

0S/2 Programmer’s
Desk Reference

J. Ranade Workstation Series

LockHART » OSF DCE: Guide to Developing Distributed Applications,
0-07-911481-4 : :

wiGGINS o The Internet for Everyone: A Guide for Users and Providers,
0-07-067019-8

CHARRAVARTY » Power RISC System [6000: Concepts, Facilities, and
Architecture, 0-07-011047-6

SANCHEZ, CANTON « High Resolution Video Graphics, 0-07-911646-9
DEROEST AIX for RS/6000: System and Administration Guide, 0-07-036439-7
LAMB ¢ MicroFocus Workbench and Toolset Developer’s Guide, 0-07-036123-3

JOHNSTON * OS/2 Connectivity and Networking: A Guide to Communication
Manager/2, 0-07-032696-7

SANCHEZ, CANTON * PC Programmer’s Handbook, Second Edition, 0-07-054948-6

WALKER, SCHWALLER ¢ CPI-C Programming in C: An Application Developer’s
Guide to APPC, 0-07-911733-3

SANCHEZ, CANTON ¢ Graphics Programming Solutions, 0-07-911464-4

CHAKRAVARTY, CANON ¢ PowerPC: Concepts, Architecture, and Design,
0-07-011192-8

LEININGER ¢« UNIX Developer’s Tool Kit, 0-07-911646-9
HENRY, GRAHAM * Solaris 2.X System Administrator’s Guide, 0-07-029368-6

RANADE, ZAMIR ¢ C++ Primer for C Programmers, Second Edition,
0-07-051487-9

PETERSON * DCE: A Guide to Developing Portable Applications, 0-07-911801-1
LEININGER » Solaris Developer’s Tool Kit, 0-07-911851-8

JoHNSTON * OS/2 Productivity Tool Kit, 0-07-912029-6

LEININGER » AIX/6000 Developer’s Tool Kit, 0-07-911992-1

GrRaHAM » Solaris 2.X: Internals and Architecture, 0-07-911876-3

BAMBARA, ALLEN « PowerBuilder: A Guide for Developing Client | Server
Applications, 0-07-005413-4

To order or receive additional information on these or any other McGraw-Hill
titles, in the United States please call 1-800-822-8158. In other countries,
contact your local McGraw-Hill representative.

BC15XXA

OS/2 Programmer’s
Desk Reference

V. Mitra Gopaul

3 27 1997

McGraw-Hill, Inc.

New York San Francisco Washington, D.C. Auckiand Bogota
Caracas Lisbon London Madrid Mexico City Milan
Montreai New Delhi San Juan Singapore

Sydney Tokyo Toronto

Library of Congress Cataloging-in-Publication Data

Gopaul, V. Mitra
0OS/2 programmer’s desk reference / V. Mitra Gopaul.
p. cm.
Includes index.
ISBN 0-07-023748-4
1. Operating systems (Computers) 2. 0S/2 (Computer file)
I. Title.
QA76.76.063G668 1995
005.265—dc20 94-44828
CIP

Copyright © 1995 by McGraw-Hill, Inc. All rights reserved. Printed in the
United States of America. Except as permitted under the United States
Copyright Act of 1976, no part of this publication may be reproduced or distrib-
uted in any form or by any means, or stored in a data base or retrieval system,
without the prior written permission of the publisher.

1234567890 AGM/AGM 90098765

ISBN 0-07-023748-4

The sponsoring editor for this book was Jerry Papke, the editing supervisor was
David E. Fogarty, and the production supervisor was Donald Schmidst.

Printed and bound by Quebecor /Martinsburg.

McGraw-Hill books are avaiable at special quantity discounts to use as premi-
ums and sales promotions, or for use in corporate training programs. For more
information, please write to the Director of Special Sales, McGraw-Hill, Inc., 11
West 19th Street, New York, NY 10011. Or contact your local bookstore.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY
The author and publisher have exercised care in preparing this book
and the programs contained in it. They make no representation, howev-
er, that the programs are error-free or suitable for every application to
which the reader may attempt to apply them. The author and publisher
make no warranty of any kind, expressed or implied, including the war-
ranties of merchantability or fitness for a particular purpose, with
regard to these programs or the documentation or theory contained in
this book, all of which are provided “as is.” The author and publisher
shall not be liable for damages in amount greater than the purchase
price of this book, or in any event for incidental or consequential dam-
ages in connection with, or arising out of the furnishing, performance,
or use of these programs or the associated descriptions or discussions.
Readers should test any program on their own systems and compare
results with those presented in this book. They should then construct
their own test programs to verify that they fully understand the requi-
site calling conventions and data formats for each of the programs.
Then they should test the specific application thoroughly.

To my mother, Saimawantee,
for her love and self-sacrifice

Contents

Preface Xi

Chapter 1. C Language

=Y

1.1 Elements of C

2

1.2 Data Declarations 5
13 Data Types 7
1.4 Storage Specifiers 25
1.5 Expressions 32
1.6 Operators 38
1.6.1 Unary operators 39
1.6.2 Binary operators 45
1.6.3 Assignment operator = 53

1.7 Statements 55
Chapter 2. C++ Language 73
2.1 Elements of C++ 75
2.2 Class and Object 79
2.3 Constructor and Destructor Functions 92
2.4 Function and Operator Overloading 98
2.5 inheritance 113
2.6 Virtual Functions 125
Chapter 3. Compiling and Linking C and C++ Programs 129
3.1 Software Requirements 130
3.2 Compiler Files 133
3.3 Invoking the Compiler 135
3.4 Compiler Options 137
3.5 Compiler Return Codes 155
3.6 Invoking the Linker 156
3.7 Linker Environment Variable 162
3.8 Linker Error Messages ' 163

vii

viii Contents

3.9 Correct Compiler Options

3.10 Correct Run-Time Library

3.11 Linkage: Static or Dynamic

3.12 Muitithread Programming
3.12.1 Functions
3.12.2 Variables and data structures
3.12.3 Examples
3.12.4 Compile, link, and run muitithread program

Chapter 4. COBOL

4.1 Source Format

4.2 Language Elements

4.3 IDENTIFICATION DIVISION
4.4 ENVIRONMENT DIVISION
4.5 DATA DIVISION

4.6 PROCEDURE DIVISION
4.7 Compiler Directives

Chapter 5. DB2/2 Commands and Utilities

5.1 System Commands

5.2 DOS and Windows Database Client Application Enabler
Commands

5.3 DBM Command Line Processor Commands

Chapter 6. Structured Query Language (SQL)

6.1 Language Elements
6.2 SQL Statements
6.3 Functions
6.3.1 Column functions
6.3.2 Scalar functions
6.4 Structures
6.4.1 SQLCA-—SQL communication area
6.4.2 SQLDA—SQL descriptor area

Chapter 7. Toolkit Utility Programs

7.1 NMAKE—Automate Development

7.2 EXEHDR—Display or Change Header Information of
Executable File

7.3 FWDSTAMP—Add Entry Point to DLL File

7.4 IMPLIB—Create Import Library

7.5 MARKEXE—Change or Display Information of an
Executable File

7.6 MKMSGF—Convert Text to Binary

7.7 PACK—Compress Data

173

176
177
180
182
201
218
264

269
270

287
289

341

387
391

404
405
407
407
414
418
418
420

421
425

7.8 UNPACK—Unpack Data

7.9 MAPSYM—Create a Symbolic File
7.10 MSGBIND—Bind Messages
7.11 Resource Compiler

Chapter 8. Online Information Programming

8.1 Before Using IPF

8.2 IPF Compiler

8.3 Data Structure

8.4 Using the Help Facility

8.5 Communication between IPF and the Application
8.6 Window Functions

8.7 Tag Reference

Chapter 9. Preprocessor Directives
Chapter 10. 0S/2 Commands
Chapter 11. REXX

11.1 Arithmetic Operations

11.2 Concatenation Operators
11.3 Operator Precedence

11.4 Logical Operation

11.5 Comparison Operators
11.6 Variable Names

11.7 Input and Output Streams
11.8 Functions and Instructions

Index

Contents ix

428
429
429
431

677

Preface

As an OS/2 programmer, I have come to realize that long gone are the
days when applications were developed with an editor and a language.
Nowadays, given the complexity of operating systems and demands for
intuitive and user-friendly applications, developing software is becoming
a rigorous task.

To write a simple Presentation Manager (PM) application with a main
window, a menu bar, few pull-downs, online help, and a dialog box, you
will need the following software tools:

® C/C++ compiler

® Linker

® NMAKE utility program

® Resource compiler

e Dialog editor

® Icon editor

e Information Processing Facility (IPF) compiler
e Tag language

e Editor

o Integrated development environment

Now, if you add another dimension to this application, such as access to
DB2/2 or the use of COBOL or REXX, program development becomes
more complicated. It is impossible to remember the syntax of commands
or statements for all these software tools. With the software tools listed
above, you will need a dozen reference manuals and books on these
subjects. Often, when you desperately need to know the correct ways of
coding a statement or command, you reach for the manual, but it’s not
available. Someone has borrowed it.

For many years 1 yearned for one book, right on my desk, like a
dictionary, containing all the information commonly used by most
programmers. I know that many of my colleagues also need such a book;
therefore, 1 wrote OS/2 Programmer’s Desk Reference.

Xi

xii Preface

About This Book

This book is an attempt to provide information about tools commonly used
by OS/2 programmers. The topics covered are sufficiently varied to be
useful in most of your development and maintenance work. The subjects
are C and C++, compiling and linking programs, COBOL, DB2/2, SQL
(IBM Structured Query Language), Toolkit, IPF, preprocessor directives,
0S/2 commands, and REXX.

As you probably know, computers must be fed with precise information;
for instance, a missing comma or variables with incorrect data can make
utility programs unpredictable. When writing this book, I focused on
giving the reader the kind of information that is essential in making work
more productive. This book is a repository of syntax, commands, and
keywords of the most widely used tools by OS/2 programmers. The
illustrations and examples, included wherever possible, should make your
coding task a little bit easier.

