
Presentation Manager
Programming Guide
The Basics

Version 3

--------- - ------- - ---- - - ----------_ .-

Presentation Manager
Programming Guide
The Basics

Version 3

--..- ------ - -------- -. ---- - - --------
-~-,-

Note --~

Before using this information and the product it supports, be sure to read the general
information under Appendix A, "Notices" on page A-1.

First Edition (October 1994)

The following paragraph does not apply to the United Kingdom or any country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication. IBM
may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines
and programs), programming, or services that are not announced in your country. Such references or
information must not be construed to mean that IBM intends to announce such IBM products,
programming, or services in your country.

Requests for technical information about IBM products should be made to your IBM authorized reseller or
IBM marketing representative.

COPYRIGHT LICENSE: This publication contains printed sample application programs in source
language, which illustrate OS/2 programming techniques. You may copy, modify, and distribute these
sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the OS/2 application programming interface.

Each copy of any portion of these sample programs or any derivative work, which is distributed to others,
must include a copyright notice as follows: "© (your company name) (year). All rights reserved." .

© Copyright International Business Machines Corporation 1994; All rights reserved.
Note to U.S. Government Users - Documentation related to restricted rights - Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract lJ\{ith IBM Corp.

Contents

Figures

Tables

About This Book
Who Should Read This Book
How This Book Is Organized
Prerequisite Publications
Related Publications

Presentation Manager Programming Guide - The Basics

Chapter 1. Introduction to Presentation Manager Programming
Presentation Manager Fundamentals

The Window Environment
Defining Window Relationships
Creating and Classifying Windows

Providing the User Interface
Standard and Control Windows
Primary and Secondary Windows
Dialog Box

Handling Mouse and Keyboard Input
Processing Messages

Handling Application Resources .. .
Resource Editors

Exchanging Data Among Applications
User-Generated Data Exchange

Topics Covered in This Guide .. .
Windows
Messages and Message Queues
Window Classes ..
Window Procedures
Frame Windows
Painting and Drawing
Drawing in Windows
Mouse and Keyboard Input
Mouse Pointers and Icons
Cursors
Resource Files
Menus
Keyboard Accelerators
Dialog Windows
Control Windows
Title Bars

© Copyright IBM Corp. 1994

xxv

xxvii

xxxi
xxxi
xxxi
xxxii
xxxii

1-1
1-1
1-1
1-1
1-3
1-4
1-4
1-6
1-6
1-7
1-7
1-9

1-10
1-10
1-10
1-11
1-11
1-11
1-11
1-11
1-12
1-12
1-12
1-12
1-12
1-12
1-12
1-13
1-13
1-13
1-13
1-13

iii

Scroll Bars
Button Controls
Entry Field Controls
List Boxes
Clipboards
Window Timers
Initialization Files

Chapter 2. Windows
About Windows ...

Desktop Window and Desktop-Object Window
Window Relationships ...

Parent-Child Relationship
Ownership
Object Windows

Application Windows
Window Input and Output

Active Window and Focus Window
Messages , .
Enabled and Disabled Windows
System-Modal Window ..

Window Creation
Window-Creation Functions
Window-Creation Messages

Window Classes
Public Window Classes
Private Window Classes

Window Styles
Window Handles
Window Size and Position

Size
Position
Size and Position Messages
System Commands

Window Data
Window Resources
Maximized and Minimized Windows
Window Visibility . .
Window Destruction

Using Windows
Creating a Top-Level Frame Window
Creating an Object Window .
Querying Window Data
Changing the Parent Window
Finding a Parent, Child, or Owner Window
Setting an Owner Window
Retrieving the Handle of a Child or Owned Window
Enumerating Top-Level Windows

iv PM Basic Programming Guide

1-13
'1-13
1-14
1-14
1-14
1-14
1-14

2-1
2-1
2-1
2-2
2-3
2-5
2-6
2-6
2-8
2-8
2-9

2-10
2-10
2-11
2-12
2-12
2-13
2-13
2-14
2-14
2-16
2-16
2-17
2-17
2-18
2-18
2-19
2-19
2-20
2-21
2-22
2-23
2-23
2-24
2-25
2-25
2-26
2-27
2-27
2-28

Moving and Sizing a Window
Redrawing Windows
Changing the Z-Order of Windows
Showing or Hiding a Window
Maximizing, Minimizing, and Restoring a Frame Window
Destroying a Window

Related Functions
WinBeginEnumWindows
WinCreateStdWindow
WinCreateWindow
WinDestroyWindow
WinEnableWindow
WinEndEnumWindows
WinGetMaxPosition
WinGetMinPosition
WinGetNextWindow
Winlnitialize
WinlsChild
Winls ThreadActive
WinlsWindow
WinlsWindowEnabled
WinlsWindowShowing
WinlsWindowVisible
WinMultWindowFromlDs
WinQueryActiveWindow
WinQueryDesktopWindow
WinQueryFocus
WinQueryObjectWindow .
WinQuerySysModalWindow
WinQueryWindow
WinQueryWindowPos
WinQueryWindowPtr
WinQueryWindowRect
WinQueryWindowULong
WinQueryWindowUShort
WinRequestMutexSem
WinSetActiveWindow
WinSetFocus
WjnSetMultWindowPos
WinSetOwner
WinSetParent
WinSetSysModalWindow
WinSetWindowBits
WinSetWindowPos
WinSetWindowPtr
WinSetWindowULong
WinSetWindowUShort
WinShowWindow

2-29
2-30
2-30
2-31
2-31
2-32
2-33
2-33
2-34
2-36
2-38
2-39
2-40
2-41
2-42
2-43
2-44
2-45
2-46
2-47
2-48
2-49
2-50
2-51
2-52
2-53
2-54
2-55
2-56
2-57
2-59
2-60
2-61
2-62
2-64
2-66
2-67
2-68
2-69
2-70
2-71
2-72
2-73
2-75
2-77
2-78
2-80
2-82

Contents V

WinStartApp ...
WinTerminate
WinTerminateApp
WinWaitEventSem
Wi nWaitMuxWaitSem
WinWindowFromlD
WinWindowFromPoint

Related Messages
WM_ACTIVATE
WM_ADJUSTWINDOWPOS
WM_CALCFRAMERECT
WM_ CALCVALIDRECTS
WM_CLOSE ..
WM CREATE
WM_DESTROY
WM_ENABLE
WM_MOVE
WM_QUERYWINDOWPARAMS
WM_SETWINDOWPARAMS
WM_SHOW
WM_SIZE
WM_SYSCOMMAND
WM WINDOWPOSCHANGED

Related Data Structures
CREATESTRUCT
WNDPARAMS

Summary

Chapter 3. Messages and Message Queues
About Messages and Message Queues

Messages
Message Queues
Message Handling

Message Loops
Window Procedures

Posting and Sending Messages
Message Types

System-Defined Messages .
Application-Defined Messages
Semaphore Messages

Message Priorities
Message Filtering

Using Messages
Creating a Message Queue and Message Loop
Examining the Message Queue .
Posting a Message to a Window
Sending a Message to a Window
Broadcasting a Message

vi PM Basic Programming Guide

2-83
2-84
2-85
2-86
2-87
2-88
2-89
2-91
2-91
2-92
2-93
2-94
2-95
2-96
2-97
2-98
2-99

2-100
2-101
2-102
2-103
2-104
2-105
2-106
2-106
2-108
2-109

3-1
3-1
3-1
3-2
3-4
3-4
3-6
3-6
3-7
3-7
3-8
3-9

3-10
3-10
3-11
3-11
3-13
3-14
3-14
3-15

Using Message Macros
Related Functions

WinBroadcastMsg
WinCallMsgFilter .
WinCreateMsgQueue
WinDestroyMsgQueue
WinDispatchMsg
WinGetMsg
WinlnSendMsg
WinPeekMsg
WinPostMsg .
WinPostQueueMsg
WinQueryMsgPos
WinQueryQueuelnfo
WinQueryQueueStatus
WinReleaseHook
WinRegisterUserMsg
WinSendMsg
WinSetClassMsglnterest
WinSetMsglnterest
WinSetMsgMode
WinWaitMsg

Related Messages
WM_FOCUSCHANGE
WM_QUIT
WM_SEM1
WM_SEM2
WM_SEM3
WM_SEM4
WM_SYSVALUECHANGED

Related Data Structures
HMQ ..
MQINFO
QMSG

Summary

Chapter 4. Window Classes
About Window Classes ..

Private Window Classes
Class Name
Class Styles
Window Procedure
Window Data Size
Custom Window Styles

Public Window Classes
System-Defined Public Window Classes
Custom Public Window Classes

Class Data

3-15
3-17
3-17
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27
3-28
3-29
3-30
3-32
3-34
3-36
3-37
3-38
3-39
3-40
3-41
3-41
3-42
3-43
3-44
3-45
3-46
3-47
3-48
3-48
3-49
3-49
3-51

4-1
4-1
4-1
4-1
4-2
4-3
4-3
4-3
4-4
4-4
4-5
4-6

Contents vii

Using Window Classes
Registering a Private Window Class

Related Functions
WinQueryClasslnfo
WinQueryClassName
Win Reg isterClass

Related Data Structures
CLASSINFO

Summary

Chapter 5. Window Procedures
About Window Procedures

Structure of a Window Procedure
Default Window Procedure
Window-Procedure Subclassing

Using Window Procedures
Designing a Window Procedure
Associating a Window Procedure with a Window Class
Subclassing a Window

Related Functions
Win DefDlgProc
Win DefWindowProc
WinSubclassWindow

Related Messages
WM_BUTTON1 DBLCLK
WM_BUTTON1 DOWN
WM_BUTTON1 UP . . .
WM_ BUTTON2DBLCLK
WM_BUTTON2DOWN
WM_BUTTON2UP ...
WM_BUTTON3DBLCLK
WM_BUTTON3DOWN
WM _BUTTON3UP
WM_CHAR
WM_COMMAND
WM_ CONTROLPOINTER
WM HELP
WM HITTEST .. .
WM_MENUSELECT
WM_MOUSEMOVE
WM_QUERYCONVERTPOS
WM_ QUERYFOCUSCHAIN
WM_SETSELECTION ..
WM _ TRANSLA TEACCEL

Summary

Chapter 6. Frame Windows
About Frame Windows

viii PM Basic Programming Guide

4-7
4-7
4-8
4-8
4-9

4.;10
4-11
4-11
4-12

5-1
5-1
5-1
5-2
5-2
5-3
5-3
5-4
5-4
5-6
5-6
5-7
5-8
5-9
5-9

5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-29
5-30
5-31

6-1
6-1

Main Window 6-1
Frame Controls 6-2
Client Window 6-3
Additional Frame-Window Items 6-3
Frame-Control Identifiers 6-3

Frame-Window Creation 6-4
Frame Window Controls and Styles 6-4
Frame-Window Resources 6-5

Frame-Window Class Data 6-9
Frame-Window Data 6-10
Frame-Window Operation .. 6-11
Nonstandard Frame Windows 6-11
Default Frame-Window Behavior 6-12

Using Frame Windows 6-14
Creating a Main Window 6-14
Retrieving a Frame Handle 6-17

Related Functions 6-18
WinCalcFrameRect 6-18
WinCreateFrameControls 6-19

Related Messages 6-20
WM_ADJUSTFRAMEPOS 6-20
WM_ERASEBACKGROUND 6-21
WM_FLASHWINDOW 6-22
WM_FORMATFRAME 6-23
WM_MINMAXFRAME 6-24
WM_NEXTMENU 6-25
WM_QUERYFRAMECTLCOUNT 6-26
WM_QUERYFRAMEINFO 6-27
WM_QUERYICON 6-28
WM_QUERYTRACKINFO 6-29
WM_SETBORDERSIZE 6-30
WM_SETICON 6-31
WM_SYSCOMMAND 6-32
WM_TRACKFRAME . 6-34
WM_UPDATEFRAME 6-35

Related Data Structures 6-36
FRAMECDATA 6-36
HSAVEWP 6-38

Summary 6-39

Chapter 7. Painting and Drawing 7-1
About. Painting and Drawing 7-1

Presentation Spaces and Device Contexts 7-1
Window Regions 7-3
Window Styles for Painting 7-4

WS_CLlPCHILDREN, CS_CLlPCHILDREN 7-5
WS_CLlPSIBLINGS, CS_CLlPSIBLINGS 7-5
WS_PARENTCLlP, CS_PARENTCLIP 7-5

Contents ix

WS_SAVEBITS, CS_SAVEBITS ..
WS_SYNCPAINT, CS_SYNCPAINT
CS_SIZEREDRAW

Strategies for Painting and Drawing
Drawing in a Window
The WM_PAINT Message .. .

