
Programming th~ 
OS/2™ WARP versIon 3 

Stephen A. Knight 
Jeffrey M. Ryan 



Programming the OS/2® 
WARP Version 3 GPI 

Stephen A. Knight 

Jeffrey M. Ryan 

WILEY 

John Wiley & Sons, Inc. 

NEW YORK / CHICHESTER / BRISBANE / TORONTO / SINGAPORE 



Publisher: Katherine Schowalter 
Senior Editor: Diane D. Cerra 
Managing Editor: Robert S. Aronds 
Editorial Production & Design: Claire J. Riley 

This text is printed on acid-free paper. 

IBM, OS/2, and PS/2 are registered trademarks of International Business Machines Corpo
ration. Operating Systeml2, C SET/2, WorkFrame/2, and Presentation Manager are trade
marks of International Business Machines Corporation. Intel is a registered trademark of 
Intel Corporation. Helvetica and Courier are trademarks of Linotype Company. Times New 
Roman is a trademark of Monotype. 

Designations used by companies to distinguish their products are often claimed as trade
marks. In all instances where John Wiley & Sons, Inc. is aware of a claim, the product names 
appear in initial capital or all capital letters. Readers, however, should contact the appropri
ate companies for more complete information regarding trademarks and registration. 

Copyright © 1995 by John Wiley & Sons, Inc. 

All rights reserved. Published simultaneously in Canada. 

This publication is designed to provide accurate and authoritative information in regard to 

the subject matter covered. It is sold with the understanding that the publisher is not engaged 
in rendering legal, accounting, or other professional service. If legal advice or other expert 
assistance is required, the services of a competent professional person should be sought. 

Reproduction or translation of any part of this work beyond that permitted by section 107 or 
108 of the 197 6 United States Copyright Act without the permission of the copyright owner 
is unlawful. Requests for permission or further information should be addressed to the Per
missions Department, John Wiley & Sons, Inc. 

Library of Congress Cataloging-in-Publication Data 

Knight, Stephen A., 1955-

Programming the OS/2 Warp Version 3 GPI / Stephen A. Knight, 
Jeffrey M. Ryan. 

p. cm. 
Includes bibliographical references. 
ISBN 0-471-10718-2 (acid-free paper) 
1. Operating systems (Computers) 2. Graphical user interfaces (Computer systems) 

I. Ryan, Jeffrey M., 1963- . II. Title. 
QA76.76.063K625 1995 
005.265-dc20 94-37771 

CIP 



Foreword 

It has been over two years since OS/2 2.0 was introduced. Since that time, 
OS/2 2.0 has become a major breakthrough because it maintained compati
bility with hundreds of popular DOS and Windows applications while pro
viding true, pre-emptive multitasking, and 32-bit programming support. It 
not only does this better than most people thought possible, it also delivers 
an enhanced user interface that makes it more intuitive and easier to use than 
earlier versions. 

IBM has continued to enhance OS/2 because it remains committed to 
providing more and improved device support, easier installation, better con
nectivity options, new functionality like multimedia, and the best product 
support possible. IBM has continued to listen to its customers, making 
changes to best meet their needs. This commitment to listen and enhance the 
product can be seen in OS/2 Warp, which provides more features while sig
nificantly improving operating system performance-while requiring fewer 
system resources. 

Software developers writing applications for OS/2 find a development 
environment that enables them to write leading-edge applications in a pro
ductive, efficient manner. This is because OS/2 has true, pre-emptive multi
tasking; advanced memory management; built-in application protection 
mechanisms; inter-process communication mechanisms; and a huge set of 
well-defined and powerful programming interfaces. The biggest problem 
most new developers have when writing OS/2 applications is twofold: sort-

iii 



iv Foreword 

ing through the vast number of functions available to them, and knowing 
how and when to apply them. 

This book, written by two experienced IBM programmers, clearly illus
trates how a set of programming functions, known as the Graphical Pro
gramming Interface (GPI), can be used to generate and manipulate graphical 
objects. The authors use a simple, but brilliantly effective approach to 
"teaching by example." They provide a sample program, explain how it is 
structured, and show why a particular GPI function is used. Surprisingly, 
this sample program turns out to be a completely functional graphics editor! 
Not only does the editor help you learn more about the internal structure of 
graphical objects, it also serves as a useful tool in and of itself. 

As the authors explain the OS/2 graphics environment and step you 
through the graphics editor, you will discover a programming environment 
that is rich in function-one that helps you generate powerful applications 
more quickly and easily than you thought possible. In the process, you are 
also likely to discover that the OS/2 environment can be as much fun as it is 
productive. 



Preface 

One of the most exciting aspects of today' s computer technology is that ordi
nary people can do tasks in their own homes that used to be affordable only 
by large companies. Of course, this relatively new power has been made 
possible by the introduction of the personal computer (PC). With a PC pur
chased in your local mall, you can perform tasks like accounting, word proc
essing, maintaining information in your own personal data bases, producing 
graphics and drawings, and communicating with other computer owners 
around the world. Even though this is possible at a relatively low cost, many 
people have yet to discover the opportunities that the PC can provide. 

The PC is a huge success with many businesses and home users, but 
many people are just beginning to discover the power of the PC. Personal 
computer technology has given us (at relatively low cost) high performance 
machines with large storage capacities, excellent print quality, excellent 
connectibility, and most important, a large set of application software. It is 
widely believed that application software is the key component that really 
enables people to become more productive; and a measure of how good a 
piece of application software is, is how easy it is to learn and use. After all, 
ease of use leads to productivity and high productivity is exactly what an 
excellent tool provides. 

One way which application software can become more readily under
stood is with a graphical user interface (GUI). This does not mean that 
usable application software must be graphical or that a graphical user inter
face automatically adds usability to an application. In fact, a graphical appli-

v 



vi Preface 

cation developed carelessly may be less usable than a nongraphical applica
tion. If developed correctly, however, a graphical user interface can make an 
application much more intuitive and hence, easier to use. With the competi
tive nature of application software, the usability and pizzazz of the applica
tion may make or break a software product. 

IBM's Operating Systeml2 (OS/2) provides a graphical user interface 
called Presentation Manager (PM). The Presentation Manager environment 
also provides an extremely powerful and full set of programming functions 
for software developers. Many of these functions deal with advanced graph
ics and are part of a programming interface called the Graphical Program
ming Interface (GPI). It is the intention of this book to help programmers 
who are already somewhat familiar with Presentation Manager and the C 
programming language to become even more familiar with the advanced 
functions provided by Presentation Manager's GPI. This book provides an 
entire application that uses many of the advanced graphical functions of 
Presentation Manager and discusses how these functions are used in rela
tionship with one another to perform different tasks. If you already have C 
programming experience but no knowledge of programming Presentation 
Manager, it is recommended that you first understand basic Presentation 
Manager programming. Even though this book includes some similar infor-:
mation as most introductory books, it assumes you already have basic 
knowledge of Presentation Manager concepts and program structure. 

The main application included with this book on a 3.5 inch diskette is a 
graphic editor. This application is not as functional as many commercially 
available graphic editors or drawing applications but, as you will see, it is 
still very powerful. In fact, all the artwork shown in this book was produced 
with the graphic editor provided with and discussed in this book. This 
graphic editor also has a feature that allows you to view the graphical orders 
used to produce different graphical objects and a tool that allows you to 
directly manipulate transformation matrices that are applied to different 
graphical objects. Furthermore, other utility programs and their C source 
code are included to help you examine OS/2 Metafiles and printer definition 
information for your PC. By providing you with these programming exam
ples and development tools, it is hoped that your OS/2 GPI learning experi
ence will be much more productive, fun, and exciting. 



Acknowledgments 

We would like to acknowledge the hundreds of dedicated software develop
ers and support people who have made OS/2 the outstanding operating 
system it is today. We especially thank the following people for their techni
cal assistance and thoughts that helped form this book: Joseph Celi, Alan 
Warren, Cary Bates, Tom Gall, Bret Curran, Brian Curran, Ricardo Heman
dez-Muchado, Byron Watts, Steve Roth, Graham Winn, and Diane Cerra. 

We especially thank Claire Riley, whose editing and typesetting exper
tise helped produce this book. Claire's skill and dedication made this book a 
reality in as short of time as we could have hoped for. 

Finally, we thank our management team for their encouragement, sup
port, and interest in this project. In particular, we thank Phil Mayer, Bill Van 
Vugt, and Linda Thompson. 

vii 



My third book! I still have a hard time believing I participated in writing 
even one. Every time I finish a book, I can't imagine having the energy to do 
another. The only thing I can think of that gives me this type of drive is some 
lesson I must have learned early in life. Therefore, I hold my family respon
sible and dedicate this book to my parents, Tom and Barb Knight, and to my 
brother Mike Knight. 

Steve Knight 

In memory of Scott. 

Loving thanks to my wife Terri, and children Krista and Bradley for their 
patience and support during this project. Without you, this book would not 
have been possible. Finally, thanks to my cat Sparky who was often my only 
companion during the wee hours of the morning. 

Jeff Ryan 



Contents 

Foreword v 

Preface vii 

Acknowledgments IX 

1 Overview 1 
The Graphic Editor Application 2 
Overview of Graphic Editor Program Structure 19 
Working with the Diskette 26 
Special Notes about this Book 30 

2 OS/2 Architecture 32 
The Viewing Pipeline and Picture Construction 39 
A Little about Multitasking 45 

3 Graphic Primitives 52 
Attributes 52 
Color and Mix 55 
Line and Arc Primitives 59 
Area Primitives 77 
Area Functions 82 
Text Primitives 88 
Marker Primitives 99 
Image Primitives 102 

4 Fonts 122 
Font Metrics 128 

ix 



x Contents 

5 Building Blocks of the GPI 168 
Orders 169 
Elements 171 
Segments 175 
Graphic Editor Object Viewer 185 
Graphic Segments in the Graphic Editor 204 

6 Transformations 207 

Transform Matrix Fundamentals 213 
Graphic Editor Use of Model Transforms 227 
Viewing Transforms 232 
Default View Transform 234 
Device Transform 238 
Converting between Different Coordinate Spaces 240 

7 Paths, Regions, Clipping, Boundary 
Accumulation, and Correlation 243 

Paths 244 
Regions 248 
Clipping 257 
Correlation 271 

8 Printing Graphics 283 

9 OS/2 MetaFiles 311 

Appendix A: GPI Functions 337 

Appendix B: Working with the Diskette 389 

Installing the Example Software on Your PC 383 
Running the Sample Programs 390 

Index 399 



CHAPTER 1 

Overview 

As a programmer, have you ever looked at a graphical application such as a 
word processor and wondered how much effort it took to produce it? I know 
I used to look at some highly graphical applications and began to feel fairly 
inadequate as a programmer. I couldn't imagine the amount of knowledge 
and time it must take to zap all those little pixels to a device in just the right 
way to get the desired effect. For example, I would think about how difficult 
it might be just to output a line of text to the screen using a non-proportional 
font. Some of the problems I thought about were things like what type of 
video monitors would I support and how do each of them operate? How 
would I obtain font information and render the character images on the de
vice? How would cursor movement be managed? How would I output the 
same text and fonts to a printer and what printers would I support? What if 
the font was kerned? And these questions were only relating to text! How 
about drawing curves and filling them with different colored patterns? Or 
what about rotating the drawing? Or suppose I wanted to let the user select a 
graphic object in the drawing and let them move or change it? How could I 
do all these things? 

Of course a project as complex as a competitive word processor is not 
done by a single programmer. The problems are too big and too numerous. 
Also, not known to me in my early days as a programmer were all the pro
gramming interfaces that exist to help application developers deal with these 

1 



2 Programming the OS/2 WARP Version 3 GPI 

kinds of problems, and as time has progressed, there are even more tools and 
application programming interfaces than ever. Today's OS/2® is an exam
ple of one of the leading programming environments that helps program
mers deal with these types of complex problems. 

This book shows how many of these problems can be solved by using 
OS/2's Presentation ManagerTM programming environment. In particular, 
this book focuses on a part of Presentation Manager called the Graphical 
Programming Interface (GPI). This book demonstrates how to use the GPI 
by providing a complete program that uses many of the advanced features of 
the GPI and then discussing how the program was written. By doing this, 
you will have a working example to learn from as well as a working model 
that may assist you with your own projects. It should be noted, however, that 
the techniques used in this book are only one way to solve some of your com
plex programming problems. Do not restrict your thinking to the way our 
example program works. It is very likely you will find other and better ways 
to use the GPI for certain parts of your own projects. 

The program example written for this book is a graphic editor. (In this 
book, we often refer to the graphic editor as the draw application.) Even 
though this graphic editor will not be competitive with the leading commer
cially available graphic editors, you will find it to be very functional and 
powerful. Remember, this graphic editor was produced by only two pro
grammers in a relatively short period of time! You will see that this state
ment alone says something about the power of the OS/2 programming 
environment! So before discussing the major parts of the GPI, let's see what 
the graphic editor that comes with this book can do! 

THE GRAPHIC EDITOR APPLICATION 

The graphic editor that comes with this book has a lot of the same features 
found in commercially available graphic editors. One feature unique to this 
graphic editor is that you can select part or all of a picture you drew and then 
use a pull-down menu option to display in text what graphic orders were 
used to produce it. Obviously, the intention is to help developers understand 
how graphic objects are generated with the GPI! But, before talking about 
specific details of how to use the GPI, let's discuss the basic operation of the 
included graphic editor and list all its features. 



Overview 3 

After installing the graphic editor from the diskette included with this 
book (see Installing the Graphic Editor later in this chapter), you can start the 
application in one of four ways: 

1. Double clicking on the graphic editor application's icon located on the 
desktop. 

2. Drag and dropping a valid WL Y draw file on the graphic editor applica
tion icon. 

3. Entering the command DRAW from a command line prompt. (You must 
either be in the graphic editor program subdirectory or have your path set 
correctly. ) 

4. Associate WL Y files with the graphic editor application (DRAW. EXE) 

and then double click on any valid WL Y file. 

When you start the graphic editor program, a product banner is displayed 

SCREEN 1.1 Graphic editor initial screen. 



4 Programming the OS/2 WARP Version 3 GPI 

followed by a screen similar to the one shown in Screen 1.1. From Screen 
1.1 you can see the graphic editor application window and a modeless Tool 
dialog box. The Tool dialog box gives you a quick idea of the types of ob
jects you can draw with the graphic editor. Row by row, the Tool dialog box 
lets you select the following editing tools: 

1. Select tool - This tool allows you to select one or more objects that you 
have already drawn to be further manipulated. For instance, you can per
form functions like move, rotate, size, copy, cut, delete, change drawing 
attributes, and so on, once you have selected the objects. To gain access 
to the Select tool, either click on the arrowhead icon found in the Tool 
dialog box or choose Select tool from the Tool pull-down menu. Once 
the Select tool is selected, an arrowhead icon becomes the mouse pointer 
while in the draw client area. To select an object, just click on the object 
of interest with mouse button 1. Once you select an object, you will no
tice that markers appear around it. These markers show which objects 
are selected and are used to help perform editing functions on that object. 
To select multiple objects, press and hold the Ctrl key while selecting 
objects by clicking mouse button 1 on the objects you want to be se
lected. One final way to select objects is by performing a marque select. 
Press and hold mouse button 1 and then move the mouse until the track
ing rectangle surrounds the objects of interest. Release the mouse but
ton. All objects within the tracking rectangle will be selected. 

2. Fillet Fill tool- This tool allows you to set a series of points in the client 
area of the draw application window that a fillet curve will track to. 
Once all the points are specified, the curve is drawn and filled with the 
current fill color and pattern. To select the Fillet Fill tool you can either 
click on the Fillet Fill icon found in the Tool dialog box or choose Fillet 
Fill tool from the Tool pull-down menu. After you have selected the 
Fillet Fill tool, a cross-hair icon becomes the mouse pointer while in the 
draw client area. To draw a curve with this tool, simply press and hold 
mouse button 1 where you want the curve to start. Then move the mouse 
and release mouse button 1 where you want to specifiy a point for the 
curve. Repeat these two actions until you have specified all the points 
desired for the curve. To stop specifying points, simply double click 
mouse button 1 on the last point you want to define. 



Overview 5 

3. Line tool- This tool allows you to draw straight lines in the client area of 
the draw application window. To select the Line tool you can either click 
on the Line icon found in the Tool dialog box or choose Line tool from 
the Tool pull-down menu. After you have selected the Line tool, a cross
hair icon becomes the mouse pointer while in the draw client area. To 
draw a line with the Line tool, simply press and hold mouse button 1 
where you want the line to start, then move the mouse and release mouse 
button 1 where you want the line to finish. 

4. Pencil tool - This tool allows you to draw a series of lines in the client 
area in the same path as the movement of the mouse. To select the Pencil 
tool you can either click on the Pencil icon found in the Tool dialog box 
or choose Pencil tool from the Tool pull-down menu. After you have 
selected the Pencil tool, a Pencil icon becomes the mouse pointer while 
in the draw client area. To draw a path with the Pencil tool, simply press 
and hold mouse button 1 where you want the path to start, then move the 
mouse in the path you want to create and release mouse button 1 where 
you want the path to end. 

5. Rounded Box tool- This tool allows you to draw a box with rounded 
comers in the client area of the draw application window. To select the 
Rounded Box icon you can either click on the Rounded Box tool found in 
the Tool dialog box or choose Rounded Box tool from the Tool pull
down menu. After you have selected the Rounded Box tool, a rounded 
box with a cross-hair icon becomes the mouse pointer while in the draw 
client area. To draw a rounded box with the Rounded Box tool, simply 
press and hold mouse button 1 where you want one comer of the box, 
then move the mouse and release mouse button 1 where you want the 
other comer of the box to be positioned. 

6. Box tool - This tool allows you to draw a box in the client area of the 
draw application window. To select the Box tool you can either click on 
the Box icon found in the Tool dialog box or choose Box tool from the 
Tool pull-down menu. After you have selected the Box tool, a box with a 
cross-hair icon becomes the mouse pointer while in the draw client area. 
To draw a box with the Box tool, simply press and hold mouse button 1 
where you want one comer of the box, then move the mouse and release 
mouse button 1 where you want the other comer of the box to be posi
tioned. 



6 Programming the OS/2 WARP Version 3 GPI 

7. Ellipse tool- This tool allows you to draw an ellipse in the client area of 
the draw application window. To select the Ellipse tool you can either 
click on the Ellipse icon found in the Tool dialog box or choose Ellipse 
tool from the Tool pull-down menu. After you have selected the Ellipse 
tool, an ellipse with a cross-hair icon becomes the mouse pointer while in 
the draw client area. To draw an ellipse with the Ellipse tool, simply 
press and hold mouse button 1 where you want the center of the ellipse to 
be positioned. Then move the mouse and release mouse button 1 when 
you get the desired ellipse. 

8. Arc tool- This tool allows you to draw a partial arc in the client area of 
the draw application window. To select the Arc tool you can either click 
on the Arc icon found in the Tool dialog box or choose Arc tool from the 
Tool pull-down menu. After you have selected the Arc tool, a cross-hair 
icon becomes the mouse pointer while in the draw client area. To draw 
an arc with the Arc tool, simply press and hold mouse button 1 where you 
want the arc to start. Then move the mouse and release mouse button 1 
when you get the desired arc. (Our arcs are always 90 degrees of an ellip
se even though the GPI allows for more complicated arcs.) 

9. Text tool- This tool allows you to draw text in the client area of the draw 
application window. To select the Text tool you can either click on the T 
icon found in the Tool dialog box or choose Text tool from the Tool pull
down menu. After you have selected the Text tool, a T with a small ar
row icon becomes the mouse pointer while in the draw client area. To 
draw text with the Text tool, simply click mouse button 1 where you 
want the text to start. Another dialog box then appears to allow you to 
type in the desired text. After you close this text dialog box, the text will 
be drawn in the client area in the desired location. To edit existing text, 
double click mouse button 1 with the Select tool on the text object you 
want to change. Double clicking on the existing text box causes the edit 
text dialog box to reappear so you can edit the existing text string. 

10. Fillet tool- This tool allows you to set a series of points in the client area 
of the draw application window that a fillet curve will track to. Once all 
the points are specified, the curve is drawn but not filled. To select the 
Fillet tool you can either click on the Fillet icon found in the Tool dialog 
box or choose Fillet tool from the Tool pull-down menu. After you have 
selected the Fillet tool, a cross-hair icon becomes the mouse pointer 



Overview 7 

while in the draw client area. To draw a curve with this tool, simply press 
and hold mouse button 1 where you want the curve to start. Then move 
the mouse and release mouse button 1 where you want to specifiy a point 
for the curve. Repeat these two actions until you have specified all the 
points desired for the curve. To stop specifying points, simply double 
click mouse button 1 on the last point you want to define. 

11. Polyline tool - This tool allows you to set a series of points in the client 
area of the draw application window that a series of lines will be drawn 
between. Once the all the points are specified, the lines are drawn but no 
fill is done. To select the Polyline tool you can either click on the 
Polyline icon found in the Tool dialog box or choose Polyline tool from 
the Tool pull-down menu. After you have selected the Polyline tool, a 
cross-hair icon becomes the mouse pointer while in the draw client area. 
To draw a series of lines with this tool, simply press and hold mouse but
ton 1 where you want the first line to start. Then move the mouse and 
release mouse button 1 where you want to specifiy an end point. Repeat 
these two actions until you have specified all the points desired for the 
polyline. To stop specifying points, simply double click mouse button 1 
on the last point you want to define. 

12. Polyline Fill tool - This tool allows you to set a series of points in the 
client area of the draw application window that a series of lines will be 
drawn between. Once the all the points are specified, the lines are drawn 
and areas are filled with the current fill color and pattern. To select the 
Polyline Fill tool you can either click on the Polyline Fill icon found in 
the Tool dialog box or choose Polyline Fill tool from the Tool pull-down 
menu. After you have selected the Polyline Fill tool, a cross-hair icon 
becomes the mouse pointer while in the draw client area. To draw a se
ries of lines with this tool, simply press and hold mouse button 1 where 
you want the first line to start. Then move the mouse and release mouse 
button 1 where you want to specify an end point. Repeat these two ac
tions until you have specified all the points desired for the polyline. To 
stop specifying points, simply double click mouse button 1 on the last 
point you want to define. 

For your convenience, the modeless Tool dialog box is designed to stay 
on the OS/2 desktop. As stated in the tool descriptions, however, there is an 
alternate way to select all of the tools. This alternate way is from the Tool 



8 Programming the OS/2 WARP Version 3 GPI 

pull-down menu. Hence, it is not really necessary to have the modeless Tool 
dialog on the desktop, and sometimes the modeless Tool dialog box may 
seem to get in the way. If you want the Tool dialog to disappear from the 
desktop, click on Tool Palette from the Tool pull-down menu. To have the 
Tool dialog reappear, just click on the Tool Palette menu item again. 

Screen 1.2 shows a sample of all the different types of objects that can be 
drawn with the graphic editor. Note that many of these objects have differ
ent orientations and attributes associated with them. As you will soon see, 
there are many ways to edit the objects and save the work that you create by 
using this application. To understand all the options available with this 
graphic editor, a review of all the functions available from the pull-down 
menu items is necessary. 

~ Rounded 
Box 

/ 

J , , 

Fillet PartialArc 

13\\-~ 
lU'~ 

I , ( .. , I' , 
( , " I 

I ..-
, 

J /- - --
( 

( ..- I 
1- ___ ..- , 

Polyline ~@~17liu~~ 

SCREEN 1.2 Sample object types created with the graphic editor. 



Overview 9 

Fi Ie Options 

The File pull-down menu has several items that allow you to save and re
trieve graphics information as well as start new drawings or exit the applica
tion. Following is a list and description of all the items found in the File 
pull-down menu. 

1. New - This menu item is used when you want to start a new drawing. It 
will reset all information from the previous drawing and erase the client 
area. If you made changes to a drawing that you want to save before you 
start a drawing with the New option, be sure to use the Save or Save As 
option before using the New option. 

2. Open - This menu item will retrieve information from a drawing you 
saved earlier and make it the current drawing that can be edited. When 
you use the Open menu item, another dialog box will prompt you to enter 
the name of the file in which you saved an earlier drawing. Note that 
drawings saved with this editor have a default file extension ofWL Y and 
these files are saved with our own file format. If you use the Open option 
while another drawing is in the client area, the current drawing will be 
replaced with the drawing found in the WL Y file. 

3. Save - This menu item will save the current drawing to the current file
name. The current filename is the name of the file that was opened to 
retrieve the current drawing into the client area. If the current drawing 
was not retrieved via the Open menu item, then you must use the Save As 
menu item to establish a current filename and save the drawing for the 
first time. When the drawing information is saved, it is saved in a format 
particular to this application. Furthermore, this application can only re
trieve information saved in this special format with the Open menu item. 

4. Save As - This menu item will save the current drawing to a new file
name. Note that the default file extension for drawing files is WL Y. You 
can, however, override the file extension to whatever you like (even 
though this is not recommended). Once you use the Save As menu item, 
the current filename is updated to the name you chose with this option. 

5. Capture TIFF - This menu item allows you to capture either the client 
area of the drawing or the entire OS/2 desktop into a TIFF file format. 
When you select this menu item, another dialog appears that allows you 



10 Programming the OS/2 WARP Version 3 GPI 

to choose which area to capture, what dimensions the image should be 
rendered to, and the name of the file in which you want to save the TIFF 
data. The default extension of the file is TIF, however, you can override 
this extension to whatever extension you like (even though this is not 
recommended). By capturing image data using the TIFF format, you can 
import this image into other major art tools and word processors. This 
option was used to produce all the screen captures for this book. 

6. Export MetaFile - This menu item allows you to export the current 
drawing to an OS/2 MetaFile. When you use this option, another dialog 
prompts you for the name of the file to which you want to export the 
drawing. The default extension of this file is MET, however, you can 
override this with whatever extension you like (even though this is not 
recommended). By exporting your drawing to an OS/2 MetaFile format, 
you will be able to import this drawing into other commercially available 
drawing applications. 

7. Import WL Y - This menu item will retrieve information from a draw
ing you saved earlier and make it part of the current drawing where it can 
be edited. When you use the Import WL Y menu item, another dialog 
box prompts you to enter the name of the file in which you saved an ear
lier drawing. Note that drawings saved with this editor have a default file 
extension of WL Y and these files are saved with our own file format. 
When a drawing is imported, it is grouped together and placed in the 
foreground of the current drawing. You can, however, ungroup this ob
ject and move its components any place in the Z order you like. (Z order 
refers to the order in which objects are drawn, hence, which object is 
drawn on top of another object.) 

8. Print - This menu item allows you to print the current drawing to a 
printer known to your OS/2 system. When you select this menu item, a 
list of printers to which you can route the drawing is displayed. You 
simply pick the printer where you want the print information to be 
routed. You will then be prompted with other dialogs to set up the print 
job. These other dialogs are designed specifically for the chosen printer. 

9. View Selected Objects - This menu item allows you to see how selected 
objects in the current drawing were generated using the OP!. When this 
option is selected, the objects are parsed and their order information is 
output into English text to a special file in the current directory 



Overview 11 

(WILEY.SEG). This special filename is then automatically passed to a 
generic text browser which pops up and displays the text in its own 
browse window. The View Selected Objects menu item will stay dis
abled until the browse window is closed. Note that both the browse win
dow and the draw application can work concurrently. 

10. Product Information - This menu item causes a dialog box to display 
title and copyright information for this application. 

11. Exit - When this menu item is selected, the draw application is termi
nated. Before using this menu item, ensure that all relevant drawing in
formation has been saved. 

Edit Options 

The Edit pull-down menu has several items to assist you in the editing of 
existing objects. Following is a list and description of all the items found in 
the Edit pull-down menu. 

1. Delete - This menu item deletes the selected objects from the drawing. 
No information about the deleted objects is saved. 

2. Cut - This menu item cuts the selected objects from the drawing. How
ever, the object information is saved so the objects can be pasted to an
other location within the same drawing at a later time. Once a 
subsequent cut operation is performed, the previous object information 
is lost; hence, the previous object can no longer be pasted. 

3. Copy - This menu item produces a copy of the selected objects in the 
same drawing which can be pasted at a slight offset from the original 
selected objects. Once this is done, the copy can be edited independently 
from the original. (The copy is held in the paste list.) 

4. Paste - This menu item adds the objects found in the paste list to the 
current drawing. 

5. Group - This menu item takes all the selected objects and encapsulates 
them so further editing operations act on all the grouped objects as if they 
were one. 

6. UnGroup - This menu item returns previously grouped objects to their 
previous independent state. 



12 Programming the OS/2 WARP Version 3 GPI 

7. Select All- This menu item places all objects in the current drawing into 
a selected state. 

8. Fast CorrelatelDraw - This menu item causes the graphic editor to use 
an alternate method for selecting objects and drawing them. This alter
nate method is not as functional but much faster than true correlation. 

Metrics Options 

The Metrics pull-down menu has several items to assist you in creating and 
examining objects to exact dimensions. Following is a list and description of 
all the items found in the Metrics pull-down menu. 

1. Tool Meter - Most edit tools have a meter that shows the exact position 
and metric information about an object as it is being created or modified. 
For instance, the line's tool meter will show the starting location, length, 
and angle of a line as it is being manipulated. This menu item allows you 
to toggle the tool meter on and off. (All metric units are in inches.) Area 
information for rounded boxes is calculated as though they are regular 
rectangles. 

2. Grid - This menu item allows you to produce a grid as a backdrop on the 
drawing area. This grid can be a useful guide when creating or editing 
objects. This grid is not saved when the drawing is saved and is not 
printed when the drawing is printed. The grid size is controlled through 
the Set Grid Size menu item. 

3. Snap To Grid - When this menu item is activated, it makes edit func
tions always align with the current grid setting. Note that the grid does 
not have to be visible for this menu item to operate. 

4. Set Grid Size - This menu item allows you to set the size of the grid. 
When Set Grid Size is selected, another dialog is displayed that allows 
you to set both X and Y grid line spacing. The grid line spacing is meas
ured in units of tenths of inches. This menu item works in conjunction 
with the Grid and Snap To Grid menu items. 

5. Zoom - This menu item allows you to scale the entire drawing to a new 
size. When this menu item is selected, another dialog appears that will 
let you choose the percentage increase in the drawing size from the origi-



Overview 13 

nal size. This menu item can be useful when working with small objects 
or dimensions. 

Tools Options 

The Tools pull-down menu has several items that let you select to current 
tool, as well as determine if the Tool dialog box is visible on the desktop. 
Following is a list and description of all the items found in the Tool pull
down menu. 

1. Tool Palette - This menu item determines if the Tool dialog box will be 
visible on the desktop. If this menu item is checked, then the Tool dialog 
box is made visible on the desktop. 

2. Select tool - If this menu item is selected, then the Select tool becomes 
the current edit tool. Once this item is selected, the Select tool menu item 
is checked and the other edit tools are unchecked. If the Tool dialog box 
is visible, the Select tool icon is highlighted and the other edit tool icons 
are not highlighted. Choosing this menu item has the very same effect as 
selecting the Select tool from the Tool dialog box. 

3. Fillet Fill tool - If this menu item is selected, then the Fillet Fill tool 
becomes the current edit tool. Once this item is selected, the Fillet Fill 
tool menu item is checked and the other edit tools are unchecked. If the 
Tool dialog box is visible, the Fillet Fill tool icon is highlighted and the 
other edit tool icons are not highlighted. Choosing this menu item has 
the very same effect as selecting Fillet Fill tool from the Tool dialog box. 

4. Line tool - If this menu item is selected, then the Line tool becomes the 
current edit tool. Once this item is selected, the Line tool menu item is 
checked and the other edit tools are unchecked. If the Tool dialog box is 
visible, the Line tool icon is highlighted and the other edit tool icons are 
not highlighted. Choosing this menu item has the very same effect as 
selecting the Line tool from the Tool dialog box. 

5. Pencil tool - If this menu item is selected, then the Pencil tool becomes 
the current edit tool. Once this item is selected, the Pencil tool menu 
item is checked and the other edit tools are unchecked. If the Tool dialog 
box is visible, the Pencil tool icon is highlighted and the other edit tool 
icons are not highlighted. Choosing this menu item has the very same 
effect as selecting the Pencil tool from the Tool dialog box. 



14 Programming the OS/2 WARP Version 3 GPI 

6. Rounded Box tool- If this menu item is selected, then the Rounded 
Box tool becomes the current edit tool. Once this item is selected, the 
Rounded Box tool menu item is checked and the other edit tools are un
checked. If the Tool dialog box is visible, the Rounded Box tool icon is 
highlighted and the other edit tool icons are not highlighted. Choosing 
this menu item has the very same effect as selecting the Rounded Box 
tool from the Tool dialog box. 

7. Box tool - If this menu item is selected, then the Box tool becomes the 
current edit tool. Once this item is selected, the Box tool menu item is 
checked and the other edit tools are unchecked. If the Tool dialog box is 
visible, the Box tool icon will become highlighted and the other edit tool 
icons are not highlighted. Choosing this menu item has the very same 
effect as if the Box tool were selected from the Tool dialog box. 

8. Ellipse tool- If this menu item is selected, then the Ellipse tool becomes 
the current edit tool. Once this item is selected, the Ellipse tool menu 
item is checked and the other edit tools are unchecked. If the Tool dialog 
box is visible, the Ellipse tool icon is highlighted and the other edit tool 
icons are not highlighted. Choosing this menu item has the very same 
effect as selecting the Ellipse tool from the Tool dialog box. 

9. Arc tool - If this menu item is selected, then the Arc tool becomes the 
current edit tool. Once this item is selected, the Arc tool menu item is 
checked and the other edit tools are unchecked. If the Tool dialog box is 
visible, the Arc tool icon is highlighted and the other edit tool icons are 
not highlighted. Choosing this menu item has the very same effect as 
selecting the Arc tool from the Tool dialog box. 

10. Text tool- If this menu item is selected, then the Text tool becomes the 
current edit tool. Once this item is selected, the Text tool menu item is 
checked and the other edit tools are unchecked. If the Tool dialog box is 
visible, the Text tool icon is highlighted and the other edit tool icons are 
not highlighted. Choosing this menu item has the very same effect as 
selecting the Text tool from the Tool dialog box. 

11. Fillet tool- If this menu item is selected, then the Fillet tool becomes the 
current edit tool. Once this item is selected, the Fillet tool menu item is 
checked and the other edit tools are unchecked. If the Tool dialog box is 
visible, the Fillet tool icon is highlighted and the other edit tool icons are 



Overview 15 

not highlighted. Choosing this menu item has the very same effect as 
selecting the Fillet tool from the Tool dialog box. 

12. Polyline tool- If this menu item is selected, then the Polyline tool be
comes the current edit tool. Once this item is selected, the Polyline tool 
menu item is checked and the other edit tools are unchecked. If the Tool 
dialog box is visible, the Polyline tool icon is highlighted and the other 
edit tool icons are not highlighted. Choosing this menu item has the very 
same effect as selecting the Polyline tool from the Tool dialog box. 

13. Polyfill tool - If this menu item is selected, then the Polyfill tool be
comes the current edit tool. Once this item is selected, the Polyfill tool 
menu item is checked and the other edit tools are unchecked. If the Tool 
dialog box is visible, the Polyfill tool icon is highlighted and the other 
edit tool icons are not highlighted. Choosing this menu item has the very 
same effect as selecting the Polyfill tool from the Tool dialog box. 

Styles Options 

Many of the objects that you create or edit can have several attributes associ
ated with them. For instance, a box object can have a line thickness, a line 
type, a line color, a fill pattern, and a fill color associated with it, whereas a 
text object can have a font name, an emphasis, a color, and a point size asso
ciated with it. The Styles pull-down menu has several items that let you 
choose the attributes of the object you are creating or editing. Following is a 
list and description of all the items found in the Styles pull-down menu. 

1. Font - This menu item determines the current font information that will 
be associated with text that is about to be edited or created. When this 
menu item is selected, a dialog box appears and prompts you for a font 
name, emphasis, and a point size. Note that this application only allows 
vector fonts to be specified. By doing this, all text can be rotated, 
sheared, scaled, and so on, like any other graphic object. 

2. Fill Color - This menu item determines the fill color to use with closed 
object like a box, rounded box, or an ellipse. The fill color choices will 
be displayed in another dialog box as soon as this menu item is selected. 
This fill color will be associated with closed objects that are about to be 
edited or created. 



16 Programming the OS/2 WARP Version 3 GPI 

3. Fill Pattern - This menu item determines the fill pattern to use with a 
closed object such as a box, rounded box, or an ellipse. (Examples of fill 
patterns are solid, none, vertical lines, diagonal lines, etc.) The fill pat
tern choices will be displayed in another dialog box as soon as this menu 
item is selected. This fill pattern will be associated with closed objects 
that are about to be edited or created. 

4. Line Type - This menu item determines the type of line to use when 
drawing an object. (Examples of line types are solid, invisible, dashed, 
dot-dash, etc.) The line type choices will be displayed in another dialog 
box as soon as this menu item is selected. This line type will be associ
ated with all objects that are about to be edited or created. Note that if the 
line thickness is greater than the thinnest line, the line type will always 
appear solid. 

5. Line Color - This menu item determines the color of line to use when 
drawing an object. The line color choices will be displayed in another 
dialog box as soon as this menu item is selected. This line color will be 
associated with all objects that are about to be edited or created. 

6. Line Thickness - This menu item determines the thickness of line to use 
when drawing an object. The line thickness choices will be displayed in 
another dialog box as soon as this menu item is selected. This line thick
ness will be associated with all objects that are about to be edited or cre
ated. Note that if the line thickness is greater than the thinnest line, the 
line type will always appear solid. 

7. Box Radius - This menu item allows you to set the percent of the X and 
Y axis used for the rounded box. (100 percent on both the X and Y axis 
will cause an ellipse to be produced while 0 percent on both X and Y axis 
will produce a box.) If some rounded boxes are selected, this will cause 
their rounding percentages to be updated immediately. Otherwise, the 
new values set will be used for rounded boxes as they are created. 

Transforms Options 

Once you create an object, you may want to manipulate it by changing its 
placement in the Z order, rotating it , shearing it, and so on. (Z order refers to 
the depth or layer that the object is drawn in the drawing. Note that objects in 



Overview 17 

this environment can overlap.) The menu items found in the Transforms 
pull-down menu provide you with many function that do these type of trans
formations. Following is a list and description of all the items found in the 
Transforms pull-down menu. 

1. Front - This menu item moves the selected objects to the front or top of 
the drawing. 

2. Back - This menu item moves the selected objects to the back or bottom 
of the drawing. 

3. Forward 1-This menu item moves the selected objects toward the top 
of the drawing by one position or level. 

4. Backward 1 - This menu item moves the selected objects toward the 
bottom of the drawing by one position or level. 

5. Scale - This menu item allows you to resize the selected objects. Once 
this menu item is selected, another dialog box appears and prompts you 
to enter a percentage which represents the amount you want the objects 
to be resized. 

6. Rotate - This menu item allows you to rotate the selected objects. Once 
this menu item is selected, another dialog box appears and prompts you 
to enter the number of degrees you want the objects rotated. 

7. Shear - This menu item allows you to shear the selected objects. (A 
shear will cause the object to slant from vertical a certain amount in de
grees.) Once this menu item is selected, another dialog box appears and 
prompts you to enter a shear angle. 

8. Flip Horizontal- This menu item allows you to flip the selected objects 
horizontally. 

9. Flip Vertical - This menu item allows you to flip the selected objects 
vertically. 

10. Set Model Transform - This menu item allows you to change a special 
matrix called the model transform matrix for a selected object. This op
tion is a special learning tool to help programmers understand what 
transformation matrices are and how they work. Before you use this op
tion, you should read Chapter 7, "Transforms." Once this menu item is 
selected, another dialog box with the model transformation matrix ap
pears and lets you change its values. 



18 Programming the OS/2 WARP Version 3 GPI 

Mouse Actions on Selected Objects 

Besides using the functions available from the pulldown menus, you can 
also use the mouse to manipulate selected objects. These manipulations in
clude moving and resizing objects. But, as stated earlier, before you can 
move or resize an object, it must first be selected. The way to select one or 
more objects is with the Select tool. Remember, selected objects can be rec
ognized in the drawing because markers will appear about the objects. 

Besides helping to identify selected objects in a drawing, markers also 
serve as a way to resize or reshape an object with the mouse. To resize or 
reshape an object, simply press and hold mouse button 2 on the marker and 
then move the mouse in the direction in which you want the object to be 
resized. When the object reaches the new size, just release mouse button 2 
and the resizing operation is complete. 

To move selected objects, just point the mouse at any of the selected ob
jects other than on a marker and simply press and hold mouse button 2. 
Then move the mouse in the direction in which you want the object to be 
moved. When the selected objects are in the desired new location, release 
mouse button 2. 

As you use this graphic editor, you will find that the shapes, fonts, and 
attributes that you can manipulate allow you to produce some fairly detailed 
and complex drawings. In fact, all of the art work in this book was produced 
using this graphic editor. You will also find that the software written to pro
duce this editor is not very complex (even though this book comes with sev
eral thousands of lines of source code). This graphic editor was produced by 
the authors of this book in a relatively short period of time. What allowed us 
to write this application in such a productive fashion was the vast amount of 
function available in the OPI and a good program structure. 

This book assumes you already understand the C programming language 
and the basics of Presentation Manager programming; hence, we will not 
focus on things like what a Presenation Manager message looks like, or how 
to create a window, or what a window or dialog procedure does and how they 
are structured. Instead, we will focus on the different OPI functions and 
show how they may be used to solve some fairly complex problems that you 
may bump into in your own graphic programming. Even though we will not 
review a lot of Presentation Manager basics, a high level overview of the 
graphic editor program is still appropriate. 



Overview 19 

OVERVIEW OF GRAPHIC EDITOR PROGRAM STRUCTURE 

The graphic editor program has the same basic program structure as most 
Presentation Manager applications. It has a main application window and its 
own window procedure, resources such as menu items, icons, and pointers, 
and numerous dialog boxes so the user can pass information to the applica
tion interactively. Like most Presentation Manager programs you've prob
ably seen, this program is written in C (using IBM®'s C Set/2 32-bit 
compiler). We had thought about writing this application in c++ because we 
believed it to be well suited for using the object oriented features c++ offers. 
We decided, however, that the C programming language is currently better 
known by most programmers and that it would enable us to demonstrate the 
functions of the OPI just as well. 

If you are into object oriented programming or object oriented program
ming concepts, you have probably noticed similarities between Presentation 
Manager programming and object oriented programming, for instance, the 
concept of classes of things such as window classes, the use of messages to 
communicate event data, subclassing of window procedures, and so on. If 
you are not familiar with object oriented programming, you will probably 
find it much easier to learn after you have done some Presentation Manager 
programming. 

One of the major themes of object oriented programming is that an ob
ject knows about itself and contains much of the data it needs to maintain 
itself or provide services. In our application each tool is like an object and 
provides services based on the facts it knows about itself. For instance, if the 
Line tool happens to be the current tool and a mouse move message is re
ceived while in draw mode, the Line tool will process the mouse move mes
sage and draw the line correctly based on what it currently knows. If the 
current tool were the Box tool, however, a different set of operations (known 
by the Box tool) would draw a box correctly. Hence, each tool knows about 
itself and knows how to process messages that are sent to it. However, each 
tool only knows how to process messages in the context of the services pro
vided by that tool. Therefore, when our main client window procedure re
ceives a message (such as mouse move or button up or down), that message 
is routed to the current tool which processes the message in its own correct 
context. The way messages route to the current tool and how each tool does 



20 Programming the OS/2 WARP Version 3 GPI 

the right thing will become more apparent when we look at source code later 
in this book. 

When you take a closer look at the tool code (TOOL. C), notice that there 
are actually only two classes of tools. These are the Select tool class and the 
Graphic Object tool class. The Select tool class is only used by the Select 
tool which has its own set of unique behavior (selecting and deselecting ob
jects). The graphic editor uses only one instance of the Select tool class. The 
Graphic Object tool class is more interesting. Essentially, there is one in
stance of this Tool class for each graphical editing tool in our tool bar (ex
cept the Select tool). When a Graphical Object tool is created, the kind of 
graphical objects that tool is to make are specified (for instance, a box, text, 
line, ellipses, etc.). This information is then stored inside the Tool object. 
Thus, when the tool processes an event that is supposed to create a new 
graphical object, the Tool object knows what kind of graphical object it 
should create. 

So, how could we create one generic Graphical Object tool that knows 
how to create and edit all the different kinds of graphical objects we support? 
One way would be to make a big monolithic Graphical Object tool that 
knows how to do all the operations against all the different kinds of graphic 
objects. We felt that such an approach would quickly lead to a huge web of 
unmanageable code that would be difficult to maintain and extend. So in
stead we took the approach that the graphical object knows best how to han
dle events for creating and editing itself. Therefore, we introduced another 
layer of message routing in which the tool routes the events to the Graphical 
Object. The Graphical Object then determines what the editing operations 
are and what their output will be. The Graphic Object tool is still responsible 
for things like starting the creation of an object, updating the display and 
select lists, and refreshing the display; however, it is the responsibility of the 
Graphical Object to do specific processing, such as editing. (For example, 
an object type of polyline is responsible for editing points within a polyline 
object.) Since editing activities are specific to the type class of graphic ob
ject being edited, events are routed directly to that object's event processing 
routine (method) for detailed processing. As you can see, this approach sim
plifies the tool's job and lets it focus on things for which it is responsible 
(creating objects, and managing how those objects are maintained within the 
editor). In addition, this approach bundles the object-specific processing 
with the object type, which is where this processing is most efficient. This 



Overview 21 

packaging of function makes the code easier to understand and easier to 
maintain. 

Another major design concept of our graphical editor program is how it 
uses lists. When an object such as a line or box is created, attributes are asso
ciated with the object, and it is added to a draw list. (Attributes are the set of 
information needed to create the object in the drawing. This information 
includes position, line type, color, rotation, shear, scale data, fill pattern, line 
width, and so on.) Objects are also given unique identifiers so they can eas
ily be found in the draw list or drawing and then be manipulated. Lists also 
hold other types of information for the graphics editor program. For in
stance, when you select objects to be manipulated, their identifiers are 
placed in a select list. By having this select list, it is easy for the graphics 
editor program to manipulate this list of objects and apply the changes back 
to the draw list. 

By knowing the basic structure of a typical Presentation Manager pro
gram, the concept of messages being routed to the currently selected tool, 
and the concept of using lists to hold object information, you have the basic 
knowledge of our high-level program design. It is now important to under
stand where the basic functions of the application are located in the source 
code and what source code components are used to build the different ob
jects that make up our application. Besides the objects that make up the 
DRAW. EXE component, the draw application also uses one dynamic link 
loaded (DLL) component too. This DLL runs in its own thread of execution 
and provides a generic ASCII file Browse utility. Later you will see all the 
parts used to build the Browse utility. Following is a list describing what 
each object in the program provides: 

• DRAW. OBJ - This object has the MAIN entry point for the Draw pro
gram. It creates and positions the application window, parses input pa
rameters, obtains system values about the application environment, 
dispatches messages to the main application window procedure, con
tains the draw program window procedure, provides the application ter
mination logic, and contains all the program global variables. 

• FUNC S . OBJ - This object provides all the dialog procedures and mis
cellaneous functions used by the Draw program. These miscellaneous 
functions include set point size, draw the background grid, add a font to 
the drawing, set a widths table for a character string, and so on. 



22 Programming the OS/2 WARP Version 3 GPI 

• ATTR. OBJ - This module contains functions that manipulate object at
tributes. All graphical objects contain a common block of attributes. The 
functions in this package are used to initialize, set and get the values of 
those attributes. It will also issue the proper GPI functions to establish a 
given object's attribute block as the current attributes. 

• EDIT. OBJ - This module contains functions that are used for common 
editing operations. These functions include Delete, Cut, Paste, Group, 
and Ungroup. It also contains functions for refreshing all or part of the 
display. 

• GOL. OBJ - This module contains functions for creating and manipulat
ing lists. Lists are treated as objects in the graphic editor program; there
fore, lists have routines to create them, destroy them, and perform 
functions with them. For instance, routines (methods) are provided for 
operations such as adding entries, deleting entries, and retrieving entries. 
Entries in a list are restricted to graphical objects. Each list is also associ
ated with a retained segment. This segment contains calls to the retained 
segments of objects that are currently in the list. (Retained segments are 
discussed in Chapter 5, "Building Blocks of the GPI".) 

• OBJECT. OBJ - This module contains functions for creating and ma
nipulating graphical objects. This file defines several kinds of graphical 
objects. A single generic class of graphical object exists and then spe
cific kinds of generic objects are derived (sub-classed) from that generic 
one. The generic graphic object class has a set of routines (methods) for 
manipulating any graphical object. These methods include Rotate, 
Scale, SetAttribute, Dragging, and so on. Specialized (sub-classed) 
graphic objects include ellipses, rectangles, text, and so forth. The spe
cialized graphic objects must support the same methods as the generic 
object class. To do this, the sub-class can either use the generic methods 
(inherit them) or override them if a special function is required. 

• TOOL. OBJ - This module contains functions for creating and process
ing various kinds of editing tools. Like the graphic objects, there is a ge
neric tool class and then specific kinds (sub-classes) of tools. Each 
subclass of tool performs a specific task. Currently the graphic editor 
only supports two classes of tools (Select tools and Graphic Object 
tools). Future classes of tools could include Rotation tools, Sizing tools, 
Eraser tools, and so on. 



Overview 23 

• PARSESEG. OBJ - This object receives graphic segment information 
and starts parsing and formatting this information for the View Selected 
Objects feature. 

• PORDERS . OBJ - This object is used by the PARSESEG. OBJ object to 
parse and format the graphic order data found within a graphic segment. 

• WRITETIF. OBJ - This object provides screen or window capture abil
ity. Once an image is captured, this object then writes the image infor
mation to a file in a TIFF format. 

Now that you've had a high-level view of the graphics editor design and 
structure, let's trace (at a high level) a few sample events through the pro
gram to help you feel more comfortable with its logic flow. For the first 
example, let's look at what happens when a user has mouse button 1 pressed 
and is moving the mouse when the current tool selected is the Ellipse tool. 

First, realize that when the draw program is started, all the various tools 
are created so they will be ready to use when the user chooses them from the 
Tool palette. This would be analogous to a plumber putting tools in the tool
box before going on a house call. To start with, the user first moves over and 
chooses the Ellipse tool from the Tool palette. When this occurs, a 
CHANGE_TOOL message is sent from the Tool palette dialog to the main 
draw window procedure. This results in the draw program selecting the El
lipse tool as the "current tool." Think of this as the plumber picking up his 
pipewrench (he's not doing any work yet, but it's now the current tool that 
he's using). I~ ext, when the mouse button 1 down message is received by the 
draw routine (DRAW. C), it automatically sends it to the current tool for proc
essing (TOOL. C). Hence, in our case, the Ellipse tool receives the message 
and takes a look at the event. It so happens that the policy of the Graphic 
Object tool is that mouse button 1 down means we should create a new ob
ject. Therefore, the Ellipse tool constructs a new graphic object of type "el
lipse." When the ellipse object is created, it is still in an undefined state and 
needs more messages to complete its definition. The Ellipse tool records the 
new Ellipse object as being the "currently edited" object. As additional mes
sages are passed to the Ellipse tool, the Ellipse tool forwards them to the 
Ellipse object (OBJECT. C). Then, as the user drags the mouse to create the 
ellipse shape, the mouse movement messages are passed to the Ellipse tool 
and then to the Ellipse object. The Ellipse object understands that it is still in 



24 Programming the OS/2 WARP Version 3 GPI 

initial definition state and draws itself in a rubberband form (XORed). 
When the Ellipse object receives a button 1 up message, it knows that its 
definition has been completed. Hence, it returns a status to the Ellipse tool 
indicating this fact. When the Ellipse tool receives this indication, it records 
the fact that the current Ellipse object is no longer being edited. Hence, fu
ture messages will no longer be passed to that object (unless the Ellipse tool 
decides that the object is processing input again). 

Notice that all of the object-specific details, such as defining the points 
of the object and drawing the object, are handled within the object code and 
not the tool code. Similar processing is performed when a user has the Select 
tool, selects an object, and then edits the object by dragging a marker to one 
of its defining points. 

For our second example, let's look at the program flow when the cur
rently selected object is text and the user selects the font pull-down menu 
item. In this example, the user has selected a text object that was previously 
created. To do this, the user first chose the Select tool; thus, as Presentation 
Manager messages are generated, they are routed to the Select tool first 
(TOOL. C). As in the previous example, the button 1 down message is proc
essed by the Select tool. Unlike the Ellipse tool, however, the Select tool 
policy indicates that this is a select operation. Therefore, the Select tool ex
amines which graphical object the mouse is positioned over and selects it by 
adding the object to the select list (GOL. C). Next, the user brings up the font 
dialog and chooses a new font and point size. When the user presses okay, a 
message is sent back to the Draw program (DRAW. C) to indicate the change. 
Like other messages, this message is passed to the Select tool; but, since the 
Select tool doesn't know what to do with it, it returns the message to the main 
draw routine as UNHANDLED. The main draw routine then processes the 
message. To handle the event, the main draw routine (DRAW. C) recognizes 
the message as a change of an object attribute. These types of events are typi
cally applied to all the objects that are currently selected. The editor then 
loops through each object currently in the select list and calls its setAttribute 
method twice(ATTR. C): once for the setting object's font and once for set
ting the object's point size. The object thus records its new font and point 
size attributes and also updates its display segment so it looks correct when 
the next screen refresh is done. Each object has an attribute block associated 
with it. That attribute block is defined in ATTR . H and functions for setting 



Overview 25 

and getting the values of attributes in the block are in the ATTR . C file. As 
the editor updates the attributes of the selected objects, it also records the 
regions of the screen that need to be updated. Once all selected objects have 
been processed, the editor refreshes the affected regions on the display. 

For our last example, let's see what happens when the user has a few 
items selected and then selects the Cut pull-down menu item. Because these 
items are selected, there are references to them in the select list. When the 
user selects the Cut pull-down menu item, a WM_ CUT message is sent to the 
Draw program (DRAW. C). As in the previous example, the Select tool re
turns UNHANDLED so the draw program examines this request and recog
nizes it as a cut operation. The cut operation is slightly more complicated 
than other operations recognized by Draw, so we have put its implementa
tion in a separate module (EDIT. C) with similar edit operations. The cut 
function first clears the current contents of the paste list. It then copies all the 
items currently in the select list over to the paste list. Next, the items in the 
select list are removed from the display list and also from the select list. 
Once the cut operation is complete, the objects that were previously dis
played and in the select list are removed and placed into a special "paste" list. 
The objects will remain in the paste list until the next cut operation (at which 
time they will be deleted) or until the next paste operation( at which time they 
will be copied and inserted back into the display and select lists). 

As you can see, most of the actions performed by the cut operation in
volve using list functions. These operations are fairly straightforward with 
one potential curiosity: When an object is inserted in the select list, the select 
list in tum calls the object and tells it that it is now selected. Likewise, when 
the objects are removed from this list, it also calls the object and informs it 
that it is no longer selected. Thus, by simply adding an object to the select 
list, the object is informed that it is selected and changes its appearance ac
cordingly. In particular, the object will put a dashed box around itself and 
display any edit handles. 

Another thing to note about the select list is that it merely contains refer
ences (pointers) to objects that are in the display list. It does not point to a 
separate copy of the object. The paste list, however, always contains a 
unique set of objects. Objects in this list are not contained in the display or 
select list. 



26 Programming the OS/2 WARP Version 3 GPI 

WORKING WITH THE DISKETTE 

This book comes with a diskette containing both the source code and the 
executable program objects for the graphic editor application discussed in 
this book. This diskette also contains source code and the executable pro
gram objects for an OS/2 MetaFile parser application, a query printer infor
mation application, and a generic text browser application that is used by the 
graphic editor, the query printer information, and the OS/2 MetaFile parser 
applications. By having all this source code, you can manipulate these appli
cations and see the effects of your actions. Furthermore, because the source 
code is included, you are saved from the tedious chore of entering, compil
ing, and debugging all these programs yourself. Finally, if parts of the 
source code are similar to what you are developing for your own project, you 
may use those parts for your project. You can not, however, resell any part 
of this diskette content in the context in which it was given to you. 

Important: Be careful to understand and test all source code used from 
this diskette as part of your own project. There is no guarantee that this code 
will meet all of your needs or that it does not contain errors. 

Before you make modifications to any of the source code that comes 
with this book, make a copy of the diskette and store it in a safe place. This 
will insure that you always have access to the original source code in case 
your working copy becomes lost or damaged. 

After you have made a copy of the book diskette, you may choose to 
install the contents of the diskette on the hard drive of your OS/2 system. To 
install the book software and source code on your hard file, refer to Appen
dix B. 

As stated, the installation includes the book software and source code 
from the book diskette, hence, many more files are copied to your new direc
tory than are really needed just to run these programs. Shortly, we will list 
each of the files on the book diskette and describe their purpose, but first let's 
finish making our application installation complete by making the applica
tion icons appear on the desktop. 

To get the application icon for the graphic editor application on the desk
top, copy a program template from the template folder found on your desk
top. Then, when the notebook dialog appears, reference DRAW. EXE from 
the directory you just created and close the notebook dialog. To get the ap
plication icon for the OS/2 MetaFile parser and query printer information 



Overview 27 

applications on the desktop, perform the same task but this time reference 
VI EWMET . EXE and PRINTERS. EXE from the directory you just created. 
To test if these programs are working, simply double click on the new pro
gram icons placed on your desktop. If they are installed correctly, you will 
see their application windows appear on your desktop. 

The graphic editor and OS/2 MetaFile parser applications can have file
names passed to them when they are started. If they do, they will automati
cally open these files and draw their contents. The files to be opened, 
however, have to be of a particular type or they will not appear to have an 
effect on the application startup. In the case of the graphic editor, this file 
must have been saved by the editor. (The graphic editor saves graphic data in 
its own file format.) Typically, the file extension for this type of file will be 
WLY. This is the default extension we give to graphic files saved with the 
graphics editor. For the OS/2 MetaFile parser, the file to be displayed must 
be a valid OS/2 MetaFile. In most cases, an OS/2 MetaFile will have an 
extension of MET. Because these applications can take a filename as an 
input parameter on startup, you can drag and drop these graphic files on the 
application icon and this will also start the application program. Or, lastly, 
because the file extensions of the graphic files are usually WLY or MET, 
you can make an association of these file types with the application name 
and start the application. (This association is made via the notebook dialog 
that was present when we copied a program template for our applications. 
You can get this notebook dialog back again by doing an open on the appli
cation icon found on the desktop.) For example, if you make an association 
between WL Y files and DRA W.EXE, any time you double click on a WL Y 
file, the graphic editor application will start. 

What we haven't discussed is how to modify information in CON
FIG.SYS to find the different files types for the book programs. This is be
cause we have placed all the book diskette contents in the same directory and 
assumed the programs will be started from that directory. If this is true, the 
different file types needed to make these programs work will automatically 
be found. You can put these book programs in separate directories and move 
some of the DLLs and HLP files to other standard directories; if you do this, 
however, you may have to modify the path information in CONFIG.SYS so 
the DLLs and HLP files can be found. Tables 1.1, 1.2, and 1.3 show the 
minimum set of files needed to run the three applications that come with the 
book: 



28 Programming the OS/2 WARP Version 3 GPI 

TABLE 1.1 Graphic editor files 

File Name 

DRAW.EXE 
DRAW. HLP 
BROWSE.DLL 

BROWSE.HLP 

Description 

Main program file for the graphic editor application. 
Help text for the graphic editor application. 
Dynalink object that will display an ASCII text file 
that is passed to it. This is used by the graphic editor 
program to display the contents of the file created by 
PARSESEG. DLL. 
Help text for the generic file browser, 
BROWSE. DLL object. 

TABLE 1.2 OS/2 MetaFile parser files 

File Name 

VIEWMET.EXE 

VIEWMET.HLP 
BROWSE.DLL 

BROWSE.HLP 

Description 

Main program file for the OS/2 MetaFile parser 
application. 
Help text for the OS/2 MetaFile parser application. 
Dynalink object that will display an ASCII text file 
that is passed to it. This is used by the OS/2 MetaFile 
parser program to display the contents of the file 
created by PARSEMET. DLL. 
Help text for the generic file browser, 
BROWSE. DLL object. 

There are many more files on the book diskette than are listed in the pre
vious three tables. These are the source files used to build all of the program 
objects for this book. Appendix B shows all the files needed to build the 
different program components for this book. As you build the program ob
jects, the build process will generate even more files. (OBJ, LIB, and RES 
files). All program objects that come on the book diskette were built using 
IBM's Development Toolkit, C SET/2™, LINK386, Resource Compiler, 
and IPF Compiler. To see how these program objects were built with this 
tool set, refer to Appendix B. 



Overview 29 

TABLE 1.3 Query printer information files 

File Name 

PRINTERS.EXE 

BROWSE.DLL 

BROWSE.HLP 

Description 

Main program file for the query printer information 
application. 
Dynalink object that will display an ASCII text file 
that is passed to it. This is used by the query printer 
information program to display the contents of the 
file it created that contains the printer information. 
Help text for the generic file browser, 
BROWSE. DLL object. 

Before you do anything else, first play with the graphic editor program to 
become familiar and comfortable with its function. Second, set up your de
velopment environment so you can build and execute all programs provided 
with this book. Finally, at any given time throughout the reading of this 
book, experiment with the source code to enhance your learning of the dif
ferent parts of the GPI. 

SPECIAL NOTES ABOUT THIS BOOK 

Most listings in this book are excerpts from the source code found on the 
book diskette. Very often several statements are left out of these listings to 
help maintain focus on the important points about a particular topic. There
fore, even within a routine, several lines of source code may be missing or 
declarations may not be shown for variables used. Even though these list
ings are often a small subset of the total lines of code for a routine, they are 
still designed to show continuity on a routine basis. If you want to see an 
entire routine instead of the excerpt, browse the source code found on the 
book diskette. 

Finally, the first time a Presenation Manager or GPI function is men
tioned in this book it is italicized to help bring it to your attention. As func
tions are introduced, a brief explanation about what the function does and 
how it is used by our program is given. Sometimes, the function parameters 
are discussed in detail and other times they are not. The parameters are only 



30 Programming the OS/2 WARP Version 3 GPI 

discussed in detail if this discussion adds to the current topic. Remember, 
this book is not a replacement for the technical reference material that comes 
with the OS/2 Toolkit. For a complete explanation of all the parameters for a 
function and a total list of OS/2 and Presentation Manager functions, refer to 
the IBM technical reference material. 



CHAPTER 2 

OS/2 Architecture 

Do operating systems sell PCs? I don't think so. For the vast majority of us, 
applications sell PCs. After all, without applications, a PC is little more than 
a technological trinket that collects dust. An operating system is, however, 
the platform on which applications are built. Therefore, the more robust the 
operating system, the easier it is for software developers to produce top
notch applications. Of course, people have different opinions of what a top
notch application may offer and these opinions change with time. 

Some years back, a friend of mine who worked with PCs on a daily basis 
(as a non-programmer) told me he could see no reason for moving from 
DOS to OS/2. All he wanted to do was to be able to run more of his applica
tions on the PC at the same time without having memory problems. He also 
told me he was concerned about the stability of his PC software when he 
loaded multiple terminate and stay resident (TSR) programs in his PC. Gee, 
it sure seemed like he was describing why he needed OS/2. Then it suddenly 
hit me. IBM had not been advertising OS/2 the correct way. IBM had been 
talking about things like OS/2' s advanced multitasking, memory manage
ment, and user interface design, but they had not demonstrated these items in 
a way that let average PC users realize the problems OS/2 would solve. Af
ter all, my mom is a fairly good user of word processors and spreadsheets, 
but she is not a computer scientist and doesn't have a clue as to why multi
tasking should be important to her. In fact, multitasking isn't directly impor-

31 



32 Programming the OS/2 WARP Version 3 GPI 

tant to her, but it should be important to developers of the application 
software she uses. Unfortunately, application developers weren't sold on 
many of these items either (at least at the cost of developing and marketing a 
product for the OS/2 environment versus the security they felt with DOS). In 
short, IBM hadn't adequately shared the OS/2 vision with their potential 
customers and application developers. (Build it and they shall come .... 
NOT!) 

In all fairness to IBM, it was and still is a tough job to get people to 
change from the comfort of DOS to something different. Particularly if that 
something is perceived as being more complex and expensive than what they 
currently use. In reality, OS/2 is not more expensive for people who have a 
newer PC (Intel® 80486 based systems) and in many ways is much simpler 
than DOS. But like any change, a need for change must usually be felt be
fore it will occur. In the case of changing operating systems, this need will 
probably be felt because of the presence of a killer application that uses that 
new operating system. Again, applications sell PCs, not operating systems. 

Today we are seeing a lot more native OS/2 applications becoming 
available. We're also seeing how IBM has done an outstanding job allowing 
DOS applications to work in the OS/2 environment. Because of these facts, 
millions of people are taking that jump from the comfort of DOS and becom
ing hooked on OS/2. In fact, most people that have made the jump to OS/2 
can not imagine returning to DOS. This is because OS/2 provides an envi
ronment where multiple applications can concurrently operate and share re
sources of the PC without conflicting with one another. Furthermore, the 
user interface for OS/2 is much more intuitive than DOS and this interface is 
very consistent between most OS/2 applications. Finally, the level of stabil
ity for the system is extremely high. 

The more I use OS/2, the more I am impressed with the vast amount of 
features it offers. This opinion is not only from a user's point of view, but 
also from a programmer's point of view. Because this book is about the fea
tures that OS/2 brings to programmers who are developing advanced graph
ics applications, we're going to describe (at a high level) the architecture 
OS/2 provides to enable this to happen. 

Figure 2.1 shows a conceptual view of the OS/2 architecture we are 
about to discuss. It is drawn from the point of view of a graphical application 
interfacing to the OS/2 graphical environment and shows the logical layers 
of function or data structures used to draw output on a physical device. As 



You Are 
Here! , 

PM 
Application 

Presentation Space I 

Device Context 

Presentation 
Driver 

OS/2 Kernel 

Device 

I Hardware 
Boundary 

Driver 

C~~D~ev~i~ce_) 

OS/2 Arch itectu re 33 

Presentation 
Page 

-

FIGURE 2.1 Conceptual view of OS/2 architecture. 

you read the following section, refer to this figure to better understand how 
these layers relate to each other. 

OS/2 is designed in such a way that programmers can develop graphical 
applications that are device independent. This design allows the program
mer to define an electronic sheet of paper called a presentation page. This 
presentation page can be thought of as the target for your drawing orders and 
is defined via a data structure called a presentation space. It is the handle to 
the presentation space that allows you access to your presentation page. The 
presentation space not only holds the definition of the presentation page, but 
it also hold the current drawing environment attributes. The key point about 
presentation space data is that it is typically device independent. 

Actually, there are are three types of presentation space that a program 
can use in a Presentation Manager application. The smallest and simplest of 
the presentation space types is called a cached-micro presentation space. It 



34 Programming the OS/2 WARP Version 3 GPI 

is called a cached-micro presentation space because OS/2 keeps a pool of 
these presentation space data structures around for quick access. The 
cached-micro presentation space is designed to be used for a brief period of 
time (like on a WM_PAINT message) and then returned backed to the system. 
Each time you obtain a cached-micro presentation space it will have default 
drawing attributes associated with it; therefore, if you have attribute require
ments that are not the defaults, you must set them each time you obtain a 
cached-micro presentation space. This presentation space is also intended 
for use only with display device types (window context). 

A micro presentation space is the next biggest and more powerful pres
entation space. The micro presentation space is intended to be owned by an 
application for as long as it is needed. It can be associated with multiple 
types of output devices; however, a presentation space can only be associ
ated with one output device type at a time. 

The most functional and largest presentation space is called the normal 
presentation space. The normal presentation space has all the properties of 
the micro presentation space but allows for a function called retained graph
ics. Retained graphics will be explained in more detail later in this book, but 
the basic idea is that the presentation space has the ability to record many of 
the GPI functions that are issued to it. Then, at a later time, the presentation 
space can be instructed to play the retained information out of the presenta
tion space, thus rendering a picture. The normal presentation space is the 
type of presentation space used by our graphic editor. 

Before digging down into the next layer of the system architecture, let's 
look closer at how the presentation space allows you to define the presenta
tion page. When you create a micro or normal presentation space with the 
GpiCreatePS function, you also get to specify information about the presen
tation page you want. Parameter three (size) of the GpiCreatePS function 
allows you to specify the presentation page size. This size parameter actu
ally defines a rectangle that is the dimension of the presentation page. 
Again, think of the presentation page as an electronic sheet of paper. This 
parameter lets you specify the dimensions of that sheet of paper. The units 
for the size parameter are dependent on what you specify in parameter four 
(options) of the GpiCreatePS function. The options parameter actually con
veys multiple pieces of information about how you want the presentation 
space created. Some of the items conveyed in the options parameter are if 
the presentation space is to be normal or micro, if certain values are to be 



OS/2 Architecture 35 

saved as SHORT or LONG, and if the presentation space is to be associated 
with a specific device. Six bits of the options parameter are used to define 
the units for the presentation page. These six bits have definitions available 
as follows: 

PU_LOMETRIC 
PU_HIMETRIC 
PU_LOENGLISH 
PU_HIENGLISH 
PU_TWIPS 
PU_ARBI TRARY 

Pel coordinates (picture elements of the 
physical device) 
Units of 0.1 mm 
Units of 0.01 mm 
Units of 0.01 inches 
Units of 0.001 inches 
Units of 11440 inches 
Application-convenient units 

As you can see, your application has a fairly broad choice as to what 
units it wants the presentation page to use. For our graphic editor program, 
we chose PU_LOENGLISH; hence, when we are dealing with our presenta
tion page, we are using units of III 00 of an inch. 

As implied by the micro and normal presentation spaces, a logical con
nection between the presentation space and a device can be made. (A 
cached-micro presentation space is always associated with a display or win
dow.) The object with which the presentation space is associated to make 
this connection is called a device context. A device context is a logical 
output device that identifies the target for the physical drawing. Therefore, 
the device context also identifies the physical output device. This output 
device can be a shared device such as a printer, or a target such as a memory 
bitmap or OS/2 MetaFile. Your application is responsible for creating a de
vice context and making an association between it and a presentation space. 
For something as simple as a window device context, a function called 
Win Open WindowDC can be used to return a window device context. Creat
ing a device context for something other than a window is somewhat more 
complicated, but the GPI has functions that still make it fairly easy. In fact, 
these functions not only help making the creation of a device context fairly 
easy but give the end user a tremendous amount of flexibility in device selec
tion and setup. Basically, these GPI functions allow you to query device 
information from the system and then interface with pieces of code called 
presentation drivers. These presentation drivers can provide a dialog with 
the end user and, on completion of that dialog, build a data structure that 



36 Programming the OS/2 WARP Version 3 GPI 

your application can use for creating a device context. (This will be shown 
in detail in Chapter 10, "Printing".) It turns out that these presentation driv
ers are also the next key layer of the system that help enable device inde
pendence. 

A presentation driver is responsible for converting the high-level GPI 
drawing orders into low-level orders that can be routed to the output device. 
Hence, the presentation driver needs to be aware of the output device's de
vice-specific characteristics. In some cases, the presentation driver actually 
interfaces directly to the adapter hardware. (This is common for display 
adapter presentation drivers.) In other cases, the presentation driver may 
route device-specific data through the OS/2 kernel to yet another component 
called a device driver. The device driver, which in some cases is part of the 
OS/2 kernel, is the last layer of software used to route data to the physical 
device. 

A high degree of flexibility and device independence can be achieved 
from this layering approach and from your application having the ability to 
create and associate presentation spaces to different device contexts. This is 
not meant to imply that the GPI does not have functions that show device
specific detail or allow device-specific control. In fact, many functions of 
the GPI allow for the querying of device-specific information and drawing in 
device units. For many applications (including those designed for device 
independence) this level of control is important. But, as you study the dif
ferent GPI functions, it becomes clear how many of these functions allow 
you to achieve device independence. Our graphic editor is an example of 
this concept. 

As implied earlier, the presentation page is key in providing device inde
pendence. The presentation page, for which you define the size and units, 
represents your electronic sheet of paper and many of the GPI functions rep
resent your electronic pencil. For example, a GPI function called GpiLine 
allows you to draw a line from the current drawing position to a given point. 
Just supply this function with a point that is to be the end of the line. Another 
cool thing about the OS/2 graphic environment (illustrated with the GpiLine 
function) is that this environment tracks the current drawing position. Thus, 
you don't have to constantly state a starting position for each object you 
want to draw! If you do want to change the current drawing position, how
ever, a GPI function called GpiMove allows you to do this. (Actually, which 



OS/2 Architecture 37 

GPI function you use and how you use it determines how the current position 
is managed.) 

The obvious question left about drawing with GPI functions is how to 
specify points or coordinates. The coordinate system for your presentation 
page places the origin (0,0) at the bottom left comer. The units of this coor
dinate system for your presentation page are whatever you defined them as 
when you created the presentation space. Figure 2.2 shows an example of 
the presentation page coordinate system. In this particular example, the 
presentation page for our graphic editor program is represented. You may 
think that once you have defined your presentation page with a certain unit 
of measure, then you simply supply the different GPI functions with values 
in those units. That would be a good guess, but for many GPI functions, this 
is the wrong answer! It turns out that most GPI drawing functions take coor
dinate information in units called world coordinates. World coordinates are 
abstract units that provide a large number range. Shortly, you will see why 
this is done, but first let's discuss a very important GPI function that helps us 
deal with the added complexity of different units. 

A function called GpiConvert is used to transform units from one coordi
nate space to units of another coordinate space. So far, we have hinted about 
two coordinate spaces. These two coordinate spaces are called world and 

(800,1000) 

rl II II. 
~ 

r. '" 
-' ~ ... ~ ~I: 

(0,0) (800,0) 

FIGURE 2.2 Graphic editor presentation page definition. 



38 Programming the OS/2 WARP Version 3 GPI 

presentation page. To show how we might use the GpiConvert function in 
our graphics editor program, suppose we want to display a clever message at 
a given location in our client area. Let's suppose this clever message is 
"Hello World" and we want to start this message 1.5 inches to the right and 2 
inches up. The GPI function we might choose to write our clever message 
with is GpiCharStringAt. As it turns out, however, the GpiCharStringAt 
function requires a parameter to specify a starting point for the text string; 
furthermore, this starting point must be specified in world coordinates. 
Now, because our presentation page units are PU_LOENGLISH (1/100 of an 
inch), we first want to define our message starting point in presentation page 
units (150,200). Next, we need to convert these presentation page units to 
world coordinates by using the GpiConvert function. Following is an exam
ple of a GpiConvert statement to do our conversion: 

GpiConvert(hpsEditor, CVTC_DEFAULTPAGE, CVT_WORLD, 

1, &startPoint); 

where 
hpsEditor is the graphic editor presentation space. 
CVTC_DEFAULTPAGE defines the source coordinate space as 
presentation page. 
CVT _WORLD defines the target coordinate space is world. 
1 indicates only 1 point is to be converted. 
startPoint is a PO INTL data type which holds the coordinate to be 
converted. 

Once this GpiConvert function completes, we can use the returned coor
dinates as an input parameter to the GpiCharStringAt function. As you look 
at the definition of the GpiConvert function in the IBM technical reference 
material, you will notice that several other values for the source and target 
coordinate spaces exist. This leads us into our next architectual topic, which 
is one of the neatest parts of the GPI. 

THE VIEWING PIPELINE AND PICTURE CONSTRUCTION 

It turns out that to produce a drawing with the OS/2 GPI, multiple transfor
mations on the different graphics objects are done before they are output to 
the physical device. These transformations occur between a series of coordi-



OS/2 Architecture 39 

nate spaces which exist in this graphics environment and are the means by 
which objects are transferred from space to space. This series of coordinate 
spaces and transformations is called the viewing pipeline. Besides the trans
formations between coordinate spaces, each coordinate space can have an 
area defined within it where clipping will occur. Any object or part of an 
object that is located outside of this area and is to be clipped will not be trans
ferred to the next coordinate space. 

As implied by the previous section, one reason for these transformations 
is to help you produce device-independent software. However, as you'll 
soon see, the viewing pipeline adds a lot more function to this graphics envi
ronment than just device independence. In Chapter 6, "Transformations," 
we will discuss transformations and how they are produced in detail. But 
here, we will be looking at the viewing pipeline (and transformations) at a 
high level. Hence, to understand why the viewing pipeline adds so much to 
the OS/2 graphical environment, let's look at each of the basic coordinate 
spaces in the pipline. As you read about the different coordinate spaces, re
fer to Figure 2.3 so you can better see how these spaces relate to one another. 

The first coordinate space in the viewing pipeline is called world space. 
Each graphical object generated using the OPI is first defined in this space. 
The units used in this space are abstract in value and have a very large range 
(up to 28 bits). Therefore, the different graphics objects can be defined with 
great precesion independent from its physical size. For example, suppose 
you want to create an object that represents a rivet that is used as part of a 
bridge and another object that represents an I-beam for the body of the 
bridge. The units in the world space give you the flexibility to define each of 
the objects with adequate precision without regard to the definition of the 
other object. As these objects are pieced together in a later coordinate space, 
their relative sizes and location will be accounted for via transformations. In 
fact, because the rivet will be so small in comparison to the body of the 
bridge, it probably won't been seen unless a zoom function is applied to part 
of the picture. 

The clip area that can be defined in the world space is called a clip path. 
Usually, clip areas are thought of as rectangular in shape. What is unique 
about clipping in world coordinate space, however, is that the clip area can 
be defined as an irregularly shaped object. That is to say that the shape of the 
clip path can be defined with a series of curves. The clip path can also be 
rotated. During picture constructions, you may define several different clip 



40 Programming the OS/2 WARP Version 3 GPI 

paths. There are several GPI functions that allow you to define and work 
with the clip path. Information about these GPI functions is given in Chapter 
7, "Paths, Regions, Clipping, Boundary Accumulation, and Correlation." 

The second coordinate space in the viewing pipeline is called model 
space. Model space is where different graphic objects from world space can 
be manipulated and pieced together to build higher level objects. This is 
done by performing transformations on the objects from world space so that 
their size, position, and orientation can be changed as they enter model 
space. Note that an object from world space can be used more than once in 
model space. Therefore, an object that is used several times in a drawing can 
be defined once in world space and then used muliple times in model space. 
Of course, each time the object is used in model space from world space, a 
different transformation may be applied to it. For example, suppose you 
have a drawing of a calculator which has several keys of the same size or 
shape. All you really need to do is create one object in world space that 
represents the key object and then use that key object multiple times. Each 
time the key object enters model space, apply a different transform to it so 
the key is drawn in the correct relationship to the body of the calculator. An 
application can have more than one model space, but most applications only 
have one. 

The clip area that can be defined in model space is called the viewing 
limit. The viewing limit is always rectanglar in shape and can also be used 
several times during picture construction. Rotating the viewing limit does 
not change the orientation of the rectangular area used for clipping but does 
change the size of this rectangular area. 

The third coordinate space in the viewing pipeline is called page space. 
Page space is where the entire picture for output is constructed. This is done 
by applying transformations to the different model spaces so the objects in 
these spaces are pieced together with the correct size, location, and orienta
tion with respect to each other. The page space is also where the picture's 
physical units of measure are determined. Remember, when your applica
tion creates a presentation space, it also defines the units for this coordinate 
space and the size of the presentation page. Note, however, that these units 
can be arbitrary if you want to create your own units of measure. Of course, 
you may also have to control the transformation between the presentation 
page space and the device space to get the desired size for the final physical 
output. If you don't control this last transformation, the GPI will provide a 



OS/2 Arch itectu re 41 

default transfonnation that will make your presentation page size fill the 
device space while still maintaining the aspect ratio. 

The clip area that can be defined in page space is called the graphics field 
and is always rectangular in shape. Like all the other clip areas, any part of 
the drawing found outside of the graphics field will be clipped (not shown) in 
the next coordinate space. If you use the graphics field, you must define it 
before picture construction and leave it alone. (The graphics field can not be 
changed during picture construction.) Also, the graphics field can not be 
rotated. 

.:g 

] 
~ 

-=:! 

World 
~ 
~ Model ~ 
~ 
& 

GPI 6ft 

~I 
Clip Path Viewing Limit 

FIGURE 2.3 Viewing pipeline. 

.:g 

] 
~ 

-=:! 

~ 
~ 

.!!:: 

~ 
~ 
& 

Presentation 
Page 

Graphics Field 

Device 

Clip Region 



42 Programming the OS/2 WARP Version 3 GPI 

The fourth and last coordinate space that we are going to discuss that is 
part of the viewing pipeline is called device space. Device space is where the 
picture units are finally converted to device-specific units. After the picture 
has been constructed in this space it can be routed to the output device. 

The clip area that can be defined in device space is called a clip region. 
The clip region is defined by a set of rectangles specified in device units. 
Any drawing requested outside of any of these rectangles is clipped. Hence, 
two nonintersecting rectangles that define a clip region would appear to de
fine two different clip areas. However, if the rectangles that define the clip 
region intersect, the resulting clip area will appear as intersecting rectan
gles, not just a bigger rectangle. The clip region can be changed during pic
ture construction but can not be rotated. 

Now that we've discussed each of the different coordinate spaces, let's 
look at a hypothetical drawing so we can see how the viewing pipeline helps 
with picture construction. As we discuss this hypothetical drawing, refer to 
Figure 2.4 to better understand how picture construction works. The discus
sion of our drawing will focus on the type of things that can occur in the 
viewing pipeline by using the GPI rather than the details of how this might be 
implemented. 

For our example, let's suppose we want to construct a very simple draw
ing of some nuts and bolts holding a couple of plates together. For this draw
ing, we really only need to define a few objects. These objects are a nut, a 
bolt, a spacer, and a plate. Each of these objects can be defined in world 
space independent of the other objects. Then, as the objects enter model 
space, transformations are applied to them so that they are sized and oriented 
as required for the drawing. Note that one instance of an object in world 
space can be used multiple times in model space. You can see in our exam
ple (illustrated in Figure 2.4) that we have multiple nuts, bolts, spacers, and 
plates defined in model space and their size, location, and orientation have 
been adjusted. As we go from model space to page space, we can join differ
ent model spaces together. Like going from world space to model space, 
another transformation is used to join the objects defined in the different 
model spaces. These different model spaces may be considered subpictures; 
however, our example and most other applications do not join multiple 
model spaces. After the different model spaces have tranformations applied 
to them, but before the resulting picture actually enters page space, yet an
other transformation occurs. This tranformation is used to scale and trans-



OS/2 Architecture 43 

late your picture (zoom and pan). This scaling and translation in page space 
is shown in Figure 2.4 by showing the picture as being larger and offset in 
this space. Once the object is in page space, the units should be whatever 
was defined for the presentation page when the presentation space was cre
ated. Now, to get the object to print or display correctly on the desired output 
device, yet one last transformation must occur. This last transformation con
verts the units defined in page space to map to the physical device units. 
Hence, the transformation from page space to device space provides this fi
nal function. In Figure 2.4 this is illustrated by showing the device space as a 
printer. (Of course the actual transformation for device space is done in 
OS/2 and not by the physical device.) 

In addition to the basic coordinate spaces of the viewing pipeline, a cou
ple more coordinate spaces still exist. A coordinate space called the notional 
font definition space exists before world space and is used to define a special 
kind of font called an outline font. Outline fonts are discussed in Chapter 4, 
"Fonts." The last coordinate space that exists is called the media space and 
is after the device space. The media space is used to produce windows on a 

World 

B 
EJ 
EJ 
lIJ 

Model Presentation Page 

FIGURE 2.4 Example drawing in viewing pipeline. 

Device 



44 Programming the OS/2 WARP Version 3 GPI 

device such as a terminal. Because the terminal is a device and the device 
space applies to the entire terminal, we need the media space to transform 
our drawings into areas of the device we call windows! 

A LITTLE ABOUT MULTITASKING 

If one of my kids were to become interested in computer programming, I can 
imagine how some of our conversations would sound. "Son, when I started 
programming PCs in the old days, 64KB of memory was considered a lot of 
memory and we were glad to have it!" Actually, when I started program
ming my first home-built computer, 16KB was considered a lot of memory 
and paying $450.00 for this memory was cheap. (For historical interest, the 
year was 1978!) And the way most of us used our PCs then was quite differ
ent from now. We typically ran a single non-graphical application at a time. 
Most of these applications seem pretty lame by today's standards, but back 
then they were considered pretty slick! Of course, it wasn't too long until 
some clever programmers were making their printers print while they were 
using some other application on their PC. Or they would start up their own 
special popup programs that were already loaded in the PC with some spe
cial keyboard sequences. Back then, I thought this was really neat and 
wanted to know how I could write programs to do this too! 

"Well son, in the old days, real programmers took control the PC! We 
stole interrupts and grabbed storage when we needed it. We took over de
vices and programmed them to meet our specific application needs. We did 
all of this while trying not to trash other applications that might also be run
ning in the PC and trying to do the same things! And by the way son, even 
though there were some great efforts to make this work, it never really 
worked that well at all." 

Actually, due to the lack of good standardized rules (architecture) for 
sharing resources in the PC, it was amazing things worked as well as they 
did. And if you think about how or where resources should be managed so 
multiple applications can run at a time, you will probably quickly conclude 
that the operating system needs to be a key part of the solution. And indeed 
OS/2 is! 

Today it isn't so difficult to imagine running multiple applications on 
your PC at the same time. But why would an application need multiple 
threads of execution ? Well, perhaps many simple applications only need a 



OS/2 Arch itectu re 45 

single thread of execution, but many programs can become more functional 
if they can process data or wait for some events in a background thread while 
doing other activities in a foreground thread. 

From your previous Presentation Manager programming experience, 
you should already be aware of the case where you should process some 
Presentation Manager messages in a background thread. This occurs when 
you receive a message in your message queue that requires considerable 
processing time. When this happens, you should process the message in a 
background thread so you can be responsive processing other messages that 
may still be arriving in your message queue. If you don't do this, your appli
cation may appear slugglish because some of these delayed messages could 
be mouse messages, change focus messages, keyboard messages, and so on. 

The Browse utility's (BROWSE. C) WM_PAINT message is an example 
of a message that could take a long time to process. Because of this, the 
WM_P AINT message for the browser interacts with a background thread in 
order to draw text into the client area. Listing 2.1 shows the WM_PAINT 

message for the Browse utility while Listing 2.2 shows the background 
thread that draws text on the screen for the Browse utility. As you can see 
from Listings 2.1 and 2.2, the WM_PAINT message and the background 
thread communicate with global variables and semaphores. Each time the 
WM_PAINT message needs to refresh the window, it sets a global flag named 
filling to FALSE to get the background thread's attention and then waits on a 
semaphore that is cleared by the background thread so the WM_PAINT mes
sage can proceed. Because the background thread checks this global flag 
after each line it draws, it doesn't take very long for it to recognize it should 
stop drawing. Once the background thread stops drawing, it unblocks the 
semaphore the WM_P AINT message is waiting for and then waits for a sema
phore that the WM_PAINT message unblocks when it wants the background 
thread to start drawing again. Once the WM_P AINT message is allowed to 
run, it sets up global variables needed by the background thread to start 
drawing again and then unblocks the background thread's semaphore so it 
can draw the text independent from other browse activities. Hence, the 
WM_P AINT and background threads are interlocked and sequenced with 
semaphores and global variables. The result is a much more responsive 
Browse utility. This is particulary noticeable when a user selects a font that 
takes a long time to draw. If you pick a font that is fairly slow to draw and 
page up or down quickly three or four times, you will notice that the window 



46 Programming the OS/2 WARP Version 3 GPI 

is not fully updated before that page output is stopped and the next page is 
started! 

