

The Art of OS/2 Warp Programming

The Art of OS/2 Warp
Programming

Kathleen Panov
Larry Salomon, Jr.

Arthur Panov

WILEY
John Wiley & Sons, Inc.

New York • Chichester • Brisbane • Toronto • Singapore

TRADEMARKS

OS/2, IBM, Presentation Manager, CUA, BookMaster, C Set/2, SCRIPT, THESEUS2, SPM/2, Common User Access
are trademarks of IBM Corporation.
80286, 80386 are trademarks of Intel Corporation.
Macintosh, System/7 are trademarks of Apple Corporation.
Microsoft, Windows are trademarks of Microsoft Corporation.
SmartPics is a trademark of Lotus Development Corporation.
The clip-art images in this book were created using SmartPics from Lotus.

Publisher: Katherine Showalter
Editor: Theresa Hudson
Managing Editor: Maureen B. Drexel
Text Design & Composition: Kathleen Panov

This text is printed on acid-free paper.

Copyright© 1995 by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered.
It is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
service. If legal advice or other expert assistance is required, the services of a competent professional person should be
sought.

Reproduction or translation of any part of this work beyond that permitted by section 107 or 108 of the 1976 United
States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further
information should be addressed to the Permissions Department, John Wiley & Sons, Inc.

Library of Congress Cataloging-in-Publication Data

Panov, Kathleen.
The art of OS/2 Warp programming I Kathleen Panov, Arthur Panov,

Larry Salomon, Jr.
p. cm.

Includes index.
ISBN 0-471-08633-9
1. C (Computer program language) 2. OS/2 (Computer file)

I. Panov, Arthur. TI. Salomon, Larry. III. Title.
QA76.73.Cl5P36 1993
005.4'469--dc20

93-25632

Printed in the United States of America
10987654321

CIP

This book is dedicated to Alexandra and Lisa.

Contents

Figures ... xv
Preface .. xvii
Acknowledgments .. xix
Chapter 1: Tools .. 1

Dialog Box Editor ... 1
Resource Compiler ... 1
NMAKE .. l
IPFC .. l
Libraries .. 2
Header (or INCLUDE) Files ... 2
The Compiler Switches Used in This Book .. 2

Chapter 2: Memory Management. ... 5
Committing Memory ... 6
Suballocating Memory .. 8
Shared Memory ... 10
DosAllocMem or rnalloc? ... 12

Chapter 3: Multitasking ... :···· .. ········· 15
The Scheduler ... 16
The Subtleties of Creating a Thread ... 18
Threads and the C Runtime ... 18
A Thread Example .. 19
The Thread Output. ... 21
Executing a Program ... 21
Sessions ... 23

Chapter 4: File 1/0 and Extended Attributes ... 29
Extended Attributes .. 29
EAs-Fragile: Handle with Care .. 31
The LIBPATH.C Example .. 31
Getting the File Size .. 35
Opening a File ... 36
Reading a File ... 36
More on DosOpen ... 36
An Extended Attribute Example: CHKEA.C .. 40

Chapter 5: Interprocess Communication ... 55
An OS/2 Named Pipe Client-Server Example .. 55
DOS-OS/2 Client-Server Connection ... 64
An OS/2 QUEUE Client-Server Example ... 68
An OS/2 Semaphore vs. Flag Variable Example .. 79

vii

viii-The Art of OS/2 Warp Programming

Chapter 6: DLLs .. 85
DLL Overview .. 85
Thunking ... 86
DLL Performance .. 86
Simple DLL Example (32-32) ... 87
Creating the .EXE and the DLL .. 89
16-32, 32-16 Transitions ... 91
Call a 32-Bit DLL from a 16-Bit Program .. 91
Pointer Declarations .. 95
Calling a 16-Bit DLL from a 32-Bit Program ... 95
Loading/Unloading of DLLs ... 98
Optimizing Performance in DLLs ... 103

Chapter 7: Exception Handling ... 105
How to Register an Exception Handler ... 105
What an Exception Handler Looks Like ... 106
Signal Exceptions .. 107
Dos and Don'ts for Exception Handlers .. 107
DosExitList and Exception Handlers .. 107
A Guard Page Example ... 107
Summary ... 112

Chapter 8: Interfacing with OS/2 Devices ... 113
Serial Interface Example Using DosDevIOCtl .. 114
Serial Interface Example Using inp ... 118

Chapter 9: Introduction to Windows ... 123
Introduction ... 123
What Is a Window? ... 123
The INCLUDE Files ... 128
The Window Procedure Definition ... 128
Helper Macros•.. 129
Presentation Manager Program Initialization .. 130
Creating a New Class .. 131
Creating a Window ... 131
Message, Message, Who's Got the Message? ... 134
Terminating a Program .. 135
The Window Procedure Revisited ... 135
Parents and Owners ... 137
Window Stylin' ... 137
Another Window Example: WINDOW .. 139
The Presentation Manager Coordinate Space ... 147
More on Window Painting .. 147
Painting by Numbers ... 148
Enumerating Windows .. 149
WriteWindowinfo ... 150
The DrawString function .. 151
Presentation Spaces ... 152
Window Words ... 153
Control Windows .. 163
Presentation Parameters .. 163

Chapter 10: Window Management .. 167
Visible, Invisible, Enabled, and Disabled Windows ... 167

Contents - ix
Window Sizing ... 168
Device Independence, Almost .. 173
Subclassing the Frame Window .. 173
In Case of Error, Use the Class Default .. 174
Tracking the Frame ... 174
Saving Window Settings ... 175
WinRestore WindowPos ... 177
X,Y,Z-Order ... 178
Saving State .. 179

Chapter 11: Window Messages and Queues ... 181
Message Ordering ... 181
Focus Messages .. 182
Size and Paint Messages ... 182
The Last Messages a Window Receives ... 183
Sending Messages ... 183
Broadcasting Messages ... 184
Peeking into the Message Queue .. 185
Finding More Message Queue Information .. 185
Message Priorities ... 185
Messages and Synchronization of Events ... 187
User-Defined Messages .. 187

Chapter 12: Resources ... 189
More About Resources, I Would Know .. 189
Resource Files ... 190
Using the Resource Compiler ... 191
Pointers and Icons ... 191
Bitmaps ... 193
String Tables ... 197
Accelerators .. 197
Dialog Boxes .. 199
Menus ... 200
Help Tables ... 200
Application-defined Data .. 201

Chapter 13: Dialog Boxes ... 203
The Dialog Box Template ... 211
The Client Window Procedure .. 211
Creating a Modal Dialog Box ... 212
Creating a Modeless Dialog Box .. 213
The Dialog Procedure DlgProc .. 213
WM_COMMAND and Dialogs .. 215
Summary ... 215

Chapter 14: Menus .. 217
Menus: The Keyboard and the Mouse .. 218
Mnemosyne's Mnemonics .. 219
Menu Styles .. 219
Menu Item Styles .. 219
The Resource File ... 226
Menu Item Attributes .. 227
Creating the Menu Bitmap .. 227
The Client Window Procedure ClientWndProc .. 228

x-The Art ofOS/2 Warp Programming

The User Function displayMenulnfo ... 230
Pop-up Menus ... 230
Creating a Pop-up Menu ... 235
I Think I Can, I Think Icon ... 235
Popping Up a Menu .. 236
The Workhorse Function WinPopupMenu .. 236

Chapter 15: List Boxes .. 239
List Box Styles .. 239
Extended Selection .. 240
Initializing the Client Window .. 248
Initializing the List Box ... 249
The WM_COMMAND Message Dialog Processing .. 249
Processing the UM_LISTBOXSEL Message ... 250
The Client Window Painting Routine ... 250
Owner-Drawing Controls .. 251
DlgProc ... 258
The WM_MEASUREITEM Message .. 259
The WM_DRA WITEM Message ... 259
An Introduction to Owner-drawn States .. 259
Drawing the List Box Labels ... 261
Drawing the Bitmaps ... 261
Summary ... 262

Chapter 16: Buttons ... 263
Button Styles ... 264
Example Program .. 265
The BUTION.RC Resource File .. 271
DlgProc ... 271
Dialog Units-Can We Talk? ... 271
Button Actions .. 272
Summary ... 273

Chapter 17: Entry Fields .. 275
Entry Field Basics ... 275
Selection Basics .. 277
The Entry Field and the Clipboard .. 278
And Other Things .. 278
ENTRYl-Entry Field Samples ... 278

Chapter 18: Multiline Edit Controls .. 281
Terminology, Etc ... 281
MLEl .. 282
How to Upset a User Rather Quickly .. 288
No Refreshment .. 289
Clipboard Support ... 294
Navigation without a Sextant .. 294
Line by Line .. 294
Searching for What Was That Again? ... 300
As If That Weren't Enough ... 301

Chapter 19: Other Window Classes ... 303
Combo Boxes .. 303
Frames ... 306
Scrollbars .. 307

Contents - xi
Statics .. 308
Titlebars .. 310

Chapter 20: Drag and Drop ... 311
Tennis, Anyone? ... 311
Initialization Code for Drag and Drop Source .. 313
Things Never Told to the Programmer That Should Have Been .. 314
Direct Manipulation Is a Real Drag .. 315
And Now a Word from Our Sponsor .. 316
Data Transfer .. 317
A Concrete Example ... 318
More Cement, Please .. 330
DrgDragFiles ... 344
From the Top Now .. 344
Pickup and Drop ... 345
Functions Used for Lazy Drag .. 346
Lazy Drag Sample ... 348

Chapter 21: Value Set ... 365
Value Set Styles .. 365
The VALUE.RC Resource File .. 374
Initializing the Value Set. .. 375
Value Set Selection Notification ... 376
VALUE Paint Processing ... 376
The User-defined Message UM_UPDATE .. 377

Chapter 22: Notebook ... 379
Notebook Pages .. 384
Flipping Pages .. 393
Creating a Notebook ... 393
InitializeNotebook ... 394

Chapter 23: Containers .. 397
Container Styles .. 397
LPs or 45s? ... 398
Half Full or Half Empty? .. 399
Icon, Name, and Text Views ... 400
Tree View ... 409
Details View ... 409
Splitbars .. 411
Of Emphasis and Pop-ups ... 423
Direct Editing .. 438
Of Sorting and Filtering .. 439
Where Does Direct Manipulation Fit In? .. 456
Summary ... 456

Chapter 24: Spin Buttons .. 457
Spin Button Styles ... 457
Accelerator Keys ... 466
WM_ CREA TE Processing ... 466
WM_ CONTROL Processing .. 467
WM_COMMAND Processing .. 468
WM_PAINT Processing ... 469

Chapter 25: Sliders .. 471
Linear Slider Styles ... 472

xii-The Art of OS/2 Warp Programming

Creating a Linear Slider .. 473
A Linear Slider Example Program .. 474
Initalizing the Slider .. 479
Using an Ownerdrawn Slider .. 480
Circular Sliders ... 481
Circular Slider Styles .. 481
Creating a Circular Slider .. 483
A Circular Slider Example Program .. 483
Initializing the Slider ... 488
Circular Slider Colors ... 488
Summary ... 489

Chapter 26: Font and File Dialogs ... 491
The File Dialog ... 492
Special Considerations for Multiple File Selections ... 493
The FILEDLG Example Program ... 494
The Window Word .. 499
Putting It All Together: FindFile .. 499
Initializing the FILEDLG Structure .. 499
The Font Dialog .. 500
An Example Program: FONTDLG ... 504
Customizing the Font Dialog ... 514
Querying the Current Font .. 515
Initializing the Font Dialog Structure with the Current Font. .. 515
Bringing Up the Font Dialog ... 516

Chapter 27: Subclassing Windows .. 519
Superclassing .. 529

Chapter 28: Presentation Manager Printing ... 531
A Printer's Overview .. 531
Where's My Thing? .. 536
I Want That with Mustard, Hold the Mayo, No Onions, Extra Ketchup 541
Where Were We? .. 541

Chapter 29: Help Manager .. 559
Application Components ... 559
The Application Source ... 559
Messages ... 561
The Help Tables .. 562
Sample HELPTABLE ... 562
Message Boxes .. 563
Fishing, Anyone? .. 564
The Help Panels .. 565
Sample Help Panel .. 567
Putting It All Together .. 567
Restrictions .. 572
Using HELPTABLEs for Message Box Help ... 572

Chapter 30: Multithreading in Presentation Manager Applications ... 579
Introduction ... 579
Types ofThreads ... 580
Designing the Architecture .. 580
Data Communications ... 581
Entry and Exit Points .. 581

Contents - xiii
What Have We So Far? .. 584
User Feedback .. 591
User Feedback Example ... 592
Synchronicity .. 600
Synchronous Threading Example ... 602
Object Windows ... 607
Building a Blind Window ... 608
Design Considerations .. 615

Appendix A-Window Messages ... 617
Dialog Box Messages ... 650
Button Messages ... 651
List Box Messages .. 654
Notebook Messages .. 659
Value Set Messages .. 666
Slider Messages .. 670
Circular Slider Messages .. 673
File Dialog Messages .. 676
Font Dialog Messages ... 677
Menu Messages ... 678
Entryfield Messages .. 686
Spin Button Messages ... 689
Help Manager Messages ... 692
Drag and Drop Messages .. 702
Container Messages .. 707

Appendix B-References .. 727
Index ... 729

Figures

Figure 4.1 File attribute bit flags ... 38
Figure 4.2 File open action flags ... 39
Figure 4.3 Open mode flags .. 40
Figure 4.4 Map of EAOP2 memory buffer ... 49
Figure 5.1 Diagram of a queue ... 70
Figure 5.2 Shared memory map .. 74
Figure 6. 1 System memory map .. 86
Figure 9.1 A window .. 124
Figure 9.2 Drawing of a window's components ... 125
Figure 9.3 Breakdown of a message-parameter variable .. 129
Figure 9.4 Frame creation flags .. 132
Figure 9.5 Window-style flags .. 138
Figure 9.6 Coordinate space .. 147
Figure 11.1 WinSendMsg in a Multi-threaded Application .. 184
Figure 11.2 WinGetMsg message processing order .. 186
Figure 14.1 A pull-down menu ... 217
Figure 14.2 A pop-up menu .. 218
Figure 15.1 A list box control. .. 239
Figure 15.2 Flowchart of owner-drawn selection ... 260
Figure 16.1 Push buttons ... 263
Figure 16.2 Radio buttons ... 264
Figure 16.3 Check boxes ... 264
Figure 17 .1 Entry field .. 275
Figure 21.1 Example of the value set control. .. 365
Figure 22.1 Drawing of a notebook .. 379
Figure 22.2 BKS_BACKPAGESBR I BKS_MAJORTABBOTIOM .. 380
Figure 22.3 BKS_PAGESBR I BKS_MAJORTABRIGHT .. 380
Figure 22.4 BKS_BACKPAGESBL I BKS_MAJORTABBOTIOM .. 381
Figure 22.5 BKS_BACKPAGESBL I BKS_MAJORTABLEFT .. 381
Figure 22.6 BKS_BACKPAGESTR I BKS_MAJORTABTOP .. 382
Figure 22.7 BKS_BACKPAGESTR I BKS_MAJORTABRIGHT ... 382
Figure 22.8 BKS_BACKPAGESTL I BKS_MAJORTABTOP .. 383
Figure 22.9 BKS_BACKPAGESTL I BKS_MAJORTABLEFT .. 383
Figure 24.1 One master spin button with two slave spin buttons458
Figure 25.1 Slider control. .. 471

xv

xvi-The Art of OS/2 Warp Programming

Figure 25.2 Circular slider .. 481
Figure 25.3 Circular slider with CSS_360 style482
Figure 25.4 Circular slider with CSS_CIRCULARV ALUE style ... 483
Figure 26.1 A file dialog box .. 491
Figure 27 .1 Diagram of normal window procedure .. 519
Figure 27.2 Subclassed window procedure calling chain .. 520
Figure 28.1 A view of the print subsystem ... 532

Preface

Notes From the Edge
OS/2 has.come a long way since you last read the preface to this book. OS/2 2.1 made it to the public and
it won accolades from the industry. OS/2 2.11 and OS/2 for Windows were subsequently released and
were likewise praised by the industry pundits. Ironically, OS/2 was still the subject of criticism from the
omnipresent cynics who sought to deride and belittle the operating system. However, when OS/2 Warp
was released in the summer of 1994 and then won - for the third consecutive year - the "Product of the
Year" award from Infoworld as well as many other awards, no one could deny it: the product that was
"doomed to die" was here to stay after all.

It's been a long two years since The Art of OS/2 2.1 C Programming was released, but we've finally made
it. The 1st edition, you said, was good. You liked the approach we took, analyzing the individual window
classes instead of taking a task-oriented view of PM programming. You liked the "Gotchas" that indicated
many of the things to watch out for when doing OS/2 development. However, there were also things you
didn't like.

So, as OS/2 underwent its many mutations, so have we.

What We Have Done
With this edition, you'll find all of the things that you said needed improving upon in the 1st edition.
We've added 10 new chapters (50% more) to account for not only the essential areas we missed last time,
but also the areas that "would have been nice to have." We've added more detail in the chapters that
already existed as well as added more samples to them. We've added new sections to the existing chapters
to allow the OS/2 developer to stay current with the new features of Warp.

What We Expect of You
As with the last edition, we make some assumptions about your abilities. We assume that you have a good
working knowledge of the C language. We do not assume that you have any prior development experience
with a multitasking operating system, nor with a graphical user interface environment.

What You Will Need
You will need the following software to compile the samples presented in the book:

OS/2 Warp
The Warp Programmer's Toolkit, or a compatible substitute
IBM C-Set++ (any version)

xvii

xviii-The Art ofOS/2 Warp Programming

You may substitute any compiler for IBM C-Set++, but you should have a good knowledge of the compiler
so that you can migrate the makefiles from IBM C-Set++. See Chapter 1 for a table of the more commonly
used compiler switches and their meanings.

Contacting the Authors
The authors look forward to your comments on this book, whether compliments, suggestions, or criticisms.
Arthur and Kathleen Panov can be contacted by sending email to 71033,1721 (Compuserve) or
71033.1721@compuserve.com (Internet). Larry Salomon Jr. can be contacted by sending email to
os2man@panix.com (Internet). All three authors follow the Internet newsgroup
comp.os.os2.programmer.misc and Arthur and Kathleen also follow the OS/2 forums on Compuserve.

Finally
We have. worked hard to make sure that this book remains the book recommended by most people for
doing OS/2 development. While we were not able to implement everything that you asked for in this
edition of the book, we certainly tried. Enjoy.

Acknowledgments

There are many people the authors would like to thank. Special thanks go to James Summers, Phil Doragh,
Sam Detweiler, David Reich (author of Designing OS/2 Applications), Tom Ingram, Bret and Brian
Curran, Alan Warren, Jerry Cuomo, John Ponzo, Peter Haggar, Tanja Lindstrom, Marc Fiammante, and
Mark Benge.

Lastly, we would like to thank Terri Hudson, Katherine Schowalter, and Maureen Drexel at John Wiley
and Sons for making this book possible.

xix

The Art of OS/2 Warp Programming

Chapter 1

Tools

All the examples in this book were compiled using the IBM C Set/2++ compiler and the IBM OS/2
Toolkit. There are other OS/2 compilers available including Watcom, Zortech, and the Borland C++
compiler. The include files and libraries necessary to access the system calls-memory management,
multitasking, Presentation Manager, and so on-are found in the Developer's Toolkit. Although you can
write a fully functional OS/2 program using only an OS/2 C compiler, you probably want to get the toolkit
for any serious development work. Without it, you will need to delve into the minds of the OS/2
developers to find function prototypes, structure definitions, and the like. Suffice it to say, however, that
doing so without the toolkit is an order of magnitude more difficult.

Dialog Box Editor
The dialog box editor, DLGEDIT, is a very nice program to facilitate the creation of dialog boxes. The
interface consists of a screen painter that lets you visually design the dialog boxes for your own
applications. The editor will create a resource file (.RC), dialog file (.DLG), and a header file (.H). The
dialog box editor is shipped with the Developer's Toolkit for OS/2 Warp.

Resource Compiler
The resource compiler, RC, is a compiler that takes your application-defined resources-dialogs, menus,
messages-and compiles them to a .RES file. This file can then be bound to your executable so that when.
the resources are needed, they are pulled into your program. The resource compiler is shipped with the
Developer's Toolkit for OS/2 Warp and with the operating system.

NMAKE
NMAKE is a newer version of the MAKE utility provided with most compilers. It is a program that sorts
through all the tasks that need to be done to build an OS/2 executable and dispatches those tasks that
should be done when a specific module has been changed. There are many different ways to build
makefiles (.MAK). The IBM Workframe/2 environment will automate this process for you. However, the
examples in this book contain .MAK files that were built by hand.

IPFC
The program IPFC is the Information Presentation Facility Compiler. This will take a text-based file and
create a .HLP or .INF file that can be used either with the help facility in Presentation Manager or using
VIEW.EXE, which is shipped with OS/2 Warp. This program has been greatly expanded to give the
programmer and the technical writer a lot of power over the online information displays.

1

2 - The Art of OS/2 Warp Programming

Libraries
The OS/2 Warp Developers Toolkit comes with two libraries, OS2286.LIB and OS2386.LIB. OS2386
contains the system call resolutions for all 32-bit entry points. OS2286 contains the 16-bit ones. You will
need to explicitly link one of these in with your OS/2 Warp applications.

Header (or INCLUDE) Files
The Developer's Toolkit for OS/2 contains many different header files, but only one, OS2.H, should be
included in your program. However, you must use the #define INCL_xxx statements in order to include
the function definitions, structures, data types, and the like necessary for your program. INCL_ WIN will
include all the necessary information for the Win ... functions; INCL_DOS includes all the information for
the Dos ... functions; and INCL_GPI includes all the information for the Gpi ... functions. These INCL_
statements can be broken down even further.

It is a very good idea for you to go snooping through the header files. They contain a lot of information,
and also, in many cases the online and hard-copy documentation is just flat-out wrong. The header files
are the final authority. One caveat here: The header files are not always complete. They will be adequate
for development purposes 99 percent of the time; the other one percent of the time you will tear your hair
out trying to find your mistake. Table 1.1 is a road map to the various header files.

OS2DEF.H
PM*.H
BSE*.H
SOM*.H
WP*.H
REXX*.H

Includes the most common constants, data types, and structures.
Includes the necessary information for the Presentation Manager functions.
Includes the necessary information for the base (Dos ...) functions.
Includes the System Object Model functions and information.
Includes all the information for the Workplace Object functions.
Includes the RE.XX information and functions.

The Compiler Switches Used in This Book
All examples in this book include their own .MAK files. The compiler and linker switches for the IBM C
Set/2++ compiler you may see are defined in Table 1.2 and Table 1.3. Check your compiler
documentation for a full discussion of the compiler switches and the equivalents if you are not using the
IBM C Set/2++ compiler.

Core+
Gd
Ge+
Gm
Gm+
Kb+

Ms-
0-
Re
S2
Sa
Spn
Ss+
W3

/MAP
IA:n
/PM:VIO

Compile only, no linking
Static linking
Build an .EXE file
Single-threaded
Multi threaded
Basic diagnostic messages
(check for function prototypes)
Use system linkage
No optimization
Subsystem development enabled
SAA Level 2
ANSIC
Structure packing along n byte boundaries
Allow use of II comments
Warning level

Generate MAP file
Align along n byte boundaries
Window-compatible application

No
Yes
Yes
Yes
No
No

No
Yes
Yes
No
No
4 byte boundaries
No
Yes

Tools-3

Chapter 2

Memory Management

In OS/2 1.3, the memory management scheme was designed to support the Intel segmented architecture.
The 80286 could provide access to memory in segments that were limited in size to 64K. At times more
than 64K was necessary. In those cases, the developer would have to create elaborate memory
management schemes. This changed in OS/2 2.0. The amount of memory that developers can access is
only limited by three items:

• The physical amount of RAM in the system
• The amount of disk space available on the drive pointed to by the SW APP ATH variable in config.sys
• The absolute limit of 512 MB

By dropping support for the 80286 and supporting only processors capable of supporting a 32-bit engine,
OS/2 could have the flat, paged memory architecture of other non Intel-based chips. Both the Motorola
680x0 chips (base of the Apple Macintosh and other machines) and the RISC-base chips (base for IBM's
RS-6000) use the flat, paged architecture. You can probably see where this is leading. Designing a
memory model that is portable is the first step in designing a portable operating system. A 32-bit
operating system will allow addresses of up to OxFFFFFFFF, or 4GB. This also gives programmers the
opportunity to allocate memory objects that are as large as the system memory allows.

OS/2 1.x used the 16-bit addressing scheme of the 80286. A location in memory was represented as a
16: 16 pointer, in selector-offset fashion. The upper portion of the selector maps into a descriptor table. The
entry in the descriptor table maps the absolute location of the memory address.

Thirty-two-bit OS/2 has only three segments that combine to make 4GB total. This means that memory
addresses are represented as a 0:32 pointer. All memory resides in these three segments. A normal
program will run in the segment that starts at address 0 and covers 480Mb. Protected dynamic link
libraries (DLLs) see the same 480Mb region plus 32Mb above it. This 512Mb addressability limitation is
due to compatibility with 16-bit OS/2 programs. The kernel functions see the full 4GB region. This is
where the big performance boost comes in. Because all memory is in these three segments, when the
operating system has to switch memory objects, the segment registers do not always have to be loaded. A
flat memory management scheme has one more advantage: All pointers are near pointers, since all memory
can be addressed using a 0:32 pointer. This means no more "FAR" jumps for the operating system. This
also means memory models -small, medium, large, and huge-are now obsolete.

The basis of the 32-bit OS/2 memory management functions is DosAllocMem. This function allocates
memory in 4,096-byte chunks called pages; however, a developer can allocate several contiguous pages in
one call. While this means that you can allocate any amount of memory up to the process limit, it also

5

6 - The Art of OS/2 Warp Programming
means that you can waste a considerable amount of memory if you're not careful. Consider the following
code fragment:

for (i=O; i < 1000; i++)
DosAllocMem(&p[i],

1,
PAG_READ I PAG_WRITE I PAG_COMMIT);

The first parameter is a PPVOID, the second parameter is the number of bytes allocated, and the last
parameter is the memory flags. We'll see this again soon.

What you see in the code fragment is 1,000 1-byte blocks being allocated. What you don't see is the 1,000
4,095-byte blocks that are not being used because DosAllocMem allocates memory as an integral number
of pages.

Committing Memory

OS/2 2.0 also introduced the concept of committing memory. A call to DosAllocMem
will reserve an address range for the memory; however, physical memory is actually
assigned to the range only if the PAG_COMMIT flag is specified. (A side note here: In
32-bit OS/2, a page is only assigned to an address really when the page is touched.) If
you try to access uncommitted memory, otherwise known as sparse memory objects,
TRAP-BOOM! If you choose to allocate memory without committing it, you have two
ways of having it committed later-DosSetMem or DosSubSetMem. Also, in 32-bit

OS/2, memory is guaranteed to be initialized to 0. This prevents the application from having to initialize
the memory, thereby touching all the memory, thereby committing all the memory.

The following is a very simple program to allocate memory and to show a little about what happens to bad
programs. Remember that we are seasoned professionals. Do not attempt this at home. Well, you may
want to attempt it at home, but if you attempt this at work consistently, it may get you fired.

BADMEM.C
#define INCL_DOSMEMMGR
#include <os2.h>
#include <stdio.h>
#include <stdlib.h>
INT main(VOID)

PBYTE pbBuffer;
APIRET arReturn;
USHORT us Index;

arReturn DosAllocMem((PPVOID)&pbBuffer,

if (arReturn == 0)
{

3000,
PAG_READIPAG_WRITEIPAG_COMMIT);

for (usindex = O; usindex < 4097; usindex++)
{

printf("\nNow Writing to %p (index= %d) "
&pbBuffer[usindex],
usindex);

Memory Management - 7
pbBuffer[usindex] 1;

return O;

BADMEM.MAK
BADMEM.EXE:

BADMEM
BADMEM
BADMEM
082386
BADMEM
<<

LINK386 @«

/* endfor
!* endif

BADMEM.OBJ

*/
*!

BADMEM.OBJ: BADMEM.C
ICC -c+ -Kb+ -Ss+ BADMEM.C

BADMEM.DEF
NAME BADMEM WINDOWCOMPAT
DESCRIPTION 'Memory example

Copyright (c) 1992-1995 by Kathleen Panov.
All rights reserved. '

Now, you may look at this code and say, "But, you're allocating only 3,000 bytes, and you're writing to
4,098." Okay, this is bad code; however, it illustrates that no matter how much you specify as bytes
allocated, the operating system will return it to you in 4,096-byte pages, and you could use them all and
never see a protection violation. You'd just end up stomping all over some data that you may need.
However, notice that when you try to write to byte 4097, TRAP! This too can happen to you, so be very
careful about writing to unallocated, uncommitted memory.

The flags used as the page attributes in the preceding example were PAG_READ I PAG_ WRITE I
PAG_COMMIT. Table 2.1 lists the possible page attributes.

PAG_READ

PAG_WRITE
PAG_EXECUTE

PAG_GUARD

Read access is the only access allowed. A write to the memory location will
generate a trap.
Read, write, and execute access is allowed.
Execute and read access to the memory is allowed. This flag will also provide
compatibility for future versions of the operating system.
Sets a guard page after the allocated memory object. If any attempt is made to
write to that guard page, a guard page fault exception is raised, and the application
is given a chance to allocate more memory as needed. (See Chapter 6-
Exception Handling)

8 - The Art of OS/2 Warp Programming

OBJ_TILE All memory objects are put into the tiled, or compatibility, region in OS/2 2.x.
All objects are aligned on 64K boundaries. Provides upward compatibility when
applications will be allowed by future versions of the operating system to access
regions above the 512 MB "16-bit compatibility" barrier.

Often the example programs and manuals will reference the default page attribute, fALLOC; this is a
#define for OBJ_TILE I PAG_COMMIT I PAG_EXECUTE I PAG_READ I PAG_WRITE.

Suballocating Memory
DosSubSetMem and DosSubAllocMem provide a more efficient way for developers to access chunks of
memory smaller than 4,096 bytes. An application can use DosAllocMem to allocate some number of bytes,
called a memory object. DosSubSetMem is used to initialize or grow a heap within the memory object.
This function has three parameters, PVOID offset, ULONGflags, and ULONG size. The flags parameter is
used to provide more details about the heap. The following options are available for this parameter:

• DOSSUB_INIT - You must specify this option when first suballocating a memory object. If this bit
is not set, the operating system will try to find shared memory from another process. If no shared
memory is found, the return code ERROR_INV ALID_PARAMETER (87) will result.

• DOSSUB_GROW - This option will grow the memory pool to the size specified by the last
parameter. Note that this flag will increase just the amount of memory in the memory pool that will be
suballocated. It will not increase the size of the memory pool itself.

• DOSSUB_SPARSE_OBJ - This option allows the operating system to commit and decommit pages
as they are needed. Note that all pages in the memory object must be uncommitted.

• DOSSUB_SERIALIZE - Serializes the suballocation of shared memory by multiple processes. If
you have two processes sharing memory and suballocating it, use this to make your life easier.

DosSubSetMem has access to all memory in the memory object. The application then calls
DosSubAllocMem to allocate a smaller chunk of the heap. DosSubAllocMem can allocate all but 64 bytes
of the heap. The 64 bytes is called a memory pool header. The operating system uses it to manage the
suballocated portion. DosSubAllocMem has three parameters, PVOID Offset, PPVOID SmallBlock, and
ULONG Size. The amount actually allocated is a multiple of 8 bytes, rounded up if not a multiple of 8.

The following program shows you how to handle suballocation of memory:

SUBMEM.C
#define INCL_DOSMEMMGR
#include <os2.h>
#include <stdio.h>
#include <stdlib.h>
INT main(VOID)

PBYTE
PBYTE
PBYTE
PBYTE
PBYTE
APIRET

pbHeap;
pbPtrl;
pbPtr2;
pbPtr3;
pbPtr4;
arReturn;

arReturn DosAllocMem((PPVOID)&pbHeap,
4096,
PAG_READIPAG_WRITE);

printf ("\nDosAllocMem (l returns %d" ,
arReturn);

arReturn = DosSubSetMem((PVOID)pbHeap,
DOSSUB_SPARSE_OBJIDOSSUB_INIT,
4096);

printf ("\nDosSubSetMem () returns %d",
arReturn);

arReturn = DosSubAllocMem(pbHeap,
(PPVOID) &pbPtrl,
20);

printf("\nDosSubAlloc () returns %ld "
"pbPtrl size requested= 20",

arReturn);

arReturn = DosSubAllocMem(pbHeap,
(PVOID)&pbPtr2,
15);

printf ("\nDosSubAlloc () returns %ld "
"pbPtr2 size requested = 15",

arReturn);

arReturn = DosSubAllocMem(pbHeap,
(PVOID)&pbPtr3,
45);

printf ("\nDosSubAlloc () returns %ld "
"pbPtr3 size requested= 45",

arReturn);

arReturn = DosSubAllocMem(pbHeap,
(PVOID)&pbPtr4,
Bl;

printf ("\nDosSubAlloc () returns %ld "
"pbPtr4 size requested= 8",

arReturn);

printf("\n\nHeader size
pbPtrl-pbHeap);

printf("\nSize of pbPtrl
pbPtr2-pbPtrl);

printf("\nSize of pbPtr2
pbPtr3-pbPtr2);

printf("\nSize of pbPtr3
pbPtr4-pbPtr3);

printf("\nSize of pbPtr4

DosSubFreeMem(pbHeap,
pbPtrl,
20);

DosSubFreeMem(pbHeap,
pbPtr2,
15);

DosSubFreeMem(pbHeap,
pbPtr3,
45);

DosSubFreeMem(pbHeap,
pbPtr4,
8);

= %dn,

ptr %d",

ptr %d",

ptr %d",

undeterminable");

Memory Management - 9

10 - The Art of OS/2 Warp Programming
arReturn = DosFreeMem(pbHeap);

printf ("\nDosFreeMem () returns %d",
arReturn);

return O;

SUBMEM.MAK
SUBMEM.EXE: SUBMEM.OBJ

LINK386 @<<
SUBMEM
SUBMEM
SUBMEM
082386
SUBMEM
<<

SUBMEM.OBJ: SUBMEM.C
ICC -c+ -Kb+ -Ss+ SUBMEM.C

SUBMEM.DEF
NAME SUBMEM WINDOWCOMPAT
DESCRIPTION 'Memory suballocation example

Copyright (c) 1992-1995 by Kathleen Panov.
All rights reserved.'

You'll notice when you run this program that all your pointer sizes are rounded up in increments of 8 and
that DosSubAllocMem starts allocating at the 65th byte of the memory object.

Shared Memory
Shared memory is the fastest method of interprocess communication. There are two types of shared
memory, named and unnamed. Shared memory is created by a call to DosAllocSharedMem. If creating
shared memory, the second parameter to DosAllocSharedMem is the name for the memory, in the form of
\SHAREMEM\MemName. If using unnamed memory, a NULL is specified. There is one other difference
between shared and unnamed memory-the process that allocates an unnamed memory object must declare
it as giveable by using DosGiveSharedMem, and the process accessing the memory object must call
DosGetSharedMem. Shared memory can be committed and decommitted just like private memory. Also,
when suballocating memory from a shared memory pool, both DosSubSetMem must use the same size
parameter in both processes, or an error will result.

Gotcha!

All the processes involved with the shared memory (both the getting and giving) must
free the shared memory before it is available for reuse. If only one process frees the
memory, you may begin to notice an increase in your program's memory consumption
over time. The system maintains a usage count of shared memory that enables it to
keep track of all the processes that have access to the shared memory. The IBM

products THESEUS2 and SPM/2 are the only tools available to detect memory leakage. They are two
excellent tools to monitor the system performance.

Memory Management - 11

The following programs are examples of allocating a named shared memory object. Notice that the
memory is being allocated in a downward fashion; private memory is allocated upward from the bottom of
the available space.

BATMAN.C
#define INCL_DOSMEMMGR
#include <os2.h>
#include <stdio.h>
#include "dynduo.h"
INT main(VOID)

PBYTE
APIRET

pchShare;
arReturn;

arReturn DosGetNamedSharedMem((PPVOID)&pchShare,
SHAREMEM_NAME,
PAG_READIPAG_WRITE);

if (arReturn == 0)
{

printf("\nString read is: \"%s\"\n",
pchShare);

DosFreeMem(pchShare);
return O;

BATMAN.DEF
NAME BATMAN WINDOWCOMPAT

/* endif

DESCRIPTION 'Shared memory example
Copyright (c) 1992-1995 by Kathleen Panov.
All rights reserved.'

STACKSIZE 16384

ROBIN.C
#define INCL_DOSMEMMGR
#include <os2.h>
#include <stdio.h>
#include <string.h>
#include <conio.h>
#include "dynduo.h"
INT main(VOID)

PC HAR
APIRET

pchShare;
arReturn;

arReturn DosAllocSharedMem((PVOID)&pchShare,
SHAREMEM_NAME,

if (arReturn == 0)
{

strcpy(pchShare,

1024,
PAG_READIPAG_WRITEjPAG_COMMIT);

"Holy Toledo, Batman");
getchar();
DosFreeMem(pchShare);

*/

12 - The Art of OS/2 Warp Programming
getchar();
DosFreeMem(pchShare);

return O;

ROBIN.DEF
NAME ROBIN WINDOWCOMPAT

/* endif

DESCRIPTION 'Shared memory example
Copyright (c) 1992-1995 by Kathleen Panov.
All rights reserved. '

STACKSIZE 16384

DYNDUO.H
#define SHAREMEM_NAME

DYNDUO.MAK
ALL:

BATMAN.EXE:

BATMAN
BATMAN
BATMAN
082386
BATMAN
<<

LINK386 @<<

BATMAN.OBJ:

"\\SHAREMEM\\BATMAN"

BATMAN.EXE
ROBIN.EXE

BATMAN.OBJ

BATMAN.C \
DYNDUO.H

ICC -C+ -Kb+ -Ss+ BATMAN.C

ROBIN.EXE:

ROBIN
ROBIN
ROBIN
082386
ROBIN
<<

LINK386 @<<
ROBIN.OBJ

ROBIN.OBJ: ROBIN.C \
DYNDUO.H

ICC -c+ -Kb+ -Ss+ ROBIN.C

DosAllocMem or malloc?

*/

DosAllocMem, DosSubSetMem, and DosSubAllocMem might seem like a bit of overkill if you would like
to have only 20 bytes for a string every now and then. And they are. These functions are most useful for
large programs that allocate large quantities of memory at one time, allocate shared memory, or have
special memory needs. For most smaller applications, malloc from an ANSI C compiler will be just fine.
Also, you probably will find that malloc is much more portable to other versions of OS/2 running on top of
the Power PC. The C Set++ version of malloc is the only compiler version of malloc that will be compared
to DosAllocMem and company. In most cases malloc will provide memory to the program just as fast as
DosAllocMem. The C Set++ compiler uses a special algorithm, designed to provide the expected amount of
memory in the fastest time. The following program uses malloc to allocate memory and then displays the

Memory Management - 13

displays the amount of memory allocated plus the location of the pointer in memory. You probably will
start to notice a pattern emerging, and there is one.

SPEED.C
#define INCL_DOSMEMMGR
#define INCL_DOSMISC
#include <os2.h>
#include <stdio.h>
#include <stdlib.h>
INT main(VOID)

PBYTE
US HORT

for (usindex
{

apbBuf[1500];
us Index;

O; usindex < 1500; usindex++)

apbBuf[usindex] = malloc(usindex);

if (usindex > 0)
{

printf("\napbBuf [%d] = %p delta= %ld",
us Index,
apbBuf[usindex],
(PBYTE)apbBuf[usindex]-(PBYTE)apbBuf[usindex-1]);

/* endif */
if (((usindex%25) == 0) && (usindex != 0))
{

printf("\nPress ENTER to continue ... ");
fflush(stdout);
getchar();

/* endif
/* endfor

for (usindex = O; usindex < 1500; usindex++)
{

free(apbBuf[usindex]);
/* endfor

return O;

SPEED.MAK
SPEED.EXE: SPEED.OBJ

SPEED
SPEED
SPEED
OS2386
SPEED
<<

LINK386 @<<

SPEED.OBJ: SPEED.C
ICC -c+ -Kb+ -Ss+ SPEED.C

SPEED.DEF
NAME SPEED WINDOWCOMPAT

DESCRIPTION 'malloc() example
Copyright (c) 1992-1995 by Kathleen Panov.
All rights reserved.'

STACKSIZE 16384

*/
*/

*/

14 - The Art of OS/2 Warp Programming

By looking at the program's otput, you'll notice that memory allocation starts by using 32 for values
between 1and16. It uses 64 for values between 17 and 32, 128, 256, and finally 512. You may notice a
few "bumps" in the algorithm. They occur when the C runtime is using some of the memory for its own
purposes.

Chapter 3

Multitasking

The session and task management facilities in OS/2 give the programmer an exceptional opportunity to
fully exploit the multitasking features in the operating system. Threads or processes can provide
applications with a tremendous performance boost. OS/2 provides a special brand of multitasking,
preemptive multitasking, which is different from the multitasking found in either Windows or the
Macintosh System 7. Preemptive multitasking is controlled by the operating system. Each process is
interrupted when its time to run is over, and the process will never realize it has been interrupted the next
time it is running. In other words, OS/2 lets your computer walk and chew gum at the same time. With
either the Mac or Windows, your computer takes a step, chews the gum, takes a step, chews the gum, and
soon.

The task management of OS/2 is divided into three separate entities:

• Threads
• Processes
• Sessions

A thread is the only unit to get its own time slice of the CPU. All threads belonging to a process are
contained within that process, and each thread has its own stack and registers. There is a systemwide limit
of 4,096 threads; however, CONFIG.SYS contains a THREADS parameter that is usually set at a
significantly smaller number-256 is the default. The base operating system uses approximately 40
threads, so most applications are limited to 216 threads unless the THREADS parameter is changed.
Typically, a thread should have one distinct function; for example, file I/O, asynch communications, or
heavy number crunching. Each thread has a thread identifier-a TID. Each thread also has a priority. The
higher the priority, the more CPU time slices are given to the thread. A thread is much quicker to create
than a process or session and has less system overhead. All threads within a process run in the same virtual
address space; therefore, global resources, such as file handles, and global variables are accessible from all
threads in the process. Threads are created using DosCreateThread, with the first thread created
automatically by the operating system. When a thread is created it is assigned the same priority class as the
thread that created it.

A process is a collection of threads and resources that are owned by those threads. Each process occupies a
unique address space in memory that cannot be accessed by other processes in the system. Two processes
can access the same area in memory only by using shared memory. A process also contains file handles,
semaphores, and other resources. All processes contain at least one thread, the main thread. A process also
contains a unique identifier-a PID. A process contains its own set of memory pages that can be swapped
in and out as the kernel switches from one process to the other. A process can create other processes;

15

16 - The Art of OS/2 Warp Programming
however, these must be of the same session type. For instance, a full-screen process can only create other
full-screen processes. The five types of processes are OS/2 Full Screen, OS/2 windowed, DOS Full Screen,
DOS windowed, and Presentation Manager.

A session is similar to a process except a session also contains ownership of the mouse, keyboard, and
video. A session can contain either one process or multiple processes. The task list (accessed by Ctrl-Esc)
contains a list of all running sessions. When a process or session creates a new session using
DosStartSession, the keyboard, screen, and mouse are responsive only to the session in the foreground.
The session chosen as the background can gain control of the three resources only by switching to the
foreground.

The Scheduler

The OS/2 Scheduler runs on a round-robin type Of disbursement of CPU time. The
Scheduler deals only with threads, not processes or sessions. Threads have four different
priority levels: time-critical, server class or fixed high, regular, and idle time. The first
threads to run are the time-critical threads. All time-critical threads will run until there are
no more time-critical threads waiting to be run. After all time-critical threads ~e finished,
the server-class threads are run. After server-class, the regular class of threads are run.

After the regular class of threads are run, idle-time threads are run. Within each class of priorities are 32
sublevels. A thread that is not running is called a "blocked" thread.

The OS/2 Scheduler does a lot of monkeying around with thread priorities. Threads are given "boosts" by
the scheduler to make OS/2's multitasking smarter. Three types of artificial priority boosts are given to
threads:

• Foreground boost
• I/O boost
• Starvation boost

The foreground boost is given to the user interface thread of the process that is in the foreground. This is
usually the main thread. The foreground process is the process with which the user is currently
interacting. This makes the system respond quickly when the user clicks a mouse button or types in
characters at a keyboard. This boost is a full boost in priority. Also, a Presentation Manager thread has a
boost applied to it while it is processing a message.

We'll take this opportunity to get up on our soapbox. Do not throw away all the work the operating system
does to provide the end user with a crisp response time. Any operation that takes any amount of time
should be in its own thread. A well-written, multithreaded program running on a 20 MHz 386SX will be
blazingly fast to an end user used to a single-threaded program running on a 486 DX2. Well, maybe that's
a little bit of an exaggeration, but you get the idea. Any time you see an hourglass on the screen for more
than a second or two, and the user cannot size a window or select a menu item, that program should be put
through a serious design review. Okay, off the soapbox,' and on to our regularly scheduled programming.

An I/O boost is given after an I/O operation is completed. An I/O boost does not change a thread's priority
but will bump it up to level 31 (the highest level) within its own priority class.

Multitasking - 17
A starvation boost is given to a thread in the regular class that has not been able to run. The MAXW AIT
parameter in CONFIG.SYS is used to define how long, in seconds, a thread must not run before it is given
a starvation boost. The default value is 3 seconds.

The time slices for threads that are given a starvation boost or an I/O boost are different from a normal time
slice. Because of the tinkering the scheduler does with their priorities, they do not get to run as long as a
nonadjusted thread would run. The length of time for the "short" and normal time slices is controlled by
the TIMESLICE parameter in CONFIG.SYS. The first value represents the "short" time slice length; the
default amount of time is set to 32 ms. The second value represents the normal time slice length; the
default amount of time is set to 65536 ms.

A programmer can refine the way the threads in a program are run in four ways:

• DosSetPriority
• DosSuspendThread/DosResumeThread
• DosEnterCritSec I DosExitCritSec
• DosSleep

APIRET APIENTRY DosSetPriority(ULONG scope, ULONG ulClass,
LONG delta, ULONG PorTid)

DosSetPriority has four parameters. The first indicates to what extent the priority is to be changed. The
priority can be changed at the process or thread level. The ulClass parameter indicates at what class to set
the priority. The delta parameter indicates at what level within the class to set the priority. The last
parameter is the process ID of the process to be affected. A value of 0 indicates the current process. Note
that a process can change just the priority of a child process. DosSetPriority can be called anytime in a
thread's lifetime. It is used to adjust the class and/or the priority level within that class. DosSetPriority
should be used to adjust threads whose tasks need special timing considerations. For instance, a thread
handling communications would probably want to run at a server class. A thread that backs up files in the
background should be set at idle-time priority, so that it would run when no other tasks were running. You
can change the priority of threads in another process, but only if they were not changed explicitly from the
regular class.

APIRET DosResumeThread(TID tid)
APIRET DosSuspendThread(TID tid)

The only parameter to each of these functions is the thread ID of the thread. DosResumeThread and
DosSuspendThread are used to change a thread's locked state. DosSuspendThread will cause a thread to be
set to a blocked state. DosResumeThread is used to cause a suspended thread to be put back in the list of
ready-to-run threads.

DosEnterCritSec is used to suspend all other threads in a process. This function should be used when it is
vitally important that the running thread not be interrupted until it is good and ready. DosExitCritSec will
cause all the suspended threads to be put back in a ready-to-run state. A program can nest critical sections
within critical sections. A counter is incremented by DosEnterCritSec calls and decremented by
DosExitCritSec calls. Only when this counter is 0 will the critical section exit. You probably should avoid
nesting critical sections unless you absolutely need this functionality. One final note on critical sections: If
a thread exits while in a critical section, the critical section automatically ends.

18 - The Art of OS/2 Warp Programming
Gotcha!

DosEnterCritSec can be a very dangerous function. If for any reason the single thread
running is put in a blocked state and needs some other thread to cause it to be
unblocked, your program will go out to lunch and will not return. For example,
DosWait ... Sem are major no-nos in a critical section, because the required
DosPost ... Sem calls probably will exist in a thread that will be put in a suspended state.

Also, be very careful calling a function that resides in a .DLL when inside a critical section. The function
may use semaphores to manage resources, and it may be put in a suspended state while waiting for those
resources to be freed.

DosSleep is the most practical function of the group. Using this function you can put a thread in a
suspended state until a specified amount of time has passed. DosSleep has only one argument, the amount
of time to "sleep." This value is specified in milliseconds. A thread cannot suspend other threads using
DosSleep, only itself. When DosSleep is called with an argument of 0, the thread gives up the rest of its
time slice. This does not change the thread's priorities or affect its position in the list of ready-to-run
threads.

The Subtleties of Creating a Thread
DosCreateThread is used to create a thread. The following code illustrates this:

DosCreateThread(&tidThread, /* thread TID */
pfnThreadFunction, /* pointer to fn */
ulThreadParameter, /* parameter passed */
ulThreadState, /* 0 to run, 1 to suspend */
ulStackSize); /* 4096 at a minimum*/

The first parameter contains the address of the threads TID, or Thread ID. The next parameter is a pointer
to the function that the operating system will call when the thread is running. When using
DosCreateThread, a typical function prototype of a thread function looks something like this:

VOID APIENTRY fnThread(ULONG ulThreadArgs);

Notice the APIENTRY keyword. This is used to indicate that this is a function that will be called by the
operating system. The ulThreadParameter is 4 bytes of data, in the form of a ULONG, that are passed as
an argument to the thread function. If you need to pass more than one value, you need to create a structure
that contains all the values you want to pass. The first bytes of the structure should contain the size of the
structure that is being passed. Also, if you use a structure, make sure you pass the address of the structure
as the data. The ulThreadState parameter indicates whether the thread is started in a running state (with a
value of 0) or in a suspended state (with a value of 1). If the thread is started suspended, somebody needs
to call DosResumeThread to get the thread going. The last parameter is the stack size. The thread's stack is
located in memory when the thread is blocked and is loaded into registers when the thread becomes ready
to run. In OS/2 2.0, the programmer no longer needs to mess with allocating and freeing the memory for
the stack. However, the programmer does need to know the maximum amount of memory that the stack
will use. This is the value passed as the last parameter. This memory is not committed until it is absolutely
necessary. The thread stack uses guard pages to commit a new page as necessary. Also, you may notice
that a thread stack grows downward rather than upward as normal memory grows.

Threads and the C Runtime
The C runtime library can cause problems when used within a thread other than the main thread. Because
the C runtime uses many internal variables, multiple threads using the C runtime can cause problems unless

Multitasking - 19
the runtime library is notified of the other threads. C-Set/++ has provided a separate function,
_beginthread, to fix this situation. This function should be used to create threads in which you want to use
the C library. The parameters for _beginthread are very similar to the parameters for DosCreateThread.

_beginthread(pfnThreadFunction,
/* void pointer to thread function */

pNull,
/* This is a NOP parameter, used for migration */

ulStackSize,
/* stack size */

pArgList) ;
/* void pointer to argument list */

The prototype for a thread function changes a little here. The typical thread function prototype looks
something like this:

void fnThread(void *pArgList);

Gotcha!

When using the C Set/++ compiler, make sure you specify the multithreaded option,
Gm+. Also, either let the compiler link in the proper library for you, or make sure you
specify DDE4M*.LIB.

A Thread Example
The following example creates threads with different priorities. Each thread writes its priority to the
screen. In this example, we avoided using _beginthread and printf but instead used DosCreateThread and
DosWrite. This gives us the opportunity to start the threads in a suspended state.

THREAD.C
#define INCL_DOS
#include <os2.h>
#include <stdio.h>
#include <stdlib.h>
#define THREAD_SUSPEND lL
#define STDOUT (HFILE) 1
VOID APIENTRY MyThread(ULONG ulThreadArgs);

INT main(VOID)
{

APIRET
TID
USHORT
UL ONG
{

arReturn;
tidThreadID[S];
us Index;
ulThreadPriorities[J

PRTYC_FOREGROUNDSERVER,PRTYC_TIMECRITICAL,PRTYC_REGULAR,
PRTYC_NOCHANGE,PRTYC_IDLETIME

for (usindex = O; usindex < 5; usindex++)
{

arReturn = DosCreateThread(&tidThreadID[usindex],
MyThread,
ulThreadPriorities[usindex],
THREAD_SUSPEND,
4096);

20 - The Art of OS/2 Warp Programming

arReturn = DosSetPriority(PRTYS_THREAD,
ulThreadPriorities[usindex],
(LONG) 0,
tidThreadID[usindex]);

if (arReturn)
{

printf ("\narReturn = %d",
arReturn);

} /* endif
DosResumeThread(tidThreadID[usindex]);

} /* endfor
DosSleep(2000);
return O;

VOID APIENTRY MyThread(ULONG ulThreadArgs)
{

US HORT
CHAR
UL ONG

us Index;
cChar;
ulBytesWritten;

for (usindex
{

O; usindex < 200; usindex++)

cChar = (CHAR)ulThreadArgs+'O';

DosWrite(STDOUT,
(PVOID)&cChar,

return

THREAD.MAK

1,
&ulBytesWritten);

!* endfor

THREAD.EXE: THREAD.OBJ

THREAD
THREAD
THREAD
OS2386
THREAD
<<

LINK386 @<<

THREAD.OBJ: THREAD.C
ICC -c+ -Gm+ -Kb+ -Ss+ THREAD.C

THREAD.DEF
NAME THREAD WINDOWCOMPAT

DESCRIPTION 'Multithread example
Copyright (c) 1992-1995 by Kathleen Panov.
All rights reserved. '

STACKSIZE 16384

*/

*/

*/

The first part of the program is the actual creation of the threads. We'll create five almost identical threads.
Each thread is started in suspended state by specifying 1 (THREAD_SUSPEND) as ulThreadFlags. The

Multitasking - 21
thread function, MyThread, is assigned to pfnThreadFunction. Since the thread function itself is fairly
small, the minimum stack size of 4,096 is specified.

The one difference between the five threads is their priority. Each thread priority is passed to MyThread in
the ulThread.Args variable. An array, ulThreadPriorities[], holds all the possible thread priority classes.

DosSetPriority is used actually to change the priority of the threads from regular priority to the respective
priority in the ulThreadPriorities[] array. The first parameter, PRTYS_THREAD, specifies that only one
thread, not all the threads in the process, will have its priority affected. The second parameter is the
priority class to use. The third parameter is the delta of the priority level. Within each class are 32 levels
that can be used to refine a thread's priority even further. Threads at level 31 of a class will execute before
threads at level 0 of the same class. This parameter specifies the change to make to the current level, not
the absolute level value itself Values are from -31 to +31. A value of 0 indicates no change, and this is
what we use in this example. The last parameter, tidThread/D[], is the thread ID of the thread whose
priority is to be changed.

Once the thread is created and its priority has been changed, DosResumeThread is called to wake the thread
up and have it begin running.

These steps are repeated for all five threads in a FOR loop. DosSleep is used to delay the main thread from
ending for 2 seconds. This gives all the threads a chance to complete.

The Thread Output
Each thread will print out its priority 200 times. Although this example is an elementary program, it will
give you some insight into how threads are scheduled. The screen output you see should show
the "3" thread (PRTYC_ TIMECRITICAL) running first, followed by the "4" thread
(PRTYC_FOREGROUNDSERVER). The "2" thread (PRTYC_REGULAR) and the "O" thread
(PRTYC_NOCHANGE) actually are running at the same priority and should appear somewhat
intermingled. A 0 in the priority class means no change from the existing class. The "l" thread
(PRTYC_IDLETIME) should always run after the other priority threads.

Executing a Program
The function DosExecPgm is used to execute a child process from within a parent process. A child process
is a very special kind of process. Normally all resources are private to each process; however, because of
the parent/child relationship, a child can inherit some of the resources owned by the parent. Most handles
can be inherited; however, memory cannot, unless it is shared memory. This protects one process (even if
it is a child process) from destroying another process.

The following examples uses DosExecPgm to create a new command process session. The command
process executes a "dir *. *".

PROG.C
#define INCL_DOSPROCESS
#include <os2.h>
#include <stdio.h>
#define BUFFER_SIZE 200
INT main(VOID)

22 - The Art of OS/2 Warp Programming
APIRET
CHAR
RESULTCODES

arReturn;
achFail[BUFFER_SIZE];
rcResult;

arReturn = DosExecPgm(achFail,
BUFFER_SIZE,
EXEC_ASYNC,
"CMD.EXE\0 IC dir * * \0",
(PSZ)NULL,

if (arReturn)
{

&rcResult,
"CMD. EXE");

printf ("\narReturn = %d",
arReturn);

printf("\nrcResult = %ld",
rcResult.codeResult);

return O;

PROG.MAK

/* endif

PROG.EXE: PROG.OBJ

PROG
PROG
PROG
OS2386
PROG
<<

LINK386 @<<

PROG.OBJ: PROG.C
ICC -C+ -Kb+ -Ss+ PROG.C

PROG.DEF
NAME PROG WINDOWCOMPAT

DESCRIPTION 'DosExecPgm example
Copyright (c) 1992-1995 by Kathleen Panov.
All rights reserved. '

STACKSIZE 16384

*/

The first parameter of DosExecPgm is a buffer that is used to store information if the application being
started fails. The size of the buffer is the next parameter.

The third parameter indicates how you want to the child process to run. A child process can run
simultaneously with the parent process (EXEC_ASYNC), or the parent can wait to run until the child has
finished (EXEC_SYNC). There are other options, but these are the two most commonly used.

Multitasking - 23
Gotcha!

The parameter string conforms to regular C parameter conventions, where argv[O] is
the name of the executing program. After the program name, you must insert one null
character. Following the null is the regular string of program arguments. These
arguments must be terminated by two null characters. This is accomplished easily by
manually inserting one null at the end of the argument string and letting the normal C

string null termination insert the other.

The argument string for this example is:

"CMD.EXE\0 IC dir *.*\0";

CMD.EXE will execute a new command processor session. The "\O" is the first null character. The
argument string "/C dir *. * \O" indicates the session will be closed when it finishes executing the dir *. *
command. The "\O" at the end is the first of the last two nulls. The second null is inserted automatically at
the end of the string.

The fifth parameter is the environment string to pass to the new program. This is formatted:

variable = text \0 variable = text \0\0

Each environment variable you want to set must be ended with a null character. The end of the string must
be terminated with two null characters. A null value in the environment string variable indicates that the
child process will inherit its parent's environment.

The next parameter is a RESUL TCODES structure. This structure contains two values, a termination code
and a result code. The operating system provides a termination code to indicate whether the program
ended normally or whether some error, for example, a trap, ended the program abruptly. The result code is
what is returned by the program itself, either through DosExitProcess or through return.

The last parameter is the actual name of the program to be executed. A fully qualified pathname is
necessary only if the executable file is not found in the current directory or in any of the directories
specified in the path.

There are several ways to tell whether a child process has terminated, but the easiest by far is DosCwait.
This function either will wait indefinitely until a child process has ended, or will return immediately with
an error, ERROR_CHILD_NOT_COMPLETE.

Sessions
A session is a process with its own input/output devices (i.e., Presentation Manager/non-Presentation
Manager output, keyboard, and mouse). There are several different types of sessions:

• OS/2 window
• OS/2 full screen
• DOS window
• DOS full screen
• Presentation Manager (PM)

24 - The Art of OS/2 Warp Programming
All are started the same way, using DosStartSession.

Gotcha!

There is a little bit of a trick to determine whether to use DosExecPgm or
DosStartSession. The difference lies in whether the newly created process is going to
perform any input or output. Table 3.1 outlines the guidelines. If you need to
determine the type of an application (or .DLL), DosQueryAppType can be used.

PM PM DosExecPgm or DosStartSession
Non-PM PM DosStartSession
PM Non-PM yes DosStartSession
PM Non-PM no DosExecPgm or DosStartSession

The following example program starts a seamless Windows session using DosStartSession.

STARTWIN.C
#define INCL_DOS
#define INCL_WINPROGRAMLIST
#include <os2.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
INT main(VOID)

START DATA
PID
ULONG
APIRET

sd;
procID;
sessID;
re;

/* initialize everything to 0

procID = O;
sessID = O;
memset(&sd,

0,
sizeof(STARTDATA));

/* for Warp or OS/2 for Windows, start real Windows

sd. PgrnName = "c: \\WIN\\ WIN. COM" ;

/* insert path to some Windows program here

sd.Pgrninputs = "C: \\WIN\ \WEP\ \GOLF .EXE";
sd.SessionType = PROG_3l_STDSEAMLESSCOMMON;
sd.Length = sizeof(STARTDATA);

/* in this case start as independent

sd.Related = SSF_RELATED_INDEPENDENT;
sd.FgBg = SSF_FGBG_FORE;

*/

*/

*I

*/

sd.TraceOpt = SSF_TRACEOPT_NONE;
sd.TermQ = O;
sd.Environment = NULL;
sd.PgmControl = SSF_CONTROL_VISIBLEISSF_CONTROL_SETPOS;
sd.InitXPos = 50;
sd.InitYPos = 50;
sd.InitXSize = 400;
sd.InitYSize = 600;
sd.Reserved = O;
sd.ObjectBuffer = NULL;
sd.ObjectBuffLen = O;

re = DosStartSession(&sd,
&sessID,
&procID);

printf (" \nReturn code re from DosStartSession %d",
re);

fflush(stdout);
return (0);

STARTWIN.MAK
STARTWIN.EXE:

STARTWIN
STAR TWIN
STAR TWIN
082386
STAR TWIN
<<

LINK386 @«
STARTWIN.OBJ

STARTWIN.OBJ: STARTWIN.C
ICC -c+ -Kb+ -Ss+ STARTWIN.C

STARTWIN.DEF
NAME STARTWIN WINDOWCOMPAT

DESCRIPTION 'Simple example to start a seamless Windows session
Copyright (c) 1992-1995 by Kathleen Panov
All rights reserved. '

STACKSIZE 16384

Multitasking - 25

The DosStartSession function itself is actually very small. Most of the preparatory work is done by setting
up the STARTDATA structure. The structure looks like this:

26 - The Art of OS/2 Warp Programming
typedef struct _STARTDATA /* stdata */

{
USHORT
USHORT
US HORT
USHORT
PSZ
PSZ
PBYTE

Length;
Related;
FgBg;
TraceOpt;
PgmTitle;
PgmName;
Pgminputs;

PBYTE TermQ;
PBYTE Environment;
USHORT InheritOpt;
USHORT SessionType;
PSZ IconFile;
ULONG PgmHandle;
USHORT PgmControl;
USHORT InitXPos;
USHORT InitYPos;
USHORT InitXSize;
USHORT InitYSize;
USHORT Reserved;
PSZ ObjectBuffer;
ULONG ObjectBuffLen;
} STARTDATA;

typedef STARTDATA *PSTARTDATA;

Length is the length of the structure in bytes.

Related specifies whether the new session will be a child session (field is TRUE) or an independent session
(field is FALSE).

FgBg defines whether the session is to be started in the foreground (field is FALSE) or in the background
(field is TRUE).

TraceOpt specifies whether there is to be any debugging (tracing) of the new session. TRUE indicates
debug on; FALSE indicates debug off.

PgmTitle is the name that the program is to be called. This is not the name of the executable, only the title
for any windows or task list. If a NULL is used, the executable name is used for the title.

PgmName is the fully qualified pathname of the program to load.

Pgmlnputs is a pointer to a string of program arguments (see page 23 for argument formatting.)

TermQ is a pointer to a string that specifies the name of a system queue that will be notified when the
session terminates.

Environment is a pointer to a string of environment variables (see page 23 for environment variable
formatting.)

InheritOpt indicates whether the new session will inherit open file handles and an environment from the
calling process. TRUE in this field will cause the session to inherit the parent's environment; FALSE will
cause the session to inherit the shell's environment.

SessionType specifies the type of session to start. Possible values are listed in Table 3.2.

Table 3.2 Descrigtionof Session Tyges

SSF_TYPE_DEFAULT
SSF _ TYPE_FULLSCREEN
SSF _TYPE_ WINDOW ABLEVIO
SSF _ TYPE_PM
SSF _TYPE_ VDM
SSF TYPE WINDOWEDVDM

Uses the program's type as the session type
OS/2 full screen
OS/2window
Presentation Manager program
DOS full screen
DOS window

In addition, Table 3.3 lists the values that are also valid for Windows programs.

Multitasking - 27

PROG_31_STDSEAMLESSVDM Windows 3.1 program that will execute in its own windowed
session.

PROG_3l_STDSEAMLESSCOMMON Windows 3.1 program that will execute in a common
windowed session.

PROG_3l_ENHSEAMLESSVDM Windows 3.1 program that will execute in enhanced
compatibility mode in its own windowed session.

PROG_3l_ENHSEAMLESSCOMMON Windows 3.1 program that will execute in enhanced
compatibility mode in a common windowed session.

PROG_3l_ENH Windows 3.1 program that will execute in enhanced
compatibility mode in a full screen session.

PROG_31_STD Windows 3.1 program that will execute in a full screen
session.

IconFile is a pointer to a fully qualified pathname of an .ICO file to associate with the new session.

PgmName is a program handle that is returned from either WinAddProgram or WinQueryProgramHandle.
A 0 can be used if these functions are not used.

PgmControl specifies the initial attributes for either the OS/2 window or DOS window sessions. The
following values can be used:

SSF _CONTROL_ VISIBLE
SSF _CONTROL_INVISIBLE
SSF _CONTROL_MAXIMIZE
SSF _CONTROL_MINIMIZE
SSF _CONTROL_NOAUTOCLOSE
SSF _CONTROL_SETPOS

Except for SSF _CONTROL_NOAUTOCLOSE and SSF _CONTROL_SETPOS, the values are pretty self
explanatory. SSF _CONTROL_NOAUTOCLOSE is used only for the OS/2 windowed sessions and will
keep the sessions open after the program has completed. The SSF _CONTROL_SETPOS value indicates
that the operating system will use the InitXPos, InitYPos, InitXSize, and InitYSize for the size and
placement of the windowed sessions.

28 - The Art of OS/2 Warp Programming
The second parameter to DosStartSession is the address of a ULONG that will contain the session ID after
the function has completed. The last parameter is the address of a PID (process ID) that will contain the
new process's PID after the session has started.

Chapter 4

File 1/0 and Extended Attributes

File 1/0 is one of the most important aspects of any operating system. OS/2 makes the file system
programming very easy to understand and master, yet it still provides the programmer with many flexible
and powerful features. OS/2 has introduced to DOS developers the new concept of Installable File
Systems, which allows various file systems to be installed like device drivers. OS/2 introduces the new
High Performance File System (HPFS), which allows greater throughput and security features for servers,
workstations, and local area network (LAN) administrators. The File Allocation Table (FAT) compatibility
is preserved, so DOS users can manipulate their files without any constraints.

Extended Attributes
The following examples demonstrate some straightforward file manipulation, yet provide the user with
some useful concepts. It is also necessary to introduce the concept of Extended Attributes (EAs), which is
the lesser-known OS/2 file system feature. One of the examples shows a way to gain access to the various
types of EAs. EAs appeared in OS/2 1.2 and have remained there through the 16- to 32-bit migration; they
are nothing more than additional data that is associated with the file. The user does not see this extra data.
It is there only for the use of the application and operating system. The designers had to be creative in
order to implement EA support under FAT due to the fact that DOS, which is the grandfather of FAT,
never had support for EAs. The HPFS does not require the same creativity in implementation, thus the
FAT implementation is the one that deserves a short explanation. The FAT directory entries take up 32
bytes (20 hex) and are represented by Table 4.1.

Table 4.1 FAT Directorv Entries
iillll··:-.1fr
Filename: 00-07
Extension: 08-0A
Attribute: OB
Reserved: OC-15
Time: 16-17
Date: 18-19
FAT cluster : lA-lB
Size: lC-lF

Most DOS files will have the reserved bits OC to 15 set to zero. This is the area that is utilized to attach the
Extended Attributes to the files in OS/2. The EA allocation clusters use the 14h and 15h bytes, and thus
may appear illegal to some DOS applications. In order to avoid DOS compatibility problems, another file
entry is maintained called EA DATA. SF; this file "pretends" to own all of the loose EA clusters on the
hard disk, thus eliminating "lost clusters" messages from chkdsk.exe and similar messages from other disk

29

30 - The Art of OS/2 Warp Programming
managing utilities. Two references to all EA clusters exist: one that is maintained with the 14h- and 15h
byte directory entries, and one that is "assigned" to the EA DATA. SF. This implementation creates a
source of confusion for users who are not familiar with EAs. For example, when using EA unaware backup
utilities or when copying files from an OS/2 partition under DOS, most users do not know what to do with
the EA DATA. SF file. Users must realize that the EA clusters referenced by that file belong to several
different applications. In order to maintain the EAs properly, it is best to use the OS/2 EAUTIL program to
separate EAs from their owners, then copy them as separate files and later reunite them for a happy ending.
Generally the EAs take up a substantial amount of disk space; if space is at a premium, BAS not associated
with a critical attribute can usually be deleted. In such cases, the presence of the EA is not critical to the
application's correct execution and thus it can be removed. Users must take care in determining which EAs
can be removed, as some applications will not work correctly afterward.

A more thorough discussion of EA APis and a detailed discussion of the API structures for the FAT and
HPFS can be found in the OS/2 Programming Guide and various other IBM technical publications. The
short description offered here is merely for the benefit of the programming examples and to help the
programmer understand the API syntax used to attain the EA information. Extended attributes will appear
foreign to DOS users and programmers, and their usefulness generally is questioned almost immediately.
Only upon closer inspection does it become evident that EAs are quite important and really constitute a
must-have feature, especially in high-end operating systems such as OS/2. Basically the Extended
Attributes are nothing more than a storage area of information no more than 64K in size that are available
for applications to use as they please. OS/2 defines several standard types of EAs that are available for
general use. Also, the programmer can define application-specific extended attributes. The only restriction
is that the total EA size cannot exceed 64K. Standard EAs are called SEAs, and by convention start with a
period [.]. They include:

• .ASSOCTABLE

• .CODEPAGE

• . COMMENTS

• .HISTORY

• .ICON

• .KEYPHRASES

• . LONGNAME
• .SUBJECT

• . TYPE

• .VERSION

It is a good idea to not use the preceding [.] character in your own applications. The operating system
reserves the right to use [.] as the first character of the EA name types. Nothing prevents users from
implementing the same convention, but if OS/2 designers decide to add another standard type that happens
to use your EA name, some unpredictable behavior may result. The type of data that is stored within an
SEA is representative of the SEA name. For example, the .ICON SEA will contain the icon data, while the
.TYPE SEA will contain the file object's type. This type can represent an executable, data, metafile, C
code, bitmap, icon, resource file, object code, DOS binary, and so on. As you might have guessed, the
.TYPE SEA is one of the more frequently used attributes of a file object. Note that extended attributes are
associated not only with files but also with subdirectories. In fact, the subdirectory containing the
Workplace Shell desktop information contains subdirectories that have many, many EAs.

File 1/0 and Extended Attributes - 31

EAs-Fragile: Handle with Care
A programmer must take certain steps while using EAs. First, if the file objects are being moved or copied
to a system that does not support EAs (such as a DOS-FAT combination), the programmer must take care
not to lose the EAs that may be associated with the particular file object. Consider the case of uploading a
file with EAs to a UNIX machine and then downloading the same file back. Doing so may result in EAs
being lost or misplaced because most UNIX machines do not support EAs. Another good example is
trying to copy a file that has a long name from an HPFS partition to a FAT partition. Since FAT supports
the 8.3 naming convention only, the file name may be truncated, but that is not a problem since the correct
HPFS name may be stored in the .LONGNAME EA. An application that manipulates files must be EA
and HPFS-aware in order to perform proper file management in an OS/2 environment.

The LIBPATH.C Example
The first example we discuss attempts to find out the value of the LIBPATH environment variable. In
OS/2 Warp, an extended LIBPATH variable was created. This special variable can be set or queried from
the command line or from an API, DosSetExtLIBPATH and DosQueryExtLIBPATH. This variable can be
changed dynamically and either prepended or appended to the system LIBPATH variable. The system
LIB PA TH itself cannot be returned from the regular environment SET command or a DosQuery ... APL
Occasionally the system LIB PATH variable is a handy thing to know. So, a not-so-clean solution is to find
the value of the boot drive, find the CONFIG.SYS file, and attempt to extract the LIBPATH string from
that file. This will work only when there have been no previous changes to the CONFIG.SYS file since the
system has been booted and specifically no direct manipulations of the system LIBPATH value. Although
this example is a crude kluge, the method actually can be useful on a number of occasions.

LIBPATH.C
#define INCL_DOSFILEMGR
#define INCL_DOSMISC
#include <os2.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#define CONFIG_FILE "?:\\CONFIG.SYS"
#define LIBPATH "LIBPATH"
#define CR 13
#define LF

INT main(VOID)
{

APIRET
ULONG
PC HAR
HF ILE
ULONG
ULONG
PC HAR
PC HAR
US HORT
FILESTATUS3

pchBuffer = NULL;

10

arReturn;
ulDrive;
pchFile;
hfFile;
ulAction;
ulBytesRead;
pchBuffer;
pchLibpath;
us Index;
fsStatus;

/**/
/* find the boot drive */
/**/

arReturn = DosQuerySysinfo(QSV_BOOT_DRIVE,
QSV_BOOT_DRIVE,

32 - The Art of OS/2 Warp Programming
&ulDrive,
sizeof(ulDrive));

pchFile = CONFIG_FILE;
pchFile[O] = ulDrive+'A'-1;

/**/
/* get the size of the CONFIG.SYS */
/**/

arReturn = DosQueryPathinfo(pchFile,
FIL_STANDARD,
&fsStatus,
sizeof(fsStatus));

/**/
/* allocate buffer size + 1 for NULL */
/**/

pchBuffer = malloc(fsStatus.cbFile+l);

arReturn = DosOpen(pchFile,

arReturn

&hfFile,
&ulAction,
0,
FILE_NORMAL,
FILE_OPEN,
OPEN_FLAGS_FAIL_ON_ERRORI

OPEN_FLAGS_SEQUENTIAL
OPEN_SHARE_DENYNONEJOPEN__ACCESS_READONLY

NULL);

DosRead(hfFile,
pchBuffer,
fsStatus.cbFile,
&ulBytesRead) ;

arReturn = DosClose(hfFile);

pchBuffer[fsStatus.cbFile] = O;

/***~/

/* seach buffer for LIBPATH variable */
/**/

pchLibpath = strstr(pchBuffer,
LIBPATH);

if (pchLibpath
{

NULL)

/***/
/* will only execute this section of code if LIBPATH is */
/* NOT all caps */
/***/

for (usI~dex = O; usindex < strlen(pchBuffer); usindex++)
{

if (toupper(pchBuffer[usindex]) == 'L')
if (toupper(pchBuffer[usindex+l]) == 'I' && toupper

(pchBuffer[usindex+2]) == 'B' && toupper(pchBuffer
[usindex+3]) == 'P' && toupper(pchBuffer[usindex+4
]) == 'A' && toupper(pchBuffer[usindex+5]) == 'T'
&& toupper(pchBuffer[usindex+6]) == 'H')

pchLibpath = pchBuffer+usindex;
break;

File I/O and Extended Attributes - 33

/**/
/* read to the line feed */
/**/

for (usindex = O; usindex < CCHMAXPATHCOMP; usindex++)
{

if (pchLibpath[usindex] == CR)
{

if (pchLibpath[usindex+l] LF)
break;

}
pchLibpath[usindex] = O;

/* endif
/* endfor

*/
*/

/**/
/* print out the LIBPATH */
/**/

printf ("\n%s\n",
pchLibpath);

free(pchBuffer);
return arReturn;

LIBPATH.MAK
LIBPATH.EXE:

LIBPATH
LIBPATH
LIBPATH
052386
LIBPATH
<<

LINK386 @<<
LIBPATH.OBJ

LIBPATH.OBJ: LIBPATH.C
ICC -c+ -Kb+ -Ss+ LIBPATH.C

LIBPATH.DEF
NAME LIBPATH WINDOWCOMPAT NEWFILES
DESCRIPTION 'LIBPATH Example

PROTMODE

Copyright (cl 1993-1995 by Arthur Panov
All rights reserved.'

The first step is to find the system boot drive. In order to do this, use DosQuerySyslnfo and specify the
arguments corresponding to the boot drive information. DosQuerySyslnfo takes three input parameters and
one output parameter, and returns the values of the system's static variables:

APIRET = DosQuerySysinf o (ULONG ulStartindex,
ULONG ulLastindex,
PVOID pDataBuf,
ULONG ulDataBufLen);

34 - The Art of OS/2 Warp Programming

This call can return a single value or a range of values, depending on the ulStart/ndex, ulLastlndex. As is
evident by the example, in order to obtain a single value, the ulStartlndex and ulLast/ndex are set to the
same input value:

arReturn = DosquerySysinfo QSV_BOOT_DRIVE,
QSV_BOOT_DRIVE,
&ulDrive,
sizeof (ulDrive)) ;

The QSV _BOOT_DRIVE constant is defined by the BSEDOS.H header file, which is part of the set of
standard header files provided by the Programmer's Toolkit. Table 4.1 defines the additional values. The
third parameter is the data buffer that DosQuerySyslnfo uses to place the returned values into. The last
parameter is the size of the data buffer.

QSV _MAX_PATH_LENGTH
QSV _MAX_ TEXT_SESSIONS
QSV _MAX_PM_SESSIONS
QSV _MAX_ VDM_SESSIONS

QSV _BOOT_DRIVE
QSV _DYN_PRI_ VARIATION
QSV _MAX_ WAIT
QSV _MIN_SLICE
QSV _MAX_SLICE
QSV _PAGE_SIZE
QSV _ VERSION_MAJOR
QSV _ VERSION_MINOR
QSV _ VERSION_REVISION
QSV _MS_COUNT

QSV _TIME_LOW
QSV_TIME_HIGH
QSV _TOTPHYSMEM
QSV _TOTRESMEM
QSV _TOTAVAILMEM

QSV _MAXPRMEM

QSV _MAXSHMEM

QSV _ TIMER_INTERV AL
QSV MAX COMP LENGTH

1
2
3
4

5
6
7
8
9
10
11
12
13
14

15
16
17
18
19

20

21

22
23

Maximum path name length in bytes
Maximum number of text sessions
Maximum number of PM sessions
Maximum number of virtual DOS machine (VDM)
sessions
Boot drive value (O=A:, l=B:, etc.)
Dynamic/Absolute priority (O=absolute)
Maximum wait time in seconds
Minimum time slice allowed in milliseconds
Maximum time slice allowed in milliseconds
Default page size (4K)
Major version number
Minor version number
Revision version letter
The value of a free-running 32-bit counter in milliseconds
(value=O at boot time)
Lower 32 bits of time since 01-01-1980 in seconds
Upper 32 bits of time since 01-01-1980 in seconds
Total number of pages of physical memory (4K each)
Total number of system-resident memory
Total number of pages available for allocation to the
system at the instance of the call
Total number of pages available for allocation to the
process at the instance of the call
Total number of shareable pages available to the caller in
the shared area
Timer interval in 1/10 millisecond
Maximum length of a component's pathname in bytes

File 1/0 and Extended Attributes - 35
Gotcha!
An application that is intended to be used in the HPFS/FAT environment should make
the DosQuerySyslnfo call and determine the maximum value of the legal file name
length: QSV _MAX_COMP _LENGTH. For HPFS, this value is much greater than
FAT (255). The application should issue this call in its initialization section and
remember the pertinent values for future DosFindFirst, DosFindNext buffer size
allocation values.

Once the boot drive is located, the string containing the full path to CONFIG.SYS is created.

Getting the File Size

arReturn = DosQueryPathinfo pchFile,
FIL_STANDARD,
&fsStatus,
sizeof (fsStatus))

pchBuffer = malloc (fsStatus.cbFileAlloc +1) ;

DosQueryPathlnfo is used to determine the size of CONFIG.SYS. The function is designed to get file
information for a file or subdirectory. The first parameter, pchFile, is the fully qualified path for the file.
The second parameter is the level of information required. All we need for this example is standard file
information, FIL_STANDARD. The information level determines the third parameter. If
FIL_ST AND ARD is specified, a pointer to a FILEST A TUS3 structure is used. The structure
looks like this:

typedef struct _FILESTATUS3
{ FDATE fdateCreation;

FTIME ftimeCreation;
FDATE fdateLastAccess;
FTIME ftimeLastAccess;
FDATE fdateLastWrite;
FTIME ftimeLastWrite;
ULONG cbFile;
ULONG cbFileAlloc;
ULONG attrFile;

FILESTATUS3;

The FILESTATUS3 structure contains two fields of interest: cbFile and cbFileAlloc. The cbFile element
contains the actual size of the file, start to finish, in bytes. The cbFileAlloc, on the other hand, contains the
file system allocation unit (AU) size, whose value can be a multiple of 512, 2K, 4K, 8K, 16K, 32K, and so
on, depending on the type of magnetic media used. HPFS and diskettes use 512-byte AUs, while the FAT
AU size depends on the volume size. cbFileAlloc is of minimal value in applications, and the cbFile value
should be used to allocate the required storage. Thus, cbFile size value is used in the next call to allocate
the memory buffer needed to read the whole CONFIG.SYS at once, plus an extra byte for a NULL
character.

This memory allocation does not have to be performed. It is possible to read one character at a time and
parse the output using a I-byte storage area. The method used in CHKEA was used for ease of
implementation as well as performance reasons. Reading the whole file is much quicker. Since the
CONFIG.SYS is generally smaller than 4K in size, it should easily fit into a single page of memory, which
is the smallest allocation allowed in 32-bit OS/2. The parsing can be achieved more rapidly as well.
Memory operations are much quicker than storage disk 1/0.

36 - The Art of OS/2 Warp Programming

Opening a File
Having found the file size, the next step is to attempt to open the CONFIG.SYS file. The DosOpen API
call is a good example of the flexibility and power of the OS/2 file system interface. Several flags are
available to the programmer, and almost any combination of them can be defined in order to provide for
maximum systemwide cooperation. In this case, the file is opened in read-only mode and with full sharing
enabled. This means that if another application decided to open and read CONFIG.SYS at the same time, it
would be able to do so. Allowing other applications full sharing rights also presents a problem of the file
data being changed while we are attempting to read it. Although this is a remote possibility, the risk is still
there; using the OPEN_SHARE_DENYWRITE flag instead of OPEN_SHARE_DENYNONE easily
prevents it. The OPEN_FLAGS_SEQUENTIAL flag is used to define how we will be reading the file.
Last, we examine the file in read-only mode by specifying the flag OPEN_ACCESS_READONL Y.
DosOpen is a fairly involved APL We'll go into some more details in just a moment.

arReturn = DosOpen (pchFile,

Reading a File

&hfFile,
&ulAction,
0,
FILE_NORMAL,
FILE_OPEN,
OPEN_FLAGS_FAIL_ON_ERROR
OPEN_FLAGS_SEQUENTIAL I
OPEN_SHARE_DENYNONE I
OPEN_ACCESS_READONLY,
NULL) ;

arReturn = DosRead hfFile,
pchBuffer,
fsStatus.cbFile,
&ulBytesRead) ;

DosRead is the function to read not only files but any devices. The first parameter, hfile, is the file handle
returned from DosOpen. The buffer, pchBuffer, is the second parameter. The third parameter is the
number of bytes to read. In our case, the entire file size is used. The last parameter is a pointer to a
ULONG. The number of bytes actually placed into the buffer is returned in a variable, ulBytesRead.

Note: In DOS and OS/2, it is possible to get a good return code (arReturn=O) and not have the
Dos Read/Dos Write API complete as expected. It is a good idea to check for the return code first, then
check for the BytesRead value and compare it with the expected number.

Once in memory, the last character of the CONFIG.SYS file is set to NULL. This is done so that string
operations can be performed more easily. The last step is parsing the file in order to find the LIBPATH
information. Once the LIB PA TH, is found it is displayed with a straightforward printf The cleanup is
accomplished by freeing the memory and using DosClose to close the file.

arReturn = DosClose (hfFile) ;
printf ("\n%s\n", pchLibpath) ;
free (pchBuf fer) ;

More on DosOpen
Before we continue with the EA example, it might be beneficial to cover the DosOpen API in greater
detail.

File I/O and Extended Attributes - 37
APIRET DosOpen (PSZ

PHFILE
PULONG
ULONG
ULONG
UL ONG
ULONG
PEAOP2

pszFileName,
ppFileHandle,
pActionTaken,
ulFileSize,
ulFileAttribute,
ulOpenFlag,
ulOpenMode,
ppEABuf);

The first three arguments are clearly identified.

• pszFileName
• ppFileHandle
• pActionTaken

Input address of a string containing the file name
Output address of a returned file handle
Output address of a specified action variable

The action variable on output will have the following useful values:

FILE_EXISTED
FILE_ CREATED
FILE_ TRUNCATED

2
3

File existed prior to call
File was created as the result of the call
Existing file was changed by the call

The next three input arguments can create the most confusion.
• ulFileAttribute Double word containing the files attributes
• ulOpenFlag Double word containing the desired open conditions
• ulOpenMode Double word containing the mode/sharing conditions

They create confusion because the same DosOpen call can be used to open files, disk volumes, pipes, and
other devices. For example, if a user wanted to open a named pipe, some of the sharing flags and the
ulFileSize value are ignored by the operating system because the pipe's buffer sizes are specified by the
DosCreateNPipe APL Also, the ulFileSize may not make sense if the user is opening a disk volume for
direct access. Sometimes device drivers allow DosOpen calls with a device name specified in place of the
pszFileName. It is still a null-terminated string, but in the case of a device driver the string contains the
device name, such as "DEVICE$". Specifying ulFileSize or other ulFileAttribute flags makes no sense, and
thus some of the input parameters are ignored. All three input flag parameters are bit-encoded, meaning
each bit that is set represents a new or unique flag condition. Most of the bits can be set in combination.
All of the flags are 32 bits wide, but not all of the 32 bits are used at this time. Some are reserved for
future use and must be set to zero. For example, the ulFileAttribute bit values are shown in Figure 4.1.

38 - The Art of OS/2 Warp Programming

I 31I3ol29 l2s l21 l2s l2s l24 !23 l22 l21 I 201191181171161

I I I I I I I I I I I I I I I I

~

RESERVED, Must be set to ZERO

FILLREADONL Y
FILE..HIDDEN
FILE..SYSTEM
RESERVED, Must be set to ZERO
FILE..DIRECTORY
FILLlRCHIVED
RESERVED, Must be set to ZERO

Figure 4.1 File attribute bit flags.

Table 4.4 describes the file attribute bit flags.

FILE_READONL Y
FILE_NORMAL
FILE_HIDDEN
FILE_SYSTEM
FILE_ DIRECTORY
FILE ARCHIVED

File can be read but not written to
File can be read and written to
File is a hidden file
File is a system file
File is a subdirectory
File has archive bit set

To allow the file read-only access and to declare the file to be of the system type, the following
combination is used.

ulFileAttribute FILE_READONLY I FILE_SYSTEM;

The ulOpenFlag describes the actions that the DosOpen will perform based on the bit encoding specified
by the programmer. These actions deal with conditions of file existence, replacement, and creation. A user
may want to allow the DosOpen API to fail, if the file already exists. If so, specify:

ulOpenFlag = OPEN_ACTION_FAIL_IF_EXISTS;

If the user wants the DosOpen call to open the file if it exists, and fail if it does not exist, the following
should be specified :

ulOpenFlag = OPEN_ACTION_FAIL_IF_NEW J

OPEN_ACTION_OPEN_IF_EXISTS;

Figure 4.2 depicts additional file open action flags.

I 31I3ol29 l28 l21 l26 l2s l24123 l22 l21I2ol 19l 1sl l7l 16I
I i I I I I I I I I I I I I I I

~
j
J

RESERVED, Must be set to ZERO

RESERVED, Must be set to ZERO

Figure 4.2 File open action flags.

Table 4.5 describes the file open action flags that are available.

File I/O and Extended Attributes - 39

000
0001

OPEN_ACTION_FAIL_IF _NEW DosOpen will fail if file does not exist; file is opened if it
does exist

OPEN_ACTION_CREA TE_IF _NEW
OPEN_ACTION_FAIL_IF _EXISTS
OPEN_ACTION_OPEN_IF _EXISTS
OPEN ACTION REPLACE IF EXISTS

File is created if it does not exist
DosOpen will fail if the file already exists; file is created
File is opened if it already exists
File is replaced if it already exists

The ulOpenMode describes the mode that the open call will set for the file object. This flag will tell the
system how to behave when other users request access to the file that is currently in use by someone else.
It is here that the system write-through buffering is specified and the error reporting is decided. For
example, the user may want to allow the system to use its cache to transfer the data between the application
and the file object, but the actual write must complete prior to the return of the call. Also, the user may
want to have all of the errors reported directly to his or her application and not through the system critical
error handler. On top of that, a programmer may want to open this file in read-only mode and not allow
anyone else write access to the file while in use. Wow! Well, for a combination of conditions like that, use
the following flags:

ulOpenMode OPEN_FLAGS_WRITE_THROUGH
IOPEN_FLAGS_FAIL_ON_ERROR
IOPEN_SHARE_DENY_WRITE
IOPEN_ACCESS_READONLY;

Thus, a number of conditions can be specified, and file management becomes a tedious and time
consuming task for the programmer and the operating system. Figure 4.3 depicts the available open mode
flag.

40 - The Art of OS/2 Warp Programming

I 31I3ol29 l2B l2712B l2s l24 l23 l22 l21 I 20\ 19 I 1BI 1711 Bl

I I I I I I I I I I I I I I I I RESERVED, Must be set to ZERO

OPEN.ACCESSJlEADONLY
OPEN.ACCESS_WRITEONLY
OPEN.ACCESSJlEADWRITE

000
001
010

LA N ..L ALI

01
010
011
100

OPEN..FLAGS..SEQUENTIAL
OPEN..FLAGS..RANDOM
OPEN..FLAG5..RANDOMSE UENTIAL

001
010
011

RESERVED, Must be set to ZERO
OPEN..FLAG5..NO_CACHE
OPEN..FLAG5..FAILON..ERROR
OPEN..FLAGS_WRITE.JHROUGH
OPEN..FLAGS..DASD

Figure 4.3 Open mode flags.

Table 4.6 describes the open mode flags avilable.

OPEN_ACCESS_READWRITE
OPEN_ACCESS_ WRITEONL Y
OPEN_ACCESS_READONL Y
OPEN_SHARE_DENYNONE
OPEN_SHARE_DENYREAD
OPEN_SHARE_DENYWRITE
OPEN_SHARE_DENYREADWRITE
OPEN_FLAGS_NOINHERIT
OPEN_FLAG_RANDOMSEQUENTIAL
OPEN_FLAG_RANDOM
OPEN_FLAG_SEQUENTIAL
OPEN_FLAG_NO_LOCALITY
OPEN_FLAGS_NO_CACHE
OPEN_FLAGS_FAIL_ON_ERROR

OPEN_FLAGS_ WRITE_ THROUGH

OPEN FLAGS DASD

File is given read/write access
File is given only write access
File is given only read access
Other processes can have read and write access to file
Other processes cannot be given read access
Other processes cannot be given write access
Other processes cannot be given read or write access
File handle is not inherited to spawned processes
File is opened for both random and sequential access
File is opened for mainly random access
File is opened for mainly sequential access
File locality is not known
No file data is placed in cache
Media I/O errors are reported by return code rather than
through the system error handler
File writes may go through cache but will be completed before
the write call returns
File is a drive to be opened for direct access

An Extended Attribute Example: CHKEA.C
The next example, CHKEA.C, shows a way to find out if the file object has Extended Attributes associated
with it. If so, then the query is made as to the size of all of the Extended Attributes that are attached. Last,
the names of the types of the Extended Attributes are displayed, and the extended attribute data is dumped.

CHKEA.C
#define INCL_DOSERRORS
#define INCL_DOSFILEMGR
#include <os2.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAXEATYPE 3
CHAR *pszKeyEAName[]
{

" . LONGNAME" ,
" . ICONPOS" ,
".TYPE"

typedef struct
{

US HORT

USHORT
BYTE

EAINFO,*PEAINFO;

EA INFO

usEAType;

usEALength;
bEADa ta [1] ;

INT DurnpEA(CHAR *pszFile,PFEA2 pszAttributeName);

INT main(USHORT usNumArgs,PCHAR apchArgs[])
{

CHAR
PC HAR
ULONG
HDIR
APIRET
FILEFINDBUF4
CHAR
PBYTE
PFEA2

achPath[CCHMAXPATHCOMP];
pchPath;
ulCount;
hdFile;
arReturn;
ffbFile;
achFile[CCHMAXPATHCOMP];
pbBuffer;
pdAttribute;

if (usNumArgs != 2)
{

puts ("Syntax: CHKEA [filename]");
puts ("");
puts ("where \'filename\' is the name of a ");
puts("file/directory and can contain wildcards.");
return 1;

/* endif

File 1/0 and Extended Attributes - 41

*/

/**/
/* get full path name */
/**/

DosQueryPathinfo(apchArgs[l],
FIL_QUERYFULLNAME,
achPath,
CCHMAXPATHCOMP);

pchPath strrchr(achPath,
'\ \') ;

if (pchPath !=NULL)
{

pchPath++;
*pchPath = O;

42 -The Art of OS/2 Warp Programming
/* endif */

ulCount = l;
hdFile = HDIR_SYSTEM;

arReturn DosFindFirst(apchArgs[l],
&hdFile,
FILE_DIRECTORY,
&ffbFile,
sizeof(FILEFINDBUF4),
&ulCount,
FIL_QUERYEASIZE) ;

while (arReturn 0)
{

/***/
/* print out full path name */
/***/

sprintf(achFile,
11 %s%s 11 ,

achPath,
ffbFile.achName);

printf("\nFile name: %s\n",
achFile);

printf("\nTotal bytes allocated for EAs: %1d bytes.",
ffbFile.cbList);

/***/
/* allocate memory for ea buffer */
/***/

pbBuffer = malloc(ffbFile.cbList);

ulCount = -1;

arReturn = DosEnumAttribute(ENUMEA_REFTYPE_PATH,
achFile,
1,
pbBuffer,
ffbFile.cbList,
&ulCount,
ENUMEA_LEVEL_NO_VALUE);

printf("\nThis object contains %ld EAs.",
ulCount);

pdAttribute = (PFEA2)pbBuffer;

while (ulCount != 0)
{

printf("\nFound EA with name \"%s\"",
pdAttribute->szName);

DumpEA(achFile,
pdAttribute);

ulCount--;
pdAttribute = (PFEA2) (((PBYTE)pdAttribute)+

pdAttribute->oNextEntryOffset);

} /* endwhile
free (pbBuffer);

ulCount = l;
arReturn = DosFindNext(hdFile,

*/

&ffbFile,
sizeof(ffbFile},
&ulCount};

File 1/0 and Extended Attributes - 43

/* endwhile */
if ((arReturn != 0) && (arReturn != ERROR_NO_MORE_FILES}}
{

printf ("\nError %ld encountered\n",
arReturn};

/* endif
return arReturn;

int DumpEA(CHAR *pszFile,PFEA2 pdAttribute)
{

APIRET
USHORT
ULONG
PFEA2
EAOP2
PGEA2LIST
ULONG
ULONG
PEA INFO

for (i = O; i <
{

re;
i;
ulGBufLen,ulFBufLen,ulEBufLen;
pFEA2;
eaopGet;
pGEA2List;
ulSize;
ulDataStart;
ptrEAData,ptrEADataHolder;

MAXEATYPE; i++)

*/

/***/
/* does EA name match one of the EA's we're interested in*/
/***/

if (!strcmp(pdAttribute->szName,
pszKeyEAName[i]))

/**/
/* build input/output data buffer first build
/* fpFEA2List structure

*/
*/

/**/

ulFBufLen = sizeof(FEA2LIST)+pdAttribute->cbName+l+/*
actual name */

pdAttribute->cbValue; /* actual value */
pFEA2 = (PFEA2)calloc(l,

if (!pFEA2)
return FALSE;

ulFBufLen) ;

/**/
/* only one pFEA2 attribute in this list */
/**/

eaopGet.fpFEA2List = (FEA2LIST *)pFEA2;
eaopGet.fpFEA2List->cbList = ulFBufLen;

/**/
/* next build fpGEA2List structure */
/**/

ulGBufLen

pGEA2List

sizeof(GEA2LIST)+pdAttribute->cbName+l;

(GEA2LIST *)calloc(l,
ulGBufLen);

if (!pGEA2List)
{

free (pFEA2) ;

44 - The Art of OS/2 Warp Programming
return FALSE;

/**/
/* initialize fpGEA2List */
/**/

pGEA2List->cbList = ulGBufLen;
pGEA2List->list[O] .oNextEntryOffset = O;
pGEA2List->list[O] .cbName = pdAttribute->cbName;
strcpy(pGEA2List->list[0] .szName,

pdAttribute->szName);
eaopGet.fpGEA2List = (G~A2LIST *)pGEA2List;

/**/
/* get EA's */
/**/

ulEBufLen = ulFBufLen+ulGBufLen;
re = DosQueryPathinfo(pszFile,

FIL_QUERYEASFROMLIST,
(PVOID)&eaopGet,
ulEBufLen) ;

if (!re)
{

printf("\nEA Data for EA %s
pdAttribute->szName);

ulSize = sizeof(FEA2LIST);

/***/
/* get the first list */
/***/

pFEA2 = (PFEA2)eaopGet.fpFEA2List->list;

/***/
/* offset to start of EAdata */
/***/

ulDataStart = ulSize+pFEA2->cbName;
ptrEAData = (PEAINFO) ((PBYTE)eaopGet.fpFEA2List+

ulDataStart);

/***/
/* allocate memory with space for null */
/***!

ptrEADataHolder = calloc(l,
sizeof(EAINFO)+

ptrEAData->usEALength+l);
printf("Type = Ox%x

ptrEAData->usEAType);
printf ("Length = Ox%x",

ptrEAData->usEALength);

/***/
/* move Data into placeholder memory */
/***/

memcpy(ptrEADataHolder,
ptrEAData->bEAData,
ptrEAData->usEALength);

printf("\nData = %s",
ptrEADataHolder) ;

free(ptrEADataHolder);

free (pFEA2) ;
free(pGEA2List);

if (re)
{

printf ("\nDosQueryPathinfo failed, re %d",
re);

return FALSE;

File I/O and Extended Attributes - 45

/* if EA is one of the
key types */

/* loop through all EA

return TRUE;

CHKEA.MAK
CHKEA.EXE:

CHKEA
CHKEA
CHKEA
OS2386
CHKEA
<<

LINK386 @<<
CHKEA.OBJ

CHKEA.OBJ: CHKEA.C
ICC -c+ -Kb+ -Ss+ CHKEA.C

CHKEA.DEF
NAME CHKEA WINDOWCOMPAT NEWFILES
DESCRIPTION 'Extended Attribute Example

key types */

Copyright (c) 1993-1995 by Arthur Panov
All rights reserved. '

PROTMODE

CHKEA.EXE expects a command-line input argument that is the name of the file of interest. Wildcard
characters are accepted. First, a determination is made if the file object can be located on the hard disk; if
successful, the full name of the object is constructed.

DosQueryPathinfo (apchArgs[l],
FIL_QUERYFULLNAME,
achPath,
CCHMAXPATHCOMP

pehPath = strrehr (achPath, '\\') ;

if (pehPath !=NULL) {

pehPath++
*pehPath = 0

/* endif */

ulCount = 1 ;
hdFile = HDIR_SYSTEM

46 - The Art of OS/2 Warp Programming
arReturn = DosFindFirst (apchArgs[l],

&hdFile,
FILE_DIRECTORY,
&ffbFile,
sizeof (FILEFINDBUF4),
&ulCount,
FIL_QUERYEASIZE) ;

The DosFindFirst API is the most useful function call available to a programmer when attempting to locate
file objects.

APIRET APIENTRY DosFindFirst(PSZ
PHDIR
UL ONG
PVOID
ULONG
PULONG
UL ONG

pszFileSpec,
phdir,
flAttribute,
pfindbuf,
cbBuf,
pcFileNames,
ulinfoLevel) ;

The definition for this API can be found in the BSEDOS.H header file, which is part of the OS/2
Developer's Toolkit. Table 4.7 presents the arguments of interest.

HDIR_SYSTEM
HDIR_CREA TE
bit encoded

Use STDOUT for handle
Handle is created

phdir
phdir
fiAttribute
pfindbuf
ullnfoLevel
ullnfoLevel
ullnfoLevel

depends on ullnfoLevel
FIL_STANDARD
FIL_QUERYEASIZE
FIL_QUERYEASFROMLIST

Type of object to search for
Result of the request
Standard file information is returned
File EA size is returned
Actual EA data is returned

Table 4.8 lists the acceptable values for the flAttribute argument.

MUST _HA VE_ARCHIVED
MUST_HA VE_DIRECTORY
MUST_HA VE_SYSTEM
MUST_HAVE_HIDDEN
MUST_HA VE_READONL Y
FILE_ARCHIVED
FILE_DIRECTORY
FILE_SYSTEM
FILE_HIDDEN
FILE_READONL Y

Files returned must have the archive bit set
Files returned must have the directory bit set
Files returned must have the system bit set
Files returned must have the hidden bit set
Files returned must have the read-only bit set
Files with archive bit set are not returned unless this value is specified
Files with directory bit set are not returned unless this value is specified
Files with system bit set are not returned unless this value is specified
Files with hidden bit set are not returned unless this value is specified
Files with read-only bit set are not returned unless this value is specified

phdir is an input/output parameter. On input it specifies the type of file handle required by the application.
HDIR_SYSTEM tells the operating system to assign a handle that will always be available to the process.
This is a handle for standard output. HDIR_CREATE will cause the system to allocate a handle and return
it to the application in phdir. Since pszFileSpec can accept wildcard characters, the handle returned can be
used in conjunction with the DosFindNext to find the next file object that matches the pszFileSpec.

File 1/0 and Extended Attributes - 47
flAttribute is an input bit-encoded flag that tells DosFindFirst what types of file objects to look for. These
bits represent conditions that may be true or must be true. For example, a programmer may want to locate
a directory with a particular name that may be hidden; although there are files that can correspond to the
pszFileSpec specified, only the directories are of interest. The following bit combination could be used.

flAttribute = MUST_HAVE_DIRECTORY I FILE_HIDDEN;

The pfindbuf is a pointer to the buffer that must be allocated prior to making the DosFindFirst call, and it
must be passed to the API as a pointer. On output the buffer will contain the information specified by the
next parameter ullnfoLevel, which can have three valid values associated with it (FIL_STANDARD,
FIL_QUERYEASIZE, FIL __ QUEARYEASFROMLIST).

The first value requests DosFindFirst to return FIL_STANDARD information about the file.
FIL_ST ANDARD information contains the data associated with the FILEFINDBUF3 structure.

FIL_QUERYEASIZE information is requested by specifying FIL_QUERYEASIZE for the
ullnfoLevel, and it returns the data associated with the FILEFINDBUF4 structure. Finally,
FIL_QUERYEASFROMLIST information is obtained by specifying the value
FIL_QUERYEASFROMLIST for the ullnfoLevel. It returns an EAOP2 data structure.

The FIL_QUERYEASFROMLIST request is slightly different from the previous two levels. On input
pfindbufmust contain the EAOP2 data structure with the correct names of the EAs to be queried. Since EA
data structures are variable in length, the fpGEA2List must contain a pointer to the GEA2 list, which in turn
must have the correct value specified for the oNextEntryO!fset and szName. The szName specifies the EA
to be returned, and the oNextEntryO!fset contains the number of bytes from the beginning of the first entry
to the end of the next entry. On output the EAOP2 contains a pointer to the fpFEA2List. The fpFEA2List
points to the list of FEA2 structures that have the actual EA information. All of the input records must be
aligned on a two-word boundary, and the last in the list of GEA2 structures oNextEntryO!fset value must be
set to zero. The following are the various data buffers that are returned depending on the level of
information requested.

• FIL_STANDARD

typedef struct _FILEFINDBUF3
{

Output generally contains the basic file information without EAs.

ULONG oNextEntryOffset;
FDATE fdateCreation;
FTIME ftimeCreation;
FDATE fdateLastAccess;
FTIME ftimeLastAccess;
FDATE fdateLastWrite;
FTIME ftimeLastWrite;
ULONG cbFile;
ULONG cbFileAlloc;
ULONG attrFile;
UCHAR cchName;
CHAR achName [CCHMAXPATHCOMP];

FILEFINDBUF3;

• FIL_QUERYEASIZE Output contains the same information as FIL_STANDARD plus EA
size.

48 - The Art of OS/2 Warp Programming
typedef struct _FILEFINDBUF4

{
ULONG oNextEntryOffset;
FDATE fdateCreation;
FTIME ftimeCreation;
FDATE fdateLastAccess;
FTIME ftimeLastAccess;
FDATE fdateLastWrite;
FTIME ftimeLastWrite;
ULONG cbFile;
ULONG cbFileAlloc;
ULONG attrFile;
ULONG cbList;
UCHAR cchName;
CHAR achName[CCHMAXPATHCOMP];

FILEFINDBUF4;

The ch List field contains the size of the entire EA set for this file object, in bytes.

• FIL_QUERYEASFROMLIST
FEA2 information.

typedef struct _GEA2LIST
{
ULONG cbList;
GEA2 list[l);
} GEA2LIST;

typedef GEA2LIST * PGEA2LIST;

typedef struct _GEA2
{
ULONG oNextEntryOffset;
BYTE cbName;
CHAR szName[l];

GEA2;

typedef struct _FEA2LIST
{
ULONG cbList;
FEA2 list[l);
} FEA2LIST;

typedef FEA2LIST * PFEA2LIST;

typedef struct _FEA2
{
ULONG oNextEntryOffset;
BYTE fEA;
BYTE cbName;
USHORT cbvalue;
CHAR szName [1) ;

FEA2;

typedef struct _EAOP2
{
PGEA2LIST
PFEA2LIST
ULONG
} EAOP2;

fpGEA2List;
fpFEA2List;

oError;

Input contains the GEA2 information. Output contains the

Figure 4.4 illustrates the EAOP2 structure in memory.

fpGEA2List

EAOP2

fpFEA2List

cblist
(4 bytes) ---·
list

cblist
(4 bytes) ---·
list

cbNextEntryOffset
(4 bytes)

1-----------
cbName (1 byte)

1-----------
szName (cbName bytes)

cbNextEntryOffset
(4 bytes)

1-----------
fEA (1 byte)

1-----------
cbName (1 byte)

1-----------
cbValue (2 bytes)

1-----------szName (cbName bytes)

1-----------EA Data (cbValue)

File I/O and Extended Attributes - 49

Figure 4.4 Map of EAOP2 memory buffer

DosFindFirst also accomplishes one other thing. It provides us with the size of the EAs associated with the
file. A buffer of this size, pbBujfer, is allocated.

DosEnumAttribute is used to identify the names and sizes of the EAs associated with a particular file
object.

APIRET APIENTRY DosEnumAttribute(ULONG ulRefType,
PVOID pvFile,
ULONG ulEntry,
PVOID pvBuf,
ULONG cbBuf,
PULONG pulCount,
ULONG ulinfoLevel);

The ulRefl'ype tells the DosEnumAttribute about the next input parameter. When the value is 0, the pvFile
argument contains a file handle; when the value is 1, the pvFile argument contains a pointer to a null
terminated string representing the name of the file object.

If the pvFile contains a handle, then this handle must be obtained by an earlier call to a DosOpen
or similar APL

ulEntry describes the ordinal of the file object's EA entry. This value must be non-zero and positive. The
value of 1 is indicative of the first EA entry in the list, 2 of the second one, and so on.

pvBuf is the pointer to the output buffer. Only FIL_STANDARD information can be returned; thus the
ullnfoLevel is always 1 (ENUMEA_LEVEL_NO_ VALUE).
cbBufis the length of the buffer referenced by the pvBuf

50 - The Art of OS/2 Warp Programming
cbBuf is the length of the buffer referenced by the pvBuf

pulCount is an input/output type argument. On input, the value contains the number of EAs for which the
information is requested. If the value of - lL is specified, all of the EAs are queried, and the information is
returned in the pvBuf, provided the buffer is of adequate size. On output this argument contains the actual
number of EAs for which the information was returned. If the buffer is big enough, all of the requested
EAs for the file will be returned. On output the buffer contains the list of those FEA2 structures that are
aligned on a two-word boundary. The last structure in the list will have the oNextEntryO!fset value of zero.

typedef struct _FEA2
(

ULONG oNextEntryOffset;
BYTE fEA;
BYTE cbName;
USHORT cbValue;
CHAR szName[lJ;

FEA2;

arReturn = DosEnumAttribute ENUMEA_REFTYPE_PATH,
achFile,
1,
pbBuffer,
ffbFile.cbList,
&ulCount,
ENUMEA_LEVEL_NO_VALUE

printf ("\nThis object contains %ld EAs.\n", ulCount

In this example, DosEnumAttribute uses a "1" as the EA ordinal, indicating the function is to start
enumerating at the first EA. Since pbBuffer is big enough to hold all the EA, it should all be placed in the
buffer after just one function call to DosEnumAttribute.

pdAttribute = (PFEA2)pbBuffer;

while (ulCount != 0)
{

printf("\nFound EA with name \"%s\"",
pdAttribute->szName);

DumpEA(achFile,
pdAttribute);

ulCount--;
pdAttribute = (PFEA2) (({PBYTE)pdAttribute)+

pdAttribute->oNextEntryOffset);

/* endwhile */

Once the EAs are enumerated, a while loop is used to loop through and list each EA. The user function
DumpEA is covered in more detail later. The next EA is found by adding the oNextEntryOffset to the
pbBuffer pointer. Notice the casting involved here. Remember, additions should be made in PBYTE
increments, not in PFEA2-increments.

arReturn = DosFindNext (hdFile,
&ffbFile,
sizeof (ffbFile),
&ulCount) ;

File 1/0 and Extended Attributes - 51
Once all the EAs are listed for one file object, DosFindNext is used to find the next file object that matches
the wildcard criteria.

In order to obtain the values of the EAs, Level FIL_QUERYEASFROMLIST information should be
specified and DosQueryFilelnfo or DosQueryPathlnfo should be used. Also, it is important to remember
that while one process is reading the EA information, another one can be changing it. To prevent this from
becoming a problem, the application must open a file with the sharing flag set to the deny-write state. This
will prevent another user from changing the information in the EAs while in use. Note that the
DosEnumAttribute may return a different EA for the same specified ordinal number, because ordinals are
assigned only to the existing EAs. An application can delete an EA, then turn around and write another
one in its place. The ordinal numbers are not preserved, and thus are not unique. The following formula
(from the OS/2 2.1 Control Program Programming Reference manual) shows the information needed to
calculate the required buffer size.

The buffer size is calculated as follows:

4 bytes (for oNextEntryOffset) +
1 byte (for fEA) +
1 byte (for cbName) +

2 bytes (for ch Value) +
Value of cbName (for the name of EA) +
1 byte (for NULL in cbName) +
Value of cbValue(for the value of EA)

Gotcha!
Each EA list entry must start on a double-word boundary.

The DumpEA function checks the FEA2 structure to see if the EA matches the types,
.LONGNAME, .ICONPOS, or .TYPE. These types were selected as examples, simply
because each is an ASCII string.

ulFBufLen = sizeof(FEA2LIST)+pdAttribute->cbName+l+ /* actual name
pdAttribute->cbValue; /* actual value

pFEA2 = (PFEA2)calloc(l, ulFBufLen);
if (!pFEA2)

return FALSE;

/**/
/* only one pFEA2 attribute in this list */
/**/

eaopGet.fpFEA2List = (FEA2LIST *)pFEA2;
eaopGet.fpFEA2List->cbList = ulFBufLen;

*/
*/

The first step is building the fpFEA2List structure for input. The size of the buffer is calculated by adding
the structure size, plus the size of the EA name, cbName, plus the size of the EA data, ch Value, plus one
byte for a '\O' appended to the name. ThefpFEA2List structure in the eaopGet structure is set equal to the
memory that has been allocated. The only other initialization involved is setting cbList equal to the size of
the output buffer.

52 - The Art of OS/2 Warp Programming
ulGBufLen = sizeof(GEA2LIST)+pdAttribute->cbNarne+l;
pGEA2List = (GEA2LIST *)calloc(l,

if (!pGEA2List)
{

free (pFEA2) ;
return FALSE;

ulGBufLen) ;

pGEA2List->cbList = ulGBufLen;
pGEA2List->list[O] .oNextEntryOffset = O;
pGEA2List->list(OJ .cbNarne = pdAttribute->cbNarne;
strcpy(pGEA2List->list[O].szNarne,

pdAttribute->szNarne);
eaopGet.fpGEA2List = (GEA2LIST *)pGEA2List;

The fpGEA2List structure is used to tell the DosQuery functions which EAs the programmer is interested
in. The buffer size is calculated like the fpFEA2List buffer. The offset to the next list entry is set to 0,
because this example is looking for only one EA at a time. The cbList variable is the buffer size. The
cbName variable is the EA name string size. The actual name is copied into the szName buffer. The last
assignment is setting fpGEA2List in the eaopGet structure equal to the pGEA2List structure that has just
been created.

DosQueryPathlnfo is used to retrieve the actual EA data. The prototype for the function is:

APIRET DosQueryPathinfo(PSZ pszPathNarne, ULONG ulinfoLevel,
PVOID pinfoBuf, ULONG cbinfoBuf)

The first parameter is the filename to use to query the information. The second parameter is the level of
information to retrieve. The value FIL_QUERYEASFROMLIST will retrieve the EA information. The
third parameter is a pointer to the EAOP2 structure. The last parameter is the size of the EAOP2. This
value is equal to the size of the fpFEA2List structure plus the size of the fpGEA2List structure.

re = DosQueryPathinfo(pszFile,
FIL_QUERYEASFROMLIST,
(PVOID)&eaopGet,
ulEBufLen) ;

ulSize = sizeof(FEA2LIST);

pFEA2 = (PFEA2)eaopGet.fpFEA2List->list;

ulDataStart = ulSize+pFEA2->cbNarne;
ptrEAData = (PEAINFO) ((PBYTE)eaopGet.fpFEA2List+

ulDataStart);

ptrEADataHolder = calloc(l,
sizeof(EAINFO)+

ptrEAData->usEALength+l);
printf("\nType = %x",

ptrEAData->usEAType);
printf("\nLength = %x",

ptrEAData->usEALength);
rnerncpy(ptrEADataHolder,

ptrEAData->bEAData,
ptrEAData->usEALength);

printf ("\nData = %s",
ptrEADataHolder);

The last step in the DumpEA function is actually to print out the EA data. The data is returned in the
fpFEA2List structure that was set up on input. First, the offset into the fpFEA2List where the EA data is

File 1/0 and Extended Attributes - 53
located is found by adding the size of the FEA2 structure plus the size of the attribute name. If this sounds
confusing, take a look at Figure 4.4 on page 49 to help illustrate this. The EA data is formatted in the
following manner. The first USHORT contains the type of EA data. The second USHORT contains size
of the EA data. All the bytes that follow contain the actual data located in that EA. This data is copied into
a memory buffer that contains enough space for a '\O' character at the end. The EA data does not contain
the '\O' character at the end of the data, because not all EA data is in the form of an ASCII null-terminated
string.

Chapter 5

Interprocess Communication

OS/2 provides several different methods of interprocess communication that are all fairly easy to
implement. In OS/2 l .x there were five distinct ways available for a process to communicate with another
process. These communications methods used flags, semaphores, pipes, queues, and shared memory to
send and receive messages and signals. Four of the most common methods were retained in OS/2 2.0; the
one that was dropped was the DosFlagProcess APL The functionality provided by DosFlagProcess is now
provided by DosRaiseException and related APis.

The easiest interprocess communication (IPC) method to implement is unnamed and named pipes. An
unnamed pipe is a circular memory buffer that can be used to communicate between related processes.
The parent process must set the inheritance flags to true in order for the child process to inherit the handles
and allow the parent and the child processes to communicate. Communication is bidirectional, and the
pipe remains open until both the read handle and the write handle are closed. Named pipes are also an easy
way to provide remote communication. A process on the requester workstation can communicate with a
process running on the server workstation as well as with a process running locally. However, the client
server remote connectivity can be achieved only with the help of some type of local area network server.

An OS/2 Named Pipe Client-Server Example
SERVER.C is, as the name suggests, the server of the Named Pipe IPC mechanism. The program allows
remote and local communications and performs simple character redirection. The characters are
highlighted in different colors to distinguish server and client modes of operation. As the user types in
characters at the client, they immediately echo on the server. There is no implied limitation that the server
can receive only, and the client can send only. The particular implementation is specific to this example.

The SERVER.EXE application can be started by simply typing Server followed by a carriage return from
the command line. This will start the server component of the program pair. The Server must be started
first, since it is the Server that creates the named pipe and allows the Client to connect to it. After the
server starts successfully, the Client can be started by typing Client [ServerName] followed by a carriage
return from the command line. Note that the {ServerName] is an optional parameter and is used only if a
remote pipe connection is being attempted. If the Server and the Client are running in the same
workstation, and the workstation is capable of running the IBM OS/2 LAN Server software, the Client
Server communication can be achieved with both local and remote connections. However, if the IBM
OS/2 LAN Server is not active, or the user is not logged on to the IBM OS/2 LAN Server domain,
attempting a remote connection will produce an error stating that the pipe name was not found. This is
correct, and usually points to an inactive server or an unauthorized user. The best way to look at this
example is to open two OS/2 window sessions and to allow one session to run the SERVER.EXE and the
other to run the CLIENT.EXE. This way it will be easier to see the Client-Server communication.

55

56 - The Art of OS/2 Warp Programming
SERVER.C
#define INCL_DOSNMPIPES
#define INCL_DOSPROCESS
#include <os2.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <conio.h>
#include "corrunon.h"
INT main(void}

US HORT
US HORT
ULONG
APIRET
UL ONG

arReturn

*usHiCh;
*usLoCh;
ulHiLoCh;
arReturn;
ulBytesDone;

DosExitList(EXLST_ADD,
Cleanup};

ulHiLoCh = O;
usLoCh = (USHORT *)&ulHiLoCh;
usHiCh = usLoCh+l; ·
chToken = SERVER_MODE;

printf(SERVER_COLOR);
printf(" Hit Ctrl+C to exit the server at any time \n");
printf (" Starting the program in Server Mode ... \n\n") ;

arReturn = ConnFromClient();
printf("\n The Pipe Creation I Connection API "

" returned re= %02X\n\n",
arReturn);

while (!arReturn && (chToken != DISCON_MODE})
{

arReturn RecvFromClient(&ulHiLoCh,
&ulBytesDone};

if (ulHiLoCh == TOKEN_F3_DISCON ff !ulBytesDone}
{

ch Token
break;

DISCON_MODE;

if (*usLoCh == *usHiCh)
putch (*usHiCh);

else
putch (' * ') ;

if (*usLoCh == RETURN_CHAR}
{

putch(LINE_FEED_CHAR};

arReturn = DosClose(hpPipe);
printf(NORMAL_COLOR);
return arReturn;

APIRET ConnFromClient(VOID)
{

/* endif

/* endif
/* endwhile

CHAR
ULONG
ULONG
ULONG
UL ONG

achinitBuf[HAND_SHAKE_LEN+l);
ulOpenMode;
ulPipeMode;
ulOutBufSize;
ulinpBufSize;

*/

*/
*/

Interprocess Communication - 57
ULONG
USHORT
ULONG

ulTimeOut;
arReturn;
ulBytesDone;

memset(achinitBuf,
0,
sizeof(achinitBuf}};

ulOpenMode = DEFAULT_MAKE_MODE;
ulPipeMode = DEFAULT_PIPE_MODE;
ulOutBuf Size = DEFAULT_OUTB_SIZE;
ulinpBufSize = DEFAULT_INPB_SIZE;
ulTimeOut = DEFAULT_TIME_OUTV;

arReturn = DosCreateNPipe(DEFAULT_PIPE_NAME,
&hpPipe,
ulOpenMode,
ulPipeMode,
ulOutBufSize,
ulinpBufSize,
ulTimeOut);

if (!arReturn)
{

printf (" You can start the CLIENT program now. \n") ;
printf(" Typing in the CLIENT window will make\n");
printf(" the keystrokes echo in this SERVER window\n\n");
arReturn = DosConnectNPipe(hpPipe);
if (! arReturn)
{

arReturn = DosRead(hpPipe,
achini tBuf,
(ULONG)HAND_SHAKE_LEN,
&ulBytesDone);

if (!strcmp(achinitBuf,
HAND_SHAKE_INP) && !arReturn)

arReturn DosWrite(hpPipe,
HAND_SHAKE_OUT,
strlen(HAND_SHAKE_OUT),
&ulBytesDone) ;

else
{

arReturn HAND_SHAKE_ERROR;

return arReturn;

/* endif
!* endif
/* endif

APIRET RecvFromClient(PULONG pulHiLoCh,PULONG pulBytesDone)
{

return DosRead(hpPipe,
pulHiLoCh,

sizeof(pulHiLoCh),
pulBytesDone);

VOID APIENTRY CleanUp(ULONG ulTermCode)
{
#define MY_STDOUT 1

ULONG ulBytesDone;

DosClose(hpPipe);

*/
*/
*/

58 - The Art of OS/2 Warp Programming
Doswrite(MY_STDOUT,

NORMAL_ COLOR,
strlen(NORMAL_COLOR),
&ulBytesDone);

DosExitList(EXLST_EXIT,
0);

SERVER.ff
#define SERVER MODE
#define CLIENT_MODE
#define SERVER_COLOR
#define CLIENT_COLOR
#define NORMAL_COLOR
#define REMOTE_PIPE
#define DISCON_MODE
#define BAD_INPUT_ARGS
#define MAX_PIPE_NAME_LEN
#define MAX_SERV_NAME_LEN
#define DEFAULT_PIPE_NAME
#define DEFAULT_MAKE_MODE
#define DEFAULT_PIPE_MODE
#define DEFAULT_OPEN_FLAG
#define DEFAULT_OPEN_MODE

#define DEFAULT_OUTB_SIZE
#define DEFAULT_INPB_SIZE
#define DEFAULT_TIME_OUTV
#define TOKEN_F2_SWITCH
#define TOKEN_F3_DISCON
#define RETURN_CHAR
#define LINE_FEED_CHAR
#define FUNC_KEYS_CHAR
#define EXTD_KEYS_CHAR
#define HAND_SHAKE_LEN
#define HAND_SHAKE_INP
#define HAND_SHAKE_OUT
#define HAND_SHAKE_ERROR
#define PROGRAM_ERROR

1
2
"\n• [0 32 40m"
"\n• [0 31 40m"
"\n• [O 37 40m"
2
3
99
80
8
"\\PIPE\\MYPIPE"
NP_ACCESS_DUPLEX
NP_WMESG I NP_RMESG I OxOl
OPEN_ACTION_OPEN_IF_EXISTS
OPEN_FLAGS_WRITE_THROUGH \
OPEN_FLAGS_FAIL_ON_ERROR \
OPEN_FLAGS_RANDOM I \
OPEN_SHARE_DENYNONE I \
OPEN_ACCESS_READWRITE
OxlOOO
OxlOOO
20000L
Ox0000003CL
Ox0000003DL
Ox OD
OxOA
OxOO
OxEO
Ox08
"pipEtEsT"
"PiPeTeSt"
101
999

CHAR achPipeName [MAX_PIPE_NAME_LEN]
HPIPE hpPipe ;
CHAR chToken ;

USHORT BadArgs (USHORT usNurnArgs, PCHAR apchArgs [])
APIRET ConnToClient (VOID) ;
APIRET ConnToServer (VOID) ;
APIRET SendToClient (ULONG ulHiLoCh) ;
APIRET RecvFromServer (PULONG pulHiLoCh

SERVER.DEF
NAME SERVER WINDOWCOMPAT
DESCRIPTION 'SERVER example

Copyright (c) 1992-1995 by Arthur Panov.
All rights reserved. '

STACKSIZE 16384

First, a DosExitList call is made in order to allow the SERVER.EXE to clean up properly in an event of a
Ctrl-/Ctrl-Brk condition.

Interprocess Communication - 59

APIRET DosExitList(ULONG ulOrderCode, PFNEXITLIST pfn)

ulOrderCode consists of two lower-order bytes that have meaning and a high-order word that must be 0.
The lower-order byte can have the values listed in Table 5.1.

EXLST_ADD
EXLST_REMOVE
EXLST_EXIT

Add an address to the termination list
Remove an address from the termination list
When termination processing completes, transfer to the next address
on the termination list

The high-order byte of the low-order word must be zero if EXLST_REMOVE, or EXLST_EXIT is
specified. If, however, EXLST_ADD is specified, the high-order byte will indicate the invocation order.

The second parameter for DosExitList is an address of the routine to be executed-pfa.

The Clean Up() routine closes the named pipe handle and resets the window text color back to white on
black.

Next, ConnToClient() must issue two calls: DosCreateNPipe() and DosConnectNPipe(). Issuing the
DosConnectNPipe() call is what allows the client to perform a DosOpen() successfully. After the first few
necessary setup APis are called, a simple handshake operation is performed by reading a known string
from the pipe and writing a known string back.

APIRET DosCreateNPipe(PSZ pszName,
PHPIPE pHpipe,
ULONG openmode,
ULONG pipemode,
ULONG cbinbuf,
ULONG cbOutbuf'
ULONG msec) ;

The DosCreateNPipe() API expects seven arguments. The first parameter, DEFAULT_PIPE_NAME, is an
ASCII string that contains the name of the pipe to be created, ps<Name. The second is a pointer to the pipe
handle that will be returned when the function returns. The next parameter is the open mode used for the
pipe. The flag used in the example is NP _ACCESS_DUPLEX, which provides inbound and outbound
communication. The fourth parameter is the pipe mode. This parameter is a set of bitfields that define the
pipe mode. The flags used in this example are NP_ WMESG I NP _RMESG I OxO 1. These flags indicate
the pipe can send and receive messages, and also that only one instance of the pipe can be created. The
pipe can be created in either byte or message mode only. If a byte mode pipe is created, then DosRea.d()
and Dos Write() must use byte stream mode when reading from or writing to the pipe. If a message mode
pipe is created, then DosRea.d() and Dos Write() automatically will use the first two bytes of each message,
called the header, to determine the size of the message. Message mode pipes can be read from and written
to using byte or message streams. Byte mode pipes, on the other hand, can be used only in byte stream
mode. If a message stream is used, the operating system will encode the message header without the user
having to calculate the value. Care should be taken when deciding what size buffers should be used during
communications. The transaction buffer should be two bytes greater than the largest expected message.

APIRET DosConnectNPipe(HPIPE hpipe);

60 - The Art of OS/2 Warp Programming

The DosConnectNPipe() only takes one argument, the named pipe handle. At this point, the pipe is ready
for a client connection.

CLIENT.C
#define INCL_DOSNMPIPES
#define INCL_DOSPROCESS
#include <os2.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <conio.h>
#include "common.h"
INT main(USHORT usNumArgs,PCHAR apchArgs[])

USHORT
US HORT
UL ONG
APIRET

*usHiCh;
*usLoCh;
ulHiLoCh;
arReturn;

arReturn DosExitList(EXLST_ADD,
Cleanup);

achPipeName[O] = O;
chToken = O;
ulHiLoCh = O;
usLoCh = (USHORT *)&ulHiLoCh;
usHiCh = usLoCh+l;
chToken = CLIENT_MODE;

printf(CLIENT_COLOR);
printf (" Hit F3 to exit client program. \n\n");
printf (" Starting the program in Client Mode ... \n \n") ;

if (usNumArgs == REMOTE_PIPE)
{

sprintf(achPipeName,
"\ \ \ \%s"'
apchArgs[l]);

strcat(achPipeName,
DEFAULT_PIPE_NAME);

printf(" Connecting to pipe
achPipeName);

arReturn = ConnToServer();
if (! arReturn)
{

%s\n\n",

printf(" You can start typing in this CLIENT window\n");
printf(

" and watch for your keystrokes in the SERVER window\n\n"l

while (!arReturn && (chToken != DISCON_MODE))
{

*usHiCh = getch();
if ((*usHiCh == FUNC_KEYS_CHAR) I I (*usHiCh

EXTD_KEYS_CHAR))

*usLoCh = getch();

else

*usLoCh = *usHiCh;
/* endif

arReturn = SendToServer(ulHiLoCh);

}

if (ulHiLoCh == TOKEN_F3_DISCON)
{

ch Token
break;

DISCON_MODE;

if (*usLoCh == *usHiCh)
putch (*usHiCh) ;

else
putch ('*');

if (*usLoCh == RETURN_CHAR)
{

putch(LINE_FEED_CHAR);

arReturn = DosClose(hpPipe);
printf(NORMAL_COLOR);
return arReturn;

APIRET ConnToServer(VOID)
{

/* endif

/* endif
/* endwhile

CHAR
UL ONG
UL ONG
UL ONG
INT
UL ONG

achinitBuf[HAND_SHAKE_LEN+l];
ulOpenFlag;
ulOpenMode;
ulActionTaken;
arReturn;
ulBytesDone;

memset(achinitBuf,
0,
sizeof(achinitBuf));

ulOpenFlag
ulOpenMode

DEFAULT_OPEN_FLAG;
DEFAULT_OPEN_MODE;

arReturn = DosOpen(achPipeName,
&hpPipe,
&ulActionTaken,
0,

if (!arReturn)
{

0,
ulOpenFlag,
ulOpenMode,
0);

arReturn = DosWrite(hpPipe,
HAND_SHAKE_INP,
strlen(HAND_SHAKE_INP),
&ulBytesDone);

if (! arReturn)
{

arReturn = DosRead(hpPipe,
achinitBuf,
(ULONG)HAND_SHAKE_LEN,
&ulBytesDone) ;

if (strcmp(achinitBuf,
HAND_SHAKE_OUT))

arReturn = HAND_SHAKE_ERROR;
/* endif

Interprocess Communication - 61

*/

*I

*/
*/

*/

62 - The Art of OS/2 Warp Programming

}
if (arReturn)
{

/* endif
/* endif

printf("\n The Pipe Open I Connection API "
"returned re = %02x\n",

arReturn);
printf ("\n Make sure the Server is running. \n \n") ;

*/
*/

/* endif */
return arReturn;

APIRET SendToServer(ULONG ulHiLoCh)
{

ULONG ulBytesDone;

return DosWrite(hpPipe,
&ulHiLoCh,

sizeof(ulHiLoCh),
&ulBytesDone);

VOID APIENTRY CleanUp(ULONG ulTermCode)
{
#define MY_STDOUT 1

ULONG ulBytesDone;

DosClose(hpPipe);
DosWrite(MY_STDOUT,

NORMAL_ COLOR,
strlen(NORMAL_COLOR),
&ulBytesDone);

DosExitList(EXLST_EXIT,
0);

CLIENT.DEF
NAME CLIENT WINDOWCOMPAT
DESCRIPTION 'CLIENT example

Copyright (c) 1992-1995 by Arthur Panov.
All rights reserved. '

STACKSIZE 16384

COMMON.H
#define SERVER_MODE
#define CLIENT_MODE
#define SERVER_COLOR
#define CLIENT_COLOR
#define NORMAL_COLOR
#define REMOTE_PIPE
#define DISCON_MODE
#define BAD_INPUT_ARGS
#define MAX_PIPE_NAME_LEN
#define MAX_SERV_NAME_LEN
#define DEFAULT_PIPE_NAME
#define DEFAULT_MAKE_MODE
#define DEFAULT_PIPE_MODE
#define DEFAULT_OPEN_FLAG
#define DEFAULT_OPEN_MODE

1
2
"\n• [0;32;40m"
"\n• [0;36;40m"
"\n• [0;37;40m"
2
3
99
80
8
"\\PIPE\\MYPIPE"
NP_ACCESS_DUPLEX
NP_WMESG I NP_RMESG I OxOl
OPEN_ACTION_OPEN_IF_EXISTS
OPEN_FLAGS_WRITE_THROUGH I \
OPEN_FLAGS_FAIL_ON_ERROR \
OPEN_FLAGS_RANDOM I \

#define DEFAULT_OUTB_SIZE
#define DEFAULT_INPB_SIZE
#define DEFAULT_TIME_OUTV
#define TOKEN_F3_DISCON
#define RETURN_CHAR
#define LINE_FEED_CHAR
#define FUNC_KEYS_CHAR
#define EXTD_KEYS_CHAR
#define HAND_SHAKE_LEN
#define HAND_SHAKE_INP
#define HAND_SHAKE_OUT
#define HAND_SHAKE_ERROR
#define PROGRAM_ERROR

OPEN_SHARE_DENYNONE I
OPEN_ACCESS_READWRITE
OxlOOO
OxlOOO
20000L
Ox0000003DL
OxOD
OxOA
OxOO
OxEO
Ox08
"pipEtEsT"
"PiPeTeSt"
101
999

CHAR achPipeName [MAX_PIPE_NAME_LEN]
HPIPE hpPipe ;
CHAR chToken ;

USHORT BadArgs (USHORT usNumArgs, PCHAR apchArgs [])
APIRET ConnFromClient (VOID } ;
APIRET ConnToServer (VOID } ;
APIRET SendToServer (ULONG ulHiLoCh } ;

Interprocess Communication - 63
\

APIRET RecvFromClient (PULONG pulHiLoCh, PULONG pulBytesDone } ;
VOID APIENTRY Cleanup (ULONG ulTermCode } ; /* ExitList routines must be declared with
VOID APIENTRY*/

CLNTSRVR.MAK
ALL: CLIENT.EXE SERVER.EXE

CLIENT.EXE:

CLIENT
CLIENT
CLIENT
OS2386
CLIENT
<<

LINK386 @<<

SERVER.EXE:

SERVER
SERVER
SERVER
OS2386
SERVER
<<

LINK386 @<<

CLIENT.OBJ

SERVER.OBJ

CLIENT.OBJ: CLIENT.C
ICC -C+ -Gm+ -Kb+ -Sm -Ss+ -Q CLIENT.C

SERVER.OBJ: SERVER.C
ICC -c+ -Gm+ -Kb+ -Sm -Ss+ -Q SERVER.C

When the Client is started, the initialization call is made to ConnToServer(). The client application must
perform a DosOpen() first in order to obtain a pipe handle. Once the pipe handle is obtained, the
application can freely read from the pipe and write to the pipe. In this case, the first write/read pair is used
for primitive handshaking communication.

The most interesting set of parameters for the DosOpen() call on the client side is the ulOpenFlag, which
contains the value OPEN_ACTION_OPEN_IF _EXISTS, and the ulOpenMode, which contains the

64 - The Art of OS/2 Warp Programming
OPEN_FLAGS_ WRITE_THROUGH I OPEN_FLAGS_FAIL_ON_ERROR I OPEN_FLAGS_RANDOM
I OPEN_SHARE_DENYNONE I OPEN_ACCESS_READWRITE value.

Next, the while loop is entered. It can be stopped only if an API error is encountered, or if the user presses
the F3 function key at the Client window. The buffer that is being transmitted from the Client to the Server
represents the character received from the keyboard buffer used by the Client application. A double word is
used to allow proper character translation for the Fl-F12 function keys and some other extended keyboard
keys. (The function key keystroke generates two characters; the first is always a OxOO, followed by the
OxYY, where YY is a unique function key identifier.)

The remote pipe connection from the Client to the Server is achieved by starting the CLIENT.EXE with the
following command-line syntax:

CLIENT [MYSERVER]

where MYSERVER is the remote Server machine name. (The NetBIOS machine name for IBM OS/2 LAN
Server is found in the IBMLAN.INI file). The pipe names that are created by the Client have the following
format:

local named pipe name :
remote named pipe name :

\PIPE\MYPIPE
\\MYSRVR\PIPE\MYPIPE

The functionality that this example application provides is the same in both remote and local connectivity
modes. As a matter of fact, neither the Client nor the Server differentiates between the remote and local
case; only the pipe name is significant. This is the subtle beauty of the named pipes IPC !

The main reason for choosing pipes as an IPC method is ease of implementation, but it is not the best
choice for all cases. Pipes are useful only when a process has to send a lot of information to or receive
information from another process. Even though it is possible to allow pipe connections with multiple
processes, connect and disconnect algorithms must always be implemented for such situations. The remote
connection advantage of named pipes sometimes outweighs the complexity of connect-disconnect
algorithms. Since it is not possible under OS/2 to communicate remotely with queues or remote shared
memory, pipes sometimes become not only the best but the only IPC choice.

Gotcha!
It is not unusual for an application to receive a return value of
ERROR_TOO_MANY_HANDLES when attempting to open additional pipes. The
system initially allows 20 file handles per process; once the limit is reached, the above
error will appear. To prevent this from happening, the DosSetMaxFH(ULONG
ulNumberHandles) call must be issued, where ulNumberHandles is the new maximum
number of handles allowed to be open. This call will be successful if system resources

have not been exhausted. It is a good idea to issue this call only when needed, since additional file handles
consume system resources that may be used elsewhere in the system.

DOS-OS/2 Client-Server Connection
To make the pipe connectivity example complete, a DOS-named pipe client must be discussed. The DOS
based, D_CLIENT.EXE, is only slightly different from its big brother, the OS/2 based CLIENT.EXE.

Interprocess Communication - 65
There are no logical diffrences between the two; the difference lies in the APis. The
DosOpen()/DosRead()!Dos Write() OS/2 calls are replaced with open()/read()!write() DOS calls.

D_CLIENT.C
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <conio.h>
#include <fcntl.h>
#include "dcorrunon.h"
int main(unsigned short usNurn.Args,char *apchArgs[])

/*
/*

unsigned short
unsigned short
unsigned long
unsigned short

*usHiCh;
*usLoCh;
ulHiLoCh;
arReturn;

achPipeName[OJ O;
chToken = O;
ulHiLoCh = O;
usLoCh = (unsigned short *)&ulHiLoCh;
usHiCh = usLoCh+l;
chToken = CLIENT_MODE;

ANSI.SYS must be loaded for the COLOR string to work
printf (CLIENT_COLOR);

printf("\n\n Hit F3 to exit client program. \n\n");
printf(" Starting the program in Client Mode ... \n\n");

if (usNurn.Args == REMOTE_PIPE)
{

sprintf(achPipeName,
"\\\\%s",
apchArgs[l]);

strcat(achPipeName,
DEFAULT_PIPE_NAME);

printf(" Connecting to pipe
achPipeName);

arReturn = ConnToServer();
if (arReturn != EOF)
{

%s\n\n",

printf(" You can start typing in this CLIENT window\n");
printf(

*/
*/

" and watch for your keystrokes in the SERVER window\n\n")

while ((arReturn != EOF) && (chToken != DISCON_MODE))
{

*usHiCh = getch();
if ((*usHiCh == FUNC_KEYS_CHAR) I I (*usHiCh

EXTD_KEYS_CHAR))

*usLoCh = getch();

else
{

*usLoCh *usHiCh;
/* endif */

66 - The Art of OS/2 Warp Programming

/*
/*

arReturn = SendToServer(ulHiLoCh);

if (ulHiLoCh == TOKEN_F3_DISCON)
{

}

ch Token
break;

DISCON_MODE;

if (*usLoCh == *usHiCh)
putch (*usHiCh) ;

else
pu tch (' * ') ;

if (*usLoCh == RETURN_CHAR)
{

putch(LINE_FEED_CHAR);

close (hpPipe);

/* endif

I* endif
/* endwhile

ANSI.SYS must be loaded for the COLOR string to work
printf (NORMAL_COLOR);

return arReturn;

unsigned short ConnToServer(void)
{

char
unsigned long
unsigned long
unsigned long
int

achinitBuf[HAND_SHAKE_LEN+l];
ulOpenFlag;
ulOpenMode;
ulActionTaken;
arReturn = O;

unsigned long ulBytesDone;

memset(achinitBuf,
0,
sizeof(achinitBuf));

ulOpenFlag
ulOpenMode

DEFAULT_OPEN_FLAG;
DEFAULT_OPEN_MODE;

arReturn = hpPipe = open(achPipeName,
O_RDWRjO_BINARY);

if (arReturn != EOFl
{

arReturn = write(hpPipe,
HAND_SHAKE_INP,
strlen(HAND_SHAKE_INP));

}

if (arReturn != EOF)
{

arReturn read(hpPipe,
achini tBuf,
HAND_SHAKE_LEN);

if (strcmp(achinitBuf,
HAND_SHAKE_OUT))

arReturn = HAND_SHAKE_ERROR;
I*
/*
I*

if (arReturn == EOF)
{

end if
end if
end if

printf("\n The Pipe Open I Connection API "
"returned re = %02d\n•,

arReturn);

*I

*I
*I

*I
*/

*I
*/
*I

Interprocess Communication - 67
printf("\n Make sure the Server is running.\n\n");

/* endif */
return arReturn;

unsigned short SendToServer(unsigned long ulHiLoCh)
{

unsigned long ulBytesDone;

return (write(hpPipe,

D_CLIENT.MAK

&ulHiLoCh,
sizeof(ulHiLoCh)));

ALL: D_CLIENT.EXE

D_CLIENT.EXE: D_CLIENT.OBJ
LINK /NOD @<<

D_CLIENT
D_CLIENT
D_CLIENT
LLIBCER

<<

D_CLIENT.OBJ: D_CLIENT.C D_CLIENT.MAK
cl -c -AL D_CLIENT.C

D_CLIENT.DEF
NAME D_CLIENT WINDOWCOMPAT
DESCRIPTION 'CLIENT example

Copyright (c) 1992-1995 by Arthur Panov.
All rights reserved. '

STACKSIZE 16384

DCOMMON.H
/* this nibble applies if file already exists

#define OPEN_ACTION_FAIL_IF_EXISTS
#define OPEN_ACTION_OPEN_IF_EXISTS
#define OPEN_ACTION_REPLACE_IF_EXISTS

OxOOOO
OxOOOl
Ox0002

/*
/*
!*

/* this nibble applies if file does not exist

#define OPEN_ACTION_FAIL_IF_NEW
#define OPEN_ACTION_CREATE_IF_NEW

/* DosOpen/DosSetFHandState flags

#define OPEN_ACCESS_READONLY
#define OPEN_ACCESS_WRITEONLY
#define OPEN_ACCESS_READWRITE
#define OPEN_SHARE_DENYREADWRITE
#define OPEN_SHARE_DENYWRITE
#define OPEN_SHARE_DENYREAD
#define OPEN_SHARE_DENYNONE
#define OPEN_FLAGS_NOINHERIT
#define OPEN_FLAGS_NO_LOCALITY
#define OPEN_FLAGS_SEQUENTIAL

*/

OxOOOO /*
OxOOlO /*

OxOOOO /*
OxOOOl /*
Ox0002 /*
OxOOlO !*
Ox0020 /*
Ox0030 /*
Ox0040 /*
Ox0080 I*
OxOOOO /*
OxOlOO /*

xxxx */

0000 */
0001 */
0010 */

xxxx */

0000 */
0001 */

-000 */
-001 */
-010 */

-001 */
-010 *I
-011 *I
-100 */
1--- */

-000 */
-001 *I

68 - The Art of OS/2 Warp Programming
#define OPEN_FLAGS_RANDOM Ox0200 /* -010
#define OPEN_FLAGS_RANDOMSEQUENTIAL Ox0300 /* -011
#define OPEN_FLAGS_NO_CACHE OxlOOO /* ---1
#define OPEN_FLAGS_FAIL_ON_ERROR Ox2000 /* --1-
#define OPEN_FLAGS_WRITE_THROUGH Ox4000 /* -1--
#define OPEN_FLAGS_DASD

#define SERVER_MODE
#define CLIENT_MODE
#define SERVER_COLOR
#define CLIENT_COLOR
#define NORMAL_COLOR
#define REMOTE_PIPE
#define DISCON_MODE
#define BAD_INPUT_ARGS
#define MAX_PIPE_NAME_LEN
#define MAX_SERV_NAME_LEN
#define DEFAULT_PIPE_NAME
#define DEFAULT_MAKE_MODE
#define DEFAULT_PIPE_MODE
#define DEFAULT_OPEN_FLAG
#define DEFAULT_OPEN_MODE

#define DEFAULT_OUTB_SIZE
#define DEFAULT_INPB_SIZE
#define DEFAULT_TIME_OUTV
#define TOKEN_F3_DISCON
#define RETURN_CHAR
#define LINE_FEED_CHAR
#define FUNC_KEYS_CHAR
#define EXTD_KEYS_CHAR
#define HAND_SHAKE_LEN
#define HAND_SHAKE_INP
#define HAND_SHAKE_OUT
#define HAND_SHAKE_ERROR
#define PROGRAM_ERROR

1
2

Ox8000 /*

"\n• [0;32 40m"
"\n• [0;36 40m"
"\n• [0;37 40m"
2
3
99
80

1---

8
"\\PIPE\\MYPIPE"
NP_ACCESS_DUPLEX
NP_WMESG I NP_RMESG I OxOl
OPEN_ACTION_OPEN_IF_EXISTS
OPEN_FLAGS_WRITE_THROUGH \
OPEN_FLAGS_FAIL_ON_ERROR \
OPEN_FLAGS_RANDOM I \
OPEN_SHARE_DENYNONE I \
OPEN_ACCESS_READWRITE
OxlOOO
OxlOOO
20000L
Ox0000003DL
Ox OD
OxOA
OxOO
OxEO
Ox08
"pipEtEsT"
"PiPeTeSt"
101
999

char achPipeName [MAX_PIPE_NAME_LEN)
unsigned short hpPipe ;
char chToken ;

void) ;
void) ;
unsigned long ulHiLoCh) ;

*/
*/
*/
*I
*/
*/

unsigned short ConnToClient
unsigned short ConnToServer
unsigned short SendToServer
unsigned short RecvFromClient unsigned long* pulHiLoCh, unsigned long* pulBytesDone);

An OS/2 QUEUE Client-Server Example
The next example pair is QSERVER.C and QCLIENT.C. In this example, the communication process is a
little bit more complex than the one in the named pipe illustration. Here the point is to show how several
different processes can communicate with one central process. The functionality is similar to the named
pipe example, but with one key difference: The queue Server process does not send anything to the queue
Client processes. In fact, only the queue Client process can send information to the queue Server.
However, this does not mean that the queue Server cannot issue a Dos WriteQueue() call itself; it is just not
part of this example. It is left to the reader to implement this additional functionality. By using the
QSERVER.C as a prototype template, the WriteToQue function call can enhance the QSERVER.C
example program to issue DosWriteQueue calls. The QSERVER.C-QCLIENT.C example makes use of
both the OS/2 queue APis and named shared memory segments.

Interprocess Communication - 69

The concept of an OS/2 queue is somewhat simple. It is, in fact, an ordered set of elements. The elements
are 32-bit values that are passed from the Client to the Server of the queue. The Server of the queue is the
process that created the queue by issuing the DosCreateQueue() API call.

APIRET DosCreateQueue(PHQUEUE phq, ULONG ulPriority, PSZ pszName)

phq is a pointer to the queue handle of the queue that is being created. ulPriority is a set of two flags
OR'ed together. The first flag can have the values listed in Table 5.2.

QUE_FIFO
QUE_LIFO
QUE PRIORITY

FIFO queue
LIFO queue
Priority queue

The second flag can have the values listed in Table 5.3.

QUE_NOCONVERT_ADDRESS Does not convert addresses of 16-bit elements that are placed in the
queue

QUE CONVERT ADDRESS Converts addresses of 16-bit elements to 32-bit elements

The last parameter is a pointer to the ASCII name of the queue.

Only the Server of the queue can read from the queue. When the queue is read, one element is removed
from it. The Server and the Client can both issue calls to write, query, and close the queue. However, only
the Server can issue calls to create, read, peek, and purge the queue. The Client must issue a
DosOpenQueue call prior to attempting to write elements to the queue or to query the queue elements.

APIRET DosOpenQueue(PPID ppid, PHQUEUE phq, PSZ pszName)

ppid is a pointer to the process ID of the queue's server process. phq is a pointer to the write handle of the
queue. pszName is the ASCII name of the queue to be opened.

The queue elements can be prioritized and processed in particular order. The order depends on the
ulQueueFlags value used when creating the queue. This value cannot be changed once the queue has been
created.

Specifying a priority will cause the DosReadQueue API to read the queue elements in descending priority
order. Priority 15 is the highest, and 0 is the lowest. FIFO order will be used for the elements with equal
priority. The elements of the queue can be used to pass data to the server directly or indirectly. The
indirection comes from using pointers to shared memory. When pointers are used, the shared memory can
be of two types: named shared memory and unnamed shared memory. Related processes generally use
named shared memory, while the rest use unnamed shared memory. In this example, the named shared
memory method is implemented. OS/2 queues do not perform any data copying. They only pass pointers.
They leave the rest of the work for the programmer.

70 - The Art of OS/2 Warp Programming
APIRET DosReadQueue{ HQUEUE hQue, PREQUESTDATA pData, PULONG pcbData,

PPVOID ppBuf, ULONG ulElement, BOOL32 bWait,
PBYTE pbPriority, HEV hevsem)

hQue is a handle of the queue to be read from. pData is a pointer to a REQUESTDAT A structure that
returns a PID and an event code. pcbData is an output parameter that specifices the length of the data to be
removed. ppBuf is an output parameter that is a pointer to the element being removed from the queue.
ulElement is an indicator that can be either 0, meaning remove the first element from the queue, or a value
returned by DosPeekQueue. Table 5.4 lists the values for bWait.

DCWW_WAIT
DCWW _NOWAIT

The thread will wait for an element to be added to the queue
Return immediately with ERROR_QUE_EMPTY if no data is available

pbPriority is an output parameter that indicates the priority of the element being read. hevSem is a handle
of an event semaphore that will be posted when data is added to the queue, and DCWW _NOW AIT is
specified.

The OS/2 QUEUE Client-Server example is best illustrated by starting several OS/2 window sessions from
the desktop and making all of them visible to the user at the same time. The queue Server process must be
started first. Once the queue is created and the queue Server is started, the queue Clients can use the queue
to pass various information to the queue Server. In this case the information that is passed is the keystrokes
the user enters from each one of the Client processes. Figure 5.1 illustrates this procedure.

Queue
Elements

FIFO QUEUE

I CLIENT2

I CLIENT3

I CLIENT4

I CLIENTS

I QUEUE SERVER

Figure 5.1 Diagram of a queue.

Each one of the queue Clients will send keystroke characters to the queue Server via FIFO queue. Once
the characters are received by the queue Server, they will be displayed in color depending on the Client that
sent them. Table 5.5 describes the queue client text colors.

Interprocess Communication - 71
Table 5.5 Queue Client Text Colors

Iii&': :11,':: 11;,::w;,:::1otlii':t;:,,,: :l: ;, ;D>i'''
Client 1 Red
Client 2 Green
Client 3 Yellow
Client 4 Blue
Client 5 Magenta

The QSERVER.EXE allows only up to five active QCLIENT.EXE connections at any one time. Once the
maximum number of clients has been reached, entering QCLIENT.EXE followed by a carriage return from
the command line will produce a program error message describing the maximum number of clients.

The complete listing of QSERVER.C follows.

_Q_SERVER.C
#define INCL_DOSQUEUES
#define INCL_DOSMEMMGR
#define INCL_DOSPROCESS
#define INCL_DOSERRORS
#define INCL_DOSSEMAPHORES
#include <os2.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <conio.h>
#include "qconunon.h"
APIRET InitServerQueEnv(VOID);

APIRET ReadFromQue(PULONG pulHiLoCh);
APIRET ToScreen(VOID *buffer,ULONG length);

INT main(USHORT usNumArgs,PCHAR apchArgs(])
{

USHORT
USHORT
UL ONG
APIRET

*usHiCh;
*usLoCh;
ulHiLoCh;
arReturn = O;

arReturn DosExitList(EXLST_ADD,
Cleanup);

ulHiLoCh = O;
usLoCh = (USHORT *)&ulHiLoCh;
usHiCh = usLoCh+l;

printf(SERVER_COLOR);
printf{" Server process is creating");
printf(" and initializing the Queue ... \n");
arReturn = InitServerQueEnv();
if (!arReturn)

printf{"\n Press Ctrl-C, or Ctrl-Break to exit\n\n");

while (! arReturn)
{

arReturn = ReadFromQue(&ulHiLoCh);

if (! arReturn)
{

if (*usLoCh == *usHiCh)
putch (*usHiCh) ;

72 - The Art of OS/2 Warp Programming
else

if (ulHiLoCh == TOKEN_F3_DISCON)
{

ToScreen(WHITE_COLOR,
strlen(WHITE_COLOR));

ToScreen("\n\r client exited\n\n\r",
strlen("\n\r client exited\n\n\r"));

else
putch ('*') ;

if (*usLoCh == RETURN_CHAR)
putch(LINE_FEED_CHAR);

}
else

if (arReturn == ERROR_QUE_EMPTY)

arReturn = (SHORT)NULL;

arReturn = DosCloseQueue(hqQueue);
printf(WHITE_COLOR);
return arReturn;

APIRET InitServerQueEnv(VOID)
{

APIRET
SHORT

arReturn;
sindex;

arReturn DosAllocSharedMem((PVOID)&pmqsClient,
DEFAULT_SEG_NAME,
DEFAULT_PAGE_SIZE,
DEFAULT_SEG_FLAG);

if (! arReturn)
{

arReturn = DosCreateQueue(&hqQueue,
DEFAULT_QUE_FLAG,
DEFAULT_QUE_NAME);

if (! arReturn)
{

printf("\n Queue created successfully \n");
for (sindex = O; sindex < MAX_CLIENTS; sindex++)
{

pmqsClient[sindex].szColor(O] = (BYTE)NULL;
pmqsClient[sindex].ulPid = (PID)NULL;

/* endfor
arReturn = DosCreateEventSem(DEFAULT_SEM_NAME,

&hsmSem,
ULONG_NULL,
TRUE);

if (arReturn)
printf("\n DosCreateEventSem returned ""%02d\n",

arReturn);
}
else
{

printf (" \n DosCreateQueue API returned ""%02d\n",
arReturn);

else
{

printf(" \n Could not allocate "
"Shared Memory (%02d) \n",

arReturn);

return arReturn;

/* endif

/* endif

*/

*/

*I

APIRET ReadFromQue(PULONG pulHiLoCh)
{

APIRET arReturn;
REQUESTDATA rdRequest;
ULONG ulSzData;
BYTE bPriority;

arReturn DosReadQueue(hqQueue,
&rdRequest,
&ulSzData,
&pvData,

if (! arReturn)
{

0,
DCWW_NOWAIT,
&bPriority,
hsmSem);

pmqsClient[rdRequest.ulData] .ulPid = rdRequest.pid;
*pulHiLoCh = ulSzData;

ToScreen(pmqsClient[rdRequest.ulData] .szColor,
strlen(pmqsClient[rdRequest.ulData] .szColor));

/* endif
return arReturn;

APIRET ToScreen(VOID *buffer,ULONG length)
{
#define MY_STDOUT 1

ULONG ulBytesDone;

return (DosWrite(MY_STDOUT,
buffer,
length,
&ulBytesDone));

VOID APIENTRY CleanUp(ULONG ulTermCode)
{

DosCloseQueue(hqQueue);

ToScreen(WHITE_COLOR,
strlen(WHITE_COLOR));

DosExitList(EXLST_EXIT,
0);

_Q_SERVER.DEF
NAME QSERVER WINDOWCOMPAT
DESCRIPTION 'Queue example

Copyright (c) 1992-1995 by Arthur Panov.
All rights reserved. '

STACKSIZE 16384

Interprocess Communication - 73

*/

Now that the intended operation of the OS/2 QUEUE Client-Server has been described, the implementation
itself can be discussed in greater detail.

7 4 - The Art of OS/2 Warp Programming

During the initialization Server uses the InitServerQueEnv() first to allocate the named shared memory
segment, next to create the queue, and last to create the queue event semaphore.

The named shared memory segment is used as a common communications area for all of the Clients and
the Server. The shared named memory segment later will contain client-specific information: the Client
process ID and the client text color ANSI escape sequence. The memory map in Figure 5.2 shows the way
the shared named memory segment is used.

OxOOOO

OxOFFF

COLOR STRING

RED

GREEN

YELLOW

BLUE

MAGENTA

PIO

CLIENT 0 AREA
CLIENT 1 AREA
CLIENT 2 AREA
CLIENT 3 AREA
CLIENT 4 AREA

UNUSED MEMORY

SHARED MEMORY MAP (\SHAREMEM\MYQUEUE.SHR)

Figure 5.2 Shared memory map.

A client area is dedicated to each one of the queue Clients and contains the entire MYQUESTRUC
structure. After the shared memory is allocated, the queue Server creates the queue and initializes the
named shared segment to nulls. The last API that is called by the initialization routine is
DosCreateEventSem. Even though the semaphore that is created will not be used as a semaphore during
this application, its handle is required later for the DosReadQueue. The reason it is required in this case is
because the queue is read in nonblocking mode, and the API requires a semaphore handle in that case.
Choosing to read the queue in nonblocking fashion allows the queue Server main thread to perform other
functions while waiting for the new queue elements.

APIRET DosCreateEventSem(PSZ pszName, PHEV phev,
ULONG flAttr, BOOL32 fState

pszName is a pointer to the ASCII name of the semaphore, phev is an output parameter that is a pointer to
the semaphore handle. flAttr is either DC_SEM_SHARED to indicate the semaphore is shared, or 0. All
named semaphores are shared, so if pszName is not null, this argument is unused.

fState can be either TRUE, meaning the semaphore is initially "posted" or FALSE, meaning the semaphore
is initially "set."

In the initialization of the queue Client environment, the InitClientQueEnv() function call attempts to
obtain the named shared memory handle. Once the handle is returned, the queue Client begins to scan the
client areas, checking for the valid color string. The moment the Client finds an unused color string area, it
assumes it is free and copies its color attribute there. It also saves the unique position identification

Interprocess Communication - 75
assumes 1t 1s free and copies its color attribute there. It also saves the unique position identification
number in the global slndex variable. If the Client determines that five other Clients are already active, it
will display an error message and exit. On the other hand, if the slndex value is acceptable (less than
maximum number of Clients), the Client will issue the DosOpenQueue() API call, thus completing the
initialization by connecting to the queue.

QCLIENT.C
#define INCL_DOSQUEUES
#define INCL_DOSMEMMGR
#define INCL_DOSPROCESS
#define INCL_DOSERRORS
#define INCL_DOSSEMAPHORES
#include <os2.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <conio.h>
#include "qcornmon.h"
APIRET InitClientQueEnv(VOID);

APIRET WriteToQue(ULONG ulHiLoCh);

INT main(USHORT usNumArgs,PCHAR apchArgs[])
{

USHORT
US HORT
ULONG
APIRET

ulHiLoCh = O;

*usHiCh;
*usLoCh;
ulHiLoCh;
arReturn;

usLoCh = (USHORT *)&ulHiLoCh;
usHiCh = usLoCh+l;
chToken = CLIENT_MODE;

strcpy(aachColors[O],
CLIENTO_COLOR) ;

strcpy(aachColors[l],
CLIENTl_COLOR) ;

strcpy(aachColors[2],
CLIENT2_COLOR) ;

strcpy(aachColors[3],
CLIENT3_COLOR) ;

strcpy(aachColors[4],
CLIENT4_COLOR) ;

printf(WHITE_COLOR);
printf(" Client process is initializing");
printf (• and connecting to the Queue ... \n") ;
arReturn = InitClientQueEnv();

if (! arReturn)
printf("\n Press F3 to exit\n\n");

while (!arReturn && (chToken != DISCON_MODE))
{

*usHiCh = getch();
if ((*usHiCh == FUNC_KEYS_CHAR) I I (*usHiCh

EXTD_KEYS_CHAR))

*usLoCh = getch();

else
{

*usLoCh *usHiCh;

76 - The Art of OS/2 Warp Programming

arReturn = WriteToQue(ulHiLoCh);

if (ulHiLoCh == TOKEN_F3_DISCON)
{

chToken = DISCON_MODE;

/* endif

pmqsClient[usClientindex].szColor(OJ '\0';
pmqsClient[usClientindex] .ulPid = O;
break;

*/

/* endif */
if (*usLoCh == *usHiCh)

putch (*usHiCh);
else

putch ('*') ;

if (*usLoCh == RETURN_CHAR)
{

putch(LINE_FEED_CHAR);

if (arReturn == 0)
{

/* endif

arReturn = DosCloseQueue(hqQueue);

printf("\n•[0;37;40m");
return arReturn;

APIRET InitClientQueEnv(VOID)
(

APIRET
SHORT
PID

arReturn;
sindex;
pidOwner;

/* endif

arReturn DosGetNamedSharedMem((PVOID)&pmqsClient,
DEFAULT_SEG_NAME,
PAG_WRITEIPAG_READ);

if (! arReturn)
{

for (sindex = O; sindex <= MAX_CLIENT~; sindex++)
{

if ((pmqsClient(sindexJ .szColor[OJ ==OJ && (sindex <
MAX_CLIENTS))

strcpy(pmqsClient(sindex) .szColor,
aachColors[sindex));

usClientindex = sindex;
break;

if (sindex > MAX_CLIENTS)
{

arReturn = PROGRAM_ERROR;

/* endif
/* endfor

printf("\n\n Maximum number of clients is FIVE !\n");

*/

*/

*/
*/

} /* endif */
if (!arReturn)
{

arReturn = DosOpenQueue(&pidOwner,
&hqQueue,
DEFAULT_QUE_NAME);

if (!arReturn)
{

printf(" %s",
aachColors[usClientindex));

printf ("\n Client #%d has connected to the Queue\n",
usClientindex) ;

/* endif */

return arReturn;

APIRET WriteToQue(ULONG ulHiLoCh)
{

return DosWriteQueue(hqQueue,

/* endif
/* endif

(ULONG)usClientindex,
ulHiLoCh,
pvData,
ULONG_NULL) ;

_Q_CLIENT.DEF
NAME QCLIENT WINDOWCOMPAT
DESCRIPTION 'Queue example

Copyright (c) 1992-1995 by Arthur Panov.
All rights reserved. '

STACKSIZE 16384

_Q_COMMON.H
2
5
1
2
3
99
"\\QUEUES\\MYQUEUE"
"\\SEM32\\EVENTQUE"
4096

Interprocess Communication - 77
*!
*/

#define MAX INPUT_ARGS
#define MAX_CLIENTS
#define SERVER_MODE
#define CLIENT_MODE
#define DISCON_MODE
#define BAD_INPUT_ARGS
#define DEFAULT_QUE_NAME
#define DEFAULT_SEM_NAME
#define DEFAULT_PAGE_SIZE
#define DEFAULT_QUE_FLAG
#define DEFAULT_SEG_NAME
#define DEFAULT_SEG_FLAG
#define TOKEN_F2_SWITCH
#define TOKEN_F3_DISCON
#define RETURN_CHAR
#define LINE_FEED_CHAR
#define FUNC_KEYS_CHAR
#define EXTD_KEYS_CHAR
#define CLEAR_HI_WORD
#define ULONG_NULL
#define PROGRAM_ERROR

QUE_FIFO I QUE_CONVERT_ADDRESS
"\\SHAREMEM\\MYQUEUE.SHR"
PAG_WRITE I PAG_COMMIT
Ox0000003CL
Ox0000003DL
OxOD
OxOA
OxOO
OxEO
OxOOOOFFFFL
OL
999

#define MAX_COLOR_LEN 14

char SERVER_ COLOR [MAX_COLOR_LEN]
"\n• [0;32;40m"*/
char WHITE_ COLOR [MAX_COLOR_LEN]
"\n• [0;37;40m"*/
char CLIENTO_COLOR [MAX_COLOR_LEN]
" • [0 ; 31 ; 4 Om" * I
char CLIENTl_COLOR [MAX_COLOR_LEN]
" • [0; 3 2; 4 Om" *I
char CLIENT2_COLOR [MAX_COLOR_LEN]
" • [0; 3 3; 4 Om" *I
char CLIENT3_COLOR [MAX_COLOR_LEN]
" • [0; 3 4; 4 Om" *I
char CLIENT4_COLOR [MAX_COLOR_LEN]
"• [0;35;40m"*/

{10,13,27,91,48,59,51,50,59,52,48,109,0};/*

{10,13,27,91,48,59,51,55,59,52,48,109,0};/*

{27,91,48,59,51,49,59,52,55,109,0};/*

{27,91,48,59,51,50,59,52,55,109,0};/*

{27,91,48,59,51,51,59,52,55,109,0};/*

{27,91,48,59,51,54,59,52,55,109,0};/*

{27,91,48,59,51,53,59,52,55,109,0};/*

78-The Art ofOS/2 Warp Programming
typedef struct _MYQUEUESTRUC {

BYTE szColor [MAX_COLOR_LEN]
PID ulPid ;

} MYQUEUESTRUC, * PMYQUEUESTRUC

HQUEUE hqQueue ;
USHORT usClientindex MAX_CLIENTS
PVOID pvData ;
HEV hsmSem ;
PMYQUEUESTRUC pmqsClient ;
CHAR chToken = 0 ;
CHAR aachColors [MAX_CLIENTS] [MAX_COLOR_LEN] ;
VOID APIENTRY Cleanup (ULONG ulTermCode) ; /* ExitList routines must be declared with
VOID APIENTRY*/

_QCS.MAK
ALL: QCLIENT.EXE QSERVER.EXE

qserver.EXE:

qserver
qserver
qserver
OS2386
qserver
<<

LINK386 @<<
qserver.OBJ

qserver.OBJ: qserver.C q__CS.MAK
ICC -c+ -Gm+ -Kb+ -Sm -Ss+ -Q qserver.c

qclient.EXE: qclient.OBJ

qclient
qclient
qclient
OS2386
qclient
<<

LINK386 @«

qclient.OBJ: qclient.C q__CS.MAK
ICC -C+ -Gm+ -Kb+ -Sm -Ss+ -Q qclient.C

First, the queue server attempts to read the queue; if any elements are present, they are decoded and
displayed in their corresponding color; otherwise the Server loops to check for the next queue element.
The ERROR_QUE_EMPTY is ignored and reset to 0. It is normal for the Server to receive this particular
error since it is possible for the queue to have no messages from any of the Clients.

Readers may wonder why the queue is read continuously in nonblocking mode when it can be read in
blocking mode, which will assure a returned queue element prior to completing the DosReadQueue call.
The answer is simple. If the DosReadQueue API was implemented with the blocking flag set to true, it
would be difficult for the main thread to do anything other than wait. An additional thread would have to
implemented to handle any other type of work. It is also possible to implement a separate thread that waits
on the queue event semaphore and displays the characters only when the semaphore was posted Because
either method would be more complex, we chose the current implementation for this sample program. The
point here is to show the differences between the OS/2 queues and the OS/2 named pipes.

The Client does nothing more than read a keystroke character and write that character to the queue by
issuing a WriteToQue() function call, which in turn calls the DosWriteQueue() APL

Interprocess Communication - 79
APIRET DosWriteQueue(HQUEUE hQue, ULONG ulRequest,

ULONG cbData, PVOID pbData, ULONG ulPriority)

hQue is a handle of the queue to which data is to be written. ulRequest is a user-defined value passed with
DosPeekQueue. cbData is length of the data that is being written. pbData is a pointer to the data.
ulPriority is a priority of the data being added to the queue. Any value between 0 and 15 is accepted. A
value of 15 indicates the element is added to the top of the queue, and a value of 0 indicates the element is
the last element in the queue.

This example shows that the OS/2 queues are somewhat cumbersome to implement; however, they are
very useful when several processes have to talk to a single process, even if the processes are unrelated.

Note: The lnitClientQueEnv function has a potential timing problem. If multiple clients decide to initialize
concurrently, a race condition will ensue. To avoid a potential problem, a Mutex semaphore should be
installed to protect the access to the shared memory. The implementation is left as an exercise for the
reader.

An OS/2 Semaphore vs. Flag Variable Example
There are three different types of semaphores: Event, Mutex, and MuxWait. Event semaphores are used
when a thread or a process needs to notify other threads or processes that some event has occurred. Mutex
semaphores enable multiple threads or processes to coordinate or serialize their access to some shared
resource. MuxWait semaphores, on the other hand, enable threads or processes to wait for multiple events
to occur.

With this brief introduction, here is the last IPC example pair: STHREAD.C and FTHREAD.C. This case
uses the concept of semaphores for task or event synchronization, also known as signaling. If a process is
waiting for a resource to become available, such as a file or a port access right, and the resource is being
used by another process, the current task must wait. In the earlier DOS operating systems the
synchronization was accomplished primitively through the use of flags. The developer would set a flag,
then wait for the flag to be cleared, thus signaling that the resource was free to be used. Since only one
process could execute at a time under DOS, this was an acceptable form of pseudo interprocess
communication. Under OS/2, however, it is not a good idea to use flags to perform the equivalent
semaphore functions. An example of this bad flag synchronization processing is evident in FTHREAD.C,
which employs the following construct:

while (FlagBusy) ; /* Wait for flag to clear */

If a task requires this type of processing, a semaphore should be used. The STHREAD.C example
demonstrates the difference in the number of machine cycles that are spent waiting for a semaphore to clear
as opposed to waiting for a flag to clear. The STHREAD.EXE creates several threads and then decides to
wait on a semaphore. The default number of threads is 10, but that number can be changed by providing
an input argument to the STHREAD.EXE program. While this wait is in process, the user is free to type
characters at the keyboard, which will be echoed to the console immediately. In contrast, the
FTHREAD.EXE uses the same logic but employs a flag variable to perform the wait inside the threads,
which dramatically increases CPU usage, and the keystrokes will appear greatly delayed. The
FTHREAD.EXE also can accept an input argument specifying the number of threads to be created to wait
on the same flag variable. Even with as little as 30 threads, the difference between waiting on a flag
variable and waiting on a semaphore is dramatic.

