Presentation Manager
Programming Guide

The Basics

Presentation Manager
Programming Guide

The Basics

— Note

Before using this information and the product it supports, be sure to read the general
information under Appendix A, “Notices” on page A-1.

First Edition (October 1994)

The following paragraph does not apply to the United Kingdom or any country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication. IBM
may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time. ‘

It is possible that this publication may contain reference to, or information about, IBM products (machines
and programs), programming, or services that are not announced in your country. Such references or
information must not be construed to mean that IBM intends to announce such IBM products,
programming, or services in your country.

Requests for technical information about IBM products should be made to your IBM authorized reseller or
IBM marketing representative.

COPYRIGHT LICENSE: This publication contains printed sample application programs in source
language, which illustrate OS/2 programming techniques. You may copy, modify, and distribute these
sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the OS/2 application programming interface.

Each copy of any portion of these sample programs or any derivative work, which is distributed to others,
must include a copyright notice as follows: “© (your company name) (year). All rights reserved.”

© Copyright International Business Machines Corporation 1994. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Content

Figures e XXV
Tables e XXvii
About This Book e XXXi
Who Should Read This Book XXXi
How This Book Is Organized XXXi
Prerequisite Publications oo XXXii
Related Publications XXXii

Presentation Manager Programming Guide - The Basics

Chapter 1. Introduction to Presentation Manager Programming 1-1
Presentation Manager Fundamentals 1-1
The Window Environment 1-1
Defining Window Relationships 1-1
Creating and Classifying Windows 1-3
Providing the User Interface 1-4
Standard and Control Windows, 1-4
Primary and Secondary Windows 1-6
Dialog BoX e e e 1-6
Handling Mouse and Keyboard Input J 1-7
Processing Messages 1-7
Handling Application Resources T 1-9
Resource Editors 1-10
Exchanging Data Among Applications oL 1-10
User-Generated Data Exchange 1-10
Topics Covered in This Guide 1-11
Windows L e 1-11
Messages and Message Queues Lo 1-11
Window Classes e 1-11
Window Procedures 1-11
Frame Windows 1-12
Paintingand Drawing 1-12
Drawing in Windows L 1-12
Mouse and Keyboard Input L 1-12
Mouse Pointersand Icons L 1-12
CUIrsOrs e e e e 1-12
Resource Files e 1-12
Menus e e e 1-13
Keyboard Acceleratorso 1-13
Dialog Windows R e e e e e e e e 1-13
Control Windows 1-13
Title Bars e e 1-13

© Copyright IBM Corp. 1994 iii

ScrollBars e e e e e e e 1-13

Button Controls e e e e e e '1-13
Entry Field Controls 1-14
ListBoxes e e e 1-14
Clipboards e 1-14
Window Timers e e e 1-14
Initialization Files 1-14
Chapter 2. Windows e e e e e e e e 2-1
About Windows L e 2-1
Desktop Window and Desktop-Object Window 21
Window Relationships 2-2
Parent-Child Relationship 2-3
Ownership 25
Object WINdOWs e 2-6
Application Windows L 2-6
Window Input and Output L L 2-8
Active Window and Focus Window 2-8
Messages e e e e e 29
Enabled and Disabled Wlndows 2-10

- System-Modal Window e e 2-10
Window Creation e 2-11
Window-Creation Functions 2-12
Window-Creation Messages e 2-12
Window Classes e 2-13
Public Window Classes @ . . e 2-13
Private Window Classes 2-14
Window Styles L. e e 2-14
Window Handles 2-16
Window Size and Position Lo 2-16
Size . . e 2-17
Position e 2-17
Size and Position Messages oo 2-18
System Commands 2-18
Window Data e e e e e e 2-19
Window Resources e e e 2-19
Maximized and Minimized Windows oL 2-20
Window Visibility 0. e e e e 2-21
- Window Destruction e 2-22
Using Windows e 2-23
Creating a Top-Level Frame Window 223
Creating an Object Window 2-24
Querying Window Data 2-25
Changing the Parent Window, 2-25
Finding a Parent, Child, or Owner Window 2-26
Setting an Owner Window o 2-27
Retrieving the Handle of a Child or Owned Window 2-27
Enumerating Top-Level Windows 2-28

iV PM Basic Programming Guide

Moving and Sizinga Window 2-29

Redrawing Windows 2-30
Changing the Z-Order of Windows 2-30
Showing or HidingaWindow 2-31
Maximizing, Minimizing, and Restoring a Frame Window 2-31
Destroyinga Window L 2-32
Related Functions 2-33
WinBeginEnumWindows L L e 2-33
WinCreateStdWindow 2-34
WinCreateWindow 2-36
WinDestroyWindow L 2-38
WinEnableWindow e 2-39
WIinEndEnumWindows L e 2-40
WinGetMaxPosition e 2-41
WinGetMinPosition L 2-42
WinGetNextWindow 2-43
Winlnitialize 2-44
WinlsChild 2-45
WinisThreadActive e 2-46
WinlsWindow L e 2-47
WinlsWindowEnabled 2-48
WinlsWindowShowing 2-49
WinlsWindowVisible 2-50
WinMultWindowFromIDs 2-51
WinQueryActiveWindow 2-52
WinQueryDesktopWindow L L 2-53
WinQueryFocus 2-54
WinQueryObjectWindow 2-55
WinQuerySysModalWindow 2-56
WinQueryWindow 2-57
WinQueryWindowPos 2-59
WinQueryWindowPtr L 2-60
WinQueryWindowRecto oo 2-61
WinQueryWindowULong 2-62
WinQueryWindowUShort L e 2-64
WinRequestMutexSem Lo 2-66
WinSetActiveWindow 2-67
WinSetFocus L 2-68
WinSetMultWindowPos 2-69
WinSetOwner e 2-70
WinSetParent 2-71
WinSetSysModalWindow L 2-72
WinSetWindowBits 2-73
WinSetWindowPos 2-75
WinSetWindowPtr L 2-77
WinSetWindowULong 2-78
WinSetWindowUShort 2-80
WinShowWindowo 2-82

Contents V

vi

WINStartAPP e e e 2-83

WinTerminate e e e e e e e e 2-84
WinTerminateApp 2-85
WinWaitEventSem e e e e 2-86
WinWaitMuxWaitSem oL o 2-87
winWindowFromID L e 2-88
WinWindowFromPoint Lo 2-89
Related Messages L e 2-91
WM_ACTIVATE e 2-91
WM_ADJUSTWINDOWPOS c e 2-92
WM_CALCFRAMERECT e 2-93
WM_CALCVALIDRECTS e e e 2-94
WM _CLOSE 2-95
WM _CREATE e 2-96
WM_DESTROY e e 2-97
WM _ENABLE e 2-98
WM_MOVE . . e 2-99
WM_QUERYWINDOWPARAMS e 2-100
WM_SETWINDOWPARAMS e 2-101
WM_SHOW . . . e 2-102
WM_SIZE . . . e 2-103
WM _SYSCOMMAND e e e e 2-104
WM_WINDOWPOSCHANGED e 2-105
Related Data Structures 2-106
CREATESTRUCT e e e e e 2-106
WNDPARAMS e 2-108
Summary e e e e e e e e e e e e 2-109
Chapter 3. Messages and Message Queues 3-1
About Messages and Message Queues 3-1
Messages e 3-1
Message Queues e 3-2
Message Handling L e 3-4
Message LoOOpS L e e .. 34
Window Procedures 3-6
Posting and Sending Messageso o - 3-6
Message TYPES v i e e e e e 3-7
System-Defined Messages e PP - 37
Application-Defined Messageso, 3-8
Semaphore Messages 3-9
Message Priorities Lo 3-10
Message Filtering e 3-10
Using Messages e 3-11
Creating a Message Queue and Message Loop 3-11
Examining the Message Queue e J 3-13
Posting a MessagetoaWindow L. 3-14
Sending a MessagetoaWindow e 3-14
Broadcasting a Message e 3-15

PM Basic Programming Guide

Using Message Macros o 3-15

Related Functions e 3-17
WinBroadcastMsg L e 3-17
WinCallMsgFilter 3-19
WinCreateMsgQueue 3-20
WinDestroyMsgQueueo 3-21
WinDispatchMsg 3-22
WinGetMsg L e 3-23
WinlnSendMsg L. L 3-24
WinPeekMsg L. e 3-25
WinPostMsg L 3-26
WinPostQueueMsg L L 3-27
WinQueryMsgPos 3-28
WinQueryQueuelnfo L 3-29
WinQueryQueueStatus 3-30
WinReleaseHook 3-32
WinRegisterUserMsg 3-34
WinSendMsg L e 3-36
WinSetClassMsginterest e e e e e e e e e 3-37
WinSetMsginterest L 3-38
WinSetMsgMode 3-39
WinWaitMsg e 3-40

Related Messages L e 3-41
WM_FOCUSCHANGE e 3-41
WM_QUIT . . e 3-42
WM_SEMT . . . 3-43
WM_SEM2 . . e 3-44
WM_SEMS3 . . e e 3-45
WM_SEM4 3-46
WM_SYSVALUECHANGED 3-47

Related Data Structures 3-48
HMQ . . . e 3-48
MQINFO . . . e 3-49
QMSG . . . 3-49

Summary ... L 3-51

Chapter 4. Window Classes 4-1

About Window Classes e 4-1
Private Window Classes e 4-1

Class Name e 4-1
Class Styles e 4-2
Window Procedure L 4-3
Window Data Size 4-3
Custom Window Styles e e 4-3
Public Window Classes e 4-4
System-Defined Public Window Classes 4-4
Custom Public Window Classes e 4-5
ClassData e 4-6

Contents Vil

Using Window Classes o i i it e e e e 4-7

Registering a Private Window Class 4-7
Related Functions L e 4-8
WinQueryClassinfo 4-8
WinQueryClassName 49
WinRegisterClass e e 4-10
Related Data Structures 4-11
CLASSINFO e e 4-11
Summary e e e e e e e e e e 4-12
Chapter 5. Window Procedures 5-1
About Window Procedures 5-1
Structure of a Window Procedureo 5-1
Default Window Procedure e 5-2
Window-Procedure Subclassingo oo 0oL 5-2
Using Window Procedures 5-3
"~ Designing aWindow Procedure 5-3
Associating a Window Procedure with a Window Class -~ 5-4
Subclassinga Window L L e 5-4
Related Functions e 5-6
WinDefDIgProc e 5-6
WinDefWindowProc e 5-7
WinSubclassWindow 58
Related Messages 59
WM_BUTTON1IDBLCLK e 59
WM_BUTTON1IDOWN P 5-10
WM_BUTTONTUP e e e e e e e e e 5-11
WM_BUTTONZ2DBLCLK e e e e e e 5-12
WM_BUTTON2DOWN o e e e e e e e 5-13
WM BUTTON2UP e e e 5-14
WM_BUTTONBDBLCLK e e 5-15
WM_BUTTON3DOWN e e e e e 5-16
WM_BUTTONBUP e e e e e e e 5-17
WM_CHAR . . e 5-18
WM_COMMAND e e e e 5-20
WM_CONTROLPOINTER i 5-21
WM_HELP 522
WM _HITTEST e e e e s e e e 5-23
WM_MENUSELECT e 5-24
WM_MOUSEMOVE 5-25
WM_QUERYCONVERTPOS et 5-26
WM_QUERYFOCUSCHAIN e 5-27
WM_SETSELECTION e e 5-29
WM_TRANSLATEACCEL e e e e 5-30
Summary ... L e e 5-31
Chapter 6. Frame Windows, 6-1
About Frame Windows L e 6-1

Viii PM Basic Programming Guide

Main Window e e 6-1

Frame Controls e 6-2
ClientWindow e 6-3
Additional Frame-Window Items 6-3
Frame-Control Identifiers 6-3
Frame-Window Creation 6-4
Frame Window Controls and Styles 6-4
Frame-Window Resources e e 6-5
Frame-Window Class Data 6-9
Frame-Window Datao 6-10
Frame-Window Operation 6-11
Nonstandard Frame Windows 6-11
Default Frame-Window Behavior 6-12
Using Frame Windows 6-14
Creatinga Main Window 6-14
Retrievinga Frame Handle 6-17
Related Functions e 6-18
WinCalcFrameRect 6-18
WinCreateFrameControls 6-19
Related Messages e 6-20
WM_ADJUSTFRAMEPOS e 6-20
WM _ERASEBACKGROUND 6-21
WM_FLASHWINDOW 6-22
WM_FORMATFRAME 6-23
WM_MINMAXFRAME e 6-24
WM _NEXTMENU 6-25
WM_QUERYFRAMECTLCOUNT 6-26
WM_QUERYFRAMEINFO e 6-27
WM_QUERYICON e 6-28
WM_QUERYTRACKINFO i 6-29
WM_SETBORDERSIZE e 6-30
WM_SETICON e 6-31
WM_SYSCOMMAND 6-32
WM _TRACKFRAME e 6-34
WM_UPDATEFRAME e 6-35
Related Data Structures 6-36
FRAMECDATA e e 6-36
HSAVEWP e 6-38
Summary ... e 6-39
Chapter 7. PaintingandDrawing 7-1
About Painting and Drawing e e 7-1
Presentation Spaces and Device Contexts 7-1
Window Regions 7-3
Window Styles for Painting 7-4
WS_CLIPCHILDREN, CS_CLIPCHILDREN 7-5
WS_CLIPSIBLINGS, CS_CLIPSIBLINGS 7-5
WS_PARENTCLIP, CS_PARENTCLIP 7-5

Contents IX

WS_SAVEBITS, CS_SAVEBITS e e e e e e 7-5

WS _SYNCPAINT, CS_SYNCPAINT 7-5
CS_SIZEREDRAW e 7-5
Strategies for Painting and Drawing L o oo 7-6
DrawinginaWindow 7-6
The WM_PAINT Message ¢ oo v v n i R 7-7
Drawing the Minimized View e P 7-8
Drawing Without the WM_PAINT Message 7-9
Three Types of Presentation Spaces 79
Normal Presentation Spaces, 7-10
Micro Presentation Spaces Lo L. 7-12
Cached-Micro Presentation Spaces 7-14
Related Functions 7-17
WinBeginPaint L L. 717
WIinEndPaint 7-18
WinExcludeUpdateRegion 0. 7-19
WinGetClipPS e 7-20
WIinGetPS e 7-22
WinGetScreenPS 7-23
WinlnvalidateRect L 7-24
WinlnvalidateRegion 7-25
WinLockVisRegions 7-26
WinLockWindowUpdate o 7-27
WinOpenWindowDGC e 7-28
WinQueryUpdateRect 7-29
WinQueryUpdateRegion e 7-30
WinQueryWindowDC - 7-31
WinReleasePS 7-32
WinUpdateWindow 7-33
WinValidateRect 7-34
WinValidateRegion 7-35
WinWindowFromDC 7-36
Related Messages e 7-37
WM_PAINT . . 7-37
Related Data Structureso 7-38
RECTL e e e T7-38
Summary ... 7-39
Chapter 8. DrawinginWindows 8-1
About Window-Drawing Functions 8-1
Points e 8-1
Rectangles e e e e 8-1
Using Window-Drawing Functions 8-2
Working with Points and Rectangles 8-2
Determining the Dimensions of a Rectangle 8-2
FilingaRectangle 0 8-3
Scrolling the Contents ofaWindow 8-3
DrawingaBitMap e 8-4

X PM Basic Programming Guide

Drawing Text e 8-5

Related Functions e 8-6
WinCopyRect e 8-6
WinDrawBorder e 8-7
WinDrawText e 8-9
WinEqualRect 8-11
WinFillRect 8-12
WinintersectRect L 8-13
WinlnvertRect L o 8-14
WinisRectEmpty 8-15
WinMakeRect 8-16
WinMapWindowPoints o 8-17
WinOffsetRect 8-18
WinPtinRect 8-19
WinSetRect 8-20
WinSetRectEmpty 8-21
WinShowTrackRect 8-22
WinSubtractRect 8-23
WinTrackRect 8-24
WinUnionRect 8-25

Related Data Structures 8-26
FATTRS e 8-26
POINTL . . . e 8-29
RECTL P 8-30

Summary ... e e e e 8-31

Chapter 9. Mouse and KeyboardInput 9-1

About Mouse and Keyboard Input oo o 9-1
System Message Queue L. 9-1
Window Activation 9-1
Keyboard Focus e 9-2
Keyboard Messages 9-3

Message Flags e 9-4
Key-DownorKey-UpEvents 9-5
Repeat-Count Events 9-5
Character Codes 9-6
Virtual-Key Codes 9-6
Scan Codes e 9-6
Accelerator-Table Entries Lo 9-6
Mouse Messages e e e 9-6
Capturing Mouse Input 9-7
Button Clicks 9-8
Mouse Movement e 9-8

Using the Mouse and Keyboard 9-8
Determining the Active Status of a Frame Window 98
Checking for a Key-Up or Key-Down Event 9-9
Responding to a Character Message 9-10
Handling Virtual-Key Codes 9-11

Contents Xi

Xii

HandingaScan Code 9-12

Related Functions e 9-13
WinEnablePhyslnput 9-13
WinFocusChange R, 9-14
WinGetKeyState e 9-16
WinGetPhysKeyState 9-17
WinlsPhysinputEnabled o 9-18
WinQueryCapture e 9-19
WinSetCapture T 9-20
WinSetKeyboardStateTable 9-21

Related Messages 9-22
WM_SETFOCUS e 9-22

Summary ... e e e e 9-23

Chapter 10. Mouse Pointersandlicons 10-1

About Mouse Pointersand lcons L o . 10-1
Mouse-Pointer Hot Spot 10-1
Predefined Mouse Pointers o 10-2
System Bit Maps 10-4

Using Mouse Pointersandfcons 10-6
Changing the Mouse Pointer, 10-6

Related Functions e 10-7
WinCreatePointer e e e e e e 10-7
WinCreatePointerIndirect e e 10-8
WinDestroyPointer L e e 10-9
WinDrawBitmap 10-10
WinDrawPointer 1012
WinGetSysBitmap 10-13
WinLoadPointer L. e e 10-15
WinQueryPointer e 10-16
WinQueryPointerlnfo L 10-17
WinQueryPointerPos 10-18
WinQuerySysPointero a e 10-19
WinSetPointer 10-21
WinSetPointerPos L. e 10-22:
WinShowPointer e e e e 10-23

Related Data Structures 10-24
POINTERINFO e e e e e e e e 10-24

Summary ..o e 10-25

Chapter 11. Cursors e 11-1

About Cursors e e 11-1
Cursor Creation and Destruction 11-1

Positonand Size 11-1
Other Cursor Characteristics 11-1
Cursor Visibility 11-2

Using Cursors L e 11-2

Creating and Destroyinga Cursor e 11-2

PM Basic Programming Guide

Related Functions 11-3 .