/**************************/ 
/* Process paint message. */ 
/**************************/ 
case WM_PAINT: 

hpsBrowse=WinBeginPaint(hwnd,hpsBrowse,&rectPaint) ; 
filling=FALSE; 
DosWaitEventSem(donePainting,SEM_INDEFINITE_WAIT); 
DosResetEventSem(donePainting,&doneEventCount) ; 
WinFillRect(hpsBrowse,&rectPaint,CLR_BACKGROUND); 
gptPaint.x=ptTopLeft.x; 
gptPaint.y=ptTopLeft.y; 
/********************************************************/ 
/* Get the first line to display and the count of them */ 
/* to display. */ 
/********************************************************/ 
lineOut=curYPos; 
gCount=((lineCount-curYPos)<rows) ? (lineCount-curYPos) : rows; 
/**********************************************************/ 
/* Get the minimum and maximum file offset values needed. */ 
/**********************************************************/ 
minOffset=*((PULONG)fileOffsets+(lineOut)); 

if((lineOut+count+l)<lineCount) 
maxOffset=*((PULONG)fileOffsets+(lineOut+count+l)) 

; else 
maxOffset=*((PULONG)fileOffsets+(lineCount-l)); 

/***********************************************/ 
/* If needed, read in new chunk of input file. */ 
/***********************************************/ 
if(minOffset<baseOffset I I maxOffset> (baseOffset+FILE_BUF_SIZE) ) { 

if(minOffset«FILE_BUF_SIZE/2)) 
baseOffset=O; 

else 
baseOffset=minOffset-(FILE_BUF_SIZE/2) ; 

DosSetFilePtr(fileHandle,baseOffset,FILE_BEGIN,&local) ; 
DosRead(fileHandle,bufferPtr,FILE_BUF_SIZE,&bytesRead) ; 

/***************************~********************************/ 

/* Put cursor up here if it can be found within the window. */ 
/************************************************************/ 
gOffsetIndex=*((PULONG)fileOffsets+(cursorY)) ; 
gTemp=bufferPtr+gOffsetIndex-baseOffset; 
SetCursor(hwnd,gTemp); 
filling=TRUE; 
DosPostEventSem(startPainting) ; 
WinEndPaint(hpsBrowse) ; 
return 0; 

LISTING 2.1 Browse utility paint message processing. 



/**********************************************/ 
/* Background thread for drawing browse text. */ 
/**********************************************/ 
VOID backGroundPaint(ULONG dummy) { 

LONG ii 
SHORT x,y,togglei 
HAB habti 

OS/2 Architecture 47 

/*****************************************************************/ 
/* Get an anchor block handle so thread can access PM functions. */ 
/*****************************************************************/ 
habt=WinInitialize(O) i 

for (i i) { 

DosPostEventSem(donePainting) i 

/*********************************************/ 
/* Wait for main process to clear semaphore. */ 
/*********************************************/ 
DosWaitEventSem(startPainting,SEM_INDEFINITE_WAIT)i 
/********************************/ 
/* Display full window of data. */ 
/********************************/ 
while((gCount--) && (filling)){ 

gOffsetIndex=*((PULONG)fileOffsets+(lineOut))i 
gTemp=bufferPtr+gOffsetIndex-baseOffseti 

gstr=stringouti 
*gstr='\O'i 
/***************************************************/ 
/* Replace tab characters with up to eight spaces. */ 
/***************************************************/ 
for (gLength=Oi (*gTemp!='\n') && (gLength<250 )i *gTemp++){ 
if(*gTemp=='\t') { 
gblkCnt=8-(gLength%8) i 

gLength=gLength+gblkCnti 
while (gblkCnt>O) { 

*gstr++=' 
gblkCnt--j 

, . , 

else *gstr++ =*gTempi 
gLength++i 

/****************************/ 
/* Remove carriage returns. */ 
/****************************/ 
if(*(gstr-l)==13)gLength--i 
if (gLength>curXPos){ 

hIndex=curXPosi 
gLength-=curXPosi 

else { 
hIndex=gLengthi 
gLength=Oi 

LISTING 2.2 Browse utility background paint processing. 



48 Programming the OS/2 WARP Version 3 GPI 

1**************************************************************1 
1* Output (partial) line to window and update loop variables. *1 
1**************************************************************1 
SetWidthsTable(hpsBrowse,widthValues, 

widthTable,&stringout[hIndex] ,&gstrWidth); 
GpiMove(hpsBrowse,&gptPaint) ; 
GpiCharStringPos(hpsBrowse,NULL,CHS_VECTOR, 

(LONG)gLength,&stringout[hIndex] ,widthValues); 
gptPaint.y-=yChar; 
II Move down 1 row lineOut++; 
II Increment to line offset. 

if (filling) { 
1*******************************1 
1* Output line count position. *1 
1*******************************1 
stringout[O]=O; 
strcat(stringout,"Line "); 
CvtInt((cursorY+l) ,&stringout[strlen(stringout)]); 
strcat(stringout," of "); 
CvtInt((lineCount) ,&stringout[strlen(stringout)]); 
strcat(stringout,", Column"); 
CvtInt((cursorX+l) ,&stringout[strlen(stringout)]); 
strcat (stringout, " . ") ; 
strcat(stringout,pBrws->filename) ; 
GpiSetColor(hpsBrowse,CLR_RED) ; 
SetWidthsTable(hpsBrowse,widthValues, 

widthTable,&stringout[O] ,&gstrWidth); 
gptPaint.y=O; 
GpiMove (hpsBrowse, &gptPaint) ; 
GpiCharStringpos(hpsBrowse,NULL,CHS_VECTOR, 

(LONG)strlen(&stringout[O]) ,&stringout[O],widthValues); 

GpiSetColor(hpsBrowse,CLR_BLACK) ; 
DosResetEventSem(startPainting,&startEventCount) ; 
filling=FALSE; 
} 

LISTING 2.2 (Continued). 

Another good example of when your application may find multiple 
threads of execution useful is when it is waiting for data from another source. 
What makes this an even better example is when your application doesn't 
even know when or if data may arrive, and perhaps when the data does ar
rive, it can be pre-processed before it is passed to your application's fore
ground thread. This example is not really very farfetched. This is a common 
requirement for applications that depend on receiving data from some com
munications support. Conversely, the same application may want to pass 
data back to a communications link in a background thread while processing 
more interesting user-related activity in a foreground thread. It may be the 



OS/2 Architecture 49 

case, however, that data is not really being sent or received from a communi
cations link, but rather to or from another application in the same machine. 
From your applications point of view, perhaps it shouldn't matter where the 
data is coming from. What is key is that much of the data processing can be 
managed outside your application's main thread of execution. Furthermore, 
your design may be such that the data is formatted and encapsulated in such a 
way that makes the data access consistent and safe. (This is a major theme of 
object oriented design and programming!) 

In our graphic editor program, we show one more way that multitasking 
may be used. When our graphic editor wants to display the selected graphic 
objects order stream, it generates an ASCII file with the data for viewing. 
After the ASCII file is generated, the graphic editor disables the View Se
lected Objects pull-down menu item and uses the Browse utility to display 
the content of the ASCII file. Note that one of the parameters passed to the 
Browse utility when it is invoked is the window handle of the invoking proc
ess. Because the Browse utility runs in its own thread of execution, the 
graphic editor resumes operation shortly after the Browse utility is invoked. 
Hence, while the user is browsing the ASCII file that was generated by the 
graphic editor, the graphic editor can proceed independently from the 
Browse utility. When the user quits the Browse utility, the utility sends a 
user-defined message back to the Presentation Manager application that 
started it via the window handle. This message is processed in the same 
fashion as other messages and is an indicator to the invoking application that 
the user is done browsing the graphic objects ASCII file. Hence, it is the 
user-defined message sent from the Browse utility that re-enables the View 
Selected Objects pull-down menu item! 





CHAPTER 3 

Graphic Primitives 

Most applications make use of a set of basic building blocks for graphics 
construction. These building blocks consist of lines, curves, rectangles, text, 
and images. The OS/2 GPI provides these capabilities and more in what it 
calls graphic primitives. 

The set of OS/2 graphic primitives is fairly large and quite functional. 
Using these primitives, one can construct both simple and complicated fig
ures. This chapter centers around the commonly used graphic primitives. 

ATTRIBUTES 

Before jumping into the actual drawing commands, let's first discuss the 
topic of drawing attributes. Attributes deal with how figures and text appear 
when they are drawn. Text color, font style, and point size are examples of 
text attributes. 

The GPI breaks drawing primitives into five categories. Each of these 
categories has a set of attributes that are specific to the drawing primitives in 
that category. The GPI refers to this collection of attributes as a bundle. By 
setting the values of attributes in a bundle, you can affect how drawing 
primitives that use that bundle will look when they are drawn to the device. 
For example, by setting the color attribute in the line bundle to blue, any 

51 



52 Programming the OS/2 WARP Version 3 GPI 

subsequent lines that you draw will be displayed in blue. However, drawing 
primitives in other categories will not be affected since they use their own 
bundle. For example, text primitives have their own attribute bundle which 
also has a color attribute. Therefore, text primitives will not be affected by a 
change to the color attribute in the line bundle. 

The five categories of the drawing primitives are: 

1. Line and Arc primitives 

2. Area primitives 

3. Text primitives 

4. Image primitives 

5. Marker primitives 

As previously mentioned, each of these categories has its own bundle of 
attributes. Table 3.1 shows the attributes in each bundle. 

You can set one or more attributes of each bundle by using a function 
called GpiSetAttr. For example, let's say you want to set the line color and 
line type attributes in the line attribute bundle. To do this fill we tell the GPI 
what attributes are being set and what the new values are. This is done with a 
bundle attribute record and a call to the GpiSetAttr function. Listing 3.1 
shows a quick example of how this function is used. 

LINEBUNDLE lineAttr; 
/* Set line attributes */ 
lineAttr.lColor = CLR_BLUE; 
lineAttr.usType = LINETYPE_DOT; 
GpiSetAttrs(hps, PRIM_LINE, LBB_COLOR I LBB_TYPE, OL, &lineAttr); 

LISTING 3.1 Using GpiSetAttr. 

Sometimes you may want to determine an attribute's current value. You 
can do this with a function called GpiQueryAttr. This function works almost 
exactly like the GpiSetAttr function only in reverse. You need to indicate 
what attributes you are interested in and then the GpiQuery Attr function will 
fill in the attribute record with the values of the attributes you asked for. Sim
ple enough. As you might expect, GpiQuery Attr lets you ask for one or more 
attribute values as long as they are in the same bundle Gust like GpiSetAttr). 
Listing 3.2 shows how you can use this function. 



TABLE 3.1 Attribute bundles 

Bundle Name 

Lines and Arcs (LINEBUNDLE) 

Areas (AREABUNDLE) 

Text (CHARBUNDLE) 

Image (lMAGEBUNDLE) 

Marker (MARKPRBUNDLE) 

LINEBUNDLE lineAttr; 

Graphic Primitives 53 

Attributes 

Line Color, Line Mix, Line Width, 
Geometric Line Width, Line Type, 
Line End, Line Join 
Area Color, Area Background Color, 
Area Mix, Area Background Mix, 
Pattern Set, Pattern Symbol, Pattern 
Reference Point 
Character Color, Character 
Background Color, Character Mix, 
Character Background Mix, 
Character Set, Character Mode, 
Character Box, Character Angle, 
Character Shear, Character Direction, 
Character Text Alignment, Character 
Extra, Character Break Extra 
Image Color, Image Background 
Color, Image Mix, Image 
Background Mix 
Marker Color, Marker Background 
Color, Marker Mix, Marker 
Background Mix, Marker Set, Marker 
Symbol, Marker Box 

/* Get line attributes and write them to a log file*/ 
GpiQueryAttrs(hps, PRIM_LINE, LBB_COLOR I LBB_TYPE, OL, &lineAttr); 
fprintf(log, uLine color %ld, Line type=%ld\n", lineAttr.lColor, 
lineAttr.usType) ; 

LISTING 3.2 Using GpiQuery Attr. 

Although the GpiSetAttr is flexible and can be used to set most drawing 
primitive attributes, the GPI has included some shortcut or helper functions 
for some of the more frequently set drawing attributes. For example, the fol
lowing functions are used to simplify setting of the basic line attributes: 



54 Programming the OS/2 WARP Version 3 GPI 

• GpiSetLineEnd 

• GpiSetLineJ oin 

• GpiSetLineType 

• GpiSetLine Width 

• GpiSetLine WidthGeom 

These functions are equivalent to using GpiSetAttr, but they are easier to 
use. Those attributes with helper functions for setting their values usually 
also have helper functions for querying their values. For example, the func
tion called GpiQueryLineEnd returns the current value of the Line End at
tribute. 

Besides helper functions that operate on attributes within a bundle, there 
are also helper functions that operate on attributes across all of the attribute 
bundles. When these functions are called, they set the value of the specified 
attribute in each attribute bundle. The function called GpiSetColor, for ex
ample, will set the color attribute in each drawing category (i.e., Lines, Ar
eas, Characters, Text, Markers, and Images). All subsequent drawing 
operations will have the same foreground color. The common helper func
tions are: 

• GpiSetColor 

• GpiSetBackColor 

• GpiSetMix 

• GpiSetBackMix 

Of course, there are matching query functions for each of these helper 
functions. Note, however, that the query functions only return the current 
value of the attribute found in the character bundle. The values of that attrib
ute found in the other bundle are ignored. 

COLOR AND MIX 

As previously mentioned, the color and mix attributes exist in each attribute 
bundle. For that reason we will briefly describe them here and avoid repeat
ing discussion of them in the following sections on each drawing category. 



Graphic Primitives 55 

Color attributes are specified as in an index with values zero through n 
where n is the number of entries in the color index table. Table 3.2 lists the 
index values for the default color. 

The color index table can change, however, so bear in mind that picking 
CLR_BLUE might not result in the color blue if the color table has been 
changed. If only a few different colors are needed, choose the colors 
CLR_DEFAULT, CLR_BACKGROUND, and CLR_NEUTRAL, so your appli
cation can attempt to remain device independent. Although in practice this is 
not very realistic as usually more than three colors are required. 

TABLE 3.2 Default color table values 

Index Value Description 

0 CLR_FALSE Monochrome (all bits off, black) 
1 CLR_TRUE Monochrome (all bits on, white) 
2 CLR_DEFAULT System defined foreground color 
3 CLR_WHITE White 
4 CLR_BLACK Black 
5 CLR_BACKGROUND System defined background color 
6 CLR_BLUE Blue 
7 CLR_RED Red 
8 CLR_PINK Pink 
9 CLR_GREEN Green 
10 CLR_CYAN Cyan 
11 CLR_YELLOW Yellow 
12 CLR_NEUTRAL System defined neutral color 
13 CLR_DARKGRAY Dark gray 
14 CLR_DARKBLUE Dark blue 
15 CLR_DARKRED Dark red 
16 CLR_DARKPINK Dark pink 
17 CLR_DARKGREEN Dark green 
18 CLR_DARKCYAN Dark cyan 
19 CLR_BROWN Brown 
20 CLR_PALEGRAY Pale gray 



56 Programming the OS/2 WARP Version 3 GPI 

TABLE 3.3 Foreground mix attributes 

Attribute 

FM_LEAVEALONE 

FM_ZERO 
FM_NOTMERGESRC 

FM_INVERT 
FM_MERGESRCNOT 

FM_NOTCOPYSRC 

Description 

Default foreground mix mode (usually 
FM_OVERPAINT unless changed). 
Logical OR foreground color with current 
screen contents. 
Paint foreground color over the current screen 
contents. 
Exclusive OR foreground color with current 
screen contents. 
Leave the current screen contents alone (draw 
invisible ). 
Logical AND foreground color with current 
screen contents. 
Invert the foreground color and logical 
AND with current screen contents. 
Logical OR foreground color with the 
inverse of the current screen contents. 
Resulting value is to be set to zero. 
Invert the logical OR of the foreground color 
and the current screen contents. 
Invert the exclusive OR of the foreground 
color and the current screen contents. 
Invert the current screen contents. 
Logical OR foreground color with the 
inverse of the current screen contents. 
Invert the foreground color and paint result 
over current screen contents. 
Invert the logical AND of the foreground 
color and the current screen contents. 
Resulting value is to be set to one. 



Graphic Primitives 57 

Drawing primitives often have both a foreground and a background 
color. The foreground color specifies in which color the front of the object is 
to be drawn. For example, the foreground color of text is the color in which 
each character will be drawn. Background color, as implied by the name, 
specifies in what color the background of the object will be drawn. For text, 
the background color specifies the color with which the character box will be 
filled (the character will be drawn on top of this filled in box). Note that Line 
and Arc primitives do not have a background color. 

Mix attributes control how a figure is combined with the rest of the pic
ture when it is drawn. As with color, there are both foreground mix and back
ground mix attributes. These attributes control how a figure's foreground 
and background colors of a drawing primitive are combined with the exist
ing drawing. The mix attributes specify bit-wise operations in which each 
pixel of the primitive to be drawn is combined with the current contents of 
the pixel over which it is to be drawn. New and current pixel values are nu
meric. The numeric values represent an index into the current color table. 
Therefore, by combining the new and existing pixel values, a resulting value 
is produced to be used as the new color table index for that pixel. 

Tables 3.3 and 3.4 list the foreground and background mix attributes 
(values) that are available. 

TABLE 3.4 Background mix attributes 

Attribute 

BM_OVERPAINT 

BM_LEAVEALONE 

Description 

Default background mix mode. 
Logical OR background color with current 
screen contents. 
Paint background color over the current screen 
contents. 
Exclusive OR background color over the current 
screen contents. 
Leave the current screen contents alone 
(draw background invisible). 



58 Programming the OS/2 WARP Version 3 GPI 

TABLE 3.5 Line and arc GPI functions 

Function 

GpiLine 
GpiPolyLine 
GpiPolyLineDisjoint 
GpiBox 
GpiFullArc 
GpiPartialArc 
GpiPointArc 
GpiSpline 
GpiPoly Fillet 
GpiPolyFilletSharp 

Description 

Draw a single line. 
Draw a series of connected lines. 
Draw a series of disjoint lines. 
Draw a rectangle. 
Draw a circle or ellipse. 
Draw an arc along an ellipse. 
Draw an Arc from three points. 
Draw a series of Bezier splines. 
Draw a series of fillets. 
Draw a series of fillets with specified sharpness 
values. 

LINE AND ARC PRIMITIVES 

This category of drawing operations includes basic line and arc drawing 
functions. Table 3.5 lists the functions in this category and a brief descrip
tion of the operations they perform. 

As mentioned above, there is an attribute bundle that is specific for this 
category of drawing primitives. The setting of attributes in this bundle will 
affect how figures drawn using these operations are displayed. Table 3.6 de
scribes each attribute in this bundle. 

The Line Color attribute defines what color is used to draw any of the 
line or arc primitives. 

The Line Mix attribute defines how the line color is mixed with the color 
of other figures on the drawing surface. If you want a solid line of the 
specifed line color, use FM_OVERPAINT. If a line mix of FM_XOR is used, 
the line will be drawn by logically XOR the line's color values with the color 
values of the figures beneath the line. The interesting thing about this mode 
is that if you draw the line twice it will disappear and the figure will look as it 
did before the line was first drawn. This is the technique we use in the 
graphic editor to produce the rubberbanding effect when objects are drawn 
or moved. 



Graphic Primitives 59 

TABLE 3.6 Line Attribute Bundle 

Attribute LINEBUNDLE flAttrMask Default Helper 
Description Field Name Value Value Function 

Line color IColor LBB_COLOR CLR_NEUTRAL GpiSetColor* 
Line mix usMixMode LBB_MIX_MODE FM_OVERPAINT GpiSetMix* 
Line width. fxWidth LBB_WIDTH 1.0 GpiSetLine Width 

GpiQueryLine Width 
Geometric IGeomWidth LBB_GEOM_WIDTH None GpiSetLineGeom Width 
line width GpiQueryLineGeom Width 
Line type usType LBB_TYPE LINETYPE - SOLID GpiSetLineType 

GpiQueryLineType 
Line end usEnd LBB_END LINEEND_FLAT GpiSetLineEnd 

GpiQueryLineEnd 
Line join usJoin LBB_JOIN LINEJOIN_BEVEL GpiSetLineJoin 

GpiQueryLineJoin 

* These helper functions set the color and mix attributes in all bundles. 

You can draw lines with the Line and Arc primitives in two different 
modes. Cosmetic lines are virtual lines that have no thickness associated 
with them. Cosmetic lines are usually drawn one pel wide on the display 
device. The Line Width attribute lets you specify whether the line is to be 
drawn a single pel wide (LINEWIDTH_NORMAL) or two pels wide 
(L INEWI DTH_ TH I CK). 

Geometric lines have a measurable width that you can change. The Geo
metric Line Width attribute specifies in world coordinates the thickness of 
the line. Geometric lines must be drawn using paths. For details on using 
paths to draw geometric lines see Listing 3.18 in the Area Primitives section. 

The Line Type attribute defines the style in which the line is drawn. Fig
ure 3.1 shows what line type choices are available and what effect they pro
duce. 

The Line End attribute defines how the ends of geometric lines are 
formed. Figure 3.2 shows what line end choices are available and what effect 
they produce. 



60 Programming the OS/2 WARP Version 3 GPI 

LlNETYPE_DEFAULT 

LlNETYPE_SHORTDASH 

LlNETYPE_DASHDOT 

LlNETYPE_DOUBLEDOT 

LlNETYPE_LONGDASH 

LlNETYPE_DASHDOUBLEDOT 

LlNETYPE_INVISIBLE 

LlNETYPE_ALTERNATE 

FIGURE 3.1 Line type options. 

LlNEEND_SQUARE I I 

FIGURE 3.2 Line end options. 

The Line Join attribute defines how geometric lines are joined at their 
endpoints. Figure 3.3 shows what line join choices are available and what 
effect they produce. 



Graphic Primitives 61 

LlNEJOIN_MITRE 

FIGURE 3.3 Line join options. 

Note: Although IBackColor and usBackMixMode fields are found in the 
LINEBUNDLE structure, they are not used when drawing line and arc primi
tives. 

Line Functions 

The simplest drawing primitive to understand and use is probably the line. A 
line is simply a connection between two points in the world drawing coordi
nate space. Using the GPI, a line is drawn from the current position of the 
graphics pen to another designated point. This operation is performed by a 
call to the GpiLine function as shown in Listing 3.3. 



62 Programming the OS/2 WARP Version 3 GPI 

BPS hps; 
POINTL point; 

point.x = 100; 
point.y = 100; 
GpiMove(hps, &point); 
point.x = 200; 
point.y = 200; 
GpiLine(hps, &point); 

LISTING 3.3 Using GpiLine. 

This fragment of code draws a line from point 100,100 to point 200,200. 
The line will be drawn using the current line color, mix, width, and type at
tributes of its bundle. After this operation has been performed, the current 
position is automatically adjusted to be at the new end point of the line(i.e. 
200,200). Note, however, that not all GPI functions automatically change 
the current position. Figure 3.4 shows the output generated by this code 
fragment. 

In fact, as you can see in Listing 3.4, GpiLine is the very call used by the 
line tool of the graphic editor. To explore this code, look at the GoLineDraw
Details( ) function in the OBJECT. C module . 

.,nn --- / 
~lln / --

1 )0 2( )0 

FIGURE 3.4 GpiLine output. 



void GoLineDrawDetails(GOBJ self) 
{ 

GpiMove(hps, &((*self->Points) [0])); 
/* Move to first point */ 
GpiLine(hps, &((*self->Points) [1])); 
/* Draw to second point */ 

Graphic Primitives 63 

LISTING 3.4 GpiLine used in the graphic editor. 

Note that in the graphic editor, endpoints of the line are stored in an array 
pointed to by the variable self->Points. To draw the line, move to the first 
point and draw a line to the second point (elements zero and one of the ar
ray). 

U sing lines you can construct quite complicated drawings. Since the cur
rent position is automatically adjusted to the new end point of the line, by 
issuing many line calls in succession you can draw a long sequence of con
nected line segments. Another way to get this effect, however, is to use the 
function called GpiPoiyLine. Listing 3.5 shows how to draw a series of con
nected lines using this function. 

HPS hps; 
POINTL curPosition 
POINTL points [4] = { 0, 

50, 
100, 
100, 

100, 
0, 

100, 
a } ; 

curPosition.x = 0; 
curPosition.y = 0; 
GpiMove(hps, &curPosition); 
GpiPolyLine(hps, 4L, &points); 

LISTING 3.5 Using GpiPolyLine. 

This function accepts an array of points that are to be connected (starting 
from the current position) and a count that tells how many points are in the 
array. As with GpiLine, the current position is set to the last point after the 
call. The code fragment above generates a figure that looks like the capital 
letter M (as shown in Figure 3.5). 

As you probably guessed, GpiPolyLine is used to implement the 
PolyLine tool of the graphic editor. The PolyLine code fragment shown in 
Listing 3.6 is very similar to that above. As with the line object, the points of 
the polyline are stored in the array pointed to by self->Points. The number of 
points in the polyline is stored in self->PointCount. 



64 Programming the OS/2 WARP Version 3 GPI 

100 

Pl P3 

M 
Original CP P2 P4 

200 

P N 
o 0 
o 0 

FIGURE 3.5 GpiPolyLine output. 

void GoPolylineDrawDetails(GOBJ self) 
{ 

GpiMove(hps, &((*self->Points) [OJ)); 
GpiPolyLine(hps, self->PointCount-l, &((*self->Points) [lJ)); 

LISTING 3.6 GpiPolyLine as used in the graphic editor. 

The GpiPolyLine function is also used to implement the pencil tool in 
the graphic editor. Although the pencil tool seems to generate curved lines, it 
is actually a series of points connected using a polyline. Since the points are 
so close together, it looks as though curves are being drawn. Try turning on 
the snap to grid feature of the graphic editor and you'll see that the pencil 
really does draw polylines. 

The graphic editor code that uses this function can be found in the 
GoPencilDrawDetails( ) function in the OBJECT. C module. It is identical 
to the GoPolylineDrawDetailsO function previously shown. Later you'll see 
how the GpiPolyLine is also used to implement the filled polygon tool. 

Although not used by our editor, the GPI also provides a function called 
GpiPolyLineDisjoint. This function draws a series of straight lines whose 
endpoints are passed in as an array of endpoint pairs. Thus, to call it you 
merely pass in an array of line segment endpoints and the number of points. 



Graphic Primitives 65 

P9 P7 

·PI' .......... ······-.r··
n

··_·· 

P~ .. ' ,Co ........... Ph 
r.c 

£2 P3 

Dn ~ 

FIGURE 3.6 GpiPolyLineDisjoint output. 

This function will then connect points as a series of line segments (i.e. 
pointO-pointl, point2-point3, point4-point5, and so on). Figure 3.6 shows 
how the points passed into this function are used to draw the disjointed 
polylines. 

Boxes and rectangles are actually drawn using the same function. This 
function is called GpiBox. A call to GpiBox is much like a call to GpiLine 
except that the given point designates the opposite comer of the rectangle 
being drawn. This function is used to implement the rectangle tool in the 
editor. Listing 3.7 shows how we use the GpiBox function. 

void GoRectDrawDetails(GOBJ self) 
{ 

GpiMove(hps, &((*self->Points) [0])); 
GpiBox(hps, DRO_OUTLINE, &((*self->Points) [1]), OL, OL); 

LISTING 3.7 GpiBox as used in the graphic editor. 

Note that the GpiBox function has two additional parameters foliowing 
the opposing comer point. These parameters are used to designate the round
ing effect on the comers of the box. The comers are rounded by defining an 
ellipse shape. This shape is then fit into each corner of the box and the cor
ners are rounded to the curve of the ellipse. Figure 3.7 shows how the ellipses 
are mapped on to the box to define its rounded corners. 



66 Programming the OS/2 WARP Version 3 GPI 

/ 
::::> (':' ~ 

-......... ,/ 

.. / 
-- :::) ('-:: 

--'-, 

"-.. -- ./ 

FIGURE 3.7 GpiBox rounded corners. 

The first rounding parameter specifies the horizontal length of the ellip
se, while the second rounding parameter specifies the vertical height of the 
ellipse. If either of these parameters is set to zero, the corners of the box will 
be square. 

The second parameter of the GpiBox call controls how the interior of the 
box is to be filled. It can take on the values DRO_FILL, DRO_OUTLINE, 
or DRO_OUTLINEFILL. If DRO_OUTLINE or DRO_OUTLINEFILL are 
specified, the outline of the box will be drawn using the current line bundle 
attributes. IfDRO_FILL or DRO_OUTLINEFILL are specified, the interior 
of the box will be filled using the current area bundle attributes. See the area 
primitives section for more detail on area bundle attributes. 

Simple Arc Functions 

The GPI provides several functions to enable your application to generate 
arcs in a drawing. These functions can be broken into two groups, simple arc 
primitives and multi-arc primitives. 

The simple arc primitives make use of a set of special attributes to define 
the general shape of the arc. The shape and orientation of the simple arcs are 
defined by an imaginary ellipse. That ellipse is constructed using four pa
rameters: p, q, r, and s. These parameters combine as shown in Figure 3.8 to 



Graphic Primitives 67 

(rr c) 
-..I. 

______ Ia 

P, lL)/ V 1/1) 
A~ 1/ / 

II 1/ 
/ 

( /[7 
I---------' 

FIGURE 3.8 Definition of arc parameters. 

define the major and minor axis of the ellipse, as well as its width to height 
ratio. 

By adjusting the values of these parameters, the orientation and shape of 
the ellipse can be widely varied to produce the desired arc. The function 
called GpiSetArcParams is used to inform the GPI of the shape and orienta
tion of this imaginary ellipse. Once set, the simple arc primitives will make 
use of the ellipse to determine the path the arc follows when it is actually 
drawn. 

Circles and ellipses are both drawn using the function called GpiFullArc. 
A circle is just a special case of an ellipse or FullArc (as the GPI refers to it). 
When the FullArc is actually drawn it will be similar in shape to the ellipse 
defined by GpiSetArcParams, although its origin and scale can be adjusted. 
Listing 3.8 shows how our graphic editor uses the GpiFullArc function to 
implement the ellipse tool. 

In our ellipse tool, the width and height of the ellipse parameters are set 
to exactly those of the ellipse that we want to draw. Because of this, we 
choose a scale factor of 1.0 when we issue the GpiFullArc call. By using a 
scale factor other than 1.0, the resulting ellipse can be made larger or smaller 
than the ellipse defined by the arc parameters. Figure 3.9 shows the various 
effects that can be achieved by using different scaling factors. 



68 Programming the OS/2 WARP Version 3 GPI 

void GoEllipseDrawDetails(GOBJ self) 
{ 

ARCPARAMS arcParamsi 
GpiMove(hps, &((*self->Points) [O]))i 
arcParams.1P = (*self->Points) [1] .x - (*self->Points) [0] .Xi 

arcParams.1Q = (*self->Points) [1] .y - (*self->Points) [0] .Yi 
arcParams.1R = OLi 
arcParams.1S = OLi 
GpiSetArcParams(hps, &arcParams)i 
GpiFullArc(hps, DRO_OUTLINE, MAKEFIXED(l,O)) i 

LISTING 3.8 GpiFullArc as used in the graphic editor. 

Note that we also assume that the major and minor axes line up with the 
X and Y axis of the world coordinate systems. By choosing different values 
for the rand s parameters we could have made the ellipse appear to be ro
tated. As you'll see in Chapter 6, "Transformations," there are other ways to 
produce a rotation effect as well. 

As with the GpiBox function, the second parameter of the GpiFullArc 
function controls how the interior of the ellipse is to be filled. It can take on 
the values DRO_FILL, DRO_OUTLINE, or DRO_OUTLINEFILL. If 
DRO_OUTLINE or DRO_OUTLINEFILL are specified, the outline of the 
ellipse will be drawn using the current line bundle attributes. If DRO_FILL 

Pi 

P2 

FIGURE 3.9 Scaled arc variations. 



Graphic Primitives 69 

or DRO_OUTLINEFILL are specified then the interior of the ellipse will be 
filled using the current area bundle attributes. See the Area Primitives sec
tion for more detail on area bundle attributes. 

The GpiPartialArc function lets you draw arcs that follow the ellipse de
fined by the arc parameters. When using this function, simply define the 
starting angle of the arc (measured counterclockwise from the major axis of 
the ellipse) and a sweep angle (measured in degrees to sweep around the el
lipse). Figure 3.10 shows how start angle and sweep angle affect the drawing 
of a partial arc. 

The arc parameters p, q, r, and s are also used to determine the direction 
(clockwise or counterclockwise) that the arc is drawn. Although not so im
portant when drawing the entire 360 degrees of an ellipse, when drawing 
partial arcs this is significant since it determines the direction of the arc 
sweeping along the ellipse. Table 3.7 defines which direction the ellipse will 
be swept based on the arc parameters. 

As you might suspect, the graphic editor uses the GpiPartialArc function 
to implement the 90 degree arc tool. Listing 3.9 shows a clip of that source 
code. 

FIGURE 3.10 Start angle and sweep angle. 



70 Programming the OS/2 WARP Version 3 GPI 

TABLE 3.7 Sweep direction 

Arc Parameters 

pq < rs 
pq > rs 
pq = rs 

Trace Direction 

Clockwise 
Counterclockwise 
Draw straight line instead of an ellipse 

void GoArcDrawDetails(GOBJ self) 
{ 

ARCPARAMS arcParams; 
POINTL origin, *p1, *p2; 
FIXED startAngle, sweepAngle; 
p1 = &(*self->Points) [0]; 
p2 = & (*self->Points) [1] ; 
/* define arc parameters such that result is a 90 degree arc */ 
/* drawn from p1 to p2. Start angle of 270 ensures that the */ 
/* arc will start out in a horizontal direction. Define arc */ 
/* such that its major axis lies along the X axis. */ 
origin.x = p1->x; 
origin.y = p2->y; 
arcParams.1P p2->x - p1->x; 
arcParams.1Q p2->y - p1->y; 
arcParams.1R OL; 
arcParams.1S OL; 
startAngle = MAKEFIXED(270,O); 
sweepAngle = MAKEFIXED(90,O); 
GpiSetArcParams(hps, &arcParams); 
GpiMove(hps, p1); 
/* move to 1st point (no chord wanted) */ 
GpiPartialArc(hps, &origin, MAKEFIXED(l,O), startAngle,sweepAngle); 

/* draw from 1st point to 2nd point */ 

LISTING 3.9 GpiPartialArc as used in the graphic editor. 

Notice how the partial arc function accepts the origin as a parameter, 
while the full arc expects the origin to be the current position. That is because 
the partial arc function lets you begin drawing the arc at some place other 
than on the ellipse. When the function call is made, a straight line is drawn 
from the current point to the beginning point on the arc, from there the arc is 
swept as previously described. Since we didn't want a straight line to show 



Graphic Primitives 71 

Pl 

P2 

FIGURE 3.11 GpiPointArc scenarios. 

up on our arc tool, we explicitly set the current position to be the same as the 
beginning point of the partial arc. 

Another way to generate a partial arc is by using the function called 
GpiPointArc. This function is similar to the other arc function in that it uses 
the arc parameters to define the shape and orientation of the arc; however, 
the size and location of the point arc are defined by three additional points. 
Once given these three points, the ellipse is mapped on to the points and the 
connecting arc is drawn. The order of the points determines the direction the 
arc is swept. The arc starts at the first point, passes through the second point, 
and ends at the. third point. Figure 3.11 shows several examples of how this 
mapping works. 

Listing 3.10 shows how three-point arcs (such as those in Figure 3.11) 
can be created. 

HPS hps; 
ARCPARAMS arcParams; 
POINTL arc1[3] = { {lO,27}, {-35,-25}, {10,-10} }; 
POINTL arc2 [3] = { {3 7 , 2 }, {3 5, 20}, {lO, 5} }; 

/* Define the shape of the arc using arc parameters */ 
arcParams.lR = -1; /* Arc params can be to any scale */ 

LISTING 3.10 Using GpiPointArc. 



72 Programming the OS/2 WARP Version 3 GPI 

arcParams.lQ = 1; 
arcParams.lP = 2; 
arcParams.lS = 2; 
GpiSetArcParams(hps, &arcParams); 
/* Draw the first arc around the origin */ 
GpiMove(hps, &origin); 
GpiPointArc(hps, &arc1); 
/* Draw the next arc around a different point but using the same shape */ 
GpiMove(hps, &origin); 
GpiPointArc(hps, &arc2); 

LISTING 3.10 (Continued). 

Multi-Arc Functions 

The GPI provides several other functions for drawing more complex curves. 
These functions do not depend on the arc parameters used by the simple arc 
functions; rather, these functions rely on a series of points and mathematical 
curve-fitting formulas. 

The function called GpiPolySpline creates curves as a sequence of 
Bezier splines. Each spline in the sequence is defined by four points. The 
first spline is defined by points [cp,O, 1 ,2] where cp is current position. The 
second spline is defined by points [2,3,4,5], the third by points [5,6,7,8], and 
so on. The spline passes through the two endpoints of the spline with the 
middle two points acting as control points for defining the shape of the 
curve. Figure 3.12 shows an example of output from a GpiSpline function. 

FIGURE 3.12 GpiPolySpline output. 



Graphic Primitives 73 

Listing 3.11 is a code fragment that will produce Figure 3.12. Note that 
the number of points passed on this call must be a multiple of three. 

HPS hps; 
POINTL points[13] = {{lO,30}, {15,40}, {25,40}, {30,30}, {35,20}, {45,20}, 
{50,30}, {55,40}, {65,40}, {70,30}, {75,20}, {85,20}, {90,30}}; 
/* Move to the first point and draw the spline */ 
GpiMove(hps, &points[O]); 
GpiPolySpline(hps, 12L, &points[l]); 

LISTING 3.11 Using GpiPolySpline. 

Another useful function for generating curves is called GpiPolyFillet. 
This function draws a series of fillets. Due to the way these fillets are con
structed, there is generally a smooth transition from one fillet to another re
sulting in a smooth curve. A single fillet is based on three points. An 
imaginary line is drawn from the current position to point1, and another from 
point1 to point2. The fillet is a curve that begins at the current position and is 
initially tangent to the first imaginary line. The curve then travels toward 
point! and curves toward point2 such that it ends at point2 and is tangent to 
the second imaginary line. Figure 3.13 shows an example of a fillet. 

When specifying more than three points, a sequence of fillets is con
structed. This takes place by initially drawing a set of imaginary lines con
necting all the given points. Then each line (except the first and last line) is 
split in half by a new imaginary point. The fillets are then drawn through all 
the points with each subsequent fillet beginning where the last fillet left off. 
Figure 3.14 shows an example of a series of fillets strung together. 

FIGURE 3.13 Single fillet. 



74 Programming the OS/2 WARP Version 3 GPI 

FIGURE 3.14 Series of fillets. 

Calling GpiPolyFillet is the same as calling GpiPolySpline but the num
ber of points does not have to be a multiple of three. The graphic editor 
makes use of this function to implement the fillet tool as shown in Listing 
3.12. 

voidGoPolyfilletDrawDetails(GOBJ self) 
{ 

GpiMove(hps, &((*self->Points) [0])) ; 
GpiPolyFillet(hps, self->PointCount-1, &((*self->Points) [1])) ; 

LISTING 3.12 GpiPolyFillet as used in the graphic editor. 

The function called GpiPolyFilletSharp is similar to the GpiPolyFillet 
function in that it is drawn as a series of fillets. However, with this function, 
the fillets do not necessarily have a continuous gradient from one fillet to 
another. In other words, the result is not necessarily a smooth curve unless 
the points are chosen just so. In addition, this function lets you control the 
sharpness of each fillet curve. The sharpness of a fillet is a ratio that is best 
explained by looking at Figure 3.15. 



p3\ 

~~ 
s t 

pI 

Sharpness = sit 

FIGURE 3.15 Fillet sharpness ratio. 

Graphic Primitives 75 

The sharpness of a fillet is defined using three points and a sharpness 
ratio. Given three points pI, p2, and p3, the fillet will always begin at pI and 
end at p3. The sharpness ratio defines where the fillet will cross the imagi
nary line segment from point p2 to the midpoint of line segment pl-p3. This 
is shown in Figure 3.15. 

With the GpiPolyFilletSharp function, you pass in an array of values that 
define the sharpness of each fillet drawn. Unlike the GpiPolyFillet function, 
this function does not insert any mid-points for determining fillet connec
tions. With this function, a fillet is defined by three points in the array, and 
each fillet begins where the previous one left off. Therefore, every two 
points begins the start of a new fillet. As a result, the number of points passed 
in must be a power of two, and one sharpness value is required for each fillet. 

The code segment in Listing 3.13 shows how to produce a simple 
polyfillet using sharpness values to produce an interesting diminishing wave 
pattern. Figure 3.16 shows what the resulting output would look like. 

cp 

1 

• 

2 

3 

• 

4 

5 

• 
7 9 

• • 

6 8 10 

11 

• 
13 
• 15 

• 
17 
• 

~iv 
12 14 16 18 

FIGURE 3.16 GpiPolyFilletSharp output. 

19 • 

2 



76 Programming the OS/2 WARP Version 3 GPI 

HPS hps; 
POINTL points[2l] = { 

} ; 

{ 0, O}, {lO, 20}, {20, O}, {30, 20}, {40, O}, {50, 20}, {60, O}, 
{70, 20}, {80, O}, {90, 20}, {lOO,O}, {110,20}, {120,O}, {130,20}, 
{140,O}, {l50,20},{150,O}' {l70,20}' {l80,O}' {190,20}' {200,O} 

FIXED sharpness[lO]; 
int i; 
float j; 

/* Compute deminishing sharpnesses ratios */ 
j=2; 
for(i=l; i<=lO; i++) { 

sharpness[i] = FLOAT2FIX(j); 
j=j/(1.5); 

/* Move to the first point and draw the polyfillet */ 
GpiMove(hps, &points[O]); 
GpiPolyFilletSharp(hps, 20L, &points[l] , sharpness); 

LISTING 3.13 Using GpiPolyFilletSharp. 

AREA PRIMITIVES 

Drawing lines and arcs is fine for many parts of a drawing. But sometimes 
you may want to fill in the interior of some of the figures you are drawing. 
This section describes what functions can be used to create enclosed areas 
and what special attributes exist for determining how those areas will look 
when displayed. Table 3.8 lists the functions in this category and gives a 
brief description of the operations they perform. 

The attribute bundle for areas is specific for this category of drawing 
primitives. Setting of attributes in this bundle will affect the display of figures 
drawn using these operations. Table 3.9 describes each attribute in this bundle. 

The Area Color attribute defines what color is used to draw the interior 
foreground of any areas to be filled. For example, if an ellipse is to be filled 
with a diagonal1ine pattern, the lines in the diagonal pattern will be drawn in 
the Area Color. 



Graphic Primitives 77 

TABLE 3.8 Area functions 

Function 

GpiBeginArea 
GpiEndArea 
GpiBeginPath 
GpiEndPath 
GpiFillPath 
GpiStrokePath 
GpiModifyPath 

GpiCloseFigure 
GpiPolygons 
GpiBox 
GpiFullArc 

Description 

Begins definition of an area. 
Completes definition of an area. 
Begins definition of a path. 
Completes definition of a path. 
Fills the contents of a path. 
Strokes geometric lines in a path. 
Converts path into new path containing only 
geometric lines. 
Completes definition of a figure in a path. 
Draws a series of polygons using area fill attributes. 
Draws a rectangle using area fill attributes. 
Draws an ellipse using area fill attributes. 

TABLE 3.9 Area attribute bundle 

Attribute AREABUNDLE flAttrMask Default Helper 
Description Field Name Value Value Function 

Area color IColor ABB_COLOR CLR_BLACK GpiSetColor* 
Area IBackColor ABB_BACK_COLOR GpiSetBackColor* 
background color 
Area mix usMixMode ABB_M I X_MODE FM_OVERPAINT GpiSetMix* 
Area usBackMixMode ABB_BACK_MIX - FM_LEAVEALONE GpiSetBackMix * 
backgound mix MODE 
Pattern set usSet ABB_SET LCID_DEFAULT GpiSetPatternSet 

GpiQueryPatternSet 
Pattern symbol usSymbol ABB_SYMBOL Solid GpiSetPattern 

GpiQueryPattern 
Pattern ptlRefPoint ABB_REF_POINT (0,0) GpiSetPatternRefPoint 
reference pattern GpiQueryPatternRefPoint 

* These helper functions set the color and mix attributes in all bundles. 



78 Programming the OS/2 WARP Version 3 GPI 

background color 

line color 

area color 

solid pattern fill see-through pattern fill 

FIGURE 3.17 Colors in a pattern-filled area. 

The Area Background Color attribute defines what color is used to draw 
the interior background of any areas to be filled. In the ellipse example given 
above, the area between the diagonal fill lines would be drawn in the Area 
Background Color. Figure 3.17 shows how area, color, and background 
color are used to define the colors in a pattern-filled area. 

The Area Mix attribute defines how the area foreground color is mixed 
with the color of other figures on the drawing surface. Typically when the 
specified foreground color is desired, this attribute is set to FM_ OVER -

PAINT. 

Likewise, the Area Background Mix attribute defines how the area back
ground color is mixed with the color of other figures on the drawing surface. 
One typical setting for this attribute is BM_OVERPAINT. This causes the 
background to be drawn in the specified background color. Another com
mon setting is BM_LEA VEALONE. This causes the background to be invis
ible (you can see through the area if the fill pattern has exposed background 
areas ). We use the BM_LEA VEAL ONE attribute in the graphical editor when 
we use a fill style other than solid. This produces the see-through effect that 
is apparent when objects overlap each other. 



Graphic Primitives 79 

The Pattern Set attribute selects which set of pattern symbols are to be 
used for drawing filled areas. The GPI provides a default set of pattern sym
bols specified by a value of LCID_DEFAULT. You can create custom pat
tern sets with pattern symbols created using bitmaps or characters from a 
raster font. 

If creating from a bitmap there is only one pattern symbol in the set and it 
is automatically chosen when the Pattern Set attribute is set. If creating from 
a font, each character in the font is available as a symbol in the pattern set. 

TABLE 3.10 Default pattern set symbols 

Symbol Value 

PATSYM_DENSEl 
PATSYM_DENSE2 
PATSYM_DENSE3 
PATSYM_DENSE4 
PATSYM_DENSE5 
PATSYM_DENSE6 
PATSYM_DENSE7 
PATSYM_DENSE8 
PATSYM_VERT 
PATSYM_HORIZ 
PATSYM_DIAGl 
PATSYM_DIAG2 

PATSYM_DIAG3 
PATSYM_DIAG4 

PATSYM_NOSHADE 
PATSYM_SOLID 
PATSYM_HALFTONE 
PATSYM_HATCH 
PATSYM_DIAGHATCH 
PAT S YM_B LANK 
PATSYM_DEFAULT 

Description 

Shaded fill pattern ( darkest) 

Shaded fill pattern (lightest) 
Vertical lines 
Horizontal lines 
Lower left to upper right diagonal lines 
Lower left to upper right diagonal lines 
(closely spaced) 
Upper left to lower right diagonal lines 
Upper left to lower right diagonal lines 
(closely spaced) 
Completely empty 
Completely solid 
Every other pel is set 
Grid 
Diagonal Grid 
Blank (same as PATSYM_NOSHADE) 
Default pattern symbol (initially set to 
PATSYM_SOLID) 



80 Programming the OS/2 WARP Version 3 GPI 

f\ 000 0 f\ 0 V 
V 

0000 000 
f\ f\ 00 000 V V 

f\ f\ f\ 0000 
V V V 

f\ f\ f\ f\ 

0 f\ f\ V V V V 
V V 

0000 000 
000 f\ 000 V 

p2 

pl @ooo 

pattern using pi using p2 

FIGURE 3.18 Pattern reference point attribute effects. 

The Pattern Symbol attribute selects which symbol in the pattern set is to 
be used to fill the area. Table 3.10 lists the symbols of the default pattern set. 

The Pattern Reference Point attribute allows you to shift the alignment 
of the pattern symbol that is used to fill the area. The value of this attribute 
defines with what the lower-left corner of the pattern symbol is to align. The 
entire fill pattern will then shift to match this alignment. The reference point 
is defined in world coordinates and defaults to point (0,0). Figure 3.18 shows 
how the Pattern Reference Point affects alignment of the fill pattern. 

Listing 3.14 shows an example of how to use the Pattern Set, Pattern 
Symbol, and Pattern Reference Point attributes. 

HPS hps; 
LONG myFontld; 
POINTL midPoint; 
LONG charWidth, charHeight; 
/* Choose a character out of a font set as the fill pattern */ 
GpiSetPatternSet(hps, myFontld); 
GpiSetPattern(hps, '$'); 
/* set the reference point to the middle of the character */ 
determine width and height of character in world coordinates 
midPoint.x = -charWidth/2; 
midPoint.y = -charHeight/2; 
GpiSetPatternRefPoint(hps, &midPoint); 
/* Draw objects that are to be filled */ 

LISTING 3.14 Using pattern attributes. 



Graphic Primitives 81 

AREA FUNCTIONS 

There are several ways to fill the interior of the objects. First, some of the 
GPI drawing functions allow you to specify directly on the call whether they 
are to be filled or not. For example, as shown in Listing 3.15, the second 
parameter of the GpiBoxO function call lets you specify whether the box 
should be filled, outlined, or both. If the box is to be filled, this is done using 
the current area bundle attributes. 

void GoRectDrawDetails(GOBJ self) 
{ 

GpiMove(hps, &((*self->Points) [0])); 
GpiBox(hps, DRO_FILL, &((*self->Points) [1]), OL, OL); 
} 

LISTING 3.15 Filling areas using GpiBox. 

A second method of filling an area is by defining the area as a set of one 
or more closed figures. This is done by enclosing a series of GPI drawing 
primitives between the area bracket functions called GpiBeginArea and 
GpiEndArea. When the GpiEndArea function is called, the figures in the 
area are drawn and filled using the area bundle attributes that were in effect 
when the GpiBeginArea function was called. Note that areas cannot be 
nested within other areas. Listing 3.16 shows an example of using area 
bracketing functions. 

GpiBeginArea(hps, BA_BOUNDARY I BA_ALTERNATE); 
/* Various GPI calls to be included in the area */ 
GpiEndArea (hps) ; 

LISTING 3.16 Basic form of area bracket functions. 

The GpiBeginArea function has an jlOptions parameter that lets you 
control how the area is constructed. This parameter is really a combination 
of two flags and you specify its value by DRing the desired flag values to
gether. The first flag determines whether or not to draw the boundary lines of 
primitives drawn within the area brackets. The available values for this flag 
are: 

• BA_BOUNDARY - Draw outlines of the area primitives (default) . 

• BA_NOBOUNDARY - Do not draw the outlines. 

If BA_BOUNDARY is chosen, the outlines of all area primitives within 
the area bracket will be drawn. These outlines will be drawn using the cur-



82 Programming the OS/2 WARP Version 3 GPI 

rent line bundle attributes, while the interiors will be drawn using the current 
area bundle attributes. If BA_NOBOUNDARY is chosen, the outlines will not 
be drawn, only the interior. 

If you recall, the GpiBox function had a control parameter that let you 
specify if the outline, the interior, or both parts of the box should be drawn 
(DRO_FILL, DRO_OUTLINE, and DRO_OUTLINEFILL, respectively). 
When you choose anything other than DRO_OUTLINE, the GPI automati
cally places an implicit area bracket around the GpiBox call and sets the ap
propriate boundary flag. Since areas cannot be nested, the GpiBox cannot be 
used within an area bracket if DRO_FILL or DRO_OUTLINEFILL are 
used. 

=4 (which is even, therefore inside) 

Alternate Mode 

FIGURE 3.19 Fill area determination using BA_ALTERNATE . 



Graphic Primitives 83 

The second flag determines how the interior of the area will be con
structed. The available choices for this flag are: 

• BA_ALTERNATE (default) 

Given any particular point in the area figure, this flag determines which 
algorithm will be used to determine if that point is inside an area that needs to 
be filled or not. If the BA_ALTERNATE flag is chosen, the algorithm goes as 
follows: first, draw a line from the current point towards infinity (in any di
rection); next, count how many boundary lines are crossed as the line travels 
toward inifinity. If the number of crossings is odd, then it is in the interior of 
an area that needs to be filled. If the number is even, then the point is not 
inside a fill area. Figure 3.19 shows graphically how this works. 

1=0, therefore inside =0, therefore not inside 

-1 

winding Mode 

FIGURE 3.20 Fill area determination using BA_WINDING. 



84 Programming the OS/2 WARP Version 3 GPI 

If the BA_WINDING flag is chosen, the algorithm changes slightly. A 
line is still drawn from the current point towards inifinity, but now as the line 
crosses boundary lines, the crossing count can be either incremented or 
decremented depending upon the direction of the line that was crossed over. 
If the line being crossed was drawn in a counterclockwise direction (with 
respect to the initial point in question) the count is incremented. If it was 
drawn in a clockwise direction, the count is decremented. After all crossings 
are counted, if the final count is not zero, the point is within an area to be 
filled. If the final count is zero, the point is not in a filled area. Figure 3.20 
shows graphically how the fill area is determined. 

The direction of open figures is simply the direction from the starting 
point towards the endpoint (following the intermediate points if a multi
point figure). The direction of lines in closed figures varies. The GpiBox 
figure can be drawn in either direction. If the imaginary line drawn between 
the endpoints of the box has a positive slope, the box is drawn counterclock
wise, if it has a negative slope, the box is drawn clockwise. The direction of 
arcs can be controlled by the arc parameters (p, q, r, and s) and the sweep 
angle. Listing 3.17 draws the rightmost area shown if Figure 3.20. 

ARCPARAMS arcParams; 
POINTL circle = {SO,SO}; 
POINTL polygon[9] = {{40,lS}, OO,lS}, {70,3S}, {SO,3S}, {SO,7S}, {70,7S}' 
{60,9S}, {40,9S}, {40,lS}}; 
1* Draw the Area in winding mode *1 
GpiBeginArea(hps, BA_BOUNDARY I BA_WINDING); 
arcParams.lP = lL; II Define arc parameters for a circle arcParams. 
lQ =-lL; II drawn in clockwise direction arcParams.lR = OL; 
arcParams.lS = OL; 
GpiSetArcParams(hps, &arcParams); 
GpiMove(hps, &circle); 
GpiFullArc(hps, DRO_OUTLINE, MAKEFIXED(60,O)); 
GpiMove(hps, &polygon[O]); 
GpiPolyLine(hps, 8L, &polygon[l]); 
GpiEndArea (hps) ; 

LISTING 3.17 Filling areas using area bracket functions. 

A third way to fill figures is by using Paths. Paths work similarly to areas 
in that they bracket a series of GPI calls. The path definition is started with a 
function called GpiBeginPath and completed with a function called 
GpiEndPath. Once the path is complete, a function called GpiFillPath can 
be used to fill the path according to the current area bundle attributes. Paths, 
however, also provide a different capability known as geometric lines. Basi
cally, geometric lines are lines whose widths can vary. Using the function 



Graphic Primitives 85 

called GpiModifyPath, you can convert the path into a new path containing 
only geometric lines. After using GpiModifyPath, you can then use 
GpiFillPath to draw the cosmetic lines. The GPI provides a function that 
combines these two steps into one. This function is called GpiStrokePath 
and using it causes all the lines in the path to be drawn using the current geo
metric line width and the current fill attributes Gust like calling 
GpiModifyPath followed by GpiFillPath). 

The function called GpiCloseFigure can be used within a Path definition 
to close off the current figure with a line drawn from the current position to 
the beginning of the figure. However, this function can only be used inside a 
path definition, not within an area definition. 

The graphic editor uses paths both to fill the interiors of figures and to 
draw geometric lines. Listing 3.18 shows how paths are used to draw the 
interior of the object. 
II Draw the interior of the object 
if (self->Fillable) { 

GpiBeginPath(hps, lL); 
self->Do->DrawDetails(self) ; 
GpiEndPath (hps) ; 
GpiFillPath(hps, lL, FPATH_ALTERNATE); 

LISTING 3.18 Filling areas using paths in the graphic editor. 

Listing 3.19 shows how paths are used to draw geometric lines. 
if (self->Attribs.LineWidth==O) { 

II if width is 0 draw cosmetic lines 
self->Do->DrawDetails(self) ; 

} else { 
II otherwise draw geometric lines using a path 
GpiBeginPath(hps, drawPath); 
self->Do->DrawDetails(self)j 
GpiEndPath(hps)j 
areaAttr.lColor = self->Attribs.LineColorj 
areaAttr.usSymbol = PATSYM_SOLIDj 
GpiSetAttrs(hps, PRIM_AREA, ABB_COLOR I ABB_SYMBOL,OL, &areaAttr) j 

GpiStrokePath(hps, drawPath, strokeOptions) i 

1* endif *1 

LISTING 3.19 Drawing -cosmetic lines in the graphic editor. 

This example illustrates using paths both for area fills and for geometric 
lines. It also updates the area bundles color and symbol-attributes. These 
attributes will be used when stroking the path. A more in-depth discussion 
on paths and their use in clipping is given in Chapter 7, "Paths, Regions, 
Clipping, Boundary Accumulation, and Correlation." 



86 Programming the OS/2 WARP Version 3 GPI 

Finally, the function called GpiPolygons allows you to draw a large 
number of polygons in a single call. This function accepts an array of poly
gon structures, each of which defines a single polygon. Also specified in the 
call is a drawing options parameter. This parameter works just like the op
tions flag on the GpiBeginArea function. The option flags for this call are: 

• POL YGON_BOUNDARY (default) 

• POLYGON_NOBOUNDARY 

and 

• BA_ALTERNATE (default) 

• BA_WINDING 

In addition, a model parameter is provided to define whether the bottom
right edges of the polygon are included in the fill area. Listing 3.20 shows an 
example of how this function can be used. The resulting output is shown in 
Figure 3.21. 

LINEBUNDLE lineAttr; 
AREABUNDLE areaAttr; 
POINTL pl [5J = {{lO, O}, {70, O}, {70, 50}, {lO, 50}, {lO, O}}; 
POINTL p2[5J = {{O,90}, {40,70}, {70,70}, {30,90}, {O,90}}; 
POINTL p3[7J = {{lOO,O}, {l70,O}' {230,40}, {230,llO}, {l80,130}, 

{lOO,llO}, {lOO,O}}; 
POINTL p4[9J = {{l30,lO}, {l60,lO}' {l90,30}' {l90,50}, {l80,70}, 

{170,50}, {170,30}, {130,30}, {130,lO}}; 
POINTL p5[5J = {{120,70}, {140,50}, {160,80}, {140,lOO}, {120,70}}; 
POLYGON polygons[5J = { /* Polygon definitions */ 

{5, pl}, 
{5, p2}, 
{7, p3}, 
{9, p4}, 
{5, p5} 

} ; 

/* Set line and area attributes */ 
lineAttr.1Color = CLR_BLACK; 
lineAttr.usType = LINETYPE_SOLID; 
GpiSetAttrs(hps, PRIM_LINE, LBB_COLOR LBB_TYPE, OL, &lineAttr); 
areaAttr.lColor = CLR_PALEGRAY; 
areaAttr.usSyrnbol = PATSYM_SOLID; 
GpiSetAttrs(hps, PRIM_AREA, ABB_COLOR ABB_SYMBOL, OL, &areaAttr); 
/* now draw the polygons */ 
GpiPolygons(hps, 5L, polygons, POLYGON_BOUNDARY 
POLYGON~LTERNATE, POLYGON_INCL); 

LISTING 3.20 Using GpiPolygons. 



Graphic Primitives 87 

FIGURE 3.21 GpiPolygons output. 

As with primitives drawn within area brackets, polygons drawn with this 
call are outlined using the line bundle attributes and filled using the area bun
dle attributes. 

TEXT PRIMITIVES 

We've discussed many calls for drawing figures using various line, arc, and 
area calls. Now, how about satisfying the basic call for any C programmer ... 
"Just tell me how to write 'Hello World' to the screen!" Well, you don't use 
print but it's not that much different. Besides, the GPI provides enough at
tributes in the text bundle to let you write 'Hello World' with real style! As a 
starting point, Table 3.11 gives a quick overview of the functions in this 
category and the operations they perform. 

The attribute bundle for text is specific for this category of drawing 
primitives. Setting of attributes in this bundle affects how text drawn using 
these operations is displayed. Table 3.12 describes each attribute in this 
bundle. 



88 Programming the OS/2 WARP Version 3 GPI 

TABLE 3.11 Text functions 

Function 

GpiCharString 

Description 

Draws text at current position. 
Draws text at specified position. Gpi CharStringAt 

GpiCharStringPos 
Gpi CharStringPosAt 

Draws text at current position using widths table. 
Draws text at specified position using widths table. 

TABLE 3.12 Text attribute bundle 

Attribute TEXTBUNDLE flAttrMask Default Helper 
Description Field Name Value Value Function 

Character color IColor CBB_COLOR CLR_BLACK GpiSetColor* 
Character IBackColor CBB_BACK_COLOR clear GpiSetBackColor* 
background color 
Character mix usMixMode CBB_MIX_MODE FM_OVERPAINT GpiSetMix* 
Character usBackMixMode CBB_BACK_MIX - FM_LEAVEALONE GpiSetBackMix * 
background mix MODE 
Character set usSet CBB_SET LCID_DEFAULT GpiSetCharSet 

GpiQueryCharSet 
Character mode usPrecision CBB_MODE CM_MODEI GpiSetCharMode 

GpiQueryCharMode 
Character box sizfxCell CBB_BOX outline font - by dey GpiSetCharBox 

raster font - by font GpiQueryCharBox 
Character angle ptlAngle CBB_ANGLE (1,0) GpiSetCharAngle 

GpiQueryCharAngle 
Character shear ptlShear CBB_SHEAR (0,1) GpiSetCharShear 

GpiQueryCharShear 
Character usDirection CBB_DIRECTION left to right GpiSetCharDirection 
direction GpiQueryCharDirection 
Character text usTextAlign CBB_TEXT_ALIGN left GpiSetTextAlignment 
alignment GpiQueryTextAlignment 
Character extra fxExtra CBB_EXTRA 0 GpiSetCharExtra 

GpiQueryCharExtra 
Character break fxBreakExtra CBB_BREAK_EXTRA 0 GpiSetCharBreakExtra 
extra GpiQueryCharBreakExtra 

The attributes in this table are covered briefly below. For a more detailed 
discussion on these attributes, refer to Chapter 4, "Fonts." 



Graphic Primitives 89 

The attribute called Character Color defines in which color the charac
ters symbols are drawn. The Character Background Color,meanwhile, de
termines the color of the box behind the character symbol. 

The attributes Character Mix and CharacterBackground Mix determine 
how the character color and character background color are combined with 
the colors of what was previously drawn. 

The current font is chosen by setting the Character Set attribute. This 
attribute is the local identifier (Zcid) that was associated with a font using the 
function GpiCreateLogicalFont. 

The GPI allows two types of fonts to be used: raster fonts and outline 
fonts. The attribute called Character Mode influences how raster font text is 
drawn. There are three possible values for this attribute (CM_MODE 1, 

CM_MODE2, and CM_MODE3). When CM_MODE1 is used, raster font text 
strings ignore all character attributes except character direction. When 
CM_MODE2 is used, raster font characters are positioned properly according 
to character shear, box, angle, and direction attributes but the characters 
themselves are not affected by these attributes. CM_MODE3 is only valid for 
drawing outline fonts. Outline fonts will always follow to the current charac
ter attributes for position and display. The value of the character mode attrib
ute has no effect how outline fonts are drawn. 

The Character Box attribute specifies the width and height of the charac
ter cell in world coordinates. The cell size is mainly used for positioning 
characters when the text is drawn. Depending on the type of font and the 

------------------------------------ ----------------------_ .. _-_ .. _---;-----

FIGURE 3.22 Character box effect on outline font character. 



90 Programming the OS/2 WARP Version 3 GPI 

current character mode, various results can occur. When using an outline 
font, the character will always scale up or down to fit the size of the character 
cell. This happens regardless of the character mode. Figure 3.22 shows the 
effect of character box on outline font characters. 

When using a raster font, however, the characters cannot be scaled to fit 
the character box. If the character mode is CM_MODE 1, the character cell 
size is completely ignored. If the character mode is CM_MODE2, the charac
ter cell size is used to position the text characters that are drawn; that is, a 
large cell size will cause the characters to be more widely separated, while a 
smaller cell size will cause them to be more closely placed. Figure 3.23 
shows the effect of character box on raster font characters. 

A negative value for character box width causes the text to be written 
backward (right to left). Likewise, a negative character box height causes the 
text to be reflected along the X axis to appear upside down. Figure 3.24 
shows this mirroring effect of a negative character box when applied to out
line font text. 

The direction in which the text is written can be controlled using the at
tribute called Character Angle. This attribute determines the direction of the 
baseline that subsequent text strings will be drawn along. This direction is 
specified in degrees of rotation from the X axis. Figure 3.25 shows the effect 
of the character angle attribute on outline font text. 

IA 
: ! 

iB ........... ic 
_______________ 1.____ _ _ _____________ 1 ___ . 

FIGURE 3.23 Character box effect on raster font character. 



Graphic Primitives 91 

~181AI 
._._ ... _-_._._.- ---_ .......... j..... . .................. -:: .... . 

!. .... ___________ . __ . ___ . __ ............... __ . __ .l. ___ _ 

FIGURE 3.24 Mirroring outline font text using negative char box width. 

How raster font text strings are drawn depends on the character mode. 
When character mode CM_MODEl is in effect, raster font text strings will 
ignore the character angle completely and simply draw as usual. When using 
character mode CM_MODE2, however, raster font text strings will be drawn 
along the rotated baseline. The characters themselves will not be rotated, but 
they will be individually positioned such that they travel at the specified an
gle. Figure 3.26 shows the effect of character angle on raster font text. 

FIGURE 3.25 Character angle effect on outline fonts. 



92 Programming the OS/2 WARP Version 3 GPI 

-0 

FIGURE 3.26 Character angle effect on raster fonts. 

The Character Shear attribute is used to specify the amount to horizon
tally shear the character cell box by. Although shear is typically specified as 
an angle, the OPI uses an (x,y) pair to define the shear. The shear angle is 
defined by a line that begins at point (0,0) and ends at the specified point. 
Figure 3.27 shows the effect of character shear on outline font text. 

Outline font text strings are sheared as shown in Figure 3.27. Raster font 
text strings, however, are drawn differently depending upon the character 
mode. When character mode is set to CM_MODEl, the character shear is 
completely ignored by raster font text strings. When character mode is set to 
CM_MODE2, raster font strings use the character shear attribute to position 
the characters in the string. Figure 3.28 shows the effect of character shear 
on raster font text. 

FIGURE 3.27 Character shear effect on outline fonts. 



Graphic Primitives 93 

A B 

FIGURE 3.28 Character shear effect on raster fonts. 

The direction that text strings are drawn can be controlled using the 
Character Direction attribute. This attribute can be one of four possible 
values: 

• CHDIRN_LEFTRIGHT 

• CHDIRN_RIGHTLEFT 

.CHDIRN_TOPBOTTOM 

·CHDIRN_BOTTOMTOP 

Normally text strings are drawn left to right; but, by changing this attrib
ute you can force them to be drawn in alternate directions. Figure 3.29 shows 
the effect of character direction on outline or raster font text. 

The Character Text Alignment attribute is used to specify how the text 
string is to be positioned relative to the current position. Horizontally, the 
text string can be positioned using the one of the following choices: 

• TA_LEFT - Leftmost edge of string is aligned with current 
position( default). 

• TA_RIGHT - Rightmost edge of string is aligned with current 
position. 

• TA_CENTER - Center of string is aligned with current position. 

Vertically, the text string can be positioned using one of the following: 

• TA_TOP - Top edge of string is aligned with current position. 

• TA_HALF - Middle vertical position of string is aligned with cur
rent position. 



94 Programming the OS/2 WARP Version 3 GPI 

c T H 
D 

P I 
R 0 

T 
T M 
0 0 
P T 
B T 
0 0 
T B 

CHDIRN LEFTRIGHT---> 

~ .. TFELTHGIR_NRIDHC 
T 

R 0 
M I 

D 

~ H 
C 

FIGURE 3.29 Character direction effect on text. 

• TA_BASE - Baseline of string is aligned with current position. 

• TA_BOTTOM - Bottom edge of string is aligned with current po
sition. 

Note that when setting the text alignment attribute, you must set it to the 
sum of the horizontal attribute and the vertical attribute. For example, to 
center the text around the specified point, set the attribute as follows: 

charAttrs.usTextAlign = TA_CENTER + TA_HALF 

Figure 3.30 shows the effects of various character text alignments on 
outline or raster font text. 



Graphic Primitives 95 

Vertical Alignment 

·····TA~TOP 

Horizontal Alignment 

irA_LEFT 

TA_RIGHT: 

TA_CENTER 

FIGURE 3.30 Character text alignment effects. 

The attributes Char Extra and Char Break Extra provide additional 
spacing control on devices that support them. The char extra attribute speci
fies additional space to be inserted between each character cell when the text 
string is drawn. The char break extra attribute specifies additional space to 
be inserted when the break character is encountered when drawing the text 
string. The break character is defined by the font and is usually the space 
character. If the value of either of these attributes is zero, no additional space 
is added. If the values are negative, space is subtracted and the character 
cells may actually overlap. Figure 3.31 shows the effect of char extra and 
char break extra on outline and raster font text. 

Text Functions 

There are really only a few functions in the GPI for generating text, but the 
variety of attributes allows you to create many different looks for your text. 
The simplest text function is called GpiCharString. This function draws a 



96 Programming the OS/2 WARP Version 3 GPI 

char extra char break extra 

FIGURE 3.31 Char break and char break extra effects on text. 

string to the current position on the device. The text is drawn using the cur
rent values of the attribute bundle. The current position is the beginning of 
the lower-left comer of the initial character. 

The function called GpiCharStringAt allows you to specify the location 
of the text as a parameter to the call. Essentially this is the same as calling the 
GpiMove function followed by the GpiCharString function. Listing 3.21 
shows an example of these functions. 

CHARBUNDLE charAttr; 
POINTL point1 = {100,10}; 
POINTL point2 = {20,20}; 
/**** First draw plain old "Hello World" using GpiCharString *****/ 
GpiMove(hps, &point1); 
GpiCharString(hps, 11L, "Hello World"); 
/**** Now draw "Hello World" with flair using GpiCharStringAt *****/ 
/* First set up any special attributes - in this example we use */ 
/* the char bundle to set the attributes. You could also use the */ 

/* GPI helper functions to get the same effect. */ 
charAttr.1Color = CLR_GREEN; 
/* Text color will be green */ 
charAttr.usSet = myOutlineFontld; 
/* use a previously loaded outline font */ 
charAttr.usPrecision = CM_MODE3; 
/* outline font draw mode */ 

charAttr.ptlAngle.x = 1; 
/* draw at 45 deg angle */ 

charAttr.ptlAngle.y 1; 
charAttr.ptlShear.x = 3; 

LISTING 3.21 Using GpiCharString and GpiCharStringAt functions. 



Graphic Primitives 97 

/* Shear by 33 degrees */ 
charAttr.ptlShear.y = 1; 
GpiSetAttrs(hps, PRIM_CHAR, CBB_COLOR I CBB_SET I CBB_MODE ICBB_ANGLE I 
CBB_SHEAR, OL, &charAttr); 
/* all set up, now draw it */ 
GpiCharStringAt(hps, &point2, 12L, "Hello World!"); 

LISTING 3.21 (Continued). 

The function called GpiCharStringPos is a more powerful version of the 
GpiCharString function. It lets you specify additional formatting options to 
be used when the text is drawn. With these options you can control things 
such as spacing the text, clipping the text, backdropping the text, underscor
ing the text, and overstriking the text. In addition, you can control whether 
the current position is updated to the end of the text or left in its original 
position. These options are chosen by logically DRing the values of the de
sired formatting flags together and then passing the result in for the flOptions 
parameter. 

To control spacing of the text you must pass in an array of character in
crement values. These values are in world coordinates and specify the dis
tance from the reference position of the current character to the reference 
position of the next character. If the text is drawn left-to-right or right-to-Ieft, 
the distance is along the baseline; if it is drawn top-to-bottom or bottom-to
top, the distance is along the shearline. Figure 3.32 shows how character in
crement values are used to control spacing of text. 

By determining the widths for each character in the text string, an array 
increment table can+* be constructed for the string. At this point, the array 
can be used to draw the text using the spacings appropriate for that font. With 
just a little more work, however, the text can also be kerned. By searching 

FIGURE 3.32 Controlling spacing using character increment values. 



98 Programming the OS/2 WARP Version 3 GPI 

the text for kerning pairs, the increment values for those pairs can be ad
justed to produce the overlapped effect. Kerning will be discussed in more 
detail in Chapter 4, "Fonts." 

The function called GpiCharStringPosAt allows you to specify the loca
tion at which the formatted text is to be drawn. It provides the same format
ting options as the GpiCharStringPos function. Listing 3.22 shows how 
these two functions are used. 
POINTL start; 
char String[132]; 
HPS hps; 
LONG goTextWidths[132]; 

/******************************************************/ 
/* Create the character spacing array for this string */ 
/******************************************************/ 
SetWidthsTable(hps, goTextWidths, String); 
/*********************************************************/ 
/* Draw the string to the display using GpiCharStringPos */ 
/*********************************************************/ 
GpiMove(hps, &start); 
GpiCharStringPos(hps,NULL,CHS_VEC-
TOR, (LONG)strlen(String) ,String,goTextWidths); 
/*********************************************************/ 
/* Draw the same string using GpiCharStringPosAt instead */ 
/*********************************************************/ 
GpiCharStringPosAt(hps,&start,NULL,CHS_VECTOR, (LONG)strlen(String) ,String, 

goTextWidths) ; 

LISTING 3.22 Using GpiCharStringPos and GpiCharStringPosAt functions. 

See Chapter 4, "Fonts" for more detail on the SetWidthsTable function. 
Basically, this function gets the proper widths for each character in the 
string. 

MARKER PRIMITIVES 

Often when figures are drawn you will want to highlight or draw attention to 
particular items or points in the figure. The GPI has provided a set of graphic 
objects called Marker Primitives for this purpose. A marker is usually a sym
bol such as a dot, a cross, a diamond, a star, or other shape. These symbols 
are often used for charts (such as line or scatter charts) to highlight data 
points. The GPI comes with a predefined set of markers to choose from. In 
addition, you can define your own customized marker sets for more creative 
markers. Table 3.13 gives an overview of the marker functions and the op
erations they perform. 



Attribute 

Graphic Primitives 99 

TABLE 3.13 Marker functions 

Function Description 

GpiMarker Draws a marker at a specified position. 
GpiPolyMarker Draws markers at positions specified by an array of 

points. 

The attribute bundle for markers is specific for this category of drawing 
primitives. Setting of attributes in this bundle will affect how markers drawn 
using these operations are displayed. Table 3.14 describes each attribute in 
this bundle. 

TABLE 3.14 Marker attribute bundle 

MARKER flAttrMask Default Helper 
Description BUNDLE Value Value Function 

Field Name 

Marker color IColor MBB_COLOR CLR_BLACK GpiSetColor* 
Marker IBackColor MBB_BACK_COLOR clear GpiSetBackColor* 
background color 
Marker mix usMixMode MBB_MIX_MODE FM_OVERPAINT GpiSetMix* 
Marker usBackMixMode MBB_BACK_MIX_ FM_LEAVEALONE GpiSetBackMix* 
background mix MODE 
Marker set usSet MBB_SET LCID_DEFAULT GpiSetMarkerSet 

GpiQueryMarkerSet 
Marker symbol usSymbol MBB_SYMBOL MARKSYM_CROSS GpiSetMarker 

GpiQueryMarker 
Marker box sizfxCell MBB_BOX device dependent; GpiSetMarkerBox 

equal to size of 1 char GpiQueryMarkerBox 

The Marker Color and Marker Background Color attributes control the 
foreground and background colors of the markers that are subsequently 
drawn. 

The Marker Mix and Marker Background Mix attributes control how the 
foreground and background marker colors will be combined with the current 
contents of the drawing. Use the attribute called Marker Set to specify what 
set of marker symbols you wish to use. The default set of symbols can be 



100 Programming the OS/2 WARP Version 3 GPI 

overidden by setting this attribute to the logical font identifier (1cid) of the 
font from which you wish to choose symbols. 

The desired symbol within the current marker set can be chosen by set
ting the Marker Symbol attribute. Table 3.15 shows the symbols in the de
fault marker set. 

TABLE 3.15 Symbols in default marker set 

Symbol Value Definition 

MARKSYM_CROSS X sign 
MARKSYM_PLUS Plus sign 
MARKSYM_DIAMOND Diamond 
MARKSYM_SQUARE Square 
MARKSYM_SIXPOINTSTAR Six-point star 
MARKSYM_EIGHTPOINTSTAR Eight-point star 
MARKSYM_SOLIDDIAMOND Filled diamond 
MARKSYM_SOLIDSQUARE Filled square 
MARKSYM_DOT Filled circle 
MARKSYM_SMALLCIRCLE 

MARK S YM_BLANK 

MARKSYM_DEFAULT 

Hollow circle 
Nothing 
Blank 

If the marker set has been overidden by a logical font lcid, you can spec
ify the symbol in the font by setting the marker symbol attribute to the de
sired character. Listing 3.23 shows an example of this. 

LONG myFontId; 
POINTL markPtl = {lO,lO}; 
POINTL markPt2 = {20,20}; 
/**** First an example of drawing a marker from the default marker set****/ 
/* In this example, we use the helper functions to choose the marker set */ 
/* and marker symbol attributes. You can also use the marker bundle to */ 
/* set these same attributes. 
GpiSetMarkerSet(hps, LCID_DEFAULT); 
GpiSetMarker(hps, MARKSYM_EIGHTPOINTSTAR); 
GpiMarker(hps, &markPtl); 
/**** Next, choose the letter M as a marker from a font set ****/ 
GpiSetMarkerSet(hps, myFontId); 
GpiSetMarker(hps, 'M'); 
GpiMarker(hps, &markPt2); 

LISTING 3.23 Using a logical font character as a marker symbol. 

*/ 



Graphic Primitives 101 

The Marker Box attribute specifies the width and height of the marker 
box in world coordinates. If the marker is an outline font character, it will be 
scaled to fill the marker box. If it is a raster font character, the marker box is 
ignored. 

Marker Functions 

There are only two functions for actually drawing marker primitives. The 
function called GpiMarker is used to draw a single marker at a specified lo
cation. The position is specified in world coordinates and the marker will be 
centered around it. The editor tool uses the GpiMarker function to draw the 
edit handles of objects you can edit. 

The second function is called GpiPolyMarker. This function draws a 
series of markers whose positions are specified by an array that is passed in 
to the function. If you were drawing a line chart, you would likely use the 
same array of points for both the GpiPolyLine function call and the 
GpiPolyMarker function call. Listing 3.24 shows an example of using the 
GpiPolyMarker function. 

POINTL chartPts[5] = {{lO,lO}, {20,15}, {30,35}, {40,60}, {50,45} }; 
POINTL origin = {O,O}; 

/* Draw the line chart with a polyline and then hightlight the points */ 
/* with markers. */ 
GpiMove(hps, &origin); 
GpiPolyLine(hps, 5L, chartPts); 
GpiSetMarkerSet(hps, LCID_DEFAULT); 
GpiSetMarker(hps, MARKSYM_DIAMOND); 
GpiPolyMarker(hps, 5L, chartPts); 

LISTING 3.24 Using the GpiPolyMarker function. 

Both of these functions will draw the markers according to the current 
attributes in the MARKERBUNDLE. 

IMAGE PRIMITIVES 

Some applications will want to display images. These images can come from 
a variety of sources such as a picture that has been electronically scanned 
and captured. The OS/2 GPI provides functions that allow applications to 
manipulate images that are stored in one of several bitmap formats. These 
bitmap images can be created and displayed on devices that support raster 



102 Programming the OS/2 WARP Version 3 GPI 

operations. They cannot be displayed on plotters or other vector devices. 
Bitmaps are device dependent and therefore will not always look the same 
when displayed on different devices. 

Images aside, bitmaps also have several other uses. Some of these uses 
include: 

• Program icons (inside and outside the application). 

• Program pointers. 

• Rapid movement of a fixed picture across the screen. 

• Animated pictures. 

Table 3.16 gives an overview of the image functions and the operations 
they perform. 

TABLE 3.16 Image functions 

Function 

GpiCreateBitmap 
GpiDeleteBitmap 
GpiSetBitmap 
GpiSetBitmapDimensions 
GpiSetBitmapBits 

GpiImage 

GpiDrawBits 
GpiBitBlt 

GpiWCBitBlt 

Description 

Creates a bitmap resource. 
Deletes a bitmap resource. 
Sets a bitmap as current in a device context. 
Sets the width and height of a bitmap. 
Copies raw bitmap data into the bitmap 
resource. 
Draws monochrome image from raw bitmap 
data. 
Draws color image from raw bitmap data. 
Draws color image from bitmap resource 
using device coordinates. 
Draws color image from bitmap resource 
using world coordinates. 

The attribute bundle for images is specific for this catagory of drawing 
primitives. Setting of attributes in this bundle will affect how markers drawn 
using these operations are displayed. Table 3.17 describes each attribute in 
this bundle. 



Graphic Primitives 103 

TABLE 3.17 Image attribute bundle 

Attribute IMAGE flAttrMask Default Helper 
Description BUNDLE Value Value Function 

Field Name 

Image color IColor lBB_COLOR CLR_BLACK GpiSetColor* 
Image IBackColor lBB_BACK_COLOR clear GpiSetBackColor* 
background color 
Image mix usMixMode IBB_MlX_MODE FM_OVERPAlNT GpiSetMix* 
Image usBackMixMode lBB_BACK_MlX - FM_LEAVEALONE GpiSetBackMix * 
background mix MODE 

The Image Color and Image Background Color attributes control the 
foreground and background colors of the images that are subsequently 
drawn. 

The Image Mix and Image Background Mix attributes control how the 
foreground and background colors of the images will be combined with the 
current contents of the drawing. 

Depending on the image primitive function, color and mix attributes 
may be ignored. See the discussion on the function of interest for details. 

Image Basics 

A bitmap is basically a two-dimensional grid. Each cell in the grid represents 
a single point on the output device. These points are called picture elements 
or pels (sometimes called pixels). Each cell in the bitmap has a numeric 
value. A cell's value determines how the pel it represents will be displayed 
(i.e., what color it will have). Bitmaps can be either monochrome or color. 
Monochrome bitmaps require less storage than color bitmaps. 

Monochrome bitmaps require only a single bit to represent each pel in 
the grid. If the bit value is one, then the pel is turned on. If the bit value is 
zero, the pel is turned off. Therefore, by simply turning on and off the appro
priate cell bits in the bitmap, a picture can be constructed. Figure 3.33 shows 
an example of this. 

Where: 
1 - Black (on) 
o - White( off) 



104 Programming the OS/2 WARP Version 3 GPI 

1 1 1 1 1 1 1 1 
1 1 o 0 0 0 1 1 
1 0 1 0 0 1 0 1 
1 0 o 1 1 0 0 1 
1 0 o 1 1 0 0 1 
1 0 1 0 0 1 0 1 
1 1 o 0 0 0 1 1 
1 1 1 1 1 1 1 1 

FIGURE 3.33 Mapping monochrome bitmap data to output pels. 

Color bitmaps require multiple bits of storage to represent each pel. The 
number of colors that can be simultaneously used in a bitmap is 2A n where n 
is the number of bits used per pel. Therefore, if the bitmap has four bits per 
pel, you can display up to 2A4 or 16 simultaneous colors in the bitmap. Each 
4-bit pel value specifies which of the 16 colors are to be used for that pel. 

The value of each cell in a bitmap can be determined in two different 
ways. By organizing the bitmap into a single 'plane' of data, one or more 
consecutive bits are used to determine the color of the cell. For example, in a 
four-color bitmap, every cell would require two consecutive bits to deter
mine the color of the cell. If it were an 8x8 bitmap, two bytes of information 
would be required for each row in the bitmap, since each byte has 8 bits and 
can thus hold 4 cells worth of color information. Actually, each row may 
require some additional padding, which we will discuss shortly. 

The second way to represent color bitmap data is by using multiple 
planes of data. A cell has data in each plane that is combined to produce the 
overall color value for that cell. For example, the 8x8 four-color bitmap de
scribed would require two color planes. A row in each plane would require 
one byte of storage. The most common multiplane format uses three planes: 
one plane specifies the red value, one specifies the blue value, and one speci
fies the green value. These three values combine to produce the final color of 
the bitmap cell. 



Graphic Primitives 105 

Theoretically, both formats would require the same amount of storage. 
The single plane format requires 2 bytes per scan line (row) and 8 rows for a 
total of 16 bytes. And the two plane format would require 1 byte per scan line 
(row) and 8 rows for a total of 16 bytes. The GPI, however, requires that the 
data for each scan line be aligned on a double word (i.e., 32-bit ULONG) 
boundary, inserting padding if necessary. This means that the single plane 
format will have an extra 2 bytes padding for each scan line which brings the 
total bitmap size to 32 bytes. The multiplane format gets hit even worse since 
it requires an extra 6 bytes padding for each scan line (3 bytes per scan line in 
each plane) which brings its total bitmap size to 64 bytes. 

The single plane representation is the standard format used in OS/2 ap
plications. In addition, as we will soon discuss, bitmaps have several stan
dard bits/pel counts that must be supported by all devices. These counts are 
1, 4, 8, and 24 bits/pel. Certain devices may support other bits/pel counts 
(like the 2 bits/pel we discussed above) but those are device dependent. 

Figure 3.34 shows an example of a single plane color bitmap and how 
data is mapped to cells in the bitmap. This bitmap is a sixteen color bitmap 
and hence requires four bits to represent each cell's color value. Note, as was 
discussed above, each row in the bitmap data will actually be padded by an 
additional two bytes to get the proper alignment required by the GPI. 

Since each cell is represented by four bits, it can have one of sixteen 
values. A color table is used to map each of the sixteen values into its real 
color. The number of entries in the color table will generally be 2An, where n 
is the number of bits per bitmap cell. 

4-Bit Values 

0000 0000 0000 0000 0000 0000 0000 0000 
0000 0001 0101 0101 0101 0101 0010 0000 
0000 01000001 0101 0101 00100110 0000 
0000 0100 0100 0001 0010 0110 0110 0000 
00000100010000100001 011001100000 
0000 0100 0010 0011 0011 0001 0110 0000 
0000 0010 0011 0011 0011 0011 0001 0000 
0000 0000 0000 0000 0000 0000 0000 0000 

Cell Values 

o 0 0 0 0 0 0 0 
o 1 5 5 5 5 2 0 
o 4 1 5 5 260 
044 1 2 6 6 0 
04421 660 
04233 160 
023 3 3 3 1 0 
o 0 0 0 0 0 0 0 

FIGURE 3.34 Sixteen color bitmap data mapped into bitmap cell values. 



