for, such as if a processor goes
down, or if an application or device driver disables interrupts (should
interrupts for the system or only that processor be disabled?), among
other things. For you, however, not much is different.

On uniprocessor machines, you know that not more than one thread
is physically executing at any moment in time. You should not, but many

OS/2 KERNEL ARCHITECTURE 49

developers do, make assumptions based on this fact. Most assumptions
made are on operations being atomic and some being executed in a
specific order. In an SMP environment, multiple instructions may be
executing simultaneously, invalidating that assumption.

By writing your code assuming nothing about the order of execution
of functions or timing, you can be assured of being "SMP-safe."

The SMP scheduler schedules tasks in a similar fashion to the unipro
cessor scheduler, except that it does this n times, where n is the number
of processors in the system. This scheduling is dynamic, with standard
priority modification as on a uniprocessor system. Rather than the high
est priority thread being the one that is running, however, the n highest
priority threads that are ready to run will be actively executing in a
processor.

The other details of how this works are not all that relevant to appli
cation writers, but more to device driver writers. Suffice it to say that
the scalability you might see on other SMP-enabled operating systems
is there on OS/2 as well. That scalability is based purely on how well
threaded your application is. If you have only one thread, users of your
application will not experience the same benefits on an SMP machine as
if your application has several threads. Don't get the idea of adding lots
of threads to run better on SMP machines; rather, you should thread
appropriately based on the function and application, knowing that the
more efficiently you do it, the better you will perform on SMP as well as
uniprocessor boxes. Application threading concepts and structure will
be discussed in detail in Sections IV and V.

Loader
The loader is the part of OS/2 that gets everything moving. As you have
already seen, it is the first piece of OS/2 code that runs when the system
boots. Once the system is up and running, the loader is responsible
for initiating each instance of a program. When a user requests that a
program be loaded, the loader is invoked and takes charge. The OS/2
program loader is responsible for allocating memory, control blocks,
and other structures for a program or process to run. The loader reads

50 OVERALL APPLICATION DESIGN

in the executable file header, and sets up these structures for that specific
program. Memory is allocated, and code is loaded into the memory
areas. The structures are set up for the main thread of the program,
and control is transferred to the point of the program indicated by the
executable header.

The loader is also involved whenever code needs to be accessed that
has not been read into memory yet. When a program is first loaded, only
the first part of the code is loaded unless the executable header indicates
otherwise. When a subsequent code segment (or page, as is said now in
the 32-bit world) needs to be loaded, the program loader takes care of
it. The application need not have to know where the code is or which
piece needs to be loaded.

As you will see in the discussion of memory management, code is
discarded and reread from the executable file on the disk when memory
is overcommitted. Only data is paged out to disk. So, as long as the
program remains in memory, the loader may be called upon to load or
reload pieces of the code.

Once the loader has set up the control, memory, and thread struc
tures, control is handed to the thread, which begins executing in
structions. Application threads do most of the work within OS/2. The
operating system code simply coordinates execution.

System Services Flow
Very few threads actually belong to the kernel of OS/2. Every executable
program (.EXE) has at least one thread, but the kernel itself has very few.
Most of the OS/2 threads are part of executables, such as the spooler
and the shell. Except for the scheduler/dispatcher, the OS/2 kernel
really does not "run" per se; it uses the application or user threads to
accomplish its work.

Let's trace a system call from the application, down through the
kernel and device drivers, all the way back up to the application. Refer
to Figure 5 .1 during this discussion.

Let's assume the user has selected to save a file. This will generate a
call to DosWri te at some point. Even if the programmer of this application

OS/2 KERNEL ARCHITECTURE 51

has used the C runtime function write (), the call will ultimately be made
to DosWri te.

Doswri te has several parameters, including the buffer to be written
and a handle to the file (obtained previously by a call to DosOpen). Inside
the program's code, there is a call to a function in a DLL called DOSCALLl.

This function is the actual code for Doswrite. Recall that this system code
resides in DLLs to eliminate multiple copies of the code in the system,
and to provide maintainability. (Note that beginning with OS/2 Warp,
many of these functions have been merged for system performance into
a DLL called PMMERGE.DLL, but the external references to the functions
are still where they were, such as PMWIN and PMGRE. DLL.)

The address resolution for this call was done at load time by the
OS/2 program loader, which sets up the set of addresses to system calls.
In the executable file header is a list of all DLLs that are referenced by
the code being loaded. When the loader sets up the code at load time,
these references are fixed up to the actual addresses where the code in
those DLLs lives. This process is known informally as fixing up, and the
actual code referred to as fixups, which will be elaborated on in later
discussions of performance.

Looking back at the example function call, you will see that the
thread belonging to the process executing the DosWri te jumped from
executing code from the EXE into executing code in the DLL. At some
point, there is code in the DLL to make a raw file system call, which is
not published. It does not need to be. The interface to write a file in OS/2
is DosWri te. The subsystem in DOSCALLl • DLL translates the file handle into
raw file system information and calls the file system functions down in
the kernel. This layer of abstraction relieves the applications of the bur
den of knowing what the underlying file system is; if any modifications
need to be done to the low-level code, applications need not be aware
of it.

The raw file system call transfers the thread from executing code in
the DLL to code in the kernel-the file system, to be exact. There may
be several calls and returns between the DLL and the file system; that
is not important. The point here is that the application's thread is still
doing all this work.

52 OVERALL APPLICATION DESIGN

At some point, the file system will use the services of the kernel and
call into the physical disk device driver. The file system knows about
sectors, disk directory structures, and so on. The physical disk device
driver is used to tell the disk to move the head, write the bytes at this
spot on the disk, and so on. Again, the application's thread is doing all
this work.

When the request goes to the physical device driver, the thread exe
cutes code that tells the disk controller hardware to perform the speci
fied action. When this occurs, the thread blocks. There is nothing for it to
do until the hardware signals with a hardware interrupt that it is done.
At this time, another thread can be dispatched to utilize the processor
efficiently. There is no reason the processor should sit idle waiting for
the disk to get done if there are other threads waiting to run.

When the physical device signals that it is done, the waiting thread
is put back on the ready list with a somewhat higher priority, since
it was in the processor last and gave it up voluntarily. The scheduler/
dispatcher will dispatch this thread, which will return up the function
call chain down which it came, finally ending up at the application with
a return code.

The device driver has some return indicator, which is given to its
caller, the file system. The file system interprets the return code and
formulates one for its caller, the DosWrite. The code in the DLL for
DosWrite takes this information and formats it in the structure or return
code that is returned from that APL

Notice that through all of this, no kernel or OS/2 system thread was
involved. You can start to see why you will want to make use of multiple
threads to perform tasks that take time, while allowing your users to
perform other actions.

All OS/2 system services follow this same flow of execution. This is
a very simplified example-many APis cause threads to be created and
destroyed on behalf of the application-but understanding the basic flow
is vital. By looking at the flow of this function and multiplying it by the
number of threads that can be running at a given moment, you can see
how the subsystems and device drivers handle overlapped 1/0. In the
example just given, assume another thread comes into the device driver

OS/2 KERNEL ARCHITECTURE 53

while the first is either still doing work in there or blocked waiting on the
device. This other thread will simply execute the same code in another
context, block waiting on the device, and will be dispatched when it is
next on the ready list. It is a simple flow multiplied many times.

Because of this flow of execution, it is really the application's threads
that perform all of the system coordination and multitasking resource
synchronization. Since it is the application threads executing the code
in the file system and device drivers, for example, any coordination is
done by those threads.

In the code for the file system, video subsystem, keyboard subsystem,
and all parts of OS/2, there are semaphores and other control structures
that will serialize access to the various system resources. For example,
if two applications (actually, two threads) try to gain access to a single
device, such as an output port, the first thread will grab a semaphore
when inside the subsystem code. When the second thread comes along
to try to execute the same function, it will try to grab the same semaphore
when inside the subsystem code. Since the first thread is not done, the
semaphore will not be available, so the second thread will have to wait
until the first is done.

This is the premise behind OS/2 's multitasking and common sub
systems. The threads of the applications will coordinate themselves, not
because of the application code, but because all the threads execute
a common set of code in the OS/2 subsystems. When you think about
it, the subsystems coordinate the execution, but the subsystems don't
really run, since they don't have any threads. The application threads
coordinate execution, because they are the parts of the system that run.

Digging Deeper
Now that you have an overview of the architecture of OS/2 and un
derstand how the function call mechanism and control flow work, let's
dig a bit deeper into the subsystems to see what makes them work. By
understanding them, you will have a much better handle on how to
design your applications to work with them in the most efficient way
possible.

54 OVERALL APPLICATION DESIGN

Protection Mechanism
Protection is one of the primacy goals of OS/2. In a multitasking system,
all programs must be protected from each other, for obvious reasons.
OS/2 uses the features of the Intel 80386 and 80486 processors along
with protection mechanisms of its own to ensure that no program can
interfere with another.

The ring protection mechanism of the processor is the center of this
protection. The ring mechanism is fairly simple. As shown in Figure
5.2, the rings are concentric circles. The center is called ring 0, and the
outer ring is ring 3. The kernel and device drivers run at ring 0, which
is the most privileged code in the system. Code at ring 0 can access any
memory or any piece of hardware. Applications generally run at ring 3.
Most of the code you will be writing will be ring 3 code, unless you have
a need to write a device driver. We will discuss device drivers later on.

Applications running at ring 3 are the least trusted code in the sys
tem and must request system services for everything. The operating
system code is what runs at ring 0 and controls and coordinates the
execution. As you have just seen, these services are the way OS/2 uses
the application's threads to manage system resources.

As applications request system services, transitions are made be
tween the protection rings depending on the code being accessed. Each

Figure 5.2 Protection rings.

OS/2 KERNEL ARCHITECTURE 55

ring has its own set of functions it is permitted, and the code running at
each ring has a set of functions it is responsible for. Ring transitions are
coded into the subsystems and will be discussed in more detail when we
discuss memory management.

Protection is accomplished through a set of routines that are exer
cised when memory, or any hardware for that matter, is accessed. These
algorithms, too, will be discussed when we cover memory management,
since that is where they are used the most.

Since threads are the structures that execute code, it is the threads
that access memory or other hardware, and protection occurs at the
thread level on every hardware access. Although this protection is done
on the thread level, any termination due to protection violations occurs
at the process level.

Let's now explore the relationships between processes and threads,
and the various interactions between threads of the same process and
between different processes.

Process/Thread Model
The process is how OS/2 manages all the system resources. Recall the
discussion of how the system boots up. Basically, that is how every
program or process in OS/2 is born. When a user requests a program
to be run, the loader brings that program into memory and sets it up to
be run. As has already been stated, that is a very simple description of a
very involved process.

When the loader sets up a program to run, it creates one thread to be
the main thread of the application. This thread executes code and, in that
code, manipulates system resources. One of the most powerful features
of OS/2 is that a thread can create other threads or even processes and
sessions.

Other threads, processes, and sessions are created through system
APis, such as DosCreateThread and DosExecPgm. Recall that the operating
system has very few threads of its own and uses application threads to
do much of the work.

56 OVERALL APPLICATION DESIGN

In our discussion of threads and processes so far, the definitions have
been fairly obvious. Let's take a moment to refine and define the role of
the process and thread in the scheme of things.

The process is how OS/2 manages all system resources. The process
is the unit of ownership, whereas the thread is the unit of execution.
A process does not run; a process owns things, such as memory, files,
semaphores, and other system resources. A process also owns threads.

The thread is the unit of execution in OS/2. Each thread has its own
context in which it runs. A thread context is a set of registers and what
is called an execution instance. The context is a complete environment
in which the thread owning the context can run. A thread switch by the
scheduler is really just a context switch.

Along with the registers and other information specific to that
thread, the context indicates a thread state. These states include run
ning, blocked, and frozen. This is the part of the thread context that is
always accessed by the scheduler/dispatcher to maintain the ready list
and determine which thread is the next to run.

Since the process is the owning entity, everything in that process has
the ability to access anything owned by it. This means that all threads
within a process can access all of that process's memory, files, and con
trol structures. OS/2 protects applications or processes from interfering
with each other. However, all threads within a single process can access
anything within that process. This leads to some interesting dilemmas
and design considerations. We will get into these topics in depth in
Chapter 12.

OS/2's protection model revolves around the process. Recall, how
ever, that a process does not run-it owns, whereas a thread runs. When
a thread is about to issue an instruction that would cause an access vi
olation, the thread and its owning process are terminated. When the
process is terminated, everything the process owns is released, and all
threads belonging to that process are terminated.

It is vital that all threads of a process be terminated, since each
thread has access to all of the process's data. If one thread causes a vio
lation, that means something the process owns has gone wrong, whether
it be a pointer or attempted access to the hardware. The reason for ter-

OS/2 KERNEL ARCHITECTURE 57

minating the entire process, and all of its threads along with it, is that
if one thread of the process has gone wrong, then all integrity of the
process is lost. You can't count on anything being correct anymore.

If the other threads of the process tried to use a return code from
the errant thread or to use some common data structure, data could
be corrupted or lost. By terminating the entire process immediately, the
system preserves the integrity of the data on the disk associated with that
process, along with the integrity of all other processes in the system.

Priority
One of the most important features of OS/2 's multitasking and its man
agement of multiple tasks is priority of threads. Every thread in OS/2
has a priority. The priority of a thread is a number relative to the prior
ity number of the other threads in the system. This is how the scheduler
knows what threads to schedule next or whether any thread preemption
needs to be done.

There are four priority classes in OS/2, each having 31 sublevels. The
classes, in order of highest priority to lowest, are Time Critical; Fixed
High, which is also sometimes called the Server class; the Regular class;
and the Idle Time class.

There is also a line in the CONFIG. SYS indicating whether priority is to
be dynamic or absolute. Usually, the PRIORITY line in CONFIG. SYS indicates
dynamic priority. This is the default as installed, but it can be changed
by the user to absolute. If priority is dynamic, the scheduler/dispatcher
component of OS/2 will dynamically modify priorities of threads based
on which is in the foreground, on whether the thread has been starved
for a certain period of time, and other criteria. In general, every thread
created is intialized with a default priority somewhere in the Regular
class. This priority can be subsequently modified, either by the thread
itself or by the scheduler/dispatcher.

If a thread is to modify its own priority, it can do so by a call to
DosSetPriority. The parameters to this function are simply the new pri
ority for the thread, along with the scope. The scope indicates whether
the new priority is for that thread alone or for all threads in the process.

58 OVERALL APPLICATION DESIGN

The Time Critical class is for threads that perform, as you might
guess, time-critical operations. Examples would be threads communi
cating through a serial communications port, where two-way response
is critical to process function, or threads gathering data from a peri
pheral device. It is rare for a Time Critical thread to be preempted, as it
can only be preempted by a higher-priority Time Critical thread.

The Fixed High class is for those threads that need a somewhat
higher priority than the Regular class, but are not really time-critical. An
example may be a thread that reads from a tape drive asynchronously.
You would want a thread such as this to be of higher priority than the
threads reading the buffers being filled.

Let's look at this more carefully, to see why the thread reading from
a slower device needs to be at a higher priority than the one that is CPU
bound and reading those buffers. Since the thread reading the tape is
1/0-bound, every time the request to read the tape goes to the device,
it will block and the CPU-bound thread reading the buffers will be dis
patched. Since it is CPU-bound, it will run to the end of its time slice
unless it is preempted by another thread. If left at the same priorities,
the CPU-bound thread will starve the 1/0-bound thread. By bumping the
1/0-bound thread's priority slightly higher than the CPU-bound thread's
(not necessarily higher than every thread in the system), you ensure that
the 1/0 thread is dispatched whenever it is ready to run.

Regular class is where every thread starts out. When a thread is
created, either by the loader when starting a process or when another
thread calls DosCreateThread, its priority is in the Regular class. In this
class, the scheduler dynamically modifies priorities.

Every thread in the Regular class is eligible to have its priority mod
ified by the scheduler/dispatcher. Some examples of how priorities are
modified include raising the priority of threads belonging to the fore
ground process and boosting up priorities of threads that have been
waiting for processor time longer than others. This dynamic modifi
cation occurs only within the Regular class. Don't use DosSetPriority
to change the priority of a thread within the Regular class, because
it will likely be changed by the scheduler/dispatcher soon afterward.
In all other classes, any priority set by the application will stay unless

OS/2 KERNEL ARCHITECTURE 59

reset by the application. There is one other fact to mention: The sched
uler/dispatcher will never modify the priority of a thread to take it out
of the Regular class. They will all stay Regular unless the application
changes it to another class.

Finally, the lowest class in the hierarchy is the Idle class. This is like
Time Critical and Fixed High in that the scheduler does not modify pri
orities of threads in this class, and will not lower a thread's priority from
the Regular class into Idle class. Idle class is for threads that can wait
until the processor has nothing else to do. This is useful for such tasks
as a background file-mirroring program. Any type of background task
is a candidate for the Idle class. You don't want such a task preempting
"real" work, so the Idle class is the place for it.

Thread priorities and when to change them will be discussed in
depth in Chapter 18.

Thread Management
Threads are managed though various control and synchronization struc
tures. The management of the threads and the use of these control struc
tures is completely up to the designer and programmer. Of course, there
is the control built into the OS/2 system services as discussed previously,
but most of the control of threads, the amount of parallel activity within
an application, and how that activity is managed is up to the developers.

The basic control structures are semaphores, queues, and pipes.
Actually, the only control structure in that list is the semaphore. There is
another structure, although not used as often, called a critical section.

A semaphore is a structure that when implemented properly will
ensure that only one thread in a process can manipulate a resource. A
semaphore is like a flag, that only one thread can have captured at any
moment. If another thread requests the flag while the first one still has
it, this second thread will be blocked until the first completes what it is
doing and clears the semaphore.

You could implement this simply by using a software flag, and in
deed, that is one type of semaphore available to you. However, by letting
OS/2 manage the semaphore control, you ensure consistency in all your

60 OVERALL APPLICATION DESIGN

code and between your code and the other code that is in the system. It
is important that you use semaphores for any data that can be accessed
by multiple threads, whether it be in a disk file or in memory.

OS/2 also provides several flavors of semaphores. Each type of sema
phore serves a specific purpose. For example, aside from the stan
dard synchronization semaphore, there is the MUTEX (mutual exclusion)
semaphore that is used to control access to a shared data structure. A
way to control access to a structure would be to put all access to the
structure in one function that requests a MUTEX semaphore on entry and
releases it on exit. This way, if one thread is accessing the structure,
others will be made to wait on the semaphore.

Another type of semaphore is the EVENT semaphore. Whereas the
MUTEX semaphore controls access to structures, the EVENT semaphore is
used to manage order of execution among threads. The EVENT semaphore
signals an event to all waiting threads when posted. EVENT semaphores
could actually be used as MUTEX semaphores as well, given the proper
coding around the structure, but OS/2 provides both.

Yet another type of semaphore is the MUXWAIT semaphore. This is a
semaphore that allows a thread to wait on a list of events, not just one
at a time.

The OS/2 semaphore mechanism allows programmers the flexibility
to manage threads at a variety of levels and synchronize them for any
situation.

Memory Management
Memory management is one of the most interesting features of OS/2.
The memory management system in OS/2 not only protects applica
tions from accessing memory of others, but it also allows applications
to access more memory than is physically in the system, and it has
constructs that allow applications to share memory.

Memory management has changed dramatically from 16- to 32-bit
OS/2. In 16-bit OS/2, memory was addressed with 16 bits, and words
were 16 bits. 32-bit OS/2 supports both 16- and 32-bit programs. The
underlying architecture is the same; however, there is an added layer
for 16-bit programs running under OS/2.

OS/2 KERNEL ARCHITECTURE 61

First, 16-bit memory management will be outlined (to give you a
frame of reference), and then the discussion will expand to the memory
management implemented in 32-bit OS/2, exploring full "32-bitness"
and 16-bit compatibility. You should also note that OS/2 for PowerPC is
a 32-bit system and code written with the 32-bit API for OS/2 will port
almost seamlessly to the Power PC artchitecture. Therein lies the power
of a consistent 32-bit API.

Figure 5.3 shows how memory management works in 16-bit OS/2.
This structure does not change for 16-bit applications running under
32-bit OS/2.

All memory references are similar to that in DOS, where the refer
ence is to a segment, or paragraph, in memory and an offset into the
segment. Th.is is a 16:16 address: 16 bits for the segment, and 16 bits
for the offset. Under DOS, this value pointed to physical memory. Since
only one program runs at any time in DOS, applications could use mem
ory without regard for any other application, since there was no other
application running at the time.

I XXXXXXXXXXXXX11 I
Selector

xxxxxxxxxxxxx n
LDT

Physical Memory

GDT

Figure 5.3 16-bit memory management. The selector indicates a memory
access at ring 3, using the LDT for the process. The "XXXXXXXXXXXXX" is the
offset in the LDT where the descriptor points to the physical memory.

62 OVERALL APPLICATION DESIGN

OS/2 adds a new twist to this. Rather than a segment and offset
(although they are still sometimes called that), the address consists of a
selector and an offset. The address is still 16:16, but the segment portion
is now a selector.

If you look at Figure 5 .3, you will see that a selector is similar to a
segment value, but rather than pointing to a physical segment of mem
ory, it points into a table, called a descriptor table. (This is a construct
supported by the 80286 and later processors.)

There are two types of descriptor tables in the system. The first is the
Global Descriptor Table (GDT). The system contains one of these, which
maps the system address space. The other type of descriptor table is
the Local Descriptor Table (LDT). Each process in the system has an
LDT that maps the local, or process address space. The contents of each
type of descriptor table have the same form. Each entry in the descriptor
tables is a descriptor that maps a virtual address (a selector) to a physical
address.

The selector indicates several things to the memory management
code. Figure 5 .4 shows the structure of a selector. Although it looks just
like a real segment address, it is really composed of a privilege level, an
indicator of which table (the GDT or the LDT for that process) to look
in, and an offset into the table.

At the offset into the table is a descriptor that contains all the infor
mation needed about the physical segment of memory. The descriptor
is defined by the Intel processor and is fully documented in the Intel
manuals. Basically, the descriptor describes the segment of memory.

A descriptor contains, among other things, the privilege, or ring,
level required to access this particular segment, an indicator of whether

Selector

l~--- T _____ _) \
1 ~PriWegoLevru

Index into Table OO=Ring O

Figure 5.4 16-bit selector structure.

O=GDT Ol=Ring 1
l=LDT lO=Ring 2

ll=Ring3

OS/2 KERNEL ARCHITECTURE 63

the segment is physically in memory; and if so, what the physical address
is. This level of indirection is necessary to allow OS/2 to manage segment
swapping and movement with a minimal impact to the application.

Once memory is allocated, the application is given a selector it can
use to access that memory. That selector can always be used as long as
the application wants. This gives the appearance to the application that
the memory is always at the same location, but OS/2 knows that it really
may be swapped out, or that it may have moved since last accessed.

Because the applications do not know about what is in the descrip
tors and access memory only through selectors, OS/2 can move memory
or swap it out, completely transparent to the application, by simply ma
nipulating the descriptors. When the memory is needed and is accessed,
the OS/2 memory manager causes the swapped segment to be brought
back in and then fixes up the descriptor. This indirection allows OS/2 to
provide applications with more memory than is physically in the com
puter and to make efficient use of the memory that is there.

32-bit memory management adds in a new twist and better perfor
mance than 16-bit memory management. 16-bit constructs still exist
for 16-bit application compatibility, but they do not hamper pure 32-bit
operation.

32-bit memory management uses a feature of the 803 86SX and later
processors called paging. Paging is very similar in concept to 16-bit
swapping except that with swapping, each segment can be of any size
up to 64K bytes. Paging uses fixed-size, 4K pages.

Since each page is the same size, you can see immediately that seg
ment movement is no longer needed, since all "holes" in physical mem
ory are the same size. Each page fits perfectly. That is only the tip of the
iceberg in performance gains with 32-bit memory management.

Figure 5.5 shows how 32-bit memory management works. The first
thing you will notice is that 32-bit memory addresses are not 16:16 ad
dresses; rather, for all practical purposes, they are simply 32-bit lin
ear addresses in a flat address space. The linear address, however, is
really an ordered tuplet that represents offsets into memory manage
ment structures.

Bits 22 to 31 in a linear address specify an offset in the page table
directory, which is a system structure. The page table directory contains

~ 32-bit
Memory

Reference

32-bit
Offset

4gig

L-- TI-c-1 +- --,
I
I I
I I
I L-4
I L ____

+----- - n -.I
!'age

,
Table

Directory

0

Space

Figure 5.5 32-bit memory management.

Offset

Page Frame
1

±'-

""Vage
Table

Total
Memory

--"

' 7

12k

Bk

4k

Physical
Memory

OS/2 KERNEL ARCHITECTURE 65

pointers to page tables. Each page table consists of page frames, which
are analogous to descriptors in 16-bit memory management.

Bits 12 through 21 of the linear address are used as an offset in the
page table to indicate the page frame in which the memory reference is
contained. Like a descriptor, not only does this page frame entry contain
the physical address of the frame (analogous to a segment)-assuming
the frame is in physical memory-but it also contains other indicators
to indicate attributes, including whether the page is read/write, if it is
present, and whether it is accessed.

Bits 0 through 11 of the linear address are used as the offset into the
page of the actual byte being referenced.

This is how 32-bit memory accesses are accomplished. The linear
address, which is the virtual address in 32-bit memory management, is
an offset into the page table directory to obtain a page table; an offset
into the page table to obtain the page frame; and an offset that is added
to get the byte within the frame in memory.

Because of this scheme, memory accesses are even faster. No longer
do segment registers need to be loaded. Since addresses are effectively
0:32, memory references do not cause segment registers to be reloaded.
That is a very expensive hardware operation, since each time a segment
register is loaded, all access permissions are checked based on the value
being loaded. This is why addresses are really 16:32. The operating
system has one segment, into which all 32-bit addresses are offsets. So
even though 32-bit addresses are viewed as 0:32, they are really 16:32.

16-bit applications are supported very elegantly even when the un
derlying architecture is 32-bit. As you can see in Figure 5.6, it is elegant
yet simple.

16-bit applications still require the use of 16: 16 addresses, because
that is all they know. Quite simply, what comes out of the descriptor
table is not a 16-bit descriptor but a 32-bit linear address, which gets
translated through the normal 32-bit address translation. In a 32-bit
application, memory references are 32-bit addresses; in 16-bit appli
cations, the addresses are 16:16, which go through the normal 16-bit
address translation and then through the 32-bit translation to get the
physical memory.

en en

4 gig

16-bit
Memory

Reference

16: 16 adaress

rl I< I

LDT

I I II ~ I
: [_I

I l I l _______ o L-jP fuune

=n I I

.__ ___ _.o

Linear Address
Space

Page) Page
Table Table

Directory

Figure 5.6 16-bit memory access in 32-bit OS/2.

l
@

Total
Memory

)I
12k

8k

4k

0
Physicfil
Memory

OS/2 KERNEL ARCHITECTURE 67

Another interesting and efficient feature of OS/2 32-bit memory man
agement is the concept of sparse memory allocation, which gives appli
cations the freedom to allocate memory without actually committing
physical memory or swap space. In addition, there are other structures,
such as guard pages, which are used to notify an application how physi
cal memory is reacting to its operations.

Each page of memory has a set of attributes. With respect to sparse
allocation, memory can have the attributes of committed or guard pages.
There are other attributes, but these are the ones that deal with sparse
allocation. When pages are allocated by the loader, for example, the
application has no direct control. These pages are the standard code and
data pages for the application, and the loader will mark a page read,
read/write, execute, and so on. The application controls when memory
is allocated via DosAllocMem or other memory management APis.

An allocated but not committed page simply has addresses reserved
in the requesting process's linear address space. An allocation does not
necessarily cause the physical space to be used. If the allocation request
specifies the flag to commit the memory as well, then the physical "back
ing store" is allocated as well as the address space. The other way the
page can be committed is by calling DosSetMem to commit a page for a
previously allocated but uncommitted page.

Guard pages have a special purpose. They are initially uncommitted.
When an address in a guard page is touched, a guard page exception is
raised. If the application has registered an exception handler, it will be
called. The default system exception handler for a guard page exception
is to change the page to a committed page. However, the exception is
raised nonetheless and is a valuable notification mechanism for appli
cations.

A good example of sparse memory allocation is in the use of large,
complex data structures, such as multidimensional matrices or hash
tables. Such structures have the property that they need to be large, but
they have many holes, with slots filled sparsely throughout the structure.
By using sparse allocation and these notifications, you can allocate, say,
a 10-megabyte linear memory object without committing it. You can
set the guard page attribute on the pages in this object and register a

68 OVERALL APPLICATION DESIGN

guard page exception handler. Inside this exception handler, you will
use DosSetMem to commit each page as it is needed. In this way, you can
manage the memory object without unnecessarily eating real memory,
and/or swap file space.

There are many considerations when designing how your applica
tions will use memory, ranging from how you will structure the code
and data to how you will allocate and use memory to the most efficient
way to access pages. We will discuss these in more detail in Chapter 12.

File System
The OS/2 file system has many parts. The standard file system, based
on the File Allocation Table (FAT) mechanism first introduced in DOS,
is always part of OS/2 and is built into the OS/2 kernel. OS/2 supports
installable file systems, which become extensions to the kernel and are
definable by the user. OS/2 supplies an installable file system with the
OS/2 product, called the High Performance File System (HPFS). Other
file systems are available, such as one for the LAN and another to make
IBM AS/400 disk drives appear local to OS/2.

Figure 5. 7 shows the "black-box" architecture of the OS/2 file system
mechanism. Whenever an application or any part of the operating sys
tem, such as the swapper component of the memory manager, requests
a file system operation to be performed, the request goes into a part of
the kernel called the File System Request Router. This is simply a redi
rector that determines, from the file handle being accessed, which drive
is being accessed. Depending on the drive being accessed, the request
router will direct the request to the proper file system.

For example, if the request was to read from a file on a FAT drive,
the request router will forward the file system read request to the FAT
component of the kernel, which will honor the request and return to the
caller. The file system is the subsystem that interacts with the physical
device driver to satisfy requests, as has been outlined earlier.

Another example is if the request is for a drive using the file system
for the AS/400. This is a product separate from OS/2 that is available.
In this example, the request router will take the file system request and,

OS/2 KERNEL ARCHITECTURE 69

File System Mechanism

File 1/0 API call

File System Request Router

FAT

Physical
device

HPFS

Physical
device

Figure 5.7 The OS/2 file system mechanism.

ther File

Physical
device

based on the file handle, will resolve it to be the drive on the AS/400,
needing the AS/400 installable file system component.

Once the request router forwards the file system request to the
AS/400 file system, it is routed over the token ring connection to the
AS/400, where there is accompanying code that talks to the physical
device. In this case, the OS/2 file system being used is not talking di
rectly to a physical device or device driver. It is sending a request over a
communications link to another machine that has the physical device.

As you can see, each file system can access its device in a different
way, and OS/2 can have several different installable file systems in the
systems at one time, so that users can access many different file systems
in the same machine.

Device Drivers \

Device drivers are the way physical devices are managed in OS/2. The
device driver mechanism is more structured and defined than was the

70 OVERALL APPLICATION DESIGN

case in the DOS world in which each application came with its own
device driver, and device drivers were not generally usable by more
than one application at a time. This was okay, though, as DOS could run
only one application at a time.

OS/2 has a well-designed device driver mechanism and has stan
dard, published interfaces to these device drivers and a special API
to access their functions. Device drivers must be able to handle many
threads requesting services concurrently as shown in Figure 5.8.

Device drivers are loaded via the DEVICE= statement in the file
CONFIG. SYS. At this time, they are called at an entry point called the
initialization routine. In this initialization routine, the device driver will

LJ LJ LJ
Strategy Strategy Strategy

Routine Routine Routine

Interrupt Routine

r--- ---------- --------- ------ ---,
I
I
I
I
I Interrupt Controller
I
I
I Device
I
I Hardware
L-----------------------------------

Figure 5.8 Device driver structure.

OS/2 KERNEL ARCHITECTURE 71

initialize the device, set up any control or data structures it needs, and
then signal to the kernel that it is done.

Once the initialization is done, the device driver remains dormant
until its services are requested. As you have seen earlier, a device driver's
services are requested through an application calling into one of the
OS/2 subsystems. The subsystem will at some point need either to tell
the device to do something or to return some information. This is the
job of the device driver.

Device drivers are told what to do via an I/O Control (IOCTL) packet.
This is a packet of data, unique to each device driver, that tells the
device driver what to do. Every device driver has a set of functions and
subfunctions that it knows about, and that are specific to that device.
For example, the disk device driver can be called to tell whether a drive
has removable or fixed media, but that function is not applicable to the
keyboard.

Subsystems use these IOCTL packets to communicate with device
drivers. Applications too, can communicate directly with device drivers
by using the API DosDevIOCTL. There is a drawback to using this from
an application-that is, you are tying the application to specific OS/2
device drivers. If there is an API to perform the function you wish, it is
better to use the API than DosDevIOCTL.

Once the IOCTL packet is sent, the device driver is called at its strategy
routine. This routine is a router to the correct part of the device driver to
service the request. The part of the device driver that services requests
is the interrupt routine.

The interrupt routine is the part of the device driver that actually ex
ecutes IN and OUT instructions to the port associated with its device. That
is why device drivers need to run at ring 0: They need direct hardware
access. The interrupt routine sends the request off to the device, blocks
the requesting thread, or provides the information to the requestor itself,
depending on the circumstances. Recall the discussion on subsystems
and threads.

When a thread calls DosDevIOCTL, for example, it causes a jump into
a DLL, which passes the request and packet into the device driver. This
passing of the request packet is performed by the requesting thread. The

72 OVERALL APPLICATION DESIGN

device driver uses the requestor's thread to do the work in the interrupt
routine. When the request is sent to the device and it will take time
before the request completes, as in the case of a disk access, the device
driver executes code to block the thread. This is, again, the requestor' s
thread.

Another thread can come in with another request while the disk
is physically processing the first. There is no reason the device driver
cannot begin processing the request while the first is working, so the
thread from the first request remains blocked while the thread from the
second request is used to process it up to the point where the device
driver needs to serialize access to the device and therefore blocks until
the first request completes.

When the disk is finished with the first request, the device driver
works with the scheduler to make that thread ready to run, while it also
releases the semaphore for the second thread to grab. This wakes up the
second requestor' s thread. The device driver will use this second thread
to communicate the request to the device and block it waiting on the
physical device, just as with the first request.

The physical device drivers are used in this manner to serialize ac
cess to the ports, such as the disk, display, printer, and serial communi
cations.

DLL Mechanism
Dynamic link libraries (DLLs) are used for performance and maintain
ability. Since there are many common routines used during system op
eration, having each one bound to each executable creates many copies
of the same function in memory at the same time. Additionally, if a rou
tine changes due to enhancements or, dare I say it, bugs, any program
using this routine would have to be rebuilt and reshipped. This is not
a desirable situation. By using DLLs to share many common functions,
memory savings and maintainability are gained.

Under DOS, or any statically linked system, application code is com
piled and linked with static link libraries, which binds the runtime code
to the application code. When the application calls the runtime rou-

OS/2 KERNEL ARCHITECTURE 73

tines, they are in the application's own code segment, so a simple call is
done. The problems are those just listed, however: maintainability and
memory size.

The DLL mechanism is fairly simple, yet powerful. DLLs use the
same paradigm of building the applications, but the libraries used are
somewhat different. A static link library has the runtime code in it. A
DLI..'.s library file has an external reference record rather than the actual
code. The library (.LIB) file has the references, while the DLL has the
real code.

When the application is linked, the references to the runtime code
are replaced with these external reference records, which are fixed up
when the application is loaded and run. Fixing up the reference means
loading the DLL and resolving the address.

When an application is built with DLL references, not only are the
external reference records there, but all DLL references are listed in
the . EXE file header. When the application is loaded, the . EXE file is
read, as we have seen before, and all DLLs referenced have references
resolved or are loaded. Then the external references are resolved into
real addresses. The application can then call the DLI..'.s routines using
CALL instructions.

As applications resolve to functions in DLLs, the system keeps a
usage count of how many applications are using the DLL. Once that use
count goes to zero, the system will unload the DLL from memory.

This is the idea behind the OS/2 subsystems. Since all applications
have to call a set of common subsystems to request system services, it is
only natural that these system services be implemented in DLLs.

Base Subsystems
The OS/2 base subsystems are what virtualize the base system services,
such as the keyboard, mouse, and display, giving the user a separate,
virtual console, or computer, in each session. As you have seen, de
vice drivers handle a large portion of the work of serializing access
to physical devices. The subsystems are higher-level routines that com
municate with the device drivers to gain information and instruct the de-

7 4 OVERALL APPLICATION DESIGN

vices to perform tasks. The subsystems provide a consistent, hardware
independent, high-function interface to the system functions.

OS/2 for PowerPC shows that the OS/2 API is not processor-depen
dent and the underlying subsystems can be ported to a different proces
sor architecture, or in the case of the "Workplace" architecture of OS/2
for PowerPC, a different operating system architecture as well. The key
is that to you, the application developer, nothing is different.

SUMMARY
As you have seen, OS/2 is a very complex, yet easy to understand system.
The kernel is the center of the system, and all of the low-level services
are built closely around it. Higher-level services are then built on those
and so on, until you get to the services accessible to applications. This
isolation is important to allow you to keep your code separate from the
underlying hardware and to allow the operating system to be changed
under it without affecting application code.

So far, we have just covered the base system. Built on top of these
services are more powerful functions, such as graphics, window man
agement, the print subsystem, and the shell. The architecture of these
pieces of OS/2 will be covered in the next chapter.

CHAPTER

Presentation Manager,
Graphics, and the User
Interface

N ow that you have an understanding of the kernel and base sub
systems of OS/2, we can move on to the higher functions: the
Presentation Manager, graphics subsystems, printing subsystem,

and the Workplace Shell.
In a pure sense, these items are really just applications, all using the

services of the base subsystems. Actually, when you think about it, the
only services in OS/2 that are not applications are the kernel and device
drivers.

OS/2 is built in layers, each providing more isolation from the hard
ware than the one just below it. Of course, when you get too deep in
this layering, performance begins to suffer. OS/2 is optimized to take
advantage of the isolation as well as improving performance. A good
balance has been struck between functionality and performance.

75

76 OVERALL APPLICATION DESIGN

You have already seen the lowest layer-the kernel and base sub
systems. The next layer up contains the graphical subsystems and the
shell. These components of OS/2 use the base subsystems extensively
and provide more powerful features to applications.

Of course, your applications can use any of these functions, but the
higher-level functions are more powerful and efficient than if you were
to code the same function using only the base subsystems. Performance
does not suffer; to the contrary, performance is in many cases better
than if you were to code the functions yourself, because they have been
refined and tested by the OS/2 developers and testers.

As you design and write code, I think you'll actually find it fun to use
these higher-level functions, especially when you see how much you can
do with just a few lines of code. Windows can be created and graphics
drawn with relatively little work, leaving you free to concentrate on
adding and tuning powerful computing features of your applications.

PRESENTING DATA
Figure 6.1 shows a different look at the "black-box" architecture of OS/2
than you saw in Chapter 5. Of course, the kernel and base subsystems
are still there, but now you can see more detail of some of the higher
level subsystems.

This subsystem has a name of its own: Presentation Manager (PM).
Presentation Manager is a set of system services that provide the graph
ics-based presentation functions to applications, other subsystems, and
the user shell.

Presentation Manager consists of a set of DLLs that provide iso
lation not only from the virtualization of hardware, but also from the
device altogether, while allowing applications to take full advantage of
the various devices present, such as displays and printers.

Starting with OS/2 Warp, many of the system services DLLs, includ
ing the Presentation Manager DLLs, have been merged into one larger
DLL, PMMERGE. DLL. In addition, the remaining parts of PM that were
still implemented as 16-bit functions are now 32-bit functions. The en-

PRESENTATION MANAGER, GRAPHICS, AND THE USER INTERFACE 77

User

Applications

PM Subsystems Subsystems

t
Kernel

I Device Driver I Device Driver

Hardware

Figure 6.1 Black-box view of OS/2 architecture.

try points can still accommodate 16- and 32-bit callers, but the underly
ing implementation of PM is fully 32-bit.

By using the functions offered by PM, applications can take advan
tage of the devices present without having to know what the capabilities
of the device are. The same code can be run on systems with differ
ing hardware with no code changes at all, while still utilizing all of the
features of the device.

This seemingly magical feat is accomplished through another func
tion call mechanism with a very specific purpose. By setting up a few
simple data structures and calling the graphics (GPI) and window man
agement (WIN) APis, applications can ignore such issues as whether the
screen is color or monochrome; whether the printer is dot matrix or
laser; or what the resolution of any of the devices is.

The flow through the graphics engine and presentation drivers is the
key to accomplishing device independence.

78 OVERALL APPLICATION DESIGN

PRESENTATION AND
TRANSLATION FLOW

Everything that is displayed on the Presentation Manager desktop goes
through the graphics engine. It is this engine, in conjunction with the
presentation drivers for the screen, printer, and other devices, that per
forms the translation from a device-independent function call in the
application to the specific commands to optimize and take advantage of
the output device.

If you refer to Figure 6.1, you will see that the subsystems are broken
up into the base subsystems and the PM subsystems. Figure 6.2 shows
an even more detailed view of the PM API-to-display translation flow.

Of course, anything to be displayed on the PM desktop begins with
an application request. This can be a user application such as a spread
sheet, a system application such as one of the utilities included with the
system, or it can even be the Workplace Shell. All requests for data to be
displayed on the screen come in the same way.

Throughout the next few pages, the discussion may seem to jump
around a bit. The graphics-rendering methodology is quite complex,
and in some cases there are circular references among data structures,
graphics objects, and parts of the rendering algorithms. As the discus
sion progresses, the pieces will begin to fit together.

Device Context
A device context (DC) is a structure that links the device-independent
data structures to the physical device. More precisely, the DC connects
to the Presentation Driver for the target output device. The Presentation
Driver is the workhorse of the translation process and works very closely
with the graphics engine to map the device-independent graphics orders
from the applications and turn them into a device-specific data stream.
Each DC is linked to one device.

The device-independent graphics orders come to the DC from a pre
sentation space.

PRESENTATION MANAGER, GRAPHICS, AND THE USER INTERFACE 79

Users
'1,-

Presentation Manager
View

Applications

/~ /~

--- -----{ PM API }------ --------------
-"k'_ 'V

Windowing Graphics AVIO Input

-----~~--(Engine Interface}-----------------
'V

Function Table

r-------71j,, Simulations
Graphics Engine

------rt(___ D_e_v_i_c __ eD_r_i_v_e_r_I_n_te_r_f_a_ce __ _ ..-----.....
l Mouse Device Driver

1£

I"'

PM Device Driver

Kernel Device Driver

_Ill-~----~----------------
___ ¥__________ ~

I Device I Device

Figure 6.2 Detailed view of OS/2 Presentation Manager architecture.

80 OVERALL APPLICATION DESIGN

Presentation Space
A presentation space (PS) is a device-independent entity used for draw
ing. All drawing is done "into" a PS. There are several types of PS, each
with its own properties of persistence. The varying degrees of persis
tence describe how each type of PS maintains its state across function
calls along with its performance.

Before any drawing can be done anywhere through Presentation
Manager, a PS must be created. However, in order to draw into a PS,
you must first have a device context (DC).

Figure 6.2 depicts the relationship between the PS and the DC. Nei
ther is a very tangible object, and the internal structure is irrelevant. The
important point is that they are needed and they represent a significant
link in the application to device translation. The presentation space is
maintained at the graphics-engine level, and the device context is at the
presentation-driver level, according to Figure 6.2.

Whenever an application draws, it draws into a PS. Every PS is
associated with at most one DC. The DC is associated with the device.

Tracing a Drawing Call
Any drawing request is a function call, just like all system services. Let's
assume for this example that the user has requested the application to
draw a box. Notice that I did not specify on what device this box is to be
drawn. As you will soon see, drawing on a printer is virtually the same
as drawing on the screen. The function for this operation is GpiBox.

GpiBox, like all the other functions that cause drawing to take place,
requires (among other information) one key parameter: a handle to a
presentation space. The PS is the key to all drawing in PM.

The PS has to be associated with a DC in order for the call to cause
something to be drawn on a device. The call to GpiBox the code to jump
into PMGPI. DLL, which does some work and, using the PS and DC link,
makes calls into the graphics engine, which in turn calls the Presentation
Driver.

These two entities will call each other for various functions and
pieces of information until there is enough information available for the

PRESENTATION MANAGER, GRAPHICS, AND THE USER INTERFACE 81

Presentation Driver to send the device-dependent commands through
the physical device driver to the device.

The graphics engine and the Presentation Drivers for the various
devices are the most involved and complex pieces of this story. These
two units complement each other to support the variety of devices, and
they enable PM applications to output onto them with a minimum of
effort.

Graphics Engine
The graphics engine contains a function table containing all of the
graphics orders available along with simulation routines. It acts as a
function resolver more than a function generator or engine, as the name
implies. Figure 6.3 shows the high-level architecture of the graphics en
gine.

Let's go back to looking at the flow of a graphics function call. As you
have already seen, the call originates at the application and goes into the
PM subsystem layer for initial processing. In the case of graphics calls,
this is PMGPI. DLL (PMMERGE. DLL) • Next, using the PS and DC connections,
the request is passed into the graphics engine layer.

GRE calls from GPI and PMWIN

~
,.

Function Table

Jl ~ ~

-7j_ Simulations

Commands to Calls back to
Presentation the engine from

Drivers Presentation Drivers
for help

Figure 6.3 OS/2 graphics engine structure.

82 OVERALL APPLICATION DESIGN

At the engine layer, the call is routed to a function table. This is a table
that contains a pointer to the routines representing every graphics order
available. As you will soon see when we discuss Presentation Drivers,
there is a copy of the function table for each device and Presentation
Driver. That is where the DC comes into play: to differentiate between
the various devices and route the graphics functions to the correct place
for the device.

The GPI layer calls the engine, using the DC to get the correct
copy of the function table for the specified output device. The function
table, specific to the device, points to the routines that resolve the de
vice translation and optimization. These routines include functions in
the Presentation Driver along with simulation routines in the engine
itself.

Using the functions of both the Presentation Driver and the engine,
calls are made to turn the complex graphics call into rudimentary func
tions the device can understand. This is where all the mapping from
device independence to device specificity takes place.

The engine layer will use the function table to make calls specific
to the request. The calls may be to its own simulation routines or to
the Presentation Driver's routines, depending on how the function table
for that device is set up. Calls are made back and forth between the
engine and the Presentation Driver until the high-level request is a set
of low-level, device-specific calls.

Let's now go back to the GpiBox function call. As you have seen,
the call to GpiBox contains, along with the information about the box
to be drawn, a handle to a PS. The function resolves into the GPI. At
the GPI subsystem layer, the PS is examined to determine the DC with
which it is associated. The GPI layer also determines what calls are to
be made to the engine layer to cause the drawing to take place. In some
cases, such as a line, this may result in only one call from the GPI to
the engine. In others, it may result in many calls. This first layer is still
device-independent, but the GPI is optimizing the call and simplifying
it for the engine.

Once the engine layer is entered, each function in turn is called
through the function table. Which copy of the function table is used is
dependent on the DC, which is determined by the GPI layer from the

PRESENTATION MANAGER, GRAPHICS, AND THE USER INTERFACE 83

PS specified on the API call. The function table is used to process the
call. In this GpiBox example, the function table would be called at the
box entry points.

Let's now assume that this particular device is very smart and has
a box function built into the hardware. The function table for that de
vice would resolve the box function into the Presentation Driver, which
would in turn know that the device supported box functions and, there
fore, would simply generate a box request specific to the device and send
that to the physical device driver.

Many devices, such as displays, do not have a box function. In this
case, the Presentation Driver for the display would know that, and its
function table would point into the engine for the box function. The
engine, not knowing too much about the device, would break the box
function down into a series of line requests and send these requests ,
through the function table for the device.

Assuming that the device has a line primitive, the Presentation Driver
would take those line requests and send them in a device-specific data
stream to the device through the kernel device driver. The device would
then render the box on the screen by following these requests for one
line at a time.

Now let's go a step further and assume that the display does not have
a line primitive that it can draw. In that case, the Presentation Driver
for the display would call once again into the engine to break the lines
down further.

The engine would not, however, break the lines down into a set
of functions to turn pixels on and off. These pixel functions go to the
function table for the display, which points to code in the Presentation
Driver, which will send the pixel commands to the device. I can say this
part with assurance because there is a common set of functions that
all devices and, subsequently, all Presentation Drivers must support .. A
pixel on/off function is one of them.

As you can now see, the mechanism to translate drawing commands
from an application to a specific device is straightforward, yet very
powerful. Using this mechanism, any application can issue commands
to draw in this generic fashion, and it is up to the Presentation Driver,
along with the engine, to make the best use of the available hardware.

84 OVERALL APPLICATION DESIGN

Presentation Drivers
The Presentation Driver is also sometimes called a Presentation Man
ager Device Driver (PMDD). There are Presentation Drivers for every
device that is supported under PM. Recall that everything that shows
up on the PM desktop goes through the graphics engine. Now you can
see that for OS/2 to take advantage of any device in PM, there must
be a Presentation Driver for it. Note that these are not device drivers
with interrupt and strategy routines, as discussed in the last chapter
these are drivers, specific to PM, that understand the capabilities of the
associated device. The main function of a kernel device driver is to co
ordinate access to a device. The Presentation Driver handles the PM
device-independent translation to that device.

There are Presentation Drivers that ship with the OS/2 product,
and there are others that have been written by various hardware and
software vendors. As such, each is subject to many factors.

