

OS/2 Programmer's
Desk Reference

J. Ranade Workstation Series

LOCKHART • OSF DCE: Guide to Developing Distributed Applications,
0-07-911481-4

WIGGINS • The Internet for Everyone: A Guide for Users and Providers,
0-07-067019-8

CHAKRAVARTY • Power RISC System/6000: Concepts, Facilities, and
Architecture, 0-07-011047-6

SANCHEZ, CANTON • High Resolution Video Graphics, 0-07-911646-9

DEROEST • AIX for RS / 6000: System and Administration Guide, 0-07-036439-7

LAMB • MicroFocus Workbench and Toolset Developer's Guide, 0-07-036123-3
JOHNSTON • OS /2 Connectivity and Networking: A Guide to Communication

Manager / 2, 0-07-032696-7

SANCHEZ, CANTON • PC Programmer's Handbook, Second Edition, 0-07-054948-6

WALKER, SCHWALLER • CPI-C Programming in C: An Application Developer's
Guide toAPPC, 0-07-911733-3

SANCHEZ, CANTON • Graphics Programming Solutions, 0-07-911464-4
CHAKRAVARTY, CANON • PowerPC: Concepts, Architecture, and Design,

0-07-011192-8

LEININGER. UNIX Developer's Tool Kit, 0-07-911646-9
HENRY, GRAHAM • Solaris 2.X System Administrator's Guide, 0-07-029368-6
RANADE, ZAMIR • C++ Primer for C Programmers, Second Edition,

0-07-051487-9
PETERSON. DCE: A Guide to Developing Portable Applications, 0-07-911801-1
LEININGER. Solaris Developer's Tool Kit, 0-07-911851-8
JOHNSTON • OS /2 Productivity Tool Kit, 0-07-912029-6
LEININGER • AIX /6000 Developer's Tool Kit, 0-07-911992-1

GRAHAM • Solaris 2.X: Internals and Architecture, 0-07-911876-3

BAMBARA, ALLEN • PowerBuilder: A Guide for Developing Client / Server
Applications, 0-07-005413-4

To order or receive additional information on these or any other McGraw-Hill
titles, in the United States please call1-Boo-B22-B15B. In other countries,
contact your local McGraw-Hill representative. BCl6XXA

OS/2 Programmer's
Desk Reference

v. Mitra Gopaul

McGraw-Hili, Inc.
New York San Francisco Washington, D.C. Auckland Bogota

Caracas Lisbon London Madrid Mexico City Milan
Montreal New Delhi San Juan Singapore

Sydney Tokyo Toronto

Library of Congress Cataloging-in-Publication Data

Gopaul, V. Mitra
OS/2 programmer's desk reference / V. Mitra Gopaul.

p. cm.
Includes index.
ISBN 0-07-023748-4
1. Operating systems (Computers) 2. OS/2 (Computer file)

I. Title.
QA 76. 76.063G668
005.265-dc20

1995
94-44828

CIP

Copyright © 1995 by McGraw-Hill, Inc. All rights reserved. Printed in the
United States of America. Except as permitted under the United States
Copyright Act of 1976, no part of this publication may be reproduced or distrib­
uted in any form or by any means, or stored in a data base or retrieval system,
without the prior written permission of the publisher.

1 2 3 4 5 6 7 8 9 0 AGMIAGM 9 0 0 9 8 7 6 5

ISBN 0-07-023748-4

The sponsoring editor for this book was Jerry Papke, the editing supervisor was
David E. Fogarty, and the production supervisor was Donald Schmidt.

Printed and bound by Quebecor / Martinsburg.

McGraw-Hill books are avaiable at special quantity discounts to use as premi­
ums and sales promotions, or for use in corporate training programs. For more
information, please write to the Director of Special Sales, McGraw-Hill, Inc., 11
West 19th Street, New York, NY 10011. Or contact your local bookstore.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY
The author and publisher have exercised care in preparing this book
and the programs contained in it. They make no representation, howev­
er, that the programs are error-free or suitable for every application to
which the reader may attempt to apply them. The author and publisher
make no warranty of any kind, expressed or implied, including the war­
ranties of merchantability or fitness for a particular purpose, with
regard to these programs or the documentation or theory contained in
this book, all of which are provided "as is." The author and publisher
shall not be liable for damages in amount greater than the purchase
price of this book, or in any event for incidental or consequential dam­
ages in connection with, or arising out of the furnishing, performance,
or use of these programs or the associated descriptions or discussions.

Readers should test any program on their own systems and compare
results with those presented in this book. They should then construct
their own test programs to verify that they fully understand the requi­
site calling conventions and data formats for each of the programs.
Then they should test the specific application thoroughly.

1b my mother, Saimawantee,
for her love and self-sacrifice

Contents

Preface

Chapter 1. C Language

1.1 Elements of C
1.2 Data Declarations
1.3 Data Types
1.4 Storage Specifiers
1.5 Expressions
1.6 Operators

1.6.1 Unary operators
1.6.2 Binary operators
1.6.3 Assignment operator =

1.7 Statements

Chapter 2. C++ Language

2.1 Elements of C++
2.2 Class and Object
2.3 Constructor and Destructor Functions
2.4 Function and Operator Overloading
2.5 Inheritance
2.6 Virtual Functions

Chapter 3. Compiling and Linking C and C++ Programs

3.1 Software Requirements
3.2 Compiler Files
3.3 Invoking the Compiler
3.4 Compiler' Options
3.5 Compiler Return Codes
3.6 Invoking the Linker
3.7 Linker Environment Variable
3.8 Linker Error Messages

xi

1

2
5
7

25
32
38
39
45
53
55

73

75
79
92
98

113
125

129

130
133
135
137
155
156
162
163

vii

viii Contents

3.9 Correct Compiler Options 164
3.10 Correct Run-Time Library 165
3.11 Linkage: Static or Dynamic 165
3.12 Multithread Programming 166

3.12.1 Functions 166
3.12.2 Variables and data structures 168
3.12.3 Examples 168
3.12.4 Compile, link, and run multithread program 170

Chapter 4. COBOL 173

4.1 Source Format 176
4.2 Language Elements 177
4.3 IDENTIFICATION DIVISION 180
4.4 ENVIRONMENT DIVISION 182
4.5 DATA DIVISION 201
4.6 PROCEDURE DIVISION 218
4.7 Compiler Directives 264

Chapter 5. DB2/2 Commands and Utilities 269

5.1 System Commands 270
5.2 DOS and Windows Database Client Application Enabler

Commands 287
5.3 DBM Command Line Processor Commands 289

Chapter 6. Structured Query Language (SQL) 333

6.1 Language Elements 334
6.2 SQL Statements 341
6.3 Functions 387

6.3.1 Column functions 387
6.3.2 Scalar functions 391

6.4 Structures 404
6.4.1 SQLCA-SQL communication area 404
6.4.2 SQLDA-SQL descriptor area 405

Chapter 7. Toolkit Utility Programs 407

7.1 NMAKE-Automate Development 407
7.2 EXEHDR-Display or Change Header Information of

Executable File 414
7.3 FWDSTAMP-Add Entry Point to DLL File 418
7.4 IMPLIB-Create Import Library 418
7.5 MARKEXE-Change or Display Information of an

Executable File 420
7.6 MKMSGF-Convert Text to Binary 421
7.7 PACK-Compress Data 425

7.8 UNPACK-Unpack Data
7.9 MAPSYM-Create a Symbolic File

7.10 MSGBIND-Bind Messages
7.11 Resource Compiler

Chapter 8. Online Information Programming

8.1 Before Using IPF
8.2 IPF Compiler
8.3 Data Structure
8.4 Using the Help Facility
8.5 Communication between IPF and the Application
8.6 Window Functions
8.7 Tag Reference

Chapter 9. Preprocessor Directives

Chapter 10. OS/2 Commands

Chapter 11. REXX

11.1 Arithmetic Operations
11.2 Concatenation Operators
11.3 Operator Precedence
11.4 Logical Operation
11.5 Comparison Operators
11.6 Variable Names
11.7 Input and Output Streams
11.8 Functions and Instructions

Index

Contents ix

428
429
429
431

439

440
447
449
452
453
473
476

495

529

609

610
610
611
611
612
612
612
613

677

Preface

As an OS/2 programmer, I have come to realize that long gone are the
days when applications were developed with an editor and a language.
Nowadays, given the complexity of operating systems and demands for
intuitive and user-friendly applications, developing software is becoming
a rigorous task.

To write a simple Presentation Manager (PM) application with a main
window, a menu bar, few pull-downs, online help, and a dialog box, you
will need the following software tools:

• C/C++ compiler
• Linker
• NMAKE utility program
• Resource compiler
• Dialog editor
• Icon editor
• Information Processing Facility (IPF) compiler
• Tag language
• Editor
• Integrated development environment

Now, if you add another dimension to this application, such as access to
DB2/2 or the use of COBOL or REXX, program development becomes
more complicated. It is impossible to remember the syntax of commands
or statements for all these software tools. With the software tools listed
above, you will need a dozen reference manuals and books on these
subjects. Often, when you desperately need to know the correct ways of
coding a statement or command, you reach for the manual, but it's not
available. Someone has borrowed it.

For many years I yearned for one book, right on my desk, like a
dictionary, containing all the information commonly used by most
programmers. I know that many of my colleagues also need such a book;
therefore, I wrote OS/2 Programmer's Desk Reference.

xi

xii Preface

About This Book

This book is an attempt to provide information about tools commonly used
by OS/2 programmers. The topics covered are sufficiently varied to be
useful in most of your development and maintenance work. The subjects
are C and C++, compiling and linking programs, COBOL, DB2/2, SQL
(IBM Structured Query Language), Toolkit,' IPF, preprocessor directives,
OS/2 commands, and REXX.

As you probably know, computers must be fed with precise information;
for instance, a missing comma or variables with incorrect data can make
utility programs unpredictable. When writing this book, I focused on
giving the reader the kind of information that is essential in making work
more productive. This book is a repository of syntax, commands, and
keywords of the most widely used tools by OS/2 programmers. The
illustrations and examples, included wherever possible, should make your
coding task a little bit easier.

I assumed that the reader has a basic knowledge of the subjects covered
here. Although it is useful for learning programming concepts and
practices, the material is presented in such a way as to benefit both
experienced and novice programmers. It should refresh your memory if
you have forgotten something, and the easy-to-understand descriptions and
examples should enrich your understanding if you are exploring new areas.

How This Book Is Organized

There are 11 chapters, each dealing with subjects such as database,
language, utility programs and software products. The subject matter is
organized to be both practical and useful. Assuming that the book will be
used primarily as a desk reference, I have arranged the information in
either alphabetical or hierachical order depending on the nature of the
subject matter. Also, you may notice as you go through this book that the
chapters are developed in a consistent way, with the same conventions
used throughout.

Chapter 1 is a reference for programmers using C language. Chapter 2
discusses the syntax and examples that are specific to C++ language.
Chapter 3, on compiling and linking C and C++ programs, contains useful
information about the compiler options and linker libraries and how to
invoke them. In Chapter 4, a comprehensive review of the COBOL
language, you will find explanations and examples of divisions, sections,
paragraphs, statements, verbs, and other COBOL elements. Chapter 5 gives
all the syntax of DB2/2 commands and explains DB2/2 functions and

Preface xiii

parameters. Chapter 6 discusses all the SQL statements and functions.
Chapter 7 describes all the utility programs that accompany the OS/2
Toolkit. Chapter 8 is a reference for programmers using IPF. Chapter 9
explains how to use the preprocessor directives for C/C++. Chapter 10,
which presents all the commands of OS/2, is a quick reference for syntax,
usage, and return codes. Finally, in Chapter 11, which is a reference for
REXX programmers, descriptions of instructions and examples are
presented to enhance the reader's understanding.

Notational Convention

In the general format of the commands and statements used in this book,
a few symbols are not part of the syntax and must not be included when
you code your program. These symbols and their meanings are as follows:

Symbol

[]

<>

or

Meaning

The option enclosed by the brackets ([]) is not required but
can be included, for example, [and] are not part of the
following command,

IQC [filename]

Only one of the alternatives enclosed by the angle brackets
« » must be chosen, for example,

ICC <Is or IT>

The alternatives enclosed by the brackets « > or []) are
separated by "or", for example,

ICC <IS or IT> [/W or IR]

The underlined word is the default value.

The horizontal or vertical ellipses indicates that the
preceding parameter(s) can be coded more than once. This
applies to variables, filenames, options, keywords, and so
on, that are enclosed in brackets.

xiv Preface

All keywords of the command syntax are written in uppercase or lowercase
characters; they must be coded as shown.

All strings in italic lowercase characters are variables that can be
changed to any other strings to suit your programming style. In your code
they represent values that you supply to the commands.

Conclusion

OS/2 Programmer's Desk Reference is unique. In the published literature,
there are numerous books and manuals on each subject discussed here or
on combinations of these subjects; however, to this author's knowledge,
this is first time that all these programmers can find all these diverse and
sought-after subjects in one place.

This book is written with the needs of the programmer in mind. I am
certain that it will replace many of the books and manuals on your desk.
It should serve you for a long time in your demanding task of software
development and maintenance.

Acknowledgments

First, I must thank Jay Ranade for his technical guidance for this book.
After spending many months writing this book I am very grateful to
Gerald Papke, senior editor, for supplying me with the research materials
promptly and for his encouragement. Many thanks to the editing staff of
McGraw-Hill, namely David Fogarty, Cathy Hertz, and Donald Schmidt,
for their meticulous work to ensure that the information given here is
accurate, clear, and useful.

I am grateful to Gail Ostrow, Melissa Robertson, and Mark N unn of
IBM for supplying me with software and reference materials related to
OS/2. Thanks to many of my friends and colleagues, especially Maddie
and Ray Wingett, Abby Micheles, and Cedric Debbo, for their
encouragement, positive thoughts, and great interest in the progress of this
work.

Finally, my special gratitude to my wife, Gaye; my daughter, Laila; and
my son, Sanjiv for their unfailing support and encouragement throughout
this project; also for their understanding when I took time away from
them.

V. Mitra Gopaul

Chapter

C Language

This chapter is a reference guide for programmers using C language. For
the reader's convenience, discussion of C and C++ has been divided into
two seperate chapters. This chapter deals primarily with C; and Chapter 2,
with C++. As C is a subset of C++-and thus all operations performed in
C can be performed in C++ (but not vice versa)-it is assumed that C++
programmers will be conversant with all syntax and other aspects of C and
might want to skip Chapter 1 and that C programmers, who may not be
concerned with object-oriented programming and other C++-specific
concepts and methodology, might want to skip Chapter 2. In this chapter,
we'll discuss topics common to both C and C++ such as:

Elements of C
Declarations and Definitions
Expressions and Operators
Precedence and associativity
Statements

1

2 Chapter 1

1.1 Elements of C

As does any language, C has a few basic elements that programmers must
be aware of:

• Characters and tokens
• Trigraphs
• Escape sequences
• Comments
• Language keywords

This section briefly describes these elements.

C Characters and tokens

A program consists of a series of tokens. A token is simply a sequence
of characters. Many such tokens, separated by spaces, must follow the
syntax rules of the language. For example, the following is a short
program made up of many tokens.

/* to illustrate data declaration */
#include <stdio.h>

main ()
{

}

int x, y, z; /* data declaration of
variables x, y, z */

x = 10, Y =20; /* initialize x with
value 10 and y with 20 */

z = x + y ; /* add var~ables x and y and
place the result in variable z */

/* print the value of z */
printf(" x + y = %d \n", z);

The following is a list of characters recognized by C language.

• Lower- and uppercase letters:
a to z and A to Z

• Decimal digits:
o to 9

• Graphic characters:

! "#%&'()*+,-./:
;<=>1[\]_{} -- 1\1

• Space character

C Language 3

• Control sequence characters for horizontal tab (tabulator), vertical
tab, formfeed, and end of string. These characters are treated as
spaces.

a Trlgraphs

Not all the characters used in C language, as listed previously, are
available on all keyboards. It is possible to code a program using a
sequence of three characters, called a trigraph, to represent the missing
character. During the compilation of the program, the compiler makes
the translation from the trigraph sequence to the missing character. The
following is a list of all the trigraph sequences and the characters
represented.

Trigraph
sequence

11=
11(
11)
11<
11>
11/
11'
11!
11-

Character
represented

[
]
{
}
\
I\.

C Escape sequences

In a program you can code special control characters, such as alert,
backspace, and a new line. These control characters are also known as
escape sequences and each escape sequence has two characters. The first
character is always a backslash '\', followed by a control character.

4 Chapter 1

Escape
Sequence

\a
\b
\f
\n
\r
\t
\v
\\
\'
\"
\0

CComments

Character
Represented

Alert
Backspace
New page
New-line
Carriage return
Horizontal tab
Vertical tab
Backslash
Single quotation
Double quotation
Null character (end of string)

A comment starts with characters /* and ends with characters * /; for
example,

/* This is a comment */

A comment can occupy more than one line. The compiler treats
comments as white spaces; they are ignored. Some compilers allow
comments in a nested manner; for example,

/* /* This is a wrong comment */ */

a Identifiers or names

Identifiers are simply names given to functions, data objects, and labels.
A name is a token made up of a sequence of letters, digits, and
underscore U. If names of these items are chosen with care, they may
contribute to readability and documentation and may also help remove
any confusion. There are some limitations on the length and significance
of identifiers; ANSI C allows up to 32 characters.

All internal names are case sensitive. In other words, the compiler
recognizes the difference between upper- and lowercase characters. In
external names, upper- and lowercase characters are treated the same
way.

C Language 5

C Language keywords

There are many reserved words in C language (see examples in Fig.
1.1). They have special meanings in the context of programming; these
keywords should not be used in any other way or be redefined.

auto break case char const continue
default do double else enum extern
float for goto if int long
register return short signed sizeof static
struct switch typedef union unsigned void
volatile while

Figure 1.1 C language keywords.

When writing a program you should also keep in mind names that have
been used for system calls and library functions. These names are not C
language reserved words, but using them out of context may result in
unpredictable results.

C Constants

A constant is a data object that does not change during the execution of
a program. There are five types of constants:

• Integer
• Floating-point number
• Character
• String
• Enumeration

1.2 Data Declarations

In a C program, data storage, also known as variables, must be first
declared before being used. Data declaration simply means to tell the
compiler to reserve a specific amount of memory space associated with
that variable and to give a name or identifier (or name) to the variable.

6 Chapter 1

After a variable is declared, a program is able to manipulate the content
of the variable already declared as a data object with a specific memory
location.

The general form of a declaration is

storage-specifier type-specifier variable-list;

storage-specifier tells the compiler how to store the variables that
follow.

type-specifier describes the type of the data object.

variable-list assigns a name to the data object, which can be used in a
program .

• Example

To illustrate these aspects of data declaration, let's look at a simple
example.

/* to illustrate data declaration */
#include <stdio.h>

main ()
{

}

int x, y, z; /* data declaration of
variables x, y, z */

x = 10, Y =20; /* initialize x with
value 10 and ¥ with 20 */

z = x + y ; /* add var~ables x and y and
place the result in variable z */

/* print the value of z */
printf(" x + y = %d \n", z);

The statement

static int x, y, z ;

specifies to the compiler to allocate memory space for three variables
and give them the name x, y and z. The keyword int (discussed in the
next section) indicates that each variable must be large enough to hold
an integer value. The storage specifier is static.

C Language 7

In the next statement,

x = 10, Y = 20;

the program assigns 10 and 20 to x and y, respectively. This is an
example of a program making use of a variable; this is an instruction to
the compiler to place values in the memory space already reserved.

Next we have the expression

z = x + y ;

Again this statement instructs the compiler to calculate x + y and to
place the result in memory occupied by variable z. Finally, we print the
result value z using the print function.

1.3 Data Types

Earlier we considered how to give reserve memory and give it a name so
that it can be referenced in a program. Now, let's look at variables that can
be declared with different data types. There are several data types, which
can be grouped into two categories: scalar and complex. The scalar data
types are

Characters
Floating-point numbers
Integers
Pointers
Enumeration

From these data types, you can build more complex data arrangements
such as:

Arrays
Structures
Unions

This section describes how to use variables with all these data types, and
also shows how to define your own data type names which are derived
from the basic types.

8 Chapter 1

C Character data types

There are three basic character data type-char, unsigned char, and
signed char-differentiated with respect to the ranges of values each
type can hold. A character variable occupies one byte. The following
shows the different types and the range of values in the OS/2
environment.

Type

char
unsigned char
signed char

Range

o to 255
o to 255
-128 to 127

A character variable can be used in the same way as an integer variable.
If it is declared as signed, the high-order bit determines whether the
value is negative or positive. If the character variable has an unsigned
data type, the compiler treats all values as positive. A variable with any
of these character data types will hold a single character. A char variable
is initialized with a character constant, which is formed by enclosing a
character with a pair of single quotes (not to be confused with double
quotes used for enclosing string constants) .

• Example

In the following statement, the char _ var variable IS initialized to
character 'w'.

char char var = 'w' ;

You can also initialize a character variable with a nonprintable character
constant. In the next example, the newline variable is first defined as
char datatype and its initial value is '\n' escape sequence (new line).

In the following example, the number _ of_books variable, defined as
unsigned char, has an initial value of 20.

unsigned char number_of_books = 20 ;

The type specifier char can also be used to define an array of characters.
In the following example, the city variable is declared as a character

C Language 9

array, and each element of the array is initialized with a character ('N',
'e', 'w', etc.).

The statement

for(i = 0; i < 8; ++i)
printf("%c", city[i]);

loops eight times, starting with i = 0 to i = 7, and prints each element
of city array. The statement

printf ("\n");

prints a new line a~er printing all the elements of city array.

/**
This program illustrates the character array.
***/
#include <stdio.h>

static char city[] = { 'N', 'e', 'w',' ','Y', '0' ,'r', 'k' };

main ()
{

}

int i;

for (i = 0; i < 8; ++i)
printf("%c", city[i]);

printf("\n");

C does not have a string data type; the char data type is used to make
an array of characters into a string variable. In.fact, a string is made up
of individual characters and terminates with a NULL character ('\0').

In the following example, the city variable is defined as an array of
characters and is initialized with a string constant rather than by setting
individual cells to a character constant as in the previous example. This
time double quotes are used; the compiler automatically adds a NULL
character after the last character of the string. In contrast, the string is
printed using the format specifier '%s', which prints the string. In the
previous example we printed individual characters of the city array.

/***
This program illustrates character string
**/
#include <stdio.h>
static char city[] = "New York";

10 Chapter 1

main()
{

printf("%s\n", city);
}

The main difference between an array of characters and a string is that
the latter has a NULL character ('\0') at the end string, namely, 'New
York', placed by the compiler. In an array, the compiler does not have
a NULL charater; however, you may place one, if you wish.

C Floating-point variables

Floating-point variables are declared with three different data type
specifiers: float, double, and long double. These data types are needed
if a variable is to hold a fractional component or very large numbers .

• Example

In the following program, the float_ var variable is defined as float,
double _ var as double, and long_ var as long double. Each is initialized
with a floating-point number and then printed with the printf function.

/***
This program illustrates floating-point variables.
**/

#include <stdio.h>

main ()
{

}

float float var = 441.22 ;
double doubIe var = 9.44E+11 ;
long double long_var = 8.55E+55

printf("float variable = %f \n", float var);
printf("double variable = %E \n", doubIe var);
printf("double long variable = %E \n", long_var);

C Integers

Variables that hold integer values must be declared as one of the
following six datatypes:

short or short int

int or signed int
long or long int
unsigned short or unsigned short int
unsigned or unsigned int
unsigned or unsigned int
unsigned long or unsigned long int

• Example

C Language 11

In the following example, the short _ num variable is defined as an array
of integers with short data type. The elements of the array are initialized
to the values -127, 0, 10, and 128. Variable i is declared as an int data
type; unsigned_num is defined as an unsigned datatype and initialized
with 65000; the long_ num variable is defined with the long specifier
with the initial value set to -80000.

/**
This program illustrates integer variables
***/

#include <stdio.h>

main ()
{

}

short ~hort_num[] = { -127, 0, 10, 128 }
int ~ ;
unsigned unsigned_num = 65000
long long_num = -80000 ;

for (i = 0 ; i < 4 ; ++i)
printf(IIshort integer number = %d \nll,

short num[i]);
printf (lIunsigned integer = %d \n II, unsigned num);
printf(IIlong integer = %ld \nll, long_num);-

aVoid Type

Variables can be declared to hold no value with the specifier void. The
void data type is used mainly to declare functions that do not return a
value.

a Single-dimension arrays

An array is made of two or more data objects occupying contiguous
memory space. The data types of all the data objects in an array are the

12 Chapter 1

same. Each data object is called an element, which is accessed by an
index. All the elements are referenced by the same identifier found in
the array declaration. An array can have one or more dimensions.

A single-dimension array declaration has the following general form:

storage-specifier type-specifier variable-name [size];

storage-specifier denotes whether an array is a local or a global variable.

type-specifier establishes the data type of all the elements of the array.

variable-name identifies the array and all its elements.

size indicates to the compiler the number of elements the array will hold .

• Example

In the following example, the number, a static variable, is defined as
an array of four integers. Each element of this one-dimensional array
is set to an initial value: -127, 0, 10, and 128.

int number[4] = { -127, 0, 10, 128 }

The values of each element of number look like this:

Element

number [0]
number[l]
number [2]
number [3]

Value

-127
o
10
128

In the following program, the index and the value of each element of
number array are printed.

/**
This program illustrates the integer array.
***/

#include <stdio.h>

static int number[4] { -127, 0, 10, 128 }

}

main ()
{

int i;

for (i = 0 ; i < 4 ; ++i)
printf("Index is %d, value is %d \n",

i, number [i]);

C Language 13

In the following statements, character arrays are declared and initialized:
monthl array, with characters; month2 array, with a string with double
quotes; and month3 array, with string enclosed within double quotes
only.

static char monthl[] = { 'F', 'e','b' } ;
static char month2[] = { "Feb" } ;
static char month3[3] = { "Feb" } ;

If you omit the dimension of the array and set a string constant as an
initial value, as was done for the month2 variable, then the compiler
terminates the array with a character constant '\0' (NULL). But for the
month3 variable only 3 bytes are allocated and initialized. The following
table shows how the compiler initializes elements of these three arrays.

Element Value Element

month 1 [0] F
monthl[l] e
month 1 [2] b

month2[0]
month2[1]
month2[3]
month2[4]

C Multidimensioned arrays

Value Element

F
e
b
\0

month3[0]
month3[1]
month3[2]

Value

F
e
b

The general form of a multidimensional array definition is

type-specifier variable-name [sizel}[size2} ••. [sizen};

This is similar to the one-dimensional array definition, except that there
are multiple size values .

• Example

The following declaration of an array points variable has two

14 Chapter 1

dimensions containing 12 elements; all elements are of integer data type.

int points[3][4];

The compiler always finds contiguous space for an array of any
dimension. For the sake of convenience, let's look at this two­
dimensional array as a rectangular format with rows and columns.
Therefore, the points[3][4] array has three rows and four columns,
arranged as follows:

Row

1
2
3

Column 1

points[O] [0]
points[l] [0]
points [2] [0]

Column 2

points[O][l]
points[l][l]
points[2] [1]

Column 3

points [0] [2]
points[l][2]
points[2] [2]

Column 4

points[O] [3]
points[l][3]
points[2][3]

The next example shows how to initialize each element of points
array.

int points[3] [4] = { 1,2,4,8,
2,4,8,16
3,6,12,24

} ;

The following program shows how to access the content of each element
of an array.

/***
This program illustrates multidimensional array variables.
**/

#include <stdio.h>

static points[3] [4] = { 1,2,4,8
2,4,8,16
3,6,12,24

main()
{

int i,j;

for (j

} ;

0; j < 3; j++)

for (i = 0 ; i < 4 ; i++

}

printf ("points [%d] [%d] = % d\n",
j, i, points [j] [i]);

C Language 15

The output of the program looks like this:

points[O] [0] = 1
points[O] [1] = 2
points[O] [2] 4
points[O] [3] = 8
points[l] [0] 2
points[l] [1] 4
points[l] [2] = 8
points[l] [3] = 1
points[2] [0] 3
points[2] [1] 6
points[2] [2] 12
points[2] [3] 24

C Enumeration

An enumeration is a data type used to represent a set of integer values.
After defining an enumeration, you can declare a variable using that
enumeration data type. Such a definition specifies all the valid values of
that data type.

The general definition form of an enumeration is

enum identifier { enuml, enum2, ••. } variable-list

enum is the keyword defining an enumeration data type.

identifier is the name you give to such a data type. The list of
enumerators (enuml, enum2, etc.) gives the data type a set of constant
integer values.

variable-list is an option for declaring variables of the enumeration data
type.

The main point regarding enumeration is that each enumerator is a
symbol representing an integer value. There are three ways of assigning
the values. First, by default, the compiler sets the value of the first
enumerator to 0, the second enumerator to 1, the third to 3, and so on.
For example, a declaration

enum fruit { orange, peach, apple, mango };

will assign 0 to orange, 1 to peach, 2 to apple, and 3 to mango.
Second, you can explicitly give an enumerator a value by placing an
equal sign (=) and an integer after the enumerator. In a declaration

16 Chapter 1

enum fruit { orange = 5, peach, apple, mango };

orange has value 5 and peach, apple, and mango will have 6, 7, and
8 repectively. Third, an enumerator will always have one value greater
than the previous one. Of course, if it is the first unassigned enumerator,
its value is always zero .

• Example

The following statements declare an enumeration called coins and
variable money of that data type.

enum coins (penny, nickel, dime);
coins money;

In the following program, flag is defined as an enumeration data type.
The variable sw is declared to be of enumeration data type flag and
initialized to off, one of the enumerators. The statement

if (sw == off)
printf ("The switch is off\n");

tests whether sw is enumerator off; if it is true then the printf function
is executed. Next, sw is assigned the value represented by enumerator
on.

/***************************************
This program illustrates enumeration.
**/

#include <stdio.h>

main ()
{

enum flag (on, off) sw = off ;

if (sw == off)
printf ("The switch is off\n");

sw = on ;

if (sw == on)
printf ("The switch is on\n");

}

C Language 17

a Pointer

Pointers are addresses to data objects. A variable declared as a pointer
is used as a memory address of a data object. The general form a of
pointer declaration is

type-specifier *variable-list;

type-specifier can be any data type.

variable-list consists of one or more variables of the data type.

a Structure

A structure is a collection of variables or data objects. It is a
convenient way to keep and manage related data. Unlike the
array-requiring all elements to have the same data type-the variables
of a structure can be of different data types. Each data object of a
structure is called a member (also known as a field or element). The
name of each field must be unique within a given structure. But you can
use the same member name in more than one structure.

The general form of defining a structure is

struct [identifier]{
type-specifier variable-name;
type-specifier variable-name;

.
} [variable-list};

struct is the keyword to defining a structure. It IS placed at the
beginning of the definition.

identifier is the name you give to the structure.

type-specifier is the data type of a member.

variable-name is the name of the member.

variable-list contains one or more variables as part of the structure
declaration.

The identifier and variable-list are optional; however, you cannot omit

18 Chapter 1

both of them. In a structure declaration, the compiler does not allocate
any memory space unless a variable-list is included in the declaration .

• Example

In the following definition of an employee structure there are seven
fields, each with different data characteristics but part of an employee
record. Each elememt is a variable, declared with a data type and an
indentifier, and terminated with a semicolon (;). The temp_employee
and perm_employee variables are also part of the employee structure
definition. The retired_employee variable is defined as the same
structure data type but on a separate statement.

struct employee {
char name[30];
int street num;
char streetT40];
char city[20];
char prov[3];
char postal code[6];
unsigned long int salary;
} temp_employee, perm_employee;

struct employee retired_employee;

A structure definition cannot have itself as a member. However, it is
valid to include a member as being a pointer to the structure. For
example, in the following structure address, a member next_rec is a
pointer to the structure address.

struct address {
char name[30];
char street[40];
char city[20];
char state[3];
struct address *next rec;
}; -

It is possible to initialize all or some members of the structure during the
declaration; for example,

struct address new address =
{ 1233, "Belle Vi""ew Lane", tlNew York", tlNytl, 10003 };

C Language 19

The next program illustrates how to use a structure. It prints each
element of the structure using the printf function.

/**
This program illustrates structure variables.
***/

#include <stdio.h>

struct address {
int street num;
char *street;
char *city;
char *state;
unsigned long zip;
};

struct address new address =
{ 1233, "Belle View Lane", "New York", "NY", 10003 };

main ()

~rintf("%d %s\n", new_address.street_num,
new address.street);

printf("%s, %s %ld\n", new_address.city,
new address.state,
new=address.zip);

}

C Bltfleld structure

With C, it is possible to store and access information as bits within a
byte. To do so, you declare a member of a structure as an integer with
a specific length of bits. Such a member is called a bitfield. There are
many reasons for using bits as fields of data. Some of these are

1. Bits can be boolean variables, especially when storage is limited.
2. You may want to interface with devices that encode information in

bit strings.
3. You may want to access any bit within a byte.

Although these operations can be achieved with the bitwise operators of
C, bittield adds structure, efficiepcy and readability to your programs.

A bitfield is declared as a special kind of structure. The data type of
the elements can only be int, unsigned or signed. The declaration of
each bitfield contains a type-specifier, a variable-name, and a colon C:)
and is followed by the length of the field.

20 Chapter 1

The general form of a bitfield structure is

struct [identifier] {
type-specifier variable-name : length;
type-specifier variable-name : length;

} [variable-list];

struct is the the keyword to define a structure. It is placed at the
beginning of the definition.

identifier is the name you give to the structure.

type-specifier is the data type of a member.

variable-name is the name of the member.

variable-list contains one or more variables as part of the structure
declaration.

If length is zero (0), it causes the next field to be aligned on the next
integer boundary. A structure variable with bitfield elements cannot be
an array; nor can you declare a pointer to such a variable.

The identifier and variable-list are optional; however, you cannot omit
both of them. In a structure declaration, the compiler does not allocate
any memory space unless a variable-list is included in the declaration .

• Example

The following program defines a structure called nags and declares a
comm variable of type nags. The structure has seven elements, but the
storage of comm requires only four integers.

/**
This program illustrates bitfield variables
***/

#include <stdio.h>

struct flags {
unsigned active 2;
unsigned ready 1;
unsigned error 1

main ()
{

int counter ;
unsigned receive 10
unsigned 0 ;
unsigned xmit 10
} comm ;

comm.error = 0;
comm.read¥ = 1;
comm.rece~ve = 999;

if (comm.error)
printf ("Error\n");

else if (comm.ready)

C Language 21

printf("Received data is %d \n", conun.receive);

}

Each element occupies memory as follows:

Member Storage

Integer 1
active 2 bit
ready 1 bit
error 1 bit

Integer 2
counter integer

Integer 3
receive 10 bits

Integer 4
xmit 10 bits

Since the fourth element counter requires a full integer for storage, the
compiler gives the first three elements a full integer. Now, the fifth and
seventh elements get one integer each because they are separated by the
sixth element which has length zero. Note that to access a structure
member you need the structure name and member name separated by dot
(.), for example, comm.error.

C Union

A union provides a way of having two 'or more variables share storage.
A union declaration is similar to that of a structure, with elements
having different data types. In a structure each element has its own
memory space; in a union all elemets occupy the same memory location.

22 Chapter 1

The general form of a union declaration is

union identifier {
type-specifier variable-name;
type-specifier variable-name;

-} [variable-list];

union is the keyword to define a union. It is placed at the beginning of
the definition.

identifier is the name you give to the union.

type-specifier is the data type of a member.

variable-name is the name of the member.

variable-list is one or more variables as part of the union declaration .

• Example

In the following example, the wt_code is defined as a union type. In the
next statement, the convert is a union and defined as wt_code data type.
The compiler allocates sufficient memory to hold the largest member;
therefore, 2 bytes are allocated to the convert variable. In this case
short int type requires 2 bytes and char occupies only 1 byte. These 2
bytes are allocated to the convert variable.

union wt code {
short int weight ; /* requires 2 bytes */
char code ; 1* requires 1 byte */
};

union wt_code convert ; /* maximum bytes */
/* reserved is 2 bytes */

Now, let's see how both members, weight and code, share the same
storage. The weight variable takes 2 bytes; the first of these bytes is also
used by the code variable.

1<-- weight -->1

-I :~~~~:~:-I :~~~~:~:i
<-code->

C Language 23

In the following program, the profile union and the employee variable
are declared in the same statement. The profile union has four elements.
The first three variables are name, birthday, and age, and their basic
data types are char and int. The fourth element is a convert union
variable. The compiler gives the employee variable 20 bytes of storage,
and all its members share the same memory location.

/**
This program illustrates union variables.

***/

#include <stdio.h>

union wt code {
int weight
char code
};

union profile {

main ()
{

char name[20];
char birthday[9];
int age;
union wt code convert ;
} employee = "John Smith"

union info *recp = &employee;

printf ("Name is %s. \n", employee • name);

recp->age = 30

printf("Age is %d.\n", employee.age);
}

The employee variable is initialized with a string constant "John Smith."
Only the values of the first member of a union variable may be
initialized.

To access a union member, use the same notation as that used to access
a member of a structure. The three statements in the body of the
preceding program illustrate how to access union members. The first one
prints the field name, the second assigns value 30 to age, and the last
prints the value of age.

24 Chapter 1

C Typedef-name

By using the keyword typedef you create a new name with existing data
types. In effect, you are defining your own data type name. A typedef
does not create a new data class; nor does it reserve any storage. It
allows creation of a user qualified data type. The new data type can be
used to declare a variable.

The general form of a typedef definition is

typedef type-specifier identifier;

type-specifier can be any data type such as int, char, and float.

identifier is the new name you give to the new type .

• Example

To create a new data type name DOLlAR having the same
characteristics as type float, you would use

typedef float DOLLAR;

Now, you can use this new type DOLlAR to declare a variable, say,
rent.

DOLLAR rent;

The compiler recognizes rent as a float variable.

What is the advantage of creating a new data type based on an existing
one? It allows the programmer to define types that reflect the intended
use. Previously, we defined a type DOLlAR and used it to declare a
rent variable. This approach adds to the self-documentation of your code
and facilitates maintenance efforts later on.

The next program illustrates further the definitions and use of user­
defined. data types. At the top you will see three statements with the
keyword typedef. The first defines the new type DOLlAR as float; the
second defines type NAME as an array of 30 characters; the third one,
EMP _ REC, uses a structure construct in its definition. This structure
has three fields, where -the first two variables, surname and salary, use
previously defined data types NAME and DOLlAR. The third, age,

C Language 25

variable is of int type.

The statement

is a declaration of the array called employee with EMP _NUM (100)
elements of type EMP _ REC. Assuming the array has been initialized,
the body of the program shows how to access each element and field of
the employee array. The variable i indexes through the employee array,
and the dot operator (.) is used to access each field.

/********************************
This program illustrates typedef.
*********************************/

#include <stdio.h>

#define EMP NUM 100
typedef float DOLLAR;
typedef char NAME[30];
typedef struct {

NAME surname;
int age;
DOLLAR salary;
} EMP_REC;

EMP_REC employee[EMP_NUM];

main ()
{ .
~nt ~;

for (i = 0 ; i < EMP NUM ; i++)
printf ("Name is %8, Age is %d, Salary is %f \n",

employee[i].surname, employee[i].age,

}
employee[i].salary (;

1.4 Storage Specifiers

There are four ways to tell the compiler how the memory should be
allocated for a variable. You can specify the storage with one of the
following classes:

• Automatic
• Static
• External
• Register

26 Chapter 1

These class-specifiers are discussed in the following paragraphs. In using
them, it is important to note whether- a variable is local and global in
relation to a function where it is used. A local variable, when declared
within the body of a function, is local to the function. Variables declared
outside a function are called global variables. The time of memory
allocation and duration of the variable depends on whether it is local or
global.

C Automatic class

When storage class is not specified, the default is the auto class. This
storage class is most commonly used. All local variables in a function
are declared as automatic local variables. They are of transient duration,
"created" at the time the function is called, and last as long as the
function is being executed. Such a variable cannot be accessed by other
functions.

When declaring a local variable within a function it is more precise to
declare it with the auto specifier; however, it is rarely used explicitly .

• Example

In the following example, the n and limit variables in the count function
are declared as auto storage class. Both of them are local to the count
function and last as long as this function is executed. The for loop,

for (n=O; n < limit; n++);

simply increments n from 0 to 10.

count ()
{

auto int n;
int limit = 10;
for (n=O; n < limit n++);

}

C Static class

A variable defined with a static specifier is permanently established.
There are two ways of using the static storage class: local and global.

The static local variables: When you use a static specifier to define a

C Language 27

variable within a function or block of code, the compiler creates a local
but permanent data object. It is known to the function only where it is
defined. Therefore, a static local variable cannot be referenced outside
the function where it is declared. Such a variable retains its value from
one execution of the function to the next.

• Example

The following example shows how a local static variable is used. In the
print _ num function the local number variable is defined as a local
static variable and initialized to value zero. When the print_num
function is first called in the main function, a value 10 is added to zero
(0) and printed. The next time, value 10 is added to 10 and printed.

/**
This Program illustrates a local static variable.

***/

include <stdio.h>
void prt num () ;
main () -
{

}

print num();
print=num() ;

void print num()
{ -

}

static int number = 0;
number = number + 10 ;
printf("Number is %d \n" , number);

The static global variables: When you use a static class specifier to
declare a variable outside a function, the compiler creates a global and
permanent data object. Such a variable is known to function(s) only
below the variable declaration within the file. It is different from global
variables with extern storage class discussed later. Static global
variables are not accessible to functions in another file .

• Example

The following example shows how a static global variable is used. In
file 1 the number variable is declared as a global variable, initialized to
zero. In the same file, the print_numt funtion prints the number
variable after adding value 10 to it. In file 2 the number variable is
defined again as a global variable, but initialized to the value 100. The
function print_num2 also prints the number variable after adding value

28 Chapter 1

10 to it. In main, both print_numt and print_num2 are called, but the
results are different. In print_numt function, 10 is added to 0, while in
print_num2 function 10 is added to 100.

File 1

/***
This program illustrates static global variables.

**/
#include <stdio.h>
static int number = 0;
void print num1();
voidprint-num2();
main () -
{ .

pr~nt num1();
print-num2();

} -

void print num1()
{ -

number = number + 10 ;
printf("Number is %d \n" , number);

}

File 2

static int number = 100;
void print num2()
{ -

number = number + 10 ;
printf ("Number is %d \n" , number);

}

a External class

Generally a C program can be divided into several parts. Each part
resides in a separate file. Each part, called a source module, is made up
of many functions which are compiled separately. During link time, all
the modules are pulled together into an executable program.

It is possible for variables to be declared in one module but accessed by
functions in another module. To allow global access to a data object,
you use the extern storage class. A global variable is declared outside
a function using the keyword extern. If a declaration is found in a
module without a specifier but it is outside a function, the default is
always a global variable.

The compiler allocates memory for all extern storage classes just before
program execution begins. This memory is freed after the program
terminates.

C Language 29

If a variable with extern is declared in one file, this variable is available
to all functions after it is declared within that file. However, if you want
to access the same variable from a function in another file, you have to
declare the variable with the extern specifier again in that file .

• Example

In the following example, there is a main function in file 1 and a
counter function in file 2. The global variable called first is defined in
file 1 without any storage-class specifier.

The main function and first, which is a global variable, are found in the
same file; therefore, main can access first without a declaration.
However, the counter function, found in another file, also references the
first variable but needs a declaration with the extern specifier.

File 1

/**
This program illustrates extern variables.
***/

#include <stdio.h>
int first; /* global definition of first */

main ()
{

}

int count, last;
first = 10
last = 20 ;
count = counter(last);
printf("First = %d, last = %d and count

first, last, count);

File 2

/*************************************
This program counts from first to last
**************************************/
counter (last)
int last;
{

%d \n",

int i, count;
extern int first; /* declaration of variable first */
count = 1;

}

for (i = first; i < last; i++)
count++;

return (count);

30 Chapter 1

A declaration can appear at the beginning of a block (as in counter of
the preceding example) or outside a function (only once in one file). In
the counter function, the for loop is used to count from the value of
first to the parameter last. The count is returned to the calling function.

C Register class

The register class applies only to variables of type int, char, and float.
The register specifier requests that the compiler stores the declared
variables in the register of the CPU (central processing unit), rather than
memory, where variables are normally stored. This kind of storage
expedites operation on a variable. It is useful to maximize the speed in
a critical part of a program, where a variable is heavily used (e.g., to
control a loop). It is used as a local variable; therefore, it is transient. It
cannot be used as a global variable, but can be passed as a parameter to
a function.

If the register storage class is properly used, it can significantly enhance
the performance of a function. There are only a few general purpose
registers available to the compiler. Therefore, the number of register
class variables at any given time is limited. This number depends on the
compiler you are using .

• Example

In the next example, 1 and n variables in the count! function are
declared with the register specifier. The for loop

for (n=O; n < 1 ; n++);

is to count from 0 to the value of I, which is 10,000. And in count2 the
n variable is declared as auto storage class.

/***
This program illustrates the register storage class.
**/

main ()
{
int limit = 10000;
count1 (limit);
count2 (limit);
}

count1 register int 1)
{

register int n.;

for (n=O; n < 1
}

count2 (1
int 1;
{

int n;
for (n=O; n < 1

}

C Volatile

C Language 31

n++);

n++);

By using the attribute volatile in a definition or declaration, you are
telling the compiler that this variable's value may be changed by ways
not explicitly specified in the program. For this reason, the compiler will
not optimize the portion of the code where the variable is used, leaving
the original intent inact.

The general form of volatile definition is

volatile storage-specifier variable-list;

• Example

One illustration of its use is where a variable holding real-time data is
updated by a subroutine of the operating system. In the following
example, the clock variable is defined as 'a volatile data object. It is
assumed that the variable clock is updated every tenth of a second by a
routine outside this program. This program prints in tenths of seconds
the elapsed time needed to increment i 10,000 times.

/***
This program illustrates the volatile variable.

**/

include <stdio.h>

volatile int clock;

main ()
{

}

int time,i;
time = clock;
fore i = 0; i < 10000 ; i++).
printf("Elapsed time is %d \~", clock - time);

32 Chapter 1

C Con,5t

In certain situations. you would not want the content of a variable to
change. Such a change could inadvertently, however, causing a
programming error. To avoid any unintentional alteration of a variable,
you can declare a variable with the const attribute.

The general form of the const definition is

canst storage-specifier variable-list;

Such a definition will explicitly declare the variable as a constant. The
compiler will flag any attempts to modify a variable declared as const.
In the following statements, the version and name variables are defined
as const.

canst ~loat version = 1.20 ;
canst char name[] = "Saftek International";

1.5 Expressions

This section explains the use of expressions and operators in C. An
expression is a sequence of operators, constants, function names,
function calls, and any objects and pointers of any type. Any
combination of these various pieces can be a valid part of an expression.
The general classes of expressions are

• Constant expression
• Primary expression

During the course of the discussion of expressions, references will be
made to data types or groups of data types. The following lists the types
that collectively belong to a group.

Groups

Integral

Arithmetic

Types

Character
Enumeration
Integer
Integral
Floating-point number

Groups

Scalar

Aggregate

Types

Arithmetic
Pointers
Arrays
Structures
Unions

a Precedence and associativity

C Language 33

The precedence determines the order in which operations are performed;
the contents of Figure 1.2 are arranged from highest to lowest
precedence. At the top are primary operators, which have the highest
priority; the comma operator, at the bottom of the list, has the lowest
precedence. Within a given group, such as a group of multiplicative
operators (*, /, and %), all operators have the same priority. Now, let's
see how the compiler applies the built-in precedence rule. In the
expression

a - b * x / y

the multiplication and division operators have higher precedence than
does substraction. Therefore, the expression b ... x / y is calculated first
and the result is substracted from x. However, you can change the
precedence by explicitly stating the grouping of the operands within
parentheses. The previous expression is rearranged to

(a - b) * (x / y)

Then the subtraction and division have the same precedence and are
evaluated before the multiplication. The associativity rule establishes
how an operation is evaluated. If it is "left to right" the operators are
evaluated from left to right. The rule "right to left" rule implies that the
operators are performed from right to left.

34 Chapter 1

Precedence Operators Associativity

Primary . -> () [] left-to-right
Unary -+ ! - ++ -- right-to-Ieft

(typename) & *
sizeof

Multiplcative * / % left-to-right
Additive + - left-to-right
Bitwise shift « » left-to-right
Relational; <=>=<> left-to-right
Equality ,- --.- -- left-to-right
Bitwise AND & left-to-right
Bitwise XOR " left-to-right
Bitwise OR I left-to-right
Logical AND && left -to-right
Logical OR II left-to-right
Conditional 1: right-to-Ieft
Assignment = += -= *= /= right-to-Ieft

«= »= %= &=
"- 1-- -

Comma left-to-right

Figure 1. 2 Precedence and association of operators.

C Constant expression

A constant expression is made up of one or many constants, such as

• Integer constants
• Character constants
• Floating-point constants
• Enumeration constants
• Other constant expressions

The value of the constant expression is evaluated at the time of
compilation of a program. While the program is being executed, this
value cannot be changed.

A constant expression is required in the following cases:

C Language 35

• The case keyword must be followed by a constant expression in a
switch statement.

• To specify the size of an array.
• An enumeration identifier must be assigned a constant expression.
• To assign initial values to external or static variables.
• In the #if preprocessor statement.

In the first three situations, the constant expression must be one of the
following:

• Integer constants
• Character constants
• Enumeration constants
• Casts to integral types
• sizeof expression

In the same situations, you can use only the following operators:

• Arithmetic operators
• Bitwise operators
• Relational operators
• Conditional expression operators

In the fourth case, all the above rules of constants and operators are
valid.

C Primary expression

There are six types of primary expressions:

• Indentifier
• Constant expression
• Parenthesized expression
• Function call
• Array element specification
• Structure and union specification

The primary operators are grouped from left to right, and all of them
have the same precedence.

36 Chapter 1

C Indentlfler

An identifier is a primary expression. It is declared as a name for a data
object or function. If an identifier is declared as an array, the value of
the identifier is the address of the first object of the array.

Constant

A constant is a primary expression, and its type may be int, long, or
double depending on the form.

Parenthesized expression ()

As seen earlier, the precedence rule forces execution of certain
operations before others. Parenthesized expressions are used to explicitly
state how operands and operators are grouped together. This allows you
to change the order in which the compiler will evaluate an expression .

• Example

In the example

x - y * z ; /* multiply first */

the multiplication of y and z will be done before the subtraction. You
can change the order of the operation with parentheses. If you want the
subtraction done first, you can force the compiler to do so by enclosing
the subtraction in parentheses; for example,

(x - y) * z ; /* subtract first */

If you parenthesize the multiplication,

x - (y * z);

it will not change the normal order of calculation, which is
multiplication first and subtration next.

C Language 37

C Function call ()

A function call is a primary expression followed by a list of arguments
enclosed in parentheses. The list may be empty or may contain one or
more expressions. Multiple expressions are separated by commas. If you
wish to change the value of the parameter within a function, you would
pass a pointer to the variable rather than the value.

Arrays and functions are always converted to pointers before they are
passed as parameters to a function.

If a function call is defined as a function returning type int, then in an
expression the value returned by such a function is of int data type.
Similarly, a primary expression defined to return float type, will result
in float type .

• Example

The following are examples of function calls:

sort()
counts (x+y, y+l0)
read (buffer, length

Before any function is executed, an expression of the argument list, if
any, is evaluated and becomes the argument of the function. For
example, x+y and y+l0 will be first calculated and passed as values to
the counts function. The values of actual parameters, such as x and y,
are never changed, but assigning the value to the parameter changes the
value within the function.

C Array element specification []

An array subscript is a primary expression when it is followed by an
expression enclosed by a pair of square brackets ([D. This value of
expression after it is evaluated refers to an element of an array. If the
array is declared as a char data type, it is a pointer to the first character
of the string.

The primary expression is a pointer, and the type subscript must be an
integer value. The compiler converts the expression within the brackets
into an address of the array element.

38 Chapter 1

• Example

In the example

horses [y + 2]

the expression y+2 is first evaluated, yielding an integer value. This
value is then used to calculate the memory location of element y+2.

C Structure and union specifications (. or ->)

A primary expression followed by a dot (.) followed by an identifier is
an expression. The primary expression must be a variable name defined
as structure or union type. The identifier must be a member within the
structure or union. The following is a dot expression:

employee. name

A primary expression followed by an arrow operator (-» followed by
an identifier is an expression. The primary expression must be defined
as a pointer to structure or union type. The identifier must be a
member within the structure or union. The following is an arrow
operator expression.

employee->name

1.6 Operators

C language is rich in built-in operators. Each operator is a symbolic
character telling the compiler to execute certain mathematical or logical
tasks. There are five general classes of operators.

• Unary operators
• Binary operators
• Conditional operators
• Assignment operators
• Comma operators

C Language 39

While discussing operators, we will refer to data types or groups of data
types. The types that collectively belong to a group are listed as follows:

Groups

Integral

Arithmetic

Scalar

Aggregate

Types

Character
Enumeration
Integer
Integral
Floating-point numbers
Arithmetic
Pointers
Arrays
Structures
Unions

1.6.1 Unary operators

A unary operator acts on only one value. The following are unary
operators:

Increment ++
Decrement -­
Unary plus +
Unary minus -
Logical negation !

Bitwise negation
Address &
Indirection *
Cast
sizeof

All these unary operators have the same precedence. In an expression
with many unary operators, the compiler groups them in right-to-Ieft order.

C Increment ++

The increment operator (++) simply adds one (1) to the operand. After
the following statement is executed

Y++j

the value of y is incremented by qne.

40 Chapter 1

But if the operand is a pointer, the increment depends on the size of the
object it is pointing to. Let's say intp is an integer pointer variable. The
statement

intp++;

will increase the value of intp by 4 since an integer occupies 4 bytes.
Or, if structp, a pointer variable, is defined as a pointer to a structure
of size 20 bytes, the example

structp++;

will add value 20 to structp.

The increment operator can be placed before or after an operand. In an
expression with several operands, the position of ++ is significant. If you
place ++ before the operand, the operand is first incremented and then
used in the expression.

In the example

y = ++x + z;

value 1 is first added to variable x; then the result is added to z, and the
final sum is placed in y.

If you place ++ after the operand, the current value of the operand is
first used in the expression, and then its value is incremented.

In the example

y = x++ + z;

the current value of x is added to z, the result is placed in y, and then
x is incremented by one.

C Decrement --

The decrement operator (--) simply substracts one (1) from the operand.
After the statement

y--;

is executed, the value of y is decremented by one.

C Language 41

But if the operand is a pointer, the decrement depends on the size of the
object it is pointing to. Let's say intp is an integer pointer variable. The
statement

intp--;

will decrease the value of intp by 4 since an integer occupies 4 bytes.
Or, if the pointer variable structp is defined as a pointer to a structure
of size 20 bytes, the example

structp--;

will decrease the value of structp by 20.

The decrement operator can be placed before or after an operand. In an
expression with several operands, the position of -- is significant. If you
place -- before the operand, the operand is first incremented and then
used in the expression.

In the example

y = --x + z;

. value 1 is first subtracted from the x variable, then the result is added
to Z, and the final result is placed in y.

If you place -- after the operand, the current value of the operand is first
used in the expression, and then its value is decremented. In the example

y = x-- + z;

the current value of x is added to z, the result is placed in y, and then
x is decremented by one.

C Unary plus +

The unary plus operator (+) does not change the value of the operand.
In fact, this operator is seldom used. The operation of the statement

+x;

will not change the value of x.

42 Chapter 1

C Unary minus -

The unary minus operator (-) multiplies the value of the operand by -l.
When the unary minus is applied to ali operand, the sign of the value is
switched. For example, if the number variable has value 10, then

-number;

will change the value to -10. If number. has value -10, then

-number;

will change the value to 10.

C Logical negation!

The logical negation operator (!) is used to test whether the value of an
expression is false. The expression is first evaluated, and if it is zero (0),
the logical negation operator yields a one (1). If the result of the
negation is nonzero, then the negation operator returns a zero (0). The
result of the logical negation operator is always of int type. In the
following statements, the variable Dag is tested for a zero or nonzero
value.

if (!flag)

printf("flag is zero");

else

printf("flag is non-zero");

If the result of operation !ftag is 0, then

printf("flag is zero");

is executed. Otherwise, this segment of thr program executes

printf("flag is nonzero");

Another use of the logical negation operator is to easily "flip" the value
of a flag between one and zero; for example,

flag = !flag;

C Language 43

will switch the value of Bag to one or zero depending on whether its
value before the operation is zero or nonzero.

C Bitwise negation -

The bitwise negation operator ('--) changes the content of every bit of
the operand. All the bits that are 1s are changed to Os and vice versa; all
bits that are Os are switched to 1s. The bitwise negation operator
therefore produces the one's complement of the operand. Let's say y is
defined as an unsigned char variable and has a value 10. The 8-bit
binary representation of y is 00001010. Now, the expression

will produce the binary value 11110101.

CAddress &

The address operator (&) produces the memory address of the operand,
for example,

py = &y;

assigns the memory location of the y variable to py. It is assumed that
py is declared as a pointer variable to the same type as y.

The operands of the & operator can be variables or array elements. But
it is illegal to have bittield or register variables as operands of an
address operator.

C Indirection 'It

The indirection operator (*) uses as its operand the address to data
object. The operand must be a pointer variable, and the result depends
on the data type. The following statements first declare a and b as int
variables and then pa as an integer pointer variable.

44 Chapter 1

int a,b;
int *pa;

The statement

b = *pa;

assigns the value pointed to by pa to b. In this case, the result of the
operator * is an integer value. The following sequence of statements

pa = &a; /* assign address of a to pa */
b = *pa; /* assign content of pa to b */

demonstrates how to assign the address and contents of a variable, which
is the same as

b = a;

Desst

The cast operator converts the value of an expression to a specific data
type. To do so, you place the parenthesized name of the data type before
the operand. For example, you define z as an integer and you want the
result of expression z/5 to be a float type. To guarantee that the
compiler yields a fractional component, you use the cast operator. In the
statement

price = (float) z/5 ;

the value z/5 is assigned to the price variable, which is defined as a
float type.

D slzeof

The sizeof operator gives the size of an operand in the number of bytes.
The operand can be a variable or type, but it cannot be a bitfield or a
function. In the following program, sizeof determines the size of x and
city, which are variables. It also calculates the number of bytes occupied
by an int data type.

C Language 45

/**
This program illustrates the use of sizeof operator.
***/

#include <stdio.h>

int X;

char city[]

main ()
{

"New York II ;

printf("Size of X is %d \n", sizeof(x));
printf("Size of city is %d \n", sizeof(city));
printf("Size of int is %d \n", sizeof(int));

}

Mer this program is run, it shows

Size of x is 4
Size of city is 9
Size of int is 4

1.6.2 Binary operators

A binary operation requires two operands which are separated by a binary
operator. They are not of the same precedence. The evaluation of binary
expressions is done according to the precedence rule listed in the Fig. 1.2.
However, if an expression has many operators of the same precedence, the
compiler will evaluate them in left-to-right order.

The following sections describe each binary operator and its operation.

C Multiplication *

The multiplication operator (*) calculates the product of two operands.
In the statement

result = x * y

x is multiplied by y and the result is placed in the result variable.

The * operator is treated as associative. An expression with several
mUltiplications may be rearranged by the compiler, although
subexpressions are enclosed in parentheses. The expression

46 Chapter 1

result = x * y * z ;

can be interpreted in three different ways:

result = (x * y) * z
result = x * (y * z)
result = (x * z * y

C Division /

The division operator (I) calculates the quotient of two operands. In the
statement

result = x / y;

x is divided by y and the result is placed in the result variable.

If you use two positive integers as operands, the compiler will ignore
any remainder produced by the division operation. For example, in the
expression 9/4 the result is 2, discarding the remainder .25.

But if one operand has a negative value, then truncation will occur in the
result.

C Remainder %

The remainder operator (%) produces the remainder when two operators
are divided. For example, the result of expression

9 % 4

is 1.

The type of both operands must be integer. The usual arithmetic
conversions on operands are performed by the compiler.

C Addition +

The addition operator (+) produces the sum of the operands. For
example, in the expression

a + b

C Language 47

the value of a is added to b. If there are many addition operators in an
,expression, the operators are grouped in left-to-right order.

The operands can be integers, floating-point numbers or pointers. If one
operator is an integer and the other is a pointer, the compiler first
converts the integer operand to an address offset and then does the
addition. The result is an address of a data object.

C Subtraction -

The subtraction operator (-) produces the difference between the
operands. In the expression

a - b

the value of b is subtracted from a. If there are many subtraction
operators in an expression, the operators are grouped in left-to-right
order.

The operands can be integers, floating-point numbers, or pointers. In
case an integer is subtracted from a pointer, the compiler computes the
operation in the following steps:

• The integer type operand is converted to an address offset.
• After the subtraction is done, the result is an address of the same

type as the pointer operand.

C Bitwise left and right shift « »

The shift operators «< and») literally shift the bits of the left operand.
The right operand is the number of places (bits) that the left operand is
to be shifted.

The left shift operator « moves bits toward the left, while the right
shift operator » moves bits toward the right. The shift operators are
grouped in left-to-right order.

The operands must be integer values. The right operand is always
converted to an integer value, while the type of the result is the same as
that of the left operand.

48 Chapter 1

In the expression

x « 2;

the x variable, declared as short type, is shifted left by two positions.

The following shows the content of x in binary and decimal
representations ,before and after the left shift operation.

0000 0000 0000 0011
0000 0000 0000 1100

3
12

(before)
(after)

Every shift to the left has the same effect as multiplying the value by 2.
The right end of x is filled with zeros (Os). In the expression

y » 2;

y, declared as short type, is shifted by 2.

The following shows the content of y in binary and decimal
representations before and after the right shift operation.

1100 0000 0000 0000
0011 0000 0000 0000

49152 (before)
12288 (after)

Every shift to the right has the same effect as dividing the value by 2.
The left end of y is filled with zeros (Os).

The results of a shift operator are undefined if the right operand is a
negative value or is greater than or equal to the number of bits of the
left operands. If the right operand is a zero (0), the left operand is
unchanged.

C Relational < > <= >=

The relational operators «>, <=, and >=) compare two operands for a
valid relationship. The result of the relational operators is either one (1)
if the relationship is true; otherwise, it is zero (0). The operands can be
of arithmetic type, or pointers of the same type.

If the operands are of arithmetic type, the usual arithmetic conversion
(discussed later) on operands are performed by the compiler. The
relational operators are grouped in left-to-right order.

C Language 49

The following shows. the result of each relational expression:

x < Y evaluates to the value 1 if x is less than y, otherwise O.
x <= y evaluates to the value 1 if x is less than or equal to y,

otherwise O.
x > y evaluates to the value 1 if x is greater than y, otherwise O.

x >= Y evaluates to the value 1 if x is greater than or equal to y,
otherwise O.

C Equality == 1=

The equality operators (== and !=) compare two operands for equality.
The result of the equality operators is either one (1) if the relationship
is true; otherwise, the result is zero (0). The operands can be arithmetic
type or pointers of the same type. It is also legal to have one operand as
a pointer and the other as a null pointer or an integer with value zero
(0).

If the operands are of arithmetic type, the usual arithmetic conversion on
operands are performed by the compiler. The equality operators are
grouped in left-to-right order.

The following shows the result of each equality expression:

x == y evaluates to the value 1 if x is equal to y, otherwise O.
x != y evaluates the value 1 if x is not equal to y, otherwise O.

C Bitwise AND &

The bitwise AND operator (&) compares the values of the operand bit
by bit. If the bit of the first value is 1, and the corresponding bit of the
second value is also 1, the result is 1. Otherwise, it is set to o.

In the statement

z = x & Yi

50 Chapter 1

a bitwise comparison of y and x is done, and the result is placed in z.
If x and y had values 16,645 and 51,850, repectively, the 16-bit binary
representations after the operation would be

x 0100 0001 0000 0110
Y 1100 1010 1000 1010
z 0100 0000 0000 0010

If the corresponding bits of x and yare 1, the bit in the same position
of y is 1; otherwise, it is O. In an AND operation, both operands must
be of integral type.

a Bitwise exclusive OR 1\

The bitwise exclusive OR (1\) operator compares the values of the
operand bit by bit. If the bit of both values is 1 or 0, then the
corresponding bit of the result is O. Otherwise, it is set to 1.

In the statement

z = x " y;

a bitwise comparison of y and x is done, and the result is placed in z.
If the x and y had the values 16,645 and 51,880, repectively, the 16-bit
binary representations of x, y, and z after the operation would be

x 0100 0001 0000 0110
Y 1100 1010 1000 1010
z 1000 1011 1000 1100

If the corresponding bits of x and yare not the same, the bit in the same
position of z is 1; otherwise, it is O. In an OR operation, both operands
must be of integral type.

a Bitwise Inclusive OR I
The bitwise inclusive OR (I) operator works in the following ways. For
corresponding bits of both operands, if one or both bits are 1 s, the
corresponding result bit is a 1. Otherwise, it is set to O. '

In the following statement a bitwise comparison of y and x is done, and
the result is placed in z.

z = x I y;

C Language 51

If x and y had values 16,645 and 51,880, respectively, the 16-bit binary
representations of x, y, and z would be

x 0100 0001 0000 0110
Y 1100 1010 1000 1010
z 1100 1011 1000 1110

In an inclusive OR operation, both operands must be of integral type.

C Logical AND &&

The logical AND operator (&&) checks two operators for nonzero
values. If both have nonzero values, the result of the AND operation is
1; otherwise, it is O. .

Both operands must be scalar types. In an expression, the AND
operators are grouped in the left-to-right order. The usual arithmetic
conversion on operands is performed by the compiler.

For the logical expression

x && Y

the following gives the result of three different pairs of x and y:

result

o
o
1

x

o &&
o &&
5 &&

y

o
3
2

In the first two cases, the result is zero because x is zero in both cases.
In the third case, the result is 1 because both x and y have nonzero
value.

C Logical OR II
The logical OR operator (") checks two operators for nonzero value. If
either has a nonzero value, then the result of an OR operation is one (1);
otherwise, it is zero (0).

52 Chapter 1

Both operands must be scalar types. The AND operators are grouped in
the left-to-right order. For the logical expression

x II y

the following shows the results for three pairs of x and y values.

result
o
1
1

x
o &&
5 &&
o &&

y
o
2
3

The first result is zero because both x and yare zeros. The last two
results are ones because either one or both x and yare nonzeros.

a Conditional operator ?:

The conditional operator (1:) is the most unique among operators in the
C language. It requires three operands and two symbols. The first
operand is placed before the question mark (1), followed by the second
operand and the colon (:), and the third operand after the colon.

The general form of a conditional expression is

condition ? expressionl : expression2

condition is usually a relational expression, which is evaluated by the
compiler.

If the result from the evaluation of the condition is nonzero, then
expressionl is evaluated, and the result is the value of the condition
expression. If condition is zero, then expression2 is evaluated and the
result is the value of the conditional expression.

The conditional operator is best understood by an example to determine
the maximum of two values: x and y. This function is usually
programmed as follows:

int max(int x, int y)
{

int Z;

if (x > y

z = x
else

C Language 53

return (z);
}

The same logic can be programmed by using the conditional operator.
For example, the following statement accomplishes the same task as the
above max function.

z = (x > Y) ? x : Y ; /* z = max(x,y) */

The conditional expression can be any expression, and it is enclosed in
parentheses only for the sake of readability. First the expression (x > y)
is calculated. If it is true (i.e., nonzero), the x is assigned to z; otherwise,
y is assigned to z.

The conditional expression works according to the following rules:

• The conditional operand must have scalar type.
• The second and third operands can be any of these types:

• Arithmetic type
• Same structure type
• Same union type
• Same pointer type

• The result of the conditional operator has the same type as the second
and third operands.

• If the second and third operands are arithmetic types, then the usual
arithmetic conversion on operands are performed by the compiler.

1.6.3 Assignment operator =

The assignment operator (=) gives a value to the left operand after
evaluating the right operand. In an expression with many assignment
operators, the operators are grouped in right-to-Ieft order. There are two
kinds of assignment operators:

• Simple assignment
• Compound assignment

C Simple assignment

The simple assignment operator simply takes the value of the right

54 Chapter 1

operand and gives it to the left operand. Both operands must be of:

• Arithmetic type
• Same structure type
• Same union type
• Pointers to same type

If both operands are arithmetic types then the usual arithmetic
conversion on operands is performed by the compiler.

A few examples of assignment operators are

employee.age = 50 ;
employee. hours = regular + overtime ;
ptr = &prices[10] ;
chr = name[i] ;
x = y = z = 0 ;
value = 2.55 + 10
*p =' s' ;

C Compound assignment

An expression with compound assignment contains two operators: an
assignment operator and any other binary operator. Figure 1.3 is a list
of all compound assignment operators.

Operator Example Equivalent
Expression

+= x += Y x = x + y
-- x -- y x = x y
*= x *= y x = x * Y
/= x /= y x = x / y
%= x %= y x = x % y
«= x «= y x = x « y
»= x »= y x = x » y
&= x &= y x = x & y
" = x "= y x = x " y
1= x 1= y x = x 1 y

Figure 1.3 Assignment operators.

C Language 55

1.7 Statements

It is the program-control statements of any language that give power and
flexibility to a computer. In essence, the control statements are the strength
of a language; they dictate the flow of a program execution. They are
powerful building blocks of programs.

Both C and C++ have a rich and diverse set of control statements. This
section explains the basics of the control flow of these statements and also
shows how you can use them effectively to produce versatile and robust
programs.

The following is a list of statements types:

• Expression statement
• label statement
• if statement
• if-else-if statement
• switch statement
• for loop statement
• while loop statement
• do/while loop statement
• break statement
• continue statement
• goto statement
• null statement

These statements are described in the following paragraphs.

C Expression statement

• General form

expression

• Description

An expression statement is simply an expression followed by a
semicolon (;). As seen earlier in this chapter, there are many types of
expressIons.

• Example

A few examples of expression statements are

56 Chapter 1

++count;

y = y + Z;

printf("Expressions");

x - (y * Z);

C Label statement

• General form

labeled-statement:
label: statement

label: named-label
case-label

default-label

• Description

Before discussing statements, let's consider the label concept. A label
is placed before a statement and is an identifier to which control is
transferred. There are three kinds of labels: plain label, case label, and
default label. The plain label is used with a goto statement, and the
case label and the default label are used in a switch statement. These
statements are discussed later.

C If statement

• General form

if (expression
statement;

[else
statement;]

• Description

The if statement allows a statement to be executed only after a condition
is met.

else is an optional clause.

expression can be any valid C expression, which can include relation and
logical operators, functions, and pointers. This expression is first

C Language 57

evaluated; when the result is TRUE (nonzero), the statement associated
with if is acted on. If the expression evaluates to FALSE (zero), and else
exists, the computer will execute the statement or the block of
statements forming part of the else. In other words, only statements
associated with either if or else are executed, never with both if and else .

• Example

In the next example, if statement is used to check whether a variable has
a zero or nonzero value. The program first reads a number and places
it in the num variable using the scanf function. Next, it prints the value
of num if it is nonzero. Otherwise, it prints the message liN umber is
zero."

/***
This program illustrates the use of if statement
***/

#include <stdio.h>

main ()
{

}

int num = 0;

scanf(" %d \n", &num);

if (num

printf ("Number is %d \n", num);

else

printf ("Number is zero \n");

If replaced num with a relational expression num != 0, the result would
be the same. For example,

if (num 1= 0)

printf ("Number is %d \n", num);

In the next program, the conditional expression of the if statement
consists of both relational and logical operators. A keyboard character
is read by a getchar function and placed in the chr variable. The
expression of the if statement is to test whether a character is numeric.
According to the ASCII (American Standard Code for Information
Interchange) table, all numeric characters are between '0' and '9'. When
the expression

58 Chapter 1

(chr > '0' && chr <= '9')

is evaluated to be FALSE (0), the message "Character is not numeric"
is printed to the standard output stream. Otherwise, the numeric
character is printed.

/**
This program illustrates the use of if statement.
***/

#include <stdio.h>

main ()
{

}

char chr;

chr = getchar();

if (chr> '0' && chr <= '9')

printf("Numeric character is %c \n", chr);

else

printf("Character is not numeric \n");

C If-else-If statement

• General form

if(expression
statement;

else if (expression
statement;

.
else

statement;

• Description

An if-else-if statement is an extension of the if statement. The evaluation
of expression starts from the top. As soon as an expression is found to
be TRUE (nonzero), the associated statement is executed and the rest of
the ladder is skipped. If none of the expression is evaluated to be TRUE,
the statement linked to the last else is executed.

In the following example a message is printed when the input character

C Language 59

is one of the following:

1. Numeric character
2. Space character
3. Plus sign
4. None of the above; default

/**
This program illustrates the use of if-else-if ladder.
***/

#include <stdio.h>

main()
{

}

char chr, *strp

int y;

.. ... ,

if (scanf ("%c", chr) 1= EOF
{

}

if (chr >= '0' && chr <= '9'
{

*strp = chr;

y = atoi(strp);

printf ("Number is %d \n", y);
}

else if (chr == , ,

printf("Space character \n");

else if (chr == '+')

printf("Plus sign \n");

else

printf("Not numeric character, space or + \n");

else

printf("Input Error");

60 Chapter 1

1:1 Switch statement

• General form

switch (expression
{

}

case constantl:<~
statement;
break;

case constant2:
statement; switch body
break;

.
default:

statement; <-----'

• Description

The switch statement is a multiple-branch decision statement. This
statement not only replaces some forms of if-else-if ladder construction
discussed earlier but also infuses clarity and elegance to a program. The
switch body, enclosed in braces, has case labels, empty statements, and
default labels.

expression must evaluate to an integral type. Starting from the top, the
expression is checked against the constants successively. If a match is
found, control is transferred to the statement associated with that
constant. Execution will continue until a break statement is encountered
or the end of the switch body is reached. If there is no match, the
computer executes the optional default statement. If a default label is
not present, no action is taken if no match occurs.

The break statement is not part of the switch statement but is used to
stop execution of the statement sequence of the case clause. As shown
in an example later, you might want to omit a break statement in certain
instances. This is when a common processing is suitable for many
situations.

There are a few things to keep in mind when using a switch statement:

• The expression and constants must be of integral type, and each
constant mu&t be different.

• There must be .only one default label.

C Language 61

• A switch body can have definitions and declarations.
• A case clause can have a switch statement; therefore, nested switch

is allowed.
• A case clause can be empty .

• Example

One way of using a switch statement is to process a menu selection. In
the next program, a menu of three items is printed. Then, it reads a
selection character from the user.

/***
This program illustrates the use of switch statement.
**/
#include <stdio.h>
main ()
{

}

char key;

printf(
printf(
printf(
printf(
printf(

"l.
"2.
"3.
II

Add Customer Record \n");
Change Customer Record \n");
Delete Customer Record \n");
Enter a selection (1, 2 or 3) \n");
Press any other key to skip \n");

key = getchar() ; /* read the selection from the
standard 1nput stream */

switch (key)
{

}

case '1':
CustAdd() ;
break;

case ' 2' :
CustChg();
break;

case '3':
CustDel();
break;

default:
printf("No selection made \n");

return;

The key variable is compared to each character constant: '1', '2', and
'3'. If there is a match, the corresponding function is called. If it is '1',
then the CustAdd function is called. On return from CustAdd, the
switch statement is terminated because of break and control is
transferred to the next statement, which is return. Similarly, CustAdd
and CustDel functions are called if key is '2' or '3', respectively.

In case of no match-the key is not '1', '2', or '3'-the message "No

62 Chapter 1

selection made" is printed to the standard output stream. This is a result
of executing the statement part of the default label.

The following program illustrates an empty case statement and a case
statement having one or more statements. Note that the constants are
both integer and character constants. For example, '1', '2', and '3' are
character constants and decimal 52 (ASCII code for '4') and SPACE
defined as hex 20, are integer constants.

/**
This program illustrates the use switch statement.
***/

#include <stdio.h>
#define SPACE Ox20 /* ASCII code for space character*/

main ()
{

}

int y;
char key, *strp = " ";
key = getchar();

switch (key
{

}

case '1':
case ' 2' :
case ' 3' :

printf ("Key is %c", key);
break;

case 52: /* EBCDIC code for '4' */
*strp = key;
y = atoi~ strp);
printf ('Number is %d ", Y);
break;

case SPACE:
printf(" Key is space bar");
break;

The case clauses with constant '1' and '2' have no statements; therefore,
they use the same code as the case clause with constant '3'. This shows
that different conditions can use the same portion of a program. In the
fourth case clause, the constant is an integer constant 244 which is
equivalent to the EBCDIC character '4'. This case clause has three
statements. The first is

*strp = key;

to move the character into a string. The second is a call to atio(strp)

C Language 63

function to convert the key stroke from a character to integer value,
which is placed in y. Next, the converted integer y is printed. The fifth
case label has an integer constant representing a space character. Note
that this switch statement does not have a default label. This means that
the switch statement does not execute anything if none of the five
conditions is met.

C For statement

• General form

for (expressionl; expression2; expression3)
statement

• Description

The for statement can have an empty statement, single statement or a
block of statements. More than one statement must be enclosed in a pair
of braces. The statement forms the body of the for loop.

Expressionl is an expression evaluated only once before the loop starts.
It can be used to initialize a variable to control the loop.

Expression2 is an expression evaluated every time the body is executed.
The result of expression2 determines when to exit the loop. If it yields
a zero value (0), the statement of the for loop is not executed and
control goes to the next statement of the program. Otherwise, the
statement is executed.

expression3 is an expression evaluated every time but only after the
statement of the loop is executed. It can be used to increment,
decrement, or initialize variables that determine whether to exit or
continue the loop.

Any or all of these expressions can be omitted, but in each case it
affects how the loop is executed. Later we will discuss some of the
variations of the for loop. First, we want to show you a simple example
of the for loop.

• Example

In the following program, the for loop is used to print numbers 1

64 Chapter 1

through 5 to the standard output stream. First, the i variable is set to
value 1. Next, the expression i <= 5 is evaluated. If it is TRUE (1), then
the value is printed; otherwise, the loop terminates. Every time i is
printed with the printf function, it is incremented by 1. The loop stops
when i reaches the value 5.

/***
This program illustrates the use of the for loop.
**/

#include <stdio.h>

main ()
{

}

int i;

for(i = 1; i <= 5; i++

printf ("%d ", i);

In a for loop, C does not restrict you in the composition of expressions
as long as they are valid. In the following example, expression1 sets i
to 5, expression2 tests whether i, greater than 0, and expressionJ
decrements i by 1. In this case, the statement prints numbers in
descending order from 5 through 1.

for (i = 5; i > 0 ; x--)
printf("%d ", i);

C allows many variables of the for loop, which can add power and
flexibility to your programs. You can omit the expression1, but you have
to ensure that the variable controlling the loop is properly initialized
before the execution of the for loop. If it is not set properly, an
undesired result may occur.

In the following situation i is set to 5 before the loop starts.

i = 5;

for (; i > 0 ; x--)
printf("%d ", i);

In the next example, the expression2 is missing. When this expression
is omitted, the compiler replaces the expression with a nonzero contant.
Therefore, the loop will be executed infinitely. To break out of the loop,
you use the break as shown here.

for (i = 0; i++)
{

if (i > 5
break;

pr intf (.. %d" i) ;
}
return;

C Language 65

This will end the loop when i is greater than 5 and give control to the
next statement in the function:

return;

Note that there is more than one statement associated with this for loop;
therefore, the loop is enclosed in braces. Other ways to end a for loop
are by using return and goto statements. The return statement will
terminate the function, while goto will transfer control to a portion of
the function identified by a label. The break and goto statements are
dicussed later.

You can include a for statement within another one, thus forming many
levels of nested for loops. The next example uses two levels of for
loops to initialize a two-dimensional array called table. The outer for
loop increments i by 1 from 0 to 10. The inner for loop is included in
the body of the outer loop. Before every increment of i, the inner loop
increments j from 0 to 20. The body of the inner loop first calculates the
sum if i and j and places it in the ith and jth elements of the table array.

/**
This program illustrates two levels of for loop.
**/
#include <stdio.h>

main ()
{

}

~nt table(1q] [20]
~nt sum, ~,J;

for (i = 0 ; i >= 10 ; i++) /* outer loop */
for (j = 0 ; j >= 20 ; j++) /* inner loop */
{

sum = i + j ;
table[i][j] = sum;

}

So far we have seen expressionl and expressionJ having only one part;
however, they can have more than one part. In the following example,
the initialization expression sets x to 0 and y to 1. And the expressionJ
first increments y by 1 and x becomes the sum of y and 5.

66 Chapter 1

for (x = 0 , y = 1; Y <= 5 ; y++, x = Y + 5)

printf("y = %d, x = %d \n", y, x);

An empty for loop does not have any statement. For example,

if (i = 0 ; i > 1000

C While statement

• General form

while (expression
statement

• Description

; i ++);

The while statement allows you to repeatedly do a task within a program
until a specific condition is met. You can break out of the while loop by
using a break, return, or goto statement.

expression determines the duration of the loop. Before every iteration,
the expression is evaluated. If it yields a FALSE value (0), the loop is
terminated. Otherwise, the statements of the body are executed.

statement consists of either an empty statement, a single statement, or
a block of statements, forming the body of the while loop.

• Example

The following example is a simple program to determine the length of
a string and the number of spaces. Using the while loop, the program
scans the string buffer until a NULL character is found. The expression
of the while loop checks whether the ith element is '\0'. If it is TRUE,
then the body is executed. In the body a space counter is incremented
by 1 in case a space character is encountered. Next, the i index is
incremented by 1 when the ith element of string is '\0', then the loop
is terminated. The variable i has the length of the string, and spaces has
the number of spaces in the string. Both counts are printed before the
program ends.

/***
This program illustrates the use of the while loop.
**/

#include <stdio.h>

#define SPACE ' ,
main ()
{

char string[] = "This is a complex world";
int i, spaces ;

i = 0;
space = 0;

while (string[i] 1= '\0')
{

}

if (string[i] == SPACE)
spaces++;

i++;

C Language 67

printf("length of string is %d \n" i);
printf ("number of spaces are %d \n", spaces);

}

C Do/while loop

• General form

do
{

statement;
} while (expression);

• Description

The do/while statement executes the body of the loop and then evaluates
the expression. The body is made up of either an empty statement, a
single statement, or a block of statements. If the expression of the while
clause evaluates to nonzero, the loop is executed again; otherwise, the
loop ends.

Unlike for and while loops, the do/while loop executes the body at least
once, regardless of the form of the expression. The loop can also be
ended with a break, return, or goto statement within the body of the
do/while loop.

• Example

One possible use of the do/while loop is to process a menu selection.
The following program first prints all the items of a menu and then
enters the body of the do loop. Within the body, the program accepts a
key, which is executed at least once. The switch statement is used to
process the selection. For example, if the key is '1', CustAdd function

68 Chapter 1

is called and CustChg and CustDel functions are called if the key is '2'
and '3', respectively. The expression of the while clause checks whether
the key is '4'; if it is, the loop is terminated. Otherwise, it reads another
key from the keyword and does another iteration.

/***
This program illustrates the use of the do/while loop.
**/
#include <stdio.h>

main ()
{

}

char key ;

printf("1. Add Customer Record \n");
printf("2. Change Customer Record \n");
printf("3. Delete Customer Record \n");
printf("4. Exit \n");
printf(" Enter selection (1,2,3 or 4) \n");

do
{

kef = getchar(); /* read the selection */
sWl.tch(key)
{

case '1':
CustAdd();
break;

case '2':
CustChg();
break;

case ' 3' :
CustDel();
break;

, }
} whl.le (key ! = ' 4');

C Break statement

• General form

break;

• Description

The break statement has been used earlier in this chapter to terminate
loops and switch statements. The break statement can be placed within
the body of do, for, while, and switch statements. Any loop or switch
statement is immediately terminated without testing the conditional
expression when a break statement is encountered.

C Language 69

When a loop or switch statement is ended with a break, the control
moves to the next statement outside the loop or switch body. Within
nested statements, break terminates only the lower level of the loop or
switch statement. A break statement cannot be used outside a loop or
switch body .

• Example

The following program illustrates how to use a break within a while
loop by stopping a search when the first space character within a string
is found. The while loop scans a character array called string. It starts
from the first element and continues as long as the ith element is not
NULL character ('\0'). Within the loop body, when the first space
character is encountered, the loop is ended after printing the position of
the space in the string. The loop exits regardless of the conditional
expression of the while statement. If the ith element is not a NULL or
space character, the i variable is incremented by one.

/**
This program illustrates the use of the break statement.
***/
#include <stdio.h>
#define SPACE ' ,

main ()
{

}

int rc;
char string[] = "It is a wonderful world";

i = 0

while string[i] 1= '\0'
{

if (string[i] == SPACE

}

{
printf("Space character is at position %d \n",

i);
break;

f
~++;

The preceding program with a break statement can be coded using a
do/while loop. For example,

do
{

if (string[i] == SPACE)

{printf("Space character is at position %d \n",
i) i

70 Chapter 1

break;
t
~++;

} while (string[i] 1= '\0');

C Continue statement

• General form

continue;

• Description

The continue statement forces the next iteration of a loop to occur.
Within the body of the do, for, or while loop, the current iteration stops
when continue is executed, and control is passed to the expression of
the loop. If it is a for statement, the third expression is executed,
followed by the second expression.

• Example

The following program illustrates how to use the continue statement to
count nonblank characters in a string array. This for loop scans the
string array starting from the first element until a NULL character is
found. Every time the body of the loop is executed, the ith element is
tested. If it is a blank character, the rest of the loop is skipped by using
the continue statement. The next iteration starts after incrementing the
i index and testing if the ith element is not NULL. If it is a nonblank
character, a counter is incremented by 1.

Within nested statements, the continue statement ends the current
iteration of the loop where it is found. The continue statement can be
used only within a loop body.

The following program counts all nonblank characters of the variable
string.

/***
This program illustrates the use of the continue statement.
**/

#include <stdio.h>

main ()
{

int count, i

C Language 71

char string[] = "This is a very vast universe"
count 0;

for (i = 0 ; string[i]
{

if (string[i] -- , ,
continue;

count++;

, \0' ; i ++)

} .
pr~ntf("Number of nonblank characters is %d \n",

}
count);

C Goto statement

• General form

goto label;

• Description

Because of the emphasis on structured programming techniques, the goto
statement has fallen out of favor among programmers. Although it is
possible to avoid goto entirely in many programming situations, there
are times when the use of goto statement simplifies and clarifies a
program. However, with the rich control verbs of C, there may never be
a need to use the goto statement.

The goto transfers control unconditionally to a statement associated with
a label.

• Example

This program scans the character string array for the first space
character. When it is found, the control is transferred to the label found,
where the position of the space character is printed.

/***
This program illustrates the use of the goto statement.
**/

#include <stdio.h>

#define SPACE ' ,

main ()
{

int i;
char string [] "Humanity will live in harmony"

72 Chapter 1

}

i = 0;

while (string[i] 1= '\0'
{

}

if (string[i] == SPACE
goto found ;

i++;

not_found: printf("Space character not found \n");

return
found: printf("Space character is at position %d \n",

i);

C Empty statement

• General form

• Description

An empty or NULL statement performs no operation. It is simply a
semicolon (;). For example, as discussed earlier, a for loop consists of
expressions within parentheses, followed by one of more statements.
However, there are situations when the statement-anyone discussed in
the preceding paragraphs-is not needed. In such a case, the for loop as
to be completed with an empty statement. Sometimes, it is easy to place
a semicolon inadvertently in a wrong spot; consequently, your program
may not work as expected. In case of logical errors in your code, check
closely whether all semicolons are placed correctly.

fore i = 0; i < 100 ; i++);

Chapter

c++ Language

In the previous Chapter we discussed some of the basic features of C, such
as statements, data types and operators. Because C is a subset of C++, all
the features described in Chap. 1 apply to C++. This section provides an
overview of the main concepts found in C++ which do not apply to C.
These aspects of C++ support the principle of object-oriented programming
(OOP). The main reason for this OPP extension of C is to create and
maintain software for an ever increasing complexity of information
systems of today and tomorrow.

In the last few decades, as programmers, we have practiced what is
known as the structured programming. The limitations of this methodology
are causing a crisis in the present software industry. Simply put, intricate
software systems are not easy to design, program, and maintain using the
old methods. The state of the art is crying for a change, as part of an
evolution in the history of software development. This has given way to
the development of object-oriented concepts and programming.

73

74 Chapter 2

The object-oriented paradigm is based on three general principles, which
we'11 discuss closely in a moment:

• Encapsulation
• Inheritance
• Polymorphism

This chapter shows how these concepts are translated into a
programming language. One chapter is not sufficient to describe
comprehensively all aspects of OOP. Many books· and manuals on object­
oriented concepts are available in the literature and if you need more
information on OOP or related subjects, you can refer to any of these
works. Here, we'll briefly review them, to refresh your memory.

Encapsulation: In the object-oriented concept, data and functions are
combined. This fusion is called encapsulation. In programming terms, the
data is called the object and the function is referred to as the method. The
method is composed of a finite set of actions on the object; the collective
term for the object and the method is the class type.

Inheritance: The principle of inheritance dictates that a new class can
acquire the object and methods of an existing class. This is similar to the
biological inheritance of genetic characteristics such as hair, skin and eye
(iris portion) pigment from one's parents.

The inheritance concept does not exist in our traditional structured
programming. Inheritance, when applied to software development, enables
the programmer to reuse code. It is true that programmers write functions
and place them in a library for others to use after the functions attain a
certain maturity. Such functions are called in different applications. For
instance, a string manipulation function can be called from a database
application or an inventory program. Unfortunately, the reuse of code is
not widwspread, except for a few commonly used functions. For example,
if you have a class called quadrupled, you can define a subclass called
"horse." The new class will inherit all the properties of the quadrupled
class and will have creatain additional characteristics, such as the ability
to eat grass and participate in polo games.

Polymorphism. Polymorphism means having many forms. In programming
terms this means that one interface can be used to call one generic
function. Depending on the characteristic of this interface, different

c++ Language 75

functions are performed. The specific action is determined by the type of
data passed to the function. The programmer need not worry about how
this is done; an object-oriented language accomplishes the mechanics of
determining when and how to process a particular aspect of a function.
Essentially, polymorphism allows a program to use many, but related
functions through one interface.

In the rest of this chapter, we'll discuss the following:

• Elements of C++
• Class and object
• Constructors and destructor functions
• Function and operator overloading

2.1 Elements of C++

Because C is a subset of C++, you can write a C++ program in the same
way as you would write a C program. There is no rule to prevent you from
doing this, but you might not be taking advantage of the extra features
related to OOP. This is like watching your favorite show in black and
white on a color TV.

Next is a short C++ program. At first glance it is similar to a C program
starting with an #include directive, followed by a main function. It also
has curly brackets (braces), a return statement, and a variable definition
familiar to the C programmer. At close look, this C++ program is
different; a C compiler cannot successfully compile this program.

Three features are peculiar to C++ programming and style:

• Comment lines
• I/O (input/output) operators
• I/O operations

C General form of a C++ program

Each programmer has an individual style of writing C++ code, but most
programs will have the following general form:

76 Chapter 2

#includes
base-class declarations
derives class declarations
nonmember function prototypes

mainO
{

}
nonmember function definitions

This format applies to small programs. For large projects, the class
definitions, like macros, will likely be found in header files included
with each module.

The following is an example of a short C++ program. It includes the
my_class class. This class has two data variables: x and y and two
function members called sum and set_xy, where sum adds two number
and set_xy sets the values of x and y. In the main function, the x object
is created and the values of x and yare set to 7 and 8, respectively.
Also, the sum of x and y is shown by calling z.sum(z) using the cout
function.

#include "iostream.h"

class my_class
{

int x, y;
public:

int sum (my class m) ;
void set_xy(int p, int q)

{x=p; y=q;}

};

II sum() is not a member of my class
II As a member of my class it can access
II x and y private variables

my class::sum(my class m) { - -

}
return m.x + m.y;

main ()
{

my_class z;

z.set_xy(7,S);
cout « z.sum(z); II prints 15

return 0;
}

C Comment lines

c++ Language 77

In c++ there are two ways of marking a line in a program as a
comment. First is the C style, where a comment line starts with /* and
ends with * /. Also, you can designate a line as a comment when it starts
with two slashes (/1). The slashes can appear anywhere in a line, and
anything following them is considered a comment. The following lines,
taken from the previous program, are examples of these two types of
comment lines.