106 Programming the OS/2 WARP Version 3 GPI 

Each entry in the color table defines the color for that entry as a 24-bit 
RGB value. An RGB value defines color as a combination of three colors 
(Red, Green, and Blue). The first 8 bits of an RGB value specify the red 
component, the next 8 bits specify the green component, and the last 8 bits 
specify the blue component. Each 8-bit value designates the intensity of the 
component (O-least, 255-most). By mixing various levels of the three colors, 
up to 16.7 million different color combinations can be produced. For exam
ple, suppose we wanted to map the bitmap cell values shown in Figure 3.34 
into our own set of various colors. Table 3.18 shows some example RGB 
values for each entry in the color table. 

TABLE 3.18 Color Table RGB values 

Cell Value RGB Value Color Description 

0 OxFFOOOO Red 
1 OxOOFFOO Green 
2 OxOOOOFF Blue 
3 OxOOOOOO Black 
4 OxFFFFFF White 
5 OxFFFFOO Yellow 
6 OxFFOOFF Pink 
7 OxOOFFFF Cyan 

As mentioned earlier, different devices support various bits/cell bitmap 
formats. All devices must, however, support the standard set of bitmap for
mats shown Table 3.19. 

TABLE 3.19 Standard bitmap formats 

# Bits per Cell 

1 
4 
8 
24 

# Colors Available 

2 
16 
256 
16.7 million 



Graphic Primitives 107 

You can determine what other types of bitmap formats are supported by 
an output device by using the function called GpiQueryDeviceBitmapFor
mats. 

For bitmaps that require less than 24 bits of color, the cell values are used 
to index into a color table to determine the 24-bit ROB value associated with 
that cell. Bitmaps of this nature use a structure called BITMAPINF02 to 
describe the color table and other general bitmap information such as dimen
sions of the bitmap, the number of bits per cell, the number of color planes 
used, and so on. When using this structure, you need to declare your variable 
as a pointer to this structure and then allocate enough storage to hold both the 
structure and any color table entries that are required. 

Bitmaps that require a full 24 bits of color are treated a little differently. 
Since each cell provides 24 bits, there is no need for a color table. Instead, 
each cell value can be used directly as an ROB value. Because of this, 24-bit 
bitmaps do not supply the color table portion of the BITMAPINF02 struc
ture. 

Bitmaps are constructed using the function called GpiCreateBitmap. As 
input, this function accepts BITMAPINFOHEADER2 structure that will de
fine the bitmap to be created. This structure is the same as the BIT

MAPINF02 structure but does not contain a color table. As an option, the 
OpiCreateBitmap function will let you specify the initial bitmap data. If you 
choose to do this, you must supply the initial data and, since the initial data 
may be in a different form than the bitmap you are creating, you must also 
supply a BITMAPINF02 structure that defines the initial data. 

Before creating a bitmap, you must first create a memory device context 
and an associated presentation space. The memory device context lets you 
store and manipulate bitmaps that are destined for an output device. As 
such, you should create the device context to be compatible with the device 
that the bitmap will be eventually displayed on. For example, if you will be 
putting the bitmaps to the display, create a memory device context (using 
DevOpenDC) that is compatible with the display. If no device is specified, 
the display is assumed. 

Once the memory device context and memory presentation space are 
available, you can create bitmaps into the memory presentation space. Be
fore manipulating the bitmap or copying it to another presentation space, 
you must set it as the current bitmap in the memory presentation space. This 
is done using the function called GpiSetBitmap. 



108 Programming the OS/2 WARP Version 3 GPI 

Listing 3.25 shows how a simple four-color bitmap is defined and cre
ated. 

HDC hdcMemory; II Window device context handle. 
HPS hps, hpsMemory; II Presentation space handle for client area. 
HBITMAP newBmp; 
BITMAPINFOHEADER2 newBmpFormat; 
BITMAPINF02 *initDataFormat; 
BYTE initData[] = { 

} ; 

int 

OxOO, OxOO, OxOO, OxOO, 
Ox01, Ox55, Ox55, Ox20, 
Ox04, Ox15, Ox52, Ox60, 
Ox04, Ox41, Ox26, Ox60, 
Ox04, Ox42, Ox16, Ox60, 
Ox04, Ox23, Ox31, Ox60, 
Ox02, Ox33, Ox33, Ox10, 
Oxoo, OxOO, OxOO, OxOO 

fmtSize; 
POINTL boundarylnfo[4]; 

1* Create a memory device context and presentation space that *1 
1* we can create the bitmap in. Later we can copy it to the *1 
1* normal display presentation space where it will become visible. *1 
hdcMemory = DevOpenDC(hab, OD_MEMORY, "*", 4, (PDEVOPENDATA) pszData, NUL 
L) ; 

sizl.cx=PAGEXSIZE; II Create Normal-PS. Keep as global. 
sizl.cy=PAGEYSIZE; 
hpsMemory=GpiCreatePS(hab, hdcMemory, &sizl, PU_PELS GPIT_MICRO 

GPIA_ASSOC) ; 

1* Define the target bitmap format *1 
memset(&newBmpFormat, 0, sizeof(newBmpFormat)); 
newBmpFormat.cbFix = sizeof(newBmpFormat); 
newBmpFormat.cx = 8; 
newBmpFormat.cy = 8; 
newBmpFormat.cPlanes = 1; 
newBmpFormat.cBitCount = 4; 
newBmpFormat.cclrUsed = 16; 

1* Allocate the BITMAPINF02 structure large enough to hold 16 color table 
entries *1 
fmtSize = sizeof(BITMAPINF02) + (16*sizeof(RGB2)); 
initDataFormat = malloc(fmtSize); 
memset(initDataFormat, 0, fmtSize); 
1* define the initial data format and the color table 

*1 
initDataFormat->cbFix sizeof(BITMAPINFOHEADER2); 
initDataFormat->cx = 8; 1* Bitmap is 8x8 pels 
initDataFormat->cy = 8; 
initDataFormat->cPlanes 1; 
initDataFormat->cBitCount = 4; 

1* one plane of data 
1* Two bits per pel in each plane 

LISTING 3.25 Creation of sixteen-color bitmap. 

*1 

*1 
*1 



Graphic Primitives 109 

initDataFormat->cbImage = sizeof(initData); 1* Total size of bitmap data *1 
initDataFormat->cclrUsed = 16; 1* Number of color indexes used *1 
initDataFormat->argbColor[O] .bRed OxFF; 1* Index 0 is Red *1 
initDataFormat->argbColor[O] .bGreen OxOO; 
initDataFormat->argbColor[O] .bBlue OxOO; 
initDataFormat->argbColor[l] .bRed OxOO; 1* Index 1 is Green *1 
initDataFormat->argbColor[l] .bGreen OxFF; 
initDataFormat->argbColor[l] .bBlue OxOO; 
initDataFormat->argbColor[2] .bRed OxOO; 1* Index 2 is Blue *1 
initDataFormat->argbColor[2] .bGreen OxOO; 
initDataFormat->argbColor[2] .bBlue OxFF; 
initDataFormat->argbColor[3] .bRed OxOO; 1* Index 3 is Black *1 
initDataFormat->argbColor[3] .bGreen OxOO; 
initDataFormat->argbColor[3] .bBlue OxOO; 
initDataFormat->argbColor[4] .bRed OxFF; 1* Index 4 is White *1 
initDataFormat->argbColor[4] .bGreen OxFF; 
initDataFormat->argbColor[4] .bBlue OxFF; 
initDataFormat->argbColor[5] .bRed OxFF; 1* Index 5 is Yellow *1 
initDataFormat->argbColor[5] .bGreen OxFF; 
initDataFormat->argbColor[5] .bBlue OxOO; 
initDataFormat->argbColor[6] .bRed OxFF; 1* Index 6 is Pink *1 
initDataFormat->argbColor[6] .bGreen OxOO; 
initDataFormat->argbColor[6] .bBlue OxFF; 
initDataFormat->argbColor[7] .bRed OxOO; 1* Index 7 is Cyan *1 
initDataFormat->argbColor[7] .bGreen OxFF; 
initDataFormat->argbColor[7] .bBlue OxFF; 1* All others are Black *1 
1* Create the bitmap using the initial data & make it the current bitmap in 
the ps *1 
newBmp = GpiCreateBitmap(hpsMemory, &newBmpFormat, CBM_INIT, initData, 

initDataFormat) ; 
GpiSetBitmap(hpsMemory,newBmp) ; 
II Alternatively, we could have created the bitmap and initialized it using 
II the GpiSetBitmapBits function as follows: 
II newBmp = GpiCreateBitmap(hpsMemory, &newBmpFormat, OL, NULL, NULL); 
II GpiSetBitmap(hpsMemory, newBmp); 
II GpiSetBitmapBits(hpsMemory, OL, 8L, initData, initDataFormat); 
1* Copy the loaded bitmap into the display *1 
boundaryInfo[O].x 0; 1* target destination (in device coords) *1 
boundaryInfo[O].y 100; 
boundaryInfo[l].x 50; 
boundaryInfo[l] .y 150; 
boundaryInfo[2].x 0; 1* source rectangle (pels in src color bitmap) *1 
boundaryInfo[2].y 0; 
boundaryInfo[3].x 8; 
boundaryInfo[3].y 8; 
GpiBitBlt(hps, hpsMemory, 4L, boundarYInfo, ROP_SRCCOPY, BBO_IGNORE); 

LISTING 3.25 (Continued). 

The 24-bit format is special in that no color table is required; instead, the 
24-bit value represents an RGB value (8 bits for Red, 8 bits for Green, and 8 
bits for Blue). The RGB value is translated directly into a color. In this case, 
the bitmap is defined using the BITMAPINFOHEADER2 structure instead of 
the BITMAPINF02 structure. The BITMAPINFOHEADER2 structure is ba-



110 Programming the OS/2 WARP Version 3 GPI 

sically the same as the BITMAPINF02 structure except that it does not have 
the color table in it. The color table is not needed since the bitmap data will 
contain the RGB values (there is no need to go through an intermediate table). 

GpiCreateBitmap can also be used to create bitmaps using the BIT

MAPINFOHEADER2 structure. If using this structure, you cannot specify in
itial bitmap data on the GpiCreateBitmap call. 

You can determine what types of bitmap formats are supported by your 
output device by using the function called GpiQueryDeviceBitmapFormats. 
Bitmaps can be destroyed using the function called GpiDeleteBitmap. 

Image Functions 

As you've seen, bitmaps can be created and initialized using the function 
GpiCreateBitmap. There are several other ways of initializing the state of a 
bitmap that can be quite useful. These include drawing into a bitmap, load
ing a bitmap from a file, or copying from one bitmap to another. There are a 
variety of GPI functions available for these types of bitmap operations and 
more. 

Another way to alter a bitmap after it has been created is by using the 
functions called GpiSetBitmapDimension and GpiSetBitmapBits. As the 
name implies, GpiSetBitmapDimension lets you set the width and height of 
the bitmap (specified in .1 millimeter increments). These dimensions are not 
used by the GPI and have no impact on bitmap operations. They can, how
ever, be retrieved by the application using the function GpiGetBitmap
Dimensions. GpiSetBitmapBits is used to copy all or part of the defining 
bitmap data into a bitmap. 

Bitmaps can be loaded from a file using the function GpiLoadBitmap. 
You might use this function if you've created some bitmaps using the OS/2 
Icon Editor, for example. This function is similar to GpiCreateBitmap ex
cept the data is initialized from a bitmap file rather than passed in as an array 
in memory. The bitmap can be stretched or compressed, if desired, when it is 
loaded. Listing 3.26 shows an example of loading a bitmap resource from the 
applications EXE file. 

To create the contents of a bitmap by drawing into it, you must first set 
the bitmap as the current bitmap in a memory device context. This can be 
done using the function called GpiSetBitmap. Once this is done, the applica
tion can perform normal drawing operations and the results will be drawn 



Graphic Primitives 111 

.RC file contains: 

BITMAP 
mypic.bmp.C source file 

HDC hdcMemory; 
contains: 

II Window device context handle. 
HPS hps, hpsMemory; 
HBITMAP myBmp; 
HPS hps; 
LONG myBmpId=l; 

II Presentation space handle for client area. 

1* Create a memory device context and presentation space that *1 
1* we can create the bitmap in. Later we can copy it to the *1 
1* normal display presentation space where it will become visible. *1 
hdcMemory = DevOpenDC(hab, OD_MEMORY, "*", 4, (PDEVOPENDATA) 

pszData, NULL); 
sizl.cx=PAGEXSIZE; 
sizl.cy=PAGEYSIZE; 

II Create Normal-PS. Keep as global. 

hpsMemory=GpiCreatePS(hab, hdcMemory, &sizl, PU_PELS 
GPIA_ASSOC) ; 

1* Create the bitmap, loading it out of the .exe file *1 
myBmp = GpiLoadBitmap(hps, NULL, IDB_MYPIC, 50L, 50L); 

1* Assign a local identifier to the bitmap so it can be used for fills *1 
GpiSetBitmapId(hps, myBmp, myBmpId); 
1* Select the new bitmap as current for the memory ps *1 
GpiSetBitmap(hpsMemory,myBmp) ; 
1* Copy the loaded bitmap into the display *1 
boundaryInfo[O] .x 0; 1* target destination (in device coords) *1 
boundaryInfo[O] .y 200; 
boundaryInfo[l] .x 50; 
boundaryInfo[l] .y 250; 
boundaryInfo[2].x 0; 1* source rectangle (pels in src color bitmap) *1 
boundaryInfo[2] .y 0; 
boundaryInfo[3] .x 50; 
boundaryInfo[3] .y 50; 
GpiBitBlt(hps, hpsMemory, 4L, boundaryInfo, ROP_SRCCOPY, BBO_IGNORE); 

LISTING 3.26 Loading a bitmap resource from a file. 

into the bitmap (providing they fall within the bitmap boundaries). Listing 
3.27 shows an example of drawing into a bitmap to define its contents. 

HBITMAP newBmp, prevBmp; 
BITMAPINFOHEADER2 newBmpFormat; 
POINTL points[9] = { 

} ; 

{40,15}, {70,15}, {70,35}, {50,35}, {50,75}, 
{70,75}, {60,95}, {40,95}, {40,15} 

POINTL boundaryInfo[4]; 

1* Create a memory device context and presentation space that *1 
1* we can create the bitmap in. Later we can copy it to the *1 

LISTING 3.27 Defining contents of a bitmap resource by drawing into it. 



112 Programming the OS/2 WARP Version 3 GPI 

1* normal display presentation space where it will become visible. *1 
hdcMemory = DevOpenDC(hab, OD_MEMORY, "*,, 4, (PDEVOPENDATA) pszData, 

NULL) ; 
sizl.cx=PAGEXSIZE; 
sizl.cy=PAGEYSIZE; 

II Create Normal-PS. Keep as global. 

hpsMemory=GpiCreatePS(hab, hdcMemory, &sizl, PU_PELS GPIT_MICRO 
GPIA_ASSOC) ; 

1* Define the target bitmap format *1 
memset(&newBmpFormat, 0, sizeof(newBmpFormat)); 
newBmpFormat.cbFix = sizeof(newBmpFormat); 
newBmpFormat.cx = 100; 
newBmpFormat.cy = 100; 
newBmpFormat.cPlanes = 1; 

1* size of the bitmap *1 

newBmpFormat.cBitCount = 4; 1* std 16 color format *1 
newBmpFormat.cclrUsed = 16; 
1* Create the bitmap using no initial data *1 
newBmp = GpiCreateBitmap(hpsMemory, &newBmpFormat, OL, NULL, NULL); 
1* make it the currently selected bitmap in the memory device context *1 
GpiSetBitmap(hpsMemory, newBmp); 
1* Now draw into the bitmap *1 
GpiSetColor(hpsMemory, CLR_WHITE); 
GpiMove(hpsMemory, &points[O]); 
GpiPolyLine(hpsMemory, 8L, &points[l]); 1* Copy the loaded bitmap into the 
display* I 
boundarylnfo[O] .x 0; 1* target destination (in device coords) *1 
boundarylnfo[O].y 300; 
boundarylnfo[l] .x 50; 
boundarylnfo[l].y 350; 
boundarylnfo[2] .x 0; 1* source rectangle (pels in src color bitmap) *1 
boundarylnfo[2].y 0; 
boundarylnfo[3].x 100; 
boundarylnfo[3].y 100; 
GpiBitBlt(hps, hpsMemory, 4L, boundarylnfo, ROP_SRCCOPY, BBO_IGNORE); 

LISTING 3.27 (Continued). 

N ow that we've talked about creating bitmaps, let's see how you can dis
play them. The OPI again comes to the rescue with a variety of functions for 
doing this. Some functions perform very basic draw capabilities while others 
are more flexible. 

The function called Gpilmage is useful only for drawing monochrome 
images. It accepts raw bitmap data and therefore does not require you to cre
ate a bitmap resource as discussed above. The bitmap will be drawn using 
the current image foreground and background colors. A value of 1 uses the 
foreground color while a value of 0 uses the background color. The current 
image foreground and background mix attributes are used as well. The cur
rent position will be the top-left comer of the image. The image size is speci
fied in pels and is therefore device dependent. Output from this function can 
not be directed into retained segment storage. While most bitmap drawing 



Graphic Primitives 113 

functions interpret scanline data from bottom to top, GpiImage interprets it 
from top to bottom. 

Three GPI functions exist that work with color bitmaps (GpiDrawBits, 
GpiBitBlt, and GpiWCBitBlt). These functions all operate as though there is 
a source bitmap that you are copying from and a target bitmap that you are 
copying to. The source is usually the bitmap that you wish to draw, and the 
target is either pels that are output to the device or another bitmap that you 
want to copy into. 

Because there are both source and target bitmaps, these three functions 
must, at times, be able to convert from monochrome bitmaps to color bit
maps, and vice versa. The conversion is necessary, for example, when copy
ing a monochrome bitmap into a color bitmap or drawing a color bitmap to a 
monochrome device. When that conversion is needed, the image foreground 
and background colors are used. When converting from monochrome to 
color, bits in the bitmap that are set to 1 are mapped to the foreground color, 
while bits in the bitmap that are set to 0 are mapped to the background color. 
When converting from a color bitmap to a monochrome bitmap, those bits 
whose color matches the background color are mapped to the value 0, while 
all other bits are mapped to the value 1. 

When copying the source bitmap to the target bitmap, a mix option is 
also specified. As with color mixing, this mix determines how the source 
bitmap is to be combined with the existing target bitmap. A normal copy 
operation, for example, would specify the option ROP _SRCCOPY. This mix 
option specifies that the source bits are blindly copied directly over the top of 
the current target bitmap (ignoring its current value). The option 
ROP _SRCAND, however, would perform a logical AND operation of the 
source bits with the target bits and then update the target bits with the result
ing values. Table 3.20 shows the constants defined for some of the more 
common mix operations. 

Note that mix operations can also include the current pattern set and pat
tern symbol. This gives you even more flexibility for mixing bitmaps. The 
constants shown in Table 3.20 are only a subset of the potential mix combi
nations. In reality, you can produce just about any combination of source, 
target, and pattern symbol that you want. Typical uses for mix include 
straight copy of source over target (ROP _SRCCOPY), XOR dynamic draw
ing of source on top of target(ROP _SRCINVERT), drawing source behind 



114 Programming the OS/2 WARP Version 3 GPI 

target(ROP _SRCERASE), and drawing source over target with a pattern ef
fect (ROP _MERGECOPY). 

TABLE 3.20 Common bitmap mix options 

Mix Value 

ROP_SRCCOPY 
ROP_SRCPAINT 
ROP_SRCAND 
ROP_SRCINVERT 
ROP_SRCERASE 
ROP_NOTSRCCOPY 
ROP_NOTSRCERASE 
ROP_MERGECOPY 
RO P_MERGE PAINT 
ROP_PATCOPY 
ROP_PATPAINT 
RO P_PAT INVERT 
ROP_DSTINVERT 
ROP_ZERO 
ROP_ONE 

Logical Description 

target=source 
target=source OR target 
target=source AND target 
target=source XOR target 
target=source AND (NOT target) 
target=NOT source 
target=(NOT source) AND (NOT target) 
target=source AND pattern 
target=(NOT source) OR target 
target=pattern 
target=(NOT source) OR pattern OR target 
target=target XOR pattern 
target=NOT target 
target=O 
target=l 

Before getting into the color bitmap functions, one last item to address 
concerns mapping between source and target bitmaps when the sizes do not 
match. In this situation, the OPI compresses or stretches the source bitmap to 
fit into the target bitmap space. When stretching a bitmap, the OPI inserts 
duplicate rows or columns at regular intervals to produce the expansion ef
fect. When compressing the source bitmap, the OPI combines adj acent rows 
or columns at regular intervals to produce the shrinking effect. When com
bining the adjacent rows, the OPI allows you to specify one of three combi
nation methods, as follows: 

1. BBO_OR 

2.BBO_AND 

3.BBO_IGNORE 

The option BBO_OR combines adjacent rows (or columns) by logically 
~Ring the values of the adjacent rows together. The option BBO_AND com-



Graphic Primitives 115 

bines adjacent rows by logically ANDing the values of the adjacent rows 
together. These two options are most useful for compressing monochrome 
or two color bitmaps (BBO_OR when foreground pels are 1 and BBO_AND 

when foreground pels are 0). The option BBO_IGNORE compresses by sim
ply removing rows (or columns) at regular intervals. No merging with adja
cent rows is performed. This is most useful for color bitmaps since pel colors 
would be corrupted by merging them with adjacent pels. 

Okay, now that we've talked about the factors that go into displaying and 
converting color bitmaps, let's examine the functions available for doing 
these things. 

The function called GpiDrawBits is similar to GpiImage. It, too, lets you 
specify raw bitmap data, but this data is to be interpreted as color bitmap 
data. You need to supply a BITMAPINF02 structure to describe the color 
bitmap layout. The aptlPoints parameter specifies the bounding rectangles 
of the source and target bitmaps. The source rectangle specifies the portion 
of the source bitmap to draw (specified in device coordinates-pels), while 
the target rectangle specifies the area of the current device context that the 
source is to be drawn into (specified in world coordinates and mapped to 
device coordinates using current transforms). GpiDrawBits performs any 
conversions required for mismatches in color or size. This function will also 
route the output to a retain segment if the draw mode is set appropriately. 

About now you may be asking yourself "why did we go to the trouble of 
creating a bitmap resource if these drawing routines can accept the raw data 
directly?" Well, as you'll soon see, the last two drawing functions we will 
talk about make use of the bitmap resources we described earlier. 

You can draw a bitmap resource directly to device coordinates using the 
function called GpiBitBlt. This function accepts a target rectangle specified 
in device coordinates and copies the data from the source bitmap resource 
into the target rectangle. This function will stretch or compress the data as 
needed to make it fit the target rectangle. In addition, colors will be con
verted from the source bitmap to the output device as previously described. 
Output of this function will not go to retained segment storage. 

You can draw a bitmap resource into world coordinates using the func
tion called GpiWCBitBlt. Using this function, the bitmap will be subject to 
all the normal viewing transformations and will be routed to retained stor
age. The GpiWCBitBlt function provides the same compression and mixing 
options as the GpiBitBlt function. 



116 Programming the OS/2 WARP Version 3 GPI 

Listing 3.28 shows some examples of using the various bitmap functions 
discussed so far. 

/* Monochrome image of the letter T in non-standard form. */ 
BYTE monolmageData[l = { 

OxFF, OxFF, /* 1111111111111111 */ 
OxC1, Ox83, /* 1100000110000011 */ 
Ox01, Ox80, /* 0000000110000000 */ 
Ox01, Ox80, /* 0000000110000000 */ 
Ox01, Ox80, /* 0000000110000000 */ 
Ox01, Ox80, /* 0000000110000000 */ 
Ox01, Ox80, /* 0000000110000000 */ 
Ox01, Ox80, /* 0000000110000000 */ 
Ox07, OxEO /* 0000011111100000 */ 

} ; 

/* Monochrome image of the same letter T only this time the data 
/* is in std bitmap form. Notice that image data 
/* that it is padded to 32 bits per scan line. 
BYTE monolmageData2[l = { 

Ox07, OxEO, OxOO, OxOO, /* 
Ox01, Ox80, OxOO, OxOO, /* 
Ox01, Ox80, OxOO, OxOO, /* 
Ox01, Ox80, OxOO, OxOO, /* 
Ox01, Ox80, OxOO, OxOO, /* 
Ox01, Ox80, OxOO, OxOO, /* 
Ox01, Ox80, OxOO, OxOO, /* 
OxC1, Ox83, OxOO, OxOO, /* 
OxFF, OxFF, OxOO, OxOO, /* 

} ; 

SIZEL size; 
POINTL monolmagePos = {50,50}; 
BITMAPINF02 monoFormat; 
BITMAPINFOHEADER2 newBmpFormat; 
POINTL boundarylnfo[4l; 
HBITMAP myBmp, anotherBmp; 

0000011111100000 
0000000110000000 
0000000110000000 
0000000110000000 
0000000110000000 
0000000110000000 
0000000110000000 
1100000110000011 
1111111111111111 

PSZ pszData[4l = {"Display", NULL, NULL, NULL }; 

is reversed and 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

*/ 
*/ 
*/ 

/* Create a memory device context and presentation space that */ 
/* we can create the bitmap in. Later we can copy it to the */ 
/* normal display presentation space where it will become visible. */ 
hdcMemory = DevOpenDC(hab, OD_MEMORY, \\*", 4, (PDEVOPENDATA) pszData, NULL); 
sizl.cx=PAGEXSIZE; // Create Normal-PS. Keep as global. 
sizl.cy=PAGEYSIZE; 
hpsMemory=GpiCreatePS(hab, hdcMemory, &sizl, PU_PELS GPIT_MICRO 

GPIA_ASSOC) ; 

/****************************************************************/ 
/* Draw a monochrome bitmap to the output device using Gpilmage */ 
/****************************************************************/ 
GpiSetColor(hps, CLR_BLUE); 
GpiSetBackColor(hps, CLR_YELLOW); 

LISTING 3.28 Using GpiImage, GpiDrawBits, GpiBitBlt, and 
GpiWCBitBlt functions. 



GpiMove(hps, &monolmagePos); 
size.cx = 16; 
size.cy = 9; 

Graphic Primitives 117 

Gpilmage(hps, OL, &size, sizeof(monolmageData), monolmageData); 

/****************************************************************/ 
/* Draw the std version of the mono image using GpiDrawBits. */ 
/* Stretch the bits during the draw to make it taller. */ 
/****************************************************************/ 
/* Define the format of the mono image data */ 
/* By setting the size of the Fixed area to 16 bytes, you can tell the */ 

/* GPI to default the remaining entries in the BITMAPINF02 structure. */ 

/* Otherwise you can define a full size BITMAPINF02 header complete with */ 
/* color table as we did in listing 3.24. */ 
memset(&monoFormat, 0, sizeof(monoFormat));/* Set image format parameters 
*/ 
monoFormat.cbFix = 16L /*sizeof(monoFormat)*/; 
monoFormat.cx 
*/ 

16; 

monoFormat.cy = 9; 
monoFormat.cPlanes 1; 
monoFormat.cBitCount = 1; 
*/ 

/* size of the bitmap 

/* 2-color format 

/* Define the old/new sizes, make narrower and taller */ 
boundarylnfo[O].x 1; /* target destination (in world coords) 
*/ 
boundarylnfo[O] .y 
boundarylnfo[l] .x 
boundarylnfo[l] .y 
boundarylnfo[2] .x 
*/ 
boundarylnfo[2] .y 
boundarylnfo[3] .x 
boundarylnfo[3] .y 

1; 
25; 
50; 
0;/* source rectangle (pels in the monochrome bitmap) 

0; 
16; 
9; 

GpiDrawBits(hps, monolmageData2, &monoFormat, 4L, boundarylnfo, 
ROP_SRCCOPY, 

BBO_IGNORE) ; 

/************************************************************************/ 
/* Load a color bitmap from a file, then, copy it onto the screen */ 
/* using GpiBitBlt. Draw it over the top of the current screen contents */ 
/* by using ROP_SRCINVERT. Compress it using BBO_IGNORE since it is a */ 
/* color bitmap. */ 
/************************************************************************/ 
/* Create the source bitmap, loading it out of the .exe file */ 
myBmp = GpiLoadBitmap(hpsMemory, OL, IDB_MYPIC, 50L, 50L); 
/* make it the currently selected bitmap in the memory device context */ 
GpiSetBitmap(hpsMemory, myBmp); 
/* Copy the loaded bitmap into the display */ 
boundarylnfo[O] .x = 200; /* target destination (in device coords) */ 

LISTING 3.28 (Continued). 



118 Programming the OS/2 WARP Version 3 GPI 

1; 
250; 
25; 

boundaryInfo[Ol.y 
boundaryInfo[ll.x 
boundaryInfo[ll.y 
boundaryInfo[2l.x 
boundaryInfo[2l.y 

1; /* source rectangle (pels in src color bitmap) */ 
1; 

boundaryInfo[3l.x 50; 
boundaryInfo[3l.y 50; 
GpiBitBlt(hps, hpsMemory, 4L, boundaryInfo, ROP_SRCINVERT, BBO_IGNORE); 

/**********************************************************************/ 
/* Finally, load another bitmap into the display device context */ 
/* and copy it into world coordinates using the GpiWCBitBlt function. */ 
/**********************************************************************/ 
/* Create the source bitmap, loading it out of the .exe file */ 
/* Note the bitmap must be loaded into the same device context as it */ 
/* will be BitBlt'ed to using GpiWCBitBlt. */ 
anotherBmp = GpiLoadBitmap(hps, OL, IDB_MYPIC2, 100L, 100L); 
/* Copy the loaded bitmap into the display */ 
boundaryInfo[Ol.x 250; /* target destination (in world coords) */ 
boundaryInfo[Ol.y 0; 
boundaryInfo[ll.x 300; 
boundaryInfo[1l.y 50; 
boundaryInfo[2l.x 1; /* source rectangle (pels in src color bitmap) */ 
boundaryInfo[2l.y 1; 
boundarylnfo[3l.x 100; 
boundaryInfo[3l.y 100; 
GpiWCBitBlt(hps, anotherBmp, 4L, boundaryInfo, ROP_SRCCOPY, BBO_IGNORE); 

LISTING 3.28 (Continued). 

Another interesting way to use bitmaps is as fill patterns for closed areas. 
This can be done using the function called GpiSetBitmapld. This function 
creates a local identifier that is associated with a bitmap resource you created 
using GpiCreateBitmap or GpiLoadBitmap. This local identifier can then be 
used as a pattern set for filling closed areas. The pattern set will contain a 
single member. Listing 3.29 shows how GpiSetBitmapld is used to set up a 
fill pattern of geometric shapes. 

BYTE monolmageData2[l = { 

OxFF, OxOO, OxOO, OxOO, /* 1 1 1 1 1 1 1 1 */ 
OxCO, OxOO, OxOO, OxOO, /* 1 1 0 0 0 0 0 0 */ 
Ox60, OxOO, OxOO, OxOO, /* 0 1 1 0 0 0 0 0 */ 
Ox30, OxOO, OxOO, OxOO, /* 0 0 1 1 0 0 0 0 */ 
Ox18, OxOO, OxOO, OxOO, /* 0 0 0 1 1 0 0 0 */ 
OxOC, OxOO, OxOO, OxOO, /* 0 0 0 0 1 1 0 0 */ 
Ox06, OxOO, OxOO, OxOO, /* 0 0 0 0 0 1 1 0 */ 
Ox03, OxOO, OxOO, OxOO, /* 0 0 0 0 0 0 1 1 */ 
OxFF, OxOO, OxOO, OxOO, /* 1 1 1 1 1 1 1 1 */ 

} ; 

BITMAPINF02 monoFormat; 

LISTING 3.29 Using GpiSetBitmapld to create fill patterns. 



Graphic Primitives 119 

BITMAPINFOHEADER2 newBmpFormat; 
HBITMAP myBmp; 
LONG myBmpld=10; 
POINTL pointl {300, a}; 
POINTL point2 = {SaO, 200}; 

/****************************************************************/ 
/* Create a bitmap that contains the desired pattern. */ 
/****************************************************************/ 
/* Define the target bitmap format */ 
memset(&newBmpFormat, 0, sizeof(newBmpFormat)); 
newBmpFormat.cbFix = sizeof(newBmpFormat); 
newBmpFormat.cx = 8; 
newBmpFormat.cy = 8; 
newBmpFormat.cPlanes = 1; 
newBmpFormat.cBitCount = 1; 
newBmpFormat.cclrUsed = 2; 
/* Define the format of the mono image data */ 
/* By setting the size of the Fixed area to 16 bytes, you can tell */ 
/* the GPI to default the remaining entries in the BITMAPINF02 */ 
/* structure. Otherwise you can define a full size BITMAPINF02 header */ 
/* complete with color table as we did in listing 3.24. */ 
memset(&monoFormat, 0, sizeof(monoFormat));/* Set image format parameters 
*/ 
monoFormat.cbFix = 16L /*sizeof(monoFormat)*/; 
monoFormat.cx 8; /* size of the bitmap 
*/ 
monoFormat.cy 8; 
monoFormat.cPlanes 1; 
monoFormat.cBitCount = 1; 
*/ 

/* 2-color format 

/* Create the bitmap using the initial data */ 
myBmp = GpiCreateBitmap(hps, &newBmpFormat, CBM_INIT, monolmageData2, 

&monoFormat) ; 
/* Assign a local identifier to the bitmap */ 
/* so it can be used for a pattern fill */ 
GpiSetBitmapld(hps, myBmp, myBmpld); 
/* Set the pattern set to use the bitmap */ 
GpiSetPatternSet(hps, myBmpld); 
/* Now draw a rectangle and it will be filled */ 
/* with the bitmap fill pattern */ 
GpiMove(hps, &pointl); 
GpiBox(hps, DRO_OUTLINEFILL, &point2, OL, OL); 

LISTING 3.29 (Continued). 

In this section we've talked mainly about creating and drawing entire 
images; however, the GPI does provide a function for setting just a single 
pel. This function, called GpiSetPel, sets a pel (at the specified point in world 
coordinates) using the current line color and mix attributes. This function is 
subject to normal transformation and clipping operations. The function 
called GpiQueryPel can be used to examine the color of a single pel (again 
specified as a point in world coordinates). 



120 Programming the OS/2 WARP Version 3 GPI 

As you can see, the GPI provides a large set of graphics primitives. Using 
them, you can create a wide variety of drawings and special effects. In this 
chapter we discussed drawing attributes such as color and that there are bun
dles of attributes for each category of drawing primitives. 

In addition we have examined the attributes and drawing primitives in 
each of the following categories: 

• Line and Arc primitives 

• Area primitives 

• Text primitives 

• Marker primitives 

• Image primitives 

These drawing primitives give you quite a rich set of functions to choose 
from in your application programming. When combining them with other 
GPI features such as segments and transformations, you can draw just about 
anything! In the next chapter, you willieam more details about fonts, includ
ing how to design and use your own. 



CHAPTER 4 

Fonts 

It wasn't that long ago that most programmers didn't really care that much 
about fonts. This was because most programmers weren't developing appli
cations in a graphical environment like OS/2's Presentation Manager! In
stead, many were writing applications in an environment like DOS, and the 
font used was whatever the display adapter hardware produced in text mode. 
Formatting text was pretty straightforward, too. This was because all the 
characters for the display had the same spacing; hence, simple row/column 
calculations were all that was needed. Now, because graphical user inter
faces are much more common, it becomes important for software develop
ers to understand and take advantage of the variety of fonts available. By 
doing this, the applications they develop can become much more appealing 
and usable, and with application software becoming increasingly compe
tive, all aspects of the application (such as font selection) should be carefully 
considered to help insure the success of your product. 

As you will soon see, working with fonts in OS/2 is much different than 
in an environment like DOS, and there is little doubt that the complexity of 
the code is greater. The results, however, are also much more spectacular 
and rewarding than in a non-graphical environment. 

Before we talk about the functions that the OS/2 GPI has to help you 
work with fonts, some basic background information is necessary. Fonts are 
applied to a table called a code page. If you were to look at code page defini-

121 



122 Programming the OS/2 WARP Version 3 GPI 

tions, you would notice that it has several entries which contain different 
symbols. These symbols usually include letters, numbers, and special 
graphic characters. Each of these symbols or images in a code page is called 
a glyph. Each entry in the code page is called a code point. Hence, a code 
point is an index into a code page to identify a glyph. So, for instance, if you 
were to look at an ASCII code page, you would notice code point X'31' 
would have a glyph for the character "1" defined in it. 

Code pages are identified by a number and are published so the symbol 
sets can be known to all hardware and software developers. For instance, the 
standard United States code page number for ASCII is 437, while for 
EBCDIC the code page number is 37. Now if you were to look at these two 
different code pages, you would see the same basic glyphs are found in both 
of them, however, the glyphs are found at different code points. For in
stance, the glyph for the character" 1" which was located at code point X' 31 ' 
for the ASCII code page is at code point X"Fl" for the EBCDIC code page. 
You might think that if you know the ASCII 437 code page and EBCDIC 37 
code page that you have code pages licked. In some parts of the world, this 
may be true, but as you look at the code pages available, you will notice that 
there are several ASCII and EBCDIC code pages used by different countries 
and these different code pages have some different glyphs defined in them. 
Furthermore, some code pages may not have any alphanumeric data in them 
at all! Instead, these code pages could be other symbol sets that you may use 
for some other reason. Table 4.1 shows the code pages currently supported 
by OS/2. 

Fonts are placed in groups that share the same basic characteristics of the 
font design. These groups are called font family names. Examples of font 
family names are Courier™, Helvetica™, and Times New Roman™. Within 
a font family, a specific font will have afacename. For example, within the 
Courier font family there are specific fonts such as Courier, Courier Bold, 
Courier Bold Italic, Courier Italic, and so on. The primary unit of measure 
for specifying a font's size is called a point. A point is 1172 of an inch and 
refers to the visible height of the font. 

So what's so difficult about fonts? Well, fonts really aren't that hard to 
deal with, but the metrics associated with a font can be much more complex 
than just point size. When you look at all the metrics that can be assoicated 
with a font (as we will shortly), you may even begin to wonder how point 
size is calculated! After all, the characters within a font can all have different 



Fonts 123 

visible heights. And characters like g, j, p, q, and y can even drop below the 
imaginary horizontal line used to determine the character's vertical position. 
This imaginary line is called the font's baseline. In fact, the more you look at 
fonts and all the metrics associated with them, you may determine that de
signing and developing a font is more of an art than a science! 

TABLE 4.1 OS/2 supported code pages 

Code Page Number 

37 
273 
277 
278 
280 
284 
285 
297 
437 
500 
850 
851 
857 
860 
861 
863 
865 
1004 
1026 

Name 

EBCDIC US ENGLISHIPORTUGUESE 
EBCDIC AUSTRIAN/GERMAN 
EBCDIC DANISHINORWEGIAN 
EBCDIC FINNISH/SWEDISH 
EBCDIC ITALIAN 
EBCDIC SPANISH 
EBCDIC UK ENGLISH 
EBCDIC FRENCH 
ASCII US ENGLISH 
EBCDIC BELGIANIINTERNATIONAL 
ASCII LATIN 1 MULTILINGUAL 
ASCII LATIN 2 MULTILINGUAL 
ASCII TURKEY 
ASCII PORTUGUESE 
ASCII ICELAND 
ASCII CANADIAN-FRENCH 
ASCII NORWEGIAN 
ASCII DESKTOP PUBLISHING 
EBCDIC TURKEY 

So what other metrics do you need to be concerned with when it comes to 
fonts? Well, another obvious metric is the width of each character within a 
font. As you probably already know, fonts are either proportional or non
proportional. If a font is non-proportional (also called monospaced), then 
all the characters within the font have the same width. Hence, calculating 
the horizontal starting location for each character in a string or the total 
width of a string is fairly straightforward with monospaced fonts. If the font 
is proportional, however, the characters within the font can all have different 



124 Programming the OS/2 WARP Version 3 GPI 

widths. Hence, to format text correctly for a proportional font can take more 
calculation and seem more tedious. As you will soon see, however, the OPI 
provides functions that make the chore of positioning characters within a 
string fairly easy. 

With this brief discussion of font widths you might think you have a 
fairly good understanding of the kinds of things you will need to consider 
when generating text. And you probably do! But there is one more topic that 
needs to be discussed when it comes to the positioning adjacent characters in 
a string. This topic is called kerning. Some fonts are designed so some of 
their character cells can actually overlap and still produce a very pleasing 
appearence. For example, in a character string where the characters "V" and 
"A" are adjacent, the top of the "V" can hang over the bottom of the "A" and 
everything will still look great. When a font is designed so adjacent charac
ters can overlap, the font is called kernable. Figure 4.1 illustrates this point 
more clearly by showing adjacent characters where kerning is used. Note 
that when a font is designed to be kerned, however, only particular pairs of 
characters within the font are kernable. For instance, the character pair 
"A V" can be kerned but the character pair "AA" can not because "AA" can 
not overlap. Hence, when a font is kernable, all character pairs in a string 
must be interrogated so the appropriate adjustments in character placement 
can be made! Again, this may seem tedious but you will see that the OPI also 
helps with the kerning of the font is designed to be kerned! 

Another key point about fonts in OS/2 is how they are physically gener
ated during drawing. There are two basic ways in which fonts can be gener
ated and the method used depends on the type of font. If the font is a raster or 

FIGURE 4.1 Kerned font. 



Fonts 125 

image font, its picture elements for each character are predefined and are 
copied directly to the drawing. Because a raster font is a predefined image, 
the actual draw performance of image fonts is excellent. On the other hand, 
because using raster fonts is a matter of an image copy, raster fonts are de
vice dependent and can not be scaled or rotated. Of course, given a good 
selection of raster fonts, an application that needs simple text operations or 
excellent draw performance will find raster fonts to be ideal. (And OS/2 has 
a good selection of image fonts.) 

The other type of font is called an outlinefont (sometimes called a vector 
font). An outline font is not a set of images for the character set, but rather a 
series of draw orders such as lines and curves that generate the characters in 
the font. Hence, each character in a font is actually drawn, not copied. Be
cause the characters are drawn, they can be scaled, rotated, sheared, and so 
on, just like any other object in our graphic editor. (By the way, our graphic 
editor only uses outline fonts for this reason! All transforms for text objects 
work just like all other objects in the graphic editor!) Of course, because 
each character of an outline font needs to be drawn, the performance of an 
outline font is not as good as that of an image font. 

One last thing to discuss before we get in to the details of working with 
fonts is where fonts are located. In OS/2, a font is either a public font, a 
private font, or a device font. Public fonts are available to all applications in 
the system and can be used on multiple devices. When you install OS/2, you 
are prompted to select the fonts you want loaded on your system. These 
fonts are the public fonts that come with OS/2. Currently, IBM provides the 
public outline fonts shown in Table 4.2. You can, however, receive addi
tional fonts from other sources and install them on your system and make 
them public fonts too. 

In addition to the public outline fonts listed in Table 4.2, OS/2 also pro
vides several raster fonts. These raster fonts come in a variety of point sizes 
that are designed for a variety of device resolutions. The face names that are 
available for these raster fonts are Courier, System Proportional, System 
Monospaced, Helv, and Tms Rmn. 

An application can also have fonts loaded dynamically as it needs them. 
These fonts are not implicitly known to the other applications on the system 
and are called private fonts. Private fonts may be fonts that you developed 



126 Programming the OS/2 WARP Version 3 GPI 

TABLE 4.2 OS/2 Public Outline Fonts 

Font Family 

Courier 

Helvetica 

Times New Roman 

Symbol 

Font Face Name 

Courier 
Courier Bold 
Courier Bold Italic 
Courier Italic 

Helvetica 
Helvetica Bold 
Helvetica Bold Italic 
Helvetica Italic 

Times New Roman 
Times New Roman Bold 
Times New Roman Bold Italic 
Times New Roman Italic 

Symbol 

just for your application or fonts that you received from some other source 
and do not want to share with other applications. 

Finally, devices like printers often have fonts designed especially for 
their use as part of their device support. These fonts are called device fonts 
and are available only to applications that are using the device. Device fonts 
are valid only while you have an associated device context with the device. 
Therefore, device fonts have a more restrictive use than public fonts. In par
ticular, you can not use the system spooler for printing jobs if device fonts 
are involved. Instead, you must print using raw mode. To understand the 
difference between printing in raw mode and printing via the OS/2 spooler, 
see Chapter 8, "Printing." 

Well, now that you've been introduced to the basic concepts of fonts in 
OS/2, let's look at fonts in a little closer detail and see the functions that the 
GPI has to help you work with them! 



Fonts 127 

FONT METRICS 

As stated earlier, a presentation space saves non-device-specific and envi
ronmental drawing information. One such piece of information saved in the 
presentation space is the current font. Hence, when you create a presentation 
space, the presentation space will automatically have a default font assigned 
to it. This default font is typically the system monospace font. When your 
application wants a different font with which to display information, it may 
want to query the system for all (or some) the fonts that are available so an 
intelligent selection can be made. To query the system for fonts, your appli
cation can use a function called GpiQueryFonts. Following are the parame
ters for the GpiQueryFont function: 

hps - This is the handle for your presentation space. 

nOptions - This is an unsigned long value that specifies the type of 
fonts for which the query will be performed. This parameter has some 
predefined constants that can be ORed together. These predefined con
stants and their meanings are as follows: 

QF _PUBLIC - query public fonts. 
QF _PRIVATE - query private fonts. 
QF _NO_DEVICE - do not list device fonts. 
QF _NO_GENERIC - do not list generic fonts (non-device fonts). 

pszFacename - This is a pointer to an ASCIIZ string that has the 
facename of the font you want to query . Note that several fonts can have 
the same facename but different metrics. If NULL is used for this pa
rameter, then all facenames will be queried. 

plReqFonts - This is a pointer to a long value and is both an input and 
output parameter. As an input parameter, you can specify the maximum 
number of fonts for which you want font metrics returned. As an output 
parameter, this specifies how many fonts had their font metrics returned. 

IMetricsLength - This is a long value that specifies the amount of space 
reserved for each font metric on return. Note that the font metric struc
ture is relatively large but constructed in such a way that the most popu
lar metrics are listed toward the beginning of the structure. This 
structure will be shown shortly. 



128 Programming the OS/2 WARP Version 3 GPI 

afmMetrics - This is a pointer to the space where the array of font 
metics is to be returned. This space should be at least as large as (pIReq
Fonts x IMetricsLength) bytes. The structure of the metrics returned will 
be shown shortly. 

On return from the GpiQueryFonts function, a long value is returned 
which indicates the number of fonts that matched the search criteria but did 
not return font metric data. As you can see, the GpiQueryFonts function will 
let you query for a particular facename and font type, but before you limit 
your search or allocate space for the font metric data, you may like to know 
how many of the different fonts for a particular type are even available. To 
do this, set up your search criteria (flOptions and pszFacename) and specify 
o for plReqFonts. The value returned by the GpiQueryFonts function is the 
number of fonts that the system found that met the search criteria. 

But, what is all of this potential font metric data that can be returned by 
the GpiQueryFonts function, and what is it good for? Well, as we look at the 
structure used to return font metric data, it becomes more obvious what some 
of the information is useful for. However, much of the information is not so 
obviously useful and you may choose to ignore it. The font metric data is 
returned in a structure called FONTMETRICS. Listing 4.1 shows the defini
tion of the FONTMETRICS structure followed by a definition of each field 
within the structure. As you read these metric definitions, note that defini
tions will occasionally refer to field definitions within the same FONT
METRICS structure. As you read the definitions of the fields for the 
FONTMETRICS structure, look at Figure 4.2. Figure 4.2 will show you 
many of these font metrics in relationship to some actual sample characters 
within a font. 

As you can see, there is more than just a little bit of information stored in 
the FONTMETRICS structure. But don't be intimidated by its size! When 
you think about the information that is being communicated to you and how 
you might choose to use it, it's really pretty cool. Read on and think of the 
possibilities! 

typedef struct _FONTMETRICS { 
CHAR szFamilyname[32] i 

CHAR szFacename[32] i 

USHORT usRegistrYi 
USHORT usCodePagei 

LISTING 4.1 Font metrics definition. 



LONG lErnHeighti 
LONG lXHeighti 
LONG lMaxAscenderi 
LONG lMaxDescenderi 
LONG lLowerCaseAscenti 
LONG lLowerCaseDescenti 
LONG lInternalLeadingi 
LONG lExternalLeadingi 
LONG lAveCharWidthi 
LONG lMaxCharlnci 
LONG lErnlnci 
LONG lMaxBaselineExti 
SHORT sCharSlopei 
SHORT sInlineDiri 
SHORT sCharRoti 
USHORT usWeightClassi 
USHORT usWidthClassi 
SHORT sXDeviceResi 
SHORT sYDeviceResi 
SHORT sFirstChari 
SHORT sLastChari 
SHORT sDefaultChari 
SHORT sBreakChari 
SHORT sNorninalPointSizei 
SHORT sMinirnurnPointSizei 
SHORT sMaxirnurnPointSizei 
USHORT usTypei 
USHORT usDefni 
USHORT usSelectioni 
USHORT usCapabilitiesi 
LONG lSubscriptXSizei 
LONG lSubscriptYSizei 
LONG lSubscriptXOffseti 
LONG lSubscriptYOffseti 
LONG lSuperscriptXSizei 
LONG lSuperscriptYSizei 
LONG lSuperscriptXOffseti 
LONG lSuperscriptYOffseti 
LONG lUnderscoreSizei 
LONG lUnderscorePositioni 
LONG lStrikeoutSizei 
LONG lStikeoutPositioni 
SHORT sKerningPairsi 
SHORT sFarnilyClassi 
LONG lMatchi 
ATOM FarnilyNarneAtorni 
ATOM FaceNarneAtorni 
PANOSE panPanosei 
} FONTMETRICSi 

LISTING 4.1 (Continued). 

Fonts 129 

szFamilyname - This field is a null-terminated character string which is the 
family name for the font. The family name helps identify the general appear-



130 Programming the OS/2 WARP Version 3 GPI 

T l IMaxAscender 
ILowerCaseAscent 

Baseline 

IAveCharWidth w IEmHeight 

Character Box 

IEmlnc 

FIGURE 4.2 Font metrics. 

ance of the font. For example, Courier is a family name. This string is lim
ited to 31 characters plus a ° to terminate the string. If the family name is 
larger than 31 characters, you can use the FamilyNameAtom value to re
trieve the entire family name string. 

szFacename - This field is a null-terminated character string, which is the 
facename for the font. The facename identifies a particular font within a font 
family. For example, Courier Bold Italic is a facename in the Courier fam
ily. This string is limited to 31 characters plus a ° to terminate the string. If 
the facename is larger than 31 characters, you can use the FaceN ameAtom 
value to retrieve the entire facename string. 

us Registry - This field is the registry identifier for the font. 

usCodePage - This field is the registered code page for which the font was 
designed. Often, this field is 0, which means the font can be used with any of 
the OS/2 supported code pages. Hence, if this field is 0, you can specify the 
code page you want when you create a logical font. (Logical font creation is 
discussed later.) When you create a logical font, the font character to code 
point mappings will be made for you. If the font contains special symbols 
which have no register code page, a value of 65400 is returned in this field. 
In this case, you must use the returned code page value during logical font 
creation. 



Fonts 131 

lEmHeight - This field is the heiglit of the largest character in the font. 
Historically, this was considered to be the height of the character "M", 
hence the name EmHeight. But, as it turns out, this is not always true! This 
metric is returned in world coordinates and is also used for calculating point 
size. 

lXHeight - This field is the nominal height of lowercase characters above 
the baseline. This metric ignores ascenders and is returned in world coordi
nates. 

IMaxAscender - This field is the maximum height above the baseline for 
any symbol found in the font. This metric is returned in world coordinates. 

IMaxDescender - This field is the maximum depth below the baseline for 
any symbol found in the font. This metric is returned in world coordinates. 

lLowerCaseAscent - This field is the maximum height above the baseline 
for any lowercase character (a-z) symbol found in the font. This metric is 
returned in world coordinates. 

lLowerCaseDescent - This field is the maximum depth below the baseline 
for any lowercase character (a-z) symbol found in the font. This metric is 
returned in world coordinates. 

lInternalLeading - This field is the difference between the lEmHeight and 
the lMaxBaseExt. Therefore, this metric is a measure of distance between 
the highest symbol in the font and the highest alphabetic character in the 
font. This metric is returned in world coordinates. 

lExternalLeading - This field is the maximum recommended space added 
between rows of text so the text will have a pleasing appearance. This metric 
is only the font designers recommended white space between rows and is 
often O. This metric is returned in world coordinates. 

lA veCharWidth - This field represents the average character width for the 
font. The value is determined by weighing each of the lowercase characters 
found in the font by its expected frequency of use before the average is calcu
lated. This metric is returned in world coordinates. 

IMaxChar Inc - This field represents the maximum width of a character for 
the font. This metric is returned in world coordinates. 

lEmInc - This field represents the width of an imaginary box called the Em 
Square. The Em Square is also the Character Box attribute for outline fonts. 



132 Programming the OS/2 WARP Version 3 GPI 

If the vertical and horizontal device resolutions for a device are equal, then 
IEmInc is equal to JEmHeight. Therefore, because outline fonts are device 
independent, IEmInc and IEmHeight are equal for outline fonts. This metric 
is returned in world coordinates. 

IMaxBaseExt - This field represents the maximum vertical space required 
for the font. This is the sum of the maximum ascender and the maximum 
descender. This metric is returned in world coordinates. 

sCharSlope - This field represents nominal slope for the font. This metric is 
the number of degrees and minutes clockwise from vertical that the font may 
slant. For example, an italic font may have a small positive slope while a 
normal (non-italic) font would have a value of O. The way degrees and min
utes are represented in a SHORT value is by the high order seven bits of the 
SHORT representing minutes and the low order nine bits of the SHORT rep
resenting degrees. For example, X'3F04' represents 260 degrees, 30 min
utes. 

sInLineDir - This field represents the direction in which the glyphs in the 
font were designed to be viewed. The unit of measure for this metric is in 
degrees and minutes and stored in the same way as described for 
sCharSlope. This measurement is taken clockwise from horizontal. When a 
code point is used to reference a glyph for the font, it is added to the line of 
text in the inline direction. 

sCharRot - This field represents the rotation of the character glyphs in the 
font with respect to the baseline. The unit of measure for this metric is in 
degrees and minutes and stored in the same way as described for 
sCharSlope. This measurement increases in the counterclockwise direction. 

us W eightClass - This field represents the thickness of the stroke used for 
generating the glyphs of the font. Table 4.3 shows the values that can be 
found in this field and its meaning. 

usWidthClass - This field represents the aspect ratio for the characters in 
the font compared to a normal aspect ratio for a font of this type. Table 4.4 
shows the values that can be found in this field and its meaning. 

sXDeviceRes - This field represents the horizontal device resolution. For 
bitmap fonts this is measured in pels per inch for the intended output device. 
For outline fonts this is measured in notional units for the width of the Em 
Square. (Note that outline fonts are defined in a space above world space 



Fonts 133 

called the notional font definition space. The notional font definition space 
dimensions are typically 1000x1000.) 

TABLE 4.3 Fonts weight class values 

Value 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Meaning 

Ultra-light 
Extra-light 
Light 
Semi-light 
Medium 
Semi-bold 
Bold 
Extra-bold 
Ultra-bold 

TABLE 4.4 Fonts width class values 

Value Meaning 

1 50% of normal width 
2 62.5% of normal width 
3 75% of normal width 
4 87.5% of normal width 
5 normal width 
6 112.5% of normal width 
7 125 % of normal width 
8 150% of normal width 
9 200% of normal width 

sYDeviceRes - This field represents the vertical device resolution. For bit
map fonts this is measured in pels per inch for the intended output device. 
For outline fonts this is measured in notional units for the height of the Em 
Square. (Note that outline fonts are defined in a space above world space 

'- called the notional font definition space. The notional font definition space 
dimensions are typically 1000x1000.) 



134 Programming the OS/2 WARP Version 3 GPI 

sFirstChar - This field represents the code point for the first character in the 
font. 

sLastChar - This field represents the code point for the last character in the 
font. This number, however, is an offset from the sFirstChar value. For ex
ample, if sFirstChar were 20 and sLastChar were 80, then the last code point 
value is 100. All code points in the range from sFirstChar to sLastChar are 
supported by the font. 

sDefaultChar - This field represents the code point within the font that is 
used if a code point outside of the supported font range is needed. Like 
sLastChar, this value is an offset of the sFirstChar value. 

sBreakChar - This field represents the code point that represents the 
"break" character or "space" character for the font. Like sLastChar, this 
value is an offset of the sFirstChar value. 

sNominalPointSize - This field represents the nominal point size for the 
font. For raster fonts, this value is the height of the font. For outline fonts, 
however, this value is the intended height of the font as determined by the 
font designer. The unit of measure for this metric is decipoints or 1/720 of an 
inch. 

sMinimumPointSize - This field represents the minimum intended height 
of the font as determined by the designer of the outline font. Because raster 
fonts are static, this field has no value to them. Like sNominalPointSize, the 
unit of measure for this metric is decipoints or 11720 of an inch. 

sMaximumPointSize - This field represents the maximum intended height 
of the font as determined by the designer of the outline font. Because bitmap 
fonts are static, this field has no value to them. Like sNominalPointSize, the 
unit of measure for this metric is decipoints or 11720 of an inch. 

usType - This field contains a series of bit indicators that communicate type 
information about the font. The OS/2 Toolkit provides definitions for the 
different type indicators. Following is a list of these definitions and their 
meanings: 

FM_TYPE_FIXED - All characters in the font have the same width. 
FM_TYPE_LICENSED - The font is licensed or protected. 
FM_TYPE_64K - The font is larger than 64KB in size. 
FM_TYPE_DBCS - The font is for double-byte code pages. 



Fonts 135 

FM_TYPE_MBCS - The font is for mixed single/double-byte code 
pages. 
FM_TYPE_FACETRUNC - The font szFaceName field is truncated. 
Therefore, you may want to use the System Atom Table to retrieve 
the entire name. 
FM_TYPE_FAMTRUNC - The font szFamilyName field is truncated. 
Therefore, you may want to use the System Atom Table to retrieve 
the entire name. 
FM_TYPE_ATOMS - The font atom values for szFamilyName and 
szFaceName are valid. 

usDefn - This field contains a series of bit indicators that communicate 
definition information about the font. The OS/2 Toolkit provides defini
tions for the different definition indicators. Following is a list of these 
definitions and their meanings: 

FM_DEFN_OUTLINE - The font is an outline font. If this is not 
true, then the font is a font. 
FM_DEFN_GENERIC - The font is in a format that can be used by 
the GPI. If this is not true, then the font is a device font. 

usSelection - This field contains a series of bit indicators that communi
cate style information about the font. Note that the GPI can simulate 
styles but the styles indicated here are part of the physical font design. 
The OS/2 Toolkit provides definitions for the different selection indica
tors. Following is a list of these definitions and their meanings: 

FM_SEL_ITALIC - The font is italic. 
FM_SEL_UNDERSCORE - The font has underscore for each 
character. 
FM_SEL_NEGATIVE - The font has its background and 
foreground reversed. 
FM_SEL_OUTLINE - The font characters are hollow. 
FM_SEL_STRIKEOUT - The font has an overstrike in each 
character. 
FM_SEL_BOLD - The font is bold. 

us Capabilities - This field contains a bit indicator that communicates 
font capabilities. Note that this field only applies to device fonts and the 
indicator is located in the low order byte of this USHORT field. The 
OS/2 Toolkit provides a definition for this indicator named 



136 Programming the OS/2 WARP Version 3 GPI 

FM_CAP _NOMIX. If this indicator is true, then font characters cannot be 
mixed with graphics for the device. The high order byte of this 
USHORT may also contain a value that indicates the font's print quality. 
Following is a list of the quality values and their meanings: 

o - Undefined 
1 - DP quality 
2 - DP draft 
3 - Near letter quality 
4 - Letter quality 

ISubscriptXSize - This field contains the recommended horizontal size for 
subscripts for this font. This metric is returned in world coordinate units. 

ISubscript YSize - This field contains the recommended vertical size for 
subscripts for this font. This metric is returned in world coordinate units. 

ISubscriptXOffset - This field contains the recommended horizontal offset 
for subscripts for this font. This metric is returned in world coordinate units. 

ISubscript Y Offset - This field contains the recommended vertical offset 
from the baseline for subscripts for this font. In this case, a positive value 
means below the baseline. This metric is returned in world coordinate units. 

ISuperscriptXSize - This field contains the recommended horizontal size 
for subscripts for this font. This metric is returned in world coordinate units. 

ISuperscriptYSize - This field contains the recommended vertical size for 
subscripts for this font. This metric is returned in world coordinate units. 

ISuperscriptXOffset - This field contains the recommended horizontal off
set for subscripts for this font. This metric is returned in world coordinate 
units. 

ISuperscriptYOffset - This field contains the recommended vertical offset 
from the baseline for subscripts for this font. This metric is returned in 
world coordinate units. 

IUnderscoreSize - This field contains the thickness of the underscore for 
this font. In the case of a font that has FM_SEL_UNDERSCORE set to true, 
this is the actual thickness of the underscore. If FM_SEL_UNDERSCORE is 
false, then this is the simulated underscore thickness. This metric is re
turned in world coordinate units. 



Fonts 137 

IUnderscorePosition - This field contains the position of the underscore 
from the baseline for this font. A positive value for this metric means below 
the baseline. In the case of a font that has FM_SEL_UNDERSCORE set to 
true, this is the actual position of the underscore. If FM_SEL_UNDER
SCORE is false, then this is the simulated underscore position. This metric is 
returned in world coordinate units. 

IStrikeoutSize - This field contains the thickness of the strikeout stroke for 
this font. In the case of a font that has FM_SEL_STRIKEOUT set to true, 
this is the actual thickness of the strikeout stroke. IfFM_SEL_STRIKEOUT 
is false, then this is the simulated strikeout stroke thickness. This metric is 
returned in world coordinate units. 

IStrikeoutPosition - This field contains the position of the strikeout stroke 
from the baseline for this font. In the case of a font that has 
FM_SEL_STRIKEOUT set to true, this is the actual position of the strike
out stroke. If FM_SEL_STRIKEOUT is false, then this is the simulated 
strikeout stroke position. This metric is returned in world coordinate units. 

sKerningPairs - This field contains the number of kerning pair values for 
this font. 

sFamilyClass - This field contains a font family design classification. 

IMatch - This field contains a value that uniquely identifies the font for a 
device driver to device combination. If this value is less than 0, the font is a 
device font. If this value is greater than 0, the font is generic and can be used 
by the GPI. Note that this value may vary from system to system and should 
not be used to identify fonts across system boundaries. 

FamilyNameAtom - This field contains the atom identifier for retrieving 
the full font family name character string from the System Atom Table. This 
identifier is valid if FM_TYPE_ATOMS is true. 

FaceNameAtom - This field contains the atom identifier for retrieving the 
full font face name character string from the System Atom Table. This iden
tifier is valid if FM_TYPE_ATOMS is true. 

panPanose - This field contains the Panose descriptor which identifies the 
visual characteristics of the font. 

Once you have font metric data for some or all of the existing fonts on the 
system, you may then want to select one of these fonts and associate it with 



138 Programming the OS/2 WARP Version 3 GPI 

your presentation space. To associate a font to a presentation space, you 
must first use a function called GpiCreateLogFont to provide a logical defi
nition for the font you desire. The input parameters to the GpiCreateLog
Font function are as follows: 

bps - This parameter specifies the presentation space handle for which 
this logical font description is being provided. 

pName - This parameter specifies a pointer to an eight-character string. 
This string can be used to help identify the required font. 

lLcid - This parameter specifies a local identifier to which the logical font 
description will be assigned. Once assigned, this local identifier can be used 
to identify the logical font description for this presentation space until either 
the local identifier has been reassigned or deleted. (Your presentation space 
can have up to 256 local identifiers that can relate meaningful information to 
it at any time.) 

pAttr - This parameter specifies a pointer to a font attributes structure 
which defines the requirements of the logical font. 

As you may have guessed, the key parameter for identifying a font via 
the GpiCreateLogFont function is the pointer to a font attributes structure 
which you must provide. When you look at Listing 4.2, which shows the 
definition of the font attributes structure, you should recognize many of the 
field names. This is because many of these field names are the same or simi
lar to those found in the font metrics data structure. Therefore, filling in the 
font attributes structure is fairly simple. When you want to select a particular 
font for which you have font metrics data, you can just copy some of the 

typedef struct _FATTRS { 
USHORT usRecordLengthi 
USHORT fsSelection 
LONG lMatch 
CHAR szFacename[32] i 

USHORT idRegistrYi 
USHORT usCodePagei 
LONG lMaxBaselineExt 
LONG lAveCharWidthi 
USHORT fsTypei 
USHORT fsFontUsei 
} FATTRSi 

LISTING 4.2 Font attributes structure. 



Fonts 139 

required information from the font metrics structure to the font attributes 
structure and then query and set similar values for the other fields that have 
similar but not equal meanings. 

Note that the fsSelection, fsType, and fsFontUse fields in the font attrib
utes structure have similar meanings to the usSelection, fsType, and usDefn 
fields of the font metrics structure. The font attribute fields, however, do 
have different defined values than those for the similar font metrics fields. 
Following is a list of these particular font attribute field names and their 
meanings: 

fsSelection - This field contains a series of bit indicators that communicate 
style information that is to be simulated by the GPI if possible. The OS/2 
Toolkit provides definitions for the different selection indicators. Following 
is a list of these definitions and their meanings: 

FATTR_SEL_ITALIC - The GPI will simulate an italic font. 
FATTR_SEL_UNDERSCORE - The GPI will simulate an underscore 
for each character. 
FATTR_SEL_OUTLINE - The GPI will use an outline font with hol
low characters. 
FATTR_SEL_STRIKEOUT - The GPI will simulate an overstrike in 
each character. 
FATTR_SEL_BOLD - The GPI will simulate a bold font. 

fsType - This field contains a series of bit indicators that communicate type 
information about the desired font. The OS/2 Toolkit provides definitions 
for the different type indicators. Following is a list of these definitions and 
their meanings: 

FATTR_TYPE_KERNING - The font supports kerning. 
FATTR_TYPE_DBCS - The font is for double-byte code pages. 
FATTR_TYPE_MBCS - The font is for mixed single/double-byte 
code pages. 
FATTR_TYPE_ANTIALIASED - The font supports antialiasing. 
(This is a device-specific type of font.) 

fsFontUse - This field contains a series of bit indicators that communicate 
how the font will be used. The OS/2 Toolkit provides definitions for the 
different definition indicators. Following is a list of these definitions and 
their meanings: 

FATTR_FONTUSE_OUTLINE - The font to be used is an outline font. 



140 Programming the OS/2 WARP Version 3 GPI 

FATTR_FONTUSE_NOMIX - The font will not be mixed with graphic 
objects. 
FATTR_FONTUSE_TRANSFORMABLE - The font may be scaled, 
sheared, or rotated. 

As it turns out, you don't have to fill in very many fields of the font attrib
utes structure to have the GpiCreateLogFont function assign a logical font 
description to a local identifier. This is because the GpiCreateLogFont func
tion will attempt to find a best fit font description from the information pro
vided! And in the case of a local workstation for which you already have a 
unique IMatch identifier, all you need to do is copy the IMatch identifier. 
U sing only an IMatch identifier in the font attributes structure to select a spe
cific font, however, is not recommended. This is because IMatch identifiers 
are limited in scope. The IMatch identifier can only be assured to be valid on 
the machine on which it is defined for the duration of the intial program load 
(lPL). Hence, a IMatch identifier may not be meaningful or give you the 
same font description on other remote machines. If you fill in all the fields of 
the font attributes structure, however, the GPI will have a much better 
chance of providing an excellent match for a logical font description based 
on the additional font attribute information (search criteria). Therefore, an
other alternative to querying all the font metric data and then filling in the 
font attributes for a particular font, is to fill in the basic font attributes you 
desire, set IMatch to 0, and let the GpiCreateLogFont function find the best 
match for you! 

After you have a local identifier for your logical font description, you 
can then use it to change the current font for the presentation space. This 
done with a function called GpiSetCharSet, which has the presentation space 
handle and the local identifier as input parameters. Hence, to change the 
current font of a presentation space to a font description you already have an 
local identifier assigned to, you just use GpiSetCharSet. Once you have is
sued the GpiSetCharSet function successfully, any draw text operations will 
use the new font. (Note that if you specify a local indentifier of 0 for the 
GpiSetCharSet function, the system default font will be used.) 

If your new font is an outline font, you may wish to change its default 
size. Recall from the font metric data that a font has an imaginary box called 
the Em Square which has a height of IEmHeight and a width of IEmInc. The 
Em Square dimensions are also the dimensions of the character box which is 
one of the text attributes for the presentation space. Also recall from the font 



Fonts 141 

metric data that the sXDeviceRes and s YDeviceRes values for outline fonts 
are the dimensions of the notional font definition space. The transformation 
from the notional font definition space to world coordinate space is defined 
by the ratio of the sXDeviceRes,s YDeviceRes rectangle and the Em Square. 
Hence, for outline fonts, changing the character box attribute will change the 
size of the font as it moves from notional font definition space to world coor
dinate space. The GPI function that allows you to change the character box 
attribute for the presentation space is called GpiSetCharBox. 

To determine how to change the character box attribute to scale an out
line font's size, you must first query the device characteristics for effective 
font height in device unit-per-unit distance. The OS/2 function called Dev
QueryCaps can be used to find this effective font height and is returned as 
pels per inch. Once you have this effective font height metric, you can use it 
to calculate the height of the character box to fit your need in device units, 

SCREEN 4.1 Graphic editor font selection dialog. 



142 Programming the OS/2 WARP Version 3 GPI 

then convert it to world space units, and finally convert the numbers to 
FIXED where they can be applied to the GpiSetCharBox function. Time for 
an example to see how all this font information can be used! 

The graphic editor for this book provides a dialog that will allow the user 
to select a font for use during the edit session. Screen 4.1 shows an example 
of the types of things you can do with fonts with the graphic editor, and the 
dialog box we use to allow you to pick fonts. As mentioned earlier, the 
graphic editor only uses outline fonts; hence, the only fonts that will show up 
in the font selection dialog box list box are outline fonts known to the sys
tem. You can also see from Screen 4.1 that we allow the user to pick the font 
point size (which can range from 1 to 300) and to specify special font attrib
utes like underline, strike out, and hollow. 

By this time you should almost be able to guess how we wrote this dialog 
and selected the font, but let's look at Listing 4.3 to see how we actually 
did it. 

/*********************************/ 
/* Select font dialog procedure. */ 
/*********************************/ 
MRESULT EXPENTRY SelectFontDlgProc(HWND hwnd,ULONG msg,MPARAM mpl,MPARAM mp2) { 

extern HWND hwndClient; 
PFONTMETRICS fontMetrics=NULL; 
LONG numFonts,reqFonts,i,remFonts=GPI_ALTERROR; 
HDC hdc=OL; 
FATTRS fatAttrs; 
CHAR outlineFont[40]; 
extern CHAR current Font [40] ; 
extern HPS hps; 
USHORT item, fontIndex; 
MRESULT mReturn; 
ULONG pointSize; 
USHORT emp; 
extern USHORT emphasis; 
extern SIZEF charBox; 
extern ATTRIBS currentAttribs; 
LONG lcid; 
USHORT keyFlags; 
switch (msg) { 

/**********************/ 
/* Initialize dialog. */ 
/**********************/ 
case WM_IITDLG: 

/*********************************************************/ 
/* Query number of public fonts known by PM and allocate */ 
/* memory in which to read their metrics information. */ 
/*********************************************************/ 

LISTING 4.3 Select font routines. 



reqFonts=Oi 
numFonts=GpiQueryFonts(hps,QF_PUBLIC,NULL,&reqFonts, 

OL, NULL); 
/*********************************************/ 
/* Get memory for font metrics if any exist. */ 
/*********************************************/ 
if((numFontsl=GPI_ALTERROR) && (numFontsl=OL)) 

Fonts 143 

fontMetrics=malloc((SHORT) (numFonts*sizeof(FONTMETRICS))); 
/**************************************/ 
/* Query font information into array. */ 
/**************************************/ 
remFonts=GpiQueryFonts(hps,QF_PUBLIC,NULL, 

&numFonts, (LONG)sizeof(FONTMETRICS) ,fontMetrics); 
/*********************************************************/ 
/* Search for outline font and put facename in list box. */ 
/*********************************************************/ 
if (remFonts1 =GPI_ALTERROR) { 

for(i=O;i«INT)numFonts;i++) { 
if((fontMetrics[i] .fsDefn&FM_DEFN_OUTLINE) && 

(fontMetrics[i] .usCodePagel=65400) ) { 
WinSendDlgItemMsg(hwnd,ID_FONTNAME,LM_INSERTITEM, 

MPFROM2SHORT(LIT_SORTASCENDING,O), 
(MPARAM)fontMetrics[i] .szFacename) i 

if (fontMetricsl=NULL) free (fontMetrics) ; 1/ Free memory from array. 
/*******************************/ 
/* Find index of current font. */ 
/*******************************/ 
fontIndex=(USHORT) (WinSendDlgItemMsg 

(hwnd,ID_FONTNAME,LM_SEARCHSTRING, 
MPFROM2SHORT(LSS_CASESENSITIVE,LIT_FIRST) , 

(MPARAM)currentFont)); 
if( (fontIndex==LIT_ERROR) I I (fontIndex==LIT_NONE)) { 

/*************************************/ 
/* Highlight first facename in list. */ 
/*************************************/ 
WinSendDlgItemMsg(hwnd,ID_FONTNAME,LM_SELECTITEM, 

MPFROMSHORT(O) , (MPARAM)TRUE); 

else{ 
1***************************************1 
/* Highlight current facename in list. */ 
1***************************************1 
WinSendDlgItemMsg(hwnd,ID_FONTNAME,LM_SELECTITEM, 

MPFROMSHORT(fontIndex), (MPARAM)TRUE); 

/*********************************************/ 
1* Set spin button limits and initial value. */ 
/*********************************************1 
pointSize=*((ULONG *)AttGet(currentAttribs,ATT_FONTSIZE)); 
WinSendMsg(WinWindowFromID(hwnd,ID_POINTSIZE) , 

LISTING 4.3 (Continued). 



144 Programming the OS/2 WARP Version 3 GPI 

SPBM_SETLIMITS, (MPARAM) 300, (MPARAM)l)i 
WinSendMsg(WinWindowFromID(hwnd,ID_POINTSIZE), 

SPBM_SETCURRENTVALUE, (MPARAM)pointSize, (MPARAM)NULL)i 
1*************************1 
1* Set emphasis buttons. *1 
1*************************1 
if(emphasis & FATTR_SEL_OUTLINE) 

WinSendMsg(WinWindowFromID(hwnd,ID_OUTLINE) , 
BM_SETCHECK,MPFROMSHORT(l), (MPARAM) NULL) i 

if(emphasis & FATTR_SEL_STRIKEOUT) 
WinSendMsg(WinWindowFromID(hwnd,ID_STRIKEOUT), 

BM_SETCHECK,MPFROMSHORT(l), (MPARAM) NULL) i 

if(emphasis & FATTR_SEL_UNDERSCORE) 
WinSendMsg(WinWindowFromID(hwnd,ID_UNDERSCORE) , 

BM_SETCHECK,MPFROMSHORT(l), (MPARAM) NULL) i 

1********************************1 
1* Set input focus to list box. *1 
1********************************1 
WinSetFocus (HWND_DESKTOP,WinWindowFromID(hwnd, ID_FONTNAM E)); 
return(MRESULT)lLi 

1******************************1 
1* Process keystroke message. *1 
1******************************1 
case WM_CHAR: 

keyFlags=(USHORT) SHORT1FROMMP(mpl) i 

if(keyFlags & KC_VIRTUALKEY) { 
switch(SHORT2FROMMP(mp2)) { 

case VK_ENTER: II Check for enter key. 
case VK_NEWLINE: II Check for newline key. 

mReturn=WinSendDlgItemMsg(hwnd,ID_FONTNAME, 
LM_QUERYSELECTION, MPFROMSHORT(LIT_FIRST), 
(MPARAM) NULL) i 

item=(SHORT)mReturni 
WinSendDlgltemMsg(hwnd,ID_FONTNAME,LM_QUERYITEMTEXT, 

MPFROM2SHORT(item,32), (MPARAM)outlineFont); 
winSendMsg(WinWindowFromID(hwnd,ID_POINTSIZE) , 

SPBM_QUERYVALUE, (MPARAM)&pointSize, 
MPFROM2SHORT(0,SPBQ_DONOTUPDATE)) i 

AttSet(&currentAttribs,ATT_FONTSIZE,&pointSize) i 

emp=O; 
if (WinSendMsg(WinWindowFromID(hwnd,ID_OUTLINE) , 

BM_QUERYCHECK, (MPARAM)NULL, (MPARAM)NULL)) 
emp=emp I FATTR_SEL_OUTLINE; 

if (WinSendMsg(WinWindowFromID(hwnd,ID_STRIKEOUT) , 
BM_QUERYCHECK, (MPARAM) NULL, (MPARAM) NULL) ) 

emp=emp I FATTR_SEL_STRIKEOUT; 
if (WinSendMsg(WinWindowFromID(hwnd,ID_UNDERSCORE), 

BM_QUERYCHECK, (MPARAM) NULL, (MPARAM)NULL)) 
emp=emp I FATTR_SEL_UNDERSCORE; 

lcid = AddFont(outlineFont,emp); 
WinSendMsg(hwndClient,WM_FONT, (MPARAM)lcid, (MPARAM)pointSize)i 
WinDismissDlg (hwnd, TRUE) ; 

LISTING 4.3 (Continued). 



return (MRESULT) TRUE; 

break; 
/**************************/ 
/* Process notifications. */ 
/**************************/ 
case WM_COMMAND: 

switch(COMMANDMSG(&msg)->cmd) { 
case DID_OK: 

mReturn=WinSendDlgItemMsg(hwnd,ID_FONTNAME, 
LM_QUERYSELECTION, 

Fonts 145 

MPFROMSHORT(LIT_FIRST), (MPARAM) NULL) ; 
item=(SHORT)mReturn; 
WinSendDlgItemMsg(hwnd,ID_FONTNAME,LM_QUERYITEMTEXT, 

MPFROM2SHORT(item,32), (MPARAM)outlineFont); 
WinSendMsg(WinWindowFromID(hwnd,ID_POINTSIZE) , 

SPBM_QUERYVALUE, (MPARAM)&pointSize, 
MPFROM2SHORT(O,SPBQ_DONOTUPDATE)) ; 

AttSet(&currentAttribs,ATT_FONTSIZE,&pointSize); 
emp=O; 
if(WinSendMsg(WinWindowFromID(hwnd,ID_OUTLINE) , 

BM_QUERYCHECK, (MPARAM) NULL, (MPARAM)NULL)) 
emp=emp I FATTR_SEL_OUTLINE; 

if (WinSendMsg(WinWindowFromID(hwnd,ID_STRIKEOUT) , 
BM_QUERYCHECK, (MPARAM) NULL, (MPARAM)NULL)) 

emp=emp I FATTR_SEL_STRIKEOUT; 
if (WinSendMsg(WinWindowFromID(hwnd,ID_UNDERSCORE) , 

BM_QUERYCHECK, (MPARAM)NULL, (MPARAM)NULL)) 
emp=emp I FATTR_SEL_UNDERSCORE; 

lcid=AddFont(outlineFont,emp) ; 
WinSendMsg(hwndClient,WM_FONT, (MPARAM)lcid, (MPARAM)pointSize); 
WinDismissDlg(hwnd,TRUE) ; 
return (MRESULT) TRUE; 

case DID_CANCEL: 
WinDismissDlg(hwnd,FALSE); 
return (MRESULT) TRUE; 

break; 

return WinDefDlgProc(hwnd,msg,mpl,mp2); 

/*********************************************************/ 
/* Add a font to our font array if not already in array. */ 
/*********************************************************/ 
LONG AddFont(CHAR *outlineFont, USHORT emp) { 

BOOL retCode=FALSE; 
HDC hdc=OL; 
USHORT codePage=GPI_ERROR; 
FATTRS fatAttrs; 
extern HPS hps; 
LONG lcid; 

LISTING 4.3 (Continued). 



146 Programming the OS/2 WARP Version 3 GPI 

extern FONTINFO fonts[AFONTSIZE]i 
extern CHAR currentFont[40]i 
extern USHORT emphasisi 
extern ATTRIBS currentAttribsi 
BOOL found=FALSEi 
int i=Oi 
while((i<AFONTSIZE) && !found) { 

if((strcmp(outlineFont,fonts[i] .name) ==0) && 
(fonts[i] .emphasis==emp)) found=TRUEi 

i++i 

if ( ! found) { 
1***********************1 
1* Get a new local ID. *1 
1***********************1 
lcid=GetSetID(hps) i 

1**********************************1 
1* Set the attribute of the font. *1 
1**********************************1 
codePage=GpiQueryCp(hps) ; 
fatAttrs.usRecordLength=sizeof(FATTRS) i 

fatAttrs.fsSelection=empi fatAttrs.lMatch=OLi 
strcpy (fatAttrs.szFacename, outlineFont) i 

fatAttrs.idRegistry=Oi fatAttrs.usCodePage=codePagei 
fatAttrs.lMaxBaselineExt=OLi 
fatAttrs.lAveCharWidth=OLi 

fatAttrs.fsType=Oi 
fatAttrs.fsFontUse=(FATTR_FONTUSE_OUTLINE 

FATTR_FONTUSE_TRANSFORMABLE)i 
1************************1 
1* Create logical font. *1 
1************************1 
retCode=GpiCreateLogFont(hps,NULL,lcid,&fatAttrs) ; 
for(i=Oii<AFONTSIZEii++ ) { 

if(fonts[i] .name[O]==O)breaki 

strcpy(fonts[i] .name,outlineFont); II Put copy of font in draw array. 
fonts[i] .id=lcidi II Put the current local set ID in the array. 
fonts[i] .emphasis=empi II Save the font emphasis in the draw array. 
} 

else { 
i--i 
lcid=fonts[i] .idi II Get the local set ID for the font we aready have. 
} 

emphasis=empi II Save the emphasis in the current master. 
strcpy(currentFont,outlineFont) i II Put copy of font in current master. 
GpiSetCharSet(hps,lcid) i 

AttSet (&currentAttribs,ATT_FONT, &lcid) i 

return lcidi 

1******************************1 
1* Get a set ID for our font. *1 
1******************************1 

LISTING 4.3 (Continued). 



LONG FAR GetSetID(HPS hps) { 
#define MAXSETID 254L 
INT i; 
LONG lcid=GPI_ERROR; 
LONG count; 
BOOL retCode=FALSE; 
PLONG lcids=NULL; 
PLONG types; 
PSTR8 names; 
1************************************************1 
1* See if any local set IDs have been used yet. *1 
1************************************************1 
count=GpiQueryNumberSetIds(hps); 
if (count==O) 

return(lL) ; 
1***********************************1 
1* Find first unused local set ID. *1 
1***********************************1 
if (count l=GPI_ALTERROR) { 

lcids=malloc((SHORT) (16*count)); 
types=(PLONG) (lcids+count); 
names=(PSTR8) (types+count); 
if (lcids!=NULL) 

Fonts 147 

retCode=GpiQuerySetIds(hps,count,types,names,lcids); 
if (retCode) { 

for(lcid=l;lcid«MAXSETID+l) ;lcid++) { 
for(i=O; (i«INT)count) && (lcids[i] !=lcid) ;i++); 
if(i==(INT)count)break; 

if (lcid==MAXSETID+l)lcid=GPI_ERROR; 

free(lcids); 

return (lcid) ; 

1************************************1 
1* Set point size for outline font. *1 
1************************************1 
BOOL FAR SetPtSize(HPS hps,LONG lcid,LONG pointSize) { 

#define POINTSPERINCH 72L 
HDC hdc; 
BOOL retCode=FALSE; 
LONG yDevResFont; 
POINTL points[2]; 
LONG ySizeInPels; 
LONG ySizeInWC; 
SIZEF charBox; 
extern POINTL ptlTranslate; 
extern POINTL ptlDefault; 

II Origin for scroll translation. 
II Origin for printing. 

extern ULONG zoomFactor; 
retCode=GpiSetCharSet(hps,lcid) ; 
1*******************************************1 
1* Query current font vertical resolution. *1 
1*******************************************1 

LISTING 4.3 (Continued). 



148 Programming the OS/2 WARP Version 3 GPI 

hdc=GpiQueryDevice(hps); 
DevQueryCaps(hdc,CAPS_VERTICAL_FONT_RES,lL,&yDevResFont) ; 
/**********************************************************/ 
/* Calculate point size and convert to world coordinates. */ 
/**********************************************************/ 
ySizelnPels=((yDevResFont*pointSize)/POINTSPERINCH) ; 
points[O] .x=OL; 
points[O] .y=OL; 
points[l] .x=OL; 
points[l] .y=ySizelnPels; 
SetDefaultView(hps,l,ptlDefault); 
GpiConvert (hps,CVTC_DEVICE,CVTC_WORLD, 2L,points) 
SetDefaultView(hps,zoomFactor,ptlTranslate) ; 
ySizelnWC=points[l] .y-points[O] .y; 
/*********************************************************/ 
/* Set the font for the presentation space and make the */ 
/* width and height value type fixed. Then set char box. */ 
/*********************************************************/ 
charBox.cx=ySizelnWC*OxlOOOO; 
charBox.cy=ySizelnWC*OxlOOOO; 
retCode=GpiSetCharBox(hps,&charBox) ; 
return (retCode) ; 

LISTING 4.3 (Continued). 

Listing 4.3 actually has several routines which can all be found in 
FUNeS. C. To start with, however, let's look at the SelectFontDlgProc rou
tine. The SelectFontDlgProc routine is the routine that gets control and 
works with our font dialog box when the user selects the Fonts pull-down 
menu item. As you can see, the first thing this routine does when it needs to 
intialize the dialog box is to find out how many public fonts the system 
knows about. It does this by using the GpiQueryFonts function and specify
ing 0 for the number of fonts for which it wants metrics returned. After it 
knows how many public fonts are available, this routine allocates enough 
memory to contain all the metrics for all the public fonts and then queries 
again specifying the number returned. Once all font metrics are returned, 
this routine interrogates each font in the array. If the font is an outline font 
and does not have the special code page number 65400, the font facename is 
inserted in the dialog box list box. (Recall that a code page number of 65400 
indicates that the font has special symbols in it that don't map to other code 
pages.) After the font facename list box has been filled in, the list box is 
searched to find the current font. If the current font is found in the list box, 
then that facename is highlighted. If the current font is not found in the list 
box, then the first facename in the list box is highlighted. Note that the vari-



Fonts 149 

able currentFont is a global variable which is used throughout the graphic 
editor edit session. 

Once this dialog box font facename list box has been intialized, the font 
point size spin buttons and emphasis check boxes are intialized. These con
trols are initialized by other global variables named pointSize and emphasis, 
which also exist throughout the graphic editor edit session. Finally, the dia
log initialization process is finished by setting the focus to the dialog box 
font facename list box. 