80 - The Art of OS/2 Warp Programming
FTHREAD.C
#define INCL_DOSPROCESS
#define INCL_DOSSEMAPHORES
#include <os2.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <conio.h>
#define DEFAULT_THREAD_FLAGS 0
#define DEFAULT_THREAD_STACK Ox4000
#define MY_BEGIN_SEMAPHORE "\\SEM32\\BEGIN"
#define MAX_SEM_WAIT - lL
#define DEFAULT_NUM_THREADS 10
#define MAX NUM THREADS 255
USHORT usWaitOnFlag = TRUE;

VOID APIENTRY MyThreadOne(void);

INT main(USHORT usNumArgs,PCHAR apchArgs[])
{

USHORT
TID
INT
USHORT

usNumThreads;
tidThread;
iCharRead;
usReturn = O;

printf("\n FTHREAD.EXE demonstrates very poor processor");
printf ("\n time management by allowing a user to start a ") ;
printf("\n number of threads (1-255) and have all of them");
printf("\n wait on one global flag, while allowing keystrokes"

) ;

printf("\n to be entered at the keyboard.");
printf("\n (see STHREAD.EXE, for speed comparison)");
printf("\n\n FTHREAD.EXE [X], where Xis 1-255\n\n");
printf("\n\n lower case 'x' exits ... \n\n");

if (usNumArgs > 1)
{

/!--
// Insure that usNumThreads is in the range l<<x<<MAX

/1--
usNumThreads = max(min(atoi(apchArgs[l]),

MAX_NUM_THREADS) ,
1);

else
{

usNumThreads = DEFAULT_NUM_THREADS;
/* endif

while (usNumThreads-- && !usReturn)
{

}

usReturn = DosCreateThread(&tidThread,
(PFNTHREAD)MyThreadOne,
(ULONG)NULL,
DEFAULT_THREAD_FLAGS,
DEFAULT_THREAD_STACK);

if (! usReturn)
printf (" Started Thread #%2d\n",

tidThread-1);
else

printf(" DosCreateThread returned %2d\n\n",
usReturn);

/* endfor
if (!usReturn)
{

printf("\n Start typing and experience ");
printf("the speed of flags for yourself ... ");
printf ("\n >> lower case 'x' exits << \n\n");

*/

*/

fflush(stdout);

iCharRead = getche();

while (iCharRead != 'x')
{

iCharRead = getche();
/* endwhile

printf("\n\n Exiting, please wait ... \n\n");

uswaitOnFlag = FALSE;
DosSleep(2000L);
return usReturn;

VOID APIENTRY MyThreadOne()
{

while (usWaitOnFlag)

Interprocess Communication - 81

*/

/**/
I* VERY S L 0 W */
/**/

FTHREAD.DEF
NAME FTHREAD WINDOWCOMPAT
DESCRIPTION 'Semaphore example

Copyright (c) 1992-1995 by Arthur Panov.
All rights reserved. '

STACKSIZE 16384

STHREAD.C
#define
#define
#include
#include
#include
#include
#include
#define
#define
#define
#define
#define
#define

INCL DOSPROCESS
INCL_DOSSEMAPHORES
<os2.h>
<stdio.h>
<stdlib.h>
<string.h>
<conio.h>
DEFAULT_THREAD_FLAGS 0
DEFAULT_THREAD_STACK Ox4000
MY_BEGIN_SEMAPHORE "\\SEM32\\BEGIN"
MAX_SEM_WAIT - lL
DEFAULT_NUM_THREADS 10
MAX_NUM_THREADS 255

HEV hevKillThread;

VOID APIENTRY MyThreadOne(void);

INT main(USHORT usNumArgs,PCHAR apchArgs[])
{

US HORT
TID
INT
USHORT

usNumThreads;
tidThread;
iCharRead;
usReturn;

printf("\n STHREAD.EXE demonstrates the superior processor");

82 - The Art of OS/2 Warp Programming
printf("\n time management by allowing a user to start a");
printf("\n number of threads (1-255) and have all of them");
printf ("\n wait on one semaphore, while allowing keystrokes");
printf ("\n to be entered at the keyboard.");
printf("\n (see FTHREAD.EXE, for speed comparison)");
printf("\n\n STHREAD.EXE [X], where X is 1-255\n\n");
printf("\n\n lower case 'x' exits ... \n\n");

if (usNurnArgs > 1)
{

//--
// Insure that usNumThreads is in the range l<<x<<MAX

1/--
usNumThreads = max(min(atoi(apchArgs[l]),

MAX_NUM_THREADS) ,
1);

else
{

usNumThreads = DEFAULT_NUM_THREADS;
/* endif

usReturn = DosCreateEventSem(MY_BEGIN_SEMAPHORE,
&hevKil 1 Thread,
NULLHANDLE,
FALSE);

while (usNumThreads-- && !usReturn)
{

usReturn = DosCreateThread(&tidThread,
(PFNTHREAD)MyThreadone,
(ULONG)NULL,
DEFAULT_THREAD_FLAGS,
DEFAULT_THREAD_STACK);

if (! usReturn)
printf (" Started Thread #%2d\n",

tidThread-1);
else

printf(" DosCreateThread returned %2d\n\n",
usReturn);

/* endfor
if (!usReturn)
{

}

printf("\n Start typing and experience ");
printf("the speed of semaphores for yourself ... ");
printf("\n >> lower case 'x' exits << \n\n");

ff lush (stdout) ;

iCharRead = getche();

while (iCharRead != 'x')
{

iCharRead = getche();
/* endwhile

printf("\n\n Exiting, please wait ... \n\n");

usReturn = DosPostEventSem(hevKillThread);
DosSleep(2000L);
usReturn = DosCloseEventSem(hevKillThread);

return usReturn;

*/

*/

*/

VOID APIENTRY MyThreadOne()
{

DosWaitEventSem(hevKillThread,
MAX_SEM_WAIT) ;

STHREAD.DEF
NAME STHREAD WINDOWCOMPAT
DESCRIPTION 'Semaphore example

Copyright (c) 1992-1995 by Arthur Panov.
All rights reserved.'

STACKSIZE 16384

SFTHREAD.MAK
ALL: STHREAD.EXE FTHREAD.EXE

STHREAD.EXE:

STHREAD
STHREAD
STHREAD
OS2386
STHREAD
<<

LINK386 @<<
STHREAD.OBJ

STHREAD.OBJ: STHREAD.C SFTHREAD.MAK
ICC -c+ -Gm+ -Kb+ -Sm -SS+ STHREAD.C

FTHREAD.EXE:

FTHREAD
FTHREAD
FTHREAD
OS2386
FTHREAD
<<

LINK386 @<<
FTHREAD.OBJ

FTHREAD.OBJ: FTHREAD.C SFTHREAD.MAK
ICC -c+ -Gm+ -Kb+ -Sm -Ss+ FTHREAD.C

Example of usage:

FfHREAD [NUMTHREADS]
or
STHREAD [NUMTHREADS]

Interprocess Communication - 83

The first command-line argument, NUMTHREADS, should be a number in the range of 11 to 255. The
default number of threads created is 10; specifying a number less than 10 is unnecessary. It is not
recommended to go over 100 threads with FfHREAD.EXE. Doing so even on a superfast Pentium PC
will cause the system to respond to keystrokes very slowly. For example, once the CTRL-ESC keys are
pressed, it may take the system several minutes to paint the PM/WPS screen. STHREAD.EXE, on the other
hand, is perfectly capable of handling 255 threads in the wait state and will still provide reasonable
keyboard and display response.

Chapter 6

DLLs

DLL Overview
There have been many articles written about Dynamic Link Libraries, and just as many programming
books have devoted at least a chapter or two to this topic. Several of these sources are listed in the
Reference section of this book. This chapter concentrates on several examples of how DLLs can be used,
what to look for in selecting a particular function for a DLL inclusion, and what to avoid putting in a DLL
at all costs.

As the name Dynamic Link Libraries suggests, these libraries are not linked into the .EXE file during the
.EXE creation, rather they get loaded dynamically into the system memory at runtime. The overwhelming
advantage of DLLs is their ability to save system resources. Once the DLL is loaded, its functions are
available immediately for use to all of the system's processes. On the other hand, DLLs require complex
object linking and process loading tool implementation. Overall, however, DLLs live up to their claim to
fame-they save system resources and offer much more rapid successive loading of executable modules
that share the common functions than do statically linked .EXEs.

Another subtle advantage of DLLs is the ability of the programmer to control the functionality available to
the user. For example, a programmer writing a terminal emulation application could implement a basic set
of functions and label that the base package. Later, if the user demanded more functionality, the additional
features could be compiled and linked into a series of DLLs that would be available to the user at an
additional cost. This way users could purchase only the functionality required, nothing less, nothing more.
This particular approach yields itself very nicely to a DLL implementation. One of the DLLs, for example,
may contain the Zmodem protocol while another conatins a 3270 terminal emulation filter.

So far, the discussion has centered around generic DLL functionality. Windows 3.x, OS/2, NT, and
Windows 95 have implemented DLL support, but the way DLLs are loaded, unloaded, initialized, and
terminated differs with each operating system. Since this book concerns itself with OS/2, the OS/2
specifics are of the most interest here. One of the peculiar OS/2 implementations is the way DLLs are
loaded into memory. Theoretically OS/2 has a 4 gigabyte memory limit; practically, however, the user
only has 512 MB of real memory available to applications. The limit is artificially imposed by the OS/2
process loading mechanism, which is related to the OS/2 1.x compatibility issues. In particular, the LDT
tiling (this is discussed by Michael Kogan, 1990) limits the 32-bit OS/2 process address space to 512 MB.
The system loader will attempt to use the upper memory area for any shared code, which includes DLLs
that allow shared data, while the DLLs and .EXEs with nonshared data will be loaded in the lower memory
area. Figure 6.1 depicts this process.

85

86 - The Art of OS/2 Warp Programming

512 MB

Shared DLLs and
.EXEs

I • Unallocated

!
Nonshared DLLs and

.EX Es

OMB

Figure 6. 1 System memory map.

Thunking
The compatibility issues between the 32-bit and the 16-bit OS/2 modules demand a particular transition
implementation called thunking. DLLs are greatly affected by this thunking mechanism. Both the 16-bit
.EXE to 32-bit DLL transition, and the 32-bit .EXE to 16-bit DLL transition must be considered. The
following examples explain why this is necessary.

In the 16-bit to 32-bit case, the 16-bit .EXE file may have been implented in such a way that converting it
to 32-bit is tedious and unnecessary, resulting in poor performance benefits and other insignificant
improvements. On the other hand, some DLLs that perform 16-bit drawing routines, for example, may
benefit greatly from being converted to 32-bit modules. Also, large data structures that span 64K require
careful manipulation under the 16-bit implementation; in 32-bit mode the implementation is greatly
simplified.

In such cases, a developer may choose to convert the performance-sensitive sections-DLLs-of the
applications to the 32-bit model, while leaving the base core as a 16-bit .EXE. The opposite transition of
32-bit to 16-bit may be required because some support libraries that the application uses are purchased 16-
bit .OBJs or DLLs, and while the vendor may or may not provide the equivalent 32-bit versions of these
tools, the application need not suffer a schedule slip. A 32-bit .EXE access to a 16-bit DLL can be allowed
easily.

DLL Performance
Although DLLs are designed to improve system resource usage, a few performance implications as they
relate to DLL management must be understood. There are really two distinct ways to use the functions that
comprise a DLL. The first and most automatic method is to create an import library, and it to resolve any
references to the functions that are located inside the DLL. The system will automatically load and link the
DLL functions at runtime. One thing to remember, however, is that every time a DLL function call is
made, an associated address fixup must be resolved. These fixups may present somewhat of a performance
impact if the memory that contains the fixup tables happens to be swapped out to disk while the call to a

DLLs-87
DLL function is made. Before an address fixup can be resolved, the tables have to be brought back; in a
resource-constrained system, this can amount to a considerable performance hit.

In order to avoid a problem with fixups Dynamic link libraries, David Reich's technique of DLL aliasing
can be used. Outlined in his book Designing OS/2 Applications, he suggests the creation of an alias
function with the same parameters as the DLL function that will be called. Then you just turn around and
call the corresponding DLL function with the same parameters as the aliased one. By doing this, you are
guaranteed to have only one fixup per each function in your DLL. Of course, this technique is helpful only
when a particular DLL function is called numerous times throughout the .EXE. Having only a few
references to a DLL function does not warrant the creation of an alias.

Portability is another good reason for aliasing some of the functions. Imagine if a developer wanted to
migrate an application from one operating system to another. Sometimes using operating system-specific
APis cannot be avoided, but by aliasing some of these the migration path is much easier. The programmer
is left with porting a single API reference as opposed to numerous references throughout the code.

Simple DLL Example (32-32)
In order to preserve legacy applications' environments, the current version of OS/2 for the Intel platform
allows applications to mix memory models when it comes to 16-bit and 32-bit code. It is perfectly
acceptable to have a 32-bit executable call a 16-bit DLL, which in turn can call another 16-bit or 32-bit
DLL. A 16-bit executable also can call a 32-bit DLL, and so forth. The only problem that may arise in
doing this is memory model compatibilities. Compatibility is just a general description of pointer
conversion. Both the DLL and the .EXE must know that pointer conversion must occur and take careful
precautions to avoid a conversion error. Most bugs with mixed mode 16-bit/32-bit function calling are
found in pointer arithmetic code. The compiler does a great job of helping the programmer convert the
pointers correctly, as the following examples show. For a detailed compiler description of this thunking
conversion technique, see the IBM C Set/2 User's Guide or IBM CIC++ FirstStep Tools: Programming
Guide.

The most straightforward example of DLL creation and usage employs a 32-bit executable calling a 32-bit
DLL. In this case, there are no memory model mixing considerations, and the programmer can freely pass
values and pointers to any of the DLL functions without regard to conversion problems that are usually
associated with the mixed memory environments.

The main section of the program does little more than call an externally declared function called
MyDLLFunction, which requires two parameters. One parameter is a pointer to a function, and the other is
a character pointer. Once inside the DLL, MyDLLFunction uses the input function pointer and passes the
character pointer to that function. The user never knows how this function is implemented as it is hidden
inside the DLL. At the same time, passing a function pointer to the DLL allows the DLL to call back to the
.EXE if the function pointer happens to point to the function in the calling .EXE module. This, for
example, may allow the DLL to "signal" the .EXE when the DLL is done with a particular task but has not
completed the rest of the work yet. SIMPLE.C provides the first 32-bit to 32-bit .EXE to DLL example.

SIMPLE.C
/* Simple DLL loader

#include <os2.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

*/

88 - The Art of OS/2 Warp Programming
int main (VOID) ;

extern int MyDLLFunction(PFN,PCHAR);
extern int _System MyPrintFunctioninDLL(PCHAR,PCHAR, ...);

#define MY_CHAR_IN_VALUE "Input character string"
#define MY_CHAR_IN_SIZE strlen(MY_CHAR_IN_VALUE)
int main(VOID)

int
PC HAR

re = O;
MyCharacterPointer;

MyCharacterPointer = (PCHAR)malloc(MY_CHAR_IN_SIZE);
if (MyCharacterPointer)
{

strcpy(MyCharacterPointer,
MY_CHAR_IN_VALUE);

printf("\n Sending < %s > to DLL\n",
MyCharacterPointer);

re = MyDLLFunction(MyPrintFunctioninDLL,
MyCharacterPointer);

printf ("\n Returned < %s > from DLL\n",
MyCharacterPointer);

return (re);

else
return (-1);

SIMPLE.MAK
ALL: SIMPLE.EXE

SIMPLE.EXE:
LINK386 /NOI @<<

SIMPLE
SIMPLE
SIMPLE
OS2386+MYDLL
SIMPLE
<<

SIMPLE.OBJ

SIMPLE.OBJ: SIMPLE.C
ICC -C+ -Gm+ -Kb+ -Sm -SS+ SIMPLE.C

SIMPLE.DEF
NAME simple WINDOWCOMPAT
DESCRIPTION 'simple 32-32 DLL example

Copyright (c) 1992-1995 by Arthur Panov.
All rights reserved. '

STACKSIZE 16384

MYDLL.C
#include <os2.h>
#include <stdio.h>
#include <string.h>
#define MY_CHAR_OUT_VALUE "Output character string"
int MyDLLFunction(PFN,PCHAR);

int _System MyPrintFunctioninDLL(PCHAR,PCHAR, ...);

int MyDLLFunction(PFN MyFunctionPointer,PCHAR MyCharacterPointer}
{

int re = O;

re= (MyFunctionPointer) ("\n Modifying< %s >in DLL\n",
MyCharacterPointer);

return (re);

int _System MyPrintFunctioninDLL(PCHAR First,PCHAR Second, ... }
{

printf(First,
Second};

strcpy(Second,
MY_CHAR_OUT_VALUE};

return (0);

MYDLL.MAK
ALL: MYDLL.DLL MYDLL.LIB

MYDLL.LIB: MYDLL.DLL
IMPLIB MYDLL.LIB MYDLL.DEF

MYDLL.DLL:
LINK386 /NOI @<<

MYDLL
MYDLL.DLL
MYDLL
OS2386
MYDLL
<<

MYDLL.OBJ

MYDLL.OBJ: MYDLL.C MYDLL.MAK MYDLL.DEF
ICC -c+ -Ge- -Kb+ -Ss+ MYDLL.C

MYDLL.DEF
LIBRARY MYDLL
DESCRIPTION 'simple 32-32 DLL example

Copyright (c} 1992-1995 by Arthur Panov.
All rights reserved. '

DATA MULTIPLE NONSHARED
EXPORTS

MyDLLFunction
MyPrintFunctioninDLL

STACKSIZE 16384

Creating the .EXE and the DLL

DLLs-89

A couple of things need to be said about how this .EXE and DLL are built. First, the .EXE is compiled the
same way .EXEs always are compiled. There are no special considerations. There are, however, two ways
to link the .OBJs to create an .EXE that uses DLLs.

The first method employs an IMPORTS statement in the .EXE DEF file and specifies the exact DLL name
and the exported function names. The second one relies on a DLL import library that is linked in just as a

90 - The Art of OS/2 Warp Programming
static library would be. Using the import library is more of an automatic linking process, because you do
not have to keep track of all of the functions called in the .EXE. From a maintenance standpoint, the
import library is the preferred linking choice. The import library is created by running the IMPLIB.EXE,
an OS/2 Toolkit utility, and specifying the DLL DEF file or the DLL itself as a parameter. The import
library allows the linker to resolve all of the references to the DLL resident functions. Note that the import
library or the DEF file with the IMPORTS keyword and functions defined is required only when the DLL
resident functions are invoked automatically by the .EXE.

OS/2 provides another method of loading the DLLs at runtime and calling the DLL resident functions
explicitly. In this fashion, neither the imports library nor the IMPORTS keyword and functions'
specification is needed in the DEF file. An example of this loading technique is covered later in this
chapter.

The DLL can be considered just as a special .EXE file, and in the earlier releases of some of the operating
systems DLLs actually had .EXE extensions. The main difference is that a DLL cannot execute without a
parent .EXE. In comparison with the .EXE creation, the DLL files must be compiled with a DLL flag ON
(for C-Set: /Ge-). This may not be a requirement for other compilers. Next the DLL object code must be
LINKed and the DLL created. The most important file for the LINK step (and again, this is for IBM C
Set/2 CIC++) is the proper use of the module definition file (DEF). The DEF file specifies how the DLL
will be loaded, named, shared, and so forth. LINK386.EXE, a 32-bit linker for OS/2, recognizes the
module definition keywords listed in Table 6.1.

BASE
CODE
DATA
DESCRIPTION
EXE TYPE
EXPORTS
IMPORTS
HEAPSIZE
LIBRARY
NAME
OLD
PHYSICAL DEVICE
PROTMODE
SEGMENTS
STACKSIZE
STUB
VIRTUAL DEVICE

Preferred load address
Code segments attributes
Data segments attributes
Module description
DLL operating system type
Functions exported by DLL
Functions imported by EXE/DLL
Local heap size
DLL name
EXEname
Preserve old ordinal numbers
Device driver name
Protected mode only module
Segments attributes
Local stack size
Prepended DOS executable module
Virtual device driver name

The definition module must specify the correct combination of keywords so that the linker can construct
the DLL or .EXE file correctly.

Detailed explanation of the linker recognized keywords can be found in the online OS/2 Toolkit
documentation (OS/2 Tools Reference: TOOLINFO.INF).

DLLs-91
Gotcha!

IMPORTS lmydll.MyFunctionl statement fails due to a parser. The parser of
IMPORTS does not expect a number as the first character of a DLL even though the
DLL name is a legal OS/2 file name.

16-32, 32-16 Transitions
OS/2 supports four classes of applications:

• Pure 16-bit
• Mixed 16-bit
• Pure 32-bit
• Mixed 32-bit

The pure 16-bit application development was left behind in OS/2 1.x days, and the pure 32-bit application
development with DLLs is covered in the SIMPLE DLL example. This leaves only two interesting cases:

• 16-bit .EXE calling 32-bit DLL
• 32-bit .EXE calling 16-bit DLL

The most interesting item in mixed programming is the transition from one memory model to the other and
back. This transition in OS/2 is achieved with the help of a mapping layer technique called thunking. A
32-16 thunk and a 16-32 thunk are possible. Thunking involves converting 32-bit pointers to 16-bit
pointers, and vice versa. This thunking mechanism is a requirement for all mixed mode applications.
Luckily for the programmer, the compiler generally supports the thunking transitions automatically.

The 16-bit memory model has 64K segmentation size limitations, while the 32-bit memory model does not.
Therefore, if a 16-bit .EXE needed to manipulate a large data area (>64K), rewriting just the manipulation
routines and composing them into a 32-bit DLL would work.

Call a 32-Bit DLL from a 16-Bit Program
The 16-bit to 32-bit example is a simple checksum program that operates on a data area greater than 64K in
size. Both the DLL and the .EXE source code are rather simple. The interesting part is the way the
functions are declared in the 16-bit source and in the 32-bit source. The sizes of the arguments must match
across the transition boundary. In this case, all of the parameters and the return value are of the same size
in the 16-bit and the 32-bit sections of the code.

The 16-bit executable makes a call to the 32-bit DLL requesting the checksum value by passing a file name
to the 32-bit DLL function. The 32-bit DLL is invoked automatically by the system. The DLL function
proceeds to use the 32-bit APis to determine the file size (DosQueryPathlnfo), allocate the memory
(malloc > 64K), open the file (DosOpen), and read the data (DosRead'). The checksum calculation is made
next, and the values are returned to the caller.

HOWBIG.C
#include <stdio.h>
int main (void} ;

extern unsigned long far pascal HowMany(unsigned int *,char*};

92 - The Art of OS/2 Warp Programming

#define FILE_NAME "BIGFILE"
int main(void)

unsigned long ulCount = O;
unsigned int usCheckSum = 0;

printf("\n Now inside 16-bit %s",
FILE);

printf ("\n size of usCheckSum (USHORT * %d",
sizeof(int *));

printf ("\n size of FILE_NAME (char * %d",
sizeof(char *));

printf(
"\n About to call the 32-bit DLL function automatically\n")

ulCount = HowMany(&usCheckSum,
FILE_NAME) ;

if (ulCount == 0)
printf ("\n Could not calculate checksum, sorry! \n\n");

else
printf("\n File: %s, checksum: %04X, Count: %ld\n\n",

FILE_NAME,
usCheckSum,
ulCount);

return (0);

HOWBIG.MAK
ALL: HOWBIG.EXE

HOWBIG.EXE:
LINK @<<

HOWBIG
HOWBIG.EXE
HOWBIG
COUNT
HOWBIG
<<

HOWBIG.OBJ:
cl -c -AL HOWBIG.C

HOWBIG.DEF
NAME HOWBIG WINDOWCOMPAT

HOWBIG.OBJ

HOWBIG.C HOWBIG.MAK HOWBIG.DEF

DESCRIPTION 'simple 16-32 EXE example
Copyright (c) 1992-1995 by Arthur Panov.
All rights reserved. '

STACKSIZE 16384

COUNT.C
#define INCL_DOSFILEMGR
#include <os2.h>
#include <stdio.h>
#include <stdlib.h>

ULONG _Farl6 _Pascal HowMany(USHORT *_Segl6 usCheckSum,char
*_Segl6);

ULONG _Farl6 Pascal HowMany(USHORT *_Segl6 usCheckSum,char
*_Segl6 szFileName)

#define MY MAX COUNT 10000
APIRET re = O;
FILESTATUS3 fsts3Info;
ULONG ulCount = O;
UCHAR *pBigBuffer = 0;
HFILE hFileHandle;
ULONG ulAction = OL;
ULONG ulBytes = OL;

printf("\n Now inside 32-bit %s",
FILE);

printf("\n size of usCheckSum (USHORT * _Segl6) %d",
sizeof(USHORT *_Segl6));

printf("\n size of szFileName (char* _Segl6 %d",
sizeof(char *_Segl6));

re DosQueryPathinfo(szFileName,
FIL_STANDARD,
&fsts3Info,
sizeof(FILESTATUS3));

if (re)
return (0);

else
{

pBigBuffer = malloc(fsts3Info.cbFileAlloc);
if (pBigBuffer)
{

re= DosOpen((PSZ)szFileName,
&hFileHandle,

if (re)
{

&ulAction,
OL,
FILE_READONLY,
OPEN_ACTION_OPEN_IF_EXISTS,
OPEN_FLAGS_SEQUENTIALI

OPEN_SHARE_DENYREADWRITEI
OPEN_ACCESS_READONLY,

OL);

printf("\n\n Could not open <BIGFILE>, rc=%d\n\n",
re);

return (0);

else
{

re DosRead(hFileHandle,
pBigBuffer,
fsts3Info.cbFile,
&ulBytes);

if (re 11 fsts3Info.cbFile != ulBytes)
{

printf("\n\n Could not read the data
rc=%d, FileSize=%d, BytesRead=%d\n",

re,
fsts3Info.cbFile,
ulBytes);

return (0);

else
{

DLLs-93

\

94 - The Art of OS/2 Warp Programming

else
{

*usCheckSum = O;
do
{

*usCheckSum += (USHORT} (*pBigBuffer++};
ulCount++;
fsts3Info.cbFile--;
while (fsts3Info.cbFile};

printf(
"\n\n Could not allocate enough space to read <BIGFILE>\n"}

,
return (0);

}
free(pBigBuffer};
re = DosClose(hFileHandle};
printf ("\n About to leave the 32-bit %s. \n",

FILE};
return (ulCount} ;

COUNT.MAK
ALL: count.DLL count.LIB

count.LIB: count.DLL
IMPLIB count.LIB count.DEF

count.DLL:
LINK386 /NOI @<<

count
count.DLL
count
OS2386
count
<<

count.OBJ

count.OBJ: count.C count.MAK count.DEF
ICC -c+ -Ge- -Kb+ -ss+ count.c

COUNT.DEF
LIBRARY COUNT
DESCRIPTION 'simple 16-32 DLL example

Copyright (c} 1992-1995 by Arthur Panov.
All rights reserved.'

DATA MULTIPLE NONSHARED
EXPORTS

HOWMANY
STACKSIZE 16384

DLLs-95

Pointer Declarations
When passing a pointer to a 16-bit function from a 32-bit program, the _Segl6 type qualifier should be
used. For example:

char * _Segl6 ptrForl6Bit ;

declares this pointer to be a segmented pointer that is usable in 16-bit functions. It is also usable in a 32-bit
program.

Calling a 16-Bit DLL from a 32-Bit Program
A similar transition takes place when calling the 16-bit DLL from a 32-bit .EXE. The function declarations
utilize the same keywords that were used in the 16-bit to 32-bit example earlier. This particular program
attempts to determine whether the computer's serial ports utilize the faster buffered I/O National 16550
UARTs (Universal Asynchronous Receiverffransmitter). In order to do this, the program employs a 16-bit
I/O DLL called 16BITIO.DLL. This DLL contains two functions, my_inp and my_outp. These functions
will directly input or output a single byte from or to the specified I/O port. A 16-bit DLL is used to
demonstrate how quickly the presence of the National 16550 UART can be determined. The algorithm for
determining the presence of the UART is trivial and is described in the National UART Devices Data Book.

Gotcha!
In order to perform direct h/w I/O the code must run at the RING 2 Input/Output
Privilege Level (IOPL). This is why the appropriate CODE statement is found in the
DEF file for the 16BITIO.DLL. Unfortunately, there is no IOPL support for the 32-bit
DLLs; thus 16-bit IOPL DLLs must be used in such cases. This may change in future
releases, but for now we are limited to using 16-bit code.

AUT16550.C
/*
/*
/*
/*
/*
/*
/*
/*
I*
/*
/*
/*
/*

Assume */
*/

COMl -> Ox3F8 */
COM2 -> Ox2F8 */

*/
One attempts to first clear the 16550 FIFO by writing a OxOO to*/
the FIFO Control register at offset Ox02. Then one attempts to*/
enable the FIFOs by setting bitO of the FIFO Control register*/
at offset Ox02. Reading the Interrupt Identification register*/
at offset Ox02 will tell one if 16550 is present. */

Automatic Loading of DLL functions
*/
*/
*/

#include <stdio.h>
#include <stdlib.h>
#include "autl6550.h"
int main(void);

#define BIT_6_7_SET OxOOCO
int main(void)

unsigned Byte = O;

printf{"\n\n Attempting to find 16550 UART ... ");/*test

96 - The Art of OS/2 Warp Programming

my_outp(MY_COMl+MY_FIFO_CTRL,
OxOO);

Byte= my_inp(MY_COMl+MY_INT_ID);
Byte &= BIT_6_7_SET;
if (!Byte)
{

my_outp(MY_COMl+MY_FIFO_CTRL,

CO Ml */

/* Clear the FIFO reg */

OxOl); /*Set the FIFO reg */
if (my_inp(MY_COMl+MY_INT_ID)&BIT_6_7_SET)

printf(
"\n\n 16550 appears to be present for COM1->0x3F8.\n")

else
printf(

"\n\n 16550 appears to be absent for COM1->0x3F8.\n")

else
{

printf(
"\n\n Unknown error for COM1->0x3F8. Exiting ... \n\n");

return (-1);
/* test COM2 loop? :) *I

my_outp(MY_COM2+MY_FIFO_CTRL,
Ox00); /*Clear the FIFO reg */

if (!(Byte= (my_inp(MY_COM2+MY_INT_ID)&BIT_6_7_SET)))
{

my_outp(MY_COM2+MY_FIFO_CTRL,
OxOl); /* Set the FIFO reg */

if (my_inp(MY_COM2+MY_INT_ID)&BIT_6_7_SET)
printf(

"\n 16550 appears to be present for COM2->0x2F8.\n\n")

else
printf (

"\n 16550 appears to be absent for COM2->0x2F8.\n\n")

else
{

printf(
"\n\n unknown error for COM2->0x2F8. Exiting ... \n\n");

return (-1);

return (0);

AUT16550.H
/* Header file for the 16-bit LIB/DLL used to perform IOPL i/o calls */
/* A. Panov 1993,1994,1995 */

extern unsigned short _Farl6 _Pascal my_inp (unsigned short);
extern unsigned short _Farl6 _Pascal my_outp (unsigned short, unsigned short);

#define MY_COMl
#define MY_COM2
#define MY_INT_ENABLE
#define MY_INT_ID
#define MY_FIFO_CTRL

Ox3F8
Ox2F8
1
2
2

#define MY_LINE_CTRL 3
#define MY_MODEM_CTRL 4
#define MY_LINE_STATUS 5
#define MY_MODEM_STATUS 6
#define MY_SCRATCH 7

AUT16550.MAK
ALL: AUT16550.EXE

AUT16550.EXE:
LINK386 /NOI @<<

AUT16550
AUT16550
AUT16550
OS2386+16bitio
AUT16550
<<

AUT16550.0BJ

AUT16550.0BJ: AUT16550.C AUT16550.MAK AUT16550.DEF
ICC -c+ -Gm+ -Kb+ -Sm -SS+ AUT16550.C

AUT16550.DEF
NAME AUT16550 WINDOWCOMPAT
DESCRIPTION 'AUT16550 example

Copyright (c) 1992-1995 by Arthur Panov.
All rights reserved. '

STACKSIZE 16384

16BITIO.C
/* 16-bit I/0 dll

_acrtused = 0;

#include <conio.h>
int far _cdecl my_inp(unsigned);

int far _cdecl my_outp(unsigned,unsigned);
unsigned far _cdecl my_inpw(unsigned);
unsigned far _cdecl my_outpw(unsigned,unsigned);

int far _cdecl my_inp(unsigned usPort)
{

return (inp(usPort));

int far _cdecl my_outp(unsigned usPort,unsigned usValue)
{

return (outp(usPort,
usValue));

unsigned far _cdecl my_inpw(unsigned usPort)
{

return (inpw(usPort));

unsigned far _cdecl my_outpw(unsigned usPort,unsigned usValue)

*/

DLLs-97

98 - The Art of OS/2 Warp Programming

I }{ return (outpw(usPort,
usValue));

16BITIO.MAK
ALL: 16BITIO.DLL 16BITIO.LIB

16BITIO.LIB: 16BITIO.DLL
IMPLIB 16BITIO.LIB 16BITIO.DEF

16BITIO.DLL:
LINK /NOI @<<

16BITIO
16BITIO.DLL
16BITIO

16BITIO
<<

16BITIO.OBJ

16BITIO.OBJ: 16BITIO.C
cl -c -AL -G2s -Fe 16BITIO.C

16BITIO.DEF
LIBRARY INITINSTANCE
PROTMODE
DESCRIPTION '16bitIO example

Copyright (c) 1992-1995 by Arthur Panov.
All rights reserved. '

DATA NONSHARED
SEGMENTS _IOSEG CLASS 'IOSEG_CODE' IOPL
EXPORTS

_my_inp 1
_my_outp 2
_my_inpw 1
_my_outpw 2

STACKSIZE 4096

Loading/Unloading of DLLs
As was mentioned earlier, developers have two choices about loading and unloading the DLLs. They may
choose to have the system do the work for them automatically, or they may decide to have complete
control over how DLL functions are loaded, unloaded, and called.

The automatic loading and unloading of DLLs is the most headache-free, low-maintenance option. But it
does have some drawbacks. The application cannot be started without the DLL being present in the
LIBPATH. Nor can the resources used by the DLL be freed up until the application exits. If resource
considerations are of great importance, the manual method of loading and unloading DLLs must be used.
The benefits of manual manipulation of DLL functions are obvious: low memory usage, no initialization of
DLLs at application startup time, resources can be freed when not needed, application can recover if DLL
is missing or corrupted, and so on. The drawback to using the manual option is complexity.

DLLs-99
The previous example of 32-bit to 16-bit CHK16550.EXE is used here to illustrate the manual loading,
usage, and unloading of a DLL. First a call to the DosLoadModule is made.

APIRET DosLoadModule(PSZ pszName, ULONG cbName,
PSZ pszModuleName, PHMODULE phMod)

pszName is the address of buffer used in case of failure; on output it will contain the name of the object that
caused the failure. cbName is the size of the pszName buffer. pszModuleName is the name of the dynamic
link library, and phMod is a pointer that on output contains the handle for the dynamic link module.

Next, the starting address of a function is found using the DosQueryProcAddr.

APIRET DosQueryProcAddr(HMODULE hmod, ULONG ulOrd,
PSZ pszName, PFN *ppfn)

hmod is the dynamic link module handle. ulOrd is the ordinal number of the function whose address is to
be found. If this value is 0, the pszName argument is used to find the desired function. pszName contains
the function name that is being referenced. ppfn is a pointer to a PFN that on output contains the procedure
address.

Once the addresses of my_inp and my_outp are known, the program runs the same way. Last, the
DosFreeModule is called to release the DLL and effectively unload it from CHK16500.EXE's memory
space.

APIRET DosFreeModule(HMODULE hmod)

This function has only one parameter, hmod, which is the handle of the module that is to be freed.

MAN16550.C
/* Assume
/*
/* COMl -> Ox3F8
/* COM2 -> Ox2F8
/*

*/
*/
*/
*/
*/

/*One attempts to first clear the 16550 FIFO by writing a OxOO to*/
/*the FIFO Control register at offset Ox02. Then one attempts to*/
/*enable the FIFOs by setting bitO of the FIFO Control register*/
/*at offset Ox02. Reading the Interrupt Identification register*/
/*at offset Ox02 will tell one if 16550 is present. */
/* */

#define INCL_DOSMODULEMGR
#include <os2.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "manl6550.h"
int main(void);

#define BIT_6_7_SET OxOOCO
#define IGNORE ORDINAL_NUMBER 0
int main(void)

unsigned

HMODULE
APIRET
UCHAR

Byte = O;

hmod;
re = O;
szDLLName[CCHMAXPATH] ;/* CCHMAXPATH ->

I 00 - The Art of OS/2 Warp Programming

UC HAR
bsedos.h via toolkit */

szBadName[CCHMAXPATH];/* Load the
16bitio.dll */

strcpy(szDLLName,
".\\16bitio.dll"); /* Look for DLL in the

same directory */
re DosLoadModule(szBadName,

CCHMAXPATH-1,
szDLLName,
&hmod);

if (re)
{

printf("\n Could not load %s successfully, bad %s, re \n"

szDLLName,
szBadName,
re);

return (-1);

else
printf("\n Loaded %s successfully\n",

szDLLName); /*Get the my_inp
function address */

re DosQueryProcAddr(hmod,
IGNORE_ORDINAL_NUMBER,
11 MY_INP 11 ,

(PFN *) &my_inp);

if (re)
{

printf (• \n Could not find address for my_inp, re \n",
re);

DosFreeModule(hmod);
return (-1);

else
printf (• \n Found my_inp () function address\n");/* Get

the my_outp function
address */

re DosQueryProcAddr(hmod,
IGNORE_ORDINAL_NUMBER,
11 MY_OUTP 11 ,

if (re)
{

(PFN *) &my_outp);

printf (• \n Could not find address for my_outp, re \n",
re);

DosFreeModule(hmod);
return (-1);

else
printf (" \n Found my_outp () function address\n");

printf("\n\n Attempting to find 16550 UART ... ");/*test
COMl */

my_outp(MY_COMl+MY_FIFO_CTRL,
OxOO);

Byte= my_inp(MY_COMl+MY_INT_ID);
Byte &= BIT_6_7_SET;
if (!Byte)
{

my_outp(MY_COMl+MY_FIFO_CTRL,

/* Clear the FIFO reg */

OxOl); /*Set the FIFO reg */
if (my_inp(MY_COM1+MY_INT_ID)&BIT_6_7_SET)

printf(

"\n\n 16550 appears to be present for COM1->0x3F8.\n")

else
printf(

"\n\n 16550 appears to be absent for COM1->0x3F8.\n")

else
{

printf(
"\n\n Unknown error for COM1->0x3F8. Exiting ... \n\n");

DosFreeModule(hmod);
return (-1);

} /* test COM2 loop? :) */
my_outp(MY_COM2+MY_FIFO_CTRL,

OxOO); /* Clear the FIFO reg */
if (!(Byte= (my_inp(MY_COM2+MY_INT_ID)&BIT_6_7_SET)))
{

my_outp(MY_COM2+MY_FIFO_CTRL,
OxOl); !* Set the FIFO reg */

if (my_inp(MY_COM2+MY_INT_ID)&BIT_6_7_SET)
printf (

"\n 16550 appears to be present for COM2->0x2F8.\n\n")

else
printf (

"\n 16550 appears to be absent for COM2->0x2F8.\n\n")

else
{

printf(
"\n \n Unknown error for COM2->0x2F8. Exiting . . . \n \n") ;

DosFreeModule(hmod);
return (-1);

/**/
/* Free the 16bitio.dll module */
/**/

re= DosFreeModule(hmod);

if (re)
{

printf("\n Could not free %s successfully, re \n",
szDLLName,
re);

return (-1);
}

else
printf("\n Freed %s successfully\n",

szDLLName);

return (0);

MAN16550.H
!* Header file for the 16-bit LIB/DLL used to perform IOPL i/o calls */
/*A. Panov 1993,1994,1995 */

unsigned short (*
unsigned short (*

_Far16 _Pascal my_inp) (unsigned short);
_Far16 _Pascal my_outp) (unsigned short, unsigned short);

DLLs-101

I 02 - The Art of OS/2 Warp Programming

#define MY_COMl
#define MY_COM2
#define MY_INT_ENABLE
#define MY_INT_ID
#define MY_FIFO_CTRL
#define MY_LINE_CTRL
#define MY_MODEM_CTRL
#define MY_LINE_STATUS
#define MY_MODEM_STATUS
#define MY_SCRATCH

MAN16550.MAK
ALL: MAN16550.EXE

MAN16550.EXE:
LINK386 /NOI @<<

MAN16550
MAN16550
MAN16550
OS2386
MAN16550
<<

Ox3F8
Ox2F8
1
2
2
3
4
5
6
7

MAN16550.0BJ

MAN16550.0BJ: MAN16550.C MAN16550.MAK MAN16550.DEF MAN16550.H
ICC -c+ -Gm+ -Kb+ -Sm -SS+ MAN16550.C

MAN16550.DEF
NAME MAN16550 WINDOWCOMPAT
DESCRIPTION 'MAN16550 example

Copyright (c) 1992-1995 by Arthur Panov.
All rights reserved.'

STACKSIZE 16384

Gotcha!
If using a DosExitList in a DLL, the DLL cannot be freed via DosFreeModule until the
exit list function has run

DLLs-103

Optimizing Performance in DLLs
System performance can be improved significantly by efficient use of DLLs. These performance
improvements can be gained from something as simple as combining several smaller DLLs into one larger
one, or by using David Reich's "aliasing" technique in helping the fix-up problems. The following
checklist lists some good DLL candidates.

1. Rarely called functions
2. Functions that add functionality to the base product
3. Functions that remove functionality from the base product
4. Functions that can be shared among applications
5. Functions with frequently changing internal implementation
6. Internationalization enabling functions
7. Help and Message type functions

Chapter 7

Exception Handling

OS/2 provides an opportunity for a program to interrupt system errors and handle them in their own
manner. These system "errors" are known as exceptions and are not really errors, but more abnormal
conditions. Some types of exceptions are guard-page exceptions, divide-by-zero exceptions, illegal
instruction, and access violation (or protection violation). Most everyone has seen the black protection
violation screen, which only lets the user end the program. Wouldn't it be nice to intercept that exception
and either fix the problem ahead of time or at least provide an error message that was somewhat intelligible
to the user? Exception handlers are the answer.

There are two kinds of exceptions generated by the operating system, asynchronous exceptions and
synchronous exceptions. Asynchronous exceptions are caused by events external to a thread. Synchronous
exceptions are caused by events internal to a thread. Some common synchronous exceptions include
guard-page exceptions, divide-by-zero exceptions, and access violations. All the asynchronous exceptions
generate one of two exception types, XCPT_SIGNAL or XCPT_ASYNC_PROCESS_TERMINATE.
Asynchronous exceptions, except for the XCPT_ASYNC_PROCESS_TERMINATE exception, are also
known as signal exceptions. Signal exceptions are available only to non-Presentation Manager processes.

When a synchronous exception occurs, the operating system sends an exception just to the thread causing
the exception. If the operating system terminates the application, a XCPT_ASYNC_PROCESS_TERMINATE is
sent to all the other threads in the process.

When an asynchronous exception occurs, the operating system sends an exception just to the main thread.

How to Register an Exception Handler
Exception handlers are registered on a per-thread basis using the function

DosSetExceptionHandler(PEXCEPTIONREGISTRATIONRECORD)

Exception handlers can be "nested" as a chain of exception-handling functions. The operating system will
call the last handler in the chain; after that function has completed, it may call the next-to-last handler, and
so on. An exception handler will do its work and then return a value to the operating system that indicates
whether to continue with the next exception handler registered in the chain or to dismiss the exception.

The EXCEPTIONREGISTRA TIONRECORD data structure forms a linked list of exception handlers. The
first element in the structure is a pointer to either the next exception handler or an end-of-list marker, and is
filled in by the operating system. The second is a pointer to the exception-handling function currently
being registered and should be filled in by the developer. When registering an exception handler, this

105

106 - The Art of OS/2 Warp Programming

structure must be local to the procedure that contains DosSetExceptionHandler, as opposed to a global
structure.

Gotcha!
Before exiting your program, make sure you call the function
DosUnsetExceptionHandler. If you do not, you will probably see a stack overflow
error.

What an Exception Handler Looks Like
An exception handler should use the following prototype.

APIRET APIENTRY ExceptHandlerFn(EXCEPTIONREPORTRECORD *, EXCEPTIONREGISTRATIONRECORD *
CONTEXTRECORD *, PVOID reserved)

The EXCEPTIONREPORTRECORD structure is a data structure

struct _EXCEPTIONREPORTRECORD
{
UL ONG
ULONG
struct
PVOID
ULONG
ULONG

} ;

ExceptionNum; /* exception number */
fHandlerFlags;
_EXCEPTIONREPORTRECORD *NestedExceptionReportRecord;
ExceptionAddress;
cParameters; /* Size of Exception Specific Info */
Exceptioninfo[EXCEPTION_MAXIMUM_PARAMETERS];

/* Exception Specfic Info */

that describes the exception and includes the exception type and other exception information.

The EXCEPTIONREGISTRA TIONRECORD structure

struct _EXCEPTIONREGISTRATIONRECORD
{
struct _EXCEPTIONREGISTRATIONRECORD * volatile prev_structure;
_ERR * volatile ExceptionHandler;
} ;

is described in the last section, "How to Register an Exception Handler."

The CONTEXTRECORD * structure

struct _CONTEXT
{
UL ONG
UL ONG
FPREG
ULONG
ULONG
UL ONG
UL ONG
UL ONG
UL ONG
ULONG

ContextFlags;
ctx_env[7];
ctx_stack[8];

ctx_SegGs;
ctx_SegFs;
ctx_SegEs;
ctx_SegDs;
ctx_RegEdi
ctx_RegEsi
ctx_RegEax

ULONG ctx_RegEbx
ULONG ctx_RegEcx
ULONG ctx_RegEdx
ULONG ctx_RegEbp
ULONG ctx_RegEip
ULONG ctx_SegCs;
ULONG ctx_EFlags;
ULONG ctx_RegEsp;
ULONG ctx_SegSs;
};

Exception Handling - 107

is an input/output parameter that contains register contents at the time of the exception. If the exception
handler will return XCPT_CONTINUE_EXECUTION, the structure can be modified. If it is modified
without XCPT_CONTINUE_EXCEPTION being specified, very bad things will happen.

The last parameter, the DISPATCHERCONTEXT structure, is undocumented because it should never be
modified.

The 486 chip uses the address at FS:O to point to the address of the first exception registration record.
Many compilers implement exception handlers by modifying this value directly, rather than using the OS/2
API, in order to improve performance.

Signal Exceptions
Signal exceptions are special types of exceptions generated by only three events: when the user presses
Ctrl+C, when the user presses Ctrl+Break, and when another process terminates the application with the
DosKillProcess function.

In order to receive the Ctrl+C and the Ctrl+Break exceptions, the thread must call
DosSetSignalExceptionFocus. The kill process signal is sent whether this function is used or not.

Dos and Don'ts for Exception Handlers
• Always deregister the exception handler. Some compilers will do this for you if you use the #pragma

handler. This pragma will set and unset the exception handler where necessary. If you use
DosSetExceptionHandler, you must use DosUnsetExceptionHandler.

• Make sure all semaphores are released if the exceptions are not being handled over to the system
default exception handler (by returning XCPT_CONTINUE_EXCEPTION).

• An exception handler needs approximately 1.5K of stack in the process to be called. The process will
be terminated if there is not enough stack space.

• An error in the exception handler may generate a recursive exception condition. This creates a
situation that is very difficult to debug. Life will get much easier for the developer if the exception
handler is unset when a fatal error condition occurs.

DosExitList and Exception Handlers
When all threads in a process receive the process termination exception, a process will execute the
functions specified by DosExitList. The functions DosCreateThread and DosExecPgm should not be used
in an exit list routine.

A Guard Page Example
The following example illustrates guard-page handling. Guard pages provide an extra level of protection
for two things, data and thread stacks. A guard page is like a traffic cop with a large brick wall as a stop

108 - The Art of OS/2 Warp Programming
sign. When someone hits that brick wall, he or she is going to have some reaction, in this case, a guard
page exception. This gives the programmer a chance to clean up the problem. When a page of memory is
committed, it also can be marked as a guard page. If the application writes to the edge of the guard page,
top or bottom, a guard-page exception is generated. The default behavior is designed for dynamic stack
growth, and stacks grow downward. Because of this, the operating system will look to see if the next lower
page is free, and if so, commit it. However, an exception handler gives the programmer some flexibility. If
the application so chooses, it can commit the next higher page in the exception handler, and then return
control back to the function that generated the guard-page exception. This memory management scheme is
the method used by most compilers to control thread stack growth.

GP.C
#define INCL_DOSMEMMGR
#define INCL_DOSEXCEPTIONS
#include <os2.h>
#include <stdio.h>
#define NUM_PAGES 8
#define SZ_PAGE 4096
ULONG MyExceptionHandler(PEXCEPTIONREPORTRECORD pTrap);

PBYTE
BOOL

pbBase;
bGuardUp;

INT main(USHORT usNumArgs,PCHAR apchArgs[])
{

LONG lindex;
EXCEPTIONREGISTRATIONRECORD errRegister;
APIRET arReturn;

pbBase = NULL;

if (usNumArgs > 1)
{

bGuardUp = TRUE;
printf ("Guarding up\n");

else
{

bGuardUp = FALSE;
printf ("Guarding down\n");

/* endif */
errRegister.ExceptionHandler = (_ERR *)&MyExceptionHandler;
arReturn = DosSetExceptionHandler(&errRegister);
printf("DosSetExceptionHandler returns %ld\n",

arReturn);

/**/
/* allocate some memory */
/**/

arReturn = DosAllocMem((PPVOID)&pbBase,
NUM_PAGES *SZ_PAGE,

PAG_READIPAG_WRITE);

printf ("DosAllocMem returns %ld (pbBase = %p) \n",
arReturn,
pbBase);

if (! bGuardUp)
{

!!---
//Commit last page and set to guard page

/!---

arReturn DosSetMem(pbBase+((NUM_PAGES-l)*SZ_PAGE),
SZ_PAGE,
PAG_COMMITjPAG_READjPAG_WRITEj

PAG_GUARD);
printf ("Return Code from DosSetMem, "" %1d - pbBase = %p\n",

arReturn,
pbBase);

/!---
/!Write to pages, from top to bottom

!!---

for (lindex = (NUM_PAGES *SZ_PAGE)-lL; lindex >= OL; lindex
-= OxOOlOL)

else
{

printf("\rWriting to offset Ox%081X",
lindex);

pbBase[lindex] = l;
printf (" \rWritten to offset Ox%081X",

lindex);
/* endfor */

/!---
!! Commit first page and set to guard page

1/---
arReturn = DosSetMem(pbBase,

SZ_PAGE,
PAG_COMMITjPAG_READjPAG_WRITEj

PAG_GUARD) ;
printf ("Return Code from DosSetMem, "" %ld - pbBase = %p\n",

arReturn,
pbBase);

//---
!/Write to pages, from bottom to top

!!---
for (lindex = OL; lindex < (NUM_PAGES *SZ_PAGE); lindex +=

Ox0010L)

printf("\rWriting to offset Ox%081X",
lindex);

pbBase[lindex] = l;
printf ("\rWritten to offset Ox%081X",

lindex);

printf ("\n");

/* endfor
/* endif

*/
*/

!!--
!! Free memory area

!!--
printf ("Freeing pbBase = %p\n",

pbBase);
arReturn = DosFreeMem(pbBase);

printf ("Done\n");
return O;

ULONG MyExceptionHandler(PEXCEPTIONREPORTRECORD perrTrap)
{

ULONG
APIRET
PBYTE

ulReturn

ulReturn;
arReturn;
pbTrap;

XCPT_CONTINUE_SEARCH;

if (perrTrap->ExceptionNum == XCPT_GUARD_PAGE_VIOLATION)

Exception Handling - 109

I I 0 - The Art of OS/2 Warp Programming

DosBeep(300,
100);

printf("\n *** Guard exception *** \n");

pbTrap = (PBYTE)perrTrap->Exceptioninfo[l];
11---
11 Check that the fault is within our memory zone, so that
II we won't interfere with system handling of stack growth
11---
if ((pbTrap >= pbBase) && (pbTrap < pbBase+NUM_PAGES

*SZ_PAGE))

if (! bGuardUp)
{

11---
11 Unguard guard page

11---
arReturn = DosSetMem(pbTrap,

SZ_PAGE,
PAG_READIPAG_WRITE);

printf("DosSetMem returns %ld "
" (pbTrap = Ox%081X) \n",

arReturn,
pbTrap);

11---
11 Commit and guard next page below

11---

printf ("Going down! \n");
pbTrap -= SZ_PAGE;

if ((pbTrap >= pbBase) && (pbTrap < pbBase+NUM_PAGES
*SZ_PAGE))

arReturn = DosSetMem(pbTrap,
SZ_PAGE,
PAG_COMMITIPAG_READIPAG_WRITE

I PAG_GUARD);

printf("DosSetMem returns %ld "
" (pbTrap = Ox%081X) \n",

arReturn,
pbTrap);

} I* endif *I
11---

11 We can continue execution
11---

ulReturn = XCPT_CONTINUE_EXECUTION;

else
{

11---
11 Unguard guard page

11---
arReturn = DosSetMem(pbTrap,

printf

SZ_PAGE,
PAG_READIPAG_WRITE);

("DosSetMem returns %ld (pbTrap = Ox%081X) \n",
arReturn,
pbTrap);

printf ("Going up! \n");
pbTrap += SZ_PAGE;

//---
//Commit and guard next page above

//---
if ((pbTrap >= pbBase) && (pbTrap < pbBase+NUM_PAGES

*SZ_PAGE))

arReturn = DosSetMem(pbTrap,
SZ_PAGE,
PAG_COMMITIPAG_READJPAG_WRITE

I PAG_GUARD) ;

printf("DosSetMem returns %ld "
" (pbTrap = Ox%081X) \n",

arReturn,
pbTrap);

} /* endif */
//---

//We can continue execution
//---

ulReturn = XCPT_CONTINUE_EXECUTION;
/* endif
/* endif
/* endif

*/
*/
*/

return ulReturn;

GP.MAK
GP.EXE:

GP
GP
GP
082386
GP
<<

GP.OBJ:

GP.DEF

LINK386 @<<

ICC -c+ -Kb+ -Ss+ GP.C

NAME GP WINDOWCOMPAT

GP.OBJ

GP.C

DESCRIPTION 'Exception handler example
Copyright (c) 1992-1995 by Kathleen Panov.
All rights reserved. '

STACKSIZE 16384

Exception Handling - 111

When an exception occurs, information about the exception is placed in the
EXCEPTIONREPORTRECORD structure, and a pointer to these structures is passed to the exception
handler.

112 - The Art of OS/2 Warp Programming
struct _EXCEPTIONREPORTRECORD
{

} ;

ULONG ExceptionNum;
ULONG fHandlerFlags;
struct _EXCEPTIONREPORTRECORD *NestedExceptionReportRecord;
PVOID ExceptionAddress;
ULONG cPararneters;
ULONG Exceptionrnfo[EXCEPTION_MAXIMUM_PARAMETERS];

ExceptionNum is the field that tells the type of exception that has oro.nred In ow: case, we're looking for a
XCPT_GUARD_PAGE_ VIOLATION. If the exception is not a guard page, we pass it on through to the
system exception handler by returning XCPT_CONTINUE_SEARCH. If a guard-page exception occurs,
we check to see if we have enough memory to commit one more page. If the memory is available, we
commit another page and set it as a guard page. The last thing we do is return
XCPT_CONTINUE_EXECUTION, which tells the system to bypass the other exception handler and
continue executing the program. The errant function statement will execute correctly, and the program
functions as if no problems had occurred.

Summary
Exception handlers are a flexible way to give the developer control over system errors. Exception handlers
have a lot of restrictions because the process can be dying when the exception handler is executed.
However, with the right amount of prudence, an exception handler provides a powerful tool for error
control.

Chapter 8

Interfacing with OS/2 Devices

The current OS/2 architecture supports three types of device drivers:

• Virtual device drivers (VDD)
• Physical device drivers (PDD)
• Presentation drivers (PD)

VDDs are used primarily by the legacy DOS and Windows applications. The virtualization of the physical
devices provides OS/2 with the ability to control the access to these devices through the Virtual Device
Driver. An example of a VDD is a VMOUSE.SYS or a VCDROM.SYS. The first one provides the virtual
support for the mouse pointer requirements, while the latter one makes sure the CD ROM interfaces for the
DOS and Windows applications are supported correctly.

The PD concerns itself mainly with OS/2' s Presentation Manager support. PDs usually run at Ring 2 or
Ring 3, and enable the Presentation Manager (PM) APis to perform all of the necessary video functions.
These include all aspects of the PM windowing, messaging, and controlling requirements.

The PDDs provide the OS/2 user with the actual access to the standard 1/0 devices. A PDD usually has a
corresponding VDD, which allows the same functionality for the DOS and Windows legacy applications.
The PDDs and VDDs are loaded at system startup and remain loaded for the entire duration of an OS/2
session. PDD architecture also provides OS/2 the flexibility to add nonstandard device support just by
loading the appropriate device driver at startup time. There are two kinds of PDDs: block device drivers
and character device drivers.

A SCSI (Small Computer systems Interface) driver is a type of block device driver. This driver
manipulates the data in blocks of a certain size, and is referred to by the system via a drive letter. A good
example of a PDD is the serial 1/0 device driver. But many character and block device drivers make up the
device driver suite for OS/2.

This chapter offers two examples of how to talk to the serial devices under OS/2's control. The first
example utilizes the preferred device driver interface DosDev/OCtl(), while the second shows how to get to
the 1/0 ports without having to talk to the device driver.

There are obvious advantages for using the device driver interface:

1. Serialization/synchronization controls are built into the driver.
2. All OS/2 device drivers are interrupt driven.

113

114 - The Art of OS/2 Warp Programming
3. It provides a well-defined interface for upward OS/2 migration.
4. Devices can be shared by multiple users.

Generally, the OS/2 applications gain access to the devices through the IOCTL interface, while the DOS
applications can perform the same 1/0 functions that are allowed under real DOS (not VDM). Only 16-bit
OS/2 code can run at Ring 2 privilege level, which allows the code direct 1/0 access (IOPL - means 1/0
Privilege Level). Occasionally it is advantageous to use the IOPL code to perform a quick read or write
from or to a particular 1/0 port, but it is not the preferred OS/2 method. For example, if an application is
monitoring room temperature and displays it on the screen, writing a full-blown device driver to access a
particular 110 port on some adapter just to read two bytes of data may not make sense. In this case it is
easier to utilize a 16-bit 1/0 code segment to perform an IN (Input from Port) instruction and read the
temperature data. Synchronization and serialization do not have to be worried about. On the other hand, if
the program reads the temperature and then decides to adjust the environmental conditions, a device driver
must provide serialization and locking controls.

Serial Interface Example Using DosDevIOCtl
The first of the two serial 1/0 examples deals with reading the data from the keyboard and transmitting all
of the keystrokes to the Ox3F8 1/0 port (COMl).

In order to gain access to the COMl, DEVICE=COM.SYS must be executed correctly at system startup
and COM.SYS must be loaded. Next, a DosOpen call is issued to the device driver with "$COM1" as the
filename. The system is smart enough to recognize the fact that the user is looking to gain access to the
COMl 1/0 port; if no other program is using the device, the file handle for the COMl device is granted.
Using this file handle, the process can now issue any DosDevIOCtl call with the appropriate asynchronous
parameters to gain access to the control functions of the NS 8250/16450/16550 UARTs. Issuing DosRead
and DosWrite requests to the system using the same file handle results in the data being transferred
between the application buffers and the hardware UART.

The program uses the main thread to perform all of the keyboard read functions. The characters read are
transmitted immediately to the COMl 1/0 Port via Dos Write function. However, a separate thread is used
to read the data from COMl and display it on the screen. Since the device driver is capable of processing
both the read and the write requests simultaneously, a better-designed communications program will
dedicate a thread for each major function, such as read or write.

32 TERM.C
#define
#define
#define
#define
#define
#define
#include
#include
#include
#include
#define
#define
#define
#define
struct
{

BYTE

BYTE

INCL_OS2
INCL_KBD
INCL_VIO
INCL_DOSPROCESS
INCL_DOSDEVICES
INCL_DOSDEVIOCTL
<os2.h>
<stdio.h>
<stdlib.h>
<conio.h>
STACK_SIZE 8192
BPS 9600
KBD_HANDLE 0
VIO_HANDLE 0

dataBits;

parity;

Interfacing with OS/2 Devices - 115
BYTE

lineCtrl

8,
0,
0

DCB INFO

HF ILE
unsigned char

stopBits;

dcbinfo;

hCom;
inBuffer [256];

void ComThread(void);

II 8,N,l

II COM handle
II input buffer

/***/
!* main */
/***/

int main(void)
{

APIRET
UL ONG
ULONG
ULONG
TID
ULONG

ulAction,rc = O;
ulBaudRate = BPS;
ulParmLen = O;
ulBytesWritten;
ComThreadid = O;
ulKbdChar = O;

printf("\n\n Each keystroke is echoed to COMl, 9600,8,N,l");
printf("\n Ctrl-C or Ctrl-Brk to exit ... \n\n");

/*Open and initialize COMl

if (Dos Open ((PU CHAR) "COMl" ,
&hCom,
&ulAction,
OL,
0,
1,
Oxl2,
OL))

printf("COMl not available or COMOx.SYS not loaded\n");
exit (1);

/*Set data rate to 9600bps and line format to N81

ulParmLen = sizeof(ulBaudRate);

re= DosDevIOCtl(hCom,

ulParmLen

IOCTL_ASYNC,
ASYNC_SETBAUDRATE,
&ulBaudRate,
ulParmLen,
&ulParmLen,
0,
0,
0);

sizeof(lineCtrl);

*/

*/

116 - The Art of OS/2 Warp Programming
re = DosDevIOCtl(hCom,

IOCTL_ASYNC,
ASYNC_SETLINECTRL,
&lineCtrl,
ulParmLen,
&ulParmLen,
0'
0'
0);

/*Set device control block parameters

ulParmLen = sizeof(DCBINFO);

re = DosDevIOCtl(hCom,
IOCTL_ASYNC,
ASYNC_GETDCBINFO,
0,
0,
0,
&dcbinfo,
ulParmLen,
&ulParmLen) ;

dcbinfo.usWriteTimeout = 6000;

*/

/**/
/* 60 second write timeout */
/**/

dcbinfo.usReadTimeout = 6000;

/**/
/* 60 second readtimeout */
/**/

dcbinfo.fbCtlHndShake = MODE_DTR_CONTROL;

/**/
/* enable DTR */
/**/

dcbinfo.fbFlowReplace = MODE_RTS_CONTROL;

/**/
/* enable RTS *I
/**/

dcbinfo.fbTimeout = MODE_WAIT_READ_TIMEOUT;

/**/
/* wait-for-something reads */
/**/

ulParmLen = sizeof(DCBINFO);

re= DosDevIOCtl(hCom,
IOCTL_ASYNC,
ASYNC_GETDCBINFO,
&dcbinfo,
ulParmLen,
&ulParmLen,
0,
0,
0);

/*Create a thread to monitor the serial port

re = DosCreateThread(&ComThreadid,
(PFNTHREAD)&ComThread,
0'
CREATE_READY,
STACK_SIZE) ;

/*Monitor the keyboard and output typed characters
Hit Ctrl-C to exit (primitive termination)

while (!re)
{

if (kbhi t ())
{

ulKbdChar = (ULONG)getche();
re = DosWrite(hCom,

printf(

&ulKbdChar,
1,
&ulBytesWritten);

Interfacing with OS/2 Devices - 117
*/

*/

"\n\n Could not write to COMl, killing the MAIN thread.\n\n")

return (re);

/***/
/* Thread to read characters from COMl and write to screen */
/***/

void ComThread(void)
{

ULONG
APIRET

while (!re)
{

ulBytesRead
re = O;

re DosRead(hCom,
inBuffer,
1,
&ulBytesRead) ;

if (ulBytesRead)
{

0, i;

for (i = O; i < ulBytesRead; i++)
inBuffer[i] &= Ox7f;

VioWrtTTY(inBuffer,

}

ulBytesRead,
VIO_HANDLE);

printf("\n\n Could not read from COMl");
printf ("killing the LISTEN thread. \n\n");

118 -The Art of OS/2 Warp Programming
32_ TERM.MAK
ALL: 32_TERM.EXE

32_TERM.EXE:

32_TERM
32_TERM
32_TERM
OS2386
32_TERM
<<

LINK386 /NOI @<<
32_TERM.OBJ

32_TERM.OBJ: 32_TERM.C
ICC -c+ -Gm+ -Kb+ -Sm -Ss+ 32_TERM.C

32_ TERM.DEF
NAME 32_TERM WINDOWCOMPAT
DESCRIPTION '32_TERM example

Copyright (c) 1992-1995 by Arthur Panov.
All rights reserved. '

STACKSIZE 16384

The COM.SYS expects the following to be true:

COMl
COM2

Must reside at Ox3F8 and use the interrupt level 4.
Must reside at Ox2F8 and use the interrupt level 3.

The COM.SYS driver provides support for the UART control functions and the RS232C interface only.
No specific devices are supported directly by the COM.SYS driver. It is left up to the applications to
create subsystems or standalone programs to support the RS232C devices (modems and the like). The
COM.SYS is a fully interrupt driven driver and has support for extended hardware buffering that is offered
by the NS 16550 UARTs.

The PDD utilizes a memory buffer between the operating system and the UARTs, and data is copied in and
out of the buffer from and to the UART transmit/receive registers. Once the user has obtained the file
handle for a particular 1/0 port (COMl, COM2, etc.), he or she can use this handle to issue DosRead and
DosWrite requests to move the data between an application and an 1/0 port. Currently, the system
maintains a 1,024-byte receive and a 128-byte transmit buffer for the COM1-COM4 1/0 ports when the
driver is in the non-DMA mode. When the driver is in the enhanced DMA mode, there are two 1,024-byte
receive queues and one 255-byte transmit queue. OS/2 does not guarantee that the sizes will remain
constant with each version of the operating system, and thus the sizes are subject to change. The operating
system also does not guarantee packet delivery to the device drivers in the same order that they were issued
by the application due to the multitasking nature of OS/2.

Serial Interface Example Using inp
The second example is much simpler than the first. As was mentioned before, only 16-bit code is allowed
to execute with IOPL flag enabled. Taking this into consideration we can create a very handy 16-bit DLL
like 16BITIO.DLL that exports the inp(), inpw(), outp(), and outpw() calls. Any 32-bit application can link
with the import 16BITIO.LIB library and allow direct 1/0 functionality. This particular example uses a

Interfacing with OS/2 Devices - 119
very simple algorithm to check for the presence of an NS 16550 UART by issuing a series of inp() and
outp() calls to the particular COM 1 and COM2 1/0 port ranges.

CHK16550.C
/* Assume

COMl -> Ox3F8
COM2 -> Ox2F8

One attempts to first clear the 16550 FIFO by writing a OxOO
to the FIFO Control register at offset Ox02. Then one attempts
to enable the FIFOs by setting bitO of the FIFO Control
register at offset Ox02. Reading the Interrupt Identification
register at offset Ox02 will tell one if 16550 is present.

#include <stdio.h>
#include <stdlib.h>
#include "chk16550.h"
int main (void) ;

#define BIT_6_7 SET OxOOCO
int main(void)

unsigned Byte = O;

printf("\n\n Attempting to find 16550 UART ... ");/* test

*/

COMl */
my_outp(MY_COMl+MY_FIFO_CTRL,

OxOO);
Byte= my_inp(MY_COMl+MY_INT_ID);
Byte &= BIT_6_7_SET;
if (!Byte)
{

my_outp(MY_COMl+MY_FIFO_CTRL,

/* Clear the FIFO reg */

Ox01); /*Set the FIFO reg */
if (my_inp(MY_COM1+MY_INT_ID)&BIT_6_7_SET)

printf(
"\n\n 16550 appears to be present for COM1->0x3F8. \n")

else
printf(

"\n\n 16550 appears to be absent for COM1->0x3F8.\n")

else
{

printf(
"\n\n Unknown error for COM1->0x3F8. Exiting ... \n\n");

return (-1);
/* test COM2 loop? :) */

my_outp(MY_COM2+MY_FIFO_CTRL,
OxOO); /*Clear the FIFO reg */

if (!(Byte= (my_inp(MY_COM2+MY_INT_ID)&BIT_6_7_SET)))
{

my_outp(MY_COM2+MY_FIFO_CTRL,
Ox01); /* Set the FIFO reg */

120 - The Art of OS/2 Warp Programming
if (my_inp(MY_COM2+MY_INT_ID)&BIT_6_7_SET)

printf(
"\n 16550 appears to be present for COM2->0x2F8.\n\n")

else
printf(

"\n 16550 appears to be absent for COM2->0x2F8.\n\n")

else
{

printf(
"\n\n Unknown error for COM2->0x2F8. Exiting ... \n\n");

return (-1);

return (0);

CHK16550.H
/* Header file for the 16-bit LIB/DLL used to perform IOPL i/o calls */
/*A. Panov 1993,1994,1995 */

extern unsigned short _Far16 _Cdecl my_inp (unsigned short);
extern unsigned short _Farl6 _Cdecl my_outp (unsigned short, unsigned short);

#define MY_COMl
#define MY_COM2
#define MY_INT_ENABLE
#define MY_INT_ID
#define MY_FIFO_CTRL
#define MY_LINE_CTRL
#define MY_MODEM_CTRL
#define MY_LINE_STATUS
#define MY_MODEM_STATUS
#define MY_SCRATCH

CHK16550.MAK
ALL: CHK16550.EXE

CHK16550.EXE:
LINK386 /NOI @<<

CHK16550
CHK16550
CHK16550
OS2386+16bitio
CHK16550
<<

Ox3F8
Ox2F8
1
2
2
3
4
5
6
7

CHK16550.0BJ

CHK16550.0BJ: CHK16550.C
ICC -c+ -Gm+ -Kb+ -Sm -SS+ CHK16550.C

Interfacing with OS/2 Devices - 121
CHK16550.DEF
NAME CHK16550 WINDOWCOMPAT
DESCRIPTION 'CHK16550 example

Copyright (c) 1992-1995 by Arthur Panov.
All rights reserved. '

STACKSIZE 16384

16BITIO.C
!* 16-bit I/0 dll

_acrtused = O;

#include <conio.h>
int far _cdecl my_inp(unsigned);

int far _cdecl my_outp(unsigned,unsigned);
unsigned far _cdecl my_inpw(unsigned);
unsigned far _cdecl my_outpw(unsigned,unsigned);

int far _cdecl my_inp(unsigned usPort)
{

return (inp(usPort));

int far _cdecl my_outp(unsigned usPort,unsigned usValue)
{

return (outp(usPort,
usvalue));

unsigned far _cdecl my_inpw(unsigned usPort)
{

return (inpw(usPort));

unsigned far _cdecl my_outpw(unsigned usPort,unsigned usValue)
{

return (outpw(usPort,
usValue));

16BITIO.MAK
ALL: 16BITIO.DLL 16BITIO.LIB

16BITIO.LIB: 16BITIO.DLL
IMPLIB 16BITIO.LIB 16BITIO.DEF

16BITIO.DLL:
LINK /NOI @<<

16BITIO
16BITIO.DLL
16BITIO

16BITIO
<<

16BITIO.OBJ

16BITIO.OBJ: 16BITIO.C
cl -c -AL -G2s -Fe 16BITIO.C

*!

122 - The Art of OS/2 Warp Programming
16BITIO.DEF
LIBRARY INITINSTANCE
PROTMODE
DESCRIPTION '16bitIO example

Copyright (c) 1992-1995 by Arthur Panov.
All rights reserved. '

DATA NONSHARED
SEGMENTS IOSEG CLASS 'IOSEG_CODE' IOPL
EXPORTS

_my_inp 1
_my_outp 2
_my_inpw 1
_my_outpw 2

STACKSIZE 4096

The ASYNC PDD is covered in much greater detail in the IBM Physica[Device Driver Reference manual
(10G6266), which is part of the OS/2 Toolkit Technical Library.

Chapter 9

Introduction to Windows

Introduction
The basic building block for all Presentation Manager (PM) programming is a window. Most items
displayed on the screen are windows, of some shape or fashion. A window is designed to react to
messages sent to it either from the system or from another window. These messages are placed into a
message queue that is unique to each PM application. A message is used to signal events that happen to a
window. For example, a WM_CREATE message is sent when a window is halfway through its creation
process; a WM_SIZE message is sent after the user has sized the window; a WM_DESTROY message just
before the destruction of the window is complete. Each window has a specific window procedure that is
used to respond back to the system when a message is sent. The programmer is responsible for creating
this window procedure. The window procedure is a switch statement that will filter out certain messages
that are of interest to the application. The messages that are not interesting can be passed on to a default
window procedure or a default dialog procedure. For instance, the programmer may want to initialize
some data in the WM_CREATE message processing or free up memory when the WM_DESTROY is
received.

What Is a Window?
The first thing to understand when beginning Presentation Manager programming is the concept of a
window. A window is a graphical image of a rectangle that sits on the screen and is used to provide a
uniform interface with which a user can interact. (See Figure 9.1.)

123

124 - The Art of OS/2 Warp Programming

~I Title Bar

Figure 9.1 A window.

A window can be sized larger or smaller, it can be opened or closed, it can be made visible or invisible.
Suffice it to say that there are a lot of things to do with a window.

Figure 9.2 looks like one window but, in reality, it is five windows:

• The frame window
• The title bar
• The system menu
• The maximize/minimize buttons
• The client window

System
Menu

Iv I I Title bar

Frame Window

Client Window

Introduction to Windows - 125

Min/Mox
Buttons

--------,

Figure 9.2 Drawing of a window's components.

Each of the five windows has a window procedure associated with it. In most cases, the programmer will
be able to use the system-defined window procedures for all but the client window. The window procedure
is a function that tells the window how to behave. Windows that share the same window procedure belong
to the same window class. This is a familiar concept for those readers acquainted with object-oriented
programming.

Imagine a fast food restaurant. Each item on the menu could be considered one class-a hot dog class, a
hamburger class, and a pizza class. Suppose mustard, mayo, relish, or cheese could be put on a hot dog, in
any combination. Each of these condiments would be a hot dog style.

The same is true for window classes. There are many predefined window classes, including
some classes specific to pen computing and the multimedia extensions. The classes specific to
Presentation Manager are:

WC_FRAME
WC_COMBOBOX
WC_BUTTON
WC_MENU
WC_STATIC
WC_ENTRYFIELD
WC_LISTBOX

Frame control class
Combo box control class
Button control class
Menu control class
Static text control class
Entryfield control class
Listbox control class

126 - The Art of OS/2 Warp Programming
WC_SCROLLBAR Scrollbar control class
WC_TITLEBAR Titlebar control class
WC_MLE Multi-line edit control class
WC_SPINBUTTON Spinbutton control class
WC_ CONTAINER Container control class
WC_SLIDER Slider control class
WC_ VALUESET Valueset control class
WC_NOTEBOOK Notebook control class

Each window class is very different from the others. Some of these predefined classes will be covered in
later chapters. The client window, which is the area inside the window frame, belongs to a user-defined
class. Each window class also contains a set of window styles specific to that class. There is a set of class
styles available to all classes. The styles are:

• CS_MOVENOTIFY
• CS_SIZEREDRA W

• CS_HITTEST
• CS_PUBLIC

• CS_FRAME

• CS_CLIPCHILDREN
• CS_CLIPSIBLINGS

• CS_PARENTCLIP

• CS_SA VEBITS

• CS_SYNCPAINT

These styles will be covered in more detail in the section entitled "Window Stylin' ."

Once we know a little bit about the window classes the operating system offers, we can decide which are
best suited for our application, or, as most of us do-it-yourselfers will do, you can create your own. So,
let's do just that.

WINl.C
#define INCL_WIN
#define INCL_GPI

#include <os2.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define CLS_CLIENT "Windowclass"

MRESULT EXPENTRY ClientWndProc HWND hwndWnd,
ULONG ulMsg,
MPARAM mpParml,
MPARAM mpParm2) ;

INT main
{

HAB
HMQ
UL ONG
HWND
HWND
BOOL

VOID)

habAnchor
hmqQueue ;
ulFlags ;
hwndFrame ;
hwndClient
bLoop ;

QMSG qmMsg ;

habAnchor Wininitialize (0) ;
hmqQueue = WinCreateMsgQueue (habAnchor, 0)

WinRegisterClass (habAnchor,
CLS_CLIENT,
ClientWndProc,
0,
0)

ulFlags FCF TITLEBAR I FCF_SYSMENU I FCF_SIZEBORDER I
FCF=MINMAX I FCF_SHELLPOSITION I FCF_TASKLIST

hwndFrame = WinCreateStdWindow (HWND_DESKTOP,
WS_VISIBLE,
&ulFlags,
CLS_CLIENT,
"Titlebar",
OL,
NULLHANDLE,

if (hwndFrame != NULLHANDLE) {

0,
&hwndClient

bLoop = WinGetMsg (habAnchor,
&qmMsg,
NULLHANDLE,
0'
0) ;

while (bLoop) {
WinDispatchMsg habAnchor, &qmMsg
bLoop = WinGetMsg (habAnchor,

&qmMsg,
NULLHANDLE,
0'
0) ;

} /* endwhile */

WinDestroyWindow (hwndFrame)
/* endif */

WinDestroyMsgQueue (hmqQueue
WinTerminate (habAnchor) ;
return 0 ;

MRESULT EXPENTRY ClientWndProc (HWND hwndWnd,
ULONG ulMsg,
MPARAM mpParml,
MPARAM mpParm2)

switch (ulMsg) {
case WM_ERASEBACKGROUND:

return MRFROMSHORT (TRUE

default:
return WinDefWindowProc (hwndWnd,

ulMsg,
mpParml,
mpParm2)

} /* endswitch */

return MRFROMSHORT (FALSE)

Introduction to Windows - 127

128 - The Art of OS/2 Warp Programming
WINI.MAK
WINl.EXE:

WINl
WINl
WINl
OS2386
WINl
<<

LINK386 @<<
WINl.OBJ

WINl.OBJ: WINl.C
ICC -c+ -Kb+ -ss+ WINl.C

WINI.DEF
NAME WINl WINDOWAPI

DESCRIPTION 'Simple window example
Copyright (c) 1992 by Kathleen Panov
All rights reserved. '

STACKSIZE 16384

The INCLUDE Files
The OS/2 Toolkit provides oodles and oodles of header files. These files contain structure definitions,
function prototypes, and many system-defined constants to make OS/2 programs much easier to read. The
large size of these files and the tremendous amount of overhead they create make it advantageous to
selectively pick and choose those parts that are applicable to a program. This is done by placing a series of
#defines before the inclusion of OS2.H. In this program, we will use #define INCL_ WIN.

#define INCL_WIN
#include <os2.h>

This is an all-encompassing define that will include the necessary headers for all the Win ... functions. This
is overkill in most cases, but for our first example we'll keep things simple.

The Window Procedure Definition
MRESULT EXPENTRY ClientWndProc (HWND hwndWnd,

ULONG ulMsg,
MPARAM mpParml,
MPARAM mpParm2)

Window procedures are declared in a very special way, using the prefix MRESULT EXPENTRY. In
OS2DEF.H, these expand to VOID* _System. The return type, MRESULT, gives the window procedure
the freedom to return whatever it needs to by using the VOID * type. The _System tells the C-Set/2
compiler that the operating system will be calling the function. It is a good idea to use the Presentation
Manager-defined data types when dealing with window procedures and messages. There is a good
probability that some definitions will change when moving to other machine architectures, and by using the
defined data types, we save some headaches if we need to port the application to some other version of
OS/2. A more detailed explanation of window procedure is in the section "The Window Procedure
Revisited."

The function's parameters are HWND hwndWnd, ULONG msg, MPARAM mpParml, and MPARAM
mpParm2. This may look very familiar to Microsoft Windows programmers. The variable hwndWnd is a

Introduction to Windows - 129
window handle. Each window has its own unique window handle, and most Win ... functions will include
this as a parameter. In this case, hwndWnd is the window to which the message is being sent. The
parameter ulMsg is the specific message being sent to the window. We will cover messages in more detail
in Chapter 11.

The last two parameters are mpParml and mpParm2, which have the type MP ARAM. These are "shape
shifter" parameters. MPARAM is really a PVOID in disguise. This gives the operating system two 32-bit
spaces to insert whatever data corresponds to the message being sent. These values could be pointers or
short or long integers. For example, the message WM_MOUSEMOVE is sent whenever the mouse is
moved. The first message parameter, mpParml, would contain two SHORTs. The second message
parameter, mpParm2, also contains two SHORTs. Figure 9.3 provides a breakdown of a message
parameter variable.

I Y Coordinate X Coordinate

SHORT2{ 16 bits) SHORT1 (16 bits)

32-bit MPARAM mp1

Figure 9.3 Breakdown of a message-parameter variable.

Helper Macros
Many data-type conversions are necessary in a Presentation Manager application because of the multiple
data types that can be used as an MPARAM or MRESULT. MRESULT is the value returned by the
window procedure and is also a "shape-shifter." The Toolkit includes a group of helper macros to make
these conversions easier.

Table 9.1 presents the macros used to convert some standard data type into a MPARAM data type that can
be used when sending or posting a window message.

Table 9.1 Macros to Convert into MPARAM
:Bali~1::1.trw····· · ················ ··>••. .<:!on~trl!lim~n< a··················
MPFROMVOID 0
MPFROMP
MPFROMHWND
MPFROMCHAR
MPFROMSHORT
MPFROM2SHORT
MPFROMSH2CH
MPFROMLONG

PVOID
HWND
CHAR
SHORT
2 SHORTs
2CHARs
UL ONG

Table 9.2 presents the macros used to convert a MPARAM data type into a standard data type that can be
used when receiving a window message.

130 - The Art of OS/2 Warp Programming

Table 9.2 Macros to Convert from MPARAM

PVOIDFROMMP PVOID
HWNDFROMMP HWND
CHARlFROMMP CHAR
CHAR2FROMMP second CHAR
CHAR3FROMMP third CHAR
CHAR4FROMMP fourth CHAR
SHORTlFROMMP low SHORT
SHORT2FROMMP high SHORT
LONGFROMMP ULONG

Table 9.3 presents the macros used to convert a MRESULT data type into a standard data type that can be
used to examine a return value for the window procedure.

Table 9.3 Macros to Convert from MRESUL T
Mii6 }"'•(········ ·. ·········.···~6nv~i£rj*U Ml'.1$11tlii!:iii y\·

PVOIDFROMMR PVOID
SHORTlFROMMR low SHORT
SHORT2FROMMR high SHORT
LONGFROMMR ULONG

Table 9.4 presents the macros used to convert a standard data type into a MRESULT data type that can be
used to construct a return value from the window procedure.

Table 9.4 Macros to Convert to MRESUL T
Mli~m..·::··•·········· .. ········.·.·······• ... ;::;iii .;;;c;:J;!l(iiiill'•M'--1'.fkl•• >·>H·······
MRFROMP PVOID
MRFROMSHORT SHORT
MRFROM2SHORT 2 SHORTs
MRFROMLONG ULONG

Presentation Manager Program Initialization
habAnchor = Wininitialize (0) ;
hmqQueue = WinCreateMsgQueue (habAnchor, 0) ;

The beginning of a PM program will always start with a few things. First, Winlnitialize is called to obtain
an anchor block handle, or HAB. An anchor block is specific to each thread that contains a window
procedure.

HAB Wininitialize(ULONG flOptions)

The only parameter for Win/nitialize is a ULONG that is used for initialization options. In a PM
environment, this should be 0. An anchor block currently contains error information for each thread and
also may be used for "future portability issues." Each Presentation Manager thread should obtain its own
anchor block for two reasons: portability and also to obtain error information specific to that thread.

Introduction to Windows - 131
HMQ WinCreateMsgQueue(HAB hab, LONG lQueuesize)

WinCreateMsgQueue will create a message queue for the thread that called the function. The message
queue is how Presentation Manager communicates back and forth with the windows. The first parameter is
the anchor block handle, habAnchor. The second parameter is the queue size. A parameter of 0 indicates
the default queue size in OS/2, which holds 10 messages. A full queue will cause the user interface to
respond rather slowly and sometimes to stop responding completely. The default queue size should be fine
for most applications. If a queue is getting too full, the program should be checked to see where messages
are getting backlogged. (One of the requirements for a PM interface is a crisp user response. Any response
that consumes more than 100 milliseconds probably should be put in a separate thread. See Chapter 30 for
more information on multithreading in a PM program.)

Creating a New Class
WinRegisterClass (habAnchor,

CLS_CLIENT,
ClientWndProc,
0,
0) ;

The function WinRegisterClass is used to create a new class of windows, in this case CLS_CLIENT.

BOOL WinRegisterClass(HAB hab,
PSZ pszClassName,
PFNWP pfnWndProc,
ULONG flStyle,
ULONG cbWindowData)

The first parameter is the anchor block, habAnchor. The next parameter is the class name. This parameter
is a null-terminated string. The next parameter is the window procedure the class is assigned to,
ClientWndProc. The fourth parameter is the class styles used for the new class. We're not going to use
any class styles for now, so we put 0 here. The last parameter is the number of bytes of storage space that
will be tacked on to each window belonging to this class. This piece of space is commonly referred to as
"window words." This is covered in more detail later.

Creating a Window

By now readers are probably thinking "But I just wanted to create one lousy window."
Well, this is it, the function call you've been waiting for: WinCreateStdWindow. This
function actually creates five windows as stated earlier; but only two that are of any
interest to us-the frame window and the client window.

ulFlags = FCF_TITLEBAR [FCF_SYSMENU I FCF_SIZEBORDER [
FCF_MINMAX I FCF_SHELLPOSITION FCF_TASKLIST

hwndFrame = WinCreateStdWindow (HWND_DESKTOP,
WS_VISIBLE,
&ulFlags,
CLS_CLIENT,
"Titlebar",
OL,
NULLHANDLE,
0,
&hwndClient

132 - The Art of OS/2 Warp Programming
The function returns the frame window handle.

HWND WinCreateStdWindow(HWND hwndParent,
ULONG flStyle,
PULONG pflCreateFlags,
PSZ pszClassClient,
PSZ pszTitle,
ULONG flStyleClient,
HMODULE Resource,
ULONG ulID,
PHWND phwndClient)

The first parameter specified is the parent of the frame window. We'll discuss parents and owners in a
minute. The second parameter is the frame style. A frame can draw from two sets of styles: frame styles,
because this is a frame window; and window styles, because the frame class is a subset of the window class
"window." The most common window style available is WS_ VISIBLE. Yep, you guessed it, this means
the window is not only created but will show up as well.

The third parameter is the frame flags. Frame flags describe how the frame will look. The possible
descriptors are OR'ed together. Figure 9.4 is a diagram of all the possible descriptors and the bits that
correspond to them.

FCUITLEBAR
FCF_SYSMENU
FCF ..MENU
FCF ...SIZEBORDER
FCF ..MINBUTION
FCF_MAXBUTION
FCF_VERTSCROLL
FCF_HORZSCROLL
FCF_QLGBORDER
FCF_BORDER
FCF ...SHELLPOSITION
FCUASKUST
FCF ..NOBYTEAUGN
FCF ..NOMOVEWITHOWNER
FCFJCON
FCUCCELTABLE
FCF ...SYSMODAL
FCF_SCREENALIGN
FCF_MOUSEALIGN

Figure 9.4 Frame creation flags.

Table 9.5 Frame Creation Flags Description

i1•1 Jr. f n>r · ·· ······••;•.·····•······ ! ., ·•>····•••'·!• •·:•i.:1·•••1•1•;;.:1;• :.:H·· •1•::1•J::1: Jiff• •·· ·::·;::·: •. mm:: •• :r:m1: •···· ..• ,,hi .. ::;:;• :,;••;;;; ••. ::::: ••• ::;~;;::".:;:.••:xr::•
FCF _ TITLEBAR Creates a title bar on the frame.
FCF _SYSMENU Creates a system menu on the frame.
FCF _MENU Creates an application menu on the frame. This is loaded from the

FCF _MINBUTION
FCF _SIZEBORDER
FCF _MAXBUTION

resource file or .DLL. (See Chapter 12 for more information.)
Creates a minimize button on the frame.
Creates a sizing border on the frame.
Creates a maximize button on the frame.

mas···
FCF_MINMAX
FCF _HORZSCROLL
FCF _DLGBORDER
FCF _ VERTSCROLL
FCF_BORDER
FCF _SHELLPOSITION

FCF _TASKLIST

FCF _NOBYTEALIGN
FCF _NOMOVEWITHOWNER
FCF_ICON

FCF_ACCELTABLE

FCF _SYSMODAL
FCF _SCREENALIGN

FCF _MOUSEALIGN

FCF _STANDARD

FCF _AUTOICON

FCF _HIDEBUTTON
FCF _HIDEMAX

Introduction to Windows - 133

Creates both a minimize and maximize button on the frame.
Creates a horizontal scroll bar on the frame.
Creates the thick dialog box border on the frame.
Creates a vertical scroll bar on the frame.
Creates a thin border on the frame.
The system determines the initial size and placement of the frame
window.
Adds the program title to the task list and window title to the window
list.
Do not optimize window movements in 8 pel multiples.
The frame window will not move when the owner is moved.
An icon is added to the frame. This is loaded from the resource file or
.DLL. (See Chapter 12 for more information.)
An accelerator table is added to the frame. This is loaded from the
resource file or .DLL. (See Chapter 12 for more information.)
The frame window is system modal.
The frame window is positioned relative to the desktop rather than
relative to the owner window.
The frame window is positioned relative to the position of the mouse
rather than relative to the owner window.
FCF _TITLEBAR I FCF _SYSMENU I FCF _MINBUTTON I
FCF _MAXBUTTON I FCF _SIZEBORDER I FCF _ICON I FCF _MENU
I FCF_ACCELTABLE I FCF_SHELLPOSITION I FCF_TASKLIST.
A WM_P AINT message will not be sent to the application when the
frame window is iconized.
Creates "hide" button on the frame.
Creates "hide" and maximize buttons on the frame.

In this example, we'll use the following flags: FCF _TITLEBAR, FCF _SYSMENU, FCF _SIZEBORDER,
FCF _TASKLIST, FCF _MINMAX, and FCF _SHELLPOSITION.

Gotcha!
Be sure to pass a pointer to a ULONG as this parameter.

The fourth parameter is the name of the window class that the client window will belong to; in this case,
we use the string defined by CLS_CLIENT. The next parameter is the window text for the title bar. The
sixth parameter is the client window style. Since we defined the parent of the client window hwndFrame
to have the style WS_ VISIBLE, the client, as a child of hwndFrame, will inherit the WS_ VISIBLE style.
This means we don't have to specify any window styles here; we'll just leave that a 0.

The next parameter is the resource ID location. The next parameter contains the resource ID for the frame
window. This one resource ID will point to all the resources that are defined for the frame. This includes

134 - The Art of OS/2 Warp Programming
the menu, icon, accelerator table, and any other items defined using the frame creation flags. For more
information on resources, see Chapter 12.

The last parameter is the address of a window handle. Presentation Manager will place the client window
handle into this variable upon the function's return.

If WinCreateStdWindow fails, NULLHANDLE is returned. Before we attempt to do anything else, it is a
good idea to check the return handle to make sure it is valid; if not, the application should quit, preferably
with some sort of error message.

Message, Message, Who's Got the Message?
bLoop = WinGetMsg (habAnchor,

&qmMsg,
NULLHANDLE,
0,
0) ;

while (bLoop) {
WinDispatchMsg (habAnchor, &qmMsg
bLoop = WinGetMsg (habAnchor,

&qmMsg,
NULLHANDLE,
0,
0) ;

} I* endwhile *I

The two functions, WinGetMsg and WinDispatchMsg, are the keys to getting the message queue up and
running. Without some form of message retrieval and dispatch, the system will respond with a "Program
not responding ... " error message. The secret to a well thought out Presentation Manager application is a
message queue that is quick and responsive. WinGetMsg will retrieve the message from the message queue
and place it into the variable qmMsg. The QMSG structure looks very similar to the variables that are
passed to the window procedure. Eventually the QMSG structure will be passed on to ClientWndProc or to
the window procedure for the window receiving the message. WinGetMsg and WinDispatchMsg form a
post office for messages. They pick up the messages and then make sure that the messages are delivered to
the correct window.

BOOL WinGetMsg(HAB hab,
PQMSG pqmsgmsg,
HWND hwndFilter,
ULONG ulFirst,
ULONG ulLast }

The first parameter of WinGetMsg is the anchor block handle. The next one is the address of the QMSG
structure that will handle the retrieved message information. The next three parameters are not used in this
example. They provide a way for WinGetMsg to choose selectively which messages to pick out of the
queue. By specifying zeroes here, WinGetMsg will retrieve all messages from the message queue in the
order they were placed there. After the message is retrieved from the queue, it is then passed on to
WinDispatchMsg.

MRESULT WinDispatchMsg(HAB hab,
PQMSG pqmsgMsg

Introduction to Windows - 135
It is WinDispatchMsg's job to take the message from the qmMsg variable and send it on to the window
procedure associated with the window it is addressed to. For instance, if qmMsg.hwnd were equal to
hwndWnd, WinDispatchMsg would take qmMsg and send it on to ClientWndProc.

/* QMSG structure */
typedef struct _QMSG
{

/* qmsg */

HWND
ULONG
MPARAM
MPARAM
ULONG
PO INTL

hwnd; /* window handle that msg is being sent to */
msg; /* the message itself */

ULONG
} QMSG;

mpl; /* Message Parameter 1 */
mp2; /* Message Parameter 2 */
time; /* Time msg was sent */
ptl; /* Mouse position when msg was sent */
reserved;

typedef QMSG *PQMSG;

The QMSG structure contains a lot of very interesting information about the message. The first field in the
structure, hwnd, is the window handle the message is for. The field msg is the constant identifying the
message. Some common messages are WM_CREATE, WM_PAINT, WM_QUIT, and WM_SIZE. The
next two parameters, mpl and mp2, are the message parameters. Each message has a set use for these
parameters. Usually they are used to convey more information about the message. The time field contains
the time the message was sent, and the ptl field is a structure that contains the mouse position when the
message was sent.

Terminating a Program

You may have noticed that WinGetMsg and WinDispatchMsg were running in a while
loop. While WinGetMsg returns a TRUE value, this loop continues to process
messages. When WinGetMsg receives a WM_QUIT, WinGetMsg returns FALSE and
will fall out of the loop. At this point, the user has elected to close the application,
and it's time for the final cleanup. We have created three things that need to be

destroyed-the frame window hwndFrame, hmqQueue, and habAnchor. Each of these items has its own
destroy function.

BOOL WinDestroyMsgQueue(HMQ hmq
BOOL WinDestroyWindow(HWND hwnd
BOOL WinTerminate(HAE hab)

By destroying hwndFrame, we also are destroying the client window, the title bar, and all the other
windows that were children of the frame.

WinDestroyWindow (hwndFrame
/* endif */

WinDestroyMsgQueue (hmqQueue
WinTerminate (habAnchor) ;
return 0 ;

The Window Procedure Revisited
You might have looked over main and thought, "Is this it?" Well, no. We've presented just the tip of the
iceberg. The window procedure is the meat of a Presentation Manager program. A window procedure's
sole purpose in life is to respond to the messages for the window that belongs to it. It is also important to

136 - The Art of OS/2 Warp Programming
realize that multiple windows can and will access the same window procedure. Programmers must be very
careful with static and global variables or flags. They can come back to haunt developers if two windows
are accessing the same procedure. It is a good idea to avoid these if at all possible.

Most window procedures are nothing more than a giant switch statement, with a case for each message. A
window procedure does not have to respond to every message; it can filter the majority of the messages
through to a function, WinDejWindowProc or WinDefDlgProc. This function lets the system handle
messages in a system default manner. As the creator of the window procedure, it is the programmer's job
to pick out which messages will trigger a response in your program. For instance, when a WM_SIZE
message is received, the programmer may wish to reflow any text on the window so that it is all visible and
centered. Passing messages on to WinDejWindowProc or WinDefDlgProc is very safe.

Gotcha!
Be very careful about accidentally reversing WinDefWindowProc and WinDefDlgProc.
Strange things can occur when calling WinDejWindowProc for a dialog box or using
WinDefDlgProc for a non-dialog box window.

The default action for these messages is listed in the online reference for the Toolkit. A few messages are
very important to a window procedure. These will be covered later in this chapter.

In this example the window procedure, ClientWndProc, is very small. It's not quite the smallest window
procedure available, but it's pretty close.

MRESULT EXPENTRY ClientWndProc (HWND hwndWnd,
ULONG ulMsg,
MPARAM mpParml,
MPARAM mpParm2)

switch (ulMsg) {
case WM_ERASEBACKGROUND:

return MRFROMSHORT (TRUE) ;

default:
return WinDefWindowProc (hwndWnd,

ulMsg,
mpParml,
mpParm2)

} /* endswitch */

return MRFROMSHORT (FALSE)

The only message that is utilized in ClientWndProc is WM_ERASEBACKGROUND. This message is used to fill
the client window with the system-window background color. If we let this message pass on to
WinDejWindowProc, the background of the window would be transparent and the desktop would show
through. By returning TRUE, we tell the system to paint the client window with the background color. In
some cases, this message doesn't need to be processed if the painting is handled in the WM_PAINT
message. In a window procedure, most messages have a default handling of returning FALSE.
Programmers can save a few extra function calls by returning FALSE themselves from the handled instead
of calling WinDejWindowProc.

Introduction to Windows - 137

Parents and Owners

Earlier we had mentioned the concept of parents and owners. These terms are used often in Presentation
Manager programming. It is important to understand each one. Every window has a parent, except for the
desktop window. In some cases the parent will be the desktop, HWND_DESKTOP. In the last example,
the frame window had the desktop as its parent. The frame window was the parent for the client window,
the title bar window, and the other windows. What is a parent window?

A parent window performs many of the same duties that parents of human children perform.
A parent window controls where the child can go. A child is "clipped" to the parent and wilJ
not be visible outside the parental boundaries. A child window can be moved outside these
boundaries; however, the portion outside the parent window wilJ not be visible. Also, a
child wilJ inherit all of the parent's styles. If a parent is visible, a child wilJ be visible; if a
parent is not visible, a child wilJ not be visible. If a parent moves, the child moves along
with it. However, unlike a human parent, if a parent window is destroyed, all of its children

are destroyed as well. If a parent window has two child windows, these children are considered siblings.
When a family of windows is all visible at the same time, there is a power struggle for which window will
be displayed on top. A child window always will be on top of the parent window. Some surprise, huh?
However, siblings, and the whole windowing system as well, use a concept known as "Z-Order" to decide
who gets on top. The sibling created last usually is at the top of the "Z-Order." The programmer can
change the order using the function WinSetWindowPos. This function lets a window be put on top or
behind its other siblings. User interaction also affects the "Z-Order." When the user clicks on one of the
siblings, that window will become the active window, and it will move to the top of the "Z-Order." The
active window is usually the window that either is or owns the focus window. There is only one active
window in the system at any given time.

The other type of window relationship is an owner window. In the last example, hwndFrame was also the
owner of the other windows. An owner shares some of the same duties a parent shares. When an owner is
hidden, destroyed, or minimized, the children are also. However, an owned window is not clipped to its
owner.

The other interesting features of owners is the level of communication between owners and owned, or
"control," windows. When an important event happens to an owned window, the owner is sent a
WM_CONTROL message. The mpParml and mpParm2 parameters tell the owner which control sent the
message and what kind of event has occurred. A window does not have to have an owner.

Window Stylin'
When a window is created, various descriptors are used to describe how the window will look or act; these
descriptors are known as window styles. There are many different kinds of styles, including window styles
and class styles, and each type of control has its own styles as well. In this section we will concentrate on
window styles, class styles, and frame styles. The other control styles will be covered in their respective
chapters.

138 - The Art of OS/2 Warp Programming

[3~ ~2~2s}21J2s}12123J2121211118111J 16J1sJJj oj

Used for

~ ..

+
__\,

/'

+
I'

-+
~

+

~

/

~

..

" ontrol styles

WS_GROUP

WS_TABSTOP

WS_MUL TISELECT

UNUSED

UNUSED

UNUSED

WS_ANIMATE

WS_MAXIMIZED

WS_MINIMIZED

WS_SYNCPAINT

WS_SAVEBITS

WS_PARENTCLIP

WS_CLIPSIBLINGS

WS_CLIPCHILDREN

WS_DISABLED

WS_VISIBLE

Figure 9.5 Window-style flags.

Figure 9.5 shows that the first 16 bits are used for the respective control window styles; the upper 16 bits
are used for window styles. Since controls are also windows, both the control window styles and the basic
window styles are designed to live together harmoniously.

1:~i·,~~i~~!~~;i~1~1,~;~J~(~~~.;11:-.litMJ'j i 'i\:]\'i)'\[i!:J,li,lif,;;;;ii:\;t l(ili !)'M;,,,;i[:'.'l!;;;;·::'L', \T, :w:•' J!t:.,s;;,,,.,;~ 11;;'. '.,', !\iiiiii·ii\; :MH:.:;;:,,;z,::;;;,;,•

WS_GROUP Defines which items make up a group in a dialog box window. See Chapter 13.
WS_TABSTOP The user can use the tab key to move to this dialog item. See Chapter 13.
WS_ANIMATE Will create "exploding windows."
WS_MAXIMIZED Causes a window to be created fully maximized.
WS_MINIMIZED Causes a window to be created fully minimized.
WS_SYNCPAINT Causes a window to have paint messages generated immediately when an area of

the window needs to be repainted.
WS_SA VEBITS Will save the screen area under a window and will restore the image when a

covered area has been uncovered.

WS_PARENTCLIP

WS_CLIPSIBLINGS
WS_CLIPCHILDREN

WS_DISABLED

WS_VISIBLE

Introduction to Windows - 139

Will cause the parent's presentation space to be clipped to the child's
presentation space, enabling the child to draw on the parent's presentation space.
This can create some very interesting results, as the parent's visible presentation
space usually is larger than or equal to the child's. Most often this style is not
used.
Will prevent siblings from redrawing on top of each other.
Will cause the child window area to be excluded from the drawing region; in
other words, the parent cannot paint over the child. Usually this style is not
necessary because if both the parent and child windows need to be repainted and
also overlap, the parent will be repainted first, and then the child window is
repainted.
Will cause a window to be disabled upon creation. Thus this window will not
respond to user input until the window is enabled.
Will make a window visible at creation time. An invisible default window will
be created.

Table 9.7 presents class styles that can be specified at class registration time.

Table 9.7 Class Style Descriptions

CS_MOVENOTIFY WM_MOVE messages will be sent whenever the window is moved.
CS_SIZEREDRA W When a window has been sized, the window will be made completely invalid,

and a WM_PAINT message will be sent. This style is useful when an

CS_HITTEST

CS_FRAME
CS_CLIPCHILDREN
CS_CLIPSIBLINGS
CS_PARENTCLIP
CS_SA VEBITS
CS_SYNCPAINT

application centers text on the window or sizes an image to fill the window.
WM_HITTEST messages will be sent to the window whenever the mouse moves
in the window.
Specifies a frame window class.
See above.
See above.
See above.
See above.
See above.

Another Window Example: WINDOW
The following example program illustrates some of the concepts we've talked about so far and includes
some new ones also. The program, WINDOW, creates a list of all the windows that are children of the
frame window and also queries the window style of each window. The information is displayed in the
client area.

WINDOW.C
#define INCL_WIN
#define INCL_GPI
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <os2.h>
#define CLS_CLIENT "MyClass"

140 - The Art of OS/2 Warp Programming
MRESULT EXPENTRY ClientWndProc(HWND hwndWnd,ULONG ulMsg,MPARAM

mpParml,MPARAM mpParm2);

typedef struct
{

_LINE INFO

ULONG ulCharHeight;
ULONG usxLeft;
ULONG usxRight;

LINEINFO,*PLINEINFO;

VOID DisplayError(CHAR *pszText);
USHORT DropOneLine(PRECTL prclRect,ULONG ulCharHeight);
VOID DrawString(HPS hpsPaint,HWND hwndPaint,PRECTL prclRect,

PLINEINFO pLineinfo,CHAR *pString);
VOID WriteWindowinfo(HPS hpsPaint,HWND hwndPaint,PRECTL prclRect,

PLINEINFO pLineinfo);

INT main(VOID)
{

HAB
HMQ
UL ONG
HWND
HWND
BOOL
QMSG

habAnchor;
hmqQueue;
ulFlags;
hwndFrame;
hwndClient;
bLoop;
qrnMsg;

/**/
/* initialization */
/**/

habAnchor = Wininitialize(O);
hmqQueue = WinCreateMsgQueue(habAnchor,

0);

WinRegisterClass(habAnchor,
CLS_CLIENT,
ClientWndProc,
CS_SIZEREDRAW,
sizeof (PVOID));

ulFlags = FCF_TITLEBARIFCF_SYSMENUIFCF_SIZEBORDERIFCF_MINMAXI
FCF_SHELLPOSITIONIFCF_TASKLIST;

hwndFrame = WinCreateStdWindow(HWND_DESKTOP,
WS_VISIBLE,
&ulFlags,
CLS_CLIENT,
"Titlebar",
OL,
NULLHANDLE,

if (hwndFrame != NULLHANDLE)
{

0,
&hwndClient);

bLoop = WinGetMsg(habAnchor,
&qrnMsg,
NULLHANDLE,
0,

while (bLoop)
{

0);

WinDispatchMsg(habAnchor,
&qrnMsg);

bLoop = WinGetMsg(habAnchor,
&qrnMsg,
NULLHANDLE,
0,

0);
}
WinDestroyWindow(hwndFrame);

/* endwhile

I* endif

Introduction to Windows - 141

*/

*I

/**/
/* clean-up */
/**/

WinDestroyMsgQueue(hmqQueue);
WinTerminate(habAnchor);
return O;

MRESULT EXPENTRY ClientWndProc(HWND hwndWnd,ULONG ulMsg,MPARAM
mpParml,MPARAM mpParm2}

switch (ulMsg)
{

case WM_PAINT
{

HPS
RECTL
RECTL
HWND
HWND
HENUM
FONTMETRICS
LINEINFO

hpsPaint

hpsPaint;
rclRect;
rclWindow;
hwndEnum;
hwndFrame;
heEnum;
fmMetrics;
liLineinfo;

WinBeginPaint(hwndWnd,
NULLHANDLE,
&rclRectJ;

/***/
/* erase the invalid region */
/***/

WinFillRect(hpsPaint,
&rclRect,
SYSCLR_WINDOW);

/***/
/* get font size and save information */
/***/

GpiQueryFontMetrics(hpsPaint,
sizeof(fmMetrics),
&fmMetrics);

liLineinfo.ulCharHeight = fmMetrics.lMaxBaselineExt;

/***/
/* calculate window size information */
/***/

WinQueryWindowRect(hwndWnd,
&rclWindow);

liLineinfo.usxLeft = (USHORTlfmMetrics.lAveCharwidth;
liLineinfo.usxRight = rclWindow.xRight-(USHORT)

fmMetrics.lAveCharWidth;

/***/
/* move down one line */
/***/

rclWindow.yTop = rclWindow.yTop
liLineinfo.ulCharHeight;

142-The Art ofOS/2 Warp Programming
rclWindow.yBottom = rclWindow.yTop

liLineinfo.ulCharHeight;

/***/
/* start enumerating with the frame window */
/***/

hwndFrame = WinQueryWindow(hwndWnd,
QW_PARENT);

WriteWindowinfo(hpsPaint,
hwndFrame,
&rclWindow,
&liLineinfo);

heEnum = WinBeginEnumWindows(hwndFrame);

hwndEnum = WinGetNextWindow(heEnum);

while (hwndEnum ! = NULLHANDLE)
{

WriteWindowinfo(hpsPaint,
hwndEnum,
&rclWindow,
&liLineinfo);

hwndEnum = WinGetNextWindow(heEnum);
} /* end while hwndEnum */
WinEndEnumWindows(heEnum);

WinEndPaint(hpsPaint);

break;
default

return WinDefWindowProc(hwndWnd,
ulMsg,
mpParml,
mpParm2);

/* endswitch
return MRFROMSHORT(FALSE);

*/

VOID WriteWindowinfo(HPS hpsPaint,HWND hwndPaint,PRECTL prclRect,
PLINEINFO pLineinfo)

CHAR
CHAR
CHAR
PC HAR
US HORT
HWND
ULONG
PC HAR
{

achString[200J,achStyle[200J;
achClass[65];
achClassText[25J;
pchStart;
us Index;
hwndParent,hwndOwner;
ulStyle;
apchClasses[J =

" ", "WC_FRAME", "WC_COMBOBOX", "WC_BUTTON", "WC_MENU",
"WC_STATIC", "WC_ENTRYFIELD", "WC_LISTBOX", "WC_SCROLLBAR",
"WC_TITLEBAR"

/**/
/* get window class name */
/**/

WinQueryClassName(hwndPaint,
sizeof(achClass),
achClass);

Introduction to Windows - 143
/**/
/* save start of classname */
/**/

pchStart = achClass;

/**/
/* public classes are enumerated as #number strip off the */
/* pound sign to get index to class name array */
/**/

if (achClass[O] == '#')
{

usindex = atoi(&achClass[l]);
strcpy(achClassText,

apchClasses[usindex]);

else
{

strcpy(achClassText,
pchStart);

/* endif */

/**/
/* get window parent and owner */
/**/

hwndParent = WinQueryWindow(hwndPaint,
QW_PARENT) ;

hwndOwner = WinQueryWindow(hwndPaint,
QW_OWNER);

sprintf(achString,
"Window: Ox%081X Class: %s, Parent: Ox%081X Owner: Ox%081X",

hwndPaint,
achClassText,
hwndParent,
hwndOwner) ;

/**/
/* draw the string */
/**/

DrawString(hpsPaint,
hwndPaint,
prclRect,
pLineinfo,
achString);

/**/
/* get the window styles */
/**/

ulStyle = WinQueryWindowULong(hwndPaint,
QWL_STYLE) ;

strcpy(achStyle, "Styles: ");

/**/
/* check for some of the more common styles */
/**/

if (ulStyle&WS_VISIBLE)
strcat (achStyle, "Visible;");

if (ulStyle&WS_DISABLED)
strcat (achStyle, " Disabled;");

if (ulStyle&WS_CLIPCHILDREN)
strcat (achStyle, " Clip Children;");

if (ulStyle&WS_CLIPSIBLINGS)

144 - The Art of OS/2 Warp Programming
strcat (achStyle, " Clip Siblings;");

if (ulStyle&WS_PARENTCLIP)
strcat (achStyle, " Clip to Parent;");

if (ulStyle&WS_MAXIMIZED)
strcat (achStyle, " Maximized;");

if (ulStyle&WS_MINIMIZED)
strcat(achStyle, "Minimized;");

if (ulStyle&WS_SYNCPAINT)
strcat(achStyle, "Sync Paint;");

if (ulStyle&WS_SAVEBITS)
strcat(achStyle, "Save Bits;");

if (uslndex == 1 && (ulStyle&FCF_TITLEBAR))
strcat(achStyle," Titlebar;");

if (usindex == 1 && (ulStyle&FCF_SYSMENU))
strcat (achStyle, " System Menu;");

if (usindex == 1 && (ulStyle&FCF_MENU))
strcat (achStyle, " Menu;");

if (usindex == 1 && (ulStyle&FCF_SIZEBORDER))
strcat(achStyle, " Size Border;");

if (usindex == 1 && (ulStyle&FCF_SHELLPOSITION))
strcat(achStyle, " Shell Position;");

if (uslndex == 1 && (ulStyle&FCF_TASKLIST))
strcat(achStyle, "Task List;");

DrawString(hpsPaint,
hwndPaint,
prclRect,
pLineinfo,
achStyle);

DropOneLine(prclRect,
pLineinfo->ulCharHeight);

return

VOID DisplayError(CHAR *pszText)
{

/**/
/* small function to display error string */
/**/

WinAlarm(HWND_DESKTOP,
WA_ERROR);

WinMessageBox(HWND_DESKTOP,
HWND_DESKTOP,
pszText,

return

"Error! 11 ,

0'
MB_OKIMB_ERROR);

USHORT DropOneLine(PRECTL prclRect,ULONG ulCharHeight)
{

/**/
/* small function to move down one line */
/**/

LONG lNewBottom;

/**/
/* will new bottom go off the edge of the window? *I
/**/

lNewBottom = (LONG) (prclRect->yTop-(2*ulCharHeight));

if (lNewBottom >= 0)
{

prclRect->yTop = prclRect->yBottom;
prclRect->yBottom = lNewBottom;
return (TRUE);

else
return (FALSE);

VOID DrawString(HPS hpsPaint,HWND hwndPaint,PRECTL prclRect,
PLINEINFO pLineinfo,CHAR *pString)

US HORT
USHORT
BOOL
US HORT
USHORT

usStringLength;
usNumChars;
bFinished;
usOffset;
usReturn;

bFinished FALSE;
usStringLength = strlen(pString);

usOffset = O;

while (!bFinished)
{

Introduction to Windows - 145

/***/
/* move down to next line */
/***/

usReturn = DropOneLine(prclRect,
pLineinfo->ulCharHeight);

/***/
/* if we can't move down any more, stop trying to write */
/* any more */
/***/

if (!usReturn)
return ;

/***/
/* set the left and right drawing coordinates */
/***/

prclRect->xLeft = pLineinfo->usxLeft;
prclRect->xRight = pLineinfo->usxRight;

/***/
/* draw text that will fit */
/***/

usNumChars = WinDrawText(hpsPaint,
strlen(&pString[usOffset]),
&pString[usOffset],
prclRect,
0,
0,
DT_LEFTIDT_TEXTATTRSIDT_WORDBREAK)

if (!usNumChars I I (usOffset+usNumChars == usStringLength))

/**/
/* if no characters were printed, or we are at the end*/
/* of the string, quit */
/**/

146 - The Art of OS/2 Warp Programming

bFinished = TRUE;
else

/**!
/* offset string to new position */
!**/

usOffset += usNumChars;

return

WINDOW.MAK
WINDOW.EXE:

WINDOW
WINDOW
WINDOW
0$2386
WINDOW
<<

LINK386 @<<
WINDOW.OBJ

WINDOW.OBJ: WINDOW.C
ICC -C+ -Kb+ -Ss+ WINDOW.C

WINDOW.DEF
NAME WINDOW WINDOWAPI

DESCRIPTION 'Window list example
Copyright (c) 1995 by Kathleen Panov
All rights reserved. '
STACKSIZE 16384

Here main has one small difference from main in the previous example, WINI.C. The class style,
CS_SIZEREDRA W, is used for the client window class. With this style, Presentation Manager will
invalidate the window whenever the size changes. The text on the client area is dependent on the width of
the window. Because we want to ensure that all the text is nicely formatted even when the window is
resized, thus we use CS_SIZEREDRA W.

Introduction to Windows -147

The Presentation Manager Coordinate Space

-
(x2,y2)

(x1, y1)

(0,0)

Figure 9.6 Coordinate space.

Presentation Manager windows use a different coordinate space from the one used by Microsoft Windows.
(See Figure 9.6) The bottom left corner is coordinate 0,0. Most window drawing is done by specifying two
sets of x,y coordinates that form the lower left and upper right corners of a "bounding rectangle." A
structure RECTL contains the coordinates. It is a familiar parameter in most painting functions. The
structure is defined:

typedef struct _RECTL
{ LONG xLeft ;

LONG yBottom;
LONG xRight
LONG yTop;

RECTL ;

More on Window Painting
In a structured program, the application controls exactly when the screen is updated; in an event-driven
environment, the system tells the application when it can update the screen. This is done by sending the
application the WM_P AINT message. A Presentation Manager program should update the screen within
the WM_PAINT message processing.

This message is one of the most common messages to handle. A WM_PAINT message is generated
whenever some part of the client window needs to be painted. If a user moves one window on top of
another window, the bottom window receives a WM_PAINT message when the covered area becomes
visible again. When a portion of a window needs to be repainted, that portion is said to be "invalid."
Presentation Manager can invalidate a region or a programmer can invalidate a region using
WinlnvalidateRegion or WinlnvalidateRect.

BOOL APIENTRY WininvalidateRect(HWND hwnd,
PRECTL pwrc,
BOOL fincludeChildren);

BOOL APIENTRY WininvalidateRegion(HWND hwnd,

148 - The Art of OS/2 Warp Programming
BOOL APIENTRY WininvalidateRegion(HWND hwnd,

HRGN hrgn,
BOOL fincludeChildren);

The first parameter for these functions is the window handle hwnd. The next parameter is the area that is to
be invalidated. The last parameter indicates whether children are to be included in the invalid rectangle or
region.

Presentation Manager is very stingy in sending WM_P AINT messages. Only that piece of the window that
needs to be painted will be invalidated, not the entire window.

Painting by Numbers

hpsPaint = WinBeginPaint hwndWnd,
NULLHANDLE,
&rclRect) ;

Painting in this example starts with WinBeginPaint to obtain a presentation space.

HPS APIENTRY WinBeginPaint(HWND hwnd,
HPS hps,
PRECTL prclPaint};

hwndWnd is the window the presentation space belongs to. Presentation spaces are covered in more detail
later. The second parameter is used if the user already has a presentation space obtained using WinGetPS
or some other means and wants to use that space for drawing. If a NULLHANDLE is specified, the system
will provide a presentation space to be used. The last parameter is a pointer to RECTL structure. The
coordinates of the invalidated region are placed in the structure. The invalidated region is the region that
needs to be painted.

BOOL WinEndPaint(HPS hps);

WinEndPaint is used to terminate a paint procedure. There is only one parameter, hps, which is the
presentation space returned from WinBeginPaint.

Once WinEndPaint is called, the region is validated, and any presentation space returned from
WinBeginPaint is released.

WinFillRect(hpsPaint,
&rclRect,
SYSCLR_WINDOW) ;

This function paints the region designated by the second parameter with the specified color index. The
first parameter is the presentation space to paint.

BOOL WinFillRect(HPS hps,
PRECTL prcl,
LONG lColor) ;

A program can use a value such as CLR_BLUE or a system value such as SYSCLR_ WINDOW that will
fill the rectangle with the system default window color.

Introduction to Windows - 149
The WINDOW example is designed to draw some text on the client window area; however, in a graphical
user interface (GUI) environment, this is not just a call to printf. Instead the developer must provide the
exact pixel location where the text is to be located. Before we get around actually to drawing the text, we
need to find some information about the size of the font used in the client window. GpiQueryFontMetrics
is the function to provide all the needed information about a font.

BOOL GpiQueryFontMetrics(HPS hps,
LONG lMetricsLength,
PFONTMETRICS pfmMetrics);

GpiQueryFontMetrics (hpsPaint,
sizeof (fmMetrics) ,
&fmMetrics) ;

The FONTMETRICS structure contains much data concerning the point size, face name, height, and width
of the current font. The variable lMaxBaselineExt provides the height of the tallest character. We'll use
this value as the height-of-line line of text.

WinQueryWindowRect(hwndWnd,
&rclWindow) ;

liLineinfo.usxLeft = (USHORT)fmMetrics.lAveCharWidth;
liLineinfo.usxRight = rclWindow.xRight -

(USHORT)fmMetrics.lAveCharWidth;

The next task is to find the current size of the window. Remember, a window can be sized by the user at
any time, and a program should be able to adjust to such changes. WinQueryWindowRect will return the
size of a window in a REC1L structure. We will define a right and left margin that is equal to the average
width of one character. Very conveniently, the FONTMETRICS structure contains lAveCharWidth, which
is exactly that. With all this, we now know the height of our lines, the x coordinate our lines will start at,
and the x coordinate that is the end of the line.

To position the first line of text at the top of the page and create a one-line margin, the following math is
done to move the bounding rectangle down one line.

rclWindow.yTop = rclWindow.yTop
liLineinfo. ulCharHeight;

rclWindow.yBottom = rclWindow.yTop
liLineinfo. ulCharHeight;

Enumerating Windows
hwndFrame = WinQueryWindow(hwndWnd,

QW_PARENT) ;

Remember, in the window procedure, hwndWnd is the client window, not the frame window.
WinQueryWindow is used to find the parent of the client window, which in our case is the frame window.
This is a very simple function that will be used many times. The first parameter is the handle of the
window to query, and the second parameter indicates what information will be returned.

Table 9.8 WinQuer:xWindow Flags

QW_NEXT
QW_PREV

Returns the window below the specified window.
Returns the window above the specified window.

150 - The Art of OS/2 Warp Programming

QW_TOP
QW_BOTTOM
QW_OWNER
QW_PARENT
QW_NEXTTOP
QW_PREVTOP
QW _FRAMEOWNER

Returns the topmost child window.
Returns the bottommost child window.
Returns the owner of the specified window.
Returns the parent of the specified window.
Returns the next window of the owner window hierarchy.
Returns the previous window of the owner window hierarchy.
Returns the owner of the specified window that also shares the same
parent as the specified window.

WriteWindowinfo(hpsPaint,
hwndFrame,
&rclWindow,
&liLineinfo);

heEnum = WinBeginEnumWindows(hwndFrame);

hwndEnum = WinGetNextWindow(heEnum);

while (hwndEnum != NULLHANDLE)
{

WriteWindowinfo(hpsPaint,
hwndEnum,
&rclWindow,
&liLineinfo);

hwndEnum = WinGetNextWindow(heEnum);
/* end while hwndEnum */

WinEndEnumWindows(heEnum);

Presentation Manager lets users query all the descendants of a particular window by using the functions
WinBeginEnumWindows and WinGetNextWindow. The window that is the head of the window family tree
is the frame window, hwndFrame.

HENUM WinBeginEnumWindows(HWND hwnd);
HWND WinGetNextWindow(HENUM henum);
BOOL WinEndEnumWindows(HENUM henum);

This window handle is passed to WinBeginEnumWindows, which passes back an enumeration handle,
heEnum. This is a place holder to keep track of the last window that was returned. WinGetNextWindow
takes heEnum and returns the next window in the window family tree. As each window is found, our own
function, WriteWindowlnfo, is used to display information about the window. The enumeration ends with
a call to WinEndEnumWindows.

Write Window Info
WinQueryClassName (hwndPaint,

sizeof (achClass) ,
achClass) ;

The first piece of information we'll retrieve from each window is the class name. Documentation refers to
the system-defined class names as WC_FRAME and so on. However, the class name in reality, and
returned by WinQueryClassName, is a string in the format "#1". Some help, huh? Public window Class
names are stored in powerful lookup tables known as atom tables. This format helps to check to see if a
newly registered window class has the same name as one that is already registered. To convert from this
cryptic format to something more readily deciphered, we define an array, pszClassNames, that maps the
numeric class names to the documented class names. The string pszClass, returned from

Introduction to Windows - 151
WinQueryClassName, is incremented by one to strip off the"#" and leave a value that can be converted to
an integer index into the array.

If achClass is a nonnumeric value, we assume this to be an application-defined class, and keep the string
whole.

The second piece of information to retrieve is the parent and owner windows. WinQueryWindow is used to
return the window handles of the parent and owner of the specified window. All this window detail is
formatted into one string that will displayed on the client window by the user-function DrawString.

ulStyle = WinQueryWindowULong(hwndPaint,
QWL_STYLE);

The other information we will output to the client area is the window styles. This is a value that is stored
in the window word. Presentation Manager stores a lot of window information in window words. The next
example covers this concept in more detail. WinQueryWindowULong will retrieve the window styles. The
first parameter is the window we're inquiring about. The next parameter is a constant used to identify
which piece of the window word we're after. The value QWL_STYLE designates that the window style is
the ULONG is question. The example converts these values to meaningful text string and uses the function
DrawString to display the formatted string on the client area.

The Draw String function
Two functions will draw text on a window, WinDrawText and GpiCharString. WinDrawText is the more
powerful function, that providing such features as positioning, colored text, and word break.
GpiCharString is much faster but leaves more work for the programmer.

LONG lCharDrawn = WinDrawText(HPS hpsPaint,
LONG lCount,
PCH pchString,
PRECTL prclRect,
LONG lForeColor,
LONG lBackColor,
LONG flCmd

We use the WinDrawText function in this example. The first parameter is the presentation space. The
second parameter is the number of characters to output. A -1 indicates that the entire length of the null
terminated string is to be used. The string to write is pchString. The size of the text area is defined by
passing a pointer to a RECTL structure that contains the designated coordinates. The next two parameters
indicate the foreground and background colors of the text. The last parameter is the formatting flag, a
collection of formatting attributes that are ORed together. The attributes used in this example are
DT_LEFflDT_TEXTATIRS_DT_WORDBREAK. DT_LEFf left-aligns the text horizontally, and
DT_TEXTATIRS indicates that default window foreground and background colors will be used. If this
flag is specified, the two previous parameters are ignored. The DT_ WORDBREAK attribute will draw
only the number of whole words that will fit inside the bounding rectangle. The number of characters
drawn is returned. By enclosing this code in a loop and incrementing the string offset by the number of
characters drawn, a very powerful routine that will be used often to print formatted text is created.

while (!bFinished)
{

usReturn = DropOneLine(prclRect,
pLineinfo->ulCharHeight);

152-The Art ofOS/2 Warp Programming
if (!usReturn)

return ;

prclRect->xLeft = pLineinfo->usxLeft;
prclRect->xRight = pLineinfo->usxRight;

usNumChars = WinDrawText(hpsPaint,
strlen(&pString(usOffset]),
&pString(usOffset],
prclRect,
0'
0,
DT_LEFTIDT_TEXTATTRSIDT_WORDBREAK)

if (!usNumChars I I (usOffset+usNumChars == usStringLength))
bFinished = TRUE;

else
usOffset += usNumChars;

There is one last short function to explain, DropOneLine. This is a user function that will take a pointer to
a RECTL structure and decrement the top and bottom y coordinates by the height of one line.

Presentation Spaces
A presentation space is similar to an artist's canvas. It is the space where the application draws. However,
a presentation space does not have to be a window. It could also be a printer or even some piece of
memory. In reality, a presentation space is a data structure, but to the programmer it is the drawing area.
There are two types of presentation spaces-a normal presentation space and a micropresentation space. A
micropresentation space is designed to have output to only one source. A normal presentation space can be
shared between multiple devices. For instance, to print some copy of the video display, a normal
presentation space would be used. A normal presentation space uses more memory than a
micropresentation space and is slower; however, it is the most powerful presentation space type available.

There are two types of micropresentation spaces-standard and cached. A microcached presentation space
is used for the video display and is maintained by Presentation Manager. A microcached presentation
space is faster than the other presentation spaces and uses less memory. A microstandard presentation
space is used to send output to a printer or any other output device. However, it cannot send output to
more than one device at a time.

Presentation Manager controls how much of a window actually belongs in the presentation space. For
example, if another window is covering most of a window, who should be able to draw on the intersection
of the two windows? The normal answer is the window with the highest value in the Z-order. There are a
few exceptions to this rule.

• WS_CLIPCHILDREN If a window has this style, when the child window overlaps the parent, the
parent window cannot draw on any part of the child's window. Normally, a child has a higher place in
the Z-order than the parent, anyway, and this style is not necessary.

• WS_CLIPSIBLINGS When two windows share the same parent, this style will omit a sibling's
presentation space from that of the other sibling. This style can be used to make sure one sibling
always "comes out on top."

• WS_PARENTCLIP This gives a child window the ability to draw on its parent. This style can be
potentially dangerous, esthetically speaking, because the parent's presentation space is larger than the
child's space. However, somebody must have had a use for it somewhere.

Introduction to Windows - 153

Window Words
Window words is a fairly simple concept that is fairly easy to implement, but it got a bad rap because it
was poorly documented. Every window has a pointer to some memory that contains quite a bit of very
interesting information. Such things as window ID, frame flags, window style, and much more are
available through window words. Table 9.9 presents three sets of functions that are used to set and query
the information.

Table 9.9 Data Type Returned From Win~.ow Word Functions

WinQueryWindowUShort USHORT
WinSetWindowUShort USHORT
WinQueryWindowULong ULONG
WinSetWindowULong ULONG
WinQueryWindowPtr PVOID
WinSetWindowPtr PVOID

Four bytes of space are reserved in the window word for the programmer. These four bytes can contain
any data type that will fit in the space. If more space is needed, the programmer should create his or her
own structure and pass a pointer to the structure in the window word.

Specific information from the window word is obtained using QWL_ *, QWS_ *, and QWP _ * values.
These values are constants that represent the offset into the window word. The L, S, and P indicate the
data type that resides at that offset. The programmer-defined data space resides at offset QWL_USER.
One note here: The following control windows contain the programmer-defined data area:

• Frames

• Dialog boxes

• Combo boxes

• Buttons

• Menus

• Static text

• Entryfields

• Listboxes

• Scrollbars

• Titlebars

• ML Es

• Spin buttons

• Containers

• Sliders

• Value set

• Notebooks

The following example modifies the WINDOW program to use a window word to save the window
handles and prevent multiple window enumerations in the WM_PAINT processing.

154 - The Art of OS/2 Warp Programming
WINWORD.C
#define INCL_WIN
#define INCL_GPI
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <os2.h>
#define CLS CLIENT "MyClass"
MRESULT EXPENTRY ClientWndProc(HWND hwndWnd,ULONG ulMsg,MPARAM

mpParml,MPARAM mpParm2);

typedef struct
{

ULONG
BOOL
SHORT
HWND

_WININFO

ulStructSize;
bStructinit;
sNumWindows;
ahwndWindows[lOJ;

WININFO,*PWININFO;

typedef struct
{

_LINE INFO

ULONG ulCharHeight;
ULONG usxLeft;
ULONG usxRight;

LINEINFO,*PLINEINFO;

VOID DisplayError(CHAR *pszText);
USHORT DropOneLine(PRECTL prclRect,ULONG ulCharHeight);
VOID DrawString(HPS hpsPaint,HWND hwndPaint,PRECTL prclRect,

PLINEINFO pLineinfo,CHAR *pString);

VOID WriteWindowinfo(HPS hpsPaint,HWND hwndPaint,PRECTL prclRect,
PLINEINFO pLineinfo);

INT main(VOID)
{

HAB
HMQ
ULONG
HWND
HWND
BOOL
QMSG

habAnchor;
hmqQueue;
ulFlags;
hwndFrame;
hwndClient;
bLoop;
qmMsg;

/**/
/* initialization */
/**/

habAnchor = Wininitialize(O);
hmqQueue = WinCreateMsgQueue(habAnchor,

0);

WinRegisterClass(habAnchor,
CLS_CLIENT,
ClientWndProc,
CS_SIZEREDRAW,
sizeof(PVOID));

ulFlags = FCF_TITLEBARIFCF_SYSMENUIFCF_SIZEBORDERIFCF_MINMAXI
FCF_SHELLPOSITIONIFCF_TASKLIST;

hwndFrame = WinCreateStdWindow(HWND_DESKTOP,
WS_VISIBLE,
&ulFlags,
CLS_CLIENT,
"Titlebar",
OL,

NULLHANDLE,
0,
&hwndClient);

if (hwndFrame != NULLHANDLE)
{

bLoop = WinGetMsg(habAnchor,
&qrnMsg,
NULLHANDLE,
0,

while (bLoop)
{

0);

WinDispatchMsg(habAnchor,
&qrnMsg);

bLoop = WinGetMsg(habAnchor,
&qrnMsg,
NULLHANDLE,
0,
0);

}
WinDestroyWindow(hwndFrame);

/* endwhile

/* endif

Introduction to Windows - 155

*/

*/

/**/
/* clean-up */
/**/

WinDestroyMsgQueue(hrnqQueue);
WinTerminate(habAnchor);
return O;

MRESULT EXPENTRY ClientWndProc(HWND hwndWnd,ULONG ulMsg,MPARAM
mpParml,MPARAM mpParm2)

PWININFO pWininfo;

switch (ulMsg)
{

case WM_CREATE
{

pWininfo = (PWININFO)calloc(l,
sizeof(WININFO));

if (pWininfo)
WinSetWindowPtr(hwndWnd,

QWL_USER,
pWininfo);

else
DisplayError("No memory allocated for pWininfo");

break;

case WM_DESTROY

pWininfo = (PWININFO)WinQueryWindowPtr(hwndWnd,
QWL_USER);

if (pWininfo)
free (pWininfo);

break;

case WM_PAINT
{

HPS
REC TL
RECTL

hpsPaint;
rclRect;
rclWindow;

156 -The Art of OS/2 Warp Programming
HWND hwndEnum;

heEnum;
fmMetrics;
i;
liLineinfo;

HENUM
FONTMETRICS
SHORT
LINE INFO

hpsPaint WinBeginPaint(hwndWnd,
NULLHANDLE,
&rclRect);

/***/
/* erase the invalid region */
/***/

WinFillRect(hpsPaint,
&rclRect,
SYSCLR_WINDOW) ;

/***/
/* get font size and save information */
/***/

GpiQueryFontMetrics(hpsPaint,
sizeof(fmMetrics),
&fmMetrics);

liLineinfo.ulCharHeight = fmMetrics.lMaxBaselineExt;

/***/
/* calculate window size information */
/***/

WinQueryWindowRect(hwndWnd,
&rclWindow) ;

liLineinfo.usxLeft = (USHORT)fmMetrics.lAveCharWidth;
liLineinfo.usxRight = rclWindow.xRight-(USHORT)

fmMetrics.lAveCharWidth;

/***/
/* move down one line */
/***/

rclWindow.yTop = rclWindow.yTop
liLineinfo.ulCharHeight;

rclWindow.yBottom = rclWindow.yTop
liLineinfo.ulCharHeight;

/***/
/* retrieve window word */
/***/

pWininfo = (PWININFO)WinQueryWindowPtr(hwndWnd,
QWL_USER);

if (! pWininfo)

/**/
/* error */
/**/

DisplayError ("No pWininfo retrieved in WM_PAINT");
else
{

/**/
/* first time through initialize structures and */
/* enumerate windows */
/**/

if (!pWininfo->bStructinit)
{

SHORT
HWND

sNumWindows
hwndFrame;

Introduction to Windows - 157

O;

/***/
/* start enumerating with the frame window */
/***/

hwndFrame = WinQueryWindow(hwndWnd,
QW_PARENT) ;

WriteWindowinfo(hpsPaint,
hwndFrame,
&rclWindow,
&liLineinfo);

heEnum = WinBeginEnumWindows(hwndFrame);

/***/
/* save the window handles in window word */
/***/

pWininfo->ahwndWindows[sNumWindows] hwndFrame

hwndEnum = WinGetNextWindow(heEnum);

while (hwndEnum != NULLHANDLE)
{

WriteWindowinfo(hpsPaint,
hwndEnum,
&rel Window,
&liLineinfo);

sNumWindows++;
pWininfo->ahwndWindows[sNumWindows]

hwndEnum;
hwndEnum = WinGetNextWindow(heEnum);

} /* end while hwndEnum */
WinEndEnumWindows(heEnum);

/***/
/* keep track of how many windows we have */
/***/

pWininfo->sNumWindows = sNumWindows;

/***/
/* set flag so we know structure is */
/* initialized */
/***/

pWininfo->bStructinit = TRUE;

else
{

!* end if structure is
NOT initialized */

/***/
/* if structure has been initialized, just */
/* loop through the window handles and write */
/* info to the window */
/***/

for (i = O; i <= pWininfo->sNumWindows; i++)
{

WriteWindowinfo(hpsPaint,
pWininfo->ahwndWindows[i],
&rclWindow,
&liLineinfo);

158 - The Art of OS/2 Warp Programming
/* end for */
/* end else struct is

initialized */
/* end else */

WinEndPaint(hpsPaint);

break;
default

return WinDefWindowProc(hwndWnd,
ulMsg,
mpParml,

mpParm2);
/* endswitch

return MRFROMSHORT(FALSE);
*/

VOID WriteWindowinfo(HPS hpsPaint,HWND hwndPaint,PRECTL prclRect,
PLINEINFO pLineinfo)

CHAR
CHAR
CHAR
PC HAR
USHORT
HWND
UL ONG
PC HAR
{

achString[200],achStyle[200J;
achClass[65];
achClassText[25];
pchStart;
us Index;
hwndParent,hwndOwner;
ulStyle;
apchClasses [J =

" ", "WC_FRAME", "WC_COMBOBOX", "WC_BUTTON", "WC_MENU",
"WC_STATIC", "WC_ENTRYFIELD", "WC_LISTBOX", "WC_SCROLLBAR",
"WC_TITLEBAR"

/**/
/* get window class name */
/**/

WinQueryClassName(hwndPaint,
sizeof(achClass),
achClass);

/**/
/* save start of classname */
/**/

pchStart = achClass;

/**/
/* public classes are enumerated as #number strip off the */
/* pound sign to get index to class name array */
/**/

if (achClass[O] == '#')
{

usindex = atoi(&achClass[l]);
strcpy(achClassText,

apchClasses[usindex));

else
{

strcpy(achClassText,
pchStart);

/* endif *I

Introduction to Windows - 159
/**/
/* get window parent and owner */
/**/

hwndParent = WinQueryWindow(hwndPaint,
QW_PARENT) ;

hwndOwner = WinQueryWindow(hwndPaint,
QW_OWNER);

sprintf(achString,
"Window: Ox%081X Class: %s, Parent: Ox%081X Owner: Ox%081X",

hwndPaint,
achClassText,
hwndParent,
hwndOwner) ;

/**/
/* draw the string */
/**/

DrawString(hpsPaint,
hwndPaint,
prclRect,
pLineinfo,
achString) ;

/**/
/* get the window styles */
/**/

ulStyle = WinQueryWindowULong(hwndPaint,
QWL_STYLE) ;

strcpy(achStyle,
"Styles: ");

/**/
/* check for some of the more common styles */
/**/

if (ulStyle&WS_VISIBLE)
strcat(achStyle,

"Visible;");
if (ulStyle&WS_DISABLED)

strcat(achStyle,
" Disabled;") ;

if (ulStyle&WS_CLIPCHILDREN)
strcat(achStyle,

"Clip Children;");
if (ulStyle&WS_CLIPSIBLINGS)

strcat(achStyle,
"Clip Siblings;");

if (ulStyle&WS_PARENTCLIP)
strcat(achStyle,

" Clip to Parent;");
if (ulStyle&WS_MAXIMIZED)

strcat(achStyle,
11 Maximized; 11 } ;

if (ulStyle&WS_MINIMIZED)
strcat(achStyle,

11 Minimized; 11);

if (ulStyle&WS_SYNCPAINT)
strcat(achStyle,

" Sync Paint;");
if (ulStyle&WS_SAVEBITS)

strcat(achStyle,
11 Save Bits; 11 };

if (usindex == 1 && (ulStyle&FCF_TITLEBAR))
strcat(achStyle,

"Titlebar;");

160 - The Art of OS/2 Warp Programming
if (usindex == 1 && (ulStyle&FCF_SYSMENU))

strcat(achStyle,
" System Menu;");

if (usindex == 1 && (ulStyle&FCF_MENU))
strcat(achStyle,

11 Menu; 11);

if (usindex == 1 && (ulStyle&FCF_SIZEBORDER))
strcat(achStyle,

" Size Border;");
if (usindex == 1 && (ulStyle&FCF_SHELLPOSITION))

strcat(achStyle,
" Shell Position;");

if (usindex == 1 && (ulStyle&FCF_TASKLIST))
strcat(achStyle,

" Task List;");

DrawString(hpsPaint,
hwndPaint,
prclRect,
pLineinfo,
achStyle);

DropOneLine(prclRect,
pLineinfo->ulCharHeight);

return

VOID DisplayError(CHAR *pszText)
{

/**/
/* small function to display error string */
/**/

WinAlarm(HWND_DESKTOP,
WA_ERROR);

WinMessageBox(HWND_DESKTOP,
HWND_DESKTOP,
pszText,

11 Error ! 11 ,

0'
MB_OKjMB_ERROR);

return

USHORT DropOneLine(PRECTL prclRect,ULONG ulCharHeight)
{

/**/
/* small function to move down one line */
/**/

LONG lNewBottom;

/**/
I* will new bottom go off the edge of the window? */
/**/

lNewBottom = (LONG) (prc1Rect->yTop-(2*u1CharHeight));
if (lNewBottom >= 0)
{

prclRect->yTop = prclRect->yBottom;
prclRect->yBottom = lNewBottom;
return (TRUE) ;

else
return (FALSE);

VOID DrawString(HPS hpsPaint,HWND hwndPaint,PRECTL prclRect,
PLINEINFO pLineinfo,CHAR *pString)

USHORT
USHORT
BOOL
USHORT
US HORT

usStringLength;
usNumChars;
bFinished;
usOffset;
usReturn;

bFinished FALSE;
usStringLength = strlen(pString);

usOffset = O;

while (! bFinished)
{

Introduction to Windows - 161

/***/
/* move down to next line */
/***/

usReturn = DropOneLine(prclRect,
pLineinfo->ulCharHeight);

/***/
/* if we can't move down any more, stop trying to write */
/* any more */
/***/

if (!usReturn)
return ;

/***/
/* set the left and right drawing coordinates */
/***/

prclRect->xLeft = pLineinfo->usxLeft;
prclRect->xRight = pLineinfo->usxRight;

/***/
/* draw text that will fit */
/***/

usNumChars = WinDrawText(hpsPaint,
strlen(&pString[usOffset]),
&pString[usOffset],
prclRect,
0,
0,
DT_LEFTiDT_TEXTATTRSiDT_WORDBREAK)

if (!usNumChars I I (usOffset+usNumChars == usStringLength))

/**/
/* if no characters were printed, or we are at the end*/
/* of the string, quit */
/**/

bFinished = TRUE;
else

/**/
/* offset string to new position */
/**/

WINWORD.MAK
WINWORD.EXE: WINWORD.OBJ

WINWORD
WINWORD
WINWORD
OS2386
WINWORD
<<

LINK386 @<<

WINWORD.OBJ: WINWORD.C
ICC -C+ -Kb+ -ss+ WINWORD.C

WINWORD.DEF
NAME WINWORD WINDOWAPI

DESCRIPTION 'Window word example
Copyright (c) 1992-1995 by Kathleen Panov
All rights reserved. '

STACKSIZE 16384

The structure that contains the window information is defined as follows.

typedef struct _WININFO
{

ULONG ulStructSize;
BOOL bStructinit;
SHORT sNumWindows;
HWND ahwndWindows[lOJ;

WININFO,*PWININFO

The first element a window word structure is the size of the structure. The operating system uses this first
element ifrunning under OS/2 2.1 or lower. The windowing functions in these versions are 16-bit, and the
operating system must "thunk" the 32-bit memory pointers so the 16-bit parts of the operating system can
understand the address. The operating system uses the ulStructSize to see if the memory chunk will straddle
a 64K boundary. If a boundary is straddled, the memory chunk is placed into a new 64K segment. This
requirement goes away in OS/2 Warp, but programmers must be careful if their code will run on prior OS/2
versions.

Most of the functions in this program should look familiar. The first difference to emerge is
WinRegisterClass.

WinRegisterClass(habAnchor,
CLS_CLIENT,
ClientWndProc,
CS_SIZEREDRAW,
sizeof (PVOID)) ;

Introduction to Windows - 163
The last parameter specifics the amount of space to set aside in the user-defined window word each time a
window of this class is created. In most cases, the programmer will want to allocate a pointer to a structure
that contains all the information to be carried around with the window.

Some initialization is necessary in order to utilize this space, and the best place for initialization is in the
WM_CREATE message. This is the first message that will be sent to a window.

pWininfo = (PWININFO)calloc(l,
sizeof(WININFO));

if (pWininfo)

else

break;

WinSetWindowPtr(hwndWnd,
QWL_USER,
pWininfo);

DisplayError ("No memory allocated for pWininfo");

The memory for the WININFO structure is allocated, and WinSetWindowPtr places the pWinlnfo pointer at
the window word location QWL_USER (otherwise known as offset 0).

pWininfo = (PWININFO)WinQueryWindowPtr(hwndWnd,
QWL_USER);

Instead of enumerating all the windows each time we receive a WM_PAINT message, we perform this
action only the first time through and set the Boolean initialized flag, bStructlnit in the WININFO
structure, to TRUE. The next time a WM_PAINT message is received, this flag is checked; if it indicates
that the initialization has been performed already, the array of window handles in the WININFO structure
are used.

Control Windows
At the heart of data input in a Presentation Manager program are many different styles of reusable controls.
A control window is a window within a window designed to perform some useful behavior in a consistent
manner. The controls available are listed on page 125.

Presentation Parameters
Presentation Manager provides pretty fancy ways to set the color and font of a window--descriptors are
called presentation parameters. WinSetPresParam and WinQueryPresParam are used to set and query the
presentation parameters respectively.

BOOL WinSetPresParam(HWND hwnd,
ULONG id,
ULONG cbParam,
PVOID pbParam) ;

hwnd is the window for which to set the presentation parameters. id is a constant used to indicate which
presentation parameter to set. These values are listed below. cbParam is the size of the presentation
parameter data, and pbParam is the actual presentation parameter data. For examples setting presentation
parameters, see Chapter 25, Sliders, and Chapter 26, Font and File Dialogs.

164 - The Art of OS/2 Warp Programming

ULONG WinQueryPresParam(HWND hwnd,
ULONG idl,
ULONG id2,
PULONG pulid,
ULONG cbBuf,
PVOID pbBuf,
ULONG fs);

Again, hwnd is the window for which to query the presentation parameters. idl is the first of the
presentation parameter attribute to be queried. id2 is the second of the presentation parameter attribute to
be queried. If a window contains both presentation parameter attributes, only the data for idl is returned.
pulld is used on output to indicate which presentation parameter attribute was found. cbBuf is the size of
the buffer used to hold the presentation parameter data, and pbBuf is the actual buffer itself. fs is a
collection of possible query options which are OR'ed together. Table 9.10 lists the possible values.

QPF _NOINHERIT

QPF _ID ICOLORINDEX

QPF _ID2COLORINDEX

QPF_PURERGBCOLOR

Presentation parameters are not inherited from the owner of window
hwnd. By default, the presentation parameters are inherited.
Indicates idl is a color index presentation parameter attribute, which needs
to be converted to RGB before being passed back in pbBuf
Indicates id2 is a color index presentation parameter attribute, which needs
to be converted to RGB before being passed back in pbBuf
Specifies that either or both idl and id2 reference an RGB color, and that
these must be pure colors.

For an example using WinQueryPresParam, see Chapter 26 .

BOOL WinRemovePresParam(HWND hwnd,
ULONG id);

WinRemovePresParam is used to remove a presentation parameter attribute. hwnd is the window to
remove the presentation parameter attribute from. id is the id of the presentation parameter to remove.
The function returns TRUE upon successful completion.

Presentation parameters can also be passed through WinCreateWindow. A presentation parameter has an
attribute type (PP_*) and a value for the specified attribute. Table 9 .11 presents valid attribute types.

Table 9.11 Attribute Types

PP _FOREGROUNDCOLOR
PP _BACKGROUNDCOLOR
PP _FOREGROUNDCOLORINDEX

PP _BACKGROUNDCOLORINDEX

PP _HILITEFOREGROUNDCOLOR

PP _HILITEBACKGROUNDCOLOR

Foreground window color
Background window color
Foreground window color

Background window color

Highlighted.foreground window
color

RGB
RGB
COLOR
(LONG)
COLOR
(LONG)
RGB

Highlighted background window RGB
color

PP _FOREGROUNDCOLOR
PP _BACKGROUNDCOLORd
PP _HILITEFOREGROUNDCOLORINDEX

PP _HILITEBACKGROUNDCOLORINDEX

PP _DISABLEDFOREGROUNDCOLOR

PP _DISABLEDBACKGROUNDCOLOR

PP _DISABLEDFOREGROUNDCOLORINDEX

PP _DISABLEDBACKGROUNDCOLORINDEX

PP _BORDERCOLOR
PP _BORDERCOLORINDEX

PP _FONTNAMESIZE
PP _ACTIVECOLOR

PP _ACTIVECOLORINDEX

PP _INACTIVECOLOR

PP _INACTIVECOLORINDEX

PP _ACTIVETEXTFGNDCOLOR

PP _ACTIVETEXTFGNDCOLORINDEX

PP _ACTIVETEXTBGNDCOLOR

PP _ACTIVETEXTBGNDCOLORINDEX

PP _INACTIVETEXTFGNDCOLOR

PP _INACTIVETEXTFGNDCOLORINDEX

PP _INACTIVETEXTBGNDCOLOR

PP _INACTIVETEXTBGNDCOLORINDEX

PP_SHADOW

PP_MENUFOREGROUNDCOLOR
PP _MENUFOREGROUNDCOLORINDEX

PP_MENUBACKGROUNDCOLOR

Introduction to Windows - 165

Foreground window color RGB
Background window color RGB
Highlighted foreground window COLOR
color (LONG)
Highlighted background window COLOR
color (LONG)
Disabled foreground window RGB
color
Disabled background window RGB
color
Disabled foreground window
color
Disabled background window
color
Window border color
Window border color

COLOR
(LONG)
COLOR
(LONG)
RGB
COLOR
(LONG)

Window font name and point size PSZ
Active frame window title bar RGB
color
Active frame window title bar COLOR
color (LONG)
Inactive frame window title bar RGB
color
Inactive frame window title bar COLOR
color (LONG
Active frame window title bar RGB
text foreground color
Active frame window title bar COLOR
text foreground color (LONG)
Active frame window title bar RGB
text background color
Active frame window title bar COLOR
text background color (LONG)
Inactive frame window title bar RGB
text foreground color
Inactive frame window title bar COLOR
text foreground color (LONG)
Inactive frame window title bar RGB
text background color
Inactive frame window title bar COLOR
text background color (LONG)
Color for shadow of certain COLOR
controls (LONG)
Color for menu foreground RGB
Color for menu foreground COLOR

(LONG)
Color for menu background RGB

166 - The Art of OS/2 Warp Programming

PP _FOREGROUNDCOLOR Foreground window color RGB
PP _BACKGROUNDCOLORd Background window color RGB
PP _MENUBACKGROUNDCOLORINDEX Color for menu background COLOR

PP _MENUHILITEFOREGROUNDCOLOR

PP _MENUHILITEFOREGROUNDCOLORINDEX

PP _MENUHILITEBACKGROUNDCOLOR

PP _MENUHILITEBACKGROUNDCOLORINDEX

PP _MENUDISABLEDFOREGROUNDCOLOR

Color for highlighted menu
foreground
Color for highlighted menu
foreground
Color for highlighted menu
background
Color for highlighted menu
background
Color for disabled menu
foreground

PP _MENUDISABLEDFOREGROUNDCOLORINDEX Color for disabled menu
foreground

PP _MENUDISABLEDBACKGROUNDCOLOR Color for disabled menu
background

PP _MENUDISABLEDBACKGROUNDCOLORINDEX Color for disabled menu
background

(LONG)
RGB

COLOR
(LONG)
RGB

COLOR
(LONG)
RGB

COLOR
(LONG)
RGB

COLOR
(LONG)

Chapter 10

Window Management

A window has many physical characteristics that are controlled both by the user by the programmer. These
characteristics include size, visiblity, position, and order. A user can size a window by dragging the sizing
border of the window; likewise, the programmer also can size the window by using a function call. A good
application will not hinder the user from arranging the windows on the desktop in whatever manner he or
she sees fit; however, an application also can provide the user with visual clues as to what actions can and
cannot be performed. For example, a "Save" menu item may be disabled when the file is unchanged from
its previous state, or a window may be inactive until the user has logged on successfully.

This chapter covers the following window characteristics:

• Visibility/invisible
• Active/inactive
• Sizing
• Z-order

The programming interfaces to change these characteristics are explained and two example programs are
included: WINSA VE, a program designed to save the window characteristics at the time the application is
closed, WINTRACK, a program that will maintain a minimum and maximum size requirement.

Visible, Invisible, Enabled, and Disabled Windows
Presentation Manager supports the idea of a "messy desktop" window arrangement. This means that
several windows can be stacked upon each other similar to pieces of paper on a desk. A window that is
visible is one that is currently visible on the deskop or that can be uncovered by moving a window that is
on top of it. An invisible window is one with the WS_ VISIBLE bit not set; the programmer must make it
visible before it can be seen. WinShowWindow can be used to make an invisible window visible.

BOOL WinShoWWindow(HWND hwnd,
BOOL fShow);

The first parameter is the window to be made visible or invisible. A value of TRUE for the next parameter
indicates the window is to be made visible. FALSE indicates the window is to be made invisible.

A window that is enabled is one that can respond to user input. An application can disable a window by
using WinEnableWindow. Items on a dialog box can be disabled from being chosen if the choices are no
longer applicable.

167

168 - The Art of OS/2 Warp Programming

BOOL WinEnableWindow(HWND hwnd,
BOOL fEnable);

The first parameter is the window to be enabled or disabled. A value of TRUE for the next parameter
indicates the window is to be enabled. FALSE indicates the window is to be disabled.

Window Sizing
The CUA (Common User Access) guidelines recommend that a frame window let the user size and
position the window to his or her own specifications. These guidelines are used to help maintain a
consistent "look and feel" across all Presentation Manager applications. The CUA specifications are
published by IBM and can help a user adapt more easily to a new OS/2 application.

Conveniently enough, Presentation Manager can handle most of this frame manipulation automagically.
The frame control flag, FCF _SIZEBORDER, gives the frame window a "sizing border." The user can
shape and size the window to his or her heart's content, and the programmer can kick back, relax, and let
Presentation Manager do all the work. But (there's always a but) the programmer should make sure that
the WM_PAINT message processing adapts for the change in window real estate. There are a few ways to
keep track of the window size.

• In the WM_P AINT processing, callto return the RECTL structure containing the window size.
• Keep track of the window size by processing the WM_SIZE messages, and store these values in a

structure pointed to by a window word.

Suppose a client area contained a graphic that the programmer wanted to be visible at all times. One
option is to resize automatically the window if the user sizes the window to a smaller size. A less clumsy
option is to restrict the size when the user is adjusting the size border. The following example shows just
how to do this.

WINSIZE.C
#define INCL_WIN
#include <os2.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define CLS_CLIENT "MyClass"

typedef struct _FRAMEINFO
{

LONG lWidth;
LONG lHeight;
PFNWP pfnNormalFrameProc;

FRAMEINFO,*PFRAMEINFO;

MRESULT EXPENTRY ClientWndProc(HWND hwndWnd,ULONG ulMsg,MPARAM
mpParml,MPARAM mpParm2);

MRESULT EXPENTRY SubclassFrameProc(HWND hwndWnd,ULONG ulMsg,
MPARAM mpParml,MPARAM mpParm2);

VOID DisplayError(CHAR *pszText);

INT main(VOID)
{

HAB habAnchor;

HMQ
ULONG
HWND
BOOL
QMSG
PFRAMEINFO
PFNWP
LONG

habAnchor
hmqQueue =

hmqQueue;
ulFlags;
hwndFrame;
bLoop;
qmMsg;
pFrameinfo;
pfnNormalFrameProc;
lHeight,lWidth;

Wininitialize(O);
WinCreateMsgQueue(habAnchor,

0);

WinRegisterClass(habAnchor,
CLS_CLIENT,
ClientWndProc,
0,
sizeof (PVOID)) ;

ulFlags = FCF_TITLEBARIFCF_SYSMENUIFCF_SIZEBORDERIFCF_MINMAXI
FCF_TASKLIST;

/**/
/* create frame window *I
/**/

hwndFrame = WinCreateStdWindow(HWND_DESKTOP,
0,
&ulFlags,
CLS_CLIENT,

11 Frame Window",
0'
NULLHANDLE,

0'
NULL);

/**/
/* subclass the frame window and point to subclass frame */
/* proc *I
/**/

pfnNormalFrameProc = WinSubclassWindow(hwndFrame,
SubclassFrameProc);

/**/
/* get screen height and width *I
/**/

lWidth = WinQuerySysValue(HWND_DESKTOP,
SV_CXSCREEN) ;

1Height WinQuerySysValue(HWND_DESKTOP,
SV_CYSCREEN) ;

/**/
/* if failed, display error, and set to default value */
/**/

if (!lWidth I I !lHeight)
{

DisplayError ("WinQuerySysValue failed");
lWidth = 640;
lHeight = 480;

if (hwndFrame != NULLHANDLE)
{

Window Management - 169

170 - The Art of OS/2 Warp Programming
/***/
/* allocate memory for window word */
/***/

pFrameinfo = calloc(l,
sizeof(FRAMEINFO));

if (!pFrameinfo)
{

/**/
/* error handling */
/**/

}

DisplayError("No memory allocated for frame info");
WinDestroyWindow(hwndFrame);
WinDestroyMsgQueue(hmqQueue);
WinTerminate(habAnchor);
return O;

WinSetWindowPtr(hwndFrame,
QWL_USER,
pFrameinfo);

pFrameinfo->lWidth = lWidth;
pFrameinfo->lHeight = lHeight;
pFrameinfo->pfnNormalFrameProc = pfnNormalFrameProc;

/***/
/* set window position */
/***/

WinSetWindowPos(hwndFrame,
NULLHANDLE,
lWidth/4,
lHeight/4,
lWidth/2,
lHeight/2,
SWP_SIZEISWP_MOVEISWP_ACTIVATEISWP_SHOW);

bLoop WinGetMsg(habAnchor,
&qmMsg,
NULLHANDLE,
0,
0);

while (bLoop)
{

WinDispatchMsg(habAnchor,
&qmMsg);

bLoop = WinGetMsg(habAnchor,
&qmMsg,
NULLHANDLE,
0,
0);

}
WinDestroyWindow(hwndFrame);

}
WinDestroyMsgQueue(hmqQueue);
WinTerminate(habAnchor);
return O;

/* endwhile

/* endif

MRESULT EXPENTRY ClientWndProc(HWND hwndWnd,ULONG ulMsg,MPARAM
mpParml,MPARAM mpParm2J

switch (ulMsg)
{

case WM_ERASEBACKGROUND :
return MRFROMSHORT(TRUE);

*/

*I

default
return WinDefWindowProc(hwndWnd,

ulMsg,
mpParml,
mpParm2);

/* endswitch */

MRESULT EXPENTRY SubclassFrameProc(HWND hwndFrame,ULONG ulMsg,
MPARAM mpParml,MPARAM mpParm2)

PFRAMEINFO
PFNWP
CLASS INFO
HAB

pFrameinfo;
pfnNormalFrameProc;
class Info;
hab;

/**/
/* retrieve frame information from frame window word */
/**/

pFrameinfo = WinQueryWindowPtr(hwndFrame,
QWL_USER);

if (!pFrameinfo)
{

/***/
/* if cannot find window word, use the default window */
/* proc *I
/***/

hab = WinQueryAnchorBlock(hwndFrame);
WinQueryClassinfo(hab,

WC_FRAME,
&classinfo);

pfnNormalFrameProc = classinfo.pfnWindowProc;
return ((*pfnNormalFrameProc) (hwndFrame,

ulMsg,
mpParml,
mpParm2));

pfnNormalFrameProc pFrameinfo->pfnNormalFrameProc;

switch (ulMsg)
{

case WM_QUERYTRACKINFO
{

PTRACKINFO
MRESULT

pTrackinfo;
mrReply;

/***/
/* call default procedure first to get TRACKINFO */
/* structure */
/***/

mrReply = (*pfnNormalFrameProc) (hwndFrame,
ulMsg,
mpParml,
mpParm2);

pTrackinfo = (PTRACKINFO)PVOIDFROMMP(mpParm2);

/***/
/* set limits at 1/2 the height and width of screen*/
/***/

pTrackinfo->ptlMinTrackSize.x
pTrackinfo->ptlMinTrackSize.y

pFrameinfo->lWidth/2;
pFrameinfo->lHeight/2

Window Management - 171

172 - The Art of OS/2 Warp Programming
/***/
/* put limits in TRACKINFO structure *I
/***/

return mrReply;

case WM_DESTROY
{

/***/
/* clean up */
/***/

if (pFrameinfo)
free(pFrameinfo);

break;

default
break;

/* endswitch */

/**/
/* return normal frame window procedure */
/**!

return ((*pfnNormalFrameProc) (hwndFrame,
ulMsg,
mpParml,
mpParm2));

VOID DisplayError(CHAR *pszText)
{

/**/
/* small function to display error string */
/**/

WinAlarm(HWND_DESKTOP,
WA_ERROR);

WinMessageBox(HWND_DESKTOP,
HWND_DESKTOP,
pszText,
11 Error ! 0 ,

0,
MB_OKIMB_ERROR);

return

WIN SIZE.MAK
WINSIZE.EXE:

WINSIZE
WINSIZE
WINSIZE
082386
WINSIZE
<<

LINK386 @<<
WINSIZE.OBJ

WINSIZE.OBJ: WINSIZE.C
ICC -C+ -Kb+ -Ss+ WINSIZE.C

WIN SIZE.DEF
NAME WINSIZE WINDOWAPI

DESCRIPTION 'Window sizing example
Copyright (c) 1992-1995 by Kathleen Panov
All rights reserved. '

STACKSIZE 16384

Device Independence, Almost

Window Management - 173

One new feature will be added to main in this example-a mini form of device
independence. SVGA is very popular, and supporting both 1024 x 768 and 640 x 480
screen resolutions in your programs can be quite painful. Unfortunately, Presentation
Manager does not guarantee that your programs will be dimensioned proportionally at
both resolutions. The best way to make your program look great at any resolution is to
size your windows according to the screen size. "But how will I know how big the

screen is?" you may ask. The answer: Presentation Manager knows all, and you just have to know which
questions to ask. WinQuerySysValue is used for exactly that reason.

LONG WinQuerySysValue(HWND hwndDesktop,
LONG iSysValue);

hwndDesktop is the desktop window handle, and iSysValue is a constant used to query a specific value.
The constants available are too numerous to list here, but are listed in the documentation for
WinQuerySys Value.

lHeight = WinQuerySysValue(HWND_DESKTOP, SV_CYSCREEN) ;
lWidth = WinQuerySysValue(HWND_DESKTOP, SV_CXSCREEN);

This function will provide lots of information about the dimensions of various system components. The
values we are interested in are the height and width of the screen, SV _CXSCREEN and SV _CYSCREEN.
The value returned from the function is the answer to your query.

Once we know the screen height and width, we use WinSetWindowPos to size and position the window
accordingly.

Subclassing the Frame Window
pfnNormalFrameProc = WinSubclassWindow(hwndFrame,

SubclassFrameProc);
WinSetWindowPtr(hwndFrame,

QWL_USER,
pFrameinfo);

pFrameinfo->lWidth = lWidth;
pFrameinfo->lHeight = lHeight;
pFrameinfo->pfnNormalFrameProc = pfnNormalFrameProc;

The frame window must be subclassed in order to alter the default frame window behavior. For more
information on subclassing, see Chapter 27. In this program, the old (in this case, the default) frame
window procedure is saved, along with the minimum height and width, in the frame window word.
Window words were covered in Chapter 9. Remember, some of the system control windows, such as the
frame windows, have reserved space for a user-defined window word.

17 4 - The Art of OS/2 Warp Programming

In Case of Error, Use the Class Default
hab = WinQueryAnchorBlock(hwndFrame);
WinQueryClassinfo(hab,

WC_FRAME,
&classinfo);

pfnNormalFrameProc = classinfo.pfnWindowProc;
return {{*pfnNormalFrameProc) (hwndFrame,

ulMsg,
mpParml,
mpParm2));

In case the window pointer is not found, the frame resorts back to its old window procedure. The path to
the old window procedure is found by using two very useful functions, WinQueryAnchorBlock and
WinQueryClasslnfo.

HAB WinQueryAnchorBlock(HWND hwnd);

WinQueryAnchorBlock has only one parameter, the window handle of the window for which to retrieve the
anchor block handle. The function returns the handle to the anchor block.

BOOL WinQueryClassinfo(HAB hab, PSZ pszClassName,
PCLASSINFO pClassinfo);

This function has three parameters. hab is the anchor block handle, pszClassName is the name of the class
for which to retrieve the information, and pClasslnfo is a pointer to a CLASSINFO structure.

typedef struct _CLASSINFO
{

ULONG flClassStyle;
PFNWP pfnWindowProc;
ULONG cbWindowData;

} CLASSINFO;
typedef CLASSINFO *PCLASSINFO;

The structure contains the class style flags, flClassStyle. A pointer to the window procedure,
pfnWindowProc, and also the number of additional window words, cbWindowData.

WinQueryAnchorBlock is used to retrieve the anchor block for our message queue. Once we have the
anchor block handle, WinQueryClasslnfo is called to retrieve the default window procedure for the frame
class. Then, this window procedure is executed rather than the subclassed frame window procedure.

Tracking the Frame
The WM_TRACKFRAME message controls the sizing of the frame. This message is sent from the
title bar to the frame window. When the frame window receives this message, it sends a
WM_QUERYTRACKINFO message to itself to query the TRACKINFO structure, which is used to define
the boundaries of the tracking (moving or sizing) operation. What the example program does is intercept
the WM_QUERYTRACKINFO message, fill in the TRACKINFO structure, modify the tracking values
that we want to limit, and return TRUE to let the tracking operation continue. The TRACKINFO structure
looks like this.

typedef struct _TRACKINFO
{

LONG cxBorder;
LONG cyBorder;
LONG cxGrid;
LONG cyGrid;
LONG cxKeyboard;
LONG cyKeyboard;
RECTL rclTrack;

/* ti */

RECTL rclBoundary;
POINTL ptlMinTrackSize;
POINTL ptlMaxTrackSize;
ULONG fs;

} TRACKINFO;
typedef TRACKINFO *PTRACKINFO;

mrReply (*pfnNormalFrameProc) (hwndFrame,
ulMsg,
mpParml,
mpParm2);

pTrackinfo = (PTRACKINFO)PVOIDFROMMP(mpParm2);

Window Management - 175

The default frame window procedure is called in order to get a TRACKINFO structure that is already
filled in.

pTrackinfo->ptlMinTrackSize.x
pTrackinfo->ptlMinTrackSize.y

pFrameinfo->lWidth/2;
pFrameinfo->lHeight/2;

Once we have this structure, we modify the ptlMinTrackSize.x and ptlMinTrackSize.y values. We use one
half the screen width and one-half the screen height as the new minimum tracking sizes. The last step is to
return mrReply which will be TRUE in all cases, except for errors.

Saving Window Settings
Now we're ready to expand a little beyond the basic Presentation Manager program. When the user closes
down an application, it is only polite to remember all the changes he or she has made to the frame window.
In OS/2 2.0, the developers added two new functions to make it super-easy really to impress your
customers-WinStoreWindowPos and WinRestoreWindowPos. These functions store the window size,
position, and presentation parameters in the OS2.INI file and then retrieve them on demand.

WINSAVE.C
#define INCL_WIN
#include <os2.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define CLS_CLIENT "MyClass"

#define SAVE_NAME "WINSAVE"
#define SAVE_KEY "WINDOWPOS"

MRESULT EXPENTRY ClientWndProc HWND hwndWnd,
ULONG ulMsg,
MPARAM mpParml,
MPARAM mpParm2)

INT main VOID)
{

HAB habAnchor

176 - The Art of OS/2 Warp Programming
HMQ
ULONG
HWND
HWND
BOOL
BOOL
QMSG

hmqQueue ;
ulFlags ;
hwndFrame ;
hwndClient
bReturn
bLoop ;
qmMsg ;

habAnchor Wininitialize (0) ;
hmqQueue = WinCreateMsgQueue (habAnchor, 0)

WinRegisterClass (habAnchor,
CLS_CLIENT,
ClientWndProc,
0,
0)

ulFlags = FCF_TITLEBAR I FCF_SYSMENU I FCF_SIZEBORDER
FCF_MINMAX I FCF_TASKLIST ;

hwndFrame = WinCreateStdWindow (HWND_DESKTOP,
WS_VISIBLE,
&ulFlags,
CLS_CLIENT,
"Titlebar",
OL,
NULLHANDLE,
0,
&hwndClient

if (hwndFrame != NULLHANDLE) {
bReturn = WinRestoreWindowPos SAVE_NAME,

SAVE_KEY,
hwndFrame)

if (bReturn) {
WinSetWindowPos

else {
WinSetWindowPos

} /* endif */

bLoop = WinGetMsg

while (bLoop) {

hwndFrame,
HWND_TOP,
0,
0,
0,
0,
SWP_ACTIVATE I SWP_SHOW)

hwndFrame,
NULLHANDLE,
10,
10,
400,
300,
SWP_ACTIVATE
SWP_MOVE I
SWP_SIZE I
SWP_SHOW)

habAnchor,
&qmMsg,
NULLHANDLE,
0,
0) ;

WinDispatchMsg (habAnchor, &qmMsg
bLoop = WinGetMsg (habAnchor,

&qmMsg,
NULLHANDLE,
0,
0) ;

l /* endwhile */

WinDestroyWindow (hwndFrame
/* endif */

WinDestroyMsgQueue (hmqQueue
WinTerminate (habAnchor) ;
return 0 ;

MRESULT EXPENTRY ClientWndProc (HWND hwndWnd,
ULONG ulMsg,
MPARAM mpParml,
MPARAM mpParm2)

switch (ulMsg) {

case WM_ERASEBACKGROUND:
return MRFROMSHORT (TRUE

case WM_SAVEAPPLICATION:
WinStoreWindowPos (SAVE_NAME,

SAVE_KEY,
WinQueryWindow (hwndWnd, QW_PARENT))

break ;

default:
return WinDefWindowProc

} /* endswitch */

return MRFROMSHORT (FALSE)

WINSA VE.MAK
WINSAVE.EXE:

WINSAVE
WINSAVE
WINSAVE
OS2386
WINSAVE
<<

LINK386 @«

hwndWnd,
ulMsg,
mpParml,
mpParm2)

WINSAVE.OBJ

WINSAVE.OBJ: WINSAVE.C
ICC -c+ -Kb+ -Ss+ WINSAVE.C

WINSA VE.DEF
NAME WINSAVE WINDOWAPI

DESCRIPTION 'WinRestoreWindowPos example
Copyright (c) 1992-1995 by Kathleen Panov
All rights reserved.'

STACKSIZE 16384

WinRestore Window Pos
bReturn = WinRestoreWindowPos SAVE_NAME,

SAVE_KEY,
hwndFrame)

Window Management - 177

178 -The Art of OS/2 Warp Programming

WinRestoreWindowPos is called right after the frame window is created. This enables the saved changes to
be visible right when the window is created.

BOOL APIENTRY WinRestoreWindowPos(PSZ pszAppName,
PSZ pszKeyName,
HWND hwnd);

The first parameter is the application name, placed in the .INI file. The second is the keyword used in
conjunction with the application name. The last parameter is the window to apply the changes to.

If the call completes successfully, WinSetWindowPos will make the window visible and make it the active
window.

BOOL WinSetWindowPos(HWND hwnd,
HWND hwndinsertBehind,
LONG x,
LONG y,
LONG ex,
LONG cy,
ULONG fl);

WinSetWindowPos is a very handy function. It is used to position, size, activate, deactivate, maximize,
minimize, hide, or restore a window. One of the nice aspects of WinSetWindowPos is its ability to
consolidate several function calls into one.

WinSetWindowPos (hwndFrame,
HWND_TOP,
o,
0,
0,
0,
SWP_ACTIVATE I SWP_SHOW) ;

hwndFrame is the window to adjust. The next parameter, HWND_TOP, indicates the position in the Z
order for the window. We've mentioned Z-order before; it's time for a little more detail.

X,Y ,Z-Order
Presentation Manager supports a concept of piling windows (visually) one on top of another, known as Z
order. The active window and its children are always at the top of the Z-order. Children are ahead of their
parents in their position in the Z-order. The window that is at the top of the Z-order is one in which the
user inputs keystrokes and mouse moves.