II This is my first c++ program
cin »string; 1* C style comment line *1

C I/O operators

You may have noticed characters such as « and » in the previous
program. They resemble left and right shift operators. In the following
examples,

cout « "Enter integer: ";
cin » integer;

where « is an output operator and » is an input operator. This takes
us to the C++ I/O operations. Note that to use these operators, you must
include the iostream.h header file.

C I/O operations

In the line

cout « "Enter integer: ";

we have cout, which performs the same operation as the printf function.
It writes Enter integer: to the screen. In C++, the term cout refers to

78 Chapter 2

the screen. With the output operator «, it sends any built-in data type
and character string to the screen.

In contrast, ein refers to the keyboard; for example in

cin » integer;

is like the input data is placed in the variable integer and a replacement
for the scanf function. The main reason for using eont and ein rather
than printf and. seanf is that they are more versatile, especially for
applications of the object-oriented concepts. In the C++ program, ein
writes to variables of three different types of data (float, ehar and int);
you cannot do this with seanf.

A more interesting line of the program is:

cout « floating.....,point « " " « string « " " « integer;

which writes to the screen the content of floatingJoint, followed by
one blank, the contents of string, one blanks and the contents of integer.

C C++ keywords

Earlier in this chapter we discussed some of the keywords for the C
language. Additional C++ keywords are listed in Fig. 2.1.

asm
catch
class
delete
friend
inline
new
operator
overload

private
protected
public
template
this
throw
try
virtual

Figure 2.1 C++ keywords.

c++ Language 79

C C++'s predefined streams

When a C++ program is executed, four streams are automatically
opened:

Stream Description Default
Device

cin Standard input Keyboard
cout Standard output Screen
cerr Standard error output Screen
clog Bufferred version of cerr Screen

The first three streams correspond to C's stdin, stdout, and stderr.

2.2 Class and Object

The basic elements of C++ are class and object which constitute the
foundation for object-oriented concepts. As we will see shortly, class and
object are closely related, and· acquiring a sound understanding of these
two building blocks is crucial to object-oriented programming (OOP).

This section first gives the general format of class and object, followed
by examples. It also discusses a few topics related specifically to class,
such as

• Structure and class
• Union and class
• Friend function
• Inline function
• Static data member
• Static function member
• Local class
• Passing objects to function
• Returning objects
• Object assignment

Class: By definition, a class links code and data together. In some ways
class is like structure, but without the functions. It is possible to define
one class within another; this is called a nested class.

80 Chapter 2

Object: Once a class is defined, it can be used to create an object of
that class. Again, this can be compared to the declaration of a structure
variable (or an object) after the particular structure is defined.

• General format

The general form of a class definition is

class class-name
{

private data and function
access-specifier: data and function

access-specifier: data and function

} [object-list];

class-name object-list;

class-name: :function(fparameter-list])
{

II body
}

class is the keyword defining a class.

class-name is used to specify the name of the class that is being defined.

access-specifier is one of the following three keywords: private, public,
or protected. This specifies whether a class member--data or
function-is accessible to the world outside the class. The default access
specifier is private.

private is a specifier meaning that the data or function declared within
a class is accessible only to other members of the class. In other words,
the members with private access are not known outside the scope of the
class.

public is a specifier indicating that data or functions can be accessed by
other parts of a program as well as by other members of a class.

c++ Language 81

protected is a specifier similar to private access, except that a derived
class has access to the data or functions of the base class. For more
information, see the section on inheritance.

data is the name of a variable declared within a class. It is referred to
as a member variable or a data member. This declaration must conform
to the same rules as those used in declaring a variable anywhere else in
a program. In general, all data elements are private to the class.
However, in some situations you may want to make a few data members
public.

function is a function within a class. A member function can access any
element-data or function~f the class to which it belongs. All
functions must be prototyped; prototypes are not optional.

object-list is optional and, if present, declares one or more objects of a
class. This is another way of declaring an object to a preceding object
name with the class name and ending the statement with a semicolon (;).

The scope resolution (::) is used to link a class name to its members,
especially during definition of a function.

parameter-list is one or more parameter(s), if any, passed to the function
being defined .

• Example

The following program illustrates the definition and use of a class called
my_swap. In the main function, first s is created as an object of
my_swap class. Next, u is assigned a value of 599123, followed by
swapping the characters in array c and showing the result.

#include "iostream.h"

class my_swap
{ .

vOl.d swap () ;
void set data(unsigned i);
void show();

unsigned u;
unsigned char c[2];

};

82 Chapter 2

void my swap::swap()
{ -

}

unsigned char XJ

x = c[O]J
c[O] = c[l]J
c[l] = XJ

void my swap::show()
{ -

cout « u J
}

void my swap::set data(unsigned i) { - -
u = iJ

}

main ()
{

my_swap SJ II create an object

}

s.set_data(59123); II set initial values
s.swap()J II switch characters
s.show(); II show the result 62438
return 0;

C Structure and class

In C, a structure is used to group data together. In C++, we define a
structure, and syntactically it looks like C, except that in C++ its role
has been expanded. In fact, you can use the struct keyword to define a
class, as we saw in the previous example. In all respects, a class defined
by class or struct is the same, except that by default all members in
struct are public and in class they are private.

This begs the question as to why struct and class keywords do virtually
the same task. The main reason is that classes and structures are related,
and this expansion makes it easier to port C programs to C++. Also, it
leaves room for classes to expand while leaving structures at their
present levels. Generally, it is advisable not to use struct for class.

c++ Language 83

C Union and class

The union keyword can be used to define a class. This definition is
similar to a union definition in C, except in C++, the members are both
variables and functions. Like the structure, the default access of the
union members is public. You must also remember that all data elements
share the same memory location.

When using the C++ union, you must keep in mind a few restrictions:

• A union cannot inherit another class of any type.
• A union cannot be a base class.
• A virtual function cannot be a member.
• A member of any object cannot overload the = operator.
• A union cannot have destructor or constructor function.
• If an object has a constructor or destructor function, it cannot be a

member of a member.

With all these restrictions, the only compelling reason to use union over
class is when memory is shared by all the variables .

• Example

The following program illustrates the use of union.

#include "iostream.h"

union my swap
{ -

void swap () ;
void set data(unsigned i);
void show () ;

unsigned u;
unsigned char c[2];

};

void my swap::swap()
{ -

}

unsigned char x;

x = c[O];
c[O] = c[l];
c[l] = x;

84 Chapter 2

void my swap::show()
{ -

cout « u ;

}

void my_swap::set_data(unsigned i)
{

u = i;

}

main ()
{

}

my_swap s; II create the object

s.set_data(59123); II set the initial value
s.swap(); /1 swap the characters
s.show(); II prints 62438
return 0;

C Friend function

It is possible to grant a nonmember function to access private or
protected members of a class. Such a member is called a friend
function; and it is defined with the friend keyword placed in front of the
function declaration in the class definition .

• Example

The following example illustrates the usage of a friend function.

#include "iostream.h"

class my class
{ -

int x,y;
pUblic:

friend int sum(my_class m) ; II friend member

void set_xy(int p, int q)

{ x=p; y=q;}

};

II sum() is not a member of my class
II As a friend member of my class it can access
II x and y private variables

int sum (my class m)
{ -

return m.x + m.Yi
}

main ()
{

}

my_class Zi II create an object

z.set_xy(7,S)i II set values

cout « sum(z)i II prints 15

return 0;

C Inllne function

c++ Language 85

In C++, there is the inline function; it is similar to a C-like macro. An
inline function is not called; rather, its code is expanded by the compiler
at the point where it is encountered. To declare such a function, you
would place the infde keyword in front of the declaration .

• Example

In the following example, max is an infde function. In main it is
invoked, and this example shows the point of invocation and the
expanded version.

#include "iostream.h"

inline int max(int x, int y)
{

return x > b ? x : Yi

}

main ()
{

}

count « max(5,10); II prints 10
return 0;

The expanded version of the inline function in main looks like this:

86 Chapter 2

main ()
{

count « 5 > 10 ? 5 10;
return 0;

}

C Static data member

When you place the static keyword in front of a variable declaration in
a class, you are telling the computer to treat this variable in a special
way. If you declare more than one object for a class and if there is a
static variable within the class, the compiler keeps only one copy of
such a variable. In other words, the same copy of the variable is showed
among all the objects.

There are many cases where a static variable can be useful. One
example is when two or more objects want to check a static variable,
which holds the status of a file before performing any operation. If you
use static variables, you will virtually eliminate the need to use global
variables .

• Example

The following illustrates how a static variable works. In the declaration
of share _x class, x is static and y is nonstatic. In the main function, the
a and b objects are first declared, and subsequently the set_xy and
show xx functions are called to show how x is shared between a and b
objects.

#include "iostream.h"

class share x
{ -

static int x;
int y;

pUblic:
void set xy(int if int j)

{x=inFi ; }
void show_xy () ;

};

c++ Language 87

void share x::show xy() { - -
cout « "Value of static x: II « x « "\n";
cout « "Value of nonstatic y: II « y « "\n";
cout « "\n";

}

main ()
{

}

share_x a , b;

a.set_xy(1, 1); II set x and y to 1
b.show_xy(); II show the values of x and y
b.set_xy(2, 2); II set x and y to 2
b.show_xy(); II show the values of x and y
a.show(); Iishow the values of x and y

return 0;

C Static function member

Similar to a member variable, a function may also be declared as static.
When using static functions, there are two points to remember:.

• A static function may access only other static members of the class
except for global data and functions.

• A static function does not have a this pointer .

• Example

The next program illustrates the use of static functions. In the definition
of my _x class, the static variable, called x, represents the availability of
a resource. The static function called allocate x sets the value of x to
1, indicating that it is in use. And a nonstatic function called free_x sets
x to o.

#include "iostream.h"

class my_x
{ ..
stat~c ~nt x;

public:
static int allocate x();
void free_x() -

{x=O;}
} ;

88 Chapter 2

int my x::allocate x() {- -
if (x) return 0; II already allocated

else
{

x = 1;
return 0;

}
}

main ()
{

my_x a, b;

II the static function can be called directly,
II independent of any object

if (my_x.allocate_x(»
cout « "a has resource \n";

if (!my x.allocate x(»
cout« "b deniea resource \n";

a. free _ x () ;

II now use b object to access allocate_x()

if (b.allocate_x(»
cout « "b can used the resource";

return 0;
}

C Local class

A class may be defined with a function. Such a class is known to the
function only where it is defined and unknown outside the function.
When using local class, there are a few restrictions to keep in mind:

• All member functions must be defined inline.

• Static variables cannot be part of a local class.

Generally, local classes are not common in C++ programming because
of these restrictions .

• Example

In the next example, the local class calling my_local_class is defined in
my _func function.

#include "iostream.h"

void my_func();

main ()
{

my_func();

c++ Language 89

II my_local_class is not known to main()

}

void my func ()
{ -

}

public:
void set i (int n)

{i =-n;}

int get i ()
{return i;}

} objectl;

objectl.set_i(20);

cout « objectl.get_i(); II prints 20

D Passing objects to functions

Like any other variables, you may pass an object to a function. C++ uses
the standard call-by-value mechanism to pass objects to functions. A
copy of the object being passed to the function is created. This raises
two issues: whether the constructor is executed at the time the copy of
the object is created and whether the destructor is executed when the
copy of the object is destroyed. (Constructors and destructors are dealt
with in detai11ater in this chapter.) The solutions to both these issues are
found in the next section.

90 Chapter 2

• Example

The next example demonstrates passing an object to a function.

#include lIiostream.h ll

class my class
{ -

int Xi

public:
void set X (int n)

{x=ni }-

int get_x()
{return x;}

} ;

void func(my_class objl);

main ()
{

}

my_class obj2;

obj2.set_x(1);

func(obj2)i

cout « IIThis copy is in main
cout « obj2 • get_x () « lI\nll;

return 0;

void func(my class objl)
{ -

objl.set_x(2);

II • ,

cout « IIThis copy is passed to function II
cout « objl.get_x() « lI\n ll •

}

After execution of the program, the following lines are printed:

This copy is passed to function 2
This copy is in main 1

a Returning objects

As you can pass an object to a function, you can also return an object
from a function.

c++ Language 91

• Example

The following example shows how the fonc function returns an object
of my_class class.

#include "iostream.h"

class my_class
{ ,
~nt x;

pUblic:
void set x (int n)

{x=n; }-

int get_x ()
{return x,}

} ,
my_class func()

main ()
{

my_class obI,

obI = func();

II returning my_class object

cout « obl.get_x() « "\n", II prints I

return 0,
}

my class func()
{ -

my_class y,

y.set_x(I),

}
return y; Ilreturning an object

C Object assignment

If two objects are of the same type, one object may be assigned to
another using the assignment operator (=). The data of the object on the
right side of the operator is copied to the left side of the operator .

• Example

The following program illustrates object assignment. In the main
function, there are obI and ob2 objects of my_class class. First, set the
variable to 11, then assign obI to ob2, and check the value of ob2.

92 Chapter 2

#include "iostream.h"

class my class
{ -

int x;

public:
void set_x (int n)

{x=n;}

int get_x ()
{return x;}

};

main ()
{

my_class obI, ob2; II create objects

obl.set_x(II); II set the variable to 11

ob2 = obI; II assign obI to ob2

}

cout « liThe value of ob2's x is:
« ob2 • get_x () « "\n";

1111 \

After execution of the program, the following line is printed:

The value of ob2's x is: 11

2.3 Constructor and Destructor Functions

As you may be aware, sometimes you have to set a variable to an initial
value or open a file before processing a task. Similarly, an object may
require initialization before it is used; you can define an initialization
function, called a constructor, within a class that has the task of setting
initial values.

Also, when the task ends, you may want to perform a few sub tasks such
as setting variables to certain values, closing a file, de allocating memory,
or destroying windows. In an object, such a termination function, called a
destructor, is the complement of a constructor.

This section discusses various aspects of constructor and destructor
functions in more detail. These are

• Constructor function
• Destructor function
• Passing arguments to constructors
• Execution of constructors and destructors

c++ Language 93

C Constructor function

A constructor is part of a class definition, and its main purpose is to
take action before an object is used. The name of the constructor
function is the same as the name of the class; therefore, when the
compiler encounters a function with such a name, it is considered a
constructor function. Such a function is similar to any other function,
except that it is executed automatically at the time an object is created.
It is important to know when this execution takes place, and we'll deal
with it shortly.

A local object is created when the block where it is found is entered. A
global object is created when the program is entered .

• Example

The following example shows how to define a constructor function for
the my_class class.

#include "iostream.h"

class my class
{ -

int x;
public:

my class(); II constructor
voId set_x(int n)

{x=n;}
int get_x ()

{return x;}
};

II my_class constructor function
my class::my class() { - -

x = 1;
cout « "x is initialized" « "\n";

}

main ()
{

my_class ob,

}
cout « "The value of x is " « ob.get_x « "\n";

After execution of the program, the following lines are printed:

x is initialized
The value of x is 1

94 Chapter 2

C Destructor function

A desctructor function is part of a class definition, and its main purpose
is to take action before an object goes out of scope. You supply the
function, but the compiler adds code to ensure that it is automatically
executed.

A local object vanishes when a block where it is found is ended. A
global object is destroyed when the program ends.

The name of the destructor function is the same as the class name or the
constructor name, except that it is preceded by a tilde (--) .

• Example

The following program illustrates the definition and usage of both
constructor and destructor functions.

#include "iostream.h"

class my_class
{ .

l.nt Xi

public:
my_class(); II constructor

-my_class(); II destructor

void set_x(int n)
{x=n;}

int get_x ()
{return x;}

};

II my_class constructor function
my_class::my_class()
{

x = 1;
cout « "x is initialized" « "\n";

}

my_class::-my_class()
{

x = 0 ; II set x to 0
cout « "x is set to 0 at termination" « "\n";

}

main ()
{

my_class a, b; Ilcreate two objects

a.set_x(2);
b.set_x(3);

c++ Language 95

cout « IIValue of a.x is II « a.get_x() « lI\nll;
cout « IIValue of b.x is II « b.get_x() « lI\nll;

return 0;
}

After execution of the program, the following lines are printed:

x is initialized
x is initialized
Value of a.x is 2
Value of b.x is 3
x is set to 0 at termination
x is set to 0 at termination

Il Passing arguments to constructors

Earlier, we saw how to define a constructor. Now, let's see how
arguments are passed to constructor functions. These arguments are
passed when declaring objects, and these values passes are typically used
to initialized the object. You would pass these arguments the same way
as in any other function, simply by adding parameters to the function .

• Example

This example shows how to pass an argument to a constructor function
of my_class. Note that the my_class function-the constructor-has one
parameter and the argument is passed when the ob object is created.

#include lIiostream.h ll

class my class
{ -

int X;

public:
my_class (int y);

-my_class();

int get_x ()
{return X ;}

}

II my_class contructor function with one parameter

my class::my class(int y) { - -
x = y;
cout « IIX is initialized II « lI\nll;

}

96 Chapter 2

my class::-my class() { - -
x = 0 ; II set x to 0
cout « "x is set 0 at termination" « "\n";

}

main ()
{

}

my_class ob(l);

cout « "Value of a.x is " « ob.show() « "\n";

return 0;

After execution of the program, the following lines are printed:

x is initialized
Value of a.x is 1
x is set to 0 at termination

a Execution of constructors and destructors

Earlier, we mentioned you would define the constructor and destructor
functions; however, they are not explicitly called as part of the logic of
your program. They are automatically invoked by special code generated
by the compiler. Because they are written to accomplish initializ~tion
and termination tasks of your program, it is important to know when the
computer executes these functions.

A constructor function is executed when the object is created, and this
depends whether is a local or global object. The constructor of a local
object is invoked when the compiler encounters the statement where the
object declaration is found. One should also remember the order in
which these functions are executed. In a statement with several object
declarations, they are executed from left to right and within a file are
from top to bottom.

The constructors of a global object are invoked before the main function
is executed. And, as in a local object, the order of execution is from left
to right within a statement and from top to bottom within a file.

The destructors are executed when an object is ended. A local object
vanishes when a block end, and destructors of global objects are
executed after the main function is completed.

c++ Language 97

When an object is passed as an argument, there are a few points to
remember as to when constructor and destructor functions are executed.
When an object is passed to a function, a copy of the object is made
before the function call. Remember that at this point the constructor
function is not called because you want to preserve the state of the
object. However, when the copy of the object is destroyed, the destructor
is executed .

• Example

The following example illustrates the time at which the constructors and
destructors are executed.

#include lIiostream.h ll

class my class
{ -

int i;
public:

my class(int x);
-my_class();
show()

{cout « i;}
};

my class::my class(int x) { - -
i = x;

}
cout « IIExecuting constructors II « i « lI\nll;

my class::-my class() { - -
i = 0;
cout « IIExecuting desctructor \nll;

}

II declaring global objects

my_class 901(1), 902(2);
my_class g03(3);

int func();

main ()
{

}

my class main ob1(4);
my:class main:ob2(5);

func(main_ob1);

return 0 ;

98 Chapter 2

int func(my class f_obx)
{ -

my_class f_o1(6);

f_o1 = f_obx;

cout « "In func, value of i is ";

cout « "\n";

return 0;
}

Mer execution of the program, the following lines are printed:

Executing constructors 1
Executing constructors 2
Executing constructors 3
Executing constructors 4
Executing constructors 5
Executing constructors 6
In func, value of i is 4
Executing desctructor
Executing desctructor
Executing desctructor
Executing desctructor
Executing desctructor
Executing desctructor

2.4 Function and Operator Overloading

Earlier, we considered the principle of polymorphism of the object-oriented
concept. This means that one object can do many things or have many
forms. In programming terms, polymorphism is accomplished with
function and operator overloading.

This section describes various aspects of overloading, such as

• Function overloading
• Function overloading and ambiguity
• Overloading constructor functions
• Address of an overloaded function
• Operator overloading
• Operator overloading and friend function
• Overloading new and delete
• Overloading [] operator
• Overloading 0 operator
• Overloading -> operator

c++ Language 99

C Function overloading

Function overloading simply means that the same function name is used
for two or more operations. This allows for many definitions of a
function and stipulates that with each redefinition the function must use
either different types of parameters or a different number of parameters.
Because of these definitions, the function name is used in any situation.
However, the type of return value does not make any difference; these
values may be different or the same .

• Example

The next example illustrates function overloading by definition of three
functions called Cune. One has one parameter of int type; the second has
one parameter of double type; the third has two int paramters.

#include lIiostream.h ll

Iione function name but the functions are different

int func(int x);

int func(int x, int y);

double func(double x);

main ()
{

cout « func(20) « lI\nll;
cout « func(20, 10) « lI\nll;
cout « func(20, 10) « lI~nll;

~

}

II This function has one parameter of int type

int func(int x)
{

return x;
}

IIThis function has two parameters of int type

int func(int x, int y)
{

}
return x*y;

II This function has one parameter of double type

double func(double x)
{

return x;
}

100 Chapter 2

C Function overloading and ambiguity

Earlier, we saw function overloading where two or more functions are
defined with the same name but different types or numbers of
parameters.

It is possible to create a situation where the compiler cannot decide
which function to choose. In an ambiguous situation the compiler simply
flags the statement as an error; in such cases the compilation will not be
successful.

c++ automatically converts data from one type to another and this also
applies to arguments passed to a function. Let's say a function receives
a double value:

int func(double x);

When it is invoked, you may pass a character, for example,

cout « func('c'»; II not an error

The statement where fune is invoked is not erroneous because the
compiler applies a data conversion .

• Example

The following example illustrates a case of ambiguous and unambiguous
calls.

#include "iostream.h"

float func(float x);

double func(double x);

main ()
{

}

cout « func(20.2) « "\n"; II unambiguous call

cout « func(20) « lI\nll; Ilambiguous call

float func(float x)
{

return x;

}

double func(double x)
{

return x;
}

C Overloading constructor functions

c++ Language 101

Earlier, we discussed constructor functions and their main purpose, to
perform initialization tasks. These functions are no different from other
functions, except they are automatically called when an object is created.
Therefore, it is valid to overload a constructor function .

• Example

The following example illustrates overloading constructor functions. In
the definition of my_class class, there are two constructors; the first
with one integer parameter; and the second, with two integer parameters.
Note that when obI and ob2 objects are created, the arguments are
different for each, and the compiler decides which constructor function
to call.

#include "iostream.h"

class my class
{ . -

int i,j;
public:

my class (int x);,
my-class (int x, 1nt y);
show();

};

II Constructor with one parameter

my_class::my_class(int x)
{

i = x;
cout « "Constructor with one parameter \n";

}

II constructor with two parameters
my_class::my_class(int x, int y)
{

}

i = x;
j = y;
cout « "Constructor with two parameters \n";

my_class: :show()
{

cout « "Value of i: " « i« "\n";
cout « "Value of j: " « j« "\n";

}

102 Chapter 2

main ()
{

}

my class obl(2);
obI. show() ;

my class ob2(3, 4);
ob'2" • show () ;

After execution of the program, the following lines are printed:

Constructor with one parameter
Value of i: 2
Value of j: 0
Constructor with two parameters
Value of i: 3
Value of j: 4

C Address of an overloaded function

In C, as you probably know, assigning the address of a function to a
pointer is straightforward; for example,

pfunc = func;

This statement stores the address of fune function into the prune
function pointer. In a C program, there can be one and only one function
ca~ed fune. Of course, this also applies to a C++ program if fune is
unIque.

Now, with function overloading, it is possible to have two or more
functions by the same name. The question is, if you assign the address
of a function, as we just did, and there are many functions by fune,
which address will the compiler be assigned?

To find the correct address of an overloaded function, you have a
corresponding pointer whose return type and type and number of
parameters match the overloaded function .

• Example

The following example shows how to assign the address of an
overloaded function fune with one parameter to a pointer. Also, it
illustrates how to call this function using the pointer prune.

c++ Language 103

#include "iostream.h"

int func(int x);
int func(int x, int y);

main ()
{

II declare a pointer for a function that returns
II int and its one parameter is also int.

int (*pfunc) (int x);

II point to func(int x)
pfunc = &func();
cout « pfunc(lO);
return 0;

}

int func(int x)
{

return x;
}

int func(int x, int y)
{

return x*y;
}

C Operator overloading

Previously, we discussed function overloading, which leads us to
operator overloading. Both are closely related. In C++, overloading of
a function simply means that the function performs a special operator in
relation to a class. To do this special task, you create an operator
function. The operator function defines the specific operations that the
overloaded operator accomplishes in relation to a class. An operator
function can be a member or nonmember of a class. If it is not a
member, then it must be a friend function (discussed earlier in this
chapter).

The general format of a member operator function is

type class-name::operator#(argument-list)
{

Ilbody to define the operations
}

type is the return data type of the operator function, and it can be any
valid return type. Often, the operator function returns an object of the
class of which it is a member.

104 Chapter 2

class-name is the name of the class that the operator function operates
on.

operator is a keyword defining an operator function.

is a placeholder which is substituted with an operator for which an
operator function is created.

argument-list is one argument when you overload a binary operator. For
a unary operator, the argument list of the function is empty .

• Example

The following is a simple example of overloading the + operator. First
we define a class, called xy, which stores values in x and y variables. In
addition, it overloads the + operator relative to the xy class.

#include "iostream.h"

class xy
{

int x,Yi

public:
xy()
{

x=O, y=Oi
}

xy(int a, int b)
{

x=a; y=bj
}

void show()
{

cout « /Ix is " « x « "\n";
cout « "y is " « y « "\n";

}

xy operator+(xy op2)
{

} j

}

xy temp;
temp.x = op2.x + Xj
temp.y = op2.y + Yi
return tempi

main ()
{

xy ob1(100, 200), ob2(50, 300);

ob1.show(); II prints 100 and 200

ob2.show(); II prints 50 and 300

obl = obl + ob2;

obl.show(); II prints 150 amd 500

c++ Language 105

(ob1 + ob2).show(); II prints 200 and 800
}

The following example overloads the +, -, =, and ++ operators.

#include "iostream.h"

class xy
{

int x, y;

pUblic:
xy()
{

x=O, y=O;
}

xy(int a,
{

int

x=a; y=b;
}

void show ()
{

"x cout «
cout « "y

}

b)

is II «
is II «

xy operator+(xy op2);
xy operator-(xy op2);
xy operator=(xy op2);
xy operator++();

};

x
y

xy xy:: operator+(xy op2)
{

}

xy temp;
temp.x = op2.x + x;
temp.y = op2.y + y;
return temp;

xy xy:: operator-(xy op2)
{

}

xy temp;
temp.x = x - op2.x
temp.y = y - op2.y
return temp;

« "\n";
« "\n";

106 Chapter 2

xy xy:: 6perator=(xy op2)
{ .

}

xy temp;
x = op2.x ;
Y = op2.y ;
return *this;

xy xy:: operator++()
{

}

xy temp;
x++;
y++;
return *this;

main ()
{

}

xy ob1(100,200), ob2(50,300), ob3(900,900);

ob1. show () ;
ob2 • show() ;

ob1++;
ob1.show(); II prints 100 and 201

ob2 = ob1++;
ob1.show(); II prints 102 and 202

ob1 = ob2 = ob3;
ob1.show(); II prints 900 and 900
ob2.show(); II prints 900 and 900

Il Operator overloading and friend function

It is possible to overload an operator in relation to a class by using a
friend function. When doing so, there are a few points to remember:

• A friend can never be a member of a class, and it does not have a
this pointer.

• A friend function that overloads a binary operator has two paramters.
• A friend function that overloads a unary operator has one parameter .

• Example

In this program, the operator +() function is defined as a friend. This
example is similar to the previous one, where +, =, -, and ++ operators
were overloaded, except that the + operator is overloaded relative to the
xy class using the friend function.

#include Itiostream.h lt

class xy
{

int x, y,
public:

xy()
{

x=O, y=O;
}

xy(int a, int b)
{

x=a; y=b;
}

void show()
{

cout « Itx is It « x « It\nlt,
cout « It y is It « y « It\nlt,

}

friend xy operator+(xy op2);
xy operator-(xy op2);
xy operator=(xy op2);
xy operator++(),

};

xy xy:: operator+(xy opl, xy op2)
{

}

xy temp;
temp.x = op2.x + opl.x;
temp.y = op2.y + op2.y;
return temp;

xy xy:: operator-(xy op2)
{

}

xy temp;
temp.x = x - op2.x
temp.y = y - op2.y
return temp;

xy xy:: operator=(xy op2)
{

}

xy temp,
x = op2.x ;
Y = op2.y ;
return *this;

xy xy:: operator++()
{

}

xy temp;
x++;
y++;
return *this;

c++ Language 107

108 Chapter 2

main ()
{

}

xy obl(100,200), ob2(50,300);

obI = obI + ob2;

obI. show () ;

return 0;

C Overloading new and delete

·Now, let's see how to overload new and delete. The main reason for
overloading new and delete is when you are using some special
allocation method.

The general format of functions that overload new and delete is:

void *operator new(size t size)
{ -

II perform allocation

.
return p_to_memory; Ilpointer to memory

}

void operator delete (void *p)
{

II free memory pointed by p

}

size_t is an unsigned integer type.

size is the number of bytes required to hold the object.

P _to_memory is a pointer to the memory allocated by the overloaded
function. It can be a NULL pointer, if no allocation occurs as a result of
error.

p is the pointer to the memory that is to be freed.

c++ Language 109

• Example

This program shows how to overload the new and delete operators
relative to the xy class.

#include lIiostream.h ll
#include IIstdio.h ll

class xy
{ .
~nt x, y;

public:
xy () {};
xy(int a, int b) {x=a; y=b;}

void show()
{

cout « IIX is II « x « lI\nll;
cout « lIy is II « y « lI\nll;

} .
vo~d *operator new(size t size);
void operator delete(voId *p);

};

II new overloaded relative to xy

void *xy::operator new (size t size)
{ -

}

cout « IIIn function for overloaded new operator \nll;
return malloc(size);

II delete overloaded relation to xy

void xy::operator delete (void *p)
{

}

cout « IIIn function for overloaded delete operator \nll;
free (p);

main ()
{

}

xy *p1;

p1 = new xy(100, 200);

if (lp1)
{

}

cout « "Could not allocate \n";
return 1;

p1->show();

delete p1;

return 0;

110 Chapter 2

After execution of the program, the following lines are printed:

In function for overloaded new operator
x is 100
Y is 200
In function for overloaded delete operatos

C Overloading [] operator

When the [] operator is overloaded, it is considered a binary operator.
Typically, the operator []() function is used to provide array
subscripting. The general format of the operator []() function as a
member of a class is

type class-name::operator[] (int i)
{

II body
}

• Example

The following is an example of overloading the [] operator.

#include "iostream.h"

class x array
{ . -
~nt x[3];

public:
x_array(int a, int b, int c)
{

}

x[O] = a;
x[l] = bi
x[2] = c;

int operator[] (int y)

{ return x(y);}
};

main ()
{

x_type ob(l, 2, 3);

cout « ob[2]; Ilprints 3

return 0;
}

c++ Language 111

C Overloading () operator

When overloading the () function call operator, you create an operator
function to which you can pass an arbitrary number of parameters .

• Example

This example illustrates overloading () relative to the xy class. In this
case, the values of the two arguments are assigned to x and y of the
object to which they are applied.

#include "iostream.h"

class xy
{

int x, Yi
public:

xy () {};
xy(int a, int b)
{

x = a;
y = bi

} .
vOl.d show ()
{

}

cout « "x is " « x « "\n";
cout « "y is " « y « "\n";

xy operator+(xy op2)i
xyoperator ()(int s, int r);

} ;

xy xy::operator+(xy op2)
{

}

xy temp;

temp.x = op2.x + Xi
temp.y = op2.y + y;
return temp;

xy xy::operator() (int 5, int r)
{

}

x = s;
y = r;
return *this;

main ()
{

xy ob1(100, 200), ob2(10, 10);

obI. show () ;
ob1(70, 80);
ob1. show () ;
ob1 = ob2 + ob1(100, 100);

112 Chapter 2

}

ob1. show();
return 0;

After execution of the program, the following lines are printed:

x is 100
Y is 200
x is 70
Y is 80
x is 110
Y is 110

C Overloading -> operator

When the -> operator is overloaded, it is cosidered to be a unary
operator. The operator ->0 function must return a pointer to an object
that the -> operator acts on. The general usage is

object->element;

object is the object that imitates the call.

element is an element that is accessible within the object pointed to .

• Example

The following program illustrates the use of the -> pointer operator. It
shows that ob->a is the same as ob.a.

#include "iostream.h"

class my class
{ -

pUblic:

int a;

my_class *operator->(){ return this;}
} ;

main ()
{

}

my_class ob,

ob->a = 100;
cout « ob.a « II II « ob->a;
return 0;

c++ Language 113

2.5 Inheritance

Earlier, we saw how to create a class. In this section, we'll study how to
derive a class from another. This is called inheritance, one of the
fundamental principles of object-oriented programming. Now, the derived
class inherits the characteristics of the base class. In turn, a derived class
can become a base class from which other classes are derived. This is the
basic concept of inheritance.

In general, a base class is defined to have characteristics that are
common to a set of items. Therefore, inheritance allows you to build ~any
classes in a hierarchical structure where the classes of the lower level are
derived from the higher levels. From top to bottom, classes range from
generic to specific. In this section, we'll look at the following areas:

• Base class access control
• Inheritance and protected members
• Inheriting multiple classes
• When constructors and destructors are executed
• Passing parameters to base-class constructors
• Granting access
• Virtual base classes

C Base class access control

The general form used to define a derived class is

class derived-class:access-specifier base-class
{

II body of the derived class
}

class is the keyword required to define a derived class from the base
class.

derived-class is the name of the class that inherits the characteristics of
a base class. After the definition, this name is used to create an object.

access-specifier is either public or private and determines how base­
class members are accessed inside the derived class. In case the access
specifier is omitted, the default is private, if the derived class is a class.
If the derived class is defined with struct, the default access is public
in case the access specifier is omitted.

114 Chapter 2

public means that all public members of the base class become public
in the derived class, and all protected members of the base class become
protected in the derived class.

private means that the private elements of the base class are not
accessible in the derived class.

base-class 'is the name of the class whose characteristics are inherited by
the derived class .

• Example

The following program illustrates inheritance of a class. In this case,
xy _base is the base class and its characteristics are inherited by the
z_derived class. Note that the access specifier is public; therefore, all
public elements of xy _base are accessible to z _derived.

#include "iostream.h"

class xy base
{ -

int x,y;

pUblic:

void set_xy(int a, int b)
{x=a; y=b;}

void show_xy()
{cout « x « " " « y « "\n";}

};

class z derived:public xy_base
{ -

int z;

public:

z derived (int d)
-{z=d;}

void show_z ()
{cout « z « "\n";}

};

main ()
{

z_derived ob(300);

II x and yare accessed from ob of z_derived class

ob.set_xy(lOO, 200);

c++ Language 115

ob.show_xy(); II prints 100 and 200

ob.show z(); II access member of derived class
- II prints 300

}
return 0;

Now, let's define z_derived with the private access specifier.

#include "iostream.h"

class xy base
{ -

int x,y;

public:

void set_xy(int a, int b)
{x=a; y=b;}

void show_xy ()
{cout « x « " " « y « "\n";}

};

class z derived:private xy_base
{ -

int z;

pUblic:
z derived (int d)
- {z=d;}

void show_z ()
{cout « z « "\n";}

};

main ()
{

z_derived ob(300);

II it will produce an error:
II set xy() and show xy are not accessible from ob
II This program will-not compile successfully.

}

ob.set_xy(100, 200);

ob.show_xy();

ob.show_z(); II access member of derived class

return 0;

116 Chapter 2

C Inheritance and protected members

Earlier in this chapter, we briefly looked at protected members of a
class. The protected member is of great interest to us particularly in
relation to derived classes as it adds more flexibility to the mechanism
of inheritance. When a member is protected, it is similar to a private
one; both are accessible to members of the class but not to nonmembers.
However, both differ significantly when class members are inherited.

A member that is declared as private in the base class, is not accessible
in any derived class. Now, if a member is public and a base class is
inherited as public, all the protected members of the base class become
protected members of the derived class; therefore, such members are
accessible in the derived class. In conclusion, by using the protected
keyword, members can be private to the base class, yet accessible by
the derived class.

A derived class can be a base class for another derived class. As we saw
previously, the protected members of the original base class become
protected in both the first and second derived classes. In this situation,
the first derived class is the base class of the second .

• Example

In the next example, my_class is the base class which is used to derive
derived_class. Note that the elements of my_class are accessible in
derived_class by using the protected keyword in the base class and
declaring the derived class as public.

#include "iostream.h"

class my class
{ -

protected:

int X,Yi //private to base,
//yet accessible in derived class

public:

void set_xy(int a, int b)
{x=aiy=bi}

void show_xy()
{cout « x « " " « y « "\n"i}

};

c++ Language 117

class derived class:public my_class
{ -

int Z;

public:

II derived class can access base members
void set z ()

{z=x+y; }
void show_z ()

{cout « z « " \n";}
};

main ()
{ .

der1ved_class obi

}

ob.set xy(2, 3); II x and yare known
- II to derived_class

ob.show xy(); II x and y known to derived_class
- II prints 2 and 3

ob.set_z();
ob.show z(); II prints 5
return "0";

The next example shows how a derived class can be a base class for a
second derived class. The protected members x and y of my_class are
accessible by derived _ class2.

#include "iostream.h"

class my class
{ -
protected:

int x,y; Ilprivate to base,
Ilyet accessible in derived class

public:
void set_xy(int a, int b)

{x=a;y=b;}
void show_xy()

{cout « x « " " « y « "\n";}
};

II x and ¥ are accessible
class der1ved classl: public my_class
{ -

int z;
public:

void set_z()
{z=x+y;}

void show _z ()
{cout « z « "\n";}

};

118 Chapter 2

II x and yare accessible

class derived class2: public derived_classl
{ -

int n;
public:

void set_n()
{n=x-y; }

void show_n()
{cout « n « "\n";}

};

main ()
{

}

derived classl obI;
derived=class2 ob2;

ob1.set_xy(20, 30);

obl.show_xy(); II prints 20 and 30

obl.set_z();

obl.show_z(); II prints 50

ob2.set_xy(30, 40);

ob2. show_xy () ;

ob2.set_z();

ob2 .set_n();

II prints 30 and 40

ob2.show_z(); II prints 70

ob2.show_n(); II prints -10

return 0;

C Inheriting multiple classes

It is possible for a class to be derived from two or more base classes .

• Example

The following example illustrates how a derived class, called
derived_xy, inherits two base classes my_x and mYJ.

#include "iostream.h"

class my x
{ -
protected:

int X;
pUblic:

show_x ()
{cout « X « "\n";}

};

class mYJ
{
protected:

int Y;
pUblic:

showJ()
{cout « y « "\n";}

};

c++ Language 119

Iiderived xy inherits 2 base classes
class derrved xy: public my x, public my v { - - ~

pUblic:
void set_xy(int a, int b)

{x=a; y=b;}
};

main ()
{ .
der~ved_xy obi

ob.set_xy(100, 200); II set xy found
II in derived class

ob.show_x(); II show X found in base class
- II prints 100

ob.showJ(); II showJ found in base class
II prints 200

return 0;
}

C When constructors and destructors are executed

It is possible to have constructors and destructors in both base and
derived classes. It begs the question of ·when constructors and destructors
are executed.

At the moment an object of a derived class is created, if the base class
consists of a constructor, it will be executed first, followed by a
constructor of a derived class. Conversely, when a derived class is
destroyed, its constructor function is called first, followed by the
execution of any destructor function of the base class.

If a derived class becomes the base class of another derived class, the
same general rule applies. Constructor functions are executed from the
higher to lower derivations, and the destructor functions are called in
reverse order.

120 Chapter 2

• Example

The following example shows the order in which constructors and
destructor functions are called in both base and derived classes.

#include "iostream.h"

class my_base
{ ,

public:

my_base ()
{cout « "Constructor function of my_base \n";}

-my base ()
{Cout « "Destructor function of my_base \n";}

} ;

class my derived: public my_base
{ -
public:

my_derived~)
{ cout « 'Constructor function of my_derived \n";}

-my_derived()
{ cout « "Destructor function of my_derived \n";}

} ;

main ()
{ .
my_der~ved obi

return 0;

}

Mer execution of the program, the following lines are printed:

Constructor function of my base
Constructor function of my-derived
Destructor function of my aerived
Destructor function of my=base

C Passing parameters to base class constructors

You can pass parameters to base constructor functions when you create
an object of a derived class. This is done by declaring the derived
constructor with an expanded form of the constructor function of the
derived class. This allows you to pass parameters to one or more base
constructors. The general form of this expansion version is

c++ Language 121

derived constructor (arg list): basel(arg list),
base2 (arg_list) , -

.
baseN(arg_list)

{ II body of the derived constructor
}

derived constructor is the name of the constructor function of the
derived-class.

basel through baseN are names of the base classes used to derive the
new class.

arg_list is the list of arguments that are passed to the base or derived
functions .

• Example

In the next program, the constructor function called my_derived is
declared using an extended form where a and b are arguments. Note that
a belongs to my_derived and b to my_base.

#include "iostream.h"
class my base
{ -
protected:

int x;
pUblic:

my_base (int a)
{

x = a;
cout « "In Constructor function of my_base \n";

}
-my base ()
{ -

cout « "In Destructor function of my_base \n";
}

};

class my_derived: public my_base
{

int y;
public:

II my derived uses a ; my base uses b
void my derived(int a, int b) : my_base(b»
{ -

y = a;
cout « "In constructor of my_derived \n";

}

122 Chapter 2

void -my derived()
{ -

cout « "In destructor of my_derived \n";
}

void show_xy ()
{
cout « x «" "« y « " \n";

}
} ;

main ()
{ II . . 30 ~s passed to my der~ved and 40 to my_base

my_derived ob(30, 40);

ob.show_xy(); II prints 30 and 40

return 0;

}

C Granting access

In some situations you may want to grant access to a member of a
derived class by a nonmember. One such case is when a base class is
inherited as private, and all the members of the derived class-public,
protected, or private-automatically become private. You can grant
access to anyone of these inherited members by using an access
declaration in the definition of the derived class.

The general form is

base_class::member;

This declaration is placed in the appropriate access category (public,
private, or protected) of the derived class .

• Example

In the following program fragment, ~y _base class is inherited as private
by my_derived class. And x is granted public access in the definition
of my_derived.

class my_base
{

public:

int x; II public in my_base
};

II my_class is inherited as private

class my derived: private my base {- -

II x is granted public access

} ;

C Virtual base classes

c++ Language 123

When a class is derived from one or more base classes, there is a chance
of introducing ambiguity; such a program will not compile successfully.
When two or more objects are derived from the same base class,
mUltiple copies of the base class are present in the derived object. There
are two ways of resolving ambiguity: by using a resolution operator or
a virtual base. The scope resolution operator (::) is used to explicitly
refer to a member of a base class. The following example shows the
ambiguity and how it is remedied using the scope resolution operator.
The other way is to prevent multiple copies of the base class from being
present in a derived class when the base class is declared as virtual. To
do so, you simply place the virtual keyword in front of the base-class
name when it is inherited .

• Example

The following example shows how ambiguity occurs and how it is
resolved with a scope resolution operator. Because of errors, this
program will not compile successfully.

#include "iostream.h"

class my_base
{ .
publl.c:

int x;
};

II derived_class_l inherits my_base

class derived class 1: public my_bas.e { --

public:

int y;
};

124 Chapter 2

II derived_class 2 also inherits my_base

class derived class 2 { --
pUblic:

int z;
};

public my_base

II derived class 3 inherits derived class 1 and
II derived-class-2. Therefore there-are two copies
II of my_base in-derived_class_3.

class derived class 3 : public derived class 1,
- publrc derived_class_2 - -

{ .
publ~c:

int a;
};

main ()
{ .
der~ved_class_3 obI

}

ob.x = 10 ; II This is ambiguous

II This not ambiguous

ob.derived_class_2::x 10

ob.y = 20;
ob.z = 20 ;

II ambiguous, which x ?

ob.a = ob.x + ob.y + ob.z;

II resolved with the scope operator

ob.a = ob.derived_class_l::x + ob.y + ob.z;

cout « "Sum is " « ob.a « "\n";

return 0;

The next program is similar to the previous one, except that only one
copy of my base is created in the ob object. This is achieved by using
virtual base classes.

#include "iostream.h"

class my base
{ -
public:

int x;
} ;

c++ Language 125

II derived_class_l inherits my_base

class derived class 1: virtual public my_base { --
public:

int y;
};

II derived_class 2 also inherits my_base

class derived class 2
{ --
public:

int Z;
};

virtual public my_base

II only one copy of my_base is created

class derived class 3 : public derived class 1,
- publrc derived class 2 - -

{ - -
public:

int a;
};

main ()
{ .
der~ved_class_3 Obi

}

ob.x 10; II not ambiguous,
II only one copy of x is created

ob.y = 20;
ob.z 30;

ob.a ob.x + ob.y + ob.z ;

cout « "Sum is " « ob.a « "\n";
II prints "Sum is 60"

return 0;

2.6 Virtual Functions

A virtual function is declared in a base class with the virtual keyword and
then it is redefined.

Before we go any further, let's consider at why you would want to use
a virtual function. Earlier in this chapter, we discussed polymorphism in
relation to functions. In other words, you can have one interface but
multiple functions by overloading. This is called compile-time
polymorphism. At this time, the compiler decides which one of the many
functions to call. However, in C++ there is a run-time polymorphism. This
is accomplished by both inheritance and polymorphism, which is the topic
of discussion in this section.

126 Chapter 2

To understand the run-time polymorphism, let's look at a pointer of a
base class. Such a pointer can be used to access any derived-class function.
The value of such a pointer is not known until the program is executed.
Let's say there is a function called fune defined in the base class which
is inherited in two derived classes, derivedl and derived2. Also, there are
two objects of the derived classes called obI and ob2. The ambiguity
occurs when the base pointer is to call a base function from an object of
the derived .class. In the case we described above there are two versions
of fune in the two objects of the derived class. Now, the question is which
function the pointer will point to.

The following example shows a virtual function. virtual_fune is
declared in the my_base base class. Subsequently, derived_l and
derived_2 are derived classes of my_base. In both cases, virtual_fune is
redefined.

In the main function, we see how three functions called by one name
(virtual_function) is called using a pointer of the base class. In this
example, the virtual functions in base and derived classes are executed.
Note that the virtual keyword is used in the base class and not in the
derived classes.

#include "iostream.h"

class my_base
{ .
publ~c:

};

virtual void virtual_func()
{

cout « "Executing virtual_func of my_base \n";
}

class derived_1: public my_base
{

public:

void virtual_func()
{

cout « "Executing virtual_func of derived_l \n";
}

} ;

class derived 2: public my_base
{. -
publ~c:

void virtual_func()
{

cout « "Executing virtual_func of derived_2 \n";
}

} ;

main ()
{

}

my_base *pfunc, obI;

derived I ob2;
derived=2 ob3;

II point to the my_base

pfunc = &obl;

II access virtual_func of my_base

pfunc->virtual_func();

II point to derived_1

pfunc = &ob2;

II access virtual_func of derived_1

pfunc->virtual_func();

II point to derived_2

pfunc = &ob3;

II access virtual_func of derived_2

pfunc->virtual_func();

return 0;

c++ Language 127

After execution of the program, the following lines are printed:

Executing virtual func of my base
Executing virtual-func of derived I
Executing virtual=func of derived=2

I

i,

Chbpter

Compiling and Linking C and C++
Programs

This chapter is designed as a reference guide for programmers. It discusses
the processes of compiling and linking programs using C Set++. It covers
various topics to give developers helpful information such as

• Software requirements

• Compiler files

• Invoking the compiler

• Compiler options

• Compiler return codes

• Invoking the linker

• Linker environment variables

• Linker error messages

• Correct compiler options

• Correct run-time libraries

• Static and dynamic linkage

• Multithreading

129

130 Chapter 3

3.1 Software Requirements

Before using the C Set++ compiler, you must install several pieces of
software as well as set up the environment.

C Complier

The compiler is automatically installed when you install the C Set++
product. The compiler is a program that translates a C or C++ source
program into object code. The rest of this chapter describes the input
files, output files, format, options, and how to invoke the compiler.

CLinker

The linker is called LINK386. It is distributed with the OS/2 Toolkit.
This program combines object files, produced by the compiler, and
converts them into an executable module. In other words, you can run
the program. The linker is discussed in more detail later.

C Run-time libraries

The C Set++ compiler is supplied with object code that is used by your
program while it is running. The linkage to this library code is resolved
by the linker; you need not be concerned with how it is done. However,
these run-time libraries must be installed in the directories known to
OS/2.

C Debugger

The debugger comes with the C Set++ and is a software product to help
you locate logical errors in your program.

C Editor

An editor is required to create and change your C source program. OS/2
comes with two editors. One editor performs basic editing functions and
is invoked by typing the E command. The other is Enhanced Editor,
invoked by typing the EPM command. In addition to basic functions, it

Compiling and Linking C and C++ programms 131

has many features specially geared toward software development.

C Class browser

The c++ class browser allows the user to understand the complex
relationships between C++ objects. It comes with the C Set++ product.

C Environment setup

The compiler uses many OS/2 environment variables when compiling a
program. For the compiler to work properly, these variables must be
initialized with the appropriate values. After the installation of any of the
software mentioned earlier, the CONFIG.SYS file is changed such that
the values are initialized during the OS/2 startup time. In case you notice
that the compile and link processes are not going well and you suspect
that the variables are not set up properly, then run a command file called
CSETENV.CMD. This command file is supplied with the C Set++.

You should keep in mind that the value lasts as long as the current OS/2
session. In other words, when you boot OS/2, subsequently you will
have to set up the variable values again during startup time or at the
command line. The variables are PATH, DPATH, INCLUDE, LIB,
TMP, and ICC.

CPATH

The PATH variable contains directories that are used by the OS/2
system to locate executable files. In this case, you specify directories,
separated by a semicolon (;), of the compiler and linker programs.
Remember that OS/2 uses the PATH variable to search for many other
executable modules; therefore, their directory entry must not be changed .

• Example

In the following example, the paths C:\CSET2\BIN and C:\LINK are
added to the environment variable. The parameter % PATH % means to
append the new values to the original one.

SET PATH=C:\CSET2\BIN;C:\LINK;%PATH%

132 Chapter 3

CDPATH

The DPATH variable is used to specify directories which are to be
searched by the compiler for help and message files.

• Example

In the following example, two paths, C:\CSET2\MESS and
C:\CSET2\HELP, are added to the original value of DPATH.

SET DPATH=C:\CSET2\MESS;C:\CSET2\HELP;%DPATH%

C INCLUDE

The INCLUDE variable is used to specify directories which are
searched by the compiler for header (include) files.

• Example

In this example, the path C:\CSET2\INCLUDE is added to the original
value of INCLUDE.

SET INCLUDE=C:\CSET2\INCLUDE;%INCLUDE%

CLIB

The LIB variable is used to specify C Set++ libraries, used by the
linker.

• Example

In the following example, the path C:\CSET2\LIB is added to the
original value of LIB.

SET LIB=C:\CSET2\LIB;%LIB%

I]TMP

The compiler uses a directory listed in the TMP variable to create
working files. After compilation is terminated, all these temporary files
are erased.

Compiling and Linking C and C++ programms 133

• Example

In the following example, the variable TMP is initialized to the path
C:\CSET2\TMP. Make sure that the specified path exists before using
it with the SET command.

SET TMP=C:\CSET2\TMP

DICC

The ICC variable is used to list all the default compiler options. With
this variable you can also include any filenames. You would use this
facility to list options that are used frequently. These options are
overridden by options on the command line when invoking the compiler.
All the compiler options are listed later in this chapter .

• Example

In the following example, the ICC variable is set to compile source files
help.c and action.c and include IC option. You can override any option
at the time the compiler is invoked.

SET ICC= help.c action.c IC

3.2 Compiler Files

The compiler uses many different types of files. These files can be
grouped into three categories: input files, output files, and work files. Each
file has a specific extension to distinguish it from other files. The
following is a list of default files with an indication of the type and a brief
description of the content.

Extension Type Description

.asm Output This file contains assembly listings for each C
source program produced by the compiler .

. brs Output This file, generated by the compiler, contains
information for browsing program source code .

. c Input This file contains the C source program for
which the compiler produces the object file.

134 Chapter 3

Extension Type Description

.cpp Input This file contains the C++ source program for
which the compiler produces the object file .

. cxx Input This file contains the C++ source program for
which the compiler produces the object file .

. ctn Work Temporary file .

. def Input Definition file .

. dll Output This file contains dynamic-link libraries
produced by the linker from one or more object
modules .

. exe Output This module contains executable code produced
by the linker from one or more object modules .

. h Input This is a header or include file that contains
portions of C programs (macros, data definitions,
statements, etc.) to be incorporated during
compilation. The #INCLUDE directive is used
to merge the include file with the source .

. hpp Input This is a header or include file that contains
portions of C++ programs that are merged with
the main source program during compilation.
The #INCLUDE directive is used to specify an
include file in the source program .

• 1 Output This file is produced by the preprocessor for
each source program. It contains information that
can be used for debugging your program .

.I Work Temporary file .

.1st Output This file is produced by the compiler; it contains
information such as the source program, any
error message, date and time of compilation, and
compiler options.

Extension Type

. lib Input

Compiling and Linking C and C++ programms 135

Description

This file is an object library that contains one or
more object modules. It is used by the linker
when generating an executable file .

. m Input Temporary file.
or Output

.map

.obj

.w

.wh

.wl

. wli

Output

Output
or
input

Work

Work

Work

Input
or output

This file contains a memory map produced by
the linker. This file is useful for program
debugging.

This file contains object code for each
source program produced by the compiler.
Subsequently, this file is used by the linker to
produce an executable file.

Intermediate file.

Intermediate file.

Intermediate file.

Temporary file .

3.3 Invoking the Compiler

• General format

ICC [/option ••] [source-name or
object-name or
library-name or
def-file-name] •••]

• Description

The C Set++ compiler is invoked in three ways: OS/2 command line,
WorkFrame/2, or command file (.CMD). In all cases the syntax is the
same. If the compilation of a source program is successful, ICC

136 Chapter 3

automatically calls the linker (LINK386). However, if you do not want
the linker to be invoked, use /C+ options with the ICC command. ICC
is the compiler program.

option specifies a task that the compiler must or must not perform.
There are two types of options. One type applies to a file such as a
source program, object file, library, or definition file. Other options
apply globally to all the files in the ICC command. The options are
discussed in more detail in the next section.

source-name is the name of a source program.

object-name is the name of an object module.

library-name is the name of a C library.

del-file-name is the name of a definition file .

• Example

To compile and link a program myprog.cpp, enter

ICC myprog.cpp

The compiler will create an object file MYPROG.OBJ in the current
directory (e.g., \MYWORK) and an executable file MYPROG.EXE. To
run this program, at the command line, simply enter

myprog <Enter>

Now, if you want to compile only, enter

ICC /C+ myprog.cpp

In the example,

ICC myprog.cpp routinel.c routine2.c

the compiler will compile three programs (myprog.cpp, routinel.c, and
routine2.c) and produce three object files (myprog.obj, routinel.obj,
and routine2.obj). Next, the linker uses these object files to produce one
executable file MYPROG.EXE in' the current directory (e.g.
\MYWORK). If an executable file is not explicitly specified, when you
call the compiler, it will assign to the executable file the same name as
the first source name of the command.

Compiling and Linking C and C++ programms 137

In these previous examples only a few programs are involved. In a large
scale program, you could conceivably have hundreds of files. For a
larger number of files, it is impractical to issue compiler commands as
we have just seen. Another way to handle source files, where they are
compiled and linked automatically is to use the NMAKE utility. This
utility is discuused in detail later in this book.

3.4 Compiler Options

As mentioned earlier, options are used to instruct the compiler to do
special processing. This section lists all the options available with C Set++.
This list is extensive and often cryptic. It is very unlikely that you will use
all of them during your programming career.

Earlier in this chapter, we discussed the general format of invoking the
compiler, namely, the ICC (compiler name) followed by option and
filenames. Before using the option it is important to understand the format,
primary option, suboption, and parameters.

• General option format

< / or - > options [suboption][parameter]

• Description of format

The options are not case-sensitive; therefore you can use lowercase,
-uppercase, and mixed-case characters. For example, ILs is the same as
/Is. Depending on the needs, you can specify no option or many
options, but always bear in mind that the compiler uses the default
values for the options not listed.

/ or -, as mentioned before, is the start of an option.

suboption specifies different operations with an option. In this book it
will be in lowercase characters.

parameter is optional and can be a string, filename, switch, or number.

String: A string, if required by an option, must be placed
immediately after the option. If a blank is part of the string, it should
be enclosed in double quotes, for example, N" Version 2.1".

138 Chapter 3

Filename: With a filename you can specify a full path, such as !Fe
C:\bin\prop.exe. If you omit the extension, the compiler will use the
default values (see section on compiler files).

Switch: Some options require a switch which is a plus (+) or minus
(-). A switch indicates to the compiler whether to perform a task. For
example, /Gf+ means to generate code for fast floating-point
execution, and /Gf-, not to generate such a code. If you omit the
switch, then the compiler assumes a plus, for example, /Gf is the
same as /Gf+. Some examples of switches are

ICC /La /C- /0+ main.cpp

Numbers: A number, if required by an option, must be placed
immediately after the option, following a space. If more than o.p.e
member is specified, they should be separated by commas; for
example,

/Sg 10,32

option is a character symbol denoting the facility and will appear in
uppercase characters throughout this book.

The options are divided into the following categories:

• Output management
• #include file search
• Program listing file
• Debugging and diagnostic Information
• Source code
• Preprocessor
• Code generation

The following is a description of all the compiler options.

C /B-pass parameter to the linker

lB"parameter" is used to pass options to the linker, when the compiler
is invoked.

Compiling and Linking C and C++ programms 139

parameter is a string, enclosed in double quotes, that is sent to the
linker. The default is that the compiler does not send any parameter to
the linker.

• Example

Pass /NOI ~arameter to the linker:

ICC /B"/NOI" myprog.c

D Ie-Invoke the linker

J /C+ Produce object module only (compile only, not link).
/C- Produce executable file (compile and link a program). This is the

default.

• Example

Compile program only:

ICC /C+ myprog.c

D IO-deflne preprocessor macro

ID name[::n] or IDname[=n]
Define a preprocessor macro, where name is the name of the macro
and n is the value assigned to it.

• Example

Define DEBUG macro:

ICC /0 DEBUG=! myprog.c

140 Chapter 3

C /F-output file management

lFa- Do not produce an assembler listing file. This is the default.

lFa+ Produce an assembly listing file; the filename is the same
as the source file, but with extension .ASM.

lFa name Produce an assembler listing file and call it name.ASM.

1Fb- Do not produce a browser file. This is the default.

1Fb+ Produce a browser file with extension .BRS.

IFc- Compile and produce output files depending on other
options. This is the default.

IFc+ Check the syntax of the program only. With this option an
object file is not produced, but you can request a program
listing with this option.

IFd- Produce internal work files in memory. This is the default
for C code, and this option cannot be specified for C++
code.

IFd+ Produce work files on disk in the directory specified in the
TMP variable.

lFe name Specify the name of an executable file or DLL. The default
is to assign the executable file the same name as the first
source file, but with extension .EXE or .D LL.

lFi- Do not produce a precompiled include file. This is the
default.

lFi+ Produce a precompiled include file.

IFI- Produce a listing file and give it the same name as the
source file. This is the default.

IFI name Specify the name of the listing file, where name is the
filename.

IFm- Do not produce a map file. This is the default.

Compiling and Unking C and C++ programms 141

/Fm+ Produce a map file and give it the same name as the source
file with extension .MAP.

/Fm name Produce a map file, where name is the filename.

/Fo+ Produce an object file and give it the same name as the
source file with extension .OBJ. This is the default.

/Fo- Specify not to produce an object file.

/Fo name Specify a name of the object file, where name is a filename
with extension .OBJ.

/Ft+ Produce files for template resolution ill the TEMPINC
subdirectory. This is the default.

/Ft- Do not produce files for template resolution.

/F dir Produce files for template resolution in a specified
directory.

/Fw- Do the compilation and do not save the intermediate files.
This is the default.

/Fw+ Do the intermediate compilation only; it does not complete
the compilation.

/Fw name Do the intermediate compilation and save the output in file
name.W, name.WH, and name.WI .

• Example

Produce an assembly listing file:

ICC IFa+ myprog.c

Check the systax of the program:

ICC IFc+ myprog.c

Produce a listing file:

ICC IFl prog.lst myprog.c

142 Chapter 3

C /G-code generation f /Gd-

/Gd+

[/Ge+

/Ge-

/Gf-

/Gf+

/Gh-

/Gh+

/Gi-

/Gi+

\
/Gm-

/Gm+

/Gn-

/Gn+

/Gr-

/Gr+

/Gs-

/Gs+

Statically link the run-time libraries. This is the default.

Dynamically link the run-time libraries.

Build an .EXE file. This is the default.

Build a .DLL file.

Disable the compiler to use the fast floating-point
execution. This is the default.

Enable the compiler to use the fast floating-point execution.

Disable code for EXTRA. This is the default.

Enable code for EXTRA. (You must also specify /fi with
this option.)

Disable use of fast integer execution. This is the default.

Enable use of fast integer execution.

Link with the single-thread version of the library. This is
the default.

Link with the multithread version of the library.

Search the default libraries, according to the /G option. This
is the default.

Do not search the default libraries; all libraries must be
explicitly specified.

Disable object code to run at ring O. This is the default.

Enable object code to run at ring O.

Do not remove stack probes. This is the default.

Remove the stack probes.

/Gt-

/Gt+

/Gu-

/Gu+

/Gv-

/Gv+

/Gw-

/Gw+

/Gx-

/Gx+

/G3

/G4

• Example

Compiling and Linking C and C++ programms 143

Do not allow variables to be passed to 16-bit functions.
This is the default.

Allows all variables to be passed to 16-bit functions.

Allow external functions be use data defined in
intermediary files. This is the default.

Let the data be used only within the intermediate files being
linked.

Do not handle DS and ES registers in any special way. This
is the default.

Save the content of DS and ES registers on entry to an
external function, set them to the selector for DGROUP,
and restore them when returning from the function.

Do not execute FW AIT instruction after each floating-point
load instruction. This is the default.

Execute an FW AIT instruction after each floating-point
load instruction.

Do not remove C++ exception handling data. This is the
default.

Remove C++ exception handling data.

Optimize the code for 80386 processor. This is the default.

Optimize the code for 80486 processor.

Optimize the code for 80486:

ICC /G4 myproq.c

Disable the use of fast integer execution:

ICC /Gi- myproq.c

144 Chapter 3

C IH-set significant length of external names

1H255

IH num

• Example

Set the first 255 characters of external names to be
significant. This is the default.

Specify the first number of characters of the external names
to be significant, where num ranges between 6 and 255 .

Specify the 40 first characters of external names to be significant:·

ICC 18 40 myprog.c

C II-specify Include file

II path [;path] tells the compiler which directories to search for files
specified in the #include directive. The default is to
look for include files in the directory where source files
are found, and then look at the directories listed in the
INCLUDE environment variable .

• Example

Specify the path for the include file:

ICC II C:\MYWORK\INCLUDE myprog.c

C IJ-set default char type

/J+ Set unspecified variables of char type to unsigned char. This
is the default.

/J- Set unspecified variables of char type to signed char.

Compiling and Linking C and C++ programms 145

• Example

Set unpsecified char variables to signed char:

ICC /J- myprog.c

elK-diagnostic and debugging Information

/Ka- Suppress messages about assignment operations that may
diminish precision. This is the default.

/Ka+ Produce messages if assignment operations are
inappropriate for long values.

/Kb-

V /Kb+

/Kc-

/Kc+

/Ke-

/Ke+

1Kf-

v lKf+

/Kg-

/Kg+

00-

Suppress all basic diagnostic messages. This is the default.

Generate all basic diagnostic messages.

Suppress warning messages produced by the preprocessor.
This is the default.

List warning messages produced by the preprocessor.

Suppress all messages that are caused by usage of enum.
This is the default.

Produce messages that are caused by the usage of enum.

Set all diagnostic messages off. This is the default.

Set all diagnostic messages on.

Suppress messages caused by the usage of the goto
statement. This is the default.

List all messages caused by the usage of the goto statement.

Suppress messages caused when variables are not
initialized. This is the default.

146 Chapter 3

00+ List all messages caused when variables are not initialized.

lKo- Suppress all messages caused by portability. This is the
default.

lKo+ List all messages caused by portability.

IKp- Suppress messages caused when unused function parameters
are encountered. This is the default.

IKp+ List all the messages caused when unused function
parameters are encountered.

/Kr- Suppress messages about name mapping. This IS the
default.

/Kr+ List messages caused by name mapping.

IKt- Suppress messages caused by the preprocessor trace. This
is the default.

IKt+ List all the messages caused by the preprocessor trace.

1Kx- Suppress messages when unreferenced external variables are
found. This is the default.

1Kx+ List messages when unreferenced external variables are
found .

• Example

List all the messages caused by the preprocessor trace:

ICC /K+ myprog.c

C /L-listlng file

/L- Do not produce a listing file. This is the default.

/L+

/La-

/La+

/Lb-

/Lb+

!Le-

!Le+

/Lf-

/Lf+

/Li-

/Li+

/Lj-

/Lj+

/Lp66

ILp num

/Ls-

/Ls+

/Lt ""

/Lt "string"

!Lu""

lLu "string"

Compiling and Linking C and C++ programms 147

Produce a listing file with heading, source program, and
error messages.

Do not include a layout. This is the default.

Include a layout.

Do not include a layout. This is the default.

Include a layout.

Do not expand macros. This is the default.

Expand all macros.

Turn off all listing options. This is the default.

Turn on all listing options.

Do not expand user #include files. This is the default.

Expand user #include files.

Do not expand any #include files (system or user). This
is the default.

Expand all #include files (system and user).

Set the page length limit to 66 lines. This is the default.

Set the page length limit as specified by num.

Exclude the source code. This is the default.

Include the source code.

Specify a null string as the title. This is the default.

Specify a title, where string is the title.

Specify a null string as the title. This is the default.

Specify a subtitle, where string is the subtitle.

148 Chapter 3

ILx-

ILx+

lLy-

lLy+

• Example

Do not generate a cross-reference table. This is the
default.

Generate a cross-reference table.

Do not generate a cross-reference table. This is the
default.

Generate a cross-reference table .

Produce a listing file with heading, source program, and error messages:

ICC IL+ myprog.c

C 1M-set calling convention

IMp Use _optlink linkage for functions. This is the default.

/Ms Use _system linkage for functions .

• Example

Use _system linkage for functions:

ICC IMs myprog.c

C IN-set error limits before aborting compilation

INn Set the number errors before compilation is terminated, where n is
the count limit. The default is not to set any limit on the number
of errors generated before the compilation aborts.

Compiling and Linking C and C++ programms 149

• Example

Set maximum number of errors to 20:

ICC /N20 myprog.c

a IO-optimizatlon switch and code generation

-/ /0- Turn the optimization of the code off. This is the default.

.; /0+ Turn the optimization of the code on.

/Oi- Do not inline any user code. The option is the default,
except when /Oi + is used.

/Oi + Inline all user functions with the _ Intine or in line keyword.

/Oi value Inline all user functions qualified with value.

/01- Do not process the code at the intermediate level of the
linker. This is the default.

/01+ Process the code at the intermediate level of the linker
before the object file is generated.

/Om- Do not limit the working set size. This is the default.

/Om + Limit the working set size to 35 Mbytes.

/Op+ Opitimize the code when the stack pointer is used. This is
the default.

/Op- Do not optimize the code when the stack pointer is used .

• Example

Do not optimize the code when the stack pointer is used:

ICC /Op- myprog.c

150 Chapter 3

C /P-preprocessor options

IP-

IPc-

IPc+

J IPd-

IPd+

Run the preprocessor and the compiler. It does not produce
preprocessor output. This is the default.

Run the preprocessor only and produce a file, with extension .1,
containing the preprocessor output.

Run the preprcessor only and produce an output file without
comments. The output file has the same name as the source with
extension .1. This is the default.

Run the preprocessor only and produce an output file containing
the comments from the source code. The output file has the
same name as the source with extension .1.

Run the preprcessor only and produce an output file without
comments. The output file has the same name as the source with
extension .1. This is the default.

Run the preprocessor only and redirect the output to stdout.

• Example

Run the preprocessor only and redirect the output to stdout:

ICC IPd+ myprog.c

C IQ-compller logo display

/0- Show the logo on the stderr. This is the default.

/0+ Do not display the logo .

• Example

Do not display logo:

ICC IQ+ myprog.c

Compiling and Linking C and C++ programms 151

C IR-control executable run-time environment

IRe Produce an executable output that runs in the C/C++ Tools run­
time environment. This is the default.

IRn Produce an executable output that will run as a subsystem. This
code does not need a run-time environment.

• Example

Produce an executable file to run as a subsystem:

ICC /Rn myprog.c

C IS-source code options

/Se Incorporate all C/C++ Tools language extensions. This
is the default.

J /Sa Conform to ANSI standards.

/Sc Conform to older versions of C++ language.

/S2 Conform to SAA (IBM Systems Application
Architecture) Level 2 standards (only for C programs).

/Sd- Set the default file extension to .OBJ. This is the
default.

/Sd+ Set the default file extension to .C.

/Sg- Do not set any margin; the entire file is used an input.
This is the default.

/Sg[~[,r or *] Set margins, where I is the left margin, r is the right
margin, and * means no margin.

/Sh- Do not allow data definition names (DDNAME). This
is the default.

152 Chapter 3

/Sh+

/Si-

/Si+

/Sm-

/Sm+

/Sn-

/Sn+

/Sp4

/Sp[l or 2]

/Sq­

/Sq[l] [,r]

/Sr-

/Sr+

/Ss-

/Ss+

/Su-

Allow data definition names (DDNAME).

Do not use precompiled include files. This is the
default.

Use precompiled include files, only if they are in
current state.

Process unsupported I6-bit keywords in the same way
as any other identifier. This is the default.

Do not process unsupported 16-bit keywords.

Disable double-byte character set (DBCS). This is the
default.

Process DBCS.

Align structures and unions along 4-byte boundaries.
This is the default.

Align structures and unions along I-byte or 2-byte
boundary.

Do not use sequence numbers. This is the default.

Use sequence numbers specified between I and r, where
I and r are columns of each line.

Use new-style rules when processing type conversion.
This style is more accurate. This is the default.

Use old-type rules when processing type conversion.

Allow only one slash (I) for comments. This is the
default.

Allow two slashes (j I) for comments.

Make all enum variables the same size as small int.
This is the default.

/Su+

/Sul

/Su2

/Su4

/Sv-

/Sv+

• Example

Compiling and Linking C and C++ programms 153

Specify all enum variables to occupy 4 bytes.

Specify all enum variables to occupy 1 byte.

Specify all enum variables to occupy 2 bytes.

Specify all enum variables to occupy 4 bytes.

Do not make use of memory files. This is the default.

Use memory files.

Conform to ANSI standards:

ICC /Sa myproq.c

a IT-specify C and C++ source file

(fc Compile the following files as C files. The default is to compile
files with extension .CPP and .CXX as C++ files and with any
other extension as C files.

(fd Compile files with extension .CPP and .CXX as C++ files and
files with any other extensions as C files. This is the default.

(fdc Compile the following files as C files.

(fdp Compile the following files as C++ files.

(fp Compile files with extension .CPP and .CXX as C++ files, and
files with . C or any other extension as C files .

• Example

Compile source file as a C file:

ICC /Tc myproq.c

154 Chapter 3

D /U-undeflne macros

IU* Undefine all macros. The default is to retain all macros.

IU name Undefine a macro, where name is the name of a macro .

• Example

Undefine DEBUG macro:

ICC /u DEBUG myprog.c

D N-version string

N"" Set a null string as version. This is the default.

N" string" Set string as version .

• Example

Set version:

ICC /V"Version 1.2" myprog.c

D /W-message control

/Wall- Do not produce diagnostic messages. This is the default.

/W grp Produce messages as specified by grp.

J /W3 Produce messages of all types.

/WO Produce messages for severe types only.

/Wi Produce messages for all errors.

/W2 Produce messages for all errors and warnings.

Compiling and Linking C and C++ programms 155

• Example

Produce messages of all types:

ICC /W3 myprog.c

C /X-search control

/Xc- Search paths listed in the /I option. This is the default.

/Xc+ Do not to search paths listed in the /I option.

00- Search path listed in the INCLUDE environment variable. This
is the default.

00+ Do not to search paths listed in the INCLUDE environment
variable .

• Example

Do not search paths listed in the INCLUDE environment variable:

ICC /Xi myprog.c

3.5 Compiler Return Codes

The compiler of C Set++ returns a return code after compiling every
source file. The return code indicates the status of the compilation
process-whether the source program is error free and linking task can
proceed. The compiler returns one of the following codes:

Return
code

o

12

Description

Successful completion of the compilation.

Compilation was completed, but errors were encountered
during the compilation.

156 Chapter 3

16 Compilation was aborted abnormally and severe error was
encountered during the compilation.

20 Compilation was aborted abnormally and fatal error was
found during the compilation.

Along with the return code, the compiler also produces messages showing
which line of the program caused an error or warning.

The message format is

filename.ext(line:col):SS EDCnnnn:text

where

filename. ext is the name of the source program where the error or
warning occurred

line is the line number of the program where the error or warning
occurred

col is the column within a line where the error or warning occurred

SS is a two digit number which is one of the following:

00 Informational
10 Warnipg
30 Error
40 Severe error
50 Fatal error

nnnn is an error message number
text is description of the error or warning

3.6 Invoking the Linker

• General format

LINK386 objfile •••
[+ or BLANK] [,exefile,mapfile,libraries,deffile]

Compiling and Linking C and C++ programms 157

[option •••][i]

or

LINK386

or

LINK386 @response-file

• Description

Earlier we saw the compiler invoking the linker. While developing
programs, you may encounter situations where it seems more
advantageous to link programs separately from the compile step. This
section describes how to invoke the linker. The following sections deal
with other related aspects of the linker, such as environment variables
and error messages.

There are three ways to run the linker at the command line

• Type LINK386, followed by all the input files and options and press
ENTER.

• Type LINK386 and press ENTER. The linker will prompt you for all
the necessary information, such as the object file, library file, and
types of output.

• Type LINK386 followed by character @ and a name of a response
file. The content of the response file is dicussed later.

When the linker is processing, it can be stopped at any time by pressing
CTRL+C, and control will be returned to OS/2.

objfile is the name of the object file, previously produced by the
compiler. If you list more than one object file, separate them with a plus
(+) or blank. This parameter is required.

exefile is the name of the output file. It can be one of the following
types: executable file, dynamic-link library or device driver. If you omit
this parameter, the linker uses the name of the first object file as the
output filename and adds .EXE, DDL, or SYS as the extension.

158 Chapter 3

mapfile is the name of the map file. If you do not require the map file
enter NUL. MAP. For more information about this file, see the 1M
option. The default map filename is the same as the executable output
file with extension . MAP .

libraries is the name of one or more libraries needed to resolve some of
the external references that are not resolved by other object files.
Multiple library names must be separated by a plus (+) or a blank. The
library files are searched for in the current directory or default
directories defined in the environment variable LIB. Also you can enter
a specific path for the directory.

deffile is the name of a module definition file. A definition file contains
module statements that define names, attributes, export functions, import
functions, and other characteristics of an OS/2 application. If you are
creating a dynamic link library or device drivers, a definition file is
absolutely required. When creating or updating a module definition file,
there are a few rules to follow:

• A NAME, VIRTUAL DEVICE, or PHYSICAL DEVICE statement
must precede all other statements.

• A comment must start with a semicolon (;) and is ignored by the
linker.

• All module definition keywords, such as NAME, LIBRARY, and
OLD, must be in all-uppercase characters.

The following is a list of module statements with a brief description.

Statement

BASE

CODE

DATA

DESCRIPTION

EXETYPE

Description

Base

Gives default attributes for code segments

Gives default attributes for data segments

Describes the mode

Identifies the operating system

Compiling and Linking C and C++ programms 159

Statement Description

EXPORTS Defines export functions

IMPORTS Defines import functions

IlEAPSIZE Names a dynamic-link library

NAME Names an application

OLD Preserves import information

PHYSICAL DEVICE Names a physical device

PROTMODE Specifies that the module runs in protected
mode

SEGMENTS Defines the attributes of one or more
segments in the application or library on a
segment-by-segment basis

STACKSIZE Controls the stack size of a program, same
as the linker 1ST option

STUB Adds a DOS (disk operating system)
executable file to the beginning of the
application or library

VIRTUAL DEVICE Names a virtual device

option is a parameter used to change the processing of the linker. Each
option starts with a slash (I), and you can list one or many options when
running the linker. The following is a list of all the linker options.

Option Description

I? Show the linker command
line syntax

IA[LIGNMENT] Align

IBASE[E] Base

160 Chapter 3

Option Description

IBAT[CH] Run in batch mode

/C[ODEVIEW] Prepare output for debugger
CODEVIEW

V IDE[BUG] Prepare output for debugger
DEBUG

IDO[SSEG] Prepare output for debuuger

IE [XEPACK] Exepack

IF [ARCALLTRANSLATION] Optimize far calls

IH[ELP] Display help information

II [INFORMATION] Display process information

IL[lNENUMBERS] Include line numbers

/M[AP] List public symbols

/NOD[EFAULTLIBRARYSEARCH] Ignore default libraries

/NOE[XTDICTIONARy] Ignore extended dictionary

/NOF[ARCALLTRANSLATION] Disable far optimizations

/NOI[GNORECASE] Preserve case sensitivity

/NOL[OGO] Disable sign-on logo

INON[ULLSDOSSEG]

INOP[ACKCODE]

/PACKD[ATA]

/PAU[SE]

Order segments without
NULLS

Do not pack contiguous code

Pack contiguous code

Pause during link processing

Option

/PMrrYPE]

/SE[GMENTS]

/ST[ACK]

/W[ARMFIXUP]

Compiling and Linking C and C++ programms 161

Description

Name application type

Set maximum number of
segments

Control stack size

Warm fixup

response-file contains the entries to the prompts of LINK386 that can be
passed to the linker in a response file. In other words, the input to the
linker is supplied through this file. The 'at' (@) symbol tells the linker
to use the filename as a response file, containing paramete.rs. For further
clarification, see examples given later in this chapter .

• Example

In this example,

LINK386 main;

the linker links the object file main.obj, resolves any external references
using the default libraries, and produces an executable file main.exe. It
does not create a map file.

In the next command, there are more parameters, including files and
options.

LINK386 label+readfile+print",mylib.lib IDE;

To understand this example, you have to recall the general format,
discussed earlier, especially the position of each parameter. The first
. three parameters label, readtile, and print, are object files. The
following three commands mean to produce an executable file label.exe
and a map file label.map. The linker searches the library file mylib.lib,
and default files to resolve external references. The ID option tells the
linker to prepare the output for debugging, and the semicolon (;) means
to ignore the module definition file.

162 Chapter 3

The next example is similar to the previous one except that it uses a
module definition file label.def.

LINK386 label+readfile+
print",mylib.lib,label.def IDe

Note that the semicolon at the end is omitted because all the input files
are implicitly or explicitly specified.

3.7 Linker Environment Variable

When LINK386 is doing a link process, it uses vital information from the
LINK environment variable. If this variable is initialized with one or more
options, the linker uses them. This variable is set to a value with the SET
command in the CONFIG.SYS or at the command line, for example,

SET LINK=/NOI ISE:256 Ico

If LINK386 is invoked subsequently, it will use the INOI, ISE:256, and
leo. In the example

LINK386 MYPROG;

the file MYPROG.OBJ is linked with the options INOI, ISE:256, and
leo.

LINK386 expects to find options listed in the variable exactly as you
would type them on the command line. And you should not add any thing
else, for example filenames in the environment variable cause the
following error message:

unrecognized option

Using the LINK environment variable is a practical way of using options
that are frequently used. Each time you run the linker, you can specify
other options in addition to the ones specified in the LINK386
environment variable. If you give an option at the command line which is
the same as in the environment variable, the effect is the same as if the
option were given once. But if an option given at the command line is in
conflict with the one listed in the environment variable, the command line
option overrides the effect of the environment-variable option. If you want
to change the environment-variable option, you reissue the SET LINK
command with new options.

Compiling and Linking C and C++ programms 163

3.8 Linker Error Messages

LINK386 produces three kinds of messages: fatal, nonfatal, and warning.
The following briefly describes each type and gives a message format.

Fatal errors: These messages are caused when the linker encounters very
serious problems with the linkage and processing steps. The format is

filename:fatal error Llxxx:text

Nonfatal errors: These messages are caused when problems are
encountered in the executable output file. Although the linker creates an
excutable file, it cannot be run from OS/2. The format is

filename: error L2xxx:text

Warnings: These messages are caused when potential problems are
encountered in the executable output file. The executable file is created
and you can run it, unlike nonfatal errors. The format is

filename:Warning L4xxx:text

filename is the name of the file where the error occurred. It can be an
object file, library file, module definition file, or the linker. In case it is a
definition file, the messages include the line number associated with the
error; for example,

label.def(3):fatal error LI030:missing internal name

If filename is an object or library file, then the source name, if it exists,
is shown in parentheses; for example,

mylib.lib(export)
print.obj(print.c)
label.obj

If the error encountered is with LINK386 itself, then filename is omitted.

xxx is a number associated with the message.

text is the description of the message.

f

164 Chapter 3

3.9 Correct Compiler Options

Developing software in the OS/2 environment can be quite complicated;
there are many aspects to consider. To get the right result from the
compiler it is important to choose the correct compiler option for the right
type of application. The options vary depending on many aspects, such as

• Linkage: static or dynamic
• Type of threading: single or multithread
• Library: standard, migration, or subsystem
• Output: executable or ddl

Figure 3.1 lists the correct options needed for the compiler with the right
combination of linkage, type of threading, library, module, and options.

Linkage Type of Library Module Options
Threading Required

Static Single Standard EXE None
Static Single Standard DLL /Ge-
Static Single Migration EXE ISm
Static Single Migration DLL ISm /Ge-
Static Multiple Standard EXE /Gm+
Static Multiple Standard DLL /Gm+ /Ge-
Static Multiple Migration EXE /Gm+ ISm
Static Multiple Migration DLL /Gm+ ISm /Ge-
Static N/A Subsystem EXE IRn
Static N/A Subsystem DLL /Rn /Ge-
Dynamic Single Standard EXE /Gd+
Dynamic Single Standard DLL /Gd+ /Ge-
Dynamic Single Migration EXE /Gd+ ISm
Dynamic Single Migration DLL /Gd+ /Sm- /Ge-
Dynamic Multiple Standard EXE /Gd+ /Gm+
Dynamic Multiple Standard DLL /Gd+ /Gm+ /Ge-
Dynamic Multiple Migration EXE /Gd+ /Gm+ ISm
Dynamic Multiple Migration DLL /Gd+ /Gm+ ISm /Ge-
Dynamic N/A Subsystem EXE /Gd+ /Rn
Dynamic N/A Subsystem DLL /Gd+ /Rn /Ge-

Figure 3.1 Combination of compiler options and specific libraries.

Compiling and Linking C and C++ programms 165

3.10 Correct Run-Time Library

It is important to specify the right run-time library for the different types
of application programs. 10 identify the right linker filename, with the
correct combination, the naming convention listed in Figure 3.2 is
convenient to use. The first four characters of the library name are
constant, but the last four position vary according to the different types and
significance of the libraries. Both Figures 3.1 and 3.2 cover all the
combinations that you would need for any kind of development.

Character position Description
12345678

DDE4
S
M
N
B
S
M
I
o

Single-thread library
Multithread library
Subsystem
EXE or DLL
Standard library
Migration library
1m port library
Object library

Figure 3.2 Naming convention for libraries .

• Example

For example, the library name DDE4SBSI is used for single-thread
programs, executable or DLL outputs, and standard and import libraries.

3.11 Linkage: Static or Dynamic

There are two types of linkages: static and dynamic; this should not be
confused with dynamic-link libraries.

Static linkage: This means that all the run-time functions are included in
the final copy of the program, whether it is executable or DLL. Obviously,
this makes the output files larger because they contain all the C or C++

166 . Chapter 3

functions. Although this method requires more storage, on disk or memory,
for programs, it is easier to distribute and may even run faster than its
counterpart dynamic linkage.

Dynamic linkage: Unlike the static linkage, in this method the target rules
do not include run-time library functions. At runtime all the external
references are resolved, thus making the output files smaller than the static
linkage method. The down side of this method is that it may decrease
execution performance.

3.12 Multithread Programming

Multithread is a method of dividing a program or process into many
threads. A thread is a small unit of execution within a process. Execution
of many threads occurs concurrently, while in a single-thread program,
each function-a process- starts and ends after another one is completed.

Because of the nature of multithreading, programming of this method is
complex. This section is not about concepts and theoretical aspects of
multi threads. It describe a few programming steps that you might find
useful if you are already familiar with this technique. For more in-depth
discussion of multithread and multitasking, refer to IBM Programming
Guide.

This section will first make you aware of some of the variables and
functions related to multithread programming. Then, we will look at an
example of multithread programming, using some of these functions and
variables. Finally, we will see how to compile, link, and execute the
sample program.

3.12.1 Functions

This section gives specific information about some functions found in C
or C++ libraries or OS/2. You will find this information useful when
writing multithread programs. This section discusses some of the
restrictions and nature of the _ begin~read function. This function produces
a new thread. Under OS/2 you can produce up to x threads. You must use
this function if your program is calling any of the language library
functions. This allows the the C and C++ intialization routines to handle

Compiling and Linking C and C++ programms 167

resources and data between threads. There is an OS/2 function to produce
threads called DosCreatThread. You must remember that this function
does not have access to the resource management facilities.
DosCreatThread is used with the subsystem libraries.

_endthread: This function is used to end a thread.

abort: This function ends all threads within a process.

exit: This function ends all threads within a process.

signal: This function registers signal handlers independently for each
thread.

Jlutenv: A thread can call this function to set the environment
variables. You can access the latest data from the environment variables
with the ~etenv function.

DosCreateThread: This function produces an asynchronous thread
within a process.

DosEnterCritSec: This function is used to disable thread switching for
the current process.

DosExit: This function ends a thread within a process.

DosExitCritSec: This function enables the thread switching for the
current process.

DosGetInfoBlocks: This function gets the address of the thread
information block (TIB) and process information block (PIB).

DosKilIThread: This function ends a thread in the current process.

168 Chapter 3

DosResumeThread: This function restarts a previously suspended
thread.

DosSetPriority: This function is used to change the priority of a process
or thread.

DosSuspendThread: This function is used to suspend execution of a
thread within a process.

DosWaitThread: This function is used to wait for another thread to end.

3.12.2 Variables and data structures

There are a few variables to consider when you write multithread
programs. This section briefly describes these variables.

Name

_thread

ermo

_environ

_doserrno

3.12.3 Examples

Description

A global variable that contains the current thread

A variable containing the current error number for
each thread, implemented as a per-thread global
variable

An environment variable implemented as a per­
thread global variable and is shared by multithread
and single thread programs

A variable that contains the current error for each
thread; implemented as a per-thread global variable.

The next program illustrates in a simple way the concept of multithread
programming. Let's call it mthread.c. It contains two threads, threadl and
thread2.

Compiling and Linking C and C++ programma 169

/*--/ * Program: MTHREAD. C
/* This program illustrates multithread programming.
/*---
#include <stdio.h>

int done_l = 0;

int done_2 = 0;

void threadl(void
{ ,

fprintf(stderr,"This is thread 1 \n");

}

fprintf(stderr,"More from 1 \n");

done_l = 1;

void thread2(void
{

fprintf(stderr,"This is thread 2 \n");

}

fprintf(stderr,"More from 2 \n");

done_2 = 1;

int maine void)
{

}

_beginthread(threadl, NULL, 4096, NULL);

_beginthread(thread2, NULL, 4096, NULL);

while(l)
{

if (done_l && done_2)

break;
}

return 0;

Each function prints two lines of data to the error standard stream strerr.
In the main function both of these threads, which are also functions, are
created using the _begin thread function. When both threads are executed,
the program terminates.

170 Chapter 3

3.12.4 Compile, link, and run multithread program

In this section we will go through the steps of compiling, linking, and
running the program mthread.c.

Compiling and linking: In this process, you have to make sure that the
correct compiler option is specified to use the multithread libraries. In a
multithread environment such as OS/2, the library routines are designed to
share data without running into each other. To use the multithread library,
use the compiler option /Gm+ when compiling and linking the program
mthread.c, for example,

ICC /Gm+ mthread.c

This command will create an executable file mthread.exe.

Link: If you want to compile and link separately, then use the /C+ option
when invoking the compiler; for example,

ICC /Gm+ /c+ mthread.c

This will generate an object file mthread.obj. To genrate an executable
file mthread.exe type the command

LINK386 mthread

Run: To run the this program, change to the directory where mthread.exe
is found and type

mthread

at the command line. Possible result will be

or

This is thread 1
This is thread 2
More from 1
More from 2

Compiling and Linking C and C++ programms 171

This is thread 1
More from 1
This is thread 2
More from 2

or

This is thread 1
This is thread 2
More from 2
More from 1

Chapter

COBOL

This chapter is a reference guide for programmers using the COBOL
language. It provides the syntax and descriptions of the divisions, sections,
paragraphs, clauses, and statements of the language. This chapter covers
several aspects of COBOL:

• General program format
• Language element
• IDENTIFICATION DIVISION
• ENVIRONMENT DIVISION
• DATA DIVISION
• PROCEDURE DIVISION

For OS/2 there many compilers; each conforms primarily to ANSI COBOL
with special additions. As it is impossible to cover all the differences of
OS/2 COBOL compilers in this chapter, the discussion in this chapter is
limited to the ANSI standard.

173

174 Chapter 4

General format: The general format of a COBOL source program is

<IDENTIFICATION DIVISION. or ID DIVISION.>
PROGRAM-ID. program-name.

[identification-division-content]
[ENVIRONMENT DIVISION.]

[environment-division-content]
[DATA DIVISION.]

[data-division-content]
[PROCEDURE DIVISION.]

[procedure-division-content]
[END PROGRAM program-name.]

A COBOL program generally has four divisions:

IDENTIFICATION DIVISION-identifies the program

ENVIRONMENT DIVISION-describes the hardware being being used
to compile and run the program

DATA DIVISION-defines the data being processed in the program

PROCEDURE DIVISION-consists of procedures to process the data

These divisions are further divided into sections, paragraphs, and
sentences. They also consist of statements and clauses. All these different
parts of a program are discussed later in this chapter. Next is a short
program, called sample.cbl, as an example of all these four divisions.

*--
* * File name
* sample.cbl
* * Dependencies / External references
*
* * Purpose
* This module is an example of a COBOL program.
* It accepts a system date, then prints it in a
* formatted way.
* *---
* * -- Revision History
* * Author Date Summary
* ---------* M. Gopaul 94/02/17 Original development.
*
*

* */

IDENTIFICATION DIVISION.

COBOL 175

PROGRAM-ID. sample.
DATE-WRITTEN. February 17, 1994.
DATE-COMPILED.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

SOURCE-COMPUTER. ibm-pc.
OBJECT-COMPUTER. ibm-pc.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 WS-CURRENT-DATE PIC S9(08).
01 WS-DATE.

10 WS-YEAR PIC X(04) VALUES SPACES.
10 WS-MONTH PIC X(02) VALUES SPACES.
10 WS-DAY PIC X(02) VALUES SPACES.

01 WS-FORMATTED-DATE.
05 YEAR-OF-DATE PIC X(04) VALUES SPACES.
05 FILLER PIC X(Ol) VALUES II / II •

05 MONTH-OF-DATE PIC X(02) VALUES SPACES.
05 FILLER PIC X(Ol) VALUES II / II •

05 DAY-OF-DATE PIC X(02) VALUES SPACES.

**
* Mainline *
**

PROCEDURE DIVISION.

MAINLINE.

ACCEPT WS-CURRENT-DATE
ADD 19000000

FROM DATE.

MOVE WS-CURRENT-DATE
MOVE WS-YEAR

TO YEAR-OF-DATE
MOVE WS-MONTH

TO MONTH-OF-DATE
MOVE WS-DAY

TO DAY-OF-DATE

DISPLAY II DATE IS II

DISPLAY WS-FORMATTED-DATE

EXIT PROGRAM .
END PROGRAM sample.