Processing user actions within the font selection dialog box is very 
straightforward. In general, we look for the "newline" and "enter" key
strokes and treat them the same way we would process the "OK" button. The 
way we process the "OK" button is by first querying the different controls in 
the dialog box (font facename, point size, and emphasis) and setting the ap
propriate variables with the results. Once the control values are known, an
other function called addF ont is used to add the desired font facename and 
the requested emphasis attributes to an array of font descriptions. This array 
is maintained by the graphic editor program during the entire edit session. 
Notice that the addFont function also returns a local identifier. This local 
identifier is the one that has been assigned to the requested font description. 
After the addFont function returns, the local identifier and the requested 
point size are sent back to the main window procedure via a user-defined 
message named WM_FONT. As it turns out, when the main window proce
dure receives the WM_FONT message, it updates any of the currently selected 
text objects with this new font information and redraws them. Also, this font 
information is now the current font information so any new text objects will 
use this font description and point size. After the WM_FONT message re
turns, the font selection dialog box is dismissed and this routine is done. If 
the user would have pushed the cancel button, the font selection dialog 
would have simply been dismissed and no global variable would have been 
updated. 

Now let's look at the addFont function also found in Listing 4.3. As 
stated previously, the addFont function maintains an array of font facenames 
with a particular emphasis attributes for the graphic editor. Therefore, the 
first thing this function does when called is search the graphics editor font 
array to see if the requested font and emphasis already exist in the array. If 
the requested combination does exist in the graphic editor font array, the lo
cal identifier assigned to the font description (which is also saved in the ar-



150 Programming the OS/2 WARP Version 3 GPI 

ray) is fetched. If the requested font combination does not exist in the 
graphic editor font array, a function called getSetID (also shown in Listing 
4.3) is used to find an available local identifier for the graphic editor presen
tation space and the font information passed to the addFont function is used 
to set up the font attributes structure. The GpiCreateLogFont function is 
then used to assign a logical font description to the newly found local identi
fier. After the GpiCreateLogFont function returns, the font array is searched 
for the first empty record and the new font information is stored in it. Once a 
local identifer for the font and the font array has been updated as needed, the 
global variables named currentFont and emphasis are updated. Finally, the 
current font for the graphic editor presentation space is updated with the 
GpiSetCharSet function and the addFont function returns the local identifier 
for the new current font to the caller. 

The last function shown in Listing 4.3 that we haven't discussed yet is 
called setPtSize. The setPtSize function is used by the graphic editor when a 
text object is about to be drawn. This function insures that the request size of 
the font for a specified local identifier is set correctly. The first thing this 
function does is to insure the request font is also the current font by using the 
GpiSetCharSet function. The device's effective vertical font resolution is 
then found by using the DevQueryCaps function. Once the effective vertical 
font resolution is retrieved, the requested point size is calculated in device 
units. The GpiConvert function is then used to change the point size calcula
tion from device to world coordinate units. Finally, the point size is con
verted to FIXED by multiplying it by X' 10000' and this number is used as 
input to the GpiSetCharBox function. Notice that the character box width 
field is set to the same value as the height field. This is because the character 
box which represents the device's vertical and horizontal resolution are 
equal for outline fonts. After the GpiSetCharBox function returns, the char
acters displayed by the graphic editor will have the requested point size. 

Now, as it turns out, OS/2 gives you yet another way to find fonts! The 
way it does this is with a function called WinFontDlg that actually displays a 
standard font selection dialog box which, on return, has a font attribute stuc
ture all set up for you. Hence, all you need to do is use the GpiCreateLog
Font function with the font attribute structure returned. We chose not to use 
the WinFontDlg function in the graphic editor for two reasons. First, we 
wanted to have an example of how to query font metrics and then use some 
of this metric information to find a font. Second, we wanted more control 



Fonts 151 

over the point size than what appeared to be available with the WinFontDlg 
function. We did, however, use the WinFontDlg function in the generic 
Browse utility. A small code fragment where we use this function is shown 
in Listing 4.4. This code fragment came from BROWSE. C and is the proc
essing for the Font pull-down menu item in the Browse utility. 

As you can see by looking at Listing 4.4, the WinFontDlg function re
quires an address of a font dialog structure (FONTDLG) as an input parame
ter. This font dialog structure is a way for you to customize the way the font 
dialog will work, as well as the area where the font attribute data is returned. 
This structure is static in the Browse utility and is initialized only once on its 
first use. After the font dialog stucture's first use, the strucure is reused with 
whatever was left in it from the previous WinFontDlg call. On return from 
the WinFontDlg function, a test to see if the function completed successfully 
and if the user pushed the "OK" button is done. If the user did press "OK", a 
copy of the font attributes from the font dialog structure is made. If the "OK" 
button wasn't pressed, the font attributes from the last successful font selec
tion are used. Right before the GpiCreateLogFont is used, however, the cur
rent local identifier used for font selection is deleted and a new local 
identifier is found. (This is different from the graphic editor, which keeps an 
array of font information including local identifiers used for font descrip
tions.) The new font is then made the current font for the browse presenta
tion space by using the GpiSetCharSet function. Finally, if the new font is an 
outline font, the character box attribute is set so the size of the font will be 
what was selected by the user via the font dialog structure. The remainder of 
the pull-down menu item process sets variables used by other parts of the 
Browse utility to perform string and cursor placement in the client window. 
The WinlnvalidateRect function is then issued so the utility will redraw the 
client window area with the new font information. 

switch (msg) { 
/*********************************/ 
/* Process pull-down menu items. */ 
/*********************************/ 
case WM_COMMAND: 

switch (COMMANDMSG(&msg)->cmd) { 
/**********************************/ 
/* Process font pull-down option. */ 
/**********************************/ 
case IDM_BFONT: 
if(first) { 

LISTING 4.4 Browse utility font selection processing. 



152 Programming the OS/2 WARP Version 3 GPI 

memset(&fntDialog,O,sizeof(FONTDLG)); 
fntDialog.cbSize=sizeof(FONTDLG); 
fntDialog.fl=FNTS_HELPBUTTON I FNTS_CENTER; 
fntDialog.clrFore=CLR_BLACK; 
fntDialog.clrBack=SYSCLR_WINDOW; 

fntDialog.fxPointSize=MAKEFIXED(lO,O) ; 
fntDialog.hpsScreen=hpsBrowse; 
fntDialog.usWeight=5; 
fntDialog.usWidth=5; 
familyName [0] =0; 
fntDialog.pszFamilyname=familyName; 
fntDialog.usFamilyBufLen=FACESIZE; 
first=FALSE; 

hwndFontDlg=WinFontDlg(HWND_DESKTOP,hwnd,&fntDialog) ; 
if((hwndFontDlg) && (fntDialog.lReturn==DID_OK)) { 

memcpy(&fAttrs,&fntDialog.fAttrs,sizeof(FATTRS)) ; 

if(lcid<256)GpiDeleteSetId(hpsBrowse,lcid) ; 
lcid=GetSetID(hpsBrowse) ; 
GpiCreateLogFont(hpsBrowse,NULL,lcid,&fAttrs); 
GpiSetCharSet(hpsBrowse,lcid) ; 
if(fntDialog.fAttrs.fsFontUse==FATTR_FONTUSE_OUTLINE) 

1**************************1 
1* Set the character box. *1 
1**************************1 
sizefxCharBox.cx=fntDialog.lEmHeight*OxlOOOO; 
sizefxCharBox.cy=fntDialog.lEmHeight*OxlOOOO; 
GpiSetCharBox(hpsBrowse,&sizefxCharBox) ; 

GpiQueryFontMetrics(hpsBrowse, (LONG)sizeof(fm) ,&fm); 
xChar=(SHORT)fm.lMaxCharInc; II Set new font width. 
yChar=(SHORT)fm.lMaxBaselineExt; II Set new font height. 

WinSendMsg(hwnd,WM_SIZE, 
MPFROM2SHORT(cxnew,cynew) ,MPFROM2SHORT(cxnew,cynew)); 

WinInvalidateRect(hwnd,NULL,FALSE) ; 
return (MRESULT) TRUE; 

1**************************************1 
1* Default processing for WM_COMMAND. *1 
1**************************************1 
default: 

return WinDefWindowProc(hwnd,msg,mpl,mp2); 

LISTING 4.4 (Continued). 

We now know how to select fonts. We also know that there is a lot of 
data available about fonts that is supposed to help with character and string 
placement on the presentation page. So what OPI functions are available to 
help us manage the formatting of text output? As it turns out, there are only 
a few OPI functions that actually output text. But, because of all the text 
attributes, fonts, and font metric data, you can really do about anything 
imaginable with text. As you may recall from Chapter 3, text attributes al-



Fonts 153 

low you to do things like choose the direction in which text will be written, 
choose how the text will be aligned, choose shear lines, and so on. Hence, all 
of these text attributes will affect the way text is drawn with your chosen font 
when you use the GPI text output function. These GPI text output functions 
are called GpiCharString, GpiCharStringAt, GpiCharStringPos, and Gpi
CharStringPosAt. All of these GPI functions take a pointer to a character 
string that you want to output. The difference between the functions that end 
with At and those that don't is that the functions that end with At also pass the 
starting point for the string. The functions that don't end with At use the 
current position as their starting point. GpiCharString and GpiCharStringAt 
are fairly simple in the function they perform. These two functions simply 
write the text to the presentation page using the positioning and width infor
mation available for the current font and update the current position to the 
end of the string. GpiCharStringPos and GpiCharStingPosAt, however, can 
specify much more information about how the text string is to be drawn. In 
particular, the GpiCharStringPos and GpiCharStringPosAt functions also 
pass rectangle coordinate information, options information, and an array of 
character width data. How the options parameter is set will determine how 
the rectangle and width data is used. Following is a list of defined values 
available (which can be ORed together) to be used with the options parame
ter of the GpiCharStringPos and GpiCharStringPosAt functions: 

CHS_OPAQUE - This option specifies that the area defined by the rectangle 
coordinates is to be filled wih the background color before text is drawn. 

CHS_ VECTOR - This option specifies that width data supplied as a parame
ter is to be used. (By supplying width data, you have control over the charac
ter position within a text string.) 

CHS_LEAVEPOS - This option specifies that the current position is not 
altered by this function. If not specified, the current position will be up
dated to the end of the string. 

CHS_CLIP - This option specifies that the text is to be clipped to the 
rectangle. 

CHS_UNDERSCORE - This option specifies that the text is to be under
scored. 

CHS_STRIKEOUT - This option specifies that the text is to be overstruck. 

As you can see from the options available, you can do a lot more with 
these functions than you can with the GpiCharStringPos and GpiChar-



154 Programming the OS/2 WARP Version 3 GPI 

StringPosAt functions. The graphic editor only uses the GpiCharStringPos 
function to display its text objects. However, the graphic editor doesn't do 
this so it can use the rectangle features of the function; rather, the graphic 
editor uses the GpiCharStringPos function so it can provide kerning for fonts 
that can be kerned! Of course this begs the question, "How do you get width 
data for kerning?" Great question! The obvious answer, "The GPI!" To be 
much more specific, you use a function called GpiQueryKerningPairs. 
When you use the GpiQueryKerningPairs function, you supply the function 
with a pointer to a space where it is to place the kerning pair data. Of course, 
you have to insure the space is large enough to hold all the data, so you 
should query the font metrics beforehand to see how many kerning pairs ex
ist. The kerning pair data is returned as an array of structures named KER
NINGPAIRS. The KERNINGPAIRS structure has three fields named 
sFirstChar, sSecondChar, and IKerningAmount. As you may guess, 
sFirstChar is the first character of the pair, sSecondChar is the second char
acter of the pair, and IKerningAmount is the value added to the width data of 
the first character to adjust for kerning. And to find the width data for the 
current font, use the function called GpiQueryWidthsTable. The Gpi
QueryWidthsTable function is fairly straightforward. It will return an array 
of width values for the current font based on a starting code point and a 
length. 

To understand how you might use all of this width data and kerning pair 
information, look at Listing 4.5. Listing 4.5 shows the routine that is used by 
the graphic editor to retrieve width data for a given string. This routine can 
be found in the source part named FUNC S . C. As you can see, the first thing 
this routine does is query all the widths for the first 256 code points for the 
current code page. After the current font's widths have been retrieved, a 
function called GpiQueryFontMetrics is used to gather the font metrics for 
the current font. The current font is then tested to see if it has kerning pair 
data. If it does, this kerning pair data is also retreived. Now that all the width 
data has been collected, a widths array that reflects the widths of the charac
ter in the input string is built. If kerning is not available, this widths array is 
ready to be used by the GpiCharStringPos function. If kerning is available, 
however, each character in the string and its following adjacent character are 
tested to see if they match a kerning pair in the KERNINGP AIRS array. If 
matches are found, adjustments are made to the appropriate widths in the 



Fonts 155 

widths array and, as before, the string's widths array is now ready to be used 
by the GpiCharStringPos function. 

/************************************************/ 
/* Set width table and calculate string length. */ 
/************************************************/ 
void FAR SetWidthsTable(HPS hps,LONG *widths,CHAR *str) { 

FONTMETRICS fm; 
PKERNINGPAIRS pairs=NULL; 
LONG i,j; 
LONG widthTable[256]; 
/********************************************/ 
/* Get width table for all 256 code points. */ 
/********************************************/ 
GpiQueryWidthTable(hps,OL,256L,widthTable); 
/**************************************************/ 
/* Check for kerning font and get pair if needed. */ 
/**************************************************/ 
GpiQueryFontMetrics(hps, (LONG) sizeof (FONTMETRICS) ,&fm); 
if (fm.sKerningPairs){ 

pairs=malloc(fm.sKerningPairs*sizeof(KERNINGPAIRS)); 
GpiQueryKerningPairs(hps,fm.sKerningPairs,pairs) ; 

/***********************************************************/ 
/* Set widths for each character in string before kerning. */ 
/***********************************************************/ 
for(i=O;i«LONG)strlen(str);i++) 

widths[i]=widthTable[str[i]] ; 
/*************************************************/ 
/* Modify widths array with kerning adjustments. */ 
/*************************************************/ 
if (fm.sKerningPairs) { 

for(i=O;i«LONG)strlen(str);i++){ 
for(j=O;j<fm.sKerningPairs;j++) { 

if(str[i]==(UCHAR)pairs[j] .sFirstChar && 
str[i+l]==(UCHAR)pairs[j] .sSecondChar) { 
widths[i]+=pairs[j] .1KerningAmount; 
break; 

if(fm.sKerningPairs)free(pairs); // Free kerning values. 
return; 

LISTING 4.5 Draw program set widths table function. 

When the graphic editor outputs text, most of the text attributes are left at 
the default value. This is because the graphic editor uses only outline fonts 
and things such as shear and angle are accomplished through transforma
tions just like all the other objects you can draw. Also, because each individ
ual text string is treated as an independent object, we don't make much use of 



156 Programming the OS/2 WARP Version 3 GPI 

the font metrics available to help position the text. Look at BROWSE. C, 

however, and you can see more examples of how the font metrics are used to 
format text. This is because the Browse utility allows you to select from 
mutliple fonts and font sizes, and then formats the text to fit the confines of 
the browse window. Listing 4.6 shows some small code fragments from 
BROWSE. C that deal with formatting text for the Browse utility. 

As you can, when the browse window is created, the presentation page 
units are defined as pels. Note that, because we do no transformations be
tween world space and presentation page space in this Browse utility, we do 
not have to issue GpiConvert calls to convert units from pels to world space 
coordinates. After the presentation space is created, the Browse utility cre
ates somes semaphores that are used to coordinate drawing between a back
ground thread and the Browse utility window procedure. It then creates a 
default Courier font for the presentation space to use. If this default Courier 
logical font was not assigned to the browse presentation space, the default 
system monospaced font would be assigned to the presentation space. Once 
the logical font is assigned to the presentation space, the text alignment at
tribute is set so text strings will be drawn from the bottom-left point of the 
character cell and then font metrics are queried so we can set some global 
variables having to do with the font size. In particular, we save the font 
height and width information for later use. 

A key place and time that font height and width information are used is 
during the processing of the WM_SIZE message. When the WM_SIZE mes
sage is received, the number of text lines and columns that can be displayed 
in the window can be calculated. (Note that columns is calculated for the 
worst case situations [monospaced]). Therefore, proportional fonts will ap
pear to shift in the window even when there appears to be space to the right.) 
The number of text lines is merely the height of the client area divided by the 
font height. Because integer arithmetic is used, the possible fractional line is 
discarded. Then, because the Browse utility alway displays a status line at 
the bottom of the window, the number of text lines (rows) that can be dis
played in the window is adjusted. Column information for the window is 
calculated in a similar way as text lines, but we always insure that one more 
column of text can be displayed in the window than might actually fit. After 
row and column information have been calculated, the starting position for 
the top line of text in the window is calculated. This starting position is sim
ply the far left side of the window (0) and the height of the font subtracted 



Fonts 157 

from the height of the window. (This program does not make an adjustment 
for internal leading for the top row of text, but you could!) 

Whenever a user requests a new font and font size from the Fonts pull
down menu item for the Browse utility, the same basic steps are taken to 
recalculate the global variables just discussed. By looking at Listing 4.6, 
you can see how this is done. Earlier, we discussed how the Browse utility 
uses the Font Dialog function to acquire a new font. After the logical font 
has been created, however, you can also see that the new size is saved and the 
WM_SIZE message is invoked to recalculate row/column information. 

By looking at the WM_BUTTONIDONE message routine in Listing 4 .6, 
you can see how cursor placement is determined by the Browse utility. What 
makes cursor placement interesting is that you can't assume a simple 
monospaced font is used; hence, more careful calculation is needed. As you 
can see, the first thing done by the WM_BUTTONl DONE routine is to record 
the vertical and horizontal coordinates of the mouse. A copy of the starting 
point for the top line of text is then made so we can use it as a working refer
ence point for row/column calculations. After the text starting point has 
been copied, a count of the possible number of rows of text is determined for 
the current browse window. Now, by simply comparing the vertical mouse 
position with the vertical starting point to write text, we can see if the mouse 
pointer is in the current row of text. That is, if the vertical mouse position is 
less than the vertical position to write text, then we haven't found the row for 
the cursor. If we haven't found the row for the cursor, decrement the vertical 
position to write text by the height of the font and try again. We keep trying 
this procedure until we have determined the row in the window for which the 
cursor may apply. Once the possible row number for the cursor has been 
calculated, it is then checked to make sure it is on a possible line of text in the 
window. If the row number is larger than the number of possible lines of 
text in the window, the last line of text (count) is used. This row number is 
then used to calculate the line number in the text file to which the cursor will 
point ( cursorY). 

N ow that the line number to which the cursor is pointing is known, the 
line of text is copied out of the text buffer into a work area (pointed to by str). 
This line of text, however, is not just copied byte for byte. Instead, tabs are 
looked for in the string and are replaced by the appropriate number of blank 
characters. (This logic assumes tab stops are located at columns that are 
multiples of eight.) As the string is copied, the length of the string is also 



158 Programming the OS/2 WARP Version 3 GPI 

tracked and the ending carriage return is ignored. The length of the string is 
then adjusted by the current column number found on the left edge of the 
window. Furthermore, an index into the string which references the first 
character that would be found on the left edge of the window is set. Now 
that the visible portion of the string in the window is known, width informa
tion for this portion is retrieved so the correct column number can be deter
mined. This column calculation is done in a very similar way as determining 
the cursor row, but the string width data is used as an incrementor instead of 
the font width metric. After the relative column postion has been deter
mined, the starting absolute character postion within the text string is deter
mined. This absolute position is the cursor horizontal position (cursorX). 

In some cases, moving the cursor right will cause the window to scroll. 
For a proportional font, this scrolling may occur even if enough space ap
pears to exist on the right side of the physical cursor location. In those cases, 
the horizontal scroll message is activated and the window is repainted. 
When the window is repainted, the physical cursor will be set. In the case 
where no scrolling needs to occur, the physical cursor is set using the func
tion SetCursor which can also be found in BROWSE. c. We don't show 
BROWSE. C in Listing 4.6 because it is very similar in logic to what you've 
just seen and can be reviewed on your own. 

switch (msg) { 
case WM_CREATE: 

hdcBrowse=WinOpenWindowDC(hwnd); II Create window device context. 
sizl.cx=O; II Create Micro-PS. Keep as global. 
sizl.cy=O; 
hpsBrowse=GpiCreatePS(habBrowse,hdcBrowse,&sizl, 

PU_PELS t GPIT_MICRO t GPIA_ASSOC t GPIF_DEFAULT); 
1***************************************************************1 
1* Set semaphore before thread is created so it will wait *1 
1* right away. This semaphore is used by the backGroundPaint *1 
1* thread. *1 
/***************************************************** **********1 
DosCreateEventSem(NULL,&startPainting, 0, 0) ; 
DosCreateEventSem(NULL,&donePainting,O,O) ; 
1*******************1 
1* Create threads. *1 
1*******************1 
DosCreateThread(&tidBack,backGroundPaint,OUL,OUL, 8192) ; 
lcid=GetSetID(hpsBrowse) ; 
1**********************************1 
1* Set the attribute of the font. *1 
1**********************************1 

LISTING 4.6 Browse utility font draw routines. 



codePage=GpiQueryCp(hpsBrowse) ; 
fAttrs.usRecordLength=sizeof(FATTRS) ; 
fAttrs.fsSelection=O 
; fAttrs.1Match=OL; 
strcpy(fAttrs.szFacename,"Courier") ; 
fAttrs.idRegistry=O; 
fAttrs.usCodePage=codePage; 

fAttrs.1MaxBaselineExt=OL; 
fAttrs.1AveCharWidth=OL; 
fAttrs.fsType=Oi 
fAttrs.fsFontUse=O; 
1************************1 
1* Create logical font. *1 
1************************1 
fRet=GpiCreateLogFont(hpsBrowse,NULL,lcid,&fAttrs) ; 
GpiSetCharSet(hpsBrowse,lcid) ; 

Fonts 159 

first=TRUE; II Set flag for first font selection. 
1*************************************************************1 
1* Get scroll bar handles and current font size information. *1 
1*************************************************************1 
hwndTemp=WinQueryWindow(hwnd,QW_PARENT) ; 
hwndVScrol 1 =WinWindowFromID (hwndTemp,FID_VERTSCROLL) ; 
hwndHScroll=WinWindowFromID(hwndTemp,FID_HORZSCROLL) ; 
GpiSetTextAlignment(hpsBrowse,TA_LEFT,TA_BOTTOM) ; 
GpiQueryFontMetrics(hpsBrowse, (LONG)sizeof(fm),&fm); 
xChar=(SHORT)fm.1MaxCharlnc; II Set global variable font width. 
yChar=(SHORT)fm.1MaxBaselineExt; 

return 0; 
1*************************1 
1* Process size message. *1 
1*************************1 
case WM_SIZE: 

cynew=SHORT2FROMMP(mp2); 
cxnew=SHORTIFROMMP(mp2); 

II Set global variable font height. 

rows=(cynew/yChar); II Calculate number of row in window. 
rows=(rows>l) ? (rows-I) : 0; II Leave row for status line. 
cols=(cxnew/xChar)+I; II Calculate number of columns in window. 
ptTopLeft.x=O; II Calculate top left point to start drawing text. 
ptTopLeft.y=cynew-yChari 
1***************************************************************1 
1* Calculate line number, column number, and scroll bar sizes. *1 
1***************************************************************1 
scrollVMax=(curYPos>(lineCount-rows)) ? curYPos : (lineCount-rows); 
curYPos=(curYPos<scrollVMax) ? curYPos : scrollVMaxi 
scrollHMax=(curXPos>(maxWidth-cols)) ? curXPos : (maxWidth-cols); 
curXPos=(curXPos<scrollHMax) ? curXPos : scrollHMaxi 
WinSendMsg(hwndVScroll,SBM_SETTHUMBSIZE, 

MPFROM2SHORT(rows,lineCount), (MPARAM) (NULL)); 
WinSendMsg(hwndVScroll,SBM_SETSCROLLBAR, 

(MPARAM)MAKEULONG(curYPos,O) ,MPFROM2SHORT(0,scrollVMax)); 
WinEnableWindow(hwndVScroll,scrollVMax ? TRUE: FALSE) i 

WinSendMsg(hwndHScroll,SBM_SETTHUMBSIZE, 

LISTING 4.6 (Continued). 



160 Programming the OS/2 WARP Version 3 GPI 

MPFROM2SHORT(cols,maxWidth), (MPARAM) (NULL)); 
WinSendMsg(hwndHScroll,SBM_SETSCROLLBAR, 

(MPARAM)MAKEULONG(curXPos,O) ,MPFROM2SHORT(O,scrollHMax)); 
WinEnableWindow(hwndHScroll,scrollHMax ? TRUE: FALSE); 
return 0; 

/********************************/ 
/* Process mouse button 1 down. */ 
/********************************/ 
case WM_BUTTON1DOWN: 

x=MOUSEMSG(&msg)->x; // Convert to grid coordinate. 
y=MOUSEMSG(&msg)->y; 
ptPaint.x=ptTopLeft.x; 
ptPaint.y=ptTopLeft.y; 
/**************************************************************/ 
/* count is the number of rows of text in the current window. */ 
/**************************************************************/ 
count=( (lineCount-curYPos) <rows) ? (lineCount-curYPos) : rows; 
/****************************************************/ 
/* Find the row number from the top of window where */ 
/* mouse was clicked. (rowNum) */ 
/****************************************************/ 
rowNum=O; 
while( (LONG)y<ptPaint.y) { 

ptPaint.y-=yChar; 
rowNum++; 

/***********************************************************/ 
/* Set cursorY to the line number selected with the mouse. */ 
/***********************************************************/ 
if (rowNum<count)cursorY=curYPos+rowNum; 
else cursorY=curYPos+count-l; 
/********************************************/ 
/* Set the index to the line offsets array. */ 
/********************************************/ 
offsetlndex=*((PULONG)fileOffsets+(cursorY)) ; 
/********************************************************/ 
/* Calculate offset to text line in file buffer (temp). */ 
/********************************************************/ 
temp=bufferPtr+offsetlndex-baseOffset; 
str=stringout; // Set up pointer to work area for string copy. 
*str='\O' ; 
/******************************************************************/ 
/* Copy string and replace tab characters with up to eight spaces.*/ 
/******************************************************************/ 
for(length=O; (*temp!='\n') && (length<250 ) ;*temp++) { 

if(*temp=='\t') { 
blkCnt=8-(length%8) ; 
length=length+blkCnt; 
while (blkCnt>O){ 

*str++=' '. 
blkCnt--; 

LISTING 4.6 (Continued). 



else 
*str++ =*temp; 

length++; 

/****************************/ 
/* Remove carriage returns. */ 
/****************************/ 
if(*(str-l)==13)length--; 
* (str+length) =0; 

Fonts 161 

/**************************************************************/ 
/* Adjust length by current column found on window left edge. */ 
/**************************************************************/ 
if (length>curXPos) { 

hIndex=curXPos; 
length-=curXPos; 

else { 
hIndex=length; 
length=O; 

/*******************************************************************/ 
/* Get widths information for part of text string shown in window. */ 
/*******************************************************************/ 
SetWidthsTable (hpsBrowse,widthValues,widthTable, &strin gout [hIndex] , 

&strWidth) ; 
colNum=O; 
/**********************************************************/ 
/* Get the length of the text string found in the window. */ 
/**********************************************************/ 
horzCnt=strlen(&stringout[hIndex]) ; 

/******************************************************************/ 
/* Calculate the column number and position of character selected.*/ 
/******************************************************************/ 
while ( (ptPaint.x<x) && (colNum<horzCnt)) { 

ptPaint.x+=widthValues[colNum] ; 
colNum++; 

if (colNuml=O)colNum--; 
cursorX=curXPos+colNum; // Set X cursor position. 
/********************************************************/ 
/* See if window should be scrolled or just set cursor. */ 
/********************************************************/ 
if(cursorX>(curXPos+cols-2)) { 

curXPos=cursorX; 
WinSendMsg(hwndHScroll,SBM_SETPOS, (MPARAM) curXPos , NULL) ; 
WinInvalidateRect(hwnd,NULL,TRUE) ; 

else { 
offsetIndex=*((PULONG)fileOffsets+(cursorY)); 
temp=bufferPtr+offsetIndex-baseOffset; 
SetCursor(hwnd,temp) ; 

return (MRESULT) TRUE; 

LISTING 4.6 (Continued). 



162 Programming the OS/2 WARP Version 3 GPI 

/**************************/ 
/* Process paint message. */ 
/**************************/ 
case WM_PAINT: 

hpsBrowse=WinBeginPaint(hwnd,hpsBrowse,&rectPaint) ; 
filling=FALSE; 
DosWaitEventSem(donePainting,SEM_INDEFINITE_WAIT); 
DosResetEventSem(donePainting,&doneEventCount); 
WinFillRect(hpsBrowse,&rectPaint,CLR_BACKGROUND) ; 
gptPaint.x=ptTopLeft.x; 

gptPaint.y=ptTopLeft.y; 
/********************************************************/ 
/* Get the first line to display and the count of them */ 
/* to display. */ 
/********************************************************/ 
lineOut=curYPos; 
gCount=((lineCount-curYPos)<rows) ? (lineCount-curYPos) : rows; 
/**********************************************************/ 
/* Get the minimum and maximum file offset values needed. */ 
/**********************************************************/ 
minOffset=*((PULONG)fileOffsets+(lineOut)) ; 

if((lineOut+count+l)<lineCount) 
maxOffset=*((PULONG)fileOffsets+(lineOut+count+l)) ; 

else 
maxOffset=*((PULONG)fileOffsets+(lineCount-l)); 

/***********************************************/ 
/* If needed, read in new chunk of input file. */ 
/***********************************************/ 
if(minOffset<baseOffset I I maxOffset>(baseOffset+FILE_BUF_SIZE)) { 

if (minOffset<(FILE_BUF_SIZE/2) ) 
baseOffset=O; 

else 
baseOffset=minOffset-(FILE_BUF_SIZE/2) ; 

DosSetFilePtr (fileHandle,baseOffset,FILE_BEGIN, &local) ; 
DosRead(fileHandle,bufferPtr,FILE_BUF_SIZE,&bytesRead); 

/************************************************************/ 
/* Put cursor up here if it can be found within the window. */ 
/************************************************************/ 
gOffsetIndex=*((PULONG)fileOffsets+(cursorY)); 
gTemp=bufferPtr+gOffsetIndex-baseOffset; 
SetCursor(hwnd,gTemp); 
fi lling=TRUE ; 
DosPostEventSem(startPainting) ; 
WinEndPaint(hpsBrowse) ; 
return 0; 

/*********************************/ 
/* Process pull-down menu items. */ 
/*********************************/ 
case WM_COMMAND: 

switch (COMMANDMSG(&msg)->cmd){ 

LISTING 4.6 (Continued). 



1**********************************1 
1* Process font pull-down option. *1 
1**********************************1 
case IDM_BFONT: 

if(first){ 
memset(&fntDialog,O,sizeof(FONTDLG)) i 

fntDialog.cbSize=sizeof(FONTDLG) i 

fntDialog.fl=FNTS_HELPBUTTON I FNTS_CENTERi 
fntDialog.clrFore=CLR_BLACKi 
fntDialog.clrBack=SYSCLR_WINDOWi 

fntDialog.fxPointSize=MAKEFIXED(lO,O) i 

fntDialog.hpsScreen=hpsBrowsei 
fntDialog.usWeight=5i 
fntDialog.usWidth=5i 
familyName[O]=Oi 
fntDialog.pszFamilyname=familyNamei 
fntDialog.usFamilyBufLen=FACESIZEi 
first=FALSEi 

Fonts 163 

hwndFontDlg=WinFontDlg(HWND_DESKTOP,hwnd,&fntDialog) i 

if((hwndFontDlg) && (fntDialog.1Return==DID_OK)) { 
memcpy(&fAttrs,&fntDialog.fAttrs,sizeof(FATTRS) )i 

if (lcid<256)GpiDeleteSetId(hpsBrowse,lcid) i 

lcid=GetSetID(hpsBrowse) i 

GpiCreateLogFont(hpsBrowse,NULL,lcid,&fAttrs) i 

GpiSetCharSet (hpsBrowse, lcid) i 

if (fntDialog.fAttrs.fsFontUse==FATTR_FONTUSE_OUTLINE) 
1**************************1 
1* Set the character box. *1 
1**************************1 
sizefxCharBox.cx=fntDialog.1EmHeight*OxlOOOOi 
sizefxCharBox.cy=fntDialog.1EmHeight*OxlOOOOi 
GpiSetCharBox(hpsBrowse,&sizefxCharBox)i 

GpiQueryFontMetrics(hpsBrowse, (LONG)sizeof(fm) ,&fm) i 

xChar=(SHORT)fm.1MaxCharInci II Set new font width. 
yChar= (SHORT) fm.1MaxBaselineExti II Set new font height. 
WinSendMsg(hwnd,WM_SIZE, 

MPFROM2SHORT(cxnew,cynew) ,MPFROM2SHORT(cxnew,cynew))i 
WinInvalidateRect(hwnd,NULL,FALSE) i 

return(MRESULT)TRUEi 
1**************************************1 
1* Default processing for WM_COMMAND. *1 
1**************************************1 

default: 
return WinDefWindowProc(hwnd,msg,mpl,mp2) i 

1**********************************************1 
1* Background thread for drawing browse text. *1 
1**********************************************1 
VOID backGroundPaint(ULONG dummy) { 

LISTING 4.6 (Continued). 



164 Programming the OS/2 WARP Version 3 GPI 

LONG i; 
SHORT x,y,toggle; 
HAB habt; 
/*****************************************************************/ 
/* Get an anchor block handle so thread can access PM functions. */ 
/*****************************************************************/ 
habt=WinInitialize(O) ; 
for (;;) { 

DosPostEventSem(donePainting) ; 
/*********************************************/ 
/* Wait for main process to clear semaphore. */ 
/*********************************************/ 
DosWaitEventSem(startPainting,SEM_INDEFINITE_WAIT) ; 
/********************************/ 
/* Display full window of data. */ 
/********************************/ 
while((gCount--) && (filling)) { 

gOffsetIndex=*((PULONG)fileOffsets+(lineOut)) ; 
gTemp=bufferPtr+gOffsetIndex-baseOffset; 
gstr=stringout; 

*gstr='\O' ; 
/***************************************************/ 
/* Replace tab characters with up to eight spaces. */ 
/***************************************************/ 
for(gLength=O; (*gTemp!='\n') && (gLength<250 ); *gTemp++) { 

if(*gTemp=='\t') { 
gblkCnt=8-(gLength%8) ; 
gLength=gLength+gblkCnt; 
while (gblkCnt>O) { 

*gstr++=' '; gblkCnt--; 

else *gstr++ =*gTemp; 
gLength++; 

/****************************/ 
/* Remove carriage returns. */ 
/****************************/ 
if(*(gstr-l)==13)gLength--; 
if (gLength>curXPos){ 

hIndex=curXPos; 
gLength-=curXPos; 

else { 
hIndex=gLength; 
gLength=O; 

/*************************************************************/ 
/* Output (partial) line to window and update loop variables.*/ 
/*************************************************************/ 
SetWidthsTable(hpsBrowse,widthValues, 

widthTable,&stringout[hIndex] ,&gstrWidth); 

LISTING 4.6 (Continued). 



Fonts 165 

GpiMove(hpsBrowse,&gptPaint); 
GpiCharStringPos(hpsBrowse,NULL,CHS_VECTOR, 

(LONG) gLength, &stringout [hIndex] ,widthValues); 
gptPaint.y-=yChar; II Move down 1 row. 
lineOut++; II Increment to line offset. 

if (filling) { 
1*******************************1 
1* Output line count position. *1 
1*******************************1 
stringout[O]=O; 
strcat(stringout,"Line "); 

CvtInt((cursorY+l) ,&stringout[strlen(stringout)]); 
strcat(stringout," of "); 
CvtInt((lineCount) ,&stringout[strlen(stringout)]); 
strcat(stringout,", Column"); 
CvtInt((cursorX+l),&stringout[strlen(stringout)]); 
strcat(stringout,". "); 
strcat(stringout,pBrws->filename) ; 
GpiSetColor(hpsBrowse,CLR_RED) ; 
SetWidthsTable(hpsBrowse,widthValues, 

widthTable,&stringout[O] ,&gstrWidth); 
gptPaint.y=O; 

GpiMove(hpsBrowse,&gptPaint) ; 
GpiCharStringPos(hpsBrowse,NULL,CHS_VECTOR, 

(LONG)strlen(&stringout[O]) ,&stringout[O] ,widthValues); 

GpiSetColor(hpsBrowse,CLR_BLACK) ; 
DosResetEventSem(startPainting,&startEventCount) ; 

filling=FALSE; 

LISTING 4.6 (Continued). 

Finally, let's look at how the lines of text are drawn in the Browse utility. 
In the Overview chapter, we discussed how the WM_PAINT message routine 
is structured so it can interact with a background thread that actually draws 
the text in the browse window. (The WM_PAINT routine really just sets up 
some global variables used by the background thread and insures that the 
correct portion of text data is in a global data buffer before the background 
thread is unblocked to paint the window.) By looking at the background 
thread procedure in Listing 4.6, you can see that most of the logic you've 
seen already in other places. The variable named lineOut is the first line 
number that is to be displayed in the window. Hence, line Out is just an index 
into the data buffer that has the text to be displayed. The line of text refer
enced by lineOut is copied and adjusted for tabs and the visible portion of the 
string is calculated just as you saw in the WH_BUTTON1DOWN routine. Then 
width data is retrieved for this string and the text is displayed in the appropri-



166 Programming the OS/2 WARP Version 3 GPI 

ate row of the window. After the line of text is drawn, the line Out variable is 
incremented and the vertical position for the next line of text is adjusted so 
the next line of text can be drawn. This drawing of the next line of text loops 
until all lines for the window have been drawn or until the WM_P AINT rou
tine interrupts via the filling indicator. After all lines of text have been 
drawn, the status line which has the cursor row and column numbers and the 
number of lines found in the file being viewed is formatted and displayed at 
the very bottom left of the window. The backgound thread then allows the 
WM_P AINT routine to run again and waits for the next time it needs to 
redraw the screen with new information. 

As stated when we first started this chapter, drawing text in a graphical 
environment is more tedious than what you may be used to. But think about 
the possibilities and look at the results! 



CHAPTER 5 

Building Blocks 
of the GPI 

Earlier in this book when we were describing the viewing pipeline, we dis
cussed how an object could be created in world space and then used multiple 
times in model space using different transformations. When we discussed 
this, we didn't talk about how objects could actually be created or manipu
lated with the GPI, but rather the conceptual steps of picture construction. 
When you look at the drawing functions of the GPI (things like GpiLine, 
GpiCharStringAt, or GpiPartiaIArc), you may begin to wonder what consti
tutes an object. Is an object something like a line or a curve? Of course these 
are objects, but how can something more complex, like a drawing of a nut or 
a bolt, become an object? If we use the simple drawing functions without 
grouping them in some way, then working in this environment may seem 
like a real mess! What is needed is a way to group drawing commands so 
they can be used as a unit. The drawing commands needed to generate some
thing like a nut or a bolt coulc then be treated like a single object. Further
more, it would also be desirable to be able to edit these more complex 
objects. Therefore, once you create a complex object, you need a way to 
index or move through the object parts to make modifications. 

The OS/2 GPI allows this type of drawing control by providing a series 
of structures that relate to one another and a set of functions that allow you to 

167 



168 Programming the OS/2 WARP Version 3 GPI 

manipulate them. These structures are called orders, elements, and seg
ments. The way these structures relate to one another is in a hierarchy. More 
precisely, a segment contains elements and elements contain orders. The 
following sections of this chapter discuss these different structures in detail 
so you can better understand their value and how you might manipulate 
them. Finally, we have provided a feature in the graphic editor that comes 
with this book so you can examine the orders, elements, and segments that 
are generated by the editor. We will conclude this chapter by reviewing how 
this feature was implemented by our application. By doing this, you should 
gain some knowledge of what these structures are and how you can manipu
late them within your own program. 

ORDERS 

An order is the smallest unit or structure that defines a drawing primitive or 
attribute in a graphics segment. An example of a drawing primitive is Box at 
Given Position and an example of a drawing attribute is Set Background 
Color. The GPI has about 200 different orders and can be partially parsed by 
the following rules: 

1. The first byte of an order is the order code and determines the type 
and length of the order. 

2. If the order code is X'OO' or X'FF' this is a I-byte order (no data 
associated with the order.) As it turns out, X'OO' is a No-Operation order 
and X'FF' is an End of Symbol Definition order. 

3. If the order code is X' FE' this order is considered an extended order. 
The second byte of an extended order is the order qualifier which deter
mines the order function. The third and fourth bytes of an extended order 
determine the length of the order data associated with it. Note that the 
third byte is the most significant byte from this length pair. Following 
the fourth byte is the order data. An example of an extended order is 
X'FEBO', Character String Extended at Current Position. 

4. If the order code has the following bit configuration (OxxxxIxxxx) 
where x can be either 0 or 1, then the order is a 2-byte order. The second 



Building Blocks of the GPI 169 

byte in this situation is the order data. An example of a 2-byte order is 
X'7F', End Path. 

5. If the order code does not fall under one of the previous rules, it is 
considered a long order. The second byte of a long order determines the 
length of the order data associated with it. Following the second byte is 
the order data. An example of a long order is X' CO' , Box at Given Posi
tion. 

As stated before, these rules only give you partial parsing capability of 
orders. The obvious cool part of parsing orders is to be able to determine the 
function and the data associated with the orders. In most cases, this knowl
edge may not seem too exciting if you let the OS/2 GPI generate these orders 
for you. But if you get into debug mode, which seems to happen to us a lot, 
seeing and understanding this order data can be very enlightening. To see a 
complete definition of all the orders available, refer to an IBM technical ref
erence. Or, as you will soon see, our object viewing source code can be ex
amined to find all the orders we were aware of when writing this book. 

You can also generate order data from within your application (outside 
of the GPI draw functions) and have these orders drawn, saved to segment 
store, or both. To do this, you will need to understand the order data inti
mately and should therefore refer to an IBM technical reference. To transfer 
order data from your application memory to your presentation space, use the 
function called GpiPutData. If for some reason your order buffer does not 
contain a complete order, the GpiPutData function will not process the in
complete order and will return an offset of the incomplete order to your ap
plication so you can complete it for a subsequent put. If you would like to 
transfer order data from a graphic segment to application memory, use the 
function called GpiGetData. This function may also return a partial order. 
The graphic editor program that comes with this book uses neither of these 
functions. 

Note that as we developed the graphic editor for this book, the object 
parsing feature was one of the first features we completed. We then used the 
object viewer to assist us during the remainder of our development. This 
approach worked great for us. It is our hope that you can use this tool to see 
how we created objects with the graphic editor by using the GPI, but further
more, we believe you may find it worth while to use some of our parsing 
code to aid you in your application development. 



170 Programming the OS/2 WARP Version 3 GPI 

ELEMENTS 

An element is nothing more than a group of orders that is bracketed by a 
Begin Element order and an End Element order. Elements can not be con
tained within other elements. Therefore, there must be an End Element or
der between each Begin Element order in the order data stream. The purpose 
of elements is to allow you to index through groups of orders in a graphic 
segment for editing purposes. Shortly, we will discuss some OPI functions 
that allow you to edit elements, but first let's look at how elements are cre
ated. 

The easiest way to create an element is by using the OPI drawing func
tions. It turns out that many of the OPI drawing functions automatically 
bracket the orders they produce with the Begin and End element orders if 
you have not explicitly started an element. For instance, if you issue the 
OpiCallSegmentMatrix function, it will generate the following orders: 

1. Begin Element 

2. Push and Set Model Transform 

3. Call Segment 

4. Pop 

5. End Element 

Another way you may generate an element is by issuing a function called 
GpiBeginElement. After you issue this function, you can issue the series of 
OPI drawing functions that you would like to group. Finally, issue the func
tion called GpiEndElement to end the element. By producing the element in 
this way, the OPI drawing functions within the OpiBeginElement and 
OpiEndElement functions will not generate the begin/end element brackets 
like the method previously described. Hence, you can produce larger ele
ments or order groupings that are more meaningful to your application. 

Yet another function that lets you create elements is called GpiElement. 
The inputs to this function are the actual graphic orders you want to include 
in the element. Because nesting of elements is not allowed, you can not 
issue the OpiElement function within a OpiBeginElementlOpiEndElement 
bracket; and of course, the graphic orders you pass on this function should 
not include the begin or end element orders. 



Building Blocks of the GPI 171 

Finally, you could issue the GpiPutData function with all the graphic or
ders you want to place in segment store and include the begin and end ele
ment orders as part of this stream. But, as before, you must manage the 
placement of these begin and end element orders so there is no nesting. 

Now that you have seen the different ways for and rules of generating 
elements, let's look a little closer at the Begin Element order. The Begin 
Element order can have a type and description associated with it. When you 
let the GPI drawing functions automatically generate elements, they will 
also set the element type. The GPI functions usually use the graphic order 
code for the element type. When you generate the Begin Element order 
yourself, you must specify your own element type and description. This ele
ment type, however, it must be in the range ofX'81000000' -X'FFFFFFFF'. 
Element types outside this user-defined range are reserved by OS/2. The 
element description you assign is nothing more than descriptive text that you 
would like to have associated with the element. To determine the type and 
description of an existing element, use the GpiQueryElementType function. 
(You will see how this may be used later.) 

So, now that you know more about elements and the information associ
ated with them, what's the information good for? Obviously, to help identify 
the content of the element! And of course, the reason you would want to 
identify an element is so that you can edit it within the graphic segment. The 
OS/2 graphic environment provides two modes in which you can edit 
graphic segments. These are SEGEM_INSERT and SEGEM_REPLACE, 

which stand for element insert mode and element replace mode, respec
tively. (Insert edit mode is the default.) Note that the edit mode is not an 
attribute of a particular segment but of the presentation space. Furthermore, 
you can change the edit mode anytime you like with a function called 
GpiSetEditMode. If you want to know what the current edit mode is for a 
presentation space, use the function called GpiQueryEditMode. But before 
you can edit a graphic segment by replacing or inserting elements, you need 
a way to move through the graphic segment to locate the different elements. 
A feature called an element pointer is the mechanism that allows you to 
move from element to element within a graphic segment. To understand 
how the element point works, we must jump ahead a little bit to graphic seg
ments. 

When a graphic segment is opened with a function called GpiOpenSeg
ment, the element pointer is set to zero. If you want to add new elements to 



172 Programming the OS/2 WARP Version 3 GPI 

the segment, you must insure your edit mode is SEGEM_INSERT. Then 
position the element pointer right before the location at which you want to 
add the new element. The way you move the element pointer is with a 
function called GpiSetElementPointer or GpiOjJsetElementPointer. Gpi
SetElementPointer lets you set the element pointer to a specific location 
whereas GpiOffsetElementPointer lets you specify an offset from the cur
rent element pointer location. You can move the element pointer in both 
directions with these functions. If you specify an offset value that causes the 
element pointer to be out of range, the element pointer will be set to either 0 
or the last element depending on if the offset was negative or positive. Like
wise, if you specify an element pointer position with the GpiSet
ElementPointer function that is too large , the element pointer will be set to 
point to the last element in the graphic segment. Once you have located the 
element pointer correctly, you can then create the new element with any of 
the methods previously described except with GpiPutData. You can only 
use GpiPutData with the edit mode SEGEM_INSERT, but the element 
pointer must always be pointing at the last element in the segment. Hence, 
GpiPutData will only add elements to the end of a segment. Once you add an 
element, the element pointer is automatically incremented by 1. 

To understand the structure of orders and elements in a graphic segment, 
examine Figure 5.1. The before part of Figure 5.1 shows a representation of a 
graphic segment that has just been opened and contains three elements. No
tice that the element pointer is located at zero when the graphic segment is 
opened which doesn't really point to an element at all! The after part of 
Figure 5.1 shows a representation of adding a new element after element 2. 
To add this element, the element pointer was first positioned to element 2 
and then the element was inserted after element 2. Notice that after the ele
ment is added the element pointer is automatically incremented to point to 
the new element 3. 

It may seem odd to you that your element pointer is positioned to the 
element right before the insertion point instead of at the insertion point, but 
consider how a new segment is created! When you open a new segment with 
the same GpiOpenSegment function, the element pointer is still zero. Then, 
as you issue GPI drawing functions, the elements are automatically inserted 
in order using this auto-incrementing technique. Furthermore, the first ele
ment in a graphic segment is being pointed at when the element pointer is 