I assumed that the reader has a basic knowledge of the subjects covered
here. Although it is useful for learning programming concepts and
practices, the material is presented in such a way as to benefit both
experienced and novice programmers. It should refresh your memory if
you have forgotten something, and the easy-to-understand descriptions and
examples should enrich your understanding if you are exploring new areas.

How This Book Is Organized

There are 11 chapters, each dealing with subjects such as database,
language, utility programs and software products. The subject matter is
organized to be both practical and useful. Assuming that the book will be
used primarily as a desk reference, I have arranged the information in
either alphabetical or hierachical order depending on the nature of the
subject matter. Also, you may notice as you go through this book that the
chapters are developed in a consistent way, with the same conventions
used throughout. '

Chapter 1 is a reference for programmers using C language. Chapter 2
discusses the syntax and examples that are specific to C++ language.
Chapter 3, on compiling and linking C and C++ programs, contains useful
information about the compiler options and linker libraries and how to
invoke them. In Chapter 4, a comprehensive review of the COBOL
language, you will find explanations and examples of divisions, sections,
paragraphs, statements, verbs, and other COBOL elements. Chapter 5 gives
all the syntax of DB2/2 commands and explains DB2/2 functions and

Preface xiii

parameters. Chapter 6 discusses all the SQL statements and functions.
Chapter 7 describes all the utility programs that accompany the OS/2
Toolkit. Chapter 8 is a reference for programmers using IPF. Chapter 9
explains how to use the preprocessor directives for C/C++. Chapter 10,
which presents all the commands of OS/2, is a quick reference for syntax,
usage, and return codes. Finally, in Chapter 11, which is a reference for
REXX programmers, descriptions of instructions and examples are
presented to enhance the reader’s understanding.

Notational Convention

In the general format of the commands and statements used in this book,
a few symbols are not part of the syntax and must not be included when
you code your program. These symbols and their meanings are as follows:

Symbol Meaning

[1] The option enclosed by the brackets ([]) is not required but
can be included, for example, [and] are not part of the
following command,

IQC [filename]

<> Only one of the alternatives enclosed by the angle brackets
(< >) must be chosen, for example,

ICC </S or /T>

or The alternatives enclosed by the brackets (< > or []) are
separated by "or", for example,

ICC </S or /T> [/W or /R]

The underlined word is the default value.

The horizontal or vertical ellipses indicates that the
preceding parameter(s) can be coded more than once. This
applies to variables, filenames, options, keywords, and so
on, that are enclosed in brackets.

xiv Preface

All keywords of the command syntax are written in uppercase or lowercase
characters; they must be coded as shown.

All strings in italic lowercase characters are variables that can be
changed to any other strings to suit your programming style. In your code
they represent values that you supply to the commands.

Conclusion

0S/2 Programmer’s Desk Reference is unique. In the published literature,
there are numerous books and manuals on each subject discussed here or
on combinations of these subjects; however, to this author’s knowledge,
this is first time that all these programmers can find all these diverse and
sought-after subjects in one place.

This book is written with the needs of the programmer in mind. I am
certain that it will replace many of the books and manuals on your desk.
It should serve you for a long time in your demanding task of software
development and maintenance.

Acknowledgments

First, I must thank Jay Ranade for his technical guidance for this book.
After spending many months writing this book I am very grateful to
Gerald Papke, senior editor, for supplying me with the research materials
promptly and for his encouragement. Many thanks to the editing staff of
McGraw-Hill, namely David Fogarty, Cathy Hertz, and Donald Schmidt,
for their meticulous work to ensure that the information given here is
accurate, clear, and useful.

I am grateful to Gail Ostrow, Melissa Robertson, and Mark Nunn of
IBM for supplying me with software and reference materials related to
0S/2. Thanks to many of my friends and colleagues, especially Maddie
and Ray Wingett, Abby Micheles, and Cedric Debbo, for their
encouragement, positive thoughts, and great interest in the progress of this
work.

Finally, my special gratitude to my wife, Gaye; my daughter, Laiia; and
my son, Sanjiv for their unfailing support and encouragement throughout
this project; also for their understanding when I took time away from
them.

V. Mitra Gopaul

Chapter

C Language

This chapter is a reference guide for programmers using C language. For
the reader’s convenience, discussion of C and C++ has been divided into
two seperate chapters. This chapter deals primarily with C; and Chapter 2,
with C++. As C is a subset of C++—and thus all operations performed in
C can be performed in C++ (but not vice versa)—it is assumed that C++
programmers will be conversant with all syntax and other aspects of C and
might want to skip Chapter 1 and that C programmers, who may not be
concerned with object-oriented programming and other C++-specific
concepts and methodology, might want to skip Chapter 2. In this chapter,
we’ll discuss topics common to both C and C++ such as:

Elements of C

Declarations and Definitions
Expressions and Operators
Precedence and associativity
Statements

2 Chapter 1
1.1 Elements of C

As does any language, C has a few basic elements that programmers must
be aware of:

® Characters and tokens
® Trigraphs

@ Escape sequences

e Comments

e Language keywords

This section briefly describes these elements.

B Characters and tokens

A program consists of a series of tokens. A foken is simply a sequence
of characters. Many such tokens, separated by spaces, must follow the
syntax rules of the language. For example, the following is a short
program made up of many tokens.

/* to illustrate data declaration */
#include <stdio.h>

main()

int x, y, z; /*_data declaration of
variables x, y, 2z */

X 10, y =20; /* initialize x with
value 10 and y with 20 */
X +y ; /* add variables x and y and
place the result in variable z */
/* print the value of z */

printf(" x + y = %d \n", z });

b4

The following is a list of characters recognized by C language.

® Lower- and uppercase letters:
atozand Ato Z

® Decimal digits:
Oto 9

C Language 3
e Graphic characters:

1" H G & (),

-./:
s<=>?2[\]_{} ™"

@ Space character

e Control sequence characters for horizontal tab(tabulator), vertical
tab, formfeed, and end of string. These characters are treated as
spaces.

B} Trigraphs

Not all the characters used in C language, as listed previously, are
available on all keyboards. It is possible to code a program using a
sequence of three characters, called a trigraph, to represent the missing
character. During the compilation of the program, the compiler makes
the translation from the trigraph sequence to the missing character. The
following is a list of all the trigraph sequences and the characters
represented.

Trigraph Character
sequence represented
7= #

27°([

)]

?7< {

7> }

27 \

7 "

m |

7- ~

) Escape sequences

In a program you can code special control characters, such as alert,
backspace, and a new line. These control characters are also known as
escape sequences and each escape sequence has two characters. The first
character is always a backslash ’\’, followed by a control character.

4 Chapter 1

Escape Character
Sequence Represented

\a Alert

\b Backspace

\f New page

\n New-line

\r Carriage return
\t Horizontal tab

\v Vertical tab

\\ Backslash

\ Single quotation
\" Double quotation
\0 Null character (end of string)

B Comments

A comment starts with characters /* and ends with characters */; for
example,

/* This is a comment */

A comment can occupy more than one line. The compiler treats
comments as white spaces; they are ignored. Some compilers allow
comments in a nested manner; for example,

/* /* This is a wrong comment */ */

[ldentifiers or names

Identifiers are simply names given to functions, data objects, and labels.
A name is a token made up of a sequence of letters, digits, and
underscore (). If names of these items are chosen with care, they may
contribute to readability and documentation and may also help remove
any confusion. There are some limitations on the length and significance
of identifiers; ANSI C allows up to 32 characters.

All internal names are case sensitive. In other words, the compiler
recognizes the difference between upper- and lowercase characters. In
external names, upper- and lowercase characters are treated the same
way.

C Language 5
B Language keywords
There are many reserved words in C language (see examples in Fig.

1.1). They have special meanings in the context of programming; these
keywords should not be used in any other way or be redefined.

auto break case char const continue
default do double else enum extern
float for goto if int long
register return short ~ signed sizeof static
struct switch typedef union unsigned void
volatile while

Figure 1.1 C language keywords.

When writing a program you should also keep in mind names that have
been used for system calls and library functions. These names are not C
language reserved words, but using them out of context may result in
unpredictable results.

B Constants

A constant is a data object that does not change during the execution of
a program. There are five types of constants:

® Integer

® Floating-point number
o Character

® String

e Enumeration

1.2 Data Declarations

In a C program, data storage, also known as variables, must be first
declared before being used. Data declaration simply means to tell the
compiler to reserve a specific amount of memory space associated with
that variable and to give a name or identifier (or name) to the variable.

6 Chapter 1

After a variable is declared, a program is able to manipulate the content
of the variable already declared as a data object with a specific memory
location.

The general form of a declaration is
storage-specifier type-specifier variable-list;

storage-specifier tells the compiler how to store the variables that
follow.

type-specifier describes the type of the data object.

variable-list assigns a name to the data object, which can be used in a
program.

e Example

To illustrate these aspects of data declaration, let’s look at a simple
example. :

/* to illustrate data declaration */
#include <stdio.h>

main()

int x, y, z; /* data declaration of
variables x, y, 2z */

X 10, y =20; /* initialize x with

value 10 and y with 20 */
z =x+y ; /* add variables x and y and
place the result in variable z */
/* print the value of z */
printf(" x +y = %d \n", 2);

The statement
static int x, y, 2 ;

specifies to the compiler to allocate memory space for three variables
and give them the name X, y and z. The keyword int (discussed in the
next section) indicates that each variable must be large enough to hold
an integer value. The storage specifier is static.

C Language 7
In the next statement,
x =10, y = 20;

the program assigns 10 and 20 to x and y, respectively. This is an

example of a program making use of a variable; this is an instruction to

the compiler to place values in the memory space already reserved.
Next we have the expression

z2 =X +Yy;

Again this statement instructs the compiler to calculate x + y and to
place the result in memory occupied by variable z. Finally, we print the
result value z using the print function.

1.3 Data Types

Earlier we considered how to give reserve memory and give it a name so
that it can be referenced in a program. Now, let’s look at variables that can
be declared with different data types. There are several data types, which
can be grouped into two categories: scalar and complex. The scalar data
types are

Characters
Floating-point numbers
Integers

Pointers

Enumeration

From these data types, you can build more complex data arrangements
such as:

Arrays
Structures
Unions

This section describes how to use variables with all these data types, and
also shows how to define your own data type names which are derived
from the basic types.