TO WS-CURRENT-DATE
TO WS-DATE
OF WS-DATE

OF WS-FORMATTED-DATE
OF WS-DATE

OF WS-FORMATTED-DATE
OF WS-DATE

OF WS-FORMATTED-DATE

176 Chapter 4

4.1 Source Format

Each line of a COBOL program is limited to 72 columns. These columns
are divided into four areas

Sequence number
Indicator area
Area A
Area B

Columns 1-6
Column 7
Columns 8-11
Columns 12-72

Sequence number: A sequence number is made up of six digits and is
used to number each line of a source program. In this area, you can also
place characters that are treated in a special way by the compiler. If
column 1 has an asterisk (*), or if columns 1 and 2 contain a formfeed
character and an asterisk, then the entire line is ignored by the compiler
and these special characters do not appear in the list file. This allows you
to use a list file as a source file.

Indicator area: This column is used for special indicators:

* Indicates a comment line
/ Causes a formfeed
D Indicates a debugging line (any COBOL sentence can follow this

indicator)
- Indicates continuation of the previous line

Areas A and B: In these areas you start section names and paragraph
names. Level indicators such as FD, SD, and FD are placed in area A
followed by the appropriate file. Also level numbers such as 01, 66, 77,
78, and 88 begin in area B followed by the record description.

4.2 Language Elements

C Character set

COBOL 177

The basic unit of a COBOL program is the character. The following is
a list of valid characters that can be used to form divisions, sections,
strings and other elements of a program.

Character Meaning

0-9 Digits
A-Z Uppercase letters
a-z Lowercase letters
Space
+ Plus sign

Hyphen or minus sign
* Asterisk
/ Forward slash
= Equal sign
$ Dollar sign

Decimal point or period
Decimal point or comma

, Semicolon
" Quotes

Apostrophe
(Left parenthesis
) Right parenthesis
> Greater-than symbol
< Less-than symbol

Colon
& Ampersand

C Data types

As mentioned before, the DATA DIVISION defines the storage which
the program processes. The data has many types:

DISPlAY, INDEX, POINTER, BINARY,
PACKED-DECIMAL, COMPUTATIONAL, COMPUTATIONAL-I,
COMPUTATIONAL-2, COMPUTATIONAL-3, and
COMPUTATIONAL-4.

178 Chapter 4

DISPLAY specifies storing 1 character of data in 1 byte, corresponding
to print format. This phrase can be used with the following types of
data:

• Alphanumeric
• Alphabetic
• Alphanumeric-edited
• Numeric-edited
• External decimal (numeric)
• External floating-point

INDEX specifies that the data area is an index; therefore, it is used to
store index name values. An elementary data area is 4 bytes long.

POINTER specifies that the data area is a pointer; therefore, it is used
to store limited base addresses. An elementary data area is 4 bytes long.

BINARY specifies that the data area is for binary values and its size
depends on the number of digits.

Digits

1-4
5-9
10--18

Size in bytes

2 (halfword)
4 (fullword)
8 (doubleword)

PACKED-DECIMAL specifies internal decimal items. Each item
contains up to 18 decimal digits stored, and two items are stored in 1
byte.

COMPUTATIONAL or COMP specifies a binary data item.

COMPUTATIONAL-lor COMP-l specifies a single-precision internal
floating-point data item.

COMPUTATIONAL-2 or COMP-2 specifies a double-precision
internal floating-point data item.

COMPUTATIONAL-3 or COMP-3 specifies a packed-decimal data
item.

COMPUTATIONAL-4 or COMP-4 specifies a binary data item.

COBOL 179

C Arithmetic operators

There are two kinds of arithmetic operators: binary and unary. The
following is a list of the operators and their operations.

Operator Operation

+

*
/
**

+

BINARY
Addition
Subtraction
Multiplication
Division
Exponential

UNARY
Multiplication by +1
Multiplication by -1

C Conditional expressions

A conditional expression is evaluated, and its result is either true or
false. Usually the result of a conditional expression is used to choose
logical paths in a program. Condition expressions are specified in
EVALUATE, IF, PERFORM, and SEARCH statements. There are two
types of conditional expression: simple conditions and complex
conditions. There are five simple conditions:

• Class condition
• Condition-name condition
• Relation condition
• Sign condition
• Switch-status condition

There are two complex conditions:

Negated simple condition
Combined condition

180 Chapter 4

4.3 IDENTIFICATION DIVISION

In a COBOL source program, the IDENTIFICATION DIVISION must
always be the first division. This division has several paragraphs, each
specifying pieces of information to document a program. The general
format of this division is

IDENTIFICATION DIVISION or 10 DIVISION.
PROGRAM-ID. program-name.
[AUTHOR. comment-entry]
[INSTALLATION. comment-entry]
[DATE-WRITTEN. comment-entry]
[DATE-COMPILED. comment-entry]
[SECURITY. comment-entry]
[REMARKS. comment-entry]

The PROGRAM·ID paragraph is for the program name and it is
mandatory. The other paragraphs-AUTHOR, INSTALlATION, DATA·
WRITTEN, DATE· COMPILED, SECURITY, and REMARKS-are
optional, but when used they must appear in the order shown in the
general format.

All these elements of this division are discussed below.

The following is an example of the IDENTIFICATION DIVISION,
where the PROGRAM-ID, DATA-WRITTEN, and DATE-COMPILED
paragraphs are used.

IDENTIFICATION DIVISION.
PROGRAM-ID.
DATE-WRITTEN.
DATE-COMPILED.

C PROGRAM-ID paragraph

• General format

PROGRAM-ID. program-name.

• Description

sample.
February 17, 1994.

The PROGRAM-ID paragraph specifies the name of the program; it
must be the first paragraph in the IDENTIFICATION DIVISION.

COBOL 181

program-name is a user-defined name of a program. The first eight
characters of the name must be unique within the system. The first
character must be alphabetic; if it is not, a translation will take place. A
hyphen in positions 2 through 8 of the name is converted to a zero.

C AUTHOR paragraph

• General format

AUTHOR. comment-entry

• Description

The AUTHOR paragraph specifies the name of the person who wrote the
program.

C INSTALLATION paragraph

• General format

INSTALLATION. comment-entry

• Description

The INSTALLATION paragraph is used to enter the name of the
location where the program is written.

C DATE-WRITTEN paragraph

• General format

DATE-WRITTEN. comment-entry

• Description

The DATE-WRITIEN paragraph is used to specify the date when the
program was written.

182 Chapter 4

C DATE-COMPILED paragraph

• General format

DATE-COMPILED. comment-entry

• Description

The DATE-COMPILED paragraph is used to specify the date when the
program was compiled.

C SECURITY paragraph

• General format

SECURITY. comment-entry

• Description

The SECURITY paragraph is used to specify the level of security of a
program.

C REMARKS paragraph

• General format

REMARKS. comment-entry

• Description

The REMARKS paragraph is used to write a brief remark about the
program.

4.4 ENVIRONMENT DIVISION

The ENVIRONMENT DIVISION of a program is optional and consists of
two sections:

• CONFIGURATION SECTION
• INPUT-OUTPUT SECTION

The general format of this division is

ENVIRONMENT DIVISION.
[CONFIGURATION SECTION.]

[configuration-section-entry]
[INPUT-OUTPUT SECTION.]

[input-output-section-entry]

COBOL 183

The following is an example of an ENVIRONMENT DIVISION, which
consists of a CONFIGURATION SECTION and an INPUT-OUTPUT
SECTION. Both sections contains several paragraphs.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.
SOURCE-COMPUTER. ibm-pc.
OBJECT-COMPUTER. ibm-pc.

SPECIAL-NAMES.
CONSOLE IS CRT.

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INPUT-TEST
ASSIGN TO "tip.input.test"
ORGANIZATION IS LINE SEQUENTIAL
ACCESS MODE IS SEQUENTIAL
FILE STATUS IS WS-FILE-STATUS.

SELECT OUTPUT-TEST
ASSIGN TO IItip.output.te'st"
ORGANIZATION IS LINE SEQUENTIAL
ACCESS MODE IS SEQUENTIAL
FILE STATUS IS WS-FILE-STATUS.

In the rest of this section, we discuss in detail all the sections,
paragraphs, and clauses, listed in alphbetical order, associated with the
ENVIRONMENT DIVISION.

C CONFIGURATION SECTION

• General format

CONFIGURATION SECTION.
[SOURCE-COMPUTER. source-compu ter-en try]
[OBJECT-COMPUTER. object-computer-entry]
[SPECIAL-NAMES. special-names-entry]

184 Chapter 4

• Description

The CONFIGURATION SECTION, an optional entry within the
ENVIRONMENT DIVISION, specifies

• The computer where the program is compiled

• The computer where the program is run

• The configurations

The SOURCE-COMPUTER, OBJECT-COMPUTER, and SPECIAL­
NAMES paragraphs are discussed next.

• Example

CONFIGURATION SECTION.
SOURCE-COMPUTER. ibm-pc.
OBJECT-COMPUTER. ibm-pc.
SPECIAL-NAMES. CONSOLE IS CRT.

C SOURCE-COMPUTER paragraph

• General format

SOURCE-COMPUTER. computer-name [WITH] DEBUGGING MODE.

• Description

The SOURCE-COMPUTER paragraph, an optional entry in the
CONFIGURATION SECTION of the ENVIRONMENT DIVISION,
specifies the computer environment in which the source program is to
be compiled.

computer-name is the computer system name.

DEBUGGING MODE specifies that a switch is to be turned on during
compilation to write debugging lines in the source program.

• Example

CONFIGURATION SECTION.
SOURCE-COMPUTER. ibm-pc.

C OBJECT-COMPUTER paragraph

• General format

OBJECT-COMPUTER. computer-name
MEMORY SIZE integer

<WORDS or CHARACTERS or MODULES>

COBOL 185

PROGRAM COLLATING SEQUENCE [IS] alphabet-name
SEGMENT-LIMIT IS priority-number

• Description

The OBJECT-COMPUTER paragraph, an optional entry in the
CONFIGURATION SECTION of the ENVIRONMENT DIVISION,
specifies the computer environment where the object program runs.

computer-name is the computer system name.

MEMORY SIZE is obsolete; its systax is checked, but it is otherwise
ignored.

PROGRAM COLLATING SEQUENCE IS specifies the collating
sequence used for this program.

alphabet-name is the alphabet name which is used for the collating
sequence.

SEGMENT-LIMIT IS is obsolete.

• Example

CONFIGURATION SECTION.

SOURCE-COMPUTER. ibm-pc.

OBJECT-COMPUTER. ibm-pc.

a SPECIAL-NAMES paragraph

• General format

SPECIAL-NAMES. [[environment-name-l or environment-name-2]
[[IS] mnemonic-name-2 [phase-lor phase-2]

or
phase-l

or
phase-2]] •••

186 Chapter 4

[ALPHABET. alphabet-entry]
[SYMBOLIC. symbolic-entry]
[CLASS. class-entry]
[CURRENCY. currency-entry]

where

phase-l is ON [STATUS IS] condition-l

phase-2 is OFF [STATUS IS] condition-2

• Description

The SPECIAL-NAMES paragraph, an entry in the CONFIGURATION
SECTION of the ENVIRONMENT DIVISION, specifies configuration
options.

environment-name-l Meaning

SYSIN
SYSIPT
SYSOUT
SYSLST
SYSPUNCH
SYSPCH
CONSOLE

C01-C12
CSP
SOl-S05

System logical
Input unit
System logical
Ouput unit
System unit
Device
Console typewriter

Skip to channel 1-12
Suppress spacing
Pocket select 1 or 2
on punch devices

Statement

ACCEPT

DISPlAY

DISPlAY

ACCEPT or
DISPlAY
WRITE ADVANCING
WRITE ADVANCING
WRITE ADVANCING

environment-name2 is an UPSI switch of 1 byte long. It can be UPSIO
through UPSI7.

mnemonic-name is a user-defined name used in the ACCEPT, SET,
DISPlAY, and WRITE statements.

mnemonic-name-2 is an user-defined name used in the SET statement.

condition-l and condition-2 are conditions that follow the rules for user­
defined names.

C ALPHABET clause

• General format

ALPHABET alphabet-name [IS]
< STANDARD-lor

STANDARD-2 or

• Description

NATIVE or
ASCII or
<literal-l <THROUGH or THRU>
literal-2 ALSO literal-3>

>

COBOL 187

The ALPHABET clause specifies a relation between an alphabet and a
character code or collating sequence. This clause is an optional entry in
the SPECIAL-NAMES paragraph of the CONFIGURATION SECrION.

alphabet-name is the name of the character. A collating sequence is
specified when alphabet-name is used in either the PROGRAM
COLLATING SEQUENCE clause of the OBJECT-COMPUTER
paragraph or the COLLATING SEQUENCE phrase of the SORT or
MERGE statment.

A character code set is specified when alphabet-name is specified in
either the FD entry CODE-SET clause (discussed later in the DATA
DIVISION section) or the SYMBOLIC CHARACTERS clause.

ST ANDARD-l specifies the ASCII character set.

ST ANDARD-2 specifies the International Reference Version of the ISO
(International Standards Organization) 7-bit code.

NATIVE specifies the native character code set.

ASCII specifies the ASCII character set.

literal-l, literal-2, and literal-3 specify that the collating sequence is to
be determined by the program.

188 Chapter 4

C CLASS clause

• General format

CLASS class-name [IS] literal-l
[<THROUGH or THRU> literal-2]

• Description

The CLASS clause, an entry in the SPECIAL-NAMES paragraph of the
CONFIGURATION SECTION, associates a name with a set of
characters.

class-name may be a DBCS (double-byte character set) user-defined
word.

litera 1-1 and literal-2 define a set of characters to be associated with
class-name.

C CURRENCY SIGN clause

• General format

CURRENCY [SIGN IS] literal [DECIMAL-POINT IS COMMA].

• Description

The CURRENCY sign clause, an optional entry in the SPECIAL­
NAMES paragraph of the CONFIGURATION SECTION, specifies a
currency symbol.

literal is the current symbol used in the PICTURE clause (discussed
later in the DATA DIVISION section). It must be a single character and
nonnumeric. It cannot be any of the following characters:

Digits 0 to 9
Uppercase characters ABC D P R S V X Z
Lowercase characters a.to z (except d, f, g, h, i, j, k, m, n, 0, q, t, u,
w, y)
Space character
Characters * + - / ' . ; () = "

The default is the dollar sign character ($).

COBOL 189

a SYMBOLIC CHARACTERS clause

• General format

SYMBOLIC [CHARACTERS] symbolic-character <ARE or IS>
integer IN alphabet-name

• Description

The SYMBOLIC CHARACTERS clause, an optional entry in the
SPECIAL-NAMES paragraph of the CONFIGURATION SECTION,
specifies one or more symbolic characters.

symbolic-character is a user-defined word (DBCS word) or a series of
user-defined words.

integer is a single number or a series of corresponding numbers.

C INPUT-OUTPUT SECTION

• General format

INPUT-OUTPUT SECTION.
FILE-CONTROL. file-control-entry •••
[I-O-CONTROL.] [input-output-entry]

• Description

The INPUT-OUTPUT SECTION, an optional entry in the
ENVIRONMENT DIVISION, describes the external files that a program
processes. It contains two paragraphs:

• FILE-CONTROL paragraph
• I-O-CONTROL paragraph

• Example

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INPUT-TEST
ASSIGN TO "tip.input.test"
ORGANIZATION IS LINE SEQUENTIAL
ACCESS MODE IS SEQUENTIAL
FILE STATUS IS WS-FILE-STATUS.

190 Chapter 4

SELECT OUTPUT-TEST
ASSIGN TO "tip.output.test"
ORGANIZATION IS LINE SEQUENTIAL
ACCESS MODE IS SEQUENTIAL
FILE STATUS IS WS-FILE-STATUS.

a I-O-CONTROL paragraph

• General format

Sequential files:

I-O-CONTROL. RERUN clause] •••
[SAME RECORD AREA clause] •••
[MULTIPLE FILE TAPE clause] •••
[APPLY WRITE-ONLY clause] •••

Relative and indexed files:

I-O-CONTROL. [RERUN clause] •••
[SAME RECORD AREA] •••
[APPLY WRITE-ONLY] •••

• Description

The I-O-CONTROL paragraph, an optional entry in the INPUT­
OUTPUT SECTION of the ENVIRONMENT DIVISION, specifies
storage areas that are to be shared among different files. It also specifies
when checkpoints are to take place. There are three formats for the 1-0-
CONTROL paragraph, those for sequential files, relative files, and
indexed files.

a FILE-CONTROL paragraph

• General format

Sequential file entry:

FILE-CONTROL. SELECT clause
ASSIGN clause
[RESERVE clause]
[ORGANIZATION clause]
[PADDING CHARACTER clause]
[RECORD DELIMITER clause]
[ACCESS MODE clause]

[PASSWORD clause]
[FILE STATUS clause]

Indexed file entry:

FILE-CONTROL. SELECT clause
ASSIGN clause
[RESERVE clause]
INDEXED
[ACCESS MODE clause]
RECORD KEY clause
[ALTERNATE RECORD KEY clause]
[PASSWORD clause]
[FILE STATUS clause]

Relative file entry:

FILE-CONTROL. SELECT clause
ASSIGN clause
[RESERVE clause]
[ORGANIZATION clause]
RELATIVE
[ACCESS MODE clause]
[PASSWORD clause]
[FILE STATUS clause]

• Description

COBOL 191

The FILE-CONTROL paragraph, an entry in the INPUT-OUTPUT
SECTION of the ENVIRONMENT DIVISION, associates each file that
is being accessed in a program with its external file. It also describes the
file organization, access mode, and other information useful in file
processing.

Each file described in this paragraph must have an FD or SD entry in
the DATA DIVISION .

• Example

FILE-CONTROL.

SELECT INPUT-TEST
ASSIGN TO "tip.input.test"
ORGANIZATION IS LINE SEQUENTIAL
ACCESS MODE IS SEQUENTIAL
FILE STATUS IS WS~FILE-STATUS.

SELECT OUTPUT-TEST
ASSIGN TO "tip.output.test"
ORGANIZATION IS LINE SEQUENTIAL

192 Chapter 4

ACCESS MODE IS SEQUENTIAL
FILE STATUS IS WS-FILE-STATUS.

D ACCESS MODE clause

• General format

Sequential file entries:

ACCESS [MODE IS] SEQUENTIAL

Indexed file entries:

ACCESS [MODE IS] <SEQUENTIAL or RANDOM or DYNAMIC>

Relative file entries:

ACCESS [MODE IS] <SEQUENTIAL or RANDOM or DYNAMIC>

• Description

The ACCESS MODE clause specifies how a file is to be accessed. This
clause is an optional entry in the FILE-CONTROL paragraph of the
INPUT-OUTPUT SECTION. Files are accessed in three different modes:
sequential, random, and dynamic. If this clause is omitted, the default is
sequential mode.

SEQUENTIAL is used to process records sequentially for three types of
files:

• Sequential files
• Indexed files
• Relative files

RANDOM is used to process records randomly for two types of files:

• Indexed files
• Relative files

DYNAMIC is used to process records sequentially and randomly for two
types of files:

• Indexed files
• Relative files

• Example

SELECT INPUT-TEST
ASSIGN TO "tip.input.test"
ORGANIZATION IS LINE SEQUENTIAL
ACCESS MODE IS SEQUENTIAL
FILE STATUS IS WS-FILE-STATUS.

a ALTERNATE RECORD KEY clause

• General format

COBOL 193

ALTERNATE [RECORD KEY IS] data-name [WITH] [DUPLICATES]

.• Description

The ALTERNATE RECORD KEY clause, an optional entry in the
FILE-CONTROL paragraph of the INPUT-OUTPUT SECTION,
specifies an alternative path to the data of an indexed file.

data-name contains the alternative key. Also, it must be an alphanumeric
item within only one of the record description entries of a file.

a APPLY WRITE-ONLY clause

• General format

APPLY WRITE-ONLY [ON] filename

• Description

The APPLY WRITE-ONLY clause, an optional entry in the
I-O-CONTROL paragraph of the INPUT-OUTPUT SECTION, optimizes
buffer and device space allocation for sequential files with blocked
variable-length records.

filename is the name of the file, entered in the FILE-CONTROL
paragraph, to which the WRITE-ONLY applies. You can enter one or
more file names with this parameter.

194 Chapter 4

C ASSIGN clause

• General format

ASSIGN [TO] assignment-name •••

• Description

The ASSIGN clause, an entry in the FILE-CONTROL paragraph of the
INPUT-OUTPUT SECTION, associates a file used in a program with
the external name of a file or device. This clause is used along with the
SELECT clause, which specifies the file.

assignment-name is either a user-defined word or a nonnumeric literal.

• Example

SELECT INPUT-TEST

ASSIGN TO "tip. input. test"

ORGANIZATION IS LINE SEQUENTIAL

ACCESS MODE IS SEQUENTIAL

FILE STATUS IS WS-FILE-STATUS.

C FILE STATUS clause

• General format

FILE STATUS [IS] data-namel data-name2

• Description

The FILE STATUS clause, an optional entry in the FILE-CONTROL
paragraph of the INPUT-OUTPUT SECTION, associates a file with a
file status key.

data-name1 is an alphanumeric data area 2 bytes long in DATA
DIVISION. It must not be defined in the FILE SECTION.

data-name2 must be defined as a group item of 6 bytes in the
WORKING-STORAGE SECTION or LINKAGE SECTION.

• Example

SELECT INPUT-TEST

ASSIGN TO "tip. input. test"

ORGANIZATION IS LINE SEQUENTIAL

ACCESS MODE IS SEQUENTIAL

FILE STATUS IS WS-FILE-STATUS.

D MULTIPLE FILE TAPE clause

• General format

MULTIPLE FILE [TAPE CONTAINS] <filename
[POSITION integer]> •••

• Description

COBOL 195

The MULTIPLE FILE TAPE clause is an entry in the I-O-CONTROL
paragraph of the INPUT-OUTPUT SECTION. It specifies that two or
more files are found in the same reel of tape.

filename is the name of the file found on tape.

POSITION specifies an integer value at which the file starts.

C ORGANIZATION clause

• General format

Sequential file entries:

ORGANIZATION [IS] SEQUENTIAL

Indexed file entries:

ORGANIZATION [IS] INDEXED

Relative file entries:

ORGANIZATION [IS] RELATIVE

• Description

The ORGANIZATION clause, an entry in the FILE-CONTROL

196 Chapter 4

paragraph of the INPUT-OUTPUT SECTION, specifies the logical
structure of a file processed in a program. There are three types:
sequential, indexed, and relative. The default is sequential. .

SEQUENTIAL specifies that the records in a file are accessed in the
same order in which they were written. A record is added at the end of
the file.

INDEXED specifies that the position of each logical record is
determined by an index.

RELATIVE specifies that the position of each logical record is
determined by its relative record number.

• Example

SELECT INPUT-TEST

ASSIGN TO "tip. input. test"

ORGANIZATION IS LINE SEQUENTIAL

ACCESS MODE IS SEQUENTIAL

FILE STATUS IS WS-FILE-STATUS.

C PADDING CHARACTER clause

• General format

PAUlDING [CHARACTER IS] data-name or literal

• Description

The PADDING CHARACTER clause, an optional entry in the FILE­
CONTROL paragraph of the INPUT -OUTPUT SECTION, specifies the
character to be used for block padding on sequential files.

data-name is an alphanumeric data area defined in the DATA DIVISION
as 1 byte long.

literal is a I-byte nonnumeric literal.

COBOL 197

C PASSWORD clause

• General format

PASSWORD [IS] data-name

• Description

The PASSWORD clause, an entry in the FILE-CONTROL paragraph of
the INPUT-OUTPUT SECTION, specifies a password for files.

data-name is a data area, defined as an alphanumeric item in the
WORKING-STORAGE SECTION of the DATA DIVISION, that
contains a password associated with a file.

C RECORD KEY clause

• General format

RECORD [KEY IS] data-name

• Description

The RECORD KEY clause, an entry in the FILE-CONTROL paragraph
of the INPUT-OUTPUT SECTION, defines the data within a record as
the prime key. This clause is mandatory for indexed files.

data-name is the prime key and must be an alphanumeric item within
one of the record description entries associated with the file.

C RECORD DELIMITER clause

• General format

RECORD DELIMITER [IS]
<STANDARD-lor character-string>

• Description

The RECORD DELIMITER clause, an entry in the FILE-CONTROL
paragraph of the INPUT-OUTPUT SECTION, specifies the method for
determining the size of variable-length records.

198 Chapter 4

ST ANDARD-l specifies that the external medium of the file is magnetic
tape.

character-string is a user name or a literal, but it cannot be a COBOL
keyword.

(Note: This clause has no effect during run time; however, its syntax is
checked during compilation.)

c RELATIVE KEY clause

• General format

RELATIVE [KEY IS] data-name

• Description

The RELATIVE KEY clause, an entry in the FILE-CONTROL
paragraph of the INPUT-OUTPUT SECTION, specifies the data area
that contains the relative record number of the next record in a relative
file.

data-name is a data area that contains the relative record number used
for each input or output operation. It is defined as an unsigned integer.

This clause is required for random and dynamic access of files. For
sequential files, it is required only if the file is referenced by a START
statement.

C RERUN clause

• General format

Sequential files:

RERUN [ON assignment-name] [EVERY]
< integer RECORDS or END [OF] <REEL or UNIT»

[OF] filename

Relative or indexed files:

RERUN ON assignment-name [EVERY] integer RECORDS
[OF] filename

COBOL 199

• Description

The RERUN clause, an optional entry in the I-O-CONTROL paragraph
of the INPUT -OUTPUT SECTION, specifies that checkpoints are to take
place.

assignment-name is a sequential external file, a user name or a literal,
but it cannot be a keyword.

integer is a number; for every occurrence of this number of records in
filename, a checkpoint record is written.

filename is a sequential file.

C RESERVE clause

• General format

RESERVE integer <AREA or AREAS>

• Description

The RESERVE clause, an entry in the FILE-CONTROL paragraph of
the INPUT-OUTPUT SECTION, specifies the number of buffers to be
allocated for I/O operation.

integer is the number of buffers; it must not exceed 255.

C SAME SORT AREA clause

• General format

SAME <RECORD or SORT or SORT-MERGE>
filename-l ...

• Description

The SAME SORT AREA clause, an optional entry in the 1-0-
CONTROL paragraph of the INPUT-OUTPUT SECTION, optimizes
storage area if the SORT statement is used.

200 Chapter 4

filename-l is a file that must be defined in the FILE-CONTROL
paragraph of the same program in which the SAME SORT AREA clause
is used.

C SAME RECORD AREA clause

• General format

Sequential files:

SAME [RECORD] [AREA FOR] filename-l filename-2 •••

Relative and indexed files:

SAME [RECORD] [AREA FOR] filename-l •••

• Description

The SAME RECORD AREA clause, an optional entry in the 1-0-
CONTROL paragraph of the INPUT-OUTPUT SECTION, specifies that
two or more files can use the storage area while processing the current
logical record.

filename-l and filename-2 are the names of files that share the storage
area. Both must be defined in the FILE-CONTROL paragraph of the
same program in which the SAME RECORD AREA clause is used.

C SELECT clause

• General format

SELECT [OPTIONAL] filename

• Description

The SELECT clause, the first entry in the FILE-CONTROL paragraph
of the INPUT-OUTPUT SECTION, specifies a filename in a COBOL
program that is associated with an external file. The ASSIGN clause
describes the external file; it must follow the SELECT clause.

filename is a user-defined name that is unique to a program. Also, there
must be a corresponding FD or SD entry in the DATA DIVISION.

COBOL 201

OPTIONAL specifies that the file(s) are not necessarily present each
time the program is run.

• Example

SELECT INPUT-TEST
ASSIGN TO "tip.input.test"
ORGANIZATION IS LINE SEQUENTIAL
ACCESS MODE IS SEQUENTIAL
FILE STATUS IS WS-FILE-STATUS.

4.5 DATA DIVISION

The DATA DIVISION is an optional entry which defines the data area to
be used by a program during processing. It consists of three sections:

• FILE SECTION
• WORKING-STORAGE SECTION
• LINKAGE SECTION

The general format of the DATA DIVISION is

DATA DIVISION.
[FILE SECTION. J

[file-descr~ption-entry record-description-entry •••]

[WORKING-STORAGE SECTION.]
[record-description data-item-description] •••

[LINKAGE SECTION.]
[record-description data-item-description] •••

All these sections of the division and related clauses are discussed in
detail below.

• Example

DATA DIVISION.
FILE SECTION.

FD INPUT-TEST.
01 INPUT-LINE

FD OUTPUT-TEST.
01 OUTPUT-LINE

WORKING-STORAGE SECTION.

01 WS-FILE-STATUS

PICTURE X(512).

PICTURE X(332).

PIC X(02) VALUE "00".

202 Chapter 4

88 IO-OK
88 END-OF-FILE
88 NOT-FOUND
88 SEVERE-ERROR

01 WS-INPUT-TEST-STATUS
88 IO-OK
88 END-OF-FILE
88 NOT-FOUND
88 SEVERE-ERROR

01 WS-POST-DATE.
10 WS-POST-YYYY.

12 WS-POST-CN
12 WS-POST-YY

10 FILLER
10 WS-POST-MM
10 FILLER

VALUE "00".
VALUE "10".
VALUE "23".

VALUE "01" THRU "09"
"11" THRU "22"
"24" THRU "99".

PIC X(02) VALUE "00".
VALUE "00".
VALUE "10".
VALUE "23".

VALUE "01" THRU "09"
"11" THRU /122/1
/124" THRU /199".

PIC X(02).
PIC X(02).
PIC X VALUE
PIC X(02).
PIC X VALUE

, , - .
, , - .

01 WS-POSTED-DATE REDEFINES WS-POST-DATE PIC X(10).

01 WS-DATE-TABLE PIC 9(8)
OCCURS 10 TIMES.

01 WS-TOTAL-LTD-NET-REV PIC S9(7) COMP-3 VALUE +0.

01 WS-OUTPUT-TEST-STATUS
88 IO-OK
88 END-OF-FILE
88 NOT-FOUND
88 SEVERE-ERROR

01 WS-SEVERE-ERROR-STATUS
88 NOT-SEVERE-ERROR
88 SEVERE-ERROR

LINKAGE SECTION.

01 WS-FILE-ERROR-LINE.
05 FILLER

VALUE /lFILE ERROR "
05 FILLER

VALUE /lFILE = /I .
05 WS-FILE-ERROR-FILE
05 FILLER

VALUE /lFILE STATUS
05 WS-FILE-ERROR-STATUS

PIC X(02) VALUE "00".
VALUE "00/1.
VALUE "10".
VALUE /123/1.

VALUE /101/1 THRU /109"
/Ill" THRU "22"
/124" THRU "99/1.

PIC X(Ol).
/I " . VALUE

VALUE "Tit.

PIC X(ll)

PIC X(08)

PIC X (16) •
PIC X(14)

PIC X (02) •

a FILE SECTION

• General format

FILE SECTION
file-description-entry record-description-entry

Format for sequential file:

FD filename

[EXTERNAL clause]
[GLOBAL clause]
[BLOCK CONTAIN clause]
[RECORD clause]
[LABEL RECORDS clause]
[VALUE OF clause]
[DATA RECORDS clause]
[LINAGE clause]
[RECORDING MODE clause]
[CODE-SET clause]

Format for relative or indexed file:

FD filename

[EXTERNAL clause]
[GLOBAL clause]
[BLOCK CONTAIN clause]
[RECORD clause]
[LABEL RECORDS clause]
[VALUE OF clause]
[RECORDING MODE clause]
[DATA RECORDS clause]

Format for sort or merge file:

SO filename

RECORD clause
DATA RECORDS clause

• Description

COBOL 203

The FILE SECTION, the first, and optional, entry in the DATA
DIVISION, defines the filenames to be used within a program and
associates each of them with its attributes. In this section, there are two
types of entries: file description and record description. There must be
only one file description entry for each file followed by one or many
record description entries.

You can specify three kinds of files: sequential files, indexed or relative
files, and sort or merge files. The preceding formats for each type of file
show all the different entries for record descriptions.

204 Chapter 4

filename is the filename used in the program. It must also be specified
in the SELECT clause of the IDENTIFICATION DIVISION. Following
the filename, you can enter one or many record descriptions.

FD specifies a sequential, indexed, or relative file. Following this is a
series of clauses describing the file.

SD specifies a sort or merge file. Following this is a series of clauses
describing the file.

C WORKING-STORAGE SECTION

• General format

level-number <data-name or FILLER>

[REDEFINES clause]
[BLANK WHEN ZERO clause]
[EXTERNAL clause]
[GLOBAL clause]
[JUSTIFIED clause]
[OCCURS clause]
[PICTURE clause]
[SIGN clause]
[SYNCHRONIZED clause]
[USAGE clause]
[VALUE clause]
[RENAMES clause]

• Description

The WORKING-STORAGE SECTION, an optional entry in the DATA
DIVISION, defines data structures that use a program. These working
data areas include counters, variables, flags, and accumulators required
to accomplish programming tasks. This section consists of one or many
data description entries. Each entry is made up of a level number, a data
name, and optional clauses.

level-number is a number representing a hierarchy within a group of
related data. The level number is a value between 01 and 49, 66, 77, or
88.

01 to 49 may begin in area A or B and be followed by a period or
space.

COBOL 205

66 and 88 may begin in area A or B and are followed by a space.

data-name is the name of the data area. In the program the data item is
referenced by this name. This name follows a level number.

FILLER is a data area that does not have a specific name and is not
referenced in a program.

C LINKAGE SECTION

• General format

LINKAGE SECTION.

record-description data-item-description

• Description

The LINKAGE SECfION, the third-and optional----entry in the DATA
DIVISION, defines the data area that is made available to a calling
program. The data is actually stored in the program storage area and
passed to another program. There are two entries: record and data
descriptions.

record-description defines a record, which is made up of a group of
related data items. There must be one record entry for each record.

data-item-description defines each data area, which can be an
independent item or one of the elements of a record.

C BLANK WHEN ZERO clause

• General format

BLANK [WHEN] ZERO

• Description

The BLANK WHEN ZERO clause, an optional entry in the WORKING-

206 Chapter 4

STORAGE SECTION of the DATA DIVISION, specifies that whenever
a zero value occurs in a data area it is to be replaced with spaces.

C BLOCK CONTAINS clause

• General format

BLOCK [CONTAINS] [integerl TO] integer2
<CHARACTERS or RECORDS>

• Description

The BLOCK CONTAINS clause, an optional entry in the FILE
SECTION of the DATA DIVISION, specifies the number of physical
records in a blocked sequential file.

integer1 is an unsigned nonzero number that specifies the minimum
number of characters or logical records.

integer2 is an unsigned nonzero number that specifies the maximum
number of characters or logical records.

CHARACTERS specifies the size of the record in characters.

RECORDS specifies the number of logical records in a physical record.

C CODE-SET clause

• General format

CODE-SET [IS] alphabet-name

• Description

The CODE-SET clause, an optional entry in the FILE SECTION of the
DATA DIVISION, specifies the character set used to represent data in
a file.

alphabet-name is a name defined in the SPECIAL-NAMES paragraph
of the ENVIRONMENT DIVISION. It can be STANDARD-I,
STANDARD-2, or ASCII. The default is ASCII.

COBOL 207

a DATA RECORDS clause

• General format

DATA <RECORD IS or RECORDS ARE> data-name •••

• Description

The DATA RECORDS clause, an optional entry in the FILE SECTION
of the DATA DIVISION, specifies a name for the data records of a file.

data-name is a data area that contains the name of the data records
associated with a file.

(Note: The DATA RECORDS clause is used for documentation purposes
only.)

a EXTERNAL clause

• General format

FD filename [IS] EXTERNAL

level-number data-name EXTERNAL

• Description

The EXTERNAL clause, an optional entry in the FILE SECTION or the
WORKING-STORAGE SECTION of the DATA DIVISION, allows the
same file or data area to be shared by several programs running
concurrently.

filename is the name of the file to be shared.

data-name is the name of the data area to be shared. The data area must
defined at level-number 01.

208 Chapter 4

C GLOBAL clause

• General format

FD filename [IS] [GLOBAL]
level-number <data-name> [GLOBAL]

• Description

The GLOBAL clause, an optional entry in the FILE SECTION or the
WORKING-STORAGE SECTION of the DATA DIVISION, allows the
same file or data area to be shared by subprograms of a program.

filename is the name of the file to be shared.

data-name is the name of the data area to be shared. The data area must
be defined at level-number 01.

C JUSTIFIED clause

• General format

<JUSTIFIED or JUST> [RIGHT]

• Description

The JUSTIFIED clause, an optional entry in the WORKING-STORAGE
SECTION of the DATA DIVISION, specifies that the data moved into
a data area be right-justified, instead of following the default justification
rules.

C LABEL RECORDS clause

• General format

LABEL <RECORD IS or RECORDS ARE>
< STANDARD or OMITTED or data-name>

COBOL 209

• Description

The LABEL RECORDS clause, an optional entry in the FILE SECTION
of the DATA DIVISION, specifies whether a file has a label.

STANDARD specifies that the label in the file conforms to system
standard.

OMITTED specifies that the file does not have a label.

data-name specifies that user labels are present in addition to standard
labels.

a LINAGE clause

• General format

LINAGE [IS] <data-name-l or integer-l> [LINES]
[WITH] FOOTING [AT] <data-name-2 or integer-2>
[LINES AT] TOP <data-name-3 or integer-3>
[LINES AT] BOTTOM <data-name-4 or integer-4>

• Description

The LINAGE clause, an optional entry in the FILE SECTION of the
DATA DIVISION, specifies the number of lines per page, and the top
margin, bottom margin, and footing for a report.

data-name-l is the data area that contains the number of lines for each
page.

integer-l is the number of lines on each page.

data-name-2 is the data area that contains the last printed line of each
page.

integer-2 is the last printed line of each page.

data-name-3 is the data area that contains the number of blank lines at
the top of each page.

integer-3 is the number of blank lines at the top of each page.

210 Chapter 4

data-name-4 is the data area that contains the number of lines at the
bottom of each page.

integer-4 is the number of lines at the bottom of each page.

C OCCURS clause

• General format

Fixed-length tables:

OCCURS integerl [TIMES]
<ASCENDING or DESCENDING> [KEY IS] data-name2 •••
INDEXED [BY] index-namel •••

Variable-length tables:

OCCURS integerl TO integer2 [TIMES]
DEPENDING [ON] data-namel
<ASCENDING or DESCENDING> [KEY IS] data-name2 •••
INDEXED [BY] index-namel •••

• Description

The OCCURS clause, an optional entry in the WORKING-STORAGE
SECTION of the DATA DIVISION, specifies that the data area must be
arranged as a table or array. Each element of the table is referenced with
an index or subscript. There are two formats for the OCCURS clause:
fixed-length table and variable-length table.

integerl is the exact number of elements in a fixed-length table and the
minimum number of elements in a variable-length table.

integer2 is the maximum number of elements in a variable-length table.

data-namel is a data area containing a value which is the current
number of elements in a variable-length table.

data-name2 is a data area containing a value by which the data is
arranged in either ascending or descending order.

index-namel is a data area used in a program to access a particular
element of a table.

COBOL 211

C PICTURE clause

• General format

<PICTURE or PIC> [IS] character-string

• Description

The PICTURE clause, an optional entry in the WORKING-STORAGE
SECTION of the DATA DIVISION, defines the type and size of an
elementary data area. It also specifies the editing requirements of the
data.

character-string is a combination of symbols that defines the
characteristics of the data. The following is a list of all the symbols and
their descriptions.

SYMBOL

A
B
E
G
P
S
V
X
Z
9
/

+

CR
DB
*
$

Description

Alphabetic character or space
Space
Exponential
Double-byte character
Decimal position
Operational sign
Decimal sign
Alphanumeric character
Leading zeros replaced by spaces
Numeric character .
Insert a slash
Insert a comma
Insert a period
Editing control character
Editing control character
Editing control character
Editing control character
Replace leading zeros with asterisk
Currency symbol

212 Chapter 4

Il RECORD clause

• General format

Fixed-length records:

RECORD [CONTAINS] integer-l [CHARACTERS]

Fixed- or variable-length records:

RECORD [CONTAINS] [integer-2] TO integer-3 [CHARACTERS]

Variable-length records:

RECORD [IS] VARYING [IN SIZE]
[FROM] integer-4 [TO integer-5] [CHARACTERS]
DEPENDING [ON] data-name

• Description

The RECORD clause, an optional entry in the FILE SECTION of the
DATA DIVISION, specifies the number of characters in a logical record
of a file. There are three different types of records: fixed length, fixed­
or variable-length, and variable-length. The format for each type of
record is different.

integer-l through integer-5 must be unsigned nonzero values.

integer-l is the number of character positions in each record.

integer-2 is the minimum number of character positions in each record.

integer-3 is the maximum number of character positions in each record.

integer-4 is the minimum number of character positions in each record.

integer-5 is the maximum number of character positions in each record.

data-name is the number of table elements to be included in a record.

If the RECORD CONTAINS clause is omitted, the compiler calculates
the length of the record from the record descriptions.

COBOL 213

C RECORDING MODE clause

• General format

RECORDING [MODE IS] mode

• Description

The RECORDING MODE clause, an optional entry in the FILE
SECTION of the DATA DIVISION, specifies the format type of a
·sequential file.

mode is in the following format:

F Fixed
V Variable
U Undefined (variable or fixed)
S Spanned
FIXED
VARIABLE

C REDEFINES clause

• General format

level-number <data-namel or FILLER>
REDEFINES data-name2

• Description

The REDEFINES clause, an optional entry in the WORKING­
STORAGE SECTION of the DATA DIVISION, changes the definition
of an existing data area and gives it a different name. A redefinition may
alter the length and data type of the subfields.

data-namel is the data area that already exists.

data-name2 is the new name of the redefined data area data-namel.

FILLER specifies that the data area does not have a name.

214 Chapter 4

C RENAMES clause

• General format

66 data-namel RENAMES data-name2
<THROUGH or THRU> data-name3

• Description

The RENAMES clause, an optional entry in the WORKING-STORAGE
SECTION of the DATA DIVISION, changes the grouping of elementary
data areas. It allows overlapping of data areas.

data-namel is the name of the new grouping.

data-name2 is a defined data area to be regrouped. If data-names is
specified, then data-name2 is the starting data area to be renamed. It
cannot be level 01, 77, 88, or another 66.

data-name3 is the last data area in a group of data areas.

C SIGN clause

• General format

SIGN [IS] <LEADING or TRAILING> [SEPARATE CHARACTER]

• Description

The SIGN clause, an optional entry in the WORKING-STORAGE
SECTION of the DATA DIVISION, specifies the position and format
of the sign for numeric data.

If SEPARATE CHARACTER is not specified, then the operational sign
is associated with the first digit position if LEADING is specified and
with the last digit position if TRAILING is specified.

If SEPARATE CHARACTER is specified, then the operational sign is
placed in a--separate TRAILING or LEADING byte position.

COBOL 215

C SYNCHRONIZED clause

• General format

<SYNCHRONIZED or SYNC> [LEFT or RIGHT]

• Description

The SYNCHRONIZED clause, an optional entry in the WORKING­
STORAGE SECTION of the DATA DIVISION, aligns an elementary
data item on either the halfword or fullword storage boundary. Proper
alignment improves the performance of arithmetic computations.

LEFT specifies that the item begins at the left character position.

RIGHT specifies that the item begins at the right character position.

C USAGE clause

• General format

USAGE [IS] < DISPLAY or

>

• Description

INDEX or
POINTER or
BINARY or
PACKED-DECIMAL or
<COMPUTATIONAL or COMP or
<COMPUTATIONAL-lor COMP-I> or
<COMPUTATIONAL-2 or COMP-2> or
<COMPUTATIONAL-3 or COMP-3> or
<COMPUTATIONAL-4 or COMP-4>

The USAGE clause, an optional entry in the WORKING-STORAGE
SECTION of the DATA DIVISION, specifies the format for internal
storage of a group or elementary item of data. The USAGE clause can
be used with all level numbers except 66 and 88.

DISPLAY specifies storing one character of data in 1 byte,
corresponding to the print format. This phrase can be used with the
following types of data:

• Alphanumeric
• Alphabetic

216 Chapter 4

• Alphanumeric--edited
• N umeric--edited
• External decimal (numeric)
• External floating-point

INDEX specifies that the data area is an index; therefore, it is used to
store index name values. An· elementary data area is 4 bytes long.

POINTER specifies that the data area is a pointer; therefore, it is used
to store limited base addresses. An elementary data area is 4 bytes long.

BINARY specifies that the data area is for binary values, and its size
depends on the number of digits.

Digits

1-4
5-9
10-18

Size in bytes

2 (halfword)
4 (fullword)
8 (doubleword)

PACKED-DECIMAL specifies internal decimal items. Each item
contains up to 18 decimal digits stored, and two items are stored in 1
byte.

COMPUTATIONAL or COMP specifies a binary dat~ item.

COMPUTATIONAL-lor COMP-l specifies a single-precision internal
floating-point data item.

COMPUTATIONAL-2 or COMP-2 specifies a double-precision
internal floating-point data item.

COMPUTATIONAL-3 or COMP-3 specifies a packed-decimal data
item.

COMPUTATIONAL-4 or COMP-4 specifies a binary data item.

C VALUE clause

• General format

Format 1:
VALUE [IS] literal

Format 2:
88 condition-name <VALUE or VALUES> [IS or ARE]

literall <THROUGH or THRU> litera12

• Description

COBOL 217

The VALUE clause, an optional entry in the WORKING-STORAGE
SECTION of the DATA DIVISION, specifies the initial value of a data
area or value(s) for a condition name.

literal is a value assigned to a data area.

condition-name is the name of the condition to which a single value, a
set of values, a range of values, and/or combinations of sets and ranges
of values are assigned.

literall specifies a single value for a condition name.

literall THRU literal2 specifies a range of values for a condition name.

C VALUE OF clause

• General format

VALUE OF <data-namel [IS] <data-name2 or literal>

• Description

The VALUE OF clause, an optional entry in the FILE SECTION of the
DATA DIVISION, specifies an item in the label record of a file.

data-namel is a data area containing the item and is defined in the
WORKING-STORAGE SECTION.

data-name2 is a data area containing the item and is defined in the
WORKING-STORAGE SECTION.

218 Chapter 4

literal is a numeric or nonnumeric value.

4.6 PROCEDURE DIVISION

The PROCEDURE DIVISION is the part of the source program that
contains the logic. It consists of declaratives, sentences, and statements that
are executed during the run time of a program. The sentences and
statements are grouped into paragraphs and sections of a COBOL program.

The general format of the PROCEDURE DIVISION is

PROCEDURE DIVISION
USING data-name

DECLARATIVES. section-name SECTION priority-no.
USE statement.
paragraph-name. sentence •••

END-DECLARATIVES.

section-name SECTION priority-no.
paragraph-name. sentence •••

USING is an optional phrase as part of the PROCEDURE DIVISION
header. It is used only if the program is called by another program and
data are passed using data-name.

data-name is the name of a data area which is used to receive data from
a calling program. It must be defined as level number 01 or 77 in the
LINKAGE SECTION of the called program.

section-name is the name of a section, it is followed by the keyword
SECTION. A section consists of one or more paragraphs.

priority-no is an optional entry in a section header. It follows the
keyword SECTION. It is a number in the range 0 to 99.

paragraph-name is the name of a paragraph; it is followed by a period
and one or more sentences. In a program, there may be zero to many
paragraphs.

sentence is one or more COBOL sentences followed by a period.

In the rest of this section we describe all the statements, in alphabetical
order, belonging to the PROCEDURE DIVISION.

COBOL 219

• Example

/***
* * * Mainline *
* * **

PROCEDURE DIVISION.

MAINLINE.

FROM DATE. ACCEPT WS-CURRENT-DATE
ADD 19000000
MOVE WS-CURRENT-DATE
MOVE WS-YEAR

TO WS-CURRENT-DATE
TO WS-DATE

TO YEAR-OF-DATE
MOVE WS-MONTH

TO MONTH-OF-DATE
MOVE WS-DAY

TO DAY-OF-DATE

OF WS-DATE
OF WS-FORMATTED-DATE
OF WS-DATE
OF WS-FORMATTED-DATE
OF WS-DATE
OF WS-FORMATTED-DATE

DISPLAY II DATE IS II

DISPLAY WS-FORMATTED-DATE

EXIT PROGRAM .
END PROGRAM sample.

C ACCEPT statement

• General format

Format 1:

ACCEPT identifier FROM mnemonic-name

Format 2:

ACCEPT identifier FROM <DATE or DAY or
DAY-OF-WEEK, TIME>

• Description

The ACCEPT statement transfers data from an input device or system
information, such as date and time, into a defined data area. There are
two formats for the ACCEPT statment. Format 1 transfers data from a
device. In this case, if the FROM phrase is omitted, a system input
device is assumed. This format is used to receive data from the operator.
Format 2 moves the date, day, day of the week, or time into an
identifier.

220 Chapter 4

identifier is a data area, which may be any group or elementary item.
For format 1, the data type of the identifier can be alphabetic,
alphanumeric, alphanumeric--edited, numeric--edited, or external
decimal. For format 2, the data type of the identifier can be
alphanumeric, alphanumeric--edited, numeric--edited, decimal, binary,
or floating-point.

mnemonic-name is a name associated with an I/O device: a system input
device or a console. The name must be defined in the SPECIAL­
NAMES paragraph of the ENVIRONMENT DIVISION.

DATE specifies moving the current date to the identifier. The
information is, from left to right: two digits for the year, two digits for
the month, and two digits for the day.

DAY specifies moving the current Julian date to the identifier. The
information is, from left to right, two digits for the year and three digits
for the day.

DAY-OF-WEEK specifies moving the day of the week to the identifier.
The following lists the resulting values and the corresponding day of the
week.

Value Day of
the week

1 Monday
2 Tuesday
3 Wednesday
4 Thursday
5 Friday
6 Saturday
7 Sunday

TIME specifies moving the current time of day to the identifier. The
information, from left to right, is

two digits for the hour
two digits for the minute
two digits for the second
two digits for the hundredths of a second

• Example

WORKING-STORAGE SECTION.

01 WS-TIME.
05 WS-HRS
05 WS-MINS
05 WS-SECS
05 WS-HDTH

01 WS-DATE.
05 WS-RUN-DATE
05 WS-PROCESS-DATE

PROCEDURE DIVISION.

PIC 9(02).
PIC 9(02).
PIC 9(02).
PIC 9(02).

PIC 9 (08) •
PIC 9(08).

* GET SYSTEM TIME AND DATE
ACCEPT WS-TIME FROM TIME.
ACCEPT WS-RUN-DATE FROM DATE.

* GET PROCESS DATE FROM USER

ACCEPT WS-PROCESS-DATE.

C ADD statement

• General format

Format 1:

COBOL 221

ADD <identifierl or literal> TO identifier2 ROUNDED
[ON] [SIZE ERROR statementl]
[NOT [ON] SIZE ERROR statement2]

[END-ADD]

Format 2:

ADD <identifierl or literal> TO identifier3
GIVING identifier4 ROUNDED
[ON] [SIZE ERROR statementl]
[NOT [ON] SIZE ERROR statement2]

[END-ADD]

Format 3:

ADD <CORRESPONDING or CORR> identifier5 TO identifier6
ROUNDED
[ON] [SIZE ERROR statementl]
[NOT [ON] SIZE ERROR statement2]

[END-ADD]

222 Chapter 4

• Description

The ADD statement adds one or more numeric operands and stores the
result.

identifier 1 must be an elementary numeric data area.

identifier2 must be an elementary numeric data area. It receives the sum.

identifier3 must be an elementary numeric data area.

identifier4 must be either an elementary numeric data area or a
numeric--edited data area. It receives the sum.

identifier5 and identifier6 must be group data areas. The elementary
elements of identifier5 are added and stored in the elements of
identifer6.

literal is a numeric literal.

ROUNDED specifies that any fractional result is to be rounded to the
nearest decimal position.

statementl is the statement to which control is transferred when an ON
SIZE ERROR condition occurs.

statement2 is the statement to which control is transferred when a NOT
ON SIZE ERROR condition occurs.

CORRESPONDING specifies two group operands. The operation is to
be performed on all corresponding elementary data items of both groups.

END-ADD is an optional phrase to terminate the ADD statement.

• Example

WORKING-STORAGE SECTION.

01 WS-CURRENT-DATE

PROCEDURE DIVISION.

ADD 19000000

PIC S9(08).

TO WS-CURRENT-DATE

COBOL 223

c ALTER statement

• General format

ALTER <procedure-namel TO [PROCEED TO] procedure-name2> ...

• Description

The ALTER statement changes the name of the procedure to which
control is transferred in a GO TO statement. The change occurs during
execution.

procedure-namel is the name of the old paragraph.

procedure-name2 is the name of the new paragraph.

C CALL statement

• General format

Format 1:

CALL <identifierl or literall>
USING <identifier2 or

[BY] REFERENCE identifier2 or
[BY] REFERENCE ADDRESS OF identifier2 or
[BY] CONTENT <identifier2 or literal2 or LENGTH>

OF identifier2
>

[ON] OVERFLOW statementl
[END-CALL]

Format 2:

CALL <identifierl or literall>
USING <identifier2 or

[BY] REFERENCE identifier2 or
[BY] REFERENCE ADDRESS OF identifier2 or
[BY] CONTENT <identifier2 or literal2 or LENGTH>

OF identifier2
>

[ON] EXCEPTION statementl
NOT [ON] EXCEPTION statement2
[END-CALL]

224 Chapter 4

• Description

The CALL statement transfers control from one program to another
during execution. When the execution of the called program is
terminated, the control goes back to the calling program.

identifier 1 is an alphanumeric data area which contains the name of a
program.

literall is the literal name of a program.

USING is used to pass parameters to the called program.

BY REFERENCE applies to all parameters that follow it. It specifies
that the data area in the called program occupies the same storage area
as in the calling program.

BY CONTENT applies to all parameters that follow it. It specifies that
the value of each parameter is assigned to the corresponding parameter
of the called program.

identifier2 is a data area.

litera12 may be a nonnumeric literal, a figurative constant, or a DBCS
literal.

ON EXCEPTION specifies that if an exception condition occurs,
program control must be transferred to statementl.

NOT ON EXCEPTION specifies that if no exception condition occurs,
program control must be transferred to statement2.

ON OVERFLOW specifies that if an exception condition occurs,
program control must be transferred to statementl. The ON
OVERFLOW phrase has the same effect as the ON EXCEPTION
phrase.

END-CALL is an optional clause to terminate the CALL statement.

• Example

WORKING-STORAGE SECTION.

01 WS-CURRENT-OATE PIC S9(08).

LINKAGE SECTION.

01 LOGERRORSU-LINKAGE.
05 WS-DATE.

10 WS-YEAR

10 WS-MONTH

10 WS-DAY

05 ERROR-CODE

PROCEDURE DIVISION.

ADD 19000000

COBOL 225

PIC X(04) VALUES SPACES.

PIC X(02) VALUES SPACES.

PIC X(02) VALUES SPACES.

PIC x(l).

TO WS-CURRENT-DATE

CALL "logErrorSU" USING LOGERRORSU-LINKAGE

a CANCEL statement

• General format

CANCEL <identifierl or literall>

• Description

The CANCEL statement ensures that every time a program is called, a
fresh copy, with all its initial values set, is loaded for execution.

identifier 1 is a data area which contains the name of a program.

literall is the literal name of a program.

226 Chapter 4

a CLOSE statement

• General format

Sequential file

CLOSE filename
[<REEL or UNIT> [WITH] LOCK or

[WITH] <NO REWIND or
LOCK or
DISP

> or
<UNIT or REEL> [WITH] NO REWIND or
<UNIT or REEL> [FOR] REMOVAL

Indexed or relative file

CLOSE filename [WITH] LOCK

• Description

The CLOSE statement closes a sequential file for processing.

filename is the name of the file to be closed.

UNIT or REEL specifies a medium with a multivolume file.

WITH LOCK ensures that the file cannot be opened again while this
program is executing.

WITH NO REWIND specifies that the current volume is to be left in its
current position.

• Example

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INPUT-TEST
ASSIGN TO "tip. input. test"
ORGANIZATION IS LINE SEQUENTIAL
ACCESS MODE IS SEQUENTIAL
FILE STATUS IS WS-FILE-STATUS.

DATA DIVISION.
FILE SECTION.

FD INPUT-TEST.
01 INPUT-LINE PIC X(512).

COBOL 227

WORKING-STORAGE SECTION.

01 WS-CURRENT-DATE PIC S9(08).

PROCEDURE DIVISION.

ADD 19000000

OPEN INPUT INPUT-TEST

CLOSE INPUT-TEST

D COMPUTE statement

• General format

COMPUTE identifierl ROUNDED
< EQUAL OR = > arithmetic-expression
[ON] SIZE ERROR statementl
NOT [ON] SIZE ERROR statement2

[END-COMPUTE]

• Description

TO WS-CURRENT-DATE

The COMPUTE statement evaluates an arithmetic expression and
moves the result into one or more data areas.

identifier 1 must be an elementary numeric item, an elementary
numeric--edited item, or a floating-point item. It can be one or more of
these items.

arithmetic-expression is made up of one or more arithmetic binary
operators and numeric items.

statementl is the statement to which control is transferred when an ON
SIZE ERROR condition occurs.

statement2 is the statement to which control is transferred when a NOT
ON SIZE ERROR condition occurs.

228 Chapter 4

ROUNDED specifies that any fractional result is to be rounded to the
nearest decimal position.

END-COMPUTE is an optional clause to terminate the COMPUTE
statement.

• Example

WORKING-STORAGE SECTION.

01 WS-CURRENT-DATE
01 WS-NEW-DATE

PROCEDURE DIVISION.

COMPUTE WS-NEW-DATE

PIC S9(08).
PIC S9(08).

19000000 + WS-CURRENT-DATE

a CONTINUE statement

• General format

CONTINUE

• Description

The CONTINUE statement is a no-operation statement. It has no effect
during the execution of a program.

• Example

WORKING-STORAGE SECTION.

01 WS-CURRENT-DATE
01 WS-RESPONSE-STATUS

88 SUCCESSFUL
88 SEVERE-ERROR

LINKAGE SECTION.
01 DOSAGE-LINKAGE.

05 WS-NEW-DATE
05 WS-RESPONSE
88 SUCCESSFUL
88 NOT-FOUND

PIC S9(08).
PIC S9(09) COMP.

VALUE O.
VALUE 100.

PIC S9(08).
PIC S9(09) COMP.

VALUE O.
VALUE 100, 1403.

PROCEDURE DIVISION.

COMPUTE WS-NEW-DATE =

COBOL 229

19000000 + WS-CURRENT-DATE

CALL II Dosage II USING DOSAGE-LINKAGE

EVALUATE TRUE

WHEN SUCCESSFUL
CONTINUE

WHEN OTHER
SET SEVERE-ERROR

TO TRUE
GO TO OlOl-EXIT

END-EVALUATE

IF NOT-FOUND
CONTINUE

ELSE
DISPLAY WS-NEW-DATE

END-IF

C DELETE statement

• General format

DELETE filename RECORD
INVALID [KEY] statementl
NOT INVALID [KEY] statement2

END-DELETE

• Description

OF DOSAGE-LINKAGE

OF RESPONSE-STATUS

OF DOSAGE-LINKAGE

The DELETE statement deletes a record in an indexed or relative file.
After the record has been removed, the space is available for a record
addition or a new record in indexed and relative files, respectively.

filename is the name of an indexed or relative file, defined as an FD
entry in the DATA DIVISION.

statementl is the statement to which control is transferred when an
INVALID KEY condition occurs.

statement2 is the statement to which control is transferred when a NOT

230 Chapter 4

INVALID KEY condition occurs.

END-DELETE is an optional phrase to terminate the DELETE
statement.

c DISPLAY statement

• General format

DISPLAY <identifier or literal>
UPON mnemonic-name
[WITH] NO ADVANCING

• Description

The DISPlAY statement sends the content of one or more of its
operands to an output device.

identifier is a data area which contains the data to be printed to an
output device.

literal is a literal operand.

UPON is an optional clause specifying that a device or mnemonic-name
must be associated with an output device described in the SPECIAL­
NAMES paragraph of the ENVIRONMENT DIVISION.

WITH NO ADVANCING specifies that the positioning of the output
device is not to be reset.

• Example

WORKING-STORAGE SECTION.

01 WS-CURRENT-DATE

PROCEDURE DIVISION.

MAINLINE.

PIC S9(08).

ACCEPT WS-CURRENT-DATE FROM DATE.

DISPLAY " DATE IS "
DISPLAY WS-CURRENT-DATE

COBOL 231

a DIVIDE statement

• General format

Format 1:

DIVIDE <identifierl or literall> INTO identifier2 ROUNDED
ON SIZE ERROR statementl
NOT [ON] SIZE ERROR statement2

[END-DIVIDE]

Format 2:

DIVIDE <identifierl or literall> <INTO or BY>
<identifier2 or litera12>

GIVING identifier3 ROUNDED
ON SIZE ERROR statementl
NOT [ON] SIZE ERROR statement2

[END-DIVIDE]

Format 3:

DIVIDE <identifierl or literall> <INTO or BY>
<identifier2 or litera12>

GIVING identifier3 ROUNDED
REMAINDER identifier4
ON SIZE ERROR statementl
NOT [ON] SIZE ERROR statement2

[END-DIVIDE]

• Description

The DIVIDE statement divides one numeric data item by or into
another.

identifier 1 and identifier2 are elementary numeric data areas.

identifier3 and identifier4 are elementary numeric or numeric-edited
data areas.

literall and litera12 are numeric literals.

statementl is the statement to which control is transferred when an ON
SIZE ERROR condition occurs.

statement2 is the statement to which control is transferred when a NOT
ON SIZE ERROR condition occurs.

ROUNDED specifies that any fractional result is to be rounded to the
nearest decimal position.

232 Chapter 4

REMAINDER specifies that the remainder of the division is to be stored
in identifier4.

END-DIVIDE is an optional phrase to terminate the DIVIDE statement.

C ENTER statement

• General format

ENTER language-name routine-name

• Description

The ENTER statement allows more than one language to be used in a
source program.

language-name must be COBOL.

routine-name is a user-defined word that contains at least one
alphanumeric character.

C ENTRY statement

• General format

ENTRY literal [USING] identifier

• Description

The ENTRY statement establishes an alternative entry point into a
called COBOL program, other than at the start of the PROCEDURE
DIVISION.

literal is nonnumeric and follows the rules for forming program names.

USING is used to pass parameters to the called program.

identifier is a data area.

c EVALUATE statement

• General format

EVALUATE < identifierl or literall or
expressionl or TRUE or FALSE

>
ALSO < identifier2 or literal2 or

expression2 or TRUE or FALSE
>

WHEN phrasel ALSO phrase2 statementl
WHEN OTHER statement2

END-EVALUATE

where phrasel is

COBOL 233

<ANY or conditionl or TRUE or FALSE or subphrasel>

where subphrasel is

<identifier3 or literal3 or
arithmetic-expressionl or

NOT identifier3 or NOT literal3 or
NOT arithmetic-expressionl

> <THROUGH or THRU>
<identifier4 or literal4 or

arithmetic-expression2>

• Description

The EVALUATE statement evaluates a series of conditions and takes
actions depending on the results of the evaluation. It is like an expanded
IF statement.

Operands before the WIlEN phrase are individually called selection
subjects and collectively a set of selection subjects. Operands after the
WIlEN phrase are individually called selection objects and collectively
a set of selection objects.

ALSO separates selection subjects within a set of selection subjects and
selection objects within a set of selection objects.

END-EVALUATE is an optional clause to terminate the EVALUATE
statement.

• Example

WORKING-STORAGE SECTION.

01 WS-CURRENT-DATE PIC S9(08).

234 Chapter 4

01 WS-RESPONSE-STATUS
88 SUCCESSFUL
88 SEVERE-ERROR

LINKAGE SECTION.

01 DOSAGE-LINKAGE.
05 WS-NEW-DATE
05 WS-RESPONSE
88 SUCCESSFUL
88 NOT-FOUND

PROCEDURE DIVISION.

COMPUTE WS-NEW-DATE

PIC S9(09) COMP.
VALUE O.
VALUE 100.

PIC S9(08).
PIC S9(09) COMP.

VALUE O.
VALUE 100, 1403.

19000000 + WS-CURRENT-DATE

CALL "Dosage" USING DOSAGE-LINKAGE

EVALUATE TRUE

WHEN SUCCESSFUL OF DOSAGE-LINKAGE
CONTINUE

WHEN NOT-FOUND OF DOSAGE-LINKAGE
DISPLAY "DOSAGE NOT FOUND"

WHEN OTHER
SET SEVERE-ERROR OF RESPONSE-STATUS

TO TRUE
GO TO 0101-EXIT

END-EVALUATE

IF SUCCESSFUL

CONTINUE

ELSE

OF DOSAGE-LINKAGE

SET SEVERE-ERROR OF RESPONSE-STATUS
TO TRUE

GO TO 0101-EXIT

END-IF

COBOL 235

a EXIT statement

• General format

paragraph-name. EXIT.

• Description

The EXIT statement provides a common exit point for a series of
paragraphs. It is also used to document the end of a paragraph.

paragraph-name is the name of a COBOL paragraph.

• Example

PROCEDURE DIVISION.

PERFORM 2400-GET-PIRATE-INFO
THRU 2400-EXIT

2400-GET-PIRATE-INFO.

PERFORM 8360-0PEN-CR-PIRATE
THRU 8360-EXIT

PERFORM 8370-FETCH-CR-PIRATE
THRU 8370-EXIT

PERFORM 8380-CLOSE-CR-PIRATE
THRU 8380-EXIT .

2400-EXIT. EXIT.

a EXIT PROGRAM statement

• General format

EXIT PROGRAM

• Description

The EXIT PROGRAM statement terminates the execution of a program
and passes control to the calling program.

236 Chapter 4

• Example

PROCEDURE DIVISION.

MAINLINE.

ACCEPT WS-CURRENT-DATE FROM DATE.
ADD 19000000 TO WS-CURRENT-DATE
MOVE WS-CURRENT-DATE TO WS-DATE
MOVE WS-YEAR OF WS-DATE

TO YEAR-OF-DATE OF WS-FORMATTED-DATE
MOVE WS-MONTH OF WS-DATE

TO MONTH-OF-DATE OF WS-FORMATTED-DATE
MOVE WS-DAY OF WS-DATE

TO DAY-OF-DATE OF WS-FORMATTED-DATE

DISPLAY " DATE IS "
DISPLAY WS-FORMATTED-DATE

EXIT PROGRAM

END PROGRAM sample.

D GOBACK statement

• General format

GOBACK

• Description

The GOBACK statement terminates the execution of a program and
passes control to the calling program.

D GO TO statement

• General format

Unconditional:

GO [TO] procedure-name 1

Conditional:

GO [TO] procedure-name2 DEPENDING [ON] identifierl

COBOL 237

• Description

The GO TO statement transfers control from one procedure of a
program to another.

procedure-namel is the name of a paragraph or section to which control
is unconditionally transferred.

procedure-name2 is the name of a paragraph or section; optionally one
or more names may be specified.

identifierl is a value that corresponds to a procedure name. If it is 1,
control goes to the first procedure; if it is 2, control goes to the second
procedure; and so on.

C IF statement

• General format

IF condition [THEN]

<statementl or NEXT SENTENCE> •••

ELSE

<statement2 or NEXT SENTENCE> •••

END-IF

• Description

The IF statement first evaluates a condition and then, depending on the
result of the evaluation, executes alternative logical parts of a program.
If the result of the condition is TRUE, then only statementl is executed.
If the result is FALSE, then only statement2 is executed. Only one or
the other is executed, never both. Both statementl and statement2 are
optional, but at least one should be specified within the IF statement.
Within the IF statement, many levels of IF statement nesting can be
used.

condition may be a simple or a compound condition.

statementl is one or more statements.

statement2 is one or more statements.

238 Chapter 4

ELSE is the clause that divides the two alternative actions if both are
specified.

NEXT SENTENCE means to go to the next statement.

END-IF terminates the IF statement.

• Example

WORKING-STORAGE SECTION.

01 WS-CURRENT-DATE

01 WS-RESPONSE-STATUS
88 SUCCESSFUL
88 SEVERE-ERROR

LINKAGE SECTION.

01 DOSAGE-LINKAGE.
05 WS-NEW-DATE
05 WS-RESPONSE
88 SUCCESSFUL
88 NOT-FOUND

PROCEDURE DIVISION.

COMPUTE WS-NEW-DATE

PIC S9(08).

PIC S9(09) COMP.
VALUE O.
VALUE 100.

PIC S9(08).
PIC S9(09) COMP.

VALUE O.
VALUE 100, 1403.

19000000 + WS-CURRENT-DATE

CALL "Dosage" USING DOSAGE-LINKAGE

IF SUCCESSFUL

CONTINUE

ELSE

SET SEVERE-ERROR
TO TRUE

GO TO OlOl-EXIT

END-IF

OF DOSAGE-LINKAGE

OF RESPONSE-STATUS

COBOL 239

D INITIALIZE statement

• General format

INITIALIZE identifierl
REPLACING <ALPHABETIC or

ALPHANUMERIC or
ALPHANUMERIC-EDITED or
NUMERIC-EDITED

>
[DATA] BY <identifier2 or literall>

• Description

The INITIALIZE statement moves values to the specified data areas.
The numeric data is set to zeros and alphanumeric to spaces.

identifier 1 is the data area that receives the values.

identifier2 is the data area that contains the value to be moved to
identifierl.

literall is the literal value to be moved to identifier2.

REPLACING specifies the data type of identifier2 and literall. The data
types are alphabetic, alphnumeric, alphanumeric---edited, and
numeric---edited.

• Example

WORKING-STORAGE SECTION.

01 WS-CURRENT-DATE

PROCEDURE DIVISION.

MAINLINE.

PIC S9(08).

INITIALIZE WS-CURRENT-DATE

ACCEPT WS-CURRENT-DATE FROM DATE.

DISPLAY .. DATE IS ..
DISPLAY WS-CURRENT-DATE

240 Chapter 4

C INSPECT statement

• General format

Format 1:

INSPECT identifierl
TALLYING identifier2
FOR <CHARACTERS phrasel <ALL or LEADING>

<identifier3 or literall> phrasel
>

Format 2:

INSPECT identifierl
REPLACING
<CHARACTERS BY <identifierS or literal3> phrasel> or

< <ALL or LEADING or FIRST>
<identifier3 or literall>

BY <identifierS or literal3>
phrasel

>

Format 3:

INSPECT identifierl
TALLYING identifier2
FOR <CHARACTERS phrasel

<ALL or LEADING> <identifier3 or literall>
phrase 1

>
REPLACING
<CHARACTERS BY <identifierS or literal3> phrasel> or

< <ALL or LEADING or FIRST>

>

<identifier3 or literal3>
BY <identifierS or literal3>

phrase 1

Format 4:

INSPECT identifierl
CONVERTING <identifier6 or literal4>

TO <identifier7 or literalS> phrasel

where phrasel is
<BEFORE or AFTER> [INITIAL] <identifier4 or literal2>

• Description

The INSPECT statement counts or replaces characters in a data area.

identifier 1 is the data area to be inspected; it must be an elementary data
item or a group of data items with USAGE DISPLAY.

COBOL 241

identifier2 is the data area that holds the count (or tally). It receives the
number of matches when the TALLYING clause is specified. It must be
an elementary data item.

identifier3 is a data area and the tallying operand. It must be an
elementary data item with USAGE DISPLAY.

literall is a literal value and the tallying operand.

litera12 is a literal value that is not counted during the execution of the
INSPECT statement.

identifier4 is a data item that holds characters that are not counted
during the execution of the INSPECT statement.

litera13 is a literal value and the replacing operand.

identifier5 is a data area and holds the replacing operand.

litera14 and litera15 are strings of replacement values, and both must
have the same size.

identifier6 and identifier7 are data areas, each containing a string of
replacement values. Both must have the same size.

C MERGE statement

• General format

MERGE filenamel
[ON] <ASCENDING or DESCENDING> [KEY] data-namel
[COLLATING] SEQUENCE [IS] alphabet-namel
USING filename2 filename3
GIVING filename4
OUTPUT PROCEDURE [IS] proc-namel

<THROUGH or THRU> proc-name2

• Description

The MERGE statement takes two files, based on some common keys,
and writes the output records to an output file or makes them available
to an output procedure.

242 Chapter 4

filenamel describes the records to be merged; it must be defined in the
SD entry of the DATA DIVISION.

data-namel is a data area which specifies the KEY and is associated
with filenamel.

alphabet-namel is specified in the ALPHABET clause of the SPECIAL­
NAMES paragraph of the ENVIRONMENT DIVISION and is used in
the collating sequence.

ASCENDING or DESCENDING specifies that the records are merged
in ascending or descending order, based on the specified keys.

COLLATING SEQUENCE specifies the collating sequence to be used
during the merge operation.

USING specifies the input files, namely, filename2 and filename3.

filename2 and filename3 are the files to be merged. They should be
defined as FD entries of the DATA DIVISION. They are operands of
the USING phrase.

GIVING specifies the output file, namely, filename4.

filename4 is the name of the output file. It must be defined as an FD
entry of the DATA DIVISION. It is an operand of the GIVING phrase.

OUTPUT PROCEDURE specifies the procedure for selecting or
modifying output records during the merge operation.

proc-namel is the first section or paragraph in the OUTPUT
PROCEDURE phrase.

proc-name2 is the last section or paragraph ill the OUTPUT
PROCEDURE phrase.

COBOL 243

C MOVE statement

• General format

Format 1

MOVE <identifierl or literall> TO identifier2 •••

Format 2

MOVE <CORRESPONDING or CORR> identifierl TO identifier2

• Description

The MOVE statement copies data from one data area to one or more
data areas.

identifier 1 is the data area that contains the data to be moved.

litereall is the literal value to be moved.

identifier2 is the data area which receives the data.

CORRESPONDING specifies two group operands. The operation is to
be performed on all corresponding elementary data items of both groups.
If specified, the elementary data items of identifier 1 are moved to
identifier2.

• Example

WORKING-STORAGE SECTION.

01 WS-CURRENT-DATE

01 WS-DATE.
10 WS-YEAR
10 WS-MONTH
10 WS-DAY

01 WS-FORMATTED-DATE.
05 YEAR-OF-DATE
05 FILLER
05 MONTH-OF-DATE
05 FILLER
05 DAY-OF-DATE

PIC S9(08).

PIC X(04) VALUES SPACES.
PIC X(02) VALUES SPACES.
PIC X(02) VALUES SPACES.

PIC X(04) VALUES SPACES.
PIC X(01) VALUES "/".

PIC X(02) VALUES SPACES.
PIC X(01) VALUES "/".

PIC X(02) VALUES SPACES.

244 Chapter 4

/***
* * Mainline
*
* ***

PROCEDURE DIVISION.

MAINLINE.

ACCEPT WS-CURRENT-DATE FROM DATE.

ADD 19000000

MOVE WS-CURRENT-DATE

MOVE WS-YEAR
TO YEAR-OF-DATE

MOVE WS-MONTH
TO MONTH-OF-DATE

MOVE WS-DAY
TO DAY-OF-DATE

a MULTIPLY statement

• General format

Format 1:

TO WS-CURRENT-DATE

TO WS-DATE

OF WS-DATE
OF WS-FORMATTED-DATE

OF WS-DATE
OF WS-FORMATTED-DATE

OF WS-DATE
OF WS-FORMATTED-DATE

MULTIPLY <identifierl or literall>
BY identifier2 ROUNDED
[ON] SIZE ERROR statementl
NOT [ON] SIZE ERROR statement2

[END-MULTIPLY]

Format 2:

MULTIPLY <identifierl or literall>
BY <identifier2 or literal2>

GIVING identifier3 ROUNDED
[ON] SIZE ERROR statementl
NOT [ON] SIZE ERROR statement2

[END-MULTIPLY]

• Description

The MULTIPLY statement multiplies two numeric data items and stores
the result in a data area.

COBOL 245

identifier 1 is the name of a numeric data area which is multiplied by
identifier2.

literall is the literal value that is multiplied by litera 12.

identifier2 is the name of a numeric data area that receives the result in
format 1.

identifier 3 is the name of a numeric data area that receives the result of
the multiplication in format 2.

statementl is the statement to which control is transferred when an ON
SIZE ERROR condition occurs.

statement2 is the statement to which control is transferred when a NOT
ON SIZE ERROR condition occurs.

ROUNDED specifies that any fractional result is to be rounded to the
nearest decimal position.

END-MULTIPLY is an optional clause to terminate the MULTIPLY
clause.

C OPEN statement

• General format

Sequential file:
OPEN INPUT filenamel <REVERSED or [WITH] NO REWIND>

OUTPUT filename2 ••• [WITH] NO REWIND
I-O filename3 •••
EXTEND filename4 •••

Relative and indexed file:
OPEN INPUT filenamel •••

OUTPUT filename2 •••
I-O filename3 •••
EXTEND filename4 •••

• Description

The OPEN statement opens a sequential, relative, or indexed file for
processing. All the filenames must be defined in an FD entry in the
DATA DIVISION.

246 Chapter 4

INPUT opens filenamel as an input file.

OUTPUT opens filename2 as an output file.

1-0 opens filename3 as both an input and an output file.

EXTEND opens filename4 as an output file. It must not be specified for
a multiple-reel file.

REVERSED is valid for a sequential single-reel file.

NO REWIND is valid for a sequential single-reel file .

• Example

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INPUT-TEST
ASSIGN TO "tip.input.test"
ORGANIZATION IS LINE SEQUENTIAL
ACCESS MODE IS SEQUENTIAL
FILE STATUS IS WS-FILE-STATUS.

DATA DIVISION.
FILE SECTION.

FD INPUT-TEST.
01 INPUT-LINE

WORKING-STORAGE SECTION.

01 WS-CURRENT-DATE

PROCEDURE DIVISION.

ADD 19000000

OPEN INPUT INPUT-TEST

CLOSE INPUT-TEST

PIC X(512).

PIC S9(08).

TO WS-CURRENT-DATE

COBOL 247

C PERFORM statement

• General format

Basic PERFORM format:

PERFORM <procedure-namel [<THROUGH or THRU>
procedure-name2] or

statementl [END-PERFORM]
>

PERFORM TIMES format:

PERFORM <procedure-namel [<THROUGH or THRU>
procedure-name2] <identifierl or integerl>
TIMES

>

or
<identifierl or integerl> TIMES statementl

[END-PERFORM]

PERFORM UNTIL format:

PERFORM <procedure-namel [<THROUGH or THRU>]
procedure-name2 [WITH] TEST
<BEFORE or AFTER> UNTIL conditionl>

>

or
[WITH] TEST <BEFORE or AFTER>
UNTIL conditionl
statementl [END-PERFORM]

PERFORM VARYING format:

PERFORM <procedure-namel <THROUGH or THRU>
procedure-name2 phrasel
or

phrasel statementl [END-PERFORM]
>

where phrasel is .
[[WITH] TEST <BEFORE or AFTER>]
VARYING <identifierl or index-namel>
FROM <identifier2 or index-name2 or literall>
BY <identifier3 or litera12>
UNTIL conditionl

• Description

The PERFORM statement transfers control to one or more procedures
and controls the number of times they are executed. After the execution
of the specified procedures, control goes to the next statement after the
PERFORM statement. There are four types of PERFORM statements:

• Basic PERFORM
• TIMES phrase PERFORM

248 Chapter 4

• UNTIL phrase PERFORM
• VARYING phrase PERFORM

The basic PERFORM executes a procedure only once; however, the
other types specify conditions which determine the number of times a
procedure is executed.

procedure'-namel and procedure-name2 are names of sections or
paragraphs in the PROCEDURE DIVISION.

conditionl is a conditional expression.

identifier l, identifier2, and identifier 3 are data areas that contain values
to control the number of execution of procedures.

statementl is the last statement in an in-line PERFORM statement.

The TIMES phrase specifies the number of times that procedures are
executed.

The UNTIL phrase specifies that execution of procedures continues until
a specified condition is true.

The VARYING phrase specifies that the procedures executed as certain
identifiers, subscripts, or indexes are initialized and incremented, and
until a certain condition is true.

END-PERFORM is an optional phrase to terminate the PERFORM
statement.

• Example

PERFORM 8020-FETCB-CR-DOSAGE
THRU 8020-EXIT

PERFORM
UNTIL (NOT IO-OK OF WS-DOSAGE-STATUS)

PERFORM 8020-FETCH-CR-DOSAGE
THRU 8020-EXIT

SET lOX-DOSAGE UP BY 1
IF lOX-DOSAGE > WS-MAX-DOSAGE-CDS

MOVE "DOSAGE-CO-TABLE"
TO WS-TABLE-NAME

PERFORM 9996-BANDLE-TABLE-OVERFLOW
SET SEVERE-ERROR
OF GETDOSAGESU-LINKAGE

TO TRUE
GO TO 2200-EXIT

END-IF
END-PERFORM

a READ statement

• General format

Sequential access:

READ filenamel NEXT RECORD INTO identifierl
[[AT] END statementl]
[NOT [AT] END statement2]

[END-READ]

Random access:

READ filenamel [RECORD] INTO [identifierl]
[KEY [IS] data-namel]
[INVALID [KEY] statement3]
[NOT INVALID [KEY] statement4]

[END-READ]

• Description

COBOL 249

The READ statement reads a record from an external file and places the
data in a specified data area. There are two types of files: sequential­
access and random -access. For sequential-access files, the next logical
record is read. For random-access files, a specific record with a key is
read. Before a file is read, it must be opened with an INPUT or 1-0
phrase.

filenamel is the name of the file to be accessed. It must be defined in
an FD entry in the DATA DIVISION.

identifier 1 is the data area that receives the read record. It must be
defined in the WORKING-STORAGE SECTION as a group or
elementary data item. It must be long enough to hold all the data in the
record.

statementl is the statement to execute when an AT END condition
occurs.

statement2 is the statement to execute when a NOT AT END condition
occurs.

250 Chapter 4

statement3 is the statement to execute when an INVALID KEY
condition occurs.

statement4 is the statement to execute when a NOT INVALID KEY
condition occurs.

KEY IS specifies the key to retrieve a record from a file.

data-namel is the data area, defined in the WORKING-STORAGE
SECTION, which holds the key to retrieve a record from a file.

END-READ is an optional phrase to terminate the READ statement.

• Example

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INPUT-TEST
ASSIGN TO "tip. input. test"
ORGANIZATION IS LINE SEQUENTIAL
ACCESS MODE IS SEQUENTIAL
FILE STATUS IS WS-FILE-5TATUS.

DATA DIVISION.
FILE SECTION.

FD INPUT-TEST.
01 INPUT-LINE

WORKING-STORAGE SECTION.

01 WS-CURRENT-DATE

PROCEDURE DIVISION.

ADD 19000000

OPEN INPUT INPUT-TEST

READ INPUT-TEST NEXT RECORD

CLOSE INPUT-TEST

PIC X(512).

PIC 59(08).

TO WS-CURRENT-DATE

COBOL 251

a RELEASE statement

• General format

RELEASE record-name [FROM identifier]

• Description

The RELEASE statement makes a record available for sorting and is
used within the INPUT PROCEDURE of an internal sort.

record-name is defined as an SD entry in the FILE SECTION of the
DATA DIVISION. Its content is placed in the sort file each time the
RELEASE statement is executed.

identifier is a data area defined in the WORKING-STORAGE
SECTION. Its content is moved to record-name.

C RETURN statement

• General format

RETURN filename JRECORD]
[INTO identif~er]
[AT] END statementl
[NOT [AT] END statement2]

[END-RETURN]

• Description

The RETURN statement retrieves the next record during an internal sort
(or merge) operation. It is used within the OUTPUT PROCEDURE of
a MERGE or SORT statement.

filename is the name of a file described as an SD entry in the DATA
DIVISION.

identifier is the name of a data area which receives the record being
retrieved from filename.

statementl is the statement to execute when an AT END condition
occurs.

252 Chapter 4

statement2 is the statement to execute when a NOT AT END condition
occurs.

END-RETURN is an optional phrase to terminate the RETURN
statement.

a REWRITE statement

• General format

Sequential file:

REWRITE record-name [FROM identifier]
[END-REWRITE]

Relative and indexed files:

REWRITE record-name [FROM identifier]
[INVALID [KEY] statementl]
[NOT INVALID [KEY] statement2]

[END-REWRITE]

• Description

The REWRITE statement updates a record in a file. The file must be
open to execute the rewrite operation.

record-name is the name of a logical record described as an FD entry of
the DATA DIVISION.

identifier is the name of the data area from which the data is written.

statementl is the statement to execute when an INVALID KEY
condition occurs.

statement2 is the statement to execute when a NOT INVALID KEY
condition occurs.

END-REWRITE is an optional phrase to terminate the REWRITE
statement.

COBOL 253

C SEARCH statement

• General format

Serial search:

SEARCH identifierl
[VARYING <identifier2 or index-name>]
[[AT] END statementl]
[WHEN conditionl <statement2 or NEXT SENTENCE>] ••.

[END-SEARCH]

Binary search:

SEARCH ALL identifierl
[AT] END statementl
WHEN <conditionl or

<data-namel [IS] EQUAL [TO]
<identifier3 or literall or expressionl>

[AND <data-name2 [IS] EQUAL [TO]
<identifier4 or litera12 or expression2>]

<statement2 [END-SEARCH] or NEXT SENTENCE>

• Description

The SEARCH statement searches a data area (table) until a certain
condition is satisfied. There are two kinds of searches: serial and binary.

identifier 1 is the name of a data area, defined as a table with an
OCCURS clause.

VARYING is used for a serial search which increments index-name or
identifier2, the subscript to the table identifier 1. The search starts from
the current settings of the index.

identifier2 is a data area which holds a subscript to the table identifier 1.

index-name is an index to table identifier 1.

WHEN specifies the conditions for the search.

condition1 and condition2 are conditional expressions.

identifier 3 and identifier4 are names of data areas.

statementl is the statement to execute when an AT END condition
occurs.

254 Chapter 4

statement2 is the statement to execute that is associated with the WHEN
clause.

literall and literal2 are literal values.

expressionl and expression2 are arithmetic expressions.

data-namel and data-name2 are associated with the WHEN clause. Both
must specify a data item (ASCENDINGIDESCENDING KEY) in the
identifier 1 table element.

END-SEARCH is an optional phrase to terminate the SEARCH
statement.

C SET statement

• General format

TO phrase:

SET <index-namel or identifierl> TO
<index-name2 or identifier2 or integerl>

UP/DOWN phrase:

SET index-name3 ••• <UP or DOWN> BY
<identifier3 or integer2>

ON/OFF phrase:

SET mnemonic-namel ••. TO <ON or OFF>

TO TRUE phrase:
SET condition-namel ••• TO TRUE

Pointer data item phrase:
SET <identifier4 or ADDRESS OF identifierS> •••

TO <identifier6 or ADDRESS OF identifier7 or
NULL or NULLS>

• Description

The SET statement does the following:

• Changes table indexes
• Sets status codes to external switches
• Sets values of conditional variables
• Sets values to pointer data areas

COBOL 255

The TO phrase sets the value of index-name2 or identifier2 or integer 1
to the current value of index-namel or identifier 1.

The UP/DOWN phrase increases or decreases the value of index-name3
by identifier3 or integer2.

The ON/OFF phrase sets mnemonic-namel to ON or OFF status.

The TO TRUE phrase sets condition-namel to its true value.

The ADDRESS OF phrase sets the value of identifier6 or ADDRESS OF
identifier7 or NULL or NULLS to identifier4 or ADDRESS OF
identifier5 .

• Example

WORKING-STORAGE SECTION.

01 WS-CURRENT-DATE
01 WS-RESPONSE-STATUS

88 SUCCESSFUL
88 SEVERE-ERROR

LINKAGE SECTION.

01 DOSAGE-LINKAGE.

05 WS-NEW-DATE

05 WS-RESPONSE
88 SUCCESSFUL
88 NOT-FOUND

PROCEDURE DIVISION.

COMPUTE WS-NEW-DATE =

PIC S9(08).
PIC S9(09) COMP.

VALUE O.
VALUE 100.

PIC S9(08).

PIC S9(09) COMP.
VALUE O.
VALUE 100, 1403.

19000000 + WS-CURRENT-OATE

CALL IIDosage ll USING DOSAGE-LINKAGE

IF SUCCESSFUL

CONTINUE

ELSE

SET SEVERE-ERROR
TO TRUE

GO TO 0101-EXIT

END-IF

OF DOSAGE-LINKAGE

OF RESPONSE-STATUS

256 Chapter 4

C SORT statement

• General format

SORT filenamel [ON] <ASCENDING or DESCENDING>
[KEY] data-namel •••
[[WITH] DUPLICATES IN ERROR]
[[COLLATING] SEQUENCE [IS] alphabet-namel]
< <USING filename2> or

>
>

<INPUT PROCEDURE [IS] proc-namel
<THRU or THROUGH> proc-name2

< <GIVING filename3> or

>
>

<OUTPUT PROCEDURE [IS] proc-name3
<THRU or THROUGH> proc-name4

where filenamel is
<ASCENDING or DESCENDING> KEY PHRASE

• Description

The SORT statement sorts input records in ascending or descending
order specified by one or more keys. The input records can be made
available to the SORT statement either from one or more input files or
through a procedure specified in the INPUT PROCEDURE phrase. The
sorted records can be either written to an external file or passed on for
further processing to a procedure specified in the OUTPUT
PROCEDURE phrase.

filenamel describes the records to be sorted; it must be defined in an SD
entry in the DATA DIVISION.

data-namel is a data area which specifies the KEY and is associated
with filenamel.

ASCENDING or DESCENDING specifies that the records are to be
sorted in ascending or descending order, based on the specified keys.

COLLATING SEQUENCE specifies the collating sequence to be used
during the merge operation.

alphabet-namel is specified in the ALPHABET clause of the SPECIAL­
NAMES paragraph of the ENVIRONMENT DIVISION and is used in
the collating sequence.

COBOL 257

USING specifies the input files, namely, filename2.

filename2 contains the files to be merged. They should be defined as FD
entries in the DATA DIVISION. They are operands of the USING
phrase.

GIVING specifies the output file, namely, filename3.

filename3 is the name of the output file. It must be defined as an FD
entry in the DATA DIVISION. It is an operand of the GIVING phrase.

INPUT PROCEDURE specifies the procedures for selecting or
modifying input records before the sort operation starts.

proc-namel is the first section or paragraph in the INPUT PROCEDURE
phrase.

proc-name2 is the last section or paragraph in the INPUT PROCEDURE
phrase.

OUTPUT PROCEDURE specifies the procedure for selecting or
modifying output records during the sort operation.

proc-name3 is the first section or paragraph in the OUTPUT
PROCEDURE phrase.

proc-name4 is the last section or paragraph in the OUTPUT
PROCEDURE phrase.

C START statement

• General format

START filenamel
KEY [IS] < EQUAL [TO]

GREATER [THAN]
>
NOT LESS
NOT <
GREATER [THAN] OR EQUAL
>=

> data-namel
[INVALID [KEY] statementl]
[NOT INVALID [KEY] statement2]

[END-START]

or
or
or
or
or
or

[TO] or

258 Chapter 4

• Description

The START statement establishes the position for retrieving a record of
an indexed or relative file. Before this statement is executed, the file
must be opened in INPUT or 1-0 mode.

filenamel is the name of the file for which the position of a record is
sought. It must be described as an FD entry in the DATA DIVISION.

KEY specifies that the file indicator is to be positioned at the first
logical record whose key field satisfies a comparison with the value in
data-namel. The default is to position the file indicator at the logical
record whose key field is equal to the current value of the prime record
key.

statementl is the statement to execute when an INVALID KEY
condition occurs.

statement2 is the statement to execute when a NOT INVALID KEY
condition occurs.

END-START is an optional phrase that terminates the START statement.

a STOP statement

• General format

STOP <RUN or literal>

• Description

The STOP statement terminates the execution of a program. All files are
closed, and control is transferred to the calling program.

• Example

WORKING-STORAGE SECTION.

01 WS-CURRENT-OATE PIC 59(08).

PROCEDURE DIVISION.

MAINLINE.

INITIALIZE WS-CURRENT-DATE

ACCEPT WS-CURRENT-DATE FROM DATE

DISPLAY II DATE IS II

DISPLAY WS-CURRENT-DATE

.
STOP RUN.

C STRING statement

• General format

STRING <identifierl or literall> •••

COBOL 259

DELIMITED [BY] <identifier2 or litera12 or SIZE>
INTO identifier3
[WITH] [POINTER identifier4]
[ON] [OVERFLOW statementl]
[NOT [ON] OVERFLOW statement2]

[END-STRING]

• Description

The STRING statement is used to concatenate several fields of data into
one form. All the data areas must be defined with the USAGE
DISPLAY phrase. There may be one or more input fields.

identifier 1 is a data area that holds the input field.

literall is a nonnumeric value that is the input field.