Building Blocks of the GPI 173 

Segment Before Element Insert 

Prolog Element 1 Element 2 Element 3 

t 
Segment After Element Insert (New Element) 

~~~. ~EI.:m~~--E-leme--nt-2~~~~~-E-lem-e-nt-4~ 

(3) 

FIGURE 5.1 Inserting an element in a graphic segment. 

one. Hence, when you add an element and the element pointer is set to zero, 
you are inserting the element at the very beginning of the segment. 

When using SEGEM_REPLACE mode, however, the rules are a little dif
ferent. When using replace mode, you position the element pointer to point 
at the element to be replaced. Therefore, using an element pointer of zero is 
invalid in replace mode. This also implies that when you open a new seg
ment, you must ensure the edit mode is SEGEM_INSERT. If the edit mode 
is not SEGEM_INSERT for a new segment, an error will occur on the first 
element you try to add. 

Now you can see how to move between elements in a graphic segment 
and how to add or replace elements; but unless we have intimate knowledge 
of the content of all elements, editing the segment may still seem very diffi
cult and tedious. There are a couple GPI functions, however, that help you 
find out the content of an element or quickly locate the element pointer to a 
particular variable location in a graphic segment. First, when you generated 
your element, a type and description were associated with the element. By 
using the function GpiQueryElementType that we mentioned earlier, you 
can quickly determine the element type and description so you can identify if 



174 Programming the OS/2 WARP Version 3 GPI 

it is an edit point. Second, you can put labels in your graphic segment with a 
function called GpiLabel. (A label turns out to be just a number or ID.) 
When you want to edit the graphic segment, you can use a function called 
GpiSetElementPointerAtLabel to position the element pointer at the label 
element you created. After the element pointer is at the label, you can use 
GpiOffsetElementPointer to reposition the element pointer as needed. Note 
that you can use the same label multiple times in a graphic segment. When 
you use the GpiSetElementPointerAtLabel function, it will set the element 
pointer to the first occurrence of the label from the elements pointer's cur
rent position. 

Besides adding or replacing elements, the GPI also has a set of functions 
that allow you to delete elements from a graphic segment. These functions 
are called GpiDeleteElement, GpiDeleteElementRange, and GpiDelete
ElementsBetweenLabels. As their function names imply, these functions al
low you to delete a single element, a range of elements, or all elements 
between two labels. 

If you want to see the order content of an element, you can use a function 
called GpiQueryElement. This function will return all the order data con
tained within the element (given that you provide a large enough buffer for 
the function). If you do not provide enough buffer space, as much of the 
element content is returned to you as possible. As you will see shortly, we 
use this function and many of the other element-related functions to provide 
the object viewing feature in our graphic editor. 

SEGMENTS 

When using Presentation Manager to display simple output to a display win
dow, it is common to just issue the GPI drawing functions to interactively 
update the window. This works great for simple applications, but when you 
want to produce more complex drawings that you may want to manipulate, 
this doesn't work so well. Your first reaction to fix this situation may be to 
maintain your own list of drawing functions that you can update when neces
sary and then redraw. This technique may work well for you, but the GPI has 
a feature called retained graphics which is designed to help with just this 
situation. At the center of retained graphics is the notion of graphic seg
ments and segment store. 



Building Blocks of the GPI 175 

So far, we've talked a lot about a graphic segment as a container of ele
ments and orders, and we've started showing how graphic segments allow 
you to edit your drawing. However, we haven't really talked about how 
graphic segments come in to existence. After all, it is quite possible you 
have been using Presentation Manager for some time and have never created 
a single graphic segment. As mentioned in the overview, before you can use 
retained graphics (hence graphic segments), you must create a normal pres
entation space. Once you have a normal presentation space, you are just 
about ready to start using retained graphics and create graphic segments if 
you want to. As mentioned in the previous section, to create a new graphic 
segment or edit an existing one, you use a function called GpiOpenSegment. 
To end a graphic segment you've started, use a function called GpiCloseSeg
ment. Too easy! But before a graphic segment is really created, you must 
make sure your drawing mode is set correctly. 

By default, Presentation Manager will set the drawing mode of your 
presentation space to DM_DRAW when it is created. A drawing mode of 
DM_DRAW informs the GPI to route output to the associated device and not to 
segment store. It turns out, however, that opening a graphic segment and 
using GPI drawing functions while in DM_DRAW mode is a legal and useful 
thing to do. The graphic segment in this case is called a nonretained graphic 
segment. The usefulness of a nonretained graphic segment is that it will in
itialize primitive attributes just like a retained segment, as well as set and 
reset the view transform matrix just like a retained graphic segment. Fur
thermore, these nonretained graphic segments can be recorded in a MetaFile 
just like retained graphic segments (MetaFiles are discussed later in this 
book). Finally, if you want to convert these nonretained graphic segments to 
retained graphic segments, it's easy to do. 

To have graphic drawing information saved in an opened graphic seg
ment, you must set the drawing mode of the presentation space to DM_RE

TAIN or DM_DRAWANDRETAIN. If you use the DM_RETAIN drawing 
mode, the output is directed only to segment store and not to an associated 
output device. For this reason, you can use the DM_RETAIN drawing mode 
and not even have a device context associated with the presentation space. 
Also, if you want to edit a graphics segment, you must use the DM_RETAIN 

drawing mode. If you use the drawing mode DM_DRAWANDRETAIN, the 
output is directed to both the associated output device and segment store. 
This mode allows you to create new graphic segments; but, you can not edit 



176 Programming the OS/2 WARP Version 3 GPI 

an existing graphic segment while using this mode. When editing unchained 
segments, you are only allowed to use a draw mode of DM_RETAIN. 

To set the drawing mode for a presentation space, you can use a function 
called GpiSetDrawingMode. If you want to query which mode is currently 
active for the presentation space, you can use a function called Gpi
QueryDrawingMode. Before you create or edit a graphic segment, however, 
you need to be aware of the attributes associated with the segment. These 
graphic segment attributes are key in how the graphic segments can be used 
during picture construction and also how you can interact with your drawing 
for editing purposes. Following is a list of all the attributes that can be asso
ciated with a graphic segment and a brief description of their use: 

ATTR_ CHAINED - This segment attribute determines if the segment should 
be added to the presentation space segment chain. Therefore, as you create 
graphic segments with this attribute on, the segments are added to a segment 
list or chain. When the chain is drawn, the segments are drawn in the order in 
which they exist in the chain; hence, graphic segments have priority. Also 
implied by this attribute, graphic segments do not have to be part of the pres
entation space segment chain. An unchained graphic segment, however, 
can be drawn explicitly or called from within another graphic segment. The 
default value for this segment attribute is on. 

ATTR_FASTCHAIN - This segment attribute is used to prevent the GPI 
from resetting primitive attributes before it draws each segment in the pres
entation space segment chain. This implies a performance improvement, 
but you must be careful to set the primitive attributes to the desired state be
fore the chain is drawn. The default value for this segment attribute is on. 

ATTR_DETECTABLE - This segment attribute allows your application to 
perform correlation operations with the segment. Correlation is a feature 
that lets you identify drawing primitives that intersect a special region of an 
area called a pick aperture. Correlation and how it is used is discussed later 
in this book. The default setting for this segment attribute is off. 

ATTR_PROP _DETECTABLE - This segment attribute will propagate its 
ATTR_DETECTABLE value to segments that it calls. Hence, if the segment 
is set up for correlation, the graphic segments it calls will also be set up for 
correlation. The default value for this segment attribute is on. 



Building Blocks of the GPI 177 

ATTR_ VISIBLE - This segment attribute allows the segment drawing 
primitives to generate output on the attached device. The default value for 
this segment attribute is on. 

ATTR_PROP _VISIBLE - This segment attribute will propagate its 
ATTR_ VI SIBLE value to segments that it calls. The default value for this 
segment attribute is on. 

ATTR_DYNAMIC - This segment attribute applies to chained segments and 
is used to inform the GPI to generate the segment output using the XOR ras
ter operation. Note that the XOR raster operation is commonly used to move 
objects around within in a window without affecting the reset of the drawing. 
Hence, like the ATTR_DETECTABLE segment attribute, this attribute is de
signed to help you during the interactive editing of a drawing. The default 
value for this segment attribute is off. 

Just reading about the graphic segment attributes probably gives you a 
lot of insight as to what you can do with segments. However, before we 
discuss how graphic segments can be used and how they relate to each other, 
let's see how we can query-and-set the segment attributes. To query how an 
attribute will be set when a graphic segment is first created, you can use a 
function called GpiQuerylnitialSegmentAttrs. If you want to change the in
itial value of a graphic segment attribute for when new segments are created, 
you can use a function called GpiSetlnitialSegmentAttrs. These two func
tions only deal with segment attributes for newly created graphic segments. 
If you want to query or change an attribute of an existing graphic segment, 
you can use the functions called GpiQuerySegmentAttr and GpiSetSegmen
tAttrs. All of these query-and-set segment attribute functions only operate 
on one segment attribute at a time. 

Now let's look a little closer at what it means when a graphic segment is 
chained. If the ATTR_CHAINED segment attribute is on, newly created 
graphic segments are appended to the presentation space segment chain. (A 
graphic segment which is chained is sometimes called a root segment.) The 
GPI has functions that allow you to draw all or part of the presentation space 
segment chain. When all or part of the segment chain is drawn, it is done in 
the same order as the segments are found in the chain. Therefore, the last 
graphic segment in the segment chain has the highest priority. This may 
seem backward at first, but the last object drawn with the GPI will appear on 
top of the picture. 



178 Programming the OS/2 WARP Version 3 GPI 

To draw the entire presentation space segment chain, you can use a func
tion called GpiDrawChain. If you want to draw a range of root segments, 
you can use the function called GpiDrawFrom. Note that the GpiDrawFrom 
function specifies a range of segment IDs and not the relative location of 
segments in the chain. Furthermore, note that segment IDs must be unique 
and do not imply segment priority. Graphic segment ID values can be 
placed in any order you want in the segment chain. If you want to draw a 
particular graphic segment no matter if it is chained or not, you can use a 
function called GpiDrawSegment. 

Because the order of the graphic segments found in the segment chain 
makes a difference in how the picture is construction, care must be taken in 
how the segment chain is constructed. The GPI does have functions, how
ever, that allow you to interrogate segment IDs and change the priority of the 
segments in the segment chain. (This ought to give you a big clue as to how 
we implemented the "Front", "Back", "Forward 1", and "Backward 1" fea
tures in the graphic editor!) To query the graphic segment IDs in a range, 
you can use a function called GpiQuerySegmentNames. Again, this range is 
of segment IDs and not relative locations in the segment chain. Further
more, the GpiQuerySegmentNames function returns both chained and un
chained segment IDs. Nonretained graphic segments, however, are not 
returned by the GpiQuerySegmentNames function. To sort out the priority 
of segments in the segment chain, you can use a function called Gpi
QuerySegmentPriority. This function works only for chained segments. 
However, you may use this function to test if a graphic segment is in the 
segment chain by testing the error returned. Finally, you can use a function 
called GpiSetSegmentPriority to change the priority of a segment in the seg
ment chain. You can also use the GpiSetSegmentPriority function to add an 
unchained graphic segment to the segment chain! 

To use the GpiQuerySegmentPriority function, you must provide a ref
erence graphic segment ID and a value (LOWER_PRIor HIGHER_PRI) to 
indicate which neighboring segment ID you want returned. If you end up 
querying for either the next lowest or the next highest graphic segment ID 
and it doesn't exist, a value of 0 is returned. This implies that the reference 
ID that you were using is the lowest or highest priority graphic segment ID in 
the chain. The GpiSetSegm~ntPriority function works in a similar way, but 
you must also supply the graphic segment ID for which you want to change 
priority. If you specify a value of LOWER_PRI for the GpiSetSeg-



Building Blocks of the GPI 179 

mentPriority function, the graphic segment will be placed in the graphic seg
ment chain one position lower in priority than the reference segment ID. 
Likewise, if you specify a value of HIGHER_PRI for the GpiSetSeg
mentPriority function, the graphic segment will be placed in the graphic seg
ment chain one position higher in priority than the reference segment ID. 

Maybe you've already guessed, but graphic segments that are not 
chained can be drawn directly from your application, called by other graphic 
segments, or called directly from your application. We've already seen how 
the GpiDrawSegment can be used to draw any chained or unchained seg
ment on demand. But the function called GpiCallSegmentMatrix lets us call 
a graphic segment, provide a transformation to apply to that graphic seg
ment, and then have that graphic segment return control after its completion; 
of course, a called graphic segment can call other graphic segments. Cool! 
Now you can begin to see how you can create one object and apply it several 
times to your picture! 

To help visualize how chained and unchained graphic segments can re
late to each other, look at Figure 5.2. As you can see by this example, the 

Root 
Segments 

GpiDrawChain 

23 104 

2 

15 

GpiDrawFrom 
I GpiDrawSegment 

I I 

3 67 68 

75 42 

69 

FIGURE 5.2 Chained and unchained graphic segments. 

5 



180 Programming the OS/2 WARP Version 3 GPI 

root or chained graphic segment IDs do not have to be in any particular or
der. When a GpiDrawChain function is issued, the lowest priority chained 
graphic segment starts to draw and all other root segments and their call seg
ments are drawn in order until the highest priority graphic segment is drawn. 
Hence, in our example, the segment drawing order for the GpiDrawChain 
function is 23,104,2,15,3,67,75,15,68,42,69, and 5. When a GpiDrawSeg
ment function is issued, the graphic segment specified and all the graphic 
segments it calls are drawn. Therefore, the order of graphics segments 
drawn in our example when you issue the GpiDrawSegment function is 
67,75, and 15. Lastly, when a GpiDrawFrom function is issued, a subset of 
the seglnent chain is drawn. For our example, the order the segments are 
drawn in is 3,67,75, 15, 68, 42, and 69. 

Another segment attribute you may want to use if you are interactively 
editing graphic segments is the AT TR_DYNAM I C attribute. This attribute is 
used by root or chained segments. If a graphic segment has the ATTR_DY -

NAMI C attribute on, it is considered a dynamic segment. When you have 
graphic segments that are dynamic, you can issue a function called 
GpiDraw Dynamics which will draw a specified range of dynamic segments 
on top of the normal picture. The range of graphic segment IDs is defined by 
start and end graphic segment IDs that exist in your presentation space's seg
ment chain. This range may include non-dynamic graphic segments; how
ever, only dynamic graphic segments and the graphic segments they call are 
drawn. When the dynamic graphic segments are drawn with the GpiDraw
Dynamics function, the foreground mix is set to FM_XOR and the back
ground mix is set to BM_LEAVEALONE. These mix attributes are set this 
way so when you use a function called GpiRemoveDynamics, the dynamic 
segments will appear to be erased from the picture without disturbing the 
original picture. Therefore, if you want to let a user interactively move some 
objects in a picture, you could set the root segments to be dynamic. Then 
you would use GpiDrawDynamics to bring the objects to the top of the nor
mal picture. When the user starts a move operation via mouse movement, 
you would issue the GpiRemoveDynamics function, edit the dynamic seg
ments to relocate the objects, and then use the GpiDrawDynamics function 
to redisplay the objects in the new location. You would repeat removing and 
redrawing to dynamic graphic segments until the user has indicated that a 
new permanent location has been found. Finally, you would issue one final 
GpiRemoveDynamics function to remove the objects from the top of the pic-



Building Blocks of the GPI 181 

ture and redraw the segment chain. You have just interactively moved some 
objects! 

When you use the GpiDrawDynamics function to draw a set of objects 
on top of the normal picture, you must take care to erase the objects with 
GpiRemoveDynamics function before you edit your graphic segments or 
use other draw functions on your presentation space. If you do not do this, 
the normal picture may appear disturbed until you erase and redraw your 
normal picture. Also, for better draw performance, it helps to have the dy
namic graphic segments located as early in the chain as possible. As it turns 
out, we chose not to use dynamic graphic segments in our graphic editor be
cause of how we use our own list structures. The technique we use to move 
objects is similar to that done with dynamic segments but our program logic 
manages the drawing of the mix attributes and segments. You may, how
ever, find using dynamic graphic segments is an excellent design choice for 
your project. 

From your previous experience programming Presentation Manager, 
you should already know that any intensive drawing activity should not be 
done in your main window procedure. This is because drawing complex 
items can be time consuming and you still need to service your main window 
procedure's message queue for real time events. If you don't do this, your 
application and OS/2 can appear to be sluggish and nonresponsive. Hence, 
drawing complex items in a background thread is a desirable design. In 
many cases, drawing the segment chain would be considered a time consum
ing task and should not be done in a window procedure's thread of execu
tion. Because of OS/2' s multithreaded capability, drawing the segment 
chain in a background thread is easy to do. 

When drawing the segment chain in a background thread, you may find 
it desirable to interrupt the drawing so you can direct other operations to your 
presentation space. (Even though a presentation space can be shared by mul
tiple threads, only one operation can be issued to the presentation space at a 
time.) A function call GpiSetStopDraw is designed just for this purpose. 
The GpiSetStopDraw function will cause the GpiDrawChain, GpiDraw
Dynamics, GpiDrawFrom, GpiDrawSegment, GpiPlayMetaFile, and 
GpiPutData functions to stop their current drawing operation to a presenta
tion space if a value of SDW_ON is used as an input parameter. Once the 
GpiSetStopDraw function returns, issue the function again with a value of 
SDW_OFF, so future draw segment chain operations will work. One last 



182 Programming the OS/2 WARP Version 3 GPI 

neat feature about the GpiSetStopDraw function is that if the GPI function 
that was interrupted was GpiDrawDynamics, the next GpiRemoveDyn
amics function will only erase the parts of the dynamic segments that were 
actually completed! 

Well, from the description and rules we've just given, you should have a 
good idea of what graphic segments are and the type of things you can do 
with them. But like almost everything else in our world, there are exceptions 
to the rules. In the case of graphic segments, the rules are broken if the 
graphic segment ID is O! 

Unlike other graphic segments that must have a unique segment ID, you 
can have multiple graphic segments with an ID of 0 in your presentation 
space. A graphic segments with an ID of 0, however, can not be edited. 
Therefore, if you open a graphics segment with an ID of 0, you are actually 
creating a new instance of a graphic segment that will have an ID of o. Fol
lowing is a list of additional rules that apply to graphic segments with an ID 
of 0: 

• A graphic segment with an ID of 0 must be a root or chained segment. 

• Graphic segments with an ID of 0 cannot have their segment transform 
set or queried or their segment attributes set or queried. 

• You can not use a graphics segment ID of 0 as an input parameter to the 
GpiDrawSegment or GpiDrawFrom functions. If graphic segments with 
an ID of 0 are found within the specified range for these GPI functions, 
however, they will be drawn and will contribute to boundary informa
tion. (Boundary accumulation is discussed later in this book.) 

• You can not query or change the priority of a graphic segment with an ID 
ofO. 

• Graphic segments with an ID of 0 will not participate in correlation op
erations. (Correlation is discussed later in this book.) 

You may find that working with graphic segments that have an ID of 0 is 
not particularly useful, but you should be aware of their existence and rules. 
The graphic editor that comes with this book does not generate graphic seg
ments with IDs of O. One place where you may see graphic segments with 
IDs of 0, however, is in a MetaFile. (OS/2 MetaFiles are described later in 
this book.) This is because when a MetaFile is being created or recorded, 



Building Blocks of the GPI 183 

any drawing done outside of a graphic segment is automatically placed in a 
segment with an ID of 0 for the MetaFile. 

The OS/2 GPI also has controls to help you manage drawing with 
graphic segments, as well as to aid you with interactive editing of retained 
graphics. These draw controls are maintained by your presentation space 
and can be queried with a function called GpiQueryDrawControl and can be 
set with a function called GpiSetDrawControl. The values for these draw 
controls are actually Boolean values and you can use the values DCTL_ON 
and DCTL_OFF when working with the different controls. Because these 
controls are maintained by the presentation space, they are given default val
ues when the presentation space is created. Following is a list of the different 
draw controls available to your application and a brief description of how 
you may use each control: 

DCTL_ERASE - When this control is on, an implicit erase of the presenta
tion space is done before any GpiDrawSegment, GpiDrawFrom, or 
GpiDrawChain function is performed. The default state for this draw con
trol is DCTL_OFF. 

DCTL_DYNAMIC - When this control is on, the GPI automatically performs 
a GpiRemoveDynamics function before retained output is drawn and then 
automatically performs a GpiDrawDynamics after retained output is drawn. 
Hence, this control helps manage the drawing of dynamic segments when 
drawing normal retained output. The default state for this draw control is 
DCTL_OFF. 

DCTL_DISPLAY - When this control is on, the GPI will generate output on 
the device specified by the device context. If the presentation space is not 
associated with a device context or if this draw control is off, then no output 
is generated. The default state for this draw control is DCTL_ON. 

DCTL_CORRELATE - When this control is on, the GPI will perform corre
lation on any primitive or output generated with GpiElement or GpiPutData. 
(Correlation is discussed later in this book.) The default state for this draw 
control is DCTL_OFF. 

DCTL_BOUNDARY - When this control is on, the GPI will accumulate 
boundary data and calculate the smallest rectangular area that would contain 
output generated via retained drawing. (Boundary accumulation is dis
cussed later in this book. You might have guessed that boundary accumula
tion is used by our graphic editor to produce the dashed rectangle around 



184 Programming the OS/2 WARP Version 3 GPI 

selected objects or groups!) The default state for this draw control is 
DCTL_OFF. 

Now that you have some background on what orders, elements, and 
graphic segments are, it's time to see how these structures apply in an exam
ple situation. Normally, a book of this type would just give a hypothetical 
example of how these structured are used to produce a drawing. In fact, our 
book will show example fragments of these structures as well. Our exam
ples are different in that they were produced using part of the graphic editor 
provided with this book. Therefore, you can create your own example ob
jects with our graphic editor and then interactively see what orders, ele
ments, and segments were used to produce the actual output. Besides using 
the object viewer feature of the graphic editor to show you how orders, ele
ments, and graphic segment structures work, we will also discuss how the 
object viewer was implemented. By reviewing the implementation of the 
object viewer, you will see many of the GPI functions discussed in this chap
ter in actual use. You will also develop a stronger understanding of how 
these structures relate to one another. 

GRAPHIC EDITOR OBJECT VIEWER 

When using the graphic editor that comes with this book, you can interac
tively view how selected objects in the picture are generated with the object 
viewer. To activate the object viewer, all you need to do is select the "View 
Selected Objects" menu item under the "File" pull-down menu. If you do 
not have any objects selected when this menu item is used, then all graphic 
segment data for the graphic editor presentation space is displayed in the 
Browse utility window. What is actually displayed in the Browse utility 
window when using the object viewer is a text file named WILEY. SEG. 

This file contains a description of all the graphic segments that were used to 
generate the selected objects. (In the case of no objects being selected, all 
the graphic segments known to the presentation space are displayed.) 
Screen 5.1 shows an example of what you would see if you used the object 
viewer. In this example, the graphic editor was used to produce a line and 
an ellipse, but neither of these objects was selected when the object view 
menu item was used. Because no objects were selected, all objects in for the 



7:12:12.69 

Segment ID: OOOOOOOlx 
*Element Nun:ber: 1 

Element typQ -> 00000007x 

Push and set rrodel tra:nsfonn - order 64x. 
Concatenate before. 
Load mask -> CCOCx. 
Matrix values. 

1.0000 0.0000 0 

1 of 203, Colunn 1. WILEY.SID 

SCREEN 5.1 Object viewer. 

Building Blocks of the GPI 185 

graphic editor presentation space are displayed in the Browse utility win
dow. Listing 5.1 shows the complete output produced by using the object 
viewer for the drawing shown in Screen 5.1. 

GRAPHIC SEGMENTS LISTING. Date and Time 10/22/1994 7:12:12.69 
Parsing Segment ID: OOOOOOOlx 

*Element Number: 1 
Element type -> 00000007x 
Push and set model transform - order 64x. 

Concatenate before. 
Load mask -> CCOCx. 
Matrix values. 
1.0000 0.0000 0 
0.0000 
o 

1.0000 
o 

o 
1 

Call Segment - order 07x. 
Segment name -> 4. 

Pop - order 3Fx. 

LISTING 5.1 Sample object viewer output. 



186 Programming the OS/2 WARP Version 3 GPI 

*Element Number: 2 
Element type -> 00000007x 
Push and set model transform - order 64x. 

Concatenate before. 
Load mask -> CCOCx. 
Matrix values. 
1.0000 0.0000 0 
0.0000 
o 

1.0000 
o 

Call Segment - order 07x. 
Segment name -> 5. 

Pop - order 3Fx. 

Parsing Segment ID: 00000002x 
Parsing Segment ID: 00000003x 
Parsing Segment ID: 00000004x* 

Element Number: 1 
Element type -> 00000023x 

o 
1 

Push and set pick identifier - order 23x. 
pick identifier -> O. 

*Element Number: 2 
Element type -> 00000001x 
Comment - order 01x. 
*Element Number: 3 
Element type -> 00000001x 
Comment - order 01x. 

Line 
*Element Number: 4 
Element type -> 81000000x 
Attributes 
Push and set individual attribute - order 54x. 

Attribute type -> color. 
Primitive type -> line. 
Set individual attribute. 
Use value directly. 
Attribute value -> 010000. 

Push and set stroke line width - order 55x. 
Set to value. 
Stroke width value -> o. 

Push and set line type - order 58x. 
Line type -> solid line. 

Push and set individual attribute - order 54x. 
Attribute type -> color. 
Primitive type -> character. 
Set individual attribute. 
Use value directly. 
Attribute value -> 010000. 

Push and set character set - order 78x. 
Local identifier for character set -> 2. 

Push and set character cell - order 03x. 
X part of character cell-size attribute -> 24. 
Y part of character cell-size attribute -> 24. 
Fractional X part of character cell-size attribute -> o. 

LISTING 5.1 (Continued). 



Building Blocks of the GPI 187 

Fractional Y part of character cell-size attribute -> O. 
A cell size of 0 sets to O. 

Push and set individual attribute - order 54x. 
Attribute type -> color. 
Primitive type -> pattern. 
Set individual attribute. 
Use value directly. 
Attribute value -> 020000. 

Push and set pattern symbol - order 09x. 
Value for pattern-symbol attribute -> 10. 
Solid shading. 
*Element Number: 5 
Element type -> 00000064x 

Push and set model transform - order 64x. 
Concatenate before. 
Load mask -> CCOCx. 
Matrix values. 
1.0000 
0.0000 
19 

0.0000 
1.0000 

36 1 
*Element Number: 6 
Element type -> 81000000x 

Drawing Details 

o 
o 

Push and set pick identifier - order 23x. 
pick identifier -> 1. 

Set current position - order 21x. 
position -> [0, 0]. 

Lines starting at current position - order 81x. 
Line points. [104, 125] 

parsing Segment ID: 00000005x 
*Element Number: 1 
Element type -> 00000023x 
Push and set pick identifier - order 23x. 

pick identifier -> O. 
*Element Number: 2 
Element type -> 00000001x 
Comment - order 01x. 

*Element Number: 3 
Element type -> 00000001x 
Comment - order 01x. 

Ellipse 
*Element Number: 4 
Element type -> 81000000x 

Attributes 
Push and set individual attribute - order 54x. 

Attribute type -> color. 
Primitive type -> line. 
Set individual attribute. 
Use value directly. 
Attribute value -> 010000. 

Push and set stroke line width - order 55x. 
Set to value. 

LISTING 5.1 (Continued). 



188 Programming the OS/2 WARP Version 3 GPI 

Stroke width value -> O. 
Push and set line type - order 58x. 

Line type -> solid line. 
Push and set individual attribute - order 54x. 
Attribute type -> color. 
Primitive type -> character. 
Set individual attribute. 
Use value directly. 
Attribute value -> 010000. 

Push and set character set - order 78x. 
Local identifier for character set -> 2. 

Push and set character cell - order 03x. 
X part of character cell-size attribute -> 24. 
Y part of character cell-size attribute -> 24. 
Fractional X part of character cell-size attribute -> O. 
Fractional Y part of character cell-size attribute -> O. 
A cell size of 0 sets to O. 

Push and set individual attribute - order 54x. 
Attribute type -> color. 
Primitive type -> pattern. 
Set individual attribute. 
Use value directly. 
Attribute value -> 020000. 

Push and set pattern symbol - order 09x. 
Value for pattern-symbol attribute -> 10. 
Solid shading. 

*Element Number: 5 
Element type -> 00000064x 
Push and set model transform - order 64x. 

Concatenate before. 
Load mask -> CCOCx. 
Matrix values. 
1.0000 0.0000 0 
0.0000 
276 

1.0000 
110 

*Element Number: 6 
Element type -> 81000000x 

Drawing Details 

o 
1 

Push and set pick identifier - order 23x. 
pick identifier -> 1. 

Begin path - order DOx. 
Path identifier -> 1. 

Set current position - order 21x. 
position -> [0, 0]. 

Push and set arc parameter - order 62x. 
P = 101, Q = -54, R = 0, S = O. 

Full arc at current position - order 87x. 
Multiplier -> 1.0000 

End path - order 7Fx. 
Fill path - order D7x. 

Alternate mode. 
Do not modify before filling. 
Path identifier -> 1. 

LISTING 5.1 (Continued). 



Building Blocks of the GPI 189 

Set current position - order 21x. 
position -> [0, 0]. 

Push and set arc parameter - order 62x. 
P = 101, Q = -54, R = 0, S = O. 

Full arc at current position - order 87x. 
Multiplier -> 1.0000 

CHAIN SEGMENT ORDER 
Segment ID 00000001x 

END OF LISTING. 

LISTING 5.1 (Continued). 

From studying Listing 5.1, you can determine a lot about how these 
graphical objects were generated and even get a good idea about how the 
graphic editor uses graphic segments to produce its drawings. As you study 
Listing 5.1, you should notice how indentations are used to help parse up the 
segment information. When a new segment is started, the string "Parsing 
Segment" is printed followed by the segment ID. No indentation is used 
when the segment identifier text string is printed. After the segment identi
fier text, however, orders are indented 2 spaces and order information is 
indented 4 spaces. You may expect that the text line that marks the begin
ning of an element would be formatted the same as all the other orders in the 
listing, but they're not. (Example - Begin element - order D2x. Then ele
ment order data.) You might also notice that there are not any end element 
orders in the listing. The apparent lack ofbeginlend element order in the list 
is caused by the way element data is obtained (as you will see shortly). Also, 
as you look at this listing, you should not assume the segments are listed in 
any particular order. If all the graphic segments are parsed, however, the 
bottom of the listing will list the chained segments in priority order. This 
means lowest priority is listed first. 

Because all the graphic segments in our example were parsed , look at 
the bottom of Listing 5.1 to see what segments were included in the presenta
tion space segment chain. In this example, segment 1 was the only chained 
segment. Hence, if you look for segment 1 in our list (which happens to be at 
the very top of the listing) you can see the sequence of events used to gener
ate the entire picture. 

Segment 1 in our example contains only two elements. By comparing 
these two elements, you can see that they almost do the same thing. In par
ticular, the elements push the current model transform, call another non
chained graphic segment, and then pop the model transform. The only 



190 Programming the OS/2 WARP Version 3 GPI 

difference between the two elements in segment 1 is which graphic segments 
each calls. The first element calls graphic segment 4 and the second element 
calls graphic segment 5. 

Graphic segment 4 contains several elements. The first element contains 
a push and set pick ID order. As you will see later in this book, pick IDs are 
used with correlation and are a way to help identify which part of a segment 
the user is selecting with the mouse. Elements 2 and 3 of graphic segment 4 
contain comment orders. A comment order can really hold any type of infor
mation the application wishes to store in it. Because element 2 doesn't ap
pear to have readable information stored in it, this comment order doesn't 
really give us much of a clue as to its value to the graphic segment. The 
comment order in element 3, however, does contain readable text and ap
pears to be labeling the graphic segment as containing a line object. (In fact, 
this is the purpose of element 3.) Element 4 of graphic segment 4 contains a 
series of orders. What is interesting about these orders is that they all have to 
do with setting the attributes for the line that was drawn. Element 5 contains 
a push and set model transform order. You should already understand the 
concept of transformations, but later you willieam much more about trans
formation matrices. For now, however, knowing that this order is used for 
orientation of the object is all that is important. (Orientation includes rota
tion, shear angle, scaling, translation, and so on.) The last element in graphic 
segment 4, element 6, contains another set pick identifier order, a set posi
tion order, and a draw line order. Hence, element 6 is used to set up correla
tion for the line to be drawn and then draws the line. 

As you study graphic segment 5 in Listing 5.1, you will notice the same 
basic flow of orders that were found in graphic segment 4. The only differ
ence between graphic segments 4 and 5 is that one draws a line object and the 
other draws an ellipse! If we would have selected the line object before the 
graphic object viewer was used, then this listing would have only shown 
graphic segment 4. Furthermore, graphic segment 4 would also have in
cluded additional orders for drawing the dashed rectangle around the se
lected object and some markers. 

Now that you know the basics of orders, elements, and segments, and 
you know how to use the object viewer, you can create objects with the 
graphic editor and then quickly see how these objects were constructed using 
the GP!. Again, we found this tool extremely helpful in debugging our own 
graphic editor! You may also find that including the object viewer as part of 



Building Blocks of the GPI 191 

your own graphical project is a worthwhile thing to do. This leads us into our 
next topic, reviewing the source code for the object viewer. By reviewing 
some of this code, you will see how many of the GPI functions discussed 
earlier in this chapter can be used. You will also see how you may modify or 
use the object viewer code for your own purposes. 

First, let's review how the graphic editor interfaces with the object 
viewer logic. Listing 5.2 shows a small subset of the code found in DRAW. C. 

The first section of code shown is the logic that deals with the "View Se
lected Objects" pull-down menu item (IDM_ VIEW). As you can see, this 
logic first allocates variables that will be used to identify the number of seg
ments found in the graphic editor select list and then points to an array which 
will contain the IDs of all the segments in the select list. The I DM_ VI EW 

menu item is then disabled so it can not be used again until the browsing of 
the object data is complete. Once the menu item is disabled, the select list is 
interrogated to get the number of objects that it contains and then memory is 
allocated to save the segment IDs that are contained in the select list. Once 
the memory is allocated, the select list is walked through to fill in the mem
ory just allocated with segment IDs. Finally, the function called ParseSeg is 
used to perform the actual segment parsing. The items passed to the Par
seSeg function are a handle to the presentation space where the objects are 
located, a pointer to a string which is the filename the parser will use to save 
ASCII text, a pointer to the array of segment IDs, and a count for the number 
of segment IDs that are found in the segment ID array. (Note the filename 
passed to the ParseSeg function is always WILEY. SEG.) The return from 
the ParseSeg function is a Boolean indicator which designates the success or 
failure of the function. As you can see, if the function succeeds, another 
function called OutWindow is used. If the ParseSeg function fails, however, 
the I DM_ VI EW menu item is re-enabled and a message box is displayed de
scribing the error condition. 

The OutWindow function used in the IDM_ VIEW menu item logic en
ables a file to be passed to the Browse utility and display. As you can see, the 
OutWindow function requires two parameters in order to use it. The first 
parameter is the handle to our window procedure and is used by the OutWin
dow function to notify us when the Browse utility is done displaying the file 
we passed to it. The message it sends to our window procedure when it is 
done is WM_ENDBROWSE. (As you may have already guessed, the reason a 
message is passed to our window procedure is because the Browse utility 



192 Programming the OS/2 WARP Version 3 GPI 

runs in its own thread of execution.) The second parameter for the OutWin
dow function is a pointer to a filename that is to be displayed by the Browse 
utility. 

The last part of Listing 5.2 shows the logic used when the OutWindow 
function sends the WM_ENDBROWSE message to our window procedure. In 
this case, the processing is to merely re-enable the I DM_ VI EW menu item. 
Too easy! 

/*********************************/ 
/* Process pull-down menu items. */ 
/*********************************/ 
case WM_COMMAND: 

switch (COMMANDMSG(&msg)->cmd) { 

/**************************************************/ 
/* Process view graphic objects pull-down option. */ 
/**************************************************/ 

int segmentCount, i; 
LONG (*segmentArray) []; 
GOBJ selectedObj; 
WinSendMsg(WinWindowFromID(hwndFrame,FID_MENU), 

MM_SETITEMATTR, 
MPFROM2SHORT (IDM_VIEW, TRUE) , 

MPFROM2SHORT(MIA_DISABLED,MIA_DISABLED)) ; 
segmentCount=selectList->Do->GetCount(selectList) ; 
segmentArray=malloc(sizeof(LONG)*segmentCount) ; 
selectList->Do->Top(selectList) ; 
for (i=O;i<segmentCount;i++) { 

selectList->Do->GetNext(selectList,&selectedObj) ; 
(*segmentArray) [i]=selectedObj->Do->GetSeg(selectedObj); 

if (ParseSeg(hps,segFile,*segmentArray,segmentCount)) 
OutWindow(hwnd,segFile); 

else { 
WinSendMsg (WinWindowFromID (hwndFrame, FID_MENU) , 

MM_SETITEMATTR, 
MPFROM2SHORT (IDM_VIEW, TRUE) , 
MPFROM2SHORT(MIA_DISABLED,O)); 

WinMessageBox(HWND_DESKTOP,HWND_DESKTOP, 
(PSZ)"List file is not available for use.", 
(PSZ) "Browse Error", 
1, MB_OK I MB_APPLMODAL 1MB_MOVEABLE); 

free (segmentArray) ; 

break; 

LISTING 5.2 Object viewer interface to Browse utility. 



Building Blocks of the GPI 193 

/**************************************/ 
/* Default processing for WM_COMMAND. */ 
/**************************************/ 
default: 

return WinDefWindowProc(hwnd,msg,mpl,mp2); 

break; 
/*******************************/ 
/* Process END Browse message. */ 
/*******************************/ 
case WM_ENDBROWSE: 

WinSendMsg(WinWindowFromID(hwndFrame,FID_MENU), 
MM_SETITEMATTR, 

MPFROM2SHORT (IDM_VIEW, TRUE) , 
MPFROM2SHORT(MIA_DISABLED,O)); 

return (MRESULT) FALSE; 

LISTING 5.2 (Continued). 

Now that we've seen how the ParseSeg object interfaces with our main 
Draw program, it's time to look at the logic in the ParseSeg program object. 
Listing 5.3 shows the source code found in PARSESEG. c. Once you read 
past the defines, includes, and local data, you see that the first thing done by 
the ParseSeg function is to allocate and initialize two memory areas that will 
hold graphic segment IDs. One memory area will hold all graphic segments 
IDs, while the other will hold only chained graphic segment IDs. Once these 
two memory areas are initialized, a third area is allocated to hold element 
data. The ParseSeg function then attempts to open the filename that was 
passed to it. From trying to open this file, the ParseSeg function can collect 
return code information about the status of the file. If the filename is avail
able for use, the ParseSeg function will close and recreate the filename for 
storing parsed graphic segment information. Otherwise, the ParseSeg func
tion will return a FALSE indicator to the caller. 

Assuming the filename for storing graphic segment information is cre
ated, the ParseSeg function will then test to see how many graphic segment 
IDs were passed to it by the caller. If no IDs were passed, the ParseSeg func
tion will query up to the first 5000 graphic segment IDs into the SeglDs data 
area. This is done by using the GpiQuerySegmentNames function. If the 
caller did pass some graphic segment IDs to the ParseSeg function, then 
these IDs are copied to the SeglDs data area. Once the number of IDs to 
work with is known and the graphics segment IDs are placed in the SeglDs 
data area, the ParseSeg function will begin to generate textual information to 
write to the created file. 



194 Programming the OS/2 WARP Version 3 GPI 

The first information to be written to the file is the title for the listing 
followed by the current date and time. Then the ParseSeg function goes into 
a loop and parses each graphic segment. The first thing done is to create a 
heading for the graphic segment ID that is about to be parsed. After this 
heading is written to the file, the graphic segment ID is opened with the Gpi
OpenSegment function and the element pointer is set to point to the first ele
ment with the GpiSetElementPointer function. The current element pointer 
position is then queried with the GpiQueryElementPointer function. By 
testing the queried location of the element pointer with what location we ex
plicitly set the pointer to, we can tell when we have reached the end of all 
elements in a graphic segment. The explicit setting will be one greater than 
the actual pointer position. (The pointer position will never go past the last 
element in a segment.) Then, with the element pointer pointing to the ele
ment about to be parsed, the ParseSeg function uses GpiQueryElementType 
to retreive the element description and GpiQueryElement to retrieve the ele
ment data. (Element data includes all the data encapsulated between the be
gin and end element orders.) Once the data has been queried, the ParseSeg 
function writes element information to the file and then proceeds to parse the 
order data. 

/************************************************************************/ 
/* Parse graphic segments. */ 
/* Copyright (c) 1994 John Wiley & Sons, Inc. All rights reserved. */ 
/* Reproduction or translation of this work beyond that permitted in */ 
/* Section 117 of the 1976 United States Copyright Act without the */ 
/* express written permisson of the copyright owner is unlawful. */ 
/* Request for further information should be addressed to the */ 
/* Permission Department, John Wiley & Sons, Inc. The purchaser may */ 
/* make back-up copies for his/her own use only and not for distribution*/ 
/* or resale. The Publisher assumes no responsibility for error, */ 
/* omissions, or damages, caused by the use of these programs of from */ 
/* the use on the information contained herein. */ 
/************************************************************************/ 

#define INCL_DOSDATETIME 
#define INCL_DOSFILEMGR 
#define INCL_WINHELP 
#define INCL_DOS 
#define INCL_WIN 
#define INCL_GPI 
#define INCL_PM 
#define INCL_GPIBITMAPS 
#define INCL_DOSMEMMGR 
#define INCL_GPISEGEDITING 

LISTING 5.3 ParseSeg routine. 



#define OPEN_FILE OxOl 
#define CREATE_FILE OX10 
#define FILE_ARCHIVE Ox20 
#define DASD_FLAG 0 
#define INHERIT Ox80 
#define WRITE_THRU 0 
#define FAIL_FLAG a 
#define SHARE_FLAG OxlO 
#define ACCESS_FLAG Ox02 
#define FILE_SIZE OL 
#define EABUF 0 
#define MAXIDS 5000 
#define ELEMENTSIZE 5000 
#define INITID 1 
#define ENDID Ox7FFFFFFF 
#include <os2.h> 
#include <stdio.h> 
#include <math.h> 
#include <stdlib.h> 
#include <string.h> 
#include <pmerr.h> 
#include Hparseseg.h" 
#include "porders.h" 
#include "ordertab.c" 

/***********************************/ 
/* Function parse graphic segment. */ 
/***********************************/ 

Building Blocks of the GPI 195 

BOOL ParseSeg(HPS hpsCaller,CHAR *filename,LONG *segments,INT numSegments) { 
LONG *segChaini 
LONG *segIDsi 
BYTE *elementDatai 
static CHAR descrBuf[64] i 

static CHAR fileData[256] i 

DATETIME dateTimei 
LONG elementType,elementLen,descrLen=64,elementPtr,currentElementPtri 
HFILE fileHandlei 
ULONG wrote,action,rci 
INT stringlen,i,G=4i 
LONG segIDCnt,index,link,segVal,maxcnt,elementDataLen, 

linecnt,orderOffset,orderAdder,blankcnt,chainCnti 
BOOL funcReti 

/****************************************/ 
/* Start of output to listing function. */ 
/****************************************/ 
segChain=malloc(sizeof(LONG)*MAXIDS)i 
segIDs=malloc(sizeof(LONG)*MAXIDS)i 
memset(segChain,O,sizeof(LONG)*MAXIDS)i 
memset(segIDs,O,sizeof(LONG)*MAXIDS)i 
elementData=malloc(ELEMENTSIZE)i 
/*****************************************/ 
/* Open file that was typed or selected. */ 
/*****************************************/ 

LISTING 5.3 (Continued). 



196 Programming the OS/2 WARP Version 3 GPI 

action=2j 
rc=DosOpen(filename,&fileHandle, 

&action,FILE_SIZE,FILE_NORMAL,1,Qx40,EABUF)j 
/*************************************************************************/ 
/* If file was available, not found, or explicit open failed, */ 
/* then continue to create the list filej otherwise, file not available. */ 
/*************************************************************************/ 
if((rc==O) II (rc==2) II (rc==110)){ 

DosClose(fileHandle)j 
DosOpen(filename,&fileHandle,&action,FILE_SIZE,FILE_ARCHIVE, 

OPEN_FILE I CREATE_FILE, 
DASD_FLAG I INHERIT I WRITE_THRU I 
FAIL_FLAG I SHARE_FLAG I ACCESS_FLAG, EABUF)j 

DosSetFileSize(fileHandle,FILE_SIZE) j 

/*********************************************************************/ 
/* If segment count from client is 0 then get IDs from PS, else copy */ 
/* segment IDs from client list. */ 
/*********************************************************************/ 
if (numSegments==O) { 

segIDCnt=GpiQuerySegmentNames(hpsCaller,INITID,ENDID,MAXIDS,segIDs)j 
} 

else { 
segIDCnt=numSegmentsj 
for(i=Oji<segIDCntji++)segIDs[i]=segments[i]j 
} 

index=Oj 
/******************************************************/ 
/* Print out heading title and time info for listing. */ 
/******************************************************/ 
stringlen=sprintf(fileData,"GRAPHIC SEGMENTS LISTING. \n")j 
DosWrite(fileHandle, (PVOID)fileData,strlen(fileData),&wrote) j 

DosGetDateTime(&dateTime) j 

stringlen=sprintf(fileData,"Date and Time %d/%d/%d %d:%d:%d.%d \n", 
dateTime.month, 
dateTime.day, 
dateTime.year, 
dateTime.hours, 
dateTime.minutes, 
dateTime.seconds, 
dateTime.hundredths 
) j 

DosWrite(fileHandle, (PVOID)fileData,strlen(fileData),&wrote) j 

/*******************/ 
/* Parse segments. */ 
/*******************/ 
while (index<segIDCnt) { 

stringlen=sprintf(fileData,"\nParsing Segment ID: %08Xx\n", 
segIDs [index] ) j 

DosWrite(fileHandle, (PVOID)fileData,stringlen,&wrote); 
GpiOpenSegment(hpsCaller,segIDs[index]) ; 
elementptr=l; 
GpiSetElementPointer(hpsCaller,elementPtr); 
currentElementPtr=GpiQueryElementPointer(hpsCaller)j 

LISTING 5.3 (Continued). 



/***********************************/ 
/* Parse all data in all elements. */ 
/***********************************/ 
while (elementPtr==currentElementPtr) { 

Building Blocks of the GPI 197 

elementLen=GpiQueryElementType (hpsCaller, &elementType, 
descrLen,descrBuf)i 

elementDataLen=GpiQueryElement (hpsCaller, OL,ELEMENTSIZE ,elementData) i 

stringlen=sprintf(fileData, 
" *Element Number: %d\n",currentElementPtr) i 

DosWrite(fileHandle, (PVOID)fileData,stringlen,&wrote) i 

stringlen=sprintf(fileData, 
Element type -> %08Xx\n 

elementType) i 

DosWrite(fileHandle, (PVOID)fileData,stringlen,&wrote) i 

DosWrite (fileHandle,descrBuf, strlen(descrBuf) ,&wrote)i 
sprintf(fileData,"\n") i 

DosWrite(fileHandle, (PVOID)fileData,strlen(fileData),&wrote) i or-
derOffset=Oi 

/***************/ 
/* Parse data. */ 
/***************/ 
while (elementDataLen) { 

/*********************************************/ 
/* Determine if this is a single-byte order. */ 
/*********************************************/ 
if((elementData[orderOffset]==O) I I 

(elementData[orderOffset]==255)) { 
orderAdder=li 
parseTab[elementData[orderOffset]] 

(fileHandle,elementData+orderOffset,G) i 

/************************************/ 
/* Determine if this is an extended */ 
/* order and print its data. */ 
/************************************/ 
if (elementData[orderOffset] ==254) { 

orderAdder=(elementData[orderOffset+2])*256i 
orderAdder=orderAdder+(elementData[orderOffset+3]) i 

orderAdder=orderAdder+4i 
parseTab[elementData[orderOffset]] 

(fileHandle,elementData+orderOffset,G) i 

/***********************************/ 
/* Determine if this is a two */ 
/* byte order and print its data. */ 
/***********************************/ 
if( (elementData [orderOffset] &8) && 

(elementData[orderOffset]<=127)) { 
orderAdder=2i 
parseTab[elementData[orderOffset]] 

(fileHandle,elementData+orderOffset,G) i 

LISTING 5.3 (Continued). 



198 Programming the OS/2 WARP Version 3 GPI 

/*******************************/ 
/* Determine if this is a long */ 
/* order and print its data. */ 
/*******************************/ 
if( (elementData[orderOffset] !=O) && 

(elementData[orderOffset] !=255) && 
(elementData[orderOffset] !=254) && 
( ! ((elementData[orderOffset]<=127) && 
(elementData[orderOffset] &8) ) )) { 

orderAdder=elementData[orderOffset+l] +2; 
if (elementDataLen<orderAdder) { 

sprintf (&fileData [0] ," DATA LENGTH PROBLEM!! \n") ; 
DosWrite(fileHandle, (PVOID)fileData,strlen(fileData) ,&wrote); 

break; 
} 

else parseTab[elementData[orderOffset]] 
(fileHandle,elementData+orderOffset,G) ; 

elementDataLen=elementDataLen-orderAdder; 
orderOffset=orderOffset+orderAdder; 

elementPtr++; 
GpiSetElementPointer(hpsCaller,elementPtr) ; 
currentElementPtr=GpiQueryElementPointer(hpsCaller) ; 

GpiCloseSegment(hpsCaller) ; 
index++; 

/***********************************************************************/ 
/* If segments did not come from client list, then order and list them.*/ 
/***********************************************************************/ 
if (numSegments==O) { 

/***************************************/ 
/* Find lowest segment value in chain. */ 
/***************************************/ 
chainCnt=O; 
for (index=O;index<segIDCnt;index++) { 

segVal=GpiQuerySegmentPriority(hpsCaller, segIDs [index] ,LOWER_PRI); 
if (segVal==O){ 

link=segIDs[index] ; 
chainCnt++; 
} 

if (segVal!=GPI_ALTERROR) segIDs[index]=Oi 

/**********************************************/ 
/* Order the segments from lowest to highest. */ 
/**********************************************/ 
if(chainCnt!=O) { 

index=O; 
segChain[index]=link; 
while (GpiQuerySegmentPriority(hpsCaller,link,HIGHER_PRI) !=O) { 

link=GpiQuerySegmentPriority(hpsCaller,link,HIGHER_PRI) ; 

LISTING 5.3 (Continued). 



Building Blocks of the GPI 199 

segChain[++index]=linki 
} 

segChain[++index]=GpQuerySegmentPriority(hpsCaller, 
link,HIGHER_PRI) i 

stringlen=sprintf(fileData,"\n\nCHAIN SEGMENT ORDER\n\n") i 

DosWrite(fileHandle, (PVOID)fileData,stringlen,&wrote) i 

index=O i 
while (segChain[index] !=O) { 

stringlen=sprintf(fileData," Segment ID %08Xx\n",segChain[index]) i 

DosWrite(fileHandle, (PVOID)fileData,stringlen,&wrote)i 
index++i 

/***********************************/ 
/* Print out end note for listing. */ 
/***********************************/ 
stringlen=sprintf(fileData,"\nEND OF LISTING. \n") i 

DosWrite(fileHandle, (PVOID)fileData,strlen(fileData) ,&wrote) i 

rc=DosClose(fileHandle) i 

funcRet=TRUEi 
} 

else 
funcRet=FALSEi 

free (segChain) i 

free(segIDs)i 
free(elementData)i 
return funcReti 
} 

LISTING 5.3 (Continued). 

As you can see in Listing 5.3, order data is parsed while element data has 
not been exhausted. When the order parser loop is entered, the offset (or
derOffset) into the element data (elementData) always points to the begin
ning of a graphic order. By interrogating the order found at this offest, the 
ParseSeg function determines if the order is single-byte, extended, double
byte, or long order. Once the order type is discovered, a variable called or
derAdder is set with the length of the order. This length is later used at the 
bottom of the order parsing loop to adjust the offset variable to point to the 
next order in the element data and to adjust the length of element data that 
still needs to be parsed. Once the orderAdder varible is set with the correct 
length, a function that actually parses the order data is then called through a 
branch table called parseTab. This table has 256 entries and contains the 
addresses of the functions that are used to parse the graphic orders. As you 
can see, each function takes three input parameters. These input parameters 
are a file handle, a pointer to the order to be parsed, and a value called G. 
The file handle should be to an opened file where the order parser can write 



200 Programming the OS/2 WARP Version 3 GPI 

textual data; furthermore, this file should have its file pointer set to the posi
tion where data can be written. G is used to indicate the type for some of the 
data that may contained in the order data. This type is really determined by 
how the presentation space was created to hold coordinate information 
(GPIF _LONG or GPIF _SHORT). In the case of our graphic editor, a coor
dinate format of G PI F _LONG was used (which is indicated by G being set to 
4). To get a sense of how this branch table works, Listing 5.3 shows the first 
16 entries of the branch table called parseTab. ORDERTAB. C contains all 
256 entries for the branch table. Then, if you look at Listing 5.4, you will see 
an example of a few of the functions that actually parse order data. POR -

DERS . C contains the source code for all the graphic order parsing func
tions. These order parsing functions are not particularly difficult to 
understand and are not going to be discussed in this book. If you would like 
to understand the structure of an actual order, however, you may look at 
these functions or refer to an IBM technical reference. 

Once all the graphic orders for all the elements for all the graphic seg
ments have been parsed, the ParseSeg function then checks again to see if the 
user passed specific graphic segments to be parsed or if the entire presenta
tion space is to be parsed. If the entire presentation space was parsed, the 
ParseSeg function proceeds to locate the lowest priority graphic segment in 
the segIDs array. Finding the lowest priority graphic segment is done by 
using the GpiQuerySegmentPriority function. We actually use every seg
ment ID as a reference and look for a lower priority segment. If the Gpi
QuerySegmentPriority function ever returns 0, we know we have found the 
lowest priority graphic segment in the segment chain. The variable called 
ChainCnt is used only as an indicator that we found the lowest priority 
graphic segment and the variable called link is used to save the graphic seg
ment ID. If a low priority graphic segment was found, the graphic segments 
in the segment chain are then ordered in the segChain data area. The Gpi
QuerySegmentPriority function is also used to create our sorted list by sav
ing the lowest priority graphic segment in our sorted list, and then using this 
graphic segment ID as a reference ID to find the next highest priority seg
ment ID. We then save the returned segment IDas our next reference seg
ment ID for the GpiQuerySegmentPriority function, as well as save the ID in 
our sorted list. We continue to loop finding the next highest priority segment 
ID until we find the highest priority segment. This segment is then placed in 
the sorted list and the ParseSeg function prepares to print the list content. 



Building Blocks of the GPI 201 

To print the chain order, the ParseSeg function first generates a header to 
indicate that the segment chain follows and then outputs the segment ID 
found in the sorted list. Finally, this function prints out one last message 
indicating the list is complete, frees up allocated memory, and then returns to 
the caller. Now we have our object viewer! 

static ParseFunc parseTab[]={ 
PNOP, 
PComment, 
PReturn, 
PSetCharCell, 
PSetSeg, 
PSetBrkE, 
PReturn, 
PCallSeg, 
PSetPat, 
PPushPatSym, 
PSetCol, 
PReturn, 
PSetMix, 
PSetBackMix, 
PReturn, 
PReturn II Real code has 256 entries.}; 

1********************1 
1* Parse NOP order. *1 
1********************1 
void FAR PNOP(HFILE handle, CHAR *pData, int G) 

{ 

CHAR fileData[256]; 
ULONG wrote; 
int length; 
sprintf(fileData," No operation - order OOx.\n"); 
DosWrite(handle, (PVOID)fileData,strlen(fileData) ,&wrote); 
return; 

1************************1 
1* Parse comment order. *1 
1************************1 
void FAR PComment(HFILE handle, CHAR *pData, int G) 

{ 

CHAR fileData[256]; 
ULONG wrote; 
int length; 
sprintf(fileData," Comment - order Olx.\n "); 
DosWrite(handle, (PVOID)fileData,strlen(fileData),&wrote); 
length=pData[l]; 
strncpy(fileData,pData+2,length); 
fileData[length] =0; 
DosWrite(handle, (PVOID)fileData,strlen(fileData),&wrote); 
sprintf(fileData,"\n") ; 

LISTING 5.4 Order parser routines. 



202 Programming the OS/2 WARP Version 3 GPI 

DosWrite(handle, (PVOID)fileData,strlen(fileData),&wrote); 
return; 

/**************************************************************/ 
/* This order parser is used when the order found is unknown. */ 
/**************************************************************/ 
void FAR PReturn(HFILE handle, CHAR *pData, int G) 

{ 

CHAR fileData[256]; 
ULONG wrote; 
sprintf(fileData," Unknown order - order %02Xx.\n",pData[O]); 
DosWrite(handle, (PVOID)fileData,strlen(fileData),&wrote); 
return; 

/**********************************************/ 
/* Parse (push and) set character cell order. */ 
/**********************************************/ 
void FAR PSetCharCell(HFILE handle, CHAR *pData, int G) 

{ 

CHAR fileData[256]; 
ULONG wrote; 
if(pData[O]==3) 

sprintf(fileData," Push and set character cell - order 03x.\n"); 
else 

sprintf(fileData," Set character cell - order 33x.\n"); 
DosWrite(handle, (PVOID)fileData,strlen(fileData),&wrote); 

if(G==4) { 
sprintf(fileData," X part of character cell-size attribute 

-> %d. \n", 
* ( (PLONG) (pData+2) ) ) ; 

DosWrite(handle, (PVOID) fileData, strlen(fileData) ,&wrote); 
sprintf(fileData," Y part of character cell-size attribute 

-> %d. \n" , 
*((PLONG) (pData+6))); 

DosWrite(handle, (PVOID)fileData,strlen(fileData),&wrote); 
if(pData[l]>lO) { 

sprintf(fileData," Fractional X part of character cell-size attribute 
-> %d. \n", 

*((PSHORT) (pData+10))); 
DosWrite(handle, (PVOID)fileData,strlen(fileData) ,&wrote); 
sprintf(fileData,"Fractional Y part of character cell-size attribute 

-> %d. \n" , 
*((PSHORT) (pData+12))); 

DosWrite(handle, (PVOID)fileData,strlen(fileData),&wrote); 
if(pData[1]>12) { 

if(pData[14]&'\x80') 
sprintf(fileData," A cell size of 0 sets to O.\n"); 

else 
sprintf(fileData," A cell size of 0 sets drawing default.\n"); 

DosWrite(handle, (PVOID)fileData,strlen(fileData),&wrote); 
} 

LISTING 5.4 (Continued). 



Building Blocks of the GPI 203 

else { 
if(pData[1]>8) { 

else 

if(pData[10]&'\x80') 
sprintf(fileData," 

else 
A cell size of 0 sets to O.\n"); 

sprintf(fileData," A cell size of 0 sets drawing default.\n"); 
DosWrite(handle, (PVOID)fileData,strlen(fileData) ,&wrote); 

} 

sprintf(fileData," X part of character cell-size attribute -> %d.\n", 
*((PSHORT) (pData+2))); 

DosWrite(handle, (PVOID)fileData,strlen(fileData) ,&wrote); 
sprintf(fileData," Y part of character cell-size attribute -> %d.\n", 

*((PSHORT) (pData+4))); 
DosWrite(handle, (PVOID)fileData,strlen(fileData) ,&wrote); 

if(pData[1]>6) { 
sprintf(fileData," 
-> %d. \n", 

Fractional X part of character cell-size attributE 

*((PSHORT) (pData+6))); 
DosWrite(handle, (PVOID)fileData,strlen(fileData) ,&wrote); 

sprintf(fileData," 
-> %d. \n", 

Fractional Y part of character cell-size attributE 

*((PSHORT) (pData+8))); 
DosWrite(handle, (PVOID)fileData,strlen(fileData),&wrote); 
if(pData[1]>8) {if(pData[10]&'\x80') 

sprintf(fileData," A cell size of a sets to a.\n"); 
else 

sprintf(fileData," A cell size of a sets drawing default.\n"); 
DosWrite(handle, (PVOID)fileData,strlen(fileData) ,&wrote); 
} 

else 
if(pData[1]>4){ 

if(pData[6]&'\x8a') 
sprintf(fileData," 

else 
A cell size of a sets to O.\n"); 

sprintf(fileData," A cell size of a sets drawing default.\n"); 
DosWrite(handle, (PVOID)fileData,strlen(fileData) ,&wrote); 
} 

return; 

LISTING 5.4 (Continued). 

GRAPHIC SEGMENTS IN THE GRAPHIC EDITOR 

The graphic editor makes heavy use of graphic segments. Each object drawn 
using the editor is stored in its own retained segment. There are also three 



204 Programming the OS/2 WARP Version 3 GPI 

additional segments that represent special lists in the editor. One of these 
segments is the display list segment, which contains calls to the segments of 
each object that is currently visible on the screen. The display list segment is 
the only root segment in the segment chain; thus, a GpiDrawChain can still 
be used to draw all visible objects. 

Another list segment is called the paste list segment, which contains calls 
to objects that have been removed (by a cut operation) from the display list 
and placed in the paste list. This is an unchained segment; therefore, drawing 
the chain will not result in these segments being displayed. 

A final list segment is called the select list segment, which contains ref
erences to all graphic objects that are currently selected. Segments referred 
to by the select list also are referred to by the display list. This list segment is 
not displayed by drawing the chain; in fact, its purpose is only for keeping 
track of which objects are selected. It is not used for display purposes (much 
like the paste list segment). 

Due to the way the segments are organized, there is basically a two-level 
segment hierarchy with the top of the hierarchy being the list segments. Each 
list segment can then have one or more child segment that represents the ob
jects in that list. Object segments typically make no calls to other segments. 
The one exception to this rule, however, is group objects. Each group object 
actually points to another list segment, which then contains calls to all the 
segments of the graphic objects that are in the group. Because group objects 
can contain other group objects, the actual depth of the segment hierarchy 
can grow arbitrarily deep. Figure 5.3 shows an example of the segment hier
archy. 

In fact, a general purpose list object is used to support all the list seg
ments described above. This list object keeps an in-memory list that points to 
the graphic objects in the list; plus, an associated segment is maintained that 
contains calls to the corresponding graphic objects segment. Therefore, by 
adding a graphic object to the list, the lists segment is automatically updated 
to contain a call to the segment of the newly added graphic object. This is 
done by editing the list segment and inserting a call to the new object seg
ment. Likewise, if an object is removed from a list, the list segment is edited 
and the call to that object's segment is deleted. 



Building Blocks of the GPI 205 

Root Segment Chain 

~Pl~hl", ~ 
GraphicalObj Seg GraphicalObj Seg 

I §J 
O I I I 

~-O--O-O 
displayListObj GraphicalObj 

(text object) 
GraphicalObj 
(rect object) 

GraphicalObj 
(group object) 

FIGURE 5.3 Segment hierarchy in the graphic editor. 

·l~"\""' "Lfhl" §] -
6--6-6 

GroupListObj GraphicalObj Graphica!Obj 

Segments are also important in letting the user interact with the objects 
on the display. For example, after the user has drawn several items, he can go 
back and select one of those items for editing. This selection involves the use 
of retained segments and the use of correlation. See Chapter 9 for more de
tails on how correlation works and how we use it in the graphic editor. 





CHAPTER 6 

Transformations 

One of the frequently misunderstood areas of the GPI is that of coordinate 
space mapping. Have you ever wanted to draw an item (whose physical di
mensions are known) on to the screen but found yourself trying to figure out 
how many pels wide or high it should be? If so, you're not alone. W ouldn' tit 
be nice if the GPI would just let you draw the picture using whatever meas
urements you wanted? So, if you knew the dimensions of an object in 
inches, then you could just draw it in inches. Or, if the dimensions were in 
feet, you could draw it in feet (or miles, or millimeters, or whatever ... ). Well, 
the GPI does provide this capability! By proper use of the viewing pipeline, 
applications can draw pictures in whatever units they wish. In fact, they can 
draw various parts of their pictures using different units and still have them 
fit into the overall picture with the right scale. 

As mentioned in Chapter 2, the viewing pipeline is a set of coordinate 
spaces that pictures go through from the time they are drawn until the time 
they appear on the device. Pictures are typically drawn into the first coordi
nate space, which is called the world coordinate space. Pictures are then 
transferred from one coordinate space to another by what is called a transfor
mation. Each movement between coordinate spaces is accomplished by a 
different transformation. Finally, after passing through all the coordinate 
spaces, the picture is left in the device coordinate space. It is now in units that 
can be drawn to the output device (for example, pels for the display). These 

207 



208 Programming the OS/2 WARP Version 3 GPI 

transformations are all performed in single operation, rather than a series of 
operations. It is easier to understand, however, if we think of these transfor
mations as being done separately. 

To illustrate the use of transformations, imagine that you want to draw a 
picture showing the floor plan of your dream house. Since this is your dream 
house, you know all of its specifications (wall dimensions, heating/cooling 
vents, plumbing, furniture, etc.). The units of measure for each of these floor 
plan items will vary (walls in feet, furniture in inches, and so on). Let's see 
how we might use transformations to construct such a floor plan. Suppose 
the picture in Figure 6.1 is the floor plan you want to construct (it may not 
look like your dream home but for our purposes it will do). 

Transformations let you translate or move a picture from one position to 
another. This transformation can be used to simplify the drawing of complex 
pictures. By breaking the complex picture down into subpictures, each sub
picture can be drawn at a convenient origin and then moved to its correct 
position through the use of a transformation. Using the floor plan example 
above, you could draw each peice of furniture separately, each time drawing 

FIGURE 6.1 Desired floor plan. 



Transformations 209 

Translate 

(10,6) 

( 0 , 0 ) 

FIGURE 6.2 The translation transform. 

the particular piece at the (0,0) origin for convenience and specifying a trans
formation to move it to its desired location on the floorplan. Figure 6.2 
shows an example of a translation transformation. 

As a picture is transformed from one coordinate space to another, it can 
also be scaled from the initial coordinate system units to the new coordinate 
system units. This is what lets you draw the picture in one dimension (i.e. 
feet) and map it to the appropriate dimensions of the output device (pels). In 
practice, the first transform doesn't usually scale from world units directly 
into device units. Instead, there is usually an intermediate unit that the pic
ture is scaled into before it is mapped to device units. These units are known 
as presentation page units. As an example of a scaling transformation, sup
pose we are drawing a chair and we want to map it from inches to feet as 
shown in Figure 6.3. 

In fact, the transform can do both scaling and translation at the same 
time. This means that you can draw each piece of furniture positioned at the 
origin using its own measurement units. Figure 6.4 illustrates this idea. 

You can produce many other effects with transforms as well. Operations 
such as rotation, shearing, and mirroring can also be performed while trans
forming from one coordinate system to another. So, not only can you scale 
your furniture and move it to the correct position in the floor plan, you can 
also rotate it to face the right direction! As you'll soon see, transforms enable 
our graphic editor to perform most of the special effects you see under the 
Transforms pull-down menu (plus a few other effects that might surprise 



210 Programming the OS/2 WARP Version 3 GPI 

Scale 

FIGURE 6.3 The scaling transform. 

Scale and 

Translate 

(10,6) 

( 0 , 0 ) 

FIGURE 6.4 Combining transforms. 

you)l Figure 6.5 shows several of the other effects you can produce using 
transformations. 

Transformations also playa key role in operations such as panning and 
zooming. These operations will be described in more detail later. 

It is important to note that certain transformation operations are only al
lowed between specific coordinate systems. The GPI provides a set of func
tions to control which transform functions are applied between the various 
coordinate spaces. Basically, you establish the desired transforms and then 
perform the drawing operations you want to be affected by those transforms. 
Later, you can change the transforms and perform some more drawing that 



Transformations 211 

(0,0) 

Original Rotated 

Sheared Mirrored 

FIGURE 6.5 Various additional transformations. 

will be affected by the new transforms (the pictures drawn under the previ-
0us transforms will not be affected by the change). 

Figure 6.6 shows an example of how pictures flow through the viewing 
pipeline. The earlier stages of the pipeline are primarily for picture construc
tion, while the final stages are for picture positioning and mapping to device 
coordinates. The final stage of mapping to device coordinates also provides 
device independence for your applications. 

The following transformations are found above in the viewing pipeline: 

1. MT (Model Transform) - Transform from world coordinates to 
model coordinates. 

2. VT (Viewing Transform) - Transform from model coordinates to de
fault page coordinates. 



212 Programming the OS/2 WARP Version 3 GPI 

I 

••••• 
~. . 

FIGURE 6.6 Transforms of the viewing pipeline. 

Presentation Space 
(zoom out and scroll Up} 

3. DVT (Default Viewing Transform) - Transform from default page 
coordinates to page coordinates. 



Transformations 213 

4. DT (Device Transform) - Transform from page coordinates to de
vice coordinates. 

The first three transformations take the pictures from world coordinates 
to presentation page coordinates. Once the picture has reached this stage, 
construction has largely been completed. Each of the transforms used to 
reach this point use a matrix to define the transformation operations. The 
final transform maps the picture into device coordinates and is performed 
using a pair of mapping rectangles. 

TRANSFORM MATRIX FUNDAMENTALS 

The first three transforms are very similar and each have the potential to do 
the same kinds of transformation operations. In practice, however, they are 
used to produce different effects during the process of picture construction. 
These three transforms use the same underlying transform mechanism and 
can perform the following operations: 

• Scaling 

• Translation 

• Rotation 

• Shearing 

In the process of moving from one coordinate system to another, each 
point is mapped from its original (x,y) location to a new (x' ,y') location that 
lies in the target coordinate system. This transformation is specified as a for
mula that maps each of the coordinates as follows: 
x' = ax + cy + e 
y' = bx + dy +f 
where: 

(x,y) is a point in the original coordinate system. 
(x' ,y') is the point in the new coordinate system. 
a,b,c,d,e, andf are transformation coefficients. 

Graphically this formula represents moving a point from one coordinate 
system to another. This is illustrated in Figure 6.7. 

The default transform coefficients are a=l, b=O, c=O, d=l, e=O, andf=0. 
This basically says the new coordinates will be the same as the old coordi
nates (x'=lx+Oy+O, y'=Ox+ly+O or x'=x, y'=y). 



214 Programming the OS/2 WARP Version 3 GPI 

(Xl ,yl) 

(x,y) 

Original Units Translated Units 

FIGURE 6.7 Translating points between coordinate systems. 

Scaling operations are done by simply changing the a and d coefficients 
to be something other than 1. For example, to magnify the X direction by 5, 
simply set a=5. To magnify the Y direction by 1/2, simply set d=.5. The 
resulting transformation formulas are x'=5x and y'=.5y. 

Translation operations are done by simply changing the e andf coeffi
cients to be non-zero. So, to move an object from the origin (0,0) to point 
(100,150), simply set e=100 andf=150. As a result, the formulas are now 
x'=x+l00 and y'=y+150. 

Rotation operations require adjusting the a,b,c, and d parameters using 
trigonometric functions. The transformation formulas used to perform rota
tion are: 

x'=xcos(deg) - ycos(deg) 
y'=xsin(deg) + ycos(deg) 

The transform coefficients are therefore: a = cos( deg), c=-cos( deg), 
e=O, b=sin( deg), d=cos( deg), j=0. As you can see, these and many other 
powerful transforms can be expressed quite easily using the coefficients. 

You can inform the GPI of the coefficients that you want to use through 
the use of a transformation matrix. This matrix is a 3x3 matrix that holds the 
coefficients as follows: 

abO 
c d 0 
e f 1 



Transformations 215 

The third column is used by the GPI in performing the transformation 
computations and should always be set to (0,0,1). This is because the GPI is a 
two-dimensional graphics system (in a three-dimensional graphics system, 
the third column would contain coefficients for the z dimension). 

The GPI provides the type called MATRIXLF which defines a transfor
mation matrix. The MATRIXLF structure is shown in Listing 6.1. 

typedef struct { 

FIXED fXMll, II Row 1 (a) 

FIXED fxM12 , II (b) 

LONG 1M13, II (0) 

FIXED fxM21 , II Row 2 (c) 
FIXED fxM22 , II (d) 
LONG 1M23, II (0) 

LONG 1M31, II Row 3 (e) 
LONG 1M32, II (f) 
LONG 1M33 II (1) 

} MATRIXLF 

LISTING 6.1 The MATRIXLF structure. 

Notice that only coefficients a,b,c, and d can have floating point values. 
Coefficients e and f are for translation and can only have integer values. 

To establish the transform, first define a transform matrix, then set the 
coefficients to get the desired effect, and finally instruct the GPI to use the 
new transform. As mentioned earlier, the default translation between the 
various coordinates is simply to map them directly (x'=x and y'=y). This is 
represented by an identity transformation matrix. 

100 
010 
001 

The following transform matrices define the translate and scale opera-
tions discussed previously. 

100 
o 1 0 Translate by (100, 150) 
100 150 1 
500 
o .5 0 Scale by (5,1/2) 
001 

By now you should have a pretty good feel for how the various transfor
mation operations affect the matrix. The next section will go into detail on 
how to actually define the matrix values and what funtions the GPI provides 
to assist you in doing this. 



216 Programming the OS/2 WARP Version 3 GPI 

Defining Matrix Values 

Defining values for transform matrices is fairly straightforward for some op
erations such as basic translation and scaling. For other operations, such as 
rotation, it is more difficult. In fact, even scaling and translation are more 
complicated when you want to add those operations to an already existing 
transformation. For this reason, the GPI provides a set of helper functions to 
assist you in coping with this task. Each helper function accepts a transfor
mation matrix as input and adjusts that matrix based on the type of transfor
mation you want to apply. The resulting transform matrix can then be used 
in a call to one of the various GPI functions that estahlish the new transform. 
Table 6.1 shows the helper functions provided by the GPI. 

TABLE 6.1 Transformation helper functions 

Function 

GpiTranslate 

GpiRotate 
GpiScale 

Description 

Applies a translation operation to a transform 
matrix. 
Applies a rotation operation to a transform matrix. 
Applies a scale operation to a transform matrix. 

The transform helper functions all accept an options parameter. This pa
rameter is similar to the options parameter on the GpiSetModelTrans
formMatrix function. It allows you to can indicate whether the helper 
function is to replace the contents of the transform matrix with the new trans
form values (TRANSFORM_REPLACE), or combine the new transform val
ues with the existing ones (TRANSFORM_ADD). 

Translation 

The helper function called GpiTranslate is used to construct a transform ma
trix to perform a translation operations on pictures. This function accepts an 
initial transform matrix as input, plus a point which defines the X and Y 
amounts to use during translation. The function updates the transformation 
matrix in the following manner: If the options parameter is TRANS

FORM_REPLACE, the initial transform matrix values are discarded and the 



Transformations 217 

matrix is reset to the identity matrix. Then the translation coefficient values 
of the matrix (c and t) are set to the values specified in the GpiTranslate call 
(the translation point parameter). 

If the options parameter is TRANSFORM_ADD, however, then the trans
lation effect is combined with the current value of the input transform ma
trix. This will make the matrix perform as though the translation operation 
were appended to the end of the initial operation of the transform matrix. So, 
if the transform matrix initially performed a scaling operation, it will behave 
as if the scaling operation is done, and will then follow with the translation 
operation. Listing 6.2 shows how our graphic editor applies an additive 
translation operation to the transformation matrix of a particular object. This 
code fragment comes form OBJECT.C. 

void GoMove(GOBJ self, POINTL offset) 
{ 

GpiTranslate(hps, &self->XformMtx, TRANSFORM_ADD, &offset) i 

self->UpdateRqd = TRUEi 

LISTING 6.2 Using the GpiTranslate helper function (object.c). 

If you were to perform this operation without the helper function, you 
could basically start with either an identity transform matrix or an existing 
transform matrix (depending on if you want replacement or additive opera
tion). Then, you would simply add the new translation values to the c and f 
components of the transform matrix. This is shown in Listing 6.3. 

void GoMove(GOBJ self, POINTL offset) 
{ 

self->XformMtx.1M31 += offset.Xi 
self->XformMtx.1M32 += offset.Yi 
self->UpdateRqd = TRUEi 

LISTING 6.3 Manually coding an operation equivalent to GpiTranslate. 

Scaling 

The helper function called GpiScale works similarly to the GpiTranslate 
function in that it accepts an initial transform matrix, scaling parameters, and 
an options flag. It, too, allows the transform to be updated in a replacement 
or additive fashion. The scaling parameters consist of X and Y scaling fac
tors, plus a point (in world coordinates) that specifies the center of the scale 
operation. Simple isn't it. Listing 6.4 shows how our graphic editor applies 



218 Programming the OS/2 WARP Version 3 GPI 

an additive scale operation to the transformation matrix of a particular ob
ject. Again, this code fragment is from OBJECT. C. 

void GoScale(GOBJ self, float xFactor, float yFactor, POINTL aboutPt) 
{ 

FIXED scaleFactor[2]; 
scaleFactor[O] = FLOAT2FIX(xFactor); 
scaleFactor[l] = FLOAT2FIX(yFactor); 
GpiScale(hps, 

&self->XforrnMtx, 
TRANSFORM_ADD, 
scaleFactor, &aboutPt); 

self->UpdateRqd = TRUE; 

LISTING 6.4 U sing the GpiScale helper function (object.c). 

On the surface it would appear that this function works very similarly to 
the GpiTranslate function. There is a difference, however: The work per
formed by the GpiTranslate helper function is fairly trivial, whereas the 
work performed by this helper function is not nearly so simple. 

Consider how you would construct a transform matrix that provided this 
same function. Oh, setting the scaling parameters is quite straightforward, as 
you have already seen. However, the scaling we showed earlier was around 
the origin. This helper function scales around any point and the results are 
quite different (as shown in Figure 6.8). 

'?if CJ 
.--------------------------------------------

Scaled down 75% about origin 

Original figure 

Scaled down 75% about a point 

FIGURE 6.8 Non-associative aspect of transformation. 



Transformations 219 

In order to get the effect of this helper function, you need to combine 
several transformation operations together. First, translate the picture so that 
the center point is mapped to the origin. Then, perform the scale operation 
from the origin, as previously discussed. Finally, translate the center point of 
the scaling operation back to its original position. This process is shown in 
Figure 6.9. 

Original figure 

o 

Translate back to 
orginal position 

Translate to orIgIn 

Perform scale 

FIGURE 6.9 Transformation required to scale about a point. 



220 Programming the OS/2 WARP Version 3 GPI 

Listing 6.5 shows an example of what the scale function might look like 
if the helper function were not used. 

void GoScale(GOBJ self, float xFactor, float yFactor, POINTL aboutPt) 
{ 

/* first translate aboutpt back to origin */ 
tempMtx = identityMtx; 
tempMtx.1M31 = -aboutpt.X; 
tempMtx.1M32 = -aboutPt.Y; 
self->XformMtx = matrixMultiply(self->XformMtx, tempMtx); 

/* next perform the scale */ 
tempMtx = identityMtx; 
tempMtx.fxMll = FLOAT2FIX(xFactor); 
tempMtx.1M32 = FLOAT2FIX(yFactor); 
self->XformMtx = matrixMultiply(self->XformMtx, tempMtx); 

/* finally translate back to original point */ 
tempMtx = identityMtx; 
tempMtx.1M31 = aboutpt.X; 
tempMtx.1M32 = aboutPt.Y; 
self->XformMtx = matrixMultiply(self->XformMtx, tempMtx); 
self->UpdateRqd = TRUE; 

LISTING 6.S Manually coding an operation equivalent to GpiScale. 

As you can see, the GpiScale function can save you a lot of hassle while 
translating matrices. 

Rotation 

The helper function called GpiRotate will assist you in creating a transform 
matrix that can rotate pictures. It, too, accepts an input transform matrix, 
rotation parameters, and an options flag. The rotation parameters include 
the angle of rotation as well as the point about which to rotate the picture. 
These values are specified in degrees and world coordinates respectively. 
The options flag allows the transform to be updated in a replacement or ad
dititive fashion. Figure 6.10 shows the kind of transformation operation the 
GpiRotate function performs. 

Listing 6.6 shows how our graphic editor applies an additive rotation op
eration to the transformation matrix of a particular object. 

As with GpiScale, this function also performs a three-step transforma
tion sequence. First, translating the picture from the center of rotation to the 
origin, then performing the rotation, and finally, translating the picture back 
from the origin to the center of rotation. 



Transformations 221 

Original figure Rotated about point 

FIGURE 6.10 The GpiRotate helper function. 

void GoRotate(GOBJ self, int degrees, POINTL aboutPt) 
{ 

FIXED angle; 
angle = MAKEFIXED(degrees, 0) ; 
GpiRotate(hps, 

&self->XformMtx, 
TRANSFORM_ADD, 
angle, 
&aboutpt) ; 

self->UpdateRqd = TRUE; 

LISTING 6.6 Using the GpiRotate helper function (object.c). 

Various Other Transformations 

Many other transform operations can be built on top of these functions. Mir
roring pictures in either the X or Y direction can be done by simply using the 
GpiScale operation with a negative value for the X or Y scaling parameters. 
This is exactly what we do in the graphic editor when we perform the flip 
operation under the transform menu, as shown in Listing 6.7 (a fragment 
from DRAW.C). 

It can be very handy to use the helper functions in an additive fashion to 
construct complicated transformations. However, there may be times when 
you would like to combine the effects of two transformation matrices to
gether. To produce a new matrix that combines the effects of two other 



222 Programming the OS/2 WARP Version 3 GPI 

/*********************************************/ 
/* Process flip horizontal pull-down option. */ 
/*********************************************/ 
case IDM_HORIZONTAL: 
{ 

POINTL originPt; 
float xAmount,yAmount; 
/*******************************************************/ 
/* Scale all objects by xAmount=-l about their origin. */ 
/*******************************************************/ 
xAmount=-l.O; 
yAmount=l.O; 
GpiSetRegion(hps,updateRegion,OL,NULL) ; 
selectList->Do->Top(selectList) ; 
while(selectList->Do->GetNext(selectList,&anObject)) { 

GpiCombineRegion (hps,updateRegion, updateRegion, 
anObject->Do->GetRegion(anObject) ,CRGN_OR); 

originPt=anObject->Do->GetOrigin(anObject); 
GpiSetModelTransformMatrix(hps,9L, 

&anObject->XformMtx,TRANSFORM_REPLACE) ; 
GpiConvert(hps,CVTC_WORLD,CVTC_DEFAULTPAGE,lL,&originPt); 
anObject->Do->Scale(anObject,xAmount,yAmount,originPt); 
GpiCombineRegion(hps, updateRegion,updateRegion, 

anObject->Do->GetRegion(anObject) ,CRGN_OR); 

GeRefreshRegion(updateRegion) ; 

LISTING 6.7 Using scaling transform to perform mirror operation 
(draw.c). 

matrices, multiply the first matrix by the second. This will result in a trans
form matrix that acts as though the first transform were performed, followed 
by the second transform. 

Matrices are multiplied similar to how a single point is passed through a 
transformation matrix. Essentially, each row of the first matix is passed 
through the second matrix to produce rows in the result matrix. Figure 6.11 
shows how this multiplication is performed. 

a 
d 
g 

b 
e 
h 

c 
f 
i 

p 
s 
v 

FIGURE 6.11 Transform matrix multiplication. 

q 
t 
w 

r 
u 
x 

To perform the multiplication, the first row of matrix one is multiplied 
by the first column of matrix two. The result is the value (a*p + b*s + c*v) 
which becomes the (row one,column one) value in the result matrix. The 
same row of matrix one is then multiplied by column two of matrix two to 
compute the value for (row one, column two) of the result matrix. Likewise, 



Transformations 223 

the (row one, column three) result matrix value is computed by multiplying 
first matrix row one by the second matrix column three. This completes 
computation of the first row of the results matrix. 

The second and third rows of the result matrix are computed similar to 
the first one except that second and third rows of the first matrix are used in 
the computations. The result matrix can be generalized to the following for
mulas: 

ap+bs+cv 
dp+es+fv 
gp+hs+iv 

aq+bt+cw 
dq+et+fw 
gq+ht+iw 

ar+bu+cx 
dr+eu+fx 
gr+hu+ix 

Unfortunately, the GPI doesn't provide a helper function for multiplying 
two transformation matrices; however, we have built one that you can use. 
This function is found in GOBJ . C and is called matrixMultiply (it requires 
use of the FIXED2FLOAT and FLOAT2FIXED functions also found in that 
file). Listing 6.8 shows the matrixMultiply function, which can be found in 
OBJECT.C. 

/***********************************************************************/ 
/* 
/* 
/* 

Matrix Multiply 

/* This function multiplies two matrices together and returns the 
/* resulting matrix. This operation essectially produces a matrix 
/* adds the effects of matrix m2 to the end of matrix ml. 
/* 

*/ 
*/ 
*/ 
*/ 

that */ 
*/ 
*/ 

/***********************************************************************/ 
MATRIXLF matrixMultiply(MATRIXLF ml, MATRIXLF m2) 
{ 

MATRIXLF result; 
result.fxMll FLOAT2FIX( FIX2FLOAT(ml.fxMll)*FIX2FLOAT(m2.fxMll)+ 

FIX2FLOAT(ml.fxM12)*FIX2FLOAT(m2.fxM21) ); 
result.fxM12 FLOAT2FIX( FIX2FLOAT(ml.fxMll)*FIX2FLOAT(m2.fxM12)+ 

FIX2FLOAT(ml.fxM12)*FIX2FLOAT(m2.fxM22) ); 
result.1M13 2; 
result.fxM21 FLOAT2FIX( FIX2FLOAT(ml.fxM21)*FIX2FLOAT(m2.fxMll) + 

FIX2FLOAT(ml.fxM22)*FIX2FLOAT(m2.fxM21) ); 
result.fxM22 FLOAT2FIX( FIX2FLOAT(ml.fxM21)*FIX2FLOAT(m2.fxM12) + 

FIX2FLOAT(ml.fxM22)*FIX2FLOAT(m2.fxM22) ); 
result.1M23 0; 
result.1M31 ml.1M31*FIX2FLOAT(m2.fxMll) + 

ml.1M32*FIX2FLOAT(m2.fxM21) + m2.1M31; 
result.1M32 ml.1M31*FIX2FLOAT(m2.fxM12) + 

ml.1M32*FIX2FLOAT(m2.fxM22) + m2.1M32; 

LISTING 6.8 The matrix multiply function (object.c). 



224 Programming the OS/2 WARP Version 3 GPI 

result.1M33 = 1; 
return result; 

LISTING 6.8 (Continued). 

Notice that the formulas used in this function are not quite the same as 
those previously shown in the generalized table. We have simplified the for
mulas because we know that the third columns of both matrices are (0,0,1). 

Listing 6.9 shows how our graphic editor uses the matrix multiply func
tion to apply an additive shear operation to the transformation matrix of a 
particular object. This is also found in OBJECT. C. 

/***********************************************************************/ 
/* 
/* Shear 

*/ 
*/ 

/* */ 
/* This function shears an object by a specified amount. The shearing */ 
/* takes place relative to a specified point. */ 
/* */ 
/***********************************************************************/ 
void GoShear(GOBJ self, int degrees, POINTL aboutPt) 
{ 

float tangent; 
static MATRIXLF XformMtx = { 

MAKEFIXED(l,O), MAKEFIXED(O,O), 0, 
MAKEFIXED(O,O), MAKEFIXED(l,O), 0, 

0, 0, 1}; 
/* Translate object about supplied point */ 
self->XformMtx.1M31 -= aboutPt.x; 
self->XformMtx.1M32 -= aboutPt.y; 
/* Perform the Shear operation */ 
tangent = (float)tan((double)degrees*(3.1415927/180)); 
XformMtx.fxM21 = FLOAT2FIX(tangent); 
self->XformMtx = rnatrixMultiply(self->XformMtx, XformMtx); 
/* Translate object back to original offset */ 
self->XformMtx.1M31 += aboutpt.x; 
self->XformMtx.1M32 += aboutPt.y;self->UpdateRqd = TRUE; 

LISTING 6.9 Using the matrix multiply function to perform a shear 
(object.c ). 

Note: Since we are shearing about a particular point, we must first trans
late that point to the origin, then perform the shear operation, and finally 
translate back to the initial point. 

The Model Transform 

The model transform moves pictures from the world coordinate space into 
the model coordinate space. Since most applications do not supply a viewing 



Transformations 225 

transform, the model transform is often the main transform used in picture 
construction. It is useful for all the transformation operations we have dis
cussed above (translation, scaling, rotation). Table 6.2 shows the GPI func
tions that are related to the model transform. 

TABLE 6.2 Model transform functions 

Function Description 

GpiSetModelTransformMatrix Sets the current world to model 
space transform. 

GpiQueryModelTransformMatrix Queries the current world to model 
space transform. 

GpiSetSegmentTransformMatrix Sets the default world to model 
space trasform for a segment. 

GpiCallSegmentMatrix Calls a segment and applies the 
specified transform matrix to it. 

GpiConvert Converts coordinates from one 
coordinate space to another. 

GpiConvertWithMatrix Converts coordinates using a 
specified transform matrix. 

The GPI maintains the notion of a current model transformation matrix 
(similar to how it keeps track of other current attributes). As pictures are 
drawn, they are transformed according to the current model transformation 
matrix. The function called GpiSetModelTransformMatrix is used to change 
the value of this matrix. As input, this function accepts a matrix and an op
tions parameter. The matrix defines the new transform function to be ap
plied. The options, meanwhile, define how the new transform is to be 
applied with respect to the current model transform matrix. 

The option called TRANSFORM_REPLACE causes the current model 