The next four parameters of WinSetWindowPos are the x coordinate, y coordinate, width, and height of the
window. The last parameter is the value of the action flags OR'ed together. If SWP _MOVE is specified,
the x, y coordinates are used to move the window to the requested position; if not, these two parameters are
ignored. If SWP _SIZE is used, the window is resized to the new height and width; if not, these two
parameters are ignored. We'll use SWP_ACTIVATE and SWP_SHOW to show the window, and also to
make the frame window the active one.

Readers may wonder why they call these flags SWP _. The reason is that a structure used in window
positioning is a SWP (or "set window position") structure. The structure is as follows.

typedef struct SWP
{

UL ONG
LONG
LONG
LONG
LONG
HWND
HWND
ULONG
ULONG

SWP;

fl;
cy;
ex;
y;
x;
hwndinsertBehind;
hwnd;
ulReservedl;
u1Reserved2;

typedef SWP *PSWP;

Window Management - 179

After calling WinRestoreWindowPos, either WinShowWindow or WinSetWindowPos with the SWP _SHOW
flag should be called.

Saving State
case WM_SAVEAPPLICATION:

WinStoreWindowPos (SAVE_NAME,
SAVE_KEY,
WinQueryWindow (hwndWnd, QW_PARENT))

break ;

Presentation Manager sends a special message at application shutdown time for the sole purpose of giving
the programmer a chance to save the options and settings the user has customized to reflect his or her
preferences. This is the WM_SA VEAPPLICA TION message. Catchy name. This is the time to call
WinStore WindowPos.

BOOL APIENTRY WinStoreWindowPos(PSZ pszAppName,
PSZ pszKeyName,
HWND hwnd);

The parameters for this function are exactly the same as WinRestoreWindowPos.

Gotcha!
One little note here: The settings for the frame window, not the client, are the ones to
be retrieved.

Chapter 11

Window Messages and Queues

Presentation Manager windows communicate using a queue message processing system. All windows in a
Presentation Manager thread share a single message queue for processing messages; however, all message
queues are descendants of the Presentation Manager system message queue. This is the reason that one
poorly designed Presentation Manager application can freeze up the entire system The queueing
mechanism is a very important concept to understand.

Once a window has a message queue, it can communicate with any other window in the entire system. All
it needs is the window, or message queue, handle to send the message to.

A window can send or receive messages. Each message is used to signal some sort of event. Each time a
mouse is moved, a window is resized, or a menu item is selected, messages are sent to a window. A
window procedure operates like a massive sieve, filtering the messages of interest and passing through
those messages that are unimportant. It is important to realize that all messages must be processed and
replied to, either through your own window procedure or by passing the message to WinDejWindowProc or
WinDefDlgProc. This facility of using events to control the programming flow is known as "event-driven
programming." This style is common not only to Presentation Manager programming, but to other GUI
programming environments as well.

Message Ordering

It is not a good idea to count on messages arriving in your message queue in a certain order; the purpose of
event-driven programming is to be flexible and dynamic and respond only when asked; however, there are
obviously times when it is important to understand the flow of messages the system sends to your queue.

The first message you can count on being sent to your client window is the WM_CREATE message. At the
time this message arrives, the window handle exists, but has no size and is not visible. The WM_CREATE
message can be used to do some application-specific initialization, for instance, allocating memory for
window words; however, any queries specific to size or focus should be done after creation. One way to
accomplish this is by posting a user- defined message to the client window in the WM_CREATE
processing. The size and focus messages the system places in the queue are sent messages, and will be
processed before a posted message. When you process the user-defined message, you will have a client
area that has both size and focus, and this information can be used in any initialization that needs to be
done.

181

182 - The Art of OS/2 Warp Programming
The standard way to set size or focus is by using the respective API's directly after the
WinCreateStdWindow or WinCreateWindow call. If you would like to change the size or position of a
window, there are two ways to do this. First, create the client window as not visible, and use the function
WinSetWindowPos to size and show the window. The second method is to intercept the
WM_ADJUSTWINDOWPOS message. This message is sent before a window has been sized or moved.
This gives the application a chance to override the new size and position with a size and position of its own
choosing. If modifications are made, the application should return TRUE instead of FALSE, and the new
coordinates are used.

Focus Messages
When a window is gaining or losing focus, there are several messages that are sent by the system. It is not
advisable to process any of these messages yourself, but it is useful to understand how Presentation
Manager handles changing a windows focus.

When a user clicks the mouse on another window, the system first sends a set of messages to the window
that is losing the focus. A set of WM_QUERYFOCUSCHAIN messages are sent to the frame window and
its children to help the system decide which windows will be involved in this focus change operation.
Next, a WM_FOCUSCHANGE message is sent to both the frame and its children to indicate they are all
losing focus. The next message sent is the WM_SETFOCUS message. This message indicates the window
is either about to lose or about to gain the input focus. In this case, it would be losing input focus. Next,
the WM_SETSELECTION message is sent This message is used to unhighlight or highlight any selected
items in the window. The client area does not do much with this message, but it is at this time that the
titlebar window changes from a highlighted titlebar to an unhighlighted titlebar. The last message sent
when a window is losing focus is the WM_ACTIV A TE message. The message actually takes away the
focus from the active window.

When a window is gaining focus, the messages are sent in a similar fashion. First, the system queries the
windows with the WM_QUERYFOCUSCHAIN. Then, a WM_FOCUSCHANGE message is sent to the
frame and its children to indicate they are gaining focus. Next, the focus change operations are actually
performed, with a WM_SETFOCUS being sent first, then the WM_SETSELECTION, and lastly, the
WM_ACTIVA TE.

Size and Paint Messages
An application receives three messages when a window is sized, WM_CALCVALIDRECTS, WM_SIZE,
and then WM_PAINT. The message WM_CALCVALIDRECTS is used to communicate the new window
size and coordinates after the sizing operation. The WM_CALCV ALIDRECTS is used only when
CS_SIZEREDRA W style is not specified, as the whole window will be invalidated when a sizing operation
is done on a window with this style.

The next message is the WM_SIZE message. This message gives the application a chance to reposition
any other window that may be dependent on the newly sized windows position. The last message passed,
if the style CS_SIZEREDRA W is set, is the WM_PAINT. If the WS_SYNCPAINT style is set, the
message will be sent, otherwise the message will be posted. The system will pass the rectangular
coordinates that contain the area to be redrawn as a parameter in the WM_PAINT message.

Window Messages and Queues - 183

The Last Messages a Window Receives
When a WM_CLOSE message is posted to a window (when the user selects CLOSE from the system
menu), first a WM_SYSCOMMAND message is posted with the SC_CLOSE ID. Next, a WM_QUIT
message is posted to the message queue. This is a very special message, because when WinGetMsg
receives this message, the function returns FALSE, causing the WinGetMsg I WinDispatchMsg loop to
terminate. A WM_SA VEAPPLICATION message is posted next. This gives the application a chance to
prompt the user for any last minute clean-up work; for instance, saving a file, or disconnecting a
communication line. When WinDestroyWindow is used to destroy the frame window, the system will send
the focus change messages to indicate this frame window and all its children will be losing focus. The last
message a window will receive is the WM_DESTROY. This is the place to control any application-specific
cleanup. For example, freeing memory should be done in the WM_DESTROY processing.

When the user has selected "Shutdown" from the desktop menu or the Warp Launchpad, there is a little
change in the messages that arrive in the queue. The system bypasses the WM_ CLOSE message, and sends
two messages to each thread that contains a message queue. The first is the WM_SAVEAPPLICATION.
The next message issued is the WM_QUIT message. An application will usually not process the
WM_QUIT message; however, in the case when it needs to interrupt or halt system shutdown, it must
process WM_QUIT. If the application wants to cancel the shutdown, it can call WinCancelShutdown. If
the application would like to do something else before shutting down, it can perform its closing work, and
then call WinDestroyMsgQueue. After processing, make sure you return FALSE implicitely, and do not
call WinDejWindowProc as the default window procedure does not know how to handle a WM_QUIT
message.

Gotcha!
For each thread that contains a message queue, make absolutely sure that you issue a
WinCancelShutdown soon after the thread is created if you do not want to process the
WM_QUIT, or else be prepared to process the WM_QUIT message and destroy the
message queue. A thread with a never-ending message queue can prevent the entire
system from shutting down properly. Also, there is no guarantee that a secondary
thread will execute all function calls and return before the primary thread (and thus the

application) exits. It is up to the developer to make sure all clean-up in secondary threads is complete
before the application exits.

Sending Messages
When a message is sent, it is usually directed to a particular window. For instance, a WM_CHAR
message, indicating a key had been pressed, would be sent to the window that was currently active and had
the keyboard focus. There are two ways a message can be dispatched. They can either be sent, using
WinSendMsg, or posted, using WinPostMsg. There is a very subtle difference between these two
dispatch methods, and this could cause you problems somewhere down the road. When a message is sent,
it is not put in a window's message queue; it is processed the next time WinGetMsg is called, or
immediately executed, if no message is currently being processed. The thread containing WinSendMsg
blocks, and control is switched over to the thread containing the receiving message's window procedure.

184 - The Art of OS/2 Warp Programming

Thread A

WinSendMsg(hwnd)

Thread Blocks

Task switch to B

Task switch back to A

Thread B

sgqueue
bus?

No

Processmsg

1---------1 Return "'ply to
Thread A

Thread unblocks and
continues

'r'es
Wait until queue

is not busy

Figure 11.1 WinSendMsg in a multithreaded application.

A message should be sent when it absolutely, positively, has to be there right now. A good example of this
is passing pointers in messages when there is no guarantee that the pointer will point to something valid
when the message is up for processing. WinSendMsg should be used in this situation.

One little bit of information about WinSendMsg: this function will not return until that message has been
processed. Yup, that's right. If you send a message from your window procedure to a window procedure
that's asleep at the wheel, or even just a little slow to respond, your window procedure will sit there and
wait until it gets some response back from the other window procedure. If you send a message to
some window that the system controls the window procedure for, you can pretty much guarantee a zippy
response; however, be very careful when using this function to send messages to either your own window
procedure or to some other application's window procedure. WinPostMsg is a much safer method
of transmitting messages; however, the message is placed into the receiving window's message queue. It
will be processed when that window gets around to it. WinPostMsg should be used when you want to
communicate some information and do not care about a reply. WinSendMsg should be used when it is
imperative that you gain some piece of information and have to respond to it now.

Broadcasting Messages
A window can communicate one to one with another window directly, or it can broadcast a message to
several windows at once. The function

WinBroadcastMsg(HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2, ULONG ulCmd)

can be used to send or post a message to the windows specified in the ulCmd parameter. This command
contains two parts: who to communicate with, and what form of communication to use. These flags are

Window Messages and Queues - 185
then ORed together. The default communication form is BMSG_POST. You can specify BMSG_POST,
BMSG_SEND, or BMSG_POSTQUEUE. The POSTQUEUE flag will post a message to all threads in the
system that have a message queue, and the hwnd parameter will be ignored. Only one of these three flags
can be specified. The second part of the u!Cmd parameter indicates who to communicate with. The choices
are BMSG_DESCENDANTS, or BMSG_FRAMEONL Y. DESCENDANTS will communicate with hwnd,
and all of its descendants. FRAMEONL Y will broadcast a message to all frame windows that are
descendants of hwnd. To broadcast to all frames in the system use HWND_DESKTOP for hwnd.

Peeking into the Message Queue
There are many instances when you do not want to retrieve a message from the message queue, instead you
would rather just "peek" into the queue, and see if a message is waiting. The function:

WinPeekMsg(HAB hab, PQMSG pqmsg, HWND hwnd, ULONG ulFirst, ULONG ulLast, ULONG
ulOptions)

inspects the message queue and returns back information about the queue. hwnd narrows the search to a
specific window or its children. The u!First and u!Last parameters let you narrow the search even further
to a numerical range. If both these parameters are null, all messages are included in the search. The
u!Options flag indicates whether the message is removed from the queue, or not. The default is to not
remove the message from the queue. The return from this function indicates whether the search
was successful, or not.

Finding More Message Queue Information
There are several functions to query information from the message queue. The following are these
query functions:

WinQueryMsgPos

WinQueryMsgTime

WinQueryQueuelnfo

WinQueryQueueStatus

Message Priorities

Returns the pointer position when the last message
retrieved from the queue was posted. This is the
pt! parameter in the QMSG structure.
Returns the time in milliseconds when the last message
retrieved from the queue was posted. This is the
time parameter in the QMSG structure.
Returns the MQINFO structure. This structure
includes the process ID, thread ID, and message count
Returns information about what types of messages are
in the ueue

When messages are retrieved from the message queue, they are not necessarily retrieved on a "first in, first
out" basis. Instead, messages are retrieved on the basis of priority, similar to threads. The following is a
list of messages in the order they will be retrieved:

• Sent messages
• WM_SEMl
• All other posted messages
• Keyboard or mouse messages

186 - The Art of OS/2 Warp Programming

• WM_SEM2
• WM_PAINT
• WM_SEM3
• WM_TIMER
• WM_SEM4

Figure 11.2 represents a flow chart of how messages are retrieved.

WinGetMsg process order

Is there a sent message ? Yes Process sent message

No

Is there a Priority 1 posted
Yes

Process Priority 1 posted
message? message

No

Is there a Priority 2 posted Process Priority 2 posted
message? Yes message

No

Is there a Priority 3 posted
Yes

Process Priority 3 posted
message? message

No

Is there a Priority 4 posted
Yes

Process Priority 4 posted
message? message

No

Is there a Priority 5 posted
Yes

Process Priority 5 posted
message? message

No

Is there a Priority 6 posted
Yes

Process Priority 6 posted
message? message

No

Is there a Priority 7 posted
Yes

Process Priority 7 posted
message? message

No

Is there a Priority 8 posted
Yes

Process Priority 8 posted
message? message

No ...
o more mesages to proces

WinGetMsg blocks until next
message is sent or posted

Figure 11.2 WinGetMsg message processing order

You may be wondering, "What are these WM_SEM messages, and the WM_TIMER message?" Well, on
to the next topic ... WM_PAINT messages are fairly low on the message priority totem pole. The default
window style causes Presentation Manager to "group" invalidated regions together and generate
one WM_PAINT message. The window style, WS_SYNCPAINT, or the class style CS_SYNCPAINT,
will stop Presentation Manager from behaving in this independent manner, and each time a region is

Window Messages and Queues - 187
invalidated, Presentation Manager will very obediently call the WM_PAINT processing immediately by
sending the WM_PAINT message. The system does not post this messages, it jumps to the WM_PAINT
processing, and then, when painting is completed, jumps back to the call following the region invalidation.

Messages and Synchronization of Events
Often an application wants to know when some event has occurred. One way to do this is the use of the
WM_SEMl,2,3,4 messages. These messages are totally for your application use. If these messages are
passed to WinDejWindowProc or WinDefDlgProc, it has no effect on the system. For example,
suppose you have a worker thread that has finished processing. That thread could post a WM_SEM2 to the
main thread to indicate that the thread has finished its work. WM_SEM 1 messages should really be
reserved for very important, time-critical events.

A way to keep track of an event that is dependent on some function of time is to use the
functions WinStartTimer and WinStopTimer. WinStartTimer starts an alarm clock that is set to go off after
some application- defined amount of time, in milliseconds. When the timer goes off, the system sends a
WM_ TIMER message back to your window procedure.

You might consider using semaphores in a window procedure. DON'T!! Instead, think of
using WinRequestMutexSem, WinWaitEventSem, or WinWaitMuxWaitSem. Waiting on a semaphore using
the regular DosWait ... Sem functions can bring a window procedure to a screeching halt. Even the most
well-behaved semaphore synchronization can develop a mind of its own every now and then. The special
set of window semaphore functions were created to provide the same functionality as the Dos Wait ... Sem
functions, but not to interrupt the flow of your window procedure completely. The system will appear to
wait in the message processing that this function is called from, but messages sent to the message
queue will be processed synchronously. When the semaphore has been posted or the function times out,
the message processing resumes where the Win Wait ... call was executed. Note that messages that are
posted will remain in the message queue until after the Win Wait ... call has completed.

User-Defined Messages
Presentation Manager also gives you the flexibility to add your own messages to the system. These are
called user-defined messages, and are numerically represented by the range OxlOOO through OxBFFF.
There are some system-defined messages that fall into this range, WM_USER+40 through
WM_USER+55. This is an area that may change in the future, so its a good idea to search through the
Toolkit header files to see if there are any new messages defined that fall into this range. Several examples
in this book use user-defined messages.

Chapter 12

Resources

Although resources such as CPU time and memory in the traditional sense are viewed as "things" that need
to be shared, the term has a different meaning in a GUI environment. In a Presentation Manager
environment resources are viewed as items that are necessary for the user interface of an application but
not part of the application code itself.

So, why does this book contain a chapter dedicated to resources if they aren't code-related? The operative
phrase in the preceding paragraph is "necessary for the user interface." Resources are not something that
can be done without. Instead, programmers will spend a large amount of time on "developing" resources,
since they define the look of the resulting application (though not its operation).

This chapter discusses the following types of resources, what they are, and how they are used within an
application: pointers, icons, bitmaps, string tables, accelerator tables, and application-defined resources.
Help tables, dialog boxes, and menus are also resources that are discussed briefly, with cross-references to
chapters on these topics provided. Fonts, which are the other resource type defined, will not be discussed
because their use requires a detailed look at the Graphics Programming Interface (Gpi), which is a book in
itself.

More About Resources, I Would Know

In an orchestra, there are the musicians, the conductor, and the seating arrangement, which allows the
conductor to know exactly where everything can be found. In this chapter, we will look the analagous
parts in a PM application:

• The resources (musicians)
• The application (the conductor)
• The resource file (the seating arrangement)

The resources are the actual user interface items that are used by the application-pointers, menus, and so
on; as in an orchestra, without the resources themselves, the rest is pointless. The application coordinates
the use of the resources to get a meaningful result; it wouldn't make sense, for example, to show an
"Open" dialog when the user requested that the document should be printed. The resource file is where the
compiler is instructed which resources the application will use; these resources, as we will show, are
appended to the executable in a separate area (called resource segments), which are analogous to the seats
in the orchestra section.

Table 12.1 shows the types of resources, defined by OS/2, that we look at in this chapter.

189

190 -The Art of OS/2 Warp Programming

Pointer
Bitmap
String table
Accelerator table
Menu
Dialog
Font
Help table
Help subtable

User data

Pointer or icon data
Bitmap data
Table of strings
Table of "shortcut" keys
Menu description
Dialog description
Font description
Table of frame windows and dialogs for which online help is to be provided
Table of windows within a frame window or dialog for which online help is to
be provided
Data in an application-specific format

All resources are defined using resource identifiers, numeric constants that, together with the type of the
resource being referenced, uniquely identify each resource in an application. A resource is said to be
loaded when an application needs to use it for the first time; this loading of the resource results in a handle
that the application uses when it calls a Presentation Manager function.

Resource Files
But before we can look at the resources themselves, we must first look at the place in which they are
specified and the compiler used to append them to the executable. The resource file usually has a main file
with the extension .RC, and this file usually includes one or more dialog definition files with the extension
.DLG. The resource file can include C header files using the #include keyword and also can include
comments according to the C++ standard (i.e., using "/*" and "*/" or using "//"). Where a construct
requires a BEGIN and END keywords, the symbols"{" and"}" also may be used.

Dialog files are included in a funny manner: The main file uses the keyword DLGINCLUDE to specify
that a dialog file is to be included.

DLGINCLUDE resid filename

resid specifies the resource identifier of the file(!) and.filename is the name of the file to be included. The
original intent was that each dialog definition would go in a separate file and all of the files would be
included by the main file.

Gotcha!

Because the original purpose of the dialog file is as described, each DLGINCLUDE
statement must have a unique resource identifier. It is not necessary, however, to limit
each dialog file to having a single dialog box definition.

As if that weren't enough trouble, each dialog file also must use the RCINCLUDE
statement to specify what the main file is to which it is being attached. This is to allow the dialog file to
access the symbolic definitions (i.e., #defines).

Resources - 191

As was said, dialog files are included in a funny manner, and the logic is rather illogical. This process was
not followed in every PM sample presentated in this book; instead, all of the dialog definitions were moved
from the dialog files into the main file to eliminate the confusion of resource identifiers for files.

Using the Resource Compiler
Now that a resource file is defined, it needs to be compiled into a .RES file. This is accomplished using the
resource compiler (RC.EXE). The compiler comes with the base operating system and can be found in the
\OS2 directory. It also comes with the Programmer's Toolkit. It supports the command-line options listed
in Table 12.2.

-Dname[=value] Defines a macro and optionally a value
-Ipath

-R
-P

Specifies a path to include when searching for #include
files
Do not attach the compiled .RES file to the .EXE or .DLL
Do not allow resources to cross 64K boundaries

-Kcodepage DBCS code page number
-X(Jl2)
-Ccountrycode

Compress resources using one of two algorithms
Specifies the country code

-H Displays help

To compile a resource file, MY APP.RC, to a .RES file without attaching MY APP.RES to MY APP.EXE,
compressing resources, and using"." as a directory to search, the following code would be entered:

RC -R -Xl -I. MYAPP.RC

Pointers and Icons
Pointers and icons are defined and accessed in the same manner. This isn't coincidence; with the exception
of the first two bytes in the file containing the actual data, the two are identical. Both resources are defined
in the resource file in the following manner:

POINTER resid filename

resid is the resource identifier of the pointer or icon, and filename is the name of the file containing the
pointer or icon data. These files are created using the "icon editor" utility (ICONEDIT.EXE), which is
provided by OS/2 and also can be found as part of the Programmer's Toolkit. For help on using the icon
editor, programmers should refer to the online documentation.

In a program, both are loaded using the WinLoadPointer function.

HPOINTER WinLoadPointer(HWND hwndDesktop,
HMODULE hmDll,
ULONG ulid) ;

hwndDesktop is the desktop window handle, for which HWND_DESKTOP can be specified. hmDll is the
handle to a DLL that was loaded with DosLoadModule or WinLoadLibrary to which the resource is
attached. If the resources are appended to the executable, then NULLHANDLE should be used for this

192 - The Art of OS/2 Warp Programming

parameter. ulld is the resource identifier of the pointer or icon to be loaded. This function returns a handle
to the pointer or icon that was loaded, which is used in subsequent functions that act upon pointers or icons.

Once a pointer or icon is loaded, it can be drawn in a window with the WinDrawPointer function.

BOOL WinDrawPointer(HPS hpsWnd,
LONG lX,
LONG lY,
HPOINTER hpPointer,
ULONG ulFlags) ;

hpsWnd is a handle to the presentation space in which the pointer or icon is to be drawn. IX and IY specify
the position within the presentation space where the pointer or icon is to be drawn. hpPointer specifies the
handle of the pointer or icon that is to be drawn. u!Flags specifies how the pointer or icon is to be drawn,
and is one of the constants listed in Table 12.3.

DP_NORMAL
DP _HALFfONED
DP _INVERTED

Draw the pointer or icon in the "normal" manner.
Draw the pointer or icon in a halftone manner.
Draw the pointer or icon in color-inverted state.

This function returns a flag indicating success or failure.

The WinDrawPointer function is useful for drawing an icon in a window, but it cannot be used to set the
mouse pointer to anything. To accomplish this, we instead need the WinSetPointer function.

BOOL WinSetPointer(HWND hwndDesktop,
HPOINTER hpNew) ;

hwndDesktop is the handle to the desktop; again, the HWND_DESKTOP constant for this can be specified.
hpNew is the handle to the pointer to which one wishes the mouse pointer to change. This function also
returns a flag indicating success or failure.

Gotcha!

Just because the mouse is set to a specified pointer doesn't mean that something else
cannot set it to something else. In fact, WinDejWindowProc will set the pointer to the
arrow pointer within its processing for the WM_MOUSEMOVE message. Typically,
the application would intercept the WM_MOUSEMOVE message and call
WinSetPointer at that point to change the mouse pointer and not call

WinDejWindowProc.

In addition to any user-drawn pointers or icons, Presentation Manager defines a number of "system
pointers;" the arrow pointer, the waiting pointer, and some icons that have been discussed come from here.
These pointers and icons can be accessed or reloaded using the WinQuerySysPointer function.

HPOINTER WinQuerySysPointer(HWND hwndDesktop,
LONG lPtr,
BOOL bLoad) ;

Resources - 193
hwndDesktop is the desktop handle (HWND_DESKTOP). lPtr specifies which system pointer or icon one
wishes to access or load. It is one of the constants found in Table 12.4.

SPTR_APPICON
SPTR_ARROW
SPTR_FILE
SPTR_FOLDER
SPTR_ICONERROR
SPTR_ICONINFORMA TION
SPTR_ICONQUESTION
SPTR_ICONW ARNING
SPTR_ILLEGAL
SPTR_MOVE
SPTR_MUL TFILE
SPTR_PROGRAM
SPTR_SIZE
SPTR_SIZENESW
SPTR_SIZENWSE
SPTR_SIZENS
SPTR_SIZEWE
SPTR_TEXT
SPTR_WAIT

Default icon for a PM application
Arrow pointer
File icon
Folder icon
Error icon
Information icon
Query icon
Warning icon
Illegal action icon
Move icon
Multiple object icon
Executable object icon
Sizing pointer
Sizing pointer from upper right to lower left
Sizing pointer from upper left to lower right
Vertical sizing pointer
Horizontal sizing pointer
Text "I-beam" pointer
Waiting pointer

bLoad specifies whether the handle to the pointer that the system loaded during its initialization should be
returned or whether the pointer should be loaded again and a new handle returned. To make modifications
to the pointer for use within your application, bLoad should be specified TRUE. This function returns a
handle to the specified pointer or to a copy of the specified pointer, depending on the value of bLoad.

Pointers and icons that were loaded explicitly by an application are destroyed using the WinDestroyPointer
function.

BOOL WinDestroyPointer(HPOINTER hpPointer);

hpPointer specifies the handle of the pointer or icon to be destroyed. This function returns a flag
indicating success or failure.

Bitmaps
Bitmaps are similar to their cousins, pointers and icons. However, pointers and icons are of a fixed size,
defined by Presentation Manager and cannot be any bigger or smaller. Bitmaps do not have this
restriction; they do not have a "transparency" color, though, which is something that pointers and icons do
have. Bitmaps in general have many uses-no blanket statement describes their usual purpose in an
application.

The manner in which a bitmap is specified within a resource file is like that of the pointer and icon.

BITMAP resid filename

194 - The Art of OS/2 Warp Programming

This causes the bitmap file with the specified name, filename, to be included in the resource tables and be
assigned the specified resource id, resid.

Bitmaps are loaded with the GpiLoadBitmap function.

HBITMAP GpiLoadBitmap(HPS hpsWnd,
HMODULE hmDll,
ULONG ulid,
LONG lWidth,
LONG lHeight);

hps Wnd is a handle to the presentation space that is used to load the bitmap; this parameter is complex and
will not be discussed. hmDll is a handle to a DLL that contains the resources, if this is the case. Again, if
the resource is appended to the executable, NULLHANDLE should be specified. ulld is the resource
identifier of the bitmap to be loaded. !Width and !Height are the width and height to which the bitmap
should be stretched, if this is desired. Specifying 0 for both of these parameters specifies that the bitmap
should be kept at its original size. This function returns a handle to the bitmap loaded.

Drawing a bitmap is accomplished in one of many ways. We will look at the simplest of these, which is to
use the WinDrawBitmap function. Like WinDrawPointer, this will draw a bitmap into a presentation space
that is associated with a window.

BOOL WinDrawBitmap(HPS hpsWnd,
HBITMAP hbmBitmap,
PRECTL prclSrc,
PPOINTL pptlDest,
LONG lForeClr,
LONG lBackClr,
ULONG ulFlags};

hps Wnd is, again, a handle to a presentation space in which the bitmap will be drawn. hbmBitmap is a
handle to the bitmap to be drawn. prclSrc points to a RECTL structure that defines the portion of the
bitmap to be drawn. If NULLHANDLE is specified, the entire bitmap is drawn. pptlDest specifies the
point corresponding to where the lower left corner of the bitmap is to be in the presentation space.
lForeClr and lBackClr are the foreground and background colors and are used for monochrome bitmaps
only. ulFlags specifies how the bitmap is to be drawn and can be one of the constants depicted in Table
12.5.

DBM_NORMAL
DBM_INVERT
DBM_HALFTONE
DBM_STRETCH
DBM_IMAGEATIRS

Draw the bitmap in a "normal" fashion.
Draw the bitmap in a color-inverted state.
Draw the bitmap in a halftone manner.
Draw the bitmap stretched to fit prclSrc.
Draw the (monochrome) bitmap using the current foreground and background
colors of the presentation space. lForeClr and lBackClr are ignored if this is
s ecified.

This function returns a flag indicating its success or failure.

We've used the word "monochrome" twice, so it is helpful to be able to determine what the parameters are
that were used to create the bitmap. This is done with the GpiQueryBitmaplnfoHeader function.

BOOL GpiQueryBitmapinfoHeader(HBITMAP hbmBitmap,
PBITMAPINFOHEADER2 pbihinfo);

Resources - 195

hbmBitmap i.s a handle to the bitmap in which the programmer is interested. pbihlnfo points to a very
interesting structure-BITMAPINFOHEADER2.

typedef struct _BITMAPINFOHEADER2
ULONG cbFix;
ULONG ex;
ULONG cy;
USHORT cPlanes;
USHORT cBitCount;
ULONG ulCompression;
ULONG cbimage;
ULONG cxResolution;
ULONG cyResolution;
ULONG cclrUsed;
ULONG cclrimportant;
USHORT usUnits;
USHORT usReserved;
USHORT usRecording;
USHORT usRendering;
ULONG cSizel;
ULONG cSize2;
ULONG ulColorEncoding;
ULONG ulidentifier;

BITMAPINFOHEADER2, *PBITMAPINFOHEADER2;

The GpiQueryBitmaplnfoHeader function returns a flag indicating success or failure of the function.

In OS/2 versions l.x, this structure was called BITMAPINFOHEADER and contained only the first five
fields. In the current structure, PM developers have enabled programmers to have much more control over
the creation of a bitmap (or, in this situation, much more information about a bitmap). However, they also
realized that programmers probably still will use only the first five fields. So, the Gpi requires only that
programmers initialize all fields up to the last one they are interested in and that they specify the number of
bytes initialized in the cbFix field; and if the parameters of an existing bitmap are being queried, only
cbFix needs to be initialized to specify how many bytes need to be returned. Thus, if cbFix has the value
16, only the first five fields (sizeof(cbFix) + sizeof(cx) + sizeof(cy) + sizeof(cPlanes) + sizeof(cBitCount) =
16) would be provided, but any value that makes sense, up to the size of the structure, can be specified.
Before GpiQueryBitmaplnfoHeader is called, cbFix should be initialized to specify how much information
should be returned.

Gotcha!

Initializing cbFix to the proper value is a must when calling the
GpiQueryBitmaplnfoHeader function, or unpredictable information will be returned.

The fields of the structure are explained in Table 12.6.

Table 12.6 BITMAPINFOHEADER2 Structure Details

cbFix
ex

Length of structure
Bitmap width in pels

196 - The Art of OS/2 Warp Programming

cy
cPlanes
cBitCount
ulCompression
cblmage
cxResolution
cyResolution
cclrUsed
cclrlmportant
us Units
usReserved
usRecording
usRendering
cSizel
cSize2
ulColorEncoding
ulldentifier

Bitmap height in pels
Number of bit planes
Number of bits per pel within a plane
Compression scheme used to store the bitmap
Length of bitmap storage data in bytes
Horizontal resolution of the intended target device
Vertical resolution of the intended target device
Number of color indices used
Number of important color indices used
Units of measure
Reserved
Recording algorithm used
Halftoning algorithm used
Size value 1
Size value 2
Color encoding used
Reserved for application use

ex and cy specify the width and height of the bitmap. cPlanes specifies the number of color planes used by
the bitmap; while OS/2 supports multiplane bitmaps, the APls to draw bitmaps support only single-plane
bitmaps. cBitCount specifies the number of bits it takes to represent one pel in the bitmap and can have the
value 1, 2, 4, 8, or 24; if the value is l, it is a monochrome bitmap, since it can have only 21 colors.
ulCompression specifies the compression scheme used to compress the bitmap in memory and can be one
of the values listed in Table 12.7.

Table 12.7 Values for u/Comeression
l .. ii)lllllil\1l':i!l!li'i!;;'l1[i','i!1 1::t:::1•1~8fill;:;:1111r;1 w ic•;11@r+n .. ,····'·••t '.:'.!:••:: 1; ;•: nr,,·.••'(:;.:,w:::m::i:i•n•''
BCA_UNCOMP Uncompressed
BCA_HUFFMANlD Huffman encoding scheme
BCA_RLE4 Run-length encoding for 4 bit-per-pel (BPP) bitmaps
BCA_RLE8 Run-length encoding for 8 BPP bitmaps
BCA RLE24 Run-length encoding for 24 BPP bitmaps

cblmage specifies how much memory is needed to store the bitmap data. cxResolution and cyResolution
specify the resolution of the device for which the bitmap was intended to be displayed upon. This does not
prohibit the bitmap from being displayed on another display type; it merely indicates the display type for
which the bitmap was drawn. cclrUsed, cclrlmportant, ulRecording, ulRendering, cSizel, cSize2, and
ulColorEncoding all specify additional data as described in Table 12.6 and are beyond the scope of this
text.

Bitmaps are destroyed using the GpiDeleteBitmap function.

BOOL GpiDeleteBitmap(HBITMAP hbmBitmap);

hbmBitmap specifies the handle to the bitmap to be deleted. This function returns a flag indicating the
success or failure of the function.

Resources - 197

String Tables
String tables are very simple in concept and implementation: They are lookup tables where the application
provides the resource identifier of a string and Presentation Manager provides the corresponding text that
was defined in the resource file. The purpose of a string table is to allow easy translation of an application
to other languages, providing all of the "user-readable" text is placed into a string table. "User-readable" in
this sense means text that the user sees; window class names would not be included in this group, but
messages would be.

Unlike all other resources, string tables do not have a resource identifier explicitly assigned to them by the
programmer. Instead, the resource compiler breaks up the string table into groups of 16 strings and
automatically assigns an identifier to each 16-string group. A string table has the following form in a
resource file.

STRINGTABLE
{

residl, •stringl"
resid2, "string2"
resid3, "string3"

As was stated earlier and is now obvious, a string table is simply that-a table of strings. Each string has a
unique identifier associated with it, which is specified on the call to WinLoadString, which loads a string
from the string table.

LONG WinLoadString(HAB habAnchor,
HMODULE hmDll,
ULONG ulid,
LONG lSzBuffer,
PCHAR pchBuffer);

habAnchor is the handle to the anchor block of the calling thread. hmDll is the handle to the DLL where
the string table resides, or NULLHANDLE if it resides in the executable's resource tables. ulld is the
identifier of the string to be loaded. lSzBuffer specifies the size of the buffer pointed to by pchBuffer. This
function returns the number of characters loaded from the string table, up to a maximum of lSzBuff er - 1.

That's all there is to it!

Accelerators
Accelerators are "shortcut" keys that accelerate the rate at which a user is able to complete certain tasks
within an application. The accelerator table defines a translation from a keystroke, modified by the Alt,
Ctr!, or Shift keys if specified, to a numeric identifier that is sent to the application via the
WM_COMMAND message.

The accelerator table has the following form.

ACCELTABLE resid
{

key, cmd_id, type [, modifiers]
key, cmd_id, type [, modifiers]
key, cmd_id, type [, modifiers]

198 - The Art of OS/2 Warp Programming

resid is the resource identifier for the accelerator table. key is the base key for the accelerator and can be a
VK_ constant (e.g. VK_Fl) or a character in quotes. cmd_id is the numeric identifier to be sent as
SHORTlFROMMP(mpParml) in the WM_ COMMAND message. type is the type of character and must
be CHAR or VIRTUALKEY. modifiers are optional and can be one or more of those listed in Table 12.8,
separated by commas.

CONTROL
ALT
SHIFT

Ctrl key must be pressed.
Alt key must be pressed.
Shift key must be pressed.

Gotcha!

If a character (instead of a virtual key) is specified for an accelerator, it is case
sensitive, so two entries must be provided to cover both possibilities of the shift key
state (unless each case should have different meanings, of course).

If the sole modifier of a character accelerator is the control key, the CONTROL modifier may be omitted
and the key prefixed with a caret symbol, """. Also, keys that are not virtual keys must be specified in
quotes.

ACCELTABLE RES_CLIENT
{

"AO", MI_OPEN
"Ao•, MI_OPEN

Accelerator tables usually are associated with standard windows through the use of the
FCF _ACCEL TABLE frame control flag. However, an accelerator table can be loaded explicitly with the
WinLoadAccelTable function.

HACCEL WinLoadAccelTable(HAB habAnchor,
HMODULE hmDll,
ULONG ulid);

habAnchor is the handle to the anchor block of the calling thread. hmDll is the handle to the DLL if the
accelerator table resides there, or to NULLHANDLE if it is in the executable's resource tables. ulld is the
resource identifier of the accelerator table. This function returns a handle to the loaded accelerator table.

After an accelerator table is loaded, it can be made active with the WinSetAccelTable function.

BOOL WinSetAccelTable(HAB habAnchor,
HACCEL haAccel'
HWND hwndFrame) ;

habAnchor is the handle to the anchor block of the calling thread. haAccel is the handle to the accelerator
table to be made active. hwndFrame is the handle to the frame window to which the accelerator table is
attached. This function returns a flag indicating success or failure.

Resources - 199
For each message queue, there are certain "standard" accelerators that are defined, such as Alt+F4 to close
a frame window. These are called "queue accelerators," since they are in effect for the entire message
queue and are independent of the active window. If hwndFrame in the call to WinSetAccelTable is
NULLHANDLE, the accelerator table replaces the queue accelerator table.

Accelerator tables are destroyed with the WinDestroyAccelTable function.

BOOL WinDestroyAccelTable(HACCEL haAccel);

This function destroys the accelerator table whose handle is specified in haAccel and returns a flag
indicating success or failure.

Dialog Boxes
Dialog boxes are complicated beasts, but their use is simplified greatly through the use of the "dialog box
editor" (DLGEDIT.EXE). A dialog box is described in a resource file using the dialog template. This
template consists of three parts:

• The DLGTEMPLA TE statement
• The DIALOG statement
• One or more child window definitions

The nice thing is that the dialog box editor will create the template for the programmer; all he or she needs
to do is build the dialog box using its WYSIWYG interface. When the work is saved in the dialog box
editor, a dialog file (.DLG) is generated, containing the dialog templates corresponding to the dialog boxes
that the programmer designed.

However, it is nice to know how to make minor adjustments manually, so let us look briefly at the format
of the dialog template.

DLGTEMPLATE resid
{

DIALOG "title text", resid, x, y, ex, cy, style, flags
[CTLDATA controldata]
[PRESPARAM presparam]

CONTROL "text", id, x, y, ex, cy, class, style
[CTLDATA controldata)
[PRESPARAM presparam]

Gotcha!

The resid on the DLGTEMPLA TE and DIALOG statements must match, or the dialog
will fail to load. Why the same constant must be specified twice is beyond our
understanding.

x, y, ex, and cy are the coordinates of the lower left corner and the size of the dialog or window,
respectively. style is one or more style flags; since a dialog is really nothing more than a subclassed frame
window, it can use the FS_ constants in addition to the WS_ constants. The child windows (CONTROL
statement) can use the WS_ constants as well as the constants specific to their window class. class can be a

200 - The Art of OS/2 Warp Programming
WC_ constant or an application-defined class-registered prior to the loading of the dialog with
WinRegisterClass-in double quotes.

The control data (CTLDATA statement) is used to initialize the dialog or the child window, as will be
shown in later chapters. The presentation parameters (PRESPARAM statement) define the appearance,
such as the font used, the foreground and background colors, and so on. See Chapter 9 for more
information on setting presentation parameters.

It should be noted that the coordinates and size of the dialog and the child windows are based on a different
coordinate system; the units are dialog units, which are based on the average character width of the system
font for the resolution of the display. The concept-went-awry is that dialog units are supposed to be
"display independent," meaning that the dialog will occupy the same amount of physical space on different
resolutions; however, most monitors do not report their pel densities properly, so this rarely works.
WinMapDlgPoints can be used to convert between dialog units and pels.

BOOL WinMapDlgPoints(HWND hwndDlg,
PPOINTL pptlPoints,
ULONG ulNumPoints,
BOOL bCalcWindow);

hwndDlg is the handle to the dialog window. pptlPoints points to one or more POINTL structures to
convert. ulNumPoints specifies how many structures pptlPoints points to. bCalcWindow is TRUE if the
programmer wants to convert to window coordinates from dialog coordinates or FALSE if the opposite is
desired.

Menus
Menus are a familiar user-interface component to anyone who has used a Macintosh, Windows, OS/2, or
some other GUI. Their definition in a resource file is also quite simple, for there are only three different
parts: the main "MENU" keyword, submenu definitions, and menu item definitions.

MENU resid
{

SUBMENU "Text", submenu_id [, styles]
{

MENUITEM "Text", menuitem_id [,attributes]
MENUITEM "Text", menuitem_id [, attributes]

resid is the resource identifier of the menu. submenu_id and menuitem_id are unique identifiers of the
submenus and menu items, respectively. They are used when communicating with the menu via the MM_
messages. styles are one or more MIS_ constants that affect the entire submenu. attributes are one or more
MIA_ constants that affect a specific menu item. Both styles and attributes are optional.

See Chapter 14 for more information on using menus.

Help Tables
Help tables are used to provide a linkage between the application's child windows (including menu items,
which are child windows in an odd way) and the help panels which are defined by a help developer. As
you will see in Chapter 29, there are two parts to this linkage: the HELPTABLE and the various
HELPSUBTABLES. See that chapter for information on the resource file syntax and how online help is
provided by an application.

Resources - 201

Application-defined Data
Application-defined data is the general case for all resources. In fact, all of the APis discussed in this
chapter for loading resources follow these instructions in the bowels of the Presentation Manager code.
The OS/2 kernel provides two APis for resource management that are used to load and unload a specific
resource-DosGetResouce and DosFreeResource.

APIRET DosGetResource(HMODULE hmDll,
ULONG ulType,
ULONG ulid,
PPVOID ppvData) ;

APIRET DosFreeResource(PVOID pvData);

hmDll is the handle to the DLL where the resource resides, or is NULLHANDLE if it is found in the
executable's resource tables. ulType is an RT_ constant that specifies the type of the resource.

RT_POINTER
RT_BITMAP
RT_MENU
RT_DIALOG
RT_STRING
RT_FONTDIR
RT_FONT
RT_ACCELTABLE
RT_RCDATA
RT_MESSAGE
RT_DLGINCLUDE
RT_HELPTABLE
RT HELPSUBTABLE

Pointer data
Bitmap data
Menu template
Dialog template
String table
Font directory
Font data
Accelerator table
Binary data
Error message
File name for the DLGINCLUDE statement
Help table for Help Manager
Help subtable for Help Manager

ulld is the resource identifier to be loaded. ppvData is a pointer to a pointer that is initialized by OS/2 to
point to the beginning of the resource data. This pointer is specified on the call to DosFreeResource to
return the memory consumed to the system, since OS/2 allocates the memory for the programmer when
DosGetResource is called.

In the resource file, application-defined data must reside m a separate file and is included via the
RESOUCE keyword.

RESOURCE type resid filename

type and resid correspond to their definitions as described earlier, and filename is the name of the file
where the resource data resides. It should be noted that application-defined resources must have a value
for type of 256 or greater.

Chapter 13

Dialog Boxes

Dialog boxes are designed to gather specific pieces of information from the user. Dialogs contain a mix
and match of child control windows. A window that pops up and contains such fields as "Name:,"
"Address," "Phone," "City," and "State," is a good example of a dialog box.

There are three ways to create a dialog box and its child controls-by using a resource file, by physically
calling the WinCreateWindow for the dialog box and each of its controls, or by using WinCreateDlg. The
resource file is the easiest way to create a dialog box. The Dialog Box Editor shipped with the Toolkit is
designed to help facilitate this creation process.

Dialog boxes come in two styles-modal and modeless. A modeless dialog box lets the user interact with
all the other windows and controls belonging to the same process. A modal dialog box is more restrictive
of the user's input. A user cannot interact with the other windows and controls that are children of the
owner of the dialog box, including the owner. A modal dialog box is designed to be used when the user is
required to enter some information before proceeding on to the next step in the application.

The following sample program is designed to introduce dialog box programming and to display the
difference between modal and modeless dialog boxes.

DIALOG.C
#define INCL_WIN
#include <os2.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "dialog.h"
#define CLS_CLIENT "MyClass"
MRESULT EXPENTRY ClientWndProc(HWND hwndWnd,ULONG ulMsg,MPARAM

mpParml,MPARAM mpParm2);

MRESULT EXPENTRY DlgProc(HWND hwndWnd,ULONG ulMsg,MPARAM mpParml,
MPARAM mpParm2);

typedef struct
{

ULONG

BOOL
HWND
HWND

_DLGINFO

ulStructSize;

bModal;
hwndModeless;
hwndClient;

DLGINFO,*PDLGINFO;

VOID DisplayError(CHAR *pString);

203

204 - The Art of Warp Programming

IN!' main(VOID)
{

HAB
HMQ
ULONG
HWND
HWND
QMSG
BOOL
LONG
LONG

habAnchor;
hmqQueue;
ulFlags;
hwndFrame;
hwndClient;
qmMsg;
bLoop;
lHeight;
lWidth;

habAnchor Wininitialize(O);
hmqQueue = WinCreateMsgQueue(habAnchor,

0);

/***/
/* register class with space for window word */
/***/

WinRegisterClass(habAnchor,
CLS_CLIENT,
ClientWndProc,
CS_SIZEREDRAW,
sizeof (PVOID)) ;

ulFlags = FCF_STANDARD&-FCF_SHELLPOSITION&-FCF_ACCELTABLE&
FCF_TASKLIST;

/***/
/* create the frame, client, etc. */
/***/

hwndFrame = WinCreateStdWindow(HWND_DESKTOP,
0,
&ulFlags,
CLS_CLIENT,
"Dialog Box Example",
0,
NULLHANDLE,
IDR_CLIENT,
&hwndClient);

/***/
/* find desktop dimensions */
/***/

lHeight = WinQuerySysValue(HWND_DESKTOP,
SV_CYSCREEN);

lWidth = WinQuerySysValue(HWND_DESKTOP,
SV_CXSCREEN);

/***/
/* center frame window on desktop */
/***/

if (hwndFrame != 0)
{

WinSetWindowPos(hwndFrame,
NULLHANDLE,
lWidth/8,
lHeight/8,
lWidth/8*6,
lHeight/8*6,
SWP_SIZEISWP_MOVEISWP_ACTIVATEISWP_SHOW);

/***/
/* message loop processing */
/***/

bLoop = WinGetMsg(habAnchor,
&qmMsg,
NULLHANDLE,
0,

while (bLoop)
{

0);

WinDispatchMsg(habAnchor,
&qmMsg);

bLoop = WinGetMsg(habAnchor,
&qmMsg,
NULLHANDLE,
0,
0);

}
WinDestroyWindow(hwndFrame);

}
WinDestroyMsgQueue(hmqQueue);
WinTerminate(habAnchor);
return O;

/* endwhile */

!* endif */

MRESULT EXPENTRY DlgProc(HWND hwndDlg,ULONG ulMsg,MPARAM mpParml,
MPARAM mpParm2)

switch (ulMsg)
{

case WM_INITDLG
{

BOOL
CHAR
PDLGINFO
RECTL
PO INTL
LONG

bModal;
achMessage[64];
pDlginfo;
rclClient;
ptPoints;
lHeight,lWidth;

/***/
/* dialog create information is stored in mpParm2 */
/***/

pDlginfo = PVOIDFROMMP(mpParm2);

if (!pDlginfo)
{

DisplayError ("No create information");
return MRFROMSHORT(TRUE);

/***/
/* the bModal flags says whether we're modal or */
/* modeless */
/***/

bModal = pDlginfo->bModal;

/***/
/* do the sizing calculations, so dialogs look right */
/***/

Dialog Boxes - 205

206-The Art of Warp Programming
WinQueryWindowRect(pDlginfo->hwndClient,

&rclClient);

lHeight = rclClient.yTop-rclClient.yBottom;
lWidth = rclClient.xRight-rclClient.xLeft;

/***/
/* since parent of dialogs are desktop, they will be */
/* positioned relative to the desktop, but we want them*/
/* centered on the client start at l/8th of the client */
/***/

ptPoints.x = lWidth/8;

/***/
/* start at l/19th of the height of the client and */
/* 10/19th for the modeless dialog */
/***/

ptPoints.y = bModal?lHeight/19:1Height/19*10;

/***/
/* find out where these points are relative to the */
/* desktop */
/***/

WinMapWindowPoints(pDlginfo->hwndClient,
HWND_DESKTOP,
&ptPoints,
1);

WinSetWindowPos(hwndDlg,
NULLHANDLE,
ptPoints.x,
ptPoints.y,
lWidth/ 8 * 6,
lHeight/19*8,
SWP_MOVEISWP_SIZE);

sprintf(achMessage, "I'm a %s dialog box", (bModal?
("modal") : ("modeless") J J ;

WinSetDlgitemText(hwndDlg,
IDT_DIALOGNAME,
achMessage);

if (bModal)
{

strcpy(achMessage, "Try to click on the main window");

else
{

strcpy(achMessage, "Click on the main window");
} /* endif */
WinSetDlgitemText(hwndDlg,

IDT_CLICK,
achMessage);

break;
case WM_COMMAND

switch (SHORTlFROMMP(mpParml))
{

case DID_OK :
case DID_CANCEL

/***/
/* for the modeless dialog, this function hides the */
/* dialog; for the modal dialog, this function */
/* destroys the dialog */
/***/

WinDismissDlg(hwndDlg,
FALSE};

break;

default
return WinDefDlgProc(hwndDlg,

ulMsg,
mpParml,

mpParm2};

break;

default
return WinDefDlgProc(hwndDlg,

ulMsg,
mpParml,
mpParm2};

return MRFROMSHORT(FALSE};

/* endswitch

/* endswitch

MRESULT EXPENTRY ClientWndProc(HWND hwndWnd,ULONG ulMsg,MPARAM
mpParml,MPARAM mpParm2}

switch (ulMsg}
{

case WM_ERASEBACKGROUND :
return MRFROMSHORT(TRUE};

case WM_CREATE
{

PDLGINFO pDlginfo;

pDlginfo calloc(l, sizeof(DLGINFO}};
if (! pDlginfo}
{

*/

*/

/***/
/* if error, display message and halt creation */
/***/

DisplayError ("Cannot allocate memory"};
return MRFROMSHORT(TRUE};

pDlginfo->ulStructSize = sizeof(DLGINFO};
pDlginfo->hwndClient = hwndWnd;

/***/
/* associate pDlginfo with window word */
/***/

WinSetWindowPtr(hwndWnd,
QWL_USER,
pDlginfo};

break;

case WM_DESTROY
!* end WM_CREATE *!

Dialog Boxes - 207

208 - The Art of Warp Programming

PDLGINFO

pDlginf o

pDlginfo;

WinQueryWindowPtr(hwndWnd,
QWL_USER);

/***/
I* clean up *I
/***/

if (pDlginfo)
{

/***/
I* if the modelesss dialog box is still around, */
/* destroy it */
/***/

if (pDlginfo->hwndModeless)
WinDestroyWindow(pDlginfo->hwndModeless);

free (pDlginfo);
}
break;

case WM_COMMAND :

switch (SHORTlFROMMP(mpParml))
{

case IDM_MODELESS
{

PDLGINFO pDlginfo;

pDlginfo WinQueryWindowPtr(hwndWnd,
QWL_USER);

if (!pDlginfo)
{

DisplayError ("Missing Window Word") ;
break;

pDlginfo->bModal = FALSE;

/***/
/* if the dialog has not been created, call the */
I* loader, else, just show the dialog window */
/***/

if (!pDlginfo->hwndModeless)
pDlginfo->hwndModeless = WinLoadDlg(HWND_DESKTOP,

hwndWnd,
DlgProc,
NULLHANDLE,
IDD_DIALOG,
pDlginfo);

else
WinSetWindowPos(pDlginfo->hwndModeless,

HWND_TOP,

break;

case IDM_MODAL
{

PDLGINFO

0,
0,
0,
0,
SWP_SHOWISWP_ACTIVATE);

pDlginfo;

pDlginfo = WinQueryWindowPtr(hwndWnd,
QWL_USER);

if (! pDlginfo)
(

DisplayError ("Missing Window Word");
break;

pDlginfo->bModal = TRUE;

WinDlgBox(HWND_DESKTOP,
hwndWnd,
DlgProc,
NULLHANDLE,
IDD_DIALOG,
pDlginfo);

break;

case IDM_EXIT :
WinPostMsg(hwndWnd,

WM_CLOSE,
0,
0);

break;

default
return WinDefWindowProc(hwndWnd,

ulMsg,
mpParml,

mpParm2);

break;
default

return WinDefWindowProc(hwndWnd,
ulMsg,
mpParml,

/* endswitch

mpParm2);
/* endswitch

return MRFROMSHORT(FALSE);

/* small function to beep and display error message

VOID DisplayError(CHAR *pString)
(

WinAlarm(HWND_DESKTOP,
WA_ERROR);

WinMessageBox(HWND_DESKTOP,
HWND_DESKTOP,

return

pString,
11 Error 11 ,

0,
MB_ICONEXCLAMATIONIMB_OK);

Dialog Boxes - 209

*/

*/

*/

210 - The Art of Warp Programming
DIALOG.RC
#include <os2.h>
#include "dialog.h"

ICON IDR_CLIENT DIALOG.ICC

MENU IDR_CLIENT
{

SUBMENU "-Dialog", IDM_DIALOG
{

MENUITEM "-Modeless dialog ... ", IDM_.MODELESS
MENUITEM "Modal -dialog ... ", IDM_MODAL
MENUITEM SEPARATOR
MENUITEM "E-xit", IDM_EXIT

DLGTEMPLATE IDD_DIALOG LOADONCALL MOVEABLE DISCARDABLE
{

DIALOG "Dialog example", IDD_DIALOG, 53, 28, 260, 55,
WS_VISIBLE,
FCF_SYSMENU I FCF_TITLEBAR

LTEXT "?", IDT_DIALOGNAME, 10, 40, 150, 8
LTEXT "?", IDT_CLICK, 10, 30, 150, 8
DEFPUSHBUTTON "OK", DID_OK, 10, 10, 50, 13

DIALOG.ff
#define !DR_ CLIENT 256
#define IDD_DIALOG 257

#define IDM_DIALOG 320
#define IDM_.MODELESS 321
#define IDM_.MODAL 322
#define IDM_EXIT 323

#define IDT_DIALOGNAME 512
#define IDT_CLICK 513

DIALOG.MAK
DIALOG.EXE: DIALOG.OBJ \

DIALOG.RES

DIALOG
DIALOG
DIALOG
OS2386
DIALOG
<<

LINK386 @«

RC DIALOG.RES DIALOG.EXE

DIALOG.RES: DIALOG.RC \
DIALOG.H

RC -r DIALOG.RC DIALOG.RES

DIALOG.OBJ: DIALOG.C \
DIALOG.H

ICC -c+ -Kb+ -Ss+ DIALOG.C

DIALOG.DEF
NAME DIALOG WINDOWAPI
DESCRIPTION 'Dialog example.

Copyright (c) 1992-1995 by Kathleen Panov.
All rights reserved. '

STACKSIZE 16384

Dialog Boxes - 211

The resource file, DIALOG.RC, is the starting point for the sample program. Two items are defined in the
file, a menu and the dialog box. The resource file for the window shows the menu that we would like
displayed in our client window. For more information on resources, see Chapter 12.

The Dialog Box Template

The following is the resource definition to create the dialog boxes used in the DIALOG.C program.

DLGTEMPLATE IDD_DIALOG LOADONCALL MOVEABLE DISCARDABLE
{

DIALOG "Dialog example", IDD_DIALOG, 53, 28, 260, 55,
WS_VISIBLE,
FCF_SYSMENU I FCF_TITLEBAR

LTEXT "?", IDT_DIALOGNAME, 10, 40, 150, 8
LTEXT "?", IDT_CLICK, 10, 30, 150, 8
DEFPUSHBUTTON "OK", DID_OK, 10, 10, 50, 13

The dialog IDD_DIALOG is created in the resource file as visible, with a system menu and title bar.

The next step is to define the controls that are to appear on the dialog box. In this example only an "OK"
pushbutton and some static text will be used. The IDT_CLICK text will be used to communicate some
instructions to the user. The IDT_DIALOGNAME is used to specify whether this is a modal or modeless
dialog box.

The Client Window Procedure
The client window procedure, ClientWndProc, is not very big. A window word is used to store some
information that we will need later in the dialog procedure. This information is stored in a DLGINFO
structure. The structure includes the structure size, a BOOL variable to indicate whether the user selected
modal or modeless from the menu, the handle of the modeless dialog box, and the handle of the client
window. This structure is allocated in the WM_CREATE processing, and cleanup is done in the
WM_DESTROY processing.

The programmatic differences between a modal and nonmodal dialog box exist in the processing of the
WM_ COMMAND message.

In our WM_COMMAND processing, we first find out who is sending us the WM_COMMAND message.
The resource ID for the sender is located in mpParml. If the user selected "Modal Dialog Box,"
IDM_MODAL is returned in mpParml. A Boolean variable, pDlglnfo->bModal, is used to indicate to the
DlgProc whether the user selected a modal or modeless dialog box.

212 - The Art of Warp Programming

Creating a Modal Dialog Box
The function WinDlgBox is used to create a modal dialog box.

ULONG WinDlgBox(HWND hwndParent,
HWND hwndOwner,
PFNWP pfnDlgProc,
HMODULE hrnod,
ULONG idDlg,
PVOID pCreateParams);

When WinDlgBox is used to create a dialog box, a message queue is created for that dialog. User
interaction with the other message queue (and the client window associated with it) is held up until the
dialog box is dismissed and the message queue is destroyed.

pDlginfo->bModal = TRUE;

WinDlgBox(HWND_DESKTOP,
hwndWnd,
DlgProc,
NULLHANDLE,
IDD_DIALOG,
pDlginfo);

The first parameter is the parent, HWND_DESKTOP, and the second parameter is the owner window,
hwndWnd. The programmer almost always will want to specify the desktop as the parent of a modal
dialog, and the client window as the owner. If the frame or client was specified as the parent of the dialog,
the frame window would still be active, thus preventing the whole purpose of using a modal dialog. The
third parameter is the pointer to the dialog process function, in this case DlgProc. NULLHANDLE tells
the system that the resources for the dialog process, DlgProc, are located in the .EXE file. IDD_DIALOG
is the resource ID for the dialog. The last parameter is the data area. This is used to pass programmer
defined data of type PVOID into the dialog procedure. In this area we will pass a pointer to our dialog
information structure, pDlglnfo. WinDlgBox is actually a combination of four functions, WinLoadDlg,
WinProcessDlg, WinDestroyWindow, and return.

Gotcha!

The last parameter to WinDlgBox must be a pointer. This parameter undergoes a
procedure called "thunking" that converts a 32-bit pointer into a pointer that is
readable by 16-bit code. The application will trap if the value is not a pointer and the
system attempts to thunk it. The dialog box functions are 16-bit in OS/2 2.1, and must
try and thunk this value. The dialog box functions in Warp are 32-bit, so no thunking

will be done; however, if previous versions of the operating system must be supported, it is best to be
prepared for thunking.

Creating a Modeless Dialog Box
pDlginfo->bModal = FALSE;

if (!pDlginfo->hwndModeless)
pDlginfo->hwndModeless = WinLoadDlg(HWND_DESKTOP,

hwndWnd,
DlgProc,
NULLHANDLE,
IDD_DIALOG,
pDlginfo);

else
WinSetWindowPos(pDlginfo->hwndModeless,

HWND_TOP,
0,
0,
0,
0,
SWP_SHOWISWP_ACTIVATE);

Dialog Boxes - 213

In this example, we first set the bModal variable to FALSE to indicate that this will be a modeless
dialog box.

Gotcha!

A modeless dialog is not destroyed by WinDismissDlg, only hidden. In order to
destroy the dialogs loaded by WinLoadDlg, WinDestroyWindow must be called
implicitly for each modeless dialog that has been created.

If the user selects the modeless option from the menu multiple times, we do not create the same dialog over
and over; instead, we just check to see if its already exists. If the window handle is there,
WinSetWindowPos is used to show the dialog and make it the active window.

WinLoadDlg is used to create a modeless dialog box, and this function returns immediately after creating it.
WinDlgBox waits until it finishes its processing before returning. This is why a modeless dialog box
permits user interaction with the other windows and a modal dialog box does not. The parameter list for
WinLoadDlg is exactly the same as for WinDlgBox.

The Dialog Procedure DlgProc
The dialog procedure, in this case DlgProc, is fairly similar to a window procedure. Our program can use
the same dialog process for both the modal and modeless dialog boxes.

Gotcha!

One difference between a dialog procedure and a window procedure is the default
procedure function. A dialog procedure must call WinDefDlgProc instead of
WinDefWindowProc. If a dialog procedure behaves irrationally, it should be checked
to see if it includes WinDefDlgProc. These two functions often get interchanged.

214 - The Art of Warp Programming
One of the other differences between dialog and window procedures is the appearance in the former of the
WM_INITDLG message instead of the usual WM_CREATE. This message is provided to give the
programmer a place to put the initialization code for the dialog box.

pDlginfo = PVOIDFROMMP(mpParm2);

The first thing we do is retrieve the information sent to us through the WinLoadDlg or WinDlgBox
function. Both these functions will send this information in the message parameter 2 of the
WM_INITDLG message.

WinQueryWindowRect(pDlginfo->hwndClient,
&rclClient) ;

!Height = rclClient.yTop-rclClient.yBottom;
!Width = rclClient.xRight-rclClient.xLeft;

In order to make our dialog program prettier, we'll position the two dialogs directly on the client window.
However, the parent of the dialogs is the desktop, and remember, the children will be positioned relative to
the parent. So we do some math. First, we find the height and width of the client area, and use these
dimensions to see where the dialogs should be placed relative to the client. We'll start the dialogs at the x
coordinate that is 1/Sth of the client area width. The y coordinate will differ depending on whether the
dialog is the modal dialog or the modeless dialog.

ptPoints.x = lWidth/8;
ptPoints.y = bModal?lHeight/19:1Height/19*10;

Now that we know where we would put our dialogs if they were placed relative to the client window's
coordinate system, all we have to do is find where these coordinates are on the desktop window. And yes,
Presentation Manager has a function that will do this for us: WinMapWindowPoints.

WinMapWindowPoints(HWND hwndSource, HWND hwndDestination,
PPOINTL aptlPoints, LONG !Count) ;

hwndSource is the handle of the window to map the coordinate space from. hwndDestination is the handle
of the window to map the coordinate space to. apt/Points is a point to an array (one or more) of POINTL
structures that on input contain the coordinates to map and on output contain the new coordinates relative
to hwndDestination. /Count is the number of structures in the apt/Points array

In our case, the function looks like this.

WinMapWindowPoints(pDlginfo->hwndClient,
HWND_DESKTOP,
&ptPoints,
1);

On the function's return, ptPoints will contain the new x and y coordinates relative to the desktop. We us.e
these coordinates as the basis for the WinSetWindowPos function to adjust the size and position of the
dialog.

WinSetWindowPos(hwndDlg,
NULLHANDLE,
ptPoints.x,
ptPoints.y,
lWidth/8*6,
lHeight/19*8,
SWP_MOVEISWP_SIZE);

Dialog Boxes - 215

The WM_ COMMAND processing is just like the WM_COMMAND processing for the client window. If
the user presses the OK pushbutton, the dialog box is canceled with WinDismissDlg.

WM_COMMAND and Dialogs
Some "features" (actually they really can be nice) can cause problems in the future if programmers are
unaware of the way WinDefDlgProc handles WM_ COMMAND messages. A dialog will be dismissed if a
WM_ COMMAND message is passed to WinDefDlgProc. In some cases, this makes sense. For instance, if
the user presses the OK or CANCEL pushbuttons, it would be perfectly logical for the dialog box to go
away. However, if other pushbuttons exist, and the programmer does not want the dialog box to be
dismissed, WM_COMMAND processing must be intercepted and return FALSE, instead of letting the
message processing fall through to WinDefDlgProc. This also means that WinDismissDlg must be called
when the programmer is ready for the dialog to disappear and WinDestroyWindow when he or she is ready
to destroy the dialog box.

WinDismissDlg is also called if a WM_QUIT message is sent to the dialog.

Summary
Dialogs will become an integral part of most of a programmer's Presentation Manager programs. They are
easy to use and provide a clean user interface. The main drawback to dialogs is the lack of true device
independent dialog coordinates. Currently, a set of multiple dialogs must be created for different screen
resolutions. Perhaps someday.

Chapter 14

Menus

The menu is a control that provides a list of choices to the user. There are four types of menus: the menu
bar, pull-down menus, cascaded menus, and pop-up menus. A menu uses a small amount of screen real
estate and can be very valuable complex applications by providing visual clues to the user.

A menu bar is displayed in the area between the title bar and the client area of a window. A menu bar is
almost always visible, and contains either specified choices or a description of the choices that the pull
down menu contains.

Figure 14.1 A pull-down menu.

Most users are familiar with the traditional pull-down menus. (See Figure 14.1.) This interface is common
throughout many GUI environments. A pull-down menu should contain related choices. These choices
extend from the menu bar when a particular menu bar choice is selected.

A cascaded menu is one that extends from a selected choice in a pull-down menu-kind of a tag-along
pull-down menu. Cascaded menus can help to shorten long menus. Presentation Manager indicates the
presence of a cascaded menu by a right arrow along the right edge of the pull-down menu.

217

218 - The Art of OS/2 Warp Programming
A pop-up menu (see Figure 14.2) is a menu that pops up a list of choices for an object when some action is
performed to trigger the menu. Pop-up menus are very common in 32-bit OS/2 and are an integral part of
the object-oriented workplace shell. Pop-up menus normally are placed to the right of the object they
pertain to, unless space does not permit; in such a case, the menu is placed wherever space permits.

Figure 14.2 A pop-up menu.

Menus: The Keyboard and the Mouse
Menus are no good to the user unless they are easy to understand and easy to get to. The mouse provides
the easiest interaction with a menu. The user just selects the item by clicking the mouse on any item. If a
pull-down menu is available, it will become visible.

The keys specified in Table 14.1 are important keystrokes to access menus.

ALT
Shift + ESC, Alt + spacebar
FlO
1' (up arrow)

J, (down arrow)

~(left arrow)

Toggles the focus on the menu action bar.
Causes the system menu to become visible.
Jumps to the next higher menu level.
If the pull-down menu is not visible, causes it to become visible; if the pull
down menu is visible, will move to the previous menu item.
If the pull-down menu is not visible, causes it to become visible; if the pull
down menu is visible, will move to the next menu item.
Will move to the next item on the action bar; the system menu is included in
the items this key will cycle through.

~(right arrow)

Enter

Character keys

Menus-219

Will move to the previous item on the action bar; the system menu is
included in the items this key will cycle through.
Selects the current item; if the item is on the action bar, the pull-down menu
will become visible.
Moves to the menu item that has corresponding mnemonic key.

Mnemosyne's Mnemonics
A mnemonic key is similar to an accelerator key, only not quite as powerful. A mnemonic will select the
first menu item with the specified character as its mnemonic key. If the item has a pull-down menu
associated with it, the pull-down menu will become visible. A mnemonic key usually corresponds to a
character in the menu item text. The first letter is used if possible; otherwise, some meaningful character in
the text is used. A mnemonic is indicated by an underlined character. The tilde character(-) in a menu
template in the resource file indicates that the character to follow is a mnemonic key. No other definitions
are necessary in the program; the menu control processing will handle the action of the mnemonics.

Menu Styles

MS_ACTIONBAR
MS_CONDITIONALCASCADE

MS_TITLEBUTTON
MS_ VERTICALFLIP

Creates a menu bar.
Creates a cascaded menu that will become visible only when the arrow
to the right of the menu item is selected.
Creates a push button along the menu bar.
Causes a pull-down menu to be placed above the action bar, space
permitting; if space is not available, the menu is placed below the action
bar.

The choices available in a menu are known as menu items. These menu items are not really a window, but
they do have a special set of styles associated with them. Table 14.2 lists these styles.

Menu Item Styles

MIS_SUBMENU
MIS_SEPARATOR

MIS_BITMAP
MIS_ TEXT
MIS_BUTTONSEPARATOR

MIS_BREAK

MIS_BREAKSEPARA TOR

Creates a submenu.
Inserts a horizontal bar in the menu; a separator is a dummy item and
cannot be selected, enabled, or disabled.
A bitmap instead of text.
A text string.
Creates a menu item that is separate from the other menus. Is placed on the
far right on a menu bar and as the last item in a pull-down menu. A
vertical separator is drawn between this item and the previous items.
Creates a new row (on a menu bar) or a new column (on a pull-down
menu).
Just like MIS_BREAK, except that a line is drawn between the new row or
column.

MIS_SYSCOMMAND

MIS_OWNERDRA W

MIS_HELP

MIS_STATIC

Notifies the owner through a WM_SYSCOMMAND message rather than a
WM_COMMAND message.
Creates an owner-drawn menu item; WM_DRA WITEM messages are sent
whenever the menu item is to be drawn.
Sends a WM_HELP message to its owner, rather than a
WM_COMMAND message.
Creates an unselectable menu item that should be used for information
purposes only.

The following example program shows how to create a pull-down menu. When the menu item is selected,
a message box is displayed containing information about the selected item.

MENU.C
#define INCL_WIN
#include <os2.h>
#include <stdio.h>
#include <string.h>
#include "menu.h"
#define CLS CLIENT "MyClass"
VOID displayMenuinfo(HWND hwndMenu,USHORT usMenuitem,HWND

hwndClient) ;

MRESULT EXPENTRY ClientWndProc(HWND hwndWnd,ULONG ulMsg,MPARAM
mpParml,MPARAM mpParm2);

INT main(VOID)
{

habAnchor;
hmqQueue;
ulFlags;
hwndFrame;
bLoop;

HAB
HMQ
UL ONG
HWND
BOOL
QMSG
LONG

qmMsg;
lWidth,lHeight;

habAnchor Wininitialize(O);
hmqQueue = WinCreateMsgQueue(habAnchor,

0);

WinRegisterClass(habAnchor,
CLS_CLIENT,
ClientWndProc,
0,
0);

ulFlags = FCF_STANDARD&-FCF_SHELLPOSITION;

/**/
/* create frame window */
/**/

hwndFrame = WinCreateStdWindow(HWND_DESKTOP,
0,
&ulFlags,
CLS_CLIENT,
"Menu Example",
0,
NULLHANDLE,
RES_FRAME,
NULL);

/**/
/* get screen height and width */
/**/

lWidth = WinQuerySysValue(HWND_DESKTOP,
SV_CXSCREEN);

lHeight WinQuerySysValue(HWND_DESKTOP,
SV_CYSCREEN) ;

/**/
/* if failed, display error, and set to default value */
/**/

if (! lWidth 11 ! lHeightl
{

lWidth = 640;
lHeight = 480;

if (hwndFrame != NULLHANDLE)
{

/***/
/* set window position */
/***/

WinSetWindowPos(hwndFrame,
NULLHANDLE,
lWidth/8,
lHeight/8,
lWidth/8*6,
lHeight/8*6,
SWP_SIZEISWP_MOVEISWP_ACTIVATEISWP_SHOW);

bLoop WinGetMsg(habAnchor,
&qmMsg,
NULLHANDLE,
0,
0);

while (bLoop)
{

WinDispatchMsg(habAnchor,
&qmMsg);

bLoop = WinGetMsg(habAnchor,
&qmMsg,
NULLHANDLE,
0,
0);

}
WinDestroyWindow(hwndFrame);

}
WinDestroyMsgQueue(hmqQueue);
WinTerminate(habAnchor);
return O;

/* endwhile

/* endif

*!

*!

MRESULT EXPENTRY ClientWndProc(HWND hwndClient,ULONG ulMsg,MPARAM
mpParml,MPARAM mpParm2)

switch (ulMsg)
{

case WM_CREATE
{

HPS
HBITMAP

hpsWnd;
hbmBitmap;

Menus-221

222 - The Art of OS/2 Warp Programming
MENU ITEM
HWND

mi Item;
hwndMenu;

hpsWnd WinGetPS(hwndClient);

/***/
/* load bitmap from resource file */
/***/

hbmBitmap = GpiLoadBitmap(hpsWnd,
NULLHANDLE,
IDB_BITMAP,
32,
32);

WinReleasePS(hpsWnd);

/***/
/* set up MENUITEM data structure */
/***/

miitem.iPosition = O;
miitem.afStyle = MIS_BITMAP;
miitem.afAttribute = O;
miitem.id = IDM_BITMAP;
miitem.hwndSubMenu = NULLHANDLE;
miitem.hitem = hbmBitmap;

hwndMenu = WinWindowFromID(WinQueryWindow(hwndClient,
QW_PARENT),

FID_MENU);

/***/
I* Set MENUITEM *I
/***/

WinSendMsg(hwndMenu,
MM_SETITEM,
MPFROM2SHORT(O,

TRUE),
MPFROMP(&miitem));

break;
case WM_PAINT

{
HPS
RECTL

hpsPaint;
rclPaint;

hpsPaint WinBeginPaint(hwndClient,
NULLHANDLE,
&rclPaintl;

/***/
/* clear window */
/***/

WinFillRect(hpsPaint,
&rclPaint,
SYSCLR_WINDOW) ;

WinEndPaint(hpsPaintl;

break;
case WM_COMMAND

switch (SHORTlFROMMP(mpParmlll
{

case IDM_ITEMl
case IDM_ITEM2
case IDM_ITEM3
case IDM_BITMAP

case
case

{

IDM_CUT :
IDM_COPY

HWND
HWND
USHORT
MRESULT
CHAR

hwndFrame;
hwndMenu;
usAttr;
mrReply;
achText [64] ;

/***/
/* get the menu window handle */
/***/

hwndFrame = WinQueryWindow(hwndClient,
QW_PARENT);

hwndMenu = WinWindowFromID(hwndFrame,
FID_MENU);

/***/
/* show menuitem information */
/***/

displayMenuinfo(hwndMenu,
SHORTlFROMMP(mpParml),
hwndClient);

/***/
/* if this is the checked menu item, toggle */
/* it */
/***/

if (SHORTlFROMMP(mpParml) == IDM_ITEMl)
{

mrReply = WinSendMsg(hwndMenu,
MM_QUERYITEMATTR,
MPFROM2SHORT(IDM_ITEM1,

TRUE),
MPFROMSHORT(MIA_CHECKED
)) ;

usAttr = SHORTlFROMMR(mrReply);

/**/
/* toggle checked bit */
/**/

usAttr A= MIA_CHECKED;

if (usAttr != 0)
{

strcpy(achText,
"-Checked item\tAlt + C");

}
else
{

strcpy(achText,
"-unchecked item\tAlt + C");

I* endif */

/**/
/* change to newly toggled state */
/**/

WinSendMsg(hwndMenu,
MM_SETITEMATTR,
MPFROM2SHORT(IDM_ITEM1,

TRUE),

Menus-223

224 - The Art of OS/2 Warp Programming
MPFROM2SHORT(MIA_CHECKED,

usAttr));

/**/
/* change text to reflect change of state */
/**/

break;
default

WinSendMsg(hwndMenu,
MM_SETITEMTEXT,
MPFROMSHORT(IDM_ITEMl),
MPFROMP(achText));

/* endif

return WinDefWindowProc(hwndClient,
ulMsg,
mpParml,
mpParm2);

/* endswitch
break;

default
return WinDefWindowProc(hwndClient,

ulMsg,
mpParml,
mpParm2);

/* endswitch
return MRFROMSHORT(FALSE);

VOID displayMenuinfo(HWND hwndMenu,USHORT usMenuitem,HWND
hwndClient)

US HORT
US HORT
USHORT
CHAR
CHAR

usAllStyles;
usAttr;
usSzText;
achitemText[32];
achText[128];

*I

*I

*/

/**/
/* look for all different kinds of attributes */
/**/

usAllStyles = MIA_NODISMISSIMIA_FRAMEDIMIA_CHECKEDI
MIA_DISABLEDIMIA_HILITED;

usAttr = SHORTlFROMMR(WinSendMsg(hwndMenu,
MM_QUERYITEMATTR,
MPFROM2SHORT(usMenuitem,

TRUE),
MPFROMSHORT(usAllStyles)));

/**/
/* query menu item text */
/**/

usSzText = SHORTlFROMMR(WinSendMsg(hwndMenu,
MM_QUERYITEMTEXT,
MPFROM2SHORT(usMenuitem,

30),
MPFROMP(achitemText)));

sprintf(achText,
"Menu Item: \ "%s\" \nMenu Item Styles are: Ox%04x",
usSzText?achitemText:" (null) "
usAttr);

/**/
I* display information *I
/**/

WinMessageBox(HWND_DESKTOP,
hwndClient,
achText,

return

MENU.RC
#include <os2.h>
#include "menu.h"

"Menu Information",
0,
MB_OK);

ICON RES_FRAME MENU.ICO
BITMAP IDB_BITMAP MENU.BMP

MENU RES_FRAME
{

SUBMENU "-Menu", IDM_SUBl
{

MENUITEM "-Checked\tAlt+C"' IDM_ITEMl, MIS_TEXT, MIA_CHECKED
MENUITEM "-Framed\tAlt+F", IDM_ITEM2, MIS_TEXT, MIA_FRAMED
MENUITEM "-Text\ tAl t+T"' IDM_ITEM3' MIS_TEXT
MENUITEM SEPARATOR
MENUITEM "", IDM_BITMAP

}
SUBMENU "-Edit", IDM_EDIT
{

MENUITEM "-Cut", IDM_CUT
MENUITEM "C-opy", IDM_COPY
MENUITEM "-Paste", IDM_PASTE, MIS_TEXT, MIA_DISABLED

}
MENUITEM "Fl=Help", IDM_HELP, MIS_HELP

ACCELTABLE RES_FRAME
{

"c" , IDM_ITEMl, ALT
"f" , IDM_ITEM2, ALT
"t" , IDM_ITEM3, ALT

MENU.ff
#define RES_FRAME

#define IDM_SUBl
#define IDM_ITEMl
#define IDM_ITEM2
#define IDM_ITEM3
#define IDM_BITMAP
#define IDM_EDIT
#define IDM_CUT
#define IDM_COPY
#define IDM_PASTE
#define IDM_HELP

#define IDB_BITMAP

256

512
513
514
515
516
528
529
530
531
544

1024

MIS_BUTTONSEPARATOR

Menus-225

226 - The Art of OS/2 Warp Programming
MENU.MAK
MENU.EXE: MENU.OBJ \

MENU.RES

MENU
MENU
MENU
OS2386
MENU
<<

LINK386 @«

RC MENU.RES MENU.EXE

MENU.RES: MENU.RC \
MENU.H

RC -r MENU.RC MENU.RES

MENU.OBJ: MENU.C \
MENU.H

ICC -C+ -Kb+ -Ss+ MENU.C

MENU.DEF
NAME MENU WINDOWAPI

DESCRIPTION 'Menu example
Copyright (c) 1992-1995 by Kathleen Panov.
All rights reserved.'

STACKSIZE 16384

The Resource File
The menu for a frame window can be created two ways: either statically, using the resource file, or
dynamically, using WinCreateWindow with the class WC_MENU. The easiest way is to create a menu in
the resource file, and this example will do just that.

MENU RES_CLIENT

The MENU keyword in a resource file indicates that a menu is being defined. The next word is the
resource ID, RES_CLIENT. All resources including icons, accelerator tables, and menus, that are attached
to the frame window share the same resource ID. This resource ID will automatically attach all resources
indicated by the FCF _ * flags used in WinCreateStdWindow. This can cause the function to fail if a
resource is defined with the FCF _ flag and not in the .RC file.

SUBMENU "-Menu", IDM_SUBl
{

MENUITEM "-Checked\tAlt+C", IDM_ITEMl, MIS_TEXT, MIA_CHECKED
MENUITEM "-Framed\tAlt+F", IDM_ITEM2, MIS_TEXT, MIA....FRAMED
MENUITEM "-Text\tAlt+T", IDM_ITEM3, MIS_TEXT
MENUITEM SEPARATOR
MENUITEM "", IDM_BITMAP

SUBMENU "-Edit•, IDM_EDIT
{

MENUITEM "-CUt", IDM_CUT
MENUITEM "C-opy", IDM_COPY
MENUITEM "-Paste", IDM_PASTE, MIS_TEXT, MIA....DISABLED

}
MENUITEM "Fl=Help", IDM_HELP, MIS_HELP I MIS_BUTTONSEPARATOR

Menus-227

The \t characters on the MENUITEM indicate that a tab is placed between the text and the text that follows.
The text following the tab is the information on the accelerator key. Just because we have defined the
menu text to indicate an accelerator key does not guarantee its existence.

The options after the resource IDs are the menu item styles. A comma is used to separate the styles from
the menu item attributes. Attributes are used to describe the state of a menu item and are designed to be
turned on and off on the fly. The previous example program contains examples of five different kinds of
menu items: Checked, Text, Framed, Bitmap, and Disabled. A menu item that is checked or unchecked is
an example of a menu item attribute. The attributes specified in Table 14.4 are available.

Menu Item Attributes
Table 14.4 Menu Item Attributes

MIA_HILITED
MIA_ CHECKED
MIA_DISABLED
MIA_FRAMED
MIA_NODISMISS

The menu item is selected.
A check will appear next to this menu item if TRUE.
The menu item will appear in a grayed, disabled state.
The menu item is enclosed within a frame.
The pull-down menu containing this menu item will not be dismissed until told
to do so.

Creating the Menu Bitmap
There are two ways to use a bitmap as a menu item. One is to include it in the resource file; the other is to
load it during the message processing. In this example, we'll choose the latter method.

hbmBitmap = GpiLoadBitmap (hpsWnd,
NULLHANDLE,
IDB_BITMAP,
32,
32)

For more information on GpiLoadBitmap, see Chapter 12.

The bitmap handle, hbmBitmap, is returned from GpiLoadBitmap.

typedef struct _MENUITEM
{

SHORT iPosition;
USHORT afStyle;
USHORT afAttribute;
USHORT id;
HWND hwndSubMenu;
ULONG hitem;

} MENUITEM;
typedef MENUITEM *PMENUITEM;

/* mi */

A MENUITEM structure is used to tell the menu how this menu item is to appear. As always when
passing structures, all fields must be initialized. For the menu item style, we use MIS_BITMAP. The ID is
IDM_BITMAP. h/tem is the handle to the item-in this case, hbmBitmap.

228 - The Art of OS/2 Warp Programming

miitem.iPosition = O ;
miitem.afStyle = MIS_BITMAP
miitem.afAttribute = O ;
miitem.id = IDM_BITMAP ;
miitem.hwndSubMenu = NULLHANDLE
miitem.hitem = hbmBitmap ;

In the MENU.RC file, a spot was created for the IDM_BITMAP menu item. The MM_SETITEM message
is sent to finish the job.

WinSendMsg hwndMenu,
MM_SETITEM,
MPFROM2SHORT (0, TRUE) ,
MPFROMP (&miitem)) ;

mpParml is composed of two USHORTS. The first is always 0, and the second is a flag indicating that
submenus are to be included in the search. We do want to include submenus. The second message
parameter is a pointer to the MENUITEM structure.

The Client Window Procedure ClientWndProc
The client window procedure is where all of the menu handling is done. The WM_COMMAND message
is sent to the owner, hwndClient, whenever the user has selected some item from the menu, using the
mouse, keyboard, or accelerator key. The example finds out which menu item is selected and displays a
message box with information about the item. The menu item IDM_ITEMl will have the check mark
toggled on and off whenever it is selected.

case WM_COMMAND :
switch (SHORTlFROMMP(mpParml))
{

case IDM_ITEMl :
case IDM_ITEM2 :
case IDM_ITEM3 :
case IDM_BITMAP
case IDM_CUT :
case IDM_COPY

{
HWND
HWND
US HORT
MRESULT
CHAR

hwndFrame;
hwndMenu;
usAttr;
mrReply;
achText[64);

hwndFrame = WinQueryWindow(hwndClient,
QW_PARENT) ;

hwndMenu = WinWindowFromID(hwndFrame,
FID_MENU);

The menu item ID is contained in mpParml of the WM_COMMAND message. After the ID is obtained,
we obtain the menu window handle. The menu handle is used later. WinWindowFromlD will return the
menu window handle when the special ID, FID_MENU, is used. The first parameter is the parent of the
menu, the frame window.

if (SHORTlFROMMP(mpParml) == IDM_ITEMl)
{

mrReply = WinSendMsg(hwndMenu,
MM_QUERYITEMATTR,
MPFROM2SHORT(IDM_ITEM1,

TRUE),
MPFROMSHORT(MIA_CHECKED
)) ;

usAttr = SHORTlFROMMR(mrReply);

Menus-229

If the menu item ID is IDM_ITEMl, we query whether the MIA_ CHECKED bit is set, using the message
MM_QUERYITEMATIR. mpParml consists of two USHORTS. The lower bytes are the menu item ID
to query, IDM_ITEMl. The upper bytes indicate whether to include submenus. This is applicable when
you want to query all menu items on a pull-down, or sublevel, menu. mpParm2 is the attribute mask for
the query. We want to know only whether the MIA_CHECKED bit is set, so this will be the mask we use.
A mask can be a collection of attributes OR'ed together or only one. The value of the bit is returned in the
variable usAttr.

usAttr A= MIA_CHECKED;

Once we know whether the menu item is checked, we want to reverse the state of the MIA_ CHECKED bit
in order to toggle the check mark.

if (usAttr != 0)
{

strcpy(achText,

else
{

• -Checked item\tAlt + C');

strcpy(achText,
•-Unchecked item\tAlt + C');

/* endif */

WinSendMsg(hwndMenu,
MM_SETITEMATTR,
MPFROM2SHORT(IDM_ITEM1,

TRUE),
MPFROM2SHORT(MIA_CHECKED,

usAttr));

WinSendMsg(hwndMenu,
MM_SETITEMTEXT,
MPFROMSHORT(IDM_ITEMl),
MPFROMP(achText));

The next thing to do is to set the menu with the new menu item state, and also update the menu item text to
reflect the change. The checked state is determined by AND'ing usAttr and MIA_CHECKED. The
message MM_SETITEMTEXT is used to set the menu item text to the new string. mpParml is set to the
menu item ID, IDM_ITEMl. mpParm2 is a pointer to the text string. The message MM_SETITEMATTR
is used to set the menu item attribute to the new value in usAttr. The message parameters are equivalent to
the MM_QUERYITEMATTR message parameters, except that MM_SETITEMATTR has an extra
SHORT in mpParm2 that contains attribute data.

230 - The Art of OS/2 Warp Programming

The User Function displayMenulnfo
After the user selects a menu item, a message box is popped up to display various bits of information about
the menu item. The menu item attributes are found using MM_QUERYITEMA TIR. Instead of using just
one menu item attribute mask, the values MIA_NODISMISS, MIA_FRAMED, MIA_CHECKED,
MIA_DISABLED, and MIA_HILITED are OR'ed together.

usAllStyles = MIA_NODISMISS I MIA_FRAMED I MIA_CHECKED
MIA_DISABLED I MIA_HILITED ;

usAttr = SHORTlFROMMR (WinSendMsg (hwndMenu,
MM_QUERYITEMATTR,
MPFROM2SHORT (usMenuitem, TRUE) ,
MPFROMSHORT (usAllStyles))) ;

usSzText SHORTlFROMMR (WinSendMsg (hwndMenu,
MM_QUERYITEMTEXT,
MPFROM2SHORT (usMenuitem, 30) ,
MPFROMP (achitemText)))

The return from the message will yield the state of all these attributes OR'ed together.
MM_QUERYITEMTEXT is used to query the menu item text. mpParml is two USHORTS. The lower
bytes contain the menu item ID; the upper bytes contain the length of the text input buffer, achltemText.
The second message parameter is a pointer to the text input buffer.

The last step is to call WinMessageBox to display the menu item information.

Pop-up Menus
The following example will demonstrate how to create a pop-up menu suitable for the OS/2 Warp
environment. An icon is created on the client window. If the user clicks the context menu mouse button
(the right one by default) on the icon, a pop-up menu will appear.

POPUP.C
#define INCL_WIN
#include <os2.h>
#include "popup.h"
#include "stdlib.h"
MRESULT EXPENTRY ClientWndProc(HWND hwnd,ULONG msg,MPARAM mpl,

MPARAM mp2) ;

#define CLS_CLIENT "MyClass"
typedef struct
{

HWND hwndMenu;

HPOINTER hptrFileicon;
MENUDATA,*PMENUDATA;

INT main (VOID)
{

HAB
HMQ
ULONG
HWND
BOOL
QMSG

habAnchor;
hmqQueue;
ulFlags;
hwndFrame;
bLoop;
qmMsg;

LONG

habAnchor
hmqQueue =

lWidth,lHeight;

Wininitialize(O);
WinCreateMsgQueue(habAnchor,

0);

WinRegisterClass(habAnchor,
CLS_CLIENT,
ClientWndProc,
0,
sizeof (PVOID)) ;

/**/
I* create frame window * /
/**/

ulFlags = FCF_TASKLISTIFCF_TITLEBARIFCF_SYSMENUIFCF_MINMAXI
FCF_SIZEBORDERIFCF_SHELLPOSITION;

hwndFrame = WinCreateStdWindow(HWND_DESKTOP,
0,
&ulFlags,
CLS_CLIENT,
"Popup Menu Example",
0,
NULLHANDLE,
0,
NULL);

/**/
/* get screen height and width *!
/**/

lWidth = WinQuerySysValue(HWND_DESKTOP,
SV_CXSCREEN) ;

lHeight WinQuerySysValue(HWND_DESKTOP,
SV_CYSCREEN) ;

/**/
/* if failed, display error, and set to default value */
/**/

if (! lWidth 11 ! lHeight)
{

lWidth = 640;
lHeight = 480;

if (hwndFrame != NULLHANDLE)
{

/***/
/* set window position */
/***/

WinSetWindowPos(hwndFrame,

bLoop

NULLHANDLE,
lWidth/8,
lHeight/8,
lWidth/8*6,
lHeight/8*6,
SWP_SIZEISWP_MOVEISWP_ACTIVATEISWP_SHOW);

WinGetMsg(habAnchor,
&qmMsg,
NULLHANDLE,

Menus-231

232 - The Art of OS/2 Warp Programming

while (bLoop)
{

0,
0);

WinDispatchMsg(habAnchor,
&qmMsg);

bLoop = WinGetMsg(habAnchor,
&qmMsg,
NULLHANDLE,
0,
0);

}
WinDestroyWindow(hwndFrame);

}
WinDestroyMsgQueue(hmqQueue);
WinTerminate(habAnchor);
return O;

/* endwhile *I

/* endif */

MRESULT EXPENTRY ClientWndProc(HWND hwndClient,ULONG ulMsg,MPARAM
mpParml,MPARAM mpParm2)

PMENUDATA pmdMenuData;

switch (ulMsg)
{

case WM_CREATE
{

pmdMenuData = malloc(sizeof(MENUDATA));
WinSetWindowPtr(hwndClient,

0,
pmdMenuData);

pmdMenuData->hwndMenu = WinLoadMenu(hwndClient,
NULLHANDLE,
IDM__POPUP) ;

pmdMenuData->hptrFileicon = WinLoadFileicon
("POPUP. EXE",
FALSE);

break;

case WM_DESTROY

pmdMenuData = WinQueryWindowPtr(hwndClient,
0);

if (pmdMenuDatal
{

if (pmdMenuData->hptrFileicon != NULLHANDLE)
{

WinFreeFileicon(pmdMenuData->hptrFileicon);
} /* endif */
if (pmdMenuData->hwndMenu)

WinDestroyWindow(pmdMenuData->hwndMenu);
free(pmdMenuData);

break;

case WM__PAINT
{

HPS
RECTL

hpsPaint

/* endif */

hpsPaint;
rclinvalid;

WinBeginPaint(hwndClient,
NULLHANDLE,
&rclinvalidl ;

WinFillRect(hpsPaint,

&rclinvalid,
SYSCLR_WINDOW) ;

pmdMenuData WinQueryWindowPtr(hwndClient,
0);

if (pmdMenuData->hptrFileicon != NULLHANDLE)
{

WinDrawPointer(hpsPaint,
50,
50,
pmdMenuData->hptrFileicon,
DP _NORMAL) ;

/* endif
WinEndPaint(hpsPaint);

break;
case WM_CONTEXTMENU

{
PO INTL
REC TL
HAB
BOOL
BOOL

ptlMouse;
rclicon;
habAnchor;
binside;
bKeyboardUsed;

pmdMenuData WinQueryWindowPtr(hwndClient,
0);

habAnchor = WinQueryAnchorBlock(hwndClient);
bKeyboardUsed = SHORT2FROMMP(mpParm2);

*/

/*---*/
/* If the mouse was used, check to see if the */
/* pointer is over the icon, else always display */
I * the menu . * I
/*---*/

if (!bKeyboardUsed)
{

rclicon.xLeft = 50;
rclicon.xRight = rclicon.xLeft+WinQuerySysValue

(HWND_DESKTOP,
SV_CXICON);

rclicon.yBottom = 50;
rclicon.yTop = rclicon.yBottom+WinQuerySysValue

(HWND_DESKTOP,
SV_CYICON);

ptlMouse.x
ptlMouse.y

(LONG)SHORTlFROMMP(mpParml);
(LONG)SHORT2FROMMP(mpParml);

binside = WinPtinRect(habAnchor,
&rclicon,
&ptlMouse);

else
{

binside = TRUE;
ptlMouse.x 100;
ptlMouse.y = 100;

/* endif */

Menus-233

234 -The Art of OS/2 Warp Programming
if ((binside) && (pmdMenuData->hwndMenu))
{

WinPopupMenu(hwndClient,
hwndClient,
pmdMenuData->hwndMenu,
ptlMouse.x,
ptlMouse.y,
ID?>l_ICON,
PU_POSITIONONITEMIPU_KEYBOARDI

PU_MOUSEBUTTON1IPU_MOUSEBUTTON2);
/* endif */

break;
default

return WinDefWindowProc(hwndClient,
ulMsg,
mpParml,
mpParm2);

return MRFROMSHORT(FALSE);

PO PUP.RC
#include <os2.h>
#include "popup.h"

MENU ID?>l_POPUP
{

MENUITEM "-Icon View", IDM_ICON
MENUITEM "-Name View", ID?>l_NAME
MENUITEM "-Text View", ID?>l_TEXT
MENUITEM "-Detail View", IDM_DETAIL

POPUP.H
#define ID?>l_POPUP
#define ID?>l_ICON
#define ID?>LNAME
#define IDM_TEXT
#define ID?>l_DETAIL

PO PUP.MAK

256
257
258
259
260

I* endswi tch

POPUP.EXE: POPUP.OBJ \
POPUP.RES

PO PUP
PO PUP
PO PUP
OS2386
PO PUP
<<

LINK386 @«

RC POPUP.RES POPUP.EXE

POPUP.RES: POPUP.RC \
POPUP.H

RC -r POPUP.RC POPUP.RES

POPUP.OBJ: POPUP.C \
POPUP.H

ICC -c+ -Kb+ -Ss+ POPUP.C

*I

PO PUP.DEF
NAME POPUP WINDOWAPI

DESCRIPTION 'Popup example
Copyright (c) 1992-1995 by Kathleen Panov.
All rights reserved. '

STACKSIZE 16384

Creating a Pop-up Menu
pmdMenuData = malloc(sizeof(MENUDATA));
WinSetWindowPtr(hwndClient,

0,
pmdMenuData) ;

pmdMenuData->hwndMenu = WinLoadMenu(hwndClient,
NULLHANDLE,
IDM_POPUP);

Menus --'- 235

The pop-up menu is created almost exactly as a regular menu is. The pop-up template contains the same
keywords and definitions as the regular pull-down template. When the client window is being created (the
WM_CREATE processing), the menu template is loaded.

HWND WinLoadMenu(HWND hwndFrame,
HMODULE hmod,
ULONG idMenu);

WinLoadMenu has three parameters. hwndFrame is the owner and parent window handle. hmod is the
resource identifier if the menu resource is located in a .DLL, and id.Menu is the menu resource ID.
WinLoadMenu returns a menu handle that will be used later in the WinPopupMenu function. For now, it is
stored in the window word of the client area. One performance note here: We could have used
WinLoadMenu in the WM_CONTEXTMENU processing, because WM_CREATE is called once and
WM_CONTEXTMENU is called as many times as the user chooses, considerable time and system
resources are saved if we load the menu in the WM_CREATE processing. Whenever possible,
programmers should keep message processing as lean as possible and be careful of loading resources
multiple times.

I Think I Can, I Think Icon
pmdMenuData->hptrFileicon = WinLoadFileicon("POPUP.EXEn,

FALSE);

One of the functions introduced in OS/2 2.0 is WinLoadFile/con. This is a nifty function to "lift" an icon
from some file to use in a program. This example takes the file icon associated with itself and paints it on
the client window.

HPOINTER WinLoadFileicon(PSZ pszFileName,
BOOL fPrivate);

WinLoadFilelcon has two parameters. The first is the file name. The second is a flag that indicates
whether the icon needs to be "public" or "private." A "public" icon is much easier on system resources,

236 - The Art of OS/2 Warp Programming

but it is a read-only version of the icon. That's all that this example needs. A pointer handle, hptrFilelcon,
to the icon is returned. Once again, the handle is stored in the client's window word for future use.

WinDrawPointer(hpsPaint,
50,
50,
pmdMenuData->hptrFileicon,
DP _NORMAL) ;

WinDrawPointer actually will paint the icon on the client window. For more information on this function,
see Chapter 12.

Popping Up a Menu
rclicon.xLeft = 50;
rclicon.xRight = rclicon.xLeft+WinQuerySysValue

(HWND_DESKTOP,
SV_CXICON);

rclicon.yBottom = 50;
rclicon.yTop = rclicon.yBottom+WinQuerySysValue

(HWND_DESKTOP,
SV_CYICON) ;

ptlMouse.x = (LONG)SHORTlFROMMP(mpParml);
ptlMouse.y = (LONG)SHORT2FROMMP(mpParml);

binside = WinPtinRect(habAnchor,
&rel Icon,
&ptlMouse);

In this example, when the user clicks the context menu mouse button or uses the context menu keystroke,
we'll pop up a menu. The message we'll use to track that event is WM_CONTEXTMENU.

BOOL WinPtinRect(HAB hab,
PRECTL pre 1,
PPOINTL pptl) ;

We use WinPtlnRect to determine if the mouse is over the icon that we have drawn already. hab is the
anchor block handle. prcl is a pointer to the points region of the rectangle coordinates. pptl is a pointer to
the points region. If the point lies within the rectangle, TRUE is returned. If the mouse is over the icon,
we pop up the menu.

The Workhorse Function WinPopupMenu
WinPopupMenu (hwndClient,

hwndClient,
pmdMenuData->hwndMenu,
ptlMouse.x,
ptlMouse.y,
IDM_ICON,
PU_POSITIONONITEM I PU_KEYBOARD I
PU_MOUSEBUTTONl I PU_MOUSEBUTTON2) ;

The pop-up menu actually is made visible by WinPopupMenu. This function handles all the user I/O and
returns WM_ COMMAND messages to the owner window, just as a regular pull-down menu does.

Menus-237

BOOL WinPopupMenu(HWND hwndParent,
HWND hwndOwner,
HWND hwndMenu,
LONG x,
LONG y,
LONG iditem,
ULONG fs};

The first and second parameters are the parent and owner windows, respectively. The client window,
hwndClient, is used for both. The next parameter is the menu handle of the popup menu. The next two
parameters are the x and y coordinates at which to place the menu. The last two parameters are used to
control the initial display state and user interface for the menu. IDM_ICON is the menu item we want to
be selected initially.

The last parameter is a collection of flags. Table 14.5 specifies the flags available.

PU_POSITIONONITEM Will cause the ID specified in the previous parameter to
appear directly above where the mouse pointer is. This flag
overrides the x, y coordinates as placement of the menu. It
also causes the specified menu item ID to appear selected
when the pop-up menu appears.

PU_KEYBOARD

Gotcha!

Lets the user use the keyboard keys to traverse the menu
choices and select an item.
Enables the user to use mouse button 2 to select a menu item.
Enables the user to use mouse button 1 to select a menu item.

For pop-up menus, the WM_INITMENU documentation does not state that the menu
identifier for the top-level menu will be FID_MENU.

Chapter 15

List Boxes

A list box (see Figure 15.1) is a control that provides the user with a list of choices. Single or multiple
items can be selected; the default is single. A list box can scroll horizontally, vertically, or both. List
boxes, by default, contain only text entries, although they are not limited to only text.

Listbox Example

Bengals
Oilers
Bears
Broncos
Jets
Raiders

Figure 15.1 A list box control.

The items in a list box should be presented in some order meaningful to the user. A list box should be
large enough to have six or eight choices visible at all times and wide enough to display an item of average
width without horizontal scrolling. If multiple selection is supported, informative text should be provided
to indicate the current number of selected items.

List Box Styles
The styles presented in Table 15.1 can be used when creating a list box.

LS_MUL TIPLESEL
LS_OWNERDRA W
LS_NOADJUSTPOS

Supports selection of multiple items.
Generates a WM_DRA WITEM whenever certain parts are to be drawn.
Will not size the list box.

239

LS_HORZSCROLL Will have a horizontal scroll bar along the bottom and will support horizontal
scrolling.

LS_EXTENDEDSEL Lets the user select more than one item using a point-end-point selection
techni ue.

Extended Selection
List boxes also support a selection technique known as extended selection. Extended selection supports a
"swiping" technique to select the list box items. Table 15.2 shows the keystrokes and mouse actions
defined in an extended-selection list box.

Click mouse button on object
Drag mouse from start point of
selection to end point of selection
Press SHIFT key while cursor is at
start point and use i and J.. keys to
move to end point
Click mouse button on object while
pressing Ctrl key
Press Ctrl+spacebar, or spacebar,
while cursor is positioned at object
Press Ctrl key while dragging mouse
from start point of selection to end
point of selection

Selects object; all others are deselected.
Selects all objects in area; all other objects are deselected.

Selects all objects in area; all other objects are deselected.

Selects object; all other selected objects are left selected.

Selects object; all other selected objects are left selected.

Selects all objects in area; all other objects are deselected.

The following LISTI example program shows a very introductory list box program. This list box has the
LS_MUL TIPLESEL style and communicates with the client area to have the selections displayed in the
window.

LISTl.C
#define INCL_WIN
#define INCL_GPI
#include <os2.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include 'listl.h'

#define CLS_CLIENT "MyClass"
#define NUM_ENTRIES 10

MRESULT EXPENTRY ClientWndProc(HWND hwndClient,ULONG ulMsg,MPARAM
mpParml,MPARAM mpParm2);

MRESULT EXPENTRY DlgProc(HWND hwndDlg,ULONG ulMsg,MPARAM mpParml,
MPARAM mpParm2);

VOID DisplayError(CHAR *pszText);
int main (void) ;

typedef
{

struct

USHORT ausListBoxSel[NUM_ENTRIES];
LISTBOXINFO,*PLISTBOXINFO;

int main ()
{

HMQ
HAE
ULONG
HWND
HWND
QMSG

hmqQueue;
habAnchor;
ulFlags;
hwndFrame;
hwndClient;
qmMsg;

/**/
/* initialization stuff */
/**/

habAnchor = Wininitialize(O);
hmqQueue = WinCreateMsgQueue(habAnchor,

0);

WinRegisterClass(habAnchor,
CLS_CLIENT,
ClientWndProc,
CS_SYNCPAINTICS_SIZEREDRAWICS_CLIPCHILDREN,
sizeof (PVOID)) ;

ulFlags = FCF_TITLEBARIFCF_SYSMENUIFCF_MENUIFCF_SIZEBORDERI
FCF_MINMAXIFCF_SHELLPOSITION;

/**/
/* create the frame and client windows */
/**/

hwndFrame = WinCreateStdWindow(HWND_DESKTOP,
WS_VISIBLE,
&ulFlags,
CLS_CLIENT,

if (hwndFrame != NULLHANDLE)
{

while (WinGetMsg(habAnchor,
&qmMsg,
NULLHANDLE,
0,
0))

WinDispatchMsg(habAnchor,
&qmMsg);

WinDestroyWindow(hwndFrame);

"Plain Listbox Example",
0,
(HMODULE)O,
ID_CLIENT,
&hwndClient);

/* endif */

/**/
/* clean up */
/**/

WinDestroyMsgQueue(hmqQueue);
WinTerminate(habAnchor);
return O;

List Boxes - 241

242 - The Art of OS/2 Warp Programming
MRESULT EXPENTRY ClientWndProc(HWND hwndClient,ULONG ulMsg,MPARAM

mpParml,MPARAM mpParm2)

PLISTBOXINFO
BOOL

pliinfo;
bReturn;

/**/
/* retrieve listbox info from the client window */
/**/

pliinfo = WinQueryWindowPtr(hwndClient,
0);

switch (ulMsg)
{

case WM_CREATE

/**/
/* allocate window word */
/**/

pliinfo = (PLISTBOXINFO)calloc(l,
sizeof(LISTBOXINFO));

if (!pliinfo)
{

DisplayError ("Memory Allocation Failure: 1 ")
return (MRFROMSHORT(TRUE));

/* endif */

/**/
/* assign window word */
/**/

bReturn = WinSetWindowPtr(hwndClient,
QWL_USER,
pliinfo);

if (! bReturn)
DisplayError ("WinSetWindowPtr Failure: 1")

break;
case WM_DESTROY

/**/
/* free up window word */
/**/

if (pliinfo)
free (pliinfo);

break;
case WM_PAINT

{
HPS
REC TL

rclNewPaint;
USHORT

hpsPresentationSpace;
rectinvalidRect,rclPaintRegion,

i;

hpsPresentationSpac~ WinBeginPaint(hwndClient,
NULLHANDLE,
&rectinvalidRect

) ;

/***/
/* get window size */
/***/

bReturn = WinQueryWindowRect(hwndClient,
&rclPaintRegion) ;

if (! bReturn) {
DisplayError("WinQueryWindowRect Failure:l");
break;

/***/
/* start 3/4 of the way across window */
/***/

rclNewPaint.xLeft = (rclPaintRegion.xRight
rclPaintRegion.xLeftl I 4 * 3;

rclNewPaint.xRight = rclPaintRegion.xRight;

/***/
/* set the top and bottom coordinates */
/***/

rclNewPaint.yBottom = rclPaintRegion.yBottom;
rclNewPaint.yTop = rclPaintRegion.yTop;

/***/
/* fill the invalidated rectangle with white */
/***/

WinFillRect(hpsPresentationspace,
&rectinvalidRect,
CLR_WHITE) ;

WinDrawText(hpsPresentationSpace,
-1,
"You have selected:",
&rclNewPaint,
0,
0,
DT_LEFT\DT_TEXTATTRS);

/***/
/* drop down one line */
/***/

rclNewPaint.yTop -= 15;

/***/
/* if item is selected, drop down one line, and */
/* draw the selected listbox item */
/***/

for (i = O; i < NUM_ENTRIES; i++)
if (pliinfo->ausListBoxSel[i] ==TRUE)
{

rclNewPaint.yTop -= 15;
WinDrawText(hpsPresentationSpace,

-1,
pszListBoxEntry[i],
&rclNewPaint,
0,
0,
DT_LEFT\DT_TEXTATTRS);

} /* end if selected */
WinEndPaint(hpsPresentationSpace);
break;

List Boxes - 243

244 - The Art of OS/2 Warp Programming
case WM_COMMAND :

switch (SHORTlFROMMP(mpParml))
{

case IDM_DISPLAY
{
ULONG ulReturn
/**/
/* load up dialog */
/**/

ulReturn = WinDlgBox(HWND_DESKTOP,
hwndClient,
DlgProc,
NULLHANDLE,
IDD_LISTBOX,
NULL);

if (ulReturn == DID_ERROR)
DisplayError ("WinDlgBox Failure: 1")

break;
}

case IDM_EXIT :

/**/
/* close up window */
/**/

WinPostMsg(hwndClient,
WM_CLOSE,
MPVOID,
MPVOID);

break;
default

return WinDefWindowProc(hwndClient,
ulMsg,
mpParml,
mpParm2);

break;

case WM_SIZE
WinPostMsg(hwndClient,

UM_LISTBOXSEL,
MPVOID,
MPVOID);

break;
case UM_LISTBOXSEL

{

SHORT
SHORT
HWND
USHORT

sSelect = O;
sindex = LIT_FIRST;
hwndDlg;
i;

/***/
/* first set all to unselected */
/***/

for (i = O; i < NUM_ENTRIES; i++)
pliinfo->ausListBoxSel[i] FALSE;

hwndDlg = WinWindowFromID(HWND_DESKTOP,
IDD_LISTBOX) ;

/***/
/* get selected items from listbox */
/***/

while (sSelect != LIT_NONE && hwndDlg)

sSelect (SHORT)WinSendDlgitemMsg(hwndDlg,
IDL_LISTBOX,

LM_QUERYSELECTION

MPFROMSHORT
(sindex),
MPVOID);

pliinfo->ausListBoxSel[sSelect] = TRUE;

/**/
/* set query to start at last selected item */
/**/

sindex = sSelect;

/***/
/* invalidate the window */
/***/

WininvalidateRect(hwndClient,
NULL,
FALSE);

break;
}

default
return WinDefWindowProc(hwndClient,

ulMsg,
mpParml,
mpParm2);

/* endswitch

return (MRFROMSHORT(FALSE));

*/

MRESULT EXPENTRY DlgProc(HWND hwndDlg,ULONG ulMsg,MPARAM mpParml,
MPARAM mpParm2)

USHORT i;

switch (ulMsg)
{

case WM_INITDLG
{

HWND hwndListBox;

hwndListBox WinWindowFromID(hwndDlg,
IDL_LISTBOX);

for (i = O; i < NUM_ENTRIES; i++)
WininsertLboxitem(hwndListBox,

LIT_END,
pszListBoxEntry[i]);

WinSendDlgitemMsg(hwndDlg,
IDL_LISTBOX,
LM_SELECTITEM,
MPFROMSHORT(O),
MPFROMSHORT(TRUE));

break;

case WM_COMMAND

List Boxes - 245

246 - The Art of OS/2 Warp Programming

SHORT
HWND

sCommand;
hwndClient;

sCommand SHORTlFROMMP(mpParml);
switch (sCommand)
{

case DID_OK :
hwndClient = WinQueryWindow(hwndDlg,

QW_OWNER);
if (!hwndClient){

DisplayError("WinQueryWindow Failure:l");
break;

}
WinPostMsg(hwndClient,

UM_LISTBOXSEL,
MPVOID,
MPVOID);

/***/
/* if hit OK, don't dismiss dialog */
/***/

return (MRFROMSHORT(TRUE));

case DID_CANCEL :
hwndClient = WinQueryWindow(hwndDlg,

QW_OWNER);
if (!hwndClient){

DisplayError("WinQueryWindow Failure:l");
break;

WinPostMsg(hwndClient,
UM_LISTBOXSEL,
MPVOID,
MPVOID);

WinDismissDlg(hwndDlg,
DID_CANCEL) ;

break;

/* end switch sCommand */
break;

}
default

return (WinDefDlgProc(hwndDlg,
ulMsg,
mpParml,
mpParm2));

return (MRFROMSHORT(FALSE));

VOID DisplayError(CHAR *pszText)
{

/* endswitch */

/**/
/* small function to display error string */
/**/

WinAlarm(HWND_DESKTOP,
WA_ERROR);

WinMessageBox(HWND_DESKTOP,
HWND_DESKTOP,
pszText,

11 Error ! 11 ,

0'
MB_OK I MB_ERROR) ;

return

LISTI.RC
#include <os2.h>
#include "LISTl.H"

MENU ID_CLIENT
{

SUBMENU "-File", -1
{

MENUITEM "-Display Dialog•, IDM_DISPLAY
MENUITEM SEPARATOR
MENUITEM "E-xit", IDM_EXIT

DLGTEMPLATE IDD_LISTBOX LOADONCALL MOVEABLE DISCARDABLE
BEGIN

DIALOG "Listbox Example", IDD_LISTBOX, 12, 6, 170, 107, WS_VISIBLE,
FCF_SYSMENU I FCF_TITLEBAR
PRESPARAMS PP_BACKGROUNDCOLORINDEX, CLR_WHITE

BEGIN

END
END

LISTl.H

LISTBOX
PRESPARAMS

PUSHBUTTON
PUSHBUTTON

#define UM_LOADDLG
#define UM_LISTBOXSEL
#define IDD_LISTBOX
#define IDL_LISTBOX
#define ID_CLIENT
#define IDM_DISPLAY
#define IDM_EXIT

CHAR *pszListBoxEntry[]
11 Cowboys 11 ,

11 Bengals 11 ,

11 0ilers 11 ,

"Bears",
"Broncos",
11 Jets 11 ,

"Raiders",
11 Rams",
"Giants",
"Redskins" } ;

IDL_LISTBOX, 14, 28, 135, 63, LS_MULTIPLESEL
PP_BACKGROUNDCOLORINDEX, CLR_WHITE

"OK", DID_OK, 3, 1, 40, 14
"Cancel", DID_CANCEL, 48, 1, 40, 14

(WM_USER+l)
(WM_USER+2)
200
201
202
203
204

List Boxes - 247

248 - The Art of OS/2 Warp Programming
LISTI.MAK
LIST1.EXE: LIST1.0BJ \

LIST1.RES

LIST1
LIST1
LIST1
082386
LIST1
<<

LINK386 @<<

RC LIST1.RES LIST1.EXE

LIST1.RES: LIST1.RC \
LIST1.H

RC -r LISTl.RC LIST1.RES

LIST1.0BJ: LIST1.C \
LIST1.H LIST1.MAK

ICC -c+ -Kb+ -Ss+ LIST1.C

LISTI.DEF
NAME LISTBOX WINDOWAPI
DESCRIPTION 'Listbox example.

Copyright (c) 1992-1995 by Kathleen Panov.
All rights reserved.'

In the LISTl sample program, the dialog box will post a message, UM_LISTBOXSEL, to the client area
when the OK button is pressed. When the client area receives this message, it queries the list box to
determine which items have been selected. These items are stored in the user-defined window word area
for the client window. Also, a fiag,fSelectedltems, is set to indicate items have been selected.

When the WM_PAINT message is received, the client area is cleared. If the fiagfSelected/tems is set, the
items in the window word are written to the client area.

Initializing the Client Window
The structure LISTBOXINFO is used to hold the list box information.

typedef struct
{

USHORT ausListBoxSel[NUM_ENTRIES];
} LISTBOXINFO,*PLISTBOXINFO;

The array ausListBoxSel[] is used to hold the items that have been selected.

The WM_ CREA TE message processing is where the memory is allocated for the structure
LISTBOXINFO. WinSetWindowPtr is used to assign the pointer to the structure plilnfo to the window
word.

Initializing the List Box
hwndListBox = WinWindowFromID(hwndDlg,

IDL_LISTBOX);

for (i = 0; i < NUM_ENTRIES; i++)
WininsertLboxitem(hwndListBox,

LIT_END,
pszListBoxEntry[i]);

List Boxes - 249

The WM_INITDLG message processing initializes the list box. The first step is to obtain the window
handle of the list box using WinWindowFromlD. The dialog box is the parent of all the controls in it. The
macro WinlnsertLboxltem is a shortened version of the function WinSendDlgltemMsg, designed specially
to insert items into the list box. The first parameter is the list box window handle, hwndListBox. The
second parameter indicates the position in the list box to insert the item. Acceptable entries are either an
integer value indicating the placement of the item (0 indicates the topmost item) or the constant LIT_END.
Also, the list box control is smart enough to sort the items alphabetically. The
constants LIT_SORTASCENDING and LIT_SORTDESCENDING can be used to automate this
process. Alphabetization takes some time, though; sorting the list box items before inserting them in the
list box may increase performance. The last parameter is the text string to enter into the list box. The
header file LISTBOX.H contains the definition for pszListBoxEntry.

WinSendDlgitemMsg (hwndDlg,
IDL_LISTBOX,
LM_SELECTITEM,
MPFROMSHORT (0) ,
MPFROMSHORT (TRUE))

One other nit about the list box: The first item must be selected manually. The message
LM_SELECTITEM will do this for us. The first parameter is the index of the list box item to be selected.
The second parameter indicates whether the item is selected (TRUE) or deselected (FALSE). Notice that
this time we use the function WinSendDlgltemMsg; this is another way to send messages to items in a
dialog box.

The WM_ COMMAND Message Dialog Processing
hwndClient = WinQueryWindow(hwndDlg,

QW_OWNER);

WinPostMsg(hwndClient,
UM_LISTBOXSEL,
MPVOID,
MPVOID);

return (MRFROMSHORT(TRUE));

When the user presses either the OK or the CANCEL button, the system sends a WM_COMMAND
message to the dialog box. mpParml contains the ID of the pushbutton, either DID_OK or DID_CANCEL.
If the user presses DID_OK, the system sends a user-defined message, UM_LISTBOXSEL, to the client
window and returns TRUE. This prevents the system from dismissing the dialog box.

If the user presses the CANCEL button, the dialog box is destroyed, using WinDismissDlg. Also, a
UM_LISTBOXSEL message is sent to reset the LISTBOXINFO structure and repaint the client window
area.

250 - The Art of OS/2 Warp Programming

Processing the UM_LISTBOXSEL Message
SHORT
SHORT
HWND
USHORT

sSelect = O;
sindex = LIT_FIRST;
hwndDlg;
i;

for (i = O; i < NUM_ENTRIES; i++)
pliinfo->ausListBoxSel[i] =FALSE;

hwndDlg = WinWindowFromID(HWND_DESKTOP,
IDD_LISTBOX) ;

while (sSelect != LIT_NONE && hwndDlg)
{

sSelect = (SHORT)WinSendDlgitemMsg(hwndDlg,
IDL_LISTBOX,
LM_QUERYSELECTION,
MPFROMSHORT(sindex),
MPVOID);

pliinfo->ausListBoxSel[sSelect] =TRUE;

sindex = sSelect;

pliinfo->fSelecteditems = TRUE;

When the client window receives the UM_LISTBOXSEL message, it is the client's job to find the selected
list box items. Our list box has the style LS_MUL TIPLESEL, so the user can select as many items as he or
she wants. Because so many items can be selected, the procedure to find all of them can be a little tricky;
not difficult, just tricky. The message LM_QUERYSELECTION starts at the list box item specified in
mpParml and returns the first selected item it finds. This is a fairly simple procedure to code. A while
loop continues searching until sSelect equals LIT_NONE (in other words, no more items are selected). We
next send a LM_QUERYSELECTION message to the list box window, with the variable slndex indicating
the index of the item at which to start the search. At the start of the loop, this variable is LIT_FIRST, the
first item in the list box. When the first selected item is found, the variable sSelect contains the index of
the item. As the loop traverses through the items in the list box, the starting search point is updated to
sSelect. As a selected item is found, the corresponding index in the array ausListBoxSel[] is set to TRUE.
This information is used in the WM_PAINT processing.

The last part of this message processing is to signal the client window to repaint itself.

The Client Window Painting Routine
The WM_PAINT processing is where the items selected in the list box actually are written to the client area
window. WinFillRect fills the drawing region with the color CLR_ WHITE.

WinQueryWindowRect(hwndClient,
&rclPaintRegion);

rclNewPaint.xLeft = (rclPaintRegion.xRight
rclPaintRegion.xLeft) / 4 * 3;

rclNewPaint.xRight = rclPaintRegion.xRight;

rclNewPaint.yBottom = rclPaintRegion.yBottom;
rclNewPaint.yTop = rclPaintRegion.yTop;

WinFillRect(hpsPresentationSpace,
&rectinvalidRect,
CLR_WHITE) ;

List Boxes - 251
If the user has selected some items, WinDrawText is used to write a heading on the client area. The array
ausListBoxSel[] is cycled through to find each selected item and write the list box item text to the client
area as well.

Owner-Drawing Controls
An owner-draw style can be used for many of the Presentation Manager controls. This style sends a
WM_DRA WITEM message when some portion of the control is to be drawn. This feature lets the
programmer customize the appearance of the control.

The LISTBOX example program creates an owner-drawn list box that has system bitmaps and their titles
as the selectable items.

LISTBOX.C
#define INCL_WIN
#define INCL_GPI
#include <os2.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "listbox.h"

typedef struct _BITMAPDATA
{

CHAR achName[20];
USHORT usNumber;

BITMAPDATA,*PBITMAPDATA;

#define MAX_BITMAPS
#define CLS_CLIENT

9
"MyClass"

BITMAPDATA
{

abdBitmaps[MAX_BITMAPS]

"SBMP_CHILDSYSMENU",
SBMP_CHILDSYSMENU,
"SBMP _MAXBUTTON" ,
SBMP_MAXBUTTON,
"SBMP_MENUATTACHED",
SBMP_MENUATTACHED,
"SBMP_MINBUTTON",
SBMP_MINBUTTON,
"SBMP _PROGRAM" ,
SBMP_PROGRAM,
"SBMP _RESTOREBUTTON" ,
SBMP_RESTOREBUTTON,
"SBMP_SIZEBOX",
SBMP_SIZEBOX,
"SBMP_SYSMENU",
SBMP_SYSMENU,
"SBMP_TREEMINUS",
SBMP_TREEMINUS

MRESULT EXPENTRY ClientWndProc(HWND hwndWnd,ULONG ulMsg,MPARAM
mpParml,MPARAM mpParm2);

BOOL DrawlBitmap(HPS hpsDraw,HBITMAP hbmBitmap,PRECTL prclDest);

MRESULT EXPENTRY DlgPrcic(HWND hwndWnd,ULONG ulMsg,MPARAM mpParml,
MPARAM mpParm2);

252 - The Art of OS/2 Warp Programming
INT main(VOID)
{

HMQ
HAB
ULONG
HWND
HWND
BOOL
QMSG
LONG

hmqQueue;
habAnchor;
ulFlags;
hwndFrame;
hwndClient;
bLoop;
qmMsg;
lWidth,lHeight;

habAnchor Wininitialize(O);
hmqQueue = WinCreateMsgQueue(habAnchor,

0);

WinRegisterClass(habAnchor,
CLS_CLIENT,
ClientWndProc,
CS_SIZEREDRAWICS_SYNCPAINT,
0);

ulFlags = FCF_TITLEBARIFCF_SYSMENUIFCF_MENUIFCF_SIZEBORDERI
FCF_MINMAX;

/**/
/* create frame and client window */
/**/

hwndFrame = WinCreateStdWindow(HWND_DESKTOP,
0,
&ulFlags,
CLS_CLIENT,
"Listbox Example",
0,
NULLHANDLE,
ID_RESOURCE,
&hwndClient);

/**/
/* get screen height and width */
/**/

lWidth = WinQuerySysValue(HWND_DESKTOP,
SV_CXSCREEN) ;

lHeight WinQuerySysValue(HWND_DESKTOP,
SV_CYSCREEN) ;

/**/
/* set size and position of frame window */
/**/

if (hwndFrame != NULLHANDLE)
{

WinSetWindowPos(hwndFrame,

bLoop

NULLHANDLE,
10,
10,
lWidth/10*8,
lHeight/10*8,
SWP_SIZEISWP_MOVEISWP_ACTIVATEISWP_SHOW);

WinGetMsg(habAnchor,
&qmMsg,
NULLHANDLE,
0,
0);

while (bLoop)
{

WinDispatchMsg(habAnch0r,
&qmMsg);

bLoop = WinGi=tMsg(habAnchor,
&qmMsg,
NULLHANDLE,
0,
0);

WinDestroyWindow(hwndFrame);

WinDestroyMsgQueue(hmqQueue);
WinTerminate(habAnchor);
return O;

/* endwhile */

/* endif */

MRESULT EXPENTRY ClientWndProc(HWND hwndClient,ULONG ulMsg,MPARAM
mpParml,MPARAM mpParm2)

switch (ulMsg)
{

case WM_COMMAND :
switch (SHORTlFROMMP(mpParml))
{

case IDM_DISPLAY :

/**/
/* load up dialog */
/**/

WinDlgBox(HWND_DESKTOP,
hwndClient,
DlgProc,
NULLHANDLE,
IDD_LISTBOX,
NULL);

break;
case IDM_EXIT :

/**/
/* close up window */
/**/

WinPostMsg(hwndClient,
WM_CLOSE,
MPVOID,
MPVOID);

break;
default

break;

return WinDefWindowProc(hwndClient,
ulMsg,
mpParml,
mpParm2);

case WM_PAINT
{

HPS

hpsPaint

hpsPaint;

WinBeginPaint(hwndClient,
NULLHANDLE,
NULL);

/***/
/* erase the invalidated region *!
/***/

List Boxes - 253

254 - The Art of OS/2 Warp Programming

GpiErase(hpsPaint);
WinEndPaint(hpsPaint);

break;

default
return WinDefWindowProc(hwndClient,

ulMsg,
mpParml,

mpParm2);
/* endswitch

return MRFROMSHORT(FALSE);
*/

MRESULT EXPENTRY DlgProc(HWND hwndDlg,ULONG ulMsg,MPARAM mpParml,
MPARAM mpParm2)

switch (ulMsg)
{

case WM_INITDLG
{

USHORT us Index;

/***/
/* insert dummy items into listbox as placeholders */
/***/

for (usindex = O; usindex < MAX_BITMAPS; usindex++)
{

WinsendDlgitemMsg(hwndDlg,
IDL_LISTBOX,
LM_INSERTITEM,
MPFROMSHORT(usindex)'
MPFROMP (" ")) ;

/* endfor */

/***/
/* select the first listbox item */
/***/

WinSendDlgitemMsg(hwndDlg,
IDL_LISTBOX,
LM_SELECTITEM,
MPFROMSHORT(O),
MPFROMSHORT(TRUE));

break;

case WM_COMMAND
switch (SHORTlFROMMP(mpParml))
{

case DID_OK :
case DID_CANCEL

WinDismissDlg(hwndDlg,
FALSE);

break;

default
return WinDefDlgProc(hwndDlg,

ulMsg,
mpParml,
mpParm2);

/* endswitch
break;

*/

case WM_MEASUREITEM
{

HPS hpsChar;
FONTMETRICS fmMetrics;
LONG lMaxCy;
USHORT us Index;
HBITMAP hbmBitmap;
BITMAPINFOHEADER2 bmihHeader;

/***/
/* get font size */
/***/

hpsChar = WinGetPS(hwndDlg);
GpiQueryFontMetrics(hpsChar,

(LONG)sizeof (fmMetrics),
&fmMetrics);

WinReleasePS(hpsChar);

lMaxcy = fmMetrics.lMaxBaselineExt;

/***/
/* get size of bitmaps */
/***/

for (usindex
{

hbmBitmap

O; usindex < MAX_BITMAPS; usindex++)

WinGetSysBitmap(HWND_DESKTOP,
abdBitmaps[usindex]

usNumber);

bmihHeader.cbFix = 16;
GpiQueryBitmapinfoHeader(hbmBitmap,

&bmihHeader);

/**/
/* which is larger, previous max or bitmap */
/**/

lMaxcy = max(lMaxcy,
bmihHeader. cy) ;

/**/
/* free the bitmap */
/**/

GpiDeleteBitmap(hbmBitmap);
/* endfor

return MRFROMLONG(lMaxCy+lO);

case WM_DRAWITEM
{

POWNERITEM
HBITMAP
RECTL

poiitem;
hbmBitmap;
rclText;

poi Item (POWNERITEM)PVOIDFROMMP(mpParm2);

rclText poiitem->rclitem;
rclText.xLeft = (rclText.xRight-rclText.xLeft)/7;

*/

/***/
/* draw the bitmap name */
/***/

List Boxes - 255

256 - The Art of OS/2 Warp Programming
WinDrawText(poiitem->hps,

-1,
abdBitmaps[poiitem->iditem] .achName,
&rclText,
poiitem->fsState?CLR_YELLOW:CLR_BLUE,
poiitem->fsState?CLR_BLUE:CLR_WHITE,
DT_LEFTjDT_VCENTERjDT_ERASERECT);

rclText = poiitem->rclitem;
rclText.xRight = (rclText.xRight-rclText.xLeft)/7;

/***/
/* fill the rectangle with white */
/***!

WinFillRect(poiitem->hps,
&rclText,
CLR_WHITE);

hbmBitmap WinGetSysBitmap(HWND_DESKTOP,
abdBitmaps[poiitem->

iditem] .usNumber);

/***/
/* draw the bitmap, then delete */
/***/

DrawlBitmap(poiitem->hps,
hbmBitmap,
&rclText);

GpiDeleteBitmap(hbmBitmap);

/***/
/* set both states to FALSE and return TRUE */
/***/

poiitem->fsState = FALSE;
poiitem->fsStateOld = FALSE;

return MRFROMSHORT(TRUE);

default
return WinDefDlgProc(hwndDlg,

ulMsg,
mpParml,
mpParm2);

/* endswitch
return MRFROMSHORT(FALSE);

BOOL DrawlBitmap(HPS hpsDraw,HBITMAP hbmBitmap,PRECTL prclDest)
{

BITMAPINFOHEADER2 bmihHeader;
POINTL ptlPoint;
BOOL bRc;

bmihHeader.cbFix = 16;
GpiQueryBitmapinfoHeader(hbmBitmap,

&bmihHeader) ;

*/

/**/
!* set the x and y coordinates */
/**/

ptlPoint.x = (prclDest->xRight-prclDest->xLeft-bmihHeader.cx)/
2+prclDest->xLeft;

ptlPoint.y = (prclDest->yTop-prclDest->yBottom-bmihHeader.cy)/
2+prclDest->yBottom;

/**/
/* draw the bitmap */
/**/

bRc = WinDrawBitmap(hpsDraw,

return bRc;

LISTBOX.RC
#include <os2.h>
#include "listbox.h"

MENU ID_RESOURCE
{

SUBMENU "-File", -1
{

hbmBitmap,
NULL,
&ptlPoint,
0,
0,
DBM_NORMALIDBM_IMAGEATTRS);

MENUITEM "-Display Dialog", IDM_DISPLAY
MENUITEM SEPARATOR
MENUITEM "E-xit", IDM_EXIT

DLGTEMPLATE IDD_LISTBOX LOADONCALL MOVEABLE DISCARDABLE
BEGIN

DIALOG "Listbox Example", IDD_LISTBOX, 12, 13, 197, 146, WS_VISIBLE,
FCF_SYSMENU I FCF_TITLEBAR

END

BEGIN

END

LIST BOX
DEF PUSHBUTTON
PUSHBUTTON

LISTBOX.H
#define IDD_LISTBOX
#define IDL_LISTBOX
#define ID_RESOURCE
#define IDM_DISPLAY
#define IDM_EXIT

IDL_LISTBOX, 14, 18, 152, 121, LS_OWNERDRAW
"OK", DID_OK, 3, 3, 40, 13, WS_GROUP
"Cancel", DID_CANCEL, 48, 3, 40, 13

256
512
100
101
102

List Boxes - 257

258 - The Art of OS/2 Warp Programming
LISTBOX.MAK

LISTBOX.EXE:

LISTBOX
LIST BOX
LISTBOX
082386
LISTBOX
<<

LINK386 @<<

LISTBOX.OBJ \
LISTBOX.RES

RC LISTBOX.RES LISTBOX.EXE

LISTBOX.RES: LISTBOX.RC \
LISTBOX.H

RC -r LISTBOX.RC LISTBOX.RES

LISTBOX.OBJ: LISTBOX.C \
LISTBOX.H

ICC -c+ -Kb+ -Ss+ LISTBOX.C

LISTBOX.DEF
NAME LISTBOX WINDOWAPI

DESCRIPTION 'Second listbox example
Copyright (c) 1992-1995 by Kathleen Panov
All rights reserved.'

STACKSIZE 16384

The beginning of the program should look familiar. The structure BITMAPDATA is defined:

typedef struct _BITMAPDATA {
CHAR achName [20] ;
USHORT usNumber ;

} BITMAPDATA, * PBITMAPDATA ;

The first field, achName, is the #define'd text string of each system bitmap. The second field, usNumber,
is the number of the system bitmap. When we draw the bitmaps, we'll use this structure to access the
bitmaps we want.

DlgProc
for (usindex = O; usindex < MAX_BITMAPS; usindex++)
{

WinSendDlgitemMsg(hwndDlg,
IDL_LISTBOX,
LM_INSERTITEM,
MPFROMSHORT(usindex),
MPFROMP (" ")) ;

/* endfor */

The WM_INITDLG message is where the initialization of the dialog box and all its components takes
place. In this case, we want to initialize the list box. WinSendDlgltemMsg can be used to communicate
directly with it. The message LM_INSERTITEM is used to insert items into the list box. If this was not an
owner-drawn list box, the actual text strings would be inserted here; however, because this is an owner
drawn list box, it is important to tell the list box there will be eight items. The message
LM_SELECTITEM is used to set the first item to the selected state.

The WM_MEASUREITEM Message

for (usindex = O; usindex < MAX_BITMAPS; usindex++)
{
hbmBitmap = WinGetSysBitmap(HWND_DESKTOP,

abdBitmaps[usindex].
usNumber);

bmihHeader.cbFix = 16;
GpiQueryBitmapinfoHeader(hbmBitmap,

&bmihHeader) ;
lMaxCy = max(lMaxCy,

bmihHeader. cy) ;
GpiDeleteBitmap(hbmBitmap);

} /* endfor
return MRFROMLONG(lMaxCy+lO);

List Boxes - 259

*/

The WM_MEASUREITEM message must be processed for an owner-drawn list box and also for
horizontal scrolling list boxes. This message tells the list box how tall or, in some cases, how wide each
list box item is to be. The tallest, or widest, size should be returned in order for all the list box items to
have a consistent look. In our example, all items are the same size. GpiQueryFontMetrics is used to get all
sorts of information about the selected font. The one piece of the FONTMETRICS structure we are
interested in is fm.Metrics.lMaxBaselineExt. This indicates the maximum height of the font. This is
compared to the maximum height of the system bitmap. This information is contained in the
BITMAPINFOHEADER structure that is obtained using GpiQueryBitmap/nfoHeader. After the
comparison, we free the bitmap handle with GpiDeleteBitmap

The WM_DRA WITEM Message
The WM_DRA WITEM is the most complicated message processing in this example. This message is sent
to the owner that will be doing the drawing whenever an item needs to be selected, unselected, or drawn.
The second parameter in the WM_DRA WITEM message is a pointer to an OWNERITEM structure, which
looks like this:

typedef struct _OWNERITEM

HWND hwnd;
HPS hps;
ULONG fsState;
ULONG fsAttribute;
ULONG fsStateOld;
ULONG fsAttributeOld;
RECTL rel Item;
LONG iditem;
ULONG hitem;

OWNERITEM;
typedef OWNERITEM *POWNERITEM;

This structure has pretty much everything you need to draw a list box item.

An Introduction to Owner-drawn States
The OWNERITEM structure contains the variables fsState and fsStateOld. The state variables indicate
whether an item needs selection highlighting. When an item's selection highlighting is changing, the item
needs to be redrawn, and the fsState field will be set differently from the fsStateOld field. A state of
TRUE indicates the item is selected; FALSE indicates an unselected item. Programmers can draw the
highlighting themselves or let the system handle the highlighting and unhighlighting. The flowchart

260 - The Art of OS/2 Warp Programming
depicted in Figure 15.2 lists the possible combination of states and returns and the action by both the
program and the system.

Item is selected

System sets fsState to
TRUE and fsStateOld

to False

System sends
WM_DRAWITEM to

listbox owner

Program draws item --No

Yes

Return code is set to
TRUE

Program draws
selection?

Yes

Program sets fsState
to fsStateOld

Return return code

No

Return code is set to
FALSE

Program leaves state
variables alone

Figure 15.2 Flowchart of owner-drawn selection.

The system sets these variables before the WM_DRA WITEM message is sent; it looks at what is returned
in them after the WM_DRA WITEM message has been processed to determine whether to handle the
highlighting of the item. If fsState is equal to fsStateOld, the system will do no highlighting. If the
variables are not equal to each other, the system will highlight them or unhighlight them by inverting the
item rectangle.

Drawing the List Box Labels

poiitern = (POWNERITEM}PVOIDFROMMP(rnpParrn2};
rclText = poiitern->rclitern;
rclText.xLeft = (rclText.xRight-rclText.xLeft}/7;
WinDrawText(poiitern->hps,

-1,
abdBitrnaps[poiitern->iditern] .achNarne,
&rel Text,
poiitern->fsState?CLR_YELLOW:CLR_BLUE,
poiitem->fsState?CLR_BLUE:CLR_WHITE,
DT_LEFTiDT_VCENTERiDT_ERASERECT};

List Boxes - 261

A pointer to the OWNERITEM structure is contained in mpParm2. The rclltem field is the RECTL
structure of the specific list box item that needs to be drawn. We indent the text one-seventh of the way
across and use the function WinDrawText to write the bitmap name. Notice the use of the flag
DT _ERASERECT in the last parameter. This flag erases the drawing area before Presentation Manager
draws the text.

Drawing the Bitmaps
rclText = poiitern->rclitern;
rclText.xRight = (rclText.xRight-rclText.xLeft}/7;

WinFillRect(poiitern->hps,
&rel Text,
CLR_WHITE};

hbrnBitrnap = WinGetSysBitrnap(HWND_DESKTOP,
abdBitrnaps[poiitern->
iditern] .usNumber};

DrawlBitrnap(poiitern->hps,
hbrnBitrnap,
&rel Text};

GpiDeleteBitrnap(hbrnBitrnap};

The next thing to do is get a handle to the bitmap we want to draw in our list box item. WinGetSysBitmap
is used to do this. The first parameter is the desktop window handle, HWND_DESKTOP. The second
parameter is the system bitmap number. poiltem->idltem is the index of the selected item. We use this
index as the index into the abdBitmaps structure. Draw/Bitmap is a very simple user-defined function we
use to actually draw the bitmap. Once the bitmap has been drawn, some cleanup will be necessary. The
handle of the bitmap needs to be freed using GpiDeleteBitmap.

poiitern -> f sState = FALSE ;
poiitern -> f sStateOld = FALSE
return MRFROMSHORT (TRUE } ;

The last step in our message processing is to set all the appropriate variables correctly for the window
procedure. We set fsState and fsStateOld to FALSE to tell the system we already have done the
highlighting. A return code of TRUE indicates that the item has been drawn already, so please do not draw
it again. If FALSE had been returned here, the text"", the string that was used in the LM_INSERTITEM
message, would be placed over all the wonderful work we've done so far.

For more information on drawing bitmaps, see Chapter 12.

262 - The Art of OS/2 Warp Programming

Summary
A list box is a very simple control to use, yet it provides a powerful level of functionality. This chapter has
introduced the concepts of a regular list box and an owner-drawn list box. Developers interested in
creating their own, even more advanced list box, should refer to the series of articles by Mark Benge and
Matt Smith starting in the January/February 1994 OS/2 Developer magazine.

Chapter 16

Buttons

The easiest controls to use are buttons. Buttons belong to the class WC_BUTION. There are five types of
buttons-push buttons, radio buttons, three-state buttons, check boxes, and owner-drawn.

~ Pusll Buttons

Figure 16.1 Push buttons.

A push button (see Figure 16.1) sends a WM_COMMAND to its owner immediately when it is pressed.
This feature distinguishes the push button from the other button types. Push buttons commonly are used to
initiate such actions as "OK," "Cancel," and "Help."

263

264 - The Art of OS/2 Warp Programming

Ii Radio Buttons

Set Time: ilfA.'~l
kilPM

Figure 16.2 Radio buttons.

Radio buttons (see Figure 16.2) are designed to be used when only one item in a group can be selected.
For instance, indicating "AM" or "PM" as a period of time is an example of where radio buttons should be
used. There are two styles of radio buttons: BS_AUTORADIOBUTTON and BS_RADIOBUTTON.
When using the BS_RADIOBUTTON, the application must highlight the selected button and unhighlight
the button previously selected. The system handles this automatically when the
BS_AUTORADIOBUTTON is used. When radio buttons are used, the application can
send a BM_QUERYCHECKINDEX message to determine which button was selected
when the user exited the dialog box.

~ Checkbox Dialog

II Blue Checkbox

II f§Y~.'~.'~.-.-.·:~.h.~§g_~.?..-~J
Red Checkbox

Figure 16.3 Check boxes.

In cases where more than one choice can be selected, check boxes (see Figure 16.3) should be used. Two
styles define check boxes: BS_CHECKBOX or BS_AUTOCHECKBOX. The difference between the two
styles is similar in manner to their radio button counterparts, BS_RADIOBUTTON and
BS_AUTORADIOBUTTON.

Button Styles
The styles listed in Table 16.1 can be used when creating buttons.

BS_3STATE
BS_AUT03STATE

BS_AUTOCHECKBOX

BS_AUTORADIOB UTTON

BS_AUTOSIZE

BS_BITMAP
BS_CHECKBOX

BS_DEFAULT

BS_ICON
BS_HELP

BS_MINIICON
BS_NOCURSORSELECT

BS_NOBORDER
BS_NOPOINTERFOCUS

BS_PUSHBUTTON
BS_RADIOBUTTON
BS_SYSCOMMAND

BS_USERBU1TON

Example Program

Buttons - 265

Creates a three-state check box that can be selected, unselected, or disabled.
Creates a three-state check box whose state is set by the system
automatically.
Creates a check box that the system will toggle automatically between
selected and unselected.
Creates a radio button that will disable other radio buttons in the group
automatically when it is selected.
Will size the push button to fit the text label, if -1 is specified as width and
height.
Creates a push button, labeled with a bitmap instead of text.
Creates a check box; it is the application's responsibility to select or deselect
the check box.
Creates a button with thick border boxes; used with BS_PUSHBUTTON or
BS_USERBUTTON.
Creates a push button, labeled with an icon instead of text.
Creates a push button that sends a WM_HELP message to the owner
window; this can be used only with push buttons.
Creates a icon push button with a 16x16 icon.
Creates an auto-radio button that is not selected automatically when the
button is moved to with the cursor keys.
Creates a push button with no border; can be used only with push buttons.
Creates a radio button or check box that does not receive the keyboard focus
when the user selects it.
Creates a push button.
Creates a radio button.
Creates a button that posts a WM_SYSCOMMAND when selected; can be
used only with push buttons.
Creates a user-defined button; generates a BN_PAINT notification message,
sent to its owner, when painting is needed.

The following program will create a simple dialog box that contains various types of buttons. Buttons are
created both in the resource file and by using WinCreateWindow.

BUTTON.C
#define INCL_WIN
#include <os2.h>
#include <stdio.h>
#include <stdlib.h>
#include "button.h"
#define CLS_CLIENT "MyClass"
MRESULT EXPENTRY ClientWndProc(HWND hwndWnd,ULONG ulMsg,MPARAM

mpParml,MPARAM mpParm2);

MRESULT EXPENTRY DlgProc(HWND hwndWnd,ULONG ulMsg,MPARAM mpParml,
MPARAM mpParm2);

INT main(VOID)

266 - The Art of OS/2 Warp Programming

HAB
HMQ
UL ONG
HWND
HWND
BOOL
QMSG

habAnchor;
hmqQueue;
ulFlags;
hwndFrame;
hwndClient;
bLoop;
qmMsg;

habAnchor Wininitialize(O);
hmqQueue = WinCreateMsgQueue(habAnchor,

0);

WinRegisterClass(habAnchor,
CLS_CLIENT,
ClientWndProc,
CS_SIZEREDRAW,
0);

ulFlags = FCF_TITLEBARIFCF_SYSMENUIFCF_MENUIFCF_SIZEBORDER;

hwndFrame WinCreateStdWindow(HWND_DESKTOP,
0,
&ulFlags,
CLS_CLIENT,
"Button Control Example",
0,
NULLHANDLE,
IDR_CLIENT,
&hwndClient) ;

if (hwndFrame != NULLHANDLE)
{

WinSetWindowPos(hwndFrame,
NULLHANDLE,
50,
50,
550,
380,
SWP_SIZEISWP_MOVEISWP_ACTIVATEISWP_SHOW);

bLoop WinGetMsg(habAnchor,
&qmMsg,
NULLHANDLE,
0,
0);

while (bLoop)
{

WinDispatchMsg(habAnchor,
&qmMsg);

bLoop = WinGetMsg(habAnchor,
&qmMsg,
NULLHANDLE,
0,
0);

}
WinDestroyWindow(hwndFrame);

}
WinDestroyMsgQueue(hmqQueue);
WinTerminate(habAnchor);
return O;

/* endwhile

/* endif

MRESULT EXPENTRY ClientWndProc(HWND hwndWnd,ULONG ulMsg,MPARAM
mpParml,MPARAM mpParm2)

switch (ulMsg)
{

*/

*/

case WM_ERASEBACKGROUND :
return MRFROMSHORT(TRUE);

case WM_COMMAND :

switch (SHORTlFROMMP(mpParml))
{

case IDM_START :

/**/
/* load and run the dialog box */
/**/

WinDlgBox(HWND_DESKTOP,
hwndWnd,
DlgProc,
NULLHANDLE,
IDD_BUTTON,
NULL);

break;

case IDM_EXIT :
WinPostMsg(hwndWnd,

WM_CLOSE,
0,
0);

break;

default
return WinDefWindowProc(hwndWnd,

ulMsg,
mpParml,

break;
default

mpParm2);

return WinDefWindowProc(hwndWnd,
ulMsg,
mpParml,

mpParm2);
/* end switch ulMsg */

return MRFROMSHORT(FALSE);

MRESULT EXPENTRY DlgProc(HWND hwndWnd,ULONG ulMsg,MPARAM mpParml,
MPARAM mpParm2)

switch (ulMsg)
{

case WM_INITDLG
{

BTNCDATA
PO INTL

bcdData;
ptl;

bcdData.cb sizeof(BTNCDATA);
bcdData.fsCheckState = O;
bcdData.fsHiliteState = O;

/***/
/* load the information pointer */
/***/

Buttons - 267

268 -The Art ofOS/2 Warp Programming
bcdData.himage = WinQuerySysPointer(HWND_DESKTOP,

SPTR_ICONINFORMATION

FALSE);

/***/
/* these are the coordinates we want in dialog units*/
/***/

ptl.x
ptl.y

175;
25;

/***/
/* map out to correct window coordinates */
/***/

WinMapDlgPoints(hwndWnd,
&ptl,
1,
TRUE);

/***/
/* create an icon button */
/***/

WinCreateWindow(hwndWnd,
WC_BUTTON,

'
WS_VISIBLEjWS_TABSTOPjBS_ICON,
ptl .x,
ptl.y,
WinQuerySysValue(HWND_DESKTOP,

SV_CXICON),
WinQuerySysValue(HWND_DESKTOP,

SV_CYICON),
hwndWnd,
HWND_TOP,
IDR_ICON,
(PVOID)&bcdData,

NULL);

/***/
/* check some of the buttons */
/***/

WinSendDlgitemMsg(hwndWnd,
IDC_AUTOCHECKBOX,
BM_SETCHECK,
MPFROMSHORT(TRUE),
NULL);

WinSendDlgitemMsg(hwndWnd,
IDR_AUTORADIOBUTTON,
BM_SETCHECK,
MPFROMSHORT(TRUE),
NULL);

WinSendDlgitemMsg(hwndWnd,
IDC_AUT03STATE,
BM_SETCHECK,
MPFROMSHORT(2),
NULL);

break;
case WM_COMMAND

switch (SHORTlFROMMP(mpParml))
{

case DID_OK :
WinDismissDlg(hwndWnd,

LONGFROMMP(mpParml));
break;

/**/
/* for the next two items, do not dismiss */
/* dialog, instead return FALSE to keep dialog */
/* displaying */
/**/

case IDP_NOBORDER
case IDR_ICON

break;
default

return WinDefDlgProc(hwndWnd,
ulMsg,
mpParml,
mpParm2);

break;
default

return WinDefDlgProc(hwndWnd,
ulMsg,
mpParml,

I* end switch

mpParm2);

return MRFROMSHORT(FALSE);

BUTTON.RC
#include <os2.h>
#include "button.h"

MENU IDR_CLIENT
{

SUBMENU "-File", IDM_FILES
{

/* endswitch

MENUITEM "-Display dialog ... ", IDM_START
MENUITEM "E-xit", IDM_EXIT

DLGTEMPLATE IDD_BUTTON PRELOAD MOVEABLE DISCARDABLE
{

DIALOG "Button dialog", IDD_BUTTON, 28, 23, 258, 110,
FS_NOBYTEALIGN I WS_VISIBLE,
FCF_SYSMENU I FCF_TITLEBAR
PRESPARAMS PP_BACKGROUNDCOLORINDEX, CLR_WHITE

LTEXT "Radio Button Styles", -1, 135, 95, 86, 8
LTEXT "Check Box Styles", -1, 11, 95, 76, 8
LTEXT "Push Button Styles", -1, 55, 48, 82, 8

*/

*/

Buttons - 269

270 - The Art of OS/2 Warp Programming
AUTOCHECKBOX "BS_AUTOCHECKBOX", IDC_AUTOCHECKBOX,

11, 81, 106, 10
AUTOCHECKBOX "BS_AUT03STATE", IDC_AUT03STATE,

11, 66, 89, 10, BS_AUT03STATE I WS_GROUP
AUTORADIOBUTTON "BS_AUTORADIOBUTTON", IDR_AUTORADIOBUTTON,

131, 81, 121, 10
AUTORADIOBUTTON "BS_NOPOINTERFOCUS", IDR_NOPOINTER,

131, 66, 116, 10, BS_NOPOINTERFOCUS
PUSHBUTTON "BS_HELP", IDP_HELP,

20, 25, 53, 14, BS_HELP
PUSHBUTTON "BS_NOBORDER", IDP_NOBORDER,

83, 25, 82, 14, BS_NOBORDER
DEFPUSHBUTTON "OK", DID_OK, 10, 5, 40, 12 WS_GROUP

BUTTON.ff
#define IDR_CLIENT
#define IDD_BUTTON

#define IDM_FILES
#define IDM_START
#define IDM_EXIT

#define IDC_AUTOCHECKBOX
#define IDC_3STATE
#define IDC_AUT03STATE
#define IDR_AUTORADIOBUTTON
#define IDR_NOPOINTER
#define IDR_AUTOSIZE
#define IDP_HELP
#define IDP_NOBORDER

#define IDR_ICON

BUTTON.MAK
BUTTON.EXE:

BUTTON
BUTTON
BUTTON
OS2386
BUTTON
<<

LINK386 @<<

RC BUTTON.RES BUTTON.EXE

256
257

320
321
322

512
513
514
515
516
517
518
519

1024

BUTTON.OBJ
BUTTON.RES

BUTTON.RES: BUTTON.RC \
BUTTON.H

RC -r BUTTON.RC BUTTON.RES

BUTTON.OBJ: BUTTON.C \
BUTTON.H

ICC -C+ -Kb+ -Ss+ BUTTON.C

BUTTON.DEF
NAME BUTTON WINDOWAPI
DESCRIPTION 'Button example.

STACKSIZE

Copyright (c) 1995 by Kathleen Panov.
All rights reserved. '

32768

Buttons - 271

The BUTTON.RC Resource File
The following is the code used to define the dialog box. The background color is set to white using the
PRESPARAMS keyword in the BUTTON.RC file.

DIALOG "Button dialog", IDD_BUTTON, 28, 23, 258, 110,
FS_NOBYTEALIGN I WS_VISIBLE,
FCF_SYSMENU I FCF_TITLEBAR
PRESPARAMS PP_BACKGROUNDCOLORINDEX, CLR_WHITE

The creation of the buttons is specified by the keywords PUSHBUTTON, AUTOCHECKBOX, and
AUTORADIOBUTTON in the BUTTON.RC resource file.

DlgProc
BTNCDATA bcdData

bcdData.cb = sizeof (BTNCDATA) ;
bcdData.fsCheckState = 0 ;
bcdData.fsHiliteState = 0 ;
bcdData.himage = WinQuerySysPointer

HWND_DESKTOP,
SPTR_ICONINFORMATION,

FALSE) ;

The WM_INITDLG message processing is used to create the BS_ICON push button. The information icon
is loaded from the system using WinQuerySysPointer. This returns a resource handle (HPOINTER) that is
needed in the BTNCDATA structure. The BTNCDATA structure is defined as follows.

struct {
USHORT cb;
USHORT fsCheckState;
USHORT fsHiliteState;
LHANDLE himage;

BTNCDATA;

Gotcha!

Programmers must not forget to initialize everything in the BTNCDATA structure. If
they don't, they will receive an error. cb is always the size of the BTNCDATA
structure. fsCheckState indicates whether the initial state of a button is checked or
unchecked. fsHiliteState is used to set the highlight or unhighlight state of the button.
The last field, hlmage, is a handle for a pointer or a bitmap.

Dialog Units-Can We Talk?
ptl.x = 175;
ptl.y = 25;

WinMapDlgPoints(hwndWnd,
&ptl,
l,
TRUE);

In this example, we mix the create buttons in the resource file and also dynamically in the C code. There is
a difference between the coordinates specified in the resource file and those specified in the C file. The

272 - The Art of OS/2 Warp Programming
resource file uses a coordinate system known as dialog units. These units are based on the size of the
system font and are different from the pixel units that a window coordinate system uses. In order to place
the new push button in the right position, we must first map the dialog units to a window coordinate
system. The dialog coordinates are placed into a POINTL structure, which consists solely of as x and y
elements. The function WinMapDlgPoints is explained in Chapter 12.

WinCreateWindow(hwndWnd,
WC_BUTTON,

' WS_VISIBLEjWS_TABSTOPjBS_ICON,
ptl.x,
ptl.y,
WinQuerySysValue(HWND_DESKTOP,

SV_CXICON) ,
WinQuerySysValue(HWND_DESKTOP,

SV_CYICON) ,
hwndWnd,
HWND_TOP,
IDR_ICON,
(PVOID)&bcdData,
NULL);

WinCreate Window is used to create the icon push button. The client area of the dialog is used as both the
parent and the owner. The text area is specified as "". The styles specified for the button are
WS_ VISIBLE I WS_TABSTOP I BS_ICON. WS_TABSTOP indicates that the user can press the TAB
key to move to the button. On some button styles this is the default and does not have to be specified. This
style is associated with push buttons and check boxes automatically. Icon buttons and radio buttons do not.

The placement of the push button is specified at ptl.x and ptl.y, and the width and height are set at the
system values for the icon width (SV _CXICON) and icon height (SV _CYICON), respectively. The dialog
window hwndWnd will be the owner. HWND_TOP is used to indicate window placement, and IDR_ICON
is the ID of the button. The next parameter is the address of the button control data, which is
&ButtonData in this example.

WinSendDlgiternMsg (hwndWnd,
IDC_AUTOCHECKBOX,
BM_SETCHECK,
MPFROMSHORT (TRUE) ,
NULL) ;

WinSendDlgiternMsg (hwndWnd,
IDC_AUT03STATE,
BM_SETCHECK,
MPFROMSHORT (2) ,
NULL) ;

The last step in the dialog initialization procedure sends a BM_SETCHECK to both the
AUTOCHECKBOX check box and the AUT03STATE check box. Also, the three-state check box is
started in the indeterminate (or gray-scaled) state by specifying 2 as mpParm2.

Button Actions
The icon button style operates just like a push button. An icon button is identical to a push button in
appearance except for the image on top, and sends a WM_COMMAND message to its owner when it is
pressed. Check boxes and radio buttons will send a WM_CONTROL message to their owners only when
selected.

Buttons - 273

Summary
Buttons are the easiest control to program. The three varieties of buttons are push buttons, radio buttons,
and check boxes. A push button should be used to indicate an action choice, such as "Save," or a routing
choice, such as "Include" or "Delete." A radio button should be used to display mutually exclusive
choices, and should always be paired with at least one other radio button in a field. A radio button should
not be used when a valid user choice is no selection; instead, a check box should be used. A check box
should be used to display a binary choice-that is, a choice with two distinct states. Programmers should
make sure that both the checked and unchecked states are clearly understandable from the check box text.

Chapter 17

Entry Fields

The entry field is perhaps one of the most widely used controls, with possible contenders being the button
and the list box (See Figure 17.1). It provides the capability to receive a single line of input as well as to
display text as if it were a scrollable static text field. It is also useful for just that: reading or displaying a
single line of text. Entry fields are simple controls; multiline edit controls (MLEs) which are discussed in
Chapter 18, should be used in situations where more complex functionality is required. Simplicity in
function does have its advantages, as the entry field also is probably one of the easiest controls to write
code for.

~ Entry Field Dialog

Name Entryfield:

Phone Entryfield:

Figure 17.1 Entry field.

The entry field does lack some capabilities that would be very nice to have. For example, being able to
accept only certain types of text, having a fully functional picture string capability (a la COBOL), and
being able to force all text to be upper- or lowercase would be handy. Chapter 27 addresses the issue of
adding function to an existing control and illustrates its concepts by an example that allows numeric input
only in an entry field.

Entry Field Basics
Table 17 .1 shows the various styles available for the entry field.