Brute-Force versus
Full-Function Drivers
As you have already seen, the graphics engine simulations and the Pre
sentation Driver functions complement each other. This is a very flexible
architecture that benefits developers, in that there are only six functions
that all Presentation Drivers must support in order to function. All oth
ers can be handled by the engine.

This is an advantage, because one can write a driver that supports
only the basic six and, as time goes on, add more functions. With some
drivers, however, the driver designer intended to support only the six
root functions and let the engine handle the rest. This is what is called a
brute-force driver.

A brute-force driver is one that does not take advantage of the device
it supports-at all. The driver functions just enough to allow the device
to work with Presentation Manager. This type of driver is the slowest
and takes the least advantage of the device. Since the engine is doing
all of the work, and there are many more calls to render an object if the

PRESENTATION MANAGER, GRAPHICS, AND THE USER INTERFACE 85

driver does virtually nothing, a brute-force driver will be slower than a
driver that is more intelligent. A full-function driver, on the other hand,.
will provide the best resolution and performance.

The trade-off is speed of development versus performance of the
driver. Although it is not very desirable to release a completely brute
force driver that does nothing on its own, it is often useful to be able to
release a driver that supports many, but not all, functions just to be able
to get it out in the marketplace sooner than waiting until it supports
all functions. The only drawback would be performance. However, for
someone who has business riding on getting the product into the market
sooner, the flexibility is extremely convenient.

The most common types of Presentation Drivers are for printers
and displays, although others, such as for FAX hardware, are not un
heard of.

Printer Drivers
OS/2 printer drivers are really just Presentation Drivers for printers.
It is important to note that printers know only data streams, so what
ever comes out of the printer port must be specific to the device. OS/2 is
designed so that the applications need not know about what device is in
stalled, so the best way to implement this function is with a Presentation
Driver for the printer.

When a user adds or changes a printer, all the user need do is change
the printer driver; all applications will be able to take advantage of
the device and to output data to it as they would any other device. In
contrast, DOS systems required the user to reconfigure each application
to take advantage of the printer.

Screen Drivers
A screen driver is really a display Presentation Driver. Before the 32-
bit graphics engine was put into OS/2, the display driver had a dual
purpose: It acted as a rasterizer for printer functions as well as the
translator for the screen. In the 16-bit OS/2 world, the printer driver or

86 OVERALL APPLICATION DESIGN

the engine would regularly call the display Presentation Driver for help
with printing functions. In 32-bit OS/2, the screen drivers are dedicated
solely to display functions.

While there may be many printer drivers installed in the system at
any given time, there is usually only one display driver.

Window Manager
The OS/2 window manager is PMWIN. DLL. If your user is running OS/2
Warp or later, the functions are now in PMMERGE. DLL but, for the purposes
of programming, they are still exported from PMWIN. This subsystem is
responsible for creating, manipulating, and destroying windows. PMWIN

understands how and when windows overlap, cover, and uncover areas.
It has the job of notifying applications when they need to paint their
windows. It also manages all input in the PM session.

As with anything else in OS/2, all input and output in windows on
the PM desktop must be requested from the system-in this case, the
window manager.

Input
All input in the PM session is coordinated by PMWIN. Recall that each
session is a virtual console so that each application has its own keyboard,
mouse, and display. PM is a single session, so a mechanism had to be
devised to allow the variety of programs that run at the same time, and
are visible at the same time under PM, to have their own keyboard,
mouse, and display.

Figure 6.4 shows the input structure of PM. All mouse and keyboard
input in the PM session comes in through a queue. This queue keeps all
user input time-ordered so that all input gets to the window it is intended
for and type-ahead is preserved. From this queue, the raw input goes
into a router that makes decisions about what to do with the input. For
mouse input, for example, the router will determine what window the
mouse was over when the mouse button was depressed or released.

The router also knows which window had the focus when a key or
combination of keys was pressed. The focus window is defined as the

PRESENTATION MANAGER, GRAPHICS, AND THE USER INTERFACE 87

Application D
Queues

•• WinGetMsg

Active

Thread 1
of

Application 1

System
Input
Queue

' Input
Router

DD • • •
WinGetMsg ~

Blocked

Thread2
of

Application 1

WinGetMsg ~
Blocked

Thread 1
of

Application 2

Figure 6.4 OS/2 Presentation Manager input architecture.

88 OVERALL APPLICATION DESIGN

window to receive keyboard input. While mouse input simply goes to
whatever window the mouse is over, keyboard input is directed to one
window, which is called the keyboard focus. Focus can change from win
dow to window, but there is only one focus window at any given moment.
Once the router determines the window to which the input message is
to be sent, it places the message on a message queue associated with
that window.

This message architecture of PM demonstrates how the system is
event-driven. Applications simply wait for messages that are provided by
the input router. When a message is received, the application awakens,
processes the message, and checks for more messages. If there are no
more, the application goes back to sleep.

This can be accomplished by applications using semaphores, but
PMWIN has another interesting feature built into it called the message
loop. Yes, there is a loop recommended in an OS/2 application. It is
what goes on inside this loop that makes it unique.

As the loop runs, it checks to see if there is a message on its queue
by using WinGetMsg, which is an API in PMWIN. WinGetMsg will retrieve a
message off the application's queue if there is one available. If there
are no messages on the queue, WinGetMsg causes the thread to block; the
thread will remain blocked until a new message arrives on the queue. At
that time, the thread is awakened and processes the message. Then the
thread will come back to the top of the loop to execute WinGetMsg again.
The process repeats until the user requests the application be closed.

Aside from the obvious efficiency advantages of this scheme, you
can use this mechanism to help you manage multiple threads of your
applications without having to create and use semaphores and other
structures yourself. This will be discussed in depth in Chapter 14.

The other important role that PMWIN plays is to provide event-driven
function to OS/2. The PM subsystem needs to understand and keep tabs
on which windows are. owned by which other windows, which windows
are where, and how movement and visibility change. PMWIN has the job
of notifying windows when they need to repaint themselves.

Repaint notifications come by way of WM_PAINT messages arriving di
rectly to the window procedure of the window. Under DOS, applications
must always maintain their visual integrity and know what is going on

PRESENTATION MANAGER, GRAPHICS, AND THE USER INTERFACE 89

in the system. OS/2 Presentation Manager applications need respond
only to system notifications of when actions need to be taken.

When a window is uncovered, or unhidden, it is PMWIN that tells
it what needs to be repainted. When an application requests that its
window be hidden, or the user clicks a button that causes the application
to be sized, it is PMWIN that notifies the application.

PMWIN is very much like an application when it comes to painting and
other window management. As a matter of fact, most of PMWIN runs at
ring 3. PMWIN uses the services of the GPI and engine to display every
thing. As you have recently seen, everything going to the PM screen goes
through the engine. PMWIN is a tool that provides OS/2 applications with
a coordinated way of managing the windows on the PM desktop.

As you can see, OS/2 's layering provides more and more powerful
functions as you move outward from the hardware. OS/2 provides func
tions and subsystems for coordination and resource management on top
of the basic multitasking of the threads and CPU.

WORKPLACE SHELL

The highest layer of function in the system is the user shell. OS/2 pro
vides an object-oriented user shell that not only offers object-oriented
features, such as drag-and-drop, to users, but also offers these features
to applications. The OS/2 shell is called the Workplace Shell. It derives
its name from the fact that it works the way people work: with objects.
The architecture of the shell is just like the rest of OS/2: simple, yet
powerful.

When OS/2 boots and processes CONFIG. SYS, the PROTSHELL statement
is processed. The executable program specified in this statement is what
starts shell initialization. The Workplace Shell is structured such that
PMSHELL. EXE, the program specified in the PROTSHELL, is a monitor process.
It sets up control structures and processes the RUNWORKPLACE statement.
What is specified in the RUNWORKPLACE statement is treated as the work
place process. If for some reason the workplace process dies, PMSHELL

will restart it automatically.

90 OVERALL APPLICATION DESIGN

The Workplace Shell is fundamentally just an application, albeit a
very powerful one that not only allows users to manipulate objects,
but also externalizes its functions to allow applications to manipulate
objects.

The primary function of any shell is a program launcher. The OS/2
Workplace Shell provides a set of functions on top of the basic program
launching function. It provides all of its interfaces as a set of objects,
each with its own properties, following the concepts of object-oriented
technology.

The OS/2 Workplace Shell is the first implementation of a technology
called the System Object Model (SOM). SOM is an object-oriented tool
and language for creating object-oriented (OO) systems. SOM has its
own language and "compiler" that will take SOM language "programs"
and convert them into standard language programs.

SOM basically consists of the compiler, a small class hierarchy with
which to build a class library, an object manager, and a message resolver.
It is a set of tools upon which the OS/2 Workplace Shell is based. These
tools are supplied with the IBM OS/2 Programmer's Toolkit and are also
found on the OS/2 Developer's Connection or the SOMObjects toolkit.
Any application can use SOM to create object-oriented applications.

The Workplace Shell could have been implemented with C, C+ +, or
any other language, but SOM was chosen for its portability and function.
As you will see in the next chapter on OS/2 for the PowerPC, high-level
programming tools such as SOM, C, and C+ + make porting to other
platforms very easy.

The object hierarchy of the Workplace Shell is defined by the shell it
self. SOM is simply the tool with which it was implemented. SOM can be
used for applications, to write Workplace objects, or even to write your
own shell to replace the Workplace Shell. Some important clarifications
need to be understood at this point. SOM is not the Workplace Shell,
and the Workplace Shell is not SOM. SOM is simply the object-oriented
programming tool used to implement the shell.

This goes into the other important distinction: A SOM object is not
necessarily a Workplace Shell object. All Workplace objects are SOM
objects, however. As you will soon see, SOM objects cannot (always)

PRESENTATION MANAGER, GRAPHICS, AND THE USER INTERFACE 91

access Workplace objects, even though Workplace objects are SOM ob
jects. The distinction is in how the SOM engine is implemented and
how the Workplace Shell is architected. This is related directly to the
single-process model just described. The SOM engine can have many
client processes, only one of which is the Workplace process.

All Workplace objects are descended from a base class called
WPObject. The three primary subclasses are WPAbstract, WPFileSystem, and
WPTransient. WPTransient objects are the easiest to understand, because
they are not persistent. These objects go away between system reboots.
An example of a transient object is the Task List. It is created when the
user either hits Ctrl-Esc or presses both mouse buttons down at once (a
chord). The Task List appears and, upon any subsequent mouse action,
disappears.

The other two classes of objects are persistent objects. The main dif
ference is how they store their persistence. Any object that is a subclass
of WPAbstract stores its persistence information, such as color, state, and
icon, in the 082 . INI file. Examples of abstract objects are the color and
font palettes.

File system objects are subclasses of WPFileSystem and store their
information in the file system. You may have wondered what the empty
directories on your boot drive are. These directories are placeholders
for extended attributes (EAs). EAs are a file system construct that allows
data to be associated with a file or directory (the extended attributes
of the file). All file system objects store their persistence information in
extended attributes. The directory entries are there for no purpose other
than to have something to associate EAs with.

Each directory entry represents one file system object. If you man
ually traverse the directory structure using command-line instructions,
you will see all your folders and other file system objects represented
there.

The OS/2 Workplace Shell has a two-process architecture. As you
just saw, the first invocation of PMSHELL. EXE is the monitor process and
the second (as specified in the RUN WORKPLACE statement) is the real Work
place Shell. All workplace objects run in the context of the shell process.
For example, if you were to build a class that is a derivative of say,

92 OVERALL APPLICATION DESIGN

WPDataFile, you would be building a DLL that is called by the Workplace

process and becomes part of the shell.
This is one downside to the design. A problem arises when devel

opers write their own objects and the object has some coding error

that causes a protection violation. Recall that if any thread of a process

traps, it takes the whole process down. Well, if a Workplace object traps,

it takes the shell down. Although the Workplace Shell does have a built

in mechanism that will restart it in this case, it is inconvenient for users

to have to watch the shell go down and come back up again. While this

does not affect processes started by the shell (after all, 90% of what you

are running will be in separate processes and will not come down if the

shell does), it is not fun to have an object that brings the shell down.

OS/2 2.x uses the first version of the System Object Model (SOM),

which is restricted to a single process. That is, for one SOM object to

use SOM and talk to another, both objects must be in the same process.

While the SOM engine can be used by many client processes, in order

for one object to invoke methods on another, both must be in the same

process.
Beginning with OS/2 Warp, the SOM engine shipped with OS/2 is the

workstation-enabled DSOM. This means that the SOM engine shipped

with OS/2 allows objects not in the same process to invoke methods

upon each other. While the Workplace Shell is still implemented as a

single process, it is enabled to use this new level of SOM engine, so no

longer are you required to put derivative classes of the Workplace Shell

object classes in the Workplace process.
This leads to an important set of design considerations: How much

of your application should be implemented as objects? In general, you

want to write custom objects to only start up the application and view

data; any other functions of the application should be in a separate

process and communicate with the object via DDE, the Clipboard, or

some other interprocess communication mechanism.
Now that you have the capabilities of DSOM, you are not restricted

to writing your object to run only in the Workplace process, but you also

need to understand the performance implications in writing objects to

run in the Workplace process, those that will run in other processes,

PRESENTATION MANAGER, GRAPHICS, AND THE USER INTERFACE 93

and how much code to put in separate processes. Interprocess comu
nication becomes more and more important as you write more fully
functional stand-alone and client-server code. These topics will be ex
plored in depth in Chapters 8 and 11.

SUMMARY
Designed properly, and with the knowledge of the underlying subsys
tems, applications can make the most of all OS/2 has to offer. The Pre
sentation Manager provides device independence and isolation so that
applications using PM services need not care about the capabilities of
the hardware in the computer.

Each layer in PM has a set of functions it performs, ranging from
the primitive functions in the engine all the way through to the power
ful APls in the shell and PMWIN. There are trade-offs in terms of power
versus detail of control in each of the APis at each layer of PM. By un
derstanding how these subsystems interact and complement each other,
you will be able to make better decisions as to which to use in different
circumstances.

CHAPTER

OS/2 Warp for the
Power PC

A great deal has been said, written, and speculated about this thing
called Workplace OS. It has been called a replacement for OS/2,
an extension of OS/2, and, in some places, the "Sybil" operating

system. Much of this stems from the newness of the architecture and,
in some cases, a plain lack of understanding into where IBM is going
with its operating systems technology. Even the term "Workplace" has
undergone many meaning changes, and by the time you read this, it
may have metamorphosed, yet again.

This chapter will not go into all the details and inner workings of
Workplace, but I will show you what it is, where it is going, how it works,
how it compares to OS/2 on the Intel platform (which is what you're
used to) and most importantly, what you need to know to ensure your
applications run there (of course exploiting the advanced functionality)
with a minimum of work on your part.

95

96 OVERALL APPLICATION DESIGN

WHAT IS WORKPLACE?

Workplace in this context refers to an architectural model for operating
systems. Yes, the OS/2 user shell is also called the Workplace Shell, but
the Workplace (or Workplace OS) architecture describes the foundation
for the future of OS/2. The primary reason for this change in architec
ture, other than that it is better to build on, enhance, and maintain, is
that it is much easier to port. The first implemenation of the Workplace
architecture is in OS/2 Warp for the PowerPC.

Users buy computers to run applications. The applications are
closely linked to the operating system they were written for. If that
system is available only on a single hardware platform, the application
market is also limited to that platform. In porting the operating sys
tem, users have more choice in the hardware they can select to work
more efficiently. Their favorite operating system and applications will
be there, and the only thing different is the circuitry.

In a nutshell, Workplace takes the monolithic architecture of OS/2
and breaks it up into modular pieces, providing a more robust and more
portable platform for operating systems. It takes the kernel, which as
you saw in Chapter 5 contains the tasking, memory management, file
system, loader, exception handling, and other critical operating system
functions and breaks it into pieces. Around the OS/2 Intel kernel are the
subsystems; below it as an extension are the device drivers and at the
top of course, the shell and applications. Workplace moves most of the
kernel functions and device drivers out of the kernel and into user tasks.

At the core of this is the IBM Microkernel. On top of that are
personality-neutral services, often called common and shared services,
which are servers and shared libraries. As the names imply, these are
personality-independent. What is a personality, though?

A personality is fundamentally the API frameworks. So, you can have
an OS/2 personality, a DOS (also called the MVM) personality, an AIX
personality, and so on. One of the personalities is called the dominant
personality, which provides the user shell and manages critical system
events such as initialization and shutdown. Since a Workplace OS ar-

OS/2 WARP FOR THE POWERPC 97

chitected system can have several personalities, you can see how it got
the "Sybil" nickname.

Before we get into some of the details behind this, you're probably
wondering what this all means. In short, the Intel-architected, mono
lithic OS/2 you know has had its main plumbing replaced. The interfaces
to the user and applications remain the same, but how it accomplishes
its functions down in the core of the system is completely different. Your
applications can remain the same and run just fine if you follow the
information and recommendations in this book. If you try coding to
hardware specifics, you lose the ability to port your applications along
with the system.

So, what the user sees is OS/2. What your applications see is OS/2.
Underneath is Workplace, and that gives you and your users the freedom
to choose.

COMPARING AND CONTRASTING WITH INTEL OS/2

You've already seen the description of Workplace OS, or OS/2 for the
PowerPC as OS/2 with the plumbing replaced. The point at which the
pipes were cut and replaced are just below the API layer. That is, the
APis are the applications' interface to the operating system. The frame
work and API set is there, and it provides the same interface to system
services, but where and how the system services are implemented are
changed.

Figure 7 .1 shows the current Intel OS/2 architecture. Now, look at
Figure 7 .2, showing the same level of detail of Workplace architecture.

The most glaring difference is the number of components in each.
You'll notice that the Workplace Architecture takes some of the larger
components and breaks them up into well-defined parts. This is funda
mental to the Workplace methodology, which compartmentalizes func
tions that formerly were in a monolithic system.

You can see in Figure 7 .1 that there are three essential layers in the
Intel version of OS/2 today: the kerneVdevice driver layer, the OS/2 sub
system layer, and the application layer, as was outlined in the previous

98 OVERALL APPLICATION DESIGN

Applications

OS/2 Subsystems

PM Base Workplace Shell

• • • --
User Mode

.--~~~~~~~~~~~~~~~~~~~~~---. Supervisor

8 -----
Memory

Management

Device
Driver

OS/2 Kernel

Device
Driver

Scheduler/
Dispatcher

Device
Driver

Hardware

Figure 7 .1 Intel OS/2 Architecture.

Device
Driver

Mode --• • •

two chapters. These layers loosely map to the Intel protection rings,
where the kernel and device drivers are the most privileged code, and
the application layer up to it is the least trusted code.

The OS/2 kernel is the single largest part of the system. It con
tains all of the vital system functions including the system initializa
tion, scheduler, memory management, program loader, process man-