8 Chapter 1
[Character data types

There are three basic character data type—char, unsigned char, and
signed char—differentiated with respect to the ranges of values each
type can hold. A character variable occupies one byte. The following
shows the different types and the range of values in the OS/2
environment.

Type Range
char 0 to 255
unsigned char 0 to 255
signed char -128 to 127

A character variable can be used in the same way as an integer variable.
If it is declared as signed, the high-order bit determines whether the
value is negative or positive. If the character variable has an unsigned
data type, the compiler treats all values as positive. A variable with any
of these character data types will hold a single character. A char variable
is initialized with a character constant, which is formed by enclosing a
character with a pair of single quotes (not to be confused with double
quotes used for enclosing string constants).

e Example

In the following statement, the char_var variable is initialized to
character 'w’.

char char_var = 'w’ ;

You can also initialize a character variable with a nonprintable character
constant. In the next example, the newline variable is first defined as
char datatype and its initial value is ‘\n’ escape sequence (new line).

char newline = ‘\n‘;

In the following example, the number_of _books variable, defined as
unsigned char, has an initial value of 20.

unsigned char number of books = 20 ;

The type specifier char can also be used to define an array of characters.
In the following example, the city variable is declared as a character

C Language 9

array, and each element of the array is initialized with a character 'N’,
e’, "W’, etc.).

The statement

for(i = 0; 1 < 8; ++i)
printf("%c", city[i]);

loops eight times, starting with i = 0 to i = 7, and prints each element
of city array. The statement

printf("\n");

prints a new line after printing all the elements of city array.

/**

This program illustrates the character array.
***/

#include <stdio.h>
static char city[] = { 'N','e’,'w'," ','Y",'0','r','k’ };
main()

int i;

for (i = 0; 1 < 8; ++i)
prlntfg "%c", city[i]);
printf("\n");

C does not have a string data type; the char data type is used to make
an array of characters into a string variable. In fact, a string is made up
of individual characters and terminates with a NULL character (\0).

In the following example, the city variable is defined as an array of
characters and is initialized with a string constant rather than by setting
individual cells to a character constant as in the previous example. This
time double quotes are used; the compiler automatically adds a NULL
character after the last character of the string. In contrast, the string is
printed using the format specifier ‘%s’, which prints the string. In the
previous example we printed individual characters of the city array.

/***

This program illustrates character string
**/
#include <stdio.h>

static char city[] = "New York";

10 Chapter 1
main()

printf("$s\n", city);

The main difference between an array of characters and a string is that
the latter has a NULL character ("\0’) at the end string, namely, ‘New
York’, placed by the compiler. In an array, the compiler does not have
a NULL charater; however, you may place one, if you wish.

K] Floating-point variables

Floating-point variables are declared with three different data type
specifiers: float, double, and long double. These data types are needed
if a variable is to hold a fractional component or very large numbers.

e Example

In the following program, the float_var variable is defined as float,
double_var as double, and long_var as long double. Each is initialized
with a floating-point number and then printed with the printf function.

/***

This program illustrates floating-point variables.
**/

#include <stdio.h>
main()
float float var = 441,22 ;
double double_var = 9,44E+11 ;
long double long var = 8.55E+55 ;
printf("float variable = %f \n", float var);

printf("double variable = 3E \n" double var);
printf("double long variable = SE \n", long var);

O Integers

Variables that hold integer values must be declared as one of the
following six datatypes:

short or short int

C Language 11

int or signed int

long or long int

unsigned short or unsigned short int
unsigned or unsigned int

unsigned or unsigned int

unsigned long or unsigned long int

e Example

In the following example, the short_num variable is defined as an array
of integers with short data type. The elements of the array are initialized
to the values -127, 0, 10, and 128. Variable i is declared as an int data
type; unsigned_num is defined as an unsigned datatype and initialized
with 65000; the long_num variable is defined with the long specifier
with the initial value set to -80000.

/**

This program illustrates integer variables
***/

#include <stdio.h>

main()
short short num([] = { -127, 0, 10, 128 } ;
int i;

unsigned unsigned num = 65000 ;
long long num = -80000 ;

for (i =0 ; 1< 4 ; ++i)
printf("short integer number = %d \n",
short_num[i]);
printf("unsigned integer = %d \n", unsigned num);
printf("long integer = %$1d \n", long num);

B Void Type
Variables can be declared to hold no value with the specifier void. The

void data type is used mainly to declare functions that do not return a
value.

B Single-dimension arrays

An array is made of two or more data objects occupying contiguous
memory space. The data types of all the data objects in an array are the

12 Chapter 1
same. Each data object is called an element, which is accessed by an
index. All the elements are referenced by the same identifier found in
the array declaration. An array can have one or more dimensions.

A single-dimension array declaration has the following general form:
storage-specifier type-specifier variable-name [size];
storage-specifier denotes whether an array is a local or a global variable.
type-specifier establishes the data type of all the elements of the array.
variable-name identifies the array and all its elements.
size indicates to the compiler the number of elements the array will hold.
e Example
In the following example, the number, a static variable, is defined as
an array of four integers. Each element of this one-dimensional array
is set to an initial value: -127, O, 10, and 128.
int number[4] = { -127, 0, 10, 128 } ;

Th_e values of each element of number look like this:

Element Value

number[0] -127
number[1] 0
number([2] 10
number[3] 128

In the following program, the index and the value of each element of
number array are printed.

/**

This program illustrates the integer array.
***/

#include <stdio.h>

static int number[4] = { -127, 0, 10, 128 } ;

C Language 13

main()
int 1i;

for (i =0 ; i< 4 ; ++i)
printf("Index is %d, value is = %d \n",
i, number[i]);

In the following statements, character arrays are declared and initialized:
monthl array, with characters; month2 array, with a string with double
quotes; and month3 array, with string enclosed within double quotes
only.

static char monthl[

]
static char month2[]
static char month3[3

= { IFI, IeI,Ibl } ;
= nFebu :
] = { "Feb"'}';

If you omit the dimension of the array and set a string constant as an
initial value, as was done for the month2 variable, then the compiler
terminates the array with a character constant \O’ (NULL). But for the
month3 variable only 3 bytes are allocated and initialized. The following
table shows how the compiler initializes elements of these three arrays.

Element Value Element Value Element Value

month1{0] F month2[0] F month3[0] F

month1[1] e month2[1] e month3[1] e

month1[2] b month2[3] b month3[2] b
month2[4] \0

B Multidimensioned arrays
The general form of a multidimensional array definition is
type-specifier variable-name [sizel][size2]...[sizen];
This is similar to the one-dimensional array definition, except that there
are multiple size values.
e Example

The following declaration of an array points variable has two

14 Chapter 1
dimensions containing 12 elements; all elements are of integer data type.
int points({3][4];

The compiler always finds contiguous space for an array of any
dimension. For the sake of convenience, let’s look at this two-
dimensional array as a rectangular format with rows and columns.
Therefore, the points[3][4] array has three rows and four columns,
arranged as follows:

Row Column 1 Column 2 Column 3 Column 4

1 points[0][0] points[0][1] points[0][2] points[0][3]
2 points[1][0] points[1][1] points[1][2] points[1][3]
3 points[2][0] points[2][1] points[2][2] points[2][3]

The next example shows how to initialize each element of points
array.

The following program shows how to access the content of each element
of an array.

/***

This program illustrates multidimensional array variables.
**/

#include <stdio.h>

static points{3][4] = { 1,2,4,8
2,4,8,16
3,6,12,24
}s

main()

int 1i,3;

for (j = 0; j < 3; j++)
for (i =0; i< 4 ; i++)

printf("points[%d][%d] = % d\n",
j, i, points[j][i]);

C Language 15
The output of the program looks like this:

points
points
points
points
points
points
points|
points
points|
points
points
points

NI=SOW 00NN

NN EHEEFROOO0O
&N

et et e e e et e e e e et et
WNHOWNROWNERO
[O N T T T

B Enumeration

An enumeration is a data type used to represent a set of integer values.
After defining an enumeration, you can declare a variable using that
enumeration data type. Such a definition specifies all the valid values of
that data type.

The general definition form of an enumeration is
enum identifier { enuml, enum2, ... } variable-list ;

enum is the keyword defining an enumeration data type.

identifier is the name you give to such a data type. The list of
enumerators (enuml, enum?2, etc.) gives the data type a set of constant
integer values.

variable-list is an option for declaring variables of the enumeration data
type.

The main point regarding enumeration is that each enumerator is a
symbol representing an integer value. There are three ways of assigning
the values. First, by default, the compiler sets the value of the first
enumerator to 0, the second enumerator to 1, the third to 3, and so on.
For example, a declaration

enum fruit { orange, peach, apple, mango };

will assign O to orange, 1 to peach, 2 to apple, and 3 to mango.
Second, you can explicitly give an enumerator a value by placing an
equal sign (=) and an integer after the enumerator. In a declaration

16 Chapter 1
enum fruit { orange = 5, peach, apple, mango };

orange has value 5 and peach, apple, and mango will have 6, 7, and
8 repectively. Third, an enumerator will always have one value greater
than the previous one. Of course, if it is the first unassigned enumerator,
its value is always zero.

e Example

The following statements declare an enumeration called coins and
variable money of that data type.

enum coins (penny, nickel, dime);
coins money;

In the following program, flag is defined as an enumeration data type.
The variable sw is declared to be of enumeration data type flag and
initialized to off, one of the enumerators. The statement

if (sw == off)
printf("The switch is off\n");

tests whether sw is enumerator off; if it is true then the printf function
is executed. Next, sw is assigned the value represented by enumerator
on.

/***************************************

This program illustrates enumeration.
**/

#include <stdio.h>
main()
enum flag (on, off) sw = off ;

if (sw == off)
printf ("The switch is off\n");

sw = on ;

if (sw == on
printf ("The switch is on\n");

C Language 17
B Pointer

Pointers are addresses to data objects. A variable declared as a pointer
is used as a memory address of a data object. The general form a of
pointer declaration is

type-specifier *variable-list;
type-specifier can be any data type.

variable-list consists of one or more variables of the data type.