275

276 - The Art of OS/2 Warp Programming

~~~li1~i·:~1~~~i:;~~1ill:~w~rl~;w•t'''::1~\!!1~\~t~{\l1!1'11:1111i1111\\1i11111m111ttrs111 :wi•~1w1\\\\~1i1\!11r:rll!i11i~r1111111:11;:1:1;:'ll1r1r:1m1i11w11111i11i~11,1111,l~i::11mi11 :~1::;~1:11~11111'1llm';111111ti'wtill} 
ES_LEFf Text is left justified. 
ES_CENTER Text is center justified. 
ES_RIGHT Text is right justified. 
ES_AUTOSCROLL Text is scrolled as the cursor moves beyond the visible portion of the entry field. 
ES_MARGIN A margin is drawn around the entry field. 
ES_AUTOTAB When the maximum number of characters has been entered, the input focus is 

ES_READONL Y 
ES_COMMAND 

ES_UNREADABLE 
ES_AUTOSIZE 

ES_ANY 

ES_SBCS 
ES_DBCS 
ES_MIXED 

passed to the next control with the WS_TABSTOP style. 
Text is not modifiable. 
The entry field is denoted a command entry field. The Help Manager uses this to 
provide help for the contents of the field, should the user request it. There should 
be only one entry field per window with this style. 
Text is displayed as a string of asterisks('*'), one per character of the actual text. 
The entry field will size itself automatically to insure that the text fits within the 
visible portion of the control. 
The entry field can contain single- and double-byte characters. If the text is 
converted from an ASCII code page to an EBCDIC code page, there may be an 
overrun in the converted text. Contrast this with ES_MIXED, where this is not 
allowed. 
Text is comprised of single-byte characters only. 
Text is comprised of double-byte characters only. 
Text can contain either single- or double-byte characters, which may later be 
converted to or from an ASCII code page from or to an EBCDIC code page. 

Table 17 .1 shows that numerous possibilities exist for creating entry fields. The ES_READONL Y style is 
especially handy for displaying long strings of text for which there is no space; the ES_ UNREADABLE is 
useful for getting information such as passwords from the user in cases where a passerby should not be 
able to-at a casual glance-perceive the contents. 

The entry field is, again, an uncomplicated control; sometimes this leads to inconsistencies with other 
controls. For example (this applies to buttons also), the WinSetWindowText function is used to set the 
contents of an entry field. 

BOOL WinSetWindowText(HWND hwndWindow, PSZ pszText); 

hwndWindow is the handle of the entry field to set the text of, and pszText is a pointer to the text. The 
inconsistency is that, as will be seen in other controls, text is usually set-and queried-through messages. 
However, why overcomplicate things unnecessarily? 

As we implied, the text also is queried through a function-the WinQueryWindowText function. 

BOOL WinQueryWindowText(HWND hwndWindow, 
ULONG ulSzBuffer, 
PSZ pszBuffer); 

Again, hwndWindow is the handle of the entry field we are querying. ulSzBuffer specifies the size of the 
buffer, and pszBuffer points to the receiving buffer. A companion function is helpful here; 
WinQueryWindowTextLength returns the length of the window text. 



Entry Fields - 277 
BOOL WinQueryWindowTextLength(HWND hwndWindow); 

It takes a single parameter-hwndWindow-which indicates the window to be queried. 

It should be noted that the default maximum text length of an entry field is only 32 bytes. While this may 
be large enough for most instances, at times a different length might be preferred-to limit the field to 5 
characters for a Zip code or increase it to 256 for a file name, for example. This is accomplished by 
sending the entry field an EM_SETI'EXTLIMIT message; passing the maximum number of characters in 
the first parameter will do the trick. 

Gotcha! 

The limit in the EM_SETI'EXTLIMIT message should not include the terminating null 
character, but the extra byte should be allotted when calling WinQueryWindowText and 
1 should be added to WinQueryWindowTextLength. An interesting point is that, while 
there is a message for setting the limit, there is no message for querying the limit. This 
querying can be accomplished using a voodoo incarnation of 

the WM_QUERYWINDOWPARAMS message, but that seems to be a lot of work for 
something so simple. 

Selection Basics 
Many operations in Presentation Manager programming deal with selected items. IBM's Common User 
Access (CUA) guidelines define a set of different attributes that an object can have, and being selected is 
one of them. A selected object is an object on which an action is to be performed. 

Selections have two defining characteristics-an anchor point and a cursor point. The anchor point is the 
place where the selection begins; the selection continues until it reaches the cursor point, which is where 
the input cursor is at any given time. 

Selections can be performed using either the mouse or the keyboard. Using the keyboard, the arrow keys 
are used to move the cursor to the desired anchor point; then the arrow keys are used while holding down 
either shift key to expand and contract the text selection. Selecting with the mouse can be done in two 
ways: swipe selection and shift-click selection. 

Swiping is the method by which the mouse is moved to the desired position, the first mouse button is 
pressed and held, and the mouse is moved over the items to be selected. This is similar in action to direct 
manipulation, but the intention is different. Shift-click selection is closer to using the keyboard; the mouse 
is clicked at the desired anchor point and then clicked again while the shift key is held down to set the 
cursor point and thus the selected text. 

When something is selected, it is given selection emphasis, and this is usually conveyed by displaying 
selected items in reverse; this is true for entry fields. Specifically for entry fields (and a few other controls, 
as we'll see in other chapters), once a section of text is selected, it can be manipulated. For example, any 
keypress replaces the selected text with the key pressed. If something is pasted from the clipboard, which 
is discussed in the next section, it replaces the selected text. 



278 - The Art of OS/2 Warp Programming 
For the programmer, fortunately, two important messages refer to selections-EM_SETSEL and 
EM_QUERYSEL; the former sets the current selection and the latter queries what the current selection is, 
if one exists. See Appendix A for the specifics of each message. 

The Entry Field and the Clipboard 
No engineer can do without one; it is indispensible in meetings when a person needs to write and there is 
no table. A clipboard is what we are referring to. For those who do not know what it is, it is a piece of 
compressed wood-usually slightly larger than a sheet of paper-with a metal clip on top to hold papers in 
place when it is written on. Most, if not all, windowing systems have a beast of the same name, although 
(usually) the purpose is a bit different: A clipboard in a GUI environment is used for the temporary 
placement of data so that it may be copied to other places, whether in the same application that placed the 
data there or not. 

From the viewpoint of an entry field, there are three interfaces to the clipboard, all via messages. The 
EM_CUT message removes the selected text and places it on the clipboard. The EM_COPY message 
copies the selected text onto the clipboard, but the text remains in the entry field. The EM_PASTE 
message copies the data from the clipboard and inserts it either at the current cursor position or, if there is 
selected text in the entry field, replaces the currently selected text. Again, see Appendix A for the specifics 
of each message. 

And Other Things 
Already we have a control that is quite usable. However, IBM provided some additional functionality. 
Two of these are read only and unreadable data, and they are specified by the two window styles 
ES_READONL Y and ES_ UNREADABLE. 

The effect of ES_READONL Y is rather obvious-it prevents the user from changing the contents of the 
entry field. Text may be selected and copied to the clipboard, but it may not be cut from the entry field, 
nor may other text be pasted into the entry field. The need for this is evident when text of an 
indeterminable length must be displayed on a fixed amount of screen "real estate." Using an entry field 
allows the text to be placed in the required space, because it can be scrolled so that the entire text can be 
viewed. 

The implementation of ES_UNREADABLE is difficult to fathom. While the purpose is evident-to 
prevent the contents from being viewed-the method by which this is achieved is not. Currently, each 
character is displayed as an asterisk; this is a poor choice, since the most frequent application of 
ES_ UNREADABLE is for computer passwords, where using an asterisk eliminates the need to guess how 
many letters are in the value. A progtammer who needs to provide secure access should not use the 
ES_UNREADABLE style. 

ENTRYl-Entry Field Samples 
The following application displays some entry fields with different styles. The point is not to demonstrate 
any particular piece of code, for the entry field is very simple-minded; its intended purpose is to show the 
effects of the various styles that an entry field can have. 

ENTRY.C 
#define INCL_WINDIALOGS 
#define INCL_WINENTRYFIELDS 
#include <os2.h> 
#include "entryrc.h" 



MRESULT EXPENTRY entryDlgProc(HWND hwndWnd, 
ULONG ulMsg, 
MPARAM mpParml, 
MPARAM mpParm2) 

switch (ulMsg) { 
case WM_INITDLG: 

{ 
WinSetDlgitemText(hwndWnd,DEF_ENTRYl, "Left"); 
WinSetDlgitemText(hwndWnd,DEF_ENTRY2,"Center"}; 
WinSetDlgitemText(hwndWnd,DEF_ENTRY3,"Right"}; 
WinSetDlgitemText(hwndWnd,DEF_ENTRY4,"Read only"}; 
WinSetDlgitemText(hwndWnd,DEF_ENTRY5,"Unreadable"}; 

break; 
default: 

return WinDefDlgProc(hwndWnd,ulMsg,mpParml,mpParm2}; 
} /* endswitch */ 

return MRFROMSHORT(FALSE}; 

INT main (VOID} 
{ 

HAB habAnchor; 
HMQ hmqQueue; 

habAnchor=Wininitialize(O}; 
hmqQueue=WinCreateMsgQueue(habAnchor,0}; 

WinDlgBox(HWND_DESKTOP, 
HWND_DESKTOP, 
entryDlgProc, 
NULLHANDLE, 
DLG_ENTRYFIELDS, 
NULL}; 

WinDestroyMsgQueue(hmqQueue); 
WinTerminate(habAnchor); 
return O; 

ENTRY.RC 
#include <os2.h> 
#include "entryrc.h" 

DLGTEMPLATE DLG_ENTRYFIELDS LOADONCALL MOVEABLE DISCARDABLE 
{ 

DIALOG "Entryfield Sample", DLG_ENTRYFIELDS, 111, 29, 150, 130, 
WS_VISIBLE, 
FCF_SYSMENU I FCF_TITLEBAR 

GROUPBOX "Alignment", -1, 5, 70, 140, 55, NOT WS_GROUP 
LTEXT "Left aligned", -1, 10, 105, 65, 8, NOT WS_GROUP 
LTEXT "Center aligned", -1, 10, 90, 65, 8, NOT WS_GROUP 
LTEXT "Right aligned", -1, 10, 75, 65, 8, NOT WS_GROUP 
GROUPBOX "Miscellaneous", -1, 5, 30, 140, 40, NOT WS_GROUP 
LTEXT "Read-only", -1, 9, 50, 65, 8, NOT WS_GROUP 
LTEXT "Unreadable", -1, 10, 35, 65, 8, NOT WS_GROUP 
ENTRYFIELD "", DEF_ENTRYl, 82, 105, 56, 8, ES_MARGIN I 

WS_GROUP I ES_AUTOSCROLL 
ENTRYFIELD '"', DEF_ENTRY2, 82, 90, 56, 8, ES_CENTER I 

ES_MARGIN I ES_AUTOSCROLL 
ENTRYFIELD "", DEF_ENTRY3, 82, 75, 56, 8, ES_RIGHT 

ES_MARGIN I ES_AUTOSCROLL 

Entry Fields - 279 



280 - The Art of OS/2 Warp Programming 
ENTRYFIELD "", DEF_ENTRY4, 82, 50, 56, 8, ES_MARGIN 

ES_READONLY I WS_GROUP I ES_AUTOSCROLL 
ENTRYFIELD "", DEF_ENTRY5, 82, 35, 56, 8, ES_MARGIN 

ES_UNREADABLE I ES_AUTOSCROLL 
DEFPUSHBUTTON "Cancel", DID_CANCEL, 11, 10, 40, 13, 

WS_GROUP 

ENTRYRC.H 
#define DLG_ENTRYFIELDS 
#define DEF_ENTRYl 
#define DEF_ENTRY2 
#define DEF_ENTRY3 
#define DEF_ENTRY4 
#define DEF_ENTRY5 

ENTRY.MAK 
APP=ENTRY 

256 
257 
258 
259 
260 
261 

$(APP) .EXE: $(APP) .OBJ \ 
$(APP) .RES 

LINK386 /A:16 $(APP),$(APP),NUL,OS2386,$(APP); 
RC $(APP).RES $(APP).EXE 

$(APP) .RES: $(APP) .RC \ 
$(APP)RC.H 

RC -r $(APP) .RC $(APP) .RES 

$(APP) .OBJ: $(APP) .C \ 
$(APP)RC.H 

ICC -C+ -Kb+ -Ss+ $(APP) .C 

ENTRY.DEF 
NAME ENTRY WINDOWAPI 

DESCRIPTION 'Entryfields Sample 
Copyright (c) 1993-1995 by Larry Salomon, Jr. 
All rights reserved. ' 

STACKSIZE Ox4000 



Chapter 18 

Multiline Edit Controls 

When OS/2 1.1 was released in the middle of the Macintosh™ era, many people wondered why it didn't 
have a control similar to that used in any of the Mac's popular, easy-to-use word processors. IBM's 
answer in OS/2 1.2 was the multiline edit control (usually abbreviated as MLE); this control provided a 
similar yet simpler version of what people saw on the Macintosh. It supported the multiline text entry and 
browsing that they were familiar with and the anchor point/cursor point selection style discussed in Chapter 
17. 

But let's not stop there: The MLE was also one of the first controls to support a selectable font, and it can 
handle very large text buffers easily. Being a stream-based editing control means that word wrap also 
came cheaply. Finally, it included a primitive undo capability. 

Unfortunately, IBM tried (and failed) to emulate the Macintosh; it has no multifont capability, which 
contributed heavily to the ease-of-use that made the Mac such a big seller. Also, it seems clumsily written. 
Even with all of these problems, the MLE still is quite usable and is nifty for grabbing a chunk of text from 
the user when needed. MLEs are used everywhere-in the WPS (settings pages), in containers (editing 
icon text), and so on. 

Terminology, Etc. 
Table 18.1 shows the styles available for the MLE control. 

MLS_BORDER 
MLS_DISABLEUNDO 
MLS_HSCROLL 
MLS_IGNORETAB 

MLS_READONL Y 
MLS_ WORDWRAP 

MLS VSCROLL 

Creates an MLE with a surrounding border. 
Specifies that the MLE should ignore undo actions. 
Specifies that the MLE should have a horizontal scrollbar. 
Specifies that the MLE should ignore the tab key and instead pass 
the WM_CHAR message to its owner. 
Creates an MLE that is read-only. 
Specifies that the MLE should wrap words to the next line that do 
not fit on the current line. 
Specifies that the MLE should have a vertical scrollbar. 

The MLE has a concept of an import/export buffer that is used to set and query the text in the control 
(called importing and exporting text). Also, since the control is used frequently to read from and write to 
files, the MLE supports different end-of-line formats. 

281 



282 - The Art of OS/2 Warp Programming 

CR-LF 
LF 
WindowsMLE 

A carriage return (CR) followed by a line feed (LF) denotes the end of a line. 
LF denotes the end of a line. 
On import, CR CR LF is ignored, and CR LF is interpreted as end of line. On 
export, CR LF is used to specify end of line and CR CR LF is used to denote 
line breaks caused by word wrapping. 

To set the import/export buffer, the MLE expects to receive an MLM_SETIMPORTEXPORT message 
before receiving any MLM_IMPORT (import text from buffer) or MLM_EXPORT (export text to buffer). 
The format of the text to be imported or exported is specified in the MLM_FORMAT message. The 
MLM_SETIMPORTEXPORT message simply tells the MLE the address of the buffer to be used in later 
message; thus, if this message is sent followed immediately by an MLM_IMPORT message, whatever was 
in the buffer will get imported. Similarly, multiple MLM_IMPORT messages can be sent to import the 
same text multiple times. 

Additional messages that correspond to well-known or easily understood capabilities are the 
MLM_SETSEL (set selection) and MLM_SETWRAP (set word wrap) messages. 

Two items need to be noted. The first is the concept of an insertion point (datatype is IPT), which is 
simply an offset in the MLE from the beginning of the text. The second is that of line numbers; it may 
seem obvious since we are programming using a language whose arrays begin at index 0, but it doesn't 
hurt to state explicitly that line numbers, when used in the various MLE messages, begin at 0 also. 

MLEl 
The following sample shows an MLE and performs some rudimentary operations with it. 

MLEl.C 
#define INCL_WINFRAMEMGR 
#define INCL_WINMLE 
#define INCL_WINMENUS 
#define INCL_WINWINDOWMGR 
#include <os2.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include "mlelrc.h" 

#define CLS_CLIENT 

#define MYM_ACTIVATE 

typedef struct _INSTDATA 
ULONG ulSzStruct; 
HAB habAnchor; 
HWND hwndFrame; 
HWND hwndMle; 

INSTDATA, *PINSTDATA; 

VOID addText(HWND hwndMle) 

"MLElSampleClass" 

(WM_USER) 

II Size of the structure 
II Anchor block handle 
II Frame window handle 
II MLE window handle 

11---------------------------------------------------------------
11 This function adds text to the MLE starting at position 0. 
II 
II Input: hwndMle - MLE window handle 
11---------------------------------------------------------------
{ 

CHAR achimpExp(256]; 



USHORT usindex; 
IPT iinsert; 

Multiline Edit Controls - 283 

!!------------------------------------------------------------
!!Set the import/export buffer and the format to 
II MLFIE_NOTRANS. Remember that, internally, a '\n' 
II character is a LF only. Only when it gets output to a 
II "text-mode" stream does it get converted to CR-LF. 
1/------------------------------------------------------------
WinSendMsg(hwndMle, 

MLM_SETIMPORTEXPORT, 
MPFROMP(achimpExp), 
MPFROMLONG(sizeof(achimpExp))); 

WinSendMsg(hwndMle, 
MLM_FORMAT, 
MPFROMLONG(MLFIE_NOTRANS), 
0); 

/!------------------------------------------------------------
/! Insert 20 lines of text 
1/------------------------------------------------------------
iinsert=O; 

for (usindex=l; usindex<=20; usindex++) { 
sprintf (achimpExp, "This is line %d. \n", us Index); 

WinSendMsg(hwndMle, 

} /* endfor */ 

MLM_IMPORT, 
MPFROMP(&iinsert), 
MPFROMLONG(strlen(achimpExp) )) ; 

VOID selectAllText(HWND hwndMle) 
!!---------------------------------------------------------------
/!This function selects all of the text. 
II 
II Input: hwndMle - MLE window handle 
//---------------------------------------------------------------
{ 

ULONG ulSzText; 

!!------------------------------------------------------------
/! Query the amount of text in the MLE. This will be our 
II cursor point. Our anchor point is always 0. 
1/------------------------------------------------------------
ulSzText=LONGFROMMR(WinSendMsg(hwndMle, 

MLM_QUERYTEXTLENGTH, 
0, 
0)); 

WinSendMsg(hwndMle, 
MLM_SETSEL, 
MPFROMLONG ( 0 ) , 
MPFROMLONG(ulSzText)); 

MRESULT EXPENTRY clientWndProc(HWND hwndWnd, 
ULONG ulMsg, 
MPARAM mpParml, 
MPARAM mpParm2) 

!!---------------------------------------------------------------
!/ Client window procedure. 
II 
II Input, Output, Returns: message-specific 
//---------------------------------------------------------------
{ 



284 - The Art of OS/2 Warp Programming 
PINSTDATA pidData; 

pidData=(PINSTDATA)WinQueryWindowPtr(hwndWnd,0); 

switch (ulMsg) { 
case WM_CREATE: 

//---------------------------------------------------------
//Allocate memory for the instance data. 
1/---------------------------------------------------------
pidData=calloc(l,sizeof(INSTDATA)); 
if (pidData==NULL) { 

WinAlarm(HWND_DESKTOP,WA_ERROR); 
return MRFROMSHORT(TRUE); 

} /* endif */ 

//---------------------------------------------------------
// Initialize the instance data. 
1/---------------------------------------------------------
pidData->ulSzStruct=sizeof(INSTDATA); 

WinSetWindowPtr(hwndWnd,0,pidData); 

pidData->habAnchor=WinQueryAnchorBlock(hwndWnd); 
pidData->hwndFrame=WinQueryWindow(hwndWnd,QW_PARENT); 

//---------------------------------------------------------
// Create the MLE. 
1/---------------------------------------------------------
pidData->hwndMle=WinCreateWindow(hwndWnd, 

WC_MLE, 

WS_VISIBLE I 
MLS_HSCROLL 
MLS_VSCROLL 
MLS_BORDER, 

0, 
0, 
0, 
0, 
hwndWnd, 
HWND_TOP, 
WND_MLE, 
NULL, 
NULL); 

if (pidData->hwndMle==NULLHANDLE) { 
WinAlarm(HWND_DESKTOP,WA_ERROR); 
free (pidData); 
return MRFROMSHORT(TRUE); 

/* endif */ 
break; 

case WM_DESTROY: 
free (pidData) ; 
break; 

case WM_SIZE: 
//---------------------------------------------------------
//Resize the MLE according to our new dimensions. 
1/---------------------------------------------------------
WinSetWindowPos(pidData->hwndMle, 

NULLHANDLE, 

break; 

0, 
0, 
SHORTlFROMMP(mpParm2), 
SHORT2FROMMP(mpParm2), 
SWP_SIZE); 



Multiline Edit Controls - 285 
case WM_SETFOCUS: 

11----------- ----------------------------------------------
11 If we are getting the focus, post ourselves a message 
II to change it to the MLE. We may not do it now, 
II because PM is still in the focus change processing, 
I I meaning that aI1y call to WinSetFocus () will get 
II overwritten when the focus change processing completes. 
11----------------------------------------------------------
if (SHORT1FH.OMMP(mpParm2)) ( 

WiriPustMsg (hwndWnd, MYM_SETFOCUS, 0, 0); 
} I* endif *I 
break; 

case MYM_SETFOCUS: 
WinSetFocus(HWND_DESKTOP,pidData->hwndMle); 
break; 

case WM_COMMAND: 
switch (SHORTlFROMMP(mpParml)) 
case MI_ADDTEXT: 

addText(pidData->hwndMle); 
break; 

case MI_SELECTALL: 
selectAll Text (pidData->hwndMle) ; 
break; 

case MI_READONLY: 
{ 

BOOL bReadOnly; 
HWND hwndMenu; 

11---------------------------------------------------
11 Query the current read-only state and toggle. 
11---------------------------------------------------
bReadOnly=SHORTlFROMMR( 

WinSendMsg(pidData->hwndMle, 
MLM_QUERYREADONLY, 
0' 
0)); 

bReadOnly=!bReadOnly; 

11---------------------------------------------------
11 Set the new read-only state. 
11---------------------------------------------------
WinSendMsg (pidData--> hwndMle, 

MLM_SETREADONLY, 
MPFROMSHORT(bReadOnly)' 
0); 

11---------------------------------------------------
11 Check or uncheck the menu item. 
1/---------------------------------------------------
hwndMenu=WinWindowFromID(pidData->hwndFrame, 

FID_MENU); 
WinSendMsg(hwndMenu, 

MM_SETITEMATTR, 
MPFROM2SHORT(MI_READONLY,TRUE), 
MPFROM2SHORT(MIA_CHECKED, 

bReadOnly?MIA_CHECKED:O)); 

break; 
case MI_EXIT: 

WinPostMsg(hwndWnd,WM_CLOSE,0,0); 
break; 

default: 
return WinDefWindowProc(hwndWnd,ulMsg,mpParml,mpParm2); 

} I* endswitch */ 
break; 

default: 
return WinDefWindowProc(hwndWnd,ulMsg,mpParml,mpParm2); 



286 - The Art of OS/2 Warp Programming 
} /* endswitch */ 

return MRFROMSHORT(FALSE); 

INT main(VOID) 
/!---------------------------------------------------------------
// Standard main function for PM applications. 
//---------------------------------------------------------------
{ 

HAB habAnchor; 
HMQ hmqQueue; 
ULONG ulCreate; 
HWND hwndFrame; 
HWND hwndClient; 
BOOL bLoop; 
QMSG qmMsg; 

habAnchor=Wininitialize(O); 
hmqQueue=WinCreateMsgQueue(habAnchor,0); 

WinRegisterClass(habAnchor, 
CLS_CLIENT, 
clientWndProc, 
CS_SIZEREDRAW, 
sizeof (PVOID)); 

ulCreate=FCF_SYSMENU I FCF_TITLEBAR I FCF_MINMAX I 
FCF_SIZEBORDER I FCF_MENU I FCF_SHELLPOSITION 
FCF_TASKLIST; 

hwndFrame=WinCreateStdWindow(HWND_DESKTOP, 
WS_VISIBLE, 
&ulCreate, 
CLS_CLIENT, 
"MLE Sample 1"' 
0, 
NULLHANDLE, 
RES_CLIENT, 
&hwndClient); 

if (hwndFrame!=NULLHANDLE) { 
bLoop=WinGetMsg(habAnchor,&qmMsg,NULLHANDLE,0,0); 
while (bLoop) { 

WinDispatchMsg(habAnchor,&qmMsg); 
bLoop=WinGetMsg(habAnchor,&qmMsg,NULLHANDLE,0,0); 

} /* endwhile */ 

WinDestroyWindow(hwndFrame); 
/* endif */ 

WinDestroyMsgQueue(hmqQueue); 
WinTerminate(habAnchor); 
return O; 



MLEl.RC 
#include <os2.h> 
#include "mlelrc.h" 

MENU RES_CLIENT 
{ 

SUBMENU ·-sample"' M_SAMPLE 
{ 

MENU ITEM "-Add text" , MI_ADDTEXT 
MENUITEM ·-select all", MI_SELECTALL 
MENUITEM "-Read only"' MI_READONLY 
MENUITEM SEPARATOR 
MENUITEM "E-xit", MI_EXIT 

MLElRC.H 
#define RES CLIENT 256 -
#define WND_MLE 257 

#define M_SAMPLE 320 
#define MI_ADDTEXT 321 
#define MI_SELECTALL 322 
#define MI_READONLY 323 
#define MI_EXIT 324 

ML El.MAK 
APP=MLEl 

$(APP) .EXE: $(APP) .OBJ\ 
$(APP) .RES 

LINK386 /A:l6 $(APP) ,$(APP) ,NUL,OS2386,$(APP); 
RC $(APP) .RES $(APP) .EXE 

$(APP) .RES: $(APP) .RC\ 
$(APP)RC.H 

RC -r $(APP) .RC $(APP) .RES 

$(APP) .OBJ: $(APP) .C \ 
$(APP) RC. H 

ICC -C+ -Kb+ -Ss+ $(APP) .C 

MLEl.DEF 
NAME MLEl WINDOWAPI NEWFILES 

DESCRIPTION 'MLE Sample 1 
Copyright (c) 1994-1995 by Larry Salomon, Jr. 
All rights reserved. ' 

STACKSIZE Ox4000 

The code does most of the important work in addText and selectAllText. 

WinSendMsg(hwndMle, 
MLM_SETIMPORTEXPORT, 
MPFROMP(achimpExp), 
MPFROMLONG(sizeof(achimpExp) )); 

WinSendMsg(hwndMle, 
MLM_FORMAT, 
MPFROMLONG(MLFIE_NOTRANS), 
0); 

Multiline Edit Controls - 287 



288 - The Art of OS/2 Warp Programming 
As was stated earlier, the import/export transfer buffer must be set before any text is imported. Also, since 
the internal representation of a new-line character is simply a line feed, we have to tell the MLE that the 
format of the imported text is just that (MLFIE_NOTRANS). 

iinsert=O; 

for (usindex=l; usindex<=20; usindex++) { 
sprintf (achimpExp, "This is line %d. \n" ,usindex); 

WinSendMsg(hwndMle, 

} /* endfor */ 

MLM_IMPORT, 
MPFROMP(&iinsert), 
MPFROMLONG(strlen(achimpExp))); 

Finally, we loop to insert 20 lines of text. As can be seen in the message section at the end of this chapter, 
MLM_IMPORT updates mpParml to reflect the point just after the place where the last character was 
inserted; this is to prepare the application for the next import (or export, for MLM_EXPORT). 

The processing of the input focus is interesting. 

case WM_SETFOCUS: 
if (SHORT1FROMMP(mpParm2)) { 

WinPostMsg(hwndWnd,MYM_SETFOCUS,0,0); 
} /* endif */ 
break; 

case MYM_SETFOCUS: 
WinSetFocus(HWND_DESKTOP,pidData->hwndMle); 
break; 

While a focus change is in progress, applications are not supposed to call WinSetFocus or 
WinFocusChange. Presentation Manager will not prevent this from being done, but since it has not 
completed the focus change processing, any window to which the focus is assigned will lose it 
immediately. The only way to accomplish this-as in the code just given-is to post a message that will 
call WinSetFocus. Since posting is being done, not sending, the message gets executed whenever it gets 
dispatched, which is after the focus change has completed. 

How to Upset a User Rather Quickly 
Upon running MLEl, it is noticeable how the control repainted itself whenever any changes took place. 
Whenever an application does a lot of textual manipulations, this can look rather nasty. Fortunately, two 
messages can be used to disable and enable screen updates-MLM_DISABLEREFRESH and 
MLM_ENABLEREFRESH. The first messages tells the MLE that the application is making many 
changes and that it should not update the display until an MLM_ENABLEREFRESH message is sent. 

Gotcha! 

The MLM_DISABLEREFRESH message does not work as advertised; instead of 
disabling display updates and disabling the mouse pointer, it simply disables the mouse 
pointer. A better way to perform this action is to use the WinEnableWindowUpdate 
function specifying FALSE as the second parameter (and reenabling using the same 

function with TRUE as the second parameter). Also, the MLM_DISABLEREFRESH message disables the 
mouse systemwide, instead of just over itself, which can be quite annoying for operations that take up large 



Multiline Edit Controls - 289 
amounts of time. An application that is guilty of this is the System Editor; readers can start the editor and 
read in a file that is greater than SOOK to see an example of this. 

No Refreshment 
MLE2 is the next sample to be looked at. It calls WinEnableWindowUpdate to disable the window refresh 
before inserting the text and calls it again to enable the window refresh afterward. Its behavior should be 
compared with that of MLE 1. 

MLE2.C 
#define INCL_WINFRAMEMGR 
#define INCL_WINMLE 
#define INCL_WINMENUS 
#define INCL_WINWINDOWMGR 
#include <os2.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include "mle2rc.h" 

#define CLS_CLIEN'i' 

#define MYM_SETFOCUS 

typedef struct _INSTDATA 
ULONG ulSzStruct; 
HAE habAnchor; 
HWND hwndFrame; 
HWND hwndMle; 

INSTDA'I'A, *PINS'i'DA'TA; 

VOID addText(HWND hwndMle) 

"MLE2SampleClass" 

(WM_USER) 

II Size of the structure 
II Anchor block handle 
II Frame window handle 
II MLE window handle 

11---------------------------------------------------------------
11 This function adds text to the MLE starting at position 0. 
II 
I I Input: hwndMle -- MLE window handle 
11---------------------------------------------------------------
( 

CHAR achimpExp[2~6]; 
USHORT usindex; 
IPT iinsert; 

11------------------------------------------------------------
11 Set the import/export buffer and the format to 
I I MLFIE_NOTRANS. Remember that, internally, a '\n' 
II character is a LF only. Only when it gets output to a 
II "text-mode" stream does it get converted to CR-LF. 
11------------------------------------------------------------
WinSendMsg(hwndMle, 

MLM_SETIMPORTEXPORT, 
MPFROMP (achimpExp) , 
MPFROMLONG ( sizeof (achimpExp))); 

WinSendMsg(hwndMle, 
MLM_f·ORMAT, 
MPFROMLONG ( MLF IE_NO'I'RANS) , 
0); 

11------------------------------------------------------------
11 Insert 20 lines of text. 
11------------------------------------------------------------
WinEnableWindowUpdate (hwndMle,FALSE); 



290 - The Art of OS/2 Warp Programming 
iinsert=O; 

for (usindex=l; usindex<=20; usindex++) { 
sprintf (achimpExp, "This is line %d. \n" ,usindexJ; 

WinSendMsg(hwndMle, 

} I* endfor *I 

MLM_IMPORT, 
MPFROMP(&iinsert), 
MPFROMLONG(strlen(achimpExp))); 

WinEnableWindowUpdate(hwndMle,TRUE); 

VOID selectAllText(HWND hwndMle) 
11---------------------------------------------------------------
11 This function selects all of the text. 
II 
II Input: hwndMle - MLE window handle 
11---------------------------------------------------------------
{ 

ULONG ulSzText; 

11------------------------------------------------------------
11 Query the amount of text in the MLE. This will be our 
II cursor point. Our anchor point is always 0. 
11------------------------------------------------------------
ulSzText=LONGFROMMR(WinSendMsg(hwndMle, 

MLM_QUERYTEXTLENGTH, 
0, 
0)); 

WinSendMsg(hwndMle, 
MLM_SETSEL, 
MPFROMLONG(O), 
MPFROMLONG(ulSzText)); 

MRESULT EXPENTRY clientWndProc(HWND hwndWnd, 
ULONG ulMsg, 
MPARAM mpParml, 
MPARAM mpParm2) 

11---------------------------------------------------------------
11 Client window procedure. 
II 
II Input, Output, Returns: message-specific 
11---------------------------------------------------------------
{ 

PINSTDATA pidData; 

pidData=(PINSTDATA)WinQueryWindowPtr(hwndWnd,0); 

switch (ulMsg) { 
case WM_CREATE: 

11---------------------------------------------------------
11 Allocate memory for the instance data. 
11---------------------------------------------------------
pidData=calloc(l,sizeof(INSTDATA)); 
if (pidData==NULL) { 

WinAlarm(HWND_DESKTOP,WA_ERROR); 
return MRFROMSHORT(TRUE); 

} I* endif *I 

11---------------------------------------------------------
11 Initialize the instance data. 
11---------------------------------------------------------
pidData->ulSzStruct=sizeof(INSTDATA); 

WinSetWindowPtr(hwndWnd,0,pidData); 



pidData->habAnchor=WinQueryAnchorBlock(hwndWnd); 
pidData->hwndFrame=WinQueryWindow(hwndWnd,QW_PARENT); 

Multiline Edit Controls - 291 

11---------------------------------------------------------
11 Create the MLE. 
11---------------------------------------------------------
pidData->hwndMle=WinCreateWindow(hwndWnd, 

WC_MLE, 

WS_VISIBLE I 
MLS_HSCROLL 
MLS_VSCROLL 
MLS_BORDER, 

0, 
0, 
0, 
0, 
hwndWnd, 
HWND_TOP, 
WND_MLE, 
NULL, 
NULL); 

if (pidData->hwndMle==NULLHANDLE) { 
WinAlarm(HWND_DESKTOP,WA_ERROR); 
free (pidData); 
return MRFROMSHORT(TRUE); 

I* endif *I 
break; 

case WM_DESTROY: 
free (pidData) ; 
break; 

case WM_SIZE: 
11---------------------------------------------------------
11 Resize the MLE according to our new dimensions. 
11---------------------------------------------------------
WinSetWindowPos(pidData->hwndMle, 

NULLHANDLE, 

break; 
case WM_SETFOCUS: 

0' 
0' 
SHORT1FROMMP(mpParm2), 
SHORT2FROMMP(mpParm2), 
SWP_SIZE); 

11---------------------------------------------------------
11 If we are getting the focus, post ourselves a message 
II to change it to the MLE. We may not do it now, 
II because PM is still in the focus change processing 
II meaning that any call to WinSetFocus() will get 
II overwritten when the focus change processing completes. 
11---------------------------------------------------------
if (SHORT1FROMMP(mpParm2)) { 

WinPostMsg(hwndWnd,MYM_SETFOCUS,0,0); 
} I* endif *I 
break; 

case MYM_SETFOCUS: 
WinSetFocus(HWND_DESKTOP,pidData->hwndMle); 
break; 

case WM_COMMAND: 
switch (SHORTlFROMMP(mpParml)) 
case MI_ADDTEXT: 

addText(pidData->hwndMle); 
break; 

case MI_SELECTALL: 
selectAllText(pidData->hwndMle); 
break; 



292 - The Art of OS/2 Warp Programming 
case MI_READONLY: 

{ 
BOOL bReadOnly; 
HWND hwndMenu; 

!!---------------------------------------------------
/! Query the current read-only state and toggle. 
1/---------------------------------------------------
bReadOnly=SHORTlFROMMR( 

WinSendMsg(pidData->hwndMle, 
MLM_QUERYREADONLY, 
0, 
0)); 

bReadOnly=!bReadOnly; 

!!---------------------------------------------------
!! Set the new read-only state. 
1/---------------------------------------------------
WinSendMsg(pidData->hwndMle, 

MLM_SETREADONLY, 
MPFROMSHORT(bReadOnly), 
0); 

!!---------------------------------------------------
!!Check or uncheck the menu item. 
1/---------------------------------------------------
hwndMenu=WinWindowFromID(pidData->hwndFrame, 

FID_MENU); 
WinSendMsg(hwndMenu, 

MM_SETITEMATTR, 
MPFROM2SHORT(MI_READONLY,TRUE), 
MPFROM2SHORT(MIA_CHECKED, 

bReadOnly?MIA_CHECKED:O)); 

break; 
case MI_EXIT: 

WinPostMsg(hwndWnd,WM_CLOSE,0,0); 
break; 

default: 
return WinDefWindowProc(hwndWnd,ulMsg,mpParml,mpParm2); 

} /* endswitch */ 
break; 

default: 
return WinDefWindowProc(hwndWnd,ulMsg,mpParml,mpParm2); 

} /* endswitch */ 

return MRFROMSHORT(FALSE); 

INT main(VOID) 
!!---------------------------------------------------------------
!/ Standard main function for PM applications. 
//---------------------------------------------------------------
{ 

HAB habAnchor; 
HMQ hmqQueue; 
ULONG ulCreate; 
HWND hwndFrame; 
HWND hwndClient; 
BOOL bLoop; 
QMSG qmMsg; 

habAnchor=Wininitialize(O); 
hmqQueue=WinCreateMsgQueue(habAnchor,0); 



WinRegisterClass(habAnchor, 
CLS_CLIENT, 
clientWndProc, 
CS ___ SlZEKEDRAW, 
sizeof (f'VOID)); 

ulCreate=FCF_SYSMENU I FCF_TITLEBAR I FCF_MINMAX I 
FCF_SIZEBORDER I FCF_MENU I FCF SHELLPOSITION 
FCF_TASKLIST; 

hwndFrame=WinCreateStdWindow(HWND_DESKTOP, 
WS_VISIBLE, 
&ulCreate, 
CLS_CLIENT, 
"MLE Sample 2", 
0' 
NULLHANDLE, 
RES_CLIENT, 
&hwndClient); 

if (hwndFrame!=NULLHANDLE) { 
bLoop=WinGetMsg(habAnch01'.,&qmMsg,NULLHANDLE,0,0); 
while (bLoop) { 

WinDispatchMsg(habAnchor,&qmMsg); 
bLoop=WinGetMsg(habAnchor,&qmMsg,NULLHANDLE,0,0); 

/* endwhile */ 

WinDestroyWindow(hwndFrame); 
/* endif */ 

WinDestroyMsgQueue(hmqQueue); 
WinTerminate(habAnchor); 
return O; 

MLE2.RC 
#include <os2.h> 
#include "mle2rc.h" 

MENU RES_CLIENT 
{ 

SUBMENU "-Sample", M_SAMPLE 
{ 

MENUITEM "-Add text", MI_ADDTEXT 
MENUITEM "-Select all", MI_SELECTALL 
MENUITEM "-Read only", MI_READONLY 
MENUITEM SEPARATOR 
MENUITEM "E-xi t" , MI_ __ EXIT 

MLE2RC.H 
#define RES_CLIENT 256 
#define WND_MLE 257 

#define M_SAMPLE 320 
#define MI_ADDTEXT 321 
#define MI_SELECTALL 322 
#define MI_READONLY 323 
#define MI_EXIT 324 

Multiline Edit Controls - 293 



294 - The Art of OS/2 Warp Programming 
MLE2.MAK 
APP=MLE2 

$(APP) .EXE: $(APP) .OBJ\ 
$(APP) .RES 

LINK386 /A:l6 $(APP),$(APP),NUL,OS2386,$(APP); 
RC $(APP) .RES $(APP) .EXE 

$(APP) .RES: $(APP) .RC \ 
$(APP)RC.H 

RC -r $(APP) .RC $(APP) .RES 

$(APP) .OBJ: $(APP) .C \ 
$ (APP)RC.H 

ICC -C+ -Kb+ -Ss+ $(APP) .C 

MLE2.DEF 
NAME MLE2 WINDOWAPI NEWFILES 

DESCRIPTION 'MLE Sample 2 
Copyright (c) 1994 by Larry Salomon, Jr. 
All rights reserved.' 

STACKSIZE Ox4000 

Clipboard Support 
In Chapter 17, we discussed what the clipboard is and which entry-field messages can be used to interface 
with it. The MLE has a similar set of messages-MLM_COPY, MLM_CUT, and MLM_PASTE-that 
perform analagous functions. As with the entry field, the first two messages require that some text is 
selected in the MLE, so these two usually are used in conjunction with the MLM_SETSEL message. 
Because the concepts associated with the clipboard were explained thoroughly in the last chapter, we will 
move on to the next topic. 

Navigation without a Sextant 
Suppose the insertion point corresponding to a known line number within an MLE has to be found. Or, 
given an insertion point, the line number where the insertion point can be found has to be determined. 
Because of the word-wrap capability of the MLE, these can be difficult-if not impossible-to calculate 
without some help from the control. Fortunately, the MLE has two such messages that perform these 
functions for you; they are MLM_CHARFROMLINE and MLM_LINEFROMCHAR. 

Line by Line 
The following example uses the MLM_CHARFROMLINE message to read its contents line by line and to 
write each line to a file. 

MLE3.C 
#define INCL_WINFRAMEMGR 
#define INCL_WINMLE 
#define INCL_WINMENUS 
#define INCL_WINWINDOWMGR 
#include <os2.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include "mle3rc.h" 

#define CLS_CLIENT "MLE3SampleClass" 



#define MYM_SETFOCUS 

typedef struct INSTDATA 
ULONG ulSzStruct; 
HAB habAnchor; 
HWND hwndFrame; 
HWND hwndMle; 

INSTDATA, *PINSTDATA; 

VOID importText(HWND hwndMle) 

(WM_USER) 

II Size of the structure 
II Anchor block handle 
II Frame window handle 
II MLE window handle 

Multiline Edit Controls - 295 

//---------------------------------------------------------------
//This function imports text into the MLE. 
II 
II Input: hwndMle - MLE window handle 
//---------------------------------------------------------------
{ 

FILE *pfimport; 
CHAR achimpExp[256]; 
IPT iinsert; 

//------------------------------------------------------------
// Set the import/export buffer and the format to 
II MLFIE_NOTRANS. Remember that, internally, a '\n' 
II character is a LF only. Only when it gets output to a 
II "text-mode" stream does it get converted to CR-LF. 
1/------------------------------------------------------------
WinSendMsg(hwndMle, 

MLM_SETIMPORTEXPORT, 
MPFROMP(achimpExp), 
MPFROMLONG(sizeof(achimpExp))); 

WinSendMsg(hwndMle, 
MLM_FORMAT, 
MPFROMLONG(MLFIE_NOTRANS), 
0); 

pfimport=fopen ( "MLE3. IMP", "r"); 
if (pfimport==NULL) { 

WinAlarm(HWND_DESKTOP,WA_ERROR); 
return; 

/* endif */ 

WinEnableWindowUpdate(hwndMle,FALSE); 

iinsert=O; 

while (fgets(achimpExp,sizeof(achimpExp),pfimport) !=NULL) 
WinSendMsg(hwndMle, 

MLM_IMPORT, 
MPFROMP(&iinsert), 
MPFROMLONG(strlen(achimpExp))); 

} /* endwhile */ 

WinEnableWindowUpdate(hwndMle,TRUE); 

fclose(pfimport); 

VOID exportText(HWND hwndMle) 
//---------------------------------------------------------------
//This function exports text from the MLE. 
II 
II Input: hwndMle - MLE window handle 
//---------------------------------------------------------------
{ 

FILE *pfExport; 
CHAR achimpExp[256l; 



296 - The Art of OS/2 Warp Programming 
LONG lNumLines; 
LONG 1 Index; 
IPT iBegin; 
LONG lSzLine; 

!!------------------------------------------------------------
// Set the import/export buffer and the format to 
II MLFIE_NOTRANS. Remember that, internally, a '\n' 
II character is a LF only. Only when it gets output to a 
II "text-mode" stream does it get converted to CR-LF. 
1/------------------------------------------------------------
WinSendMsg(hwndMle, 

MLM_SETIMPORTEXPORT, 
MPFROMP(achimpExp), 
MPFROMLONG(sizeof(achimpExp) )) ; 

WinSendMsg(hwndMle, 
MLM_FORMAT, 
MPFROMLONG(MLFIE_NOTRANS), 
0); 

pfExport=fopen( "MLE3 .EXP", "w"); 
if (pfExport==NULL) { 

WinAlarm(HWND_DESKTOP,WA_ERROR); 
return; 

/* endif */ 

WinEnableWindowUpdate(hwndMle,FALSE); 

lNumLines=LONGFROMMR(WinSendMsg(hwndMle, 
MLM_QUERYLINECOUNT, 
0, 
0)); 

for (lindex=O; lindex<lNumLines; lindex++) 
iBegin=LONGFROMMR(WinSendMsg(hwndMle, 

MLM_CHARFROMLINE, 
MPFROMLONG(lindex), 
0)); 

lSzLine=LONGFROMMR(WinSendMsg(hwndMle, 
MLM_QUERYLINELENGTH, 
MPFROMLONG(iBegin), 
0)); 

memset(achimpExp,0,sizeof(achimpExp)); 

WinSendMsg(hwndMle, 
MLM_EXPORT, 
MPFROMP(&iBegin), 
MPFROMP(&lSzLine)); 

fputs(achimpExp,pfExport); 
/* endfor */ 

WinEnableWindowUpdate(hwndMle,TRUE); 

fclose(pfExport); 

MRESULT EXPENTRY clientWndProc(HWND hwndWnd, 
ULONG ulMsg, 
MPARAM mpParml, 
MPARAM mpParm2) 

!!---------------------------------------------------------------
//Client window procedure. 
II 
II Input, Output, Returns: message-specific 
//---------------------------------------------------------------
{ 

PINSTDATA pidData; 



pidData=(PINSTDATA)WinQueryWindowPtr(hwndWnd,0); 

switch (ulMsg) { 
case WM_CREATE: 

Multiline Edit Controls - 297 

//---------------------------------------------------------
//Allocate m'"mory for the instance data. 
//---------------------------------------------------------
pidDai:a=ca11oc(l,sizeof (INSTDATA)); 
if (pidDatao~NULL) { 

WinAla.rm ( HVVND ___ Dr;SKTOP, WA __ ERROR) ; 
return MRFROMSHOR'I' (TRUE); 

/* endit */ 

//---------------------------------------------------------
/I L:-1i tialize the instance data. 
1/---------------------------------------------------------
pidData->ulSzStruct=sizeof(INSTDATA); 

WinSetWindowPtr(hwndWnd,0,pidData); 

pidData->habAnchor=WinQueryAnchorBlock(hwndWnd); 
pidData->hwndFrame=WinQueryWindow(hwndWnd,QW_PARENT); 

!!---------------------------------------------------------
// Create the MLE. 
1/---------------------------------------------------------
pidData->hwndMle=WinCreateWindow(hwndWnd, 

WC_MLE, 

WS VISIBLE I 
MLS_HSCROLL 
MLS_VSCROLL 
MLS_BORDER, 

0, 
0, 
0, 
0, 
hwndWnd, 
HWND_TOP, 
WND_MLE, 
NULL, 
NULL); 

if (pidData->hwndMle==NULLHANDLE) { 
WinAlarm ( HWNU_Ll£SKTOP, WA_ERROR) ; 
free (pidData); 
return MRFROMSHOK'I' (TRUE); 

/* endif *i 
break; 

case WM_DESTROY: 
free(pidData); 
break; 

case WM_SIZE: 
//-------------------·--------------------------------------
//Resize the MLE according to our new dimensions. 
/1----------------------------------------------------------
WinSetWindowPos ( pidDa ta·-> hwndMle, 

NULLHANDLE, 

break; 

0, 
0, 
SHORTlFROMMP(mpParm2), 
SHO!<:r2Fl'<.OMMP(mpParm2), 
SWi" .. SlZE,) ; 



298 - The Art of OS/2 Warp Programming 
case WM_SETFOCUS: 

11---------------------------------------------------------
11 If we are getting the focus, post ourselves a message 
II to change it to the MLE. We may not do it now, 
II because PM is still in the focus change processing, 
II meaning that any call to WinSetFocus() will get 
II overwritten when the focus change processing completes. 
11---------------------------------------------------------
if (SHORT1FROMMP(mpParm2)) { 

WinPostMsg(hwndWnd,MYM_SETFOCUS,0,0); 
} I* endif *I 
break; 

case MYM_SETFOCUS: 
WinSetFocus(HWND_DESKTOP,pidData->hwndMle); 
break; 

case WM_COMMAND: 
switch (SHORTlFROMMP(mpParml)) { 
case MI_IMPORTTEXT: 

importText(pidData->hwndMle); 
break; 

case MI_EXPORTTEXT: 
exportText(pidData->hwndMle); 
break; 

case MI_EXIT: 
WinPostMsg(hwndWnd,WM_CLOSE,0,0); 
break; 

default: 
return WinDefWindowProc(hwndWnd,ulMsg,mpParml,mpParm2); 

} I* endswitch *I 
break; 

default: 
return WinDefWindowProc(hwndWnd,ulMsg,mpParml,mpParm2); 

} I* endswitch *I 

return MRFROMSHORT(FALSE); 

INT main(VOID) 
11---------------------------------------------------------------
11 Standard main function for PM applications. 
11---------------------------------------------------------------
{ 

HAB habAnchor; 
HMQ hmqQueue; 
ULONG ulCreate; 
HWND hwndFrame; 
HWND hwndClient; 
BOOL bLoop; 
QMSG qmMsg; 

habAnchor=Wininitialize(O); 
hmqQueue=WinCreateMsgQueue(habAnchor,0); 

WinRegisterClass(habAnchor, 
CLS_CLIENT, 
clientWndProc, 
CS_SIZEREDRAW, 
sizeof (PVOID)); 

ulCreate=FCF_SYSMENU I FCF_TITLEBAR I FCF_MINMAX I 
FCF_SIZEBORDER FCF_MENU I FCF_SHELLPOSITION 
FCF_TASKLIST; 



hwndFrame=WinCreateStdWindow(HWND_DESKTOP, 
WS_VISIBLE, 
&ulCreate, 
CLS_CLIENT, 
"MLE Sample 3", 
0, 
NULLHANDLE, 
RES_CLIENT, 
&hwndClient); 

if (hwndFrame'=NULLHANDLE) { 
bLoop=WinGetMsg(habAnchor,&qmMsg,NULLHANDLE,0,0); 
while (bLoop) { 

WinDispatchMsg(habAnchor,&qmMsg); 
bLoop=WinGetMsg(habAnchor,&qmMsg,NULLHANDLE,0,0); 

} /* endwhile */ 

WinDestroyWindow(hwndFrame); 
/* endif */ 

WinDestroyMsgQueue(hmqQueue); 
WinTerminate(habAnchor); 
return O; 

MLE3.RC 
#include <os2.h> 
#include "mle3rc.h" 

MENU RES_CLIENT 
{ 

SUBMENU "-Sample", M_SAMPLE 
{ 

MENUITEM "-Import text", MI IMPORTTEXT 
MENUITEM "-Export text", MI_EXPORTTEXT 
MENUITEM SEPARATOR 
MENUITEM "E-xit", MI_EXIT 

MLE3RC.H 
#define RES_CLIENT 256 
#define WND_MLE 257 

#define M_SAMPLE 320 
#define MI_IMPORTTEXT 321 
#define MI_EXPORTTEXT 322 
#define MI_EXIT 323 

MLE3.MAK 
APP=MLE3 

$(APP) .EXE: $(APP) .OBJ\ 
$(APP) .RES 

LINK386 /A:l6 $(APP),$(APP) ,NUL,OS2386,$(APP); 
RC $(APP) .RES $(APP) .EXE 

$(APP) .RES: $(APP) .RC \ 
$(APP)RC.H 

RC -r $(APP).RC $(APP) .RES 

$(APP) .OBJ: $(APP) .C \ 
$(APP)RC.H 

ICC -c+ -Kb+ -Ss+ $(APP) .c 

Multiline Edit Controls - 299 



300 - The Art of OS/2 Warp Programming 
MLE3.DEF 
NAME MLE3 WINDOWAPI NEWFILES 

DESCRIPTION 'MLE Sample 3 
Copyright (c) 1994 by Larry Salomon, Jr. 
All rights reserved. ' 

STACKSIZE Ox4000 

The main difference between this sample and the previous two is the addition of the function exportText. 
Its purpose is to read, line by line, the contents of the MLE and to write each line to a file. To 
do this, we make use of the MLM_QUERYLINECOUNT, MLM_CHARFROMLINE, and 
MLM_QUERYLINELENGTH messages. First, we need to determine how many lines are in the MLE; the 
first message does this. 

lNumLines=LONGFROMMR(WinSendMsg(hwndMle, 
MLM_QUERYLINECOUNT, 
0, 
0)); 

Obviously, we use this as the terminating condition of a for loop. Each iteration of the loop 
performs the following: Determine the offset of the first character on the line using 
MLM_CHARFROMLINE; query the length of the line using MLM_QUERYLINELENGTH; 
finally, query the data on the line using MLM_EXPORT. 

for (lindex=O; lindex<lNumLines; lindex++) { 
iBegin=LONGFROMMR(WinSendMsg(hwndMle, 

MLM_CHARFROMLINE, 
MPFROMLONG(lindex), 
0)); 

lSzLine=LONGFROMMR(WinSendMsg(hwndMle, 
MLM_QUERYLINELENGTH, 
MPFROMLONG(iBegin), 
0)); 

memset(achimpExp,0,sizeof(achimpExp)); 

WinSendMsg(hwndMle, 
MLM_EXPORT, 
MPFROMP(&iBegin), 
MPFROMP(&lSzLine)); 

fputs(achimpExp,pfExport); 
/* endfor */ 

Gotcha! 

The MLM_QUERYLINECOUNT takes as its parameter an insertion point instead of a 
line number, as would be imagined. 

Searching for What Was That Again? 
An action that is commonly performed on large quantities of text is searching for a particular string. 
Before digging out Knuth volumes, readers should take note of the MLM_SEARCH message. This 
message will do both search and search-and-replace actions on the text contained within the MLE. The 



Multiline Edit Controls - 30 l 
method of communication is via the MLE_SEARCHDA TA structure, which specifies the string to search 
for and (optionally) a replacement string. 

typedef struct _SEARCH 
{ 

USHORT cb; 
PCHAR pchFind; 
PCHAR pchReplace; 
SHORT cchFind; 
SHORT cchReplace; 
IPT iptStart; 
IPT iptStop; 
USHORT cchFound; 

MLE_SEARCHDATA; 

cb specifies the size of the structure. pchFind points to the search text. pchReplace points to the text to 
replace with. cchFind specifies the length of the search text. cchReplace specifies the length of the 
replacement text. iptStart on entry specifies the search starting point. If this is -1, the cursor position is 
used. On exit, iptStart specifies the insertion point of the first character of the occurrence found, if one is 
found. iptStop specifies the search ending point. If this is -1, the end of text is used. If this is less than 
iptStart, the search wraps to the beginning of the text after it reaches the end. cchFound specifies the length 
of the found text. 

mpParml specifies one or more flags that are used to determine the action of the search. 

MLFSEARCH_CASESENSITIVE 
MLFSEARCH_SELECTMATCH 

MLFSEARCH_CHANGEALL 

Find a string that also matches in case. 
Select the text if found and scroll the text if necessary to bring it 
into view. 
Replaces all occurrences of pchFind with the text pointed to by 
pchReplace between iptStart and iptStop. cchFound has no 
meaning because the text has been changed. iptStart points to the 
position where the last change occurred, or is equal to iptStop if 
no occurrences of pchFind were found. The current position is 
not changed; the current selection, however, is deselected. 

Since the MLE can hold a large quantity of text, searches conceivably can take a long time to complete. 
Because of this, the MLE periodically sends the application a WM_CONTROL message with an 
MLN_SEARCHPAUSE notification code; this allows the application to halt the search (usually per the 
user's request); it also can be used to implement a progress indicator. 

As If That Weren't Enough 
Finally, there are a number of messages that perform miscellaneous functions. To select a font, there is the 
MLM_SETFONT message, which is a bit tricky to use since it expects a font attributes structure 
(FATTRS). Fortunately, the Font Dialog (see Chapter 26) returns the FATTRS structure for the font 
selected, so if we consent to using this (a good idea), we can avoid a lot of work. The current font is 
returned in an FATTRS structure by the MLM_QUERYFONT message. 



302 - The Art of OS/2 Warp Programming 
Gotcha! 

The MLM_SETFONT message is the only way to change the font of an MLE control. 
WinSetPresParam will not work as it does with the other window classes. 

Undo support is provided through three messages: MLM_UNDO, which actually performs the undo 
operation; MLM_QUERYUNDO, which returns whether an MLM_UNDO will perform an undo or redo 
(the opposite of undo) and the class of change that will be undone or redone (text change, font change, 
etc.); and MLM_RESETUNDO, which indicates to the MLE that it should not allow an undo to occur. 

Text-modified queries are provided by the MLM_QUERYCHANGED message, and the text-modified flag 
can be set using the MLM_SETCHANGED message. 



Chapter 19 

Other Window Classes 

Quick-minded readers will have observed that there are more window classes available to the programmer 
than what are listed on the contents page. The remaining window classes, however, either are rarely used 
directly by an application or are too trivial to warrant a separate chapter. This chapter serves as a catchall 
to discuss these unmentionables. 

Table 19 .1 below lists these window classes and provides a brief description of them. 

WC_COMBOBOX 

WC_FRAME 

WC_SCROLLBAR 

WC_STATIC 

WC_TITLEBAR 

Combo Boxes 

Combo box. This is a combination of an entry field and a list box. It 
responds to all messages for both controls; additionally, there are a few 
messages specifically for this class. 
Frame. This window is used as the primary window for most applications, 
and is also the basis for dialog windows. While the typical interaction with 
this class is through subclassing, the frame window has some useful 
messages for the developer. 
Scrollbar. This can be found in many applications, where the environment is 
larger than the amount of screen space allocated for the application. 
Scrollbars allow the user to change the visible portion by scrolling the 
window. 
Static window. This is a window whose contents are static, that is, 
unchangable by the user. Typically, windows of this class are textual in 
nature, but they can also be icons, bitmaps, and so on. 
Titlebar. On a standard window, this window is placed between the system 
menu and the minimax buttons. It provides a placement for the frame 
window text and also allows quick access to window resizing, maximizing, 
and restoring. 

A combo box is displayed as an entry field with either a down arrow displayed to its right or a list box 
displayed below it. Its primary purpose is to display a list of items that can be selected from but added to at 
the user's discretion. A drop-down combo box is especially useful when screen "real-estate" is limited but 
a list is still needed; in such cases the down arrow is displayed to the right of an entry field. 

303 



304 - The Art of OS/2 Warp Programming 

Because a combo box is simply a handy way of putting together two existing window classes, the designers 
decided that it should be able to accept messages for both of its ancestors. Thus, any entry field message 
(EM_) and list box message (LM_) can be sent to the control with the expected results. The reader is 
referred to the chapters dealing with those control classes for more information. 

The table below lists the combo-box styles. 

CBS_SIMPLE 

CBS_DROPDOWN 

CBS_DROPDOWNLIST 

Both the entry field and the list box are displayed. Whenever an 
item in the list box is selected, the text is displayed in the entry field. 
If the item required is not in the list, the user can type the desired 
value in the entry field. 
This is the same as CBS_SIMPLE except the list box is hidden until 
the user requests that it be shown; this is accomplished either by 
clicking with the mouse on the down arrow or pressing the Ctrl
Down arrow keys. 
This is the same as CBS_DROPDOWN except the entry field is 
read-only, meaning items cannot be entered manually by the user. 

The following simple application illustrates the different types of combo boxes. 

COMBO.C 
#define INCL_WINDIALOGS 
#define INCL_WINENTRYFIELDS 
fl.u .. L.i.ne INCL_WINLIS'l'J:jU.ILt;S 
#include <os2.h> 
#include <stdio.h> 
#include "comborc.h" 

MRESULT EXPENTRY comboDlgProc(HWND hwndWnd, 
ULONG ulMsg, 
MPARAM mpParml, 
MPARAM mpParm2) 

switch (ulMsg) { 
case WM_INITDLG: 

{ 
USHORT usindex; 
CHAR achText[64]; 

for (usindex=l; usindex<=lO; usindex++) { 
sprintf(achText,"Item %d", usindex); 

WininsertLboxitem(WinWindowFromID(hwndWnd, 
DCB_CB_COMBOl) , 

LIT_END, 
achText); 

WininsertLboxitem(WinWindowFromID(hwndWnd, 
DCB_CB_COMB02) , 

LIT_END, 
achText); 

WininsertLboxitem(WinWindowFromID(hwndWnd, 
DCB_CB_COMB03) , 

} /* endfor */ 

LIT_END, 
achText); 



break; 
default: 

return WinDefDlgProc(hwndWnd,ulMsg,mpParml,mpParm2); 
} /* endswitch */ 

return MRFROMSHORT(FALSE); 

INT main(VOID) 
{ 

HAB habAnchor; 
HMQ hmqQueue; 

habAnchor=Wininitialize(O); 
hmqQueue=WinCreateMsgQueue(habAnchor,0); 

WinDlgBox(HWND_DESKTOP, 
HWND_DESKTOP, 
comboDlgProc, 
NULLHANDLE, 
DLG_COMBOBOXES, 
NULL); 

WinDestroyMsgQueue(hmqQueue); 
WinTerminate(habAnchor); 
return O; 

COMBO.RC 
#include <os2.h> 
#include "comborc.h" 

DLGTEMPLATE DLG_COMBOBOXES LOADONCALL MOVEABLE DISCARDABLE 
{ 

DIALOG "Combo Boxes", DLG_COMBOBOXES, 67, 31, 200, 160, 
WS_VISIBLE, 
FCF_SYSMENU I FCF_TITLEBAR 

LTEXT "Simple", -1, 10, 130, 75, 8 
LTEXT "Drop down", -1, 10, 80, 75, 
LTEXT "Drop down list", -1, 10, 50, 
COMBOBOX "", DCB_CB_COMBOl, 90, 95, 

LS_HORZSCROLL I WS_GROUP 
COMBOBOX "", DCB_CB_COMB02, 90, 45, 

LS_HORZSCROLL I CBS_DROPDOWN 
COMBOBOX "", DCB_CB_COMB03, 90, 15, 

LS_HORZSCROLL I CBS_DROPDOWNLIST 
DEFPUSHBUTTON "Cancel", DID_CANCEL, 

COMBORC.H 
#define DLG_COMBOBOXES 
#define DCB_CB_COMBOl 
#define DCB_CB_COMB02 
#define DCB_CB_COMB03 

256 
257 
258 
259 

8 
75, 8 
100, 45, 

100, 45' 

100, 45, 

10, 10, 40, 13 

Other Window Classes - 305 



306 - The Art of OS/2 Warp Programming 
COMBO.MAK 
APP=COMBO 

$(APP) .EXE: $(APP) .OBJ\ 
$(APP) .RES 

LINK386 /A:16 $(APP) ,$(APP) ,NUL,OS2386,$(APP); 
RC $(APP) .RES $(APP) .EXE 

$(APP) .RES: $(APP).RC \ 
$(APP)RC.H 

RC -r $(APP) .RC $(APP) .RES 

$(APP) .OBJ: $(APP) .C \ 
$(APP)RC.H 

ICC -c+ -Kb+ -Ss+ $(APP) .c 

COMBO.DEF 
NAME COMBO WINDOWAPI 

DESCRIPTION 'Cornboboxes Sample 
Copyright (c) 1993 by Larry Salomon, Jr. 
All rights reserved. ' 

STACKSIZE Ox4000 

The combo box, while fairly straightforward in its usage, does have some limitations in its design about 
which programmers should know. First, there is no easy way to have an ownerdrawn combo box (i.e. 
ownerdrawn list box within the combo box). This means that, for those with the need to display bitmaps, 
colors, etc., you're "outta luck." Second, a CBN_SHOWLIST notification indicates when the list is about 
to be shown, but no corresponding notification indicates when the list is about to be hidden; this one goes 
in the "honestly, we didn't inhale" group of design idiosyncracies. 

Gotcha! 
When a CBN_SHOWLIST notification is received, the list is not shown already, so a 
CBM_ISLISTSHOWING message will return FALSE. This is documented but often 
overlooked. 

A final note is that combo boxes process the messages and notifications for the entry field and list box by 
acting as a dispatcher. Thus, code may need slight modifications if it is being copied from another source 
that was used solely for an entry field/list box and not a combo box. For example, instead of a 
LN_ENTER notification, there is the CBN_ENTER notification. 

Frames 
A frame window is, as mentioned in Chapter 9, one of the components of a standard window. It's primary 
purpose is to keep things organized-it receives messages from the various components (e.g., menu, sizing 
border, etc.) and dispatches them to the appropriate windows with a "need to know;" it is the parent of all 
of the standard window components, which keeps them contained within its boundaries; it provides a 
standard look to a standard window (thus the name), giving the feeling of consistency to the system. 
Because the frame is the parent of all of the components, oftentimes its parent is the desktop itself; when 
this is the case, it is referred to as the top-level window for the application. 



Other Window Classes - 307 
Direct interfacing with the frame does not yield many useful functions-the real "meat" of the frame is 
accessed through subclassing. (See Chapter 27 for more information on subclassing.) 

A note on the WM_UPDATEFRAME message: After looking at the description of the message, readers 
will undoubtedly question the reasoning for such a message, if the client is the one to add or delete the 
controls. The answer can be said in one word (with a bit of explanation afterward): "housekeeping." Just 
because a control or two has been added or deleted by the programmer doesn't mean the frame is going to 
know about it. The programmer must indicate the changes to the frame so that it can resize the controls 
properly when it is resized. 

Scrollbars 
Scrollbars are used to allow the user to specify a value, within a specified range. Originally, they were 
intended as navigational tools within windows (thus, their name), when the viewable area was larger than 
the visible area. Since then, however, many other purposes have been designed and other, more 
specialized controls have been created as a result. (See "Combo Boxes" earlier in this chapter, Chapter 24, 
and Chapter 25.) These controls, however, are still quite useful, even if only for scrolling the contents of a 
window. 

A scrollbar consists of three parts-the buttons, the slidertrack, and the thumb. The buttons are found on 
the ends of the scrollbar, and they are used to adjust the position up or down by a "unit." The thumb is a 
rectangular area in the middle of the scrollbar and is used to adjust the position by an arbitrary amount; 
usually it also indicates the amount of data visible compared with the total amount of data available. The 
thumb is sometimes referred to as the slider, but we will refrain from doing so in order to avoid confusion 
with the control of the same name. The slidertrack is everything else, and the thumb is contained by the 
slidertrack; the slidertrack is used to adjust the position up/left or down/right one "page" by clicking 
above/left or below/right of the thumb. 

A few properties are associated with a scrollbar. The first is the range; it is an inclusive set of numbers 
greater than or equal to zero in which the value of the scrollbar can fall. The fact that neither boundary can 
be less than zero is significant, since application code may have to be adjusted to account for this. When 
the scrollbar is created, it has the default range 0 to 100. The second property is the thumbsize; it indicates 
to the user the amount of data that is visible relative to the total amount of data available for viewing. 

Table 19.3 lists the scrollbar styles. 

SBS_HORZ 
SBS_VERT 
SBS_THUMBSIZE 

SBS_AUTOTRACK 
SBS_AUTOSIZE 

Creates a horizontal scrollbar. 
Creates a vertical scrollbar. 
Specifies that the SBCDA TA structure in the call to Win Create Window 
contains valid values for the cVisible and cTotal fields. 
The scrollbar scrolls as more information is displayed on the screen. 
The scrollbar thumb changes size to reflect the amount of data in the 
window. 



308 - The Art of OS/2 Warp Programming 
Because the scrollbar is such a simple control, programming it is simple. What is difficult is how the 
scrollbar is used in an application; it is easy to specify what the valid range of values is and even query the 
current value, but it isn't as easy to scroll a window appropriately or to change the green component in a 
color window; these things will not be covered in this chapter because the possibilities are endless. 

Statics 
Static controls have the dubious role of providing information to the user that cannot be modified by him 
or her. This information can take many forms, the more common of which is text and icons/bitmaps. 
However, many people fail to realize that there are many forms of the static control and that this flexibility 
compensates for its lack of functionality. 

Speaking of "lack of functionality," let's describe it in a single sentence. For textual static controls, 
WinSetWindowText and WinQueryWindowText set and query the current text being displayed; for 
bitmapped (including icons) static controls, two messages are used to specify the bitmap or icon handle and 
query the current handle. 

Table 19.4 lists the static control styles. 



SS_AUTOSIZE 
SS_BITMAP 

Other Window Classes - 309 

Specifies that the control is to size itself so that its contents fit. 
Specifies that the control is to contain a bitmap, and the text of the 
control specifies the resource id of the bitmap. If the first byte of the 
text is hexadecimal x'FF', then the second and third bytes are used as 
the low and high word of the resource id of the bitmap to load, 
respectively. If the first byte of the text is '#', then the remainder of 
the text is considered to be an ASCII representation of the resource 
ID of the bitmap to load. If the text is empty or does not follow the 
above format, no bitmap is loaded. 

SS_BKGNDFRAME Creates a box whose color is that of the background. This is similar 
to, but not the same as, SS_GROUPBOX. 

SS_BKGNDRECT 
SS_FGNDFRAME 

SS_FGNDRECT 

SS_GROUPBOX 

Creates a solid rectangle whose color is that of the background. 
Creates a box whose color is that of the foreground. This is similar 
to, but not the same as, SS_GROUPBOX. 
Creates a solid rectangle whose color is that of the foreground. This 
is often used for background shadowing and very thick underlining. 
Creates a box as in SS_FGNDFRAME, except that the text of the 
static control is displayed in the top left of the box. This is used to 
group like controls together with an associated heading. 

SS_HALFTONEFRAME Creates a box that has a halftone outline. This is similar to, but not 
the same as, SS_GROUPBOX. 

SS_HALFfONERECT Creates a box filled with halftone shading. This is similar to, but not 
the same as, SS_GROUPBOX. 

SS_ICON 

SS_SYSICON 

SS_ TEXT 

Gotcha! 

The same as SS_BITMAP, except that the resource loaded is 
expected to be an icon or pointer instead of a bitmap. 
The same as SS_BITMAP, except that the resource ID that is 
specified in the text is interpreted as a SPTR_ constant and is used to 
obtain a system icon as in the WinQuerySysPointer function. 
Specifies that the static control is to display the text in the manner 
specified. See the following text for more information. 

For dialogs containing static controls with the style SS_BITMAP or SS_ICON, the 
bitmap, icon, or pointer must reside in the resource area of the executable. This is true 
even if the dialog template is defined in the resource area of a DLL. If this behavior is 
unacceptable, the programmer must use an empty string for the text, load the bitmap, 
icon, or pointer in the dialog procedure, and specify this as the (already loaded) 
resource to use by sending the control an SM_SETHANDLE message. 

For static controls with the style SS_TEXT, a number of additional styles can be applied that control 
alignment and word-wrapping. Horizontally, DT_LEFf, DT_CENTER, and DT_RIGHT specify left, 
center, and right-aligned text. Vertically, DT_TOP, DT_ VCENTER, and DT_BOTTOM specify top, 
center, and bottom-aligned text. Additionally, DT_ WORDBREAK can be specified if and only if 
DT_LEFf and DT_TOP are specified; this indicates that words are to be wrapped to the next line if they 
do not fit completely within the control's area at the current vertical position. If none of these flags is 
specified, the default is DT_LEFT and DT_TOP. 



310 - The Art of OS/2 Warp Programming 
Static controls have one other use: Since they do nothing other than display themselves, they are very 
handy for adding the programmer's behavior within a dialog via subclassing. (See Chapter 27 for more 
information on subclassing windows.) 

Title bars 
The title bar is a control whose role in the standard window is perfunctory, yet it is still quite important. It 
automatically provides for mouse-oriented changing of the window's position and maximizing and 
restoring of the window's size. Also, its interaction with the frame insures that, whenever the frame's 
window text is changed, it is updated to reflect the new text. 

Even with this, there isn't much the programmer can do with the titlebar control directly. Its functions are 
strictly defined and were not built with other uses in mind. There are no titlebar-specific styles, and it 
accepts only two messages. These are described in Appendix A. 



Chapter 20 

Drag and Drop 

While the capability to drag and drop an icon from one window to another has been present since OS/2 1.1, 
a standardized, robust method for providing this essential function was not introduced until OS/2 1.3 with 
the Drg functions and their associated DM_ messages. But what is drag and drop, really? 

Drag and drop is the capability of using the mouse to manipulate directly the transfer and placement of data 
within single or multiple applications. Objects can either be "moved" or "copied" from a source window to 
a target window. ("Moved" and "copied" are application-defined concepts.) 

Drag and drop can be seen from two viewpoints: from the viewpoint of the source, who initiates the drag; 
and from the aspect of the target, which can accept or reject a dragging operation. We will examine both 
of these as well as what to do once the target is established. 

Tennis, Anyone? 
In a nutshell, the source window is responsible for determining that the user is attempting to drag an object, 
initializing the appropriate data structures, and finally calling either DrgDrag or DrgDragFiles (a version 
of DrgDrag specifically for file objects). Determining that the user is attempting to drag an object is the 
easiest part, since the system will send a WM_BEGINDRAG message with the pointer position in 
mp Parm]. (This is not entirely true. If a child control receives a WM_BEGINDRAG message, it might 
alert the programmer to this through a WM_ CONTROL message, but it is not required that it do so.) 

After it has been decided that a drag operation is necessary, the application needs to allocate and initialize 
three structure types: DRAGINFO, DRAGITEM, and DRAGIMAGE. (There are actually four; the 
DRAGTRANSFER structure is used once a target has been established.) The DRAGINFO structure 
contains information about the drag as an entity. The DRAGITEM structures describe each object being 
dragged. Finally, the DRAGIMAGE structures each describe the appearance of the object under the 
pointer while it is being dragged. 

typedef struct _DRAGINFO 
ULONG cbDraginfo; 
USHORT cbDragitem; 
USHORT usOperation; 
HWND hwndSource; 
SHORT xDrop; 
SHORT yDrop; 
USHORT cditem; 
USHORT usReserved; 

DRAGINFO, *PDRAGINFO; 

311 



312 - The Art of OS/2 Warp Programming 
In the DRAGINFO structure, cbDraginfo is the size of the DRAGINFO structure in bytes. cbDragitem is 
the size of the DRAGITEM structure contained therein. usOperation is the default operation that can be, 
but is not required to be, set by the source and inspected by the target; it is a DO_ constant. hwndSource is 
the only field not initialized by DrgAllocDraglnfo, and it is the handle of the window initiating the drag
and-drop operation. xDrop and yDrop are the coordinates of the object as dropped. cd/tem specifies the 
number of DRAGITEM structures stored along with the DRAGINFO structure. usReserved is reserved 
and must be set to 0. 

typedef struct _DRAGITEM 
HWND hwnditem; 
ULONG ulitemID; 
HSTR hstrType; 
HSTR hstrRMF; 
HSTR hstrContainerName; 
HSTR hstrSourceName; 
HSTR hstrTargetName; 
SHORT cxOffset; 
SHORT cyOffset; 
USHORT fsControl; 
USHORT fsSupportedOps; 

DRAGITEM, *PDRAGITEM; 

In the DRAGITEM structure, hwndltem is the handle of the window with which the target should 
communicate to transfer the information necessary to complete the operation. The only time this would be 
different from the hwndSource field of the DRAGINFO structure is when an application contains many 
"standard" windows as the children of the main window. hstrType is the type of the item represented by 
the DRAGITEM structure. hstrRMF is the rendering mechanism used to transfer the information and 
format of the data being transfered. hstrContainerName is the name of the container that holds the object 
being dragged. With a file object, for example, this would be the directory where the file resides. 
hstrSourceName and hstrTargetName are the names of the object at its original location and the suggested 
name of the object at the target location. The target does not have to use the suggested name; it is up to the 
application programmer. cxOffset and cyOffset specify the offset from the hotspot of the pointer to the 
lower left corner of the image representing the object and is copied here by the system from the 
corresponding fields in the DRAGIMAGE structure. fsControl specifies one or more DC_ constants 
describing any special attributes of the object being dragged. Finally, fsSupportedOps specifies the 
operations that can be performed as part of the drag-the object may be copied, moved, linked 
("shadowed"), and so on. 

typedef struct _DRAGIMAGE 
USHORT cb; 
ULONG fl; 
USHORT cptl; 
LHANDLE himage; 
SIZEL sizlStretch; 
SHORT cxOffset; 
SHORT cyOffset; 

DRAGIMAGE, *PDRAGIMAGE; 

In the DRAGIMAGE structure, ch specifies the size of the structure in bytes. fl specifies a number of 
DRG_ constants describing the type of data that is given in this structure. 



Drag and Drop - 313 
Table 20.1 DRG_ Constants 

Constant Description 
DRG_BITMAP 
DRG_CLOSED 

hlmage specifies a bitmap handle. 
The polygon specified is to be closed. If specified, DRG_POL YGON also must 
be specified. 

DRG_ICON 
DRG_POL YGON 
DRG_STRETCH 

DRG_ TRANSPARENT 

hlmage specifies an icon handle. 
hlmage specifies an array of PO INTL structures. 
The bitmap or icon is to be stretched to fit the specified size. If specified, 
DRG_BITMAP or DRG_ICON also must be specified. 
An outline of the icon is to be shown only. If specified, DRG_ICON also must 
be s ecified. 

cPtl specifies the number of points if fl contains DRG_POL YGON. hlmage can specify one of many 
things, depending on what flags are set in fl, as seen in Table 20.1. sizlStretch specifies the size that the 
bitmap or icon should be stretched to. cxO!fset and cyO!fset specify the offset of the lower left corner of 
the image, relative to the hotspot of the cursor as the object is dragged. These two fields are copied into the 
DRAGITEM structure. 

At this point, probably few of the fields in these structures make any sense. It is important to realize that, 
because the target will more likely than not exist as part of another process, simple allocation of these 
structures will not suffice, due to OS/2's memory protection features. They must be allocated in shared 
memory through the use of the DrgAllocDraginfo and DrgAddStrHandle functions. 

PDRAGINFO DrgAllocDraginfo(ULONG cditem); 
HSTR DrgAddStrHandle(PSZ psz); 

The former accepts the number of items being dragged and returns a pointer to the shared DRAGINFO 
structure, whose individual DRAGITEM structures must be initialized using the DrgSetDragitem function. 
The latter takes a pointer to a string and returns a "string handle"-a pointer to a shared memory block 
containing (among other things) the string passed to the function. 

Initialization Code for Drag and Drop Source 
The following is the typical initialization code used in a Presentation Manager application to initiate a drag
and-drop operation. 

HWND hwndWindow; 
PDRAGINFO pdiDrag; 
DRAGITEM diitem; 

pdiDrag=DrgAllocDraginfo(l); 

11-------------------------------------------------------------
11 Note that DrgAllocDraginfo() initializes all of the DRAGINFO 
II fields *except* hwndSource. 
11-------------------------------------------------------------
pdiDrag->hwndSource=hwndWindow; 

diitem.hwnditem=hwndWindow; 
diitem.ulitemID=lL; II Unique identifier 
diitem.hstrType=DrgAddStrHandle(DRT_TEXT); 
diitem.hstrRMF=DrgAddStrHandle("<DRM_OS2FILE,DRF_TEXT>"); 
diitem.hstrContainerName=DrgAddStrHandle("C:\"); 
diitem.hstrSourceName=DrgAddStrHandle("CONFIG.SYS"); 
diitem.hstrTargetName=DrgAddStrHandle("CONFIG.BAK"); 



314 - The Art of OS/2 Warp Programming 
diitem.cxOffset=O; 
diitem.cyOffset=O; 
diitem.fsControl=O; 
diitem.fsSupportedOps=DO_COPYABLE; 

DrgSetDragitem(pdiDrag,&diitem,sizeof(diitem) ,0); 

The following sections will explain this listing in more detail. 

Things Never Told to the Programmer That Should Have Been 
Before actually taking our forceps to the code, a few concepts need to be introduced. The first is that of the 
type and the true type of an object being dragged. The type is just that-a string that describes what the 
object consists of. The true type is a type that more accurately describes the object, if such a true type 
exists. For example, a file that contains C source code might have the type "Plain Text" but have a true 
type of "C Code." An object can have more than one type, with each separated by commas and the true 
type appearing as the first type listed. Thus, the hstrType field for the C source code would be initialized as 
DrgAddStrHandle("C Code, Plain Text"). OS/2 defines a set of standard types in the form of DRT_ 
constants. 

The second concept that needs to be discussed is the rendering mechanism and format (RMF). The 
rendering mechanism is the method by which the data will be communicated from the source to the target. 
The format is the format of the data if the corresponding rendering mechanism as used to transfer the data. 
These RMF pairs take the form "<rendering_mechanism, format>" , with multiple RMF pairs separated by 
commas. OS/2 also defines a set of rendering mechanisms, although no constants are defined for them. 

Note that if programmers have a fully populated set of RMF pairs ("fully populated" meaning that for 
every rendering mechanism, every format is available), a shorthand cross-product notation can be used. 
For example, if there are the rendering mechanisms RA, RB, and RC and the formats FA, FB, and FC, and 
the following RMF pairs are available: 

"<RA,FA>,<RA,FB>,<RA,FC>,<RB,FA>,<RB,FB>,<RB,FC>,<RC,FA>, 
<RC,FB>,<RC,FC>" 

then this can be represented as "(RA,RB,RC)X(FA,FB,FC)". Obviously, this is a much more concise way 
of describing the mess. If the thought of having to parse such a monster with so many different 
combinations just to discover if <RD,FD> is supported drives programmers crazy, they should have no 
fear-there are functions that will determine this. 

Analogous to the relationship between type and true type, there also exists a native RMF, which describes 
the preferred RMF for this object. It is always the first RMF pair listed or the first RMF pair generated in a 
cross-product. The native RMF might employ faster data transfer algorithms or other such performance 
boosters, so it should be used by the target whenever possible. 

Just because OS/2 defines sets of types, rendering mechanisms, and formats doesn't mean programmers are 
limited to those sets. If an application needs to use a new format, it can register the appropriate strings 
describing this with the DrgAddStrHandle function. However, the transfer protocol for the rendering 
mechanisms and the corresponding data formats also should be published so that other applications can 
understand the new type of RMF. 



Drag and Drop- 315 
The next concepts are that of source name, source container Drag and drop:, and target name Drag and 
drop:. The source name is the name of the object being dragged. It is useful because the target application 
may be able to perform the requested operation without having to interact with the source application. 
Typically, this is used when dealing with files. The source container describes where the object resides. 
This, again, is useful to the target when deciding how to complete the action. When dealing with files, for 
example, the source container would be the directory name containing the file. Finally, the target name is 
actually a suggested name, since the target could determine that an object with that name already exists and 
that the object will receive a new, unique name. 

Now that these concepts have been explained, the structures and sample code shown earlier in this chapter 
should be easier to understand. We are dragging one item, as evidenced in the DrgAllocDraginfo call. The 
one item is of type "text" and will be transferred via the file system using the format "unknown." The file 
system object resides in the container/directory "C:\" and has the name "CONFIG.SYS". The suggested 
target name is "CONFIG.BAK", although the target application is free to select a different name. 

Direct Manipulation Is a Real Drag 
Assuming that the last section has been understood and that programmers have successfully (and correctly) 
initialized the DRAGINFO structure and each DRAGITEM structure for each object, we are now ready to 
call the function that makes all of this hard work worthwhile: DrgDrag. 

(HWND)DrgDrag(HWND hwndSource, 
PDRAGINFO pdiDraginfo, 
PDRAGIMAGE pdiDragirnage, 
ULONG ulNurnirnages, 
ULONG ulTerrninateKey, 
PVOID pvReserved); 

hwndSource is the handle of the window initiating the drag operation. pdiDrag/nfo points to the 
DRAGINFO structure returned from DrgAllocDraginfo. pdiDraglmage points to an array of one or more 
DRAGIMAGE structures, and ulNumlmages specifies how many images the array contains. 
ulTerminateKey describes the manner by which the drag is ended and is a VK_ constant. 

VK_BUTTONl 
VK_BUTTON2 
VK_BUTTON3 
VK_ENDDRAG 

Drag is ended using mouse button 1. 
Drag is ended using mouse button 2. 
Drag is ended using mouse button 3. 
Drag is ended by the mouse button defined in the "System Setup" folder to end 
a drag. This should be used when dragging is performed in response to a 
WM BEGINDRAG message. 

The DRAGIMAGE structure describes the image to be displayed as the object is being dragged. Since 
only the DrgDrag function needs to access this, and since the DrgDrag function executes in the context of 
the process calling it, this structure is not part of the DRAGITEM structure (although having it there would 
have made things slightly less complicated). 

DrgDrag returns the window handle of the target window, if one is established. If the user pressed either 
the ESC key (to end the drag) or the Fl key (to get help for dropping on the current target), 
NULLHANDLE is returned, and the source is responsible for returning any shared resources consumed by 



316 - The Art of OS/2 Warp Programming 

calling DrgDeleteDraginfoStrHandles to delete all of the string handles in the DRAGINFO structure, 
DrgDeleteStrHandle for each HSTR allocated that is not present in the DRAGINFO structure, and 
DrgFreeDraginfo to free the DRAGINFO structure. If this occurred frequently, nothing more would have 
to be discussed; instead we will assume that the user selected a target window and released the appropriate 
mouse button to initiate the transfer. 

And Now a Word from Our Sponsor 
Since the data transfer actively involves both the source and target windows, now is a good time to view 
the target's perspective from the beginning. Remember that it is the target's responsibility to provide visual 
feedback to the user during the drag operation and to initiate the data transfer once the drop has occurred. 
Visual feedback is accomplished by responding to the appropriate DM_ messages that are sent to the target 
during the drag. 

DM_DRAGOVER This message is sent whenever the pointer enters the target window space to allow it 
the opportunity to add target emphasis to the destination of the drag. This is also sent whenever a key is 
pressed or released. The message contains a pointer to the DRAGINFO structure, which can be accessed 
by calling DrgAccessDraginfo. 

DM_DRAGLEA VE This message is sent to any window previously sent a DM_DRAGOVER message 
whenever the pointer leaves the target window space to allow it the opportunity to remove any "target 
emphasis" previously drawn. Note that since this occurs only for a window, the target is responsible for 
monitoring the mouse position of the DM_DRAGOVER messages when it is a container for other items. 
This message is not sent ifthe object(s) are dropped on the window. 

DM_DROP This message is sent to the target window when the user drops the object(s) on it. As with 
DM_DRAGLEA VE, any target emphasis should be removed once this message is received. Normally this 
message is responded to before any data transfer takes place so that the source can learn the window handle 
of the target. 

DM_DROPHELP This message is sent whenever the user presses Fl during a drag operation. The target 
should respond by displaying help on the actions that would occur if the object(s) were dropped at the point 
where Fl was pressed. 

Whenever a DM_DRAGOVER message is received, the potential target must determine if the drag 
operation is valid. For example, a C source file could be dropped on a C compiler object, but not a Pascal 
source file; by holding down the CTRL key, a file could be copied to the printer, but it is (probably) 
unlikely that a file could be moved to the printer. At a minimum, the following two conditions must be 
met for a drop to be possible: 

1. Both the source and target must understand at least one common type of each object being dragged. 
2. Both the source and target must understand at least one common RMF for each object being dragged. 

When determining the state of these conditions, the functions DrgVerifyType, DrgVerifyRMF, 
DrgVerifyTrueType, and DrgVerifyNativeRMF help considerably. 

BOOL DrgVerifyType(PDRAGITEM pdiitem,PCHAR pchType); 
BOOL DrgVerifyRMF(PDRAGITEM pdiitem,PCHAR pchMech,PCHAR pchFmt); 
BOOL DrgVerifyTrueType(PDRAGITEM pdiitem,PCHAR pchType); 
BOOL DrgVerifyNativeRMF(PDRAGITEM pdiitem,PCHAR pchRMF); 



Drag and Drop - 317 
In all of these functions, pdiltem points to the DRAGITEM structure describing the item being tested. 
pchType specifies the type to compare with. pchMech specifies the rendering mechanism. pchFmt 
specifies the data format. pchRMF specifies a rendering mechanism and format. All of these functions 
return TRUE if the condition is met and FALSE if not. 

The target responds to the DM_DRAGOVER message with a DOR_ constant. 

DOR_DROP 

DOR_NODROP 

DOR_NODROPOP 

Returned whenever the drag is acceptable. This is the only response that can be 
equated with a "Yes, you can drop here." 
Returned whenever the location of the object(s) in the target window is 
unacceptable. 
Returned whenever the operation (copy or move) is unacceptable; this implies 
that the drag might be valid if the operation is changed. 

DOR_NEVERDROP Returned whenever a drag is never acceptable; no further DM_DRAGOVER 
messages will be sent to the application until the mouse leaves the window and 
returns. 

Gotcha! 
Although the DRAGINFO structure is allocated in shared memory and the pointer is 
passed to the target, the target cannot access the structure until DrgAccessDraginfo is 
called. 

Data Transfer 
Okay, let's assume that the user selected one or more objects, depressed the appropriate mouse button, 
dragged the object(s) over a window, received the feedback that the target is willing to accept the object(s), 
and let go of the mouse button. What happens next? The answer to this depends on the RMF chosen to 
transfer the data with. For example, if DRM_OS2FILE is chosen, the target could choose to render the 
data itself, or maybe it doesn't know the name of the source data (e.g., for security reasons, the source 
window didn't fill this in), so it must ask the source window to render the data before it can complete the 
drop operation. 

Let us consider each of the three system-defined rendering mechanisms to see the possible chain of events 
within each. 

DRM_OS2FILE This mechanism would be used to transfer the data via the file system. The data does not 
have to exist already in this form, but could be placed there by the source after receiving a DM_RENDER 
message from the target. 

If the target understands the native RMF and if the true type of the object is a file object, then the target can 
render the operation without the intervention of the source. However, this might not be feasible; in that 



318 - The Art of OS/2 Warp Programming 
case, a DM_RENDER message would need to be sent to the source so that it can perform the operation. 
(This could occur if the source doesnot know the name of the file containing the data to be transferred.) If 
so, the target needs to allocate a DRAGTRANSFER structure (via DrgAllocDragtransfer) and fill in the 
hstrRenderToName field; the source sends back a DM_RENDERCOMPLETE message to indicate that the 
operation is done. 

DRM_PRINT This mechanism would be used when the data is dropped onto a printer, and should be used 
only if the source understands and can process the DM_PRINT message that will be sent to it by the target. 
This message contains the name of the print queue to which the operation is to be performed. 

Gotcha! 
We have experienced trouble using the pdriv field of the pdosData field of the 
PRINTDEST structure passed in as a pointer in mpParm2 for the DM_PRINTOBJECT 
message; the printer consistently rejects the data as being invalid when we call 
DevOpenDC. Unfortunately, one cannot simply call DevPostDeviceModes (see 
Chapter 25 for more information) to get a good set of driver data, because the device 
name is not specified anywhere. The workaround is to call SplQueryQueue first using 

the queue name in pszLogAddress field of the pdosData field of the PRINTDEST structure to get the 
PRQINF03 structure containing the device name. 

DRM_DDE This mechanism could be used when the other two do not provide the capability to complete 
the desired operation. While this is the most flexible of the three mechanisms, it is also the most 
cumbersome. 

The source must understand and be able to process the appropriate WM_DDE_ messages sent to it by the 
target. Note that a WM_DDE_INITIA TE is not required since the target already has the window handle 
with which it wishes to converse. 

Since the topic of DDE could fill an entire chapter by itself, we will not present any more information on 
this type of data transfer in this chapter. 

A Concrete Example 
A lot of material has been explained so far, and an example is sorely needed to cross the boundary from the 
abstract to the applied. The following application can act as both source and target for direct manipulation. 
While it is a simple program, it demonstrates the concepts previously described. 

DRAGl.C 
#define INCL_DOSFILEMGR 
#define INCL_WININPUT 
#define INCL_WINPOINTERS 
#define INCL_WINSTDDRAG 
#define INCL_WINSYS 
#define INCL_WINWINDOWMGR 
#include <os2.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#define CLS_CLIENT "SampleClass" 
#define DRAG_METHOD "DRM_OS2FILE" 
#define DRAG_FORMAT "DRF_UNKNOWN" 
#define DRAG_RMF "<"DRAG_METHOD","DRAG_FORMAT">" 
#define DRAG_TEMPNAME "DRAGDROP.TMP" 
#define MYM_DEWDROP ( WM_USER ) 



typedef struct _CLIENTINFO 
{ 

PDRAGINFO pdiDrag; 

BOOL bDragging; 
BOOL bEmphasis; 
CHAR achLine[256J; 

CLIENTINFO,*PCLIENTINFO; 

VOID fileFromDragitem(PDRAGITEM pdiitem,PCHAR pchFile); 

VOID paintClient(HPS hpsClient,HWND hwndClient,PCLIENTINFO 
pciinfo); 

MRESULT doSource(HWND hwndClient,ULONG ulMsg,MPARAM mpParml, 
MPARAM mpParm2); 

MRESULT doTarget(HWND hwndClient,ULONG ulMsg,MPARAM mpParml, 
MPARAM mpParm2); 

MRESULT EXPENTRY clientWndProc(HWND hwndClient,ULONG ulMsg,MPARAM 
mpParml,MPARAM mpParm2); 

INT main(VOID) 
{ 

HAB 
HMQ 
ULONG 
HWND 
BOOL 
QMSG 

habAnchor; 
hmqQueue; 
ulFlags; 
hwndFrame; 
bLoop; 
qmMsg; 

habAnchor Wininitialize(O); 
hmqQueue = WinCreateMsgQueue(habAnchor, 

0); 

WinRegisterClass(habAnchor, 
CLS_CLIENT, 
clientWndProc, 
CS_SIZEREDRAW, 
sizeof ( PVOID) ) ; 

ulFlags = FCF_SIZEBORDERIFCF_TITLEBARIFCF_TASKLISTI 
FCF_SHELLPOSITIONIFCF_SYSMENU; 

hwndFrame = WinCreateStdWindow(HWND_DESKTOP, 
WS_VISIBLE, 
&ulFlags, 
CLS_CLIENT, 

bLoop WinGetMsg(habAnchor, 
&qmMsg, 
NULLHANDLE, 
0, 
0); 

while (bLoop) 
{ 

"Drag - n - Drop Sample" 
" Application", 

0, 
NULLHANDLE, 
0, 
NULL); 

Drag and Drop - 319 



320 - The Art of OS/2 Warp Programming 
WinDispatchMsg(habAnchor, 

&qmMsg); 
bLoop = WinGetMsg(habAnchor, 

&qmMsg, 
NULLHANDLE, 
0, 
0); 

WinDestroyWindow(hwndFrame); 
WinDestroyMsgQueue(hmqQueue); 
WinTerminate(habAnchor); 
return (0); 

I* endwhile 

VOID fileFromDragitem(PDRAGITEM pdiitem,PCHAR pchFile) 
{ 

CHAR 
CHAR 

achPath[CCHMAXPATH]; 
achFile[CCHMAXPATH]; 

DrgQueryStrName(pdiitem->hstrContainerName, 
sizeof (achPath), 
achPath); 

DosQueryPathinfo(achPath, 
FIL_QUERYFULLNAME, 
achPath, 
sizeof(achPath)); 

if (achPath[strlen(achPath)-1] != '\\') 
{ 

strcat(achPath, 
II\\ II); 

I* endif 
DrgQueryStrName(pdiitem->hstrSourceName, 

sizeof(achFile), 
achFile); 

sprintf(pchFile, 
"%s%s", 
achPath, 
achFile); 

return 

VOID paintClient(HPS hpsClient,HWND hwndClient,PCLIENTINFO 
pciinfo) 

*I 

*I 

11---------------------------------------------------------------
11 This function paints the client window according its current 
II status. 
II 
II Input: hpsClient - handle to the presentation space. 
II hwndClient - handle to the client window. 
II pciinfo - pointer to the CLIENTINFO structure 
II describing the client window. 
11---------------------------------------------------------------

REC TL 
USHORT 
PO INTL 

rclWindow; 
us Index; 
ptlPaint; 

WinQueryWindowRect(hwndClient, 
&rclWindow) ; 

WinFillRect(hpsClient, 
&rclWindow, 
SYSCLR_WINDOW) ; 



//-----------------------------------------------------------
// Draw the dividing line 
//-----------------------------------------------------------

ptlPaint.x = rclWindow.xRight/2; 
ptlPaint.y = rclWindow.yBottom; 
GpiMove(hpsClient, 

&ptlPaint); 

ptlPaint.y = rclWindow.yTop; 
GpiLine(hpsClient, 

&ptlPaint); 
//-----------------------------------------------------------
// Set the color to indicate emphasized or 
II non-emphasized state 
//-----------------------------------------------------------

if (pciinfo->bEmphasis) 
{ 

GpiSetColor(hpsClient, 
CLR_BLACK); 

else 
{ 

GpiSetColor(hpsClient, 
SYSCLR_WINDOW) ; 

} /* endif */ 
//-----------------------------------------------------------
// Draw/erase the emphasis 
//-----------------------------------------------------------

for (usindex = l; usindex < 5; usindex++) 
{ 

ptlPaint.x = rclWindow.xRight/2+usindex; 
ptlPaint.y = rclWindow.yBottom+usindex; 
GpiMove(hpsClient, 

&ptlPaint) ; 

ptlPaint.x = rclWindow.xRight-usindex; 
ptlPaint.y = rclWindow.yTop-usindex; 
GpiBox(hpsClient, 

DRO_OUTLINE, 
&ptlPaint, 
0, 
0); 

} /* endfor */ 
//-----------------------------------------------------------
//Draw the instructing text 
//-----------------------------------------------------------

WinQueryWindowRect(hwndClient, 
&rclWindow) ; 

rclWindow.xRight /= 2; 

WinDrawText(hpsClient, 
-1, 
"Drag me", 
&rclWindow, 
CLR_BLACK, 
0, 
DT_CENTERIDT_VCENTER); 

if (pciinfo->achLine [ 0 J ! = 0) 
{ 

Drag and Drop- 321 



322 - The Art of OS/2 Warp Programming 
11--------------------------------------------------------
11 Draw the text received if we've been dropped on 
11--------------------------------------------------------
WinQueryWindowRect(hwndClient, 

&rclWindow) ; 

rclWindow.xLeft = rclWindow.xRightl2; 

WinDrawText(hpsClient, 

return 

-1, 
pciinfo->achLine, 
&rclWindow, 
CLR_BLACK, 
0, 
DT_CENTERJDT_VCENTER); 

I* endif 

MRESULT doSource(HWND hwndClient,ULONG ulMsg,MPARAM mpParml, 
MPARAM mpParm2) 

*I 

11--------------------------------------------------------------
11 This function handles the direct-manipulation messages 
II 
II sent to the source part of the window. 
II 
II Input, output, returns: as a window procedure 
11--------------------------------------------------------------

PCLIENTINFO pciinfo; 

pciinfo = WinQueryWindowPtr(hwndClient, 
0); 

switch (ulMsg) 
{ 

case WM_BEGINDRAG 
{ 

RECTL 
FILE 
DRAG ITEM 
DRAG IMAGE 
HWND 

rclWindow; 
*pfFile; 
di Item; 
di Image; 
hwndTarget; 

WinQueryWindowRect(hwndClient, 
&rclWindow) ; 

11-----------------------------------------------------
11 If we're in the right half, return 
11-----------------------------------------------------

if (SHORTlFROMMP(mpParml) > rclWindow.xRightl2) 
{ 

return MRFROMSHORT(FALSE); 
} I* endif *I 

11-----------------------------------------------------
11 Write the text to be dragged to a file, 
II since the type is 
II DRT_OS2FILE. 
11-----------------------------------------------------

pfFile = fopen(DRAG_TEMPNAME, 
"w"); 

if (pfFile == NULL) 
{ 

return MRFROMSHORT(FALSE); 
I* endif *I 



fprintf (pfFile, 
"Dropped text" ) ; 

fclose (pfFile); 
11-----------------------------------------------------
11 Allocate the DRAGITEMIDRAGINFO structures and 
II initialize them 
11-----------------------------------------------------

pciinfo->pdiDrag = DrgAllocDraginfo(l); 
pciinfo->pdiDrag->hwndSource = hwndClient; 

diitem.hwnditem hwndClient; 
diitem.ulitemID 1· 
diitem.hstrType DrgAddStrHandle(DRT_TEXT); 
diitem.hstrRMF = DrgAddStrHandle(DRAG_RMF); 
diitem.hstrContainerName = DrgAddStrHandle("."); 
diitem.hstrSourceName = DrgAddStrHandle(DRAG_TEMPNAME 

) ; 

diitem.hstrTargetName diitem.hstrSourceName; 
diitem.cxOffset = O; 
diitem.cyOffset = O; 
diitem.fsControl = O; 
diitem.fsSupportedOps = DO_MOVEABLE; 

DrgSetDragitem(pciinfo->pdiDrag, 
&di Item, 
sizeof (di Item), 
0); 

11-----------------------------------------------------
11 Initialize the DRAGIMAGE structure 
11-----------------------------------------------------

diimage.cb = sizeof(diimage); 
diimage.cptl = O; 
diimage.himage = WinQuerySysPointer(HWND_DESKTOP, 

SPTR_FILE, 
FALSE); 

diimage.sizlStretch.cx O; 
diimage.sizlStretch.cy O; 
diimage.fl = DRG_ICON; 
diimage.cxOffset = O; 
diimage.cyOffset = O; 

11-----------------------------------------------------
11 Set the bDragging flag and call DrgDrag(). 
11-----------------------------------------------------

pciinfo->bDragging = TRUE; 

hwndTarget = DrgDrag(hwndClient, 
pciinfo->pdiDrag, 
&di Image, 

if (hwndTarget 
{ 

lL, 
VK_ENDDRAG, 
NULL); 

NULLHANDLE) 

DrgDeleteDraginfoStrHandles(pciinfo->pdiDrag); 
DrgFreeDraginfo(pciinfo->pdiDrag); 
pciinfo->pdiDrag = NULL; 
pciinfo->bDragging = FALSE; 
remove(DRAG_TEMPNAME); 

Drag and Drop - 323 



324 - The Art of OS/2 Warp Programming 

break; 

WininvalidateRect(hwndClient, 
NULL, 
FALSE); 

WinUpdateWindow(hwndClient); 
I* endif 

case DM_ENDCONVERSATION 
{ 

PDRAGITEM pdiitem; 
CHAR achFullFile(CCHMAXPATH]; 

*I 

11-----------------------------------------------------
11 Query the item dragged for cleanup purposes 
11-----------------------------------------------------

pdiitem = DrgQueryDragitemPtr(pciinfo->pdiDrag, 
0); 

11-----------------------------------------------------
11 Delete the file used to transfer the data 
11-----------------------------------------------------

fileFromDragitem(pdiitem, 
achFullFile); 

remove(achFullFile); 
11-----------------------------------------------------
11 Cleanup 
11-----------------------------------------------------

DrgDeleteDraginfoStrHandles(pciinfo->pdiDrag); 
DrgFreeDraginfo(pciinfo->pdiDrag); 
pciinfo->pdiDrag = NULL; 
pciinfo->bDragging = FALSE; 

break; 

default 
break; 

return MRFROMSHORT(FALSE); 
I* endswitch *! 

MRESULT doTarget(HWND hwndClient,ULONG ulMsg,MPARAM mpParml, 
MPARAM mpParm2) 

11--------------------------------------------------------------
11 This function handles the direct-manipulation messages 
II sent to the target part of the window. 
II 
II Input, output, returns: as a window procedure 
11--------------------------------------------------------------

PCLIENTINFO pciinfo; 

pciinfo = WinQueryWindowPtr(hwndClient, 
0); 

switch (ulMsg) 
{ 

case DM_DRAGOVER 
{ 

PDRAGINFO 
PO INTL 
RECTL 
HPS 
PDRAGITEM 

pdiDrag; 
ptlDrop; 
rclWindow; 
hpsWindow; 
pdiitem; 



11-----------------------------------------------------
11 Get the pointer to the DRAGINFO structure 
11-----------------------------------------------------

pdiDrag = (PDRAGINFO)PVOIDFROMMP(mpParml); 
DrgAccessDraginfo(pdiDrag); 

11-----------------------------------------------------
11 Since the drop position is in screen coordinates, 
II map them to our window and check if it is 
II in the right half of the window. If not, return. 
11-----------------------------------------------------

ptlDrop.x = SHORT1FROMMP(mpParm2); 
ptlDrop.y = SHORT2FROMMP(mpParm2); 

WinMapWindowPoints(HWND_DESKTOP, 
hwndClient, 
&ptlDrop, 
1); 

WinQueryWindowRect(hwndClient, 
&rclWindow); 

if (ptlDrop.x < rclWindow.xRightl2) 
{ 

if (pciinfo->bEmphasis) 
{ 

pciinfo->bEmphasis = FALSE; 

hpsWindow = DrgGetPS(hwndClient); 
paintClient(hpsWindow, 

hwndClient, 
pciinfo); 

DrgReleasePS(hpsWindow); 
I* endif *I 

return MRFROMSHORT(DOR_NODROP); 
} I* endif *I 

11-----------------------------------------------------
11 Check to see if we've already turned emphasis on. 
11-----------------------------------------------------

if (!pciinfo->bEmphasis) 
{ 

pciinfo->bEmphasis = TRUE; 

hpsWindow = DrgGetPS(hwndClient); 
paintClient(hpsWindow, 

hwndClient, 
pciinfo); 

DrgReleasePS(hpsWindow); 
} I* endif *I 

11-----------------------------------------------------
11 we should only be dragging one item. 
11-----------------------------------------------------

if (DrgQueryDragitemCount(pdiDrag) != 1) 
{ 

return MRFROMSHORT(DOR_NODROP); 
} I* endif *I 

11-----------------------------------------------------
11 Check the true type and native RMF 
11-----------------------------------------------------

pdiitem = DrgQueryDragitemPtr(pdiDrag, 
0); 

Drag and Drop - 325 



326 - The Art of OS/2 Warp Programming 
if (!DrgVerifyTrueType(pdiitem, 

DRT_TEXT)) 

return MRFROMSHORT(DOR_NODROP); 

else 

if (!DrgverifyNativeRMF(pdiitem, 
DRAG_RMF)) 

return MRFROMSHORT(DOR_NODROP); 
/* endif 

return MRFROM2SHORT(DOR_DROP, 
DO_MOVE); 

case DM_DRAGLEAVE : 

if (pciinfo->bEmphasis) 
{ 

HPS hpsWindow; 

*/ 

//-----------------------------------------------------
//Turn off the emphasis 
//-----------------------------------------------------

pciinfo->bEmphasis = FALSE; 

hpsWindow = DrgGetPS(hwndClient); 
paintClient(hpsWindow, 

hwndClient, 
pciinfo); 

DrgReleasePS(hpsWindow); 

break; 

case DM_DROP 
WinPostMsg(hwndClient, 

MYM_DEWDROP, 
mpParml, 
mpParm2); 

break; 

case DM_DROPHELP : 
WinMessageBox(HWND_DESKTOP, 

hwndClient, 

/* endif 

"This is the drag - n - drop help." 

break; 

case MYM_DEWDROP 
{ 

Great, isn't it?", 
11 Help 11 , 

0, 
MB_INFORMATIONIMB_OK); 

PDRAGINFO pdiDrag; 
PDRAGITEM pdiitem; 
CHAR achFullFile[CCHMAXPATH]; 
FILE *pfFile; 
HPS hpsDrop; 

*/ 

//-----------------------------------------------------
//Get the pointer to the DRAGINFO structure 
//-----------------------------------------------------

pdiDrag = (PDRAGINFO)PVOIDFROMMP(mpParml); 
DrgAccessDraginfo(pdiDrag); 



11-----------------------------------------------------
11 Since we can render the object ourselves, 
II get the filename and read in the line 
11-----------------------------------------------------

pdiitem = DrgQueryDragitemPtr(pdiDrag, 
0); 

fileFromDragitem(pdiitem, 
achFullFile); 

pfFile = fopen(achFullFile, 
Urll) i 

if (pfFile !=NULL) 
{ 

fgets(pciinfo->achLine, 
sizeof(pciinfo->achLine), 
pfFile); 

fclose (pfFile) ; 
) I* endif *I 

11-----------------------------------------------------
11 Turn the emphasis off and repaint ourselves to 
II show the dropped text 
11-----------------------------------------------------

pciinfo->bEmphasis = FALSE; 

hpsDrop = WinGetPS(hwndClient); 
paintClient(hpsDrop, 

hwndClient, 
pciinfo}; 

WinReleasePS(hpsDrop); 
11-----------------------------------------------------
11 Tell the source that we're done with the object 
11-----------------------------------------------------

WinSendMsg(pdiDrag->hwndSource, 
DM_ENDCONVERSATION, 
MPFROMLONG(pdiitem->ulitemID), 
MPFROMLONG(DMFL_TARGETSUCCESSFUL)); 

11-----------------------------------------------------
11 Cleanup 
11-----------------------------------------------------

DrgFreeDraginfo(pdiDrag); 

break; 

default 
break; 

return MRFROMSHORT(FALSE); 
I* endswitch *I 

MRESULT EXPENTRY clientWndProc(HWND hwndClient,ULONG ulMsg,MPARAM 
mpParml,MPARAM mpParm2) 

11--------------------------------------------------------------
11 This function handles the messages sent to the client window. 
II 
II Input, output, returns: as a window procedure 
11--------------------------------------------------------------

PCLIENTINFO pciinfo; 

pciinfo = WinQueryWindowPtr(hwndClient, 
0); 

Drag and Drop - 327 



328 - The Art of OS/2 Warp Programming 

switch (ulMsg) 
{ 

case WM_CREATE 
11--------------------------------------------------------
11 Allocate memory for the instance data structure 
II and initialize it 
11--------------------------------------------------------

pciinfo = malloc(sizeof(CLIENTINFO)); 
if (pciinfo == NULL) 
{ 

WinMessageBox(HWND_DESKTOP, 
hwndClient, 
"There is not enough memory. ", 
nError 0 , 

0' 
MB_ICONHANDIMB_OK); 

return MRFROMSHORT(TRUE); 

WinSetWindowPtr(hwndClient, 
0, 
pciinfo); 

pciinfo->bDragging = FALSE; 
pciinfo->bEmphasis = FALSE; 
pciinfo->achLine[O] = O; 
break; 

case WM_DESTROY 

I* endif *I 

11--------------------------------------------------------
11 Free the memory used by the instance data 
11--------------------------------------------------------

free (pciinfo); 
WinSetWindowPtr(hwndClient, 

0, 
NULL); 

break; 

case WM_PAINT 
{ 

HPS hpsPaint; 

hpsPaint WinBeginPaint(hwndClient, 
NULLHANDLE, 
NULL); 

paintClient(hpsPaint, 
hwndClient, 
pciinfo); 

WinEndPaint(hpsPaint); 

break; 

case WM_BEGINDRAG 
case DM_ENDCONVERSATION 

return doSource(hwndClient, 
ulMsg, 
mpParml, 
mpParm2); 

case DM_DRAGOVER : 
case DM_DRAGLEAVE : 
case DM_DROP : 
case DM_DROPHELP 
case MYM_DEWDROP 



return doTarget(hwndClient, 
ulMsg, 
mpParml, 
mpParm2); 

default 
return WinDefWindowProc(hwndClient, 

ulMsg, 
mpParml, 
mpParm2); 

return MRFROMSHORT(FALSE); 

DRAG I.MAK 
DRAGl.EXE: 

DRAGl 
DRAGl 
DRAGl 
OS2386 
DRAGl 
<< 

LINK386 @<< 
DRAGl .OBJ 

DRAGl.OBJ: DRAGl.C 
ICC -C+ -Kb+ -Ss+ DRAGl.C 

DRAG I.DEF 
NAME DRAGl WINDOWAPI 

DESCRIPTION 'Drag example 1 
Copyright (c) 1992 by Larry Salomon 
All rights reserved. ' 

STACKSIZE 16384 

/* endswitch 

Drag and Drop - 329 

*/ 

Since main is fairly standard, we'll ignore it except for the fact that we're reserving space for a pointer in 
the call to WinRegisterClass. This will be used to store a pointer to the client's instance data, so that we 
can avoid global variables. This instance data is allocated and initialized in the WM_CREATE message 
and is freed in the WM_DESTROY message. 

typedef struct _CLIENTINFO 
PDRAGINFO pdiDrag; 
BOOL bDragging; 
BOOL bEmphasis; 
CHAR achLine[256]; 

CLIENTINFO, *PCLIENTINFO; 

The pdiDrag field is used only by the source window and points to the DRAGINFO structure allocated via 
DrgAllocDraginfo. bDragging and bEmphasis specify whether a dragging operation is in progress and 
whether the client is displaying emphasis, respectively. achLine is used only by the target window and 
contains the line of text that was dropped on the window. For clarity, the processing of the direct
manipulation messages has been separated into those usually associated with the source and target 
windows. (See doSource and do Target.) 



330 - The Art of OS/2 Warp Programming 
What the program does is allow the dragging of text from the left half of the window into either the right 
half of this window or another instance of this window. (Try starting two copies of DRAG I.EXE to do 
this.) Whenever the source receives a WM_BEGINDRAG message, the appropriate data structures are 
initialized and DrgDrag is called. The target adds emphasis whenever it receives a DM_DRAGOVER 
message and returns the appropriate DOR_ value. After the object has been dropped, the target completely 
renders the data provided by the source and sends the source a DM_ENDCONVERSA TION message to 
terminate the dragging operation. 

Readers probably are wondering why we return DOR_NODROP from the DM_DRAGOVER message 
when we find that we cannot accept the drop because the objects are in an unrecognized type or use an 
unrecognized RMF. It is true that normally DOR_NEVERDROP would be returned, but it must be 
remembered that we allow dropping only on the right half of the window; once the pointer moves into the 
left half, we must remove the target emphasis. However, if we return DOR_NEVERDROP, we never 
receive another DM_DRAGOVER message until the mouse moves out of the window and then back into 
the window. This technique is required for container windows (where container is a concept and does not 
specify the WC_ CONTAINER window class) when the potential targets are not child windows. 

Gotcha! 
It needs to be stated somewhere, and what a better place than here, that there appears to 
be a bug in OS/2 Warp when using DRG_BITMAP for the DRAGIMAGE to be 
displayed. The first time the drag and drop is performed, everything works fine; but if 
the application is exited and restarted, dragging the object using DRG_BITMAP leaves 
"mouse droppings" behind, making the display quite ugly. We have no information 
regarding the availability of a fix. 

Gotcha! 
Another important item is that the cxO!fset and cyO!fset fields of the DRAGITEM 
structure cannot be used for the programmer's own purposes, since DrgDrag copies 
the corresponding fields from the DRAGIMAGE structure here. Likewise, hwndltem 
should specify a valid window handle, or unexpected results will occur. Any 
associated structures that need to be "attached" to a DRAGITEM structure may do so 

safely by casting the structure to a ULONG and assigning the pointer to the ulltem/D field. 

More Cement, Please 
Let's complicate things by modifying our program to have the source window render the data. 

DRAG2.C 
#define INCL_DOSFILEMGR 
#define INCL_WININPUT 
#define INCL_WINPOINTERS 
#define INCL_WINSTDDRAG 
#define INCL_WINSYS 
#define INCL_WINWINDOWMGR 
#include <os2.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#define CLS_CLIENT "SampleClass" 
#define DRAG_METHOD "DRM_OS2FILE" 
#define DRAG_FORMAT "DRF_UNKNOWN" 



#define 
#define 
#define 
typedef 
{ 

DRAG_RMF "<"DRAG_METHOD","DRAG_FORMAT">" 
DRAG_TEMPNAME "DRAGDROP.TMP" 
MYM DEWDROP ( WM_USER ) 

struct _CLIENTINFO 

PDRAGINFO pdiSource; II Used by source 

BOOL bDragging; II Used by source 
BOOL bEmphasis; II Used by source 
PDRAGINFO pdiTarget; II Used by source 
CHAR achLine [ 256 J ; II Used by target 

CLIENTINFO,*PCLIENTINFO; 

VOID fileFromDragitem(PDRAGITEM pdiitem,PCHAR pchFile); 
VOID paintClient(HPS hpsClient,HWND hwndClient,PCLIENTINFO 

pciinfo); 

MRESULT doSource(HWND hwndClient,ULONG ulMsg,MPARAM mpParml, 
MPARAM mpParm2); 

MRESULT doTarget(HWND hwndClient,ULONG ulMsg,MPARAM mpParml, 
MPARAM mpParm2); 

MRESULT EXPENTRY clientWndProc(HWND hwndClient,ULONG ulMsg,MPARAM 
mpParml,MPARAM mpParm2); 

INT main(VOID) 
{ 

HAB 
HMQ 
ULONG 
HWND 
BOOL 
QMSG 

habAnchor; 
hmqQueue; 
ulFlags; 
hwndFrame; 
bLoop; 
qmMsg; 

habAnchor Wininitialize(O); 
hmqQueue = WinCreateMsgQueue(habAnchor, 

0); 

WinRegisterClass(habAnchor, 
CLS_CLIENT, 
clientWndProc, 
CS_SIZEREDRAW, 
sizeof (PVOID)); 

ulFlags = FCF_SIZEBORDERIFCF_TITLEBARIFCF_TASKLISTI 
FCF_SHELLPOSITIONIFCF_SYSMENU; 

hwndFrame = WinCreateStdWindow(HWND_DESKTOP, 
WS_VISIBLE, 
&ulFlags, 
CLS_CLIENT, 

bLoop WinGetMsg(habAnchor, 
&qmMsg, 
NULLHANDLE, 
0, 
0); 

while (bLoop) 
{ 

"Drag - n - Drop" 
" Sample Application 2", 

0, 
NULLHANDLE, 
0, 
NULL); 

Drag and Drop - 331 



332 -The Art of OS/2 Warp Programming 
WinDispatchMsg(habAnchor, 

&qrnMsg); 
bLoop = WinGetMsg(habAnchor, 

&qrnMsg, 
NULLHANDLE, 
0, 
0); 

WinDestroyWindow(hwndFrame); 
WinDestroyMsgQueue(hmqQueue); 
WinTerminate(habAnchor); 
return (0); 

I* endwhile 

VOID fileFromDragitem(PDRAGITEM pdiitem,PCHAR pchFile) 

*I 

11--------------------------------------------------------------
11 This function composes a filename from the DRAGITEM structure 
II and returns it in pchFile. It is assumed that pchFile 
II points to a buffer of size CCHMAXPATH. 
II 
II 
II Input: pdiitem - points to the DRAGITEM structure containing 
II the necessary information. 
II Output: pchFile - points to the variable containing the 
II filename. 
11--------------------------------------------------------------

CHAR 
CHAR 

achPath[CCHMAXPATH]; 
achFile[CCHMAXPATH]; 

DrgQueryStrName(pdiitem->hstrContainerName, 
sizeof (achPath), 
achPath); 

DosQueryPathinfo(achPath, 
FIL_QUERYFULLNAME, 
achPath, 
sizeof(achPath)); 

if (achPath[strlen(achPath)-1] != '\\') 
{ 

strcat(achPath, 
II\\ II); 

I* endif 
DrgQueryStrName(pdiitem->hstrSourceName, 

sizeof(achFile), 
achFile); 

sprintf(pchFile, 
.. %s%sn, 
achPath, 
achFile); 

return 

VOID paintClient(HPS hpsClient,HWND hwndClient,PCLIENTINFO 
pciinfo) 

*I 

11--------------------------------------------------------------
11 This function paints the client window according 
II its current status. 
II 
II Input: hpsClient - handle to the presentation space. 
II hwndClient - handle to the client window. 
II pciinfo - pointer to the CLIENTINFO structure 
II describing the client window. 
11--------------------------------------------------------------



REC TL 
USHORT 
PO INTL 

rel Window; 
us Index; 
ptlPaint; 

WinQueryWindowRect(hwndClient, 
&rclWindow) ; 

WinFillRect(hpsClient, 
&rel Window, 
SYSCLR_WINDOW) ; 

//-----------------------------------------------------------
// Draw the dividing line 
!!-----------------------------------------------------------
ptlPaint.x = rclWindow.xRight/2; 
ptlPaint.y = rclWindow.yBottom; 
GpiMove(hpsClient, 

&ptlPaint) ; 

ptlPaint.y = rclWindow.yTop; 
GpiLine(hpsClient, 

&ptlPaint); 
!!-----------------------------------------------------------
// Set the color to indicate emphasized or 
II non-emphasized state 
!!-----------------------------------------------------------
if (pciinfo->bEmphasis) 
{ 

GpiSetColor(hpsClient, 
CLR_BLACK); 

else 
{ 

GpiSetColor(hpsClient, 
SYSCLR_WINDOW) ; 

} /* endif */ 
!!-----------------------------------------------------------
// Draw/erase the emphasis 
//-----------------------------------------------------------
for (usindex = l; usindex < 5; usindex++) 
{ 

ptlPaint.x = rclWindow.xRight/2+usindex; 
ptlPaint.y = rclWindow.yBottom+usindex; 
GpiMove(hpsClient, 

&ptlPaint); 

ptlPaint.x = rclWindow.xRight-usindex; 
ptlPaint.y = rclWindow.yTop-usindex; 
GpiBox(hpsClient, 

DRO_OUTLINE, 
&ptlPaint, 
0, 
0); 

} /* endfor */ 
!!-----------------------------------------------------------
// Draw the instructing text 
!!-----------------------------------------------------------
WinQueryWindowRect(hwndClient, 

&rclWindow); 
rclWindow.xRight /= 2; 

Drag and Drop - 333 



334 - The Art of OS/2 Warp Programming 
WinDrawText(hpsClient, 

-1, 
"Drag me", 
&rclWindow, 
CLR_BLACK, 
OL, 
DT_CENTERIDT_VCENTER); 

if (pciinfo->achLine [ 0 l ! = 0) 
{ 

11--------------------------------------------------------
11 Draw the text received if we've been dropped on 
11--------------------------------------------------------
WinQueryWindowRect(hwndClient, 

&rclWindow) ; 

rclWindow.xLeft = rclWindow.xRightl2; 

WinDrawText(hpsClient, 

return 

-1, 
pciinfo->achLine, 
&rclWindow, 
CLR_BLACK, 
OL, 
DT_CENTERIDT_VCENTER); 

I* endif 

MRESULT doSource(HWND hwndClient,ULONG ulMsg,MPARAM mpParml, 
MPARAM mpParm2) 

*I 

11--------------------------------------------------------------
11 This function handles the direct-manipulation messages 
II sent to the source part of the window. 
II 
II Input, output, returns: as a window procedure 
11--------------------------------------------------------------

PCLIENTINFO pciinfo; 

pciinfo = WinQueryWindowPtr(hwndClient, 
0); 

switch (ulMsg) 
{ 

case WM_BEGINDRAG 
{ 

RECTL 
DRAG ITEM 
DRAGIMAGE 
HWND 

rclWindow; 
di Item; 
di Image; 
hwndTarget; 

WinQueryWindowRect(hwndClient, 
&rclWindow); 

11-----------------------------------------------------
11 If we're in the right half, return 
11-----------------------------------------------------

if (SHORTlFROMMP(mpParml) > rclWindow.xRightl2) 
{ 

return MRFROMSHORT(FALSE); 
I* endif *I 



11-----------------------------------------------------
11 Allocate the DRAGITEMIDRAGINFO structures and 
II initialize them 
11-----------------------------------------------------

pciinfo->pdiSource = DrgAllocDraginfo(l); 
pciinfo->pdiSource->hwndSource = hwndClient; 

diitem.hwnditem hwndClient; 
diitem.ulitemID 1; 
diitem.hstrType DrgAddStrHandle(DRT_TEXT); 
diitem.hstrRMF = DrgAddStrHandle(DRAG_RMF); 
diitem.hstrContainerName = DrgAddStrHandle("."); 
diitem.hstrSourceName NULLHANDLE; 
diitem.hstrTargetName = NULLHANDLE; 
diitem.cxOffset = O; 
diitem.cyOffset = 0; 
diitem.fsControl = O; 
diitem.fsSupportedOps = DO_MOVEABLE; 

DrgSetDragitem(pciinfo->pdiSource, 
&di Item, 
sizeof (diitem), 
0); 

11-----------------------------------------------------
11 Initialize the DRAGIMAGE structure 
11-----------------------------------------------------

diimage.cb = sizeof(diimage); 
diimage.cptl = O; 
diimage.himage = WinQuerySysPointer(HWND_DESKTOP, 

SPTR_FILE, 
FALSE); 

diimage.sizlStretch.cx = O; 
diimage.sizlStretch.cy = O; 
diimage.fl = DRG_ICON\DRG_TRANSPARENT; 
diimage.cxOffset = O; 
diimage.cyOffset = O; 

11-----------------------------------------------------
11 Set the bDragging flag and call DrgDrag(). 
11-----------------------------------------------------

pciinfo->bDragging = TRUE; 

hwndTarget = DrgDrag(hwndClient, 
pciinfo->pdiSource, 
&di Image, 
lL, 
VK_ENDDRAG, 
NULL); 

if (hwndTarget == NULLHANDLE) 
{ 

break; 

DrgDeleteDraginfoStrHandles(pciinfo->pdiSource); 
DrgFreeDraginfo(pciinfo->pdiSource); 
pciinfo->pdiSource = NULL; 
pciinfo->bDragging = FALSE; 
remove(DRAG_TEMPNAME); 

WininvalidateRect(hwndClient, 
NULL, 
FALSE); 

WinUpdateWindow(hwndClient); 
I* endif */ 

Drag and Drop - 335 



336 - The Art of OS/2 Warp Programming 
case DM_RENDERPREPARE : 

return MRFROMSHORT(TRUE); 

case DM_RENDER : 
{ 

PDRAGTRANSFER 
CHAR 
FILE 

pdtXfer; 
achFile[CCHMAXPATH]; 
*pfFile; 

pdtXf er (PDRAGTRANSFER)PVOIDFROMMP(mpParml); 

DrgQueryStrName(pdtXfer->hstrRenderToName, 
sizeof (achFile), 
achFile); 

DrgFreeDragtransfer((PDRAGTRANSFER)PVOIDFROMMP 
(mpParml) ) ; 

11-----------------------------------------------------
11 Write the text to be dragged to a file, since the 
II type is DRT_OS2FILE. 
!/-----------------------------------------------------

pfFile = fopen(achFile, 
"Wu}; 

if (pfFile !=NULL) 
{ 

fprintf(pfFile, 
"Dropped text"); 

fclose (pfFile); 

return MRFROMSHORT(TRUE); 

else 
{ 

return MRFROMSHORT(FALSE); 
/* endif 

case DM_ENDCONVERSATION : 

*/ 

11--------------------------------------------------------
// Cleanup 
11--------------------------------------------------------

DrgDeleteDraginfoStrHandles(pciinfo->pdiSource); 
DrgFreeDraginfo(pciinfo->pdiSource); 
pciinfo->pdiSource NULL; 
pciinfo->bDragging = FALSE; 
break; 

default 
break; 

return MRFROMSHORT(FALSE); 
/* endswitch 

MRESULT doTarget(HWND hwndClient,ULONG ulMsg,MPARAM mpParml, 
MPARAM mpParm2) 

*/ 

11--------------------------------------------------------------
11 This function handles the direct-manipulation messages 
II sent to the target part of the window. 
II 
II Input, output, returns: as a window procedure 
11--------------------------------------------------------------

PCLIENTINFO pciinfo; 

pciinfo = WinQueryWindowPtr(hwndClient, 
0); 



switch (ulMsg) 
{ 

case DM_DRAGOVER 
{ 

PDRAGINFO pdiDrag; 
POINTL ptlDrop; 
RECTL rclWindow; 
HPS hpsWindow; 
PDRAGITEM pdiitem; 

11-----------------------------------------------------
11 Get the pointer to the DRAGINFO structure 
11-----------------------------------------------------

pdiDrag = (PDRAGINFO)PVOIDFROMMP(mpParml); 
DrgAccessDraginfo(pdiDrag); 

11-----------------------------------------------------
11 Since the drop position is in screen coordinates, 
II map them to our window and check if it is in the 
II right half of the window. If not, return. 
11-----------------------------------------------------

ptlDrop.x = SHORTlFROMMP(mpParm2); 
ptlDrop.y = SHORT2FROMMP(mpParm2); 
WinMapWindowPoints(HWND_DESKTOP, 

hwndClient, 
&ptlDrop, 
1); 

WinQueryWindowRect(hwndClient, 
&rclWindow) ; 

if (ptlDrop.x < rclWindow.xRightl2) 
{ 

if (pciinfo->bEmphasis) 
{ 

pciinfo->bEmphasis = FALSE; 

hpsWindow = DrgGetPS(hwndClient); 
paintClient(hpsWindow, 

hwndClient, 
pciinfo); 

DrgReleasePS(hpsWindow); 
I* endif *I 

return MRFROMSHORT(DOR_NODROP); 
} I* endif *I 

11-----------------------------------------------------
11 Check to see if we've already turned emphasis on. 
11-----------------------------------------------------

if (!pciinfo->bEmphasis) 
{ 

pciinfo->bEmphasis = TRUE; 

hpsWindow = DrgGetPS(hwndClient); 
paintClient(hpsWindow, 

hwndClient, 
pciinfo); 

DrgReleasePS(hpsWindow); 

} I* endif *I 
11-----------------------------------------------------
11 We should only be dragging one item. 
11-----------------------------------------------------

if (DrgQueryDragitemCount(pdiDrag) != 1) 

Drag and Drop- 337 



338 -The Art of OS/2 Warp Programming 

return MRFROMSHORT(DOR_NODROP); 
} /* endif */ 

//-----------------------------------------------------
//Check the true type and native RMF 
!!-----------------------------------------------------

pdiitem = DrgQueryDragitemPtr(pdiDrag, 
0); 

if (!DrgVerifyTrueType(pdiitem, 
DRT_TEXT)) 

return MRFROMSHORT(DOR_NODROP); 

else 

if (!DrgVerifyNativeRMF(pdiitem, 
DRAG_RMF)) 

return MRFROMSHORT(DOR_NODROP); 
/* endif 

return MRFROM2SHORT(DOR_DROP, 
DO_MOVE); 

case DM_DRAGLEAVE : 

if (pciinfo->bEmphasis) 
{ 

HPS hpsWindow; 

*/ 

//-----------------------------------------------------
//Turn off the emphasis 
!!-----------------------------------------------------

pciinfo->bEmphasis = FALSE; 

hpsWindow = DrgGetPS(hwndClient); 
paintClient(hpsWindow, 

hwndClient, 
pciinfo); 

DrgReleasePS(hpsWindow); 

break; 

case DM_DROP 
WinPostMsg(hwndClient, 

MYM_DEWDROP, 
mpParml, 
mpParm2); 

break; 

case DM_RENDERCOMPLETE 
break; 

case DM_DROPHELP 
WinMessageBox(HWND_DESKTOP, 

hwndClient, 

/* endif 

"This is the drag - n - drop help." 

break; 

Great, isn 1 t it? 11 , 

11 Help 11 , 

0, 
MB_INFORMATION!MB_OK); 

*/ 



case MYM_DEWDROP 
{ 

HPS hpsDrop; 
PDRAGITEM pdiitem; 
CHAR achRMF[256]; 
PDRAGTRANSFER pdtXfer; 
CHAR achFile[CCHMAXPATH]; 
FILE *pfFile; 

11-----------------------------------------------------
11 Get the pointer to the DRAGINFO structure 
11-----------------------------------------------------

pciinfo->pdiTarget = (PDRAGINFOlPVOIDFROMMP(mpParml); 

DrgAccessDraginfo(pciinfo->pdiTarget); 
11-----------------------------------------------------
11 Turn the emphasis off 
11-----------------------------------------------------

pciinfo->bErnphasis = FALSE; 

hpsDrop = WinGetPS(hwndClient); 
paintClient(hpsDrop, 

hwndClient, 
pciinfo); 

WinReleasePS(hpsDrop); 
11-----------------------------------------------------
11 If the source did not render the data previously, 
II we need to allocate a DRAGTRANSFER structure and 
II send the source a DM_RENDER message. 
11-----------------------------------------------------

pdiitem = DrgQueryDragitemPtr(pciinfo->pdiTarget, 
0); 

if (pdiitem->hstrSourceName 
{ 

DrgQueryNativeRMF(pdiitem, 

NULLHANDLE) 

sizeof (achRMF), 
achRMF); 

pdtXfer = DrgAllocDragtransfer(l); 
pdtXfer->cb = sizeof(DRAGTRANSFER); 
pdtXfer->hwndClient = hwndClient; 
pdtXfer->pditem = pdiitem; 
pdtXfer->hstrSelectedRMF = DrgAddStrHandle(achRMF) 

pdtXfer->hstrRenderToName = DrgAddStrHandle 
(DRAG_TEMPNAME); 

pdtXfer->ulTargetinfo = O; 
pdtXfer->usOperation = 

pciinfo->pdiTarget->usOperation; 

pdtXfer->fsReply = O; 
11--------------------------------------------------
11 Does the source need to prepare the item? 
II If so, send a DM_RENDERPREPARE message. 
11--------------------------------------------------

if ((pdiitem->fsControl&DC_PREPARE) != 0) 
{ 

if (!SHORTlFROMMR(DrgSendTransferMsg 
(pciinfo->pdiTarget->hwndSource, 
DM_RENDERPREPARE, 
MPFROMP(pdtXfer), 
OL)) l 

Drag and Drop - 339 



340 - The Art of OS/2 Warp Programming 

DrgDeleteStrHandle(pdtXfer->hstrSelectedRMF) 

DrgDeleteStrHandle(pdtXfer->hstrRenderToName 
) ; 

DrgFreeDragtransfer(pdtXfer); 
return MRFROMSHORT(FALSE); 

I* endif *I 
} I* endif *I 

11--------------------------------------------------
11 Render the object 
11--------------------------------------------------

if (!SHORTlFROMMR(DrgSendTransferMsg 
(pciinfo->pdiTarget->hwndSource, 
DM_RENDER, 
MPFROMP(pdtXfer)' 
OL))) 

DrgDeleteStrHandle(pdtXfer->hstrSelectedRMF); 
DrgDeleteStrHandle(pdtXfer->hstrRenderToName); 
DrgFreeDragtransfer(pdtXfer); 
return MRFROMSHORT(FALSE); 

strcpy(achFile, 
DRAG_TEMPNAME); 

else 
{ 

I* endif *I 

11--------------------------------------------------
11 The source already rendered the object, so we 
II can simply read from the file. 
11--------------------------------------------------

pdtXfer = NULL; 

fileFromDragitem(pdiitem, 
achFile); 

} I* endif 
pfFile = fopen(achFile, 

"r"); 
if (pfFile !=NULL) 
{ 

fgets(pciinfo->achLine, 
sizeof(pciinfo->achLine), 
pfFile); 

fclose(pfFile); 

if (pdtXfer !=NULL) 
{ 

remove(achFile); 

*I 

} I* endif *I 
11--------------------------------------------------
11 Repaint ourselves again to show the dropped text 
11--------------------------------------------------

hpsDrop = WinGetPS(hwndClient); 
paintClient(hpsDrop, 

hwndClient, 
pciinfo); 

WinReleasePS(hpsDrop); 



} I* endif *I 
11-----------------------------------------------------
11 Tell the source that we're done rendering 
11-----------------------------------------------------

WinSendMsg(pciinfo->pdiTarget->hwndSource, 
DM_ENDCONVERSATION, 
MPFROMLONG(pdiitem->ulitemID), 
MPFROMLONG(DMFL_TARGETSUCCESSFUL)); 

11-----------------------------------------------------
11 Cleanup 
11-----------------------------------------------------

if (pdtXfer !=NULL) 
{ 

DrgDeleteStrHandle(pdtXfer->hstrSelectedRMF); 
DrgDeleteStrHandle(pdtXfer->hstrRenderToName); 
DrgFreeDragtransfer(pdtXfer); 

I* endif *I 
DrgFreeDraginfo(pciinfo->pdiTarget); 

break; 
default 

break; 

return MRFROMSHORT(FALSE); 
I* endswitch *I 

MRESULT EXPENTRY clientWndProc(HWND hwndClient,ULONG ulMsg,MPARAM 
mpParml,MPARAM mpParm2) 

PCLIENTINFO pciinfo; 

pciinfo = WinQueryWindowPtr(hwndClient, 
0); 

switch (ulMsg) 
{ 

case WM_CREATE : 
11--------------------------------------------------------
11 Allocate memory for the instance data structure 
II and initialize it 
11--------------------------------------------------------

pciinfo = malloc(sizeof(CLIENTINFO)); 
if (pciinfo == NULL) 
{ 

WinMessageBox(HWND_DESKTOP, 
hwndClient, 
"There is not enough memory.", 
"Error", 
0, 
MB_ICONHANDIMB_OK); 

return MRFROMSHORT(TRUE); 

WinSetWindowPtr(hwndClient, 
0, 
pciinfo); 

pciinfo->pdiSource NULL; 
pciinfo->bDragging FALSE; 
pciinfo->bEmphasis FALSE; 
pciinfo->pdiTarget NULL; 
pciinfo->achLine[O] = O; 

I* endif *I 

Drag and Drop - 341 



342-The Art ofOS/2 Warp Programming 
break; 

case WM_DESTROY 
!!--------------------------------------------------------
!/ Free the memory used by the instance data 
//--------------------------------------------------------

free(pciinfo); 
WinSetWindowPtr(hwndClient, 

break; 

case WM_PAINT 
{ 

HPS 

0' 
NULL); 

hpsPaint; 

hpsPaint WinBeginPaint(hwndClient, 
NULLHANDLE, 
NULL); 

paintClient(hpsPaint, 
hwndClient, 
pciinfo); 

WinEndPaint(hpsPaint); 

break; 

case WM_BEGINDRAG 
case DM_RENDERPREPARE 
case DM_RENDER : 
case DM_ENDCONVERSATION 

return doSource(hwndClient, 
ulMsg, 
mpParml, 
mpParm2); 

case DM_DRAGOVER : 
case DM_DRAGLEAVE : 
case DM_DROP : 
case DM_RENDERCOMPLETE 
case DM_DROPHELP : 
case MYM_DEWDROP : 

return doTarget(hwndClient, 
ulMsg, 
mpParml, 
mpParm2); 

default 
return WinDefWindowProc(hwndClient, 

ulMsg, 
mpParml, 
mpParm2); 

/* endswitch 
return MRFROMSHORT(FALSE); 

*/ 



DRAG2.MAK 
DRAG2.EXE: 

DRAG2 
DRAG2 
DRAG2 
OS2386 
DRAG2 
<< 

LINK386 @<< 
DRAG2.0BJ 

DRAG2.0BJ: DRAG2.C 
ICC -c+ -Kb+ -ss+ DRAG2.C 

DRAG2.DEF 
NAME DRAG2 WINDOWAPI 

DESCRIPTION 'Drag example 2 
Copyright (c) 1992 by Larry Salomon 
All rights reserved. ' 

STACKSIZE 16384 

Drag and Drop - 343 

As can be seen, the case when the source does not render the data prior to calling DrgDrag is a bit more 
involved. This is communicated to the target by not specifying the source name in hstrSourceName. After 
determining that this did not happen, the program allocates another shared structure
DRAGTRANSFER-using a call to DrgAllocDragtransfer and sends the source a DM_RENDER message 
with the target name in the DRAGTRANSFER structure. 

PDRAGTRANSFER DrgAllocDragtransfer(ULONG cdxfer); 

cdxfer specifies the number of structures to allocate and must be greater than 0. It returns a pointer to the 
array of structures allocated. 

typedef struct _DRAGTRANSFER 
ULONG cb; 
HWND hwndClient; 
PDRAGITEM pditem; 
HSTR hstrSelectedRMF; 
HSTR hstrRenderToName; 
ULONG ulTargetinfo; 
USHORT usOperation; 
USHORT fsReply; 

DRAGTRANSFER, *PDRAGTRANSFER; 

ch is the size of the structure in bytes. hwndClient specifies the handle of the window on which the item 
was dropped. pditem points to the DRAGITEM structure within the DRAGINFO structure that was passed 
via the DM_DROP message representing the item of interest. hstrSelectedRMF specifies a string handle 
that describes the RMF to use when transferring the item. hstrRenderToName specifies a string handle that 
describes the name to be used when rendering the data. ulTargetlnfo specifies any application-specific data 
that the target window wishes to communicate to the source. usOperation specifies the operation to use
for example, copy, move, or link. fsReply is filled in by the source window and specifies a DMFL_ 
constant. Table 20.4 lists the available constants. 



344 - The Art of OS/2 Warp Programming 
Table 20.4 DMFL Constants 

DMFL_NA TIVERENDER 

DMFL_RENDERRETRY 

·············:······ .· .. , ..... , .............. , .. ·.············.·.-..:··············"· •• ····.•.• .. •.••.•.•.•.·•·· .. ·•·.•.•.·.•.••.""":.:;·:;,:.··• ·······:,;<•v,·········· ·•··;.· ... 1.:Fi~l'Jijl'9:0!i)!PF·K ····· .. w •• •······; ··•·<·:;;;y• cxv•;·.·· •<t:;:.rc;;;:::::::f•+•···•··•·········· 
The source does not support rendering of the object. This should not 
be specified unless the source gives enough information for the target 
to perform the rendering. 
The source does support rendering of the object, but not using the 
RMF specified. 

hstrSelectedRMF and hstrRenderToName must have been allocated using the DrgAddStrHandle function. 

The obvious question here is why to use DrgSendTransferMsg instead of the old reliable WinSendMsg. 
The answer is that the DRAGTRANSFER structure, like the DRAGINFO structure, is allocated in shared 
memory but is not automatically accessible by the other process. The DrgSendTransferMsg ensures that 
the recipient of the message can access the DRAGTRANSFER message in addition to calling WinSendMsg 
on behalf of the source. 

Resources must be freed via the appropriate Drg functions by both the source and target windows, except 
for of the two HSTR handles in the DRAGTRANSFER structure. The target window is responsible for 
freeing these handles. 

DrgDragFiles 
For drag operations involving only files, a much simplified version of DrgDrag can be used: 
DrgDragFiles. 

BOOL DrgDragFiles(HWND hwndSource, 
PSZ *apszFiles, 
PSZ *apszTypes, 
PSZ *apszTargets, 
ULONG ulNumFiles, 
HPOINTER hptrDrag, 
ULONG ulTerminateKey, 
BOOL bRender, 
ULONG ulReserved); 

hwndSource is the handle of the window calling the function. apszFiles, apszTypes, and apszTargets are 
arrays of pointers to the filenames, file types, and target filenames, respectively. ulNumFiles specifies the 
number of pointers in the apszFiles, apszTypes, and apszTargets arrays. hptrDrag is the handle to the 
pointer to display while dragging. ulTerminateKey has the same meaning as in DrgDrag, discussed on 
page 315. bRender specifies whether the caller needs to render the files before the transfer can take place. 
If so, a DM_RENDERFILE message is sent for each file. 

That's it! The system takes care of the rest, since files are the only allowed object type. 

From the Top Now 
Table 20.5 details the chain of events from the beginning of the drag notification to the end of the data 
transfer. 



1 eceives a WM_BEGINDRAG message 
2 llocates the DRAGINFO/DRAGITEM structures 

sing DrgAllocDraginfo 
3 reates the strings for the type and RMF using 

rgAddStrHandle. 
4 Initializes the appropriate number of DRAGIMAGE 

5 

Drag and Drop - 345 

6 eceives DM_DRAGOVER. 
7 alls DrgAccessDraginfo. 
8 Decides if objects are acceptable (both type 

andRMF). 
9 Returns the appropriate DOR_ value; if not 

DOR_DROP, go to step 20. 
10 f the user presses Fl, target receives a 

DM_DROPHELP; after providing help, go 
o step 20. 

11 f user presses ESC, go to step 20. 
12 User drops objects on target. 
13 If target can render the objects on its own, 

o so. Go to step 18. 
14 llocates DRAGTRANSFER structures for 

15 
16 

17 

18 

Renders the object. 

ach object (DrgAllocDragtransfer) and 
sends a DM_RENDER for each object 
(DrgSendTransferMsg). 

opies the objects and deletes them from 
he source. 
rees HSTRs for DRAGTRANSFER and 
RAGTRANSFER structures 

(DrgDeleteStrHandle and 
rgFreeDragtransfer). 
rees HSTRs for DRAGINFO and 

DRAGINFO structure 
(DrgDeleteDraginfoStrHandles and 

rgFreeDragtransfer). 
19 Sends source a 

M_ENDCONVERSATION message. 
20 ree HSTRs for DRAGINFO and DRAGINFO 

structure (DrgDeleteDraginfoStrHandles and 
r FreeDra trans er). 

Pickup and Drop 
OS/2 Warp introduced a new twist on the direct manipulation concept. Because drag and drop is a modal 
operation-meaning that nothing else can occur while a direct manipulation operation is in progress-it can 



346 - The Art of OS/2 Warp Programming 
be limiting at times. What happens if you start to drag an object and then realize that the target window 
isn't open yet? You have to press Escape, find the target window and open it, then repeat the operation. 

Pickup and drop alleviates the headaches caused in these situations by allowing the user to continue using 
the mouse in the normal fashion while the operation is in progress. Because of this characteristic, pickup 
and drop is often referred to as lazy drag and drop. 

Obviously, there are some profound differences from the user's perspective between the modal and 
modeless versions of direct manipulation. And this means that there are differences in the coding of the 
two types; fortunately, IBM decided in its wisdom to minimize the impact of choosing one or the other (or 
both) in your application by changing as little as possible in the manner in which the modeless version is 
coded. The interface differences are listed here: 

• The operation is initiated by holding down the Alt key in addition to using the direct manipulation 
mouse button. 

• Instead of receiving a WM_BEGINDRAG message, the potential source window receives a 
WM_PICKUP message. 

• Whereas in modal operation all objects to be dragged must be selected before beginning the 
operation, in pickup and drop, objects can be added to the pickup set dynamically. In OS/2 Warp, 
however, all objects must originate from the same source window. 

• Because the mouse is still usable after the pickup is initiated, the operation can not be ended by 
releasing the mouse button like the modal operation is ended in this fashion. The only way to end 
a direct manipulation operation is to call the DrgCancelLazyDrag function. And since the user 
must communicate to the program that the operation is to be cancelled, the most common method 
of indicating this is through a menu item. 

• Another change that is related to using the mouse is the use of the DRAGIMAGE structures. 
Since the operation is modeless, the pointer displayed is still subject to the WinSetPointer function 
(via the WM_MOUSEMOVE and WM_CONTROLPOINTER messages). Thus, instead of 
displaying the DRAGIMAGEs provided by the application initiating the operation, the mouse 
pointer is only slightly augmented to indicate that the operation is in progress. The 
DRAGIMAGEs structures are still passed to the DrgLazyDrag function for "compatibility" with 
the parameter list given to DrgDrag but they are not used. 

• Because the user could request help for any subject during a lazy drag, the DM_DROPHELP 
message will not be sent during a lazy drag. Help can only be provided via a menu item, for 
example, and it is the programmer's responsibility to code this support explicitly. 

• Because the operation can potentially take a long time to complete, DrgLazyDrag returns 
immediately and the source window is sent a DM_DROPNOTIFY message whenever the user 
"drops" the objects on a target window via some interface (e.g. menu item). This is probably the 
most significant change of which the programmer needs to be aware. 

Functions Used for Lazy Drag 
In order to make the programmer's job easier, IBM provided many new functions specifically for use with 
lazy drag. 

PDRAGINFO DrgReallocDraginfo(PDRAGINFO pdiOld,ULONG ulNurnitems); 

This function reallocates memory to hold a new number of DRAGITEM structures when additional items 
are to be added to the pickup item set. pdiOld points to the old DRAGINFO structure. ulNumltems 
specifies the new number of DRAGITEM structures to be contained by the new DRAGINFO structure. 



Drag and Drop - 34 7 
This function returns a pointer to the new DRAGINFO structure and frees the memory pointed to by the 
old structure. Once this function is called, DrgLazyDrag must be called again to reinitiate the lazy drag 
operation. 

PDRAGINFO DrgQueryDraginfoPtr(PDRAGINFO pdiReserved); 

pdiReserved is reserved and must be NULL. This function returns a pointer to the DRAGINFO structure 
currently in use by a direct manipulation operation. DrgQueryDragStatus must be called to determine 
what type of operation is in progress, however. If NULL is returned, no operation is in progress. 

PDRAGINFO DrgQueryDraginfoPtrFromDragitem(PDRAGITEM pdiitem); 

pdiltem points to a DRAGITEM structure returned from DrgQueryDragitemPtr. This function returns a 
pointer to the DRAGINFO structure with which the DRAGITEM is associated. 

PDRAGINFO DrgQueryDraginfoPtrFromHwnd(HWND hwndSource); 

hwndSource is the handle to the source window in a direct manipulation operation. This function returns a 
poitner to the DRAGINFO structure allocated by the source window. 

ULONG DrgQueryDragStatus(VOID); 

This function returns a DGS_ constant specifying what type of drag operation is in progress. Table 20.6 
lists the available constants. 

0 
DGS_DRAGINPROGRESS 
DGS LAZYDRAGINPROGRESS 

No direct manipulation operation is in progress 
Modal operation is in progress 
Modeless operation is in progress 

Note that this function could conceivably be handy for determining whether the "standard" function or the 
version which replaces it when direct manipulation is in progress should be called, for example, WinGetPS 
or DrgGetPS. 

BOOL DrgLazyDrag(HWND hwndSource, 
PDRAGINFO pdiinfo, 
PDRAGIMAGE pdiimages, 
ULONG ulNumimages, 
PVOID pvReserved) ; 

This function initiates a lazy drag operation. hwndSource specifies the source window handle. pdilnfo 
points to the DRAGINFO structure. pdilmages points to one or more DRAGIMAGE structures. 
u!Numlmages specifies the number of DRAGIMAGE structures pointed to by pdilmages. pvReserved is 
reserved and must be NULL. 

BOOL DrgLazyDrop(HWND hwndTarget, 
ULONG ulOperation, 
PPOINTL pptlDrop); 



348 - The Art of OS/2 Warp Programming 

This function is called by a target to complete the lazy drag operation. hwndTarget is the target window 
handle. u!Operation specifies the operation to be performed and is a DO_ constant. pptlDrop points to a 
POINTL structure containing the mouse position in desktop-relative coordinates. This function returns 
TRUE if the operation was successfully initiated or FALSE otherwise. 

BOOL DrgCancelLazyDrag(VOID); 

This function is used to cancel a lazy drag operation. It returns TRUE if successful, or FALSE otherwise. 

Gotcha! 
With the DrgQueryDraginfoPtr, DrgQueryDraginfoPtrFromHwnd and 
DrgQueryDraginfoPtrFromDragitem functions, the application must still call 
DrgAccessDraginfo to get access to the structure returned. 

Gotcha! 
Be sure that if you initiate a lazy drag operation it is either completed or cancelled 
before your application terminates. The authors noticed that when the sample 
application (see below) was terminated without doing this that the direct manipulation 
subsystem seemed to get confused and no longer worked correctly. 

Gotcha! 
The Workplace Shell seems to be able to correctly determine if a lazy drag operation is 
in progress because it offers a "Cancel drag" menu item on its context-sensitive menus. 
However, selecting the menu item has no apparent effect. We cannot determine why 
this happens. 

Lazy Drag Sample 
Below is a sample application which demonstrates the use of lazy drag and drop. 

DRAG3.C 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#include 
#include 
#include 
#include 
#include 
#define 
#define 
#define 
#define 

INCL_DOSFILEMGR 
INCL_WINFRAMEMGR 
INCL_WININPUT 
INCL_WINMENUS 
INCL_WINPOINTERS 
INCL_WINSTDDRAG 
INCL_WINSYS 
INCL_WINWINDOWMGR 
<os2.h> 
<stdio.h> 
<stdlib.h> 
<string.h> 
"drag3rc.h" 
CLS_CLIENT 
DRAG_METHOD 
DRAG_FORMAT 
DRAG_RMF 

"SampleClass" 
"DRM_OS2FILE" 
"DRF _UNKNOWN" 
"< "DRAG_METHOD" , "DRAG_FORMAT" >" 



#define 
#define 
typedef 
{ 

DRAG_TEMPNAME "DRAGDROP.TMP" 
MYM_DEWDROP ( WM_USER ) 

struct _CLIENTINFO 

PDRAGINFO pdiDrag; 
HWND hwndMenu; 
BOOL bDragging; 
BOOL bEmphasis; 
CHAR achLine[256]; 

CLIENTINFO,*PCLIENTINFO; 

VOID fileFromDragitem(PDRAGITEM pdiitem,PCHAR pchFile); 

VOID paintClient(HPS hpsClient,HWND hwndClient,PCLIENTINFO 
pciinfo); 

MRESULT doSource(HWND hwndClient,ULONG ulMsg,MPARAM mpParml, 
MPARAM mpParm2) ; 

MRESULT doTarget(HWND hwndClient,ULONG ulMsg,MPARAM mpParml, 
MPARAM mpParm2) ; 

MRESULT EXPENTRY clientWndProc(HWND hwndClient,ULONG ulMsg,MPARAM 
mpParml,MPARAM mpParm2); 

INT main(VOID) 
{ 

HAB 
HMQ 
ULONG 
HWND 
BOOL 
QMSG 

habAnchor; 
hmqQueue; 
ulFlags; 
hwndFrame; 
bLoop; 
qmMsg; 

habAnchor Wininitialize(O); 
hmqQueue = WinCreateMsgQueue(habAnchor, 

0); 

WinRegisterClass(habAnchor, 
CLS_CLIENT, 
clientWndProc, 
CS_SIZEREDRAW, 
sizeof (PVOID)); 

ulFlags = FCF_SIZEBORDERIFCF_TITLEBARIFCF_TASKLISTI 
FCF_SHELLPOSITIONIFCF_SYSMENU; 

hwndFrame = WinCreateStdWindow(HWND_DESKTOP, 
WS_VISIBLE, 
&ulFlags, 
CLS_CLIENT, 

bLoop WinGetMsg(habAnchor, 
&qmMsg, 
NULLHANDLE, 
0, 
0); 

while (bLoop) 
{ 

WinDispatchMsg(habAnchor, 
&qmMsg); 

"Drag - n - Drop Sample" 
"Application 3", 

0, 
NULLHANDLE, 
0, 
NULL); 

Drag and Drop - 349 



350 - The Art of OS/2 Warp Programming 
bLoop = WinGetMsg{habAnchor, 

&qmMsg, 
NULLHANDLE, 
0, 
0); 

} 
WinDestroyWindow{hwndFrame); 
WinDestroyMsgQueue{hmqQueue); 
WinTerminate{habAnchor); 
return {0); 

I* endwhile 

VOID fileFromDragitem{PDRAGITEM pdiitem,PCHAR pchFile) 
{ 

CHAR 
CHAR 

achPath[CCHMAXPATH]; 
achFile[CCHMAXPATH]; 

DrgQueryStrName{pdiitem->hstrContainerName, 
sizeof{achPath), 
achPath); 

DosQueryPathinfo{achPath, 
FIL_QUERYFULLNAME, 
achPath, 
sizeof{achPath)); 

if {achPath[strlen{achPath)-1] != '\\') 
{ 

strcat{achPath, 
"\ \"); 

} I* endif 
DrgQueryStrName{pdiitem->hstrSourceName, 

sizeof{achFile), 
achFile); 

sprintf{pchFile, 
11 %s%s 11 , 

achPath, 
achFile); 

return 

VOID paintClient{HPS hpsClient,HWND hwndClient,PCLIENTINFO 
pciinfo) 

*I 

*I 

11---------------------------------------------------------------
11 This function paints the client window according its current 
II status. 
II 
II Input: hpsClient - handle to the presentation space. 
II hwndClient - handle to the client window. 
II pciinfo - pointer to the CLIENTINFO structure 
II describing the client window. 
11---------------------------------------------------------------

RECTL 
US HORT 
PO INTL 

rclWindow; 
us Index; 
ptlPaint; 

WinQueryWindowRect{hwndClient, 
&rclWindow) ; 

WinFillRect{hpsClient, 
&rclWindow, 
SYSCLR_WINDOW) ; 

11-----------------------------------------------------------
11 Draw the dividing line 
11-----------------------------------------------------------
ptlPaint.x = rclWindow.xRightl2; 



ptlPaint.y = rclWindow.yBottom; 
GpiMove(hpsClient, 

&ptlPaint) ; 

ptlPaint.y = rclWindow.yTop; 
GpiLine(hpsClient, 

&ptlPaint); 
!/-----------------------------------------------------------
// Set the color to indicate emphasized or 
II non-emphasized state 
!!-----------------------------------------------------------

if (pciinfo->bEmphasis) 
{ 

GpiSetColor(hpsClient, 
CLR_BLACK) ; 

else 
{ 

GpiSetColor(hpsClient, 
SYSCLR_WINDOW) ; 

} /* endif */ 
/!-----------------------------------------------------------
// Draw/erase the emphasis 
!!-----------------------------------------------------------

for (usindex = l; usindex < 5; usindex++) 
{ 

ptlPaint.x = rclWindow.xRight/2+usindex; 
ptlPaint.y = rclWindow.yBottom+usindex; 
GpiMove(hpsClient, 

&ptlPaint); 

ptlPaint.x = rclWindow.xRight-usindex; 
ptlPaint.y = rclWindow.yTop-usindex; 
GpiBox(hpsClient, 

DRO_OUTLINE, 
&ptlPaint, 
0, 
0); 

} /* endfor */ 
!!-----------------------------------------------------------
// Draw the instructing text 
!!-----------------------------------------------------------

WinQueryWindowRect(hwndClient, 
&rclWindow) ; 

rclWindow.xRight /= 2; 

WinDrawText(hpsClient, 
-1, 
"Drag me", 
&rclWindow, 
CLR_BLACK, 
0, 
DT_CENTERJDT_VCENTER); 

if (pciinfo->achLine [ 0] ! = 0) 
{ 

!!--------------------------------------------------------
// Draw the text received if we've been dropped on 
1/--------------------------------------------------------
WinQueryWindowRect(hwndClient, 

&rclWindow) ; 

rclWindow.xLeft rclWindow.xRight/2; 

Drag and Drop - 351 



352 - The Art of OS/2 Warp Programming 

WinDrawText(hpsClient, 

return 

-1, 
pciinfo->achLine, 
&rclWindow, 
CLR_BLACK, 
0' 
DT_CENTERIDT_VCENTER); 

I* endif 

MRESULT doSource(HWND hwndClient,ULONG ulMsg,MPARAM mpParml, 
MPARAM mpParm2) 

*I 

11--------------------------------------------------------------
11 This function handles the direct-manipulation messages 
II 
II sent to the source part of the window. 
II 
II Input, output, returns: as a window procedure 
11--------------------------------------------------------------

PCLIENTINFO pciinfo; 

pciinfo = WinQueryWindowPtr(hwndClient, 
0); 

switch (ulMsg) 
{ 

case WM_PICKUP 
{ 

RECTL 
FILE 
DRAG ITEM 
DRAG IMAGE 
BOOL 

rclWindow; 
*pfFile; 
di Item; 
di Image; 
bSuccess; 

if (DrgQueryDragStatus() == DGS_LAZYDRAGINPROGRESS) 
{ 

return MRFROMSHORT(FALSE); 
I* endif 

WinQueryWindowRect(hwndClient, 
&rclWindow) ; 

*I 

11-----------------------------------------------------
11 If we're in the right half, return 
11-----------------------------------------------------

if (SHORTlFROMMP(mpParml) > rclWindow.xRightl2) 
{ 

return MRFROMSHORT(FALSE); 
} I* endif *I 

11-----------------------------------------------------
11 Write the text to be dragged to a file, 
II since the type is 
II DRT_OS2FILE. 
11-----------------------------------------------------

pfFile = fopen(DRAG_TEMPNAME, 
"w"); 

if (pfFile == NULL) 
{ 

return MRFROMSHORT(FALSE); 
I* endif 

fprintf(pfFile, 
"Dropped text" ) ; 

*I 



fclose(pfFile); 
11-----------------------------------------------------
11 Allocate the DRAGITEMIDRAGINFO structures and 
II initialize them 
11-----------------------------------------------------

pciinfo->pdiDrag = DrgAllocDraginfo(l); 
pciinfo->pdiDrag->hwndSource = hwndClient; 

diitem.hwnditem hwndClient; 
diitem.ulitemID l; 
diitem.hstrType DrgAddStrHandle(DRT_TEXT); 
diitem.hstrRMF = DrgAddStrHandle(DRAG_RMF); 
diitem.hstrContainerName = DrgAddStrHandle("."); 
diitem.hstrSourceName = DrgAddStrHandle(DRAG_TEMPNAME 

) ; 

diitem.hstrTargetName diitem.hstrSourceName; 
diitem.cxOffset = O; 
diitem.cyOffset = 0; 
diitem.fsControl = O; 
diitem.fsSupportedOps = DO_MOVEABLE; 

DrgSetDragitem(pciinfo->pdiDrag, 
&di Item, 
sizeof (di Item), 
0); 

11-----------------------------------------------------
11 Initialize the DRAGIMAGE structure 
11-----------------------------------------------------

diimage.cb = sizeof(diimage); 
diimage.cptl = O; 
diimage.himage = WinQuerySysPointer(HWND_DESKTOP, 

SPTR_FILE, 
FALSE); 

diimage.sizlStretch.cx O; 
diimage.sizlStretch.cy O; 
diimage.fl = DRG_ICON; 
diimage.cxOffset = O; 
diimage.cyOffset = O; 

11-----------------------------------------------------
11 Set the bDragging flag and call DrgDrag(). 
11-----------------------------------------------------

pciinfo->bDragging = TRUE; 

bSuccess = DrgLazyDrag(hwndClient, 
pciinfo->pdiDrag, 
&di Image, 

if ( !bSuccess) 
{ 

lL, 
NULL); 

DrgDeleteDraginfoStrHandles(pciinfo->pdiDrag); 
DrgFreeDraginfo(pciinfo->pdiDrag); 
pciinfo->pdiDrag = NULL; 
pciinfo->bDragging = FALSE; 
remove(DRAG_TEMPNAME); 

WininvalidateRect(hwndClient, 
NULL, 
FALSE); 

WinUpdateWindow(hwndClient); 
I* endif *I 

Drag and Drop- 353 



354 - The Art of OS/2 Warp Programming 

break; 

case DM_DROPNOTIFY 
break; 

case DM_ENDCONVERSATION 
{ 

PDRAGITEM pdiitem; 
CHAR achFullFile[CCHMAXPATH]; 

11-----------------------------------------------------
11 Query the item dragged for cleanup purposes 
11-----------------------------------------------------

pdiitem = DrgQueryDragitemPtr(pciinfo->pdiDrag, 
0); 

11-----------------------------------------------------
11 Delete the file used to transfer the data 
11-----------------------------------------------------

fileFromDragitem(pdiitem, 
achFullFile); 

remove(achFullFile); 
11-----------------------------------------------------
11 Cleanup 
11-----------------------------------------------------

DrgDeleteDraginfoStrHandles(pciinfo->pdiDrag); 
DrgFreeDraginfo(pciinfo->pdiDrag); 
pciinfo->pdiDrag = NULL; 
pciinfo->bDragging = FALSE; 

break; 

default 
break; 

return MRFROMSHORT(FALSE); 
I* endswitch *I 

MRESULT doTarget(HWND hwndClient,ULONG ulMsg,MPARAM mpParml, 
MPARAM mpParm2) 

11--------------------------------------------------------------
11 This function handles the direct-manipulation messages 
II sent to the target part of the window. 
II 
II Input, output, returns: as a window procedure 
11--------------------------------------------------------------

PCLIENTINFO pciinfo; 

pciinfo = WinQueryWindowPtr(hwndClient, 
0); 

switch (ulMsg) 
{ 

case DM_DRAGOVER 
{ 

PDRAGINFO 
PO INTL 
REC TL 
HPS 
PDRAGITEM 

pdiDrag; 
ptlDrop; 
rclWindow; 
hpsWindow; 
pdiitem; 



11-----------------------------------------------------
11 Get the pointer to the DRAGINFO structure 
11-----------------------------------------------------

pdiDrag = (PDRAGINFO)PVOIDFROMMP(mpParml); 
DrgAccessDraginfo(pdiDrag); 

11-----------------------------------------------------
11 Since the drop position is in screen coordinates, 
II map them to our window and check if it is 
II in the right half of the window. If not, return. 
11-----------------------------------------------------

ptlDrop.x 
ptlDrop.y 

SHORTlFROMMP(mpParm2); 
SHORT2FROMMP(mpParm2); 

WinMapWindowPoints(HWND_DESKTOP, 
hwndClient, 
&ptlDrop, 
1); 

WinQueryWindowRect(hwndClient, 
&rclWindow) ; 

if (ptlDrop.x < rclWindow.xRightl2) 
{ 

if (pciinfo->bEmphasis) 
{ 

pciinfo->bEmphasis = FALSE; 

hpsWindow = DrgGetPS(hwndClient); 
paintClient(hpsWindow, 

hwndClient, 
pciinfo); 

DrgReleasePS(hpsWindow); 
I* endif *I 

return MRFROMSHORT(DOR_NODROP); 
} I* endif *I 

11-----------------------------------------------------
11 Check to see if we've already turned emphasis on. 
11-----------------------------------------------------

if (!pciinfo->bEmphasis) 
{ 

pciinfo->bEmphasis = TRUE; 

hpsWindow = DrgGetPS(hwndClient); 
paintClient(hpsWindow, 

hwndClient, 
pciinfo); 

DrgReleasePS(hpsWindow); 
} I* endif *I 

11-----------------------------------------------------
11 We should only be dragging one item. 
11-----------------------------------------------------

if (DrgQueryDragitemCount(pdiDrag) != 1) 
{ 

return MRFROMSHORT(DOR_NODROP); 
} I* endif *I 

11-----------------------------------------------------
11 Check the true type and native RMF 
11-----------------------------------------------------

pdiitem = DrgQueryDragitemPtr(pdiDrag, 
0); 

Drag and Drop - 355 



356 - The Art of OS/2 Warp Programming 
if (!DrgVerifyTrueType(pdiitem, 

DRT_TEXT}} 

return MRFROMSHORT(DOR_NODROP}; 

else 

if (!DrgVerifyNativeRMF(pdiitem, 
DRAG_RMF}} 

return MRFROMSHORT(DOR_NODROP}; 
/* endif 

return MRFROM2SHORT(DOR_DROP, 
DO_MOVE}; 

case DM_DRAGLEAVE : 

if (pciinfo->bEmphasis) 
{ 

HPS hpsWindow; 

*/ 

//-----------------------------------------------------
//Turn off the emphasis 
//-----------------------------------------------------

pciinfo->bEmphasis = FALSE; 

hpsWindow = DrgGetPS(hwndClient}; 
paintClient(hpsWindow, 

hwndClient, 
pciinfo}; 

DrgReleasePS(hpsWindow}; 

break; 

case DM_DROP 
WinPostMsg(hwndClient, 

MYM_DEWDROP, 
mpParml, 
mpParm2}; 

break; 

case DM_DROPHELP : 
WinMessageBox(HWND_DESKTOP, 

hwndClient, 

/* endif 

"This is the drag - n - drop help." 

break; 

case MYM_DEWDROP 
{ 

Great, isn't it?", 
"Help", 
0, 
MB_INFORMATION[MB_OK); 

PDRAGINFO pdiDrag; 
PDRAGITEM pdiitem; 
CHAR achFullFile[CCHMAXPATH]; 
FILE *pfFile; 
HPS hpsDrop; 

*/ 

//-----------------------------------------------------
//Get the pointer to the DRAGINFO structure 
//-----------------------------------------------------

pdiDrag = (PDRAGINFO}PVOIDFROMMP(mpParml); 
DrgAccessDraginfo(pdiDrag}; 



11-----------------------------------------------------
11 Since we can render the object ourselves, 
II get the filename and read in the line 
11-----------------------------------------------------

pdiitem = DrgQueryDragitemPtr(pdiDrag, 
0); 

fileFromDragitem(pdiitem, 
achFullFile); 

pfFile = fopen(achFullFile, 
"rll); 

if (pfFile !=NULL) 
{ 

fgets(pciinfo->achLine, 
sizeof(pciinfo->achLine), 
pfFile); 

fclose(pfFile); 
} I* endif *I 

11-----------------------------------------------------
11 Turn the emphasis off and repaint ourselves to 
II show the dropped text 
11-----------------------------------------------------

pciinfo->bEmphasis = FALSE; 

hpsDrop = WinGetPS(hwndClient); 
paintClient(hpsDrop, 

hwndClient, 
pciinfo); 

WinReleasePS(hpsDrop); 
11-----------------------------------------------------
11 Tell the source that we're done with the object 
11-----------------------------------------------------

WinSendMsg(pdiDrag->hwndSource, 
DM_ENDCONVERSATION, 
MPFROMLONG(pdiitem->ulitemID), 
MPFROMLONG(DMFL_TARGETSUCCESSFUL)); 

11-----------------------------------------------------
1 I Cleanup 
11-----------------------------------------------------

DrgFreeDraginfo(pdiDrag); 

break; 
case WM_CONTEXTMENU 

{ 
PO INTL 
RECTL 
HWND 

ptlPoint; 
rclWindow; 
hwndMenu; 

if (DrgQueryDragStatus() == DGS_LAZYDRAGINPROGRESS) 
{ 

WinQueryPointerPos(HWND_DESKTOP, 
&ptlPoint) ; 

WinQueryWindowRect(hwndClient, 
&rclWindow) ; 

if (ptlPoint.x < rclWindow.xRightl2) 
{ 

return MRFROMSHORT(FALSE); 
I* endif *I 

Drag and Drop - 357 



358 - The Art of OS/2 Warp Programming 
hwndMenu = WinLoadMenu(HWND_OBJECT, 

NULLHANDLE, 
M_LAZYDRAG); 

WinPopupMenu(HWND_DESKTOP, 
hwndClient, 
hwndMenu, 
ptlPoint.x, 
ptlPoint.y, 
0, 
PU_MOUSEBUTTONllPU_KEYBOARD); 

I* endif *I 

break; 
case WM_MENUEND 

if (SHORTlFROMMP(mpParml) == FID_MENU) 
{ 

WinDestroyWindow(HWNDFROMMP(mpParm2)); 
I* endif 

break; 
case WM_COMMAND 

switch (SHORTlFROMMP(mpParml)) 
{ 

case MI_DROP 
{ 

PO INTL ptlPoint; 

WinQueryPointerPos(HWND_DESKTOP, 
&ptlPoint); 

DrgLazyDrop(hwndClient, 
DO_DEFAULT, 
&ptlPoint) ; 

break; 
case MI_CANCELDRAG 

DrgCancelLazyDrag(); 
break; 

default 

break; 

default 
break; 

return WinDefWindowProc(hwndClient, 
ulMsg, 
mpParml, 
mpParm2); 

I* endswitch 

I* endswitch 
return MRFROMSHORT(FALSE); 

*I 

*I 

*I 

MRESULT EXPENTRY clientWndProc(HWND hwndClient,ULONG ulMsg,MPARAM 
mpParml,MPARAM mpParm2) 

11--------------------------------------------------------------
11 This function handles the messages sent to the client window. 
II 
II Input, output, returns: as a window procedure 
11--------------------------------------------------------------

PCLIENTINFO pciinfo; 

pciinfo = WinQueryWindowPtr(hwndClient, 
0); 

switch (ulMsg) 
{ 

case WM_CREATE 



11--------------------------------------------------------
11 Allocate memory for the instance data structure 
II and initialize it 
11--------------------------------------------------------

pciinfo = malloc(sizeof(CLIENTINFO) ); 
if (pciinfo == NULL) 
{ 

WinMessageBox(HWND_DESKTOP, 
hwndClient, 
"There is not enough memory.", 
11 Error", 

0' 
MB_ICONHANDjMB_OK); 

return MRFROMSHORT(TRUE); 

WinSetWindowPtr(hwndClient, 
0' 
pciinfo); 

pciinfo->pdiDrag = NULL; 

I* endif 

pciinfo->hwndMenu = WinLoadMenu(HWND_OBJECT, 
NULLHANDLE, 
M_LAZYDRAG) ; 

if (pciinfo->hwndMenu == NULLHANDLE) 
{ 

WinMessageBox(HWND_DESKTOP, 
hwndClient, 

*I 

"Could not initialize the application." 

"Error", 
0, 
MB_ICONHANDjMB_OK); 

return MRFROMSHORT(TRUE); 

pciinfo->bDragging = FALSE; 
pciinfo->bEmphasis = FALSE; 
pciinfo->achLine[O] = O; 
break; 

case WM_DESTROY 

I* endif *I 

11--------------------------------------------------------
11 Free the memory used by the instance data 
11--------------------------------------------------------

if (DrgQueryDragStatus() == DGS_LAZYDRAGINPROGRESS) 
{ 

DrgCancelLazyDrag(); 
I* endif 

WinDestroyWindow(pciinfo->hwndMenu); 
free (pciinfo); 
WinSetWindowPtr(hwndClient, 

break; 

case WM_PAINT 
{ 

HPS 

hpsPaint 

0, 
NULL); 

hpsPaint; 

WinBeginPaint(hwndClient, 
NULLHANDLE, 
NULL); 

*I 

Drag and Drop - 359 



360 - The Art of OS/2 Warp Programming 
paintClient(hpsPaint, 

hwndClient, 
pciinfo); 

WinEndPaint(hpsPaint); 

break; 

case WM_PICKUP 
case DM_DROPNOTIFY 
case DM_ENDCONVERSATION 

return doSource(hwndClient, 
ulMsg, 
mpParml, 
mpParm2); 

case DM_DRAGOVER : 
case DM_DRAGLEAVE : 
case DM_DROP : 
case DM_DROPHELP : 
case MYM_DEWDROP : 
case WM_CONTEXTMENU 
case WM_MENUEND : 
case WM_COMMAND : 

return doTarget(hwndClient, 
ulMsg, 
mpParml, 
mpParm2); 

default 
return WinDefWindowProc(hwndClient, 

ulMsg, 
mpParml, 
mpParm2); 

/* endswitch 
return MRFROMSHORT(FALSE); 

DRAG3.RC 
#include <os2.h> 
#include "drag3rc.h" 

MENU M_LAZYDRAG 
{ 

MENUITEM "Drop item", MI_DROP 
MENUITEM "Cancel drag", MI_CANCELDRAG 

DRAG3RC.H 
#define M_LAZYDRAG 
#define MI_DROP 
#define MI_CANCELDRAG 

DRAG3.MAK 
DRAG3.EXE: 

DRAG3 
DRAG3 
DRAG3 
082386 
DRAG3 
<< 

LINK386 @<< 

256 
257 
258 

DRAG3.0BJ \ 
DRAG3.RES 

RC DRAG3.RES DRAG3.EXE 

*/ 



DRAG3.RES: DRAG3.RC \ 
DRAG3RC.H 

RC -r DRAG3.RC DRAG3.RES 

DRAG3.0BJ: DRAG3.C \ 
DRAG3RC.H 

ICC -c+ -Kb+ -Ss+ DRAG3.C 

DRAG3.DEF 
NAME DRAG3 WINDOWAPI 

DESCRIPTION 'Drag example 3 
Copyright (c) 1995 by Larry Salomon 
All rights reserved. ' 

STACKSIZE 16384 

Drag and Drop - 361 

This sample was based on DRAGl, allowing the target to render the data so that the sample is not burdened 
with details not necessary to the discussion. 

The first differences that you will note are the use of WM_PICKUP instead of WM_BEGINDRAG to 
begin the operation and the processing of the DM_DROPNOTIFY as the signal of the completion of the 
operation. 

case WM_PICKUP : 
case DM_DROPNOTIFY 
case DM_ENDCONVERSATION 

return doSource(hwndClient, 
ulMsg, 
mpParml, 
mpParm2); 

Also, since the user must specify to the application that the operation is to be completed or cancelled, the 
WM_CONTEXTMENU, WM_MENUEND, and WM_COMMAND messages are processed to handle the 
user interface. 

case DM_DRAGOVER : 
case DM_DRAGLEAVE 
case DM_DROP : 
case DM_DROPHELP : 
case MYM_DEWDROP : 
case WM_CONTEXTMENU 
case WM_COMMAND : 

return doTarget(hwndClient, 
ulMsg, 
mpParml, 
mpParm2); 

The real work is done in doSource and doTarget, as was the case in the earlier samples. 

case WM_PICKUP : 
{ 

RECTL 
FILE 
DRAGITEM 
DRAGIMAGE 
BOOL 

rclWindow; 
*pfFile; 
di Item; 
di Image; 
bSuccess; 

if (DrgQueryDragStatus() == DGS_LAZYDRAGINPROGRESS) 



362 - The Art of OS/2 Warp Programming 

return MRFROMSHORT(FALSE}; 
/* endif */ 

Note how we check for a lazy-drag-in-progress and return immediately if this is true. This was done to 
keep the sample simple. The processing of WM_PICKUP then continues as it did for WM_BEGINDRAG 
except that we call DrgLazyDrag instead of DrgDrag. 

bSuccess = DrgLazyDrag(hwndClient, 
pciinfo->pdiDrag, 
&diimage, 
lL, 
NULL); 

From the target's perspective, we need to provide an interface to the user to allow them to complete or 
cancel the operation. This is done via the WM_CONTEXTMENU, WM_MENUEND, 
and WM_COMMAND messages. 

case WM_CONTEXTMENU 
{ 

PO INTL 
RECTL 
HWND 

ptlPoint; 
rclWindow; 
hwndMenu; 

if (DrgQueryDragStatus() == DGS_LAZYDRAGINPROGRESS) 
{ 

break; 

WinQueryPointerPos(HWND_DESKTOP, 
&ptlPoint); 

WinQueryWindowRect(hwndClient, 
&rclWindow) ; 

if (ptlPoint.x < rclWindow.xRight/2) 
{ 

return MRFROMSHORT(FALSE}; 
/* endif */ 

hwndMenu = WinLoadMenu(HWND_OBJECT, 
NULLHANDLE, 
M_LAZYDRAG) ; 

WinPopupMenu(HWND_DESKTOP, 
hwndClient, 
hwndMenu, 
ptlPoint.x, 
ptlPoint.y, 
0, 
PU_MOUSEBUTTONliPU_KEYBOARD); 

/* endif */ 

case WM_MENUEND : 
if (SHORTlFROMMP(mpParml} == FID_MENU} 
{ 

WinDestroyWindow(HWNDFROMMP(mpParm2}}; 
/* endif */ 

break; 
case WM_COMMAND : 

switch (SHORTlFROMMP(mpParml}} 
{ 

case MI_DROP 
{ 

PO INTL ptlPoint; 



WinQueryPointerPos(HWND_DESKTOP, 
&ptlPoint); 

DrgLazyDrop(hwndClient, 
DO_DEFAULT, 
&ptlPoint) ; 

break; 
case MI_CANCELDRAG : 

DrgCancelLazyDrag(); 
break; 

default 
return WinDefWindowProc(hwndClient, 

ulMsg, 
mpParml, 
mpParm2); 

/* endswitch 
break; 

*/ 

Drag and Drop - 363 

It should be pretty obvious that we are simply providing a popup menu for the user to select one of two 
choices-drop or cancel-and handling each choice appropriately. 

Everything else about this sample is as it was in DRAG 1, which demonstrates the ease with which a 
programmer can switch between using one mode or the other. 

Before we close this topic, a question must be asked: how does the target specify whether or not a set of 
objects that were picked up can be dropped on it or not? In modal drag and drop, you receive the 
DM_DRAGOVER and DM_DRAGLEA VE to allow for user feedback, but these messages are not sent 
automatically by the system when a lazy drag operation is in progress. IBM's documentation states that 
these messages are sent when the user presses a key indicating that intention to drop the object, but 
nowhere do they state what this mythical key is. It is the opinion of the authors that this "key" is a concept 
and not an actual key on the keyboard, and we chose to implement the "key" concept as a popup menu. It 
is then, therefore, that the target determines the validity of the operation and acts appropriately. 





Chapter 21 

Value Set 

A value set is a control that provides a way for a user to select from several graphically illustrated choices. 
Only one choice can be selected at a time. A value set can use icons, bitmaps, colors, text, or numbers. 
However, it is optimal to use only graphical images and/or short text; other controls should be used if a 
choice of only text or numbers is offered. The value set is designed to show setting choices, not action 
choices; if an action choice needs to to be designated, a push button or menu should be used. A value set 
must contain at least two items. A value set choice that is unavailable should be disabled; if a value set has 
text choices, a letter for each choice should be designated as a mnemonic. A value set can be used as a tool 
palette also; however, the pointer should be changed to represent the current "tool" selected. For instance, 
if a "paint" tool is selected, the cursor could be changed to represent a paintbrush. See Figure 21. l for an 
example of a value set. 

rJ Color Set 

Select color: 

Figure 21.1 Example of the value set control. 

Value Set Styles 
Table 21.l lists the available value set styles. 

365 



366 - The Art of OS/2 Warp Programming 

VS_BITMAP 
VS_ICON 
VS_ TEXT 
VS_RGB 
VS_COLORINDEX 
VS_BORDER 
VS_ITEMBORDER 
VS_SCALEBITMAPS 
VS_RIGHTTOLEFf 
VS OWNERDRA W 

Default all value set items to bitmaps. 
Default all value set items to icons. 
Default all value set items to text strings. 
Default all value set items to RGB values. 
Default all value set items to color indices. 
Add a border to the value set control. 
Add a border around each value set item. 
Scale bitmaps to fit in cell region. 
Support right-to-left ordering. 
Owner-drawn value set control. 

The following example program shows the creation of a value set control with the style 
VS_COLORINDEX. 

VALUE.C 
#define INCL_WIN 
#include <os2.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include "value.h" 
#define CLS_CLIENT "MyClass" 
#define UM_UPDATE ( WM_USER ) 
static LONG alColors[] 
{ 

CLR_BLUE, 
CLR_PINK, 
CLR_GREEN, 
CLR_CYAN, 
CLR_YELLOW, 
CLR_NEUTRAL, 
CLR_DARKGRAY, 
CLR_DARKBLUE, 
CLR_DARKRED, 
CLR_DARKPINK, 
CLR_DARKGREEN, 
CLR_DARKCYAN 

typedef 
{ 

struct 

SHORT sColor; 
HWND hwndDlg; 

WNDDATA,*PWNDDATA; 

MRESULT EXPENTRY DlgProc(HWND hwndDlg,ULONG ulMsg,MPARAM mpParml, 
MPARAM mpParm2); 

MRESULT EXPENTRY ClientWndProc(HWND hwndWnd,ULONG ulMsg,MPARAM 
mpParml,MPARAM mpParm2); 

VOID DisplayError(CHAR *pszText); 
VOID ProcessSelect(HWND hwndDlg,MPARAM mpParm2); 

INT main(VOID) 
{ 



HAE 
HMQ 
ULONG 
HWND 
BOOL 
QMSG 
LONG 

habAnchor 
hrnqQueue = 

habAnchor; 
hrnqQueue; 
ulFlags; 
hwndFrame; 
bLoop; 
qmMsg; 
lWidth,lHeight; 

Wininitialize(O); 
WinCreateMsgQueue(habAnchor, 

0); 

WinRegisterClass(habAnchor, 
CLS_CLIENT, 
ClientWndProc, 
0' 
sizeof(PVOID)); 

ulFlags = FCF_TITLEBARIFCF_SYSMENUIFCF_SIZEBORDERIFCF_MINMAXI 
FCF_MENUIFCF_TASKLIST; 

/************************************************************/ 
/* create frame window */ 
/************************************************************/ 

hwndFrame = WinCreateStdWindow(HWND_DESKTOP, 
0, 
&ulFlags, 
CLS_CLIENT, 
"Value Set Example", 
0, 
NULLHANDLE, 
ID_FRAME, 
NULL); 

/************************************************************/ 
/* get screen height and width */ 
/************************************************************/ 

lWidth = WinQuerySysValue(HWND_DESKTOP, 
SV_CXSCREEN); 

lHeight WinQuerySysValue(HWND_DESKTOP, 
SV_CYSCREEN) ; 

/************************************************************/ 
/* if failed, display error, and set to default value */ 
/************************************************************/ 

if ( ! lWidth 11 ! lHeight) 
{ 

DisplayError ( "WinQuerySysValue failed"); 
lWidth = 640; 
lHeight = 480; 

if (hwndFrame != NULLHANDLE) 
{ 

/*********************************************************/ 
/* set window position */ 
/*********************************************************/ 

Value Set - 367 



368 - The Art of OS/2 Warp Programming 
WinSetWindowPos(hwndFrame, 

NULLHANDLE, 
10, 
10, 
lWidth/10*8, 
lHeight/10*8, 
SWP_SIZEISWP_MOVEISWP_ACTIVATEISWP_SHOW); 

bLoop WinGetMsg(habAnchor, 
&qmMsg, 
NULLHANDLE, 
0, 
0); 

while (bLoop) 
{ 

WinDispatchMsg(habAnchor, 
&qmMsg); 

bLoop = WinGetMsg(habAnchor, 
&qmMsg, 
NULLHANDLE, 
0, 
0); 

WinDestroyWindow(hwndFrame); 
} 
WinDestroyMsgQueue(hmqQueue); 
WinTerminate(habAnchor); 
return O; 

/* endwhile 

/* endif 

*/ 

*/ 

MRESULT EXPENTRY ClientWndProc(HWND hwndClient,ULONG ulMsg,MPARAM 
mpParml,MPARAM mpParm2) 

PWNDDATA 

switch (ulMsg) 
{ 

pwdData; 

case WM_CREATE : 

/******************************************************/ 
!* allocate window word *! 
/******************************************************/ 

pwdData = (PWNDDATA)malloc(sizeof(WNDDATA)); 
if (pwdData == NULL) 
{ 

DisplayError ("Unable to allocate window word"); 
return MRFROMSHORT(TRUE); 

WinSetWindowPtr(hwndClient, 
QWL_USER, 
pwdData); 

pwdData->sColor = -1; 
break; 

case WM_COMMAND 

/* endif 

pwdData = WinQueryWindowPtr(hwndClient, 
QWL_USER); 

switch (SHORTlFROMMP(mpParml)) 
{ 

case IDM_DISPLAY : 

*/ 

/************************************************/ 
/* load up dialog, if dialog already exists, */ 
/* just make it visible */ 
/************************************************/ 



if (!pwdData->hwndDlg} 
pwdData->hwndDlg = WinLoadDlg(HWND_DESKTOP, 

hwndClient, 
DlgProc, 
NULLHANDLE, 
IDD_VALUE, 
NULL}; 

else 
WinSetWindowPos(pwdData->hwndDlg, 

HWND_TOP, 

0' 
0' 
0' 
0, 
SWP_SHOWISWP_ACTIVATE}; 

break; 
case IDM_EXIT : 

/************************************************/ 
/* close up window */ 
/************************************************/ 

WinPostMsg(hwndClient, 
WM_CLOSE, 
MPVOID, 
MPVOID}; 

break; 
default 

break; 

return WinDefWindowProc(hwndClient, 
ulMsg, 
mpParml, 
mpParm2}; 

case WM_DESTROY 

/******************************************************/ 
/* free up memory */ 
/******************************************************/ 

pwdData = WinQueryWindowPtr(hwndClient, 
QWL_USER}; 

if ( pwdDa ta} 
free(pwdData}; 

break; 

case UM_UPDATE 

/******************************************************/ 
/* user message indicates end-user selected new color */ 
/* in value set, window needs to repaint itself with */ 
/* new color */ 
/******************************************************/ 

pwdData = WinQueryWindowPtr(hwndClient, 
QWL_USER}; 

if ( !pwdData} 
{ 

DisplayError ( "WinQueryWindowPtr failed"}; 
break; 

pwdData->sColor = SHORTlFROMMP(mpParml}; 
WininvalidateRect(hwndClient, 

NULL, 
FALSE); 

WinUpdateWindow(hwndClient}; 

Value Set- 369 



370 - The Art of OS/2 Warp Programming 
break; 

case WM_PAINT 
{ 

HPS 
REC TL 
SHORT 

hpsPaint; 
rclPaint; 
sColor; 

/***************************************************/ 
/* variable to indicate whether to paint or not */ 
/***************************************************/ 

BOOL 

pwdData 

bPaint = FALSE; 

WinQueryWindowPtr(hwndClient, 
QWL_USER); 

/***************************************************/ 
/* paint the entire client with the dropped color */ 
/***************************************************/ 

hpsPaint = WinBeginPaint(hwndClient, 
NULLHANDLE, 
&rclPaint); 

GpiErase(hpsPaint); 

/***************************************************/ 
/* do some error checking */ 
/***************************************************/ 

if (pwdData) 
{ 

if (pwdData->sColor >= 0) 
{ 

bPaint 
sColor 

if (bPaint) 

TRUE; 
pwdData->sColor; 

WinFillRect(hpsPaint, 
&rclPaint, 
alColors[sColor]); 

WinEndPaint(hpsPaint); 

break; 

default 
return WinDefWindowProc(hwndClient, 

ulMsg, 
mpParml, 
mpParm2); 

/* endswitch 
return MRFROMSHORT(FALSE); 

*/ 

MRESULT EXPENTRY DlgProc(HWND hwndDlg,ULONG ulMsg,MPARAM mpParml, 
MPARAM mpParm2) 

switch (ulMsg) 
{ 

case WM_INITDLG 
{ 

SHORT 
USHORT 
US HORT 
ULONG 
MRESULT 

sColor; 
usX; 
usY; 
ulReturn; 
mrReply; 



sColor = O; 

/***************************************************/ 
/* loop through the rows and columns to initialize */ 
/* items */ 
/***************************************************/ 

for (usX = l; usX <= 3; usX++) 
{ 

for (usY = l; usY <= 4; usY++) 
{ 

mrReply WinSendDlgitemMsg(hwndDlg, 
IDV_VALUE, 
VM_SETITEM, 
MPFROM2SHORT(usx, 

usY), 
MPFROMLONG(alColors 

[ sColor++] ) ) ; 

break; 

if ( ! LONGFROMMR (mrReply) ) 
DisplayError ( "WinSendDlgitemMsg failed"); 

/* endfor 
/* endfor 
!* end WM_INITDLG 

case WM_CONTROL 
if (SHORTlFROMMP(mpParml) == IDV_VALUE) 
{ 

switch (SHORT2FROMMP(mpParml)) 
{ 

case VN_SELECT : 
{ 

ProcessSelect(hwndDlg, 
mpParm2); 

break; 
} 

default 
return WinDefDlgProc(hwndDlg, 

ulMsg, 
mpParml, 
mpParm2); 

*/ 
*/ 
*/ 

/* endswitch */ 
/* end if == IDV_VALUE */ 

break; /* end WM_CONTROL 
case WM_COMMAND 

switch (SHORTlFROMMP(mpParml)) 
{ 

case DID_CANCEL : 
WinDismissDlg(hwndDlg, 

FALSE); 
break; 

default 
return WinDefDlgProc(hwndDlg, 

ulMsg, 
mpParml, 
mpParm2); 

*/ 

/* endswitch mpParml */ 

break; 
default 

!* end WM_COMMAND */ 

Value Set- 371 



372 - The Art of OS/2 Warp Programming 
return WinDefDlgProc(hwndDlg, 

ulMsg, 
mpParml, 
mpParm2); 

return MRFROMSHORT(FALSE); 

VOID DisplayError(CHAR *pszText) 
{ 

/* endswitch */ 

/************************************************************/ 
/* small function to display error string */ 
/************************************************************/ 

WinAlarm(HWND_DESKTOP, 
WA_ERROR); 

WinMessageBox(HWND_DESKTOP, 
HWND_DESKTOP, 
pszText, 

return 

"Error! 11 , 

0, 
MB_OKiMB_ERROR); 

VOID ProcessSelect(HWND hwndDlg,MPARAM mpParm2) 
{ 

/************************************************************/ 
!* small function to get color that was selected */ 
!************************************************************/ 

HWND 
US HORT 
SHORT 
BOOL 

hwndClient,hwndFrame; 
usRow,usCol; 
sColorindex; 
bSuccess; 

/************************************************************/ 
!* get row and column of selected item */ 
/************************************************************/ 

us Row 
us Col 

SHORT1FROMMP(mpParm2); 
SHORT2FROMMP(mpParm2); 

!************************************************************/ 
/* calculate index into color array */ 
/************************************************************/ 

sColorindex = ((usRow-1)*4)+(usCol-l); 
if (sColorindex < 0) 
{ 

DisplayError("Invalid selected item"); 
return ; 

/************************************************************/ 
!* get the client window handle to post message */ 
/************************************************************/ 

hwndFrame = WinWindowFromID(HWND_DESKTOP, 
ID_FRAME); 

if ( ! hwndFrame) 
{ 

DisplayError ( "WinWindowFromID: 1 failed"); 



return ; 

hwndClient = WinWindowFromID(hwndFrame, 
FID_CLIENT) ; 

if ( !hwndClient) 
{ 

DisplayError ( "WinWindowFromID: 2 failed"); 
return ; 

bSuccess WinPostMsg(hwndClient, 

if ( !bSuccess) 

UM_UPDATE, 
MPFROMSHORT(sColorindex), 
MPVOID); 

DisplayError ( "WinPostMsg failed"); 

return ; 

VALUE.RC 
#include <os2.h> 
#include "value.h" 

MENU ID_FRAME 
{ 

SUBMENU "-File", -1 
{ 

MENUITEM "-Display Dialog", IDM_DISPLAY 
MENUITEM SEPARATOR 
MENUITEM "E-xit", IDM_EXIT 

DLGTEMPLATE IDD_VALUE LOADONCALL MOVEABLE DISCARDABLE 
{ 

DIALOG "Color Set", IDD_VALUE, 12, 12, 155, 105, WS_VISIBLE, 
FCF_SYSMENU I FCF_TITLEBAR 

LT EXT 
VALUES ET 

PUSHBUTTON 

VALUE.H 
#define IDD_VALUE 
#define IDV_VALUE 
#define IDM_DISPLAY 
#define IDM_EXIT 
#define ID_FRAME 

"Select color: , -1, 11, 25, 102, 8 
IDV_VALUE, 13, 38, 91, 61, VS_COLORINDEX 
CTLDATA 8, 0, 3, 4 
"Cancel", DID_CANCEL, 6, 2, 40, 14 

100 
101 
102 
103 
104 

Value Set- 373 

VS_BORDER 



374 -The Art of OS/2 Warp Programming 
VALUE.MAK 
VALUE.EXE: 

VALUE 
VALUE 
VALUE 
OS2386 
VALUE 
<< 

LINK386 @<< 

RC VALUE.RES VALUE.EXE 

VALUE.RES: 

VALUE.OBJ \ 
VALUE.RES 

VALUE.RC \ 
VALUE.H 

RC -r VALUE.RC VALUE.RES 

VALUE.OBJ: VALUE.C \ 
VALUE.H 

ICC -c+ -Kb+ -Ss+ VALUE.C 

VALUE.DEF 
NAME VALUE WINDOWAPI 

DESCRIPTION 'Value-set example 
Copyright (c) 1992-1995 by Kathleen Panov. 
All rights reserved.' 

STACKSIZE 16384 

The VALUE.RC Resource File 
The VALUE.RC file contains two items: a menu and a dialog with the value set control. The dialog is 
created with the following code. 

DLGTEMPLATE IDD_VALUE LOADONCALL MOVEABLE DISCARDABLE 
{ 

DIALOG "Color Set", IDD_VALUE, 12, 12, 155, 105, WS_VISIBLE, 
FCF_SYSMENU I FCF_TITLEBAR 

LT EXT 
VALUESET 

VS_BORDER 

PUSHBUTTON 

"Select color: ", -1, 11, 25, 102, 8 
IDV_VALUE, 13, 38, 91, 61, VS_COLORINDEX 

CTLDATA 8, 0, 3, 4 
"Cancel", DID_CANCEL, 6, 2, 40, 14 

The sixth parameter in the V ALUESET statement is the combination of window and control styles. In this 
case, we specify VS_COLORINDEX, indicating that the choices of the value set are the indices into the 
color index table. We also use VS_BORDER, which draws a border around the value set. The last 
parameter is the CTLDAT A statement. In this case, this represents the VSCDA TA structure. The 
VSCDATA structure is defined as: 



typedef struct _VSCDATA /* vscd */ 
{ 

ULONG cbSize; /* Size of control block */ 
USHORT usRowCount; /* Number of rows in value set */ 
USHORT usColumnCount;/* Number of columns in value set */ 

VSCDATA; 
typedef VSCDATA *PVSCDATA; 

Value Set- 375 

The CTLDATA key word sees each parameter as a SHORT, so a LONG is represented as two parameters. 
The first two parameters correspond to the cbSize structure member. They are specified in low-byte, high
byte order. The third parameter represents usRowCount. Our value set will contain three rows. The fourth 
parameter represents usColumnCount. Our value set will contain four columns. 

A structure defined at the top of the program is used for the window word. It is: 

typedef struct { 
SHORT sColor ; 
HWND hwndDlg ; 

} WNDDATA, * PWNDDATA ; 

In the structure, the first element SHORT sColor represents the currently selected color in the value set. 
The hwndDlg is the window handle for the dialog box. 

Also, the array a/Color is declared. This is the array of color index values that are used in the value set. 

Initializing the Value Set 
SHORT 
US HORT 
USHORT 
ULONG 
MRESULT 

sColor = O; 

sColor; 
usX; 
usY; 
ulReturn; 
mrReply; 

for (usX = l; usX <= 3; usX++) 
{ 

for (usY = l; usY <= 4; usY++) 
{ 

mrReply WinSendDlgitemMsg(hwndDlg, 
IDV_VALUE, 
VM_SETITEM, 
MPFROM2SHORT(usX, 

usY), 
MPFROMLONG(alColors 

[sColor++])); 

The value set initialization is a very simple process of sending a VM_SETITEM for each item in the value 
set. Because this value set is of style VS_COLORINDEX, mpParm2 will contain a color index constant. 
We will use the CLR_ *values in the a/Colors array. mpParml is a collection of two SHORTS that make 
up the row and column of the item. Notice that there is no row or column O; these values start at 1. All 
value set messages pertaining to a specific value set item are done by using the row and column of the item 
of interest. 

By default, the first item in the value set is selected. 



376 - The Art of OS/2 Warp Programming 

Value Set Selection Notification 
usRow = SHORT1FROMMP(mpParm2); 
usCol = SHORT2FROMMP(mpParm2); 

sColorindex = ((usRow-1)*4)+(usCol-l); 

hwndFrame = WinWindowFromID(HWND_DESKTOP, 
ID_FRAME); 

hwndClient = WinWindowFromID(hwndFrame, 
FID_CLIENT); 

bSuccess = WinPostMsg(hwndClient, 
UM_UPDATE, 
MPFROMSHORT(sColorindex), 
MPVOID); 

The WM_CONTROL message is where the value set will indicate when a new color has been selected. 
We check for the notification code VN_SELECT from the WM_CONTROL message. The row number 
(starting with l) is sent as the low order byte of mpParm2. The column number is sent as the high order 
byte of mpParm2. By doing some quick math, the index into the a/Color array is determined. The next 
task is to notify the client window that a new selection has been made. This is done by posting the user
defined message, UM_UPDA TE, to the client, with the color index sent in mpParml. 

VALUE Paint Processing 
HPS 
RECTL 
SHORT 
BOOL 

hpsPaint; 
rclPaint; 
sColor; 
bPaint = FALSE; 

pwdData WinQueryWindowPtr(hwndClient, 
QWL_USER); 

hpsPaint = WinBeginPaint(hwndClient, 
NULLHANDLE, 
&rclPaint); 

GpiErase(hpsPaint); 

if (pwdData) 
{ 

} 

if (pwdData->sColor >= 0) 
{ 

bPaint TRUE; 
sColor = pwdData->sColor; 

if (bPaint) 
WinFillRect(hpsPaint, 

&rclPaint, 
alColors[sColor]); 

WinEndPaint(hpsPaint}; 

break; 

The WM_PAINT message starts with WinQueryWindowPtr to retrieve the window word of the client 
window. Next the usual WinBeginPaint is called. GpiErase is used to erase the entire invalidated region. 
If the sColor variable in the pwdData structure is greater than 0, a color has been selected by the user. 
Remember, the variable was initially set to -1. A Boolean variable bPaint is used to indicate all is okay, so 
go ahead and paint. WinFil!Rect fills the invalidated region with the specified color, and WinEndPaint is 
called to release the presentation space. 



The User-defined Message UM_UPDATE 

pwdData = WinQueryWindowPtr(hwndClient, 
QWL_USER); 

if ( !pwdData) 
{ 

DisplayError ( "WinQueryWindowPtr failed"); 
break; 

pwdData->sColor = SHORTlFROMMP(mpParml); 
WininvalidateRect(hwndClient, 

NULL, 
FALSE); 

WinUpdateWindow(hwndClient); 

Value Set- 377 

The message UM_ UPDATE is a user-defined message that is sent from the value set when a new value set 
item has been selected. This is the signal to the client to repaint itself. The index of the selected item is 
sent in mpParml. This value is retrieved and stored in the pwdData structure so it is visible to the 
WM_PAINT processing. WinlnvalidateRect is used to invalidate the entire client window, and 
WinUpdateWindow is used to force the update of the client window-in other words, generate a 
WM_P AINT message and process it, now! 

BOOL WinUpdateWindow(HWND hwnd); 

Win Update Window has only one parameter-hwnd, which is the window handle of the window to update. 

This potent approach is not always necessary, but the example program depends on a quick user 
notification of the new value set selection. 





Chapter 22 

Notebook 

The notebook control is designed to provide the user with a visual organizer of information, similar to a 
real notebook with dividers. Information can be broken up into categories, with the major tabs 
representing category headings. Information can then be further broken up using minor tabs as the 
subcategory headings. The notebook consists of six major parts, as illustrated in Figure 22.1: the binding, 
status line, intersection of pages, forward/backward page buttons, major tabs, and minor tabs. 

<: ,.- x ' ' '' ' ' "'"""'' « 

itt~ tlotel)ook Exdrnple 

Address: 

Major 

Minor 

Minor Tab 

Forward/Back 
Page Arrows 

Intersection of 
Pages 

Figure 22.1 Drawing of a notebook. 

A notebook should be used to offer the user a choice of settings or to present data that can be organized 
logically into categories or groups. Information that can be grouped together should be put into a single 
tabbed section. Major tabs can be placed at any of the four notebook sides; however, minor tabs always are 
placed perpendicular to the major tabs. Page buttons are provided to allow the user to page forward and 
backward between the notebook pages. Page buttons always are located in the corner that is flanked by the 
back pages. The binding can either be spiral-bound or solid-bound, depending on the specified style. A 
line of status text can be associated with each notebook page. If more than one page exists in a category, 
the status line should be used to indicate this to the user; for example, "Page 1 of 20." The status line can 
be left-justified, right-justified, or centered along the bottom of the notebook. The last part of the notebook 

379 



380 -The Art of OS/2 Warp Programming 
is the intersection of the back pages, used to design a landscape- or portrait-mode notebook. This feature 
gives the appearance of a three-dimensional notebook. This intersection can be located at any of the four 
comers. Figures 22.2 through 22.9 show the eight possible combinations of styles. 

tlotebook Example 

Minor 

Address: 

Status Line Text £!il 

Major 

Figure 22.2 BKS_BACKPAGESBR I BKS_MAJORTABBOTIOM. 

El tlotebook Example 

Major 

Address: 

Status Line Text 

Minor 

Figure 22.3 BKS_PAGESBR I BKS_MAJORTABRIGHT. 



Notebook - 381 

£1 llotebook Example 

, M!nor 

Address: 

i[iJ Status Line Text 

Major 

Figure 22.4 BKS_BACKPAGESBL I BKS_MAJORTABBOTTOM. 

1\3 llotebook Example 

I . 
' MaJor 

Address: 

Ejfl!l Status Line Text 

M!nor 

Figure 22.5 BKS_BACKPAGESBL I BKS_MAJORTABLEFT. 



382 - The Art of OS/2 Warp Programming 

II tlotebook Example 

Major 

Status Line Text 

Address: 

Figure 22.6 BKS_BACKPAGESTR I BKS_MAJORTABTOP. 

a tlotebook Example 

Minor 

Status Line Text 

Address: 

Major 

Figure 22.7 BKS_BACKPAGESTR I BKS_MAJORTABRIGHT. 



Notebook - 383 

II llotebook Example 

~~~~~~~~ Major 

'• Status Line Text

Address:

I M!nor

Figure 22.8 BKS_BACKPAGESTL I BKS_MAJORTABTOP.

a tlotebook Example

M!nor

[~al Status Line Text

Address:

Major

Figure 22.9 BKS_BACKPAGESTL I BKS_MAJORTABLEFT.