OS/2 WARP FOR THE POWERPC 99

Applications

,-------------------------
' I

Workplace Shell User Interface

DOSI
Win
(MVM)
Server

Device
Drivers

Other
Servers

OS I 2 Pe onality

OS/2 OS/2
Client Server
Libraries

' I • --
User Mode

IBM Microkernel
==

I Supervisor
Mode

~~~~~~~~~~~~~~~~~~~~~---' .. -.. 
Hardware 

Figure 7 .2 "Workplace" OS/2 Warp for the Power PC Architecture. 

agement, timer, semaphores, interrupt manager, interprocess commu
nications, and the MVDM kernel. The subsystem layer contains all of the 
shared libraries including SOM, window management, graphics subsys
tem, WINOS2, the spooler, and the DOS API functions, which interface 
to the kernel and device drivers. 



100 OVERALL APPLICATION DESIGN 

As you can see from the diagram in Figure 7 .1, the kernel and device 
drivers are tightly coupled to the hardware and, since they are required 
to run in supervisor mode, are inherently difficult to port. This makes 
the implementation of the Intel version of OS/2 on other platforms a 
challenge. 

The Workplace architecture, as shown in Figure 7.2, moves much 
of the function from the OS/2 kernel out into user tasks, similar to how 
the subsytems and shared libraries run. The architecture is based on the 
IBM Microkernel. The microkernel provides a minimum of operating 
system functions. Most of the other functions found in the Intel OS/2 
kernel such as device drivers, MVDM kernel, semaphore handling, and 
memory management, are moved out into user-level tasks, as servers or 
shared libraries in Workplace. 

These functions that were in the monolithic kernel are separated 
into a number of modules. Each provides a defined set of functions 
and cooperates with other modules using interprocess communications 
(IPC). Only one small module, the IBM Microkernel, runs at supervisor 
level and as such, is the only code that is hardware-dependent. 

There really are only two layers to the Workplace architecture. Out
side of the microkernel are all of the system services as well as applica
tions running at user level. This protects the system from code written in 
applications, system services, as well as system extensions. The most im
portant facet of this, however, is that it is all portable. By doing the work 
to port the microkernel to a new hardware platform, and providing the 
same microkernel services on that new platform, the rest of the system, 
including device drivers, and most importantly for you, applications, 
port with virtually no work other than a recompile. 

MICRO KERNEL 
The microkernel in OS/2 is the IBM Microkernel. This is a derivative of 
the Carnegie Mellon University Mach 3 microkernel. In contrast to the 
Intel OS/2 kernel, a microkernel provides only a small set of functions 



OS/2 WARP FOR THE POWERPC 101 

that must be performed in supervisor mode, and other operating system 
functions are delegated to one or more user-level tasks. 

The IBM Microkernel performs the tasks of Interprocess Commu
nication, first-level interrupt handling (the remainder of interrupt han
dling is delegated to a user-level task), thread and task management, 
basic 1/0 services, and management of the processor (see Figure 7.3). 

Applications 

r-----------------------------1 

Workplace Shell User Interface 

'-------------------1 
DOSI 
Win 
(MVM) 
Server 

OS I 2 Pers nality 
Device 
Drivers 

Other 
Servers 

OS/2 
Client 
Libraries 

IBM Microkernel 

~~ ~~ 

Hardware 

Interrupt 
Handler 

OS/2 
Server 

Figure 7 .3 OS/2 Warp for the PowerPC with detailed Microkernel view. 



102 OVERALL APPLICATION DESIGN 

The most important function the microkernel provides is its commu
nications facilities. The modules that provide all of the other traditional 
kernel services that are now in separate modules communicate with the 
microkernel and other user-level tasks through microkernel messages. 
Each of these modules provides a defined set of functions and since 
they are user-level tasks (think of Ring 3 in Intel terminology) they can 
only communicate via an architected IPC mechanism. In this case, it is 
microkernel messages. 

The IBM Microkernel controls communications through ports, and 
each port has a set of access rights. These access rights (such as read 
privilege and write privilege) are granted to tasks for their communica
tion jobs. Notice how this is moving towards an object-oriented system 
(in addition to just the o-o shell) by having server tasks communicate 
through messages, where direct manipulation of data is only performed 
by the task that owns that data. 

Looking at Figure 7.2, you can see that the IBM Microkernel man
ages the hardware, and the remainder of the operating system is a client
server architecture. The operating system functions are performed by a 
set of server tasks, and the applications use client libraries to request 
system services from these servers to perform functions. 

Using this architecture, the microkernel is truly micro, and the bulk 
of system services are performed by the client-server architecture using 
the microkernel to communicate and manage several key services. 

PERSONALITY-NEUTRAL SERVICES 

As you've probably noticed, many of the names you see in the Workplace 
architecture seem confusing because many things refer to the same 
structures. 

What you have been seeing as the server tasks can also be referred 
to as personality-neutral services. In this client-server model, the server 
runs as a separate task, and the client libraries run in the application's 
task space. The analogy of these client libraries are the subsystems de-



08/2 WARP FOR THE POWERPC 103 

scribed in the Intel architecture. Applications that require these system 
services make calls into the OS/2 subsystems-in other words, the client 
libraries. This code runs in the application address space. 

Requests for operating system services that do not require data or 
function known only to a server task can be satisfied directly by the client 
libraries. More complex requests and those that require data known 
only to a server task must be satisfied by the server. This request is 
communicated to the server in the form of a microkernel message. Note 
that since the server is a separate task, requests must be made through 
messages, while requests that will be performed by the libraries can be 
executed directly. (Note that since all requests from your applications 
go through the API layer into the client libraries, there is generally no 
need for your application to code to the microkernel message interface.) 
It is also possible that a single request from an application will cause 
multiple requests to be made of several server libraries or that a single 
function may be split between client and server libraries. Through all of 
this, the application does not need to know what is going on underneath; 
it just calls system sevice APis. 

This client server model increases system stability by encapsulating 
data for which protection is required into the server task. The model 
also provides the ability to run clients and servers remotely, leaving the 
architecture and system open to future expansion, and replacement of 
servers (either for maintenance or upgrades) independent of the rest of 
the system. 

The servers operate to provide services, regardless of the personal
ity, or the face shown to the user and applications. Yet another term 
for these personality-neutral services are common and shared services. 
While they are not bound to any personality, allowing them to operate 
in the absence of a specific personality, they also cannot use the services 
of any personality. 

One example of a personality-neutral server is the file server. It pro
vides the critical file system functions of opening, closing, reading from, 
and writing to files. The file server provides these services to any op
erating system personality and because it is behind (or underneath) 



104 OVERALL APPLICATION DESIGN 

the personality and APis, this reengineering of the operating system is 
transparent to your applications. 

Some other examples of personality-neutral servers are: 

• Master Server 
• Event/Session Manager 
• Name Server 
• Registry 
• Default Pager 
• LAN Protocol Stacks 

OUT ·OF-KERNEL DEVICE DRIVERS 
Another example of moving traditional kernel services out of supervisor 
mode and into user address spaces is device drivers. One of the biggest 
inhibitors to new operating system acceptance in the marketplace is the 
initial lack of device drivers. They are traditionally written in assembler, 
directed at the target hardware platform and as such, are very expensive 
to write and maintain, and reuse is almost nonexistent. 

By taking device drivers out of supervisor mode, and making them 
personality-neutral, device driver authors are now not only free from 
tying their code to specific hardware platforms, but the device driver 
can also be used across personalities. For example, a single device driver 
can be used by OS/2, DOS, Windows, AIX, or any other applications 
running on a Workplace-architected system. In addition, because the 
device driver is not written to run in supervisor mode and is written to 
talk to hardware only through the microkemel, a port of the microkemel 
to another hardware platform means that the device driver can run on 
that platform as well (recompiled for the new platform, of course). 

The IBM Microkernel grants rights to specific memory resources to 
these new user-level device drivers. A small piece of the device driver is 
put into the microkemel as an interrupt handler, which performs a very 
restricted set of functions. The majority of the function of the device 



OS/2 WARP FOR THE POWERPC 105 

driver in a Workplace system runs as a separate task, so the rest of the 
system is protected, and everyone gets the benefits of a portable device 
driver. What a concept. 

PERSONALITIES 
Fundamentally, a personality is the inteface to the user and the applica
tions. The Workplace architecture provides for multiple personalities, 
with one being the dominant personality. You can think of the dominant 
personality as the one the user sees. You can also think of different per
sonalities as different API sets, supporting different applications. For 
example, the OS/2 personality provides the ability to run OS/2 pro
grams. The MVM personality provides INT21 functions and the ability to 
run DOS and Windows programs. 

Aside from the API set, it is up to the individual personalities to 
provide the policies that govern resource allocation and management. 
For example, the OS/2 personality determines the scheduling policy for 
OS/2 tasks, how resource such as memory addressability and handles 
are managed and inherited for child tasks as well as semaphore coor
dination, and other OS/2-specific function. Structurally, a personality 
is a set of servers and shared, or client libraries. Some servers as you 
have just seen are personality-neutral, and others are specific and are 
the implementation of a personality. 

In OS/2 for the PowerPC, the OS/2 personality is dominant, and 
the Workplace Shell is the user interface. This dominant personality, 
aside from running OS/2 applications, handles the system functions of 
startup and shutdown, as well as the policy for system exceptions and 
recoveries. 

The Workplace architecture provides the ability to run multiple per
sonalities concurrently, so the user can have OS/2, DOS, Windows, and 
other programs all running side by side on the same machine. All you 
need to know is that if the appropriate personality is present, your ap
plication will run, and not know, nor need to know the specifics about 
what is underneath the APis it is calling. 



106 OVERALL APPLICATION DESIGN 

THE OS/2 PERSONALITY 

Now that you've seen the overall architectural differences between Intel 

OS/2 and Workplace, let's look into the actual OS/2 personality, which 

is the first implementation of the Workplace Architecture. 

One set of assumptions you can make already is that the IBM Micro

kernel is there, as are some sets of personality-neutral services, such as 

a master file server, name server, device drivers, event/session manager 

(note that this is a service common to all personalities now, in contrast 

to Presentation Manager managing it through the session switching and 

singe queue), default pager for memory management and the registry, 

among others. 
The OS/2 personality consists of the Workplace Shell (since that is 

its user interface and in OS/2 for the PowerPC, the OS/2 personality is 

dominant), and the OS/2 system services frameworks (in other words, 

the OS/2 scheduling and session policies, the critical system functions 

the dominant personality performs such as system initialization and the 

OS/2 API). 
As you might imagine, after seeing the previous client/server discus

sion, the OS/2 personality is comprised of an OS/2 Personality Server 

and a set of client libraries. These client libraries are analogous to the 

OS/2 system services DLLs from the Intel version. For example, there is 

the OS/2 client library (the DOSxxx API calls), the Presentation Manager 

client library (including the Winxxx and GPixxx APis), and others such as 

SOM. These client libraries remain essentially unchanged in OS/2 for 

the PowerPC. 

DS/2 Client Library 
The OS/2 Server provides a client library that exports the functions 

of the DOSxxx APis. The majority of the work in these APis cannot be 

handled in the client library alone and thus the work is accomplished 



OS/2 WARP FOR THE POWER PC 107 

by communicating with various servers in the system. All of the 32-bit 
APls are provided by the client library, so applications are source code 
compatible. 

Some examples of functions provided by the OS/2 Client Library and 
how they are accomplished include: 

• Memory Management-Large memory object allocation is done by 
placing requests with the OS/2 server. Memory object suballocation, 
however, is done right within the client library. 

• Tasking and Scheduling-These functions are handled by the OS/2 
Server at the request of the client library. 

• File functions-File 1/0 is performed by the File Server. Since the 
OS/2 Server needs to keep track of file handles being used by OS/2 
tasks, this work is accomplished by a mutual cooperation and coor
dination between the File Server and the OS/2 Server. 

• Device 1/0-This work is handled by the device drivers, but since 
they are detached from any specific personality, the device 1/0 re
quests are communicated to the device drivers by the OS/2 server at 
the request of the functions in the client library. 

As you can see, much of the work of the OS/2 client library is set
ting up requests to be performed by the OS/2 Server, which may in turn 
need to work with other servers. You may say that this is a performance 
problem, but given the speed of the hardware and the efficiency of mi
crokernel communications, this is not a problem. The layers provide the 
independence from the hardware you need to elegantly and easily port 
applications and the operating system. 

Presentation Manager and Other Libraries 
Much of the work in the PM libraries is done in the library itself. For 
example, window management and drawing calls (WIN and GPI) are han
dled in the client library, and hence, right in the user process since the 
client libraries run in the application's address space. Critical data is 



108 OVERALL APPLICATION DESIGN 

protected in the server tasks, but since much of the client code runs 

right in the application task space, these functions can be much faster. 

Some of the PM functions are accomplished by client calls into the 

various server tasks. An example of this is the PM input mechanism. 

Changing this would break applications. But, since all system input is 

handled by the event/session manager, PM input is accomplished by 

requesting the services of the event/session server task. This is how the 

architectural problem of a single input queue in Intel OS/2 is overcome 

in Workplace without breaking applications. 
An example of another library in the OS/2 personality is SOM. Much 

of the work done in the SOM client library (read DLL) is done in the 

library itself. These libraries together along with the OS/2 server make 

up the OS/2 Personality. 

The OS/2 Server 
The OS/2 Server is the cornerstone of the OS/2 Personality and is the 

primary server used by the OS/2 client library (and the other OS/2 per

sonality libraries). The server runs as a separate user-level task and is 

started as part of the system startup process. In some cases, the OS/2 

Server performs function. In other cases, however, the OS/2 Server 

does not perform function, but sets policy for the microkernel and other 

servers to implement and enforce. A good example of this is task schedul

ing. The OS/2 Server sets the task scheduling policy according to the 

OS/2 scheduling policy, but the job of task scheduling and management 

is a microkernel function. The OS/2 Server sets task priorities and the 

mode in which the scheduler runs, and the microkernel implements 

this. 
There is a fine line between what the server does and what the micro

kernel does. Some examples are task and thread management, which 

you just saw. The OS/2 Server sets the policy, and handles the creation, 

suspension, and termination of tasks and threads in OS/2 for the Pow

er PC, but the actual scheduling and switching is done by the code that 

manages the processor(s), the IBM Microkernel. 



OS/2 WARP FOR THE POWERPC 109 

Another example is session switching. The OS/2 Server controls the 
creation of sessions and screen groups but it does so by calling the 
Event/Session Manager. Memory is another fine example. The OS/2 
Server defines how the address space is set up, but memory is allo
cated from the system end reserved by asking the microkernel to do 
it. 

This is not a trivial architecture nor is the function. However, you 
must remember that to you, the application programmer and designer, 
this is transparent. All you need to know is to use the high-level OS/2 
API and the system does the rest. You need not have to know where the 
function is performed, whether it is in a server task or a client library. 

Another good demonstration of where you need not know about 
the underpinnings of the system is for DOS applications and the DOS 
Personality. The DOS Personality is designed to be only an alternate 
personality (it can't be dominant) and it provides all of the DOS emula
tion functions to enable DOS applications to run unchanged. The only 
reason you need to recompile 32-bit OS/2 programs for OS/2 for the 
PowerPC is because the chips have a real-mode Intel instruction set ex
ecution capability. Note that all you have to do is recompile your 32-bit 
OS/2 programs and you have OS/2 for the PowerPC native programs. 

SINGLE-SOURCE APPLICATIONS 
As has been inferred several times thus far, your applications for Work
place-architected OS/2 systems such as OS/2 for the Power PC are source 
code compatible with the Intel-based OS/2. The API set is consistent, and 
like any operating system you may have enhancement from release to 
release adding new APis, but as long as you stick to that API set, your 
applications can be moved to new hardware platforms with not much 
more than a recompile (and maybe some MAKE file changes for different 
compilers and tools). 

This is in sharp contrast to other operating systems in which there 
are varying flavors of the system API, requiring more than just IFDEFing 



110 OVERALL APPLICATION DESIGN 

code for different execution environments-in many cases, rearchitec

ture. For example, if you look at the Microsoft Windows API, you will 

see WIN32, WIN32C, WIN32S, among others. Some of the subsets of functions 

are close enough that you can code around, but why should you have 

to? Others, such as the difference between WIN32S and the others have 

fundamental differences in architecture that require a full redesign in 

order to properly exploit the functionality offered in each. The case in 

this point is the lack of threads in WIN32S. 

Using the consistent OS/2 API that is implemented and supported 

across the variety of OS/2 platforms, you can generate huge markets for 

your 32-bit applications with only the investment of good design. 

Design and code your applications according to the theories and 

recommendations you see in this text, and you will find yourself portable 

to any OS/2 platform, and with some API mapping, even to the WIN32x 

flavors. 

SUMMARY 
OS/2 for the PowerPC will run applications written for the 32-bit OS/2 

APL The system itself has been designed to be portable by changing 

how the underlying functions work, but not what they do with respect 

to applications. 
The Workplace architecture is an advancement in operating sys

tem technology, allowing a powerful system that exploits the features 

of hardware to be more easily ported to other platforms, as well as 

enhanced, scaled, and maintained. 
From an OS/2 32-bit application's view, there is nothing differ

ent between an Intel-based OS/2 native application and one written 

(more precisely, just recompiled) for the OS/2 Personality on a Work

place-architected system. The fact that the plumbing is different is 

hidden and it is that new plumbing that allows the portability of the 

system. 



OS/2 WARP FOR THE POWERPC 111 

With the IBM Microkernel and the surrounding servers and user
level tasks such as device drivers, your applications can now run on 
a wider variety of hardware with a minimum amount of work from 
you. You can concentrate on making your applications fast, flexible, and 
powerful, and let IBM worry about where the operating system will run. 
You know that with not much more than a recompile, your application 
market will grow as IBM moves this system to new hardware platforms. 





CHAPTER 

Features for Your 
Application 

A n often neglected step of application design is to decide the pur
pose and features of the application at the outset. I have often seen 
designers who had an idea of what they wanted their application 

to do, but did not bother to decide what features would be in it, how it 
would communicate with other applications, or how it would present 
itself. 

OS/2 provides many features to applications, as the previous chap
ters have shown. Before any coding or prototyping can begin, and even 
before any kind of design can begin, the features of the application must 
be laid out. 

Many times someone will set out to write a spreadsheet, word pro
cessor, or communications program and not fully set down the most 
fundamental ideas. They will begin designing or coding and, later on, 
will discover things about the system they would like to utilize. Unfor
tunately, they have already done so much work that they would have to 

113 



114 OVERALL APPLICATION DESIGN 

trash a large amount of it to build in this new function. Just a little work 

beforehand would have avoided this. 
The first order of business is to decide on the main objective of the 

application. I have seen many applications that looked like they started 

out to be one thing but had so many convoluted twists and turns that 

you could not tell their real purpose. 

WHAT IS THE MAIN FUNCTION OR OBJECTIVE OF THE 
APPLICATION? 

Applications sometimes get lost in the myriad functions they are sur

rounded with. I have seen text editors that had so many extraneous 

functions that the main text-editing function was terrible. The program 

sure was fun to play with, but as a text editor it was terrible. 
Throughout the design and coding of your applications, it is vital 

always to keep the main objective of the application in mind and not hide 

it behind a load of snazzy toys and utilities. The surrounding utilities and 

other functions must complement the application-not obscure it. 
Deciding what the application will be is not quite as simple as it 

sounds. Before embarking on an application, you need to analyze your 

target environment, not only in the types of applications it supports, 

but also its size and complexity, along with the market the environment 

represents. If the application requires extensive processing and long

running tasks, a multithreaded, multiprocessing environment is very 

useful. If the program is a text editor, for example, you will want to 

ensure that you can write the code so that it can run on as many varied 

platforms as possible. 
These factors will weigh in your decisions of what features to include 

and how to structure the code. You may not wish to provide a graphical, 

WYSIWYG (what you see is what you get) interface if you intend to 

support this program under native DOS; you may wish to provide a 

user-tailorable user interface in which the user can choose a text-based 

interface even for OS/2, with an option for a graphical one. 



FEATURES FOR YOUR APPLICATION 115 

Throughout this entire process, you must be sure to keep focused on 
what services the application will provide and how it will be presented 
to take the most advantage of available features, yet remain as portable 
as possible. The other key is to remember to keep the tools and advanced 
features in perspective and not to overpower the application with them. 

HOW WILL THE APPLICATION BE PRESENTED? 
OS/2 provides many ways to present applications. In some cases, the 
functions the application must provide will dictate the presentation. In 
most cases, however, you have the choice of several ways. 

There is the obvious-the full-blown Workplace Shell-aware, Pre
sentation Manager graphical application. There's also the full-screen 
text-based Video Input/Output (VIO) application. You also have the op
tion of creating a hybrid, running your program in a text window under 
PM, getting some of the features of both worlds. 

Aside from determining how the application will look, the presenta
tion method determines functions you may use. There is a set of func
tions that are available in PM or text-based programs. There are some 
functions that may not be used in the PM session at all, such as device 
monitors. There are still others that can be used only in PM programs. 
These functions are also a determining factor in how you will present 
your applications. 

Presentation Manager Graphics/Text 
The most favored method of presenting applications is via the Presen
tation Manager graphical interface. This method provides applications 
the most advanced, easy-to-use interface. The PM interface provides the 
device independence for display text and graphics as well as printed text 
and graphics. 



116 OVERALL APPLICATION DESIGN 

Presentation Manager alone lends itself well to object-oriented ap

plications. It is a complicated task to manage objects and other aspects 

of a graphical or visual interface in a text-based session. 

Along with the PM interface and API is the Workplace Shell. The 

Workplace Shell adds a new dimension to graphical applications. It 

is the first system to seamlessly integrate object-oriented technologies 

into the shell as well as supply these objects for use by all applications. 

This leads to easy-to-learn, intuitive interfaces for your applications. The 

system-defined classes, along with your derivative subclasses, provide 

consistency between applications alongside the flexibility to create your 

own custom objects that interface with the rest of the shell. 

The PM application is presented in a PM window, usually with a 

menu or action bar and title bar, and sometimes with scroll bars to 

allow users to scroll the visible area. Figure 8.1 shows a typical PM 

window. 
Although the PM window has a standard appearance, you can mod

ify it as you wish, removing some controls or windows and adding oth-

Figure 8.1 Presentation Manager window. 



FEATURES FOR YOUR APPLICATION 117 

ers as you see fit. The main area, however, called the client area of the 
window, is where the action happens. 

The client area is where you present your data, whether it be graph
ical in nature, text, or a combination of the two. PM is the ideal envi
ronment for combining text and graphics in the same presentation area 
of the screen. 

The main reason for this is that everything in these PM windows 
is going through the graphics engine. As such, text in PM windows is 
simply treated as a set of graphic objects, painted just as a circle in the 
window would be painted. 

This does present one drawback, however. Despite the flexibility and 
power to render text in a variety of fonts along with graphics easily 
in the windows, the drawback is performance. Although the perfor
mance of fonts in PM windows is quite good, it is definitely going to be 
somewhat slower than those applications that use hardware text modes. 
Characters have to be rendered as graphical objects, which is inherently 
inferior to using the hardware character modes in terms of speed. 

What you lose in speed-which, I must reiterate, is not much-you 
more than make up for in flexibility. Since these characters are graphical 
objects, they can be manipulated in the same way as other graphical 
objects. Characters can be skewed, rotated, filled, hollowed, or even 
broken apart into their component vectors. Hardware character mode 
use is very restricted. 

Should you present your application on a PM window versus an
other presentation method? The answer depends on how you intend to 
present data and interface with the user. If you feel the functions of your 
application are enhanced by graphics, fonts, and easy interaction with 
another program, then the PM window is for you. 

You may ask, "Why use anything else if I get all this power with PM 
windows?" The reason is that PM provides some functions that other 
modes cannot, but other base functions, such as interprocess commu
nications, are available in any OS/2 program, regardless of the presen
tation method. 

There are really only two drawbacks to using the PM interface. The 
first is that programming the PM interface is radically different from 



118 OVERALL APPLICATION DESIGN 

programming text-mode programs. There are many tools, which will be 

discussed later, that aid in coding the PM interface of your programs so 

that drawback is negligible. 
The other drawback is that there are some programs that are just 

not well suited to the PM interface. Such an application may be a ter

minal emulator. First, there is really not much use in having a terminal 

emulator that can use scalable fonts or WYSIWYG graphics. Next, since 

speed of data is of the essence in data communications, especially over 

a timing-sensitive modem, any delay in rendering the data on the screen 

can cause data to be corrupted or lost. It does not seem very practical 

to write a terminal emulator to allow users to communicate on a BBS 

with a 30-point script font. Programs such as these are better suited to 

using the hardware text modes of the display. Fortunately, you do not 

have to abandon the power of PM just because you want to write an 

application that does not take advantage of the graphical nature of PM 

windows. There is another type of window called an AVIO (Advanced 

VIO) window. 

AVID Windows 
An AVIO window is so called because, rather than a PM presentation 

space, it uses something called an AVIO presentation space. An AVIO 

window is a cross between a PM window and a text window. The main 

difference between the PM window and the text-based window is that 

a program running in a text window does not know it is running in 

a window. For all it cares, it is running in a full-screen session, using 

standard 1/0 calls for input and output. OS/2 has a layer called the VIO 

shield that makes that possible. 
AVIO windows, on the other hand, look like text windows but are 

really PM windows. To be more precise, the real difference between the 

PM window and the AVIO is simply the presentation space used. A PM 

window, obviously, uses a PM presentation space and is afforded the 

functionality of all the PM calls, such as graphics, fonts, and text. 

An AVIO window uses an AVIO presentation space. This means that 

the user interface of the application is very similar to the PM window 



FEATURES FOR YOUR APPLICATION 119 

in that it has a menu or action bar, scroll bars, and so forth, and the 
application can manipulate all of these controls. The difference is how 
the data is presented in the client area of the window. In an AVIO 
presentation space, the application uses the standard text display output 
(VIO) calls, such as VioWrtTTY, to display data on the screen or, more 
precisely, in the window. 

AVIO windows have all the functionality of PM windows in terms of 
data exchange and window manipulation. The only things they cannot 
do are PM graphics and font functions. They are also limited to fixed, 
bit-mapped, nonscalable fonts. The main advantage to an AVIO window 
is that you can take advantage of the hardware text modes' speed while 
not losing the power of PM's event-driven architecture. 

AVIO windows also use the PM programming model; as such, the 
PM-based CASE tools will work for AVIO windows just as well as for 
full-blown PM windows. The AVIO window combines the best of both 
worlds for a great deal of flexibility in your choices of how to best use 
the PM environment to fill your needs. 

Text-Based 
Text-based applications are usually run full-screen. While you are able 
to run most programs designed for full-screen sessions in a text win
dow, they were generally designed to use a text-based character mode 
interface similar to that of DOS. 

Such programs do not enjoy the graphical functions of PM. Addi
tionally, users must switch out of the Presentation Manager desktop to 
use these programs. The device independence and the ability of viewing 
several programs at once are also not available running in a full-screen 
session. 

Why would one want to code for text mode? There is the obvious 
advantage that you do not have to recode a new user interface. By 
sticking with pure text mode, you can use the same user interface you 
used in DOS, while enjoying the multithreading, large memory, and data 
exchange features OS/2 provides. This allows you to get your application 
to market quicker, while still taking advantage of some of OS/2's most 
powerful features. 



120 OVERALL APPLICATION DESIGN 

In this instance, text mode is just a stepping stone. In other cases, 

text mode may be just what you want. For example, if you are writing 

a command interpreter or programming utilities or any other program 

that is not long-term user-interactive, text mode may be better suited to 

your purposes. 
Most text-mode programs can also be run in text windows (called 

VIO windows). Programs that use a set of restricted functions, such as 

those looking to gain access to the physical video buffer or those that 

register device monitors, will not run in VIO windows. The reason is 

that these few functions cannot be supported while the Presentation 

Manager is in the foreground. Most of the text mode programs can be 

run in VIO windows, however. 
These VIO windows, as the name implies, run in the Presentation 

Manager session, using the VIO shield to act as though they are running 

in a full-screen session, although they are in a window. The VIO shield 

handles all the window management such as sizing and movement, so 

the application need not even be aware it is running in a window. 

In contrast to the AVIO window, the program running in a VIO 

window has no knowledge of PM or its controls and cannot make use 

of PM functions such as scroll bars and DDE. The text window does, 

however, serve a very useful function. 
A perfect example of the utility of a text window is in the program

ming environment. It is very often useful to allow the user or program

mer in this case to watch all phases of a project going on. In one text 

window a compile could be going on, while the programmer can be 

editing other files in another window and running some source code 

search programs in another. All these programs do not need the func

tion of fonts and graphics, yet it is extremely useful to see the output of 

all of them at once. 
The other major advantage of the text-mode window is to speed the 

release of an OS/2 application. In fact, the first release of OS/2 itself 

did not have the Presentation Manager. It did support virtual memory, 

threads, and so on, as you can do with the early versions of your appli

cations if you so desire. 



FEATURES FOR YOUR APPLICATION 121 

Workplace Shell Objects and Templates 
As mentioned previously, the Workplace Shell is one of the most inter
esting and powerful features of OS/2. There are many things to consider 
when deciding how your applications will interact with the shell. 

Let's first consider the shell and the functions it serves and provides. 
A shell is fundamentally a program launcher. The original version of 
DOS did not have a shell per se, but it had the command prompt, which 
was used to launch programs. In the most rudimentary sense, DOS's 
shell was a simple command prompt, which was cumbersome and had 
limited function. 

Software vendors then designed shells, starting from the menu
driven, such as in later versions of DOS, to some graphical shells, such 
as Microsoft Windows, developed later on. As time progressed, shells 
became more and more powerful. Usually, however, applications did 
not have to do much to work with the shell. These shells began to be 
packaged with utility programs to manage the shell and configure the 
system and the programs the shell managed. 

OS/2's Workplace Shell (WPS) is different. Of course, any applica
tions that OS/2 runs can be launched by the Workplace Shell. The shell 
comes with a set of utilities that allow the user to configure both the shell 
and the operating system. The biggest difference between the Workplace 
Shell and other shells for PCs is that the Workplace Shell works with 
the applications and your applications become part of the shell and the 
integrated OS/2 environment. 

The Workplace Shell is an object-oriented system that provides func
tions to applications so that applications become part of the computer 
system and are not just programs. The WPS works with objects, such 
as programs, documents, devices, and so on. The WPS presents objects 
to users the way they are used to seeing them. It works the way people 
work. 

For example, a user can take a Lotus 1-2-3 spreadsheet object, open 
it up, and have it presented just the way the user expects: within a Lotus 
1-2-3 window. There are several ways to have your applications work 
with the shell. 



122 OVERALL APPLICATION DESIGN 

There are advantages and drawbacks to each method of shell inter

action. Usually, the trade-off is how much work you want the program 

to do versus how much work you want the end users to do in setting 

up their system. Of course, you want your application to be easy to 

configure, but the flexibility was designed into the shell to allow users 

to continue using their old applications yet still take advantage of the 

object-oriented features of the system. 
At its most basic functional level, the shell supports object associ

ations in which each document, or data file, from your application is 

represented by a workplace object. This object can have associations so 

that when the object is opened (when the user double-clicks on it), the 

application in the association will be started, and the data file the object 

represents, loaded. 
The only requirement here is that the application must be able to 

accept a command-line parameter. The shell accomplishes this function 

by starting the application listed as the default association, passing the 

data file name as a parameter. This allows users to set up associations 

and use their existing applications in an object-oriented manner. 

The other way to work with the shell is to have a Workplace Shell 

aware application. This is an application that uses the functions pro

vided by the shell to create templates and new objects. Applications have 

the option of registering instances of new objects, and creating their own 

object classes. These classes are used to allow the user to interact with 

the application via the objects. No longer will users open a program, 

feed it a data file, and at some later time ask the application to spit 

out the file. With application-defined workplace objects, a user simply 

needs to open the object. The object is responsible for initializing the 

program. 
Another interesting feature of using workplace objects in your ap

plications is to allow a user to drag a data file to the printer. Without 

custom workplace objects, the only way to allow a user to print a file via 

drag/drop is either to have the file be in a printer-specific format or to 

have the file be a plain text file. 
Many applications store their data files in a format, specific to the 

application, that is neither printer-specific nor plain text. This is often 



FEATURES FOR YOUR APPLICATION 123 

necessary for application performance, but it should not have to affect 
the user's ability to print files in an object-oriented manner. 

By defining the workplace object to represent the data file, for ex
ample, a user can drag the file to the printer and drop it there. Since the 
object defines the behavior, this custom workplace object can launch 
the program it belongs to and ask the program to print it. 

It is not difficult to write an object. As a matter of fact, it is quite easy. 
Using object-oriented constructs such as inheritance, all you really need 
to do is subclass the base class you want and supply your own deviations 
to it. In this manner, you pick up all of the basic behaviors for the object 
and simply add or override the methods you want to be unique. 

This only scratches the surface of the power you hold in your hands. 
Of course, the choice of whether to write objects to go along with your 
application is entirely up to you. Writing a custom object is your choice. 
You can gain some function out of the shell without it, but the more you 
add, the easier your application is to use. 

Presenting your application using the Workplace Shell adds new 
dimensions in function and usability. You can get away with using the 
base function and knowledge of the parameter-passing function if you 
choose to not write your own object, or you can choose to go all the way 
and use the shell to its full potential. 

CHOOSING FEATURES TO INCLUDE 
Once you have decided how to present your application, the next de
cisions are which features of the many provided by OS/2 to use. The 
choice of features is dependent on the presentation method of the ap
plication. For example, it is pretty useless to try to use the clipboard if 
your application is full-screen. 

OS/2 provides several methods of data communications and other 
functions. You may ask why are there so many redundancies. The rea
son is that there are several ways to present applications, and the OS/2 
designers wanted to afford all applications the same function. Addition
ally, each method has certain advantages and disadvantages, and the 



124 OVERALL APPLICATION DESIGN 

choice allows you to choose and balance out the function and overhead 

to get an optimal result in your application. 
The most important choices are how your application will commu

nicate with others, how it will print data, and, along those lines, how it 

will interact with the shell. 

Data Communications with Other Programs (Open Application) 
Multiple threads and virtual memory are features of OS/2 that are more 

structural than optional features. Data communications is one of the op

tional features you can add to your applications to add utility to whatever 

the main function of the program is. 
Many programs perform a function. It is often useful to have a pro

gram that performs a specific function rather then being an all-purpose 

program. These specific programs are written to make the most out of 

one type of work, such as graphics. It is important that these programs 

be able to share data with others. 
For example, let's look at a desktop publishing system. The main 

functions needed are graphics composition, scanning, text processing, 

and page layout. You may be able to find one program that does all of 

this, but it seems better to find several pieces of software that do each 

job better. It is like buying stereo components rather than an integrated 

system. The key is that the components need to be able to interface with 

each other. 
Under DOS, "data communications" meant to export a file from one 

application, stop that application, start another, and import the file. 

OS/2 provides real-time data transfer while the various programs are 

running simultaneously. 

Dynamic Data Exchange 
Dynamic Data Exchange (DDE) is about the most powerful of the data 

communications methods. DDE is available to PM applications in two 

flavors: The first is a one-time exchange of data, the other is a hot link. 

Each is requested or initiated by the user and each requires both the 



FEATURES FOR YOUR APPLICATION 125 

receiving (client) and sending (server) application to know about the 
data protocol. 

Usually, the user will mark an area in the server application and 
request a DDE exchange. The difference between a hot link and a one
time exchange is that on the one-time exchange, the data is transferred, 
and that is the end of that communication session. The hot link, on the 
other hand, is a continuous exchange of data and notifications. If the 
area in the server changes, it is communicated to the client with no 
further action required on the part of the user. 

As you can see, this can be used to link applications so that any 
change in one will cause a change in the other. An example of this would 
be a spreadsheet linking to a graphing program. The graphing program 
could be showing the data in, say, a pie chart. As the user changes data 
in the spreadsheet, the pie chart will reflect it. 

There are several pieces of work that an application has to do in 
order to support DDE. The most important one is that the interface 
must be published. DDE is not only a set of APis, but a protocol of 
messages and data. Applications wishing to do DDE with another send 
out a broadcast message asking if there are any applications wishing to 
do DDE on a specific topic. 

A recipient of this broadcast must respond properly, or the exchange 
cannot take place. Because there is no universal standard for the data 
contained in the messages, applications must be specifically designed 
to accept certain data in certain formats. If you are going to design 
your application to do DDE with others, it is important to publish your 
DDE protocol, and it is equally important to obtain DDE protocols of 
applications you wish to interface with. 

DDE is usually user-initiated, so it is also important to make it as easy 
as possible for the user to initiate the exchange. One method is to provide 
menu choices indicating DDE, and possibly a submenu indicating a hot 
link versus a one-time exchange. You could set up an object-oriented 
exchange in which the user marks an area and then drags the marked 
area to the other application. A dialog box could pop up as a result, 
asking the user if it is to be a hot link or a static exchange. A variation 
on that could simply be a key held down with the button for a hot link 
and a different key with the drag for the static exchange. 



126 OVERALL APPLICATION DESIGN 

Another example of the power of OS/2 DDE function is that OS/2 ap

plications can communicate with applications running under WINOS2. 

You may decide to have your program communicate with WINOS2 ap

plications. In this case, you will need to follow the established protocol 

for those applications. Each of these decisions needs to be made before 

you begin work on the application. 
So, DDE is a user-initiated data exchange that has the ability to 

be a one-time exchange or an ongoing conversation, with a predefined 

communication protocol and synchronization and free-form data for

mat. You also have the ability to communicate with WINOS2 programs. 

DDE function is restricted to graphical applications only. Keep these 

attributes in mind when looking at the next few types of IPC. By looking 

at all of your choices in this manner, you will be in an excellent position 

to make a call on which ones fit best in your environment. 
As you can see, DDE is very powerful. However, it is not a simple 

function to program, and there are many considerations, such as how 

many other applications know how to DDE and, more importantly, how 

many publish their DDE interfaces (data formats). 

Clipboard 
The OS/2 clipboard is exactly that. It is a virtual area in the system where 

applications can place data (clip it into the clipboard). Applications 
can also retrieve data from the clipboard. There are several operations 

available with the clipboard: cut, copy, and paste. 
The first two place data into the clipboard in two different ways. A 

cut will place the data in the clipboard and remove it from the source 
application. A copy will place the data in the clipboard, but leave it in 

the source application intact. 
A paste operation takes the data from the clipboard and places it into 

the target application. There are several standard data types in the OS/2 

clipboard. 
There is the text data type, the metafile data type used to exchange 

graphical data, and then the clipboard has a construct to allow an appli

cation to place an application-defined data type into it. The application-



FEATURES FOR YOUR APPLICATION 127 

defined type is available to let applications put nonstandard data into 
the clipboard. 

As with DDE, any application that will pull data from the clipboard 
must understand the data type resident in the clipboard. However, un
like DDE, there are several data types that are predefined, and the ex
traction from the clipboard is a single API, not a message-based proto
col. 

Of course, the clipboard is only a static exchange method and is not 
quite as powerful as DDE, but it is easier to use and, at the time of this 
writing, is more widely supported by applications. The clipboard is also 
only available for PM applications, however a user can share clipboard 
data with applications running under WINOS2 as well. 

You may notice that it is possible to use the clipboard with VIO 
windows too. The reason is that VIO windows are managed by the VIO 
shield, and one of the functions provided by the shield is rudimentary 
support for the clipboard. Text applications running in VIO windows 
cannot use the clipboard on their own, but the VIO shield provides 
enough support that you can copy and paste data from/to the clipboard. 

Looking at the overall attributes of the clipboard now, you can see 
that it is a user-initiated, one-time exchange of data, with some pre
defined data formats (but you can choose your own as well) and no 
real communication protocol needed. You can also exchange data with 
WINOS2 programs. Like DDE, the clipboard is restricted to graphical 
applications, although you can do some work through the VIO shield. 
Now let's look at the rawest form of IPC in OS/2-pipes and queues. 

Pipes and Queues 
Pipes and queues are available to all applications, not just graphical 
applications. These are base system constructs that allow applications 
to exchange data between processes in a raw form. They are exactly 
what they sound like: pipes and queues. 

Just as water flows through a pipe, so does data through an OS/2 
pipe. A queue can be defined by the applications as they wish. Both pipes 
and queues are first-in-first-out structures. Both need to have access 
synchronized with some construct, such as a semaphore. 



128 OVERALL APPLICATION DESIGN 

The other major consideration in the use of pipes and queues is that 

both the client and server processes must know about the data in the 

pipe or queue. There are no data format standards in using pipes and 

queues, so, just as in DDE, the applications must know about the data 

being retrieved. Also as in DDE, pipes and queues can be used to transfer 

data on a one-time basis, or a type of hot link. 
Unlike DDE, however, there is no specific protocol and access to the 

structure is generally unrestricted, controlled only by synchronization 

semaphores. Of course, the writers and readers of the pipes and queues 

must know what the data and the structure are. It is the transfer of the 

data into the pipe or queue that is free-form. 
Pipes and queues afford almost all of the functionality of the clip

board for DDE, but they are available to all applications, not just PM 

applications. 
Pipes and queues are not usually directly user-initiated (some user 

action may cause you to open a queue or a pipe, but I've yet to see an 

application that has an "Open Pipe" menu option), the exchange is as 

you wish in terms of static or ongoing, the data is completely free-form 

and all coordination and synchronization is up to the programmer. 
Looking at these key facts in the data communications services avail

able to you, you might see that you want flexibility in free-form data, but 

you don't want to have to deal with semaphores. In this case, DDE would 

be a good choice. As with any of these IPC services, you can start DDE 

with or without explicit user action, but the choice is there. 

Let's look at a concrete example. Say you are designing a program 

for a medical facility, where the task is to capture and display heart

rate information for analysis. (You will see this example used in several 

places in this book). For reasons that will be explained later, this applica

tion is implemented in several processes. One will gather the data from 

the medical equipment. Another will display that data. How should the 

data get passed from one to the other? 
I think you'll agree that the clipboard is not a good choice. You'll 

probably want an ongoing data exchange and the clipboard can't do 

that. So the clipboard is out. How about DDE? It has free-form data, 

ongoing communication ability, a way for users to initiate and terminate 

it (via menu choices that you provide), and a defined communication 



FEATURES FOR YOUR APPLICATION 129 

protocol with synchronization. Both processes need to know about the 
data format, but that would be the case with any IPC mechanism you 
use. Why would you want to use DDE as opposed to a pipe or queue? 

DDE, pipes, and queues provide many of these same features, but I 
would choose DDE in this case for two reasons. First, DDE provides the 
communications protocol for me, as well as the synchronization in that 
protocol. Call me lazy, but if the system provides it for me, and I don't 
need anything else that it does not, I'd rather use it than start having 
to deal with semaphores, full and empty pipes and queues, and so on. 
There are plenty of reasons to use pipes and queues over DDE, but this 
is not one of them. 

One might be if you have variable-sized data, or are passing differ
ent types of data through the same structure to multiple processes. In 
this example, I'd choose DDE. You can see how you need to analyze the 
functions that OS/2 offers to make the appropriate decisions for your ap
plications, not only to avoid confusing your users, but also to make your 
application development faster and easier. Complicated is not always 
better. 

Data Interchange Formats and Filters 
Another aspect of communicating with other applications is not at run
time. It is often necessary to be able to work with data from other 
applications in their own file format. In these cases it is useful to be able 
to import and export data in other applications' formats. 

There are several universal formats, such as encapsulated Postscript 
and TIFF, in addition to the formats specific to applications. In order 
to use the universal formats, you will sometimes need to write the file 
yourself. Such an example is the TIFF or CGM file format. For others, 
such as encapsulated PostScript (EPS), you may be able to take advan
tage of functions within OS/2. For example, you may be able to utilize 
the PostScript printer driver to have it generate a PostScript file that 
you can place in a file. 

When it comes to application file formats, however, you are required 
to understand the format of the other applications and write filters for 
them. It is unreasonable to ask you to write filters for all applications. 



130 OVERALL APPLICATION DESIGN 

However, if it is applicable for your type of program, you should proba
bly consider at least writing an interface to a set of filters so that you can 
add filters as you feel necessary and as new applications hit the market. 

Another possibility to note, if you are planning on importing files 
from other applications, is converting the file directly into your own 
internal file format as you read it in. This will give you much better 
performance, as you will not have to work with the file in some foreign 
format. Additionally, if the user has imported the file, chances are that 
the user will want to save it in your application's native format. This is 
a simple trick that will give you better performance. 

REXX Hooks 
Another often neglected feature of OS/2 is REXX, which is an inter
preted language based on the IBM mainframe implementation. OS/2 
comes with a REXX interpreter built in. This gives users the ability to 
write complex programs that are much more powerful than the batch 
language inherited from DOS. 

REXX has constructs and programming structures that allow users 
and programmers alike to write powerful utilities with a simple text edi
tor. REXX requires no compiler to work. When a .CMD file has a C-style 
comment as its first line(/* This is a cormnent * /), it is not interpreted 
by the standard command interpreter when executed, but rather it is 
passed to the REXX interpreter. 

Where does this fit in application design, however? It does not fit in 
every type of application, but some applications can either "shell out" 
to the system to perform some operations or actually run batch or . CMD 

files in order to do some work. A good example is a text editor or word 
processor that has a command line to perform tasks. The function of the 
editor is controlled by the menus and action bar, but there is a command 
line to execute commands. Some of these commands are internal to the 
editor. It is possible to call the shell and/or the REXX interpreter if the 
command is not internal to the program. 

REXX can add a new dimension to your applications if the program 
lends itself to REXX' s function. Of course, a graphical program such as a 
page layout or drawing program may not lend itself well to REXX hooks. 



Printing 

FEATURES FOR YOUR APPLICATION 131 

However, for those that do, REXX can add more power and flexibility to 
your programs. 

I have seen many applications that perform their primary function su
perbly, but fall miserably short when it comes to printing. OS/2 provides 
a powerful print subsystem, but if misused it makes an application look 
sloppy. 

There are several ways to print data. You can support drag-and-drop 
from the data file object, you can support drag-and-drop from within 
the application, and you can support printing from the menu or action 
bar. 

In a general sense, you will want to have your application work with 
the OS/2 spooler. There are some applications that have been written 
in such a way that they cannot work if the spooler is running. These 
programs are usually written using restricted function calls, but in any 
event, they restrict the user's flexibility in what they can do with the 
computer. 

Regardless of the method of printing, you should be aware of how 
to provide the users with the greatest amount of flexibility, balancing 
function, power, ease of use, and ease of coding. Print destinations are 
really the primary focus. 

A print destination should be a queue, obtained via a set of APis. You 
can print the data using the same code you used to display on the screen. 
The only difference is that you will be using a printer PS as opposed to a 
screen PS. There are also some extra functions you must execute, such 
as the DevEsc calls to begin the document, to separate pages, and to end 
the document, but the drawing of the text and graphics is the same. 

The details of printing will be discussed further in Chapter 16. 

Fonts and WYSIWYG 
Font usage is another subjective topic. Many applications do not need 
the advanced capabilities of fonts, and others cannot afford the over
head. 



132 OVERALL APPLICATION DESIGN 

Recall that the advanced font functions are available only in a Pre
sentation Manager PS. If you are not using a PM PS, then your decisions 
become much easier. However, you can still utilize the font functions of 
the hardware in an AVIO PS. 

If your application is using an AVIO PS, you may wish to query the 
display device for the fonts it has so that you can provide whatever fonts 
are available to the user. 

If you are using a PM PS, then you have the choice of any font 
installed in the system. The fonts are stored on disk and are described 
in the . INI file and in the font files themselves. A font query function 
will return the information in the . INI file, and a subsequent call to get 
a particular font's information will get the data from the font file itself. 

The decision to use PM, AVIO, or any fonts for that matter, depends 
on the purpose of your application. How you use the fonts is what mat
ters. Font usage will be discussed in depth in Chapter 16. 

SUMMARY 
Too often, people will "overcode" and provide features simply because 
they are there, not because they add value to the program. All this does 
is confuse the user and make your application bigger and more difficult 
to use. 

Choosing the right features is the first step in your design and choos
ing the most appropriate functions is paramount. Always think back to 
that medical application example and how to analyze the functions that 
OS/2 offers to see which is best for your needs. Don't get "drugged" by the 
fancy features of the operating environment-offer what will enhance 
your application. Don't complicate it by adding too much. 



CHAPTER 

Application Structure 

T he structure of your application determines performance, main
tainability, and flexibility. It determines how well your applications 
work under OS/2, how easily they can be ported to other environ

ments, and how well they take advantage of their native environments. 
OS/2 is designed to allow applications to be free from having to 

know specifics about the computer hardware, to use parallelism and 
multitasking, and to share code and data. You need to decide how you 
will use these features to your advantage without compromising main
tainability or defeating their purpose. You don't want to read the pro
gramming manuals and blindly begin coding functions. 

If you do not set up your structure properly, you may wind up writ
ing code that will cut off options later on. For example, if you start 
writing your code and then later decide to multithread that code, you 
will most likely have to rewrite the code. It is difficult to restructure 
existing code to add multithreading without introducing deadlock po
tential. Additionally, you will not be able achieve the full potential and 
power of multithreading due to the lack of parallel function design. 

133 



134 OVERALL APPLICATION DESIGN 

This chapter will discuss how to structure your code to take advan
tage of OS/2 's features while remaining flexible. It is more than just 
writing modular code-it is a whole way of thinking about tasks within 
your applications. 

ISOLATE FROM UNDERLYING HARDWARE 
As computer hardware becomes more diversified and more vendors 
release new products, it becomes more and more important to isolate the 
application code from the hardware. It should be the job of the operating 
system to manage the hardware and provide services to application 
programs. OS/2 does just that. 

OS/2 does provide the flexibility for those applications desiring to 
work with specific hardware to do so, but, except for special instances, 
you want to keep your code as isolated from the hardware as possible. 

Every device in a computer system on which OS/2 is running has a 
device driver. As you saw in Chapter 5, the device driver has the job of 
synchronizing access to a physical device. More importantly, however, 
it completely manages the device. It accomplishes this through a set of 
functions or entry points callable through IOCTL packets. 

Manipulating hardware through IOCTLs is effective; however, it 
makes your applications directly hardware-dependent. Code written to 
send IOCTL packets to device drivers will not be portable to other systems 
and, in some cases, will not be supported on some hardware. You see, 
not all device drivers support all functions or features. 

The basic device drivers in OS/2 were written by IBM and, in some 
cases, by vendors with IBM guidance. As time goes on, however, more 
and more device drivers will be written by independent vendors. There 
is a core set of functions all device drivers must support, but many of 
the more advanced functions may not be supported. As such, if you 
write your code to interact with the device driver directly, you cannot 
be assured of all advanced functions being present. 

You could, on the other hand, write to the lowest common denomi
nator in terms of which functions you use. The drawback there is that 



APPLICATION STRUCTURE 135 

you limit your code to the slowest, most limited function, even though 
users may have sophisticated hardware in their system. 

You will be happy to hear, however, that OS/2 for the PowerPC has 
been written to support the IOCTLs from the Intel code base. This applies, 
however, only to the device drivers supplied with OS/2. While others 
supplied by other vendors may work, this is not guaranteed. This is 
where IBM has done the work to preserve your investment, but you 
should not rely on it, because IBM does not write all the device drivers 
that are out in the marketplace. The key is to use the high-level APis 
as much as possible and to let the operating system handle the "dirty 
work." 

Use OS/2's Device Independence 
Not only does OS/2 provide interfaces to device drivers directly, but 
these functions are also wrapped in API function calls. You can accom
plish virtually any function you need through the OS/2 APL 

The OS/2 API serves several purposes. First, it provides a higher
level interface to system functions so that applications need not know 
about the hardware present. Second, it provides a layer of function that, 
in addition to the synchronization of threads into devices provided by 
the device driver, aids in coordination and optimization of threads in 
each function. 

Another role the API layer plays is to provide a level of portability. 
By coding to the API rather than to specific hardware through IOCTLs, 
the application is portable to any system OS/2 runs on, including OS/2 
for the Power PC. 

One other point about the portability of the APis is that there are 
other systems that use a similar set of functions and, although there may 
not be a one-to-one mapping between systems, there is such a similarity 
that you can convert your application easily. Many of the porting tools 
written to port applications to OS/2 function that way. For the most part, 
the OS/2 API is a superset of most other systems in terms of function, so 
porting to OS/2 using APis is straightforward. 



136 OVERALL APPLICATION DESIGN 

Device independence under OS/2 takes on another flavor as well. 
Recall the discussion on presentation spaces and PM device interaction 
with the Presentation Drivers and the graphics engine. Imagine that 
you are writing a graphics design or CAD program to run on a variety 
of hardware. Don't even think about the display at this point. Just think 
about printing the user's output, such as blueprints or electrical designs. 

There are a variety of plotters and printers that are in use for such 
applications of CAD work (or any graphics work, for that matter). Imag
ine writing code that has to understand the capabilities and language 
of every plotter and printer. Not a pleasant prospect. You don't want 
hardware dependence here either. 

By using the device independence of OS/2 and PM, you can address 
the various display and printer hardware without even differentiating 
between them. Through the OS/2 API you will query the system for the 
name and type of display attached and for the printer name the user has 
selected. The only hardware dependence you need to be concerned with 
is the page size of the device (which is queried through a simple API). 
The rest is handled through the engine. 

Of course, as with any other function of OS/2, the program is able 
to generate its own device-specific data streams for control the Presen
tation Drivers may not provide. Again, the drawback with this type of 
code is that it is neither portable nor flexible. As new devices become 
available and data streams change and improve, the application would 
have to change to accommodate the new function. By using the Presen
tation Driver interface, applications do not have to take hardware into 
account. The generic presentation space architecture takes care of that 
low-level function. 

By sticking with the high-level interfaces and structures, you can 
keep your code running on any hardware OS/2 runs on with little or no 
change. 

Stick with Portable Languages and Tools 
An important thing to consider in the development of an application 
is the tool and language selection. Not only does OS/2 support writing 



APPLICATION STRUCTURE 137 

code to isolate the application from the hardware, but it also supports 
high-level languages such as C, C+ +, SmallTalk, and, yes, even COBOL. 

Of course, you can always choose to write in assembler for perfor
mance and control. Many people choose assembler because they just 
don't like the optimization or performance these high-level language 
compilers provide. The trade-off is portability, ease of coding, and the 
lack of high-level constructs. 

You may have noticed that most of the examples I have been using 
and will continue to use will lean toward the C language. The reason 
is that although there are many companies with language compilers, C 
lends itself well to the demands placed on a language, such as recursive 
coding. Such languages as COBOL have their place in OS/2, but they 
usually need other tools to generate and manage windows. C does not 
have that problem. Although COBOL is a commonly known language, 
it has its limitations under OS/2. 

By using a language such as C, you gain portability to other environ
ments Gust think of what it would take to port your assembler applica
tion to a PowerPC machine) not only for code you write for OS/2, but 
also for code you have written for other environments that you may want 