Drawing the Minimized View
Drawing Without the WM_PAINT Message
Three Types of Presentation Spaces

Normal Presentation Spaces .. .
Micro Presentation Spaces
Cached-Micro Presentation Spaces

Related Functions
Win Begin Paint
WinEndPaint
WinExciudeUpdateRegion
WinGetClipPS
WinGetPS
WinGetScreenPS
Win I nvalidateRect
WinlnvalidateRegion
WinLockVisRegions
WinLockWindowUpdate
WinOpenWindowDC ..
WinQueryUpdateRect
WinQueryUpdateRegion
WinQueryWindowDC
WinReleasePS . .
WinUpdateWindow
WinValidateRect .
WinValidateRegion
WinWindowFromDC

Related Messages
WM PAINT

Related Data Structures
RECTL

Summary

Chapter 8. Drawing in Windows
About Window-Drawing Functions

Points
Rectangles

Using Window-Drawing Functions
Working with Points and Rectangles

Determining the Dimensions of a Rectangle
Filling a Rectangle

Scrolling the Contents of a Window
Drawing a Bit Map

X PM Basic Programming Guide

7-5
7-5
7-5
7-6
7-6
7-7
7-8
7-9
7-9

7-10
7-12
7-14
7-17
7-17
7-18
7-19
7-20
7-22
7-23
7-24
7-25
7-26
1'-27
7-28
7-29
7-30
7-31
7-32
7-33
7-34
7-35
7-36
7-37
7-37
7-38
7-38
7-39

8-1
8-1
8-1
8-1
8-2
8-2
8-2
8-3
8-3
8-4

Drawing Text 8-5
Related Functions 8-6

WinCopyRect 8-6
WinDrawBorder 8-7
WinDrawText 8-9
WinEqualRect 8-11
WinFiliRect 8-12
Win I ntersectRect 8-13
WinlnvertRect 8-14
WinlsRectEmpty 8-15
WinMakeRect 8-16
WinMapWindowPoints 8-17
WinOffsetRect 8-18
WinPtlnRect 8-19
WinSetRect 8-20
WinSetRectEmpty 8-21
WinShowTrackRect 8-22
WinSubtractRect 8-23
WinTrackRect 8-24
WinUnionRect 8-25

Related Data Structures 8-26
FATTRS 8-26
POINTL 8-29
RECTL 8-30

Summary 8-31

Chapter 9. Mouse and Keyboard Input 9-1
About Mouse and Keyboard Input 9-1

System Message Queue 9-1
Window Activation . 9-1
Keyboard Focus 9-2
Keyboard Messages 9-3

Message Flags 9-4
Key-Down or Key-Up Events 9-5
Repeat-Count Events 9-5
Character Codes 9-6
Virtual-Key Codes 9-6
Scan Codes 9-6
Accelerator-Table Entries 9-6

Mouse Messages 9-6
Capturing Mouse Input 9-7

Button Clicks 9-8
Mouse Movement 9-8

Using the Mouse and Keyboard 9-8
Determining the Active Status of a Frame Window 9-8
Checking for a Key-Up or Key-Down Event 9-9
Responding to a Character Message 9-1 0
Handling Virtual-Key Codes 9-11

Contents xi

Handling a Scan Code
Related Functions

WinEnablePhysl nput
WinFocusChange
WinGetKeyState ..
WinGetPhysKeyState
WinlsPhyslnputEnabled
WinQueryCapture
WinSetCapture
WinSetKeyboardState Table

Related Messages
WM_SETFOCUS

Summary

Chapter 10. Mouse Pointers and Icons
About Mouse Pointers and Icons

Mouse-Pointer Hot Spot ..
Predefined Mouse Pointers
System Bit Maps

Using Mouse Pointers and Icons
Changing the Mouse Pointer

Related Functions
WinCreatePointer
WinCreatePointerlndirect
WinDestroyPointer
WinDrawBitmap
WinDrawPointer
WinGetSysBitmap
WinLoadPointer
WinQueryPointer
WinQueryPointerl nfo
WinQueryPointerPos
Wi nQuerySysPointer
WinSetPointer
WinSetPointerPos
WinShowPointer .

Related Data Structures
POINTERINFO

Summary

Chapter 11. Cursors
About Cursors

Cursor Creation and Destruction
Position and Size
Other Cursor Characteristics

Cursor Visibility
Using Cursors

Creating and Destroying a Cursor

xii PM Basic Programming Guide

9-12
9-13
9-13
9-14
9-16
9-17
9-18
9-19
9-20
9-21
9-22
9-22
9-23

10-1
10-1
10-1
10-2
10-4
10-6
10-6
10-7
10-7
10-8
10-9

10-10
10-12
10-13
10-15
10-16
10-17
10-18
10-19
10-21
10-22
10-23
10-24
10-24
10-25

11-1
11-1
11-1
11-1
11-1
11-2
11-2
11-2

Related Functions
WinCreateCursor
WinDestroyCursor
WinQueryCursorl nfo
WinShowCursor ..

Related Data Structure
CURSORINFO

Summary

Chapter 12. Resource Files
About Resource Files

Resource Statements
Single-line Statements
Multiple-line Statements
Directives

Resource File Statement Descriptions
ACCEL TABLE Statement
ASSOCTABLE Statement
AUTOCHECKBOX Statement
AUTORADIOBUTTON Statement
BITMAP Statement ..
CHECKBOX Statement
CODEPAGE Statement
COMBOBOX Statement
CONTAINER Statement
CONTROL Statement
CTEXT Statement
CTLDATA Statement ..
DEFAULTICON STATEMENT
DEFPUSHBUTTON Statement
DIALOG Statement
DLGINCLUDE Statement
DLGTEMPLATE Statement
EDITTEXT Statement
ENTRYFIELD Statement
FONT Statement ..,
FRAM E Statement
GROUPBOX Statement
HELPITEM Statement
HELPSUBITEM Statement
HELPSUBTABLE Statement
HELPTABLE Statement
ICON Statement (Resource)
ICON Statement (Control)
LlSTBOX Statement
L TEXT Statement
MENU Statement ...
MENU ITEM Statement

11-3
11-3
11-5
11-6
11-7
11-8
11-8
11-9

12-1
12-1
12-1
12-2
12-2
12-2
12-3
12-4
12-4
12-5
12-5
12-6
12-6
12-6
12-7
12-7
12-8
12-9
12-9

12-10
12-10
12-11
12-11
12-12
12-13
12-13
12-14
12-14
12-15
12-15
12-16
12-16
12-17
12-18
12-18
12-18
12-19
12-19
12-20

Contents xi i i

MESSAGETABLE Statement 12-21
M LE Statement 12-22
NOTEBOOK Statement 12-22
POINTER Statement 12-23
PRESPARAMS Statement 12-23
PUSHBUTTON Statement 12-24
RADIOBUTTON Statement 12-24
RCDATA Statement 12-25
RCINCLUDE Statement 12-25
RESOURCE Statement 12-26
RTEXT Statement 12-26
SLIDER Statement .. 12-27
SPINBUTTON Statement 12-27
STRINGTABLE Statement 12-28
SUBITEMSIZE Statement 12-29
SUBMENU Statement 12-29
VALUESET Statement 12-30
WINDOW Statement 12-30
WINDOWTEMPLATE Statement 12-31

Directive Descriptions 12-32
#define Directive 12-32

Syntax 12.:32
Example 12-32

#elif Directive 12-32
Syntax 12-32
Example 12-32

#else Directive 12-32
Syntax 12-33
Example 12-33

#endif directive 12-33
Syntax 12-33

#if Directive 12-33
Syntax 12-33
Example 12-33

#ifdef Directive 12-33
Syntax 12-34
Example 12-34

#ifndef Directive 12-34
Syntax 12-34
Example 12-34

#include Directive 12-34
Syntax 12-34
Example 12-34

#undef Directive 12-35
Syntax 12-35
Example 12-35

Using Resource Files 12-36
Creating and Compiling a Resource File 12-36

xiv PM Basic Programming Guide

Compiling and Adding Resources to the . EXE File 12-36
Compiling without Adding Resources to the .EXE File 12-37
Adding the Compiled Resources to the .EXE File 12-37
Adding the Compiled Resources to a DLL 12-37

Summary 12-38

Chapter 13. Menus 13-1
About Menus 13-1

Menu Bar and Pull-Down Menus 13-1
Pop-Up Menus 13-2
System Menu 13-3
Menu Items 13-4

The Help Item 13-4
Menu-Item Styles 13-4
Menu-Item Attributes 13-5
Menu-Item Structure 13-5

Menu Access 13-6
Mnemonics 13-7
Accelerators 13-8

Using Menus 13-8
Defining Menu Items in a Resource File 13~8
Including a Menu Bar in a Standard Window 13-10
Creating a Pop-up Menu 13-11
Adding a Menu to a Dialog Window . 13-11
Accessing the System Menu 13-12
Responding to a User's Menu Choice 13-12
Setting and Querying Menu-Item Attributes 13-13
Adding and Deleting Menu Items 13-13
Creating a Custom Menu Item 13-16

Related Functions 13-19
WinCheckMenultem 13-19
WinCreateMenu 13-20
WinEnableMenultem 13-21
WinlsMenultemChecked 13-22
WinlsMenultemEnabled 13-23
WinlsMenultemValid 13-24
WinLoadMenu 13-25
WinPopupMenu 13-26
WinSetMenultemText 13-29

Related Messages 13-30
MM_DELETEITEM 13-30
MM_ENDMENUMODE 13-31
MM_INSERTITEM .. 13-32
MM_ISITEMVALID 13-33
MM_ITEMIDFROMPOSITION 13-34
MMJTEMPOSITIONFROMID 13-35
MM_QUERYDEFAULTITEMID 13-36
MM_QUERYITEM 13-37

Contents XV

MM_QUERYITEMATTR .
MM_QUERYITEMCOUNT
MM_QUERYITEMRECT .
MM_QUERYITEMTEXT .
MM_ QUERYITEMTEXTLENGTH
MM_QUERYSELITEMID
MM_REMOVEITEM
MM_ SELECTITEM
MM_SETDEFAULTITEMID
MM_SETITEM
MM_SETITEMATTR ..
MM_SETITEMHANDLE
MM_SETITEMTEXT .,
MM_STARTMENUMODE
WM_CONTEXTMENU
WM_INITMENU
WM_MENUEND ..

Related Data Structures
MENUITEM
OWNERITEM

Summary

Chapter 14. Keyboard Accelerators
About Keyboard Accelerators

Accelerator Tables
Accelerator-Table Resources
Accelerator-Table Handles
Accelerator -Table Data Structu res
Accelerator-Item Styles

Using Keyboard Accelerators
Creating an Accelerator-Table Resource
Including an Accelerator Table in a Frame Window
Modifying an Accelerator Table

Related Functions
WinCopyAccelTable .
WinCreateAccelTable
Win DestroyAccelTable
Win LoadAccelTable
WinQueryAccelTable
WinSetAccelTable
WinTranslateAccel .