The following are the notebook window styles:

384 - The Art of OS/2 Warp Programming
Table ~~· ~ Noteboo.k '-;Jindow St>;:les

BKS_BACKPAGESBR
BKS_BACKP AGES BL
BKS_BACKP AGES TR
BKS_BACKPAGESBR
BKS_MAJORTABRIGHT
BKS_MAJORTABLEFf
BKS_MAJORTABTOP
BKS_MAJORTABBOTTOM
BKS_SQUARETABS
BKS_ROUNDEDTABS
BKS_POL YGONTABS
BKS_SOLIDBIND
BKS_SPIRALBIND
BKS_STATUSTEXTLEFf
BKS_STATUSTEXTRIGHT
BKS_STATUSTEXTCENTER
BKS_TABTEXTLEFf
BKS_ TABTEXTRIGHT
BKS TABTEXTCENTER

Intersection of pages is located at the bottom right corner.
Intersection of pages is located at the bottom left comer.
Intersection of pages is located at the top right corner.
Intersection of pages is located at the top left comer.
Major tabs are located on the right side.
Major tabs are located on the left side.
Major tabs are located on the top side.
Major tabs are located on the bottom side.
Notebook has squared-edge tabs.
Notebook has rounded-edge tabs.
Notebook has polygon-edge tabs.
Notebook has a solid binding.
Notebook has a spiral binding.
Notebook has the status text left-justified.
Notebook has the status text right-justified.
Notebook has the status text centered.
Notebook has the tab text left-justified.
Notebook has the tab text right-justified.
Notebook has the tab text centered.

The major and minor tabs can be customized somewhat. They can be square or polygonal or have rounded
corners. A tab can contain eithertext or bitmaps. The text can be left-justified, right-justified, or centered.
If a bitmap is specified for the tab, the bitmap is sized automatically to fill the tab. The dimensions for the
tab need to be set using the message BKM_SETDIMENSIONS. There is no automatic sizing of the tab for
text.

Notebook Pages
A notebook page is designed to be associated with a dialog box or window. When a new page is selected
in the notebook, the notebook invalidates the new page, causing a WM_PAINT to be sent to the procedure
associated with the newly selected page. When a notebook is created, the initialization should handle the
insertion of any needed pages. If a page has a major or minor tab associated with it, this is specified in the
BKM_INSERTPAGE. The following code segment shows how to insert a page.

ULONG ulPageID;
MRESULT mrReply;

mrReply = WinSendMsg(hwndNotebook,
BKM_INSERTPAGE,
(MPARAM)O,

MPFROM2SHORT (BKA_MAJOR I BKA_STATUSTEXTON,
BKA_FIRST)) ;

ulPageID = LONGFROMMR(Reply);

If no major or minor tabs are specified, the new page becomes part of the current section. Each page has a
ulPageJD that is returned from the BKM_INSERTPAGE message. This ID is used extensively in the
notebook messaging system.

The following example program illustrates the creation of a notebook.

NOTEBOOK.C
#define
#define
#define
#include

INCL_GPICONTROL
INCL_GPILCIDS
INCL_ WIN
<os2.h>

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "notebook.h"
#define CLS_CLIENT "MyClass"
#define UM_CREATEDONE (WM_USER + 1)
BOOL InitializeNotebook(HWND hwndNotebook,HWND hwndPagel,HWND

hwndPage2,LONG lCxChar,LONG lCyChar);

MRESULT EXPENTRY DlgProc(HWND hwndDlg,ULONG ulMsg,MPARAM mpParml,
MPARAM mpParm2);

MRESULT EXPENTRY ClientWndProc(HWND hwndWnd,ULONG ulMsg,MPARAM
mpParml,MPARAM mpParm2);

VOID DisplayError(CHAR *pszText);

INT main(VOID)
{

HAE
HMQ
ULONG
HWND
BOOL
QMSG
LONG

habAnchor;
hmqQueue;
ulFlags;
hwndFrame;
bLoop;
qmMsg;
lWidth,lHeight;

habAnchor Wininitialize(O);
hmqQueue = WinCreateMsgQueue(habAnchor,

0);

WinRegisterClass(habAnchor,
CLS_CLIENT,
ClientWndProc,
0,
0);

ulFlags = FCF_TITLEBARIFCF_SYSMENUIFCF_SIZEBORDERIFCF_MINMAXI
FCF_TASKLIST;

/***/
/* create frame window */
/***/

hwndFrame = WinCreateStdWindow(HWND_DESKTOP,
0,
&ulFlags,
CLS_CLIENT,
"Notebook Example",
0,
NULLHANDLE,
0,
NULL);

/***/
/* get screen height and width */
/***/

lWidth = WinQuerySysValue(HWND_DESKTOP,
SV_CXSCREEN);

Notebook - 385

386 - The Art of OS/2 Warp Programming

lHeight = WinQuerySysValue(HWND_DESKTOP,
SV_CYSCREEN) ;

/***/
/* if failed, display error, and set to default value */
/***/

if (! lWidth 11 ! lHeight)
{

DisplayError ("WinQuerySysValue failed") ;
lWidth = 640;
lHeight = 480;

if (hwndFrame != NULLHANDLE)
{

/***/
/* set window position */
/***/

WinSetWindowPos(hwndFrame,
NULLHANDLE,
lWidth/8,
lHeight/8,
lWidth/8*6,
lHeight/8*6,
SWP_SIZEISWP_MOVEISWP_ACTIVATEISWP_SHOW);

bLoop WinGetMsg(habAnchor,
&qmMsg,
NULLHANDLE,
0,
0);

while (bLoop)
{

WinDispatchMsg(habAnchor,
&qmMsg);

bLoop = WinGetMsg(habAnchor,
&qmMsg,
NULLHANDLE,
0,
0);

WinDestroyWindow(hwndFrame);
}

WinDestroyMsgQueue(hmqQueue);
WinTerminate(habAnchor);
return O;

/* endwhile

/* endif

MRESULT EXPENTRY ClientWndProc(HWND hwndWnd,ULONG ulMsg,MPARAM
mpParml,MPARAM mpParm2)

switch (ulMsg)
{

case WM_CREATE :
WinPostMsg(hwndWnd,

UM_CREATEDONE,
MPVOID,
MPVOID);

break;

case UM_CREATEDONE
{

HPS
FONTMETRICS

hpsChar;
fmMetrics;

*/

*/

LONG
LONG
HWND
HWND
HWND
REC TL

lCxChar;
lCyChar;
hwndNotebook;
hwndPagel;
hwndPage2;
rclClient;

hpsChar WinGetPS(hwndWnd);
GpiQueryFontMetrics(hpsChar,

sizeof(fmMetrics),
&fmMetrics);

WinReleasePS(hpsChar);

lCxChar fmMetrics.lAveCharWidth;
lCyChar = fmMetrics.lMaxBaselineExt;

WinQueryWindowRect(hwndWnd,
&rclClient) ;

hwndNotebook WinCreateWindow(hwndWnd,
WC_NOTEBOOK,

' BKS_SPIRALBINDI

0'

BKS_SQUARETABSI
BKS_STATUSTEXTCENTER,

0'
rclClient.xRight,
rclClient.yTop,
hwndWnd,
HWND_TOP,
ID_NOTEBOOK,
NULL,
NULL);

if (!hwndNotebook)
DisplayError ("WinCreateWindow failed");

hwndPagel = WinLoadDlg(hwndWnd,
hwndWnd,
DlgProc,
NULLHANDLE,
IDD_PERSONAL,
NULL);

hwndPage2 WinLoadDlg(hwndWnd,
hwndWnd,
DlgProc,
NULLHANDLE,
IDD_OS2,
NULL);

InitializeNotebook(hwndNotebook,
hwndPagel,
hwndPage2,
lCxChar,
lCyChar);

WinShowWindow(hwndNotebook,
TRUE);

WinSetFocus(HWND_DESKTOP,
WinWindowFromID(hwndPagel,

IDE_NAME)) ;

break;

Notebook - 387

388 - The Art of OS/2 Warp Programming

case WM_SIZE
{

HWND hwndNotebook;

hwndNotebook WinWindowFrornID(hwndWnd,
ID_NOTEBOOK) ;

WinSetWindowPos(hwndNotebook,
NULLHANDLE,

break;

0,
0,
SHORT1FROMMP(rnpParrn2),
SHORT2FROMMP(rnpParrn2),
SWP_SIZEISWP_SHOW);

case WM_CONTROL :
switch (SHORTlFROMMP(rnpParrnl))
{

case ID_NOTEBOOK :
switch (SHORT2FROMMP(rnpParrnl))
{

case BKN_PAGESELECTED :
{

PPAGESELECTNOTIFY ppsnSelect;
HWND hwndPage;
US HORT usDlgid;
MRESULT rnrReply;

ppsnSelect PVOIDFROMMP(rnpParrn2);

rnrReply = WinSendMsg(ppsnSelect->hwndBook,
BKM_QUERYPAGEWINDOWHWND,
MPFROMLONG

(ppsnSelect->ulPageidNew),
0);

hwndPage = (HWND)PVOIDFROMMR(rnrReply);

usDlgid = WinQueryWindowUShort(hwndPage,
QWS_ID);

if (usDlgid == IDD_PERSONAL)
{

WinSetFocus(HWND_DESKTOP,
WinWindowFrornID(hwndPage,

IDE_NAME));

else
{

WinSetFocus(HWND_DESKTOP,
WinWindowFrornID(hwndPage,

IDE_TEAMOS2)) ;
/* endif */

break;

default
return WinDefWindowProc(hwndWnd,

ulMsg,
rnpParrnl,
rnpParrn2) ;

break;
default

/* endswitch */

return WinDefWindowProc(hwndWnd,
ulMsg,
mpParml,
mpParm2);

break;

case WM_PAINT
{

HPS

/* endswitch

hpsPaint;

hpsPaint WinBeginPaint(hwndWnd,
NULLHANDLE,
NULLHANDLE) ;

GpiErase(hpsPaint);
WinEndPaint(hpsPaint);

break;

default
return WinDefWindowProc(hwndWnd,

ulMsg,
mpParml,
mpParm2);

/* endswitch
return MRFROMSHORT(FALSE);

MRESULT EXPENTRY DlgProc(HWND hwndDlg,ULONG ulMsg,MPARAM mpParml,
MPARAM mpParm2)

switch (ulMsg)
{

case WM_COMMAND :

switch (SHORTlFROMMP(mpParml))
{

case DID_OK :
case DID_CANCEL

break;

default
return WinDefDlgProc(hwndDlg,

ulMsg,
mpParml,
mpParm2);

break;

default
return WinDefDlgProc(hwndDlg,

ulMsg,
mpParml,
mpParm2);

return MRFROMSHORT(FALSE);

/* endswitch

/* endswitch

Notebook - 389

*/

*/

*/

*/

390 - The Art of OS/2 Warp Programming
BOOL InitializeNotebook(HWND hwndNotebook,HWND hwndPagel,HWND

hwndPage2,LONG lCxChar,LONG lCyChar)

UL ONG
ULONG
ULONG
CHAR
CHAR

ulidPagel;
ulidPage2;
ulWidth;
achPagelText[64];
achPage2Text(64];

ulidPagel LONGFROMMR(WinSendMsg(hwndNotebook,
BKM_INSERTPAGE,
0,
MPFROM2SHORT(BKA_MAJORI

BKA_STATUSTEXTON,
BKA_FIRST))) ;

ulidPage2 LONGFROMMR(WinSendMsg(hwndNotebook,
BKM_INSERTPAGE,

WinSendMsg(hwndNotebook,
BKM_SETSTATUSLINETEXT,
MPFROMLONG(ulidPagel),

0,
MPFROM2SHORT(BKA_MAJORI

BKA_STATUSTEXTON,
BKA_LAST))) ;

MPFROMP("Personal Information for This User"));

WinSendMsg(hwndNotebook,
BKM_SETSTATUSLINETEXT,
MPFROMLONG(ulidPage2),
MPFROMP("TEAM OS I 2 Information"" for this Location")

) ;

strcpy(achPagelText,
"-Personal");

strcpy(achPage2Text,
" -TEAMOS2") ;

ulWidth = (max(strlen(achPagelText),
strlen(achPage2Text))+6)*1CxChar;

WinSendMsg(hwndNotebook,
BKM_SETDIMENSIONS,
MPFROM2SHORT(u1Width,

1CyChar*2),
MPFROMSHORT(BKA_MAJORTAB));

WinSendMsg(hwndNotebook,
BKM_SETTABTEXT,
MPFROMLONG(ulidPagel),
MPFROMP(achPagelText));

WinSendMsg(hwndNotebook,
BKM_SETTABTEXT,
MPFROMLONG(ulidPage2),
MPFROMP(achPage2Text));

WinSendMsg(hwndNotebook,
BKM_SETPAGEWINDOWHWND,
MPFROMLONG(ulidPagel),
MPFROMHWND(hwndPagel));

WinSendMsg(hwndNotebook,
BKM_SETPAGEWINDOWHWND,
MPFROMLONG(ulidPage2)'
MPFROMHWND(hwndPage2));

WinSendMsg(hwndNotebook,
BKM_SETNOTEBOOKCOLORS,
MPFROMLONG(CLR_BLUE),
MPFROMSHORT(BKA_FOREGROUNDMAJORCOLORINDEX));

return TRUE;

VOID DisplayError(CHAR *pszText)
{

/***/
/* small function to display error string */
/***/

WinAlarm(HWND_DESKTOP,
WA_ERROR);

WinMessageBox(HWND_DESKTOP,
HWND_DESKTOP,
pszText,

return

NOTEBOOK.RC

11 Error ! 11 ,

0,
MB_OKIMB_ERROR);

#include <os2.h>
#include "notebook.h"

DLGTEMPLATE IDD_OS2 LOADONCALL MOVEABLE DISCARDABLE
BEGIN

Notebook- 391

DIALOG "TEAMOS2 Information", IDD_OS2, 5, 0, 265, 126, NOT FS_DLGBORDER
PRESPARAMS PP_BACKGROUNDCOLORINDEX, OxFFFFFFFEL

END

BEGIN

END

GROUPBOX
LT EXT
LT EXT
LT EXT
ENTRYFIELD
ENTRYFIELD
AUTORADIOBUTTON

AUTORADIOBUTTON

"TEAMOS2 Information", -1, 0, 26, 213, 101
"TEAMOS2 Name:", -1, 6, 106, 74, 8
"User Group:", -1, 6, 85, 53, 8
"Level of OS/2 Experience", -1, 59, 67, 109, 8
"", IDE_TEAMOS2, 90, 102, 108, 8, ES_MARGIN
"", IDE_USERGROUP, 90, 85, 108, 8, ES_MARGIN
"OS/2 Beginner", IDR_BEGIN, 68, 52, 77, 10,
WS_TABSTOP
"OS/2 Intermediate", IDR_INTERMEDIATE, 68, 39, 91,
10, WS_TABSTOP

AUTORADIOBUTTON "OS/2 Expert", IDR_EXPERT, 68, 27, 65, 10,
WS_TABSTOP

DLGTEMPLATE IDD_PERSONAL LOADONCALL MOVEABLE DISCARDABLE
BEGIN

DIALOG "Personal Information", IDD_PERSONAL, 5, 0, 213, 126, NOT
FS_DLGBORDER
PRESPARAMS PP_BACKGROUNDCOLORINDEX, OxFFFFFFFEL

BEGIN
GROUPBOX
LT EXT
LT EXT
LT EXT
LT EXT
LT EXT

"Personal Information", -1, 0, 26, 213, 101
"Name:", -1, 6, 106, 29, 8
"Address:", -1, 6, 85, 39, 8
"City:", -1, 6, 63, 19, 8
"State:", -1, 134, 63, 26, 8
"Zip:", -1, 6, 40, 18, 8

392 - The Art of OS/2 Warp Programming

END
END

LT EXT
ENTRYFIELD
ENTRYFIELD
ENTRYFIELD
ENTRYFIELD
ENTRYFIELD
ENTRYFIELD

NOTEBOOK.ff
#define ID_NOTEBOOK
#define IDD_PERSONAL
#define IDD_OS2

#define IDE_NAME
#define IDE_ADDRESS
#define IDE_CITY
#define IDE_STATE
#define IDE_ZIP
#define IDE_PHONE

#define IDE_TEAMOS2
#define IDE_USERGROUP
#define IDR_BEGIN
#define IDR_INTERMEDIATE
#define IDR_EXPERT

NOTEBOOK.MAK
NOTEBOOK.EXE:

LINK386 @«
NOTEBOOK
NOTEBOOK
NOTEBOOK
OS2386
NOTEBOOK
<<

11 Phone: II f -1, 134, 40, 31, 8
IDE_NAME, 55, 107, 145, 8, ES_MARGIN
IDE_ADDRESS, 55, 85, 145, 8, ES_MARGIN
IDE_CITY, 31, 65, 96, 8, ES_MARGIN
IDE_STATE, 169, 65, 31, 8, ES_MARGIN
IDE_ZIP, 31, 42, 96, 8, ES_MARGIN
IDE_PHONE, 169, 42, 31, 8, ES_MARGIN

256
257
258

512
513
514
515
516
517

528
529
530
531
532

NOTEBOOK.OBJ \
NOTEBOOK.RES

RC NOTEBOOK.RES NOTEBOOK.EXE

NOTEBOOK.RES: NOTEBOOK.RC \
NOTEBOOK.H

RC -r NOTEBOOK.RC NOTEBOOK.RES

NOTEBOOK.OBJ: NOTEBOOK.C
NOTEBOOK.H

ICC -C+ -Kb+ -Ss+ NOTEBOOK.C

NOTEBOOK.DEF
NAME NOTEBOOK WINDOWAPI

DESCRIPTION 'Notebook example
Copyright (c) 1992-1995 by Kathleen Panov.
All rights reserved.'

STACKSIZE 16384

Notebook - 393

Flipping Pages
In the WM_CONTROL message processing, the BKN_PAGESELECTED notification code is sent each
time a new page is selected in the notebook. We'll use this message as a signal to set the focus to the
specified dialog control for the selected page. The BKN_PAGESELECTED notification code returns a
pointer to the PAGESELECTNOTIFY structure. The structure looks like this:

typedef struct _PAGESELECTNOTIFY
{

HWND hwndBook;
ULONG ulPageidCur;
ULONG ulPageidNew;

/* pgsntfy */

/* Notebook window handle
/* Previous top page id
/* New top Page id

} PAGESELECTNOTIFY;
typedef PAGESELECTNOTIFY *PPAGESELECTNOTIFY;

*/
*/
*/

The item we are interested in is the new top page ID, ulPageldNew. This value is used to query the
window handle of the new page.

ppsnSelect = PVOIDFROMMP(mpParm2);

mrReply = WinSendMsg(ppsnSelect->hwndBook,
BKM_QUERYPAGEWINDOWHWND,
MPFROMLONG

(ppsnSelect->ulPageidNew) ,
0);

hwndPage = (HWND)PVOIDFROMMR(mrReply);

Once we have the window handle, we query for the ID of the new top page. If the ID belongs to the
dialog, IDD_PERSONAL, we set the focus to the first entry field, IDE_NAME. Otherwise, we know the
dialog is the TEAMOS2 dialog, and we set the focus to the first entry field in that dialog, IDE_ TEAMOS2.

usDlgid = WinQueryWindowUShort(hwndPage,
QWS_ID);

if (usDlgid == IDD_PERSONAL)
{

WinSetFocus(HWND_DESKTOP,
WinWindowFromID(hwndPage,

IDE_NAME));

else
{

WinSetFocus(HWND_DESKTOP,
WinWindowFromID(hwndPage,

IDE_TEAMOS2)) ;
/* endif */

Creating a Notebook
The notebook is created using WinCreateWindow after the client area has been created.

394 - The Art of OS/2 Warp Programming
hwndNotebook = WinCreateWindow(hwndWnd,

WC_NOTEBOOK,

' BKS_SPIRALBIND/

0,

BKS_SQUARETABS/
BKS_STATUSTEXTCENTER,

0,
rclClient.xRight,
rel Client. yTop,
hwndWnd,
HWND_TOP,
ID_NOTEBOOK,
NULL,
NULL);

When the UM_CREATEDONE message is received, the first thing we do is query the font size using
GpiQueryFontMetrics. This function is covered in Chapter 10. This information is passed to the notebook
initialization routine. The window size is found using WinQueryWindowRect. For more information on
this function, see Chapter 10. Once these values are found, the actual notebook window is created using
WinCreateWindow. hwndWnd, the client window handle, is specified as the parent in the first parameter of
WinCreateWindow. The class style is WC_NOTEBOOK. The third parameter is window text, in this case
"". The fourth parameter is the notebook style. The style flags specified here are BKS_SPIRALBIND I
BKS_SQUARETABS I BKS_STATUSTEXTCENTER. This creates a spiral binding on the notebook,
squared-edge tabs, and the status text centered. The next four parameters, 0, 0, rclClient.xRight, and
rclClient.yTop, designate a notebook position of row 0, column 0 on the client window, a width equal to
the client window width, and a height equal to the client window height. The ninth parameter, hwndWnd,
is the owner window. The next parameter is window Z-order. Our notebook is to be placed on top of all
the other windows, so HWND_TOP is specified. The next parameter is resource ID, ID_NOTEBOOK.
The last two parameters are class-specific data and presentation data. In this instance there is none, so
NULL is specified for both. Notice the notebook is created invisible and made visible after initialization is
complete. This is a very good technique to use, especially if the window or dialog initialization is lengthy.
The notebook initialization is done with the user function InitializeNotebook that is covered in the next
section.

The next step is to load the two dialog boxes to be placed in the notebook. The first one is hwndPagel. It
contains such basic information as "Name" and "Address." The next dialog, hwndPage2, contains OS/2-
specific information from the user.

Last, we make the notebook window visible using WinShowWindow, and set the focus to the first entry
field on the first page with the function WinSetFocus. These functions are discussed in Chapter 10.

InitializeNotebook
This function performs all the initialization required for our notebook. The first messages sent to the
notebook are BKM_INSERTPAGE.

ulidPagel = LONGFROMMR(WinSendMsg(hwndNotebook,
BKM_INSERTPAGE,
0,
MPFROM2SHORT(BKA_MAJOR/

BKA_STATUSTEXTON,
BKA_FIRST))) ;

ulidPage2 LONGFROMMR(WinSendMsg(hwndNotebook,
BKM_INSERTPAGE,
0,
MPFROM2SHORT(BKA_MAJORI

BKA_STATUSTEXTON,
BKA_LAST))) ;

Notebook - 395

mpParml in the BKM_INSERTPAGE message, in this case 0, is used to indicate a page ID to be used as a
reference point for mpParm2. Specifying BKA_FIRST or BKA_LAST as page location alleviates the need
for a page ID reference. If, for example, BKA_NEXT had been specified, mpParml would have to
contain the ID of the page the inserted page is to be placed next to. mpParm2 contains two SHORTS. The
first SHORT is the notebook page styles. In both of the preceding cases, a major tab is placed on the page,
and status text is enabled at the bottom of the page. The second SHORT is the page insertion order. In this
example, BKA_FIRST is specified. The page ID of the newly created pages is returned in the Reply and is
stored in ul/DPagel and ullDPage2.

WinSendMsg(hwndNotebook,
BKM_SETSTATUSLINETEXT,
MPFROMLONG(ulidPagel),
MPFROMP("Personal Information for This User"));

Since the status text is enabled, the next step is to copy text into it. Each section of the notebook only has
one page, so information about that page will suffice. The message BKM_SETSTATUSLINETEXT is
used to place text on the status line. mpParml of the message indicates the page ID where the text is to be
placed, and mpParm2 is the text string itself.

ulWidth = (max (strlen (achPagelText) ,
strlen (achPage2Text)) + 6) * lCxChar

WinSendMsg (hwndNotebook,
BKM_SETDIMENSIONS,
MPFROM2SHORT (ulWidth, lCyChar * 2) '
MPFROMSHORT (BKA_MAJORTAB)) ;

After the status text is taken care of, the tabs need to have their dimensions set so that the tab text will not
be truncated. The BKM_SETDIMENSIONS message is used to set the size. mpParml is two SHORTs.
The first short is tab width. The variable, ulWidth, is determined by calculating the maximum number of
characters on the tab by the width of each character, lCxChar. The second SHORT is the height. For this
parameter, lCyChar * 2 is used. mpParm2 is the part for which the dimensions are being set, in this case
BKA_MAJORTAB.

WinSendMsg hwndNotebook,
BKM_SETTABTEXT,
MPFROMLONG (ulidPagel) '
MPFROMP (achPagelText)) ;

The tab text is set for each major tab using the message BKM_SETTABTEXT. mpParml is the page ID
on which the tab is located. mpParm2 is the text string that is placed on the tab.

WinSendMsg (hwndNotebook,
BKM_SETPAGEWINDOWHWND,
MPFROMLONG (ulidPagel) '
MPFROMHWND (hwndPagel)) ;

396 - The Art of OS/2 Warp Programming

Right now our notebook has two blank pages in it. The next step is to associate something with each page.
A window or a dialog box can be associated with a page. Only one item can be associated with each page.
The notebook itself is not designed for painting, rather just as a kind of "display device" for windows or
dialog boxes.

The message BKM_SETPAGEWINDOWHWND associates a window handle with a page. mpParml is
the ID of the page on which the window is to be placed. mpParm2 is the window handle that will be
placed on the specified page of the notebook.

WinSendMsg (hwndNotebook,
BKM_SETNOTEBOOKCOLORS,
MPFROMLONG (CLR_BLUE) ,
MPFROMSHORT (BKA_FOREGROUNDMAJORCOLORINDEX)) ;

The last WinSendMsg call sends the message BKM_SE1NOTEBOOKCOLORS to change the presentation
parameters on the notebook control. mpParml of the message is the color or color index to use. mpParm2
is the appropriate presentation parameter. Notice that these are different from the normal window
presentation parameters. This example uses the BKA_FOREGROUNDMAJORCOLORINDEX to change
the foreground colors on the major tabs. When using indices into the color palette, only the CLR_ values
are acceptable. When specifying the color, RGB representation should be used.

The notebook control was added to OS/2 2.0 and has become very widely used by both new 32-bit
applications and the operating system itself. A notebook should be used to present settings for an object or
to present data that can be divided by groups. A notebook should not be used when a very small group of
data is represented; in such a case, regular dialog boxes should be used.

Chapter 23

Containers

It was a happy occasion when Tupperware containers were invented. Not only could leftover meatloaf be
stored in them, but so could crayons, plants, or almost anything else you desired. The container didn't
know about the specifics of the items you stored, nor did it care; it simply stored the items.

OS/2 also has a container that has a similar purpose: to store items. It doesn't care if the items are
employee names or sales statistics or the batting averages of the 1929 Yankees. The items to be stored are
defined by the application. Additionally, the container control supports multiple views of the objects, in
concordance with the CUA 1991 specification. Multiple-object selection methods are supported as well as
direct editing of text and drag and drop. In short, the container can do anything save wash your windows
or butter your bread.

This extreme amount of functionality and flexibility is not without its price, unfortunately. The container
is a very complex control that demands a fair amount of initialization, and almost every message sent to
and from the container references a structure or two. This chapter discusses container basics and develops
a couple of applications to demonstrate the concepts discussed; the more advanced topics will be left to the
reader.

Container Styles
Table 23.1 describes the container styles and their meanings.

397

398 - The Art of OS/2 Warp Programming

CCS_EXTENDSEL

CCS_MUL TIPLESEL
CCS_SINGLESEL

CCS_AUTOPOSIDON

CCS_MINIRECORDCORE

CCS_READONL Y
CCS_VERIFYPOINTERS

LPs or45s?

Specifies that the extended selection model is to be used according to the
CUA '91 guidelines.
Specifies that one or more items can be selected at any time.
Specifies that only a single item may be selected at any time. This is the
default.
Specifies that the container should position items automatically when one
of a specific set of events occurs. This is valid for icon view only.
Specifies that the object records are of the type MINIRECORDCORE
(instead of RECORDCORE).
Specifies that no text should be editable.
Specifies that the container should verify that all pointers used belong to the
object list. It does not validate the accessibility of the pointers. This should
be used only during debugging, since it affects the performance of the
container.

The basic data unit of a container is a structure that describes the state of an individual item within the
container. Depending on whether the CCS_MINIRECORDCORE style bit is specified, this is either a
RECORDCORE or MINIRECORDCORE structure. There are advantages to using either; the former
requires more setup but is more flexible, while the latter requires less setup but is more limiting. (Here we
use the RECORDCORE structure in our discussions but we use the MINIRECORDCORE structure in the
samples.) Additional bytes at the end of the record can be specified when the record is allocated. Thus,
typically a structure would be defined by the programmer, whose first field is the RECORDCORE
structure; the structure would be typecast to the appropriate structure type for messages sent to or from the
container.

typedef struct _ITEMINFO {
MINIRECORDCORE mrcRecord;
CHAR achitem[256];
ULONG ulUnitsSold;
float fRevenue;

ITEMINFO, *PITEMINFO;

Programmers always should be sure to specify the style bit that corresponds to the type of object record
they decide to use.

Records are allocated using the CM_ALLOCRECORD message with the extra bytes needed beyond the
RECORDCORE structure specified in the first parameter and the number of records to allocate specified in
the second parameter. Obviously, for performance reasons, allocating one record at a time should be
avoided. Instead, if at all possible, the number of records needed should be determined and allocated in
one call. If more than one record is allocated, the head of a linked list of records is returned, with the link
specified in the preccNextRecord field. Note that allocating memory for the records is not equivalent to
inserting the records into the container. This is done using the CM_INSERTRECORD message and, as
before, should be done with as many records as possible to increase performance.

The CM_INSERTRECORD message requires the first parameter to contain the head of the linked list of
the (one or more) records to insert. The second parameter points to a RECORDINSERT structure.

typedef struct _RECORDINSERT {
ULONG cb;
PRECORDCORE pRecordOrder;
PRECORDCORE pRecordParent;
ULONG finvalidateRecord;
ULONG zOrder;
ULONG cRecordsinsert;

RECORDINSERT;

Containers - 399

cb is the size of the structure in bytes. pRecordOrder specifies the record after which the record(s) are to
be inserted. CMA_FIRST or CMA_END also can be specified to indicate that the record(s) should go at
the front or end of the record list. pRecordParent specifies the parent record and can be NULL to indicate
a top-level record. This field is valid only for tree view. flnvalidateRecord is TRUE if the records are to
be invalidated (and thus redrawn) after being inserted. zOrder specifies the Z-order of the record and can
be either CMA_TOP or CMA_BOTTOM to specify the top and bottom of the Z-order. cRecordslnsert
specifies the number of records that are being inserted.

Half Full or Half Empty?
We stated before that the container supports multiple views of its objects. This is a perfect time to
elaborate because it introduces us to the CNRINFO structure, which is used to control a variety of
container characteristics.

typedef struct _CNRINFO {
ULONG cb;

PVOID pSortRecord;
PFIELDINFO pFieldinfoLast;
PFIELDINFO pFieldinfoObject;
PSZ pszCnrTitle;
ULONG flWindowAttr;
POINTL ptlOrigin;
ULONG cDelta;
ULONG cRecords;
SIZEL slBitmapOricon;
SIZEL slTreeBitmapOricon;
HBITMAP hbmExpanded;
HBITMAP hbmCollapsed;
HPOINTER hptrExpanded;
HPOINTER hptrCollapsed;
LONG cyLineSpacing;
LONG cxTreeindent;
LONG cxTreeLine;
ULONG cFields;
LONG xVertSplitbar;

CNRINFO;

The CNRINFO structure contains a large number of fields. Note that not every one of them needs to be
initialized. Instead, only the needed fields are initialized; fields which were initialized are cited as a
combination of flags specified in the second parameter of the CM_SETCNRINFO message. To change the
view to icon view, for example:

CNRINFO ciinfo;

ciinfo.cb=sizeof(CNRINFO);
ciinfo.flWindowAttr=CV_ICON;

400 - The Art of OS/2 Warp Programming
WinSendMsg(pcdData->hwndCnr,

CM_SETCNRINFO,
MPFROMP(&ciinfo},
MPFROMLONG(CMA_FLWINDOWATTR));

Since we're talking about views of an object, let's look at the various combinations of view flags to specify
the different view types. Table 23.2 provides a list of view flags.

Table 23.2 View Flags

CV_ICON
CV_NAME

CV_TEXT

CV_TREE

CV_DETAIL

CV_FLOW

Specifies that the icon or bitmap should be displayed with the text below it.
Specifies that the icon should be displayed with the text to the right. This can be combined
with the CV _FLOW flag.
Specifies that the text alone should be displayed. This can be combined with the
CV _FLOW flag.
Used for records that have children. Three view types can be used with the tree view. (See
"Tree View" on page 409.) The tree view shows a hierarchical view of the data.
The details view shows data in a columnar format. This is discussed in more detail later in
this chapter on page 409 .
The CV _FLOW flag specifies that, once a column is filled, the list should continue in an
adjacent column.

The following sections look at each view type in detail.

Icon, Name, and Text Views
The icon view is perhaps the most widely known because it is the default view for the folders on the
desktop. It consists of an icon or bitmap representing the object, with text directly beneath it. The text can
be "directly edited"-the user can, using the mouse and/or keyboard, directly edit the text. (The application
controls whether the container retains the changes.)

If the container was created with the CCS_AUTOPOSffiON style, the objects are arranged automatically
whenever any of the following events occur:

• The window size changes
• Container items are inserted, removed, sorted, invalidated, or filtered
• The font or font size changes
• The window title text changes

This arranging occurs as if the container were sent a CM_ARRANGE message.

The name view consists of the icon or bitmap representing the object with the text immediately to the right.
As with the icon view, the text can be edited directly. If CV _FLOW is not specified, objects are arranged
vertically in a single column. If CV _FLOW is specified, a new column is created to the right if the objects
extend beyond the bottom of the container.

The text view consists of the text only, and the objects are arranged in the same manner as the name view,
with the same semantics regarding the specification of the CV _FLOW flag.

The following application illustrates these three views of a container's contents.

CONTAINl.C
#define
#define
#define
#define
#include
#include
#include
#include
#include
#include
#define
#define
#define
#define
#define
typedef
{

HWND

INCL_WINPOINTERS
INCL_WINSTDCNR
INCL_WINSYS
INCL_WINWINDOWMGR
<os2.h>
<stdio.h>
<stdlib.h>
<string.h>
<ctype.h>
"containl.h"
CLS_CLIENT "SampleClass"
MAX_YEARS 10
MAX_MONTHS 12
MAX_COLUMNS 4
CX_SPLITBAR 120

struct _CLIENTDATA

hwndCnr;

HPOINTER hptricon;
CLIENTDATA,*PCLIENTDATA;

typedef struct
{

_SALES INFO

MINIRECORDCORE mrcStd;
ULONG ulNumUnits;
float fSales;
PCHAR pchSales;

SALESINFO,*PSALESINFO;

MRESULT EXPENTRY clientWndProc(HWND hwndClient,ULONG ulMsg,MPARAM
mpParml,MPARAM mpParm2);

INT main(VOID)
{

HAB
HMQ
UL ONG
HWND
BOOL
QMSG

habAnchor;
hmqQueue;
ulFlags;
hwndFrame;
bLoop;
qmMsg;

habAnchor Wininitialize(O);
hmqQueue = WinCreateMsgQueue(habAnchor,

0);

WinRegisterClass(habAnchor,
CLS_CLIENT,
clientWndProc,
0,
sizeof (PVOID));

ulFlags = FCF_SIZEBORDERIFCF_TITLEBARIFCF_TASKLISTI
FCF_SHELLPOSITIONIFCF_SYSMENUIFCF_MENU;

Containers - 401

402 - The Art of OS/2 Warp Programming
hwndFrame = WinCreateStdWindow(HWND_DESKTOP,

WS_VISIBLE,
&ulFlags,
CLS_CLIENT,
"Container Sample",
0,
NULLHANDLE,
RES_CLIENT,
NULL);

if (hwndFrame ! = NULLHANDLE)
{

bLoop = WinGetMsg(habAnchor,
&qroMsg,
NULLHANDLE,
0,

while (bLoop)
{

0);

WinDispatchMsg(habAnchor,
&qroMsg);

bLoop = WinGetMsg(habAnchor,
&qroMsg,
NULLHANDLE,
0,
0);

}
WinDestroyWindow(hwndFrame);

}
WinDestroyMsgQueue(hmqQueue);
WinTerminate(habAnchor);
return O;

/* endwhile

/* endif

VOID initSalesinfo(PCLIENTDATA pcdData,PSALESINFO psiSales,USHORT
us Index)

PC HAR pchPos;

psiSales->mrcStd.cb = sizeof(MINIRECORDCORE);

psiSales->mrcStd.pszicon = malloc(256);
if (psiSales->mrcStd.pszicon !=NULL)
{

sprintf(psiSales->mrcStd.pszicon,
"Year 19%02d",
usindex+B4);

/* endif
psiSales->mrcStd.hptricon pcdData->hptricon;
psiSales->ulNumUnits = usindex *usindex;
psiSales->fSales = (float)psiSales->ulNumUnits *9.95;

psiSales->pchSales = malloc(16);
if (psiSales->pchSales !=NULL)
{

sprintf(psiSales->pchSales,
"$%-10.2f",
psiSales->fSales);

pchPos = psiSales->pchSales;
while (!isspace(*pchPos) && (*pchPos != 0))
{

pchPos++;
/* endwhile

*pchPos = O;
/* endif

return ;

*/

*/

*I

*/

*I

VOID freeYearinfo(PCLIENTDATA pcdData)
{

PSALESINFO psi Year;

psiYear = (PSALESINFO)PVOIDFROMMR(WinSendMsg(pcdData->hwndCnr,
CM_QUERYRECORD,
0,
MPFROM2SHORT

(CMA_FIRST,
CMA_ITEMORDER)));

while (psiYear !=NULL)
{

if (psiYear->mrcStd.pszicon !=NULL)
{

free(psiYear->mrcStd.pszicon);

if (psiYear->pchSales !=NULL)
{

free(psiYear->pchSales);

/* endif */

/* endif */
psiYear = (PSALESINFO)PVOIDFROMMR(WinSendMsg(pcdData->hwndCnr,

CM_QUERYRECORD,
MPFROMP(psiYear),
MPFROM2SHORT

(CMA_NEXT,
CMA_ITEMORDER)
)) ;

/* endwhile
return

MRESULT EXPENTRY clientWndProc(HWND hwndClient,ULONG ulMsg,MPARAM
mpParml,MPARAM mpParm2)

PCLIENTDATA pcdData;

pcdData = (PCLIENTDATA)WinQueryWindowPtr(hwndClient,
0);

switch (ulMsg)
{

case WM_CREATE
{

ULONG
RECORD INSERT
PSALESINFO
PSALESINFO
USHORT

ulExtra;
riRecord;
psi Years;
psiCYear;
us Index;

pcdData (PCLIENTDATA)calloc(l,
sizeof(CLIENTDATA));

if (pcdData == NULL)
{

WinAlarm(HWND_DESKTOP,
WA_ERROR);

WinMessageBox(HWND_DESKTOP,
HWND_DESKTOP,
"No memory is available",
"Error 11 ,

0,
MB_ICONEXCLAMATIONIMB_OK);

return MRFROMSHORT(TRUE);
/* endif

*/

*/

Containers - 403

404 - The Art of OS/2 Warp Programming
WinSetWindowPtr(hwndClient,

0,
pcdData);

pcdData->hwndCnr = NULLHANDLE;
pcdData->hptricon = NULLHANDLE;

pcdData->hwndCnr = WinCreateWindow(hwndClient,
WC_ CONTAINER,

if (pcdData->hwndCnr
{

NULLHANDLE)

free (pcdData);
WinAlarm(HWND_DESKTOP,

WA_ERROR);
WinMessageBox(HWND_DESKTOP,

HWND_DESKTOP,

' CCS_MINIRECORDCOREI

0,
0,
0'
0,

CCS_EXTENDSELI
WS_VISIBLE,

hwndClient,
HWND_TOP,
WND_CONTAINER,
NULL,
NULL);

"Cannot create container",
"Error",
0,
MB_ICONEXCLAMATIONIMB_OK);

return MRFROMSHORT(TRUE);

pcdData->hptricon

/* endif

WinLoadPointer(HWND_DESKTOP,
NULLHANDLE,
ICO_ITEM);

ulExtra = sizeof{SALESINFO)-sizeof(MINIRECORDCORE);

riRecord.cb = sizeof(RECORDINSERT);
riRecord.pRecordOrder = (PRECORDCORE)CMA_END;
riRecord.finvalidateRecord =FALSE;
riRecord.zOrder = CMA_TOP;

psiYears = (PSALESINFO)PVOIDFROMMR(WinSendMsg(pcdData->
hwndCnr,

*/

CM_ALLOCRECORD

psiCYear = psiYears;

MPFROMLONG
(ulExtra),

MPFROMSHORT
(MAX_YEARS)
)) ;

for (usindex = O; usindex < MAX_YEARS; usindex++)
{

initSalesinfo(pcdData,
psiCYear,
usindex);

riRecord.pRecordParent = NULL;
riRecord.cRecordsinsert = l;

WinSendMsg(pcdData->hwndCnr,
CM_INSERTRECORD,
MPFROMP(psiCYear),
MPFROMP(&riRecord));

psiCYear = (PSALESINFO)
psiCYear->mrcStd.preccNextRecord;

/* endfor
WinSendMsg(hwndClient,

WM_COMMAND,
MPFROMSHORT(MI_ICON),
0);

break;
case WM_DESTROY

freeYearinfo(pcdData);

if (pcdData->hwndCnr != NULLHANDLE)
{

WinDestroyWindow(pcdData->hwndCnr);
} /* endif
if (pcdData->hptricon != NULLHANDLE)
{

WinDestroyPointer(pcdData->hptricon);
} /* endif
free (pcdData);
break;

case WM_SIZE :
if (pcdData->hwndCnr != NULLHANDLE)
{

WinSetWindowPos(pcdData->hwndCnr,
NULLHANDLE,

break;

0,
0,
SHORT1FROMMP(mpParm2),
SHORT2FROMMP(mpParm2),
SWP_MOVEISWP_SIZE);

/* endif

case WM_COMMAND
switch (SHORTlFROMMP(mpParml))
{

case MI ICON
{

CNRINFO ciinfo;

ciinfo.cb sizeof(CNRINFO);
ciinfo.flWindowAttr = CV_ICON;

WinSendMsg(pcdData->hwndCnr,
CM_SETCNRINFO,
MPFROMP(&ciinfo),
MPFROMLONG(CMA_FLWINDOWATTR));

WinSendMsg(pcdData->hwndCnr,
CM_ARRANGE,
NULL,
NULL);

break;

case MI_NAMEFLOWED
{

CNRINFO ciinfo;

ciinfo.cb sizeof(CNRINFO);
ciinfo.flWindowAttr = CV_NAMEICV_FLOW;

Containers - 405

*/

*/

*/

*/

406 - The Art of OS/2 Warp Programming

WinSendMsg(pcdData->hwndCnr,
CM_SETCNRINFO,
MPFROMP(&ciinfo),
MPFROMLONG(CMA_FLWINDOWATTR));

WinSendMsg(pcdData->hwndCnr,
CM_ARRANGE,
NULL,
NULL);

break;

case MI_TEXTFLOWED
{

CNRINFO ciinfo;

ciinfo.cb sizeof(CNRINFO);
ciinfo.flWindowAttr = CV_TEXTICV_FLOW;

WinSendMsg(pcdData->hwndCnr,
CM_SETCNRINFO,
MPFROMP(&ciinfo),
MPFROMLONG(CMA_FLWINDOWATTR));

WinSendMsg(pcdData->hwndCnr,
CM_ARRANGE,
NULL,
NULL);

break;

case MI_EXIT
WinPostMsg(hwndClient,

WM_CLOSE,
0,
0);

break;

case MI_RESUME
break;

default
return WinDefWindowProc(hwndClient,

ulMsg,
mpParml,
mpParm2);

break;

case WM_PAINT
{

HPS
RECTL

hpsPaint;
rclPaint;

/* endswitch

hpsPaint WinBeginPaint(hwndClient,
NULLHANDLE,
&rclPaint) ;

WinFillRect(hpsPaint,
&rclPaint,
SYSCLR_WINDOW) ;

WinEndPaint(hpsPaint);

break;

default

*/

return WinDefWindowProc(hwndClient,
ulMsg,
mpParml,
mpParm2);

return MRFROMSHORT(FALSE);

CONT AINI.RC
#include <os2.h>
#include "containl.h"

ICON ICO_ITEM CONTAINl.ICO

MENU RES_CLIENT
{

SUBMENU "-Views", M_VIEWS
{

MENUITEM "-Icon", MI_ICON

/* endswitch

MENUITEM "-Name/flowed", MI_NAMEFLOWED
MENUITEM "Te-xt/flowed", MI_TEXTFLOWED

SUBMENU "E-xit", M_EXIT
{

MENUITEM "E-xit", MI_EXIT
MENUITEM "-Resume", MI_RESUME

CONTAINl.H
#define RES_CLIENT
#define WND_CONTAINER
#define ICO_ITEM
#define M_VIEWS
#define MI_ICON
#define MI_DETAIL
#define MI_TREE
#define MI_NAMEFLOWED
#define MI_TEXTFLOWED
#define M_EXIT
#define MI_EXIT
#define MI_RESUME

CONT AINI.MAK

256
257
258
320
321
322
323
324
325
336
337
338

CONTAINl.EXE: CONTAINl.OBJ \

LINK386 @<<
CONTAINl
CONTAINl
CONTAINl
082386
CONTAINl
<<

CONTAINl.RES

RC CONTAINl.RES CONTAINl.EXE

Containers - 407

*/

408 - The Art of OS/2 Warp Programming
CONTAINl.RES: CONTAINl.RC \

CONTAINl.H
RC -r CONTAINl.RC CONTAINl.RES

CONTAINl.OBJ: CONTAINl.C \
CONTAINl.H

ICC -C+ -Kb+ -Ss+ CONTAINl.C

CONT AINI.DEF
NAME CONTAIN! WINDOWAPI

DESCRIPTION 'First container example
Copyright 1992 by Larry Salomon
All rights reserved. '

STACKSIZE 32768

The code should be easy to digest. First, the records are allocated using tl1e C~1_ALLOCRECORD
structure.

psi Years PSALESINFO) PVOIDFROMMR (
WinSendMsg (pcdData -> hwndCnr,

CM_ALLOCRECORD,
MPFROMLONG (ulExtra) '
MPFROMSHORT (MAX_YEARS)))

Then the allocated records are initialized by calling the initSaleslnfo function; after each record is
initialized, it is inserted using the riRecord structure that was initialized earlier.

psiCYear = psiYears ;

for (usindex = 0 ; usindex < MAX_YEARS ; usindex ++) {
initSalesinfo (pcdData, psiCYear, usindex) ;

riRecord.pRecordParent = NULL ;
riRecord.cRecordsinsert = 1 ;

WinSendMsg (pcdData -> hwndCnr,
CM_INSERTRECORD,
MPFROMP (psiCYear) '
MPFROMP (&riRecord))

psiCYear =
(PSALESINFO) psiCYear -> mrcStd.preccNextRecord

/* endfor */

It is true that the source code should "practice what we preach" in terms of inserting more than one record
at a time to increase performance, but simplicity was deemed more important to allow better understanding
of the code.

Finally, the container is switched into icon view by sending ourselves a WM_COMMAND message to
simulate the selection of the corresponding menu item.

WinSendMsg (hwndClient,
WM_COMMAND,
MPFROMSHORT MI_ICON) ,
0) ;

Containers - 409
The WM_ COMMAND code to switch between container views is rather simple as well. For space
reasons, here we present only the code for switching to icon view.

case MI_ICON:
{

CNRINFO ciinfo ;

ciinfo.cb = sizeof (CNRINFO) ;
ciinfo.flWindowAttr = CV_ICON ;

WinSendMsg (pcdData -> hwndCnr,
CM_SETCNRINFO,
MPFROMP (&ciinfo) ,
MPFROMLONG (CMA_FLWINDOWATTR))

WinSendMsg (pcdData -> hwndCnr,
CM_ARRANGE,
NULL,
NULL) ;

break

Tree View
The tree view is next in the list in order of complexity. It offers three different variations, which are
described in Table 23.3.

Table 23.3 Tree View Variations

Tree icon view

Tree name view

Tree text view

Objects in the tree are represented by icons or bitmaps with the text to the right. If an
item is expandable, a separate bitmap is drawn to the left of the object. This view is
specified by adding the CV _ICON and CV_ TREE flags to the flWindowAttr field.
This is the same as the tree icon view except that an object's expandability is shown on
the icon or bitmap of the object, and not as a separate bitmap; the TREEITEMDESC
structure contains the bitmap or icon handles for both expanded and collapsed views.
The caveat here is that the TREEITEMDESC structure is pointed to by the
RECORDCORE structure but not by the MINIRECORDCORE structure. This view is
specified by adding the CV _NAME and CV_ TREE flags to the flWindowAttr field.
Objects in the tree are represented by text only. The feedback on the expandability of
an object is represented by a separate bitmap to the left of the text. This view is
specified by adding the CV TEXT and CV TREE flags to the flWindowAttr field.

In addition to specifying the view type, the amount of space (in pels) for indentation and the thickness of
the tree lines may be specified when CA_ TREELINE is specified. The indentation and thickness are
specified in the cxTreelndent and cxTreeLine fields of the CNRINFO structure, respectively. If a value less
than 0 is specified for either field, the default for that field is used.

Details View
The details view is by far the most difficult of the five view types to program, but its ability to show a lot
of information at once overshadows this complexity. This view supports the following data types:
bitmap/icon, string, unsigned long integer, date, and time. For the latter three, national language support
(NLS) is enabled, meaning that the proper thousands separator character is used, the time information is

410 - The Art of OS/2 Warp Programming
ordered correctly, and so on. There is no support for decimal types, so any decimals will have to be
converted to their string equivalents to display numbers of this type.

The major item of interest when using the details view is the FIELDINFO structure, which describes a
single column that is displayed in this view. As with the object records, memory for the FIELDINFO
structures is allocated via a message: CM_ALLOCDETAILFIELDINFO. The first parameter specifies the
number of FIELDINFO structures to allocate, and a pointer to the first structure is returned. As with
CM_ALLOCRECORD, this is the head of a linked list of structures if more than one is allocated and the
link to the next record is specified in the pNextFieldlnfo field.

typedef struct _FIELDINFO
ULONG cb;
ULONG flData;
ULONG flTitle;
PVOID pTitleData;
ULONG offStruct;
PVOID pUserData;
struct _FIELDINFO *pNextFieldinfo;
ULONG cxWidth;

FIELDINFO;

cb specifies the size of the structure in bytes. flData specifies the type of the data in this field and any
associated attributes of the column via one or more CFA_ constants listed in Table 23.4.

CFA_LEFT
CFA_RIGHT
CF A_ CENTER
CF A_ TOP
CFA_VCENTER
CFA_BOTTOM
CFA_INVISIBLE
CFA_BITMAPORICON

CFA_SEPARATOR

CFA_HORZSEPARATOR

CFA_STRING

CF A_ OWNER
CFA_DATE
CF A_ TIME
CFA_FIREADONL Y
CFA_FITITLEREADONL Y
CFA_ULONG

Specifies that the data is to be horizontally aligned left.
Specifies that the data is to be horizontally aligned right.
Specifies that the data is to be horizontally centered.
Specifies that the data is to be vertically aligned top.
Specifies that the data is to be vertically centered.
Specifies that the data is to be vertically aligned bottom.
Specifies that the column is not to be shown.
Specifies that offStruct points to a bitmap or icon handle to be displayed
in the column, depending on the current setting of flWindowAttr in the
CNRINFO structure last used to set the container attributes.
Specifies that there should be a vertical separator to the right of the
column.
(flTitle only) Specifies that the column title should have a horizontal
separator dividing it from the data.
Specifies that offStruct points to a pointer to a string to be displayed in
the column.
Specifies that the column is to be owner-drawn.
Specifies that offStruct points to a CDA TE structure.
Specifies that offStruct points to a CTIME structure.
Specifies that the column data should be read-only.
(flTitle only) Specifies that the column should be read-only.
Specifies that offStruct points to a ULONG.

flTitle specifies attributes about the heading for this column and is also a combination of CFA_ constants.
pTitleData points to the column title data; this is a a bitmap or icon if CFA_BITMAPORICON is specified
in flTitle; otherwise it is a pointer to a string. offStruct specifies the offset from the beginning of the

Containers - 411
RECORDCORE structure to where the data resides. pUserData points to any application-specific data for
this column. pNextFieldlnfo points to the next FIELDINFO structure in the linked list. cxWidth specifies
the width of the column. If 0, the column will be autosized to be the width of its widest element.

The fields cb, pNextFieldlnfo, and cxWidth are initialized by the container in the
CM_ALLOCDETAILINFO processing. The application is responsible for initializing the remaining fields.

Splitbars

Gotcha!
If flData specifies CFA_STRING, then ofjStruct specifies the offset of the pointer to
the text and not the text itself.

Gotcha!
The column heading data is not copied into the container's workspace. Thus they must
be global, static, or dynamically allocated data.

Gotcha!
A common mistake when specifying CFA_DATE or CFA_TIME for a column is to
improperly convert an FDA TE structure to a CDA TE structure and an FfIME
structure to a CTIME structure.

Details view also provides the option of having a single splitbar between columns. A splitbar is a vertical
bar that can be moved with the mouse. This is useful if the data displayed in a column extends beyond the
space available. If a splitbar is used, horizontal scrollbars are displayed on the bottom of the container for
each subsection bounded by a container edge or a splitbar.

As might be expected, a splitbar is added to the details view using the CM_SETCNRINFO message. The
pFieldlnfoLast and xVertSplitbar fields are initialized in the CNRINFO structure. The former points to the
FIELDINFO structure to the immediate left of the splitbar; and the latter specifies where the splitbar is to
be positioned initially. After initializing these fields, the CM_SETCNRINFO message is sent, specifying
CMA_PFIELDINFOLAST I CMA_XVERTSPLITBAR as the second parameter.

The following sample application adds tree and details view to the last sample application. Additionally, it
demonstrates the use of a splitbar in the details view.

412 - The Art of OS/2 Warp Programming
CONTAIN2.C
#define
#define
#define
#define
#include
#include
#include
#include
#include
#include

INCL_WINPOINTERS
INCL_WINSTDCNR
INCL_WINSYS
INCL_WINWINDOWMGR
<os2.h>
<stdio.h>
<stdlib.h>
<string.h>
<Ctype.h>
"contain2.h"

#define
#define
#define
#define
#define
typedef
{

CLS_CLIENT "SampleClass"

HWND

MAX_ YEARS 10
MAX_MONTHS 12
MAX_ COLUMNS 4
CX_SPLITBAR 120

struct _CLIENTDATA

hwndCnr;

HPOINTER hptricon;
CLIENTDATA,*PCLIENTDATA;

typedef struct
{

_SALES INFO

MINIRECORDCORE mrcStd;
ULONG ulNumUnits;
float fSales;
PCHAR pchSales;

SALESINFO,*PSALESINFO;

MRESULT EXPENTRY clientWndProc(HWND hwndClient,ULONG ulMsg,MPARAM
mpParml,MPARAM mpParm2);

INT main(VOID)
{

HAB
HMQ
ULONG
HWND
BOOL
QMSG

habAnchor;
hmqQueue;
ulFlags;
hwndFrame;
bLoop;
qrnMsg;

habAnchor Wininitialize(O);
hmqQueue = WinCreateMsgQueue(habAnchor,

0);

WinRegisterClass(habAnchor,
CLS_CLIENT,
clientWndProc,
0,
sizeof(PVOID));

ulFlags = FCF_SIZEBORDER!FCF_TITLEBAR!FCF_TASKLISTI
FCF_SHELLPOSITION!FCF_SYSMENU!FCF_MENU;

hwndFrame = WinCreateStdWindow(HWND_DESKTOP,
WS_VISIBLE,
&ulFlags,
CLS_CLIENT,
"Container Sample",
0,

if (hwndFrame ! = NULLHANDLE)

NULLHANDLE,
RES_CLIENT,
NULL);

bLoop WinGetMsg(habAnchor,
&qmMsg,
NULLHANDLE,
0,
0);

while (bLoop)
{

WinDispatchMsg(habAnchor,
&qmMsg);

bLoop = WinGetMsg(habAnchor,
&qmMsg,
NULLHANDLE,
0,
0);

WinDestroyWindow(hwndFrame);
!* endwhile

/* endif
WinDestroyMsgQueue(hmqQueue);
WinTerminate(habAnchor);
return O;

VOID initSalesinfo(PCLIENTDATA pcdData,PSALESINFO psiParent,
PSALESINFO psiSales,USHORT usindex)

PC HAR pchPos;

psiSales->mrcStd.cb = sizeof(MINIRECORDCORE);

psiSales->mrcStd.pszicon = malloc(256);
if (psiSales->mrcStd.pszicon != NULL)
{

if (psiParent !=NULL)
{

sprintf(psiSales->mrcStd.pszicon,
"Month %d",

else
{

usindex+l);

sprintf(psiSales->mrcStd.pszicon,
"Year 19%02d",
usindex+84) ;

psiSales->mrcStd.hptricon

/* endif
!* endif

pcdData->hptricon;

if (psiParent !=NULL)
{

psiSales->ulNumUnits psiParent->ulNumUnits/12;

else
{

psiSales->ulNumUnits = usindex *usindex;
} /* endif
psiSales->fSales = (float)psiSales->ulNumUnits *9.95;

psiSales->pchSales = malloc(16);
if (psiSales->pchSales !=NULL)
{

sprintf(psiSales->pchSales,
"$%-10.2f",
psiSales->fSales);

pchPos = psiSales->pchSales;
while (!isspace(*pchPosl && (*pchPos != Oll

*/

*/

*/
*!

*!

Containers - 413

414 - The Art of OS/2 Warp Programming

pchPos++;
}
*pchPos = O;

return ;

VOID freeYearinfo(PCLIENTDATA pcdData)
{

PSALESINFO psi Year;
PSALESINFO psiMonth;

/* endwhile */

/* endif */

psiYear = (PSALESINFO)PVOIDFROMMR(WinSendMsg(pcdData->hwndCnr,
CM_QUERYRECORD,
0,
MPFROM2SHORT

while (psiYear != NULL)
{

(CMA_FIRST,
CMA_ITEMORDER)));

psiMonth = (PSALESINFO)PVOIDFROMMR(WinSendMsg(pcdData->hwndCnr,
CM_QUERYRECORD,
MPFROMP(psiYear),
MPFROM2SHORT

' while (psiMonth != NULL)
{

if (psiMonth->mrcStd.pszicon != NULL)
{

free(psiMonth->mrcStd.pszicon);
} /* endif
if (psiMonth->pchSales !=NULL)
{

free(psiMonth->pchSales);
} /* endif

(CMA_FIRSTCHILD,
CMA_ITEMORDER)))

*/

*I
psiMonth = (PSALESINFO)PVOIDFROMMR(WinSendMsg

(pcdData->hwndCnr,
CM__QUERYRECORD,
MPFROMP(psiMonth),
MPFROM2SHORT(CMA_NEXT,

CMA_ITEMORDER)));
} /* endwhile */
if (psiYear->mrcStd.pszicon !=NULL)
{

free(psiYear->mrcStd.pszicon);
} /* endif */
if (psiYear->pchSales !=NULL)
{

free(psiYear->pchSales);
} /* endif */
psiYear =

return

(PSALESINFO)PVOIDFROMMR(WinSendMsg(pcdData->hwndCnr,
CM_QUERYRECORD,
MPFROMP(psiYear),
MPFROM2SHORT

/* endwhile

(CMA_NEXT,
CMA_ITEMORDER)
)) ;

*/

VOID initColumns(PCLIENTDATA pcdData)
{

CNRINFO
PFIELDINFO
PFIELDINFO

ciinfo;
pfiCurrent;
pfiinfo;

PFIELDINFO pfiLefty;
FIELDINFOINSERT fiiinfo;

pfiinfo = (PFIELDINFO)PVOIDFROMMR(WinSendMsg(pcdData->hwndCnr,
CM_ALLOCDETAILFIELDINFO

pfiCurrent = pfiinfo;

MPFROMLONG
(MAX_COLUMNS),
0));

pfiCurrent->flData
[CFA_SEPARATOR;

CFA_BITMAPORICON[CFA_HORZSEPARATOR[CFA_CENTER

pfiCurrent->flTitle = CFA_STRING[CFA_CENTER;
pfiCurrent->pTitleData = "Icon';
pfiCurrent->offStruct = FIELDOFFSET(SALESINFO,

mrcStd.hptricon);

pfiCurrent = pfiCurrent->pNextFieldinfo;
pfiCurrent->flData = CFA_STRING[CFA_CENTER[CFA_HORZSEPARATOR;

pfiCurrent->flTitle = CFA_STRING[CFA_CENTER;
pfiCurrent->pTitleData = 'Year";
pfiCurrent->offStruct = FIELDOFFSET(SALESINFO,

mrcStd.pszicon);

pfiLefty = pfiCurrent;

pfiCurrent = pfiCurrent->pNextFieldinfo;
pfiCurrent->flData CFA_ULONG[CFA_CENTER[CFA_HORZSEPARATOR[

CFA_SEPARATOR;

pfiCurrent->flTitle = CFA_STRING[CFA_CENTER;
pfiCurrent->pTitleData = "Units Sold";
pfiCurrent->offStruct = FIELDOFFSET(SALESINFO,

ulNumUnits);

pfiCurrent = pfiCurrent->pNextFieldinfo;
pfiCurrent->flData = CFA_STRING[CFA_RIGHT[CFA_HORZSEPARATOR;

pfiCurrent->flTitle = CFA_STRING[CFA_CENTER;
pfiCurrent->pTitleData = "Sales';
pfiCurrent->offStruct FIELDOFFSET(SALESINFO,

pchSales);

fiiinfo.cb = sizeof(fiiinfo);
fiiinfo.pFieldinfoOrder = (PFIELDINFO)CMA_FIRST;
fiiinfo.cFieldinfoinsert = MAX_COLUMNS;
fiiinfo.finvalidateFieldinfo =TRUE;

WinSendMsg(pcdData->hwndCnr,
CM_INSERTDETAILFIELDINFO,
MPFROMP(pfiinfo),
MPFROMP(&fiiinfo));

memset(&ciinfo,
0,
sizeof (ciinfo));

ciinfo.cb = sizeof(CNRINFO);
ciinfo.pFieldinfoLast = pfiLefty;
ciinfo.xVertSplitbar = CX_SPLITBAR;

WinSendMsg(pcdData->hwndCnr,
CM_SETCNRINFO,
MPFROMP(&ciinfo),

Containers - 415

416 -The Art of OS/2 Warp Programming
MPFROMLONG(CMA_PFIELDINFOLASTICMA_XVERTSPLITBAR));

return

MRESULT EXPENTRY clientWndProc(HWND hwndClient,ULONG ulMsg,MPARAM
mpParml,MPARAM mpParm2)

PCLIENTDATA pcdData;

pcdData = (PCLIENTDATA)WinQueryWindowPtr(hwndClient,
0);

switch (ulMsg}
{

case WM_CREATE
{

UL ONG
RECORD INSERT
PSALESINFO
PSALESINFO
USHORr
PSALESINFO
PSALESINFO
USHORT

ulExtra;
riRecord;
psi Years;
psiCYear;
usindexl;
psiMonths;
psiCMonth;
usindex2;

pcdData (PCLIENTDATA)malloc(sizeof(CLIENTDATA)};

if (pcdData == NULL)
{

WinAlarm(HWND_DESKTOP,
WA_ERROR);

WinMessageBox(HWND_DESKTOP,
HWND_DESKTOP,
"No memory is available",
"Error",
0,
MB_ICONEXCLAMATIONIMB_OK);

return MRFROMSHORT(TRUE};

WinSetWindowPtr(hwndClient,
0,
pcdData};

/* endif

pcdData->hwndCnr = NULLHANDLE;
pcdData->hptricon = NULLHANDLE;

pcdData->hwndCnr = WinCreateWindow(hwndClient,
WC_ CONTAINER,

if (pcdData->hwndCnr
{

free(pcdData);

NULLHANDLE)

' CCS_MINIRECORDCOREI

0,
0,
0,
0,

CCS_EXTENDSELI
WS_VISIBLE,

hwndClient,
HWND_TOP,
WND_CONTAINER,
NULL,
NULL);

*/

WinAlarm(HWND_DESKTOP,
WA_ERROR);

WinMessageBox(HWND_DESKTOP,
HWND_DESKTOP,
"Cannot create container",
11 Error 11 ,

0'
MB_ICONEXCLAMATION!MB_OK);

return MRFROMSHORT(TRUE);

pcdData->hptricon

/* endif

WinLoadPointer(HWND_DESKTOP,
NULLHANDLE,
ICO_ITEM);

ulExtra = sizeof(SALESINFO)-sizeof(MINIRECORDCORE);

riRecord.cb = sizeof(RECORDINSERT);
riRecord.pRecordOrder = (PRECORDCORE)CMA_END;
riRecord.finvalidateRecord = FALSE;
riRecord.zOrder = CMA_TOP;

psiYears = (PSALESINFO)PVOIDFROMMR(WinSendMsg(pcdData->
hwndCnr,

*/

CM_ALLOCRECORD

psiCYear = psiYears;

MPFROMLONG
(ulExtra),

MPFROMSHORT
(MAX_YEARS)
)) ;

for (usindexl = O; usindexl < MAX_YEARS; usindexl++)
{

initSalesinfo(pcdData,
NULL,
psiCYear,
usindexl);

riRecord.pRecordParent = NULL;
riRecord.cRecordsinsert = 1;

WinSendMsg(pcdData->hwndCnr,
CM_INSERTRECORD,
MPFROMP(psiCYear),
MPFROMP(&riRecord));

psiMonths = (PSALESINFO)PVOIDFROMMR(WinSendMsg
(pcdData->hwndCnr,
CM_ALLOCRECORD,
MPFROMLONG(ulExtra),
MPFROMSHORT(MAX_MONTHS)));

psiCMonth = psiMonths;

for (usindex2 = O; usindex2 < MAX_MONTHS; usindex2++)
{

initSalesinfo(pcdData,
psiCYear,
psiCMonth,
usindex2);

psiCMonth = (PSALESINFO)
psiCMonth->mrcStd.preccNextRecord;

Containers - 417

418 - The Art of OS/2 Warp Programming
} /* endfor */
riRecord.pRecordParent = (PRECORDCORE)psiCYear;
riRecord.cRecordsinsert = MAX_MONTHS;

WinSendMsg(pcdData->hwndCnr,
CM_INSERTRECORD,
MPFROMP(psiMonths),
MPFROMP(&riRecord));

psiCYear = (PSALESINFO)
psiCYear->mrcStd.preccNextRecord;

} /* endfor
initColurnns(pcdData);

WinSendMsg(hwndClient,
WM_COMMAND,
MPFROMSHORT(MI_ICON),
0);

break;

case WM_DESTROY
freeYearinfo(pcdData);

if (pcdData->hwndCnr != NULLHANDLE)
{

WinDestroyWindow(pcdData->hwndCnr);
/* endif

if (pcdData->hptricon != NULLHANDLE)
{

WinDestroyPointer(pcdData->hptricon);
/* endif

free (pcdData) ;
break;

case WM_SIZE :
if (pcdData->hwndCnr != NULLHANDLE)
{

WinSetWindowPos(pcdData->hwndCnr,
NULLHANDLE,

break;

0,
0,
SHORTlFROMMP(mpParm2),
SHORT2FROMMP(mpParm2),
SWP_MOVEISWP_SIZE);

/* endif

case WM_COMMAND
switch (SHORTlFROMMP(mpParml))
{

case MI_ICON
{

CNRINFO ciinfo;

ciinfo.cb sizeof(CNRINFO);
ciinfo.flWindowAttr = CV_ICON;

WinSendMsg(pcdData->hwndCnr,
CM_SETCNRINFO,
MPFROMP(&ciinfo)'
MPFROMLONG(CMA_FLWINDOWATTR));

WinSendMsg(pcdData->hwndCnr,
CM_ARRANGE,
NULL,
NULL);

*/

*/

*/

*/

break;

case MI_DETAIL
{

CNRINFO ciinfo;

ciinfo.cb sizeof(CNRINFO);
ciinfo.flWindowAttr = CV_DETAILI

CA_DETAILSVIEWTITLES;

WinSendMsg(pcdData->hwndCnr,
CM_SETCNRINFO,
MPFROMP(&ciinfo),
MPFROMLONG(CMA_FLWINDOWATTR));

break;

case MI_TREE
{

CNRINFO ciinfo;

ciinfo.cb sizeof(CNRINFO);
ciinfo.flWindowAttr = CV_TREEICV_ICONICA_TREELINE;
ciinfo.cxTreeindent = -1;
ciinfo.cxTreeLine = -1;

WinSendMsg(pcdData->hwndCnr,
CM_SETCNRINFO,
MPFROMP(&ciinfo),
MPFROMLONG(CMA_FLWINDOWATTR));

break;

case MI_NAMEFLOWED

CNRINFO ciinfo;

ciinfo.cb sizeof(CNRINFO);
ciinfo.flWindowAttr = CV_NAMEICV_FLOW;

WinSendMsg(pcdData->hwndCnr,
CM_SETCNRINFO,
MPFROMP(&ciinfo)'
MPFROMLONG(CMA_FLWINDOWATTR));

WinSendMsg(pcdData->hwndCnr,
CM_ARRANGE,
NULL,
NULL);

break;

case MI_TEXTFLOWED
{

CNRINFO ciinfo;

ciinfo.cb sizeof(CNRINFO);
ciinfo.flWindowAttr = CV_TEXTICV_FLOW;

WinSendMsg(pcdData->hwndCnr,
CM_SETCNRINFO,
MPFROMP(&ciinfo),
MPFROMLONG(CMA_FLWINDOWATTR));

Containers - 419

420 - The Art of OS/2 Warp Programming
WinSendMsg(pcdData->hwndCnr,

CM_ARRANGE,
NULL,
NULL);

break;

case MI_EXIT
WinPostMsg(hwndClient,

WM_CLOSE,
0,
0);

break;

case MI_RESUME
break;

default
return WinDefWindowProc(hwndClient,

ulMsg,
mpParml,
mpParm2);

break;

case WM_PAINT
{

HPS
RECTL

hpsPaint;
rclPaint;

/* endswitch

hpsPaint WinBeginPaint(hwndClient,
NULLHANDLE,
&rclPaint);

WinFillRect(hpsPaint,
&rclPaint,
SYSCLR_WINDOW) ;

WinEndPaint(hpsPaint);

break;

default
return WinDefWindowProc(hwndClient,

ulMsg,
mpParml,
mpParm2);

return MRFROMSHORT(FALSE);

CONTAIN2.RC
#include <os2.h>
#include "contain2.h"

ICON ICO_ITEM CONTAIN2.ICO

MENU RES_CLIENT
{

SUBMENU "-Views"' M_VIEWS
{

MENUITEM "-Icon", MI_ICON
MENUITEM "-Detail", MI_DETAIL
MENUITEM "-Tree", MI_TREE

/* endswitch

*/

*/

MENUITEM "-Name/flowed", MI_NAMEFLOWED
MENUITEM "Te-xt/flowed", MI_TEXTFLOWED

SUBMENU "E-xit", M_EXIT
{

MENUITEM "E-xit", MI_EXIT
MENUITEM "-Resume", MI_RESUME

CONTAIN2.H
#define RES_CLIENT
#define WND_CONTAINER
#define ICO_ITEM
#define M_VIEWS
#define MI_ICON
#define MI_DETAIL
#define MI_TREE
#define MI_NAMEFLOWED
#define MI_TEXTFLOWED
#define M_EXIT
#define MI_EXIT
#define MI_RESUME

CONTAIN2.MAK

256
257
258
320
321
322
323
324
325
336
337
338

CONTAIN2.EXE: CONTAIN2.0BJ \

LINK386 @<<
CONTAIN2
CONTAIN2
CONTAIN2
OS2386
CONTAIN2
<<

CONTAIN2.RES

RC CONTAIN2.RES CONTAIN2.EXE

CONTAIN2.RES: CONTAIN2.RC \
CONTAIN2.H

RC -r CONTAIN2.RC CONTAIN2.RES

CONTAIN2.0BJ: CONTAIN2.C \
CONTAIN2.H

ICC -C+ -Kb+ -Ss+ CONTAIN2.C

CONTAIN2.DEF
NAME CONTAIN2 WINDOWAPI

DESCRIPTION 'Second container example
Copyright 1992 by Larry Salomon
All rights reserved. '

STACKSIZE 32768

Containers - 421

As before, we allocate a number of records using the CM_ALLOCRECORD structure; within the loop to
initialize each record (which represents a year of sales figures), we allocate 12 records to represent each
month, initialize these records, and insert them into the container, specifying the year record previously

422 - The Art of OS/2 Warp Programming
inserted as the parent. This establishes a hierarchical structure that we may observe by placing the
container in tree view.

psiMonths PSALESINFO) PVOIDFROMMR (
WinSendMsg (pcdData -> hwndCnr,

CM_ALLOCRECORD,
MPFROMLONG (ulExtra) ,
MPFROMSHORT (MAX_MONTHS)))

psiCMonth = psiMonths ;
for (usindex2 = 0 ; usindex2 < MAX_MONTHS

usindex2 ++) {
initSalesinfo (pcdData,

psiCYear,
psiCMonth,
usindex2)

psiCMonth =
(PSALESINFO psiCMonth->mrcStd.preccNextRecord;

/* endfor */

riRecord.pRecordParent = (PRECORDCORE) psiCYear ;
riRecord.cRecordsinsert = MAX_MONTHS

WinSendMsg (pcdData -> hwndCnr,
CM_INSERTRECORD,
MPFROMP (psiMonths) ,
MPFROMP (&riRecord)) ;

Finally, we call initColumns to set up the detail view. It allocates a fixed number of FIELDINFO
structures by sending a CM_ALLOCDETAILFIELDINFO message to the container.

pf iinfo = (PFIELDINFO) PVOIDFROMMR (
WinSendMsg (pcdData -> hwndCnr,

CM_ALLOCDETAILFIELDINFO,
MPFROMLONG (MAX_COLUMNS) ,
0)) ;

Each FIELD INFO structure is then initialized, and then all of the FIELDINFO structures are inserted.

pfiCurrent -> flData = CFA_BITMAPORICON I
CFA_HORZSEPARATOR I
CFA_CENTER I
CFA_SEPARATOR

pfiCurrent -> flTitle = CFA_STRING I CFA_CENTER
pfiCurrent -> pTitleData = "Icon" ;
pfiCurrent -> offStruct FIELDOFFSET (SALESINFO,

mrcStd.hptricon

pf iCurrent pf iCurrent -> pNextFieldinfo

fiiinfo.cb = sizeof (fiiinfo) ;
fiiinfo.pFieldinfoOrder = (PFIELDINFO CMA_FIRST
fiiinfo.cFieldinfoinsert = MAX_COLUMNS
fiiinfo.finvalidateFieldinfo =TRUE ;

WinSendMsg (pcdData -> hwndCnr,
CM_INSERTDETAILFIELDINFO,
MPFROMP (pf iinfo) '
MPFROMP (&fiiinfo)) ;

Finally, the splitbar is initialized by sending the CM_SETCNRINFO message.

memset (&ciinfo, 0, sizeof (ciinfo))
ciinfo.cb = sizeof (CNRINFO) ;
ciinfo.pFieldinfoLast = pfiLefty ;
ciinfo.xVertSplitbar = CX_SPLITBAR

WinSencl.Msg (pcdData -> hwndCnr,
CM_SETCNRINFO,
MPFROMP (&ciinfo) '
MPFROMLONG (CMA_PFIELDINFOLAST I

CMA_XVERTSPLITBAR))

Containers - 423

Of Emphasis and Pop-ups
Object emphasis is a visual cue to the user that something about the object is different from the norm.
Cursored, selected, in-use, and source emphasis are the four types defined by the container. Of these four
types, defined in Table 23.5, only the first two are set automatically by the container. The latter two must
be explicitly set by the application via the CM_SETRECORDEMPHASIS message.

Table 23.5 Emghasis T:t'.pes

Cursored

Selected

In-use

Source

Set whenever the input focus belongs to the object. This is shown as a dotted-line
rectangle around the object.
Set whenever the object was selected using the mouse button or the spacebar. The
selection style of the container how records previously selected behave when a new record
is selected. This is shown as an inverted background around the object.
Set whenever the object is defined to be in use by the application. This is shown as a
crosshatch pattern in the background of the object.
Set whenever the object is a source of some action. This record also could be in the
selected state, but doing so is not required. This is shown as a dashed-line rectangle with
rounded corners around the object.

Gotcha!
While the CM_SETRECORDEMPHASIS has CRA_ constants for the cursored,
selected, and in-use emphasis types, the Toolkit header files in OS/2 2.x are missing
the source emphasis constant. CRA_SOURCE should be defined as Ox00004000L.
This has been fixed in the OS/2 Warp Toolkit. It also should be noted that the entire
container can have source emphasis, in which case NULL should be specified for the
record pointer.

The following sample removes the action bar from the window and instead uses pop-up menus to provide
the actions available to the user.

CONTAIN3.C
#define
#define
#define
#define
#define
#define
#include

INCL_WINFRAMEMGR
INCL_WINMENUS
INCL_WINPOINTERS
INCL_WINSTDCNR
INCL_WINSYS
INCL_WINWINDOWMGR
<os2.h>

424-The Art ofOS/2 Warp Programming
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include "CONTAIN3.H"
#define CLS_CLIENT "SampleClass"
#define MAX_YEARS 10
#define MAX_MONTHS 12
#define MAX_COLUMNS 4
#define ex SPLITBAR 120
11--
11 For the GA 2.0 toolkit, CRA_SOURCE is not defined,
II but it should be.
11--

CRA_SOURCE
CRA_SOURCE Ox00004000L

#ifndef
#define
#endif
typedef
{

struct _CLIENTDATA

HWND hwndCnr;

HPOlN'l'.ER hptricon;
HWND hwndMenu;
BOOL bCnrSelected;

CLIENTDATA,*PCLIENTDATA;

typedef struct
{

_SALES INFO

MINIRECORDCORE mrcStd;
BOOL bEmphasized;
ULONG ulNumUnits;
float fSales;
PCHAR pchSales;

SALESINFO,*PSALESINFO;

MRESULT EXPENTRY clientWndProc(HWND hwndClient,ULONG ulMsg,MPARAM
mpParml,MPARAM mpParm2);

INT main(VOID)
{

HAB
HMQ
ULONG
HWND
BOOL
QMSG

habAnchor;
hmqQueue;
ulFlags;
hwndFrame;
bLoop;
qmMsg;

habAnchor Wininitialize(O);
hmqQueue = WinCreateMsgQueue(habAnchor,

0);

WinRegisterClass(habAnchor,
CLS_CLIENT,
clientWndProc,
0,
sizeof (PVOID)) ;

ulFlags = FCF_SIZEBORDERIFCF_TITLEBARIFCF_TASKLISTI
FCF_SHELLPOSITIONIFCF_SYSMENU;

hwndFrame WinCreateStdWindow(HWND_DESKTOP,
WS_VISIBLE,
&ulFlags,
CLS_CLIENT,
"Container Sample",
0,
NULLHANDLE,
RES_CLIENT,
NULL);

if (hwndFrarne != NULLHANDLE)
{

bLoop = WinGetMsg(habAnchor,
&qrnMsg,
NULLHANDLE,

while (bLoop)
{

0'
0);

WinDispatchMsg(habAnchor,
&qrnMsg);

bLoop = WinGetMsg(habAnchor,
&qrnMsg,
NULLHANDLE,
0'
0);

}
WinDestroyWindow(hwndFrarne);

WinDestroyMsgQueue(hmqQueue);
WinTerrninate(habAnchor);
return O;

/* endwhile

/* endif

VOID initSalesinfo(PCLIENTDATA pcdData,PSALESINFO psiParent,
PSALESINFO psiSales,USHORT usindex)

PC HAR pchPos;

psiSales->rnrcStd.cb = sizeof(MINIRECORDCORE);

psiSales->rnrcStd.pszicon = malloc(256);
if (psiSales->rnrcStd.pszicon !=NULL)
{

if (psiParent != NULL)
{

sprintf(psiSales->rnrcStd.pszicon,
"Month %d",

else
{

usindex+l);

sprintf(psiSales->rnrcStd.pszicon,
"Year 19%02d",
usindex+84);

/* endif
} /* endif
psiSales->mrcStd.hptricon pcdData->hptricon;
psiSales->bErnphasized = FALSE;

if (psiParent !=NULL)
{

psiSales->ulNurnUnits

else
{

psiParent->ulNurnUnits/12;

*/

*/

*!
*!

Containers - 425

426 - The Art of OS/2 Warp Programming
psiSales->ulNumUnits = usindex *100;

/* endif
psiSales->fSales = (float)psiSales->ulNumUnits *9.95;

*/

psiSales->pchSales = malloc(16);

if (psiSales->pchSales != NULL)
{

sprintf(psiSales->pchSales,
"$%-10.2f",
psiSales->fSales);

pchPos = psiSales->pchSales;
while (!isspace(*pchPos) && (*pchPos != 0))
{

pchPos++;
/* endwhile

*pchPos = O;
/* endif

return

VOID emphasizeRecs(HWND hwndCnr,BOOL bEmphasize)
{

SHORT
PSALESINFO

sFlag;
psi Year;

sFlag = ((bEmphasize)?CRA_SELECTED:CRA_SOURCE);

*/

*/

psi Year (PSALESINFO)PVOIDFROMMR(WinSendMsg(hwndCnr,
CM_QUERYRECORDEMPHASIS

while (psiYear != NULL)
{

if (bEmphasize)
{

WinSendMsg(hwndCnr,
CM_SETRECORDEMPHASIS,
MPFROMP(psiYear),
MPFROM2SHORT(TRUE,

CRA_SOURCE)) ;

psiYear->bEmphasized = TRUE;
}
else
{

WinSendMsg(hwndCnr,
CM_SETRECORDEMPHASIS,
MPFROMP(psiYear),
MPFROM2SHORT(FALSE,

CRA_SOURCE)) ;

psiYear->bEmphasized = FALSE;

' MPFROMP(CMA_FIRST),
MPFROMSHORT(sFlag)));

} /* endif */
psiYear = (PSALESINFO)PVOIDFROMMR(WinSendMsg(hwndCnr,

CM_QUERYRECORDEMPHASIS

return

VOID freeCnrinfo(HWND hwndCnr)
{

/* endwhile

' MPFROMP(psiYear),
MPFROMSHORT(sFlag)
)) ;

*I

PSALESINFO
PSALESINFO

psi Year;
psiMonth;

psiYear = (PSALESINFO)PVOIDFROMMR(WinSendMsg(hwndCnr,
CM_QUERYRECORD,

0'
MPFROM2SHORT

while (psiYear !=NULL)
{

(CMA_FIRST,
CMA_ITEMORDER)));

psiMonth = (PSALESINFO)PVOIDFROMMR(WinSendMsg(hwndCnr,
CM_QUERYRECORD,
MPFROMP(psiYear),
MPFROM2SHORT
(CMA_FIRSTCHILD,
CMA_ITEMORDER)))

while (psiMonth !=NULL)
{

if (psiMonth->mrcStd.pszicon !=NULL)
{

free(psiMonth->mrcStd.pszicon);
/* endif

if (psiMonth->pchSales !=NULL)
{

free(psiMonth->pchSales);

*/

/* endif */
psiMonth = (PSALESINFO)PVOIDFROMMR(WinSendMsg(hwndCnr,

CM_QUERYRECORD

/* endwhile
if (psiYear->mrcStd.pszicon !=NULL)
{

free(psiYear->mrcStd.pszicon);

if (psiYear->pchSales !=NULL)
{

free(psiYear->pchSales);

!* endif

MPFROMP
(psiMonth) ,

MPFROM2SHORT
(CMA_NEXT,
CMA_ITEMORDER
))) ;

*/

*/

/* endif */
psiYear = (PSALESINFO)PVOIDFROMMR(WinSendMsg(hwndCnr,

CM_QUERYRECORD,
MPFROMP(psiYear),
MPFROM2SHORT

return

VOID initColumns(PCLIENTDATA pcdData)
{

CNRINFO
PF I ELD INFO
PF I ELD INFO
PFIELDINFO
FIELDINFOINSERT

ciinfo;
pfiCurrent;
pfiinfo;
pfiLefty;
fiiinfo;

/* endwhile

(CMA_NEXT,
CMA_ITEMORDER)
)) ;

*/

Containers - 427

428 - The Art of OS/2 Warp Programming
pfiinfo = (PFIELDINFO)PVOIDFROMMR(WinSendMsg(pcdData->hwndCnr,

CM_ALLOCDETAILFIELDINFO

pfiCurrent = pfiinfo;

MPFROMLONG
(MAX_COLUMNS),
0));

pfiCurrent->flData = CFA_BITMAPORICONjCFA_HORZSEPARATORjCFA_CENTER
JCFA_SEPARATOR;

pfiCurrent->flTitle = CFA_STRINGJCFA_CENTER;
pfiCurrent->pTitleData = "Icon";
pfiCurrent->offStruct = FIELDOFFSET(SALESINFO,

mrcStd.hptricon);

pfiCurrent = pfiCurrent->pNextFieldinfo;

pfiCurrent->flData = CFA_STRINGJCFA_CENTERJCFA_HORZSEPARATOR;

pfiCurrent->flTitle = CFA_STRINGJCFA_CENTER;
pfiCurrent->pT..i.t.leData = r:·:rear::;
pfiCurrent->offStruct = FIELDOFFSET(SALESINFO,

mrcStd.pszicon);

pfiLefty = pfiCurrent;

pfiCurrent = pfiCurrent->pNextFieldinfo;
pfiCurrent->flData = CFA_ULONGJCFA_CENTERJCFA_HORZSEPARATORJ

CFA_SEPARATOR;

pfiCurrent->flTitle = CFA_STRINGJCFA_CENTER;
pfiCurrent->pTitleData = "Units Sold";
pfiCurrent->offStruct = FIELDOFFSET(SALESINFO,

ulNumUni ts) ;

pfiCurrent = pfiCurrent->pNextFieldinfo;
pfiCurrent->flData = CFA_STRINGJCFA_RIGHTJCFA_HORZSEPARATOR;

pfiCurrent->flTitle = CFA_STRINGJCFA_CENTER;
pfiCurrent->pTitleData = "Sales";
pfiCurrent->offStruct = FIELDOFFSET(SALESINFO,

pchSales);

fiiinfo.cb = sizeof(fiiinfo);
fiiinfo.pFieldinfoOrder = (PFIELDINFO)CMA_FIRST;
fiiinfo.cFieldinfoinsert = MAX_COLUMNS;
fiiinfo.finvalidateFieldinfo = TRUE;

WinSendMsg(pcdData->hwndCnr,
CM_INSERTDETAILFIELDINFO,
MPFROMP(pfiinfo),
MPFROMP(&fiiinfo));

memset(&ciinfo,
0,
sizeof (ciinfo));

ciinfo.cb = sizeof(CNRINFO);
ciinfo.pFieldinfoLast = pfiLefty;
ciinfo.xVertSplitbar = CX_SPLITBAR;

WinSendMsg(pcdData->hwndCnr,

return

CM_SETCNRINFO,
MPFROMP(&ciinfo),
MPFROMLONG(CMA_PFIELDINFOLASTJCMA_XVERTSPLITBAR));

MRESULT EXPENTRY clientWndProc(HWND hwndClient,ULONG ulMsg,MPARAM
mpParml,MPARAM mpParm2)

PCLIENTDATA pcdData;

pcdData = (PCLIENTDATA)WinQueryWindowPtr(hwndClient,
0);

switch (ulMsg)
{

case WM_CREATE
{

MENU ITEM
UL ONG
UL ONG
RECORDINSERT
PSALESINFO
PSALESINFO
USHORT
PSALESINFO
PSALESINFO
US HORT

mi Item;
ulStyle;
ulExtra;
riRecord;
psi Years;
psiCYear;
usindexl;
psiMonths;
psiCMonth;
usindex2;

pcdData (PCLIENTDATA)malloc(sizeof(CLIENTDATA));
if (pcdData == NULL)
{

WinAlarm(HWND_DESKTOP,
WA_ERROR);

WinMessageBox(HWND_DESKTOP,
HWND_DESKTOP,
"No memory is available",
11 Error 11 ,

0,
MB_ICONEXCLAMATIONiMB_OK);

return MRFROMSHORT(TRUE);

WinSetWindowPtr(hwndClient,
0,
pcdData);

/* endif

pcdData->hwndCnr = NULLHANDLE;
pcdData->hptricon = NULLHANDLE;
pcdData->hwndMenu = NULLHANDLE;
pcdData->bCnrSelected = FALSE;

pcdData->hwndCnr = WinCreateWindow(hwndClient,
WC_ CONTAINER,

if (pcdData->hwndCnr
{

free(pcdData);

NULLHANDLE)

' CCS_MINIRECORDCOREI

0,
0'
0'
0,

CCS_EXTENDSELI
WS_VISIBLE,

hwndClient,
HWND_TOP,
WND_CONTAINER,
NULL,
NULL);

Containers - 429

*/

430 - The Art of OS/2 Warp Programming
WinAlarm(HWND_DESKTOP,

WA_ERROR);
WinMessageBox(HWND_DESKTOP,

HWND_DESKTOP,
"Cannot create container",
"Error",
0,
MB_ICONEXCLAMATIONIMB_OK);

return MRFROMSHORT(TRUE);

pcdData->hptricon

pcdData->hwndMenu

/* endif

WinLoadPointer(HWND_DESKTOP,
NULLHANDLE,
ICO_ITEM);

WinLoadMenu(hwndClient,
NULLHANDLE,
RES_CLIENT);

WinSendMsg(pcdData->hwndMenu,
MM_QUERYITEM,
MPFROM2SHORT(M_VIEWS,

TRUE),
MPFROMP(&miI~emii;

ulStyle WinQueryWindowULong(miitem.hwndSubMenu,
QWL_STYLE) ;

ulStyle I= MS_CONDITIONALCASCADE;
WinSetWindowULong(miitem.hwndSubMenu,

QWL_STYLE,
ulStyle);

WinSendMsg(miitem.hwndSubMenu,
MM_SETDEFAULTITEMID,
MPFROMSHORT(MI_ICON),
0);

ulExtra = sizeof(SALESINFO)-sizeof(MINIRECORDCORE);

riRecord.cb = sizeof(RECORDINSERT);
riRecord.pRecordOrder = (PRECORDCORE)CMA_END;
riRecord.finvalidateRecord = FALSE;
riRecord.zOrder = CMA_TOP;

psiYears = (PSALESINFO)PVOIDFROMMR(WinSendMsg(pcdData->
hwndCnr,

*/

CM_ALLOCRECORD

psiCYear = psiYears;

MPFROMLONG
(ulExtra),

MPFROMSHORT
(MAX_ YEARS)
)) ;

for (usindexl = O; usindex1 < MAX_YEARS; usindex1++)
{

initSalesinfo(pcdData,
NULL,
psiCYear,
usindex1);

riRecord.pRecordParent = NULL;
riRecord.cRecordsinsert = 1;

WinSendMsg(pcdData->hwndCnr,
CM_INSERTRECORD,
MPFROMP(psiCYear),
MPFROMP(&riRecord));

psiMonths = (PSALESINFO)PVOIDFROMMR(WinSendMsg
(pcdData->hwndcnr,
CM_ALLOCRECORD,
MPFROMLONG(ulExtra),
MPFROMSHORT(MAX_MONTHS)));

psiCMonth = psiMonths;

for (usindex2 = O; usindex2 < MAX_MONTHS; usindex2++)
{

initSalesinfo(pcdData,
psiCYear,
psiCMonth,
usindex2);

psiCMonth = (PSALESINFO)
psiCMonth->mrcStd.preccNextRecord;

/* endfor */
riRecord.pRecordParent = (PRECORDCORE)psiCYear;
riRecord.cRecordsinsert = MAX_MONTHS;

WinSendMsg(pcdData->hwndCnr,
CM_INSERTRECORD,
MPFROMP(psiMonths),
MPFROMP(&riRecord));

psiCYear = (PSALESINFO)
psiCYear->mrcStd.preccNextRecord;

} /* endfor
initColumns(pcdData);

WinSendMsg(hwndClient,
WM_COMMAND,
MPFROMSHORT(MI_ICON),
0);

break;

case WM_DESTROY
freeCnrinfo(pcdData->hwndCnr);

if (pcdData->hwndCnr != NULLHANDLE)
{

WinDestroyWindow(pcdData->hwndCnr);
} /* endif
if (pcdData->hptricon != NULLHANDLE)
{

WinDestroyPointer(pcdData->hptricon);
} /* endif
free(pcdData);
break;

case WM_SIZE
if (pcdData->hwndCnr != NULLHANDLE)
{

WinSetWindowPos(pcdData->hwndCnr,
NULLHANDLE,
0,
0,
SHORT1FROMMP(mpParm2),

*/

*/

*/

Containers - 431

432 - The Art of OS/2 Warp Programming

break;

SHORT2FROMMP(mpParm2),
SWP_MOVEISWP_SIZE);

/* endif

case WM_MENUEND
switch (SHORTlFROMMP(mpParml))
{

case FID_MENU :
if (pcdData->bCnrSelected)
{

WinSendMsg(pcdData->hwndCnr,
CM_SETRECORDEMPHASIS,
0,
MPFROM2SHORT(FALSE,

CRA_SOURCE)) ;
pcdData->bCnrSelected = FALSE;

else
{

,
J

emphasizeRecs(pcdData->hwndCnr,
FALSE);

/* endif
break;

default

break;

return WinDefWindowProc(hwndClient,
ulMsg,
mpParml,
mpParm2);

/* endswitch

case WM_CONTROL
switch (SHORTlFROMMP(mpParml))
{

case WND_CONTAINER :
switch (SHORT2FROMMP(mpParml))
{

case CN_CONTEXTMENU
{

PSALESINFO
PO INTL

psiSales;
ptlMouse;

*/

*/

*/

psiSales (PSALESINFO)PVOIDFROMMP(mpParm2);
if (psiSales !=NULL)
{

if ((psiSales->mrcStd.flRecordAttr
&CRA_SELECTED) == 0)

WinSendMsg(pcdData->hwndCnr,
CM_SETRECORDEMPHASIS,
MPFROMP(psiSales)'
MPFROM2SHORT(TRUE,

CRA_SOURCE));
psiSales->bEmphasized = TRUE;

else
{

emphasizeRecs(pcdData->hwndCnr,
TRUE);

/* endif */

else
{

WinSendMsg(pcdData->hwndCnr,
CM_SETRECORDEMPHASIS,
0,
MPFROM2SHORT(TRUE,

CRA_SOURCE)) ;
pcdData->bCnrSelected = TRUE;

} /* endif */
WinQueryPointerPos(HWND_DESKTOP,

&ptlMouse);
WinMapWindowPoints(HWND_DESKTOP,

hwndClient,
&ptlMouse,
1);

WinPopupMenu(hwndClient,
hwndClient,
pcdData->hwndMenu,
ptlMouse.x,
ptlMouse.y,
M_VIEWS,
PU_HCONSTRAINIPU_VCONSTRAINI

PU_KEYBOARDIPU_MOUSEBUTTONll
PU_MOUSEBUTTON2IPU_NONE);

break;

default

break;

return WinDefWindowProc(hwndClient,
ulMsg,
mpParml,
mpParm2);

/* endswitch

default

break;

return WinDefWindowProc(hwndClient,
ulMsg,
mpParml,
mpParm2);

/* endswitch

case WM_COMMAND
switch (SHORTlFROMMP(mpParml))
{

case MI_ICON
{

CNRINFO ciinfo;

ciinfo.cb sizeof(CNRINFO);
ciinfo.flWindowAttr = CV_ICON;

WinSendMsg(pcdData->hwndCnr,
CM_SETCNRINFO,
MPFROMP(&ciinfo),
MPFROMLONG(CMA_FLWINDOWATTR));

WinSendMsg(pcdData->hwndCnr,
CM_ARRANGE,

break;

case MI_DETAIL
{

NULL,
NULL);

*/

*/

Containers - 433

434 -The Art of OS/2 Warp Programming
CNRINFO ciinfo;

ciinfo.cb sizeof(CNRINFO);
ciinfo.flWindowAttr = CV_DETAILj

CA_DETAILSVIEWTITLES;

WinSendMsg(pcdData->hwndCnr,
CM_SETCNRINFO,
MPFROMP(&ciinfo),
MPFROMLONG(CMA_FLWINDOWATTR));

}
break;

case MI_TREE
{

CNRINFO ciinfo;

ciinfo.cb sizeof(CNRINFO);
ciinfo.flWindowAttr = CV_TREEjCV_ICONjCA_TREELINE;
ciinfo.cxTreeindent = -1;
ciinfo.cxTreeLine = -1;

WinSend!~sg(pcdData->hwndCnr,
CM_SETCNRINFO,
MPFROMP(&ciinfo),
MPFROMLONG(CMA_FLWINDOWATTR));

break;

case MI_NAMEFLOWED
{

CNRINFO ciinfo;

ciinfo.cb sizeof(CNRINFO);
ciinfo.flWindowAttr = CV_NAMEjCV_FLOW;

WinSendMsg(pcdData->hwndCnr,
CM_SETCNRINFO,
MPFROMP(&ciinfo),
MPFROMLONG(CMA_FLWINDOWATTR));

WinSendMsg(pcdData->hwndCnr,
CM_ARRANGE,
NULL,
NULL);

break;

case MI_TEXTFLOWED
{

CNRINFO ciinfo;

ciinfo.cb sizeof(CNRINFO);
ciinfo.flWindowAttr = CV_TEXTiCV_FLOW;

WinSendMsg(pcdData->hwndCnr,
CM_SETCNRINFO,
MPFROMP(&ciinfo),
MPFROMLONG(CMA_FLWINDOWATTR));

WinSendMsg(pcdData->hwndCnr,
CM_ARRANGE,
NULL,
NULL);

break;

case MI_EXIT

WinPostMsg(hwndClient,
WM_CLOSE,
0,
0);

break;

case MI_RESUME
break;

default
return WinDefWindowProc(hwndClient,

ulMsg,
mpParml,
mpParm2);

break;

case WM_PAINT
{

HPS
RECTL

hpsPaint;
rclPaint;

/* endswitch

hpsPaint WinBeginPaint(hwndClient,
NULLHANDLE,
&rclPaint);

WinFillRect(hpsPaint,
&rclPaint,
SYSCLR_WINDOW);

WinEndPaint(hpsPaint);

break;

default
return WinDefWindowProc(hwndClient,

ulMsg,
mpParml,
mpParm2);

!* endswitch
return MRFROMSHORT(FALSE);

Containers - 435

*/

*/

436 - The Art of OS/2 Warp Programming
CONTAIN3.RC
#include <os2.h>
#include "contain3.h"

ICON ICO_ITEM CONTAIN3.ICO

MENU RES_CLIENT
{

SUBMENU "-Views
{

M_VIEWS

MENUITEM "-Icon", MI_ICON
MENUITEM "-Detail", MI_DETAIL
MENUITEM "-Tree", MI_TREE
MENUITEM "-Name/flowed", MI_NAMEFLOWED
MENUITEM "Te-xt/flowed", MI_TEXTFLOWED

SUBMENU "E-xit", M_EXIT
{

MENUITEM "E-xit", MI_EXIT
MENUITEM "-Resume", MI_RESUME

CONTAIN3.H
#define RES_CLIENT
#define WND_CONTAINER
#define ICO_ITEM
#define M_VIEWS
#define MI_ICON
#define MI_DETAIL
#define MI_TREE
#define MI_NAMEFLOWED
#define MI_TEXTFLOWED
#define M_EXIT
#define MI_EXIT
#define MI_RESUME

CONTAIN3.MAK

256
257
258
320
321
322
323
324
325
336
337
338

CONTAIN3.EXE: CONTAIN3.0BJ \

LINK386 $(LINKOPTS) @<<
CONTAIN3
CONTAIN3
CONTAIN3
082386
CONTAIN3
<<

CONTAIN3.RES

RC CONTAIN3.RES CONTAIN3.EXE

CONTAIN3.RES: CONTAIN3.RC \
CONTAIN3.H

RC -r CONTAIN3.RC CONTAIN3.RES

CONTAIN3.0BJ: CONTAIN3.C \
CONTAIN3.H

ICC -C+ -Kb+ -Ss+ CONTAIN3.C

CONTAIN3.DEF
NAME CONTAIN3 WINDOWAPI

DESCRIPTION 'Third container example
Copyright 1992 by Larry Salomon
All rights reserved. '

STACKSIZE 32768

•

Containers - 437

The container has a bug in that it will send the WM_CONTROL I Ji Gotcha!

<;l

<;l~~

CN_CONrEXTMENU notification if the mouse was used to request the pop-up, but it
will not send this message if the keyboard is used.

The WM_CONTROL notification specifies the record under the mouse when the pop-up menu was
request. If there was no record, NULL is specified instead.

psiSales = (PSALESINFO) PVOIDFROMMP (mpParm2
if (psiSales != NULL) {

if ((psiSales -> mrcStd.flRecordAttr &
CRA_SELECTED) == 0)

WinSendMsg (pcdData -> hwndCnr,
CM_SETRECORDEMPHASIS,
MPFROMP (psiSales) ,

MPFROM2SHORT (TRUE, CRA_SOURCE))
psiSales -> bEmphasized = TRUE ;

else {
emphasizeRecs (pcdData -> hwndCnr, TRUE)

/* endif */
else {

WinSendMsg pcdData -> hwndCnr,
CM_SETRECORDEMPHASIS,
0,
MPFROM2SHORT (TRUE, CRA_SOURCE))

pcdData -> bCnrSelected = TRUE ;
/* endif */

The records are selected using the CM_SETRECORDEMPHASIS message; this message sets the
appropriate bit in theflRecordAttr field and redraws the record. Conceivably this could be done explicitly,
but why go through the extra work? The method of determining which records are given source emphasis
follows that of the Workplace Shell, and can be summarized in the following manner:

• If there is a record under the mouse and it is selected, give all selected records source emphasis.
• If there is a record under the mouse and it is not selected, give it source emphasis only.
• If there are no records under the mouse, give the entire container source emphasis.

438 -The Art of OS/2 Warp Programming
Gotcha!
The documentation does not state how the container is given source emphasis. This is
done by specifying NULL for the record pointer in mpParml. The container does not
keep track of whether it has source emphasis or not and blindly draws this emphasis
using the XOR method. Thus, if two CM_SETRECORDEMPHASIS messages are
sent, both specifying that source emphasis is to be removed from the container, no
visible difference will be seen.

After the records have been given source emphasis in the appropriate manner, the pointer position is
determined and the menu is popped up via the WinPopupMenu message.

WinQueryPointerPos HWND_DESKTOP, &ptlMouse l ;
WinMapWindowPoints (HWND_DESKTOP,

hwndClient,
&ptlMouse,
1) ;

WinPopupMenu (hwndClient,
hwndClient,

Direct Editing

pcdData -> hwndMenu,
ptlMouse.x,
ptlMouse.y,
M_VIEWS,
PU_HCONSTRAIN
PU_VCONSTRAIN
PU_KEYBOARD I
PU_MOU$EBUTTON1
PU_MOUSEBUTTON2
PU_NONE) ;

As stated earlier, the user can edit directly with a mouse click. The application must be aware of this
possibility and be able to process this event properly. When the user selects the proper combination of
mouse clicks or keystrokes, the container sends the application a WM_CONTROL message with a
CN_BEGINEDIT notification code. The data in the second parameter is a pointer to the CNREDITDAT A
structure.

typedef struct _CNREDITDATA
ULONG cb;
HWND hwndCnr;
PRECORDCORE pRecord;
PFIELDINFO pFieldinfo;
PSZ *ppszText;
ULONG cbText;
ULONG id;

CNREDITDATA;

cb is the size of the structure in bytes. hwndCnr is the handle of the container window. pRecord is a
pointer to the RECORDCORE structure of the object being edited. If the container titles are being edited,
this field is NULL. pFieldlnfo is a pointer to the FIELDINFO structure if the current view is detail view
and the column titles are not being edited. Otherwise, this field is NULL. ppszText points to the pointer to
the current text if the notification code is CN_BEGINEDIT or CN_REALLOCPSZ. For CN_ENDEDIT
notification, this points to the pointer to the new text. cbText specifies the number of bytes in the text. id is
the identifier of the window being edited and is a CID_ constant.

Containers - 439
The CN_BEGINEDIT notification allows the application to perform any preedit processing, such as setting
a limit on the text length. After the user direct editing, the container sends a CN_REALLOCPSZ
notification to the container's owner before copying the new text into the application's text string to allow
adjust the buffer size if needed. Finally, a CN_ENDEDIT notification is sent to allow any postedit
processing to be done.

Gotcha!
The application must return TRUE from the CN_REALLOCPSZ notification, or else
the container will discard the editing changes.

Of Sorting and Filtering
The final, great abilities we will look at are sorting and filtering records, which are done with a little
assistance from the application. Sorting is a concept that programmers should be familiar with; filtering,
however, might not be so familiar. Its idea is analogous to a strainer that would be used when cooking.
Items that meet the criteria demanded by the strainer (that they are smaller than a defined threshold) can
continue on their merry way. Items that do not, may not. "Continuing" in the sense of the container is the
visibility state of the record. If the record meets the threshold, it remains visible; if it doesn't, it is hidden.
It should be noted that filtered records are not deleted-they simply aren't shown. Defining the threshold
such that all records will meet it will reshow all of the records.

The sorting and filtering callback functions are defined in the following manner. For sorting, we have:

SHORT EXPENTRY pfnSort(PRECORDCORE prcFirst,
PRECORDCORE prcSecond,
PVOID pvData)

For filtering, we have:

BOOL EXPENTRY pfnSort(PRECORDCORE prcRecord,
PVOID pvData)

Of course, if the container was created with the CCS_MINIRECORDCORE style, the RECORDCORE
pointers are instead MINIRECORDCORE pointers.

The sorting function behaves just like strcmp-if the first record is "less than" the second, a negative
number should be returned; if the first record is "equal to" the second, 0 should be returned; if the first
record is "greater than" the second, a positive number should be returned. The container takes care of the
rest.

Filtering is just as easy-if the record meets the criteria and should remain visible, TRUE should be
returned. Otherwise, return FALSE.

The following sample illustrates both sorting and filtering.

440 - The Art of OS/2 Warp Programming
CONTAIN4.C
#define INCL_WINFRAMEMGR
#define INCL_WINMENUS
#define INCL_WINPOINTERS
#define INCL_WINSTDCNR
#define INCL_WINSYS
#define INCL_WINWINDOWMGR
#include <os2.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <math.h>
#include "CONTAIN4.H"
#define CLS_CLIENT "SampleClass"
#define MAX_YEARS 10
#define MAX_MONTHS 12
#define MAX_COLUMNS 4
#define CX SPLITBAR 120
11--
11 For the GA 2.0 toolkit, CRA_SOURCE is not defined,
II but it should be.
11--

CRA_SOURCE
CRA_SOURCE Ox00004000L

#ifndef
#define
#endif
typedef
{

struct _CLIENTDATA

HWND hwndCnr;

HPOINTER hptricon;
HWND hwndMenu;
BOOL bCnrSelected;

CLIENTDATA,*PCLIENTDATA;

typedef struct
{

_SALES INFO

MINIRECORDCORE mrcStd;
BOOL bEmphasized;
ULONG ulNumUnits;
float fSales;
PCHAR pchSales;

SALESINFO,*PSALESINFO;

MRESULT EXPENTRY clientWndProc(HWND hwndClient,ULONG ulMsg,MPARAM
mpParml,MPARAM mpParm2);

INT main(VOID)
{

HAB
HMQ
UL ONG
HWND
BOOL
QMSG

habAnchor;
hmqQueue;
ulFlags;
hwndFrame;
bLoop;
qmMsg;

habAnchor Wininitialize(O);
hmqQueue = WinCreateMsgQueue(habAnchor,

0);

WinRegisterClass(habAnchor,
CLS_CLIENT,
clientWndProc,
0,
sizeof (PVOID));

ulFlags = FCF_SIZEBORDERIFCF_TITLEBARIFCF_TASKLISTI
FCF_SHELLPOSITIONIFCF_SYSMENU;

hwndFrame = WinCreateStdWindow(HWND_DESKTOP,
WS_VISIBLE,
&ulFlags,
CLS_CLIENT,
"Container Sample",
OL,
NULLHANDLE,
RES_CLIENT,
NULL);

if (hwndFrame != NULLHANDLE)
{

bLoop = WinGetMsg(habAnchor,
&qrnMsg,
NULLHANDLE,
0,

while (bLoop)
{

0);

WinDispatchMsg(habAnchor,
&qrnMsg);

bLoop = WinGetMsg(habAnchor,
&qrnMsg,
NULLHANDLE,
0,
OJ;

WinDestroyWindow(hwndFrame);

WinDestroyMsgQueue(hmqQueue);
WinTerminate(habAnchor);
return O;

/* endwhile

/* endif

VOID initSalesinfo(PCLIENTDATA pcdData,PSALESINFO psiParent,
PSALESINFO psiSales,USHORT usindex)

PC HAR pchPos;

psiSales->mrcStd.cb = sizeof(MINIRECORDCORE);

psiSales->mrcStd.pszicon = malloc(256);
if (psiSales->rr.rcStd.pszicon ! = NULL)
{

if (psiParent !=NULL)
{

sprintf(psiSales->mrcStd.pszicon,
"Month %d",

else
{

usindex+l);

sprintf(psiSales->mrcStd.pszicon,
"Year 19%02d",
usindex+84) ;

/* endif
/* endif

psiSales->mrcStd.hptricon pcdData->hptricon;
psiSales->bEmphasized = FALSE;

if (psiParent != NULL)
{

psiSales->ulNumUnits psiParent->ulNumUnits/12;

*/

*/

*/
*/

Containers - 441

442 - The Art of OS/2 Warp Programming
else
{

psiSales->ulNumUnits = rand()%100;
} /* endif */
psiSales->fSales = (float)psiSales->ulNumUnits *9.95;

psiSales->pchSales = malloc(16);
if (psiSales->pchSales != NULL)
{

sprintf(psiSales->pchSales,
"$%-10.2f",
psiSales->fSales);

pchPos = psiSales->pchSales;
while (!isspace(*pchPos) && (*pchPos != 0))
{

pchPos++;
/* endwhile

*pchPos = O;
/* endif

return ;

VOID emphasizeRecs(HWND hwndCnr,BOOL bEmphasize)
{

SHORT
PSALESINFO

sFlag;
psi Year;

sFlag = ((bEmphasize)?CRA_SELECTED:CRA_SOURCE);

*/

*I

psi Year (PSALESINFO)PVOIDFROMMR(WinSendMsg(hwndCnr,
CM_QUERYRECORDEMPHASIS

while (psiYear !=NULL)
{

if (bEmphasize)
{

WinSendMsg(hwndCnr,
CM_SETRECORDEMPHASIS,
MPFROMP(psiYear),
MPFROM2SHORT(TRUE,

psiYear->bEmphasized

else
{

CRA_SOURCE)) ;

TRUE;

WinSendMsg(hwndCnr,
CM_SETRECORDEMPHASIS,
MPFROMP(psiYear),
MPFROM2SHORT(FALSE,

CRA_SOURCE)) ;

psiYear->bEmphasized = FALSE;

' MPFROMP(CMA_FIRST),
MPFROMSHORT(sFlag)));

} /* endif */
psiYear = (PSALESINFO)PVOIDFROMMR(WinSendMsg(hwndCnr,

CM_QUERYRECORDEMPHASIS

/* endwhile
return

' MPFROMP(psiYear),
MPFROMSHORT(sFlag)
)) ;

*/

VOID freeCnrinfo(HWND hwndCnr)
{

PSALESINFO psi Year;
PSALESINFO psiMonth;

psiYear = (PSALESINFO)PVOIDFROMMR(WinSendMsg(hwndCnr,
CM_QUERYRECORD,
OL,
MPFROM2SHORT

while (psiYear !=NULL)
{

(CMA_FIRST,
CMA_ITEMORDER)));

psiMonth = (PSALESINFO)PVOIDFROMMR(WinSendMsg(hwndCnr,
CM_QUERYRECORD,
MPFROMP(psiYear),
MPFROM2SHORT
(CMA_FIRSTCHILD,
CMA_ITEMORDER)))

while (psiMonth !=NULL)
{

if (psiMonth->mrcStd.pszicon !=NULL)
{

free(psiMonth->mrcStd.pszicon);
/* endif

if (psiMonth->pchSales != NULL)
{

free(psiMonth->pchSales);

*/

/* endif */
psiMonth = (PSALESINFO)PVOIDFROMMR(WinSendMsg(hwndCnr,

CM_QUERYRECORD

} /* endwhile
if (psiYear->mrcStd.pszicon !=NULL)
{

free(psiYear->mrcStd.pszicon);
} /* endif
if (psiYear->pchSales !=NULL)
{

free(psiYear->pchSales);

MPFROMP
(psiMonth) ,

MPFROM2SHORT
(CMA_NEXT,
CMA_ITEMORDER
))) ;

*/

*/

/* endif */
psiYear = (PSALESINFO)PVOIDFROMMR(WinSendMsg(hwndCnr,

CM_QUERYRECORD,
MPFROMP(psiYear),
MPFROM2SHORT

return

VOID initColumns(PCLIENTDATA pcdData)
{

CNRINFO
PFIELDINFO
PFIELDINFO
PF I ELD INFO
FIELDINFOINSERT

ciinfo;
pfiCurrent;
pfiinfo;
pfiLefty;
fiiinfo;

/* endwhile

(CMA_NEXT,
CMA_ITEMORDER)
)) ;

*/

Containers - 443

444 - The Art of OS/2 Warp Programming
pfiinfo = (PFIELDINFO)PVOIDFROMMR(WinSendMsg(pcdData->hwndCnr,

CM_ALLOCDETAILFIELDINFO

pfiCurrent = pfiinfo;

MPFROMLONG
(MAX_ COLUMNS) ,
OL));

pfiCurrent->flData = CFA_BITMAPORICONICFA_HORZSEPARATORICFA_CENTER
ICFA_SEPARATOR;

pfiCurrent->flTitle = CFA_STRING!CFA_CENTER;
pfiCurrent->pTitleData = "Icon";
pfiCurrent->offStruct = FIELDOFFSET(SALESINFO,

mrcStd.hptricon);

pfiCurrent = pfiCurrent->pNextFieldinfo;
pfiCurrent->flData = CFA_STRINGICFA_CENTERICFA_HORZSEPARATOR;
pfiCurrent->flTitle = CFA_STRING!CFA_CENTER;
pfiCurrent->pTitleData = "Year";
pfiCurrent->offStruct = FIELDOFFSET(SALESINFO,

mrcStd.pszicon);

pfiLefty = pfiCurrent;

pfiCurrent = pfiCurrent->pNextFieldinfo;
pfiCurrent->flData = CFA_ULONGICFA_CENTERICFA_HORZSEPARATORI

CFA_SEPARATOR;

pfiCurrent->flTitle = CFA_STRINGICFA_CENTER;
pfiCurrent->pTitleData = "Units Sold";
pfiCurrent->offStruct = FIELDOFFSET(SALESINFO,

ulNumUnits);

pfiCurrent = pfiCurrent->pNextFieldinfo;
pfiCurrent->flData = CFA_STRINGICFA_RIGHTICFA_HORZSEPARATOR;
pfiCurrent->flTitle = CFA_STRINGICFA_CENTER;
pfiCurrent->pTitleData = "Sales";
pfiCurrent->offStruct = FIELDOFFSET(SALESINFO,

pchSales);

fiiinfo.cb = sizeof(fiiinfo);
fiiinfo.pFieldinfoOrder = (PFIELDINFO)CMA_FIRST;
fiiinfo.cFieldinfoinsert = MAX_COLUMNS;
fiiinfo.finvalidateFieldinfo =TRUE;

WinSendMsg(pcdData->hwndCnr,
CM_INSERTDETAILFIELDINFO,
MPFROMP(pfiinfo),
MPFROMP(&fiiinfo));

memset(&ciinfo,
0,
sizeof(ciinfo));

ciinfo.cb = sizeof(CNRINFO);
ciinfo.pFieldinfoLast = pfiLefty;
ciinfo.xVertSplitbar = CX_SPLITBAR;

WinSendMsg(pcdData->hwndCnr,

return

CM_SETCNRINFO,
MPFROMP(&ciinfo),
MPFROMLONG(CMA_PFIELDINFOLAST!CMA_XVERTSPLITBAR));

SHORT EXPENTRY sortRecords(PSALESINFO psiFirst,PSALESINFO psiSecond,
PUSHORT pusSortBy)

switch (*pusSortBy)

case MI SORTBYUNITS :
if (psiFirst->ulNurnUnits < psiSecond->ulNumUnits)
{

return -1;

else
if (psiFirst->ulNurnUnits
{

return 0;

else
{

return l;

case MI SORTBYYEAR

psiSecond->ulNurnUnits)

/* endif

return strcmp(psiFirst->mrcStd.pszicon,
psiSecond->mrcStd.pszicon);

default
return O;

/* endswitch

BOOL EXPENTRY filterRecords(PSALESINFO psiinfo,PUSHORT pusFilterBy)
{

switch (*pusFilterBy)
{

case MI FILTER300DOLLARS
return (psiinfo->fSales > 300.0);

case MI_FILTER400DOLLARS :
return (psiinfo->fSales > 400.0);

case MI FILTER500DOLLARS :
return (psiinfo->fSales > 500.0);

case MI_FILTERNONE
return TRUE;

default
return TRUE;

/* endswitch

MRESULT EXPENTRY clientWndProc(HWND hwndClient,ULONG ulMsg,MPARAM
mpParml,MPARAM mpParm2)

PCLIENTDATA pcdData;

pcdData = (PCLIENTDATA)WinQueryWindowPtr(hwndClient,
0);

switch (ulMsg)
{

case WM_CREATE
{

MENU ITEM
ULONG
ULONG
RECORD INSERT
PSALESINFO
PSALESINFO
US HORT
PSALESINFO
PSALESINFO
US HORT

mi Item;
ulStyle;
ulExtra;
riRecord;
psi Years;
psiCYear;
usindexl;
psiMonths;
psiCMonth;
usindex2;

pcdData (PCLIENTDATA)malloc(sizeof(CLIENTDATA));
if (pcdData == NULL)
{

Containers - 445

*/

*/

*/

446 - The Art of OS/2 Warp Programming
WinAlarm(HWND_DESKTOP,

WA_ERROR);
WinMessageBox(HWND_DESKTOP,

HWND_DESKTOP,
"No memory is available",
11 Error 11 ,

0,
MB_ICONEXCLAMATIONIMB_OK);

return MRFROMSHORT(TRUE);

WinSetWindowPtr(hwndClient,
0,
pcdData);

I* endif

pcdData->hwndCnr = NULLHANDLE;
pcdData->hptricon = NULLHANDLE;
pcdData->hwndMenu = NULLHANDLE;
pcdData->bCnrSelected = FALSE;

pcdData->hwndCnr = WinCreateWindow(hwndClient,
WC_CONTAINER,

if (pcdData->hwndCnr == NULLHANDLE)
{

free {pcdData) ;
WinAlarm{HWND_DESKTOP,

WA_ERROR);
WinMessageBox{HWND_DESKTOP,

HWND_DESKTOP,

' CCS_MINIRECORDCOREI

0,
0,
0,
0,

CCS_EXTENDSELI
WS_VISIBLE,

hwndClient,
HWND_TOP,
WND_CONTAINER,
NULL,
NULL);

"Cannot create container",
11 Error 11 ,

0,
MB_ICONEXCLAMATIONIMB_OK);

return MRFROMSHORT{TRUE);

pcdData->hptricon

I* endif

WinLoadPointer{HWND_DESKTOP,
NULLHANDLE,
ICO_ITEM);

pcdData->hwndMenu = WinLoadMenu{hwndClient,
NULLHANDLE,
RES_CLIENT) ;

11--
11 "Gotcha" note: you cannot specify the MS_CONDITIONALCASCADE
II style in the .RC file. You *must* do it this way. Also,
II you must pad the pull-right text with spaces to account for
II the button that will be placed there.
11--

WinSendMsg(pcdData->hwndMenu,
MM_QUERYITEM,
MPFROM2SHORT{M_VIEWS,

TRUE),
MPFROMP{&miitem));

*I

*I

ulStyle = WinQueryWindowULong(miitem.hwndSubMenu,
QWL_STYLE) ;

ulStyle I= MS_CONDITIONALCASCADE;
WinSetWindowULong(miitem.hwndSubMenu,

QWL_STYLE,
ulStyle);

WinSendMsg(miitem.hwndSubMenu,
MM_SETDEFAULTITEMID,
MPFROMSHORT(MI_ICON),
OL);

ulExtra = sizeof(SALESINFO)-sizeof(MINIRECORDCORE);

riRecord.cb = sizeof(RECORDINSERT);
riRecord.pRecordOrder = (PRECORDCORE)CMA_END;
riRecord.finvalidateRecord = FALSE;
riRecord.zOrder = CMA_TOP;

psiYears = (PSALESINFO)PVOIDFROMMR(WinSendMsg
(pcdData->hwndCnr,
CM_ALLOCRECORD,
MPFROMLONG(ulExtra),
MPFROMSHORT(MAX_YEARS)));

psiCYear = psiYears;

for (usindexl = O; usindexl < MAX_YEARS; usindexl++)
{

initSalesinfo(pcdData,
NULL,
psiCYear,
usindexl);

riRecord.pRecordParent = NULL;
riRecord.cRecordsinsert = l;

WinSendMsg(pcdData->hwndCnr,
CM_INSERTRECORD,
MPFROMP(psiCYear),
MPFROMP(&riRecord));

psiMonths = (PSALESINFO)PVOIDFROMMR(WinSendMsg
(pcdData->hwndCnr,
CM_ALLOCRECORD,
MPFROMLONG(ulExtra),
MPFROMSHORT(MAX_MONTHS)));

psiCMonth = psiMonths;

for (usindex2 = O; usindex2 < MAX_MONTHS; usindex2++)
{

initSalesinfo{pcdData,
psiCYear,
psiCMonth,
usindex2);

psiCMonth = (PSALESINFO)
psiCMonth->mrcStd.preccNextRecord;

/* endfor */
riRecord.pRecordParent = (PRECORDCORE)psiCYear;
riRecord.cRecordsinsert = MAX_MONTHS;

WinSendMsg(pcdData->hwndCnr,
CM_INSERTRECORD,
MPFROMP(psiMonths),
MPFROMP(&riRecord));

Containers - 44 7

448 - The Art of OS/2 Warp Programming

psiCYear = (PSALESINFO)
psiCYear->mrcStd.preccNextRecord;

} /* endfor
initColumns(pcdData);

WinSendMsg(hwndClient,
WM_COMMAND,
MPFROMSHORT(MI_ICON),
0);

break;
case WM_DESTROY

freeCnrinfo(pcdData->hwndcnr);

if (pcdData->hwndCnr != NULLHANDLE)
{

WinDestroyWindow(pcdData->hwndCnr);
} /* endif
if (pcdData->hptricon != NULLHANDLE)
{

WinDestroyPointer(pcdData->hptricon);
} I K endif
free (pcdData);
break;

case WM_SIZE :
if (pcdData->hwndCnr != NULLHANDLE)
{

WinSetWindowPos(pcdData->hwndCnr,
NULLHANDLE,

break;

0,
0,
SHORTlFROMMP(mpParm2),
SHORT2FROMMP(mpParm2),
SWP_MOVEISWP_SIZE);

/* endif

case WM_MENUEND
switch (SHORTlFROMMP(mpParml))
{

case FID_MENU :
if (pcdData->bCnrSelected)
{

WinSendMsg(pcdData->hwndCnr,
CM_SETRECORDEMPHASIS,
OL,
MPFROM2SHORT(FALSE,

CRA_SOURCE)) ;
pcdData->bCnrSelected = FALSE;

else
{

emphasizeRecs(pcdData->hwndCnr,
FALSE);

/* endif
break;

default

break;

return WinDefWindowProc(hwndClient,
ulMsg,
mpParml,
mpParm2);

/* endswitch

case WM_CONTROL

switch (SHORTlFROMMP(mpParml))
{

case WND_CONTAINER

*/

*/

*/

*/

*/

*/

switch (SHORT2FROMMP(mpParml))
{

case CN_CONTEXTMENU
{

PSALESINFO
PO INTL

psiSales;
ptlMouse;

psiSales (PSALESINFO)PVOIDFROMMP(mpParm2);
if (psiSales !=NULL)
{

if ((psiSales->mrcStd.flRecordAttr
&CRA_SELECTED) == 0)

WinSendMsg(pcdData->hwndCnr,
CM_SETRECORDEMPHASIS,
MPFROMP(psiSales),
MPFROM2SHORT(TRUE,

CRA_SOURCE)) ;
psiSales->bEmphasized = TRUE;

else
{

emphasizeRecs(pcdData->hwndCnr,
TRUE);

/* endif */

else
{

WinSendMsg(pcdData->hwndCnr,
CM_SETRECORDEMPHASIS,
OL,
MPFROM2SHORT(TRUE,

CRA_SOURCE)) ;
pcdData->bCnrSelected = TRUE;

} /* endif */
WinQueryPointerPos(HWND_DESKTOP,

&ptlMouse) ;
WinMapWindowPoints(HWND_DESKTOP,

hwndClient,
&ptlMouse,
1);

WinPopupMenu(hwndClient,
hwndClient,
pcdData->hwndMenu,
ptlMouse.x,
ptlMouse.y,
M_VIEWS,
PU_HCONSTRAINIPU_VCONSTRAINI

PU_KEYBOARDIPU_MOUSEBUTTONll
PU_MOUSEBUTTON2IPU_NONE);

break;
default

return WinDefwindowProc(hwndClient,
ulMsg,
mpParml,
mpParm2);

/* endswitch */
break;

default

break;

return WinDefwindowProc(hwndClient,
ulMsg,
mpParml,
mpParm2);

/* endswitch */

Containers - 449

450 - The Art of OS/2 Warp Programming
case WM_COMMAND :

switch (SHORTlFROMMP(mpParml))
{

case MI_ICON
{

CNRINFO ciinfo;

ciinfo.cb sizeof(CNRINFO);
ciinfo.flWindowAttr = CV_ICON;

WinSendMsg(pcdData->hwndCnr,
CM_SETCNRINFO,
MPFROMP(&ciinfo),
MPFROMLONG(CMA_FLWINDOWATTR));

WinSendMsg(pcdData->hwndCnr,
CM__ARRANGE,

break;
case MI_DETAIL

{
CNRINFO

NULL,
NULL);

ciinfo;

ciinfo.cb sizeof(CNRINFO);
ciinfo.flWindowAttr = CV_DETAILI

CA_DETAILSVIEWTITLES;

WinSendMsg(pcdData->hwndCnr,
CM_SETCNRINFO,
MPFROMP(&ciinfo)'
MPFROMLONG(CMA_FLWINDOWATTR));

break;
case MI_TREE

{
CNRINFO ciinfo;

ciinfo.cb sizeof(CNRINFO);
ciinfo.flWindowAttr = CV_TREEICV_ICONICA_TREELINE;
ciinfo.cxTreeindent = -1;
ciinfo.cxTreeLine = -1;

WinSendMsg(pcdData->hwndCnr,
CM_SETCNRINFO,
MPFROMP(&ciinfo),
MPFROMLONG(CMA_FLWINDOWATTR));

break;
case MI_NAMEFLOWED

{
CNRINFO ciinfo;

ciinfo.cb sizeof{CNRINFO);
ciinfo.flWindowAttr = CV_NAMEICV_FLOW;

WinSendMsg(pcdData->hwndCnr,
CM_SETCNRINFO,
MPFROMP(&ciinfo),
MPFROMLONG(CMA_FLWINDOWATTR));

WinSendMsg(pcdData->hwndCnr,
CM_ARRANGE,
NULL,
NULL);

break;

case MI_TEXTFLOWED
{

CNRINFO ciinfo;

ciinfo.cb sizeof(CNRINFO);
ciinfo.flWindowAttr = CV_TEXTICV_FLOW;

WinSendMsg(pcdData->hwndCnr,
CM_SETCNRINFO,
MPFROMP(&ciinfo),
MPFROMLONG(CMA_FLWINDOWATTR));

WinSendMsg(pcdData->hwndCnr,
CM_ARRANGE,
NULL,
NULL);

break;
case MI_SORTBYUNITS

{

USHORT us Id;

usid = MI_SORTBYUNITS;

WinSendMsg(pcdData->hwndCnr,
CM_SORTRECORD,
MPFROMP(sortRecords),
MPFROMP(&usid));

break;
case MI_SORTBYYEAR

{
USHORT us Id;

usid = MI_SORTBYYEAR;

WinSendMsg(pcdData->hwndCnr,
CM_SORTRECORD,
MPFROMP(sortRecords),
MPFROMP(&usid));

break;
case MI FILTER300DOLLARS

{
USHORT us Id;

usid = MI_FILTER300DOLLARS;

WinSendMsg(pcdData->hwndCnr,
CM_FILTER,
MPFROMP(filterRecords),
MPFROMP(&usid));

break;
case MI_FILTER400DOLLARS

{
USHORT us Id;

usid = MI_FILTER400DOLLARS;

WinSendMsg(pcdData->hwndCnr,
CM_FILTER,
MPFROMP(filterRecords),
MPFROMP(&usid));

break;
case MI_FILTERSOODOLLARS

Containers - 451

452 -The Art of OS/2 Warp Programming

USHORT us Id;

usid = MI_FILTER500DOLLARS;

WinSendMsg(pcdData->hwndCnr,
CM_FILTER,
MPFROMP(filterRecords),
MPFROMP(&usid));

break;
case MI_FILTERNONE

{
USHORT us Id;

usid = MI_FILTERNONE;

WinSendMsg(pcdData->hwndCnr,
CM_FILTER,
MPFROMP(filterRecords),
MPFROMP(&usid));

break;
case MI_EXIT

WinPostMsg(hwndClient,
WM_CLOSE,
OL,

break;
default

OL);

return WinDefWindowProc(hwndClient,
ulMsg,
mpParml,
mpParm2);

break;

case WM_PAINT
{

HPS
RECTL

hpsPaint;
rclPaint;

/* endswitch

hpsPaint WinBeginPaint(hwndClient,
NULLHANDLE,
&rclPaint);

WinFillRect(hpsPaint,
&rclPaint,
SYSCLR_WINDOW) ;

WinEndPaint(hpsPaint);

break;
default

return WinDefWindowProc(hwndClient,
ulMsg,
mpParml,
mpParm2);

/* endswitch
return MRFROMSHORT(FALSE);

*/

*/

CONT AIN4.RC
#include <os2.h>
#include "contain4.h"

ICON ICO_ITEM CONTAIN4.ICO

MENU RES CLIENT
{

SUBMENU "-Views
{

M_VIEWS

MENUITEM "-Icon", MI_ICON
MENUITEM "-Detail", MI_DETAIL
MENUITEM "-Tree", MI_TREE
MENUITEM "-Name/ flowed"' MI_NAMEFLOWED
MENU ITEM "Te-xt I flowed" , MI_TEXTFLOWED

MENUITEM SEPARATOR
SUBMENU "-Sort
{

M_SORT

MENUITEM "By -units sold", MI_SORTBYUNITS
MENUITEM "By -year" , MI SORTBYYEAR

MENUITEM SEPARATOR
SUBMENU "-Filter M_FILTER
{

MENUITEM "Show $-300.00 or greater", MI_FILTER300DOLLARS
MENUITEM "Show $-400.00 or greater", MI_FILTER400DOLLARS
MENUITEM "Show $-500.00 or greater", MI_FILTER500DOLLARS
MENUITEM "Show all records", MI_FILTERNONE

MENUITEM SEPARATOR
MENUITEM "E-xit", MI_EXIT

CONTAIN4.H
#define RES_CLIENT
#define WND_CONTAINER
#define ICO_ITEM
#define M_VIEWS
#define MI ICON
#define MI_DETAIL
#define MI_ TREE
#define MI_NAMEFLOWED
#define MI_TEXTFLOWED
#define M_SORT
#define MI_SORTBYUNITS
#define MI_SORTBYYEAR
#defir,e M_FILTER
#define MI_FILTER300DOLLARS
#define MI_FILTER400DOLLARS
#define MI_FILTERSOODOLLARS
#define MI_FILTERNONE
#define MI_EXIT

256
257
258
320
321
322
323
324
325
336
337
338
352
353
354
355
356
368

Containers - 453

454 - The Art of OS/2 Warp Programming
CONTAIN4.MAK
ICCOPTS=-C+ -Gm- -Kb+ -Ss+
LINKOPTS=/MAP /A:l6

CONTAIN4.EXE: CONTAIN4.0BJ \
CONTAIN4.RES

LINK386 $(LINKOPTS) @<<
CONTAIN4
CONTAIN4
CONTAIN4
082386
CONTAIN4
<<

RC CONTAIN4.RES CONTAIN4.EXE

CONTAIN4.RES: CONTAIN4.RC \
CONTAIN4.H

RC -r CONTAIN4.RC CONTAIN4.RES

CONTAIN4.0BJ: CONTAIN4.C \
CONTAIN4.H

ICC $(ICCOPTS) CONTAIN4.C

CONTAIN4.DEF
;---
; CONTAIN4.DEF
;---
NAME CONTAIN4 WINDOWAPI

DESCRIPTION 'Fourth container example
Copyright 1992 by Larry Salomon
All rights reserved. '

CODE MOVEABLE
DATA MOVEABLE MULTIPLE

HEAPSIZE 10240
STACKSIZE 32768

By running this sample, it will be seen that two sort menu items are provided, sort by units solds and sort
by revenue. The code actually to sort the records is quite simple.

case MI_SORTBYUNITS:
{

USHORT usid;

usid=MI_SORTBYUNITS;

WinSendMsg(pcdData->hwndCnr,
CM_SORTRECORD,
MPFROMP(sortRecords),
MPFROMP(&usid));

break;

As was said, this really is simple. The callback function is just as easy to understand.

SHORT EXPENTRY sortRecords(PSALESINFO psiFirst,
PSALESINFO psiSecond,
PUSHORT pusSortBy)

switch (*pusSortBy) {
case MI_SORTBYUNITS:

if (psiFirst->ulNumUnits<psiSecond->ulNumUnits)
return -1;

} else
if (psiFirst->ulNumUnits==psiSecond->ulNumUnits)

return 0;
else {
return 1;

/* endif */
case MI_SORTBYYEAR:

return strcmp(psiFirst->mrcStd.pszicon,
psiSecond->mrcStd.pszicon);

default:
return O;

} /* endswitch */

Containers - 455

It checks to see by what the user requested the items to be sorted and then checks the appropriate field in
the SALESINFO structure. That is all there is to sorting; there isn't anything difficult about it.

Filtering is even easier; the sample defines four filter choices: revenues greater than $300.00, greater than
$400.00, greater than $500.00, and no filtering at all. Again, the code that actually filters the records is
trivial.

case MI_FILTER300DOLLARS:
{

USHORT usid;

usid=MI_FILTER300DOLLARS;

WinSendMsg(pcdData->hwndCnr,
CM_FILTER,
MPFROMP(filterRecords),
MPFROMP(&usid));

break;

This is almost identical to the code that initiates the sorting. The callback is simpler than the sorting
callback.

BOOL EXPENTRY filterRecords(PSALESINFO psiinfo,
PUSHORT pusFilterBy)

switch (*pusFilterBy) {
case MI_FILTER300DOLLARS:

return (psiinfo->fSales>300.0);
case MI_FILTER400DOLLARS:

return (psiinfo->fSales>400.0);
case MI_FILTER500DOLLARS:

return (psiinfo->fSales>500.0);
case MI_FILTERNONE:

return TRUE;
default:

return TRUE;
} /* endswitch */

456 - The Art of OS/2 Warp Programming
It checks to see by what criteria the user wanted to filter the records and returns the appropriate value.

How much easier can it get?

Where Does Direct Manipulation Fit In?
From what we can see of the container's capabilities, it was obviously designed to be an advanced control;
thus, we would expect it to support direct manipulation (drag and drop). However, as Chapter 20 makes
clear, direct manipulation is a very complex mechanism that could not possibly be supported entirely by
the container. Instead, the container sends its owner a WM_CONTROL message with one of six
notification codes specific to direct manipulation.

CN_DRAGAFI'ER

CN_DRAGLEA VE
CN_DRAGOVER

CN_DROP
CN_DROPHELP
CN INITDRAG

Sent after the container receives a DM_DRAGOVER message, the
CA_ORDEREDTARGETEMPHASIS or CA_MIXEDTARGETEMPHASIS
attribute is set in t11e CNRI~rFO stru.cture, and the current vie\v is na..rne, text, or
detail.
Sent after the container receives a DM_DRAGLEA VE message.
Sent after the container receives a DM_DRAGOVER message and the
requirements for the CN_DRAGAFI'ER notification are not met.
Sent after the container receives a DM_DROP message.
Sent after the container receives a DM_DROPHELP message.
Sent after the container receives a WM BEGINDRAG message.

Chapter 20 presents information about what is to be done when one of these notifications is received.

Summary
The container control, while at times cumbersome to initialize and interact with, is a very useful addition to
the library of standard controls provided with Presentation Manager. It is very flexible, providing many
different viewing methods, and supports the CUA '91 user interface guidelines. With a little imagination
and a great deal of programming, this control could greatly enhance the user interface of an application.

Chapter 24

Spin Buttons

A spin button is a button that will display a list of choices to the user. Up and down arrows are displayed
to the right of the button; they are used to "spin" through the choices. Spin buttons should be used when
the choices can be organized into some logical, consecutive order. For example, a list of days of the week
would be a good use for a spin button. A spin button can be read-only, or it can be edited similar to an
entry field.

Spin Button Styles
Table 24.1 presents spin button styles.

Table 24.1 Spin Button Styles

$ll~:i::····· · •+u;;:t·•.'.•.;•:i+H• {!•.I:;;·'.·::::t:i!Ni:11Jll:il10n••ilii : r <·.···••.•• .• + : ;;::<•::: ·············•··· / ::::.>re·•···· lk·•···•r·••···) .. •·····•·••····•.······,<-:• :Li.•! •··•·. ;;·:•·············· ···. ·
SPBS_ALLCHARACTERS All characters are accepted into spin button.
SPBS_NUMERICONL Y Only the characters 0-9 are accepted into spin button.
SPBS_READONL Y No characters are allowed into spin button.
SPBS_MASTER Spin button will have arrows displayed to the right.
SPBS_SERV ANT Spin button has no arrows but is attached to a set of spin buttons that share

SPBS_JUSTLEFf
SPBS_JUSTRIGHT
SPBS_JUSTCENTER
SPBS_NOBORDER
SPBS_FASTSPIN
SPBS_PADWITHZEROS

one set of arrows.
Left-justify the spin button text.
Right-justify the spin button text.
Center the spin button text.
No border will be drawn around spin button.
Spin button can skip over numbers, when arrows are held down.
Pad the number with zeros.

457

458 - The Art of OS/2 Warp Programming

Spin Button Example

SpinButton's set to: January 1, 1990

Figure 24.1 One master spin button with two slave spin buttons.

Figure 24.1 illustrates one master spin button with two slaves. A master spin button contains spin arrows,
and the servant spin buttons do not. The master spin arrows control the spinning of the master button and
the attached slaves. When the user spins the arrows, the button with the cursor is the button that will spin.

The following example program shows how to use a spin button in a program.

SPIN.C
#define INCL_WIN
#include <os2.h>
#include <stdio.h>
#include <stdlib.h>
#include "spin.h"
#define CLS_CLIENT "MyClass"
PCHAR achMonthArray[J
{

"January",
"February" ,
11 March 11 ,

"April 11 ,

11May11,
"June 11 ,

"July 11 ,

"August",
"September",
11 0ctober 11 ,

"November",
"December"

PC HAR
{

achDayArray [J

"1
"2
n 3 I

11 4 I

II 5 I

II 6 I

"7
11 8 I

"9
10"'
11"'
12"'
13"'
14 II I

15"'
16"'
17 11 I

18 tt I

19"'
20"'
21 11 I

22"'
23"'
24"'
25"'
26 rt/

27 11 I

11 28",
"29 II t

113011 I

II 31"

PC HAR
{

"1990
"1991 '
"1992 '
"1993 '
"1994 '
"1995 '
"1996 '
"1997 '
"1998 '
"1999 '
"2000

achYearArray []

MRESULT EXPENTRY ClientWndProc(HWND hwndWnd,ULONG ulMsg,MPARAM
mpParml,MPARAM mpParm2);

INT main(VOID)
{

HAB
HMQ
ULONG
LONG
LONG
HWND
HWND
BOOL
QMSG

habAnchor;
hmqQueue;
ulFlags;
lHeight;
lWidth;
hwndFrame;
hwndClient;
bLoop;
qmMsg;

habAnchor Wininitialize(O);
hmqQueue = WinCreateMsgQueue(habAnchor,

0);

Spin Buttons - 459

460 - The Art of OS/2 Warp Programming
WinRegisterClass(habAnchor,

CLS_CLIENT,
ClientWndProc,
CS_SIZEREDRAWICS_SYNCPAINT,
0);

ulFlags = FCF_TITLEBARIFCF_SYSMENUIFCF_SIZEBORDERIFCF_MINMAXI
FCF_ACCELTABLE;

hwndFrame = WinCreateStdWindow(HWND_DESKTOP,
0,
&ulFlags,
CLS_CLIENT,
"Spin Button Example",
0,
NULLHANDLE,
ID_WINDOW,
&hwndClient);

if (hwndFrame != NULLHANDLE)
{

lHeight = WinQuerySysValue(HWND_DESKTOP,
SV_CYSCREEN) ;

lWidth = WinQuerySysValue(HWND_DESKTOP,
SV_CXSCREEN) ;

WinSetWindowPos(hwndFrame,
NULLHANDLE,
lWidth/4,
lHeight/4,
lWidth/2,
lHeight/2,
SWP_SIZEISWP_MOVEISWP_ACTIVATEISWP_SHOW);

bLoop WinGetMsg(habAnchor,
&qmMsg,
NULLHANDLE,
0,
0);

while (bLoop)
{

WinDispatchMsg(habAnchor,
&qmMsg);

bLoop = WinGetMsg(habAnchor,
&qmMsg,
NULLHANDLE,
0,
0);

}
WinDestroyWindow(hwndFrame);

}
WinDestroyMsgQueue(hmqQueue);
WinTerminate(habAnchor);
return O;

/* endwhile

/* endif

MRESULT EXPENTRY ClientWndProc(HWND hwndWnd,ULONG ulMsg,MPARAM
mpParml,MPARAM mpParm2)

switch (ulMsg)
{

case WM_CREATE
{

UL ONG
UL ONG
UL ONG

ulMonthStyle;
ulDayStyle;
ulYearStyle;

*/

*/

LONG
LONG
LONG
LONG
LONG

lWidth;
lHeight;
xPosition;
yPosition;
yHeight;

ulMonthStyle SPBS_SERVANTISPBS_READONLYI
SPBS_JUSTLEFTISPBS_FASTSPINIWS_VISIBLE;

ulDayStyle = SPBS_SERVANTISPBS_READONLYISPBS_JUSTLEFT
ISPBS_FASTSPINIWS_VISIBLE;

ulYearStyle = SPBS_MASTERISPBS_READONLYISPBS_JUSTLEFT
ISPBS_FASTSPINIWS_VISIBLE;

lHeight = WinQuerySysValue(HWND_DESKTOP,
SV_CYSCREEN)/2;

lWidth = WinQuerySysValue(HWND_DESKTOP,
SV_CXSCREEN)/2;

xPosition = lWidth/5;
yPosition = lHeight/3;
yHeight = 50;

WinCreateWindow(hwndWnd,
WC_SPINBUTTON,
NULL,
ulMonthStyle,
xPosition,
yPosition,
90,
yHeight,
hwndWnd,
HWND_TOP,
ID_SPINBUTTONMONTH,
NULL,
NULL);

WinCreateWindow(hwndWnd,
WC_SPINBUTTON,
NULL,
ulDayStyle,
xPosition+90,
yPosition,
40,
yHeight,
hwndWnd,
HWND_TOP,
ID_SPINBUTTONDAY,
NULL,
NULL);

Spin Buttons - 461

462 - The Art of OS/2 Warp Prosramming
WinCreateWindow(hwndWnd,

WC_SPINBUTTON,
NULL,
ulYearStyle,
xPosition+90+40,
yPosition,
110,
yHeight,
hwndWnd,
HWND_TOP,
ID_SPINBUTTONYEAR,
NULL,
NULL);

WinSendDlgitemMsg(hwndWnd,
ID_SPINBUTTONMONTH,
SPBM_SETARRAY,
MPFROMP(achMonthArray),
MPFROMSHORT(l2));

WinSendDlgitemMsg(hwndWnd,
ID_SPINBUTTONMONTH,
SPBM_SETMASTER,
MPFROMHWND(WinWindowFrornID(hwndWnd,

0);

ID_SPINBUTTONYEAR
)) ,

WinSendDlgitemMsg(hwndWnd,
ID_SPINBUTTONDAY,
SPBM_SETARRAY,
MPFROMP(achDayArray),
MPFROMSHORT(31));

WinSendDlgitemMsg(hwndWnd,
ID_SPINBUTTONDAY,
SPBM_SETMASTER,
MPFROMHWND(WinWindowFrornID(hwndWnd,

0);

ID_SPINBUTTONYEAR
)) ,

WinSendDlgitemMsg(hwndWnd,
ID_SPINBUTTONYEAR,
SPBM_SETARRAY,
MPFROMP(achYearArray),
MPFROMSHORT(ll));

WinSetFocus(HWND_DESKTOP,
WinWindowFrornID(hwndWnd,

ID_SPINBUTTONMONTH));

break;

case WM_CONTROL
{

USHORT
USHORT
RECTL

us ID;
usNotifyCode;
rel Window;

usID = SHORTlFROMMP(rnpParrnl);
usNotifyCode = SHORT2FROMMP(rnpParrnl);

if (usID == ID_SPINBUTTONDAY I I usID ==
ID_SPINBUTTONMONTH I I usID == ID_SPINBUTTONYEAR)

if (usNotifyCode == SPBN_ENDSPIN)
{

WinQueryWindowRect(hwndWnd,
&rclWindow);

rclWindow.yBottorn = (rclWindow.yTop
rclWindow.yBottorn) /3*2;

WininvalidateRect(hwndWnd,
&rclWindow,
FALSE);

else
{

return WinDefWindowProc(hwndWnd,
ulMsg,
rnpParrnl,

rnpParrn2);
/* endif

}
else
{

break;

return WinDefWindowProc(hwndWnd,
ulMsg,
rnpParrnl,

rnpParrn2) ;
/* endif

case WM_COMMAND
{

HWND
USHORT

hwndActive;
usFocusID;

if (SHORTlFROMMP(rnpParrn2) == CMDSRC_ACCELERATOR)
{

hwndActive = WinQueryFocus(HWND_DESKTOP);
usFocusID = WinQueryWindowUShort(hwndActive,

QWS_ID);

if (SHORTlFROMMP(rnpParrnl)
{

IDK_TAB)

usFocusID++;

if (usFocusID > LAST_CONTROL)
{

us Focus ID = FIRST_CONTROL;
}

hwndActive =
/* endif

WinWindowFrornID(hwndWnd,
usFocusID) ;

WinSetFocus(HWND_DESKTOP,
hwndActive);

else

if (SHORTlFROMMP(rnpParrnl)
{

usFocusID--;

IDK_BACKTAB)

if (usFocusID < FIRST_CONTROL)
{

usFocusID = LAST_CONTROL;
/* endif

Spin Buttons - 463

*/

*/

*/

*/

464 - The Art of OS/2 Warp Programming

break;
case WM_PAINT

{
HPS
RECTL
CHAR
CHAR
CHAR
CHAR

hpsPaint

hwnd.Active = WinWindowFromID(hwndWnd,
usFocusID);

WinSetFocus(HWND_DESKTOP,
hwnd.Active);

hpsPaint;

/* endif
/* endif

rel Box;
achMonth[l5];
achDay[3];
achYear[5];
achMsg[128J;

WinBeginPaint(hwndWnd,
NULLHANDLE,
NULL);

WinQueryWindowRect(hwndWnd,
&rclBox);

rclBox.yBottom = (rclBox.yTop-rclBox.yBottom)/3*2;

WinFillRect(hpsPaint,
&rel Box,
CLR_WHITE);

WinSendDlgitemMsg(hwndWnd,
ID_SPINBUTTONMONTH,
SPBM_QUERYVALUE,
MPFROMP(achMonth),
MPFROM2SHORT(sizeof(achMonth),

SPBQ_DONOTUPDATE));

WinSendDlgitemMsg(hwndWnd,
ID_SPINBUTTONDAY,
SPBM_QUERYVALUE,
MPFROMP(achDay),
MPFROM2SHORT(sizeof (achDay)'

SPBQ_DONOTUPDATE));

WinSendDlgitemMsg(hwndWnd,
ID_SPINBUTTONYEAR,
SPBM_QUERYVALUE,
MPFROMP(achYear),
MPFROM2SHORT(sizeof (achYear)'

SPBQ_DONOTUPDATE));

sprintf(achMsg,
"SpinButton' s set to: %s %s, %s",
achMonth,
achDay,
achYear);

WinDrawText(hpsPaint,
-1,
achMsg,
&rel Box,
0,
0,
DT_CENTERiDT_VCENTERiDT_TEXTATTRS);

WinEndPaint(hpsPaint);

break;

*I
*/

case WM_ERASEBACKGROUND :
return MRFROMSHORT(TRUE);

default
return WinDefWindowProc(hwndWnd,

ulMsg,
mpParml,

return MRFROMSHORT(FALSE);

SPIN.RC
#include <os2.h>
#include "spin.h"

ACCELTABLE ID_WINDOW
{

VK_TAB, IDK_TAB, VIRTUALKEY

mpParm2);
/* endswitch

VK_BACKTAB, IDK_BACKTAB, VIRTUALKEY, SHIFT

SPIN.ff
#define ID_WINDOW
#define ID_SPINBUTTONMONTH
#define ID_SPINBUTTONDAY
#define ID_SPINBUTTONYEAR
#define IDK_TAB
#define IDK_BACKTAB
#define FIRST_CONTROL
#define LAST_CONTROL

SPIN.MAK
SPIN.EXE:

SPIN
SPIN
SPIN
OS2386
SPIN
<<

LINK386 @<<

RC SPIN.RES SPIN.EXE

SPIN.RES:

RC -r SPIN.RC SPIN.RES

101
102
103
104
105
106
ID_SPINBUTTONMONTH
ID_SPINBUTTONYEAR

SPIN.OBJ \
SPIN.RES

SPIN.RC \
SPIN.H

SPIN.OBJ: SPIN.C \
SPIN.H

ICC -c+ -Kb+ -Ss+ SPIN.C

Spin Buttons - 465

*/

466 - The Art of OS/2 Warp Programming
SPIN.DEF
NAME SPIN WINDOWAPI

DESCRIPTION 'Spin button example
Copyright (cl 1992-1995 by Kathleen Panov
All rights reserved. '

STACKSIZE 16384

Accelerator Keys
In this example, we create three spin buttons directly on the client window. However, the big drawback to
using a client window and not a dialog box as the parent is that you lose a lot of the keyboard handling of
the dialog box. The dialog box procedure automates the moving from control to control when the user hits
the TAB and BACKTAB key. We want our spin buttons to do this also, so we will emulate the TAB key
handling using accelerator keys.