DELIMITED BY specifies the limit of each input field with a delimiter.

identifier2 is a data area that holds one or more characters as the
delimiters.

litera12 is a nonnumeric value that is the delimiter.

identifier3 is a data area that receives the output string.

POINTER specifies that the output is a pointer field.

260 Chapter 4

identifier4 is a data area defined as a pointer data type.

statementl is the statement to execute when an ON OVERFLOW
condition occurs.

statement2 is the statement to execute when a NOT ON OVERFLOW
condition occurs.

END-STRING is an optional phrase that terminates the STRING
statement.

C SUBTRACT statement

• General format

Format 1:

SUBTRACT <identifierl or literall> FROM identifier2
[ROUNDED]
[ON] [SIZE ERROR statementl]
[NOT [ON] SIZE ERROR statement2]

[END-SUBTRACT]

Format 2:

SUBTRACT <identifierl or literall> FROM
<identifier2 or litera12>

GIVING identifier4 [ROUNDED]
[ON] [SIZE ERROR statementl]
[NOT [ON] SIZE ERROR statement2]

[END-SUBTRACT]

Format 3:

SUBTRACT <CORRESPONDING or CORR> identifierS
FROM identifier6 [ROUNDED]
[ON] [SIZE ERROR statementl]
[NOT [ON] SIZE ERROR statement2]

[END-SUBTRACT]

• Description

The SUBTRACT statement subtracts one or more numeric operands
from one or more numeric operands and stores the result.

COBOL 261

identifierl, identifier2, and identifier3 must be elementary numeric data
areas.

identifier4 must be either an elementary numeric data area or
numeric--edited data area. It receives the sum.

CORRESPONDING specifies two group operands. The operation is to
be performed on all corresponding elementary data items of both groups.

identifier5 and identifier6 must be group data areas. The elementary
elements of identifier5 are subtracted from, and stored in, elements of
identifier6.

literall is a numeric literal.

statementl is the statement to which control is transferred when an ON
SIZE ERROR condition occurs.

statement2 is the statement to which control is transferred when a NOT
ON SIZE ERROR condition occurs.

ROUNDED specifies that any fractional result is to be rounded to the
nearest decimal position.

END-SUBTRACT is an optional phrase to terminate the SUBTRACT
statement.

a UNSTRING statement

• General format

UNSTRING identifierl
[DELIMITED [BY] [ALL] <identifier2 or literall>

OR ALL <identifier3 or literal2>]
[INTO identifier4 DELIMITER JIN] identifier5

COUNT [IN] identif~er6]
[WITH] [POINTER identifier7]
[TALLYING [IN] identifier8]
[ON] OVERFLOW statementl
NOT [ON] OVERFLOW statement2

[END-UNSTRING]

262 Chapter 4

• Description

The UNSTRING statement takes contiguous data fields, separates them,
and stores them into several data fields. Depending on the processing,
it can replace several MOVE statements.

identifier 1 is a data area that holds the input field.

DELIMITED BY specifies the limit of each input field with a delimiter.

identifier2 and identifier3 are data areas that hold one or more characters
as the delimiters.

literal1 and literal2 are nonnumeric values that are the delimiters.

identifier4 is the data area that receives the output fields. It must be
defined with the USAGE DISPLAY phrase.

DELIMITER IN specifies the delimiter for the output fields.

identifier5 is the data area that hold the output field delimiter.

COUNT IN specifies the data area of the count for the input fields.

identifier6 is the data area that holds the count of examined characters
for the input fields.

POINTER specifies that the ouput is a pointer field.

identifier7 is a data area defined as a pointer data type.

TALLYING IN specifies the data area of the count for the output fields.

identifier8 is a data area that holds the number of output fields during
the execution of the UNSTRING statement.

statementl is the statement to execute when an ON OVERFLOW
condition occurs.

statement2 is the statement to execute when a NOT ON OVERFLOW
condition occurs.

COBOL 263

END-UNSTRING is an optional phrase that terminates the UN -STRING
statement.

C WRITE statement

• General format

Sequential file:

WRITE record-namel
[FROM identifierl]
[<BEFORE or AFTER> ADVANCING

<mnemonic-namel or PAGE> or
[<identifier2 or literal>
<LINE or LINES>]]

[<INVALID [KEY] statementl> or
<[AT] END-OF-PAGE statement3>]

[<NOT INVALID [KEY] statement2> or
<NOT [AT] END-OF-PAGE statement4>]

[END-WRITE]

Indexed and relative file:

WRITE record-namel
[FROM identifierl]
[INVALID [KEY] statementl]
[NOT INVALID [KEY] statement2]

[END-WRITE]

• Description

The WRITE statement causes a logical record to be written to a file.
Before this operation, the file must be open in OUTPUT, 1-0, or
EXTEND mode. After the WRITE statement is executed, the FILE
STATUS is updated. There are three types of files to which records are
written:

• Sequential files
• Indexed and relative files

record-namel is defined as an FD entry in the DATA DIVISION; its
current content is written to the file.

identifier 1, if specified, is a daiji area from which the record is written
to the file.

264 Chapter 4

identifier2 is a data area and must contain an integer value.

ADVANCING controls the positioning of the current output record on
the page of a sequential file.

statementl is the statement to execute when an INVALID KEY
condition occurs.

statement2 is the statement to execute when a NOT INVALID KEY
condition occurs.

statement3 is the statement to execute when an END-OF-PAGE
condition occurs.

statement4 is the statement to execute when a NOT END-OF-PAGE
condition occurs.

END-WRITE is an optional phrase to terminate the WRITE statement.

4.7 Compiler Directives

This section describes the compiler directive statements which are used in
a COBOL source program.

C BASIC statement

• General format

[sequence-number] BASIS basis-name

• Description

The BASIC statement provides a way to include a complete COBOL
program during compilation.

sequence-number is a number in columns 1 through 6.

basis-name is a program name.

COBOL 265

a CONTROL statement

• General format

Source code:

<*CONTROL or *CBL> <SOURCE or NOSOURCE>

Object code:

<*CONTROL or *CBL> <LIST or NOLIST>

Storage maps:

<*CONTROL or *CBL> <MAP OR NOMAP>

• Description

The CONTROL statement displays or suppresses listing of source code,
object code, or storage maps.

a COpy statement

• General format

COpy text-name <OF or IN> library-name SUPPRESS
REPLACING operandl BY operand2

• Description

The COPY statement is used to include the text of a COBOL program
during compilation. The text is commonly known as the copy book.

text-name is the name of a member of a library.

library-name is the name of the library where text-name is found.

operandl and operand2 are either pseudo text, identifiers, literals, or
COBOL words.

266 Chapter 4

C DELETE statement

• General format

[sequence-number] DELETE sequence-number-field

• Description

The DELETE statement removes COBOL statements from the BASIS
source program. '

sequence-number is a numper in columns 1 through 6.

sequence-number-field is a number equal to a sequence number in the
BASIS source program.

C EJECT statement

• General format

EJECT

• Description

The EJECT statement specifies that the next line of the source program
is to be printed at the top of the page.

C INSERT statement

• General format

[sequence-number] INSERT sequence-number-field

• Description

The INSERT statement adds COBOL statements from the BASIS source
program.

sequence-number is a number in columns 1 through 6.

sequence-number-field is a number equal to a sequence number in the
BASIS source program.

COBOL 267

a REPLACE statement

• General format

Format 1:

REPLACE textl by text2

Format 2:

REPLACE OFF

• Description

The REPLACE statement replaces the source program.

textl must contain one or more text words.

text2 may contain no word, one word, or many words.

a SKIP1/2/3 statements

• General format

<SKIP1 or SKIP2 or SKIP3> [.]

• Description

The SKIP statements insert one, two, or three blank lines in the source
listing.

SKIP! inserts one blank line.

SKIP2 inserts two blank lines.

SKIP3 inserts three blank lines.

268 Chapter 4

a TITLE statement

• General format

TITLE literal [.]

• Description

The TITLE statement specifies that a title is to be printed at the top of
each page of the source listing.

literal is the title.

Chapter

OB2/2 Commands and Utilities

This chapter is a reference guide for programmers using DB2/2. DB2/2 is
a relational database for OS/2. The subjects covered here can be grouped
into these categories:

• System commands
• DOS and Windows database client application enabler commands
• DBM command line processor commands

For each command and utility, this chapter provides the syntax and a
description of the function and its parameters. In some cases you will also
find examples of how the functions use these parameters. Information on
the privileges and authority needed to execute some of these commands is
also presented.

269

270 Chapter 5

5.1 System Commands

The system commands are issued at the OS/2 command line or from a
command file (.CMD). These commands are generally used to maintain the
DB2/2 database. The general format is

[drive] [path] system-commands parameters

drive is a two-character (A:, B:, etc.) drive indicating where the
command is to be found.

path is the directory containing the command to be executed.

system-commands are DBM commands, MIGRATE!, SQLSQLARWS,
SQLBIND, SQLDRWS, SQLPREP, SQLQMF, SQLSAMPL,
SQLVCFG, STARTDBM, and STOPDBM.

parameters are options and keywords.

(Note: Both drive and path are optional, and if they are not specified,
the system searches in the current drive and current directory for the
command. If the command is not found, the path listed in the PATH
environment variable is used.)

a DBM-command line processor

• General format

[drive] [path] DBM [-c or -0 or -R ([path] filename)] •••
<command or statement> [\]]

or
[drive] [path] DBM ? [?phrase or ?message_number]

• Authorizations

Authority Privilege

None required None required

Commands and Utilities 271

• Description

The DBM command is an interface between DB2/2 and OS/2 command
line or batch file (.CMD).

drive is a two-character (A:, B:, etc.) drive indicating where the DBM
command is to be found.

path is the directory containing the DBM command to be executed.

? is used to obtain general help (assistance) information.

?phrase is used to obtain help information on a specific command, such
as a SQL statement or topic.

?message _number is used to get a description of a specific message
number. A message number is prefixed with one of the following three-
character codes. .

• DBA-messages for the database administrator
• DBM-DB2/2 messages
• SQL-SQL messages
• QRW-query manager message

-C means to disallow a change or insert to the database to take effect
unless a DBM COMMIT is issued. You can set an automatic-commit
option in an environment variable in your CONFIG.SYS file. When
automatic commit is enabled, all changes or insertions to the database
become permanent.

-0 means to direct messages or report data to a standard device instead
of to the workstation screen.

-R is used to send a report to a file.

path is the drive letter and directory name of the file to which the report
is written.

filename is the name of the file to which the report is written .

. ext is the extension of the file, if any.

command is used to specify the DBM command you want to execute.

272 Chapter 5

All the commands are listed and explained later in this chapter.

statement is used to specify the SQL statements. These statements are
discussed in Chap. 6.

\ is the line continuation character. It is used when a DBM command or
SQL statement is long and you want to type it in more than one line.
When DBM reads \ as the last character of a line it automatically
displays a new prompt (=» and you can enter more characters to
complete a command or statement.

• Example

In the next example, the SQL statement is used to insert a row in the
CLIENTS table. Since there is a -C (suppress commit option), this
addition to the database will not become permanent.

DBM -C INSERT INTO RBA.CLIENTS \
(NAME, CITY, POSTAL_C, PROV) \
VALUES ('RBC','NEWMARKET','L3XIFO','ONTARIO')i

In the following command, the report data which results from executing
the SELECT statement is written to the C:\BOOK\OS2REF\CLIENTS
file.

DBM -R (C:\BOOK\OS2REF\CLIENTS) SELECT * \
FROM RBA.CLIENTS

DBM also allows redirection of data using the redirection symbol (».
The previous example can be rewritten, replacing the -R option with >.

DBM SELECT * FROM RBA.CLIENTS > \
C:\BOOK\OS2REF\CLIENTS

c- MIGRATE1-migrate database

• General format

[drive] [path] MIGRATEl database

Commands and Utilities 273

• Authorizations

Authority Privilege

None required None required

• Description

The MIGRATEl system command is used to migrate a database created
in EE (Extended Edition) 1.3 or ES (Extended Series) 1.0 to DB2/2.

drive is two-character (A:, B:, etc.) drive indicating where the
MIGRATEl command is to be found.

path is the directory listing the MIGRATEl command to be executed.

database specifies the name of the database to be migrated from EE or
ES to DB2/2.

• Example

The following command is used to migrate the CLIENTS database.

MIGRATE! CLIENTS

C SQLARWS-add remote workstation

• General format

[drive] [path] SQLRWS

• Authorizations

Authority

machine-id modetype
[/W=workstation or /R]

Privilege

SYSADM Appropriate
LAN administration

274 Chapter 5

• Description

The SQLARWS command allows a workstation to access and use
DB2/2 programs residing on a LAN (local area network) server. This
command makes the program appear to have been installed on the
workstation.

drive is a two-character (A:, B:, etc.) drive indicating where the
SQLARWS command is to be found.

path is the directory containing the SQLARWS command to be
executed.

machine-id is a LAN machine ID for the workstation that must use the
DB2/2 programs on a LAN server. It cannot be longer than eight
characters.

modetype is used to specify the type of workstation and can be one of
the following:

o = local workstation
1 = database server workstation
2 = database client workstation
3 = database client workstation with local database

/W =workstation
This parameter is used to specify the node name of a workstation. This
name must be defined in the DB2/2 configuration file. This parameter
is required for client or server workstations but not for local
workstations.

IR is used to replace an existing workstation configuration file .

• Example

The following command grants a client workstation access to a DB2/2
program. The workstation is known to the LAN as KINGFISH and as
eRA YFISH to DB2/2.

SQLARWS KINGFISH 2 /W=CRAYFISH

Commands and Utilities 275

C SQLBIND-blnd the application to the database

• General format

[drive] [path] SQLBIND <program-name or
@list-file>

database [option •••]

• Authorizations

Authority

SYSADM
DBADM

• Description

Privilege

BINDADD

The SQLBIND command is used to prepare SQL statements. The input
is a file generated by the precompiler, and its extension is .BND. After
the SQL statement is prepared, SQLBIND creates a package that is
stored in the database.

drive is two-character (A:, B:, etc.) drive indicating where the
SQLBIND command is to be found.

path is the directory contaning the SQLBIND command to be executed.

program-name specifies the bind files generated by the precompiler from
a source program. If needed, you must give the pathname of this file.

@list-file is used to specify a list file. This file contains a number of the
bind files in separate lines. If you list many files in one line, they must
be separated by plus sign (+).

database is used to specify the alias of a database to bind the program.

option is used to specify special processing. There are several options
and you can list none or many of these options. They are

IF=format
This option is used to specify the date and time formats used when
binding a program.

format is one of the codes shown in Figure 5.1.

276 Chapter 5

Code Date format Time format Description

ISO yyyy-mm-dd
USA mm/dd/yyyy
EUR dd.mm.yyyy
J IS yyyy-mm-dd

hh.mm.ss International Standards Organization
hh:mm AM or PM USA Standard
hh.mm.ss European Standard
hh:mm:ss Japanese Industrial Standard

DEF The date and time formats used with the country code; this is the default
LOC Special date and time formats depending on the country code

Figure 5.1 International date and time formats.

/G=grantspec
This option is used to grant execution and bind privileges to a user ID,
group ID, or PUBLIC.

II= isola tion
This option is used to specify the isolation level. This tells DB2/2 how
to isolate data in the database from other processing which may occur
while the application is accessing the database.

isolation is one of the following:

RR-repeatable read
CS-cursor stability
UR-uncommitted read

lK=blocking
This option is used to specify the type of record blocking and explains
how to deal with ambiguous cursors.

blocking is one of the following

• ALL means to block for
• FETCH-only cursors
• Cursors not specified as FOR UPDATE OF
• Cursors for which there are no static DELETE WHERE

CURRENT OF statements
• Any ambiguous cursors are treated as FETCH-only.

Commands and Utilities 277

• UNAMBIG means to block for
• FETCH-only cursors
• Cursors not specified as FOR UPDATE OF
• Cursors that do not have static DELETE WHERE CURRENT

OF statements
• Cursors that do not have dynamic statements
• Any ambiguous cursors are treated UPDATE-only.

• NO means not to block any cursors. Any ambiguous cursors are
treated as UPDATE-only.

The default is /K=UNAMBIG.

!M=destination
This option is used to specify a destination to which warning or error
messages are written.

destination can be anyone of the following:

• A name of a file
• LPTl for a printer
• CON for the console
• NUL to suppress messages

• Example

The following statement creates a package for the TIP program from the
TIP.BND bind file in the PRESCRIBER database.

SQLBIND TIP.BND PRESCRIBER

The next example is the same as the previous one, except two options
are added. The !F=EUR option specifies European data and time format,
and !M=LPTl is used to send the messages to the printer.

SQLBIND TIP.BND PRESCRIBER \
IF=EUR IM=LPTl

C SQLDRWS-drop remote workstation

• General format

[drive] [path] SQLDRWS machine-id

278 Chapter 5

• Authorizations

Authority Privilege

SYSADM LAN server
LAN administrator

• Description

The SQLDRWS command describes a workstation that accesses DB2/2
programs located on the LAN server. The access is granted by the
SQLARWS command, discussed previously.

drive is a two-character (A:, B:, etc.) drive indicating where the
SQLDRWS command is to be found.

path is the directory containing the SQLDRWS command to be
executed.

machine-id is used to specify a machine-id already defined in the LAN.
The name cannot be more than eight characters in length.

• Example

In the following command, the KINGFISH workstation is denied access
to DB2/2 program installed in the LAN server.

SQLDRWS KINGFISH

a SQLPREP-precompile a source file

• General format
[drive] [path] SQLPREP program-name

database [option •••]

• Authorizations

Authority Privilege

SYSADM, DBADM, or BIND None required

Commands and Utilities 279

• Description

The SQLPREP command is used to precompile a program.
Precompilation, as the name suggests, is a step preceding compilation
and is needed when there are embedded SOL statements in a source
program file. During this process, many tasks are accomplished; some
of the most important ones are

• The validity of SOL statements is checked.
• Table names and column names are verified against a database.
• SOL statemens are translated into program language statements for

compilation.
• A modified version of the program source file is created with the

default extensions, for example, . C for C programs or . CBL for
COBOL. Subsequently, this file, which includes your code and
translated SOL statements, can be compiled.

• A bind file, with extension .BND is generated that contains the
access path to the database.

drive is a two-character (A:, B:, etc.) drive indicating where the
SQLPREP command is to be found.

path is the directory containing the SQLPREP command to be executed.

program-name is the name of the source file that is to be precompiled.
The extensions for such a file are

.SOC for C programs

.SOB for COBOL programs

database is the alias of the database accessed by the SOL statements of
the source program.

option is used to specify special processing. In one command you can
list none to many options. They are as follows:

!B=ffilename]
This option is used to specify the filename for the bind file with
extension (.BND). If you omitted the filename, the precompiler used the
program filename.

/C=None required or SAA
This option is used to specify whether the generated code should

280 Chapter 5

conform to SAA (Systems Application Architecture) standards.

SAA means that the modified code is compatible with SAA standards.

None required means that the modified code is not compatible with SAA
standards.

IF=format
This option is used to specify the date and time formats used when
binding a program.

format is of one of the codes listed in Figure 5.1.

II= isola tion
This option is used to specify the isolation level. This tells DB2/2 how
to isolate data in the database from other processing which may occur
while the application is accessing the database.

isolation is one of the following:

RR-repeatable read
CS-cursor stability
UR-uncommitted read

lK=blocking
This option is used to specify the type of record blocking and it tells
how to deal with ambiguous cursors.

blocking is one of the following:

• ALL means to block for
• FETCH-only cursors
• Cursors not specified as FOR UPDATE OF
• Cursors for which there &re no static DELETE WHERE

CURRENT OF statements
• Any ambiguous cursors are are treated as FETCH-only .

• UNAMBIG means to block for
• FETCH-only cursors
• Cursors not specified as FOR UPDATE OF
• Cursors that do not have static DELETE WHERE CURRENT

OF statements

Commands and Utilities 281

• Cursors that do not have dynamic statements
• Any ambiguous cursors are treated as UPDATE-only.

• NO means not to block any cursors. Any ambiguous cursors are
treated as UPDATE-only.

The default is !K=UNAMBIG.

/L=level
This option is used to specify the level of compliance to SAA standards.

level is 0 or 1.

o means compatible with database common programming interface
only.

1 means compatible with multivendor integrated architecture (MIA).

/M=destination
This option is used to specify a destination to which warning or error
messages are written.

destination can be anyone of the following:

• A name of a file
• LPT1 for a printer
• CON for the console
• NUL to suppress messages.

/#
This option is used to suppress generation of line macros in modified C
programs only.

/O=optimize
This option is used to optimize the initialization code of the SQLDA
structure. This optimization applies only to SQL statements using host
variables.

lP=package
This option is used to create a package.

package is the name of the package.

282 Chapter 5

/S
This option is used to suppress creation of the bind or package file.

• Example

In the following command, TIP.SQB is a COBOL source file. This file
is precompiled to create a modified source file called TIP.CBL. The
CUSTOMER database is used to validate table and column names found
in the SQL statements of the source program.

SQLPREP TIP.SQB CUSTOMER IB IP
IM=C:\TIP\ERROR.OUT

The IB option is used to generate a TIP.BND bind file, IP is used to
create a package, and the messages are written to C:\TIP\ERROR.OUT.

C SQLQMF-Import a QMF file

• General format

[drive] [path] SQLQMF host-filename
[drivel] [pathl] filename
[/S:host-session-id] [1M or IV]
[/O:database [/I:import-option or

IT:table-name] •••]

• Authorizations

Authority Privilege

None required None required

• Description

The SQLQMF command is used to download files from the MVS
(multiple virtual storage) or VM (virtual machine) host system.
Subsequently, the data in these files can be imported to DB2/2 tables.
Before you can use this command make sure the following tasks have
taken place:

• Start Communication Manager programs
• Start DB2/2

Commands and Utilities 283

• Log on to the host system (VM or MVS) where the data resides

drive is two-character (A:, B:, etc.) drive indicating where the command
is to be found.

path is the directory containing the command to be executed.

host-filename is the name of the data file in the host system to be
downloaded. In MVS, the name should conform to dataset naming
convention: fully or partially qualified dataset name, or a partitioned
dataset (PDS) with a member name. In VM, the name must have a.
filename, filetype, and filemode, separated by spaces. If you omit
file type or filemode, the default is 'DATA A'.

drivel is the letter of the drive where the data of the host file is
downloaded to.

pathl is the directory and the filename where the data of the host file is
stored.

filename is the name of the file in the workstation where the data' of the
host file is received. Depending on the type of information, SQLQMF
will automatically add a file extension. The possible file extensions are:

.DEL Data is in ASCII delimited format to be used by import
command .

. COL Table definition in ASCII text format.

.CRE CREATE TABLE statements in ASCII text.

.lML A file containing messages generated during the downloading of
the data in the host files .

. TMP A temporary file used by SQLQMF during the downloading; it
is erased after the transfer of the data is completed.

IS:host-session-id
This option is used to specify a host session ID and consists of one
character, such as A, B, or C. This identification is shown on the
window of the host session. If none is specified, the SQLQMF assumes
character A.

1M
This option is used to specify the MVS system. This is the default value.

284 Chapter 5

N
This option is used to specify the VM system.

lD:database
This option is used to specify a database name to which the host data is
written. If this option is omitted, the data is stored in an ASCII delimited
file.

/I: import-option
This option is used if the data is written to a database.

import-option is one of the following:

R Replace data in all rows of an existing table
C Create a table
A Add data to an existing table
o Overlay data to an existing table

{f:table-name
This option is used to specify the name of a table to which data is
written.

table-name is the name of a table, and if it is not specified, the
workstation filename is used .

• Example

The following command is used to download a file called
'CLIENTS.HOST.B' from MVS. This data is imported to the CLIENTS
table of the CUSTOMER database.

SQLQMF 'CLIENTS.HOST.B' \
C:\CLIENTS IS:B 1M \

D:\CUSTOMER /I:C {f:CLIENTS

C SQLSAMPL-create sample database

• General format

[drive] [path] SQLSAMPL [drivel]

Commands and Utilities 285

• Authorizations

Authority Privilege

SYSADM None required

• Description

The SQLSAMPL command creates a sample database with the
following tables: ORG, STAFF, and STAFF:G.

drive is two-character (A:, B:, etc.) drive indicating where the
SQLSAMPL command is to be found.

path is the directory containing the SQLSAMPL command to be
executed.

drivel is to name the drive where the database is to be created. If you
omit this parameter, the database is created in the drive where the
SQLLIB subdirectory is found.

D SQLVCFG-vlew configuration

• General format

[drive] [path] SQLVCFG

• Authorizations

Authority Privilege

None required None required

• Description

The SQLVCFG command is used to view the names of all the return
workstations granted access to the DB2/2 program on the LAN server.
This command also shows the node type of each workstation. The
information is sent to the standard output device of the LAN server.

drive is a two-character (A:, B:, etc.) drive indicating where the
SQLVCFG command is to be found.

286 Chapter 5

path is the directory containing the SQLVCFG command to be
executed.

a STARTOBM-start OB2/2

• General format

[drive] [path] STARTDBM

• Authorizations

Authority Privilege

None required None required

• Description

The STARTDBM command starts the DB2/2 and also initiates the
necessary resources. Before you can precompile a program or build a
package to a particular database, the database must be running.

drive is a two-character (A:, B:, etc.) drive indicating where the
STARTDBM command is to be found.

path is the directory containing the STARTDBM command to be
executed.

a STOPOBM-stop OB2/2

• General format

[drive] [path] STOPDBM

• Authorizations

Authority Privilege

None required None required

Commands and Utilities 287

• Description

The STOPDBM command is used to stop DB2/2 and release all the
resources. DB2/2 will not stop if there is any programs connected to the
database.

drive is a two-character (A:, B:, etc.) drive indicating where the
STOPDBM command is to be found.

path is the directory containing the STOPDBM command to be
executed.

5.2 DOS and Windows Database Client Application
Enabler Commands

This section gives the syntax and a brief description of a few commonly
used commands to access DOS or Windows clients-SQLLOGN2,
STARTDRQ, STOPDRQ, and SQLLOGF2-used. These commands are
entered at the DOS command line or batch file (.BAT). With Windows,
these commands must be issued before entering the Windows environment.

C SQLLOGN2-log on DOS or Windows database client

• General format

SQLLOGN2 [userid [/P=password or *]]

• Authorizations

Authority Privilege

None required None required

• Description

The SQLLOGN2 command is used to log on to DB2/2 DOS or
Windows database client.

userid is used to specify a valid user ID on the DOS or Windows
database client. .

288 Chapter 5

There are a few restrictions on this user ID:

• It must be unique and no longer than eight characters.
• It must not start with IBM, SQL, or SYS keywords.
• It cannot end with the $ character.

/P=password
This parameter is used to enter the password belonging to the user ID.

password is made up of 4 to 8 characters.

C STARTDRQ-Start DOS or Windows database client

• General format

STARTDRQ

• Authorizations

Authority Privilege

None required None required

• Description

The STARTDRO command is used to start a DOS or Windows
database client.

C STOPDRQ-stop DOS or Windows database client

• General format

STOPDRQ

• Authorizations

Authority Privilege

None required None required

Commands and Utilities 289

• Description

The STOPDRQ command is used to stop a DOS or Windows database
client.

C SQLLOGF2-log off DOS or Windows database client

• General format

SQLLOGF2

• Authorizations

Authority Privilege

None required None required

• Description

The SQLLOGF2 command is used to log off a DB2/2 DOS or
Windows database client.

5.3 DBM Command Line Processor Commands

The DBM command is an interface between the DB2/2 and OS/2
command line or the batch file (.CMD). This command is used to maintain
the operation of the database manager. Some of the operations you can
perform are

• Maintain DB/2 databases
• Issue SQL statement
• Request help information

The general format of DBM is

[drive] [path] DBM [-C or -0 or -R ([path] filename)] •••
<command or statement> [\]]

or
[drive] [path] DBM ? [?phrase or ?message_number]

drive is a two-character (A:, B:, etc.) drive indicating where the DBM
command is to be found.

290 Chapter 5

path is the directory containing the DBM command to be executed.

? means to contain general help information.

?phrase is used to obtain help information on a specific command: SOL
statement or topic.

?message _number is used to obtain a description of a specific message
number. A message number is prefixed with one of the following three­
character codes:

• DBA-messages for the database administrator
• DBM-DB2/2 messages
• SOL-SOL messages
• ORW-query manager message

-C means to disallow a change or insert to the database to take effect
unless a DBM COMMIT is issued. You can set the automatic commit
option in an environment variable in your CONFIG.SYS file. When
automatic commit is enabled, all changes or insertions to the database
become permanent.

-0 means to direct messages or report data to a standard device instead
of to the workstation screen.

-R is used to write a report to a file.

path is the drive letter and directory name of the file to which the report
is written.

filename is the name of the file to which the report is written .

. ext is the extension of the file, if any.

command is used to specify the DBM command you want to execute.
All the commands are listed and explained in this chapter.

statement is used to specify the SOL statements. These statement are
discussed in Chap. 6.

\ is the line continuation character. It is used when a DBM command or
SOL statement is long and you want to type it in more than one line.

Commands and Utilities 291

When DBM reads \ as the last character of a line; it automatically
displays a new prompt (=», and you can enter more characters to
complete a command or statement.

This section describes all the commands used to manage the databases.
The SQL statements are discussed Chap. 6.

C BACKUP DATABASE-copy local database

• General format

DBM BACKUP DATABASE database-name [ALL or CHANGES]
TO drive

• Authorizations

Authority

SYSADM or
DBADM

• Description

Privilege

None required

The BACKUP DATABASE command is used to make a backup copy
of the local database. For the first time the entire database must be
copied to the files. In subsequent times, you back up only the files that
have changed since the last backup. This way you don't have to copy
the database each time.

database-name is the alias of the database to be backed up.

ALL means to back up the entire database. This is the default value.

CHANGES means to copy the files that have changed since the last
backup of the database.

drive is used to specify the drive letter where the backup files are stored.
(Enter one character only, without the colon.)

292 Chapter 5

• Example

In the following command, the CLIENTS database is backed up in drive
A.

BACKUP DATABASE CLIENTS TO A

C BIND-bind the application program to the database

• General format

BIND filename TO DATABASE database-name
[USING [MESSAGES msgfile] [ISOLATION isolation]]
[BLOCKING blocking]
[DATETIME format]
[GRANT <PUBLIC or authority-id>]

• Authorizations

Authority

SYSADM or DBADM
BIND

• Description

Privilege

BINDADD

The BIND command takes a bind created by the precompiler and
generates a package which is used to access DB2/2 data during the
execution of a program. During a bind processing, the following
happens:

• Validation of the rules, structure, and syntax of SQL statements used
in a program

• Verification of authority to access DB2/2 data
• Choice of an access path to data
• Creation of a package which is used to allocate resources during

program execution

filename is used to specify the name of the bind file, previously
generated when the application program was precompiled. This file can
also consist of a list of bind files. If it is a list file, it must be preceded

Commands and Utilities 293

by an "at" character (@). The bind files are separated by a plus sign (+).
The extension of the bind file or list file is .BND.

database-name is used to name the alias of the database to which an
application program is bound.

MESSAGES msgfile
This option is used to specify a destination to which warning or error
messages are written.

msgfile can be anyone of the following:

• A name of a file
• LPTl for a printer
• CON for the console
• NUL to suppress messages.

ISOLATION isolation
This option is used to specify the isolation level. This tells DB2/2 how
to isolate data in the database from other processing which may occur
while the application is accessing the database.

isolation is one of the following:

RR-repeatable read
CS-cursor stability
UR-uncommitted read

BLOCKING blocking
This option is used to specify the type of record blocking and it tells
how to deal with ambiguous cursors.

blocking is one of the following:

• ALL means to block for
• FETCH-only cursors
• Cursors not specified as FOR UPDATE OF
• Cursors for which there are no static DELETE WHERE

CURRENT OF statements
• Any ambiguous cursors are treated as FETCH-only.

294 Chapter 5

• UNAMBIG means to block for
• FETCH-only cursors
• Cursors not specified as FOR UPDATE OF
• Cursors that do not have static DELETE WHERE CURRENT

OF statements
• Cursors that do not have dynamic statements
• Any ambiguous cursors are treated as UPDATE-only.,

• NO means not to block any cursors. Any ambiguous cursors are
treated as UPDATE-only.

The default is UNAMBIG.

DATETIME format
This option is used to specify the date and time formats used when
binding a program.

format is a code listed in Figure 5.1.

GRANT <PUBLIC or authority-id>
This specifies who gets the privilege: individual users or all users.

PUBLIC means to grant the privilege to all users.

authorization-id is a user ID or group name. You can specify one or
more IDs, and it must not include the user ID that is issuing the
command .

• Example

In the following command, TIP.BND is a bind file. This file is generated
by the precompiler. The CUSTOMER database is used to validate table
and column names found in the SQL statements of the source program.

BIND TIP.BND TO DATABASE CUSTOMER
MESSAGES=C:\TIP\ERROR.OUT

The MESSAGES option is used to write the messages during the bind
process to C:\TIP\ERROR.OUT.

Commands and Utilities 295

a CATALOG APPN NODE-write Information to the node
directory

• General format

CATALOG APPN NODE node-name
[NETWORKID netid]
REMOTE partner-lu
[LOCAL local-lu]
[MODE mode]
[IN codepage]
[WITH "comment-string"]

• Authorizations

Authority Privilege

SYSADM None required

• Description

The CATALOG APPN is used to add an entry to the node directory.
An entry contains information about a remote workstation that uses
APPN (Advanced Peer-to-Peer Network) communication protocols. This
information is used by DB2/2 to connect an application program to a
remote database cataloged in this node.

node-name is used to specify the name of the remote workstation to the
catalog. This name is the same as the one used to catalog a database
with the CATALOG DATABASE command. The node name must
conform to DB2/2 naming conventions.

NETWORKID netid
This parameter is used to specify the SNA (Systems Network
Architecture) network ID where the remote LU (logical unit) is to be
found.

netid is a string no longer than eight characters and it must conform to
SNA naming conventions.

REMOTE partner-lu
This required parameter is used to specify the SNA partner LU (logical
unit) that is needed for connection.

296 Chapter 5

partner-Iu is an LV name of the remote node. The length of this name
cannot exceed eight characters.

LOCAL local-Iu
This option parameter is used to specify the alias of the SNA local LV
that is used for connection.

local-Iu is an LV name in the local node. The length of this name cannot
exceed eight characters.

MODE mode
This paramater is used to specify the SNA transmission mode used in
the connection.

node is the name of the node, and it must be longer than eight
characters. If you omit this parameter, DB2/2 places the default value of
eight blank characters.

codepage is used to specify the code page of the characters found in the
comment string.

comment-string is used to describe the APPN node entry found in the
node directory. It must be enclosed in quotes (") .

• Example

The following command is used to catalog an APPN node called
XYZNODE.

CATALOG APPN NODE XYZNODE
REMOTE XYZLU
WITH "Catalog APPN NODE XYZNODE"

D CATALOG DATABASE-write information to the database
directory

• General format

CATALOG DATABASE database-name
[AS alias]
<ON drive or AT NODE nodename>
[IN codepage] [WITH "comment-string"]

Commands and Utilities 297

• Authorizations

Authority Privilege

SYSADM None required

• Description

The CATALOG DATABASE command is used to add information
about a database into the database directory.

database-name is used to specify the name of the database being
cataloged to the directory.

alias is used to specify an alternate name of the database being
cataloged.

drive is used to specify the drive where the database being cataloged is
found. This should consist of one character without the colon.

nodename is used to specify the name of the remote workstation where
the database is found.

codepage is used to specify the code page of the characters found in the
comment string.

comment-string is used to describe the entry found in the database
directory. It must be enclosed in quotes (").

• Example

The following statement is used to catalog the CLIENTS database which
resides in the NODEXYZ remote workstation.

CATALOG DATABASE CLIENTS AT NODE
NODEXYZ WITH "CLIENTS database"

a CATALOG DCS DATABASE-write an entry to the DCS
directory

• General format

CATALOG DCS DATABASE database-name

298 Chapter 5

[AS tdb-name]
[AR dll-name]
[PARMS "parameter-string"]
[IN codepage]
[WITH "comment-string"]

• Authorizations

Authority Privilege

SYSADM None required

• Description

The CATALOG DCS DATABASE is used to write information about
a host database to the Database Connection Services (DCS) directory.
This catalog information is needed by a workstation to access the host
database using the SAA Distributed Database Connection Series/2
facilities.

database-name is used to specify the alias of the database that is being
cataloged.

tdb-name is used to specify the name of the database that is being
cataloged.

dll-name is used to specify the name of the dynamic link library
program to be used. It is one of the following:

SQURDRl

SQL_ARO
SQLESRVR

DRDA-l database connections for Distributed
Relational Database Architecture; this is the default
program.
ASP-O or OS/2 database connections
Local server

parameter-string is used to specify parameters used by the program
named in the AR parameter. This is a string, enclosed in quotes, that
contains the connection and operating environment information. The
parameters that you can list in this string are

TPP Transaction program prefix. This is a hex (hexidecimal) value
that identifies the first byte of the transaction program name.
The default is 07.

Commands and Utilities 299

TPN Transaction program name. This is a character string that is used
as the name of the transaction program, run on the host.

MAP SQLCODE mapping file. This is a character string to specify
the name of the file that converts host SQL return codes to DCS
return codes. It can be one of the following:

DCSODSN
DCSIDSN
DCSOARI
DCSOQSQ
DCSIQSQ

EE database and DB2 database
EE or DB2/2 database and DB2 database
EE database and SQLIDS database
EE database and OS/4oo database
ES or DB2/2 database and OS/400 database

D Disconnect option; this is used to disconnect the host when -300xx
is encountered.

V Verify option; this is used to verify a user ID and password before
connecting th the host.

codepage is used to specify the code page of the characters found in the
comment string.

comment-string is used to describe the entry found in the DeS
directory. It must be enclosed in quotes (").

[1 CATALOG NetBios NODE-write NetBios (Network Basic
Input/Output System) information to the node directory

• General format

CATALOG NetBios NODE nodename
REMOTE partner-lu
ADAPTER number
[IN codepage]
[WITH II comment-string"]

• Authorizations

Authority Privilege

SYSADM None required

300 Chapter 5

• Description

The CATALOG NetBios NODE command is used to write information
to the node directory about a remote workstation that uses N etBios (a
communication protocol). DB2/2 reads this information from the node
directory to connect an application to a remote database cataloged on
this node.

nodename is used to specify the node name of the workstation. This
name should be the same as the one used when the workstation was
cataloged.

partner-lu is used to specify the name of a workstation to which you are
trying to connect. This name cannot be longer than eight characters.

number is used to specify the LAN adapter number, which is 0 or 1.

codepage is used to specify the code page of the characters found in the
comment string.

comment-string is used to describe the entry found in the DeS
directory. It must be enclosed in quotes (").

• Example

The following command is used to catalog a remote workstation as a
NetBios node.

CATALOG NetBios NODE XYZWKST \
REMOTE XYZWKST \

ADAPTER 0 WITH "XYZ is a NetBios NODE"

D CATALOG APPC NODE-write information to the node
directory

• General format

CATALOG APPC NODE node-name
[NETWORKID netid]
REMOTE partner-lu
[LOCAL local-lu]
[MODE mode]
[IN codepage]
[WITH II comment-string"]

Commands and Utilities 301

• Authorizations

Authority Privilege

SYSADM None required

• Description

The CATALOG APPC is used to add an entry to the node directory.
An entry contains information about a remote workstation that uses
APPC communication protocols. This information is used by DB2/2 to
connect an application program to a remote database cataloged in this
node.

node-name is used to specify the name of the remote workstation to be
cataloged. This name is the same as the one used to catalog a database
with the CATALOG DATABASE command. The node name must
conform to the DB2/2 naming conventions.

NETWORKID netid
This parameter is used to specify the SNA network ID where the remote
LU is to be found.

netid is a string no longer than eight characters and must conform to
SNA naming conventions.

REMOTE partner-lu
This required parameter is used to specify the SNA partner LU that is
needed for connection.

partner-lu is an LU name of the remote node. The length of this name
cannot exceed eight characters.

LOCAL local-lu
This option parameter is used to specify the alias of the SNA local LU
that is used for connection.

local-lu is an LU name in the local node. The length of this name cannot
exceed eight characters.

MODE mode
This paramater is used to specify the SN A transmission mode used in
the connection.

302 Chapter 5

node is the name of the node, and it must be longer than 8 characters.
If you omit this parameter, DB2/2 places the default value of eight blank
characters.

codepage is used to specify the code page of the characters found in the
comment string.

comment-string is used to describe the APPC node entry found in the
node directory. It must be enclosed in quotes (").

• Example

The following command is used to catalog an APPC node called
XYZNODE.

CATALOG APPC NODE XYZNODE
REMOTE XYZLU
WITH "Catalog APPN NODE XYZNODE"

a CHANGE DATABASE COMMENT-modify comment in
directory

• General format

CHANGE DATABASE database-name
COMMENT [ON drive]

[IN codepage]
[WITH "comment-str~ng"]

• Authorizations

Authority Privilege

None required None required

• Description

The CHANGE DATABASE COMMENT command is used to modify
a comment in the database directory that is associated with a database.

Commands and Utilities 303

database-name is used to specify the alias name of a database already
cataloged and whose comment in the directory is to be changed.

drive is used to specify the drive where the database resides. It must
contain one character without a colon (:).

codepage is used to specify the code page of the characters found in the
comment string.

comment-string is used to describe any change in the comment entry
found in the database directory. It must be enclosed in quotes (").

• Example

The following command is used to change the comment of the
CLIENTS database.

CHANGE DATABASE CLIENTS COMMENT \
WITH "Test data loaded"

C CHANGE SQLISL-change Isolation

• General format

CHANGE SQLIST TO isolation

• Authorizations

Authority

SYSADM
DBADM

• Description

Privilege

None required

The CHANGE SQLISL is used to modify the method used by DB2/2 to
isolate data accessed by a program while other processes are using the
same database.

isolation is one of the following:

RR-repeatable read
CS-cursor stability
UR-uncommitted read

304 Chapter 5

C CREATE DATABASE-make a new database

• General format

CREATE DATABASE database-name
[ON drive]
[IN codepage]
[WITH "comment-string"]

• Authorizations

Authority Privilege

SYSADM None required

• Description

The CREATE DATABASE is used to create a new database. At the
same time the database is cataloged with an alias. As there is no way of
specifying the alias in this command, the default is the same as the
database specified in this command. To change the alias name, use the
CATALOG DATABASE command. The creator of the database
automatically recieves the DBADM authority and CREATEAB and
BINDADD privileges.

database-name is used to specify the name of the database that you want
to create. A database by this name should not already exist, and in this
case no action is taken by DB2/2.

drive is used to specify the drive where the database should be created.
It must contain one character without a colon (:).

codepage is used to specify the code page of the characters found in the
comment string.

comment-string is used to describe an entry found in the database
directory. It must be enclosed in quotes (").

• Example

The following example creates the CLIENTS database.

CREATE DATABASE CLIENTS

Commands and Utilities 305

C DROP DATABASE-delete a Database

• General format

DROP DATABASE database-name

• Authorizations

Authority Privilege

SYSADM None required

• Description

The DROP DATABASE command is used to delete a database; all
associated data files, user files, and database definitions are removed.
DB2/2 uncatalogs the database from the database directory and the
volume directory.

database-name is used to specify the name of the database you want to
delete.

• Example

The following command deletes the CLIENTS database from the
catalogs.

DROP DATABASE CLIENTS

C EXPORT -copy database table to file

• General format

EXPORT FROM database-name TO filename
OF filetype
[MODIFIED BY filet-mod]
MESSAGES msgfile
select-statement

• Authorizations

Authority

SYSADM
DBADM

Privilege

CONTROL or
SELECT for the chosen tables

306 Chapter 5

• Description

The EXPORT command is used to copy the content of one or many
tables to a file.

database-name is used to specify the alias of the database from which
data is exported to a file.

filename is used to specify the name of the file to which data is written
from the database.

filetype is used to specify the format of the output file. The types of
files are

DEL Delimited ASCII format. This file can be used by other database
managers or file managers such as dBaseII, dBaseIII, BASIC,
or IBM Personal Decision Series.

WSF Worksheet format. This file can be used by programs such as
Lotus 1-2-3 and Lotus Symphony.

IXF DB2/2 format. This file can be used to import data to a DB2/2
database.

filet-mod is used when file type is DEL or WSF file. This parameter tells
DB2/2 how to format data written to these files. For the DEL file, the
following file type mode can be chosen:

COLDEL Column delimeter. A character (e.g., ; and :)
follows this keyword. This character placed
between columns. The default is comma (,).

CHARDEL Character string delimeter. A character (such as
" !, or ") follows this keyword. A pair of these
characters is used to enclose character strings.

DECPT Decimal point. A character follows this keyword.
This character is used to enclose a character
string. The default is period (.).

DECPLUSBLANK Plus sign character. This option tells EXPORT to
prefix positive decimal numbers with a blank
space instead of a plus (+) character.

Commands and Utilities 307

For WSF file format, filemod is used to select the generation output of
the export file. The generations are

• First generation WSF file is Lotus 1-2-3/1 or 1-2-3/1A. This is the
default.

• Second generation WSF file is Lotus Symphony/1.0.

msgfile is used to specify a file to which error or warning messages are
directed. It can be anyone of the following:

• A name of a file
• LPT1 for a printer
• CON for the console
• NUL to suppress messages.

select-statement is used to specify a SELECT statement that retrieves
data from one or more tables. For more details on the SELECT
statement, refer to Chap. 6.

• Example

The following EXPORT command exports data from the SALES tables
of the CLENTS database. The data is written to a DB2/2 file called
SALES.IXF. The error or warning messages are directed to
SALES. MSG.

EXPORT FROM CLIENTS \
TO A:\SALES.IXF OF IXF \
MESSAGES SALES.MSG \
SELECT * FROM SALES

a GET AUTHORIZATIONS-retrieve authorization information

• General format

GET AUTHORIZATIONS

• Authorizations

Authority Privilege

None required None required

308 Chapter 5

• Description

The GET AUTHORIZATIONS command is used to obtain information
on authority and privileges granted to a user.

a GET DATABASE CONFIGURATION-retrieve configuration for
database

• General format

GET DATABASE CONFIGURATION FOR database-name

• Authorizations

Authority

SYSADM or
DBADM

• Description

Privilege

None required

The GET DATABASE CONFIGURATION is used to retrieve
information about a database. Normally, the information is shown on the
screen, but you can redirect it to a file by using the -R option (see
examples).

• Example

In the next example, the configuration data for CLIENTS database is
written to the DBM.RPT file.

DBM -R GET DATABASE CONFIGURATION FOR \
CLIENTS

In the next example, the information is written to CLIENTS.CFG.

a GET DATABASE MANAGER CONFIGURATION-retrieve
parameter values

• General format

GET DATABASE MANAGER CONFIGURATION

• Authorizations

Authority

SYSADM or
DBADM

• Description

Commands and Utilities 309

Privilege

None required

The GET DATABASE MANAGER CONFIGURATION command is
used to retrieve parameter values from the DB2/2 configuration file.
Normally, this information is shown on the screen, but it can be written
to a file (see examples).

• Example

In the following command, the parameter value from the DB2/2
configuration file is written to the DBM.RPT file.

DBM -R GET DATABASE MANAGER CONFIGURATION

In the next example, the information is written to the MANAGER.CFG
file.

DBM _R(MANAGER.CFG) GET DATABASE \
MANAGER CONFIGURATION

C GET DATABASE STATUS-retrieve information about the
database current activity

• General format

GET DATABASE STATUS [FOR DATABASE database-name]
[ON drive]

• Authorizations

Authority

SYSADM or
DBADM

Privilege

None required

310 Chapter 5

• Description

The GET DATABASE STATUS command is used to retrieve from
DB2/2 a summary of the activities currently taking place against either
one specific database or all the databases. Normally, the report goes to
the screen; you can also redirect it to a file (see example).

database-name is used to specify the alias of the database for which the
status report is needed.

drive is used to specify the drive letter where the database is found and
for which you want the status information. It must contain one character
without a colon (:).

• Example

In the following examples, the status report about activities of CLIENTS
database is written to the DBM.RPT file.

DBM -R GET DATABASE STATUS FOR DATABASE CLIENTS

In the next command, the information is written to the STATUS.RPT
file.

DBM -R(STATUS.RPT) GET DATABASE STATUS FOR DATABASE \
CLIENTS

a GET SYSTEM STATUS-retrieve information about the
system

• General format

GET SYSTEM STATUS

• Authorizations

Authority

SYSADM or
DBADM

Privilege

None required

Commands and Utilities 311

• Description

The GET DATABASE STATUS command is used to obtain
information about the status. It gives the following;

• Current normalized time
• Time zone displacement
• Product name
• Component identification
• Release level
• Corrective service level

Normally, the report goes to the screen; you can also redirect it to a file
(see example).

• Example

In the following examples, the system information is written to the
DBM.RPT file.

DBM -R GET SYSTEM STATUS

In the next command, the information is written to the SYSZYX.RPT
file.

DBM -R(SYSZYX.RPT) GET SYSTEM STATUS

C GET USER STATUS FOR DATABASE-get user information

• General format

GET USER STATUS FOR DATABASE database-name

• Authorizations

Authority Privilege

None required None required

• Description

The GET STATUS FOR DATABASE command extracts information
about all users connected to a particular database. Normally, the report

312 Chapter 5

goes to the screen; you can also redirect it to a file (see example).

database-name is used to specify a name or alias of a database for
which you want data to be collected and reported.

• Example

In the following examples, the user information connected to CLIENTS
database is written to the DBM.RPT file.

DBM -R GET USER STATUS FOR DATABASE CLIENTS

In the next command, the information is written to the USERS.RPT file.

DBM -R(USERS.RPT) GET USER STATUS FOR DATABASE CLIENTS

C IMPORT-import file to database table

• General format

IMPORT To database FROM filename OF filetype
[MODIFIED BY filet-~od]
<INSERT or

INSERT UPDATE or
REPLACE or
CREATE or
REPLACE CREATE>

INTO tblname
MESSAGES msgfile

• Authorizations

Authority

SYSADM
DBADM

• Description

Privilege

CONTROL
INSERT
SELECT
CREATETAB

The IMPORT command is used to copy the content of a file to one
table or many tables.

Commands and Utilities 313

database-name is used to specify the alias of the database to which data
is imported from a file.

filename is used to specify the name of the file from which data is
written to the database.

filetype is used to specify the format of the input file. The types of files
are

DEL Delimited ASCII format. This file can be used by other database
managers or file managers such as dBaseII, dBaseIII, BASIC,
or IBM Personal Decision Series.

WSF Worksheet format. This file can be used by programs such as:
Lotus 1-2-3 and Lotus Symphony.

IXF DB2/2 format. This file can be used to import data to a DB2/2
database.

filet-mod is used when file type is DEL or WSF file. This parameter tells
DB2/2 how to format data written to these files. For DEL file format,'
the following file type mode can be chosen:

COLDEL Column delimeter. A character (e.g., ; and :)
follows this keyword. This character is placed
between columns. The default is comma (,).

CHARDEL Character string delimeter. A character (e.g., " !,
or ") follows this keyword. A pair of these
characters is used to enclose character strings.

DECPT Decimal point. A character follows this keyword.
This character is used to enclose a character
string. The default is a period (.).

DECPLUSBLANK Plus sign character. This option tells IMPORT to
prefix positive decimal numbers with a blank
space instead of a plus (+) character.

For WSF file format, filemod is used to select the generation output of
the export file. The generations are

• First generation WSF file is Lotus 1-2-3/1 or 1-2-3/1A. This is the
default.

• Second generation WSF file is Lotus Symphony/1.0.

314 Chapter 5

INSERT means to add data to a table without changing the existing
rows.

INSERT_UPDATE means to add data to the table or update rows with
matching primary keys.

REPLACE means to remove all existing rows and add the imported data.

CREATE means to create a new table and import the data.

REPLACE CREATE means to delete the content of the table, if it
exists, and then import the data to the table.

tblname is the name of the table to which the data is imported.

msgfile is used to specify a file to which error or warning messages are
directed. It can be anyone of the following:

• A name of a file
• LPTl for a printer
• CON for the console
• NUL to suppress messages

• Example

The following IMPORT command imports data to the SALES tables of
the CLENTS database. The data is written from a DB2/2 file called
SALES.lXF. The error or warning messages are directed to
SALES. MSG.

IMPORT TO CLIENTS \
FROM A:\SALES.IXF OF IXF \

INTO SALES \
MESSAGES SALES.MSG

C INVOKE PROCEDURE-allow execution of procedure

• General format

INVOKE program
[USING server-input-data]

Commands and Utilities 315

• Authorizations

Authority Privilege

None required CONNECT

• Description

The INVOKE PROCEDURE command is used to give permission to
an application on a database client to execute a procedure or function
found in the database server.

program is used to specify the function in the dynamic link library
(DLL) or a REXX procedure to be executed. This parameter may
include a directory to locate the function or procedure, or the path may
be listed in the PATH or LIBPATH in the CONFIG.SYS.

server-in put-data is used to pass any argument to the procedure that is
being executed and stored on the database server.

a LIST DATABASE DIRECTORV-get items from the system database
directory

• General format

LIST DATABSE DIRECTORY
[ON drive]

• Authorizations

Authority Privilege

None required None required

• Description

The LIST DATABASE DIRECTORY command is used to obtain the
information about each database defined in DB2/2.

drive is used to specify the drive where the database directory is found.
It is one character without a colon (:).

316 Chapter 5

C LIST DCS DIRECTORY-get the content of the DCS directory

• General format

LIST DCS DIRECTORY

• Authorizations

Authority Privilege

None required None required

• Description

The UST DCS DIRECTORY command is used to get the content of
the DeS directory. This command shows a list of host databases that a
workstation can access. Normally, the information goes to the screen, but
if needed, it can be directed to a file (see example).

• Example

In the following example, the content of the DeS directory is written to
the default DBM.RPT file.

DBM LIST DCS DIRECTORY

In the next command, the data from the DeS directory goes to a
specified DeSXS1.RPT file

DBM -R(DCSXS1.RPT) LIST DCS DIRECTORY

C LIST NODE DIRECTORY-get the content of the node
directory

• General format

LIST NODE DIRECTORY

• Authorizations

Authority Privilege

None required None required

Commands and Utilities 317

• Description

The LIST NODE DIRECTORY command is used to get the content
of the node directory. The node types may be APPC, APPN, or NetBios.
Normally, the information goes to the screen, but if needed, it can be
directed to a file (see example).

• Example

In the following example, the content of the node directory is written to
the DBM.RPT.

DBM.-R LIST NODE DIRECTORY

In the next command, the content of the node directory is written to the
NODEXYZ.RPT file

DBM -R(NODEXYZ.RPT) NODE DIRECTORY

Il MIGRATE DATABASE-migrate from OS/2 databases to
082/2 databases

• General format

MIGRATE DATABASE database

• Authorizations

Authority Privilege

None required None required

• Description

The MIGRATE DATABASE command is used to move a database
from EE 1.3 or ES 1.0 to DB2/2.

database is used to specify the alias of the database to be migrated to
DB2/2.

318 Chapter 5

• Example

The following command migrates the CLIENTS database.

MIGRATE DATABASE CLIENTS

C REORG TABLE-reorganize Table

• General format

REORG TABLE table IN database
[INDEX index-name]
USE path]

• Authorizations

Authority Privilege

SYSADM CONTROL
DBADM

• Description

The REORG TABLE command is used to improve the efficiency of a
DB2/2 table. This command reconstructs the rows such that the data is
compact and not fragmented.

table is used to specify the name of the table that needs to be
reorganized. This table can belong to either a local or a remote database.

database is used to specify the alias of the database where the table to
be organized is defined.

index-name is used to specify the index that is used by the table to be
reorganized.

path is used to specify a path and directory that is used by DB2/2 to
create temporary files.

Commands and Utilities 319

C REORGCHK-determlne whether reorganization Is needed

• General format

REORCHK database [UPDATE STATISTICS or
CURRENT STATISTICS]

[ON TABLE <USER or

• Authorizations

Authority

SYSADM or
DBADM

• Description

Privilege

SYSTEM or
ALL or
table>

CONTROL

The REORGCHK command is used to check whether a database needs
reorganization.

database is used to specify the alias of a database that is to be checked
for reorganization. The output goes to the screen, but, if required, you
can direct to an output file (see example).

UPDATE STATISTICS means to issue the RUNSTATS command to
update the statistical information. The statistic is used to determine
whether a REORG command must be issued. This is the default.

CURRENT STATISTICS means to use the current statistics to determine
whether the tables need to be reorganized.

USER means to check the tables created by the users. This is the
default.

SYSTEM means to check the tables created for system maintenance,
such as catalog and tables.

ALL means to check all tables.

table is used to specify the name of a table to be checked.

320 Chapter 5

• Example

The following command is used to check whether all users of the
PRESCRIBER database need reorganization. The output goes to the
DBM.RPT.

DBM -R REORGCHK PRESCRIBER

In the next command, the output information is written to the
REORPRES.RPf file.

DBM -R(REORPRES.RPT) REORGCHK PRESCRIBER

a RESET DATABASE CONFIGURATION-set parameter to
system defaults

• General format

RESET DATABASE MANAGER CONFIGURATION FOR database

• Authorizations

Authority Privilege

SYSADM None required

• Description

The RESET DATABASE MANAGER CONFIGURATION command
is issued to set the parameters in the configuration file to default values
used when the system was configured.

database is used to specify the alias of the database for which the
configuration parameters are reset.

The parameters are

Keywords

AGENTHEAP
APPLHEAPSZ

Description

Application agent heap
Default application heap

BUFFPAGE
DBHEAP
DBATIR
INDEXREC

DLCHKTIME
LOCKLIST
LOGFILSIZ
LOGPRIMARY
LOGSECOND
MAXAPPLS

MAXFILOP

MAXLOCKS
MAXTOTFILOP

NEWLOGPATH

Buffer pool
Database heap
Database attribute

Commands and Utilities 321

When to recreate invalid indexes; one possible value
is SYSTEM, ACCESS, or RESTART
Time interval
Storage for lock list
Storage for log files
Number of primary log files
Number of secondary log files
Maximum number of application programs
connected
Maximum number of database files that an
application program can have open
Percentage of lock list a program can use
Number of user or database files opened by an
application program
Alternate path to the recovery log files

a RESET DATABASE CONFIGURATION-set parameter to
system defaults

• General format

RESET DATABASE MANAGER CONFIGURATION

• Authorizations

Authority Privilege

SYSADM None required

• Description

The RESET DATABASE CONFIGURATION command is used to set
the parameters in the DB2/2 configuration to the defaults values shipped
with the product. The parameters are

COMHEAPSZ
NUMRC

SHEAPTHRES

Size of the communications heap
Maximum number of remote connections active at
one time to or from this workstation
Amount of memory available for sorts, in 4k bytes

322 Chapter 5

INDEXREC

RQRIOBLK

RS HEAPS Z

SQLENSEG
SVRIOBLK

NNAME

pages
Invalid indexes will be created and will be either
ACCESS or RESTART
Storage allocated from communication heap to the
I/O block on the database client, in number of
segments
The size of the remote data services heap, in
segments
Maximum amount of shared storage, in segments
Amount of storage allocated from the
communication heap to the I/O block on the
database server, in kilobyte segment
The workstation name

a RESTART DATABASE-restart from uncommitted state

• General format

RESTART DATABASE database

• Authorizations

Authority Privilege

None required None required

• Description

The RESTART DATABASE command is used to restart a database that
is in an uncommitted state. After you issue this command, a reconnect
to the database is necessary.

a RESTORE DATABASE-rebuild a damaged database

• General format

RESTORE DATABASE database FROM backup-drive
[To restore-drive]
[WITHOUT ROLLING FORWARD]

Commands and Utilities 323

• Authorizations

Authority Privilege

SYSADM None required

• Description

The RESTORE DATABASE command is used to rebuild a database
from a copy previously created by the BACKUP DATABASE
command. This operation is needed if a local database is corrupted or
damaged; the restored database is in the same state as when the previous
backup was done.

database is an alias of the database to be restored.

backup-drive is used to specify the drive where the backup files exist.

restore-drive is used to specify the drive where the database is restored.

WITHOUT ROLLING FORWARD means not to place the database into
a roll-forward pending state after successfully restoring the database. To
remove a roll-forward pending state, issue a ROLLFORW ARD
DATABASE command before it can be used.

C ROLLFORWARD DATABASE-recover from last backup
state

• General format

ROOLFORWARD DATABASE database
[TO <isotime or END OF LOGS> [AND STOP] or
STOP or

QUERY STATUS]

• Authorizations

Authority Privilege

SYSADM None required-

324 Chapter 5

• Description

The ROLLFORW ARD DATABASE command is used after a database
is restored. After a successful restoration the database is in the roll­
forward pending state. This command recovers a database from its last
backup state. Also, all the transactions processed since the backup are
reapplied.

database is used to specify the alias of the database.

isotime is used to specify the point to which all committed transactions
are to be rolled forward. The format of this parameter is the timestamp
(yyyy-mmm-ddd.hh.mm.ss.nnnnnn).

END OF LOGS means to apply all committed transactions from all
online archive log files. These files are listed in the logpath directory.

AND STOP means to roll back any incomplete transactions, turn off the
roll-forward pending state of the database, and allow access to the
database.

STOP means to roll back any incomplete transactions and allow access
to the database after the roll-forward process is completed.

QUERY STATUS is used to obtain the following information about the
roll-forward state:

• Next archive log file
• Log files processed
• Last committed transactions

a RUNSTATS-update statics about tables and Indexes

• General format

RUNS TATS ON TABLE table
[AND INDEXES ALL or

USING INDEXES ALL or
FOR INDEXES ALL]

[SHRLEVEL] [REFERENCE or CHANGE]

• Authorizations
Authority

SYSADM or
DBADM

• Description

Commands and Utilities 325

Privilege

CONTROL

The RUNSTATS command is used to update statistical information on
tables and indexes. The affected statistics are

• Number of records
• Number of pages
• Average record length

This information is used by DB2/2 to determine the optimal access path
to the database.

table is used to specify the name of the table for which statistical
information is to be updated.

AND INDEXES ALL means to update information for both tables and
indexes.

USING INDEXES ALL means to update information for indexes only.

FOR INDEXES ALL means to update information for the indexes only.

SHRLEVEL is used to specify the level of user access at the time the
information is gathered.

REFERENCE allows other users to have read-only access to the tables
at the time statistics are collected.

CHANGE allows other users to have read or write access to the table at
the time statistics are gathered.

C START DATABASE MANAGER-start running DB2/2

• General format

START DATABASE MANAGER
or

STARTDBM

326 Chapter 5

• Authorizations

Authority Privilege

None required None required

• Description

The START DATABASE MANAGER or STARTDBM command
starts the DB2/2 and allocates the necessary resources. You have to issue
this command before you can connect to a database, precompile a
program, or bind a package to a table or database.

a START USING DATABASE-connect to a database

• General format

START USING DATABASE database
[IN SHARED MODE or
IN EXCLUSIVE]

• Authorizations

Authority

SYSADM or
DBADM

• Description

Privilege

CONNECT

The START USING DATABASE command is used to connect to a
database. It performs the same function as the CONNECT command.

database is used to specify the alias of the database that you want to
connect.

IN SHARED MODE means that other users can access the database
while you are using it. This is the default.

IN EXCLUSIVE means that you have the exclusive use of the database.

Commands and Utilities 327

C STOP DATABASE MANAGER-stop DB2/2

• General format

STOP DATABASE MANAGER
or

STOPDBM

• Authorizations

Authority Privilege

None required None required

• Description

The STOP DATABASE MANAGER or STOPDBM stops DB2/2 on
a workstation. It also releases all the resources needed by DB2/2. DB2/2
cannot be stopped if there is any application program connected to the
databases of your workstation.

C STOP USING DATABASE-disconnect from database

• General format

STOP USING DATABASE

• Authorizations

Authority Privilege

None required None required

• Description

The STOP USING DATABASE command is used to disconnect a user
from a database. This command is the same as the CONNECT RESET
command.

C UNCATALOG DATABASE-remove entry from system
database directory

• General format

UNCATALOG DATABASE database

328 Chapter 5

• Authorizations

Authority Privilege

SYSADM None required

• Description

The UNCATALOG DATABASE command is used to delete an entry
from the database directory. This entry, previously entered using the
CATALOG DATABASE command, is either indirect or remote
database.

database is the alias of the database to be uncataloged.

a UNCATALOG DCS DATABASE-remove entry from DCS
directory

• General format

UNCATALOG DCS DATABASE database

• Authorizations

Authority Privilege

None required None required

• Description

The UNCATALOG DCS DATABASE command is used to delete an
entry from the Database Connection Services (DCS) directory. This
entry, previously entered using the CATALOG DCS DATABASE
command, is about a host database that a workstation can access using
the DDCS/2 software.

database is the alias of the database to be uncataloged.

Commands and Utilities 329

C UNCATALOG NODE-remove entry from node directory

• General format

UNCATALOG NODE

• Authorizations

Authority Privilege

SYSADM None required

• Description

The UNCATALOG NODE command is used to delete an entry from
the node directory. This entry was previously added to the directory by
the following commands:

- CATALOG NODE or CATALOG APPC NODE
- CATALOG APPN NODE
- CATALOG NetBios NODE

C UPDATE DATABASE CONFIGURATION-change parameters
In the configuration file

• General format

UPDATE DATABASE CONFIGURATION FOR database
USING <configuration-keyword value> •••

• Authorizations

Authority Privilege

SYSADM None required

• Description

The UPDATE DATABASE CONFIGURATION command is used to
change parameters in the configuration file of a database.

database is used to specify to the alias of a database for which the
configuration is to be updated.

330 Cha"pter 5

configuration-keyword is used to specify the parameter name for which
a value is also entered. You can enter one or many pairs of configuration
keywords and their associated values. The keywords are

Keywords

AGENTHEAP
APPLHEAPSZ
BUFFPAGE
DBHEAP
DBATIR
INDEXREC

DLCHKTIME
LOCKLIST
LOGFILSIZ
LO GPRI MARY
LOGSECOND
MAXAPPLS

MAXFILOP

MAXLOCKS
MAXTOTFILOP

NEWLOGPATH

Description

Application agent heap
Default application heap
Buffer pool
Database heap
Database attribute
When to re-create invalid indexes; one possible
value is SYSTEM, ACCESS, or RESTART
Time interval
Storage for lock list
Storage for log files
Number of primary log files
Number of secondary log files
Maximum number of application programs
connected
Maximum number of database files that an
application program can have open
Percentage of lock list a program can use
Number of users or database files opened by an
application program
Alternate path to the recovery log files

C UPDATE DATABASE MANAGER CONFIGURATION-change
DB2/2 parameters In the configuration file

• General format

UPDATE DATABASE MANAGER CONFIGURATION
USING <configuration-keyword value> •••

• Authorizations

Authority Privilege

SYSADM None required

Commands and Utilities 331

• Description

The UPDATE DATABASE MANAGER CONFIGURATION
command is used to change parameters in the configuration file of
DB2/2.

configuration-keyword is used to specify the parameter name for which
a value is also entered. You can enter one or many pairs of configuration
keyword and associated value. The keywords are

Keywords

CO MHEAPSZ
NUMRC

SHEAPTHRES

INDEXREC

RQRIOBLK

RS HEAPS Z

SQLENSEG
SVRIOBLK

NNAME

Description

Size of the communications heap
Maximum number of remote connection active at
one time to or from this workstation
Amount of memory available for sorts, in 4kbyte
pages
Invalid indexes will be created and wiU be either
ACCESS or RESTART
Storage allocated from communication heap to the
I/O block on the database client, in number of
segments
The size of the Remote Data Services heap, in
segments
Maximum amount of shared storage, in segments
Amount of storage allocated from the
communication heap to the I/O block on the
database server, in kilobyte segment

The workstation name

Chapter

Structured Query language (SQl)

This chapter is a reference guide for programmers using SQL (Structured
Query Language). SQL is a language for managing data in a relational
database such as DB2/2, Sybase, or Oracle. Like any computer language,
it has elements such as operators, expressions, and data types. It has a rich
collection of statements to define and manipulate data in a database. Also,
it is available with many commonly used functions.

The subjects covered here are:

• Language Elements
• SQL Statements
• Functions
• Structures

For each statement and function, this chapter provides the syntax and a
description of the function and its parameters. In some cases you will also
find examples of how the functions use these parameters.

333

334 Chapter 6

6.1 Language Elements

Before you can use SQL statements against a database, you must know the
basic elements of the language.

Characters and tokens

Statements are made up of a sequence of characters. The following is a
list of characters recognized as valid in SQL.

• Lower- and uppercase letters
abcdefghij klmnopqrstuvwxyz
AB CD E F G H I J KLM NO P Q R S TV V W X Y Z

• Decimal digits
0123456789

• Special characters
#@$

• Space character

A sequence of these characters is called a token. Many tokens, separated
by spaces, placed according to the following syntax rules make a
statement. There are two kinds of tokens: ordinary and delimiter. An
ordinary token is one of the following:
• Numeric constant
• Ordinary identifier
• Host identifier
• Keyword

A delimeter token is a string constant, an delimited identifier, or an
operator.

Comments

You can place comments in a static SQL statement. A comment is
introduced with two consecutive hyphens (--). The following SQL
statement is an example of how to include comments:

EXEC SQL
CLOSE BRANCH C -- Close the cursor

END-EXEC -

You can add a comment within a statement wherever there is a space.
except between EXEC and SQL or within a token delimiter. A comment
terminates when the end of the line is reached.

Structure Query Language (SQL) 335

Identifiers

An identifier is a series of characters used to form a name. There are
two kinds of identifiers: SOL identifier and host identifier.

SOL identifiers are further divided into two types: ordinary identifiers
and delimited identifiers.

• An ordinary identifier is made up of letters, digits, and underscore
characters; for example,

RED_003

Such a name should always start with a letter, and all letters with it
should be uppercase. Also, it should not . be the same as a SOL
reserved word.

• A delimited identifier is made up of one or more letters, digits, and
underscore characters, all enclosed with a pair of quotes ("). An
ordinary identifier, in the form of a delimited identifier, can be a
SOL reserved word or consist of lowercase characters. The following
are examples of a delimited identifier:

"Monthly rate" "MONTHLY_RATE" "Monthly_rate"

The length of SOL identifiers depends on the maximum length for long
or short names. For short names the maximum length is 8 bytes; for
long names, 18 bytes.

A host identifier is a name defined in a program used with SOL
statements. These names, which could be constants or variables, follow
the rules of the language used with SOL statements. The maximum
length for host variable names is 30 characters, and the names should
not start with SQL.

Authorization 10

An authorization ID is a user name that is explicitly or implicitly used
before the names of tables, views, and indexes. The maximum length of
this name is eight characters. It applies to every SQL statement. It is
implicitly used when binding an application program and the user name
is logged at the time of binding. In the interactive mode the
authorization ID must be explicitly added before data objects. In the
example,

336 Chapter 6

DROP TABLE SMITH.CUSTOMER

the statement drops a table called CUSTOMER and the authorization
ID is SMITH.

The authorization ID must not be confused with the authorization name
used in the GRANT or REVOKE statement. In fact, it is incorrect to
have the authorization ID and the authorization name the same in
GRANT and REVOKE statements; for example,

GRANT TABLE SMITH.CUSTOMER TO SMITH

However, it is correct to specify

GRANT TABLE SMITH.CUSTOMER TO GREENE

Data types

Basically, SQL is used to manipulate pieces of data, and there are some
very specific types of data that SQL statements are designed to handle.
These data types are integer, floating-point, decimal, character string,
graphic string, data, time, and timestamp. These data types are manifest
as values that found constants, columns, host variables, functions,
expressions, and special registers.

Each data type has a null value, and it is specified with the keyword
NULL when creating the columns of a table in a database. This does not
mean that if a column is defined to contain numeric values, the null
value is zero; or, does it mean spaces if a column is defined to hold
character string. This null value is a special value, simply meaning that
the value is unknown and no mathematical operations are performed on
such a field. On the other hand, if a column is defined with NOT NULL,
this means that when a row is added to the database, the value cannot
be a null value.

Now, let's look at the different data types of SQL:

INTEGER or INT define data to hold a large binary integer. The range
of values is -2147483648 to + +2147483647.

Structure Query Language (SQl) 337

SMALLINT defines data used to hold a small integer. The range of
values is -32768 to +32767.

FLOAT defines data to hold a floating-point number. The number can
be zero or can range from -1.79769E+308 to -2.22SE-307, or from
2.225E-307 to 1.79769E+308.

DECIMAL(x,y) or DEC(x,y) defines data used to hold decimal numbers:
x is the total number of digits (not including y) used to specify the
precision (the number of digits of x varies from 1 to 31); y determines
the total number of digits to the right of the decimal point, and this
number ranges from 0 to the precision of the number. The default values
for x and yare 5 and 0, respectively.

CHARACTER or CHAR defines data used to hold fixed-length character
strings. The length you can specify must be in the range 0 to 254 bytes;
if the length is 0, this means an empty string (this must not be confused
with null string).

VARCHAR defines data used to hold variable-length character strings.
The maximum size is 4000 bytes.

LONG V ARCHAR defines data to hold variable-length character strings.
The maximum size cab be 23,700 bytes.

GRAPHIC defines data to hold fixed-length graphic strings. The length
you can specify must be in the range 1 to 127 bytes.

V ARGRAPHIC defines data used to hold variable-length graphic strings.
The maximum length of the string that you can specify is 2000 double­
byte characters.

LONG V ARGRAPHIC defines data used to hold variable-length graphic
strings. The maximum length of the string that you can specify is 16,350
double-byte characters.

DATE defines data used to hold year, month, and day. There are various
formats for the data strings, as shown in Figure 6.1.

338 Chapter 6

Date format Example Type

yyyy-mm-dd

mm/dd/yyyy
dd.mm.yyyy
yyyy-mm-dd

1993-12-10

12/10/1993
10.12.1993
1993-12-10

Figure 6.1 Date string formats.

International Standards
Organization (ISO)
USA Standard (USA)
European Standard (EUR)
Japanese Industrial
Standard (JIS)

TIME defines data used to hold hours, minutes, and seconds. There are
sevaral formats for time strings, as shown in Figure 6.2

Time format Example

hh.mm.ss 13.12.45

hh:mm AM 1:12 PM
or PM
hh.mm.ss 13.12.45

hh:mm:ss 13:12:45

Figure 6.2 Time string formats.

Type

International Standards
Organization (ISO)
USA Standard (USA)

European Standard
(EUR)
Japanese Industrial
Standard (JIS)

TIMESTAMP defines data used to hold both date and time. It also
contains time in microseconds at the end. The format is yyyy-mm-dd­
hh.mm.ss.nnnnnn, where

yyyy = year
mm = month
dd = days
hh = hours
mm = minutes
ss = seconds
nnnnnn = microseconds

Structure Query Language (SQL) 339

BIT DATA defines data as binary values. Usually such data is for
exchange with other systems.

WITH DEFAULT defines the default values for data types just
described. These values are shown in Figure 6.3.

Data type'

INTEGER or INT
SMALLINT
FLOAT
DECIMAL
CHARACTER or CHAR
VARCHAR
LONG VARCHAR
GRAPHIC
VARGRAPHIC
LONG V ARGRAPHIC
DATE
TIME
TIMESTAMP

Default values

o
o
o
o
Blanks
A string of length 0
A string of length 0
Double-byte blanks
A string of length 0
A string of length 0
January 1, 0001
hours=O, minutes=O, seconds=O
January 1, 0001, hours=O,
minutes=O, seconds=O,
microseconds=O

Figure 6.3 Default values for data types.

NOT NULL WITH DEFAULT means when a row is added to the
database, a column with such a characteristic cannot contain null values;
instead, it can have a default value.

Operators

As any other language, SQL has operators that expand its power. There
are three main types: arithmetic, comparison, and boolean (see Figure
6.4).

Arithmetic operators allow the use of addition, subtraction,
multiplication, and division. These operations are done only on numeric
data; it is invalid to do arithmetic operations on characters or graphic
strings.

340 Chapter 6

Comparision operators are used to compare two numeric or nonnumeric
data items. These operators determine whether a variable is equal to, not
equal to, less than, or greater than an other variable or constant.

Boolean operators are used to perform logical comparison between
predicates in a WHERE clause. These operators, such as AND, OR, and
NOT, determine whether an expression is false or true.

Type Operator Meaning

Comparison = Equal to
--, = or < > Not equal to
> Greater than
--, > or < = Not greater than
--, < or > = Not less than

Arithmetic + Addition
Subtraction

* Multiplication
/ Division

Boolean AND Logical AND
OR Logical OR

Figure 6.4 SQloperators.

Predicates

BETWEEN is a predicate; it compares a value that is equal to or
intermediate between two other values. The general format is

expression [NOT] BETWEEN expression AND expression

The NULL predicate test for null val~es; the format is

expression IS [NOT] NUL~

!he IN predicate compares a value with one or more values; the format
IS

expression [NOT] IN < fullselect or
expression>

Structure Query Language (SQl) 341

The LIKE predicate searches for strings that have a certain pattern; the
format is

column-name [NOT] LIKE <USER or host-variable or
string-constant>

The EXISTS predicate tests for the existence of certain rows; the format
is

EXISTS (fullselect)

Special reg isters

A special register is a storage area where special information is kept
accessible by an application program. Examples of special registers are

Register

CURRENT DATE
CURRENT SERVER.

Description

Holds current local time
Contains the name of the current application
server

CURRENT TIME Holds the current local time
CURRENT TIMESTAMP Holds the current local date and time
USER Holds the user ID that was passed to DB2/2

when the application connected to the
database

6.2 SQL Statements

This section describes the SQL statements. For each statement, the syntax
is given, followed by an explanation of the statement and its parameters.
Also, there is a brief note on how a statement can be executed. The
examples will help you understand. how the SQL statement is used.

First, let's look at two important aspects of SQL statements: invocation
and return codes. A SQL statement can be executed in one of three ways:

• Embedded in an application program
• Dynamically prepared and executed
• Issued interactively

342 Chapter 6

Embedded SQL: This simply means that SQL statements are found in a
program. These statements, found anywhere in the source code, must start
with keywords EXEC and SQL; for example,

EXEC SQL SELECT * FROM DEPT_TABLE

To execute the SQL statement embedded in the program, first you have to
precompile and subsequently compile and link to create an executable file.
Next, when the whole program is run, the SQL statements will be executed
in a logical manner.

Dynamic SQL: In a program it is possible to build SQL statements and
execute them rather than hard-coding them. Usually, an application
program will dynamically build an SQL statement in a host variable using
data fed to it (e.g., input from a user). Once the statement is constructed
with a character string, it is executed with an embedded statement, namely,
PREPARE or EXECUTE.

Interactive SQL: All database managers have a facility to execute SQL
statements entered at the terminal. For example, DB2/2 for OS/2 has
Visualizer Query. There are a few things to remember when issuing
statements interactively. First, the statement should not contain any
reference to host variables and second, the syntax should be pure, without
the keywords EXEC SQL; for example,

SELECT * FROM DEPT_TABLE

Return codes: Every time a SQL statement is executed, the database
manager returns a code, which indicates the success of the operation. In
the interactive mode, you see the code and a brief explanation on the
screen. However, this code is passed to a program through an integer
variab[e called SQLCODE. This variable is a field in the SQLCA
structure which is used as a means of communication between the program
and the database manager. (The SQLCA structure is given with the
INCLUDE statement.)

An application program checks SQLCODE to decide on the next logical
move; for example, SQLCODE=O means that the execution is successful
and SQLCODE=l00 means that "no data" was found. There are too many
such'return codes to list all of them here.

There is another field in SQLCA structure, called SQLSTATE, indicating
the outcome of the most recently executed SQL statement. A program can
check this variable instead of SQLCODE because it can used to test for

Structure Query Language (SQl) 343

specific errors and classes of errors. One point to remember is that it is a
string variable.

Next, we'll look at all the SQL statements.

D ALTER TABLE-add a column to a table and maintain keys

• General format

ALTER TABLE table-name
«ADD col-name data-type

<NOT NULL WITH DEFAULT or
FOR BIT DATA> or

col-name data-type
<NOT NULL WITH DEFAULT or

FOR BIT DATA> > or
PRIMARY KEY(col-name) or
DROP KEY>

• Description

The ALTER TABLE statement is used primarily to add one or more
columns to an existing table. The column is always added to the end of
the table.

table-name is the name of the table you want to change. It must exist in
the DB2/2 catalog. /

ADD col-name data-type specifies the name of the column that you
want to add to the table and its data type.

col-name is a unique name for the column.

data-type is one of the data types found in the following list:

INTEGER
DECIMAL
GRAPHIC
LONG V ARCHAR
TIMESTAMP

SMALLINT FLOAT
CHAR V ARCHAR
V ARGRAPHIC LONG V ARGRAPHIC
DATE TIME

NOT NULL WITH DEFAULT allows default values but not null values.

344 Chapter 6

FOR BIT DATA defines data as binary values.

PRIMARY KEY(col-name, ...) specifies that primary keys are made of
the column names to be used as indexes.

col-name is the name of an existing column of the table. You can list
one or more columns.

DROP PRIMARY KEY means to remove the definition of the primary
key as index. This only happens if the table has a primary key. If an
existing index was previously used for the primary index, then the.
ALTER TABLE statement will not drop the index.

• Usage

Embedded in an application program, and dynamically prepared and·
executed.

• Example

The following example adds the column CONTACT 2 to the table
RBA.CLIENTS.

ALTER TABLE RBA.CLIENTS
ADD CONTACT_2 CHAR(20);

C BEGIN DECLARE SECTION-mark the beginning of a host
variable declare section

• General format

BEGIN DECLARE SECTION

• Description

The BEGIN DECLARE SECTION statement is used in an application
program to mark a section where host variables are defined. These
definitions are done according to the rules of the host language. This
section must terminate with the keywords END DECLARE SECTION.

• Usage

Embedded in an application program.

Structure Query Language (SQL) 345

• Example

The following is an example of how to use the BEGIN DECLARE
SECTION statement in a C program.

EXEC SQL BEGIN DECLARE SECTION;

. ,

(host variable definitions)

.
EXEC SQL END DECLARE SECTION;

The following segment of a COBOL program demonstrates the use of
the BEGIN DECLARE SECTION statement.

DATA DIVISION.
WORKING-STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.

EXEC SQL
INCLUDE PATIENT.TBL

END-EXEC.

01 WS-PROGRAM-HOST-VARIABLES.
OS DATABASE-USERNAME PIC X (10) VALUE "GOPAULM".

OS DATABASE-PASSWORD PIC X (10) VALUE "GOPAULM".
OS CURRENT-DATE PIC X(08).
OS FIRST-NAME PIC X(2S).
OS LAST-NAME PIC X(2S).

EXEC SQL END SECTION END-EXEC.

C CLOSE-close a cursor

• General format

CLOSE cursor-name

• Description

A cursor is a pointer to the current row of a result table. After you have
completed processing a result table, the cursor must be CLOSEd. But
a cursor must first be DECLAREd and OPENed before it is used or
closed. A COMMIT statement automatically closes all cursors.

cursor-name is the name of a cursor that was previously used in the
DECLARE CURSOR statement.

346 Chapter 6

• Usage

Embedded in an application program.

• Example

In the following C program fragment, a cursor called BRANCH_C is
first declared, followed by an OPEN statement to open the cursor.
Subsequently, this cursor is used to retrieve data from the database using
the FETCH statement. Finally, the cursor is closed with the CLOSE
statement.

EXEC SQL DECLARE BRANCH C CURSOR FOR
SELECT NAME, ADDRESS -
FROM CLIENTS
WHERE BRANCH='EI01'j

EXEC SQL OPEN BRANCH_Cj

while (SQLCODE==O)
{

EXEC SQL FETCH BRANCH_C INTO : name, :addressj

}

EXEC SQL CLOSE BRANCH_Cj

C COMMENT ON-add or replace comments on tables, views,
or columns

• General format

COMMENT ON
<TABLE <table-name or view-name>

IS comment-string> or
<COLUMN <table-name. column-name or

view-name. column-name>
IS comment-string>

• Description

The COMMENT ON statement adds or replaces comments in the
catalogs of DB2/2.

TABLE <table-name or view-name>
This specifies what to comment on: a table or a view. In both cases the

Structure Query Language (SQL) 347

comment is written to the REMARKS column of the
SYSIBM.SYST ABLES catalog table for the row related to the specified
table or view.

table-name is the name of a table already in SYSIBM.SYST ABLES.

view-name is the name of a view already in SYSIBM.SYST ABLES.

COLUMN <table-name. column-name or
view-name. column-name>

This specifies commenting on a column.

column-name is the name of the column that already exists in a table or
View.

IS comment-string
This is a keyword which precedes the comment you want to specify.

comment-string can be any SQL string constant, up to 254 bytes.

• Usage

Embedded in an application program, and dynamically prepared and
executed.

• Example

The following example updates a comment on the table RBA.CLIENTS.

COMMENT ON TABLE RBA.CLIENTS
IS 'LAST BACKUP Dec 12, 1993'

C COMMIT-make a change permanent

• General format

COMMIT [WORK]

• Description

The COMMIT statement is used to make changes in data permanent
after they have been successfully completed. If you do not use
COMMIT within your program and the execution of the program ends

348 Chapter 6

successfully, then DB2/2 will issue a COMMIT. It is highly
recommended that you use COMMIT in your program, say every 100
updates of rows. COMMIT frees resources, allowing other programs to
use them. Also, it saves you from having to rerun the whole job when
only part of it failed. All changes made by the execution of ALTER,
COMMENT ON, CREATE, DELETE, DROP, GRANT, INSERT,
REVOKE, and UPDATE statements are committed to the database.

• Usage

Embedded in an application program, and dynamically prepared and
executed.

• Example

The following command issues a COMMIT statement:

EXEC SQL COMMIT;

C CONNECT-connect to the application server

• General format

CONNECT [RESET] or
[TO <server-name or host-variable>

[IN [SHARE or EXCLUSIVE] MODE]

• Description

The CONNECT statement is used to connect an application process or
a user, or both, to an application server. The connection is to one server
at a time. If you issue CONNECT without any operand, the statement
returns information about the current server, found in the SQLERRMC
field of the SQLCA structure.

RESET means to disconnect the application process from the current
server.

TO <server-name or host-variable>
This specifies the application server to which connection is made.

server-name is the name of the application server.

Structure Query Language (SQl) 349

host-variable is a variable that contains the name of the application
server.

IN SHARE MODE means that concurrent application processes can
execute only read-only operation at the application server.

IN EXCLUSIVE MODE means that concurrent application processes
cannot execute any operation at the application server.

• Usage

Embedded in an application program and issued interactively.

• Example

In the following statement, CONNECT is issued to connect a user to an
application server TOROLABM:

CONNECT TO TOROLABM

In the next C program fragment, an application process is connected
using a host variable SEC_SERVER to an application server SECD.
After a successful connection, the product name of the application server
is copied to the variable PRODUCT.

strcpy(CICS_SERVER,'SECD')
EXEC SQL CONNECT TO :SEC SERVER;
if (strncmp(SQLSTATE,'OOOOO',5)

strncpy(PRODUCT,sqlca,sqlerrp,3);

C CREATE INDEX-create an Index on a table

• General format

CREATE [UNIQUE] INDEX index-name
ON table-name
[(column-name <ASC or DESC>, •••)]

• Description

The CREATE INDEX statement creates an index on an existing table
of the DB2/2 database.

350 Chapter 6

UNIQUE
This optional keyword is used to create only unique index keys.

INDEX index-name
This specifies the name of an index for which an index space is created.

index-name is the name of the index, which does not exist in the DB2/2
catalog.

ON table-name
This specifies the name of the table on which the index is to be created.

table-name is the name of a table already described in the DB2/2
catalog.

column-name is the name of a column that is to be part of the index key.
You can enter one or more column names that are part of a table
definition. The maximum number of columns you can enter in this
statement is 16. Following each name you can specify the order of index
entries.

ASC means to store the index entries in ascending order. ASC is the
default.

DESC means to store the index entries in descending order .

• Usage

Embedded in an application program, and dynamically prepared and
executed .

• Example

The following example creates an index IXCLIENTS on the table
CLIENTS. Also, it specifies having only unique index keys. In this case,
the column name is CLIENTID and the index entries are to be stored in
descending order.

CREATE UNIQUE INDEX IXCLIE~TS
ON CLIENTS

(CLIENTID DESC)

Structure Query Language (SQL) 351

C CREATE TABLE-create a table for a database

• General format

CREATE TABLE table-name
(col-name data-type

<NOT NULL [WITH DEFAULT] [PRIMARY KEY] or
FOR BIT DATA>,

.
col-name data-type

<NOT NULL [WITH DEFAULT] [PRIMARY KEY] or
FOR BIT DATA>)

or
PRIMARY KEY(col-name, •••)

• Description

The CREATE TABLE statement creates a table within a DB2/2
database. Also, this statement lets you create one or more columns with
specific data types for each column.

table-name is the name of the table you want to create. It must not exist
in the DB2/2 catalog. The creator of the table has all the privileges.

col-name is a unique name for a column with the table.

data-type is one of the data types found in the following list:
INTEGER SMALLINT FLOAT
DECIMAL CHAR VARCHAR
GRAPHIC V ARGRAPHIC LONG VARGRAPHIC
LONG VARCHAR DATE TIME
TIMESTAMP

NOT NULL prevents columns from having null values but does not
specify a default.

FOR BIT DATA defines data as binary values. It may be used for data
exchange between systems.

PRIMARY KEY(col-name, ...) specifies that primary keys are made of
the column names to be used as indexes.

col-name is the name of an existing column of the table. You can list
one or more columns, and these specified columns must not be defined
with NOT NULL.

352 Chapter 6

NOT NULL WITH DEFAULT allows columns to have default values
instead of null values. The DB2/2 default values for data types are as
follows:

Data type

Numeric
Fixed-length character string
Variable-length character string
Date
Time
Timestamp

• Usage

Default value

o
Blanks
A string of length 0
January 1, 0001
o hour, 0 minute, and 0 second
January 1, 0001, 0 hour, 0 minute, 0
second, and 0 microsecond

Embedded in an application program, dynamically prepared and
executed, and issued interactively.

• Example

The following creates a table of CLIENTS. The table will have four
columns: CLIENTS ID, CLIENTS ADDR, CLIENTS CITY, and
CLIENTS _C. Each column allows default values. The primary key
consists of the content of column CLIENTS _ ID.

CREATE TABLE CLIENTS
(CLIENTS_ID SMALLINT NOT NULL WITH DEFAULT,
CLIENTS AD DR CHAR (20) NOT NULL WITH DEFAULT,
CLIENTS=CITY CHAR (25) NOT NULL WITH DEFAULT,
CLIENTS C VARCHAR (25) NOT NULL WITH DEFAULT,
PRIMARY-KEY (CLIENTS_ID))

C CREATE VIEW-create a view from a table or view

• General format

CREATE VIEW view-name [(column-name, •••)]
AS sUbselect-statement
[WITH-CHECK-OPTION]

Structure Query Language (SQL) 353

• Description

The CREATE VIEW statement derives a virtual table from one or more
tables or views.

view-name is the view you want to create.

column-name is a unique name of a column already defined in a table.
You can have one or more columns in this statement.

AS subselect-statement
This defines the view in association with the SELECT statement.

subselect-statement is a SELECT statement. This statement is described
in more detail later in this chapter.

WITH CHECK OPTION
This option checks all inserts and updates against view definitions.

• Usage

Embedded in an application program, dynamically prepared and
executed, and issued interactively.

• Example

The following example creates a view called CUSTNAME through a
SELECT statement. The view consists of two columns, SOC SEC and
FIRST AND LAST, from the CUSTOMER table. The WITH CHECK
OPTION verifies all inserts and updates against view definitions.

CREATE VIEW CUSTNAME
(SOC_SEC,FIRST_AND_LAST)
AS SELECT CUST SOC SEC, CUST NAME

FROM CUSTOMER - -
WHERE CUST SOC SEC < 7000000

WITH CHECK OPTION

a DECLARE CURSOR-define a cursor

• General format

DECLARE cursor-name CURSOR [WITH HOLD] FOR select-statement

354 Chapter 6

• Description

The DECLARE CURSOR statement defines a cursor, which points to
many rows of a table. It consists of a cursor name and a SELECT
statement used to define the selection of rows. This statement is used in
a program to access many rows in a table. A cursor can be considered
a file and should be treated as such. Therefore, a declared cursor must
be OPENed, FETCHed (or read), or CLOSEd.

cursor-name is the name of the cursor you want to define.

select-statement is a SELECT statement; this statement is described in
detail later in this chapter.