WinCreateCursor e e e 11-3
WinDestroyCursor L 11-5
WinQueryCursorinfo 11-6
WinShowCursor 11-7
Related Data Structure 11-8
CURSORINFO e 11-8
SUMMANY o e e e e e 11-9
Chapter 12. Resource Files 12-1
About Resource Files e 12-1
Resource Statements L 12-1
Single-line Statements 12-2
Multiple-line Statementso 12-2
Directives e 12-2
Resource File Statement Descriptions 12-3
ACCELTABLE Statement 12-4
ASSOCTABLE Statement, 12-4
AUTOCHECKBOX Statement 12-5
AUTORADIOBUTTON Statement 12-5
BITMAP Statement 12-6
CHECKBOX Statement 12-6
CODEPAGE Statement e 12-6
COMBOBOX Statement e e 12-7
CONTAINER Statement 12-7
CONTROL Statement e 12-8
CTEXT Statement e 12-9
CTLDATA Statement e 12-9
DEFAULTICON STATEMENT e e 12-10
DEFPUSHBUTTON Statement 12-10
DIALOG Statement 12-11
DLGINCLUDE Statement 12-11
DLGTEMPLATE Statement 12-12
EDITTEXT Statement 12-13
ENTRYFIELD Statement 12-13
FONT Statement 12-14
FRAME Statement 12-14
GROUPBOX Statement 12-15
HELPITEM Statement 12-15
HELPSUBITEM Statement 12-16
HELPSUBTABLE Statement i 12-16
HELPTABLE Statement 12-17
ICON Statement (Resource), 12-18
ICON Statement (Control) 12-18
LISTBOX Statement e 12-18
LTEXT Statement e 12-19
MENU Statement e 12-19
MENUITEM Statement 12-20

contents - XIii

MESSAGETABLE Statement 12-21

MLE Statement 12-22
NOTEBOOK Statement 12-22
POINTER Statement e e e 12-23
PRESPARAMS Statement 12-23
PUSHBUTTON Statement P 12-24
RADIOBUTTON Statement i i . 12-24
RCDATA Statement e 12-25
RCINCLUDE Statement i i 12-25
RESOURCE Statement 12-26
RTEXT Statement e 12-26
SLIDER Statement 12-27
SPINBUTTON Statement e 12-27
STRINGTABLE Statement i 12-28
SUBITEMSIZE Statement e 12-29
SUBMENU Statement 12-29
VALUESET Statement i 12-30
WINDOW Statement 12-30
WINDOWTEMPLATE Statement 12-31
Directive Descriptions. e 12-32
ftidefine Directive e 12-32
Syntax 12-32
Example e 12-32
#elif Directive e 12-32
Syntaxo 1232
Example 12-32
ftelse Directive 12-32
Syntax e e 12-33
Example 12-33
#endif directive L e 12-33
Syntax . . . 12-33
#if Directive L e e 12-33
Syntax . .. 12-33
Example e e e e e e e e e e e 12-33
#ifdef Directive e 12-33
SYNMAX . L 12-34
Example AP 12-34
#ifndef Directive e e 12-34
Syntax ... 12-34
Example e 12-34
#include Directive e e 12-34
Syntax e 12-34
Example 12-34
#undef Directive e 12-35
Syntax . . . 12-35
Example e e 12-35
Using Resource Files e 12-36
Creating and Compiling a Resource File 12-36

XiVv PM Basic Programming Guide

Compiling and Adding Resources to the .EXEFile 12-36

Compiling without Adding Resources to the . EXEFile 12-37
Adding the Compiled Resources to the . EXEFile 12-37
Adding the Compiled ResourcestoaDLL 12-37
SUMMANY . . . e e e e 12-38
Chapter 13. Menus e 13-1
About Menus L L e 13-1
Menu Bar and Pull-Down Menus oL oL 13-1
Pop-UpMenus e 13-2
SystemMenu 13-3
Menu ltems e 13-4
TheHelpltem 13-4
Menu-ltem Styles 13-4
Menu-ltem Attributes 13-5
Menu-ltem Structure L 13-5
Menu ACCESS e e e 13-6
Mnemonics e e 13-7
Accelerators e 13-8
UsingMenus e e 13-8
Defining Menu Items in a Resource File 13-8
Including a Menu Bar in a Standard Window 13-10
Creatinga Pop-upMenu 13-11
Adding a Menu to a Dialog Window 13-11
Accessing the SystemMenuo oo 13-12
Responding to a User's Menu Choice 13-12
Setting and Querying Menu-ltem Attributes L. 13-13
Adding and Deleting Menutems 13-13
Creating a Custom Menu ltem 13-16
Related Functions 13-19
WinCheckMenultem 13-19
WinCreateMenu 13-20
WinEnableMenultem e e e e 13-21
WinlsMenultemChecked 13-22
WinlsMenultemEnabled 13-23
WinisMenultemValid 13-24
WinLoadMenu 13-25
WinPopupMenu 13-26
WinSetMenultemText 13-29
Related Messages 13-30
MM_DELETEITEM -~ e e 13-30
MM_ENDMENUMODE e e e e 13-31
MM_INSERTITEM e e 13-32
MM_ISITEMVALID e 13-33
MM_ITEMIDFROMPOSITION e e e 13-34
MM_ITEMPOSITIONFROMID e 13-35
MM_QUERYDEFAULTITEMID i 13-36
MM_QUERYITEM e e e 13-37

Contents XV

XVi

MM_QUERYITEMATTR o, ... 13-38

MM_QUERYITEMCOUNT e 13-39
MM_QUERYITEMRECT i 13-40
MM_QUERYITEMTEXT e ittt e 13-41
MM_QUERYITEMTEXTLENGTH 13-42
MM_QUERYSELITEMID et e 13-43
MM_REMOVEITEM e e e 13-44
MM_SELECTITEM .- e e 13-45
MM_SETDEFAULTITEMID i, 13-46
MM_SETITEM 13-47
MM_SETITEMATTR e e e e e e e e e 13-48
MM_SETITEMHANDLE e e e 13-49
MM_SETITEMTEXT e e e e e e e 13-50
MM_STARTMENUMODE e 13-51
WM_CONTEXTMENU e 13-52
WM_INITMENU e e 13-53
WM_MENUEND e 13-54
Related Data Structures e 13-55
MENUITEM e e 13-55
OWNERITEM e 13-56
Summary e e e e e e e e e e e 13-57
Chapter 14. Keyboard Accelerators 14-1
About Keyboard Accelerators L 14-1
Accelerator Tables 14-2
Accelerator-Table Resources 14-2
Accelerator-Table Handles 14-2
Accelerator-Table Data Structures L. 14-2
Accelerator-ltem Styles L 14-3
Using Keyboard Accelerators e 14-3
Creating an Accelerator-Table Resource 14-4
Including an Accelerator Table in a Frame Window 14-4
Modifying an Accelerator Table, 14-5
Related Functions 14-6
WinCopyAccelTable e 14-6
WinCreateAccelTable« . . . e 14-7
WinDestroyAccelTable 14-8
WinLoadAccelTable i e 149
WinQueryAccelTable 14-10
WinSetAccelTable P 14-11
WinTranslateAccel e 14-12
Related Messages o e 14-13
WM_QUERYACCELTABLE S 14-13
WM_SETACCELTABLE e 14-14
Related Data Structures e 14-15
ACCEL e e 14-15
ACCELTABLE e e 14-16

SUMMANY . . . o o e e e e e e e e e e e e e e e . 1447

PM Basic Programming Guide

Chapter 15. Dialog Windows 15-1

About Dialog Windows L 15-1
Modal and Modeless Dialog Windows 15-1
Dialog ltems 15-1
Dialog-ltem Groups 15-2
Message Boxes 15-3

Standard Message Boxes L oo 15-3
Enhanced Message Boxes L. 15-4
Minimizing Dialog Windows oo 15-5
Dialog Data Structures L 15-5
Dialog Resources 15-5

Using Message Boxes and Dialog Windows 15-6

Creating a Standard Message Box 15-6
Creating a System-Modal Standard Message Box 15-7
Creating an Enhanced Message Box 15-7

Using a DialogWindow o 15-9
Creating a Dialog Template 15-9
Creating a Modal Dialog Window 15-9
Creating a Modeless Dialog Window 15-11
Initializing a Dialog Window 15-11
Adding a Menu in a Dialog Window, 156-12
Creating a Dialog Procedure 15-13
Manipulating Dialog Items Lo o 15-14

Related Functions L 15-16
WinAlarm L 15-16
WinCreateDIg e 15-17
WinDismissDIg 15-18
WinDIgBox 1519
WinEnumDigltem 15-20
WinGetDIgMsg 15-21
WinLoadDIg 15-22
WinMapDIgPoints e 15-23
WinMessageBox L 15-24
WinMessageBox2 L 15-26
WinProcessDIg e 15-27
WinQueryDigltemShort 15-28
WinQueryDigltemText 15-29
WinQueryDigltemTextLengtho 15-30
WinSendDIgltemMsg 15-31
WinSetDigltemShort 15-32
WinSetWindowText 15-33
WinSubstituteStrings L Lo 15-34

Related Messages 15-35
WM_INITDLG e 15-35
WM_MSGBOXDISMISS e 15-36
WM_MSGBOXINIT T 15-37
WM_SUBSTITUTESTRING e 15-38

Related Data Structures L. 15-39

Contents XVii

DLGTEMPLATE e e e e 15-39

DLGTITEM . . e e e 15-40
MB2D e 15-42
MB2INFO e 15-43
Summary . .. L e 15-45
Chapter 16. Control Windows 16-1
" About Control Windows e 16-1
Using Control Windows i 16-3
Using Control Windows in a Dialog Window 16-3
Using Control Windows in a Non-Dialog Window 16-3
Creating a Custom ControlWindow 163
Related Messages e 16-5
WM_CONTROL e e e 16-5
WM_QUERYDLGCODE i 16-6
Summary e e e e e e 16-7
Chapter 17. Title-BarControls 17-1
About Title Bars e 17-1
Default Title-Bar Behavior 17-1
Using Title-Bar Controls o 17-2
Including a Title Bar in a Frame Window 17-2
Altering Dragging Action 17-3
Related Functions o 0. e ... 174
WinFlashWindow o e 17-4
Related Messages L e 17-5
TBM_QUERYHILITE e 17-5
TBM.SETHILITE o e 17-6
Related Data Structures 17-7
SWP . e e e e e e 17-7
TRACKINFO e 17-9
SUMMANY . . . o o e e e e e e e e e e e 17-11
Chapter 18. Scroll-BarControls 18-1
AboutScroll Bars 18-1
Scroll-Bar Creation 18-2
Scroll-Bar Styles e e 18-2
Scroli-Bar Range and Position 0. 18-2
Scroll-Bar Slider Size 18-3
Scroll-Bar Notification Messages L. 18-3
Scroll Bars and the Keyboard oL 18-6
UsingScrollBars e 18-7
Creating Scroll Bars e 18-7
Refrieving a Scroll-BarHandle 18-9

~ Using the Scroll-Bar Range and Position 18-9
Related Messages e e 18-11
SBM_QUERYPOS e 18-11

SBM_QUERYRANGE 18-12

xvill PM Basic Programming Guide

SBM_SETPOS . . o o ie et 18-13

SBM_SETSCROLLBAR e, 18-14
SBM_SETTHUMBSIZE e 18-15
WM _HSCROLL e 18-16
WM_VSCROLL e 18-17
Related Data Structures 18-18
SBCDATA e 18-18
Summary ... e e e 18-20
Chapter 19. ButtonControls 19-1
About Button Controls 19-1
Button Types e 19-1
PushButtons e e 19-1
RadioButtons 19-2
CheckBoxes 19-3
Three-State Check Boxes 19-3
Application-defined Buttons o oL 19-4
Button Styles 19-4
Default Button Behavior 19-6
Button Notification Messages 19-7
Button States L 19-8
CustomButtons e 19-8
Using Button Controls e 19-9
Using Buttons in a Dialog Window 19-9
Using Buttons ina Client Window 19-10
Creating Buttons with Icons and Icon/Text Combinations 19-11
Related Functions L 19-15
WinQueryWindowText e 19-15
Related Messages e e 19-16
BM_CLICK e 19-16
BM_QUERYCHECK 19-17
BM_QUERYCHECKINDEX ittt 19-18
BM_QUERYHILITE e 19-19
BM_SETCHECK e 19-20
BM_SETDEFAULT e 19-21
BM SETHILITE e 19-22°
WM_MATCHMNEMONIC e 19-23
Related Data Structures 19-24
BTNCDATA . . . e e e 19-24
USERBUTTON e e e e e e e 19-25
Summary ... e e 19-26
Chapter 20. Entry-FieldControls 20-1
About Entry Fields 20-1
Entry-Field Styles e e e e e e e e e e e e e 20-1.
Entry-Field Notification Codes 20-2
Default Entry-Field Behavioro o oo 20-3
Entry-Field Text Editing Lo 20-5

Contents XiX

Entry-Field Control Copy and Paste Operations 20-6

Entry-Field Text Retrieval 206
Using Entry-Field Controls e 20-7
Creating an Entry Field in a Dialog Window 20-7
Creating an Entry Fieldina Client Window 20-7
Changing the Default Size ofan Entry Field 20-8
Retrieving Text Froman Entry Field 20-9
Related Functions e 20-11
WinQueryWindowTexiLength e e e e 20-11
Related Messages e e 20-12
EM_CLEAR e 20-12
EM_COPY . . . e 20-13
EM_CUT e e 20-14
EM PASTE e S e e e e 20-15
EM_QUERYCHANGED e 20-16
EM_QUERYFIRSTCHAR et e 20-17
EM_QUERYREADONLY e 20-18
EM_QUERYSEL A 20-19
EM_SETFIRSTCHAR e 20-20
EM_SETINSERTMODE e 20-21
EM_SETREADONLY 20-22
EM SETSEL e e e e e 20-23
EM_SETTEXTLIMIT e 20-24
WM_CONTROL (in Entry Fields)v...... 20-25
Related Data Structureso 20-26
ENTRYFDATA e 20-26
SUMMATY e e e e e e 20-28
Chapter 21. List-BoxControls 211
About List BOXeS e e e e 21-1
Using List Boxes i i e 2141
Creating a List-Box Window, 21-2
"Using a List Box ina DialogWindow 21-3
Adding or Deletingan lteminalistBox 21-3
Responding to a User Selectionina ListBox 21-5
Handling Multiple Selections oo 21-5
Creating an Owner-Drawn Listltem 21-5
Default List-Box Behavior o 21-7
Related Functions 21-10
WinDeletelboxltem e T 21-10
WinEnableWindowUpdate 21-11
WininflateRect 21-12
WininsertLboxltem L L o 21-13
WinQueryLboxCount 21-14
WinQueryLboxltemText 21-15
WinQueryLboxltemTextLength 21-16
WinQueryLboxSelecteditemo 21-17
WinSetlLboxitemText e 21-18

XX PM Basic Programming Guide

Related Messages - L 21-19

LM_DELETEALL e 21-19
LM_DELETEITEM 21-20
LM_INSERTITEM e 21-21
LM_INSERTMULTITEMS e 21-22
LM_QUERYITEMCOUNT e 21-23
LM_QUERYITEMHANDLE e 21-24
LM_QUERYITEMTEXT e e 21-25
LM_QUERYITEMTEXTLENGTH 21-26
LM_QUERYSELECTION e 21-27
LM_QUERYTOPINDEX e 21-28
LM_SEARCHSTRING e 21-29
LM_SELECTITEM e e 21-31
LM_SETITEMHANDLE 21-32
LM_SETITEMHEIGHT 21-33
LM_SETITEMTEXT e e e e 21-34
LM_SETITEMWIDTH e 21-35
LM_SETTOPINDEX e e 21-36
WM_CONTROL (inListBoxes) 21-37
WM_DRAWITEM (in List Boxes) 21-38
WM_MEASUREITEM (in ListBoxes) 21-39
Related Data Structures 21-40
LBOXINFO e 21-40
OWNERITEM e e 21-41
Summary ..o 21-42
Chapter22. Clipboards 22-1
About the Clipboard 22-1
Shared Memory and the Clipboard 22-3
Clipboard Operations e 22-3
Cut and Copy Operations 22-3
Paste Operation, 22-4
Standard Clipboard-Data Formats 22-4
Private Clipboard-Data Formats 22-5
Format Identification Numbero oL, 22-5
Display Formats 22-5
Delayed Rendering 22-6
Clipboard Viewer 22-6
Clipboard Owner e 22-7
Using the Clipboard 22-9
Putting Data on the Clipboard 22-9
Retrieving Data from the Clipboard 22-10
Viewing Data on the Clipboard 22-10
Related Functions 22-12
WinCloseClipbrd e e 22-12
WiIinEmptyClipbrd 22-13
WiIinEnumClipbrdFmts 22-14
WinOpenClipbrd 22-15

Contents = XXi

WinQueryClipbrdData 22-16

WinQueryClipbrdFmtinfo L. P 22.17
WinQueryClipbrdOwner 22-18
WinQueryClipbrdViewer e 22-19
WinSetClipbrdData 22-20
WinSetClipbrdOwner e 22-21
WinSetClipbrdViewer 22-22
Related Messages 22-23
WM_DESTROYCLIPBOARD e 22-23
WM_DRAWCLIPBOARD e 22-24
WM_HSCROLLCLIPBOARD e 22-25
WM_PAINTCLIPBOARD e 22-27
WM_RENDERALLFMTS e e e 22-28
WM_RENDERFMT e .. 2229
WM_SIZECLIPBOARD e 22-30
WM_VSCROLLCLIPBOARD i 22-31
SUMMANY o e e e e e e e 22-33
Chapter 23. Window Timers 23-1
About Window Timers L e 23-1
Using Window Timers 23-2
Related Functions L 23-5
WinGetCurrentTime e 23-5
WinStartTimer P 23-6
WinStopTimer e e 23-7
Related Messages 23-8
WM _TIMER e e e 23-8
Summary L. S 23-9
Chapter 24. Initialization Files 24-1
About Initialization Files 241
Using Initialization Files e 241
Creating, Opening, and Closing Initialization Files 24-2.
Reading and Writing Settings o oo 24-2
Identifying the OS/2 Initialization Files 24-3
Related Functions Lo 24-4
PrfCloseProfile e 24-4
PrfOpenProfile 24-5
PrfQueryProfile 24-6
PrfQueryProfileData e 24-7
PrfQueryProfilelnt 24-8
PrfQueryProfileSize 24-9
PrfQueryProfileString 24-10
PfReset e e 24-11
PrfWriteProfileDatao L. 24412

- PriWriteProfileString L . o e 24-13
Related Data Structures 24-14
PRFPROFILE, e e e e 24-14

xxii PM Basic Programming Guide

Appendix A. Notices A-1
Trademarks A-1
Double-Byte Character Set (DBCS) i A-1
Glossary e e X-1
Glossary Listing e X-1
Index e X-29

Contents XXiii

XxiV PM Basic Programming Guide

Figures

1-1.
1-2.
1-3.
1-4.
2-1.
2-2.
2-3.
2-4,
2-5.
2-6.
27.
2-8.
29,

2-10.

2-11.

2-12.

2-13.

2-14.

2-15.

2-16.

2-17.

2-18.

2-19.

2-20.

2-21.

2-22.

2-23.
3-1.
3-2.
6-1.
6-2.
6-3.
6-4.
6-5.
6-6.
6-7.
7-1.
7-2.
7-3.
7-4.
7-5.
8-1.

10-1.

10-2.

11-1.

WindowsontheScreen L.
Window Hierarchyo
Standard Window
Message-Processing System Lo oL
Desktop Window Containing Windows of Several Applications
Typical Window Relationships
Window Hierarchy
Main Window with Secondary Windows
User lnputtoaWindow
Window Sizing and Positioning
Visible Region for Window A
Structure of a Simple Presentation Manager Application
Creating an Object Window
Getting the Window Identifier
Changing the Parent Window
Finding the Parent Window,
Finding the Topmost Child Window
Setting the Owner Window
Getting a Handle to an Owner or Child Window
Enumerating Top-Level Windows
MovingaWindow
Moving and Sizing a Window0 oL
Changing the Size ofaWindow
Changing the Z-order of a Window
Exchanging the Z-order of Windows
Maximizing a Frame Window oL,
DestroyingaWindow oo
Input Message Processingloop
Creating a Message Queue and Message Loop
Typical Frame Window and Its Components
Defining Resources for Header File
Defining Resources for Resource (RC) File
Using FCF Flags to Indicate What Resourcestoload
Indicating that a Resource is Stored in the Application File
Sample Program for Loading Resources in a Frame Window
Using WinCreateWindow to Create Frame, Control, and Client Windows
Application’s Flow of Graphics Commands
Clip Region and Visible Region of a Window’s Presentation Space
Presentation Space versus Window
Normal Presentation Space [
Micro Presentation Space
Typesof Rectangles o
Bit Values inthe AND and XORMasks
Mouse Pointers
Response to a WM_SETFOCUS message

© Copyright IBM Corp. 1994

13-1.
13-2.
13-3.
13-4.
13-5.
13-6.
13-7.
13-8.
13-9.
14-1.
15-1.
15-2.
15-3.
17-1.
18-1.
18-2.
19-1.
19-2.
19-3.
19-4.
19-5.
19-6.
19-7.
19-8.
20-1.
20-2.
20-3.
20-4.
20-5.
21-1.
201,
22-2,
22-3.

Menus 13-1

Pop-UpMenu e 13-2
Examples of Mnemonics L L oo 13-7
Resource Compiler Code Defining a Menu Resource 13-9
Defining a Menu with the MIS_BITMAP Style 13-10
Changing a Menu Item to Toggle Between Checked and Unchecked . . . 13-13
Insertinga Menu ltem Lo 13-14
Removing a Submenu from the MenuBar 13-15
Responding to WM_DRAWITEM Message 13-18
Accelerators L e 14-1
Dialog Window with Control Windows 15-2
Example of a Standard Message Box 15-4
Example of an Enhanced Message Box 15-4
Title Bar in a Standard Frame Window 17-1
Scroll BarsinaWindow, 18-1
Standard Window Scroll Bar and Command Codes 18-4
Push Button with Textina DialogBox oo 192
Push Button with lconand Text 19-2
Push Button with Text and CustomIcon 19-2
Radio Buttons ina Dialog Box 19-3
Check BoxesinaDialogBox 19-3
Defining Dialog-Window Buttons in a Dialog Template 19-9
Creating a Button Control for a Client Window 19-10
Creating a Customized Button with Text 19-11
Example of Entry Fields 2041
Code for Creating an Entry Field in a Client Window 20-8
Code for Creating Entry Field with 12-Character Text Limit 20-9
Code for Creating Entry Field with 20-Character Text Limit 20-9
Code for Flagging a Text Change inan Entry Field 20-10
List Box ina DialogBox 2141
A Copy Operation Between Applications Using.the Clipboard 22-2
A Paste Operation Between Applications Using the Clipboard 22-2
Responding to WM_DRAWCLIPBOARD Message 22-11

XXVi PM Basic Programming Guide

Tables

2-1,
2-2.
2-3.
2-4.
25,
2-6.
2.7.
3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
4-1.
4-2.
4-3,
4-4.
5-1.
5-2,
5-3.
6-1.
6-2.
6-3.
6-4.
6-5.
6-6.
6-7.
7-1.
7-2.
7-3.
7-4.
8-1.
8-2.
9-1.
9-2.
9-3.
9-4.
9-5.