Related Messages
WM_ QUERYACCEL TABLE
WM_SETACCELTABLE

Related Data Structures
ACCEL
ACCELTABLE

Summary

xvi PM Basic Programming Guide

13-38
13-39
13-40
13-41
13-42
13-43
13-44
13-45
13-46
13-47
13-48
13-49
13-50
13-51
13-52
13-53
13-54
13-55
13-55
13-56
13-57

14-1
14-1
14-2
14-2
14-2
14-2
14-3
14-3
14-4
14-4
14-5
14-6
14-6
14-7
14-8
14-9

14-10
14-11
14-12
14-13
14-13
14-14
14-15
14-15
14-16
14-17

Chapter 15. Dialog Windows
About Dialog Windows

Modal and Modeless Dialog Windows
Dialog Items ...
Dialog-Item Groups
Message Boxes

Standard Message Boxes
Enhanced Message Boxes

Minimizing Dialog Windows
Dialog Data Structures
Dialog Resources

Using Message Boxes and Dialog Windows
Creating a Standard Message Box

Creating a System-Modal Standard Message Box
Creating an Enhanced Message Box

Using a Dialog Window
Creating a Dialog Template
Creating a Modal Dialog Window
Creating a Modeless Dialog Window
Initializing a Dialog Window
Adding a Menu in a Dialog Window
Creating a Dialog Procedure
Manipulating Dialog Items

Related Functions
WinAlarm
WinCreateDlg
WinDismissDlg
WinDlgBox ..
WinEnumDlgltem
WinGetDlgMsg .
WinLoadDlg
WinMapDlgPoints
WinMessageBox .
WinMessageBox2
WinProcessDlg
WinQueryDlgltemShort
WinQueryDlgltemText
WinQueryDlgltemTextLength
WinSendDlg ItemMsg
WinSetDlgltemShort
WinSetWindowText
WinSubstituteStrings

Related Messages
WMJNITDLG
WM_MSGBOXDISMISS
WM_MSGBOXINIT
WM_SUBSTITUTESTRING

Related Data Structures

15-1
15-1
15-1
15-1
15-2
15-3
15-3
15-4
15-5
15-5
15-5
15-6
15-6
15-7
15-7
15-9
15-9
15-9

15-11
15-11
15-12
15-13
15-14
15-16
15-16
15-17
15-18

. ,. 15-19
15-20
15-21
15-22
15-23
15-24
15-26
15-27
15-28
15-29
15-30
15-31
15-32
15-33
15-34
15-35
15-35
15-36
15-37
15-38
15-39

Contents xvii

DLGTEMPLATE
DLGTITEM
MB2D
MB21NFO

Summary

Chapter 16. Control Windows
About Control Windows
Using Control Windows .,. . .

Using Control Windows in a Dialog Window
Using Control Windows in a Non-Dialog Window
Creating a Custom Control Window

Related Messages
WM_CONTROL
WM _ QUERYDLGCODE

Summary

Chapter 17. Title-Bar Controls
About Title Bars

Default Title-Bar Behavior ..
Using Title-Bar Controls

Including a Title Bar in a Frame Window
Altering Dragging Action

Related Functions
WinFlashWindow

Related Messages
TBM_QUERYHILITE
TBM.!.o SETHILITE

Related Data Structures
SWP
TRACKINFO

Summary

Chapter 18. Scroll-Bar Controls
About Scroll Bars ..

Scroll-Bar Creation
Scroll-Bar Styles
Scroll-Bar Range and Position
Scroll-Bar Slider Size

Scroll-Bar Notification Messages
Scroll Bars and the Keyboard

Using Scroll Bars
Creating Scroll Bars
Retrieving a Scroll-Bar Handle
Using the Scroll-Bar Range and Position

Related Messages
SBM_QUERYPOS ..
SBM_QUERYRANGE

xviii PM Basic Programming Guide

15-39
15-40
15-42
15-43
15-45

16-1
16-1
16-3
16-3
16-3
16-3
16-5
16-5
16-6
16-7

17-1
17-1
17-1
17-2
17-2
17-3
17-4
17-4
17-5
17-5
17-6
17-7
17-7
17-9

17-11

18-1
18-1
18-2
18-2
18-2
18-3
18-3
18-6
18-7
18-7
18-9
18-9

18-11
18-11
18-12

SBM_SETPOS
SBM_SETSCROLLBAR
SBM _ SETTHUMBSIZE
WM_HSCROLL
WM_VSCROLL

Related Data Structures
SBCDATA

Summary

Chapter 19. Button Controls
About Button Controls

Button Types
Push Buttons
Radio Buttons
Check Boxes
Three-State Check Boxes
Application-defined Buttons

Button Styles
Default Button Behavior .. .
Button Notification Messages
Button States
Custom Buttons

Using Button Controls
Using Buttons in a Dialog Window
Using Buttons in a Client Window
Creating Buttons with Icons and IconfText Combinations

Related Functions
WinQueryWindowText

Related Messages
BM_CLlCK
BM_QUERYCHECK .
BM_ QUERYCHECKINDEX
BM_QUERYHILITE
BM_SETCHECK .
BM _ SETDEFAUL T
BM_SETHILITE
WM_MATCHMNEMONIC

Related Data Structures
BTNCDATA
USERBUTTON

Summary

Chapter 20. Entry-Field Controls
About Entry Fields

Entry-Field Styles
Entry-Field Notification Codes
Default Entry-Field Behavior
Entry-Field Text Editing

Contents

18-13
18-14
18-15
18-16
18-17
18-18
18-18
18-20

19-1
19-1
19-1
19-1
19-2
19-3
19-3
19-4
19-4
19-6
19-7
19-8
19-8
19-9
19-9

19-10
19-11
19-15
19-15
19-16
19-16
19-17
19-18
19-19
19-20
19-21
19-22 .
19-23
19-24
19-24
19-25
19-26

20-1
20-1
20-1 .
20-2
20-3
20-5

xix

Entry-Field Control Copy and Paste Operations
Entry-Field Text Retrieval

Using Entry-Field Controls
Creating an Entry Field in a Dialog Window
Creating an Entry Field in a Client Window
Changing the Default Size of an Entry Field
Retrieving Text From an Entry Field

Related Functions
WinQueryWindowTextLength

Related Messages
EM_CLEAR
EM_COPY
EM_CUT .
EM_PASTE
EM_QUERYCHANGED
EM_ QUERYFIRSTCHAR
EM_QUERYREADONLY
EM_QUERYSEL
EM_ SETFIRSTCHAR
EM_ SETINSERTMODE
EM_SETREADONLY
EM_SETSEL
EM_SETTEXTLIMIT .,
WM_CONTROL (in Entry Fields)

Related Data Structures
ENTRYFDATA

Summary

Chapter 21. List-Box Controls
About List Boxes
Using List Boxes

Creating a List-Box Window .
Using a List Box in a Dialog Window
Adding or Deleting an Item in a List Box
Responding to a User Selection in a List Box
Handling Multiple Selections
Creating an Owner-Drawn List Item
Default List-Box Behavior

Related Functions
WinDeleteLboxltem
WinEnableWindowUpdate
WinlnflateRect .. .
WinlnsertLboxltem .. .
WinQueryLboxCount
WinQueryLboxltemText
WinQueryLboxltemTextLength
WinQueryLboxSelectedltem
WinSetLboxltem Text

xx PM Basic Programming Guide

20-6
20-6
20-7
20-7
20-7
20-8
20-9

20-11
20-11
20-12
20-12
20-13
20-14
20-15
20-16
20-17
20-18
20-19
20-20
20-21
20-22
20-23
20-24
20-25
20-26
20-26
20-28

21-1
21-1
21-1
21-2
21-3
21-3
21-5
21-5
21-5
21-7

21-10
21-10
21-11
21-12
21-13
21-14
21-15
21-16
21-17
21-18

Related Messages
LM DELETEALL
LM DELETE ITEM
LM INSERTITEM
LM_INSERTMULTITEMS
LM _ QUERYITEMCOUNT
LM_QUERYITEMHANDLE
LM_ QUERYITEMTEXT
LM_ QUERYITEMTEXTLENGTH
LM_QUERYSELECTION
LM_ QUERYTOPINDEX
LM_ SEARCHSTRING
LM _ SELECTITEM "
LM SETITEMHANDLE
LM SETITEMHEIGHT
LM SETITEMTEXT
LM_SETITEMWIDTH
LM_SETTOPINDEX
WM_CONTROL (in List Boxes)
WM_DRAWITEM (in List Boxes)
WM_MEASUREITEM (in List Boxes)

Related Data Structures
LBOXINFO
OWNERITEM

Summary

Chapter 22. Clipboards
About the Clipboard

Shared Memory and the Clipboard
Clipboard Operations

Cut and Copy Operations
Paste Operation

Standard Clipboard-Data Formats
Private Clipboard-Data Formats

Format Identification Number
Display Formats

Delayed Rendering
Clipboard Viewer
Clipboard Owner .

Using the Clipboard .
Putting Data on the Clipboard
Retrieving Data from the Clipboard
Viewing Data on the Clipboard

Related Functions
WinCloseClipbrd '"
WinEmptyClipbrd
WinEnumClipbrdFmts
WinOpenClipbrd '"

21-19
21-19
21-20
21-21
21-22
21-23
21-24
21-25
21-26
21-27
21-28
21-29
21-31
21-32
21-33
21-34
21-35
21-36
21-37
21-38
21-39
21-40
21-40
21-41
21-42

22-1
22-1
22-3
22-3
22-3
22-4
22-4
22-5
22-5
22-5
22-6
22-6
22-7
22-9
22-9

22-10
22-10
22-12
22-12
22-13
22-14
22-15

Contents xxi

WinQueryClipbrdData 22-16
WinQueryClipbrdFmtlnfo 22-17
WinQueryClipbrdOwner 22-18
WinQueryClipbrdViewer 22-19
WinSetClipbrdData 22-20
WinSetClipbrdOwner 22-21
WinSetClipbrdViewer 22-22

Related Messages 22-23
WM _DESTROYCLIPBOARD 22-23
WM_DRAWCLIPBOARD 22-24
WM HSCROLLCLIPBOARD 22-25
WM_PAINTCLIPBOARD 22-27
WM_RENDERALLFMTS 22-28
WM RENDERFMT 22-29
WM _ SIZECLI PBOARD 22-30
WM _ VSCROLLCLIPBOARD 22-31

Summary 22-33

Chapter 23. Window Timers 23-1
About Window Timers 23-1
Using Window Timers 23-2
Related Functions 23-5

WinGetCurrentTime 23-5
WinStartTimer 23-6
WinStopTimer 23-7

Related Messages 23-8
WM TIMER 23-8

Summary 23-9

Chapter 24. Initialization Files 24-1
About Initialization Files 24-1
Using Initialization Files 24-1

Creating, Opening, and Closing Initialization Files 24-2
Reading and Writing Settings 24-2
Identifying the OS/2 Initialization Files 24-3

Related Functions 24-4
PrfCloseProfile 24-4
PrfOpenProfile 24-5
PrfQueryProfile 24-6
PrfQueryProfileData 24-7
PrfQueryProfilelnt 24-8
PrfQueryProfileSize 24-9
PrfQueryProfileString 24-10
PrfReset 24-11
PrfWriteProfileData 24-12
PrfWriteProfileString 24-13

Related Data Structures 24-14
PRFPROFILE 24-14

xxii PM Basic Programming Guide

Summary

Appendix A. Notices
Trademarks
Double-Byte Character Set (DBCS)

Glossary
Glossary Listing

Index

24-15

A-1
A-1
A-1

X-1
X-1

X-29

Contents xxi i i

xxiv PM Basic Programming Guide

Figures

1-1.
1-2.
1-3.
1-4.
2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
2-8.
2-9.