to port over to OS/2. Compiler optimization has improved dramatically 
over the last few years, and what little you may lose in performance and 
optimization, you will gain in programmer productivity and code reuse. 

In addition to the portability of C, OS/2 is written mostly in C and 
its primary language bindings are C language bindings. The function
calling interface and parameter-passing conventions are based on C as 
well. Since many of the current programming languages base them
selves on interfaces and parameter-passing conventions defined by C, C 
is the logical choice to use. 

Many of the most popular languages and tools have a common an
cestry in C. Many programming tools, such as AWK, GREP, and MAKE, also 
have histories in C. In addition to having common ancestry, these tools 
and utilities are widely used on many varying platforms. 

By using the high-level languages and tools, along with such tools as 
MAKE, GREP, and so on, you can keep ports as simple as possible. OS/2 was 
written using these types of tools, so applications written with them will 



138 OVERALL APPLICATION DESIGN 

be using the same calling conventions as the operating system, giving 
that much more performance where some may be lost as compared to, 
say, assembler. 

MODULAR DESIGN AND THREADS 

Of course, the most basic of concepts in programming is "divide and 
conquer." Ever since your first programming course you've probably 
been told to modularize your code and separate as much as possible 
into functions. You'll not be told any different here. 

As a matter of fact, in this multithreaded environment, it is vital 
to write modularized code and to make these functions as reentrant 
as possible, so as to maximize a single set of code accessible to many 
threads. Modularized code is only the first step, however. 

Separating code into functions is not a difficult task. What is cru
cial in determining how well your application takes advantage of mul
tithreading and parallel processing is how well you modularize and 
structure your code to run as many tasks as possible in parallel. 

The way to start is to isolate all tasks your application will provide. 
No task is too small, but don't subdivide too finely or you will have each 
line of code on its own thread. Task division should be at a level higher 
than the function but lower than "we create graphics." You will likely 
make mistakes and never get it exactly right, especially the first time. 
Just as in driving a car, every turn and every application is unique and 
there is no pat answer or method. 

A good method of separating tasks for parallel processing is to look 
at the main purpose of the application and subdivide from there. Just 
as though you were making a flowchart, begin to subdivide your appli
cation from the time it is invoked to the time it terminates. Let's look at 
an example. 

Most applications follow the same three basic tasks: Initialize, Pro
cess, Clean Up. These tasks can all be further subdivided to provide 
internal parallelism. There is even some degree of parallelism you can 
provide between these functions. Let's begin by looking at initialization. 



APPLICATION STRUCTURE 139 

You can look at initialization in several parts. Obviously, you will 
need to set up data structures and control blocks as well as to initialize 
any utility threads, such as an internal memory manager. There's really 
no way to multitask these items, simply because they must be set up 
in order for the application to be able to accomplish anything. Once 
the basic structures are set up, you can begin to see how much of the 
remainder of the initialization can be multithreaded. 

Many applications need to load DLLs and resolve entry points to 
functions. Some allocate memory, read the environment (such as avail
able printers or other relevant hardware) from the system, and set up 
menus or other user controls. This set of functions is ideally suited to 
allowing the user to execute actions while the rest of the program is still 
loading and initializing. 

For example, when an application is launched, the first operation is 
usually to load in a data file. There's no reason this cannot happen while 
the printer information is being read and the related structures set up. 
Obviously, the user will not ask to have something printed if it is not 
yet read in, so why should you restrict the users by making them wait 
until the printer information is initialized before allowing them to open 
a data file? Once the code to read the file is loaded, the user should be 
allowed to execute that action. 

You could, for example, build into the code that reads the printer 
data a function that activates the PRINT menu item. This way the menu 
item can be there from the start, just not active until the print code is 
loaded. Actually, in this case you are really overlapping the "process" 
part of the three-step application with the initialization piece. 

In general, you should have your user interface thread up and run
ning as soon as possible, even if initialization is not yet complete. Using 
the menu messages of PM, you can enable menu items as their support 
code is initialized. 

Another application of multithreading structure is when working 
with multiple data files. For example, time-consuming processes, such 
as printing, should not inhibit the user from working with other parts 
of the application. Of course, while a document is printing, you should 
not allow the user to change it, but there is no reason the user cannot 



140 OVERALL APPLICATION DESIGN 

load another data file or switch to a previously loaded one and begin 
working with it. 

The real rule of thumb in deciding which pieces of the applica
tion to multitask is common sense. The way you do it, however, de
pends on the structure of your code. You will need to design how you 
will multithread the code at the beginning of your module design. Ac
tually, a more precise term is functional design, because it is functions 
you will be designing to be run in parallel both within and between 
functions. 

This topic goes directly back to the 60-30-10 rule. If you decide later 
on to add in multiple threads, be prepared to go back and redesign, 
otherwise you will be one of those who spend 140 percent of the time 
on the project. 

Another important point of modularizing code, although not as in
volved as multithreading concerns, is modularizing for subsystem re
placement. Even applications should be modeled after the subsystem 
approach to allow you the freedom to replace modules or subsystems as 
necessary. 

As time goes on and technologies advance or, perish the thought, 
you find an error-prone component, you may want to rewrite a piece 
of your application. With cleanly defined interfaces and well-structured 
subsystems, you can replace parts of your application transparently to 
the end user through an upgrade package, a fix package, or even auto
matic bulletin board updates. 

Modularized code is easier to maintain than code that just works. 
By modularizing your code you are forced to think about the multitask
ing and subsystem topics before you begin coding. You have seen how 
important it is to subdivide the tasks the program will perform logically 
to make the most use of multiple threads. 

There are techniques to use these threads that will be covered later, 
but it is important to remember that you must draw a line on how much 
to multitask, because while threads do work in parallel, they also have 
overhead, so too much of a good thing is not necessarily better. The same 
goes for modularizing code. If you go too far, each line of code would 
be its own function. 



APPLICATION STRUCTURE 141 

Look at your tasks, break them into functional groups, taking into 
account which of these functions in the larger scheme of things will 
potentially run in parallel, but more importantly, which ones CANNOT 
run in parallel. Then take these functions and build them up into func
tional groupings. The reason you are doing this is to establish the sets of 
functions that can and cannot be executed concurrently at the outset, so 
you can begin to structure the code to avoid conflicts and deadlocks.If 
you follow these steps, you'll have code that, although it will likely not 
be perfect on the first go-around, will be flexible enough that you can 
make changes without breaking your design. 

USING MULTIPLE PROCESSES 
Multiple-process programs are not too common. The main reason is 
that OS/2 's protection is at the process level, and each process repre
sents a program. Applications wishing to share data and especially code 
within pieces of themselves are more likely to use threads. However, 
you may want to have some redundant subsystems in the case of critical 
applications, where the backup systems need to be protected from any 
problems in the primary ones. 

A case in point is the medical example from the previous chapter. 
If you have one process that gathers data from the medical equipment 
and another to handle the graphical display of that data, if the display 
routine encounters problems and traps, it will not take down the process 
that is gathering the data and possibly storing it in a data base. If this 
were a single-process application, a graphical display problem would 
also terminate the gathering of the critical data. This is a perfect example 
of where the overhead of multiple processes is worth it. 

Since ownership of resources-thus, sharing of resources-is done 
at the process level, no special action needs to be taken to share data 
among threads of the same application or process. However, when using 
multiple processes to perform an application's work, you will want to 
understand and decide early in the design process which interprocess 
communication (IPC) mechanisms you are going to use. 



142 OVERALL APPLICATION DESIGN 

Writing a multiprocess single application gives you a little more 
flexibility in which IPC mechanisms you choose, because you don't have 
the extra burden of understanding the IPC mechanisms for which other 
vendors are using or publishing interfaces. This part of IPC is internal to 
the application, so you can balance power, flexibility, and ease of coding 
without that extra consideration weighing on the decisions. 

USING DLLS AND CODE SHARING 
Now that you have seen the considerations in structuring your code 
logically, you can begin to see how the physical structure can also play 
a big role in how efficient your application is in terms of memory usage, 
disk space, and load time. 

Some programs use no DLLs at all. They usually take a long time 
to load and initialize and have huge . EXE files. There are some at the 
other end of the spectrum that have very small . EXE files and a large 
number of very small . DLL files. Neither is a good approach. Just like 
anything else in life, moderation is the key. There will be special cases, 
but, in general you should balance the code between the . EXE files and 
the .DLL(s), according to (here is the key) how you use the functions. 

There is no guideline on how much or how little code should be in 
DLLs. The factors you need to take into account are how often the code 
is used, how long it takes to load the code, and if the functions will 
be externalized to other processes. In 16-bit OS/2, there was another 
consideration in that all DLL calls were FAR calls, requiring a segment 
register load, and thus were somewhat expensive. Under 32-bit OS/2, 
this is no longer a concern. 

One of the primary uses of DLLs is to share code between processes. 
If your application is stand-alone and single-process, there is no com
pelling reason to put much code in DLLs. The only real reason you 
would want to do this for the stand-alone, single-process application is 
to delay loading of code that is used very seldom and for short periods. 
An example is "help" code, which could be loaded as an asynchronous 



APPLICATION STRUCTURE 143 

task, whereas if it were part of the main executable file, it could be 
loaded only when called. 

If the user of your application never requests help, there is no reason 
the code should ever get loaded. This is a very good implementation of a 
DLL, because if you can delay loading of the code until it is needed-in 
this case, help code is usually needed for only a short time-you will 
save on the amount of memory your application will require. 

Another very good reason to use DLLs is if you have more than one 
application you work on and sell. It is often useful to write code such as 
your print routines or application configuration code in a DLL so that 
you can reuse the functions between the applications. This structure is 
also advantageous in that any fixes you may apply to one of the products 
will be picked up by the other. This set of core functions can be kept in 
DLLs quite easily. 

Recall, however, that DLLs are used to share code between pro
cesses. There is no reason to place code in DLLs only to be shared 
among threads in the same process. Since all threads within a process 
share the same resources, they share the same code and data. As just 
discussed, if you have a single-process application, the main reason to 
use a DLL is for performance, by delaying the loading of code usually 
unneeded, such as configuration utilities. 

RESOURCE SHARING AND SYNCHRONIZATION 
The idea of resource sharing between threads is enticing, but it too 
comes with some important design and structural considerations. 

When sharing resources, you must ensure synchronization so that 
only one thread at a time can have access to the resource. This leads 
to interesting design decisions. Go back to the discussion on how to 
structure your code for multiple threads and look at how you need to 
break the application into tasks that can run in parallel. Now look at 
the fact that you will need to serialize access to shared resources such 
as buffers, tables, and so on. You cannot do one without thinking about 
the other. 



144 OVERALL APPLICATION DESIGN 

Sometimes you will have no choice but to refrain from setting up 
some functions to run in parallel, because of how they need to access 
resources within the program. In other cases, you can just ignore that 
fact in the structure and let the semaphores and other control structures 
you set up handle the concurrency issues. After all, there is no reason 
not to use multiple threads simply because one thread has to wait for 
another to finish using a buffer. You can "semaphore-protect" the buffer 
and let the synchronization fall where it may. This is the most important 
set of decisions you will make in designing your application. If critical 
resources are not adequately protected, your application will behave 
unpredictably. If the cost of protecting it is too high, such as if it is just 
very complex in terms of how you are forced to accomplish it, it may 
just be wiser to not multithread that section of code. 

The structures you use are also important. The main synchronization 
structures are the semaphore and the critical section. 

Semaphores were discussed in Chapter 5. They are very simple yet 
powerful constructs to manage concurrent execution. Critical sections 
are even more powerful, but they are somewhat more expensive in terms 
of performance and they have an effect on the entire process-not just 
the threads requesting a common resource. 

When an application calls DosEnterCritSec, the effect on the process 
is that all threads except the thread that called the API are immedi
ately frozen, and the only dispatchable thread in the process is that one. 
The threads are frozen until DosExi tCri tSec is called. In terms of perfor
mance, this is an expensive operation. It is also usually overkill except 
in specific situations. As a matter of fact, I have seen many applications 
use critical sections, but none that I have seen could not have easily 
been replaced by a (set of) semaphore(s). 

There are no hard and fast rules for structuring your code for sema
phores and multiple threads. The point to be made here is-as with 
everything else said in this book-to think about these considerations 
and make those decisions before you start coding. Under DOS and Win
dows, you could get away with less planning, because there were no 
threads. In this multithreaded environment, either do it right and do it 
up front, or don't do it. 



APPLICATION STRUCTURE 145 

This is not meant to sound like an ultimatum, but you need to decide 
whether you will be using the threads. Just remember either to stick 
to the decision or to rearchitect and redesign if you change your mind. 
You'll be saving yourself many a sleepless night by following this advice. 

KEEP UPGRADABILITY, PORTABILITY, AND 
SERVICEABILITY IN MIND 

Above all, you should keep in mind that the software project you are 
working on is not done when you ship the product. The work you are 
doing can be ported and enhanced if you structure it right. You don't 
want to have to rewrite functions just to add a new feature to the appli
cation or rewrite a function just to fix a tiny bug. 

By sticking to the subsystem model and modularizing function, you 
can make working on this project fun and exciting. After all, you'll prob
ably enjoy figuring out new things to add-and how to add them-more 
than spending the same time figuring out which piece of code an im
provement might fit into or how you can squeeze it in without breaking 
anything else. 

SUMMARY 
Application structure is more than just how the application will be pre
sented and which features flow into each other. It is about how the code 
itself is structured to make the best use of OS/2's features, especially 
multithreading, while remaining as portable and upgradable as possi
ble. 

The main points to remember about structuring your code are to 
isolate your code from the hardware as much as possible and to think 
about making the best use of threads, balancing it with the variety of 
tasks your application will perform. 

By breaking your code into DLLs intelligently, you will not wind up 
on either extreme, and if you understand why you want to use DLLs in 



146 OVERALL APPLICATION DESIGN 

some cases and avoid them in others, your applications can be stellar 
performers without sacrificing function. 

Most of all, it is paramount to keep in mind all of these considerations 
when architecting the structure of the code, because just as in a house, 
if you want to go back and replace a piece of the foundation without 
having the support to do that, it will fall and be worse than when it 
started. 



SECTION aaa 

Use Building Blocks or Your 
App Will Crumble 

T he importance of using the divide-and-conquer approach to OS/2 
programming cannot be overstressed. A block architecture is nec
essary. for OS/2 or any system programming to ensure maintain

ability and flexibility, not to mention that dividing any task into several 
subtasks and tackling them one at a time is more productive than jump
ing in headfirst. 

Case in point i~ the Workplace architecture, as described in Chapter 
7. Look at the modularity of the system, where each block has a specific 
function, and can be updated without the inconvenience of being inter
twined with others. They use each other's functions, but in a cleanly 
architected manner. 

Recall the three basic pieces of any application: initialization, pro
cess, and· clean-up. By subdividing these tasks you can simplify each 
and keep each piece relatively separate. Using a "black-box" approach, 
where each of these magic boxes performs a task, allows you to design 
an application without regard to the details. 



148 USE BUILDING BLOCKS OR YOUR APP WILL CRUMBLE 

At some future time you will indeed have to deal with the details, 
but too often an application is designed by coding logical functions 
and then plugging them together. By separating tasks into black boxes 
that perform an ideal function, your initial design will be devoid of any 
conventional limitations. 

When you break apart those black boxes later in the design phase, 
you will look at those limitations and turn the black boxes into subsys
tems and functions. You'll break the process task into the user interface, 
the core or worker code, and their surrounding functions, for example. 

This all may seem very elementary and, to some, useless. However, 
you will find that by following this simple process you will discover 
most of the mistakes you will make and holes you will leave. It will force 
you to make decisions up front rather than delaying them-which only 
delays the inevitable while holding up other pieces of your application 
waiting for that decision. 



CHAPTER 

Block Design and 
Architecture 

0 nee you understand the environment and choose the features you 
will incorporate into your programs, the next step is to map out 
the high-level architecture by looking at the primary features the 

application will offer. These features should then be subdivided into the 
foundation for the entire application. 

TAKING THE BLACK-BOX APPROACH 
In taking the black-box approach, you will systematically break down 
your application into functional groups and subdivide those groups into 
smaller and smaller groups until you reach the level of a single function. 
This is a long and painstaking process that will lead to frustration and 
dead ends. It is important to get these kinks out before you get to the 
low-level design. 

149 



150 USE BUILDING BLOCKS OR YOUR APP WILL CRUMBLE 

This chapter will deal only with the processing part of the applica
tion; the initialization and clean-up pieces are fairly straightforward. 
Let's look at how an application processes information. 

First, there is the consideration of a user interface. The user interface 
of an application is how data gets into the system. You may also have 
other types of input, such as data collection devices, but, in the majority 
of cases, user interaction with the application is needed. This should be 
the first point of attack, as this is the part of an application that usually 
raises the most questions and concerns. 

The user interface is a box. Inputs into this box are user requests and 
commands, and the output is a coordinated set of functions directed 
at the worker code. Another input into this user interface box is the 
information given to it by the worker code, either as a direct result of 
some user action or by way of the worker code needing to notify the user 
of an event. Figure 10.1 shows the beginning of the user interface box. 

Now that you have this box, you need to make some initial decisions. 
Actually, most of them should have been made already, such as what 
mode this application will run in (PM, AVIO, VIO, and so forth). Without 
that decision at least, don't go any further. 

Now that the user interface box is set up, let's move on to the pro
cessing box, which has a set of inputs and outputs as well. The inputs 
are the commands from the user interface box and any other devices 
or events that can trigger actions by the processing code, such as data 
collection equipment or modems. 

The outputs are many: information to be given to the user interface 
to present to the user; outputs to memory to simply process and store 
data for later use; and outputs for printing and data file storage. You 
may also have outputs for or from utilities, such as data export filters. 

These are the beginnings of your foundation block design. As you can 
see from the simple descriptions of the inputs and outputs of the two 
major subsystems, the interface and processing subsystems, breaking 
the application into black boxes is a fairly straightforward task. 

OS/2 adds a twist, though. Recall from the discussion on threads 
that some tasks are easily run in parallel, while others need to be syn
chronized. The first place to start looking for the parallel opportunities is 



BLOCK DESIGN AND ARCHITECTURE 151 

User Interface 

Data Type Checking Messages 

Data Routing 

Dialogs 
Data Painting 

File System Interface 

Window Manipulation 

' ' Main Application Number and Data File 
Window Crunching Operations 

Routines 

Figure 10.1 User interface black box structure. 

Application 
Configuration 

this initial black-box foundation. As you break apart these boxes further, 
as will be done in the next two chapters, you will begin to see how this 
seemingly simple task will surely lead to better-performing and more 
readable, understandable, and maintainable code. 

In looking at writing multithreaded programs, it is easy to look for 
tasks that you can run in parallel. In fact, I used to say that you should 
always be looking for what else you could be doing when performing 
functions. You should actually be breaking down your tasks into func
tions as just described, but rather than look for what else could be done 
at that time, look for the things that you can't be doing while that func-



152 USE BUILDING BLOCKS OR YOUR APP WILL CRUMBLE 

tion is executing. You'll create groups of functions that cannot be run in 
parallel, and you will put them on the same thread of execution. Then 
you'll take another group of functions that cannot be run in parallel, 
but can be run concurrently with the first group. You will put these on 
another thread. In this fashion, you will create pools of multipurpose 
threads to efficiently thread your application at the design stage, and 
not later on when it is most difficult to code and more importantly, to 
debug and maintain. 

LETTING THE OPERATING SYSTEM DO IT FOR YOU 

When working on the foundation and the black boxes, keep in mind that 
the operating system can do a large part of your work. For example, 
when you work on the user interface subsystem of your application, keep 
in mind that the Presentation Manager user input subsystem delivers all 
user input to your application. This way, you don't have to be concerned 
with reading keystrokes or the mouse movement. All user actions are 
given to the application in the form of PM messages. 

When dividing and conquering the print job, keep in mind that the 
operating system provides independence from device specifics, so much 
of the work of drawing the output on the printer is already done if it is 
on the screen. By understanding this, you can see that it is efficient to 
have a box that draws the current data. This box can be used to draw on 
the screen, the printer, or any other output device. 

Since OS/2 provides the presentation space interface for drawing, 
all the application needs to do is to have a PS for the screen, a PS for the 
printer, and one function to draw. This can be taken even a step further 
by understanding how user input functions and how you can write the 
drawing function on a separate thread. 

For example, drawing is usually a time-consuming operation. Re
call how the system processes user input through the single queue. If 
the user requests something to be drawn and the application is single
threaded, all user input is held up until the drawing is done. By placing 
all drawing functions (or any time-consuming function, for that mat-



BLOCK DESIGN AND ARCHITECTURE 153 

ter) on a separate thread, you can ship the task off to be processed 
asynchronously while the main thread continues to process user input. 
Notice how this holds true for screen drawing and printing so that you 
can reuse the drawing code. Also understand however, that in the cur
rent Intel implementation of OS/2 this architecture will hold up all user 
input in the system. Under the Workplace architecture as outlined in 
Chapter 7, however, the event/session manager controls user input, so 
other applications not requiring the single queue (along with session 
switching) will continue. 

This only scratches the surface of how to begin building the founda
tion of your application. The concepts are simple; the most important 
thing to remember is to go though this phase of design slowly. Because 
it is so straightforward, it is tempting to draw a couple of boxes and 
completely skip the important issues. 

SUMMARY 
Create your box foundation and define all your inputs and outputs. Begin 
to subdivide the main subsystems one by one, but all the time looking at 
the others to see where you can share and reuse. 

In the following chapters in this section you will see how to break 
these subsystems apart into components, how to look for opportuni
ties to let the system work for you rather than reinventing the wheel, 
and ways to keep your functions separate while mixing functions and 
threads. 





CHAPTER 

Designing the User 
Interface 

T he first part of your application that will be running is the user 
interface. In general, you will code some sort of interface to the 
main worker code to begin testing both. Why not make the user 

interface as close to your final product as possible? 
The OS/2 Presentation Manager is a window-oriented presentation 

medium. The first part of the interface needs to be what the windows 
will look like and how they will interact with the user and each other. 
Windows display data, act upon commands from the user, and solicit 
data from the user when the situation dictates. 

WINDOW DESIGN 
The window design of your application defines how easy it is to use 
the application. The interaction between the user and the application 
is directly affected by how well you work all of the functions of the 
application into windows. 

155 



156 USE BUILDING BLOCKS OR YOUR APP WILL CRUMBLE 

CUA 

There are things you should keep in mind when working out how 
your windows will show data and receive input, and there are tools to 
help you do it. For example, when should you prompt the user for in
formation through a dialog window versus having the user take the ini
tiative to set options? How should the menu bar be structured? Should 
you use submenus from the menu bar or actions directly? Will there 
be draggable objects, representing data, within the windows? How can 
you get the skeleton code of the user interface running as quickly as 
possible? Are there guidelines to help you decide? 

The answers to these questions are mostly up to you, the designer. 
There are guidelines and tools to help you make your applications look 
and feel consistent with other OS/2 applications. These tools will also 
help you generate the code for the foundation of your user interface. 

CUA (Common User Access) is a piece of IBM's Systems Application 
Architecture (SAA). CUA defines a set of guidelines for how applications 
should present data and interact with users. CUA has undergone several 
changes since its introduction in 19 8 7. The specifications and guidelines 
have been developed and updated based on studies of usability and 
productivity. 

An example of CUA is the guideline on how a menu should behave 
when selected. An action bar item, when clicked upon, should not cause 
execution of an action but should only display a pulldown menu. Ac
cording to CUA, all action bar items should display a pulldown. 

Another example is the behavior of menu items. Menu items within 
a pulldown should cause an action to occur when selected. CUA also 
says that any menu item that causes a dialog window to be displayed 
should be followed by an ellipsis ( ... ). Figure 11.1 shows an example 
of such a menu, where the "Open" item has an ellipsis indicating that 
a dialog will appear when this item is selected. These guidelines help 
users avoid surprises when using their software and lower the learning 
curve of applications conforming to CUA. 

CUA is a slowly moving target. You can aim at and hit it, but with 
ever-increasing studies and knowledge CUA will likely change some-



DESIGNING THE USER INTERFACE 157 

Figure 11.1 Menu bar with ellipsis. 

what within a few years. The CUA guidelines are just that: guidelines. 
No law says that you must follow all of them. The biggest advantage 
of sticking close to CUA is to benefit from the studies and other work 
done by IBM on user interfaces. Another important thing to consider 
is to keep the learning curve of your applications low by making them 
consistent with the operating system and other applications. 

CUA should not limit your creativity and your efforts to make your 
programs flashier and more interesting than those of your competitors. 
However, by staying somewhat in line with CUA, you get the best of 
both. 

Presenting Data 
A window is defined as a rectangular area of the screen upon which 
data is displayed and input from. After that, it's up to you. This is one 
area that will differentiate your application from others. 

What you sometimes think of as a window, which is called the stan
dard window for convenience, is really a complex network of windows. 
Figure 11.2 shows the parts of a standard window. Each of the pieces 



158 USE BUILDING BLOCKS OR YOUR APP WILL CRUMBLE 

Application Icon Maximize Button 
Actton Bar 

1l••Vertical 11111 Scroll 
Bar 

Client Area 
(Application Workspace) 

Figure 11.2 Parts of an OS/2 standard window. 

of a standard window is a window itself. The area where the data is 
presented is called the client area, or client window. 

The first order of business in window design is to decide how you are 
going to present data in the client area and how you want to allow the 
user to control it. There are many types of applications, from CAD and 
graphical drawing programs, to spreadsheets and word processors, to 
database and statistical analysis programs. There are types of programs 
not even thought of yet. 

The way you display data in the client area is completely up to you, 
as is how you control it. OS/2 provides control windows to help you 
manipulate how the client area is shown, and there are some commonly 
accepted practices. Of course, you can use these ideas as you see fit. 

Window Controls 
Some considerations when making your initial decisions include wheth
er the data will be scalable or fixed-size within the window or whether 



DESIGNING THE USER INTERFACE 159 

you plan to implement drag-and-drop functions for the data. These items 
help determine how your main window will be structured. 

If, for example, you plan to have the data displayed in the window 
resized when the window is resized, scroll bars are not necessary for the 
client window. This depends on the application type, of course, but for 
word processing or typesetting programs, for example, you will likely 
want to keep the data at the same size no matter what the size of the 
window. You can provide the user with zooming functions, but in general 
WYSIWYG applications the data is scrolled using scroll bars rather than 
always sized to fit its window's current size. 

Graphics-oriented programs, on the other hand, are not as particu
lar when it comes to sizes, and the data can be scaled to fit the window. 
You can provide scroll bars and possibly an application option to turn 
off dynamic sizing of data and give the user the choice of scrolling or 
sizing. Of course, you can do this for the other types of applications 
previously mentioned as well. 

Drag-and-drop functions on data do not affect the client area's con
trols as such, but it is important to decide very early whether you will 
be implementing this type of function when you are putting together the 
window design. The main reason has to do with multiple documents 
(files, graphs, or what have you) and moving data between them. 

Wouldn't it be useful for a circuit designer to map out a design and 
be able to drag and drop it onto any circuit boards being worked on? 
How about simply grabbing a section of a spreadsheet and dragging 
it to a letter or report? You may notice that these functions can be 
accomplished with SOM, DSOM, the PM drag-and-dropAPis or even by 
writing the mouse and data handling code yourself. The considerations 
of using the various methods of data interchange will be discussed in 
depth in Chapter 16. 

Dialogs 
The implementation of dialogs in OS/2 has gotten easier from release 
to release. Dialogs are special-purpose windows with a set of controls 
designed to solicit data from the user (carry on a dialog with the user). 



160 USE BUILDING BLOCKS OR YOUR APP WILL CRUMBLE 

Unlike standard window controls, dialog window controls display 
and can receive data controllable by the application and the user. Stan
dard window controls (usually called frame controls) are those that sim
ply send notifications to their owner so that the owner can perform an 
action based on the user's interaction with the control. An example is the 
Minimize button. When the user clicks on the Minimize button, it sends 
a notification to its owner (the frame of the standard window) to tell 
the frame that the Minimize button has been selected. The frame, as a 
response to this notification, minimizes the standard window. The Min
imize button by itself does not perform a complex function-it simply 
does as any control does: It notifies its owner of the action. 

A dialog control, such as an entry field, is designed to present and/or 
receive data. Other such controls are listboxes, multiline entry fields, 
and radio buttons. 

Early in OS/2 's evolution, only the ability to present dialogs was 
available. It was up to the designers and programmers of applications 
to define dialogs for such tasks as opening files, selecting printer desti
nations, and selecting fonts. This led to a large amount of "reinventing 
the wheel," as each application had to come up with its own variation 
on the File Open dialog, for example. As OS/2 matured and continues to 
mature, standard dialogs are being added to the base operating system 
for use by applications. 

Two such dialogs are the File Open/Save dialog and the Font Selec
tion dialog. These are predefined by the system (according to CUA, of 
course) and are available to applications through a simple APL You can 
customize some parts of the dialog by manipulating the data structure 
you pass to the APL 

Dialogs are an important part of the application. They are a primary 
method of getting data into the application, and how your dialogs look 
and feel determine in large part how your application's usability is rated. 

Dialogs should be clean and efficient, and the application should not 
have so many layers of dialogs that it begins to look cluttered. Many 
people ignore the basic precept of dialogs: A dialog is not a lingering 
conversation. A dialog is meant to be interacted with and then dismissed. 
All too often I have seen applications in which the dialog needs to be 



DESIGNING THE USER INTERFACE 161 

displayed during a large part of the application's operation. Have the 
conversation with the user, then end it to have another later on. 

Stick to this simple principle: The user will select an action. If you 
can, perform it. If not, put up a dialog to get the details, then get it out 
of there. 

Screen real estate is valuable, especially in a system in which you 
will have several applications going at once. The last thing the user 
wants to do is to have to keep moving dialog windows out of the way to 
see what he or she is doing. 

Now that the purpose of a dialog window is clear, you need to decide 
the most efficient way to get the information from the user. A dialog 
should flow much like a printed magazine advertisement. The main 
idea and primary pieces of information should be near the top of the 
dialog, with secondary information below it. It should flow smoothly 
from left to right (keep in mind considerations for countries that have 
written language that flows from right to left) and down the window. 

Along with the flow of the dialog is the choice of controls for the 
different pieces of information you need to solicit/present. For example, 
you could simply use the entry field control for each piece of informa
tion. It is easy to code, but not very efficient or intuitive. OS/2 provides 
a variety of controls for different uses. 

For example, to ask the user to select from a fixed list of choices, a 
listbox is appropriate. If the list is very short, and you might like to show 
the user a preview of his or her action should the dialog be closed with 
that item selected, you might choose a set of radio buttons. If the list is 
dynamic, or you want the user to be able to type in a selection should 
the desired one not be in the list, a listbox or combo-box, respectively, 
would fit the bill nicely. 

All of the controls in OS/2 are described in detail in the OS/2 pro
gramming reference books. The important thing to remember is to keep 
it simple! All too often, programmers want to add flash and intricate
looking function to parts of their code. In the case of dialogs, it is coun
terproductive. The dialog needs to be smooth, easy, and intuitive. Save 
your flash energy for the data presentation or computational features. 
Make the user do as little work as possible. 



162 USE BUILDING BLOCKS OR YOUR APP WILL CRUMBLE 

One suggestion is to prefill in some fields for the user, based on 
system defaults or the action the user is currently performing. Don't 
limit their choices and options to change your assumptions; the whole 
point is to make the user more productive-not require answers to more 
questions. 

One other fine point about dialogs is the issue of modality: how 
accessible other windows are while the dialog is processing. A dialog 
window may be modeless or modal. A modeless dialog does not inhibit 
interaction with any window while the dialog is being processed. A 
modal dialog, on the other hand, inhibits the user from interacting with 
other windows while it is up. 

There are two types of modal windows: system modal and applica
tion modal. A system modal window is one that inhibits user interaction 
with all other windows in the system while that dialog with the user 
is going on. Application modal windows, as the name implies, inhibit 
only user interaction with other windows within the application. More 
precisely, such a dialog inhibits interaction with the owner of the dialog 
and all children of that owner. 

This leads you to make careful decisions with your owner and parent 
hierarchy, especially with application modal dialogs. If you look care
fully at the definition of an application modal dialog, you can see that if 
the owner and parent of the dialog window is the main window of the 
application, you will inhibit not only all children of the main window, 
but also the dialog itself, since it is a child of the main window too! You 
will have a hang situation in your application. 

Properly managed, modal dialogs can be a powerful tool. For exam
ple, you could use an application modal dialog to change settings in the 
application without worrying that the user may be changing something 
else within the window while the dialog is going on. Applications usually 
don't have much use for system modal dialogs, but application modal 
dialogs can make your applications work more intuitively. 

How dialogs are built is another important aspect of dialog manip
ulation. Dialogs can be built using the dialog editor to build a resource 
file to be bound to your application, and in fact, that is the generally 
accepted method of doing it. This dialog template in the resource file is 



DESIGNING THE USER INTERFACE 163 

built in memory when you load it using WinLoadDialog. Dialogs built in 

this fashion are relatively static. 
You have several other, more dynamic options when you build di

alogs. One, for example, is to build that dialog template in memory. 

You would execute its function the same way as if you loaded it with 

WinLoadDialog, but in this case, you've already loaded it, since you have 

built the template in memory. 
Another way is simply to create a window with the appropriate con

trols (push buttons, combo-boxes, listboxes, and so on) to function like a 

dialog with the attributes you desire. The trade-offs here are that as you 

move down this list of options, you have to add more code at each step. 

A dialog in the resource file requires the smallest amount of code 

to build and operate. Building the template in memory is a bit more 

involved, and of course, creating all the windows and controls on-the

fly is the most involved. In all cases you will need a window procedure 

to govern the behavior of the dialog, but each step is more complicated 

in how it is created. The added benefit is the flexibility. So if you need 

a dynamically built dialog, you know what you're getting into at each 

step. 

Application Defaults 
Keeping with the simplicity theme, you should have the ability to prefill 

dialog fields with information from the overall system configuration 

or individual application configuration options. By using application 

defaults, you can avoid asking the user questions for the most common 

tasks. An example would be a default printer for the application. 
By having the user specify a default printer when the application is 

installed (of course you will provide a menu option for the user to change 

any application default setting anytime), you can avoid asking the user 

for the printer every time a job is to be printed. The user could ask to 

have a job printed, and a simple confirmation dialog would appear. If 
the user has no changes from the application defaults, it is a matter of 

one mouse click or one keystroke to complete the job. I have seen some 

applications that provide a default printer, but they just query the default 



164 USE BUILDING BLOCKS OR YOUR APP WILL CRUMBLE 

printer for the system every time they start up. By saving the application 
defaults, you preserve user choices across application invocations, not 
just within the same one. 

Somewhere on the action bar you should have a menu so that the 
user can change any of the application defaults anytime. Again, as with 
dialogs, keep it simple. In any type of dialog you can overdo it. Don't 
force the user to fill in every option, especially the obscure ones. Pick 
the most common functions, such as where to pull data files from or 
where to print data to, and make those available as application defaults. 

To sum up dialogs: Keep them simple. The faster, the better. Dialogs 
are an important part of your application. Just as with the action bar, 
they determine how easy or hard it is to work with the data in the 
application. The features and functions are only half the battle. If it is 
too hard to use the functions, users will go elsewhere. 

Dialogs determine how elegant or clunky your application is and 
how it is perceived in the marketplace. Try to avoid nesting dialogs 
wherever possible. Just as with nested menus, it becomes annoying to 
finish with one dialog only to have it bring up yet another for another in
terrogation session. If you have involved information to gather, see how 
you can simplify it. You may even want to have an option for different 
detail levels for different types of users. 

Try to anticipate what the user is asking, and prefill fields. If you 
have many pieces of information you need, move as many as possible to 
application defaults. One other consideration is that you are technical. 
Your users may not be. Some choices that you might want, users may 
never even care about. I don't suggest removing large functions, but 
keep in mind who your target audience is. 

The easier the dialogs and menus are, the more productive your 
users are, and the more they will rave about how easy your application 
is to use. 

Application Development Tools for OS/2 
The complicated interactions between windows in your applications 
can seem very intimidating. Recall that each control is a window and 



DESIGNING THE USER INTERFACE 165 

each window interacts with at least one other or the user. Some windows 
own many others and have to coordinate behavior. Defining efficient and 
useful dialogs means that you will be creating and destroying hundreds 
of windows throughout the execution of your application. Just writing 
this user interface code can keep you occupied just by its volume. 

Traditionally, user interface code tends to be as complex as (or even 
more complex than) the code that does the real work in the application. 
This does not mean that you have to spend a large part of your develop
ment budget on user interface code. Computer-aided software engineer
ing (CASE) tools have been on the programming scene for years. For 
some systems, they can be used to develop an entire application; this is 
especially true of database systems. CASE tools can come in a variety 
of flavors. Some take the form of interface builders and code genera
tors, whereas others are full-blown object-oriented languages with their 
own runtime and object libraries. As with anything, each has advan
tages and drawbacks. For simplicity's sake, they will all be referred to 
as CASE tools here, since they are all tools for computer-aided software 
engineering. 

By using entity-relationship diagrams, among other methods, CASE 
tools can be used to "write" entire applications. Although there are some 
complete object-oriented languages, such as SmallTalk, you can also 
find full application development environments for OS/2 that will go 
from helping you write user interface code, to helping you port existing 
application source code, all the way to actually being the application for 
you. 

The main function of a CASE tool is to help the programmer write a 
program without writing a lot of code. Depending on the tool, it will gen
erate objects, executable code, executable code that requires the CASE 
tool's runtime library, or even stand-alone source code that can sub
sequently be modified. In any case, these tools are designed to make 
some of the more routine tasks of programming faster and more effi
cient, leaving the programmer free to tailor the design and optimize the 
application. 

Since OS/2 2.0, there have been huge advances in the number and 
power of CASE tools available for OS/2. Since this book is not designed 



166 USE BUILDING BLOCKS OR YOUR APP WILL CRUMBLE 

to be a product review, they will not be compared and contrasted; rather, 
I will simply present my own personal view on what I prefer in the tools 
and what they provide. There are advantages and drawbacks to the 
different types of tools, not just in different vendors' implementation of 
the tools. 

In the early days of OS/2 development, application development 
tools were limited to GUI generators and high-level languages. There 
was even an OS/2 version of SmallTalk. Since then, however, the num
ber of choices has grown significantly to application porting tools, API 
translators and rapid application development environments in addi
tion to more function in those GUI generators and languages. We'll 
start out with the GUI generation tools, then move on to the API lay
ering and application porting tools, and finally on to the development 
environments. 

GUI generation tools were the first to arrive on the OS/2 scene. Most 
of these tools allow you to "paint" windows, specifying colors, sizes, 
attributes (such as sizability and visibility), window controls, text, and 
other behavioral aspects. Such tools include GPF from Microformatic, 
and Kase: PM VIP from Kase Systems. This type of tool usually takes the 
painted windows and generates code for your use. 

This type of tool is very good for those who have not done an exten
sive amount of PM programming, as it takes a lot of the guesswork out 
of owner and parent window relationships, programming dialog flow 
and window control and communication. The development process with 
these tools is usually iterative, where you will paint some windows, gen
erate the code and add in your own functions (since GUI generation 
tools give you only skeleton window code), compile the code, observe 
the results, and then do it all over again until you get the desired results. 

The code generated by these tools is usually pretty good, and usually 
well commented. It takes a great deal of the burden of writing routine 
window management code out of your hands so that you can concen
trate on data display, graphics routines, printing, threading, and data 
manipulation. In most cases the regeneration of the application code by 
the tool after inserting your own code will not affect that new code, so 
you can add windows later and have the tool regenerate for you, without 
fear of destroying custom pieces you've written. 



DESIGNING THE USER INTERFACE 167 

One drawback, however, is that you are locked into the programming 
preferences of the tool developers. For example, if you want to send a 

message to a window owned by another, you could call WinWindowFromID 

to get the handle of the target of the message, then call WinSendMsg (or 
WinPostMsg) to get the message to the window. Alternatively, you could 
call WinSendDlgitemMsg which in essence, sends a message to the window 
with the ID specified that is owned by the target of WinSendDlgitemMsg, 

effectively combining the two calls into one APL While this example is 
simply a matter of programming style, there are many such cases that 
could affect application size and performance. 

Some tools, such as Kase:PM VIP, have replaceable modules that 
allow you to rewrite some of these preferences (called the Knowledge 
Base) and add others. 

The advantages of this type of tool are that it is fast, you get native 
source code, there are no runtime libraries to add overhead and you 
have the flexibility to modify any of the code given to you, since it is all 
source code. Some of the drawbacks are that you can do only the things 
the tool allows you in terms of painting your windows, you either have 
to live with or work to modify the code given to you if you are not happy 
with it, and many of the tools integrate your code with "user-exit" type 
functions rather than allowing you to add functions "in-line." 

If you are writing code from scratch (i.e., not porting an application), 
have little PM programming experience, and want to get your user in
terface up and running quickly, this is the type of tool for you. The code 
is highly tunable (after all, it is source code) and you can, at some point, 
make a break from the tool if you want. One thing to remember, though, 
is that these tools generate interfaces. There are some that can do much 
more for you. 

Another type of tool is the porting tool. One tool that has been around 
for some time now is an API mapping layer called Mirrors. This will take 
a program written to the Microsoft Windows API and translate those 
calls, on-the-fly, to OS/2 API calls. This technology is becoming dated 
and while effective, is not a good strategic alternative. 

Another one of these tools that operates on source code is SMART. 

This is from One Up Corporation and stands for Source Migration Anal
ysis Reporting Tool. Quite simply, it takes source code written for a 



168 USE BUILDING BLOCKS OR YOUR APP WILL CRUMBLE 

platform such as Windows, and it ports it to OS/2 source code for you. 
For functions it can port, it will. For those it cannot either because there 
is no direct mapping, or because it does not understand what you were 
doing, it will provide recommendations and even estimate how long it 
will take for the remainder of your porting effort. 

SMART is very effective in porting your source code from Windows 
to OS/2, and it is possible for this tool to be extended to give you common 
source code bases across platforms, by taking code for other platforms 
and giving you OS/2 source code or vice versa. This provides you a 
great deal of flexibility since you have the source code, the benefit of the 
SMART programmers giving you advice on how to convert the code it 
could not, and the opportunity to tune the code as you wish. 

The caveats to this approach are simply those of any port. Since OS/2 
is the first operating system in the PC arena to support the programming 
of threads within processes, the architecture of your resultant ported 
OS/2 code is restricted to that of the original environment. Recall the 
discussion of adding threads to an application after coding is done. 
While SMART is excellent for getting you a native OS/2 application, it 
should be viewed as a stepping-stone to fully exploiting all that OS/2 
offers. 

Applications ported in this manner will not utilize threads, the full
featured rnernory management subsystem, or other functions of OS/2 
that make it a more flexible system to write for. Tools like SMART give 
you the ability to have a native application quickly, upon which you 
should learn and build. Of course if you're writing an application from 
scratch, you should look into the first group of tools discussed, or the 
next group, the application development environments. 

Another option open to you is not a new concept, but there are 
new tools in this area corning on the market all the time. This is the 
library product providing libraries you can write to. These are usually 
positioned as extensions to the OS/2 API, and the one I arn thinking of 
in this instance is the User Interface Class Library (UICL) from IBM. 
This product is a set of classes that you can use in your applications 
and derive new classes from, or just instantiate yourself. The idea here 
is that the OS/2 API, and no API for that matter, is ever as complete as 



DESIGNING THE USER INTERFACE 169 

programmers want it to be. The market is still open for these tools, and 
many excellent ones such as the UICL are available today. 

Application development environments come in many flavors. One 
thing they usually share in common is their reliance on runtime li
braries. The trade-off in using these tools over some of the previously 
described ones is that application development environments are used 
for their speed of application development over their performance tun
ability. Let's look at the SmallTalk language for example. 

A good introduction into the world of object-oriented systems is 
SmallTalk. This is a product that is available on many platforms, includ
ing OS/2. SmallTalk is a language and a development environment that 
uses object definitions based on a class library it has built into it and 
allows you to construct on top of that. SmallTalk for OS/2 is consistent 
in use with the versions on other platforms, which makes its learning 
curve lower than those of other tools. SmallTalk generates executable 
code that requires the SmallTalk runtime and class libraries and uses 
internal SmallTalk routines. 

SmallTalk is itself an object-oriented language, and its graphical im
plementation is similar across all the platforms on which it is supported. 
This is an advantage in and of itself, since once you have used SmallTalk 
on one platform, it is virtually the same on the others. It incorporates 
true object-oriented functions and abstracts your applications at such 
a high level that you will likely not have to deal with much source 
code (depending on how much you consider the SmallTalk definitions 
source code). SmallTalk's language uses its existing complex hierarchy 
of classes to allow you to build your own classes and hierarchies to 
complement its own. It is also neatly packaged and can be installed on 
any system with a minimum of work. IBM has developed and sells an 
implementation of SmallTalk in addition to the one put out by DigiTalk. 

Taking the SmallTalk concept a level higher is the VisualAge applica
tion development environment from IBM. This is not a GUI generator, 
or a programming language or object manipulator like SmallTalk. Vi
sualAge is an environment that allows developers to rapidly develop 
full-functioned applications in an object-oriented fashion without writ
ing source code. 



170 USE BUILDING BLOCKS OR YOUR APP WILL CRUMBLE 

One might argue that this is the end of programming as we know it. 
Not quite. While VisualAge is an excellent development environment, it 
requres a significant amount of overhead to run not only the environ
ment, but also the resultant applications. You see, environments such as 
SmallTalk and VisualAge are powerful and fast, but they require you to 
use their runtime libraries. One of these applications is only as good as 
the support code underneath it. 

In contrast to the other two types of tools that give you source code, 
this type of application development tool gives you an application-not 
code. As such, you lack the ability to fine-tune the application depending 
on the environment. If your goal is to get a database transaction appli
cation online quickly, and you have workstations that are not small in 
terms of resources (memory and disk) then one of these tools is for you. 
In fact, VisualAge uses the IBM SmallTalk as its base. 

Other such tools that do not require huge run time libraries are VX 
REXX from Watcom and VisPro/REXX from Hockware. These are appli
cation development environments that are object-oriented, and will give 
you a fully functional application, but they use the OS/2-supplied REXX 
feature as their runtime base, thus reducing the amount of overhead 
such as application development environment might use. 

You can see that in only a short time, a wide variety of development 
environments have come on the scene and, by the time you read this, 
there will probably be more. 

Object Technologies 
Still other application development tools lean toward the object-oriented 
technologies, assisting you in adding exremely advanced function to 
your applications, in addition to making the new technologies such as 
SOM and OpenDoc more accessible and easier to use. 

As you've seen, and will be elaborated on a bit later, SOM is the core 
of the Workplace Shell. SOM has also been adopted by CIL and CORBA, 
and is fast becoming an object technology standard. While SOM is not 
terribly difficult to write code for, it is not much fun and it can be very 
slow. 



DESIGNING THE USER INTERFACE 171 

Just like any other technology, the tools took some time but, now 
compiler vendors are working to put SOM directly into their compilers. 
This technology is being referred to as Direct-to-SOM (DTS). DTS is 
analagous to putting database action verbs into your COBOL programs. 
DTS is an extension to the programming language you are using (mostly 
C) that allows you to invoke methods and define behaviors right inside 
your C code. This makes the development of SOM objects easier and 
faster. 

Another object technology that is coming on the scene is OpenDoc, 
which is an object-linking and -embedding technology that can be used 
by applications to allow users to easily compose compound documents 
from parts in various applications. For example, a user could take part 
of a spreadsheet, combine it with a document from a word processor, 
and add in a graph from a statistical package. Of course you could 
do this with the clipboard, or even with DDE, but OpenDoc provides 
an architecture that is being adopted by many companies to make the 
programmer's job easier by providing a framework rather than requir
ing everyone to figure out how each specific application communicates. 
OpenDoc adds a new dimension to your applications without adding 
new dimensions to your coding job. 

OpenDoc should be viewed as a tool for your applciation to extend 
itself and interoperate with others, rather than a feature for your appli
cation in a stand-alone environment. It's a way for users to take parts 
(and they are called OpenDoc "Parts") of applications and combine them 
to create online compound documents. In fact, many OpenDoc-based 
documents have "live" objects that are always updating, and are not 
always suitable for printing, but they are suitable for electronic sharing 
and viewing, showing the power of the technology. 

When selecting an application development tool, you need to look 
not only at the application, but also whether you are porting code, 
whether you care more about speed and size versus speed of devel
opment, and how much code you are willing to write. You may find that 
you will use a combination of methodologies. You could use SMART to 
migrate code from one area of an application being ported, . while us
ing Kase:PM VIP to write the GUI from scratch. Whatever you choose, 



172 USE BUILDING BLOCKS OR YOUR APP WILL CRUMBLE 

look at what your development environment is, and look at the intended 
execution environment. These will guide you to the most appropriate 
tools. 

WORKPLACE SHELL 
It is not only important to have a smooth flow within the windows of 
your application; it is equally important to make your application look 
like part of the computer system. This goes along with the integrated 
environment concept. The Workplace Shell (WPS) is an application 
launcher, as is any shell. However, the WPS provides much more to 
applications. 

It is just as important to use only the features of the shell that you 
need as it is to not overpower your application's function with fancy 
controls and unnecessary menus. The WPS is very powerful. You can 
create objects, new classes, and templates and implement many func
tions not previously available in the PC arena. You need to understand 
the architecture of the WPS and not overdo it with function; otherwise, 
just as if you had too many cluttered dialog windows, your application 
can appear clunky and hard to use. 

You should also avoid the replacement of parts of the shell on a 
user's system, as this directly affects the goal of intuitive use, especially 
if the user goes to another system that does not have your application 
installed and the behavior of the whole system is different. The WPS 
allows you to replace parts, but that feature is there for specific-purpose 
applications rather than the general computer user. 

The main purpose of the shell is to start programs and manipulate 
data in a consistent manner. As you already know, the Workplace Shell 
is an object-oriented shell that allows the users to use a computer and 
work the way they do without a computer: with objects. 

A program is an object, as is a data file or a printer. To look at a data 
file, you must somehow tell the computer what that file is. Generally, it 
is a data file created by some application, such as a word processor or 
spreadsheet. The shell works with associations between objects. That is 
how it knows how to open and present objects. When an object is opened 



DESIGNING THE USER INTERFACE 173 

(with a double-click), the object is opened with its default association. 
You will shortly see how these associations are built. 

Let's start with the basics of how the shell operates. Everything in 
the computer can be represented with a Workplace object. This object 
can be created by an application via WinCreateObj ect, or the user can 
create an object through templates, copying another object, creating a 
shadow of an existing object, and so on. Once the object is created, it 
can be manipulated by the user. How the object behaves is defined by 
the class it belongs to. 

Objects and Templates 
As you have seen in Chapter 6, there are three general types of objects. 
There is the transient object, which has no information stored across 
reboots, and then there are the abstract and file system objects, which 
store their persistence in the . INI file and file system, respectively. How 
do these objects work? 

In general, you can think of a program reference object as an entry 
in a program starter list. You can create a program reference that points 
to an executable file. When this object is opened, the program is started, 
and you can open data files or print, as you have in any other system. 
This is the application-launching function present in any good user shell. 
However, the WPS is more than this, and by intelligently implementing 
functions provided by the shell, you can change people's impressions 
of applications. Applications, data files, and other objects will become 
part of the computer, part of the user's work environment. 

Do not think of your applications any longer as programs that need 
to be fed data. Think of documents, spreadsheets, or any other object 
that the user wishes to work with. Now that you have that firmly set 
in your mind, let's move to the choices you have in presenting these 
documents to your users. 

Step 1-Simple Drag-and-Drop 
The first step most users will take in trying out the drag-and-drop func
tions of the Workplace Shell is to drag a data file to a program reference 



17 4 USE BUILDING BLOCKS OR YOUR APP WILL CRUMBLE 

object and drop it, hoping that the application will start and load the 
data file. Once there, subsequent files would have to be loaded the old 
way, by asking the application to open them. This is a good first step and 
a nice introduction into the object-oriented world of the WPS. 

Let's look at how to make this work. The WPS cannot do all the 
work; the application must do some. In order for this function to work, 
the application must be able to take a command-line parameter. That is 
simply how the shell does it. When an object is dropped on any other 
object-a program reference in this case-the shell will start the pro
gram (DosExecPgm) and pass the name of the dropped object as a param
eter. Assuming the application knows how to use this information, the 
application will start and will do whatever it will with the file dropped. 

A good example of an application that just about always takes such 
a parameter is a text editor. Usually, you can type edit filename.ext (as
suming the editor's name is edit) and it will start up, loading 
filename. ext as the file being edited. Some of the more complex ap
plications that have been written do not accept such parameters and 
will not work within this scheme. 

As you will see, there are several ways to cause your application to 
present documents or data through the functions of the WPS. This is the 
simplest. My recommendation is to support this, even if you are using 
other methods as well. The reason behind this is that it takes a trivial 
amount of code to support this and gives your users more flexibility 
in how they view objects. The worst thing you can do is tell the users, 
"That's the way it is. It is good for you and you'll do it this way." Keep 
things flexible. If you can do it with a minimum of work, go for it. 

Any application that can handle a command-line parameter can 
make use of the WPS drag-and-drop function this way. 

Step 2-Associations 
The next more powerful function you can use is associations. An asso
ciation is exactly what it sounds like: It associates an executable with 
type(s) of objects, either by object class or by filename extension. Asso
ciations can be created by the user or by the application. 



DESIGNING THE USER INTERFACE 175 

User-created associations are not relevant here, since we are dealing 
with keeping work away from the users and letting the applications do 
it. Application-created associations are straightforward. 

When an application is built, it can have a resource known as an 
association table ("assoctable"). The table is built using a resource defi
nition with the ASSOCTABLE statement. When the resources are compiled 
into the executable program, the assoctable is built. The first time the 
shell wakes up the object representing this executable, it looks to see if 