WITH HOLD means to maintain resources across multiple units of
work. For units of work ending with COMMIT, the cursor is placed
before the next logical row of the result table. For ROLLBACK, all
open cursors are closed.

• Usage

Embedded in an application program.

• Example

In the following example, a cursor called CLIENTS _ C is defined in a
COBOL program. It will point to each row in the table CLIENTS that
is returned as a result of the SELECT statement.

EXEC SQL
DECLARE CLIENT C CURSOR FOR
SELECT CLIENTS-ID, CLIENTS ADDR, CLIENTS_CITY

FROM CLIENTS- -
WHERE CLIENTS ID = :TRANS-BRANCH-ID

END-EXEC. -

D DELETE-delete rows from a table or view

• General format

Not using cursor:

DELETE FROM <table-name or view-name>
WHERE search-condition

Structure Query Language (SQl) 355

Using cursor:

DELETE FROM <table-name or view-name>
WHERE CURRENT OF cursor-name

• Description

The DELETE statement removes a varying number of rows from a table
or view depending on the search condition. The deletion of rows can be
done with or without the cursor.

FROM table-name or view-name
This specifies the table or view from which the rows are to be removed.

table-name is the name of a table already defined in a DB2/2 catalog.

view-name is the name of a view already defined in a DB2/2 catalog.

WHERE search-condition
This clause determines how many rows will be deleted. If it is omitted,
all the rows will be removed.

search-condition is the same as the search condition used in the WHERE
clause of the SELECT statement. Depending on the condition, many
rows or no rows may be deleted.

WHERE CURRENT OF cursor-name
This clause determines how many rows will be deleted using a cursor.

cursor-name is the name of a cursor, defined before using it in the
DELETE statement. The DECLARE CURSOR statement defines the
cursor. Before using it, the cursor must be opened with the OPEN
statement. When the DELETE statement is executed, it removes the row
where the cursor is positioned. After the deletion, the cursor points to
the next row.

• Usage

Embedded in an application program, dynamically prepared and
executed, and issued interactively.

• Example

The following example deletes all rows from the table CLIENTS where

356 Chapter 6

DELETE
FROM CLIENTS
WHERE CL_CL_NAME = 'SMITH';

a DESCRIBE-get information about a prepared statement

• General format

DESCRIBE statement-name INTO descriptor-name

• Description

The DESCRIBE statement is used to obtain information about a
statement that was dynamically prepared by the PREPARE statement.

statement-name is the name for which the information is sought. It must
be a prepared statement.

INTO descriptor-name
This clause is used to specify where the information is to be placed.

descriptor-name is the name of a data structure such as SQLDA. Before
using the DESCRIBE statement, you must set'SQLN field of SQLDA
to the number of variables represented by SQL V AR.

Mer the execution of DESCRIBE, the database manager updates the
following fields of SQLDA:

Fields

SQLDAID
SQLDABC
SQLD

SQLVAR

Values

'SQLDA'
Length of the SQLDA data structure.
Number of columns in the result table of a SELECT
statement; otherwise it is O.
This field is not updated if SQLD is 0 or is greater than
the value found in SQLN; otherwise, if SQLD has a
value, say, n, where n is greater than 0 but less than or
equal to the value of SQLN, then the values are
assigned to the first n occurrences of SQL V AR. To
further clarify this point, the first SQL V AR will have
the description of the first column of the result table,
the second occurence will contain the information about
the second column, and so on.

SQLTYPE

SQLLEN
SQLNAME

• Usage

Structure Query Language (SQL) 357

This field contains a code that indicates the data type of
the column. It also shows whether the column has a null
value.
This field has the length of the result columns.
This field has the name of the column.

Embedded in an application program.

• Example

In the following example there are three C statements. The first one is
to copy a statement string into a string variable s. The second one
contains a PREPARE statement. Next is a DESCRIBE staement that
gets the information about this SELECT prepared statement and places
it into the data structure sqlda.

strcpy(s,IISELECT CLIENTS ID FROM CLIENTS II);
EXEC SQL PREPARE select clients FROM :s;
EXEC SQL DESCRIBE select_clients INTO :sqlda;

C DROP-remove an object

• General format

DROP INDEX index-name or
PACKAGE package-name or
TABLE table-name or
VIEW view-name

• Description

The DROP statement deletes a specific DB2/2 object, such as a
particular view, index, and tables. It removes from the DB2/2 catalog the
named object entry and any associated objects below it. It also deletes
any packages that reference the object.

INDEX index-name
This specifies the index to be deleted.

index-name is a name of an unpartitioned and user-created index already
defined in the DB2/2 catalog.

358 Chapter 6

PACKAGE package-name
This specifies the package to be invalidated.

package-name is the name of a package already defined in the DB2/2 .
catalog.

TABLE table-name
This specifies the table to be removed from a database. This will also
drop all the indexes and primary keys associated with the table.

table-name is the name of a table already defined in the DB2/2 catalog.
You cannot enter a catalog table that belongs to DB2/2.

VIEW view-name
This specifies the view to be deleted.

view-name is the name of a view already defined.

• Usage

Embedded in an application program, dynamically prepared and
executed, and issued interactively.

• Example

The following example drops table· RBA. CLIENTS.

DROP TABLE RBA.CLIENTSj

a END DECLARE SECTION-end the host variable declaration

• General format

END DECLARE SECTION

• Description

The END DECLARE SECTION statement is used in an application
program to mark the end of host variable declaration section. Note that
this section starts with BEGIN DECLARE SECTION and ends with
END DECLARE SECTION, and in between are definitions of host
variables used in SQL statements, such as SELECT, FETCH, INSERT,
and DECLARE CURSOR.

Structure Query Language (SQL) 359

• Usage

Embedded in an application program.

• Example

The following is an example of how to use END DECLARE
SECTION in a C program.

EXEC SOL BEGIN DECLARE SECTION;
/* host variable definitions */
char database_name[ll];
char database-password[ll];
int transit number;
float base-price;
char first_name[26];
EXEC SOL END DECLARE SECTION;

The following segment of a COBOL program demonstrates the use of
the END DECLARE SECTION statement.

DATA DIVISION.
WORKING-STORAGE SECTION.
EXEC SOL BEGIN DECLARE SECTION END-EXEC.

EXEC SQL
INCLUDE PATIENT.TBL

END-EXEC.

01 WS-PROGRAM-HOST-VARIABLES.
OS DATABASE-USERNAME PIC X (10) VALUE "GOPAULM".

OS DATABASE-PASSWORD PIC X(10) VALUE "GOPAULM"
OS CURRENT-DATE PIC X(08).
OS FIRST-NAME PIC X(2S).
OS LAST-NAME PIC X(2S).

EXEC SQL END SECTION END-EXEC.

C FETCH-get a row using the cursor

• General format

FETCH cursor-name < INTO host-variable, ••• or
USING DESCRIPTION description-name>

• Description

The FETCH statement positions the cursor on the next row of its results
table and assigns the column values to variables of your program.

360 Chapter 6

cursor-name is the name of the cursor, which must be DECLAREd and
OPENed before use.

INTO host-variable
This specifies the variables of your program. The INTO clause follows
the same rules as the INTO clause of the SELECT statement. You can
have one or more variables. The first value of the row is placed in the
first variable, the second value of the row in the second variable, and so
on.

host-variable is the name of a structure or variable.

USING DESCRIPTION description-name
This parameter is used to name a SQLDA structure that holds a valid
description of host variables. Before executing the FETCH statement
you must initialize the following fields of SQLDA:

SQLN

SQLDABC

SQLD

SQLVAR

The number of SQLV AR occurrences provided in the
SQLDA
The number of bytes of storage allocated for this
SQLDA
The number of variables used in the SQLDA while
processing the FETCH statement
Occurrences to indicate the attributes of variables

description-name is the name of a SQLDA structure .

• Usage

Embedded in an application program .

• Example

In the following example, a CR_ PATIENT cursor is first declared,
followed by an OPEN statement to open the cursor. Next data from each
row is fetched from the PATIENT table into patient_id, l_name, and
f_ name host variables, until all the rows from the result table are
processed. Finally, the cursor is closed.

EXEC SQL DECLARE CR PATIENT CURSOR FOR
SELECT PATIENT 10,

LAST NAME,
FIRST NAME

FROM PATIENT -
WHERE PATIENT 10 = IA1234";

Structure Query Language (SQL) 361

EXEC SOL OPEN CR_PATIENT;

while (SOLCODE==O)
{

EXEC SOL FETCH CR_PATIENT INTO :patient_id,
:l_name,

}
:f_name;

EXEC SOL CLOSE CR_PATIENT;

C GRANT -grant Index privileges

• General format

GRANT CONTROL ON INDEX index-name
TO <PUBLIC or authorization-id, ••• >

• Description

This GRANT CONTROL ON INDEX statement is used to give an ID
or group name the CONTROL privileges on indexes of a database.

CONTROL
This parameter gives the privilege to drop the indexes of a table; this
privilege is the same as the one given to the creator of the index.

ON INDEX index-name
This parameter is used to name the index for which CONTROL
privilege is to be granted.

index-name is the name of an index already defined for a database.

TO <PUBLIC or authorization-id, ... >
This specifies who gets the privilege: individual users or all users.

PUBLI C means to grant the privilege to all users.

authorization-id is a user ID or group name. You can specify one or
more IDs, and it must not include the user ID that is issuing the
command.

• Usage

Embedded in an application program, dynamically prepared and
executed, and issued interactively.

362 Chapter 6

• Example

In the following interactive command, the user TSMGOPA is granted
CONTROL privilege on CLIENIDX.

GRANT CONTROL ON INDEX CLIENIDX TO TSMGOPAU

C GRANT -grant database privileges

• General format

GRANT database-privilege, •••
ON DATABASE
TO <PUBLIC or authorization-id, ••• >

• Description

This GRANT statement gives one or more users privileges to use a
resource at the database level of DB2/2. With this statement you can
grant privileges against the entire database.

database-privilege is one or more of the following keywords:

Keyword

DBADM
BINDADD
CONNECT

ON DATABASE

Privilege

Administer a database
Create packages
Access the database

This specifies the entire database for which privileges are to be given
with the GRANT statement.

TO <PUBLIC or authorization-id, ... >
This specifies who gets the priviledge: individual users or all users.

PUBLIC means to grant the privilege to all users.

authorization-id is a user ID or group name. You can specify one or
more IDs, and it must not include the user ID that is issuing the
command.

Structure Query Language (SQL) 363

• Usage

Embedded in an application program, dynamically prepared and
executed, and issued interactively.

• Example

In the following interactive command, the users LAlLA and SANJIV are
granted the BINDADD privilege on the entire database.

GRANT BINDADD ON DATABASE
TO LAlLA, SANJIV;

a GRANT-grant package privileges

• General format

GRANT package-privilege, •••
ON PACKAGE package-name
TO <PUBLIC or authorization-id, ••• >

• Description

This GRANT statement gives one or more users privileges against
packages in the database. With this statement you can specify one or
more privileges or packages.

package-privilege is one of the following keywords:

Keyword

BIND

EXECUTE

CONTROL

Privilege

Issue the BIND, REBIND, and FREE commands
against the packages named in this statement
Run programs belonging to the package named in
this statement
Grant BIND, REBIND, and FREE privileges to
other users

ON PLAN package-name
This specifies an application plan for which privileges are to be given
with the GRANT statement.

package-name is the name of the package for which the privileges are
given.

364 Chapter 6

TO <PUBLIC or authorization-id, ... >
This specifies who gets the privilege: individual users or all users.

PUBLIC means to grant the privilege to all users.

authorization-id is a user ID or group name. You can specify one or
more IDs, and it must not include the user ID that is issuing the
command.

• Usage

Embedded in an application program, dynamically prepared and
executed, and issued interactively.

• Example

In the following example, the interactive command is used to grant the
BIND privilege to users ABBY and THOMASLO on the BINDOl
package.

GRANT BIND
ON PACKAGE BINDOl
TO ABBY, THOMASLO;

C GRANT-grant table or view privileges

• General format

GRANT < ALL or
ALL PRIVILEGES or
table-privilege, ••• >

ON [TABLE] <table-name or view-name>
TO <PUBLIC or authorization-id, ••• >

• Description

This GRANT statement gives one or more users privileges to use a
resource at the table level of DB2/2. With this statement you can specify
one or more privileges and tables or views.

ALL or ALL PRIVILEGES means to grant all privileges on tables or
views mentioned with the ON clause.

table-privilege is one of the following keywords:

Keyword

ALTER
DELETE
INDEX
INSERT
SELECT
UPDATE
CONTROL

Structure Query Language (SQl) 365

Privilege

Issue the ALTER statement
Issue the DELETE statement
Issue the INDEX statement
Issue the INSERT statement
Issue the SELECT statement
Issue the UPDATE statement
Grant all the privileges listed here as well as the ability
to drop the table or view

REFERENCE To create and drop a foreign key referencing a table as
the parent

ON TABLE <table-name or view-name>
This specifies a table or view for which privileges are granted to users.

table-name is the name of an existing table.

view-name is the name of an existing view.

TO <PUBLIC or authorization-id, ... >
This specifies who gets the privilege: individual users or all users.

PUBLIC means to grant the privilege to all users.

authorization-id is a user ID or group name. You can specify one or
more IDs and it must not include the user ID that is issuing the
command .

• Usage

Embedded in an application program, dynamically prepared and
executed, issued interactively .

• Example

In the following example, the interactive command is used to grant all
table privileges to users Z1335MG and ABBY.

GRANT ALL PRIVILGES
ON TABLE RBA.CLIENTS
TO Z1335MG, ABBY;

366 Chapter 6

a INCLUDE-insert code or declarations into a source
program

• General format

INCLUDE < SQLCA or
SQLDA or
name>

• Description

The INCLUDE statement causes the precompiler to get a named
member and merge it into a source program during the precompile time.

SQLCA
This is required to access DB2/2 from a program. It's a set of fields that
DB2/2 updates after each SQL statement is executed. These fields are
described later in this chapter. For example, in COBOL the INCLUDE
SQLCA statement specifies

01 SQLCA.
05 SQLCAID
05 SQLCABC
05 SQLCODE
05 SQLERRM.

49 SQLERRML
49 SQLERRMC

05 SQLERRP
05 SQLERRD
05 SQLWARN.

10 SQLWARNO
10 SQLWARN1
10 SQLWARN2
10 SQLWARN3
10 SQLWARN4
10 SQLWARN5
10 SQLWARN6
10 SQLWARN7

05 SQLEXT

SQLDA

PIC X(8).
PIC S9(9) COMP-4.
PIC S9(9) COMP-4.

PIC S9(4) COMP-4.
PIC X(70).

PIC X(8).
OCCURS 6 TIMES PIC S9(9) COMP-4.

PIC X(l).
PIC X(l).
PIC X(l).
PIC X(l).
PIC X(l).
PIC X(l).
PIC X(l).
PIC X(l).

PIC X(8).

This keyword specifies the SQL descriptor area (SQLDA) to be
included. It is a data structure with many fields; it is discussed later in
detail.

name is the name of a file whose content is to be included where the
INCLUDE statement is found: This can be any relevant file, such as a
copy book for a COBOL program or an include file for a C or C++
program.

Structure Query Language (SQl) 367

• Usage

Embedded in an application program, dynamically prepared and
executed, issued interactively.

• Example

In the following fragment program, there are are two INCLUDE
statements. The first statement is used to include the SQL
communication area. The next is used to include the clients.tbl file,
which has a structure definition corresponding to the columns of the
CLIENTS table. The structure is called clients, and two of the fields are
name and address.

EXEC SQL INCLUDE SQLCA;
EXEC SQL INCLUDE clients.tbl;

EXEC SQL DECLARE BRANCH C CURSOR FOR
SELECT NAME, ADDRESS
FROM CLIENTS
WHERE BRANCH='EIOl';

EXEC SQL OPEN BRANCH_C;

while (SQLCODE==O)
{

}

EXEC SQL FETCH BRANCH C
INTO :clients.name,

:clients.address;

EXEC SQL CLOSE BRANCH_C;

C INSERT-Insert a row Into a table or view

• General format

INSERT INTO <table-name or view-name>
[column-name, •••]
VALUES (constant or

host-variable or
NULL or

special-register) •••
fullselect statement

368 Chapter 6

• Description

The INSERT statement inserts a row into a view or table. If the row is
inserted into a view, it is also added to the table which is the basis for
the view.

table-name is the name of a table already described in the DB2/2
catalog.

view-name is the name of a view already described in the DB2/2 catalog.

column-name is the name of a row of a table or view. You can have one
or more columns, in any order. The column list is optional; if it is
omitted, the columns defined in the named view or table are used.

VALUES specifies the values for the row you are inserting. Each value
must correspond to the column name; for example, if you list five
columns, you must also provide five corresponding values, separated by'
commas. The values can be keywords, constants, variables, NULL, or
special register.

constant is a specific value; it can be one of the following: integer,
floating-point value, decimal, character string, or graphic string.

host-variable is the name of a structure or variable that follows the rules
of the host program.

NULL is a keyword that represents a null value .

. special-register is one of the following: CURRENT DATE, CURRENT
TIME, CURRENT SERVER, CURRENT TIMESTAMP, or USER.

fullselect statement
This is a SELECT statement, and the result of this statement is an insert
to the table or view. This statement is discussed later in this chapter .

• Usage

Embedded in an application program, dynamically prepared and
executed, and issued interactively.

Structure Query Language (SQL) 369

• Example

In the following example, the INSERT statement is used to add a row
into a table RBA.CLIENTS. The columns are NAME, CITY,
POSTAL_C, and PROV, and the values are RBC, NEWMARKET,
L3X1FO, and ONTARIO.

INSERT INTO RBA.CLIENTS
(NAME, CITY, POSTAL_C, PROV)
VALUES ('RBC','NEWMARKET','L3XIFO','ONTARIO');

C LOCK TABLE-lock a table space

• General format

LOCK TABLE table-name
IN <SHARE MODE or EXCLUSIVE MODE>

• Description

The LOCK TABLE command locks the table space, in either shared
mode or exclusive mode. The lock can be released with a BIND
command and an SQL RELEASE statement.

table-name is the name of the table for which the table space is locked.

IN <SHARE MODE or EXCLUSIVE MODE>
This specifies the type of locking.

SHARE MODE means to acquire a lock on the table for the unit of
work (program) where this statement is executed that will allow other
programs to access the table in read-only mode.

EXCLUSIVE MODE means to acquire a lock on the table for the unit
of work (program) where this statement is executed that will not allow
any other program to access the table.

• Usage

Embedded in an application program, dynamically prepared and
executed, and issued interactively.

370 Chapter 6

• Example

In the following example, the LOCK TABLE statement is used to
acquire an exclusive lock on the RBA.CLIENTS table.

LOCK TABLE RBA.CLIENTS IN EXCLUSIVE MODE;

C OPEN-open a cursor

• General format

OPEN cursor-name
[USING host-variable, ••• or

USING DESCRIPTOR description-name]

• Description

The OPEN statement is used after a cursor has been declared. This
statement executes the SELECT statement associated with the
DECLARE CURSOR statement; it creates the result table to which the
cursor points. Subsequent to the OPEN statement, the cursor is
initialized to point to a row with a FETCH statement.

cursor-name is the name of a cursor already DECLAREd.

USING host-variable, ...
This specifies user-defined variables.

host-variable is the name of a structure or variable that follows the rules
of the host program.

USING DESCRIPTION description-name
This parameter is used to name a SQLDA structure that holds a valid
description of host variables. Before executing the OPEN statement you
must initialize the following fields of SQLDA:

SQ~N The number of SQLV AR occurrences provided in the
SQLDA

SQLDABC The number of bytes of storage allocated for this SQLDA
SQLD The number of variables used in the SQLDA while

processing the OPEN statement
SQL V AR Occurrences to indicate the attributes of variables

description-name is the name of a SQLDA structure.

Structure Query Language (SQl) 371

• Usage

Embedded in an application program, dynamically prepared and
executed, and issued interactively.

• Example

In the following fragment program, there are is an OPEN statement to
open the BRANCH _ C, and this statement is preceded by a statement to
declare the cursor. Mer the cursor is opened, data is retrieved from the
CLIENTS table using a FETCH statement. Finally, the cursor is closed.

EXEC SQL INCLUDE SQLCA;
EXEC SQL INCLUDE clients.tbl;

EXEC SQL DECLARE BRANCH C CURSOR FOR
SELECT NAME, ADDRESS -
FROM CLIENTS
WHERE BRANCH='EI01';

EXEC SQL OPEN BRANCH_C;

while (SQLCODE==O)
{

}

EXEC SQL FETCH BRANCH_C INTO :clients.name,
:clients.address;

EXEC SQL CLOSE BRANCH_C;

a PREPARE-prepare an Sal statement for execution

• General format

PREPARE statement-name [INTO descriptor-name]
FROM host-variable

• Description

This PREPARE statement is used to dynamically prepare a SQL
statement for execution. This statement takes a string statement, which
contains a SQL statement and converts it into an executable form, called
a prepared statement. As seen earlier, the prepared statement is used
before issuing an EXECUTE statement.

372 Chapter 6

With the PREAPRE statement you can use only the following
statements: ALTER TABLE, COMMENT ON, COMMIT, CREATE
INDEX, CREATE TABLE, CREATE VIEW, DELETE, DROP,
GRANT, INSERT, LOCK TABLE, REVOKE, ROLLBACK,
SELECT statement, and UPDATE.

Also, when composing the string statement you have to keep in mind the
following restrictions:

• A SELECT statement must not have the INTO clause; instead use
a cursor and FETCH statement.

• The statement should not have the EXEC SQL keywords and a
statement termination.

• The statement must not have host variables; instead you use
parameter markers (1) and place corresponding host variables in the
EXECUTE statement.

• The statement should not have any comments.

statement-name is the name of the prepared statement.

INTO descriptor-name
This parameter is used to identify a descriptor name where information
is written after a successful execution of the PREPARE statement. As
we saw earlier, the DESCRIBE statement can be used to accomplish the
same function.

description-name is the name of a SQLDA structure.

FROM host-variable
This parameter is used to supply statement string to the SQL statement.

host-variable contains the statement string and is defined in a program
according to the rules of the host language .

• Usage

Embedded in an application program .

• Example

In· the following example there. are three C statements. The first one is
to copy a statement string into a string variable s. The second one
contains a PREPARE statement. Next is a DESCRIBE statement that

Structure Query Language (SQl) 373

obtains the information about this SELECT prepared statement and
places it into the data structure sqlda.

strcpy(s,"SELECT CLIENTS ID FROM CLIENTS");
EXEC SQL PREPARE select clients FROM :8;
EXEC SQL DESCRIBE select_clients INTO :sqlda;

C REVOKE-revoke index privileges

• General format

REVOKE CONTROL ON INDEX index-name
FROM <PUBLIC or authorization-id, ••• >

• Description

This REVOKE statement takes away from users the CONTROL
privileges on indexes of a database.

CONTROL
This parameter revokes the privileges to drop indexes of the database.
This privilege is automatically granted to the creator of the index.

ON INDEX index-name
This parameter is used to specify the name of the index for which
control privilege is removed.

index-name is the name of a database index that already exists.

FROM <PUBLIC or authorization-id, ... >
This specifies the users whose privileges are revoked: individual users
or all users.

PUBLIC means to revoke the privilege of all users.

authorization-id is a user ID or group name. You can specify one or
more IDs, and it must not include the user ID that is issuing the
command.

• Usage

Embedded in an application program, dynamically prepared and
executed, and issued interactively.

374 Chapter 6

• Example

The following interactive command is used to revoke the privileges to
drop index INXOOl from MIKHAIL and GABRIEL.

REVOKE CONTROL ON INDEX INXOOI
FROM MIKHAIL, GABRIEL;

a REVOKE-revoke database privileges

• General format

REVOKE database-privilege, •••
ON DATABASE
FROM <PUBLIC or authorization-id, ••• >

• Description

This REVOKE statement removes from one or all users privileges to
use a resource at the database level of DB2/2. You can list one or more
privileges.

database-privilege is one of the following keywords:
Keyword Privilege

DBADM
BINDADD
CONNECT
CREATEAB

Administer a database
Create packages
Access the database
Create tables

FROM <PUBLIC or;authorization-id, ... >
This specifies the users whose privileges are revoked: individual users
or all users.

PUBLI C means to revoke privileges of all users.

authorization-id is a user ID or group name. You can specify one or
more IDs, and it must not include the user ID that is issuing the
command.

• Usage

Embedded in an application program, dynamically prepared and
executed, and issued interactively.

Structure Query Language (SQl) 375

• Example

The following example revokes the BINDADD privilege of users
ABBYOl and ABBY02 on database.

REVOKE BINDADD ON DATABASE
FROM ABBY01, ABBY02;

a REVOKE-revoke package privileges

• General format

REVOKE package-privilege, •••
ON PACKAGE package-name
FROM <PUBLIC or authorization-id, ••• >

• Description

This REVOKE statement revokes from one or all users privileges to use
CONTROL, BIND, and EXECUTE statements against a package. With
this statement you can specify one or more privileges but only one plan.

plan-privilege is one of the following keywords:

Keyword

BIND

EXECUTE

CONTROL

Privilege

Issue the BIND, REBIND, and FREE commands
against the plans named in this statement
Run programs belonging to the plan named in this
statement
Drop packages and grant package privileges to
others

ON PACKAGE package-name
This specifies one package for which privileges are revoked.

package-name is the name of a package used to remove privileges.

FROM <PUBLIC or authorization-id, ... >
This specifies the users whose privileges are revoked: individual users
or all users.

PUBLIC means to revoke privileges of all users.

authorization-id is a user ID or group name. You can specify one or

376 Chapter 6

more IDs, and it must not include the user ID that is issuing the
command.

• Usage

Embedded in an application program, dynamically prepared and
executed, and issued interactively.

• Example

The following example revokes the BIND privilege of users ABBY and
THOMASLO on package BINDOl.

REVOKE BIND ON BINDOl
FROM ABBY, THOMASLO;

C REVOKE-revoke table or view privileges

• General format

REVOKE < ALL or ALL PRIVILEGES or
table-privilege, ••• >

ON [TABLE] <table-name or view-name>
FROM <PUBLIC or authorization-id, ••• >

• Description

This REVOKE statement revokes from one or more users privileges to
use a resource at the table level of DB2/2. With this statement you can
specify one or more privileges but bnly one table or view.

ALL or ALL PRIVILEGES means grant all privileges on tables or views
mentioned with the ON clause.

table-privilege is one of the following keywords:

Keyword

ALTER
DELETE
INDEX
INSERT
SELECT

Privilege

Issue the ALTER statement
Issue the DELETE statement
Issue the INDEX statement
Issue the INSERT statement
Issue the SELECT statement

Structure Query Language (SQl) 377

Keyword Privilege

UPDATE Issue the UPDATE statement
CONTROL Grant all the privileges listed here as well as the ability

to drop the table or view
REFERENCE Create and drop a foreign key referencing a table as the

parent

ON TABLE <table-name or view-name>
This specifies one or more tables or one or more views.

table-name is the name of a table.

view-name is the name of a view.

FROM <PUBLIC or authorization-id, ... >
This specifies the users whose privileges are revoked: individual users
or all users.

PUBLIC means to revoke privileges of all users.

authorization-id is a user ID or group name. You can specify one or
more IDs, and it must not include the user ID that is issuing the
command.

• Usage

Embedded in an application program, dynamically prepared and
executed, and issued interactively.

• Example

The following example revokes all table privileges from users Z1335MG
and ABBY.

REVOKE ALL PRIVILEGES
ON TABLE RBA.CLIENTS
FROM Z1335MG, ABBY;

C ROLLBACK-back out database changes

• General format

ROLLBACK [WORK]

378 Chapter 6

• Description

The ROLLBACK statement backs out all changes to the database up to
the point of the last execution of a COMMIT statement. If the
COMMIT statement was not issued in a program and ROLLBACK is
executed, then all changes will be backed out. DB2/2 issues a
ROLLBACK if a program abends or if a timeout or lock occurs.

The ROLLBACK statement backs out the work of the following
statements: ALTER, COMMENT ON, CREATE, DELETE, DROP,
GRANT, INSERT and UPDATE.

• Usage

Embedded in an application program, dynamically prepared and
executed, and issued interactively.

• Example

The following IS an example of how to Issue the ROLLBACK
statement.

EXEC SQL
ROLLBACK

END-EXEC.

C SELECT-retrieve data

• General format

1 - subselect:
select-clause from-clause [where-clause]

[group-clause] [having-clause]

select-clause is:
SELECT [ALL or DISTINCT]

< * or column-name, ••• >

from-clause is:
FROM <table-name, ••• or view-name, ••• >

where-clause is :
WHERE search-condition"

group-clause is:
GROUP BY column-name, •••

having-clause is:

Structure Query Language (SQl) 379

HAVING search-condition

2 - fullselect is

<subselect or fullselect> <UNION or
UNION ALL or
EXCEPT or
EXCEPT ALL or
INTERSECT or
INTERSECT>

<subselect or (fullselect»

3 - select-statement is

fullselect [order-by-clause [fetch-clause] or
update-clause or
fetch-clause]

4 - Embedded SELECT is

SELECT [ALL or DISTINCT]<* or column-name, ••• >
from-clause [where-clause]

[group-clause] [having-clause]

• Description

The SELECT statement is used to retrieve rows of data from a database.
There are two types of SELECT statement-interactive and
embedded-and both are complete statements.

fullselect is part of an interactive SELECT statement or a DECLARE
CURSOR statement.

subselect is part of fullselect, a CREATE VIEW statement, or an
INSERT statement.

ORDER BY <column-name or integer>
<ASC or DESC>, ...

This clause specifies the sequence in which the rows are presented. If
this clause is not used, the rows are returned in the order in which they
are stored physically. With this clause you can specify a column name
or column number and the order of presentation. This specification can
be repeated many times.

column-name is the name of the column according to which the result
table is ordered.

380 Chapter 6

integer is the number which identifies the position of a column. This
number should be greater than zero and not greater than the number of
columns in the result table.

ASC is the keyword for ordering the column in an ascending sequence.
ASC is the default.

DESC is the keyword for ordering the column in a descending sequence.

FOR UPDATE OF
This clause is effective only in application programs and is used with the
DECLARE CURSOR statement.

ALL
This keyword is used in the SELECT clause to return all rows,
including duplicate ones.

DISTINCT
This keyword is used in the SELECT clause to return only qnique rows
and discard any duplicate ones.

FROM <table-name or view-name, ... >
This clause specifies one or more tables or views from which the data
is extracted. In processing a SELECT statement, a result table is
created, although the actual data is stored in the objects called tables.
This result table exists temporarily and is only a conceptual file. It
contains all the possible rows.

table-name is the name of a table already defined in the catalog.

view-name is the name of a view already defined in the catalog.

WHERE search-condition
This clause determines the number of rows that the result table will
have.

search-condition is made up of columns, operators, and constants,
composed in a logical manner. Each row that satisfies the search
condition is found in the result table. The following operators,
conditions, and keywords may be used as part of the search condition.

Type

Comparison

Arithmetic

Type

Boolean

Keyword

Operator

=
---, = or < >
>
---, > or < =
---, < or > =

+

*
/

Operator

AND
OR

BETWEEN

IN

NOT or--,
LIKE

GROUP BY column-name, ...

Structure Query Language (SQl)

Meaning

Equal to
Not equal to
Greater than
Not greater than
Not less than

Addition
Subtraction
Multiplication
Division

Meaning

Logical AND
Logical OR

381

A value is equal to or between two
other values
Combine one or more OR operators

Negative search condition
Compare similar values

This clause causes the rows in the intermediate result set to be grouped
according to the values of one or more columns named in the GROUP
BY clause. It is commonly used when there are one or more column
functions in the SELECT clause.

column-name is the name of a column of the table or view.

HAVING search-condition
This specifies a search condition which each group of rows must satisfy
in order to be passed to the column function.

search-condition is made up of columns, operators, and constants,
composed in a logical manner. Each row that satisfies the search
condition is found in the result table. The operators AND, OR,
BETWEEN, IN, and LIKE may be used as part of the search condition.

382 Chapter 6

UNION
This clause merges two results of two or more SELECT statements into
one result table. With this clause, each SELECT statement is processed
individually; they are then combined into one result table. All duplicate
rows are discarded except when UNION ALL is used.

INTO host-variable, ...
This clause specifies one or more host variables into which DB2/2 is to
place the data retrieved by an embedded SELECT statement.
SELECT ... INTO works only if no rows or one row is retrieved. If
SELECT .. .INTO results in more than one row, it will fail with a
negative code (-811), and it will retrieve no data.

host-variable is the name of a structure or variable declared in your
program. The variable is referenced by DB2/2 when SQL statements are
executed. It is a good programming practice to provide variables that are
compatible in data type and scale with the columns they receive. The
following is a list of DB2/2 data types that correspond to COBOL data
types.

DB2/2 COBOL

FIELD A CHAR(n)
FIELD-A VARCHAR(n)

FIELD A SMALLINT
FIELD-A INTEGER
FIELD-A DECIMAL (p,q)
FIELD-A DATE
FIELD-A TIME
FIELD=A TIMESTAMP

Column functions

01 FIELD-A PIC X(n)
01 FIELD-A

10 FIELD-A-LEN PIC S9(4) COMP
10 FIELD-A-TEXT PIC X(n)

01 FIELD-A PIC S9(4) COMP
01 FIELD-A PIC S9(9) COMP
01 FIELD-A PIC S9(a)V9(q) COMP-3
01 FIELD-A PIC X(10)
01 FIELD-A PIC X(8)
01 FIELD-A PIC X(26)

The following is a list of built-in column functions supplied by SQL.
They operate on the entire column to produce one value in the result
table.

Function

SUM
AVG
MIN
COUNT

Description

Sum of values in column
Average of values in column
Minimum value within column
Count of the number of rows

Restrictions

Numeric data only
Numeric data only

Structure Query Language (SQL) 383

Scalar functions

The following is a list of built-in scalar functions supplied by SQL (all
these functions are described in the next section):

CHAR, DATE, DAY, DAYS, DECIMAL, FLOAT, HOUR,
INTEGER, LENGTH, MICROSECOND, MINUTE, MONTH,
SECOND, SUBSTR, TIME, TIMESTAMP, TRANSLATE,
V ARGRAPHIC, and YEAR.

Concatenation

The concatenation operator (I I) combines character values into one
string .

• Usage

Embedded in an application program, dynamically prepared and
executed, and issued interactively .

• Example

The following example returns all unique rows with values for the
CL_NAME and CL_LANG columns.

SELECT DISTINCT CL NAME, CL LANG
FROM RBA.CLIENTS -

The following example returns rows with values for the CL _NAME and
CL _LANG columns according to a search condition. The condition is
that the value of the CL CITY column is 'TORONTO' and the first
character of the CL_LANG column is 'E'.

SELECT CL NAME, CL LANG
FROM RBA.CLIENTS
WHERE CL_CITY='TORONTO' AND SUBSTR(CL_LANG,l,l)='E';

In the following example, two SELECT statements are executed using
the UNION clause.

SELECT CL NAME, 'CLIENT NAME'
FROM RBA.CLIENTS
WHERE CL_CITY='TORONTO' AND SUBSTR(CL_LANG,l,l)='E'

UNION
SELECT CL NAME, 'CLIENT LANGUAGE'

FROM RBA.CLIENTS
WHERE CL_CITY='TORONTO' AND SUBSTR(CL_LANG,l,l)='E';

384 Chapter 6

In the following example, all the rows of the CLIENTS table are first
grouped together according to the values in CL_BRANCH. Then the
highest CL_RATING of each group is found.

SELECT MAX(CL_RATING)
FROM RBA.CLIENTS
GROUP BY CL_BRANCH;

C UPDATE-update columns of a table or view

• General format

Not using cursor:

UPDATE <table-name or view-name> [correlation-name]
SET column-name = <expression or NULL>
WHERE search-condition

Using cursor:

UPDATE <table-name or view-name>
SET column-name = <expression or NULL>
WHERE CURRENT OF cursor-name

• Description

The UPDATE statement updates the values of one or more columns of
a table or view. The update can be done by using either a search
condition or using the cursor.

table-name is the name of a table already defined in the DB2/2 catalog.

view-name is the name of a view already defined in the DB2/2 catalog.

correclation-name is used to designate a table or view.

SET column-name = <expression or NULL>
This specifies a list of columns and values. If there are more than one
columns and values, each pair is separated by a comma.

column-name is the name of a column already defined in the table or
view.

expression is any valid SQL expression.

NULL means a null value.

Structure Query Language (SQL) 385

WHERE search-condition
This clause determines how many rows will be updated.

search-condition is the same as the search condition used in the WHERE
clause of the SELECT statement. Depending on the condition, no rows
or many rows may be updated.

WHERE CURRENT OF cursor-name
This clause determines how many rows will be updated using a cursor.

cursor-name is the name of a cursor, defined before using it in the
UPDATE statement. The DECLARE CURSOR statement defines the
cursor. When this statement is executed, it updates the row where the
cursor is positioned. After the update, the cursor points to the next row.

• Usage

Embedded in an application program, dynamically prepared and
executed, and issued interactively.

• Example

The following example updates columns of the table RBA.CLIENTS.
The columns are NAME, CITY, and POSTAL C, and the values are
RBC, NEWMARKET, and L3X1FO. -

For all the rows that have column ADDRESS equal to '330 MAIN ST',
the update will take place.

UPDATE INTO RBA.CLIENTS
SET NAME='RBC', CITY='NEWMARKET', POSTAL_C='L3XIFO'

WHERE ADDRESS='330 MAIN ST';

C WHENEVER-conditional processing

• General format

WHENEVER <NOT FOUND or
SQLERROR or

SQLWARNING>
<CONTINUE or

GOTO[:]host-label

• Description

The WHENEVER statement causes the DB2/2 translator to generate the

386 Chapter 6

code needed to check SQLCODE and/or SQLWARNO after each SQL
statement is executed. If a certain condition is met, a specific action is
taken. The condition may be an error, an exception, or a warning that
exists in SQLCA. The following describes the conditions triggered after
a statement is executed and the actions that can be taken.

NOT FOUND is a condition where SQLCODE is +100 or with a
SQLSTATE of '02000'.

SQLERROR is a condition where SQLCODE is negative.

SQLW ARNING is a condition where SQLCODE is greater than zero
but not equal to 100 or where SQLWARNO is 'W'.

CONTINUE means to ignore the exception and continue processing.

GOTO host-label
This means to branch to a label in a program and begin processing the
statements found there. In COBOL it is a paragraph or section, and a
function in C.

host-label is a paragraph or section .

• Usage

Embedded in an application program, dynamically prepared and
executed, and issued interactively .

• Example
The following is part of a COBOL program. It causes control to branch
to paragraph 9999-SEVERE-ERROR if the condition SQLERROR
occurs after any SQL statement is executed.

PROCEDURE DIVISION.

MAINLINE.
EXEC SQL

WHENEVER SQLERROR GOTO 9999-SEVERE-ERROR
END-EXEC.

STOP RUN.

9999-SEVERE-ERROR.
DISPLAY "SEVERE ERROR ENCOUNTERED, SQLCODE "AT 2001

DISPLAY SQLCODE AT 2035
DISPLAY SQLERRMC AT 2101

END PROGRAM

9999-EXIT. EXIT.

6.3 Functions

Structure Query Language (SQl) 387

DB2/2 has a number of built-in functions. Each one performs a specific
operation. They are different from SQL statements; they are distinguished
from statements because each function name is followed by a pair of
parentheses, as in C. These functions take one or more operands called
arguments, placed within the parentheses. There are two types of functions:
column and scalar.

6.3.1 Column functions

There are five column functions: AVG, COUNT, MAX, MIN, and SUM.
The argument of each of these functions is a set of values derived from
one or more columns.

C AVG-calculate the avarage of numbers

• General format

A VG ([DISTINCT] column-name)

• Description

The A VG function returns the average of a set of numbers. The returned
value depends on the data type of the column. The return value for an
integer column is integer, for a floating-point column is floating-point,
and so on. And, of course the result should be within the range of the
data type; otherwise, the operation will result in error.

DISTINCT means that duplicate values are eliminated. If this keyword
is omitted, then all values are used to calculate the average.

column-name is the name of an existing table whose values are used to
calculate the average.

388 Chapter 6

• Example

In the next SELECT statement, A VG is used to calculate the avarage
of staff in department DXOl. By omitting DISTINCT parameter,
duplicate values are not ignored. The column STAFF_AGE of the table
DEPARTMENT is the argument to the A VG function. The result is
placed in AVG_AGE.

SELECT AVG(STAFF_AGE)
INTO :AVE AGE
FROM DEPARTMENT
WHERE DEPNO='DXOl'

In the next statement the DISTINCT keyword is used with
STAFF_AGE. This means that the averages of only unique values are
used to calculate the average.

SELECT AVG(DISTINCT STAFF_AGE)
INTO :AVE AGE
FROM DEPARTMENT
WHERE DEPNO='DXOl'

a COUNT-calculate the number of rows

• General format

COUNT(*)
or

COUNT(DINCTINCT column-name)

• Description

The COUNT function returns the number of rows in a table or the
number of values in a set of rows.

COUNT(*) returns a number of rows in a table. Rows where all the
columns have NULL values are counted.

DISTINCT column-name
This parameter is used to specify distinct values of a column.

column-name is the name of a column in a table.

• Example

In the next SELECT statement, COUNT() returns the number of rows

Structure Query Language (SQL) 389

in the DEPARTMENT table, which has the department number 'DX01'.
The value is placed in STAFF _ CNT host variable.

SELECT COUNT(*)
INTO :STAFF CNT
FROM DEPARTMENT
WHERE DEPNO='DX01'

In the next SELECT statement, the argument of COUNT is DISTINCT
STAFF_LEVEL. DISTINCT means that any duplicate values of
STAFF_LEVEL will not be counted. Also, the rows that are counted
must have DEPNO='DX01'. The count is placed in the STAFF_LVL
host variable.

SELECT COUNT(DISTINCT STAFFF LEVEL)
INTO :STAFF LVL -
FROM DEPARTMENT
WHERE DEPNO='DX01'

C MAX-calculate the maximum of a set of values

• General format

MAX (column-name)

• Description

The MAX function calculates the maximum value in a set of values of
a column. The data type of the returned value is the same as that of the
argument.

column-name is the name of a column in a table for which maximum
value is to be calculated.

• Example

The following MAX function within the SELECT statement is used to
find the maximum value of STAFF_AGE from the DEPARTMENT
where DEPNO='DX01'.

SELECT MAX(STAFF_AGE)
INTO :MAX AGE
FROM DEPARTMENT
WHERE DEPNO='DX01'

390 Chapter 6

C MIN-calculate the minimum of a set of values

• General format

MIN (column-name)

• Description

The MIN function calculates the minimum value in a set of values of a
column. The data type of the returned value is the same as the data type
of the argument.

column-name is the name of a column in a table for which mimimum
value is to be calculated.

• Example

The following MIN function within the SELECT statement is used to
find the minimum value of STAFF AGE from the DEPARTMENT
where DEPNO='DX01'. -

SELECT MIN(STAFF_AGE)
INTO :MAX AGE
FROM DEPARTMENT
WHERE DEPNO='DXOl'

D SUM-calculate the sum of a set of numbers

• General format

SUM ([DISTINCT] column-name)

• Description

The SUM function returns the sum of a set of numbers. The returned
value depends on the data type of the column. The return value for an
integer column is integer, for a floating-point column it is floating-point
and so on. And, of course, the result should be within the range of the
data type; otherwise, the operation will result in error.

DISTINCT means that duplicate values are eliminated. If this keyword
is omitted, then all values are used to calculate the sum of numbers.

column-name is the name of an -existing table whose values are used to
calculate the sum.

Structure Query Language (SQl) 391

• Example

In the next SELECT statement, SUM is used to calculate the sum of
staff in department DXOl. By omitting the DISTINCT parameter,
duplicate values are not ignored. The column STAFF _AGE of the table
DEPARTMENT is the argument to the SUM function. The result is
placed in SUM_AVG.

SELECT AVG(STAFF_AGE)
INTO : SUM AGE
FROM DEPARTMENT
WHERE DEPNO='DX01'

In the next statement the DISTINCT keyword is used with
STAFF AGE. This means that only unique values are used to calculate
the sum.

SELECT SUM(DISTINCT STAFF_AGE)
INTO : SUM AGE
FROM DEPARTMENT
WHERE DEPNO='DX01'

6.3.2 Scalar functions

The main distinction of a scalar function is that its argument can be an
expression. An expression can include a function (scalar or column), a
constant, column names, host variables, and special registers. All these
possible components of an expression must conform to the rules of SOL.
In DB2/2 there are 19 scalar functions. The following paragraphs give the
format, description, and examples of each of them.

C CHAR-Converts a datetlme value to a string

• General format

CHAR (expression [,date-format])

• Description

The CHAR function converts a datetime value into a string.

expression must evaluate to a date, time, or a timestamp.

date-format determines the format of the datetime value. If it used, it is

392 Chapter 6

one of the following: ISO, USA, EUR, JIS, or LOCAL. These formats
were discussed earlier.

• Example

In the next example, let's say the host variable CURRENT-DATE has
1994-01-10 in the internal format. The CHAR function will return
'01/10/1994' in USA format.

CHAR (:CURRENT-DATE, USA)

In the next example, the expression is a bit more complicated. It adds
the time value of a host variable ELAPSE-TIME and column
START TIME. Assume that START TIME is 10.20.30 and ELAPSE­
TIME is050000 (5 hours). The return value will be be '15:20 PM'.

CHAR (START_TIME + : ELAPSE-TIME , USA)

C DATE-convert value to date format

• General format

DATE (expression)

• Description

The DATE function value retums the date portion of a value.

expression must evaluate to a date, timestamp, a positive number less
than or equal to 3,652,059, or a string holding a date or a timestamp.

• Example

In the next example, the expression is TIMESTAMP, a register that
holds the current time and date. The DATE function is used to extract
the date portion. Let's say the timestamp is equivalent to '1994-01-11-
10.20.30.000000'. The result of

DATE (TIMESTAMP)

will be ' 1994-01-11' .

Structure Query Language (SQL) 393

C DAY-get the day part of a value

• General format

DAY(expression)

• Description

The DAY function returns the day part of a date or timestamp.

expression can be a date, timestamp, date duration, timestamp duration,
or a valid string holding a date or a timestamp.

• Example

The following SELECT statement is used to retrieve a date from the
CLIENT ID column of the CLIENTS table. The search clause of this
statement uses the DAY function twice. The first time it calculates the
day of the current date; and next time, the day of the START_DATE
column. Both return a day value, and if the difference is greater thamn
15, the CLIENT_ID for that row is placed into the WS-CLIENT host
variable.

SELECT CLIENT ID
INTO :WS-CLIENT

FROM CLIENTS
WHERE DAY (TIMESTAMP) - DAY(START_DATE) > 15

In the next SELECT statement, the DAY function is used to get the day
portion of the START_DATE column whose data type is date.

SELECT DAY(START_DATE)
INTO :DATE
FROM CLIENTS

WHERE CLIENT_ID = 'ICM'

The selected row(s) must have CLIENT_ID = ICM. If START_DATE
has '1994-01-30', the 30 will be placed in the DATE host variable.

a DAYS-get Integer value of day from date

• General format

DAYS (expression)

394 Chapter 6

• Description

The DAYS function returns the integer value of a date.

expression must be a date, timestamp, or a string holding a date or a
timestamp.

• Example
The following SELECT statement is used to calculate the difference in
days between the current day and time, and the value retrieved from the
CLIENT ID column of the CLIENTS table. The returned number of
days is placed into the : WS-DAYS host variable.

SELECT DAYS(TIMESTAMP) - DAYS(START_DATE)
INTO :WS-CLIENT

FROM CLIENTS
WHERE DEPTNO = 'DEP001'

a DECIMAL-convert 8 number to 8 decimal

• General format

DECIMAL (numeric-expression
[,precision-integer, scale-integer])

• Description

The DECIMAL function is used to convert any types of numbers into
its decimal representation.

numeric-expression must evaluate to a numeric data type.

precision-integer is an operational integer that specifies the precision of
the result. Its value must be in the range 1 to 31. The default precision
integer for a floating-point or decimal value is 15; for large integers, 11;
and for small integers, 5.

scale-integer is a value in the range 0 to the value of precision-integer.

• Example

In the next interactive SELECT command, the decimal representation
of SALES is returned. The SALE column is of SMALLINT data type
and is converted to DECIMAL data type in this SELECT statement,
which gets two columns of all rows where DEPNO = 'DX01'.

Structure Query Language (SQL) 395

SELECT CLIENT_IO, OEClMAL(SALES,5,2)
FROM CLIENTS

WHERE OEPNO = 'OX01'

a FLOAT-convert a number to a floating-point value

• General format

FLOAT (numeric-expression)

• Description

The FLOA:£ function is used to convert any numeric value to a double
precision floating-point number.

numeric-expression must evaluate to any numeric data type. If this value
is null, the result from the FLOAT function is null.

• Example

In the next SELECT statement, the FLOAT function is used to convert
the value of AMOUNT column from decimal to floating-point.

SELECT CLIENT IO,
FLOAT(AMOUNT)

FROM CLIENTS
WHERE OEPNO = 'oX01'

C HOUR-get the hour part of a value

• General format

HOUR(expression)

• Description

The HOUR function returns the hour part of a date or timestamp. The
return value is in the range 0 to 24.

expression can be a date, timestamp, date duration, timestamp duration,
or a valid string holding a date or a timestamp.

• Example

The following SELECT statement is used to retrieve a date from the

396 Chapter 6

CLIENT ID column of CLIENTS table. The search clause of this
statement uses the HOUR function twice. The first time it calculates the
hour of the current date; and the next time the hour of the
START DATE column. Both return a hour value, and if the difference
is greater than 15, the value of the CLIENT _ ID column for that row is
placed into the WS-CLIENT host variable.

SELECT CLIENT IO
INTO :WS-CLIENT

FROM CLIENTS
WHERE HOUR(TlMESTAMP) - HOUR(START_OATE) > 15

C INTEGER-convert a number to an Integer

• General format

INTEGER(numeric-expression)

• Description

The INTEGER function returns the integer part of a number. The result
is a large integer.

numeric-expression must evaluate to any numeric data type. If this value
is null, then the result from the INTEGER function is null.

• Example
In the next SELECT statement, the INTEGER function is used to
obtain the integer part when AMOUNT is divided by ED LEVEL.

SELECT CLIENT IO,
EOLEVEL,
(AMOUNT /EDLEVEL)

FROM CLIENTS
WHERE DEPNO = 'OX01'

C LENGTH-calculate the length of a value

• General format

LENGTH(expression)

• Description

The LENGTH function caluclates the length of a value.

Structure Query Language (SQl) 397

The argument can be any data type. The return length is a large integer
in the number of bytes. If the argument is graphic, the return value is
half the length in bytes of the argument. If the argument is a null, the
result is a null value.

The following shows the length in bytes and data types.

Length

2
4
p/2 + 1
8
4
3
10
length of string

Data types

Small integer
Large integer
For decimal number with precision p
Float
Date
Time
Timestamp
Character string

expression can evaluate to any data type.

• Example

Let's say the NAME host variable contains 'John Smith'.

LENGTH(:NAME) returns 10.

Assume that the START_DATE column is a DATE data type,

LENGTH (START_DATE) returns 4.

C MICROSECOND-get the microsecond part of a time value

• General format

MICROSECOND(expression)

• Description

The MICROSECOND function returns the microsecond part of a date
or timestamp. The return value is in the range 0 to 999999.

expression can be a date, timestamp, date duration, timestamp duration,
or a valid string holding a date or a timestamp.

398 Chapter 6

• Example

The following SELECT statement is used to retrieve a date from the
CLIENT ID column of the CLIENTS table. The search clause of this
statement uses the MICROSECOND function to determine whether the
microsecond of the START_DATE column is greater that O. If this
evaluation is valid the value of the CLIENT ID column for that row is
placed into the WS-CLIENT host variable. -

SELECT CLIENT ID
INTO :WS-CLIENT

FROM CLIENTS
WHERE MICROSECOND(START_DATE) > 0

C MINUTE-get the minute part of a time value

• General format

MINUTE (expression)

• Description

The MINUTE function returns the minute part of a date or timestamp.
The return value is an integer in the range 0 to 59.

expression can be a date, timestamp, date duration, timestamp duration,
or a valid string holding a date or a timestamp.

• Example

The following SELECT statement is used to retrieve a date from· the
CLIENT ID column of the CLIENTS table. The search clause of this
statement uses the MINUTE function to determine whether the minute
of the START_DATE column is greater than O. If this evaluation is
valid, the value of· the CLIENT _ ID column for that row is placed into
the WS-CLIENT host variable.

SELECT CLIENT ID
INTO :WS-CLIENT

FROM CLIENTS
WHERE MINUTE(START_DATE) > 0

Structure Query Language (SQl) 399

a MONTH-get the minute part of a time value·

• General format

MONTH(expression)

• Description

The MONTH function returns the month part of a date or timestamp.
The return value is an integer in the range 1 to 12.

expression can be a date, timestamp, date duration, timestamp duration,
or a valid string holding a date or a timestamp.

• Example

The following SELECT statement is used to retrieve a date from the
CLIENT _ ID column of the CLIENTS table. The search clause of this
statement uses the MONTH function to determine whether the month
of the START_DATE column is equal to 1. If this evaluation ia valid,
the value of the CLIENT_ID column for that row is placed into the WS­
CLIENT host variable.

SELECT CLIENT ID
INTO :WS-CLIENT

FROM CLIENTS
WHERE MINUTE(START_DATE) = 1

a SECOND-get the second part of a time value

• General format

SECOND(expression)

• Description

The SECOND function returns the second part of a date or timestamp.
The return value is an integer in the range 0 to 59.

expression can be a date, timestamp, date duration, timestamp duration,
or a valid string holding a date or a timestamp.

• Example

The following SELECT statement is used to retrieve a date from the

400 Chapter 6

CLIENT ID column of the CLIENTS table. The search clause of this
statement uses the SECOND function to determine whether the minute
of the START_DATE column is greater than O. If this evaluation is
valid, the value of the CLIENT _ ID column for that row is placed into
the WS-CLIENT host variable.

SELECT CLIENT ID
INTO :WS-CLIENT

FROM CLIENTS
WHERE SECOND(START_DATE) > 0

a SUBSTR-get a substring of a string

• General format

SUBSTR (string, start [,length])

• Description

The SUBSTR function returns a substring of a string.

string is a character or graphic string from which the substring IS

returned.

start is the starting position of the first byte of the substring.

length is the number of bytes from the starting position.

• Example

In the following example, the SUBSTR(F _NAME,l,l) returns the first
character of the F NAME column.

SELECT SUBSTR(F NAME,l,l),
L NAME-

FROM CUSTOMER

C TIME-get a time from a value

• General format

TIME (expression)

• Description

The TIME function returns the time from the time value. The return

Structure Query Language (SQl) 401

value is the same as the argument, it returns timestamp for timestamp,
time for time, string for string, and null for null.

expression can be a date, timestamp, date duration, timestamp duration,
or a valid string holding a date or a timestamp.

• Example

In the search condition of the following SELECT statement, the TIME
function is used to extract the time part of the START_TIME column.
Next, it is determined whether it is equal to or greater than one hour
after the current time.

SELECT NAME
FROM COURSES

WHERE TIME (START_TIME) >= CURRENTTIME + 1 HOUR

a TIMESTAMP-get a timestamp from a value

• General format

TlMESTAMP(expressionl [,expression2])

• Description

The TIMESTAMP function returns a timestamp value from one or two
arguments. If the arguments are null, then the result is also a null value.

expressionl must be a timestamp or a string holding a valid timestamp,
if expression2 is not specified. If both expressions are entered, then
expressionl must be a date or a string holding a valid date.

expression2 is optional, and if specified, it must be a time or a string
holding a valid time.

• Example

Assume that START DATE = 1994-01-12 and START_TIME =
10.20.30.

TIMESTAMP (START_DATE, START_TIME

returns '1994-01-12-10.20.30.000000'.

402 Chapter 6

a TRANSLATE-translate characters

• General format

Character string format:

TRANSLATE (char-s~ring-expression
[,~o-string-expression, from-string-expression
[,' , or ,pad-char]])

Graphic string format:

TRANSLATE (graphic-string-expression,
to-string-expression, from-string-expression
[,' , or ,pad-char])

• Description

The TRANSLATE function is used to convert characters in a character
string or a graphic string.

char-string-expression or graphic-string-expression is the string where
the translation occurs.

to-string-expression contains a set of characters that are translated to or
from the source string.

from-string-expression is a set of characters that are searched for in
char-string-expression or graphic-string-expression. If found, they are
translated to to-string-expression.

pad-char is a single character that is used to pad to-string-expression, if
the length of to-string-expression is shorter than from-string-expression.

• Example

Let's say that the DISNEY host variable contains 'HANA BARBARA'.
The following shows the operands and return values of the
TRANSLATE function.

TRANSLATE(:DISNEY) returns 'BANA BARBARA'.
TRANSLATE(:DISNEY,I,A) returns 'BINI BIRBIRI'.
TRANSLATE(:DISNEY,ei,aa) returns 'BeNe BeRBeRe'.
TRANSLATE (: DISNEY,' i' , ar) returns I BiNi Bi Bi A' •

Structure Query Language (SQL) 403

C VARGRAPHIC-convert to double-byte character string

• General format

VARGRAPHIC(expression)

• Description

The V ARGRAPHIC function converts a string that has both single-byte
and double-byte characters to pure double-byte character strings.

expression must evaluate to the character string data type, except LONG
V ARCHAR. The length of the string cannot exceed 2000 bytes.

C YEAR-calculate the year part of a time value

• General format

YEAR(expression)

• Description

The YEAR function returns the year part of a date or timestamp. The
return value is an integer in the range 1 to 9999.

expression can be a date, timestamp, date duration, timestamp duration,
or a valid string holding a date or a timestamp.

• Example

The following SELECT statement is used to retrieve a date from the
CLIENT ID column of the CLIENTS table. The search clause of this
statement uses the YEAR function where the year of the REQUEST _ DT
column is compared with the year of the timestamp register. If both are
equal, then the value of the CLIENT _ ID column for that row is placed
into the WS-CLIENT host variable.

SELECT CLIENT ID
INTO :WS-CLIENT

FROM CLIENTS
WHERE YEAR(REQUEST_DT) = YEAR(TIMESTAMP)

404 Chapter 6

6.4 Structures

6.4.1 SQLCA-SQL communication area

The SQLCA, the SQL communication area, is the memory area that
interfaces between your program and DB2/2. A program that executes an
SQL statement (except DEClARE, INCLUDE, and WHENEVER) must
include this structure, which is supplied with the precompiler of the
language (C, C++, REXX, or COBOL); for example,

EXEC SQL INCLUDE SQLCAJ

or

EXEC SQL INCLUDE SQLCA END-EXEC

The following lists the name of the fields of SQLCA, the data type, and
a brief description of the data in each field.

Field
type

Data type Description

sqlcaid
sqlcabc
sqlcode

sqlerrml

sqlerrmc

sqlerrp

sqlerrd

CHAR(8)
INTEGER
INTEGER

SMALLINT

VARCHAR(70)

CHAR(8)

Array

SQLERRD(l)
SQLERRD(2)
SQLERRD(3)

SQLERRD(4)
SQLERRD(S)
SQLERRD(6)

sqlwarn Array

Contains identifier 'SQLCA'.
The length of the SQLCA structure.
The return code after executing an
SQL statement. If it is zero, the
execution is successful. If the
return code is a positive value, the
statement was executed successfull¥,
but with a warning condition. If ~t
is a negative value, the execution
resulted in an error condition.
The length of sqlerrmc which is in
the range 0 to 70.
This field must contain one or more
tokens, separated by a hexadecimal
value 'FF'. Each token is substituted
by variables in the descriptions of
error conditions.
The first three characters of this
field is 'SQL', followed by the name
of the module that returned an error
code, if any.
The array contains six INTEGER
elements:
Reserved for internal use
Reserved for internal use
The number of rows affacted by
INSERT, UPDATE and DELETE statements
Reserved for future use
The number of rows updated or deleted
Reserved for future use
It is an array of CHAR(l), each
containing a W if there is a warning

sqlwarnO

sqlwarnl

sqlwarn2

sqlwarnl

sqlwarn4

sqlwarn5
sqlwarn6

sqlstate CHAR(5)

Structure Query Language (SQl) 405

return code; otherwise it is a blank.
Contains a blank if all other
elements of this array contain blanks
Contains W if a truncation occurred
when assigning value of a column to a
host variable.
Contains W if null values were not
given on the argument of a function
Contains W if the number of columns
is not the same as the number of host
variables
Contains W if a prepared UPDATE or
DELETE statement does not have a
WHERE clause
Reserved for future use
Contains W if the result of a date
calculation was changed to avoid an
impossible date
The return code of the most recently
executed SQL statement.

6.4.2 SQLDA-SQL descriptor area

The SQLDA, the SQL descriptor area, is required when executing the
SQL DESCRIBE statement. The SQLDA contains variables that are used
when executing the PREPARE, OPEN, FETCH, and EXECUTE
statements. If SQLDA is used with a PREPARE or DESCRIBE
statement, then it provides information to your program about a prepared
statement. And, if it is used with an OPEN, EXECUTE, or FETCH
statement, it describes the host variables.

Fields Data Used in PREPARE Used in FETCH,
Type or DESCRIBE OPEN, or EXECUTE

sqlaid CHAR(8) Contains Not used
ISQLDA'

sqldabc INTEGER Length of SQLDA Length of SQLDA

sqln SMALLINT Number of Number of
occurrences of occurrences of
SQLVAR SQLVAR

sqld SMALLINT Number of Number of host
columns in variables in
SQLVAR SQLVAR

Figure 6.5 Description of SQlDA.

In a program if a SQLDA, which has four variables, is followed by an
arbitrary number of occurrences of a five-variable sequence, then

406 Chapter 6

collectively this arrangement is called SQLV AR. In an OPEN, FETCH,
or EXECUTE statement, each occurrence of SQLV AR describes a host
variable. However, in the DESCRIBE or PREPARE statement, each
occurrence of SQL V AR is for a column of a result table. Figures 6.5 and
6.6 describe the fields of SQLDA and SQLV AR.

Fields Data Type Used in PREPARE Used in FETCH,
or DESCRIBE OPEN, or EXECUTE

sqltype SMALLINT The data type of The data.tb~e for
column host var~a e

sqldlen SMALLINT Defines the Defines the
external length external length
of a value of a value

sqldata pointer o if the FOR BIT The address of
DATA option is the host variable
used, and if the
data type of the
of the column is
CHAR, VARCHAR, or
VARCHAR

sqllnd pointer o if the FOR BIT The address of an
DATA option is associated
used, and if the indicator
data type of the variable
of the column is
CHAR, VARCHAR, or
VARCHAR

sqlname VARCHAR Name of the Not used
(30) column

Figure 6.6 Description of SQLVAR.

Chapter

7
Toolkit Utility Programs

Toolkit is a collection of utility programs for programmers; it is supplied
with C Set++ Tools from IBM. As we'll see, these programs are very
appropriate for many programming situations. For each of these utility
programs this chapter gives the format for usage, descriptions of function
and parameters, and examples where needed. The programs covered here
are

NMAKE
EXEHDR
FWD STAMP
IMPLIB
MARKEXE
MKMSGF

PACK
UNPACK
MAPSYM
MSGBIND
Resource compiler

7.1 NMAKE-Automate Development

• General format

NMAKE [option •••] [macro-definition •••] [target .••]
[IF description-file]
or

NMAKE @command-file

407

408 Chapter 7

• Description

The NMAKE program is very useful and it is an integral part of daily
development tools for OS/2 programmers. It is used mainly to automate
compiling, linking, or other processing based on date changes of files.
NMAKE works on the basis of two sets of files: target files and
dependent files. The target file timestamps are checked against the
dependent files timestamps. If any dependent-file timestamps is more
recent than the target files, NMAKE executes a series of commands that
update the target files.

This tool is commonly used, especially when many sources, objects, and
executable files are part of a large development project. Routinely, a few
source files are changed at a time and the compiling and linking
processes have repeated entirely. With NMAKE, you don't have to be
concerned about which source files need to be compiled. NMAKE
compiles the programs with the recent changes and then links them into
an executable file. Also, NMAKE can be programmed to automatically
execute any command such as

• Resource compiler
• Backups
• Configure data files

You can run the NMAKE program from the OS/2 command line or a
command file. Once NMAKE is running you can halt it by pressing
CTRL+C, and it will return to the operating system.

option directs the processing of NMAKE. You can specify zero to many
options from the options listed below.

/a Build all targets, ignoring the timestamp of dependencies.

/c Cryptic mode. Do not display warning messages and sign­
on banner.

/d Display modification dates.

/i Ignore exit codes of commands invoked.

/n Do not execute any command; display them only.

/p Print macro definitions and target descriptions.

Toolkit Utility Programs 409

Iq Query date of the target file; you can use this option in a
batch file.

Ir Ignore the inference rules from the 'tools.ini' file.

Is Silent execution of commands.

It Touch target files so that the timestamps are current.

/? Show help message.

/help Show help message.

Inologo Do not show logo.

macro-definition is zero to many macro definitions for NMAKE to use.
If you specify a macro definition with spaces, you must enclose it with
quotes ("). The macro definitions should be included in the description
file.

target is the name of a file that needs to be updated, usually by a
command. On a command line a target file is optional, and you can list
zero to many such files. If none is listed, then NMAKE will update the
first target in the description file.

command-file is a name of the file that contains commands fed to
NMAKE.

IF description-file is an option that names a description file, other than
MAKEFILE, where you build the relationship between the target files
and dependent files. In this file you also tell NMAKE which command
to execute to update the target files. If you omit this optional parameter,
NMAKE will search for MAKEFILE in the current directory.

There are many aspects to a description file. Understanding them will
make you more aware of how you can make NMAKE most functional.
It will do some of the tedious and repetitive tasks for you during
software development. It will let you concentrate on the real issues of
programming, rather than wonder which files need to be compiled and
linked, or which help file must be rebuilt.

Usually, a description file consists of a combination of the following:

410 Chapter 7

• Description block
• Macros
• Directives
• Inference rules
• Pseudotargets

Description block: A description block tells the NMAKE about the
targets, dependents, and commands. You have to list one command for
one or more target or dependent files. Also, one file can contain one or
more description block. The general form of the description block looks
like this:

target ••• : dependent •••
command

.
target ••• : dependent ••• ;

command

In the example,

PRTLABEL.OBJ: PRTLABEL.C
ICC IC

PRTLABEL.OBJ is the target file, and the dependent is PRTLABEL.C.
The

ICC Ic

is the command to compile. In this case, if the data and time of
PRTLABEL.C are more recent than PRTLABEL.OBJ, then NMAKE
will compile the source file and update the object file. In the example

* .OBJ: *.C
ICC Ic

NMAKE will check the date and time of all the object files in the
current directory and compile only those that were changed recently.
You will see later that you can use inference rules and avoid the
command.

Macros: A macro, as in the C and C++ languages, is a convenient way
to replace a string with another string in the description file. In the last
two examples, we saw ICC IC as a command. We can define a macro

ICC = ICC Ic

Toolkit Utility Programs 411

and use it thus:

*.OBJ: *.C $(ICC)

When NMAKE processes this description block, it replaces ICC with
ICC /C. Macros become really practical when a number of strings such
as

ICC IC IGd- ISe IRe IMs IGm+

are found in many places in a description file. If you have to change,
add, or delete these strings, you have to edit only at one occurrence.
Similarly, you can define macros for flags, libraries, options, and
commands. Some useful examples in OS/2 software development are

AFCLASS = IMx -t -z
ASM = IMl Ic IZm
LFLAGS = INOE INOO IALIGN:16 IEXEPACK 1M IBASE:OxlOOOO
LINK = LINK386 $ (LFLAGS)
LIBS = OOE4MBS + OS2386

When using a macro, after you have defined it, you must enclose it in
parentheses with a dollar ($) prefix. You can use a macro within a
macro, as shown in the third line in the preceding examples.

Inference rules: We saw earlier that the heart of the input file is the
description block, consisting of targets, dependencies, and commands. In
a description file, you can have many description blocks of different
categories. For example, the description files involves steps to compile,
link, create a help file, and so on. With inference rules, you don't need
to give a command.

Inference rules can be seen as templates indicating to NMAKE what to
do when a description block has no commands. The key is the
extensions of files. We know that C or C++ development files have
certain standard file extensions; for example, source files are C or CPP,
objects have OBJ, and so on. The first thing you do with inference rules
is to define all the extensions that will be used with the keyword
.SUFFIXES; for example,

.SUFFIXES: .re .res .obj .lst .e .asm .hlp .ill .ipf

The extensions are preceded by a period (.), as in a filename and are
separated by space.

The next step is to define the inference rule. It consists of three parts:

412 Chapter 7

• Files with 'from' extension
• File with 'to' extension
• Command

The general principle of the inference rule is

.from-ext • to-ext:
commands

.from-ext corresponds to the dependent files.

· to-ext corresponds to the target files.

commands are executed to build the target from the dependents.

For example, in

.c .OBJ: $(CC) -Fo$*.obj $*.C
CC = ICC Ic IGd-

the dependent files have extension C, the target files have OBJ, and the
command is to run the compiler.

When NMAKE is working with a description block with commands, it
refers to an inference rule, based on the given two types of extensions,
that indicates how to build a target from dependent files. In the
specification

PRTLABEL.OBJ: PRTLABEL.C PRTLABEL.h

this will match the preceding inference rule. The target-file extension
matches the 'to' extension and the dependent-file extension matches the
'from' extension.

The inference rules eliminate the need to list the same command
repeatedly in the many description blocks. In using the inference rules,
you can give a path for both target and dependent files. Rules for
compiling, linking, and assembling programs have already been defined.
You can refer to these NMAKE program rules as well as any rule not
found in a description file in the TOOLS.lNI file.

Pseudotargets: The term pseudotarget refers to a special target in a
description block and serves as a "handle" for building a group of files
or executing a group of commands. In this case, the dependent files are
treated as being obsolete. In the example

Toolkit Utility Programs 413

BACKUP: *.*
COpy $*.* B:\ARCHlVE

BACKUP is the pseudotarget, NAMAKE copies all the files to drive B:
in directory ARCHIVE .

• Example

In the command line example

NMAKE Is "LINK=LINK386 INOO 1M" PRT.EXE CUSTOMER.EXE

NMAKE is invoked with

• IS option
• Macro definition "LINK=LINK386 /NOD /M"
• Two target files PRT.EXE and CUSTOMER.EXE
• Using default decription file MAKEFILE

The next example is a makefile to build an application called CI. The
name of the makefile is CIMAKE.MAK. The command to invoke the
NMAKE program is

nmake IF ClMAKE.MAK

MakefiLe

FiLename: CIMAKE.MAK

Description:
This fiLe is an input fiLe to the nmake utiLity program.
It contains statements to produce output fiLes, such as
object fiLes, resource fiLe, heLp fiLe, and so on that are
needed to produce the Cl executabLe fiLe. This makefiLe
incLudes the foLLowing sections:
- Define variabLes for makefiLe
- Statements to Link exe fiLe
- Statements to add resources to exe fiLe
- Statements to compiLe CiMainWindow CLass
- Statements to compiLe diaLog window cLasses
- Statements to create heLp resources for ci.exe

#--

Define variabLes for makefiLe

GCPPFLAGS=-Fd -c -Gm+ -0+

aLL: ci

ci: ci.exe cimain.hLp

Statements to Link exe fiLe

ci.exe: cimain.obj cidiaLog.obj cimain.def cimain.res

icc /Tdp IB" IPM:PM IMAP" \
cimain.obj cidiaLog.obj \

414 Chapter 7

IFeci.exe IFmcimain.map \
dde4muii.lib dde4cci.lib dde4mbsi.lib cimain.def

Statements to add resources to exe file

rc cimain.res ci.exe

Statements to compile CiMainWindow Class

cimain.obj: cimain.cpp cimain.hpp cimain.h cidialog.hpp

icc $(GCPPFLAGS) clmain.cpp

Statements to compile dialog window classes

cidialog.obj: cidialog.cpp cidialog.hpp cimain.h

icc $(GCPPFLAGS) cidialog.cpp

Statements to compile resources for hello5.exe

cimain.res: cimain.rc cimain.h ci.ico cidialog.dlg

rc -r cimain.rc

Statements to create help resources for ci.exe

cimain.hlp: cimain.ipf

ipfc cimain.ipf Ix

7.2 EXEHDR-Display or Change Header Information of
Executable File

• General format

EXEHDR [option •••] filename

• Description

The EXEHDR (executable file header) utility program is used to look at
or change header information of an executable file or dynamic-link
library. The header, to be discussed in detail later, consists of
characteristics of an executable file such as stack size, entry point of the
code, number of objects (also called segments), and so on. This header
information is used by the operating system during the execution of the
file.

The EXEHDR program can be used by either displaying or changing the
header information. You can view or modify attributes set by the linker
related to the module definition file. Also, you can display the number
and size of code and data segment.

EXEHDR displays two kinds of information: content of the file header
and data about each object of a file. The listing goes to the standard

Toolkit Utility Programs 415

output device, unless you use the redirection operator to send it to a file
or printer. If EXEHDR is run with the "Nerbose" option (discussed
later), it gives additional information.

Heading listing: The heading listing has seven fields. The names and
brief descriptions of these fields are as follows:

Name

Module
Description
Data
Initial CS:IP
Initial SS:SP

Description

Name of application
Description of the application
Type of automatic data object
Starting address of the program
Initial stack pointer

Extra Stack Allocation
DGROUP

Extra stack allocation
Automactic data object number

Object listing: The object listing is the information about the object
arranged in six colomns. The names and brief descriptions of these
columns are as follows:

Column
name

No.
type
Address

file
mem
flags

Description

The object index number
Indication of whether object is code or data
Location, with the file, of the contents of the file in
hexadecimal
Size, in bytes, of the object as found in the file
Size, in bytes, of the object as stored in memory.
Object attributes

Verbose listing. If you specify the "Nerbose" option, the following
information is shown:

• DOS header information
• OS/2 header information
• File addresses and lengths of the various tables in the file
• Object table with complete attributes
• Run-time relocation and fixups
• Exported entry points

filename is the name of the executable file whose information is to be

416 Chapter 7

shown or modified. You can enter one or more filenames.

option tells the program whether to display or change specific fields of
the header record. You can enter one or more options. An option must
start with a slash (I) followed by any of these keywords: 1, HEAP,
HELP, MAX, MIN, NEWFILES, NOLOGO, PMTYPE, RESETERROR,
STACK, or VERBOSE. In some cases a colon (:) and a value go after
the option.

/? or /HELP means to display helpful information. When passing this
option to EXEHDR, a list of options will be listed with possible values
for some of them. The information looks like this:

Usage: EXEHDR [options] filename •••
Val~d options are:
I? Help
IHEAP:(Oh-FFFFH)
IHELP
lMAX:(OH-FFFFH)
IMIN:(OH_FFFFH)
INEWFILES
INOLOGO
IPMTYPE:(PM I VIO NOV I 0

NOTWINDOWCOMPAT
lRESETERROR
ISTACK:(OH-FFFFH)
lVERBOSE

WINDOWAPI

/HEAp:nnnn is used to set the size of the local heap, with application to
OS/2 programs only. The value for nnnn, in decimal, octal, or
hexadecimal form, specifies the size in bytes.

!MAx:nnnn is used to set the maximum size of memory allocation for
a program. This is the maximum storage space required to load and run
a program. The value for nnnn, in decimal, octal, or hexadecimal form,
is the maximum number of 16-byte paragraphs. This value must be
greater than or equal to the minimum memory allocation (see /MIn
option). The maximum memory allocation size can also be set with the
LINK386 /Cp option.

!MIn:nnnn is used to set the minimum size of memory allocation for a
program. The value for nnnn, in decimal, octal, or hexadecimal form, is
the minimum number of 16-byte paragraphs. This value must be equal
to or less than the maximum memory allocation (see !MAx option).

/NEwfiles is used to enable the use of long filenames for OS/2 16-bit
files. OS/2 32-bit LINK386 already supports long filenames.

Toolkit Utility Programs 417

/NOlogo supresses product banner when the program starts execution.

/Pmtype:type is used to set the type of application, valid for OS/2 files
only. This option is the same as the LINK386 /Pm option. Values for
these application types are as follows:

Type

PM'
VIO
NOVIO

Equivalent
keyword

WINDOWAPI
WINDOWCOMPAT
NOTWINDOWCOMPAT

lResererror resets the LINK386 error. During linking, if there is an error
because of unresolved external reference or duplicate symbol definition,
LINK386 will set an error flag in an executable file. OS/2 will not run
a program with errors. The IR option lets you reset any linkage error,
allowing such a program to be run. This is useful during the
development and testing stage.

/Stack:nnnn is used to set the size of the stack. The value for nnnn, in
decimal, octal, or hexadecimal form, specifies the size of bytes. This
option is equivalent to the LINK386 /St option.

N erbose is used to show the executable file header in verbose mode .

• Example

Display information. Let's look at the information for LINK386.EXE.
To run EXEHDR, at command line, you type

EXEHDR LINK386.EXE

The first part is the header information. This is followed by data on the
four objects of the link file.

Module: LINK386
Description: Operating system/2 32-bit 2x Linker

NONSHARED Data:
Initial CS:IP Seg 2 offset 6C78

4000 bytes Extra stack allocation:
DGROUP:
No. type
1 CODE
2 CODE
3 DATA
4 DATA

Seg 4
address file mem flags
00006000 Of7d6 Of7d7
00015aOO 08e40 08e40
0001eaOO 02865 02865
00021400 02337 08bdO

418 Chapter 7

Change data: In the example,

EXEHDR IS:5000 INE MYPROG.EXE

there are two options followed by the executable file MYPROG.EXE.
The IS:sOOO sets the stack allocation to 5000 bytes, and /Ne enables long
filenames.

7.3 FWDSTAMP-Add Entry Point to DLL File

• General format

FWDSTAMPS [option ..•] input-dll def-file out-dll

• Description

The FWDST AMP utility program is used to add entry points to DLL
files. These entry points, also called forwarders, point to API
(application program interface) functions or other exported code or data.

option is an optional parameter and can be one of the following:

I? means to display information on how to use FWDST AMP.

N means verbose mode, giving more information as FWDSTAMP
is processing.

input-dll is the name of the dynamic-link library already created by
LINK386. You must include the extension as part of the DLL filename.

def-file is the name of the module definition file (.DEF) that has the
forwarders.

out-dll is the name of a dynamic-link library where FWDSTAMP puts
the added forwarders.

7.4 IMPLIB-Create Import Library

• General format

IMPLIB [option •••] implib-name
<def-file ••• or dll-file ••• >

Toolkit Utility Programs 419

• Description

The IMPLIB utility program is used to create import libraries. An import
library is created from dynamic-link libraries and the module definition
file. An import library is similar to a regular library, except that it does
not hold executable code. It holds all the necessary information for the
linker to link dynamic-link libraries with the application. It is also used
to resolve all the external reference during link time. The default
extension of an import library is .LIB, the same as the standard library
name. When running the linker, an import library can be listed instead
of or in addition to standard library. for these three main reasons,
creating and using import libraries, it is recommended that you use them
with all dynamic-link libraries.

• It will save you the effort of creating an .DEF file that exeplicitly
defines all the needed functions in the dynamic-link library.

• Although an extra step is wanted, IMPLIB automates the linking
process.

• The task of writing DLL and the application can be separated, with
distinct groups of developers performing these two tasks. The DLL
files with associated import libraries can be produced by the DLL
developers and handed over to the application programmers.
Therefore, the application team need not worry about module
definition files.

option is a parameter for controling the output of IMPLIB. The option
characters are not case-sensitive; for example, !HELP is equivalent to
/help. Also, the options can be abbreviated; in the following list, the
significant characters are in uppercase. When running IMPLIB, you can
list zero to many of these options:

/? Shows the syntax summary of IMPLIB

/Help Shows the syntax summary of IMPLIB

/lgnorecase Turns case sensitivity off or on; the default state is off

/Nolog Suppresses the banner when IMPLIB is invoked

implib-name is the import library.

420 Chapter 7

deffile is one or more module definition files.

dll-file is one or more dynamic-link libraries containing exported
routines.

7.5 MARKEXE-Change or Display Information of an
Executable File

• General format

MARKEXE [I?] [FORCE] [option •••] filename •••

• Description

The MARKEXE program is used first to display the program type of an
executable file. You can also use it to change the program type. A
program type points to OS/2 sessions in which a program, whether it is
an application or utility, can run.

We will see shortly all the information that MARKEXE can change in
an executable file. Some of the tasks that MARKEXE can perform are

• View and change initialization for DLL

• View and change termination for DLL

• Set long filename support

In the MARKEXE syntax, the optional parameters are enclosed in
brackets ([]); therefore, they are not part of the syntax.

/? is used to display all the options for MARKEXE.

FORCE makes a program executable in OS/2.

NO is used to set commands to the opposite condition. The NO is not
effective with the DISPLAY UNSPECIFIED and WINDOW API options.

option is used to specify whether you want to view or set a program
type. You can list one or many options with the MARKEXE command
from the following list:

DISPLAY

DLLINIT

DLLTERM

LFNS

WINDOWAPI

WINDOWCOMPAT

Toolkit Utility Programs 421

Displays application type.

Sets per-process initialization for the DLL.
This applies to LINK386 executable files
only.

Sets per-process termination for DLL. This
option applies to LINK executable files only.

Enables support of long filenames. This
option applies to LINK executable files only.

Sets the application program to run in the
PM (Presentation Manager) session only.

Sets the application program to run in a PM
window or full-screen session.

NOTWINDOWCOMPAT Sets the application to run in the OS/2 full­
screen session.

UNSPECIED

• Example

VIEW
MARKEXE myprog.exe

Displays

Means that the application does not have an
aaplication type. Such an application can be
run in a full-screen session by default.

myprog.exe; OS/2 - 2.1, WINDOWCOMDAT

Set
MARKEXE WINDOWAPI myprog.exe

yourprog.exe

7.6 MKMSGF-Convert Text to Binary

• General format

MKMSGF infile outfile [option •••]

or

MKMSGF @controlfile

422 Chapter 7

• Description

The MKMSGF is an important program, if you are developing a PM
application. In fact, the output from this utility is used by the MSGBIND
(discussed later) program to bind messages to an executable file.

You may code your program with the DosGetMessage function, which
uses the output message created by MKMSGF. Basically, MKMSGF
takes a text file and converts it into a binary form that can be accessed
faster by MSGBIND or DosGetMessage.

To get a message text, an application program makes a request by
specifying a message number. The logic is to test whether a me,ssage
segment is bound with the executable file. If this is true, then the system
looks for the code-page number of the current session in all message
segments. If a matching code-page number with a matching segment is
found, the specified message number in DosGetMessage is searched for.
If the right message is found, it returns to the calling application
program. If the message is not found in the message segments of the
executable file, DosGetMessage will look for a message file generated
by MKMSGF. MKMSGF will find the file if one of the following
conditions is met:

• The message file is in the current directory.

• The message file is found in the DPATH or APPEND environment
variable.

• DosGetMessage is called with a fully qualified filename as the
parameter.

infile is the name of the input file containing comments and codes to
identify the messages. The extension of this file is .TXT. The message
file contains the messages that are processed by MKMSGF. As
explained earlier, these messages are eventually passed to an application
program through the DosGetMessage function. The lines of this file
must be formatted according to a few rules, and they can be categorized
into three types: comment lines, component identifier lines, and
component message lines. We'll have a look at these types next.

Comment lines: Comment lines allow you to add text to the message
file which is not part of the messages you want to process; it may
describe the purpose and usage of the messages. Such a line must start,

Toolkit Utility Programs 423

in the first column, with a semicolon (;); for example,

; This message file is for
; component FAB
; and is used in PRTSAMP.C

are three comment lines.

The comment lines can appear anywhere in the file, except for the
component identifier line and the first message line.

Component identifier line: The component identifier line specifies the
group name of a number of message lines. This line simply consists of
a three-character name, and it must precede all MKMSGF message
numbers; for example,

FAB

is a component identifier line.

Component message line: Each component message line consists of
two parts: a message header and a message text.

The message header is further divided into five parts:

• A three-character component identifier, discussed in the previous
section

• A four-digit message number

• A one-character message type

• A colon (:)

• A space

The format of the message header looks like this:

~------------------ Component identifier

j
,.--------------- Message number
I ,.------------------ Message type

ccxxxxJ
~I -----__ --__ Space

424 Chapter 7

Type Description

E Error
H Help
I Information
P Prompt
W Warning
? Empty message number

In preparing the message line you must follow the rules listed.

• The message header must start in the first column of the line.
• Multiple lines of message must use a message header for each line.
• The message number can start with any number, but subsequent lines

must be numbered in sequential order.
• The symbol %0 at the end of a prompt text means not to add carriage

return and line feed at the end of a message.
• The symbols %1 to %9 can be used to start variable names within a

message.

outfile is the name of the output file where MKMSOP writes the
messages in binary form. Subsequently, it is used by the MSGBIND
program and DosGetMessage function. The extension of this file is
.MSG.

option is a keyword starting with a slash (I) to control output and specify
various identifiers.

IP <code-page> specifies the code-page' ID for the input message file.
The default is no code-page value.

ID <DBCS range or country ID> specifies the DCBCS range or country
identification. The valid DBCS range is nl()nll,n2()n21, ... ,nn()nnl. The
default for the DBCS range is no value.

IL <language family id, sub id> specifies the language family ID and the
language version, and both should be one word.

N displays information found in the input file.

V? displays the syntax for MKMSOP.

controlfile contains multiple message files. As we saw earlier, there are

Toolkit Utility Programs 425

two ways of running MKMSGF: specifying I/O files and options, or
using a control file. In this section we'll discuss the control file, which
is always followed by the "at" sign (@); for example,

MKMSGF @controlfile

A control file is used when creating a multi-code-page message file. The
format of the line is

root.in root.out [option •••]
sub-001 sub1.out [option •••]

.
sub-OOn subn.out [option •••]

• Example

In the following example, there are many instances of message lines
associated with the component identifier FAB. Also, a few comment
lines, starting with a semicolon (;), are added.

FABOIOOE: Application FAB

File messages
;
FABOI01?:
FAB0102E: FILE NOT FOUND
FAB0103E: FILE NAME NOT CORRECT

Messages
;
FABOI04W: Warning! All files will be deleted!!!
FABOI05?:
FAB0106?:
FABOI07P: Do you want to replace (Y or N) ? %0
FAB0101I: File %1 replaced
FAB0101H: Usage: MYPROG [option •••] infile out file

7.7 PACK-Compress Data

• General format

Single-file:
PACK source-file [packed-file]

[/H:headerpath\ or
IH:headerfile or
IH:headerpath\header-file]

[10: headerdate]
[IT: headertime]

426 Chapter 7

[/C]
[IA]
[/R]

Multiple-file:
PACK list-file [packed-file] IL

[/H:headerpath\ or
IH:headerfile or
IH:headerpath\header-file]

[10: headerdate]
[IT:headertime]
[/C]

• Description

The PACK utility program is used to compress a file. This file could be
any kind of file--either data or executable. The advantage of using
PACK is that it reduces the storage space occupied by a file on disk,
thus giving you more room for something else. This program is useful
when simply creating more space on a disk, for archiving files, or for
preparing files for distribution. Of course, once compressed, the file
cannot be used for processing; to restore the file to its original size there
is another utility program called UNPACK, discussed later in this
chapter.

PACK can be used in two ways: by specifying each file to be packed at
the command line, one by one; or by listing all the files to be reduced
in size in a list file and passing the list file to PACK. The formats of
both methods are presented in the next section. You should use
whichever method is most suitable for you.

In using PACK, there is no default file extension. It is mandatory to
supply the filename and extension when invoking PACK. In cases where
files are not found in the current directory, you must specify a full path
and, perhaps, a drive if needed.

source-file is the name of the file to be compressed, and it is absolutely
required in the single file format. When no other parameter is listed, the
packed data is written to this file and the filename is changed to have
the synbol @. The name of the source file is written in the header of the
compressed file and is used as the destination file during the
decompression. You can specify global filename characters.

packed-file is optional and is the name of the file where the source file
is written to after the compression. It must have the @ symbol in the
filename. As mentioned previously, if packed-file is not mentioned, the
packed data is placed in source-file.

Toolkit Utility Programs 427

IH is used to specify the header file and path. Both pieces of information
are written to the packed file and are later used during unpacking. This
option can be entered in one of three ways:

lH:headerpath\ or
lH:headerfile or
lH:headerpath \headerfile

header path is the destination path where the header record of the
compressed file is written. To the pathname you can add a drive letter,
if needed. During the unpacking, the pathname can be overriden;
otherwise UNPACK will use it as the destination.

header file is the name of the file to be placed in the header record of
the packed file. This information is used by UNPACK and cannot be
overriden.

lD:headerdate is used to specify a date that is written to the header
record of the compressed file. The format is mm-dd-yyyy (month, day,
and year); for example, /D:09-24-1993.

ff:headertime is used to specify a time that is written to the header
record of the compressed file. The format is hh.mm (hour and minute),
for example, ff:19.48.

I A means to add the source file to the packed file.

IC means that the current path be placed in the header record of the
compressed file. During decompression, UNPACK will use this path as
the destination for the file that contains uncompressed data. The /K
option and headerpath are mutually exclusive.

IR means to remove the file specified by the source file from the file
that contains only compressed data.

IL is needed for the multiple source file format and indicates that the
filename is a list file.

filename is the name of a file containing many files to be compressed.
You cannot use global filename characters.

428 Chapter 7

• Example

PACK cds*.c cdsprog.arc
PACK cdsmain.c cdsprog.arc /A
PACK cdsarc.lst cdsprog.arc

7.8 UNPACK-Unpack Data

• General format

UNPACK sourcefile
[destination-drive:] [destination-path]
[/SHOW] [/N:single-file] [IV] [IF]

• Description

The UNPACK OS/2 command is used to unpack a file that has
previously been compressed by the PACK utility program. The PACK
program changes the name of the compressed file to have the @ symbol.
This program, discussed in the previous section, adds information such
as filename and pathname, that can be used by UNPACK as default
values. However, you can override them during the unpacking.

sourcefile is the name of the file that contains one or more compressed
files.

destination-drive is the name of the drive where uncompressed files are
written to.

destination-path is the name of the path where the uncompressed files
are written to. If this parameter is not listed, UNPACK uses the path
stored in the header record of the compressed file.

/SHOW tells the program to display the name of the files on which it is
working.

IN:single-file means to unpack one file only from the packed file.

N is used to verify that data is written to the destination file correctly.

IF specifies that files with extended attributes should not be be unpacked
or copied if the destination files do not support extended attributes.

Toolkit Utility Programs 429

7.9 MAPSYM-Create a Symbolic File

• General format

MAPSYM [option •.•] input-file

• Description

The MAPSYM utility program creates a symbolic file from a map file,
with the extension .MAP, is generated by the linker. The symbolic file,
with the .SYM extension, is used by the kernel debugger.

input-file is the name of the input map file, with the extension . MAP.
The output is a file with the same name as the input, but with the
extension .SYM.

option can be one or more of the following:

/ A omits alphabetical sorting of symbols.

IN includes source program line.

IL gives extra information during processing.

7.10 MSGBIND-Bind Messages

• General format

MSGBIND scriptfile

• Description
The MSGBIND utility program binds messages with an executable file.
The result is that the messages are accessed faster although the
executable file is larger.

The message segments (or objects) are placed together with the
application code, and this may cause an error if the size exceeds 64
kbytes. If you want to separate the code from the message object, use
the statement

SEGMENT '_MSGSEG32' CLASS 'CODE'

in the program definition file (.DEF).

430 Chapter 7

As explained in the section MKMSOP, it is not necessary to bind
messages and the executable files. The messages and the executable files
can be separate, and the DosGetMessage function will be able to
retrieve the messages from the file.

scriptfile is the name of the file that contains the executable files,
message files, and message numbers. The script file contains lines that
MSOBIND interprets as the following three types:

• > executable file

• < message file

• message numbers

MSOBIND takes the message numbers, finds them in the message file,
and binds them to the executable file. It is possible to have any number
of these files and message numbers. The important point to renlember
is that the input file is processed sequentially.

Executable file: An executable file is always preceded by the greater
than symbol (»; for example,

> myprog.exe

is interpreted as a line with an executable file myprog.exe. You can
have more than one executable file in an input file. All the message files
and message numbers are associated with an executable file below it
until another is encountered.

Message file: A message file is always preceded by the less-than symbol
«); for example,

< myfab.msg

is interpreted as a message file. It has an extension .MSO and is created
by MKMSOP from the message text file. MSOBIND will bind all
message numbers, found below it in this file, to the current executable
file. If another message file is found, the message numbers below it will
be searched in it.