Accelerator keys are a shortcut keystroke that causes some action to happen immediately. In Presentation
Manager programming lingo, a WM_COMMAND message is posted whenever an accelerator key is
pressed. Accelerator keys are covered in more detail in Chapter 12.

ACCELTABLE ID_WINDOW
{

VK_TAB, IDK_TAB, VIRTUALKEY
VK_BACKTAB, IDK_BACKTAB, VIRTUALKEY

Accelerator keys can be created dynamically or in a resource file. This example uses a resource file. Our
resource file defines only two accelerator keys, VK_TAB and VK_BACKTAB.

WM_ CREATE Processing
In this example, we want to create the spin buttons directly on the client area of the window. The ideal
time to create them is at the same time the window is created, in the WM_CREATE processing.

ulYearStyle = SPBS_MASTER I SPBS_READONLY I
SPBS_JUSTLEFT I SPBS_FASTSPIN
WS_VISIBLE ;

The variables ulMonthStyle, ulDayStyle, and ulYearStyle are used to hold the spin button styles. Each
button is fairly similar. SPBS_READONL Y indicates this spin button will be read-only.
SPBS_JUSTLEFf will left-justify the spin button text. SPBS_FASTSPIN lets the user spin the buttons
quickly by holding down the arrow keys. Two of the spin buttons will be servant spin buttons. The Year
spin button will be the master, and the up and down arrows are located to the right of that button.

lHeight = WinQuerySysValue HWND_DESKTOP,
SV_CYSCREEN) I 2

lWidth = WinQuerySysValue HWND_DESKTOP,
SV_CXSCREEN) I 2

The next step is to determine where we will place the spin buttons in the client area. In the WM_ CREA TE
message, the client area has a size of 0, 0. This can make it very difficult to try to guess the size.
However, in this case we can cheat. We know what proportion the client window is of the screen size; so
we use the screen height and width, and divide by two.

xPosition = lWidth I 5;
yPosition = lHeight I 3;
yHeight = 50;

Spin Buttons - 467

The x and y coordinates are calculated by using one-fifth the client area width, and one-third the client area
height.

The spin buttons are created using WinCreateWindow with the class WC_SPINBUTION.

WinSendDlgitemMsg (hwndWnd,
ID_SPINBUTTONDAY,
SPBM_SETARRAY,
MPFROMP (achDayArray) ,
MPFROMSHORT (31)) ;

WinSendDlgitemMsg (hwndWnd,
ID_SPINBUTTONDAY,
SPBM_SETMASTER,
MPFROMHWND (WinWindowFromID

hwndWnd,
ID_SPINBUTTONYEAR)),

0) ;

The last step in creating the spin buttons is to initialize them. The buttons with the IDs
ID_SPINBUTIONDA Y and ID_SPINBUTIONMONTH need to be told exactly who their master is, since
they are only servant spin buttons. The message SPBM_SETMASTER will do this. mpParml is the
master window handle, and mpParm2 is not used. Each different button also has an array of data that
needs to be associated with it. These arrays are defined in SPIN.C. To associate the array, we will send the
spin button the message SPBM_SETARRA Y. mpParml is a pointer to the array, and mpParm2 is the
number of items in the array.

WM_CONTROL Processing
The owner of control windows will receive a WM_CONTROL message when something important has
happened. It just so happens that one of these messages will be able to tell the client window that the spin
button has finished spinning. When that happens, we want to update the status string at the top of the client
window.

usID = SHORTlFROMMP (mpParml) ;
usNotifyCode = SHORT2FROMMP (mpParml

if (usID == ID_SPINBUTTONDAY I I
usID == ID_SPINBUTTONMONTH I I
usID == ID_SPINBUTTONYEAR) {

if (usNotifyCode == SPBN_ENDSPIN) {

WinQueryWindowRect (hwndWnd, &rclWindow) ;
rclWindow.yBottom (rclWindow.yTop -

rclWindow.yBottom) I 3 * 2

WininvalidateRect hwndWnd,
&rclWindow,
FALSE) ;

468 - The Art of OS/2 Warp Programming
mpParml in the WM_CONTROL message contains all the information we need to know about the spin
buttons. The first SHORT is the ID of the control that sent the WM_CONTROL message. The second
SHORT is a notification code that is specific to that type of control. It's a good idea to look at the IDs of
the window sending the message in order to make sure you've got the right window. The only notification
code that we're interested in is SPBN_ENDSPIN. If we receive that message, we want to make the client
area repaint the status area. This area takes up the top third of the client window. First we find the
rectangle we want to repaint, then we use WinlnvalidateRect to force a repaint of that area.

WM_COMMAND Processing
The WM_ COMMAND processing is where we handle the processing of the accelerator keys.

if (SHORTlFROMMP (mpParm2) == CMDSRC_ACCELERATOR) {

hwndActive = WinQueryFocus (HWND_DESKTOP) ;
usFocusID = WinQueryWindowUShort (hwndActive,

QWS_ID) ;

The lower bytes of mpParm2 contain the command type ID. This can contain values such as:
CMDSRC_PUSHBUTTON, CMDSRC_MENU, CMDSRC_FONTDLG, CMDSRC_FILEDLG,
CMDSRC_OTHER, or the value that we're interested in, CMDSRC_ACCELERATOR. The lower bytes
of mpParml contains the accelerator key command ID that we specified as the cmd element of the ACCEL
structures. This information tells us whether the user hit the TAB key or BACKTAB key. WinQueryFocus
is used to determine what spin button to use as a starting point. The window ID is retrieved using
WinQueryWindowUShort. Our window IDs are consecutive numbers, so it is a simple matter to determine
which spin button should have the focus next.

if (SHORTlFROMMP (mpParml) == IDK_TAB) {
usFocusID ++ ;

if (usFocusID > LAST_CONTROL
usFocusID = FIRST_CONTROL

} /* endif */

hwndActive = WinWindowFromID (hwndWnd,
us Focus ID

WinSetFocus (HWND_DESKTOP, hwndActive)

else

If the accelerator key was a TAB key, we're moving forward. If the current spin button is the last one in
the chain, or if the window ID received is out of the bounds of the spin buttons, we set the variable
usFocuslD to the first spin button, or else we just increment usFocusD.

if (SHORTlFROMMP (mpParml) == IDK_BACKTAB) {
usFocusID -- ;

if (usFocusID < FIRST_CONTROL) {
usFocusID = LAST_CONTROL

} /* endif */

hwndActive = WinWindowFromID hwndWnd,
usFocusID

WinSetFocus (HWND_DESKTOP, hwndActive)

!* endif *I
/* endif */

Spin Buttons - 469
The same logic, reversed, is used if the accelerator key is the BACKTAB. Once the new window ID is
determined, WinSetFocus will set the keyboard focus to the new window.

WM_PAINT Processing
The text displaying the current selection of the spin buttons is displayed in the top third of the window.
WinQueryWindowRect determines the size of the window, and then WinFillRect fills this part of the
window with the color white (CLR_ WHITE), effectively erasing this part of this window.

WinSendDlgitemMsg (hwndWnd,
ID_SPINBUTTONYEAR,
SPBM_QUERYVALUE,
MPFROMP (achYear) '

sprintf (achMsg,

MPFROM2SHORT (sizeof (achYear) ,
SPBQ_DONOTUPDATE))

"SpinButton's set to: %s %s, %s",
achMonth,
achDay,
achYear) ;

WinDrawText (hpsPaint,
-1,
achMsg,
&rclBox,
0,
0,
DT_CENTER I DT_VCENTER I DT_TEXTATTRS) ;

The message SPBM_QUERYV ALUE will determine what the spin buttons are currently set at. All three
spin buttons are queried, and their values are returned in a character string. These strings are used to create
one string that will be displayed in the text portion of the window. WinDrawText is used to display the
text, centered both horizontally and vertically, in the text portion of the window.

Chapter 25

Sliders

A slider control is a control designed for two purposes: to let a user adjust some value on a graduated scale
and to serve as a progress indicator of a process. The slider is similar in function to an air-conditioning
thermostat. It can be adjustable or read-only. There are two kinds of sliders: a linear slider and a circular
slider. The circular slider was included with MMPM/2 in earlier versions of OS/2, but in Warp it is
included in the base operating system. Figure 25 .1 illustrates the different linear slider components.

File Cop~

Tick Marks~

60 80 0 100
I I I

Detent\

0 10 ~ 30
I I I + I

Slider Arm Scale
Ribbon Strip

Figure 25.1 Slider control.

The slider arm is the "handle" that is used to select new values along the slider shaft. The arm can be
dragged with a mouse or moved with the cursor keys.

The piece of color that sits to the right or left of the slider arm (depending on slider orientation) is called a
ribbon strip.

The graduations marked along the slider shaft are called tick marks. They can be labeled with text or left
blank.

A detent is a little arrow that marks some point of interest along the scale.

A slider scale can sit above or below the slider shaft, or a slider can use two scales. Table 25.1 presents the
available slider styles.

471

472 -The Art of OS/2 Warp Programming

Linear Slider Styles

SLS_HORIZONTAL

SLS_ VERTICAL

SLS_CENTER
SLS_BOTTOM

SLS_TOP

SLS_LEFT

SLS_RIGHT

SLS_PRIMARYSCALEl

SLS_PRIMARYSCALE2

SLS_HOMELEFT

SLS_HOMERIGHT

SLS_HOMEBOTTOM

SLS_HOMETOP

SLS_BUTTONSLEFT

SLS_BUTTONSRIGHT

SLS_BUTTONSBOTTOM

SLS_BUTTONSTOP

SLS_SNAPTOINCREMENT

The default orientation of the slider. When is slider is of style
SLS_HORIZDNTAL, the slider arm will move left and right. The scale is
placed above the shaft, below the shaft, or above and below the shaft.
Positions the slider vertically. The arm will move up and down the shaft,
and the scale(s) are placed vertically along the shaft, similar to a
thermometer.
Centers the slider in the slider window. This is the default.
Positions the slider at the bottom of the slider window. Not valid for
vertical sliders.
Positions the slider at the top of the slider window. Not valid for vertical
sliders.
Positions the slider at the left of the slider window. Not valid for
horizontal sliders.
Positions the slider at the right of the slider window. Not valid for
horizontal sliders.
Positions the scale above the slider for a horizontal slider and to the right
of the slider for a vertical slider. The increments and detents are also
positioned correspondingly. This is the default style.
The inverse of the previous style. Scales for horizontal sliders are placed
on the bottom, and scales for vertical sliders are placed on the left.
Causes the slider arm to be placed on the left edge of the slider when it is
in base, or 0, position. This style can be used only with horizontal
sliders.
Causes the slider arm to be placed on the right edge of the slider when it
is in base, or 0, position. This style can be used only with horizontal
sliders.
Causes the slider arm to be placed on the bottom of the slider when it is
in base, or 0, position. This style can be used only with vertical sliders.
Causes the slider arm to be placed on the top of the slider when it is in
base, or 0, position. This style can be used only with vertical sliders.
Includes slider buttons that will be placed to the left of the slider.
Clicking on the buttons moves the slider arm one position in the
specified direction. This style can be used only with horizontal sliders.
Includes slider buttons that will be placed to the right of the slider.
Clicking on the buttons moves the slider arm one position in the
specified direction. This style can be used only with horizontal sliders.
Includes slider buttons that will be placed on the bottom of the slider.
Clicking on the buttons moves the slider arm one position in the
specified direction. This style can be used only with vertical sliders.
Includes slider buttons that will be placed on the top of the slider.
Clicking on the buttons moves the slider arm one position in the
specified direction. This style can be used only with vertical sliders.
Causes the slider arm to snap to the nearest scale increment as it is
moved.

Sliders - 473

SLS_READONL Y Prevents the user from interacting with the slider. The slider will contain
no slider buttons and no detents, and the slider arm is narrower than non
read-only sliders.

SLS_OWNDERDRAW

SLS RIBBONSTRIP

Causes WM_DRA WITEM messages to be sent to the application when
the slider needs to be painted.
Provides a ribbon strip in the middle of the slider shaft.

Creating a Linear Slider
A slider can be created either by using WinCreateWindow or by specifying a slider control in the resource
file. The following code demonstrates using the function WinCreateWindow to create a slider.

SLDCDATA structSliderData;
HWND hwndSlider;
ULONG ulSliderStyle;

structSliderData.cbSize = sizeof(SLDCDATA);
/* size of control data structure */
structSliderData.usScalelincrements = 10;
/* number of increments on Scale 1 */
structSliderData.usScalelSpacing = 6;
/* number of pixels between Scale 1 increments */
structSliderData.usScale2Increments = O;
/* number of increments on Scale2 */
structSliderData.usScale2Spacing = O;
/* number of pixels between Scale 2 increments */
ulSliderStyle = WS_VISIBLE I SLS_BUTTONSLEFT SLS_SNAPTOINCREMENT;

hwndSlider = WinCreateWindow(
hwndParent, /* parent window */
WC_SLIDER, /* slider class */
(PSZ)O, /*window text - none here */
ulSliderStyle, /* slider styles */
50, /* x */
50, /* y */
240, /* ex */
50, /* cy */
hwndOwner, /* owner window */
HWND_TOP, /* Z-order */
IDS_SLIDER, /* slider ID */
&structSliderData, /* pointer to SLDCDATA structure */
NULL);/* presentation parameters*/

When specifying a slider in a resource file, the following statements are necessary.

CONTROL "", IDS_SLIDER, 50, 50, 240, 50, WC_SLIDER,
SLS_SNAPTOINCREMENT I SLS_BUTTONSLEFT I WS_VISIBLE

CTLDATA 12, 0, 11, 0, 0, 0

The CTLDATA line represents the slider control data structure. The first two numbers represent the
ULONG value that is the size of the structure. The next number is the number of divisions on scale one.
The fourth number indicates auto-spacing if 0, or the number of pixels between increments if a nonzero
value is used. The last two numbers represent the number of divisions on scale two and spacing on scale
two, respectively.

474 -The Art of OS/2 Warp Programming
Gotcha!
Auto-sizing for the increments between the tick marks is not ideal. The slider divides
the number of increments into the size of the slider. This means that long-tick-mark
text will fall off the edges. Unless short-tick-mark text is present, it is best for
programmers to size the slider increments themselves.

A Linear Slider Example Program
The following program is an example of a read-only slider that is used as a progress indicator. The slider is
owner-drawn (SLS_OWNERDRA W) in order to change the ribbon strip color from ordinary gray to blue.
The program is designed to create a backup copy of the source code. This program does not create a
standard window as the parent of the dialog; instead, a dialog is created at program startup.
HWND_DESKTOP is used as the parent and owner of the dialog. This is a perfectly legitimate way of
designing small programs that don't need the extra functionality of a client window space or menu.

SLIDER.C
#define INCL_DOSFILEMGR
#define INCL_DOSMEMMGR
#define INCL_WINDIALOGS
#define INCL_WINMENUS
#define INCL_WINSTDSLIDER
#define INCL_WINSYS
#include <os2.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "slider.h"
#define COPY_FILE "SLIDER.C"
#define BACKUP_FILE "SLIDER.BAK"
BOOL CopyFile(HWND hwndSlider);

MRESULT EXPENTRY DlgProc(HWND hwndDlg,ULONG ulMsg,MPARAM mpParml,
MPARAM mpParm2) ;

INT main(VOID)
{

HAB
HMQ

habAnchor;
hmqQueue;

habAnchor = Wininitialize(OJ;
hmqQueue = WinCreateMsgQueue(habAnchor,

0);

WinDlgBox(HWND_DESKTOP,
HWND_DESKTOP,
DlgProc,
NULLHANDLE,
IDD_FCOPYDLG,
NULL);

WinDestroyMsgQueue(hmqQueue);
WinTerminate(habAnchor);
return O;

MRESULT EXPENTRY DlgProc(HWND hwndDlg,ULONG ulMsg,MPARAM mpParml,
MPARAM mpParm2)

switch (ulMsgl

case WM_INITDLG
{

CHAR
USHORT
CHAR

achFont [16 J ;

us Index;
achMessage[64];

/***/
/* Set the size of the tick marks and change font */
/* to smaller */
/***/

WinSendDlgitemMsg(hwndDlg,
IDS_SLIDER,
SLM_SETTICKSIZE,
MPFROM2SHORT(SMA_SETALLTICKS,

7)'
0);

strcpy(achFont,
" 8 . Tms Rmn") ;

WinSetPresParam(WinWindowFromID(hwndDlg,
IDS_SLIDER),

PP_FONTNAMESIZE,
strlen(achFont)+l,
achFont);

for (usindex = O; usindex < 11; usindex++)
{

break;

sprintf(achMessage,
n%d%%n'
us Index *10);

WinSendDlgitemMsg(hwndDlg,
IDS_SLIDER,
SLM_SETSCALETEXT,
MPFROMSHORT(usindex),
MPFROMP(achMessage));

/* endfor

case WM_COMMAND
switch (SHORTlFROMMP(mpParml))
{

case IDP_START :
CopyFile(WinWindowFromID(hwndDlg,

IDS_SLIDER)) ;

WinAlarm(HWND_DESKTOP,
WA_NOTE);

WinMessageBox(HWND_DESKTOP,
hwndDlg,

break;

"Backup is Complete",
11 Status 11 ,

0,
MB_OKIMB_INFORMATION);

*/

Sliders -475

476-The Art of OS/2 Warp Programming
case IDP_CANCEL :

WinDismissDlg(hwndDlg,
FALSE);

break;

default
return WinDefDlgProc(hwndDlg,

ulMsg,
mpParml,
mpParm2);

break;

case WM_DRAWITEM
{

POWNERITEM

/* endswitch

poi Item;

*/

/***/
/* get the OWNERITEM structure from mpParm2 and */
/* user to draw the filled ribbon strip in blue */
/***/

poiitem = (POWNERITEM)PVOIDFROMMP(mpParm2);

switch (poiitem->iditem)
{

case SDA_RIBBONSTRIP
WinFillRect(poiitem->hps,

&poiitem->rclitem,
CLR_BLUE);

return MRFROMSHORT(TRUE);
default

return WinDefDlgProc(hwndDlg,
ulMsg,
mpParml,
mpParm2);

/* endswitch

default
return WinDefDlgProc(hwndDlg,

ulMsg,
mpParml,
mpParm2);

return MRFROMSHORT(FALSE);

BOOL CopyFile(HWND hwndSlider)
{

APIRET
FILESTATUS3
PBYTE
HF ILE
ULONG
HF ILE
UL ONG
USHORT
ULONG
ULONG

arRc;
fsStatus;
pbBuffer;
hf Read;
ulAction;
hfWrite;
ulSzBlock;
us Index;
ulBytesRead;
ulBytesWritten;

/* endswitch

*/

*/

arRc DosQueryPathinfo(COPY_FILE,
FIL_STANDARD,
(PVOID)&fsStatus,
sizeof(fsStatus));

if (!arRc)
{

ulSzBlock = fsStatus.cbFile/10+1;

pbBuffer = (PBYTEJmalloc(ulSzBlock);

/***/
/* Open up the file for reading */
/***/

arRc = DosOpen(COPY_FILE,
&hf Read,
&ulAction,
0,
FILE_NORMAL,
FILE_OPEN,
OPEN_ACCESS_READONLYIOPEN_SHARE_DENYWRITE,
0);

/***/
/* Open up the backup file for write */
/***/

arRc = DosOpen(BACKUP_FILE,

for (usindex
{

&hfWrite,
&ulAction,
0,
FILE_NORMAL,
FILE_CREATE,
OPEN_ACCESS_WRITEONLYI

OPEN_SHARE_DENYREADWRITE,
0);

1; usindex < 11; usindex++)

/**/
/* Read a block */
/**/

DosRead(hfRead,
pbBuffer,
ulSzBlock,
&ulBytesRead);

/**/
/* Write a block */
/**/

DosWrite(hfWrite,
pbBuffer,
ulBytesRead,
&ulBytesWritten);

/**/
/* Tell the slider to move */
/**/

Sliders - 477

478-The Art ofOS/2 Warp Programming
WinSendMsg(hwndSlider,

SLM_SETSLIDERINFO,
MPFROM2SHORT(SMA_SLIDERARMPOSITION,

SMA_INCREMENTVALUE),
MPFROMSHORT(usindex));

/* endfor */

/***/
/* Clean up */
/***/

DosClose(hfRead);
DosClose(hfWrite);
free (pbBuffer) ;
return TRUE;

else
{

return FALSE;

SLIDER.RC
#include <os2.h>
#include "slider.h"

/* endif

DLGTEMPLATE IDD_FCOPYDLG LOADONCALL MOVEABLE DISCARDABLE
{

DIALOG "File Copy"' IDD_FCOPYDLG, 67' 80, 324, 104,
WS_VISIBLE,
FCF_SYSMENU I FCF_TITLEBAR

LTEXT "Progress Indicator", -1, 115, 30, 80, 12

*/

CONTROL "", IDS_SLIDER, 12, 43, 300, 46, WC_SLIDER,
SLS_HORIZONTAL I SLS_OWNERDRAW I SLS_CENTER I
SLS_SNAPTOINCREMENT I SLS_READONLY I SLS_RIBBONSTRIP I
SLS_HOMELEFT I SLS_PRIMARYSCALEl I WS_GROUP I WS_TABSTOP
WS_VISIBLE
CTLDATA 12, 0, 11, 26, 0, 0

PUSHBUTTON "-Start", IDP_START, 6, 4, 40, 14
PUSHBUTTON "Cancel", IDP_CANCEL, 49, 4, 40, 14

SLIDER.ff
#define IDD_FCOPYDLG
#define IDS_SLIDER
#define IDP_START
#define IDP_CANCEL

256
512
513
514

SLIDER.MAK
SLIDER.EXE:

SLIDER
SLIDER
SLIDER
OS2386
SLIDER
<<

LINK386 @<<

SLIDER.OBJ \
SLIDER.RES

RC SLIDER.RES SLIDER.EXE

SLIDER.RES: SLIDER.RC \
SLIDER.H

RC -r SLIDER.RC SLIDER.RES

SLIDER.OBJ: SLIDER.C \
SLIDER.H

ICC -C+ -Kb+ -Ss+ SLIDER.C

SLIDER.DEF
NAME SLIDER WINDOWAPI

DESCRIPTION 'Slider example
Copyright (c) 1992-1995 by Kathleen Panov
All rights reserved. '

STACKSIZE 16384

Initalizing the Slider
WinSendDlgitemMsg hwndDlg,

IDS_SLIDER,
SLM_SETTICKSIZE,
MPFROM2SHORT (SMA_SETALLTICKS, 7 } ,
0 } ;

Sliders - 479

In the WM_INITDLG, a SLM_SETTICKSIZE message is sent to the slider window to set the height of
the tick marks. This is different from the item in the CTRLDATA statement in the resource file that sets
the width between the tick marks.

strcpy (achFont, "8.Tms Rmn" } ;
WinSetPresParam (WinWindowFromID (hwndDlg, IDS_SLIDER },

PP_FONTNAMESIZE,
strlen (achFont } + 1,
achFont } ;

WinSetPresParam is used to change the system font of the slider to something nicer and smaller, "8.Tms
Rmn"; this can be useful when your slider text runs over the edges of the slider.

for (usindex = O ; usindex < 11 ; usindex ++
sprintf (achMessage, "%d%%", usindex * 10

WinSendDlgitemMsg (hwndDlg,
IDS_SLIDER,
SLM_SETSCALETEXT,
MPFROMSHORT (usindex } '
MPFROMP (achMessage }}

480 - The Art of OS/2 Warp Programming
Next, the tick marks are labeled with 11 percentage markers by sending the message
SLM_SETSCALETEXT. The first parameter is the division number to set, and the second parameter is the
string to use.

Gotcha!
One little note here: SLM SETSCALETEXT does not recognize
SMA_SETALLTICKS in mpParm2. (Not that anyone will want to set all the tick
marks with the same text very often, but just in case it was desired.)

The WM_COMMAND processing is very simple: When the user pushes the START button, a
WM_COMMAND message is sent to the dialog process. The function CopyFile is called to back up the
file. If the CANCEL button is pressed, the dialog is dismissed, and the process exits.

Using an Ownerdrawn Slider
Because the slider is of style SLS_OWNERDRA W, the dialog procedure also will receive the
WM_DRA WITEM message. mpParm2 contains a pointer to the owneritem structure. The structure is the
same as the OWNERITEM structure covered in Chapter 15. For a slider the id/tern can contain one of four
different values: SDA_RIBBONSTRIP, SDA_SLIDERSHAFT, SDA_BACKGROUND, or
SDA_SLIDERARM.

poiitem = (POWNERITEM) PVOIDFROMMP (mpParm2)

switch (poiitem->iditem) {
case SDA_RIBBONSTRIP:

WinFillRect (poiitem->hps,
&poiitem->rclitem,
CLR_BLUE) ;

return MRFROMSHORT (TRUE) ;

In this case, the program checks to see if the item needing to be drawn, poiltem->idltem, is
SDA_RIBBONSTRIP. If it isn't, we break out of the switch statement. If it is SDA_RIBBONSTRIP,
WinFillRect is called to fill the RECTL structure, poiltem->rclltem with CLR_BLUE. After the area is
filled we return TRUE, to indicate that we've already drawn the area, and there's no drawing left to do.

The last part of the program is the function CopyFile, which is used to copy the file, SLIDER.C, to the file
SLIDER.BAK. This example copies the file in 10 equal increments, in order to demonstrate a progress
indicator. Please note that there is an OS/2 function, DosCopy, that will do all this in one function call, but
for this example we'll do our own copying. First, DosQueryPathlnfo is used to make sure the file exists
and to find the file size. A buffer, pbBuffer, is allocated to serve as the holding place for bytes read and
then written. Next, DosOpen is called to open both files. The file functions are covered in more detail in
Chapter 4; see this chapter for more information on the parameters used in DosOpen, DosQueryPathlnfo,
and DosFindFirst.

WinSendMsg hwndSlider,
SLM_SETSLIDERINFO,
MPFROM2SHORT (SMA_SLIDERARMPOSITION,

SMA_INCREMENTVALUE) ,
MPFROMSHORT (usindex)) ;

Sliders - 481
We will copy the file in 10 pieces. As each piece is copied, a message is sent to the slider to set the
progress indicator to the next value. The message is SLM_SETSLIDERINFO. The first parameter is made
up of two SHORTS. The first value is the type of information that is being set. Possible values are:

• SMA_SHAFTDIMENSIONS
• SMA_SHAFfPOSITION
• SMA_SLIDERARMDIMENSIONS
• SMA_SLIDERARMPOSITION.

We will use SMA_SLIDERARMPOSITION. The second value, SMA_INCREMENTV ALUE, tells the
slider to change the slider arm position using tick marks instead of pixels. The second parameter indicates
the number of the tick mark at which to set the slider arm.

Circular Sliders
A circular slider is used to provide a user interface similar to a volume control on a stereo. The user selects
a new value by using the slider arm that radiates from the center of the circle, or by using the incremental
and decremental buttons on either side of the slider. The circular slider is useful when there is not much
screen space. Figure 25.2 illustrates a circular slider and Table 25.2 specifies circular slider styles.

' ' ~ >

Cirf ular Sl1d('r f xc1111ple

Selected
Value

Volume ·~
~

Value Buttons

Title Text

Circular Slider Styles

CSS_360

CSS_CIRCULARVALUE

Figure 25.2 Circular slider.

The slider will have values extending a full 360 degrees (a full
circle). The default is 180 degrees (a semicircle). See Figure
25.3 for an example of this style.
A circular "thumb" is used, rather than a slider arm, to display the
currently selected value. See Figure 25.4 for an example of this
style.

482 -The Art of OS/2 Warp Programming
·=·:::, :~

CSS_MIDPOINT

CSS_NOBUTTON

CSS_NONUMBER

CSS_NOTEXT

CSS_POINTSELECT

CSS_PROPORTIONAL TICKS

The midpoint and end-point tick marks are made larger than the
other tick marks.
No increment and decrement buttons are displayed. The default
is to include the buttons.
No numeric indicator of the dial's currently selected value is
included. The default is to include the indicator.
No title is displayed beneath the dial. The default is to include
the title.
The user can use the mouse to select a value, and the slider arm
instantly moves the the new value. The default method is for the
slider arm to scroll through the slider tick marks sequentially.
The tick mark length is calculated as a percentage of the radius of
the dial.

"" z >»> » """ "'' ' '

' Circular Slicler Example ',- liffi'

I I \ \
Volume

Figure 25.3 Circular slider with CSS_360 style.

Sliders - 483

II Circular Sl1cler Example 11 Mi

Volume

Figure 25.4 Circular slider with CSS_CIRCULARVALUE style.

Creating a Circular Slider
A circular slider can be created using a resource file or the function WinCreateWindow. The following
code shows a sample resource definition.

CONTROL "Volume"'
ID_ VOLUME,
10, 10, 100, 100,
WC_CIRCULARSLIDER,
WS_VISIBLE I CSS_360

or you can use the WinCreateWindow function to create a slider dynamically:

hwndCircle = WinCreateWindow(hwndClient,
WC_CIRCULARSLIDER,
"Volume",

Gotcha!

WS_VISIBLE I CSS_360,
10, 10, 100, 100,
hwndClient,
ID_ VOLUME,
NULL,
NULL) ;

The documentation for the Warp Toolkit indicates that WinRegisterCircularSlider
must be called to register the circular slider class before a circular slider can be created.
This is wrong. There is no WinRegisterCircularSlider defined. Earlier versions of the
circular slider previously belonged to the MMPM/2 Toolkit and had to be registered
before the class could be used. Obviously, someone forgot to update the manual.

A Circular Slider Example Program
The following is a simple example program to create a circular slider.

484 - The Art of OS/2 Warp Programming
CIRCLE.C
#define
#define
#include
#include
#include
#include
#define

INCL_ WIN
INCL_GPIBITMAPS
<os2.h>
11 circle.h 11

<stdlib.h>
<stdio.h>
CLS_CLIENT "ClientClass"

/* Procedure Prototype */

MRESULT EXPENTRY ClientWndProc(HWND hwndClient,ULONG ulMsg,MPARAM
mpl, MPARAM mp2) ;

INT main(VOID)
{

HAB
HMQ
UL ONG
HWND
BOOL
QMSG
LONG

habAnchor;
hmqQueue;
ulFlags;
hwndFrame;
bLoop;
qmMsg;
1Width,1Height;

habAnchor Wininitialize(O};
hmqQueue = WinCreateMsgQueue(habAnchor,

0);

WinRegisterClass(habAnchor,
CLS_CLIENT,
ClientWndProc,
0,
sizeof (PVOID}};

ulFlags = FCF_TITLEBARIFCF_SYSMENUIFCF_SIZEBORDERIFCF_MINMAXI
FCF_TASKLIST;

/**/
/* create frame window *I
/**/

hwndFrame = WinCreateStdWindow(HWND_DESKTOP,
0,
&ulFlags,
CLS_CLIENT,
"Circular Slider Example",
0,
NULLHANDLE,
ID_FRAME,
NULL};

/**/
/* get screen height and width *I
/**/

lWidth = WinQuerySysValue(HWND_DESKTOP,
SV_CXSCREEN} ;

lHeight WinQuerySysValue(HWND_DESKTOP,
SV_CYSCREEN};

/**/
/* if failed, and set to default value */
/**/

if (!lWidth I I !!Height)
{

lWidth = 640;
!Height = 480;

if (hwndFrame != NULLHANDLE)
{

/***/
I* set window position *I
/***/

WinSetWindowPos(hwndFrame,
NULLHANDLE,
10,
10,
lWidth/10*8,
lHeight/10*8,
SWP_SIZEiSWP_MOVEISWP_ACTIVATEISWP_SHOW);

bLoop WinGetMsg(habAnchor,
&qmMsg,
NULLHANDLE,
0,
0);

while (bLoop)
{

WinDispatchMsg(habAnchor,
&qmMsg);

bLoop = WinGetMsg(habAnchor,
&qmMsg,
NULLHANDLE,
0,
0);

}
WinDestroyWindow(hwndFrame);

}
WinDestroyMsgQueue(hmqQueue);
WinTerminate(habAnchor);
return O;

/* endwhile

/* endif

*I

*/

MRESULT EXPENTRY ClientWndProc(HWND hwndClient,ULONG ulMsg,MPARAM
mpl,MPARAM mp2)

HWND hwndCirc;

switch (ulMsg)

case WM_CREATE
{

RGB2 rgb2 ;

/***/
/* Create circular slider control */
/***/

Sliders - 485

486 - The Art of OS/2 Warp Programming
hwndCirc = WinCreateWindow(hwndClient,

WC_CIRCULARSLIDER,
11 Volume 11 ,

CSS_MIDPOINT,
0,
0,
0,
0, /* Position & size */
hwndClient,
HWND_TOP,
ID_DIAL,
NULL,
NULL);

/***/
/* error checking */
/***/

if (! hwndCirc)
return MRFROMSHORT(FALSE);

/***/
/* change background color of slider to white */
/***/

rgb2.bRed = OxFF;
rgb2.bGreen = OxFF;
rgb2.bBlue = OxFF;
rgb2.fc0ptions = 0 ;

WinSetPresParam(hwndCirc,
PP_BACKGROUNDCOLOR,
sizeof (RGB2) ,
&rgb2);

/***/
/* Specify range of values for circular slider */
/***/

WinSendMsg(hwndCirc,
CSM_SETRANGE,
MPFROMLONG (0) ,
MPFROMLONG(60));

/***/
/* Specify scroll & tick mark increments */
/***/

WinSendMsg(hwndCirc,
CSM_SETINCREMENT,
MPFROMLONG(lO),
MPFROMLONG(O));

/***/
/* Set initial value */
/***/

WinSendMsg(hwndCirc,
CSM_SETVALUE,
MPFROMLONG(30),
NULL);

return MRFROMSHORT(FALSE);

case WM_SIZE :
{

SWP swp;

/***/
/* resize circular slider as proportion of client */
/*window size */
/***/

WinQueryWindowPos(hwndClient,
&swp);

hwndCirc = WinWindowFromID(hwndClient,
ID_DIAL);

WinSetWindowPos(hwndCirc,
HWND_TOP,
swp.cx/4,
swp.cy/4,
swp.cx/2,
swp.cy/2,
SWP_MOVEISWP_SHOWISWP_SIZE);

return MRFROMSHORT(FALSE);

case WM_PAINT
{

HPS hps;

/***/
/* simple paint procedure to fill in client */
/* background */
/***/

hps = WinBeginPaint(hwndClient,
0'

GpiErase (hps) ;
WinEndPaint(hps);

NULL);

return MRFROMSHORT(FALSE);

default
return (WinDefWindowProc(hwndClient,

ulMsg,
mpl,
mp2));

CIRCLE.ff
#define ID_FRAME 100
#define ID_DIAL 101
#define IDM_FILEEXIT 102

CIRCLE.MAK
CIRCLE.EXE:

CIRCLE
CIRCLE
CIRCLE
082386
CIRCLE
<<

LINK386 @«
CIRCLE.OBJ

Sliders - 487

488 - The Art of OS/2 Warp Programming
CIRCLE.OBJ: CIRCLE.C \

CIRCLE.H
ICC -c+ -Kb+ -Ss+ CIRCLE.C

CIRCLE.DEF
NAME CIRCLE WINDOWAPI

DESCRIPTION 'Circular Slider example
Copyright (c) 1992-1995 by Kathleen Panov
All rights reserved.'

STACKSIZE 16384

Initializing the Slider
WinSendMsg(hwndCirc,

CSM_SETRANGE,
MPFROMLONG(O),
MPFROMLONG(50));

WinSendMsg(hwndCirc,
CSM_SETINCREMENT,
MPFROMLONG(lO),
MPFROMLONG(O));

WinSendMsg(hwndCirc,
CSM_SETVALUE,
MPFROMLONG (3 0) ,
NULL);

Three items are initialized in the sample program. The range of the slider is set with the
CSM_SETRANGE message. The first message parameter is the low value, 0. The second message
parameter is the high value, 50. The CSM_SETINCREMENT message controls the amount of increments
to move when the slider buttons are pressed. It also controls the number of tick marks to skip when
drawing the slider tick marks. The first message parameter represents the increment movements of the
slider buttons; the second message parameter sets the tick mark drawing at tick mark 0. The last message
sent is CSM_SETV ALUE. This message sets the currently selected value of the slider. In this example,
the initial value is set at 30.

Circular Slider Colors
rgb2.bRed = OxFF;
rgb2.bGreen = OxFF;
rgb2.bBlue = OxFF;
rgb2.fc0ptions = O ;

WinSetPresParam(hwndCirc,
PP_BACKGROUNDCOLOR,
sizeof{RGB2),
&rgb2);

The circular slider responds only to two of the presentation parameters, PP _BACKGROUNDCOLOR and
PP _BORDER. The background color is the area that sits outside the slider dial. In our example program,
we will set the background color to white. Notice that this is PP _BACKGROUNDCOLOR and not
PP _BACKGROUNDCOLORINDEX.

Sliders - 489

Summary
The slider controls are a nice way to display a progress indicator or to provide the user with a large range
of values to choose from. Sliders are simple controls to use in a program. Although they are not as
customizable as might be desired, they still can be used in many instances. A volume control for a CD
player program is an ideal use for a circular slider. A linear slider could be used as a thermostat.

Chapter 26

Font and File Dialogs

The font dialog and file dialog were introduced in OS/2 2.0 to provide two high-level functions that
perform tasks that most programmers previously had written by hand at one time or another. The Font
dialog is a dialog box with a listing of fonts and an example of each. The file dialog is a dialog box that
contains a list of files on the end user's available drives. (See Figure 26.1.) Both functions can be
reconfigured extensively by the programmer.

Figure 26.1 A file dialog box.

491

492 - The Art of OS/2 Warp Programming

The File Dialog
The file dialog can be created either as a "Save As ... " or as an "Open" dialog. A list of all the controls in
the file dialog is included in the Toolkit header file, PMSTDDLG.H, so that readers can add their own, or
remove those they feel are unnecessary.

The meat of creating a file dialog structure is the FILEDLG structure. This structure, which follows,
includes all the configurable options for the file dialog.

typedef struct _FILEDLG
{

/* filedlg */

cbSize;
fl;
ulUser;
lReturn;
lSRC;
pszTitle;

UL ONG
ULONG
ULONG
LONG
LONG
PSZ
PSZ
PFNWP

pszOKButton;
pfnDlgProc;

PSZ
PAPSZ
PSZ
PAPSZ
HMODULE
CHAR
PAPSZ
ULONG
US HORT
SHORT
SHORT

pszIType;
papszITypeList;
pszIDrive;
papszIDriveList;
hMod;
szFullFile[CCHMAXPATH];
papszFQFilename;
ulFQFCount;

SHORT
FILEDLG;

usDlgid;
x;
y;
sEAType;

typedef FILEDLG *PFILEDLG;

The cbSize is the size of the FILEDLG structure. This field must be filled in. The fl field, which also must
be filled in is the File Dialog flags used to describe the file dialog. Table 26. l presents the possible values.

Table 26.1 File Dialo

19>
FDS_CENTER
FDS_CUSTOM
FDS_FIL TERUNION
FDS_HELPBUTTON
FDS_APPL YBUTTON
FDS_PRELOAD_ VOL_INFO

FDS_MODELESS
FDS_INCLUDE_EAS
FDS_OPEN_DIALOG
FDS_SA VEAS_DIALOG
FDS_MUL TIPLESEL
FDS_ENABLEFILELB

The file dialog is centered within its owner.
Use a custom-defined dialog box.
Use a union of extended attributes and file name filter.
Include a HELP push button on the file dialog.
Include an APPLY push button on the file dialog.
Load the volume information on the file dialog
initialization. This can cause lengthy processing at
startup.
The file dialog is modeless.
Load the extended attribute information.
File dialog is the "Open" dialog.
File dialog is the "Save As ... " dialog.
Multiple files can be selected from the list box.
If file dialog is the "Save As ... " style, the list box of files
is enabled, not disabled (the default).

Font and File Dialogs - 493
The ulUser field is 4 bytes of space that are available for the programmer to use. The !Return field is the
return code from the file dialog. This can be DID_OK, DID_CANCEL, or 0 if an error occurs. The lSRC
field contains an FDS_ERR return code if an error occurs in the file dialog.

The pszTitle field is a pointer to a string that contains the title of the file dialog box window. If this is
NULL, the title of the owner window is used. The pszOKButton field is a pointer to a string that contains
the text for the OK push button. If this is NULL, "OK" is used. The pfnDlgProc field is a pointer to a
user-defined dialog procedure. The function WinDefFileDlgProc can be used to call the default dialog
procedure from the user-defined procedure.

The psz!Type field is a pointer to a string containing a type of EA (extended attribute). Only files that
contain this EA type will be shown in the list of available files. The field papsz!TypeList is an array of
pointers that contain a list of EA types for filtering the available file list. This array must end with a NULL
pointer. The psz!Drive field is a pointer to a string that contains the selected drive when the dialog is first
made visible.

The field papsz!DriveList is an array of pointers to strings that contain a list of drives to use as available
drives. A NULL in this field will cause all available drives to be included in the list. This array must end
with a NULL pointer. The hMod field is the handle of a .DLL that contains the dialog box resource to be
used if a FDS_CUSTOM flag is specified. The character array szFullFile contains the filename of the
initially selected file. On return, this field contains the fully qualified filename selected by the end user.

The field papszFQFilename is an array of pointers to fully qualified filenames. On return from the
WinFileDlg function, this array contains all the files that the end user selected. The field ulFQFCount is
the number of files selected by the user. The field usDlg!D is the dialog resource ID of a file dialog to use
as a replacement for the default file dialog. This field is used if FDS_CUSTOM is specified.

The fields x and y are the x,y coordinates to be used to place the file dialog. These fields are ignored when
FDS_CENTER is used. The field sEAType is an index into the papsz!TypeList array that contains the EA
type of the file that was selected.

Special Considerations for Multiple File Selections
When a file dialog has the style FDS_MULTIPLESEL, multiple files can be selected from the file dialog.
This causes a few events to happen:

• The number of files selected is returned in the field ulFQFCount.
• An array of pointers to the names of the selected files is returned in the papszFQFilename field.
• If the file dialog has allocated memory for these strings, the lSRC field will contain

FDS_ERR_DEALLOCATE_MEMORY. This is a signal to the programmer that he or she needs to
free the memory allocated for these strings with the WinFreeFileDlgList application.

• The first file selected will be contained in the szFullFile array.

The WinFreeFileDlgList function has only one parameter, the array of pointers to strings,
papszFQFilename.

BOOL WinFreeFileDlgList(PAPSZ papszFQFilename);

494 - The Art of OS/2 Warp Programming

The FILEDLG Example Program
The example program FILEDLG creates a file dialog and prints the filename of the selected file on the
client area.

FILEDLG.C
#define INCL_WINSTDFILE
#define INCL_WINSYS
#define INCL_WINWINDOWMGR
#include <os2.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "filedlg.h"
MRESULT EXPENTRY ClientWndProc(HWND hwndClient,ULONG ulMsg,MPARAM

mpParml,MPARAM mpParm2);

BOOL FindFile(HWND hwndWnd,CHAR *pchFile);
VOID DisplayError(CHAR *pszText);

#define CLS_CLIENT
INT main(VOID)

HMQ
HAE
ULONG
HWND
BOOL
QMSG
LONG
HWND

"MyClass"

hmqQueue;
habAnchor;
ulFlags;
hwndClient;
bLoop;
qmMsg;
lWidth,lHeight;
hwndFrame = NULLHANDLE;

habAnchor Wininitialize(O);
hmqQueue = WinCreateMsgQueue(habAnchor,

0);

WinRegisterClass(habAnchor,
CLS_CLIENT,
ClientWndProc,
CS_SIZEREDRAWiCS_SYNCPAINT,
sizeof (PVOID));

ulFlags = FCF_TITLEBARiFCF_SYSMENUiFCF_SIZEBORDERiFCF_MENUi
FCF_MINMAX;

/**/
/* create frame and client window */
/**/

hwndFrame = WinCreateStdWindow(HWND_DESKTOP,

0'
&ulFlags,
CLS_CLIENT,
"Font Dialog Example",
0,
NULLHANDLE,
RES_CLIENT,
&hwndClient);

/**/
/* get screen height and width */
/**/

lWidth WinQuerySysValue(HWND_DESKTOP,
SV_CXSCREEN);

lHeight WinQuerySysValue(HWND_DESKTOP,
SV_CYSCREEN);

!**/
/* set size and position of frame window */
/**/

if (hwndFrame)
{

WinSetWindowPos(hwndFrame,
NULLHANDLE,
lWidth/8,
lHeight/8,
lWidth/8*6,
lHeight/8*6,
SWP_SIZEISWP_MOVEISWP_ACTIVATEISWP_SHOW);

bLoop WinGetMsg(habAnchor,
&qmMsg,
NULLHANDLE,
0'
0);

while (bLoop)
{

WinDispatchMsg(habAnchor,
&qmMsg);

bLoop = WinGetMsg(habAnchor,
&qmMsg,
NULLHANDLE,
0,
0);

WinDestroyWindow(hwndFrame);
}
WinDestroyMsgQueue(hmqQueue);
WinTerminate(habAnchor);
return 0;

/* endwhile

/* endif

*/

*/

MRESULT EXPENTRY ClientWndProc(HWND hwndClient,ULONG ulMsg,MPARAM
mpParml,MPARAM mpParm2)

PC HAR pchFile;

switch (ulMsg)
{

case WM_CREATE :
pchFile = (PCHAR)calloc(l,

CCHMAXPATH) ;
if (!pchFile)
{

DisplayError("No memory could be allocated");
return MRFROMSHORT(TRUE);

WinSetWindowPtr(hwndClient,
QWL_USER,
pchFile);

break;

case WM_DESTROY

/* endif

pchFile = WinQueryWindowPtr(hwndClient,
0);

*/

Font and File Dialogs - 495

496 - The Art of OS/2 Warp Programming
if (pchFile)
{

free (pchFile);

break;

case WM_PAINT
{

HPS
RECTL
CHAR

hpsPaint

/* endif

hpsPaint;
rclinvalid;
achText[CCHMAXPATH];

WinBeginPaint(hwndClient,
NULLHANDLE,
&rclinvalid);

WinFillRect(hpsPaint,
&rclinvalid,
SYSCLR_WINDOW) ;

pchFile = WinQueryWindowPtr(hwndClient,
0);

if (pchFile[O] != 0)
{

WinQueryWindowRect(hwndClient,
&rclinvalid) ;

sprintf(achText,
"You have selected file %s",
pchFile);

WinDrawText(hpsPaint,
-1,
achText,
&rclinvalid,
0,
0,
DT_CENTERIDT_VCENTERIDT_TEXTATTRS);

*/

} I* endif *I
WinEndPaint(hpsPaint);

break;

case WM_COMMAND

switch (SHORTlFROMMP(mpParml})
{

case IDM_OPEN :
pchFile = WinQueryWindowPtr(hwndClient,

0);
if (pchFile)
{

FindFile(hwndClient,
pchFile);

} /* endif
WininvalidateRect(hwndClient,

NULL,
TRUE);

break;

case IDM_EXIT :
WinPostMsg(hwndClient,

WM_QUIT,
0,
0);

break;

*/

default
return WinDefWindowProc(hwndClient,

ulMsg,
mpParml,

break;

default

mpParm2);
/* endswitch

return WinDefWindowProc(hwndClient,
ulMsg,
mpParml,

mpParm2);
/* endswitch

return MRFROMSHORT(FALSE);

BOOL FindFile(HWND hwndClient,CHAR *pchFile)
{

FILEDLG fdFileDlg;

memset(&fdFileDlg,
0'
sizeof(FILEDLG));

fdFileDlg.cbSize = sizeof (FILEDLG);

*/

*/

fdFileDlg.fl = FDS_CENTERIFDS_PRELOAD_VOLINFOIFDS_OPEN_DIALOG;

if (WinFileDlg(HWND_DESKTOP,
hwndClient,
&fdFileDlg) != DID_OK)

DisplayError ("WinFileDlg failed");
return FALSE;

strcpy(pchFile,
fdFileDlg.szFullFile);

return TRUE;

VOID DisplayError(CHAR *pszText)
{

/* endif */

/**/
/* small function to display error string */
/**/

WinAlarm(HWND_DESKTOP,
WA_ERROR);

WinMessageBox(HWND_DESKTOP,
HWND_DESKTOP,
pszText,
"Error!",

0'
MB_OK I MB_ERROR) ;

return

Font and File Dialogs - 497

498 - The Art of OS/2 Warp Programming
FILED LG.RC
#include <os2.h>
#include "filedlg.h"

MENU RES_CLIENT
{

SUBMENU "-File", IDM_SUBl
{

MENUITEM "-New" ' IDM_NEW
MENUITEM "-Open File ... ", IDM_OPEN
MENUITEM "-Close File", IDM_CLOSE
MENUITEM "E-xit" , IDM_EXIT

FILEDLG.H
#define RES_CLIENT
#define IDM_SUBl
#define IDM NEW
#define IDM_OPEN
#define IDM_CLOSE
#define IDM_EXIT

FILED LG.MAK
FILEDLG.EXE:

FILEDLG
FILEDLG
FILEDLG
OS2386
FILEDLG
<<

LINK386 @<<

256
512
513
514
515
516

FILEDLG.OBJ \
FILEDLG.RES

RC FILEDLG.RES FILEDLG.EXE

FILEDLG.RES: FILEDLG.RC \
FILEDLG.H

RC -r FILEDLG.RC FILEDLG.RES

FILEDLG.OBJ: FILEDLG.C \
FILEDLG.H

ICC -C+ -Kb+ -Ss+ FILEDLG.C

FILED LG.DEF
NAME FILEDLG WINDOWAPI
DESCRIPTION 'File dialog example

Copyright (c) 1992-1995 by Kathleen Panov.
All rights reserved. '

STACKSIZE 16384

The Window Word

pchFile = (PCHAR)calloc(l,
CCHMAXPATH);

if (!pchFile)
{

DisplayError ("No memory could be al located") ;
return MRFROMSHORT(TRUE);

WinSetWindowPtr(hwndClient,
QWL_USER,
pchFile);

/* endif

Font and File Dialogs - 499

*/

In the FILEDLG example, a standard window is created with a menu. In the WM_CREATE processing,
memory is allocated to hold the selected filename. The pointer to this memory is attached as a window
word using WinSetWindowPtr. This memory is freed when the WM_DESTROY message is received.

When the user selects the "Open" selection from the menu, a WM_COMMAND message is sent. When
the message is received, the user function FindFile is called. After this function returns, the client area is
invalidated to force a repaint.

Putting It All Together: FindFile
The FindFile function is a user-defined function where the FILEDLG structure is initialized and
WinFileDlg is called. When the FILEDLG structure is declared, it is important to initialize the entire
structure to 0.

Gotcha!
The FILEDLG structure is a very particular beast. Several fields in the structure are
pointers or arrays of pointers. Very bad results ensue if unsued pointer fields are set to
some arbitrary garbage, rather than NULL. This will occur if the FILEDLG structure
is declared as an automatic structure variable and is left uninitialized. Also, note that
most of these fields in the FILEDLG structure are pointers, not arrays. This means it is
the programmer's responsibility to provide the memory. There is only one character

array, szFul!File, of size CCHMAXFILEPATH. This is the only string field that data can be copied
directly into!

Initializing the FILED LG Structure
fdFileDlg.cbSize = sizeof(FILEDLG);
fdFileDlg.fl = FDS_CENTERIFDS_PRELOAD_VOLINFOIFDS_OPEN_DIALOG;

The mandatory cbSize field is set to the size of the FILED LG structure. The file dialog box in this example
has the styles FDS_CENTER, FDS_PRELOAD_INFO, and FDS_OPEN_DIALOG. This centers the
dialog, loads all the drive volume info on startup, and creates the "File Open ... " dialog. These styles are
OR'ed together in the fl field. This is also a mandatory field.

500 - The Art of OS/2 Warp Programming

if (WinFileDlg(HWND_DESKTOP,
hwndClient,
&fdFileDlg) != DID_OK)

WinFileDlg has three parameters. The first parameter is the parent window handle, in this case
HWND_DESKTOP. The second parameter is the owner window handle, in this case hwndClient. The last
parameter is a pointer to a FILEDLG structure.

Once the user has closed the file dialog, szFullFile is copied into the window word, pchFileName, and the
function returns.

The Font Dialog

Figure 26.2 The font dialog.

The font dialog (see Figure 26.2) is created using WinFontDlg. This function is very similar to WinFileDlg
in its setup. The structure FONTDLG is used to design the font dialog box layout. The structure is as
follows.

typedef struct _FONTDLG
{

ULONG
HPS
HPS
PSZ
PSZ
PSZ
PFNWP
PSZ
FIXED
ULONG
ULONG
ULONG
UL ONG
ULONG
ULONG

cbSize;
hpsScreen;
hpsPrinter;
pszTitle;
pszPreview;
pszPtSizeList;
pfnDlgProc;
pszFamilyname;
fxPointSize;
fl;
flFlags;
fl Type;
fl TypeMask;
flStyle;
flStyleMask;

Font and File Dialogs - 501
LONG clrFore;
LONG clrBack;
UL ONG ulUser;
LONG lReturn;
LONG lSRC;
LONG lEmHeight;
LONG lXHeight;
LONG lExternalLeading;
HMODULE hMod;
FATTRS fAttrs;
SHORT sNominalPointSize;
USHORT usWeight;
USHORT usWidth;
SHORT x;
SHORT y;
USHORT usDlgid;
USHORT usFamilyBufLen;
US HORT usReserved;

FONTDLG;
typedef FONTDLG *PFONTDLG;

The field cbSize is the size of the FONTDLG structure. The field hpsScreen is the presentation space for
the screen. If this field is NULL, no screen fonts will be used as available fonts. The field hpsPrinter is
the presentation space for the printer. If this field is NULL, no printer fonts will be used as available fonts.
The field pszTitle is a pointer to a string that is the title of the file dialog box window. If this is NULL, the
title of the owner window is used. The field pszPreview is a pointer to a string that is the text to be used in
the preview window.

The field pszPtSizeList is a pointer to a string that is the list of font sizes that the font dialog will use as
available fonts. The string is in the format "8 10 12", where each font size is separated by a space. The
field pfnDlgProc is a pointer to a user-defined dialog procedure. The function WinDefFontDlgProc can be
used to call the default dialog procedure from the user-defined dialog procedure. The field pszFamilyname
is a pointer to a string that contains the font family name. On input, this field is used to determine the
selected font when the font dialog is first started. When the user closes the dialog box, this field contains
the family name of the font the user selected.

The field fxPointSize is the point size of the selected font. On input, this field is the point size of the
default-selected font. When the user closes the dialog box, this field contains the point size of the font the
user selected. The field.fl is the font dialog styles flag. This field is a collection of styles OR'ed together.
Table 26.2 presents the available styles.

FNTS_CENTER
FNTS_CUSTOM
FNTS_OWNERDRA WPREVIEW
FNTS_HELPBUTTON
FNTS_APPL YBUTTON
FNTS_RESETBUTTON
FNTS_MODELESS
FNTS_INITFROMFA TTRS

FNTS_BITMAPONL Y

The dialog is centered on the owner window.
Uses a custom-defined dialog template.
The preview box is owner-drawn.
A HELP button is included in the font dialog.
An APPLY button is included in the font dialog.
A RESET button is included in the font dialog.
The font dialog box is modeless.
The font dialog will choose the initially selected font by matching
the values in the FATTRS structure.
Only bitmapped fonts will be used as available fonts.

502 - The Art of OS/2 Warp Programming
FNTS_ VECTORONL Y Only vector fonts will be used as available fonts.
FNTS_FIXEDWIDTHONL Y Only monospaced fonts will be used as available fonts.
FNTS_PROPORTIONALONL Y Only proportional fonts will be used as available fonts.
FNTS NOSYNTHESIZEDFONTS Fonts will not be synthesized.

The field flFlags is a collection of font flags OR' ed together. The flags listed in Table 26.3 are available.

Table 26.3 Available Font Flags

FNTF _NOVIEWPRINTERFONTS An input flag. If specified, and both hpsScreen and hpsPrinter are
used, the printer fonts will not be included in the list of available
fonts.

FNTF _NOVIEWSCREENFONTS An input flag. If specified, and both hpsScreen and hpsPrinter are
used, the screen fonts will not be included in the list of available
fonts.

R~TF _PRI~-lTERFO~~TSELECTED .l~;Ln output flag. It indicates that t...lie user selected a printer font.
FNTF SCREENFONTSELECTED An output flag. It indicates that the user selected a screen font.

The field flType contains the additional characteristics of the font the user selected. Table 26.4 specifies
the types available.

Table 26.4 Font Characteristics
Tm'•r···············
FTYPE_ITALIC
FTYPE_ITALIC_DONT_CARE
FTYPE_OBLIQUE
FTYPE_OBLIQUE_DONT_CARE
FTYPE_ROUNDED
FTYPE ROUNDED DONT CARE

The font selected was italic.
The font selected was not italic.
The font selected was oblique.
The font selected was not oblique.
The font selected was rounded.
The font selected was not rounded.

The fieldflTypeMask is a mask of which font types to use.

The fieldflStyle is the font styles the user selected. Table 26.5 lists the available styles.

Table 26.5 Font Style of Selected Font
Sjl\•j: \{•··••·•··········.··· ···································•••·•·•!!J\!~'tJPlt~i'!''!F t.Jf;;Vi;wJ•j•··••••··········

FATTR_SEL_ITALIC The font selected was italic.
FATTR_SEL_UNDERSCORE
FATTR_SEL_BOLD
FA TTR_SEL_STRIKEOUT
FATTR SEL OUTLINE

The font selected was underscore.
The font selected was bold.
The font selected was strikeout.
The font selected was outline.

The fieldflStyleMask is a mask of which font styles to use. The field clrFore is the font foreground color
index. The field clrBack is the font background color index.

The field ulUser is 4 bytes of user-defined storage space. The field [Return is the ID of the push-button the
user pushed to close the dialog; DID_OK, DID_CANCEL, or 0 if an error occurred.

The field ZSRC is the system return code if the font dialog fails. Table 26.6 presents the possible values.

Table 26.6 Values of ISRC

Value
FNTS_SUCCESSFUL
FNTS_ERR_INVALID_DIALOG
FNTS_ERR_ALLOC_SHARED_MEM
FNTS_ERR_INV ALID _p ARM
FNTS_ERR_OUT_OF _MEMORY
FNTS_ERR_INV AUD_ VERSION
FNTS_ERR_DIALOG_LOAD _ERROR

Description
Font dialog was successful
Invalid dialog error
Error allocating shared memory
Invalid parameter
Out-of-memory error
Invalid version error
Error loading dialog

Font and File Dialogs - 503

The field lEmHeight is the point size of the font converted into world coordinates. This field multiplied by
1.2 is often a good gauge for the vertical spacing between rows of text. The field lXHeight is the height in
pixels of the character x. The field lExternalLeading is the recommended vertical spacing between rows of
text. This value is the maximum spacing, not the actual spacing to use.

The field hMod is the module handle to use for loading a custom font dialog. This field is used only if
FNTS_CUSTOM is set in the fl field. If FNTS_CUSTOM is set, and this field is NULL, the resource is
drawn from the executable. The field fAttrs is a FATTRS structure for the selected font. The field
sNominalPointSize is the font point size. This field is meaningful for bitmap fonts only.

The field us Weight is the weight of the font. Table 26.7 lists possible values.

Table 26.7 Values of usWeight

FWEIGHT_DONT_CARE
FWEIGHT_ULTRA_LIGHT
FWEIGHT _EXTRA_LIGHT
FWEIGHT_LIGHT
FWEIGHT_SEMI_LIGHT
FWEIGHT_NORMAL
FWEIGHT_SEMI_BOLD
FWEIGHT_BOLD
FWEIGHT_EXTRA_BOLD
FWEIGHT_ULTRA_BOLD

Any font weight is applicable.
The font is ultra-light.
The font is extra light.
The font is light.
The font is semilight.
The font is normal weight.
The font is semibold.
The font is bold.
The font is extrabold.
The font is ultra-bold.

The field us Width is the width class of the font the user selects. Table 26.8 lists possible values.

Table 26.8 Values of usWidth

FWIDTH_DONT_CARE
FWIDTH_UL TRA_CONDENSED

FWIDTH_EXTRA_CONDENSED

FWIDTH_CONDENSED

Any font width is applicable.
The selected font has an aspect ratio 50 percent of the normal
ratio.
The selected font has an aspect ratio 62.5 percent of the normal
ratio.
The selected font has an aspect ratio 75 percent of the normal
ratio.

504 - The Art of OS/2 Warp Programming

FWIDTH_SEMI_CONDENSED

FWIDTH_NORMAL

FWIDTH_SEMI_EXPANDED

FWIDTH_EXPANDED

FWIDTH_EXTRA_EXPANDED

FWIDTH_ULTRA_EXPANDED

The selected font has an aspect ratio 87 .5 percent of the normal
ratio.
The selected font has an aspect ratio 100 percent of the normal
ratio.
The selected font has an aspect ratio 112.25 percent of the normal
ratio.
The selected font has an aspect ratio 125 percent of the normal
ratio.
The selected font has an aspect ratio 150 percent of the normal
ratio.
The selected font has an aspect ratio 200 percent of the normal
ratio.

The field x is the x coordinate for the font dialog box. This field is unused if the fl flag has
FNTS_CENTER set. The field y is they coordinate for the font dialog box. This field is unused if the fl
flag has FNTS_CENTER set. The field usDlgID is the resource ID of the dialog box to be used if the
FNTS_CUSTOM flag in the fl field is set. The field usFamilyBufLen is the length of the pszFamilyname
buffer. This field is mandatory.

Gotcha!
Several fields are mandatory in the font dialog control: cbSize, hpsScreen or
hpsPrinter, pszFamilyname, usFamilyBufLen, and fl. Also, all of the string fields in
the FONTDLG structure are pointers. It is the programmer's responsibility to provide
the space for these fields.

An Example Program: FONTDLG

FONTDLG.C
#define INCL_WIN
#define INCL_STDDLG
#define INCL_GPI
#include <os2.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "fontdlg.h"

typedef struct
{

FONTDLG fdFontDlg;
USHORT binit;

MYFONTINFO,*PMYFONTINFO;

MRESULT EXPENTRY ClientWndProc(HWND hwndClient,ULONG ulMsg,MPARAM
mpParml,MPARAM mpParm2l;

VOID SetFont(HWND hwndClient,PMYFONTINFO pmfiFont);
BOOL InitFont(HWND hwndClient,PFONTDLG pfdFontDlg);
VOID DisplayError(CHAR *pszText);

#define CLS_CLIENT "MyClass"

INT main(VOID)

HMQ
HAB
UL ONG
HWND
BOOL
QMSG
LONG
HWND

habAnchor
hmqQueue =

hmqQueue;
habAnchor;
ulFlags;
hwndClient;
bLoop;
qmMsg;
lWidth,lHeight;
hwndFrame = NULLHANDLE;

Wininitialize(O);
WinCreateMsgQueue(habAnchor,

0);

WinRegisterClass(habAnchor,
CLS_CLIENT,
ClientWndProc,
CS_SIZEREDRAWICS_SYNCPAINT,
sizeof (PVOID));

ulFlags = FCF_TITLEBARIFCF_SYSMENUIFCF_SIZEBORDERIFCF_MENUI
FCF_MINMAX;

/**/
/* create frame and client window */
/**/

hwndFrame = WinCreateStdWindow(HWND_DESKTOP,
0,
&ulFlags,
CLS_CLIENT,
"Font Dialog Example",
0,
NULLHANDLE,
RES_CLIENT,
&hwndClient);

/**/
/* get screen height and width */
/**/

lWidth = WinQuerySysValue(HWND_DESKTOP,
SV_CXSCREEN);

lHeight WinQuerySysValue(HWND_DESKTOP,
SV_CYSCREEN) ;

/**/
/* set size and position of frame window */
/**/

if (hwndFrame)
{

WinSetWindowPos(hwndFrame,
NULLHANDLE,
10,
10,
lWidth/10*8,
lHeight/10*8,

Font and File Dialogs - 505

506 - The Art of OS/2 Warp Programming
SWP_SIZEISWP_MOVEISWP_ACTIVATEISWP_SHOW);

bLoop WinGetMsg(habAnchor,
&qmMsg,
NULLHANDLE,

0'
0);

while (bLoop)
{

WinDispatchMsg(habAnchor,
&qmMsg);

bLoop = WinGetMsg(habAnchor,
&qmMsg,
NULLHANDLE,
0,
0);

WinDestroyWindow(hwndFrame);

WinDestroyMsgQueue(hmqQueue);
WinTerminate(habAnchor);
return O;

/* endwhile

/* endif

*/

*/

MRESULT EXPENTRY ClientWndProc(HWND hwndClient,ULONG ulMsg,MPARAM
mpParml,MPARAM mpParm2)

PMYFONTINFO

switch (ulMsg)
{

pmfiFont;

case WM_CREATE
{

/***/
/* allocate the window word */
/***/

pmfiFont = calloc(l,
sizeof(MYFONTINFO));

if (!pmfiFont)
{

DisplayError ("No memory could be allocated");
return MRFROMSHORT(TRUE);

WinSetWindowPtr(hwndClient,
QWL_USER,
pmfiFont);

/* endif */

/***/
/* set font to 8 pt Times Roman */
/***/

WinSetPresParam(hwndClient,
PP_FONTNAMESIZE,
10,
"8.Tms Rmn");

/***/
/* indicates first time dialog is brought up */
/***/

pmfiFont->binit = FALSE;
break;

case WM_DESTROY

/***/
/* clean up */
/***/

pmfiFont = WinQueryWindowPtr(hwndClient,
QWL_USER);

if (pmfiFont)
{

free(pmfiFont);

break;

case WM_PAINT
{

HPS
UL ONG
RECTL
CHAR

hpsPaint

/* endif

hpsPaint;
ulReturn;
rclPaint;
achFontName[200],achMsg[256];

WinBeginPaint(hwndClient,
NULLHANDLE,
&rclPaint);

*/

/***/
/* get the current font */
/***/

ulReturn = WinQueryPresParam(hwndClient,
PP_FONTNAMESIZE,

if (ulReturn)
{

sprintf(achMsg,

0'
NULL,
256,
achFontName,
0);

"The font selected is \"%s\"",
achFontName) ;

else
{

strcpy(achMsg,
"No font selected");

/* endif */

/***/
/* clear out the window */
/***/

WinFillRect(hpsPaint,
&rclPaint,
SYSCLR_WINDOW) ;

WinQueryWindowRect(hwndClient,
&rclPaint) ;

/***/
/* write out current font on client area */
/***/

WinDrawText(hpsPaint,
-1,
achMsg,
&rclPaint,
0,

Font and File Dialogs - 507

508 - The Art of OS/2 Warp Programming
0,
DT_VCENTERJDT_CENTERJDT_TEXTATTRS);

WinEndPaint(hpsPaint);

break;

case WM_COMMAND

switch (SHORTlFROMMP(mpParml))
{

case IDM_FONT
{

/***/
/* get window word */
/***/

pmfiFont = WinQueryWindowPtr(hwndClient,
QWL_USER);

if (!pmfiFont)
{

DisplayError(
"Unable to retrieve font information structure")

break;

/***/
/* do font dialog */
/***/

SetFont(hwndClient,
pmfiFont);

/***/
/* repaint window with new font */
/***/

WininvalidateRect(hwndClient,
NULL,
TRUE);

break;

case IDM_EXIT
{

WinPostMsg(hwndClient,
WM_CLOSE,
0,
0);

break;
}

default

break;

default

return WinDefWindowProc(hwndClient,
ulMsg,
mpParml,

mpParm2);
/* endswitch

return WinDefWindowProc(hwndClient,
ulMsg,
mpParml,

mpParm2);
/* endswitch

*/

*/

return MRFROMSHORT(FALSE);

VOID SetFont(HWND hwndClient,PMYFONTINFO pmfiFont)
{

FATTRS
FIXED
CHAR
CHAR

faAttrs;
fxSzFont;
achFamily[256];
achFont[256];

/**/
/* save some values */
/**/

faAttrs = pmfiFont->fdFontDlg.fAttrs;
fxSzFont = pmfiFont->fdFontDlg.fxPointSize;

/**/
/* clear out the structures */
/**/

memset(&pmfiFont->fdFontDlg,
0'
sizeof(FONTDLG));

memset(achFont,
0,
256);

if (pmfiFont->binit)
{

/***/
/* fontdialog structure has already been initialized */
/***/

pmfiFont->fdFontDlg.fAttrs = faAttrs;
pmfiFont->fdFontDlg.fxPointSize = fxSzFont;

/* endif
else
{

*/

/***/
/* first time through */
/***/

InitFont(hwndClient,
&(pmfiFont->fdFontDlg));

pmfiFont->binit = TRUE;

/**/
/* joint initialization */
/**/

pmfiFont->fdFontDlg.hpsScreen = WinGetPS(hwndClient);
pmfiFont->fdFontDlg.cbSize = sizeof(FONTDLG);

pmfiFont->fdFontDlg.pszFamilyname = achFamily;
pmfiFont->fdFontDlg.usFamilyBufLen = sizeof(achFamily);
pmfiFont->fdFontDlg.fl = FNTS_CENTERjFNTS_INITFROMFATTRS;
pmfiFont->fdFontDlg.clrFore CLR_NEUTRAL;
pmfiFont->fdFontDlg.clrBack = SYSCLR_WINDOW;

Font and File Dialogs - 509

510 - The Art of OS/2 Warp Programming
/**/
/* return from font dialog is TRUE or FALSE for non-modeless*/
/* font dialog, window handle if FNTS_MODELESS is set ours */
/* is non-modeless, so we check for TRUE or FALSE */
/**/

if (!WinFontDlg(HWND_DESKTOP,
hwndClient,
&pmfiFont->fdFontDlg))

DisplayError ("WinFontDlg failed");
return ;

/* endif */

/**/
/* clean up */
/**/

WinReleasePS(pmfiFont->fdFontDlg.hpsScreen);

sprintf(achFont,
tl%d. %sll I

FIXEDINT(pmfiFont->fdFontDlg.fxPointSize),
pmfiFont->fdFontDlg.fAttrs.szFacename);

/**/
/* check for various attributes */
/**/

if (pmfiFont->fdFontDlg.fAttrs.fsSelection&FATTR_SEL_ITALIC)
{

strcat(achFont,
" . Italic") ;

} /* endif
if (pmfiFont->fdFontDlg.fAttrs.fsSelection

&FATTR_SEL_UNDERSCORE)

strcat(achFont,
" . Underscore") ;

*/

} /* endif */
if (pmfiFont->fdFontDlg.fAttrs.fsSelection&FATTR_SEL_STRIKEOUT

)

strcat(achFont,
".Strikeout");

} /* endif */
if (pmfiFont->fdFontDlg.fAttrs.fsSelection&FATTR_SEL_BOLD)
{

strcat(achFont,
n .Bold 11);

} I* endif *I
if (pmfiFont->fdFontDlg.fAttrs.fsSelection&FATTR_SEL_OUTLINE)
{

strcat(achFont,
".Outline");

/* endif */

/**/
/* set the new font */
/**/

WinSetPresParam(hwndClient,
PP_FONTNAMESIZE,
strlen(achFont)+l,
achFont);

return

/***/
/*
/* function that analyzes
/* the font dialog to use
/*

*/
the current font and initializes */
the current font as the default font */

*/
/***/

BOOL InitFont(HWND hwndClient,PFONTDLG pfdFontDlg)
{

FONTMETRICS
HPS
HDC
SIZEF
LONG

fm;
hPS;
hDC;
sizef;
lxFontResolution;

/**/
/* Get the presentation space to query fonts from */
/**/

hPS = WinGetPS(hwndClient);

if (GpiQueryFontMetrics(hPS,
(LONG)sizeof(FONTMETRICS),
&fm))

/***/
/* Initialize the font dialog structure and the fattrs */
/* fields */
/***/

memset(&pfdFontDlg->fAttrs,
0,
sizeof(FATTRS));

pfdFontDlg->fAttrs.usRecordLength = sizeof(FATTRS);

/***/
/* Initialize the font attributes */
/***/

if (fm.fsSelection&FM_SEL_ITALIC)
pfdFontDlg->fAttrs.fsSelection I= FATTR_SEL_ITALIC;

if (fm.fsSelection&FM_SEL_UNDERSCORE)
pfdFontDlg->fAttrs.fsSelection I= FATTR_SEL_UNDERSCORE;

if (fm.fsSelection&FM_SEL_OUTLINE)
pfdFontDlg->fAttrs.fsSelection I= FATTR_SEL_OUTLINE;

if (fm.fsSelection&FM_SEL_STRIKEOUT)
pfdFontDlg->fAttrs.fsSelection I= FATTR_SEL_STRIKEOUT;

if (fm.fsSelection&FM_SEL_BOLD)
pfdFontDlg->fAttrs.fsSelection I= FATTR_SEL_BOLD;

/***/
/* Initialize the fattrs match-font and registry id */
/***/

pfdFontDlg->fAttrs.lMatch = fm.lMatch;
pfdFontDlg->fAttrs.idRegistry = fm.idRegistry;

/***/
/* Initialize the fattrs code page */
/***/

pfdFontDlg->fAttrs.usCodePage = GpiQueryCp(hPS);

Font and File Dialogs - 511

512 - The Art of OS/2 Warp Programming

/***/
/* Initialize the fattrs max baseline ext and avg char */
/* width *I
/***/

if (fm.fsDefn&FM_DEFN_OUTLINE)
{

pfdFontDlg->fAttrs.lAveCharWidth O;
pfdFontDlg->fAttrs.lMaxBaselineExt = O;

else
{

pfdFontDlg->fAttrs.lMaxBaselineExt = fm.lMaxBaselineExt;
pfdFontDlg->fAttrs.lAveCharWidth = fm.lAveCharWidth;

/***/
/* Initialize the fattrs type indicator field */
/***!

if (fm.fsType&FM_TYPE_KERNING)
pfdFontDlg->fAttrs.fsType I= FATTR_TYPE_KERNING;

if (fm.fsType&FM_TYPE_DBCS)
pfdFontDlg->fAttrs.fsType I= FATTR_TYPE_DBCS;

if (fm.fsType&FM_TYPE_MBCS)
pfdFontDlg->fAttrs.fsType I= FATTR_TYPE_MBCS;

/***/
/* Initialize the fattrs typeface name field */
/***/

strcpy(pfdFontDlg->fAttrs.szFacename,
fm. szFacename);

/***/
/* Initialize the fontdlg style flags */
/***/

pfdFontDlg->fl = FNTS_CENTERIFNTS_HELPBUTTONI
FNTS_INITFROMFATTRS;

/***/
/* Initialize the fontdlg weight and width fields */
/***/

pfdFontDlg->usWeight = fm.usWeightClass;
pfdFontDlg->usWidth = fm.usWidthClass;

/***/
/* Obtain character box size Note: This is critical for */
/* outline font calculations. */
/***/

GpiQueryCharBox(hPS,
&sizef);

/***/
/* Query the underlying device's capabilities for the */
/* horizontal device resolution */
/***/

hDC = GpiQueryDevice(hPS);
DevQueryCaps(hDC,

CAPS_HORIZONTAL_FONT_RES,
lL,
&lxFontResolution);

/***/
/* Initialize the fattrs font-use indicators, and the */
/* fontdlg point size field. */
/***/

if (fm.fsDefn&FM_DEFN_OUTLINE)
{

pfdFontDlg->fAttrs.fsFontUse = FATTR_FONTUSE_OUTLINE;
pfdFontDlg->fxPointSize (FIXED) ((sizef. ex *72) I

lxFontResolution);

/* if outline font */
else
{

pfdFontDlg->fAttrs.fsFontUse = FATTR_FONTUSE_NOMIX;
pfdFontDlg->fxPointSize (FIXED) (fm. sNominalPointSize/

100);

/* not outline font */

/***/
/* Release the PS from above and return */
/***/

WinReleasePS(hPS);
return (TRUE);

/**/
!* error in GpiQueryFontMetrics */
/**/

DisplayError("GpiQueryFontMetrics failed");

/**/
/* Release the PS from above and return *!
/**/

WinReleasePS(hPS);
return (FALSE);

VOID DisplayError(CHAR *pszText)
{

/**/
/* small function to display error string */
/**/

WinAlarm(HWND_DESKTOP,
WA_ERROR);

WinMessageBox(HWND_DESKTOP,
HWND_DESKTOP,
pszText,

return

11 Error ! ",
0,
MB_OKiMB_ERROR);

Font and File Dialogs - 513

514 - The Art of OS/2 Warp Programming
FONTDLG.RC
#include <os2.h>
#include "fontdlg.h"

MENU RES_CLIENT
{

SUBMENU "-Fonts", IDM_SUBl
{

MENUITEM "-Change font ... ", IDM_FONT
MENUITEM "E-xit", IDM_EXIT

FONTDLG.H
#define RES_CLIENT
#define IDM_SUBl
#define IDM_FONT
#define IDM_EXIT

FONTDLG.MAK
FONTDLG.EXE:

FONTDLG
FONTDLG
FONTDLG
OS2386
FONTDLG
<<

LINK386 @<<

256
512
513
514

FONTDLG.OBJ \
FONTDLG.RES

RC FONTDLG.RES FONTDLG.EXE

FONTDLG.RES: FONTDLG.RC \
FONTDLG.H

RC -r FONTDLG.RC FONTDLG.RES

FONTDLG.OBJ: FONTDLG.C \
FONTDLG.H

ICC -C+ -Kb+ -SS+ FONTDLG.C

FONTDLG.DEF
NAME FONTDLG WINDOWAPI
DESCRIPTION 'Font dialog example

Copyright (c) 1992-1995 by Kathleen Panov.
All rights reserved. '

STACKSIZE 32768

Customizing the Font Dialog
The font dialog does not use the current font of a window as the default-selected font. There are two ways
to make the default font the current font of a selected window:

• Query the current font characteristics, place these in the appropriate spots in the FONTDLG structure,
and use the FNTS_INITFROMA TTRS flag. This method must be used if the current font of a selected
window will be used and this is the first time WinFontDlg has been called.

Font and File Dialogs - 515
• Store the FONTDLG structure that was the output from WinFontDlg, and reuse it the next time

WinFontDlg is called.

The first option is a real pain to implement but is used the first time the dialog is called. The function
InitFont uses this method. After initialization, we use the second method.

We create a special structure, MYFONTINFO, to hold the FONTDLG structure in memory.

typedef struct {
FONTDLG fdFontDlg
USHORT binit ;

} MYFONTINFO, *PMYFONTINFO

This structure contains a FONTDLG structure and a flag to indicate whether the structure has been
initialized or not.

In the WM_CREATE processing, space is allocated for the MYFONTINFO structure. This pointer is
stored in a window word of the client window. This memory is freed in the WM_DESTROY message
processing.

Querying the Current Font
ulReturn = WinQueryPresParam(hwndClient,

PP_FONTNAMESIZE,
0,
NULL,
256,
achFontName,
0);

When a WM_PAINT message is received, WinQueryPresParam is used to determine the current font. The
first parameter is the window to query. The next parameter is the attribute ID. PP _FONTNAMESIZE will
retrieve the font name and point size. The third parameter is used to query a second type of presentation
parameter. The next parameter is used to determine which presentation parameter, the first or second, was
found first. The fifth parameter is the length of the results buffer. The buffer, achFontName, is the next
parameter. The last parameter, the query options, is unused in this example. WinQueryPresParam returns
the number of characters placed in the achFontName buffer. The font name is copied into a character
array, and WinDrawText outputs the result onto the client window.

Initializing the Font Dialog Structure with the Current Font
The InitFont function converts a FONTMETRICS structure, returned from GpiQueryFontMetrics, into a
FATTRS structure that the font dialog can understand. The initial font attributes from the
FONTMETRICS structure are OR' ed with the fsSelection field in the FA TTRS structure. These attributes
include italic, bold, outline, underscore, and strikeout.

lMatch is a unique identifier for a font. All fonts available to a presentation space are given a match ID.
These vary from device to device and from system to system; however, within a single presentation space,
they are consistent. The idRegistry is the IBM registered number for certain fonts. The current code page
is also queried and set in the FATTRS structure.

GpiQueryCharBox(hPS,
&sizef) ;

516 - The Art of OS/2 Warp Programming

hDC = GpiQueryDevice(hPS);
DevQueryCaps(hDC,

CAPS_HORIZONTAL_FONT_RES,
lL,
&lxFontResolution) ;

if (fm.fsDefn&FM_DEFN_OUTLINE)
{

pfdFontDlg->fAttrs.fsFontUse = FATTR_FONTUSE_OUTLINE;
pfdFontDlg->fxPointSize (FIXED) ((sizef.cx *72)/

lxFontResolution) ;

/* if outline font */

The setup for an outline font is a little more complicated than that of a nonoutline font. The
lMaxBaselineExt is correct for the bitmap fonts, but for outline fonts this value is the actual distance from
the highest pel to the lowest pel, with no leading indicator included. Instead of trying to determine this
value, we find the exact point size and set lMaxBaselineExt and lAveCharWidth to 0. This is done by using
the follo\ving conversion.

point size = ex pixels/inch * 72 points/inch I resolution pixels/inch

else
{

pfdFontDlg->fAttrs.fsFontUse = FATTR_FONTUSE_NOMIX;
pfdFontDlg->fxPointSize (FIXED) (fm.sNominalPointSize/

100);
/* not outline font */

For a nonoutline font, the point size is simply the nominal point size divided by 100.

Bringing Up the Font Dialog

SetFont is a user-defined function to initialize the font dialog, bring it up, and change the client window
font to the newly selected font.

The MYFONTINFO structure that contains the FONTDLG structure is retrieved from the window word,
and is passed to SetFont.

faAttrs = pmfiFont->fdFontDlg.fAttrs;
fxSzFont = pmfiFont->fdFontDlg.fxPointSize;

memset(&pmfiFont->fdFontDlg,
0,
sizeof(FONTDLG));

memset(achFont,
0,
256);

The first thing SetF ont does is to save the FA TIRS structure and also the fxPointSize values for use later.
The FONTDLG structure and font name string are then cleared to 0. If this is the first time through this
function, InitFont is called, and the initialization flag is set to TRUE. If this is not the first time SetFont
has been called, we assume the FATIRS structure in memory is valid and set the font dialog structure
FATTRS equal to the structure in memory.

pmfiFont->fdFontDlg.hpsScreen = WinGetPS(hwndClient);
pmfiFont->fdFontDlg.cbSize = sizeof (FONTDLG);

Font and File Dialogs - 517
pmfiFont->fdFontDlg.pszFamilyname = achFamily;
pmfiFont->fdFontDlg.usFamilyBufLen = sizeof(achFamily);
pmfiFont->fdFontDlg.fl = FNTS_CENTERIFNTS_INITFROMFATTRS;
pmfiFont->fdFontDlg.clrFore CLR_NEUTRAL;
pmfiFont->fdFontDlg.clrBack = SYSCLR_WINDOW;

Several elements of the FONTDLG structure are initialized. The screen presentation space is queried, and
the size of the FONTDLG structure is set. The pszFamilyname member is set equal to the achFamily
buffer. The size of this buffer is set in usFamilyBufLen. The flags used for this font dialog are
FNTS_CENTER (center the dialog) and FNTS_INITFROMFATTRS (use the FATTRS structure to set the
initial default font selection). The last elements initialized are the foreground and background colors for
the sample preview box.

HWND WinFontDlg(HWND hwndParent, HWND hwndOwner, PFONTDLG
pFontDialog)

WinFontDlg has three parameters. The first is the parent window, HWND_DESKTOP. The next is the
owner window, and the last is a pointer to the FONTDLG structure.

sprintf(achFont,
11 %d.%s 11 ,

FIXEDINT(pmfiFont->fdFontDlg.fxPointSize),
pmfiFont->fdFontDlg.fAttrs.szFacename);

The fxPointSize variable in the FONTDLG structure is a FIXED data type. This is a long integer used to
represent a fractional integer. To obtain the actual point size, the macro FIXEDINT is used to extract the
integer position of the fixed type. This value is the actual font point size.

The szFacename array in the fAttrs structure is where we get the font style from. This array contains a bit
more descriptive font style than the pszFamilyname pointer. (We had mixed results using the
pszFamilyname variable but got 100 percent accuracy using szFacename.)

if (pmfiFont->fdFontDlg.fAttrs.fsSelection&FATTR_SEL_ITALIC)
{

strcat(achFont,
".Italic") ;

/* endif
if (pmfiFont->fdFontDlg.fAttrs.fsSelection

&FATTR_SEL_UNDERSCORE)

strcat(achFont,
" . Underscore") ;

*/

/* endif */
if (pmfiFont->fdFontDlg.fAttrs.fsSelection&FATTR_SEL_STRIKEOUT

)

strcat(achFont,
".Strikeout");

} /* endif */
if (pmfiFont->fdFontDlg.fAttrs.fsSelection&FATTR_SEL_BOLD)
{

strcat(achFont,
".Bold");

/* endif */
if (pmfiFont->fdFontDlg.fAttrs.fsSelection&FATTR_SEL_OUTLINE)
{

strcat(achFont,
".Outline");

/* endif

518 - The Art of OS/2 Warp Programming
The fsSelection flag contains more information about the font type. A comparison is made, and if the result
is TRUE, the string is concatenated with a ".Descriptor" string. The presentation parameter string can take
multiple instances of these descriptors, for example, "10.Tms Rmn Bold.Italic.Underline''.

WinSetPresParam(hwndClient,
PP_FONTNAMESIZE,
strlen(achFont)+l,
achFont);

WinSetPresParam will change the font of the client window to the user-selected font. The first parameter
is the window to apply the changes to, hwndClient. The next parameter is the presentation attribute,
PP _FONTNAMESIZE, to change. The third parameter is the size of the presentation parameter. The last
parameter is a pointer to the variable itself. A small note here: If the presentation parameter is a color, this
value is the address of a LONG or an RGB structure.

Chapter 27

Subclassing Windows

Subclassing windows is the ability to intercept and process messages sent to the window procedure of an
established window class. A message is normally sent to a window procedure where it is either processed
and returned to the calling window, processed and returned to WinDejWindowProc, or passed directly to
WinDejWindowProc. A subclassed procedure is placed in the calling chain directly above the window
procedure. This also allows the subclassed procedure to sort through the messages and process only the
ones it wishes to modify.

The flowchart shown in Figure 27 .1 illustrates the normal calling chain for window messages.

No

Message
Queue

Yes

DoSomething()

No

WinDetwindowProc()

· · · · · · · · · ciienf Window i:>roceciure · · · · · · · ··

Figure 27.1 Diagram of normal window procedure.

519

520 - The Art of OS/2 Warp Programming
The flowchart shown in Figure 27 .2 illustrates what happens to the calling chain when a window is
subclassed.

Message
Queue

; • • " • "' "' • • " • • • • "' • • • • • " • • "' • " " " '" • • • " • " • '" " " " " " • • '"I . :

Yes

Yes
No

I

DoSomething()

L5;=
No

Subclass Window Procedure

..

Yes

DoSomething()

No

No Yes

Old Window Procedure

WinDefWindowProc()

· .. ·
Figure 27.2 Subclassed window procedure calling chain.

Subclassing is a very easy way to modify the behavior of a window class. The subclassed procedure
should be kept small to keep the window's behavior responsive to the user. A long and complex subclass
procedure will cause a decrease in performance. (Three functions are being called for every message
generated from the window.) The following code will define the subclassed procedure.

MRESULT EXPENTRY pfnwpOldProc;
pfnwpOldProc = WinSubclassWindow(hwndWindowToSubclass,

pfnwpNewProc);

Subclassing Windows - 521

The function returns the previous window procedure as pfnwpOldProc. This function provides the
subclassed procedure a way to call the previous window procedure.

Now let's put subclassing to use. Suppose we want an entry field that handles only numbers, say, for Zip
codes. There's not an existing numerics-only entry field, so let's create one.

SUBCLASS.C
#define INCL_WIN
#define INCL_GPILCIDS

#include <os2.h>
#include <string.h>
#include <ctype.h>

#define
#define
#define
#define

CLS_CLIENT "MyClass"
IDE_ENTRYFIELD 256
STR_TEXT "Zip code:"
UM_CREATEDONE WM_USER+l

MRESULT EXPENTRY newEntryWndProc(HWND hwndWnd,ULONG ulMsg,MPARAM
mpParml,MPARAM mpParm2);

MRESULT EXPENTRY ClientWndProc(HWND hwndWnd,ULONG ulMsg,MPARAM
mpParml,MPARAM mpParm2);

INT main(VOID)
{

HAB
HMQ
ULONG
HWND
BOOL
QMSG
LONG

habAnchor;
hmqQueue;
ulFlags;
hwndFrame;
bLoop;
qmMsg;
lWidth,lHeight;

habAnchor Wininitialize(O);
hmqQueue = WinCreateMsgQueue(habAnchor,

0);

WinRegisterClass(habAnchor,
CLS_CLIENT,
ClientWndProc,
0,
0);

ulFlags = FCF_TITLEBARiFCF_SYSMENUiFCF_SIZEBORDERiFCF_MINMAXi
FCF_TASKLIST;

/**/
/* create frame window */
/**/

522 - The Art of OS/2 Warp Programming
hwndFrame = WinCreateStdWindow(HWND_DESKTOP,

0,
&ulFlags,
CLS_CLIENT,
"Subclass Example",
0'
NULLHANDLE,
0,
NULL);

/**/
/* get screen height and width */
/**/

lWidth = WinQuerySysValue(HWND_DESKTOP,
SV_CXSCREEN) ;

lHeight WinQuerySysValue(HWND_DESKTOP,
SV_CYSCREEN) ;

/******************************~*****************************/

/* if failed, display error, and set to default value */
/**/

if (! lWidth 11 ! lHeight)
{

lWidth = 640;
lHeight = 480;

if (hwndFrame != NULLHANDLE)
{

/***/
/* set window position */
/***/

WinSetWindowPos(hwndFrame,
NULLHANDLE,
lWidth/8,
lHeight/8,
lWidth/8*6,
lHeight/8*6,
SWP_SIZEISWP_MOVEISWP_ACTIVATEISWP_SHOW);

bLoop WinGetMsg(habAnchor,
&qmMsg,
NULLHANDLE,

0'
0);

while (bLoop)
{

WinDispatchMsg(habAnchor,
&qmMsg);

bLoop = WinGetMsg(habAnchor,
&qmMsg,
NULLHANDLE,
0,
0);

WinDestroyWindow(hwndFrame);

WinDestroyMsgQueue(hmqQueue);
WinTerminate(habAnchor);
return O;

/* endwhile

/* endif

*/

*/

MRESULT EXPENTRY ClientWndProc(HWND hwndClient,ULONG ulMsg,MPARAM
mpParml,MPARAM mpParm2)

switch (ulMsg)
{

case WM_CREATE :
WinPostMsg(hwndClient,

UM_CREATEDONE,
MPVOID,
MPVOID);

break;

case UM_CREATEDONE

HPS
FONTMETRICS
ENTRYFDATA
HWND
PFNWP
RECTL
LONG

hpsChar;
fmMetrics;
edEntry;
hwndEntry;
pfnOldEntryProc;
rclClient;
lHeight,lWidth;

hpsChar WinGetPS(hwndClient);
GpiQueryFontMetrics(hpsChar,

sizeof(fmMetrics),
&fmMetrics);

WinReleasePS(hpsChar);

/***/
/* set up entryfield data */
/***/

edEntry.cb = sizeof(edEntry);
edEntry.cchEditLimit = 9;
edEntry.ichMinSel C;
edEntry.ichMaxSel = O;

WinQueryWindowRect(hwndClient,
&rclClient);

lHeight = rclClient.yTop-rclClient.yBottom;
lWidth = rclClient.xRight-rclClient.xLeft;

/***/
/* create entryfield window */
/***/

hwndEntry = WinCreateWindow(hwndClient,
WC_ENTRYFIELD,

'
WS_VISIBLE!ES_MARGINI

ES_AUTOSIZE,
lWidth/4,
lHeight/4,
fmMetrics.lAveCharWidth
*15,

fmMetrics.lMaxBaselineExt,
hwndClient,
HWND_TOP,
IDE_ENTRYFIELD,
&edEntry,
NULL);

Subclassing Windows - 523

524 - The Art of OS/2 Warp Programming

pfnOldEntryProc = WinSubclassWindow(hwndEntry,
newEntryWndProc);

WinSetWindowPtr(hwndEntry,
QWL_USER,
(PVOID)pfnOldEntryProc);

WinSetFocus(HWND_DESKTOP,
hwndEntry);

break;

case WM_DESTROY
WinDestroyWindow(WinWindowFromID(hwndClient,

IDE_ENTRYFIELD));
break;

case WM_PAINT
{

HPS
SWP
PO INTL

hpsPaint

hpsPaint;
SWPEntry;
ptlText;

WinBeginPaint(hwndClient,
NULLHANDLE,
NULL);

GpiErase(hpsPaint);
WinQueryWindowPos(WinWindowFromID(hwndClient,

IDE_ENTRYFIELD),
&swpEntryJ ;

/***/
/* position label on top of entryfield */
/***/

ptlText.x = swpEntry.x;
ptlText.y = swpEntry.y+swpEntry.cy+lO;

GpiCharStringAt(hpsPaint,
&ptlText,
strlen(STR_TEXT),
STR_TEXT);

WinEndPaint(hpsPaint);

break;
default

return WinDefWindowProc(hwndClient,
ulMsg,
mpParml,

mpParm2);
/* endswitch

return MRFROMSHORT(FALSE);
*/

MRESULT EXPENTRY newEntryWndProc(HWND hwndEntry,ULONG ulMsg,
MPARAM mpParml,MPARAM mpParm2)

PFNWP pfnOldEntryProc;

pfnOldEntryProc (PFNWP)WinQueryWindowPtr(hwndEntry,
QWL_USER);

switch (ulMsg)

/***/
/* check for keystrokes */
/***/

case WM_CHAR :
if (CHARMSG(&ulMsg)->fs&KC_CHAR)
{

/***/
/* test for what is allowed */
/***/

if (!isdigit(CHARMSG(&ulMsg)->chr) &&
(CHARMSG(&ulMsg)->chr != '\b'))

WinMessageBox(HWND_DESKTOP,
HWND_DESKTOP,

Subclassing Windows - 525

"Only numeric characters are allowed in this field",
11 Numeric Field 11 ,

0'
MB_OKIMB_ERROR);

return MRFROMSHORT(TRUE);

break;
case EM_PASTE

{

/* endif
/* endif

*/
*/

/***/
/* check for pasting from the clipboard */
/***/

HAB
PC HAR
CHAR
US HORT

habAnchor;
pchText;
achText[1024];
us Index;

habAnchor WinQueryAnchorBlock(hwndEntry);
WinOpenClipbrd(habAnchor);
pchText = (PCHAR)WinQueryClipbrdData(habAnchor,

CF_TEXT);

if (pchText)
{

strcpy(achText,
pchText);

WinCloseClipbrd(habAnchor);

usindex = O;

/**/
/* loop through string checking for non-numeric */
/**/

while (achText[usindex])
{

if (!isdigit(achText[usindex++]))
{

526 -The Art of OS/2 Warp Programming
WinMessageBox(HWND_DESKTOP,

HWND_DESKTOP,
"Only numeric characters are "

else
{

"allowed in this field",
"Numerical Field",
0,
MB_OKiMB_ERROR);

return MRFROMSHORT(TRUE);
/* endif
/* endwhile

WinCloseClipbrd(habAnchor);

break;
default

break;

return (*pfnOldEntryProc) (hwndEntry,
ulMsg,
mpParml,
mpParm2);

SUBCLASS.MAK

/* endif

/* endswitch

SUBCLASS.EXE: SUBCLASS.OBJ
LINK386 @<<

SUBCLASS
SUBCLASS
SUBCLASS
OS2386
SUBCLASS
<<

SUBCLASS.OBJ: SUBCLASS.C
ICC -C+ -Kb+ -Ss+ SUBCLASS.C

SUBCLASS.DEF
NAME SUBCLASS WINDOWAPI

DESCRIPTION 'Subclass example
Copyright (c) 1992-1995 by Kathleen Panov
All rights reserved.'

STACKSIZE 16384

*/
*/

*/

*/

The first part of the program should look fairly familiar by now; we're just creating a basic client window.
In the WM_CREATE message processing, we post a UM_CREATEDONE message to indicate the client
window has been created completely.

Subclassing Windows - 527
In the UM_CREATEDONE processing, we create an entry field using WinCreateWindow. After the
window is created, WinSubclass Window is called to subclass the default window procedure for an entry
field.

pfnOldEntryProc = WinSubclassWindow(hwndEntry,
newEntryWndProc);

WinSetWindowPtr(hwndEntry,
QWL_USER,
(PVOID)pfnOldEntryProc);

The first parameter is the window to subclass, hwndEntryField. The second parameter is a pointer to the
procedure that messages to the window will be sent to. WinSubclass Window returns the old window
procedure, and this pointer is stored in the window word for the entry field.

newEntryWndProc is designed to handle only two messages, WM_CHAR and EM_PASTE. All the other
messages will be passed to the normal window procedure for entry fields.

if (CHARMSG(&ulMsg)->fs&KC_CHAR)
{

if (!isdigit(CHARMSG(&ulMsg)->chr) &&
(CHARMSG(&ulMsg)->chr != '\b'))

WinMessageBox(HWND_DESKTOP,
HWND_DESKTOP,

"Only numeric characters are allowed in this field",
"Numeric Field",
0,
MB_OK I MB_ERROR) ;

return MRFROMSHORT(TRUE);

The WM_CHAR processing is fairly straightforward. We will look at all the KC_CHAR keys. The only
character keys we want to allow are the digits 0 to 9 and the Backspace key. The other editing keys set the
KC_ VIRTUALKEY flag, not the KC_CHAR flag, so they will be allowed. If a nonnumeric character is
entered, WinMessageBox is called to pop up an error message, telling the user that only numeric keys are
allowed in this field. Next, we return TRUE in order to prevent the character from being processed by the
next procedure called for the entry field.

The other message we want to intercept is EM_PASTE. This message is generated whenever text is pasted
into the entry field from the clipboard. Remember, the keyboard is not the only method of entering text in
an entry field. To determine if the data is valid, we have to take a peek at what is in the clipboard.

habAnchor = WinQueryAnchorBlock(hwndEntry);
WinOpenClipbrd(habAnchor);
pchText = (PCHAR)WinQueryClipbrdData(habAnchor,

CF_TEXT);

The clipboard is opened by calling WinOpenClipbrd.

528 -The Art of OS/2 Warp Programming

BOOL WinOpenClipbrd(HAB hab)

There is only one parameter for the function, the anchor block. This gives ownership of the clipboard to
the application window. No other window can open the clipboard while it is open. This is potentially a
very dangerous situation. If the clipboard is already open when WinOpenClipbrd is called, the function
will not return until the clipboard can be opened. Presumably most programs out there are well behaved
and will close the clipboard as soon as they are done, but programmers must beware: If programs don't
close the clipboard, the message queue will be frozen unless the clipboard is opened in another thread.
Once the clipboard is opened, WinQueryClipbrdData is called.

ULONG WinQueryClipbrdData(HAB hab,
ULONG fmt);

This function has two parameters, the anchor block and the clipboard data format that is to be retrieved. In
our case, we are concerned only with text, so the format CF_ TEXT is used. Table 27 .1 presents the other
possible values for formats.

Table 27.1 Clipboard Formats

CF_TEXT
CF_DSPTEXT
CF_BITMAP
CF _DSPBITMAP
CF _METAFILE
CF _DSPMETAFILE
CF PALETTE

Text format
Private text display format
Bitmap
Private bitmat display format
Metafile
Private metafile display format
Palette

The function returns a string of the text contained in the clipboard. If no text is in the clipboard, the string
will be NULL.

strcpy(achText,
pchText);

WinCloseClipbrd(habAnchor);
usindex = O;
while (achText[usindex])
{

if (!isdigit(achText[usindex++]))
{

WinMessageBox(HWND_DESKTOP,
HWND_DESKTOP,
"Only numeric characters are "
"allowed in this field",
"Numerical Field",
0,
MB_OK I MB_ERROR) ;

return MRFROMSHORT(TRUE);

Subclassing Windows - 529
After we have the string, we check each digit to see if it is a numeric character. If not, the error message
box is again displayed, and we return TRUE to avoid further processing.

return (*pfnOldEntryProc) (hwndEntry,
ulMsg,
mpParml,
mpParm2) ;

If the characters entered are valid, or ifthe message is something other than WM_CHAR or EM_PASTE, it
will fall through the switch statement. At this point, we want to call the old procedure for the entry field.

Superclassing
Suppose the developer wants to create a lot of these numeric-only entry fields. There is an easier way than
to call WinSubclassWindow for every one that is created-a concept called superclassing. This creates a
whole new window class, created using WinRegisterClass, that has the subclassed procedure as its default
window procedure. In the last example program, we could call WinRegisterClass to create a class called
WC_NUMERICENTRY. The window procedure used would be newEntryWndProc. However, instead of
storing the old window procedure in the window word, we could call WinQueryClasslnfo using the
WC_ENTRYFIELD class and return that procedure for all the messages that we are not handling.

Subclassing is a very easy way to modify the existing controls in Presentation Manager to work the way we
want them to. A lot of powerful things can be done using subclassing or superclassing.

Chapter 28

Presentation Manager Printing

One of the more profound limitations of DOS was that if an application needed to support many different
screens and/or printers, display- and/or printer-specific code had to be written for each type of device.
Even though the better programmers could make the job easier with a good design, the effort required to
code and support the multitude of output devices was often disheartening enough to dissuade all but
commercial developers from attempting the feat.

When the Presentation Manager was added to OS/2 1.1, the concept of output device independence finally
became an attainable reality because of the layer of abstraction that a handle to the presentation space
(HPS) provides; the HPS contains only the settings of the current logical attributes (color, fill type, line
type, etc.) that were set by default or by the application. The binding of this (and thus the mapping of the
logical attributes to their physical counterparts) to a specific device is done by associating the HPS to a
device context. The device context (HDC) contains the actual attributes being used and other things, such
as the size of the displayable area. This association between HPS and HDC is done either with the
GpiAssociate call or when the HPS is created by using the GPIA_ASSOC flag in the GpiCreatePS call.

Knowing this, it probably is evident that by associating the HPS with an HDC that corresponds to the
appropriate device, an application can create output on that device without any changes to the code. This is
almost correct; Presentation Manager is more attuned to the display device than to the printer, since the
display is used significantly more than the printer. Thus, when drawing to the screen, PM eliminates the
need for a lot of the coding details that are necessary when drawing to a printer or plotter.

Still, this is much better than how DOS does it (or doesn't do it, depending on how it is looked at).

This chapter discusses the details of establishing a "connection" with a hardcopy device and the associated
bells and whistles that can be created to ensure that an application has to do as little work as needed.

A Printer's Overview
Before we begin, a bit of overview regarding printing system design is needed. As with the output device
model, there is a layer of abstraction between the application and the printer. This is the print queue,
which is associated with a print port, which can be a physical port or a networked logical port. The
similarity stops here, however, since each print queue is also assigned a printer driver. Applications
"print" to the print queue, which stores the output in a device-independent format and relies on the printer
driver to convert the device-independent graphics commands to device-specific ones. (Actually, the output
goes to a queue processor, which uses the printer driver to assist it in converting the commands to the
printer-specific ones.) Figure 28.1 presents a view of the print subsystem.

531

532 -The Art of OS/2 Warp Programming

(If spooler is
disabled)

Application

Printer Queue

Queue Processor

Printer Port

Printer

Spooler

Printer Driver

Figure 28.1 A view of the print subsystem.

Now we turn to the pseudocode on which we initially base the sample code. This describes the strategy
used for creating hardcopy output. "Draw page" is an abstract term that is defined by the application.

Initialize a DEVOPENSTRUC for the desired printer/plotter
Open a device context (HDC)
Create a presentation space (HPS) associated with the printer HDC

Tell the printer that we are starting a print job
Draw page 1
Tell the printer to start a new page
Draw page 2

Tell the printer to start a new page
Draw page n
Tell the printer that we are finished with the print job

Destroy the HPS
Close the printer HDC

Two things are worth noting: the reference to the data structure DEVOPENSTRUC and the phrase "tell the
printer that..." The DEVOPENSTRUC is explained next; how to tell the printer anything at all is explained
later in this chapter.

The DEVOPENSTRUC structure describes the hardcopy device to PM. It contains the following nine
fields:

typedef struct _DEVOPENSTRUC
PSZ pszLogAddress;
PSZ pszDriverName;
PDRIVDATA pdriv;
PSZ pszDataType;
PSZ pszcomment;
PSZ pszQueueProcName;
PSZ pszQueueProcParams;
PSZ pszSpoolerParams;
PSZ pszNetworkParams;

DEVOPENSTRUC;

Presentation Manager Printing - 533

pszLogAddress points to the name of the printer queue to print to. pszDriverName points to the name of the
printer driver to be used when converting the output to printer-specific commands. pdriv points to printer
specific data to be used when printing-whether to print in portrait or landscape mode. This will be
discussed in more detail later in the chapter. pszDataType points to the type of output being sent. This can
be either PM_Q_STD or PM_Q_RA W, the latter indicating that the application has already converted the
output to the appropriate commands for the printer and that the output should pass directly to the printer
port. Using this is discouraged, since it does not fit into the strategy of output device independence
discussed at the beginning of this chapter. pszComment points to a string describing the output being
printed. pszQueueProcName points to the name of the queue processor to be used. (OS/2 comes with two
queue processors- "PMPRINT" and "PMPLOT'; see the function printDoc below for determining the
default queue processor for a particular printer.) pszQueueProcParams, pszSpoplerParams, and
pszNetworkParams point to a set of queue processor parameters, spooler parameters, and network
parameters. We will not be using these fields.

The initialized DEVOPENSTRUC is passed to DevOpenDC as the fifth parameter, with the number of
fields that are initialized as the fourth parameter. As a rule, all nine fields should always be initialized,
even though all of them won't be used.

''Telling" the printer to do certain things is accomplished by sending it an "escape code." An escape code
is a method of accessing the capabilities of an output device for which there is no APL Two examples of
this are starting and ending a print job.

LONG DevEscape(HDC hdcDevice,
LONG lEscCode,
LONG lSzinData,
PBYTE pbinData,
PLONG plSzOutData,
PBYTE pbOutData) ;

hdcDevice is the handle to the device context. lEscCode is the DEVESC_ code that you want to issue to
the device. lSzJnData is the size of the data being passed in. pblnData points to the data being passed in.
plSzOutData points to the size of the buffer to receive the results (if any). On return, this variable is
updated to reflect the number of bytes actually copied into pbOutData. pbOutData points to the receiving
buffer for the results of the call (if any).

For escape codes that do not have any data, 0 should be specified for lSzJnData and NULL for pblnData,
plSzOutData, and pbOutData.

534 -The Art of OS/2 Warp Programming

So, substituting real code where possible in our pseudocode, we now have the following code that reflects
the initialization steps to establish the connection between the application and the printer.

BOOL printDoc(HAB habAnchor,PCHAR pchName)
{

DEVOPENSTRUC dosPrinter;
HDC hdcPrinter;
SIZEL szlHps;
HPS hpsPrinter;

//---
// Initialize a DEVOPENSTRUC for the desired printer/plotter
1/---
dosPrinter.pszLogAddress="LPTlQ";
dosPrinter.pszDriverName="PSCRIPT";
dosPrinter.pdriv=NULL;
dosPrinter.pszDataType="PM_Q_STD";
dosPrinter.pszComment=pchName;
dosPrinter.pszQueueProcName="PMPRINT";
dosPrinter.pszQueueProcParams=NULL;
dosPrinter.pszSpoolerParams=NULL;
dosPrinter. pszNetworkParams=J>rnLL;

/!---
/!Open a device context (HDC)
1/---
hdcPrinter=DevOpenDC(habAnchor,

OD_QUEUED,
II* II

9L,
(PDEVOPENDATA)&dosPrinter,
NULLHANDLE) ;

if (hdcPrinter==NULLHANDLE) {
!/---
//An error occurred
1/---
return;

/* endif *I

//--
//Query the width and height of the printer page
/1--
DevQueryCaps(hdcPrinter,CAPS_WIDTH,lL,&szlHps.cx);
DevQueryCaps(hdcPrinter,CAPS_HEIGHT,lL,&szlHps.cy);

!!--
!/Create a presentation space (HPS) associated with
I I the printer HDC
1/--
hpsPrinter=GpiCreatePS(habAnchor,

hdcPrinter,
&szlHps,

PU_PELSIGPIT_MICROIGPIF_DEFAULTIGPIA_ASSOC);
if (hpsPrinter==NULLHANDLE) {

/!--
//An error occurred
1/--
DevCloseDC(hdcPrinter);
return;

/* endif */

Presentation Manager Printing - 535

/!---
//Tell the printer that we are starting a print job
1/---
if (DevEscape(hdcPrinter,

DEVESC_STARTDOC,
(LONG)strlen(pchName),
pchName,
NULL,
NULL) !=DEV_OK) {

/!---
!/An error occurred
1/---
GpiDestroyPS(hpsPrinter);
DevCloseDC(hdcPrinter);
return;

/* endif */

//--
/I Draw page 1
1/---
if (!drawPage(hpsPrinter,l)) {

!/--
/!An error occurred so abort the print job
/1--
DevEscape(hdcPrinter,

DEVESC_ABORTDOC,
OL,
NULL,
NULL,
NULL);

GpiDestroyPS(hpsPrinter);
DevCloseDC(hdcPrinter);
return;

/* endif */

!!---
//Tell the printer to start a new page
1/---
if (DevEscape(hdcPrinter,

DEVESC_NEWFRAME,
0,
NULL,
NULL,
NULL) ! =DEV_OK) {

//--
//An error occurred so abort the print job
1/--
DevEscape(hdcPrinter,

DEVESC_ABORTDOC,
OL,
NULL,
NULL,
NULL);

GpiDestroyPS(hpsPrinter);
DevCloseDC(hdcPrinter);
return;

/* endif */

//---
//Draw page 2
1/---
if (!drawPage(hpsPrinter,2)) {

536 -The Art of OS/2 Warp Programming
//--
//An error occurred so abort the print job
1/--
DevEscape(hdcPrinter,

DEVESC_ABORTDOC,
OL,
NULL,
NULL,
NULL);

GpiDestroyPS(hpsPrinter);
DevCloseDC(hdcPrinter);
return;

/* endif *I

//---
//Tell the printer that we are finished with the print job
/1---
if (DevEscape(hdcPrinter,

DEVESC_ENDDOC,
OL,
NULL,
NULL,

//--
//An error occurred so abort the print job
1/--
DevEscape(hdcPrinter,

DEVESC_ABORTDOC,
OL,
NULL,
NULL,
NULL);

GpiDestroyPS(hpsPrinter};
DevCloseDC(hdcPrinter};
return;

/* endif */

//---
// Destroy the HPS and close the printer HDC
/1---
GpiDestroyPS(hpsPrinter};
DevCloseDC(hdcPrinter);

Looking at the hard-coded values for pszLogAddress and pszJJriverName, it is hard to imagine this as
being the device-independent code discussed earlier. Well, that's right. Actually there is a (huge) step
before this to initialize the initialization-selecting the printer and any job-specific parameters.

Where's My Thing?
What we need is a way to figure out what printers and queues are defined so that we do not have to rely on
hard-coded values or prompt the user for this information. Instead, we should simply retrieve the needed
data and present the user with a choice of printers to print to. Fortunately, this information is obtainable
through the spooler (Spl) functions and in particular SplEnumQueue.

(SPLERR}SplEnumQueue(PSZ pszComputer,
ULONG ulLevel,
PVOID pvBuf,
ULONG ulSzBuf,
PULONG pulNumReturned,
PULONG pulNumTotal,
PULONG pulSzBufNeeded,
PVOID pvReserved} ;

Presentation Manager Printing - 537
pszComputer is the name of the computer containing the queues to enumerate. This is for networked
printing and can be NULL to specify the local computer. ulLevel specifies the amount and type of
information to return. pvBuf points to a buffer to contain the results. If NULL, the number of bytes needed
is returned in pulSzBufNeeded. ulSzBuf specifies the size of the buffer pointed to by pvBuf If pvBuf is
NULL, this is ignored. pulNumReturned specifies the number of queues returned, while pulNumTotal
specifies the total number of queues. pvReserved is reserved and must be NULL.

The data returned is dependent on the value of ulLevel and can be one of those specified in Table 28.1.

3 pvBufpoints to an array of PPRQINF03 structures.
4 pvBuf points to a list of PPRQINF03 structures, with each element of the list followed by 0 or

more PPRJINF02 structures describing the jobs currently in the queue.
5 pvBufpoints to a queue name.
6 pvBufpoints to an array of PPRQINF06 structures.

We will be interested in information level 3, which returns all of the information that we will need to
eliminate the hard-coded values shown in the preceding code. Let's look at the PRQINF03 structure in
detail.

typedef struct _PRQINF03
PSZ pszName;
USHORT uPriority;
USHORT uStartTime;
USHORT uUntilTime;
USHORT fsType;
PSZ pszSepFile;
PSZ pszPrProc;
PSZ pszParms;
PSZ pszComment;
USHORT fsStatus;
USHORT cJobs;
PSZ pszPrinters;
PSZ pszDriverName;
PDRIVDATA pDriverData;

PRQINF03;

pszName is the queue name. uPriority is the default queue priority and is used to calculate the default job
priority for the queue. uStartTime is the number of minutes past midnight when the queue becomes active.
uUntilTime is the number of minutes past midnight when the queue becomes inactive. fsType specifies one
or more flags describing any characteristics of the queue. pszSepFile points to the file name of the
separator page. pszPrProc points to the name of the queue processor used. pszParms points to the default
queue processor parameters to be used. pszComment points to the description string that is displayed in
the Workplace Shell. fsStatus specifies one or more flags describing the status of the queue. cJobs
specifies the number of jobs in the queue. pszPrinters specifies one or more printers, separated by
commas, that use this queue (for printer pooling). pszI)riverName specifies the printer driver and device (if
the driver supports more than one device) separated by a period. pDriverData points to the default driver
data to be used.

538 - The Art of OS/2 Warp Programming
We will see later that the only information we really need for any printer is the corresponding
DEVOPENSTRUC structure and the device name, if the printer driver supports more than one device. The
function createPrnList enumerates the printers in the system and calls extractPrnlnfo to initialize the
DEVOPENSTRUC structure for the printer. Also included is destroyPrnList, which returns any consumed
memory to the system.

The following is code for extracting the DEVOPENSTRUC information from a PRQINF03 structure.

typedef struct {
DEVOPENSTRUC dosPrinter;
CHAR achDevice[256];

} PRNLISTINFO, *PPRNLISTINFO;

#define CPL_ERROR
#define CPL_NOPRINTERS
#define CPL_SUCCESS

(USHORT)O
(USHORT)l
(USHORT)2

VOID extractPrninfo(PPRQINF03 ppiQueue,DEVOPENSTRUC *pdosPrinter)
11---
11 This function extracts the needed informatlon [.com the specified
I I PRQINF03
II structure and places it into the specifies DEVOPENSTRUC
II structure.
II
II Input: ppiQueue - points to the PRQINF03 structure
II Output: pdosPrinter - points to the initialized DEVOPENSTRUC
II structure
11---
{

PCHAR pchPos;

pdosPrinter->pszLogAddress=ppiQueue->pszName;

pdosPrinter->pszDriverName=ppiQueue->pszDriverName;
pchPos=strchr(pdosPrinter->pszDriverName,'. ');
if (pchPos!=NULL) {

*pchPos=O;
} I* endif *I

pdosPrinter->pdriv=ppiQueue->pDriverData;
pdosPrinter->pszDataType="PM_Q_STD";
pdosPrinter->pszComment=ppiQueue->pszComment;

if (strlen(ppiQueue->pszPrProc)>O) {
pdosPrinter->pszQueueProcName=ppiQueue->pszPrProc;

else {
pdosPrinter->pszQueueProcName=NULL;

I* endif *I

if (strlen(ppiQueue->pszParms)>O) {
pdosPrinter->pszQueueProcParams=ppiQueue->pszParms;

else {
pdosPrinter->pszQueueProcParams=NULL;

I* endif *I

pdosPrinter->pszSpoolerParams=NULL;
pdosPrinter->pszNetworkParams=NULL;

USHORT createPrnList(HWND hwndListbox)
11---
11 This function enumerates the printers available and inserts them
II into the specified listbox.
II

Presentation Manager Printing - 539
II Input: hwndListbox - handle to the listbox to contain the list
II Returns: an CPL_* constant
11--
{

SPLERR seError;
ULONG ulSzBuf;
ULONG ulNumQueues;
ULONG ulNumReturned;
ULONG ulSzNeeded;
ULONG ulindex;
PPRQINF03 ppiQueue;
PCHAR pchPos;
PPRNLISTINFO ppliinfo;
SHORT sinsert;

11---
11 Get the size of the buffer needed
11---
seError=SplEnumQueue(NULL,

3'
NULL,
OL,
&ulNumReturned,
&ulNumQueues,
&ulSzNeeded,
NULL);

if (seError!=ERROR_MORE_DATA)
return CPL_ERROR;

} else
if (ulNumQueues==O) {

return CPL_NOPRINTERS;
l I* endif *I

ppiQueue=malloc(ulSzNeeded);
if (ppiQueue==NULL) {

return CPL_ERROR;
} I* endif *I

ulSzBuf=ulSzNeeded;

11---
11 Get the information
11---
SplEnumQueue(NULL,

3,
ppiQueue,
ulSzBuf,
&ulNumReturned,
&ulNumQueues,
&ulSzNeeded,
NULL);

11---
11 ulNumReturned has the count of the number of PRQINF03
II structures.
11---
for (ulindex=O; ulindex<ulNumReturned; ulindex++) {

11--
11 Since the "comment" can have newlines in it, replace them
II with spaces
11--
pchPos=strchr(ppiQueue[ulindex] .pszComment, '\n');
while (pchPos!=NULL) {

*pchPos=' ' ;
pchPos=strchr(ppiQueue[ulindexJ .pszcomment, '\n');

I* endwhile *I

540 - The Art of OS/2 Warp Programming

ppliinfo=malloc(sizeof(PRNLISTINFO));
if (ppliinfo==NULL) {

continue;
} I* endif *I

11---
11 Extract the device name before initializing the
II DEVOPENSTRUC structure
11--
pchPos=strchr(ppiQueue[ulindex] .pszDriverName, '. ');
if (pchPos!=NULL) {

*pchPos=O;
strcpy(ppliinfo->achDevice,pchPos+l);

I* endif *I

extractPrninfo(&ppiQueue[ulindex],&ppliinfo->dosPrinter);

sinsert=(SHORT)WininsertLboxitem(hwndListbox,
0,

ppiQueue[ulindex] .pszcornrnent);

WinSendMsg(hwndListbux,
LM_SETITEMHANDLE,
MPFROMSHORT(sinsert),
MPFROMP(ppliinfo));

if ((ppiQueue[ulindex] .fsType &
PRQ3_TYPE_APPDEFAULT) != 0) {

WinSendMsg(hwndListbox,
LM_SELECTITEM,
MPFROMSHORT(sinsert),
MPFROMSHORT(TRUE));

I* endif *I
I* endfor *I

free(ppiQueue);
return CPL_SUCCESS;

VOID destroyPrnList(HWND hwndListbox)
11--
11 This function destroys the printer list and returns the memory
II to the system.
II
II Input: hwndListbox - handle of the listbox containing the
II printer list
11--
{

USHORT usNurnitems;
USHORT usindex;
PPRNLISTINFO ppliinfo;

usNurnitems=WinQueryLboxCount(hwndListbox);

for (usindex=O; usindex<usNurnitems; usindex++) {
ppliinfo=(PPRNLISTINFO)PVOIDFROMMR(WinSendMsg(hwndListbox,

LM_QUERYITEMHANDLE,
MPFROMSHORT(usindex),
OL));

if (ppliinfo!=NULL)
free (ppliinfo);

I* endif *I
I* endfor *I

WinSendMsg(hwndListbox,LM_DELETEALL,OL,OL);

Presentation Manager Printing - 541

I Want That with Mustard, Hold the Mayo, No Onions, Extra Ketchup
Okay, so now we have the printer selection tools needed (you're going to have to write the dialog
procedure!), but what if the user wants the printer output to go to a file, for example? In a restaurant, when
we want to order an entree, we usually can see what it comes with ("a vegetable and a choice of salad or a
dessert"). With printers, the same concept applies; it is referred to as the job properties (or as the printer
driver data). These are usually specific to the printer type and can specify portrait or landscape mode and
so on. These job properties are stored in the pdriv field of the DEVOPENSTRUC structure and are queried
and changed via the DevPostDeviceModes function.

(LONG)DevPostDeviceModes(HAB habAnchor,
PDRIVDATA pddData,
PSZ pszDriver,
PSZ pszDevice,
PSZ pszPrinter,
ULONG ulOptions);

habAnchor is the anchor block of the thread calling the function. pddData is used to store the results. If
NULL, this function returns the number of bytes needed to store the data. pszDriver is the printer driver
name and corresponds to the pszDriverName field of the DEVOPENSTRUC structure. pszDevice is the
device name and corresponds to the achDevice field of our PRNLISTINFO structure. pszPrinter is the key
name passed to PrfQueryProfileData and is passed to the queryPrinter routine (and is stored in the
achPrinter field). Finally, u!Options can be one of three DPDM_ constants, as specified in Table 28.2.

DPDM_QUERYJOBPROP
DPDM_POSTJOBPROP

DPDM_CHANGEPROP

Returns the default data in pddData.
Displays the printer-specific dialog box containing the job properties and the
forms list. If pszPrinter is NULL, the initial values displayed on the dialog
box are taken from the pddData field.
Displays first the DPDM_POSTJOBPROP dialog box and then displays the
"printer-properties" dialog box, allowing the user to change any permanent
settings regarding the printer.

This information now allows us to provide a "Properties" button on a printer selection dialog box. Note
that normally the DPDM_QUERYJOBPROP option isn't needed since the Sp!EnumQueue returns this
information. We have all of the tools needed to query the printers defined for the system, the data specific
to each, and the job properties.

Where Were We?
Looking back, we now know that somewhere before the initialization of the DEVOPENSTRUC structure,
we need to display a dialog box allowing the user to select which printer to print the document on and any
job properties he or she wishes to use. From the values returned, we can properly initialize the
DEVOPENSTRUC structure with non-hard-coded values, thereby increasing our device independence.
To firm up our knowledge, the following is a simple example program that prints a box.

542 -The Art of OS/2 Warp Programming
PRINT.C

INCL_DEV
INCL_DOSERRORS
INCL_SPL
INCL_SPLDOSPRINT
INCL_WINERRORS
INCL_WININPUT
INCL_WINLISTBOXES
INCL_WINMENUS
INCL_WINSHELLDATA
INCL_WINSYS
INCL_WINWINDOWMGR
<os2.h>
<stdio.h>
<string.h>
<stdlib.h>
<process.h>
"print.h"
CLS_CLIENT "SampleClass"
CPL_ERROR (USHORT) 0
CPL_NOPRINTERS (USHORT) 1
CPT._SUCCESS (USHORT) 2

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#include
#include
#include
#include
#include
#include
#define
#define
#define
#define
typedef VOID(*_Optlink PRNTHREAD) (PVOID);

typedef
{

struct

DEVOPENSTRUC dosPrinter;
CHAR achDevice[256];

PRNLISTINFO,*PPRNLISTINFO;

typedef
{

ULONG
HWND

struct

ulSizeStruct;
hwndOwner;

DEVOPENSTRUC dosPrinter;
PRNTHREADINFO,*PPRNTHREADINFO;

typedef struct
{

_CLIENT INFO

HWND hwndListbox;
CLIENTINFO,*PCLIENTINFO;

MRESULT EXPENTRY clientWndProc(HWND hwndClient,ULONG ulMsg,MPARAM
mpParml,MPARAM mpParm2);

VOID _Optlink printThread(PPRNTHREADINFO pptiinfo);
BOOL drawPage(HPS hpsDraw,USHORT usPage};
USHORT createPrnList(HWND hwndListbox};
VOID destroyPrnList(HWND hwndListbox};
VOID extractPrninfo(PPRQINF03 ppiQueue,DEVOPENSTRUC *pdosPrinter}

INT main(VOID}
{

HAB
HMQ
ULONG
HWND
BOOL
QMSG

habAnchor;
hmqQueue;
ulFlags;
hwndFrame;
bLoop;
qmMsg;

habAnchor Wininitialize(O};
hmqQueue = WinCreateMsgQueue(habAnchor,

0);

Presentation Manager Printing - 543
WinRegisterClass(habAnchor,

CLS_CLIENT,
clientWndProc,
0,
sizeof(PVOID));

ulFlags = FCF_SIZEBORDERIFCF_TITLEBARIFCF_TASKLISTI
FCF_SHELLPOSITIONIFCF_SYSMENUIFCF_MENUIFCF_ACCELTABLE;

hwndFrame = WinCreateStdWindow(HWND_DESKTOP,
WS_VISIBLE,
&ulFlags,
CLS_CLIENT,
"Printing Sample Application",
OL,
NULLHANDLE,
RES_CLIENT,
NULL);

if (hwndFrame != NULLHANDLE)
{

bLoop = WinGetMsg(habAnchor,
&qmMsg,
NULLHANDLE,
0,

while (bLoop)
{

0);

WinDispatchMsg(habAnchor,
&qmMsg);

bLoop = WinGetMsg(habAnchor,
&qmMsg,
NULLHANDLE,
0,
0);

WinDestroyWindow(hwndFrame);
}
WinDestroyMsgQueue(hmqQueue);
WinTerminate(habAnchor);
return O;

/* endwhile

/* endif

*I

*/

MRESULT EXPENTRY clientWndProc(HWND hwndClient,ULONG ulMsg,MPARAM
mpParml,MPARAM mpParm2)

PCLIENTINFO pciinfo;

pciinfo = WinQueryWindowPtr(hwndClient,
0);

switch (ulMsg)
{

case WM_CREATE
{

//--
//Allocate and initialize the CLIENTINFO structure
1/--

pciinfo = malloc(sizeof{CLIENTINFO));
if (pciinfo == NULL)
{

WinMessageBox(HWND_DESKTOP,
HWND_DESKTOP,

"An error occurred in initialization.•,
11 Error 11 ,

0,
MB_OK I MB_INFORMATION) ;

544 - The Art of OS/2 Warp Programming
return MRFROMSHORT(TRUE);

WinSetWindowPtr(hwndClient,
0,
pciinfo);

/* endif

pciinfo->hwndListbox = WinCreateWindow(hwndClient,
WC_LISTBOX,

,

*/

LS_HORZSCROLLJ
LS_NOADJUSTPOS,

0,

if (pciinfo->hwndListbox == NULLHANDLE)
{

WinMessageBox(HWND_DESKTOP,
HWND_DESKTOP,

0'
0'
0,
hwndClient,
HWND_TOP,
WND_LISTBOX,
NULL,
NULL);

"An error occurred in initialization.",
11 Error 11 ,

0,
MB_OKJMB_INFORMATION);

free (pciinfo);
return MRFROMSHORT(TRUE);

/* endif

WinSendMsg(hwndClient,

break;
case WM_DESTROY

WM_COMMAND,
MPFROMSHORT(MI_REFRESH),
OL);

*/

//---
//Return the resources to the system
1/---

destroyPrnList(pciinfo->hwndListbox);
WinDestroyWindow(pciinfo->hwndListbox);
break;

case WM_SIZE :
WinSetWindowPos(pciinfo->hwndListbox,

NULLHANDLE,

break;

0,
0,
SHORT1FROMMP(mpParm2),
SHORT2FROMMP(mpParm2),
SWP_MOVEJSWP_SIZEJSWP_SHOW);

case WM_INITMENU
switch (SHORTlFROMMP(mpParml))
{

case M_SAMPLE
{

SHORT
PPRNLISTINFO

sSelect;
ppliinfo;

sSelect = WinQueryLboxSelecteditem
(pciinfo->hwndListbox);

Presentation Manager Printing - 545
ppliinfo = (PPRNLISTINFO)PVOIDFROMMR(WinSendMsg

(pciinfo->hwndListbox,
LM_QUERYITEMHANDLE,
MPFROMSHORT(sSelect),
OL));

11---
11 If no printer is selected, disable the print
II menuitem
11---

if (sSelect != LIT_NONE)
{

WinEnableMenuitem(HWNDFROMMP(mpParm2),
MI_PRINT,

else
{

TRUE);

WinEnableMenuitem(HWNDFROMMP(mpParm2),
MI_PRINT,
FALSE);

} I* endif *I
11---
11 If no printer is selected or there is no driver
II data, disable the setup menuitem
11---

if ((sSelect != LIT_NONE) && (ppliinfo !=NULL)
&& (ppliinfo->dosPrinter.pdriv !=NULL))

WinEnableMenuitem(HWNDFROMMP(mpParm2),
MI_SETUP,

else
{

TRUE);

WinEnableMenuitem(HWNDFROMMP(mpParm2),
MI_SETUP,
FALSE);
I* endif

break;
default

break;

return WinDefWindowProc(hwndClient,
ulMsg,
mpParml,
mpParm2);

I* endswitch

case WM_COMMAND
switch (SHORTlFROMMP(mpParml))
{

case MI_PRINT
{

SHORT sindex;
PPRNLISTINFO ppliinfo;
PPRNTHREADINFO pptiinfo;

*/

*/

11---
11 Query the selected printer
11---

sindex = WinQueryLboxSelecteditem
(pciinfo->hwndListbox) ;

546 - The Art of OS/2 Warp Programming
ppliinfo = (PPRNLISTINFO)PVOIDFROMMR(WinSendMsg

(pciinfo->hwndListbox,
LM_QUERYITEMHANDLE,
MPFROMSHORT(sindex),
OL) l;

11---
11 Allocate and initialize the PRNTHREADINFO
II structure to pass to the thread
11---

pptiinfo = malloc(sizeof(PRNTHREADINFO));
if (pptiinfo == NULL)
{

WinMessageBox(HWND_DESKTOP,
HWND_DESKTOP,

"An error occurred while trying to print",

"Error",
0,
MB_OKjMB_INFORMATION);

return MRFROMSHORT(TRUE);
I* endif *I

pptiinfo->ulSizeStruct = sizeof(PRNTHREADINFO);
pptiinfo->hwndOwner = hwndClient;
pptiinfo->dosPrinter = ppliinfo->dosPrinter;

11---
11 Create the thread to do the printing
11---

if (_beginthread((PRNTHREAD)printThread,
NULL,

}
break;

Ox8000,
(PVOID)pptiinfo) -1)

WinMessageBox(HWND_DESKTOP,
HWND_DESKTOP,

"An error occurred while trying to print",

11 Error 11 ,

0,
MB_OKIMB_INFORMATION);

I* endif *I

case MI_SETUP
{

USHORT usSelect;
PPRNLISTINFO ppliinfo;

11---
11 Query the selected printer
11---

usSelect = WinQueryLboxSelecteditem
(pciinfo->hwndListbox);

ppliinfo = (PPRNLISTINFO)PVOIDFROMMR(WinSendMsg
(pciinfo->hwndListbox,
LM_QUERYITEMHANDLE,
MPFROMSHORT(usSelect),
OL));

Presentation Manager Printing - 54 7

DevPostDeviceModes(WinQueryAnchorBlock
(hwndClient),

ppliinfo->dosPrinter.pdriv,
ppliinfo->dosPrinter.pszDriverName,

ppliinfo->achDevice,
NULL,
DPDM_POSTJOBPROP);

break;
case MI_REFRESH

{
US HORT usResult;

destroyPrnList(pciinfo->hwndListbox);

usResult = createPrnList(pciinfo->hwndListbox);

switch (usResult)
{

case CPL_ERROR
WinMessageBox(HWND_DESKTOP,

HWND_DESKTOP,
"An error occurred while refreshing the list",

break;

"Error",
0,
MB_OKIMB_INFORMATION);

case CPL_NOPRINTERS :
WinMessageBox(HWND_DESKTOP,

HWND_DESKTOP,
"There are no printers defined.",

break;

11 Warning",
0,
MB_OKIMB_INFORMATION);

default
WinSendMsg(WinWindowFromID(hwndClient,

WND_LISTBOX) ,

break;

LM_SELECTITEM,
MPFROMSHORT (0) ,
MPFROMSHORT(TRUE));

/* endswitch

break;
case MI_EXIT

WinPostMsg(hwndClient,
WM_CLOSE,
OL,

break;
default

OL);

return WinDefWindowProc(hwndClient,
ulMsg,
mpParml,
mpParm2);

break;

case WM_PAINT
{

HPS
REC TL

hpsPaint;
rclPaint;

/* endswitch

*/

*/

548 - The Art of OS/2 Warp Programming

hpsPaint = WinBeginPaint(hwndClient,
NULLHANDLE,
&rclPaint);

WinFillRect(hpsPaint,
&rclPaint,
SYSCLR_WINDOW) ;

WinEndPaint(hpsPaint);

break;
default

return WinDefWindowProc(hwndClient,
ulMsg,
mpParml,
mpParm2);

I* endswitch
return MRFROMSHORT(FALSE);

*I

VOID _Optlink printThread(PPRNTHREADINFO pptiinfo)
//---
//This function is the secondary thread which prints the output.
II
II Input: pptiinfo - points to the PRNTHREADINFO structure
II containing needed information
11---
{

HAB
HMQ
HDC
SIZEL
HPS

habAnchor;
hmqQueue;
hdcPrinter;
szlHps;
hpsPrinter;

habAnchor Wininitialize(O);
hmqQueue = WinCreateMsgQueue(habAnchor,

0);
WinCancelShutdown(hmqQueue,

TRUE);
11--
11 Open a device context (HDC)
11--

hdcPrinter = DevOpenDC(habAnchor,
OD_QUEUED,

1J *II
9L,
(PDEVOPENDATA)&pptiinfo->dosPrinter,

NULLHANDLE) ;

if (hdcPrinter == NULLHANDLE)
{

11---
11 An error occurred
11---
WinAlarm(HWND_DESKTOP,

WA_ERROR);
WinMessageBox(HWND_DESKTOP,

pptiinfo->hwndOwner,
"Error creating the device context.",
"Error 11 ,

0,
MB_INFORMATIONIMB_OK);

WinDestroyMsgQueue(hmqQueue);
WinTerminate(habAnchor);
free (pptiinfo);

Presentation Manager Printing - 549
_endthread();

} /* endif */
//--
//Query the width and height of the printer page
1/--
DevQueryCaps(hdcPrinter,

CAPS_WIDTH,
lL,
&szlHps. ex) ;

DevQueryCaps(hdcPrinter,
CAPS_HEIGHT,
lL,
&szlHps. cy);

//--
// Create a presentation space (HPS) associated with the
II printer HDC
1/--
hpsPrinter = GpiCreatePS(habAnchor,

hdcPrinter,
&szlHps,
PU_LOENGLISHIGPIT_MICROIGPIA_ASSOC);

if (hpsPrinter == NULLHANDLE)
{

//---
//An error occurred
1/---
DevCloseDC(hdcPrinter);

WinAlarm(HWND_DESKTOP,
WA_ERROR);

WinMessageBox(HWND_DESKTOP,
pptiinfo->hwndOwner,
"Error creating the presentation space.",
"Error",
0,
MB_INFORMATIONIMB_OK);

WinDestroyMsgQueue(hmqQueue);
WinTerminate(habAnchor);
free(pptiinfo);
_end thread () ;

} /* endif *I
//--
// Tell the printer that we are starting a print job
1/--
if (DevEscape(hdcPrinter,

DEVESC_STARTDOC,
strlen(pptiinfo->dosPrinter.pszComment),
pptiinfo->dosPrinter.pszComment,
NULL,
NULL) ! = DEV_OK)

//---
//An error occurred
1/---
GpiDestroyPS(hpsPrinter);
DevCloseDC(hdcPrinter);

WinAlarm(HWND_DESKTOP,
WA_ERROR);

550 - The Art of OS/2 Warp Programming

WinMessageBox(HWND_DESKTOP,
pptiinfo->hwndOwner,
"Error starting the print job.",
11 Error 11 ,

0,
MB_INFORMATIONIMB_OK);

WinDestroyMsgQueue(hmqQueue);
WinTerminate(habAnchor);
free (pptiinfo);
_end thread () ;

} /* endif */
/!--
//Draw sample output
/1--
if (!drawPage(hpsPrinter,

1))

!!---
//An error occurred so abort the print job
1/---
DevEscape(hdcPrinter,

DEVESC_ABORTDOC,
OL,
NULL,
NULL,
NULL);

GpiDestroyPS(hpsPrinter);
DevCloseDC(hdcPrinter);

WinAlarm(HWND_DESKTOP,
WA_ERROR);

WinMessageBox(HWND_DESKTOP,
pptiinfo->hwndOwner,
"Error drawing the printer page.",
"Error",
0,
MB_INFORMATIONIMB_OK);

WinDestroyMsgQueue(hmqQueue);
WinTerminate(habAnchor);
free(pptiinfo);
_endthread();

} /* endif */
!!--
//Tell the printer that we are finished with the print job
1/--
if (DevEscape(hdcPrinter,

DEVESC_ENDDOC,
OL,
NULL,
NULL,
NULL) ! = DEV_OK)

/!---
//An error occurred so abort the print job
1/---
DevEscape(hdcPrinter,

DEVESC_ABORTDOC,
OL,
NULL,
NULL,
NULL);

GpiDestroyPS(hpsPrinter);
DevCloseDC(hdcPrinter);

Presentation Manager Printing - 551
WinAlarm(HWND_DESKTOP,

WA_ERROR);
WinMessageBox(HWND_DESKTOP,

pptiinfo->hwndOwner,
"Error ending the print job.",
11 Error 11 ,

0,
MB_INFORMATIONIMB_OK);

WinDestroyMsgQueue(hmqQueue);
WinTerminate(habAnchor);
free (pptiinfo);
_end thread () ;

} I* endif *I
11--
11 Destroy the HPS and close the printer HDC
11--
GpiDestroyPS(hpsPrinter);
DevCloseDC(hdcPrinter);
WinAlarm(HWND_DESKTOP,

WA_NOTE);
WinDestroyMsgQueue(hmqQueue);
WinTerminate(habAnchor);
free (pptiinfo);
_end thread () ;

BOOL drawPage(HPS hpsDraw,USHORT usPage)
11---
11 This function draws a box for page 1. Any other page number
II returns an error.
II
II Input: usPage - specifies the page number to draw.
II Returns: TRUE if successful, FALSE otherwise
11---
{

switch (usPage)
{

case 1 :
{

PO INTL

ptlMove.x
ptlMove.y

10;
10;

ptlMove;

GpiMove(hpsDraw,
&ptlMove);

ptlMove.x 100;
ptlMove.y 100;

GpiBox(hpsDraw,
DRO_OUTLINE,
&ptlMove,

break;
default

0,
0);

return FALSE;

return TRUE;
I* endswitch *I

552 - The Art of OS/2 Warp Programming
USHORT createPrnList(HWND hwndListbox)
11---
11 This function enumerates the printers available and inserts
II them into the specified listbox.
II
II Input: hwndListbox - handle to the listbox to contain the
II list
II Returns: an CPL_* constant
11---
{

SPLERR seError;
ULONG ulSzBuf;
ULONG ulNumQueues;
ULONG ulNumReturned;
ULONG ulSzNeeded;
ULONG ulindex;
PPRQINF03 ppiQueue;
PCHAR pchPos;
PPRNLISTINFO ppliinfo;
SHORT sinsert;
11--
11 Get the size of the buffer needed
11--
seError = SplEnumQueue(NULL,

3,
NULL,
OL,
&ulNumReturned,
&ulNumQueues,
&ulSzNeeded,
NULL);

if (seError != ERROR_MORE_DATA)
{

return CPL_ERROR;

else

if (ulNumQueues == 0)
{

return CPL__NOPRINTERS;

ppiQueue = malloc(ulSzNeeded);
if (ppiQueue == NULL)
{

return CPL_ERROR;

ulSzBuf = ulSzNeeded;

I* endif

I* endif

*I

*I

11--
11 Get the information
11--
SplEnumQueue(NULL,

3,
ppiQueue,
ulSzBuf,
&ulNumReturned,
&ulNumQueues,
&ulSzNeeded,
NULL);

11--
11 ulNumReturned has the count of the number of PRQINF03
II structures.
11--

Presentation Manager Printing - 553
for (ulindex = O; ulindex < ulNumReturned; ulindex++)
{

11---
11 Since the "conunent" can have newlines in it, replace
II them with spaces
11---
pchPos = strchr(ppiQueue[ulindex] .pszConunent,

'\n');
while (pchPos !=NULL)
{

*pchPos = ' ' ;
pchPos = strchr(ppiQueue[ulindex] .pszConunent,

'\n');
} I* endwhile
ppliinfo = malloc(sizeof(PRNLISTINFO));
if (ppliinfo == NULL)
{

continue;

*I

} I* endif *I
11---
11 Extract the device name before initializing the
II DEVOPENSTRUC structure
11---
pchPos = strchr(ppiQueue[ulindex] .pszDriverName,

I• I);

if (pchPos != NULL)
{

*pchPos = O;
strcpy(ppliinfo->achDevice,

pchPos+l);
I* endif

extractPrninfo(&ppiQueue[ulindex],
&ppliinfo->dosPrinter);

sinsert (SHORT)WininsertLboxitem(hwndListbox,

WinsendMsg(hwndListbox,
LM_SETITEMHANDLE,
MPFROMSHORT(sinsert),
MPFROMP(ppliinfo));

0,
ppiQueue[ulindex].

pszConunent);

if ((ppiQueue[ulindex] .fsType&PRQ3_TYPE_APPDEFAULT) != 0)
{

WinSendMsg(hwndListbox,
LM_SELECTITEM,
MPFROMSHORT(sinsert),
MPFROMSHORT(TRUE));

I* endif
} I* endfor
free (ppiQueue) ;
return CPL_SUCCESS;

*I

*I
*I

VOID destroyPrnList(HWND hwndListbox)
11---
11 This function destroys the printer list and returns the memory
II to the system.
II
II Input: hwndListbox - handle of the listbox containing the
II printer list
11---
{

USHORT
US HORT

usNumitems;
us Index;

554 -The Art of OS/2 Warp Programming
PPRNLISTINFO ppliinfo;

usNumitems = WinQueryLboxCount(hwndListbox);

for (usindex = O; usindex < usNumitems; usindex++)
{

ppliinfo = (PPRNLISTINFO)PVOIDFROMMR(WinSendMsg(hwndListbox,
LM_QUERYITEMHANDLE,
MPFROMSHORT(usindex),

OL));
if (ppliinfo !=NULL)
{

11--
11 The following 3 lines help fix a bug from the 1st
II edition
11--
if (ppliinfo->dosPrinter.pdriv !=NULL)
{

free(ppliinfo->dosPrinter.pdriv);
I* endif

free (ppliinfo);

}

WinSendMsg(hwndListbox,
LM_DELETEALL,
OL,
OL);

I* endif
I* endfor

*I

*I
*I

VOID extractPrninfo(PPRQINF03 ppiQueue,DEVOPENSTRUC *pdosPrinter)
11---
11 This function extracts the needed information from the
II specified PRQINF03 structure and places it into the specifies
II DEVOPENSTRUC structure.
II
II Input: ppiQueue - points to the PRQINF03 structure
II Output: pdosPrinter - points to the initialized DEVOPENSTRUC
II structure
11---
{

PC HAR pchPos;

pdosPrinter->pszLogAddress ppiQueue->pszName;

pdosPrinter->pszDriverName ppiQueue->pszDriverName;
pchPos = strchr(pdosPrinter->pszDriverName,

I• I) j

if (pchPos !=NULL)
{

*pchPos = O;
} I* endif *I
11--
11 The following if statement helps fix a bug from the 1st
II edition. The sample originally copied the pointer into
II the DEVOPENSTRUC structure, but the memory into which
II the memory was pointing was freed by createPrnList().
II
II The fix, obviously, is to allocate our own area of memory
II and to copy the printer data to the new buffer. Note that
II destroyPrnList() must free the memory. destroyPrnList()
II doesn't get called until the application exits.
11--
if (ppiQueue->pDriverData !=NULL)
{

pdosPrinter->pdriv = malloc(ppiQueue->pDriverData->cb);
if (pdosPrinter->pdriv == NULL)
{

return ;
/* endif

memcpy(pdosPrinter->pdriv,
ppiQueue->pDriverData,
ppiQueue->pDriverData->cb};

else
{

pdosPrinter->pdriv = NULL;
/* endif

pdosPrinter->pszDataType = "PM_Q_STD";
pdosPrinter->pszComment = ppiQueue->pszComment;

if (strlen(ppiQueue->pszPrProc} > 0)
{

pdosPrinter->pszQueueProcName = ppiQueue->pszPrProc;

else
{

pdosPrinter->pszQueueProcName = NULL;
} /* endif
if (strlen(ppiQueue->pszParms} > 0)
{

Presentation Manager Printing - 555

*/

*/

*/

pdosPrinter->pszQueueProcParams ppiQueue->pszParms;

else
{

pdosPrinter->pszQueueProcParams = NULL;

pdosPrinter->pszSpoolerParams
pdosPrinter->pszNetworkParams

PRINT.RC
#include <os2.h>
#include "print.h"

ACCELTABLE RES_CLIENT
{

"AP" ' MI_PRINT' CHAR
"AP", MI_PRINT, CHAR
"As", MI_SETUP, CHAR
HAS", MI_SETUP, CHAR
"Ar", MI_REFRESH, CHAR
OAR", MI_REFRESH, CHAR
VK_F3, MI_EXIT, VIRTUALKEY

MENU RES_CLIENT
{

SUBMENU "-Print", M_SAMPLE
{

/* endif
NULL;
NULL;

MENUITEM "-Print sample\tCtrl P", MI_PRINT
MENUITEM "Printer -setup ... \tCtrl S", MI_SETUP
MENUITEM SEPARATOR
MENUITEM "-Refresh list\tCtrl R"' MI_REFRESH

SUBMENU "E-xit", M_EXIT
{

MENUITEM "E-xit sample\tF3", MI EXIT
MENUITEM "-Resume", MI_RESUME

*/

556 -The Art of OS/2 Warp Programming
PRINT.ff
#define RES_CLIENT
#define WND_LISTBOX
#define M_SAMPLE
#define MI_PRINT
#define MI_SETUP
#define MI_REFRESH
#define M_EXIT
#define MI_EXIT
#define MI_RESUME

PRINT.MAK
ICCOPTS=-C+ -Gm+ -Kb+ -Ss+
LINKOPTS=/MAP /A:16

PRINT.EXE:

PRINT,
PRINT,
PRINT,
OS2386
PRINT
<<

LINK386 $(LINKOPTS) @<<

RC PRINT.RES PRINT.EXE

256
257
256
257
258
259
260
261
262

PRINT.OBJ \
PRINT.RES

PRINT.RES: PRINT.RC \
PRINT.H

RC -r PRINT.RC PRINT.RES

PRINT.OBJ:

ICC $(ICCOPTS) PRINT.C

PRINT.DEF
NAME PRINT WINDOWAPI

DESCRIPTION 'Printing example

PRINT.C \
PRINT.H

Copyright (c) 1992-1995 by Larry Salomon
All rights reserved. '

STACKSIZE 16384

This program illustrates the use of multithreading within a PM application. For more information, see
Chapter 30.

Note that because many PM functions require the existence of a message queue, likely Winlnitialize and
WinCreateMsgQueue will have to be called. Also, it is usually good to call WinCancelShutdown so that
PM will not send the thread a WM_QUIT message if the user should shut down the system while
processing is still in progress.

The extractPrnlnfo, createPrnList, and destroyPrnList functions were used in previous examples.
createPrnList creates a DEVOPENSTRUC structure for each printer present and calls extractPrnlnfo to
initialize it. It also saves the device name for calls to DevPostDeviceModes.

Presentation Manager Printing - 557
drawPage is present only to separate the drawing from the print-job initialization (in printThread). Since it
really does nothing, it could instead be placed directly in printThread. If an application does any complex
drawing, it might be beneficial to keep the drawing separate so that (1) it allows reuse if the code between
printing and repainting and (2) it does not clutter up the print-job handling. Mileage may vary.

printThread handles the creation of a queued device context and associated presentation space and the
print-job creation. It calls drawPage to actually draw the output. Except for a few changes, it is the same
code that was used earlier.

The client's window procedure (clientWndProc) provides the meat on the bones, so to speak. It utilitizes
the window words to store a pointer to a structure containing any needed instance data. The instance data
here contains the handle of a list box, to avoid using global variables instead. This list box, created in the
WM_CREATE processing, contains the list of the printers defined for the system. It is resized in the
WM_SIZE processing to match the size of the client, for maximum utilitization of "screen real estate."

Here we also see our first use of the WM_INITMENU message. This message is sent whenever the action
bar or a pull-down menu is selected. This allows the application to disable menu items according to the
state of the application at the time the menu was selected instead of trying to doing this on a per-action
basis (i.e., the user selected item A on the menu, so immediately disable item B and enable item C).
Taking a snapshot of the application often is much easier to do than figuring out state tables and all sorts of
third-order differential equations just to see if the "Save" menu item should be selectable.

The WM_INITMENU has two parameters as well: SHORTlFROMMP(mpParml) contains the resource
ID of the menu that was selected, and HWNDFROMMP(mpParm2) contains the handle of the menu that
was selected. The client checks to see if a printer is selected and if it contains any driver data and enables
or disables the menu items as appropriate.

Of particular interest should be the processing of the menu items. MI_PRINT indicates that something
should be printed, and this should take place asynchronously, so a PRNTHREADINFO structure is
allocated and initialized with the handle of the client window and a pointer to the PRNLISTINFO structure
for the selected window. A second thread finally is created using _beginthread and is passed the pointer to
the PRNTHREADINFO structure. (This second thread is responsible for freeing the structure.)

MI_SETUP has practically nothing to do since everything was done already by createPrnList. It simply
queries the PRNLISTINFO structure and calls DevPostDeviceModes.

MI_REFRESH simply calls destroyPmList followed by createPmList. This is needed in case the user adds
a new printer after starting the application. Unfortunately, yet understandably, there is no way to be
notified whenever the system configuration changes, so we have to force the user to select this menu item
to update the list.

Chapter 29

Help Manager

Beginning with OS/2 1.2, IBM introduced an addition to the Presentation Manager interface (touted as the
"Help Manager") that allowed an application to add both general help and field help online. (With 1.3,
IBM published the previously undocumented method for creating online books, which are viewed using
the system-supplied utility VIEW.EXE.) It should be noted, however, that while this capability is very
appealing, it is by no means added to an application quickly; in fact, well-written online help can take on
the average of one day per 3,000 lines of code to complete for the text alone. (This figure is based on
personal experience.) The upside is that, for most Presentation Manager applications, programmers do not
have to think about this designing the programs; online help can be added at any time, providing that the
source code to the application is available.

Application Components
There are at least three parts to the help component of any application: the source code, the HELPTABLEs,
and the definitions of the help panels. The source code is obviously part of the application source, and
includes the corresponding Win calls and HM_ messages sent to and received from the Help Manager. The
HELPTABLEs (and HELPSUBTABLEs) are part of the resource file, and they define the relationships
between the various windows and the corresponding help panels. Finally, the help panel definitions
describe the look as well as the text of the help panels and are written using a general markup language
(GML)-like language. (SCRIPT and Bookmaster users will recognize the help panel definition language
as a subset of the Bookmaster macros they are familiar with.) Let us take a closer look at each of these
three parts in more detail.

The Application Source
The source code is usually the smallest component of the three, because it typically consists of an
initialization section and the processing of a few messages. The initialization section normally goes in the
main routine after the main window is created and follows the next which is the typical initialization code
used in a Presentation Manager application to create a help instance.

#define HELP_CLIENT 256

HELPINIT hiinit;
CHAR achHelpTitle[256];
HAB habAnchor;
HWND hwndHelp;
HWND hwndFrame;

: II Wininitialize, etc. goes here

II We need to initialize the HELPINIT structure before calling
II WinCreateHelpinstance. See the online technical reference

559

560 - The Art of OS/2 Warp Programming
II for an explanation of the individual fields.

hiinit.cb=sizeof{HELPINIT);
hiinit.ulReturnCode=OL;
hiinit.pszTutorialName=NULL;

II By specifying OxFFFF in the high word of phtHelpTable, we are
II indicating that the help table is in the resource tables with
II the id specified in the low word.

hiinit.phtHelpTable=(PHELPTABLE)MAKEULONG(HELP_CLIENT,OxFFFF);

hiinit.hmodHelpTableModule=NULLHANDLE;
hiinit.hmodAccelActionBarModule=NULLHANDLE;
hiinit.idAccelTable=O;
hiinit.idActionBar=O;
hiinit.pszHelpWindowTitle=achHelpTitle;
hiinit.fShowPanelid=CMIC_HIDE_PANEL_ID;
hiinit.pszHelpLibraryName="MYAPPL.HLP";

hwndHelp=WinCreateHelpinstance(habAnchor,&hiinit);
if ((hwndHelp!=NULLHANDLE) && (hiinit.ulReturnCode!=O))

winuestroyHelpinstance(hwndHelp);
hwndHelp=NULLHANDLE;

} I* endif *I

II Message loop goes here

if (hwndHelp!=(HWND)NULL) {
WinDestroyHelpinstance(hwndHelp);
hwndHelp=NULLHANDLE;

} I* endif *I

As with the relationship between window classes and window instances, there exists a help manager class
of which an instance can be created by calling WinCreateHelplnstance. This function can have one of
three outcomes.

1. The call can complete successfully, and the return value is the handle of the help instance.
2. The function can complete partially, returning a help instance handle and specifying an error code in

the ulRetumCode field.
3. The function can fail, returning NULL. Because of the subtle difference between 1 and 2, it is not

sufficient simply to check the return value.

If the help instance is created successfully, it becomes the recipient of any messages that are sent and the
originator of any messages that are sent to the active window.

Since a help instance is associated with a "root" window and all of its descendants, the programmer must
indicate what the root window is. This is done using the WinAssociateHelplnstance function.

(BOOL)WinAssociateHelpinstance(HWND hwndHelp,
HWND hwndWindow) ;

Specifing a non-NULL value for hwndHelp indicates that this is the active window that should be used
when determining which help panel to display. Specifying NULL for this parameter removes the current
association between the help instance and the window specified. We will see how this is used shortly.

Help Manager - 561
Gotcha!
Note that WinAssociateHelplnstance will not work if it is called within the
WM_CREATE message of the window with which it is associated.
WinAssociateHelplnstance needs a valid window handle, and when the WM_CREATE
message is received, the window handle is not yet valid.

Messages
The next piece of source code that will be used in most applications deals with the "Help" pull-down menu
and "Help" push buttons. According to IBM's guidelines on developing a application user interface, there
should exist on all menus a pull-down titled "Help" that contains the following four items:

• "Using help ... "
• "General help ... "
• "Keys help ... "
• "Help index ... "

There also can be an optional fifth item, labeled "Product information ... " which displays an "About" box
when selected. Fortunately, four messages can be sent to the Help Manager to process these four menu
items. Each of them takes no parameters. They are listed in Table 29.1.

HM_DISPLA Y _HELP
HM_EXT_HELP
HM_KEYS_HELP
HM HELP INDEX

Displays help on using online help.
Displays the "extended" help for the current window.
Displays the keys help for the current window.
Displays the help index.

Except for HM_KEYS_HELP, all that needs to be done is send the appropriate message to the help
instance. Sending HM_KEYS_HELP results in the help instance sending the window a
HM_QUERY_KEYS_HELP message back to determine which "keys help" panel to display. The panel
resource ID should be returned by the programmer in response to this message.

The behavior of a "Help" push button is left somewhat up to the programmer. The official IBM line is that
it should display field help-a panel that describes what the purpose is of the control containing the cursor.
We follow this strategy in our applications; it results in the displaying of the extended help for the frame or
dialog. To display this help for the frame, the programmer should define the push button with the
BS_NOPOINTERFOCUS style to avoid receiving the input focus and should send the help instance a
HM_DISPLA Y _HELP message (this time with either the panel resource ID or the panel name in mpParml
and either HM_RESOURCEID or HM_PANELNAME in mpParm2) to display the help panel for the
current control with the focus. To display this help for the dialog, the programmer simply needs to send an
HM_EXT_HELP message to the help instance.

562 - The Art of OS/2 Warp Programming

The Help Tables
The help tables define the relationship between the control windows and the help panels to be displayed
when the user requests help. Visualizing the help tables as a two-dimensional array of help panel Ids may
make understanding what they are easier. The first index into this array is the ID of the window that has
been associated with a help instance via WinAssociateHelplnstance; the second index is either a menu item
ID or an ID of a child window that can receive the input focus. To understand how the help tables are
used, we need to understand the sequence of events beginning with the user pressing Fl and the displaying
of the help panel.

I. The user presses Fl.
2. The help instance determines the ID of the window that it is currently associated with.
3. The HELPITEM for the given window ID is referenced and the appropriate HELPSUBTABLE is

determined.
4. The menu item ID (or the ID of the window with the focus) is used to look up in the

HELPSUBTABLE the ID of the help panel to display.
5. The help panel definition is retrieved from the compiled help file.
6. The help panel is displayed.

There are obviously many places where errors can occur; the most frequent one is when the menu item
ID/child window ID is not in the HELPSUBTABLE. When this occurs, the owner window chain is
searched (steps 3 to 6). If it is still not found, the parent window chain also is searched. If the ID has not
been found after both searches, the current window is sent a HM_HELPSUBITEM_NOT_FOUND
message, giving it the opportunity to remedy the situation (via a HM_DISPLAY_HELP message). The
default action is to display the extended help for the current window.

When the ID is found in a HELPSUBTABLE but the panel definition does not exist, or when any other
error occurs (with the exception of HELPSUBITEM not found, just described above and when the
extended help panel cannot be determined), the application is sent an HM_ERROR message. This message
contains an error code in the first parameter that describes the condition causing the error. The typical
response to receiving this is to display a message and then disable the help manager by calling
WinDestroyHelplnstance.

Given this logical view of the help tables, let us look at a sample definition in a resource file.

Sample HELPTABLE
The following sample HELPTABLEs describe the online help panels that correspond to the child windows
and menuitems in the application and its associated dialogs.

HELPTABLE HELP_CLIENT
{

HELPITEM HELP_CLIENT, SUBHELP_CLIENT, EXTHELP_CLIENT
HELPITEM DLG_OPEN, SUBHELP_OPEN, EXTHELP_OPEN
HELPITEM DLG_PRODUCTINFO,

SUBHELP_PRODUCTINFO, EXTHELP_PRODUCTINFO

HELPSUBTABLE SUBHELP_CLIENT
{

HELPSUBITEM M_FILE, HELP_M_FILE
HELPSUBITEM MI_NEW, HELP_MI_NEW

HELPSUBITEM MI_OPEN, HELP_MI_OPEN
HELPSUBITEM MI_SAVE, HELP_MI_SAVE
HELPSUBITEM MI_CLOSE, HELP_MI_CLOSE
HELPSUBITEM MI_EXIT, HELP_MI_EXIT
HELPSUBITEM M_HELP, HELP_M_HELP
HELPSUBITEM MI_USINGHELP, HELP_MI_USINGHELP
HELPSUBITEM MI_GENERALHELP, HELP_MI_GENERALHELP
HELPSUBITEM MI_KEYSHELP, HELP_MI_KEYSHELP
HELPSUBITEM MI_HELPINDEX, HELP_MI_HELPINDEX
HELPSUBITEM MI_PRODINFO, HELP_MI_PRODINFO

HELPSUBTABLE SUBHELP_SETOPTIONS
{

HELPSUBITEM DOPEN_EF_FILENAME, HELP_DOPEN_EF_FILENAME
HELPSUBITEM DLG_PB_OK, HELP_DLG_PB_OK
HELPSUBITEM DLG_PB_CANCEL, HELP_DLG_PB_CANCEL
HELPSUBITEM DLG_PB_HELP, HELP_DLG_PB_HELP

HELPSUBTABLE SUBHELP_PRODINFO
{

HELPSUBITEM DLG_PB_CANCEL, HELP_DLG PB CANCEL
HELPSUBITEM DLG_PB_HELP, HELP_DLG_PB_HELP

Help Manager - 563

As is clear from the sample, our application has two dialogs with online help. Their resource identifiers are
DLG_OPEN and DLG_PRODUCTINFO. There are 12 child windows or menu items that belong to the
client window. In each of the HELPSUBITEMS, the window ID is on the left and the corresponding help
panel resource ID is on the right.

Gotcha!
If the resource ID specified in the WinCreateStdWindow call is different from that used
as the resource ID of the HELPT ABLE, the first parameter to the HELPITEM that
refers to the main window should be the same as the HELPTABLE resource ID and
not the ID for the frame resources.

Message Boxes
When an application needs to give the user some information, one way it can do so is by using the
WinMessageBox function. This displays a window containing application-specified title and text as well as
an optional icon to the left and one or more predefined push buttons (e.g., "OK", "Yes", "Abort", etc.). It
returns a constant that specifies the push button selected on the message box (e.g., MBID_OK, MBID_NO,
MBID_RETRY, etc.).

As might be imagined, only so much can be said in a small dialog box. Often, what fits is enough for most
users to figure out what the programmer is trying to say. However, it would be nice to provide another
level of detail for those who would like more information (i.e., online help). The constant MB_HELP
specifies that a "Help" push button is requested; this is the only button that does not cause the function to
return. Unfortunately, since a message box doesn't have to have an application window as the owner
(HWND_DESKTOP will work fine for hwndOwner; this could be used in, for example, a program that
simply calls WinMessageBox with the command line for the message for CMD files), it cannot simply send

564 - The Art of OS/2 Warp Programming
the owner a message saying that the help button was pressed. The system, therefore, provides two ways to
display help for message boxes: using a help hook and using HELPTABLEs. We will look at the latter
method later in the chapter.

Fishing, Anyone?
A "hook" is a function that Presentation Manager calls whenever a certain event occurs. In a perverted
way, we could look at it as subclassing the entire system, but instead of intercepting messages before the
intended recipient receives them, the application intercepts "events." These events range from the "code
page changed" event to the "DLL has been loaded with WinLoadLibrary" event and cover 16 different
items. There is, of course, a "help requested" event as well, and it is this event that we are interested in.

Hooks are installed with WinSetHook and are released with WinReleaseHook. Both take the same
parameters:

(BOOL)WinSetHook(HAB habAnchor,
HMQ hmqQueue,
USHORT usHookType,
PFN pfnHookProc,
HMODULE hmodProc);

habAnchor is the handle to the anchor block for the calling thread. hmqQueue is the handle of the queue
for which events are to be monitored. If this is NULLHANDLE, events for the entire system are
monitored; however, the hook function-since it will be called by different processes-must reside in a
DLL so that PM can load the function when needed. usHookType is one of the HK_ constants specifying
the event to be monitored. pfnHookProc is a pointer to the event monitoring function (the "hook").
hmodProc is a handle to the DLL containing the hook function or NULLHANDLE if hmqQueue is not
NULLHANDLE and the hook function resides in the executable.

Each of the procedures for the different hook types takes different parameters and returns different values.
Since we're interested in the HK_HELP hook, here is the prototype of the hook function:

(BOOL)pfnHookProc(HAB habAnchor,
SHORT sMode,
USHORT usTopic,
USHORT usSubTopic,
PRECTL prclPosition);

habAnchor is the handle to the anchor block of the thread for which the event occurred. sMode indicates
the context in which help was requested and is a HLPM_ constant. usTopic and usSubTopic are
dependent on the value of sMode.

Table 29.2 Hook Variables

HLPM_FRAME

HLPM_MENU

HLPM_ WINDOW

Identifier of the active frameidentifier of the window with the
window focus
Identifier of the pull-down menu orldentifier of the menu item or
FID_MENU if the action bar issubmenu item for which help
selected was requested
Identifier of the message box Not used

Help Manager - 565
The help hook returns TRUE if the next hook in the help hook chain should not be called and FALSE if the
next hook should be called. The typical function of the help hook when used in this context is to send the
help instance a HM_DISPLA Y _HELP message to display the specified help panel.

Gotcha!
Note that the documentation states that the help hook should be installed before the
help instance is created. However, since WinSetHook installed the hook at the head of
the hook chain, this information is backward. For this procedure to work properly, the
call to WinSetHook should be placed after the call to WinAssociateHelp/nstance.

Given the information in the Gotcha, the following question comes up: Since
WinAssociateHelplnstance is called only after the frame window has been created successfully, how does
an application provide message box help for the WM_ CREA TE message? The answer is to call
WinSetHook after creating the help instance, calling WinCreateStdWindow to create the frame window,
and then releasing the hook, associating the help instance, and resetting the hook with WinReleaseHook,
WinAssociateHelplnstance, and WinSetHook, respectively.

Gotcha!
The header files in the Toolkit indicate that the parameters for the help hook are a
SHORT and two USHORTs for 16-bit applications and a LONG and two ULONGs for
32-bit application. This is incorrect. The parameters are always a SHORT and two
USHORTs.

The Help Panels
Now that we've seen how easy the code and resource definitions are, it is time to tackle the most difficult
(to do well) and time-consuming aspect of this development phase-writing the help panels. While the
definition of the language is large, it is fairly easy to digest. We will look at only the rudiments of the
language; the full language definition can be gleaned from the online document entitled "IPF Reference"
that is included with the OS/2 Warp Programmer's Toolkit.

The help file (whose file extension is usually ".IPF") is compiled by the "Information Presentation Facility
Compiler" (a.k.a. IPFC) to produce a ".HLP" file that is read by the Help Manager when
WinCreateHelplnstance is called. The source file contains a collection of "tags," which begin with a colon
(:), followed by the tag name, an optional set of attributes, and finally a period. Some tags also require a
matching "end tag" (e.g., a "begin list" and "end list" tag), which have no attributes and whose name
usually matches the beginning tag name preceded by an e (e.g., ":sl." and ":es!."). Table 29.3 presents
common tags and their meanings.

:hl. through :h6.

:p.
:fn. :efn.

Heading tag. Headings 1 to 3 also have an entry in the table of
contents.
New paragraph.x
Footnote and ending tag.

566 - The Art of OS/2 Warp Programming
:hpl. through :hp9. Emphasis tag. This requires the matching ending tag (:ehpl.

:link.
:sl. :esl.
:ul. :eul.
:ol. :eol.
:Ii.

:di. :edl.

through :ehp9.). ,
Hypertext link.
Simple list and ending tag.
Unordered list and ending tag.
Ordered list and ending tag.
List item. Used between the list tags to describe the items in the
list.
Definition list and ending tag. Whereas the other lists consist of a
single element, definition lists consist of a "data term" and "data
definition" (:dt. and :dd., respectively).

:dt. :dd.
:dthd. :ddhd.

Data term and data definition tags.
Data term heading and data definition heading tags. Also, a few
special tags are used only once in a help file.

:userdoc. :euserdoc.
:title.

Beginning and ending of the document.
The text to be placed in the title bar of the help panels.

While most of these tags have attributes, the ones used most are the resource and ID attributes. The
resource attribute allows programmers to assign a numerical value to a heading tag (e.g., ":hl
res=2048.Help panel"), and this is what the HELPSUBITEMs reference. The ID attribute allows
programmers to assign an alphanumeric name for use in hypertext links (e.g., ":h2 id='MYPANEL'.Help
panel"). The ID attribute can be used on both heading and footnote tags, while the resource attribute can
be used only on heading tags. Heading IDs are referenced using the "refid" attribute of a hypertext link; a
footnote is referenced also using the "refid" attribute of a ":fnref' (footnote reference) tag.

In addition to the tags, certain symbols that are translated into different values in other languages, not
easily enterable using the keyboard, or used by IPF are defined. These are referenced by symbol name
substitution, beginning with an ampersand (&), including the symbol name, and ending with a period.
Table 29.4 lists some commonly used symbols.

&.
&cdq.
&colon.
&csq.
&lbrk.
&odq.
&osq.
&rbrk.
&vbar.

Ampersand
Close double quote
Colon
Close single quote
Left bracket
Open double quote
Open single quote
Right bracket
Vertical bar

A help panel begins with a heading l, 2, or 3 tag and ends with either the next heading 1, 2, or 3 tag or the
end of the document. Everything that is in between is shown when the panel is displayed. The next
section presents a sample panel showing how some of the tags are used.

Help Manager - 567

Sample Help Panel
:hl id='MYPANEL' res=lOOO.My help panel
:p.When adding online help to your PM application, the following steps must be
taken
:fnref refid='MYFN' .&colon.
:ul compact.
:li.Initialization code must be written
:li.Messages must be processed
:li.Resources must be defined
:li.Help panels must be compiled
:eul.
: fn id= 'MYFN' .
Footnotes start on an implied paragraph.
:efn.

Note that at least five tags are required in a valid IPF file-:userdoc., :title., :hl., :p., and :euserdoc., in that
order.

Putting It All Together
We now have enough information to write a simple application to illustrate the points made in this chapter.
The application, HELPl, contains a few menu items and dialog boxes but otherwise does nothing. Its sole
purpose is to allow the user to display the online help.