there is an assoctable. If so, it builds the associations for the application. 

For example, let's say you are writing a word processor called "My 
Word Processor," and all of its documents will have the extension of 
. MWP. Listing 11.1 shows what the ASSOCTABLE statement might look like 
in the resource file. 

When the program object is awakened for the first time by the shell, 
an association for the file type . MWP will be built, and a new template 
will be created in the Templates folder. Once this occurs, the user can 
then simply grab a template for an . MWP document and place it any
where. When the user opens the object, the program will be started 
and the particular document will be loaded. Of course, this still relies 
on the command-line parameter mechanism mentioned previously. The 
parameter-passing mechanism is the cornerstone of this function, and 
you can add to the ease of use further by adding the assoctable to the 
application. 

At this point, your users can drag a document to your program object 
and drop it there, or, if they wish, they can simply open the document 
by double-clicking on it, and it will be loaded into the program. This 
additional function of opening the data file object and the system starting 

ASSOCTABLE 
BEGIN 

"MyApp Document", "*.MWP", AF_DEFAULTOWNER,MYAPP.ICO 
"MyApp Backup Document", "* .MBK" 

END 

Listing 11.1 Sample association table in a resource definition file. 



176 USE BUILDING BLOCKS OR YOUR APP WILL CRUMBLE 

the application and loading in the data file was made possible by the 
association. 

Step 3-Writing an Object 
The next step is to write an object. This is not as difficult as it sounds, 
and it adds a new dimension to your application. There are some things 
you need to understand and be aware of when writing objects, but the 
power and flexibility you gain far outweigh the downsides. 

If you have been programming for the WPS for a little while, you 
will also notice that the WPS methods have been enhanced in OS/2 
Warp, showing the ongoing maturation of the architecture and the ro
bustness of the function. Many formerly undocumented methods are 
now exposed for your use and of those that were there, many have been 
reimplemented to provide more consistent and intuitive function, mak
ing your programming task easier. I highly recommend obtaining the 
latest programming manuals from IBM either in hard copy form or 
from the Developer's Connection CD-ROM. After reading the improved 
WPS programming documentation, you'll find your job easier than ever 
before. 

Application Launching 
As you have seen, the main purpose of the shell is to launch applications. 
The Workplace Shell provides functions to allow these applications to 
communicate with other objects in the system-most importantly, the 
data file objects they will be manipulating. At first glance, it seems in
tuitive to write your application as an object. After all, when a file gets 
dropped or an object is opened, it is started. You would think that you 
would want to simply implement your program as an object. 

This is not a good idea. As you will see through the next few pages 
of discussion, there are better ways of implementing object functions in 
your application than writing it as an object. In actuality, the best way to 
write this function is to write an object that represents your data file(s). 
Each type of data file you will manipulate should be a separate type of 



DESIGNING THE USER INTERFACE 177 

object (unless of course they all behave the same way, in which case you 
need only one class of object). 

Remember that users deal with objects. Your job as an application 
designer is to hide the fact that they are dealing with programs at all. 
Users should be working with objects, such as documents and graphs. 
By writing objects that represent real-world objects, you allow users to 
learn your applications easily. 

Objects that you will write (in the most general case; there will obvi
ously be many special uses and exceptions to this) are subclasses of the 
data file object. When you create a class with WinRegisterObject Class, 

you create a new template in the Templates folder. When the user "rips 
off" a new object from the appropriate template, you create a new object 
belonging to this class. 

The main method you will subclass in this new class of yours is 
wpOpen. When wpOpen is invoked in your object, you should call Dos

ExecPgm to invoke the executable that is your application. You can also 
pass these command-line parameters to tell the application what is go
ing on and why it is being started. In the most general case, the user is 
simply trying to work with the document, and the application's job is 
to provide it. As you will see shortly, this mechanism is useful for other 
object functions as well. 

Now you have some decisions to make. First, what do you do if the 
user opens another document? Should you start another copy of the 
application code? It is easy enough to detect whether a copy is already 
running, but you need to define an object interface to the application 
code to tell it to load another file. You could choose to use shared mem
ory, system semaphores, Dynamic Data Exchange, or any other IPC 
mechanism you like. 

There is no set answer as to what to do in these situations. It depends 
on your application and the functions you wish to provide to the user. 
Of course, you will most likely not want to start a separate copy of 
the application for each object opened, but you need to decide how 
you want to implement the communication between the object and the 
application. 

Recall the principles of object-oriented systems. The most important 
ones here are inheritance and the fact that all objects belonging to a 



178 USE BUILDING BLOCKS OR YOUR APP WILL CRUMBLE 

class behave the same way. Once you decide what you want to do, you 
have to write it only once. Each instance of the class behaves the same 
way. 

Single-Process Model Considerations 
Recall from Chapter 6 the single-process model of the Workplace Shell. 
Workplace objects run in the Workplace process. If you were to write 
your application as an object, several things would happen. 

First, if your object has a bug in its code (that will never happen, 
we all write great code the first time, right?), it can take down the shell 
process. This is a drawback of the design of the shell, but for now, it is 
a situation that must be dealt with. As discussed in Chapter 6, the shell 
process will be restarted and objects will be restored to their previous 
state. However, the more code you write to run in the shell process, the 
more risk you are taking. 

The other more important consideration to note in writing your ob
jects is that if the shell does need to be restarted, it is the whole pro
cess that needs to be restarted, since it is the process that is brought 
down. Other processes are not affected, but anything running within the 
Workplace process has to be restarted. If your application is part of, 
and is running in, the Workplace process, all updates to the object in 
the application will be lost. By using oosExecPgm to start the program 
when your object is called at wpOpen, the application is running in a 
separate process and is thus unaffected if the Workplace process has a 
problem. 

While the addition of DSOM to the function of the shell is important, 
the bottom line is that you should write only what you have to as an 
object and not code the whole application as a DLL to run under the 
Workplace process. This also gives you the added advantage of inheriting 
many of the methods from the parent class (most often the data file object 
class) and only subclassing (or overriding) the methods you need to start 
and communicate with the application executable. 



DESIGNING THE USER INTERFACE 179 

Interprocess Objects and Agents 
It is often useful to communicate with Workplace objects. An example 
is when a user takes a data file object, drags it, and drops it onto a 
running instance of the application. You need to know what you want 
to do in that case. Since your application is not a Workplace object, it 
cannot invoke the object's wpOpen method. One way to do this is to have 
a special Workplace object class whose sole purpose is to talk via IPC 
with the running instance of the application and invoke WPS methods 
at its direction. This is an example of an agent. 

An agent is a piece of code whose sole purpose is to transfer mes
sages between dissimilar communicators. In this case, the agent is a 
Workplace object, so it can invoke methods on other objects, and is 
also designed to talk to other processes-in this case an application 
executable-via IPC. Workplace objects can tell the agent things that 
may need to be passed to the executable, and the application can in 
effect invoke methods on WPS objects, even though it cannot do so 
directly. 

Another feature introduced in OS/2 Warp is the inclusion of DSOM. 
Whereas in SOM release 1 method invocations were restricted to ob
jects in the same process, DSOM allows you to write objects in different 
processes to invoke methods on each other directly through the SOM 
engine. The SOM runtime included in OS/2 Warp and beyond has the 
workstation version of the SOM runtime, which means that this will 
work between processes on a single machine. There is also a version 
of SOM that will allow this same function across networked comput
ers, although that version is not included with OS/2 (it can be licensed 
separately). 

Using DSOM, you can accomplish the same functions as with agents, 
but without having to write a dedicated communications object class. 
You could put subclasses of WPDataFile in your application, and manip
ulate those directly along with other data file objects from the applica
tion running as a SOM client. This way you get the benefit of the ap
plication being in a process separate from the Workplace process for 
protection, but still have access to the power of subclassing the WPS 
class hierarchy. 



180 USE BUILDING BLOCKS OR YOUR APP WILL CRUMBLE 

Structurally, however, you should still keep the majority of your code 
out of the Workplace process for stability, and use objects to represent 
things the user will operate on, and the application is that operator. 

Subset Function 
Other features you may wish to add to your application are something I 
call subset functions. Subset functions are those that need the applica
tion (as the operator or manipulator of data represented by objects) to 
perform, but the user may not wish to view the object or manipulate the 
data. 

Object-Oriented Printing 
An example of a subset function is a printing function. When the object
say, a document-is dragged and dropped on a print object, the docu
ment object is called at its wpPrintObject method. The default or in
herited method is that of a plain text or printer-specific file, since the 
superclasses of the objects are made very generic. You will likely have 
data files in some format specific to the application, so a plain text or 
printer-specific file print would not work. 

Another factor is that by using the superclass's wpPrintObj ect inher
ited method, you are bound to the defaults set up for that printer. No 
customization is possible. 

When you write your document object class, you should override the 
wpPrintObject method and have some interface to the application that 
starts only a subset of the application. This is the reason I call this a 
subset function. An example of a subset function is the object-oriented 
printing you have just seen. 

An example of how to design this is that if your document object is 
called at wpPrintobject, you call DosExecPgm on the executable, passing 
in the filename to be printed, and some sort of flag to indicate that the 
user does not want to do anything with the data other than print it. As 
a response, the application will start and load the specified data file but 
will not show it in its main window as if the user wanted to update the 



DESIGNING THE USER INTERFACE 181 

data. Rather, this flag will signal to the application to put up its print 
dialog. 

You may not want to go even that far and instead just have the 
application read in the data file and print it to the printer specified, 
using the application defaults. My recommendation would be~to put up 
a print window, however. If the user wants to accept the application 
defaults, one more keystroke or mouse click will not make a difference, 
and you will be providing the flexibility to allow the user to change 
anything he or she wishes. 

Once the data has been completely spooled, the application termi
nates, where the user does not even know it ever started. The user simply 
dragged a file onto a printer, was asked to make sure this is the way it 
should be printed, and off it went. No more do users have to start the 
program, bring in the file, select to print the file, and then close the 
application. Now you're letting the users work with objects represented 
in the computer the same way they do with tangible objects. 

You might say that starting the application is overkill. I agree with 
you. That is one way to do it, and I showed it to demonstrate an impor
tant point. That point is using DLLs to share code between processes. 
DLLs are not used just to write a series of applications like an office 
suite. How about if the code needs to be called from another process. A 
system process. Say, the shell process? 

If you externalize your printing function to even the application and 
put it in a DLL, that print function can be called from anyone importing 
it. You can streamline the printing of an object with a custom data file 
format by putting the print code into a DLL. Let's look at how this might 
work. 

Your print function is called MyPrint. This function resides in a DLL. 
When the user of the application asks it to print the current file, My Print 
is called from the application. It does not matter that it is in a DLL, 
the application linked with its . LIB file to be able to call the function. 
My Print has a set of parameters and when called from the application, 
an indicator in the parameters tells it so. It knows it does not need to 
open or load a file, it just takes the information from the parameters. 
Maybe it puts up the Print dialog box with printer properties to allow 



182 USE BUILDING BLOCKS OR YOUR APP WILL CRUMBLE 

the user to change any of the defaults. When the user selects the OK 
button, the printing begins. 

Now look at it from the shell's side of things. A user has dragged 
an object of this application's data file class onto a printer object. It is 
invoked at wpPrintObj ect. Since it is an application-specific file format 
and not plain text or printer-specific, wpPrintObject is overridden in this 
class. The override will take some data from the WPS, such as the name 
of the file the object represents and the printer information supplied 
when wpPrintObj ect was invoked, and it will pass these things, along with 
a flag identifying the function call is coming from the shell, to MyPrint. 
MyPrint will do things similar to when called from the application, but 
notice that no additional process was started. The Workplace object 
class (yours) simply called MyPrirtt, because when you built the object 
class, you linked it with the .LIB file for the DLL that contains MyPrint. 

Taking this one step further, recall that long jobs should be done on 
dedicated, or separate threads. When printing in an application, you 
may call DosCreateThread to start a printing thread. You could do that 
in your object class as well, because if you just called MyPrint from 
the object, you would be executing your printing function on one of the 
shell's threads. 

Another way you could do this, which would only have you coding 
an additional thread once is to have the print thread created in MyPrint. 
This way, regardless of who calls My Print, whether it be the object class 
or inside the application, it will start up the print thread and return, 
where all of the dialog display, printing code and clean-up execute on 
this new thread. Now you've only coded the thread start up in one place, 
and you get the benefit in both. Of course when called from the WPS the 
thread runs in the context of the Workplace process, but you'd be doing 
that regardless of whether it was on a separate thread. If you are very 
concerned about the protection aspect of this, just use the first method 
of starting another process with DosExecPgm. 

You can see how the extensibility of the system gives you the options, 
depending on how you want or need to reduce code size, code path, and 
general overhead and to protect from errant code. This is an excellent 
example of using DLLs to share code among processes. 



DESIGNING THE USER INTERFACE 183 

To Write an Object, or Not to Write an Object 
The real question is how far to go when writing an object, or if you 
should even write an object at all. If your application is something very 
straightforward, such as a text editor, the choice is simple. By using an 
assoctable and taking command-line parameters, you can accomplish 
all the things you need. Printing will work just fine, because you are 
using ASCII text files or in some cases, files with embedded printer 
control codes. If you are writing such utility programs as these, the shell 
already gives you most of the functions you need. That is the beauty of 
the object-oriented system. Inherit what you need; if you need nothing 
else, you're done. 

If you are going to be storing files in some format other than plain 
ASCII or require more complex function, then a custom object, repre
senting data files, is probably the right way to go. This gives you the 
flexibility of drag-and-drop functions and data communications, as well 
as everything the previous method gives you. Again, by using the object
oriented principle of inheritance, simply override the methods you need, 
such as wpPrintObject, and let the superclass's methods handle the rest. 

I cannot stress enough that you should not implement your entire 
application as an object. There may be some cases where this is ap
plicable, but for the majority of programs that will be written, this is 
undesirable both from an application standpoint and an overall system 
standpoint. Applications are really not objects. Documents, printers, 
FAX machines, and graphs are all objects and should be manipulated 
by "behind-the-scenes" application code. Computing is moving from an 
application-oriented environment to an object-oriented environment. 
Use the application as the operator and the object as the operand(s). 

SUMMARY 
By now you should have a good idea of how to design and map out 
the user interface. The first things the user sees are the objects and 
templates you create, either through assoctables or explicit shell calls 



184 USE BUILDING BLOCKS OR YOUR APP WILL CRUMBLE 

to create new ones. The user has several ways in which to interact with 
these objects. 

Once the user opens an object, the application code comes into play. 
The window design should be smooth, flowing, and intuitive. Dialogs 
should not look cluttered, and you should ask the user as few questions 
as possible. Application defaults help you maintain user preferences and 
ask fewer questions per execution of a function. 

The main point behind this discussion is: Keep it simple. Don't over
whelm the user with flash and glitzy interfaces; this only confuses the 
user. Use that time and energy to add the flash and glitz to the data you 
are displaying. Better to offer a 3-D view of data than to add in three 
more dialog windows of options on window colors. 

As much as you may hate to admit it, it is not always function that 
makes or breaks an application in the market. The user interface-its 
power and ease of use-is what sells programs. 

Hide the program from the user. The users do not want to see your 
application. They want to see their data in the way they are accustomed 
to looking at things. Give them new and exciting ways to view and 
manipulate their information to make them more productive. The user 
interface is a tool to communicate. Don't overshadow the function of 
your applications with a complicated user interface. 

By using the power of the Workplace Shell you can create a powerful 
yet easy to use interface that is consistent with the rest of the operating 
system, making your programs look as if they are part of the computer 
system. 



CHAPTER 

Where's the Beef? 

N ow that the user interface of the application is mapped out, the 
next task is to plug in the holes with real worker code. The idea 
of mapping out the user interface first is to decide on how things 

will be presented. Now you must decide what the work inside will be to 
generate the data to be displayed. 

Many decisions lie ahead here. For example, you must decide 
whether you will support only a specific version of the operating sys
tem because of available functions. You must decide whether you need 
custom device drivers and how tightly you will tie the application to 
device drivers (custom or not). You need to work out your applications 
file layout and whether you will be exploiting functions of a particular 
file system. How you will store application information is another im
portant decision, as is the decision to use multiple processes or stay with 
one process. 

This chapter will discuss the up- and downsides of the alternatives 
you have with respect to structuring the code. 

185 



186 USE BUILDING BLOCKS OR YOUR APP WILL CRUMBLE 

DESIGNING THE CORE 

In general, the user interface code has a large impact on how the rest of 
your code will be structured. Actions the user takes are communicated 
to the program through the user interface, which calls the worker code. 
This worker code can be structured in many ways. 

You could decide to have the user interface be a process unto itself 
that ships work off to another process. This scheme can be useful if 
you want to isolate data manipulation from the user interface so that 
if the user interface code gets hung up somewhere, the data is intact 
because they are on separate processes. This idea has some merit, but the 
overhead required to do it is not worth the benefits in most cases. This 
may have limited usefulness, but in general this is not a wise scheme. 
One example where this is useful is the medical application example 
used earlier. 

Another technique is to have another thread that acts as a work 
router. This would be a large piece of code that simply takes instructions 
from the user interface code and ships the work off to different pieces 
of code. With this scheme, you would have one large piece of code 
which is the user interface and another which is the worker code that 
crunches numbers and manipulates data. This scheme also has merit 
and is better than the previous one for general-purpose use. There are 
some drawbacks to this one as well. 

As with any program, you want to provide the most function, but 
again, keep the code simple. By creating a large piece of code that per
forms many complex functions, you make it difficult to test and main
tain. The other drawback is that it can act as a bottleneck and, to some 
extent, inhibit parallel operation within the application. You may say 
that you can design the code around this, but why? There is an even 
simpler way to structure your code. 

The user interface code, and Presentation Manager in general, has 
modularized functions built in. Each user action generates an event to 
be delivered to the application. When this event is delivered, just act on 
it. There is no reason to funnel these actions any further. Presentation 



WHERE'S THE BEEF? 187 

Manager window procedures are structured such that each event deliv
ered causes execution of some specific code. It is this code that can ship 
off the work to the code that crunches the data. 

This scheme makes your code simpler, easier to test and maintain, 
and gives you maximum flexibility in structuring the modules, the con
trol flow, and even the file layout such as DLLs or modules within the 
.EXE file. 

Modularizing the "Worker" Code 
The worker code is actually very simple to structure. For every user 
action there is an event. The response to this event is a call to some 
function. It is counterproductive to try to route the requests to another 
large piece of code only to have it broken out to the function that will 
ultimately do the work. The structure of the window procedure has 
already done that. All that needs to be done from the window procedure 
is to call the function(s) that does the work. 

The events that must take place as a result of user actions are not 
always very atomic. That is, there is often setup that must occur, such 
as memory allocation, file opens or reads, or painting into a window. 
The event can be a request for a simple function such as a paint, but 
the complicated functions such as reading from a file are nothing to be 
~oncerned about with this scheme. 

Recall that the OS/2 API function calls are really just coordinated 
sets of requests for kernel, CP, or subsystem functions and services. 
The same is true for these events. For example, let's look at a file open 
request. 

The user selects to open a file. This is communicated to the applica
tion by a WM_COMMAND message, indicating that the menu item represent
ing a file open has been selected. What does the application need? First, 
it needs to know what file to open. Then, it needs to read the file into 
memory and display the data. This is nothing more than a few somewhat 
more atomic requests. To satisfy this user-driven event, the application 
should first put up a dialog to ask the user which file to open. Once 
that is known, the application calls the OS/2 subsystems to give it some 



188 USE BUILDING BLOCKS OR YOUR APP WILL CRUMBLE 

memory into which to read the file. Then the calls to DosOpen and DosRead 

are made to read in the file, and finally the data is displayed. 
This is a good example of how atomic you should get with the worker 

code. As a result of the WM_COMMAND message, the window procedure 
should call a "FileOpen" function. This function calls the WinFileDlg API 
to get the dialog for the file, calls DosAllocMem for the memory, calls 
DosOpen and DosRead for the file functions, and calls a data-painting or 
-drawing routine within the application code. The reason for the last 
step, rather than drawing the data right in the same code, is that the 
code that draws in the client area will likely be used every time the data 
changes. That is a common function that should live in only one place 
in your code. This makes maintenance easier and also reduces the size 
of your code files. 

When working out where to place all of the various functions, such 
as the drawing function just mentioned, keep in mind that you want to 
maximize parallel processing in the application as much as possible. 
After all, you don't want the user to have to wait while you draw the 
screen. You want them to be able to execute other functions. A good 
candidate for a separate thread is the drawing function. The main thing 
to keep in mind is the same as with any reusable code in OS/2, and that 
is that it be reentrant. You could have several threads trying to get into 
the same code. This in and of itself is not a problem, but you need to 
ensure synchronous access to the data structures (presentation spaces, 
buffers, and so on). Some of this reentrancy will need to be synchronized 
or time-ordered for integrity's sake. 

These ideas should not be news to you. This section (so far) is 
only meant to reinforce your understanding of how modularized OS/2 
code is and how, although you will be dealing with parallel threads and 
other OS/2-specific functions, the basic rules of good programming still 
apply. 

Memory Management 
Even though OS/2 provides virtual memory, and applications can use 
much more memory than is in the system, it is still important to use 



WHERE'S THE BEEF? 189 

memory judiciously and efficiently. The more memory each application 
wastes, the slower the system becomes. You don't want to be known as 
the memory-hogging application. 

Memory management can be an involved issue with OS/2. You can 
simplify it in several ways. The most common thing to do with memory 
is to allocate it as you need it, in blocks of the size you need. Under 
DOS, this was acceptable. Even under OS/2 l .x, where segments were 
anywhere from 1 byte up to 64 K, this worked well. 

32-bit OS/2 memory management is a different animal. All memory 
is allocated in pages of 4K bytes, whether you request 1 byte, 4K bytes, 
or 200K bytes. As you can quickly see, allocating small blocks of memory 
as you need them is not very efficient. The most efficient solution is to 
write a small memory management package for your application. 

By having separate memory management for the application, you 
can allocate and use memory efficiently according to the needs of the 
routines requesting memory. Now this does not mean to go out when 
the application loads and allocate and commit 5 megabytes of memory 
just so it is available to you, because this will quickly lead to system 
thrashing, not to mention long application load time. This does mean to 
have a small set of routines that manage the pages of memory within 
the application. Allocating 5 megabytes at the outset may be fine if you 
choose to use sparse memory allocation with allocated but uncommitted 
memory. 

With respect to code, the operating system (more specifically, the 
loader) manages the allocation of memory for code and its subsequent 
paging. You can do some work to optimize this, as you will see when 
tuning is discussed in Chapter 18. For data, however, that is completely 
up to you from start to finish. 

Since all memory is dealt with in 4K pages, you should map out the 
memory usage of the entire application and localize memory references. 
What this means is that you should start out by mapping out the memory 
needed by the application. Block it logically into groups from the most 
used structures down to the least used. 

For example, buffers that are used to read and write the data files 
are usually the least used. I say "usually" because there are some appli-



190 USE BUILDING BLOCKS OR YOUR APP WILL CRUMBLE 

cations that are specifically designed to gather data and write it to a file 
on a real-time basis. In this case, the buffer is some of the most often ac
cessed memory. Let's assume, however, that this is a word processor we 
are dealing with. In this case, the read/write buffers are the least used 
blocks of application memory. The work areas, however, where the data 
being manipulated is kept, are the most often used application memory. 

Once you have this memory mapped out, decide (or at least estimate) 
what the optimal size of these various structures needs to be. Now you 
have an application memory map with usage and size mapped out. The 
next step is to categorize and rate the blocks from most often down to 
least often used. 

Once this is complete, you can analyze the memory and allocate it 
efficiently, taking into account the size of the blocks (remembering that 
any allocation is at least 4 Kand is in 4 K increments) and how often they 
are used. The goal is to keep the most often used blocks in the same 4 K 
pages or grouped into several 4 K pages and keep the least often used 
code in their own pages. 

This will optimize your application for swapping/paging as well as 
allocation. By grouping into blocks you can optimize each 4K page, 
wasting as little memory as possible. You may even find that you have 
a couple of hundred bytes per page to give yourself some room to play 
later on. 

The other more important benefit of this mapping and structuring 
is that by separating out the least often used blocks of memory, they 
can be paged out sooner since they are referenced less often. If these 
logical blocks were in the same pages as the most often used blocks 
of memory, they would be taking up real memory while not being used. 
This is wasteful within the system and your application. Of course, if you 
use so little memory, or you use most of the memory blocks equally as 
often, you may as well keep them together. After all, if you only need say 
200 bytes for this least used memory and you have lK left over in your 
most often used pages, then it makes more sense to keep them together 
than allocate a separate 4K page just for those 200 bytes. 

Now this is a simple scenario, with localized data access. Many mem
ory structures are implemented with potentially huge memory objects. 



WHERE'S THE BEEF? 191 

In older systems, all the memory needed to be allocated and committed 
in order to make this mechanism work. This left a great deal of memory 
consumed but not used. Using sparse allocation, you have even more 
freedom to manage memory within the application. 

Sparse allocation is not only the attributes on the pages of allocated 
memory, but the other part is the guard page mechanism along with 
the per-thread exception handling. The fundamental part of sparse al
location is the allocation of memory without the commitment (physical 
backing) of it. DosAllocMem allows allocation without commitment. A sub
sequent call to DosSetMem can change the attributes on a memory page, 
including changing it to a committed page. 

An interesting technique that was introduced in Chapter 5, is to 
allocate enough memory for the application but not commit it. The 
memory can all be marked with the guard page attribute. In this way, 
when the algorithms for address mapping points to and tries to touch a 
guard page, an exception is generated. By having an application-defined 
exception handler, the memory can simply be changed to a committed 
page when it is accessed. In this way, you can allocate megabytes of 
memory up front without hurting application or system performance. 

OS/2 uses a similar mechanism to grow stacks. You can create a 
variation on this to monitor memory usage and growth within the appli
cation. For example, you can create an array or other dynamic structure 
at the "end" of a page on purpose. If, when the structure grows past the 
end of the page, the next page is a guard page, you can be notified by 
this exception handler. You can implement a "protection" mechanism 
within the application using this. 

In any event, you must do some work within the application to man
age memory efficiently. The benefit is that you have access to huge 
amounts of memory, better performance, and memory usage directly 
proportional to what the user does with your application. A good exam
ple is a spreadsheet program. You can have spreadsheets almost limitless 
in size. If the user wants to use cells down in row number 123456 and 
column number 4321, no problem. However, the user using spreadsheet 
with say, 200 by 300 columns will use less memory (unless of course the 
former puts information in cells sparsely rather than filling in all the 



192 USE BUILDING BLOCKS OR YOUR APP WILL CRUMBLE 

cells, thus demonstrating the further gains in sparse allocation). The 
only drawback is that your application must do some more work than 
just allocating memory and using it. A very good trade-off if you ask me. 

Device Drivers and Device Independence 
Quite often I have been asked, "Should I write a device driver?" There 
are only a few specific reasons to write a device driver for OS/2: 

1. If you have a specific piece of hardware you wish to support (such 
as scanner, sound, or MIDI card) 

2. If you must do work that can be done only at ring 0 (some direct 
hardware access) and there is no OS/2 API to accomplish the desired 
function 

The reason why these are the only real cases to write code to run at 
ring 0 (which is where all device drivers on Intel run) is that you open 
the entire system up to any possible bugs in your code. You are also tying 
yourself to the hardware. Of course, if you are writing code to make your 
company's MIDI card work on OS/2, this is a perfectly acceptable thing 
to do. However, there are some people out there who want to write for 
ring 0 thinking that it will just give them better performance. Wrong. 

It is true that ring transitions are somewhat expensive operations, 
but OS/2 is written to give applications excellent performance. By writ
ing code to run at ring 0, you are exposing the entire system to anything 
you have in your code. Since ring 0 is the most privileged code, your 
code would be able to access any area of the system. Ring 0 is reserved 
for only that code that absolutely needs direct hardware access. 

Reason 1, in the preceding list, is really about the only reason you 
would ever need to write a device driver. Reason 2 is there as a catchall 
for those of you who want to write special-purpose code such as debug
gers, hardware extensions, or even extensions to the operating system, 
such as installable file systems. 

In general, keep your code as isolated from the hardware as possible. 
If you do have to write hardware-specific code, keep it separate from 



WHERE'S THE BEEF? 193 

the other code. This will help you port your code to other platforms 
should you wish to do so. The discussion in Chapter 7 on the Workplace 
architecture underscores this point very well. Device drivers are for 
managing hardware. In the Power PC there is no Ring 0. If you write a 
device driver thinking you will be more powerful or faster in Ring 0 you 
will not only be incorrect, but you will have to write a device driver task 
under Workplace just to look the same to applications! 

If you are going to write an OS/2 device driver, first study the device 
drivers included with OS/2, such as the communications (COM) device 
driver. You'll not be able to see the source code for this driver, but you 
can look in the IBM technical reference books to see examples of how its 
functions are laid out along with its interface and calling conventions. 
Keeping in line with the system's conventions will not only make things 
more consistent for your applications that will interface with the device 
driver but will also help others to write code for it easily. After all, if you 
are writing a device driver to support your hardware device, you are 
just as interested in selling your hardware as your application, so the 
more developers writing applications for your hardware, the better off 
you'll be. You win in either case. 

As for the application aspect of hardware-dependent code, keep 
these functions separate from the rest of your code; to really do it right, 
you should write your own APis to access the hardware. Let's take this 
from the bottom up. 

You will be writing a device driver to support some hardware. (Re
gardless of whether you actually will, let's just assume you are for a 
starting point. If not, the device driver described here is simply one of 
the OS/2-supplied drivers.) This device driver has a set of interfaces: the 
IOCTL packets described in Chapter 5. Each function has a specific pur
pose and tells the driver to perform an action and return a result code. 
This interface should be consistent with the OS/2-supplied drivers. 

Now you need to interface with the device driver. For the OS/2-
supplied drivers, there is most likely some API to perform the function 
you need. You see, the APis are really just a coordinated way to send 
commands to the device drivers to act on the hardware on behalf of the 
application. You could simply write DosDevIOCTLs to instruct your device 



194 USE BUILDING BLOCKS OR YOUR APP WILL CRUMBLE 

driver to do the things you need. This gets a little messy and makes 
things more complicated and harder to follow. The right way to do this 
is to write functions to do the IOCTL work. For each high-level function, 
you should write a function or your own APL 

Of course, many of the OS/2 API functions, such as DosOpen or 
DosRead, will work on many device drivers. There will undoubtedly be 
functions for which OS/2 has no API, or you may want to write some 
custom functions to maintain finer control over the device. If you keep 
these functions separate from the rest of the code, you are really now 
defining a new subsystem. 

Now, instead of your application calling DosDevIOCTL all over the 
place, you can call functions much in the same way you would call 
standard OS/2 APis. This gives you many advantages. 

The first advantage is that the code you write that interfaces with the 
device can be placed in DLLs. Now, this common code can be accessed 
by many applications. You can publish the API interfaces to allow other 
applications to use your hardware and interface libraries. This helps you 
sell more hardware, because anyone can have access to your hardware 
through your high-level interface. 

The next advantage is that your application will be easier to read, 
enhance, and maintain, since all you are doing is calling high-level 
functions from within the application code and keeping the hardware 
interface separate. This makes testing easier as well as debugging. If you 
know that the hardware interface routines are okay, you can concentrate 
on the application; or, if you want to update the hardware interface 
routines, you need only replace the DLL, not the whole application. This 
is also advantageous if you release different revisions of the hardware, 
or derivative products. With this interface library, you don't have to 
continually change the whole application (nor do others writing to your 
hardware). 

The other, and in my opinion most important, advantage is portable 
code. By keeping the hardware-specific code in this separate pack
age, you can write basically platform-independent application code. Of 
course, it is device-specific in the respect that it is written to use a certain 
hardware device, but the device is being accessed by function calls to 



WHERE'S THE BEEF? 195 

some intermediary routines. OS/2 provides hardware access via IOCTLs. 
Other platforms do it differently. If you want to write your code to run 
on different platforms, it is much easier to rewrite the internals of the 
interface library package than to find and change all of the hardware
specific code inside the application. Depending on the environment, it 
may be as simple as a recompilation of the application along with a new 
interface library. 

By keeping the application as isolated from the hardware as possi
ble, you ensure maximum flexibility and keep all your options open for 
expandability and portability. This means for you not only to write and 
use interface libraries for custom hardware, but also to use the OS/2 API 
wherever possible and, if there is some function you need that does not 
have an API, write your own but keep it separate. Who knows-maybe 
you'll come up with enough high-level functions to release your own 
"high-level language" interface package for OS/2. 

FILE LAYOUT 
Keeping modularity of function is important, for all of the reasons dis
cussed previously, but just as important is the structure of your files. 
This does not necessarily mean your source code files (although they 
will have an impact too), but, rather how you will package your appli
cation. For example, should you use extended attributes? How about 
long filenames? Which code should be in DLLs versus in the main .EXE 

file? What about using the system's . INI files? Should you use your 
own . INI file? Should the program span processes or even sessions? 
These are big questions. The answers are very straightforward. I know 
that that word has been used a great deal throughout this book, but 
when you really look hard at OS/2, it is powerful and complex, yet very 
straightforward. 

Once again, you see the phrase, "Keep it simple." You should be 
sure of why you are doing something before you do it. When choosing 
whether to support long filenames for HPFS drives, be sure you don't 
create incompatibilities for non-HPFS systems. When choosing how you 



196 USE BUILDING BLOCKS OR YOUR APP WILL CRUMBLE 

will store application defaults, think about the ramifications of using 
different types of files. If it does not make good sense, or if you can 
think of downsides without good reasons to incur those hardships, don't 
do it. The more complicated it is, the harder it is to install, use, and 
service. Even the simplest decisions, such as directory structures, have 
important impacts. 

HPFS and FAT Features 
HPFS files and FAT files are interchangeable. You can copy files between 
the file systems (actually, any file system within OS/2, as long as the user 
sticks to the OS/2 interfaces such as the COPY command), and several file 
systems can coexist on the same system. The main difference between 
them, aside from the disk layout (which incidentally is isolated from 
applications) and performance, is that HPFS supports long filenames
up to 256 characters, including some filename characters that FAT does 
not like. 

When writing applications, choosing to use FAT vs. HPFS is really 
a nonissue. Some of the decisions about how you will accomplish other 
functions may rely on this decision, however. For example, since file
names in HPFS can be 256 characters long, you need to do some work 
to figure out how you want to save a file to a FAT drive that was read in 
with a long name from an HPFS drive. You also do not want to use only 
long filenames, because then you are excluding all FAT users. 

The long filename issue is really not a big one at all. A more important 
issue would be whether you will use extended attributes (EAs) for your 
files. Recall that the shell uses EAs all over the place. HPFS handles EAs 
much better than FAT, because EAs were designed into HPFS from the 
start. EAs on FAT were an afterthought, since FAT has been around as 
long as DOS has-since the PC was introduced in 1981. The only real 
difference is that EA performance is slightly better on HPFS than on 
FAT. 

One thing that the shell does that you might want to do yourself is 
that when a file with a long name is copied to a FAT drive by dragging 
the file between folders, the shell will truncate the filename to an 8.3 



WHERE'S THE BEEF? 197 

name and store the long version of the name in a . LONGNAME extended 

attribute. If your user asks you to save to a FAT drive a file that already 

has a long name, you might consider mimicking this behavior to be 

consistent with the system behavior. 
Other than the EA issue and dealing with long filenames, there is 

really nothing much to the FAT vs. HPFS decision from a program

ming perspective. This has been a very common misconception in the 

programming community. Even if you are going to write file system util

ities, the only difference is the absolute disk layout, which is generally 

protected from applications anyway. Standard file system calls or, for 

these utility programs, IOCTLs are about all you have to work with, so 

the interface is consistent. 
The real questions come when you are going to lay out the files for 

your application. The . EXE(s), . DLL(s), data, and initialization (. INI, or 

system defaults) files, and any utility programs are the real focus . 

• EXES and • DLLs 
In most cases, your application will have one main . EXE file. This is 

the main part of the application and the control point. It is from this 

. EXE that the first thread of the application gets created by the program 

loader and where execution begins. From there, it's all up to you. 
Let's first look at why you might want to put functions in D LLs versus 

just writing one large executable file. In the discussion on hardware 

dependence, you have just seen one very good reason for writing some 

functions in a DLL. If you see you are getting too deep into device

or even operating system-specific code, such as DosDevIOCTL, you will 
want to look into making the code in the . EXE more generic and writing 

an interface package in a DLL. You could just write the interface or 

isolation functions and put them in the . EXE file, but why? The point of 

this exercise is to isolate the application code. You'd only be doing half 

the job if you left the interface routines in the . EXE. 
Another reason for using DLLs arises if you intend to share code 

between applications or if your product is itself a set of library routines 

to some hardware, other software, or even just a set of runtime routines. 



198 USE BUILDING BLOCKS OR YOUR APP WILL CRUMBLE 

Just as with the DOS world, OS/2 is not perfect, and it does not provide 
every API that any programmer might like to use. It is perfectly rational 
to write a set of more powerful APis to do more intricate function than 
the base OS/2 APis do. As a matter of fact, that is what Presentation 
Manager really is: a set of routines that live on top of the kernel and 
the base subsystems and that provide the function of a graphical user 
interface. PM is really a bit more than that, mind you, but conceptually 
that is all it is. 

Code can be shared among many types of applications. As you have 
already seen, there is the issue of specific hardware interfaces. As an
other example, if you intend to release a series of applications, there is 
no reason they cannot share code for common functions such as print
ing, installation, and utilities. Lotus Development Corporation has done 
a very good job of this with its spreadsheet and presentation graphics 
packages. If you have fixes to make, you make them once, and all of your 
applications benefit. This cuts development and maintenance costs as 
well as distribution costs. 

Look back to the discussion in the previous chapter on subset func
tions and calling application code from the shell. This is an excellent 
example of putting code in a DLL to be shared among processes in 
which you are not writing your own application suite. 

Another example of code sharing is new PM controls. You can reg
ister these new window classes from the OS2.INI file, and with the 
window procedures in a DLL these new controls are shared and avail
able to any PM application. You can create a consistent look and feel for 
functions based on these new controls. 

Moving code to DLLs is not a panacea, however; there are some 
drawbacks. The most obvious one is that there are more files on each 
user's disk to maintain. Also, DLLs are simply pieces of code sitting 
in memory waiting to be executed. They are not part of the .EXE file. 
Therefore, it stands to reason that they are in different pages. This in
creases the memory required by the application, and bringing this code 
in means more potential page faults. 

This is not as expensive as it was in 16-bit OS/2, where every DLL 
reference was in a segment different from the .EXE and required a seg
ment register load, but it is still more expensive than having the code 



WHERE'S THE BEEF? 199 

in the same page. You can use the same techniques as with . EXE files to 
pack code into pages (which will be discussed in Chapter 1 7) to make 
this somewhat more efficient. 

If you only have one or two functions that meet the criteria for going 
into a DLL, it is probably not worth the effort. However, if you have 
several functions that you think you should isolate from the application 
. EXE file, a DLL is the way to go. Some programmers think that moving 
code from the . EXE file into a DLL will give them performance gains or let 
them use less memory. Although you can use runtime dynamic linking 
to delay code loading until it is needed, the OS/2 application loader 
does the same thing. With code that is properly structured (which will 
be covered in Chapter 18), you can enjoy the same benefits with much 
less work. If that is your primary reason for moving code into a DLL, 
read Chapter 18 before finalizing that decision. 

INI Files 
INI files are used by systems and applications to store important infor
mation such as user preferences or the last known state of the applica
tion. OS/2 uses two such files: OS2.INI and OS2 SYS.IN!. These two 
files are used to store information about the last known state of the sys
tem, the system configuration, abstract objects, and other system data. 
There are also areas in these files set up for application use. Using a 
set of APis, applications can write their own information into the INI 

files. Many application installation programs do just this. They not only 
copy their files to the hard disk, but they can also create an object for 
themselves in a folder or, in terms of 16-bit OS/2, create a program entry 
in a group. 

Although applications can use the system INI files, I personally rec
ommend against using them. Of course, I have several reasons for rec
ommending this. The first is that the system INI files are intended for 
system use, not application use. Despite the fact that an application can 
gain access to the files, I think they should be reserved for system use. 

The next and more important reason is that the user may wish to 
reset some system configuration information and choose to do so by 
reinstalling the original INI files (from when OS/2 was first installed) or 



200 USE BUILDING BLOCKS OR YOUR APP WILL CRUMBLE 

some other prior level of INI files. This effectively wipes out your appli
cation's information. Another reason is that if you do something wrong 
while writing the INI file, you can affect proper system operation. Still 
another reason is that the system INI files have a specific format and are 
in binary. This means that you are bound to the system INI files' formats 
and users cannot manipulate them easily. That is one of the reasons for 
making the system INI files binary: so users cannot inadvertently change 
them. 

In the Workplace architecture, INI files cease to exist as a structure. 
All of the work handled by the INI files is now in the system registry. 
While all of your interfaces to the registry operate as if there were an 
INI file, the INI file construct is no longer there. This is an example 
of advancing the function while maintaining compatibility for prior
version applications. While these functions and interfaces to INI files 
will remain, you can see why you should use your own INI files rather 
than the system constructs. 

It is perfectly acceptable, and I recommend it, to maintain an ap
plication INI file. This file can be any format you wish-even plain text. 
This is where your application defaults should be stored, along with any 
other information you see fit. This keeps you isolated from anything the 
users do with their system INI files; it limits the system INI files strictly to 
system information; and gives you the freedom to do whatever you'd like 
in there. It also is another place where you can isolate the application 
from the operating system. 

The application INI file should be kept in the same place as the . EXE 
file and can be updated whenever you wish, such as when the application 
is closed or when the user asks that application defaults be changed. 

MULTIPROCESS (MULTIPROGRAM) APPLICATIONS 

A feature of OS/2 is Interprocess Communications (IPC). IPC is very 
powerful but can be somewhat expensive in terms of performance. Mul
tiprocess applications are fairly rare, especially in 32-bit OS/2. When 
writing multiprocess applications, you need to evaluate why you want 
to use multiple processes. 



WHERE'S THE BEEF? 201 

In 16-bit OS/2, there were more reasons to write multiprocess appli
cations. The segmented architecture and the 64 K segment limit imposed 
limits on processes. There were limited numbers of file handles, threads, 
and other resources per process. If you wanted more, you had to go to 
another process and write code to allow them to talk to each other. 

Under 32-bit OS/2, virtually all of the resources' per-process limits 
are the same as the system-wide limits, so if you run out of resources, 
you have a lot more things to think about than going to another pro
cess. Multiprocess applications do have a place and supply an important 
function. 

Recall that protection is done on a per-process basis. Any thread 
within a process can access any of that process's resources. Therefore, 
any protection between threads of an application must be done by the 
application itself. There is also the problem of a thread taking down the 
process. If any thread in a process goes down with a protection violation, 
for example, the whole process is killed by OS/2. For some applications, 
this must not happen. Think back to our medical application example. 

To solve this problem, you can implement another process. That is 
exactly what was done for the Workplace Shell. Any bad object can take 
down the shell; however, the shell is implemented such that there is 
another process that sits idle, watching over it. This process consumes 
no resources until the shell comes down for some reason. This process 
(actually, the thread within the process) wakes up and restarts the Work
place process. Since the Workplace is a separate process, this "watcher" 
process is not affected if the shell process goes down. 

If you have functions that you want to protect from other parts of 
the application, first look at protecting them with semaphores or other 
coordinating tools provided by OS/2. If those are still not sufficient for 
the security or consistency you desire, then another process is the logical 
choice. 

You should try to avoid multiple processes for the simple reason of 
overhead. It is also more expensive to talk through IPC rather than just 
have the threads share data or other resources. You can see the benefits 
of using multiprocess applications in those situations where you cannot 
afford to have some piece of the application go down even if another 
part does. 



202 USE BUILDING BLOCKS OR YOUR APP WILL CRUMBLE 

SUMMARY 
The big decisions are now made. Along with your user interface, you now 
have the main "block" structure of your application. You have seen how 
to make efficient use of memory, device drivers, files, and processes. 
You've also seen how to isolate your application from the underlying 
hardware and even the operating system, while retaining the power 
and flexibility you need, by designing your own interface routines. 

Your "black box" design is complete. Now it's time to get into the 
real low-level design and development. In the following section you will 
see how to structure your development environment (which is much 
more important than it sounds on the surface), prototype the designs 
you have been working on, and get the code written and tested, while 
leaving room for change and future enhancements. 



SECTION 

Making It Happen 

I n this section we will discuss writing the code. Until now only the 
architecture and black-box functions have been examined. At this 
point the framework for a powerful, flexible application has been 

constructed. Now comes the job of setting up the development environ
ment, writing some code, working with advanced functions, tuning the 
code, and tailoring it to your specific needs. 

The first thing to do is define the basics of the development environ
ment. This does not sound like something you should even have to think 
about, but it is. Many days have been lost due to inappropriate devel
opment environments. I'm not talking about compilers or tools, but the 
basics, such as the tree structure and source code control. 

Once the development environment is set you can begin to write 
your code. By following the modular designs outlined previously you 
can begin to establish the user interface as well as the core code. Unit 
tests on all these pieces can occur in parallel until you are ready to start 
putting some of them together. 

This section also discusses code change and how it relates to the 
design of an application. No matter how much you design before you 



204 MAKING IT HAPPEN 

code, you will inevitably find holes in your design. You can choose to 
ignore them (not the wisest move), fix them on-the-fly, or, depending on 
their severity and scope, take the flawed part of the system back to the 
drawing board. 

This section will help you turn your designs into reality. 



CHAPTER 

The Development 
Environment 

T he development environment is just as important to develop. er pro
ductivity as the compiler and other tools and just as important as 
how you have modularized your code, isolated it from the hard

ware, and kept it portable. Every programmer has his or her own fa
vorite way of developing and testing code. Your job is to design not only 
the application but also the environment in which it will be developed 
to make the most of the programmers' talents without restricting their 
freedom. It is also extremely important to understand and acknowledge 
the future of your product. You must define how you intend to service it, 
release fixes, and release updates and future versions. These factors also 
affect how you will develop the code and control changes throughout 
the life of the product. 

The first thing to keep in mind is that you want to be able to con
trol the source code so that you can maintain integrity throughout the 
development and testing cycles. You also don't want to impose so much 
control that you inhibit a developer's ability to do his or her job. 

205 



206 MAKING IT HAPPEN 

SOURCE CODE CONTROL 

Platform 

Source code control has always been a topic of interest among devel
opers. Most developers hate having to deal with it but love it when they 
have to roll back some changes or need to maintain multiple levels of a 
file. 

There are many source code control systems available. Some run on 
the PC platform under OS/2, DOS, or even UNIX. Some control systems 
run on minis or mainframe systems. Your choice of a system should be 
based on what it does for you. Don't choose a system simply because it is 
the most popular or the least expensive. The most popular system may 
not have a key feature you need, and as far as the expense of a system is 
concerned, you usually get what you pay for. Evaluate what you need, 
and find what fits. 

The platform you choose is not as important as what the source code 
control system does for you. There is nothing wrong with developing PC 
software with a mainframe-based source code control system if such a 
setup provides the control function you need. The only real considera
tion in your choice of platform is that it must somehow interface to your 
build environment. If you use a PC-based system the interface should be 
simple. A LAN would be sufficient. However, if you use a non-PC-based 
control system you have several choices. 

The first option is to use a build environment equivalent to the con
trol environment. For example, if you need to use a mainframe-based 
control system you may wish to go with a mainframe-based compiler. 
Of course, mainframe-based PC compilers are not quite as plentiful as 
PC-based ones, and they don't boast all of the features. Another option is 
to set up an interface between the mainframe source control system and 
a PC build environment. This solution adds a degree of complexity, how
ever, since all current source and changes have to be shadowed to the 
PC environment, but the advantage is that your users (developers) will 



Function 

THE DEVELOPMENT ENVIRONMENT 207 

be able to build and test code in a consistent environment. The other 
part to this equation is that you should ensure you have a PC-based 
interface to the source control system. 

Developer productivity depends on an easy-to-use environment. The 
source code control system should be simple and unobtrusive. Once it 
becomes work, it's too much. 

The determining factor for which source code control system you should 
use must be the features and functions it provides. You need to examine 
how you intend to develop, maintain, test, and release your code. Not 
only do you need to consider this for when you develop the product, but 
you also need to look at how you plan to work on future versions and 
provide fixes to current versions. 

All source code control systems perform the basic function of co
ordinating changes in the code during the development of a product. 
The first thing you need to look at is how the system accomplishes this 
function. The simplest systems simply ensure that a single file is checked 
out to only one user at any given time. When build time rolls around the 
development tree is simply frozen, snapshot, and then built. 

With the more primitive systems, once a change is made to a file, 
that's it. If a change needs to be rolled back, it must be done manually by 
editing out the changed lines. More complex control systems, however, 
work on revisions of files and can roll back some changes. With these 
more powerful systems, all you need to do is specify a revision level of a 
file, and the system will reconstruct it for you. 

An often neglected aspect of source code control systems is the future 
of the product. The vast majority of source control systems deal with a 
single release very well. However, if you wish to develop a derivative 
release or add-on to the product while maintaining the original code, 
you'll have to clone the original code and create a whole new system. 

An important consideration in your choice of control systems is the 
ability to handle multiple releases of the software. The ideal way to 
handle this situation is for the system to maintain multiple levels of 



208 MAKING IT HAPPEN 

the same file for different releases. Not only would the system handle 
revision levels of the file, but you'd also be able to pull the latest files for, 
say, release 2.0 of the product while someone else (say, someone doing 
service) could pull the latest code from version 1.0. The source library 
would be the same, and the control system would take care of handling 
the change control within and between versions. 

Problem Tracking 
Another important (but not critical) aspect of developing a software 
product is the problem-tracking system. Some projects have such a 
complex tracking system that the developers spend more time trying 
to work through the system and track problems than they do writing 
code. I won't try to tell you what functions you need in a tracking sys
tem. I've actually seen products for which the level of problem tracking 
involved nothing more than slips of paper. Other products use a track
ing system in which you can generate reports of how many lines of code 
were changed or how many lines of code a particular developer touched 
on a particular day. 

My view on problem-tracking systems is that they should (1) be able 
to track a problem from opening to closure, (2) provide basic reporting 
on how many problems are open, closed, and so on, and (3) be an 
integrated, almost natural part of the development environment. 

The problem-tracking system should be well integrated into the 
source code control system. Of course, this is not a hard and fast rule, 
but just as if you had a control system on a mainframe and the build 
environment on a PC, there will be more work to do at each step of 
development and more interfaces to be built between them. 

The real point here is to be sure that you consider all your functional 
requirements first. It may be worthwhile to build an interface between a 
mainframe and the PC to be able to "version" files the way your software 
strategy requires. Ease of use is a major requirement, as is the platform. 
Of course, you won't buy a mainframe simply because a great software 
control system runs on it, but you must keep everything in perspective 
and not limit the developers; however, don't let the code get out of 
control, or else the whole project could fall apart. 



THE DEVELOPMENT ENVIRONMENT 209 

TREE STRUCTURES 
Another important yet often overlooked part of a development environ
ment is the tree structure of the code. Of course, this is completely your 
decision, but there are some things you can do to make life easier in spe
cific areas. The first thing to do is look at how (or if) you plan to create 
your product in several languages. OS/2 has several tools to make this 
easier. The main tool is the message file; the other is the resource file. 

First, get used to the idea of not using string literals in your code. 
You should move all translatable items out of the code source files. They 
should reside in string tables in the resource files or in the message files. 
This way, all you need to do is translate these files-you won't have to 
touch the source code. You simply build these translated resources into 
the executable code for each language you plan to support. 

You may wonder what this has to do with tree structures. The details 
of translated versions will be covered in more detail in Chapter 1 7. 
The tree structure can help you work with translated versions more 
efficiently. You can use environment variables (assuming a PC-based 
build system) to point to the tree with your translatable resources. 

Figure 13 .1 shows an example tree that you can use. To accomplish 
the task you would set up an environment variable called RESOURCES. 

Inside your MAKE files and build system, you would use this environment 
variable to point to the resources. One key is to treat the U.S. version just 

FileFunc 

Paint 

Print 

Help 

Figure 13.1 Sample source code tree. 



210 MAKING IT HAPPEN 

TOOLS 

like any other version. Don't make the U.S. version your primary one 
with the versions for other countries optional. By treating the United 
States on equal footing with the other countries, you will make trans
lation easier and faster. For each language version, all you need to do 
is change the RESOURCES environment variable to point to the resources 
for the appropriate language. Other than that, your tree should basically 
look like the program. You should separate components into their own 
directories as well. A good rule of thumb is to have a separate direc
tory for each loadable module: DLL, EXE, or other file such as a font 
file. This helps keep the source in order and close to the files that it 
creates. 

The tools you use are, of course, up to you. Your choice of tools should 
take into account their ease of use and the flexibility they provide. The 
most important feature, however, is the code that is finally produced. 
The only way to write totally optimized code for any platform is to 
write it in assembler. Of course, doing so means losing all the control, 
readability, and portability of a higher-level language, such as C or C+ +. 
The compiler and tools you choose should generate optimized code. 

Compiler technology is continually advancing, and the object code 
that new compilers produce is continually improving. You need to 
choose a compiler vendor carefully because you are betting your prod
uct and your future on your decision. Take into account the optimizers, 
code checking (ANSI, for example), and speed of the compiler itself. The 
surrounding tools are also important. Some of the more basic program
ming tools such as GREP, AWK, and MAKE should definitely be considered. 
They add to programmer productivity and make code easier to write. 
You may even want to write some source generators for AWK, SED, and 