2-10.
2-11.
2-12.
2-13.
2-14.
2-15.
2-16.
2-17.
2-18.
2-19.
2-20.
2-21.
2-22.
2-23.

3-1.
3-2.
6-1.
6-2.
6-3.
6-4.
6-5.
6-6.
6-7.
7-1.
7-2.
7-3.
7-4.
7-5.
8-1.

10-1.
10-2.
11-1.

Windows on the Screen
Window Hierarchy
Standard Window
Message-Processing System
Desktop Window Containing Windows of Several Applications
Typical Window Relationships
Window Hierarchy
Main Window with Secondary Windows
User Input to a Window
Window Sizing and Positioning
Visible Region for Window A .
Structure of a Simple Presentation Manager Application
Creating an Object Window
Getting the Window Identifier
Changing the Parent Window
Finding the Parent Window
Finding the Topmost Child Window
Setting the Owner Window
Getting a Handle to an Owner or Child Window
Enumerating Top-Level Windows
Moving a Window
Moving and Sizing a Window
Changing the Size of a Window
Changing the Z-order of a Window
Exchanging the Z-order of Windows
Maximizing a Frame Window
Destroying a Window
Input Message Processing Loop ..
Creating a Message Queue and Message Loop
Typical Frame Window and Its Components
Defining Resources for Header File
Defining Resources for Resource (. RC) File . .
Using FCF Flags to Indicate What Resources to Load
Indicating that a Resource is Stored in the Application File
Sample Program for Loading Resources in a Frame Window
Using WinCreateWindow to Create Frame, Control, and Client Windows
Application's Flow of Graphics Commands
Clip Region and Visible Region of a Window's Presentation Space
Presentation Space versus Window
Normal Presentation Space
Micro Presentation Space
Types of Rectangles
Bit Values in the AND and XOR Masks
Mouse Pointers
Response to a WM_SETFOCUS message

© Copyright IBM Corp. 1994

1-2
1-2
1-5
1-8
2-1
2-3
2-4
2-7
2-9

2-17
2-21
2-24
2-25
2-25
2-26
2-26
2-26
2-27
2-28
2-28
2-29
2-29
2-30
2-31
2-31
2-32
2-32

3-5
3-12

6-2
6-6
6-6
6-7
6-7
6-8

6-16
7-2
7-4
7-9

7-11
7-13

8-2
10-1
10-2
11-2

xxv

13-1.
13-2.
13-3.
13-4.
13-5.
13-6.
13-7.
13-8.
13-9.
14-1.
15-1.
15-2.
15-3.
17-1.
18-1.
18-2.
19-1.
19-2.
19-3.
19-4.
19-5.
19-6.
19-7.
19-8.
20-1.
20-2.
20-3.
20-4.
20-5.
21-1.
22-1.
22-2.
22-3.

Menus
Pop-Up Menu
Examples of Mnemonics
Resource Compiler Code Defining a Menu Resource
Defining a Menu with the MIS_BITMAP Style
Changing a Menu Item to Toggle Between Checked and Unchecked
Inserting a Menu Item
Removing a Submenu from the Menu Bar
Responding to WM_DRAWITEM Message
Accelerators
Dialog Window with Control Windows
Example of a Standard Message Box
Example of an Enhanced Message Box
Title Bar in a Standard Frame Window
Scroll Bars in a Window
Standard Window Scroll Bar and Command Codes
PushButton with Text in a Dialog Box
Push Button with Icon and Text
Push Button with Text and Custom Icon
Radio Buttons in a Dialog Box
Check Boxes in a Dialog Box
Defining Dialog-Window Buttons in a Dialog Template
Creating a Button Control for a Client Window
Creating a Customized Button with Text
Example of Entry Fields
Code for Creating an Entry Field in a Client Window
Code for Creating Entry Field with 12-Character Text Limit
Code for Creating Entry Field with 20-Character Text Limit
Code for Flagging a Text Change in 'an Entry Field
List Box in a Dialog Box
A Copy Operation Between Applications Using the Clipboard
A Paste Operation Between Applications Using the Clipboard
Responding to WM_DRAWCLIPBOARD Message

xxvi PM Basic Programming Guide

13-1
13-2
13-7
13-9

13-10
13-13
13-14
13-15
13-18

14-1
15-2
15-4
15-4
17-1
18-1
18-4
19-2
19-2
19-2
19-3
19-3
19-9

19-10
19-11
20-1
20-8
20-9
20-9

20-10
21-1
22-2
22-2

22-11

Tables

2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
4-1.
4-2.
4-3.
4-4.
5-1.
5-2.
5-3.
6-1.
6-2.
6-3.
6-4.
6-5.
6-6.
6-7.
7-1.
7-2.
7-3.
7-4.
8-1.
8-2.
9-1.
9-2.
9-3.
9-4.
9-5.

10-1.
10-2.
10-3.
10-4.
10-5.
11-1.

Window.Classes
Standard Window Styles
System Commands
Presentation Manager-Defined Resource Types
Window Functions
Window Messages ...
Window Data Structures
Message Categories
Message Priorities
Commonly Used Message and Message Queue Functions
Seldom-Used Message and Message Queue Functions
Almost-Never Used Message and Message Queue Functions
Related Messages
Message and Message Queue Structures
Class Styles
Public Window Classes
Window Class Functions
Window Class Structure
Window Procedure Arguments
Window Procedure Functions
Default Window Procedure Messages
Frame-Control Identifiers
Frame Window Flags and Styles Requiring Resources
Frame Window State Flags and Their Meanings
Default Frame-Window Messages and Behavior
Frame-Window Functions
Frame-Window Messages
Frame-Window Structures
Window Regions
Presentation Space, Device Context, and Window Region Functio!,}s
Presentation Space, Device Context, and Window Region Messages
Presentation Space, Device Context, and Window Region Structures
Window-Drawing Functions
Window-Drawing Structures
Keyboard Character Flags
Mouse/Keyboard Functions
Focus-Change and Activation Messages
Mouse Messages
Keyboard Messages
Predefined Mouse Pointers
Presentation Manager Mouse Pointers
Standard System Bit Maps . .
Pointer and Bit Map Functions
Pointer Structure
Cursor Functions

© Copyright IBM Corp. 1994

2-13
2-15
2-18
2-20

2-109
2-112
2-112

3-8
3-10
3-51
3-51
3-52
3-52
3-53

4-2
4-4

4-12
4-12

5-2
5-31
5-31

6-4
6-5

6-10
6-12
6-39
6-39
6-40

7-3
7-39
7-40
7-40
8-31
8-32

9-4
9-23
9-23
9-24
9-24
10-2
10-3
10-4

10-25
10-25

11-9

xxvii

11-2.
12-1.
12-2.
13-1.
13-2.
13-3.
13-4.
13-5.
14-1.
14-2.
14-3.
14-4.
15-1.
15-2.
15-3.
15-4.
16-1.
16-2.
16-3.
17-1.
17-2.
17-3.
17-4.
18-1.
18-2.
18-3.
18-4.
18-5.
18-6.
18-7.
18-8.
19-1.
19-2.
19-3.
19-4.
19-5.
19-6.
19-7.
20-1.
20-2.
20-3.
20-4.
20-5.
20-6.
20-7.
21-1.
21-2.
21-3.

Cursor Structure
Resource File Statements
Directives
Keystroke Menu Access
Menu Functions
Messages Received by a Menu
Messages Generated by a Menu
Menu Structures
Accelerator-Item Styles
Accelerator-Table Functions
Accelerator-Table Messages
Accelerator-Table Structures
MB2INFO Button Style Flags
Dialog Functions
Dialog Messages
Dialog Structures
Control Window Classes
Messages Received by a Control Window
Messages Generated by a Control Window
Messages Processed by Title-Bar Control
Title-Bar Functions
Title-Bar Messages
Title-Bar Structures
Scroll-Bar Styles
Scroll-Bar Command Codes
Scroll-bar Notification Messages
Focus Window Message Responses to Keys
List Box Responses to Keys
Messages Received by a Scroll Bar
Messages Generated by a Scroll Bar
Scroll-Bar Structure
Button Styles
Messages Processed by the WC_BUTTON Class
Notification Code for Button Control Messages
Button-Control Functions
Messages Received by a Button Control
Messages Generated by a Button Control
Button-Control Structures
Entry-Field Styles
Notification of Entry-Field Events
Messages Handled by WC_ENTRYFIELD Class
Entry-Field Functions
Messages Received by an Entry Field
Message Generated by an Entry Field
Entry-Field Structure
List Item Position Index
Messages Handled by WC_LlSTBOX Class
List-Box Functions;.......

xxviii PM Basic Programming Guide

11-9
12-38
12-41

13-6
13-57
13-57
13-58
13-59

14-3
14-17
14-17
14-17

15-5
15-45
15-46
15-46

16-1
16-7
16-7
17-2

17-11
17-11
17-12

18-2
18-5
18-6
18-6
18-7

18-20
18-20
18-20

19-4
19-6
19-8

19-26
19-26
19-27
19-27
20-2
20-3
20-3

20-28
20-28
20-29
20-29

21-4
21-7

21-42

21-4.
21-5.
21-6.
22-1.
22-2.
22-3.
22-4.
22-5.
23-1.
23-2.
23-3.
24-1.
24-2.

Messages Generated by a List Box
Messages Received by a List Box
List-Box Data Structures ...
Operations on Clipboard Data
Clipboard Data Formats
Messages Handled by Clipboard Owner
Clipboard Functions
Clipboard Messages
System Timers ...
Window Timer Functions
Window Timer Message
Initialization File Functions
Initialization File Structures

21-42
21-43
21-43

22-1
22-4
22-7

22-33
22-33

23-2
23-9
23-9

24-15
24-15

Tables xxix

xxx PM Basic Programming Guide

About This Book

This book provides information and code examples to enable you to start writing source
code, using the functions in the Presentation Manager application programming interface
(API) of the OS/2 operating system.

Who Should Read This Book
The Presentation Manager Programming Guide - The Basics is intended for application
programmers who want to create programs using the windowed, message-based
Presentation Manager user interface. The basic concepts and features of this interface are
discussed in this guide, including: windows, messages, controls, input/output, and system
features such as the clipboard and timers. Details of messages, programming functions, and
data structures used in application development are also included.

How This Book Is Organized
All chapters of this book, except the Introduction and Resource Files chapter, are divided into
five main sections:

• About the topic

Covers basic concepts, terminology, and general information about the topic.

• Using the topic

Introduces many of the functions and structures related to the topic and provides
examples in the form of code fragments.

• Functions

Provides more details of the functions relevant to the topics in the chapter.

• Messages

Provides details of the messages related to the topics discussed in the chapter.

• Data Structures

Provides details of data structures related to the chapter topics.

• Summary

Provides brief descriptions of the functions, messages, and data structures mentioned in
the chapter.

To illustrate use of the functions and messages, this guide makes extensive use of code
fragments. Sample applications also are available with the Developer's Toolkit for OS/2
Version 3 (Toolkit). You may find it useful to execute the samples and examine the C files,
resource files, makefiles, and other files provided by the Toolkit.

For information on how to compile and link your programs, refer to the compiler publications
for the programming language you are using.

© Copyright IBM Corp. 1994 xxxi

Prerequisite Publications
This guide is intended for application designers and programmers who are familiar with the
following:

• Information contained in the Control Program Programming Guide

• Information contained in the Presentation Manager Programming Reference materials

• C Programming Language

Programming experience on a multitasking operating system would also be helpful.

Related Publications
The following diagram provides an overview of the OS/2 Technical Library.