HELPl.C
#define INCL_WINHELP
#define INCL_WINHOOKS
#define INCL_WINSYS
#include <os2.h>
#include "helpl. h"
#define CLS_CLIENT "SampleClass"
HWND hwndHelp;

MRESULT EXPENTRY clientWndProc(HWND hwndClient,ULONG ulMsg,MPARAM
mpParml,MPARAM mpParm2);

BOOL EXPENTRY helpHook(HAB habAnchor,SHORT sMode,USHORT usTopic,
USHORT usSubTopic,PRECTL prclPos);

INT main(VOID)
{

HAB
HMQ
UL ONG
HWND
HELPINIT
BOOL
QMSG

habAnchor;
hmqQueue;
ulFlags;
hwndFrame;
hiinit;
bLoop;
qmMsg;

habAnchor Wininitialize(O);
hmqQueue = WinCreateMsgQueue(habAnchor,

0);

WinRegisterClass(habAnchor,
CLS_CLIENT,
clientWndProc,
0,
0);

ulFlags = FCF_SIZEBORDERIFCF_TITLEBARJFCF_TASKLISTI
FCF_SHELLPOSITIONJFCF_SYSMENU!FCF_MENU;

568 -The Art of OS/2 Warp Programming
hwndFrame = WinCreateStdWindow(HWND_DESKTOP,

WS_VISIBLE,
&ulFlags,
CLS_CLIENT,

"Help Manager Sample Application l",

0,
NULLHANDLE,
RES_CLIENT,
NULL);

hiinit.cb = sizeof(HELPINIT);
hiinit.ulReturnCode = O;
hiinit.pszTutorialName = NULL;
hiinit.phtHelpTable = (PHELPTABLE)MAKEULONG(HELP_CLIENT,

OxFFFF);
hiinit.hmodHelpTableModule = NULLHANDLE;
hiinit.hmodAccelActionBarModule NULLHANDLE;
hiinit.idAccelTable = O;
hiinit.idActionBar = O;
hiinit.pszHelpWindowTitle = "Help Manager Sample Help File";
hiinit.fShowPanelid = CMIC_HIDE_PANEL_ID;
hilnit.pszHelpLibraryName = "HELPi.HLP";

hwndHelp = WinCreateHelpinstance(habAnchor,
&hiinit);

if ((hwndHelp != NULLHANDLE) && (hiinit.ulReturnCode != 0))
{

WinDestroyHelpinstance(hwndHelp);
hwndHelp = NULLHANDLE;

else
if ((hwndHelp != NULLHANDLE))
{

WinAssociateHelpinstance(hwndHelp,
hwndFrame) ;

} /* endif
WinSetHook(habAnchor,

hmqQueue,
HK_HELP,
(PFN)helpHook,

NULLHANDLE) ;

bLoop WinGetMsg(habAnchor,
&qmMsg,
NULLHANDLE,
0,
0);

while (bLoop)
{

}

WinDispatchMsg(habAnchor,
&qmMsg);

bLoop = WinGetMsg(habAnchor,
&qmMsg,
NULLHANDLE,
0,
0);

WinReleaseHook(habAnchor,
hmqQueue,
HK_HELP,
(PFN)helpHook,

NULLHANDLE) ;

if (hwndHelp ! = NULLHANDLE)
{

/* endwhile

*I

*/

WinAssociateHelpinstance(NULLHANDLE,
hwndFrame);

WinDestroyHelpinstance(hwndHelp);
hwndHelp = NULLHANDLE;

WinDestroyWindow(hwndFrame);
WinDestroyMsgQueue(hmqQueue);
WinTerminate(habAnchor);
return ;

/* endif */

BOOL EXPENTRY helpHook(HAB habAnchor,SHORT sMode,USHORT usTopic,
USHORT usSubTopic,PRECTL prclPos)

if ((sMode == HLPM_WINDOW) && (hwndHelp != NULLHANDLE))
{

WinSendMsg(hwndHelp,
HM_DISPLAY_HELP,
MPFROMLONG(MAKELONG(usTopic,

0))'
MPFROMSHORT(HM_RESOURCEID));

return TRUE;

else
{

return FALSE;
/* endif *I

MRESULT EXPENTRY clientWndProc(HWND hwndClient,ULONG ulMsg,MPARAM
mpParml,MPARAM mpParm2)

switch (ulMsg)
{

case WM_PAINT
{

HPS
REC TL

hpsPaint

hpsPaint;
rclPaint;

WinBeginPaint(hwndClient,
NULLHANDLE,
&rclPaint);

WinFillRect(hpsPaint,
&rclPaint,
SYSCLR_WINDOW) ;

WinEndPaint(hpsPaint);
}
break;

case WM_COMMAND
switch (SHORTlFROMMP(mpParml))
{

case MI_HELPINDEX :
WinSendMsg(hwndHelp,

HM_HELP_INDEX,
0,
0);

break;
case MI_GENERALHELP

WinSendMsg(hwndHelp,
HM_EXT_HELP,
0,
0);

break;
case MI_HELPFORHELP

Help Manager - 569

570 -The Art of OS/2 Warp Programming
WinSendMsg(hwndHelp,

HM_DISPLAY_HELP,
0,
0);

break;
case MI_KEYSHELP

WinSendMsg(hwndHelp,
HM_KEYS_HELP,
0,
0);

break;
case MI_PRODINFO

WinMessageBox(HWND_DESKTOP,
hwndClient,

break;
default

"Copyright 1995 by Larry Salomon,Jr.",

"Help Sample",
HLP_MESSAGEBOX,
MB_OKjMB_HELPJMB_INFORMATION);

return WinDefWindowProc(hwndClient,
ulMsg,
mpParml,
mpParm2);

/* endswitch
break;

case HM_QUERY_KEYS_HELP
return MRFROMSHORT(KEYSHELP_CLIENT);

default
return WinDefWindowProc(hwndClient,

ulMsg,
mpParml,
mpParm2);

return MRFROMSHORT(FALSE);

HELPl.RC
#include <os2.h>
#include "helpl.h"

MENU RES_CLIENT
{

SUBMENU "-Help", M_HELP
{

/* endswitch

MENUITEM "Help -index ... ", MI_HELPINDEX
MENUITEM "-General help ... ", MI_GENERALHELP
MENUITEM "-Using help ... ", MI_HELPFORHELP
MENUITEM "-Keys help ... ", MI_KEYSHELP
MENUITEM SEPARATOR
MENUITEM "-Product information ... ", MI_PRODINFO

HELPTABLE HELP_CLIENT
{

HELPITEM RES_CLIENT, SUBHELP_CLIENT, EXTHELP_CLIENT

*/

*I

HELPSUBTABLE SUBHELP_CLIENT
{

HELPSUBITEM MI_HELPINDEX, MI HELPINDEX
HELPSUBITEM MI_GENERALHELP, MI_GENERALHELP
HELPSUBITEM MI_HELPFORHELP, MI_HELPFORHELP
HELPSUBITEM MI_KEYSHELP, MI_KEYSHELP
HELPSUBITEM MI_PRODINFO, MI_PRODINFO

HELPl.H
#define RES_CLIENT
#define HELP_CLIENT
#define SUBHELP_CLIENT
#define EXTHELP_CLIENT
#define KEYSHELP_CLIENT
#define M_HELP
#define MI_HELPINDEX
#define MI_GENERALHELP
#define MI_HELPFORHELP
#define MI_KEYSHELP
#define MI_PRODINFO
#define HLP_MESSAGEBOX

BEL Pl.MAK
ICCOPTS=-C+ -Gm- Kb+ -Ss+
LINKOPTS=/MAP /A:16

HELPl.EXE:

HELPl
HELPl
HELPl
082386
HELPl
<<

LINK386 $(LINKOPTS) @<<

RC HELPl.RES HELPl.EXE

HELPl.OBJ:

ICC $(ICCOPTS) HELPl.C

256
257
258
259
260
320
321
322
323
324
325
326

HELPl.OBJ \
HELPl.RES \
HELPl.HLP

HELPl.C \
HELPl.H

HELPl.RES: HELPl.RC \
HELPl.H

RC -r HELPl.RC HELPl.RES

HELPl.HLP: HELPl.IPF
IPFC HELPl.IPF

Help Manager - 571

572 - The Art of OS/2 Warp Programming
HELPl.DEF
;---
; HELPl.DEF
;---
NAME HELPl WINDOWAPI

DESCRIPTION 'Help Example 1
Copyright 1995 by Larry Salomon.
All rights reserved. '

STACKSIZE 32768

HELPl.IPF
:userdoc.
:title.Help Manager Sample Help File
:hl res=259.Extended help
:p.Normally, you would write a longer panel here describing an overview of the
function of the active window. Diagrams, etc. are certainly welcome, since
this is usually called when the user has no idea of what is going on at the
moment.
:hl res=260.Keys help
:p.A list of the accelerator keys in use is appropriate here. Do not forget
the &odq.hidden&cdq. accelerators in dialog boxes and elsewhere such as
:hp2.enter:ehp2., :hp2.escape:ehp2., and :hp2.Fl:ehp2 ..
:hl res=321.Help for menuitem &odq.Help index ... &cdq.
:p.Selecting this menuitem will display a help index. Note that the system
has its own help index, while we can add our own entries using the &colon.il.
and &colon.i2. tags.
:hl res=322.Help for menuitem &odq.General help ... &cdq.
:p.Selecting this menuitem will display the general help panel.
:hl res=323.Help for menuitem &odq.Using help ... &cdq.
:p.Selecting this menuitem will display the system help panel on how to use
the Help Manager.
:hl res=324.Help for menuitem &odq.Keys help ... &cdq.
:p.Selecting this menuitem will display the active key list.
:hl res=325.Help for menuitem &odq.Product information ... &cdq.
:p.Selecting this menuitem will display a message box with a help button in
it, to demonstrate the use of a help hook to provide message box help.
:hl res=326.Message box help
:p.This application demonstrates the use of the Help Manager to provide online
help for an application. Help for both menuitems and message boxes is shown.
:euserdoc.

Restrictions
While the HELPSUBITEMs use manifest constants (those that have been #define'd), the help panels must
hard-code their resource IDs. This is a nasty problem that can be solved only by a preprocessor that can
accept C include files; a few good public domain ones are available for only the cost of connecting to
CompuServe or the Internet.

Using HELPTABLEs for Message Box Help
As we stated earlier, there are two methods for providing help for message boxes. The second method uses
HELPTABLEs defined in your .RC file to specify the appropriate help panels to display. This method has
advantages and disadvantages:

Advantages
• Hooks are "performance-eaters," so help-related activity will execute faster using HELPTABLEs

Help Manager - 573
• Using HELPTABLEs is less confusing which makes them easier to code

Disadvantages
• Each message box requires a HELPITEM in the HELPT ABLE. For large applications, your

HELPTABLE can quickly get unwieldy using HELPTABLEs.

The method is simple to implement and can be broken down into the following steps, which must be done
for every message box that your application displays:

1) Add a HELPITEM in the HELPT ABLE with the first parameter having the value of the identifier
specified as the fifth parameter to WinMessageBox. The second parameter of the HELPITEM
specifies a HELPSUBTABLE for the message box and the third specifies the resource id of the
"General help" panel for the message box.

2) Add a HELPSUBTABLE whose identifier is the same as that of the second parameter of the
HELPITEM created in step l.

3) Add one HELPSUBITEM in the HELPSUBTABLE created in step 2 for each button displayed in
the message box (specified using the MB_ constants). The first parameter of the HELPSUBITEM
is the MBID_ constant corresponding to the message box button, and the second parameter is-as
you would guess- the resource id of the help panel corresponding to the message box button.

That's all you need to do. Let me reiterate, however, that this must be done for every message box your
application displays.

HELP2.C

Gotcha!
If a HELPSUBTABLE corresponding to a message box is empty, nothing will happen
when the user presses Fl on that message box. No error message can be sent because,
as we stated earlier, the message box does not necessarily know to whom the message
should be sent.

#define INCL_WINHELP
#define INCL_WINHOOKS
#define INCL_WINSYS
#include <os2.h>
#include "help2 .h"
#define CLS_CLIENT
HWND hwndHelp;

"SampleClass"

MRESULT EXPENTRY clientWndProc(HWND hwndClient,ULONG ulMsg,MPARAM
mpParml,MPARAM mpParm2);

BOOL EXPENTRY helpHook(HAB habAnchor,SHORT sMode,USHORT usTopic,
USHORT usSubTopic,PRECTL prclPos);

INT main(VOID)
{

HAB
HMQ
UL ONG
HWND
HELPINIT
BOOL
QMSG

habAnchor;
hmqQueue;
ulFlags;
hwndFrame;
hiinit;
bLoop;
qmMsg;

574 -The Art of OS/2 Warp Programming

habAnchor = Wininitialize(O);
hmqQueue = WinCreateMsgQueue(habAnchor,

0);

WinRegisterClass(habAnchor,
CLS_CLIENT,
clientWndProc,
0,
0);

ulFlags = FCF_SIZEBORDERIFCF_TITLEBARjFCF_TASKLISTI
FCF_SHELLPOSITIONjFCF_SYSMENUIFCF_MENU;

hwndFrame = WinCreateStdWindow(HWND_DESKTOP,
WS_VISIBLE,
&ulFlags,
CLS_CLIENT,

"Help Manager Sample Application 2",

0,
NULLHANDLE,
Rh:l:i_CL.L~'l',

NULL);

hiinit.cb = sizeof(HELPINIT);
hiinit.ulReturnCode = O;
hiinit.pszTutorialName = NULL;
hiinit.phtHelpTable = (PHELPTABLE)MAKEULONG(HELP_CLIENT,

OxFFFF);
hiinit.hmodHelpTableModule = NULLHANDLE;
hiinit.hmodAccelActionBarModule NULLHANDLE;
hiinit.idAccelTable = O;
hiinit.idActionBar = O;
hiinit.pszHelpWindowTitle = "Help Manager Sample Help File";
hiinit.fShowPanelid = CMIC_HIDE_PANEL_ID;
hiinit.pszHelpLibraryName = "HELP2.HLP";

hwndHelp = WinCreateHelpinstance(habAnchor,
&hiinit);

if ((hwndHelp != NULLHANDLE) && (hiinit.ulReturnCode != 0))
{

WinDestroyHelpinstance(hwndHelpl;
hwndHelp = NULLHANDLE;

else
if ((hwndHelp != NULLHANDLE))
{

WinAssociateHelpinstance(hwndHelp,
hwndFrame l ;

}

bLoop WinGetMsg(habAnchor,
&qmMsg,
NULLHANDLE,
0,
0);

while (bLoop)
{

WinDispatchMsg(habAnchor,
&qmMsg);

bLoop = WinGetMsg(habAnchor,
&qmMsg,
NULLHANDLE,
0,
0);

/* endif

/* endwhile

*/

*/

if (hwndHelp != NULLHANDLE)
{

WinAssociateHelpinstance(NULLHANDLE,
hwndFrame);

WinDestroyHelpinstance(hwndHelp);
hwndHelp = NULLHANDLE;

WinDestroyWindow(hwndFrame);
WinDestroyMsgQueue(hmqQueue);
WinTerminate(habAnchor);
return ;

/* endif *I

MRESULT EXPENTRY clientWndProc(HWND hwndClient,ULONG ulMsg,MPARAM
mpParml,MPARAM mpParm2)

switch (ulMsg)
{

case WM_PAINT
{

HPS
RECTL

hpsPaint;
rclPaint;

hpsPaint WinBeginPaint(hwndClient,
NULLHANDLE,
&rclPaint);

WinFillRect(hpsPaint,
&rclPaint,
SYSCLR_WINDOW) ;

WinEndPaint(hpsPaint);

break;
case WM_COMMAND :

switch (SHORTlFROMMP(mpParml))
{

case MI_HELPINDEX :
WinSendMsg(hwndHelp,

HM_HELP_INDEX,
0,
0);

break;
case MI_GENERALHELP

WinSendMsg(hwndHelp,
HM_EXT_HELP,
0,
0);

break;
case MI_HELPFORHELP

WinSendMsg(hwndHelp,
HM_DISPLAY_HELP,
0,
0);

break;
case MI_KEYSHELP

WinSendMsg(hwndHelp,
HM_KEYS_HELP,
0,
0);

break;
case MI_PRODINFO

WinMessageBox(HWND_DESKTOP,
hwndClient,

"Copyright 1995 by Larry Salomon,Jr.",

"Help Sample",
HLP_MESSAGEBOX,
MB_OKIMB_HELPIMB_INFORMATION);

Help Manager - 575

576-The Art of OS/2 Warp Programming
break;

default
return WinDefWindowProc(hwndClient,

ulMsg,
mpParml,
mpParm2);

/* endswitch
break;

case HM_QUERY_KEYS_HELP
return MRFROMSHORT(KEYSHELP_CLIENT);

default
return WinDefWindowProc(hwndClient,

ulMsg,
mpParml,
mpParm2);

return MRFROMSHORT(FALSE);

HELP2.RC
#include <os2.h>
#include "help2.h"

MENU RES_CLIENT
{

SUBMENU "-Help", M_HELP
{

/* endswitch

MENUITEM "Help -index ... "' MI_HELPINDEX
MENUITEM "-General help ... ", MI_GENERALHELP
MENUITEM "-Using help ... ", MI_HELPFORHELP
MENUITEM "-Keys help ... ", MI_KEYSHELP
MENUITEM SEPARATOR
MENUITEM "-Product information ... ", MI_PRODINFO

HELPTABLE HELP_CLIENT
{

HELPITEM RES_CLIENT, SUBHELP_CLIENT, EXTHELP_CLIENT

*/

*I

HELPITEM HLP_MESSAGEBOX, SUBHELP_MESSAGEBOX, EXTHELP_MESSAGEBOX

HELPSUBTABLE SUBHELP_CLIENT
{

HELPSUBITEM MI_HELPINDEX, MI HELPINDEX
HELPSUBITEM MI_GENERALHELP, MI_GENERALHELP
HELPSUBITEM MI_HELPFORHELP, MI_HELPFORHELP
HELPSUBITEM MI_KEYSHELP, MI_KEYSHELP
HELPSUBITEM MI_PRODINFO, MI_PRODINFO

HELPSUBTABLE SUBHELP_MESSAGEBOX
{

HELPSUBITEM MBID_OK, HLPPNL_OK
HELPSUBITEM MBID_HELP, HLPPNL_HELP

HELP2.H
#define RES_CLIENT
#define HELP_CLIENT
#define SUBHELP_CLIENT

256
257
258

#define EXTHELP_CLIENT 259
#define KEYSHELP_CLIENT 260
#define SUBHELP_MESSAGEBOX 261
#define EXTHELP_MESSAGEBOX 262
#define M_HELP 320
#define MI_HELPINDEX 321
#define MI_GENERALHELP 322
#define MI_HELPFORHELP 323
#define MI_KEYSHELP 324
#define MI_PRODINFO 325
#define HLP_MESSAGEBOX 326
#define HLPPNL_OK 327
#define HLPPNL_HELP 328

HELP2.MAK
ICCOPTS=-C+ -Gm- Kb+ -Ss+
LINKOPTS=/MAP /A:l6

HELP2.EXE:

HELP2
HELP2
HELP2
OS2386
HELP2
<<

LINK386 $(LINKOPTS) @<<

RC HELP2.RES HELP2.EXE

HELP2.0BJ:

ICC $(ICCOPTS) HELP2.C

HELP2.0BJ \
HELP2.RES \
HELP2.HLP

HELP2.C \
HELP2.H

HELP2.RES: HELP2.RC \
HELP2.H

RC -r HELP2.RC HELP2.RES

HELP2.HLP: HELP2.IPF
IPFC HELP2.IPF

HELP2.DEF
·---'
; HELP2.DEF
;---
NAME HELP2 WINDOWAPI

DESCRIPTION 'Help Example 2
Copyright 1995 by Larry Salomon.
All rights reserved.'

STACKSIZE 32768

HELP2.IPF
:userdoc.
:title.Help Manager Sample Help File
:hl res=259.Extended help

Help Manager - 577

:p.Normally, you would write a longer panel here describing an overview of the
function of the active window. Diagrams, etc. are certainly welcome, since
this is usually called when the user has no idea of what is going on at the

578 - The Art of OS/2 Warp Programming
moment.
:hl res=260.Keys help
:p.A list of the accelerator keys in use is appropriate here. Do not forget
the &odq.hidden&cdq. accelerators in dialog boxes and elsewhere such as
:hp2.enter:ehp2., :hp2.escape:ehp2., and :hp2.Fl:ehp2 ..
:hl res=262.Help for message box
:p.This application demonstrates the use of the Help Manager to provide online
help for an application. Help for both menuitems and message boxes is shown.
:hl res=321.Help for menuitem &odq.Help index ... &cdq.
:p.Selecting this menuitem will display a help index. Note that the system
has its own help index, while we can add our own entries using the &colon.il.
and &colon.i2. tags.
:hl res=322.Help for menuitem &odq.General help ... &cdq.
:p.Selecting this menuitem will display the general help panel.
:hl res=323.Help for menuitem &odq.Using help ... &cdq.
:p.Selecting this menuitem will display the system help panel on how to use
the Help Manager.
:hl res=324.Help for menuitem &odq.Keys help ... &cdq.
:p.Selecting this menuitem will display the active key list.
:hl res=325.Help for menuitem &odq.Product information ... &cdq.
:p.Selecting this menuitem will display a message box with a help button in
it, to demonstrate the use of a help hook to provide message box help.
:hi res=32'/.Help for message box &odq.Ok&cdq. button
:p.Selecting this dismisses the message box.
:hl res=328.Help for message box &odq.Help&cdq. button
:p.Selecting this displays the appropriate help.
:euserdoc.

Chapter 30

Multithreading in Presentation
Manager Applications

Introduction
Because of what is often perceived as a design flaw in Presentation Manager, tasks that require more time
than is suggested by IBM's "well-behaved" application guideline should be performed in a thread separate
from that which contains the message dispatch loop (denoted by the calls to WinGetMsg and
WinDispatchMsg). However, the issue of communication between the user interface and additional
threads created by the user interface arises because there is no recommended design to follow. This
chapter attempts to design an architecture that is easy to implement yet expandable and requires no global
variables (always a good thing).

Before we can begin to explore this topic, we need to know exactly when should it be used-what exactly
is a "well-behaved" application? When Presentation Manager was introduced in OS/2 1.1, IBM defined
this to be an application that does not take longer than one-tenth of a second to process each message and
return to the message loop. Multithreading lets us avoid this is by creating separate threads for the various
tasks that will take (significantly) longer to complete.

Throughout the years, every conceivable technique has been tried to accomplish mulithreading in a smooth
fashion. The solution presented herein seems to be good for most actions requiring the user to initiate a
task that requires the additional thread. It should be stressed, however, that mileage may vary and that this
may not work as well for programmers and their design "methodologies." This chapter should be used as a
starting point and not as the final result.

For the curious, the reason for this one-tenth of a second rule involves changing the input focus from one
window to another. Developers at IBM decided that, for backward compatibility, type-ahead should be
included as a feature in Presentation Manager. Because of the resulting design, all input from the keyboard
and mouse first goes into a system input queue; it gets moved to the queue of the window with the input
focus whenever WinGetMsg is called.

Whenever WinDispatchMsg routes a message to a window procedure, the function does not return until the
window procedure finishes processing the message; this means that the WinGetMsg function is not called,
which ultimately results in the input not being rerouted from the system queue to the application queue. To
a user, if PM appears "hung"-if he or she tries to change the input focus by clicking with the mouse on
another window, nothing will happen because WinGetMsg is not being called regularly.

579

580 - The Art of OS/2 Warp Programming
Fortunately, PM has a "watchdog" thread that monitors the rate at which input messages are removed from
the system queue. If none is removed before a certain time has elapsed, the infamous "the application is
not responding to system messages" window is displayed, allowing the user to terminate the offending
application. OS/2 Warp has a new option in the System notebook of the System Setup folder to disable type
ahead; while this may be a workaround (its effectiveness has yet to be fully tested), this chapter still is
relevant because this setting may or may not be in effect.

Types of Threads
With the brouhaha about client/server programming everywhere we look, it could appear that this is the
only multithreading application. However, a quick reality check reveals that many common user-initiated
operations can be performed in a separate thread. Examples of this include file loading and saving,
printing, and even window initialization (if it takes awhile to finish). What makes these tasks different
from others is that, once the specifics have been collected from the user (if necessary), the processing can
be performed without further user intervention. Threads that perform the tasks are dubbed one-shot
threads because they are created as needed and are destroyed once they are no longer needed. We will
concentrate on these, since they are one of the more common uses of multithreading.

Consider the following list of events.

1. The user selects "Open ... " from the menu.
2. The application is notified of this selection.
3. The application prompts the user for a filename.
4. The application reads the selected file.
5. The user is then allowed to perform operations on the file's data.

As can be seen, these one-shot threads have a specific purpose and usually are accompanied by user input
(e.g., filename to load); thus, communication quickly becomes an issue to be considered. The easy way out
is to use global variables to hold data, but this is inadequate because of synchronization issues and more
important, because the number of threads that perform a specific task must be limited to the number of
global variables defined to hold the data resulting from the operations. Thus only two choices are left:
local (automatic) variables and dynamic allocation. Because we cannot exceed the one-tenth second in our
window procedure we will quickly discard the option of using local variables.

Assuming dynamic allocation is the solution to use, how is data communicated to the thread, and how does
the thread return the results to the user interface?

Designing the Architecture
Since the quality of the solution to any nontrivial problem is dependent on the quality of the design, we
will take a look at this first. There are three defined areas of interest: data communications, entry and
exitpoints, and user feedback.

Data communications involves passing parameters to the thread and receiving results from the thread.
Entry and exit points provide a consistent interface to the programmer, to ease the coding necessary to start
a thread (including data communications) and to allow the easy addition of new one-shot thread types.
User feedback is less an issue of the threading but more an issue of communicating to the user that
processing is being performed in the background.

Multithreading in Presentation Manager Applications - 581

Data Communications
Although data communications is more likely to be associated with interprocess communication, the latter
is unnecessarily complex, because the two ends of the communcations line are not always in the same
process. Because threads always belong to the same process, we can simplify things considerably by
(carefully) using pointers instead of shared memory, queues, or pipes to communicate our intentions. Even
though most compilers provide a runtime function to start a thread and set up the run-time environment so
that the new thread also can call the C runtime library, they are all constrained by the DosCreateThread
function to passing a single argument to the new thread; this limits us to one pointer for all data, which
immediately forces us to use structures to pass things back and forth.

Experience shows that most threads require a common set of information, encapsulated in a THREADINFO
structure.

typedef struct _THREADINFO
ULONG ulSzStruct;
HWND hwndOwner;
BOOL bKillThread;
HAB habThread;
BOOL bThreadDead;
BOOL bResult;

THREADINFO, *PTHREADINFO;

ulSzStruct specifies the size of the structure. hwndOwner specifies the handle of the window that created
the thread. bKillThread is set to TRUE by the owner when the request is to be aborted. habThread specifies
the anchor block handle of the thread. (Readers should keep reading to see why this is necessary.)
bThreadDead is set to TRUE by the thread when it is dead. (Again, readers should keep reading to see
why this is necessary.) bResult is a blanket indicator of the success or failure of the task.

Since we said that this information is common to most threads and not specific to a particular task, it can be
deduced that the task-specific data is encapsulated in another structure, with a THREAD/NFO structure as
one of the fields. In fact, the THREADINFO structure should always be the first field, so that any task
independent code can safely typecast any task-specific structure pointer to access the common fields.

typedef struct _OPENTHREADINFO {
THREADINFO tiConunon;
CHAR achFilename[CCHMAXPATH];
PFILEDATA pfdData;

OPENTHREADINFO, *POPENTHREADINFO;

Entry and Exit Points
As explained earlier, one-shot threads are created as the result of a user action, usually from a menu item.
Because the context of an action (Open file, for example) is dependent on the window that was active when
the action was requested, it makes sense to say that the one-shot thread belongs to the active window.
Since one window class might support many different thread types, a common entry and exit point for all
asynchronous tasks can save a lot of typing. Windows primarily communicate using messages, so we will
introduce two user messages to be used as these entry and exit points.

582-The Art ofOS/2 Warp Programming
MYM_STARTTHREAD This message is sent by a window to create a thread to perform a user-initiated
request.

Parameter 1:
Parameter 2:
Reply:

ULONG ulType
PVOID pvData
BOOL bSuccess

ID of thread type to be created
Pointer to task-specific data
Successful? TRUE: FALSE

MYM_ENDTHREAD This message is sent by a thread to indicate that processing has completed.

Parameter 1:

Parameter 2:
Reply:

ULONG ulType

PVOID pvData
ULONG u!Reserved

ID of thread type sending the
message
Pointer to task-specific data
Reserved, 0

pvData in both messages points to the task-specific data discussed in the last section. Because there is
more to the data than the common information, \Ve need to specify t...l1e type of the t.'1read being created; the
type identifiers have a one-to-one correspondence to the task-specific structures that also are created.
u!Type allows us to switch on this value to access the task-specific portion of each thread type. We will see
later that each thread type identifier should occupy a unique bit in the 32 available.

MYM_STARTTHREAD first initializes the common portion of the structure, allocates enough memory
from the heap (based on the value of ulType) to hold a copy of the structure, and copies pvData to this new
memory block. After this, the thread is created and passed the pointer to the new memory block as the
parameter. Any task-specific fields should be initialized prior to sending this message.

Not all of the fields of the THREADINFO structure can be initialized by the MYM_STARTTHREAD
message. In particular, the habThread, bThreadDead, and bResult fields can be initialized only by the
thread.

#define MYM_STARTTHREAD
#define MYM_ENDTHREAD

#define ASYNC_OPEN

(WM_USER)
(WM_USER+l)

OxOOOOOOOlL

typedef VOID (_Optlink PFNREQ) (PVOID);

case MYM_STARTTHREAD:
{

ULONG ulBit;
PTHREADINFO ptiinput;
PFNREQ pfnThread;
PVOID pvParm;

ulBit=LONGFROMMR(mpParml);
ptiinput=(PTHREADINFO)PVOIDFROMMP(mpParm2);

ptiinput->hwndOwner=hwndWnd;
ptiinput->bKillThread=FALSE;

switch (ulBit) {
case ASYNC_OPEN:

{

Multithreading in Presentation Manager Applications - 583
POPENTHREADINFO potiinfo;

ptiinput->ulSzStruct=sizeof(OPENTHREADINFO);

potiinfo=(POPENTHREADINFO)malloc(
sizeof(OPENTHREADINFO));

if (potiinfo==NULL) {
WinMessageBox(HWND_DESKTOP,

hwndWnd,
"There is not enough memory.",
11 Error 11 ,

0'
MB_OKIMB_ICONEXCLAMATIONI

MB_MOVEABLE) ;
return MRFROMSHORT(FALSE);

/* endif */

memcpy(potiinfo,
ptiinput,
sizeof(OPENTHREADINFO));

pfnThread=(PFNREQ)openThread;
pvParm=(PVOID)potiinfo;

break;
default:

WinMessageBox(HWND_DESKTOP,
hwndWnd,
"There is an internal error.",
11 Error",
0,
MB_OKIMB_ICONEXCLAMATIONI

MB_MOVEABLE) ;
return MRFROMSHORT(FALSE);

/* endswitch */

if (_beginthread(pfnThread,NULL,Ox4000,pvParm)==-1)
free (pvParm) ;
WinMessageBox(HWND_DESKTOP,

hwndWnd,
"The thread could not be created.",
11 Error 11 ,

0,
MB_OKiMB_ICONEXCLAMATIONi

MB_MOVEABLE);
return MRFROMSHORT(FALSE);

/* endif */

break;

Note the need for the PFNREQ type. If we do not use this, then we will not be able to use the pfnThread
variable; more important, we will receive compiler warnings on the call to _beginthread.

MYM_ENDTHREAD waits for the thread to die, using the bThreadDead field of the THREADINFO
structure as its cue. Afterward, it uses the value of ulType to check the return information (or it could use
the bResult field of the THREADINFO structure for a quick-check). Finally, it performs any processing
necessary to allow the application to continue and then frees the memory allocated for pvData in
MYM_STARTIHREAD.

#define MYM_STARTTHREAD
#define MYM_ENDTHREAD

(WM_USER)
(WM_USER+l)

584 - The Art of OS/2 Warp Programming
#define ASYNC_OPEN

case MYM_ENDTHREAD:
{

ULONG ulBit;
PTHREADINFO ptiinput;

OxOOOOOOOlL

ulBit=LONGFROMMR(mpParml);
ptiinput=(PTHREADINFO)PVOIDFROMMP(mpParm2);

while (!ptiinput->bThreadDead)
DosSleep(l);

} /* endwhile */

switch (ulBitl {
case ASYNC_OPEN:

{
POPENTHREADINFO potiinfo;

potiinfo=(POPENTHREADINFO)ptiinput;
free(potiinfo);

break;
default:

return MRFROMSHORT(FALSE);
} /* endswitch */

break;

Programmers who think about it for a second will undoubtedly question the use of DosSleep in the
preceding code. Isn't multithreading used in PM programs so that the message loop is always returned to
in one-tenth of a second? Yes, it is; however, as we will see in the thread termination processing, this
message is not sent until just before the thread dies, so the while loop will be executed a few times at most.
Thus, the DosSleep call and the entire loop is rather harmless in this situation.

What Have We So Far?
Let's take a look at an example that illustrates the concepts described up to this point.

THRDl.C
#define INCL_DOSPROCESS
#define INCL_WININPUT
#define INCL_WINMENUS
#define INCL_WINPOINTERS
#define INCL_WINSYS
#define INCL_WINWINDOWMGR
#include <os2.h>
#include <stdlib.h>
#include <string.h>
#include "thrdlrc.h"

#define CLS_MAIN

#define ASYNC_TEST

"ThreadlClass"

OxOOOOOOOlL

typedef VOID(* _Optlink PFNREQ) (PVOID);

#define MYM_BASE
#define MYM_STARTTHREAD
#define MYM_ENDTHREAD

(WM_ USER)
(MYM_BASE)
(MYM_BASE+l)

Multithreading in Presentation Manager Applications - 585

typedef struct _THREADINFO {
11---
11 Initialized by the main thread
11---
ULONG ulSzStruct;
HWND hwndOwner;
BOOL bKillThread;
11---
11 Initialized by the secondary thread
11---
HAB habThread;
BOOL bThreadDead;
BOOL bResult;

THREADINFO, *PTHREADINFO;

typedef struct _TESTTHREADINFO
THREADINFO tiinfo;

} TESTTHREADINFO, *PTESTTHREADINFO;

typedef struct _INSTDATA
ULONG ulSzStruct;
HWND hwndMenu;

INSTDATA, *PINSTDATA;

VOID _Optlink testThread(PTESTTHREADINFO pttiinfo)
11--
11 This is a do nothing thread that beeps, sleeps,
II and beeps again
11--
{

HAE habAnchor;
HMQ hmqQueue;

habAnchor=Wininitialize(O);
hmqQueue=WinCreateMsgQueue(habAnchor,0);

pttiinfo->tiinfo.habThread=habAnchor;
pttiinfo->tiinfo.bThreadDead=FALSE;
pttiinfo->tiinfo.bResult=FALSE;

WinAlarm(HWND_DESKTOP,WA_NOTE);
DosSleep(2000);
WinAlarm(HWND_DESKTOP,WA_NOTE);

WinPostMsg(pttiinfo->tiinfo.hwndOwner,
MYM_ENDTHREAD,
MPFROMLONG(ASYNC_TEST),
MPFROMP(pttiinfo));

WinDestroyMsgQueue(hmqQueue);
WinTerminate(habAnchor);

DosEnterCritSec();
pttiinfo->tiinfo.bThreadDead=TRUE;
return;

MRESULT EXPENTRY wndProc(HWND hwndWnd,
ULONG ulMsg,
MPARAM mpParml,
MPARAM mpParm2)

PINSTDATA pidData;

pidData=(PINSTDATA)WinQueryWindowPtr(hwndWnd,0);

586 - The Art of OS/2 Warp Programming
switch (ulMsg) {
case WM_CREATE:

pidData=(PINSTDATA)malloc(sizeof(INSTDATA));
if (pidData==NULL) {

WinAlarm(HWND_DESKTOP,WA_ERROR);
return MRFROMSHORT(TRUE);

} /* endif */

WinSetWindowPtr(hwndWnd,0, (PVOID)pidData);

pidData->ulSzStruct=sizeof(INSTDATA);
pidData->hwndMenu=WinLoadMenu(HWND_OBJECT,

NULLHANDLE,
RES_CLIENT) ;

break;
case WM_DESTROY:

WinDestroyWindow(pidData->hwndMenu);
free (pidData) ;
break;

case WM_CONTEXTMENU:
{

POINTL ptlMouse;

WinQueryPointerPos(HWND_DESKTOP,&ptlMouse);
WinPopupMenu(HWND_DESKTOP,

break;

hwndWnd,
pidData->hwndMenu,
ptlMouse.x,
ptlMouse.y,
0,
PU_HCONSTRAIN I PU_VCONSTRAIN

PU_NONE I PU_KEYBOARD
PU_MOUSEBUTTONl I
PU_MOUSEBUTTON2);

case WM_COMMAND:
switch (SHORTlFROMMP(mpParml))
case MI_THREAD:

{
TESTTHREADINFO ttiTest;

!!--
//Request a thread
1/--
WinSendMsg(hwndWnd,

MYM_STARTTHREAD,
MPFROMLONG(ASYNC_TEST),
MPFROMP(&ttiTest));

break;
case MI_EXIT:

WinPostMsg(hwndWnd,WM_CLOSE,0,0);
break;

default:
return WinDefWindowProc(hwndWnd,

ulMsg,
mpParml,
mpParm2);

} /* endswitch */
break;

case WM_PAINT:
{

HPS hpsWnd;
RECTL rclPaint;

Multithreading in Presentation Manager Applications - 587
hpsWnd=WinBeginPaint(hwndWnd,

NULLHANDLE,
&rclPaint);

WinFillRect(hpsWnd,&rclPaint,SYSCLR_WINDOW);
WinEndPaint(hpsWnd);

break;
case MYM_STARTTHREAD:

{
ULONG ulBit;
PTHREADINFO ptiinput;
PFNREQ pfnThread;
PVOID pvParm;

ulBit=LONGFROMMR(mpParml);
ptiinput=(PTHREADINFO)PVOIDFROMMP(mpParm2);

ptiinput->hwndOwner=hwndWnd;
ptiinput->bKillThread=FALSE;

switch (ulBit) {
case ASYNC_TEST:

{
PTESTTHREADINFO pttiinfo;

ptiinput->ulSzStruct=
sizeof(TESTTHREADINFO);

pt ti Info=
(PTESTTHREADINFO)malloc(

sizeof(TESTTHREADINFO));
if (pttiinfo==NULL) {

WinMessageBox(HWND_DESKTOP,
hwndWnd,
"There is not "

"enough memory. " ,
11 Error 11 ,

0,
MB_OK I

MB_ICONEXCLAMATION!
MB_MOVEABLE) ;

return MRFROMSHORT(FALSE);
/* endif */

memcpy(pttiinfo,
ptiinput,
sizeof(TESTTHREADINFO));

pfnThread=(PFNREQ)testThread;
pvParm=(PVOID)pttiinfo;

break;
default:

WinMessageBox(HWND_DESKTOP,
hwndWnd,
"There is an internal "

11 error •It I

"Error",
0,
MB_OK I

MB_ICONEXCLAMATION
MB_MOVEABLE);

return MRFROMSHORT(FALSE);
/* endswitch */

588 - The Art of OS/2 Warp Programming
if (_beginthread(pfnThread,

NULL,
Ox4000,
pvParm) ==-1)

free (pvParm);
WinMessageBox(HWND_DESKTOP,

hwndWnd,
"The thread could not be "

"created.",
11 Error 11 ,

0,
MB_OK I

MB_ICONEXCLAMATION
MB_MOVEABLE) ;

return MRFROMSHORT(FALSE);
/* endif */

break;
case MYM__ENDTHREAD:

{
ULONG ulBit;
PTHREADINFO ptilnput;

ulBit=LONGFROMMR(mpParml);
ptiinput=(PTHREADINFO)PVOIDFROMMP(mpParm2);

//---
//Wait for the thread to finish dying.
II There is a bug in DosSleep() such that if
II O is the argument, nothing happens. Call
II it with 1 instead to achieve the same
II result.
//---
while (!ptiinput->bThreadDead) {

DosSleep(l);
} /* endwhile */

switch (ulBit) {
case ASYNC_TEST:

{
PTESTTHREADINFO pttilnfo;

pttilnfo=(PTESTTHREADINFO)ptilnput;
free (pttilnfo);

break;
default:

return MRFROMSHORT(FALSE);
} /* endswitch */

break;
default:

return WinDefWindowProc(hwndWnd,
ulMsg,
mpParml,
mpParm2);

} /* endswitch */

return MRFROMSHORT(FALSE);

INT main(USHORT usArgs,PCHAR apchArgs[])
{

HAB habAnchor;
HMQ hmqQueue;
ULONG ulCreate;
HWND hwndFrame;

HWND hwndClient;
BOOL bLoop;
QMSG qmMsg;

Multithreading in Presentation Manager Applications - 589

habAnchor=Wininitialize(O);
hmqQueue=WinCreateMsgQueue(habAnchor,O);

WinRegisterClass(habAnchor,
CLS_MAIN,
wndProc,
CS_SIZEREDRAW,
sizeof (PVOID));

ulCreate=FCF_SYSMENU I FCF_TITLEBAR I FCF_MINMAX
FCF_SIZEBORDER I FCF_TASKLIST I
FCF_SHELLPOSITION;

if (WinQuerySysValue(HWND_DESKTOP,SV_ANIMATION))
ulCreatel=WS_ANIMATE;

} /* endif */

hwndFrame=WinCreateStdWindow(HWND,

if (hwndFrame!=NULLHANDLE) {

WS_VISIBLE,
&ulCreate,
CLS_MAIN,
"Asynchronous Call",
OL,
NULLHANDLE,
RES_CLIENT,
&hwndClient);

bLoop=WinGetMsg(habAnchor,
&qmMsg,
NULLHANDLE,
0,
0);

while (bLoop) {
WinDispatchMsg(habAnchor,&qmMsg);
bLoop=WinGetMsg(habAnchor,

&qmMsg,
NULLHANDLE,
0,
0);

} /* endwhile */

WinDestroyWindow(hwndFrame);
/* endif */

WinDestroyMsgQueue(hmqQueue);
WinTerminate(habAnchor);
return O;

THRDl.RC
#include <os2.h>
#include "thrdlrc.h"

MENU RES_CLIENT
{

MENUITEM "-Start thread", MI_THREAD
MENUITEM SEPARATOR
MENUITEM "E-xit", MI_EXIT

590 - The Art of OS/2 Warp Programming
THRDlRC.H
#define RES_CLIENT
#define MI_THREAD
#define MI_EXIT

256
257
258

THRDl.MAK
APP=THRDl

$(APP) .EXE: $(APP) .OBJ \
$(APP) .RES

LINK386 /A:l6 $(APP),$(APP),NUL,OS2386,$(APP);
RC $(APP) .RES $(APP) .EXE

$(APP) .RES: $(APP).RC \
$(APP)RC.H

RC -r $(APP) .RC $(APP).RES

$(APP) .OBJ: $(APP) .C \
$(APP)RC.H

ICC -c+ -Gm+ -Kb+ -Ss+ $(APP).C

THRDl.DEF
NAME THRDl WINDOWAPI

DESCRIPTION 'PM Threads Example 1
Copyright (c) 1993 by Larry Salomon, Jr.
All rights reserved.'

STACKSIZE Ox4000

Readers should recognize and understand much of the program. Of particular interest is the processing for
the MI_ THREAD menu item.

case MI_THREAD:
{

TESTTHREADINFO ttiTest;

//-------------------------------------
//Request a thread
1/-------------------------------------
WinSendMsg(hwndWnd,

MYM_STARTTHREAD,
MPFROMLONG(ASYNC_TEST),
MPFROMP(&ttiTest));

break;

That is all there is to it. Of course, this sample is simplified somewhat. If, as will likely be the case, there
is task-specific data (there is none in the THRDl sample), you should be initialized prior to sending the
MYM_STARTTHREAD message.

The thread procedure contains some elements that will likely show up in thread procedures. First is the
thread initialization, including initializing the remainder of the THREADINFO structure. Also is the
thread termination, including signaling the owner thread that it is finished.

habAnchor=Wininitialize(O);
hmqQueue=WinCreateMsgQueue(habAnchor,0);

pttiinfo->tiinfo.habThread=habAnchor;

Multithreading in Presentation Manager Applications - 591
pttiinfo->tiinfo.bThreadDead=FALSE;
pttiinfo->tiinfo.bResult=FALSE;

WinPostMsg(pttiinfo->tiinfo.hwndOwner,
MYM_ENDTHREAD,
MPFROMLONG(ASYNC_TEST),
MPFROMP(pttiinfo));

WinDestroyMsgQueue(hrnqQueue);
WinTerminate(habAnchor);

DosEnterCritSec();
pttiinfo->tiinfo.bThreadDead=TRUE;
return;

As with the call to DosSleep in MYM_ENDTHREAD given earlier, the critical section at the end of the
thread is harmless because it exists only briefly.

What would happen if the WinPostMsg was changed to WinSendMsg? Looking at the code for
MYM_ENDTHREAD, the window procedure would enter a loop waiting for the thread to die, but the
thread is in the middle of a WinSendMsg call; a deadlock condition occurs, and killing the application
requires precision timing and a little bit of luck.

Gotcha!
If a thread enters a critical section and then dies, the system automatically marks the
critical section as having been exited.

A typical question that is asked is why an anchor block and a message queue are needed for such a simple
thread. The answer is that they aren't. However, rather than try to determine if a thread needs a message
queue or not, I decided long ago that my time was better spent by creating it anyway and continuing in my
development.

User Feedback
Earlier, we glossed over the issue of feedback to the user. How can we indicate that processing is being
performed in the background? While the answer to this and other similar questions is "it depends on the
application," here are some areas that need to be considered.

Mouse pointers are an immediate indicator that "something" is happening, and the system pointers
SPTR_ WAIT and SPTR_ARROW (whose handle is obtained via the WinQuerySysPointer function) come
in handy. Where is the pointer changed? The answer appears to be in the processing for
WM_MOUSEMOVE and WM_CONTROLPOINTER, but first we need to be able to tell if something is
going on.

We need to introduce the only data item used for the duration of the window, which goes into the instance
data. In Chapter 9, we explained how window words are used to hold information specific to a window
instance (versus a window class). Storing a pointer to a dynamically allocated structure so that we can
"attach" a lot of data to a window was also discussed. If, in the window words, we add a new field-

592 - The Art of OS/2 Warp Programming
ulAsync, we can store either the number of threads owned by the window or (using the ASYNC_ constants)
the types of threads owned by the window that are active.

This makes the WM_MOUSEMOVE and WM_CONTROLPOINTER messages trivial; we simply check
the value of ulAsync. If it is nonzero, we set the pointer to SPTR_ WAIT; otherwise we leave it alone.

Menu items are another issue. If the user requests that a file be opened, we (usually) do not want to allow
them to try an print the file until we have finished reading the file's contents. This can be addressed again
using ulAsync and the WM_INITMENU message; this message is sent whenever a menu or submenu is
about to be displayed, allowing the application to disable, check, or perform any other operation on the
(sub)menu before the user sees it. We could disable the menu items that are not valid according to the
threads that are active.

User Feedback Example
Let us now take a look at a revised version of THRDI that includes feedback to the user. It changes the
mouse pointer and disables the "Start thread" rnenu item if ihe thread is aiready active.

THRD2.C
#define INCL_DOSPROCESS
#define INCL_WINFRAMEMGR
#define INCL_WININPUT
#define INCL_WINMENUS
#define INCL_WINPOINTERS
#define INCL_WINSYS
#define INCL WINWINDOWMGR
#include <os2.h>
#include <stdlib.h>
#include <string.h>
#include "thrd2rc.h"

#define CLS_MAIN

#define ASYNC_TEST

"Thread2Class"

OxOOOOOOOlL

typedef VOID (* _Optlink PFNREQ) (PVOID);

#define MYM_BASE
#define MYM_STARTTHREAD
#define MYM_ENDTHREAD

typedef struct THREADINFO {

(WM_USER)
(MYM_BASE)
(MYM_BASE+l)

//---
// Initialized by the main thread
1/---
ULONG ulSzStruct;
HWND hwndOwner;
BOOL bKillThread;
//---
// Initialized by the secondary thread
11---
HAB habThread;
BOOL bThreadDead;
BOOL bResult;

THREADINFO, *PTHREADINFO;

typedef struct _TESTTHREADINFO
THREADINFO tiinfo;

} TESTTHREADINFO, *PTESTTHREADINFO;

Multithreading in Presentation Manager Applications - 593
typedef struct INSTDATA

ULONG ulSzStruct;
HWND hwndMenu;
ULONG ulAsync;

INSTDATA, *PINSTDATA;

VOID _Optlink testThread(PTESTTHREADINFO pttiinfo)
11--
11 This is a do nothing thread that beeps, sleeps,
II and beeps again
11--
{

HAB habAnchor;
HMQ hrnqQueue;

habAnchor=Wininitialize(O);
hrnqQueue=WinCreateMsgQueue(habAnchor,0);

pttiinfo->tiinfo.habThread=habAnchor;
pttiinfo->tiinfo.bThreadDead=FALSE;
pttiinfo->tiinfo.bResult=FALSE;

WinAlarm(HWND_DESKTOP,WA_NOTE);
DosSleep(2000);
WinAlarm(HWND_DESKTOP,WA_NOTE);

WinPostMsg(pttiinfo->tiinfo.hwndOwner,
MYM_ENDTHREAD,
MPFROMLONG(ASYNC_TEST),
MPFROMP(pttiinfo));

WinDestroyMsgQueue(hrnqQueue);
WinTerminate(habAnchor);

DosEnterCritSec();
pttiinfo->tiinfo.bThreadDead=TRUE;
return;

MRESULT EXPENTRY wndProc(HWND hwndWnd,
ULONG ulMsg,
MPARAM mpParml,
MPARAM mpParm2)

PINSTDATA pidData;

pidData=(PINSTDATA)WinQueryWindowPtr(hwndWnd,0);

switch (ulMsg) {
case WM_CREATE:

pidData=(PINSTDATA)malloc(sizeof(INSTDATA));
if (pidData==NULL) {

WinAlarm(HWND_DESKTOP,WA_ERROR);
return MRFROMSHORT(TRUE);

} I* endif *I

WinSetWindowPtr(hwndWnd,0, (PVOID)pidData);

pidData->ulSzStruct=sizeof(INSTDATA);
pidData->hwndMenu=WinLoadMenu(HWND_OBJECT,

NULLHANDLE,
RES_CLIENT);

pidData->ulAsync=O;
break;

case WM_DESTROY:

594 - The Art of OS/2 Warp Programming
WinDestroyWindow(pidData->hwndMenu);
free(pidData);
break;

case WM_CONTEXTMENU:
{

POINTL ptlMouse;

WinQueryPointerPos(HWND_DESKTOP,&ptlMouse);
WinPopupMenu(HWND_DESKTOP,

break;
case WM_COMMAND:

hwndWnd,
pidData->hwndMenu,
ptlMouse.x,
ptlMouse.y,
0,
PU_HCONSTRAIN I PU_VCONSTRAIN

PU_NONE I PU_KEYBOARD
PU_MOUSEBUTTONl I
PU_MOUSEBUTTON2);

switch (SHORTlFROMMP(mpParml))
case MI_THREAD:

{
TESTTHREADINFO ttiTest;

//--
//Request a thread
1/--
WinSendMsg(hwndWnd,

MYM_STARTTHREAD,
MPFROMLONG(ASYNC_TEST),
MPFROMP(&ttiTest));

break;
case MI_EXIT:

WinPostMsg(hwndWnd,WM_CLOSE,0,0);
break;

default:
return WinDefWindowProc(hwndWnd,

ulMsg,
mpParml,
mpParm2);

l /* endswitch */
break;

case WM_PAINT:
{

HPS hpsWnd;
RECTL rclPaint;

hpsWnd=WinBeginPaint(hwndWnd,
NULLHANDLE,
&rclPaint);

WinFillRect(hpsWnd,&rclPaint,SYSCLR_WINDOW);
WinEndPaint(hpsWnd);

break;
case WM_INITMENU:

switch (SHORTlFROMMP(mpParml))
case FID_MENU:

if ((pidData->ulAsync & ASYNC_TEST) !=0) {
WinEnableMenuitem(HWNDFROMMP(mpParm2),

MI_THREAD,
FALSE);

else {

Multithreading in Presentation Manager Applications - 595
WinEnableMenuitem(HWNDFROMMP(mpParm2},

MI_THREAD,

} /* endif */
break;

default:

TRUE};

return WinDefWindowProc(hwndWnd,
ulMsg,
mpParml,
mpParm2);

} /* endswitch */
break;

case WM_MOUSEMOVE:
{

HPOINTER hpPointer;

if (pidData->ulAsync>O)
hpPointer=

WinQuerySysPointer(HWND_DESKTOP,
SPTR_WAIT,
FALSE);

WinSetPointer(HWND_DESKTOP,hpPointer};
return MRFROMSHORT(TRUE);

else {
return WinDefWindowProc(hwndWnd,

ulMsg,
mpParml,
mpParm2);

} /* endif */

case WM_CONTROLPOINTER:
{

HPOINTER hpPointer;

if (pidData->ulAsync>O}
hpPointer=

WinQuerySysPointer(HWND_DESKTOP,
SPTR_WAIT,
FALSE);

return MRFROMLONG(hpPointer);
else {
return WinDefWindowProc(hwndWnd,

ulMsg,
mpParml,
mpParm2};

} /* endif */

case MYM_STARTTHREAD:
{

ULONG ulBit;
PTHREADINFO ptiinput;
PFNREQ pfnThread;
PVOID pvParm;

ulBit=LONGFROMMR(mpParml);
ptiinput=(PTHREADINFO)PVOIDFROMMP(mpParm2);

ptiinput->hwndOwner=hwndWnd;
ptiinput->bKillThread=FALSE;

switch (ulBit) {
case ASYNC_TEST:

{
PTESTTHREADINFO pttiinfo;

ptiinput->ulSzStruct=
sizeof(TESTTHREADINFO);

596 - The Art of OS/2 Warp Programming

pt ti Info=
(PTESTTHREADINFO)malloc(

sizeof(TESTTHREADINFO));
if (pttiinfo==NULL) {

WinMessageBox(HWND_DESKTOP,
hwndWnd,

11 There is not 11

11 enough memory. 11 ,

11 Error",
0,
MB_OK I

MB_ICONEXCLAMATIONI
MB_MOVEABLE);

return MRFROMSHORT(FALSE);
/* endif */

memcpy(pttiinfo,
ptiinput,
sizeof(TESTTHREADINFO));

pfnThread=(PFNREQ)testThread;
pvParm=(PVOID)pttiinfo;

break;
default:

WinMessageBox(HWND_DESKTOP,
hwndWnd,
"There is an internal "

11 error. II f

11 Error 11 ,

0,
MB_OK I

MB_ICONEXCLAMATION
MB_MOVEABLE);

return MRFROMSHORT(FALSE);
/* endswitch */

if (_beginthread(pfnThread,
NULL,
Ox4000,
pvParm) ==-1)

free (pvParm) ;
WinMessageBox(HWND_DESKTOP,

hwndWnd,
"The thread could not be "

"created. 11 ,

"Error",
0,
MB_OK I

MB_ICONEXCLAMATION
MB_MOVEABLE);

return MRFROMSHORT(FALSE);
/* endif */

pidData->ulAsyncl=ulBit;

break;
case MYM_ENDTHREAD:

{
ULONG ulBit;
PTHREADINFO ptiinput;

ulBit=LONGFROMMR(mpParml);
ptiinput=(PTHREADINFO)PVOIDFROMMP(mpParm2);

Multithreading in Presentation Manager Applications - 597

//---
//Wait for the thread to finish dying.
II There is a bug in DosSleep() such that if
II 0 is the argument, nothing happens. Call
II it with 1 instead to achieve the same
II result.
//---
while (!ptiinput->bThreadDead) {

DosSleep (1) ;
} /* endwhile */

switch (ulBit) {
case ASYNC_TEST:

PTESTTHREADINFO pttiinfo;

pttiinfo=(PTESTTHREADINFO)ptiinput;
free (pttiinfo) ;

break;
default:

return MRFROMSHORT(FALSE);
} /* endswitch */

pidData->ulAsync&=-ulBit;

break;
default:

return WinDefWindowProc(hwndWnd,
ulMsg,
mpParml,
mpParm2);

} /* endswitch */

return MRFROMSHORT(FALSE);

INT main(USHORT usArgs,PCHAR apchArgs[])
{

HAB habAnchor;
HMQ hmqQueue;
ULONG ulCreate;
HWND hwndFrame;
HWND hwndClient;
BOOL bLoop;
QMSG qmMsg;

habAnchor=Wininitialize(O);
hmqQueue=WinCreateMsgQueue(habAnchor,0);

WinRegisterClass(habAnchor,
CLS_MAIN,
wndProc,
CS_SIZEREDRAW,
sizeof (PVOID));

ulCreate=FCF_SYSMENU I FCF_TITLEBAR I FCF_MINMAX
FCF_SIZEBORDER I FCF_TASKLIST I
FCF_SHELLPOSITION;

if (WinQuerySysValue(HWND_DESKTOP,SV_ANIMATION))
ulCreatel=WS_ANIMATE;

} /* endif */

598 - The Art of OS/2 Warp Programming
hwndFrame=WinCreateStdWindow(HWND_DESKTOP,

WS_VISIBLE,
&ulCreate,

if (hwndFrame!=NULLHANDLE) {

CLS_MAIN,
"Asynchronous Call "

"With Feedback",
OL,
NULLHANDLE,
RES_CLIENT,
&hwndClient);

bLoop=WinGetMsg(habAnchor,
&qrnMsg,
NULLHANDLE,
0'
0);

while (bLoop) {
WinDispatchMsg(habAnchor,&qrnMsg);
bLoop=WinGetMsg(habAnchor,

&qmMsg,
NULLHANDLE,
0,
0);

} /* endwhile */

WinDestroyWindow(hwndFrame);
/* endif */

WinDestroyMsgQueue(hmqQueue);
WinTerminate(habAnchor);
return O;

THRD2.RC
#include <os2.h>
#include "thrd2rc.h"

MENU RES_CLIENT
{

MENUITEM "-Start thread", MI_THREAD
MENUITEM SEPARATOR
MENUITEM "E-xit", MI_EXIT

THRD2RC.H
#define RES_CLIENT
#define MI_THREAD
#define MI_EXIT

THRD2.MAK
APP=THRD2

256
257
258

$(APP) .EXE: $(APP) .OBJ\
$(APP) . RES

LINK386 /A:l6 $(APP),$(APP) ,NUL,OS2386,$(APP);
RC $(APP) .RES $(APP) .EXE

$(APP) .RES: $(APP) .RC\
$ (APP)RC.H

RC -r $(APP) .RC $(APP) .RES

Multithreading in Presentation Manager Applications - 599
$(APP) .OBJ: $(APP) .C \

$(APP)RC.H
ICC -C+ -Gm+ -Kb+ -Ss+ $(APP) .C

THRD2.DEF
NAME THRD2 WINDOWAPI

DESCRIPTION 'PM Threads Example 2
Copyright (c) 1993 by Larry Salomon, Jr.
All rights reserved. '

STACKSIZE Ox4000

As we discussed, the three messages that we are interested in are WM_INITMENU, WM_MOUSEMOVE,
and WM_CONTROLPOINTER, which are grouped together just before the MYM_STARTTIIREAD
message.

case WM_INITMENU:
switch (SHORTlFROMMP(mpParml))
case FID_MENU:

if ((pidData->ulAsync & ASYNC_TEST) !=0) {
WinEnableMenuitem(HWNDFROMMP(mpParm2),

MI_THREAD,
FALSE);

else {
WinEnableMenuitem(HWNDFROMMP(mpParm2),

MI_THREAD,

/* endif */
break;

default:

TRUE);

return WinDefWindowProc(hwndWnd,
ulMsg,
mpParml,
mpParm2);

} /* endswitch */
break;

We first need to determine, in the preceding code, which menu is about to be displayed. In our application,
this is unnecessary, since there are no submenus, but for illustrative purposes the check is included. If the
ASYNC_TEST bit is set inpidData->ulAsync, then we disable the item; otherwise we reenable it.

This brings up an interesting point for programmers to consider: Suppose it is valid to have multiple
threads of the same type active simultaneously. We can no longer set individual bits in ulAsync, but if we
simply keep a thread count, we do not know what types of threads are active. The solution to this dilemma
is left to readers as an exercise.

case WM_MOUSEMOVE:
{

HPOINTER hpPointer;

if (pidData->ulAsync>O)
hpPointer=

WinQuerySysPointer(HWND_DESKTOP,
SPTR_WAIT,
FALSE);

WinSetPointer(HWND_DESKTOP,hpPointer);
return MRFROMSHORT(TRUE);

else {

600 - The Art of OS/2 Warp Programming
return WinDefWindowProc(hwndWnd,

ulMsg,
mpParml,
mpParm2);

} /* endif */

case WM_CONTROLPOINTER:
{

HPOINTER hpPointer;

if (pidData->ulAsync>O)
hpPointer=

WinQuerySysPointer(HWND_DESKTOP,
SPTR_WAIT,
FALSE);

return MRFROMLONG(hpPointer);
else {
return WinDefWindowProc(hwndWnd,

ulMsg,
mpParml,
mpParm2);

} /* endif */

The processing for these two messages is trivial but their effect is profound. By changing the pointer, the
user is instantly notified of background processing. More important, by changing the pointer in these
messages, only our application is affected, allowing other applications running to be used while the task is
performed.

Synchronicity
Ah .. . back to the old days, when programming in DOS was considered exotic-there was only one
process, text mode was considered an okay interface for most programs, and function calls were always
synchronous. Well, the first two items might no longer hold true, but the last one is at least attainable for
one-shot threads.

What? How can an asynchronous concept like multithreading be done synchronously? That idea is
paradoxical in itself, much less the attempt at implementing it! The trick here is to reconsider the issue of
synchronicity; it is, as Einstein would have said, based on frame of reference. In other words, something
could not in reality be synchronous but appear so to the user (the application program).

In the beginning of the chapter we stated the one-tenth-second rule, which said that, in summary, the
application must remain responsive to the user. What would happen if we wrote a function that started a
thread and immediately went into a message loop until the thread was finished? Take a look at the
WinDlgBox or WinMessageBox functions; they are both synchronous functions whose length of execution
is dependent on the user, yet they do not "hang" the application. How do they do it? Now you know
they initialize their environment and then enter a message loop to insure that responsiveness is maintained.

In order to implement this concept in a modular fashion, we need to think carefully. It should be obvious
that all "synchronous" threads are going to have a call to _beginthread followed by a message loop, in
addition to other stuff. If we extract this portion out, we can write a generic "dispatch" function.

#define DT_NOERROR
#define DT_QUITRECEIVED
#define DT_ERROR

0
1
2

Multithreading in Presentation Manager Applications - 601
USHORT dispatchThread(HAB habAnchor,

PFNREQ pfnThread,
PTHREADINFO ptiinfo)

TID tidThread;
BOOL bLoop;
QMSG qmMsg;

ptiinfo->bKillThread=FALSE;
ptiinfo->bThreadDead=FALSE;

tidThread=_beginthread(pfnThread,
NULL,
Ox4000,
ptiinfo);

if (tidThread==(TID)-1) {
return DT_ERROR;

} /* endif */

WinPeekMsg(habAnchor,
&qmMsg,
NULLHANDLE,
0'
0,
PM_REMOVE) ;

bLoop=((qmMsg.msg!=WM_QUIT) &&
(!ptiinfo->bThreadDead));

while (bLoop) {
WinDispatchMsg(habAnchor,&qmMsg);
WinPeekMsg(habAnchor,

&qmMsg,
NULLHANDLE,
0,
0,
PM_REMOVE) ;

bLoop=((qmMsg.msg!=WM_QUIT) &&
(!ptiinfo->bThreadDead));

/* endwhile */

if (qmMsg.msg==WM_QUIT) {
DosKillThread(tidThread);
return DT_QUITRECEIVED;

} /* endif */

return DT_NOERROR;

The definitions of PFNREQ and THREADINFO are the same as before, so this function shouldn't be too
hard to digest. There are a few things that aren't obvious, however.

The first is the initialization of bThreadDead. Before, this was done in the thread, but since we
immediately start checking this value after the call to _beginthread, we should initialize this ourselves
because conceivably the thread could have had no timeslices before we query this value.

The second item of note is the use of WinPeekMsg instead of WinGetMsg.

BOOL WinPeekMsg(HAB habAnchor,
PQMSG pqmMsg,
HWND hwndFilter,
ULONG ulFilterFirst,
ULONG ulFilterLast,
ULONG ulFlags) ;

602 - The Art of OS/2 Warp Programming

The parameters are all the same as with WinGetMsg (discussed in Chapter 11), with the exception of
ulFlags, which is unique to WinPeekMsg. It can have the value PM_REMOVE or PM_NOREMOVE,
which specifies that the message in the queue is to be removed or not removed, respectively. We are not
interested in the parameters, however; our concern is with the behavior. If there are no messages in the
queue, WinPeekMsg will return immediately, while WinGetMsg will not. This is significant because, if the
user does not touch the mouse or the keyboard, and no timers are started, the dispatchThread function will
never return, even though the thread might have finished.

Some of the PMWIN developers at IBM discouraged this use of DosKillThread, so it is not necessarily a
good one. Supposedly, its use can cause stability problems if the thread being killed has a message queue.
I use it here because I have never had any problems with it, but this isn't to say that the problem doesn't
exist. Mileage may vary.

Synchronous Threading Example
The following sample program illustrates this "synchronous" threading concept, which is applied it to
THRD 1, cited earlier.

THRD3.C
#define INCL_DOSPROCESS
#define INCL_WININPUT
#define INCL_WINMENUS
#define INCL_WINPOINTERS
#define INCL_WINSYS
#define INCL_WINWINDOWMGR
#include <os2.h>
#include <stdlib.h>
#include "thrd3rc.h"

#define CLS_MAIN

#define DT_NOERROR
#define DT_QUITRECEIVED
#define DT_ERROR

"Thread3Class"

0
1
2

typedef VOID (* _Optlink PFNREQ) (PVOID);

typedef struct _THREADINFO {
11---
11 Initialized by the main thread
1/---
ULONG ulSzStruct;
HWND hwndOwner;
BOOL bKillThread;
11---
11 Initialized by the secondary thread
11---
HAB habThread;
BOOL bThreadDead;
BOOL bResult;

THREADINFO, *PTHREADINFO;

typedef struct _TESTTHREADINFO
THREADINFO tiinfo;

} TESTTHREADINFO, *PTESTTHREADINFO;

Multithreading in Presentation Manager Applications - 603

typedef struct INSTDATA
ULONG ulSzStruct;
HWND hwndMenu;

INSTDATA, *PINSTDATA;

USHORT dispatchThread(HAB habAnchor,
PFNREQ pfnThread,
PTHREADINFO ptiinfo);

VOID _Optlink _testThread(PTESTTHREADINFO pttiinfo);
BOOL testThread(HWND hwndWnd,

PTESTTHREADINFO pttiinfo);

USHORT dispatchThread(HAB habAnchor,
PFNREQ pfnThread,
PTHREADINFO ptiinfo)

//--
//This is the thread dispatch procedure. It calls
II _beginthread() and goes into a
II WinPeekMsg()/WinDispatchMsg() loop until the
II thread is finished or WM_QUIT is received. Note
II the semantics of the latter event: if WM_QUIT is
II received, then it is assumed that the application
II will kill itself on return and thus any system
II resources will automatically be unallocated by the
II system when the application ends. So we do not
II set bKillThread=TRUE and wait but instead call
II DosKillThread() and return.
//--
{

TID tidThread;
BOOL bLoop;
QMSG qmMsg;

ptiinfo->bKillThread=FALSE;
ptiinfo->bThreadDead=FALSE;

tidThread=_beginthread(pfnThread,
NULL,
Ox4000,
ptiinfo);

if (tidThread==(TID)-1) {
return DT_ERROR;

} /* endif */

!!---
// WinGetMsg() cannot be used because it blocks if
II there is no message waiting. When the thread
II dies, therefore, the function will never return
II if the user takes his/her hands off of the
II keyboard, mouse, and no timers are started
II because we will never get a message!
1/---
WinPeekMsg(habAnchor,

&qmMsg,
NULLHANDLE,
0,
0,
PM_REMOVE) ;

bLoop=((qmMsg.msg!=WM_QUIT) &&
(!ptiinfo->bThreadDead));

while (bLoop) {
WinDispatchMsg(habAnchor,&qmMsg);

604 - The Art of OS/2 Warp Programming
WinPeekMsg(habAnchor,

&qmMsg,
NULLHANDLE,
0,
0,
PM_REMOVE) ;

bLoop=((qmMsg.msg!=WM_QUIT) &&
(!ptiinfo->bThreadDead));

/* endwhile */

if (qmMsg.msg==WM....QUIT) {
DosKillThread(tidThread);
return DT_QUITRECEIVED;

} /* endif */

return DT_NOERROR;

VOID _Optlink _testThread(PTESTTHREADINFO pttiinfo)
//--
// This is a do nothing thread that beeps, sleeps,
II and beeps again
//--
{

HAB habAnchor;
HMQ hmqQueue;

habAnchor=Wininitialize(O);
hmqQueue=WinCreateMsgQueue(habAnchor,0);

pttiinfo->tiinfo.habThread=habAnchor;
pttiinfo->tiinfo.bThreadDead=FALSE;
pttiinfo->tiinfo.bResult=FALSE;

WinAlarm(HWND_DESKTOP,WA_NOTE);
DosSleep(2000);
WinAlarm(HWND_DESKTOP,WA_NOTE);

WinDestroyMsgQueue(hmqQueue);
WinTerminate(habAnchor);

DosEnterCritSec();
pttiinfo->tiinfo.bThreadDead=TRUE;
return;

BOOL testThread(HWND hwndWnd,PTESTTHREADINFO pttiinfo)
11--
11 This function simply initializes any thread
// specific fields and calls dispatchThread().
//--
{

pttiinfo->tiinfo.ulSzStruct=sizeof(TESTTHREADINFO);

return dispatchThread(WinQueryAnchorBlock(hwndWnd),
(PFNREQ)_testThread,
(PTHREADINFO)pttiinfo);

MRESULT EXPENTRY wndProc(HWND hwndWnd,
ULONG ulMsg,
MPARAM mpParml,
MPARAM mpParm2)

PINSTDATA pidData;

pidData=(PINSTDATA)WinQueryWindowPtr(hwndWnd,0);

Multithreading in Presentation Manager Applications - 605

switch (ulMsg) {
case WM_CREATE:

pidData=(PINSTDATA)malloc(sizeof(INSTDATA));
if (pidData==NULL) {

WinAlarm(HWND_DESKTOP,WA_ERROR);
return MRFROMSHORT(TRUE);

} /* endif */

WinSetWindowPtr(hwndWnd,0, (PVOID)pidData);

pidData->ulSzStruct=sizeof(INSTDATA);
pidData->hwndMenu=WinLoadMenu(HWND_OBJECT,

NULLHANDLE,
RES_CLIENT) ;

break;
case WM_DESTROY:

WinDestroyWindow(pidData->hwndMenu);
free (pidData) ;
break;

case WM_CONTEXTMENU:
{

POINTL ptlMouse;

WinQueryPointerPos(HWND_DESKTOP,&ptlMouse);
WinPopupMenu(HWND_DESKTOP,

break;

hwndWnd,
pidData->hwndMenu,
ptlMouse.x,
ptlMouse.y,
0,
PU_HCONSTRAIN I PU_VCONSTRAIN

PU_NONE I PU_KEYBOARD
PU_MOUSEBUTTONl I
PU_MOUSEBUTTON2);

case WM_COMMAND:
switch (SHORTlFROMMP(mpParml))
case MI_THREAD:

{
TESTTHREADINFO ttiTest;

//--
/!Call testThread() directly
1/--
if (testThread(hwndWnd,&ttiTest)==

DT_QUITRECEIVED) {
WinPostMsg(hwndWnd,WM_CLOSE,0,0);

} /* endif */

break;
case MI_EXIT:

WinPostMsg(hwndWnd,WM_CLOSE,0,0);
break;

default:
return WinDefWindowProc(hwndWnd,

ulMsg,
mpParml,
mpParm2);

} /* endswitch */
break;

case WM_PAINT:
{

HPS hpsWnd;
RECTL rclPaint;

606 - The Art of OS/2 Warp Programming
hpsWnd=WinBeginPaint(hwndwnd,

NULLHANDLE,
&rclPaint);

WinFillRect(hpsWnd,&rclPaint,SYSCLR_WINDOW);
WinEndPaint(hpsWnd);

break;
default:

return WinDefWindowProc(hwndWnd,
ulMsg,
mpParml,
mpParm2);

} /* endswitch */

return MRFROMSHORT(FALSE);

INT main(USHORT usArgs,PCHAR apchArgs[])
{

HAB habAnchor;
HMQ hmqQueue;
ULONG ulCreate;
HWND hwndFrame;
HWND hwndClient;
BOOL bLoop;
QMSG qmMsg;

habAnchor=Wininitialize(O);
hmqQueue=WinCreateMsgQueue(habAnchor,0);

WinRegisterClass(habAnchor,
CLS_MAIN,
wndProc,
CS_SIZEREDRAW,
sizeof(PVOID)};

ulCreate=FCF_SYSMENU I FCF_TITLEBAR I FCF_MINMAX
FCF_SIZEBORDER I FCF_TASKLIST I
FCF_SHELLPOSITION;

if (WinQuerySysValue(HWND_DESKTOP,SV_ANIMATION)}
ulCreatel=WS_ANIMATE;

} /* endif */

hwndFrame=WinCreateStdWindow(HWND_DESKTOP,
WS_VISIBLE,
&ulCreate,
CLS_MAIN,
"Synchronous Call",
OL,

if (hwndFrame!=NULLHANDLE} {

NULLHANDLE,
RES_CLIENT,
&hwndClient} ;

bLoop=WinGetMsg(habAnchor,
&qmMsg,
NULLHANDLE,
0,
0);

while (bLoop} {
WinDispatchMsg(habAnchor,&qmMsg};
bLoop=WinGetMsg(habAnchor,

&qmMsg,
NULLHANDLE,
0,
0);

} /* endwhile */

WinDestroyWindow(hwndFrame);
/* endif */

WinDestroyMsgQueue(hmqQueue);
WinTerminate(habAnchor);
return O;

THRD3.RC
#include <os2.h>
#include "thrd3rc.h"

MENU RES_CLIENT
{

MENUITEM "-Start thread", MI_THREAD
MENUITEM SEPARATOR
MENUITEM "E-xit", MI_EXIT

THRD3RC.H
#define RES_CLIENT
#define MI_THREAD
#define MI_EXIT

THRD3.MAK
APP=THRD3

256
257
258

Multithreading in Presentation Manager Applications - 607

$(APP) .EXE: $(APP) .OBJ \
$(APP) .RES

LINK386 $(APP),$(APP) ,NUL,OS2386,$(APP);
RC $(APP) .RES $(APP) .EXE

$(APP) .RES: $(APP) .RC\
$(APP)RC.H

RC -r $(APP) .RC $(APP) .RES

$(APP) .OBJ: $(APP) .C \
$(APP)RC.H

ICC -c+ -Gm+ -Kb+ -Ss+ $(APP) .c

THRD3.DEF
NAME THRD3 WINDOWAPI

DESCRIPTION 'PM Threads Example 3
Copyright (c) 1993 by Larry Salomon, Jr.
All rights reserved. '

STACKSIZE Ox4000

Object Windows
The final method that we will look at here for performing long tasks asynchronously is the use of object
windows. An object window is like any other window used in other applications with the following, very
important exceptions:

608 - The Art of OS/2 Warp Programming

• Object windows do not receive any system messages other than WM_CREATE and
WM_DESTROY.

• Object windows are not subject to the one-tenth of a second rule.

The second point is simply a consequence of the first. Remember, the I/10th of a second rule came about
to insure that input messages (keyboard and mouse) were transferred from the system input queue to the
message queue of the application. However, the first point says that object windows receive only the two
messages listed; this means that they never receive the mouse or keyboard messages from the system.

Although an object window can take more than one-tenth of a second to process a
request, a call to WinSendMsg will not return until the object window exits its window
procedure. Thus, WinPostMsg should be used to communicate with an object window

Ji Gotcha!

4:~4 unless it is absolutely necessary to send the message instead. This same logic applies
4 to the WinDispatchMsg function, as we'll see.

An object window typically is not used for one-shot threads because of its ability to send and receive
messages and its persistence due to the message loop in the thread. Object windows instead lean toward
client/server applications, although there is nothing that object windows can do that cannot be done with
the one-shot architecture already discussed.

Building a Blind Window
Now we know what an object window is and for what it is used, but how do we use it in our application?
Since an object window can take as long as it feels necessary to process a message, we cannot use the
message loop of the main thread to dispatch messages to it (as was explained in the last "Gotcha"). What is
needed is the creation of a second thread that has its own message loop in it.

Communication with the object window is done through user messages, as we see in the next example.

THRD4.C
#define INCL_DOSPROCESS
#define INCL_WININPUT
#define INCL_WINMENUS
#define INCL_WINPOINTERS
#define INCL_WINSYS
#define INCL_WINWINDOWMGR
#include <os2.h>
#include <stdlib.h>
#include "thrd4rc.h"

#define CLS_MAIN
#define CLS_OBJECT

#define MYM_BASE
#define MYM_STARTREQUEST
#define MYM_ENDREQUEST

#define ASYNC_NOTE
#define ASYNC_WARNING
#define ASYNC_ERROR

"Thread4Class"
"Thread40bjectClass"

(WM_USER)
(MYM_BASE)
(MYM_BASE+l)

0
1
2

typedef VOID(* _Optlink PFNREQ) (PVOID);

typedef struct INSTDATA
ULONG ulSzStruct;
HWND hwndMenu;
HWND hwndObject;

INSTDATA, *PINSTDATA;

Multithreading in Presentation Manager Applications - 609

MRESULT EXPENTRY objectProc(HWND hwndWnd,
ULONG ulMsg,
MPARAM mpParml,
MPARAM mpParm2)

switch (ulMsg) {
case MYM_STARTREQUEST:

{
ULONG ulRequest;
HWND hwndOwner;
ULONG ulNote;

!!--
//Get the specifics for this request
1/--
ulRequest=LONGFROMMP(mpParml);
hwndOwner=HWNDFROMMP(mpParm2);

switch (ulRequest)
case ASYNC_NOTE:

ulNote=WA_NOTE;
break;

case ASYNC_WARNING:
ulNote=WA_WARNING;
break;

case ASYNC_ERROR:
default:

ulNote=WA_ERROR;
break;

/* endswitch */

!!--
// Perform a dummy action
1/--
WinAlarm(HWND_DESKTOP,ulNote);
DosSleep(2000);
WinAlarm(HWND_DESKTOP,ulNote);

//--
!/Notify the owner that we're done
1/--
WinPostMsg(hwndOwner,

MYM_ENDREQUEST,
MPFROMLONG(ulRequest),
0);

break;
default:

return WinDefWindowProc(hwndWnd,
ulMsg,
mpParml,
mpParm2);

} /* endswitch */

return MRFROMSHORT(FALSE);

610 - The Art of OS/2 Warp Programming
VOID _Optlink objectThread(PINSTDATA pidData)
{

HAB habAnchor;
HMQ hrnqQueue;
BOOL bLoop;
QMSG qmMsg;

habAnchor=Wininitialize(O);
hrnqQueue=WinCreateMsgQueue(habAnchor,0);

WinRegisterClass(habAnchor,
CLS_OBJECT,
objectProc,
0,
0);

//--
//Create the object window
1/--
pidData->hwndObject=WinCreateWindow(HWND_OBJECT,

CLS_OBJECT,

0,
0,
0,
0,
0,
HWND_OBJECT,
HWND_TOP,
WND_OBJECT,
NULL,
NULL);

if (pidData->hwndObject!=NULLHANDLE) {
bLoop=WinGetMsg(habAnchor,

&qmMsg,
NULLHANDLE,
0,
0);

while (bLoop) {
WinDispatchMsg(habAnchor,&qmMsg);
bLoop=WinGetMsg(habAnchor,

&qmMsg,
NULLHANDLE,
0,
0);

} /* endwhile */

WinDestroyWindow(pidData->hwndObject);
/* endif */

WinDestroyMsgQueue(hrnqQueue);
WinTerminate(habAnchor);

VOID disableMenuitems(HWND hwndMenu,BOOL bDisable)
/!---
//This function disables or enables the "send
II request" menuitems.
//---
{

SHORT sDisable;

sDisable=bDisable?MIA_DISABLED:O;

Multithreading in Presentation Manager Applications - 611
WinSendMsg(hwndMenu,

MM_SETITEMATTR,
MPFROM2SHORT(MI_NOTETHREAD,TRUE),
MPFROM2SHORT(MIA_DISABLED,sDisable));

WinSendMsg(hwndMenu,
MM_SETITEMATTR,
MPFROM2SHORT(MI_WARNINGTHREAD,TRUE),
MPFROM2SHORT(MIA_DISABLED,sDisable));

WinSendMsg(hwndMenu,
MM_SETITEMATTR,
MPFROM2SHORT(MI_ERRORTHREAD,TRUE),
MPFROM2SHORT(MIA_DISABLED,sDisable));

MRESULT EXPENTRY wndProc(HWND hwndWnd,
ULONG ulMsg,
MPARAM mpParml,
MPARAM mpParm2)

PINSTDATA pidData;

pidData=(PINSTDATA)WinQueryWindowPtr(hwndWnd,0);

switch (ulMsg) {
case WM_CREATE:

{

TIO tidThread;

pidData=(PINSTDATA)malloc(sizeof(INSTDATA));
if (pidData==NULL) {

WinAlarm(HWND_DESKTOP,WA_ERROR);
return MRFROMSHORT(TRUE);

/* endif */

WinSetWindowPtr(hwndWnd,O, (PVOID)pidData);

pidData->ulSzStruct=sizeof(INSTDATA);
pidData->hwndMenu=WinLoadMenu(HWND_OBJECT,

NULLHANDLE,
RES_CLIENT);

pidData->hwndObject=NULLHANDLE;

//--
// Start the object thread
1/--
tidThread=_beginthread((PFNREQ)objectThread,

NULL,
Ox4000,
pidData);

if (tidThread==(TID)-1) {
WinDestroyWindow(pidData->hwndMenu);
free(pidData);
WinAlarm(HWND_DESKTOP,WA_ERROR);
return MRFROMSHORT(TRUE);

/* endif */

break;
case WM_DESTROY:

WinDestroyWindow(pidData->hwndMenu);
free (pidData);
break;

case WM_CONTEXTMENU:
{

POINTL ptlMouse;

612 - The Art of OS/2 Warp Programming
WinQueryPointerPos(HWND_DESKTOP,&ptlMouse);
WinPopupMenu(HWND_DESKTOP,

break;
case WM_COMMAND:

hwndWnd,
pidData->hwndMenu,
ptlMouse.x,
ptlMouse.y,
0,
PU_HCONSTRAIN I PU_VCONSTRAIN

PU_NONE I PU_KEYBOARD
PU_MOUSEBUTTON1 I
PU_MOUSEBUTTON2);

switch (SHORTlFROMMP(mpParml))
case MI_NOTETHREAD:

//--
//Disable the menu items and send the
II request to the object window
1/--
disableMenuitems(pidData->hwndMenu,TRUE);

WinPostMsg(pidData->hwndObject,
MYM_STARTREQUEST,
MPFROMLONG(ASYNC_NOTE),
MPFROMHWND(hwndWnd));

break;
case MI_WARNINGTHREAD:

disableMenuitems(pidData->hwndMenu,TRUE);

WinPostMsg(pidData->hwndObject,
MYM_STARTREQUEST,
MPFROMLONG(ASYNC_WARNING),
MPFROMHWND(hwndWnd));

break;
case MI_ERRORTHREAD:

disableMenuitems(pidData->hwndMenu,TRUE);

WinPostMsg(pidData->hwndObject,
MYM_STARTREQUEST,
MPFROMLONG(ASYNC_ERROR),
MPFROMHWND(hwndWnd));

break;
case MI_EXIT:

WinPostMsg(hwndWnd,WM_CLOSE,0,0);
break;

default:
return WinDefWindowProc(hwndWnd,

ulMsg,
mpParml,
mpParm2);

} /* endswitch *I
break;

case WM_PAINT:
{

HPS hpsWnd;
RECTL rclPaint;

hpsWnd=WinBeginPaint(hwndWnd,
NULLHANDLE,
&rclPaint);

WinFillRect(hpsWnd,&rclPaint,SYSCLR_WINDOW);
WinEndPaint(hpsWnd};

break;

Multithreading in Presentation Manager Applications - 613
case MYM_ENDREQUEST:

11---
11 The object window has finished our request
II so enable the menuitems
11---
disableMenuitems(pidData->hwndMenu,FALSE);
break;

default:
return WinDefWindowProc(hwndWnd,

ulMsg,
mpParml,
mpParm2);

} I* endswitch *I

return MRFROMSHORT(FALSE);

INT main(USHORT usArgs,PCHAR apchArgs[])
{

HAB habAnchor;
HMQ hmqQueue;
ULONG ulCreate;
HWND hwndFrame;
HWND hwndClient;
BOOL bLoop;
QMSG qmMsg;

habAnchor=Wininitialize(O);
hmqQueue=WinCreateMsgQueue(habAnchor,0);

WinRegisterClass(habAnchor,
CLS_MAIN,
wndProc,
CS_SIZEREDRAW,
sizeof (PVOID));

ulCreate=FCF_SYSMENU I FCF_TITLEBAR I FCF_MINMAX
FCF_SIZEBORDER I FCF_TASKLIST I
FCF_SHELLPOSITION;

if (WinQuerySysValue(HWND_DESKTOP,SV_ANIMATION))
ulCreatei=WS_ANIMATE;

} I* endif *I

hwndFrame=WinCreateStdWindow(HWND_DESKTOP,
WS_VISIBLE,
&ulCreate,
CLS_MAIN,
"Object Window",
OL,

if (hwndFrame!=NULLHANDLE) {

NULLHANDLE,
RES_ CLIENT,
&hwndClient);

bLoop=WinGetMsg(habAnchor,
&qmMsg,
NULLHANDLE,
0,
0);

while (bLoop) {
WinDispatchMsg(habAnchor,&qmMsg);
bLoop=WinGetMsg(habAnchor,

&qmMsg,
NULLHANDLE,
0,
0);

} I* endwhile *I

614 - The Art of OS/2 Warp Programming

WinDestroyWindow(hwndFrame);
/* endif */

WinDestroyMsgQueue(hmqQueue);
WinTerminate(habAnchor);
return O;

THRD4.RC
#include <os2.h>
#include "thrd4rc.h"

MENU RES_CLIENT
{

MENUITEM "-Note thread", MI_NOTETHREAD
MENUITEM "-Warning thread", MI_WARNINGTHREAD
MENUITEM "-Error thread", MI_ERRORTHREAD
MENUITEM SEPARATOR
MENUITEM "E-xit", MI_EXIT

IBRD4RC.H
#define RES_CLIENT
#define WND_OBJECT
#define MI_NOTETHREAD
#define MI_WARNINGTHREAD
#define MI_ERRORTHREAD
#define MI_EXIT

THRD4.MAK
APP=THRD4

256
257
258
259
260
261

$(APP) .EXE: $(APP).OBJ \
$(APP) .RES

LINK386 $(APP),$(APP),NUL,OS2386,$(APP);
RC $(APP) .RES $(APP) .EXE

$(APP).RES: $(APP).RC \
$(APP)RC.H

RC -r $(APP).RC $(APP).RES

$(APP) .OBJ: $(APP) .C \
$(APP)RC.H

ICC -c+ -Gm+ -Kb+ -ss+ $(APP).C

IBRD4.DEF
NAME THRD4 WINDOWAPI

DESCRIPTION 'PM Threads Example 4
Copyright (c) 1993 by Larry Salomon, Jr.
All rights reserved. •

STACKSIZE Ox4000

Careful observation will show that objectThread is almost identical to main. The creation of the object
window is done with a call to WinCreateWindow.

Multithreading in Presentation Manager Applications - 615

pidData->hwndObject=WinCreateWindow(HWND_OBJECT,
CLS_OBJECT,

0,
0,
0,
0,

0'
HWND_OBJECT,
HWND_TOP,
WND_OBJECT,
NULL,
NULL);

What tells PM to make this an object window is that the parent (the first parameter) is the predefined
constant HWND_OBJECT.

Design Considerations
Before wrapping this topic up, let us consider the following issues.

Who displays messages during the processing of the task? To answer this question, we must consider the
purpose of the message. If the message is event-specific within the thread (e.g., "file could not be
opened"), then it makes sense to have the thread display the message, since the message is associated with
a thread-specific event. However, general result messages (e.g., "printing was unsuccessful") probably are
better left to the owner thread, since they usually can be grouped together in a function that checks the
return information in the thread-specific structure.

How is the thread halted because the user has requested it? Say, for example, a user wants to print a
50-page document and then after realizing that it will take 20 minutes to complete (!), changes his or her
mind. The THREADINFO structure contains a mild-mannered field bKillThread. The purpose of this is to
inform the thread that it should halt processing and exit.

Of course, because the various thread structures are allocated dynamically and then forgotten about until
the thread finishes, actually getting access to this field to set it to TRUE might be a task in itself. Also,
setting this field to TRUE only signals the thread that it should kill itself; it is up to the thread to monitor
this field so that it can stop itself if needed.

In dispatchThread, we ignored the issue of WM_ QUIT and what should be done if it is received. While
the function will kill the thread and return, what does the application do? A WM_QUIT is sent to an
application only as the result of another action, whether it is the default processing for WM_CLOSE or
because the system is shutting down. In any case, usually it can be safely assumed that, if this message is
received, the application should quit as soon as it is safely possible.

Appendix A

Window Messages

PL_ALTERED

This message is broadcast to all frame window when the user has altered system settings.

Parameter 1:
HINI
Parameter 2:
HINI
Reply:
ULONG

WM_ACTIV ATE

Handle to new user profile

Handle to new system profile

Reserved, 0

This message is sent from the system when a window is being activated or deactivated.

Parameter 1:
USHORT
Parameter 2:
HWND

Reply:
ULONG

Active? TRUE:FALSE

If Parameter 1 is TRUE, this is the window being activated, else this is the
window being deactivated

Reserved, 0

WM_APPTERMINATENOTIFY

This message is posted when a child application is terminated.

Parameter 1:
HAPP
Parameter 2:
ULONG
Reply:
ULONG

Handle to terminating application

Return code from terminating application

Reserved, 0
617

618 -The Art ofOS/2 Warp Programming
WM_ADJUSTWINDOWPOS

This message is sent when a window is sized or positioned by WinSetWindowPos.

Parameter 1:
PSWP Pointer to new swap structure

typedef struct _SWP
{

UL ONG
LONG
LONG
LONG
LONG
HWND
HWND
ULONG
UL ONG

SWP;

fl;
cy;
ex;
y;
x;
hwndinsertBehind;
hwnd;
ulReservedl;
u1Reserved2;

typedef SWP *PSWP;

Parameter 2:
ULONG
Reply:
ULONG

0
SWP _MINIMIZED
SWP _MAXIMIZED
SWP _RESTORED
SWP _ACTIVATE
SWP _DEACTIVATE

WM_BEGINDRAG

Reserved, 0

Move status

No changes made
Window is minimized
Window is maximized
Window is restored
Window is activated
Window is deactivated

This message is sent when a user starts a drag operation.

Parameter 1:
POINTS Pointer position

typedef struct _POINTS /* pts */
{

SHORT x;
SHORT y;

} POINTS;
typedef POINTS *PPOINTS;

Parameter 2:
USHORT Input device

TRUE
FALSE

Reply:
BOOL

Input came from mouse
Input came from keyboard

Message processed? TRUE: FALSE

WM_BEGINSELECT

This message is sent when the user starts a selection operation.

Parameter 1:
USHORT

TRUE
FALSE

Parameter 2:
POINTS
Reply:
BOOL

Input device

Input came from mouse
Input came from keyboard

Pointer position

Message processed? TRUE: FALSE

WM_BUTTONlCLICK

This message is sent when the user clicks on mouse button 1.

Parameter 1:
POINTS Mouse position
Parameter 2:
USHORT Hit test result

HT_NORMAL The message belongs to this window

Appendix A - 619

HT_TRANSPARENT The part of the window underneath the mouse is not visible; keep checking other
windows

USHORT Keyboard control code
Reply:
BOOL Message processed? TRUE: FALSE

WM_BUTTON2CLICK

This message is sent when the user clicks on mouse button 2.

Parameter 1:
POINTS
Parameter 2:
USHORT
USHORT
Reply:
BOOL

Mouse position

Hit test result
Keyboard control code

Message processed? TRUE: FALSE

620 - The Art of OS/2 Warp Programming
WM_BUTTON3CLICK

This message is sent when the user clicks on mouse button 3.

Parameter 1:
POINTS
Parameter 2:
USHORT
USHORT
Reply:
BOOL

WM_BUTTONlDBCLK

Mouse position

Hit test result
Keyboard control code

Message processed? TRUE: FALSE

This message is sent when the user double-clicks on mouse button 1.

Parameter 1:
POINTS
Parameter 2:
USHORT
USHORT

Reply:
BOOL

WM_BUTTON2DBCLK

Mouse position

Hit test result
Keyboard control code

Message processed? TRUE: FALSE

This message is sent when the user double-clicks on mouse button 2.

Parameter 1:
POINTS
Parameter 2:
USHORT
USHORT
Reply:
BOOL

WM_BUTTON3DBCLK

Mouse position

Hit test result
Keyboard control code

Message processed? TRUE: FALSE

This message is sent when the user double-clicks on mouse button 3.

Parameter 1:
POINTS
Parameter 2:
USHORT
USHORT

Mouse position

Hit test result
Keyboard control code

Reply:
BOOL Message processed? TRUE: FALSE

WM_BUTTONlDOWN

This message is sent when the user presses mouse button 1 down.

Parameter 1:
POINTS
Parameter 2:
USHORT
USHORT
Reply:
BOOL

Mouse position

Hit test result
Keyboard control code

Message processed? TRUE: FALSE

WM_BUTTONlMOTIONEND

This message is sent when the user finishes a drag operation using mouse button 1.

Parameter 1:
POINTS
Parameter 2:
USHORT
USHORT
Reply:
BOOL

Mouse position

Hit test result
Keyboard control code

Message processed? TRUE: FALSE

WM_BUTTONlMOTIONSTART

This message is sent when the user starts a drag operation using mouse button 1.

Parameter 1:
POINTS
Parameter 2:
USHORT
USHORT
Reply:
BOOL

WM_BUTTON2DOWN

Mouse position

Hit test result
Keyboard control code

Message processed? TRUE: FALSE

This message is sent when the user presses mouse button 2 down.

Parameter 1:
POINTS
Parameter 2:

Mouse position

Appendix A - 621

622 - The Art of OS/2 Warp Programming
Parameter 2:
USHORT
USHORT
Reply:
BOOL

Hit test result
Keyboard control code

Message processed? TRUE: FALSE

WM_BUTTON2MOTIONEND

This message is sent when the user finishes a drag operation using mouse button 2.

Parameter 1:
POINTS
Parameter 2:
USHORT
USHORT
Reply:
BOOL

Mouse position

Hit test result
Keyboard control code

Message processed? TRUE: FALSE

WM_BUTTON2MOTIONSTART

This message is sent when the user starts a drag operation using mouse button 2.

Parameter 1:
POINTS
Parameter 2:
USHORT
USHORT
Reply:
BOOL

WM_BUTTON3DOWN

Mouse position

Hit test result
Keyboard control code

Message processed? TRUE: FALSE

This message is sent when the user presses mouse button 3 down.

Parameter 1:
POINTS
Parameter 2:
USHORT
USHORT
Reply:
BOOL

Mouse position

Hit test result
Keyboard control code

Message processed? TRUE: FALSE

WM_BUTTON3MOTIONEND

This message is sent when the user finishes a drag operation using mouse button 3.

Parameter 1:
POINTS
Parameter 2:
USHORT
USHORT
Reply:
BOOL

Mouse position

Hit test result
Keyboard control code

Message processed? TRUE: FALSE

WM_BUTTON3MOTIONSTART

This message is sent when the user starts a drag operation using mouse button 3.

Parameter 1:
POINTS
Parameter 2:
USHORT
USHORT
Reply:
BOOL

WM_BUTTONlUP

Mouse position

Hit test result
Keyboard control code

Message processed? TRUE: FALSE

This message is sent when the user releases mouse button I.

Parameter 1:
POINTS
Parameter 2:
USHORT
USHORT
Reply:
BOOL

WM_BUTTON2UP

Mouse position

Hit test result
Keyboard control code

Message processed? TRUE: FALSE

This message is sent when the user releases mouse button 2.

Parameter 1:
POINTS
Parameter 2:
US HORT
USHORT
Reply:
BOOL

Mouse position

Hit test result
Keyboard control code

Message processed? TRUE: FALSE

Appendix A - 623

624-The Art ofOS/2 Warp Programming
WM_BUTTON3UP

This message is sent when the user releases mouse button 3.
Parameter 1:
POINTS Mouse position
Parameter 2:
USHORT
USHORT
Reply:

Hit test result
Keyboard control code

BOOL Message processed? TRUE: FALSE

WM_CALCFRAMERECT

This message is sent when the window size is calculated using WinCalcFrameRect.

Parameter 1:
PRECTL Window size

typedef struct _RECTL
{

LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

RECTL;
typedef RECTL *PRECTL;

Parameter 2:
USHORT Frame indicator

/* rel */

TRUE
FALSE
Reply:

calculate client size; prclWindow is size of frame
calculate frame size; prclWindow is size of client

BOOL Successful? TRUE: FALSE

WM_CALCV ALIDRECTS

This message is sent from the system to determine which window region needs to be invalidated if the
window is moved or sized.

Parameter 1:
PRECTL
PRECTL

Parameter 2:
PSWP

Points to a RECTL that contains the window size prior to resizing.
Points to a RECTL that contains the window size after resizing

New window position

Appendix A - 625
typedef struct _SWP
{

/* swp */

ULONG
LONG
LONG
LONG
LONG
HWND
HWND
ULONG
UL ONG

SWP;

fl;
cy;
ex;
y;
x·
hwndinsertBehind;
hwnd;
ulReservedl;
u1Reserved2;

typedef SWP *PSWP;

Reply:
USHORT

CVR_ALIGNLEFf
CVR_ALIGNBOTTOM
CVR_ALIGNTOP
CVP _ALIGNRIGHT
CVR_REDRAW
0

WM_ CHAR

How to align the window; these values can be OR'ed together

The valid window region is aligned along with the left edge of the window
The valid window region is aligned along with the bottom edge of the window
The valid window region is aligned along with the top edge of the window
The valid window region is aligned along with the right edge of the window
The whole window is invalidated
Use the values specified in the second PRECTL

This message is sent to indicate a key has been pressed.

Parameter 1:
USHORT

KC_CHAR
KC_SCANCODE
KC_ VIRTUALKEY
KC_KEYUP
KC_PREVDOWN
KC_DEADKEY
KC_COMPOSITE
KC_INV ALIDCOMP
KC_LONEKEY
KC_SHIFf
KC_ALT
KC_CTRL

UCHAR
Parameter 2:
US HORT
USHORT
Reply:
BOOL

Keyboard control codes

Character key was hit, value is in usCharCode
Value of key is in KC_SCANCODE
Indicates a virtual key was hit, value is in usVKeyCode
Key is released
Usually precedes the KC_KEYUP flag
Key was a dead key
Key was a combination of the previous dead key and this key
Key was an invalid combination
A key was pressed and released, and no other keys were involved
The SHIFf key was pressed
The ALT key was pressed
The CTRL key was pressed

Number of times key was pressed

Character code
Virtual key codes

Processed? TRUE: FALSE

626 - The Art of OS/2 Warp Programming
WM_ CHORD

This message is sent when the user presses both mouse button 1 and 2 at the same time.

Parameter 1:
ULONG
Parameter 2:
USHORT
Reply:

Reserved, 0

Hit test result

BOOL Message processed? TRUE: FALSE

WM_ CLOSE

This message is sent to a frame when the user is closing the window.

Parameter 1:
ULONG Reserved, 0
Parameter 2:
ULONG Reserved, 0
Reply:
ULONG Reserved, 0
Note: If you intercept this message, make sure to post a WM_ QUIT to the appropriate window. This is
what the default window procedure does.

WM_ COMMAND

This message is sent from a control to its owner whenever it has to notify its owner about a significant
event.

Parameter 1:
USHORT
Parameter 2:

Application defined ID of item that generated message

USHORT Can be one of the following:

CMDSRC_PUSHBUTTON
CMDSRC_MENU
CMDSRC_ACCELERATOR
CMDSRC_FONTDLG
CMDSRC_OTHER

USHORT

TRUE
FALSE

Input device

Input came from mouse
Input came from keyboard

Pushbutton-generated message
Menu-generated message
Accelerator key-generated message
Font dialog-generated message
Some other type of control-generated message

Appendix A - 627
Reply:
ULONG Reserved, 0

WM_CONTEXTMENU

This message is sent when the user performs an operation that initiates a popup menu.

Parameter 1:
USHORT Can be one of the following:

TRUE Operation was performed by pointer
FALSE Operation was performed by keystroke
Parameter 2:
POINTS Mouse position if usPoint ==TRUE
Reply:
BOOL Processed? TRUE: FALSE

WM_ CONTROL

This message is sent to a control's owner in order to signal a significant event that has occurred to the
control.

Parameter 1:
USHORT
USHORT
Parameter 2:
ULONG
Reply:
ULONG

Control ID
Control notify code

Control specific information

Reserved, 0

WM_CONTROLPOINTER

This message is sent to a control's owner when the user moves the mouse over the control window.

Parameter 1:
USHORT Control ID
Parameter 2:
HPOINTER Current mouse pointer
Reply:
HPOINTER Pointer to new mouse pointer
Note: This message gives you the opportunity to change the standard mouse pointer to something else,
for instance, an hourglass pointer. Trap the message when in a wait situation, and return the HPOINTER
you want the pointer to change to.

628 -The Art ofOS/2 Warp Programming
WM_ CREATE

This message is sent to a window at the first stage of its creation.

Parameter 1:
PVOID
Parameter 2:

Data passed from Win Create Window

PCREATESTRUCT Pointer to a create structure

typedef struct _CREATESTRUCT
{

PVOID
PVOID
ULONG
HWND
HWND
LONG
LONG
LONG

pPresParams;
pCtlData;
id;
hwndinsertBehind;
hwndOwner;
cy;
ex;
y;

LONG x;
ULONG flStyle;
PSZ pszText;
PSZ pszClass;
HWND hwndParent;

CREATESTRUCT;
typedef CREATESTRUCT *PCREATESTRUCT;

Reply:
BOOL Continue creating window? TRUE: FALSE
Note: This message is not a good place to do much except transfer data from WinCreateWindow. At this
point in time a window has no shape, size, or focus, so most changes to any of these qualities will fail. A
better idea is to post yourself a message from the WM_CREATE processing. Do all the initialization in the
user-defined message.

WM_DESTROY

This message is sent when a window is being destroyed.

Parameter 1:
UL ONG
Parameter 2:
UL ONG
Reply:

Reserved, 0

Reserved, 0

ULONG Reserved, 0
Note: This is the last message that is sent to a window before it is destroyed. If you have allocated
memory for a window word, this is the place to free it.

WM_DRA WITEM

Sent to the owner of a control when an item with *S_OWNERDRA Wis to be drawn.

Parameter 1:
USHORT
Parameter 2:

Window ID

POWNERITEM Pointer to OWNERITEM structure

Reply:
BOOL

WM_ENABLE

typedef struct _owneritem
{

HWND hwnd;
HPS hps;
ULONG fsState;
ULONG fsAttribute;
ULONG fsStateOld;
ULONG fsAttributeOld;
RECTL rclitem;
LONG iditem;
ULONG hitem;

OWNERITEM;
typedef OWNERITEM *POWNERITEM;

Drawn? TRUE:FALSE

This message is sent to enable, or disable, a window.

Parameter 1:
USHORT
Parameter 2:
ULONG
Reply:
ULONG

Enable window? TRUE: FALSE

Reserved, 0

Reserved, 0

Appendix A - 629

Note: This is the recommended way to prevent a user from selecting a control. A control window
should not be permanently disabled, only disabled while it is not available.

WM_ENDDRAG

This message is sent when a drag operation is completed.

Parameter 1:
USHORT Mouse indicator

TRUE Message came from pointer input
FALSE Message came from keyboard input
Parameter 2:
POINTS Mouse position
Reply:
ULONG Message processed? TRUE: FALSE

630 - The Art of OS/2 Warp Programming
WM_ENDSELECT

This message is sent when a select operation is completed.

Parameter 1:
USHORT Mouse indicator

TRUE Message came from pointer input
FALSE Message came fromkeyboard input
Parameter 2:
POINTS Mouse position
Reply:
ULONG Message processed? TRUE: FALSE

WM_ERASEWINDOW

This message is sent to a window after a region has been invalidated, but before it has been painted.

Parameter 1:
ULONG
Parameter 2:
UL ONG
Reply:
BOOL

WM_ERROR

Reserved, 0

Reserved, 0

Window region erased? TRUE: FALSE

This message is sent when an error is detected.

Parameter 1:
USHORT
Parameter 2:
ULONG
Reply:
UL ONG

WM_FOCUSCHANGE

Error code (list in PMERR.H)

Reserved, 0

Reserved, 0

This message is sent when a window is losing focus or gaining focus.

Parameter 1:
HWND
Parameter 2:
USHORT

Window handle

Focus flag

Appendix A - 631

TRUE Window is gaining focus, hwndwindow is window losing focus
FALSE Window is losing focus, hwndwindow is window gaining focus

USHORT Focus changing flags

FC_NOSETFOCUS

FC_NOLOSEFOCUS

FC_NOSETACTIVE

FC_NOLOSEACTIVE

FC_NOSETSELECTION

A WM_SETFOCUS message is not sent to the window
receiving focus
A WM_SETFOCUS message is not sent to the window losing
focus
A WM_SET ACTIVE message is not sent to the window
becoming active
A WM_SET ACTIVE message is not sent to the window being
deactivated
A WM_SETSELECTION message is not sent to the window being
selected

FC_NOLOSESELECTION A WM_SETSELECTION message is not sent to the window being
deselected

FC_NOBRINGTOTOP
FC_NOBRINGTOTOPFIRSTWINDOW

No window is brought to the top
The first frame window is not brought to the top

Reply:
ULONG Reserved, 0

WM_FORMATFRAME

This message is sent to the frame to adjust all the frame controls and the client window.

Parameter 1:
PSWP
Parameter 2:
PRECTL
Reply:
USHORT

Array of sizes and positions of controls

Client window size

Count of SWP structures returned in swpSizes

Note: This message is used to adjust the sizes and positions of the controls on the frame. If you subclass
the frame window and add controls to the frame, you need to intercept this message and add the SWP
structures of your controls. You also will need to intercept the WM_QUERYFRAMECTLCOUNT
message and increment the return value by the number of the controls you are adding. It is this value that
controls the number of SWP structures in the WM_FORMA TFRAME. Also, if you put a sizing border on
a dialog box, the dialog box does not receive a WM_SIZE message; instead it receives a
WM_FORMATFRAME.

WM_HELP

This message is sent to the owner of a control when the user has hit the help key.

632 - The Art of OS/2 Warp Programming

Parameter 1:
USHORT
Parameter 2:
USHORT

Command value

Control type

CMDSRC_PUSHBUTTON Push-button was source of help message. Parameter 1 is the id of the
push-button.

CMDSRC_MENU Menu was source of help message. Parameter 1 is the id of the menu
item.

CMDSRC_ACCELERATOR Accelerator key was source of help message. Parameter 1 is the
accelerator command value.

CMDSRC_OTHER Other source.

USHORT Input device

TRUE Input came from mouse
FALSE Input came from keyboard

Reply:
ULONG Reserved, 0

WM_HITTEST

This message is used to find the window that the user was responding to when mouse input occurred.

Parameter 1:
POINTS
Parameter 2:
UL ONG
Reply:
UL ONG

HT_NORMAL
HT_TRANSPARENT
HT_DISCARD
HT_ERROR

WM_HSCROLL

Mouse position

Reserved, 0

Can be one of the following:

Message belongs to this window
Message does not belong to this window, keep checking
Discard message
Discard message, message resulted from a button down message on a disabled
window

This message is sent to the owner of a horizontal scroll bar when the user initiated some scrolling action.

Parameter 1:
USHORT Scroll bar ID

Parameter 2:
SHORT
USHORT

SB_LINELEFT
SB_LINERIGHT
SB_PAGELEFT
SB_PAGERIGHT

SB_SLIDERPOSITION
SB_SLIDERTRACK
SB_ENDSCROLL

Reply:
ULONG

WM_INITDLG

Slider position
Command

Appendix A - 633

The user clicked on left arrow, or a VK_LEFT key was pressed
The user clicked on right arrow, or a VK_RIGHT key was pressed
The user clicked to the left of the slider or VK_P AGELEFT key was pressed
The user clicked to the right of the slider or VK_PAGERIGHT key was
pressed
This is the final position of the slider
The user used the mouse to change the position of the slider
The user has finished scrolling

Reserved, 0

Sent when a dialog box is being created.

Parameter 1:
HWND
Parameter 2:
PVOID

Reply:
BOOL

TRUE
FALSE

Control window to receive focus

Application defined data passed by WinLoadDlg,
WinCreateDlg, or WinDlgBox

Focus set indicator

Focus window has been changed
Focus window has not been changed

WM_INITMENU

This message is sent when a window is becoming active.

Parameter 1:
USHORT
Parameter 2:
HWND
Reply:
ULONG

Menu control ID

Menu window handle

Reserved, 0

WM_JOURNALNOTIFY

This message is sent during journal playback.

634-The Art ofOS/2 Warp Programming
Parameter 1:
ULONG

JRN_QUEUESTATUS
JRN_PHYSKEYSTA TE
Parameter 2:

Can be one of the following:

Journal the queue status
Journal the physical key state

if Parameter I is JRN_QUEUESTATUS
USHORT Queue status
if Parameter 1 is JRN_PHYSKEYST A TE
USHORT Key scan code
USHORT Key state
Reply:
UL ONG Reserved, 0

WM_MEASUREITEM

This message is sent to the owner of a control in order to determine the height and width of the specified
item.

Parameter 1:
SHORT
Parameter 2:
ULONG
Reply:
SHORT
SHORT

WM_MENUEND

ID of control window

Control specific information

Height of control item of interest
Width of control item of interest

This message is sent when a menu is ending.

Parameter 1:
USHORT
Parameter 2:
HWND
Reply:
ULONG

WM_MENUSELECT

Menu control ID

Menu window handle

Reserved, 0

This message is sent when the user has selected a new menu item.

Parameter 1:
USHORT
USHORT

Selected menuitem ID
Post command flag

TRUE A command message will be posted to the owner
FALSE No message will be posted
Parameter 2:
HWND Menu window handle
Reply:
BOOL Post message? TRUE: FALSE

WM_MINMAXFRAME

This message is sent when a frame is being maximized, minimized, or restored.

Parameter 1:
PSWP
Parameter 2:
ULONG
Reply:
BOOL

WM_MOUSEMAP

Window position

Reserved, 0

Process message? TRUE:FALSE

Appendix A - 635

This message is sent by application that wish to remap mouse messages in the Presentation Manager input
queue. The mapping will be in affect until another WM_MOUSEMAP message is received that remaps the
mouse buttons.

Parameter 1:
ULONG
Parameter 2:
UL ONG
Reply:
ULONG

Indicates the physical mouse button to map.

Indicates the button specified in Parameter is to be mapped to.

Reserved, 0.

WM_MSGBOXDISMISS

This message is sent when a non-modal message box is being dismissed.
Parameter 1:
HWND Non-modal message box window handle.
Parameter 2:
UL ONG ID of the selected button in message box.
Reply:
UL ONG Reserved, 0.

WM_MSGBOXINIT

This message is sent to the owner of a non-modal message box has been created.

Parameter 1:
HWND Non-modal message box window handle.

636 - The Art of OS/2 Warp Programming
Parameter 2:
LONG
Reply:
ULONG

WM_MOUSEMOVE

This mouse has moved.

Parameter 1:
POINTS
Parameter 2:
USHORT
USHORT
Reply:
BOOL

WM_MOVE

ID of the message box.

Reserved, 0.

Mouse position

Hit test result
Keyboard control code

Message processed? TRUE: FALSE

This message is sent when a window has moved.

Parameter 1:
ULONG
Parameter 2:
ULONG
Reply:
ULONG

Reserved, 0

Reserved, 0

Reserved, 0

Note: This message is sent only if the window has the style CS_MOVENOTIFY.

WM_NEXTMENU

This message is sent to the owner of the menu to indicate either the beginning or the end of the menu has
been reached.

Parameter 1:
HWND
Parameter 2:
USHORT
Reply:
HWND

WM_NULL

Menu window handle

At beginning of menu? TRUE:FALSE

New menu window handle

This is a NULL message used for an application-defined purpose.

Parameter 1:
ULONG
Parameter 2:
UL ONG
Reply:
ULONG

WM_ OPEN

Reserved, 0

Reserved, 0

Reserved, 0

This message is sent when a user opens a window.

Parameter 1:
USHORT Input device

TRUE
FALSE

Input came from mouse
Input came from keyboard

Parameter 2:
POINTS
Reply:
BOOL

WM_PACTIV ATE

Mouse position

Message processed? TRUE: FALSE

This is an NLS message sent when a WM_ACTIV A TE message is received.

Parameter 1:
USHORT Window activation flag

TRUE
FALSE

Window was made active
Window was deactivated

Parameter 2:
HWND

Parameter 1 ==TRUE
Parameter 1 == FALSE
Reply:
ULONG

WM_PAINT

Window handle

Window handle of window being made active
Window handle of window being deactivated

Reserved, 0

This message is sent when a window needs painting.

Parameter 1:
ULONG Reserved, 0

Appendix A - 637

638 - The Art of OS/2 Warp Programming
Parameter 2:
UL ONG Reserved, 0
Reply:
UL ONG Reserved, 0

WM_PCONTROL

This message is an NLS message sent when a WM_CONTROL message is received.

Parameter 1:
USHORT
USHORT
Parameter 2:
UL ONG
Reply:
ULONG

WM_PPAINT

Control window ID
Notification code

Reserved, 0

Reserved, 0

This is an NLS message sent when a WM_PAINT message is received.

Parameter 1:
ULONG
Parameter 2:
ULONG
Reply:
ULONG

Reserved, 0

Reserved, 0

Reserved, 0

WM_PRESPARAMCHANGED

This message is sent when a window's Presentation Parameters are changed.

Parameter 1:
ULONG
Parameter 2:
ULONG
Reply:
ULONG

WM_PSETFOCUS

Attribute type ID

Reserved, 0

Reserved, 0

This is an NLS message sent when a WM_SETFOCUS is received.

Parameter 1:
HWND Focus window handle

Parameter 2:
USHORT Can be one of the following:

TRUE Window is gaining focus, Parameter 1 is window losing focus
FALSE Window is losing focus, Parameter 1 is window gaining focus
Reply:
ULONG Reserved, 0

WM_PSIZE

This is an NLS message sent when a WM_SIZE is received.

Parameter 1:
SHORT
SHORT
Parameter 2:
SHORT
SHORT
Reply:
UL ONG

Old window width
Old window height

New window width
New window height

Reserved, 0

WM_PSYSCOLORCHANGE

This is an NLS message sent after a WM_SYSCOLORCHANGE message is received.

Parameter 1:
ULONG Can be one of the following:

LCOL_RESET The colors are reset to the default
LCOL_PURECOLOR Color-dithering is not allowed
Parameter 2:
ULONG Reserved, 0
Reply:
ULONG Reserved, 0

WM_QUERYACCELTABLE

This message is sent to retrieve a handle to a window's accelerator table.

Parameter 1:
ULONG
Parameter 2:
ULONG
Reply:

Reserved, 0

Reserved, 0

Appendix A - 639

HACCEL Accelerator table handle, or NULLHANDLE if not available

640 - The Art of OS/2 Warp Programming
WM_QUERYCONVERTPOS

This message is sent to determine whether to begin DBCS character conversion.

Parameter 1:
PRECTL
Parameter 2:
ULONG
Reply:
USHORT

QCP _CONVERT
QCP _NOCONVERT

Cursor position

Reserved, 0

Can be one of the following:

Conversion can be performed
Conversion should not be performed

WM_QUERYHELPINFO

This message is sent to query the help instance associated with a frame window.

Parameter 1:
UL ONG
Parameter 2:
UL ONG
Reply:
HWND

Reserved, 0

Reserved, 0

Help instance window handle

WM_QUERYTRACKINFO

This message is sent after a frame receives a WM_TRACKFRAME.

Parameter 1:
USHORT Tracking flags

TF_TOP
TF_BOTTOM
TF_RIGHT
TF_LEFf
TF_MOVE
TF _SETPOINTERPOS
TF_GRID
TF _STANDARD
TF _ALLINBOUNDARY
TF _PARTINBOUNDARY
TF _VALIDA TETRACKRECT

Parameter 2:

Track the top of the rectangle
Track the bottom of the rectangle
Track the right side of the rectangle
Track the left side of the rectangle
Track all sides
Reposition the mouse pointer
Rectangle is snapped to the grip coordinates in cxGrid and cyGrid
The grid coordinates are multiples of the border width and height
No part of the tracking is outside the rclBoundary rectangle
Some part of the tracking is inside the rclBoundary rectangle
The tracking rectangle is validated

PTRACK.INFO Pointer to track info structure

Reply:

typedef struct _TRACKINFO
{

LONG cxBorder;
LONG cyBorder;
LONG cxGrid;
LONG cyGrid;
LONG cxKeyboard;
LONG cyKeyboard;
RECTL rel Track;
RECTL rclBoundary;
POINTL ptlMin'rrackSize;
POINTL ptlMaxTrackSize;
ULONG fs;

} TRACKINFO;

/* ti */

typedef TRACKINFO *PTRACKINFO;

BOOL Continue moving or sizing: TRUE: FALSE

Appendix A - 641

Note: This message can be used to limit the sizing of a frame window. Adjust the max and min track
size POINTL structures and add the TF _ALLINBOUNDARY flag. The IMAGE example of the
Developer's Toolkit gives a nice example of the proper processing of the message.

WM_QUERYWINDOWPARAMS

This message is used to query a window's Presentation Parameters

Parameter 1:
PWNDPARAMS Pointer to WNDPARAMS structure

typedef struct _WNDPARAMS
{

ULONG
ULONG
PSZ
ULONG

fsStatus;
cchText;
pszText;
cbPresParams;

PVOID pPresParams;
ULONG cbCtlData;
PVOID pCtlData;

} WNDPARAMS;
typedef WNDPARAMS *PWNDPARAMS;

Parameter 2:
ULONG Reserved, 0
Reply:
BOOL Successful? TRUE: FALSE

WM_ QUIT

This message is used to tell an application to terminate itself.

Parameter 1:
ULONG
Parameter 2:
ULONG
Reply:
ULONG

Reserved, 0

Reserved, 0

Reserved, 0

642 -The Art of OS/2 Warp Programming

Note: This is the message that causes WinGetMsg to return FALSE and end the message processing
loop. If you processing this message, do not pass this through to WinDejWindowProc.

WM_REALIZEPALETTE

This message is sent when another application changes the display hardware color palette.

Parameter 1:
UL ONG
Parameter 2:
ULONG
Reply:
UL ONG

Reserved, 0

Reserved, 0

Reserved, 0

WM_SA VEAPPLICATION

This message is sent to the application to give the application a chance to save the current state.

Parameter 1:
UL ONG
Parameter 2:
UL ONG
Reply:
ULONG

WM_SEMl

Reserved, 0

Reserved, 0

Reserved, 0

This message is sent from the application for its own use.

Parameter 1:
ULONG

Parameter 2:
UL ONG
Reply:

This is a collection of this variable from any other existing WM_SEMl
messages in the queue, OR'ed together

Reserved, 0

ULONG Reserved, 0
Note: This message has a higher priority than any other message, and will be retrieved from the message
queue first.

WM_SEM2

This message is sent from the application for its own use.

Parameter 1:
ULONG

Parameter 2:
ULONG
Reply:
ULONG

Appendix A - 643

This is a collection of this variable from any other existing WM_SEM2
messages in the queue, OR'ed together

Reserved, 0

Reserved, 0
Note: This message has a higher priority than WM_P AINT or WM_ TIMER, but lower than the user 1/0
messages.

WM_SEM3

This message is sent from the application for its own use.

Parameter 1:
ULONG

Parameter 2:
ULONG
Reply:
ULONG

This is a collection of this variable from any other existing WM_SEM3
messages in the queue, OR'ed together

Reserved, 0

Reserved, 0
Note: This message has a higher priority than WM_PAINT, but lower than almost all other messages.

WM_SEM4

This message is sent from the application for its own use.

Parameter 1:
ULONG

Parameter 2:
ULONG
Reply:
ULONG

This is a collection of this variable from any other existing WM_SEM4
messages in the queue, OR'ed together

Reserved, 0

Reserved, 0
Note: This message has a lower priority than all other messages.

WM_SETACCELTABLE

This message is sent to associate an accelerator table to a window.

Parameter 1:
HACCEL
Parameter 2:
ULONG

Handle to new accelerator table

Reserved, 0

644 - The Art of OS/2 Warp Programming
Reply:
BOOL Successful? TRUE: FALSE

WM_SETFOCUS

This message is sent when a window is losing or gaining focus.

Parameter 1:
HWND
Parameter 2:
USHORT

TRUE
FALSE
Reply:
UL ONG

Window handle

Can be one of the following:

Window is gaining focus, Parameter 1 is window losing focus
Window is losing focus, Parameter 1 is window gaining focus

Reserved, 0

WM_SETHELPINFO

This message is sent to associate a help instance with a window.

Parameter 1:
HWND
Parameter 2:
ULONG
Reply:
BOOL

Help instance handle

Reserved, 0

Successful? TRUE: FALSE

WM_SETSELECTION

This message is sent when a window is selected or deselected.

Parameter 1:
USHORT

TRUE
FALSE
Parameter 2:
UL ONG
Reply:
ULONG

Selection flag

Window is selected
Window is deselected

Reserved, 0

Reserved, 0

WM_SETWINDOWPARAMS

This message is sent to set the window's Presentation Parameters.

Parameter 1:
PWNDPARAMS
Parameter 2:
ULONG
Reply:
BOOL

WM_SHOW

Pointer to WNDPARAMS structure

Reserved, 0

Successful? TRUE: FALSE

This message is sent when a window is to be made visible or invisible.

Parameter 1:
USHORT Visible flag

TRUE Show window
FALSE Hide window
Parameter 2:
ULONG Reserved, 0
Reply:
ULONG Reserved, 0

WM_SINGLESELECT

This message is sent when the user selects an object.

Parameter 1:
USHORT Mouse indicator

TRUE Selection came from mouse
FALSE Selection came from keyboard
Parameter 2:
POINTS Mouse position
Reply:
BOOL Message processed? TRUE: FALSE

WM_SIZE

This message is sent when a window changes its size.

Parameter 1:
SHORT
SHORT
Parameter 2:
SHORT
SHORT

Old window width
Old window height

New window width
New window height

Appendix A - 645

646 - The Art of OS/2 Warp Programming
Reply:
ULONG Reserved, 0

WM_SUBSTITUTESTRING

This message is sent from the WinSubstituteStrings call.

Parameter 1:
USHORT

Parameter 2:
UL ONG
Reply:
PSZ

Indicates a value corresponding to the decimal character in the substitution
phrase.

Reserved, 0.

String to be substituted.

WM_SYSCOLORCHANGE

This message is sent to all main windows when WinSetSysColors has been used to change the system
colors.

Parameter 1:
ULONG
Parameter 2:
UL ONG
Reply:
UL ONG

WM_SYSCOMMAND

Options specified in WinSetSysColors

Reserved, 0.

Reserved, 0.

This message is sent from a control to its owner whenever it has to notify its owner about a significant
event.

Parameter 1:
USHORT

SC_SIZE
SC_MOVE
SC_MINIMIZE
SC_MAXIMIZE
SC_CLOSE
SC_NEXT
SC_APPMENU
SC_SYSMENU
SC_RESTORE
SC_NEXTFRAME

SC_NEXTWINDOW
SC_TASKMANAGER

One of the following:

Window has been sized.
Window has been moved.
Window has been minimized.
Window has been maximized.
Window has been closed
Moves the active window to the next main window.
Initiates the menu control with the ID, FID_MENU.
Initiates the menu control with the ID, FID_SYSMENU.
Restores a maximized window to its previous size and position.
Moves the active window to the next frame window that is a child of the
desktop.
Moves the active window to the next window with the same owner.
Activate the Task List.

Appendix A- 647

SC_HELPKEYS
SC_HELPINDEX
SC_HELPEXTENDED
SC_HIDE

Sends a HM_KEYS_HELP to the help manager object window.
Sends a HM_HELP _INDEX to the help manager object window.
Sends a HM_EXT_HELP to the help mananger object window.
Hides the window.

Parameter 2:
USHORT Can be one of the following:

CMDSRC_PUSHBUTTON
CMDSRC_MENU
CMDSRC_ACCELERATOR
CMDSRC_FONTDLG
CMDSRC_OTHER

Pushbutton-generated message
Menu-generated message
Accelerator key-generated message
Font dialog-generated message
Some other type of control-generated message

USHORT Can be one of the following:

TRUE
FALSE
Reply:

Mouse was used to initiate event
Keyboard was used to initiate event

ULONG Reserved, 0

WM_SYSV ALUECHANGED

This message is sent when a system value (SV _ *) has been changed.

Parameter 1:
USHORT
Parameter 2:
USHORT
Reply:
ULONG

ID of first value that has changed

ID of last value that has changed

Reserved, 0
Note: All values between usFirstValue and usLastValue will have been changed.

WM_TEXTEDIT

This message is sent when a user is doing direct edit.

Parameter 1:
USHORT

TRUE
FALSE
Parameter 2:
POINTS
Reply:
BOOL

Can be one of the following:

Selection came from mouse
Selection came from keyboard

Mouse position

Message processed? TRUE: FALSE

648 - The Art of OS/2 Warp Programming
WM_ TIMER

This message is sent when a timer expires.

Parameter 1:
USHORT
Parameter 2:
UL ONG
Reply:
UL ONG

WM_TRACKFRAME

Timer ID

Reserved, 0

Reserved, 0

This message is sent when a frame window is moved or sized.

Parameter 1:
USHORT
Parameter 2:
ULONG
Reply:
BOOL

TF_* flags

Reserved, 0

Successful? TRUE: FALSE

WM_TRANSLATEACCEL

This message is sent to determine if a character key is an accelerator key.

Parameter 1:
PQMSG
Parameter 2:
UL ONG
Reply:
BOOL

QMSG structure

Reserved, 0

Character exists in accelerator table? TRUE: FALSE

WM_TRANSLATEMNEMONIC

This message is sent after a WM_ TRANS LA TEACCEL message.

Parameter 1:
PQMSG
Parameter 2:
UL ONG
Reply:
BOOL

Pointer to a QMSG structure

Reserved, 0

Key is an accelerator key? TRUE: FALSE

WM_UPDATEFRAME

This message is sent when a frame window needs updating.

Parameter 1:
ULONG
Parameter 2:
ULONG
Reply:

The FCF_ * flags

Reserved, 0

BOOL Processed message? TRUE:FALSE

Appendix A - 649

Note: This message should be sent by the application when the frame window is customized by adding
or modifying controls.

WM_ VRNDISABLED

This message is sent when a window's visible region has been disabled. This can indicate the window is
being sized or WinLockWindowUpdate was called.

Parameter 1:
VOID
Parameter 2:
VOID
Reply:
ULONG

WM_ VRNENABLED

Reserved.

Reserved.

Reserved, 0.

This message is sent when a window's visible region has been unlocked.

Parameter 1:
BOOL
Parameter 2:
VOID
Reply:
ULONG

WM_VSCROLL

Has the visible region been altered? TRUE: FALSE.

Reserved.

Reserved, 0.

This message is sent when a user modifies the position of a vertical scroll bar.

Parameter 1:
USHORT
Parameter 2:
SHORT
USHORT

Scrnll bar ID

Slider position
Command

650 - The Art of OS/2 Warp Programming

SB_LINEUP
SB_LINEDOWN
SB_PAGEUP
SB_PAGEDOWN

SB_SLIDERPOSITION
SB_SLIDERTRACK
SB_ENDSCROLL

Reply:
UL ONG

The user clicked on up arrow, or a VK_UP key was pressed
The user clicked on down arrow, or a VK_DOWN key was pressed
The user clicked to the top of the slider, or VK_PAGEUP key was pressed
The user clicked to the bottom of the slider, or VK_P AGEDOWN key was
pressed
This is the final position of the slider
The user used the mouse to change the position of the slider
The user has finished scrolling

Reserved, 0

WM_ WINDOWPOSCHANGED

This message is sent when a window's position is changed.

Parameter 1:
PSWP

Parameter 2:
ULONG
Reply:
ULONG

Pointer to two SWP structures:the first is the new structure,
the second is the old structure

A WF _ * flags returned from WM_ADJUSTWINDOWPOS

Reserved, 0

Dialog Box Messages

WM_INITDLG

This message is sent to the dialog at the time of creation.

Parameter 1:
HWND
Parameter 2:
PCREA TEPARAMS
Reply:
BOOL

Handle of control window that will receive focus

Application defined data passed through dialog box function

Focus window is to be changed? TRUE: FALSE

WM_MATCHMNEMONIC

This message is sent by the dialog to the control to determine whether a mnemonic belongs to that control.

Parameter 1:
USHORT
Parameter 2:
UL ONG

Character to match

Reserved, 0

Reply:
BOOL Successful match? TRUE: FALSE

WM_QUERYDLGCODE

This message is sent by the dialog box to query what kinds of controls it has.

Parameter 1:
PQMSG
Parameter 2:
ULONG
Reply:
ULONG

DLGC_ENTRYFIELD
DLGC_BUTTON
DLGC_CHECKBOX
DLGC_RADIOBUTTON
DLGC_STATIC
DLGC_DEFAULT
DLGC_PUSHBUTTON
DLGC_SCROLLBAR
DLGC_MENU
DLGC_MLE

Button Messages

WM_ CONTROL

Message queue

Reserved, 0

Can be one of the following:

Controls is an entryfield.
Control is a button.
Control is a checkbox.
Control is a radio-button.
Control is a static text field.
Control is a default control.
Control is a push-button.
Control is a scrollbar.
Control is a menu.
Control is an MLE.

Appendix A - 651

This messages occurs when a control has to notify its owner of an event. The message is sent, whereas the
WM_ COMMAND message is posted.

Parameter 1:
USHORT
USHORT

Button control ID
Can be one of the following:

BN_CLICKED
BN_DBLCLICKED
BN_PAINT

Button has been pressed
Button has been double clicked.
Button requires painting

Parameter 2:
ULONG Specific information; normally the window handle of the button; however,

when Parameter 1 equals BN_PAINT, this parameter is PUSERBUTTON
typedef struct _USERBUTTON /* ubtn */

{
HWND hwnd;
HPS hps;
ULONG fsState;
ULONG fsStateOld;

} USERBUTTON;
typedef USERBUTTON *PUSERBUTTON;

652 - The Art of OS/2 Warp Programming
Reply:
ULONG Reserved, 0

BM_ CLICK

An application sends this message to simulate the clicking of a button.

Parameter 1:
USHORT
Parameter 2:
UL ONG
Reply:
UL ONG

BM_QUERYCHECK

Up and down indicator

Reserved, 0

Reserved, 0

This message returns whether a button control is checked or not.

Parameter 1:
UL ONG
Parameter 2:
UL ONG
Reply:
USHORT

Reserved, 0

Reserved, 0

Button checked? TRUE:FALSE

BM_QUERYCHECKINDEX

This message returns the index of a checked radio button with a group of radio buttons (zero-based). A
group is defined by the style WS_GROUP.

Parameter 1:
UL ONG
Parameter 2:
ULONG
Reply:
SHORT

BM_QUERYHILITE

Reserved, 0

Reserved, 0

Radio button index

This message returns whether a button control is highlighted or not.

Parameter 1:
UL ONG
Parameter 2:
UL ONG
Reply:
BOOL

Reserved, 0

Reserved, 0

Button highlighted? TRUE:FALSE

BM_SETCHECK

This message checks or unchecks a button control.

Parameter 1:
USHORT
Parameter 2:
ULONG
Reply:
USHORT

BM_SETDEFAULT

Check button? TRUE:FALSE

Reserved, 0

Previous state of button

This message sets the default state of a button.

Parameter 1:
USHORT
Parameter 2:
ULONG
Reply:
BOOL

BM_SETHILITE

Default state? TRUE:FALSE

Reserved, 0

Successful? TRUE:FALSE

This message either highlights or unhighlights a button.

Parameter 1:
USHORT
Parameter 2:
UL ONG
Reply:
BOOL

Highlighted? TRUE: FALSE

Reserved, 0

Previously highlighted? TRUE:FALSE

BM_QUERYCONVERTPOS

Sent to determine if it is OK to convert DBCS characters.

Parameter 1:
PRECTL
Parameter 2:
UL ONG
Reply:
USHORT

Cursor position

Reserved, 0

Conversion code

Appendix A - 653

654 - The Art of OS/2 Warp Programming

List Box Messages

WM_ CONTROL

This message is sent when a list box needs to notify its owner of some significant event.

Parameter 1:
US HORT
USHORT

LN_ENTER
LN_KILLFOCUS
LN_SCROLL
LN_SETFOCUS
LN_SELECT
Parameter 2:
HWND
Reply:
ULONG

Control window ID
Can be one of the following:

Enter or return key has been pressed
List box is losing focus
List box is about to scroll horizontally
List box is gaining focus
An item is being selected or deselected

Window handle of list box

Reserved, 0

WM_MEASUREITEM

This message is sent to the owner of a list box in order to determine the height and width of the specified
item.

Parameter 1:
SHORT
Parameter 2:
SHORT
Reply:

ID of list box window

Index of the list box item to determine size

SHORT Height of list box item of interest
Note: This message only needs to be handled when LS_OWNERDRA W or LS_HORZSCROLL styles
are specified.

LM_DELETEALL

This message is sent to delete all items in a list box.

Parameter 1:
ULONG
Parameter 2:
UL ONG
Reply:
BOOL

LM_DELETEITEM

Reserved, 0

Reserved, 0

Successful? TRUE: FALSE

This message is sent to a list box to delete a specified item.

Parameter 1:
SHORT
Parameter 2:
ULONG
Reply:
SHORT

LM_INSERTITEM

Index of list box item to delete

Reserved, 0

Number of items remaining in the list box

This message is sent to a list box in order to insert a list box item.

Parameter 1:
SHORT Can be one of the following:

LIT_END
LIT_SORTASCENDING
LIT_DESCENDING
Other

Add item to end of list box

Parameter 2:
PSZ
Reply:
SHORT

Insert item sorted in ascending order
Insert the item sorted in descending order
Insert the item at specified index

Text to enter in list box item

Index of newly inserted item

LM_INSERTMULTITEMS

This message is used to insert multiple items into a listbox.

Parameter 1:
PLBOXINFO Pointer to listbox info structure

typedef struct _LBOXINFO
{

LONG litemindex;
ULONG ulitemCount;
ULONG reserved;
ULONG reserved2;

LBOXINFO;

typedef LBOXINFO * PLBOXINFO;

Parameter 2:

/* lboxinfo */

/* Item index */
/* Item count */
/* Reserved - must be zero */
/* Reserved - must be zero */

Appendix A - 655

PSZ * Pointer to an array of strings. For ownerdrawn listboxes that do not use text
strings, set this parameter to NULL. See the ulltemCount entry in Parameter
1 equal to the number of listbox entries.

Reply:
LONG Number of inserted items

LM_QUERYITEMCOUNT

This message is sent to the list box to determine the number of items in the list box.

656 - The Art of OS/2 Warp Programming

Parameter 1:
UL ONG
Parameter 2:
UL ONG
Reply:
SHORT

Reserved, 0

Reserved, 0

Number of items in list box

LM_QUERYITEMHANDLE

This message is sent to the list box in order to query the 4 bytes that can be associated with a list box item.

Parameter 1:
SHORT
Parameter 2:
UL ONG
Reply:
UL ONG

Index of list box item to query

Reserved, 0

Pointer (or any other 4 byte data type) to application-defined data

LM_QUERYITEMTEXT

This message is sent to the list box to query the list box item text.

Parameter 1:
SHORT
SHORT
Parameter 2:
PSZ
Reply:
SHORT

Index of list box item
Length of buffer (including NULL); 0 returns length of text

Buffer for list box item text

Length of text string, minus the NULL

LM_QUERYITEMTEXTLENGTH

This message is sent to the list box to determine the length of a specified list box item.

Parameter 1:
SHORT
Parameter 2:
UL ONG
Reply:
SHORT

Index of list box item

Reserved, 0

Text length of specified item

LM_QUERYSELECTION

This message is sent to the list box to determine which items are selected.

Parameter 1:
SHORT Index of item to start search from; LIT_FIRST indicates to start search at

first item

Parameter 2:
UL ONG
Reply:
SHORT

Appendix A - 657

Reserved, 0

Index of selected Item; LIT_NONE indicates no more selected items

LM_QUERYTOPINDEX

This message is sent to the list box to determine the index of the item currently visible at the top of the list
box.

Parameter 1:
UL ONG
Parameter 2:
ULONG
Reply:
SHORT

LM_SEARCHSTRING

Reserved, 0

Reserved, 0

Index of item currently at top of list box

This message is sent to the list box to find the index of the item that matches the search string.

Parameter 1:
SHORT

LSS_CASESENSITIVE
LSS_PREFIX
LSS_SUBSTRING

SHORT
Parameter 2:
PSZ
Reply:
SHORT

LM_SELECTITEM

Could be one of the following:

Search is case sensitive
Leading characters of item match the search string
Match if item contains search string

Index of item to start search from

String to use as search criteria

Index of item that matches string

This message is sent to the list box to select or deselect an item.

Parameter 1:
SHORT

Parameter 2:
SHORT

Index of item to select or deselect; LIT_NONE indicates all items are to be
deselected

Can be one of the following:(ignored if sltemlndex == LIT_NONE)

TRUE
FALSE

Item is selected
Item is deselected

658 - The Art of OS/2 Warp Programming
Reply:
BOOL Successful? TRUE: FALSE

LM_SETITEMHANDLE

This message is sent to the list box to associate 4 bytes of data with a specific list box item.

Parameter 1:
SHORT
Parameter 2:
UL ONG
Reply:
BOOL

LM_SETITEMHEIGHT

Index of list box item

Application-defined data

Successful? TRUE: FALSE

This message is sent to the iist box to set the height of the iist box items.

Parameter 1:
ULONG
Parameter 2:
UL ONG
Reply:
BOOL

LM_SETITEMTEXT

New height of list box items, in pixels

Reserved, 0

Successful? TRUE: FALSE

This message is sent to the list box to set the text of a specified list box item.

Parameter 1:
SHORT
Parameter 2:
PSTRL
Reply:
BOOL

LM_SETITEMWIDTH

Index of list box item

Pointer to list box item text

Successful? TRUE: FALSE

This message is used to set the width of the items in a list box.

Parameter 1:
UL ONG
Parameter 2:
ULONG
Reply:
BOOL

Width of list box items.

Reserved, 0.

Sucessful?TRUE : FALSE

LM_SETTOPINDEX

This message is sent to the list box to scroll the list box to the specified item.

Parameter 1:
SHORT
Parameter 2:
ULONG
Reply:
BOOL

Index of item to put as currently visible top item

Reserved, 0

Successful? TRUE: FALSE

Notebook Messages

WM_ CONTROL

This message is sent when a control has a to notify its owner of a significant event.

Parameter 1:
USHORT
USHORT

Control window ID
Can be one of the following:

Appendix A - 659

BKN_HELP
BKN_NEWPAGESIZE,
BKN_PAGESELECTED

The notebook has received a WM_HELP message
The dimensions of the page window have changed

BKN_PAGEDELETED
BKN_PAGESELECTEDPENDING

Parameter 2:

A new page has been selected as the topmost page of the
notebook. This message is sent after the page is turned.
A page has been deleted from the notebook.
This notification is sent prior to the notebook page actually
turning.

ULONG Described in the following table:

BKN_HELP
BKN_PAGESELECTED
BKN_PAGEDELETED
BKN_NEWPAGESIZE
BKN PAGESELECTEDPENDING

Reply:
UL ONG Reserved, 0

BKM_CALCPAGERECT

ID of selected page;
a pointer to PAGESELECTNOTIFY structure;
a pointer to DELETENOTIFY structure;
the notebook window handle
a pointer to PAGESELECTNOTIFY structure

This message is used to determine the size of the notebook page, or the application page.

Parameter 1:
PRECTL Pointer to RECTL structure

TRUE

FALSE

Parameter 2:
BOOL

Input will be the coordinates of the notebook window, output will be the size of
application page window
Input will be the coordinates of an application page window, output will be the
size of notebook window.

Can be one of the following:

TRUE
FALSE
Reply:

Calculate size of application page window
Calculate size of notebook window

BOOL Successful? TRUE:FALSE

BKM_DELETEPAGE

This message is used to delete a page form the notebook.

Parameter 1:
UL ONG
Parameter 2:
USHORT

Page identifier

Can be one of the following:

BKA_SINGLE
BKA_TAB
BKA_ALL

Delete a single page
If Parameter 1 is a page that contains a tab, delete all subsequent pages to the next tab
Delete all pages in the notebook

Reply:
BOOL Successful? TRUE:FALSE

BKM_INSERTPAGE

This message is sent to insert a page into the notebook.

Parameter 1:
ULONG

Parameter 2:
USHORT

BKA_AUTOPAGESIZE
BKA_STATUSTEXTON
BKA_MAJOR
BKA MINOR

USHORT

Page ID used as a reference point if BKA_FIRST or BKA_LAST is
specified for usPageOrder

Can be one of the following:

Notebook will size the placement and position of page window
Page will contain status text
Page will have major tab
Page will have a minor tab

Can be one of the following:

BKA_FIRST
BKA_LAST
BKA_NEXT
BKA_PREV

Reply:
ULONG

Page is inserted as the first page of the notebook
Page is inserted as the last page of the notebook
Page is inserted behind the page specified in Parameter 1
Page is inserted before the page specified in Parameter 1

Page ID for the page inserted, NULL if unsuccessful

BKM_INV ALIDATETABS

This message is sent to repaint the notebook tabs.

Parameter 1:
ULONG
Parameter 2:
ULONG
Reply:
BOOL

Reserved, 0

Reserved, 0

Successful repaint? TRUE:FALSE

BKM_QUERYPAGECOUNT

This message is sent to query the number of pages in the notebook.

Parameter 1:

Appendix A - 661

ULONG
Parameter 2:

Page identifier to start counting at; 0 indicates to start at first page

ULONG

BKA_MAJOR

BKA_MINOR

BKA_END
Reply:
USHORT

Can be one of the following:

Returns the number of pages between ulPageID and the next page that contains a major
tab
Returns the number of pages between ulPagelD and the next page containing a minor
tab
Returns the number of pages between ulPageID and the last page

Number of pages

BKM_QUERYPAGEDATA

This message is sent to query the data associated with the specified page.

Parameter 1:
ULONG
Parameter 2:
ULONG
Reply:
ULONG

The specified page to retrieve the data

Reserved, 0

The 4 bytes of data associated with the page

662 - The Art of OS/2 Warp Programming
BKM_QUERYPAGEINFO

This message is sent to query the page information associated with the specified page.

Parameter 1:
ULONG
Parameter 2:

The specified page to retrieve the page information

PPAGEINFO Pointer to P AGEINFO structure
typedef struct _BOOKPAGEINFO

{
/* bkpginfo */

UL ONG
UL ONG
BOOL

cb; /* Page flags - BFA_ */

!* FALSE:
UL ONG
HWND
PFN
ULONG
HMODULE

fl;
bLoadDlg;
Load dialog on turn*/
ulPageData;
hwndPage;
pfnPageDlgProc;
idPageDlg;
hmodPageDlg;

PVOID pPageDlgCreateParams;
PDLGTEMPLATE pdlgtPage;
ULONG cbStatusLine;
PSZ pszStatusLine;
HBITMAP hbmMajorTab;
HBITMAP hbmMinorTab;
ULONG cbMajorTab;
PSZ pszMajorTab;
ULONG cbMinorTab;
PSZ pszMinorTab;
PVOID pBidiinfo;
/* language support. */

/* Page flags - BFA_ */
/* TRUE: Load dialog now */

/* data to associate w/page */
/* hwnd to associate w/ page */
/* auto load of dialogs for */
/* the application. */
/* Resource info used for */

/* Page flags - BFA_
/* Status line text string
/* Major tab bitmap handle
/* Minor tab bitmap handle
/* Page flags - BFA_
/* Major tab text string
/* Page flags - BFA_
/* Minor tab text string
/* Reserved: Bidirectional

*/
*/
*/
*!
*!
*/
*/
*/
*!

} BOOKPAGEINFO;
typedef BOOKPAGEINFO *PBOOKPAGEINFO;

Reply:
UL ONG The 4 bytes of data associated with the page

BKM_QUERYPAGEID

This message is sent to find the page ID for a page in the notebook.

Parameter 1:
UL ONG
Parameter 2:
USHORT

BKA_FIRST
BKA_LAST
BKA_NEXT
BKA_PREV
BKA_TOP

USHORT
Reply:
ULONG

Page ID of page used as reference point

Can be one of the following:

Queries the page id of the first page
Queries the page id of the last page
Queries the page id of the page after the page specified in parameter 1
Queries the page before the page specified in parameter 1
Queries the page id of the currently visible page

BKA_MAJOR or BKA_MINOR

Page ID of specified page

BKM_QUERYPAGESTYLE

This message queries the style of a page of interest.

Parameter 1:
ULONG
Parameter 2:
ULONG
Reply:
USHORT

Page identifier

Reserved, 0

Page style of specified page

BKM_QUERYPAGEWINDOWHWND

This message is used to query the page window handle of the page of interest.

Parameter 1:
ULONG
Parameter 2:
UL ONG
Reply:

Page ID

Reserved, 0

Appendix A - 663

HWND Handle of the page window associated with the page specified in Parameter
I

BKM_QUERYSTATUSLINETEXT

This message is used to query the status text associated with the specified page.

Parameter 1:
ULONG
Parameter 2:
PBOOKTEXT
Reply:
USHORT

Page ID of page of interest

Pointer to BOOKTEXT structure

Length of returned status string

BKM_QUERYTABBITMAP

This message is used to query the bitmap of the page of interest.

Parameter 1:
ULONG
Parameter 2:
ULONG
Reply:
HBITMAP

Page ID of page to retrieve bitmap handle

Reserved, 0

Handle of bit map

BKM_QUERYTABTEXT

This message is used to query the text of the tab of the page of interest.

664 - The Art of OS/2 Warp Programming
Parameter 1:
UL ONG
Parameter 2:

Page ID of the page of interest

PBOOKTEXT Pointer to BOOKTEXT structure for page of interest
Reply:
USHORT Length of the tab text string

BKM_SETDIMENSIONS

This message is used to set the size of the major and minor tabs.

Parameter 1:
USHORT
USHORT
Parameter 2:

Desired width of tab, in pixels
Desired height of tab, in pixels

USHORT Can be one of the following:

BKA_MAJOR
BKA_MINOR
BKA_PAGEBUTTON
Reply:

Set tab size of major tabs
Set tab size of minor tabs
Set size of page buttons

BOOL Successful? TRUE:FALSE

BKM_SETNOTEBOOKCOLORS

This message is used to set the colors of the notebook.

Parameter 1:
UL ONG
Parameter 2:

Color index or RGB value to be used

USHORT Notebook region to set

BKA_BACKGROUNDPAGECOLOR
BKA_BACKGROUNDPAGECOLORINDEX
BKA_BACKGROUNDMAJORCOLOR
BKA_BACKGROUNDMAJORCOLORINDEX
BKA_BACKGROUNDMINORCOLOR
BKA_BACKGROUNDMINORCOLORINDEX
BKA_FOREGROUNDMAJORCOLOR
BKA_FOREGROUNDMAJORCOLORINDEX
BKA_FOREGROUNDMINORCOLOR
BKA_FOREGROUNDMINORCOLORINDEX

Reply:

Page background
Page background
Major tab background
Major tab background
Minor tab background
Minor tab background
Major tab foreground
Major tab foreground
Minor tab foreground
Minor tab foreground

BOOL Successful? TRUE:FALSE

BKM_SETPAGEINFO

This message is used to set the page information of a notebook page.

Parameter 1:
ULONG
Parameter 2:
PPAGEINFO
Reply:
BOOL

BKM_SETPAGEDATA

Page ID of page whose page information is to be set.

Pointer to P AGEINFO structure

Successful? TRUE: FALSE

This message is used to associate 4 bytes of data with a page.

Parameter 1:
UL ONG
Parameter 2:
ULONG
Reply:
BOOL

Page ID of page of interest

Four bytes of data to be associated with specified page

Successful? TRUE:FALSE

BKM_SETPAGEWINDOWHWND

This message is used to associate a window handle with a page.

Parameter 1:
ULONG
Parameter 2:
HWND
Reply:
BOOL

Page ID to be associated with handle

Window handle to be associated with specified page

Successful? TRUE:FALSE

BKM_SETSTATUSLINETEXT

This message is used to associate a text string with a page's status line.

Parameter 1:
ULONG
Parameter 2:
PSZ
Reply:
BOOL

BKM_SETTABBITMAP

Page ID of page to set status line text

Pointer to text string

Successful? TRUE:FALSE

This message is used to set a bitmap with a page.

Parameter 1:
ULONG
Parameter 2:
HBITMAP

Page ID to associate with bitmap

Bitmap handle to be used

Appendix A - 665

666 - The Art of OS/2 Warp Programming

Reply:
BOOL Successful? TRUE:FALSE

BKM_SETTABTEXT

This message is used to set the text of a major or minor tab.

Parameter 1:
ULONG
Parameter 2:
PSZ
Reply:
BOOL

Page containing tab of interest

Pointer to tab text string

Successful? TRUE:FALSE

BKM_TURNTOPAGE

This message is used to set the currently visible notebook page.

Parameter 1:
UL ONG
Parameter 2:
UL ONG
Reply:
BOOL

Page ID to be brought to top

Reserved, 0

Successful? TRUE:FALSE

Value Set Messages

WM_ CONTROL

Sent when a control is to notify its owner of a significant event.

Parameter 1:
USHORT
USHORT

VN_DRAGLEA VE
VN_DRAGOVER
VN_DROP
VN_DROPHELP
VN_ENTER
VN_HELP
VN_INITDRAG
VN_KILLFOCUS
VN_SELECT
VN_SETFOCUS

Value set control ID
Can be one of the following:

Value set receives a DM_DRAGLEAVE message.
Value set receives a DM_DRAGOVER message.
Value set receives a DM_DROP message.
Value set receives a DM_DROPHELP message.
Enter key was pressed on an item.
Value set receives a WM_HELP message.
Drag was initiated on the value set.
Value set is losing focus.
A value set item has been selected.
Value set is receiving focus.

Appendix A - 667
Parameter 2:
UL ONG For VN_DRAGOVER, VN_DRAGLEA VE, VN_DROP, or

Reply:
ULONG

VN_DROPHELP pointer to VSDRAGINFO structure

typedef struct _VSDRAGINFO {
PDRAGINFO pDraginfo; /* pointer to DRAGINFO structure */
USHORT usRow; I * Row * I
USHORT usColumn; /* Column */

VS DRAG INFO

typedef struct _DRAGINFO
ULONG ulDraginfo;
ULONG usDragitem;
SHORT usOperation;
HWND hwndSource;
SHORT xDrop;
SHORT yDrop;
USHORT cditem;
USHORT usReserved;

DRAGINFO;

/* structure size */
/* DRAGITEM structures sizes */
/*modified drag operations */
/* window handle */
/* x-coordinate */
/* y-coordinate */
/* count of DRAGITEM structures */
/* reserved */

For VN_INITDRAG, pointer to VSDRAGINIT structure
typedef struct _VSDRAGINIT {

HWND hwndVS;
LONG x;
LONG y;
LONG ex;
LONG cy;
USHORT usRow;
USHORT usColumn;

VSDRAGINIT;

/* value set window handle */
/* x-coordinate */
!* y-coordinate */
/* x-offset */
/* y-offset */
/* row */
/* column */

For VN_ENTER, VN_HELP, or VN_SELECT, contains row and column of
selected item; low byte is row, and high byte is column

Reserved, 0

VM_QUERYITEM

Queries the contents of the specified item.

Parameter 1:
USHORT
USHORT
Parameter 2:

Row
Column

PVSTEXT Pointer to VSTEXT structure

typedef struct _ VSTEXT {

Reply:

PSZ pszitemText;
USHORT usBufLen;

} VSTEXT;

/* pointer */
/* buffer size */

UL ONG Can be one of the following:

668 - The Art of OS/2 Warp Programming

VIA_ TEXT
VIA_BITMAP
VIA_ICON
VIA_RGB
VIA_COLORINDEX

USHORT length of text.
HBITMAP handle of bitmap associated with item
HPOINTER handle of icon associated with item.
ULONG rgb value of item.
ULONG index of color index of item.

VM_QUERYITEMATTR

Queries the attribute(s) of the item specified.

Parameter 1:
USHORT
USHORT
Parameter 2:
ULONG
Reply:
USHORT

VIA_BITMAP
VIA_COLORINDEX
VIA_ICON
VIA_RGB
VIA_ TEXT
VIA_DISABLED
VIA_DRAGGABLE
VIA_DROPONABLE
VIA_OWNERDRA W

VM_QUERYMETRICS

Row
Column

Reserved, 0

Can be one of the following:

Value set item is a bitmap.
Value set item is a colorindex.
Value set item is an icon.
Value set item is an RGB value.
Value set item is a text item.
Value set item is disabled.
Value set item is draggable.
Value set item is droponable.
Value set item is ownerdrawn.

Queries for the current size of each'value set item, or the spacing between them.

Parameter 1:
USHORT
Parameter 2:
ULONG
Reply:
ULONG

Control metrics VMA_ITEMSIZE or VMA_ITEMSPACING

Reserved, 0

us Width, in pixels, and usHeight, in pixels

VM_QUERYSELECTEDITEM

Queries for the currently selected item in the value set.

Parameter 1:
ULONG Reserved, 0

Parameter 2:
ULONG
Reply:
USHORT
USHORT

VM_SELECTITEM

Reserved, 0

Row
Column

Selects the specified value, deselecting the previously selected item.

Parameter 1:
USHORT
USHORT
Parameter 2:
ULONG
Reply:
BOOL

VM_SETITEM

Row
Column

Reserved, 0

Successful? TRUE:FALSE

Specifies type of information contained by an item.

Parameter 1:
USHORT
USHORT
Parameter 2:
ULONG

VIA_ TEXT
VIA_BITMAP
VIA_ICON
VIA_RGB
VIA COLORINDEX

Reply:
BOOL

VM_SETITEMATTR

Row
Column

Item information

PSZ pszltemTextString
HBITMAP hbmitemBitamp
HPOINTER hptritemPointer
ULONG rbgitem
ULONG ulColorindex

Successful? TRUE:FALSE

Sets the attribute(s) of the specified item.

Parameter 1:
USHORT
USHORT
Parameter 2:
USHORT

Row
Column

Item attributes. Can be one of the following:

Appendix A - 669

670 - The Art of OS/2 Warp Programming
VIA_BITMAP
VIA_ICON
VIA_ TEXT
VIA_RGB
VIA_COLORINDEX
VIA_OWNERDRA W
VIA_DISABLED
VIA_DRAGGABLE
VIA_DROPONABLE

USHORT
Reply:
BOOL

VM_SETMETRICS

Set? TRUE:FALSE

Successful? TRUE:FALSE

Sets the size of the value set items, or the spacing between them.

Parameter 1:
USHORT
Parameter 2:
USHORT

USHORT

Reply:
BOOL

Slider Messages

WM_ CONTROL

VMA_ITEMSIZE, or VMA_ITEMSPACING

Width of item if VMA_ITEMSIZE, space between horizontal if
VMA_ITEMSPACING
Height of item if VMA_ITEMSIZE, space between vertical if
VMA_ITEMSPACING

Successful? TRUE:FALSE

This message is sent to a control's owner, in order to signal a significant event that has occurred to the
control.

Parameter 1:
USHORT
USHORT

SLN_CHANGE
SLN_K.ILLFOCUS
SLN_SETFOCUS
SLN_SLIDERTRACK
Parameter 2:
ULONG

Slider control ID
Notification code; can be any of the following for the slider control:

Slider arm position changed
Slider is losing focus
Slider is receiving the focus
Slider arm is being dragged, but not released

When Parameter 1 is SLN_CHANGE, or SLN_SLIDERTRACK, this equals
the new arm position, in pixels when Parameter 1 is SLN_SETFOCUS, or
SLN_KILLFOCUS, this is the slider window handle

Reply:
ULONG Reserved, 0

SLM_ADDETENT

This message is sent to add a detent to a slider.

Parameter 1:
USHORT
Parameter 2:
ULONG
Reply:
UL ONG

Number of pixels detent is positioned from home position

Reserved, 0

Detent ID.

SLM_QUERYDETENDPOS

Queries the slider for the text on a specific tick mark.

Parameter 1:
USHORT
USHORT
Parameter 2:
PSZ
Reply:
SHORT

Tick mark number
Length of tick text buffer

Pointer to tick text buffer

Count of bytes returned

SLM_QUERYSCALETEXT

This message is sent to query the scale text of a particular location on the slider.

Parameter 1:
USHORT
USHORT
Parameter 2:
PSZ
Reply:
SHORT

Tick location to query text.
Length of input text buffer.

Input text buffer.

Length of string returned in Parameter 2.

SLM_QUERYSLIDERINFO

Sends a query to the slider for the position or size of some part of the slider.

Parameter 1:
USHORT Can be one of the following:

Returns length and breadth of the slider shaft.

Appendix A - 671

SMA_SHAFTDIMENSIONS
SMA_SHAFTPOSITION
SMA_SLIDERARMDIMENSIONS
SMA_SLIDERARMPOSITION

Returns x, y position of the lower-left corner of the slider shaft.
Returns the length and bread of the slider arm.
Returns the position of the slider arm.

672 - The Art of OS/2 Warp Programming

USHORT Can be one of the following:

SMA_RANGEV ALUE Reply represents number of pixels between home and current arm
position in low byte; high byte is pixel length of slider.

SMA_INCREMENTV ALUE
Parameter 2:

Reply represents position as increment value.

ULONG Reserved, 0.
Reply:
ULONG See second USHORT of Parameter 1.

SLM_QUERYTICKPOS

This message is used to query the slider for the current position of a specified tick mark.

Parameter 1:
USHORT
Parameter 2:
ULONG
Reply:
USHORT
USHORT

Tick mark number

Reserved, 0

x - coordinate
y - coordinate

SLM_ QUERYTICKSIZE

This message is used to query the slider for the size of the tick mark.

Parameter 1:
USHORT
Parameter 2:
ULONG
Reply:
USHORT

Tick mark number

Reserved, 0

Tick mark length

SLM_REMOVEDETENT

This message is used to remove a detent.

Parameter 1:
UL ONG
Parameter 2:
UL ONG
Reply:
BOOL

SLM_SETSCALETEXT

Detent ID

Reserved, 0

Successful? TRUE:FALSE

This message is sent to the slider to set the text above a tick mark. Text is centered on the tick mark.

Parameter 1:
USHORT
Parameter 2:
PSZ
Reply:
BOOL

SLM_SETSLIDERINFO

Appendix A - 673

Tick mark number

Pointer to tick mark text

Successful? TRUE:FALSE

This message is sent to set the current position or dimensions of a specific part of the slider.

Parameter 1:
USHORT
USHORT
Parameter 2:
ULONG
Reply:
BOOL

SLM_SETTICKSIZE

Information attribute
Format attribute

New value

Successful ?TR UE:F ALSE

This message is used to set the size of a tick mark.

Parameter 1:
USHORT
USHORT
Parameter 2:
UL ONG
Reply:
BOOL

Tick mark number
Tick mark length

Reserved, 0

Successful? TRUE:FALSE

Circular Slider Messages

WM_ CONTROL

This message is sent from the circular slider to notify its owner of an important event.

Parameter 1:
USHORT
USHORT

CSN_SETFOCUS
CSN_CHANGED

Circular slider ID.
Notification code. Can be one of the following:

Indicates the circular slider is gaining or losing focus.
Indicates the circular slider value has been changed.

CSN_ TRACKING
CSN_QUERYBACKGROUNDCOLOR

Indicates the circular slider is being tracked by the mouse.
Gives the application an opportunity to set the background
color of the circular slider.

Parameter 2:
UL ONG Notification information. Can be one of the following:

67 4 - The Art of OS/2 Warp Programming

CSN_SETFOCUS
CSN_CHANGED
CSN_ TRACKING
CSN QUERYBACKGROUNDCOLOR

Contains TRUE if slider is gaining focus
Contains the new value of the slider.
Contains the intermediate value of the slider.
NULL

Rtply:
ULONG Reserved, 0.

CSM_QUERYINCREMENT

This message is sent to query the value and tick mark increments.

Parameter 1:
PUSHORT
Parameter 2:
PUSHORT
Reply:
ULONG

CSM_QUERYRADIUS

Returns the increment value used in scrolling the slider.

Returns the increment value used to draw the tick marks.

Successful? TRUE: FALSE.

This message is sent to query the radius of the circular slider.

Parameter 1:
PUSHORT
Parameter 2:
UL ONG
Reply:
ULONG

CSM_QUERYRANGE

Returns the slider radius.

Reserved, 0.

Successful? TRUE: FALSE.

This message is sent to query the range of the circular slider.

Parameter 1:
PSHORT
Parameter 2:
PSHORT
Reply:
ULONG

CSM_QUERYVALUE

Returns the low range value.

Returns the high range value.

Successful? TRUE: FALSE.

This message is sent to query the current value of the circular slider.

Parameter 1:
PSHORT Returns the value of the slider.

Parameter 2:
ULONG
Reply:
ULONG

Reserved, 0.

Successful? TRUE: FALSE.

CSM_SETBITMAPDATA

This message is sent to set the bitmap data associated with the circular slider.

Parameter 1:
PCSBITMAPDATA Contains a pointer to a CSBITMAPDATA structure.

typedef struct _CSBITMAPDATA /* csbitmap */
{

HBITMAP hbmLeftUp;
HBITMAP hbmLeftDown;
HBITMAP hbmRightUp;
HBITMAP hbmRightDown;

CSBITMAPDATA;
typedef CSBITMAPDATA *PCSBITMAPDATA;

Parameter 2:
ULONG Reserved, 0.
Reply:
UL ONG Successful? TRUE: FALSE.

CSM_SETINCREMENT

This message is sent to set the scroll and tick mark increments of the circular slider.

Parameter 1:
USHORT
Parameter 2:
USHORT
Reply:
ULONG

CSM_SETRANGE

Indicate the scroll increment desired.

Indicate the tick mark increment desired.

Successful? TRUE: FALSE

This message is sent to set the range of values of the circular slider.

Parameter 1:
SHORT
Parameter 2:
SHORT
Reply:
ULONG

CSM_SETVALUE

Indicate the minimum value of the slider.

Indicate the maximum value of the slider.

Successful? TRUE: FALSE

This message is sent to set the current value of the circular slider.

Appendix A - 675

676 -The Art of OS/2 Warp Programming
Parameter 1:
SHORT
Parameter 2:
ULONG
Reply:
ULONG

Indicates the new value to which to set the slider.

Reserved, 0.

Successful? TRUE: FALSE.

File Dialog Messages

FDM_ERROR

This message is sent from the file dialog before the dialog displays an error message.

Parameter 1:
USHORT
Parameter 2:
ULONG
Reply:
USHORT

FDM_FILTER

Error message ID

Reserved, 0

If 0, bring up error message dialog; else no error message dialog is brought
up, and the following values can be returned to the file dialog: MBID_OK,
MBID_CANCEL, or MBID_RETRY

This message is sent from the file dialog before a file that meets the filtering criteria is added to the list of
selectable files.

Parameter 1:
PSZ
Parameter 2:
PSZ
Reply:
BOOL

FDM_ VALIDATE

Pointer to the file name

Pointer to the . TYPE EA

Add file? TRUE: FALSE

This message is sent from the file dialog when the user has selected a file and presses OK.

Parameter 1:
PSZ
Parameter 2:
USHORT

Reply:
BOOL

Name of selected file

Either FDS_EFSELECTION for an entry field selection, or
FDS_LBSELECTION for a selection from the list box

Valid file? TRUE: FALSE

Appendix A - 677

Font Dialog Messages

FNTM_FACENAMECHANGED

This message is sent from the font dialog whenever the font name is changed by the user.

Parameter 1:
PSZ
Parameter 2:
UL ONG
Reply:
ULONG

FNTM_FILTERLIST

Pointer to selected font name

Reserved, 0

Reserved, 0

This message is sent from the font dialog whenever a new font name is to be added to the list.

Parameter 1:
PSZ
Parameter 2:
USHORT

FNTI_FAMIL YNAME
FNTI_STYLENAME
FNTI_POINTSIZE

USHORT

FNTI_BITMAPFONT

Font family name

Can be one of the following:

Indicates a font is being added to the family name combo box.
Indicates a style is being added to the style combo box.
Indicates a point size is being added to the point size combo box.

Can be one of the following:

FNTI_ VECTORFONT
FNTI_SYNTHESIZED
FNTI_FIXEDWIDTHFONT
FNTI_PROPORTIONALFONT
FNTI_DEFAULTLIST

Item being added is bitmap font information.
Item being added is vector font.
Item being added is synthesized font.
Item being added is fixed width font.
Item being added is proportional width font.
A point size from the default list is being added.

Reply:
BOOL Accept new font? TRUE: FALSE

FNTM_POINTSIZECHANGED

This message is sent from the font dialog when the user has changed the selected point size.

Parameter 1:
PSZ
Parameter 2:
FIXED
Reply:
USHORT

Pointer to point size string

Point size as FIXED data type

Reserved, 0

678 - The Art of OS/2 Warp Programming
FNTM_STYLECHANGED

This message is sent from the font dialog whenever the user changes the font style attributes.

Parameter 1:
PSTYLECHANGE Pointer to style change structure

typedef struct _STYLECHANGE
{

USHORT
USHORT
USHORT
USHORT
ULONG
UL ONG
UL ONG
UL ONG
UL ONG
UL ONG
UL ONG
UL ONG

} STYLECHANGE;

usWeight;
usWeightOld;
usWidth;
usWidthOld;
fl Type;
flTypeOld;
flTypeMask;
flTypeMaskOld;
flStyle;
flStyleOld;
flStyleMask;
flStyleMaskOld;

!* style */

typedef STYLECHANGE *PSTYLECHANGE;

Parameter 2:
UL ONG
Reply:
ULONG

Reserved, 0

Reserved, 0

FNTM_UPDATEPREVIEW

This message is sent from the font dialog whenever the preview window needs to be changed.

Parameter 1:
HWND
Parameter 2:
ULONG
Reply:
UL ONG

Menu Messages

WM_INITMENU

Preview window handle

Reserved, 0

Reserved, 0

This message is sent when a menu is about to become active.

Parameter 1:
USHORT
Parameter 2:
HWND
Reply:
ULONG

ID of menu that is becoming active

Menu window handle

Reserved, 0

Appendix A - 679
WM_MENUEND

This message is sent to the menu's owner to indicate the menu is about to end.

Parameter 1:
USHORT
Parameter 2:
HWND
Reply:
UL ONG

WM_MENUSELECT

Terminating menu ID

Menu window handle

Reserved, 0

This message is sent to the owner of the menu when a menu item has been selected.

Parameter 1:
USHORT
USHORT

Parameter 2:
HWND
Reply:
BOOL

WM_NEXTMENU

ID of selected menu item
TRUE - indicates a WM_COMMAND, WM_SYSCOMMAND, or
WM_HELP message will be posted to the owner
FALSE - no message will be posted

Menu window handle

TRUE - indicates the COMMAND messages are to be posted, and menu is
dismissed, unless MIA_NODISMISS is set
FALSE - indicates no COMMAND messages are to be posted, and the
menu is not dismissed

This message is sent to the owner of the menu to indicate that either the beginning or the end of the menu
has been reached.

Parameter 1:
HWND
Parameter 2:
USHORT

Reply:
HWND

MM_DELETEITEM

Menu window handle

TRUE - at beginning of menu
FALSE - at end of menu

New menu window handle

This message is sent to the window in order to delete a menu item.

Parameter 1:
US HORT
USHORT

Menu item ID
TRUE - search submenus for item
FALSE - do not search submenus for item

680 - The Art of OS/2 Warp Programming
Parameter 2:
UL ONG Reserved, 0
Reply:
SHORT Number of menu items remaining

WM_ENDMENUMODE

This message is sent to the menu to end the menu.

Parameter 1:
USHORT

Parameter 2:
ULONG
Reply:
ULONG

WM_INSERTITEM

TRUE - Dismiss the submenu
FALSE - do not dismiss the submenu

Reserved, 0

Reserved, 0

This message is sent to the menu to insert an item into the menu.

Parameter 1:
PMENUITEM Pointer to menu-item structure

typedef struct _MENUITEM
{

*I

SHORT
USHORT
US HORT
USHORT
HWND

iPosition; /* position in menu or sub-menu */
afStyle; /* menu item style */
afAttribute; /* menu item attributes */
id; /* menu item ID */
hwndSubMenu; /* handle for sub-menu, if item is a member of sub-menu

ULONG hitem; /* menu item handle */
} MENUITEM;
typedef MENUITEM *PMENUITEM;

Parameter 2:
PSTRL
Reply:
SHORT

MM_ISITEMV ALID

Menu item text

Index of newly inserted item

This message is sent to the menu to determine the selectability of a menu item.

Parameter 1:
USHORT
USHORT

Parameter 2:
ULONG

Menu item ID
TRUE - search submenus for item
FALSE - do not search submenus for item

Reserved, 0

Reply:
BOOL TRUE - item is selectable

FALSE- item is not selectable

MM_ITEMIDFROMPOSITION

Appendix A - 681

This message is sent to the menu to determine the menu item ID from its position in the menu.

Parameter 1:
SHORT
Parameter 2:
ULONG
Reply:
SHORT

Zero-based item index

Reserved, 0

Menu item ID

MM_ITEMPOSITIONFROMID

This message is sent to the menu to determine a menu item's position from its ID.