10-1.

10-2.

10-3.

10-4.

10-5.

11-1.

Window Classes
Standard Window Styles o L
System Commands e
Presentation Manager-Defined Resource Types
Window Functions Lo
Window Messages
Window Data Structures L
Message Categories
Message Priorities Lo
Commonly Used Message and Message Queue Functions
Seldom-Used Message and Message Queue Functions
Almost-Never Used Message and Message Queue Functions
Related Messages
Message and Message Queue Structures
Class Styleso
Public Window Classes
Window Class Functions
Window Class Structure
Window Procedure Arguments
Window Procedure Functions
Default Window Procedure Messages
Frame-Control Identifiers e e e
Frame Window Flags and Styles Requiring Resources
Frame Window State Flags and Their Meanings
Default Frame-Window Messages and Behavior
Frame-Window Functions
Frame-Window Messages e
Frame-Window Structures
Window Regions L
Presentation Space, Device Context, and Window Region Functions

Presentation Space, Device Context, and Window Region Messages

Presentation Space, Device Context, and Window Region Structures

Window-Drawing Functions
Window-Drawing Structures L.
Keyboard Character Flags
Mouse/Keyboard Functions
Focus-Change and Activation Messages P
Mouse Messages
Keyboard Messages
Predefined Mouse Pointers
Presentation Manager Mouse Pointers
Standard System BitMaps oL
Pointer and Bit Map Functions R
Pointer Structureo oL [P
Cursor Functions

© Copyright IBM Corp. 1994

xXxviii

11-2.
12-1,
12-2,
13-1.
13-2.
13-3.
13-4,
13-5.
14-1,
14-2.
14-3,
14-4.
15-1.
15-2.
15-3.
15-4.
16-1.
16-2.
16-3.
17-1.
17-2.
17-3.
17-4.
18-1.
18-2.
18-3.
18-4.
18-5.
18-6.
18-7.
18-8.
19-1.
19-2.
19-3.
19-4,
19-5.
19-6.
19-7.
20-1.
20-2.
20-3.
20-4.
20-5.
20-6.
20-7.
211,
21-2,
213

Cursor Structure e e 11-9

Resource File Statements oL, 12-38
Directives e 12-41
Keystroke Menu Access e e 13-6
Menu Functions 13-57
Messages ReceivedbyaMenu P 13-57
Messages Generated by aMenu 13-58
Menu Structures 13-59
Accelerator-ltem Styleso Lo 14-3
Accelerator-Table Functions 14-17
Accelerator-Table Messages 14-17
Accelerator-Table Structures oL 14-17
MB2INFO Button Style Flags, 15-5
Dialog Functions 15-45
DialogMessages 15-46
Dialog Structures 15-46
Control Window Classes 16-1
Messages Received by a Control Window 16-7
Messages Generated by a Control Window 16-7
Messages Processed by Title-Bar Control 17-2
Title-Bar Functions 17-11
Title-Bar Messages 17-11
Title-Bar Structures 17-12
Scroll-Bar Styles 18-2
Scroll-Bar Command Codes 18-5
Scroll-bar Notification Messages 18-6
Focus Window Message ResponsestoKeys 18-6
List Box ResponsestoKeys 18-7
Messages Received bya ScrollBar 18-20
Messages Generated by a ScrollBar, 18-20
Scroll-Bar Structure oL 18-20
Button Styles 19-4
Messages Processed by the WC BUTTONClass 19-6
Notification Code for Button Control Messages 19-8
Button-Control Functions 19-26
Messages Received by a Button Control 19-26
Messages Generated by a Button Control 19-27
Button-Control Structures o 19-27
Entry-Field Styles 20-2
Notification of Entry-Field Events 20-3
Messages Handled by WC_ENTRYFIELD Class 20-3
Entry-Field Functions o 20-28
Messages Received by an Entry Field 20-28
Message Generated by an Entry Field ~ 20-29
Entry-Field Structure L. e e 20-29
List ltem Position Index L 214
Messages Handled by WC_LISTBOXClass 21-7
List-Box Functions e 21-42

PM Basic Programming Guide

21-4.
21-5.
21-6.
22-1.
22-2.
22-3.
22-4,
22-5.
23-1.
23-2.
23-3.
24-1,
24-2,

Messages Generated by aListBox 21-42

Messages Received by aListBox 21-43
List-Box Data Structures e 21-43
Operations on ClipboardData 221
Clipboard Data Formats e 22-4
Messages Handled by Clipboard Owner 22-7
Clipboard Functions 22-33
Clippboard Messages 22-33
SystemTimers 23-2
Window Timer Functions, 23-9
Window TimerMessage 239
Initialization File Functions 24-15
Initialization File Structures o oL 24-15

Tables XXiX

XXX PM Basic Programming Guide

About This Book

This book provides information and code examples to enable you to start writing source
code, using the functions in the Presentation Manager application programming interface
(API) of the OS/2 operating system.

Who Should Read This Book

The Presentation Manager Programming Guide - The Basics is intended for application
programmers who want to create programs using the windowed, message-based
Presentation Manager user interface. The basic concepts and features of this interface are
discussed in this guide, including: windows, messages, controls, input/output, and system
features such as the clipboard and timers. Details of messages, programming functions, and
data structures used in application development are also included.

How This Book Is Organized

All chapters of this book, except the Introduction and Resource Files chapter, are divided into
five main sections: ’

e About the topic
Covers basic concepts, terminology, and general information about the topic.
¢ Using the topic

Introduces many of the functions and structures related to the topic and provides
examples in the form of code fragments.

¢ Functions
Provides more details of the functions relevant to the topics in the chapter.
* Messages
Provides details of the messages related to the topics discussed in the chapter.
e Data Structures
Provides details of data structures related to the chapter topics.
e Summary k
Provides brief descriptions of the functions, messages, and data structures mentioned in

the chapter.

To illustrate use of the functions and messages, this guide makes extensive use of code
fragments. Sample applications also are available with the Developer’s Toolkit for OS/2
Version 3 (Toolkit). You may find it useful to execute the samples and examine the C files,
resource files, makefiles, and other files provided by the Toolkit.

For information on how to compile and link your programs, refer to the compiler publications
for the programming language you are using.

© Copyright IBM Corp. 1994 _ XXXi

Prerequisite Publications

This guide is intended for application designers and programmers who are familiar with the
following:

¢ Information contained in the Control Program Programming Guide
* Information contained in the Presentation Manager Programming Reference materials

¢ C Programming Language

Programming experience on a multitasking operating system would also be helpful.

Related Publications
The following diagram provides an overview of the OS/2 Technical Library.

Books can be ordered by calling toll free 1-800-342-6672 weekdays between 8:00 a.m. and
8:00 p.m. (EST). In Canada, call 1-800-465-4234.

XXXil PM Basic Programming Guide

0S/2 Warp, Version 3 Technical Library

G25H-7116

Control Program
Programming
Guide

G25H-7101

‘ Control Program
‘ Programming
Reference

G25H-7102

| Graphics
Programming
Interface
Programming
Guide
G25H-7106

" Graphics
Programming
Interface
Programming
Reference
G25H-7107

ictaanl

Information
Presentation
Facility
Programming
Guide
G25H-7110

Multimedia

Application

Programming
. Guide

G25H-7112

Multimedia
Programming
- Reference

G25H-7114

Multimedia
Subsystem
Programming
Guide

G25H-7113

Presentation
Manager
7 Programming
| Guide -
Advanced Topics|
G25H-7104

| Presentation
Manager

Programming

~ Guide -

- The Basics

| G25H-7103

Presentation
' Manager

Programming
| Reference

: G25H-7105

 REXX
Reference

| $10G-6268

$10G-6269

IBM Device Driver

| Tools
| Reference

. G25H-7111

: Workplace

. Shell

. Programming
. Guide

G25H-7108

Publications for 08/2

. Workplace

| Shell

. Programming
Reference

. G25H-7109

Display
i Device Driver
Reference

71G1896

. Input/Output
. Device Driver
. Reference

© 71G1898

MMPM/2
: Device Driver
. Reference

71G3678

Pen for 0S/2
Device Driver
Reference

71G1899

~ Presentation
Driver
Reference

10G6267

Printer
Device Driver
Reference

. 71G1895

Storage
Device Driver
Reference

71G1897

Virtual
~ Device Driver
Reference

10G6310

: Physical
: Device Driver
. Reference

10G6266

About This Book

XXXiV PM Basic Programming Guide

Presentation Manager Programming Guide - The Basics

© Copyright IBM Corp. 1994

PM Basic Programming Guide

Chapter 1. Introduction to Presentation Manager
Programming

This chapter introduces the fundamental concepts and features of Presentation Manager*
(PM*) and summarizes topics covered in this guide.

Presentation Manager Fundamentals

Presentation Manager (PM) provides a message-based, event-driven, graphical user
interface (GUI) for the Operating System/2 * (0S/2*) environment. Some of the major
features of PM are:

The window environment

The user interface

Input management

Application resource management
Data exchange

The Information Presentation Facility
Presentation drivers

PM enables programmers to build applications that conform to Systems Application
Architecture * (SAA *) guidelines. For more information on SAA requirements, see the
Systems Application Architecture: Common User Access Guide to User Interface Design
and the Systems Application Architecture: Common User Access Advanced Interface Design
Reference. '

The Window Environment
The PM user interface is based on windows, an area of the screen through which interaction
is presented to the user. A large number of application programming interface (API)
functions (which begin with the prefix Win) are available for controlling windows. These
functions enable an application to create, size, move, and control windows and their
contents. This guide describes common programming techniques for managing the window
environment.

Defining Window Relationships

A window is an area of the screen where an application displays output and receives input
from the user. A screen can have more than one window. The common analogy is that
multiple windows on the screen are like many pieces of paper on a Desktop. In the analogy,
the Desktop is the area that comprises the background of the screen. Windows, like papers,
can be arranged to lie on top of one another and to overlap. If they overlap, the bottom
papers can be either partially or completely hidden. Windows can be defined in the window
hierarchy using the API.

Figure 1-1 on page 1-2 illustrates the window hierarchy as it appears on the screen.

© Copyright IBM Corp. 1994 1-1

Main Window 3

Main Window 2 ,

Main Window 1

Chil
g{" Child Window 1a

Child Window 1b

Figure 1-1. Windows on the Screen

The Desktop window is at the top of the hierarchy. Below the Desktop window are the
top-level windows, called main windows. Main windows can overlap one another and, at
times, a main window can be completely hidden. Operations on one main window do not
affect those on other main windows. Figure 1-2 illustrates the hierarchical arrangement of
windows created by the application.

Child 1A

Child 1B §

Child 2A |

Figure 1-2. Window Hierarchy

1-2 PM Basic Programming Guide

Main windows can create subordinate windows in a parent-child order of descendancy. A
child window is always clipped to its parent window, meaning that only the part of a child
window that lies within the parent window is visible.

Windows that share the same parent are called sibling windows. Like main windows, sibling
windows can overlap one another. Every sibling window has a z-order position that specifies
where it lies in the stack of overlapping windows.

The application can define another relationship in addition to the hierarchical one. When a
window is created, an owner window can be defined. The two windows must be created by
the same thread. The owner relationship varies at different levels of the hierarchy. A child
window can send messages to its owner window. If one main window owns other main
windows and the owner window is hidden, minimized, or closed, all the owned main windows
also are hidden, minimized, or closed.

A window can be visible, hidden, or partly hidden on the screen. When a window is hidden
or partly hidden, its size, position, and hierarchical and owner relationships remain the same.
However, when the window becomes visible again, any area of the window that was
previously hidden is redrawn. A window can also be disabled, meaning that it is still visible
but unable to respond to mouse input. ’

Creating and Classifying Windows

A window and its associated window procedure are considered to be a program object. A
window procedure “represents” a window in the sense that the window procedure controls all
aspects of the window, such as what it looks like, how it responds to changes, and how it
processes input.

A window class is a set of windows that has the same window procedure to implement them.
Many windows can belong to a window class. The windows can differ from one another only
in the data they process. If multiple applications have need for the same type of window,
implementing common window classes is an efficient way of using system resources.

The 0OS/2 operating system provides many preregistered window classes. The windows
specified in these classes are designed specifically to meet the needs for a graphics-based
standard user interface. If a preregistered window class is not provided, the application must
register the class at the process level. Several API functions are available for applications to
reserve a small area of memory (the window words area) for windows in classes registered
by the application. If a window is expected to handle large amounts of data, the data should
be held in memory and referred from the window words area.

A window class can be defined as private or public. Windows created in either class can be
used by any process in the system. “Public” and “private” refer only to the window class at
the time the window is created.

Only the process with which a private class is registered can create a window for that class.

The class name must be unique to the process. However, other processes can register
private classes with the same class name.

Chapter 1. Introduction to Presentation Manager Programming 1-3

Any process can create a window in a public class. Window procedures for windows in
public classes must be available to all processes. Thus, such classes should be defined in
dynamic link libraries (DLLs). Public-class names must be unique for each process.

All windows have certain atiributes. Each window is identified by a window handle. Each
window represents a rectangle describing the size and position of the window on the screen.
The size of a window is defined in picture elements (pels) relative to the origin of the parent
window. The origin of a window, the lower-left corner, is the 0,0 coordinate in a set of x and
y axes. The x and y coordinates define the top, bottom, and sides of the window. The
coordinates range from -32768 to +32767 pels in each direction, so the maximum size that
can be specified in any direction is 65,535 pels. The application also can position g window
by defining its relative distance from the point of origin (0,0) of its parent window. If the
application positions a child window outside its parent window, which is permissible, only the
part of the child window within the parent window will be visible on the screen.

Using a set of API functions, the application can modify the behavior of a window in a
window class, or create a new class from an existing one. This process, calied sub-classing,
enables the application to modify the behavior of a single window without rewriting its
complete window procedure.

Providing the User Interface

1-4

The Common User Access* (CUAY) is a set of guidelines for designing and writing the
application’s user interface. The guidelines cover standard menu-bar items, interaction
techniques, and window types. Use the CUA guidelines when deciding how to design the
user interface for your application’s user interface.

'Many PM services, if allowed to default, help to enable a consistent user interface among

applications designed and written according to the CUA guidelines. Consistency also is
enabled by the selection of appropriate options. Ensuring consistency is the responsibility of
the application developer.

Standard and Control Windows

‘Information is displayed on the screen through the use of windows. PM supports a standard

window, whose elements generally conform to CUA guidelines.

The standard window, which the application controls using the API functions, can have all or
some of the following elements:

« Title-bar icon

¢ Window borders

¢ Window sizing buttons
* Menu bar

e Scroll bars

* Window title

e Information area

Figure 1-3 on page 1-5 illustrates a standard window and its elements.

PM Basic Programming Guide

Title-Bar Window title Window sizing buttons

icon
| itle-Bar

Menu bar

i Vertical
\:b'ihngow_ . scrall

order bar
Information

area

I
Horizontal scroll bar

Figure 1-3. Standard Window

The title-bar icon, window border, and window sizing buttons enable a user to change the
size and position of a window. The menu bar and scroll bars enable a user to work with the
window’s contents. The window title indicates the name of the object seen in the window,
and it also indicates which kind of view is displayed. A view is a way of looking at an
object’s information. Different views display information in different forms, which mimics the
way information is presented in the real world. The information area displays brief messages
to a user about the object or choice that the cursor is on. Information about the normal
completion of a process can also appear in the information area. For example, if a user
copies several objects from one container to another, the information area in a container’s
window might display a brief message to tell the user when the copying has been completed.

The standard window is created using a standard frame window. The elements of the
standard window, such as the title bar and the menu bar, are child windows of the standard
frame window. The child windows are called control windows. The system maintains a set
of preregistered control windows that any application can use to perform 1/O.

From the application’s perspective, control windows are no different from other windows in
the system, and the application can manage them using window-management functions.
Each control window has its own window identifier and a specific set of messages. The
application can query the system to determine the control window’s parent. Control windows
can be used as a part of a dialog window. A dialog window can be created using a dialog
template, which defines the position, appearance, and identifier of the dialog window and
each of its child windows. A template can be loaded as a resource or created dynamically in
memory. It can be used to create dialog windows of all window classes. The window

Chapter 1. Introduction to Presentation Manager Programming 1-5

classes can contain control windows of all window classes. Also, the application can create
its own dialog controls by creating and preregistering its own control-window class.

A dialog window is controlled by a window procedure called a dialog procedure. The dialog
procedure is responsible for responding to all messages sent to the dialog window, either by
sending them to the control windows or returning them to the default dialog procedure. A set
of API functions enables the application to create, load, process, and cancel dialog windows.
The dialog procedure can obtain the handle of its child windows, send messages to them,
and process messages and text strings itself.

The standard frame window and the control windows are implemented with standard
preregistered window classes. The standard frame window manages the control windows
and the client window as the user interacts with them. The frame window also is responsible
for routing messages to the appropriate control and client windows.

Primary and Secondary Windows

CUA guidelines define two types of windows: primary and secondary. In a PM program, a
primary window is a standard window, while a secondary window is a control window or the
child of the main window.

A primary window is the main interface point between an object and the user. It appears
when a user opens an object, and is used to present a view of an object or group of objects
when the information displayed about the object or group of objects is not dependent on
other objects.

Object information is presented in the area of the window below the menu bar. A user can
control the size and position of primary windows on the screen.

A secondary window looks very much like a primary window. For example, both have
window borders and title bars. The important distinction between a primary window and a
secondary window is based on how they are used. A secondary window is always
associated with a primary window and contains information that is dependent on an object in
the primary window. A secondary window is used, for example, to allow a user to further
clarify action requests. A secondary window is always removed when the primary window is
closed or minimized and redisplayed when the primary window is opened or restored.

Dialog Box

A dialog box extends a dialog between a user and a primary or secondary window. It usually
appears when the user selects a choice from the menu bar, thereby generating a pull-down
~menu. Selecting one of the choices in the pull-down menu generates the dialog box. The
dialog box can contain buttons, entry fields, icons and text, list boxes, and title bars. A
dialog box and its supporting window enable the application to gather input from the user. A
temporary dialog window usually is created for special-purpose input and is then canceled.

There are two types of dialog boxes: modal and modeless. A modal dialog box retains

control until the application issues a call to cancel it. Users cannot activate other windows
belonging to the application until they finish interacting with the modal dialog box. A

1-6 PM Basic Programming Guide

modeless dialog box enables windows in other applications to be activated after it has been
created.

Handling Mouse and Keyboard Input
The session manager in the operating system manages applications running in the PM
environment, including their input and output operations. However, PM handles PM
applications, including their input and output operations. PM handles all input as messages,
which are packets of data.

PM supports user input from the keyboard and mouse pointer. The mouse pointer is the
symbol associated with the mouse pointing device. Mouse input is provided by pressing a
button and usually is directed at the window under the mouse pointer. The precise position
on the screen that is activated is called the hot spot. The mouse pointer also can be moved
across the screen, and the operating system provides support for that activity. The
application can direct all mouse input to a single window called a mouse capture window. A
mouse capture window enables the application to track all input from the mouse pointer no
matter where the mouse pointer is moved on the screen.

Keyboard input is sent when any key on the keyboard is pressed. All keyboard input is
directed to one window at a time. The window receiving keyboard input is called the active
window. A main window, or one of its child windows, is responsible for keeping the window
receiving the input visible on the screen.

The cursor is a symbol displayed within a window that indicates where characters entered
from the keyboard will be placed. The cursor can be moved to any location within a window.
Its size and position are defined in coordinates relative to the window in which the cursor is
located. The application can create, display, move, and cancel the system cursor.

Processing Messages

The Common Programming Interface (CPI) defines an application structure that uses a
system of queues and application window procedures to process messages. The PM
message system conforms to the CPI and is fundamental to the smooth operation of the PM
environment. A complete set of CPi reference manuals is provided in the SAA Library.

Chapter 1. Introduction to Presentation Manager Programming 1-7

Figure 1-4 illustrates the PM message-processing system.