B Structure

A structure is a collection of variables or data objects. It is a
convenient way to keep and manage related data. Unlike the
array—requiring all elements to have the same data type—the variables
of a structure can be of different data types. Each data object of a
structure is called a member (also known as a field or element). The
name of each field must be unique within a given structure. But you can
use the same member name in more than one structure.
The general form of defining a structure is

struct [identifier]){
type-specifier variable-name;
type-specifier variable-name;

} [variable-1list];

struct is the keyword to defining a structure. It is placed at the
beginning of the definition.

identifier is the name you give to the structure.
type-specifier is the data type of a member.
variable-name is the name of the member.

variable-list contains one or more variables as part of the structure
declaration.

The identifier and variable-list are optional; however, you cannot omit

18 Chapter 1

both of them. In a structure declaration, the compiler does not allocate
any memory space unless a variable-list is included in the declaration.

¢ Example

In the following definition of an employee structure there are seven
fields, each with different data characteristics but part of an employee
record. Each elememt is a variable, declared with a data type and an
indentifier, and terminated with a semicolon (;). The temp_employee
and perm_employee variables are also part of the employee structure
definition. The retired_employee variable is defined as the same
structure data type but on a separate statement.

struct employee {
char name[30];
int street_num;
char street[40];
char city[20];
char prov[3];
char postal_code[6];
unsigned long int salary;
} temp employee, perm_employee;

struct employee retired employee;

A structure definition cannot have itself as a member. However, it is
valid to include a member as being a pointer to the structure. For
example, in the following structure address, a member next_rec is a
pointer to the structure address.

struct address ({
char name[30];
char street[40];
char city[20];
char state[3];
struct address *next_rec;

}s

It is possible to initialize all or some members of the structure during the
declaration; for example,

struct address new_address =
{ 1233, "Belle View Lane", "New York","NY", 10003 };

C Language 19

The next program illustrates how to use a structure. It prints each
element of the structure using the printf function.

/**

This program illustrates structure variables.
***/

#include <stdio.h>

struct address {
int street_num;
char *street;
char *city;
char *sgtate;
unsigned long zip;

r

struct address new_address =
{ 1233, "Belle View Lane", "New York", "NY", 10003 };

main()

printf(“%d %s\n", new_address.street_num,
new_address.street);

printf("%s, %s $1ld\n", new_address.city,
new_address.state,
new_address.zip);

}

[} Bitfield structure

With C, it is possible to store and access information as bits within a
byte. To do so, you declare a member of a structure as an integer with
a specific length of bits. Such a member is called a bitfield. There are
many reasons for using bits as fields of data. Some of these are

1. Bits can be boolean variables, especially when storage is limited.

2. You may want to interface with devices that encode information in
bit strings.

3. You may want to access any bit within a byte.

Although these operations can be achieved with the bitwise operators of
C, bitfield adds structure, efficiency and readability to your programs.

A bitfield is declared as a special kind of structure. The data type of
the elements can only be int, unsigned or signed. The declaration of
each bitfield contains a type-specifier, a variable-name, and a colon (:)
and is followed by the length of the field.

20 Chapter 1
The general form of a bitfield structure is

struct [identifier] {
type-specifier variable-name : length;
type-specifier variable-name : length;

} [variable-list];

struct is the the keyword to define a structure. It is placed at the
beginning of the definition.

identifier is the name you give to the structure.
type-specifier is the data type of a member.
variable-name is the name of the member.

variable-list contains one or more variables as part of the structure
declaration.

If length is zero (0), it causes the next field to be aligned on the next
integer boundary. A structure variable with bitfield elements cannot be
an array; nor can you declare a pointer to such a variable.

The identifier and variable-list are optional; however, you cannot omit
both of them. In a structure declaration, the compiler does not allocate
any memory space unless a variable-list is included in the declaration.

e Example

The following program defines a structure called flags and declares a
comm variable of type flags. The structure has seven elements, but the
storage of comm requires only four integers.

/**

This program illustrates bitfield variables
*******************‘k*************‘k**‘k******/

#include <stdio.h>

struct flags {
unsigned active
unsigned ready
unsigned error

1] o 00
[eryy ¥
- “we “wi

C Language 21

int counter ;
unsigned receive : 10
unsigned 0 ;
unsigned xmit : 10

-

-~

comm,.error 0;
comm.read 1;
comm.receive = 999;

if (comm.error)
printf("Error\n");
else if (comm.ready)
printf("Received data is %d \n", comm.receive);

Each element occupies memory as follows:

Member Storage
Integer 1

active 2 bit

ready 1 bit

error 1 bit
Integer 2

counter integer
Integer 3

receive 10 bits
Integer 4

xmit 10 bits

Since the fourth element counter requires a full integer for storage, the
compiler gives the first three elements a full integer. Now, the fifth and
seventh elements get one integer each because they are separated by the
sixth element which has length zero. Note that to access a structure
member you need the structure name and member name separated by dot
(.), for example, comm.error.

B Union

A union provides a way of having two ‘or more variables share storage.
A union declaration is similar to that of a structure, with elements
having different data types. In a structure each element has its own
memory space; in a union all elemets occupy the same memory location.

22 Chapter 1

The general form of a union declaration is

union identifier {
type-specifier variable-name;
type-specifier variable-name;

i [variable-~1ist];
union is the keyword to define a union. It is placed at the beginning of
the definition.
identifier is the name you give to the union.
type-specifier is the data type of a member.
variable-name is the name of the member.
variable-list is one or more variables as part of the union declaration.

e Example

In the following example, the wt_code is defined as a union type. In the
next statement, the convert is a union and defined as wt_code data type.
The compiler allocates sufficient memory to hold the largest member;
therefore, 2 bytes are allocated to the convert variable. In this case
short int type requires 2 bytes and char occupies only 1 byte. These 2
bytes are allocated to the convert variable.

union wt_code {
short int wei?ht ; /* requires 2 bytes */
char code ; /* requires 1 byte */

union wt:code convert ; /* maximum bytes */
/* reserved is 2 bytes */

Now, let’s see how both members, weight and code, share the same
storage. The weight variable takes 2 bytes; the first of these bytes is also
used by the code variable.

|<-- weight -->
08 0000000 e e o0 000

byte 0 Byte 1

® s e 0 s 000

<-code->

C Language 23

In the following program, the profile union and the employee variable
are declared in the same statement. The profile union has four elements.
The first three variables are name, birthday, and age, and their basic
data types are char and int. The fourth element is a convert union
variable. The compiler gives the employee variable 20 bytes of storage,
and all its members share the same memory location.

/**

This program illustrates union variables.
***/

#include <stdio.h>

union wt_code {
int weight
char code

}i

union profile
char name[20];
char birthday[9];
int age;
union wt_code convert ;
} employee = "John Smith"

~e e

~e

main()
union info *recp = &employee;
printf(“Name is %s.\n", employee.name);
recp->age = 30 ;

printf(“Age is %d.\n", employee.age);

The employee variable is initialized with a string constant "John Smith."
Only the values of the first member of a umion variable may be
initialized.

To access a union member, use the same notation as that used to access
a member of a structure. The three statements in the body of the
preceding program illustrate how to access union members. The first one
prints the field name, the second assigns value 30 to age, and the last
prints the value of age.

24 Chapter 1
B Typedef-name

By using the keyword typedef you create a new name with existing data
types. In effect, you are defining your own data type name. A typedef
does not create a new data class; nor does it reserve any storage. It
allows creation of a user qualified data type. The new data type can be
used to declare a variable.

The general form of a typedef definition is

typedef type-specifier identifier;

type-specifier can be any data type such as int, char, and float.
identifier is the new name you give to the new type.
e Example

To create a new data type name DOLLAR having the same
characteristics as type float, you would use

typedef float DOLLAR;

Now, you can use this new type DOLLAR to declare a variable, say,
rent.

DOLLAR rent;

The compiler recognizes rent as a float variable.

What is the advantage of creating a new data type based on an existing
one? It allows the programmer to define types that reflect the intended
use. Previously, we defined a type DOLLAR and used it to declare a
rent variable. This approach adds to the self-documentation of your code
and facilitates maintenance efforts later on.

The next program illustrates further the definitions and use of user-
defined data types. At the top you will see three statements with the
keyword typedef. The first defines the new type DOLLAR as float; the
second defines type NAME as an array of 30 characters; the third one,
EMP_REC, uses a structure construct in its definition. This structure
has three flelds, where the first two variables, surname and salary, use
-previously defined data types NAME and DOLLAR. The third, age,

C Language 25
variable is of int type.
The statement
EMP_REC employee[EMP_NUM];

is a declaration of the array called employee with EMP_NUM (100)
elements of type EMP_REC. Assuming the array has been initialized,
the body of the program shows how to access each element and field of
the employee array. The variable i indexes through the employee array,
and the dot operator (.) is used to access each field.

/********************************

This program illustrates typedef.
*********************************/

#include <stdio.h>

#define EMP_NUM 100
typedef float DOLLAR;
typedef char NAME[30];
typedef struct {
NAME surname;
int age;
DOLLAR salary;
} EMP_REC;

EMP_REC employee[EMP_NUM];
main()
| int i;
for (i =0 ; i < EMP_NUM ; i++)
printf("“Name is %s, Age is %d, Salary is %f \n",

employee[i].surname, employee[i].age,
employee[i].salary (;

1.4 Storage Specifiers

There are four ways to tell the compiler how the memory should be
allocated for a variable. You can specify the storage with one of the
following classes:

® Automatic
e Static

o External
® Register

26 Chapter 1

These class-specifiers are discussed in the following paragraphs. In using
them, it is important to note whether a variable is local and global in
relation to a function where it is used. A local variable, when declared
within the body of a function, is local to the function. Variables declared
outside a function are called global variables. The time of memory
allocation and duration of the variable depends on whether it is local or
global.