Books can be ordered by calling toll free 1-800-342-6672 weekdays between 8:00 a.m. and
8:00 p.m. (EST). In Canada, call 1-800-465-4234.

xxxi i PM Basic Programming Guide

OS/2 Warp, Version 3 Technical Library
G25H-7116

Control Program Control Program Graphics

Programming Programming Programming

Guide Reference Interface

Programming

Guide

G25H-7101 G25H-7102 G25H-7106

Information Multimedia Multimedia

Presentation Application Programming

Facility Programming Reference

Programming Guide

Guide

G25H-7110 G25H-7112 G25H-7114

Presentation Presentation Presentation

Manager Manager Manager

Programming Programming Programming

Guide- Guide- Reference

Advanced Topics The Basics

G25H-7104 G25H-7103 G25H-7105

REXX Tools Workplace

User's Reference Shell

Guide Programming

Guide

810G-6269 G25H-7111 G25H-7108

IBM Device Driver Publications lor OS/2

Display

Device Driver

Reference

71G1896

Presentation

Driver

Reference

10G6267

Input/Output

Device Driver

Reference

71G1898

Printer

Device Driver

Reference

71G1895

MMPM/2

Device Driver

Reference

71G3678

Storage

Device Driver

Reference

71G1897

Graphics

Programming

Interface

Programming

Reference

G25H-7107

Multimedia

Subsystem

Programming

Guide

G25H-}113

REXX

Reference

S10G-6268

Workplace

Shell

Programming

Reference

G25H-7109

Pen for OS/2

Device Driver

Reference

71G1899

Virtual

Device Driver

Reference

1 OG631 0

Physical

Device Driver

Reference

10G6266

About This Book xxxiii

xxxiv PM Basic Programming Guide

Presentation Manager Programming Guide - The Basics

© Copyright IBM Corp. 1994

PM Basic Programming Guide

Chapter 1. Introduction to Presentation Manager
Programming

This chapter introduces the fundamental concepts and features of Presentation Manager*
(PM*) and summarizes topics covered in this guide.

Presentation Manager Fundamentals
Presentation Manager (PM) provides a message-based, event-driven, graphical user
interface (GUI) for the Operating System/2 * (OS/2*) environment. Some of the major
features of PM are:

• The window environment
• The user interface
• Input management
• Application resource management
• Data exchange
• The Information Presentation Facility
• Presentation drivers

PM enables programmers to build applications that conform to Systems Application
Architecture * (SM *) guidelines. For more information on SM requirements, see the
Systems Application Architecture: Common User Access Guide to User Interface Design
and the Systems Application Architecture: Common User Access Advanced Interface Design
Reference. '

The Window Environment
The PM user interface is based on windows, an area of the screen through which interaction
is presented to the user. A large number of application programming interface (API)
functions (which begin with the prefix Win) are available for controlling windows. These
functions enable an application to create, size, move, and control windows and their
contents. This guide describes common programming techniques for managing the window
environment.

Defining Window Relationships
A window is an area of the screen where an application displays output and receives input
from the user. A screen can have more than one window. The common analogy is that
multiple windows on the screen are like many pieces of paper on a Desktop. In the analogy,
the Desktop is the area that comprises the background of the screen. Windows, like papers,
can be arranged to lie on top of one another and to overlap. If they overlap, the bottom
papers can be either partially or completely hidd~n. Windows can be defined in the window
hierarchy using the API.

Figure 1-1 on page 1-2 illustrates the window hierarchy as it appears on the screen.

© Copyright IBM Corp. 1994 1-1

Main Window 2

Chil
Win
2A

Main Window

Child Window 1 a

I Child Window 1 b

Figure 1-1. Windows on the Screen

The Desktop window is at the top of the hierarchy. Below the Desktop window are the
top-level windows, called main windows. Main windows can overlap one another and, at
times, a main window can be completely hidden. Operations on one main window do not
affect those on other main windows. Figure 1-2 illustrates the hierarchical arrangement of
windows created by the application.

Parent Child

Figure 1-2. Window Hierarchy

1-2 PM Basic Programming Guide

Main windows can create subordinate windows in a parent-child order of descendancy. A
child window is always clipped to its parent window, meaning that only the part of a child
window that lies within the parent window is visible.

Windows that share the same parent are called sibling windows. Like main windows, sibling
windows can overlap one another. Every sibling window has a z-order position that specifies
where it lies in the stack of overlapping windows.

The application can define another relationship in addition to the hierarchical one. When a
window is created, an owner window can be defined. The two windows must be created by
the same thread. The owner relationship varies at different levels of the hierarchy. A child
window can send messages to its owner window. If one main window owns other main
windows and the owner window is hidden, minimized, or closed, all the owned main windows
also are hidden, minimized, or closed.

A window can be visible, hidden, or partly hidden on the screen. When a window is hidden
or partly hidden, its size, position, and hierarchical and owner relationships remain the same.
However, when the window becomes visible again, any area of the window that was
previously hidden is redrawn. A window can also be disabled, meaning that it is still visible
but unable to respond to mouse input.

Creating and Classifying Windows
A window and its associated window procedure are considered to be a program object. A
window procedure "represents" a window in the sense that the window procedure controls all
aspects of the window, such as what it looks like, how it responds to changes, and how it
processes input.

A window class is a set of windows that has the same window procedure to implement them.
Many windows can belong to a window class. The windows can differ from one another only
in the data they process. If multiple applications have need for the same type of window,
implementing common window classes is an effiCient way of using system resources.

The OS/2 operating system provides many preregistered window classes. The windows
specified in these classes are designed specifically to meet the needs for a graphics-based
standard user interface. If a preregistered window class is not provided, the application must
register the class at the process level. Several API functions are available for applications to
reserve a small area of memory (the window words area) for windows in classes registered
by the application. If a window is expected to handle large amounts of data, the data should
be held in memory and referred from the window words area.

A window class can be defined as private or public. Windows created in either class can be
used by any process in the system. "Public" and "private" refer only to the window class at
the time the window is created.

Only the process with which a private class is registered can create a window for that class.
The class name must be unique to the process. However, other processes can register
private classes with the same class name.

Chapter 1. Introduction to Presentation Manager Programming 1-3

Any process can create a window in a public class. Window procedures for windows in
public classes must be available to all processes. Thus, such classes should be defined in
dynamic link libraries (OLLs). Public-class names must be unique for each process.

All windows have certain attributes. Each window is identifi~d by a window handle. Each
window represents a rectangle describing the size and position of the window on the screen.
The size of a window is defined in picture elements (pels) relative to the origin of the parent
window. The origin of a window, the lower-left corner, is the 0,0 coordinate in a set of x and
yaxes. The x and y coordinates define the top, bottom, and sides of the window. The
coordinates range from -32768 to +32767 pels in each direction, so the maximum size that
can be specified in any direction is 65,535 pels. The application also can position q window
by defining its relative distance from the point of origin (0,0) of its parent window. If the
application positions a child window outside its parent window, which is permissible, only the
part of the child window within the parent window will be visible on the screen.

Using a set of API functions, the application can modify the behavior of a window in a
window class, or create a new class from an existing one. This process, called sub-classing,
enables the application to modify the behavior of a single window without rewriting its
complete window procedure.

Providing the User Interface
The Common User Access* (CUA*) is a set of guidelines for designing and writing the
application's user interface. The guidelines cover standard menu-bar items, interaction
techniques, and window types. Use the CUA guidelines when deciding how to design the
user interface for your application's user interface.

Many PM seNices, if allowed to default, help to enable a consistent user interface among
applications designed and written according to the CUA guidelines. Consistency also is
enabled by the selection of appropriate options. Ensuring consistency is the responsibility of
the application developer.

Standard and Control Windows
. Information is displayed on the screen through the use of windows. PM supports a standard
window, whose elements generally conform to CUA guidelines.

The standard window, which the application controls using the API functions, can have all or
some of the following elements:

• Title-bar icon
• Window borders
• Window sizing buttons
• Menu bar
• Scroll bars
• Window title
• I nformation area

Figure 1-3 on page 1-5 illustrates a standard window and its elements.

1-4 PM Basic Programming Guide

Title-Bar
icon

Menu bar

Window
border

Information
area

Window title

Figure 1-3. Standard Window

Horizontal scroll bar

Window sizing buttons

. :

. :

::~: .. ,~, ~ .' .. ~ ... ,t, . :: ... ~: .'

Title-Bar

Vertical
scroll
bar

The title-bar icon, window border, and window sizing buttons enable a user to change the
size and position of a window. The menu bar and scroll bars enable a user to work with the
window's contents. The window title indicates the name of the object seen in the window,
and it also indicates which kind of view is displayed. A view is a way of looking at an
object's information. Different views display information in different forms, which mimics the
way information is presented in the real world. The information area displays brief messages
to a user about the object or choice that the cursor is on. Information about the normal
completion of a process can also appear in the information area. For example, if a user
copies several objects from one container to another, the information area in a container's
window might display a brief message to tell the user when the copying has been completed.

The standard window is created using a standard frame window. The elements of the
standard window, such as the title bar and the menu bar, are child windows of the standard
frame window. The child windows are called control windows. The system maintains a set
of preregistered control windows that any application can use to perform I/O.

From the application's perspective, control windows are no different from other windows in
the system, and the application can manage them using window-management functions.
Each control window has its own window identifier and a specific set, of messages. The
application can query the system to determine the control window's parent. Control windows
can be used as a part of a dialog window. A dialog window can be created using a dialog
template, which defines the position, appearance, and identifier of the dialog window and
each of its child windows. A template can be loaded as a resource or created dynamically in
memory. It can be used to create dialog windows of all window classes. The window

Chapter 1. Introduction to Presentation Manager Programming 1-5

classes can contain control windows of all window classes. Also, the application can create
its own dialog controls by creating and preregistering its own control-window class.

A dialog window is controlled by a window procedure called a dialog procedure. The dialog
procedure is responsible for responding to all messages sent to the dialog window, either by
sending them to the control windows or returning them to the default dialog procedure. A set
of API functions enables the application to create, load, process, and cancel dialog windows.
The dialog procedure can obtain the handle of its child windows, send message~ to them,
and process messages and text strings itself.

The standard frame window and the control windows are implemented with standard
preregistered window classes. The standard frame window manages the control windows
and the client window as the user interacts with them. The frame window also is responsible
for routing messages to the appropriate control and client windows.

Primary and Secondary Windows
CUA guidelines define two types of windows: primary and secondary. In a PM program, a
primary window is a standard window, while a secondary window is a control window or the
child of the main window.

A primary window is the main interface point between an object and the user. It appears
when a user opens an object, and is used to present a view of an object or group of objects
when the information displayed about the object or group of objects is not dependent on
other objects.

Object information is presented in the area of the window below the menu bar. A user can
control the size and position of primary windows on the screen.

A secondary window looks very much like a primary window. For example, both have
window borders and title bars. The important distinction between a primary window and a
secondary window is based on how they are used. A secondary window is always
associated with a primary window and contains information that is dependent on an object in
the primary window. A secondary window is used, for example, to allow a user to further
clarify action requests. A secondary window is always removed when the primary window is
closed or minimized and redisplayed when the primary window is opened or restored.

Dialog Box
A dialog box extends a dialog between a user and a primary or secondary window. It usually
appears when the user selects a choice from the menu bar, thereby generating a pull-down
menu. Selecting one of the choices in the pull-down menu generates the dialog box. The
dialog box can contain buttons, entry fields, icons and text, list boxes, and title bars. A
dialog box and its supporting window enable the application to gather input from the user. A
temporary dialog window usually is created for special-purpose input and is then canceled.

There are two types of dialog boxes: modal and modeless. A modal dialog box retains
control until the application issues a call to cancel it. Users cannot activate other windows
belonging to the application until they finish interacting with the modal dialog box. A

1-6 PM Basic Programming Guide

modeless dialog box enables windows in other applications to be activated after it has been
created.