Posting System
Mouse the Queue
Message

Message 6

v

A

Message 5

Keyboard
Message 4 |

Message 3 |

Message 2 |

Message 1 [

Application
Queue

Application
Message Loop

Message 4

Message 3

Getting
the
Message

Message 2

Message 1 &

Sending
the ’

Application Message Y Dispatching
Window the
Procedure) > Message

Returning

. the

Message

Figure 1-4. Message-Processing System

In the PM environment, each input from the mouse or keyboard is delivered to an application
as a message. A message cannot be processed before previous input, because the specific
application and window for which input is intended are not known until all preceding input has
been processed.

All input is first placed in a single queue called the system queue. The system queue, which
is shared by all applications in the system, receives messages generated by the user from
the mouse and keyboard. The system queue can hold the input from approximately 60 key
presses and mouse clicks. The system queue can receive input from many sources,
including the system itself, the timer, and other applications. However, only user input is
processed synchronously.

The system queue temporarily stores user input so that nothing is lost if the user enters data
faster than the application can process it. Generally, input is processed in the order in which

1-8 PM Basic Programming Guide

it appears in the queue, but the application can change the order by filtering the input.
Filtering is performed with functions, but should be performed with discretion, because the
processing of one input often changes the context for the next.

Each thread that receives input has an application queue allocated by an API function. This
queue does not receive user input directly, but can receive other messages directly, such as
messages from the system or timer. Messages are removed from the application queue
when the thread for which it is destined “gets” it. The messages are prioritized if more than
one is waiting. If there are none, the thread is suspended until a message arrives.

The most efficient use of the system will be achieved if you structure your application so that
one thread remains responsive to user input while others continue processing work. To be
considered responsive to the user, the system must complete processing input within 0.5
seconds. That is, the thread handling input should check for the next message in the queue
within that time.

A window procedure can control more than one window. The procedure receives messages
in the form of four input parameters. The first parameter specifies the handle of the window
for which the message is intended. The second parameter indicates the type of message.
The last two parameters contain message parameters. Their interpretation depends on the
particular message.

The window procedure processes the message and then sends a return value to the sending
code. A window procedure must respond to all messages sent to it, even if the response is
to send the message back to the system’s default window procedure.

There are many types of messages, each with a unique identifier, and applications can
define their own message types using a range of identifier values.

Handling Application Resources
An application resource is held in a resource file, a file with information that helps to define a
window. The resource file defines the names and attributes of the application resources that
must be added to the application’s executable file. The resources are as follows:

Accelerator table Used to define which key strokes are treated as accelerators and
the commands into which they are translated. An accelerator is a
single key stroke that invokes an application-defined function.

Bit map A representation in memory of the data displayed on an
all-points-addressable (APA) device, usually the screen.

Dialog and window templates
The definitions of a dialog box or window containing details of its
position, appearance, window identifier, and the identifiers of its
child windows.

Dialog include A definition of a dialog box in a header file.
Fonts A typeface definition for character sets, marker sets, and pattern
sets.

Chapter 1. Introduction to Presentation Manager Programming 19

Icon A graphical representation of an object, consisting of an image,
image background, and a label.

Menu A list of choices that can be applied to an object. A menu can
contain choices that are not available for selection in certain
contexts. Those choices are indicated by reduced contrast.

Pointer The symbol displayed on the screen that can be moved by a
pointing device. The pointer is defined in a bit map.

String table A null-terminated ASCH string. A string table is loaded when it is
needed by the executable file.

For guidance in building the resource file using the Resource Compiler (RC) utility in the
Developer’s Toolkit for 0S/2 Version 3, see the online Tools Reference. The RC processes
the resource text file to produce a binary file, and then attaches it to the application’s
executable file so that an application can access its resources.

Resource Editors

The Dialog Box Editor in the Developer’s Toolkit for OS/2 Version 3 enables you to design
dialog boxes interactively on the screen and save the definitions in a resource file. The
definition of the dialog box is included with other resource definitions in the application’s
resource file.

The Font Editor in the Toolkit enables you to edit font files interactively on the screen, save
the definitions in a font file, and include the font file names in the application’s resource file.
The font file consists of a header file and a collection of character bit maps representing the
individual letters, digits, and punctuation characters that display text on a screen.

The Icon Editor in the Toolkit enables you to create customized icons, pointers, and bit maps
interactively on the screen and save the definitions in a resource file. You can work on a
large-scale version of the icon or pointer while displaying a replica of the actual size.

Exchanging Data Among Applications

1-10

User-Generated Data Exchange

Data exchange requested by a user is held in an object called a clipboard. The user can
transfer data from one application to another using the COPY, CUT, and PASTE commands.
The first step is to copy or cut (delete) selected data from the source application; the data is
now in the clipboard. Next, paste (insert) the clipboard data into the target application. The
same process can be used to move data from one window to another within a single
application. The CUT, COPY, and PASTE commands must be supported by an application
as defined in CUA guidelines. They are implemented using a set of PM API functions.

The clipboard is the object that temporarily holds data. Generally, data is placed in the
clipboard when a request to paste it is received. Once data has been sent to the clipboard,
it should not be changed. Only one item of data at a time can be in the clipboard, but the
data can be in a variety of formats, such as text, metafile, or bit map. The application can
either define the formats or Use one of the preregistered standard formats. The application

PM Basic Programming Guide

also can register formats, as it can window classes, so they can be used by all applications
in the system.

The application should support as many formats as possible to satisfy requests from target
applications. For example, a spreadsheet application should support a spreadsheet format
and as many common text formats as possible. Generating data in all formats supported by
an application can consume a lot of the operating system’s resources. It would not make
sense, for example, for a word-processing application to support a spreadsheet format
because that format is beyond the scope of the operation of a word processor.

A clipboard can be owned by a thread. If a thread opens the clipboard, it has exclusive
access to the clipboard until the thread closes the clipboard.

The clipboard is owned by the last window that requested ownership. Only the owning
application can change the owner of the clipboard. If an owning window is canceled, data
can remain in the clipboard. Before being canceled, the owning window must generate its
data to satisfy subsequent paste requests.

Topics Covered in This Guide .
The following section gives a brief overview of the topics included in each chapter.

Windows
The PM user interface is based on windows. This chapter describes window types and
relationships and defines programming techniques for managing the window environment. '
Creating, sizing, moving, and controlling windows and their contents is discussed, with
programming examples provided.

Messages and Message Queues
The OS/2 operating system uses messages and message queues to communicate with
applications and the windows belonging to those applications. This chapter describes types
of messages, message queues, and message handling in Presentation Manager
applications.

Window Classes
A window class determines which styles and which window procedure are given to a window
when it is created. This chapter explains types of window classes, class registration, and
how an application creates and uses window classes.

Window Procedures
Windows have an associated window procedure—a function that processes all messages
sent or posted to a window. Every aspect of a window’s appearance and behavior depends
on the window procedure’s response to the messages. This chapter discusses types of
window procedures and how they are customized and used in Presentation Manager
applications.

Chapter 1. Introduction to Presentation Manager Programming 1-11

Frame Windows

The standard window is created using a frame window. A frame window is the basic window
used by most Presentation Manager applications to enable the user to perform manipulation
functions. This chapter describes creation and use of frame windows in Presentation
Manager applications.

Painting and Drawing

An application typically maintains an internal representation of the data that it is manipulating.
The information displayed in a screen, window, or printed copy is a visual representation of
some portion of that data. This chapter introduces the concepts and strategies necessary to
make your PM application function smoothly and cooperatively in the OS/2 display
environment. This chapter describes presentation spaces, device contexts, window styles,
and window regions, explaining how a Presentation Manager application uses them for
painting and drawing in windows.

Drawing in Windows

This chapter describes the Presentation Manager functions for drawing in windows. These
drawing functions are somewhat easier to use than the special purpose graphics functions
(the Gpi* functions), but they offer a less complete graphics-drawing interface.

Mouse and Keyboard Input

PM supports user input from the keyboard and pointing devices. This chapter discusses
keyboard focus and messages, mouse messages, window activation, and handling of input
messages in Presentation Manager applications.

Mouse Pointers and Icons

A mouse pointer is a special bit map the operating system uses to show a user the current
location of the mouse on the screen. When the user moves the mouse, the mouse pointer
moves on the screen. This chapter describes how to create and use mouse pointers and
icons in Presentation Manager applications.

Cursors

The cursor is a symbol displayed within a window that indicates where characters entered
from the keyboard will be placed. This chapter discusses creating, destroying, positioning,
and sizing cursors.

Resource Files

1-12

These files are used to specify resource information and allow modification of resources
without recompiling the entire application. Examples of resources that can be specified are
menus, fonts, strings, and icons. This chapter describes resource file statements and
directives, and how files are created and compiled.

PM Basic Programming Guide

Menus
A menu is a window that contains a list of items— text strings, bit maps, or images drawn by
the application—that enables the user, by mouse or keyboard, to choose from these
predetermined choices. This chapter describes types of menus, menu items, menu access,
and how to use menus in Presentation Manager applications.’

Keyboard Accelerators
A keyboard accelerator (shortcut key) is a keystroke that generates a command message for
an application. This chapter discusses accelerator tables, resources, styles, data structures,
and usage in applications.

Dialog Windows
A dialog window is a temporary window that contains one or more control windows and,
typically, is used to display messages to and gather input from the user. This chapter
describes types of dialog windows and message boxes, and how they are created and used
in Presentation Manager applications.

Control Windows
A control window is a window that an application uses in conjunction with another window to
carry out simple input and output tasks. This chapter discusses use of control windows in
various types of windows, and how to create customized control windows.

Title Bars

The title bar in a standard frame window performs the following functions:

* Displays the title of the window across the top of the frame window.

e Changes its highlighted appearance to show whether the frame window is active.
¢ Responds to the actions of the user.

» Flashes to get the attention of the user.

This chapter describes default title-bar behavior and use of title bars in frame windows.

Scroll Bars
Scroll bars are control windows that convert mouse and keyboard input into integers; they
are used by an application to scroll the contents of a client window. This chapter describes
scroll-bar styles, ranges, positions, and notification messages and how to create and use
scroll bars in Presentation Manager applications.

Button Controls
A button is a type of control window used to initiate an operation or to set the attributes of an
operation. This chapter discusses button-control types, styles, default behavior, notification
messages, and states. Creation of button controls and their use in Presentation Manager
applications is also described.

Chapter 1. Introduction to Presentation Manager Programming 1-13

Entry Field Controls
An entry field is a control window that enables a user to view and edit a single line of text
This chapter discusses entry-field styles, notification codes, and behavior, as well as creating
and using entry field controls in Presentation Manager applications.

List Boxes
A list box is a control window that displays several text items at a time, one or more of which
can be selected by the user. This chapter describes how list-box controls are created and
used in Presentation Manager applications.

Clipboards
The clipboard is a small amount of system-managed random-access memory (RAM) used for
user-driven data exchange. This chapter descrlbes how to use the clipboard in Presentation
Manager applications.

Window Timers
A window timer enables an application to post timer messages at specified intervals. This
chapter discusses types of timers and their applications.

Initialization Files
Initialization files enable an application to store and retrieve information that the application -
uses when it starts up. This chapter describes creating, opening, closing, and using
application and system initialization files.

1-14 PM Basic Programming Guide

Chapter 2. Windows

To most users, a window is a rectangular area of the display screen where an application
receives input from the user and displays output. This chapter describes the parts of the
operating system that enable a Presentation Manager (PM) application to create and use
windows; manage relationships between windows; and size, move, and display windows. An
overview of the following topics is presented:

Window types, classes, and styles
Window-creation techniques

Window messages and message queues
Methods of window input and output
Window resources and procedures
Window identification and modification.

Subsequent chapters present more in-depth descriptions of windows, their advantages and
uses, along with example code fragments.

About Windows

A PM application can interact with the user and perform tasks only by way of windows. Each
window shares the screen with other windows, including those from other applications. The
user employs the mouse and keyboard to interact with windows and their owner applications.

Desktop Window and Desktop-Object Window
The OS/2 operating system automatically creates the desktop window (known as the
workplace in user terminology) when it starts a PM session.

Main Window 3

Main Window 2

Main Window 1

Chil
‘2’\2" Child Window 1a

Child Window 1b

Figure 2-1. Desktop Window Containing Windows of Several Applications

© Copyright IBM Corp. 1994 , 2-1

The desktop window paints the background color of the screen and serves as the
“progenitor” of all the windows displayed by all PM applications (but not of object windows,
which do not require screen display). To make the desktop the parent in the
WinCreateStdWindow function, you specify HWND_DESKTOP.

The windows immediately below the desktop are called main or top-level windows; these are
called primary windows in user terminology. Every PM application creates at least one
window to serve as the main window for that application. Most applications also create many
other windows, directly or indirectly, to perform tasks related to the main window.

Each window helps display output and receive input from the user. Figure 2-1 on page 2-1
shows the desktop window containing windows of several applications. Notice that the main
windows can overlap one another. (At times, it is possible for a main window to be
completely hidden.) Operations in one main window normaily do not affect the other main
windows.

The desktop-object window is like a desktop window that is never displayed; it serves as the
base window to coordinate the activity of an application’s object windows. The
desktop-object window cannot display windows nor process keyboard and mouse input. The
primary purpose of the desktop-object window is to enable you to create windows that need
not respond to messages at the same rate as the user interface.

Window Relationships

2-2

Window relationships define how windows interact with each other—on the screen and
through messages. There are parent-child window relationships and window-owner
relationships.

The parent-child relationship determines where and how windows appear when drawn on the

screen. It also determines what happens to a window when a related window is destroyed or
hidden. The parent-child rules apply to all windows at all times and cannot be modified.

Ownership determines how windows communicate using messages. Cooperating windows
define and carry out their rules of ownership. Although some windows (such as windows of
the preregistered public window class, WC_FRAME) have very complex rules of ownership,
the application usually defines the ownership rules.

PM Basic Programming Guide

Figure 2-2 represents the logical relationship of the windows in two épplications.

Desktop Window
Application 1 |-| Application 2
_________________________ Rt e R R

Main Window 2

Chiid Child
Window 1.1 Window 1.2

Child Child
Window 2.1 Window 2.2

(.

Child
Window 1.1.1

Figure 2-2. Typical Window Relationships

Parent-Child Relationship

Most windows have a parent window. (The exceptions are the desktop and desktop-object
windows, which the system creates at system startup.) An application specifies the parent
when it creates a window; then, the system uses the parent to determine where and how to
draw any new windows, as well as when to destroy the windows (free all associated
resources and remove the windows from the screen).

A child window is drawn relative to its parent. The coordinates given to specify the position
of a window’s lower-left corner are relative to the lower-left corner of its parent. For example,
a main window (child of the desktop) is drawn relative to the lower-left corner of the screen
(the desktop window’s lower-left corner). :

All main windows are siblings because they share a common parent, the desktop window.
Because sibling windows can overlap, an application or a user arranges the windows, one
behind another (like a stack of papers on a desk), in the desired viewing order (called
z-order) as illustrated in Figure 2-1 on page 2-1. Z-order uses the desktop as a reference
point for a “three-dimensional” ranking of the overlapping windows: the topmost window has
the highest ranking, while the window at the bottom of the stack has the lowest ranking. The
parent of the sibling windows is always at the bottom of the z-order.

Chapter 2. Windows 2-3

Figure 2-3 illustrates the hierarchy of such an arrangement.

Parent Child

Figure 2-3. Window Hierarchy

Although PM supports z-order, it does not enforce the expected appearance unless you
specify the CS_CLIPCHILDREN or CS_CLIPSIBLINGS styles. No part of a child window
ever appears outside the borders of its parent. If an application creates a window that is
larger than its parent, or positions a window so that some or all of it extends beyond the
borders of the parent, the extended portion of the child window is not drawn.

An application can use the WS_CLIPCHILDREN or WS_CLIPSIBLINGS styles to remove
from a window’s clipping area (the area in which the window can paint) the area occupied by
its child or sibling windows. For example, an application can use these styles to prevent a
window from painting over a child or sibling window containing a complex graphic that would
be time-consuming to redraw.

When a window is minimized, hidden, or destroyed, all of its children are hidden, minimized,
or destroyed as well. The order of destruction is always such that every window is destroyed
before its parent. The window-destruction sequence starts at the bottom of descendancy so
that all related windows can be cleaned up; the last one to go is the window you asked to be
destroyed. The final PM task in a window-destruction sequence is to send a WM_DESTROY
message to that window, so it has one last chance to release any resources it has allocated
and may still be holding.

Every window has only one parent, but can have any number of children. Referring back to
Figure 2-3, any window in this tree is said to be a descendant of any window appearing
above it in the branch, and an ancestor of any window appearing below it. There are two
special cases, of course: the window immediately above is called the window’s parent, and
any window immediately below it is called its child. An application can change a window’s
parent window at any time by using the WinSetParent function. Changing the parent window

2-4 PM Basic Programming Guide

also changes where and how the child window is drawn. The system displays the child
within the borders of the new parent and draws the window according to the styles specified
for the new parent.

Ownership

Any window can have an owner window. Typically, an application uses ownership to
establish a connection between windows so that they can perform useful tasks together. For
example, the title bar in an application’s main window is owned by the frame window; but,
together, the user can move the entire main window by clicking the mouse in the title bar and
dragging. An application can set the owner window when it creates the window or at a later
time.

Ownership establishes a relationship between windows that is independent of the
parent-child relationship. While there are few predefined rules for owner- and owned-window
interaction, a window always notifies its owner of anything considered a significant event.

The preregistered public window classes provided by the OS/2 operating system recognize
ownership. Control windows of classes such as WC_TITLEBAR and WC_SCROLLBAR,
notify their owners of events; frame windows, of class WC_FRAME, receive and process
notification messages from the control windows they own. For example, a title-bar control
sends a notification message to its owner when it receives a mouse click. If the owner is a
frame window, it receives the notification message and prepares to move itself and its
children.

Owner and owned windows must be created by the same thread; that is, they must belong to
the same message queue. Because ownership is independent of the parent-child
relationship, the owner and owned windows do not have to be descendants of the same
parent window. However, this can affect how windows are destroyed. Destroying an owner
window does not necessarily destroy an owned window. Except for frame windows, an
application that needs to destroy an owned window that is not a descendant of the owner
window must do so explicitly.

Frame windows sometimes own windows that are not descendants but, instead, are siblings.
A frame window has the following special ownership properties:

* When the frame window is destroyed, it destroys all of the windows it owns, even if they
are not descendants.

* When a frame window moves, the windows it owns move also. Owned windows that
are not descendants maintain their positions, relative to the upper-left (not the usual
lower-left) corner of the owner window. An owned window with the style
FS_NOMOVEWITHOWNER does not move.

¢ When the frame window changes its posmon in the z-order, it changes the z-order of all
the windows it owns.

* When the frame window is minimized or hidden, it hides all the windows it owns.
Owned windows hidden this way are restored when the frame window is restored.

If an application needs this type of special processing for its own window classes, it must
provide that support in the window procedures for those classes.

Chapter 2. Windows 2-5

Object Windows

Any descendant of the desktop-object window is called an object window. Typically, an
application uses an object window to provide services for another window. For example, an
application can use an object window to manage a shared database. In this way, a window
can obtain information from the shared database by sending a message to and receiving a
reply from the object window.

Only two system-defined messages are available to an object window—WM_CREATE and
WM_DESTROY—but the object window enables the user to implement a set of user-defined
messages. The window procedure for an object window does not have to process paint
messages or user input. The object window processes only messages that affect the data
belonging to the object.

HWND_OBJECT is the only identifier needed to create an object window. It is very unwise
to create descendants of HWND_OBJECT in the same thread that creates descendants of
HWND_DESKTOP: this causes the system to hang up or, at the very least, behave slowly.
Object windows, sometimes referred to as orphan windows, require no owner.

The rules for parent-child and ownership relationships also apply to object windows. In
particular, changing the parent window of an object window to the desktop window, or to a
descendant of the desktop window, causes the system to display the object window if the
object window has the WS_VISIBLE style.

Application Windows
An application can use several types of secondary windows: frame windows, client windows,
control windows, dialog windows, message boxes, and menus. Typically, an application’s
main window consists of several of these windows acting as one. Figure 2-4 on page 2-7
shows an example of a main window and its secondary windows.

2-6 PM Basic Programming Guide

Title-Bar Window title Window sizing buttons
icon

| Titte-Bar
Menu bar
Vertical
Window 4 P
border — Sg;‘:"

Information
area ‘E

1
Horizontal scroll bar

Figure 2-4. Main Window with Secondary Windows

A frame window is a window that an application uses as the base when constructing a main
window or other composite window, such as a dialog window or message box. (A composite
window is a collection of windows that interact with one another and are kept together as a
unit.) A frame window provides basic features, such as borders and a menu bar. Frame
windows have a set of resources associated with them. These include icons, menus, and
accelerators (shortcut keys to the user), which, typically, are defined in an application’s
resource file.