GREP. For example, you can keep tables that are pumped into SED and AWK 
scripts to generate some of your code, especially MAKE files to build only 
the necessary code. 



THE DEVELOPMENT ENVIRONMENT 211 

SUMMARY 
Although the source code, tree structures, tools, and development en
vironment are usually by-products of research and development, they 
are important aspects of your application design that should be planned 
out. 

You won't ruin your application if you don't plan out the development 
environment, but with just a little work and forethought you can cut 
weeks or even months off your development cycle. 





CHAPTER 

Prototyping the User 
Interface 

C hapter 11 discussed the design of the user interface in depth. 
Everything-from which controls you will use in your main win
dow to the dialog structure and layout, along with Workplace Shell 

interaction and PM Interprocess Communication-should be laid out at 
this point. Now comes the time to write the code. 

The first step in code development should be to get the user inter
face up and running. The reasoning behind this is that you can get the 
application running from a global standpoint more quickly than if you 
simply wrote the worker code and left the user interface for last. 

It goes without saying that you want to write the user interface code 
at the same time that you write the code that does the real number 
crunching, but you should not place a higher priority on either. By 
quickly putting into operation the user interface you can begin the real 
testing of not only your code (to verify that it matches your design) but 
also the design itself. 

213 



214 MAKING IT HAPPEN 

It is very easy to put a design on paper based on reports, studies, 
and analysis. However, until someone can actually sit down and use it, 
your "good" design is just theory. You know that the code that does the 
real work under the user interface will do what you intend, and you 
also know that as long as it does its job the user won't care how it looks 
or works. However, since the user interface dictates what goes on with 
the worker code, it is important to make the design and function of 
this interface stable first. Changes in the user interface can cause you 
to make changes in the worker code underneath. By getting the user 
interface prototyped and into live usability testing early, you can avoid 
major rewrites later on. 

In addition to getting usability testing underway, implementing the 
user interface early gives you the advantage of testing the application 
as a whole (system testing the app) earlier than if you wrote the code 
from the inside out. In doing this, you will be able not only to see what 
the overall product will look like but also to fill in any holes in the set 
of functions you are providing; you may also see something that would 
add to the application. By viewing it from a user's perspective early in 
the development phase, you will come out with a better overall product 
in terms of functionality and usability. 

Using one of the CASE tools discussed in Chapter 11 will help you 
get the prototype up and running quickly. 

PAINT YOUR WINDOWS 
The first step in generating the user interface is to create and paint 
the main window of the application. This is the standard window with 
which the user will interact. The first task is to get the window created 
as you need it and then get the menu going. Remember the discussion 
on language support. Don't hurt yourself by hard-coding strings into the 
code, even just to get it running. Set up your string tables, message files, 
and other text-based resources early. You can either do it right now or 
do it over later. 



PROTOTYPING THE USER INTERFACE 215 

The basic PM skeleton code is put in at this time. This is the code that 
calls Wininitialize, creates the main message queue for the application, 
and creates the initial window. The message-processing loop for the 
application also takes place at this step. Don't bother with any other 
initialization code yet. At this point you should be concerned simply 
with getting the building blocks set up. Just get the window created. 

The other part of this initial step is to set up the window procedure 
for this main window. Listing 14.1 shows the most fundamental window 
procedure possible. From there, all you need to do is to CASE the func
tions and message you are interested in. Don't worry about threads yet; 
they're in your design and, with the techniques that will be presented 
shortly you can add them to the code afterward. Since you've already 
blocked out the functions that need to be performed to accomplish the 
application's job, and you've already looked at what can and cannot be 
run in parallel, you're all set to put them on threads at the right time. At 
this step you're just going to get some fundamental building blocks in 
place, and you'll add in the important threaded code in a moment. 

MRESULT APIENTRY MyWindowProc(hWnd, msgid, mparam 1, mparam 2) 
HWND hWnd; 
ULONG msgid; 
MPARAM mparam 1; 
MPARAM mparam 2 ; 
{ 

switch(msgid) 
{ 

default: 
return(WinDefWindowProc(hWnd,msgid,mparam l,mparam 2)); 
break; 
} /* end switch */ 

Listing 14.1 Skeleton window procedure. 



216 MAKING IT HAPPEN 

Listing 14.2 shows a window procedure that handles some of the 
more basic messages such as WM_PAINT or WM_COMMAND. As you can see, 
this window procedure does nothing as a result of these messages. For 
each message you will likely call a function to perform the work for 
that event. As you will see later in this chapter and in further detail in 
Chapter 19, the work can easily be moved to another thread. 

It must be stressed, however, that moving functions to other threads 
is not simply finding functions and moving them to other threads. The 
job of each thread and which code will be run in parallel are already 
defined. The mechanism to accomplish the parallelism is discussed here. 
First, just get the foundation of the startup, message processing, and 
clean-up code done. 

Begin by putting enough painting code in your window procedure 
so that all the menus show up as well as the background of the client 
window. Add in the code that creates and processes dialog windows. 
This is not as simple as it sounds. You should put in not only the code 
that creates and shows the windows but also the code that paints the 
controls. 

Now that the windows and their "subwindows" and controls are in 
place, put in the CASE statements to respond to messages in the window 
procedures. A technique I like to use to verify that everything is working 
as intended is to write a function called NotHereYet, which takes a string 
as a parameter. The function's sole purpose is to display a message 
box that tells the user that the action on that message has not been 
implemented yet. The string parameter is simply a short description of 
the user action that caused the message. 

As you write the worker code, the calls to NotHereYet will be replaced 
with the real calls to the worker code. Again, don't concern yourself just 
yet with the multithreading aspect of the code. All you've really done 
so far is to put in the initialization code, the message-processing loop, 
and the window procedures to manage the behavior of the windows and 
controls. 

At this point your windows show themselves and all of their controls. 
All of the CASE statements to respond to controls such as pushbuttons and 



MRESULT APIENTRY MyWindowProc(hWnd, msgid, mparam l, mparam 2) 
HWND hWnd; 
ULONG msgid; 
MPARAM mparam 1; 
MPARAM mparam 2; 
{ 

switch(msgid) 

case WM_BUTTON 1 DOWN: 
DosBeep(S00,700); 
return(TRUE); 

break; 

case WM_CHAR: 
Look at the flags in the parameters and act on any 
keystrokes you are interested in 

break; 

case WM_COMMAND: 
Look at the parameters in the message to see which menu 
item was selected and do something as a result 

break; 

case WM_CONTROL: 
Look at the parameters in the message to see which control 
is sending you this message and act accordingly. 

break; 

default: 
return(WinDefWindowProc(hWnd,msgid,mparam l,mparam 2)); 

break; 
} /* end switch */ 

Listing 14.2 Basic window procedure. 



218 MAKING IT HAPPEN 

listbox selections are in place, but they simply display a message stating 
that they haven't been finished yet. 

So far, the data manipulation and display have not been considered, 
nor have the function of and interaction with the shell or application 
initialization file. This is the work that you will move to other threads. 

MUL TITHREADING CONSIDERATIONS 
Let's step back for a moment and look at the role of threads in executing 
window procedures. Recall the discussion in Chapter 5 with respect to 
the relationship between processes and threads. The process is the own
ing entity. The thread executes. The window procedure can be viewed 
almost the same way as a DLL. It is a piece of code that sits there and 
is called upon only when needed: when a message is sent to the win
dow procedure. A message is sent to the main window procedure every 
time the user takes an action on the window, such as a button click, 
keystroke, or even a mouse movement. 

Which thread is used to execute in the window procedure's code de
pends on how the message is sent. You saw in Chapter 5 that the input 
router places user input messages on the application's message queue. 
What happens after that is up to the application. The user input mes
sage is posted. The difference between posting a message and sending 
it depends primarily on whether the action should be asynchronous. 
Sending and posting messages also indirectly describes which thread 
executes the code in the window procedure. Let's trace a user input 
message by looking at the threads involved. 

When the user executes an action, an event is placed on the system 
message queue. It goes through the router and ends up on the applica
tion message queue. At some point, when the application's main thread 
(the user input thread) gets CPU time, the message is removed from the 
queue. The message dispatch loop is entered, and WinDispatchMsg called. 
WinDispatchMsg has a twofold function. First, it takes the QMSG struc
ture taken from the queue and breaks it into the four items that make 



PROTOTYPING THE USER INTERFACE 219 

up a PM message. Coincidentally, these are the four parameters that are 
passed to a window procedure. 

Once it has separated the message components, WinDispatchMsg (ac
tually, the thread executing in WinDispatchMsg) calls WinSendMsg. 

WinSendMsg causes the thread to make a call into the target window 
procedure. The thread executes inside the window procedure; when the 
window procedure encounters the "return" statement, the thread re
turns back into the message-processing loop. If there is another message 
on the queue the process repeats. This continues until either there are 
no more messages on the queue, at which time the thread gets blocked, 
or the application receives a WM_QUIT message, which causes it to drop 
out of the message loop and terminate. This is shown in Figure 14.1. 

As you can see, user input messages are processed on the thread 
of the application. However, there are more ways to get messages to 
windows than having them come from the user. Although PM is not 
completely object-oriented if you look at it from a purist view, it is object
based. Each window is an object, and its associated window procedure 
is the class definition with each CASE, the methods. As such, the only way 
to get windows to do anything is to send messages to them (as with any 
object). 

Applications, or windows, can send messages to other windows or 
even to themselves. Now you can begin to see how complex the message 
passing within PM can get and how you need to understand which 
actions generate others which generate others and so on. With respect to 
threads, you have already seen how a user input message is posted and 
subsequently acted upon by the application's own thread. Any posted 
message is processed by the target window's thread. 

Messages can be posted by the system, as in the case of user in
put messages, but applications can also call WinPostMsg. These different 
means of transmitting messages demonstrate the difference between 
synchronous and asynchronous messages. Messages are synchronous 
or asynchronous with respect to the originator of the message. When a 
message is posted, the originating application, when it calls WinPostMsg, 

places a message on the recipient's application queue and continues on. 



220 MAKING IT HAPPEN 

Main Procedure 

Initialize with PM 
Create Msg Queue 
and allocate data 

Get Message 
from Queue 

l 
Message = WM_ QUIT? /No Send msg to 
(i.e. value from ~ ~in~ow .Procedure t-
WinGetMessage=FALSE) via WmD1spatchMsg 

Yes 

Clean up and Terminate 

Figure 14.1 OS/2 application flow. 

Window Procedure 

Initialize instance data 
and interpret message 

parameters 

switch(message) 

caseMSG_A: 
process; 

break; 

caseMSG_B: 
process 

break; 

default: 
call WmDefWmdowProc, 

break; 
return; 

Posting messages is an asynchronous event. Sending a message, on the 
other hand, is synchronous with respect to the sender. When a piece 
of code calls WinSendMsg, the thread executing that code makes a call 
into the window procedure for that window. You can begin to see the 
difference. When the thread calls WinSendMsg, it is jumping into the code 
for another window procedure. This can be any window in the system. 

Now take this a step further. As a result of a message, some windows 
will send a series of messages to themselves or other windows. Some 



PROTOTYPING THE USER INTERFACE 221 

will call some APis. However, the WinXXXXX APis really just represent 
a system-defined, coordinated way of sending messages to windows. 
This thread, just like any other that calls WinSendMsg (even the one that 
calls it via WinDispatchMsg) will jump all over the system. Think about 
it in terms of your application. Your thread, the one by which you are 
simply sending a message to another window, is, as a result, executing 
all over the system. You must decide if you can post the message or send 
it. Remember, if you send a message as a result of receiving one, your 
application's thread will be waiting for the target window procedure to 
complete the appropriate action in response to your message instead of 
processing your user's input. 

Handling Long Jobs 
Sent messages are executed or responded to on the thread of the sender, 
whereas posted messages execute on the thread of the target window's 
application. After careful consideration you can see why applications 
must adhere to the one-tenth-of-a-second rule, which says that all pro
cessing in a window procedure (that receives user input) must be com
pleted within one-tenth of a second. Of course, there is no real way to 
measure this, so I usually just say, "Do it quickly." If it cannot be done 
quickly, it should be on a separate thread. 

If it is a function that cannot be "paralleled" with other functions, 
then you have two options. The first option is to change the pointer to the 
clock (SPTR_WAIT) while the processing is taking place. This tells the user 
that he or she cannot do anything else while your window procedure 
is busy, but the user is also locked out from doing anything else in the 
system for the moment. Another problem with this approach is that if 
there is a problem with your program you will lock out all user input. 
Multitasking can still continue, but the user cannot interact with the 
system. 

The other, more desirable option if you cannot perform the task on a 
separate thread isto disable certain functions within the application and 
run the task on a separate thread anyway. For example, you can easily 
store application defaults in a file on a separate thread without inhibiting 



222 MAKING IT HAPPEN 

any function of the application. However, you can't manipulate a data 
file until you have finished reading and interpreting it. In this case you 
would disable certain menus until the operation is complete. The code 
that handles your user interaction should always run on its own thread. 

For example, the first thing that the thread that reads the file should 
do is disable the proper menus. It should then perform the operation 
and finally reenable the menus. You will find that there will be only a 
few functions you can execute completely without worrying about some 
other function the user could choose to request. This method will be 
what you use in most of your threads. 

Using PM's Thread Handling 
You've seen how thread interaction affects not only your application but 
also all of PM and all applications running in the system. So far you've 
been told to use separate threads for longer work while the main thread 
remains dedicated to servicing user input. This section will explain how 
to do this. There are many ways to use threads in PM applications. 

To start with, the threads must be created. This can be done at either 
the start of the application or dynamically when the threads are needed. 
Since thread creation is not the cheapest of operations it is advisable 
to create the threads at the earliest point possible. This will of course 
slow down the application load time, but if the time has to be spent 
somewhere, it's better to have a longer load time than to force the user 
to wait while executing an operation. You could also use the menu
disabling technique to enable functions one by one as the application 
and all of its threads come to life. 

You also have some choices with respect to managing the threads. 
You don't want to write code that loops while waiting for work to do. The 
obvious answer is to write code that uses semaphores to execute code 
and to block when there is no work to do. It is the responsibility of your 
other code to clear the semaphore and inform the thread of the work 
it has to do. This coordination must all be originated by the window 
procedure. After all, this is where all events go, and everything in the 
application is triggered by an event. 



PROTOTYPING THE USER INTERFACE 223 

Object Windows 
Think back to the message-processing loop described in Chapter 6 and 
analyzed at the thread level earlier in this chapter. You can use this 
mechanism to manage work for your entire application. An important 
fact about windows is that they do not have to be visible. As a matter 
of fact, the construct called the object window is invisible. The object 
window and any of its children are invisible. Because it is a window, 
it has a window procedure, as do its children. Using this fact, you can 
combine your knowledge of the message-processing loop with how it 
interacts with threads and events to manage all of your work when it 
comes to semaphores and threads. Your application will have visible 
windows that interact with the user and other windows to get and dis
play data. When it comes time to send work to other threads, why not 
just let invisible windows do the work? This is best explained with an 
example. 

Aside from the windows that show data, you can create one or 
more windows that are children of the object window. (The owner is 
HWND_OBJECT) Because these children of the object window are never 
visible, they will never receive WM_PAINT messages. They also will not 
receive the standard messages from user input such as WM_COMMAND or 
WM_CHAR. Why, then, create this object window? The reason is that it has 
a message-processing loop. This loop is a natural manager of work and 
threads. This particular message loop will be on a thread separate from 
the user-input message loop's thread. Messages can be sent or posted 
.because there is a queue to get the message. If there are no messages on 
the queue, the thread managing that queue is blocked. If a message is 
sent to the window it executes on the thread of the sender. 

For the work that you want to execute in parallel to other work, or 
to let the main thread of the application be free to respond to user input, 
just post a message to this other (object) window. The posting thread (the 
user input thread) will be able to continue on in parallel, since it posted 
(not sent) the message, and the thread managing the object window's 
message queue will get it and process it on its own thread. The message 
can be a PM-defined message, but it is more common to use specific 
user-defined messages for this kind of work. 



224 MAKING IT HAPPEN 

There is a value defined in the header files called WM_USER. All values 
below this are reserved for system use. WM_USER above are for application
specific messages. By simply posting, say, WM_ USER+ 1 with the parameters 
specific to your message, you can activate this object window thread. 
Since you have posted it, the main thread can come back to the user 
while this object window thread is off doing the work. 

When the object window is done doing the work, it can post a mes
sage back to the main window to signal that the work is finished. Of 
course, you could do all of this with a common data structure for infor
mation and a semaphore, but PM can do it for you. This way you don't 
have to worry about the state of the semaphore or who else can touch it 
or any deadlock problems. 

The object window does not really behave as most windows do. 
It does not receive any user input. You can read files, paint the main 
window (which is usually the most time-consuming operation), or even 
perform long calculations on these separate windows. Additionally, each 
function, or black box, in your design does not have to have its own 
window. Because of the SWITCH structure of the window procedure, you 
can pack many tasks into one object window's procedure. The number 
of window procedures (and object windows) you need depends on the 
thread design you devised earlier. This is where you will take the list of 
functions that cannot be run in parallel and put them into one thread, or 
window procedure in this instance. You can see how this naturally leads 
to coordination, since this object window is never sent messages; it only 
processes posted messages on its own thread. Therefore the window 
procedure will have only one thread executing in it at any moment and 
forces the fact that none of the functions in the CASE statements within 
it can run concurrently. 

An important decision when using these kinds of threads is to decide 
which ones will have message queues of their own. Some PM APis 
require a message queue for the thread that calls the function. If a 
thread is going to process messages posted by another, it must have 
a message queue. However, it is vital that if a thread has a message 
queue but does not process user input it must call WinCancelShutdown. 

The effect of this is to make sure the system does not send the thread a 



PROTOTYPING THE USER INTERFACE 225 

WM_QUIT at the time the system is shut down. This is important because 

you want to be able to control the termination of your own threads when 

the application shuts down; you don't want the thread to drop out of its 

message loop when the system begins its shutdown. This could cause 

disastrous results if the thread was in the middle of a critical operation. 

A good example of using these threads and ensuring that you call 

WinCancelShutdown is when dealing with object windows, which are al

ways invisible and should obey the ideas first outlined. 

User-Defined Window Messages 
The messages sent to windows by the system are predefined. Earlier 

in this chapter you saw the WM_USER value. This value marks the end 

of the system-defined messages and begins, as the name implies, user 

values. All of the message identifiers are numeric values represented 

by such names as LM_INSERTITEM and WM_CHAR. These are defined in the 

OS/2 header files, as is WM_USER. These names make reading and writing 

code easier. Just as you would not want to be looking at code with 

such messages as OxOOSl, you don't want to look at such messages as 

WM_USER+l or WM_USER+5. 
In your application's header files you can set up defines for your own 

messages. You don't want to conflict with OS/2's predefined messages, 

but you can define your own based on WM_USER+x. Listing 14.3 gives an 

example of defining your own messages in a header file. 
A convention for using such messages is to take the WM_USER values 

and simply give them names of their own. Of course, you don't want 

to risk conflicting with system-defined messages in your own code, so 

#define UM_OPENFILE 
#define UM_READFILE 
#define UM_PAINTMAINWINDOW 
#define ON_OPENFILEDONE 

WM_USER+l 
WM_USER+2 
WM_USER+3 
WM_USER+4 

Listing 14.3 Defining user messages. 



226 MAKING IT HAPPEN 

I suggest using UM_ for your own messages (where UM stands for user 
message). 

You can also use these values for the notifications that object win
dows post back to the main window to indicate that work is completed. 
You can stick with the UM of messages for everything, or you can use the 
example in Listing 14.3, which shows an ON (object notification) message 
as another naming example. 

WinPostQueueMsg 
Another technique similar to that of the object window uses the message 
processing and coordination of a PM message queue, but does not incur 
the overhead of an object window. The same premise applies. 

For your other worker threads, you will call Wininitialize and 
WinCreateMsgQueue, just as you would for an object window. However, 
instead of calling WinCreateWindow to create a child of the object win
dow and then going into a WinGetMsg/WinDispatchMsg loop, you will call 
WinGetMsg and immediately drop into a SWITCH statement on qmsg .msg (the 
message piece of the qmsg structure). What comes into WinGetMsg when 
it gets the message from the queue is a QMSG structure. As you have seen, 
WinDispatchMsg breaks up that structure into the four widow procedure 
parameters and then calls WinSendMsg. You will break up the four parts 
yourself and operate on them directly. 

Really, what you're doing is putting the SWITCH statement that would 
have been in the window procedure right into your WinGetMsg Loop. 
Listing 14.4 shows an example of a thread set up to use WinPostQueueMsg. 

By using WinPostQueueMsg, you don't incur the overhead associated 
with object windows (even though the limits on window handles is much 
higher than ever before) and your code path is shorter and the code 
smaller, since you are not managing a window, but you are using PM's 
message coordination to free you from having to deal with event coor
dination semaphores and shared data areas needing to be protected. 

Both of these options allow you to group the set of functions for 
one thread in that thread, with each being performed in a different CASE 
statement in the switch. Now you are starting to see how you can take 



void MySecondThread() 

HAB hAB; 
HMQ hMQ; 
BOOL re; 
PQMSG pqmsg; 
QMSG qmsg; 
HWMD hwndSender; 

hAB Wininitialize(NULL); 

hMQ WinCreateMsgQueue(hAB, LONG(O)); 
pqmsg = &qmsg; 

/* Don't forget that since this is a message queue that should not receive 

/* user input and we don't want the system sending us WM_QUIT messages 

/* on shutdown, we need to call WinCancelShutdown 

re = WinCancelShutdown(hMQ,TRUE); 

while WinGetMsg(hAB,pqmsg,NULL,NULL,NULL) 
switch(qmsg.msg) 

CASE UM_OPENFILE: 

open the file 
WinPostMsg(hwndSender,UM_FILEOPENDONE,NULL,NULL); 

break; 

CASE UM_OTHEROPERATION: 

do other operation 
WinPostMsg(hwndSender,UM_OTHEROPDONE,NULL,NULL); 

break; 

default: 
do some default thing in case I got a message I don't know 

what do do with, but I never should .... 

break; 

/* End Switch */ 

} 

DosExit(O); /*If I got here, I got a WM_QUIT, so end this thread*/} 

Listing 14.4 WinPostQueueMsg thread example. 

*/ 
*/ 
*/ 



228 MAKING IT HAPPEN 

one set of functions that cannot be run in parallel and group them in 
one thread, another set that cannot be run in parallel with respect to 
each other but can be with respect to the first group in another thread 
and so on. 

You will use the main window procedure as a work dispatcher, and 
ship off work to these other threads by posting messages, and have them 
post a message back when they are done. You can now see how this is 
all falling nicely into place. 

Keeping the User Interface 
Thread Responsive 

The biggest issue in multithreading your PM application is to keep the 
user input thread responsive. A single-threaded application may be a bit 
slower than a multithreaded counterpart, but another major concern is 
that a single-threaded version will hold up user input throughout the 
system. A multithreaded PM application will also hold up user input if 
not implemented correctly. 

As you have seen, if the user input thread is also used to do all of the 
work within the application, it will clog up the pipeline that represents 
the system input queue and input router. (Note that in OS/2 Warp for 
the PowerPC this will not hold up the system but will hold up PM ap
plications, because the event/session manager manages the system, but 
for compatibility with applications, the OS/2 personality operates with 
a single queue once it gets the input from the event/session manager.) 
Many applications that have been ported from other platforms, such 
as Windows, will likely be single-threaded, because they (like Windows) 
have no concept of threads. However, you are reading this book because 
you want to design good applications and do it right the first time. 

The entire key here is to use the main window procedure, the one that 
gets user input, as a router, and do all of the work on the other threads 
you've just set up. Although we're only designing the user interface at 
this stage, you can see how, when we get into the real multithreading of 
the code worker code in the next chapter, you will manage these threads 
easily and with a minimum of code. 



PROTOTYPING THE USER INTERFACE 229 

By using the message-passing mechanism and thread management 

of PM you can make your job and your code much simpler and more 

efficient. After all, this PM mechanism is tested and easy to use, and best 

of all it's already there. 

SUMMARY 
The user interface should be the easiest part of the code to get running. 

My opinion is that it is also the most fun part of an application to code. 

By getting the user interface going early you can test the interface and 

your designs on "real people." You can quickly see if the windows you 

laid out are aesthetically pleasing or if they look awkward. 
The first part of the job is to get the skeleton code going and the main 

window with all of its menus visible. Then add the menu functions, 

and as a natural progression, the secondary and dialog windows. In 

each case, within the window procedures you simply call a placeholder 

function, to be sure you are getting all the messages you think you should 

be. Once these features are operative you can begin to experiment with 

the threading aspects of the application. You have many choices when 

you implement your threads, from the most basic (in which you manage 

all of the coordination and data passing) to the more "automated" (in 

which you let such Presentation Manager constructs as the window 

procedure and message-processing loop take care of a large part of the 

work). 
Understanding the difference between posting and sending mes

sages is the most important factor in putting the code together efficiently. 

The different results of these two actions are important, but their respec

tive effects on the threads of the applications that transmit messages are 

more important. If a message is sent, then whatever code sends the mes

sage cannot process any more work until the thread returns. A posted 

message, on the other hand, can come back immediately, but the tar

get of the message must be able to process it asynchronously from the 

poster. 



230 MAKING IT HAPPEN 

By using object windows and WinPostQueueMsg you can make this a 
reality with very little work. You can thus concentrate more on deter
mining which functions can run in parallel with each other and less on 
how to write the code. PM is not a fully object-oriented (OO) system, but 
it has its basis in 00 technology; it will allow you to let its objects handle 
a large part of the work of an application. By using this mechanism and 
extending the PM message constructs and names to fit your task, you 
can make your code easy to read and write and still remain consistent 
with the rest of the system. 



CHAPTER 

Building the Core 
Function 

A lthough the user interface is the most visible part of the applica

tion, it would be useless without something behind it to create the 

data that it shows. The core code is usually the easiest to port from 

other environments. This core code consists of the file-reading, number

crunching, database-searching, and memory management functions. 

The user interface is responsible for everything the user sees and does. 

The core code does the work and should not show anything to the user. 

If you discover something that the user interface does not account 

for when it comes time to work on the core code, you will need to 

decide how to incorporate the addition. The solution may be as simple 

as providing messages to notify the user of a nonexistent file or an invalid 

calculation. In these cases, you can define an interface within the user 

interface so that the core code can signal the user interface to display a 

message. The core code should not have any display responsibility. 

Data validation should also be coded into the user interface for two 

reasons. First, there is no reason to pass invalid data within the appli-

231 



232 MAKING IT HAPPEN 

cation. The invalid data should be stopped as the user is attempting to 
enter it wherever possible. Users should get immediate feedback regard
ing invalid data wherever you can write it into the code. For instance, 
when a user tries to enter a letter into a date or currency field, a beep 
should sound as the letter is entered; the letter should not be accepted 
or displayed in the field, and possibly a popup should be displayed to tell 
the user what is going on. This is much more desirable from the user's 
perspective than receiving an error message after entering the whole 
field. 

The other reason for data validation at the user interface level is so 
that the core code can simply assume the data passed to it conforms 
to what is expected. This makes the core code independent of the user 
interface and thus more portable. This independence goes back to a 
basic principle discussed at the beginning of this book: modularization 
with clean interfaces. 

The OS/2 Presentation Manager delivers events to the user interface. 
The user interface should deliver data with integrity to the core code. Of 
course, there is no way for the user interface to know the data should 
be "David" if the user types "Stacy" but the user interface can at least 
do some type checking to ensure the data format is correct. 

It is possible, however, to go overboard by putting too much type 
checking in the user interface. The type checking in the user interface 
code should be kept basic, such as determining whether the user types 
a character when a number is needed. Checking, say, whether the user 
asked to update a record that is nonexistent should be left up to the core 
code. Again, this is your call, but the optimal design is to keep the code 
as modular and independent as possible. In lieu of true object-oriented 
languages, this approach is as close to code reuse as you will get, so you 
may as well take advantage of it. 

In this chapter you will see how to structure the core of the code, 
such as thread and memory management. The basic parallel tasks have 
already been outlined and have been implemented at a high level in the 
user interface. You know how you plan to manage the coordination of 
the work using PM message queues and the semaphore functions within 
WinGetMsg to relieve you of that added work. Now it is time to really get 



BUILDING THE CORE FUNCTION 233 

down and dirty and see how finely you can break down these tasks 
into smaller, parallel units of work. At this stage the concepts of packing 
code, data pages, and page usage are put into practice. By the end of this 
chapter, you'll have completed the foundation of the application. Then 
comes the job of adding such advanced features as data interchange and 
international support. 

MEMORY MANAGER PACKAGE 
The memory manager package of your application does not have to be 
as complicated as if you were writing for DOS, because OS/2 manages 
memory itself throughout the system. You cannot inadvertently wander 
off into system memory. The system gives you a linear address, and 
once you have it, you can do with it what you wish. The only thing 
your memory management package needs to be concerned with is the 
allocation and subdivision of the memory in your application. Since 
you will be allocating memory pages and subdividing them, you should 
have some code that manages that work. As explained previously, if you 
allocate memory in only the sizes you need, there will be a great deal of 
waste because pages are allocated in 4K blocks. 

The memory manager package of your application should be the 
only place within the application that the memory management APis 
are called. You will write this code as its own subsystem with internal 
APis. You may define such functions as GetMem and FreeMem to satisfy your 
storage requests. The functions within the memory manager package 
will simply decide if another page is needed or if the storage request 
can be satisfied by giving the requester some memory in an already 
allocated (or committed) page. Pages can also be freed when enough 
calls to FreeMem that map to the same page are made, and there is no 
memory in that page being used. 

By structuring the code such that all memory management comes 
through GetMem and FreeMem you have the ability to control exactly how 
memory is allocated, suballocated, and freed in the entire application. 
This is critical in this virtual memory system in which memory leaks can 



234 MAKING IT HAPPEN 

eventually bring the system to its knees. By centralizing the the memory 
management functions, you can avoid memory leaks, and should you see 
things appear that cause you concern, you know exactly where to look. 
In these functions will be all the assumptions on memory allocation for 
the application and if you ever need to change them for another version 
of the application, if the assumptions change or for any other reason, 
you have a clean, modular design. So, what should you do inside GetMem 
and FreeMem? 

To begin with, decide if you want to allocate all of the memory the 
application will need up front, and subsequently suballocate it or if you 
want to allocate new blocks as needed. You may even want to combine 
both approaches. You may decide it is better to preallocate some of 
the larger and more often used data structures' memory and leave the 
smaller allocations you can't always assume to be done at runtime, and 
let your memory management functions handle those later. It's your 
application, with specific needs, and only you can make those decisions. 
By using this structure, you can tailor it to your needs and still leave 
room for change. 

Memory Suballocation 
You will keep a mapping of all of the physical memory that is allocated 
(and also which pages are committed) for your application. How this 
map is implemented is completely up to you. This map will be used by 
the memory management code inside your application to see if there 
is a free block within the currently committed memory (so you can 
suballocate that page) or if you will need to allocate and/or commit one 
or more new pages. (You may have some pages that are allocated but 
not yet committed.) If you need to commit new pages, you have several 
choices available to you. 

You first need to decide if you want to allocate and commit just 
enough to satisfy the memory allocation request, or if you want to allo
cate extra for the next set of requests. This is where you can make more 
assumptions about the memory usage within the application that the 
operating system cannot. 



BUILDING THE CORE FUNCTION 235 

In some cases, you may want to allocate more memory than you 
need for a single request, because you know that the specific request 
usually precedes more requests based on how the code functions. This 
preallocation can help you manage memory more efficiently if that fits 
the way you want to use memory. The advantage to doing all of this in 
your memory manager package is that you can tell it (in a parameter 
passed to GetMem, for example) where in the application the request is 
coming from, so it knows the characteristics of the memory needs at the 
time the request is made. 

You may have decided to allocate the major data structures when the 
application first starts, and as such you know that all other memory al
location requests are usually small and dynamic. In this case, you would 
just allocate individual (or groups of few) pages as needed, possibly even 
allocating them and not committing them until needed, subdividing the 
pages as required. If you need a new page and have one that is not yet 
committed, a DosSetMem call inside GetMem takes care of that quickly. If 
you have no pages available, then of course, you will be calling DosGetMem 

to obtain new pages. You can see how the flexibility of the OS/2 memory 
management model and APis help you do your work, while not forcing 
you to manage protection or other aspects of memory allocation you 
might otherwise have to. All you do is allocate pages where you need, 
and suballocate if you don't need new pages. 

If you don't need to allocate more physical pages at the time of the 
request, you will suballocate existing committed pages. 

There are varying degrees of detail with which you can manage the 
suballocated pages. The simplest way is to use the first-fit algorithm. 
Your memory manager receives a request for memory. With first-fit it 
will make a simple sequential search of its internal allocation tables to 
see if there is enough free space in any of the already-allocated pages. If 
so the request is filled with that memory. 

The next scheme is best-fit. Using best-fit, the memory management 
package works in a similar fashion to first-fit, but rather than stopping 
at the first free block of memory within the already allocated pages, it 
will continue and keep track of all blocks of memory that will satisfy 



236 MAKING IT HAPPEN 

the request. Once the entire mapping of pages is traversed the block of 
memory that best fits the requested block is used. 

This scheme has advantages and disadvantages. An advantage is that 
you may waste less memory throughout the application. A disadvantage 
is that your performance may suffer a bit. First, it takes longer to traverse 
the whole list than it does to stop at the first free block. Of course, if a 
new page has to be allocated this difference is nonexistent. The other 
disadvantage is not even necessarily a disadvantage. That is that you 
will leave smaller and smaller blocks free within each page, so that 
as memory is allocated and freed within your pages you may wind up 
with blocks so small that they are not realistically usable. This may not, 
however, be a disadvantage because you may end up wasting less per 
page than with first-fit; furthermore, you will know approximately how 
big your memory allocations will be. An operating system does not know 
this information, but you will be writing your own special-purpose code 
and can make more assumptions than the operating system does. 

There is yet another scheme called worst-fit. Some schoools of 
thought subscribe to the theory that by suballocating the largest block 
available within a page, you will end up wasting less memory in the 
application than the other methods. The properties of this method are 
the same as best-fit, since the entire application memory map must be 
scanned before a suballocation block is chosen. Whichever suballoca
tion method you choose, you are making efficient use of system memory, 
and your performance will benefit. 

There are some other assumptions you should think about in de
signing the list of parameters for GetMem. Since your application is given 
a set of linear addresses when a page is allocated and you give that 
set to a routine during the suballocation, you cannot move memory 
blocks around to compact pages. Doing so would place an unacceptable 
overhead burden on the application. However, since you know the char
acteristics of the memory requests of your application you can build in 
special checks to group the most used blocks in the same pages and the 
least used blocks in other pages. As outlined earlier, this will help in your 
paging performance. Of course, you could also choose to keep blocks of 
memory that live a long life in the same pages and other, shorter lived 



BUILDING THE CORE FUNCTION 237 

or transient blocks together in other pages. Actually, the best scheme is 
a balance between the two. Since you are the application author, you 
must decide what best suits your specific needs. 

Another thing to consider is the deallocation of pages (which you can 
assume, since you already know your specific allocation requirements). 
You may want to deallocate pages after all client routines of the page no 
longer need it, or you might want to keep them around since you already 
have them. Another possibility is to keep some number of free pages 
immediately available at all times and free any pages over that number. 
You could also have an idle-time thread that watches the memory map 
and frees extra pages when appropriate. In many cases this is overkill, 
but it is yet another option available to you since there will be some 
application programs that should make use of it. These are decisions to 
design in, making the assumptions about how your code will function 
to provide the best performance to your users. 

You can overmanage memory if you aren't careful. It's easy to get 
caught up in trying to optimize down to the byte, but OS/2's mem
ory management is very efficient by itself. All you want to do is min
imize waste by strategically placing code and data where it is most 
efficient. You can actually harm performance by overmanaging mem
ory. By combining the techniques of this chapter with those of sparse 
memory allocation introduced earlier you can create a very frugal ap
plication. In Chapter 18 you will see ways to use these techniques in 
specific situations to performance-tune the application once you have 
your application-defined memory management routines done. 

Guard Pages and Exceptions 
In Chapter 12 you saw how guard pages can be used to manage sparse 
allocations for large data structures. If you have large, multidimen
sional data structures where you are unsure of how many pages will be 
touched, you will allocate them as guard pages, with your own guard 
page exception handler to take care of things when uncommitted guard 
pages are touched. You can also use guard pages to manage the smaller 
memory requests in GetMem as described previously. When a new page 



238 MAKING IT HAPPEN 

is needed, all you have to do is commit the next page. Again, another 
option for you. Let's look at how this exception handler should work. 

When an application attempts to access an uncommitted page of 
memory, a page fault is usually generated. If, however, the page has 
the Guard attribute on it, a guard page exception is raised. If you are 
using this in your application, you do not want the system default guard 
page exception handler handling this, you want your own guard page 
exception handler doing the work for you. 

Exception handlers are registered and operate on a per-thread basis. 
Since you have your memory management routines in a small package, 
and it is likely you will not want the different functions to run in parallel 
(after all, you don't want to free a piece of memory as you are allocating 
it, or have two threads manipulating the same piece of the memory map, 
and semaphore-protecting it is the same as synchronizing it) so you will 
take your memory manager package and put it on its own thread. That 
is the thread you will register the exception handler for, since it will 
be the first one that tries to touch a piece of uncommitted guard-page 
memory. Do you see how this is all starting to fall into place? 

Back to the exception handler. All you need to do when you are called 
at this exception handler is call DosSetMem to commit the page. As shown 
in Chapter 12 you can also log these page hits to gauge the effectiveness 
of the memory management schemes you've chosen. Since you've put 
the routines in this package, you can always change it later. You've now 
created a flexible, efficient memory management package. 

16· and 32-Bit Techniques 
and Coexistence 

Depending on your application and business needs, you may need to 
restrict your application to 16-bit for a time. In this case you will not 
have the page allocation APis and 32-bit functions available to you. You 
can choose to write your code for 32-bit, 16-bit, or a combination of 
the two. Even if you write 16-bit code to run under 32-bit OS/2, simply 
understanding that all memory is allocated in 4K pages is almost all that 
is necessary. 



BUILDING THE CORE FUNCTION 239 

Note also that if you structure your memory management as just 
described, using your own GetMem and FreeMem APis, you can replace the 
16-bit memory management routines with 32-bit DosGetMem/DosSetMem/ 

DosFreeMem calls and you have just gone to 32-bit memory management. 
So modular structuring helps here. 

There are, however, some extra layers of translation that go along 
with 16-bit memory management that may affect your decision making. 
When a memory request is made from 16-bit code via DosAllocSeg, at 
least one 4K page is allocated. However, since a selector is allocated for 
the memory and a selector maps up to 64 K, 64 K of linear address space 
is allocated. This does not mean that 64K of real memory is reserved, 
just 64 K of linear addresses. When the MEMMAN statement in CONFIG. SYS 

specifies the COMMIT flag, and memory is allocated via 16-bit DosAllocSeg, 

all of the memory for the allocation is immediately committed as well. 
The most significant difference between optimizing 16-bit alloca

tions versus 32-bit allocations is that since you have reserved 64K in 
your application address space for any allocation and all memory from 
DosAllocSeg is immediately committed, you may as well allocate several 
pages and just subdivide them. You can optimize the size based on your 
knowledge of the application's characteristics. 

Another temptation when using 16-bit code is to allocate in one-page 
increments. This gives you a small advantage in that you allocate and 
commit only one page at a time, but each time you are reserving 64K 
of linear address space, of which you have only 512 megabytes for the 
whole application. You need to keep that number in mind because there 
is nothing worse than running out of linear address space in an appli
cation when you have plenty of real or virtual memory in the system. 

Memory management routines that you write can help you manage 
the memory that OS/2 allocates to you more efficiently and can also add 
some portability to your code. Since you are calling internal APis for 
each memory allocation, which resolve into your own small, compact 
memory management code, all it takes is a rewrite of the memory man
agement package for another platform. Such an approach is better than 
having operating-system-specific memory management calls scattered 
throughout the code. 



240 MAKING IT HAPPEN 

The next step is to examine how to structure and coordinate the 
threads in the application. 

MUL TITHREADING 
Some techniques for multithreading were discussed in Chapter 14, but 
they only scratched the surface. Multithreading is more than just par
alleling tasks; it can go to any level you desire. You could theoretically 
write your code to run on just one thread, but doing so would ignore 
one of the major advantages of writing programs for OS/2. 

You have already taken the first steps. Such main tasks as initializing 
the application, reading the files, and performing lengthy calculations 
have been separated into parallel groupings. The tasks that can be run 
in parallel are now in groups and (if you have followed this book step 
by step) are set up to be called from object window procedures, or via 
WinPostQueueMsg using the pool of threads. The main task invocation and 
thread activation as a result of user input are already in place through 
the PM message-passing mechanism. The next step in multithreading is 
to break the tasks into parallel pieces. You need to balance the useful
ness of moving part of a task to another thread against the overhead of 
managing the timing and coordination of the threads doing the work. 

Just as you broke the applications into tasks that could be run in 
parallel, you must break up those tasks. The application is a task. It 
must be separated into smaller tasks that in turn will be broken further 
into subtasks. It's a basic divide-and-conquer strategy. You took the app 
and divided it into conquerable and manageable tasks. Now those tasks 
should be further divided. 

The management of these threads can be handled in several ways. 
The simplest way is to create threads as they are needed and let them 
die when the subtask is complete. This is the easiest to code but the 
most expensive in terms of overhead; you may not have to worry about 
several jobs being requested of the same thread at once, but creating 
threads on-the-fly is an expensive operation. 



BUILDING THE CORE FUNCTION 241 

Just as with the major application tasks, you can use threads as a 
multipurpose tool. Threads can be created at the outset of the applica
tion and set to sleep until needed. In this manner, the threads can be 
multipurpose; they won't use CPU when idle, and they won't have to be 
created for every task required. The overhead here· is the coordination 
within the application. 

I recommend the latter for thread creation. My preference is to have 
all of the worker threads managed by their own message queue, utilizing 
WinPos tMsg to an object window or WinPos tQueueMsg. You should set up the 
threads in your code to execute the sets of functions as you've structured 
in groupings of tasks that cannot be run in parallel. You should code your 
application as the pseudocode in Listing 15 .1. 

By kicking off the initialization of all of your threads before you 
create your standard window, you will be multitasking that operation, 
and by the time you start dispatching work to them, they will be ready. 
Upon application termination (by falling out of the WinGetMsg loop, which 
means you've received a WM_QUIT) you will post WM_QUIT messages to the 
message queues of all of the threads you have created. Recall you've 
called WinCancelShutdown in these threads, so to get them to go away, you 
will need to send them WM_QUITs yourself. 

Once you have done that, you will clean up the main thread's re
sources, message queue, call WinTerminate and terminate the main 
thread. Using these techniques will give you an easy way to multithread 
your application and keep it flexible and fast. 

Synchronizing Threads 
A primary concern in the use of threads is deciding when the shipment 
of a small task to another thread is worth the overhead. By overdoing 
the multithreading of the application you can end up wasting a great 
deal of time. 

One of the biggest pitfalls of using threads within applications, 
though, is deadlock, a situation in which two threads each control a 
resource that the other thread is requesting. There is no easy way to 
recover from this situation. The problem of deadlock, however, can be 



242 MAKING IT HAPPEN 

Initialize critical data structures 

Wininitialize 

DosCreateThread 
DosCreateThread 

DosCreateThread 

WinCreateMsgQueue 

WinCreateStdWindow 

while WinGetMsg 
WinDispatchMsg 

WinPostMsg(WM_QUIT) to all threads 

Clean Up 
Terminate 

Listing 15.1 Initialization and thread creation for WinPostQueueMsg design. 

isolated and handled. There are many control structures that can be 
used to manage threads, coordinate execution, and avoid deadlocks. 
These structures were touched upon earlier and will be discussed in 
more detail here. They are the control structures such as semaphores, 
pipes, queues, shared memory, and critical sections. 

Semaphores 
A semaphore, as you will recall, is a structure that has an owner and 
two states: set and clear. When a thread issues a call to wait on a 



BUILDING THE CORE FUNCTION 243 

semaphore, the state of the semaphore is tested. If it is set the request
ing thread will wait until the semaphore is cleared, at which time the 
scheduler/dispatcher will wake the thread and grant it ownership of 
the semaphore, and it will change back to the set state. If the sema
phore is clear at the time of the request, its state is changed to set, 
and the thread continues. Any other thread requesting the semaphore 
before the "setter" thread clears it will wait until the semaphore is 
cleared. 

As you can see, when you deal with several threads and several 
semaphores you can end up with deadlocks. There is no set formula to 
ensure that no deadlocks will occur, nor is there any easy way to recover 
from deadlocks. The best approach involves cautious programming and 
analysis. There is a way to recover from deadlocks, but it takes a little 
bit of trickery. 

The analysis needed to prevent deadlocks involves a simple principle 
that is not difficult to apply: You must realize that virtually no operation 
is atomic. Your thread can be preempted at just about any moment-in 
the middle of an API, during a runtime function, or during a simple 
addition or multiplication. You will need to analyze not only the tasks 
and how you break them into concurrent subtasks but also how these 
subtasks interact and share resources. If two or more threads need 
to synchronize with a single semaphore you need to look at their other 
requirements and resources to see where these same threads cross paths 
again. By minimizing these multiple interactions you can begin to limit 
the chances of deadlock. 

Another thing you can do is build a pictorial network of the thread 
interactions. Figure 15.1 illustrates this approach. You can see there are 
three threads. Threads 1 and 2 make use of semaphore A. Threads 2 and 
3 make use of semaphore B, and threads 1 and 3 make use of semaphore 
C. No two threads make use of two of the same resources, but you can 
see that if thread 1 has semaphore A, thread 2 has semaphore B, and 
thread 3 has semaphore C, any semaphore request by any of the three 
will cause a deadlock. 

Classical concurrent programming theory and principles, such as 
diagramming with Petri nets, and the theories behind such classical 



244 MAKING IT HAPPEN 

~·. ·~~-T-h-re_a_d_1_~~- .... ~ 

.___T_h_r_ea_d_3_~~ ... ~· .... J._ _T_h_r_ea_d_2_~ 

Semaphore C Thread 1 

Thread 3 Semaphore B 

Dotted lines indicate potential ownership 

In the lower figure, solid lines indicate real 
ownership and deadlock if any thread requests 
any of semaphores A, B or C 

Figure 15.1 Thread deadlock. 

Semaphore A 

Thread 2 

problems as the dining philosophers and bounded buff er can also be 
used to understand the implications of concurrent programming. 

Once a deadlock occurs it is very difficult to detect. This poses an
other classical computational problem: the program that runs to com
pletion. Who can know for certain if a program or task will ever com
plete? In reality, you never know whether a task will run to completion 



BUILDING THE CORE FUNCTION 245 

until it actually does. If, however, you have a means of detecting that 
a deadlock has occurred, you have a chance to recover. First, though, 
consider the following: Even if you have a way to determine that a dead
lock has occurred, it is not necessarily worthwhile to risk a deadlock to 
save a few milliseconds. In some cases it may be worth the risk to save 
20 or 30 seconds on a single task. It is of course up to you to weigh the 
risks and benefits. 

In general, you will be breaking up your application from the top 
down, so you are dividing tasks into subtasks and analyzing the at
tributes of which can and cannot be run in parallel, increasing the gran
ularity at each step. Only you can know when you have broken it down 
to the appropriate level. Understand these subjects here, and "you'll just 
know" when it is broken down far enough. 

If you do detect a deadlock in software, you can terminate a thread 
and resolve the deadlock by using an API introduced in OS/2 2.0 called 
DosKillThread, a feature unavailable in 16-bit OS/2. This solution has 
numerous implications, however. Once one of the threads in deadlock is 
gone the remaining threads are in an indeterminate state. The resources 
can no longer be relied upon to be correct. Depending on the task being 
performed, you can restart the task, but in some cases you are better off 
telling the user that something has gone wrong and that the application 
needs to be restarted. In some cases, DosKillThread will not be able to 
kill a thread, such as when the thread is blocked inside a device driver. 
In general, a thread must be in user mode (ring 3 in Intel terms) for 
DosKillThread to be effective. In any event, the more reliable method is 
to terminate the process, taking into account that one or more threads 
may not terminate gracefully. 

In many cases, deadlock will occur because of unforeseen circum
stances, but perhaps most often race conditions will be the cause of 
multithreading problems. Race conditions occur when two or more 
threads race for a resource; depending on the system the same result 
will not be obtained consistently. The reason for this inconsistency is 
that if a thread has used too much CPU time or if a time-critical or 
higher-priority thread is running, the threads racing for the resource 
will not "arrive" at the resource at the same time. As such, you may 



246 MAKING IT HAPPEN 

be relying on synchronization and characteristics that may not always 
hold true. If you plan on finely slicing up a task, using threads to do 
the work, be sure to balance the advantages of parallel work with the 
effects of subdividing your tasks too much. There is also a mechanism 
by which you can ensure that threads do not race for a resource: the 
critical section. 

Critical Sections 
A critical section is a construct in OS/2 that ensures that only one thread 
within a process can run at any one time. It is a very expensive operation 
that should be used with great care. I have seen applications that use it 
as a simple synchronization tool, which is not a wise move. It is usually 
more expensive than not using a second thread at all. 

A critical section is entered when a thread calls DosEnterCritSec. In
side this API, the scheduler is told to immediately block all other threads 
within the process. The process stays in this state until DosExi tCri tSec 
is called, at which time the threads are returned to their prior state. As 
you can see, the sequence of events isn't complicated. 

The biggest issue with critical sections is their performance cost; 
furthermore, when you enter a critical section all of the application 
threads except for the one that has called DosEnterCri tSec are frozen. If 
you feel a drastic tool such as a critical section is necessary, you should 
take a closer look at why the task is on another thread and/or why you 
need to synchronize the threads to such a large degree. At this point you 
may want to restructure the tasks. Critical sections are the "easy way 
out" of a thread coordination situation. I've never seen a good reason to 
use critical sections to resolve a resource conflict that could not be done 
with an intelligent use of semaphores. Since critical sections affect all 
threads in the process and not just the ones vying for a resource, there 
is a more widespread effect on the application and the possibility of 
causing more problems than you are solving. What I'm saying is try 
to use semaphores wherever possible for coordination, and use critical 
sections only if you must have a task on another thread and cannot find 
a way to do what you need with semaphores. 



BUILDING THE CORE FUNCTION 247 

Critical sections and semaphores are the main control structures. 
You can also devise any home-grown method you wish using your own 
data structures in your own memory. After all, all threads have access 
to their process's structures, so whether you are synchronizing with 
a semaphore or a structure of your own there is no real difference. 
Semaphores are system-defined and are there for you, and unless there 
is something you need a semaphore to do that it cannot, there is no 
reason to reinvent what is provided for you. 

Should You Even Use Another Thread? 
The question of whether another thread should even be used for a task 
often arises. As with other aspects of the application, only you can make 
this determination. You have seen the pros and cons, advantages, and 
implications of many of the decisions you will have to make. For ex
ample, critical sections should usually be avoided. However, there are 
times within the application when you want to ensure that only one of 
its threads is running. The decision to even use multiple threads is also 
up to you. As you have already seen, it makes sense to have at least two 
threads within the application. One thread will service user input, and 
the other will do the work. Beyond that, however, it is a very subjective 
decision. 

Common sense should be your guide. If you will get a performance 
gain by multithreading or further breaking down and subdividing a task, 
then you should consider it. However, if the control and coordination 
between that thread and any other is too fragile or risky, you must 
weigh what you are gaining against the potential problems. Gaining 
a few milliseconds by moving the work to another thread may not be 
worth the overhead if the possibility of synchronization problems or the 
cost of synchronization is too high. 

In general, you should have threads set up at the beginning of the 
program waiting to do work. Threads should also be multipurpose, oth
erwise there is no real reason to have them waiting to do work-they 
could just be created on-the-fly. The mechanism discussed in the last 
chapter involving the use of an object window and window procedure, 



248 MAKING IT HAPPEN 

IPC 

Queues 

or using WinPostQueueMsg can be employed throughout the system. There 
is no reason you should be limited to using object windows and window 
procedures to split out tasks from the main application window's pro
cedure. You can use this construct to manage all the work within your 
application if you so desire. 

There are many uses for threads. Just be sure you don't make things 
more complicated without making worthwhile gains. 

Interprocess communication mechanisms are generally used only when 
you need to communicate across programs or processes. The data struc
tures used for IPC can be used within a process as well. Be sure you don't 
set up any of these data structures for interprocess use if you intend to 
use them in only a single process. There is additional overhead in setting 
up the structures for interprocess use. 

A queue is a standard data structure. An interprocess queue is somewhat 
more unique. You can set up queues for use between programs so that 
you can pass data between them. When you set up any queue, be it inter
or intraprocess, you need to synchronize access to the data. You need 
to ensure that there is data in the queue when you try to execute a read 
and that the queue is not full when trying to execute a write. You also 
want to be sure the same queue element is not being manipulated by 
two threads at once, hence the need for a semaphore. 

Interprocess queues, as you will see with many of the interprocess 
data structures, use pseudodirectories in the file system to communi
cate. For example, interprocess queues are created in the QUEUES pseu
dodirectory. Although this directory does not appear on your hard disk, 
it is in the file system. A queue within a process can just be some memory. 

With the interprocess queue, you will use the API DosCreateQueue 

with a name that will be created in QUEUES. This queue can then be 
accessed by other programs. It can be manipulated any way you like. 



Pipes 

BUILDING THE CORE FUNCTION 249 

Remember, however, that these accessing processes are separate and 
distinct. They must both (or all) access the queue and manipulate it the 
same way. All queue accesses must be serialized, and the data added to 
and removed from it must be done the same way. This means either that 
there must be an established protocol documented by the application 
that others must follow or that the separate processes must be part of 
the same application. In any event, all accessing processes must access 
the structure consistently. This rule applies to any of the interprocess 
communications methods. 

As you will see in the next chapter, the OS/2 Clipboard and DDE are 
the only IPC tools with predefined protocols that every application will 
know. 

The data placement into and removal from the queue must not only 
be done consistently by all accessing processes, but these operations 
must also be coordinated through the use of a system semaphore. The 
system semaphore of choice for this type of coordination is a mutex 
semaphore. By requesting the mutex semaphore for the queue before 
executing a read or write on the queue, you can be sure you're not 
reading something while another process is writing potentially the same 
place. 

Event semaphores are useful for triggering events, but they do not 
work well for coordinating access to structures. You should note that 
for pipes as well as queues, mutex semaphores are required to ensure 
dahrintegrity. You will request the mutex semaphore before the access is 
attempted and free it once your access to the structure is complete. You 
must be sure the process does not own resources the other may request 
so as to avoid deadlock. 

These considerations apply for pipes as well as queues, or any other 
shared structure you may build yourself (using shared memory). The 
DDE and clipboard functions you saw in Chapter 8 and will see more 
of in the next chapter have their synchronization built in. 

Pipes are another data structure that doesn't have much use within a 
single-process application but is very efficient for interprocess use. A 



250 MAKING IT HAPPEN 

pipe has the function of a subset of a queue. That is, it functions exactly 
like a pipe in your house. Data goes in one end and comes out the 
other side in the same order. Just as with the queue, the reader and 
the writer of a pipe must understand the protocol, or the format, of 