Handling Mouse and Keyboard Input
The session manager in the operating system manages applications running in the PM
environment, including their input and output operations. However, PM handles PM
applications, including their input and output operations. PM handles all input as messages,
which are packets of data.

PM supports user input from the keyboard and mouse pointer. The mouse pointer is the
symbol associated with the mouse pointing device. Mouse input is provided by pressing a
button and usually is directed at the window under the mouse pointer. The precise position
on the screen that is activated is called the hot spot. The mouse pointer also can be moved
across the screen, and the operating system provides support for that activity. The
application can direct all mouse input to a single window called a mouse capture window. A
mouse capture window enables the application to track all input from the mouse pointer no
matter where the mouse pointer is moved on the screen.

Keyboard input is sent when any key on the keyboard is pressed. All keyboard input is
directed to one window at a time. The window receiving keyboard input is called the active
window. A main window, or one of its child windows, is responsible for keeping the window
receiving the input visible on the screen.

The cursor is a symbol displayed within a window that indicates where characters entered
from the keyboard will be placed. The cursor can be moved to any location within a window.
Its size and position are defined in coordinates relative to the window in which the cursor is
located. The application can create, display, move, and cancel the system cursor.

Processing Messages
The Common Programming Interface (CPI) defines an application structure that uses a
system of queues and application window procedures to process messages. The PM
message system conforms to the CPI and is fundamental to the smooth operation of the PM
environment. A complete set of CPi reference manuals is provided in the 8M Library.

Chapter 1. Introduction to Presentation Manager Programming 1-7

Figure 1-4 illustrates the PM message-processing system.

Posting System
Mouse the Queue

Message

....... , l" .. ::;_:::~',:.".::::::;;:>"--------.--------l~ Message 6 liii

Keyboard
Message 5 1iii

Message 4 iiil

:::::: i
r---------i Message 1 I

Application
Queue

A~:~~~ge 4 !Iii

1-:-:-::-:-:-:-:-l!1
Message ~*------I~~

Sending
the

Application
Message Loop

Getting
the

Message

Application -::::I--M_es_s_a_g_e ___ --'" Dispatching
Window the

Procedure • Message
Returning

the
Message

Figure 1-4. Message-Processing System

In the PM environment, each input from the mouse or keyboard is delivered to an application
as a message. A message cannot be processed before previous input, because the specific
application and window for which input is intended are not known until all preceding input has
been processed.

All input is first placed in a single queue called the system queue. The system queue, which
is shared by all applications in the system, receives messages generated by the user from
the mouse and keyboard. The system queue can hold the input from approximately 60 key
presses and mouse clicks. The system queue can receive input from many sources,
including the system itself, the timer, and other applications. However, only user input is
processed synchronously.

The system queue temporarily stores user input so that nothing is lost if the user enters data
faster than the application can process it. Generally, input is processed in the order in which

1-8 PM Basic Programming Guide

it appears in the queue, but the application can change the order by filtering the input.
Filtering is performed with functions, but should be performed with discretion, because the
processing of one input often changes the context for the next.

Each thread that receives input has an application queue allocated by an API function. This
queue does not receive user input directly, but can receive other messages directly, such as
messages from the system or timer. Messages are removed from the application queue
when the thread for which it is destined "gets" it. The messages are prioritized if more than
one is waiting. If there are none, the thread is suspended until a message arrives.

The most efficient use of the system will be achieved if you structure your application so that
one thread remains responsive to user input while others continue processing work. To be
considered responsive to the user, the system must complete processing input within 0.5
seconds. That is, the thread handling input should check for the next message in the queue
within that time.

A window procedure can control more than one window. The procedure receives messages
in the form of four input parameters. The first parameter specifies the handle of the window
for which the message is intended. The second parameter indicates the type of message.
The last two parameters contain message parameters. Their interpretation depends on the
particular message.

The window procedure processes the message and then sends a return value to the sending
code. A window procedure must respond to all messages sent to it, even if the response is
to send the message back to the system's default window procedure.

There are many types of messages, each with a unique identifier, and applications can
define their own message types using a range of identifier values.

Handling Application Resources
An application resource is held in a resource file, a file with information that helps to define a
window. The resource file defines the names and attributes of the application resources that
must be added to the application's executable file. The resources are as follows:

Accelerator table Used to define which key strokes are treated as accelerators and
the commands into which they are translated. An accelerator is a
single key stroke that invokes an application-defined function.

Bit map A representation in memory of the data displayed on an
all-points-addressable (APA) device, usually the screen.

Dialog and window templates

Dialog include

Fonts

The definitions of a dialog box or window containing details of its
position, appearance, window identifier, and the identifiers of its
child windows.

A definition of a dialog box in a header file.

A typeface definition for character sets, marker sets, and pattern
sets.

Chapter 1. Introduction to Presentation Manager Programming 1-9

Icon

Menu

Pointer

String table

A graphical representation of an object, consisting of an image,
image background, and a label.

A list of choices that can be applied to an object. A menu can
contain choices that are not available for selection in certain
contexts. Those choices are indicated by reduced contrast.

The symbol displayed on the screen that can be moved by a
pointing device. The pointer is defined in a bit map.

A nUll-terminated ASCII string. A string table is loaded when it is
needed by the executable file.

For guidance in building the resource file using the Resource Compiler (RC) utility in the
Developer's Toolkit for OS/2 Version 3, see the online Tools Reference. The RC processes
the resource text file to produce a binary file, and then attaches it to the application's
executable file so that an application can access its resources.

Resource Editors
The Dialog Box Editor in the Developer's Toolkit for OS/2 Version 3 enables you to design
dialog boxes interactively on the screen and save the definitions in a resource file. The
definition of the dialog box is included with other resource definitions in the application's
resource file.

The Font Editor in the Toolkit enables you to edit font files interactively on the screen, save
the definitions in a font file, and include the font file names in the application's resource file.
The font file consists of a header file and a collection of character bit maps representing the
individual letters, digits, and punctuation characters that display text on a screen.

The Icon Editor in the Toolkit enables you to create customized icons, pointers, and bit maps
interactively on the screen and save the definitions in a resource file. You can work on a
large-scale version of the icon or pointer while displaying a replica of the actual size.

Exchanging Data Among Applications

User-Generated Data Exchange
Data exchange requested by a user is held in an object called a clipboard. The user can
transfer data from one application to another using the COPY, CUT, and PASTE commands.
The first step is to copy or cut (delete) selected data from the source application; the data is
now in the clipboard. Next, paste (insert) the clipboard data into the target application. The
same process can be used to move data from one window to another within a single
application. The CUT, COPY, and PASTE commands must be supported by an application
as defined in CUA guidelines. They are implemented using a set of PM API functions.

The clipboard is the object that temporarily holds data. Generally, data is placed in the
clipboard when a request to paste it is received. Once data has been sent to the clipboard,
it should not be changed. Only one item of data at a time can be in the clipboard, but the
data can be in a variety of formats, such as text, metafile, or bit map. The application can
either define the formats or use one of the preregistered standard formats. The application

1-1 0 PM Basic Programming Guide

also can register formats, as it can window classes, so they can be used by all applications
in the system.

The application should support as many formats as possible to satisfy requests from target
applications. For example, a spreadsheet application should support a spreadsheet format
and as many common text formats as possible. Generating data in all formats supported by
an application can consume a lot of the operating system's resources. It would not make
sense, for example, for a word-processing application to support a spreadsheet format
because that format is beyond the scope of the operation of a word processor.

A clipboard can be owned by a thread. If a thread opens the clipboard, it has exclusive
access to the clipboard until the thread closes the clipboard.

The clipboard is owned by the last window that requested ownership. Only the owning
application can change the owner of the clipboard. If an owning window is canceled, data
can remain in the clipboard. Before being canceled, the owning window must generate its
data to satisfy subsequent paste requests.

Topics Covered in This Guide
The following section gives a brief overview of the topics included in each chapter.

Windows
The PM user interface is based on windows. This chapter describes window types and
relationships and defines programming techniques for managing the window environment. I

Creating, sizing, moving, and controlling windows and their contents is discussed, with
programming examples provided.

Messages and Message Queues
The OS/2 operating system uses messages and message queues to communicate with
applications and the windows belonging to those applications. This chapter describes types
of messages, message queues, and message handling in Presentation Manager
applications.

Window Classes
A window class determines which styles and which window procedure are given to a window
when it is created. This chapter explains types of window classes, class registration, and
how an application creates and uses window classes.

Window Procedures
Windows have an associated window procedure-a function that processes all messages
sent or posted to a window. Every aspect of a window's appearance and behavior depends
on the window procedure's response to the messages. This chapter discusses types of
window procedures and how they are customized and used in Presentation Manager
applications.

Chapter 1. Introduction to Presentation Manager Programming 1-11

Frame Windows
The standard window is created using a frame window. A frame window is the basic window
used by most Presentation Manager applications to enable the user to perform manipulation
functions. This chapter describes creation and use of frame windows in Presentation
Manager applications.

Painting and Drawing
An application typically maintains an internal representation of the data that it is manipulating.
The information displayed in a screen, window, or printed copy is a visual representation of
some portion of that data. This chapter introduces the concepts and strategies necessary to
make your PM application function smoothly and cooperatively in the OS/2 display
environment. This chapter describes presentation spaces, device contexts, window styles,
and window regions, explaining how a Presentation Manager application uses them for
painting and drawing in windows.

Drawing in Windows
This chapter describes the Presentation Manager functions for drawing in windows. These
drawing functions are somewhat easier to use than the special purpose graphics functions
(the Gpi* functions), but they offer a less complete graphics-drawing interface.

Mouse and Keyboard Input
PM supports user input from the keyboard and pointing devices. This chapter discusses
keyboard focus and messages, mouse messages, window activation, and handling of input
messages in Presentation Manager applications.

Mouse Pointers and Icons
A mouse pointer is a special bit map the operating system uses to show a user the current
location of the mouse on the screen. When the user moves the mouse, the mouse pointer
moves on the screen. This chapter describes how to create and use mouse pointers and
icons in Presentation Manager applications.

Cursors
The cursor is a symbol displayed within a window that indicates where characters entered
from the keyboard will be placed. This chapter discusses creating, destroying, positioning,
and sizing cursors.

Resource Files
These files are used to specify resource information and allow modification of resources
without recompiling the entire application. Examples of resources that can be specified are
menus, fonts, strings, and icons. This chapter describes resource file statements and
directives, and how files are created and compiled.

1-12 PM Basic Programming Guide

Menus
A menu is a window that contains a list of items- text strings, bit maps, or images drawn by
the application-that enables the user, by mouse or keyboard, to choose from these
predetermined choices. This chapter describes types of menus, menu items, menu access,
and how to use menus in Presentation Manager applications. '

Keyboard Accelerators
A keyboard accelerator (shortcut key) is a keystroke that generates a command message for
an application. This chapter discusses accelerator tables, resources, styles, data structures,
and usage in applications.

Dialog Windows
A dialog window is a temporary window that contains one or more control windows and,
typically, is used to display messages to and gather input from the user. This chapter
describes types of dialog windows and message boxes, and how they are created and used
in Presentation Manager applications.

Control Windows
A control window is a window that an application uses in conjunction with another window to
carry out simple input and output tasks. This chapter discusses use of control windows in
various types of windows, and how to create customized control windows.

Title Bars
The title bar in a standard frame window performs the following functions:

• Displays the title of the window across the top of the frame window.
• Changes its highlighted appearance to show whether the frame window is active.
• Responds to the actions of the user.
• Flashes to get the attention of the user.

This chapter describes default title-bar behavior and use of title bars in frame windows.

Scroll Bars
Scroll bars are control windows that convert mouse and keyboard input into integers; they
are used by an application to scroll the contents of a client window. This chapter describes
scroll-bar styles, ranges, positions, and notification messages and how to create and use
scroll bars in Presentation Manager applications.