transform matrix values to be completely replaced by the values in the new 
model transform matrix. The options called TRANSFORM_ADD and 
TRANSFORM_PREEMPT cause the current model transform matrix values 
to be updated. This is done by combining the current model transform with 
the new transform to produce a new model transform. The result is that the 
new model transform produces the same e~Iect as using both of the previous 
transforms (one followed by the other). The TRANSFORM_ADD option up-



226 Programming the OS/2 WARP Version 3 GPI 

dates the model transform matrix such that it behaves as if the new model 
transform were performed after the original model transform. The TRANS

FORM_PREEMPT option updates the model transform matrix such that it be
haves as if the new model transform were performed before the original 
model transform. For more details on these options, see the section on multi
plying matrices earlier in this chapter. An example of how to declare a 
transform matrix and establish it as the current transform is shown in Listing 
6.10. 
MATRIXLF GoIdentityMatrix = { 

Ox00010000, Oxoooooooo, 0, 
Oxoooooooo, Ox00010000, 0, 
0, 0, l} ; 

/* Identity Transformation Matrix */ 

/* reset the transform matrix to the identity. */ 
GpiSetModelTransformMatrix(editHps, 9L, &GoIdentityMatrix, TRANSFORM_REPLACE); 

LISTING 6.10 Establishing the model transform. 

The function called GpiQueryModelTransformMatrix is used to deter
mine the current contents of the model transformation matrix. You can use 
this function to obtain the current matrix, apply a change to the matrix, and 
then replace the current matrix with the newly changed matrix. 

The GPI also maintains a transform matrix for each retained segment. 
When a retained segment is drawn, the current model transform matrix is 
initialized to the value of that segment's transform matrix. The value of the 
segment transform matrix is set using a function called GpiSetSeg
mentTransformMatrix. This function works as if you called the GpiSet
ModelTransformMatrix function at the very beginning of the segment. If 
you choose to, the transform matrix can be overridden later in the segment 
with a call to the GpiSetModelTransformMatrix function. The current value 
of the Segment Transform matrix can be obtained using the function called 
GpiQuerySegmentTransformMatrix. 

Finally, you can specify a transform matrix to be applied to a segment 
when calling it using the function called GpiCallSegmentMatrix. This func
tion is used to call from one segment to another segment. Upon calling the 
segment, this function will combine the specified transform matrix with the 
current model transform. The resulting transform will be in effect during 
the call to the segment. When drawing of the segment has completed, the 
current model transform will return to what it was before the call was made. 
This is known as an instance transform since it is only in effect during that 
particular call. 



Transformations 227 

Our Graphic Editor maintains a transform matrix for each object (figure) 
on the screen. This matrix is used to perform all the scaling, translation, 
rotation, and shear operations on the object. Also, each object is drawn into a 
retained segment. One of the first things done when the segment is created is 
a call to the function GpiSetModelTransform. We could just as easily have 
called the GpiSetSegmentTransformMatrix function. Later in the segment, 
the function GpiSetModelTransform is called to override the matrix with the 
identity matrix in order to calculate boundary information in presentation 
page units. (See Chapter 9 for more details on boundary accumulation). 

GRAPHIC EDITOR USE OF MODEL TRANSFORMS 

Our graphic editor makes heavy use of model transformation matrices. Ba
sically, each object drawn with the editor goes into its own segment. Associ
ated with each object is a world transformation matrix. When objects are 
initially created, their first point of definition is typically located at the origin 
(0,0). At that point, the transformation matrix is merely the identity matrix 
plus the translation coefficients. As other points of the object are drawn, 
they also pass through the same transform matrix (which is initially just a 
translation) . 

Once an object is completely defined it can be manipulated by the user. 
If the entire object is moved from one location on the screen to another 
(dragged), only its transformation matrix values change. The world coordi
nates of the points that define the object do not change. This operation ad
justs the translation coefficients of that objects transform matrix. This idea is 
shown in Figure 6.12. 

Likewise, if objects are scaled, rotated, mirrored, or sheared, only the 
transformation matrix changes. The object points remain the same. This is 
much simpler than forcing your application to recompute the points that 
make up the object. 

Our figures are drawn using the AM_PRESERVE drawing attribute 
turned on. This means that even though an object segment may alter the cur
rent model transform matrix while it is being drawn, when the segment is 
finished drawing the current model transform matrix will be reset to its origi
nal state. So, each object can alter the current model transform for its own 
purpose without worrying about screwing it up for other objects that will be 



228 Programming the OS/2 WARP Version 3 GPI 

Polyline Points: 

(0,0), (20,0), (20,10), (30,10), (30,20), (0,20), (0,0) 

100 
010 
001 

100 
010 
10 5 1 

100 
010 
20 10 1 

FIGURE 6.12 Dragging effect on object and objects model transform matrix. 

drawn later. This is known as popping the current transformation matrix at
tribute. 

Typically in our editor the transformations are combined in an additive 
fashion where new transformations are simply tacked on to the current trans
formation of that object . An example of this would be selecting an object 
and rotating it. This would simply add a rotation transform to the end of the 
object's current transform matrix. We tend to use the transformations in 
either a replacement or a preemptive fashion. Obviously, replacement mode 
is useful for resetting the current transformation to a known state. Preemtive 
mode is useful though for making subpictures adhere to a global transforma
tion effect For example, suppose we want to make a whole group of subpic
tures be rotated by 45 degrees (as shown in Figure 6.13). 



.71 .71 

.71 .71 

0 0 

Group 
Matrix 

Transformations 229 

Grouped Objects 

0 1 0 0 1 0 0 .71 .71 0 .71 .71 0 

0 0 1 0 0 1 0 .71 .71 0 .71 .71 0 

1 0 0 1 15 5 1 0 0 1 7.1 14.2 1 

Rect Text Rect Text 
Matrix Matrix Matrix Matrix 

Before Ungroup Operation After Ungroup Operation 

FIGURE 6.13 Rotating an entire subpicture. 

One way to produce this effect is to initially set the current model trans
form matrix to rotate 45 degrees about the specific point. Then, if each object 
updates the current model transform matrix in a preemptive fashion, it will 
essentially perform its own transformation first, followed by the global 45 
degree rotation transformation. Since each object pops off any changes it 
made to the current model transformation, the transform is reset after each 
object to the initial 45 degree rotation. 

We have found that there are times we wanted to combine two transfor
mation matrices without updating the current transformation matrix. Since 
the helper functions do not allow combining two existing matrices, we wrote 
the matrixMultiply function. One particular case that we found this useful 
was in implementing the ungroup feature of the graphic editor. 

In our editor, groups are treated as a special kind of graphic object. The 
group graphic object is like a compound object. Internally it consists of a list 



230 Programming the OS/2 WARP Version 3 GPI 

of other graphic objects, from the outside, however, it looks like just another 
graphic object. It has its own transformation matrix that, when altered, af
fects all the graphic objects inside the group. (Note: This is one of the cases 
where we use preemptive mode drawing). Thus, rotation of the entire group 
can be done by merely adding a rotation transform to the group's transforma
tion matrix. 

When a group is disbanded (ungrouped), each of the graphic objects in
side the group object are removed and added back into the editor's main dis
play list. Before this can occur, however, the current group transformations 
must be applied to the individual graphic objects that were inside the group. 
This should be done such that the resulting matrix behaves as if the objects 
transforms are performed first, followed by the groups transforms (just like 
the objects were being transformed before the ungrouping). In this case, we 
have two transformation matrices of unknown content that we wish to com
bine. The multiplyMatrix function lets us do just that. Figure 6.14 shows the 
matrix relationships before and after an ungrouping operation . 

.71 .71 0 .71 .71 0 . 71 .71 0 

.71 .71 0 .71 .71 0 .71 .71 0 

0 0 1 15 5 1 0 7.1 14.2 1 

Group Reet Text Reet Text 
Matrix Matrix Matrix Matrix Matrix 

Before Ungroup Operation After Ungroup Operation 

FIGURE 6.14 Ungroup operations effect on matrix values. 



Transformations 231 

As we'll discuss in the next section, the GPI provides another way to 
rotate an entire subpicture using the viewing transform. We did not choose to 
use this transform for group operations, however, because we wanted to be 
able to nest groups and we felt this would be easier to do so using the ap
proach we used. 

There is an additional feature in the graphic editor that you may find very 
helpful in learning how transforms are constructed and manipulated. This 
feature is called the Transform Matrix and is found under the Transform 
pull-down menu. To use this feature, select a single graphic object on the 
edit page. Then choose the Transform Matrix option and a dialog will ap
pear. This dialog shows the current values of the world transformation ma
trix of that object. The dialog also lets you change the transform matrix 
values. When you are done altering the values, press OK and the values will 
be applied to the object and the display will be updated. Using this feature, 
you can play with the various elements of the matrix and see the effects on 
the display in an interactive fashion. 

This feature will also allow you to see the effects of different editing op
erations on the transform matrices of the objects. For example, suppose you 
create a rectangle in the middle of the drawing area. If you bring up the 
Transform Matrix dialog you will see that it is basically an identity matrix 
with a simple translation added to it (coefficients e and f of the matrix). The 
translation is the offset from (0,0) to the appropriate location on the presenta
tion page. 

Next, dismiss the dialog and drag the rectangle to a new location on the 
page. Now if you bring up the dialog again, you will see that the translation 
values have changed. In fact, you can actually position the rectangle by sim
ply adjusting the translation values of the matrix. Using the Scale operation 
under the Transform pull-down, you can alter the scaling coefficients ( a and 
d) of the transform matrix. For example, if you scale the object by 50%, 
when you look in the transform matrix you will see the scaling coefficients 
are both set to .5. Other transforms that are interesting are the shear and rota
tion operations, although they are more difficult to interpret directly from the 
matrix. 

You will also be able to see the effect of cumulative transformations on 
an object. For example, scaling an object and then rotating it will produce 
different results than rotating an object and then scaling it. Keep in mind, 
though, that these operations only affect the transform matrix, not the points 



232 Programming the OS/2 WARP Version 3 GPI 

of the object. You can always reset the state of an object (and nullify any 
previous transforms) by adjusting the transform matrix values through the 
dialog. 

VIEWING TRANSFORMS 

The transform between model and default page spaces is known as the view
ing transform. This transform can be used to combine several subassembly 
pictures into the default page space. Essentially, you can have multiple 
model spaces merged together in the default page space. Most applications, 
however, use only a single model space mapping (our graphic editor falls 
into this catagory). Figure 6.15 shows an example of a viewing transform 
operation. 

The viewing transformation is intended to be used when applying a com
mon transform to a group of picture elements. In our earlier example, we had 
two main picture subassemblies; the house floor plan and the plot layout. 

~s~ereoRec.;vorli:d.1PX-llS 

FIGURE 6.15 The viewing transform. 



Transformations 233 

The viewing transform can be used to combine these together into a single 
drawing in default page coordinates. The viewing transform can only be 
performed on entire segments; therefore, this transform is usually used on 
high-level segments that draw the subassemblies (possibly by calling other 
unchained segments). This transform is performed after the model trans
forms have been applied and does not interfere with the value of the current 
model transform. Likewise, updates to the model transform will not affect 
the value of the current viewing transform. 

Another example of when you might want to use this transform is when 
playing contents of a MetaFile. You could set up a viewing transform that 
will affect the entire MetaFile. Imagine you wanted to build a MetaFile 
previewer. Suppose this program would display up to 16 MetaFiles in mini
ature preview windows (all within your one application window). You could 
set up the viewing transform to translate and scale the MetaFile to be drawn 
into proper position in the default page space. Then you could create a root 
segment which plays the MetaFile. Once done, you could close the segment 
and reset the viewing transform for the next MetaFile to be previewed. 

The viewing transform works similarly to the model transform in that a 
matrix is used to describe the transform operation. The function called 
GpiSetViewingTransJormMatrix is used to establish the current viewing 
transformation matrix. Calling this function essentially defines a new model 
space. Segments created after the call will be part of the new model space. 

The viewing transform matrix is constructed the same as a model space 
transform matrix. You can even use the same matrix helper function to con
struct the matrix values. Listing 6.11 shows an example of setting the view
ing transform. 

MATRIXLF viewXformMtx; 
POINTL aboutpt = {O,O}; 
FIXED scaleFactor[2] , angle; 
/* Establish a viewing transform that will scale the subassembly in */ 
/* half and rotate it by 30 degrees. */ 
scaleFactor[O] = scaleFactor[l] = FLOAT2FIX(0.5); 
GpiScale(hps, &viewXformMtx, TRANSFORM_REPLACE, scaleFactor, &aboutPt); 
angle = FLOAT2FIX(30.0); 
GpiRotate(hps, &viewXformMtx, TRANSFORM_ADD, angle, &aboutPt); 
GpiSetViewingTransformMatrix(hps, 9L, viewXformMtx, TRANSFORM_REPLACE); 

LISTING 6.11 Setting the viewing transform (viewmet.c). 

The viewing transform can only be set when no segments are open. 
Once set, the viewing transform will be applied to all segments that are sub
sequently created. Once a segment is created, the viewing transform that is 



234 Programming the OS/2 WARP Version 3 GPI 

applied to it is permanent and cannot be changed. The only way to alter it is 
to change the viewing transform and then regenerate the segment. 

DEFAULT VIEW TRANSFORM 

The default view transform is used to map default page coordinates into page 
coordinates. It is primarily used for panning(scrolling) and zooming opera
tions. Since the dimensions of the presentation page can be defined in physi
cal units such as inches, it is possible to define a page that is larger than the 
output area of the physical device. For example, your presentation page may 
be an 8 112 x 11 inch area. If you are drawing to a window on a display de
vice, it is quite likely that the dimensions of the output window will be some
thing less than 8 1/2 x 11 inches. Therefore, you will need to either show just 
a limited portion of the presentation page or scale the presentation page to fit 
within the boundaries of the output window. 

The idea behind using this transform for scrolling and zooming is really 
quite simple. Basically, your picture is always constructed in the same loca
tion in default page coordinates. Then the default viewing transform is used 
to move that picture into its final position in page coordinates (on the presen
tation page). This transform is set up using a function called GpiSet
DefaultViewMatrix. This function has a parameter called IOptions which 
lets you specify how the new matrix is to be combined with the current 
default view matrix. As with the other GPI transform functions, you can 
specify TRANSFORM_REPLACE, TRANSFORM_ADD, or TRANSFORM_ 

PREEMPT combination options. These options work the same here as they 
do for the functions GpiSetModelTransformMatrix and GpiSetViewing
Matrix. 

A translation operation is used to provide the scrolling effect. Horizontal 
scrolling can be achieved by translating the picture either left or right from 
its original default page coordinates onto its final position on the presenta
tion page. Vertical scrolling is achieved by translating the picture up or down 
onto the presentation page. Figure 6.16 shows how a picture is translated 
onto the presentation page to provide a horizontal left-scroll effect. 

Zooming is acheived by scaling the picture from its original default page 
units to its final position on the presentation page. A Zoom-In effect is pro
duced by scaling the picture to be larger on the presentation page than it was 



initial 
transform 

Transformations 235 

default page 

view area of 
the presentation page 

new transform after a 
'scroll right' operation 

~" ---------- "",-" ----------
presentation page 

FIGURE 6.16 How the default viewing transform performs a scroll 
operation. 

in default page coordinates. The presentation page boundaries now contain a 
smaller portion of the picture. A Zoom-Out effect is produced by scaling the 
picture to be smaller on the presentation page. Now the presentation page 
boundaries contain more of the picture causing it to appear compressed. 
Listing 6.12 shows an example of how our graphic editor sets up a transform 



236 Programming the OS/2 WARP Version 3 GPI 

matrix and uses the GpiSetDefaultView function to establish new scroll and 
zoom parameters. This function is found in FUNCS. C. 

/***********************************************************************/ 
/* Set default view matrix based on zoom factor and translation point. */ 
/***********************************************************************/ 
VOID SetDefaultView(HPS hps, ULONG zoom, POINTL translate) { 

*/ 
MATRIXLF viewMatrix={OxlOOOO,OL,OL, OL,OxlOOOO,OL, OL,OL,lL}; /* identity 

POINTL center; 
FIXED fixedZoom[2]; 
GpiTranslate(hps,&viewMatrix,TRANSFORM_REPLACE,&translatel; 
fixedZoom[O]=MAKEFIXED(zoom,O); /* zoom the same in X and Y direction */ 
fixedZoom[l]=MAKEFIXED(zoom,O) ; 
center.x=O; center.y=O; 
GpiScale(hps,&viewMatrix,TRANSFORM_ADD,fixedZoom,&center); 
GpiSetDefaultViewMatrix(hps,9,&viewMatrix,TRANSFORM_REPLACE); 
return; 

LISTING 6.12 Using the default viewing transform for scrolling and 
zooming (funcs.c). 

Listing 6.13 shows how the SetDefaultView function is called to handle 
a zoom operation. Similar processing is done to handle zooming activities . 

... switch (msg) 
{ 

/****************************************/ 
/* Process vertical scroll bar message. */ 
/****************************************/ 
case WM_VSCROLL:switch (SHORT2FROMMP(mp2)) { 
case SB_PAGEUP:curYPos-=ptlWinSize.y; 

curYPos=(curYPos>ptlWinSize.y) ? curYPos : ptlWinSize.y; 
ptlTranslate.y-=ptlWinSize.y; 

ptlTranslate.y=(ptlTranslate.y«(-l*PAGEYSIZE)+ptlWinSize.y)) 
?( (-l*PAGEYSIZE)+ptlWinSize.y) : ptlTranslate.y; 

break; 
case SB_LINEUP: curYPos-=gridValue; 

curYPos=(curYPos>ptlWinSize.y) ? curYPos : ptlWinSize.y; 
ptlTranslate.y-=gridvalue; 

ptlTranslate.y=(ptlTranslate.y«(-l*PAGEYSIZE)+ptlWinSize.y)) 
?((-l*PAGEYSIZE)+ptlWinSize.y) : ptlTranslate.y; 

break; 
case SB_PAGEDOWN: curYPos+=ptlWinSize.y; 

curYPos=(curYPos<PAGEYSIZE) ? curYPos PAGEYSIZE; 
ptlTranslate.y+=ptlWinSize.y; 
ptlTranslate.y=(ptlTranslate.y>O) ? 0 : ptlTranslate.y; 

break; 
case SB_LINEDOWN: curYPos+=gridValue; 

curYPos=(curYPos<PAGEYSIZE) ? curYPos : PAGEYSIZE; 

LISTING 6.13 Receiving a scroll event and performing the operation 
(draw.c). 



Transformations 237 

ptlTranslate.y+=gridValuei ptlTranslate.y=(ptlTranslate.y>O) ? 0 
ptlTranslate.y; 

break; 
case SB_SLIDERPOSITION: curYPos=SHORTlFROMMP(mp2); 
/*****************************************************************/ 
/* Calculate new trans point based on current Y slider position. */ 
/*****************************************************************/ 
percentage=curYPos; 
percentage=(percentage*lOOO)/PAGEYSIZE; 
ptlTranslate.y=(PAGEYSIZE*percentage)/lOOO; ptlTranslate.y=(LONG) 

(ptlTranslate.y-PAGEYSIZE) ; 
/************************************************************/ 
/* Check for Y slider and trans limits and insure inbounds. */ 
/************************************************************/ 
if (ptlTranslate.y< (LONG) ((-l*PAGEYSIZE) 

+ptlWinSize.y)) {ptlTranslate.y=(LONG) ((-l*PAGEYSIZE)+ptlWinSize.y); 
curYPos=ptlWinSize.y; 
} 

break; 
case SB_SLIDERTRACK: curYPos=SHORTlFROMMP(mp2); 
/*****************************************************************/ 
/* Calculate new trans point based on current Y slider position. */ 
/*****************************************************************/ 
percentage=curYPos; 
percentage=(percentage*lOOO)/PAGEYSIZE; 
ptlTranslate.y=(PAGEYSIZE*percentage)/lOOO; ptlTranslate.y=(LONG) 

(ptlTranslate.y-PAGEYSIZE) ; 
/************************************************************/ 
/* Check for Y slider and trans limits and insure inbounds. */ 
/************************************************************/ 
if (ptlTranslate.y«LONG) ((-l*PAGEYSIZE)+ptlWinSize.y)) { 

ptlTranslate.y=(LONG) ((-l*PAGEYSIZE)+ptlWinSize.y); curYPos=ptlWin
Size.y; 

} 

break; 
} 

if (curYPos!= (SHORT)WinSendMsg (hwndVScroll ,SBM_QUERYPOS, NULL,NULL)) { 
WinSendMsg(hwndVScroll,SBM_SETPOS, (MPARAM)curYPos,NULL); 

SetDefaultView(hps,zoomFactor,ptlTranslate) ; 
viewModifyCount++; // Record that view transform has changed. 
WinlnvalidateRect(hwnd,NULL,TRUE); 
return 0; 

LISTING 6.13 (Continued). 

This transformation can obviously affect how the picture will be scaled 
on the output device. For example, suppose you create your presentation 
space to be 6 inches by 6 inches. Next, suppose you draw a picture that is 10 
inches by 10 inches in default page coordinates. If no default view transform 
is specified, the picture will also be 10 inches by 10 inches in page coordi
nates. When the picture is mapped to the display, it will be drawn exactly to 



238 Programming the OS/2 WARP Version 3 GPI 

scale (as much of it as will fit into the window). But, if a default view trans
form is specified that scales the picture down by 1/2, then all geometries will 
be shrunk in the page coordinates and also on the output window. Therefore, 
the final picture on the output window will no longer be to the original scale. 
This isn't something to worry about, just something to be aware of. This 
tripped us up when implementing snap-to-grid in the graphic editor because 
we were expecting the page units to accurately reflect the geometries of the 
pictures we were drawing (instead of snapping in page units, we needed to 
do it in default page units-which are always to scale). 

Since this transform is defined using a matrix, you may be wondering if 
you can use it to perform other operations, such as rotation or shearing. The 
answer is yes; however, it is normally used for just translation and scaling 
operations. One could potentially use this transform for 90-degree rotation 
or mirroring of the final picture before sending to the output device (land
scape versus portrait output mode). 

Other things to note about this transform are that you should not change 
it during your drawing process. Instead, set it at the beginning and leave it 
while you do your drawing operations. Once drawing is completed, you can 
change it again before your next drawing operation. 

DEVICE TRANSFORM 

The device transform maps pictures from presentation page coordinates to 
device coordinates. This transformation can be, and often is, automatically 
set up by the OP!. This transform also gives your application the ability to be 
device independent. 

By defining your presentation page in one of the predefined metric or 
English units, the device transform will automatically be defined so that 
measured coordinates are mapped to the correct device units. For example, 
if you define your presentation page in units PU_LOMETRIC, then a line 
that is drawn to be 10 centimeters long will appear 10 centimeters long on 
any device to which you draw. When drawing to a display, the line may be 
mapped to be 100 pels long, but when drawing to a high-definition printer 
the same line may be mapped to be 1000 pels long. The OPI automatically 
sets up the mapping based on the device-specific information for that device. 

If you define your presentation page in units PU_PELS, your output will 
be directly mapped to device coordinates with no transformation. T4is 



Transformations 239 

means that if your application draws a line that is 100 pels long, on one de
vice it may appear to be I-inch long while on another it might be only 
1I4-inch long. It will vary from device to device. Obviously, if you do this 
you will loose your device independence (unless you look up the device
specific information yourself and do your own scaling-a lot of extra work 
when you could let the GPI do it for you). 

If you define your presentation page to be in units PU _ARB I TRAR Y, the 
device transform is defined based on two special rectangle definitions. 
These rectangles are the presentation page and the device viewport. The ra
tio between these rectangles defines the scaling to be applied when moving 
from page coordinates to device coordinates. The device transform opera
tion will scale the picture from page to device coordinates based on this ratio. 
It will, however, always preserve the aspect ratio of the picture so it should 
not become distorted. Figure 6.17 shows how the ratio of presentation page 
and device viewport are used to compute the proper output area on the de
vice. 

The device viewport defaults to the maximum accessible area on the out
put device. You can change the device viewport (though this is not typically 
done) using the function called GpiSetPageViewport. Don't be confused by 
the name of this function, you are actually specifying the location of the 
viewport in device coordinates. The picture is transformed from the presen
tation page to the page viewport by mapping the bottom-left comer of the 
presentation page to the lower-left comer of the page viewport. 

Presentation Page 

Page Viewport 

Scale Ratio 
(O.7Sx, 1.7Sy) 

~ 

FIGURE 6.17 Computing output area on a device. 

Output Device 



240 Programming the OS/2 WARP Version 3 GPI 

Due to the nature of how this transform is defined, it only performs trans
lation and scaling. The other transformation operations, such as rotation and 
shearing, cannot be performed with this transform (nor is there really a need 
for them since the default view transform can perform this if required). 

As mentioned earlier, this transform is usually defined automatically for 
you. It is obvious, however, that your choice of presentation page units can 
affect how this transform will be performed (and how your output will be 
displayed). Most applications should use the metric or English units for their 
presentation pages since these will give them some level of device independ
ence when drawing pictures. 

CONVERTING BETWEEN DIFFERENT COORDINATE SPACES 

Whenever you are using anything but the default identity transforms, you 
will encounter the need to convert between coordinate spaces. This is espe
cially true when you get pointer input from the user. Since mouse events 
come to you in device coordinates, you usually need to convert them into 
page or world coordinates. 

The GPI provides an extremely useful function for doing this called 
GpiConvert. This function will convert one or more data points from one 
coordinate system to another. To use this function, simply specify a source 
coordinate space, a target coordinate space, and an array of points to convert. 
The points are initially defined in the source coordinate space. After using 
this function, the points will be converted to their corresponding values in 
the target coordinate space. Listing 6.14 below shows an example of con
verting mouse input events from device coordinates into world coordinates. 
case WM_MOUSEMOVE: 

/******************************************************************/ 
/* Moving mouse to next point, determine position in world coords.*/ 
/******************************************************************/ 
ptrPos.x = MOUSEMSG(&msg)->xi 
ptrPos.y = MOUSEMSG(&msg)->Yi 
GpiConvert(editHps, CVTC_DEVICE, CVTC_WORLD, lL, &ptrPos)i 

breaki 

LISTING 6.14 Using GpiConvert to convert mouse input coordinates. 

GpiConvert can be called to convert data points either forward or back
ward through the viewing pipeline. 

The function called GpiConvertWithMatrix converts data points using a 
specified transform matrix. Instead of using the current viewing pipeline 



Transformations 241 

transforms, this function will use any given transform (even though it may 
not be used in the viewing pipeline). This function converts the points as 
though they were passed forward through the transform function. 

Well, by now you know there is more to drawing graphics than simply 
blasting bits to the screen! As you can see, the GPl's viewing pipeline pro
vides a very rich mechanism for picture construction. In addition, it allows 
you to generate graphics that are, by and large, device independent. 

Transformations are the key to this powerful mechanism. They allow 
you to move, scale, rotate, and merge various portions of your pictures. In 
addition, they provide underlying support for panning and zooming opera
tions. Moving points through the various stages of the pipeline happens 
automatically when you draw, but the GPI also allows you to move them 
manually via the GpiConvert function. Transformations allow you to pro
duce many interesting graphic effects and they are at the heart of any graphic 
subsystem you will find. 

As we have discussed, the graphic editor makes use of transformations 
heavily for most of its editing operations. In the next chapter, we will discuss 
more on the viewing pipeline; in particular, how to restrict drawing to just 
certain portions of the various coordinate spaces. This is known as clipping 
and, as you will soon see, it is very important for maintaining the perform
ance of your applications. 





CHAPTER 7 

Paths, Regions, 
Clipping, Boundary 
Accumulation, and 
Correlation 

When generating graphics, there are times that you want to create or collect 
boundary information about various parts of your picture. These boundaries 
are needed for a variety of graphics techniques, such as geometric (i.e., 
thick) lines, filled areas, and clipping. The GPI provides two main facilities 
for managing boundary types of information. These facilities are called 
paths and regions. 

The functions provided by paths and regions do overlap, but you will 
find that each has its own special capabilities. In general, paths offer more 
powerful capabilities than regions, but they are also slower and more diffi
cult to work with. 

243 



244 Programming the OS/2 WARP Version 3 GPI 

PATHS 

A path is essentially the boundary definition of a figure that is constructed in 
the world coordinate space. A path boundary definition can consist of line 
edges, areas, markers, and text. A path is constructed by initiating path con
struction, drawing a series of GPI graphic elements, and concluding path 
construction. Once defined, the path can be filled, stroked, or used as a clip
ping boundary. 

Path definitions are associated with the current device context. If the de
vice context changes, the definition of the path is destroyed. Because paths 
are associated with the device context, they are actually stored in device co
ordinates. This can be largely ignored, however, as the OP! graphic elements 
you use to create the path definition are specified in world coordinates. Ta
ble 7.1 shows the various path manipulation functions provided by the GPI. 

TABLE 7.1 Path manipulation functions 

Function 

GpiBeginPath 
GpiEndPath 
GpiModifyPath 
GpiOutlinePath 
GpiStrokePath 
GpiPathToRegion 
GpiSetClipPath 

Description 

Begins definition of the path. 
Completes definition of the path. 
Modifies the path ( strokes it). 
Draws the outline of the path. 
Strokes the path and draws it. 
Converts the path to a bounding region. 
Establishes clipping from the path. 

One common use of paths is creating geometric lines. Geometric lines 
are those that have a width specified in world coordinate dimensions. As we 
discussed in Chapter 2, there are several attributes that affect the appearance 
of geometric lines, including GEOM_LINE_WIDTH, LINE_JOIN, 

LINE_END, and LINE_TYPE. These attributes have no effect when draw
ing cosmetic lines, but they do effect the drawing of geometric lines. The 
steps used to draw geometric lines are as follows: 

1. Begin the path definition. 

2. Issue the appropriate GPI graphic elements to define the geometric lines. 



Paths, Regions, Clipping, Boundary Accumulation, and Correlation 245 

3. Complete the path definition. 

4. Stroke the path. 

Constructing and Drawing Paths 

Path definition is begun by using a function called GpiBeginPath. This func
tion destroys any previous path definition and begins collection of new path 
information. As GPI drawing orders are used, the path definition is con
structed in the associated device context. The path definition is completed by 
using a function called GpiEndPath. 

The function called GpiModifyPath is used to convert the lines in the 
path definition to geometric lines. This process is sometimes referred to as 
stroking the path. When this is done, the lines in the path will take on the 
geometric attributes of line-width, line-join, and line-end. After using 
GpiModifyPath, only the geometric lines will be part of the path; the original 
area boundaries of the path will be lost. For example, if the path initially 
contained a closed polygon, after the call to GpiModifyPath only the geo
metric lines would be part of the path. Once the path has been modified, it 
can either be filled or converted into a clip path. Figure 7.1 shows the effect 
of that GpiModifyPath has on a path. 

The function called GpiFillPath is used to fill the content of a completed 
path definition. The path is filled using the current area attributes (i.e., color, 
mix, fill pattern, etc.). If the GpiModifyPath function has been called before 
calling the GpiFillPath function, the lines in the path definition will be drawn 
with a geometric width. If the GpiModifyPath function was not called prior 

Modifying 

the Path 

FIGURE 7.1 GpiModifyPath effect. 



246 Programming the OS/2 WARP Version 3 GPI 

FIGURE 7.2 Filled path. 

to the GpiFillPath function, only the area defined by the path definition will 
be filled, not the lines. Figure 7.2 shows the paths that have now been filled. 

Note that you cannot draw both geometric lines and area fills simultane
ously. You must define and fill the path twice (once with a call to 
GpiModifyPath and once without). 

The function called GpiStrokePath will stroke the path and then fill it, all 
in one call. It works the same as calling the function GpiModifyPath fol
lowed by the function GpiFillPath. The graphic editor uses GpiStrokePath to 
construct the various line thicknesses. From the editors Line Thickness dia
log, you can choose either cosmetic or geometric lines. If geometric lines are 
chosen (i.e., the thick choices are geometric lines), paths are used to draw 
them. Listing 7.1 shows how the graphic editor draws cosmetic versus geo
metric lines. 

if (self->Attribs.LineWidth==O) { II if width is 0 draw cosmetic lines 
self->Do->DrawDetails(self) ; 

else { II otherwise draw geometric lines using a path 
GpiBeginPath(hps, drawPath); 
self->Do->DrawDetails(self) ; 
GpiEndPath(hps) ; 
areaAttr.1Color = self->Attribs.LineColor; 
areaAttr.usSymbol = PATSYM_SOLID; 
GpiSetAttrs(hps, PRIM_AREA, ABB_COLOR I ABB_SYMBOL,OL, &areaAttr); 
GpiStrokePath(hps, drawPath, strokeOptions); 

} 1* endif *1 

LISTING 7.1 Drawing cosmetic and geometric lines (object.c). 



Paths, Regions, Clipping, Boundary Accumulation, and Correlation 247 

wow 

FIGURE 7.3 Outlined path. 

Convert Path 
to Outline 

The function called GpiOutlinePath converts the path and then draws it. 
The lines in the path definition will be drawn using cosmetic line width (not 
geometric width as in GpiStrokePath). In addition, any outline font charac
ters which would normally be filled will instead be drawn with empty interi
ors. Figure 7.3 shows an example of a path drawn with GpiOutlinePath. 

Paths can have a variety of shapes such as rectangles, curves, even char
acter outlines. Therefore, with a fill tool, you can use paths to obtain a wide 
variety of effects. For example, imagine defining a path from an outline font 
text string 'Hello World'. Once this path has been created, you could set the 
area color, mix, and fill attributes to produce an interesting area fill pattern. 
Then, by filling the path, the GPI would actually draw out the string 'Hello 
World' using the desired fill pattern. Listing 7.2 below shows how this is 
done. Figure 7.4 shows the output. 

This is essentially the same technique used by the graphic editor in List
ing 7.1. However, as you can see, we apply the same technique to all objects 
(not just text). 

GpiBeginPath(hps, drawPath); II Filled Text String, define the path and 
then stroke it 
GpiCharString(hps, llL,"Hello World!"); 
GpiEndPath(hps) ; 
areaAttr.lColor = CLR_YELLOW; 
areaAttr.usSymbol = PATSYM_DIAG1; 
GpiSetAttrs(hps, PRIM_AREA, ABB_COLOR I ABB_SYMBOL, OL, &areaAttr); 
GpiStrokePath(hps, drawPath, strokeOptions); 

LISTING 7.2 Stroked text path. 



248 Programming the OS/2 WARP Version 3 GPI 

HELLO WORLD! 
FIGURE 7.4 Stroked text path. 

Now you know how to draw paths using GpiFillPath, GpiStrokePath, 
and GpiOutlinePath functions. There is, however, another very important 
function provided by paths, called clipping. Clipping provides a way of lim
iting what portions of the display are updated. You can use paths to define 
those areas of the screen that are to be updated during subsequent operations. 
Clipping is a very powerful and important GPI mechanism. This topic is dis
cussed in detail later in this chapter. 

While paths are very useful for some operations, they are also very frag
ile and somewhat of a pain to work with. There can only be one path in exis
tence at any given time. As soon as a new path definition is begun, the old 
path is destroyed. In addition, most operations that are performed on paths 
also destroy the path. Therefore, if you want to use the path for several path 
operations, you must reconstruct the path between each use. Also note that 
paths cannot be created within an area definition. 

REGIONS 

Regions are similar to paths in that they too define boundary information 
about a portion of a picture. Although they can be painted, regions are typi
cally used for operations such as clipping and collision detection. The graph
ic editor uses regions heavily for the latter operations. 

Regions can be described as a series of rectangles that are combined us
ing a particular logical operation. The rectangles can be overlapping or com
pletely disjointed. The rectangles are combined using the logical operations 
AND, OR, XOR, and NOT. The boundaries of the rectangles are in device 
coordinates. 



Paths, Regions, Clipping, Boundary Accumulation, and Correlation 249 

Rectangles OR'ed 

to define a region 

FIGURE 7.5 Logically ORed regions. 

To show how this works, imagine that a region consists of four different 
rectangles that are combined using the logical OR operation. Figure 7.5 
shows the initial rectangles and the resulting region. 

The boundaries of the rectangles that make up the region are not com
pletely inclusive. Only the left and bottom edges of those rectangles are con
sidered to be inside the region. The top and right edges of the rectangles are 
considered to be just outside the region. Table 7.2 shows the various region 
manipulation functions provided by the GPI. 

TABLE 7.2 Region manipulation functions 

Function 

Gpi CreateRegion 
GpiCombineRegion 
GpiDestroy Region 
GpiEqualRegion 
Gpi OffsetRegion 
GpiPaintRegion 
GpiPtlnRegion 
GpiQueryRegionBox 
Gpi Query RegionRects 
GpiRectlnRegion 
GpiSetRegion 

Description 

Creates a new region. 
Combines two regions. 
Destroys an existing region. 
Determines if two regions are equivalent. 
Moves a region by a specified (x,y) offset. 
Paints the interior of a region. 
Determines if a point is inside of a region. 
Calculates bounding box around a region. 
Returns a list of rectangles which define a region. 
Determines if a rectangle is inside of a region. 
Sets the current contents of a region. 

D 



250 Programming the OS/2 WARP Version 3 GPI 

Note that many of the functions in this table will fail if the region being 
operated on is currently selected as the clip region (by the function 
GpiSetClipRegion). 

Constructing Regions 

New regions can be constructed using the function called GpiCreateRegion. 
This function accepts a list of rectangles to be used for the initial region defi
nition. The rectangles will be combined using the logical OR operation. 
(Note: If no rectangles are passed in when the region is created, it is simply 
created as an empty region.) As you might expect, the function called 
GpiDestroyRegion will delete the region. 

Once regions have been created, their contents can be changed using a 
function called GpiSetRegion. This function accepts a new set of rectangles 
that are logically ORed together to produce the new region definition. The 
old region definition is lost. 

The function called GpiCombineRegion can be used to combine the con
tents of two source regions together into a third target region. The previous 
contents of the target region is lost. A variety of logical operations are avail
able for combining the regions in different ways. They are: 

• CRGN_OR 
• CRGN_COPY 
• CRGN_XOR 
• CRGN_AND 
• CRGN_DIFF 

Figure 7.6 shows how the various combination modes affect the result
ing contents of the target region. 

Note that one of the source regions can also be the target region. This has 
the effect of simply adding one region to another (i.e., a=a+b). The graphic 
editor uses the GpiCombineRegion function in this manner to determine 
what areas of the display need to be updated when an operation is performed 
(such as changing the line thickness of the currently selected objects). 

Essentially, each object in our graphic editor has a region that describes a 
bounding rectangle around the object. Whenever the object is changed, its 
bounding region is recomputed. When certain operations are performed, the 
boundary regions of objects involved in the operation are combined to deter
mine the final update region on the display. 



Paths, Regions, Clipping, Boundary Accumulation, and Correlation 251 

Key 

- original arc 

------- new arc 

Source Region Definitions 

• 
OR new src AND new src XOR new src 

n I 
DIFF new src COpy new src 

FIGURE 7.6 Region combination modes. 

For example, suppose you are changing the line thickness of all the cur
rently selected objects. Initially, the previously created updateRegion is set 
to be empty. Then, as the selected objects are processed, each object has its 
line-width attribute changed. This causes the objects boundary regions to be 



252 Programming the OS/2 WARP Version 3 GPI 

recomputed. These new regions are then combined with the updateRegion 
using a logical OR operation. Finally, when all the selected objects have 
been processed, the updateRegion defines all parts of the display that need to 
be updated. (Eventually this update region gets converted into a clip region 
and the display list is drawn-more on that later in the clipping discussion). 
Listing 7.3 shows how this technique is used in the draw.c code. 

/************************************/ 
/* Process line thickness message. */ 
/************************************/ 
case WM_LINETHICKNESS: 

value=LONGFROMMP(mpl); 
AttSet(&currentAttribs,ATT_LINEWIDTH,&value) ; 

GpiSetRegion(hps,updateRegion,OL,NULL) ; 
selectList->Do->Top(selectList) ; 
while(selectList->Do->GetNext(selectList,&anObject)) { 

GpiCombineRegion(hps,updateRegion,updateRegion, 
anObject->Do->GetRegion(anObject) ,CRGN_OR); 

anObject->Do->SetAtt(anObject,ATT_LINEWIDTH,value) ; 
GpiCombineRegion(hps,updateRegion,updateRegion, 

anObject->Do->GetRegion(anObject) ,CRGN_OR); 

GeRefreshRegion(updateRegion); 
break; 

LISTING 7.3 Combining regions in the graphic editor (draw.c). 

We combine the region of each object with the update region both before 
and after the object's line thickness has been changed. This is done because 
the line thickness can be shrinking or growing. This can be seen in Figure 7.7 
where the line thickness of a polygon is changed from thick to thin. By com
bining both before and after regions we are sure to get the entire changed 
region. 

A region can be translated or moved by the function called GpiOf
fsetRegion. This function will cause all the rectangles in the region definition 
to be translated by a specified (x,y) offset. The basic shape of the region rec
tangles will be unchanged. Figure 7.8 shows the effect of GpiOffsetRegion. 

Regions can also be created from the current path definition. This is done 
by using the function called GpiPathToRegion. Using this function, you can 
define a boundary using a path, and then convert it to a region. Once it is 
defined as a region, you will be able to manipulate it using the region opera
tions described in this section. 



Paths, Regions, Clipping, Boundary Accumulation, and Correlation 253 

bounding region around 
thick lined figure 

change thickness 
of figure 

~ 

old region 

~new region 

bounding region around 
thin lined figure 

FIGURE 7.7 Determining update region on an edit operation . 

40 

30 

20 

10 

• 
123 4 
000 0 

Translate by (20,10) 

~ 

FIGURE 7.8 GpiOffset region effect. 

Painting Regions 

40 

30 

20 

10 

• 
1 2 3 4 
o 000 

As previously mentioned, the contents of a region can be painted. This is 
done with a function called GpiPaintRegion. This function uses the current 
area bundle attributes (Color, Mix, PattemSet, etc.) to control how the re
gion is painted. The function called GpiFrameRegion provides an interest
ing effect. This function draws a frame (of a specified thickness) along the 
inside edge of a region. The frame is drawn using the current area bundle 
attributes. These functions are shown in Listing 7.4 to produce the output in 
Figure 7.9. 



254 Programming the OS/2 WARP Version 3 GPI 

• Paint and Frame Region 
40 

~ 
40 

30 30 

20 • 20 

10 10 

1 2 3 4 1 2 3 4 
0 0 0 0 0 0 0 0 

FIGURE 7.9 Result of GpiPaintRegion and GpiFrame region. 

HRGN myRegion; 
RECTL rgnData[5] = {10,20,30,40, 20,10,30,20, 30,30,40,40, 40,10,50,20, 
20,50,30,60}; 
SIZEL size = {5,5}; 
/* Create the region using the defined rectangles */ 
myRegion = GpiCreateRegion(hps, 5L, rgnData); 
/* First Paint the region using some lovely area attributes */ 
GpiSetColor(hps, CLR_GREEN); 
GpiSetMix(hps, FM_OVERPAINT); 
GpiSetPattern(hps, PATSYM_DIAG2); 
GpiPaintRegion(hps, myRegion); 
/* Next, frame the region using different area attributes */ 
GpiSetColor(hps, CLR_RED); 
GpiSetMix(hps, FM_OVERPAINT); 
GpiSetPattern(hps, PATSYM_SOLID); 
GpiFrameRegion(hps, myRegion, &size); 

LISTING 7.4 Using GpiPaintRegion and GpiFrame region. 

Region Relationships 

There are often times when you want to know the relationship of a region to a 
point or to other regions. For example, suppose you want to know if two 
regions intersect with one another, or if a point picked by the user lies within 
a region. The GPI provides several functions for identifying these types of 
region relationships. The function called GpiPtlnRegion detects if a point is 
within a region. The point must be specified in device coordinates. Simi
larly, the function called GpiRectInRegion detects if a rectangle is outside, 
partially inside, or completely inside a region. 



Paths, Regions, Clipping, Boundary Accumulation, and Correlation 255 

The rectangles that make up a region can be determined using the func
tion called GpiQueryRegionRects. This function returns an array of rectan
gles that define the region when they are logically ORed together. The 
function called GpiQueryRegionBox returns a single rectangle that defines a 
bounding box around the entire region. 

The function GpiEqualRegion simply tells if two regions are identical. 
Basically, if the rectangle definitions of the two regions match, then the re
gions are equal. 

U sing these relationship functions, you can determine if regions overlap 
with other regions or with areas on the screen. There are many possible uses 
of these functions. As an example, let's look at how these functions can be 
used to optimize updating a portion of the display. Imagine your application 
has drawn a complicated graphic picture into a window on the display. Next 
imagine that a portion of that picture has to be changed (i.e., perhaps remov
ing a particular figure from the picture). At this point, your application needs 
to update the display to reflect the change. Figure 7.10 shows one possible 
example of this situation. 

Now, what is the best way to update the picture on the display? Your 
application could simply erase the current picture and redraw the entire 
scene. This would be quite simple, but unfortunately, also quite slow. A bet
ter technique would be to identify the area of the picture that was affected by 
the change and only update that portion. 

figure to be removed 

region to be refreshed 

FIGURE 7.10 Screen region to be updated. 



256 Programming the OS/2 WARP Version 3 GPI 

Assuming that each figure in the picture has a region which represents 
that figure's boundary, you can determine what portion of the screen needs 
to be updated by combining the regions of any figures that were changed. 
This is done using the GpiCombineRegion as described earlier to compute 
an update region. 

Once an update region has been computed, that region can be erased us
ing the function GpiPaintRegion. This will clear out the old contents of those 
regions so you can redraw them. To redraw objects in the update region, you 
need to determine what objects intersect with that region. The GPI does not 
allow you to directly compare regions; however, you can effectively do this 
by querying a region's rectangle and then calling GpiRectlnRegion to see if 
a particular rectangle intersects with the region. Listing 7.5 shows how a re
gion intersection function could be written using this technique. 

GoRegionInRegion(HRGN rgn1, HRGN rgn2) 
{ 

RECTL rectArray[100]; 
LONG detect; 
int i, partOut, partIn; 
RGNTECT rgnrcControl; 
/* First aquire rectangles in first region */ 
rgnrcControl.ircStart = 1; 
rgnrcControl.crc = 100; 
rgnrcControl.usDirection = RECTDIR_LFRT_TOPBOT; 
GpiQueryRegionRects(hps, rgn1, NULL, &rgnrcControl, &rectArray); 
/* Then compare to see if those rectangles intersect with the second re

gion */ 
partOut = partIn = FALSE; 
for(i=O; i<rgnrcControl.crcReturned; i++) { 

detect = GpiRectlnRegion(hps, rgn2, &rectArray[i]); 
partOut = part Out I I (detect==RRGN_OUTSIDE) ; 
partIn = partIn I I (detect==RRGN_INSIDE); 
if (partOut && partIn I I (detect==RRGN_PARTIAL)) 

return RRGN_PARTIAL; 

if (partOut) 
return RRGN_OUTSIDE; 

else 
return RRGN_INSIDE; 

LISTING 7.5 A RegionInRegion comparison function. 

With such an intersection function, your application could run through 
its list of display objects and only draw those objects whose regions intersect 
with the update region. 

Using this technique has some problems, however, because even objects 
that just barely touch the update regions will still be entirely redrawn. This 



Paths, Regions, Clipping, Boundary Accumulation, and Correlation 257 

can cause corruption of other portions of the picture because those objects 
that touch the update region may be redrawn over other objects that were not 
redrawn because they were outside the update region. The problem here is 
that we are not restricting the redraw to just the update region. The next sec
tion discusses the topic of clipping, which addresses just this problem. 

CLIPPING 

Suppose you are developing an Electronic Computer Aided Design (CAD) 
application that produces very dense layouts of electronic circuits. Since 
graphics drawn in this application are very dense, it may be somewhat slow 
to draw them. Next, assume this application allows the user to interactively 
update or edit portions of the circuit layout. Since the draw times are slow, 
you may want to limit the redraw of the picture to just the portion of the fig
ure that changed. This will make the screen updates much quicker which is 
very desirable for an interactive application. 

The idea of limiting the area of the display or output device that is up
dated during a draw operation is known as clipping. Clipping essentially re
lieves you from having to worry about accidentally drawing over portions of 
the screen that you don't want touched. Figure 7.11 shows how a clip area 
can restrict drawing output. 

By establishing a clipping area, your application can then draw any
where it wants to, yet only the portion of the drawing that falls into the clip
ping area will actually be drawn. The clipping area can be defined using 
either a path or a region. The GPI provides a variety of clipping mechanisms 
that you can use in your applications. Figure 7.12 shows where in the view
ing pipeline the GPI provides mechanisms for clipping drawing output. 

/ 
i --------------------------- -i ______ ~/ ~// 

~/"\ ..... :~~/ 

FIGURE 7.11 Restricting display output using a clip region. 



258 Programming the OS/2 WARP Version 3 GPI 

GpiSetClipPath GpiSetViewingLimit 

World Model 

GpiSetGraphicSField 

Presentation Page 

Default 
Presentation Page 

GpiSetClipRegion 

1-
Device 

FIGURE 7.12 Clipping mechanisms in the viewing pipeline. 

As you can see, there are a number of places that output can be clipped. 
Each stage provides its own set of unique clipping capabilities. The follow
ing sections will explore each of the stages in more detail. Table 7.3 pro
vides an overview of the clipping related functions provided by the OPI. 



Paths, Regions, Clipping, Boundary Accumulation, and Correlation 259 

TABLE 7.3 Clipping functions 

Function 

GpiSetClipPath 
GpiSetClipRegion 
GpiExcludeClipRectangle 

GpiIntersectClipRectangle 

GpiOffsetClipRegion 

GpiPtVisible 
GpiRect Visible 
GpiQueryClipBox 

Gpi QueryClipRegion 

Description 

Defines the current clip path. 
Sets the current clip region. 
Excludes the given rectangle from the current 
clip region. 
Intersects the given rectangle with the current 
clip region. 
Translates the position of the current clip 
region. 
Checks to see if a point is clipped or not. 
Checks to see if a rectangle is clipped or not. 
Returns the tightest rectangle around all 
clipping definitions. 
Returns the current clip region. 

World Space Clipping-Using Clip Paths 

The first opportunity for doing clipping is in the world coordinate space. 
This can be done through the use of something the GPI calls a clip path. The 
general idea here is to take a path definition that you have created and con
vert it into the current clip path. Then, everything you subsequently draw 
will be clipped to the interior of the path definition. 

Since paths can be all kinds of shapes, you can produce some pretty in
teresting clipping effects when using them. That's mainly what clip paths 
should be used for, interesting clip patterns. For basic clipping (like simple 
rectangles) there are easier and faster mechanisms. We'll talk more about 
those later, but for now let's look at path clipping! 

The function called GpiSetClipPath will convert the current path defini
tion to a clipping area. Since paths can take on many shapes (including arcs, 
splines, and even outline text) the clipping capability of using paths is very 
extensive. This function has two parameters of interest: The IPath parameter 
lets you control whether the clip path is to be reset to infinity (no clipping) or 
intersected with the current path definition, and the IOptions parameter con-



260 Programming the OS/2 WARP Version 3 GPI 

troIs two things, how the interior of the clip path is determined and how the 
new path is to be intersected with the current clip path. 

The interior of the clip path can be determined using SCP _ALTERNATE 

or SCP _WINDING modes (see Determining the Interior of an Area in Chap
ter 3 for more discussion on this). How the new path is intersected is really 
just a mirror of how the IPath parameter was set (SCP _RESET or 
SCP_AND). The introduction screen of the graphics editor (Screen 7.1) 
shows several good examples of the effect that can be produced using path 
clipping. 

My first reaction to this introduction screen was "Hey, that's cool! I 
wonder how he did that." The answer to the question is actually quite sim
ple. This screen was produced by using clip paths in just a few different 
ways. The first thing you notice is the outlined drawing of the text 
"WILEY". This was done by drawing the text into a path definition and then 
outlining the path using GpiOutlinePath. Next, the "WILEY" text was again 

SCREEN 7.1 Graphic editor introduction screen. 



Paths, Regions, Clipping, Boundary Accumulation, and Correlation 261 

drawn into a path definition. The function GpiSetClipPath was then called 
twice: once to reset the clip path to infinity, and again to define the clipping 
area to the path containing the "WILEY" text. This allowed us to write the 
text "draw" over the entire screen. Since the clipping path had been estab
lished, however, only those areas inside the path were shown. The rest were 
clipped automatically by the GPI and discarded. Listing 7.6 shows this part 
of the introduction screen construction. 

/******************************************************/ 
/* Process the animate message. This will only occur */ 
/* once after the first WM_PAINT message. */ 
/******************************************************/ 
case WM_ANIMATE: 

/***************************************************/ 
/* Make the window client area a white background. */ 
/***************************************************/ 
pointsArray[O] .x=O; 
pointsArray[O] .y=O; 
pointsArray[l] .x=WinQuerySysValue(HWND_DESKTOP,SV_CXSCREEN); 
pointsArray[l] .y=WinQuerySysValue(HWND_DESKTOP,SV_CYSCREEN); 
GpiBitBlt(hps,hps,2L,pointsArray,ROP_ONE,BBO_AND) ; 
/**************************************************/ 
/* Get size of window and convert in world units. */ 
/**************************************************/ 
WinQueryWindowRect(hwnd,&rcl) ; 
GpiConvert(hps,CVTC_DEVICE,CVTC_WORLD,2L, (POINTL *)&rcl); 
xTotal=rcl.xRight-rcl.xLeft; 
yTotal=rcl.yTop-rcl.yBottom; 
/*****************************************/ 
/* Get a font and adjust its point size. */ 
/*****************************************/ 
lLcid=AddFont("Courier Bold", 0); 
pointSize=115; 
SetPtSize(hps,lLcid,pointSize) ; 
/***************************************/ 
/* Find size of text box for clipping. */ 
/***************************************/ 
clipTextPoint.x=O; 
clipTextPoint.y=O; 
GpiConvert(hps,CVTC_DEFAULTPAGE,CVTC_WORLD,lL,&clipTextPoint); 
GpiMove(hps,&clipTextPoint) ; 
GpiQueryTextBox(hps,strlen(clip) ,clip,TXTBOX_COUNT,textpoints); 
ys=textPoints[O] .y-textPoints[l] .y; 
xs=textPoints[2] .x-textPoints[l] .x; 
/*************************************************/ 
/* Find the start point so the text is centered. */ 
/*************************************************/ 
clipTextpoint.x=xTotal-xs; 
clipTextpoint.y=yTotal-ys; 

LISTING 7.6 Producing the graphic editor introduction screen-part 1 
(draw.c). 



262 Programming the OS/2 WARP Version 3 GPI 

clipTextPoint.x/=2; 
clipTextPoint.y/=2; 
/*************************************/ 
/* Draw an outline of the clip area. */ 
/*************************************/ 
GpiMove(hps,&clipTextPoint) ; 
GpiBeginPath(hps,lL) ; 
GpiCharString(hps,sizeof(clip),clip) ; 
GpiEndPath(hps); 
GpiOutlinePath(hps,l,O) ; 
/**************************************************************/ 
/* Create the path again and define as the clipPath so small */ 
/* text can be drawn in it. */ 
/**************************************************************/ 
GpiMove (hps, &clipTextPoint) ; 
GpiBeginPath(hps,lL) ; 
GpiCharString(hps,strlen(clip) ,clip); 
GpiEndPath(hps) ; 
GpiSetClipPath(hps,OL,SCP_RESET); 
GpiSetClipPath(hps,lL,SCP_AND) ; 
/*********************************************/ 
/* Change font and set its size to be small. */ 
/*********************************************/ 
lLcid=AddFont(UCourierU,O) ; 
pointSize=6; 
SetPtSize(hps,lLcid,pointSize) ; 
GpiSetCharSet(hps,O) ; 
/***********************************************************/ 
/* Find out size of string to draw in clip path. Note */ 
/* that the string is repeating 5 characters and */ 
/* shifted 1 character each time we start a new line. */ 
/***********************************************************/ 
GpiMove(hps,&clipTextPoint) ; 
GpiQueryTextBox(hps,5,clipPattern,TXTBOX_COUNT,textPoints); 
worldHeight=textPoints[O] .y-textPoints[l] .y; 
strWidth=textPoints[2] .x-textPoints[l] .x; 
xs=xs/strwidth; // Number of times needed for width. 
ys=ys/worldHeight; // Number of times needed for height. 
smallPoint.x=clipTextPoint.x; 
smallPoint.y=clipTextPoint.y; 
/*********************************************/ 
/* Draw the small text inside the clip path. */ 
/*********************************************/ 
for(linesUp=O;linesUp<=ys;linesUp++) { 

for (words=O;words<=xs;words++) 
GpiCharString(hps,5,clipPattern+(linesUp % 4)); 

smallPoint.y+=worldHeight; 
GpiMove(hps,&smallPoint); 

LISTING 7.6 (Continued). 

The second part of the screen is the string art. This was produced in a 
similar manner except, instead of having the clip path set to the interior of the 
"WILEY" text, here we set the clip path to be everything else but the interior 



Paths, Regions, Clipping, Boundary Accumulation, and Correlation 263 

of the text. How did we do this? The answer is not obvious at first, but is 
actually quite simple. The solution was to take advantage of the clipping 
path interior detection option SCP _ALTERNATE. This option determines 
the interior by passing a line from any point toward infinity. If there are an 
odd number of path boundary crossings, the point is inside the clip path; if 
there are an even number of path boundary crossings, the point is outside the 
clip path. Well, if the path were set to just the "WILEY" text, then obviously 
just the text internals would be inside the clip path (as in the first part of the 
screen). To get the opposite effect, we merely draw another box in the path 
definition that surrounds the entire area that we want the string art to appear 
in (in this case the whole display). This is done with a simple GpiBox call 
that starts at the lower-left comer and goes to the upper-right comer of the 
output area. Now, since the box covers the entire output area, everything is 
inside the path definition, except the interior of the text (i.e., points on the 
interior of the text now have an even number of boundary crossings and are 
thus outside the path). Once the clip path is set, the string art can be drawn 
and it will show up everywhere except inside the "WILEY" text. Listing 7.7 
shows the code that draws the second part of the introduction screen. 

/*****************************************/ 
/* Get a font and adjust its point size. */ 
/*****************************************/ 
ILcid=AddFont("Courier Bold",O); 
pointSize=115; 
SetPtSize(hps,ILcid,pointSize); 
/*********************************************************/ 
/* Set the clip path again so lines can be drawn around. */ 
/* the first clip path. */ 
/*********************************************************/ 
GpiBeginPath(hps,lL) ; 
startPoint.x=rcl.xLeft; 
startPoint.y=rcl.yBottom; 
GpiMove(hps, (POINTL *)&startPoint); 
startPoint.x=rcl.xRight; 
startPoint.y=rcl.yTop; 
GpiBox(hps,DRO_OUTLINE,&startPoint,OL,OL) ; 
GpiMove(hps, &clipTextPoint); 
GpiCharString(hps,strlen(clip),clip); 
GpiEndPath (hps) ; 
GpiSetClipPath(hps,OL,SCP_RESET) ; 
GpiSetClipPath(hps,lL,SCP_AND); 
GpiBitBlt(hps,hps,2L,pointsArraY,ROP_ZERO,BBO_AND) ; 

LISTING 7.7 Promoting the graphic editor introduction screen-part 2 
(draw.c). 



264 Programming the OS/2 WARP Version 3 GPI 

1******************************************************1 
1* Initialize start point and offsets for string art. *1 
1******************************************************1 
startPoint.x=xTotal/2; 
startPoint.y=yTotal/S; 
endPoint.x=xTotal/4; 
endPoint.y=yTotal/6; 
xStartOff=xTotal/-60; 
yStartOff=yTotal/SO; 
xEndOff=xTotal/40; 
yEndOff=yTotal/-70; 
1*******************************1 
1* Do string art for 4 colors. *1 
1*******************************1 
for(color=1;color<=3;color++) { 

GpiSetColor(hps,color) ; 
for(linesUp=O;linesUp<=280;linesUp++) { 

if( (startPoint.x+xStartOff»xTotal)xStartOff*=-l 
if((startPoint.x+xStartOff)<l)xStartOff*=-l; 
if((startPoint.y+yStartOff»yTotal)yStartOff*=-l 
if((startPoint.y+yStartOff)<l)yStartOff*=-l; 
if( (endPoint.x+xEndOff»xTotal)xEndOff*=-l; 

if( (endPoint.x+xEndOff) <l)xEndOff*=-l; 
if( (endPoint.y+yEndOff»yTotal)yEndOff*=-l; 
if( (endPoint.y+yEndOff) <l)yEndOff*=-l; 
startPoint.x+=xStartOff; 
startPoint.y+=yStartOff; 
endPoint.x+=xEndOff; 
endPoint.y+=yEndOff; 
GpiMove(hps,&startPoint); 
GpiLine (hps, &endPoint) ; 
} 

DosSleep(3000); II Wait 3 seconds. 
GpiSetClipPath(hps,OL,SCP_RESET) ; 
return (MRESULT) TRUE; 

LISTING 7.7 (Continued). 

Model Space Clipping 

The second opportunity for doing clipping is in the model coordinate space. 
Clipping in this space is defined with a single rectangular shape called the 
viewing limit. The viewing limit is used to restrict drawing of a picture as it 
passes through model space to only those portions that fall inside the 
rectangle. 

The viewing limit defaults to infinity(i.e., no model space clipping). You 
can change the viewing limit using a function called GpiSetViewingLimits. 
This function accepts a rectangle whose boundaries are, of course, specified 



Paths, Regions, Clipping, Boundary Accumulation, and Correlation 265 

in world coordinates. The boundaries of the rectangle are defined to be in
side the viewing limit; therefore, points on them will not be clipped. 

Page Space Clipping 

Clipping can also be done as pictures pass through the page space. Here 
again, clipping is defined using a single rectangular shape. This clipping 
boundary is called the graphics field. It functions very much like the viewing 
limit, except it works in the page space. This function is basically an oppor
tunity to perform the same type of clipping after the picture construction is 
complete. 

By default, no clipping will be performed. You can change the graphics 
field using a function called GpiSetGraphicsField. This function accepts a 
rectangle whose boundaries are specified in page coordinates. The bounda
ries of this rectangle are also inclusive so points on them will not be clipped. 

Device Space Clipping 

Finally, we get to clipping in device space. Aside from clip paths, device 
clipping is probably the most interesting of the lot. Clipping in device space 
is done using a series of rectangular shapes that are collectively known as the 
clip region. If you recall from earlier in this chapter, a region is simply a 
collection of rectangular shapes that have been logically combined. The clip 
region is simply a particular region that has been chosen to be used for clip
ping. 

As you can see from the previous section, clipping with paths is very 
powerful and can be used to produce many interesting effects. However, clip 
paths are also difficult to work with and are quite slow. Regions, on the other 
hand, are quite easy to work with and their use in clipping is much faster. The 
function called GpiSetClipRegion selects a specified region as the current 
clip region. All subsequent drawing calls will be clipped to the interior of the 
region. 

The clip region operates slightly differently than the clip path. The clip 
region merely refers to a region definition that is currently selected. Think of 
it as a pointer to one of the current region definitions which can be changed 
by calling the GpiSetClipRegion function. Regions can be selected, and then 
later deselected, as the clip region without being destroyed (as occurs with 
clip paths). Also, the GpiSetClipRegion function does not combine the new 



266 Programming the OS/2 WARP Version 3 GPI 

region with the old clip region (that can be accomplished through other re
gion functions). 

As mentioned earlier, our graphic editor makes heavy use of regions. Ba
sically, all editing operations use clip regions for updates to the display. We 
considered using clip paths for this, but concluded that for what we were 
doing they would be more cumbersome to work with than clip regions and 
probably much slower. 

Keep in mind that many of the region manipulation functions cannot be 
performed on the currently selected clip region. Because of this, you will 
want to perform most region manipulations before you select that region as 
the current clipping region. 

Other Clipping Related Operations 

The remaining clip functions exist to support the previously described clip
ping definitions. The function called GpiExcludeClipRectangle will update 
the current clipping region such that it excludes the rectangle specified on 
the call. In other words, the clip region is updated such that things drawn 
inside the specified rectangle will be clipped and will not be sent to the out
put device. Anything that is drawn outside the specified rectangle will be 
clipped according to the clipping definition as it existed prior to this call. The 
rectangle to be excluded is specified in world coordinates. 

Another way to further restrict the clipping region is by using the func
tion called GpilntersectClipRectangle. This function updates the current 
clipping region such that things drawn outside the specified rectangle will be 
clipped and not sent to the output device. Anything that is drawn inside the 
specified rectangle will be clipped according to the clipping definition as it 
existed prior to this call. Again, the rectangle to intersect is specified in 
world coordinates. This is shown in Figure 7.13. 

One last function for altering the current clip region is called GpiOff
setClipRegion. This function simply moves (or translates) the current clip 
region definition by a specified offset. The offset contains X and Y transla
tion values that are specified in world coordinates. 

If you're looking to find out information about the current clip region, 
there are two functions that can help. The function called GpiQuery
ClipRegion will return the handle of the currently selected clip region. With 
this, you can call GpiQueryRegionRects to determine the rectangles that 



Paths, Regions, Clipping, Boundary Accumulation, and Correlation 267 

Key 

~ previous clip region 

------- new clip region 

I ______ ~ 

Source Clip Regions 

Combine new clip region 
with old clip region 

FIGURE 7.13 Modifying current clip region definition. 

PI 
Exclude Mode 

• 
Include Mode 

define that region. Note that you cannot call GpiQueryRegionRects while 
the region is currently selected as the clip region. You must first deselect it 
and then query it. 

A second function called GpiQueryClipBox is useful for determining 
the bounding rectangle around the intersection of the current clipping defini
tions. This function computes the tightest bounding rectangle and returns it 
in world coordinates. Note that this function includes all the clipping defini
tions (i.e., clip path, viewing limit, graphics field, and clip region). Figure 
7.14 shows an example of how the clip box is determined. 

Once clipping definitions have been set, you may want to know whether 
a particular item is visible. One way to find the answer would be to query the 
clip region, deselect the clip region, check to see if the item is inside the 



268 Programming the OS/2 WARP Version 3 GPI 

graphic field = infinity 
clip path 

~--- resulting clip box 

clip regiOI>--~ __ _ 

viewing 

FIGURE 7.14 Determining clip box boundaries. 

region (i.e., using GpiPtlnRegion or GpiRectlnRegion), and finally reselect
ing the clip region. What a pain-and it gets even worse if you want to check 
the effects of the other clipping definitions. Well, fortunately the GPI pro
vides a couple of functions that help greatly. The function GpiPtVisible will 
check to see if the specified point is within the clipping area. If it is, that point 
will be part of the area of the output device that gets updated. The point is 
specified in world coordinates. The function includes all clipping definitions 
in its calculation. 

The function called GpiRectVisible works in a similar fashion except 
that it accepts a rectangular region instead of a point. The rectangle bounda
ries are specified in world coordinates. 

Boundary Accumulation 

By now you should have a basic understanding of what paths and regions 
are, and also some idea of how they are used in clipping. One of the nice 



Paths, Regions, Clipping, Boundary Accumulation, and Correlation 269 

things about paths is that their boundaries are computed automatically as 
you call GPI drawing primitives. You don't have to keep track of the 
boundaries, the GPI does it for you. This can be really handy, especially 
when the drawings are complicated and include curves, rotations, and the 
like. You may be wondering if the GPI can also automatically compute the 
boundaries of a region. Well, the answer is no (at least not directly). The GPI 
does, however, provide a partial solution through a mechanism called 
Boundary Accumulation. This mechanism allows you to determine the 
bounding rectangle that surrounds a collection of GPI drawing primitives. 
Figure 7.15 shows the boundary information collected around a series of 
drawing primitives. 

You start the process of boundary accumulation using the function called 
Gp iSetD raw Control. This function can be used to turn on several drawing 
options. The one we are interested in is DCTL_BOUNDARY. This option con
trols whether boundary accumulation information is to be gathered during 
subsequent drawing operations. If this option is set to DCTL_ON, then 
boundary accumulation information will be collected. The default value is 
DCTL_OFF. 

~- pounding accumulation rectangle 
(model coordinates) 

FIGURE 7.15 Gathering boundary information. 



270 Programming the OS/2 WARP Version 3 GPI 

Once boundary accumulation has been turned on, the function called 
GpiResetBoundaryData can be used to initialize the boundary data to null. 
After this, all GPI drawing operations will update the current boundary accu
mulation definition. 

Once you have performed all the desired operations, you can retrieve the 
boundary information by using the function called GpiQueryBoun
daryData. This function returns the coordinates of the rectangle that bounds 
the GPI drawing primitives you issued. Be careful, the coordinates are re
turned in model coordinate space so if you need them in world or presenta
tion page coordinates, you will have to convert them. 

Our graphic editor uses boundary accumulation to determine the bound
ing box around each object. One of the uses of this boundary information is 
used to draw the dashed box around the object when it is selected. Listing 7.8 
shows how we collect the boundary information on each object as it is 
drawn. 

/***********************************************************/ 
/* Gather Boundary data (in model coordinates) */ 
/***********************************************************/ 
GpiResetBoundaryData(hps); 
GpiSetDrawControl(hps, DCTL_BOUNDARY, DCTL_ON); 
GpiSetDrawControl(hps, DCTL_DISPLAY, DCTL_OFF); 
GpiDrawSegment(hps, self->Segment); 
GpiQueryBoundaryData(hps, &boundary); 
GpiSetDrawControl(hps, DCTL_BOUNDARY, DCTL_OFF); 
GpiSetDrawControl(hps, DCTL_DISPLAY, DCTL_ON); 
if (self->State == GOS_SELECTED) { 

/***********************************************************/ 
/* If object is selected, reopen the segment and add an */ 
/* element to display a dashed bounding rectangle around */ 
/* the outside of the object. Use the boundary information */ 
/* just gathered to do this. */ 
/* Insert this element into the segment before the model */ 
/* xform matrix is changed. This is done because we want */ 
/* the boundary to be affected by the current model xform */ 
/* but not the object specific model xform. */ 
/***********************************************************/ 
GpiOpenSegment(hps, self->Segment); 
GpiSetElementPointer(hps, 4L); // insert beform model xform is changed 
GpiBeginElement(hps, GO_ELEMENT_TYPE, "Bounding Select Rectangle"); 
point.x = boundary.xLeft; 
point.y = boundary.yBottom; 
GpiMove(hps, &point); 
point.x boundary.xRight; 
point.y = boundary.yTop; 

LISTING 7.8 Gathering boundary information in the graphic editor (ob
ject.c). 



Paths, Regions, Clipping, Boundary Accumulation, and Correlation 271 

GpiSetLineType(hps, LINETYPE_DOT) i 

GpiSetColor(hps, CLR_BLACK) i 

GpiSetTag(hps, OL) i II make boundary unpickable 
GpiBox(hps, DRO_OUTLINE, &point, OL, OL); 
GpiEndElement(hps) ; 
GpiPop(hps, 3L); 
GpiCloseSegment(hps) ; 

LISTING 7.8 (Continued). 

Note that boundary accumulation can be performed even though the ob
jects are not actually being displayed. 

CORRELATION 

One issue that comes up with any interactive graphics program is that of get
ting input from the user. The Presentation Manager has many standard facili
ties that your program can use for this purpose. For example, pull-down 
menus are handled with a resource file and messages. Likewise, keystrokes, 
hot-keys, and scroll bars all send messages to the main window procedure of 
your application so that it can handle these activities. But, how does an appli
cation process input (such as mouse activity) where the user is trying to inter
act directly with the graphic drawn in the client window? 

Well, certainly one way is for the application to simply receive the 
mouse movement and mouse button events. Then, based on the coordinates 
returned, the application can scan through some sort of internal data struc
ture it maintains to identify what graphic object is being selected by the user. 
In fact, if the application were to maintain a region definition for each graph
ic object it drew, it could merely loop through the list of regions using the 
GpiPtInRegion function to determine what object the mouse was over. Our 
graphic editor could easily have used this technique to determine when ob
jects are selected by the user. We didn't, however, because the GPI provides 
another mechanism that is even simpler and more powerful. This mecha
nism is called correlation (also known as picking). Correlation can be per
formed on graphics primitives within retained or nonretained segments. 

Correlation allows you to correlate a single point with a group of graph
ics primitives that you have drawn. Depending on how fancy you want to be, 
correlation will allow you to detect general areas on a drawing or specific 
items within the drawing. Figure 7.16 shows how you can use correlation to 
identify various granularities of picture elements within a drawing. 



272 Programming the OS/2 WARP Version 3 GPI 

1 

1 

2 

3 

1 

[TIJ] 
~ 

~ 
~ 

3 

6 

3 

9 

FIGURE 7.16 Varying degrees of correlation granularity using tags. 

Essentially, each drawing primitive has an associated tag value. When 
you perform a correlation operation on a particular point, the GPI will deter
mine if it intersects with (i.e., hits) any of the primitives that were drawn. 
The correlation operation returns the unique tag values of primitives that 
were found to be intersected. More than one primitive can be drawn using 
the same tag; therefore, multiple points on the picture may correlate to the 
same tag value. On the other hand, each drawing primitive can have its own 
unique tag to make it uniquely identifiable; therefore, if objects overlap, a 
single point may correlate to multiple tag values. 

As we mentioned earlier, correlation is only provided within segments. 
The tag values are associated with drawing primitives by first setting the cur
rent tag value and then issuing the drawing commands. The current tag is set 
using the function called GpiSetTag. Once the tag has been set, all subse
quent drawing primitives in the segment will take on that tag value. Later 



Paths, Regions, Clipping, Boundary Accumulation, and Correlation 273 

correlation of points on those drawing primitives will return the same tag 
value. The current tag value can be changed multiple times within a seg
ment. This allows you to have different portions of the picture with different 
tag values. Those items drawn with a tag value of zero will not be detected by 
any subsequent correlation operations. Listing 7.9 shows how multiple tag 
values can be assigned to various parts of the picture. 

GpiOpenSegment(hps, MYSEG); 
GpiSetTag(hps, lL); 
/* Draw the house with tag=l */ 
GpiMove(hps, &housePt[O]); 
GpiPolyLine(hps, 4L, &housePt[l]); 
GpiSetTag(hps, 2L); 
/* Draw the door with tag=2 */ 
GpiMove(hps, &doorPt[O]); 
GpiBox(hps, DRO_OUTLINE, &doorPt[l] , OL, OL); 
GpiSetTag(hps, 3L); 
/* Draw the roof with tag=3 */ 
GpiMove(hps, &roofPt[O]); 
GpiPolyLine(hps, 3L, &roofPt[l]); 
GpiCloseSegment(hps); 

LISTING 7.9 Assigning tags to the drawing. 

After the picture has been drawn, a point can be correlated against the 
picture using the OPI function GpiCorrelateChain. This function will return 
the data for any tagged primitive with which the point intersects. The re
turned data includes the tag value of the drawing primitive with which it was 
intersected, and the segment in which the drawing primitive was included. 
OpiCorrelateChain only examines segments that have the chained attribute 
set (this means that either they are included in the OP!' s root segment chain 
or they are called by another segment that is). You can also specify that only 
those segments that are visible should be included in the correlation opera
tion. 

As mentioned earlier, a single point may correlate to several tagged 
drawing orders. The OPI refers to each of these correlation matches as hits. 
Thus, a single Gpi CorrelateChain call can encounter several hits and return 
correlation data for each of them. Your application can specify the maxi
mum number of hits it is willing to accept using the lMaxHits parameter. The 
hit data is then returned to your application as an array of segment/tag pairs. 
Because segments can contain calls to other segments, there is often a seg
ment call hierarchy. Figure 7.17 shows an example of such a segment call 
hierarchy. 



274 Programming the OS/2 WARP Version 3 GPI 

Root segment chain 

P Q 

tag: Tl tag: Tl 

draw ite 

T u v F 

it 
I t,ag: T3 I 
~ 

FIGURE 7.17 Segment call hierarchy. 

Referring to Figure 7.17, if a hit is detected in segment T, you can in
struct the GpiCorrelateChain function to report the segment call path. This is 
done using the IMaxDepth parameter. This parameter tells the GPI how far 
up the segment call tree should be reported for each hit. Therefore, if the 
lMaxDepth parameter were set to 3, a hit in segment T would report seg
ment/tag pairs for segments T, R, and A. 

Together, lMaxHits and lMaxDepth can be used to control how many 
hits are detected and how much segment hierarchy information is reported 
for each hit. The hits are reported in the reverse order they are encountered in 
the segment chain flow and the hierarchy information is reported from the 
point of detection on up. Figure 7.18 shows several examples of hit data that 
are returned from GpiCorrelateChain using various parameters oflMaxHits 
and lMaxDepth. The figure was drawn using the segment hierarchy shown 
in Figure 7.17. The point being correlated happens to hit drawing orders in 
segments F,U, and P. 



Paths, Regions, Clipping, Boundary Accumulation, and Correlation 275 

Correlation Point 

I Q-:£ 

A I'-------A:l_ 

Max Hits=l, Max Depth=l 

F:2 

Max Hits=2, Max Depth=2 

F:2 
D:l 
U:2 
R:l 

Max Hits=l, MaxDepth=3 

F:2 
D:l 
A:l 

Max Hits=3, Max Depth=l 

F:2 
U:2 
P:l 

FIGURE 7.18 Correlating multiple hits. 

If you do not want to scan the entire segment chain, you can limit the 
search using the GPI function GpiCorrelateFrom. This function lets you 
specify the beginning and ending segments in the chain to be included in the 



276 Programming the OS/2 WARP Version 3 GPI 

correlation operation. Other than this, the GpiCorrelateFrom function oper
ates just as the GpiCorrelateChain function. 

Finally, you can perform correlation against segments that are not in the 
root chain at all. This can be done with the GPI function called GpiCor
relateSegment. This function performs the correlation operation against the 
specified segment (and any that it calls). Again, the correlation operation is 
done basically the same as the GpiCorrelateChain function. 

The GPI refers to the point that you are correlating against the picture as 
the pick aperture. In fact, the pick aperture does not have to be a point at 
all-your application can define it to be a larger size if it wishes. A larger 
pick aperture means that a larger area around the point will be checked for 
intersection with tagged drawing primitives. The GPI function GpiSetPick
ApertureSize is used to define the size of this area. The center of the pick 
aperture is defined using the GPI function called GpiSetPickAperturePosi
tion. 

These functions are typically used to understand input that came from 
the user via some sort of pointing device. Using correlation you c.an deter
mine if the user was trying to interact with a portion of the picture. By setting 
a larger aperture, the pointing device essentially becomes larger and makes it 
easier to pick picture items (which can be especially nice for those users who 
are a little less steady with the mouse). 

Consider, for a moment, what your application would have to do if the 
correlation functions were not available. Your application would need to 
manage its own correlation lookup table which would need an entry for each 
drawing primitive that was issued. Associated with each primitive would 
need to be the boundary information of the primitive, the segment it was 
drawn in, and the tag value that you assigned it. Then, when a point or region 
was to be correlated, you would need to scan the table to locate any primi
tives that intersected with it. Simply scanning a linear table would be awfully 
slow; therefore, you would probably want to organize the table for more effi
cient scanning. In addition, you would want to provide some sort of linking 
between table elements in order to determine call hierarchy between ele
ments in one segment to elements in another segment. ... as you can see, the 
complexity rapidly grows as you start adding the various features we've pre
viously discussed. The end result is that correlation can give your applica
tion a lot of flexibility in dealing with user input and save you a lot of work. 



Paths, Regions, Clipping, Boundary Accumulation, and Correlation 277 

Correlation in the Graphic Editor 

In the graphic editor, we use correlation for all interaction between the user 
and the objects drawn to the display. We take special care to tag the segments 
in a way that allows us to identify what object is being interacted with and 
what portions of that object are being manipulated. The following para
graphs describe how the editor lays out segments and how it uses tags to fa
cilitate end-user editing operations. 

The editor places each graphic object that the user creates in its own seg
ment. Each object has both an in-memory data structure (i.e., an object) and 
a retained segment associated with it. The in-memory object holds the ID of 
the segment as one of its fields. Plus, the segment itself holds a pointer back 
to the in-memory object in one of its comment fields (a comment field can be 
used to hold anything, so we use it to hold an object pointer). This means that 
given one structure, we can get to the other structure fairly easily and 
quickly. 

As object segments are drawn, all pickable portions of the segment will 
be drawn with a tag value of one or higher (this guarantees that they can be 
picked). Special points on the object, such as editing handles, will be drawn 
with tag values greater than one. Editing points on an object begin with a tag 
value of two and go up incrementally till the last point is reached. Listing 
7.10 shows the function we use to draw edit handles for all multipoint ob
jects. 

/************************************************************************/ 
/* 
/* 
/* 

Draw Handles 
*/ 

*/ 

*/ 
/* This function draws the edit handles of the object. An Edit handle is*/ 
/* drawn at each point of the object. */ 
/* */ 
/************************************************************************/ 
void GoDrawHandles(GOBJ self) 

{ 

int i; 
for (i=O; i<self->PointCount; i++) { 

GpiSetTag(hps, i+2); // Tags start at 2 and go up 
GpiMarker(hps, &((*self->Points) [iJ)); 

} /* endfor */ 

LISTING 7.10 Assigning correlation tags to edit handles in the graphic 
editor (object.c). 



278 Programming the OS/2 WARP Version 3 GPI 

When a pointer event (i.e., mouse event) is received from the user, we 
correlate that point against all the segments in the chain. If the point inter
sects with a picture, the hit information returned to us will tell us which seg
ment was hit. Since we store a pointer to our object in a comment field at the 
beginning of the segment, we can quickly get a pointer back to the object 
with which the segment is associated. Listing 7.11 shows how we use corre
lation to find the segment that was hit and, in tum, determine which object 
was picked. 

1***************************************************************************1 
1* 
1* Pick 

*1 
*1 

1* *1 
1* This function performs a GPI correlate operation to determine if the *1 
1* specified point is over any objects. If any objects are found, their *1 
1* handles are stored in the given object handle array. The function *1 
1* returns the number of 'hit' objects returned. The tag id of the hit *1 
1* object is also returned in the given tag array. *1 
1* *1 
1***************************************************************************1 
#define MAX_PICKS 15 1* Maximum pick depth of 15 items*1 
int Gopick(POINTL point, GOBJ objArr[], LONG tagArr[], int arrSize) 

{ 

LONG corrSegTags[MAX_PICKS*2] i 

LONG hits=Oi 
GOBJ hitObji 

II Segment/Tag pair array used in correlation 
II Number of hits found during correlation 
II The graphic object that was hit in correla-

tion 
LONG hitTagi II The tag within the segment that was hit 
LONG hitSegi II The segment that was hit in correlation 
int ii II general loop index 
LONG maxHitsi II Maximum number of allowable hits 
extern GOL displayListi II The graphic object display list 
extern BOOL fastStatei II Flag if fast correlate is to be used. 
POINTL pagePointi II an X,Y point in page coordinates. 
RECTL boundarYi II boundary to do fast correlation within 
maxHits = MIN(arrSize, MAX_PICKS) i 

if (fastState && (maxHits==l)) 

1******************************************************************************1 
1* Use quick scan method to locate objects being picked. This technique *1 
1* scans the display list to find potential matches and then uses *1 
1* correlation on those objects to determine if a true hit. *1 
1* This is done since correlating the entire chain can be slow. *1 
1******************************************************************************1 
displayList->Do->Bottom(displayList) i 

while (displayList->Do->GetPrev(displayList, &hitObj)) 
{ 

1* Examine each object in display list, checking for hits *1 

LISTING 7.11 Using correlation to identify objects in the graphic editor 
(object.c). 



Paths, Regions, Clipping, Boundary Accumulation, and Correlation 279 

GpiQueryRegionBox(hps, hitObj->Do->GetRegion(hitObj), &boundary)i 
if (GpiPtlnRegion(hps, hitObj->Do->GetRegion(hitObj), &point) == PRGN_INSIDE) 
/* Found a potential hit, use correlate to tell for sure */ 
pagePoint = pointi 
GpiConvert(hps, CVTC_DEVICE, CVTC_PAGE, IL, &pagePoint) i 

hits = GpiCorrelateSegment(hps, hitObj->Do->GetSeg(hitObj), 
PICKSEL_VISIBLE, &pagePoint, maxHits, IL, corrSegTags) i 

hits = MIN(hits, maxHits)i 
if (hits>O) { 
/* Got a hit! record object and tag that were hit */ 
for (i=Oi i<hitsi i++) { 

hitSeg = corrSegTags[i*2]i 
/* Determine hit Segment */ 
hitTag = corrSegTags[i*2+1] i 

/* Determine hit Tag ID */ 
/* transfer to object and tag arrays */ 
objArr[i] = hitObji 
tagArr[i] = hitTagi 

/* endfor */ 
breaki 
/* Get out of scan loop */ 
} /* endif hits>O */ 
} /* endif PtlnRegion */ 
} /* endwhile GetPrev */ 
} else 
{ 

/***********************************************************************/ 

/* Use normal correlate chain technique to locate objects being picked */ 
/***********************************************************************/ 

pagePoint = pointi 
GpiConvert(hps, CVTC_DEVICE, CVTC_PAGE, IL, &pagePoint) i 

hits = GpiCorrelateChain(hps, PICKSEL_VISIBLE, &pagePoint, maxHits, IL, corrSeg
Tags) i 

hits = MIN(hits, maxHits)i 
for (i=Oi i<hitsi i++) {hitSeg corrSegTags[i*2]i/* Determine hit Segment*/ 
hitTag = corrSegTags[i*2+1] i /* Determine hit Tag ID*/ 

/* Determine hit Object by */ 
GpiSetEditMode(hps, SEGEM_INSERT)i /* extracting it from segment */ 
GpiOpenSegment(hps, hitSeg)i /* comment field (always the */ 
GpiSetElementPointer(hps, 2L)i /* 2nd element in the segment) */ 
GpiQueryElement(hps, 2L, sizeof(GOBJ), (PBYTE)&hitObj) i 

GpiCloseSegment(hps)i /* transfer to object and tag arrays */ 
objArr[i] = hitObji 
tagArr[i] = hitTagi 
} /* endfor */ 
} /* endif */ 
if (hits<O) hits=Oi 
return hitsi 

LISTING 7.11 (Continued). 

Along with identifying the segment that was hit, we also get information 
about what part of the segment was intersected. If the tag value is one then 
we know it was a basic part of the object. If it is greater than one, then we 



280 Programming the OS/2 WARP Version 3 GPI 

know the user is trying to interact with an editing handle on the object. List
ing 7.12 shows a simplified flow of how we accept and process mouse events 
(see the function GoMultiPointProcessEvents in Object.C for a more de
tailed example). 

/* Handle incomming mouse messages */ 
switch (msg) { 

case WM_BUTTON2DOWN: 
/* Button pressed, See if we are over an editing handle */ 
ptrPos.x = MOUSEMSG(&msg)->x; 
ptrPos.y = MOUSEMSG(&msg)->y; 
lastptrPos = ptrPos; 
hits = GoPick(ptrPos, &object, &tag, 1); 
if (hi ts<l) 

return UNHANDLED; 
if (tag>l) { 

/* Yes we are over a handle so we will begin editing the */ 
/* object it belongs to. Record the edit handle and place */ 
/* the object in XOR_DRAW mode */ 

editObj->EditPoint = tag-1; 
editObj->DrawMode = XOR_DRAW; 
return BEGIN_EDIT; 

else 
return UNHANDLED; 

break; 
case WM_MOUSEMOVE: 
/* if we are editing a handle pt, move it with mouse */ 

if (editObj->EditPoint!=O) { 
if (memcmp(&lastPtrPos, &ptrPos, sizeof(ptrPos)) 0) 

/* if ptr position hasn't changed then ignore message*/ 
break; 

editObj->Do->Draw(editObj); /* XOR previous object pos */ 
ptrPos.x = MOUSEMSG(&msg)->x; 
ptrPos.y = MOUSEMSG(&msg)->y; 
GpiSetModelTransformMatrix(hps, 9L, 