Message numbers: A message number has a three-character component
identifier followed by a four-digit number. This message number must
be found in the current message file which is the first one above. When

Toolkit Utility Programs 431

the message number is found in the message file, it is bound to the
executable file .

• Example

This section shows how to run the MSGBIND program and explains the
lines of an input file. To execute MSGBIND at the command line, type

MSGBIND CUSTOMER.BND

where customer.bnd is the script file.

The input file contains the following lines:

>CUSTMAIN.EXE
<CUSTMAIN.MSG

CUSOOOl
CUS0002
CUS0003

<CUSTPM.MSG
CUS0004
CUS0005
CUS0006

>CUSTFILE.EXE
>CUSTFILE.MSG

CUS0007
CUS0008
CUS0009

In this example, MSGBIND assumes CUSTMAIN.EXE to be the
current executable file. Message numbers CUSOOOl to CUS0003, which
are first verified in message file CUSTMAIN.MSG, are bound to
CUSTMAIN .EXE, followed by message numbers CUS004 to CUS006,
but this time, these message numbers are searched in the
CUSTPM.MSG.

Next, the executable file CUSTFILE.EXE becomes the current file and
messages CUS0007 to CUS0009 are bound to it. These message
numbers must be found in CUSTFILE.MSG for successful processing.

7.11 Resource Compiler

• General format

RC

or

432 Chapter 7

RC [option •••] resource-script-file [executable-file]

or

RC [option •••] resource-file [executable-file]

or

RC -r resource-script-file [resource-file]

• Description

The resource compiler (RC) is a special OS/2 application development
tool. Its main purpose is to prepare data that is used by the PM
functions, such as WinLoadString, WinLoadPointer, WinLoadMem,
and WinLoadDlg. Therefore, RC takes message strings, pointers, menus,
and dialog boxes and converts them into a binary form that is added to
an executable file of an application. Once processed and bound by the
resource compiler, these window functions can load the resources as part
of an application.

The resources can be bound to the executable files and changed
subsequently without recompiling the application programs. This method
is especially useful when an application is designed for different national
languages. If you have to prepare the application for a specific language,
you have to simply add all the new resources to the executable file.

The resource compiler can be run in several ways:

• Using a command line
• U sing a command file
• Using the NMAKE utility program, as seen earlier in this chapter

Before invoking RC, make sure that the following environment variables
are properly initialized:

DBCS codepage, lead byte information, trail-byte information
TMP temporary file path
TEMP temporary file path
INCLUDE include file path

Also, you have to make sure that RCPP.EXE is in the current directory
or that its directory is listed in -the environment variable PATH.

option is used to direct the processing or to provide input to RC. This
parameter is not mandatory, and you can list as many as you need to.

Toolkit Utility Programs 433

The options are

-d defname This option is used to define a macro at runtime; for
example,

RC -dVERSION=1.0 MYPROG

will define the defname VERSION having the value 1.0 during
the processing of the resource script file MYPROG. With the -
d option, you can define one or many definition names.

-i This option is used to specify a path where include files are
stored. Normally, you would specify the path for include files
in the environment variable INCLUDE. Cosequently, you will
use the -i option if a path is not listed in the variable
INCLUDE or the include file is not in the current directory.

-r This option, seen before, is to create a binary resource file only.
In other words, the resources are not added to the executable
file.

-p This is used to pack the code while not allowing the 386
resource to cross the 64-kbyte boundaries.

-cp With this option you specify cp, Ib, or tb, where cp is the
DBCS code page, Ib is the lead byte information, and tb is
trail-byte information.

-k This option specifies the code page.

The following is a list of code-page IDs, country codes, and country
names.

Codepage ID

932
934
936
938

Code

81
82
86
88

Name

Japan
South Korea
China
Taiwan

434 Chapter 7

In the example,

RC -k938 MYPROG

the resource compiler takes the code page ID 938, which is Taiwan.

resource-script-file is the name of a file that consists of statements and
directives, defining how resources ought to be handled. We'll examine
the content in detail later. This parameter is required; its default
extension is .RC. If you do not include this extension, .RC is assumed.
Also, you must give the full path of the resource script file if it is not
found in the current directory.

A resource script file consists of definitions of resources to be processed.
They are all the resources valid for PM, such as message strings,
pointers, names, dialog boxes, dialog templates, and icons. The resource
script file is a text file that you create with an editor or it is generated,
as we will see later, by the dialog editor.

The resources are defined by statements, and the processing can be
logically directed with directives. Numerous statements and directives,
listed in the next section, apply to resource definition.

For example, the statement

ICON 1 myicon.ico

defines an icon and tells the compiler that the file myicon.ico has the
icons. On the other hand, the directive

#include <os2.h>

indicates that the header file os2.h should be included during processing.

The following lists an excerpt of a resource script file associated with
the output of the dialog and icon editor.

For the dialog box

DLGINCLUDE 1 "C:\BOOK\OS2C\PGM\CIDLG.H"

DLGTEMPLATE CUSTINFO LOADONCALL MOVABLE DISCARDABLE
BEGIN

DIALOG "Customer Information", CUSTINFO, 35, 11, 327,
157, WS_VISIBLE,

END

BEGIN
LTEXT

END

ENTRYFIELD

LTEXT

ENTRYFIELD

LTEXT

ENTRYFIELD

ENTRYFIELD

LTEXT
ENTRYFIELD

LTEXT

ENTRYFIELD

ENTRYFIELD

LTEXT

ENTRYFIELD

LTEXT

PUSHBUTTON
PUSHBUTTON

PUSHBUTTON

PUSHBUTTON

PUSHBUTTON

PUSHBUTTON

PUSHBUTTON

For the art work

#include
ICON
POINTER
BITMAP

"icon.h"
CI ICON
CI-PTR
CI=BMP

Toolkit Utility Programs 435

"Last Name: ", LNAME_T, 2,
144, 53, 8

"", LNAME_F, 85, 144, 143,
8, ES MARGIN

"First-Name:", FNAME T, 3,
123, 51, 8 -

" ", FNAME F, 86, 125, 141 , 8,
ES MARGIN-
"Aadress:", ADDRESS_T, 4, 108,
39, 8
1111, ADDRESS_Fl, 87, 106, 171,
8, ES MARGIN
"", ADDRESS_F2, 88, 90, 169, 8,
ES MARGIN
"CIty:", CITY T, 6, 71, 19, 8
"", CITY_F, 34, 71, 172, 8,
ES MARGIN
"State/Prov:", STATE PROV T,
215, 71, 47, 8 - -

1111, STATE_PROV _F, 272, 72, 32, 8,
ES MARGIN
""-; POSTAL_ZIP_CODE_F, 87,
52, 62,
9, ES MARGIN
"Postal/Zip Code:",
POSTAL ZIP CODE T, 7,
53, 70-; 8 - -
"", TELEPHONE_F, 223, 53, 74, 8,
ES MARGIN
"Telephone:", TELEPHONE_T, 168,
53, 49, 8
" Add", ADD PB, 4, 26, 40 , 14
"Change", CHANGE_PB, 58, 25,
40, 14
"Delete", DELETE_PB, 113, 25,
40, 14
"Find", FIND_PB, 171, 25,
40, 14
"Next", NEXT_PB, 225, 25,
40, 14
"Previous", PREVIOUS PB, 279,
24, 40, 14 -
"EXIT", EXIT_PB, 144, 2,
40, 14

CUSTINFO.ICO /* icon */
CUSTINFO.PTR /* pointer */
CUSTINFO.BMP /* bitmap */

436 Chapter 7

Statements: The resource statements define the resources that the
compiler is to process and that are eventually used by an application
program. The resource statements are definitions of PM items, strings,
and files where information are to be found.

There are two types of resource statements: single-line and multiple-line.
The single-line statement consists of a keyword indicating the kind of
resource. Next, there is a constant or number associated with the
resource, followed by a filename where resource data can be found. For
example,

ICON 2 MYICON.ICO

is a single-line statement for an icon, followed by an icon identifier (or
a tag) 2 and a file MYICON.ICO, where the icon data is found.

A multiple-line statement first contains a keyword for the resource type,
followed by the resource identifier. In addition, it has other statements,
grouped between the BEGIN and END keywords. You can use curly
braces, { and }, instead of BEGIN and END. For example,

MENU 1
{

}

MENUITEM "File" 101
MENUITEM "Actio~",102
MENUITEM "Help",103

has a resource type MENU, followed by a menu identifier 1. Between
curly braces are defined twO. menu items with the strings "File",
"Action", and "Help." You can have a nested loop as in

MENU MENU1
{

}

SUBMENU "File",SUB1
BEGIN

MENUITEM "New", ITEM 1
MENUITEM "Open", ITEM-2
MENUITEM "Exit", ITEM-3

END
SUBMENU "Action",SUB2

BEGIN
MENUITEM "List", ITEM 4
MENUITEM "Print", ITEM 5

END -
SUBMENU "Help",SUB3

BEGIN
MENUITEM "General Help", ITEM 6
MENUITEM "Product Information"TT", ITEM_7

END

Toolkit Utility Programs 437

Figures 7.1 and 7.2 respectively Ust statements and directives used by
the resource compiler.

ACCELTABLE
AUTORADIOBUTTON
CODEOAGE
CTEXT
DIALOG
ENTRYFIELD
GROUP BOX
HELPSUBTABLE
LISTBOX
MENUITEM
POINTER
RADIOBUTTON
RESOURCE
SUBITEMSIZE
WINDOWTEMPLATE

ASSOCTABLE
BITMAP
COMBO BOX
CTLDATA
DLGINCLUDE
FONT
HELP ITEM
HELPTABLE
LTEXT
ME S SAGE TABLE
PRE S PARAMS
RCDATA
RTEXT
SUBMENU

AUTOCHECKBOX
CHECKBOX
CONTROL
DEFPUSHBUTTON
DLGTEMPLATE
FRAME
HELPSUBITEM
ICON
MENU
MLE
PUSHBUTTON
RCINCLUDE
STRINGTABLE
WINDOW

Figure 7.1 Statements used by the resource compiler.

define
if
undef

elif
ifdef

else
ifndef

endif
include

Figure 7.2 Directives used by the resource compiler.

executable-file is the name of an executable file where the compiled
resources are added. This option output file must be either .EXE or
.DLL. If you omit this optional parameter, the RC will try to locate a
file with extension .EXE with the same name as the resource script file
or resource file, depending on the format. If it cannot find the proper
output file, it will stop processinK after generating an error message.

resource-file is the name of an input or output file, depending on the
format. It is a binary file and its extension is .RES; if you do not specify
it, then RC assumes by default .RES. In the third format, where you are
adding resources to an executable file, this resource file is required. In
cases where you are only creating a binary resouce file, and you do not
list the resource file, RC will assume the filename the same as the
resource script file and an extension .RES.

438 Chapter 7

• Example

This section discusses a few examples to illustrate some of the points
that were covered previously. In the command

RC MYPROG

the resource compiler will look for M¥PROG.RC in the current
directory. If found, it will process it and add it to M¥PROG.EXE.

In the next example,

RC MYSCRIPT MYPROG

RC processes a resource script file M¥SCRIPT.RC and adds it to
M¥PROG.EXE. However, in the command

RC -r MYPROG

RC will look for resource script file M¥PROG.RC and after processing
it, the binary output is placed in the resource file M¥PROG.RES.

In the example

RC MYRES MYPROG.DLL

RC will take the binary resource file M¥RES.RES and add it to
M¥PROG.DLL. But, if you type

RC MYRES

RC will add the resources to M¥RES.EXE, and if it cannot find the
executable file, it will display a message.

Chapter

Online Information Programming

These days it is impossible for any software to succeed in the marketplace
if it does not have online help information as part of the programs.
Therefore, as creating a user-friendly product is the goal of designers, one
way to achieve this is to make help information available at the fingertips
of the user. In an Presentation Manager (PM) application, help must be
available at various points of interfaces; some of these interfaces are

Menu bar
Dialog boxes
Input fields

Windows
Pull-downs
Push buttons

In OS/2 the Information Processing Facility (IPF) is a product used to
incorporate help information in various critical parts of PM application
programs. IPF, which is part of the Toolkit, has many capabilities,
including building standalone information systems for reference and
tutorials; however, in this chapter we'll only see how IPF can be used to
provide online information in programs.

As a designer of online information, you need to know what IPF features
support your design. IPF features include

439

440 Chapter 8

• A tagging language that formats text, provides ways to connect
information units, and customizes windows

• A compiler that creates online documents and help windows
• A viewing program that displays formatted online documents

Using IPF, you can develop a user interface that provides general help
for application windows, and contextual help for fields within windows.
Enabling help for applications requires programming code that
communicates with IPF and the PM to help windows. An IPF window can
be controlled by IPF or by an IPF communication object written by a
programmer. The IPF communication object determines what is displayed
in an application-controlled window.

This chapter gives information on the following topics:

• Before using IPF
• IPF compiler
• Data structure
• Using the help facility
• Communication between IPF and the application
• Window functions
• Tag reference

8.1 Before Using IPF

Before using IPF, there are a few things to keep in mind: the source file,
the resource script file, and the include file.

C Source file

The IPF source file contains the information to be displayed within
application programs. It also has instructions on how to present the text.
The instructions are called the tags C a complete tag reference is given
later in this chapter). IPF is flexible with respect to breaking down the
information; you can have one source file for the whole application, or
you can create several source files.

Within the file, the text must be distinguished from the corresponding
tag. A tag always starts with a colon C:), followed by a name, and ends
with a period C.). For example,

:hl.IPF source file

Online Information Programming 441

has both a tag and text. The tag :hl. tells the compiler that the text that
follows is a heading and should be formatted in a particular way.

:userdoc.
--

· * Main window extended help panel
* res = PANEL MAIN
--

:i1 id=aboutMain.About Template
:p. This is a sample PM application which a developer can use
as a base for an application.
:euserdoc.

Figure 8.1 Sample IPF source file.

:userdoc.

· * Main window extended help panel
* res = PANEL MAIN
--

:hl res=2100 name=CI MAIN.About CI
:il id=aboutMain.About Template
:p.This is a sample PM application which application developers can use as
a base their own applications.
· *-- Import the File menu help file --*
.im cifile.ipf
:euserdoc.

Figure 8.2 Content of cimain.ipf.

442 Chapter 8

As we will see later, the compiler that supplied with IPF converts the
text source file to binary form. Subsequently, the output binary file is
integrated with the executable file of the program with the help of the
resource compiler. The compiler is discussed in Chap. 7.

An IPF source file must start with :userdoc and end with :euserdoc, as
shown in Figure 8.1. In between these two keywords, you insert the text
and tags. In this example,

:hl res=2100 name=CI_MAIN.About CI

is the tag and

"This is a sample PM application which a developer can
use as a base for an application. 1I

is the text.

In a source file you can include one or more other source files, as shown
in Figure 8.2. This source file, called cimain.ipf, includes cifile.ipf with
the tag

.im cifile.ipf

When processing cimain.ipf, the IPF compiler incorporates cifile.ipf, as
shown in Figure 8.3, to produce a binary file.

Online Information Programming 443

.*---*\ .* Main file menu: res = CI FILE *

.*----------------------------=------------------*/ :hl res=2210 name=CI FILE.File Menu
:il id=File.File Menu
:p.The File menu contains commands that you use to create
and open data files. In addition, it also contains the
command that you use to exit the Sample application. The
following commands appear in the File menu:
:parml tsize=15 break=none.
:pt.New
:pd.Creates a new untitled file
:pt.Open
:pd.Opens an existing file
:pt.Exit
:pd.Quits the Sample application
:eparml •
. *---*\ .* File menu New command help panel *
.* res = CI FILENEW *
.*--------------=----------------------------*/ :hl res=2220 name=CI FILENEW.New
:i2 refid=File.New -
:p. You can create a new file in the Sample application
window by using the New command. To create a new file, do
the following: :ul.
:li.Select the File menu and choose the New command.
:eul.
:I? The word "Untitled"·appears in the title bar of the new
f~le •
. *---*\ * File menu Open command help panel *
.* res = CI FILEOPEN *
.*--------------=----------------------------*/
:hl res=2230 name=CI FILEOPEN.Open
:i2 refid=File.Open -
:1?You can open a file that exists on any drive or in any
d~rectory by using the Open command. To open a file, do the
following: :ul.
:li.Select the File menu and choose the Open command.
:eul.
:p.A dialog box appears, showing you a list of files in the
current directory •
. *---*\ .* File menu Exit command help panel *
.* res = CI FILEEXIT *
. * --------------=---------_._-------------------* /
:hl res=2290 name=CI FILEEXIT.Exit
:i2 refid=File.Exit -
:p.You quit the Sample application by using the Exit
command. To quit the Sample application, do the following:
:01.
:li.Select the File menu and choose the Exit command.
:eol.

Figure 8.3 Content of cifile.ipf.

444 Chapter 8

C Resource script file

Previously we saw how to create an IPF source file, containing text and
tags, that is processed by the IPF compiler and ready for use by the
application program. The next step is to provide hooks to enable your
program to use the output of the IPF compiler.

In this step you create a resource script file (see Figure 8.4). It contains
definitions of help tables as resources which can be processed by the
resource compiler (RC). The output from the resource compiler can be
bound to an application executable file or written to a dynamic-link
library (DLL). During runtime, the text of the source file is referenced
in the program and is loaded and shown at the appropriate places.

#include <os2.h>
#include "cimain.h"

/*
* Help table definition
*/

HELPTABLE CI_HELP_TABLE
{

HELPITEM IDR MAIN, SUBTABLE MAIN, CI MAIN
HELPITEM IDD-PRODUCTINFO, - -

}
SUBTABLE_PRODUCTINFODLG, CI_PRODUCTINFODLG

/*
* Main window subtable, includes menu item help
*/

HELPSUBTABLE SUBTABLE MAIN
SUBITEMSIZE 2 -
{

}

HELPSUBITEM
HELPSUBITEM
HELPSUBITEM
HELPSUBITEM

IDM FILE,
IDM-FIL~NEW,
IDM=FILEOPEN,
IDM_FILEEXIT,

Figure 8.4 Resource script file.

CI FILE
CI-FILENEW
CI-FILEOPEN
CI=FILEEXIT

We start by discussing two RC statements: IlELPTABLE and
SUBIlELPTABLE. Both are needed to integrate help information in an
application program. These two commands create data structures, as in
C or C++, that are referenced when programming the online facilities.

IlELPTABLE is used to define entries where help is provided in the

Online Information Programming 445

application. Appropriate places would be the window, the dialog box,
menus, and so on. Each entry consists of the following:

• IlELPITEM keyword
• Application window ID
• ID of the HELPSUBTABLE resource
• Window ID of the extended help window

In the next segment,

HELPITEM IDR MAIN, SUBTABLE MAIN, CI MAIN
HELPITEM I DD-PRODUCT INFO , - -

}
SUBTABLE_PRODUCTINFODLG, CI_PRODUCTINFODLG

the IlELPT ABLE contains two IlELPITEMs, which are also defined
in the same file.

On the other hand, HELPSUBTABLE is used to define each item
where the information is invoked in the application window. The item
must have a child window of the application window identified in the
HELPTABLE resource. Each HELPSUBTABLE must have one
SUBITEMSIZE, and for each control, child window, and menu item,
you have to specify a HELPITEM.

Each entry of HELPSUBTABLE must have the following:

• IlELPSUBITEM keyword
• Field ID
• Window ID of the field's help window
• Optional integers defined in the application

For example, the HELPSUBTABLE SUBTABLE_MAIN has four
IlELPITEMs for one pull-down.

C Include file

So far we have discussed the source file used by the IPF compiler and
the resource script file processed by the RC; we also need an include file
to tie the IPF source file, script file, and program together. An include
file contains a value for the symbolic names defined in these three files.
Figure 8.5 shows a listing of the cimain.h include file. This include file

446 Chapter 8

is needed when you are compiling both the resource file and the
program. To draw attention to the relationship, let's look at three lines
taken from the help source file, resource file, and include file.

Help source file: :h1 res=2210 name=CI_FILE.File Menu

Resource file:

Include file:

HELPSUBITEM

#define CI_FILE 2210

As you can see, the symbolic name CI_FILE is defined as value 2210.
Both the value and the name are used in the help file while the name is
part of the IlELPSUBITEM statement in the resource file. Figure 8.S
is an example of an include file required for the resource file shown in
Figure 8.4. .

/*
* Help table and subtables
*/
#define CUSTINFO HELP TABLE
#define SUBTABLE-MAIN-
#define SUBTABLE=PRODUCTINFODLG
/*
* Main window help panels

*/
#define CI MAIN
#define CI-PRODUCTINFODLG
#define CI-FILE
#define CI-FILENEW
#define CI-FILEOPEN
#define CI=FILEEXIT

Figure 8.5 cimain.h include file.

C Output file

1000
2000
3000

2100
3100
2210
2220
2230
2240

The IPF compiler processes a source file and produces two types of
output: the standalone system file or the program online help file. They
are distinguised by the type of extension; the standalone system file has
the extension .INF, and the program online file has the extension .HLP.
To produce one or the other you specify the /INF option when running
the IPF compiler. If you include the /INF compiler option, the output
goes to file with extension .INF; otherwise, the extension of the output
file is .HLP. As discussed next, the path of the .HLP is added to the
environment variable HELP and the filename is referenced in the
initialization functions.

Online Information Programming 447

C Environment variables

Before you use the IPF compiler, make sure that the environment
variables are initialized properly. There are three variables, IPFC, HELP
and BOOKSHELF. The initialization is usually done when installing the
Toolkit, and the place to do this is in CONFIG.SYS.

IPFC: The IPFC environment variable is used by the IPF compiler to
identify the directory where data files are found; for example in

IPFC=C:\TOOLKT20\IPFC

the path is C:\TOOLKT20\IPFC, where the IPF compiler will search for
the data files needed for processing.

HELP: The HELP environment variable contains the directories (or
path) where all the help files (.HLP) are found. For example,

HELP=C:\OS2\HELP;\OS2C\PGM\CUSTINFO

contains two directories that are searched for help files when programs
with help information are run.

BOOKSHELF: The BOOKSHELF environment variable contains
directories (or path) for online documents used by VIEW. For example,

BOOKSHELF=C:\OS2\BOOK

specifies a path where document files are found.

8.2 IPF Compiler

• General format

IPFC source-file [/INF] [IS] [/Wn]
[> message-output-file]

448 Chapter 8

• Description

In the previous section, we saw how the IPF compiler converts a source
file, holding the help information or online document, into binary form.
Depending on the option given at the time of running the compiler, it
creates a help file (.HLP) or online file (.INF). To see the content of the
online file, you use the program VIEW.

source-file is the name of an IPF source file. As mentioned earlier, it
contains information, intertwined with tags, to be presented to the user.

/lNF is an option to compile an IPF source file that contains online
information. With this option specified, the output file has an extension
.INF. If this option is omitted, the input file is assumed to contain help
information and the output file has the extension .HLP.

IS is an option to suppress the performance of the search function. If you
use this option, the output data is compressed by 10 percent, thus saving
storage space.

IX is an option to generate and display a cross-reference list.

/W n is an option to generate and display a list of error messages. n is
the level of information generated. The valid values are 1, 2, and 3.

Value Level of information

1 Returns warning level 1 messages that are most severe
2 Returns warning levelland 2 messages
3 Returns all three warning levels of messages; warning level 3

are the least severe messages

message-out put-file is the name of the file where error and cross­
reference messages are written to. If this parameter is omitted, the
message and error, from IX and /Wn options, are written to the screen .

• Example

In the next example, the myprog.ipf source file is processed by the IPF
compiler. Note that the /lNF option is missing; this means that the
output is used by programs and will go to myprog.hlp. The Iw3 option
is used to return all three warning levels of messages.

Online Information Programming 449

As mentioned earlier, error messages are either displayed or written to
a file. To redirect a message to a file, use the redirection symbol (» and
a filename to receive the message in the command line. In this case the
messages are written to myprog.err.

IPFC myproq.ipf /w3 > myproq.err

8.3 Data Structure

Earlier, we saw how to create the help tables; this information has to be
passed on to the IPF from a program. The communication between the
help tables and the program is done by the data structure called
HELPINIT. After the initialization is completed, one or many instances
of help can be created. (The definition of the structure is found in
PMHELP.H.) Next, you must associate the help instance with a window.
This section first describes the IIELPINIT structure, followed by an
initialization of the structure.

typedef struct HELPINIT /* init */
{ -

ULONG cb;'
ULONG ulReturnCode;
psz pszTutorialName;
PHELPTABLE phtHelpTable;
HMODULE hmodAccelActionBarModule;
HMODULE hmodAccelActionBarModule;
ULONG idAccelTable;
ULONG idActionBar;
psz pszHelpWindowTitle;
ULONG fShowPanelld;
psz pszHelpLibraryName;

} HELPINIT;

The following describes each element of the HELPINIT structure.

Element name

cb
ulReturnCode
pszTutorialN ame

Description

The length of HELPINIT structure.
Return code from IPF.
A pointer to a tutorial name. If this
field is NULL, then IPF does not
provide a Tutorial choice in the
Help pull-down menu; otherwise, it
does include the tutorial choice. If
the user selects Tutorial, IPF sends

450 Chapter 8

phtHelpTable
hmodAccelActionBarModule

hmodAccelActionBarModule

idAccelTable

idActionBar

pszHelp WindowTitle

fShowPanelId

pszHelpLibrary N arne

• Example

the HM_TUTORIAL message to the
application program associated with
this structure.
A pointer to a help table.
The name of the file where help
table and subtables are to be found.
If the value of this field is 0, the
tables are found in the EXE file.
The name of DLL containing a
modified menu bar. This value is 0 if
there is no modified menu bar.
The name of the accelarator table if
a modified menu bar is specified in
the previous file; otherwise, the value
is O.
The name of the tern plate if the
modified menu bar is used;
otherwise, this value is O.
A pointer to the name of the title for
the main window.
A flag that is used to show or hide
the window IDs. The values are
CMIC SHOW PANEL ID and
CMIC -=-HIDE _ P MEL _ ID~ This flag
can be used during the development
stage for debugging purpose.
The name of help files containing the
help windows. These files are
searched in directories listed in the
HELP environment variable and the
current directory .

In an application you have to provide a function to initialize the
IlELPINIT structure. The CiHelpInit function is an example of such
a function which is used once during the initialization of the application.
In this function, after initializing the structure, the
WinCreateHelpInstance function creates a help instance. If this is
successful, the WinCreateHelpInstance associates the help instance
with a window. If everything goes well, the nIelpEnabled flag is set to
TRUE.

static HWND hwndHelplnstance;
static CHAR szLibName[] = "CUSTINFO";

Online Information Programming 451

static CHAR szWindowTitle[] = "Customer Information Help";
static BOOL fHelpEnabled = FALSE;

/***
Name: CiHelplni t ()
Purpose:
Usage:
Method:

**/
void CiHelplnit(void)
{

HELPINIT hinit; /* define initialization struture */

fHelpEnabled = FALSE; /* set to FALSE for now */

/* initialize the HELPINIT structure */
hinit.cb = sizeof(HELPINIT); /* set to size of hinit */
hini.ulReturnCode = 0;

hini.pszTutorialName = (PSZ)NULL;/* No tutorial */

hini.phtHelpTable = CUSTINFO HELP;
hini.hmodHelpTableModule = (PSZ)NULL;

hini.hmodAccelActionBarModule = (PSZ)NULL;
/* resource in EXE file*/

hini.idAccelTable = 0; /* resource in EXE file */
hini.idActionBar = 0; /* default menu bar */

strcpy(hinit.pszHelpWindowTitle, szWindowTitle);

/* if debugging, show panel ids, else don't */
#ifdef DEBUG

hini.fShowPanelld CMIC SHOW PANEL ID;
#else - - -

hini.fShowPanelld = CMIC HIDE PANEL ID;
#endif - - -

hini.pszHelpLibraryName = (PSZ)szLibName;

/* creating help instance */
hwndHelplnstance = WinCreateHelplnstance(hab, &hini);

if(hwndHelplnstance == NULLHANDLE I I hini.ulReturnCode)
{

}

MessageBox(hwndMainFrame,
IDMSS HELPLOADERROR,
MB_OK-I MB_ERROR,
TRUE) ;
return;

/* associate help instance with main frame */
if(!WinAssociateHelplnstance(hwndHelplnstance,

hwndMa~nFrame»
{

}

MessageBox(hwndMainFrame,
IDMSG HELPLOADERROR,
MB_OK-I MB_ERROR,
TRUE) ;

return;

452 Chapter 8

/* help manager is successfully initialized so */
/* set flag to TRUE */

fHelpEnabled = TRUE;
} /* End of CilnitHelp */

When an application program that creates a help instance ends it should
also terminate the instance. With the EndHelplnstance function, for
example, a previously created help instance is destroyed.

/***
Name: CiDestroyHelplnstance()
Purpose:
Usage:
Method:

**/
VOID CiDestroyHelplnstance(VOID)
{

if(hwndHelplnstance 1= NULLHANDLE)
WinDestroyHelplnstance(hwndHelplnstance);

} /* End of DestroyHelplnstance */

8.4 Using the Help Facility

When IPF is used within your program, the user requests help information
in three ways:

• Hit the Fi key at any time.
• Click on the Help item of the menu bar or the pull-down menu.
• Press a Help push button found in a dialog box.

Fl key: When the user presses the Fi key, from any window maintained
by the PM, a WM _HELP message will be generated and posted to the
queue for the window.

Help menu bar item: The Help item, either in the menu bar or in a help
pull-down, should be defined using the MIS_HELP style. Using this
information will cause a WM _HELP message to be generated, instead of
a WM_COMMAND message.

Help pushbutton. A Help push button in a dialog box should be defined
with BS_HELP and BS_NOPOINERFOCUS types. This will cause a
WM_HELPmessage to be passed to IPF. Subsequently, IPF determines the
control window within the dialog box that is currently holding the input
focus, and then displays the help panel for that control window.

Online Information Programming 453

8.5 Communication between IPF and the Application

IPF responds to a user's request for help information by sending messages
to the application. After receiving a message, the application program may
choose to respond with a message. This section describes the messages
passed between IPF and application program. The communication is
through the IPF window procedure found in the application program,
which is required if you are using IPF. The prototype of this function is

MRESULT EXPENTRY IPFWinProc(HWND hwnd,
USHORT message,
MPARAM paraml,
MPARAM param2)

The application program sends a message by calling the WinSendMsg
function, whose prototype is

MRESULT WinSendMsg(HWND hwnd,
USHORT message,
MPARAM paraml,
MPARAM param2)

In addition to the return value for each message, it also provides a
description of paraml and param2 parameters, including the datatype and
value.

This message is sent by IPF to the application program to notify that the
user selected an item from a customized menu bar item. This item
belongs to the current active window.

• Parameters

paraml idCommand (USHORT) The identity of the menu bar item
that the user selected

param2 (ULONG) NULL value

• Return

jlreply (ULONG) NULL value

454 Chapter 8

This command is sent by IPF to the application or the communication
object. This happens prior to the addition of controls. If an application
wants to filter any of the controls, it can subclass the child of the
coverpage window and intercept this message. If this message is not
intercepted by the application program, IPF adds the control to the
control area.

• Parameters

paraml (HIUSHOR1) NULL
controlres (LOUSHORT)

param2 (BIT32)

• Return

jZreply (ULONG)

The res identification number of the
control that was selected.
Reserved

NULL value

This parameter is sent by the application to tell IPF to use the new help
table.

• Parameters

paraml HELPTABLE(pHelpTable)

param2 (ULONG)

• Return

A pointer to the new help
table structure
NULL value

jlreply (ULONG), the return value is one of the following:

o The request was completed successfully
Other The request was not completed; for more information, see the

value of u1ErrorCode of the HM_ERROR message

C HM_DISMISS_WINDOW

This message is sent by the application to tell IPF to remove the active
help window.

• Parameters

paraml (ULONG) NULL value
param2 (ULONG) NULL value

• Return

reply ulreturn Value (ULONG):

Online Information Programming 455

o The request was completed successfully.
Other Could find a help window. The request was not completed; for

more information, see the value of ulErrorCode of the
HM_ERROR message.

This message sent by the application to tell IPF to show a specific help
window. The help window must be associated with the currently active
application window, which is usually sent to IPF with the
HM_SET_ACTIVE_ WINDOW message.

• Parameters

paraml HelpPanelId (PIDENTITY)

HelpPanelName (pSTRL)

param2 usTypeFlag (USHORT)

A pointer to a USHORT data
type, which identifies the help
window (usTypeFlag
parameter of
HM_RESOURCEID).
A pointer to the PSZ
datatype, which identifies the
name of the help window.
(usTypeFlag parameter of
HM_PANELNAME).
HM RESOURCEID is used
to illdicate that paraml is to
point to the identity of the
help window.

HM_PANELNAME is used to indicate that paraml is to point to the
name of the help window.

456 Chapter 8

• Return

reply ulreturnValue (ULONG), the return value, IS one of the
following:

o The request was completed successfully.
Other Could find a help window. The request was not completed; for

more information see the value of ulErrorCode of the
HM_ERROR message.

This message is received by the application when an error occurred
during user interaction. This is the only way to communicate the error
to the application when the user initiated the communication. Other
errors caused when the application sends a message to IPF are returned
as the jlreply parameter of the message .

• Parameters

paraml ulErrorCode (ULONG)

The error codes are

HMERR LOAD DLL
The applIcation cannot load the dynamic link library (DLL).

HMERR NO FRAME WND IN CHAIN
The frame wfudow is not in the wmdow chain from which to find or
set the associated help instance.

HMERR INVALID ASSOC APP WND - - --
The application window handle named in the
WinAssociateHelplnstance function call is an invalid window
handle.

HMERR INVALID ASSOC HELP INST
The help-instance handle named in the WinAssociateHelplnstance
funtion call is an invalid window handle.

HMERR INVALID DESTROY HELP INST - - --

Online Information Programming 457

The window handle named as the help instance to destroy is not of
the help instance class.

HMERR NO HELP INST IN CHAIN
The parent or-owner chain of the application window does not have
an associated help instance.

HMERR INVALID HELP INSTANCE HDL
The handle that is a help instance does not have the class name of an
IPF help instance.

HMERR INVALID QUERY APP WND
The application window named -in a WinQueryHelplnstance
function call is not a valid window handle.

HMERR HELP INST CALLED INVALID
The hanclle of the help instance named in a function call to IPF does
not have the class name of an IPF help instance.

HMERR HELPTABLE UNDEFINE
The application did not provide a help table for context-sensitive
help.

HMERR HELP INSTANCE UNDEFINE
The help-instance handle is not valid.

HMERR HELPITEM NOT FOUND
Context-sensitive help-was requested but the ID of the named main
help item was not found in the help table.

HMERR INVALID HELPSUBITEM SIZE
The help -subtable item size is less thaD 2 «2).

HMERR HELPSUBITEM NOT FOUND
Context-sensitive help was-requested but the ID of the named help
item was not found in the help subtable.

HMERR INDEX NOT FOUND
The index is not found in the library file.

HMERR CONTENT NOT FOUND
The library file does not have any content.

458 Chapter 8

HMERR OPEN LIB FILE
The library file cannot be opened.

HMERR READ LIB FILE
The library file cannot be read.

HMERR CLOSE LIB FILE
The library file cannot be closed.

HMERR INVALID LIB FILE
The library file is not valid.

HMERR NO MEMORY
Unable to allocate the requested amount of memory.

HMERR ALLOCATE SEGMENT
Cannot allocate a segment of memory for memory allocation requests
from IPF.

HMERR FREE MEMORY
Cannot free allocated memory.

HMERR PANEL NOT FOUND
Cannot find the requested help window.

HMERR DATABASE NOT OPEN
Cannot read the unopened database.

param2 (ULONG) NULL value .

• Return

jlreply (ULONG) NULL value.

This message is sent by the application to tell IPF to show the extended
help window for the active application window .

• Parameters

paraml (ULONG) NULL value.
param2 (ULONG) NULL value.

Online Information Programming 459

• Return

reply ulreturnValue (ULONG); the return value is one of the following:

o The request was completed successfully.
Other Could find a help window. The request was not completed; for

more information, see the value of ulErrorCode of the
HM_ERROR message.

This message is sent by IPF to the application when an extended help
window is not defined. The application responds in one of the following
ways:

• Ignores the request for help and does not display a help window
• Displays its own window
• Uses the HM_DISPLAY_HELP message to tell IPF to display a

particular window

• Parameters

paraml (ULONG) NULL value.
param2 (ULONG) NULL value.

• Return

flreply (ULONG) NULL value.

D HM_GENERAL_HELP

This message is sent by the application to tell IPF to show the general
help window for the action application window.

• Parameters

paraml (ULONG) NULL value.
param2 (ULONG) NULL value.

• Return

reply ulreturnValue (ULONG); the return value is one of the following:

460 Chapter 8

o The request was completed successfully.
Other Could find a help window. The request was not completed; for

more information, see the value of ulErrorCode of the
HM_ERROR m'essage.

This message is sent by IPF to the application when the general help
window is not defined. The application responds in one of the following
ways:

• Ignores the request for help and does not display a help window
• Displays its own window
• Uses the HM_DISPLAY_HELP message to tell IPF to display a

particular window

• Parameters

paraml (ULONG) NULL value.
param2 (ULONG) NULL value.

• Return

jlreply (ULONG) NULL value.

C HM_HELP _CONTENTS

This message is sent by the application to tell IPF to show the content
window.

• Parameters

paraml (ULONG) NULL value.

param2 (ULONG) NULL value.

• Return

reply ulreturnValue (ULONG); the return value is one of the following:

o The request was completed successfully.

Online Information Programming 461

Other Could find a help window. The request was not completed; for
more information see the value of ulErrorCode of the
HM_ERROR message.

This message is sent by the application to tell IPF to show the help
index window.

• Parameters

paraml (ULONG) NULL value.
param2 (ULONG) NULL value.

• Return

reply ulreturnValue (ULONG), the return value is one of the following:

o The request was completed successfully.
Other Could find a help window. The request was not completed; for

more inform see the value of ulErrorCode of the HM ERROR
message.

This message is sent by IPF to the application when a user requests help
on a field but the related entry in the help subtable cannot be found. The
application can respond in one of the following ways:

• Ignore the notification and not display help for that field or window
• Display its own window
• Use the HM_DISPLAY_HELP message to tell IPF to display a

particular window

• Parameters

paraml usContext (USHORT); the types of windows are

HLPM_ WINDOW An application window.
HLPM FRAME A frame window.
HLPM MENU A menu window.

462 Chapter 8

param2 sTopic (USHORT)

This is the topic identifier; the values are

window

menu

The window containing the field on which help is
requested.
The submenu containing the field on which help is
requested.

sSubTopic (USHORT)
This is a sUbtopic identifier, the values are:

control The control of the cursored field where help is requested.
-1 No menu item is selected.
Other Menu item of the currently selected submenu item where

help was requested.

• Return

reply fAction (BOOL); the return values are

FALSE
TRUE

Display the extended help window.
Do nothing.

This message is sent by IPF to the application when a user selects a
hypertext field that was specified with the reftype=inform attribute of
the :link tag.

• Parameters

paraml idnum (USHORT) The identity that is associated with the
hypertext field.

param2 (ULONG) NULL value.

• Return

[lreply (ULONG) NULL value.

This message is sent by the application to tell IPF that the previous

Online Information Programming 463

dynamic data formatting (DDF) information is no longer valid. This
message should be sent to the child of the coverpage window handle .

• Parameters

paraml (ULONG) rescount The count of DDFs to be rendered
invalid.

param2 (pUSHORT) resarray The pointer to an array of USHORT
data type, containing the values of
the elements of the res numbers of
DDFs to be invalidated .

• Return

reply ulreturn Value (ULONG); the return value is one of the
following:

o The request was completed successfully.
Other Could find a help window. The request was not completed; for

more information see the value of ulErrorCode of the
HM_ERROR message.

This message is sent by the application to tell IPF to show the keys help
window. On receiving this message, IPF sends an
HM_QUERY_KEYS_HELPmessage to the active application window.

The active application window is the window that was specified when
the last HM_SET_ACTIVE_ WINDOW message was sent. If no
HM_SET_ACTIVE_WINDOW message was issued, then the active
application window is the window specified in the
WinAssociateHelplnstance function call.

As a reply the application program sends one of the following:

• The identity of a keys help window in the HelpPanel parameter of
the HM_QUERY_KEYS_HELP message.

• Zero, if no action is to be taken by IPF for keys help.

464 Chapter 8

• Parameters

paraml (ULONG) Reserved value.
param2 (ULONG) Reserved value.

• Return

reply ulreturnValue (ULONG); the return value IS one of the
following:

o The request was completed successfully.
Other Could find a help window. The request was not completed; for

more information, see the value of ulErrorCode of the'
HM_ERROR message.

The message is sent by the application IPF along with a module handle
containing the help table, the help subtable, and the name of the help
table.

• Parameters

paraml idHelpTable (USHORT)
fsidentityflag (USHORT)

param2 MODULE (HMODULE)

• Return

N arne of the help table.
Help table name indicator.
Handle of the module that holds
the help table and help subtable.

reply ulreturn Value (ULONG); the return value is one of the following:

o The request was completed successfully.
Other Could find a help window. The request was not completed; for

more information, see the value of ulErrorCode of the
HM_ERROR message.

This message is sent by IPF to the application or communication object
when an application event has happened that the application wants to

Online Information Programming 465

control. It is used by the application to subclass and change the behavior
or appearance of the help window.

• Parameters

paraml controlres (HIUSHOR1)

reserved (HIUSHOR1)
event (LOUSHORT)

CONTROL SELECTED
HELP REQUESTED
OPEN-eOVERPAGE
OPEN-PAGE

SWAP PAGE

OPEN INDEX

OPEN TOe

OPEN_HISTORY

OPEN LIBRARY
OPEN SEARCH HIT LIST - --

The res number of the
control.
NULL value.
The type of event, which is
one of the following;
A control was selected.
Help was requested.
The coverpage is shown.
The child window of the
coverpage is opened.
The child window of the
coverpage is swapped.
The index window is
displayed.
The table of contents window
is displayed.
The history window is
displayed.
The new library is opened.
The search list is displayed.

param2 (ULONG) Window handle of a relevant window .

• Return

reply result (BOOL); the return value is one of the following:

TRUE The controls are not formatted and the window is not
resized.

FALSE IPF processes the request as normal.

This message is sent by the application to IPF when the application
requires IPF -specific information. The types of information are

• The current instance handle

466 Chapter 8

• The active communication object window
• The active window
• The group number of the current window

• Parameters

paraml reserved (USHORT)

usmessageid (USHORT)

HMQW INDEX
HMQW=TOC

HMQW _SEARCH

HMQW _ VIEWED PAGES

HMQW _LIBRARY

HMQW _ OBJCOM_ WINDOW

HMQW _INSTANCE
HMQW _ COVERPAGE

HMQW _ VIEWPORT

HMQW _GROUP _ VIEWPORT

HMQW _ACTIVEVIEWPORT

USERDATA

NULL value.

The type of window to query. It
is one of the following:
The handle of the index window.
The handle of the Table of
Contents window.
The handle of the Search Hitlist
window.
The handle of the Viewed Pages
window.
The handle of the Library List
window.
The handle of the active
communication window.
The handle of the help instance.
The handle of the IPF MDI
parent window.
The handle of the viewport
window found in the low order
word of paraml and param2
parameters.
The group number of the window
whose handle is found in param2
parameter.
The resource identification
number of the window whose
handle is found in param2.
The handle of the currently active
window.
The previously stored user data.

usselectionid (USHORT) is one of the following:
HMQVP _NUMBER A pointer to a USHORT; it

contains the res ID of the
window.

HMQVP_NAME

HMQVP_GROUP

Online Information Programming 467

A pointer to a string; it is the ID
of the window.
The group number of the
window.

param2 (PVOID) This parameter depends on the value of paraml:
• If paraml is HMQW _ VIEWPORT, then param2 is a pointer to the

res number, ID, or group ID.
• If paraml is HMQW _GROUP _ VIEWPORT, then param2 is the

handle of the viewport window for which the group number is
requested.

• If paraml messageid is HMQW _RES_VIEWPORT, then param2 is
the handle of the viewport for which the res number is requested.

• Return

reply ulreturn Value (ULONG), the return value is one of the following:

o The request was completed successfully.
Other This value depends on paraml. It is one of the following: the

handle (HWND), group number (USHORT), or res number
(USHORT) of the window, or the user data (USHORT).

This message is sent by IPF to the communication object when IPF has
encountered the DDF tag.

• Parameters

paraml (HWND) pageclienthwnd The client handle of the page that
holds the OBJCOM window.

param2 (ULONG) resid The res ID for the DDF tag.

• Return

reply hddfddthandle (HDDF); the return value is one of the following:

o An error occurred during processing of the application's DDF.

Other The DDF handle to be displayed.

468 Chapter 8

This message is sent by IPF to the application when a user has requested
keys for a function.

• Parameters

paraml (ULONG) NULL value.
param2 (ULONG) NULL value.

• Return

reply usHelpPanel (USHORT); the return value is one of the following:

o Do nothing.
Other The identity of the keys help window that is to be displayed.

This message is sent by the application to tell IPF to show the
application-defined 'Help for Help' window instead of the IPF 'Help for
Help' window.

• Parameters

paraml idUsingHelpPanel (USHORT)

The ID of the application-defined Using Help window. This value is one
of the following:

o The IPF Using Help window.
Other The ID of the application-defined Using Help window.

param2 (ULONG) NULL value.

• Return

jlreply (ULONG) NULL value.

D HM_SET_ACTIVE_WINDOW

This message is sent by the application, and this will allow the

Online Information Programming 469

application to change the active application window with which the IPF
help window is associated.

• Parameters

paraml hwndActiveWindow (HWND) The handle of the window
to be made active.

param2 hwndRelativeWindow (HWND) The handle of the window
next to which the help
window is to be
positioned.

• Return

reply ulreturnValue (ULONG), the return value is one of the following:

o The request was completed successfully.
Other Could find a help window. The request was not completed; for

more information, see the value of ulErrorCode of the
HM_ERROR message.

This message is sent by the application to tell IPF to set the size
coverpage window.

• Parameters

paraml (PRECTL) coverpagerectl
param2 (ULONG)

• Return

The size of the coverpage.
NULL value.

reply ulreturn Value (ULONG); the return value is one of the following:

o The request was completed successfully.
Other Could find a help window. The request was not completed; for

more information, see the value of ulErrorCode of the
HM_ERROR message.

470 Chapter 8

This message is sent by the application to tell IPF to replace the list of
help libraries specified in the initialization structure with a new list.

• Parameters

paraml HelpLibraryName (PSTRL) A pointer to a PSZ data type
(a string) that holds a list of
help window library names.
These names will be searched
by IPF for the requested help
window.

param2 (ULONG) NULL value.

• Return

reply ulreturn Value (ULONG); the return value is one of the following:

o The request was completed successfully.
Other Could find a help window. The request was not completed; for

more information, see the value of ulErrorCode of the
HM_ERROR message.

This message is sent by the application to tell IPF to change the text of
a help window title.

• Parameters

paraml HelpWindowTitle (pSTRL) A pointer to the Help window
title.

param2 (ULONG) NULL value.

• Return

reply ulreturnValue (ULONG); the return value is one of the following:

o The request was completed successfully.
Other Could find a help window. The request was not completed; for

more information, see the value of ulErrorCode of the
HM_ERROR message.

Online Information Programming 471

This message is sent by the application to tell IPF to identify the
communication object to which the HM_INFORM and
HM_QUERY_DDF_DATA messages are sent.

• Parameters

paraml (HWND) objcomhwnd The handle of the communication
object window to be set.

param2 (ULONG) NULL value.

• Return

reply hwndprevioushwnd (HWND) The handle of the previous
communication object window.

This message is sent by the application to tell IPF to show or hide
window IDs for each help window.

• Parameters

paraml fsShowPanelId (USHORT) The show window flag:

CMIC HIDE PANEL ID
CMIC-SHOW PANEL ID
CMIC-TOGGLE pANEL ID - - -

param2 (ULONG)

• Return

Hide a window.
Show a window.
Switch the display of the window
identity.
NULL value.

reply ulreturnValue (ULONG); the return value is one of the following:

o The request was completed successfully.
Other Could find a help window. The request was not completed; for

more information, see the value of ulErrorCode of the
HM_ERROR message.

472 Chapter 8

This message is sent by the application to tell IPF to store data in the
IPF data area.

• Parameters

paraml (ULONG) NULL value.
param2 (VOID)

• Return

reply return-value (ULONG); the value is one of the following:

TRUE The user data was successfully stored.
FALSE The request failed.

This parameter is sent by IPF to tell the appliation when the user selects
Tutorial item from the Help pull-down.

• Parameters

paraml TutorialN arne (pSTRL) . A pointer to the default tutorial
name.

param2 (ULONG) NULL value.

• Return

jlreply (ULONG) NULL value.

This message is sent by the communication to the currently active
communication object when the sending object wants to withdraw from
the communication chain.

• Parameters

paraml (HWND) The handle of the object to be withdrawn from the
communication chain.

Online Information Programming 473

param2 (HWND) Window containing the handle of the object to be
replaced.

• Return

Jlreply (ULONG) NULL value.

8.6 Window Functions

This section lists six PM functions that are used to incorporate help
information in an application program. Many of these functions have been
mentioned earlier; this time we will look at a them in a bit more detail.
They are

WinAssociateHelplnstance
WinCreateHelplnstance
WinCreateHelpTable
WinDestroyHelplnstance
WinLoadHelpTable
WinQueryHelplnstance

a WinAssociateHelplnstance-connect a help instance to an
appplication window chain

• Define macro and prototype

#define INCL_WINHELP

BOOL WinAssociateHelplnstance(HWND hwndHelpInstace,
HWND hwndApp)

• Description

hwndHelplnstace is a variable of type HWND that contains a handle
placed by successful operation of the WinCreateHelplnstance function.

hwndApp contains the handle of the application window to which a
previously created help instance is associated. The same association
happens with any of the children or owned windows of the application
window.

474 Chapter 8

• Return

This function returns a boolean flag with the following conditions:

TRUE
FALSE

If operation is completed successfully.
If operation resulted in an error. In case of an error, you
must check the ulReturnCode field of the IlELPINIT
structure for a more precise error code.

C WlnCreateHelplnstance-create a help instance

• Define macro and prototype

#define INCL_WINHELP

HWND WinCreateHelpInstance(HAB hab,
HELPINITphinitHMInitStructure)

• Description

hab is the handle of the application anchor block, which is returned by
the WinInitialize function.

phinitHMlnitStructure is a pointer to the IlELPINIT structure, holding
information, such as help table, help window name, or help library,
which are required to create the help instance.

• Return

This function returns a handle if a help instance is created; otherwise a
NULL is returned in case there is an error. In case of an error, you must
check the ulReturnCode field of the IlELPINIT structure for a more
precise error code.

C WlnDestroyHelplnstance-destroy help instance and
remove Its window from the parent window

• Define macro and prototype

#define INCL WINHELP /* Or use INCL WIN or INCL PM */
BOOL WinDestroyHelpInstance(HWND hwndHelpInstance)

Online Information Programming 475

• Description

hwndHelplnstance is a handle previously returned by
WinCreateHelpInstance for the help instance to be destroyed.

• Return

This function returns a boolean flag with the following conditions:

TRUE
FALSE

If the operation is completed successfully.
If the operation results in an error. In case of an error, you
must check the ulReturnCode field of the IlELPINIT
structure for a more precise error code.

a WlnCreateHelpTable-lndentlfy or change the help table

• Define macro and prototype

#define INCL WINHELP /* or use INCL WIN or INCL PM */
BOOL WinCreateHelpTable(HWND hwndHelpinstance,­

PHELPTABLE phthelpTable)

• Description

hwndH elpinstance is the handle of an instance of the help manager.

phthelpTable is the help allocated by the application.

• Return

This function returns a boolean flag with the following conditions

TRUE
FALSE

If the operation is completed successfully.
If the operation results in an error.

a WinLoadHelpTable-load a help table

• Define macro and prototype

#define INCL WINHELP
BOOL winLoadHelpTable(HWND hwndHelpinstance,

USHORT idHelpTable,
HMODULE module)

476 Chapter 8

• Description

hwndHelpinstance holds the handle of the help instance, which is
returned by the WinCreateHelplnstance function.

idHelpTable holds the name of the help table to be loaded.

module holds the handle of the module that contains the help table and
associated help subtable.

• Return

This function returns a boolean flag with the following conditions:

TRUE
FALSE

If the operation is completed successfully.
If the operation results in an error.

a WinQueryHelplnstance-get the help instance associated
with a particular application window chain

• Define macro and prototype

#define INCL_WINHELP

HWND WinQueryHelplnstance(HWND hwndApp)

• Description

hwndApp holds the handle of the application window.

• Return
The function returns a handle for a help window. If no help instance is
associated with the application, it returns a NULLHANDLE.

8.7 Tag Reference

The IPF tags direct the compiler as how the online data, whether it is part
of a program or a standalone information system, is to be presented to the
user. This section lists and describes all the tags used by the IPF compiler
to create help windows and online documents.

The structure and syntax of the IPF tags are similar to those of the
Generalized Markup Language (GML) which is also used in IBM's DCF

Online Information Programming 4n

document composition facility) product. With the IPF tag language you can
do the following kinds of formatting:

• Highlight text
• Set margins
• Add lists, notes, and notices
• Create tables
• Incorporate graphic objects, such as art and graphs
• Change size, font, and color of text
• Customize the display window

As mentioned earlier, the tags are embedded in the text and the
particular syntax description of each tag distinguishes itself from the text.
The general format of the tag is

:tagname attribute.

where tagname is the name of a tag. There are a few things to remember
about using tags:

• Tagname
• Element that the tag describes
• Attributes of the tag
• End tag

Some tags have attributes associated with them. An attribute is to give
more control information for the tag. An attribute is followed by
apostrophes or single quotation marks, for example,

:font facename='Tms Rmn'

An end tag is used to mark an end of a block, which starts with a tag with
the same name, except for 'e'. For example, the end tag for the :userdoc.
tag is the :euserdoc. tag.

In a source file, the IPF compiler required a minimum number of tags
in a specific order before the file can be compiled. For example,

:userdoc.
:hl id=custinfo.Tag Customer Information Help
:p.This is an example of how to use IPF tags.
:euserdoc.

contains the minimum number of tags for an acceptable compilation.

478 Chapter 8

The rest of the section gives the syntax, including an end tag if required,
of the IPF tags, followed by attributes and a brief description, to be used
to implement help information in an application or to create an online
document system.

DComment

• Tag general format

*

• Description

This tag is used to add comments in a file. The text related to this tag
is ignored by the compiler.

• Attribute

comment

D Application-controlled window

• Tag general format

:acviewport.

• Description

This tag enables an application to dynamically control the information
displayed in an IPF window.

• Attribute

dll=' ,
objectname=' ,
objectinfo=' ,
vpx=
vpy=
vpcx=
vpcy=

D Art link

Online Information Programming 479

• Tag general format

:artlink •

.
:eartlink.

• Description

This tag identifies link definitions for hypergraphic areas of a bitmap.

• Attribute

None.

CArtwork

• Tag general format

: artwork.

• Description

This tag identifies a bitmap to be copied to the user's file.

• Attribute

name=' ,
align=
linkfile= ' ,
runin
fit

C Break

• Tag general format

:br.

• Description

This tag causes a break in a line of a given text.

480 Chapter 8

• Attribute

None.

C Caution

• Tag general format

:caution •

.
:ecaution

• Description

This tag alerts the user to risk of an action.

• Attribute

text=' ,

C Character graphic

• Tag general format

:cgraphic •

.
:ecgraphic

• Description

This tag defines a character graphic.

• Attribute

None.

Online Information Programming 481

a Color

• Tag general format

:color.

• Description

This tag changes the colors of the text and text background.

• Attribute

fc=
bc=

a Define content

• Tag general format

:ctrl.

• Description

This tag defines the contents of the control area of a window.

• Attribute

ctrlid=
controls=
page
coverpage

a Define control

• Tag general format

:ctrldef •

.
:ectrldef.

• Description

This tag defines the control area of a window.

482 Chapter 8

• Attribute

None.

C Dynamic data formatting

• Tag general format

:ddf.

• Description

This tag allows the display of dynamically formatted data in an
application-controlled window.

• Attribute

res=

C Definition list

• Tag general format

:dl •

.
:edl.

• Description

This tag identifies a list of terms and definitions.

• Attribute

compact
tsize=
break=

C Document profile

• Tag general format

:docprof.

Online Information Programming 483

• Description

This tag specifies the heading-level entries to be displayed in the Table
of Contents window.

• Attribute

toe=
dll=' ,
objeetname=' ,
objeetinfo=' ,
etrlarea=

C Figure

• Tag general format

:fig •

.
:efig.

• Description

This tag identifies a figure.

• Attribute

None.

C Figure caption

• Tag general format

:figeap.

• Description

This tag specifies a figure title.

• Attribute

None.

484 Chapter 8

CFont

• Tag general format

:font.

• Description

This tag changes the font to the specified typeface, size, and code page.

• Attribute

facename=
size=
codepage=

C Footnote

• Tag general format

:fn •

.
:efn.

• Description

This tag identifies a pop-up window.

• Attribute

id=

C Headings

• Tag general format

:hl. through :h6.

• Description

This tag defines window characteristics.

• Attribute

res=
global
y=
group=
titlebar=
nosearch
toc=

CHide

id=
tutorial=' ,
width=
viewport
scroll=
noprint
ctrlarea=

• Tag general format

:hide •

.
:ehide.

• Description

Online Information Programming 485

name=
x=
height=
clear
rules=
hide
ctrlrefid=

This tag controls display of IPF text and graphics to meet conditions set
by the IPF _ KEYS = environment variable.

• Attribute

key=

C Highlighted phrase

• Tag general format

:hpl. through :hp9 •

.
:ehpn.

• Description

This tag emphasizes text by changing the font sty Ie or foreground color.

• Attribute

None.

486 Chapter 8

Clndex

• Tag general format

:il. and :i2.

• Description

This tag places topics into the index.

• Attribute

for :il.
id=
global
roots=' ,
sortkey=' ,

for :i2.
refid=
global
sortkey=' ,

a Index command

• Tag general format

:icmd.

• Description

This tag identifies the help window that describes a command.

• Attribute

external command
string

C Index synonym

• Tag general format

:isyn.

• Description

This tag identifies synonyms and word variations for the help keywords.

Online Information Programming 487

• Attribute

root=

a List Item

• Tag general format

:li.

• Description

This tag identifies an item within a list.

• Attribute

None.

CLines

• Tag general format

:lines •

.
:elines.

• Description

This tag turns formatting off.

• Attribute

align=

a Link

• Tag general format

:link •

.
:elink.

488 Chapter 8

• Description

This tag activates a link to additional information.

• Attribute

reftype=
database='
auto
split
vl?Y=
t~tlebar=

res=
, object=' ,

viewport
group=
vpcy=
scroll=

C Left margin

• Tag general format

:lm.

• Description

refid=
data=' ,
dependent
vpx=
vpcx=
rules=

This tag sets the left margin of the text.

• Attribute

margin=

a List part

• Tag general format

:lp.

• Description

This tag identifies an explanation within a list.

• Attribute

None.

Online Information Programming 489

Il Note

• Tag general format

:note.

• Description

This tag starts a note.

• Attribute

text=' ,

CNote

• Tag general format

:nt.

:ent.

• Description

This tag starts a note that can have multiple paragraphs.

• Attribute
text=' ,

Il Order list

• Tag general format

:01 •

.
:eol.

• Description

This tag starts a sequential list of items or steps.

490 Chapter 8

• Attribute

compact

C Paragraph

• Tag general format

:p.

• Description

This tag starts a new paragraph.

• Attribute

None.

C Parameter list

• Tag general format

:parml •

.
:eparml.

• Description

This tag starts a two-column list of parameter terms and descriptions.

• Attribute

tsize=
break=
compact

C Push button

• Tag general format

:pbutton.

Online Information Programming 491

• Description

This tag defines author-controlled push buttons.

• Attribute

id=
res=
text=' ,

C Parameter description

• Tag general format

:pd.

• Description

This tag starts the description for a parameter term in a parameter list.

• Attribute

None.

C Parameter term

• Tag general format

:pt.

• Description

This tag identifies a term in a parameter list.

• Attribute

None.

C Right margin

• Tag general format

:rm.

492 Chapter 8

• Description

This tag sets the right margin of the text.

• Attribute

margin=

a Simple List

• Tag general format

:sl .

.
:es1.

• Description

This tag starts a nonsequential list of items.

• Attribute

compact

a Table

• Tag general format

:tab1e •

.
:etab1e.

• Description

This tag formats information as a table.

• Attribute

co1s=' ,
ru1es=
frame=

Online Information Programming 493

C Title

• Tag general format

:title.

• Description

This tag provides a name for the online document.

• Attribute

None.

C Unordered list

• Tag general format

:ul •

.
:eul.

• Description

This tag starts a list of nonsequential items.

• Attribute

compact

C User Document

• Tag general format

:userdoc •

.
:euserdoc.

• Description

This tag identifies the source file that is to be compiled.

494 Chapter 8

• Attribute

None.

C Warning

• Tag general format

:warning.

:ewarning.

• Description

This tag alerts the user of a potential risk or possible error condition.

• Attribute

text=' ,

a Example

• Tag general format

:xmp.

:exmp.

• Description

This tag turns formatting off.

• Attribute

None.

Chapter

Preprocessor Directives

During the compilation of a C or C++ program, a preprocessor step takes
place. In this step several tasks may be performed:

• Tokens in the current file may be replaced by other tokens. Each
token comprises a series of characters, and tokens are separated by
white space. The only white space allowed on a preprocessor
directive is the space, horizontal tab, and comments.

• Include files may occur within the current file.
• Conditional compilation of a program.
• The line number of the next line of source and the filename of the

current file may be changed.
• Diagnostic messages may be produced.

The compiler looks for preprocessor directives on how to process this step.
This chapter describes these directives by giving the general format, a
description, and useful examples for each directive. The directives are:

#detine
#include
#ifndef
#pragma

#undef
#if
#else

operator
#elif
#endif

#error
#ifdef
#line

495

496 Chapter 9

Before delving into the directives, it is worth having a brief look at
conditional compilation directives. A conditional compilation directive
causes the preprocessor to select or discard portions of a source program
for compilation. What should be passed on to the compiler depends on the
conditions that the preprocessor evaluates.

There are many conditional compilation directives, and there are many
ways of using them. One way is to write portions of program code that are
applicable for different stages of the software life cycle: development,
testing, and production. With conditional directives you can "turn on" only
part of your source code and discard the rest, during a compilation. The
preprocessor does the work of selecting the appropriate parts to suit each
situation. The preprocessor allows the following conditional directives:

#if, #else, and #endif
#elif
#ifdef
#ifndef

As we will discuss the different preprocessor directives in detail, you will
notice that they add power and flexibility to development of sofware.

C #deflne

• General format

Simple form:
#define identifier token_string

Complex form:
#define identifier(parameterl, ••• ,parametern) token_string

• Description

The #define directive has two forms: simple and complex. In the simple
form, this directive tells the preprocessor to replace all the occurrences
of the identifier with the token_string.

The complex form is called a macro. A complex macro receives one to
many parameters when it is invoked. There should be no space between
the identifier and the left parenthesis. The parameters are separated by
commas. The token_string is the replacement code. A macro looks like
a function, and when it is invoked, it must have the same number of
arguments as the corresponding macro definition has parameters.

Preprocessor Directives 497

The scope of a macro definition begins when it is defined and does not
end until a corresponding #under directive is found. If a corresponding
#under directive is not found at all during the preprocessing step, the
scope of the macro definition lasts until the end of the compilation is
reached. Once removed, the same identifier can be reused to define
another macro. Macros are very useful in replacing function calls by
inline code, which leads to efficient programs.

A recursive macro is not fully expanded. For example, the definition

#define x(a,b) x(a+1,b+1) + 4

would expand x(20,10) to x(20+ 1,10+ 1) + 4 rather than trying to expand
the macro x over and over within itself.

You can also use the ID compiler option to define macros on the
command line, when the compiler is invoked. Macros defined on the
command line override macros defined in the source code .

• Example

In the following example, COUNT is associated with the number 5. A
#define directive does not use any storage area. The preprocessor
substitutes every occurrence of COUNT with the value 5, only once in
this case.

#define COUNT 5
main ()
{

}

int i;
for(i = o· i <= COUNT; i++)

printf ("New World Order");

In the example, ADD is a macro which has two parameters, a and b.
The replacement code is (a+b). In the main function, this ADD macro
is used to add x and y.

/***
This program illustrates the macro definition and its use.
**/
#include <stdio.h>
#define ADD(a,b) (a+b) /* macro to add */
main()
{

int x = 1, Y = 5;

printf("Sum of x and y is %d \n", ADD(x,y»;
}

498 Chapter 9

The following are a few examples of efficient programming using
macros.

/* find the minimum of two values */
#define min(a,b) (((a) < (b)) ? (a) (b)
/* find the minimum of two values */
#define max(a,b) (((a) > (b)) ? (a) (b)
/* check if a character is alpha */
#define ISALPHA(c) ((('a') <= (c)) && ((c) <= 'z')) \

I I (('A') <= (c)) && ((c) <= 'Z')))
/* copy string s to d */
#define Copy(d,s) strncpy(d, s, sizeof(d))
/* fill an array with zeroes */
#define Zero_array (a) memset(a, 0, sizeof(a)

C Predefined macros

Both C and C++ provide the following predefined macro names as
specified in the ANSI language standard. The name of each of these
macros has two leading and trailing underscore U characters. Although
they are available to you, these macros cannot be undefined by your
program.

Predefined
macros

DATE - -

TIME - -

FILE

LINE
-STDC-
- -

TIMESTAMP - -

Return
values

A character string containing the date when the
source file was last compiled. The date format is
Mnn dd yyyy, where Mnn is the month (Jan,
Feb, etc.) dd is the day, and yyyy is the year.
A character string containing the time when the
source file was last compiled. The time format is
hh:mm:ss.
A character string containing the source
filename.
An integer representing the current line number.
A nonzero integer value to indicate the
implementation follows ANSI Standard C,
otherwise it is zero.
A character string literal containing the date and
time when the source file was last modified.
The date and time will be in the form Day Mmm
dd hh:mm:ss yyyy where Day is the day of the
week (Mon, Tue, Wed, Thu, Fri, Sat, or Sun),

ANSI - -

SAA - -

SAAL2 - -

EXTENDED

Preprocessor Directives 499

Mmm is the month in an abbreviated form (Jan,
Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct,
Nov, or Dec), dd is the day, hh is the hour. mm
is the minutes, ss is the seconds, and yyyy is the
year.
Allows only language constructs that conform to
ANSI C standards. It is defined by using the
#pragma langlvl directive or ISa option.
Allows only language constructs that conform to
the most recent level of SAA C standards. It is
defined by using the #pragma langlvl directive
or IS2 option. This macro is not supported for
c++.
Allows only language constructs that conform to
SAA Level 2 C standards. It is defined by using
the #pragma langlvl directive or IS2 option.
This macro is not supported for C++.
Allows additional language constructs provided
by the implementation. It is defined using the
#pragma langlvl directive or IS2 option.

The C/C++ Tools compiler offers several other predefined macros:

_ CHAR_UNSIGNED Means that the default character type is
unsigned. It is defined using the #pragma chars
directive or IJ compiler option.

_CHAR_SIGNED Means that the default character type is signed.
Defined using the #pragma chars directive or IJ
compiler option.

CO MPAT Means that language constructs compatible with
earlier versions of the C++ language are allowed.
It is defined using the #pragma langlvl(compat)
directive or ISc compiler option. This macro can
be used only in C++ programs.

_cplusplus Means that the product is a C++ compiler. This
macro can be used only in a C++ program.

DBCS Means that DBCS support is enabled. It is
defined by using the ISn compiler option.

DDNAMES Means that the ddnames are supported. It is
defined by using the ISh compiler option.

DLL Means that the code for a DLL (dynamic-link
library) is being compiled. It is defined using the
IGe- compiler option.

500 Chapter 9

FUNCTION

IBMC

IBMCPP

M 1386

MULTI

OS2
=SPC-

TEMPINC - -

TILED - -

32BIT - -

• Example

Means the name of the function currently being
compiled. For C++ programs, it expands to the
actual function prototype.
Means the version number of the C/C++ Tools
C compiler.
Means the version number of the C/C++ Tools
C++ compiler.
Means that the code is being compiled for a
80386 chip or higher.
Means that the multithread code is being
generated. Defined using the /Gm compiler
option. .
Means the product is an OS/2 compiler.
Means the subsystem libraries are being used. It
is defined using the IRn compiler option.
Means that the template-implementation file
method of resolving template functions is being
used. It is defined using the 1Ft compiler option.
Means that the tiled memory is being used. It is
defined using the /Ot compiler option.
Means the product is a 32-bit compiler.

The following program prints the values of the predefined macros
LlNE, _FILE_, _DATE_, and _TIME_. It also prints the
value of CONF, which is defined as "YES" or "NO" depending on
whether _STDC_ is defined.

/***
This program illustrates predefined macros.
**/

#include <stdio.h>

#if STDC
define CONF "YES"
#else
define CONF "NO"
#endif

main ()
{

printf("Line File Date Time ANSI\n");
printf("%d %s %s %s %s\n",

LINE, _FILE_, DATE , TIME ,
- CONF);-

}

Preprocessor Directives 501

C #undef

• General format

#undef identifier

• Description

As mentioned earlier, the scope of a #define identifier lasts until the end
of a source file unless it is nullified with a #undef directive.

You can also use the IU compiler option to undefine macros. The IU
option does not undefine macros defined in source code.

• Example

The directive

#define COUNT 100

defines COUNT. And, the next directive COUNT

#undef COUNT

removes the identifier. The same identifier (COUNT) can be used again
to represent the same or another constant.

C # Operator

• Description

The preprocessor operator # causes a formal parameter of complex
macro definition to become a string. When using the # operator in a
complex macro definition, you have to remember the following rules:

• A parameter in a macro that is preceded by the # operator will be
converted into a character string literal containing the argument
passed to the macro.

• Leading and trailing white-space characters that appear before or after
the argument passed to the macro are deleted.

• Multiple white-space characters found within the argument passed to
the macro are reduced to single space character.

• If the argument passed to the macro has a string literal and if a \

502 Chapter 9

(backslash) character appears within the literal, a second \ character
will be inserted before the original \ when the macro is expanded.

• If the argument passed to the macro has a " (double quotation mark)
character, a \ character will be inserted before the" when the macro
is expanded.

• The conversion of an argument into a string literal occurs proir to
macro expansion on that argument. .

• If more than one ## operator or # operator appears in the replacement
list of a macro definition, the order of evaluation of the operators is
not defined.

• If the result of the replacement is not a valid character string literal,
the behavior is undefined.

• Example

The following example illustrates the use of operator #. In the macro
definition of massage the token x is preceded by #.

#def ine message (x) #x

main()
{

printf("Message is: %s\n", message(Peace has come));
}

When this program is run, the result is

Message is: Peace has come

When the macro message is invoked, the # operator will enclose the
argument with double quotes. Mer the execution of the preprocessor,
the macro expansion will become

printf("Message is: %s","Peace has come\n");

C terror-generate error message

• General format

#error character

• Description

The terror directive is used to generate an error message and stop the
compilation. The terror directive is useful in detecting errors in

Preprocessor Directives 503

conditional compilation. If the preprocessor passes a portion of your
program when it should not have, this directive gives you an appropriate
message and terminates the compilation.

• Example

In the following example, when the compiler reaches the terror
directive, it will show the message associated with it and stop.

#error Program: LGLP701, this is test code, should \
not be compiled

C #Include-Insert a file

• General format

#include "file_name" or
<file_name> or
characters

• Description

The #include directive causes the preprocessor to replace the line in a
program with the content of a specified file. Generally, a header file
contains other preprocessor directives, data definitions and declarations,
function prototypes, macros, or other #include directives. There are two
types of header files. One type is supplied with the C compiler, such as
stdio.h and stdlib.h; these files should not be changed. The other type
is header files used for your own programs, which multiply and grow
depending on the needs of the software design.

The convention is to enclose the system include files that are supplied
with the C or C++ compiler in brackets, such as

#include <stdio.h>

Files enclosed in brackets are searched in the following places in the
order indicated:

• Any directories specified using the II compiler option (that have not
been removed by the !Xc option). Any directories listed in the ICC
environment variable are searched before those specified on the
command line.

504 Chapter 9

• Any directories listed in the INCLUDE environment variable,
provided the !Xi option is not in effect.

The double quotation marks are used for user defined include files; for
example,

#include "mydef.h"

Files enclosed in double quotes are searched in the following places in
the order indicated:

• The directory where the original .c source file are found.
• Any directories listed using the II compiler option (that have not been

removed by the !Xc option). Any directories listed in the ICC
environment variable are searched before those specified on the
command line.

• Any directories listed using the INCLUDE environment variable,
provided the !Xi option is not in effect.

You can give a fully qualified filename and the preprocessor, searches
only the directory that is part of the name.

So far we discussed at the first two types of parameters: filename
enclosed in brackets and filename enclosed in double quotation marks.
The third option is to place characters which represent a macro. The
preprocessor resolves macros on an #include directive. Mter macro
replacement, the resulting token sequence must have a filename enclosed
in either double quotation marks or brackets; for example,

#define MONTH <july.h>
#include MONTH

• Example

The mydef.h file is an example of an include file, and it contains the
following lines:

/*mydef.h*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define RC FAIL -1 /* return for failure */
#define RC-SUCCESS 0 /* return code for success */
#define NULLPTR ((MFILE *) 0) /* null pointer */
#define EOS '\0' /* end-of-string */

Preprocessor Directives 505

typedef unsigned char UCHAR;

struct
{

struct mfile struct *id; /* memory file instance id */
int fmaxrows; /* maximum number of rows */
int fmaxcol; /* maximum number of columns

*/
int rows_full; /* number of rows filled */
UCHAR *mf_data-ptr; /* pointer to data storage */

};

typedef struct mfile_struct MFILE;

/* function prototypes */

MFILE *mf ist(int row, int col);
int mf rls(MFILE *mfptr);
int mf-read(MFILE *mfptr, char *fptr);
int *m~_getrp(MFILE *mfptr, int row);

It has #include directives, other preprocessor directives (#define),
structure definition, datatype definitions, and function prototypes. Next
is an example of how to use this mydef.h header file.

/***************************************
This program illustrates the use of the
preprocessor #include directive. .
**/

#include IImydef.h ll

main ()
{

}

During compilation of the program, the preprocessor will replace
#include "mydef.h" with the content of the mydef.h file. Notice that
we used double quotation marks instead of angle brackets.

A #define directive is used to define a macro that represents the name
of the C or C++ standard I/O include file. A #include directive is
subsequently used to make the header file available to the C or C++
program; for example,

#define IO_HEADER <stdio.h>

.
#include IO_HEADER /* equivalent to specifying #include

<stdio.h> */

506 Chapter 9

C #if, #elif

• General format

#if constant-expression_l
statements

#elif constant-expression_2
statements

#elif constant-expression_3
statements

#else
statements

#endif

• Description

The #if and #elif directives are used to compare the value of the
expression to zero. All macros are expanded, any defined expressions are
processed, and all remaining identifiers are replaced with the token O.

The #elif is an else-if control contruct. It is always preceded by the #if .
directive and followed by none or many #elif directives, and finally
followed by the directive #endif.

The #else directive is optional and it must be placed just before the
#endif directive. If the evaluation of constant-expression yields 1
(TRUE), then the next #elif or #else will be included for compilation.

The evaluation of expressions must follow these rules:

• No casts are performed.
• The expression can hold the defined unary operator.
• The expression can contain defined macros. If a macro is not defined,

a value of 0 is assigned to it.
• Arithmetic operation is performed using long int.

• Example

In the following example identifier DEBUG and TEST are defined and
conditional directives are used to select only one of the three definitions
and initialization of the variable in_filer]. In this case, the preprocessor
will send

static char in_filer] = "TEST.DAT" ;

to the compiler because expression TEST >= 1 yields value 1.

#define DEBUG 0
#define TEST 1
#if DEBUG >= 1

Preprocessor Directives 507

static char in_file[] "MY.DAT";
#if TEST >= 1

static char in_file[] = "TEST.DAT";
#elif

static char in_file[] = "PROD.DAT";
#endif

a #Ifdet-check whether a macro Is defined

• General format

#ifdef identifier
statements

#endif

• Description

The #ifdef directive is used to check whether an identifier has been
defined as a macro by the preprocessor. If it is defined, then the C
statements immediately following the directive #ifdef are passed to the
compiler.

• Example

In the following example, in_file is initialized to TEST.FIL if DEBUG
is defined as a macro by the preprocessor. Otherwise, it will be
initialized to PROD.FIL.

#ifdef DEBUG
static char in_file[] "TEST.FIL";

#else
static char in_file[] = "PROD.FIL";

#endif

The #ifdef directive checks for the existence of macro definitions.

If the identifier specified is defined as a macro, the tokens that
immediately follow the condition are passed on to the compiler.

508 Chapter 9

C #lfndef-check whether a macro is not defined

• General format

#ifndef identifier
statements

#endif

• Description

The #ifndef directive is used to check whether an identifier has not been
defined as a macro by the preprocessor. If it is not defined, then the C
or C++ statements immediately following the directive #ifndef are
passed to the compiler.

• Example

In the following example, in_rIle is initialized to TEST.FIL if DEBUG
is not defined as a macro by the preprocessor. Otherwise, it will be
initialized to PROD.FIL.

#ifndef DEBUG
static char in_filer]

#else
static char in_filer]

#endif

"TEST.FIL";

"PROD.FIL";

The #ifndef directive checks for the existence of macro definitions.

If the identifier specified is not defined as a macro, the tokens that
immediately follow the condition are passed on to the compiler.

The following example defines MAX_LEN to be 60 if EXTEND is not
defined for the preprocessor. Otherwise, MAX_LEN is defined to be 65.

#ifndef EXTEND
define MAX LEN 50
#else -
define MAX LEN 65
#endif -

C #else

• General format

#else statement

Preprocessor Directives 509

• Description

The #else directive accompanies the #if, #ifdef, or #ifndef directive. If
the condition found in these associated directives evaluates to 0, and the
conditional compilation directive contains a preprocessor #else directive,
the source text located between the preprocessor #else directive and the
preprocessor #endif directive is passed to the compiler .

• Example

In the following example, in_fde is initialized to TEST.FIL if DEBUG
is not defined as a macro by the preprocessor. Otherwise, it will be
initialized to PROD.FIL.

#ifndef DEBUG
static char in_file[]

#else
static char in_file[]

#endif

IITEST.FIL II ;

IIPROD.FIL II ;

The #ifndef directive checks for the existence of macro definitions.

If the identifier specified is not defined as a macro, the tokens that
immediately follow the condition are passed on to the compiler.

The following example defines MAX_LEN to be 60 if EXTEND is not
defined for the preprocessor. Otherwise, MAX_LEN is defined to be 65.

#ifndef EXTEND
define MAX LEN 50
#else -
define MAX LEN 65
#endif -

In the following example, an if-else-endif construct IS used for
conditional compilation.

/***
This program illustrates #if #else #endif.
**/
#include <stdio.h>
#define TEST 1
#if TEST >= 1

static char in_file[] IITEST.DATA II ;
#else

static char in_file[] = IIPROD.DAT";
#endif
main ()
{

FILE *fh;

510 Chapter 9

}

if ((fh = fopen (in_file, "r")) 1= NULL
return;

else
printf ("Input file is %s \n", in_file);

fclose (fh);

C #endlf

• General format

lendif

• Description

The lend directive ends a conditional directive such as #if, #ifdef, or
#ifndef.

• Example

Here are a few examples of using the #endif directive.

lif TEST >= 1
static char in_filer] "TEST.DAT";

lelif
static char in_filer] "PROD.DAT";

lendif

lif TEST >= 1
static char in_filer] = "TEST.DATA";

lelse
static char in_filer] = "PROD.DAT";

lendif

lifndef EXTEND
I define MAX LEN 50
#else -
define MAX LEN 65
#endif -

C #lIne

• General format

#line decimal-constant "filename"

Preprocessor Directives 511

• Description

The preprocessor line control directive is used to renumber the source
lines. The preprocessor assigns the source line, following the #line, with
the decimal-constant as the line number. The filename is optional; if it
is omitted, the current source file is assumed. The line number and
filename are available to your program through macros _LINE_ and

FILE . - -

• Example

In Function 1 and Function 2 the current value of macro LINE
is printed. Note that the line number is set to 2000 and 3000 with the
#line directive just before each function.

/***
This program illustrates the #line directive.
**/

#include <stdio.h>

#line 1000
main ()
{

}

Function 1();
Function=2();

#line 2000
static void Function_1()

{ . " . 1 . mb' d\" pr1ntf(Funct1on_1: 1ne nu er 1S % n, __ LINE __);
}

#line 3000
static void Function_2()

{ printf ("Function_2: line number is %d\n", __ LINE __);
}

C #pragma character_sequence

• General format

#pragma token •••

• Description

The #pragma directive allows you to pass intructions to the compiler.

token is specific to the implementation of the C compiler you are using.

512 Chapter 9

It is a series of characters gIvIng instructions and arguments to the
compiler. You can pass such information as title, comments, and
pagesize.

There are many programs available: alloc_text, chars, checkout,
comment, data_seg, define, disjoint, entry, export, handler,
implementation, import, info, isolated_call, langlvl, linkage, map,
margins, pack, priority, page, page size, seg16, sequence, skip, stack16,
strings, subtitle, and title ..

C #pragma allcc_text

• General format

#pragma alloc_text(codesegment,function •••)

• Description

The #pragma alloc_text directive is used to group functions into
different 32-bit code segments. This allows you to organize functions in
memory to achieve efficiency.

codesegment is the name of the code segment in which the functions are
placed.

function is the name of the subroutine. You can specify any number of
functions to be included in the named codesegment. If a function is not
listed here, it is placed in the default 32-bit code segment called
CODE32.

C #pragma chars

• General format

#pragma chars (signed-or unsigned)

• Description

The #pragma chars directive is used to specify that the compiler is to
treat all character objects as signed or unsigned data type. This pragma
must be placed before any statements in a file.

Preprocessor Directives 513

a #pragma checkout

• General format

#pragma checkout (resume or suspend)

• Description

The #pragma checkout directive is used to control the diagnostic
messages produced by the !Kn compiler options and is used to suspend
the diagnostics performed by the compiler when the !Kn option is given
during specific portions of your program, and then resume the same
level of diagnostics at some later point in the file.

• Example

The following line shows how nested #pragma checkout directives are
allowed.

/* Assume /Kpx has been specified */
#pragma checkout(suspend)

/* No diagnostics are performed */

.
#pragma checkout(suspend) /* No effect */

#Pra~a checkout(resume) /* No effect */

.
#pragma checkout(resume) /* Diagnostics continue */

a #pragma comment

• General format

#pragma comment compiler or
date or
timestamp or
<copyright or user> [," character"])

• Description

The #pragma comment directive is used to add a comment to the object
file.

514 Chapter 9

compiler is the name and version of the compiler and is written to the
end of the object file produced by the compiler.

date is the date and time of compilation and is added to the end of the
object file produced by the compiler.

timestamp is the last modification date and time of the source and is
added to the object file.

copyright indicates that the text specified in the character field is placed
by the compiler into the object file and is loaded into memory when the
program is run.

user indicates that the text specified in the character field is placed by
the compiler into the object file, but it is not loaded into memory when
the program is run.

C #pragma data_seg

• General format

#pragma data_seg(datasegment)

• Description

The #pragma data_seg directive lets you place static and external
variables in different 32-bit data segments.

After this directive is encountered, all static and external variables are
placed in the specified data segment either until another #pragma
data_seg directive is found or at the end of the compilation.

When using #pragma data _ seg, there are a few restriction to keep in
mind:

• String literals used to initialize pointers are not placed in the
specified data segment, but in the default 32-bit data segment
(DATA32). To place a string in a particular data segment, use an
array to initialize the string instead of a pointer; for example,

char str[] = "fruits";

instead of

Preprocessor Directives 515

char *str = "fruits";

• The #pragma data_seg directive affects only 32-bit data segments;
it does not apply to data placed in 16-bit segments because of the /Gt
option or #pragma seg16.

• Static and external variables declared previous to the first #pragma
data_seg are placed in the default DATA32 segment, with the
exception of uninitialized variables and variables explicitly initialized
to zero (they are found in the BSS32 segment).

a #pragma define

• General format

#pragma define(template_class_name)

• Description

The #pragma define directive is used to force the definition of a
template class, and you don't have to define an object of the class.

There are two main reasons to use the #pragma define pragma: (1) to
organize your program for efficiency and (2) to generate template
functions automatically.

a #pragma disjoint

• General format

#pragma disjoint(name [,name ...]

• Description

The #pragma disjoint directive is used to list the identifiers (or names)
that are not aliased to each other.
name of an expression. This expression can be an identifier, operator
function, conversion function, destructor, or qualified name.

The #pragma disjoint directive tells the compiler that none of the
identifiers listed share the same physical storage. This list can be used
for optimizations. If any identifiers actually share physical storage, the

516 Chapter 9

pragma may give incorrect results.

This pragma can appear anywhere in the source file. Note that a name
cannot make reference to any of the following:

• A member of a class, structure, or union
• A class, structure, or union tag
• An enumeration constant
• A label

The names must be declared before they appear in the #pragma disjoint
directive. Also, a pointer in the name list must not have been
dereferenced or be used as a function argument before appearing in the
#pragma disjoint directive.

C #pragma entry

• General format

#pragma entry (junc_name)

• Description

The #pragma entry directive tells the compiler that the name function
is the entry point for the application that is being built. Normally, OS/2
starts at an application provided by a C or C++ library entry point. This
entry function also performs initialization and termination. But if you
provide a different entry point using the #pragma entry, OS/2 calls this
entry point and does not execute any of the library initialization or
termination functions. When using #pragma entry, you must ensure
that, if your program requires initialization and termination functions,
they are provided.

Junc _name is the name of the function, and it must be found in the same
compilation unit as the #pragma entry directive. Also, the function
must be a declared as an external function.

C #pragma export

• General format

#Pra~a export (function name,
[I export_name"] ,ordinal)

Preprocessor Directives 517

• Description

The #pragma export directive tells the compiler that a DLL function is
to be exported, and it also lists the name of the function outside the
DLL.

function_name is the name of the function within the DLL.

export_name is the name for the function outside the DLL. If no export
name is specified, the default is the function name.

ordinal is the number of the function within the DLL. Another module
can import the function using either the same export name or the ordinal
number. For example, the statements

int abby(int);
#pragma export(abby, abbym, 4)

declare that the function called abby is to be exported. The directive
statement also says that the function can be imported by another module
using the name abbym or the ordinal number 4.

You must remember that there are two ways to create an import library
for the DLL:

• Create it from the DLL itself
• Provide a .DEF file with an EXPORTS entry for every function,

regardless of whether #pragma export is used.

For more information on DLLs and .DEF files, see Chap. 3.

C #pragma handler

• General format

#pragma handler(function)

• Description

The #pragma handler directive registers an exception handler code for
a particular function.

With the #pragma handler directive, the compiler generates the code
to install the C/C++ Tools exception handler _Exception before starting

518 Chapter 9

execution of the function. When function stops, the compiler execution
also generates code to destroy the exception handler. It is advisable to
use this directive whenever you change library environments or enter a
user-created DLL.

/unction is the name of the function for which the exception handler is
registered. You should declare this function before you use it in this
directive.

a #pragma Implementation

• General format

#pragma implementation(string_literal)

• Description

The #pragma implementation directive is used to tell the compiler the
name of the file that contains the function template definitions. These
definitions must correspond to the template declarations in the include
file containing the pragma.

The main reason for using #pragma implementation is to organize your
program for the efficient or automatic generation of template functions.

C #pragma Import

• General format

#pragma import(function,
["external_name"] "mod_name",ordinal)

• Description

The #pragma import directive lets you import a function from a DLL
using either an ordinal number or a function name different from the one
that it has in the DLL.

function is the name of the function that you use ill your source
program.

external_name is the name of the function in the DLL. In a C++

Preprocessor Directives 519

program, external_name can also be a function prototype. This
parameter is optional and, if not specified, it is assumed to be the same
as the function. Note that both function and external_name must be
defined only once in the file where the #pragma import is found.

mod_name is the name of the DLL containing the function.

ordinal is the position of the function within the DLL. If ordinal is 0,
then external_name is used to find the function. If ordinal is any other
number, external_name is ignored and the function is located by number.
Usually, it is faster to locate the function by number than by name.

One advatage of using #pragma import is to reduce the link time; the
linker does not require an import library to resolve external names. This
directive is also useful in C++ programming; you do not have to use the
fully qualified function name to call an imported function.

a #pragma info

• General format

#pragma info(all or
none or
restore or

<grp or nogrp>, •••)

• Description

The #pragma info directive is used to control the diagnostic messages
generated by the /W grp compiler options.

The #pragma info directive can be used instead of the /W grp option to
turn groups of diagnostics on or off. When you use #pragma info(grp)
it creates all messages associated with that diagnostic group. However,
specifying #pragma info(nogrp) does not generate any message
associated with that group.

a #pragma isolated_cali

• General format

#pragma isolated_call(name [,name])

520 Chapter 9

• Description

The #pragma isolated_call directive is used to list functions that do not
change data objects that are visible at the time of the function call. This
directive informs the compiler that none of the following functions has
side effects:
• Accessing a volatile object
• Modifying an external object
• Modifying a file

name can be an identifier, operator function, conversion function, or
qualified name.

This pragma should appear before any of the functions, found in the
identifier list, are called. All identifiers must be declared before they are
used in the pragma.

C #pragma langlvl

• General format
#pragma langlvl (ansi or

extended or
compat or
saa or
saa12)

• Description

The #pragma langlvl directive is used to select elements of the C/C++
Tools implementation. It must appear before any C code and can be
specified only once in a program file.

ansi is used to define the preprocessor variables
STDC.

ANSI - - and

extended is used to define the preprocessor variable _EXTENDED_.
The default language level is extended.

compat is used to define the preprocessor variable _COMPAT_.

saa is used to define the preprocessor variables _SAA_ and
SAA L2 . - --

saa12 is to define the preprocessor variable _SAA _ L2_.

Preprocessor Directives 521

D #pragma linkage

• General format

#pragma linkage (identifier,
<optlink or

system or
[far32] pascal or
far16 [cdel or
cdecl or

-pascal or
-pascal or
fastcall or

_fastcall>

• Description

The #pragma linkage directive is used to identify the linkage or calling
convention used in a function call.

identifier is the name of. the function that will be given the particular
linkage type or the name of a typedef that resolves to a function type.
If identifier is a typedef, then any function defined using this name will
be given the particular linkage type.

D #pragma map

• General format

#pragma map(identifier," name")

• Description

The #pragma map directive is used to associate an external name with
a C identifier. This directive is used primarily for compatibility with
IBM C/370, but it can also be used with the C/C++ Tools debugger.

D #pragma margin

• General format

#pragma nomargins
or

#pragma margins(l,r)

522 Chapter 9

• Description

The #pragma margins directive is used to set the right and left columns
in the input line that are to be scanned for input to the compiler.

Typically, the margin directive is used if there are characters outside a
certain range of columns in the source file to be ignored. The compiler
ignores any text in the source input that does not fall within the range
specified in the directive.

1 is the first column of the source input line that is to be scanned, and
must be between 1 and 65,535, inclusive. The default value is 1, which
is used when nomargins is specified.

r is the last column of the source input line that is to be scanned. It must
be greater than or equal to 1 and less than or equal to 65,535. If this
value is an asterisk (*), it indicates the last column of input. The default
value is infinity, which is used when nomargins is specified.

C #pragma pack

• General format

#pragma pack([l or
2 or
4])

• Description

The #pragma pack directive is used to set the byte alignment for the
structures and unions. This directive causes all structures and unions that
follow it in the program to be packed along a I-byte, 2-byte, or 4-byte
boundary. The alignment to a specific rule is effective until another
#pragma pack directive changes the packing boundary.

If no value is give with this directive, packing is performed along the
system default boundary, which is a 4-byte boundary, unless the /Sp
compiler option was used. If this option is used, #pragma pack causes
packing to be done along the boundary specified by /Sp. The /Sp option
is described in Chap. 3.

The Figure 9.1 shows how each data type is packed for each #pragma
pack option.