Button Controls
A button is a type of control window used to initiate an operation or to set the attributes of an
operation. This chapter discusses button-control types, styles, default behavior, notification
messages, and states. Creation of button controls and their use in Presentation Manager
applications is also described.

Chapter 1. Introduction to Presentation Manager Programming 1-13

Entry Field Controls
An entry field is a control window that enables a user to view and edit a single line of text.
This chapter discusses entry-field styles, notification codes, and behavior, as well as creating
and using entry field controls in Presentation Manager applications.

List Boxes
A list box is a control window that displays several text items at a time, one or more of which
can be selected by the user. This chapter describes how list-box controls are created and
used in Presentation Manager applications.

Clipboards
The clipboard is a small amount of system-managed random-access memory (RAM) used for
user-driven data exchange. This chapter describes how to use the clipboard in Presentation
Manager applications.

Window Timers
A window timer enables an application to post timer messages at specified intervals. This
chapter discusses types of timers and their applications.

Initialization Files
Initialization files enable an application to store and retrieve information that the application '
uses when it starts up. This chapter describes creating, opening, closing, and using
application and system initialization files.

1-14 PM Basic Programming Guide

Chapter 2. Windows

To most users, a window is a rectangular area of the display screen where an application
receives input from the user and displays output. This chapter describes the parts of the
operating system that enable a Presentation Manager (PM) application to create and use
windows; manage relationships between windows; and size, move, and display windows. An
overview of the following topics is presented:

• Window types, classes, and styles
• Window-creation techniques
III Window messages and message queues
• Methods of window input and output
• Window resources and procedures
• Window identification and modification.

Subsequent chapters present more in-depth descriptions of windows, their advantages and
uses, along with example code fragments.

About Windows
A PM application can interact with the user and perform tasks only by way of windows. Each
window shares the screen with other windows, including those from other applications .. The
user employs the mouse and keyboard to interact with windows and their owner applications.

Desktop Window and Desktop-Object Window
The OS/2 operating system automatically creates the desktop window (known as the
workplace in user terminology) when it starts a PM session.

Main Wi'ndow 2

Chil
Win
2A

Main Window 1

Child Window 1 a

I Child Window 1 b

Figure 2-1. Desktop Window Containing Windows of Several Applications

© Copyright IBM Corp. 1994 2-1

The desktop window paints the background color of the screen and serves as the
"progenitor" of all the windows displayed by all PM applications (but not of object windows,
which do not require screen display). To make the desktop the parent in the
WinCreateStdWindow function, you specify HWND_DESKTOP.

The windows immediately below the desktop are called main or top-level windows; these are
called primary windows in user terminology. Every PM application creates at least one
window to serve as the main window for that application. Most applications also create many
other windows, directly or indirectly, to perform tasks related to the main window.

Each window helps display output and receive input from the user. Figure 2-1 on page 2-1
shows the desktop window containing windows of several applications. Notice that the main
windows can overlap one another. (At times, it is possible for a main window to be
completely hidden.) Operations in one main window normally do not affect the other main
windows.

The desktop-object window is like a desktop window that is never displayed; it serves as the
base window to coordinate the activity of an application's object windows. The
desktop-object window cannot display windows nor process keyboard and mouse input. The
primary purpose of the desktop-object window is to enable you to create windows that need
not respond to messages at the same rate as the user interface.

Window Relationships
Window relationships define how windows interact with each other-on the screen and
through messages. There are parent-child window relationships and window-owner
relationships.

The parent-child relationship determines where and how windows appear when drawn on the
screen. It also determines what happens to a window when a related window is destroyed or
hidden. The parent-child rules apply to all windows at all times and cannot be modified.

Ownership determines how windows communicate using messages. Cooperating windows
define and carry out their rules of ownership. Although some windows (such as windows of
the preregistered public window class, WC_FRAME) have very complex rules of ownership,
the application usually defines the ownership rules.

2-2 PM Basic Programming Guide

Figure 2-2 represents the logical relationship of the windows in two applications.

Desktop Window
Application 1

,-----------------------,

i II i
: Main Window 1 : in,

I
Child

Window 1.1

~
Child

Window 1.1.1

Child :
Window 1.2:

I
I
I
I
I
I
I
I
I
I

-----------------------~

n
Application 2

,-----------------------,

! II i
: Main Window 2 : Inl I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I

: Child Child:
: Window 2.1 Window 2.2 :
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I L _______________________ ~

Figure 2-2. Typical Window Relationships

Parent-Child Relationship
Most windows have a parent window. (The exceptions are the desktop and desktop-object
windows, which the system creates at system startup.) An application specifies the parent
when it creates a window; then, the system uses the parent to determine where and how to
draw any new windows, as well as when to destroy the windows (free all associated
resources and remove the windows from the screen).

A child window is drawn relative to its parent. The coordinates given to specify the position
of a window's lower-left corner are relative to the lower-left corner of its parent. For example,
a main window (child of the desktop) is drawn relative to the lower-left corner of the screen
(the desktop window's lower-left corner).

All main windows are siblings because they share a common parent, the desktop window.
Because sibling windows can overlap, an application or a user arranges the windows, one
behind another (like a stack of papers on a desk), in the desired viewing order (called
z-order) as illustrated in Figure 2-1 on page 2-1. Z-order uses the desktop as a reference
point for a "three-dimensional" ranking of the overlapping windows: the topmost window has
the highest ranking, while the window at the bottom of the stack has the lowest ranking. The
parent of the sibling windows is always at the bottom of the z-order.

Chapter 2. Windows 2-3

Figure 2-3 illustrates the hierarchy of such an arrangement.

Parent Child

Figure 2-3. Window Hierarchy

Although PM supports z-order, it does not enforce the expected appearance unless you
specify the CS_CLlPCHILDREN or CS_CLlPSIBLINGS styles. No part of a child window
ever appears outside the borders of its parent. If an application creates a window that is
larger than its parent, or positions a window so that some or all of it extends beyond the
borders of the parent, the extended portion of the child window is not drawn.

An application can use the WS_CLlPCHILDREN or WS_CLlPSIBLINGS styles to remove
from a window's clipping area (the area in which the window can paint) the area occupied by
its child or sibling windows. For example, an application can use these styles to prevent a
window from painting over a child or sibling window containing a complex graphic that would
be time-consuming to redraw.

When a window is minimized, hidden, or destroyed, all of its children are hidden, minimized,
or destroyed as well. The order of destruction is always such that every window is destroyed
before its parent. The window-destruction sequence starts at the bottom of descendancy so
that all related windows can be cleaned up; the last one to go is the window you asked to be
destroyed. The final PM task in a window-destruction sequence is to send a WM_DESTROY
message to that window, so it has one last chance to release any resources it has allocated
and may still be holding.

Every window has only one parent, but can have any number of children. Referring back to
Figure 2-3, any window in this tree is said to be a descendant of any window appearing
above it in the branch, and an ancestor of any window appearing below it. There are two
special cases, of course: the window immediately above is called the window's parent, and
any window immediately below it is called its child. An application can change a window's
parent window at any time by using the WinSetParent function. Changing the parent window

2-4 PM Basic Programming Guide

also changes where and how the child window is drawn. The system displays the child
within the borders of the new parent and draws the window according to the styles specified
for the new parent.

Ownership
Any window can have an owner window. Typically, an application uses ownership to
establish a connection between windows so that they can perform useful tasks together. For
example, the title bar in an application's main window is owned by the frame window; but,
together, the user can move the entire main window by clicking the mouse in the title bar and
dragging. An application can set the owner window when it creates the window or at a later
time.

Ownership establishes a relationship between windows that is independent of the
parent-child relationship. While there are few predefined rules for owner- and owned-window
interaction, a window a/ways notifies its owner of anything considered a significant event.

The preregistered public window classes provided by the OS/2 operating system recognize
ownership. Control windows of classes such as WC _ TITLEBAR and WC _ SCROLLBAR,
notify their owners of events; frame windows, of class WC_FRAME, receive and process
notification messages from the control windows they own. For example, a title-bar control
sends a notification message to its owner when it receives a mouse click. If the owner is a
frame window, it receives the notification message and prepares to move itself and its
children.

Owner and owned windows must be created by the same thread; that is, they must belong to
the same message queue. Because ownership is independent of the parent-child
relationship, the owner and owned windows do not have to be descendants of the same
parent window. However, this can affect how windows are destroyed. Destroying an owner
window does not necessarily destroy an owned window. Except for frame windows, an
application that needs to destroy an owned window that is not a descendant of the owner
window must do so explicitly.

Frame windows sometimes own windows that are not descendants but, instead, are siblings.
A frame window has the following special ownership properties:

• When the frame window is destroyed, it destroys all of the windows it owns, even if they
are not descendants.

• When a frame window moves, the windows it owns move also. Owned windows that
are not descendants maintain their positions, relative to the upper-left (not the usual
lower-left) corner of the owner window. An owned window with the style
FS_NOMOVEWITHOWNER does not move.

• When the frame window changes its position in the z-order, it changes the z-order of all
the windows it owns.

• When the frame window is minimized or hidden, it hides all the windows it owns.
Owned windows hidden this way are restored when the frame window is restored.

If an application needs this type of special processing for its own window classes, it must
provide that support in the window procedures for those classes.

Chapter 2. Windows 2-5

Object Windows
Any descendant of the desktop-object window is called an object window. Typically, an
application uses an object window to provide services for another window. For example, an
application can use an object window to manage a shared database. In this way, a window
can obtain information from the shared database by sending a message to and receiving a
reply from the object window.

Only two system-defined messages are available to an object window-WM_CREATE and
WM_DESTROY-but the object window enables the user to implement a set of user-defined
messages. The window procedure for an object window does not have to process paint
messages or user input. The object window processes only messages that affect the data
belonging to the object.

HWND _OBJECT is the only identifier needed to create an object window. It is very unwise
to create descendants of HWND _OBJECT in the same thread that creates descendants of
HWND_DESKTOP: this causes the system to hang up or, at the very least, behave slowly.
Object windows, sometimes referred to as orphan windows, require no owner.

The rules for parent-child and ownership relationships also apply to object windows. In
particular, changing the parent window of an object window to the desktop window, or to a
descendant of the desktop window, causes the system to display the object window if the
object window has the WS_ VISIBLE style.

Application Windows
An application can use several types of secondary windows: frame windows, client windows,
control windows, dialog windows, message boxes, and menus. Typically, an application's
main window consists of several of these windows acting as one. Figure 2-4 on page 2-7
shows an example of a main window and its secondary windows.

2-6 PM Basic Programming Guide

Title-Bar
icon

Menu bar

Window
border

Window title

Info;r~:tiondllll: I: I: I~ ,1,1,111
Horizontal scroll bar

Figure 2-4. Main Window with Secondary Windows

Window sizing buttons

Title-Bar

Vertical
scroll
bar

A frame window is a window that an application uses as the base when constructing a main
window or other composite window, such as a dialog window or message box. (A composite
window is a collection of windows that interact with one another and are kept together as a
unit.) A frame window provides basic features, such as borders and a menu bar. Frame
windows have a set of resources associated with them. These include icons, menus, and
accelerators (shortcut keys to the user), which, typically, are defined in an application's
resource file.

A dialog window is a frame window that contains one or more control windows. Dialog
windows are used almost exclusively for prompting the user for input. An application usually
creates a dialog window when it needs additional information to complete a command. The
application destroys the dialog window after the user has provided the requested information.

A message box is a frame window that an application uses to display a note, caution, or
warning to the user. Forinstance, an application can use a message box to inform the user
of a problem that the application encountered while performing a task.

A client window is the window in which the application displays the current document or data.
For example, a desktop-publishing application displays the current page of a document in a
client window. Most applications create at least one client window. The application must
provide a function, called a window procedure, to process input to the client window and to
display output.