&editObj->XformMtx, TRANSFORM_REPLACE); 
GpiConvert(hps, CVTC_DEVICE, CVTC_WORLD, 1L, &ptrPos); 
(*editObj->Points) [editObj->EditPoint-1] = ptrPos; 

/* Updates the point */ 
editObj->Do->Draw(editObj); /* XOR new object pos */ 

else 
return UNHANDLED; 

break; 
case WM_BUTTON2UP: 

/* if we are editing a handle pt, we just finished. */ 
if (editObj->EditPoint!=O) { 

editObj->Editpoint=O; 
editObj->Do->Draw(editObj); 
editObj->DrawMode = FULL_DRAW; 
editObj->UpdateRqd = TRUE; 

/* clear editing point */ 
/* XOR previous object pos */ 

return END_EDIT; /* let caller know were finished */ 

LISTING 7.12 Identifying edit handles using correlation tags. 



Paths, Regions, Clipping, Boundary Accumulation, and Correlation 281 

} else 
return UNHANDLED; 

break; 
default: 

return UNHANDLED; 
} /* endswitch */ 

return HANDLED; 

LISTING 7.12 (Continued). 

Due to the way we choose tag values, correlation really simplifies the 
process of editing an object. 

In the early versions of the graphic editor, we noticed that performance 
degraded as our drawings grew larger. In fact, as drawings grew larger than 
50 objects, the performance was so objectionable that we knew something 
had to be done. So, we searched for what was slowing the program down. 
We found that two things, correlation and GpiDrawChain, were significant 
performance inhibitors. 

This was somewhat disturbing since correlation and retained segment 
store were two of the main things we were featuring in our application. So, 
we searched to see if there were things we could do to improve performance, 
while still making use of these wonderful things. There were two things that 
we did that really helped us buy back the performance we wanted. Both of 
them were related to the fact that we maintain a boundary region for each 
graphical object in the editor. This boundary region is stored in device coor
dinates and, as mentioned earlier in this chapter, is used for device space 
clipping. 

The first change we made was to reduce the size of the chain that we 
draw. Instead of doing a blind GpiDrawChain which covers all segments in 
the chain, we modified our code to skip through the objects in our display list 
and draw them only if their boundary region intersected with the current de
vice clipping region. This is where the idea of a GpiRectInRegion function 
came about. Since we maintain a boundary region for group objects as well 
as primitive objects, we can bypass potentially huge numbers of segments 
with a single test that would otherwise have been drawn. 

The second change was similar in nature but applied to the correlation 
activity. Again, rather than blindly applying a GpiCorrelateChain operation 
on mouse button input, we became more selective. Instead, we again 
scanned the objects in the display list and tested to see if the mouse pointer 
was in the boundary region of the object. If it was, then we applied a GpiCor
relateSegment just to that object to see if there was a hit; if not, we proceeded 



282 Programming the OS/2 WARP Version 3 GPI 

to the next object in the display list. Since the correlate function is fairly ex
pensive, we were able to reduce our use of it to only those areas where we felt 
the potential of a hit was fairly high. Again, we reaped the benefit of skip
ping unneccesary correlation on potentially large numbers of segments 
within an uninvolved group object. 

Thus, maintaining boundary regions for our objects really turned out to 
be a triple performance treat (clipping, drawing, and correlation). If you are 
using retained segment storage, you may find a similar technique useful too! 

This chapter has covered a variety of GPI topics. Most of them have been 
related to clipping in the various coordinate spaces of the viewing pipeline. 
Paths and regions, in particular, are common structures used for clipping. 
Path clipping is generally more flexible, while region clipping is much 
faster. 

We've discussed definitions of regions through the process of boundary 
accumulation. In addition, we examined the important topic of correlating 
user input with your graphic pictures. This is certainly something that most 
people will run into, especially given the interactive nature oftoday's appli
cations. We've also talked about some of the limitiations you will run into 

I 

regarding correlation and performance and provided some alternatives you 
might find useful. 

In Chapter 8, we discuss printing, which will allow you to move all these 
wonderful graphics to an output device. 



CHAPTER 8 

Printing Graphics 

A common desire of many businesses is to share the printer resources they 
own. Most programmers who haven't worked with printer output may think 
this task is easy. But almost any programmer that has dealt with outputting 
printer data in an environment like DOS will probably tell you that it can be a 
nightmare. There are several reasons for this. First, it is almost always desir
able to allow printing to occur while you still allow the user to perform other 
activities with their computer. Second, printers of different types have dif
ferent control codes and functional characteristics that programmers need to 
understand so they can produce the best-fit output for the specific printer. 
Third, multiple print jobs may exist for a printer at anyone time; hence, you 
need a way to pace these jobs through the system and manage the correct 
printer setup. In an environment like DOS where there are few rules and 
programs tend to step on each other easily, these problems become difficult 
to deal with. 

OS/2, of course, provides an architecture for sharing resources between 
applications. This already begins to make the task of writing printer support 
easier. But beyond this, OS/2's Presentation Manager also provides an ar
chitecture and functions that help promote device independence. Because of 
this, you will see that we can write a Presentation Manager program that will 
allow the user to dynamically pick a locally known printer and direct output 
to this printer with very little extra programming effort. Before this is 

283 



284 Programming the OS/2 WARP Version 3 GPI 

shown, a higher-level view of how print data flows through an OS/2 system 
is appropriate. 

There are several software components that exist in OS/2 that contribute 
to the control print data. Knowing a few of these key terms and how they 
relate to each other gives a lot of insight as to how printing works and what 
features exist in OS/2 printing. These terms are print queues, printer names, 
presentation drivers, and port names. Following is a list of descriptions of 
these terms, their basic function, and how they relate to each other. As you 
read these definitions, refer to Figure 8.1 to better see how these terms fit 
into the printer setup scheme for OS/2. 

Print queue: This component is a holding place for print jobs before the 
print data is routed to the actual printer via a printer presentation driver. 
Multiple print queues can exist in an OS/2 system which allows for the 
grouping of jobs by some common characteristic. For instance, a print 
queue may exist for jobs that are to be printed portrait, while another queue 
may exist for jobs to be printed landscape. Or perhaps a queue may exist for 
a certain type of form for a printer. Hence, print jobs that need this form can 
be grouped in this print queue and held until the printer is set up with the 
appropriate form. A print queue has a name like LPT 1 Q and a default print 
queue processor name like PMPRINT. (The queue processor is the compo
nent that takes the print data from the print queue and passes it to the correct 
presentation driver for printing.) A print queue also has one or more printer 
names along with a default presentation driver associated with it. The de
fault presentation driver must be one that is associated with the printer name, 



Printing Graphics 285 

but does not have to be the same as the default presentation driver used by the 
printer name. Multiple print queues can all reference the same device; this is 
called printer sharing. A single print queue can also be connected to multi
ple devices; this is called printer pooling. 

Printer name: This term is a descriptive name given to a physical printer 
and is used for printer setup. For instance, LASERI may be the printer name 
given to a laser printer logically attached to the system. Each printer name 
also has a port name and a default print queue associated with it. This port 
name is used by the system to locate the printer device driver that outputs the 
actual print data to the physical printer. Besides the port and queue name, the 
printer name is also associated with one or more presentation drivers (one of 
them being a default). 

Presentation driver: This component is responsible for converting infor
mation from an application to a format suitable for the physical output de
vice. Hence, this component is key in providing device independence in the 
OS/2 environment. For instance, the presentation driver takes information 
about the application's presentation space and the GPI orders directed to it, 
and generates a printer data stream to produce the desired output. A presen
tation driver can also be passed information about a print job so it won't con
vert application data. This is called raw print mode. When using raw print 
mode, the application needs to know exactly how to drive the physical 
printer. Raw print mode is not encouraged or shown in this book. Because 
of the way the presentation driver interfaces with the OS/2 Spool Queue 
Manager, it is divided into two logical parts (however, the presentation 
driver is typically one physical component). The first part of the presenta
tion driver writes a print file to be passed to the OS/2 Spooler to be queued, 
while the second part takes a print file from the Spooler and directs the out
put to the correct printer. In the case of direct printing, which is not shown in 
the book, the print data is routed directly to the second part of the presenta
tion driver. 

Port name: This term is a descriptive name used by the system to locate and 
route printer data to the correct printer device driver. The device driver is the 
component that actually communicates to the physical printer. 

As implied by the previous descriptions, items like printer name and port 
name are actually used in the setup process of the OS/2 system and can be 



286 Programming the OS/2 WARP Version 3 GPI 

queried by your program so you can pick and choose the printer support that 
best fits your needs. 

Figure 8.2 shows an example of printer data flow in the OS/2 system for 
a typical Presentation Manager application. As you can see, the Presentation 
Manager application must create a presentation space and associate it with a 
valid device context, which it must also create. In the case of outputting 
graphics data to a display, this device context would be a window device 
context. But for a printer, the application must create either a queued or non
queued printer device context and associate the presentation space with it. In 
order to create the printer device context, however, the application must 
query the system for information about valid printer names, queues, and 
presentation drivers. (More detail about how to query the system for this 
type of information will be shown later.) Once the presentation space and 
printer device context are associated, the application must issue a start docu
ment device escape sequence to the device context to signal the start of the 
print job. Then the Presentation Manager application issues the desired GPI 
orders to the presentation space to produce the desired printer output. Once 
the graphic orders have been issued, the application must send an end docu
ment device escape code to the device context to signal the end of the print 
job. Once the application has done this, it can disassociate the presentation 
space from the printer device context, destroy the printer device context, and 
either destroy the presentation space or associate it with another device con
text if desired. From the Presentation Manager application's point of view, 
printing is complete. All that has been done from an OS/2 system's point of 
view, however, is to communicate print job information to a printer presen
tation driver. That is to say that even though the Presentation Manager appli
cation is done with printing from its perspective and can perform other 
activities, the print data for the print job is most likely in the OS/2 Spooler 
and has not yet physically printed. (The management of the queued print 
data is asynchronous to the application that issued the GPI calls to create the 
print data.) 

Depending on the job information passed to the printer presentation 
driver, the presentation driver will either use the OS/2 Spooler to create a 
print spool file and place it in the correct print queue, or reroute the printer 
job data to itself. (If the print job was non-queued, the printer presentation 
driver will route the data back to itself for immediate printing.) If the print 
data was sent to a print queue, a queue processor such as PMPRINT will 



Printing Graphics 287 

PM Application 

Presentation Space 

Printer 
Device Context 

OS/2 
Presentation Print SPOOLER 

Queue Driver Port 

PMPRINT D ~ Name Printer 

D1 
Name 

) ) 

~ D 
LPTtQ LASER.DRV LPTt LASER 1 

FIGURE 8.2 Presentation manager printer data flow. 

take the print file from the print queue at the appropriate time and route it 
back to the correct printer presentation driver. The printer presentation 
driver will then take the printer data stream and route it to the correct device 
driver for printing via the port name. 

The data flow just given simplifies the basic path used by Presentation 
Manager applications because it represents a single vertical path through the 
system. If you consider, however, the combination of ways a user can con
figure printers with OS/2 and the flexibility and device independence given 
by this scheme, you can begin to see how OS/2 is managing a relatively com
plex problem. Another typical example of an OS/2 printer configuration is 
shown in Figure 8.3, which depicts a more complex printer setup but still 



288 Programming the OS/2 WARP Version 3 GPI 

Print Presentation Port Printer 
Queue Driver Name Name 

D 

~ D 
LPTtO LPTt 

LASER.ORV LA SER 1 

D 

) D a LPT20 
LPT2 

MATRIX.ORV MATRIX1 

FIGURE 8.3 Complex printer setup. 

doesn't show details like how a printer may have multiple presentation driv
ers. What is important to note, however, is that even though an OS/2 printer 
configuration can be fairly complex, the data flow between components in 
OS/2 is consistent and managed outside of the Presentation Manager appli
cation. 

To help you discover the different print resources available on an OS/2 
system, there is a utility program called PRINTERS. EXE found on the disk
ette provided with this book. This program will query the system for infor
mation about printer names and printer queues, and writes this information 
to a file named WSYSPRT. LST. It will then display this file with the 
Browse utility that is also given with this book (BROWSE. DLL). Hence, to 
use the Printers utility, you must also have BROWSE. DLL placed in a path 
where the system can find it. You will also find an icon on the book diskette 



Printing Graphics 289 

called PRINTERS. I CO that you may use to reference this program when 
using the OS/2 desktop. 

Listing 8.1 shows an example of the output produced by the Printers pro
gram. To understand what this listing means and to discover how you can 
query a system for this type of information, we need to briefly review the 
highlights of the Printers program source code. The source code for the 
Printers program is shown in Listing 8.2. 
SYSTEM PRINTER INFORMATION 
Date and Time 10/22/1994 20:45:14.9 
Printer Names: 

Printer IBM4029( 
HPLaserJ 

Printer Path Information: 
Printer --> LPT2;IBMNULL;Printer;;45; 

Where:Port name --> LPT2 
Driver names. 
Device names --> IBMNULL 
Queue names --> PrinterIBM4029( --> FILE; 

PSCRIPT.IBM 4029 (39 Fonts 600 Dpi), 
LASERJET.HP LaserJet IIIP;IBM4029(;;45; 

Where:Port name --> FILE Driver names. 
Device names --> PSCRIPT.IBM 4029 (39 Fonts 600 Dpi) , 

LASERJET.HP LaserJet IIIP 
Queue names --> IBM4029 (HPLaserJ --> LPT1; 

LASERJET.HP LaserJet IIIP, 
PSCRIPT.IBM 4029 (39 Fonts 600 Dpi) ;HPLaserJ;;45; 

Where:Port name --> LPT1 Driver names. 
Device names --> LASERJET.HP LaserJet IIIP, 

PSCRIPT.IBM 4029 (39 Fonts 600 Dpi) 
Queue names --> HPLaserJQueue Names: Printer IBM4029( HPLaserJQueue 
Default Presentation Driver: Printer --> IBMNULL; IBM4029( --> 

PSCRIPT.IBM 4029 (39 Fonts 600 Dpi); 
HPLaserJ --> LASERJET.HP LaserJet IIIP; 

LISTING 8.1 Printer utility sample output. 

As you can see in Listing 8.2, the Printers program is a fairly small Pres
entation Manager program. In fact, you may notice that this program does
n't even have a header file or resource file of its own. It does, however, 
create a window of no dimension. By creating this window, the program has 
its own window procedure to send messages to even though the window it
self is invisible. The window procedure is where the Printers program que
ries the system for print data, formats the data and writes it to a file, and 
communicates with the Browse utility about displaying the file. The place 
where the program provides most of this function is on the WM_CREATE 

window message for the window with no dimension created. The function is 
provided here because this message occurs only once right away. The first 



290 Programming the OS/2 WARP Version 3 GPI 

thing done during the processing of the WM_CREATE message is to initialize 
some data areas. Then a file is created and opened and the title of the listing 
is written to it. The OS/2 system is then queried for the current time and date, 
which is formatted and written to this file. Finally, the subtitle that says 
printer names are to follow is written and the query function that allows us to 
discover the needed printer information is used. This function is named 
PrfQueryProfileString and will be used multiple times to extract all the de
sired printer and queue information. 

The PrfQueryProfileString function is used to obtain profile information 
from either system or user applications that exist. The first parameter of this 
function is the handle of the initialization file that contains the desired infor
mation. In the case shown in Listing 8.2, the handle HINI_PROFILE is 
used, which informs this function to search both system and user profiles. 
The second parameter for this function is a pointer to a string which is the 
name of the application for which profile data is being requested for. As you 
can see from Listing 8.2, the application name we want to use for obtaining 
printer name information is PM_SPOOLER_PRINTER. (All names starting 
with PM_ are reserved names.) The third parameter is also a pointer to a 
string that is a key name used to obtain specific profile data. This string de
pends on the application profile data being requested and varies from appli
cation to application. If this parameter is NULL, as shown for querying 
printer names, then a list of key names for the application is returned. This 
list is actually a contiguous series of 0 terminated strings with the last string 
in the list having a second 0 placed after it. Hence, the key names returned by 
using NULL for this parameter are the printer names known by the system. 
The fourth parameter for this function is a pointer to a default string returned 
to the application if no key names are found. As you can see, NULL can be 
used here as well. The last two parameters for the PrfQueryProfileString 
function are a pointer to a buffer to hold the string returned by this function, 
and the maximum size string that this function can place in this buffer. 

Once all the key names for the PM_SPOOLER_PRINTER application 
name have been returned, the Printers program parses the returned list and 
writes out each key name (printer name). The application then writes out a 
subtitle indicating that printer path information is to follow. This path infor
mation is found by using the same PrfQuery Profile S tring function just 
shown, but this time using the printer names that were just returned for the 
key name parameter. When this is done, only a single string is returned 



Printing Graphics 291 

Port Name Presentation Driver Queue Name End SUing 

FIGURE 8.4 Parts of the printer path string. 

which contains several pieces of information: a port name, one or more pres
entation driver names, and one or more queue names. These three types of 
data are separated by semicolons in the returned string. Two consecutive 
semicolons signal the end of these three types of data and the start of parame
ter data. (Parameter data is not important to this discussion and is not dis
cussed in this book). Within these sections, items such as presentation 
drivers or queue names are separated by commas. If more than one presenta
tion driver or queue name is given, the first one given is considered the de
fault. Finally, the presentation driver may include a device name. Ifpresent, 
this device name is located after a dot in the presentation driver name. Fig
ure 8.4 shows an example of a printer path string and what the different parts 
of this string represent. 

The sections of the Printers program that deal with the queue informa
tion are almost identical to that shown for printer names, but the application 
name parameter for the PrfQueryProfileString function changes to a name 
that applies to queues. To get the queue names for a system, an application 
name of PM_S POOLER_QUEUE is used with the key name parameter being 
NULL. To get the default presentation driver for each queue name, use the 
queue names just found as key names with an application name of 
PM_SPOOLER_QUEUE_DD. The presentation driver returned by this func
tion may also have a device name attached to it Gust like those queried via 
printer names). If this is the case, the presentation driver name and device 
name are separated with a dot. 

Finally, the Printers program closes the file just created and passes the 
filename and window handle to a function called OutWindow. This function 
is part of the Browse utility DLL that will create a separate thread of execu
tion and have all the logic to create a brov/se window and display the file's 
content. When the Browse utility DLL is complete, it will send a message 



292 Programming the OS/2 WARP Version 3 GPI 

called WM_ENDBROWSE back to this window procedure to signal its end. 
This window procedure will then post a message to itself to quit. 

You may also want to use the PrfQueryProfileString function to deter
mine which queue processors are available. As said before, the queue proc
essor is the component that takes the print data stream off the queue and 
passes it to the presentation driver for print. In the process of doing this, the 
queue processor can also affect the way output is printed. For instance, the 
queue processor can affect items like number of copies, scaling, and clip
ping. To query for queue processor names, use the application name 
PM_SPOOLER_QP with the PrfQueryProfileString function. 

/*************************************************************************/ 
/* PMPRINT Program. */ 
/* Copyright (c) 1994 John Wiley & Sons, Inc. All rights reserved. */ 
/* Reproduction or translation of this work beyond that permitted in */ 

/* Section 117 of the 1976 United States Copyright Act without the */ 
/* express written permisson of the copyright owner is unlawful. */ 
/* Request for further information should be addressed to the */ 
/* Permission Department, John Wiley & Sons, Inc. The purchaser may */ 
/* make back-up copies for his/her own use only and not for distribution */ 
/* or resale. The Publisher assumes no responsibility for error, */ 
/* omissions, or damages, caused by the use of these programs of from */ 
/* the use on the information contained herein. */ 
/*************************************************************************/ 

#define INCL_DOSDATETIME 
#define INCL_DOSFILEMGR 
#define INCL_DOS 
#define INCL_DOSPROCESS 
#define INCL_WIN 
#define INCL_GPI 
#define INCL_DOSDEVICES 
#define INCL_PM 
#define OPEN_FILE Ox01 
#define CREATE_FILE OX10 
#define FILE_ARCHIVE Ox20 
#define DASD_FLAG 0 
#define INHERIT Ox80 
#define WRITE_THRU 0 
#define FAIL_FLAG 0 
#define SHARE_FLAG OxlO 
#define ACCESS_FLAG Ox02 
#define FILE_SIZE OL 
#define EABUF 0 
#include <os2.h> 
#include <stdio.h> 
#include <math.h> 
#include <stdlib.h> 
#include <string.h> 
#include <pmerr.h> 

LISTING 8.2 Printer program. 



#include "browse.h" 
/*********************/ 
/* Global Variables. */ 
/*********************/ 

Printing Graphics 293 

HAB hab; 
HMQ hmq; 
QMSG qmsg; 

/* PM print anchor block handle. */ 
/* PM print message queue handle. */ 
/* PM print message. */ 

HWND hwndWindow; /* Window handle. */ 
/*********************************************/ 
/* Window Procedure Entry Point Definitions. */ 
/*********************************************/ 
FNWP ClientWndProc; 
FNWP ProductDlgProc; 
/*******************/ 
/* Main Procedure. */ 
/*******************/ 
main() 
{ 

hab=WinInitialize(O) ; 
hmq=WinCreateMsgQueue(hab, 0); WinRegisterClass(hab, "PRINTERS", 

ClientWndProc,CS_SIZEREDRAW, O);hwndWindow=WinCreateWindow( 
HWND_DESKTOP, "PRINTERS", "", WS_VISIBLE, 0, 0, 0, 0, 
NULLHANDLE, HWND_TOP, 10, NULL, NULL); 

/**************************************/ 
/* Get PM messages and dispatch them. */ 
/**************************************/ 
while (WinGetMsg(hab, &qmsg, 0, 0, 0)) { 

WinDispatchMsg(hab, &qmsg); 
} 

/****************************/ 
/* Free resources obtained. */ 
/****************************/ 
WinDestroyWindow(hwndWindow); 
WinDestroyMsgQueue(hmq) ; 
WinTerminate(hab); 
return 0; 

/****************************/ 
/* Client window procedure. */ 
/****************************/ 
MRESULT EXPENTRY ClientWndProc(HWND hwnd, ULONG msg, 

MPARAM mpl, MPARAM mp2) 
{ 

DATETIME dateTime; /* Time and date data structure. */ 
CHAR infoString[200]; /* Buffer for data about printer names and queues.*/ 
CHAR nameString[200]; /* Buffer for printer names and queues. */ 
INT aIndex=O; /* Index into arrays. */ 
CHAR fileName[]="WSYSPRT.LST"; /* File name to hold printer data. */ 
CHAR pszFullFile[CCHMAXPATH] = "*.LST"; 
CHAR pszTitle[]= "System Printer Information"; 
HFILE FileHandle; /* Handle of file to write print data to. */ 
ULONG wrote, action; /* Variables used to open output file. */ 
CHAR fileData[200]; /* Buffer to format output data in. */ 
PCHAR pChari 

LISTING 8.2 (Continued). 



294 Programming the OS/2 WARP Version 3 GPI 

PSZ workString=NULLi /* Work string pointer. 
PSZ port=NULLi /* Pointer to port name. 
PSZ driver=NULLi /* Pointer to driver name. 
PSZ device=NULLi /* Pointer to device name. 
PSZ queue=NULLi /* Pointer to queue name. 
switch (msg) { 
/**********************************/ 
/* Process window create message. */ 
/**********************************/ 
case WM_CREATE: 

memset(&nameString,O,sizeof(nameString))i 
memset(&infoString,O,sizeof(infoString))i 
/*****************************************/ 
/* Open file that was typed or selected. */ 
/*****************************************/ 
action=2i DosOpen(fileName, 

*/ 
*/ 
*/ 
*/ 
*/ 

&FileHandle, &action, FILE_SIZE, FILE_ARCHIVE, 
OPEN_FILE I CREATE_FILE, 
DASD_FLAG I INHERIT I WRITE_THRU 
FAIL_FLAG I SHARE_FLAG I ACCESS_FLAG, 
EABUF) iDosSetFileSize(FileHandle, FILE_SIZE) i 

alndex=Oi 
/***********************************/ 
/* Put out title for this listing. */ 
/***********************************/ 
sprintf(fileData, "SYSTEM PRINTER INFORMATION \n") i 

DosWrite(FileHandle, (PVOID) fileData, 
strlen(fileData), &wrote)i 

/************************************************/ 
/* Format and put out date and time information.*/ 
/************************************************/ 
DosGetDateTime(&dateTime)i 
sprintf(fileData, 

"Date and Time %d/%d/%d %d:%d:%d.%d \n\n", 
dateTime.month, 
dateTime.day, 
dateTime.year, 
dateTime.hours, 
dateTime.minutes, 
dateTime.seconds, 
dateTime.hundredths 
) i 

DosWrite(FileHandle, (PVOID) fileData, 
strlen(fileData), &wrote)i 

/*******************************************/ 
/* Put out title for printer name section. */ 
/*******************************************/ 
sprintf(fileData, "Printer Names: \n") i 

DosWrite(FileHandle, (PVOID) fileData, 
strlen(fileData), &wrote) i 

/***********************/ 
/* Get printer names. */ 
/***********************/ 

LISTING 8.2 (Continued). 



Printing Graphics 295 

PrfQueryProfileString(HINI_PROFILE, 
(PSZ)"PM_SPOOLER_PRINTER", NULL, NULL, 
(PSZ)nameString, (LONG) sizeof(nameString)); 

/************************************/ 
/* Put out each printer name found. */ 
/************************************/ 
aIndex=O; 
while (nameString[aIndex] !=O) { 

sprintf(fileData, 
") ; 

strcat(fileData, &nameString[alndex]); 
strcat(fileData, "\n"); 
DosWrite(FileHandle, (PVOID) fileData, 

strlen(fileData), &wrote); 
while (nameString[aIndex] !=O)alndex++; 
aIndex++; 
} 

/*******************************************/ 
/* Put out title for printer path section. */ 
/*******************************************/ 
sprintf(fileData, "\nPrinter Path Information: \n"); 
DosWrite(FileHandle, (PVOID) fileData,strlen(fileData), &wrote); 
/*****************************************************************/ 
/* Get and put out path information for each printer name found. */ 
/*****************************************************************/ 
alndex=O; 
while (nameString[alndex] !=O){ 

PrfQueryProfileString(HINI_PROFILE, 
(PSZ) "PM_SPOOLER_PRINTER", 
(PSZ)&nameString[aIndex], 

NULL, 
(PSZ) infoString, (LONG) sizeof (infoString) ) ; 

/**************************************/ 
/* Put out white space for this line. */ 
/**************************************/ 
sprintf(fileData, "); 
/********************************************/ 
/* Put out printer name for this path data. */ 
/********************************************/ 
strcat(fileData, &nameString[aIndex]); 
strcat(fileData, "--> "); 

/**********************/ 
/* Put out path data. */ 
/**********************/ 
strcat(fileData, infoString); 
strcat(fileData, "\n"); 
DosWrite(FileHandle, (PVOID) fileData, 

strlen(fileData), &wrote); 
/***********************************************/ 
/* Parse the returned string into basic parts. */ 
/***********************************************/ 
workString=&infoString[O] ; 
pChar=strchr(workString, , ;'); /* Find first semicolon. 

LISTING 8.2 (Continued), 

*/ 



296 Programming the OS/2 WARP Version 3 GPI 

port=workString; /* Point port string. */ 
*pChar='\O'; /* Terminate string by replacing; with o. */ 
workString=++pChar; /* Point to start of next section. */ 
pChar=strchr(workString, , ;'); /* Find next semicolon. */ 
driver=workString; /* Point presentation driver string. */ 
*pChar='\O'; /* Terminate string by replacing; with o. */ 
workString=++pChar; /* Point to start of next section. */ 
pChar=strchr(workString, , ;'); /* Find next semicolon. */ 
queue=workString; 
*pChar='\O' ; 

/* Point to queue string. 
/* Terminate string by replacing 

/**************************************/ 
/* Put out white space for this line. */ 
/**************************************/ 
sprintf (fileData, Where: \n") ; 
DosWrite(FileHandle, (PVOID) fileData, 

strlen(fileData), &wrote); 
/**********************/ 
/* Put out port data. */ 
/**********************/ 
sprintf(fileData, Port name --> "); 

strcat(fileData, port); 
strcat(fileData, "\n"); 
DosWrite(FileHandle, (PVOID) fileData, 

strlen(fileData), &wrote); 
/************************************/ 
/* Put out driver.device name data. */ 
/************************************/ 

with o. 

sprintf(fileData, Driver names.Device names --> ") 
strcat(fileData, driver); 
strcat(fileData, "\n"); 
DosWrite(FileHandle, (PVOID) fileData, 

strlen(fileData), &wrote); 
/***********************/ 
/* Put out queue data. */ 
/***********************/ 
sprintf(fileData, Queue names --> "); 

strcat(fileData, queue); 
strcat(fileData, "\n"); 
DosWrite(FileHandle, (PVOID) fileData, 

strlen(fileData), &wrote); 
while (nameString[alndex] !=O)alndex++; 
alndex++; 

/*****************************************/ 
/* Put out title for queue name section. */ 
/*****************************************/ 
sprintf (fileData, "\nQueue Names: \n"); 
DosWrite(FileHandle, (PVOID) fileData, 

strlen(fileData), &wrote); 
/*********************/ 
/* Get queue names. */ 
/*********************/ 

LISTING 8.2 (Continued). 

*/ 
*/ 



PrfQueryProfileString(HINI_PROFILE, 
(PSZ)"PM_SPOOLER_QUEUE", NULL, NULL, 
(PSZ)nameString, (LONG) sizeof(nameString)) i 

/**********************************/ 
/* Put out each queue name found. */ 

/**********************************/ 
aIndex=Oi 
while (nameString[aIndex) !=O) { 

sprintf(fileData, ")i 

strcat(fileData, &nameString[aIndex))i 
strcat(fileData, "\n") i 

DosWrite(FileHandle, (PVOID) fileData, 
strlen(fileData), &wrote) i 

while (nameString[aIndex) !=O)aIndex++i 
aIndex++i 

/*****************************************/ 
/* Put out title for queue data section. */ 
/*****************************************/ 

Printing Graphics 297 

sprintf(fileData, "\nQueue Default Presentation Driver: \n") i 

DosWrite(FileHandle, (PVOID) fileData, 
strlen(fileData), &wrote)i 

/*******************************************************************/ 
/* Get and put out the default presentation driver for each queue. */ 
/*******************************************************************/ 
aIndex=Oi 
while (nameString[aIndex) !=O) { 

PrfQueryProfileString(HINI_PROFILE, 
(PSZ)"PM_SPOOLER_QUEUE_DD", 
(PSZ)&nameString[aIndex), NULL, 
(PSZ)infoString, (LONG) sizeof(infoString)) i 

/**************************************/ 
/* Put out white space for this line. */ 

/**************************************/ 
sprintf(fileData, ")i 

/************************************************************/ 
/* Put out queue name for this default presentation driver. */ 

/************************************************************/ 
strcat(fileData, &nameString[aIndex)) i 

strcat (fileData, "--> ,,) i 

/****************************************/ 
/* Put out default presentation driver. */ 
/****************************************/ 
strcat(fileData, infoString)i 
strcat(fileData, "\n") i 

DosWrite(FileHandle, (PVOID) fileData, 
strlen(fileData), &wrote)i 

while (nameString[aIndex) !=O)aIndex++i 
aIndex++i 
} 

DosClose(FileHandle)i 
OutWindow(hwnd,fileName)i 
return(MRESULT)FALSEi 

LISTING 8.2 (Continued). 



298 Programming the OS/2 WARP Version 3 GPI 

/*******************************/ 
/* Process END Browse message. */ 
/*******************************/ 
case WM_ENDBROWSE: 

WinPostMsg(hwnd, WM_QUIT, NULL, NULL) i 

return(MRESULT)FALSEi 

/***************************************************/ 
/* Let default routine process message and return. */ 
/***************************************************/ 
return WinDefWindowProc(hwnd, msg, mpl, mp2) i 

LISTING 8.2 (Continued). 

Now that you've seen how to gather printer information from the OS/2 
system, we can show you how to use this information to create a printer de
vice context and perform printing for our graphics editor application. List
ing 8.3 shows the logic used in the graphics editor program to perform 
printing. Because all the print logic for the graphics editor application is 
contained in the Print pull-down menu item and a small printer name selec
tion dialog, only those two pieces of program logic are shown. Note that the 
Print pull-down menu item logic is found in DRAW. C and the printer name 
selection dialog logic is found in FUNes. C. 

MRESULT EXPENTRY ClientWndProc(HWND hwnd,ULONG msg, 
MPARAM mpl,MPARAM mp2) 
{ 

switch (msg) 

/*********************************/ 
/* Process pull-down menu items. */ 
/*********************************/ 
case WM_COMMAND: 

switch (COMMANDMSG(&msg)->cmd) { 
/***********************************/ 
/* Process Print pull-down option. */ 
/***********************************/ 
case IDM_PRINT: 

if (WinDlgBox(HWND_DESKTOP,hwnd,PrintDlgProc, 
O,IDD_PRNT,&printer)) { 

memset(printerPath,O,sizeof(printerPath))i 
/**************************************/ 
/* Get printer data for printer name. */ 
/**************************************/ 
PrfQueryProfileString(HINI_PROFILE, 

(PSZ) "PM_SPOOLER_PRINTER" , (PSZ)printer, 
NULL, (PSZ)printerPath, (LONG)sizeof(printerPath)) i 

LISTING 8.3 Draw program print routine. 



Printing Graphics 299 

1***********************************************1 
1* Parse the returned string into basic parts. *1 
1***********************************************1 
stringPointer=&printerPath[O]; 
charPointer=strchr(stringPointer, , ;'); II Find first semicolon. 
portPointer=stringPointer; II Point port string. 
*charPointer='\O'; II Terminate string by replacing; 
stringPointer=++charPointer; II Point to start of next section. 
charPointer=strchr(stringPointer, , ;'); II Find next semicolon. 
driverPointer=stringPointer; II Point presentation driver string. 
*charPointer='\O'; II Terminate string by replacing; 
stringPointer=++charPointer; II Point to start of next section. 
charPointer=strchr(stringPointer, ';'); II Find next semicolon. 
queuePointer=stringPointer; II Point to queue string. 
*charPointer='\O'; II Terminate string by replacing; 
1***************************1 
1* Get default queue name. *1 
1***************************1 
stringPointer=queuePointer; II Point to start of queue section. 
charPointer=strchr(stringPointer, ','); II Use default queue name. 
if (charPointerl=NULL) {*charPointer='\O'; II Terminate string. 
} 

1***********************************1 
1* Get default driver.device name. *1 
1***********************************1 
stringPointer=driverPointer; II Point to start of driver section. 
charPointer=strchr(stringPointer,','); II Use default driver. 
if (charPointerl=NULL) {*charPointer='\O' ; II Terminate string. 
} 

1**********************************************1 
1* Break driver.device name into two strings. *1 
1**********************************************1 
stringPointer=driverPointer; II Point to start of driver section. 
charPointer=strchr(stringPointer,'.'); II Find. and separate. 
if (charPointerl=NULL) {*charPointer='\O'; II Terminate string. 
devicePointer=++charPointer; 
} 

1************************************************1 
1* Get length of memory needed for driver data. *1 
1************************************************1 
length=DevPostDeviceModes(hab,NULL, 

(PSZ)driverPointer, (PSZ)devicePointer, 
(PSZ) printer, DPDM_POSTJOBPROP) ; 

1**********************************************************1 
1* Allocate memory for driver data if everything is okay. *1 
1**********************************************************1 
if(lengthl=DPDM_ERROR && lengthl=DPDM_NONE) { 
driveData=malloc(length); 
1**********************************************************1 
/* Initialize length field to 0 so we can test for change *1 
1* on return from DevPostDeviceModes function. *1 
1**********************************************************1 

LISTING 8.3 (Continued). 



300 Programming the OS/2 WARP Version 3 GPI 

( (PDRIVDATA)driveData)->cb=O; 
length=DevpostDeviceModes(hab,driveData, 

(PSZ)driverPointer, (PSZ)devicePointer, 
(PSZ)printer,DPDM_POSTJOBPROP) ; 

1***************************************************************1 
1* If the driver data has been updated then prepare for print, *1 
1* else an operator cancel or other event has caused the print *1 
1* setup to abort. *1 
1***************************************************************1 
if(l (( (PDRIVDATA)driveData)->cb==O)) { 

prtdopData.pszLogAddress=queuePointer; 
prtdopData.pszDriverName=driverPointer; 
prtdopData.pdriv=driveData; 
prtdopData.pszDataType="PM_Q_STD"; 
prtdopData.pszComment="Wiley Graphics Editor Print"; 
prtdopData.pszQueueProcName=NULL; 
prtdopData.pszQueueProcParams="COL=C XFM=O"; 
prtdopData.pszSpoolerParams=NULL; 
prtdopData.pszNetworkParams=NULL; 
1*********************************************************1 
1* Get a device context, associate it, and print the PS. *1 
1*********************************************************1 
phdc=DevOpenDC(hab,OD_QUEUED,"*",9L, 

(PDEVOPENDATA)&prtdopData,OL) ; 
if(lphdc==DEV_ERROR) { 

GpiAssociate(hps,OL); II Disassociate PS and window DC. 
GpiAssociate(hps,phdc); SetDefaultView(hps,l,ptlDefault); 
DevEscape(phdc,DEVESC_STARTDOC,sizeof(docName) , 

docName,&outCount,NULL) ; 
GpiSetDrawingMode(hpsPrint,DM_DRAW) ; 
GpiDrawChain(hps) ; 
outCount=2; 
DevEscape(phdc,DEVESC_ENDDOC,OL, 

NULL,&outCount, (PBYTE)&jobID); 
SetDefaultView(hps,zoomFactor,ptlTranslate) ; 
GpiAssociate(hps,OL); II Disassociate the PS and print DC. 
GpiAssociate(hps,hdc); II Connect back to window. 
DevCloseDC(phdc); II Release the print DC. 
} 

free (driveData) ; 
} 

II Free print driver data structure. 

break; 

1***************************************************1 
1* Let default routine process message and return. *1 
1***************************************************1 
return WinDefWindowProc(hwnd,msg,mpl,mp2); 
} 

1***************************1 
1* Print dialog procedure. *1 
1***************************1 

LISTING 8.3 (Continued). 



Printing Graphics 301 

MRESULT EXPENTRY PrintDlgProc(HWND hwnd,ULONG msg, 
MPARAM mpl,MPARAM mp2) 
{ 

static BYTE FAR *ptrPrinter; 
CHAR printerName[150]; 
SHORT index; 
USHORT item; 
MRESULT mReturn; 
USHORT keyFlags; 
switch(msg) { 

/**********************/ 
/* Initialize dialog. */ 
/**********************/ 
case WM_INITDLG: 

ptrPrinter=PVOIDFROMMP(mp2) ; 
PrfQueryProfileString(HINI_PROFILE, 

(PSZ) "PM_SPOOLER_PRINTER",NULL,NULL, 
(PSZ)printerName, (LONG)sizeof(printerName)); 

index=O; 
/******************************************/ 
/* If no printer names then abort dialog. */ 
/******************************************/ 
if (printerName[index] ==0) 

WinDismissDlg(hwnd,FALSE); 

/****************************************************/ 
/* Else put names in list and select the first one. */ 
/****************************************************/ 
else{ 

while (printerName[index] !=O) { 
WinSendDlgItemMsg(hwnd,IDD_PRTLIST,LM_INSERTITEM, 

MPFROM2SHORT(LIT_SORTASCENDING,O), 
(MPARAM) (&printerName[index])); 

while (printerName [index] !=O)index++; 
index++; 

WinSendDlgItemMsg(hwnd,IDD_PRTLIST,LM_SELECTITEM, 
MPFROMSHORT(O) , (MPARAM) TRUE) ; 

WinSetFocus(HWND_DESKTOP,WinWindowFromID(hwnd,IDD_PRTLIST)); 
} 

return(MRESULT)lL; 
case WM_CONTROL: 

switch(SHORT2FROMMP(mpl)) { 
/*************************************/ 
/* Check for list box notifications. */ 
/*************************************/ 
case LN_ENTER: 

mReturn=WinSendDlgItemMsg(hwnd,IDD_PRTLIST, 
LM_QUERYSELECTION,MPFROMSHORT(LIT_FIRST) , 
(MPARAM) NULL) ; 

item=(SHORT)mReturn; 
WinSendDlgItemMsg(hwnd,IDD_PRTLIST,LM_QUERYITEMTEXT, 

LISTING 8.3 (Continued). 



302 Programming the OS/2 WARP Version 3 GPI 

MPFROM2SHORT(item,25), (MPARAM)ptrPrinter); 
WinDismissDlg (hwnd, TRUE) ; 
return (MRESULT) TRUE; 

case LN_SELECT: 
mReturn=WinSendDlgltemMsg(hwnd,IDD_PRTLIST, 

LM_QUERYSELECTION, MPFROMSHORT(LIT_FIRST), 
(MPARAM) NULL) ;item=(SHORT)mReturn; 

WinSendDlgltemMsg(hwnd,IDD_PRTLIST,LM_QUERYITEMTEXT, 
MPFROM2SHORT(item,25), (MPARAM)ptrPrinter); 

return (MRESULT) TRUE; 

break; 
1*******************************1 
1* Process key stroke message. *1 
1*******************************1 
case WM_CHAR: 

keyFlags=(USHORT)SHORT1FROMMP(mpl) ; 
if(keyFlags & KC_VIRTUALKEY) { 

switch (SHORT2FROMMP(mp2)) { 
case VK_ENTER: II Check for enter key. 
case VK_NEWLINE: II Check for newline key. 
mReturn=WinSendDlgltemMsg(hwnd,IDD_PRTLIST,LM_QUERYSELECTION, 

MPFROMSHORT(LIT_FIRST), (MPARAM) NULL) ; 
item=(SHORT)mReturn; 
WinSendDlgltemMsg(hwnd,IDD_PRTLIST,LM_QUERYITEMTEXT, 

MPFROM2SHORT(item,25), (MPARAM)ptrPrinter); 
WinDismissDlg(hwnd,TRUE) ; 
return (MRESULT) TRUE; 
} 

break; 
1**************************1 
1* Process notifications. *1 
1**************************1 
case WM_COMMAND: 

switch(COMMANDMSG(&msg)->cmd) { 
case DID_OK: 

mReturn=WinSendDlgltemMsg(hwnd,IDD_PRTLIST,LM_QUERYSELECTION, 
MPFROMSHORT(LIT_FIRST), (MPARAM) NULL) ; 

item=(SHORT)mReturn; 
WinSendDlgltemMsg(hwnd,IDD_PRTLIST,LM_QUERYITEMTEXT, 

MPFROM2SHORT(item,25), (MPARAM)ptrPrinter); 
WinDismissDlg(hwnd,TRUE) ; 
return (MRESULT) TRUE; 

case DID_CANCEL: 
WinDismissDlg (hwnd, FALSE) ; 
return (MRESULT) TRUE; 

break; 

return WinDefDlgProc(hwnd, msg, mpl, mp2); 

LISTING 8.3 (Continued). 



Printing Graphics 303 

As you can see in Listing 8.3, the first thing the Print pull-down menu 
item does is start a dialog procedure called PrintDlgProc (located at the end 
of Listing 8.3). This dialog procedure is designed to allow the user to select 
one of the printer names that is known to the OS/2 system and return it to the 
Print pull-down menu item routine. By inspecting this PrintDlgProc proce
dure, you can see that it does this by first building a list box and then filling it 
in with all the known printer names. It builds this list when it receives a 
WM_INTDLG message. The printer names for the list box are gathered the 
very same way they were found by the Printer program. That is, the 
PrfQueryProfileString function is used with a handle of HINI_PROFILE 

(so both system and user profiles are searched), an application name of 
PM_SPOOLER_PRINTER (so the OS/2 Spooler will return printer informa
tion), and a key name of NULL (so all printer names will be returned). After 
this function is called, the dialog procedure tests to see if any printer names 
were returned by the function. If no printer names were found, then the dia
log is dismissed with a FALSE indicator so the Print pull-down menu item 
will not continue the print process. If there are printer names, however, these 
names are parsed from the buffer that was filled in by the PrfQuery
ProfileString function and inserted into the list box in ascending order. The 
other messages that are processed in the PrintDlgProc procedures manage 
the list selection logic and button processing. When the OK button is 
clicked, the first highlighted list item is located, and then placed in the loca
tion requested by the Print pull-down menu item. The dialog is then dis
missed with a TRUE indicator. If the user clicks the cancel button, then the 
dialog is dismissed with a FALSE indicator so the Print pull-down menu 
item will not continue the print process. 

If the Print pull-down menu item receives a TRUE indicator from the 
PrintDlgProc, it assumes printing will occur and disconnects the graphics 
editor presentation space from the window device context. Next it clears out 
a buffer area to store printer information to be stored and then queries for the 
printer information with the printer name just returned from the Print
DlgProc procedure. As you recall from the Printers program, when a printer 
name is used as the key name with the PrfQueryProfileString function, a 
long string with embedded semicolons and periods is returned. This string 
can then be parsed to find several pieces of information for the printer name. 
The next section of logic in the Print pull-down menu item parses this long 
returned string into its simplest parts so they can be used to create a device 



304 Programming the OS/2 WARP Version 3 GPI 

context for the printer. In particular, this string is parsed to obtain the default 
queue name, default presentation driver name, and default device name. 
Once these names have been parsed, a function called DevPostDeviceModes 
is used to obtain driver data. 

The DevPostDeviceModes function has several parameters. The first is 
just a valid anchor-block handle. The second parameter is a pointer to driver 
data. If this second parameter is NULL, this function will return the length 
needed by the presentation driver to generate driver data. In fact, our first 
call of the DevPostDeviceModes function uses NULL for the second pa
rameter so we can allocate the correct amount of space for driver data. The 
third parameter is the presentation driver name with which we want to inter
face. The fourth parameter is a pointer to a string that names the type of 
device to which we will be sending our graphics data. The fifth parameter is 
a pointer to a string that has the name of the device we want our graphics data 
to. And finally, the sixth parameter is a value for an option. The option 
parameter has defined values of DPDM_POSTJOBPROP and DPDM_ 

QUERYJOBPROP. If DPDM_POSTJOBPROP is specified as an option and 
the pointer to the driver data is not NULL, the presentation driver will display 
a dialog for the user to work with. This dialog allows the user to select 
printer options specific to the device to which the print data will be routed. 
(Pretty cool stuff!) And on return from the dialog displayed by the presenta
tion manager, the correct driver data is filled in. If DPDM_QUERY JOBPROP 

is used as an option and the pointer to the device data is not NULL, then the 
presentation driver will fill the driver data structure with established default 
values and no dialog will be displayed. As you can see in Listing 8.3, our 
graphics editor application uses the DPDM_POSTJOBPROP option so an
other dialog will appear. 

Once driver data has been established, the Print pull-down menu item 
logic fills in a data structure required by a function called DevOpenDC. You 
have probably already seen and used the DevOpenDC function, but if 
you've only used it to obtain a memory device context, most of the parame
ters associated with the function were fairly boring (0). To create a printer 
device context, however, the parameters for the DevOpenDC function be
come much more interesting. Like the DevPostDeviceModes function, the 
first parameter for the DevOpenDC function is a valid anchor-block handle. 
The second parameter is a value that indicates the type of device context to 
be opened. Several definitions exist for values that can be assigned to this 



Printing Graphics 305 

parameter. These definitions are OD_QUEUED, OD_DIRECT, OD_INFO, 

OD_METAFILE, OD_METAFILE_NOQUERY, and OD_MEMORY. For our 
device context, we want our output to be queued, therefore the value we use 
for this parameter is OD_QUEUED. The third parameter is a pointer to a 
string that identifies the device information held in the initialization file. 
When this string is "*", like in our graphics editor application, no informa
tion is taken from the initialization file. Instead, all data is obtained from the 
device context data area. The fourth parameter for the DevOpenDC function 
is a count of the number of items that are present in the open device context 
data area. Parameter five is a pointer to the open device context data area. 
The last parameter of the DevOpenDC function is a handle to a device con
text used when the type of device context being opened is OD_MEMORY. 

This handle is to a device context with bitmaps that are to be used with this 
device context. In our case, this parameter is zero. 

The fifth parameter to the DevOpenDC function, a pointer to an open 
device context data area, is where the print job information that we've been 
accumulating is used. As you can see from the prtdopData structure used in 
our example, this structure is actually an array of pointers. As implied by the 
fourth parameter of the DevOpenDC function, the entire array of pointers is 
not required to satisfy the DevOpenDC function. Our graphics editor appli
cation does, however, fill in the entire open device context data area struc
ture. 

The first field of the open device context data area structure, pszLogAd
dress, is used to specify the logical address of the device to which data is to 
be communicated. In the case of a device context type of OD_QUEUED, this 
is a queue name such as "LPTI Q". If the device context type is OD_DI

RECT, the logical address would refer to a port name such as LPTI. In the 
graphics editor application, the logical address is the name of the default 
queue found with the PrfQueryProfileString function. 

The second field of the open device context data area structure, 
pszDriverName, is used to specify the presentation driver name with which 
the presentation space wants to communicate. Again, this driver name for 
our example application is the default presentation driver name found for 
the printer name by using the PrfQueryProfileString function. 

The third field of the open device context structure is used to specify 
presentation driver data. This data is used by the presentation driver to help 
set up the print job for a particular printer. This presentation driver data can 



306 Programming the OS/2 WARP Version 3 GPI 

be established in a few different ways. For instance, for a driver name that 
does not have a dot qualified device name, you can use NULL for this field. 
If the driver name does have a dot qualified device name, then a pointer to 
presentation driver data is required. If you want to specify default printer 
and job properties for your output, you can build a DRIVDATA structure and 
initialize the following fields in the following way (note that X and 
devicename are variable): 

X.cb=sizeof(DRIVDATA); 
X.l Version=O; 
strcpy(X.szDeviceNarne, devicename); 
X.abGeneralData[Ol=O; 

The graphics editor application builds and passes driver data to the pres
entation driver by using the DevPostDeviceModes function with an option 
of DPDM_POSTJOBPROP. When this is done, the presentation driver pre
sents the user with a dialog with which to interact. By doing this, the presen
tation driver builds the driver data that fulfills the needs of the user and 
returns it to our application. Then, when our application uses the 
DevOpenDC function, it points to this driver data as an input parameter to 
the function. 

The fourth field of the open device context data area structure, 
pszDataType, is used to specify the type of print file data that is queued when 
a device context type of OD_QUEUED is being used. If the device context 
type is not OD_QUEUED, then NULL can be used for this field. Normal 
strings pointed to by this field are "PM_Q_STD" or "PM_Q_RAW". 

"PM_Q_STD" is standard print spool file format which is designed to pro
mote device independence and is the recommended format. The 
"PM_Q_RAW" file format is device specific; hence, output generated with 
this format will probably not print on any other printer than the one for which 
the output was created. Other strings may exist for other queue processors. 

The fifth field of the open device context data area structure, pszCom
ment, is used to attach some descriptive text to the print job. The Print Man
ager will display this text along with other job information when the job is in 
the queue. 

The sixth field of the open device context data area structure, 
pszQueueProcN arne, is used to specify the queue processor to be used to 
remove the print file from the queue and route the data back to the presenta
tion driver. By specifying NULL, like our application does, the default 



Printing Graphics 307 

queue processor is used. The default queue processor is most likely named 
"PMPRINT" or is compatible with this queue processor. 

For some jobs, such as those going to a plotter, special requirements or 
restrictions in how output is constructed may be needed. Because of the 
location of the queue processor in the system, it has the ability to alter or 
control the flow of data back to the presentation driver. This is where a spe
cial queue processor may be used to solve some of these special require
ments. In these cases, a special queue processor that has been installed on 
the system may be specified. 

Because queue processors can alter and control the flow of data back to 
the presentation driver, it is also common to be able to pass parameters to the 
queue processor so you can control some of their processing. Because dif
ferent queue processors can have different options, the parameters that can 
be passed to them may also be different. Field seven of the open device con
text data area structure, pszQueueProcParams, is the means by which your 
application can pass parameters to the queue processor. This field points to a 
string that contains the parameters specific to the queue processor you will 
be using. In our example, which defaults to the PMPRINT queue processor, 
"COL=C XFM=O" is specified. As you might guess from this string, the 
format of passing parameters to a queue processor is by using a keyword 
followed by a value. In the case of our graphics editor, COL=C specifies that 
color or shades of grey should be used as opposed to monochrome 
(COL=M). XFM=O specifies that the drawing should be printed real size. If 
XFM=l were used, then two more keyword parameters called FIT= and 
ARE= could be used to alter the outputs position and size. To get more detail 
about all the parameters available for the PMPRINT queue processor, refer 
to IBM technical reference material. But, one last parameter worth mention
ing here (even though our graphics editor doesn't use it) is the COP= pa
rameter. As you may have guessed, the COP= parameter allows your 
program to specify the number of copies you'd like the queue processor to 
print. 

Field eight of the open device context data area structure, pszSpooler
Params, is similar to field seven. This field, however, allows you to specify 
parameters to the OS/2 Spooler. These parameters are also passed in a string 
where there are keywords followed by a value. Again, you should refer to 
IBM technical reference material to get a complete list of spooler parameters 
and descriptions, but the two worth noting here are FORM= and PRTY=. 



308 Programming the OS/2 WARP Version 3 GPI 

These two parameters allow you to specify a valid form name as returned by 
the DevQueryHardcopyCaps function and set the priority of the print file in 
relationship to others in the queue. (Priority values range from 00-99 where 
99 is the highest priority.) Our example application doesn't send any pa
rameters to the spooler, hence, we get default values. In the case of forms, 
the current form is used and the default priority is a value of 50. 

The last field of the open device context data area structure, pszN et
workParams, is used to specify network parameters. The graphics editor ap
plication passes a NULL for this field; hence, no parameters are passed. 

After the graphics editor application creates a printer device context, it 
associates the presentation space used to produce the drawing with the 
printer device context. Next, the function called SetDefaultView (which is 
found in FUNC . C) is used to ensure the drawing is not zoomed and the pic
ture origin is at the correct location. Once the zoom and translate transform 
for the drawing are known to be correct, a start document escape sequence is 
sent to the printer presentation driver with the DevEscape function. 

The DevEscape function allows the application to send a special code, 
called an escape code, to the presentation driver to communicate job infor
mation. A standard set of escape codes are available and our application 
uses two of them. These two standard escape codes are defined as 
DEVESC_STARTDOC and DEVESC_ENDDOC and are used to signal the 
start and end of our print job to the presentation driver. The parameters for 
the DevEscape function are fairly straightforward. The first parameter is a 
handle to the device context. This allows the function to find the correct 
presentation driver to which to route the escape code. The second parameter 
of the DevEscape function is the escape code value. Parameter three is a 
count value in bytes of the amount of data being passed with the escape code, 
and parameter four is a pointer to the data. In the case of sending a start 
document escape code, this is the length of the name and the name our appli
cation is assigning to the document. If you look at job information for the 
printer to which this output is being routed, you will see the document name 
listed or under the print job icon. The fifth parameter is a pointer to a value 
that indicates the number of bytes of data associated with the sixth parame
ter, which is a pointer to a data buffer. The data associated with parameters 
five and six may be for input to or output from the presentation driver. In the 
case of sending a end of document escape code, the presentation driver can 
return a USHORT value that is a print job identifier. Hence, parameter five 



Printing Graphics 309 

can be pointing to a value of two and parameter six can be a pointer to a 
USHORT variable. (If parameter five were pointing to a value of zero, then 
no job identifier would be returned.) 

After the start document escape has been set to the presentation driver, 
our application generates the drawing by issuing all the GPI functions re
quired to create the drawing. Because our graphics editor uses retained 
graphics, all we need to do is draw the chain with the GpiDrawChain func
tion and our drawing is complete. TOO EASY! Now all our application has 
to do is send another device escape code to tell the presentation driver that 
we are done printing the document. This is done by using the DEVESC_ 

ENDDOC escape code. From the system point of view, our application is 
done printing the document. Getting the output onto paper is now the re
sponsibility of OS/2! 

When the application is done printing, all it needs to do is release the 
resources it acquired for the printing task, reapply the zoom and scroll trans
forms for window device context, and reassociate our drawing presentation 
space with the window device context. As you can see from Listing 8.3, all 
of these steps are fairly straightforward. 





CHAPTER 9 

OS/2 MetaFiles 

By now you should have a fairly good idea of how to use the GPI to create 
your own graphical product. If you want to allow picture interchange be
tween your product and other commerially available products, however, you 
need to be able to read and write the other products' graphical output format. 
For instance, our WL Y file format is our own creation. Because of this, the 
only product capable of reading our WL Y files is our own. Of course, if 
some product developer was just dying to read or write our file format, they 
could try to reverse engineer the data stream or perhaps ask us to provide a 
specification (or in our case, buy our book!). Reverse engineering a data 
stream, however, does not always reveal all the fine points needed to use a 
data stream correctly; even though receiving a specification from another 
product group is much safer, it typically does not limit the originator of the 
data stream from enhancing it. Hence, your product can become obsolete in 
the area of importing other product data streams as they enhance their data 
stream. 

So, what can be done? Well, expecting other products not to enhance 
their data streams is not a very safe bet. Therefore, common ground or a 
more standard output file format is desirable. This does not mean to imply 
that a standard file format won't be enhanced. But typically a standard file 
format is enhanced in a way that makes it easier with which to stay compat
ible. This is the point of the OS/2 MetaFile. As you will soon see, OS/2 has 

311 



312 Programming the OS/2 WARP Version 3 GPI 

functions that make it easy to produce this standard file format, as well as to 
read it. 

Our graphic editor program actually exports two types of standard 
graphic information. One standard file format is called Tag Image File For
mat (TIFF). (We use specification revision 5.0.) TIFF is used to store high
quality image data (pixel information) to a file. By doing this, other products 
can reproduce these high-quality images. It was the export to TIFF feature 
of our graphic editor that was used to produce all of our screen and window 
captures for this book. As you can tell, given a utility program to read this 
TIFF data and then write the image data to a high-quality printer can produce 
excellent results. 

The second standard file format our editor exports to is the OS/2 
MetaFile. An OS/2 MetaFile is designed to be device independent. It can 
contain image data similar to TIFF but it can also save drawing commands. 
Because of this, a MetaFile may be much smaller in size than a TIFF file 
which captures only image data. Also, because the MetaFile does record 
graphic order information, manipulating a MetaFile graphic is much easier 
to do. The only manipulation of a MetaFile you will see in this book, how
ever, is how we scale a complete MetaFile to fit our MetaFile Viewer win
dow! But, because we do export picture information to the OS/2 MetaFile 
format, you can create drawings with our graphic editor and import them 
into other graphic editors to use. 

Basically, an OS/2 MetaFile is a recording of all the graphic orders and 
environmental data for a presentation space. Because of this, you will soon 
see that the same graphic segment format and graphic orders discussed 
eariler in this book are contained within the MetaFile. In addition to this 
graphic segment and order data, the MetaFile also records other environ
mental information that relates to the presentation space. This information is 
needed so when the MetaFile is played back into presentation space, the re
ceiving presentation space can be set up in the very same way as the one used 
during the recording. By doing this, the drawing saved in the MetaFile can 
be reproduced just like the original. 

Before we jump into the OS/2 functions that allow us to create and use 
OS/2 MetaFiles, a conceptual view of how MetaFiles are created and played 
back into a presentation space is helpful. Figure 9.1 shows a conceptual 
view of how MetaFile data can be thought of in the OS/2 enviomment. The 
MetaFile is actually a data stream that is in system memory. You should 



Presentation Space 

GpiPlayMetaFile 

Application Memory System Memory 

GpiDeleteMetaFile 

GpiCopyMetaFile 

<e---( ---~ 

GpiSetMetaFileBits 

GpiQueryMetaFileBits 

OS/2 MetaFiles 313 

GpiSaveMetaFile 

GpiLoadMetaFile 

FIGURE 9.1 OS/2 MetaFile conceptual view. 

note that we make a destinction between system memory and application 
memory. (Application memory is allocated and owned by your application.) 
When the MetaFile exists in system memory, it can be played to a presenta
tion space, copied to application memory, or written to disk. Conversely, to 
get a MetaFile in system memory, it can be loaded from a file, copied from 
application memory, or created from a presentation space. 

Of course when we think of transporting MetaFiles to other systems, we 
think of MetaFiles as just another file that is saved on your PC disk drive. 
(And as just indicated, a MetaFile can take a file form!) OS/2, however, 
works with a MetaFile just as if it were a device such as a printer or window. 
Therefore, the first step in creating an OS/2 MetaFile is to create a MetaFile 
device context. To do this, you need to specify either OD_MetaFile or 
OD_Me t aF i 1 e_NOQUERY in the device type field of the DevOpenDC OPI 
function. (If you use OD_MetaFile_NOQUERY, performance could'be 
better when recording but none of the query attribute OPI functions are sup
ported.) The device data that is associated with the DevOpenDC function is 
also simple. All you really need to specify for device data is that the driver 
name is DISPLAY. If you want the MetaFile to have a description, fill in the 
pszComment field. 



314 Programming the OS/2 WARP Version 3 GPI 

Before you actually associate your MetaFile device context with your 
presentation space, you should insure that the presentation space environ
mental atrributes and resources are set up the way you want. This is because 
a Metafile records a snapshot of these environmental attributes and re
sources before it records drawing orders and then uses these attributes and 
resources for the remainder of the recording. (Actually, the OS/2 MetaFile 
will record many of the attribute and resource changes as escape orders; 
however, they should still be avoided because other products may fail to rec
ognize these escape orders.) For instance, you should not change your pres
entation page units or dimensions after you associate the MetaFile device 
context with your presentation space. You should also establish your color 
tables before associating the device context. Other restrictions will be listed 
later, but for now let's finish the logic that creates the MetaFile and puts it to 
disk. 

Once you associate your presentation space with the Metafile device 
context, you can start issuing GPI drawing functions. But, as we saw earlier 
in our book, the destination of the drawing information is still dependent on 
the drawing mode. (Recall draw mode is set with the GpiSetDrawMode 
function and can be set to DRAW, RETAIN, or DRAWANDRETAIN.) If 
the draw mode is DRAW, then all drawing is directed to the Metafile. If the 
draw mode is RETAIN, however, the drawing goes to graphic segment store 
until a GpiDrawChain, GpiDrawFrom, or GpiDrawSegment function is 
used. Once a GpiDrawChain, GpiDrawFrom, or GpiDrawSegment function 
is used, the drawing is directed to the MetaFile. If the draw mode is 
DRA WANDRETAIN, then drawing goes to both graphic segment store and 
the Metafile. 

When you are done drawing to the MetaFile, you can disassociate the 
MetaFile device context from your presentation space and close the device 
context. You may think you are done with your Metafile recording but 
you're not! When you close the MetaFile device context, OS/2 will return a 
handle to a MetaFile. At this point in time, your MetaFile is in memory but 
not on PC disk. To place the memory MetaFile to disk, you can use a func
tion called GpiSaveMetaFile. The GpiSaveMetaFile function will accept a 
MetaFile handle and a filename for your memory MetaFile and then auto
matically create the MetaFile on disk for you! Again, too easy. Listing 9.1 
shows the logic used by the graphic editor to save OS/2 MetaFiles for this 
book. 



OS/2 MetaFiles 315 

MRESULT EXPENTRY ClientWndProc(HWND hwnd,ULONG msg,MPARAM mpl,MPARAM mp2) { 
switch(msg) { 

/*********************************/ 
/* Process pull-down menu items. */ 
/*********************************/ 
case WM_COMMAND: 
switch (COMMANDMSG(&msg)->cmd){ 

/*********************************************/ 
/* Process export metafile pull-down option. */ 
/*********************************************/ 
case IDM_MET: 

memset(&fileDialog,O,sizeof(FILEDLG)); 
/*************************************/ 
/* Initialize file dialog structure. */ 
/*************************************/ 
fileDialog.cbSize=sizeof(FILEDLG) ; 
fileDialog.fl=FDS_HELPBUTTON I FDS_CENTER I FDS_OPEN_DIALOG; 
fileDialog.pszTitle=metOpen; 
strcpy(fileDialog.szFullFile,metaFile) ; 
/****************************************/ 
/* Display the dialog and get the file. */ 
/****************************************/ 
hwndFileDlg=WinFileDlg (HWND_DESKTOP,hwndFrame, &fileDial og); 
if (fileDialog. lReturn==DID_CANCEL) return (MRESULT) TRUE; 
strcpy(metaFile,fileDialog.szFullFile); 
dopData.pszLogAddress=NULL; 
dopData.pszDriverName="DISPLAY"; 
dopData.pdriv=NULL; 
dopData.pszDataType=NULL; 
dopData.pszComment="John Wiley & Sons, Inc. OS/2 GPI Book."; 
dopData.pszQueueProcName=NULL; 
dopData.pszQueueProcParams=NULL; 
dopData.pszSpoolerParams=NULL; 
dopData.pszNetworkParams=NULL; 
GpiAssociate(hps,OL) ; 
metaDc=DevOpenDC(hab,OD_METAFILE,"*",9L, (PDEVOPENDATA) 

&dopData, OL) ; 
GpiAssociate(hps,metaDc); 
GpiDrawChain(hps) ; 
GpiAssociate(hps,OL); 
GpiAssociate(hps,hdc) ; 
hmf=DevCloseDC(metaDc); 
DosDelete(fileDialog.szFullFile); 
GpiSaveMetaFile(hmf,fileDialog.szFullFile) ; 
break; 

/**************************************/ 
/* Default processing for WM_COMMAND. */ 
/**************************************/ 
default: 

return WinDefWindowProc(hwnd,msg,mpl,mp2); 

break; 

LISTING 9.1 Draw MetaFile recording routine. 



316 Programming the OS/2 WARP Version 3 GPI 

As you can see in Listing 9.1, the graphic editor first sets up a structure 
required by the WinFileDlg function and then uses the WinFileDlg function 
to get a filename from the user. If the user cancels out of Win File DIg func
tion, this menu item just returns; therefore, no MetaFile is created. If the user 
does provide a valid filename, a device open data structure is initialized for 
the DevOpenDC function. As you can see, the only fields that are really used 
in this data structure are the pszDriverName and pszComment fields. When 
we look at the MetaFile content later, you will notice that the pszComment 
field is used as part of the MetaFile description. Right before the Dev
OpenDC function is used to open a MetaFile device context, the graphic edi
tor presentation space is disassociated from its window device context. 
After the DevOpenDC function, the MetaFile device context is associated 
with the graphic editor presentation space. Then the GpiDrawChain func
tion is used to produced the drawing. 

After the drawing is produced using the MetaFile device context, the 
window device context is reassociated with the graphic editor presentation 
space and the MetaFile device context is closed. Then a DosDelete function 
is done to insure the filename the user gave us does not exist when we do the 
GpiSaveMetaFile function. After we do the GpiSaveMetaFile function, the 
MetaFile is saved to disk and the memory Metafile is automatically deleted. 
At this point, other applications or our own application can use this MetaFile 
saved on disk. (Note that if you wanted to delete a memory MetaFile without 
writing it to disk, you can use a function called GpiDeleteMetaFile.) 

If you want to make a copy of a MetaFile that exists on disk, you could 
obviously just copy the file. But if you want to copy MetaFiles or parts of 
MetaFiles that exist in memory, you must use other GPI functions. Copying 
memory MetaFile data to and from application memory can be done with 
functions called GpiSetMetaFileBits and GpiQueryMetaFileBits. The Gpi
SetMetaFileBits is used to transfer Metafile data from an application buffer 
to a memory MetaFile, whereas, the GpiQueryMetaFileBits can be used to 
get data from a memory MetaFile to an application buffer. Of course, once 
you know the internals of a MetaFile, you may uses these functions to do 
some fairly complex manipulation of Metafile data, but a simple example of 
how these functions can be used is to copy an existing memory MetaFile to a 
new memory MetaFile. 

To create a new empty memory MetaFile, just open and then immedi
ately close a MetaFile device context. Once you have an empty memory 



OS/2 MetaFiles 317 

MetaFile, you can use the GpiQueryMetaFileBits function to get the existing 
memory MetaFile data into your application buffer. After you have the 
MetaFile data in your application buffer, you can transfer the MetaFile data 
to the empty memory MetaFile by using the GpiSetMetaFileBits function. 
Note that with the GpiSetMetaFileBits and GpiQueryMetaFileBits func
tions you can transfer part of a MetaFile. This is made possible because the 
parameters to these functions include lengths, offsets, and pointers. To find 
the length of an existing memory MetaFile to do the neccessay memory 
management, use a function called GpiQueryMetaFileLength. 

Now you can see that copying parts of a memory MetaFile isn't too 
tough. But in the the case where you want to make a copy of a complete 
memory MetaFile, you can use a function called GpiCopyMetaFile. This 
GPI function will create a whole new copy of the memory MetaFile in one 
function call and return you a new handle to the new copy. It doesn't get 
much simpler than that! 

So far, we've discussed how you can create a MetaFile and save it to 
disk. We've also discussed how you can retrieve and save parts of memory 
MetaFiles to and from application memory. And finally, we've discussed 
how you can make a copy of an entire memory MetaFile. But what we have
n't discussed is how to load a MetaFile from disk or playa memory MetaFile 
back to a presentation space. So let's start this discussion by seeing how an 
application can get a MetaFile saved on disk loaded back into a memory 
MetaFile form. 

Getting a MetaFile from disk is really easy. Once you know the MetFile 
filename, you can use a function called GpiLoadM etaFile. This function 
will load the MetaFile from disk and create a memory MetaFile from it and 
then return a handle of the memory MetaFile to your application. At this 
point, this memory MetaFile is just like the memory MetaFile we discussed 
earlier. Once you have a memory MetaFile, you will eventually want to play 
its contents back into a presentation space so you can view the picture that it 
describes. The function that allows you to do this is called GpiPlay
MetaFile. 

The GpiPlayMetaFile function is not quite as straightforward as the 
other MetaFile functions we've discussed, but there is good reason for its 
extra complexity. Recall that when the MetaFile was originally created it 
recorded the presentation space environment and resource information. By 
doing this, the MetaFile is prepared to recreate the picture as close as possi-



318 Programming the OS/2 WARP Version 3 GPI 

ble to the original recording. Note, however, that the presentation space that 
you may be playing the MetaFile back into may have different environment 
and resource assignments than the MetaFile; hence, the extra complexity 
that is associated with the GpiPlay MetaFile function is a set of options that 
allow you to decide how to deal with these environment and resource differ
ences. These options are passed to the GpiPlay MetaFile function in an array 
of options. This array can be up to nine elements in length and the toolkit 
provides definitions for both the array indexes and option (element) values. 
The following list shows each element in the option array and describes the 
possible values and their meanings that can be assigned to an option. 

PMF _SEGBASE - Reserved. Must be O. 
PMF _LOADTYPE - This element specifies which transformations should 
be performed on the imported MetaFile. 

LT_NOMODIFY or LT_DEFAULT - This value specifies that the tar
get presentation space viewing transform is to be used. Any change 
to the graphic field or default viewing transform found in the 
MetaFile will be ignored. 
LT_ORIGINALVIEW - This value specifies that the viewing trans
forms found in the MetaFile will be used during picture construction. 
The graphics field definition in the MetaFile is used to update the 
definition in the target presentation space. 

PMF _RESOLVE - This element is reserved. Must be O. 

PMF _LCIDS - This element specifies how to deal with logical font 
definitions or bitmaps referenced by a local set identifier. 

LC_NOLOAD or LC_DEFAULTS - This value specifies that the local 
set identifiers for logical font definitions and bitmaps found in the 
MetaFile will be ignored. The local set identifiers in the target pres
entation space will be preserved and used for picture construction. 
LC_LOADDISC - This value specifies that the local set identifiers 
found in the MetaFile will be loaded into the target presentation 
space and will replace any identifiers with the same value. 

PMF _RESET This element specifies whether the target presentation 
space should be reset with the page units and size specified in the 
MetaFile. 

RES_NORESET or RES_DEFAULT -This value specifies that no re
set will be performed. If this value is used, you should insure that 



OS/2 MetaFiles 319 

the target presentation space page units are the same as those speci
fied in the MetaFile. 
RES_RESET - This value specifies that the target presentation space 
will be reset just as if it were newly created to have the page units 
and size as specified in the MetaFile. 

PMF _SUPRESS This element specifies whether the MetaFile drawing 
orders will be played. This allows an application to first specify the 
RES_RESET option and then modify the presentation space environment 
and resources before the MetaFile is actually drawn. 

SUP _NOSUPPRESS or SUP_DEFAULT -This value specifies that 
the picture defined in the MetaFile will be drawn. 
SUP_SUPPRESS - This value specifies that the drawing will be sup
pressed; however, the target presentation space environment and re
sources will be established in accordance with the other options. 

PMF _COLORTABLES This element specifies if the current color table in 
the target presentation space is to be replaced with the color table defined 
inthe MetaFile. 

CTAB_NOMODIFY or CTAB_DEFAULT - This value specifies that 
the color table defined in the MetaFile will be ignored and the color 
table defined in the target presentation space will be used. 
CTAB_REPLACE - This value specifies that the color table defined 
in the MetaFilewill replace the current color table defined in the tar
get presentation space. 
CTAB_REPLACEPALETTE - This value specifies that the target 
presentation pallet should be updated with the one defined in the 
MetaFile if it exists. 

PMF _COLORREALIZEABLE-This element specifies whether the color 
table data contained in the MetaFile should be loaded with the 
LeOL_REALI ZABLE option. 

CREA_DOREALIZE - This value specifies that the color table should 
be loaded with the realizable option on. 
CREA_NOREALIZE or CREA_DEFAULT - This value specifies that 
the color table should be loaded with the realizable option off. 

PMF _DEFAULTS - This element specifies whether the drawing default 
found in the MetaFile should be used. 

DDEF _IGNORE or DDEF _DEFAULTS - This value specifies that the 
drawing defaults found in the MetaFile should be ignored. 



320 Programming the OS/2 WARP Version 3 GPI 

DDEF _LOADDISC - This value specifies that the drawing defaults 
found in the MetaFile should be used to replace those found in the 
target presentation space. 

As you can see from the descriptions of the GpiPlayMetaFile function 
options, you can control the target presentation space environment and re
sources to meet your particular needs. An example of how you might use 
these options is to reproduce a picture described in a MetaFile to display as 
close to the original picture as possible. To do this, you would set the values 
in the options array as follows: 

LT_ORIGINALVIEW 

LC_LOADDISC 

RES_RESET 

SUP_NOSUPPRESS 

CTAB_REPLACE 

CREA_NOREALIZE 

DDEF_LOADDISC 

As it turns out, the MetaFile Viewer program that comes with this book 
does not reproduce the picture just as described by a given MetaFile. In
stead, the MetaFile Viewer will scale a given MetaFile picture to fit to the 
size of the Viewer application window. Therefore, when you resize the 
MetaFile Viewer window, the picture will be scaled to fit the size of the cli
ent area. It scales in a way, however, that does not distort the final picture. 
To see how this is done, look at Listing 9.2. 

/****************************/ 
/* Client window procedure. */ 
/****************************/ 
MRESULT EXPENTRY ClientWndProc(HWND hwnd, ULONG msg, 

MPARAM mpl, MPARAM mp2) { 
static LONG metaOptions[ENTRIES]; 
LONG segCount; 
CHAR title[]="MetaFile Listing File"; 
CHAR fullFile[CCHMAXPATH]="*.LST"; 
CHAR loadTitle[]="MetaFile To List"; 
static CHAR metaFile[CCHMAXPATH]="*.MET"; 
SIZEL sizl; 
static BOOL wetPaint=FALSE; 
LONG byteCount; 
LONG offset=O; 

LISTING 9.2 MetaFile viewer program. 



static CHAR *buffer,*metaFileData; 
APIRET rc; 
POINTL origin; 
RECTL window,boundaryData; 
MATRIXLF matrix; 

OS/2 MetaFiles 321 

MATRIXLF viewMatrix={OxlOOOO,OL,OL,OL,OxlOOOO,OL,OL,OL,lL}; 
FIXED scale[2]; 
POINTL bigWindow[4]; 
switch(msg) { 
/*********************************/ 
/* Process pull-down menu items. */ 
/*********************************/ 
case WM_COMMAND: 

switch (COMMANDMSG(&msg)->cmd) { 
/***************************************************************/ 
/* Process load pull-down option. If a MetaFile was passed as */ 
/* a command line parameter, commandParm will be TRUE and */ 
/* MetaFileName will have been set. */ 
/***************************************************************/ 
case IDM_VOPEN: 
if(lcommandParm) { 

memset(&fileDlg,O,sizeof(FILEDLG)) ; 
/*************************************/ 
/* Initialize file dialog structure. */ 
/*************************************/ 
fileDlg.cbSize=sizeof(FILEDLG) ; 
fileDlg.fl=FDS_HELPBUTTON I FDS_CENTER 
fileDlg.pszTitle=loadTitle; 
strcpy(fileDlg.szFullFile,metaFile) ; 
/****************************************/ 
/* Display the dialog and get the file. */ 
/****************************************/ 
hwndFileDlg=WinFileDlg(HWND_DESKTOP, hwndFrame,&fileDlg); 
strcpy(metaFileName,fileDlg.szFullFile) ; 
strcpy(metaFile,fileDlg.szFullFile) ; 
if (fileDlg.1Return==DID_CANCEL) return (MRESULT) TRUE; 

/*********************************************************/ 
/* Clear commandParm flag so this can be TRUE only once. */ 
/*********************************************************/ 
commandParm=FALSE; 
if (metOn) { // If memory MetaFile existed delete it. 

metOn=FALSE; 
GpiDeleteMetaFile(hmf) ; 

/********************************/ 
/* Load the MetaFile from disk. */ 
/********************************/ 
hmf=GpiLoadMetaFile(hab,metaFileName) ; 
if(hmfl=GPI_ERROR) { 

metOn=TRUE; // Flag MetaFile loaded. 

LISTING 9.2 (Continued). 



322 Programming the OS/2 WARP Version 3 GPI 

/*********************************************/ 
/* Clear out window and play MetaFile to it. */ 
/*********************************************/ 
bigWindow[O] .X=Oi 
bigWindow[O] .y=Oi 
bigWindow[l] .x=winQuerySysValue(HWND_DESKTOP,SV_CXSCREEN) i 

bigWindow[l] .y=WinQuerySysValue(HWND_DESKTOP,SV_CYSCREEN)i 
GpiBitBlt(hps,hps,2L,bigWindow,ROP_ONE,BBO_AND) i 

/****************************************************/ 
/* First set up options to get MetaFile page units. */ 
/****************************************************/ 
metaOptions [PMF_SEGBASE] =OLi 
metaOptions [PMF_LOADTYPE] =LT_NOMODIFYi 
metaOptions [PMF_RESOLVE] =OLi 
metaOptions[PMF_LCIDS]=LC_LOADDISCi 
metaOptions[PMF_RESET]=RES_RESETi 
metaOptions[PMF_SUPPRESS]=SUP_SUPPRESSi 
metaOptions [PMF_COLORTABLES] =CTAB_REPLACEi 
metaOptions[PMF_COLORREALIZABLE]=CREA_NOREALIZEi 
metaOptions[PMF_DEFAULTS]=DDEF_LOADDISCi 
GpiPlayMetaFile (hps,hmf,ENTRIES,metaOptions, &segCount, 

sizeof(descr) ,descr) i 

/**********************************/ 
/* Query window size for scaling. */ 
/**********************************/ 
WinQueryWindowRect (hwnd, &window) i 

GpiConvert(hps,CVTC_DEVICE,CVTC_PAGE,2L, (PPOINTL) (&window)) i 

/****************************************************/ 
/* Now modify options to get collect boundary data. */ 
/****************************************************/ 
metaOptions [PMF_RESET] =RES_NORESETi 
metaOptions[PMF_SUPPRESS]=SUP_NOSUPPRESSi 
GpiSetDrawControl(hps,DCTL_DISPLAY,DCTL_OFF) i 

GpiSetDrawControl(hps,DCTL_BOUNDARY,DCTL_ON)i 
GpiResetBoundaryData(hps)i 
GpiPlayMetaFile (hps,hmf, ENTRIES,metaOptions, 

&segCount,sizeof(descr),descr) i 

GpiQueryBoundaryData(hps,&boundaryData) i 

/********************************************************/ 
/* Calculate scale factors for both X and Y directions. */ 
/* Only use the smaller factor so drawing will fit */ 
/* in the window. */ 
/********************************************************/ 
scale[O]=( (window.xRight-window.xLeft) * OxlOOOO) / 

boundaryData.xRight-boundaryData.xLeft)i 
scale[l]=( (window.yTop-window.yBottom) * OxlOOOO) / 

(boundaryData.yTop-boundaryData.yBottom) i 

if(scale[O]<scale[l])scale[l]=scale[O] i 

else scale[O]=scale[l]i 
origin.x=boundaryData.xLefti 
origin.y=boundaryData.yBottomi 
GpiResetPS(hps,GRES_ALL)i 

LISTING 9.2 (Continued). 



OS/2 MetaFiles 323 

GpiScale(hps,&matrix,TRANSFORM_REPLACE,scale,&origin)j 
origin.x=window.xLeft-boundaryData.xLeftj 
origin.y=window.yBottom-boundaryData.yBottomj 
GpiTranslate(hps,&matrix,TRANSFORM_ADD,&origin) j 

GpiSetDefaultViewMatrix(hps,9L,&matrix,TRANSFORM_REPLACE )j 

/************************************/ 
/* Now draw so picture can be seen. */ 
/************************************/ 
GpiSetDrawControl(hps,DCTL_DISPLAY,DCTL_ON) j 

GpiSetDrawControl(hps,DCTL_BOUNDARY,DCTL_OFF)j 
GpiPlayMetaFile(hps,hmf,ENTRIES,metaOptions, 

&segCount, sizeof (descr) ,descr) j 

GpiResetPS(hps,GRES_ALL) j 

/*****************************************************/ 
/* Flag just displayed so WM_PAINT will not re-draw. */ 
/*****************************************************/ 
wetPaint=TRUEj 

/*************************************/ 
/* Enable menu item if not browsing. */ 
/*************************************/ 
if ( ! browsing) 

WinSendMsg (WinWindowFromID(hwndFrame, FID_MENU) , 
MM_SETITEMATTR,MPFROM2SHORT(IDM_VLIST,TRUE), 
MPFROM2SHORT(MIA_DISABLED,O))j 

return (MRESULT)TRUEj 
} 

breakj 
} 

/***************************************************/ 
/* Let default routine process message and return. */ 
/***************************************************/ 
return WinDefWindowProc(hwnd,msg,mpl,mp2)j 

LISTING 9.2 (Continued). 

Listing 9.2 is a code fragment from VI EWMET . C that deals with the 
Open MetaFile pull-down menu item. As you can see, the first thing done in 
this routine depends on a flag called commandParm. This flag indicates if a 
filename was passed when the MetaFile Viewer program was first started. If 
this flag is set TRUE, this logic assumes a valid filename already exists in the 
variable called MetaFileN arne and proceeds to work with this filename. 
(Note, because commandParm is set to FALSE every time through this rou
tine and never gets reset to TRUE after startup, it can only be TRUE one time 
through this routine.) If commandParm is FALSE on entry to this routine, a 
file dialog is displayed to prompt the user for a MetaFile filename. If the user 
enters a valid filename, then the filename i~ copied to MetaFileN arne and the 
routine continues. 



324 Programming the OS/2 WARP Version 3 GPI 

After a valid filename has been placed in MetaFileN arne, another flag 
called metOn is tested. This flag indicates if another MetaFile has already 
been opened by this program. If another MetaFile has been opened, then that 
MetaFile is deleted from memory with the GpiDeleteMetaFile function. 
Once the old MetaFile has been deleted, the new MetaFile is loaded into 
memory with the GpiLoadMetaFile function. If the new MetaFile has an 
error loading, this routine just falls through. In the usual good case, the 
metOn flag is set to TRUE and we get ready to display the picture described 
by the MetaFile. 

In preparation for displaying the picture, this routine will use the 
GpiBitBlt function to force the MetaFile Viewer client area to be white (all 
bits on). Now, because we don't know the units defined in the MetaFile, we 
play the MetaFile with the GpiPlayMetaFile function using the RES_RE

SET and SUP_SUPPRESS options. (The other options set in the options 
array are set to reproduce the picture as defined in the MetaFile, but aren't 
really interesting until the next step!) Because the RES_RESET option is 
used, the target presentation space will take on the page units described in 
the MetaFile. But because the SUP_SUPPRESS option was also specified, 
the drawing will not really occur. Now that the presentation space has the 
correct units for the presentation page, the next time we play the MetaFile we 
can collect boundary data for the picture. By doing this, we can scale the 
picture to fit the current size of the client window. Before we collect bound
ary data, we use the WinQueryWindowRect function to get the current size 
of the client window. This size information is saved and will be used later 
for determining the correct scaling factor. 

Before we play the MetaFile to collect boundary data, we change the 
MetaFilePlay options to RES_NORESET and SUP _NOSUPPRESS. We 
also change the current draw controls to collect boundary information and to 
not display output. By doing this, the MetaFile will play so we can collect 
the boundary information, but a picture will still not appear in our client area. 
Right before we play the MetaFile to collect boundary data, we issue the 
GpiResetBoundaryData function to clear out any previous boundary data in
formation. Then, as soon as the MetaFile has been played, the boundary data 
is queried with the GpiQueryBoundaryData function. Once we have bound
ary information for our MetaFile picture, x and y scaling factors are calcu
lated. The smaller of the two scaling factors is applied to both x and y 
directions so that the picture will scale inside the client area and not be dis-



OS/2 MetaFiles 325 

torted. The boundary data is then used to determine an x and y translation 
point so the picture will be moved to the bottom left of the client area. But 
before the actually scale and translation tranformations are applied to the 
default viewing matrix, the presentation space is reset to clear out all previ-
0us transforms that may exist. Then, right before the MetaFile is played for 
the final time, the draw controls are changed again so boundary data isn't 
collected and so the drawing will be visible when played. 

Now, when the GpiPlayMetaFile function is used, the MetaFile picture 
will appear in the window! After the play operation, the presentation space 
is reset again for the next time the picture needs to be redrawn. A flag called 
wetPaint is then set to inform the WM_PAINT routine that this picture has 
been drawn so it can skip redrawing it again right away. Finally, if we are 
not currently using the Browse utility to browse an existing MetaFile order 
structure, the List pull-down menu item is enabled so the user can view the 
MetaFile order content. 

Qptions tlelp 

//'~ \\\\ ,/;" ", 

~ 
,I I 

I r l 

SCREEN 9.1 MetaFile picture large size. 



326 Programming the OS/2 WARP Version 3 GPI 

SCREEN 9.2 MetaFile picture small size. 

Although not shown in Listing 9.2, the WM_P AINT routine has similar 
logic as was just reviewed for redrawing the picture. In particular, if you 
resize the MetaFile Viewer application window, the WM_PAINT message 
will rescale the MetaFile picture to fit the new size window. To see what is 
meant by scaling to fit the MetaFile Viewer Window, look at Screens 9.1 and 
9.2. These two screen captures are of the same MetaFile picture, but the 
MetaFile Viewer application window size is different. 

Internal Stucture of a MetaFile 

As indicated eariler, the internal structure of a MetaFile contains graphic 
segments and orders just like those discussed in Chapter 5. But the MetaFile 
encapsulates this segment and order information in data structures called 
structured fields. In fact, the entire content of a MetaFile is nothing more 
than a sequential set of structured fields. Besides segment and order infor
mation, a MetaFile also encapsulates a lot of other information in these 



OS/2 MetaFiles 327 

structured fields such as environment attributes, resources, descriptions, and 
so on. 

The MetaFile structured field is composed of three parts. The first part 
of a MetaFile structured field is called the header. The header is also made 
up of several fields. The first field in the header is a length field. This length 
field is 2 bytes long and is the length of the entire structured field (including 
the length field). The second field of the header is a 3-byte identifier. This 
identifier uniquely identifies the type of the structured field. The third and 
fourth fields of the header are called flags and segment sequence number. 
The flags field is 1 byte in length, while the segment sequence number is 2 
bytes. These two fields, flags and segment squence number, are always O! 

The second part of a MetaFile structured field is positional parameters. 
These positional parameters are optional and depend on the type of the struc
tured field. 

Finally, after the positional parameters, the structured field may have 
nonpositional parameters called triplets. A triplet consists of a I-byte length 
field, a I-byte identifier, and perhaps several self-defining parameters. Like 
before, the length field includes the entire length of the triplet including the 
length field and the identifier uniquely identifies the type of triplet within the 
structured field. 

Length \ /Tag 

Begin Document Document Name 

/ 
0045 D3A8 A800 0000 3030 3030 3030 3031 
0000 ©~1® ©3©~ ©©©~ ©1©3 ~~©3 ~~~® ~~~~ 
~w~® ~~~© ~,~~ ~~~~ , ~© ~~~© ~3~W ~~'3 ~ Description 