A dialog window is a frame window that contains one or more control windows. Dialog
windows are used almost exclusively for prompting the user for input. An application usually
creates a dialog window when it needs additional information to complete a command. The
application destroys the dialog window after the user has provided the requested information.

A message box is a frame window that an application uses to display a note, caution, or
warning to the user. For instance, an application can use a message box to inform the user
of a problem that the application encountered while performing a task.

A client window is the window in which the application displays the current document or data.
For example, a desktop-publishing application displays the current page of a document in a
client window. Most applications create at least one client window. The application must
provide a function, called a window procedure, to process input to the client window and to
display output.

Chapter 2. Windows 2-7

A control window is a window used in conjunction with another window to perform useful
tasks, such as displaying a menu or scrolling information in a client window. The operating
system provides several predefined control-window classes that an application can use to
create control windows. Control windows include buttons, entry fields, list boxes,
combination boxes, menus, scroll bars, static text, and title bars.

A menu is a control window that presents a list of commands and other menus to the user.
Using a mouse or the keyboard, the user can select a task; the application then performs the
selected task.

Window Input and Output
The user directs input data to windows from a mouse and the keyboard. Keyboard input
goes to the window with input focus, and, normally, mouse input goes to the window under
the mouse pointer.

Windows also are places to display output data. PM uses windows to display text and
graphics on the screen and to process input from the mouse and keyboard. Windows
provide the same input and output capabilities as a virtual graphics terminal without having
direct control of the hardware.

An application is responsible for painting the data for the window classes it registers and
creates. This data can be graphics text or pictures or fixed-size alphanumeric text. Normally
it is not necessary for the application to paint the system-provided window classes; the 0S/2
window procedures for those window classes do the painting.

Active Window and Focus Window

All frame-window ancestors of the input focus window are said to be active, meaning that the
user interacts with them. The active window usually is the topmost main window, which is
positioned above all other top-level windows on the screen. The active window is indicated
by some form of highlighting. For example, a highlighted title bar shows that a standard
frame window is active; an active dialog window has a highlighted border. These types of
highlighting ensure that the user can see the window that is accepting input.

A main window (or one of its child windows) is activated by using a mouse or the keyboard.
When a window is activated, it receives a WM_ACTIVATE message with its first parameter
set to TRUE. When it is deactivated, it receives a WM_ACTIVATE message with its first

parameter set to FALSE. Figure 2-5 on page 2-9 illustrates user interaction with a window.

2-8 PM Basic Programming Guide

Active Window
Input Focus
Window
A
Pointer
@]
0 OO0 0000 00 OO0 1
OO O 0ia
OO 0o a0
ISR EN]
NN RN 0 0
[] 0

Figure 2-5. User Input to a Window

The focus window can be the active window or one of its descendant windows. The user
can change the input focus the same way active windows are changed—by mouse or
keyboard. However, the application has more control over the input focus. For example, in
a window containing several text entry fields, the tab keys can move the input focus from one
input field to another. A WM_SETFOCUS message is sent to the window procedure when a
window is gaining or losing the input focus. The WinQueryFocus function tells the user
which window has the input focus.

Messages

Messages are a fundamental part of the operating system. PM applications use messages
to communicate with the operating system and one another. The system uses messages to
communicate with applications to ensure concurrent running and sharing of devices.
Typically, a message notifies the receiving application that an event has occurred. The
operating system identifies the appropriate application window to receive a message by the
window handle included in the message. Sources of events that cause messages to be
issued to applications are the user, the operating system, the application, or another
application.

The User: Mouse or keyboard input to an application window causes the operating system
to direct messages to that window.

The Operating System: Managing the application windows on the screen, the operating
system issues messages to the windows, usually as an indirect result of user interaction.
These messages enable the system to work in a uniform and well-ordered manner. For
example, where several application windows overlap, and the user terminates an application

Chapter 2. Windows 2-9

so that its window disappears, the operating system issues messages to the underlying
application windows so that they can repaint themselves.

The Application: An event can occur in the application to which another part of that
application should respond; for example, when the contents of its window no longer
accurately reflect the status of the application. The application can define its own messages
outside the range of system-defined messages to communicate such events.

Another Application: Communication with other applications through the operating
system ensures cooperative use of the system; it even can be used to exchange data. For
example, an arithmetic application can supply the results of a lengthy calculation to a
business graphics application. '

Enabled and Disabled Windows

An application uses the WinEnableWindow function to enable or disable window input. By
default, a window is enabled when it is created. However, an application can disable a
newly created window.

An application usually disables a window to prevent the user from using the window. For
example, an application might disable a push button in a dialog window. Enabling a window
restores normal input; an application can enable a disabled window at any time.

When an application uses the WinEnableWindow function to disable an existing window, that
window also loses keyboard focus. WinEnableWindow sets the keyboard focus to NULL,
which means that no window has the focus. If a child window or other descendant window
has the keyboard focus, it loses the focus when the parent window is disabled.

An application can determine whether a window is enabled by calling WinlsWindowEnabled.

System-Modal Window

An application can designate a system-modal window: a window that receives all keyboard
and mouse input, effectively disabling all other windows. The user must respond to the
system-modal window before continuing work in other windows. An application sets and
clears the system-modal window by using the WinSetSysModalWindow function.

Because system-modal windows have absolute control of input, you must be careful when
using them in your applications. Ideally, an application uses a system-modal window only
when there is danger of losing data if the user does not respond to a problem immediately.

Although an application can destroy a system-modal window, the new active window then
becomes a system-modal window. An application can make another window active while the
first system-modal window exists. But again, the new active window will become the
system-modal window. In general, once a system-modal window is set, it continues to exist
in the PM session until the application explicitly clears it.

2-10 PM Basic Programming Guide

Window Creation
Before any thread in an application can create windows, it must:

1. Call Winlnitialize to create an anchor block
2. Call WinCreateMsgQueue to create a message queue for the thread.

Then, it can create one or more windows by calling one of the window-creation functions,
such as WinCreateWindow.

The window-creation functions require that the following information be supplied in some
form:

e C(Class

Styles

Name

Parent window

Position relative to the parent window
Position relative to any sibling windows (z-order)
Dimensions

Owner window

Identifier

Class-specific data

¢ Resources.

Every window belongs to a window class that defines that window’s appearance and
behavior. The chief component of the window class is the window procedure. The window
procedure is the function that receives and processes all messages sent to the window.

Every window has a style. The window style specifies aspects of a window’s appearance
and behavior that are not specified by the window’s class. For example, the WC_FRAME
class always creates a frame window, but the FS_BORDER, FS_DLGBORDER, and
FS_SIZEBORDER styles determine the style of a frame window’s border. A few window

styles apply to all windows, but most apply only to windows of specific window classes. The
window procedure for a given class interprets the style and allows an application to adapt a
window of a given class for a special circumstance. For example, an application can give a

window the style WS_SYNCPAINT to cause it to be painted immediately whenever any
portion of the window becomes invalid. Normally, a window is painted only if there are no
messages waiting in the message queue.

A window can have a text string associated with it. Typically, the window text is displayed in

the window or in a title bar. The class of window determines whether the window displays
the text and, if so, where the text appears within the window.

Every window except the desktop window and desktop-object window has a parent window.

The parent provides the coordinate system used to position the window and also affects
aspects of a window’s appearance. For example, when the parent window is minimized,
hidden, or destroyed, the parent’s child windows are minimized, hidden, or destroyed also.

Every window has a screen position, size, and z-order position. The screen position is the
location of the window’s lower-left corner, relative to the lower-left corner of its parent

Chapter 2. Windows 2-11

window. A window’s size is its width and height, measured in pels. A window’s z-order
position is the position of the window in the order of overlapping windows. This viewing
order is oriented along an imaginary axis, the z axis, extending outward from the screen.
The window at the top of the z-order overlaps all sibling windows (that is, windows having
the same parent window). A window at the bottom of the z-order is overlapped by all sibling
windows. An application sets a window’s z-order position by placing it behind a given sibling
window or at the top or bottom of the z-order of the windows.

A window can own, or be owned by, another window. The owner-owned relationship affects
how messages are sent between windows, allowing an application to create combinations of
windows that work together. A window issues messages about its state to its owner window;
the owner window issues messages back about what action to perform next.

The window handle is a unique number across the system that is totally unambiguous—it
identifies one particular window in the system and is assigned by the system. A window
identifier is analogous to a “given” name in family relationships; the only requirement is that
the name be unique among siblings.

A window can have class-specific data that further defines how the window appears and
behaves when it is created. The system passes the class-specific data to the window
procedure, which then applies the data to the new window.

Window-Creation Functions

The basic window-creation function is WinCreateWindow. This function uses information
about a window’s class, style, size, and position to create a new window. All other
window-creation functions, such as WinCreateStdWindow and WinCreateDIlg, supply some of
this information by default and create windows of a specific class or style.

Although the WinCreateWindow function provides the most direct means of creating a
window, most applications do not use it. Instead, they often use the WinCreateStdWindow
function to create a main window and the WinDIgBox or WinCreateDlg functions to create
dialog windows.

The WinCreateMenu, WinLoadMenu, 'WinLoadDIg, WinMessageBox, and
WinCreateFrameControls functions also create windows. Each of these functions substitutes
for one or more required calls to WinCreateWindow to create a given window. For example,
an application can create a frame window, one or more control windows, and a client window
in a single call to WinCreateStdWindow.

Window-Creation Messages

While creating a window, the system sends messages to that window’s window procedure.
The window procedure receives a WM_CREATE message, saying that the window is being
created. The window also receives a WM_ADJUSTWINDOWPOS message, specifying the
initial size and position of the window being created. This message lets the window
procedure adjust the size and position of the window before the window is displayed.

2-12 PM Basic Programming Guide

The system also sends other messages while creating a window; the number and order of
these messages depend on the class and style of the window and the function used to
create it.

Window Classes
Each window of a specific window class uses the window procedure associated with that
class. An application can create one or more windows that belong to the same window
class. Because each window of the same class is processed by the same window
procedure, they all behave the same way. Since many windows can result from one window
procedure, coding overhead is greatly reduced. There are two types of window classes:
public and private.

Public Window Classes

A public window class is one that has a reentrant window procedure that is registered and
resides in a dynamic link library (DLL); it can be used by any process in the system to create
windows. The operating system provides several preregistered public window classes. You
can specify the system-provided window classes by using the symbolic identifiers that have
the prefix WC_, as shown in the following table:

Table 2-1 (Page 1 of 2). Window Classes

Class Name Description

WC_BUTTON Consists of buttons and boxes the user can select by clicking the pointing
device or using the keyboard.

WC_CONTAINER Creates a control for the user to group objects in a logical manner. A
container can display those objects in various formats or views. The
container control supports drag and drop so the user can place
information in a container by simply dragging and dropping.

WC_ENTRYFIELD Consists of a single line of text that the user can edit.

WC_FRAME A window class that can. contain child windows of many of the other
window classes.

WC_LISTBOX Presents a list of text items from which the user can make selections.

WC_MENU Presents a list of items that can be displayed horizontally as menu bars,

or vertically as pull-down menus. Menus usually are used to provide a
command interface to applications.

WC_NOTEBOOK Creates a control for the user that is displayed as a number of pages.
The top page is visible, and the others are hidden, with their presence
being indicated by a visible edge on each of the back pages.

WC_SCROLLBAR Lets the user scroll the contents of an associated window.

WC_SLIDER Creates a control that is usable for producing approximate (analog)
values or properties. Scroll bars were used for this function in the past,
but the slider provides a more flexible method of achieving the same
result, with less programming effort.

Chapter 2. Windows 2-13

Table 2-1 (Page 2 of 2). Window Classes

Class Name Description

WC_SPINBUTTON Creates a control that presents itself to the user as a scrollable ring of
choices, giving the user quick access to the data. The user is presented
only one item at a time, so the spin button should be used with data that
is intuitively related.

WC_STATIC Simple display items that do not respond to keyboard or pointing device
events. v .

WC_TITLEBAR Displays the window title or caption and lets the user move the window’s
owner.

WC_VALUESET Creates a control similar in function to the radio buttons but provides

additional flexibility to display graphical, textual, and numeric formats.
The values set with this control are mutually exclusive.

With the exception of WC_FRAME, the system-provided window classes are known as
control window classes because they give the user an easy means of controlling specific
types of interaction. For example, the WC_BUTTON class allows single or multiple
selections. These windows conform to the IBM* Systems Application Architecture (SAA)
Common User Access (CUA) definition. They are designed specifically to provide function
that meets the needs for a graphics-based standard user interface. The code fragments
provided in this guide make extensive use of the system window classes.

Private Window Classes

A private window class is one that an application registers for its own use; it is available only
to the process that registers it. The application-provided window procedure for a private
window class resides either in the application’s executable files or in a DLL file. A private
window class is deleted when its registering process is terminated.

Window Styles
A window can have a combination of styles; an application can combine styles by using the
bitwise inclusive OR operator. An application usually sets the window styles when it creates
the window. The OS/2 operating system provides several standard window styles that apply
to all windows. It also provides many styles for the predefined frame and control windows.
The frame and control styles are unique to each predefined window class and can be used
only for windows of the corresponding class.

Initially, the styles of the window class used to create the window determine the styles of the

new window. For example, if the window class has the style CS_SYNCPAINT, all windows
created using that class, by default, will have the window style WS_SYNCPAINT.

2-14 PM Basic Programming Guide

The OS/2 operating system has the following standard window styles:

Table 2-2 (Page 1 of 2). Standard Window Styles

Style Name

Description

WS_CLIPCHILDREN

WS_CLIPSIBLINGS

WS_DISABLED

WS_GROUP

WS_MAXIMIZED
WS_MINIMIZED
WS_PARENTCLIP

WS_SAVEBITS

WS_SYNCPAINT

Prevents a window from painting over its child windows. This style
increases the time necessary to calculate the visible region. This style is
usually not necessary because if the parent and child windows overlap
and both are invalidated, the system draws the parent window before
drawing the child window. If the child window is invalidated independently
of the parent window, the system redraws only the child window. If the
update region of the parent window does not intersect the child window,
drawing the parent window causes the child window to be redrawn. This
style is useful to prevent a child window that contains a complex graphic
from being redrawn unnecessarily. WS_CLIPCHILDREN is an absolute
requirement if a window with children ever performs output in response to
any message other than WM_PAINT. Only WM_PAINT processing is
synchronized such that the children will get their messages after the
parent.

Prevents a window from painting over its sibling windows. This style
protects sibling windows but increases the time necessary to calculate the
visible region. This style is appropriate for windows that overlap and that
have the same parent window.

Used by an application to disable a window. It is up to the window to
recognize this style and reject input.

Specifies the first control of a group of controls in which the user can
move from one control to the next by using the ARROW keys. All controls
defined after the control with the WS_GROUP style belong to the same
group. The next control with the WS_GROUP style ends the first group
and starts a new group.

Enlarges a window to the maximum size.
Reduces a window to the size of an icon.

Extends a window’s visible region to include that of its parent window.
This style simplifies the calculation of the child window’s visible region but
is potentially dangerous because the parent window’s visible region is
usually larger than the child window.

Saves the screen area under a window as a bit map. When the user
hides or moves the window, the system restores the image by copying
the bits; there is no need to add the area to the uncovered window’s
update region. The style can improve system performance but also can
consume a great deal of memory. It is recommended only for transient
windows, such as menus and dialog windows, not for main application
windows.

Causes a window to receive WM_PAINT messages immediately after a
part of the window becomes invalid. Without this style, the window
receives WM_PAINT messages only if no other message is waiting to be
processed.

* " Chapter 2. Windows 2-15

Table 2-2 (Page 2 of 2). Standard Window Styles

Style Name Description

WS_TABSTOP Specifies one of any number of controls through which the user can move
by tabbing. Pressing the TAB key moves the keyboard focus to the next
control that has the WS_TABSTOP style.

WS_VISIBLE Makes a window visible. The operating system draws the window on the
screen unless overlapping windows completely obscure it. Windows
without this style are hidden. If overlapping windows completely obscure
the window, the window is still considered visible. (Visibility means that
the operating system draws the window if it can.)

Window Handles
After creating a window, the creation function returns a window handle that uniquely identifies
the window. An application can use this handle to direct the action of functions to the
window. Window handles have the data type HWND; applications must use this data type
. when declaring variables that hold window handles.

There are special constants that an application can use instead of a window handle in certain
functions. For example, an application can use HWND_DESKTOP in the WinCreateWindow
function to specify the desktop window as the new window’s parent. Similarly, ;
HWND_OBJECT represents the desktop-object window. HWND_TOP and HWND_BOTTOM
represent the top and bottom positions relative to the z-order position of a window.

Although the NULL constant is not a window handle, an application can use it in some
functions to specify that no window is affected. For example, an application can use NULL in
the WinCreateWindow function to create a window that has no owner window. Some
functions might return NULL, indicating that the given action applies to no window.

Window Size and Position
A window’s size and position can be expressed as a bounding rectangle, given in
coordinates relative to its parent. An application specifies the window’s initial size and
position when creating the window.

To use the system-default values for the initial size and position of a frame window, an
application can specify the FCF_SHELLPOSITION frame-creation flag. The application can
change a window’s size and position at any time. Figure 2-6 on page 2-17 indicates the
size and position coordinates of a parent window and a child window. '

2-16 PM Basic Programming Guide

Desktop

Cy

cX

—_—
X

Figure 2-6. Window Sizing and Positioning

Notes:

1. The default coordinate system for a window specifies that the point (0,0) is at the
lower-left corner of the window, with coordinates increasing as they go upward and to
the right.

2. A window can be positioned anywhere in relation to its parent.

Size

A window’s size (width and height) is given in pels, in the range O through 65535. A window
can have 0 width and height; however, a window with 0 width or height is not drawn on the
screen, even though it has the WS_VISIBLE style.

An application can create very large windows; however, it should check the size of the
screen before enlarging a window size. One way to choose an appropriate size is to use the
WinGetMaxPosition function to retrieve the size of the maximized window. A window that is
larger than its maximized size will be larger than the screen also.

An application can retrieve the current size of the window by using the
WinQueryWindowRect function.

Position

A window’s position is defined as the x,y coordinates of its lower-left corner. These
coordinates, sometimes called window coordinates, always are relative to the lower-left
corner of the parent window. For example, a window having the coordinates (10,10) is
placed 10 pels to the right of, and 10 pels up from, the lower-left corner of its parent window.
Notice, however, that a window can be positioned anywhere in relation to its parent, but
always relative to the parent’s lower-left corner.

Adjusting a window’s position can improve drawing performance. For example, an
application could position a window so that its horizontal position is a multiple of 8, relative to

Chapter 2. Windows 2-17

the screen origin (the lower-left corner of the screen). Coordinates that are multiples of 8

2-18

correspond to byte boundaries in the screen-memory bit map. It is usually faster to start
drawing at a byte boundary.

By defauklt, the system positions a frame window on a byte boundary; but an application can
override this action by using the FCF_NOBYTEALIGN style when creating the window.

Size and Position Messages

A window receives messages when it changes size or position. Before a change is made,
the system might send a WM_ADJUSTWINDOWPOS message to allow the window
procedure to make final adjustments to the window’s size and position. This message
includes a pointer to an SWP structure that contains the requested width, height, and
position. If the window procedure adjusts these values in the structure, the system uses the
adjusted values to redraw the window. The WM_ADJUSTWINDOWPOQS message is not
sent if the change is a result of a call to the WinSetWindowPos function with the
SWP_NOADJUST constant specified.

After a change has been made to a window, the system sends a WM_SIZE message to
specify the new size of the window. If the window has the class style CS_MOVENOTIFY,
the system also sends a WM_MOVE message, which includes the new position for the
window. The system sends a WM_SHOW message if the visibility of the window has
changed.

System Commands

An application that has a window with a system menu can change the size and position of
that window by sending system commands. The system commands are generated when the
user chooses commands from the system menu. An application can emulate the user action
by sending a WM_SYSCOMMAND message to the window.

Following are some of the system commands:

Table 2-3. System Commands

Command Description

SC_SIZE Starts a Size command. The user can change the size of the window
with a mouse and the keyboard.

SC_MOVE Starts a Move command. The user can move the window with a mouse
and the keyboard.

SC_MINIMIZE Minimizes the window.

SC_MAXIMIZE Maximizes the window.

SC_RESTORE Restores a minimized or maximized window to its previous size and
position. ‘

SC_CLOSE Closes the window. This command sends a WM_CLOSE message to the
window. The window performs all tasks needed to clean up and destroy
itself.