the data in the structure. Since pipes are used mostly in interprocess 
communications, you will need to document the format of the data and 
the communications protocol if you intend to communicate with other 
applications and not just another process of your own. 

Pipes are created in the PIPES pseudodirectory. Just as with the other 
interprocess data structures, access to the pipe must be synchronized 
and controlled. 

Shared Memory 
Shared memory is the easiest IPC structure to work with. It is just 
a chunk of memory that can be accessed by more than one process. 
Shared memory comes in several flavors. There is shared memory and 
named shared memory. 

The main difference between named shared memory and what is 
called anonymous shared memory is that in named shared memory any 
application that knows the name of the memory can use it, whereas 
with anonymous shared memory, one application must explicitly give 
the memory while another application must call an API to get access to 
it. Using shared memory, you can implement any type of data structures 
you wish. 

Once again, it is important to make prudent use of semaphores to 
coordinate access to any shared data structure, even free-form shared 
memory. 

IPC is most useful for writing client-server type applications. Most 
of your everyday word processors or other standard applications don't 
have much use for IPC. However, if you are writing client-server ap
plications for which coordination between programs is important, IPC 
may be just for you. Other than that, though, IPC is usually overkill. 

This feature is a testament to OS/2's flexibility and scalability. You 
can write code that is very isolated and separate, or you can write code 
that communicates and works with others, depending on your needs. 



BUILDING THE CORE FUNCTION 251 

FILE FUNCTIONS 
File functions are often overlooked pieces of an application. OS/2 pro
vides many features to applications based on the file system structures 
and mechanisms it supports. Since this is a book for designing applica
tions I will not discuss writing installable file systems or device drivers. 
However, it is important to know the ramifications of using various 
features and structures of file systems. 

Just as it is important to isolate your application from the underlying 
hardware, you want to weigh the benefits of using features specific to 
certain file systems. Some features are common to all file systems, but 
some are available only on certain ones. There are ways to support the 
features of one without precluding the use of others. 

Internal File Formats 
The first decision you have is to choose your application's internal data 
file format. There are really no operating system considerations that 
should affect your choice of data file structures. The main consideration 
is the same for any environment: data compression. Regardless of the 
operating environment, disk access is the most time-consuming opera
tion. There are ways, however, to make this as fast as possible given the 
speed of the hardware. The main way is to compress the data such that 
it is optimized for your application. 

A good example of an application that would make good use of a 
binary format is a graphics program. A word processor, on the other 
hand, can use a standard ASCII file. This ASCII file could have the word 
processor's control information (such as bold or italic) imbedded in the 
ASCII text, or you could even store that information in an extended 
attribute (EA) for the file. The EA method could make the file usable 
by other applications such as plain text editors or other programs that 
read ASCII files. This is a way to make your application's data files 
mor_e_9_pen. Of course, some applications such as graphics do not lend 
themselves well to this "openness," but with a little imagination you can 
make your word processor, database, and spreadsheet files open. Then 



252 MAKING IT HAPPEN 

again, by using EAs within the program to store parts of the data file, 
you introduce a level of incompatibility with other systems that do not 
understand EAs. Each choice has some kind of drawback; you must 
weigh your options. 

Of course, don't compromise your own performance for this open
ness. It's not worth it if it makes your application need five seconds per 
kilobyte longer to read the file. Look at how often your users will use 
the function, and then determine the benefit or loss. 

Another example of a file system function is the long filename sup
port built into the High-Performance File System (HPFS). It is useful to 
use the NEWFILES keyword in your module definitions file to allow your 
application to use long filenames. However, it is not a very good idea to 
make the default data filenames long (that is, longer than the 8.3 FAT 
naming convention). Doing so would preclude the use of your appli
cations on FAT systems. However, enabling your applications for long 
names gives you flexibility in that they will work just fine on FAT (8.3) 
systems while allowing you to elegantly handle situations in which the 
user has HPFS and chooses to give his or her data files long names. 

The file system does not affect the choice of internal file formats 
in terms of how quickly the file is read from or written to. Some file 
systems are faster, and some are slower, but it is the user's choice as to 
which should be used. You should make your application flexible enough 
to handle anything the users may wish to do without locking them into 
anything or precluding the use of any of the file system (or any operating 
system) features. 

Taking the LAN into Account 
Many users will want to run their applications over the LAN. There 
are some considerations when writing LAN-capable applications. Aside 
from the file system considerations you need to realize that you will 
potentially have many users running the same code, which presents a 
good case for using instance data as opposed to global data structures. 
The application initialization file must also be considered here. If you 
have only one, then everyone will have to share it. You may want to 



BUILDING THE CORE FUNCTION 253 

build some code in the application to allow users to choose the path of 
the application initialization file. 

The main thing to understand with the LAN is that the connection 
can go down anytime. Therefore, you may wish to specify the attributes 
of your code and data a bit differently. Code is usually discarded and 
reread from the EXE or DLL when needed. This is not good if the 
LAN connection goes down. In such a case you may wish to specify 
that the code is to be preloaded and should be swapped as opposed to 
discarded. This will increase your swapper file size but will give you a bit 
more security. The performance difference will be negligible, because 
whether you reread code from the swap file or the original executable, 
you are still reading from the disk. In fact, it may even be slightly faster 
swapping the code since the swap file is local, whereas rereading from 
the executable would require a somewhat slower LAN read. 

The next consideration in whether to LAN-enable your application is 
the way you structure the data. In a LAN environment many users will 
use the code at one time. Any shared files or even IPC structures need 
to be examined to ensure that there is no confusion. For example, you 
should lock data files when reading them, and named IPC structures 
such as queues and pipes should have names that uniquely identify 
the workstation. Since these structures can be used across processes 
and across the LAN the names cannot be generic. For example, if your 
application is called MyApp, you don't want to create a queue called 
QUEUES\MyAppQl. You should use the workstation name in any of your 
named IPC mechanisms to ensure data integrity. 

The final consideration in using the LAN for the application holds 
for any other file system function-namely, don't rely on the application 
always being run on a LAN or, more specifically, on any particular type 
of LAN. By staying generic you will be more portable not only in terms 
of your coding, but also in the flexibility of your user's environment. 

Using File System Structures 
Let's extend this discussion of file system-dependent features to the 
structures available in file systems. By sticking with the OS/2 API you 



254 MAKING IT HAPPEN 

can rest assured that your application will run on any OS/2 file system. 
However, you must decide whether you wish to use such structures as 
EAs or to rely on specific control blocks. In general, you want to stay 
away from the control block-level functions. Although you can accom
plish a great deal with this information and DosDevIOCTL, you start to 
make yourself vulnerable to users' whims when it comes to installable 
file systems and new technology. 

When evaluating EAs or other file system structures you need to 
examine and stick to the lowest common denominator in terms of func
tion. If not, you will need to require users to configure their systems 
the way you prefer, which can limit your application's acceptance. In 
addition to using only the lowest common denominator functions, you 
should conduct your performance testing with the slowest of the bunch. 
This gives you two pieces of vital information. First, it gives you a good 
indication of whether you want to use this function. If it was a toss-up 
to begin with, this may influence your decision one way or the other. 
Second, you have a benchmark to see the slowest speed at which your 
system will run. 

Using these pieces of information you can make informed decisions 
as to which functions to use or leave out, and whether you need or want 
to require a specific file system configuration. You may have optimized 
as much as possible and still find that the slowest system is too slow. In 
this case you will either have to find something else to do, find something 
to leave out, or specify a specific configuration. 

SUMMARY 
Now the main application design is complete, so you can start to look 
at the advanced features you want to add. Since you have gone through 
the pros and cons of the user interface, core function, thread, IPC, and 
file system features, you have a much better idea of which advanced 
functions (such as DDE or clipboard) you want to use. 

As you have seen so far, the application has been divided many 
times-first by splitting the job of the application into the user interface 



BUILDING THE CORE FUNCTION 255 

and base functions. Now the user interface and base functions are well 
defined and designed to get the job done. The next phase of the design is 
to put in the "bells and whistles." Note that these must be incorporated 
into the design as well. Don't get lazy here. Every piece of code you put 
in the application should be designed with an understanding of every
thing you may encounter. You have the bulk of the work done. Now is 
the time to look at the advanced features, some further tuning tips, and 
the finishing touches to make your application a well-designed package. 





CHAPTER 

Using Advanced 
Functions 

T he advanced functions in your application are something that you 
looked at, evaluated, and decided upon very early on in your de
sign. You figured out that you wanted your program to have such 

features as data communications, graphics, and help. You also looked 
at how these functions related to your specific application. For example, 
when you looked at data communications you looked at the main func
tion of the application. Did you use multiple processes? Did you need 
IPC private and specific to the application? Did you want to publish 
an interface to your application or just have it use a generic, preestab
lished interface? How do you want to print? Is the application graphics
or text-based? 

All of these are decisions you made when you mapped out the ma
jor functions of the application. Now is the time to choose the correct 
mechanism and tools to implement these functions. Throughout this 
chapter the advanced features you can use for your programs as well as 
which ones are best suited to your tasks will be explored. Until now our 

257 



258 MAKING IT HAPPEN 

discussion has been limited to a description of the features. Now is the 
time to incorporate them into the design. 

Recall how the user interface was put together and how you will add 
in code step by step and section (or function) by section, simply filling 
in the functions that are called from your main window procedure's 
CASE statements. These functions are no different. You will probably just 
want to save them for the end of the design and coding phases of your 
project, if only to be sure you have your most important functions
the data manipulations-working properly. Once these functions are 
working and your data is displaying the way you want it to in all the 
various flavors you plan to offer to the users, you should begin to look 
into the advanced features. The other reason to wait until now is that 
during the design and prototyping of the other parts of the application 
you may want to change some of the user interface or data display 
routines. If you have already implemented the advanced features such 
as DDE you are faced with the choice of either throwing that work away 
or not changing. 

By holding off on the advanced features until you are sure of the 
other parts of the application, you have the most flexibility if you want 
to change. Of course, you should always keep all of these items in mind 
when designing any part of the application or changing anything, but 
hold off on committing yourself until you need to. 

CLIPBOARD 
The most commonly used functions for data exchange are DDE and 
the clipboard. What they are and how they are used has already been 
discussed, so let's just jump into putting them into use. The clipboard is 
the easiest function to design and code and is usually the easiest for the 
user, for the simple reason of its consistency. The clipboard protocol is 
predefined and common to all applications, and there is not really too 
much that applications can do differently from one another. 

The main function of the clipboard is to allow a user to mark an 
area of data and choose to cut or copy it to the clipboard. Furthermore, 
an application can allow the user to take the data in the clipboard and 



USING ADVANCED FUNCTIONS 259 

paste it in wherever the user chooses. This is usually initiated with menu 
functions. The use of the clipboard depends on the function of the appli
cation. If you are writing a text-windowed application the clipboard is 
only of limited use, and you cannot easily manipulate clipbard data any
way. The VIO shield layer introduced in Chapter 6 showed the clipboard 
interaction for programs running in a text window. 

There are three data formats supported by the OS/2 clipboard in 
PM graphics, or AVIO windows: text, metafile, or application-defined. 
In general, the text and metafile formats are the most commonly used, 
because they are predefined and available to any application. The user
defined data format is versatile, but the originator and the recipient of 
the data must both know about the data format, otherwise it cannot be 
used. This is a small limitation, but the function is useful for cooperating 
programs. 

Text Data 
Text data is quite simple. When writing the data to the clipboard the 
format specified by the program is CF _TEXT. The text data is placed into 
a spot in memory, and the memory is given to the clipboard. The data 
in there is simply plain text. When an application comes along to get 
the data from the clipboard (such as when a user selects PASTE from a 
menu) it queries the clipboard as to what type of data if any is in there, 
and then requests that data. 

Sometimes there may be data in the clipboard that is unidentifiable 
by the application. It may be that this application is a text processor but 
that the data in the clipboard is CF _METAFILE. The application looking 
to get the data from the clipboard has several options. It can monitor 
the clipboard and keep the PASTE item grayed until a recognizable piece 
of data is placed in, or it can tell the user what is going on when the 
attempt is made to actually paste. 

Metafile Data 
Metafile data is just another type of data that can be placed in the clip
board. It is a standard OS/2 metafile, which is a defined graphical data 



260 MAKING IT HAPPEN 

exchange format. To place this data into the clipboard you just need to 
specify CF _METAFILE in your API call along with the address of the data 
that has the metafile in it. 

Application-Defined Data 
Application-defined data is simply data that the application has defined. 
Most other applications will not know about the data format. It is some
times useful to hide data from other applications, in which case you may 
wish to use DDE. The only real drawback to DDE is that the recipient 
needs to know the data format. Of course, the same holds for CF _USER 
data in the clipboard. You may want to go to DDE just for application
specific data. 

DYNAMIC DATA EXCHANGE (DOE) 

Dynamic Data Exchange (DDE) is both a set of PM messages and a 
protocol for exchanging data. As introduced in Chapter 8, there are two 
types of DDE communications: the one-time exchange and the hot link. 
DDE is a powerful tool that most applications do not take full advantage 
of. 

Although the clipboard is used to paste a block of information from 
one window to another, in many instances the data is not directly in
terpretable by the target application without some work. For example, 
if you import a graphic into a drawing program it usually comes in a 
metafile format. In order for the target program to manipulate it (other 
than positioning it), the target program must translate the graphic and 
change it to its own internal data format. Of course, some data such as 
text is easily used by the target application, but in general DDE is used 
to move data between applications as opposed to the clipboard, which 
usually moves a representation of data. 

DDE is somewhat of a PM pipe. An exchange of data takes place 
through a coordinated set of messages in a conversation initiated by a 
WM_DDE_INITIATE message broadcast by the source application. Usually, 



USING ADVANCED FUNCTIONS 261 

DDE conversations are activated by menu choices selected by the user. 
The user also selects which application is to be the server and which the 
client (actually, it can be a peer-to-peer conversation as well). 

When the user initiates the DDE conversation and your program 
broadcasts a WM_DDE_INITIATE, another application can respond with a 
WM_DDE_INITIATEACK. Messages are then passed back and forth to ver
ify that they want to "talk" about the same topic and, if so, to set up 
and maintain the data transfer between programs (WM_DDE_ADVISE and 
WM_DDE_UNADVISE, which establish and terminate the hot link). The mes
sages defined by DDE provide the messaging protocol, and the applica
tions simply provide pointers to the data. 

A restriction of DDE as opposed to pipes is that DDE cannot be run 
across a network. Named pipes, however, are more appropriate if the 
communication is to take place across machines. 

The DDE messages are defined by OS/2 and despite minor differ
ences can be used between native Presentation Manager applications 
and applications running in WINOS2 (the Microsoft Windows code built 
into OS/2) sessions. The messages define the communications protocol 
and contain pointers to data that is application-specific. 

When you are deciding on which IPC tool to use, keep in mind that if 
simple data is to be transferred and manipulated by another application, 
DDE is a very good choice. PM manages the messages being passed 
as well as defines the protocol. Unless you are moving data between 
processes on different machines DDE is usually the best choice. 

A one-time exchange of data is more often accomplished through the 
clipboard than through DDE because of the setup overhead required by 
DDE, unless of course the data is to be manipulated by the target. The 
hot link is the feature of DDE that is used more often. The reason that 
the hot link is so much more powerful than, say, pipes or queues is that 
it is a two-way conversation between applications. Sure, you could use 
multiple pipes or semaphores to accomplish some of the same functions 
as DDE, but they are much more cumbersome, and the overhead and 
synchronization can be a nightmare. DDE provides efficient two-way 
communication. Additionally, the data can be of any type you choose (as 
is also the case with queues and pipes). 



262 MAKING IT HAPPEN 

A large part of your decision of which IPC tool to use lies in personal 
preference. However, for intermachine communications you should 
stick with name pipes. For one-time data placement, such as import
ing a graphic into a document or moving text between programs, the 
clipboard is the best choice. If, however, you want to hold a conversa
tion between applications on the same machine where data and other 
information is passed back and forth, DDE is the way to go. 

PRINTING 
Printing is a hot topic in OS/2. The OS/2 print subsystem is very complex, 
flexible, and powerful, yet it is also very straightforward. It can seem 
very confusing to the uninitiated, but guess what? You're going to be 
initiated right now. 

Printing will be discussed here as it relates to PM, since PM is the 
primary interface for OS/2 applications and also provides the greatest 
level of power and flexibility. PM printing is device-independent. That 
is, the application does not need to care if the printer is a plotter, laser 
printer, or a 9-pin dot-matrix printer from 1982. There are only a few 
pieces of information the application needs. OS/2 does the rest. 

Let's first go through the print subsystem. Figure 16.1 shows the 
PM side of printing. It works with printer drivers, which are special 
presentation drivers discussed back in Chapters 5 and 6. Recall also 
how all applications output to a presentation space, which is associated 
with a device context. The device context in this case is the printer driver. 

In general, a print job will go from the application to the spool 
queue. The files that are placed in the spool queue are usually metafiles. 
Once in the queue the jobs are removed in order and sent through the 
printer driver a second time to be translated from the metafile to the 
printer-specific data. 

As you can see from Figure 16.1, the printer driver is used the first 
time by the engine and the application to create the metafile. The job 
description file is also created and is placed in the spool queue along 
with the job file. At the proper time, the queue processor will come along 



PM 
Application 

Print 

I• Object 

l - Graphics 
Engine 

Printer Driver 

Part 
1 

Part 
2 

I 

-
Kernel 

Device Driver 

' ' 
Figure 16.1 OS/2 print architecture. 

USING ADVANCED FUNCTIONS 263 

• 
OS/2INI 

Spool 
Queues 

files 

.. DOS 
Application 



264 MAKING IT HAPPEN 

and pull the job from the queue. The queue processor will create a PS 
and DC, and then invoke the second pass of the printer driver to do the 
actual translation to the specific device. There are some printer drivers, 
such as the PostScript driver, that do not use metafiles; rather, they just 
place the raw data in the queue. 

PostScript is unique because PostScript is a programming language, 
so it is more efficient to just generate the PostScript program in one pass 
rather than generate the metafile first. The reason for the metafile for 
the queued print files is that it is a compact data form, so the jobs in the 
spool queue will be smaller. It is also a generic data format and can be 
easily manipulated and viewed. 

There are paths that the data can take based on choices both by the 
user and by the programmer. When an application wants to print data 
it can do so in either standard or raw mode. Raw mode is rarely used 
because it bypasses the device-independence of the system. In raw mode 
(PM_Q_RAW) the application is responsible for creating the printer-specific 
data stream. When an application opens a printer DC with PM_Q_RAW the 
printer driver is simply told not to create a metafile from the print job. 
The printer-specific data is expected from the application, so whatever 
the application outputs is placed into the spool file. 

When an application prints using PM_Q_STD (standard printing) the 
first pass through the printer driver is used to create the metafile. This 
is indicated to the printer driver by the PM_Q_STD in the DevOpenDC call. 
The spool queue processor then comes along to pull the job out of the 
queue and send it to the printer, just as in raw printing. However, in this 
case the queue processor sees the PM_Q_STD in the job description file and 
treats the job file differently. In PM_Q_STD printing the queue processor 
has to issue a GpiPlayMetafile call to play the metafile on the PS and 
DC. When the job is raw the queue processor knows that the job is 
not a metafile; it simply tells the printer driver that the data is already 
translated and should just pass through. 

Print Destinations 
Now that you see how the print subsystem works at an architectural 
level, let's discuss the issue of designing printing in your applications. 



USING ADVANCED FUNCTIONS 265 

The first and most obvious item of concern to an application is where 
to print. OS/2 offers the concept of the print destination. A print desti
nation is neither a printer, nor a queue, nor a port. As far as the user is 
concerned, a print object is what is asked for. Programmers know that 
behind this print object is a queue with a printer driver that is associated 
with a port (refer to Figure 16.1). 

The user has two options in printing a document. The first, which 
has already been discussed, is when the user drags a document to a print 
object and drops it. The document object is called at the wpPrintObj ect 
entry point or method. As a result, the application should be invoked in 
"subset" mode to print the document or the function in the application 
DLL should be called to perform the printing. 

The other way to print is to ask that the data be printed when the 
user goes through the application menu. Unlike the scenario in which 
the user drops an object on a printer, the destination is not known. When 
the user drops an object on a printer the destination is already known 
by the application because it has been passed by the object. When the 
user asks the application to print a document via a menu selection the 
application must query the user for the print destination. The first step 
for the application is to query all of the available print destinations by 
calling SplEnumPrinter. It should then present a list of destinations and 
ask the user which one is desired. You may have an application default 
print destination stored in the application defaults file, which should 
appear highlighted in the list. The user then has the choice of either 
changing the selection or accepting the default. 

Once the destination is determined, the two scenarios are almost 
identical. The next item of concern is to decide on the print job proper
ties. Each printer and queue has default properties. The selected destina
tion should be queried for its job properties, which should be presented 
to the user along with an opportunity to change those properties. This 
information must be determined before the printer DC is opened. 

Once this information is available and the printer DC is opened, 
the print job can be sent. This sequence of steps is important to keep 
the application flexible and able to use all of the operating system's 
features. For example, there can be multiple queues for printers, each 
with different properties. By querying the user for the printer name and 



266 MAKING IT HAPPEN 

FONTS 

verifying the properties for the print job the application provides the 

user with maximum flexibility and allows the user to take advantage of 

all that OS/2 offers. 
The main issue in printing is to ask the user where to print. Once 

that is determined, look for the job properties in the queue or destination 

selected (they are generally the same, since each queue associated with 

a printer driver is another print object or printer name). Next, display 

those properties to the user, providing the opportunity to change them. 

Once the properties are to the user's liking, use them to create the 

printer DC. 
Using this approach the application maintains flexibility and con

sistency with the system configuration. Please see the references in the 

back of this book for information on actually coding printing in appli

cations. 

Font use in programs goes hand in hand with printing and works in a 

similar fashion. As a matter of fact, this concept of querying the system 

and presenting the user a list of choices as a result applies to the en

tire system, because each system is unique. Fonts installed in one may 

not be in another, and printers with varying capabilities are on some 

systems and not on others. By querying the system, you don't bind your 

application to a specific font or printer. 
Querying the fonts can be a tough job. Fonts have names built into 

the font file, and different fonts from different vendors can cause nam

ing conflicts. As a result, there was no easy way to programmatically 

present a list of all available fonts to the user. OS/2 introduces a stan

dard font dialog. The font dialog is one of a set of standard controls 

such as the file open dialog or even the push button or MLE that are 

available to programmers. By simply filling in a structure and calling 

the WinFontDlg API, a dialog box can be displayed to show the user all of 

the available fonts. Because fonts are device-dependent one of the pa

rameters to WinFontDlg is a handle to a PS. This PS must be associated 



USING ADVANCED FUNCTIONS 267 

with a DC. This way WinFontDlg knows which device's fonts to query. In 
general, the fonts are either screen or printer fonts. 

Depending on how the structure is filled in by the application (which 
is usually a direct result of user preferences either in the application 
defaults or from some dialog) the list of fonts, font styles (strikeout, 
bold, and so on), and point sizes are displayed for the user to select. 
Along with the font names and styles there is a preview area of the 
dialog to show the user what the font looks like. This sample string is 
also determined by the application and passed in the FONTDLG structure 
passed to WinFontDlg. 

Once the user selects a font through the dialog, the FONTDLG structure 
is filled in with the user's choice and returned to the application. The 
application can then use the font; it will know the font is available 
since an unavailable font couldn't be a choice in the WinFontDlg dialog 
window. That is the main reason for querying the system as to what 
is available before trying to use anything. If an application attempts to 
use a font or font metrics without knowing whether the font is installed 
in this particular system, the engine will just give the closest match. 
Many times this will not be what the user wants. By querying the system 
first, however, the user can see what is available. If the desired font 
appearance is not there the user can install new fonts or choose the 
closest to what is desired. 

WinFontDlg is a simple way to display all of the fonts in the system 
that the user is operating, and it returns the user's choice to the appli
cation. Once the font is selected you can proceed to use the font in the 
application. The key is that the application has the flexibility to use this 
function. 

HELP FACILITIES 
Another major feature of any application is a help facility. OS/2 has a 
help facility built in, with a set of APis to access it. OS/2's help facility is 
called the Information Presentation Facility (IPF), which is a set of APis 



268 MAKING IT HAPPEN 

and code in the OS/2 subsystems that presents a CUA-conforming set of 
help windows as simple or complex as the application designer wishes. 

The help text for the IPF is something that anyone familiar with IBM 
systems should know. The "language" or "mark-up language" for the IPF 
is a set of tags compatible with IBM's Bookmaster. It is a syntax and a 
set of tags that can be added to standard text that have significance to a 
processing program. On the mainframes the program is the Bookmas
ter processor. On OS/2, the processor is the Information Presentation 
Facility Compiler (IPFC). The text files that compose the help text are 
input to the IPFC, and what comes out are help files. The tags specify 
heading levels, bold or italic fonts, and more advanced functions such 
as hypertext and hypergraphics, which are linking facilities built into 
the tags, the IPFC, and the IPF code. By using special tags both text 
and graphics can be linked to other help windows or topics. All the user 
need do is double-click on the highlighted text or the graphic to cause 
a jump to another window. This facility is helpful in providing further 
detail on a particular topic. 

One important item to note is a tool from IBM called HyperWise, 
which builds IPF tags into documents and in a WYSIWYG fashion, 
builds IPF files for use with the compiler to create help files and help 
panels. The help file is structured into panels that are really windows. 
Each window is a help panel with a unique panel number. The help code 
in the application works hand in hand with these help files produced by 
the IPFC. The APis in the code link these help files and panels with the 
windows. 

Based on how deeply you wish to imbed help code, you can use a 
simple help menu, context-sensitive help, or a combination. OS/2 has a 
default behavior (recommended by CUA, of course) that whenever the 
user presses F 1 a help message is sent to the application's window. As 
a result the application has the choice of displaying a main help menu 
or taking advantage of the context-sensitivity. The context-sensitivity is 
obviously more complicated, but the advantages to the user are immea
surable. Whenever the user has a question about the current operation 
the Fl key will offer help. Quite simply, the system will identify the con
text of the help being requested. If you wish your application to take 



USING ADVANCED FUNCTIONS 269 

advantage of the information, no problem. Ignoring the details does not 
preclude your use of a help menu for general help or overall application 
help, but an intelligent use of the two will make your application even 
easier for users. 

The cross-references should be conducted through the use of hyper
text and common panels. For example, when the user is about to print 
data and presses F 1, a help panel on printing and print options for the 
application should be shown. However, when the user selects the "Help 
Index" from the menu and wants to see how to print, the same help 
panel should be shown. All you are doing is creating a flexible interface 
to the same help information. It's a little redundant, but it's absolutely 
necessary. 

Your main goal for the user interface is ease of use. However, help 
is inevitably needed, whether for simple or complex operations. By us
ing the IPFC and the IPF API (such as WinCreateHelpinstance), you can 
create the complete solution. 

There is one other little-known fact with the OS/2 help facility: There 
is a switch for the IPFC that causes it to generate an . INF file. An . INF file 
is an online book that is readable by the VIEW. EXE program supplied with 
OS/2. This is how the OS/2 online documentation is prepared, and there 
is no reason that you cannot generate your application's documentation 
the same way. The input to the IPFC for such a book is the same as a 
help file, without the panel numbers or names. The only difference in 
compiling a help panel or an online book is the /INF switch when the file 
is compiled with the IPFC. By using the help facility and IPFC, you can 
create a consistent set of books, both online with the IPFC and printed 
with Bookmaster, or by printing the online book along with the help 
panels for the application. 

HELP AND MULTIMEDIA 
One often overlooked aspect of OS/2 is the application implications 
of the built-in multimedia functions. Of course, you can write games, 



270 MAKING IT HAPPEN 

video players, and other traditional multimedia-based applications, but 
this feature of the operating system opens up new horizons for the IPF 
help subsystem and multimedia. 

Picture an encyclopaedia written in IPF for hypertext linking, along 
with hypergraphics links linking pictures, image captures, and video 
clips-all written knowing you need to ship only a set of INF files, because 
all of the multmedia functions are built in. 

The OS/2 IPF facility has the ability to hyperlink graphics with a 
simple : link. tag. This allows you to build graphics into your help files 
(either help panels in applications or in INF files) by embedding graphics. 
IPF also has the ability to launch programs. Why not design your help 
windows and INF files to launch the MMPM/ 2 movie player to show how 
things are done? 

The functions built into the operating system such as MMPM, can add a 
new dimension to what you can do with your applications with no new 
source code. You may even want to just write new publications in IPF, 
embedding graphics, audio and video clips for documents, newspapers, 
magazines, help files for your applications or even training applications 
for people. This should generally remain separate from the application 
program, or could even be the product itself. These features further 
assist you in defining modular designs that you can expand, enhance, 
and replace when needed. 

SUMMARY 
The IPF is just one of a large number of extendable subsystems provided 
by OS/2 as well as by others. IPF was implemented by IBM, but there 
are others being developed all the time, and you may be the designer of 
one of your own. As you can see, the advanced features of OS/2 are no 
real mystery; many of them can be implemented outside of the mainline 
development. For example, adding font support is really no big deal. All 
you need to do is to add in some font calls to obtain a font from the 
user and use it. You should probably look at your internal file format 



USING ADVANCED FUNCTIONS 271 

to preserve this font information, but other than that there is not much 
that needs to be done. 

The help code can also be developed offline from your main func
tions and added in later. Recall our earlier discussions on language 
dependencies. These will be expanded in the next chapter, since they 
are important in developing any code that displays messages. 

This chapter cannot begin to cover all of the features in OS/2 that 
can make your applications the most powerful in the market, especially 
because new features are being implemented by IBM and others all the 
time. This chapter was designed to give you information on some of the 
most common features at the time of this writing as well as an insight 
into how to incorporate them into your code. 

Just remember, this advanced function code can be written outside 
of the core development, given the modularity you are designing, but 
you should have a thorough idea of what you want and how it should 
look before considering your design complete. 





CHAPTER 

Non-English-Language 
Support 

N on-English-language support in applications is something that is 
usually overlooked but can add huge numbers to your application's 
sales. Quite often this is realized after the English version of the 

application is complete. By structuring your code and your development 
with non-English support in mind the option is open whether or not you 
plan on it from the outset. 

FLEXIBILITY IN YOUR CODE 
The key to enabling your code for non-English support (from now on 
national language support, or NLS for short will be used) is to keep it 
flexible. This means not coding specific strings or string lengths or even 
putting them in the same places in your source code tree. By taking out 
all of the strings, or words that can be translated, you make the job of 

273 



27 4 MAKING IT HAPPEN 

building NLS versions easier. You won't have to change a line of code in 
order to build the NLS versions. 

The main idea behind this separation is to keep the code files sep
arate from the readable text. When it comes time in the build process 
to link in the messages and other readable resources, the variables in 
the makefiles will point to the appropriate language files. This is best 
described by examples, which will be given in the remainder of this 
chapter. 

There will always be places where you will have readable text that 
will not change, such as filenames read from the disk or names of pro
grams or types of objects in your applications that have a universal 
meaning. However, for the translatable text these techniques will help 
you save development costs while enabling you to develop NLS versions 
of your code by simply translating the text. 

Message Files 
The first order of business is your messages. These are text messages you 
might see if the application cannot start or has a problem reading a file. 
Of course you can always use PM message boxes for such messages, but 
the point of this section is that message files are available. In general, 
message files are used for text-based applications. Otherwise, since the 
application is PM the message should be a PM-based message such as a 
message box. The message file is exactly that-a file with only messages. 

There is a set of APis and utilities to build message files. The source 
for a message file is a plain text file. The text file contains message 
numbers along with the text of each message. By using the tool MKMSGF 

supplied with the IBM OS/2 Programmer's Toolkit you can turn this 
message text file into a binary . MSG file. The . MSG file is analogous to 
an . OBJ file. Rather than using LINK to bind the . OBJ to the . EXE there 
is another tool, MSGBIND that, binds the . MSG file to the . EXE. As you can 
begin to see, the message numbers are what the application is interested 
in, and they are universal. 

By using only message numbers in the executable code any message 
file can be linked in with the . EXE as long as the message numbers that 



NON-ENGLISH-LANGUAGE SUPPORT 275 

the code expects exist in the .MSG file. The message numbers and the 
message file are accessed by the message APis such as DosGetMessage. 
These APis will allow the application to retrieve a message from the file 
based on the message number. 

In summary, the message file is all that needs to change. You keep 
the same message numbers, but by rebuilding the . EXE with a different 
message file for each language you can make your code independent of 
the language. 

Windows and Dialogs 
Dialogs represent a challenge in coding for NLS because a dialog is a 
window that interacts with the user and contains such controls as radio 
and push buttons that are defined with text. For example, a push button 
has text defined to be displayed inside the button. This makes translation 
a bit difficult because in order to define the button in the code you also 
have to define the text. There are ways to get around this. There are 
some programming techniques along with constructs provided by OS/2 
to separate these types of text as well as with message files. Some of 
the tools available are stringtables and string constants. Another way to 
separate the translatable text is with the resource definition (RC) file. 
The RC file is usually treated as a translatable entity anyway. Some of 
your code may require that you generate the window and its controls as 
the user runs the program. Others are more static and can be defined 
completely in the RC file. 

Stringtablas 
A tool that can be used whether the window is built at runtime or is 
predefined is the stringtable. A stringtable is a type of resource that can 
be defined in the RC file. Since the RC file is a translatable file that 
requires a different version for each language, putting strings in it is no 
big deal. The stringtable is PM's equivalent to the message file. Using 
WinLoadString, you can pull strings from the table and treat them as 
though they are string literals in the code. 



276 MAKING IT HAPPEN 

The RC file is built into the . RES file by the resource compiler and 
subsequently linked into the . EXE in much the same way as a message 
file. Just like the .MSG file the RC file can be different without chang
ing the executable code and simply relinked to make the complete PM 
executable file for each NLS version. 

Building Windows on·the·Fly 
So far you have seen some methods for static windows. These windows 
are defined and have all of the same elements all the time. There are 
circumstances in which you may need to create windows or dialogs 
based on either the current state of the application or user actions. 
These windows are a bit more involved to code, but they are not very 
difficult. 

On the surface, you might look to subclassing the controls in order 
to customize their text and initial values such as in a listbox. There is 
an API that you might not think to use in coding these windows. Most 
controls have text either associated with or displayed inside them, such 
as the push-button example cited earlier. By using WinSetWindowText, 
you can set the text of any of your controls on-the-fly. Another aspect of 
this approach, which will be elaborated in Chapter 19, is to create the 
control as invisible, set the text with WinSetWindowText, and then make it 
visible. 

WinSetWindowText takes a string and a window handle and sends a 
message to the window. This string can come from anywhere. It can be 
a string literal or a string loaded from one of the stringtables or other 
resources. So even though you may need to build the window at run 
time as opposed to having it defined in the RC file, the strings can be 
separate from the code in the RC file. You will load the string from the 
resources and use WinSetWindowText to put it in the control. Then, when 
the control becomes visible it shows up with the text just as if the control 
were defined in the RC file completely. 

As you can see, you can create any combination of windows and 
text, whether you define them at compile time or build them dynami
cally. Regardless of how you do it you need to keep the executable code 



NON-ENGLISH-LANGUAGE SUPPORT 277 

separate from the text. The last piece to this puzzle is to size the text, 
buffers, and windows flexibly as well. 

Using Lengths and Proportions 
In addition to separating the text from the executable code you need to 
keep measurements of window sizes, text buffers, and other pieces of 
data independent of the string or message size. In fact, this is a good 
practice to follow in all of your code. Since you will be dealing with 
text in differing lengths in the same windows to convey the same infor
mation, you cannot hard-code the sizes of the windows or their controls. 
The way to size your windows is to use the OS/2 API functions as well 
as others such as the C function sizeof () to determine the screen space 
the text will take up. Then use that value to calculate the size of the 
windows. 

The simplest way to calculate the size of a string is to use the sizeof () 
function to determine the number of characters in a string. Of course, 
this assumes the size of the buffer intended to hold the string is large 
enough. Only you can determine the proper size of the buffers based on 
the message. You can simply look at all the versions of the message and 
make a buffer that is big enough to hold the largest one. 

However, knowing the length of the string is not enough. The size 
of the font is also important. You need to take into account the fact that 
users can choose one of many fonts and sizes for the windows (such 
as title bar or button text). There are generally two ways to accomplish 
this. The first is to query the font for the window (or trap the paint 
message for the window by subclassing it), determine the average width 
of a character, and multiply by the number of characters in the string. 
Although this is the simplest method, there are some drawbacks. The 
average character width is just that, an average. With the proportional 
font spacing in PM you can easily see that the character "box" around 
the letter i is much narrower than, say, the letter w. If the string you are 
displaying is a string of ten w' s you will need a wider window than if it 
was just the word "Hello." The average character width is not always a 
good indicator of how wide a window you will need. 



278 MAKING IT HAPPEN 

The second way requires a bit more code, but it is much more pre
cise. You can specify a parameter in a call to WinDrawText to tell it not to 
draw the text and instead return the size of the rectangle needed to draw 
the text. This is done by specifying DT_QUERYEXTENT in the WinDrawText call. 

One of the parameters of WinDrawText is a pointer to a rectangle 
structure. When you want to draw the text you pass a pointer to the 
rectangle into which you want to draw. If the flags passed into the call 
contain DT_QUERYEXTENT, WinDrawText will ignore the rectangle structure 
you passed and calculate, from the font size for that PS and string 
passed, the rectangle needed to draw the text. The rectangle structure 
you passed to WinDrawText will be filled in with this calculated rectangle, 
so you can use it on a subsequent WinDrawText (or WinSetWindowText) call 
to actually draw the text. 

You can also use this DT_QUERYEXTENT flag to just get a bounding rect
angle for any text drawing. For example, if you have a window upon 
which you want to call WinSetWindowText you can query the size of the 
window and then use a DT_QUERYEXTENT WinDrawText call to figure out 
how large the window whose text is to be set needs to be. 

Another technique is to use WinDrawText with the DT_QUERYEXTENT call 
to determine the size of the rectangle that will hold such text as a win
dow's title bar or system menu. The reason you may want to do this is 
to ensure that the window you create is of the right size to hold the title 
bar text, action bar, and so on. 

Since the strings are not always known beforehand (due to NLS 
considerations) you cannot hard-code window sizes and positions. By 
querying the string you are loading (in addition to the font it will be 
drawn in) to determine how much space is needed, you can set up 
proportions between the windows themselves and the windows and the 
screen to give your application a consistent look no matter what the 
language. 

In general, it is a good idea to use screen proportions. As alluded to 
earlier in the discussions on device independence, you should query the 
size of the screen in whatever units of measurement you are interested 
in, then figure out proportions of the screen to deal with. Use those 
coordinates and measurements rather than hard-coding numbers. By 



NON-ENGLISH-LANGUAGE SUPPORT 279 

using the proportions you can use coordinates based on the device and 
let the presentation drivers optimize the line and curve drawing. This 
way, not only are you generating sizes for objects at runtime to compen
sate for different-sized strings in different languages but you are also 
compensating for different resolution devices. Note that this does not 
mean that you are becoming device-dependent; on the contrary, you 
are simply making your windows the same relative size to each of the 
different displays users can have. The other nice side effect is that by 
using coordinates (which you must pass to drawing and sizing calls) 
based on the proportions obtained by querying the device you can gen
erate parallel-looking lines and concentric circles as well as line up text 
without too much work. 

Of course, this is all more work than just hard-coding coordinates or 
string sizes and letting the user size windows to see all of the text, be it 
all in English or any other language, but it gives your application a clean 
and consistent look. You don't want to spend so much time on function 
and classy data manipulation only to have a sloppy-looking window. 
By starting all of your development with proportions and readable text 
separation in mind, your applications can have this clean, consistent 
look. 

You can see how difficult it can be to add this function later on in 
the development. However, at the beginning you can design a few small 
functions that calculate all of your string sizes and proportional fonts 
so that you only have to code it once; then you can just sprinkle calls 
to these functions throughout the rest of the code, making the process 
painless while gaining the full benefit. 

Resources in DLLs 
Another useful fact about D LLs is that you can store resources in them. 
This feature serves a twofold function. First, of course, is that you 
can share resources, such as pointer, bitmaps, or even stringtables or 
window templates between processes by putting them in DLLs. The 
other thing you can do is-yes, I'm saying it-make your executable file 
smaller. 



280 MAKING IT HAPPEN 

By placing your resources in a DLL, you will not be binding them 

to your executable file and by doing so, you can make your executable 

file completely language independent. If you put all of the resources, 

including strings in stringtables, in a DLL, all you need to do is ship a 

different DLL to ship an international version of the application. This 

will help you truly separate your code from the translatable resources 

such that you can even separate the building of the resources from 

the executable while making packaging, distribution, and maintenance 

easier. This means more flexibility at a lower cost. But it is important 

that you structure and design the code like this from the outset. Once 

again, adding it in later is more expensive. 

Structuring Your Development 
Now that you have seen how and why to separate the readable text from 

the executable code, let's take a look at how you can structure your 

development to make this as easy as possible. 
The code and text separation have already been taken care of. You 

have separate files for the code and the messages, such as in RC or 

.MSG files, regardless of whether you've chosen to put them in DLLs. 

How can they be combined and managed as easily as possible? The 

answer is to use a combination of MAKE files and environment variables. 

You can structure your source code tree in such a way that you can have 

your code in one place and the messages or resources in another. Use 

the MAKE files and environment variables to point to the resources and 

messages for the language you are building. 
Let's look at an example. Figure 17 .1 depicts a sample source code 

tree. Root is whatever the root of your development tree is. It can be 

the root directory of the build drive or any subdirectory. It is the high

est directory common to your entire development tree. Under this Root 

directory are directories structured as discussed in Chapter 13. Each 

executable or loadable module in the case of DLLs, has its own subdi

rectory. There is a common directory for include or header files as well. 

For each component, or loadable module, there can be a set of text or 

translatable resources. As you can see, for each component's directory 



NON-ENGLISH-LANGUAGE SUPPORT 281 

Root----r--- Main 1US 

France 

Israel 

Italy 

Figure 17 .1 NLS source code tree. 

FileFunc 1US 

France 

Israel 

Italy 

Help1US 
France 

Israel 

Italy 

there is a set of subdirectories, each representing a different language. 
This is where you will put the RC files, .MSG file, or other files with 
translatable items. 

Now that you have these messages separated both in the code and 
in the files in your build tree you need to bring them together and make 
building the language versions as easy as possible. The way you can do 
this is with the MAKE utility and MAKE files. 

After doing so much work to keep your code independent of the 
runtime environment, one thing that you don't want to do is to make it 
dependent on the build environment. You can specify path and direc
tory information in your . DEF and code files, but you can do it more easily 



282 MAKING IT HAPPEN 

# Sample makefile excerpt for NLS applications 
# This sets the variable LANGUAGE to be the language being 
# built. 
# You can also set environment variables and pick those up 
# if you wish. 

LANGUAGE= US 

demo.res: .#(LANGUAGE)#demo.rc demo.h 
re -r .#(LANGUAGE)#demo.rc 

Listing 17 .1 Makefile excerpt for NLS resource building. 

in the MAKE file. In MAKE files you can set local environment variables and 
let them control where files are pulled from. 

Listing 17 .1 shows a sample makefile. As you can see, there is an 
entry in the path to pick up text message files for the resource compiler 
and the message file building from the environment string. In this way 
you can simply set an environment variable such as 

SET LANGUAGE=FRANCE 
which will change the environment string for the system, and since the 
makefile picks up this environment variable the text files will be picked 
up from the FRANCE directory. The build process stays the same, with the 
same make files just a different environment variable. 

SUMMARY 
Non-English versions of applications are usually not thought of early 
enough in a product cycle to enable easy development. By thinking about 
it and designing the code with the flexibility to incorporate the languages 
seamlessly, you add new dimension to your product's features. After all, 
English is not the only useful language for software, so designing in 
the flexibility at the outset keeps your options open for any translation 



NON-ENGLISH-LANGUAGE SUPPORT 283 

you may want to do. The real key to making this notion successful is 
to assume language neutrality. Refer to Figure 1 7 .1. English should be 
treated just as any other language; by doing so, you are not likely to miss 
much when separating the text from the code. 

Another important task, with any part of OS/2, is to query the system 
for what the application needs, as opposed to anticipating what fonts 
may be available or how big a window needs to be. This gives your 
programs flexibility and your users the freedom to use the hardware 
they choose, not to mention just taking advantage of a major feature 
of OS/2. Once you do the initial work, you will be free from any new 
hardware that may come out or any crazy font for which the user may 
have a fetish. You can use whatever your users want and maintain that 
crisp look to your application. 

Another part of the job is to make the build environment flexible 
and work hand in hand with the separated files. By using environment 
variables all you need to do is to set the language environment variable 
and set the MAKE in motion. Since English is being treated the same as the 
other languages the build process is exactly the same for all languages 
except for the name of the language you type at the outset. Using this 
process, one set of code, one makefile per component, and one process 
make your overall development easier and faster; most importantly, you 
can develop your applications for different languages without much 
more than it takes to translate the text. 





SECTION 

Performance 

N ow that you have seen the ways to put the code together, the func
tions to add, and how to structure the system, the time has come 
to look at performance issues. Performance tuning with respect to 

your application is generally a two-part process. The first part involves 
the base function. This encompasses the overall thread and memory 
management with respect to the tasks that must be performed to ma
nipulate the data within the application. The other part involves tuning 
the windows. This encompasses the management of the windows and 
their visibility. 

Painting can cause windows to flicker depending on the speed of 
computer and the speed of the display along with the amount of change 
in the window. An example is filling a listbox with data. The listbox is not 
available until all the items are inserted. Also, due to its nature (and its 
window procedure), a listbox flickers when items are inserted anywhere 
within the visible area due to item movement. Why not just create the 
listbox as invisible, fill it with data, and then make it visible? This is just 
one of the techniques you will see in this section on performance. 





CHAPTER 

Base Tuning 

B ase tuning refers to all of the core functions of the application 
such as memory management, resource allocation, load time, and 
thread management. Back in Chapter 15 we discussed breaking 

tasks into threads and how best to parallel tasks. The OS/2 memory 
management package was explored along with some ways to structure 
your memory allocations. This chapter will dig deeper into structuring 
your memory allocations and managing your threads. You will see how 
to manage your threads' priorities based on their job in relation to the 
other threads in the system and the application. 

MEMORY TUNING 
Memory tuning was touched on in Chapters 12 and 15. Recall that in 32-
bit OS/2, all memory is allocated in 4K pages. Even a 2-byte allocation 
will give you a 4 K page. By analyzing your code as you develop it you 
can determine working sets, locality of reference, and positioning of 
reference. 

287 



288 PERFORMANCE 

Code and Data Working Sets 
The first thing to look at is how your code works within itself. You do 
this by looking at both the logical structure of the code (how functions 
call others) and the LINK map. By looking at how the functions call 
each other you can determine how the code logically flows. By looking 
at the LINK map you can see the exact sizes of the functions and how 
the linker is working with your function "order" and is allocating code 
pages. 

The goal of your analysis is to minimize or even eliminate waste 
within the pages of code. The data can be managed using the techniques 
described in Chapter 15. You control the memory allocations for data. 
The real analysis takes place with the code. 

Locality of Reference 
and Data Positioning 

Locality of reference refers to the real location of functions with respect 
to each other. Of course, you as a programmer cannot control where the 
pages are placed within physical memory, but you can control within 
which pages your code resides. The first step is to determine which 
functions reference which others and how often. Then, use the link map 
of your build to see how big each of these functions are. After that, 
the process is relatively simple. Take the functions that reference each 
other, and draw a hierarchy map. In this hierarchy map, map out which 
functions reference each other, and write down each function's size. 
Now, understanding that everything is allocated in 4K pages you can 
use the . DEF file and LINK statements to group functions together that 
reference each other. 

The ideal goal is to keep the functions that reference each other 
most often on the same physical page of code if possible. Of course, this 
may not be possible due to the size of these functions or the number of 
functions that reference each other. Another possibility is to move some 
of the data structures associated with some of the functions to global 
data rather than instance data. This way the function will be smaller. By 



BASE TUNING 289 

doing this you can also control the locality of the data with your internal 

memory manager. Of course, there will be times when you must have 

instance data automatically allocated with a function invocation such 

as with reentrant functions, but this approach can still be of value. 

In moving functions around to keep interfunction references within 

pages you can also minimize waste. When looking at the functions to 

keep together you should also look at their sizes. There really is no 

optimal way to figure out whether to move a function that is referenced 

more often to another page so that you can fit another two functions 

into the first page. You need to make those determinations based on the 

size, the function usage frequency, and your knowledge of how the code 

works. Chances are that if you are splitting hairs you won't generally 

be wrong. At that level of detail one choice versus another may mean 

nothing more than a few milliseconds. 
You can organize the functions on a strictly mathematical basis (how 

many references to a function versus how much is wasted moving to an

other code page), but the real key is knowing how the code is referenced. 

For example, if a particular feature of the application is used more often 

than others but the others would save space if moved to a lesser-used 

function's location, you need to see how much savings you get in either 

case. If the bottom line is nothing more than wasting a few K of mem

ory throughout the application, the locality of reference of the functions 

is more important. The few K is not a big deal, but if the application 

has to keep bouncing the same few pages in and out of memory in a 

constrained system, your performance will be hampered. 
There is no formula for making these decisions. The function sizings 

and references are your guides along with your intimate knowledge of 

your application. 

Code Size versus Path 
One of the things that was uncovered during the performance analysis 

of the operating system during the development of OS/2 Warp was the 

trade-off between code size versus code path length. 



290 PERFORMANCE 

What I will say you should also realize follows the trend of the com
puter industry. Over time, processor speed has increased dramatically, 
while disk and memory storage have remained more of a premium. As 
such, it is vastly more efficient and economical for your users if you 
optimize your application to be as small as possible. You usually have 
spare processor cycles with which to unpack code or set things up that 
will help you save space. 

I'm sure you also realize that not optimizing for code path will also 
cause an increase in size because of a greater number of instructions but 
there are ways you can do both. A perfect example has been mentioned 
several times in passing thus far, and that is code packing. 

By packing the code using the PACK options on the linker and the -p 
option on the resource compiler you can make the code smaller, but not 
add instructions to the application, and the spare cycles in the processor 
are used by the loader to unpack the code on-the-fly. 

Another technique in this area from which you can benefit is in the 
storage of data. If, for example, you use many graphical files, you may 
want to compress data in the files to read less from the disk and unpack 
it only when needed. 

The real key is that memory is usually at a premium in a computer, 
especially in a system such as OS/2 where the user is running many 
programs at once. Disk space, while cheaper than memory, is also one 
of the slowest devices in the computer. Keep transfers small, and code 
and data compact. 

DYNAMIC LINK CONSIDERATIONS 
The first thing to understand with dynamic linking by import (as op
posed to DosLoadModule/DosQueryProcAddr runtime dynamic linking) is 
that every function call requires fixups. Fixups are records that point 
to the real functions in DLLs. As outlined in Chapter 5, DLLs contain 
external reference records that point to functions in the DLLs. Each of 
these function calls must have some kind of fixup at runtime to gain 
addressability to the actual function. 



BASE TUNING 291 

There is a series of tables associated with executables as well as 
with DLLs that cross-reference the functions in DLLs that are called 
by the application programs. These tables are stored in the extended 
executable file header and must be interpreted and resolved. 

The fixups are calculated at load time and are kept in swappable 
application memory. When the call is actually made to the function, 
the fixup tables, if not present, are brought back into memory, and the 
function call is resolved and executed. In general, this is not bad but, 
by understanding this, you can see ways to improve performance with 
some simple changes to your code. The way to do this is what I call ''.API 
aliasing." What this means is to have only one function in the application 
that calls a particular DLL function. Whenever you want the services 
of that API you call your own function (the alias). You will create a 
function for each API function call you make in the application and give 
it a name such as MyDosAllocMem or MyDosCreateThread. It would take the 
same parameters as the real API and return information the same way 
the API does. 

The advantage of this is that there is only one fixup per API function 
used in the code, as opposed to having fixups all over your code for each 
API function call. The former approach would just add size to the fix
up tables, take time to resolve, and add size to the application work
ing set (recall that the tables remain in the application's swappable 
memory). 

An important decision in aliasing the API functions is how many of 
them you actually call. If you use a particular API only a relatively few 
times (say, five or less) throughout the application, then the overhead 
of writing another function to alias the API is probably not worthwhile. 
However, for functions that are called on a regular basis an API alias 
will help your performance by reducing the size of the tables and the 
number of fixups required. In writing the API aliases you create a bunch 
of near, direct references to your own function throughout your code. 
This keeps each (indirect) invocation of the API out of the fixup tables 
since there is only one place in the application where the API is called. 
This makes your working set smaller, the executable file smaller, and the 
load time faster. 



292 PERFORMANCE 

Another technique you can use to reduce the working set of your 
application is to look for functions in your DLLs that you reference 
infrequently. DLL references to system code are really of no concern 
since most of that code is resident during system operation anyway. 

When structuring where code resides in your DLL files, apply the 
same locality rules you do for the executable files. For example, group 
lesser-accessed functions in the same pages. Pack the pages efficiently, 
with functions that reference each other, just as you would for the exe
cutable file and for the memory being used for application data. 

Your own DLL references can be set up to optimize locality of ref
erence for functions that call others within the same DLL. Earlier we 
discussed deciding which functions to put in DLLs. Performance also 
plays a part in this decision. If you have a function that can fit in a page 
close to its caller, you may be better off in keeping that function in the 
. EXE rather than in the DLL. This is a moot point if the function needs 