B Automatic class

When storage class is not specified, the default is the auto class. This
storage class is most commonly used. All local variables in a function
are declared as automatic local variables. They are of transient duration,
"created" at the time the function is called, and last as long as the
function is being executed. Such a variable cannot be accessed by other
functions.

When declaring a local variable within a function it is more precise to
declare it with the auto specifier; however, it is rarely used explicitly.

e Example

In the following example, the n and limit variables in the count function
are declared as auto storage class. Both of them are local to the count
function and last as long as this function is executed. The for loop,

for (n=0; n < limit ; n++);

simply increments n from O to 10.

count ()
{

auto int n;
int limit = 10;
for (n=0; n < limit ; n++);

] Static class

A variable defined with a static specifier is permanently established.
There are two ways of using the static storage class: local and global.

The static local variables: When you use a static specifier to define a

C Language 27

variable within a function or block of code, the compiler creates a local
but permanent data object. It is known to the function only where it is
defined. Therefore, a static local variable cannot be referenced outside
the function where it is declared. Such a variable retains its value from
one execution of the function to the next.

e Example

The following example shows how a local static variable is used. In the
print_num function the local number variable is defined as a local
static variable and initialized to value zero. When the print_num
function is first called in the main functlon, a value 10 is added to zero
(0) and printed. The next time, value 10 is added to 10 and printed.

/**

This Program illustrates a local static variable,
***/

include <stdio.h>
void prt_num();
main()

prlnt num (
print num(

)i
);

void print_num()

static int number = 0;
number = number + 10 ;
printf("Number is %d \n" , number);

The static global variables: When you use a static class specifier to
declare a variable outside a function, the compiler creates a global and
permanent data object. Such a variable is known to function(s) only
below the variable declaration within the file. It is different from global
variables with extern storage class discussed later. Static global
variables are not accessible to functions in another file.

e Example

The following example shows how a static global variable is used. In
file 1 the number variable is declared as a global variable, initialized to
zero. In the same file, the print_ numl funtion prints the number
variable after adding value 10 to it. In file 2 the number variable is
defined again as a global variable, but initialized to the value 100. The
function print_num?2 also prints the number variable after adding value

28 Chapter 1

10 to it. In main, both print_numl and print_num?2 are called, but the
results are different. In prmt numl function, 10 is added to 0, while in
print_num2 function 10 is added to 100.

File 1

/***

This program illustrates static global variables.
**/

#include <stdio.h>
static int number = 0;
void print_numl();
void print _num2();
“main()

print_numl();
print_num2();

void print_numl()

number = number + 10 ;
printf("Number is %d \n" , number);

File 2

static int number = 100;
void print_num2()

number = number + 10 ;
printf("Number is %d \n" ;, number);

K] External class

Generally a C program can be divided into several parts. Each part
resides in a separate file. Each part, called a source module, is made up
of many functions which are compiled separately. During link time, all
the modules are pulled together into an executable program.

It is possible for variables to be declared in one module but accessed by
functions in another module. To allow global access to a data object,
you use the extern storage class. A global variable is declared outside
a function using the keyword extern. If a declaration is found in a
module without a specifier but it is outside a function, the default is
always a global variable.

The compiler allocates memory for all extern storage classes just before
program execution begins. This memory is freed after the program
terminates.

C Language 29

If a variable with extern is declared in one file, this variable is available
to all functions after it is declared within that file. However, if you want
to access the same variable from a function in another file, you have to
declare the variable with the extern specifier again in that file.

e Example

In the following example, there is a main function in file 1 and a
counter function in file 2. The global variable called first is defined in
file 1 without any storage-class specifier.

The main function and first, which is a global variable, are found in the
same file; therefore, main can access first without a declaration.
However, the counter function, found in another file, also references the
first variable but needs a declaration with the extern specifier.

.
File 1
/**

This program illustrates extern variables.
***/

#include <stdio.h>
int first; /* global definition of first */

main()
int count, last;
first = 10 ;
last = 20 ;
count = counter(last);

printf("First = %d, last = %d and count = %d \n",
first, last, count);

File 2

/*************************************

This program counts from first to last
**************************************/
counter(last)
?nt last;
int i, count;
extern int first; /* declaration of variable first */
count = 1;
for (i = first; i < last; i++)
count++;
return (count);

30 Chapter 1

A declaration can appear at the beginning of a block (as in counter of
the preceding example) or outside a function (only once in one file). In
the counter function, the for loop is used to count from the value of
first to the parameter last. The count is returned to the calling function.

B Register class

The register class applies only to variables of type int, char, and float.
The register specifier requests that the compiler stores the declared
variables in the register of the CPU (central processing unit), rather than
memory, where variables are normally stored. This kind of storage
expedites operation on a variable. It is useful to maximize the speed in
a critical part of a program, where a variable is heavily used (e.g., to
control a loop). It is used as a local variable; therefore, it is transient. It
cannot be used as a global variable, but can be passed as a parameter to
a function.

If the register storage class is properly used, it can significantly enhance
the performance of a function. There are only a few general purpose
registers available to the compiler. Therefore, the number of register
class variables at any given time is limited. This number depends on the
compiler you are using.

e Example

In the next example, 1 and n variables in the countl function are
declared with the register specifier. The for loop

for (n=0; n< 1 ; n++);
is to count from O to the value of 1, which is 10,000. And in count2 the
n variable is declared as auto storage class.
/***

This program illustrates the register storage class.
**/

main()

int limit = 10000;
countl (limit);
count2 (limit);

countl (register int 1)

register int n;

C Language 31

for (n=0; n< 1 ; n+t+);

count2 (1)
?nt 1;

int n;
for (n=0; n <1 ; n++);

B Volatile

By using the attribute volatile in a definition or declaration, you are
telling the compiler that this variable’s value may be changed by ways
not explicitly specified in the program. For this reason, the compiler will
not optimize the portion of the code where the variable is used, leaving
the original intent inact.

The general form of volatile definition is
volatile storage-specifier variable-list;
e Example

One illustration of its use is where a variable holding real-time data is
updated by a subroutine of the operating system. In the following
example, the clock variable is defined as a volatile data object. It is
assumed that the variable clock is updated every tenth of a second by a
routine outside this program. This program prints in tenths of seconds
the elapsed time needed to increment i 10,000 times.
/***

This program illustrates the volatile variable.
**/

include <stdio.h>
volatile int clock;
main()

int time,i;

time = clock;

for(i = 0; 1 < 10000 ; i++);
printf("Elapsed time is %d \n", clock - time);

32 Chapter 1
B Const

In certain situations you would not want the content of a variable to
change. Such a change could inadvertently, however, causing a
programming error. To avoid any unintentional alteration of a variable,
you can declare a variable with the const attribute.

The general form of the const definition is
const storage-specifier variable-list;

Such a definition will explicitly declare the variable as a constant. The
compiler will flag any attempts to modify a variable declared as const.
In the following statements, the version and name variables are defined
as const.

const float version = 1,20 ;
const char name[] = "Softek International”;

1.5 Expressions

This section explains the use of expressions and operators in C. An
expression is a sequence of operators, constants, function names,
function calls, and any objects and pointers of any type. Any
combination of these various pieces can be a valid part of an expression.
The general classes of expressions are

e Constant expression
® Primary expression

During the course of the discussion of expressions, references will be
made to data types or groups of data types. The following lists the types
that collectively belong to a group.

Groups Types

Integral Character
Enumeration
Integer

Arithmetic Integral

Floating-point number

C Language 33

Groups Types

Scalar Arithmetic
Pointers

Aggregate Arrays
Structures
Unions

B} Precedence and associativity

The precedence determines the order in which operations are performed;
the contents of Figure 1.2 are arranged from highest to lowest
precedence. At the top are primary operators, which have the highest
priority; the comma operator, at the bottom of the list, has the lowest
precedence. Within a given group, such as a group of multiplicative
operators (*, /, and %), all operators have the same priority. Now, let’s
see how the compiler applies the built-in precedence rule. In the
expression

a-b*x/y

the multiplication and division operators have higher precedence than
does substraction. Therefore, the expression b * x / y is calculated first
and the result is substracted from x. However, you can change the
precedence by explicitly stating the grouping of the operands within
parentheses. The previous expression is rearranged to

(a-b)* (x/y)

Then the subtraction and division have the same precedence and are
evaluated before the multiplication. The associativity rule establishes
how an operation is evaluated. If it is "left to right" the operators are
evaluated from left to right. The rule "right to left" rule implies that the
operators are performed from right to left.

34 Chapter 1

Precedence Operators Associativity
Primary > 0[] left-to-right
Unary + -+ - right-to-left

(typename) & *

sizeof
Multiplcative * / % left-to-right
Additive + - left-to-right
Bitwise shift << >> left-to-right
Relational . <=>=<> left-to-right
Equality I= == left-to-right
Bitwise AND & left-to-right
Bitwise XOR " left-to-right
Bitwise OR | left-to-right
Logical AND && left-to-right
Logical OR || left-to-right
Conditional 2 right-to-left
Assignment = +=-=*= /= right-to-left

<<= >>= P= &=
Comma , left-to-right

Figure 1. 2 Precedence and association of operators.

B} Constant expression

A constant expression is made up of one or many constants, such as

® Integer constants

® Character constants

® Floating-point constants
® Enumeration constants

@ Other constant expressions
The value of the constant expression is evaluated at the time of

compilation of a program. While the program is being executed, this
value cannot be changed.

A constant expression is required in the following cases:

C Language 35

The case keyword must be followed by a constant expression in a
switch statement.

To specify the size of an array.

An enumeration identifier must be assigned a constant expression.
To assign initial values to external or static variables.

In the #if preprocessor statement.

In the first three situations, the constant expression must be one of the
following:

@ Integer constants

@ Character constants

¢ Enumeration constants
® Casts to integral types
e sizeof expression

In the same situations, you can use only the following operators:

@ Arithmetic operators

@ Bitwise operators

® Relational operators

e Conditional expression operators

In the fourth case, all the above rules of constants and operators are
valid.

K] Primary expression

There are six types of primary expressions:

o Indentifier

@ Constant expression

@ Parenthesized expression

e Function call

® Array element specification

@ Structure and union specification

The primary operators are grouped from left to right, and all of them
have the same precedence.