PM Basic Programming Guide

Window Data
Every window has an associated data structure. The window data structure contains all the
information specified for the window at the time it was created and any additional information
supplied for the window since that time. Although the exact size and meaning of the
information in the window data structure are private to the system, an application can access
any of the following data items via system-provided functions:

* Pointer to window-instance data structure
¢ Pointer to window procedure

¢ Parent-window handle

¢ Owner-window handle

* Handle of first child window

¢ Handle of next sibling window

* Window size and position (expressed as a rectangle)
* Window style

¢ Window identifier

¢ Update-region handle

* Message-queue handle.

An application can examine and modify this data by using functions such as
WinQueryWindowUShort and WinSetWindowUShort. These functions let an application
access data that is stored as 16-bit integers. Other functions let an application access data
containing 32-bit integers and pointers. Several functions indirectly affect the data items in
the window data structure. For example, the WinSubclassWindow function replaces the
window-procedure pointer, and the WinSetWindowPos function changes the size and position
of the window.

An application can extend the number of available data items in the window data structure by
specifying a count of extra bytes when it registers the corresponding window class. Then,
the window procedure can use these bytes to store information about the window. The
WinQueryWindowUShort and WinSetWindowUShort functions give direct access to the exira
bytes.

It generally is not a good idea to use direct storage in the window data. 1t is better to
allocate a data structure dynamically and set a pointer to that data structure in the window
words. This provides two advantages:

1. Most importantly, it is a symbolic way of referencing the data structure. It is very easy to
make mistakes and provide the wrong offsets to WinQueryWindowUShort and so forth.

2. You now can add and remove fields without cross dependehcies because you now use
symbolic references; whereas, when you use the technique of putting window words
directly in the window data structure, you have to account for changed offsets.

Window Resources
Window resources are read-only data segments stored in an application’s EXE file or in a
dynamic link library’s DLL file. Predefined PM window resources include keyboard
accelerator tables, icons, menus, bit maps, dialog boxes, and so forth; these are not a
regular part of the application window’s code and data. Because, in most cases, window

Chapter 2. Windows 2-19

resources are not loaded into memory when the operating system runs a program, the
resources can be shared by multiple instances of the same application.

Most window resources are stored in a format that is unique to each resource type. The

application does not need to know these formats because the system translates them, as
necessary, for use in PM functions. The following table lists the ten most commonly used
PM window resource types.

Table 2-4. Presentation Manager-Defined Resource Types
Resource Identifier Description
RT_ACCELTABLE Keyboard accelerator table
RT_BITMAP ' Bit map

RT_DIALOG Dialog box template
RT_FONT ' Font

RT_FONTDIR Font directory

RT_MENU Menu template
RT_MESSAGE Message string
RT_POINTER lcon or mouse
RT_RCDATA Programmer-defined data
RT_STRING " Text string

To access these resources, you must prepare a resource file (ASCII file with the extension
.RC). Then the ASCII resource file must be compiled into binary images using the resource
compiler. The compiled resource file extension is RES; it can be linked into your program’s
EXE file or to a dynamic link library’s DLL file.

“Maximized and Minimized Windows
A maximized window is a window that has been enlarged to fill the screen. Although a
window’s size can be set so that it fills the screen exactly, a maximized window is slightly
different: the system automatically moves the window’s title bar to the top of the screen and
sets the WS_MAXIMIZED style for the window.

A minimized window is a window whose size has been reduced to exactly the size of an icon
or, in the Workplace Shell*, it disappears altogether (by default). Like a maximized window,
a minimized window is more than just a window of a given size; typically, the system moves
the (icon) minimized window to the lower part of the screen and sets the WS_MINIMIZED
style for that window. The lower part of the screen is sometimes called the icon area.
Unless the application specifies another position, the system moves a minimized window into
the first available icon position in the icon area.

If a window is created with the WS_MAXIMIZED or WS_MINIMIZED styles, the system
draws the window as a maximized or minimized window.

2-20 PM Basic Programming Guide

An application can restore maximized or minimized windows to their previous size and
position by specifying the SWP_RESTORE flag in a call to the WinSetWindowPos function.

Window Visibility
A window that is a descendant of the desktop window can be either visible or invisible. The
system displays a visible window on the screen. It hides an invisible window by not drawing
it. If a window is visible, the user can supply input to the window and view the window’s
output. If a window is invisible, the window, in effect, is disabled. An invisible window can
process messages from the system or from other windows, but it cannot process user input
or display output. An application sets a window’s visibility state when it creates the window.
Later, a user or the application can change the visibility state.

The visible region of a window is the position clipped by any overlapping windows. These
overlapping windows can be child windows or other main windows in the system. The visible
region is defined by a set of one or more rectangles, as shown in Figure 2-7.

- - Visible Region for Window A

Figure 2-7. Visible Region for Window A

A window is visible if the WS_VISIBLE style is set for the window. By default, the
WinCreateWindow function creates invisible windows unless the application specifies
WS_VISIBLE. The application often hides a window to keep its operational details from the
user. For example, an application can keep a new window invisible while it customizes the
window’s appearance. An application can determine whether a window has the
WS_VISIBLE style by using the WinlsWindowVisible function.

Even if a window has the WS_VISIBLE style, the user might not be able to see the window
on the screen because other windows completely overlap it, or it might have been moved
beyond the edge of its parent. A visible window is subject to the clipping rules established
by its parent-child relationship. If the window’s parent window is not visible, the window will
not be visible. Because a child window is drawn relative to its parent’s lower-left corner, if
the parent window is moved beyond the edge of the screen, the child window also will be
moved. In other words, if a user moves the parent window containing the child window far
enough off the edge of the screen, the user will not be able to see the child window, even
though the child window and its parent window have the WS_VISIBLE style. To determine

Chapter 2. Windows 2-21

whether the user actually can see a window, an application can use the
WinlsWindowShowing function.

Window Destruction :
In general, an application must destroy all the windows it creates. It does this by using the
WinDestroyWindow function. When a window is destroyed, the system hides the window, if
it is visible, and then removes any internal data associated with the window. This invalidates
the window handle so that it can no longer be used by the application.

An application destroys many of the windows it creates soon after creating them. For
example, an application usually destroys a dialog window as soon as the application has
sufficient input from the user to continue its task. An application eventually destroys the
main window of the application (before terminating).

Destroying a window does not affect the window class from which the window was created.
New windows still can be created using that class, and any existing windows of that class
continue to operate.

When the application calls WinDestroyWindow, the system searches the descendancy tree
for all windows below the specified window and destroys them from the bottom up, so each
child receives WM_DESTROY before its parent. Each destroyed window is responsible for
cleaning up its own resources in response to the WM_DESTROY message.

If a presentation space was created by the WinGetPS function for any of the windows to be
destroyed, it must be released by calling the WinReleaseP$S function. The application must
do this before calling the WinDestroyWindow function. If a presentation space is associated
with the device context for the window, the application must disassociate or destroy the
presentation space by using the GpiAssociate or GpiDestroyPS function before calling
WinDestroyWindow. Failing to release a resource can cause an error.

For more information about presentation spaces and device contexts, see Chapter 7,
“Painting and Drawing.”

If the window being destroyed is the active window, both the active and focus states are
transferred to another window. The window that becomes the active window is the next
window, as determined by the Alt+Esc key combination. The new active window then
determines which window receives the keyboard focus.

2-22 PM Basic Programming Guide

Using Windows

The following sections explain how to create and use windows in an application, how to
manage ownership and parent-child window relationships, and how to move and size
windows.

Creating a Top-Level Frame Window
The main window in most applications is a top-level frame window. An application creates a
top-level frame window by specifying the handle of the desktop window, or
HWND_DESKTOP, as the hwndParent parameter in a call to the WinCreateStdWindow
function.

Figure 2-8 on page 2-24 shows the main() function for a simple PM application. This
function initializes the application, creates a message queue, and registers the window class
for the client window before creating a top-level frame window.

Chapter 2. Windows 2-23

Figure 2-8. Structure of a Simple Presentation Manager Application

Creating an Object Window
An application can create an object window by using the WinCreateWindow function and
setting the desktop-object window as the parent window. The code fragment in Figure 2-9
on page 2-25 shows how to create an object window.

2-24 PM Basic Programming Guide

. #define ID_OBIWINDOW 2 -

. hwndObject = WinCreateWindow(
RER HWND_OBJECT, - /* Parent “is:object window. . */

"MyObjClass", /% Window ¢lass for client */
NULL, /% Window text i */
g /% No styles for object window Y,
0y 0y /% Lower-left corner i */
et By @y e % Width and height . .. : *f o
CNULL, /% No owner */
HWND_BOTTOM, /* Inserts window at bottom of z-order */
1D_OBJWINDOW, /* Window identifier */
NULL, : - /* No class-specific data */

NULLY; /* No presentation data */

Figure 2-9. Creating an Object Window

Querying Window Data
An application can examine the values in the data structure associated with a window by
using the WinQueryWindowUShort and WinQueryWindowULong functions. Each of these
functions specifies a structure data item to examine. The index value can be an integer
representing a zero-based byte index or a constant (QWS) that identifies a specific item of
data. The code fragment in Figure 2-10 obtains the programmer-defined identifier of the
object window defined in the previous example:

Figure 2-10. Getting the Window Identifier

Changing the Parent Window
An application can change a window’s parent window by using the WinSetParent function.
For example, in an application that uses child windows to display documents, you might want
only the active document window to show a system menu. You can do this by changing that
menu’s parent window back and forth between the document window and the object window
when WM_ACTIVATE messages are received. This technique is shown in the code
fragment in Figure 2-11 on page 2-26.

Chapter 2. Windows 2-25

Figure 2-11. Changing the Parent Window

Finding a Parent, Child, or Owner Window

An application can determine the parent, child, and owner windows for any window by using
the WinQueryWindow function. This function returns the window handle of the requested
window.

The code fragment in Figure 2-12 determines the parent window of the given window:

Figure 2-12. Finding the Parent Window

The code fragment in Figure 2-13 determines the topmost child window (the child window in
the top z-order position): '

Figure 2-13. Finding the Topmost Child Window

If a given window does not have an owner or child window, WinQueryWindow returns NULL.

2-26 PM Basic Programming Guide

Setting an Owner Window
An application can set the owner for a window by using the WinSetOwner function.
Typically, after setting the owner, a window notifies the owner window of the new relationship
by sending it a message.

The code fragment in Figure 2-14 shows how to set the owner window and send it a
message:

#&efine N'wa_ONNER T

HUND hwndMyWindow;
HHND hwndNewOwner;

G if (N1nSetOwner(hwndMmedow. hwndNewOwner))

/% Send a not1f1cat1on message e Do */

" WinSendMsg(hwndNewOwner, = /% Sends to owner o o/
WM CONTROL, = /*-Control message for not1f1cat1on *f
(MPARAM) NEW OWNER /* Notification code @ " o */

NULL), SN Cof*% Novextra data -, k]

Figure 2-14. Setting the Owner Window

A window can have only one owner, so WinSetOwner removes any previous owner.

Retrieving the Handle of a Child or Owned Window
A parent or owner window can retrieve the handle of a child or owned window by using the
WinWindowFromiD function and supplying the identifier of the child or owned window.
WinWindowFromID searches all child and owned windows to locate the window with the
given identifier. The window identifier is set when the application creates the child or owned
window.

Typically, an owned window uses WinQueryWindow to get the handle of the owner window;
then uses WinSendMsg to issue a notification message to its owner window.

The code fragment in Figure 2-15 on page 2-28 retrieves the window handle of an owner
window and sends the window a WM_ENABLE message.

Chapter 2. Windows 2-27

Figure 2-15. Getting a Handle to an Owner or Child Window

An application also can retrieve the handle of a child window by using the
WinWindowFromPoint function and supplying a point in the corresponding parent window.

Enumerating Top-Level Windows
An application can enumerate all top-level windows in the system by using the
WinBeginEnumWindows and WinGetNextWindow functions. An application also can create a
list of all child windows for a given parent window using WinBeginEnumWindows. This list
contains the window handles of immediate child windows. By using WinGetNextWindow, the
application then can retrieve the window handles, one at a time, from the list. When the
application has finished using the list, it must release the list with the WinEndEnumWindows
function.

The code fragment in Figure 2-16 shows how to enumerate all top-level windows (all
immediate child windows of the desktop window):

Figure 2-16. Enumerating Top-Level Windows

2-28 PM Basic Programming Guide

Moving and Sizing a Window
An application can move a window by using the WinSetWindowPos function and specifying
the SWP_MOVE constant. The function changes the position of the window to the specified
position. The position is always given in coordinates relative to the parent window.

The code fragment in Figure 2-17 moves the window to the position (10,10):

HWND hwnd; |
WinSetWindowPos (.
hwnd, 7 /% Window handle o */
 NULL, . - [* Not used. for moving and sumg */
: 16, 10, /* New position. */
@y By ~ /% Not used for moving. : xf
LSHp MOVE), % Move window UK

Figure 2-17. Moving a Window

An application can set the size of a window by using the WinSetWindowPos function and
specifying the SWP_SIZE constant. WinSetWindowPos changes the width and height of the
window to the specified width and height.

An application can combine moving and sizing in a single function call, as shown in
Figure 2-18.

Figure 2-18. Moving and Sizing a Window

An application can retrieve the current size and position of a window by using the
WinQueryWindowPos function. This function copies the current information to an SWP
structure.

The code fragment in Figure 2-19 on page 2-30 uses the current size and position to
change the height of the window, leaving the width and position unchanged.

Chapter 2. Windows 2-29

Figure 2-19. Changing the Size of a Window

An application also can move and change the size of several windows at once by using the
WinSetMultWindowPos function. This function takes an array of SWP structures. Each
structure specifies the window to be moved or changed.

An application can move and size a window even if it is not visible, although the user is not
able to see the effects of the moving and sizing until the window is visible.

Redrawing Windows
When the system moves a window or changes its size, it can invalidate all or part of that
window. The system attempts to preserve the contents of the window and copy them to the
new position; however, if the window’s size is increased, the window must fill the area
exposed by the size change. If a window is moved from behind an overlapping window, any
area formerly obscured by the other window must be drawn. In these cases, the system
invalidates the exposed areas and sends a WM_PAINT message to the window.

An application can require that the system invalidate an entire window every time the window
moves or changes size. To do this, the application sets the CS_SIZEREDRAW class style in
the corresponding window class. Typically, this class style is selected for use in an
application that uses a window’s current size and position to determine how to draw the
window. For example, a clock application always would draw the face of the clock so that it
filled the window exactly. ‘

An application also can explicitly specify which parts of the window to preserve during a
move or size change. Before any change is made, the system sends a
WM_CALCVALIDRECTS message to windows that do not have the style
CS_SIZEREDRAW. This enables the window procedure to specify what part of the window
to save and where to align it after the move or size change.

Changing the Z-Order of Windows
An application can move a window to the top or bottom of the z-order by passing the
SWP_ZORDER constant to the WinSetWindowPos function. An application specifies where
to move the window by specifying the HWND_TOP or HWND_BOTTOM constants.

The code fragment in Figure 2-20 uses WinSetWindowPos to change the z-order of a
window.

2-30 PM Basic Programming Guide

HWND hwndPaEent;
HWND hwndNext;
HENUM henum;

WinSetWindowPos (
hwndNext, /* Next window to move +*/
HWND_TOP, /* Put window on top = */
0, 0, 0, 0, /* Not used for z-order */
SWP_ZORDER) ; /* Change z-order */

Figure 2-20. Changing the Z-order of a Window

An application also can specify the window that the given window is to move behind. In this
case, the application specifies the window handle instead of the HWND_TOP or
HWND_BOTTOM constant.

HWND hwndParent;
HWND hwndNext;
HWND hwndExchange;
HENUM henum;

henum = WinBeginEnumWindows (hwndParent);
hwndExchange = WinGetNextWindow(henum); - .

o hwndNext has top window;
hwndExchange has window under-the top. */

W1nSetW1ndowPos(
hwndiext, /% Next window to. move */
hwndExchange, - /+ Put lower window on top */ .
‘9, 0,0, 0, /*Not used for z-order */
SWP_ZORDER); - -/* Change z-order ox/

WinEndEnumWindoWs(henum);

Figure 2-21. Exchanging the Z-order of Windows

Showing or Hiding a Window
An application can show or hide a window by using the WinShowWindow function. This
function changes the WS_VISIBLE style of a window to the specified setting. An application
can also use the WinlsWindowVisible function to check the visibility of a window. This
function returns TRUE if the window is visible.

Maximizing, Minimizing, and Restoring a Frame Window
An application can maximize, minimize, or restore a frame window by using the
WinSetWindowPos function and specifying the constant SWP_MAXIMIZE, SWP_MINIMIZE,
or SWP_RESTORE. Only a frame window can maximize and minimize by default. For any
other window, an application must provide support for these actions in the corresponding
window procedure.

Figure 2-22 on page 2-32 shows how to maximize a frame window.

Chapter 2. Windows 2-31

SRR

b 5”2\» SR i R "
T e ggggw .

o - . e .
>;x e S % Ei ‘%Sn e 7
- ~= i e a
. &'sm - .
M%’wszw e e

: -
. - ms‘ -

-t

o

=
i
o

| HHD thim
m,zx%vgm 7

L mmgw i

L o .

%

- E:é;l%;ge ”awmx

T%,,“fizuxmx

m WPos(E? o

)k 4
o
o

o L Rl o 5/ ‘,,s\
 swpCurrenty, - /x Sto T‘ﬁg
s 1?3 R & Tl ,,ﬁ:w},mm‘yggg
x g ent, .
o W:a,é& &
.
- »ﬂ,m hfzs
S
z:fzzéi

»xz;mm@‘m

ur o o .
o = e S
dEvama: @xugg wéa% gmm !
xx

; -
e e

- - A}igé,, o
- xm;wﬁ . ‘“;m(;iv/

it

i“‘ e g
n%% ‘ . i& . - s&)}“(«:&‘;y L zwigif L L,gmx
uﬁ«; inm indowPos (hwndFr am&;“ Eéxfg:@i

;ia
e

T
coa

- . e
“" . . ggzwmm‘v
L “;&m ﬂx“?;&* gg}&wm .
. ;é “w%w o

z,

- o mﬁm

mms%

e

e
o

%angg .

o

.
s e

mm?;@,@ : .

o

?ﬁ [ﬂ%ﬁﬁﬂwﬂgiié

s
e

i?*ﬂéam

Figure 2-22. Maximizing a Frame Window

Destroying a Window

e
e

L o
2 %k - e
. ,mgmzﬂ@gggsgém o %i»«u

o G
o rmffm e ﬂ:;“
.
,xnﬂﬁweg;;‘égﬁmg‘f‘&w.ﬁ‘c%t
@ns ;z;g@ mxm 1; -
o o
o “ &w

s
L
e

o m“‘
% .
o .

i ~

o

s .

o ¥ i o0

o %;gt;nx%m,‘% e o

- »f»‘:‘ff@?ﬁj““iw‘@;g x‘g&n’ﬂggi
e .

. :

. }ﬁ‘gm o gznz :‘«‘}%mﬂmmm
L

i
?L

e ;%smus
L

s

~wi~wagv;x
- .
s ‘5 L i‘?;,w« -
- ?“?’;iég W«;«;rg S
o .
s
i ,ms;;;’%gzg; “Wmm S
%ﬂgvmxmg, o
o "é{ - -
‘Sy - i o
o 2%&!?;;5‘,@,;&‘@;: e ,ma%x;
e -

- mgﬁnm
-
.
- am’; Ei %au&x igw,ga,itm o
§ M“ -

i o i
i e e
i . xm?ﬁ i oy »«mcé&r
e -
. - e
i&fiéxr
.
.

An application can destroy a window by using the WinDestroyWindow function. Figure 2-23
shows how to create and then destroy a control window:

T
S
o

o

mm}(

Figure 2-23. Destroying a Window

2-32 PM Basic Programming Guide

msimms ‘f

ann
=

o »ww o
.
-

2,,,mm~

. ﬁ .
mmw"" s i i
Am%, e i

e Snn
*5;'#:3 x,v,‘ i?z, ;3 .

fwm‘

i

mmw -
e

rvggw

Related Functions
This section covers the functions that are related to Windows.

WinBeginEnumWindows
This function begins the enumeration process for all of the immediate child windows of a
specified window.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */
#include <os2.h> '

HENUM WinBeginEnumWindows (HWND hwnd)

Parameters
hwnd (HWND) - input
Handle of the window whose child windows are to be enumerated.

HWND_DESKTOP Enumerate all main windows
HWND_OBJECT Enumerate all object windows
Other Enumerate all immediate children of the specified window.

Returns
henumHenum (HENUM) - returns
Enumeration handle.

Chapter 2. Windows 2-33

WinCreateStdWindow

This function creates a standard window.