Preprocessor Directives

Data Type #pragma pack value
1 2 4

char 1 1 1

short 1 2 2

int or long 1 2 4

float, double, or long double 1 2 4

pointer 1 2 4

Figure 9.1 Data alignments according to data types.

C #pragma page

• General format

#pragma page([n])

• Description

523

The #pragma page directive is used to skip a specified number of pages
of the generated source listing.

n is the number of pages to skip; if it is omitted, the next page is started.

C #pragma pageslze

• General format

#pragma pagesize([n])

• Description

The #pragma pagesize directive is used to set the number of lines per
page for the generated source listing. The listing pagesize can be set
with the ILp compiler option. This option is described in Chap. 3.

n is the number of lines per page. The value of n must be between 16

524 Chapter 9

and 32,767, inclusive. The default page length is 66 lines.

C #pragma priority

• General format

#pragma priority([n])

• Description

The priority pragma specifies the order in which static objects are to be
initialized at run time.

n is an integer literal in the range of INT _MIN to INT _MAX. The
default value is O. A negative value indicates a higher priority; a positive
value indicates a lower priority.

The first 1024 priorities (INT_MIN to INT_MIN + 1023) are reserved
for use by the compiler and its libraries. The priority value specified
applies to all run-time static initialization in the current compilation unit.

C #pragma 8eg16

• General format

#pragma seg16(identifier)

• Description

The #pragma seg16 directive specifies that a data object will be shared
between 16-bit and 32-bit processes. This directive tells the compiler to
layout the identifier in memory so that it does not cross a 64-kbyte
boundary.

identifier can then be used in a 16-bit program and it can be a typedef
or a data object; for example:

typede£ struct moo moostr;
#pragma seg16(moostr)
moostr puux;

Preprocessor Directives 525

uses the typedef moostr to declare puux as an object addressable by a
16-bit program.

The equivalent of the #pragma seg16 directive is the lOt compiler
option. The lOt option is described in Chap. 3.

C #pragma sequence

• General format

#pragma nosequence
or

#pragma sequence(l,x)

• Description

The #pragma sequence directive is used to define the section of the
input line that is to contain sequence numbers. If a source file is used to
produce a system that uses sequence numbers, you can use this option
to have the sequence numbers ignored. The default is no sequence
numbers, which is the same as specifying #pragma nosequence.

1 is the column number of the left-hand margin. This value must be
between 1 and 65,535 inclusive, and must also be less than or equal to
the value of r.

r is the column number of the right-hand margin. This value must be
greater than or equal to 1 and less than or equal to 65,535. An asterisk
(*) can be assigned to r to indicate the last column of the line.

C #pragma skip

• General format

#pragma skip([n])

• Description

The #pragma skip directive is used to specify the number of lines of
the generated source listing.

526 Chapter 9

n is the number of lines that are skipped and must be a positive integer
less than 255. If n is omitted, one line is skipped.

C #pragma stack16

• General format

#pragrna stack16([size])

• Description

The #pragma stack16 directive is used to specify the size of the stack
to be allocated for calls to 16-bit functions.

size is the size of the stack in bytes, and must be in the range 512 to
65,532. The size applies to any 16-bit functions called from that point
until the end of the compilation unit, or until another #pragma stack16
directive is given.

If the size is omitted, the default value is 4096 bytes (4kbytes).
Remember that a 16-bit stack is taken from the 32-bit stack allocated for
the thread calling the 16-bit code. The 32-bit stack is therefore reduced
by the amount you specify with the #pragma stack16 directive. It is
important to ensure that the 32-bit stack is large enough for both your
32-bit and 16-bit code.

C #pragma string

• General format

#pragma strings(writable or readonly)

• Description

The #pragma strings directive is used to indicate the access mode of
memory where the compiler may place strings.

writable means the compiler may place string in read and write
memory; this is the default.

readonly means the compiler may place the string into read-only
memory.

Preprocessor Directives 527

D #pragma subtitle

• General format

#pragma subtitle("subtitle")

• Description

The #pragma subtitle directive places the text specified as the subtitle
on all subsequent pages of the generated source listing.

To specify the subtitle in a program listing, you can also use the lLu
compiler option.

D #pragma title

• General format

#pragma title("title")

• Description

The #pragma title directive places the text specified as the title on all
subsequent pages of the generated source listing.

To specify the title in a program listing, you can also use the ILt
compiler option.

Chapter

OS/2 Commands

This chapter is a reference of OS/2 Commands. As in the rest of the book,
for easy access, the infonnation of each command is separated into four
categories:

• General format
• Usage
• Description
• Return code

Before you begin to use this reference, it would be helpful to understand
a few general, but important points, of each type of infonnation presented
regarding the OS/2 commands.

General format: This gives the syntax of a command. In OS/2, there are
two types of commands: internal and external.

Internal: Internal commands run without any delay associated with
loading the program from disk. These commands are part of the OS/2
command processor. Their names appear as the first item in syntax. In
the example

529

530 Chapter 10

TYPE MYFILE.DAT

TYPE is an internal command.

External: External commands are on the disk as program files. Some of
these programs come with OS/2 and others you acquire by installing an
application, such as in word processing, compilers, utilities, and
databases. This chapter lists only external commands that accompany
OS/2. When an external command is entered, the OS/2 operating system
searches for it in the current directory of the default or specified drive.
If it is not found, the operating system continues searching for it in the
directories listed in the PATH statement. Their names are preceded by
an optional drive and path parameter in a given syntax. For example, the
ANSI is an external command:

[drive] [path] ANSI [ON or OFF]

In an OS/2 session, the combined length of a filename and path can be
up to 259 bytes. In a DOS session, the maximum length for a filename
and path is 80 bytes, of which 64 bytes is for the path, ensuring room
for an 8.3 filename in the lowest subdirectory.

Parameters: Mer the command, you enter parameters. Parameters are
classified as keywords, variables, or a combination of both. Include all
punctuation shown in the general form, such as colons, semicolons,
commas, quotation marks, and equal signs.

Generally, the parameters are path and filename, options, and other
required or optional information needed to successfully process the
command. Commands that allow you to enter filenames can accept a
path (directory) name before the filename.

You can use a period (.) for the current directory or two periods (..) for
the parent directory for any OS/2 command that allows you to enter a
path. Do not put a space between the drive, path, filename, and optional
extension. The colon, backslash, and period already serve as separators.

The current directory is the directory that the OS/2 operating system
searches when a filename is entered with no pathname. You have a
current directory for every drive in your system. For example, in the
next command if the drive and path are omitted, the filename is searched
in the current directory.

TYPE [drive] [path] filename

OS/2 Commands 531

Usage: This specifies how a command is used: CONFIG.SYS, command
line or batch file.

CONFIG.SYS: This is a configuration file for your system. It contains
many commands that are executed during the startup of the OS/2 system.
Some commands are issued strictly for this file and cannot be issued
otherwise, such as at the command line or in a batch file. The following
are a few examples of commands found in CONFIG.SYS.

DEVICE=C:\IBMCOM\PROTOCOL\LANPDD.OS2
DEVICE=C:\IBMCOM\PROTOCOL\LANVDD.OS2
DEVICE=C:\OS2\INSTALL\PRELOAD\PREL IMG.SYS
SET RESTARTOBJECTS=startupfoldersonly
RUN=C:\OS2\CMD.EXE Ic C:\CDSLUTIL\CFGCDSL.CMD
IFS=C:\OS2\HPFS.IFS ICACHE:512 ICRECL:4 IAUTOCHECK:CD
PROTSHELL=C:\OS2\PMSHELL.EXE
SET USER INI=C:\OS2\OS2.INI
SET SYSTEM INI=C:\OS2\OS2SYS.INI
SET OS2 SHELL=C:\OS2\CMD.EXE
SET AUTOSTART=PROGRAMS,TASKLIST,FOLDERS
LIBPATH=C:\IBMCOM\DLL;C:\COBOL\EXEDLL;C:\IBMLAN\NETLIB;

Command line: When the OS/2 command processor is running, you
will see a command prompt; for example,

[C : \MYWORK]

At this point the processor is ready to receive a command, and you enter
the command on the command line. When a command has finished
processing, a command prompt is again displayed on the screen. You
can type commands in uppercase letters, lowercase letters, or a
combination of both. From an OS/2 command prompt, you can type up
to 299 characters (bytes) before you press Enter. From a DOS command
prompt, you can type up to 127 bytes before you press Enter. You can
process commands from the command prompt of a session while running
your programs in other sessions. An example of a command issued at
the command line is

[C:\MYWORK] TYPE my work. day

J Batch file: OS/2 allows you give put one or more commands in a file
and pass them to the system for processing. A batch file has the
extension .CMD, and this is what distinguishes it from other files. In a
batch file, you can include internal and external commands. The
following is the content of a batch file:

procob INAME=MISMM04.SQC HOST=COBOL > MISMM04.MSl
MORE < MISMM04.MSl

532 Chapter 10

PAUSE
COBOL MISMM04.CBL LITLINK; >MISMM04.MS2
MORE < MISMM04.MS2
PAUSE
ANIMATE MISMM04
REM link and run
REM link @m04.lnk
REM MORE < MISMM04.MS2
REM PAUSE
REM mismm04
REM pause
REM MORE < MISMM04.LST

Description: For each command, there is a description of the main
functions of the command.

Return codes: Some commands issue a return code. This code tells you
the state of the processing. In a batch file, this code can be used to do
conditional processing.

D ANSI- turn extended keyboard and display support
on and off

• General format

[drive] [path] ANSI [ON or OFF]

• Usage: CONFIG.SYS, command line, and batch file.

• Description

The ANSI command is used to allow or prevent extended display and
keyboard support in the OS/2 environment. It turns on or off the ANSI
control sequence processing in OS/2 sessions. You use ANSI control
sequences to redefine keys, manipulate the cursor, and change display
color attributes. You must keep in mind that when KEYS is ON, ANSI
extended keyboard support is disabled.

ON means to turn on the extended display and keyboard support.

OFF means to turn off the extended display and keyboard support.

If you omit the parameter for this command, ANSI displays its current
status.

OS/2 Commands 533

C APPEND-set search path for data files outside the
current directory

• General format

[drive] [path] APPEND [IE]
[drive] [path] [/PATH:ON or IPATH:OFF]

• Usage: CONFIG.SYS, command line, and batch file.

• Description

The APPEND command is used to sets a search path for data files that
are outside the current directory. Enter APPEND without a parameter
to display the APPEND statement in your AUTOEXEC.BAT file. This
statement can be set by system installation. Enter APPEND to cancel
the APPEND command.

The first time you use APPEND, it is an external command, and you
might need to specify a drive and path to locate it. Once APPEND is
loaded, it becomes an internal command, and a drive and path are no
longer needed.

APPEND is useful when you want to keep an application program and
its associated data files in one directory and group information by
category in other directories. If you specify a path with APPEND the
first time you use it, this path is not stored in the environment, and you
can view or change it only with the APPEND command. You can
append as many directories as you can specify in a total of 128
characters.

The search sequence for a specified file is as follows: (1) search the
specified directory, or the current directory if you do not specify the
directory; then (2) search the directories indicated by the current
APPEND command.

APPEND is similar to the PATH command, although the PATH
command finds only startable files. You can look at or modify APPEND
paths in the environment by using APPEND, or you can use the SET
command.

534 Chapter 10

C ASSIGN- assigns a drive letter to a different drive

• General format

[drive] [path] ASSIGN [x = y] •••

• Usage: Command line and batch file.

• Description

The ASSIGN command is used to assign a drive letter to another drive.
If you enter this command without any parameter, it resets all drives to
their original state. ASSIGN allows you to perform disk operations on
drives other than A and B for programs that use only those two drives.

When using ASSIGN, remember that it hides the true device type from
commands that require actual drive information. In DOS sessions, some
commands do not work on drives that have ASSIGN in effect; they are
CHKDSK, DISKCOMP, DISKCOPY, FORMAT, JOIN, LABEL,
PRINT, RECOVER, RESTORE, and SUBST.

• Return code: 0 for normal completion.

J C ATTRIB-turns file attributes on or off

• General format

[drive] [path ATTRIB [[+R or -R] or
[+S or -S] or
[+H or -H] or
[+A or -A]] •••

[drive] [path] filename [/S]

• Usage: Command line and batch file.

• Description

The A TTRIB command. is used to either show or change the attribute (s)
of a file.

+R or -R is used to turn on or off the read-only attribute.
+S or -S is used to turn on or off the system file attribute.
+H or -H is used to turn on or off the hidden file attribute.
+A or -A is used to turn on or off the archive bit flag.

OS/2 Commands 535

filename is the name of the file for which the attribute is either displayed
or changed.

IS means to find all occurrences of that file.

• Return code: 0 for normal completion

C AUTOFAIL-Display Information about error conditions

• General format

AUTOFAIL [NO or YES]

• Usage: CONFIG.SYS.

• Description

The AUTOFAIL statement is used to tell the OS/2 system whether or
not to display information about error conditions.

NO causes a window to appear that informs you of an error condition.
This is the default value.

YES causes the appropriate error code to appear rather than a window.

C BACKUP-Store one or more flies from one disk to another

• General format

[drive] [path] BACKUP
< source-drive or

target-drive

path or
filename >

IL:filename
ID:mm-dd-yy
IT:hh:mm:ss
1M
IA
IF:xxx
Is J •••

• Usage: Command line and batch file.

or
or
or
or
or
or

536 Chapter 10

• Description

The BACKUP command is used to copy one or more files from one
disk to another for the purpose of backup. BACKUP can back up files
on disks of different types; however, there are a few exceptions.
BACKUP does not back up the system files (COMMAND.COM and
CMD.EXE), hidden system files, any open dynamic-link library files
(.DLL), and files opened with Deny Read/Write.

In case where the target drive is a diskette, after BACKUP fills a
diskette, it prompts the user to insert a new diskette. BACKUP also
marks a label on each diskette in consecutive order, and records the date
and diskette number.

When restoring the files with the RESTORE command, you will be
prompted to insert in the order they were backed up.

When the backup is successful, BACKUP creates two files, called
BACKUP. XXX and CONTROL. XXX, in the root directory on the target
diskette. The BACKUP. XXX file contains the contents of all the backup
files, and the CONTROL. XXX file has controlling information such as
paths and filenames.

<source-drive or path or filename>
This parameter specifies the source of the file(s) to be backed up and it
can be either a drive, a drive plus a directory, or a filename.

target-drive is the destination drive.

lL:filename is the option to specify the backup log file. If this option is
omitted, the BACKUP.LOG file is used and placed in the root directory
of the source drive.

lD:mm-dd-yy is used to back up those files that have changed on or after
the specified date.

!f:hh:mm:ss is used to back up those files that have changed on or after
the specified·· time. This option is usually recommended with the ID
option.

1M means to back up the current directory on C drive those files that
were changed since the last backup to A drive.

OS/2 Commands 537

/ A means to add files to the backup drive.

IF:xxxx means to format the destination diskette, where xxx:x is the type:
360, 720, 1200, 1440, or 2880.

/S means to copy files in the source directory and in all directories
below the starting source directory.

• Return code: ° Successful completion
1 Back up did not occur
2 Because of file errors, some files or directories were not

backed up
3 Termianted by the user
4 Terminated abnormally because of error
5 Not defined
6 BACKUP was unable to process the FORMAT.

command

a BASEDEV-Install base device driver

• General format

BASEDEV = filename arguments]

• Usage: CONFIG.SYS.

• Description

The BASEDEV statement is used to load base device drivers. The
driver supports devices such as a disk, diskette, printer.

filename is a file that contains the device-driver code that the OS/2
operating system needs to recognize a device and correct! y process
information received from or sent to that device. A base device driver
is one that is needed when the OS/2 operating system is first started.

BASEDEV processes the device drivers according to the extension of
the filename and not in the order in which they appear in your
CONFIG.SYS file. The BASEDEV statements are then processed in the
following order of filename extensions: .SYS, .BID, .VSD, .TSD, .ADD,
.113, .FLT, and .DMD.

Files with other filename extensions will not be loaded. The following

538 Chapter 10

base device drivers are included with your OS/2 diskettes:

IBM2ADSK.AD Driver for non-SCSI disk drives on Micro Channel
workstations

OS2DASD.DMD General-purpose device support for disk drives.
IBM1FLPY.ADD Driver for diskette drives on non-Micro Channel

workstations
IBM2FLPY.ADD Driver for diskette drives on Micro Channel

workstations
IBM1S506.ADD Driver for non-SCSI disk drives on non-Micro

Channel workstations
IBMINT13.I13 General-purpose device support for non-Micro

Channel SCSI adapters
PRINTOl.SYS Driver for locally attached printers on non-Micro

Channel workstations
PRINT02.SYS Driver for locally attached printers on Micro

Channel workstations
IBM2SCSLADD Driver for Micro Channel SCSI adapters
OS2SCSLDMD General-purpose device support for non-disk SCSI

devices

v C BOOT-switch between DOS and OS/2

• General format

[drive] [path BOOT <1082 or 1008 >

• Usage: OS/2 or DOS command line.

• Description

The BOOT command is used to switch between the DOS and OS/2
operating systems that are on the same hard disk. Before using the
BOOT command, ensure that all system operations are complete and all
programs are terminated. BOOT checks whether the following files
exist:

OS/2 files
OS2LD R (hidden file)
OS2KRNL (hidden file)
OS2\SYSTEM\BOOT.OS2
OS2\SYSTEM\CONFIG.OS2

DOS files
IBMBIO.COM or MSDOS.SYS (hidden file)
IBMDOS.COM or IO.SYS (hidden file)
OS2\SYSTEM\BOOT.DOS
OS2\SYSTEM\CONFIG.DOS

• Return code: BOOT displays the following:
• 0 for normal completion
• The appropriate error message

C BREAK-check Ctrl and Break keys

• General format

BREAK [ON or OFF

OS/2 Commands 539

• Usage: DOS command line, CONFIG.SYS, or batch file.

• Description

The BREAK command is used to tell DOS to check whether the Ctrl
and Break keys have been pressed before carrying out a program
request. Pressing and holding the Ctrl and Break keys together stops a
command from completing its task.

The current status is shown by typing BREAK without any parameter.

a BUFFERS-sets the number of disk buffers for the system.

• General format

BUFFERS = x

• Usage: CONFIG.SYS.

• Description

The BUFFERS command is used to set the number of disk buffers that
the system uses.

x is a number, and each number is a disk buffer. The buffer is a 512-
byte block of storage the system uses to read and write blocks of data
that does not occupy an entire sector. By increasing the value specified
for BUFFERS, you can increase the speed of your system. However,

540 Chapter 10

when you increase the number of disk buffers, you decrease the
available memory in your system.

C CACHE-specify parameters used by HPFS

•. General format

CACHE [/LAZY:state] [/MAXAGE:time]
[/DISKIDLE:time] [/BUFFERIDLE:time

• Usage: CONFIG.SYS (part of RUN command) or command line.

• Description

The CACHE command is used to specify the parameters that the High
Performance File System (HPFS) uses to write information to a disk. To
display the current value for CACHE, enter this command without a
parameter.

C CALL-execute a batch file from another batch file

• General format

CALL batchfile [argument]

• Usage: Batch file.

• Description

The CALL command is used to execute a batch file from within another
batch file without ending the first one. A batch file can then be used for
commands from within a master batch file.

When using this command, there are a few points to remember:

• Piping and redirection should not be used with the CALL command.
• You can use CALL from any line inside a batch file.
• The number of batch files is limited only by available memory. In an

OS/2 session, a batch file should not call itself. If it does, it runs out
of stack space and ends. In a DOS session, a batch file can call itself,
but make sure that the batch file eventually ends.

• CALL causes the data structure and file pointer of the currently
running batch file to be saved and a new data structure to be created.
When the called batch file ends, the original batch file continues its

OS/2 Commands 541

processing with the statement following CALL.
• You can use CALL to protect your INI files by having them

automatically backed up each time you start your system .
• Batch-file parameters can be passed to another batch file with CALL.

C CHCP-alternate between code-page character sets

• General format

CHCP [nnn]

• Usage: Command line.

• Description

The CHCP command is used to alternate between two code-page
character sets that are defined in your CONFIG.SYS file. If you enter
this command without a parameter, it displays the current code page
being used or to determine whether any are specified.

In the OS/2 environment, CHCP checks that the correct DEVINFO=
statement is included in the CONFIG.SYS file for the code page being
requested. If not, a message is displayed.

nnn is a number indicating which one of the two prepared system code
pages is correct. If it is the number of a code page that has not been
prepared for the system, you receive an error message. If no
CODEPAGE= statement is included in the CONFIG.SYS file, CHCP
returns the default code-page ID of the country.

• Return code: The current code page ID of the country.

C CO or CHOIR-changes the current directory

• General format

CHDIR or CD [drive] [path]

• Usage: Command line or batch file.

542 Chapter 10

• Description

The CD or CHDIR command is used to change the current directory,
allowing you to access any subdirectory you have created with the MD
command. If the path in the directory you want to change to has a path
different from the path in your current directory, you must enter its
entire path, including the root directory.

If you are not sure of the path of the directory you want to change to,
use the DIR or TREE commands to display the directories of the drive.
If you type this command without a parameter, CD displays the name
of the current directory.

C CHKDSK-scans a disk and checks it for errors

• General format

[drive] [path] CHKDSK [drive] [path] [filename]
[IF or IV] ••• [/C or IF:n] •••

• Usage: Command line or batch file.

• Description

The CHKDSK command is used to analyze directories and files. It
determines the file system type and produces a disk status report.
CHKDSK also displays the volume label and the volume serial number
of the disk.

CHKDSK can detect lost clusters on your disk. These are parts of files
that the system did not save completely, and this will take up space on
your disk. If CHKDSK finds them, it prompts the user with a message
asking whether to convert lost chains to files. If the answer is "yes"
(type a Y), CHKDSK converts these parts into files that you can
examine and delete to save space on your disk. If the answer is "no"
(type an N), CHKDSK deletes these parts of files from your disk
without warning. The files CHKDSK creates from lost chains follow
this naming convention: FILEnnnn.CHK (nnnn is a sequential number
starting with 0000).

• Return code: 0 Normal completion
1 Not defined

2 Not defined
3 Ended by user
4 . Ended because of error
5 Not defined

OS/2 Commands 543

6 CHKDSK was unable to execute file system's
CHKDSK program

C CLS-clear the screen

• General format

CLS

• Usage: Command line and batch file.

• Description

The CLS command is used to clear the window or entire display screen
of any information.

D CMD-start the OS/2 command processor

• General format

[drive] [path] CMD [drive] [path]
[IQ] [Is] [IKlstring" or IClstring"

• Usage: Command line or batch file.

• Description

The CMD command is used to start the OS/2 command processor,
CMD.EXE. This executable file is found in the C:\OS2 subdirectory. To
return to the previous command processor, use the EXIT command. To
start another command processor, type CMD without any parameter.

If any environment variable in the current command processor is altered,
the change is known only to the current command processor.

The quotation marks are used to pass significant characters to the new
CMD.EXE. To have a new CMD.EXE process the DIR command and
then have the parent CMD.EXE display the word "HELLO," type the
following:

544 Chapter 10

CMD Ic DIR & ECHO HELLO

To have the new CMD.EXE process the DIR command and display the
word "HELLO," type the following:

CMD IC "DIR & ECHO HELLO"

va CODEPAGE-select the system code pages

• General format

CODEPAGE = xxx [,yyyy

• Usage: CONFIG.SYS.

• Description

The CODEPAGE command is used to select the system code pages to
be prepared by the OS/2 operating system for code-page switching. The
code pages are character sets for a particular language. You must include
the appropriate DEVINFO statements (for keyboard and video display)
for both code pages in the CONFIG.SYS file.

You have to remember that the keyboard and country information
default to the national language code page supported by the country code
specified in the COUNTRY statement. The English code page is 437,
and the international code page, which contains a set of code common
to many languages, is 850.

C COMMAND-start DOS command processor

• General format

[drive] [path

• Usage: Command line.

• Description

COMMAND [drive] [path]
[/p or IE :x]
[/C string or IK string]

The COMMAND command starts the DOS command processor,
COMMAND. COM. The command processor is found in the

OS/2 Commands 545

C:\OS2\MDOS subdirectory. Once DOS is running, to return to the
previous command processor, use the EXIT command. If
COMMAND. COM is not found in the specified directory, the OS/2
operating system searches the environment for the value of COMSPEC.
This system variable, which is placed in the environment when a DOS
session is started, describes the path the system uses to reload the
command processor.

You can change the value for COMSPEC with the SET command. If
you use the SET command to change any environment variables in the
current command processor, the change is known only to the current
command processor. Returning to the primary DOS command processor
with the EXIT command causes a resumption of the environment that
the primary DOS command processor knew before the secondary copy
existed.

vtJ COMP-Compares content of flies

• General format

[drive] [path] COMP [drive] [path] [filename-l]
[drive] [path] [filename-2]

• Usage: Commmand line and batch file.

• Description

The COMP command is used to compare the contents of two files. You
would type COMP without a parameter to start a step-by-step menu to
compare files.

filename-l and filename-2 are the files to be compared; they can be on
the same drive or different drives, or in the same directory or different
directories. The two sets of files you want to compare can have the same
path and filenames, provided they are on different drives. If you specify
only a drive for the second file and do not specify a filename, COMP
assumes that the second filename is the same as the first. If you specify
a drive or path with no filename for either the primary or secondary path
and filename, COMP assumes a filename of * ..

After comparison of the two files, COMP proceeds with the next pair
of files that match the two filenames. When COMP cannot find any
more files that match the first parameter, it displays a message asking

546 Chapter 10

if you want to compare more files. Type a Y (yes) to compare two
more files, or end COMP by entering an N (no).

If the file sizes are different, COMP displays a message informing you
of this and asks if you want to continue. You now have the option to
continue or end the comparison. If you choose to continue, COMP
processes both files on the basis of the length of the smaller files.

• Return code: 0 Normal completion
1 No files were found to compare
2 Some files or directories were not processed because of

file errors
3 Ended by user
4 Ended because of error
5 Files comparison was not satisfactory.

C COPY-copies and combines flies

• General format

COpy [drive] < filename or path [filename]>
[/A or IB]
[+]
[, ,]
[drive] [path] [filename
[IV or IF or </A or IB>] •••

• Usage: Command line and batch file.

• Description

The COpy command is used to copy one or more files. You can copy
files from one diskette or hard disk to another or can copy files within
directories. If you want to copy one or more files to a subdirectory,
make sure that the subdirectory exists.

+ means to append files. This option is used when merging multiple files
into one file, or when adding one file to the end of another.

+ " means to change the date and time. This option is used when you
want to change the date and time of a file, or if you want to update the
date and time of a file after it is copied. You can use global filename
characters in the source file specification to change the dates and times
of a group of files. If you do not include a target file specification, all

OS/2 Commands 547

files found that match the source file specification remain where they
are, but their dates and times are changed.

Note: The destination can be a device name, such as console (CON) or
printer (pRN).

C COUNTRY-specify information for a country

• General format

COUNTRY = nnn [, [drive] [path] filename]

• Usage: CONFIG.SYS.

• Description

The COUNTRY command is used to specify country-dependent
information to OS/2. OS/2 identifies the following information for a
country:

• Date and time format
• Decimal separator
• Character-case map table
• Sequence by which data is sorted

C CREATEDD-create a dump diskette

• General format

[drive] [path] CREATE DO target-drive

• Usage: Command line.

• Description

The CREAREDD command is used to make a dump diskette to be used
with the standalone dump procedure. This utility program prepares a
diskette for an OS/2 memory dump. If a dump requires more than one
diskette, the first diskette must be prepared with CREATEDD while the
rest can be any formatted diskette. This command is intended for those
with advanced technical knowlege of OS/2. When you use CREATEDD
to format a diskette, all the information on the diskette is erased.

548 Chapter 10

C DATE-change or show system date

• General format

DATE [mm-dd-yy]
[dd-mm-yy]
[yy-mm-dd]

• Usage: Comrnand line and batch file.

• Description

The DATE command is used to either show or change the date used by
the system. It also resets the date on your computer's clock. This date
is recorded in the directory when you create or change a file.

When entering a new date, the system accepts a slash (I), a period (.),
and a dash (-), as the valid date separator for your country. You can
change the format in which the date is displayed with the COUNTRY
command in your CONFIG.SYS file. If you enter this command without
a parameter, DATE displays the system date and prompts you to change
it.

C DDINSTAL-install new device drivers

• General format

DDINSTAL

• Usage: Command line.

• Description

The DDINSTAL command provides an automated way to install new
device drivers after the OS/2 has been installed. After you enter this
command, DDINSTAL will show the device driver installation
the window from which the device-driver files are installed.

These files are provided on a separate diskette called a device support
diskette. This diskette contains a device-driver profile file (with
extension .DDP) that controls the installation process. The DDINSTAL
program uses the information from the device-driver profile to add the
necessary statements to the CONFIG.SYS file and to copy all the
support files into their appropriate directories on the hard disk.

OS/2 Commands 549

Il DEBUG-access DOS DEBUG environment

• General format

DEBUG [drive] [path] [filename]

• Usage: Command line.

• Description

The DEBUG command without a location and filename is used to
access the DOS DEBUG environment and must be able to enter all
DEBUG commands in response to the DEBUG prompt, a hyphen (-).
DEBUG commands are

? Shows a list of the DEBUG commands
A Assembles 8086,8087, and 8088 mnemonics
C Compares two portions of memory
D Shows the contents of memory
E Enters data into memory starting at a specified address
F Fills a range of memory with specified values
G Runs the executable file that is in memory
H Performs hexadecimal arithmetic
I Shows one byte value from a specified port
L Loads the contents of a file or disk sectors into memory
M Copies the contents of a block of memory
N Specifies a file for an L or W command, or specifies the

parameters for the file that are being tested
o Sends one byte value to an output port
P Executes a loop, a repeated string instruction, a software interrupt,

or a subroutine
Q Stops the DEBUG session
R Displays or alters the contents of one or more registers
S Searches a portion of memory for a specified pattern of one or

more byte values
T Processes one instruction and then displays the contents of all

registers, the status of all flags, and the decoded form of the
instruction that DEBUG will process next

U Disassembles bytes and displays the corresponding source
statements

W Writes the file being tested to a disk
XA Allocates expanded memory

550 Chapter 10

XD Deallocates expanded memory
XM Maps expanded memory pages
XS Displays the status of expanded memory

C DETACH-detach OS/2 program

• General format

DETACH command

• Usage: Command line and batch file.

• Description

The DETACH command is used to start a program, and when it is
running, the program is detached from the command processor. Such a
program must be able to process programs independently outside the
control of the command processor, without issuing any input or output
calls to the keyboard, the mouse, or the display.

You can detach any program, command, or file that does not require the
use of a screen (e.g., internal commands and batch (.CMD) files). The
OS/2 system detaches CMD.EXE when it runs the internal command or
batch file. For example, if you type DETACH DIR, it is changed to the
equivalent of DETACH CMD.EXE /C DIR.

With the DETACH command, you can use redirection sequences to
redirect a program's standard input and output to devices other than the
keyboard and the display. This allows the program to run without
interaction with the keyboard, mouse, or display.

C DEVICE-install device driver

• General format

DEVICE= [drive] [path] filename [argument •••]

• Usage: CONFIG.SYS.

OS/2 Commands 551

• Description

This DEVICE command is used to load a device driver. It is used to
load drivers to support standard default devices, such as standard system
display terminals, keyboards, printers, diskette drives, hard disk drives,
and serial devices. You can, however, replace these or add other devices
by coding and loading a device driver using DEVICE statements in the
CONFIG.SYS file. DEVICE statements are processed in the order in
which they appear in the CONFIG.SYS file.

filename is a file that contains the code needed so that the OS/2
operating system can recognize the device and correctly process
information received from or sent to that device.

Device drivers supplied with OS/2 diskettes are as follows:

Driver

ANSI.SYS

COM.SYS

EGA.SYS

EXTDSKDD.SYS

LOG.SYS

MOUSE.SYS
OS2CDROM.DMD
PMDD.SYS
POINTDD.SYS
TOUCH.SYS
VDISK.SYS
VEMM.SYS
VXMS.SYS

Description

Extended screen and keyboard support for DOS
sessions
OS/2 application programs or system programs,
such as SPOOL, to use serial devices
DOS programs that require Enhanced Graphics
Adapter (EGA) support to be run
Access to an external diskette drive referencing
a logical drive letter
System error logging using the SYSLOG utility
program
Support for pointing devices
CD-ROM support for OS/2 sessions
Draw support for OS/2 sessions
Mouse pointer draw support
Touch devices
A simulated disk called a virtual disk
DOS Expanded Memory Manager
DOS Extended Memory Specification

C DEVICE-install serial port drivers

• General format

DEVICE= [drive [path] COM.SYS
[(n,addr,IRQ,S) or

(n, addr, IRQ)]

552 Chapter 10

• Usage: CONFIG.SYS.

• Description

This DEVICE command is used to support other devices attached to
serial ports COMl through COM4; the DEVICE command for these
ports must be listed before the DEVICE=C:\OS2\COM.SYS statement
in the CONFIG.SYS file, or the port will be unavailable to COM.SYS.
The COM.SYS file supports ports COMl, COM2, COM3, and COM4.

C DEVICE-install EGA register interface device driver

• General format

DEVICE = [drive] [path] EGA.SYS

• Usage: CONFIG.SYS.

• Description

"This DEVICE command is used to support the EGA register interface.
The EGA.SYS device driver provides support for the EGA register
interface in DOS sessions. EGA.SYS must be installed for those
application programs that use the EGA register interface.

C DEVICE-access external disk drive

• General format

DEVICE = [drive] [path] EXTDSKDD.SYS
<1D:d or

!f:t or
/S:s or
lH:h or
IF:f>

• Usage: CONFIG.SYS.

• Description

This DEVICE statement allows you to access a disk using a logical
drive letter. More than one external device driver can be installed at the
same time. The maximum number is the total number of physical
diskette drives installed in your system.

OS/2 Commands 553

D DEVICE-install logging service device driver

• General format

DEVICE = [drive] [path] LOG.SYS
[/E:x] [/A:X] [/OFF]

• Usage: CONFIG.SYS.

• Description

This DEVICE statement is used to activate the System Error Logging
Service (SELS) device driver. Once activated, the SELS can be paused.
When paused, no error logging is performed.

For the logging servece to work, You must also include a
RUN=LOGDAEM.EXE command in the CONFIG.SYS file in addition
to this DEVICE=LOG.SYS statement. Together, these two commands
and their parameters allow the SELS to retrieve error data and keep that
data in specific error-log files. LOG.SYS is the filename of the SELS
device driver.

D DEVICE-install pOinter device driver

• General format

Device Dependent Statement

DEVICE = [drive] [path] filename
[SERIAL=COMn]

Device Independent Statement

DEVICE = [drive] [path] MOUSE.SYS
[QSIZE=q] [TYPE=name] [RELAXED]

• Usage: CONFIG.SYS.

• Description

This DEVICE statement is used to install the pointing device driver,
such as a mouse. In conjuction with the pointer device driver, you have
to install the POINTDD.SYS device driver. To be able to use a mouse
in programs running in a DOS window or full-screen session or a WIN­
OS/2 session, the VMOUSE.SYS· device driver must also be installed.

554 Chapter 10

These device drivers are installed automatically at the time of OS/2
installation when the system detects the presence of a supported pointing
device.

C DEVICE-install CD-ROM device driver

• General format

DEVICE = [drive] [path] OS2CDROM.DMD
[IV or

IQ]

• Usage: CONFIG.SYS.

• Description

This DEVICE statement is used to install the driver for CD-ROM
drives.

C DEVICE-install pointer draw device driver

• General format

DEVICE = [drive] [path] PMDD.SYS

• Usage: CONFIG.SYS.

• Description

This DEVICE statement is used to install the pointer draw device-driver
for OS/2 sessions. The DEVICE=PMDD.SYS statement is added to your
CONFIG.SYS file when you install the OS/2 operating system. When
the system starts, it uses the PMDD.SYS device driver to provide
pointer draw support for OS/2 sessions.

If the PMDD.SYS device statement is removed from your CONFIG.SYS
file, your system will not restart. If this happens, take the following
steps:

• Insert the OS/2 Installation Program diskette. When the logo screen
appears, proceed to the Welcome screen and press Esc .

• Copy the file, CONFIG.BAK, into the root directory. You now have
a generic backup CONFIG.SYS file that you can rename to be your
CONFIG.SYS file.

OS/2 Commands 555

• Use the System Editor to edit the CONFIG.SYS file.
• Restart the system.

C DEVICE-Install mouse pointer

• General format

DEVICE = [drive] [path] POINTDD.SYS

Device Dependent Statement

DEVICE = [drive] [path filename
CODE INIT

Device Independent Statement

DEVICE = [drive] [path] TOUCH.SYS
[QSIZE=q or TYPE=name]

• Usage: CONFIG.SYS.

• Description

This DEVICE command is used to install the mouse-pointer draw
device. Before you can use a mouse, you must load this device driver,
in addition to specifying the appropriate mouse device-driver statements
in the CONFIG.SYS file.

POINTDD.SYS provides draw support in all text modes for OS/2
sessions; POINTDD.SYS tracks (provides mode information) for all
advanced function modes on the 8514A. It tracks for CGA (Color
Graphics Adapter), EGA, and VGA (Video Graphic Array) graphic
modes in OS/2 sessions.

This statement is also used to install drivers for touch devices. For a
touch device to be effectively used, the POINTDD.SYS device driver
and appropriate mouse device-driver support must be loaded. In addition,
these statements must be included in the CONFIG.SYS file in the
following order:

• A device-dependent statement that gives the name of the file
containing the information for the touch device you use

• A device-independent statement that identifies the touch device to
TOUCH.SYS

556 Chapter 10

a DEVINFO-prepare a device for code-page switching

• General format

DEVINFO [drive] [path] filename [arguments]

• Usage: CONFIG.SYS.

• Description

The DEVINFO command is used to prepare a device, such as your
keyboard or display terminal, for code-page switching. For each device
used for code-page switching, there must be a separate DEVINFO
statement.

a DEVINFO-prepare display for system code-page switching

• General format

DEVINFO = SCR,device, [drive] [path] filename

• Usage: CONFIG.SYS.

• Description

This DEVINFO statement is used to prepare a display for system code­
page switching. This statement is one of the interrelated CONFIG.SYS
statements required for successful code-page switching. The other
statements are CODEPAGE and COUNTRY.

To prepare a VGA display, type the following in the CONFIG.SYS file:

DEVINFO=SCR,VGA,C:\OS2\VIOTBL.DCP

a DEVINFO-prepare keyboard for system code-page switching

• General format

DEVINFO = KBD,layout, [drive] [path] filename

• Usage: CONFIG.SYS.

OS/2 Commands 557

• Description

This DEVINFO command is used to prepare a keyboard for system
code-page switching. This statement is one of the interrelated
CONFIG.SYS statements required for successful code-page switching.
The other statements are CODEPAGE and COUNTRY.

The DEVINFO=KBD statement specifies your keyboard layout and a
file named KEYBOARD.DCP that contains a keyboard layout table for
translating keystrokes into the characters of each code page supported by
the system.

To prepare a U.S. keyboard using the keyboard layout, type the
following in the CONFIG.SYS file:

DEVINFO=KBD,US,C:\OS2\KEYBOARO.OCP

C DIR-lists the flies In a directory

• General format

OIR [drive [path] [filename]
[Iw or

IF or
Ip or
IN or
IA or
IB or
10 or
IR or
Is or
IL] ...

• Usage: Command line and batch file.

• Description

The DIR command is used to list the files and subdirectories in a
directory. If you type this command without a parameter, list the files
in the current directory. DIR shows the name, size (in bytes), and the
date and time of the file. DIR also displays the disk volume label and
volume serial number. It also gives the total number of files, the number
of bytes used in the files displayed, and the amount of free space (in
bytes) remaining on the disk.

When using DIR, you must remember that directory entries for hidden
system files are not listed, although they may exist. Also, if you do not

558 Chapter 10

specify a filename extension, adding an asterisk (*) after the filename
indicates that all files with that filename (regardless of the extension)
should be displayed. DIR shows files consecutively on the screen if you
specify multiple filenames. You can include a drive and path when
specifying multiple filenames and may also use the global filename
characters * and ? in the filename you specify.

C DISKCACHE-memory allocation for control information

• General format

DISKCACHE = n [,LW] [,T] [,AC:x]

• Usage: CONFIG.SYS.

• Description

The DISKCACHE command is used to allocate a specific number of
blocks of memory for control information and disk cache. Basically,
what the disk cache does is allow a portion of the system storage to be
used as an additional hard-disk buffer. Another advantage of
DISKCACHE is to speed up application programs that read hard disks
by keeping hard disk data frequently accessed in a cache buffer. When
an application program requests hard-disk data that is already in the
cache buffer, the disk cache sends the data directly to the application
program. This method of accessing data is much faster than if the data
had to be read from the disk each time.

C DISKCOMP----compare two diskettes

• General format

[drive] [path] DISKCOMP {source-drive] [target-drive]

• Usage: Command line and batch file.

• Description

The DISKCOMP command is used to compare the contents of the
diskette in the source drive to the contents of the diskette in the target
drive.

If you enter this command without a parameter, DISCOMP starts a step-

OS/2 Commands 559

by-step procedure to compare the contents of diskettes in different
diskette drives.

Remember that DISKCOMP does not work in DOS sessions on drives
that have an ASSIGN, JOIN, or SUBST command in effect. Also,
DISKCOMP does not work on network drives.

• Return code: 0 for normal completion or displays the appropriate
error message.

C DISKCOPY-copy one diskette to another

• General format

[drive] [path] DISKCOPY [source-drive] [target-drive

• Usage: Command line and batch file.

• Description

The DISKCOPY command is used to copy the contents of the diskette
in the source drive to the diskette in the target drive. If needed, the
target diskette is formatted during the copy. Remember that neither the
source nor the target drive can be a hard disk or a virtual drive.
DISKCOPY also displays the volume serial number of the target
diskette.

DISKCOPY does not work in DOS sessions on drives that have an
ASSIGN, JOIN, or SUBST command in effect.

• Return code: 0 for normal completion or displays the appropriate
error message.

C DOSKEY-retrlve DOS command and create macros

• General format

drive]
[

[path] DOSKEY
lREINSTALL or
IBUFSIZE=n or

1M or
18 or

IOVERSTRIKE or
IINSERT] •••

[Macroname=text]

560 Chapter 10

• Usage: DOS Command line or batch file

• Description

The DOSKEY command is used to recall DOS commands, edit
command lines, and create macros. After the command is recalled, you
can edit it and reissue it.

The following keys are used to recall the commands.

Key Recall

Up Arrow Recalls the DOS command you used before the one
displayed

Down Arrow Recalls the DOS command you used after the one
displayed

Page Up Recalls the first DOS command you used in the current
session

Page Down Recalls the most recent DOS command you used

C DOS-Specify memory for DOS kernel

• General format

DOS= <HIGH or LOW> , < UMB or NOUMB >

• Usage: CONFIG.SYS.

• Description

The DOS command is used to specify whether the DOS kernel will
reside in the high memory area (HMA) and whether the operating
system or DOS applications will control upper memory blocks (UMBs).

C DPATH-specify search path for data files

.• General format

DPATH <[drive] path> [i [drive] path] •••

• Usage: CONFIG.SYS, command line, and batch file.

OS/2 Commands 561

• Description

The DPATH is an environment variable, and its values give application
programs the search path to data files that are outside the current
directory. The DPATH environment variable can be set only using the
SET command in OS/2 sessions.

If you type DPATH without a parameter, DPATH shows the current
value of the DPATH environment variable. Also, if you type DPATH,
followed by a semicolon (;), it clears the DPATH environment variable.
DPATH indicates what directories applications should search for in their
data files (if an application program uses the DPATH directory list).

C EAUTIL-spllt and JOin extended attributes

• General format

EAUTIL datafile [holdfile] [IS [/R] or
I J [10 or 1M]]

[Ip]

• Usage: Command line and batch file.

• Description

The EAUTIL command is used to remove and save extended attributes
from a file and then rejoin the extended attributes to the file.

• Return code: 0 Normal completion
1 File not found
4 Ended because of error

C ECHO-turn display of commands on or off

• General format

ECHO ON or
OFF or

message]

• Usage: Command line or batch file.

• Description

The ECHO command is used to show or to prevent the screen output

562 Chapter 10

of OS/2 commands as they are run from a batch file. You can control
(I) and redirect (» output from a batch file. You can enter this command
at the command line without a parameter to display the current ECHO
state.

C DEL or ERASE-delete file

• General format

DEL or ERASE [drive] <filename or
path [filename] > [/P or IN]

• Usage: Command line and batch file.

• Description

The DEL or ERASE command is used to remove one or more files
from a drive. ERASE or DEL does not delete a subdirectory name. To
remove a directory, use the RD or RMDIR command; however, ERASE
or DEL will erase the contents of a subdirectory. In addition, read-only
and' hidden files, such as the operating system files of IBMBIO.COM
and IBMDOS.COM, cannot be deleted.

Before erasing all files in a directory, the system displays the name of
the directory, along with the message: Are you sure (YIN)? If you enter
a Y (yes), it erases all the files of a directory; if you enter an N (no), the
DEL or ERASE command is aborted.

C EXIT-exit from the command processor

• General format

EXIT

• Usage: Command line.

• Description

The EXIT command is used to close the current command processor
(CMD.EXE or COMMAND.COM). Control is returned to the previous
command processor, or to the desktop if no previous session exists.

In case of a program, you must first end the program before typing
EXIT. If no previous command processor exists, typing EXIT returns
you to the desktop.

OS/2 Commands 563

C EXTPROC-deflne external batch processor

• General format

EXTPROC [drive] [path] filename [arguments]

• Usage: Batch file.

• Description

The EXTPROC command is used to define an external batch processor
for a batch file. With this command you can substitute your own batch
processor for the OS/2 batch processor.

The EXTPROC command must be the first statement in any batch file
you want processed by your batch processor. CMD.EXE calls your batch
processor to process your batch-file statements.

C FCBS-define file control block

• General format

FCBS = total, locked

• Usage: CONFIG.SYS (DOS only).

• Description

The FCBS command is used to define a file control block used by a
program to store specific information about files currently used. This
statement has no effect in OS/2 sessions.

If a program tries to open more than the number of files specified in the
FCBS statement, the system closes the least-recently used file control
block and opens the new file.

C FDISK-manage partition or logical drive

• General format

[drive] [path FDISK [drive] [path]
< IQUERY or

ICREATE or
IDELETE or

564 Chapter 10

• Usage: Command line.

• Description

ISETNAME:name or
ISETACCESS or
ISTARTABLE or
IFILE:filename >
INAME : name or
/DISK:n or
IFSTYPE:x or
ISTART:m or
ISIZE:m or
IVTYPE:n or
IBOOTable:s or
IBOOTMGR]

The FDISK command is used to manage a primary partition or a logical
drive in an extended partition. This command lets you create or delete
a partition. FDISK can be used both interactively or from the command
line.

Interactive: The interactive (or full-screen) version of FDISK is used
during installation of the operating system. It provides users with the
same functions as the FDISKPM version. The full-screen version
supports windows and looks and acts much the same as FDISKPM but
without the mouse support.

Command line: The FDISK command issued at the command prompt is
used to establish or change partition values. The parameters and options
with the FDISK command specify and limit the values and
characteristics of the partitions.

• Return code: 0 for normal completion. Other code with
appropriate error message.

a FDISKPM-PM facility to manage partition and logical drive

• General format

[drive] [path] FDISKPM

• Usage: Command line.

• Description

The FDISKPM command IS a Presentation Manager application to

OS/2 Commands 565

manage a primary partition or a logical drive in an extended partition.
As does the FDISK command, FDISKPM lets you create or delete
partitions, except FDISKPM presents menus and displays to guide you
through the tasks necessary to set up your hard disks. Help is available
for all selectable items and entry fields within FDISKPM.

C FILES-specify maximum number of files

• General format

FILES = n

• Usage: CONFIG.SYS (DOS only).

• Description

The FILES command is used to specify the maximum number of files
available in DOS sessions. When a DOS session is started, 20 files are
available for use by all programs running in that DOS session.

C FIND-Search string in file

• General format

[drive] [path] FIND [IV or Ie or II or N]
"string" [drive] [path] filename

• Usage: Command line

• Description

The FIND command is used to search for a specific string in a file or
files. The line (s) where the string is found are sent to the output device.

When specifying the string, remember to enclose the phrase or word in
quotation marks in the exact format (uppercase or lowercase) in which
it is written in the text.

Two single quotes in succession are not equivalent to quotation marks.
When searching for strings that contain quotation marks, an extra set of
quotation marks must be entered both before and after the string.

566 Chapter 10

You must use a double backslash (\ \) to find lines that contain the
backslash (\) character.

You must explicitly name the filename; global characters such as the
asterisk (*) or question mark (1) do not work.

• Return code: 0 for normal completion.

C FOR-Repetitive running of commands

• General format

To use FOR from the OS/2 command prompt:

FOR % variable IN (set) DO command

To use FOR from a batch file:

FOR %%c IN (set) DO command

• Usage: Batch file.

• Description

The FOR command is used for repetitive run of OS/2 commands. For
OS/2 sessions, piping and redirection can be used with the FOR
command.

set is one of many filenames and pathnames (if needed). An item in the
set can contain the global filename characters * or 1.

% is placed before the variable if you are processing from the command
prompt.

%% is placed before the variable if you are using the variable in a batch
file.

In the following example, three source files are compiled and the
compiler messages are being saved in three files that have an .OUT
extension.

FOR %1 IN (FILE1 FILE2 FILE3)
DO CL /c %l.C > %1.0UT 2>&1

OS/2 Commands 567

D FORMAT-format disk

• General format

[drive] [path FORMAT drive
[/ONCE or

/4 or
/T:tracks or
/N:sectors or
/F:xxxx or
/FS:xxxxx or
/L or
/V [: label]]

• Usage: Command line and batch file.

• Description

The FORMAT command is used to format a disk. FORMAT marks. the
directory and file allocation tables on the disk and checks the disk for
defects.

If you format a drive for the HPFS (High Performance File System),
FORMAT checks the IFS statement in the CONFIG.SYS file to
determine whether the drive is listed with the /AUTOCHECK parameter.
If the drive is listed, FORMAT does not update the IFS (install file
system) statement. If the drive is not listed, FORMAT adds the drive
letter.

When formatting a diskette or hard disk that already contains
information, remember that all the information is erased. Also, be sure
to specify a drive letter, followed by a colon (e.g., A:); otherwise, the
system displays an error message indicating that you have not specified
a target drive.

• Return code: o Normal completion
3 Ended by user
4 Ended because of error
5 Ended because of NO response when user was

prompted to format a hard disk
6 FORMAT was unable to process another file

system's format program
7 Volume not supported by another file system's

format program

568 Chapter 10

C FSACCESS-remap drive

• General format

FSACCESS [1] [DOSletter or
DOSletter - DOSletter or
DOSletter = OS2drive]

• Usage: Command line.

• Description

The FSACCESS command is used to reassign drive letters, and it also
makes the drive accessible or not accessible. It can be called multiple
times to reassign drive letters, make new drives accessible, or remove
access to drives. Drives cannot be in use (the current drive) when
remapped.

C GOTO-transfer control to a label

• General format

GOTO label

• Usage: Batch file.

• Description

The GOTO command is used to transfer control to the line that has an
appropriate label. A label is indicated by a colon (:), followed by the
label name. With GOTO, if you use a label that is not found in the
batch file, the current processing of the batch file ends.

Il GRAFTABL-Ioad addition characters

• General format

[drive] [path GRAFTABL [nnn or
? or
/STA]

• Usage: Command line and batch file (DOS only).

OS/2 Commands 569

• Description

The GRAFTABL command is used to provide additional characters for
graphics. GRAFTABL loads a table of these additional characters into
memory. GRAFTABL is effective only in a DOS session; it has no
effect on OS/2 sessions.

If you enter this command without a parameter, GRAFTABL will show
the current graphics code-page table that is loaded.

• Return code: o No previously loaded character table exists and
a code page is now resident

1 A previously loaded character table exists; if a
new table was requested, it replaces the previous
table at its original location

2 No previously loaded character table exists and
no new table is loaded

3 Incorrect parameter
4 Incorrect DOS version

C HELP-Show command help Information

• General format

[drive] [path HELP [ON or

• Usage: Command line

• Description

OFF or
message help or

[book] topic

The HELP command is used to get online help of a command or
information about a message generated after issuing a command. If you
enter this command without a parameter, HELP will show the HELP
options available for the current mode of operation. The options are

• Return to the desktop.
• Switch to the next session.
• Exit the current OS/2 session.
• Get additional help on error and warning messages.

570 Chapter 10

C IF-conditional processing

• General format

IF [NOT] <ERRORLEVEL number or stringl==string2
[EXIST] [drive] [path] filename
command

• Usage: Batch file.

• Description

The IF command is used for conditional processing of OS/2 commands.
If a condition is true, the operating system processes the command. If it
is not true, it skips the command and processes the next one in the file.

C IFS-install file system

• General format

IFS = [drive] [path] filename [arguments]

• Usage: CONFIG.SYS.

• Description

The IFS command is used to install a file system, such as a HPFS.

filename is a file that contains the system driver, needed to manage disks
and diskettes formatted for file systems other than the file allocation
table (FAn, for example, HPFS.IFS.

C IFS-specify program for CD-ROM file system

• General format

IFS = [drive] [path] CDFS.IFS [arguments]

• Usage: CONFIG.SYS.

• Description

This IFS command is used to install the CD-ROM file system (CDFS).
The CD-ROM file system provides file-system functionality for the CD-

OS/2 Commands 571

ROM devices that are supported by OS/2 2.1 and higher. The file that
contains the driver is CDFS.lFS, which provides read-only access to data
stored on CD-ROM media.

C IFS-specify program for HPFS

• General format

IFS = [drive] [path] filename [/C:nnnn]
[/AUTOCHECK:xxx [/CRECL:X]

• Usage: CONFIG.SYS.

• Description

This IFS statement is used to install the HPFS and to replace the default
FAT file system.

The features of HPFS are

• Cache memory access
• Long filenames
• Contiguous file allocation
• Extended attributes
• "Lazy" writing
• Balanced directory tree

D OPL-grant I/O privilege

• General format

IOPL = <NO or YES or list, ••. >

• Usage: CONFIG.SYS.

• Description

The IOPL command is used to grant I/O privilege to requesting
processes in OS/2 sessions.

IOPL assigns a privilege level to a program, which determines what
code segments and data segments it can access. The privilege level also
limits the machine instructions a program can process.

572 Chapter 10

The default is YES, and application programs are usually assigned
privilege level 3. This means that they can call routines that run at any
other privilege level. However, they can access only their own data
segments and cannot issue any I/O instructions.

a JOIN-connect a drive to a directory of another drive

• General format

[drive] [path] JOIN drive
drive\d~rectory [/0]

• Usage: Command line.

• Description

The JOIN command is used to logically connect a drive to a directory
on another drive. This allows you to access a drive by a directory name
instead of a drive letter. Remember that you can join a drive only at the
root directory. If the directory name does not exist, the OS/2 operating
system creates a directory on the drive you specify. A directory that
already exists must be empty for the JOIN to work.

If you enter this command without a parameter, JOIN will show the
names of the drives currently joined.

a KEYS-specify keyboard layout

• General format

[drive] [path] KEYB [layout] [subcountry]

• Usage: Command line or batch file.

• Description

The KEYB command is used to replace the current keyboard layout
with a specified keyboard layout for all OS/2 and DOS sessions.

If the CONFIG.SYS file of your system contains a keyboard DEVINFO
statement, then you have the ability to switch keyboard layouts using
KEYB. If a DEVINFO statement is not found in the CONFIG.SYS file,
then typing KEYB with any layout returns an error message. Typing

OS/2 Commands 573

KEYB without a layout parameter, regardless of whether there is a
DEVINFO statement in your CONFIG.SYS file, causes the current
keyboard code-page information to be displayed.

C KEYS-retrieve previous commands

• General format

KEYS [OFF or ON or list]

• Usage: Command line and batch file.

• Description

The KEYS command is used to allow or not allow previously issued
commands to be retrieved. Once retrieved, the command can be reissued,
with or without editing.

When KEYS ON is issued, it disables the ANSI extended keyboard
support in a OS/2 session.

C LABEL-create or change volume label

• General format

[drive] [path] LABEL [drive] [label]

• Usage: Command line and batch file.

• Description

The LABEL command is used to either place or change the volume
identification label on a disk.

If you enter this command without a parameter, lABEL shows the
current label and volume serial number. LABEL prompts you if you
want to change it. A volume label must not exceed 11 characters in
length. If you press ENTER without entering a label, the volume label
remains unchanged.

• Return codes: 0 for normal completion

574 Chapter 10

a LASTORIVE-specify last drive

• General format

LASTDRlVE = letter

• Usage: CONFIG.SYS (DOS).

• Description

The LASTDRIVE command is used to specify the last drive recognized
in a DOS session; this statement has no effect in OS/2 sessions.

C LIBPATH-specify locations for dynamic link libraries (OLLs)

• General format

LIBPATH = [drive path; __ _

• Usage: CONFIG.SYS.

• Description

The LIBPATH command is used to list a set of directories to be
searched when the OS/2 operating system loads (DLLs). Because DLL
modules are shared globally, this command allows path searching to be
defined globally rather than on a per-process basis (as done by the
PATH command).

(Note: the LIBPATH is not an environment variable; therefore it cannot
be viewed with the SET command. Also, unlike the PATH environment
variable, the current directory is not searched first.)

C LOAOHIGH-Ioad terminate and stay resident
(TSR) programs

• General format

<LOADHIGH or LH> [drive] [path] filename [arguments]

• Usage: Command line (DOS).

OS/2 Commands 575

• Description

The LOADIDGH or LH command is used to load TSR DOS programs
into an available upper memory block (UMB) for a DOS session.

C MAKEINI-create a system setting file (OS2.1NI)

• General format

[drive] [path] MAKEINI [user or system]

• Usage: Command line and batch file.

• Description

The MAKEINI command is used to initialize system settings, such as
application defaults, display options, and file options, found in the
OS2.INI startup file located in the C:\OS2 directory of your hard disk.
There is also a system file called OS2SYS.INI, which contains
information about installed fonts and printer drivers. You issue this
command only when you receive a system error message and you
suspect that the OS2.INI startup file must be re-created.

C MAXWAIT-set maximum wait time

• General format

MAXWAIT = seconds

• Usage: CONFIG.SYS.

• Description

The MAXW AIT command is used to set the amount of time a program
waits before the system assigns it a higher priority. The system limits
the time that a regular-class program waits to be processed. When the
time limit is reached, the system raises the priority of the program to
give it a chance to be processed.

The right amount of time depends on the number of applications that
must run concurrently and the kinds of activities the applications
perform. The system default is 3 s (three seconds). Experiment with this
time to improve overall system performance.

576 Chapter 10

C MEM-display memory usage

• General format

MEM [/P or 10 or IC]

• Usage: Command line (DOS only).

• Description

The MEM command shows the amount of used and available memory
in the DOS environment.

C MEMMAN-select storage allocation options

• General format

MEMMAN = < <SWAP or NOSWAP> or
<MOVE or NOMOVE> or
<COMMIT or PROTECT> >

• Usage: CONFIG.SYS.

• Description

The MEMMAN command is used to configure the memory manage­
ment for the OS/2 environment. Applications consist of groups of
segments that can be either loaded into physical memory at the same
time (simultaneously) or called when needed. If not enough memory is
available to satisfy a request, the system attempts to provide more
memory by writing the least-frequently used data segments to a
temporary file on a disk. This file is called a "swap file."

The default for a system started from a hard disk is swapping (SWAP);
if it booted from a diskette, the default is no swapping (NOSW AP).

C MD or MKDIR-create a new directory

• General format

MO or MKOIR dri ve] path •••

• Usage: Command line and batch file.

OS/2 Commands 577

• Description

The MD or MKDIR command is used to create one or more new
subdirectories within the root directory (the directory you are in when
the OS/2 operating system starts) or within another subdirectory.
MKDIR makes a multilevel directory structure, which is helpful in
keeping related program or data files together.

C MODE-set operation mode for devices

• General format

MODE device [arguments]

• Usage: Command line or batch file.

• Description

The MODE command is used to set operation modes for devices. The
device modes are:

COM# Asynchronous communications modes
DISPLAY Display modes for video adapters
LPT# Parallel printer modes
DSKT Diskette input/output write verification

C MORE-read from or send to standard device

• General format

[drive] [path] MORE

• Usage: Command line and batch file.

• Description

The MORE command is used to send data to the standard output device
(usually the display) one full screen at a time. The input can be a file or
a device. Mer each screen, MORE pauses with the message --More-­
until you press any key to continue.

Generally, MORE is used for viewing long files or directories. To view

578 Chapter 10

the next screen, press any key. By pressing the CTRL and BREAK keys
together, you abort the MORE program.

• Return code: 0 for normal completion.

C MOVE-Move file from one directory to another

• General format

MOVE [drive] < filename or [path] filename>
[path] [filename]

• Usage: Command line and batch file.

• Description

The MOVE command is used to copy one or more files from one
directory to another directory on the same drive and remove them from
the source directory.

With MOVE, you can use the global filename characters ? and * in the
filename parameter of both the source and target files. When global
characters are specified in the source filename, the names of the files
will be shown as the files are being moved.

C PATCH-apply repairs to software

• General format

[drive] [path] PATCH [drive
[path] filename. ext [/A]

• Usage: Command line.

• Description

The PATCH command is used to apply IBM-supplied patches to
software. These patches are used for repairs to programs, and the
PATCH command should be used by those understanding the needs and
effects of a patch.

If you enter the PATCH command without any options, you will have
to supply an offset to indicate where the patch is to be made. PATCH
displays the contents of the location specified by the offset and allows

OS/2 Commands 579

you to enter the patch. Make sure that both the offset and the patch
contents are in hexadecimal notation.

If you issue PATCH with the / A option, it automatically applies patches
shipped by IBM to make fixes to IBM-supplied code, and verification
is performed before the patch is applied. Verification might not be done
on non-IBM-supplied patches.

Return code: 0 for normal completion.

C PATH-specify search path for commands and programs

• General format

PATH [drive] [path]

• Usage: CONFIG.SYS and Command line.

• Description

The PATH command is used to set one or many search paths for
commands and programs. If you enter this command without a
parameter, it shows the paths currently in effect. To delete the use of the
PATH command, enter the command followed by a semicolon (;).

Generally, the setting of PATH is done in the CONFIG.SYS and
AUTOEXEC.BAT files, thus circumventing the need to set PATH from
the command prompt each time you turn on your system.

C PAUSE-suspend processing of a batch file

• General format

PAUSE

• Usage: Batch file.

• Description

The PAUSE command is used to suspend processing of the batch file
and shows the following message:

Press any key when ready . . .
Enter this command to display the message:

580 Chapter 10

Press any key when ready ...

The PAUSE command is placed in a batch file at strategic points where
you want the processing to be suspended. When the system stops, it
gives you time to decide whether to stop the processing. Press and hold
CTRL+ BREAK, and type Y to stop a batch file from processing. In a
DOS session, press any key to continue processing.

C PAUSEERROR-turn pausing off or on

• General format

PAUSEONERROR = [YES or NO]

• Usage: CONGIG.SYS.

• Description

The PAUSEERROR command is used to allow or prevent pausing
when error messages are issued during the processing of the
CONFIG.SYS file. The default is YES.

C PICVIEW-dlsplay a picture file

• General format

PIeVIEW [drive [path] filename [/P or IS]

• Usage: Command line.

• Description

The PICVIEW command is used to view a picture file. This facility is
also available from the Productivity folder.

If you issue PICVIEW without a parameter, the Picture Viewer window
appears. PICVIEW lets you select the files to be displayed from the
Picture Viewer window.

OS/2 Commands 581

V a PMREXX-display output from REXX procedures

• General format

[drive] [path] PMREXX
[drive] [path] filename [arguments]

• Usage: Command line.

• Description

The PMREXX command is used to browse the output from REXX
procedures and provide an input field for them.

PMREXX is a PM window application, and when invoking it you must
enter a REXX batch file. By using PMREXX, you add the following
features to REXX:
• A window for the display of the output of a REXX procedure, such

as

• The SAY instruction output
• The STDOUT and STDERR outputs from secondary processes

started from a REXX procedures file
• The REXX TRACE output (not to be confused with OS/2

tracing)

• An input window for

• The PULL instruction in all its forms
• The STDIN data for secondary processes started from a REXX

procedures file

• A browsing, scrolling, and clipboard capability for REXX output.
• A selection of fonts for the output window.
• A simple environment for experimenting with REXX instructions

through use of the REXXTRY.CMD program. REXXTRY
interactively interprets REXX instructions and can be started from an
OS/2 command prompt.

a PRINT-send a file to the printer

• General format

[drive] [path PRINT [/D:device or IB] •••
[drive] [path filename [Ie or IT or ID:device]

582 Chapter 10

• Usage: Command line and batch file.

• Description

The PRINT command is used to send one or many files to the printer.
The files are placed in a print queue. This command is also used to
cancel printing of one or more files.

The global filename characters (* and 1) are allowed. Also, the files are
queued for printing in the order in which you enter them.

C PRINTMONBUFSIZE-set buffer size for parallel-port
device driver

• General format

• Usage: CONFIG.SYS.

• Description

The PRINTMONBUFSIZE is used to define parallel-port device-driver
buffer size. The default is 134 bytes, and if you increase the size of the
OS/2 parallel-port device-driver buffer, it will also increase performance
of data transfer to devices connected to the parallel port.

C PRIORITY-select priority calculation

• General format

PRIORITY = [DYNAMIC or ABSOLUTE]

• Usage: CONFIG.SYS.

• Description

The PRIORITY command is used to select priority calculations in
scheduling regular-class programs.

OS/2 regularly monitors the programs that are running and tries to give
them the best possible overall performance. If the priority is set to
DYNAMIC, the default value, the system changes the priority of

OS/2 Commands 583

programs frequently to ensure that the keyboard and mouse are
responsive while programs are running in the background.

When the priority is set to ABSOLUTE, the system loses the ability to
adjust the priority. And, this option must be used with care and complete
understanding of how the programs are running. The advantage of the
absolute priority is that it can help achieve predictable results by
determining the order of priority strictly on the basis of class and level.

C PRIORITY_DISK_IO-set disk I/O priority

• General format

PRIORITY_DISK_IO = [YES or NO]

• Usage: CONFIG.SYS.

• Description

The PRIORITY_DISK_IO command is used to give disk input/output
a priority for applications running in the foreground.

If the option is YES, the default value, an application running in the
foreground will receive disk I/O priority over applications running in the
background. This means that the application in the foreground will
have a better response time than applications running in the background.

C PROMPT-change the text of the system command prompt

• General format

PROMPT [text]

• Usage: Command line and CONFIG.SYS.

• Description

The PROMPT command is used to change the system command
prompt. The default is the default drive letter followed by the> symbol.
If you enter this command without the text, the current prompt is reset.

584 Chapter 10

C PROTECTONL V-set operating environments

• General format

PROTECTONLY [NO or YES

• Usage: CONFIG.SYS.

• Description

The PROTECTONL Y is used to select one or two operating
environments. The system requires this statement in the CONFIG.SYS
file. A YES value for PROTECTONL Y allows memory under 640
kbytes, which is normally used for DOS programs, to be available for
OS/2 programs. When specifying PROTECTONLY=YES, you cannot
run programs in DOS sessions. If you later decide that you want to run
DOS programs in the lower 640 Kbytes of memory, specify
PROTECTONLY=NO. This allows you to use both DOS and OS/2
programs.

a PROTSHELL-Ioad user Interface program and
OS/2 command processor

• General format

PROTSHELL = drive] [pa~h] filename [argumen~s]

• Usage: CONFIG.SYS.

• Description

The PROTSHELL command is used to load the user interface program
and OS/2 command processor. PROTSHELL also replaces the default
OS/2 command processor, CMD.EXE, with another command processor.

C PSTAT-display processing status

• General format

[drive] [pa~h] PSTAT [IS or
IL or
1M or
Ip:pid

OS/2 Commands 585

• Usage: Command line batch file.

• Description

The PSTAT command is used to show the process, thread, system­
semaphore, shared-memory, and DDL information. PSTAT helps you
determine which threads are running in the system, along with their
current status and current priorities.

The PSTAT command is helpful in determining why a given thread is
blocked (waiting for a system event), or why the thread's performance
is slow (low priority compared to other threads). Moreover, it displays
the process ID that has been assigned for each process. The process ID
can then be used as input to the TRACE utility program for debugging
on a per-process basis.

C RECOVER-recover files from disk

• General format

[drive] [path] RECOVER
[drive] path filename
[drive] [path] filename

• Usage: Command line batch file.

• Description

The RECOVER command is used to restore files from a disk that
contains defective sectors. In OS/2 2.1 and above, this command reads
the specified disk, sector by sector, and if RECOVER encounters a bad
portion, the sector is marked and data is no longer allocated to it. All the
files on the disk can be recovered if the directory has been damaged.

RECOVER locks the drive to be recovered so that no other applications
or processes are allowed to access the drive. You cannot use the
RECOVER command recover files on the disk that contains the
RECOVER.EXE file or OS/2 message file OSOOOl.MSG, found in
\OS2\SYSTEM directory. To restore a disk with these two files, copy
them to a diskette and then issue this command against the drive.

• Return code: 0 Normal completion
1 Undefined

586 Chapter 10

2 Undefined
3 Ended by user
4 Ended because of error
5 Unable to read or write to one of the file allocation

tables
6 Unable to execute another file system's recover program

C REM-add comments in a batch file or CONFIG.SYS

• General format

REM [comment

• Usage: Batch file and CONFIG.SYS.

• Description

The REM command is used to add comment or line spacing in a batch
file or a CONFIG.SYS file. The OS/2 operating system treats the
preceding REM commands as comments and does not attempt to act on
the comments. The main purpose of using REM is to improve the
readability of your batch file.

C RENAME or REN-change name and extension of a file

• General format

RENAME or REN [drive] [path] filenamel filename2

• Usage: Command line and batch file.

• Description

The RENAME or REN command is used to change a filename or
extension without changing the contents of the file. In OS/2 sessions,
you can also change the name of a directory.

When using this command, you can use global filename characters (* or
1) in either filename. All files matching the first filename are renamed.
If global filename characters appear in the second filename, the
corresponding character positions are not changed.

OS/2 Commands 587

C REPLACE-replace files

• General format

drive] r path] REPLACE [source-drive
path] f~lename target-drive [path]

[IA or
Is or
Ip or
IR or
Iw or
Iu or
IF]

• Usage: Command line and batch file.

• Description

The REPLACE command is used to selectively replace files on the
target drive with files of the same name from the source drive. This
command is also used to add files from the source drive to the target
drive.

REPLACE will copy the source file's extended attributes to the target
file. When replacing files that have extended attributes, be sure to use
OS/2 2.1 to ensure that all extended file attributes are replaced.

• Return code: 0 Normal completion,
1 No files were found to replace
2 Some files not replaced (or added) because of file errors
4 Ended because of error

C RESTORE-restore backup files

• General format

[drive] [path] RESTORE source-drive
[target-drive] [path] [filename]

< Ip or
1M or
IB:nun-dd-yy or
IA:nun-dd-yy or
IE:hh:nun:ss or
IL:hh:nun:ss or
Is or
IN or
IF or
10 > •••

588 Chapter 10

• Usage: Command line and batch file.

• Description

The RESTORE command restores one or more files previously backed
up using the BACKUP command. During the restore, the command
prompts you to insert the source diskette; make sure that you insert the
correct backup diskette. When you restore all your files, RESTORE
prompts you to insert the backup diskettes in order. It will copy the
extended attributes of the backed-up source file or directories.

RESTORE works only within the source directory unless you specify
the /S parameter. With this parameter, RESTORE copies files in the
source directory and in all directories below the starting source directory.

RESTORE will restore files to the same directory they were in when
BACKUP copied them; otherwise, the system displays an error message.

If you use wildcards, RESTORE prompts you to insert the next diskette
after it has restored all files on the backup diskette that match the
specified filename.

• Return code: 0 Normal completion
1 No files were found to restore
2 Some files were not processed because of file errors
3 Ended by user
4 Ended because of error

C RMDIR or RD-remove directory

• General format

RMDIR or RD drive] [path]

• Description

The RMDIR or RM command is used to delete one or more empty
directories. You cannot remove the root directory or the current
directory. Also, make sure that all hidden files are deleted before using
the RD command. To empty a directory of files, use the DEL or
ERASE before using the RD or RMDIR command.

OS/2 Commands 589

C RMSIZE-specify highest memory address

• General format

• Usage: CONFIG.SYS and command line.

• Description

The RMSIZE command is used to specify the highest storage address
allowed for a DOS session.

If you do not have an RMSIZE command in your CONFIG.SYS file,
the default is the total amount of low memory installed (either 512
kbytes or 640 kbytes). This is the largest usable size for DOS sessions
at which your system can operate. If you enter a size that is too large for
your system, the system displays an error message during startup and
automatically calculates the largest default value possible.

C RUN-load and start a system program

• General format

RUN [drive] [path] filename [arguments]

• Usage: CONFIG.SYS.

• Description

The RUN command is used to load and start a system program during
system initialization, such as CACHE.EXE. This command is not meant
to run a Presentation Manager application or any other application. In
CONFIG.SYS, the RUN commands are processed in the order in which
they appear in the file, but all DEVICE statements are processed before
any RUN commands. If you want to start an application automatically
during startup, it should be part of the System Startup folder on the
desktop.

Because RUN programs 'are started before initialization of the user
interface and disk error handling, the program must prevent the OS/2
operating system from performing disk handling or must perform its
own.

590 Chapter 10

A program started with a RUN statement can establish a keyboard or
mous~ monitor for any nondetached program. Also, it can issue I/O
requests to the keyboard, mouse, or display only after it has established
a window.

C RUN-start the logging daemon process

• General format

RUN = [drive) [path] LOGDAEM.EXE
[E:f~lename [/w:x]

• Usage: CONFIG.SYS.

• Description

This RUN command is used to start the Logging Daemon process for
system error-log files. The System Error Logging Service (SELS)
supports software that detects errors and logs them in the system-error
log file.

C SET-set values to environment variables

• General format

To use SET from the command prompt:

SET [variable=[value] •••]

To use SET in your CONFIG.SYS file:

SET variable = value •••

• Usage: Command line, batch file, and CONFIG.SYS.

• Description

The SET command is used to set one or more values to environment
variables. You can use the SET command in your CONFIG.SYS file or
batch files to set search paths and environment variables. If you enter
this command without a parameter, SET will show the environment
variables for the current mode of operation.

OS/2 Commands 591

If the name specified by the first string of the SET command already
exists in the environment, the command processor replaces its current
value with the new value specified by the second string. If you enter the
SET command with only the variable name and the equal sign (=), the
command processor removes the environment variable or replaceable
parameter name and its associated value from the environment, if the
name exists.

The environment variables are stored in a special place that is used by
the command processor to store and look up information, such as the
values assigned to names. You can use SET to create a replaceable
parameter or to set the value of a system variable, such as PATH.
Application programs (particularly compilers and assemblers) and batcp.
files can use the information stored in the environment to affect their
processing.

You can use the SET command to set the value of OS/2 system
variables. These system variables for OS/2 sessions are

Variable

PATH
DPATH
KEYS

PROMPT

Description

Sets a search path for executable files
Sets a search path for data files
Permits previously issued commands to be retrieved and
edited
Sets a new command prompt

The system variables for DOS sessions are

Variable

PATH
PROMPT
APPEND

Description

Sets a search path for executable files
Sets a new command prompt
Sets the search path for data files if the APPEND
command is entered with the IE option

The system variables for the Workplace Shell are

Variable Description

Sets the INI file used by the Workplace
Shell for system information about such

592 Chapter 10

SYSTEM INI

OS2_SHELL

RESTARTOBJECTS

AUTO START

RUNWORKPLACE

items as program defaults, display options,
and file options.
Sets the INI file used by the Workplace
Shell for system information about such
items as installed fonts and printer drivers.
Sets the command processor for OS/2
sessions.
Sets the objects that will be automatically
started by the Workplace Shell. The YES
and NO options determine whether objects
running at the time of shutdown and objects
in the Startup folder are to be started. The
STARTUPFOLDERSONLY option is used
if only objects in the Startup folder are to be
started. The REBOOTONL Y option is used
if objects are to be started only when the
Workplace Shell is started by pressing
CTRL+ALT+DEL or turning on the
computer.
Sets the parts of the Workplace Shell that
are automatically started. Parts of the
Workplace Shell that are started by default
include FOLDERS, PROGRAMS,
TASKLIST (the Window List), and
CONNECTIONS (network connections).
Deleting any of these options means that the
deleted options will be disabled the next
time the system is started. For example,
deleting the FOLDERS option from the
AUTOSTART statement means that all
folders, including the desktop itself, will not
start. Similarly, deleting the TASKLIST
option means that no Window List will be
displayed. Deleting the PROGRAMS option
means that programs, except those in the
Startup folder, cannot be started from the
Workplace Shell even if
RESTARTOBJECTS= YES. Deleting
CONNECTIONS means that network
connections will not be started. Modifying
the AUTOSTART statement is not
recommended for general use.
Sets the interface that is started by the OS/2

OS/2 Commands 593

operating system. PMSHELL.EXE is the
program for the Workplace Shell.

C SETBOOT-set Up the Boot Manager

• General format

[drive] [path] SETBOOT

• Usage: Command line.

• Description

[/T:x or
/T:NO or
/M:m or
/Q or
/B or
IBA:n or
IBD:d or
/X:x or
/N:name]

The SETBOOT command gives you the ability to set up the Boot
Manager for a hard disk. This command lets you enter parameters at the
command prompt to enable you to take full advantage of the Boot
Manager. The Boot Manager operates in either attended or unattended
mode. In attended mode, the Boot Manager displays a list of startable
systems, enabling you to select the system to be started.

C SETLOCAL-deflne local drive, directory, and environment
variables

• General format

SETLOCAL

• Usage: Batch file.

• Description

The SETLOCAL command is used to define the drive, directory, and
environment variables which are local to the current batch file.

When this command is issued, it saves the current drive, directory, and
environment variables. The previous drive, directory, and environment

594 Chapter 10

variable values are restored by issuing a matching ENDLOCAL
command or when the batch file ends.

C SHELL-load and start DOS command processor

• General format

SHELL = [drive] [path] filename [arguments]

• Usage: CONFIG.SYS.

• Description

The SHELL command is used to load and start the DOS command
processor. The default filename is COMMAND. COM. With this
command you can replace the DOS command processor with another
command processor.

If the SHELL command is not entered in the CONFIG.SYS file, the
default DOS command processor is loaded and started with a IP
parameter to retain COMMAND.COM in storage.

C SHIFT-expand the number of parameters in batch file

• General format

SHIFT

• Usage: Batch file.

• Description

The SHIFT command allows more than 10 replaceable parameters in
batch file processing. When using this command, it is important to
remember the following:

• Normally, batch files are limited to receive up to 10 parameters, %0
through %9. The use of SHIFT command lets you expand the
number of parameters beyound 10.

• All parameters on the command line are shifted one position to the
left, with the %1 parameter replacing the %0 parameter, the %2

OS/2 Commands 595

parameter replacing the %1 parameter, and so on. Each following
shift command causes all the parameters to be shifted to the left by
one position.

• There is no backward shift. Once SHIFT is run, the %0 parameter
that existed before the shift cannot be recovered.

C SORT-sort data read from the standard input

• General format

[drive] [path] SORT [/R] [/+n]

• Usage: Command line and batch file

• Description

The SORT command is used to read data from standard input, sort the
data, and write it to standard output. The input and output devices can
be redirected to files.

When using the SORT command, there are a few facts to remember:

• Large files take a few minutes before processing is completed. The
maximum size of a file you can sort is approximately 63 kbytes
bytes.

• The input and output files cannot be the same.
• Characters are sorted according to their ASCII values, except that

lowercase characters are treated as uppercase characters.

• Return code: 0 for normal completion.

C SPOOL-redirect printer output

• General format

[drive] [path SPPOL [/Q or
/D:device or
/0: device]

• Usage: Command line and batch file.

596 Chapter 10

• Description

The SPOOL command is used to redirect printer output from one device
to another. In other words, output from one parallel printer can be sent
to another, or from a parallel printer to a serial printer. Before using this
command to spool to a serial port, make sure that the COM.SYS device
driver is installed (found in CONFIG.SYS).

a START-start an OS/2 program In another session

• General format

START [" program title"]
[/K or Ie or IN]
[IF or IB]
[/PGM]
[/FS or IWIN or IPM or 100S]
[/MAX or IMIN]
[II]
command [command or inputs]

• Usage: Command line and batch file

• Description

The START command is used to start an OS/2 program in another
session. Normally, this command is used to automatically start programs
at system startup by . invoking the special batch file called
STARTUP.CMD.

You can also issue the START command without a parameter at the
command line to invoke an OS/2 command processor. With START, If
you enter the /WIN, IPS, or /PM parameter, the program is executed in
the foreground session. You can use START to run full-screen
applications or applications running in a window such as Presentation
Manager programs. START determines the type of application and will
run it in the appropriate window or full-screen session. You cannot start
a batch file (.CMD) with the /PM parameter.

a SUBST-substltute drive letter

• General format

[drive] [path] SUBST [drive <drive\path or 10>]

• Usage: Command line.

OS/2 Commands 597

• Description

The SUBST command is used to substitute a drive letter for another
drive and path so that you can access that drive and path using only the
drive letter. When the system finds a drive that was created with the
SUBST command, it replaces the reference with the new path.

If you enter this command without a parameter, SUBST shows the
names of the substitutions currently in effect on your system.

C SWAPPATH-specify the size and location of the swap file

• General format

SWAPPATH = drive [path] [minfree] [initial]

• Usage: Command line and CONFIG.SYS.

• Description

The SW APPATH command is used to specify the location and size of
the swap file. The name of the swap file is SW APPER.DAT, and its
default location is C:\OS2\SYSTEM. This file provides temporary
storage for data segments that the system has removed from physical
memory to satisfy a request for memory.

The swap file can become quite large, and isolating it in either a
subdirectory or a separate partition on a hard disk is recommended. After
relocating the swap file to a subdirectory or separate partition, you will
have to shut down and restart the system, and erase the old swap file
from its old location.

minfree specifies the minimum free space that can remain on the disk
before you receive a warning that the swap file has increased to a size
that leaves less than this amount of free space on the disk.

initial specifies the size of the swap file initially allocated by the
operating system at the time of installation.

598 Chapter 10

C SYSLEVEL-show service level

• General format

[drive] [path] SYSLEVEL

• Usage: Command line.

• Description

The SYSLEVEL command is used to show the system service level.
This command may take a while to complete, and while it is processing
the "Please wait. .. " message will be displayed. Mter the current
corrective service level is determined, it is shown on the screen; for
example,

C:\OS2\INSTALL\SYSLEVEL.OS2
IBM OS/2 Base Operating System
Version 2.10 Component ID 562107701
Type 0
Current CSD level: XROOOOO
Prior CSD level: XROOOOO

C SYSLOG-view or print system error log file

• General format

SYSLOG [IS or
IR or
IP:pathname or
Iw:x]

• Usage: Command line.

• Description

The SYSLOG command is used to either view or print the formatted
contents of the system error-log file.

The following is a list of the parameters:

/S Suspend system error logging
IR Resume system error logging
IP Redirect error logging data from one file to another
/W Specify the size of an error-log file

OS/2 Commands 599

If this command is issued without any parameter, the SYSLOG, which
is a Presentation Manager application and runs in a window, is started.

C THREADS-set maximum number of actions

• General format

THREADS = number

• Usage: CONFIG.SYS.

• Description

The THREADS command is used to set the maximum number of
threads that can be executed concurrently for OS/2 sessions. The default
is 64, and the maximum setting is 4095.

C TIME-show or change system time

• General format

TIME [hh [:.mm] [:88]]

• Usage: Command line and batch file.

• Description

The TIME command is used to either show or change the system time.
It also resets the time on your computer's clock. This time is recorded
in the directory when you create or change a file. If you enter this
command without a parameter, TIME shows the system time and
prompts you about changing it.

You can add time in hours and minutes, using a 24-h clock (military
time), separated by a colon or period. If needed, you can also specify the
seconds and hundredths of a second separated by a period or a comma,
depending on the decimal separator shown on your screen.

C TIMESLICE-set amount of processing time

• General format

TIMESLICE = minimum [,maximum]

600 Chapter 10

• Usage: CONFIG.SYS.

• Description

The TIMESLICE command is used to set the minimum and maximum
amount of processor time given by the system to processes and programs
for both OS/2 and DOS sessions.

The minimum amount of time is given to a thread before yielding the
processor to a thread of the same priority level; this is also the
maximum amount of time a thread can be processed before yielding
processor time.

The default is dynamic time slicing based on system load and paging
activity. Dynamic time slicing gives the best performance in all
situations.

C TRACE-turn System Trace Facility on or off

• General format

[drive] [path] TRACE <OFF or ON>
[IS or IR or IC]

[< major_code_spec or (minor_code_spec) > or
<tdf_spec or (minor_code_spec) or
(event type spec) > or <tdf keyword or
(minor-code-spec) or (event-type spec) > or
< IP:-or pId_spec >] - -

• Usage: Command line.

• Description

The TRACE command is used to turn the System Trace Facility on or
off. If turned on, the trace facility records a sequence of system events,
function calls, or data. This information can be used for debugging
programs and commands. After the recording is done, the data is
retrieved with the System Trace Formatter (see TRACEFMT
command). For the tracing to take effect, you must have the
TRACEBUF command, which allocates the trace buffer, in the
CONFIG.SYS. Alternatively, you can enter this in CONFIG.SYS, as we
will see next.

This command must be issued with caution, and you must turn it on
tracing only when needed as there is a lot of overhead associated with

OS/2 Commands 601

it. It may slow down the whole system. It is intended to be used with
the assistance of your technical coordinator.

C TRACE-turn tracing of CONFIG.SYS ON or OFF

• General format

TRACE = <OFF or ON> event, •.•

• Usage: CONFIG.SYS.

• Description

This TRACE command is used to trace the processing of the
CONFIG.SYS file. It keeps track of key events in the execution of the
system. If turned on, the trace facility records a sequence of system
events, function calls, or data. This information can be used for
debugging programs and commands. After the recording is done, the
data is retrieved with the System Trace Formatter, using the
TRACEFMT command. To speed up this process, it is advisable to
increase the trace buffer size using the TRACEBUF command
(discussed next).

C TRACEBUF-set buffer size for trace

• General format

TRACEBUF= size

• Usage: CONFIG.SYS.

• Description

The TRACEBUF command is used to set the size of the trace buffer in
the CONFIG.SYS file. In this buffer, the trace events are recorded. The
default buffer size is 4 kbytes, and the maximum size is 63 kbytes.

If you do not specify a TRACE or TRACEBUF statement in the
CONFIG.SYS file, OS/2 2.1 does not allocate a trace buffer, and system
tracing is not available.

602 Chapter 10

C TRACEFMT-show trace records

• General format

[drive] [path] TRACEFMT

• Usage: Command line.

• Description

The TRACEFMT command shows formatted trace data recorded while
the system is running. The information is displayed in reverse timestamp
order. TRACEFMT works only if you have the TRACE or the
TRACEBUF statement in your CONFIG.SYS file.

TRACEFMT is a Presentation Manager* application running ill a
window. It can perform the following tasks:

• Open a file
• Get a system trace buffer
• Save As
• Print
• View formatted data
• View summary by process ID
• View summary by major code

a TREE-display directory structure of a drive

• General format

[drive] [path] TREE [drive] [IF]

• Usage: Command line.

• Description

The TREE command is used to show all the directory paths of a drive.
With the IF option, this command also displays the files in the root
directory and in each subdirectory.

• Return code: 0 for normal completion.

OS/2 Commands 603

C TYPE-show content of a file

• General format

TYPE [drive] [path] filename

• Usage: Command line.

• Description

The TYPE command is used to show the contents of one or more files
on the screen. In a DOS session, only one file is specified with this
command. In OS/2, TYPE displays files consecutively on the screen if
multiple files are entered. You can include a drive and path when
specifying multiple filenames and can also use the global filename
characters * and ? as part of the filename.

The TREE command shows ASCII files, and the text appears in a
legible format as it is found in the file, except tab characters are
expanded to an eight-character boundary. However, other files, such as
graphic or program files, may appear unreadable because of the presence
of nonalphabetic or nonnumeric characters.

C UNDELETE-recover file previously deleted

• General format

UNDELETE } drive] [path] [filename]
[L or IA or /S or IF] •••

• Usage: Command line.

• Description

The UNDELETE command is used to recover files that have been
previously erased from a drive. When files are erased, they are placed
in a special directory, the location of which is set by the DELDIR
statement found in CONFIG.SYS. The maximum size of the directory
is set. If the number of deleted files exceeds this maximum number, the
system automatically erases files in the first-in-first-out order.

The files that are recoverable are restored in their original path.

604 Chapter 10

C UNPACK-decompress file

• General format

drive] [path] UNPACK [drive] [path] filename
[drive] [path] [IV] [IF] [/N:filename]

or

drive] [path] UNPACK} drive] [path] filename
[SHOW]

• Usage: Command line and batch file.

• Description

The UNPACK command is used to decompress files that were
previously packed. It also copies files that are not compressed but are
located on the OS/2 installation diskettes. Packed files have a @ (" at II
symbol) as the last character in their filenames.

There is no need to specify an output filename; UNPACK uses the
filename from the original unpacked file as the destination filename. It
also preserves the date, time, and file attribute of the original
uncompressed file. UNPACK also copies files; therefore, it can unpack
diskettes that contain both compressed and uncompressed files.

• Return code: 0 Normal completion
1 No files were found to unpack or copy
2 Some files or directories were not unpacked or

copied because of file errors
3 Ended by user
4 Ended because of error

eVER-show the OS/2 version number

• General format

VER

• Usage: Command line and batch file.

• Description

The VER command is used to display the OS/2 version number.

OS/2 Commands 605

C VERIFY-check data written to disk

• General format

VERIFY [ON or OFF]

• Usage: Command line batch file.

• Description

The VERIFY command is used to turn on or off checking of data; it
confirms that data written to a disk has been written correctly. If you
issue VERIFY ON, verification is done for file system I/O write actions
for both hard disks and diskettes on a per session basis. The system does
a VERIFY action each time you write data to a disk. You receive an
error message only if the system is unable to write the data to the disk
successfully. If you enter this command without a parameter, VERIFY
displays the current VERIFY status.

This command has the same purpose as the N parameter in the COpy
and XCOPY commands.

C VIEW-display online document

• General format

[drive] [path] VIEW
[drive] [path] filename [topic]

• Usage: Command line.

• Description

The VIEW command is used to look at online documents created with
the Information Presentation Facility (IPF) compiler. VIEW displays IPF
files that have a .INF extension.

C VMDISK-create DOS startup diskette

• General format

VMDISK sourcedrive [target-drive] [path] filename

• Usage: Command line.

606 Chapter 10

• Description

The VMDISK command is used to create a file that contains the image
of a DOS startup diskette. After creating this file, you can create a DOS
session by starting from this image file.

C VOL-display volume label of a disk

• General format

VOL [drive •••]

• Usage: Command line and batch file.

• Description

The VOL command is used to see the disk volume label and serial
number if they exist. From a DOS session, VOL displays the label for
only one disk. From OS/2, if you specify more than one drive, VOL
displays the volume labels consecutively.

If you enter this command without a parameter, VOL displays the
volume label and volume serial number of the current drive.

C XCOPY-copy files including directory

• General format

drive] [path] XCOPY [drive]
<filename or path [filename] [drive] [path]

filename
ID:mm-dd-yy or
Is or
IE or
Ip or
Iv or
IA or
1M or
18 or
IT or
IR or
10 or
IF

• Usage: Command line and batch file.

OS/2 Commands 607

• Description

The XCOpy command is used to copy one or groups of files, which
can include lower-level subdirectories. When using this command,
remember the following important points:

• Specify the drive, path, and filename for the source and target drives.
If you do not specify a path, XCOPY starts from the current
directory. If you do not specify a filename, XCOPY uses *. * as the
default value.

• XCOPY works only within the source directory unless you use the
IS parameter, which copies files in the source directory and in all
directories below the starting source directory.

• If you specify the ID parameter, the month, date, and year may be in
different positions. This depends on your country.

• If you use the 1M parameter, XCOPY copies files whose archive bit
is set, and then turns off the archive bit of the source file. You can
use the ATTRIB command to reset the archive bit for your files.

• If the target path does not exist on the target, you can use XCOPY
to create the directories before copying. You can rename files on the
target by specifying a new filename on the target.