Parameter 1:
USHORT
USHORT

Parameter 2:
ULONG
Reply:
SHORT

Menu itemID
TRUE- search submenus for item
FALSE- do not search submenus for item

Reserved, 0

Item index

MM_QUERYDEFAULTITEMID

This message is sent to query the default item ID for a conditional cascade menu.

Parameter 1:
ULONG
Parameter 2:
ULONG
Reply:
ULONG

MM_QUERYITEM

Reserved, 0.

Reserved, 0.

Menu ID of default menu item.

This message is sent to query the definition of a menu item.

Parameter 1:
US HORT
US HORT

Menu item ID
TRUE - search submenus for item
FALSE - do not search submenus for item

682 - The Art of OS/2 Warp Programming
Parameter 2:
PMENUIIBM Menu item structure; the menu item definition is copied to this structure on a

successful return
Reply:
BOOL Successful? TRUE: FALSE

MM_QUERYITEMATTR

This message queries the menu attributes for a menu item.

Parameter 1:
USHORT
USHORT

Parameter 2:
USHORT
Reply:
USHORT

Menu item ID
TRUE - search submenus for item
FALSE - do not search submenus for item

Attributes to return

State of selected attributes

MM_QUERYITEMCOUNT

This message is sent to determine the number of items in a menu.

Parameter 1:
ULONG
Parameter 2:
ULONG
Reply:
SHORT

Reserved, 0

Reserved, 0

Number of menu items

MM_QUERYITEMRECT

This message is sent to determine the rectangle (RECTL) coordinates of a menu item.

Parameter 1:
USHORT
USHORT

Parameter 2:
PRECTL
Reply:
BOOL

Menu item ID
TRUE - search submenus for item.
FALSE - do not search submenus for item

Rectangle of the menu item

Successful? TRUE: FALSE

MM_QUE~YITEMTEXT

This message is sent to the menu to query the menu item text.

Parameter 1:
USHORT
SHORT
Parameter 2:
PSTRL
Reply:
SHORT

Menu item ID
Size of text input buffer

Menu item text buffer

Length of text string

MM_QUERYITEMTEXTLENGTH

Appendix A - 683

This message is sent to the menu to determine the length of the specified menu item text.

Parameter 1:
US HORT
Parameter 2:
ULONG
Reply:
SHORT

Menu item ID

Reserved, 0

Length of menu item text, including NULL

MM_QUERYSELITEMID

This message is sent to determine the selected menu item ID.

Parameter 1:
USHORT
USHORT

Reserved, 0
Can be one of the following:

TRUE
FALSE

Search submenus for item
Do not search submenus for item

Parameter 2:
ULONG
Reply:
SHORT

MM_REMOVEITEM

Reserved, 0

Selected item ID

This message is sent to the menu to remove a menu item.

Parameter 1:
USHORT
USHORT

Menu item ID
Can be one of the following:

TRUE
FALSE

Search submenus for item
Do not search submenus for item

Parameter 2:
ULONG Reserved, 0

684 - The Art of OS/2 Warp Programming
Reply:
SHORT Number of remaining items

MM_SELECTITEM

This message is sent to the menu to select or deselect a menu item.

Parameter 1:
USHORT
Parameter 2:
USHORT
USHORT

Dismiss menu

Menu item ID of interest or MIT_NONE - deselects all menu items

Reserved, 0
Can be one of the following:

TRUE
FALSE
Reply:

Do not dismiss the menu

BOOL Successful? TRUE: FALSE

MM_SETDEFAULTITEMID

This message is sent to set the default item in a conditional cascade menu.

Parameter 1:
ULONG
Parameter 2:
ULONG
Reply:
BOOL

MM_SETITEM

ID of the new default menu item.

Reserved, 0.

Successful? TRUE: FALSE.

This message is sent to the menu to update the definition of a menu item.

Parameter 1:
USHORT
Parameter 2:
PMENUITEM
Reply:
BOOL

MM_SETITEMATTR

Reserved, 0

New menu item structure

Successful? TRUE: FALSE

This message is sent to the menu to set a menu item attribute.

Parameter 1:
USHORT
USHORT

Menu item ID
Can be one of the following:

TRUE
FALSE

Parameter 2:
USHORT
USHORT
Reply:
BOOL

Search submenus for item
Do not search submenus for item

Masks of attributes to set
Attribute data

Successful? TRUE: FALSE

MM_SETITEMHANDLE

Appendix A - 685

This message is sent to the menu to set an item handle for a menu item. This is used for the menu items
that have a style of MIS_BITMAP or MIS_OWNERDRA W.

Parameter 1:
USHORT
Parameter 2:
UL ONG
Reply:
BOOL

MM_SETITEMTEXT

Menu item ID

Item handle

Successful? TRUE: FALSE

This message is sent to the menu to set, or change, the text of a menu item.

Parameter 1:
USHORT
Parameter 2:
PSTRL
Reply:
BOOL

Menu item ID

Item text to associate with menu item

Successful? TRUE: FALSE

MM STARTMENUMODE

This message is sent to the menu to begin menu mode.

Parameter 1:
USHORT Can be one of the following:

TRUE Show pull-down menu
FALSE Do not show pull-down menu
Parameter 2:
USHORT Can be one of the following:

TRUE
FALSE
Reply:
BOOL

Resume where menu had left off
Begin new user interaction

Successful? TRUE: FALSE

686 - The Art of OS/2 Warp Programming

Entryfield Messages

WM_ CONTROL

This message is sent when an entryfield needs to notify its owner of some significant event.

Parameter 1:
USHORT
USHORT

EN_ CHANGE
EN_Kll..LFOCUS
EN_MEMERROR

EN_ OVERFLOW

EN_SCROLL

EN_SETFOCUS

Parameter 2:
HWND
Reply:
ULONG

Control window ID
Can be one of the following:

Text was changed and the change has been displayed on the screen
Entryfield is losing the focus
Entryfield cannot allocate the necessary memory to accomodate the
EM_SETTEXTLIMIT message
An attempt was made to insert more characters than allowed by the current text limit.
If TRlJE is retwned, the operation is retried; otherwise, it is stopped.
Entryfield is about to be scrolled. This can happen if the text has been changed,
WinScrollWindow was called, the cursor has moved, or the entryfield must scroll to
show the current cursor position.
Entryfield is receiving the focus

Window handle of entryfield

Reserved, 0

EM_ QUERY CHANGED

This message is sent to determine if the contents have changed since this message was last sent or since the
entryfield was created.

Parameter 1:
ULONG
Parameter 2:
ULONG
Reply:
BOOL

EM_QUERYSEL

Reserved, 0

Reserved, 0

Changed? TRUE: FALSE

This message is sent to determine the current selection, if one exists.

Parameter 1:
ULONG
Parameter 2:
ULONG

Reserved, 0

Reserved, 0

Reply:
SHORT
SHORT

EM_SETSEL

Offset of the first character selected
Offset of the last character selected

This message is sent to set the current selection to the values specified.

Parameter 1:
USHORT
USHORT
Parameter 2:
ULONG
Reply:
BOOL

EM_SETTEXTLIMIT

Offset of the first character to be selected
Offset of the last character to be selected

Reserved, 0

Successful? TRUE: FALSE

Appendix A - 687

This message is sent to specify the maximum number of characters that can be contained in the entryfield.

Parameter 1:
SHORT
Parameter 2:
ULONG
Reply:
BOOL

EM_ CUT

New text limit

Reserved, 0

Successful? TRUE: FALSE

This message is sent to copy the selected text from the entryfield onto the clipboard and then to delete the
selected text from the entryfield.

Parameter 1:
UL ONG
Parameter 2:
UL ONG
Reply:
BOOL

EM_ COPY

Reserved, 0

Reserved, 0

success? TRUE: FALSE

This message is sent to copy the selected text from the entryfield onto the clipboard. Unlike EM_CUT,
however, the selected text is not deleted afterward.

Parameter 1:
ULONG
Parameter 2:
ULONG
Reply:
BOOL

Reserved, 0

Reserved, 0

success? TRUE: FALSE

688 - The Art of OS/2 Warp Programming
EM_ CLEAR

This message is sent to delete the selected text from the entryfield.

Parameter 1:
ULONG
Parameter 2:
ULONG
Reply:
BOOL

EM_PASTE

Reserved, 0

Reserved, 0

Successful? TRUE: FALSE

This message is sent to copy the text from the clipboard into the entryfield. If there is selected text, it is
replaced with the clipboard text. Otherwise, the text is inserted at the current cursor position.

Parameter 1:
ULONG
Parameter 2:
ULONG
Reply:
BOOL

Reserved, 0

Reserved, 0

Successful? TRUE: FALSE

EM_QUERYFIRSTCHAR

This message is sent to determine the zero-based offset of the first visible character.

Parameter 1:
ULONG
Parameter 2:
ULONG
Reply:
SHORT

EM_SETFIRSTCHAR

Reserved, 0

Reserved, 0

Zero-based offset

This message is sent to specify the first visible character in the entryfield.

Parameter 1:
SHORT
Parameter 2:
ULONG
Reply:
BOOL

New zero-based offset

Reserved, 0

Successful? TRUE: FALSE

EM_QUERYREADONLY

This message is sent to determine the read-only status of the entryfield.

Parameter 1:
UL ONG
Parameter 2:
UL ONG
Reply:
BOOL

EM_SETREADONLY

Appendix A - 689

Reserved, 0

Reserved, 0

Read-only? TRUE: FALSE

This message is sent to specify the new read-only state of the entryfield.

Parameter 1:
BOOL
Parameter 2:
ULONG
Reply:
BOOL

EM_SETINSERTMODE

New read-only state

Reserved, 0

Previously read-only? TRUE:FALSE

This message is sent to specify the new insert state of the entryfield.

Parameter 1:
BOOL

Parameter 2:
ULONG
Reply:
BOOL

TRUE specifies insert mode
FALSE specifies overwrite mode

Reserved, 0

Previously insert mode? TRUE:FALSE

Spin Button Messages

WM_ CONTROL

This message is sent when a control has to notify its owner of a significant event.

Parameter 1:
USHORT
USHORT

Parameter 2:
HWND

Reply:
UL ONG

Spin button ID
SPBN_UPARROW, SPBN_DOWNARROW, SPBN_SETFOCUS,
SPBN_KILLFOCUS, SPBN_ENDSPIN, or SPBN_CHANGE

For SPBN_UPARROW, SPBN_DOWNARROW, and SPBN_ENDSPIN
this is handle of active spin button for SPBN_SETFOCUS this is handle of
current active spin button; for SPBN_KILLFOCUS, this is NULLHANDLE

Reserved, 0

690 - The Art of OS/2 Warp Programming
SPBM_OVERRIDESETLIMITS

This message is sent to the spin button to change the upper or lower limit.

Parameter 1:
LONG
Parameter 2:
LONG
Reply:
BOOL

SPBM_QUERYLIMITS

Upper limit

Lower limit

Successful? TRUE:FALSE

This message is sent to the spin button to query the limits of a numeric spin field.

Parameter 1:
LONG
Parameter 2:
LONG
Reply:
BOOL

SPBM_QUERYVALUE

Upperiimit

Lower limit

Successful? TRUE:F ALSE

This message is sent to the spin button to query the current value of the spin button.

Parameter 1:
PVOID
Parameter 2:
USHORT

USHORT

Storage for returned value

Size of buffer; if 0, Parameter 1 is assumed to be address of a longvariable

Can be one of the following:

SPBQ_UPDA TEIFV ALID
SPBN_ALWA YSUPDATE
SPBN_DONOTUPDATE

accept contents of spin button field if within limits
update contents of the field, even if not valid
do not change the current value of the spin button field

Reply:
BOOi. Successful? TRUE:F ALSE

SPBM_SETARRA Y

This message is sent to the spin button to set or reset a data array.

Parameter 1:
PSZ
Parameter 2:
USHORT
Reply:
BOOL

Pointer to data array

Number of items in array

Successful? TRUE:FALSE

Appendix A - 691
SPBM_SETCURRENTVALUE

This message is sent to the spin button to set the current value to either a numeric value or to a data array
index.

Parameter 1:
LONG
Parameter 2:
ULONG
Reply:
BOOL

SPBM_SETLIMITS

Array index or numeric value

Reserved, 0

Successful? TRUE:FALSE

This message is sent to the spin button to set or reset numeric limits.

Parameter 1:
LONG
Parameter 2:
LONG
Reply:
BOOL

SPBM_SETMASTER

Upper limit

Lower limit

Successful? TRUE:FALSE

This message is sent to the spin button to set the master of that spin button.

Parameter 1:
HWND
Parameter 2:
ULONG
Reply:
BOOL

Window handle of master

Reserved, 0

Successful? TRUE:F ALSE

SPBM_SETTEXTLIMIT

This message is sent to the spin button to set the maximum number of characters allowed.

Parameter 1:
USHORT
Parameter 2:
ULONG
Reply:
BOOL

SPBM_SPINDOWN

Number of characters allowed

Reserved, 0

Successful? TRUE:F ALSE

This message is sent to the spin button to spin backward.

692 - The Art of OS/2 Warp Programming
Parameter 1:
ULONG
Parameter 2:
ULONG
Reply:
BOOL

SPBM_SPINUP

Number of items to spin

Reserved, 0

Successful? TRUE:FALSE

This message is sent to the spin button to spin forward.

Parameter 1:
ULONG
Parameter 2:
ULONG
Reply:
BOOL

Number of items to spin

Reserved, 0

Successful? TRUE:FALSE

Help Manager Messages

HM_ACTIONBAR_COMMAND

This message is sent to the active window by the help manager when the user selects an action bar help
item.

Parameter 1:
USHORT
Parameter 2:
UL ONG
Reply:
ULONG

HM_ CONTROL

ID of selected action bar item

Reserved, 0

Reserved, 0

This message is sent by the help manager to the application to add a control in the control area of a
window.

Parameter 1:
USHORT
USHORT
Parameter 2:
ULONG
Reply:
ULONG

Reserved, 0
Resource ID of selected control

Reserved, 0

Reserved, 0

HM_CREATE_HELP_TABLE

This message is sent to the help manager to create a new help table.

Parameter 1:
PHELPTABLE
Parameter 2:
ULONG
Reply:
ULONG

Appendix A - 693

Pointer to HELPTABLE structure

Reserved, 0

Successful? 0 : error code

HM_DISMISS_ WINDOW

This message is sent to the help manager to remove the active help window.

Parameter 1:
ULONG
Parameter 2:
ULONG
Reply:
ULONG

HM_DISPLAY_HELP

Reserved, 0

Reserved, 0

Successful? 0 : error code

This message is sent to the help manager to display a specified help window.

Parameter 1:
USHORT ID of help panel to display if Parameter 2 == HM_RESOURCEID or a

PSTRL pointer to the name of help panel to display if Parameter 2 ==
HM_PANELNAME

Parameter 2:
USHORT
Reply:

HM_RESOURCEID or HM_PANELNAME

ULONG Successful? 0 : error code

HM_ERROR

This message is sent by the help manager when an error has occurred.

Parameter 1:
ULONG Error code

HMERR_LOAD_DLL
HMERR_NO_FRAME_ WND_IN_CHAIN

HMERR_INV ALID_ASSOC_APP _ WND

HMERR_INV ALID_ASSOC_HELP _INST

Resource DLL could not be loaded
A frame window in the window chain could not be
found to set the associated help instance
The window hwnd specified in
WinAssociateHelplnstance is not a valid window
handle
The help instance handle specified in
WinAssociateHelp/nstance is not a valid help
instance

HMERR_INV ALID_DESTROY _HELP _INST

HMERR_NO_HELP _INST_IN_CHAIN

HMERR_INV ALID_HELP _INSTANCE_HDL

HMERR_INV ALID_QUERY _APP_ WND

HMERR_HELP _INST_CALLED_INV ALID

HMERR_HELPTABLE_UNDEFINE

HMERR_HELP _INST ANCE_UNDEFINE
HMERR_HELPITEM_NOT_FOUND

HMERR_INV ALID_HELPSUBITEM_SIZE
HMERR_INDEX_NOT_FOUND
HMERR_CONTENT_NOT_FOUND
HMERR_OPEN_LIB_FILE
HMERR_READ_LIB_FILE
HMERR_CLOSE_LIB_FILE
HMERR_INV ALID_LIB_FILE
HMERR_NO_MEMORY

HMERR_ALLOCATE_SEGMENT

HMERR_FREE_MEMORY

HMERR_PANEL_NOT_FOUND

HMERR_DATABASE NOT_OPEN

Parameter 2:
ULONG
Reply:
UL ONG

HM_EXT_HELP

Reserved, 0

Reserved, 0

The help instance window to destroy is not a help
instance class object
The parent of the application window specified does
not have a help manager instance
The handle of the help manager instance does not
belong to the help instance class
The window handle specified in
WinQueryHelplnstance is not a valid window
handle
The help instance handle does not belong to the
help instance class
There is no help table provided for context-sensitive
help
The help instance handle is invalid
The specified help item ID was not found in the
help table
The help subtable has less than two items
The index is not in the help library file
The libary file does not have any content
The help library file cannot be opened
The help library file cannot be read
The help library file cannot be closed
The help library file is improper
The help manager is unable to allocate the
necessary memory
The help manager is unable to allocate the
necessary memory segments
The help manager cannot free the requested
memory
The help manager is unable to find the specified
help panel
Unable to read the unopened database

This message is sent to the help manager to display the extended help panel.

Parameter 1:
ULONG
Parameter 2:
ULONG

Reserved, 0

Reserved, 0

Appendix A - 695
Reply:
ULONG Successful? 0 : error code

HM_EXT_HELP _UNDEFINED

This message is sent from the help manager to indicate that the extended help has not been defined.

Parameter 1:
UL ONG
Parameter 2:
ULONG
Reply:
ULONG

HM_GENERAL_HELP

Reserved, 0

Reserved, 0

Reserved, 0

This message is sent to the help manager to display the general help window.

Parameter 1:
ULONG
Parameter 2:
ULONG
Reply:
ULONG

Reserved, 0

Reserved, 0

Successful? 0 : error code

HM_GENERAL_HELP _UNDEFINED

This message is sent from the help manager to indicate that the general help has not been defined.

Parameter 1:
UL ONG
Parameter 2:
ULONG
Reply:
ULONG

Reserved, 0

Reserved, 0

Reserved, 0

HM_HELP _CONTENTS

This message is sent to the help manager to display the help contents.

Parameter 1:
ULONG
Parameter 2:
ULONG
Reply:
ULONG

Reserved, 0

Reserved, 0

Successful? 0 : error code

696 - The Art of OS/2 Warp Programming

HM_HELP _INDEX

This message is sent to the help manager to display the help index.

Parameter 1:
ULONG
Parameter 2:
ULONG
Reply:
UL ONG

Reserved, 0

Reserved, 0

Successful? 0 : error code

HM_HELPSUBITEM_NOT_FOUND

This message is sent from the help manager when the user requested help on a field that has no related
entry in the help subtable.

Panuneter 1:
USHORT

HLPM_ WINDOW
HLPM_FRAME
HLPM_MENU
Parameter 2:
SHORT
SHORT
Reply:
BOOL

Can be one of the following:

Help was requested on an application window
Help was requested on a frame window
Help was requested on a menu window

Window or menu ID requesting help
Control or menuitem ID

Can be one of the following:

FALSE
TRUE

Display extended help
Do nothing

HM_INFORM

This message is sent by the help manager that the user selected a help field with the reftype = inform.

Parameter 1:
USHORT
Parameter 2:
ULONG
Reply:
ULONG

Resource ID of the help field

Reserved, 0
'\
Reserved, 0

HM_INV ALIDATE_DDF _DATA

This message is sent to the help manager to indicate that the previous dynamic data formatting data is no
longer valid.

Parameter 1:
ULONG Count of DDFs to be invalidated

Appendix A - 697
Parameter 2:
PUSH ORT
Reply:

Array of USHORTs that indicate the DDFs to be invalidated

ULONG Successful? 0: error code

HM_KEYS_HELP

This message is sent to the help manager to display the keys help.

Parameter 1:
UL ONG
Parameter 2:
UL ONG
Reply:
ULONG

Reserved, 0

Reserved, 0

Successful? 0: error code

HM_LOAD_HELP _TABLE

This message is sent to the help manager to load a new help table.

Parameter 1:
USHORT
USHORT
Parameter 2:
HMODULE
Reply:
ULONG

HM_NOTIFY

ID of the help table
Reserved, 0

Handle of DLL that contains help table, NULL for .EXE

Successful? 0 : error code

This message is sent from the help manager to notify the application of events it may which to subclass.

Parameter 1:
USHORT Selected control ID, if event is CONTROL_SELECTED or

HELP _REQUESTED

USHORT

CONTROL_SELECTED
HELP _REQUESTED
OPEN_COVERPAGE
OPEN_PAGE
SWAP_PAGE
OPEN_INDEX

Event

OPEN_TOC
OPEN_HISTORY
OPEN_LIBRARY
OPEN_SEARCH_HIT_LIST

A control was selected
The user requested help
The coverpage was displayed
The coverpage child was displayed
The coverpage child was swapped
The index was opened
The table of contents was opened
The history window was opened
The library was opened
The search list was displayed

698 - The Art of OS/2 Warp Programming
Parameter 2:
HWND Window handle
Reply:
BOOL Can be one of the following:

TRUE
FALSE

Help manager will not format the controls
Help manager will process as normal

HM_ QUERY

This message to sent to the help manager to query help manager-specific information.

Parameter 1:
USHORT

HMQW_INDEX
HMQW_TOC
HMQW _SEARCH
HMQW _ VIEWEDPAGES
HMQW _LIBRARY

message ID

Query the index window handle
Query the table of contents window handle
Query the search hitlist window handle
Query the viewed pages window handle
Query the library list window handle

HMQW _OBJCOM_ WINDOW
HMQW _INSTANCE

Query the handle of the active communication window
Query the handle of the help instance

HMQW _COVERPAGE
HMQW _ VIEWPORT

Query the handle of the coverpage

HMQW _GROUP_ VIEWPORT
HMQW _RES_ VIEWPORT
HMQW _ACTIVEVIEWPORT
USERDATA

Query the handle of the viewport window specified in param2
Query the group number of the window specified in param2
Query the res number of the window specified in param2
Query the handle of the active window
Query the user data

USHORT
Parameter 2:
PVOID

Reply:
UL ONG

HMQVP _NUMBER, HMQVP _NAME, or HMQVP _GROUP

If Parameter 1 is HMQW _ VIEWPORT,this is a pointer to either a res
number, ID, or group ID
If Parameter 1 is HMQW _GROUP_ VIEWPORT, this is a pointer to the
viewport window of interest
If Parameter 1 is HMQW _RES_ VIEWPORT, this is a viewport handleof
interest

0 if error, else a window handle, group ID, res number, group number, or
user data

HM_QUERY_DDF _DATA

This message is sent from the help manager when it sees the :ddf. tag in the help file.

Parameter 1:
HWND Client window handle

Parameter 2:
UL ONG
Reply:
HDDF

Resource ID

DDF handle to be displayed, or 0 if error

HM_QUERY_KEYS_HELP

This message is sent from the help manager when the user selects keys help.

Parameter 1:
ULONG
Parameter 2:
ULONG
Reply:
USHORT

Reserved, 0

Reserved, 0

ID of keys help panel to display

HM_REPLACE_HELP _FOR_HELP

Appendix A - 699

This message is sent to the help manager to display the application-defined Help for Help instead of the
regular Help for Help.

Parameter 1:
USHORT
Parameter 2:
ULONG
Reply:
ULONG

ID of application defined Help for Help panel

Reserved. 0

Reserved, 0

HM_REPLACE_USING_HELP

This message is sent to the help manager to display the application-defined Using Help instead of the
regular Using Help.

Parameter 1:
USHORT
Parameter 2:
UL ONG
Reply:
ULONG

ID of application defined Using Help panel

Reserved, 0

Reserved, 0

HM_SET_ACTIVE_ WINDOW

This message is sent to the help manager to indicate the window with which the help manager should
communicate.

Parameter 1:
HWND
Parameter 2:
HWND

The handle of the window to be made active

The handle of the window to position help window next to

700 - The Art of OS/2 Warp Programming
Reply:
ULONG Successful? 0: error code

HM_SET_COVERPAGE_SIZE

This message is sent to the help manager to set the coverpage size.

Parameter 1:
PRECTL
Parameter 2:
UL ONG
Reply:
ULONG

Pointer to RECTL structure containing the coverpage size

Reserved, 0

Successful? 0: error code

HM_SET_LIBRARY_NAME

This message is sent to the help manager to define a list of help manager libraries (.HLP fiies).

Parameter 1:
PSTRL
Parameter 2:
ULONG
Reply:
ULONG

List of help manager files, each name separated by a blank

Reserved, 0

Successful? 0: error code

HM_SET_HELP _WINDOW _TITLE

This message is sent to the help manager to change the help window title.

Parameter 1:
PSTRL
Parameter 2:
ULONG
Reply:
ULONG

New help window title

Reserved, 0

Successful? 0: error code

HM_SET_OBJCOM_ WINDOW

This message is sent to the help manager to identify the window to which the help manager is to send the
HM_INFORM and HM_QUERY_DDF _DATA messages.

Parameter 1:
HWND
Parameter 2:
ULONG
Reply:
ULONG

Handle of communication window

Reserved, 0

Handle of previous communication window

Appendix A- 701
HM_SET_SHOW _PANEL_ID

This message is sent to the help manager to display or not display the panel id of the help manager
windows.

Parameter 1:
USHORT Can be one of the following:

CMIC_HIDE_PANEL_ID
CMIC_SHOW _p ANEL_ID
CMIC_TOGGLE_PANEL_ID
Parameter 2:

Hides panel ID
Shows panel ID
Changes hide/show state of panel ID

UL ONG Reserved, 0
Reply:
UL ONG Successful? 0: error code

HM_SET_USERDATA

This message is sent to the help manager to store data in the help manager user-defined data area.

Parameter 1:
UL ONG
Parameter 2:
PVOID
Reply:
ULONG

HM_ TUTORIAL

Reserved, 0

4 bytes of user-defined data

Successful? TRUE: FALSE

This message is sent from the help manager to indicate the user selected tutorial.

Parameter 1:
PSTRL
Parameter 2:
ULONG
Reply:
ULONG

Default tutorial name

Reserved, 0

Reserved, 0

HM_UPDATE_OBJCOM_ WINDOW _CHAIN

This message is sent from the help manager to the active communication window when a communication
object wants to withdraw from the window chain.

Parameter 1:
HWND
Parameter 2:
HWND
Reply:
ULONG

Handle of withdrawing object

Window that contains withdrawing object

Reserved, 0

702 - The Art of OS/2 Warp Programming

Drag and Drop Messages

DM_DISCARDOBJECT

This message is sent to a source object if DRM_DISCARD rendering is allowed.

Parameter 1:
PDRAGINFO Pointer to DRAGINFO structure

typedef struct _DRAGINFO
ULONG cbDraginfo;
USHORT cbDragitem;
USHORT usOperation;
HWND hwndSource;
SHORT xDrop;
SHORT yDrop;
USHORT cditem;
USHORT usReserved;

DRAGINFO, *PDRAGINFO

Parameter 2:
ULONG
Reply:
ULONG

DRR_SOURCE
DRR_TARGET
DRR_ABORT

Reserved, 0

Can be one of the following:

Source takes action on object
Target takes action on object
Abort action

DM_DRAGERROR

This message is sent when an error occurs during a move or copy file operation.

Parameter 1:
USHORT
USHORT

DFF_MOVE
DFF_COPY
DFF_DELETE
Parameter 2:
HSTR
Reply:
ULONG

Error code
Failing function

DosMove
Dos Copy
DosDelete

File with problem

Action

DME_IGNORECONTINUE
DME_IGNOREABORT
DME_RETRY
DME_REPLACE

No retry on this file, continue with the rest
No retry on this file, abort operation
Retry
Replace the file at target

Other New file name to try; this is a HSTR variable

Appendix A - 703
DM_DRAGFILECOMPLETE

This message is sent when a file operation is complete.

Parameter 1:
HSTR
Parameter 2:
USHORT

DF_MOVE
DF_SOURCE
DF _SUCCESSFUL

Reply:
UL ONG

DM_DRAGLEAVE

File handle

Result flags OR'ed together

Operation was move operation. If not set, operation was copy.
Receiving window was source. If not set, receiving window was target.
Operation was successful. If not set, operation was not successful.

Reserved, 0

This message is sent when an object that was being dragged over a window's boundaries is now either
outside those boundaries, or else the operation was aborted.

Parameter 1:
PDRAGINFO
Parameter 2:
ULONG
Reply:
ULONG

DM_DRAGOVER

Pointer to DRAGINFO structure

Reserved, 0

Reserved, 0

This message is sent to determine whether objects can be dropped at current destination.

Parameter 1:
PDRAGINFO
Parameter 2:
SHORT
SHORT
Reply:
USHORT
USHORT

DOR_DROP
DOR_NODROP
DOR_NODROPOP
DOR NEVERDROP

Pointer to DRAGINFO structure

Mouse x position in desktop coordinates
Mouse y position in desktop coordinates

Drop flag
Default drop operation

Drop operation OK.
Drop operation not OK at current time. Type of drop operation is OK.
Drop operation not OK. Type of drop operation is not acceptable.
Drop operation not OK, now or ever.

DO_COPY
DO_LINK
DO_MOVE
Other

Copy operation
Link operation
Move operation
User-defined operation

DM_DRAGOVERNOTIFY

This message is sent to source after DM_DRAGOVER message has been sent.

Parameter 1:
PD RAG INFO
Parameter 2:
USHORT
USHORT
Reply:
UL ONG

DM_DROP

Pointer to DRAGINFO structure

Drop flag
Default drop operation

Reserved, 0

This message is sent when an object is being dropped on a target.

Parameter 1:
PDRAGINFO
Parameter 2:
ULONG
Reply:
ULONG

DM_DROPHELP

Pointer to DRAGINFO structure

Reserved, 0

Reserved, 0

This message is sent when a user requests help for the drag operation.

Parameter 1:
PDRAGINFO
Parameter 2:
ULONG
Reply:
ULONG

Pointer to DRAGINFO structure

Reserved, 0

Reserved, 0

DM_EMPHASIZETARGET

This message is sent to the target to inform it to either add or remove emphasis from itself.

Parameter 1:
SHORT
SHORT

x coordinate of mouse in window coordinates
y coordinate of mouse in window coordinates

Parameter 2:
USHORT

Reply:
UL ONG

TRUE - apply emphasis
FALSE - remove emphasis

Reserved, 0

DM_ENDCONVERSATION

This message is sent to the source to indicate that the drop operation is over.

Parameter 1:
ULONG
Parameter 2:
ULONG

Reply:
UL ONG

Item ID that was dropped

DMFL_TARGETSUCCESSFUL - successful
DMFL_TARGETFAIL- failed

Reserved, 0

DM_FILERENDERED

This message is sent when a rendering operation is complete.

Parameter 1:
PRENDERFILE Pointer to RENDERFILE structure

typedef struct _RENDERFILE
HWND hwndDragFiles;
HSTR hstrSource;

Parameter 2:
USHORT
Reply:
ULONG

HSTR hstrTarget;
USHORT fMove;
USHORT usRsvd;

RENDERFILE, *PRENDERFILE;

Operation successful? TRUE: FALSE

Reserved, 0

DM_PRINTOBJECT

This message is sent when a object is dropped on the printer object.

Parameter 1:
PDRAGINFO pointer to DRAGINFO structure

Appendix A - 705

706 - The Art of OS/2 Warp Programming
typedef struct _DRAGINFO {

ULONG cbDraginfo;
USHORT cbDragitem;
USHORT usOperation;
HWND hwndSource;
SHORT xDrop;
SHORT yDrop;
USHORT cditem;
USHORT usReserved;

DRAGINFO, *PDRAGINFO

Parameter 2:
PPRINTDEST Pointer to PRINTDEST structure

Reply:
ULONG

typedef struct _PRINTDEST
ULONG cb;
LONG !Type;
PSZ pszToken;
LONG !Count;
PDEVOPENDATA pdopData;
ULONG fl;
PSZ pszPrinter;

PRINTDEST, *PPRINTDEST;

Action flag

DRR_SOURCE
ORR_ TARGET
DRR_ABORT

Source takes responsiblity for printing object
Target (printer object) takes responsibility for printing object
Abort the operation

DM_RENDER

This message is used to request that an object render another object.

Parameter 1:
PDRAGTRANSFER Pointer to DRAGTRANSFER structure

typedef struct _DRAGTRANSFER {
ULONG cb;
HWND hwndClient;
PDRAGITEM pditem;
HSTR hstrSelectedRMF;
HSTR hstrRenderToName;
ULONG ulTargetinfo;
USHORT usOperation;
USHORT fsReply;

DRAGTRANSFER, *PDRAGTRANSFER;

Parameter 2:
ULONG
Reply:
BOOL

Reserved, 0

Successful? TRUE: FALSE

DM_RENDERCOMPLETE

This message is sent to the source when a rendering operation is complete.

Parameter 1:
PDRAGTRANSFER
Parameter 2:
USHORT

Appendix A - 707

Pointer to DRAGTRANSFER structure

Action flag

This source cannot render the operation.
The source has completed the rendering successfully.

DMFL_RENDERFAIL
DMFL_RENDEROK
DMFL_RENDEDRRETRY The source has completed the rendering and will allow the target to retry if

the target portion of the operation fails.

Reply:
UL ONG Reserved, 0

DM_RENDERFILE

This message is sent to tell an object to render a file.

Parameter 1:
PRENDERFILE
Parameter 2:
ULONG
Reply:
BOOL

Pointer to RENDERFILE structure

Reserved, 0

TRUE - receiver handles rendering
FALSE - caller handles endering

DM_RENDERPREPARE

This message is sent to tell the source object to prepare for a rendering on an object.

Parameter 1:
PDRAGTRANSFER
Parameter 2:
ULONG
Reply:
BOOL

Pointer to DRAGTRANSFER structure

Reserved, 0

Successful? TRUE: FALSE

Container Messages

WM_CONTROL/CN_BEGINEDIT

This message is sent when a container is about to be edited.

Parameter 1:
USHORT
USHORT

Container ID
CN_BEGINEDIT

708 - The Art of OS/2 Warp Programming
Parmeter2:
PCNREDITDATA Pointer to CNREDITDA TA structure

Reply:
ULONG

typedef struct _CNREDITDATA
{

ULONG cb;
HWND hwndCnr;
PRECORDCORE pRecord;
PFIELDINFO pFieldinfo;
PSZ *ppszText;
ULONG cbText;
ULONG id;

} CNREDITDATA;
typedef CNREDITDATA *PCNREDITDATA;

Reserved, 0

WM_CONTROL/CN_COLLAPSETREE

This message is sent to the container's owner whenever a parent item in the container is collapsed.

Parameter 1:
USHORT
USHORT
Parameter 2:

Container ID
CN_COLLAPSETREE

PRECORDCORE pointer to RECORDCOREstructure
typedef struct _RECORDCORE
{

ULONG cb;
ULONG flRecordAttr;
PO INTL ptlicon;
struct _RECORDCORE *preccNextRecord;
PSZ pszicon;
HPOINTER hptricon;
HPOINTER hptrMiniicon;
HBITMAP hbmBitmap;
HBITMAP hbmMiniBitmap;
PTREEITEMDESC pTreeitemDesc;
PSZ pszText;
PSZ pszName;
PSZ pszTree;

} RECORDCORE;
typedef RECORDCORE *PRECORDCORE;

Reply:
ULONG Reserved, 0

WM_CONTROL/CN_CONTEXTMENU

This message is sent to the container's owner when a container receives a WM_CONTEXTMENU
message.

Parameter 1:
UH ORT
USHORT

Container ID
CN_CONTEXTMENU

Parameter 2:
PRECORDCORE
Reply:
UL ONG

Pointer to RECORDCORE structure

Reserved, 0

WM_CONTROL/CN_DRAGAFTER

Appendix A - 709

This message is sent to the container's owner whenever the container receives a DM_DRAGOVER
message.

Parameter 1:
US HORT
USHORT
Parameter 2:

Container ID
CN_DRAGAFfER

PCNRDRAGINFO Pointer to CNRDRAGINFOstructure
typedef struct _CNRDRAGINFO
{

PDRAGINFO pDraginfo;
PRECORDCORE pRecord;

CNRDRAGINFO;

/* cdrginfo */

typedef CNRDRAGINFO *PCNRDRAGINFO;

Reply:
USHORT

DOR_DROP
DOR_NODROP
DOR_NODROPOP
DOR NEVERDROP

USHORT

drop flag

Drop operation OK.
Drop operation not OK at current time. Type of drop operation is OK.
Drop operation not OK. Type of drop operation is not acceptable.
Drop operation not OK, now or ever.

Default drop operation

DO_COPY
DO_LINK
DO_MOVE
Other

Copy operation
Link operation
Move operation
User-defined operation

WM_CONTROUCN_DRAGLEA VE

This message is sent to the container's owner whenever the container receives a DM_DRAGLEA VE
message.

Parameter 1:
USHORT
USHORT
Parameter 2:
PCNRDRAGINFO
Reply:
ULONG

Container ID
CN_DRAGLEAVE

Pointer to CNRDRAGINFO structure

Reserved, 0

710 - The Art of OS/2 Warp Programming
WM_CONTROL/CN_DRAGOVER

This message is sent to the container's owner whenever the container receives a DM_DRAGOVER
message.

Parameter 1:
USHORT
USHORT
Parameter 2:
PCNRDRAGINFO
Reply:
USHORT

Flag
DOR_DROP
DOR_NODROP
DOR_NODROPOP
DOR_NEVERDROP

USHORT

Operation Meaning

Container ID
CN_DRAGOVER

Pointer to CNRDRAGINFO structure

Drop flag

Meaning
Drop operation OK.
Drop operation not OK at cu_rrent time. Type of drop operation is OK.
Drop operation not OK. Type of drop operation is not acceptable.
Drop operation not OK, now or ever.

default drop operation

DO_COPY
DO_LINK
DO_MOVE
Other

Copy operation
Link operation
Move operation
User-defined operation

WM_CONTROL/CN_DROP

This message is sent to the container's owner whenever the container receives a DM_DROP message.

Parameter 1:
USHORT
USHORT
Parameter 2:
PCNRDRAGINFO
Reply:
ULONG

Container ID
CN_DROP

Pointer to CNRDRAGINFO structure

Reserved, 0

WM_CONTROL/CN_DROPHELP

This message is sent to the container's owner whenever the container receives a DM_DROPHELP
message.

Parameter 1:
USHORT
USHORT
Parameter 2:

Container ID
CN_DROPHELP

PCNRDRAGINFO
Reply:
ULONG

Pointer to CNRDRAGINFO structure

Reserved, 0

WM_CONTROL/CN_EMPHASIS

Appendix A - 711

This message is sent to the container's owner whenever a record in the container changes its emphasis
attribute.

Parameter 1:
USHORT
USHORT
Parameter 2:

Container ID
CN_DROPEMPHASIS

PNOTIFYRECORDEMPHASIS Pointer to NOTIFYRECORDEMPHASIS structure

Reply:
ULONG

typedef struct _NOTIFYRECORDEMPHASIS
{

HWND hwndCnr;
PRECORDCORE pRecord;
ULONG fEmphasisMask;

NOTIFYRECORDEMPHASIS;
typedef NOTIFYRECORDEMPHASIS *PNOTIFYRECORDEMPHASIS;

Reserved, 0

WM_CONTROL/CN_ENDEDIT

This message is sent when a container's direct editing of text has ended.

Parameter 1:
USHORT
USHORT
Parameter 2:

Container ID
CN_ENDEDIT

PCNREDITDATA
Reply:

Pointer to CNREDITDATA structure

ULONG Reserved, 0

WM_CONTROL/CN_ENTER

This message is sent when the Enter key is pressed while the container window has the focus, or the select
button is double-clicked while the pointer is over the container window.

Parameter 1:
USHORT
USHORT

Container ID
CN_ENTER

Parameter 2:
PNOTIFYRECORDENTER Pointer to NOTIFYRECORDENTER structure

typedef struct _NOTIFYRECORDENTER
{

HWND hwndCnr;
ULONG fKey;
PRECORDCORE pRecord;

} NOTIFYRECORDENTER;
typedef NOTIFYRECORDENTER *PNOTIFYRECORDENTER;

712 - The Art of OS/2 Warp Programming
Reply:
ULONG Reserved, 0

WM_CONTROL/CN_EXPANDTREE

This message is sent when a subtree is expanded in the tree view.

Parameter 1:
USHORT
USHORT
Parameter 2:

Container ID
CN_EXPANDTREE

PRECORDCORE
Reply:

Pointer to RECORDCORE structure

ULONG Reserved, 0

WM_CONTROL/CN_HELP

This message is sent to the owner of the container whenever the container receives a WM_HELP message.

Parameter 1:
USHORT
US HORT
Parameter 2:

Container ID
CN_HELP

PRECORDCORE
Reply:

Pointer to RECORDCORE structure

ULONG Reserved, 0

WM_CONTROL/CN_INITDRAG

Sent when the system-defined drag button was pressed and the pointer was moved while the pointer was
over the container control.

Parameter 1:
USHORT
USHORT
Parameter 2:

Container ID
CN_INITDRAG

PCNRDRAGINIT Pointer to CNRDRAGINIT structure

Reply:
ULONG

typedef struct _CNRDRAGINIT
{

HWND hwndCnr;
PRECORDCORE pRecord;
LONG x;
LONG y;
LONG ex;
LONG cy;

} CNRDRAGINIT;
typedef CNRDRAGINIT *PCNRDRAGINIT;

Reserved, 0

WM_CONTROL/CN_KILLFOCUS

This message is sent when the container loses the focus.

Parameter 1:
USHORT
USHORT
Parameter 2:
HWND
Reply:
ULONG

Container ID
CN_KILLFOCUS

Container window handle

Reserved, 0

WM_CONTROL/CN_QUERYDELTA

Appendix A - 713

This message is sent to query for more data when a user scrolls to a preset delta value. This value is set via
the CNRINFO structure in the cDelta field.

Parameter 1:
USHORT
USHORT
Parameter 2:
PNOTIFYDELTA

Container ID
CN_QUERYDELTA

Pointer to NOTIFYDELTA structure
typedef struct _NOTIFYDELTA
{

HWND hwndCnr;
ULONG fDelta;

} NOTIFYDELTA;
typedef NOTIFYDELTA *PNOTIFYDELTA;

Reply:
ULONG Reserved, 0

WM_CONTROUCN_REALLOCPSZ

This message is sent after container text is edited. In order for the changed text to be saved, this message
must be processed and TRUE returned. The container then copies the changed text into the new memory
area before destroying the MLE.

Parameter 1:
USHORT
USHORT
Parameter 2:
PCNREDITDATA
Reply:
BOOL

Container ID
CN_REALLOCPSZ

Pointer to CNREDITDATA structure

TRUE- memory is sufficient for copy; go ahead and do it
FALSE - memory is insufficient for copy; don't copy string

WM_CONTROL/CN_SCROLL

This message is sent when the container window scrolls.

714 - The Art of OS/2 Warp Programming

Parameter 1:
USHORT
USHORT
Parameter 2:

Container ID
CN_SCROLL

PNOTIFYSCROLL Pointer toNOTIFYSCROLL structure
typedef struct _NOTIFYSCROLL
{

HWND hwndCnr;
LONG lScrollinc;
ULONG fScroll;

} NOTIFYSCROLL;
typedef NOTIFYSCROLL *PNOTIFYSCROLL;

Reply:
UL ONG Reserved, 0

WM_CONTROL/CN_SETFOCUS

This message is sent when the container receives the focus.

Parameter 1:
US HORT
USHORT
Parameter 2:
HWND
Reply:
UL ONG

Container ID
CN_SETFOCUS

Container window handle

Reserved, 0

CM_ALLOCDETAILFIELDINFO

This message is sent to the container to allocate memory for the FIELDINFO structures for its details view.

Parameter 1:
USHORT
Parameter 2:
UL ONG
Reply:
PFIELDINFO

Number of FIELD INFO structures to allocate

Reserved, 0

Pointer to FIELDINFO structures
typedef struct _FIELDINFO

{
ULONG cb;
ULONG flData;
ULONG flTitle;
PVOID pTitleData;
ULONG offStruct;
PVOID pUserData;
struct _FIELDINFO *pNextFieldinfo;
ULONG cxWidth;

} FIELD INFO;
typedef FIELDINFO *PFIELDINFO;

CM_ALLOCRECORD

This message is sent to allocate memory for the RECORDCORE or MINIRECORDCORE structures.

Appendix A-715
Parameter 1:
UL ONG
Parameter 2:

Number of bytes of data to allocate for application-defined use

USHORT
Reply:

Number of structures to allocate

PRECORDCORE Pointer to RECORDCORE or MINIRECORDCORE structures that have
been allocated

typedef struct _RECORDCORE
{

ULONG cb;
ULONG flRecordAttr;
PO INTL ptlicon;

/* recc */

struct _RECORDCORE *preccNextRecord;
PSZ pszicon;
HPOINTER hptricon;
HPOINTER hptrMiniicon;
HBITMAP hbmBitmap;
HBITMAP hbmMiniBitmap;
PTREEITEMDESC pTreeitemDesc;
PSZ pszText;
PSZ pszName;
PSZ pszTree;

} RECORDCORE;
typedef RECORDCORE *PRECORDCORE;

typedef struct _MINIRECORDCORE
{

ULONG cb;
ULONG flRecordAttr; I
PO INTL ptlI-con;
struct _MINIRECORDCORE *preccNextRecord;
PSZ pszicon;
HPOINTER hptricon;

} MINIRECORDCORE;
typedef MINIRECORDCORE *PMINIRECORDCORE;

Note: If CCS_MINIRECORD is specified as the container style, the return is a PMINIRECORDCORE.
If it is not specified, the return is a PRECORDCORE.

CM_ARRANGE

This message is sent to the container to have it arrange the records in the icon view.

Parameter 1:
ULONG
Parameter 2:
ULONG
Reply:
ULONG

CM_CLOSEEDIT

Reserved, 0

Reserved, 0

Reserved, 0

This message is sent to close the MLE window that is used to edit the container text.

Parameter 1:
ULONG Reserved, 0

716 - The Art of OS/2 Warp Programming
Parameter 2:
ULONG Reserved, 0
Reply:
BOOL Successful edit? TRUE:FALSE

CM_COLLAPSETREE

This message is sent to the container to tell it to collapse a specified item in the tree view.

Parameter 1:
PRECORDCORE
Parameter 2:
ULONG
Reply:
BOOL

Pointer to RECORDCORE structure that is to be collapsed

Reserved, 0

Successful collapse? TRUE: FALSE
Note: If the style CCS_MINIRECORD is specified, parameter 1 is a PMINIRECORDCORE.

CM_ERASERECORD

This message is sent to erase a record from the current view.

Parameter 1:
PRECORDCORE
Parameter 2:
UL ONG
Reply:

Pointer to RECORDCORE structure to erase

Reserved, 0

BOOL Successful erase? TRUE: FALSE
Note: If the style CCS_MINIRECORD is specified, parameter 1 is a PMINIRECORDCORE. Erasing a
record does not delete the record, or free the RECORDCORE structure; instead the record is only visually
erased.

CM_EXPANDTREE

This message is sent to the container to expand a parent item in the tree view.

Parameter 1:
PRECORDCORE
Parameter 2:
UL ONG
Reply:
BOOL

Pointer to RECORDCORE structure to expand

Reserved, 0

Successful expansion? TRUE: FALSE
Note: If the style CCS_MINIRECORD is specified, parameter 1 is a PMINIRECORDCORE.

CM_FILTER

This message is sent to the container items, so the subset becomes viewable.

Parameter 1:
PFN Pointer to user-defined filter function

Parameter 2:
PVOID
Reply:
BOOL

Pointer to application data space

Successful? TRUE: FALSE
Note: The filter function should be prototyped in the following manner:

BOOL PFN pFilterFunction(PRECORDCORE pRecord, PVOID pExtra);

If the style CCS_MINIRECORD is specified, pRecord is a PMINIRECORDCORE.

CM_FREEDETAILFIELDINFO

This message is sent to the container to free the FIELDINFO structures.

Parameter 1:
PVOID
Parameter 2:
USHORT
Reply:
BOOL

CM_FREERECORD

Pointer to an array of FIELD INFO structures to be freed

Number of structures to free

Successful? TRUE: FALSE

Appendix A - 717

This message is sent to the container to free the memory associated with the RECORDCORE structures.

Parameter 1:
PVOID
Parameter 2:
USHORT
Reply:
BOOL

Pointer to an array of RECORDCORE or MINIRECORDCORE structures

Number of structures to free

Successful? TRUE: FALSE

CM_HORZSCROLLSPLITWINDOW

This message is sent to the container when the user scrolls a split window in the details view.

Parameter 1:
USHORT

Parameter 2:
LONG
Reply:
BOOL

CMA_LEFT - the left window is being scrolled
CMA_RIGHT - the right window is being scrolled

The number of pixels to scroll the window; this can be a plus or minus value

Successful scroll? TRUE:FALSE

CM_INSERTDETAILFIELDINFO

This message is sent to the container to insert a FIELDINFO structure.

718 - The Art of OS/2 Warp Programming
Parameter 1:
PFIELDINFO Pointer to FIELDINFO structures to insert

typedef struct _FIELDINFO
{

UL ONG
ULONG
ULONG
PVOID
UL ONG
PVOID
UL ONG

} FIELDINFO;

cb;
flData;
fl Title;
pTitleData;
offStruct;
pUserData;
cxWidth;

typedef FIELDINFO *PFIELDINFO;

Parameter 2:
PFlELDINFOINSERT Pointer to FIELDINFOINSERT structure

typedef struct _FIELDINFOINSERT
{

ULONG cb;
PFIELDINFO pFieldinfoOrder;
ULONG finvalidateFieldinfo;
ULONG cFieldinfoinsert;

} FIELDINFOINSERT;
typedef FIELDINFOINSERT *PFIELDINFOINSERT;

Reply:
USHORT Number of FlELDINFO structures in the container

CM_INSERTRECORD

This message is sent to insert RECORDCORE structures into the container.

Parameter 1:
PRECORDCORE
Parameter 2:

Pointer to RECORDCORE structure

PRECORDINSERT Pointer to RECORDINSERT structure

Reply:
ULONG
Note:

typedef struct _RECORDINSERT
{

ULONG cb;
PRECORDCORE pRecordOrder;
PRECORDCORE pRecordParent;
ULONG finvalidateRecord;
ULONG zOrder;
ULONG cRecordsinsert;

} RECORDINSERT;
typedef RECORDINSERT *PRECORDINSERT;

Number of RECORDCORE structure in the container
If the style CCS_MINIRECORD is specified, parameter 1 is a PMINIRECORDCORE.

CM_INV ALIDATEDETAILFIELDINFO

This message is sent to the container to indicate that not all of the FIELDINFO structures are valid and the
details view should be refreshed.

Parameter 1:
UL ONG
Parameter 2:
ULONG
Reply:
BOOL

Appendix A - 719

Reserved, 0

Reserved, 0

Successful?TRUE: FALSE

CM_INVALIDATERECORD

This message is sent to the container to indicate that some of the RECORDCORE structures are invalid and
should be refreshed.

Parameter 1:
PVOID

Parameter 2:
USHORT
USHORT

CMA_ERASE

CMA_REPOSITTON

CMA_NOREPOSffiON

Pointer to an array of pointers to RECORDCORE structures that should be
refreshed

Number of records to be refreshed; 0 indicates all records are to be refreshed
Flags used to optimize the refresh

Erase the background when the display is refreshed in the icon view. Default
is no erase.
Used to indicate that the RECORDCORE structures need to be reordered
within the container.
Used to indicate that the RECORDCORE structures do not need to be
reordered within the container.

CMA TEXTCHANGED Used to indicate the text within the container records has changed.

Reply:
Successful? TRUE: FALSE BOOL

Note: If the style CCS_MINIRECORD is specified, parameter 1 is a PMINIRECORDCORE.

CM_OPENEDIT

This message is sent to open the MLE window to edit the container.

Parameter 1:
PCNREDITDATA
Parameter 2:
ULONG
Reply:
BOOL

Pointer to CNREDITDATA structure

Reserved, 0

Successful? TRUE: FALSE

CM_PAINTBACKGROUND

This message is sent whenever the container's background is painted.

720 - The Art of OS/2 Warp Programming
Parameter 1:
POWNERBACKGROUND Pointer to OWNERBACKGROUND structure

typedef struct _OWNERBACKGROUND
{

HWND hwnd;
HPS hps;
RECTL rclBackground;
LONG idWindow;

} OWNERBACKGROUND;
typedef OWNERBACKGROUND *POWNERBACKGROUND;

Parameter 2:
ULONG
Reply:
BOOL

Reserved, 0

Background drawn? TRUE: FALSE

CM_QUERYCNRINFO

This message is sent to the container to query the CNRINFO structure.

Parameter 1:
PCNRINFO Pointer to CNRINFO structure

typedef struct _CNRINFO
{

/* ccinfo */

UL ONG
PVOID
PFIELDINFO
PFIELDINFO
PSZ
UL ONG
PO INTL
ULONG
ULONG
SIZEL
SIZEL
HBITMAP
HBITMAP
HPOINTER
HPOINTER
LONG
LONG
LONG
ULONG
LONG

} CNRINFO;

cb;
pSortRecord;
pFieldinfoLast;
pFieldinfoObject;
pszCnrTitle;
flWindowAttr;
ptlOrigin;
cDelta;

I

cRecords;
slBitmapOricon;
slTreeBitmapOricon;
hbmExpanded;
hbmCollapsed;
hptrExpanded;
hptrCollapsed;
cyLineSpacing;
cxTreeindent;
cxTreeLine;
cFields;
xVertSplitbar;

typedef CNRINFO *PCNRINFO;

Parameter 2:
USHORT
Reply:
USHORT

Size of CNRINFO structure

Number of bytes copied

CM_QUERYDETAILFIELDINFO

This message is sent to the container to return a FIELDINFO structure.

Appendix A - 721
Parameter 1:
PFIELDINFO Pointer to FIELDINFO structure to use as reference if CMA_NEXT or

CMA_PREV is specified
Parameter 2:
USHORT
Reply:
PFIELDINFO

CMA_FIRST, CMA_LAST, CMA_NEXT, or CMA_PREV

pointer to requested FIELDINFO structures

CM_QUERYDRAGIMAGE

This message is sent to the container to query the image displayed for a specified record in the container.

Parameter 1:
PRECORDCORE Pointer to RECORDCORE structure to be queried
Parameter 2:
ULONG Reserved, 0
Reply:
LHANDLE Handle of icon or bit map
Note: If the style CCS_MINIRECORD is specified, parameter 1 is a PMINIRECORDCORE.

CM_QUERYRECORD

This message is sent to the container to return a specified RECORDCORE structure.

Parameter 1:
PRECORDCORE

Parameter 2:
USHORT

CMA_FIRST
CMA_FIRSTCHILD
CMA_LAST
CMA_LASTCHILD
CMA_NEXT
CMA_PARENT
CMA PREY

USHORT

Reply:

Pointer to RECORDCORE structure used as search criteria; ignored if
CMA_FIRST or CMA_LAST is specified

Search command

Retrieve first record in the container
Retrieve first child record of record specified in Parameter 1
Retrieve last record in the container
Retrieve last child record of record specified in Parameter 1
Retrieve next record after record specified in Parameter 1
Retrieve parent of record specified in Parameter 1
Retrieve record previous to record specified in Parameter 1

CMA_ITEMORDER - records evaluated in item order
CMA_ZORDER - records evaluated in Z-order

PRECORDCORE Pointer to RECORDCORE structure of interest
Note: If the style CCS_MINIRECORD is specified, parameter 1 and Reply are PMINIRECORDCOREs.

CM_QUERYRECORDEMPHASIS

This message is sent to the container to find the record with a specified emphasis.

722 - The Art of OS/2 Warp Programming
Parameter 1:
PRECORDCORE Pointer to RECORDCORE structure of record to start searching with, or

CMA_FIRST to start searching with the first record
Parameter 2:
USHORT

Reply:

Emphasis attribute to find: CRA_CURSORED, CRA_INUSE, or
CRA_SELECTED

PRECORDCORE Pointer to record satisfying search
Note: If the style CCS_MINIRECORD is specified, Parameter 1 and Reply are PMINIRECORDCOREs.

CM_QUERYRECORDFROMRECT

This message is sent to the container to find the record that is contained in a specified rectangle.

Parameter 1:
PRECORDCORE Pointer to RECORDCORE structure of record to start searching with, or

CMA_FIRST to start searching with the first record
Parameter 2:
QUERYRECFROMRECT Pointer to QUERYRECFROMRECT structure

typedef struct _QUERYRECFROMRECT
{

ULONG cb;
RECTL rect;
ULONG fsSearch;

} QUERYRECFROMRECT;
typedef QUERYRECFROMRECT *PQUERYRECFROMRECT;

Reply:
PRECORDCORE Pointer to record satisfying search
Note: If the style CCS_MINIRECORD is specified, parameter 1 and Reply are PMINIRECORDCOREs.

CM_QUERYRECORDINFO

This message is sent to the container to update the specified records.

Parameter 1:
PVOID

Parameter 2:
USHORT
Reply:

Pointer to array of RECORDCORE structures that the container will copy
information into

Number of structures in parameter 1

BOOL Successful? TRUE: FALSE
Note: If the style CCS_MINIRECORD is specified, parameter 1 is a p0inter to an array of
PMINIRECORDCOREs.

CM_QUERYRECORDRECT

This message is sent to the container to query the bounding rectangle of the specified record.

Parameter 1:
PRECTL
Parameter 2:

Bounding rectangle coordinates

Appendix A - 723

PQUERYRECORDRECT Pointer to QUERYRECORDRECT structure ofrecord that is queried
typedef struct _QUERYRECORDRECT
{

ULONG cb;
PRECORDCORE pRecord;
ULONG fRightSplitWindow;
ULONG fsExtent;

} QUERYRECORDRECT;
typedef QUERYRECORDRECT *PQUERYRECORDRECT;

Reply:
BOOL Successful? TRUE: FALSE

CM_QUERYVIEWPORTRECT

This message is sent to the container to query the rectangle that contains the container's entire coordinates.

Parameter 1:
PRECTL
Parameter 2:
USHORT

BOOL

Reply:
BOOL

Pointer to RECTL that contains the container's coordinates

CMA_ WINDOW - return the client window relative to the container
window
CMA_ WORKSPACE -return the client window relative to the desktop
TRUE - get size of right split window
FALSE - get size of left split window

Successful? TRUE: FALSE

CM_REMOVEDETAILFIELDINFO

This message is sent to the container to remove one or several FIELDINFO structures.

Parameter 1:
PVOID
Parameter 2:
USHORT
USHORT

Reply:
SHORT

Pointer to array of PFIELDINFO that are to be removed

Number of structures in Parameter 1
CMA_FREE - structures are removed from container, and memory is freed
CMA_INV ALIDA TE - structures are removed from container and
container is invalidated; no memory is freed

Number of structures left in container

CM_REMOVERECORD

This message is sent to the container to remove one or more RECORDCORE structures.

Parameter 1:
PVOID Pointer to array of PRECORDCORE that are to be removed

724 - The Art of OS/2 Warp Programming
Parameter 2:
USHORT
USHORT

Number of structures in Parameter 1
CMA_FREE- structures are removed from container, and memory is freed
CMA_INV ALIDA TE - structures are removed from container and
container is invalidated; no memory is freed

Reply:
SHORT number of structures left in
container
Note: If the style CCS_MINIRECORD is specified, parameter 1 is a PMINIRECORDCORE array.

CM_SCROLLWINDOW

This message is sent to the container to scroll the container window.

Parameter 1:
USHORT

Parameter 2:

Direction to scroll
CMA_ VERTICAL - vertical scroll
CMA_HORIZONT AL - horizontal scroll

LONG
Reply:

Amount to scroll; this can be a plus or minus value

BOOL Successful? TRUE: FALSE

CM_SEARCHSTRING

This message is sent to the container to find the record that contains a specified string.

Parameter 1:
PSEARCHSTRING Pointer to SEARCHSTRING structure

typedef struct _SEARCHSTRING
{

ULONG cb;
PSZ pszSearch;
ULONG fsPrefix;
ULONG fsCaseSensitive;
ULONG usView;

SEARCHSTRING;
typedef SEARCHSTRING *PSEARCHSTRING;

Parameter 2:
PRECORDCORE Pointer to RECORDCORE structure to start search with
Reply:
PRECORDCORE Pointer to RECORDCORE that contains the string
Note: If the style CCS_MINIRECORD is specified, parameter 2 and Reply are PMINIRECORDCORE.

CM_SETCNRINFO

This message is sent to the container to change the data in the container.

Parameter 1:
PCNRINFO Pointer to CNRIFO

Appendix A - 725

Parameter 2:
ULONG Flags indicating which data is to be changed

FJg···T ··· ·····•··• >• .. M:~ .. 1D:g\··•·•
pointer to sort function CMA_pSORTRECORD

CMA_PFIELDINFOLAST
CMA_PFIELDINFOOBJECT
CMA_CNRTITLE

pointer to last column in details view left window
pointer to object column in details view
pointer to container text title

CMA_FL WINDOW A TTR
CMA_PTLORIGIN
CMA_DELTA
CMA_SLBITMAPORICON
CMA_SLTREEBITMAPORICON
CMA_TREEBITMAP

container attributes
position of container window
number of records used in delta operations
size of bitmap or icon
size of expand/collapse bitmap or icon
expand/collapse bitmaps in tree view
expand/collapse icons in tree view
amount of space between records

CMA_ TREEICON
CMA_LINESPACING
CMA_CXTREEINDENT
CMA_CXTREELINE
CMA XVERTSPLITBAR

Reply:
BOOL

amount of space between levels in tree view
width of lines in tree view
initial position of splitbar in con-tainer window in details view

Successful? TRUE: FALSE

CM_SETRECORDEMPHASIS

This message is sent to change emphasis on the specified container record.

Parameter 1:
PRECORDCORE
Parameter 2:
USHORT

USHORT
Reply:
BOOL

Pointer to RECORDCORE structure to change

TRUE - set emphasis attribute ON
FALSE- set emphasis attribute OFF

CRA_CURSORED, CRA_INUSE, CRA_SELECTED

Successful? TRUE: FALSE
Note: If the style CCS_MINIRECORD is specified, parameter 1 is a PMINIRECORDCORE.

CM_SORTRECORD

This message is sent to the container to sort the container records.

Parameter 1:
PFN
Parameter 2:
PVOID
Reply:
BOOL

Pointer to sort function

Application-defined space

Sorted? TRUE: FALSE
Note: The sort function should be prototyped in the following manner:

726 - The Art of OS/2 Warp Programming

BOOL PFN pSortFunction(PRECORDCORE pFirst,
PRECORDCORE pSecond,
PVOID pExtra) ;

If the style CCS_MINIRECORD is specified, pRecord is a PMINIRECORDCORE.

Appendix B

References

IBM [March 1991], Operating System/2™ Programming Tools and Information Version 1.3, Programming
Guide. [91F9259]

IBM [March 1992], OS/2 2.0 Technical Library, Control Program Programming Reference. [10G6263]

IBM [March 1992), OS/2 2.0 Technical Library, Presentation Manager Programming Reference Volume I.
[10G6264]

IBM [March 1992], OS/2 2.0 Technical Library, Presentation Manager Programming Reference Volume
II. [10G6265]

IBM [March 1992], OS/2 2.0 Technical Library, Presentation Manager Programming Reference Volume
III. [10G6272]

IBM [March 1992], OS/2 2.0 Technical Library, Programming Guide Volume I. [10G6261]

IBM [March 1992], OS/2 2.0 Technical Library, Programming Guide Volume II. [10G6494]

IBM [October 1991], Systems Application Architecture Library, Common User Access Advanced Interface
Design Reference. [SC34-4290]

IBM [September 1991], Systems Application Architecture Library, Common Programming Interface C
Reference - Level 2. [SC09-1308-02]

IBM [April 1992], C Set/2, Migration Guide. [10G4445]

IBM [April 1992], C Set/2, User's Guide. [10G4444

IBM [April 1992], Red Book, OS/2 Version 2.0 Volume I: Control Program. [GG24-3730-00]

IBM [April 1992], Red Book, OS/2 Version 2.0 Volume 4: Application Development. [GG24-3774-00]

Paul Somerson [June 1988], PC Magazine DOS Power Tools Techniques, Tricks and Utilities, Bantam
Books, Inc., New York, New York.

727

728 - The Art of OS/2 Warp Programming
H. M Deitel, M.S. Kogan [1992], The Design of OS/2, Addison-Wesley Publishing Company, Inc., New
York, New York.

Robert Orfali, Dan Harkey [1992], Client/Server Programming with OS/2 2.0 2"dEd., Van Nostrand
Reinhold, New York, New York.

Reich, David, Designing OS/2 Applications, John Wiley & Sons, New York, New York.

Real World Programming for OS/2 2.1, Blain, Delimon, and English. Published by SAMS publishing.

Petzold, Charles, Programming the OS/2 Presentation Manager, Ziff-Davis Press.

EDM/2. Published by IQPac Inc. Available on the Internet at hobbes.nmsu.edu in the /os2/newsltr
directory and on Compuserve in the OS2DF2 forum.

OS/2 Developer. Published by Miller Freeman Inc. Call (800) WANT-OS2 in the United States or (708)
647-5960 elsewhere for subscription information.

Index

-A-
ACCELTABLE statement, 133, 197, 198, 201, 204,

225,460,465,466,543,555
Anchor block

What it is used for, 130
Anchor point, 277, 281, 283, 290
AUTOCHECKBOX statement, 270, 271, 272
AUTORADIOBUTION statement, 270, 271, 391

-B-
Bitmap Compression Algorithm flags (BCA_), 196
BITMAP statement, 193, 201, 219, 222, 225, 226,

227,228,309,528
BITMAPINFOHEADER structure, 195, 259
BITMAPINFOHEADER2 structure, 195, 255, 256
BKA_ALL constant, 660
BKA_AUTOPAGESIZE constant, 660
BKA_BACKGROUNDMAJORCOLOR constant, 664
BKA_BACKGROUNDMAJORCOLORINDEX

constant, 664
BKA_BACKGROUNDMINORCOLOR constant, 664
BKA_BACKGROUNDMINORCOLORINDEX

constant, 664
BKA_BACKGROUNDPAGECOLOR constant, 664
BKA_BACKGROUNDPAGECOLORINDEX

constant, 664
BKA_FIRST constant, 390, 394, 395, 660, 661, 662
BKA_FOREGROUNDMAJORCOLOR constant,

391,396,664
BKA_FOREGROUNDMAJORCOLORINDEX

constant, 391, 396, 664
BKA_FOREGROUNDMINORCOLOR constant, 664
BKA_FOREGROUNDMINORCOLORINDEX

constant, 664
BKA_LAST constant, 390, 395, 660, 661, 662
BKA_MAJOR constant, 390, 394, 395, 660, 662, 664

729

BKA_MAJORT AB constant, 390, 395
BKA_MINOR constant, 660, 662, 664
BKA_NEXT constant, 395, 661, 662
BKA_PAGEBUTION constant, 664
BKA_PREV constant, 661, 662
BKA_SINGLE constant, 660
BKA_STATUSTEXTON constant, 390, 394, 660
BKA_TAB constant, 660
BKA_ TOP constant, 662
BKM_CALCPAGERECT message, 659
BKM_DELETEPAGE message, 660
BKM_INSERTPAGE message, 384, 390, 394, 395
BKM_INVALIDATETABS message, 661
BKM_QUERYPAGECOUNT message, 661
BKM_QUERYPAGEDATA message, 661
BKM_QUERYPAGEID message, 662
BKM_QUERYPAGEINFO message, 662
BKM_QUERYPAGESTYLE message, 663
BKM_QUERYPAGEWINDOWHWND message,

388,393,663
BKM_QUERYSTATUSLINETEXT message, 663
BKM_QUERYTABBITMAP message, 663
BKM_QUERYTABTEXT message, 663
BKM_SETDIMENSIONS message, 384, 390, 395,

664
BKM_SETNOTEBOOKCOLORS message, 396, 664
BKM_SETPAGEDATA message, 665
BKM_SETPAGEINFO message, 664
BKM_SETPAGEWINDOWHWND message, 390,

395,396,665
BKM_SETST A TUSLINETEXT message, 390, 395
BKM_SETI ABBITMAP message, 665
BKM_SEITABTEXT message, 390, 395, 666
BKM_ TURNTOPAGE message, 666
BKN_HELP notification, 659
BKN_NEWPAGESIZE notification, 659
BKN_PAGEDELETED notification, 659
BKN_PAGESELECTED notification, 388, 393, 659
BKN_PAGESELECTEDPENDING notification, 659

730-Index

BKS_BACKPAGESBL constant, 381, 384
BKS_BACKPAGESBR constant, 380, 384
BKS_BACKPAGESTL constant, 383
BKS_BACKPAGESTR constant, 382, 384
BKS_MAJORTABBOTTOM constant, 380, 381, 384
BKS_MAJORTABLEFf constant, 383, 384
BKS_MAJORTABRIGHT constant, 380, 384
BKS_MAJORTABTOP constant, 382, 383, 384
BKS_POL YGONTABS constant, 384
BKS_ROUNDEDT ABS constant, 384
BKS_SOLIDBIND constant, 384
BKS_SPIRALBIND constant, 384, 387, 394
BKS_SQUARETABS constant, 384, 387, 394
BKS_STATUSTEXTCENTER constant, 384, 387,

394
BKS_STATUSTEXTLEFf constant, 384
BKS_STA TUSTEXTRIGHT constant, 384
BKS_TABTEXTCENTER constant, 384
BKS~TABTEXTLEFf constant, 384
BKS_TABTEXTRIGHT constant, 384
BM_CLICK message, 652
BM_QUERYCHECK message, 264, 652
BM_QUERYCHECKINDEX message, 264
BM_QUERYHILITE message, 652
BM_SETCHECK message, 268, 269, 272, 653
BM_SETDEFAUL T message, 653
BN_CLICKED notification, 651
BN_DBLCLICKED notification, 651
BN_PAINT notification, 265, 651
BS_3STATE constant, 265
BS_AUT03STATE constant, 265
BS_AUTOCHECKBOX constant, 264, 265
BS_AUTORADIOBUTTON constant, 264, 265, 270
BS_AUTOSIZE constant, 265
BS_BITMAP constant, 265
BS_CHECKBOX constant, 264, 265
BS_DEFAULTconstant, 265
BS_HELP constant, 265, 270
BS_ICON constant, 265, 268, 271, 272
BS_MINIICON constant, 265
BS_NOBORDER constant, 265, 270
BS_NOCURSORSELECT constant, 265
BS_NOPOINTERFOCUS constant, 265, 270, 561
BS_PUSHBUTTON constant, 265
BS_RADIOBUTTON constant, 264, 265
BS_SYSCOMMAND constant, 265
BS_USERBUTTON constant, 265
BTNCDATA structure, 267, 271
Button Style flags (BS_), 265

-C-
CAPS_HEIGHT constant, 534, 549

CAPS_HORIZONTAL_FONT_RES constant, 512,
516

CAPS_ WIDTH constant, 534, 549
CBM_ISLISTSHOWING message, 306
CBN_ENTER notification, 306
CBN_SHOWLIST notification, 306
CBS_DROPDOWN constant, 304, 305
CBS_DROPDOWNLIST constant, 304, 305
CBS_SIMPLE constant, 304
CCS_AUTOPOSITION constant, 398, 400
CCS_EXTENDSEL constant, 398, 404, 416, 429, 446
CCS_MINIRECORDCORE constant, 398, 404, 416,

429,439,446
CCS_MULTIPLESEL constant, 398
CCS_SINGLESEL constant, 398
CCS_ VERIFYPOINTERS constant, 398
CDATE structure, 410, 411
CF _DSPTEXT constant, 528
CF _PALETTE constant, 528
CF _TEXT constant, 525, 527, 528
CFA_BITMAPORICON constant, 410, 415, 422, 428,

444
CFA_BOTTOM constant, 410
CFA_CENTER constant, 410, 415, 422, 428, 444
CFA_DA TE constant, 411
CFA_HORZSEPARATOR constant, 410, 415, 422,

428,444
CFA_INVISIBLE constant, 410
CF A_LEFf constant, 410
CFA_OWNER constant, 410
CFA_RIGHT constant, 410, 415
CFA_SEPARATOR constant, 410, 415, 422, 428, 444
CFA_STRING constant, 410, 411, 415, 422, 428, 444
CF A_ TIME constant, 411
CFA_TOP constant, 410
CFA_ULONG constant, 415, 428, 444
CFA_ VCENTER constant, 410
CHARlFROMMP macro, 130
CHAR2FROMMP macro, 130
CHAR3FROMMP macro, 130
CHAR4FROMMP macro, 130
CHARMSG macro, 525, 527
Circular Slider Style flags (CSS_), 481
Class style, 131, 137, 139, 146, 174, 186, 394
Class Style flags (CS_), 139
Class styles, 126
CLASSINFO structure, 171, 174
Clipboard, 277, 278, 294, 525, 527, 528
Clipboard Format flags (CF_), 528
CM_ALLOCDETAILFIELDINFO message, 410, 422,

428, 444, 714
CM_ALLOCRECORD message, 398, 404, 408, 410,

417,421,422,430,447, 714

CM_ARRANGE message, 400, 405, 406, 409, 419,
433,434,450,451, 715

CM_CLOSEEDIT message, 715
CM_COLLAPSETREE message, 716
CM_ERASERECORD message, 716
CM_EXPANDTREE message, 716
CM_FILTER message, 451, 452, 455, 716
CM_FREEDET AILFIELDINFO message, 717
CM_FREERECORD message, 717
CM_HORZSCROLLSPLITWINDOW message, 717
CM_INSERTDETAILFIELDINFO message, 415,

422,428,444, 717
CM_INSERTRECORD message, 398, 405, 408, 417,

418,422,431,447, 718
CM_INV ALIDA TEDETAILFIELDINFO message,

718
CM_INV ALIDA TERECORD message, 719
CM_OPENEDIT message, 719
CM_PAINTBACKGROUND message, 719
CM_QUERYCNRINFO message, 720
CM_QUERYDETAILFIELDINFO message, 720
CM_QUERYDRAGIMAGE message, 721
CM_QUERYRECORD message, 403, 414, 426, 427,

442,443, 721, 722
CM_QUERYRECORDEMPHASIS message, 426,

442, 721
CM_QUERYRECORDFROMRECT message, 722
CM_QUERYRECORDINFO message, 722
CM_QUERYRECORDRECT message, 722
CM_QUERYVIEWPORTRECT message, 723
CM_REMOVEDETAILFIELDINFO message, 723
CM_REMOVERECORD message, 723
CM_SCROLL WINDOW message, 724
CM_SEARCHSTRING message, 724
CM_SETCNRINFO message, 399, 400, 405, 406,

409,411,415,418,419,423,428,433,434,444,
450,451, 724

CM_SETRECORDEMPHASIS message, 423, 426,
432,433,437,438,442,448,449, 725

CM_SORTRECORD message, 451, 454, 725
CMA_BOTTOM constant, 399
CMA_CNRTITLE constant, 725
CMA_DELTA constant, 725
CMA_END constant, 399, 404, 417, 447
CMA_ERASE constant, 719
CMA_FIRST constant, 399, 403, 414, 422, 426, 427,

428,442,443, 721, 722
CMA_FIRSTCHILD constant, 414, 427, 443, 721
CMA_FL WINDOW A TTR constant, 400, 405, 406,

409,418,419,433,434,450,451, 725
CMA_FREE constant, 723, 724
CMA_HORIZONTAL constant, 724
CMA_INV ALIDATE constant, 723, 724

Index-731

CMA_ITEMORDER constant, 403, 414, 427, 443,
721

CMA_LAST constant, 721
CMA_LASTCHILD constant, 721
CMA_LEFT constant, 717
CMA_NEXT constant, 403, 414, 427, 443, 721
CMA_NOREPOSITION constant, 719
CMA_PARENT constant, 721
CMA_PFIELDINFOLAST constant, 415, 423, 428,

444, 725
CMA_PFIELDINFOOBJECT constant, 725
CMA_PREV constant, 721
CMA_PSORTRECORD constant, 725
CMA_PTLORIGIN constant, 725
CMA_REPOSITION constant, 719
CMA_RIGHTconstant, 717
CMA_SLBITMAPORICON constant, 725
CMA_SL TREEBITMAPORICON constant, 725
CMA_TOP constant, 399, 404, 417, 430, 447
CMA_TREEBITMAP constant, 725
CMA_ VERTICAL constant, 724
CMA_ WINDOW constant, 723
CMA_WORKSPACE constant, 723
CMA_XVERTSPLITBAR constant, 415, 423, 428,

444
CMA_ZORDER constant, 721
CN_BEGINEDIT notification, 438, 439, 707
CN_COLLAPSETREE notification, 708
CN_CONTEXTMENU notification, 432, 437, 449,

708
CN_DRAGAFTER notification, 456, 709
CN_DRAGLEA VE notification, 456, 709
CN_DRAGOVER notification, 456, 710
CN_DROP notification, 456, 710, 711
CN_DROPHELP notification, 456, 710
CN_EMPHASIS notification, 711
CN_ENDEDIT notification, 438, 439, 711
CN_ENTER notification, 711
CN_EXPANDTREE notification, 712
CN_HELP notification, 712
CN_INITDRAG notification, 456, 712
CN_KILLFOCUS notification, 713
CN_QUERYDELTA notification, 713
CN_REALLOCPSZ notification, 438, 439, 713
CN_SCROLL notification, 713, 714
CN_SETFOCUS notification, 714
CNREDITDATA structure, 438
CNRINFO structure, 399, 405, 406, 409, 410, 411,

414,415,418,419,423,427,428,433,434,443,
444,450,451,456

Combobox Style flags (CBS_), 304
Committing allocated memory, 6
Common dialogs

Description of each, 491

732-Index

File dialog
FILEDLG structure and, 492
Freeing memory allocated by, 493
Multiple file considerations, 493

Font dialog
FONTDLG structure and, 500
Return codes, 503

Purpose, 491
Common User Access guidelines, 168, 277, 397, 398,

456
Compiler switches for C-Set/2++, 2
Compiling resources. See Resource compiler (RC)
Container Field Attribute flags (CFA_), 410
Container Style flags (CCS_), 398
Container View flags (CV_), 400
CONTEXTRECORD structure, 106
CONTROL statement, 137, 198, 199, 272, 301, 473,

478.483
CRA_CURSORED constant, 722, 725
CRA_INUSE constant, 722, 725
CRA_SELECTED constant, 426, 432, 437, 442, 449,

722, 725
CRA_SOURCE constant, 423, 424, 426, 432, 433,

437,440,442,448,449
Creating a queue, 69
Creating a resource file. See Dialog box editor
Critical sections, 17
CS_CLIPCHILDREN constant, 126, 139, 241
CS_CLIPSIBLINGS constant, 126, 139
CS_FRAME constant, 139
CS_HITTEST constant, 139
CS_MOVENOTIFY constant, 139, 636
CS_PARENTCLIP constant, 126, 139
CS_SA VEBITS constant, 126, 139
CS_SIZEREDRAW constant, 139, 140, 146, 154,

162, 182,204,241,252,266,286,293,298,319,
331, 349,460,494,505,589,597,606,613

CS_SYNCPAINT constant, 126, 139, 186, 241, 252,
460,494,505

CSM_QUERYINCREMENT message, 674
CSM_QUERYRADIUS message, 674
CSM_QUERYRANGE message, 674
CSM_QUERYV ALUE message, 674
CSM_SETBITMAPDATA message, 675
CSM_SETINCREMENT message, 486, 488, 675
CSM_SETRANGE message, 486, 488
CSM_SETV ALUE message, 486, 488, 675
CSN_CHANGED notification, 673, 674
CSN_QUERYBACKGROUNDCOLOR notification,

673,674
CSN_SETFOCUS notification, 673, 674
CSN_TRACKING notification, 673, 674
CSS_360 constant, 481, 482, 483
CSS_CIRCULARV ALUE constant, 481, 483

CSS_MIDPOINT constant, 482, 486
CSS_NOBUTTON constant, 482
CSS_NONUMBER constant, 482
CSS_NOTEXT constant, 482
CSS_POINTSELECT constant, 482
CTIME structure, 410, 411
CTLDATA statement, 199, 200, 373, 374, 375, 473,

478
Cursor point, 277, 281, 283, 290
CV _DETAIL constant, 400, 419, 434, 450
CV _FLOW constant, 400, 405, 406, 419, 434, 450,

451
CV _ICON constant, 399, 400, 405, 409, 418, 419,

433,434,450
CV _NAME constant, 400, 405, 409, 419, 450
CV _TEXT constant, 400, 406, 409, 419, 434, 451
CV _TREE constant, 400, 409, 419, 434

-D-
DBM_HALFTONE constant, 194
DBM_IMAGEA TTRS constant, 194, 257
DBM_INVERT constant, 194
DBM_NORMAL constant, 194, 257
DBM_STRETCH constant, 194
DC_SEM_SHARED constant, 74
DCWW _NOW AIT constant, 70, 73
DCWW _WAIT constant, 70
DEFPUSHBUTTON statement, 210, 211, 257, 270,

280,305
Determining the boot drive, 33
Determining the default window class procedure, 174
Determining the maximum filename length, 35
Determining the size of a file, 35
DevCloseDC function, 534, 535, 536, 549, 550, 551
Developer's Toolkit, 1, 2, 46
DevEscape function, 533, 535, 536, 549, 550
Device context, 531, 532, 533, 534, 548, 557
DevOpenDC function, 318, 533, 534, 548
DEVOPENSTRUC structure, 532, 533, 534, 538,

540,541,542,553,554,556
DevPostDeviceModes flags (DPDM_), 541
DevPostDeviceModes function, 318, 541, 547, 556,

557
DevQueryCaps function, 512, 516, 534, 549
DGS_DRAGINPROGRESS constant, 347
DGS_LAZYDRAGINPROGRESS constant, 347, 352,

357,359,361,362
Dialog box editor (DLGEDIT), l, 199, 203
Dialog procedure, 309, 480, 493, 501, 541
DIALOG statement, 199, 201, 203, 208, 209, 210,

211,212,213,247,257,269,271,279,305,373,
374,391,478,492,497,499,503

Dialog units, 200, 268, 272

DISPATCHERCONTEXT structure, 107
DLGINCLUDE statement, 190, 201
DLGTEMPLATE statement, 199, 210, 211, 247, 257,

269,279,305,373,374,391,478
DM_DISCARDOBJECT message, 702
DM_DRAGFILECOMPLETE message, 703
DM_DRAGLEAVE message, 316, 326, 328, 338,

342, 356,360,361,363,456,666, 703, 709
DM_DRAGOVER message, 316, 317, 324, 328, 330,

337, 342,354,360,361,363,456,666, 703, 704,
709, 710

DM_DRAGOVERNOTIFY message, 704
DM_DROP message, 316, 326, 328, 338, 342, 343,

345, 346,354,356,360,361,456,666, 704, 710
DM_DROPHELP message, 316, 326, 328, 342, 345,

346,356,360,361,456,666, 704, 710
DM_DROPNOTIFY message, 346, 354, 360, 361
DM_EMPHASIZET AR GET message, 704
DM_ENDCONVERSATION message, 324, 327, 328,

330, 336,341,342,345,354,357,360,361, 705
DM_FILERENDERED message, 705
DM_pRINT message, 318, 705
DM_PRINTOBJECT message, 318, 705
DM_RENDER message, 317, 318, 336, 338, 339,

340,342,343,344,345, 706,707
DM_RENDERCOMPLETE message, 318, 338, 342,

706
DM_RENDERFILE message, 344, 707
DM_RENDERPREPARE message, 336, 339, 342,

707
DMFL_NATIVERENDER constant, 344
DMFL_RENDERFAIL constant, 707
DMFL_RENDEROK constant, 707
DMFL_RENDERRETRY constant, 344
DMFL_TARGETFAIL constant, 705
DMFL_TARGETSUCCESSFUL constant, 327, 341,

357, 705
DO_COPY constant, 314, 704, 710
DO_COPY ABLE constant, 314
DO_DEFAULTconstant, 358, 363
DO_LINK constant, 704, 710
DO_MOVE constant, 323, 326, 335, 338, 353, 356,

704, 710
DO_MOVEABLE constant, 323, 335, 353
DOR_DROP constant, 317, 326, 338, 345, 356, 703,

709, 710
DOR_NEVERDROP constant, 317, 330, 703, 709,

710
DOR_NODROP constant, 317, 325, 326, 330, 337,

338,355,356, 703, 709, 710
DOR_NODROPOP constant, 317, 703, 709, 710
DosAllocMem function, 5, 6, 8, 9, 12, 108
DosAllocSharedMem function, 10, 11, 72
DosClose function, 32, 56, 57, 61, 62

Index-733
DosConnectNPipe function, 57, 59, 60
DosCreateEventSem function, 72, 74, 82
DosCreateNPipe function, 37, 57, 59
DosCreateQueue function, 69, 72

Constants used, 69
DosCreateThread function, 15, 18, 19, 80, 82, 107,

117,581
Using versus _beginthread function, 18

DosCwait function, 23
DosDevlOCtl function, 114
DosEnterCritSec function, 17, 18, 585, 591, 593, 604
DosEnumAttribute function, 42, 49, 50, 51
DosExecPgm

Specifying environment to new process, 23
DosExecPgm function, 21, 22, 24, 107

Determining result of child process, 23
Specifying arguments to new process, 23

DosExitCritSec function, 17
DosExitList function, 56, 58, 59, 60, 62, 71, 73, 102,

107
DosFindFirst function, 35, 42, 46, 47, 49, 480

Constants used, 46
Determining the size of extended attributes

using, 47
Querying extended attributes using, 47

DosFindNext function, 35, 42, 50, 51
DosFlagProcess function, 55
DosFreeModule function, 99, 100, 101, 102
DosGetSharedMem function, 10
DosGiveSharedMem function, 10
DosKillThread function, 601, 602, 603, 604
DosLoadModule function, 99, 100, 191
DosOpen function, 32, 36, 37, 38, 39, 49, 59, 61, 63,

65,67,91,93, 114, 115,477,480
Constants used, 37, 38, 39, 40
How errors are handled by the system, 39
How the file is to be accessed, 39
How the file is to be shared, 39

DosOpenQueue function, 69, 75, 76
DosQuery AppType function, 24
DosQueryExtLIBPATH function, 31
DosQueryFilelnfo function, 51
DosQueryPathlnfo function, 32, 35, 41, 44, 45, 51,

52,91,93,320,332,350,477,480
DosQueryProcAddr function, 99, 100
DosQuerySyslnfo function, 31, 33, 34, 35

Constants used, 34
DosRaiseException function, 55
DosRead function, 32, 36, 57, 61, 65, 91, 93, 114,

117, 118, 477
DosReadQueue function, 69, 73, 74, 78

Constants used, 70
DosResumeThread function, 17, 18, 20, 21
DosSetExceptionHandler function, 105, 106, 107, 108

734-lndex

DosSetExtLIBPATH function, 31
DosSetMem function, 6, 109, 110, 111
DosSetPriority function, 17, 20, 21
DosSetSignalExceptionFocus function, 107
DosS!eep function, 17, 18, 20, 21, 81, 82, 584, 585,

588,591, 593, 597,604,609
DosStartSession function, 16, 24, 25

Constants used, 27
DOSSUB_GROW constant, 8
DOSSUB_INIT constant, 8, 9
DOSSUB_SERIALIZE constant, 8
DOSSUB_SPARSE_OBJ constant, 8, 9
DosSubAllocMem function, 8, 9, 10, 12
DosSubSetMem function, 6, 8, 9, 10, 12
DosSuspendThread function, 17
DosUnsetExceptionHandler function, 106, 107
DosWriteQueue function, 68, 77, 78, 79
DPDM_CHANGEPROP constant, 541
DPDM_POSTJOBPROP constant, 541, 547
DPDM_QUERYJOBPROP constant, 541
Drag and drop, 311, 330, 345, 348, 363, 397, 456

Concepts, 314
Event flowchart, 344
Files and, 344
Lazy drag, 346, 347, 348, 363

Differences from modal drag and drop, 346
Perspectives of, 311
Source container, 315
Source name, 315
Source rendering, 343
Source window, 311, 317, 329, 330, 343, 346, 347
System-defined rendering mechanisms, 317
Target name, 315
Target window, 311, 315, 316, 317, 329, 343, 344,

346,348
Use of shared memory and, 313
What it is, 311

Drag flags (DRG_), 313
Drag Message Flag flags (DMFL_), 344
Drag Over Response flags (DOR_), 317
Drag Status flags (DGS_), 347
DRAGIMAGE structure, 311, 312, 315, 322, 323,

330,334, 335,345,346,347,352,353,361
DRAGINFO structure, 311, 312, 313, 315, 316, 317,

323, 325,326,329,335,337,339,343,344,345,
346,347,355,356

DRAGITEM structure, 311, 312, 313, 315, 317, 322,
323,330,332,334,335,343,345,346,347,352,
361

DRAGTRANSFER structure, 311, 318, 339, 343,
344,345

Draw Bitmap flags (DBM_), 194
Draw Pointer flags (DP_), 192
DRG_BITMAPconstant, 313, 330

DRG_CLOSED constant, 313
DRG_ICON constant, 313, 323, 335, 353
DRG_POL YGON constant, 313
DRG_STRETCH constant, 313
DRG_TRANSPARENT constant, 313, 335
DrgAccessDraginfo function, 316, 317, 325, 326, 337,

339,345,348,355,356
DrgAddStrHandle function, 313, 314, 323, 335, 339,

344,345,353
DrgAllocDraginfo function, 313, 315, 323, 329, 335,

345,353
DrgAllocDragtransfer function, 318, 339, 343, 345
DrgCancelLazyDrag function, 346, 348, 358, 359, 363
DrgDeleteDraginfoStrHandles function, 316, 323,

324,335,336,345,353,354
DrgDeleteStrHandle function, 316, 340, 341, 345
DrgDrag function, 311, 315, 323, 330, 335, 343, 344,

345,346,353,362
DrgDragFiles function, 311, 344
DrgFreeDraginfo function, 316, 323, 324, 327, 335,

336,341,353,354,357
DrgFreeDragtransfer function, 336, 340, 341, 345
DrgGetPS function, 325, 326, 337, 338, 347, 355, 356
DrgLazyDrag function, 346, 347, 353, 362
DrgLazyDrop function, 347, 358, 363
DrgQueryDraginfoPtr function, 347, 348
DrgQueryDraginfoPtrFromDragitem function, 347,

348
DrgQueryDraginfoPtrFromHwnd function, 347, 348
DrgQueryDragitemCount function, 325, 337, 355
DrgQueryDragitemPtr function, 324, 325, 327, 338,

339,347,354,355,357
DrgQueryDragStatus function, 347, 352, 357, 359,

361,362
DrgQueryNativeRMF function, 339
DrgQueryStrName function, 320, 332, 336, 350
DrgReallocDraginfo function, 346
DrgReleasePS function, 325, 326, 337, 338, 355, 356
DrgSendTransferMsg function, 339, 340, 344, 345
DrgSetDragitem function, 313, 323, 335, 353
DrgVerifyNativeRMF function, 316, 326, 338, 356
DrgVerifyRMF function, 316
DrgVerifyTrueType function, 316, 326, 338, 356
DrgVerifyType function, 316
Drivers

Interface
Advantages ofusing, 113
Functions used for, 114
Using inp and outp, 118

Physical device drivers
Uses of, 113

Presentation drivers, 113
Uses of, 113

Virtual device drivers, 113

Virtual devices drivers
Uses of, 113

DT_BOITOM constant, 309
DT_CENTER constant, 309, 321, 322, 334, 351, 352,

464,469,496,508
DT_ERASERECT constant, 256, 261
DT_LEFfconstant, 145, 151, 152, 161,243,256,

261, 309
DT_RIGHT constant, 309
DT_TEXTATTRS constant, 145, 151, 152, 161, 243,

464,469,496,508
DT_TOP constant, 309
DT_ VCENTER constant, 256, 261, 309, 321, 334,

351,352,464,469,496,508
DT_ WORDBREAK constant, 145, 151, 152, 161, 309
Dynamic link libraries, 85

Advantages of, 85
Alias functions, 87

Portability and, 87
Determining function addresses, 99
Fixups and, 87
Implementation and other platforms, 85
Linking and, 89
Loading of, 98
Performance using, 86
Upper memory and, 85

Dynamic link libraries (DLLs), 5

-E-
EA DAT A. SF file, 29
EAOP2 structure, 43, 47, 48, 49, 52
EM_CLEAR message, 688
EM_COPY message, 278, 687
EM_CUT message, 278, 687
EM_PASTE message, 278, 525, 527, 529, 688
EM_QUERYCHANGED message, 686
EM_QUERYFIRSTCHAR message, 688
EM_QUERYREADONL Y message, 688
EM_QUERYSEL message, 278, 686
EM_SETINSERTMODE message, 689
EM_SETREADONL Y message, 689
EM_SETSEL message, 278, 687
EM_SETTEXTLIMIT message, 277, 686, 687
EN_CHANGE notification, 686
EN_KILLFOCUS notification, 686
EN_MEMERROR notification, 686
EN_OVERFLOW notification, 686
EN_SCROLL notification, 686
EN_SETFOCUS notification, 686
ENTRYFIELD statement, 279, 280, 391, 392, 521,

523,524,529
Entryfield Style flags (ES_), 276
ENUMEA_LEVEL_NO_ VALUE constant, 42, 49, 50

ES_ANY constant, 276
ES_AUTOSCROLL constant, 276, 279
ES_AUTOSIZE constant, 276, 523
ES_AUTOTAB constant, 276
ES_CENTER constant, 276, 279
ES_COMMAND constant, 276
ES_DBCS constant, 276
ES_LEFf constant, 276

Index-735

ES_MARGIN constant, 276, 279, 391, 392, 523
ES_MIXED constant, 276
ES_READONL Y constant, 276, 278
ES_RIGHT constant, 276
ES_SBCS constant, 276
ES_ UNREADABLE constant, 276, 278
Exception, guard page, 7
EXCEPTIONREGISTRA TIONRECORD structure,

105, 106, 108
EXCEPTIONREPORTRECORD structure, 106, 111,

112
Exceptions, 105, 107, 152

Asynchronous, 105
Behavior of, 105

FS register and, 107
Handlers, 105, 107, 112

DosExitList function and, 107
Nesting and, 105
Registering, 105

Synchronous, 105
Behavior of, 105

Types of, 105
EXEC_ASYNC constant, 22
EXEC_SYNC constant, 22
EXLST_ADD constant, 56, 59, 60, 71
EXLST_EXIT constant, 58, 59, 62, 73
EXLST_REMOVE constant, 59
Extended attribute utility (EAUTIL), 30
Extended attributes, 29, 30, 492

Definition of, 30
Determining the size of, 51
Enumeration of, 49
Internals, 29
Maintenance of, 31
Maximum size of, 30
Modifying, 51
Naming conventions of, 30

Extended selection, 240, 398
Actions defined by, 240

-F-
fALLOC constant, 8
FAT file system, 29, 30, 31, 35
FATTR_FONTUSE_NOMIX constant, 513, 516
FATTR_FONTUSE_OUTLINE constant, 513, 516

736-Index
FATIR_SEL_BOLD constant, 510, 511, 517
FATIR_SEL_ITALIC constant, 510, 511, 517
FATIR_SEL_OUTLINE constant, 511, 517
FATIR_SEL_STRIKEOUTconstant, 510, 511, 517
FATIR_SEL_UNDERSCORE constant, 510, 511
FATIR_TYPE_DBCS constant, 512
FATIR_TYPE_KERNING constant, 512
FATIR_TYPE_MBCS constant, 512
FATIRS structure, 301, 501, 503, 509, 511, 515, 516,

517
FCF _ACCELTABLE constant, 133, 198, 204, 460,

543
FCF _AUTOICON constant, 133
FCF _BORDER constant, 133
FCF_DLGBORDER constant, 133
FCF _HIDEBUTTON constant, 133
FCF _HIDEMAX constant, 133
FCF~HORZSCROLL constant, 133
FCF _ICON constant, 133
FCF _MAXBUTTON constant, 132, 133
FCF _MENU constant, 132, 133, 160, 241, 252, 266,

286,293,298,367,401,412,494,505,543,567,
574

FCF _MINBUTTON constant, 132, 133
FCF_MINMAXconstant, 127, 131, 133, 140, 169,

176,231,241,252,286,293,298,367,385,460,
494,505,521,589,597,606,613

FCF _NOBYTEALIGN constant, 133
FCF _NOMOVEWITHOWNER constant, 133
FCF_SHELLPOSITION constant, 127, 131, 133, 140,

160,204,231,241,286,293,298,319,331,349,
401,412,424,441,543,567,574,589,597,606,
613

FCF _SIZEBORDER constant, 127, 131, 132, 133,
140, 160, 168, 169, 176,231,241,252,266,286,
293,298,319,331,349,367,385,401,412,424,
441,460,494,505,521, 543,567,574,589,597,
606,613

FCF_STANDARD constant, 133, 204
FCF _SYSMENU constant, 127, 131, 132, 133, 140,

154, 169, 176,210,211,231,241,247,252,257,
266,269,271,279,286,293,298,305,319,331,
349,367,373,374,385,401,412,424,441,460,
478,484,494,505,521,543,567,574,589,597,
606, 613

FCF _TASKLIST constant, 127, 131, 133, 140, 144,
160, 169, 176,204,231,286,293,298,319,331,
349,367,385,401,412,424,441,521,543,567,
574,589,597,606,613

FCF _TITLEBAR constant, 127, 131, 132, 133, 140,
144, 154, 169, 176,210,211,231,241,247,252,
257,266,269,271,279,286,293,298,305,319,
331,349,367,373,374,385,401,412,424,441,

460,478,484,494,505,521,543,567,574,589,
597,606,613

FCF _ VERTSCROLL constant, 133
FDM_ERROR message, 676
FDM_FIL TER message, 676
FDM_ VALIDA TE message, 676
FDS_APPL YBUTTON constant, 492
FDS_CENTER constant, 492, 493, 497, 499
FDS_CUSTOM constant, 492, 493
FDS_EFSELECTION constant, 676
FDS_ENABLEFILELB constant, 492
FDS_FILTERUNION constant, 492
FDS_HELPBUTTON constant, 492
FDS_INCLUDE_EAS constant, 492
FDS_LBSELECTION constant, 676
FDS_MODELESS constant, 492
FDS_MULTIPLESEL constant, 493
FDS_OPEN_DIALOG constant, 497, 499
FDS_PRELOAD_ VOLINFO constant, 497
FEA2 structure, 43, 44, 47, 48, 50, 51, 52, 53
FIELDINFO structure, 410, 411, 422, 438
FIL_QUERYEASFROMLIST constant, 44, 46, 47,

48,51,52
FIL_QUERYEASIZE constant, 42, 46, 47
File dialog. See Common dialogs
File Dialog Style flags (FDS_), 492
File handle, 15, 26, 36, 37, 40, 46, 49, 114, 118
File UO, random access, 40
File UO, sequential access, 40
FILE_ARCHIVED constant, 38, 46
FILE_CREATED constant, 37
FILE_DIRECTORY constant, 38, 42, 46
FILE_EXISTED constant, 37
FILE_HIDDEN constant, 38, 46
FILE_NORMAL constant, 32, 36, 38, 477
FILE_READONL Y constant, 38, 46, 93
FILE_SYSTEM constant, 38, 46
FILE_ TRUNCATED constant, 37
FILEDLG structure, 468, 492, 494, 497, 498, 499,

500
Initialization and, 499

FILEFINDBUF3 structure, 47
FILEFINDBUF4 structure, 41, 42, 46, 47, 48
FILESTATUS3 structure, 31, 35, 93, 476
Finding files, 46
Fixups, 86
Flat memory, 5
FNTF _NOVIEWPRINTERFONTS constant, 502
FNTF _NOVIEWSCREENFONTS constant, 502
FNTF _PRINTERFONTSELECTED constant, 502
FNTF _SCREENFONTSELECTED constant, 502
FNTM_FACENAMECHANGED message, 677
FNTM_FILTERLIST message, 677
FNTM_POINTSIZECHANGED message, 677

FNTM_STYLECHANGED message, 678
FNTM_ UPDA TEPREVIEW message, 678
FNTS_APPL YBUTTON constant, 501
FNTS_BITMAPONL Y constant, 501
FNTS_CENTER constant, 501, 504, 509, 512, 517
FNTS_CUSTOM constant, 501, 503, 504
FNTS_FIXEDWIDTHONL Y constant, 502
FNTS_HELPBUTTON constant, 501, 512
FNTS_INITFROMFATTRS constant, 501, 509, 512,

517
FNTS_MODELESS constant, 501, 510
FNTS_NOSYNTHESIZEDFONTS constant, 502
FNTS_PROPORTIONALONL Y constant, 502
FNTS_RESETBUTTON constant, 501
FNTS_SUCCESSFUL constant, 503
FNTS_ VECTORONL Y constant, 502
Font Attribute flags (FATTR_), 502
Font dialog. See Common dialogs
Font Dialog Style flags (FNTS_), 501
Font Flag flags (FNTF _), 502
Font Type flags (FTYPE_), 502
Font Weight flags (FWEIGHT_), 503
Font Width flags (FWIDTH_), 503
FONTDLG structure, 468, 500, 501, 504, 509, 514,

515,516,517
FONTMETRICS structure, 141, 149, 156, 255, 259,

386,511,515,523
Frame Creation Flags (FCF _), 132
FS_DLGBORDER constant, 391
FS_NOBYTEALIGN constant, 269, 271
FTYPE_IT ALIC constant, 502
FTYPE_ITALIC_DONT_CARE constant, 502
FTYPE_OBLIQUE constant, 502
Function keys

Reading, 64
Function pointers, 87
FWEIGHT_DONT_CARE constant, 503
FWEIGHT_EXTRA_LIGHT constant, 503
FWEIGHT_LIGHT constant, 503
FWEIGHT_NORMAL constant, 503
FWEIGHT_SEMI_LIGHT constant, 503
FWEIGHT_ULTRA_LIGHT constant, 503
FWIDTH_CONDENSED constant, 503
FWIDTH_DONT_CARE constant, 503
FWIDTH_EXPANDED constant, 504
FWIDTH_EXTRA_CONDENSED constant, 503
FWIDTH_EXTRA_EXP ANDED constant, 504
FWIDTH_NORMAL constant, 504
FWIDTH_SEMl_CONDENSED constant, 504
FWIDTH_SEMI_EXPANDED constant, 504
FWIDTH_ UL TRA_CONDENSED constant, 503
FWIDTH_ULTRA_EXPANDED constant, 504

-G-
GEA2 structure, 47, 48
GEA2LIST structure, 43, 44, 48, 52
GpiAssociate function, 531
GpiBox function, 321, 333, 351, 551
GpiCharString function, 151
GpiCharStringAt function, 524

Index-737

GpiCreatePS function, 531, 534, 549
GpiDeleteBitmap function, 196, 255, 256, 259, 261
GpiDestroyPS function, 535, 536, 549, 550, 551
GpiErase function, 254, 370, 376, 389, 487, 524
GpiLine function, 321, 333, 351
GpiLoadBitmap function, 194, 222, 227
GpiMove function, 321, 333, 351, 551
GpiQueryBitmaplnfoHeader function, 194, 195, 255,

256,259
GpiQueryCharBox function, 512, 515
GpiQueryCp function, 511
GpiQueryDevice function, 512, 516
GpiQueryFontMetrics function, 141, 149, 156, 255,

259,387,394,511,513,515,523
GpiSetColor function, 321, 333, 351
Guard page, 7, 18, 107, 108, 109, 110, 112

-H-
HDIR_CREATE constant, 46
HDIR_SYSTEM constant, 42, 45, 46
Header files used when compiling, 2
Help Mode flags (HLPM_), 564
HELPINIT structure, 559, 560, 567, 568, 573, 574
HELPITEM statement, 562, 563, 570, 573, 576
HELPSUBITEM statement, 562, 563, 571, 573, 576
HELPSUBTABLE statement, 562, 563, 571, 573, 576
HELPTABLE statement, 562, 563, 570, 573, 576
HM_ACTIONBAR_COMMAND message, 692
HM_CONTROL message, 692
HM_CREATE_HELP _TABLE message, 692
HM_DISMISS_ WINDOW message, 693
HM_DISPLA Y _HELP message, 561, 562, 565, 569,

570,575,693
HM_ERROR message, 562, 693
HM_EXT_HELP message, 561, 569, 647, 694, 695
HM_EXT _HELP_ UNDEFINED message, 695
HM_ GENERAL_HELP message, 695
HM_GENERAL_HELP _UNDEFINED message, 695
HM_HELP _CONTENTS message, 695
HM_HELP _INDEX message, 561, 569, 575, 647, 696
HM_HELPSUBITEM_NOT_FOUND message, 562,

696
HM_INFORM message, 700
HM_INV ALIDA TE_DDF _DAT A message, 696
HM_KEYS_HELP message, 561, 570, 575, 647, 697

738-Index
HM_LOAD _HELP_ TABLE message, 697
HM_NOTIFY message, 697
HM_PANELNAME message, 561
HM_QUERY message, 561, 570, 576, 698, 699, 700
HM_QUERY_DDF_DATA message, 698, 700
HM_QUERY_KEYS_HELP message, 561, 570, 576,

699
HM_REPLACE_HELP _FOR_HELP message, 699
HM_RESOURCEID message, 561, 569, 693
HM_SET_ACTIVE_ WINDOW message, 699
HM_SET_COVERPAGE_SIZE message, 700
HM_SET_HELP _WINDOW _TITLE message, 700
HM_SET_OBJCOM_ WINDOW message, 700
HM_SET _SHOW _P ANEL_ID message, 701
HM_SET_USERDATA message, 701
HM_UPDA TE_ OBJ COM_ WINDOW _CHAIN

message, 701
Hooks, 564
HPFS file system, 29, 30, 31, 35
HWND datatype, 126, 127, 128, 129, 130, 131, 132,

134, 135, 136, 140, 141, 142, 144, 145, 147, 148,
150, 154, 155, 156, 157, 158, 160, 162, 163, 164,
167, 168, 169, 170, 171, 173, 174, 175, 176, 177,
178, 179, 184, 185, 191, 192, 198,200,203,204,
205,207,208,212,213,214,220,221,222,223,
224,227,228,230,232,235,237,240,241,242,
244,245,246,250,251,252,253,254,259,265,
266,267,268,271,272,276,279,282,283,284,
285,286,289,290,291,292,295,296,297,298,
304,312,313,315,319,320,322,324,327,331,
332,334,336,341,343,344,347,349,350,352,
354,357,358,362,366,367,368,369,370,372,
375,377,385,386,387,388,389,390,393,394,
401,403,404,412,416,424,426,429,438,440,
442,443,445,446,459,460,461,462,463,473,
474,476,484,485,486,487,494,495,497,504,
505,506,509,511,517,521,522,523,524,525,
526,528,538,540,542,543,544,552,553,559,
560,567,569,573,575,581,585,588,589,592,
593,597,601,602,603,604,606,609,610,611,
613

HWND_DESKTOP constant, 127, 131, 137, 140,
144, 154, 160, 169, 172, 173, 176, 185, 191, 192,
193,204,206,208,209,212,213,214,220,221,
225,231,233,236,241,244,246,247,250,252,
253,255,256,259,261,266,267,268,271,272,
279, 284,285,286,288,290,291,293,295,296,
297,298,299,305,319,323,325,326,328,331,
335,337,338,341,349,353,355,356,357,358,
359,362,363,367,369,372,376,385,386,387,
388,391,393,402,403,404,412,416,417,425,
429,430,433,438,441,446,449,460,461,462,
463,464,466,468,474,475,484,494,495,497,
500,505,510,513,517,522,524,525,526,528,

543,544,546,547,548,549,550,551,563,568,
570,574,575,583,585,586,587,588,589,593,
594,595,596,597,598,599,600,604,605,606,
609,611,612,613

HWND_OBJECT constant, 358, 362, 586, 593, 605,
610, 611, 615

HWNDFROMMP macro, 130

-I-
UO priviledge level (IOPL) code, 96, 98, 101, 114,

118, 120, 122
UO priviledge level code, 95
Icon editor (ICONEDIT), 191
Import library, 86, 89
IMPORTS statement, 89, 90, 91
Information Presentation Facility compiler (IPFC), 1,

565,571,577
Initialization of a PM application, 130
inp function, 95, 96, 97, 98, 99, 100, 101, 118, 119,

120, 121, 122
inpwfunction,97,98, 118, 121, 122
Installable file systems, 29
Interprocess communication, 10, 55, 79, 581

Pipe,37,55,56,59,60,62,63,64,65,66,68, 78
Byte mode, 59
Communicating with DOS applications, 64
Message mode, 59

Queue,26,68,69, 70, 71, 72, 73, 74, 75, 76, 77,
78, 79, 118, 134
Blocking mode, 74, 78
Event semaphores and, 74
Shared memory and, 74

Semaphore, 70, 74, 78, 79,81,82,83, 187
Event, 79
Mutex, 79
MuxWait, 79
Using versus flags, 79

Shared memory, 8, 10, 11, 12, 15, 21, 55, 64, 68,
69, 74, 79,313,317,344,503,581

Signal, 87, 105, 107
Interprocess communication, queue, 174, 199

-K-
KC_AL T constant, 625
KC_CHAR constant, 525, 527, 625
KC_CTRL constant, 625
KC_DEADKEY constant, 625
KC_KEYUP constant, 625
KC_PREVDOWN constant, 625
KC_SCANCODE constant, 625
KC_SHIFT constant, 625
KC_ VIRTUALKEY constant, 527, 625

-L-
Libraries used when linking, 2
Limiting the size of a standard window, 174
Link switches, 2
LISTBOX statement, 247, 257, 544, 556
Listbox Style flags (LS_), 239
LIT_END constant, 245, 249, 304, 655
LIT_FIRST constant, 244, 250, 656
LIT_NONE constant, 244, 250, 545, 657
LIT_SORTASCENDING constant, 249, 655
LIT_SORTDESCENDING constant, 249
LM_DELETEALL message, 540, 554, 654
LM_DELETEITEM message, 654
LM_INSERTITEM message, 254, 258, 261, 655
LM_INSERTMUL TITEMS message, 655
LM_QUERYITEMCOUNT message, 655
LM_QUERYITEMHANDLE message, 540, 545, 546,

554,656
LM_QUERYITEMTEXT message, 656
LM_QUERYITEMTEXTLENGTH message, 656
LM_QUERYSELECTION message, 245, 250, 656
LM_QUERYTOPINDEX message, 657
LM_SEARCHSTRING message, 657
LM_SELECTITEM message, 245, 249, 254, 258,

540,547,553,657
LM_SETITEMHANDLE message, 540, 553, 658
LM_SETITEMHEIGHT message, 658
LM_SETITEMTEXT message, 658
LM_SETITEMWIDTH message, 658
LM_SETTOPINDEX message, 659
LN_ENTER notification, 306, 654
LN_KILLFOCUS notification, 654
LN_SCROLL notification, 654
LN_SELECT notification, 654
LN_SETFOCUS notification, 654
LONGFROMMP macro, 130
LONGFROMMR macro, 130
LS_EXTENDEDSEL constant, 240
LS_HORZSCROLL constant, 240, 305, 544, 654
LS_MULTIPLESEL constant, 239, 240, 247, 250
LS_NOADJUSTPOS constant, 239, 544
LS_OWNERDRAW constant, 239, 257, 654
LSS_CASESENSITIVE constant, 657
LSS_PREFIX constant, 657

-M-
Macros

Converting to and from an MPARAM, 129
Converting to and from an MRESULT, 130

malloc function, 12, 13, 32, 35, 42, 91, 93, 232, 235,
328,341,359,368,402,413,416,425,426,429,

Index -739
441,442,445,477,539,540,543,546,552,553,
554,583,586,587,593,596,605,611

Maximize buttons, 133
Memory

Management of, 1, 5, 108
Models, 5, 87, 91

Memory allocation
Flags, 7
Shared memory, 10
Suballocating memory, 8

Memory architecture
Flat, 5
Organization of, 5
Pages, 5
Segmented, 5
Why necessary, 5

Menu Item Attribute flags (MIA_), 227
Menu Item Style flags (MIS_), 219
Menu items

Setting the attributes of, 227
MENU statement, 125, 132, 133, 144, 158, 160, 200,

201,210,225,226,228,234,241,247,252,257,
266,269,285,286,292,293,298,299,358,360,
362,367,373,401,407,412,420,432,436,448,
453,468,494,498,505,514,543,555,564,567,
570,574,576,589,594,598,599,607,614

Menu Style flags (MS_), 219
MENUITEM statement/structure, 200, 210, 222, 225,

226,227,228,234,247,257,269,287,293,299,
360,373,407,420,421,429,436,445,453,498,
514,555,570,576,589,598,607,614

Message loop, 134
Message queue

Creating, 131
What it is used for, 131

Messy desktop concept, 167
MIA_CHECKED constant, 223, 224, 225, 226, 227,

229,230,285,292
MIA_DISABLED constant, 224, 225, 226, 227, 230,

610,611
MIA_FRAMED constant, 224, 225, 226, 227, 230
MIA_HILITED constant, 224, 227, 230
MIA_NODISMISS constant, 224, 227, 230, 679
Minimize buttons, 124
MINIRECORDCORE structure, 398, 401, 402, 404,

409,412,413,416,417,424,425,429,439,440,
441, 446, 447

MIS_BITMAP constant, 219, 222, 227, 228, 685
MIS_BREAK constant, 219
MIS_BREAKSEPARATOR constant, 219
MIS_BUTTONSEPARATOR constant, 226
MIS_HELP constant, 220, 226
MIS_OWNERDRA W constant, 220, 685
MIS_SEPARATOR constant, 219

740-Index
MIS_STATIC constant, 220
MIS_SUBMENU constant, 219
MIS_SYSCOMMAND constant, 220
MIS_ TEXT constant, 219, 225, 226
Mixed mode programming, 87, 91
MLFIE_NOTRANS constant, 283, 287, 288, 289,

295,296
MLM_CHARFROMLINE message, 294, 300
MLM_COPY message, 294
MLM_CUT message, 294
MLM_DISABLEREFRESH message, 288
MLM_ENABLEREFRESH message, 288
MLM_EXPORT message, 282, 288, 296, 300
MLM_FORMAT message, 282, 283, 287, 289, 296
MLM_IMPORT message, 282, 283, 288, 290, 295
MLM_LINEFROMCHAR message, 294
MLM_PASTE message, 294
MLM_QUERYCHANGED message, 302
MLM_QUERYFONT message, 301
MLM_QUERYLINECOUNT message, 296, 300
MLM_QUERYLINELENGTH message, 296, 300
MLM_QUERYREADONLY message, 285, 292
MLM_QUERYTEXTLENGTH message, 283, 290
MLM_QUERYUNDO message, 302
MLM_RESETUNDO message, 302
MLM_SEARCH message, 300, 301
MLM_SETFONTmessage, 301, 302
MLM_SETIMPORTEXPORT message, 282, 283,

287,289,295,296
MLM_SETREADONLY message, 285, 292
MLM_SETSEL message, 282, 283, 290, 294
MLM_SETWRAP message, 282
MLM_UNDO message, 302
MLN_SEARCHPAUSE notification, 301
MLS_BORDER constant, 281, 284, 291, 297
MLS_DISABLEUNDO constant, 281
MLS_HSCROLL constant, 281, 284, 291, 297
MLS_IGNORETAB constant, 281
MLS_READONLY constant, 281
MLS_ VSCROLL constant, 281, 284, 291, 297
MLS_ WORDWRAP constant, 281
MM_DELETEITEM message, 679
MM_ISITEMV ALID message, 680
MM_ITEMIDFROMPOSITION message, 681
MM_ITEMPOSITIONFROMID message, 681
MM_QUERYDEFAULTITEMID message, 681
MM_QUERYITEM message, 223, 224, 229, 430,

446,681,682,683
MM_QUERYITEMA1TR message, 223, 224, 229,

230,682
MM_QUERYITEMCOUNT message, 682
MM_QUERYITEMRECT message, 682
MM_QUERYITEMTEXT message, 224, 230, 682,

683

MM_QUERYITEMTEXTLENGTH message, 683
MM_QUERYSELITEMID message, 683
MM_SELECTITEM message, 684
MM_SETDEFAULTITEMID message, 430, 447, 684
MM_SETITEM message, 222, 223, 224, 228, 229,

285,292,611,684,685
MM_SETITEMA1TR message, 223, 229, 285, 292,

611, 684
MM_SETITEMHANDLE message, 685
MM_SETITEMTEXT message, 224, 229, 685
Mnemonic key, 219, 365
Modifying the LIBPATH, 31
Module defintion file keywords, 90
MPARAM

What it is, 129
Why it is used, 128

MPARAM datatype, 126, 127, 128, 129, 130, 135,
136, 140, 141, 154, 155, 168, 170, 171, 175, 177,
184,203,205,207,220,221,230,232,240,242,
245,251,253,254,265,266,267,283,290,296,
304,319,322,324,327,331,334,336,341,349,
352,354,358,366,368,370,372,384,385,386,
389,401,403,412,416,424,429,440,445,459,
460,474,484,485,494,495,504,506,521,523,
524,542,543,567,569,573,575,585,593,604,
609, 611

MPFROM2SHORT macro, 129
MPFROMCHAR macro, 129
MPFROMHWND macro, 129
MPFROMLONG macro, 129
MPFROMP macro, 129
MPFROMSH2CH macro, 129
MPFROMSHORT macro, 129
MPFROMVOID macro, 129
MRESULT

What it is, 129
Why it is used, 128

MRESULT datatype, 126, 127, 128, 129, 130, 134,
136, 140, 141, 154, 155, 168, 170, 171, 175, 177,
203,205,207,220,221,223,228,230,232,240,
242,245,251,253,254,265,266,267,279,283,
290,296,304,319,322,324,327,331,334,336,
341,349,352,354,358,366,368,370,375,384,
385,386,388,389,401,403,412,416,424,429,
440,445,459,460,474,484,485,494,495,504,
506,520,521,523,524,542,543,567,569,573,
575,585,593,604,609,611

MRFROM2SHORT macro, 130
MRFROMLONG macro, 130
MRFROMP macro, 130
MRFROMSHORT macro, 130
MS_ACTIONBAR constant, 219
MS_CONDITIONALCASCADE constant, 219, 430,

446,447

MS_TITLEBUTTON constant, 219
MS_ VERTICALFLIP constant, 219
Multiline Edit Style flags (MLS_), 281
Multiline Find Search flags (MLFSEARCH_), 301
Multiple selection, 239
Multitasking, 1, 15, 16, 118
MUST_HAVE_ARCHIVED constant, 46
MUST_HAVE_DIRECTORY constant, 46
MUST_HA VE_HIDDEN constant, 46
MUST_HAVE_READONLY constant, 46
MUST_HAVE_SYSTEM constant, 46

-N-
Native RMF, 314, 317, 325, 338, 355
NMAKE utility, 1
Notebook Style flags (BKS_), 384
NP _ACCESS_DUPLEX constant, 58, 59, 62, 68
NP _RMESG constant, 58, 59, 62, 68
NP_ WMESG constant, 58, 59, 62, 68
NULLHANDLE constant, 127, 131, 134, 140, 141,

142, 148, 150, 155, 156, 157, 169, 170, 176, 191,
194, 197, 198, 199,201,204,205,206,208,209,
212,213,215,220,221,222,227,228,231,232,
233,235,241,242,244,252,253,266,267,279,
284,286,291,293,297,299,305,315,319,320,
323,328,331,332,335,339,342,349,350,358,
359,362,367,368,369,370,376,385,386,387,
388,389,402,404,405,406,412,413,416,417,
418,420,425,429,430,431,435,441,446,448,
452,460,464,474,484,485,494,495,496,505,
506,507,522,524,534,543,544,548,549,560,
564,568,569,574,575,586,587,589,593,594,
598,601,603,604,605,606,610,611,612,613

-0-
OBJ_ TILE constant, 8
Object windows, 607, 608
Online help

Common IPF tags, 565
Common symbols, 566
Components of, 559

Panel definitions, 565
Resources, 562
Source code, 559

Help Manager messages, 561
Hooks and, 564
Initialization of, 560
Message boxes and, 563, 572

OPEN_ACCESS_READONL Y constant, 32, 36, 40,
67,93,477

OPEN_ACCESS_READWRITE constant, 40, 58, 63,
64,67,68

lndex-741
OPEN_ACCESS_ WRITEONLY constant, 40, 67, 477
OPEN_ACTION_CREATE_IF_NEW constant, 39,

67
OPEN_ACTION_FAIL_IF _EXISTS constant, 38, 39,

67
OPEN_ACTION_FAIL_IF _NEW constant, 39, 67
OPEN_ACTION_OPEN_IF _EXISTS constant, 39,

58,62,63,67,68,93
OPEN_ACTION_REPLACE_IF _EXISTS constant,

39,67
OPEN_FLAG_NO_LOCALITY constant, 40
OPEN_FLAG_RANDOM constant, 40
OPEN_FLAG_RANDOMSEQUENTIAL constant, 40
OPEN_FLAG_SEQUENTIAL constant, 40
OPEN_FLAGS_DASD constant, 68
OPEN_FLAGS_FAIL_ON_ERROR constant, 32, 36,

39,58,62,64,68
OPEN_FLAGS_NO_CACHE constant, 40, 68
OPEN_FLAGS_NOINHERIT constant, 40
OPEN_FLAGS_ WRITE_THROUGH constant, 39,

58,62,64,68
OPEN_SHARE_DENYNONE constant, 32, 36, 40,

58,63,64,68
OPEN_SHARE_DENYREAD constant, 40, 67, 93,

477
OPEN_SHARE_DENYREADWRITE constant, 40,

67,93,477
OPEN_SHARE_DENYWRITE constant, 36, 40, 477
Opening a file, 36
Opening a queue, 69
OS2.INI file, 175
outp function, 95, 96, 97, 98, 99, 100, 101, 118, 119,

120, 121, 122
outpw function, 97, 98, 118, 121, 122
OWNERITEM structure, 259, 261, 476, 480

-P-
PAG_COMMIT constant, 6, 7, 8, 11, 77, 109, 110,

111
PAG_EXECUTE constant, 7, 8
PAG_GUARD constant, 7, 109, 110, 111
PAG_READ constant, 6, 7, 8, 9, 11, 76, 108, 109,

110, 111
PAG_ WRITE constant, 6, 7, 8, 9, 11, 76, 77, 108,

109, 110, 111
PAGESELECTNOTIFY structure, 393
Physical device drivers, 113
Pointer conversion, 87
POINTER statement, 191, 201
Pop Up flags (PU_), 237
PP_ACTIVECOLOR constant, 165
PP _ACTIVECOLORINDEX constant, 165
PP _ACTIVETEXTBGNDCOLOR constant, 165

742-Index

PP _ACTIVETEXTBGNDCOLORINDEX constant,
165

PP _ACTIVETEXTFGNDCOLOR constant, 165
PP _ACTIVETEXTFGNDCOLORINDEX constant,

165
PP _BACKGROUNDCOLOR constant, 164, 247, 269,

271,391,486,488
PP _BACKGROUNDCOLORINDEX constant, 164,

247,269,271,391,488
PP _BORDER COLOR constant, 165
PP_BORDERCOLORINDEX constant, 165
PP _DISABLEDBACKGROUNDCOLOR constant,

165
PP _DISABLEDBACKGROUNDCOLORINDEX

constant, 165
PP _DISABLEDFOREGROUNDCOLOR constant,

165
PP _DISABLEDFOREGROUNDCOLORINDEX

constant, 165
PP _FONTNAMESIZE constant, 165, 475, 479, 506,

507, 510, 515, 518
PP _FOREGROUNDCOLOR constant, 164
PP _FOREGROUNDCOLORINDEX constant, 164
PP _HILITEBACKGROUNDCOLOR constant, 164
PP _HILITEFOREGROUNDCOLOR constant, 164
PP _INACTIVECOLOR constant, 165
PP _INACTIVECOLORINDEX constant, 165
PP _INACTIVETEXTFGNDCOLOR constant, 165
PPRJINF02 structure, 537
PPRQINF06 structure, 537
Presentation parameter, 163, 164, 175, 200, 396, 473,

488, 515,518
Presentation Parameter constants (PP_), 164
Presentation space, 320, 332, 350, 501, 511, 515, 517,

531,532,534,549,557
Purpose, 152
Types of, 152
What it is, 152

Printing
Communication with the printer driver, 533
Job properties and, 541
Limitations of DOS and, 531
Opening the printer, 533

Printer independence and, 536
OS/2 and, 531
Overview of, 531

Priority
fixed high, 16
Foreground boost, 16
I/O boost, 16, 17
Idle time, 16
Levels, 16, 17, 21
Modifying, 17
Server class, 16, 17

Starvation boost, 16, 17
Time critical, 16

Process,8, 10, 15, 16,40,55,64,68,69, 70, 79,85,
105,564
Foreground process, 16
Inheriting resources and, 21
Starting a, 21
Waiting for completion of child, 23

Process identifier (PID), 15, 24, 70, 72, 76, 78
PROG_3 l_ENH constant, 27
PROG_3 l_ENHSEAMLESSCOMMON constant, 27
PROG_3 l_ENHSEAMLESSVDM constant, 27
PROG_3 l_STD constant, 24, 27
PROG_3 l_STDSEAMLESSCOMMON constant, 24,

27
PROG_3 l_STDSEAMLESSVDM constant, 27
PRQINF03 structure, 537, 538, 539, 552, 554
PRTYC_FOREGROUNDSERVER constant, 19, 21
PRTYC_IDLETIME constant, 19, 21
PRTYC_NOCHANGE constant, 19, 21
PRTYC_REGULAR constant, 19, 21
PRTYC_TIMECRITICAL constant, 19, 21
PRTYS_THREAD constant, 20, 21
PU_HCONSTRAIN constants, 433, 438, 449, 586,

594,605,612
PU_KEYBOARD constants, 234, 236, 237, 358, 362,

433,438,449,586,594,605,612
PU_MOUSEBUTTONl constants, 234, 236, 358,

362,433,438,449,586,594,605,612
PU_MOUSEBUTTON2 constants, 234, 236, 433,

438,449,586,594,605,612
PU_NONE constants, 433, 438, 449, 586, 594, 605,

612
PU_POSITIONONITEM constants, 234, 236, 237
PU_ VCONSTRAIN constants, 433, 438, 449, 586,

594,605,612
PUSHBUTTON statement, 247, 257, 265, 270, 271,

373,374,468,478
PVOIDFROMMP macro, 130
PVOIDFROMMR macro, 130

-Q-
QMSG structure, 127, 134, 135, 140, 154, 169, 176,

185,204,220,230,241,252,266,286,292,298,
319,331,349,367,385,401,412,424,440,459,
484,494,505,521,542,567,573,589,597,601,
603,606,610,613

QSV _BOOT_DRIVE constant, 31, 34
QSV _DYN_PRI_ VARIATION constant, 34
QSV _MAX_ COMP _LENGTH constant, 35
QSV _MAX_PATH_LENGTH constant, 34
QSV _MAX_PM_SESSIONS constant, 34
QSV _MAX_SLICE constant, 34

QSV _MAX_TEXT_SESSIONS constant, 34
QSV _MAX_ VDM_SESSIONS constant, 34
QSV _MAX_ WAIT constant, 34
QSV _MIN_SLICE constant, 34
QSV _MS_ COUNT constant, 34
QSV _P AGE_SIZE constant, 34
QSV _TIME_HIGH constant, 34
QSV _ TIME_LOW constant, 34
QSV _ VERSION_MAJOR constant, 34
QSV _ VERSION_MINOR constant, 34
QSV _ VERSION_REVISION constant, 34
QUE_CONVERT_ADDRESS constant, 69, 77
QUE_FIFO constant, 69, 77
QUE_LIFO constant, 69
QUE_NOCONVERT_ADDRESS constant, 69
QUE_PRIORITY constant, 69
Query Parameter Format flags (QPF _), 164
Querying system information, 33
Querying system values, 173
Querying the current font, 515
Querying the HAB of a window, 174
QW _BOTTOM constant, 150
QW _FRAMEOWNER constant, 150
QW_NEXT constant, 149, 150
QW _NEXTTOP constant, 150
QW_OWNER constant, 143, 150, 159, 246, 249
QW_PARENT constant, 142, 143, 149, 150, 157,

159, 177, 179,222,223,228,284,291,297
QW _PREV constant, 149, 150
QW _PREVTOP constant, 150
QW _TOP constant, 150
QWL_STYLE constant, 143, 151, 159, 430, 447
QWL_USERconstant, 153, 155, 156, 163, 170, 171,

173,207,208,209,242,368,369,370,376,377,
495,499,506,507,508,524,527

QWS_ID constant, 388, 393, 463, 468

-R-
RCINCLUDE statement, 190
Reading from a file, 36
Reading from a queue, 69
RECORDINSERT structure, 398, 399, 403, 404, 416,

417,429,445,447
RECTL structure, 141, 147, 148, 149, 151, 152, 155,

168, 175, 194,205,222,232,233,242,255,259,
261,320,322,324,333,334,337,350,352,354,
357,361,362,370,376,387,406,420,435,452,
462,464,480,496,507,523,548,569,575,586,
594,605,612

Rendering mechanism and format, 314, 316, 317,
318,323,325,326,330,331,335,338,343,344,
345,353,355,356

REQUESTDATA structure, 70, 73

Resource compiler (RC), l, 191, 197
Using, 191

Index-743

Resource file, 132, 133, 189, 190, 191, 193, 197, 199,
200, 201,203,211,219,222,226,227,265,271,
466,473,479,483,559

RESOURCE statement, 201, 252, 257
Resource Type flags (RT_), 201
Resources, 1, 15, 16, 18, 21, 85, 98, 133, 189, 190,

191, 194, 197, 201, 211, 212, 226, 235, 315, 344,
563,603
Accelerator tables, 189, 197, 198, 199, 226

Activating a loaded table, 198
Destroying, 199
Loading, 198

Bitmaps, 189, 193, 194, 196, 251, 255, 258, 261,
303,306,308,365,366,384,409
Drawing, 194, 261
Loading, 194
Querying the parameters of, 194

Fonts, 189,491, 501,502,503,511, 514, 515,516
Help tables, 189, 200, 562
Icons, 189, 191, 192, 193,226,303,308, 365,366,

409
Pointers, 189, 191, 192, 193, 398, 439, 493, 499,

504,591
Destroying, 193
Drawing, 192
Loading, 191
System pointers, 192

Purpose, 189
String tables, 189, 197

Loading strings from, 197
Types of, 190

Resources, Pointers, 344
RES UL TCODES structure, 23
RT_ACCELTABLE constant, 201
RT_BITMAP constant, 201
RT_DIALOG constant, 201
RT_DLGINCLUDE constant, 201
RT_FONTconstant, 201
RT_FONTDIR constant, 201
RT_HELPSUBTABLE constant, 201
RT_HELPTABLEconstant, 201
RT_MENU constant, 201
RT_MESSAGE constant, 201
RT_POINTER constant, 201
RT_RCDATA constant, 201
RT_STRING constant, 201

-S-
Saving and restoring window settings, 175
SBMP _CHILDSYSMENU constant, 251
SBMP _MAXBUTTON constant, 251

744-Index
SBMP_MENUATIACHED constant, 251
SBMP _SIZEBOX constant, 251
SBMP _TREEMINUS constant, 251
SBS_AUTOSIZE constant, 307
SBS_AUTOTRACK constant, 307
SBS_HORZ constant, 307
SBS_THUMBSIZE constant, 307
SBS_ VERT constant, 307
Screen painter. See Dialog box editor
Scroll Bar Style flags (SBS_), 307
SDA_BACKGROUND constant, 480
SDA_RIBBONSTRIP constant, 476, 480
SDA_SLIDERARM constant, 480
SDA_SLIDERSHAFT constant, 480
SEAs. See System extended attributes
Selection emphasis, 277
Selections

Characteristics of, 277
Session, 15, 16, 23, 24, 25, 26, 27, 55, 113

Starting a, 25
SHORTlFROMMP macro, 130
SHORTlFROMMR macro, 130
SHORT2FROMMP macro, 130
SHORT2FROMMR macro, 130
SLDCDATA structure, 473
Slider Style flags (SLS_), 472
Slidertrack, 307
SLM_QUERYSCALETEXT message, 671
SLM_QUERYSLIDERINFO message, 671
SLM_QUERYTICKPOS message, 672
SLM_QUERYTICKSIZE message, 672
SLM_SETSCALETEXT message, 475, 479, 480, 672
SLM_SETSLIDERINFO message, 478, 480, 481, 673
SLM_SETTICKSIZE message, 475, 479, 673
SLN_CHANGE notification, 670
SLN_KILLFOCUS notification, 670
SLN_SETFOCUS notification, 670
SLN_SLIDERTRACK notification, 670
SLS_BOTIOM constant, 472
SLS_BUTIONSBOTIOM constant, 472
SLS_BUTIONSLEFT constant, 472, 473
SLS_BUTIONSRIGHT constant, 472
SLS_BUTIONSTOP constant, 472
SLS_CENTER constant, 478
SLS_HOMEBOTIOM constant, 472
SLS_HOMELEFT constant, 472, 478
SLS_HOMERIGHT constant, 472
SLS_HOMETOP constant, 472
SLS_HORIZONT AL constant, 472, 478
SLS_LEFT constant, 472
SLS_OWNERDRA W constant, 478, 480
SLS_PRIMARYSCALEl constant, 472, 478
SLS_PRIMARYSCALE2 constant, 472
SLS_READONLY constant, 478

SLS_RIBBONSTRIP constant, 478
SLS_RIGHT constant, 472
SLS_SNAPTOINCREMENT constant, 472, 473, 478
SLS_TOP constant, 472
SLS_ VERTICAL constant, 472
SM_SETHANDLE message, 309
SMA_INCREMENTV ALUE constant, 478, 480, 672
SMA_RANGEV ALUE constant, 672
SMA_SETALLTICKS constant, 475, 479, 480
SMA_SHAFTDIMENSIONS constant, 481, 671
SMA_SHAFTPOSITION constant, 481, 671
SMA_SLIDERARMDIMENSIONS constant, 671
SMA_SLIDERARMPOSITION constant, 478, 480,

671
Source name, 343
SPBM_OVERRIDESETLIMITS message, 690
SPBM_QUERYLIMITS message, 690
SPBM_QUERYVALUE message, 464, 469, 690
SPBM_SETARRAY message, 462, 467, 690
SPBM_SETCURRENTV ALUE message, 691
SPBM_SETLIMITS message, 691
SPBM_SETMASTER message, 462, 467, 691
SPBM_SETTEXTLIMIT message, 691
SPBM_SPINDOWN message, 691
SPBM_SPINUP message, 692
SPBN_CHANGE notification, 689
SPBN_DOWNARROW notification, 689
SPBN_ENDSPIN notification, 463, 467, 468, 689
SPBN_KILLFOCUS notification, 689
SPBN_SETFOCUS notification, 689
SPBN_UPARROW notification, 689
SPBS_ALLCHARACTERS constant, 457
SPBS_FASTSPIN constant, 461, 466
SPBS_JUSTCENTER constant, 457
SPBS_JUSTLEFT constant, 457, 461, 466
SPBS_JUSTRIGHT constant, 457
SPBS_MASTER constant, 457, 461, 466
SPBS_NUMERICONLY constant, 457
SPBS_READONLY constant, 457, 461, 466
SPBS_SERV ANT constant, 457, 461
SPM/2 utility, 10
SPTR_APPICON constant, 193
SPTR_ARROW constant, 193, 591
SPTR_FILE constant, 193, 323, 335, 353
SPTR_FOLDER constant, 193
SPTR_ICONERROR constant, 193
SPTR_ICONINFORMATION constant, 193, 268, 271
SPTR_ICONQUESTION constant, 193
SPTR_ICONW ARNING constant, 193
SPTR_ILLEGAL constant, 193
SPTR_MOVE constant, 193
SPTR_MUL TFILE constant, 193
SPTR_PROGRAM constant, 193
SPTR_SIZE constant, 193

SPTR_SIZENESW constant, 193
SPTR_SIZENS constant, 193
SPTR_SIZENWSE constant, 193
SPTR_SIZEWE constant, 193
SPTR_ WAIT constant, 591, 592, 595, 599, 600
SS_AUTOSIZE constant, 309
SS_BITMAP constant, 309
SS_BKGNDFRAME constant, 309
SS_BKGNDRECT constant, 309
SS_FGNDFRAME constant, 309
SS_FGNDRECT constant, 309
SS_GROUPBOX constant, 309
SS_HALFTONEFRAME constant, 309
SS_HALFTONERECT constant, 309
SS_ICON constant, 309
SS_ TEXT constant, 309
SSF _CONTROL_INVISIBLE constant, 27
SSF _CONTROL_MAXIMIZE constant, 27
SSF _CONTROL_MINIMIZE constant, 27
SSF _CONTROL_NOAUTOCLOSE constant, 27
SSF_CONTROL_ VISIBLE constant, 25, 27
SSF _TYPE_DEFAULT constant, 27
SSF_TYPE_FULLSCREEN constant, 27
SSF _ TYPE_PM constant, 27
SSF _TYPE_ VDM constant, 27
SSF _TYPE_ WINDOW ABLEVIO constant, 27
SSF _TYPE_ WINDOWEDVDM constant, 27
STARTDATA structure, 24, 25, 26
Static Style flags (SS_), 309
SUBMENU statement, 200, 210, 225, 226, 247, 257,

269,293,299,373,407,420,421,436,453,498,
514,555,570,576

SV_ANIMATION constant, 589, 597, 606
SY _CXICON constant, 233, 236, 268, 272
SV_CXSCREEN constant, 169, 173, 204, 221, 231,

252,367,385,460,461,466,484,495,505,522
SV _CYICON constant, 233, 236, 268, 272
SV_CYSCREEN constant, 169, 173, 204, 221, 231,

252,367,386,460,461,466,484,495
Swiping, 277
SWP structure, 170, 176, 178, 179, 204, 206, 208,

213,215,221,231,252,266,284,291,297,368,
369,386,388,405,418,432,448,460,485,486,
487,495,506,522,524,544

System extended attributes (SEAs), 30
System loader, 85
System Pointer flags (SPTR_), 193

-T-
Target name, 315, 343
Task, 15, 16,26, 79,87, 133, 144, 160,376,579,580,

581,582,590,600,615
Termination code, 23

Termination of a PM application, 135
THESEUS2 utility, 10

Index - 745

Thread, 15, 16, 17, 18, 19,20,21, 79,80,82, 83, 105,
107, 183, 185,579,580,581,590,592,599,600,
607,608,614
PM applications

Components of, 580
Data communications, 581
Entry and exit points, 581
User feedback, 591

DosKillThread function and, 602
Necessity for, 579
Object windows, 607
One shot, 580
Other considerations, 615
Sequential programming and, 600
Types of, 580

Resuming, 17
Suspending, 17

Thread identifier (TID), 15, 17, 18, 19, 80, 81, 115,
601, 603, 611

THREAD_SUSPEND constant, 19, 20
THREADS statement, 15, 80, 81, 82
Thumb, 307, 481
Thunking, 86, 87, 91, 212

Transitions and, 86
Time slices, 17

Length of, 17
Surrenduring remainder of, 18

TIMESLICE statement, 17
TRACKINFO structure, 171, 172, 174, 175
Truetype,314,317,325,338,355

-V-
Value Set Style flags (VS_), 366
Virtual Key flags used in DrgDrag function (VK_),

315
VIRTUALKEY statement, 198, 465, 466, 527, 555
VK_BACKTAB constant, 465, 466
VK_BUTTONl constant, 315
VK_BUTTON2 constant, 315
VK_BUTTON3 constant, 315
VK_DOWN constant, 650
VK_END constant, 315, 323
VK_ENDDRAG constant, 315, 323
VK_Fl constant, 198
VK_F3 constant, 555
VK_LEFT constant, 633
VK_PAGEDOWN constant, 650
VK_PAGEUP constant, 650
VK_RIGHT constant, 633
VK_TAB constant, 465, 466
VK_UP constant, 650

746-Index
VM_QUERYITEM message, 668
VM_QUERYITEMATIR message, 668
VM_QUERYMETRICS message, 668
VM_QUERYSELECTEDITEM message, 668
VM_SELECTITEM message, 669
VM_SETITEM message, 371, 375, 669
VM_SETITEMA TfR message, 669
VM_SETMETRICS message, 670
VN_DRAGLEA VE notification, 666, 667
VN_DRAGOVER notification, 666, 667
VN_DROP notification, 666, 667
VN_DROPHELP notification, 666, 667
VN_ENTER notification, 666
VN_HELP notification, 666
VN_INITDRAG notification, 666, 667
VN_KILLFOCUS notification, 666
VN_SELECT notification, 371, 376, 666
VN_SETFOCUS notification, 666
VS_BITMAP constant, 366
VS_BORDER constant, 366, 373, 374
VS_COLORINDEX constant, 366, 373, 374, 375
VS_ICON constant, 366
VS_ITEMBORDER constant, 366
VS_OWNERDRA W constant, 366
VS_RGB constant, 366
VS_RIGHTTOLEFT constant, 366
VS_SCALEBITMAPS constant, 366
VS_ TEXT constant, 366
VSCDATA structure, 374, 375

-W-
WC_BUTTON class, 125, 142, 158, 263, 268, 272
WC_CIRCULARSLIDER class, 483, 486
WC_COMBOBOX class, 125, 142, 158, 303
wc_coNTAINER class, 126, 330, 404, 416, 429,

446
WC_ENTRYFIELD class, 125, 142, 158, 523, 529
WC_FRAME class, 125, 142, 158, 171, 174, 303
WC_LISTBOX class, 125, 142, 158, 544
WC_MENU class, 125, 158
WC_MLE class, 126, 284, 291, 297
WC_NOTEBOOK class, 126, 387, 394
WC_SCROLLBAR class, 126, 142, 158, 303
WC_SLIDER class, 126, 473, 478
WC_SPINBUTTON class, 126, 461, 467
WC_STATIC class, 125, 142, 158, 303
WC_TITLEBAR class, 126, 142, 158, 303
WC_ VALUESET class, 126
Well behaved PM applications, 579
WinAddProgram function, 27
WinAlarm function, 144, 160, 172, 209, 246, 284,

290,291,295,296,297,372,391,403,404,416,

429,430,446,475,497,513,548,549,550,551,
585,586,593,604,605,609,611

WinAssociateHelplnstance function, 560, 561, 562,
565,568,569,574,575,693

WinBeginEnumWindows function, 142, 150, 157
WinBeginPaint function, 141, 148, 156, 222, 232,

242,253,328,342,359,370,376,389,406,420,
435,452,464,487,496,507,524,548,569,575,
587,594,606,612

WinBroadcastMsg function, 184
WinCalcFrameRect function, 624
WinCancelShutdown function, 183, 548, 556
WinCloseClipbrd function, 525, 526, 528
WinCreateDlg function, 203, 633
WinCreateHelplnstance function, 559, 560, 565, 568,

574
WinCreateMsgQueue function, 127, 130, 131, 140,

154, 169, 176,204,220,231,241,252,266,279,
286,292,298,305,3i9,33i,349,367,385,40i,
412,424,440,459,474,484,494,505,521,542,
548,556,567,574,585,589,590,593,597,604,
606, 610, 613

WinCreateStdWindow function, 127, 131, 132, 134,
140, 154, 169, 176, 182,204,220,226,231,241,
252,266,286,293,299,319,331,349,367,385,
402,412,425,441,460,484,494,505,522,543,
563,565,568,574,589,598,606,613
Constants used, 132

WinCreateWindow function, 164, 182, 203, 226, 265,
268, 272,284,291,297,307,387,393,394,404,
416,429,446,461,462,467,473,483,486,523,
527,544,610,614,615,628

WinDefDlgProc function, 136, 181, 187, 207, 213,
215,246,254,256,269,279,305,371,372,389,
476

WinDefFileDlgProc function, 493
WinDefFontDlgProc function, 501
WinDefWindowProc function, 127, 136, 142, 158,

171, 177, 181, 183, 187, 192,209,213,224,234,
244,245,253,254,267,285,292,298,329,342,
358,360,363,369,370,388,389,406,407,420,
432,433,435,448,449,452,463,465,487,497,
508,519,524,545,547,548,570,576,586,588,
594,595,597,599,600,605,606,609,612,613,
642

WinDestroyAcce!Table function, 199
WinDestroyHelplnstance function, 560, 562, 568,

569,574,575
WinDestroyMsgQueue function, 127, 135, 141, 155,

170, 177, 183,205,221,232,241,253,266,279,
286,293,299,305,320,332,350,368,386,402,
413,425,441,460,474,485,495,506,522,543,
548,549,550,551,569,575,585,589,591,593,
598,604,607,610,614

WinDestroyPointer function, 193, 405, 418, 431, 448
WinDestroyWindow function, 127, 135, 141, 155,

170, 177, 183, 205, 208, 212, 213, 215, 221, 232,
241, 253,266,286,293,299,320,332,350,358,
359,362,368,386,402,405,413,418,425,431,
441,448,460,485,495,506,522,524,543,544,
569, 575,586,589,594,598,605,607,610,611,
614

WinDismissDlg function, 207, 213, 215, 246, 249,
254,269,371,476

WinDispatchMsg function, 127, 134, 135, 140, 155,
170, 176, 183,205,221,232,241,253,266,286,
293, 299,320,332,349,368,386,402,413,425,
441,460,485,495,506,522,543,568,574,579,
589,598,601,603,606,608,610,613

WinDlgBox function, 209, 212, 213, 214, 244, 253,
267,279,305,474,600,633

Window Style flags (WS_), 138
Windows

Check box, 263, 264, 272, 273
Class, 125, 126, 132, 133, 139, 142, 146, 150, 158,

197, 199,302,303,304,519,520,529,560,
581, 591
Class styles, 126
Registering with PM, 131
Standard classes, 125

Client window, 124, 125, 126, 131, 133, 134, 135,
136, 137, 146, 147, 149, 151, 181, 182, 211,
212,214,215,228,230,235,236,237,241,
242,248,249,250,252,283,290,296,372,
376,377,394,466,467,468,474,494,505,
515,516,518,526,557,563

Combo box, 125, 303, 304, 306
Purpose, 303
Relationship to entryfields and listboxes, 306

Container, 397, 398, 400, 402, 404, 408, 409, 410,
411,412,417,421,422,423,425,430,437,
438,439,441,446,454,456
Allocating field structures, 410
Allocating records, 398
Direct editing, 438
Drag and drop and, 456
Emphasis types, 423

Workplace Shell and, 437
Filtering records, 439
Inserting field structures, 422
Inserting records, 398
Purpose, 397
Setting characteristics of, 399
Sorting records, 439
View types, 400, 409

Control window
What it is, 163

Coordinate spaces, 147

Converting between, 200, 271
Dialog units, 271

Creating a standard window, 131
Default window procedure, 136

lndex-747

Dialog boxes, 189, 199, 203, 213, 394, 396, 567,
572,578
Modal, 203

Creation of, 212
Modeless, 203

Creation of, 213
Passing data to, 212
Purpose, 203
Templates, 211
Types of, 203

Dialog procedure, 123
Entry field, 275, 276, 277, 278, 294, 303, 304, 306,

393,394,457,527,529
Limitations of, 275
Purpose, 275
Querying contents of, 276
Setting contents of, 276
Setting maximum length of, 277

Enumeration of, 149
Focus change, 288
Frames, 124, 131, 132, 133, 135, 137, 139, 142,

149, 150, 157, 165, 168, 169, 171, 172, 173,
174, 175, 178, 179, 182, 183, 185, 190, 198,
199,204,212,220,226,228,231,252,282,
289,295,303,367,385,484,495,521,565
Purpose, 306

Instance data. See Windows, Window word
Layering of, 178
Listbox,239,240,248,249,250,251,258,259,

261,262,275,303,304,306,492,557
Enumerating selected items of, 250
Purpose, 239

Making sense of class names, 150
Menus, 189,200,217,218,219,237,423,561

Bitmaps in, 227
Cascaded, 217, 219
Creating. See MENU statement
Popup,217,218,230

Creating, 235
Displaying, 236

Pull-down, 217
Messages

Return values, 136
Multiline edit control, 126, 275, 281, 282, 283,

284,285,286,287,288,289,290,291,293,
294,295,297,298,299,300,301,302
Clipboard support, 294
Disabling refresh of, 288
End of line formats, 282
Inserting a line of text, 288

748 - Index
Insertion points of, 282
Limitations of, 281
Positioning the cursor, 294
Purpose, 281
Searching for text in, 300
Setting the import/export buffer of, 282

Notebook,379, 383,384,385,391,392, 393,394,
395,396,580
Associating a dialog and a page, 384
Purpose, 379
Status text, 395
Tabs, Sizing of, 395
Use of, 379

Owner window, 133, 137, 143, 150, 151, 159, 164,
203,212,220, 228, 235,236,237,251,259,
263,265,272,281,394,410,439,456,467,
473,474,492,493,500,501,517,562,563,
581, 590, 609, 615
Purpose, 137

Painting, 14 7
printf function, 149
Typical flow of, 147

Parent window, 132, 133, 137, 139, 143, 144, 149,
150, 151, 152, 159,206,212,214,228,235,
237,249,272,306,394,399,422,466,473,
474,500,517,562,615
Purpose, 137

Push buttons, 263, 265, 272, 273, 561, 563
Radio buttons, 263, 264, 265, 272, 273
Scroll bar

Characteristics of, 307
Components of, 307
Purpose, 307

Slider, 471, 472, 473, 474, 477, 478, 479, 480, 481,
482,483,484,485,486,487,488,489
Components, 471
Purpose, 471
Setting the tick size, 4 79
Types of, 471

Spin button, 457, 458, 466, 467, 468, 469
Master and slave, 458
Purpose, 457
What it is, 457

Standard window
Components of, 125

Static (class)
Draw Text flags (DT_) and, 309
Purpose, 308

Style, 132, 133, 137, 138, 139, 143, 151, 153, 159,
186,278,383

Subclassing, 173, 303, 307, 310, 519, 521, 564
Purpose, 520
What it is, 519

Superclassing, 529

System menu, 124, 132, 183, 211, 218, 219, 303
Title bar, 124, 126, 127, 131, 132, 133, 135, 137,

140, 144, 154, 159, 165, 174, 176, 182,211,
217, 303, 310, 566

Value set, 365, 366, 369, 374, 375, 376, 377
Purpose, 365

What they are, 123
Window procedure, 123, 125, 128, 129, 130, 131,

134, 135, 136, 149, 172, 173, 174, 175, 181,
183, 184, 187,211,213,214,228,261,283,
290,296,519,520,521,527,529,557,579,
580,591,608
Avoidance of global and static variables, 136
How it is defined, 128
Purpose of, 135

Window word, 131, 151, 153, 156, 157, 162, 163,
168, 170, 171, 173, 174, 181,204,207,211,
235,236,242,248,368,375,376,499,500,
506,508,515,516,527,529,557,591
Functions that manipulate, 153
Thunking and, 162

Windows, Class, 330
Windows, Client window, 320, 327, 332, 350, 358
Windows, Menus, 348
Windows, Window procedure, 322, 324, 327, 334,

336,352,354,358
WinDrawBitmap function, 194, 257
WinDrawPointer function, 192, 194, 233, 236
WinDrawText function, 145, 151, 152, 161, 243, 251,

256,261,321,322,334, 351,352,464,469,496,
507,515

WinEnableWindow function, 167, 168
WinEnableWindowUpdate function, 288, 289, 290,

295,296
WinEndEnumWindows function, 142, 150, 157
WinEndPaint function, 142, 148, 158, 222, 233, 243,

254,328,342,360,370,376,389,406,420,435,
452,464,487,496,508,524,548,569,575,587,
594,606,612

WinFileDlg function, 493, 497, 499, 500
WinFillRect function, 141, 148, 156, 222, 232, 243,

250,256,261,320,333,350,370,376,406,420,
435,452,464,469,476,480,496,507,548,569,
575,587,594,606,612

WinFocusChange function, 288
WinFontDlg function, 500, 510, 514, 515, 517
WinFreeFileDlgList function, 493
WinFreeFilelcon function, 232
WinGetMsg function, 127, 134, 135, 140, 155, 170,

176, 183, 186,205,221,231,232,241,252,253,
266,286,293,299,319,320,331,332,349,350,
368,386,402,413,425,441,460,485,495,506,
522,543,568,574,579,589,598,601,602,603,
606, 610, 613, 642

WinGetNextWindow function, 142, 150, 157
WinGetPS function, 148, 222, 255, 327, 339, 340,

347,357,387,509,511,516,523
WinGetSysBitmap function, 255, 256, 259, 261
Winlnitialize function, 127, 130, 140, 154, 169, 176,

204,220, 231,241,252,266,279,286,292,298,
305,319,331,349,367,385,401,412,424,440,
459,474,484,494,505,521,542,548,556,559,
567,574,585,589,590,593,597,604,606,610,
613

WinlnvalidateRect function, 147, 245, 324, 335, 353,
369,377,463,467,468,496,508

WinlnvalidateRegion function, 147
WinLoadAccelTable function, 198
WinLoadDlg function, 208, 212, 213, 214, 369, 387,

633
WinLoadFilelcon function, 232, 235
WinLoadLibrary function, 191, 564
WinLoadMenu function, 232, 235, 358, 359, 362,

430,446,586,593,605,611
WinLoadPointer function, 191, 404, 417, 430, 446
WinLoadString function, 197
WinLockWindowUpdate function, 649
WinMapDlgPoints function, 200, 268, 271, 272
WinMapWindowPoints function, 206, 214, 325, 337,

355,433,438,449
WinMessageBox function, 144, 160, 172, 209, 225,

230,247,326,328,338,341,356,359,372,391,
403,404,416,417,429,430,446,475,497,513,
525,526,527,528,543,544,546,547,548,549,
550,551,563,570,573,575,583,587,588,596,
600

WinOpenClipbrd function, 525, 527, 528
WinPeekMsg function, 185, 601, 602, 603, 604
WinPopupMenu function, 234, 235, 236, 237, 358,

362,433,438,449,586,594,605,612
WinPostMsg function, 183, 184, 209, 244, 246, 249,

253,267,285,288,291,292,298,326,338,356,
369,373,376,386,406,420,435,452,496,508,
523,547,585,586,591,593,594,605,608,609,
612

WinProcessDlg function, 212
WinPtlnRect function, 233, 236
WinQueryAnchorBlock function, 171, 174, 233, 284,

291,297,525,527,547,604
WinQueryClasslnfo function, 171, 174, 529
WinQueryClassName function, 142, 150, 158
WinQueryClipbrdData function, 525, 527, 528
WinQueryFocus function, 463, 468
WinQueryHelplnstance function, 694
WinQueryMsgPos function, 185
WinQueryMsgTime function, 185
WinQueryPointerPos function, 357, 358, 362, 363,

433,438,449,586,594,605,612

Index -749
WinQueryPresParam function, 163, 164, 507, 515
WinQueryProgramHandle function, 27
WinQueryQueuelnfo function, 185
WinQueryQueueStatus function, 185
WinQuerySysPointerfunction, 192, 268, 271, 309,

323,335,353,591,595,599,600
WinQuerySysValue function, 169, 173, 204, 221,

231, 233,236,252,268,272,367,385,386,460,
461,466,484,495,505,522,589,597,606,613

WinQueryWindow function, 142, 143, 149, 151, 157,
159, 177, 179,222,223,228,246,249,284,291,
297
Constants used, 149

WinQueryWindowPos function, 487, 524
WinQueryWindowPtr function, 153, 155, 156, 163,

171,208,209,232,233,242,284,290,297,322,
324,327,334, 336,341,352,354,358,368, 369,
370,376,377,403,416,429,445,495,496,507,
508,524,543,585,593,604,611

WinQueryWindowRect function, 141, 149, 156, 206,
214, 243,250,320,321,322,325,333,334,337,
350,351,352,355,357,362,387,394,463,464,
467,469,496,507,523

WinQueryWindowText function, 276, 277, 308
WinQueryWindowTextLength function, 276, 277
WinQueryWindowULong function, 143, 151, 153,

159,430,447
WinQueryWindowUShort function, 153, 388, 393,

463,468
WinRegisterClass function, 127, 131, 140, 154, 162,

169, 176,200,204,220,231,241,252,266,286,
293, 298,319,329,331,349,367,385,401,412,
424,440,460,484,494,505,521,529,543,567,
574,589,597,606,610,613

WinReleaseHook function, 564, 565, 568
WinReleasePS function, 222, 255, 327, 339, 340, 357,

387, 510, 513, 523
WinRemovePresParam function, 164
WinRequestMutexSem function, 187
WinRestoreWindowPos function, 175, 176, 177, 178,

179
WinScrollWindow function, 686
WinSendDlgltemMsg function, 245, 249, 250, 254,

258,268,269,272,371,375,462,464,467,469,
475,479

WinSendMsg function, 183, 184, 222, 223, 224, 228,
229,230,283,285,287,288,289,290,292,295,
296,300,327,341,344,357,384,388,390,391,
393,394,395,396,400,403,404,405,406,408,
409,414,415,417,418,419,420,422,423,426,
427,428,430,431,432,433,434,437,442,443,
444,446,447,448,449,450,451,452,454,455,
478,480,486,488,540,544,545,546,547,553,
554,569,570,575,586,590,591,594,608,611

750-lndex
WinSetAccelTable function, 198, 199
WinSetDlgitemText function, 206, 279
WinSetFocus function, 285, 288, 291, 298, 387, 388,

393,394,462,463,464,468,469,524
WinSetHook function, 564, 565, 568
WinSetPointer function, 192, 346, 595, 599
WinSetPresParam function, 163, 302, 475, 479, 486,

488,506,510,518
WinSetSysColors function, 646
WinSetWindowPos function, 137, 170, 173, 176, 178,

179, 182,204,206,208,213,214,215,221,231,
252,266,284,291,297,368,369,386,388,405,
418,431,448,460,485,487,495,505,522,544,
618

WinSetWindowPtr function, 153, 155, 163, 170, 173,
207,232,235,242,248,284,290,297,328,341,
342,359,368,404,416,429,446,495,499,506,
524,527,544,586,593,605,611

WinSetWindowText function, 276, 308
WinSetWindowULong function, 153, 430, 447
WinSetWindowUShort function, 153
WinShowWindow function, 167, 179, 387, 394
WinStartTimer function, 187
WinStopTimer function, 187
WinStoreWindowPos function, 175, 177, 179
WinSubclassWindow function, 169, 173, 520, 524,

527,529
WinSubstituteStrings function, 646
WinTerminate function, 127, 135, 141, 155, 170, 177,

205,221,232,241,253,266,279,286,293,299,
305,320,332,350,368,386,402,413,425,441,
460,474,485,495,506,522,543,548,549,550,
551,569,575,585,589,591,593,598,604,607,
610, 614

WinUpdateWindow function, 324, 335, 353, 369, 377
WinWaitEventSem function, 187
WinWaitMuxWaitSem function, 187
WinWindowFromID function, 222, 223, 228, 244,

245,249,250,285,292,304,372,373,376,387,
388,393,462,463,464,467,468,475,479,487,
524,547

WM_ACTIVATE message, 182, 617, 637
WM_ADJUSTWINDOWPOS message, 182, 618, 650
WM_APPTERMINA TENOTIFY message, 617
WM_BEGINDRAG message, 311, 315, 322, 328,

330,334,342,345,346,361,362,456,618
WM_BEGINSELECT message, 619
WM_BUTTONlCLICK message, 619
WM_BUTTONlDOWN message, 621
WM_BUTTONlMOTIONEND message, 621
WM_BUTTONlMOTIONSTART message, 621
WM_BUTTONl UP message, 623
WM_BUTTON2CLICK message, 619
WM_BUTTON2DOWN message, 621

WM_BUTTON2MOTIONEND message, 622
WM_BUTTON2MOTIONSTART message, 622
WM_BUTTON3CLICK message, 620
WM_BUTTON3DOWN message, 622
WM_BUTTON3MOTIONEND message, 622
WM_BUTTON3MOTIONST ART message, 623
WM_BUTTON3UP message, 624
WM_CALCFRAMERECT message, 624
WM_CALCV ALIDRECTS message, 182
WM_CHAR message, 183, 281, 525, 527, 529, 625
WM_CHORD message, 626
WM_CLOSE message, 183, 209, 244, 253, 267, 285,

292,298,369,406,420,435,452,508,547,586,
594,605,612,615,626

WM_COMMAND message, 197, 198, 206, 208, 211,
215,220,222,228,236,244,245,249,253,263,
267,269,285,291,298,358,360,361,362,368,
371,389,405,408,409,418,431,433,448,450,
463,466,468,475,480,496,499,508,544,545,
569,575,586,594,605,612,626,651,679

WM_CONTEXTMENU message, 233, 235, 236, 357,
360,361,362,586,594,605,611,627, 708

WM_CONTROL message, 137, 272, 311, 371, 376,
388,393,432,437,438,448,456,462,467,468,
627,638,654,659,670,673,686, 707, 708, 709,
710, 711, 712, 713, 714

WM_CONTROLPOINTER message, 346, 591, 592,
595,599,600,627

WM_CREATE message, 123, 135, 155, 163, 181,
207,211,214,221,232,235,242,248,290,297,
328,329,341,358,368,386,403,416,429,445,
460,466,485,495,499,506,515,523,526,543,
557,561,565,586,593,605,607,611,628

WM_DDE_INITIATE message, 318
WM_DESTROY message, 123, 155, 172, 183, 207,

211,232,242,284,291,297,328,329,342,359,
369,418,431,448,495,499,506,515,524,544,
586,593,605,607,611,628

WM_DRAWITEM message, 220, 239, 251, 259, 260,
473,480,628

WM_ENABLE message, 629
WM_ENDDRAG message, 629
WM_ENDSELECT message, 630
WM_ERASEBACKGROUND message, 127, 136,

170, 177,207,267,465
WM_ERROR message, 630
WM_FOCUSCHANGE message, 182, 630
WM_FORMATFRAME message, 631
WM_HELP message, 220, 265, 631, 659, 666,

679, 712
WM_HITTEST message, 139, 632
WM_HSCROLL message, 632
WM_INITDLG message, 205, 214, 245, 249, 254,

258,267,271,279,304,370,371,475,479,633

WM_INITMENU message, 237, 544, 557, 592, 594,
599,633,678

WM_JOURNALNOTIFY message, 633
WM_MATCHMNEMONIC message, 650
WM_MEASUREITEM message, 255, 259, 634, 654
WM_MENUEND message, 358, 360, 361, 362, 448,

634,679
WM_MENUSELECT message, 634, 679
WM_MINMAXFRAME message, 635
WM_MOUSEMAP message, 635
WM_MOUSEMOVE message, 129, 192, 346, 591,

592,595,599,636
WM_MOVE message, 139, 636
WM_MSGBOXINIT message, 635
WM_NEXTMENU message, 679
WM_NULL message, 636
WM_OPEN message, 637
WM_PACTIV A TE message, 637
WM_PAINT message, 133, 135, 136, 139, 141, 147,

148, 153, 155, 156, 163, 168, 182, 186,222,232,
242,248,250,253,328,342,359,370,376,377,
384,389,406,420,435,452,469,487,496,507,
515,524,547,569,575,586,594,605,612,637,
638,643

WM_PCONTROL message, 638
WM_PICKUP message, 346, 352, 360, 361, 362
WM_PPAINT message, 638
WM_PSETFOCUS message, 638
WM_PSIZE message, 639
WM_PSYSCOLORCHANGE message, 639
WM_QUERYACCELTABLE message, 639
WM_QUERYCONVERTPOS message, 640
WM_QUERYDLGCODE message, 651
WM_QUERYFOCUSCHAIN message, 182
WM_QUERYFRAMECTLCOUNT message, 631
WM_QUERYHELPINFO message, 640
WM_QUERYTRACKINFO message, 171, 174
WM_QUERYWINDOWPARAMS message, 277,

641
WM_QUIT message, 135, 183, 215, 496, 556, 601,

603,604,615,626,641
WM_REALIZEP ALETTE message, 642
WM_SAVEAPPLICATIONmessage, 177, 179, 183,

642
WM_SEMl message, 185, 187, 642
WM_SEM2 message, 186, 187, 642, 643
WM_SEM3 message, 186, 643
WM_SETACCELTABLE message, 643
WM_SETFOCUS message, 182, 285, 291, 298, 631,

638,644
WM_SETHELPINFO message, 644
WM_SETSELECTION message, 182, 631
WM_SETWINDOWPARAMS message, 644
WM_SHOW message, 645

Index-751
WM_SINGLESELECT message, 645
WM_SIZE message, 123, 135, 136, 168, 182, 244,

284,291,297,388,405,418,431,486,544,557,
631,639,645

WM_SUBSTITUTESTRING message, 646
WM_SYSCOLORCHANGE message, 639, 646
WM_SYSCOMMAND message, 183, 220, 265, 646,

679
WM_SYSV ALUECHANGED message, 647
WM_ TEXTEDIT message, 647
WM_ TIMER message, 186, 187, 643, 648
WM_TRACKFRAME message, 174, 648
WM_ TRANSLA TEACCEL message, 648
WM_UPDATEFRAME message, 307, 649
WM_ USER message, 187, 247, 282, 289, 295, 331,

349,366,385,521,582,583,584,592,608
WM_ VRNDISABLED message, 649
WM_ VSCROLL message, 649
WM_ WINDOWPOSCHANGED message, 650
Writing to a queue, 79
WS_ANIMATE constant, 138, 589, 597, 606
WS_CLIPCHILDREN constant, 139, 143, 152, 159
WS_CLIPSIBLINGS constant, 139, 143, 152, 159
WS_DISABLED constant, 139, 143, 159
WS_GROUP constant, 138, 270, 279, 305, 478, 652
WS_MAXIMIZED constant, 138, 144, 159
WS_MINIMIZED constant, 138, 144, 159
WS_PARENTCLIP constant, 139, 144, 152, 159
WS_SAVEBITS constant, 138, 144
WS_SYNCPAINT constant, 138, 144, 159, 182, 186
WS_ TAB STOP constant, 138, 268, 272, 276, 391,

478
WS_ VISIBLE constant, 127, 131, 132, 133, 139, 140,

143, 154, 159, 167, 176,210,211,241,247,257,
268,269,271,272,279,284,286,291,293,297,
299,305,319,331,349,373,374,402,404,412,
425,429,441,446,461,466,473,478,483,523,
543,568,574,589,598,606

-X-
XCPT_ASYNC_PROCESS_TERMINATE constant,

105
XCPT_CONTINUE_EXECUTION constant, 107,

110,111,112
XCPT_CONTINUE_SEARCH constant, 109, 112
XCPT_GUARD_PAGE_ VIOI.ATION constant, 112
XCPT_SIGNAL constant, 105
XE, 211, 212, 213

-Z-
Z-Order, 178

Developing Multimedia
Applications Under
DS/2®
WILLIAM LAWTON,
BRADLEY NOE,
MARCELO LOPEZ

This book/disk set pro
vides a comprehensive
look at MMPM/2 and
how to program powerful
multimedia applications.
Developing Multimedia
Applications Under OS/2
offers tips and techniques,
complete with sample pro
grams for integrating multi
media into your existing
applications and develop
ing new ones. The disk
includes all the code from
the book.

ISBN# 0471·13168-7
$39.95 US/ $55.95 CAN
book/disk set
810pp. 1995

DS/2® Warp
Presentation
Manager for Power
Programmers
URI STERN AND
JAMES S. MORROW

Written by a pair of IBM
insiders from Boca's OS/2
team, this book empha
sizes powerful program
ming methods and stress
es structured code, opti
mal resource manage
ment, and numerous other
OS/2 performance bene
fits. You'll gain deep
insight into the design
and development of the
complete Presentation
Manager environment,
including the new 32 bit
Warp Window Manager.

ISBN# 0471-05839-4
$34.95 US/$48.95 CAN
480pp. 1995

The DS/2® Warp
Survival Guide
DOUG AZZARITO AND
DAVID W. GREEN

This guide shows you how
to use al I the neat new
tools and features IBM has
packed into OS/2 Warp.
The authors provide you
with clear, guidance and a
gold mine of tips, tricks,
and undocumented infor
mation.

ISBN# 0471·06083-6
$29.95 US/$41.95 CAN
608pp. 1995

Available at Bookstores Everywhere
For more information e-mail - compbks@jwiley.com

Secrets of the DS/2®
Warp Masters
MARTIN C. SULLIVAN

Written by a member of the
OS/2 development team,
this book provides an
insider's perspective on
application development in
OS/2 and Presentation
Manager. You'll find
dozens of OS/2 short cuts,
secrets and tips and the
disk includes all the code
from the book.

ISBN# 0471·13171·7
$39.95 US/$55.95 CAN
book/disk set
350pp. 1995

or Visit the Wiley Web site at - http://www.wiley.com/CompBooks/CompBooks.html

CUSTOMER NOTE: IF THIS BOOK IS ACCOMPANIED BY SOFTWARE,
PLEASE READ THE FOLLOWING BEFORE OPENING THE PACKAGE.

This software contains files to help you utilize the models described in the
accompanying book. By opening the package, you are agreeing to be bound
by the following agreement:

This software product is protected by copyright and all rights are reserved by
the author and John Wiley & Sons, Inc. You are licensed to use this software
on a single computer. Copying the software to another medium or format for
use on a single computer does not violate the U.S. Copyright Law. Copying
the software for any other purpose is a violation of the U.S. Copyright Law.

This software product is sold as is without warranty of any kind, either
expressed or implied, including but not limited to the implied warranty of
merchantability and fitness for a particular purpose. Neither Wiley nor its
dealers or distributors assumes any liability of any alleged or actual damages
arising from the use or the inability to use this software. (Some states do not
allow the exclusion of implied warranties, so this exclusion may not apply to
you.)

$44.95 USA
$62.95 CAN

System development was never
easier. Your total hands-on guide to

programming 05/2 Warp ...

For serious OS/2 developers only! Here is a complete, A-to-Z
guide to programming OS/2 Warp. Three leading IBM

insiders provide step-by-step guidelines and a gold mine of
programming tips and tricks that make developing in Warp's 32-bit

OS/2 operating system easier than ever. Using dozens of helpful
working example programs in C, the authors explore all the ins and

outs of working with the base system, as well as programming using
Presentation Manager. And throughout, they've peppered the text

with special "gotcha" icons that alert you to common programming
mistakes to avoid and tips on how to fix them once they've been made.

Some of the crucial topics covered in this hands-on guide include:

• GUI design and development

• Memory management

• File 1/0 and extended attributes

• Multitasking

• Interprocess communication

• And much more

DISK INCLUDES MORE THAN
50 WORKING PROGRAMS

ISBN 0-471-08633-9
54495

9 780471 086338