36 Chapter 1
B Indentifier

An identifier is a primary expression. It is declared as a name for a data
object or function. If an identifier is declared as an array, the value of
the identifier is the address of the first object of the array.

Constant

A constant is a primary expression, and its type may be int, long, or
double depending on the form.

Parenthesized expression ()

As seen earlier, the precedence rule forces execution of certain
operations before others. Parenthesized expressions are used to explicitly
state how operands and operators are grouped together. This allows you
to change the order in which the compiler will evaluate an expression.

e Example
In the example
X -y * 2z ; /* multiply first */

the multiplication of y and z will be done before the subtraction. You
can change the order of the operation with parentheses. If you want the
subtraction done first, you can force the compiler to do so by enclosing
the subtraction in parentheses; for example,

(x -y) * 2 ; /*¥ subtract first */
If you parenthesize the multiplication,
x-(y*z);

it will not change the normal order of calculation, which is
multiplication first and subtration next.

C Language 37

B Function call ()

A function call is a primary expression followed by a list of arguments
enclosed in parentheses. The list may be empty or may contain one or
more expressions. Multiple expressions are separated by commas. If you
wish to change the value of the parameter within a function, you would
pass a pointer to the variable rather than the value.

Arrays and functions are always converted to pointers before they are
passed as parameters to a function.

If a function call is defined as a function returning type int, then in an
expression the value returned by such a function is of int data type.
Similarly, a primary expression defined to return float type, will result
in float type.

e Example
The following are examples of function calls:

sort()
counts(x+y, y+10)
read(buffer, length)

Before any function is executed, an expression of the argument list, if
any, is evaluated and becomes the argument of the function. For
example, x+y and y+10 will be first calculated and passed as values to
the counts function. The values of actual parameters, such as x and y,
are never changed, but assigning the value to the parameter changes the
value within the function.

K] Array element specification []

An array subscript is a primary expression when it is followed by an
expression enclosed by a pair of square brackets ([]). This value of
expression after it is evaluated refers to an element of an array. If the
array is declared as a char data type, it is a pointer to the first character
of the string.

The primary expression is a pointer, and the type subscript must be an
integer value. The compiler converts the expression within the brackets
into an address of the array element.

38 Chapter 1
e Example
In the example

horses[y + 2]

the expression y+2 is first evaluated, yielding an integer value. This
value is then used to calculate the memory location of element y+2.

I Structure and union specifications (. or ->)

A primary expression followed by a dot (.) followed by an identifier is
an expression. The primary expression must be a variable name defined
as structure or union type. The identifier must be a member within the
structure or union. The following is a dot expression:

employee.name

A primary expression followed by an arrow operator (->) followed by
an identifier is an expression. The primary expression must be defined
as a pointer to structure or union type. The identifier must be a
member within the structure or umion. The following is an arrow
operator expression.

employee->name

1.6 Operators

C language is rich in built-in operators. Each operator is a symbolic
character telling the compiler to execute certain mathematical or logical
tasks. There are five general classes of operators.

¢ Unary operators

® Binary operators

e Conditional operators
® Assignment operators
e Comma operators

C Language 39

While discussing operators, we will refer to data types or groups of data
types. The types that collectively belong to a group are listed as follows:

Groups Types
Integral Character
Enumeration
Integer
Arithmetic Integral
Floating-point numbers
Scalar Arithmetic
Pointers
Aggregate Arrays
Structures
Unions

1.6.1 Unary operators

A unary operator acts on only one value. The following are unary
operators:

Increment ++ Bitwise negation ~
Decrement -- Address &

Unary plus + Indirection *
Unary minus - Cast

Logical negation ! sizeof

All these unary operators have the same precedence. In an expression
with many unary operators, the compiler groups them in right-to-left order.

B Increment ++

The increment operator (++) simply adds one (1) to the operand. After
the following statement is executed

yt++;

the value of y is incremented by one.

40 Chapter 1

But if the operand is a pointer, the increment depends on the size of the
object it is pointing to. Let’s say intp is an integer pointer variable. The
statement

intp++;

will increase the value of intp by 4 since an integer occupies 4 bytes.
Or, if structp, a pointer variable, is defined as a pointer to a structure
of size 20 bytes, the example

structp++;

will add value 20 to structp.

The increment operator can be placed before or after an operand. In an
expression with several operands, the position of ++ is significant. If you
place ++ before the operand, the operand is first incremented and then
used in the expression.

In the example
y = ++x + 2;

value 1 is first added to variable x; then the result is added to z, and the
final sum is placed in y.

If you place ++ after the operand, the current value of the operand is
first used in the expression, and then its value is incremented.

In the example
y = x++ + z;

the current value of x is added to z, the result is placed in y, and then
X is incremented by one.

B Decrement --

The decrement operator (--) simply substracts one (1) from the operand.
After the statement

y--3

is executed, the value of y is decremented by one.

C Language 41
But if the operand is a pointer, the decrement depends on the size of the
object it is pointing to. Let’s say intp is an integer pointer variable. The
statement '

intp--;

will decrease the value of intp by 4 since an integer occupies 4 bytes.
Or, if the pointer variable structp is defined as a pointer to a structure
of size 20 bytes, the example

structp--;

will decrease the value of structp by 20.

The decrement operator can be placed before or after an operand. In an
expression with several operands, the position of -- is significant. If you
place -- before the operand, the operand is first incremented and then
used in the expression.

In the example
y = --x+ 2;

. value 1 is first subtracted from the x variable, then the result is added
to z, and the final result is placed in y.

If you place -- after the operand, the current value of the operand is first
used in the expression, and then its value is decremented. In the example

Yy = X—— + 2;

the current value of x is added to z, the result is placed in y, and then
X is decremented by one.

B Unary plus +

The unary plus operator (+) does not change the value of the operand.
In fact, this operator is seldom used. The operation of the statement

+X;

will not change the value of x.

42 Chapter 1
B Unary minus -

The unary minus operator (-) multiplies the value of the operand by -1.
When the unary minus is applied to an operand, the sign of the value is
switched. For example, if the number variable has value 10, then

-number;
will change the value to -10. If number has value -10, then
~number;

will change the value to 10.

B Logical negation !

The logical negation operator (!) is used to test whether the value of an
expression is false. The expression is first evaluated, and if it is zero (0),
the logical negation operator yields a one (1). If the result of the
negation is nonzero, then the negation operator returns a zero (0). The
result of the logical negation operator is always of int type. In the
following statements, the variable flag is tested for a zero or nonzero
value.

if (!flag)

printf("flag is zero");
else

printf("flag is non-zero");
If the result of operation !flag is O, then
printf("flag is zero");
is executed. Otherwise, this segment of thr program executes
printf("flag is nonzero");

Another use of the logical negation operator is to easily "flip" the value
of a flag between one and zero; for example,

flag = !flag ;

C Language 43

will switch the value of flag to one or zero depending on whether its
value before the operation is zero or nonzero.

K Bitwise negation ~

The bitwise negation operator (™) changes the content of every bit of
the operand. All the bits that are 1s are changed to Os and vice versa; all
bits that are Os are switched to 1s. The bitwise negation operator
therefore produces the one’s complement of the operand. Let’s say y is
defined as an unsigned char variable and has a value 10. The 8-bit
binary representation of y is 00001010. Now, the expression

Yi
will produce the binary value 11110101.

B Address &

The address operator (&) produces the memory address of the operand,
for example,

py = &y;

assigns the memory location of the y variable to py. It is assumed that
py is declared as a pointer variable to the same type as y.

The operands of the & operator can be variables or array elements. But
it is illegal to have bitfield or register variables as operands of an
address operator.

B Indirection *

The indirection operator (*) uses as its operand the address to data
object. The operand must be a pointer variable, and the result depends
on the data type. The following statements first declare a and b as int
variables and then pa as an integer pointer variable.

44 Chapter 1

int a,b;
int *pa;

The statement
b = *pa;

assigns the value pointed to by pa to b. In this case, the result of the
operator * is an integer value. The following sequence of statements

ga

demonstrates how to assign the address and contents of a variable, which
is the same as

&a; /* assign address of a to pa */
pa; / assign content of pa to b */

b = a;

[Cast

The cast operator converts the value of an expression to a specific data
type. To do so, you place the parenthesized name of the data type before
the operand. For example, you define z as an integer and you want the
result of expression z/5 to be a float type. To guarantee that the
compiler yields a fractional component, you use the cast operator. In the
statement

price = (float) 2z/5 ;

the value z/5 is assigned to the price variable, which is defined as a
float type.

K sizeof

The sizeof operator gives the size of an operand in the number of bytes.
The operand can be a variable or type, but it cannot be a bitfield or a
function. In the following program, sizeof determines the size of x and
city, which are variables. It also calculates the number of bytes occupied
by an int data type.

C Language 45

/**

This program illustrates the use of sizeof operator.
***/

#include <stdio.h>
int x;
char city[] = "New York";
main()
printf(“Size of x is %d \n", sizeof(x));

printf("size of city is %d \n", sizeof(city));
printf("Size of int is %d \n", sizeof(int));

After this program is run, it shows

Size of x is 4
Size of city is 9
Size of int is 4

1.6.2 Binary operators

A binary operation requires two operands which are separated by a binary
operator. They are not of the same precedence. The evaluation of binary
expressions is done according to the precedence rule listed in the Fig. 1.2.
However, if an expression has many operators of the same precedence, the
compiler will evaluate them in left-to-right order.

The following sections describe each binary operator and its operation.

B Multiplication *

The multiplication operator (*) calculates the product of two operands.
In the statement

result = x * y ;

x is multiplied by y and the result is placed in the result variable.

The * operator is treated as associative. An expression with several
multiplications may be rearranged by the compiler, although
subexpressions are enclosed in parentheses. The expression

46 Chapter 1
result = x * y * z ;

can be interpreted in three different ways:

result = (x *y) * z ;

result = x * (y * 2) ;

result = (X ¥ 2) *y ;
[Division /

The division operator (/) calculates the quotient of two operands. In the
statement

result = x /‘y;
x is divided by y and the result is placed in the result variable.
If you use two positive integers as operands, the compiler will ignore

any remainder produced by the division operation. For example, in the
expression 9/4 the result is 2, discarding the remainder .25.