Syntax

#define INCL_WINFRAMEMGR /* Or use INCL_WIN, INCL_PM, Also in COMON section */

#include <o0s2.h>

HWND WinCreateStdWindow (HWND hwndParent, ULONG fiStyle,
PULONG pfiCreateFlags, PSZ pszClassClient,
PSZ pszTitle, ULONG fiStyleClient,
HMODULE Resource, ULONG ulid,
PHWND phwndClient)

Parameters
hwndParent (HWND) — input
Parent-window handle.

fIStyle (ULONG) — input
Frame-window style.

pflCreateFlags (PULONG) — input
Frame-creation flags.

pszClassClient (PSZ) — input
Client-window class name.

pszTitle (PSZ) - input
Title-bar text.

fiStyleClient (ULONG) ~ input
Client-window style.

Resource (HMODULE) - input
Resource identifier.

NULLHANDLE Resource definitions are contained in the application .EXE file.

Other The module handle returned by the DosLoadModule or
DosQueryModuleHandle call of the Dynamic Link Library (DLL)
containing the resource definitions.

ulld (ULONG) — input
Frame-window identifier.

phwndClient (PHWND) - output
Client-window handle.

2-34 PM Basic Programming Guide

Returns
hwndFrame (HWND) - returns
Frame-window handle.

Chapter 2. Windows 2-35

WinCreateWindow

This function creates a new window of class pszClass and returns hwnd.

Syntax

#include <o0s2.h>

HWND WinCreateWindow

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

(HWND hwndParent, PSZ pszClass, PSZ pszName,
ULONG fIStyle, LONG x, LONG y, LONG cx, LONG cy,
HWND hwndOwner, HWND hwndinsertBehind,

ULONG id, PVOID pCtiData, PVOID pPresParams)

Parameters
hwndParent (HWND) - input
Parent-window handie.

pszClass (PSZ) — input
Registered-class name.

pszName (PSZ) — input
Window text.

fiIStyle (ULONG) - input
Window style.

X (LONG) - input

x-coordinate of window position.

y (LONG) = input

y-coordinate of window position.

cx (LONG) ~ input

Width of window, in window coordinates.

cy (LONG) — input

Height of window, in window coordinates.

hwndOwner (HWND) — input
Owner-window handle.

hwndinsertBehind (HWND) —

Sibling-window handle.

id (ULONG) - input
Window identifier.

pCtiData (PVOID) — input
Pointer to control data.

2-36 PM Basic Programming Guide

input

pPresParams (PVOID) - input
Presentation parameters.

Returns
hwnd (HWND) - returns
Window handle.

NULLHANDLE Error occurred

Other Window handle.

Chapter 2. Windows

2-37

WinDestroyWindow

This call destroys a window and its child windows.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, Also in COMON section */

#include <os2.h>

BOOL WinDestroyWindow (HWND hwnd)

Parameters
hwnd (HWND) — input
Window handle.

Returns
rc (BOOL) - returns
Window-destroyed indicator.

TRUE Window destroyed
FALSE Window not destroyed.

2-38 PM Basic Programming Guide

WinEnableWindow

This function sets the window enabled state.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, =/

#include <os2.h>

BOOL WinEnableWindow (HWND hwnd, BOOL fNewEnabled)

Parameters
hwnd (HWND) - input
Window handle.

fNewEnabled (BOOL) — input
New enabled state.

TRUE Set window state to enabled
FALSE Set window state to disabled.

Returns
rc (BOOL) — returns
Window enabled indicator.

TRUE Window enabled state successfully updated
FALSE Window enabled state not successfully updated.

Chapter 2. Windows 2-39

WinEndEnumWindows
This function ends the enumeration process for a specified enumeration.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOL WinEndEnumWindows (HENUM henum)

Parameters
henum (HENUM) — input
Enumeration handle.

Returns
rc (BOOL) - returns
Success indicator.

TRUE Successful completion
FALSE Error occurred.

2-40 PM Basic Programming Guide

WinGetMaxPosition
The WinGetMaxPosition function fills an SWP structure with the maximized-window size and
position.

Syntax

#define INCL_WINFRAMEMGR /* Or use INCL_WIN, INCL_PM, x/

#include <os2.h>

BOOL WinGetMaxPosition (HWND hwnd, PSWP pswp)

Parameters
hwnd (HWND) - input
Frame-window handle.

pswp (PSWP) — output
Set window position structure.

Returns
fSuccess (BOOL) - returns
Success indicator.

TRUE Successful completion.
FALSE Error occurred.

Chapter 2. Windows 2-41

WinGetMinPosition

This function returns the position to which a window is minimized.

Syntax

#define INCL_WINFRAMEMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOL WinGetMinPosition (HWND hwnd, PSWP pswp, PPOINTL pptl)

Parameters
hwnd (HWND) — input
Frame-window handle.

pswp (PSWP) - output
Set window position structure.

pptl (PPOINTL) — input
Preferred position.

NULL System is to choose the position
Other System is to choose the position nearest to the specified point.

Returns
rc (BOOL) — returns
Success indicator.

TRUE Successful completion.

The WS_MINIMIZE style is set for hwnd. This enables the system to
determine which other frame windows are minimized, during the enumeration
process performed by this function.

Also, the window words QWS_XMINIMIZE and QWS_YMINIMIZE for hwnd
are initialized. This enables the system to ensure that no windows that have
been, or are being, minimized use the same position.

FALSE Error occurred.

2-42 PM Basic Programming Guide

WinGetNextWindow

This function gets the window handie of the next window in a specified enumeration list.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, =/
#include <o0s2.h>

HWND WinGetNextWindow (HENUM henum)

Parameters
henum (HENUM) - input
Enumeration handie.

Returns
hwndNext (HWND) — returns
Next window handle in enumeration list.

NULLHANDLE Error occurred, henum was invalid, or all the windows have been
enumerated.
Other Next window handle.

Chapter 2. Windows

2-43

Winlnitialize
This function initializes the PM programming interface facilities for use by an application.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, Also in COMON section %/

#include <os2.h>

HAB Winlnitialize (ULONG fiOptions)

Parameters
flOptions (ULONG) — input
Initialization options.

0 The initial state for newly created windows is that all messages for the window are
available for processing by the application.

This is the only option available in PM programming interface.

Returns
hab (HAB) ~ returns
Anchor-block handle.

NULLHANDLE An error occurred.
Other Anchor-block handle.

2-44 PM Basic Programming Guide

WinlisChild

This function tests if one window is a descendant of another window.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>
BOOL. WinisChild (HWND hwnd, HWND hwndParent)

Parameters
hwnd (HWND) - input
Child-window handle.

hwndParent (HWND) — input
Parent-window handie.

Returns
fRelated (BOOL) - returns
Related indicator.

TRUE Child window is a descendant of the parent window, or is equal to it

FALSE Child window is not a descendant of the parent, or is an Object Window (even
if hwndParent is specified as the desktop or HWND_DESKTOP), or an error
occurred.

Chapter 2. Windows 2-45

WinlsThreadActive

This function determines whether the active window belongs to the calling execution thread.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, x/

#include <o0s2.h>

BOOL WinlsThreadActive (HAB hab)

Parameters
hab (HAB) - input
Anchor-block handle of calling thread.

Returns
rc (BOOL) — returns
Active-window indicator.

TRUE Active window belongs to calling thread
FALSE Active window does not belong to calling thread.

2-46 PM Basic Programming Guide

WinlsWindow

This function determines if a window handle is valid.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, =/
#include <o0s2.h>

BOOL WinisWindow (HAB hab, HWND hwnd)

Parameters
hab (HAB) - input
Anchor-block handle.

hwnd (HWND) - input
Window handle.

Returns
rc (BOOL) — returns
Validity indicator.

TRUE Window handle is valid
FALSE Window handle is not valid.

Chapter 2. Windows 2-47

WinlsWindowEnabled

This function returns the enabled/disabled state of a window.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, =/

#include <os2.h>
BOOL WinisWindowEnabled (HWND hwnd)

Parameters
hwnd (HWND) - input
Window handle.

Returns
rc (BOOL) - returns
Enabled-state indicator.

TRUE Window is enabled
FALSE Window is not enabled.

2-48 PM Basic Programming Guide

WinlsWindowShowing

This function determines whether any part of the window hwnd is physically visible.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, Also in COMON section */

#include <o0s2.h>

BOOL WinisWindowShowing (HWND hwnd)

Parameters
hwnd (HWND) - input
Window handle.

Returns
rc (BOOL) — returns
Showing state indicator.

TRUE Some part of the window is displayed on the screen
FALSE No part of the window is displayed on the screen.

Chapter 2. Windows

2-49

WinlsWindowVisible

This function returns the visibility state of a window.

‘Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOL WinisWindowVisible (HWND hwnd)

Parameters
hwnd (HWND) — input
Window handle.

Returns
rc (BOOL) — returns
Visibility-state indicator.

TRUE Window and all its parents have the WS_VISIBLE style bit set on
FALSE Window or one of its parents have the WS_VISIBLE style bit set off.

2-50 PM Basic Programming Guide

WinMultWindowFromiDs

This function finds the handles of child windows that belong to a specified window and have
window identities within a specified range.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

LONG WinMultWindowFromiDs (HWND hwndParent, PHWND prghwnd,
ULONG idFirst, ULONG idLast)

Parameters
hwndParent (HWND) - input
Parent-window handle.

prghwnd (PHWND) - output
Window handles.

idFirst (ULONG) - input
First window identity value in the range (inclusive).

idLast (ULONG) — input
Last window identity value in the range (inclusive).

Returns
IWindows (LONG) - returns
Number of window handles returned.

0 No window handles returned
Other Number of window handles returned.

Chépter 2. Windows 2-51

WinQueryActiveWindow

This function returns the active window for HWND_DESKTOP, or other parent window.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <o0s2.h>

HWND WinQueryActiveWindow (HWND hwndParent)

Parameters
hwndParent (HWND) — input
Parent-window handle for which the active window is required.

HWND_DESKTOP The desktop-window handle that causes this function to return the
top-level frame window. ‘
Other . Specified parent-window handle.

Returns
hwndActive (HWND) - returns
Active-window handle.

NULLHANDLE No window is active
Other Active-window handle.

2-52 PM Basic Programming Guide

WinQueryDesktopWindow

This function returns the desktop-window handle.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>
HWND WinQueryDesktopWindow (HAB hab, HDC hdc)

Parameters
hab (HAB) — input
Anchor-block handle.

hdc (HDC) - input
Device-context handle.

NULLHANDLE Default device (the screen).

Returns
hwndDeskTop (HWND) - returns
Desktop-window handle.

NULLHANDLE Error occurred
Other Desktop-window handle.

Chapter 2. Windows . 2-53

WinQueryFocus
This function returns the focus window. It is NULLHANDLE if there is no focus window.

Syntax

#define INCL_WININPUT /+* Or use INCL_WIN, INCL_PM, */

#include <o0s2.h>

HWND WinQueryFocus (HWND hwndDeskTop)

Parameters
hwndDeskTop (HWND) — input
Desktop-window handle.

HWND_DESKTOP The desktop-window handle
Other Specified desktop-window handle.

Returns
hwndFocus (HWND) - returns
Focus-handie.

NULL Error occurred or no focus window.

2-54 PM Basic Programming Guide

WinQueryObjectWindow

This function returns the desktop object window handle.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <o0s2.h>
HWND WinQueryObjectWindow (HWND hwndDesktop)

Parameters
hwndDesktop (HWND) — input
Desktop-window handle.

HWND_DESKTOP The desktop-window handle
Other Specified desktop-window handle.

Returns
hwndObject (HWND) — returns
Object-window handle.

NULLHANDLE Error occurred.

Chapter 2. Windows 2-55

WinQuerySysModalWindow

This function returns the current system modal window.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, =/

#include <o0s2.h>
HWND WinQuerySysModalWindow (HWND hwndDesktop)

Parameters
hwndDesktop (HWND) — input
Desktop-window handie.

HWND_DESKTOP The desktop-window handle
Other Specified desktop-window handle.

Returns
hwndSysModal (HWND) — returns
Handle of system modal window.

NULLHANDLE No system modal window
Other Handle of system modal window.

2-56 PM Basic Programming Guide

WinQueryWindow
This function returns the handle of a window that has a specified relationship to a specified
window.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <o0s2.h>

HWND WinQueryWindow (HWND hwnd, LONG ICode)

Parameters
hwnd (HWND) — input
Handle of window to query.

ICode (LONG) — input
Type of window information.

QW_NEXT Next window in z-order (window below).

QW_PREV Previous window in z-order (window above).

QW_TOP ‘ Topmost child window.

QW_BOTTOM Bottommost child window.

QW_OWNER Owner of window.

QW_PARENT Parent of window.

QW_NEXTTOP Returns the next window of the owner window hierarchy subject

to their z-ordering.
The enumeration is evaluated in this order:

1. The hierarchy of windows owned by this window in their
z-order. :

2. The hierarchy of windows of the next z-ordered window
having the same owner as this window.

3. The hierarchy of windows in their z-order having the same
owner as the owner of this window. This step is repeated
until the top of the owner tree for this window is reached.

4. The hierarchy of windows in their z-order of unowned
windows.

QW_PREVTOP Returns the previous main window, in the enumeration order
defined by QW_NEXTTOP.

QW_FRAMEOWNER Returns the owner of hwnd normalized so that if shares the
same parent as hwnd.

Chapter 2. Windows 2-57

Returns
hwndRelated (HWND) - returns
Window handle.

2-58 PM Basic Programming Guide

WinQueryWindowPos

This function queries the window size and position of a visible window.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <o0s2.h>

BOOL WinQueryWindowPos (HWND hwnd, PSWP pswp)

Parameters
hwnd (HWND) - input
Window handle.

pswp (PSWP) — output
SWP structure.

Returns
rc (BOOL) — returns
Success indicator.

TRUE Successful completion
FALSE Error occurred.

Chapter 2. Windows 2-59

WinQueryWindowPir

This function retrieves a pointer value from the memory of the reserved window word.

Syntax

#define INCL_WINWINDOWMGR /+ Or use INCL_WIN, INCL_PM, =/

#include <os2.h>
PVOID WinQueryWindowPtr (HWND hwnd, LONG index)

Parameters
hwnd (HWND) — input
Window handle which has the pointer to retrieve.

index (LONG) - input
Zero-based index of the pointer value to retrieve.

Returns
pRet (PVOID) - returns
Pointer value.

NULL Error occurred.
Other Pointer value.

2-60 PM Basic Programming Guide

WinQueryWindowRect

This function returns a window rectangle.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, Also in COMON section */

#include <os2.h>

BOOL WinQueryWindowRect (HWND hwnd, PRECTL prciDest)

Parameters
hwnd (HWND) - input
Window handle whose rectangle is retrieved.

preiDest (PRECTL) — output
Window rectangle.

Returns
rc (BOOL) - returns
Rectangle-returned indicator.

TRUE Rectangle successfully returned
FALSE Rectangle not successfully returned.

Chapter 2. Windows 2-61

WinQueryWindowULong
This function obtains the unsigned long integer value, at a specified offset, from the memory
of a reserved window word, of a given window.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, ;/

#include <os2.h>
ULONG WinQueryWindowULong (HWND hwnd, LONG index)

Parameters
hwnd (HWND) - input
Handle of window to be queried.

index (LONG) - input
Zero-based index into the window words of the value te be queried.

QWL_HMQ Handle of message queue of window. Note that the
leading 16 bits of this value are zero.
QWL_STYLE Window style.

QWL_HWNDFOCUSSAVE Window handle of the child windows of this window that
last possessed the focus when this frame window was last
deactivated.

QWL_USER A ULONG value for applications to use is present at offset
QWL_USER in windows of the following preregistered
window classes:

WC_FRAME (includes dialog windows)
WC_COMBOBOX
WC._BUTTON
WC_MENU
WC_STATIC
WC_ENTRYFIELD
WC_LISTBOX
WC_SCROLLBAR
WC_TITTLEBAR
WC_MLE
WC_SPINBUTTON
WC_CONTAINER
WC_SLIDER
WC_VALUESET
WC_NOTEBOOK

2-62 PM Basic Programming Guide

This value can be used to place application-specific data
in controls.

QWL_DEFBUTTON The default push button for a dialog.

The default push button is the one that sends its
WM_COMMAND message when the enter key is pressed.

QWL_PENDATA Reserved for use by operating system extensions. It
allows an operating system extension to store data on a
per window basis.

Other Zero-based index.
Returns

ulValue (ULONG) - returns
Value contained in the window word.

Chapter 2. Windows 2-63

WinQueryWindowUShort

This function obtains the unsigned short integer value at a specified offset from the reserved
window word’s memory of a given window.

Syntax

#define INCL_WINWINDOWMGR /% Or use INCL_WIN, INCL_PM, x/
#include <o0s2.h>

USHORT WinQueryWindowUShort (HWND hwnd, LONG index)

Parameters
hwnd (HWND) - input
Handle of window to be queried.

index (LONG) - input
Zero-based index into the window words of the value to be queried.

Qws_ID Window identity. The value of the id parameter of the
‘ WinCreateWindow function.

QWS_FLAGS These indicators apply only to frame or dialog windows, and
contain combinations of the following indicators:

FF_ACTIVE ' Frame window is displayed in the
active state.

FF_DIALOGBOX Frame window is being used as a
dialog box.

FF_DLGDISMISSED Dialog has been dismissed by the
WinDismissDIg function.

FF_FLASHHILITE Window is currently flashed. This
indicator toggles with each flash.

FF_FLASHWINDOW Frame window is flashing.

FF_OWNERDISABLED Window’s owner is disabled. This
indicator is only set if the window and
its owner are siblings.

FF_OWNERHIDDEN Frame window is hidden as a result of
its owner being hidden or minimized.
This indicator is set only if the window
and its owner are siblings.

: FF_SELECTED Frame window is selected.
QWS_RESULT Dialog-result parameter, as established by the WinDismissDIg
function.

2-64 PM Basic Programming Guide

QWS_XRESTORE The x-coordinate of the position to which the window is restored.
See also the QWS_CYRESTORE value.

QWS_YRESTORE The y-coordinate of the position to which the window is restored.
See also the QWS_CYRESTORE value.

QWS_CXRESTORE The width to which the window is restored.
See also the QWS_CYRESTORE value.

QWS_CYRESTORE The height to which the window is restored.

These values are only valid while the window is maximized or
minimized (that is, while either the WS_MINIMIZED or
WS_MAXIMIZED window style indicators are set). Changing
these values with the WinSetWindowUShort call alters the
restore size and position.

QWS_XMINIMIZE The x-coordinate of the position to which the window is
minimized. [f this value is -1, the window has not been
minimized.

See also the QWS_YMINIMIZE value.

QWS_YMINIMIZE The y-coordinate of the position to which the window is
minimized.
When the window is minimized for the first time an arbitrary
position is chosen. Changing these values with the
WinSetWindowUShort call alters the position of the minimized
window, but only when the window is not in a minimized state.

Other Zero-based index.

Returns
usValue (USHORT) - returns
Value contained in the indicated window word.

Chapter 2. Windows 2-65

WinRequestMutexSem
WinRequestMutexSem requests ownership of a mutex semaphore or waits for a Presentation
Manager message.

Syntax

#define INCL_WINMESSAGEMGR

#include <os2.h>
APIRET WinRequestMutexSem (HMTX hmtx, ULONG ulTimeout)

Parameters
hmix (HMTX) - input
The handle of the mutex semaphore to request.

ulTimeout (ULONG) - input
Time-out in milliseconds.

Returns
ulrc (APIRET) - returns
Return Code.

2-66 PM Basic Programming Guide

WinSetActiveWindow

This function makes the frame window the active window.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, Also in COMON section */
#include <os2.h>

BOOL WinSetActiveWindow (HWND hwndDeskTop, HWND hwnd)

Parameters
hwndDeskTop (HWND) — input
Desktop-window handle.

HWND_DESKTOP The desktop-window handle
Other Specified desktop-window handle.

hwnd (HWND) - input
Window handle.

Returns
rc (BOOL) - returns
Active-window-set indicator.

TRUE Active window is set
FALSE Active window is not set.

Chapter 2. Windows 2-67

WinSetFocus
This fungtion sets the focus window.

Syntax

#define INCL_WININPUT /* Or use INCL_WIN, INCL_PM, Also in COMON section */

#include <os2.h>

BOOL WinSetFocus (HWND hwndDeskTop, HWND hwndNewFocus)

Parameters
hwndDeskTop (HWND) — input
Desktop-window handle.

HWND_DESKTOP The desktop-window handle
Other Specified desktop-window handle.

hwndNewFocus (HWND) — input
Window handle to receive the focus.

Returns
rc (BOOL) — returns
Success indicator.

TRUE Successful completion
FALSE Error occurred.