to be shared between processes (which is the major reason for putting 
a function in a DLL anyway). The other half of this DLL optimization is 
to delay the loading of a DLL until it is needed. 

By loading a DLL when you call a function in it by name you take 
the performance hit at load time, which may be more desirable, but 
you'll also increase the working set size of your application because 
that DLL will be in use and loaded all the time. It can be swapped out in 
a constrained situation, but look at the net result. You'll load the DLL at 
the outset to take the hit at load time. However, if the code in the DLL 
is hardly ever used (or not used for a long time) it is likely to be paged 
out. If it is paged out when the actual call is made into it, it will need to 
be paged in again. Now you have loaded the page twice to use it once. 

By delaying the load by using DosLoadModule/DosQueryProcAddr you 
load the DLL only when you need it. Since you'll take the performance 
hit if the code has to be paged in at the time a jump into it is made or if 
it is being loaded for the first time when the jump is made, at least you 
won't load it in at application load time as well. There may be times, such 
as with frequently used code, when you may want to place a function in 
a DLL despite this fact, but now you know the ups and downs of both 
approaches. 



BASE TUNING 293 

Another important consideration is the life span of a DLL. That is 
when you reference a DLL, how long after the function is used should 
the DLL be kept around? If you are calling the functions by import or 
name you have no choice. The DLL is loaded for the life of the ap
plication. Of course, it (or parts of it) may be paged out, but that 
still consumes system resources. When it comes to DLLs loaded via 
DosLoadModule the choice is completely up to you. A good example is a 
"help" DLL. 

Help code is usually used for a short time and then released. How
ever, if the user is in some sort of learning mode, such as when an 
application is first being learned and used, help is requested more of
ten. You don't want to blindly free the DLL that contains the help code 
after each help function call, because if you make several calls close 
together you'll spend all the system resources loading and unloading 
that DLL. You also have to consider times when an experienced user 
may need to find only one piece of information and will not request help 
again during the application's execution. In that case you don't want the 
DLL hanging around. You could put in a switch for something such as 
an "expert mode" whereby the DLL would indeed be freed after each 
help call since an expert may not need it more than once or twice. Users 
who keep the expert mode switch off will keep the DLL loaded because 
they are likely to request help again. 

A help function is only one example. In general you should look at 
how and where your DLLs are used and how long they should remain 
loaded. Keep in mind that it takes resource to load and unload DLLs; 
you must weigh this against the size of the file. If you have a small DLL, 
for example, it may be feasible to keep the DLL loaded since it will take 
up only a small amount of swap space, whereas if the DLL is large you 
will need to make a trade-off decision. This may also lead you to make 
a set of smaller DLLs rather than one large one. 

All these facts must be considered when setting up your DLLs. It is 
easy to forget, though, that the main reason for putting code in a DLL 
is to share it between processes. If the code does not need to be shared 
you should simply keep it in the main executable file and manage where 
in the file it lives (via the . DEF and LINK statements) as outlined earlier. 



294 PERFORMANCE 

The same method of managing the code in the executable file can be 
applied to the DLL as well. 

The biggest thing you should remember about DLLs is that you need 
to use them for a purpose. Sharing code among processes, such as print 
function code that will be called from the application as well as the 
Workplace Shell (for the subset function described in Chapter 11) is 
a good example. Since we are talking about performance here, I will 
reiterate that putting code in a DLL to make the executable file smaller 
does not help and in more cases than not, will also hurt you. 

Delayed code loading; sharing code among processes; and control
ling the in-memory life of the code are all uses for DLLs. Use them 
properly and you will help the performance of your application and the 
system immensely. 

MESSAGES AND OTHER RESOURCES 

Yet another consideration in memory management is how your re
sources are linked into the executable. Important items of note are 
message files. If you use a message file without statically binding the 
messages to the executable with MSGBIND but still use the message APis 
you will get a message "segment." This message segment is about 44 
bytes and will eat up a full 4K page. This is a good reason to use MSGBIND 

if you plan to use DosGetMessage. 

With respect to resources you can use an option on the resource 
compiler to pack the resources together. By using the -p option when 
compiling the RC file into the . RES file you will pack the resources so 
that they will be a bit smaller on the disk. Since application load time 
is usually gated by the speed of the disk, the smaller the resources that 
need to be loaded off the disk (resources are usually large), the faster 
the application will load. The resources can be unpacked in memory 
fairly efficiently. You should be using the API DosGetResource2 for packed 
resources. 

Another tip for using resources applies if you are using icons or 
bitmaps. Each icon or bitmap file can contain many versions of the 



BASE TUNING 295 

resource, such as VGA, XGA, CGA, and device-independent. In general, 
you need the device-independent version to cover the range of display 
devices you'll be dealing with. This can save you about 6 to 7K per icon 
or bitmap you have in your set of resources. Of course, you won't have 
all of the fancy colors or high-resolution bitmaps as if you stored all of 
the formats, but if you are concerned about memory and disk space, this 
idea offers another way you can economize. 

The next step is to look at managing priorities of the threads within 
the application. 

THROUGHPUT USING THREADS 

The major tasks and subtasks have already been analyzed and separated 
into threads. Let's now take that a step further and discuss the priorities 
of these threads and how they interact and block on system events. 

Thread Priority 
Thread priorities are not as complicated as they look. Recall that the 
scheduler is a simple mechanism. At any moment in time the highest
priority thread in the system that is in the ready state is the one that is 
running. It runs either until the end of a time slice or until a thread of 
higher priority becomes ready. At the end of a time slice the priorities 
of all threads are examined, and the highest priority thread is context
switched in to run. If the thread that just finished is still the highest in 
the system it is put in for another time slice. Throughout this process 
other threads' priorities are modified based on whether starvation is 
occurring, whether a process or focus switch is made to move another 
thread into the foreground, or whether one of the other criteria for 
priority boosts (such as returning from 1/0 blocks) is met. 

Threads in the regular class have their priorities modified by the 
system as just outlined. However, threads in any of the other classes 
(idle, fixed-high, and time-critical) are set. When any thread is first cre
ated it lives in the regular class. Once DosSetPriori ty is called to move 



296 PERFORMANCE 

a thread to one of the other three classes, the system will not mess with 
the thread's priority unless another call to DosSetpriority subsequently 
sets it to the regular class again. 

Here is where you want to work with the priorities. Just as with 
any other part of the application, there is no real formula for determin
ing what the priorities should be. There are some general guidelines, 
however. The first thread to look at is your main user interface thread, 
the one that lives in the WinGetMsg loop and dispatches messages to the 
window procedure. This thread should remain in the regular class. If 
the application is in the foreground, the system will boost the priority 
of this thread enough to remain very responsive to the user. Don't make 
it higher than regular; otherwise, when this application is put in the 
background any messages posted to it will get higher priority than even 
the foreground threads of other applications. Obviously, you don't want 
to move it lower than regular class either. 

The next threads you want to look at are 1/0 threads. Usually these 
threads voluntarily block, for reasons that go back to the discussion on 
device drivers. When a thread requests some 1/0, a series of calls is 
made, ending up at the device driver. When the request is passed from 
the device driver to the device, the device driver blocks the thread until 
the physical 1/0 is complete. The thread is then made ready when the 
interrupt comes back from the device. Because these threads will block 
often and 1/0 is usually a slow operation, you will likely want to set the 
priority of your 1/0-bound threads higher. You will not use up CPU time 
needlessly because these threads spend more time blocked than most 
others. If you leave 1/0-bound threads in the regular class you will have 
to rely on the system to bump the priority on an 1/0 boost, which may 
or may not be higher than other threads running. By setting the thread 
someplace low within the fixed-high class, you keep the 1/0 threads 
ready to run whenever they come out of being blocked, but not so high 
that they will preempt more time-critical operations. 

The next type of thread is the CPU-bound thread. This is one that has 
no or very few dependencies on an 1/0 device. Such a thread might be 
one that recalculates spreadsheets or empties buffers. These threads do 
not usually block until their task is finished and they wait for another. 



BASE TUNING 297 

If you bump this thread above the regular class it will always run to the 
end of its time slice unless another even higher-priority thread comes 
along. You should leave these threads in the regular class. If you do find 
reason to move them higher, keep them low within the fixed-high class. 

The higher priorities such as those in the time-critical class should 
be reserved for communications threads and others for which data will 
be lost if they are starved when ready. If you move your recalc threads 
into the time-critical class just to improve performance you will hurt 
other applications in the system. Communications threads, however, 
should be in the time-critical class. If this type of thread does not get 
serviced when it is in the ready state, the communications line to what
ever is on the other end could be dropped. Applications of these threads 
include standard modem communications packages, data acquisition 
equipment, or even pipes between processes. 

When deciding on priorities to use for threads, keep in mind not 
only how the thread will interact with other processes in the system but 
also how they will interact with the other threads in your application. 
For example, consider one thread that reads or writes files and another 
that fills and empties buffers for the 1/0. If both threads are of the same 
priority (outside the regular class, otherwise the system would modify 
the priorities) you can end up with a situation in which the CPU-bound 
thread starves the 1/0-bound thread. If the buffers are filled when the 
CPU thread comes in, it will run to the end of its time slice unless the 
buffers become empty. If this thread is of the same priority as the 1/0 
thread, the CPU thread will be switched in every time the 1/0 thread 
goes to read the disk (which is all it does). The 1/0 thread, coming back 
from a device driver 1/0 request, then has to wait for the CPU thread to 
complete before it can do its work. Of course, if the buffers empty before 
the CPU thread is done with its time slice, it will need to block (you need 
to do this through your thread synchronization). In this state you will 
not be using both threads at peak efficiency. The 1/0 thread will send off 
a read request and block. The CPU thread will be dispatched and will 
empty whatever is in the buffers until either the buffers are empty or the 
1/0 thread is ready to run at the end of the CPU thread's time slice. Now 
the buffers get filled with the full contents of the read buffer, and another 



298 PERFORMANCE 

1/0 request is sent (unless, of course, the 1/0 thread's time slice ends, in 
which case the CPU thread comes back in). Now, when the 1/0 thread 
blocks again, the CPU thread empties the buffers, which will usually not 
be full. You can see how this thrashing can hurt performance. 

It is essential to look carefully at the scenarios and interactions be
tween your threads carefully to be sure you neither starve your own 
application nor give yourself a higher priority than threads that truly 
need it. 

One other note about threads: When using idle-class threads, it is 
important to set the priority back to the regular class before calling 
DosExi t. The reason for this is that if you call DosExi t in the thread in the 
idle class, it will wait for the system to be idle before calling its exit list 
routine. This will prevent the application from terminating. Therefore, 
before calling DosExit in any idle-class threads, change those threads' 
priority to regular class. 

PACKING THE EXECUTABLE 

Another item that is often overlooked is the executable file size. There 
are options on the linker that allow you to pack the code, which gives 
you the advantage of a smaller executable. This may seem trivial, but 
smaller executables on the disk means fewer diskettes for your appli
cation, which means lower production costs. More important than the 
cost of a diskette is the hard-disk savings for the end user. The real cost 
is that the code has to be unpacked at load time. As mentioned just 
before, loading code is usually an 1/0-bound operation, and there are 
spare CPU cycles to unpack the code. In the long run, you'll save by 
packing all of your executables. 

DLL PLACEMENT 

There is one other subtle point about DLLs that does not affect the 
code so much as installing and invoking the application. It involves the 



BASE TUNING 299 

LIBPATH statement in the CONFIG. SYS file. The LIBPATH is a string read from 
CONFIG. SYS and set in memory during system initialization. This environ
ment variable tells the system in which directories DLLs live. Usually, 
the OS/2 DLLs live in the OS2 DLL directory, but some applications install 
their own DLLs there or create directories of their own, which in many 
cases can hurt system performance. 

When code importing functions need to load the D LL via the API 
DosLoadModule, the full path and filename of the DLL is supplied. How
ever, when a DLL is loaded by code importing functions by name (such 
as just calling DosAllocMem), the directories in LIBPATH environment vari
able are searched until the DLL is found. Your users can encounter per
formance problems if all of their applications add entries to the LIBPATH 
statement. Look at the application that adds its DLL path to the end. 
Each and every directory in the LIBPATH would have to be searched be
fore these DLLs are found, which leads to applications trying to add 
their paths to the front of the LIBPATH. This can present other problems, 
since the first information added can wind up at the end (if every appli
cation did it), even if it is the most frequently used code, which would 
cause the performance to deteriorate. 

The OS/2 system installation program offers help for this problem 
in that it puts a dot (.) as the first entry in the LIBPATH. This dot indicates 
that the first place searched for DLLs should be whatever the current 
directory is. (The file system representation for the current directory is 
the "."character.) This feature is a tool for applications to use. 

Quite simply, when installing the application you should create a 
program reference object to start the program. In that program refer
ence object there is a field that represents the working directory for the 
application. By using this to point to the directory that contains the ap
plication and its DLLs, and starting the application from the program 
reference object, you implicitly put the directory for your DLLs in the 
LIBPATH for only that application, without affecting any other. When the 
program reference object is opened, the current directory is set. Be
cause there is the"." in the LIBPATH, the first place checked for DLLs is 
the current directory in that session. Any DLLs specific to the applica
tion that contain functions imported by name are searched for in that 



300 PERFORMANCE 

directory first. Of course, the system DLLs are found in their standard 
place (which, by the way, is usually at the front of the LIBPATH right after 
the"." and is usually loaded already anyway). 

By using this technique you will help your application's performance 
without cluttering up the user's LIBPATH and potentially hurting other 
applications or even the system's performance. As the user adds more 
and more applications to the system this concept becomes more and 
more important. 

SUMMARY 
So far, you have seen base tuning, which includes the threads, memory 
management, and working sets in terms of code and data, as well as 
other small yet important functions. By managing priorities of threads 
you can further enhance the performance of the application and in
crease throughput. By watching what they do you can make them per
form efficiently without taking system resources away from background 
applications. In minimizing working sets and optimizing locality of ref
erence of functions you keep your application running efficiently even 
in low memory conditions, and you don't waste space, which keeps your 
own code streamlined. 

Another technique discussed in this chapter to improve your ap
plication's performance without hurting anything else involves proper 
DLL placement. There are not too many things in life that offer benefits 
with no real downside. This is one of them. 

In the next chapter we will look at how to make your windows appear 
crisper and run more efficiently. 



CHAPTER 

Visual Tuning 

T hroughput in the application is only half the battle in creating a 
fast application. In addition to having it be fast under the covers, 
you need to make it look fast. It doesn't make much sense to have 

code that can crunch data at blinding speeds if the visual update can't 
keep up. Displays have limited speeds, and of course there is code that 
must be executed to refresh the display. You also have the overhead 
of the device-independence of the presentation drivers and the engine. 
There are ways you can optimize your code, and for the cases in which 
operations are just plain slow there are some tricks to make the windows 
at least appear faster. 

WINDOW TUNING TIPS 
Along with ways to speed up the code there are things you can do with 
your windows such as prefilling listboxes or creating invisible windows. 
This section will show you some ways to keep your windows flashy as 
opposed to making the user wait around for visual refresh. 

301 



302 PERFORMANCE 

Keeping Windows Around 
The first thing to look at is how often a window is used or displayed-not 

a particular button but a standard window. Creating a standard window 

is fast, but it does take time. If you have a window that is used often you 

should create it the first time it is needed and, rather than destroy it, 

hide it and reshow it later. 
This invisible window concept provides the basis for making PM run 

as quickly as possible. Screen updates are inherently slow, especially 

when graphics are involved. Since everything in PM is graphics-based 

the best idea is to build the graphic in an offscreen area and then show 

it. The WS_VISIBLE bit is turned off by default when a window is created. 
You can turn it on either by specifically specifying WS_VISIBLE in the 

creation flags or by using WinShowWindow (or WinSetWindowPos) after the 

window is created. WinShowWindow and WinSetWindowPos make an exist

ing window visible or invisible by simply changing one parameter. When 

a window is invisible it will not receive any posted user input messages 

(since there is no way for the user to give it the focus), and it will never 

get any mouse messages. However, the resources for the window are 

allocated and/or loaded the whole time. If the window is created and 

just invisible, showing it is much faster than creating it each time you 

need it. 
There is a downside to this approach: Windows consume resources, 

and there are limits for the system. Don't create every window you may 

ever need and hide them until needed. This technique should be used 

for just some of your most commonly used windows. Additionally, if the 

windows are different in some respect, such as the items in a listbox 

within the window, you probably don't want those windows to hang 

around when not needed. The reason is that you'll have to build at least 

some part of it every time you need it anyway, so there is not much 

reason to use the overhead involved in keeping it around. 

Filling Windows Invisibly 
Taking this approach a step further, you should do the time-consuming 

visual work invisibly as well. This prevents windows from flickering. 



VISUAL TUNING 303 

It also gives a more intuitive look to the windows. When you update 
windows, data usually needs to be redrawn. In some cases, such as 
when you insert data into a listbox, more than just the data has to be 
moved. For instance, when you insert data into a listbox, data must 
usually be moved to preserve order in the control. Every time you insert 
an item you potentially have to move all of the data down in the listbox, 
and in any event the listbox will need to redraw itself. This will cause 
the window to flicker, creating an unpleasant look to the window. 

By creating the window as invisible, filling it, and then showing it, 
you eliminate the flicker since all items were inserted while the window 
was invisible. When you subsequently make the window visible it will 
look exactly as it would if you had filled it visibly. The other nice effect 
this has is to let the users know when the list is filled with data and is 
available to be used. The reason behind this is simple: If the window is 
not visible until it is filled, the users can't mistake the window for being 
ready until they can see it. A listbox that is filling may or may not be 
flickering depending on the size of the listbox, positioning of the data, 
and so on. The user may not know whether the listbox is ready. By not 
showing the window until it is ready the user won't become frustrated 
clicking on a listbox that won't respond. 

LETTING PM MANAGE WORK 
You should always let PM handle as much work as possible. The PM code 
has been (and will continue to be) optimized and improved upon over 
time. In addition, each of the system-defined classes has been optimized 
to work with each other, and it is the operating system developer's 
responsibility to ensure that they continue to work well together. 

Now that the PM subsystem is fully 32-bit code, the window man
agement code is faster than before and many of the limits on window 
handles and other common data areas (the PM heap) are far larger than 
in versions prior to OS/2 Warp. Of course you should still ensure that 
your code runs well on earlier versions of the operating system, but you 
can now take advantage of more of the native OS/2 functionality than 



304 PERFORMANCE 

before, such as larger memory objects and increased system limits. This 

gives you even more incentive to be lazy and use PM's services wherever 

available. 
I have seen code in which a frame that gets a WM_SIZE, calculates the 

new sizes of and sends messages to the title bar, minimizes and maxi

mizes buttons, and so on. This is a waste of resources and is unpleasant 

to code. The reason the standard window exists is to handle this func

tion. The reason controls tell their owners about certain events is to 

allow the system to change, say, the highlighting of a button. 
The basic premise of Presentation Manager programming, just as 

with object-oriented programming, is to handle only the functions you 

are interested in and to let the default window procedures (super- or 

metaclasses) do the rest of the work. 
It is often tempting to subclass windows and objects to control ev

erything going on or to send messages yourself as opposed to using the 

established APis. However, in the long run these things will cause you 

more problems than they are worth. By sticking to the established APis 

you insulate yourself from any message protocol changes in a future 

version of the operating system. You also take advantage of the opti

mizations built into these APis. For example, there are some APis that 

start other threads under the covers to accomplish work. There is no 

way that you as a programmer should know that. Quite simply, unless 

you need to modify an existing class, don't subclass. Unless you need to 

send a single message or control the flow of messages for a window, use 

an API if there is one to suit your need. 

YOUR OWN MULTIPURPOSE CLASSES 

Another technique to help the PM part of your application perform 

better is to design a multipurpose window procedure wherever possible. 

For example, if you have a window or set of windows that need to 

behave similarly, why not define only one class rather than several? 

Let's say these windows behave almost the same, just like all instances 

of the WC_BUTTON. With WC_BUTTON, all instances (such as radio and push 



' 

VISUAL TUNING 305 

buttons) behave virtually identically. They have text, they show highlight 
emphasis when they have the focus, and they all send a WM_CONTROL to 
their owner with their window handle and their ID when either the 
Enter key is pressed or they are clicked on. There is no reason you can't 
do the same thing with your window procedures and private classes. 
You can implement a single class with styles. The styles, which you will 
define as well, can have their identifier stored in the QWL_USER of the 
window words. Inside the window procedure you should just query the 
window words of the window receiving the message to see which style 
it is. This is what happens in the WC_BUTTON window procedure. 

You can even use OS/2 's predefined window classes to form the base 
of your own custom classes. Let's say, for example, you want to create a 
set of windows that all behave similarly to the system-defined entry field 
window class. You could set a style for the entry field windows, but let's 
say that you want these windows to be formatted for phone numbers. 
There is no window style defined by OS/2 for that function. 

You want the full function of the entry field but only want this one 
change. You could write a whole new window procedure to do this, 
but who knows which functions of the system-defined entry field you'd 
miss? You would need to understand every single function of the entry 
field and then reimplement it. There is an easier way. 

You could use the technique of subclassing windows to provide this 
function. Subclassing windows is how a program can replace the win
dow procedure for a single window and point the window to the pro
gram's own function. This function can deal with the aspect of the func
tion that departs from the default behavior and pass all other data onto 
the default procedure. You can use this to inhibit data or even modify 
data before it gets to the default window procedure. This is effective for 
one window, but let's say you have many of these windows you need to 
create. You don't want to have to subclass each instance of the window. 
There is a better way. 

You can create your own class that is a subclass of a system-defined 
class. To do this, simply call WinQueryClassinfo for the class in question 
(such as WC_ENTRYFIELD or WC_LI STBOX) to obtain the address of the window 
procedure for the class. Next, create a window procedure that is the 



306 PERFORMANCE 

same as if you would be subclassing only one instance of the window. 

At the end of this procedure, call the function address you obtained in 

the previous step rather than WinDefWindowProc, which you would call 

in other, more generic window procedures. Now register a new class 

name with this function as the window procedure associated with it. 

Now, when you want these custom windows, call WinCreateWindow 

with this new class name. What you have effectively done is to create a 

new subclass of a system class for your use. 
By using this technique you will have less code to write and maintain, 

as well as a smaller code footprint in memory and a smaller executable 

size on the disk. You are letting OS/2 and PM do most of the work for 

you. 

SUMMARY 
There aren't many techniques for optimizing the window management 

side of an application, and the ones that exist are relatively simple. Don't 

be sloppy with the little details. Use the techniques of this chapter to put 

the finishing touches on your application. You know it processes data as 

quickly as possible, so here is where you can show it to the user. 



SECTION 

Testing and 
Code Change 

T esting and changing code are not new concepts. Everyone who 
has ever written a program has had to test whether it worked as 
intended and then go back and change the code. Recall our discus

sion at the outset of this book in which the 60-30-10 rule was introduced. 
Testing methodologies are simple and precise. You can never test every 
permutation of what may be encountered in the real world, but with 
proper modularized testing you can feel comfortable with your applica
tion's quality. 

Changing the code is a vital part of the development process. You 
will inevitably have to change the code as a result of testing. Intelligent 
code change will eliminate headaches, whereas applying quick fixes to 
the code will cause you nothing but trouble. 

You need to keep a proper perspective when changing code. Any 
change should be in accordance with the design. This is easier said than 
done, especially with product schedules and costs, but it is better to "pay 
me now than pay me later." 





CHAPTER 

Testing Methodology 

T esting methodologies have remained fairly consistent since the in
troduction of computer software. Early on in the computer age, 
testing was simply a matter of finding out whether the program 

did what it was told. Later on, as programs became more complex, test 
programs had to change accordingly. Today, programs are generally 
still procedural, following the divide-and-conquer approach whereby a 
large task is broken into smaller, more manageable tasks. We have al
ready discussed the process of designing tasks based on the functions 
you wish to support in the applications. Testing is the reverse of this 
process. 

The first thing that must be tested is the smallest unit, usually the 
function. If you have done your design completely you know what each 
function does and what its possible inputs and outputs are. These are all 
documented (right?), so your test group can read the design and create 
test cases to verify that all units function as specified. Once the functions 
of a component are complete you will put them together in their module, 
generate a testable object, and again, referring to your designs, try all 
possible inputs. The final phase is to test the entire system or application. 

309 



31 0 TESTING ANDCODE CHANGE 

Here's where things can get complicated. Users will do things with your 
application that you never expected. You must test not only the expected 
operations but also things that make no sense at all. When looking at 
the code, the functions may work, but when putting them together with 
others and then introducing multiple threads with them, you can wind 
up with interactions that you did not expect. If you spent the proper 
time on the design, however, none of these things should surprise you; 
you should be able to deal with them swiftly and efficiently. 

SCAFFOLDING 

Scaffolding is a technique by which you can test functions for which the 
functions that call them are not complete or tested. This is accomplished 
by "hacking" together code that calls the function under test with the 
inputs it expects. Just like a real scaffold, this code is a temporary struc
ture to hold up other functions and test the units as early as possible. It 
should be thrown away immediately after the testing is complete. Many 
times programmers forget and leave the scaffold in the build. However, 
as soon as the testing is complete or the function it represents is written, 
it should be discarded. 

TESTING UNITS 

Early on you wrote down the main functions of your application and 
broke them down into several large tasks. Those tasks were broken down 
further until you ended up with small, manageable functions. Each of 
these functions has a fixed set of inputs and outputs. In general, they 
were not the functions that deal with the users, but rather the ones that 
manipulate the data within the application. As such, treating the func
tions as miniprograms and bombarding them with the permutations of 
inputs is a relatively simple task. The easiest way to do this is to replace 
the function name with main ( ) and make the parameters passed into it 
come in from the command line when the program is invoked. Alter-



TESTING METHODOLOGY 311 

natively, you can use the scaffolding technique outlined earlier. Some 
people prefer to use a debugger to just test the code and trace execution. 
This method can become tedious, however, and can take more time than 
is actually needed. 

Function or unit testing should be done during development and 
should adhere strictly to the design specifications. 

TESTING MODULES AND COMPONENTS 
Once the units of a component are verified, the next step is to build 
the component and test it in the same way as the units. At this point 
you still have a good handle on virtually anything that can be input 
to these components. However, there is beginning to be some degree 
of uncertainty in what can happen, such as in the order of events or 
unexpected things the user can do. With respect to the user, there is not 
much that is beyond your control at this level. The components generally 
interact with each other. Only the user interface component deals with 
the user. 

In general, the things you want to look for in the component test 
phase are the interactions between the functions within the compo
nent. This includes the data and function calls being passed between the 
functions as well as any multithreading within the component. Since 
you have already tested the functions for their inputs and outputs before 
getting to this phase, you really just need to verify that any multithread
ing within the component adheres to your designs. You will likely want 
to scaffold code here not only to test all expected inputs but to simulate 
error paths as well. 

TESTING THE SYSTEM 
Once the components are verified, the final test phase is to put it to
gether as a system. You've already verified that all of the functions and 
the components to which they belong work as expected. At the sys-



312 TESTING ANDCODE CHANGE 

tern test phase you should really need to look only for stress situations 
and overall application thread interactions. You should "gorilla test" the 
application-that is, take any kind of input (rational or not) and throw 
it at the system. This approach ranges from the simple case of using 
invalid file names to possibly writing some simulation code that pumps 
user input at the application in rapid fire. 

You need to see how the application handles user input and manages 
the threads. You want to carefully analyze your thread design in real 
user situations as well as anything else a user may throw at it. You 
want to look for race-for-resources conditions between threads as well 
as determine how well you have prioritized the threads. 

As you can see, the functionality of the application can almost be 
taken for granted here, because if your design was correct and the test
ing passed the design specifications the functions will work. Of course, 
you should verify the functions in the system test phase, but this should 
be a minor part of the test. 

In the final application or system test you want to verify that the 
threads behave as you intended and don't fight for resources. You also 
need to see how the threads interact in terms of priority and to determine 
if any of your threads are starving others. You want to look at how you 
have structured your code loading and memory management in general 
as well as in low-resource conditions. If you have the type of application 
that can work on multiple documents you want to load in the maximum 
number of documents. If you have variable-sized documents such as in 
a spreadsheet you want to look at the maximum-sized document; you 
should do this in low-resource conditions as well to verify that you are 
not thrashing, either in your own code or in the system in general. 

One other item to examine with respect to data allocation is leakage. 
If you allocate memory and then don't need some of it after awhile (as 
in a multiple-document scenario in which one document is closed) you 
should free memory. Otherwise, you will only cause the swap file to 
grow and you will degrade system performance. 

The final test is to look at performance and see how you are doing 
overall, especially in low-memory situations. This is where the perfor-



TESTING METHODOLOGY 313 

mance work you did in the last few chapters really pays off. Not only 
will you be a good "computing citizen" by being frugal with system re
sources, but you will also perform better in constrained systems. 

SUMMARY 
Notice that testing of the application is geared toward verifying that the 
code performs according to the designs. Of course, you can never test 
every possible user action or every environmental consideration, but 
by taking the users into account in the design and verifying your code 
correctness in a test, you can feel comfortable with the quality of your 
product. 

There are those who would disagree and say that testing should be 
the most intensive part of product development. I agree that testing is 
important, but by doing the work up front you end up with code that is 
cleaner and more maintainable without having to spend a huge amount 
of time and resource testing. 





CHAPTER 

Code Change 

C ode change refers to anything that goes into your code other than 
exactly what the design calls for. Code change is anything you have 
to do to the code after it is initially written and submitted for test. 

Sometimes you will find a hole in the design during test. Maybe it is 
something the user may do or want to do that you did not anticipate. 
Maybe it is an ambiguous area of the application where you intend for 
the program to work one way but it makes just as much sense for it to 
work another. 

You should not only have the design completed before you code, but 
you should have it reviewed and approved as well. Your testers will be 
good judges of what, if anything, has been left out, is ambiguous, or is 
lacking in the application. 

315 



316 TESTING AND CODE CHANGE 

CODE CHANGE ACCORDING TO DESIGN 

When it becomes necessary to add in changes you must make sure you 

don't compromise the design to fix inconsistencies. Each design point 

has been evaluated, analyzed, and approved based on the design of the 

rest of the application. It is a link in the chain. By changing the shape 

or function of one link the entire chain can fall apart. You must review 

each change that needs to be made and analyze how it can affect other 

parts of the system. 
If, for example, you are getting bad output from one function in one 

instance, you can't just change the code inside the function and assume 

that fixing the internals of one function won't affect anything else. It may 

seem trivial, but you need to examine the needed change to determine 

whether something is lacking in the design or whether you just have a 

coding bug. A simple coding error is not as much cause for worry as a 

flaw in the design. If the design has been documented properly, a code 

change within a function should do nothing more than adhere to the 

inputs and outputs you have laid down for it. 
Complications can arise when you test the components or the entire 

system. Usually the most complex problems are exposed here. However, 

if you have broken down the tasks early in the design phase you should 

have a fairly easy time of finding which function is failing. Although the 

scenarios during component and system testing are more complex than 

those of unit testing, you can go back to the scaffold code if you need to 

try to isolate the suspected functions. The biggest job is to analyze why 

the problem is there and to fix it within the design, not just hack code in 

there so that the code works in the failing scenario. 
If you designed properly at the outset, you can rewrite a component 

or subsystem of the application without affecting the rest of the appli

cation. Just view it as maintenance and subsystem replacement before 

it gets to the field, rather than later on. 
You may encounter a situation in which one or more pieces of your 

application must be changed more than others. Each time you make 



CODE CHANGE 317 

a change you take the risk of injecting more defects than you remove. 
You need to control all changes and try to find where and why you are 
having problems. 

WHEN THERE ARE 
TOO MANY FOR COMFORT 

One of the main things you are looking for is to see if you have error
prone components or places where the design is too loose or fuzzy. In 
these cases you have a choice. You can change the design on-the-fly (or 
just continue fixing the problems), or you can go back to the drawing 
board with that component. This is a drastic measure and a decision not 
to be made lightly. If you have done the right design work, the only real 
reason to go back to the drawing board is for an error-prone component. 
If that is the case you may just need to throw out the current module 
and recode it. This does not mean that the design has to change. It is 
possible that the design is fine but the way in which the module was 
coded is too slow, too inflexible, or just too "buggy." 

There is no fixed formula that says that for X defects per Y lines of 
code you should rewrite a module, but it is usually evident to the testers 
and programmers which modules need to be redone. Don't ignore this 
information. No one wants to throw away work and start over, but 
retaining faulty modules can only exacerbate problems. After all, even if 
you have only one error-prone component, it has to interface with one 
or more other components. If you can't rely on what one component is 
doing you may end up trying to fix nonexistent problems in others. 

SUMMARY 
This very short chapter is in this book to stress discipline-the discipline 
to know when a component needs replacement. If the design was done 
right and the interfaces between components are clean, component re-



318 TESTING AND CODE CHANGE 

placement should be nothing more than writing a new component. This 

discipline involves being able to make such a difficult decision despite 

the possible schedule slips. 
Component replacement is not restricted to situations in which one 

fails to make the grade. As technologies advance and new ways of ac

complishing tasks are developed you may even want to replace a com

ponent in a subsequent release. This does not always mean redesign. 

You need to maintain your perspective with respect to the overall 

picture in your application's life cycle. If you have one week to go in 

your schedule and one component that is marginal with respect to be

ing replaced, your decision should be obvious. However, if you have a 

component that is causing nothing but headaches, you should take a 

long, hard look and possibly even push back your schedules. 

Perspective and discipline. 



SECTION 

Installation 
Programs 

T he finishing touch to the program (actually, the first impression if 
you are the user) is the installation program. This is the program 
that will install and configure your application. Install programs 

can be as simple as command (.CMD) files, or they can be complete PM 
programs in their own right. These programs can be used not only to 
install the application but also to install upgrades and bug fixes, or even 
reconfigure the whole application. 

Installation programs are often neglected, yet they can add an excel
lent dimension to your application, and they don't necessarily have to 
be difficult to code. You can use facilities of the application or even use 
code from the application itself. 

The installation program is the user's first impression of the appli
cation. It should be the simplest and most intuitive part of your applica
tion. The user should almost be able to run the install program without 
reading the manuals. By making the installation as simple as possible, 
yet flexible enough so that you can use the same interface for upgrades 
and service, you lower the learning curve for the application and make 
users more willing to buy your software. 





CHAPTER 

Designing the 
Installation Program 

T he installation program needs to be designed just like any other 
application. The fact that it will be used only once (or very infre
quently) is no reason to just slap it together. You must outline the 

requirements of the program and what features you plan to provide. 
You must decide if it will be an all-purpose configuration program or a 
simple command file. You must determine what medium the distribu
tion will be on and how (or if) the file(s) will be packed. You also must 
determine the installation program invocation. 

Although the installation program is the first visible part of the ap
plication, it puts the finishing touches on the application. 

JUST ANOTHER (SMALL) APPLICATION 

The installation program is another application, just on a smaller scale 
than your word processors and spreadsheets. As such, you should go 

321 



322 INSTALLATION PROGRAMS 

through some level of design. You don't need to go in as deeply as you 

would for the "real" application, but you need a user interface, worker 

code, possible multithread considerations, and (as with any program) a 

level of testing and code change. 
You may decide that you don't want to put much effort into the instal

lation program. Maybe your decision is that you just want to copy the 

files to the hard disk (or any disk, for that matter) and have all configura

tion in the application itself. Maybe your application is so complex that 

you have a large number of DLLs and other code that require changes 

to the CONFIG. SYS file. 
This application must have its purpose designed. If you plan to use 

it to just install the program once, then stick with that plan. The same 

rule applies if you plan to use it to install the application and future 

upgrades, or if you have a series of related applications for which you 

wish to use the same basic installation code. The bottom line is, don't 

change after you're done. 

USER INTERFACE 
The user interface of the installation program is just as important as 

the user interface of the main application. If the users cannot figure out 

how to use the installation program, they won't be able to install your 

software, will be disgruntled even if they can get it installed, and will be 

likely to return it. This does not even touch on the fact that your support 

organization will be bombarded with support calls from customers just 

trying to install the program, which adds to your product cost. 

Your choice of user interface depends a bit on your initial decision 

concerning the scope and future of the install program. If you don't plan 

any future use for the program and choose to use a . CMD file, the user 

interface is simple. They can type INSTALL and let your . CMD file do the 

rest. Even if you need modifications to the CONFIG. SYS file, you can write 

the function into the . CMD file, or you can even ask the user to make 

modifications based on another file you provide. The more work you 

ask the user to do, the greater the risk of mistakes, however. 



DESIGNING THE INSTALLATION PROGRAM 323 

If you have grand plans for the installation code (or even if you don't, 
but you want to provide a consistent look to all of your supplied code), 
you may choose to write a full-blown PM interface. A PM interface 
does not have to be as involved as the main application's. It can be 
as simple as having a window with a menu to set some installation 
options, such as whether a WPS object should be created or whether 
the CONFIG. SYS file should be automatically updated. It can also be as 
complex as controlling which files or features get installed and where 
they all will go. 

There is not nearly as much to the user interface in the installation 
program, and not nearly as many dialogs. Something you may wish 
to consider is using the application code for part of the install pro
gram's user interface. It adds consistency and improves the aesthetics 
to have your installation program's interface look like the application. 
Of course, the menu will be different, but the window style, icons, and 
general look and feel can be the same. You can even share some of the 
same source code to make this job easier. 

There are really no rules for the installation program's user interface. 
The only suggestion I can give is to consider the overall picture and plan 
for the program before making any of the user interface decisions. 

MULTITHREADING 
One subtle yet effective advantage you can gain over other systems and 
in fact other programs is using multithreading even in the installation 
program. Just as with the main application, you should look at the 
installation process from a tasking viewpoint. One task could be copying 
files. Another task could be unpacking files (if they are indeed packed on 
the media). Yet another task could be asking the user for the application 
defaults or writing the changes to the CONFIG. SYS file. 

Again, as with any application design, you must look at the tasks to 
see what you can multitask. The most time-consuming task is copying 
the files and subsequently unpacking. It does not make much sense to 
multi task just the copying of files. Of course, you might say that copying 



324 INSTALLATION PROGRAMS 

two files at once is faster than one at a time. On a fast access data device 

that supports overlapped 1/0 this may be true. However, most software 

is distributed on diskette or CD-ROM, which are relatively slow devices. 

If you try copying files on multiple threads all you will succeed in doing 

is making the head or laser beam move furiously across the disk without 

accomplishing much. However, if you have packed files, it is often useful 

to copy a file to the hard disk on one thread and then signal the name 

of the file to another that unpacks the file. In the meantime, the first 

thread can copy other files. In fact, OS/2's own installation works on a 

principle similar to this. 
Some of the other functions of the installation program are some

what easier to identify for multiple threads. Writing changes to the INI 

files, creating Workplace objects, and updating the CONFIG. SYS file are 

all such tasks. The only real consideration is whether the installation 

abnormally terminates before it is complete. You'll either have to figure 

out a way to undo those changes or delay them until anything else that 

could go wrong is completed. The biggest thing that can go wrong is if 

the user does not have enough hard disk space. You can query this be

fore you start, but who knows what else the user is doing while installing 

your software? Remember that any system query is a static picture of 

the system at one instant in time. This could change a millisecond later. 

The disk space you thought you had could be gone by the time you are 

copying the last files. 
Keep these considerations in mind when designing the structure of 

the program. You may think these situations will never arise, but take it 

from experience-they inevitably will. 

MULTIPLE INSTALLATIONS 

Inevitably, the user will accidentally erase some files or "blast" the ap

plication configuration in some other way. The user may also try to 

reinstall after a failed attempt. Users may run into hard disk problems. 

Then there are some users who just don't like the way they configured 

the application and decide that they will just reinstall over the old copy 

to erase their changes. 



DESIGNING THE INSTALLATION PROGRAM 325 

Consider what you want to do when the user installs over an existing 
copy. You don't want to create WPS objects all over the place or dump 
redundant data into the INI files or CONFIG.SYS. You should put a flag 
somewhere in the system to indicate that the application has already 
been installed. This can be done in almost any way, and the user can 
probably erase each of the flags, so you should build mechanisms into 
the individual "subsystems" in the installation program to detect prior 
installations. 

For example, in the code that created the Workplace object, query 
the system to see if that object class or template already exists. Before 
adding information to CONFIG.SYS, scan the file to see if the information 
is already there. By looking at each step, you can eliminate the need for 
the flags and not have to worry if the user tries to remove the application 
by hand but forgets some pieces. 

One other consideration is in deinstallation of the program. You 
should give the users a clean way to deinstall the program if they wish. 
Of course, no one will want to remove your code from their system, 
right? Well, it is inevitable, so you should be as clean as possible. 

Deinstalling the application should clean up as much as possible. 
This includes removing INI file entries, Workplace objects, and changes 
to CONFIG. SYS. It may seem trivial, but it is important to the user. Better 
to be known as the nice guy than as the application that wouldn't leave. 

MEDIA CONSIDERATIONS 
Media considerations really depend on the type of application you are 
writing. For example, if your application is multimedia-based for which 
CD-ROMs are commonplace, then both diskette and CD distribution are 
equally viable. The only considerations are cost of manufacturing and 
the speed of the device for installation. 

In general, software is distributed on diskette, which presents speed 
and size considerations. CD-ROM disks can hold hundreds of megabytes 
of data, so packing of files is not really needed unless it could improve 
installation speed. Diskettes, however, are much smaller. You will likely 
need to pack the files on the diskette and/or use multiple diskettes. 



326 INSTALLATION PROGRAMS 

Packing Your Code 
Packing files is not necessarily a bad thing. In many cases it will speed 

the installation since a smaller number of bytes need to be read from 

the diskette, which is about the slowest device except for some tape 

drives. The faster hard disk would then be used to decompress the files. 

Your decision depends largely on the algorithm you use to pack the 

code. There are established programs that can be used as shareware or 

licensed at a low cost. It is much cheaper to take that approach than 

it is to develop new algorithms that may be less efficient at best and 

buggy at worst. The established algorithms have been improved over 

time and field testing. Why try to reinvent the wheel yourself? By using 

the established packages you can save time and money. What more could 

you want? 

"SERIES" APPLICATIONS 

When you design the installation program take into account whether you 

have a series of applications for which you want a common installation 

program. If you don't have a common program, at least try to have a 

common-looking program. 
As with anything else, you can take this idea as far as you like. 

If you wish you can design a separate application as being a generic 

application installer whereby the customers, who are developers, will 

supply some kind of script file. You can interpret this file and run the 

program creating dialogs and resources on-the-fly based on the script. 

SUMMARY 

Installation programs are no different from applications. They are just 

on a smaller scale. The same considerations apply, with a few twists. 

There is not much to say about installation programs other than what 

has been discussed briefly in this chapter, which is intended merely to 



DESIGNING THE INSTALLATION PROGRAM 327 

give you some insight into the considerations of writing your installation 
programs. You really need to evaluate your intentions for the program. 
Will it just install the application by copying files, or will it be a general 
application configuration tool? 

Installation programs can gain the same benefits from the use of 
multiple threads as any other program, especially if the code is packed. 
Make your installation programs consistent with the application. First 
impressions are lasting ones. 





Summary and 
Conclusion 

T here are many parts to designing OS/2 applications. No book can 
cover everything. As stated at the outset, only experience will en
able you to write robust, powerful applications. Since you can't 

get an injection of OS/2 experience, this book is the next best thing. 
Throughout this book I have drawn on many of my experiences with 
application vendors to explain various design points of applications. 

Having supported OS/2 in many capacities in the last few years, I 
have seen customers who thought that there were flaws in an application 
or in OS/2. Upon examination, the user's problems occurred not because 
of a bug in either OS/2 or the application but because the application 
did not support certain features of the system. These are the kinds of 
things that programming books can't teach. 

We have taken a journey all the way through OS/2 at a level deep 
enough to understand how things work within the system, how each 
function and subsystem relates to the others, and how to make applica
tions best take advantage of them all. 

We started out discussing why anyone should even write applications 
for OS/2. There are many compelling reasons to write for OS/2, ranging 
from the productivity gains you can give users to the productivity gains 
programmers can get as well. From there the discussion moved into the 
architecture of the system at a functional level. OS/2 is not a mystery. 
On the contrary, if you understand the basics and use common sense 
and simple logic you can figure out how just about every piece of the 
system works. 

329 



330 SUMMARY AND CONCLUSION 

The next step was to get into the design of your application. The 

concepts presented here can apply to software development in general, 

but they were geared toward specific OS/2 examples since OS/2 is the 

target environment. The steps can be tedious and take a little longer 

than you'd like, but the patience is worth it. 
By having that patience and discipline to do it right the first time, 

rather than just doing what works quickly, you will reap the benefits 

of portability to PowerPC, the ease and efficiency with which you can 

maintain and enhance your code (providing benefits on many platforms 

by doing the work on only one) and the speed and all of the function 

offered by OS/2. 
There is nothing wrong with prototyping functions from day one, 

but the real code should not be written until the basic design is com

plete. Stick with the fundamentals, the building blocks, and the function 

breakdown. Don't forget to document everything, including why deci

sions were made. Your design document should be not just a bunch of 

interface definitions but rather a working document that is more like a 

cookbook, with summaries of the alternatives considered and a list of 

the reasons for your choices. This way there will be no ambiguity later 

on when you develop, test, and fix the code. 
I hope you have gained insight into not only how OS/2 works but 

how to design applications in general. This book is intended to be an 

"experience guide" for many of the decisions that you must make when 

developing OS/2 code. I'm sure you've noticed that there is very little 

code in this book. The reason is to allow you to concentrate on the 

design issues. Coding is a process that can be learned by looking at the 

programming technical references. Algorithms are the programmer's 

canvas, and the APls are the paint. The design stage is where the critical 

decisions are made. Programming decisions are also important, but 

they are the implementation of the designs. By working from real-world 

examples you will be able to make maximum use of all that OS/2 has to 

offer. 
Best of luck to you and sell millions of applications!!!!!!!! 

David E. Reich 



Bibliography 

IBM Corporation, OS/2 2.0 Technical Library, Application Design Guide, 1992. 
IBM Corporation, OS/2 Technical Library, Control Program Programming 
Reference, 1994. 

IBM Corporation, OS/2 Technical Library, Control Program Programming 
Guide, 1994. 

IBM Corporation, OS/2 Technical Library, Presentation Manager Program
ming Reference, Volume 1, 1994. 

IBM Corporation, OS/2 Technical Library, Presentation Manager Program
ming Reference, Volume 2, 1994. 

IBM Corporation, OS/2 Technical Library, Presentation Manager Program
ming Guide, Advanced Topics. 

IBM Corporation, OS/2 Technical Library, Graphics Programming Interface 
Programming Guide, 1994. 

IBM Corporation, OS/2 Technical Library, Graphics Programming Interface 
Programming Reference, 1994. 

IBM Corporation, OS/2 Technical Library, Information Presentation Facility 
Programming Guide, 1994. 

IBM Corporation, OS/2 Technical Library, System Object Model Guide and 
Reference, 1992. 

331 



332 BIBLIOGRAPHY 

IBM Corporation, OS/2 Technical Library, Workplace Shell Programming Ref
erence, 1994. 

Kogan, M. Dietel, "The Design of OS/2," 1992. 

Reich, D., and Cheatham, Robinson, "OS/2 Presentation Manager Program
ming," January 1990. 

Borgendale, K., and Bramnick, Holland, "Workplace OS: What is the OS/2 
Personality?" 1994 



Index 

A 

Agents, 179 
Allocated pages, 67 
API, 19-27,30,49,67,68, 71, 75, 76, 

81, 94, 103, 108, 113, 114, 139, 
158, 165, 166, 171, 192, 203, 208, 
218,252,253,266 

API aliasing, 291, 292 
Application defaults, 163 
ASSOCTABLE, 175 
Average character width, 277, 278 
AVIO, 118, 119,259 

c 
CASE, 164-166 
Client area, 117, 158 
Client Library, 106, 107 
Clipboard, 5, 13, 92, 126, 249 
Combo box, 168 
Committed pages, 67, 68 
Common services, 95, 103 
Communications: 

background,4 
data, 5, 6, 124 
interprocess, 5, 96, 111, 119, 172, 

173, 177, 179, 200, 201, 213, 248 
Context menu, 12 

Control Program, 44 
Controls, 159, 160 
CORBA, 128, 170 
Crash protection, 32 
Critical section, 144, 246 
CUA, 157, 157, 160, 268 

D 

Data validation, 231, 232 
Deadlock, 243, 145 
Debugging, 28, 29, 30, 190 
Derivative classes, 304 
Descriptor, 60-67 
Device context, 16, 78-85 
Device driver, 16, 23, 31, 43-53, 69-72, 

81, 82, 104, 192 
DevOpenDC,264 
Dialog window, 159-163 
Direct-To-SOM, 171 
DosAllocMern,67, 160, 163,260 
DosCreateQueue,248 
DosCreateThread,55, 58 
DosDevIOCTL, 71, 194 
DosEnterCritSec, 144,246 
DosExecPgrn, 174, 180 
DosExitCritSec, 144,246 
DosGetMessage,294 
DosGetProcAddr,290,292,299 

333 



334 INDEX 

DosKillThread,245 
DosLoadModule,290,292,299 
DosQFileinfo,24,25 
DosSetMem,67,68 
DosSetPriority,57-59 
DT_QUERYEXTENT,278 
Dynamic Data Exchange, 5, 13, 92, 120, 

124, 125,249 
Dynamic Link Library, 24, 26, 47, 51, 

72-73, 106, 142, 143, 178, 181, 
194, 197, 198, 291 

.LIB, 73 

E 

EVENT semaphore, 60 
Event/Session Manager, 109, 153 
Exception handler, 191, 237, 238 
Extended attributes, 196, 197, 251, 254 

F 

File System Request Router, 68, 69 
FileinfoBuf,25 
Fixups, 51, 73, 290 

G 

Global Descriptor Table, 62 
GpiBox, 80, 82 
GpiPlayMetafile,23,264 
Graphics engine, 75-89 

function table, 81-83 
Guard page, 67, 68, 237, 238 

H 

Help: 
contextual, 14, 268, 269 
hypergraphics, 268 
hypertext, 268 
IPFC, 268, 269 

HPFS, 25, 196, 252 
HyperWise, 268 

INF files, 269 
Inheritance, 177-178 
INI files, 91, 195, 200 
Initialization, 139 
Input router, 86 
Installable File System, 46 
IOCTL, 71, 72, 134, 193 
IPF, 14, 15, 267, 269, 270 

K 

KASE:PM VIP, 164-166 
Kernel,5,29,43,44,45,47,50, 187 
Keyboard focus, 86, 88 

L 

LAN, 206, 252 
LIBPATH,291,292 
Linear Address, 63-67 
Loader, 44, 46-48, 52, 67 
Local Descriptor Table, 62 
Locality of reference, 287-290 

M 

Memory compaction, 10 
Memoryleakage,293 
Memory management, 44, 45, 50, 60, 

61-65,233-237 
640 K limit, 8 
best-fit, 235 
first-fit, 235 
flat, 8, 9, 11, 64, 66 
linear, 64, 66, 68 
overcommitment, 4 7, 190 
segmented, 8, 9, 59-61 



sparse allocation, 6 7, 68 
virtual, 9, 63 

Message queue, 88 
Microkernel, 28, 95, 100, 101, 104, 108 
Microkernel Messages, 103 
Modality, 162, 163 
Multiprocessing, 200, 201 
Multitasking, 3, 4, 30, 48, 50, 140 
Multithreading, 1, 3, 6, 20, 98, 133, 139, 

151, 152,218,221,222,224,228, 
240,247,295 

MUTEX semaphore, 60 
MUXWAIT semaphore, 60 
MVM, 95, 105 

N 

Named shared memory, 250 
National Language Support, 273, 274 

0 

Object: 
associations, 174 
Workplace, 11, 13, 88, 89, 90-92 

Object-oriented, 13, 14, 15, 90, 94, 99, 
101, 143, 144, 148, 153, 191, 266 

printing, 180 
Object window, 223 
OpenDoc,28, 170, 171 
OS/2 Server, 108, 109 

p 

Page frame, 63, 65 
Page table, 63, 65 
Page table directory, 63, 65 
Paging, 9, 10, 11, 63, 67 
Parallelism, 133 
Path Length, 289 
Personality Neutral, 102 
Pipes, 5, 127, 249 
PM_Q_RAW,264 

PM_Q_STD,264 
Portability, 22 

INDEX 335 

Positioning of reference, 249-251 
PowerPC, 18, 25, 26, 74, 95, 97, 105, 

106, 108, 135, 137, 193,228 
Preemptive, 3, 48, 208 
Presentation driver, 77-86, 136 

brute force, 84, 85 
Presentation Manager, 12, 47, 75-89, 

93,94-98, 107, 108, 116, 155, 
187, 198 

Presentation space, 16, 78-85, 96, 97, 
136, 152 

Print destination, 264 
Protection violation, 56, 57 

Q 

Queues, 127, 248 
QWL_USER,305 

R 

Resource sharing, 143 
REXX, 130, 170 
Ring: 

ring 0, 31, 54, 71, 192 
ring 3, 31, 54 
transition, 54, 192 

RISC, 18 

s 
SAA, 156 
Scaffold, 310 
Scheduler, 7, 47-58, 69, 108, 243 
Selector, 62 
Semaphore,50,59,60,69,88, 144,242, 

243,247 
Shared Services, 95, 103, 105 
Smalltalk, 137 
SMP,2,8, 17,18,25,28,48,49 
SMP-safe, 49 



336 INDEX 

SOl\1, 14,28,90-92, 108, 159, 170, 171 
SplEnumPrinter,265 
Spooler, 140 
Standard window, 157, 160 
Stringtable, 275 
Subset function, 180 
Swap file, 9, 60, 65, 217 
Swapping, 9, 60, 65, 161 
System testing, 41, 303, 306, 310 

T 

Templates, 121, 172, 173 
Thread,6, 7,42-59, 71-72, 182 

context, 7, 57-59 

u 

priority, 7, 47, 57-59, 295 
absolute, 57, 58 
classes, 57-59 
dynamic, 57-59 
foreground boost, 58 

Unit testing, 41, 3102 
UNIX, 22, 206 

v 
VIO, 115, 120, 259 
virtual console, 4, 44 
virtualization, 46 

w 
WC_BUTTON,304 
WC_ENTRYFIELD,305 
WC_LISTBOX,305 
WinCancelShutdown,224,241 

WinCreateClass,305 
WinCreateHelpinstance,269 
WinCreateWindow,23 
WinDefWindowProc,215 
WinDispatchMsg,218,226 
Window procedure, 215-218 
WinDrawText,278 
WinFontDlg,266 
WinGetMsg, 88,224,226 
Wininitialize,215 
WinPostMsg, 167,219 
WinPostQueueMsg,226,240,247 
WinQueryClassinfo,305 
WinSendDlgitemMsg, 167 
WinSendMsg, 167,219 
WinSetWindowPos,302 
WinSetWindowText,276 
WinShowWindow,302 
WinWindowFromID, 167 
WM_CHAR,217 
WM_COMMAND, 187, 188,216,217,223 
WM_CONTROL,217 
WM_PAINT,216,223 
WM_QUIT,219,241 
WM_SIZE,304 
WM_USER,224-226 
Working set, 287 
Workplace Shell, 3, 12-15, 75, 78, 

89-93, 96, 105, 106, 116, 121, 
170, 172-176, 178, 201, 213, 
294 

Workplace Architecture, 26, 74, 95, 96, 
147, 153, 200 

WPAbstract,91 
WPDataFile,92, 179 
WPFileSystem,91 
WPObject,91 
wpOpen, 179 
wpPrintObject, 180, 182, 183,265 
WPTransient,91 
WS_VISIBLE,304 
WYSIWYG, 114, 118, 131, 159, 268 



05/2 Programming/Operating Systems 

A total A-to-Z 

guide to designing 
the most powerful 
and efficient 

applications 
possible 

DAVID E. REICH is a Development Manager 
with IBM's OS/2 development team . He is also a 
regular columnist and contributing editor for 05/2 
Developer. A well-known speaker at international 
OS/2 user groups and conferences, he has traveled 
the world, teaching classes and helping developers 
write high-quality OS/2 applications. His previous 
books include Designing 05/2 Applications and 
05/2 Presentation Manager Programming, both 
available from Wiley. 

Cover Design : Adrienne Weiss 

John Wiley & Sons, Inc. 
Professional, Reference and Trade Group 
605 Third Avenue, New York, N.Y. 10158-0012 

$34.95 

Do you know how to design and write applications to 
achieve maximum throughput using threads? 

Do you know which interprocess communication tools 
are available to you and which ones to use when? 

How do you coordinate execution among threads? 

What about techniques to efficiently use and structure 
your application's use of memory? 

Did .you know that with the right design, you can write 
applications to run on single or symmetric multiprocessor 
Intel machines as well as PowerPC machines with a sin
gle set of source code? 

What ore the ways to tune your' applications for 
maximum performance? 

Get the answers to these and many other crucial design 
and programming questions in Designing High-Powered 
05/2 Warp Applications. 

Written by internationally renowned OS/2 guru David 
Reich, this book is a gold mine of insider tips and tech
niques for designing powerful, efficient applications that 
are easy to code, test, and maintain. Reich introduces 
you to all the features available in OS/2 Warp, tells you 
how they work and, with the help of numerous real-life 
examples and scenarios, shows you how to make opti
mal use of them. He covers the intricacies of: 

e The Workplace Shell and object-oriented 
programming in OS/2 

e Client/server, multithreading, memory 
management, HELP facilities, and running 
Windows applications in OS/2 

• Compilers, tree structures, and module 
structures that make your applications easier 
and less expensive to maintain 

e CASE tools that help you structure your 
. .program· and prototype functions quickly 

e Developing versions of your code that work in 
languages other than English, using only one 
source code tree 

ISBN 0-471-11586-X 

53495 

New York• Chichester• Brisbane• Toronto• Singapore 9 780471 115861 