But if one operand has a negative value, then truncation will occur in the
result. -
B Remainder %

The remainder operator (%) produces the remainder when two operators
are divided. For example, the result of expression

9 % 4
is 1.

The type of both operands must be integer. The usual arithmetic
conversions on operands are performed by the compiler.

B Addition +

The addition operator (+) produces the sum of the operands. For
example, in the expression

a+b

C Language 47

the value of a is added to b. If there are many addition operators in an
.expression, the operators are grouped in left-to-right order.

The operands can be integers, floating-point numbers or pointers. If one
operator is an integer and the other is a pointer, the compiler first
converts the integer operand to an address offset and then does the
addition. The result is an address of a data object.

B Subtraction -

The subtraction operator (-) produces the difference between the
operands. In the expression

a->b

the value of b is subtracted from a. If there are many subtraction
operators in an expression, the operators are grouped in left-to-right
order.

The operands can be integers, floating-point numbers, or pointers. In
case an integer is subtracted from a pointer, the compiler computes the
operation in the following steps:

e The integer type operand is converted to an address offset.
® After the subtraction is done, the result is an address of the same
type as the pointer operand.

[Bitwise left and right shift << >>

The shift operators (<< and >>) literally shift the bits of the left operand.
The right operand is the number of places (bits) that the left operand is
to be shifted.

The left shift operator << moves bits toward the left, while the right
shift operator >> moves bits toward the right. The shift operators are
grouped in left-to-right order.

The operands must be integer values. The right operand is always
converted to an integer value, while the type of the result is the same as
that of the left operand.

48 Chapter 1
In the expression
x << 2;
the x variable, declared as short type, is shifted left by two positions.

The following shows the content of x in binary and decimal
representations before and after the left shift operation.

0000 0000 0000 0011 3 (before)
0000 0000 0000 1100 12 (after)

Every shift to the left has the same effect as multiplying the value by 2.
The right end of x is filled with zeros (0s). In the expression

y >> 2;
y, declared as short type, is shifted by 2.

The following shows the content of y in binary and decimal
representations before and after the right shift operation.

1100 0000 0000 0000 49152 (before)
0011 0000 0000 0000 12288 (after)

Every shift to the right has the same effect as dividing the value by 2.
The left end of y is filled with zeros (0s).

The results of a shift operator are undefined if the right operand is a
negative value or is greater than or equal to the number of bits of the
left operands. If the right operand is a zero (0), the left operand is
unchanged.

K] Relational < > <= >=

The relational operators (<>, <=, and >=) compare two operands for a
valid relationship. The result of the relational operators is either one (1)
if the relationship is true; otherwise, it is zero (0). The operands can be
of arithmetic type, or pointers of the same type.

If the operands are of arithmetic type, the usual arithmetic conversion
(discussed later) on operands are performed by the compiler. The
relational operators are grouped in left-to-right order.

C Language 49
The following shows the result of each relational expression:

x <y evaluates to the value 1 if x is less than y, otherwise O.

x <=y evaluates to the value 1 if x is less than or equal to y,
otherwise 0.

x>y evaluates to the value 1 if x is greater than y, otherwise 0.

x >=y evaluates to the value 1 if x is greater than or equal to y,
otherwise 0.

B Equality == !=

The equality operators (== and !=) compare two operands for equality.
The result of the equality operators is either one (1) if the relationship
is true; otherwise, the result is zero (0). The operands can be arithmetic
type or pointers of the same type. It is also legal to have one operand as
a pointer and the other as a null pointer or an integer with value zero

().

If the operands are of arithmetic type, the usual arithmetic conversion on
operands are performed by the compiler. The equality operators are
grouped in left-to-right order.

The following shows the result of each equality expression:

x ==y evaluates to the value 1 if x is equal to y, otherwise 0.
x !=y evaluates the value 1 if x is not equal to y, otherwise 0.

B Bitwise AND &
The bitwise AND operator (&) compares the values of the operand bit
by bit. If the bit of the first value is 1, and the corresponding bit of the
second value is also 1, the result is 1. Otherwise, it is set to 0.

In the statement

| z2=XxXx&Yy;

50 Chapter 1

a bitwise comparison of y and x is done, and the result is placed in z.
If x and y had values 16,645 and 51,850, repectively, the 16-bit binary
representations after the operation would be

X 0100 0001 0000 0110
Yy 1100 1010 1000 1010
z 0100 0000 0000 0010

If the corresponding bits of x and y are 1, the bit in the same position
of y is 1; otherwise, it is 0. In an AND operation, both operands must
be of integral type.

[Bitwise exclusive OR "

The bitwise exclusive OR () operator compares the values of the
operand bit by bit. If the bit of both values is 1 or O, then the
corresponding bit of the result is 0. Otherwise, it is set to 1.

In the statement

A

2 = X Y:

a bitwise comparison of y and x is done, and the result is placed in z.
If the x and y had the values 16,645 and 51,880, repectively, the 16-bit
binary representations of x, y, and z after the operation would be

b 0100 0001 0000 0110
Y 1100 1010 1000 1010
2z 1000 1011 1000 1100

If the corresponding bits of x and y are not the same, the bit in the same

position of z is 1; otherwise, it is 0. In an OR operation, both operands
must be of integral type.

[Bitwise Inclusive OR |
The bitwise inclusive OR (|) operator works in the following ways. For
corresponding bits of both operands, if one or both bits are 1s, the

corresponding result bit is a 1. Otherwise, it is set to 0.

In the following statement a bitwise comparison of y and x is done, and
the result is placed in z.

z=x|y;

C Language 51

If x and y had values 16,645 and 51,880, respectively, the 16-bit binary
representations of x, y, and z would be

X 0100 0001 0000 0110
y 1100 1010 1000 1010
z 1100 1011 1000 1110

In an inclusive OR operation, both operands must be of integral type.

[Logical AND &&

The logical AND operator (&&) checks two operators for nonzero
values. If both have nonzero values, the result of the AND operation is
1; otherwise, it is O.

Both operands must be scalar types. In an expression, the AND
operators are grouped in the left-to-right order. The usual arithmetic
conversion on operands is performed by the compiler.

For the logical expression

X & y

the following gives the result of three different pairs of x and y:

result x Yy
0 0 && 0
0 0 && 3
1 5 && 2

In the first two cases, the result is zero because x is zero in both cases.
In the third case, the result is 1 because both x and y have nonzero
value.

B Logical OR ||

The logical OR operator (||) checks two operators for nonzero value. If
either has a nonzero value, then the result of an OR operation is one (1);
otherwise, it is zero (0).

52 Chapter 1

Both operands must be scalar types. The AND operators are grouped in
the left-to-right order. For the logical expression

x ||y

t_he following shows the results for three pairs of x and y values.

result x Yy
0 && 0
1 5 && 2
1 0 && 3

The first result is zero because both x and y are zeros. The last two
results are ones because either one or both x and y are nonzeros.

B Conditional operator ?:

The conditional operator (?:) is the most unique among operators in the
C language. It requires three operands and two symbols. The first
operand is placed before the question mark (?), followed by the second
operand and the colon (:), and the third operand after the colon.

The general form of a conditional expression is
condition ? expressionl : expression2

condition is usually a relational expression, which is evaluated by the
compiler.

If the result from the evaluation of the condition is nonzero, then
expressionl is evaluated, and the result is the value of the condition
expression. If condition is zero, then expression2 is evaluated and the
result is the value of the conditional expression.

The conditional operator is best understood by an example to determine
the maximum of two values: x and y. This function is usually
programmed as follows:

int max(int x, int y)

int z;
if (x>y)
zZ =X j

else

C Language 53

2 =Y

return (2z);

The same logic can be programmed by using the conditional operator.
For example, the following statement accomplishes the same task as the
above max function.

z=(x>y)?x:y; /* z2=max(x,y) */

The conditional expression can be any expression, and it is enclosed in
parentheses only for the sake of readability. First the expression (x > y)
is calculated. If it is true (i.e., nonzero), the x is assigned to z; otherwise,
y is assigned to z.

The conditional expression works according to the following rules:

e The conditional operand must have scalar type.
® The second and third operands can be any of these types:

® Arithmetic type

@ Same structure type
® Same union type

@ Same pointer type

e The result of the conditional operator has the same type as the second
and third operands.

e If the second and third operands are arithmetic types, then the usual
arithmetic conversion on operands are performed by the compiler.

1.6.3 Assignment operator =

The assignment operator (=) gives a value to the left operand after
evaluating the right operand. In an expression with many assignment
operators, the operators are grouped in right-to-left order. There are two

kinds of assignment operators:

e Simple assignment
® Compound assignment

B Simple assignment

The simple assignment operator simply takes the value of the right

54 Chapter 1
operand and gives it to the left operand. Both operands must be of:

® Arithmetic type

® Same structure type
@ Same union type

® Pointers to same type

If both operands are arithmetic types then the usual arithmetic
conversion on operands is performed by the compiler.

A few examples of assignment operators are

employee.age = 50 ;

employee.hours = regular + overtime ;
ptr = &prices{10}] ;

chr = name[i] ;

x=y=z=o;

value = 2.55 + 10 ;

*p:"s';

B Compound assignment

An expression with compound assignment contains two operators: an
assignment operator and any other binary operator. Figure 1.3 is a list
of all compound assignment operators.

Operator Example Equivalent

Expression
+= X +=y x=x+y
—-— X -=Yy x=x_y
= x:y x=x*y
= X /=y Xx=x/y
= X 3=y X=xXx%Yy
<L<L= x<<=y x=x<<y
>>= X >>=y X=X >y
&= X &= Y X=xXx&vYy
A= xA=Y X=xAy
|= x|=y x=x|y

Figure 1.3 Assignment operators.

C Language 55
1.7 Statements

It is the program-control statements of any language that give power and
flexibility to a computer. In essence, the control statements are the strength
of a language; they dictate the flow of a program execution. They are
powerful building blocks of programs.