2-68 PM Basic Programming Guide

WinSetMultWindowPos

This function performs the WinSetWindowPos function for cswp windows, using pswp, an
array of structures whose elements correspond to the input parameters of
WinSetWindowPos.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <o0s2.h>

BOOL WinSetMultWindowPos (HAB hab, PSWP pswp, ULONG cswp)

Parameters
hab (HAB) — input
Anchor-block handle.

pswp (PSWP) — input
An array of set window position (SWP) structures.

cswp (ULONG) — input
Window count.

Returns
rc (BOOL) — returns
Positioning success indicator.

TRUE Positioning succeeded
FALSE Positioning failed.

Chapter 2. Windows 2-69

WinSetOwner
This function changes the owner window of a specified window.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOL WinSetOwner (HWND hwnd, HWND hwndNewOwner)

Parameters
hwnd (HWND) ~ input
Window handle whose owner window is to be changed.

hwndNewOwner (HWND) — input
Handle of the new owner.

NULLHANDLE The window becomes “disowned”
Other Handle of the new owner window.

Returns
rc (BOOL) - returns
Success indicator.

TRUE Successful completion
FALSE Error occurred.

2-70 PM Basic Programming Guide

WinSetParent

This function sets the parent for hwnd to hwndNewParent.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, %/
#include <o0s2.h>

BOOL WinSetParent (HWND hwnd, HWND hwndNewParent, BOOL fRedraw)

Parameters
hwnd (HWND) — input
Window handie.

hwndNewParent (HWND) - input
New parent window handle.

fRedraw (BOOL) - input
Redraw indicator.

TRUE if hwnd is visible, any necessary redrawing of both the old parent and the new
parent windows is performed.

FALSE No redrawing of the old and new parent windows is performed. This avoids
an extra device update when subsequent calls cause the windows to be
redrawn.

Returns
rc (BOOL) - returns
Parent-changed indicator.

TRUE Parent successfully changed
FALSE Parent not successfully changed.

Chapter 2. Windows 2-71

WinSetSysModalWindow

This function makes a window become the system-modal window, or ends the system-modal
state. .

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <o0s2.h>

BOOL WinSetSysModalWindow (HWND hwndDesktop, HWND hwnd)

Parameters
hwndDesktop (HWND) — input
Desktop-window handle, or HWND_DESKTOP.

hwnd (HWND) — input
Handle of window to become system-modal window.

Returns
rc (BOOL) — returns
Success indicator.

TRUE Successful completion
FALSE Error occurred.

2-72 PM Basic Programming Guide

WinSetWindowBits

This function sets a number of bits into the memory of the reserved window words.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOL WinSetWindowBits (HWND hwnd, LONG index, ULONG fIData,
ULONG fiMask)

Parameters
hwnd (HWND) ~ input
Window handle.

index (LONG) — input
Zero-based index of the value to be set.

QWL_HMQ Handle of message queue of window. Note that the
leading 16 bits of this value are zero.
QWL_STYLE Window style.

QWL_HWNDFOCUSSAVE Window handle of the child windows of this window that
last possessed the focus when this frame window was last
deactivated.

QWL_USER A ULONG value for applications to use is present at offset
QWL_USER in windows of the following preregistered
window classes:

WC_FRAME (includes dialog windows)
WC_COMBOBOX
WC_BUTTON
WC_MENU
WC_STATIC
WC_ENTRYFIELD
WC_LISTBOX
WC_SCROLLBAR
WC_TITTLEBAR
WC_MLE
WC_SPINBUTTON
WC_CONTAINER
WC_SLIDER
WC_VALUESET
WC_NOTEBOOK

Chapter 2. Windows 2-73

QWL_DEFBUTTON

QWL_PENDATA

Other
flData (ULONG) — input

This value can be used to place application-specific data
in controls.

The default push button for a dialog.

The default push button is the one that sends its
WM_COMMAND message when the enter key is pressed.

Reserved for use by operating system extensions. It
allows an operating system extension to store data on a
per window basis.

Zero-based index.

Bit data to store in the window words.

fIMask (ULONG) - input
Bits to be written indicator.

Returns
rc (BOOL) — returns
Success indicator.

TRUE Successful completion

FALSE Error occurred.

2-74 PM Basic Programming Guide

WinSetWindowPos

This function allows the general positioning of a window.

Note: Messages may be received from other processes or threads during the processing of
this function.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */
#include <o0s2.h>

BOOL WinSetWindowPos (HWND hwnd, HWND hwndinsertBehind, LONG x,
LONG y, LONG cx, LONG cy, ULONG fl)

Parameters
hwnd (HWND) - input
Window handle.

hwndinsertBehind (HWND) - input
Relative window-placement order.

HWND_TOP Place hwnd on top of all siblings
HWND_BOTTOM Place hwnd behind all siblings
Other Identifies the sibling window behind which hwnd is to be placed.

x (LONG) - input
Window position, x-coordinate.

y (LONG) — input
Window position, y-coordinate.

cX (LONG) — input
Window size.

cy (LONG) - input
Window size.

fl (ULONG) — input
Window-positioning options.

SWP_SIZE Change the window size.

SWP_MOVE Change the window x,y position.
SWP_ZORDER Change the relative window placement.
SWP_SHOW Show the window.

SWP_HIDE Hide the window.

SWP_NOREDRAW Changes are not redrawn.

Chapter 2. Windows 2-75

SWP_NOADJUST Do not send a WM_ADJUSTWINDOWPQOS message before
moving or sizing.
SWP_ACTIVATE Activate the hwnd window if it is a frame window. This indicator
~ has no effect on other windows.

The frame window is made the topmost window, unless
SWP_ZORDER is specified also in which instance the
hwndlnsertBehind window is used.

SWP_DEACTIVATE Deactivate the hwnd window if it is a frame window. This
indicator has no effect on other windows.

The frame window is made the bottommost window, unless
SWP_ZORDER is specified, in which instance the
hwndinsertBehind window is used.

SWP_MINIMIZE Minimize the window. This indicator has no effect if the window
is in a minimized state, and is also mutually exclusive with
SWP_MAXIMIZE and SWP_RESTORE.

SWP_MAXIMIZE Maximize the window. This indicator has no effect if the window
is in a maximized state, and is also mutually exclusive with
SWP_MINIMIZE and SWP_RESTORE.

SWP_RESTORE Restore the window. This indicator has no effect if the window is
in its normal state, and is also mutually exclusive with
SWP_MINIMIZE and SWP_MAXIMIZE.

The position and size of the window in its normal state is
remembered in its window words when it is first maximized or
minimized, although these values can be altered by use of the
WinSetWindowUShort function.

The window is restored to the position and size remembered in
its window words, unless the SWP_MOVE or SWP_SIZE
indicators are set. These indicators cause the position and size
values specified in this function to be used.

Returns
rc (BOOL) — returns
Repositioning indicator.

TRUE - Window successfully repositioned
FALSE Window not successfully repositioned.

2-76 PM Basic Programming Guide

WinSetWindowPtr

This function sets a pointer value into the memory of the reserved window words.

Syntax

#define INCL_WINWINDOWMGR /+ Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOL WinSetWindowPtr (HWND hwnd, LONG Ib, PVOID pp)

Parameters
hwnd (HWND) - input
Window handle.

Ib (LONG) - input
Zero-based index into the window words.

pp (PVOID) - input
Pointer value to store in the window words.

Returns
rc (BOOL) — returns
Success indicator.

TRUE Successful completion
FALSE Error occurred.

Chapter 2. Windows 2-77

WinSetWindowULong

This function sets an unsigned, long integer value into the memory of the reserved window

2-78

words.

Syntax

#include <o0s2.h>

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

BOOL WinSetWindowULong (HWND hwhd, LONG index, ULONG ul)

Parameters
hwnd (HWND) — input
Window handle.

index (LONG) - input

Zero-based index of the value to be set.

QWL_HMQ

QWL_STYLE
QWL_HHEAP
QWL_HWNDFOCUSSAVE

QWL_USER

QWL_DEFBUTTON

PM Basic Programming Guide

Handle of message queue of window. Note that the
leading 16 bits of this value are zero.

Window style.
Heap handle used by child windows of this window.

Window handle of the child windows of this window that
last possessed the focus when this frame window was last
deactivated.

A ULONG value for applications to use is present at offset
QWL_USER in windows of the following preregistered
window classes:

WC_FRAME (includes dialog windows)
WC_LISTBOX

WC_BUTTON

WC_STATIC

WC_ENTRYFIELD

WC_SCROLLBAR

WC_MENU

This value can be used to place application-specific data
in controls.

The default push button for a dialog.

The default push button is the one that sends its
WM_COMMAND message when the enter key is pressed.

QWL_PENDATA Reserved for use by operating system extensions. It
allows an operating system extension to store data on a

per window basis.

Other Zero-based index.

ul (ULONG) - input
Unsigned, long integer value to store in the window words.

Returns
rc (BOOL) - returns
Success indicator.

TRUE Successful completion
FALSE Error occurred.

Chapter 2. Windows 2-79

WinSetWindowUShort

This function sets an unsigned, short integer value into the memory of the reserved window

words.

Syntax

#include <o0s2.h>

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, =/

BOOL WinSetWindowUShort (HWND hwnd, LONG index, USHORT us)

Parameters
hwnd (HWND) — input
Window handle.

index (LONG) - input

Zero-based index of the value to be set.

QWL_HMQ

QWL_STYLE
QWL_HWNDFOCUSSAVE

QWL_USER

2-80 PM Basic Programming Guide

Handle of message queué of window. Note that the
leading 16 bits of this value are zero.

Window style.

Window handle of the child windows of this window that
last possessed the focus when this frame window was last
deactivated.

A ULONG value for applications to use is present at offset
QWL_USER in windows of the following preregistered
window classes:

WC_FRAME (includes dialog windows)

WC_COMBOBOX
WC_BUTTON
WC_MENU
WC_STATIC
WC_ENTRYFIELD
WC_LISTBOX
WC_SCROLLBAR
WC_TITTLEBAR
WC_MLE
WC_SPINBUTTON
WC_CONTAINER
WC_SLIDER
WGC_VALUESET
WC_NOTEBOOK

This value can be used to place application-specific data
in controls.

QWL_DEFBUTTON The default push button for a dialog.

The default push button is the one that sends its
WM_COMMAND message when the enter key is pressed.

QWL_PENDATA Reserved for use by operating system extensions. It
allows an operating system extension to store data on a
per window basis.

Other Zero-based index.

us (USHORT) - input
Unsigned, short integer value to store in the window words.

Returns
rc (BOOL) - returns
Success indicator.

TRUE Successful completion
FALSE Error occurred.

Chapter 2. Windows 2-81

WinShowWindow

This function sets the visibility state of a window.

Syntax

#define INCL_WINWINDOWMGR /+ Or use INCL_WIN, INCL_PM, Also in COMON section */
#include <os2.h>

BOOL WinShowWindow (HWND hwnd, BOOL fNewVisibility)

Parameters
hwnd (HWND) — input
Window handle.

fNewVisibility (BOOL) - input
New visibility state.

TRUE Set window state visible
FALSE Set window state invisible.

Returns
rc (BOOL) — returns
Visibility changed indicator.

TRUE Window visibility successfully changed
FALSE Window visibility not successfully changed.

2-82 PM Basic Programming Guide

WinStartApp

This function starts an application.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, x/
#include <o0s2.h>

HAPP WinStartApp (HWND hwndNotify, PPROGDETAILS pDetails, PSZ pParams,
PVOID pReserved, ULONG ulOptions)

Parameters
hwndNotify (HWND) — input
Noatification-window handle.

NULLHANDLE Do not post the notification message
Other Post the notification message to this window.

pDetails (PPROGDETAILS) - input
Program list structure.

pParams (PSZ) — input
Input parameters for the application to be started.

NULL There are no parameters to be passed to the application
Other The parameters to be passed to the application.

pReserved (PVOID) - input
Start data.

ulOptions (ULONG) — input
Option indicators.

0 No options selected.

SAF_INSTALLEDCMDLINE The command line parameters installed in the program
starter list are used; the pParams parameter is ignored.

SAF_STARTCHILDAPP The specified application is started as a child session of
the session from which WinStartApp is issued. The
calling application may terminate the called application
with a WinTerminateApp function.

Returns
happ (HAPP) — returns
Application handie.

NULL Application not started
Other Application handle.

Chapter 2. Windows 2-83

WinTerminate
This function terminates an application thread’s use of the Presentation Manager and
releases all of its associated resources.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, Also in.COMON section */

#include <o0s2.h>

BOOL WinTerminate (HAB hab)

Parameters
hab (HAB) - input
Anchor-block handle.

Returns
rc (BOOL) — returns
Termination indicator.

TRUE Application usage of Presentation Manager successfully terminated
FALSE Application usage of Presentation Manager not successfully terminated, or
Winlnitialize has not been issued on this thread.

2-84 PM Basic Programming Guide

WinTerminateApp

This function terminates an application previously started with the WinStartApp function.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <o0s2.h>

BOOL WinTerminateApp (HAPP happ)

Parameters
happ (HAPP) — input
Anchor-block handle.

Returns
rc (BOOL) — returns
Termination indicator.

TRUE Application successfully terminated
NULL Error occurred.

Chapter 2. Windows

2-85

WinWaitEventSem

WinWaitEventSem waits for an event semaphore to be posted or for a Presentation Manager
message.)

Syntax

#define INCL_WINMESSAGEMGR

#include <o0s2.h>

APIRET WinWaitEventSem (HEV hev, ULONG ulTimeout)

Parameters
hev (HEV) — input
The handle of the event semaphore to wait for.

ulTimeout (ULONG) — input
Time-out in milliseconds.

Returns
rc (APIRET) -~ returns
Return Code.

2-86 PM Basic Programming Guide

WinWaitMuxWaitSem

WinWaitMuxWaitSem waits for a muxwait semaphore to clear or for a Presentation Manager
message.

Syntax

#define INCL_WINMESSAGEMGR

#include <o0s2.h>

APIRET WinWaitMuxWaitSem (HMUX hmux, ULONG ulTimeout,
PULONG pulUser)

Parameters
hmux (HMUX) — input
The handle of the muxwait semaphore to wait for.

ulTimeout (ULONG) - input
Time-out in milliseconds.

SEM_IMMEDIATE_RETURN (0) - WinWaitMuxWaitSem returns without blocking the
calling thread.

SEM_INDEFINITE_WAIT (minus.1) WinWaitMuxWaitSem blocks the calling thread
indefinitely.

pulUser (PULONG) - output
Pointer to receive the user field.

Returns
ulrc (APIRET) — returns
Return Code.

Chapter 2. Windows 2-87

WinWindowFromiD

This function returns the handle of the child window with the specified identity.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>
HWND WinWindowFromID (HWND hwndParent, ULONG id)

Parameters
hwndParent (HWND) - input
Parent-window handle.

id (ULONG) - input
Identity of the child window.

Returns
hwnd (HWND) - returns
Window handle.

NULLHANDLE No child window of the specified identity exists
Other Child-window handle.

2-88 PM Basic Programming Guide

WinWindowFromPoint

This function finds the window below a specified point, that is a descendant of a specified
window.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <o0s2.h>

HWND WinWindowFromPoint (HWND hwndParent, PPOINTL pptiPoint,
BOOL fEnumChildren)

Parameters
hwndParent (HWND) - input
Window handle whose child windows are to be tested.

HWND_DESKTOP The desktop-window handle, implying that all main windows are
tested. In this instance, ppt/Point must be relative to the bottom
left corner of the screen.

Other Parent-window handle.

pptiPoint (PPOINTL) — input
The point to be tested.

fEnumChildren (BOOL) - input
Test control.

TRUE Test all the descendant windows, including child windows of child windows
FALSE Test only the immediate child windows.

Returns
hwndFound (HWND) — returns
Window handle beneath ppt/Point.

NULLHANDLE pptiPoint is outside hwndParent
Parent pptiPoint is not inside any of the children of hwndParent
Other Window handle is beneath ppt/Point.

Chapter 2. Windows 2-89

2-90 PM Basic Programming Guide

Related Messages
This section covers the messages that are related to Windows.

WM_ACTIVATE

This message occurs when an application causes the activation or deactivation of a window.

Parameters
parami

usactive (USHORT)
Active indicator.

TRUE The window is being activated
FALSE The window is being deactivated.

param2

hwnd (HWND)
Window handle.

In the case of activation, hwnd identifies the window being activated. In the case of
deactivation, hwnd identifies the window being deactivated.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Chapter 2. Windows 2-91

WM_ADJUSTWINDOWPOS

This message is sent by the WinSetWindowPos call to enable the window to adjust its new
position or size whenever it is about to be moved.

Parameters
parami

pswp (PSWP)
SWP structure pointer.

The structure has been filled in by the WinSetWindowPos function with the
proposed move or size data. The control can adjust this new position by changing
the contents of the SWP structure. It can change the x or y fields to adjust its new
position; or the cx or cy fields to adjust its new size, or the hwndinsertBehind field to
adjust its new z-order.

param2

flzero (ULONG)
Zero.

Returns
fiResult (ULONG)
Window-adjustment status indicators.

0 No changes have been made
AWP_MINIMIZED The frame window has been minimized.
AWP_MAXIMIZED The frame window has been maximized.
AWP_RESTORED The frame window has been restored.
AWP_ACTIVATE The frame window has been activated.
AWP_DEACTIVATE The frame window has been deactivated.

2-92 PM Basic Programming Guide

WM_CALCFRAMERECT

This message occurs when an application uses the WinCalcFrameRect function.

Parameters
parami

pRect (PRECTL)
Rectangle structure.

This points to a RECTL structure.

param2

usFrame (USHORT)
Frame indicator.

TRUE Frame rectangle provided
FALSE Client area rectangle provided.

Returns
rc (BOOL)
Rectangle-calculated indicator.

TRUE Successful completion
FALSE Error occurred or the calculated rectangle is empty.

Chapter 2. Windows 2-93

WM_CALCVALIDRECTS

This message is sent from WinSetWindowPos and WinSetMultWindowPos to determine
which areas of a window can be preserved if a window is sized, and which should be
redisplayed.

Parameters
parami

pOldNew (PRECTL)
Window-rectangie structures.

This points to two RECTL structures. The first structure contains the rectangle of
the window before the move, the second contains the rectangle of the window after
the move. The coordinates of the rectangles are relative to the parent window.

param2

pNew (PSWP)
New window position.

This points to a SWP structure that contains information about the window after it is
resized (see the WinSetWindowPos function).

Returns
usAlign (USHORT)
Alignment control.

CVR_ALIGNLEFT Align with the left edge of the window.
CVR_ALIGNBOTTOM Align with the bottom edge of the window.
CVR_ALIGNTOP Align with the top edge of the window.

CVR_ALIGNRIGHT Align with the right edge of the window.

CVR_REDRAW The whole window is invalid. If CVR_REDRAW, is set, the

whole window is assumed invalid, otherwise, the remaining
flags can be ORed together to get different kinds of alignment.
For example:

(CVR_ALIGNLEFT | CVR_ALIGNTOP)
aligns the valid window area with the top-left of the window.

0 It is assumed the application has changed the rectangles
pointed to by pOldNew and pNew itself.

2-94 PM Basic Programming Guide

WM_CLOSE

This message is sent to a frame window to indicate that the window is being closed by the

user.

Parameters
param1

ulReserved (ULONG)

Reserved value, should be 0.

param2

ulReserved (ULONG)

Reserved value, should be 0.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Chapter 2. Windows

2-95

WM_CREATE

This message occurs when an application requests the creation of a window.

Parameters
paramt

ctidata (PVOID)
Pointer to control data.

This points to a Control-Data data structure initialized with the data provided in the
pCtiData parameter of the WinCreateWindow function. This pointer is also
contained in the pCREATE parameter.

This parameter MUST be a pointer rather than a long.

The first 2 bytes in the data referenced by this pointer shouid be the total size of the
data referenced by the pointer, (for example, see the ENTRYFDATA or the
FRAMECDATA structure). PM requires this information to enable it to ensure that
the referenced data is accessible to both 16-bit and 32-bit code.

param2

pCREATE (PCREATESTRUCT)
Create structure.

This points to a CREATESTRUCT data structure. See the description of ctldata for
a complete description.

Returns
rc (BOOL)
Error indicator.

TRUE Discontinue window creation
FALSE Continue window creation.

2-96 PM Basic Programming Guide

WM_DESTROY

This message occurs when an application requests the destruction of a window.

Parameters
parami

ulReserved (ULONG)

Reserved value, should be 0.

param2

ulReserved (ULONG)

Reserved value, should be 0.

Returns
ulReserved (ULONG)
Reserved value, should be 0.

Chapter 2. Windows

2-97

WM_ENABLE

This message notifies a windows of a change to its enable state.

Parameters
paramt

usnewenabledstate (USHORT)
New enabled state indicator.

TRUE The window was set to the enabled state.
FALSE The window was set to the disabled state.

param2

ulReserved (ULONG)
Reserved value, should be