~~~© ~~~~ ~3~~ ~©~W ~3~W 3~~© ~,~© ~~~© 

~~~W ~W~~ ~~ 
GelD 

Structured Field Key 

FIGURE 9.2 Begin document structure field. 



328 Programming the OS/2 WARP Version 3 GPI 

With all that structure stuff said, let's look at an example of a MetaFile 
structured field so you can see the parts more clearly. Figure 9.2 shows a 
Begin Document structured field that was generated when we saved a draw
ing with our graphic editor to an OS/2 MetaFile. By studying Figure 9.2, you 
should be able to see the different parts of the structured field as previously 
described. 

You've probably already figured out that in one of these structured field 
types, you can find the graphic order data that was dicussed in Chapter 5. 
You're right! A structure field type called Graphics Data can contain order 
data just as described earlier. 

As already stated, a MetaFile is made up of several structured fields 
which are of a variety of types. But besides the example of the Begin Docu
ment structured field shown in Figure 9.2, this book does not show the defi
nition of the other structured fields available. For structured field 
definitions, you should consult an IBM technical reference. What this book 
does provide, however, is a utility that will parse the content of the structured 
fields for a given OS/2 MetaFile and display the output with the Browse util
ity! Again, because this utility comes with the book, so does all the source 
code. By having this MetaFile parser available to use when developing the 
graphic editor, we could see how our graphic objects were being generated 
and more quickly understand this environment. Like the object viewer, this 
utility is a great debug aid. What makes this utility a bit different than the 
object viewer is that in the graphic editor you can see more of the presenta
tion space environment information in addition to graphic order data. Also, 
you can see how other graphic editors produced their objects if they produce 
an OS/2 MetaFile! 

MetaFile Parser 

Like the graphic editor, the MetaFile Viewer program will also display 
graphic object information. The difference between these features, how
ever, is that the MetaFile Viewer will parse the entire MetaFile structure, 
which also includes the graphic order data. To access the MetaFile Viewer's 
parser feature you need to use the List pull-down menu item. Note that the 
List menu item is only enabled when a MetaFile picture is being displayed 
and no other MetaFile listing is being browsed via this feature. Once you 
select the List menu item, a file dialog box will appear and prompt you for a 



OS/2 MetaFiles 329 

filename for where you would like the MetaFile listing data to be stored. 
After you have entered a valid filename, the MetaFile parser feature will 
create the output in the specified file and automatically start the Browse util
ity to display the output. 

You may have noticed two other menu items named Snapshot and Snap
shot Length in the MetaFile Viewer Options pull-down menu. If Snapshot is 
checked before you use the List menu item, then the parser feature will also 
dump hexadecimal data for each structured field it encounters. The amount 
of hexadecimal data that is dumped for each structured field depends on the 
length of the structured field and the value set with the Snapshot Length 
menu item. The amount of hexadecimal data dumped will either be the 
length of the structured field or the Snapshot Length value (whichever is 
smaller). Screen 9.3 shows an example of the Browse utility displaying 
some parsed MetaFile data. You should note, however, that the filename 
you chose to place the parsed output into can be copied and browsed with 
any text editor. 

Inc. OS/2 GPI Book. 

SCREEN 9.3 MetaFile data being browsed. 



330 Programming the OS/2 WARP Version 3 GPI 

The actual MetaFile parsing function doesn't really happen in the main 
source code for the MetaFile Viewer (VIEWMET. C). Instead, the List pull
down menu item routine will pass several parameters to a function called 
ParseMet and it is this function that starts the parsing function. The parame
ters passed to ParseMet are our window handle, the output filename, the 
MetaFile filename, the snapshot flag, and the snapshot length. 

The source code for the ParseMet function is found in a file called 
PARSEMET. C. Listing 9.3 shows a small fraction of the source code used to 
produce the MetaFile parser function. The main things missing from Listing 
9.3 that are found in PARSEMET • C are several of the CASE statements used 
for parsing MetaFile structured fields. The only CASE statements shown in 
Listing 9.3 for parsing MetaFile structured fields are for the Begin Docu
ment, Grapic Data, and End Document structured fields. Be assured, how
ever, that the other CASE statements are in the PARSEMET. C source code 
found on the book diskette! 

There really aren't a whole lot of exciting GPI function calls used in the 
ParseMet function. Parsing MetaFile data is just plain tedious C logic which 
involves breaking apart each structured field and writing the meaning of the 
structured field out to a file for later viewing. Hence, not a lot of explanation 
of the ParseMet function is going to be given here. 

There are, however, a couple of interesting points to be made about 
ParseMet.C. Look at Listing 9.3 and notice how the MetaFile data is made 
available to the ParseMet function. First the MetaFile is loaded into system 
memory with the GpiLoadMetaFile function. Then the length of the Meta
File data is determined with the GpiQueryMetaFileLength function, mem
ory is allocated, and the MetaFile data is made available to our function by 
using the GpiQueryMetaFileBits function. 

/***********************************/ 
/* Function Parse Graphic Segment. */ 
/***********************************/ 
BOOL ParseMet(HWND hwndcaller, char *filename, char *metaname, 

BOOL snapFlag, LONG snapLength){ 
#include "ordertab.c" extern HAB habi 
static CHAR fileData[256]i 
DATETIME dateTimei 
HFILE fileHandlei 
ULONG wrote,action,rci 
INT stringlen,i,tempLength,G=4,T,nameLength,tripTypei 
BOOL indicatori HMF hmf=GPI_ERRORi 

LISTING 9.3 MetaFile parser routines. 



LONG byteCount; 
LONG offset=O; 
ULONG identifier; 
static CHAR *buffer,*metData,*workPtr; 
USHORT fieldOffset; 

OS/2 MetaFiles 331 

ULONG dataLen,edatalen,dataLenl,j,jl,j2,totalData,snapLines; 
BOOL edt=FALSE,firstPass; 
CHAR tempByte,byteLength; 
LONG maxcnt,linecnt,orderOffset,orderAdder,blankcnti 
ERRORID errorCode; 
/****************************************/ 
/* Start of output to listing function. */ 
/****************************************/ 
hmf=GpiLoadMetaFile(hab,metaname) i 

byteCount=GpiQueryMetaFileLength(hmf) ; 
rc=DosAllocMem((PVOID)&buffer, (ULONG)byteCount, 

PAG_COMMIT I PAG_READ I PAG_WRITE); 
GpiQueryMetaFileBits(hmf,offset,byteCount,buffer); 
metData=buffer; 
fieldOffset=O i 
edt=FALSE; 
/*****************************************/ 
/* Open file that was typed or selected. */ 
/*****************************************/ 
action=2; 
rc=DosOpen(filename,&fileHandle,&action,FILE_SIZE, 

FILE_NORMAL,1,Ox40,EABUF); 
/***********************************************************************/ 
/* If file was available, not found, or explicit open failed */ 
/* then continue to create the list file, otherwise file not available.*/ 
/***********************************************************************/ 
if((rc==O) II (rc==2) II (rc==110)) { 

DosClose(fileHandle); 
DosOpen(filename, 

&fileHandle,&action,FILE_SIZE,FILE_ARCHIVE, 
OPEN_FILE I CREATE_FILE, 
DASD_FLAG I INHERIT I WRITE_THRU I 
FAIL_FLAG I SHARE_FLAG I ACCESS_FLAG, 
EABUF) ; 

DosSetFileSize(fileHandle,FILE_SIZE); 
/******************************************************/ 
/* Print out heading title and time info for listing. */ 
/******************************************************/ 
stringlen=sprintf(fileData,"METAFILE LISTING FOR "); 
strcat(fileData,metaname); 
strcat(fileData,"\n"); 
DosWrite(fileHandle, (PVOID)fileData,strlen(fileData),&wrote); 
DosGetDateTime(&dateTime); 
stringlen=sprintf(fileData,"Date and Time %d/%d/%d %d:%d:%d.%d \n", 

dateTime.month, 
dateTime.day, 
dateTime.year, 

LISTING 9.3 (Continued). 



332 Programming the OS/2 WARP Version 3 GPI 

dateTime.hours, 
dateTime.minutes, 
dateTime.seconds, 
dateTime.hundredths 
) ; 

DosWrite(fileHandle, (PVOID)fileData,strlen(fileData) ,&wrote); 
while((fieldOffset<byteCount) && !edt) { 

fieldOffset=(((USHORT) (*(metData+O)))*256) + (*(metData+l)); 
identifier=(((ULONG) (*(metData+2)))*65536) + 

(((ULONG) (*(metData+3)))*256) + (*(metData+4)); 
workPtr=metData; 

1**************************************************************1 
1* Output up to snapLength bytes of data in structured field. *1 
1**************************************************************1 
if (snapFlag) { 

sprintf(fileData,"\nSnap shot: "); 
DosWrite(fileHandle, (PVOID)fileData,strlen(fileData) ,&wrote); 
i=O; 
snapLines=snapLength/40; 
if(snapLength % 40)snapLines++; 
while((i<snapLength) && (i<fieldOffset)) { 

1*********************************************************1 
1* Put out up to number of possible snap lines of output.*1 
1*********************************************************1 
for(j2=O;j2<snapLines;j2++) { 

1***************************************************1 
1* Put a space between output groups. 5 per line. *1 
1***************************************************1 
for(jl=O;jl<5;jl++) { 

1***********************************1 
1* Put 8 bytes in an output group. *1 
1***********************************1 
for(j=O;j<8;j++) { 

sprintf(fileData,"%02X",workPtr[i]) ; 
DosWrite(fileHandle, (PVOID)fileData,strlen(fileData) ,&wrote); 
i++; 
if((i==fieldOffset) I I (i==snapLength))break; 

II End of j for loop. 
if((i==fieldOffset) I I (i==snapLength))break; 
sprintf(fileData, " "); 
DosWrite(fileHandle, (PVOID)fileData,strlen(fileData),&wrote); 

II End of jl for loop. 
if((i==fieldOffset) I I (i==snapLength))break; 
sprintf (fileData, "\n ") ; 
DosWrite(fileHandle, (PVOID)fileData,strlen(fileData) ,&wrote); 

II End of j2 for loop. } 
II End outside while. 

switch(identifier) { 
1************************************1 
1* Begin document structured field. *1 
1************************************1 

LISTING 9.3 (Continued). 



OS/2 MetaFiles 333 

case BDT: 
sprintf(fileData,"\nBegin document.\n Document name -> "); 

DosWrite(fileHandle, (PVOID)fileData,strlen(fileData),&wrote); 
workPtr=workPtr+8; II Point to document name field. 
strncpy(fileData,workPtr,8) ; 
fileData[8]=O; II Make string into ASCIIZ string. 
strcat(fileData,"\n GCID -> "); 
DosWrite(fileHandle, (PVOID)fileData,strlen(fileData),&wrote); 
workptr=workptr+17; 
for(i=O;i<4;i++) 

II Point to GCID field and format to hex. 

sprintf(&fileData[i*2],"%02X",workPtr[i]); 
DosWrite(fileHandle, (PVOID)fileData,strlen(fileData),&wrote); 
workptr=workptr+4; 
i=(int)*workPtr; 
*fileData=O; 
strcat(fileData,"x.\n MetaFile description -> "); 

DosWrite(fileHandle, (PVOID)fileData,strlen(fileData),&wrote); 
strncpy(fileData,workPtr+2,i-2); 
fileData[i-2]=O; II Make string into ASCIIZ string. 
strcat(fileData,"\n") ; 
DosWrite(fileHandle, (PVOID)fileData,strlen(fileData) ,&wrote); 
break; 

1******************1 
1* Graphics Data. *1 
1******************1 
case GAD: 

sprintf (fileData, "\nGraphics data. \n") ; 
DosWrite(fileHandle, (PVOID)fileData,strlen(fileData) ,&wrote); 
workPtr=workPtr+8; 
while(workPtr«metData+fieldOffset)) { 

if(workPtr[O] !='\x70'){ 
sprintf (fileData," Not a segment! ! . \n") ; 
DosWrite(fileHandle, (PVOID)fileData,strlen(fileData),&wrote); 
break; 
} 

sprintf (fileData, "\n Segment ID %02X%02X%02X%02Xx. \n", 
workPtr[2] ,workPtr[3] ,workPtr[4],workPtr[5]); 

DosWrite(fileHandle, (PVOID)fileData,strlen(fileData),&wrote); 
if(workPtr[6]&'\x80'){ 

sprintf (fileData, " Invisible. \n") ; 
DosWrite(fileHandle, (PVOID)fileData,strlen(fileData),&wrote); 

if(workPtr[6]&'\x40'){ 
sprintf(fileData," Propagate invisibility.\n"); 
DosWrite(fileHandle, (PVOID)fileData,strlen(fileData),&wrote); 

if(workPtr[6]&'\x20'){ 
sprintf(fileData," Detectable.\n"); 
DosWrite(fileHandle, (PVOID)fileData,strlen(fileData),&wrote); 

if(workPtr[6]&'\xlO') { 
sprintf(fileData," Propagate detectability.\n"); 

LISTING 9.3 (Continued). 



334 Programming the OS/2 WARP Version 3 GPI 

DosWrite(fileHandle, (PVOID)fileData,strlen(fileData),&wrote) i 

if (workPtr [6] &' \x02 ' ) {sprintf (fileData, " Dynamic. \n") i 

DosWrite(fileHandle, (PVOID)fileData,strlen(fileData) ,&wrote) i 

if(workPtr[6]&'\x01'){ 
sprintf(fileData," Fast chaining.\n") i 

DosWrite(fileHandle, (PVOID) fileData,strlen(fileData),&wrote)i 

if(workPtr[7]&'\x80'){ 
sprintf(fileData," Non-chained.\n") i 

DosWrite(fileHandle, (PVOID)fileData,strlen(fileData) ,&wrote) i 

if(workPtr[7]&'\x10') { 
sprintf(fileData," Prolog.\n")i 
DosWrite(fileHandle, (PVOID)fileData,strlen(fileData) ,&wrote) i 

/*************************************************************/ 
/* Due to a bug found in OS/2 2.1, we only parse the low */ 
/* order word of data length. The high order word was not */ 
/* set correctly in 2.1 but should be correct in Warp. In */ 
/* order to maintain compatibility with old MetaFiles, we */ 
/* ignore the high order word, hence only MetaFile with data */ 
/* packets of less than 65536 bytes will parse correctly. */ 
/* That should be the vast majority of MetaFiles. */ 
/*************************************************************/ 
dataLen=(((ULONG) (*(workPtr+8»)*256) + (*(workPtr+9» i 

workPtr=workPtr+16i 
orderOffset=Oi 
edatalen=dataLeni 
/***************/ 
/* Parse data. */ 
/***************/ 
while (edatalen){ 
/**************************************/ 
/* Determine if this is a single byte */ 
/* order. */ 
/**************************************/ 
if((workPtr[orderOffset]==O) I I (workPtr[orderOffset]==255» { 

orderAdder=1i 
parseTab[workPtr[orderOffset]] (fileHandle, 

workPtr+orderOffset,G)i 

/************************************/ 
/* Determine if this is an extended */ 
/* order and print its data. */ 
/************************************/ 
if (workPtr[orderOffset] ==254) { 

orderAdder=(workPtr[orderOffset+2])*256i 
orderAdder=orderAdder+(workPtr[orderOffset+3])i 
orderAdder=orderAdder+4i 
parseTab[workPtr[orderOffset]] (fileHandle, 

LISTING 9.3 (Continued), 



workPtr+orderOffset, G); 

1***********************************1 
1* Determine if this is a two *1 
1* byte order and print its data. *1 
1***********************************1 

OS/2 MetaFiles 335 

if((workPtr[orderOffset]&8) && (workPtr[orderOffset]<=127»{ 
orderAdder=2; 
parseTab[workPtr[orderOffset]] (fileHandle, 

workPtr+orderOffset,G); 

1*******************************1 
1* Determine if this is a long *1 
1* order and print its data. *1 
1*******************************1 
if( (workPtr[orderOffset] !=O) && 

(workPtr[orderOffset] !=255) && 
(workPtr[orderOffset] !=254) && 
( ! ((workPtr[orderOffset]<=127) && 
(workPtr[orderOffset]&8» ) ) { 

orderAdder=workPtr[orderOffset+l] +2; 
if (edatalen<orderAdder){ 

sprintf (fileData," DATA LENGTH PROBLEM!! \n") ; 
DosWrite(fileHandle, (PVOID)fileData, 

strlen(fileData) ,&wrote) ; 
break; 

else parseTab[workPtr[orderOffset]] (fileHandle, 
workPtr+orderOffset,G) ; 

edatalen=edatalen-orderAdder; 
orderOffset=orderOffset+orderAdder; 

workPtr=workPtr+dataLeni 
1* endwhile *1 

break; 
1********************1 
1* End of document. *1 
1********************1 
case EDT: 

sprintf(fileData," \nEnd document.\n Document name -> "); 
DosWrite(fileHandle, (PVOID)fileData,strlen(fileData),&wrote); 
workPtr=workPtr+8; II Point to document name field. 
strncpy(fileData,workPtr,8); fileData[8]=O; 

II Make string into ASCIIZ string. 
strcat(fileData,"\n"); 
DosWrite(fileHandle, (PVOID)fileData,strlen(fileData),&wrote); 
edt=TRUE; 
break; 

default: 
sprintf(fileData,"\nUnknown identifier -> %06Xx.\n",identifier); 
DosWrite(fileHandle, (PVOID)fileData,strlen(fileData),&wrote); 
break; 

LISTING 9.3 (Continued). 



336 Programming the OS/2 WARP Version 3 GPI 

} /* endswitch */ 
metData+=fieldOffset; 
} 

DosClose(fileHandle); 
indicator=TRUE; 
} 

else 
indicator=FALSE; 

DosFreeMem(buffer); 
return indicator; 

LISTING 9.3 (Continued). 

You can also see from Listing 9.3 that structured fields are parsed until 
data is exhausted or the End Document structured field is encountered. (edt 
is a flag set when the End Document structured field is found. The End 
Document structured field should always be found before we run out of 
data!) 

Finally, look at the logic inside the CASE statement for the Graphic Data 
structured field in Listing 9.3. Once we get past parsing the header and some 
of the parameters for the Graphic Data structured field, we get to a part that is 
the graphic order data. (This starts right after the block comment with text 
Parse Data.) The logic to parse the graphic order data is identical to that 
found in the graphic editor object parser. In fact, the functions pointed to by 
the parseTab are the very same functions used by the graphic editor. These 
order parsing functions are found in a file named PORDERS . C on the book 
diskette. 

So, there you have it! Not only do you have an example of how to use 
MetaFiles and examples of the GPI functions to work with MetaFiles, but 
you also have a program that will let you view a MetaFile's internal structure 
as well as the picture described by the MetaFile. Gee, I love this GPI stuff! 



APPENDIX A 

GPI Functions 

This Appendix is designed to give you a quick reference to all the GPI func
tions available in OS/2. The GPI functions are listed in alphabetical order 
and give the input/output parameter types for the function followed by its 
description. The definition of the parameter types for the functions are not 
given, but the type definitions are fairly intuitive by their name. If you need a 
definition for a parameter type, refer to an OS/2 technical reference. 

return=GpiAnimatePalette (palette, format, startIndex, elements, 
dataArea); 

(LONG) return 
(HP AL) palette 
(ULONG) format 
(ULONG) startIndex 
(ULONG) elements 
(PULONG) dataArea 

Number of remapped colors. 
Handle to palette. 
Format of table entries. 
Starting index. 
Count of elements in data area. 
Pointer to user-defined element 
data. 

This function changes the color values of animating indexes in a palette. 

return=GpiAssociate (hps, hdc); 
(BOOL) return 
(HPS) hps 
(HDC) hdc 

Indicator for success or failure. 
Handle to presentation space. 
Handle to device context. 



338 Programming the OS/2 WARP Version 3 GPI 

This function associates a presentation space with a device context. By 
specifying 0 for the device context parameter, the presentation space can 
be disassociated. 

return=GpiBeginArea (hps, options); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(ULONG) options Area options. 
This function begins the construction of an area for a presentation space. 

return=GpiBeginElement (hps, type, description); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) type Type to associate with the element. 
(PSZ) description Pointer to text description for the 

element. 
This function marks the beginning of a user-defined element in graphic 
segment. 

return=GpiBeginPath (hps, pathID); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) pathID Path identifier. 
This function marks the start of the beginning of a path. An indicator is 
returned indicating the success or failure of the function call. 

return=GpiBitBIt (target, source, pointCount, pointArray, rop, options); 
(LONG) return Number of correlation hits or 

indicator for success or failure. 
(HPS) target Handle to target presentation space. 
(HPS) source Handle to source presentation space. 
(LONG) pointCount Number of points in point array. 
(PPOINTL) pointArray Pointer to point array. 
(LONG) rop Raster operation mix function. 
(ULONG) options Options. 
This function copies bitmap image data from one rectangular area to an
other. 

return=GpiBox (hps, control, cornerPoint, xRounding, yRounding); 
(LONG) return Number of correlation hits or 

indicator for success or failure. 



(HPS) hps 
(LONG) control 
(PPOINTL) cornerPoint 

(LONG) xRounding 

(LONG) yRounding 

Appendix A 339 

Handle to presentation space. 
Outline and fill control. 
Pointer to the coordinate of the 
ending comer. (Opposite of 
comer from current position.) 
Length of the x axis of an ellipse 
used for rounding each comer. 
Length of the y axis of an ellipse 
used for rounding each comer. 

This function draws a rectangle box with rounded corners at the current 
position. 

return=GpiCallSegmentMatrix (hps,segmentID, elements, transform, 
options); 

(LONG) return 

(HPS) hps 
(LONG) segmentID 
(LONG) elements 

Number of correlation hits or 
indicator for success or failure. 
Handle to presentation space. 
Segment identifier to be called. 
Number of elements in the 
transform matrix to examine. 

(PMA TRIXLF) transform Pointer to instance transform matrix. 
(LONG) options Transformation options. 
This function calls a graphics segment and applies an instance transform 
to it. 

return=GpiCharString (hps, count, string); 
(LONG) return Number of correlation hits or 

(HPS) hps 
(LONG) count 

indicator for success or failure. 
Handle to presentation space. 
Number of characters in string to 
draw. 

(peH) string Pointer to characters to draw. 
This function draws a text string. 

return=GpiCharStringAt (hps, startPoint, count,string); 
(LONG) return Number of correlation hits or 

(HPS) hps 
(PPOINTL) startPoint 

indicator for success or failure. 
Handle to presentation space. 
Pointer to a starting point for the 
string. 



340 Programming the OS/2 WARP Version 3 GPI 

(LONG) count Number of characters in string to 
draw. 

(PCH) string Pointer to characters to draw. 
This function draws a text string at a given starting point. 

return=GpiCharStringPos (hps, rectangle, options, count, string, 
increments) ; 

(LONG) return Number of correlation hits or 

(HPS) hps 
(PRECTL) rectangle 

(ULONG) options 
(LONG) count 

(PC H) string 
(PLONG) increments 

indicator for success or failure. 
Handle to presentation space. 
Pointer to rectangle structure 
which defines the background for 
the text string. 
Formatting options for the string. 
Number of characters in string to 
draw. 
Pointer to characters to draw. 
Pointer to an array of values used 
for character placement. 

This function draws a text string with formatting options. 

return=GpiCharStringPosAt (hps, startPoint, rectangle, options, count, 
string, increments); 

(LONG) return 

(HPS) hps 
(PPOINTL) startPoint 

(PRECTL) rectangle 

(ULONG) options 
(LONG) count 

(PC H) string 
(PLaNO) increments 

Number of correlation hits or 
indicator for success or failure. 
Handle to presentation space. 
Pointer to a starting point for the 
string. 
Pointer to rectangle structure 
which defines the background for 
the text string. 
Formatting options for the string. 
Number of characters in string to 
draw. 
Pointer to characters to draw. 
Pointer to an array of values used 
for character placement. 



Appendix A 341 

This function draws a text string with formatting options at a given posi
tion. 

return=GpiCloseFigure (hps); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
This function closes a figure within a path. 

return=GpiCloseSegment (hps); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
This function closes the current graphic segment. 

return=GpiCombineRegion (hps, target, sourcel, source2, mode); 
(LONG) return Complexity of resulting region 

and indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(HRGN) target Handle to target region. 
(HRGN) sourcel Handle to first source region. 
(HRGN) source2 Handle to second source region. 
(LONG) mode Method of combining regions. 
This function combines two regions. 

return=GpiComment (hps, length, comment); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) length Length of comment string. 
(PBYTE) comment Pointer to comment string. 
This function adds a comment to the current graphic segment. 

return=GpiConvert(hps, source, target, count, points); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) source Source coordinate space. 
(LONG) target Target coordinate space. 
(LONG) count Number of coordinate pairs in array. 
(PPOINTL) points Array of coordinate pairs. 
This function converts coordinate pairs from one coordinate space to an
other coordinate space. 



342 Programming the OS/2 WARP Version 3 GPI 

return=GpiConvertWithMatrix (hps, count, points, elements, 
transform); 

(BaaL) return 
(HPS) hps 
(LONG) count 
(PPOINTL) points 
(LONG) elements 

(PMATRIXLF) transform 

Indicator for success or failure. 
Handle to presentation space. 
Number of coordinate pairs in array. 
Array of coordinate pairs. 
Number of elements in transform 
matrix. 
Pointer to instance transform 
matrix. 

This function converts coordinate pairs from one coordinate space to an
other coordinate space using a specified tranformation matrix. 

return=GpiCopyMetaFile (metaFile); 
(HMF)return Handle of new MetaFile. 
(HMF)metaFile Handle of source MetaFile. 
This function creates a new MetaFile and copies the source MetaFile 
contents to it. 

return=GpiCorrelateChain (hps, type, pick, maxHits, maxDepth, 
segTag); 

(LONG) return Number of correlation hits or 

(HPS) hps, 
(LONG) type 

(PPOINTL) pick 
(LONG) maxHits 

indicator for success or failure. 
Handle to presentation space. 
Type of segments on which to 
perform correlation. 
Pointer to pick position. 
Maximum number of hit to be 
returned. 

(LONG) maxDepth Maximum number of segment and 
tag pairs to be returned by each hit. 

(PLONG) segTag Pointer to an array where segment 
identifiers and tags are returned. 

This function performs correlation on a retained segment chain. 

return=GpiCorrelateFrom (hps, first, last, type, pick, maxHits, 
maxDepth, segTag); 

(LONG) return Number of correlation hits or 
indicator for success or failure. 

(HPS) hps Handle to presentation space. 



(LONG) first 

(LONG) last 

(LONG) type 

(PPOINTL) pick 
(LONG) maxHits 

Appendix A 343 

First segment identifier in chain to 
start correlation. 
Last segment identifier in chain 
for correlation. 
Type of segments on which to 
perform correlation. 
Pointer to pick position. 
Maximum number of hits to be 
returned. 

(LONG) maxDepth Maximum number of segment and 
tag pairs to be returned by each hit. 

(PLONG) segTag Pointer to an array where segment 
identifiers and tags are returned. 

This function performs correlation on part of a retained segment chain. 

return=GpiCorrelateSegment (hps, segment, type, pick, maxHits, 
maxDepth, segTag); 

(LONG) return Number of correlation hits or 

(HPS) hps 
(LONG) segment 

(LONG) type 

(PPOINTL) pick 
(LONG) maxHits 

indicator for success or failure. 
Handle to presentation space. 
Segment identifier on which to 
perform correlation. 
Type of segments on which to 
perform correlation. 
Pointer to pick position. 
Maximum number of hits to be 
returned. 

(LONG) maxDepth Maximum number of segment and 
tag pairs to be returned by each hit. 

(PLONG) segTag Pointer to an array where segment 
identifiers and tags are returned. 

This function performs correlation on a specified graphic segment. 

return=GpiCreateBitmap(hps, header, options, initData, infoTable); 
(HBITMAP) return Handle to bitmap or error 

indicator. 
(HPS) hps Handle to presentation space. 
(PBITMAPINFOHEADER) header 

Pointer to bitmap header that 



344 Programming the OS/2 WARP Version 3 GPI 

describes the format of the 
bitmap to be created. 

(ULaN G) options Options. 
(PBYTE) initData Pointer to bitmap initialization data. 
(PBITMAPINF02) infoTable Pointer to table that defines the 

format of the initialization data. 
This function creates a bitmap. 

return=GpiCreateLogColorTable (hps, options, format, start, 
elements, table); 

(BaaL) return Indicator of success or failure. 
(HPS) hps Handle to presentation space. 
(ULONG) options Options. 
(LONG) format Format of table entries. 
(LONG) start Starting index. 
(LONG) elements Count of elements in table. 
(PLONG) table Pointer to user table. 
This function defines the entries of the logical color table. 

return=GpiCreateLogFont (hps, name, lcid, fontAttr); 
(LONG) return Match indicator. 
(HPS) hps Handle to presentation space. 
(PSTR8) name Logical font name. 
(LONG) lcid Local identifier used to refer to 

the font. 
(LONG) fontAttr Pointer to attributes require of the 

font. 
This function gives a logical definition for a font. 

return=GpiCreatePalette(hab, options, format, elements, table); 
(HP AL) return Handle to palette or error indicator. 
(HAB) hab Handle to anchor-block. 
(ULONG) options Options. 
(LONG) format Format of table entries. 
(LONG) elements Count of elements in table. 
(PLONG) table Pointer to user table. 
This function creates a color palette. 



Appendix A 345 

return=GpiCreatePS(hab, hdc, size, options); 
(HPS) return Handle to presentation space or 

error indicator. 
(HAB) hab 
(HDC) hdc 

Handle to anchor-block. 
Handle to device context to be 
associated with presentation space. 

(PSIZEL) size Pointer to size of presentation page. 
(LONG) options Options. 
This function creates a presentation space. 

return=GpiCreateRegion (hps, count, rectangles); 
(HRGN) return Handle to a region. 
(HPS) hps Handle to presentation space. 
(LONG) count Number of rectangles for region 

creation. 
(PRECTL) rectangles Pointer to array of rectangles. 
This function creates a region from a series of rectangles. 

return=GpiDeleteBitmap (bitmap); 
(BOOL) return Indicator of success or failure. 
(HBITMAP) bitmap Handle to bitmap. 
This function deletes a bitmap. 

return=GpiDeleteElement (hps); 
(BOOL) return Indicator of success or failure. 
(HPS) hps Handle to presentation space. 
This function deletes the element pointed to by the element pointer. 

return=GpiDeleteElement (hps, first, last); 
(BOOL) return Indicator of success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) first Number of first element to delete. 
(LONG) last Number of last element in the 

range to delete. 
This function deletes the elements in a range. 

return=GpiDeleteElementsBetweenLabels (hps, first, last); 
(BOOL) return Indicator of success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) first Label marking the start of the 

elements to be deleted. 



346 Programming the OS/2 WARP Version 3 GPI 

(LONG) last Label marking the end of the 
elements to be deleted. 

This function deletes the elements between the labels in a graphic seg-
ment. 

return=GpiDeleteMetaFile (metaFile); 
(BOOL) return Indicator of success or failure. 
(HMF) metaFile Handle to MetaFile. 
This function deletes a MetaFile. 

return= GpiDeletePalette (palette ); 
(BOOL) return Indicator of success or failure. 
(HP AL) palette Handle to palette. 
This function deletes a color palette. 

return=GpiDeleteSegment (hps, segment); 
(BOOL) return Indicator of success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) segment Segment identifier. 
This function deletes a retained graphic segment. 

return=GpiDeleteSegments (hps, first, last); 
(BOOL) return Indicator of success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) first First segment identifier in a range. 
(LONG) last Last segment identifier in a range. 
This function deletes graphic segments in an identifier range. 

return=GpiDeleteSetId (hps, 1cid); 
(BOOL) return Indicator of success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) lcid Local identifier. 
This function deletes a local identifier. 

return=GpiDestroyPS(hps ); 
(BOOL) return Indicator of success or failure. 
(HPS) hps Handle to presentation space. 
This function destroys a presentation space. 

return=GpiDestroy Region (hps, region); 
(BOOL) return Indicator of success or failure. 
(HPS) hps Handle to presentation space. 



Appendix A 347 

(HRGN) region Handle to region. 
This function destroys a region. 

return=GpiDrawBits (hps, bits, infoTable, count, points, rop, options); 
(LONG) return Number of correlation hits or 

indicator for success or failure. 
(HPS) hps Handle to target presentation space. 
(PVOID) bits Pointer to bitmap bits. 
(PBITMAPINF02) info Table Pointer to table the defines the 

format of the bitmap data. 
(LONG) count Number of points in bitmap data. 
(PPOINTL) points Pointer to point array. 
(LONG) rop Raster operation mix function. 
(ULONG) options Options. 
This function draws bitmap bits. 

return=GpiDrawChain (hps); 
(BaaL) return Indicator of success or failure. 
(HPS) hps Handle to presentation space. 
This function draws the segment chain. 

return=GpiDrawDynamics (hps); 
(BaaL) return Indicator of success or failure. 
(HPS) hps Handle to presentation space. 
This function redraws the dynamic segments in the segment chain. 

return=GpiDrawFrom (hps, first, last); 
(BaaL) return Indicator of success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) first First segment identifier to draw in 

the segment chain. 
(LONG) last Last segment identifier to draw in 

the segment chain. 
This function draws a section of the segment chain. 

return=GpiDrawSegment (hps, segment); 
(BaaL) return Indicator of success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) segment Segment identifier to draw. 
This function draws a specified graphic segment. 



348 Programming the OS/2 WARP Version 3 GPI 

return=GpiElement (hps, type, description, length, data); 
(LONG) return Number of correlation hits or 

(HPS) hps 
(LONG) type 

indicator for success or failure. 
Handle to presentation space. 
Type to be associated with the 
element. 

(PSZ) description Pointer to description string. 
(LONG) length Length of element data. 
(PBYTE) data Pointer to element data. 
This function adds an element to the current segment. 

return=GpiEndArea (hps); 
(LONG) return Number of correlation hits or 

indicator for success or failure. 
(HPS) hps Handle to presentation space. 
This function ends the construction of an area. 

return=GpiEndElement (hps); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
This function ends the element started by a GpiBeginElement function. 

return=GpiEndPath (hps); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
This function ends the path started by a GjieginPath function. 

return=GpiEqualReqion (hps, regionl, region!. 
(LONG) return Equality or error indicator. 
(HPS) hps Handle to presentation space. 
(HRGN) regionl Handle to first region. 
(HRGN) region2 Handle to second region. 
This function compares if two regions are equal. 

return=GpiErase (hps); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
This function clears the output area of the device context associated with 
the presentation space to CLR_BACKGROUND color. 



Appendix A 349 

return=GpiErrorSegmentData (hps, segment, context); 
(BaaL) return Byte offset, element number, or 

(HPS) hps 
(PLONG) segment 

error indicator. 
Handle to presentation space. 
Pointer to segment in which the 
error occured. 

(PLONG) context Pointer to context of the error. 
This function gives information about the last error that occured during a 
segment drawing operation. 

return=GpiFillPath (hps, path, options); 
(LONG) return Number of correlation hits or 

indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) path Path identifier. 
(LONG) options Fill options. 
This function draws the inside of a path with the area attribute. 

return=GpiFloodFill (hps, options, color); 
(LONG) return Number of correlation hits or 

indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) options Flood fill options. 
(LONG) color Color. 
This function fills an area bound by a given color or while on a given 
color. 

.&;~:~ 

return=GpiFramell~gion (hps, region, thickness); 
(LONG) return Number of correlation hits or 

(HPS) hps 
(HRGN) region 
(PSIZEL) thickness 

indicator for success or failure. 
Handle to presentation space. 
Handle to region. 
Pointer to thickness of frame. 

This function draws a frame inside a region with the current pattern at
tribute. 

return=GpiFullArc (hps, control, multiplier); 
(LONG) return Number of correlation hits or 

indicator for success or failure. 



350 Programming the OS/2 WARP Version 3 GPI 

(HPS) hps Handle to presentation space. 
(LONG) region Outline and interior control. 
(FIXED) multiplier Multiplier. 
This function draws a full arc with its center at the current position. 

return=GpiGetData (hps, segment, offset, format, length, buffer); 
(LONG) return Length of data returned or error 

(HPS) hps 
(LONG) segment 

(PLONG) offset 

(LONG) format 
(LONG) length 
(PB YTE) buffer 

indicator. 
Handle to presentation space. 
Segment identifier from which to 
get data. 
Offset into segment to start 
retrieving data. 
Coordinate type required. 
Length of data buffer. 
Pointer to data buffer. 

This function gets data from a specified graphics segment. 

return=GpiImage (hps, format, size, length, image); 
(LONG) return Number of correlation hits or 

indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) format Format of image data. 
(PSIZEL) size Image size in PELS. 
(LONG) length Length of image data. 
(PB YTE) image Pointer to image data. 
This function draws a rectangular image with the current position being 
the top-left comer. 

return=GpiIntersectClipRectangle (hps, rectangle); 
(LONG) return Complexity of clipping or error 

indicator. 
(HPS) hps Handle to presentation space. 
(PRECTL) rectangle Pointer to rectangle. 
This function creates a new clip region to the intersection of a specified 
rectangle and the current clip region. 



return=GpiLabel (hps, label); 
(BOOL) return 
(HPS) hps 
(LONG) label 

Appendix A 351 

Indicator for success or failure. 
Handle to presentation space. 
Label. 

This function creates an element with the specified label. 

return=GpiLine (hps, endPoint); 
(LONG) return Number of correlation hits or 

indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PPOINTL) endPoint Pointer to end point. 
This function draws a line from the current position to the specified end 
point. 

return=GpiLoadBitmap (hps, resource, bitmapID, width, height); 
(HBITMAP) return Handle to bitmap or error indicator. 
(HPS) hps Handle to presentation space. 
(HMODULE) resource Handle to resources. 
(ULONG) bitmapID Identifier of bitmap in resource file. 
(LONG) width Width of bitmap. 
(LONG) height Height of bitmap. 
This function creates and loads a bitmap from a resource. 

return=GpiLoadFonts (hab, fileName); 
(BOOL) return Indicator for success or failure. 
(HAB) hab Handle to anchor-block. 
(PSZ) fileName Pointer to filename that contains 

font. 
This function loads one or more fonts from a specified resource file. 

return=GpiLoadMetaFile (hab, fileName); 
(HMFL) return Handle to a MetaFile or error 

indicator. 
(HAB) hab 
(PSZ) fileName 

Handle to anchor-block. 
Pointer to filename that contains 
MetaFile data. 

This function loads data from a file into a MetaFile. 



352 Programming the OS/2 WARP Version 3 GPI 

return=GpiLoadPublicFonts (hab, fileName); 
(BOOL) return Indicator for success or failure. 
(HAB) hab Handle to anchor-block. 
(PSZ) fileName Pointer to filename that contains font. 
This function loads one or more fonts from a specified resource file for 
public use. 

return=GpiMarker (hps, point); 
(LONG) return Number of correlation hits or 

indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PPOINTL) point Pointer to point. 
This function draws a marker at the specified point. 

return=GpiModifyPath (hps, path, mode); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) path Path identifier. 
(LONG) mode Modification required. 
This function modifies the specified path. 

return=GpiMove (hps, point); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PPOINTL) point Pointer to point. 
This function moves the current position to the specified point. 

return=GpiOffsetClipRegion (hps, displacement); 
(LONG) return Complexity of clipping or error 

indicator. 
(HPS) hps Handle to presentation space. 
(PPOINTL) displacement Pointer to displacement. 
This function moves a clipping region by a specified displacement. 

return=GpiOffsetElementPointer (hps, offset); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) offset Offset. 
This function moves the element pointer within a segment by the speci
fied offset. 



Appendix A 353 

return=GpiOffsetRegion (hps, region, offset); 
(BaaL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(HRGN) region Handle to region to be moved. 
(PPOINTL) offset Offset. 
This function moves a region by a specified offset. 

return=GpiOpenSegment (hps, segment); 
(BaaL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) segment Segment identifier. 
This function ,opens a graphic segment with the specified identifier. 

return=GpiOutliqePath (hps, path, options); 
(LONG) return Number of correlation hits or 

indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) path Path identifier. 
(LONG) options Options. 
This function draws the outline of a path. 

return=GpiPaintRegion (hps, region); 
(LONG) return Number of correlation hits or 

indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(HRGN) region Handle of region to paint. 
This function paints a region using the current pattern attribute. 

return=GpiPartialArc (hps, center, multiplier, startAngle, sweepAngle); 
(LONG) return Number of correlation hits or 

indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PPOINTL) center Pointer to center point of the arc. 
(FIXED) multiplier Multiplier. 
(FIXED) startAngle Start angle. 
(FIXED) sweepAngle Sweep angle. 
This function draws a line followed by an arc. 

return=GpiPathToRegion (hps, path, options); 
(HRGN) return Handle of region or error indicator. 
(HPS) hps Handle to presentation space. 



354 Programming the OS/2 WARP Version 3 GPI 

(LONG) path Path identifier. 
(ULaN G) options Options. 
This function converts a path to a region. 

return=GpiPlayMetaFile (hps, metaFile, count, options, segCount, 
count2, description); 

(LONG) return Number of correlation hits or 
indicator for success or failure. 

(HPS) hps Handle to presentation space. 
(HMF) metaFile Handle to MetaFile to play. 
(LONG) count Count of elements in options array. 
(PLONG) options Pointer to options array. 
(PLONG) segCount Reserved. 
(LONG) count2 Size of description. 
(PSZ) description Pointer to description. 
This function plays a MetaFile into a presentation space. 

return=GpiPointArc (hps, points); 
(LONG) return Number of correlation hits or 

(HPS) hps 
(PPOINTL) points 

indicator for success or failure. 
Handle to presentation space. 
Pointer to end and intermediate 
points. 

This function draws an arc using the current arc parameters through three 
points starting at the current position. 

return=GpiPolyFillet (hps, count, points); 
(LONG) return Number of correlation hits or 

indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) count Number of points in array. 
(PPOINTL) points Pointer to points array. 
This function draws a curve starting at the current position and the speci
fied points. 

return=GpiPolyFilletSharp (hps, count, points, sharpness); 
(LONG) return Number of correlation hits or 

indicator for success or failure. 
(HPS) hps 
(LONG) count 

Handle to presentation space. 
Number of points in arrays. 



Appendix A 355 

(PPOINTL) points Pointer to points array. 
(PFIXED) sharpness Pointer to sharpness values. 
This function draws a fillet on a series of lines starting from the current 
position and supplied end points. 

return=GpiPolygons (hps, count, polygons, options, model); 
(LONG) return Number of correlation hits or 

indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) count Number of polygons in array. 
(PPOL YGON) polygons Pointer to polygons array. 
(LONG) options Drawing options. 
(LONG) model Drawing model. 
This function draws a set of closed polygons. 

return=GpiPolyLine (hps, count, points); 
(LONG) return Number of correlation hits or 

indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) count Number of points in array. 
(PPOINTL) points Pointer to points array. 
This function draws a series of lines starting at the current position and 
the specified end points. 

return=GpiPolyLineDisjoint (hps, count, points); 
(LONG) return Number of correlation hits or 

indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) count Number of points in array. 
(PPOINTL) points Pointer to points array. 
This function draws a series of disjoint lines starting at the current posi
tion and the specified end points. 

return=GpiPolyMarker (hps, count, points); 
(LONG) return Number of correlation hits or 

indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) count Number of points in array. 
(PPOINTL) points Pointer to points array. 
This function draws a series of markers at the specified points. 



356 Programming the OS/2 WARP Version 3 GPI 

return=GpiPop (hps, count); 
(BaaL) return 
(HPS) hps 
(LONG) count 

Indicator for success or failure. 
Handle to presentation space. 
Number of attributes to be restored. 

This function restores primitive attributes that have been saved on the 
stack. 

return=GpiPtlnRegion (hps, region, point); 
(LONG) return Inside or error indicator. 
(HPS) hps Handle to presentation space. 
(HRGN) region Handle of region. 
(PPOINTL) point Pointer to point to test. 
This function tests for a point to be in a specified region. 

return=GpiPtVisible (hps, point); 
(LONG) return Visibility or error indicator. 
(HPS) hps Handle to presentation space. 
(PPOINTL) point Pointer to point to test. 
This function tests for a point to be visible within the clipping region of 
the device for the specified presentation space. 

return=GpiPutData (hps, format, length, buffer); 
(LONG) return Number of correlation hits or 

(HPS) hps 
(LONG) format 
(LONG) length 
(PBYTE) buffer 

indicator for success or failure. 
Handle to presentation space. 
Coordinate type used. 
Length of data buffer. 
Pointer to data buffer. 

This function puts graphic order data in the current segment. 

return=GpiQuery ArcParams (hps, arcParams); 
(BaaL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PARCPARAMS) arcParams Pointer to arc parameters. 
This function returns the current arc parameters. 

return=GpiQuery AttrMode (hps); 
(LONG) return Current attribute mode or 

indicator for success or failure. 
(HPS) hps Handle to presentation space. 
This function returns the current attribute mode. 



Appendix A 357 

return=GpiQueryAttrs (hps, type, mask, attributes); 
(LONG) return Current attribute mode or 

indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) type Primitive type. 
(ULONG) mask Attribute mask. 
(PBUNDLE) attributes Pointer to attribute bundle. 
This function returns the current attributes for a specified primitive type. 

return=GpiQueryBackColor (hps); 
(LONG) return Background color. 
(HPS) hps Handle to presentation space. 
This function returns the current background color. 

return=GpiQueryBitmapBits (hps, start, count, buffer, infoTable); 
(LONG) return Scan lines returned or error indicator. 
(HPS) hps Handle to presentation space. 
(LONG) start Starting scan line number. 
(LONG) count Number of scan lines to query. 
(PBYTE) buffer Buffer to receive bitmap data. 
(PBITMAPINF02) infoTable Pointer to table that defines the 

format of the bitmap data. 
This function transfers data from a bitmap to a specified buffer. 

return=GpiQueryBitmapDimension (bitmap, dimension); 
(BaaL) return Indicator for success or failure. 
(HBM) bitmap Handle to bitmap. 
(PSIZEL) dimension Pointer to bitmap dimension. 
This function retrieves the width and height of a specified bitmap. 

return=GpiQueryBitmapHandle (hps, lcid); 
(HBM) return Handle to bitmap or error indicator. 
(HPS) hps Handle to presentation space. 
(LONG) lcid Local identifier for bitmap. 
This function returns the handle of the bitmap currently associated with 
the local identifier. 

return=GpiQueryBitmaplnfoHeader (bitmap, header); 
(BaaL) return Indicator for success or failure. 
(HBITMAP) bitmap Handle to bitmap to query. 



358 Programming the OS/2 WARP Version 3 GPI 

(PBITMAPINFOHEADER2) header 
Pointer to bitmap information header. 

This function returns information about a specified bitmap. 

return=GpiQueryBitmapParameters (bitmap, parameters); 
(BOOL) return Indicator for success or failure. 
(HBITMAP) bitmap Handle to bitmap to query. 
(PBITMAPINFOHEADER) parameters 

Pointer to bitmap information header. 
This function returns parameters for a specified bitmap. 

return=GpiQueryBoundaryData (hps, boundaryData); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PRECTL) boundaryData Pointer boundary data. 
This function returns boundary data. 

return=GpiQueryChar Angle (hps, angle); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PGRADIENTL) angle Pointer baseline angle. 
This function returns the current character baseline angle. 

return=GpiQueryCharBox (hps, boxSize); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PSIZEF) boxSize Pointer to character box size. 
This function returns the current character box attribute. 

return=GpiQueryCharBreakExtra (hps, breakExtra); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PFIXED) breakExtra Pointer to character break extra 

attribute value. 
This function returns the current character break extra attribute. 

return=GpiQueryCharDirection (hps); 
(LONG) return Character direction or error indicator. 
(HPS) hps Handle to presentation space. 
This function returns the current character direction attribute. 



Appendix A 359 

return=GpiQueryCharExtra (hps, breakExtra); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PFIXED) extra Pointer to character extra attribute 

value. 
This function returns the current character extra attribute. 

return=GpiQueryCharMode (hps); 
(LONG) return Character mode or error indicator. 
(HPS) hps Handle to presentation space. 
This function returns the current character mode attribute. 

return=GpiQueryCharSet (hps); 
(LONG) return Character set local identifier. 
(HPS) hps Handle to presentation space. 
This function returns the current local identifier for the current font. 

return=GpiQueryCharShear (hps, shear); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PPOINTL) shear Pointer to shear vector point. 
This function indicates the current character shear angle by returning a 
vector point. 

return=GpiQueryCharStringPos (hps, options, length, string, 
incs, points); 

(BOOL) return 
(HPS) hps 
(ULONG) options 
(LONG) length 
(PCH) string 
(PLONG) incs 

Indicator for success or failure. 
Handle to presentation space. 
Options. 
Length of string. 
Pointer to character string. 
Pointer to horizontal increment 
values. 

(PPOINTL) points Array of positions for character 
placement. 

This function returns the positions at which a specified character string's 
characters would be placed if drawn. 



360 Programming the OS/2 WARP Version 3 GPI 

return=GpiQueryCharStringPosAt (hps, start, options, length, string, 
incs, points); 

(BOOL) return 
(HPS) hps 
(PPOINTL) start 
(ULONG) options 
(LONG) length 
(PCH) string 
(PLONG) incs 

Indicator for success or failure. 
Handle to presentation space. 
Starting position. 
Options. 
Length of string. 
Pointer to character string. 
Pointer to horizontal increment 
values. 

(PPOINTL) points Array of positions for character 
placement. 

This function returns the positions at which a specified character string's 
characters would be placed if drawn. 

return=GpiQueryClipBox (hps, rectangle); 
(LONG) return Complexity of resulting region 

and indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PRECTL) rectangle Pointer to bounding rectangle. 
This function returns the smallest rectangle possible that would include 
all the intersections of all the clipping definitions. 

return=GpiQueryClipRegion (hps); 
(HRGN) return Handle to region or error indicator. 
(HPS) hps Handle to presentation space. 
This function returns the handle to the currently selected clip region. 

return=GpiQueryColor (hps); 
(LONG) return Color attribute or error indicator. 
(HPS) hps Handle to presentation space. 
This function returns the current color attribute value. 

return=GpiQueryColorData (hps, count, colorInfo); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) count Number of elements in array. 
(PLONG) colorInfo Pointer to array to hold color 

information. 



Appendix A 361 

This function returns information about the current logical color table or 
the selected palette. 

return=GpiQueryColorlndex (hps, options, rgb); 
(LONG) return Color index or error indicator. 
(HPS) hps Handle to presentation space. 
(ULONG) options Options. 
(LONG) rgb RGB color value. 
This function returns the color index of the device color which is the 
closest match to the specified RGB color for the device associated with 
the presentation space. 

return=GpiQueryCp (hps); 
(ULONG) return Code page or error indicator. 
(HPS) hps Handle to presentation space. 
This function returns the currently selected graphics code page. 

return=GpiQueryCurrentPosition (hps, point); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PPOINTL) point Pointer to current position value. 
This function returns the current position value. 

return=GpiQueryDefArcParams (hps, params); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PARCPARAMS) params Pointer to arc parameters. 
This function returns the default arc parameter values. 

return=GpiQueryDefAttrs (hps, type, mask, attributes); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) type Primitive type. 
(ULONG) mask Attribute mask. 
(PBUNDLE) attributes Pointer to attribute bundle. 
This function returns the default attribute values for a specified primitive 
type. 

return=GpiQueryDefaultViewMatrix (hps, elements, matrix); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 



362 Programming the OS/2 WARP Version 3 GPI 

(LONG) elements Number of matrix elements. 
(PMA TRIXLF) matrix Pointer to transformation matrix. 
This function returns the current default viewing transformaton matrix. 

return=GpiQueryDefCharBox (hps, size); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PSIZEL) size Pointer to character box size. 
This function returns the size of the default graphics character box. 

return=GpiQueryDeITag (hps, tag); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PLONG) tag Pointer to tag identifier value. 
This function returns the default value of the tag identifier. 

return=GpiQueryDefViewingLimits (hps, limits); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PRECTL) limits Pointer to default viewing limits. 
This function returns the default value of the viewing limits. 

return=GpiQueryDevice (hps); 
(HDC) return Handle to device context or error 

indicator. 
(HPS) hps Handle to presentation space. 
This function returns the handle of the device context currently associ
ated with the presentation space. 

return=GpiQueryDeviceBitmapFormats (hps, elements, dataArray); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) elements Number of elements in the data array. 
(PLONG) dataArray Pointer to the data array. 
This function returns the supported formats of the bitmaps for the associ
ated device context. 

return=GpiQueryDrawControl (hps, control); 
(LONG) return Value of control or error indicator. 
(HPS) hps Handle to presentation space. 
(LONG) control Control. 
This function returns the value for a specified drawing control. 



Appendix A 363 

return=GpiQueryDrawingMode (hps); 
(LONG) return Drawing mode or error indicator. 
(HPS) hps Handle to presentation space. 
This function returns the current drawing mode. 

return=GpiQueryEditMode (hps); 
(LONG) return Editing mode or error indicator. 
(HPS) hps Handle to presentation space. 
This function returns the current editing mode. 

return=GpiQueryElement (hps, offset, length, buffer); 
(LONG) return Number of bytes returned or error 

(HPS) hps 
(LONG) offset 
(LONG) length 

(PBYTE) buffer 

indicator. 
Handle to presentation space. 
Starting byte offset into element. 
Maximum length of data that can 
be returned. 
Pointer to data buffer. 

This function returns element data from the element being pointed to by 
the element pointer. 

return=GpiQueryElementPointer (hps); 
(LONG) return Current element pointer value or 

error indicator. 
(HPS) hps Handle to presentation space. 
This function returns the current element pointer value. 

return=GpiQueryElementType (hps, type, length, buffer); 
(LONG) return Number of bytes returned or error 

(HPS) hps 
(PLONG) type 
(LONG) length 

(PSZ) buffer 

indicator. 
Handle to presentation space. 
Type of element. 
Maximum length of data that can 
be returned. 
Pointer to data buffer to hold 
element description. 

This function returns information about the element being pointed to by 
the element pointer. 



364 Programming the OS/2 WARP Version 3 GPI 

return=GpiQueryFaceString (hps, family, faceAttrs, length, faceName); 
(LONG) return Length of compound face name or 

error indicator. 
(HPS) hps Handle to presentation space. 
(PSZ) family Pointer to font family name. 
(PFACENAMEDESC) faceAttrs 

(LONG) length 

(PSZ) faceName 

Pointer to face name attributes. 
Maximum length of data that can 
be returned in faceN arne buffer. 
Pointer to face name data buffer. 

This function returns a compound face name for a font. 

return=GpiQueryFontAction (hab, options); 
(ULONG) return Action or error indicator. 
(HAB) hab Handle to anchor-block. 
(ULONG) options Options. 
This function returns if available fonts have been affected since the last 
time this function was used. 

return=GpiQueryFontFileDescription (hab, fileName, count, 
fontDescs) ; 

(LONG) return Number of fonts for which details 

(HAB) hab 
(PSZ) fileName 
(PLONG) count 

(PFFDESC) fontDescs 

were not returned or error indicator. 
Handle to anchor-block. 
Filename for font resource. 
Pointer to the maximum number 
of family and face name pairs to 
be returned. 
Pointer to array to put family and 
face name data. 

This function returns all the family and face name information for a 
specified font resource file. 

return=GpiQueryFonts (hps, options, faceName, fontCount, length, 
metrics); 

(LONG) return Number of fonts not returned or 

(HPS) hps 
(ULONG) options 
(PSZ) faceN arne 

error indicator. 
Handle to presentation space. 
Enumeration options. 
Face name of fonts to query. 



(PLONG) fontCount 

Appendix A 365 

Pointer to number of fonts that 
application requires and on return, 
number of fonts returned. 

(LONG) length Length of each font metrics record. 
(PFONTMETRICS) metrics Pointer to font metric records. 
This function returns font metrics for fonts of the specified face name. 

return=GpiQueryFullFontFileDescs (habs, fileName, count, names, 
length); 

(LONG) return Number of fonts for which details 

(HAB) hab 
(PSZ) fileName 
(PLONG) count 

(PVOID) names 

were not returned or error indicator. 
Handle to anchor-block. 
Pointer to font resource filename. 
Pointer to number of fonts that 
application requires and on return, 
number of fonts returned. 
Pointer to buffer where font 
family and face name pairs are 
returned. 

(PLONG) length Length of names buffer and on 
return, actual length needed to 
hold all family and face names. 

This function returns family and face name information for fonts in a 
specified font resource file. 

return=GpiQueryGraphicsField (hps, rectangle); 
(BaaL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PRECTL) rectangle Pointer to graphics field. 
This function returns the graphics field rectangle in presentation page 
units. 

return=GpiQuerylnitialSegmentAttrs (hps, attribute); 
(LONG) return Current initial attribute value or 

error indicator. 
(HPS) hps Handle to presentation space. 
(LONG) attribute Attribute to query. 
This function returns the initial segment attribute value for a specified 
attribute. 



366 Programming the OS/2 WARP Version 3 GPI 

return=GpiQueryKerningPairs (hps, elements, pairs); 
(LONG) return Number of kerning pairs returned 

or error indicator. 
(HPS) hps Handle to presentation space. 
(LONG) elements Number of elements in pairs array. 
(PKERNINGP AIRS) pairs Pointer to array of kerning pairs. 
This function returns kerning pair data for the current logical font. 

return=GpiQueryLineEnd (hps); 
(LONG) return Line-end attribute value or error 

indicator. 
(HPS) hps Handle to presentation space. 
This function returns the current line-end attribute value. 

return=GpiQueryLineJoin (hps); 
(LONG) return Line-join attribute value or error 

indicator. 
(HPS) hps Handle to presentation space. 
This function returns the current line-join attribute value. 

return=GpiQuery LineType (hps); 
(LONG) return Line-type attribute value or error 

indicator. 
(HPS) hps Handle to presentation space. 
This function returns the current line-type attribute value. 

return=GpiQueryLineWidth (hps); 
(FIXED) return Cosmetic line-width attribute 

value or error indicator. 
(HPS) hps Handle to presentation space. 
This function returns the current cosmetic line-width attribute value. 

return=GpiQueryLine WidthGeom (hps); 
(LONG) return Geometric line-width attribute 

value or error indicator. 
(HPS) hps Handle to presentation space. 
This function returns the current geometric line-width attribute value. 

return=GpiQueryLogColorTable (hps, options, start, elements, array); 
(LONG) return Number of elements returned or 

error indicator. 
(HPS) hps Handle to presentation space. 



Appendix A 367 

(ULONG) options Options. 
(LONG) start Starting index for data to be returned. 
(LONG) elements Number of elements in array. 
(PLONG) array Pointer to color array. 
This function returns the logical color table. 

return=GpiQueryLogicalFont (hps, 1cid, name, attributes, length); 
(BaaL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) lcid Local identifier. 
(PSTR8) name Pointer to logical font name. 
(PFATTRS) attributes Pointer to attributes of font. 
(LONG) length Maximum length of data that can 

be returned in attributes buffer. 
This function returns information about a logical font. 

return=GpiQueryMarker (hps); 
(LONG) return Marker symbol or error indicator. 
(HPS) hps Handle to presentation space. 
This function returns the value of current marker symbol attribute. 

return=GpiQueryMarkerBox (hps, size); 
(BaaL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PSIZEF) size Pointer to size of marker box. 
This function returns the value of current marker-box attribute. 

return=GpiQueryMarkerSet (hps); 
(LONG) return Marker-set local identifier or 

error indicator. 
(HPS) hps Handle to presentation space. 
This function returns the current value of the marker-set attribute. 

return=GpiQueryMetaFileBits (metaFile, offset, length, data); 
(BaaL) return Indicator for success or failure. 
(HMF) metaFile Handle to MetaFile. 
(LONG) offset Offset into MetaFile to start transfer. 
(LONG) length Length of MetaFile data to transfer. 
(PBYTE) data Pointer to data buffer. 
This function transfer MetaFile data to a application data buffer. 



368 Programming the OS/2 WARP Version 3 GPI 

return=GpiQuery MetaFileLength (metaFile); 
(LONG) return Length of MetaFile data or error 

indicator. 
(HMF) metaFile Handle to MetaFile. 
This function returns the length of data in a specified MetaFile. 

return=GpiQueryMix (hps); 
(LONG) return Value of foreground color-mixing 

mode or error indicator. 
(HPS) hps Handle to presentation space. 
This function returns the current value of the foreground color-mixing 
mode. 

return=GpiQueryModelTransformMatrix (hps, elements, matrix); 
(BaaL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) elements Number of elements in 

transformation matrix. 
(PM A TRIXLF) matrix Pointer to transformation matrix. 
This function returns the current model transformation matrix. 

return=GpiQueryNearestColor (hps, options, rgb); 
(LONG) return Nearest color or error indicator. 
(HPS) hps Handle to presentation space. 
(ULaN G) options Options. 
(LONG) rgb Required RGB color. 
This function returns the nearest color available on the currently associ
ated device with a specified color. 

return=GpiQueryNumberSetlds (hps); 
(LONG) return Number of used local identifiers 

or error indicator. 
(HPS) hps Handle to presentation space. 
This function returns the number of local identifiers in use. 

return=GpiQueryPage Viewport (hps, rectangle); 
(BaaL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PRECTL) rectangle Pointer to viewport rectangle. 
This function returns the page viewport. 



Appendix A 369 

return=GpiQueryPalette (hps); 
(HPAL) return Handle to palette or error indicator. 
(HPS) hps Handle to presentation space. 
This function returns the handle of the currently selected palette. 

return=GpiQueryPalettelnfo (palette, hps, options, start, elements, array); 
(LONG) return Number of elements returned or 

(HP AL) palette 
(HPS) hps 
(ULONG) options 
(LONG) start 

error indicator. 
Handle to palette. 
Handle to presentation space. 
Options. 
Starting index from which to 
retrieve data. 

(LONG) elements Number of elements to retrieve. 
(PLONG) array Pointer to array for data. 
This function returns information for a palette. 

return=GpiQueryPattern (hps); 
(LONG) return Pattern symbol value or error 

indicator. 
(HPS) hps Handle to presentation space. 
This function returns the current value for the pattern symbol. 

return=GpiQueryPatternRefPoint (hps, point); 
(BaaL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PPOINTL) point Pointer to pattern reference point. 
This function returns the current pattern reference point. 

return=GpiQueryPatternSet (hps); 
(LONG) return Pattern-set local identifier or error 

indicator. 
(HPS) hps Handle to presentation space. 
This function returns the pattern-set local identifier. 

return=GpiQueryPel (hps, point); 
(LONG) return Color index of pel or error indicator. 
(HPS) hps Handle to presentation space. 
(PPOINTL) point Pointer to pel. 
This function returns the color of a pel at a position specified by a point in 
world coordinates. 



370 Programming the OS/2 WARP Version 3 GPI 

return=GpiQueryPickAperturePosition (hps, point); 
(BaaL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PPOINTL) point Pointer to pick aperture position. 
This function returns the position of the center of the pick aperture. 

return=GpiQueryPickApertureSize (hps, size); 
(BaaL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PSIZEL) size Pointer to pick aperture size. 
This function returns the size of the pick aperture. 

return=GpiQueryPS (hps, size); 
(LONG) return Presentation space option or error 

indicator. 
(HPS) hps Handle to presentation space. 
(PSIZEL) size Pointer to size of presentation page. 
This function returns information about a presentation space. 

return=GpiQueryRealColors (hps, options, start, elements, array); 
(LONG) return Number of elements returned or 

(HPS) hps 
(ULONG) options 
(LONG) start 
(LONG) elements 

error indicator. 
Handle to presentation space. 
Options. 
Ordinal number of first color required. 
Maximum number of elements to 
return. 

(PLaN G) array Pointer to array for RGB values. 
This function returns the RGB values of distinct colors available on the 
currently associated device. 

return=GpiQueryRegionBox (hps, region, rectangle); 
(LONG) return Complexity of resulting region 

and indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(HRGN) region Handle to region. 
(PRECTL) rectangle Pointer to bounding rectangle. 
This function returns the bounding rectangle of a specified region. 



Appendix A 371 

return=GpiQueryRegionRects (hps, region, rectangle, control, array); 
(BaaL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(HRGN) region Handle to region. 
(PRECTL) rectangle Pointer to bounding rectangle. 
(PRGNRECT) control Pointer to processing control 

structure. 
(PRECTL) array Pointer to array of rectangles. 
This function returns the rectangles that define a specified region. 

return=GpiQueryRGBColor (hps, options, index); 
(LONG) return RGB value or error indicator. 
(HPS) hps Handle to presentation space. 
(ULONG) options Options. 
(LONG) index Color index. 
This function returns the RGB value that results from a specified index 
on the currently associated device. 

return=GpiQuerySegmentAttrs (hps, segment, attribute); 
(LONG) return Current attribute value or error 

indicator. 
(HPS) hps Handle to presentation space. 
(LONG) segment Segment identifier. 
(LONG) attribute Attribute to query. 
This function returns the current attribute value for a specified graphic 
segment and attribute. 

return=GpiQuerySegmentNames (hps, first, last, maximum, array); 
(LONG) return Number of identifiers returned or 

(HPS) hps 
(LONG) first 
(LONG) last 
(LONG) maximum 

(PLONG) array 

error indicator. 
Handle to presentation space. 
First segment identifier in a range. 
Last segment identifier in a range. 
Maximum number of Identifier to 
be returned. 
Pointer to array of segment 
identifiers. 

This function returns the segment identifers within a specified range. 



372 Programming the OS/2 WARP Version 3 GPI 

return=GpiQuerySegmentPriority (hps, reference, order); 
(LONG) return Segment identifier or error indicator. 
(HPS) hps Handle to presentation space. 
(LONG) reference Reference segment identifier. 
(LONG) order Order indicating which segment to 

return. 
This function returns the segment identifer of a graphic segment that is 
immediately before or after a specified reference segment. 

return=GpiQuerySegmentTransformMatrix (hps, segment, elements, 
matrix); 

(BaaL) return 
(HPS) hps 
(LONG) segment 
(LONG) elements 

Indicator for success or failure. 
Handle to presentation space. 
Segment identifier. 
Number of elements in 
transformation matrix. 

(PMA TRIXLF) matrix Pointer to transformation matrix. 
This function returns the segment transformation matrix for a specified 
segment identifier. 

return=GpiQuerySetlds (hps, maximum, types, names, lcids); 
(BaaL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) maximum Maximum number of objects to be 

queried. 
(PLONG) types Pointer to array of object types 

returned. 
(PSTR8) names Pointer to array of font names 

returned. 
(PLONG) 1cids Pointer to array of local identifiers 

returned. 
This function returns information about logical fonts and tagged bit
maps. 

return=GpiQueryStopDraw (hps); 
(LONG) return Stop or error indicator. 
(HPS) hps Handle to presentation space. 
This function returns whether a stop condition currently exists. 



Appendix A 373 

return=GpiQueryTag (hps, tag); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PLONG) tag Pointer to tag identifier. 
This function returns the current value of the tag identifier. 

return=GpiQueryTextAIignment (hps, xAlignment, y Alignment); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PLONG) xAlignment Pointer to horizontal alignment. 
(PLONG) yAlignment Pointer to vertical alignment. 
This function returns the current values of the text alignment attribute. 

return=GpiQueryTextBox (hps, countl, string, count2, points); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) count! Number of characters. 
(PC H) string Pointer to character string. 
(LONG) count2 Number of points in points array. 
(PPOINTL) points Pointer to points array. 
This function returns the relative coordinates of the comers of a text box 
for a specified string. 

return=GpiQuery ViewingLimits (hps, rectangle); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PRECTL) rectangle Pointer to viewing limits. 
This function returns the current value of the viewing limits. 

return=GpiQueryViewingTransformMatrix (hps, elements, matrix); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) elements Number of elements in 

transformation matrix. 
(PMA TRIXLF) matrix Pointer to transformation matrix. 
This function returns the viewing transformation matrix. 

return=GpiQueryWidthsTable (hps, firstChar, elements, array); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 



374 Programming the OS/2 WARP Version 3 GPI 

(LONG) firstChar Code point of first character width 
to return. 

(LONG) elements Number of elements in array. 
(PLaN G) array Pointer to array of width values. 
This function returns character width information for the current font. 

return=GpiRectlnRegion (hps, region, rectangle); 
(LONG) return Inside or error indicator. 
(HPS) hps Handle to presentation space. 
(HRGN) region Handle to region. 
(PRECTL) rectangle Pointer to rectangle. 
This function indicates whether any part of a rectangle is within a speci
fied region. 

return=GpiRectVisible (hps, tegion, rectangle); 
(LONG) return Visibility or error indicator. 
(HPS) hps Handle to presentation space. 
(PRECTL) rectangle Pointer to rectangle. 
This function indicates whether any part of a rectangle is within the clip
ping region of the associated device. 

return=GpiRemoveDynamics (hps, first, last); 
(BaaL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) first First segment identifier in a range. 
(LONG) last Last segment identifier in a range. 
This function removes those parts of the graphic image that are drawn 
from dynamic segments in a specifed section of the segment chain. 

return=GpiResetBoundaryData (hps); 
(BaaL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
This function resets boundary data to null. 

return=GpiResetPS (hps, options); 
(BaaL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) options Reset options. 
This function resets the presentation space. 



Appendix A 375 

return=GpiRestorePS (hps, identifier); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) identifier Identifier of saved presentation space. 
This function restores the state of a previously saved presentation space. 

return=GpiRotate (hps, matrix, options, angle, center); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PMA TRIXLF) matrix Pointer to transform matrix. 
(LONG) options Transform options. 
(FIXED) angle Rotation angle. 
(PPOINTL) center Pointer to center of rotation. 
This function applies a rotation to a transform matrix. 

return=GpiSaveMetaFile (metaFile, fileName); 
(BOOL) return Indicator for success or failure. 
(HMF) metaFile Handle to MetaFile. 
(PSZ) fileName Pointer to filename. 
This function saves a MetaFile to a disk file. 

return=GpiSavePS (hps); 
(LONG) return Identifier or error indicator. 
(HPS) hps Handle to presentation space. 
This function save the state of the presentation space so it can be restored 
at a later time. 

return=GpiScale (hps, matrix, options, scale, center); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PMATRIXLF) matrix Pointer to transform matrix. 
(LONG) options Transform options. 
(FIXED) scale Scale factor. 
(PPOINTL) center Pointer to center of scale. 
This function applies scaling to a transform matrix. 

return=GpiSelectPalette (hps, palette); 
(HP AL) return Handle to old palette. 
(HPS) hps Handle to presentation space. 
(HP AL) palette Handle to palette. 
This function selects a palette to a presentation space. 



376 Programming the OS/2 WARP Version 3 GPI 

retum=GpiSetArcParams (hps, parameters); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PARCPARAMS) parameters Pointer to arc parameters. 
This function sets the current arc parameters. 

return=GpiSetAttrMode (hps, mode); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) mode Attribute mode. 
This function sets the current attribute mode. 

return=GpiSetAttrs (hps, type, mask, defaultsMask, attributes); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) type Primitive type to set. 
(ULONG) mask Attributes mask. 
(ULONG) defaultsMask Defaults mask which indicates 

that the attributes should be set to 
default values if the corresponding 
mask flag is also set. 

(PBUNDLE) attributes Pointer to attribute values to be set. 
This function sets attributes for a specified primitive type. 

return=GpiSetBackColor (hps, color); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) color Color. 
This function sets the current background color index for each primitive 
type to a specified value. 

retum=GpiSetBackMix (hps, mix); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) mix Background mix mode. 
This function sets the current background mix mode for each primitive 
type. 

retum=GpiSetBitmap (hps, bitmap); 
(HBITMAP) return Handle to old bitmap or error 

indicator. 



Appendix A 377 

(HPS) hps Handle to presentation space. 
(HBITMAP) bitmap Handle of bitmap. 
This function sets a bitmap as the currently selected bitmap in a memory 
device context. 

return=GpiSetBitmapBits (hps, startLine, scans, buffer, infoTable); 
(LONG) return Scan lines set or error indicator. 
(LONG) startLine Scan line number at which data 

transfer is to start. 
(LONG) scans Number of scan lines to transmit. 
(PBYTE) buffer Pointer to application storage buffer. 
(PBITMAPINF02) infoTable Pointer to bitmap information table. 
This function sets bitmap data from application storage to a bitmap. 

return=GpiSetBitmapDimension (bitmap, size); 
(BOOL) return Indicator for success or failure. 
(HBITMAP) bitmap Handle to bitmap. 
(PSIZEL) size Pointer to size. 
This function sets the height and width of a specifed bitmap. 

return=GpiSetBitmapld (hps, bitmap, 1cid); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(HBITMAP) bitmap Handle to bitmap. 
(LONG) lcid Local identifier. 
This function tags a bitmap with a local identifier so it can be used as a 
pattern set. 

return=GpiSetCharAngle (hps, angle); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PGRADIENTL) angle Pointer to baseline angle. 
This function specifies the angle of the baseline for text strings. 

return=GpiSetCharBox (hps, size); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PSIZEF) size Pointer to box size. 
This function sets the character box attribute to a specified value. 



378 Programming the OS/2 WARP Version 3 GPI 

return=GpiSetCharBreakExtra (hps, breakExtra); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(FIXED) breakExtra Character break extra value. 
This function specifies an extra increment to be used for space break 
characters in a text string. 

return=GpiSetCharDirection (hps, direction); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) direction Character direction. 
This function specifies the direction in which characters are drawn. 

return=GpiSetCharExtra (hps, extra); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(FIXED) extra Character extra value. 
This function specifies an extra increment to be used for spacing charac
ters in a text string. 

return=GpiSetCharMode (hps, mode); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) mode Character mode. 
This function specifies the character mode to be used when drawing a 
string. 

return=GpiSetCharSet (hps, 1cid); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) 1cid Character set local identifier. 
This function sets the current value of the character set attribute. 

return=GpiSetCharShear (hps, angle); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PPOINTL) angle Pointer to a point used to define a 

vector that defines the shear angle. 
This function sets the character shear attribute. 



Appendix A 379 

return=GpiSetClipPath (hps, path, options); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) path Path control flag. 
(LONG) options Options. 
This function sets a path as the current clip path. 

return=GpiSetClipRegion (hps, region, oldRegion); 
(LONG) return Compexity of clipping or error 

indicator. 
(HPS) hps Handle to presentation space. 
(HRGN) region Handle to region. 
(PHRGN) oldRegion Pointer to handle of old region. 
This function sets the region to be used for clipping. 

return=GpiSetColor (hps, color); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) color Color. 
This function sets the current value of color attribute for each of the indi
vidual primitive types. 

return=GpiSetCp (hps, codePage); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(ULONG) codePage Code page identifier. 
This function sets the default graphic code page. 

return=GpiSetCurrentPosition (hps, point); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PPOINTL) point Pointer to current position point. 
This function sets the current position to a specfied point. 

return=GpiSetDefAttrs (hps, type, mask, defaults); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) type Primitive type. 
(ULONG) mask Attribute mask. 
(PBUNDLE) attributes Pointer to attribute bundle. 



380 Programming the OS/2 WARP Version 3 GPI 

This function sets the default values to attributes for the specfied 
primitive type. 

return=GpiSetDefaultViewMatrix (hps, elements, matrix, options); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) elements Number of elements in 

transformation matrix. 
(PMA TRIXLF) matrix Pointer to transformation matrix. 
(LONG) options Options. 
This function sets the default viewing transformation matrix. 

return=GpiSetDeITag (hps, tag); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) tag Default tag identifier. 
This function sets the default value of the primitive tag. 

return=GpiSetDefViewingLimits (hps, rectangle); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PRECTL) rectangle Pointer to default viewing limit 

rectangle. 
This function sets the default value of the viewing limits. 

return=GpiSetDrawControl (hps, control, value); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) control Draw control. 
(LONG) value Value of the drawing control. 
This function sets options for subsequent drawing operations. 

return=GpiSetDrawingMode (hps, mode); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) mode Draw mode. 
This function sets the drawing mode to control the processing of subse
quent drawing operations. 



Appendix A 381 

return=GpiSetEditMode (hps, mode); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) mode Edit mode. 
This function sets the current editing mode. 

return=GpiSetElementPointer (hps, element); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) element Element number. 
This function sets the element pointer within the current segment to the 
specified element number. 

return=GpiSetElementPointerAtLabel (hps, label); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) label Label. 
This function sets the element pointer within the current segment to the 
element containing the specified label. 

return=GpiSetGraphicsField (hps, rectangle); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PRECTL) rectangle Pointer to graphics field rectangle. 
This function sets the size and position of the graphics field. 

return=GpiSetInitialSegmentAttrs (hps, attribute, value); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) attribute Segment attribute. 
(LONG) value Value. 
This function specifies a segment attribute to use when a new segment is 
created. 

return=GpiSetLineEnd (hps, lineEnd); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) lineEnd Style of line-end. 
This function sets the current line-end attribute. 



382 Programming the OS/2 WARP Version 3 GPI 

return=GpiSetLineJoin (hps, lineJoin); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) lineJoin Style of line join. 
This function sets the current line-join attribute. 

return=GpiSetLineType (hps, lineType); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) lineType Style of line type. 
This function sets the current cosmetic line-type attribute. 

return=GpiSetLineWidth (hps, width); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(FIXED) width Line-width multiplier. 
This function sets the current cosmetic line-width attribute. 

return=GpiSetLineWidthGeom (hps, width); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) width Line width. 
This function sets the current geometric line-width attribute. 

return=GpiSetMarker (hps, marker); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) marker Marker symbol. 
This function sets the value of the marker symbol attribute. 

return=GpiSetMarkerBox (hps, size); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PSIZEF) size Pointer to the size of the marker box. 
This function sets the current marker-box attribute. 

return=GpiSetMarkerSet (hps, 1cid); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) lcid Marker-set local identifier. 
This function sets the current marker-set attribute. 



Appendix A 383 

return=GpiSetMetaFileBits (metaFile, offset, length, buffer); 
(BOOL) return Indicator for success or failure. 
(HMF) metaFile Handle to memory MetaFile. 
(LONG) offset Offset from where transfer will start. 
(LONG) length Length of MetaFile data to transfer. 
(PBYTE) buffer Pointer to the application memory 

buffer. 
This function transfers MetaFile data from application memory to a 
memory MetaFile. 

return=GpiSetMix (hps, mix); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) mix Mix mode. 
This function sets the current foreground mix attribute for each individ
ual primitive type. 

return=GpiSetModelTransformMatrix (hps, elements, matrix, options); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) elements Number of elements in 

transformation matrix. 
(PMA TRIXLF) matrix Pointer to transformation matrix. 
(LONG) options Options. 
This function sets the model transformation matrix. 

return=GpiSetPage Viewport (hps, rectangle); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PRECTL) rectangle Pointer to page viewport. 
This function sets the page viewport within the device space. 

return=GpiSetPaletteEntries (palette, format, start, elements, table); 
(BOOL) return Indicator for success or failure. 
(HP AL) palette Handle to palette. 
(ULONG) format Format of entries in table. 
(ULONG) start Starting index. 
(ULONG) elements Number of elements in table. 
(PULONG) table Pointer to application table. 
This function sets the entries in a palette. 



384 Programming the OS/2 WARP Version 3 GPI 

return=GpiSetPattern (hps, pattern); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) pattern Pattern symbol. 
This function sets the current value of the pattern symbol attribute. 

return=GpiSetPatternRefPoint (hps, refPoint); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PPOINTL) refPoint Pointer to pattern reference point. 
This function sets the current pattern reference point. 

return=GpiSetPatternSet (hps, 1cid); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) lcid Pattern set local identifier. 
This function sets the current value of the pattern set attribute. 

return=GpiSetPel (hps, point); 
(LONG) return Number of correlation hits or 

indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PPOINTL) point Pointer to point to set pel. 
This function sets a pel at a specified point. 

return=GpiSetPickAperturePosition (hps, point); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PPOINTL) point Pointer to center point. 
This function sets the center of the pick aperture in the presentation page 
for correlation operations. 

return=GpiSetPickApertureSize (hps, options, size); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) options Options. 
(PSIZEL) size Pointer to pick aperture size. 
This function sets the pick aperture size. 

return=GpiSetPS (hps, size, options); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 



Appendix A 385 

(PSIZEL) size Pointer to the size of the 
presentation page. 

(LONG) options Options. 
This function sets the presentation page size, units, and format. 

return=GpiSetRegion (hps, region, count, rectangles); 
(BaaL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(HRGN) region Handle to region. 
(LONG) count Number of rectangles. 
(PRECTL) rectangles Pointer to array of rectangles. 
This function sets the region to the union of a set of specified rectangles. 

return=GpiSetSegmentAttrs (hps, segment, attribute, values); 
(BaaL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) segment Segment identifier. 
(LONG) attribute Segment attribute. 
(LONG) value Attribute value. 
This function sets a segment attribute to a specified value. 

return=GpiSetSegmentPriority (hps, segment, ref Segment, order); 
(BaaL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) segment Segment identifier. 
(LONG) ref Segment Reference segment identifier to 

place segment before or after. 
(LONG) order Position higher or lower. 
This function sets the position of a segment within the segment chain. 

return=GpiSetSegmentTransformMatrix (hps, segment, elements, 
matrix, options); 

(BaaL) return 
(HPS) hps 
(LONG) segment 
(LONG) elements 

Indicator for success or failure. 
Handle to presentation space. 
Segment identifier. 
Number of elements in 
transformation matrix. 

(PMA TRIXLF) matrix Pointer to transformation matrix. 
(LONG) options Options. 
This function sets the segment transformation matrix. 



386 Programming the OS/2 WARP Version 3 GPI 

return=GpiSetStopDraw (hps, value); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) value Stop draw condition. 
This function sets or clears the stop draw condition. 

return=GpiSetTag (hps, tag); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) tag Tag identifier. 
This function specifies a tag by which the following primitives are to be 
associated. 

return=GpiSetTextAlignment (hps, horizontal, vertical); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) horizontal Horizontal alignment. 
(LONG) vertical Vertical alignment. 
This function sets the alignment used to position characters in a string. 

return=GpiSet ViewingLimits (hps, rectangle); 
(BOOL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PRECTL) rectangle Pointer to rectangle. 
This function sets a clipping rectangle in model space. 

return=GpiSetViewingTransformMatrix (hps, elements, matrix, 
options); 

(BOOL) return 
(HPS) hps 
(LONG) elements 

Indicator for success or failure. 
Handle to presentation space. 
Number of elements in 
transformation matrix. 

(PMA TRIXLF) matrix Pointer to transformation matrix. 
(LONG) options Options. 
This function sets the viewing transformation matrix. 

return=GpiStrokePath (hps, path, options); 
(LONG) return Number of correlation hits or 

indicator for success or failure. 



Appendix A 387 

(HPS) hps Handle to presentation space. 
(LONG) path Path identifier to be stroked. 
(LONG)options Options. 
This function strokes a path and then draws it. 

return=GpiTranslate (hps, path, options); 
(LONG) return Number of correlation hits or 

indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(LONG) path Path identifier to be stroked. 
(LONG) options Options. 
This function strokes a path and then draws it. 

return=GpiTranslate (hps, matrix, options, translation); 
(BaaL) return Indicator for success or failure. 
(HPS) hps Handle to presentation space. 
(PMA TRIXLF) matrix Pointer to transform matrix. 
(LONG) options Transform options. 
(PPOINTL) translation Pointer to translation point. 
This function applies a translation to a transform matrix. 

return=GpiUnloadFonts (hab, fileName); 
(BaaL) return Indicator for success or failure. 
(HAB) hab Handle to anchor-block. 
(PSZ) fileName Pointer to filename that contains font. 
This function unloads any fonts previously loaded from a specified re
source file. 

return=GpiUnloadPublicFonts (hab, fileName); 
(BaaL) return Indicator for success or failure. 
(HAB) hab Handle to anchor-block. 
(PSZ) fileName Pointer to filename that contains font. 
This function unloads any public fonts previously loaded from a speci
fied resource file. 

return=GpiWCBitBlt (target, source, pointCount, pointArray, rop, 
options); 

(LONG) return Number of correlation hits or 
indicatorfor success or failure. 

(HPS) target 
(HPS) source 

Target presentation space handle. 
Source presentation space handle. 



388 Programming the OS/2 WARP Version 3 GPI 

(LONG) pointCount Number of points in point array. 
(PPOINTL) pointArray Pointer to point array. 
(LONG) rop Raster operation mix function. 
(ULONG) options Options. 
This function copies bitmap image data from one rectangular area to an
other. 



APPENDIXB 

Working with 
the Diskette 

The software that comes on the diskette is compressed and, when installed 
on your system, will take up slightly less than 2MB of disk storage. An in
stall program is provided to make installation simple. Before installing the 
software on your machine, you should make a backup copy of the original 
diskette. 

To run the installation program, simply insert the install diskette into the 
A: drive and enter the command A:INST ALL at an OS/2 or DOS command 
prompt. If your 3.5 inch diskette is not the A: drive then substitute A: with 
the appropriate drive letter. 

IMPORTANT!!! Please read the following paragraphs BEFORE actu
ally installing the software. Especially if you: 

• Plan to alter the drive and/or directory that the software is installed into. 

• Do not use the IBM compiler, toolkit, and WorkFrame tools. 

• Did not install your WorkFrame tool into the C:\IBMWF directory. 
The install program makes several assumptions about the configuration 

of your machine. If these assumptions are valid, then you can accept the de
fault install parameters when prompted. If these assumptions are not valid, 
you may want to alter the install parameters. 

389 



390 Programming the OS/2 WARP Version 3 GPI 

When you run the installation program, it will bring up a menu that al
lows you to configure the installation. At this point, you can go ahead and 
run the installation program, but do NOT choose the option Start Installation 
until you understand the following assumptions made by the install program: 

1. The install program assumes that you are using the IBM C/C++ com
piler, IBM WorkFrame, and IBM Toolkit. The supplied make files and 
project files are designed for this environment. If you do not use these 
tools, you can specify any destination path you desire and perform the 
installation. Then refer to the section "Building the Sample Programs 
from Scratch" (found later in this appendix) for more details on creating 
the programs. 

2. The install program assumes that the W orkFrame software is installed in 
the directory C:\IBMWF. The install program copies the WorkFrame 
project files into this directory so that the W orkFrame software can find 
them. If you have the W orkFrame software installed in a different direc
tory, select Edit the destination paths from the main install menu and set 
the Project Files path to point to the directory in which W orkFrame is 
located. 

3. The install program assumes that you want to install the program into the 
directory C:\ WL YDRA W. The project and make files supplied with this 
diskette depend on the software being installed at this location. If you 
choose to install it somewhere else, then you will need to create new pro
ject and make files. If you decide to do this, we assume you already 
know how to create project and make files. See the section "Building the 
Sample Programs from Scratch" for details on the source files required 
for each program. 
At this point you can go ahead and install the software. If possible, the 

easiest way to install, run, and build the software is to use the defaults. 

RUNNING THE SAMPLE PROGRAMS 

The installation program copies prebuilt versions of the programs into the 
specified source directory (the default library is C:\WLYDRAW). The fol
lowing programs should be installed into that directory: 

DRAW. EXE - The graphical drawing application. 



Appendix B 391 

PRINTERS. EXE - This program shows information about printers on your 
system. 

VI EWMET . EXE - This program displays MetaFiles and allows you to ex
amine the orders found inside the MetaFile. 

BROWSE. DLL - This is a text browsing utility that is called by other pro
grams. It cannot be run directly from the command line. 

To run any of these programs simply open an OS/2 command window, 
change to the directory containing the programs, and enter the name of the 
program you want to run (i.e., DRAW). Try this out and make sure you can 
run each of the programs as they have been installed. 

REBUILDING THE PROGRAMS USING THE MAKE FILES 

There are MAKE files included on the diskette for each of the sample pro
grams. If you have installed the software into the default directory 
(C:\WLYDRAW), you can use the supplied make files to rebuild the pro
grams. If you have installed the software to a different directory, you will 
have to rebuild the make files yourself using WorkFrame (see the "Building 
the Sample Programs from Scratch" section for details). 

To rebuild one of the programs open an OS/2 command window and 
switch to the C:\WLYDRAW directory. Then, invoke NMAKE on the 
makefile of the desired program (for example: NMAKE DRA WMAKE). 
This will build the specified program. The make files for the various pro
grams are: 

DRA WMAKE - Builds the draw program 

PRNTMAKE - Builds the printers program 

VIEWMAKE - Builds the metaFile viewer program 

BROWMAKE - Builds the Browser DLL 

REBUILDING THE PROGRAMS USING THE PROJECT FILES 

The install program copies project files for WorkFrame/2 V1.I into the 
workframe directory on your system. Make sure you installed the software 
according to assumptions #2 and #3 as previously described. 



392 Programming the OS/2 WARP Version 3 GPI 

Start the WorkFrame/2 Vl.l program (make sure you run V1.l and not 
V2.1, as both come with the ToolKit). If the install worked correctly, the 
following projects should now show up in the WorkFrame Project Control 
list: 

Wiley Draw 

Wiley Browse 

Wiley View MetaFile 

Wiley Printers 

To build one of the projects, first open it by selecting it from the Project 
Control list and pressing the Open button (make sure you only have one pro
ject selected when you open it because otherwise workframe will only open 
the first one selected). Once the project is open, choose the Make item from 
the Actions menu in the IBM WorkFrame/2 window. This starts the build 
activity. A dialog should appear that shows the MAKE activity as it pro
gresses. If everything builds okay, you should be able to choose Run from 
the Actions menu to execute the application. Note, you won't be able to run 
the Browse project since it simply builds a .DLL file that is used by the other 
programs. 

To avoid confusion over which project is being built, you might want to 
close any currently open projects before opening a new one. Finally, re
member that MAKE only recompiles and relinks those files that are out
dated. If you want to force a complete recompile and link, then choose Build 
rather than Make from the Action menu. 

BUILDING PROGRAMS FROM SCRATCH 

This section provides information on how to build the example programs 
without using the supplied project and make files. This is necessary if you 
are not using the IBM tool set or if you installed the software into a directory 
other than C:\WLYDRAW. 

The following compile and link options should be specified when build
ing the various programs. 

Compile Options: 

• Allow use of II style comments (found on the source page of IBM com
piler settings) 



Appendix B 393 

• Choose Multithread libraries (found on the object page of IBM compiler 
settings) 

Link Options: 

• Application type is PM (found on the Generation page of IBM linker set
tings) 

• Definition file should be set for program being built, such as 
DRAW.DEF (found on the file names page of IBM linker settings) 

You may also want to compile and link the programs with debug turned 
on so that you can step through execution of the programs. The following 
paragraphs describe what activities are required to build the various program 
files and what source files are involved. 

To build the Browse Utility DLL (BROWSE.DLL), the following build ac
tivities are required: 

1. Compile C source code files. 

2. Link object files. 

3. Compile dialogs and other resource files using resource compiler (RC). 

4. Bind resources to DLL using resource compiler (RC). 

5. Compile help text using IPF compile. 

Table B.l shows which files are required for building the Browse Utility 
DLL. 

TABLE B.I Building the Browse Utility DLL. 

File Name 

BROWSE.C, BROWSE.H 
BROWSE.DLG 
BRWSDIAG.H 

BROWSE.DEF 
BROWSE.RC 

BROWSE.lPF 
BROWSE.lCO 

Description 

Main C source file for BROWSE.DLL. 
BROWSE.DLL dialog boxes definitions. 
Header file for BROWSE.DLL dialog 
boxes definitions. 
Definition file for BROWSE.DLL. 
Resource source file for BROWSE.DLL 
resource. 
Help text source for the Browse Utility. 
Browse Utility icon file. 



394 Programming the OS/2 WARP Version 3 GPI 

TABLE B.2 Building the Draw program 

File Name 

DRA W.C, DRA W.H 
BROWSE.H 
DRAW.DLG 
DIALOG.H 

DRAW.DEF 
DRAW.RC 

DRAW.IPF 

ATTR.C, ATTR.H 

DRAWPRNT.C, DRAWPRNT.H 
EDIT.C, EDIT.H 

FUNCS.C, FUNCS.H 

GENERAL.H 
GOL.C, GOL.H 
OBJECT.C, OBJECT.H 

TOOL.C, TOOL.H 

Description 

Main C source file for DRAW .EXE. 
Interface definitions for Browse Utility. 
DRA W.EXE dialog boxes definitions. 
Header file for DRAW.EXE dialog 
boxes definitions. 
Definition file for DRA W.EXE. 
Resource source file for DRAW .EXE 
resource. 
Help text source file for the graphics 
editor. 
Attribute processing source code for 
DRAW.EXE. 
Print graphic source code. 
Edit source code for DRAW.EXE. This 
includes functions for cut, copy, paste, 
and update the client area. 
Dialog procedures and miscellaneous 
functions for DRA W.EXE. 
Miscellaneous definitions. 
List processing functions for DRAW.EXE. 
Graphic object management source 
code for DRAW.EXE. Includes 
transformation management for objects. 
Tool source code for DRA W.EXE. 
(Processes event data for each tool 
type in the graphic editor. This code 
makes each tool polymorphic.) 

PARSESEG.C, PARSESEG.H Parse graphic segment source code. 
PORDERS.C, PORDER.H Parse graphics orders source code. 
WRITETIF.C, WRITETIF.H Write TIFF file source code. 
ARC.ICO, BOX.ICO, DRA W.ICO, Icons resources for DRA W.EXE. 



TABLE B.2 (Continued) 

File Name 

ELLIPSE.ICO, LINE.ICO, 
PENCIL.ICO, RBOX.ICO, 
SELECT.ICO, TEXT.ICO, 
FILLET.ICO, FILLETF.ICO, 
POL YLINE.ICO, POL YFILL.ICO 

Appendix B 395 

Description 

BOX.PTR, CROSS.PTR, Pointer resources for DRA W.EXE. 
ELLIPSE.PTR, PENCIL.PTR, 
RBOX.PTR, SELECT.PTR, TEXT.PTR 

To build the Draw program (DRA W.EXE), the following build activities are 
required: 

1. Compile C source code files. 

2. Link object files. 

3. Compile dialogs and other resource files using resource compiler (RC). 

4. Bind resources to DLL using resource compiler (RC). 

5. Compile help text using IPF compile. 

Table B.2 shows which files are required for building the Draw program. 
To execute the Draw program, the following run-time files are also required: 

DLL Files: BROWSE.DLL 
Help Files: BROWSE.HLP 

To build the MetaFile Viewer program (VIEWMET .EXE) , the follow-
ing build activities are required; 

1. Compile C source code files. 
2. Link object files. 
3. Compile dialogs and other resource files using resource compiler (RC). 
4. Bind resources to DLL using resource compiler (RC). 
5. Compile help text using IPF compile. 

Table B.3 shows which files are required for building the MetaFile Viewer 
program. 



396 Programming the OS/2 WARP Version 3 GPI 

TABLE B.3 Building the MetaFile Viewer program 

File Name 

VIEWMET.C, VIEWMET.H 
BROWSE.H 
VIEWMET.DLG 
VMDLG.H 

VIEWMET.DEF 
VIEWMET.lCO 
VIEWMET.RC 

VIEWMET.lPF 
PARSEMET.C, PARSEMET.H 
PORDERS.C, PORDER.H 
ORDERTAB.C 

Description 

Main C source file for VIEWMET.EXE. 
Interface definitions for Browse Utility. 
VIEWMET .EXE dialog boxes definitions. 
Header file for VIEWMET.EXE dialog 
boxes definitions. 
Definition file for VIEWMET .EXE. 
Application icon for MetaFile Viewer. 
Resource source file for VIEWMET .EXE 
resource. 
Help text for MetaFile Viewer. 
Parse OS/2 MetaFile source code. 
Parse graphics ordOers source code. 
Source code for graphic orders branch table. 

To execute the MetaFile Viewer program, the following run-time files are 
also required: 

DLL Files: BROWSE.DLL 
Help Files: BROWSE.HLP 

To build the Printer Information viewer program (PRINTERS.EXE), the 
following build activities are required: 

1. Compile C source code files. 
2. Link object files. 

Table B.4 shows which files are required for building the Printers Informa
tion program. 

TABLE B.4 Building the Printers Information program 

File Name 

PRINTERS.C 
BROWSE.H 
PRINTERS.DEF 

Description 

Main C source file for PRINTERS.EXE. 
Interface definitions for Browse Utility. 
Definition file for PRINTERS .EXE. 



Appendix B 397 

To execute the Printer Information program, the following tun-time files are 
also required: 

DLL Files: BROWSE.DLL 
Help Files: BROWSE.HLP 

We have built the programs using the IBM tools (C/C++ V2.01 ToolKit 
V2.1, and WorkFrame VI.I or V2.1). We have also been able to build the 
programs using the Borland C++ toolset Vl.O. The Borland compiler is a 
C++ compiler and issues a significant number of warnings due to the tight
ness of the C++ compiler and the large amount of type casting done in the 
example programs. However, the programs should compile and execute 
properly using the Borland compiler. Other compilers that support the 
above options should work as well (as long as they provide compatible OS/2 
system header files and run-time libraries). 





Index 

IMatch,141 

Antialiasing, 140 
Application icon, 26, 27 
Application installation complete, 26 
Arc, 59 
Arc parameters, 70, 73, 85 
Arc tool, 6, 14 
Architecture, 33 
Arcs, 67 

full,71 
multi, 67 
partial,71 
simple, 67 

Area background color, 79 
Area background mix, 79 
Area color, 77 
Area fill, 246 
Area mix, 79 
ASCII, 123 
Ascender, 133 
Ascenders, 132 
Aspect ratio, 42, 133 
Association, 27 
ATTR_CHAINED, 177, 178 
ATTR_DETECTABLE, 177 
ATTR_DYNAMIC, 178,181 
ATTR_FASTCHAIN,177 
ATTR_PROP_DETECTABLE,177 
ATTR_PROP _ VISIBLE, 178 
ATTR_ VISIBLE, 178 
Atom, 138 

Attributes, 15, 21, 22, 35, 52 

Back, 17, 179 
Background color, 58 
Background mix, 58 
Backward 1, 17, 179 
Baseline, 124, 132 
Begin Document, 328, 330 
Bezier splines, 73 
BITMAPINF02, 108, 110, 116 
BITMAPINFOHEADER2 108 110 
Bitmap, 36, 102, 104, 105: 108' 111 
114, 115 ' , 
Boundary, 183 
Boundary accumulation, 183 184 269 
270 ' , , 

Box radius, 16 
Box tool, 5, 14 
Break character, 96, 135 
Bundle, 52, 53 

area, 53, 253 
image, 53 
line and arc, 53 
marker, 53 
text, 53 

Bundles 
area, 67, 70, 78,82,85,86 88 
line, 67,69, 88 ' 
marker, 100 
text, 88, 156 

C programming language, 19 

399 



400 Programming the OS/2 WARP Version 3 GPI 

Capture TIFF, 9 
Chmn,275,278,281 
Chained segment, 181, 183 
Char break extra, 96 
Char extra, 96 
Character angle, 91, 92 
Character background color, 90 
Character background mix, 90 
Character box, 90, 91, 132, 141, 152 
Character color, 90 
Character direction, 94 
Character mix, 90 
Character mode, 90 
Character set, 90 
Character shear, 93 
Character text alignment, 94 
Clip area 

clip path, 40 
clip region, 43 
graphics field, 42 
viewing limit, 41 

Clip path, 259, 262 
Clip region, 265-267 
Clipping, 40, 120, 243, 248, 257-259, 
261,264,265,267,268 
CONFIG.SYS, 27 
Code page, 122, 149 
Code point, 123, 135, 155 
Color, 15, 55 
Color plane, 105, 108 
Coordinate space, 38-40, 207 

default page, 213, 232-234 
device, 207, 213, 238, 239, 248, 254, 
265,281 
device space, 43, 44 
media space, 44 
model, 168, 211, 224, 232, 233, 264, 
270 
model space, 41,43 
notional font definition, 134, 142 
notional font definition space, 44 
page, 234, 238-240, 265,270 
page space, 41, 44 
presentation page, 157 
world, 142, 157, 168,207, 211, 224, 
244,259,267,268,270 
world space, 40, 43 

Coordinates, 38 
Copy, 4, 11 
Correlation, 177, 183, 184, 191,206, 
271-273,276-278,281,282 
Cosmetic line, 246 
CRGN_AND, 250 
CRGN_COPY, 250 

CRGN_DIFF, 250 
CRGN_OR,250 
CRGN_XOR, 250 
Current font, 128, 149, 155 
Current model transformation matrix, 
225 
Current position, 154 
Cursor, 158, 167 
Cut, 4, 11,22, 25 

DCTL_BOUNDARY, 184, 269 
DCTL_CORRELATE, 184 
DCTL_DISPLA Y, 184 
DCTL_DYNAMIC, 184 
DCTL_ERASE, 184 
DCTL_OFF, 184, 269 
DCTL_ON, 184, 269 
DEVESC_ENDDOC, 308 
DEVESC_STARTDOC, 308 
Decipoints, 135 
Default Viewing Transform, 212 
Default view transform, 234, 237, 240 
Default viewing matrix, 325 
Default viewing transform, 234 
Delete, 4, 11, 22 
Descender, 133 
Desktop, 26 
DevEscape, 308 
Device context, 36, 37, 176, 184,244, 
245,286,303,305,306,309,313,314, 
316 
Device driver, 37 
Device name, 291 
Device Transform, 213 
Device transform, 238 
Device units, 37, 209 
Device viewport, 239 
Device-specific characteristics, 37 
DevOpenDC, 304-306, 313, 316 
DevPostDeviceModes, 304 
DevQueryCaps, 142, 151 
DevQueryHardcopyCaps, 308 
DISPLAY, 313 
Diskette, 26, 30 
Display list, 20, 205, 230 
DM_DRAW, 176 
DM_DRAWANDRETAIN,176 
DM_RETAIN,176 
DOS, 32, 33 
Double-byte code page, 135, 140 
DPDM_POSTJOBPROP, 304 
DPDM_QUERYJOBPROP, 304 
DRAW, 314 



DRAWANDRETAIN,314 
Dragging, 22 
Draw list, 21 
Drawing mode, 176 
Dynamic Link Library (DLL), 21, 27 
Dynamic segment, 181, 184 

EBCDIC, 123 
Edit handles, 102 
Edit options, 11 
Edit tools, 4, 22 

Arc tool, 6 
Box tool, 5 
Ellipse tool, 6 
Fillet Fill tool, 4 
Fillet tool, 6 
Line tool, 5 
Pencil tool, 5 
Polyline Fill tool, 7 
Polyline tool, 7 
Rounded Box tool, 5 
Select tool, 4 
Text tool, 6 

Element, 169, 171-174, 185, 190, 191, 
195,200,276 
Element pointer, 172-175, 195 
Ellipse tool, 6, 14, 23 
Em Square, 132-134, 141 
EmHeight, 132 
Emphasis, 15 
End Document, 330, 336 
End document, 286 
Exit, 11 
Export MetaFile, 10 
Extension, 27 

Facename, 123, 128, 131, 149, 150 
Family name, 130 
Fast CorrelatelDraw, 12 
File actions 

import WL Y, 10 
new, 9 
open, 9 
save, 9 
save as, 9 

Fill color, 15 
Fill pattern, 15, 16,247 
Fill patterns, 119 
Filled area, 243 
Fillet, 74-76 
Fillet Fill tool, 4, 13 
Fillet tool, 6, 14 
Flip, 221 

Flip horizontal, 17 
Flip vertical, 17 
FONTMETRICS, 129 
Font, 15,24 

outline, 247 

Index 401 

Font attributes structure, 139, 141 
Font family, 138 
Font family names, 123 
Font metrics, 128, 149, 151, 157 
Font name, 15 
Fonts, 122 

bold, 136, 140 
device, 126, 136 
hollow, 136, 140, 143 
image, 126 
italic, 136, 140 
monospaced, 157, 158 
outline, 90, 91, 93, 96, 102, 126, 135, 
140, 143, 149, 152, 156 
overstrike, 136, 140 
private, 126 
proportional, 157, 159 
public, 126, 149 
raster, 90, 92, 93, 96, 102, 125, 126, 
135 
strike out, 143 
strikeout, 138 
underline, 143 
underscore, 136, 137, 140 
vector, 126 

Foreground color, 58 
Foreground mix, 58 
Forward 1, 17, 179 
Front, 17, 179 
Function parameters, 30 

GEOM_LINE_ WIDTH, 244 
Geometric line, 243-246 
Geometric line width, 60 
Global variables, 21 
Glyph,123 
GpiBeginArea, 78, 82, 87 
GpiBeginElement, 171 
GpiBeginPath, 78, 85, 244, 245 
GpiBitBlt, 103, 114, 116, 324 
GpiBox, 59, 66, 78,83,263 
GpiCallSegmentMatrix, 171,225,226 
GpiCharString, 89, 96, 154 
GpiCharStringAt, 39, 89, 97, 154 
GpiCharStringPos, 89, 98, 99, 154, 155 
GpiCharStringPosAt, 89, 99, 154 
GpiCloseFigure, 78, 86 
GpiCloseSegment, 176 



402 Programming the OS/2 WARP Version 3 GPI 

GpiCombineRegion, 249, 250, 256 
GpiConvert, 38,39, 151, 157,225,240 
GpiConvertWithMatrix, 225, 240 
GpiCopyMetaFile, 317 
GpiCorrelateChain, 273, 274, 276, 281 
GpiCorrelateFrom, 275, 276 
GpiCorrelateSegment, 276, 281 
GpiCreateBitmap, 103, 108, 111, 119 
GpiCreateLogFont, 139, 141, 151, 152 
GpiCreateLogicalFont,90 
GpiCreateRegion, 249,250 
GpiDeleteBitmap, 103, 111 
GpiDeleteElement, 175 
GpiDeleteElementRange, 175 
GpiDeleteElementsBetweenLabels, 175 
GpiDeleteMetaFile, 316, 324 
GpiDestroyRegion, 249,250 
GpiDrawBits, 103, 114, 116 
GpiDrawChain, 179, 181, 182, 184, 205, 
281,309,314,316 
GpiDrawDynamics, 181, 182, 184 
GpiDrawFrom, 179, 181, 182, 184,314 
GpiDrawSegment, 179, 181, 182, 184, 
314 
GpiElement, 171, 184 
GpiEndArea, 78, 82 
GpiEndElement, 171 
GpiEndPath, 78, 85, 244, 245 
GpiEqualRegion, 249, 255 
GpiExcludeClipRectangle, 259, 266 
GpiFillPath, 78, 85, 245, 246, 248 
GpiFrameRegion, 253 
GpiFullArc, 59, 68, 78 
GpiGetBitmapDimensions, 111 
GpiGetData, 170 
Gpilmage, 103, 113, 116 
GpiIntersectClipRectangle, 259, 266 
GpiLabel, 175 
GpiLine, 37, 59, 62 
GpiLoadBitmap, 111, 119 
GpiLoadMetaFile, 317, 324, 330 
GpiMarker, 100, 102 
GpiModifyPath, 78, 86, 244-246 
GpiMove, 37, 97 
GpiOffsetClipRegion, 259, 266 
GpiOffsetElementPointer, 173, 175 
GpiOffsetRegion, 249, 252 
GpiOpenSegment, 172, 173, 176, 195 
GpiOutlinePath, 244, 247, 248,260 
GpiPaintRegion, 249, 253, 256 
GpiPartialArc, 59, 70 
GpiPathToRegion, 244, 252 
GpiPlayMetaFile, 182,317,318,320, 
324 

GpiPointArc, 59, 72 
GpiPolyFillet, 59, 74-76 
GpiPolyFilletSharp, 59, 75, 76 
GpiPolygons, 78, 87 
GpiPolyLine, 59, 64 
GpiPolyLineDisjoint, 59, 65 
GpiPolyMarker, 100, 102 
GpiPolySpline, 73, 75 
GpiPtInRegion, 249, 254, 271 
GpiPtVisible, 259, 268 
GpiPutData, 170, 172, 173, 182, 184 
GpiQueryAttr,53 
GpiQueryBoundaryData, 270, 324 
GpiQueryClipBox, 259, 267 
GpiQueryClipRegion, 259, 266 
GpiQueryDeviceBitmapFormats, 108, 
111 
GpiQueryDrawControl, 184 
GpiQueryEditMode, 172 
GpiQueryElement, 175, 195 
GpiQueryElementPointer, 195 
GpiQueryElementType, 172,174,195 
GpiQueryFontMetrics, 155 
GpiQueryFonts, 128, 129, 149 
GpiQuerylnitialSegmentAttrs, 178 
GpiQueryKemingPairs, 155 
GpiQueryLineEnd,55 
GpiQueryMetaFileBits, 316, 317, 330 
GpiQueryMetaFileLength, 317, 330 
GpiQuery ModelTransformMatrix, 225, 
226 
GpiQueryPel, 120 
GpiQueryRegionBox, 249, 255 
GpiQueryRegionRects, 249, 255, 266 
GpiQuerySegmentAttr, 178 
GpiQuerySegmentNames, 179, 194 
GpiQuerySegmentPriority, 179, 201 
GpiQueryWidthsTable, 155 
GpiRectInRegion, 249,255,256,281 
GpiRectVisible, 259, 268 
GpiRemoveDynamics, 181, 183, 184 
GpiResetBoundaryData, 270, 324 
GpiRotate, 216, 220 
GpiSaveMetaFile, 314, 316 
GpiScale, 216, 217, 220, 221 
GpiSetArcParams, 68 
GpiSetAttr, 53, 55 
GpiSetBackColor,55 
GpiSetBackMix, 55 
GpiSetBitmap, 103, 111 
GpiSetBitmapBits, 103, 111 
GpiSetBitmapDimension, 111 
GpiSetBitmapDimensions, 103 
GpiSetBitmapld, 119 



GpiSetCharBox, 142, 151 
GpiSetCharSet, 141, 151 152 
GpiSetClipPath, 244, 259 
Gp~SetClipRegion, 250, 259, 265 
GplSetColor, 55 
GpiSetDefaultView, 236 
GpiSetDefault View Matrix 234 
GpiSetDrawControl, 184, 269 
GpiSetDrawMode, 314 
GpiSetEditMode, 172 
Gp~SetElementPointer, 173, 195 
GplSetElementPointerAtLabel 175 
GpiSetGraphicsField, 265 ' 
GpiSetInitialSegmentAttrs 178 
GpiSetLineEnd, 55 ' 
GpiSetLineJoin,55 
GpiSetLineType, 55 
GpiSetLine Width, 55 
GpiSetLine WidthGeom, 55 
GpiSetMetaFileBits, 316 317 
GpiSetMix, 55 ' 
Gp~SetModeITransform, 227 
GplSetModelTransformMatrix 216 225 
234 ' , , 

Gp~SetPage Viewport, 239 
GplSetPel, 120 
GpiSetPickAperturePosition 276 
GpiSetPickApertureSize, 276 
GpiSetRegion, 249, 250 
GpiSetSegmentAttrs, 178 
Gp~SetSegmentPriority, 179, 180 
GplSetSegmentTransformMatrix 
225-227 ' 
GpiSetStopDraw, 182 
GpiSetTag, 272 
GpiSetViewingLimits, 264 
GpiSetViewingMatrix, 234 
GpiSetViewingTransformMatrix 233 
GpiSpline, 59 ' 
Gp~StrokePath, 78, 244, 246, 248 
GplTranslate, 216, 217 
GpiWCBitBlt, 103, 114, 116 
Graphic Data, 330, 336 
Graphic order, 23 
Graphic primitives, 52 
Graphics data, 328 
Graphics field, 265 
Grid, 12,21 
Grid size, 12 
Group, 10, 11, 22 
Group object, 205 

Help, 27 

HIGHER_PRI, 179 
Hit, 273, 274, 278, 281 

Image, 23, 113 

Index 403 

Image background color, 104 
Image background mix, 104 
Image color, 104 
Image mix, 104 
Images, 102, 103 
Import WLY, 10 
Initial program load, 141 
Instance transform, 226 
Internal leading, 158 

KERNINGPAIRS, 155 
Kernable, 125 
Kerning, 99, 125, 140, 155 
Kerning pair, 138 
Kerning pairs, 99, 155 

Label,175 
LINE_END, 244 
LINE_JOIN, 244 
LINE_TYPE, 244 
Line, 59 
Line color, 15, 16,59 
Line mix, 59 
Line thickness, 15, 16 
Line tool, 5, 13 
Line type, 15, 16,60 
Line width, 60 
Lines 

cosmetic, 60, 86 
geometric, 60, 85 

Link, 201 
List, 25 
Lists, 21, 22 
LOWER_PRI, 179 
Local identifier, 90, 139 150 152 
Logical font, 157, 158' , 
Logical font description, 139 

Marker, 24, 99 
Marker background color, 100 
Marker background mix, 100 
Marker box, 102 
Marker color, 100 
Marker mix, 100 
Marker set, 101 
Marker symbol, 101 
Markers, 4, 18 
Marque select, 4 



404 Programming the OS/2 WARP Version 3 GPI 

Matrix, 213, 220, 221, 225, 233, 238 
Matrix multiplication, 222 
Message queue, 46 
Messages, 19 
MetaFile, 10, 36, 176, 183,233, 
311-314,316-320,323,325-328,330, 
336 
Methods, 22 
Metrics options, 12 
Mirror, 209, 221, 227 
Mix, 55, 58 
Mix option, 114 
Model parameter, 87 
Model Transform, 211 
Model transform, 17, 190, 191, 225, 233 
Model transform matrix, 225, 227, 229 
Monospaced,124 
Mouse actions, 18 
Move, 4 
Moving objects, 18 
Multitasking, 32, 45 

New, 9 
Nonproportional, 124 
Nonretained graphic segment, 176, 179 
Normal presentation space, 176 
Notebook dialog, 26 
Notional units, 133, 134 

Object oriented design, 50 
Object oriented programming, 19, 50 
OD_DIRECT,305 
OD _INFO, 305 
OD_MEMORY,305 
OD _METAFILE, 305 
OD_METAFILE_NOQUERY,305 
OD _Metafile, 313 
OD_MetaFile_NOQUERY,313 
OD_QUEUED, 305, 306 
Open, 9 
Operating system, 32 
Order, 169, 173, 185, 190, 191, 195,200, 
312,326,328 
OS/2 kernel, 37 
OS/2 Toolkit, 31 
Outline font, 44 

Pan,44,210,234 
Panose descriptor, 138 
Paste, 11, 22 
Paste list, 11, 25, 205 

Path,244,245,247,252,259,260,263, 
268 
Paths, 85 
Pattern reference point, 81 
Pattern set, 80, 114 
Pattern symbol, 80, 114 
Pels, 104 
Pencil tool, 5, 13 
Pick aperture, 276 
Picture elements, 104 
PM_Q_RAW, 306 
PM_<LSTD, 306 
PM_SPOOLER_PRINTER, 290, 303 
PM_SPOOLER_QP, 292 
PM_SPOOLER_QUEUE,291 
PM_SPOOLER_QUEUE_DD, 291 
PMF _COLORREALIZEABLE,319 
PMF _COLORTABLES, 319 
PMF_DEFAULTS, 319 
PMF _LCIDS, 318 
PMF_LOADTYPE,318 
PMF _RESET,318 
PMF _SUPRESS, 319 
Point, 123 
Point size, 15,21,24, 126, 143, 150-152 
Polyfill tool, 15 
Polyline Fill tool, 7 
Polyline tool, 7, 15 
Port name, 284, 285, 287, 291 
Presentation driver, 284, 286, 291, 304, 
305,307,308 
Presentation drivers, 36, 37 
Presentation page, 34, 35, 38, 41, 154, 
157,231,234,239,314 

units, 36 
Presentation page size, 35 
Presentation page units, 209 
Presentation sapce, 36 
Presentation space, 34, 37, 38,41, 128, 
139 

cached-micro presentation space, 34 
micro presentation space, 35 
normal presentation space, 35 

PrfQueryProfileString, 290, 292, 303, 
305 
Print, 10 
Print queue, 284-286 
Printer device driver, 285 
Printer name, 284, 286, 290, 303 
Printer pooling, 285 
Printer presentation driver, 286 
Printer queue, 286 
Printer sharing, 285 
Product information, 11 



Program objects, 26 
Program template, 26 
Proportional, 124 

Queue, 291 
Queue processor, 284, 286, 292, 306 

Raw print mode, 285 
Region, 248, 250,252, 254,265,268, 
281,282 
RES_NORESET,324 
RES_RESET, 324 
RETAIN, 314 
Resizing objects, 18 
Retained graphics, 35, 175, 309 
Retained segment, 22, 113, 116,204, 
206,226 
RGB,110 
Root segment, 178, 205, 273 
Rotate, 4, 17,22,209,213,214,227, 
228,231,238 
Rotation, 191 
Rounded Box tool, 5, 14 
Rubberband, 24, 59 

Save, 9 
Save as, 9 
SCP _ALTERNATE, 260, 263 
SCP _AND, 260 
SCP _RESET, 260 
SCP _ WINDING, 260 
Scal~ 17,22, 191,209,213,214,216, 
217,219,227,231,234,238,240,312, 
325 
Scaling, 324, 326 
Scan line, 106 
Scanline, 114 
Scroll, 159, 234 
SEGEM_INSERT,172-174 
SEGEM_REPLACE, 172, 174 
Segment, 22, 23, 169-179, 183, 185, 
190,191,195,204,206,227,233, 
272-274,277-279,281,282,312,326 

chained, 180 
unchained, 180 

Segmentchrun, 177, 178,205 
Segment priority, 179 
Select All, 12 
Select list, 20, 21, 25, 192, 205 
Select tool, 4, 13, 24 
Semaphores, 46, 157 
Set attribute, 22 

Set Grid Size, 12 
Set model transform, 17 
SetWidthsTable,99 

Index 405 

Shear, 17,93,209,213,224,227,231, 
238 
Shear angle, 191 
Single/double-byte code page, 136, 140 
Size, 4 
Slope, 133 
Snap to Grid, 12 
Snap to grid, 65 
Snap-to-grid, 238 
Source code, 26, 30 
Source files, 28 
Space character, 135 
Spline, 73 
Spool Queue Manager, 285 
Spooler, 285, 286, 307 
Start document, 286 
Status line, 167 
Stroking the path, 245 
Structured field, 326-328 
Style options, 15 
SUP _NOSUPPRESS, 324 
SUP_SUPPRESS, 324 
Sub-class, 22 
Subclassing, 19 
Subpicture, 208 
Sweep angle, 70, 85 
System Atom Table, 136, 138 

Tab stops, 158 
Tabs, 158, 166 
Tag, 272, 277 
Tag Image File Format, 312 
Technical reference, 31 
Template folder, 26 
Terminate and Stay Resident (TSR), 32 
Text alignment, 157 
Text tool, 6, 14 
Thread, 45, 49, 157, 166,182,193 
TIFF, 9,23, 312 
Tool dialog box, 4, 13 
Tool Meter, 12 
Tool Palette, 8, 13 
Tool palette, 23 
Tools 

are, 72 
ellipse, 68 
fillet, 75 
line, 63 
PolyLine, 64 
pencil, 65 



406 Programming the OS/2 WARP Version 3 GPI 

rectangle, 66 
Tools options, 13 
TRANSFORM_ADD, 216, 225, 234 
TRANSFORM_PREEMPT, 225, 234 
TRANSFORM_REPLACE, 216, 225, 
234 
Transform coefficients, 214 
Transform matrix, 226, 228, 231 
Transformation, 120, 191,207,208,215 
Transformation coefficients, 213 
Transformation matrix, 214, 227 
Transformations, 39-41, 156, 168 
Transforms, 126 
Transforms options, 16 
Translate, 308 
Translation, 191, 209, 213, 214, 216, 
234,238,240,325 
Translation coefficients, 227 
Triplets, 327 

Unchained graphic segment, 177 
Unchained segment, 205 
Ungroup, 10, 11,22,229 
Update region, 256 

updateRegion, 251 

View selected objects, 10, 23 
View transform matrix, 176 
Viewing limit, 264 
Viewing pipeline, 40, 168, 207, 211, 241, 
257 
Viewing Transform, 211 
Viewing transform, 231, 232 

Widths table, 21 
Window context, 35 
Window procedure, 19 
WinFileDlg, 316 
WinFontDlg, 151 
WinOpen Window DC , 36 
WinQueryWindowRect, 324 
World coordinates, 38,90 

XOR,24 

Z order, 10, 16 
Zoom, 12,44,210,234,236,308 



Operating Systems/OS/2 $39.95 

Learn by example how to get the 
most out of the full range of advance4 
OS/ 2 ™ WARP GPI functions 

rogrammers who work in the OS/2 Presentation Manager environment 

will appreciate this in-depth guide to fully exploiting the more advanced 

features of OS/2's GPI. The only guide devoted exclusively to the sub

ject, it does much more than describe how GPI functions work, it actual

ly shows you with numerous examples and a fully fleshed-out application. 

Written by IBM insiders Steve Knight and Jeffrey Ryan, it offers proven solutions to a 

wide range of user-interface problems, and detailed, step-by-step guidance to the full 

range of functions rarely covered in more general books on Presentation Manager. 

• The first book to focus entirely on the advanced fea
tures of OS/2's GPI updated for OS/2 WARP Version 3 

• Covers such important topics as working with graphic 
primitives, working in diHerent viewing coordinate 
spaces, metafiles, correlation, and more 

• Helps programmers quickly learn how to use all the 
features discussed by developing a complete working 
application (a graphics editor) that they can easily adapt 
to their own work 

• Extremely well illustrated, includes more than 60 screen 
shots, line drawings, and tables-all created with the 
enclosed sample application 

STEPHEN A. KNIGHT and JEFFREY M. RYAN are scientific pro
grammers in the IBM Rochester Engineering Development Lab, 
Rochester, Minnesota, and patent holders. Other books authored by 
Stephen A. Knight include Learning to Program OS/2 2.0 Presentation 
Manager by Example and Cooperative Processing with AS/400 PC 
Support. 

Cover Design: Adrienne Weiss 
Cover Illustration: Pam-eta Harrelson 

John Wiley & Sons, Inc. 
Professional, Reference and Trade Group 
605 Third Avenue, New York, N.Y. 10158-0012 
New York • Chichester • Brisbane • Toronto • Singapore 

V A co.ple.e graphic. 
edl.or appllca.lon-lto.h 
In .ource code and as 
an ex_utaltle I1le 

V Tex. Itrow.er file, query 
printer Infor.a.lon, 
.elaflle viewer, and 
other utlll.le. 

ISBN 0-471-10718-2 

53995 

I 
I 

7 