Both C and C++ have a rich and diverse set of control statements. This
section explains the basics of the control flow of these statements and also
shows how you can use them effectively to produce versatile and robust
programs.

The following is a list of statements types:

e Expression statement
e label statement

e if statement
if-else-if statement
switch statement
for loop statement
while loop statement
do/while loop statement
break statement
continue statement
goto statement

null statement

These statements are described in the following paragraphs.

B} Expression statement

® General form
expression ;

® Description
An expression statement is simply an expression followed by a
semicolon (;). As seen earlier in this chapter, there are many types of
expressions.

e Example

A few examples of expression statements are

56 Chapter 1

++count;
y=y+z;
printf ("Expressions");

X-(y*z2);

[} Label statement

® General form

labeled-statement:
label: statement

label: named-label
case-label
default-label

@ Description

Before discussing statements, let’s consider the label concept. A label
is placed before a statement and is an identifier to which control is
transferred. There are three kinds of labels: plain label, case label, and
default label. The plain label is used with a goto statement, and the
case label and the default label are used in a switch statement. These
statements are discussed later.

B If statement

e General form
if (expression)
statement;

[else
statement;]

® Description

The if statement allows a statement to be executed only after a condition
is met.

else is an optional clause.

expression can be any valid C expression, which can include relation and
logical operators, functions, and pointers. This expression is first

C Language 57

evaluated; when the result is TRUE (nonzero), the statement associated
with if is acted on. If the expression evaluates to FALSE (zero), and else
exists, the computer will execute the statement or the block of
statements forming part of the else. In other words, only statements
associated with either if or else are executed, never with both if and else.

e Example

In the next example, if statement is used to check whether a variable has
a zero or nonzero value. The program first reads a number and places
it in the num variable using the scanf function. Next, it prints the value
of num if it is nonzero. Otherwise, it prints the message "Number is
zero."

/***

This program illustrates the use of if statement
***/

#include <stdio.h>
main()
int num = 0;
scanf(" %d \n", &num);
if (num)
printf("Number is %d \n", num);
else

printf("Number is zero \n");

If replaced num with a relational expression num != 0, the result would
be the same. For example,

if (num != 0)

printf("Number is %d \n", num);

In the next program, the conditional expression of the if statement
consists of both relational and logical operators. A keyboard character
is read by a getchar function and placed in the chr variable. The
expression of the if statement is to test whether a character is numeric.
According to the ASCII (American Standard Code for Information
Interchange) table, all numeric characters are between ’0’ and ’9’. When
the expression

58 Chapter 1
(chr > ‘0’ && chr <= '9")

is evaluated to be FALSE (0), the message "Character is not numeric"
is printed to the standard output stream. Otherwise, the numeric
character is printed.

‘/**

This program illustrates the use of if statement.
***/

#include <stdio.h>

main()

char chr;
chr = getchar();
if (chr > "0’ && chr <= '9')
printf("Numeric character is %c \n", chr);
else

printf("Character is not numeric \n");

) if-else-if statement

® General form

if(expression)
statement;

else if (expression)
statement;

else
statement;

® Description

An if-else-if statement is an extension of the if statement. The evaluation
of expression starts from the top. As soon as an expression is found to
be TRUE (nonzero), the associated statement is executed and the rest of
the ladder is skipped. If none of the expression is evaluated to be TRUE,
the statement linked to the last else is executed.

In the following example a message is printed when the input character

C Language
is one of the following:

1. Numeric character

2. Space character

3. Plus sign

4. None of the above; default

/**

This program illustrates the use of if-else-if ladder.
***/

#include <stdio.h>

main()
char chr, *strp = " ";
int y;

%f (scanf("%c", chr) != EOF)

if (chr >= 0’ && chr <= '9")
*strp = chr;
y = atoi(strp);
printf("Number is %d \n", y);

else if (chr == ' 7)

printf("Space character \n");
else if (chr == '+’)

printf("Plus sign \n");

else

printf ("Not numeric character, space or + \n");

else

printf("Input Error ");

59

60 Chapter 1
) Switch statement

® General form

switch(expression)

case constantl:<
statement;
break;

case constant2:
statement; switch body
break; .

default:
statement; <———

® Description

The switch statement is a multiple-branch decision statement. This
statement not only replaces some forms of if-else-if ladder construction
discussed earlier but also infuses clarity and elegance to a program. The
switch body, enclosed in braces, has case labels, empty statements, and
default labels.

expression must evaluate to an integral type. Starting from the top, the
expression is checked against the constants successively. If a match is
found, control is transferred to the statement associated with that
constant. Execution will continue until a break statement is encountered
or the end of the switch body is reached. If there is no match, the
computer executes the optional default statement. If a default label is
not present, no action is taken if no match occurs.

The break statement is not part of the switch statement but is used to
stop execution of the statement sequence of the case clause. As shown
in an example later, you might want to omit a break statement in certain
instances. This is when a common processing is suitable for many
situations.

There are a few things to keep in mind when using a switch statement:
e The expression and constants must be of integral type, and each

constant must be different.
e There must be only one default label.

C Language 61

e A switch body can have definitions and declarations.

® A case clause can have a switch statement; therefore, nested switch
is allowed.

® A case clause can be empty.

e Example

One way of using a switch statement is to process a menu selection. In
the next program, a menu of three items is printed. Then, it reads a
selection character from the user.

/***

This program illustrates the use of switch statement.
**/

#include <stdio.h>
main()

char key;

printf("1. Add Customer Record \n");

printf("2. Change Customer Record \n");

printf("3. Delete Customer Record \n");
printf(" Enter a selection (1, 2 or 3) \n");
printf(" Press any other key to skip \n");

key = getchar() ; /* read the selection from the
standard input stream */

?witch(key)

case '1l’':
CustAdd();
break;

case '2':
CustChg();
break;

case ‘3':
CustDel();
break;

default:
printf("No selection made \n");

return;

}

The key variable is compared to each character constant: ‘1°, ‘2’, and
‘3’. If there is a match, the corresponding function is called. If it is ‘1°,
then the CustAdd function is called. On return from CustAdd, the
switch statement is terminated because of break and control is
transferred to the next statement, which is return. Similarly, CustAdd
and CustDel functions are called if key is ‘2’ or ‘3’, respectively.

In case of no match—the key is not ‘1°, ‘2°, or ‘3’—the message "No

62 Chapter 1

selection made" is printed to the standard output stream. This is a result
of executing the statement part of the default label.

The following program illustrates an empty case statement and a case
statement having one or more statements. Note that the constants are
both integer and character constants. For example, ’1°, *2°, and ’3’ are
character constants and decimal 52 (ASCII code for ’4’) and SPACE
defined as hex 20, are integer constants.

/**

This program illustrates the use switch statement.
***/

#include <stdio.h>
#define SPACE 0x20 /* ASCII code for space character*/

main()

int y;
char key, *strp =

key = getchar();
?witch(key)
case '1l':
case '2':
case '3':
rintf("Key is %c", key);
reak;

case 52: /* EBCDIC code for ‘4’ */
*strp = key;
y = atoi(strp);
Erintf("Number is %d ", y);
reak;

case SPACE:
grintf(" Key is space bar ");
reak;

}
}

The case clauses with constant ’1° and ’2’ have no statements; therefore,
they use the same code as the case clause with constant ’3’. This shows
that different conditions can use the same portion of a program. In the
fourth case clause, the constant is an integer constant 244 which is
equivalent to the EBCDIC character ’4’. This case clause has three
statements. The first is

*strp = key;

to move the character into a string. The second is a call to atio(strp)

C Language 63

function to convert the key stroke from a character to integer value,
which is placed in y. Next, the converted integer y is printed. The fifth
case label has an integer constant representing a space character. Note
that this switch statement does not have a default label. This means that
the switch statement does not execute anything if none of the five
conditions is met.

B For statement
® General form

for (expressionl; expression2; expression3)
gtatement ;

® Description

The for statement can have an empty statement, single statement or a
block of statements. More than one statement must be enclosed in a pair
of braces. The statement forms the body of the for loop.

Expressionl is an expression evaluated only once before the loop starts.
It can be used to initialize a variable to control the loop.

Expression2 is an expression evaluated every time the body is executed.
The result of expression2 determines when to exit the loop. If it yields
a zero value (0), the statement of the for loop is not executed and
control goes to the next statement of the program. Otherwise, the
statement is executed.

expression3 is an expression evaluated every time but only after the
statement of the loop is executed. It can be used to increment,
decrement, or initialize variables that determine whether to exit or
continue the loop.

Any or all of these expressions can be omitted, but in each case it
affects how the loop is executed. Later we will discuss some of the
variations of the for loop. First, we want to show you a simple example
of the for loop.

e Example

In the following program, the for loop is used to print numbers 1

64 Chapter 1

through S to the standard output stream. First, the i variable is set to
value 1. Next, the expression i <= § is evaluated. If it is TRUE (1), then
the value is printed; otherwise, the loop terminates. Every time i is
printed with the printf function, it is incremented by 1. The loop stops
when i reaches the value 5.

/***

This program illustrates the use of the for loop.
**/

#include <stdio.h>

main()
int i;
for(i = 1; 1 <= 5; i++)

printf("%d ", 1);
}

In a for loop, C does not restrict you in the composition of expressions
as long as they are valid. In the following example, expressionl sets i
to 5, expression2 tests whether i, greater than 0, and expression3
decrements i by 1. In this case, the statement prints numbers in
descending order from 5 through 1.

for (1 =5; 1> 0 ; x--)

printf(Yed ", 1);

C allows many variables of the for loop, which can add power and
flexibility to your programs. You can omit the expressionl, but you have
to ensure that the variable controlling the loop is properly initialized
before the execution of the for loop. If it is not set properly, an
undesired result may occur.

In the following situation i is set to 5 before the loop starts.

i=25;

for (; i >0 ; x--)
printf("$d ", i);

In the next example, the expression2 is missing. When this expression
is omitted, the compiler replaces the expression with a nonzero contant.
Therefore, the loop will be executed infinitely. To break