• XCOPY will copy the extended attributes of a source file to the
target file as indicated by the parameters in the syntax .

• Return code: 0 Normal completion
1 No files were found to copy
2 Some files or directories were not copied because of

file or directory errors
3 Ended by user
4 Ended because of error

Chapter

REXX

This chapter is a reference guide for programmers using REXX in the
OS/2 environment. It contains statements that make up a program. The
statements covered here are

• REXX instructions
• Command functions

This chapter also provides information on REXX built-in functions that
can be used by statements.

REXX supports free-format statements, which can appear anywhere
between columns 1 and 72. A statement can have any number of
embedded blanks and can be terminated with either an end-of-line
character or a semicolon (;).

Two or more statements can appear on same line, separated from each
other with semicolons. Also, one statement can span more than one line,
in which case a comma at the end of the line indicates a continuation of
the statement.

609

610 Chapter 11

Comments appear between the delimiters 1* and *1 and can span one or
more lines.

This chapter also includes other useful information, such as

• Arithmetic operators
• Concatenation operators
• Operator precedence
• Logical operators
• Comparison operators
• Variable names
• Input/output streams

General format: The general form of a REXX statement is

[label:] term... [;]

where term is either a comment enclosed by the delimiters 1* and *1 or an
expression. An expression can be either a character expression, a numeric
expression, a comparison expression, or a logical expression.

11.1 Arithmetic Operations

The arithmetic operators used in REXX numeric expressIons are as
follows:

Operator

+

*
I
%
II
**
-n
+n

Operation

Addition
Subtraction
Multiplication
Division, returning decimal quotient
Division, returning integer quotient
Division, returning remainder
Exponential
Negation
Addition

11.2 Concatenation Operators

The following concatenation operators are supported by REXX.

REXX 611

Operator Operation

blank
1\

Concatenate two strings with a blank character in between
Concatenate two strings without a blank character in
between

11.3 Operator Precedence

In REXX, if there is more than one operator in an expression, then
operations are performed according to the following order of precedence:

Order Operation

1 Expressions in parentheses
2 Prefix operators
3 Exponential operators
4 Multiplication and division
5 Addition and subtraction
6 Concatenation
7 Comparison

8 Logical AND
9 Logical OR and Exclusive OR (XOR)

11.4 Logical Operation

Operators

()
- + \
**
* I % II
+ -
1\
-- = \== \= > <
>< >= <= \< \>
&
I &&

A logical operator is used when a boolean operation is peformed on two
binary operands. The following is a list of logical operators, including the
operation and return code.

Operator Operation Returns

& AND 1 if both comparisons are true;
otherwise O.

OR 1 if one of several comparisons is true;
otherwise O.

&& XOR 1 if only one of a group of
comparisons is true; otherwise O.

\ NOT The reverse of the logical value of the
expression

612 Chapter 11

11.5 Comparison Operators

A comparison operator is used when two operands are compared with each
other. Mer a comparison expression is processed, from left to right, it
yields 1 if the comparison condition is true and 0 if the comparison
condition is false. The following is a list of REXX comparison operators.

Operator Operation

= Equal to
\= Not equal to
> Greater than
< Less than
>< Greater than or less than (not equal to)
<> Greater than or less than (not equal to)
>= Greater than or equal to
<= Less than or equal to
\< Not less than
\> Not greater than
»= Strictly greater than or equal to
«= Strictly less than or equal to
<> Less than or greater than
» Strictly greater than
< < Strictl y less than

11.6 Variable Names

In REXX, variable names can be up to 250 characters long. A variable
may consist of the following characters:

Uppercase characters A to Z
Lowercase characters a to z
Numbers 0 to 9
Special characters @ # $! ? . - and '4A'x

11.7 Input and Output Streams

In REXX there two types of streams: transient and persistent. A transient
stream is a dynamic stream where the data is sent or received over a serial
interface. A persistent stream is a static form which can be a file or data
object.

REXX 613

In OS/2 there are several streams associated with input and output
devices. Some valid ones are

COMl:/COM2: Communication posts
CON: Display as output and keyboard as input
KBD: Keyboard
LPTI :/LPT2: Printer
PRN: The current default printer output
STDERR: Standard error output stream
STDIN: Standard input stream
STDOUT: Standard output stream
QUEUE: REXX external data queue

The STDIN and STDOUT are the default streams.

11.8 Functions and Instructions

This section provides a description of the functionality and parameters of
each REXX instruction or function as well as a list of return codes and
practical examples.

C ABBREV function

• General format

ABBREV(string, prefix[,length])

• Description

The ABBREV function checks for a prefix in a character string.

string is a character string to be checked for a prefix.

prefIX is a character string.

length is the maximum number of prefix characters that should match
the leading characters of the string.

• Return

The ABBREV function returns 1 (TRUE) if prefIX is found in string;
otherwise it returns 0 (FALSE). The function returns a TRUE or FALSE

614 Chapter 11

code according to the following conditions:

Return code Condition

1 prefIX is equal to the leading characters of string and
the number of characters matched is less than length

o prefIX is not equal to the leading characters of string
o The number of characters matched is greater than length

• Example

ABBREV('Profile','Pro')
ABBREV (, SUN' , , ,)
ABBREV('SUNDAY','SUN',3)
ABBREV('Monday','day')
ABBREV('JOHN',Jo)

a ASS function

• General format

ABS(number)

• Description

returns 1 (TRUE)
returns 1 (TRUE)
returns 1 (TRUE)
returns 0 (FALSE)
returns 0 (FALSE)

The ABS function calculates the absolute value of a number.

number is a number for which the absolute value is returned.

• Return

The ABS function returns the value of number without considering the
sign. The number of digits returned is determined by the current value
of the NUMERIC DIGITS variable.

• Example

ABS('34.56') returns the value 34.56
ABS(' --3.476') returns the value 3.476

C ADDRESS instruction

• General format

ADDRESS environment [expression] or
[VALUE] expression ;

REXX 615

• Description

The ADDRESS instruction specifies the environment where non-REXX
commands are to be executed. The environment can be set temporarily
or permanently depending on whether the expression is coded. The
setting of the environment is checked with the ADDRESS function.

environment is a character string constant; it is one of the following:

EPM Routes commands to EPM editor
CMD Routes commands for batch processing

expression is first evaluated by REXX; the result is sent to the host
environment as a command to be executed. If expression is not
specified, the destination is set permanently until the next ADDRESS
instruction is issued. Subsequent non-EXEC commands will be sent to
this new host environment. If expression is specified, then the host
environment is effective during the execution of this ADDRESS
instruction.

VALUE is used if the first character of expression is a special character.

• Return

The return code from the host environment, after the command is
executed, is placed in the special variable RC.

• Example

The following ADDRESS instruction sends a file called 'TEST.CMD'
to CMD for execution.

ADDRESS CMD ITEST.CMD'

C ADDRESS function

• General format

ADDRESS

• Description

The ADDRESS function returns the name of the host environment to
which non-REXX commands are currently routed.

616 Chapter 11

• Return

The ADDRESS function returns the current name of the host
environment. It is one of the following:

CMD EPM DOS

• Example

ADDRESS () /* returns the current destination of the
environment */

C ARG function

• General format

ARG ([n] [, option])

• Description

The ARG function either returns an argument string or tests the
existence of an argument passed to a previously called function or
routine.

n is an argument number. If it is specified, the nth argument is returned.

option is a character string whose first character is an E or an O. If it is
specified, the ARG function checks for the presence of the nth argument
string.

• Return

The ARG function returns the following:

• If n and option are not specified, it returns the number of arguments
passed to the function.

• If option is E, it returns 1 if argument n exists; otherwise it returns
o.

• If option is 0, it returns 1 if argument n is omitted; otherwise it
returns O.

• Example

ARG() /* returns the number of arguments */
/* passed to the function */

REXX 617

ARG(3) /* returns the third argument */
ARG(2,'Omitted') /* checks whether the 2nd

/* argument has been omitted */ a ARG Instruction

• General format

ARG template;

• Description

The ARG instruction parses the arguments passed to a program or
subroutine and places them in variables. The parsing is done according
to parsing rules of REXX.

template consists of symbols, separated by blanks.

• Return

The ARG instrction returns parsed arguments.

• Example

Let's say the function

Mywork: Arg string, numl, num2

is called in the following way:

MYWORK('DATA 3', 30, 50).

After parsing, the symbols will have the following values:

STRING has 'DATA 3'.
NUMl has '30'.
NUM2 has '50'.

a BEEP function

• General format

BEEP (frequency, duration)

• Description

The BEEP function sounds the speaker for a limited duration at a given
frequency.

618 Chapter 11

frequency is given in hertz, and the range is 37 to 32,767 Hz.

duration is used to limit the length of the sound and the range is 1 to
60,000 ms.

• Return

None.

C BITAND function

• General format

BITAND(stringl[,[string2] [,pad]])

• Description

The BITAND function performs an AND operation on two strings bit
by bit. The number of bits on which the operation is performed is
determined by the longest string. If padding is supplied, the AND
operation of the shorter input string is extended. If padding is not
supplied, the AND operation stops when the bits of the shorter string
have been exhausted; the remaining bits of the longer string are added
to the result.

string1, string2, and pad are input strings used for the AND operation.
string1 is required; string2 and pad are optional.

• Return

The BITAND function returns a string which is the result of an AND
operation on string1, string2, and pad.

• Example

BITAND('63'x, '33'x) /* returns '23'x */
BITAND('43'x,'4444'x) /* returns '4044'x */
BITAND('43'x,'4444'x,'70'x) /*returns '4440'x */

C BITOR function

• General format

BITOR(stringl[,[string2] [,pad]])

REXX 619

• Description

The BITOR function performs an OR operation on two strings bit by
bit. The number of bits on which the operation is performed is
determined by the longest string. If padding is supplied, the OR
operation on the shorter input string is extended. If padding is not
supplied, the OR operation stops when the bits of the shorter string have
been exhausted; the remaining bits of the longer string are added to the
result.

stringl, string2, and pad are input strings used for the OR operation.
stringl is required; string2 and pad are optional.

• Return

The BITOR function returns a string which is the result of an OR
operation on stringl, string2, and pad.

• Example

BITOR('63'x,'33'x) /* returns '73'x */
BITOR('63'x,'3333'x) /* returns '7333'x */
BITOR('63'x,'3333'x,'77'x) /* returns '7377'x */

C BITXOR function

• General format

BITXOR(stringl[,[string2] [,pad]])

• Description

The BITXOR function performs an exclusive OR (XOR) operation on
two strings bit by bit. The number of bits on which the operation is
performed is determined by the longest string. If padding is supplied, the
XOR operation of the shorter input string is extended. If padding is not
supplied, the XOR operation stops when the bits of the shorter string
have been exhausted; the remaining bits of the longer string are added
to the result.

stringl, string2, and pad are input strings used for the XOR operation.
stringl is required; string2 and pad are optional.

620 Chapter 11

• Return

The BITXOR function returns a string which is the result of an XOR
operation of string1, string2, and pad.

• Example

BITXbR('63'x,'33'x) /* returns '40'x */
BITXOR('63'x,'3333'x) /* returns '4033'x */
BITXOR('63'x,'3333'x,'77'x) /* returns '4040'x */

D B2X function-binary to hexadecimal

• General format

B2X(binary-string)

• Description

The B2X function converts a string in binary format to a string in
hexadecimal format.

binary-string is a string that contains Os and 1s. It is valid to include
blanks in boundaries between every four digits. The blanks are ignored
during the conversion.

• Return

The B2X function returns parsed arguments.

• Example

B2X('11000011') /* returns 'C3' */
B2X('10111') /* returns '17' */

B2X('1 1111 0000') /* returns 'lFO' */

D CALL Instruction

• General format

CALL <name [expression, •••] or
OFF condition or

ON condition [NAME trapname]> ;

REXX 621

• Description

The CALL instruction executes a subroutine, a program, a built-in
function, or an external routine. Control is passed to the called routine,
and after its execution is completed, control is returned to the statement
following the CALL statement in the calling routine. Or, the CALL
instruction is used to turn on or off the trapping of certain conditions.

name is the name of the subroutine, program, or function to be invoked.

expression is first evaluated and resolved into parameters to be passed
to the invoked routine. The entry of an expression is optional.

condition can be one of the following: ERROR, FAILURE, HALT, or
NOTREADY.

trapname is a routine or label to which control goes when a certain
condition occurs.

• Return

After completion of the called routine, any return value is placed in the
variable return. If no value is returned by the invoked routine, then
return is initialized to null.

• Example

In the following program fragment a subroutine square is called, which
calculates the square root of an expression y.

arg y /* parse y */
call square y /* call the routine to calculate */

/* the square root of y */
say 'square root of 'y , is ' result

square: procedure
arg n

return n*n

/* procedure called square */
/* parse y */
/* calculate and return square */
/* root */

C CENTER or CENTRE function

• General format

CENTER(string,length[,pad])
or

CENTRE(string,length[,pad])

622 Chapter 11

• Description

The CENTER function centers a string within a given area.

string is the string to be centered. If string is longer than the specified
area, it is truncated on both sides.

length is the number of characters within which string is to be centered.

pad is the character to use for padding on both the right and left sides
of the centered string. If pad is not entered, then spaces are used.

• Return

The CENTER function returns the centered string.

• Example

CENTER(ABCD,8,'.')
CENTER(ABCD,8)

returns ' •• ABCD .. '
returns' ABCD '

C CHARIN function-character Input

• General format

CHARIN([name] [,start] [,length])

• Description

The CHARIN function reads a string from an input stream.

name is used to specify an input stream from which a string is read. The
stream can be a file or any other input OS/2 device such as a keyboard.
If this parameter is omitted, the string is read from the device called
STDIN. STDIN is the default stream.

start is used to specify the starting position at which the read operation
begins. If this parameter is omitted, the characters are read from the
current position of the pointer associated with each stream. Mter the
operation the pointer is moved forward by the number of characters read.

length is used t9 limit the number of characters read from the input
stream. If length is 0, then a null string is returned; if it is omitted, only
one character is returned.

REXX 623

• Return

The CHARIN function returns a string from a default or specific stream.

• Example

CHARIN(infile,1,3)

CHARIN(infile,l,O)
CHARIN(infile)

CHARIN(infile,2)

CHARIN()

/* returns 'NYC' */
/* the first 3 characters */
/* returns a null string returns */
/* 'N' the character position is */
/* at 1 because of the previous call */
/* returns 'NY', two characters from */
/* position 2 */
/* returns 'a', one character from */
/* the default input stream */

C CHAROUT function-character output

• General format

CHAROUT([name] [,string][,start])

• Description

The CHAROUT function sends a string to an output stream.

name is used to specify an output stream to which a string is written.
The stream can be a file or any other output OS/2 device such as a
screen or a printer. If this parameter is omitted, the string is written to
the device called STDOUT. The default stream is the screen.

string contains characters to be written to the output stream. If you omit
this parameter, then no characters are sent and the function returns O.

start is used to specify the starting position at which the write operation
begins. If this parameter is omitted, the characters are written from the
current position of the pointer associated with each stream. After the
operation the pointer is moved forward by the number of characters sent.

• Return

The CHAROUT function returns the number of characters remaining to
be written after attemping to write. This number can be zero to many.

624 Chapter 11

• Example

CHAROUT(outfile,'Hi') /* returns 0, writes 2*/
/* characters */

CHAROUT(outfile,'Hi',5) /* returns 0, writes */

CHAROUT (, Hi')

/* 2 characters from */
/* from position 5 */

/* returns 0, writes 2 characters
/* to STDOUT */

a CHARS function-character remaining

• General format

CHARS ([name])

• Description

*/

The CHARS function is used to get the number of characters remaining
in an input stream.

name is used to specify a file, and if it is omitted, the number of
characters left in the default input stream (STDIN) is returned.

• Return

The CHARS function returns the number of a character remaining in an
input stream.

• Example

CHARS (infile)

CHARS (infile)
CHARS ()

/* returns 0, may be */
/* the first 3 characters */
/* returns 0, may be */
/* returns 2, may be */

C COMPARE function

• General format

COMPARE(stringl,string2[,pad])

• Description

The COMPARE function compares two strings.

REXX 625

string1 and string2 are the strings being compared.

pad is an optional padding character; if it is not specified, the default
character is blank.

• Return

The function returns

• Zero if both input strings are the same.
• A nonzero value if the input strings are not the same; this value is

also the position of the first mismatched characters.

• Example

COMPARE('345','345') returns 0 (exact match)
COMPARE('MOO%% ','MOO','%') returns 6 (1st mismatch after

padding character
COMPARE (, daa' , ' do') returns 1 (1st mismatched

character).

a CONDITION function

• General format

CONDITION([option])

• Description

The CONDITION function obtains the information for the currently
trapped REXX condition.

option is one of the following: C, D, I, or S. Their meanings are as
follows:

C causes the name of the current trapped condition to be
returned .

D causes the description of the string to be returned
I causes the name of the actual instruction that was being executed

when the condition was trapped to be returned
S causes the status of the condition trapped to be returned

• Return

The CONDITION function returns the information related to the

626 Chapter 11

currently trapped condition depending on the option. A null string is
returned if no condition trap is in effect.

• Example

CONDITION(I) returns the instruction that caused the trap.

C COPIES function-concatenate string

• General format

COPIES (string,n)

• Description

The COPIES function concatenates or appends a string to itself a certain
number of times.

string is the string concatenated to itself.

n is the number of times needed to concatenate string to itself.

• Return

The CONDITION function returns a concatenated string, or a null string
if n is zero.

• Example

COPIES (, Hi' 12)
COPIES (, Hi' 10)

returns 'HiHi'
returns " (null string)

C C2D function-character to decimal

• General format

C2D(string[,n])

• Description

The C2D function converts a string into a decimal number.

string is a string 0 to 250 characters in length.

REXX 627

n is the number of bytes where the signed fixed-number part of string
is to be stored.

• Return

The C2D function returns a decimal number.

• Example

C2D('09'x)
C2D (, E4' ,2)

C2D('a')

returns decimal 9
returns decimal 288 (positive number in
two bytes)
returns 97 (ASCII)

C C2X function-character to hexadecimal

• General format

C2X (string)

• Description

The C2X function converts a string into its equivalent ASCII
hexadecimal numbers.

string is a character string to be converted to its equivalent ASCII
numbers.

• Return

The C2X function returns ASCII numbers.

• Example

C2X('0456') returns 'F1F2F3C1C2C3'

C DATATYPE function-determine data type

• General format

DATATYPE(string[,type])

• Description

The DATATYPE function tests the data type of a string.

628 Chapter 11

string is a character string whose data type is to be tested.

type is the type to be tested for. If type is not specified, the default data
type to be tested for is NUM, if it is numeric; the default type is CHAR
for all other cases.

• Return

The function returns 1 (TRVE) if string is of the specified or default
data type; otherwise it returns 0 (FALSE). The following list gives the
relationship between the return values and type.

Type

A-alphanumeric

C-SBCSIDBCS
D-DBCS
N-numeric
W-whole number
L-Iowercase

V-uppercase

M-mixed-case

S-symbol
B-bit
X-hexadecimal

• Example

Return code

1 if string contains only characters in the range
a to z, A to Z, or 0 to 9
1 if string is a mixed SBCSIDBCS string
1 if string is a pure DBCS string
1 if string is a valid REXX number
1 if string is a valid REXX whole number
1 if string contains only characters in the range
a to z
1 if string contains only characters in the range
A to Z
1 if string contains only characters in the range
a to z or A to Z
1 if string contains only valid REXX symbols
1 if string contains only Is and Os
1 if string contains characters in the range a to
f, A to F, or 0 to 9, or blank

DATATYPE (' 55 ')
DATATYPE (, &e55 ')
DATATYPE (, Bob' , , M')
DATATYPE('67.89','N')
DATATYPE('67.89','X')

returns NUM (numeric)
returns CHAR (character string)
returns 1 (mixed case)
returns 1 (numeric)
returns 0 (not hexadecimal
numbers)

DATATYPE (, ,) returns CHAR (null string)

C DATE function-get local date

• General format

DATE ([option])

REXX 629

• Description

The DATE function obtains the current date.

option is a code specifying the format of the date. The default format is
'dd mmm yyyy', as in 21 July 1992.

• Return

The function returns the current date in a format specified by one of the
following options:

Option

B-base

D-days
L-language
U-USA
E-European
J-Julian
M-month
O-ordered
S-standard
W-week

• Example

DATE ()
DATE(J)
DATE (D)

Returns date in format

Number of days into the current century in the form
'ddddd'
Number of days into the current year in the form 'ddd'
Date in the format 'dd Month yyyy'.
Date in the form 'mm/dd/yy'
Date in the form 'dd/mm/yy'
Date in the form 'yyddd'
Full name of current month
Date in the form 'yy/mm/dd'
Date in the form 'yyyymmdd'
Day of the week (e.g., Monday, Tuesday)

returns the current date ('23 July 1992')
returns the date in Julian format (92205)
returns the number of days into this year
(205)

C DELSTR function-delete string

• General format

DELSTR(string,n[,length])

• Description

The DELSTR function deletes a certain number of characters from a
string.

string is the string from which characters are deleted.

630 Chapter 11

n is the starting position from which characters are deleted in string.

length is the number of characters to delete. If length is greater than the
total number of characters in string, then no action is taken. If length is
not specified, then all characters from position n on are deleted.

• Return

The DELSTR function returns the changed string.

• Example

DELSTR('ABCDEF',2,1)
DELSTR('ABCDEF',3,2)
DELSTR('ABCDEF',9)

deletes 'B', leaving 'ACDEF'
deletes 'CD', leaving 'ABEF'
no change

a DELWORD function-delete word

• General format

DELWORD(string,n[,length])

• Description

The DELWORD function deletes a certain number of words from a
string.

string is the string from which words are deleted.

n is the starting position from which words are deleted in string.

length is the number of words to delete. If length is greater than the total
number of words in string, then no action is taken. If length is not
specified, then all the words from position n on are deleted.

• Return

The DELWORD function returns the changed string.

• Example

DELWORD('Ten days, two hours, and five minutes',3,2)
returns 'Ten days, and five minutes'

DELWORD('Ten days, two hours, and five minutes' ,8)
returns 'Ten days, two hours, and five minutes'

C DIGITS function

• General format

DIGITSO

• Description

REXX 631

The DIGITS function retrieves the current setting of the NUMERIC
DIGITS option.

• Return

The DIGITS function returns the current setting of NUMERIC
DIGITS.

• Example

DIGITS() /* get the current NUMERIC DIGITS */

C DIRECTORY function-change directory

• General format

DIRECTORY([new-directory])

• Description

The DIRECTORY function is used to change to a new directory, if a
directory is supplied and it exists. It also returns the current directory.
If a new directory is omitted, the current directory is returned, or a null
value is returned if an error occurs.

new-directory is used to specify the name of a valid and existing
directory in the OS/2 system.

• Return

The DIRECTORY function returns the current directory. The first two
characters of the directory name indicate the drive.

• Example

DIRECTORY(~ . /* returns the current directory */
DIRECTORY('C:\OS2\SYSTEM II

) /* returns C:\OS2\SYSTEM */

632 Chapter 11

C DO instruction

• General format

DO [expression or variable=start]
[TO limit] [BY increment];
[FOR expression];
[WHILE expression];
[UNTIL expression];

statement

.
END [symbol];

Simple DO:

DO
statement

END;

Controlled repetitive DO:

DO variable=start [TO end];
statement

END;

DO-WHILE loop:

DO variable=start [TO end] WHILE expression;
statement

END;

DO-FOR loop:

DO variable=start [TO end] FOR expression;
statement

END;

DO-UNTIL loop:

DO variable=start [TO end] UNTIL expression;
statement

END;

DO-FOREVER loop:

DO FOREVER;
statement

END;

• Description

REXX 633

The DO instruction executes a group of REXX statements a number of
times depending on an expression. The expression is evaluated every
time the DO loop is executed. The DO instruction can be divided into
the following categories:

• Simple DO
• Controlled repetitive DO
• DO-WHILE loop
• DO-FOR loop
• DO-UNTIL loop
• DO-FOREVER loop

expression is any valid REXX expression.

variable is any valid REXX variable name.

start is the value to which variable is initialized before the start of the
DO loop.

end is the limit; when variable passes this value, the loop terminates.

increment is the value by which variable is incremented.

statement is a valid REXX statement which is executed with the DO
loop.

The END clause marks the end of the DO instruction.

• Return
None.

• Example

In the following program fragment, the variable start is initialized to 3.

634 Chapter 11

In the DO instruction, the variable is x and its starting value is 3. The
variable x is incremented by 2 during every iteration of the DO loop.
The loop stops when x is 40. During every loop, the statement 'say x'
is executed.

start=3;
Do x=start to 40 by 2;

say x
End;

Il DROP instruction

• General format

DROP name •••

• Description

/* initialize start to 3 */
/* starting value of x is 3 */
/* statement to be executed */
/* in the DO loop */

The DROP instruction restores one or more variables to their
uninitialized state. In other words, such variables no longer have any
value.

name is a valid variable name to be freed.

• Return

None.

• Example

fruit = 'apple' /* initialize the variable fruit to */
/* , apple' * /

DROP fruit /* free the variable fruit */
/* from the stack */

Il D2C function-convert decimal to character

• General format

D2C (number[,n])

• Description

The D2C function converts a decimal number to a character string in
binary representation.

REXX 635

number is a whole number to be converted.

n is the number of characters in the result.

• Return

The D2C function returns the binary representation of a decimal number.

• Example

D2C(8)
D2C(-127,2)

returns '08'x
returns 'FF81'x (-127 = FF81 hex)

C D2X function-convert decimal to hexadecimal

• General format

D2X(number[,n])

• Description

The D2X function converts a decimal number to a character string in
hexadecimal representation.

number is a whole number to be converted.

n is the number of characters in the result.

• Return

The D2X function returns the hexadecimal representation of a decimal
number.

• Example

D2X(8)
D2X(-127,4)

returns '08'
returns 'FF81' (-127 = FF81 hex)

C ENDLOCAL function-restore variables

• General format

ENDLOCAL()

• Description

636 Chapter 11

The END LOCAL function is used to restore the initial environment. It
sets the values for drive, directory, and the environment variables to the
state they were before the last SETLOCAL function was issued.

• Return

The ENDLOCAL function returns 1 if the restore operation is
successful; 0 if the restore operation fails or no SETLOCAL was
previously executed.

• Example

y = SETLOCAL () /* save the current environment */

.
y = ENDLOCAL () /* restore the initial environment */

Il ERRORTEXT function-return message text

• General format

ERRORTEXT(n)

• Description

The ERRORTEXT function returns a message text associated with an
error number.

n is the error number; it is in the range 0 to 99.

• Return

The ERRORTEXT function returns the message text or a null string if
the error number or message is not defined.

• Example

ERRORTEXT(16) returns 'Label not found'

Il EXIT Instruction-Terminate program

• General format

EXIT [expression],

REXX 637

• Description

The EXIT instruction ends the execution of a REXX program and
returns control to the calling program.

expression is optional; its value is evaluated before termination of the
program.

• Return

A value is returned to the calling program depending on whether
expression is part of the EXIT instruction.

• Example

In the following program fragment, the program will terminate returning
the value '12'.

x = 4
EXIT x*3 /* terminate program */

D FILESPEC-parse file specification

• General format

FILESPEC (option, filespec)

• Description

The FILESPEC function gives selected information such as drive, path,
or name of a file specification.

option is one of the following:

Drive
Path
Name

The drive letter of the given file specification
The directory path of the given file specification
The filename of the given file specification

filespec is the file specification.

• Return

The FILESPEC function returns the drive letter, directory path, or
filename.

638 Chapter 11

• Example

myfile = "C:\BOOK\OS2REF\CHAPTER.ll"
say FILESPEC("Drive",myfile) /* returns "C:" */

say FILESPEC("Path",myfile) /* returns "\BOOK\OS2REF\" */
say FILESPEC("Name",myfile) /* returns "CHAPTER.ll" */

name = "Name"
say FILESPEC(name,myfile) /* returns "CHAPTER. 11" */

C FORM function-get the NUMERIC FORM setting

• General format

FORMO

• Description

The FORM function returns the current setting of NUMERIC FORM.

• Return

The FORM function returns 'SCIENTIFIC' or 'ENGINEERING'.

• Example

NUMERIC FORM ENGINEERING
x = FORM() /* returns ENGINEERING */

C FORMAT function-format numeric values

• General format

FORMAT(number[,before] [,after][,expp][,expt])

• Description

The FORMAT function formats a numeric value; otherwise default
formatting is done.

number is the numeric value to be formatted. If only number is entered,
it is formatted and rounded using the standard REXX rules.

before is the number of digit& allowed to the left of the decimal point.

REXX 639

after is the number of digits allowed to the right of the decimal point.

expp is used to set the number of positions for the exponent part.

expt is used to set the trigger point for the exponential notation.

• Return

The FORMAT function returns the formatted numeric value.

• Example

x = FORMAT(134567.89",2,2) /* returns 3.456789E+04 */

C FUZZ function-get the NUMERIC FUZZ setting

• General format

FUZZ()

• Description

The FUZZ function returns the current setting of NUMERIC FUZZ.
The default REXX setting is O.

• Example

NUMERIC FUZZ 1
x = FUZZ() returns 1

C IF instruction-condition processing

• General format

IF expression [i] THEN [i] statement
[ELSE [i] statement]

• Description

The IF instruction executes one or many REXX statements based on the
result of evaluating an expression.

expression is a valid REXX expression; after its evaluation, the result is
either 1 (TRUE) or 0 (FALSE).

640 Chapter 11

THEN is a keyword that marks the statement(s) to be executed if
expression evaluates to 1 (TRUE).

statement is a valid REXX statement.

ELSE is the keyword that marks the statement(s) to be executed if
expression evaluates to 0 (FALSE).

(Note: The statement of either THEN or ELSE-never both-is
executed.)

• Example

In the following program fragment, the expression in the IF instruction
is x < 3. After the expression is evaluated, depending on whether the
result is 1 or 0, the NOP or SAY instruction is executed.

IF x < 3
THEN NOP
ELSE

SAY "x is greater than or equal to 3"

C INSERT function-insert string

• General format

INSERT(ins-string,string[,[n][,[length][,pad]]])

• Description

The INSERT function inserts a string into another string at a specified
position. Padding is done if required.

ins-string is the string inserted into string.

string is the string in which ins-string is inserted.

n is the character position after which ins-string is inserted in string. The
value of n must be nonnegative, and its default value is o.

length is the length of ins-string.

pad is the character for padding if length is greater than the length of
ins-string.

REXX 641

• Return

The INSERT function returns string with ins-string inserted.

• Example

INSERT(' ','GOODBOY',4) returns 'GOOD BOY'

INSERT('ABC','abc',5,6,'%') returns 'abc%%ABC%%%'

C INTERPRET Instruction-Interpret a statement

• General format

INTERPRET expression

• Description

The INTERPRET instruction interprets and executes an expression.

expression contains one or many valid REXX statements. It is first
evaluated and then executed by the REXX interpreter as if it were a
REXX statement.

• Example

ohmy = IISAY 'ohmy' II

INTERPRET ohmy /* interpret and execute */

C ITERATE Instruction-end current iteration of DO loop

• General format

ITERATE [name];

• Description

The ITERATE instruction stops the current iteration of a DO loop and
transfers control to the END statement. The DO loop continues after
testing any expression associated with the loop.

name is a control variable for the DO loop.

642 Chapter 11

• Example

The following DO loop will display 1, 3, and 4; it skips the display of
2 because of the ITERATE instruction with the loop.

00 j = 1 TO 4
IF j = 2 THEN ITERATE
SAY j

END

Il LASTPOS function-find the last position of a substring

• General format

LASTPOS(substring,string[,start])

• Description

The LASTPOS function finds the last occurrence, starting from position
1, of a substring within a string.

substring is the string searched for in string.

string is the string searched for in substring.

start is the starting position for the search.

• Return

The LASTPOS function returns the position of the last occurrence if
substring is found in string; otherwise it yields O.

• Example

LASTPOS(ldogsl,"All dogs go to heaven") returns 5
LASTPOS(lhogsl,"All dogs go to heaven") returns 0

C LEAVE instruction-terminate a DO loop

• General format

LEAVE [name];

REXX 643

• Description

The LEAVE instruction stops a DO loop and transfers control to the
statement following the END statement.

name is a control variable for the DO loop.

• Example

The following DO loop will display 1 and stop when the value of j is
2.

DO j = 1 TO 4
IF j = 2 THEN LEAVE
SAY j

END

C LEFT function-left-justify text

• General format

LEFT(string,length[,pad])

• Description

The LEFT function left-justifies a text.

string is the text to be justified.

length is the length of the justified text.

pad is the padding character.

• Return

The LEFT function returns the left-justified text.

• Example

LEFT(IIAll dogs go to heaven ll ,23) returns
"All dogs go to heaven "

644 Chapter 11

D LENGTH function-calculate the length of a string

• General format

LENGTH (string)

• Description

The LENGTH function determines the number of characters in a string.

string is the string for which the length is to be determined.

• Return

The LENGTH function returns the length of string.

• Example

LENGTH("All dogs go to heaven") returns 21.

D LINEIN function-line Input

• General format

LINEIN([name] [,line] [,count)

• Description

The LINEIN function reads a line of characters from an input stream.

name is the input stream. It may be a file or any other standard device.
If this parameter is omitted, the default stream is STDIN.

line is optional; if it is used, the read position of the stream is set to the
first line. The value for line can be only 1. If this parameter is omitted,
then LINEIN reads one line from the current position.

count is a flag indicating whether to read a line. Its value can be only
o or 1. If it is 0, the read operation does not take place; otherwise it
reads a line of characters from the input stream.

• Return

The LINEIN function returns

• One line of string
• A partial line, if a stream has been read by CHARIN
• Null, if count is °

• Example

LINEIN() /* reads a line from the */
/* default input stream */

infile = 'CHAPTER.ll'
LINEIN(infile) /* reads the current line from */

/* CHAPTER.ll startin~ at the */
/* current read posit~on */

REXX 645

LINEIN(infile,l,l) /* read the first time, */
/* ans sets the read position */
/* on the second line */

LINEIN(infile,l,O) /* returns a null character and */
/* sets the read position to the first line*/

C LINEOUT function-line output

• General format

LINEOUT([name] [,string] [,line])

• Description

The LINEOUT function writes a string of characters to an output
stream, which can be a file or a valid device.

name is the output stream. It may be a file or any other standard device.
If this parameter is omitted, the string is written to the STDOUT, the
default output stream.

line, when set to 1, tells LINEOUT to set the write position to the first
character. This is the only valid value for line. If omitted, the line is
appended to the output stream.

• Return

The LINEOUT function returns 1, if successful; 0, if not successful.

646 Chapter 11

• Example

LINEOUT(,'Theworld of REXX') /* writes the line to the */
/*default output stream */

outfile = 'CHAPTER. 11'
LINEOUT(outfile, 'chapter 11: rexx') /* appends the string */

/* to the CHAPTER.ll file */
LINEOUT(outfile,'CHAPTER 11: REXX,I)

/* overwrites the string, */
/* starting from first character */

/* position */

a LINES function-line remaining

• General format

LINES ([name])

• Description

The LINES function checks whether the end-of-file is reached in an
input stream.

name is the input stream. It may be a file or any other standard device.
If this parameter is omitted, the default stream is STDIN.

• Return

The LINES function returns 1, if there is data between the current read
character position and the end of the characters of the input stream; 0,
if there is no data.

• Example

LINES (infile) /* returns 0, means end-of-file is reached */
LINES() /* returns I, means there is data in STDIN */

C MAX function-determine the maximum value

• General format

MAX (number, •••)

• Description

The MAX function returns the maximum numeric value from a list of
numeric values. Up to 20 numbers are allowed.

REXX 647

number is a numeric value.

• Return

The MAX function returns the maximum value. The size of the returned
value depends on the current setting of NUMERIC DIGITS.

• Example

MAX(22,34,67,100,l,4) returns 100.

D MIN function-determine the minimum value

• General format

MIN (number, •••)

• Description

The MIN function returns the minimum numeric value from a list of
numeric values. Up to 20 numbers are allowed.

number is a numeric value.

• Return

The MIN function returns the minimum value. The size of the returned
value depends on the current setting of NUMERIC DIGITS.

• Example

MIN(22,34,67,100,l,4) returns 1.

D NOP instruction-no operation

• General format

NOP

• Description

The NOP instruction does nothing.

648 Chapter 11

• Example

In the following program fragment, the expression in the IF instruction
is x < 3. After the expression is evaluated, depending on whether the
result is 1 or 0, the NOP or SAY instruction is executed. The NOP
instruction does not produce any result, but the SAY instruction does.

IF x < 3
THEN NOP
ELSE
SAY "x is greater or equal to 3"

a NUMERIC instruction-set numeric formats

• General format

NUMERIC < DIGITS [expression or ~] > or
< FORM [SCIENTIFIC or ENGINEERING] > or
< FUZZ [expression or Q] >;

• Description

The NUMERIC instruction sets the format for evaluating and reporting
arithmetic operations.

DIGITS specifies the number of significant digits to use in calculations
and reporting. The expression after DIGITS must resolve to a positive
number. The default number is 9.

FORM specifies the expression of arithmetic values in exponential
notation. There are two kinds: SCIENTIFIC and ENGINEERING.
SCIENTIFIC means that only one nonzero digit appears before the
decimal point of the mantissa, e.g., 3.SE+S. ENGINEERING means
that the exponent is a power of 3, e.g., 23E+3.

FUZZ specifies the number of digits to ignore during a numeric
comparison. The expression after FUZZ must resolve to a positive
number. The default is O.

C OPTIONS instruction-pass options to the REXX language
processor

• General format

OPTIONS expression;

REXX 649

• Description

The OPTIONS instruction passes special parameters to the REXX
language processor in the OS/2 environment to set the DBCS
environment. This instruction should appear at the beginning of a
program.

expression must contain only the following words; any other word is
ignored.

ETMODE Enable support for DBCS characters in strings
NOETMODE Disable support for DBCS characters in strings
EXMODE Enable support for DBCS data operations
NOEXMODE Disable support for DBCS data operations

C OVERLAY function-overlay a string

• General format

OVERLAY(new-string,string[,[n] [,length] [,pad]]

• Description

The OVERlAY function overlays a string with a new string starting at
a given position in the target string. Padding is done if either string is
to be extended.

new-string is the string that is to overlay the target string.

string is the string to be overlaid by new-string.

n is the position of the character in string from which the overlay is to
start. n must be a positive number.

length is the length of new-string.

pad is the padding character.

• Return

The OVERlAY function returns the overlaid string.

650 Chapter 11

• Example

x = OVERLAY('123','1yzv3',2,4.'.'

C PARSE instructlon-assign data

• General format

PARSE [UPPER] <ARG or
EXTERNAL or
NUMERIC or
PULL or
SOURCE or

returns '1123.3'

VALUE [expression] WITH or
VAR name or
VERSION>

[template] ;

• Description

The PARSE instruction places data into one or more variables. The
source of the data can be a terminal, a data stack, or arguments passed
to a function or subroutine.

UPPER means to convert assigned data to uppercase. The case of the
source data remains unchanged.

ARG means that the source of the data is arguments passed to a REXX
program or routine.

template consists of alternating patterns and variable names.

EXTERNAL means that the input data are from a terminal.

NUMERIC specifies returning the current settings for NUMERIC
options.

PULL means that the source of the data is REXX data stacks.

SOURCE means that the source of the data is the program.

VALUE specifies evaluation of expression.

WITH is a keyword in the context of expression.

REXX 651

V AR specifies that name contains the source data.

VERSION specifies returning the current version of REXX.

• Example

CALL Mywork('DATA
EXIT

Mywork: Arg string,
SAY string
SAY num1
SAY num2
Return

3',30,50).

num1, num2
/* displays 'DATA 3' */
/* displays 30 */
/* displays 50 */

CPOS function-search for a substring

• General format

POS(substring,string[,start-pos])

• Description

The POS function searches a string for the first occurrence of a
substring.

substring is the string to be searched for.

string is the string to be searched for the substring.

start-pos is the starting position.

• Return

The POS function returns the character position, relative to 1, if
substring is found; otherwise a zero is returned.

• Example

POS(lItoll,"All dogs go to heaven") returns 13.

C PROCEDURE Instruction-define a procedure

• General format

PROCEDURE [EXPOSE name, •••];

652 Chapter 11

• Description

The PROCEDURE instruction defines a procedure.

EXPOSE is the keyword used to define one or more global variables
that are used within the procedure.

name is a global variable name.

• Example

x = "Birds"
CALL proc
EXIT
proc: PROCEDURE EXPOSE x

SAY x /* displays "Birds" */
Return

C PULL instruction-get an element from the top of the data
stack

• General format

PULL [template];

• Description

The PULL instruction reads the top element of a data stack and uses it
as source data. If the data stack is empty, then PULL will read from the
terminal. The PULL instruction is the same as the REXX instruction
PARSE UPPER PULL [template].

template consists of alternating patterns and variable names.

• Example

SAY 'please enter your first name:'
PULL name

C PUSH Instruction-put an element at the top of the data
stack

• General format

PUSH [expression];

REXX 653

• Description

The PUSH instruction places a new element at the top of the data stack.

expression is the data element to be placed in the data stack.

• Example

line = "WallyMagoo"
PUSH line /* place line at the top of the stack */

C QUEUE Instruction-put an element at the bottom of the
data stack

• General format

QUEUE [expression];

• Description

The QUEUE instruction places a new element at the bottom of the data
stack.

expression is the data element to be placed in the data stack.

• Example

line = "WallyMagoo"
QUEUE line /* place line at the bottom of the stack */

C QUEUED function-get the number of elements in the
queue

• General format

QUEUEO()

• Description

The QUEUED function returns the number of elements remaining in the
data stack.

654 Chapter 11

• Return

The QUEUED function returns the number of elements in the stack.

• Example

x = QUEUED ()
SAY x

/* query number of elements in queue */
/* display number of elements */

C RANDOM function-generate a random number

• General format

RANDOM([min] [,[max][,seed]])

• Description

The RANDOM function generates a pseudo-random number with a
specified or default minimum and maximum range.

min is the minimum value above which the pseudo-random number is
generated. The default is zero.

max is the maximum value below which the pseudo-random number is
generated. The default is 999.

seed is a positive value used to start the random number generation
process.

• Return

The RAMDOM function returns a positive number as the pseudo­
random number.

• Example

The following statement will generate a pseudo-random number in the
range 10 to 1000 using the value 3 as the seed.

y = RANDOM(lO,lOOO,3)

REXX 655

C RETURN Instruction-return from routine

• General format

RETURN [expression];

• Description

The RETURN instruction passes control back to the calling function or
subroutine. Control goes to the statement following the CALL statement.

expression is first evaluated and the result is returned to the calling
function or subroutine.

• Example

CALL Mywork(30, 50)
EXIT

Mywork: Arg numl, num2
Y = numl * num2 /* calculate sum */
RETURN Yi /* return sum to caller */

C REVERSE function-reverse the order of characters in a
string

• General format

REVERSE (string)

• Description

The REVERSE function reverses the order of all characters in a string,
i.e., the first character is placed in the last position.

string is a string whose characters are reversed.

• Return

The REVERSE function returns the reversed string.

• Example

REVERSE('abcde') returns 'edcba'.

656 Chapter 11

C RIGHT function-right-justify text

• General format

RIGHT(string,length[,pad])

• Description

The RIGHT function right-justifies text, using padding characters if
necessary.

string is the text to be justified.

length is the length of the justified text.

pad is the padding character.

• Return

The RIGHT function returns the right-justified text.

• Example

RIGHT("AII dogs go to heaven",23) returns
" All dogs go to heaven".

C SETLOCAL function-save environment settings

• General format

SETLOCAL()

• Description

The SETLOCAL function saves the environment settings that are local
to the current process. The settings are the current working drive and
directory as well as the current values of the environment variables of
OS/2.

This function is useful for ~aving the settings before changing the values
with the VALUE function. To restore the previous saved values, use the
ENDLOCAL function.

REXX 657

• Return

The SETLOCAL function returns 1, if the settings are successfully
saved; 0, if the operation failed.

• Example

/* The current path is 'C:\BOOK\ */

n = SETLOCAL() /* save all the environment settings */

/* Change the PATH variable with VALUE function */

p = VALUE('Path','C:\BOOK\OS2REF','OS2ENVIRONMENT')

n = ENDLOCAL() /* Restore the settings; */
/* now the value of PATH variable is */
/* changed to 'C:\BOOK'*/

SAY 'Resume output'

c SAY Instructlon-dlsplay data

• General format

SAY [expression]

• Description

The SAY instruction sends a line of data to a terminal or SYSTSPRT
DD statement in batch mode.

expression is a valid REXX expression which is first resolved and then
displayed by the SAY instruction.

• Example

SAY 'SAY what?'
name = 'Joe'
year = 10
SAY name' is ' year 'old.'

658 Chapter 11

C SELECT instruction-conditional execution of statements

• General format

SELECT
WHEN expression[;] THEN[;] statement
[WHEN expression[;] THEN[;] statement]
[WHEN expression[;] THEN[;] statement]

.
[OTHERWISE[;] statement]

END;
• Description

The SELECT instruction executes only one statement from a group of
statements. The selection depends on the result of evaluating an
expression placed after the WIlEN clause. If the result of the evaluation
is 1 (TRUE), then the statement associated with this expression, which
is placed after the THEN clause, is executed. If the result is 0 (F ALSB),
then the next expression with the SELECT instruction is evaluated. This
continues until all the expressions with the WHEN clause have been
evaluated and the associated statements executed if necessary. If none
of the expressions with the WIlEN clause yields 1 and an
OTHERWISE clause exists, then the statement specified with that
clause is executed. There must be at least one expression and statement
with the WHEN and THEN clauses.

WHEN starts the condition clause.

expression is a valid REXX expression which is tested; the associated
statement is executed if the result is 1.

The THEN clause specifies the statement to be executed.

statement is a valid REXX statement.

OTHERWISE specifies the statement to be executed when none of the
above statements are performed.

END indicates the end of the SELECT instruction.

• Example

SELECT
WHEN Y = 0 THEN SAY 'Y is 0'
WHEN Y = 1 THEN SAY 'Y is l'

WHEN Y = 2 THEN SAY 'y is 2'
OTHERWISE SAY 'Y < 0 or > 2'

END

C SIGN function-determine the sign of a number

• General format

SIGN(number)

• Description

The SIGN function determines the sign of a number.

number is the value whose sign is to be determined.

• Return

The SIGN function returns the following:

-1 if number is negative
o if number is equal to zero
+ 1 if number is positive

• Example

SIGN (, - 2 • 38 ')
SIGN(O.O)
SIGN (, 2 • 4 ')

returns -1
returns 0
returns +1

C SIGNAL instruction-exception condition handler

• General format

SIGNAL label
or

SIGNAL [VALUE] expression
or

SIGNAL OFF < ERROR or

>
or

FAILURE or
HALT or
NOVALUE or
SYNTAX

SIGNAL ON < ERROR or
FAILURE or

REXX 659

660 Chapter 11

• Description

HALT or
NOVALUE or
SYNTAX

> [NAME label]

The SIGNAL instruction can be used in one of the following ways:

• To pass program control to a label or routine
• To enable exception condition processing
• To disable exception condition processing

label is the name of a label to which control is passed.

VALUE specifies the expression which is evaluated.

OFF specifies disabling the conditions that follow.

ON specifies enabling the conditions that follow.

ERROR means that there was a nonzero return code after a host
command was executed.

HALT means that the terminal attention key has been pressed and an
HT command entered.

NOV ALUE means that a non-initialized variable has been used in a
statement.

SYNTAX means that the REXX interpreter found a syntax error.

FAILURE means that a negative code was returned after an OS/2
command was executed .

• Example

SIGNAL ON NOVALUE novalue /* goto novalue */

.
Attention: SAY 'Variable not initialized'

EXIT

REXX 661

C SOURCELINE function-get a program line

• General format

SOURCELINE([line-number])

• Description

The SOURCELINE function retrieves the relative line number of a
REXX source program line.

line-number is optional; when it is specified, the program line of the
program is returned. If line-number is not specified, the function returns
the line number of the last line.

C SPACE function-insert characters between words

• General format

SPACE(string[,[n][,pad]])

• Description

The SPACE function either inserts or removes padding characters
between words in a string.

string is the string to or from which padding characters are added or
removed.

n is the number of padding characters to insert between words of string.

pad is the padding character.

• Return

The SPACE function returns the changed string.

• Example

SPACE ("All dogs go to heaven II ,2,'.')
returns' All •• dogs •. go •• to •• heaven" .

SPACE (, ABC 0 E' ,0) returns 'ABCDE'.

662 Chapter 11

C STREAM function-get status or result of a stream

• General format

STREAM([name[, State or

• Description

Command, stream-command or
Description]

The STREAM function is used to set the status of a stream or receive
the result of a REXX operation acted on a stream. Both of these requests
can be performed on either an input or output stream.

name is a required argument and it must indentify a character stream.

State or S is used to check the status of a stream. If this state argument
is specified, the function returns one of the following strings to indicate
the status of a stream:

ERROR

NOTREADY

READY

UNKNOWN

Meaning the operation on an input or output
stream has failed. More information can be
obtained on the nature of the error by STREAM
function using the description argument.
Meaning that the stream is not available for an
input or output operation.
Meaning that the stream is available for an input
or output operation.
Meaning that the stream is not yet opened for
operation.

Command or C is issued as a command to a specified stream. With this
argument you have to include a stream command.

stream-command can be one of the following:

OPEN To open the specified stream. This is the default
command. With this command, you can also add
one of two subcommands: READ or WRITE.
This opens a stream for a read or write opration;
for example,

stream(strout,'C','OPEN WRITE')
or

stream(strimp,'C','OPEN READ')

CLOSE

SEEK offset

=

<

+

REXX 663

To close a stream that was previously opened
and returns READY, if successful.
To set the character position of an input or
output stream. To use this command, you have
to first open the stream. offset is an integer. This
number can be preceded by one of the following
characters:

The position is set to the offset value from the
beginning of the stream.
The position is set to the offset value from the
end of the stream.
The offset value is added to the current read or
write position.
The offset value is subtracted from the current
read or write position.

The following stream commands return information about a stream.

QUERY EXIST

QUERY SIZE
QUERY DATETIME

Returns the full pathname of a stream. If the
stream does not exist, the function returns a
null string.
Returns the size of a stream.
Returns the date and timestamps of a stream.

Description or D gives additional information about the state of a
stream. This argument is useful to obtain the description of an ERROR
or NOT READY state of a stream .

• Return

The STREAM function returns

• The state of a stream
• The description of an error
• The pathname, size, and date and time of a stream

• Example

STREAM('CHAPTER.ll','C','CLOSE') /* close the stream */
STREAM('CHAPTER.ll','C','SEEK=2')

/* set the character position */
/* to 2 */

STREAM('CHAPTER.ll','C','SEEK=-9')
/* subtract 9 from the current */

664 Chapter 11

/* character position */
STREAM('CHAPTER.ll','S') /* query status */

C STRIP function-remove leading and trailing characters
from a stri ng

• General format

STRIP(string[,[~ or Leading or Trailing] [,char]])

• Description

The STRIP function removes any leading and trailing characters from
a string.

string is the data from which characters are removed.

Both means to remove both leading and trailing characters from string.

Leading means to remove leading characters from string.

Trailing means to remove trailing characters from string.

char is the character to be removed from string; the default is a blank.

• Return

The STRIP function returns the stripped string.

• Example

STRIP(' Heavenly ',L)
STRIP('.Heavenly.',B,'.')

returns 'Heavenly'.
returns 'Heavenly'.

C SUBSTR function-extract a substring

• General format

SUBSTR(string,position[,[length] [,pad]])

• Description

The SUBSTR function extracts a substring from a string starting at a
specified character position.

REXX 665

string is the string from which a portion is extracted.

position is the character position in string at which the substring is
extracted; it is also the first character of the extracted substring.

length is the number of bytes of the substring.

pad is the padding character.

• Return

The SUBSTR function returns the substring.

• Example

SUBSTR('Hot dog',4) returns' dog'

C SUBWORD function-extract a word from a string

• General format

SUBWORD(string,word-position[,word-count])

• Description

The SUBWORD function extracts one or more words from a string
starting at a specified word position.

string is the string from which one or more words are extracted.

word-position is a word position in string relative to 1; it is also the first
position from which words are extracted.

word-count is the number of words to be extracted. The default is all the
remaining words.

• Return

The SUBWORD function returns the extracted words.

• Example

SUBWORD('Hot dog',2) returns 'dog'

666 Chapter 11

C SYMBOL function-get the status of a variable name

• General format

SYMBOL (name)

• Description

The SYMBOL function returns the status of a variable name.

name is a valid REXX variable name.

• Return

The SYMBOL function returns

V AR If the variable name has been assigned a value and has not been
deleted with a DROP function

LIT If the variable name has not been assigned a value or if it has
been deleted with a DROP function

BAD If the variable name is not valid

• Example

d = "horses"
x = SYMBOL ("d")
y = SYMBOL("f")

/* returns VAR */
/* returns LIT */

C TIME function-get the current time of day

• General format

TIME('Civil' or 'Elapse' or 'Hours' or 'Long' or
'Minutes' or 'Normal' or 'Reset' or 'Seconds')

• Description

The TIME function returns the current time of day in different formats.

• Return

The TIME function returns the time in the following formats:

REXX 667

Code Returns Format

Time of day hh:mmxx Civil
Elapse
Hours
Long
Minutes
Normal
Reset

Elapsed time sssssss. uuuuuuu
Hours since midnight hh
Time of day in the long form hh:mm:ss.uuuuuuu
Minutes since midnight mmmm
Time of day hh:mm:ss
Time elapsed since the elapsed
clock was set or reset; the
clock is reset

Seconds Seconds since midnight sssss

• Example

x = TlME('H') /* return hours since midnight */

C TRACE instruction-set REXX debugging options

• General format

TRACE [number];
or

TRACE [? or 1] ['All' or

• Description

'Commands' or
'Error' or
'Failure' or
'Intermediates' or
'Labels' or
'Normal' or
'Off' or
'Results' or
, Scan']];

The TRACE instruction enables and disables tracing of execution of
REXX statements.

If number has a positive value, it is the number of trace pauses to skip
over. If number is negative, it is the number of trace outputs to suppress.

? is a prefix which means to enable interactive debugging.

! is a prefix which means to turn off execution of host commands.

668 Chapter 11

All means to display all expressions before execution.

Commands means to display the host command before execution.

Error means to display a host command returning a nonzero code.

Failure means to display a host command returning a negative code.

Intermediates means to display all expressions before execution and all
intermediate results.

Labels means to display labels when they are encountered.

Normal means to display a host command returning a negative code.

Off means to end tracing.

Results means to display all expressions before execution and displays
the results.

Scan means to check the syntax of REXX statements but not to execute
them.

• Example

TRACE '?C' /* turn on host command tracing */

D TRACE function-set or return current trace setting

• General form~t

TRACE

• Description

[? or 1] ['All' or
'Commands' or
'Error' or
'Failure' or
'Intermediates' or
'Labels' or
'Normal' or
'Off' or
'Results' or
, Scan')

The TRACE function either sets or returns the current REXX trace
setting. The following options are used: All, Commands, Error, Failure,

REXX 669

Intermediates, Labels, Normal, Off, Results, and Scan. These options
were previously described with the TRACE instruction. If the option is
omitted, the function returns the current setting.

• Return

The TRACE function returns the current setting.

• Example

y = TRACE ()
x = TRACE (, ?C')

/* return the current setting */
/* turn on tracing for host commands */

C TRANSLATE function-translate and reorder characters
In a string

• General format

TRANSLATE(string[, [outtab] [,intab][,pad]])

• Description

The TRANSLATE function translates and reorders the content of a
string depending on input and output translation tables. If the first
character of the input table is found in the string, then this matching
character in the string is replaced with the first character in the output
table. The characters in the input table map to characters in the output
table. If only the string is specified, with all other arguments omitted,
then TRANSLATE converts all characters to uppercase.

string is the string to be translated and reordered.

outtah is the output translation table.

intab is the input translation table.

pad is the padding character used to extend the length of outtab if
required.

• Example

TRANSLATE('abcdef') returns 'ABCDEF'
TRANSLATE('abcdef','l','abcdef','l') returns '111111'

670 Chapter 11

C TRUNC function-truncate a number

• General format

TRUNC(number[,decimal-places])

• Description

The TRUNC function formats a number to a specified number of
decimal places.

number is the numeric value to be formatted.

decimal-places is the number of decimal places. The default value is O.

• Return

The TRUNC function returns the formatted numeric value.

• Example

TRUNC("1222.6757") returns '1222'
TRUNC("1222.6757",2) returns '1222.67'

C VALUE function-get the content of a symbol

• General format

VALUE (name)

• Description

The VALUE function returns the content of a symbol.

name is a valid REXX symbol or variable name.

• Example

x = 'My oh my'

y = VALUE(x)

SAY Y /* displays 'My oh my'*/

REXX 671

C VERIFY function-compare two strings

• General format

VERIFY(stringl,string2
[,'Match' or 'Nomatch'] [,position])

• Description

The VERIFY function compares two strings and determines the position
of the first matching character in both strings or the position of the first
character that does not match in both strings.

stringl is one of the strings.

string2 is the other string.

Match is the option to check for a matching character in both stringl
and string2.

Nomatch is the option to check for the first character in stringl that
does not match string2.

position is the starting position of the comparison.

• Return

The VERIFY function returns the first position in stringl that has a
matching or nonmatching character. It returns zero if the option is
'Match' and all characters in stringl and string2 match. It also returns
zero if none of the characters in stringl and string2 match, if the option
is 'Nomatch'.

• Example

VERIFY ("abed", "ccc", 'M')
VERI FY (" abdc" , "2 II , , N')

C WORD function-get a word

• General format

WORD(string,word-num)

returns 3
returns 0

672 Chapter 11

• Description

The WORD function extracts a word from a string at a given word
position.

string is the string from which the word is extracted.

word-num is the word position relative to 1 in string.

• Return

The WORD function returns the word extracted.

• Example

WORD("The world is but one country",2) returns 'world'

C WORDINDEX function-get a word position in a string

• General format

WORDINDEX (string, word-num)

• Description

The WORD INDEX function returns the character position of a word in
a string. It returns zero if the word is not found.

string is the string that is searched for the character position of a word.

word-num is the position relative to 1 in string of the word whose
character position is determined.

• Example

WORDINDEX("The world is but one country",2) returns 5

C WORDLENGTH function-get a word length in a string

• General format

WORDLENGTH (string, word-num)

REXX 673

• Description

The WORDLENGTH function returns the length of a word in a string.
It returns zero if the word is not found.

string is the string that is searched for the length of a word.

word-num is the position relative to 1 in string of the word whose length
is determined.

• Example

WORDLENGTH(IIThe world is but one country ll,2) returns 5

C WORDPOS function-get a word position In a string

• General format

WORDPOS(string-to-find,string-to-search[,word-num])

• Description

The WORDPOS function returns the position of a specified word in a
string. It returns zero if the word is not found.

string-to-find is the word searched for in a string.

string-to-search is the string that is searched.

word-num is the number of the word at which the search starts and is
the word position relative to 1 in string-to-search.

• Example

WORDPOS(IIThe world is but one countryll,lIisll) returns 3

C WORDS function-ge~ the number of words in a string

• General format

WORDS (string)

• Description

The WORDS function returns the number of words in a string.

674 Chapter 11

string is the string whose words are counted.

• Example

WORDS("The world is but one country") returns 6

C XRANGE function-get a range of hexadecimal numbers

• General format

XRANGE([start] [,end])

• Description

The XRANGE function returns a range of hexadecimal numbers given
lower and upper limits.

start is the lower limit of the range.

end is the upper limit of the range.

• Example

XRANGE('O','3') returns 'FOFIF2F3'x (ASCII)

C X2C function-convert hexadecimal to character

• General format

X2C(bex-string)

• Description

The X2C function converts a string of hexadecimal values into a
character string.

hex-string is one or more hexadecimal digits to be converted.

• Return

The X2C function returns the converted character string.

REXX 675

• Example

X2C (, FOF1F2 ') returns 012

C X2D function-convert hexadecimal to decimal

• General format

X2D(hex-string)

• Description

The X2D function converts a string of hexadecimal values into a
decimal string.

hex-string is one or more hexadecimal digits to be converted.

• Return

The X2D function returns the converted decimal string.

• Example

X2C('FOFO') returns 61680

Index

Index note: The f. after a page number refers to a figure.

IA[LlGNMENT], 159
IB, 139
IBASE[E],159
IBAT[CH], 160
IC,139
IC[ODEVIEW], 160
ID, 139
IDE[BUG], 160
IDO[SSEG], 160
IE[XEPACK],160
fF,140-142
fF[ARCALLTRANSLATION],160
IG,142-144
IH, 144
IH[ELP], 160
II, 144
!l[INFORMATION], 160
IJ,145
IK, 145-146
IL, 147-148
IL[INENUMBERS],160
1M, 148
IM[AP],160
IN, 148-149
INOD[EFAULTLIBRARYSEARCH], 160
INOE[XTDICTIONARY], 160
INOF[ARCALLTRANSLATION], 160
INOI[GNORECASE], 160
INOL[OGO], 161
INON[ULLSDOSSEG], 161
INOP[ACKCODE], 161
10,149
IP, 150
IPACKD[ATA], 161
IPAU[SE], 161
IPM[TYPE],161
IQ,150
n,159
1R,151
IS, 151-153

ISE[GMENTS], 161
IST[ACK], 161
fl, 153
IU, 154
N,154
!W,154-155
!W[ARMFIXUP],161
IX, 155

#define,495-498,501,505-506
#elif, 495, 496, 506-507
#else,495,496,506,509-510
#endif, 495, 496, 506, 509, 510
#error, 495, 502-503
#if, 495, 496, 506-507, 509, 510
#ifdef, 494, 496, 507-510
#ifndef, 495, 496, 508-510
#include, 495, 503-506
#line, 495, 511
#operator, 495, 501-502
#pragma,495
#pragma alloc_text, 512
#pragma character_sequence, 511-512
#pragmachars,499,512-513
#pragmacheckout,513
#pragma comment, 513-514
#pragma data_seg, 514-515
#pragma define, 515
#pragma disjoint, 515-516
#pragma entry, 516-517
#pragma export, 517
#pragma handler, 517-518
#pragma implementation, 518
#pragma import, 518-519
#pragmainfo,519
#pragmaisolated_call,520
#pragma langlvl, 499,520-521
#Pragmalinkage,521
#pragma map, 521

en

678 Index

#pragma margin, 522
#pragma nosequence, 525
#pragma pack, 522-523
#pragma page, 523
#pragma pagesize, 523-524
#pragma priority, 524
#pragma seg16, 524-525
#pragma sequence, 525
#pragma skip, 525--526
#pragma stack16, 526
#pragmastring, 526-527
#pragma subtitle, 527
#pragma title, 527
#Undef, 495, 497, 501

_beginthread function, 167
_doserrno variable, 169
_endthread function, 167
_environ variable, 169
_putenv function, 168
_thread variable, 169

ABBREV function, 613-614
Abort function, 167
ABS function, 614
ACCEPT statement, 219-221
ACCESS MODE clause, 192-193
ADD statement, 221-222
Addition operator, 47
ADDRESS function, 615--616
ADDRESS instruction, 614-615
Address operator, 39, 43
ALPHABET clause, 187-188
ALTER statement, 223
ALTER TABLE, 343-344, 372
ALTERNATE RECORD KEY clause, 193
ANSI command, 532
APPEND command, 533, 591
Application-controlled window tag refer-

ence,478
APPLY WRITE-ONLY clause, 193-194
ARG function, 616-617
ARG instruction, 617, 650
Array element specification, 35, 37-38
Arrays, 7, 12-15
Art link tag reference, 478-479
Artwork tag reference, 479
ASSIGN clause (COBOL), 194
ASSIGN command, 534, 559
Associativity, 33, 34f.
ATTRIB command, 534-535, 607

AUTHOR paragraph, 180, 181
AUTOFAIL command, 535
Automatic storage specifier, 25, 26
AUTOSTART, 592-593
AVG, 387-388

BACKUP command, 535--537, 588
BACKUP DATABASE, 291-292, 323
BASE,159
BASEDEV command, 537-538
BASIC statement, 264
BEEP function, 617-618
BEGIN DECLARE SECTION, 344-345,

358
BIND, 292-294
BITAND function, 618
Bitfield structure, 19-21
BITOR function, 618-619
Bitwise AND, 50
Bitwise exclusive OR, 50
Bitwise inclusive OR, 51
Bitwise left and right shift, 47-48
Bitwise negation, 39, 43
BITXOR function, 619-620
BLANK CONTAINS clause, 206
BLANK WHEN ZERO clause, 205--206
BOOT command, 538-539
BREAK command, 539
Break statement (C language), 55, 60,

66-70
Break tag reference (IPF), 479-480
B2X function, 620
BUFFERS command, 539

C and C+ + compiling and linking,
129-171

compiler files, 133-135
compiler invoking, 135--137
compiler options, 137-155, 164, 165f.
compiler return codes, 155--157
dynamic linkage, 166
linker environment variable, 162-163
linker error messages, 163-164

fatal errors, 163
nonfatal errors, 163
warnings, 163-164

linker invoking, 157-162
multithread programming, 167-171

compiling and linking, 170
functions, 167-168
link,170-171

C and C++ compiling and linking (Cont.):
run, 171
variables and data structures, 169

run-time library, 164-166
software requirements, 130-133

class browse, 131
compiler, 130
debugger, 130
editor, 130-131
environment setup, 131-133
linker, 130
run-time libraries, 130

static linkage, 166
(See also Preprocessor directives)

C language, 1-73
data declarations, 5-7
data types, 7-25
elements, 2-5
expressions, 32-38

constant, 32,34-35
primary, 32, 35

operators, 38-54
assignment, 54

compound, 54, 55f.
simple, 54

binary, 38, 45-53
conditional, 38, 52-53
unary, 38-45

statements, 55-72
storage specifiers, 25-32

C++ language, 1, 73-127
class and object, 79-92

object assignment, 80, 91-92
passing objects to functions, 80,

89-90
returning objects, 80, 90-91

constructor and destructor functions,
92-98

execution of, 92, 96-98
passing arguments to constructors, 92,

95-96
elements of, 75-79

comment lines, 75, 77
general program form, 76-77
110 operations, 75, 78
110 operators, 75, 77
keY'Vords, 78, 79f.
predefined streams, 79

function and operator overloading,
98-112

new and delete, 98,108-110
inheritance, 113-125

base class access control, 113-115

Index 679

C+ + language (Cont.):
granting access, 113,122-123
multiple classes, 113, 118-119
protected members and, 113,

116-118
virtual base classes, 113, 123-125

virtual functions, 125-127
C Set + + (see C and C++ compiling and

linking)
CACHE command, 540
CALL command, 540
CALL instruction (REXX), 620-621, 654
CALL statement (COBOL), 223-225
CANCEL statement, 225
Cast operator, 39, 44
CATALOG APPC NODE, 300-302
CATALOG APPN NODE, 295-296
CATALOG DATABASE, 296-297, 328
CATALOG DCS DATABASE, 297-299,

328
CATALOG NetBios NODE, 299-300
Caution tag reference, 480
CD (CHDIR) command, 541-542
CENTER (CENTRE) function, 621-622
CHANGE DATABASE COMMENT,

302-303
CHANGE SQLISL, 303
CHAR, 391-392
Character data types, 7-10
Character graphic tag reference, 480
Characters, 2-3
CHARIN function, 622-623, 644
CHAROUT function, 623-624
CHARS function, 624
CHCP command, 541
CHDIR (CD) command, 541-542
CHKDSK command, 534, 542
CLASS clause, 188
CLOSE (SQL), 345-346, 354
CLOSE statement (COBOL), 226-227
CLS command, 543
CMD command, 543
COBOL, 173-268

compiler directives, 264-268
DATA DIVISION, 201-218

file section, 201,203-204
linkage section, 201, 205
working-storage section, 201,

204-205
ENVIRONMENT DIVISION, 183-201

configuration section, 183-189
input-output section, 183, 189-201

general program format, 174-175

680 Index

COBOL (Cont.):
IDENTIFICATION DIVISION,

180-182
language elements, 177-179

arithmetic operators, 179
character set, 177
conditional expressions, 179
data types, 177-178

PROCEDURE DIVISION, 218-264
source format, 176

CODE,159
CODE-SET clause, 206-207
CODEPAGE command, 541, 544, 556,

557
Color tag reference, 480-481
COMMAND command, 544-545
COMMENT ON, 346-348, 372, 378
Comment tag reference, 478
Comments, 2, 4
COMMIT,345,347-348,354,372,378
COMP command, 545--546
COMPARE function, 624-625
COMPUTE statement, 227-228
CONDITION function, 625--626
CONNECT, 348-349
Const attribute, 32
Constant expression, 35, 36
Constants, 5
Constructor function, 92, 93

inheritance, 113,119-120
passing parameters to base class,

113,120-122
overloading, 98, 101-102

Continue statement (C language), 55,
70-71

CONTINUE statement (COBOL),
228-229

CONTROL statement, 265
COPIES function, 626
COpy command, 546, 605
COpy statement (COBOL), 265
COUNT, 387-389
COUNTRY command, 544, 547, 548, 556,

557
CREATE DATABASE, 304-305
CREATE INDEX, 349-350, 372
CREATE TABLE, 351-352, 372
CREATE VIEW, 352-353, 372, 379
CREATEDD command, 547
C2D function, 626-627
C2X function, 627
CURRENCY SIGN clause, 188-189

DATA, 159
DATA RECORDS clause, 207
Data storage (variables), 5
DATATYPE function, 627-628
DATE (SQL), 392
DATE command, 547-548
DATE-COMPILED paragraph, 180, 181
DATE function, 628-629
DATE-WRITTEN paragraph, 180, 181
DAY, 393
DAYS, 393-394
DBM, 270-272
DB2I2 commands and utilities, 269-331

DBM command line processor com­
mands, 289-331

DOS and Windows database client appli­
cation enabler commands,
287-289

system commands, 270-287
DDINSTAL command, 548
DEBUG command, 548-549
DECIMAL, 394-395
DECLARE CURSOR, 345, 353-354,

358-359,370,379,380,385
Decrement operator, 39--41
Define content tag reference, 481
Define control tag reference, 481
Definition list tag reference, 482
DEL (ERASE) command, 562, 588
DELDIR command, 603
DELETE (SQL), 348, 354-356, 372, 378
DELETE statement (COBOL), 229-230,

266
DELSTR function, 629-630
DELWORD function, 630
DESCRIBE, 356-357, 372-373, 405, 406
DESCRIPTION,159
Destructor function, 92, 94-95

inheritance, 113,119-120
DETACH command, 550
DEVICE (access external disk driver) com­

mand,552
DEVICE (install CD-ROM device driver)

command, 554
DEVICE (install device driver) command,

550-551
DEVICE (install EGA register interface

device driver) command, 552
DEVICE (install logging service device dri­

ver) command, 552-553
DEVICE (install mouse pointer) command,

555

DEVICE (install pointer device driver)
command, 553

DEVICE (install pointer draw device
driver) command, 554

DEVICE (install serial port drivers)
command, 551

DEVINFO (prepare device for code-page
switching) command, 556

DEVINFO (prepare display for system
code-page switching) command, 556

DEVINFO (prepare keyboard for system
code-page switching) command,
556-557

DIGITS function, 631
DIGITS instruction, 648
DIR command, 542, 543, 557-558
DIRECTORY function, 631
DISKCACHE command, 558
DISKCOMP command, 534, 558-559
DISKCOPY command, 534, 559
DISPLAY statement, 230
DIVIDE statement, 231-232
Division operator, 46
DO instruction, 632-634,641-643
Do/while statement, 55, 67-68
Document profile tag reference, 482
DOS command, 560
DosCreateThread function, 167, 168
DosEnterCritSec function, 168
DosExit function, 168
DosExitCritSec function, 168
DosGetinfoBlocks function, 168
DOSKEY command, 559-560
DosKillThread function, 168
DosResumeThread function, 168
DosSetPriority function, 168
DosSuspendThread function, 168
DosWaitThread function, 168
DPATH (C and C+ + compiling and link-

ing),132
DPATH command, 560-561, 591
DROP (SQL), 348, 357-358, 372, 378
DROP DATABASE, 305
DROP instruction (REXX), 634
D2C function, 634-635
D2X function, 635
Dynamic data formatting tag reference,

481-482

EAUTIL command, 561
ECHO command, 561-562

Index 681

EJECT statement, 266
Empty (null) statement, 55, 72
END DECLARE SECTION, 344, 358-359
ENDLOCAL command, 594
END LOCAL function (REXX), 635-636,

656
ENTER statement, 232
ENTRY statement, 232-233
Enumeration, 7, 15-16
Equality operator, 49
ERASE (DEL) command, 562, 588
Errno variable, 169
ERRORTEXT function, 636
Escape sequences, 2-4
EVALUATE statement, 233-234
Example tag reference, 494
EXEHDR, 407, 414-418

description, 414-417
heading listing, 415
object listing, 415
verbose listing, 415-417

general format, 414
EXETYPE, 159
EXIT command, 543-545, 562
Exit function (C and C++ compiling and

linking), 167
EXIT instruction (REXX), 636-637
EXIT PROGRAM statement, 235-236
EXIT statement (COBOL), 235
EXPORT,305-307
EXPORTS, 159
Expression statement, 55, 56
EXTERNAL clause, 207
External storage specifier, 25, 28-30
EXTPROC command, 563

FCBS command, 563
FDISK command, 563-565
FDISKPM command, 564-565
FETCH, 346, 354, 358-361, 370-372, 405
Figure caption tag reference, 483
Figure tag reference, 483
FILE CONTROL paragraph, 190-192
FILE STATUS clause, 194-195
FILES command, 565
FILESPEC function, 637-638
FIND command, 565-566
FLOAT,395
Floating-point variables, 7, 10
Font tag reference, 483-484
Footnote tag reference, 484

682 Index

FOR command, 566
For statement (C language), 55, 63-68,

70,72
FORM function, 638
FORM instruction, 648
FORMAT command, 534, 537, 567
FORMAT function (REXX), 638-639
Friend function, 80, 84-85

operator overloading and, 98, 103,
106-108

FSACCESS command, 568
Function call, 35, 37
Function overloading, 98, 99

address of, 98, 102-103
ambiguity and, 98, 100-101

FUZZ function, 639, 648
FWDSTAMP, 407, 418

GET AUTHORIZATIONS, 307-308
GET DATABASE STATUS, 309-310
GET DATABSE CONFIGURATION, 308
GET DATABSE MANAGER CONFIGURA-

TION,308-309
GET SYSTEM STATUS, 310-311
GET USER STATUS FOR DATABASE,

311-312
GLOBAL clause, 208
GO TO statement (COBOL), 236-237
GOBACK statement, 236
GOTO command, 568
Goto statement (C language), 55, 66, 67,

71-72
GRAFTABL command, 568-569
GRANT (database), 362-363
GRANT (package), 363-364
GRANT (table or view), 364-365

Headings tag reference, 484
HEAPSIZE, 159
HELP command, 569
Hide tag reference, 485
Highlighted phrase tag reference, 485
HM_ACTIONBAR_COMMAND, 453
HM_CONTROL, 454
HM_CREATE_HELP _TABLE, 454
HM_DISMISS_ WINDOW, 454-455
HM_DISPLAY_HELP, 455-456,459-461
HM_ERROR, 456-458
HM_EXIT_HELP, 458-459
HM_EXT_HELP _UNDEFINED, 459
HM_GENERAL_HELP, 459-460

HM_GENERAL_HELP _UNDEFINED,
460

HM_HELP _CONTENTS, 460-461
HM_HELP _INDEX, 461
HM_HELPSUBITEM_NOT_FOUND,

461-462
HM_INFORM, 462, 471
HM_INVALIDATE_DDF _DATA, 462-463
HM_KEYS_HELP, 463-464
HM_LOAD_HELP _TABLE, 464
HM_NOTIFY, 464-465
HM_QUERY, 465-467
HM_QUERY_DDF _DATA, 467,471
HM_QUERY_KEY_HELP, 463,467-468
HM_REPLACE_HELP _FOR_HELP, 468
HM_SET_ACTIVE_ WINDOW, 455, 463,

468-469
HM_SET_COVERPAGE_SIZE,469
HM_SET_HELP _LIBRARY_NAME,

469-470
HM_SET_HELP_WINDOW_TITLE,470
HM_SET_OBJCOM_WINDOW, 470-471
HM_SET_SHOW _PANEL_ID, 471
HM_SET_USERDATA,471-472
HM_TUTORIAL,472
HM_UPDATE_OBJCOM_ WINDOW_

CHAIN, 472-473
HOUR, 395-396

I-O-CONTROL paragraph, 190
ICC, 133, 137
Identifier expression, 35, 36
Identifiers, 4
IF command, 570
If-else-if statement, 55, 58-60
IF instruction (REXX), 639-640, 647
If statement (C language), 55, 57-58
IF statement (COBOL), 237-238
IFS (install file system) command, 567, 570
IFS (install program for CD-ROM file sys-

tem) command, 570-571
IFS (specify program for HPFS) command,

571
IMPLIB, 407, 418-420

description, 419-420
def-file, 420
dll-file, 420
implib-name, 419
option, 419

general format, 418
IMPORT, 312-314
IMPORTS, 159

INCLUDE (C and C+ + compiling and
linking), 132, 144

INCLUDE (SQL), 366-367,404
Increment operator, 39-40
Index command tag reference, 486
Index synonym tag reference, 486
Index tag reference, 48~86
Indirection operator, 39,43
Information Processing Facility (IPF),

439-494
application communication, 453-473

WinSendMsg, 453
compiler, 447-448

description, 448
general format, 447

data structure, 449-452
Help facility, 452
prior to usage, 440-447

environment variables, 447
include file, 44~46
output file, 446-447
resource script file, 444-445
source file, 440-443

:euserdoc, 441
:userdoc, 441

tag reference, 440-441, 476-494
window functions, 473-476

INITIALIZE statement, 239
Inline function, 80, 85-86
INSERT (SQL), 348, 358, 367-369, 372,

378,379
INSERT function (REXX), 640-641
INSERT statement (COBOL), 266-267
INSPECT statement, 240-241
INSTALLATION paragraph, 180, 181
INTEGER, 396
Integers, 7, 11
INTERPRET instruction, 641
INVOKE PROCEDURE, 314-315
IOPL command, 571
IPF (see Information Processing Facility)
ITERATE instruction, 641-642

JOIN command, 534, 559, 572
JUSTIFIED clause, 208

KEYB command, 572-573
KEYS command, 573, 591

LABEL command, 534, 573

Index 683

LABEL RECORDS clause, 208-209
Label statement (C language), 55, 56
Language keywords, 2, 5
LASTDRIVE command, 574
LASTPOS function, 642
LEAVE instruction, 642-643
LEFT function, 643
Left margin tag reference, 488
LENGTH (SQL), 396-397
LENGTH function (REXX), 643-644
LH (LOADHIGH) command, 574-575
LIB, 132, 158
LIBPATH command, 574
LIBRARY, 158
LINAGE clause, 209-210
LINEIN function, 644-645
LINEOUT function, 645
LINES function, 646
Lines tag reference, 487
LINK, 162-163
Link tag reference, 487
LIST DATABASE DIRECTORY, 315
LIST DCS DIRECTORY, 316
List item tag reference, 486-487
LIST NODE DIRECTORY, 316-317
List part tag reference, 488
LOADHIGH (LH) command, 574-575
Local class, 80, 88-89
LOCK TABLE, 369-370,372
Logical AND, 51-52
Logical negation, 39,42-43
Logical OR, 52

~EINIcommand,575
MAPSYM,429
N.U\RKE~,407,420-421

description, 420-421
general format, 420

MAX (SQL), 387, 389
MAX function (REXX), 646
MAXW AIT command, 575
MD (MKDIR) command, 576-577
MEM command, 576
MEMMAN command, 576
MERGE statement, 241-242
MICROSECOND, 397-398
MIGRATE DATABASE, 317-318
MIGRATE1, 270, 272-273
MIN (SQL), 387, 390
MIN function (REXX), 647
MINUTE, 398
MKDIR (MD) command, 576-577

684 Index

MKMSGF, 407, 421-425
description, 422-425

comment lines, 422-423
component identifier line, 423
component message line, 423-424
controlfile, 424-425
DosGetMessage, 422, 424
option, 424
outfile, 424

general format, 421
MODE command, 577
MONTH,399
MORE command, 577-578
MOVE command, 578
MOVE statement (COBOL), 243-244
MSGBIND, 407, 429-431

description, 429-431
DosGetMessage, 430
executable file, 430
message file, 430
message numbers, 430-431
scriptfile, 430

general format, 429
Multidimensional array, 13-15
MULTIPLE FILE TAPE clause, 195
Multiplication operator, 45
MULTIPLY statement, 244-245

NAME, 158, 159
Names, 4
NMAKE,407-417

description, 408-413
IF description-file, 409
command-file, 409
description block, 409, 410
inference rules, 410-412
macro-definition, 409
macros, 410-411
option, 408-409
pseudotargets, 410, 412-413
target, 409

general format, 407
NOP instruction, 647
Note tag reference, 488
Note tag reference (multiple paragraphs),

489
Null (empty) statement, 55, 72
NUMERIC instruction, 648, 650

OBJECT-COMPUTER paragraph,
184-185

Object-oriented programming (OOP),
73-75

encapsulation, 74
inheritance, 74
polymorphism, 74-75

OCCURS clause, 210-211
OLD, 158, 159
Online information programming (see

Information Processing Facility)
OOP (see Object-oriented programming)
OPEN (SQL), 345, 346, 354, 355, 360,

370-371,405
OPEN statement (COBOL), 245-246
Operator overloading, 98, 103-106

[],99,110
0, 99, 111-112
-7,98,112
friend function and, 98,103,106-108

OPL command, 571
OPTIONS instruction, 648-649
Order list tag reference, 489
ORGANIZATION clause, 195-196
OS/2 commands, 529-607

description, 532
general format, 529-530

external, 530
internal,529-530
parameters, 530

return codes, 532
usage, 531-532

batch file, 531-532
command line, 531
CONFIG.SYS, 532

OS2_SHELL, 592
OVERLAY function, 649

PACK, 407, 425-428
description, 426-427

IA,427
IC,427
lD:headerdate, 427
1H,427
1L,427
1R,427
!r:headertime, 427
filename, 427
headerfile, 427
headerpath, 427
packed-file, 426
source-file, 426

general format, 425-426
PADDING CHARACTER clause, 196

Paragraph tag reference, 489-490
Parameter descDescription tag reference,

490-491
Parameter list tag reference, 490
Parameter term tag reference, 491
Parenthesized expression, 35, 36
PARSE instruction, 649-650
PASSWORD clause, 197
PATCH command, 578-579
PATH (C and C++ compiling and linking),

131-132
PATH command, 530, 533, 574, 579, 591
PAUSE command, 579-580
PAUSEERROR command, 580
PERFORM statement, 247-249
PHYSICAL DEVICE, 158, 159
PICTURE clause, 211
PICVIEW command, 580
PM (Presentation Manager) applications,

439
PMREXX command, 581
Pointers, 7, 17
POS function, 651
Precedence, 33,34f
PREPARE,357,371-373,405,406
Preprocessor directives, 495-527

conditional compilation, 496
predefined macros, 498-501

Presentation Manager (PM) applications,
439

PRINT command, 534, 581-582
PRINTMONBUFSIZE command, 582
PRIORITY command, 582-583
PRIORITY_DISK_IO command, 583
PROCEDURE instruction, 651-652
PROGRAM-ID paragraph, 180-181
PROMPT command, 583, 591
PROTECTONLY command, 584
PROTMODE, 159
PROTSHELL command, 584
PSTAT command, 584-585
PULL instruction, 650, 652
Push button tag reference, 490
PUSH instruction, 652

QUEUE instruction, 653
QUEUED function, 653

RANDOM function, 654
RD (RMDIR) command, 562, 588
READ statement, 249-250

Index 685

RECORD clause, 212
RECORD DELIMITER clause, 197-198
RECORD KEY clause, 197
RECORDING MODE clause, 213
RECOVER command, 534, 585-586
REDEFINES clause, 213
Register storage specifier, 25,30-31
Relational operator, 49
RELATIVE KEY clause, 198
RELEASE statement, 251
REM command, 586
Remainder operator, 46
REMARKS paragraph, 180, 181
REN (RENAME) command, 586
RENAMES clause, 214
REORGTABLE, 318
REORGCHK, 318-320
REPLACE command, 587
REPLACE statement (COBOL), 267
RERUN clause, 198-199
RESERVE clause, 199
RESET DATABASE CONFIGURATION,

321-322
RESET DATABASE MANAGER CONFIG­

URATION, 320-321
Resource compiler, 407,431-438

description, 432-437
-cp,433
-d defname, 433
-i,433
-k,433
-p,433
-r,433
executable-file, 437
option, 432
resource-file, 437
resource-script-file, 434, 435f
statements, 435-437

general format, 431-432
RESTART DATABASE, 322
RESTARTOBJECTS, 592
RESTORE command, 534, 536, 587-588
RESTORE DATABASE, 322-323
RETURN instruction (REXX), 654-655
RETURN statement (COBOL), 251-252
REVOKE (database), 374-375
REVOKE (index), 373-374
REVOKE (package), 375-376
REVOKE (table or view), 376-377
REWRITE statement, 252
REXX, 609-674

arithmetic operations, 610
comparison operators, 612

686 Index

REXX (Cont.):
concatenation operators, 610-611
functions and instructions, 613-674
general format, 610
input and output streams, 612-613
logical operation, 611
operator precedence, 611
variable names, 612

RIGHT function, 655-656
Right margin tag reference, 491
RMDIR (RD) command, 562, 588
RMSIZE command, 589
ROLLBACK, 354, 372, 377-378
ROLLFORWARD DATABASE, 323-324
RUN (load and start system program)

command, 589
RUN (start logging daemon process)

command, 590
RUNSTATS, 324-325
RUNWORKPLACE, 593

SAME RECORD AREA clause, 200
SAME SORT AREA clause, 199-200
SAY instruction, 647
SEARCH statement, 253-254
SECOND, 399-400
SECURITY paragraph, 180, 181
SEGMENTS, 159
SELECT (SQL), 353, 354, 356-358, 360,

368,370,372,373,378-384
column functions, 382
concatenation, 383-384
scalar functions, 383

SELECT clause (COBOL), 200-201
SELECT instruction (REXX), 657-658
SET command, 533, 545, 561, 590-593

DOS system variables, 591
OS/2 system variables, 591
Workplace Shell system variables,

591-593
SET statement (COBOL), 254-255
SETBOOT command, 593
SETLOCAL command, 593-594
SETLOCAL function (REXX), 636,

655-656
SHELL command, 594
SHIFT command, 594-595
SIGN clause (COBOL), 214
SIGN function (REXX), 658-659
Signal function (C and C+ + compiling and

linking), 168

SIGNAL instruction (REXX), 659-660
Simple list tag reference, 491-492
Single-dimension array, 12-13
Sizeof operator, 39, 45
SKIP 112/3 statements, 267
SORT command, 595
SORT statement (COBOL), 256-257
SOURCE-COMPUTER paragraph,

184-185
SOURCE LINE function, 660
SPACE function, 661
SPECIAL-NAMES paragraph, 184,

186-187
SPOOL command, 595-596
SQL (see Structured Query Language)
SQLARWS,270,273-274
SQLBIND, 270, 275-277
SQLCA, 404-405
SQLDA, 405-406
SQLDRWS, 270, 277-278
SQLLOGF2, 287, 289
SQLLOGN2, 287-288
SQLPREP, 270, 278-282
SQLQMF, 270, 282-284
SQLSAMPL, 270, 284-285
SQLV AR, 405-406
SQLVCFG, 270, 285-286
STACKSIZE,159
START command, 596
START DATABASE MANAGER (START-

DBM), 325-326
START statement (COBOL), 257-258
START USING DATABASE, 326
STARTDBM, 270,286
STARTDRQ,287-288
Static data member, 80, 86-87
Static function member, 80, 87-88
Static storage specifier, 25-28
STDERR command, 581
STDOUT command, 581
STOP DATABASE MANAGER

(STOPDBM), 326-327
STOP statement, 258-259
STOP USING DATABASE, 327
STOPDBM, 270, 286-287
STOPDRQ,287-289
STREAM function, 661-663
STRING statement, 259-260
STRIP function, 663-664
Structure and class, 80, 83
Structure specification, 35, 38
Structured programming, 73

Structured Query Language (SQL),
333-406

functions, 387-403
column, 387-391
scalar, 391-403

language elements, 334-341
authorization ID, 335-336
characters and tokens, 334
comments, 334-335
data types, 336-339
identifiers, 335
operators, 339-340
predicates, 340-341

statements, 341-387
dynamic SQL, 341-342
embedded SQL, 341-342
interactive SQL, 341-342
return codes, 342-343

structures, 404-406
SQLCA, 404-405
SQLDA, 405-406

Structures, 7, 17-21
STUB,159
SUBST command, 534, 559, 596-597
SUBSTR (SQL), 400
SUBSTR function (REXX), 664
SUBTRACT statement, 260-261
Subtraction operator, 47
SUBWORD function, 665
S~,387,390-391

SW APPATH command, 597
Switch statement, 55, 60-63, 68-69
SYMBOL function, 665-666
SYMBOLIC CHARACTERS clause, 189
SYNCHRONIZED clause, 215
SYSLEVEL command, 597-598
SYSLOG command, 598
SYSTEM_INI,592

Table tag reference, 492
Thread,167
THREADS command, 599
TIME (SQL), 400-401
TIME command, 599
TIME function (REXX), 666
TIMESLICE command, 599-600
TIMESTAMP, 401
TITLE statement, 268
Title tag reference, 492
TMP, 133
Tokens, 2

Index 687

Toolkit utility programs, 407-438
EXEHDR, 407, 414-418
FWDSTAMP, 407, 418
IMPLIB, 407, 41~20
~SYM,407,429

~XE,407,420-421

MKMSGF, 407,421-425
MSGBIND, 407, 429-431
NMAKE,407-414
PACK, 407, 425-428
resource compiler, 407, 431-438
UNPACK, 407, 426, 428
(See also Information Processing

Facility)
TRACE (turn System Trace Facility on or

oft) command, 600
TRACE (turn tracing of CONFIG.SYS on or

oft) command, 601
TRACE function (REXX), 668
TRACE instruction (REXX), 667-668
TRACEBUF command, 600-602
TRACEFMT command, 600-602
TRANSLATE (SQL), 402
TRANSLATE function (REXX), 668-669
TREE command, 542, 602, 603
Trigraphs, 2, 3
TRUNC function, 669-670
TYPE command, 602-603
TYPede~name,24-25

Unary minus operator, 39,42
Unary plus operator, 39, 42
UNCATALOG DATABASE, 327-328
UNCATALOG DCS DATABASE, 328
UNCATALOG NODE, 328-329
UNDELETE command, 603
Union and class, 80, 83-84
Union specification, 35, 38
Unions, 7, 21-23
Unordered list tag reference, 492-493
UNPACK (Toolkit), 407, 426
UNPACK command, 603--604
UNSTRING statement, 261-263
UPDATE, 348, 372, 378, 384-385
UPDATE DATABASE CONFIGURATION,

329-330
UPDATE DATABASE MANAGER CON-

FIGURATION, 330-331
USAGE clause, 215-216
User document tag reference, 493
USER_INI, 592

688 Index

VALUE clause (COBOL), 217
VALUE function (REXX), 615, 656,

670
VALUE OF clause, 217-218
V ARGRAPHIC, 403
Variables (data storage), 5
VER command, 604
VERIFY command, 604-605
VERIFY function (REXX), 670-671
VIEW command, 605
VIRTUAL DEVICE, 158, 159
VMDISK command, 605
Void data type, 11
VOL command, 606
Volatile attribute, 31

Warning tag reference, 493-494
WHENEVER, 385-387, 404
While,55,66-68,70
WinAssociateHelpInstance, 473-474

WinCreateHelpInstance, 473, 474
WinCreateHelpTable, 473, 475
WinDestroyHelpInstance, 473-475
WinLoadHelpTable, 473, 475-476
WinQueryHelpInstance, 473, 476
WORD function, 671
WORD INDEX function, 671-672
WORDLENGTH function, 672
WORDPOS function, 672-673
WORDS function, 673
Workplace Shell, 591-593
WRITE statement, 263-264

XCOpy command, 605-607
XREANGE function, 673-674
X2C function, 674
X2D function, 674

YEAR,403

ISBN 0-07-023748-4
90000

I
978007 237483