Chapter 2. Windows 2-7

A control window is a window used in conjunction with another window to perform useful
tasks, such as displaying a menu or scrolling information in a client window. The operating
system provides several predefined control-window classes that an application can use to
create control windows. Control windows include buttons, entry fields, list boxes,
combination boxes, menus, scroll bars, static text, and title bars.

A menu is a control window that presents a list of commands and other menus to the user.
Using a mouse or the keyboard, the user can select a task; the application then performs the
selected task.

Window Input and Output
The user directs input data to windows from a mouse and the keyboard. Keyboard input
goes to the window with input focus, and, normally, mouse input goes to the window under
the mouse pointer.

Windows also are places to display output data. PM uses windows to display text and
graphics on the screen and to process input from the mouse and keyboard. Windows
provide the same input and output capabilities as a virtual graphics terminal without having
direct control of the hardware.

An application is responsible for painting the data for the window classes it registers and
creates. This data can be graphics text or pictures or fixed-size alphanumeric text. Normally
it is not necessary for the application to paint the system-provided window classes; the OS/2
window procedures for those window classes do the painting.

Active Window and Focus Window
All frame-window ancestors of the input focus window are said to be active, meaning that the
user interacts with them. The active window usually is the topmost main window, which is
positioned above all other top-level windows on the screen. The active window is indicated
by some form of highlighting. For example, a highlighted title bar shows that a standard
frame window is active; an active dialog window has a highlighted border. These types of
highlighting ensure that the user can see the window that is accepting input.

A main window (or one of its child windows) is activated by using a mouse or the keyboard.
When a window is activated, it receives a WM_ACTIVATE message with its first parameter
set to TRUE. When it is deactivated, it receives a WM_ACTIVATE message with its first
parameter set to FALSE. Figure 2-5 on page 2-9 illustrates user interaction with a window.

2-8 PM Basic Programming Guide

Active Window

Pointer ,
o

Input Focus
Window

o DDDD DDDD DDDD DOD ITIJ

Figure 2-5. User Input to a Window

The focus window can be the active window or one of its descendant windows. The user
can change the input focus the same way active windows are changed-by mouse or
keyboard. However, the application has more control over the input focus. For example, in
a window containing several text entry fields, the tab keys can move the input focus from one
input field to another. A WM_SETFOCUS message is sent to the window procedure when a
window is gaining or losing the input focus. The WinQueryFocus function tells the user
which window has the input focus.

Messages
Messages are a fundamental part of the operating system. PM applications use messages
to communicate with the operating system and one another. The system uses messages to
communicate with applications to ensure concurrent running and sharing of devices.
Typically, a message notifies the receiving application that an event has occurred. The
operating system identifies the appropriate application window to receive a message by the
window handle included in the message. Sources of events that cause messages to be
issued to applications are the user, the operating system, the application, or another
application.

The User: Mouse or keyboard input to an application window causes the operating system
to direct messages to that window.

The Operating System: Managing the application windows on the screen, the operating
system issues messages to the windows, usually as an indirect result of user interaction.
These messages enable the system to work in a uniform and well-ordered manner. For
example, where several application windows overlap, and the user terminates an application

Chapter 2. Windows 2-9

so that its window disappears, the operating system issues messages to the underlying
application windows so that they can repaint themselves.

The Application: An event can occur in the application to which another part of that
application should respond; for example, when the contents of its window no longer
accurately reflect the status of the application. The application can define its own messages
outside the range of system-defined messages to communicate such events.

Another Application: Communication with other applications through the operating
system ensures cooperative use of the system; it even can be used to exchange data. For
example, an arithmetic application can supply the results of a lengthy calculation to a
business graphics application.

Enabled and Disabled Windows
An application uses the WinEnableWindow function to enable or disable window input. By
default, a window is enabled when it is created. However, an application can disable a
newly created window.

An application usually disables a window to prevent the user from using the window. For
example, an application might disable a push button in a dialog window. Enabling a window
restores normal input; an application can enable a disabled window at any time:

When an application uses the WinEnableWindow function to disable an existing window, that
window also loses keyboard focus. WinEnableWindow sets the keyboard focus to NULL,
which means that no window has the focus. If a child window or other descendant window
has the keyboard focus, it loses the focus when the parent window is disabled.

An application can determine whether a window is enabled by calling WinlsWindowEnabled.

System-Modal Window
An application can designate a system-modal window: a window that receives all keyboard
and mouse input, effectively disabling all other windows. The user must respond to the
system-modal window before continuing work in other windows. An application sets and
clears the system-modal window by using the WinSetSysModalWindow function.

Because system-modal windows have absolute control of input, you must be careful when
using them in your applications. Ideally, an application uses a system-modal window only
when there is danger of losing data if the user does not respond to a problem immediately.

Although an application can destroy a system-modal window, the new active window then
becomes a system-modal window. An application can make another window active while the
first system-modal window exists. But again, the new active window will become the
system-modal window. In general, once a system-modal window is set, it continues to exist
in the PM session until the application explicitly clears it.

2-10 PM Basic Programming Guide

Window Creation
Before any thread in an application can create windows, it must:

1. Call Winlnitialize to create an anchor block
2. Call WinCreateMsgQueue to create a message queue for the thread.

Then, it can create one or more windows by calling one of the window-creation functions,
such as WinCreateWindow.

The window-creation functions require that the following information be supplied in some
form:

• Class
• Styles
• Name
• Parent window
• Position relative to the parent window
• Position relative to any sibling windows (z-order)
• Dimensions
• Owner window
• Identifier
• Class-specific data
• Resources.

Every window belongs to a window class that defines that window's appearance and
behavior. The chief component of the window class is the window procedure. The window
procedure is the function that receives and processes all messages sent to the window.

Every window has a style. The window style specifies aspects of a window's appearance
and behavior that are not specified by the window's class. For example, the WC_FRAME
class always creates a frame window, but the FS_BORDER, FS_DLGBORDER, and
FS _ SIZEBORDER styles determine the style of a frame window's border. A few window
styles apply to all windows, but most apply only to windows of specific window classes. The
window procedure for a given class interprets the style and allows an application to adapt a
window of a given class for a special circumstance. For example, an application can give a
window the style WS_SYNCPAINT to cause it to be painted immediately whenever any
portion of the window becomes invalid. Normally, a window is painted only if there are no
messages waiting in the message queue.

A window can have a text string associated with it. Typically, the window text is displayed in
the window or in a title bar. The class of window determines whether the window displays
the text and, if so, where the text appears within the window.

Every window except the desktop window and desktop-object window has a parent window.
The parent provides the coordinate system used to position the window and also affects
aspects of a window's appearance. For example, when the parent window is minimized,
hidden, or destroyed, the parent's child windows are minimized, hidden, or destroyed also.

Every window has a screen position, size, and z-order position. The screen position is the
location of the window's lower-left corner, relative to the lower-left corner of its parent

Chapter 2. Windows 2-11

window. A window's size is its width and height, measured in pels. A window's z-order
position is the position of the window in the order of overlapping windows. This viewing
order is oriented along an imaginary axis, the z axis, extending outward from the screen.
The window at the top of the z-order overlaps all sibling windows (that is, windows having
the same parent window). A window at the bottom of the z-order is overlapped by all sibling
windows. An application sets a window's z-order position by placing it behind a given sibling
window or at the top or bottom of the z-order of the windows.

A window can own, or be owned by, another window. The owner-owned relationship affects
how messages are sent between windows, allowing an application to create combinations of
windows that work together. A window issues messages about its state to its owner window;
the owner window issues messages back about what action to perform next.

The window handle is a unique number across the system that is totally unambiguous-it
identifies one particular window in the system and is assigned by the system. A window
identifier is analogous to a "given" name in family relationships; the only requirement is that
the name be unique among siblings.

A window can have class-specific data that further defines how the window appears and
behaves when it is created. The system passes the class-specific data to the window
procedure, which then applies the data to the new window.

Window-Creation Functions
The basic window-creation function isWinCreateWindow. This function uses information
about a window's class, style, size, and position to create a new window. All other
window-creation functions, such as WinCreateStdWindow and WinCreateDlg, supply some of
this information by default and create windows of a specific class or style.

Although the WinCreateWindow function provides the most direct means of creating a
window, most applications do not use it. Instead, they often use the WinCreateStdWindow
function to create a main window and the WinDlgBox or WinCreateDlg functions to create
dialog windows.

The WinCreateMenu, WinLoadMenu, Win Load Dig, WinMessageBox, and
WinCreateFrameControls functions also create windows. Each of these functions substitutes
for one or more required calls to WinCreateWindow to create a given window. For example,
an application can create a frame window, one or more. control windows, and a client window
in a single call to WinCreateStdWindow.

Window-Creation Messages
While creating a window, the system sends messages to that window's window procedure.
The window procedure receives a WM_CREATE message, saying that the window is being
created. The window also receives a WM_ADJUSTWINDOWPOS message, specifying the
initial size and position of the window being created. This message lets the window
procedure adjust the size and position of the window before the window is displayed.

2-12 PM Basic Programming Guide

The system also sends other messages while creating a window; the number and order of
these messages depend on the class and style of the window and the function used to
create it.

Window Classes
Each window of a specific window class uses the window procedure associated with that
class. An application can create one or more windows that belong to the same window
class. Because each window of the same class is processed by the same window
procedure, they all behave the same way. Since many windows can result from one window
procedure, coding overhead is greatly reduced. There are two types of window classes:
public and private.

Public Window Classes
A public window class is one that has a reentrant window procedure that is registered and
resides in a dynamic link library (OLL); it can be used by any process in the system to create
windows. The operating system provides several preregistered public window classes. You
can specify the system-provided window classes by using the symbolic identifiers that have
the prefix we _, as shown in the following table:

Table 2-1 (Page 1 of 2). Window Classes

Class Name

WC_BUTTON

WC_ENTRYFIELD

WC_FRAME

WC_LlSTBOX

WC_MENU

WC_NOTEBOOK

WC_SCROLLBAR

WC_SLIDER

Description

Consists of buttons and boxes the user can select by clicking the pointing
device or using the keyboard.

Creates a control for the user to group objects in a logical manner. A
container can display those objects in various formats or views. The
container control supports drag and drop so the user can place
information in a container by simply dragging and dropping.

Consists of a single line of text that the user can edit.

A window class that can contain child windows of many of the other
window classes.

Presents a list of text items from which the user can make selections.

Presents a list of items that can be displayed horizontally as menu bars,
or vertically as pull-down menus. Menus usually are used to provide a
command interface to applications.

Creates a control for the user that is displayed as a number of pages.
The top page is visible, and the others are hidden, with their presence
being indicated by a visible edge on each of the back pages.

Lets the user scroll the contents of an associated window.

Creates a control that is usable for producing approximate (analog)
values or properties. Scroll bars were used for this function in the past,
but the slider provides a more flexible method of achieving the same
result, with less programming effort.

Chapter 2. Windows 2-13

Table 2-1 (Page 2 of 2). Window Classes

Class Name Description

WC_SPINBUTTON Creates a control that presents itself to the user as a scrollable ring of
choices, giving the user quick access to the data. The user is presented
only one item at a time, so the spin button should be used with data that
is intuitively related.

WC_STATIC Simple display items that do not respond to keyboard or pointing device
events.

WC_ TITLE BAR Displays the window title or caption and lets the user move the window's
owner.

WC_VALUESET Creates a control similar in function to the radio buttons but provides
additional flexibility to display graphical, textual, and numeric formats.
The values set with this control are mutually exclusive.

With the exception of WC _FRAME, the system-provided window classes are known as
control window classes because they give the user an easy means of controlling specific
types of interaction. For example, theWC_BUTTON class allows single or multiple
selections. These windows conform to the IBM* Systems Application Architecture (SAA)
Common User Access (CUA) definition. They are designed specifically to provide function
that meets the needs for a graphics-based standard user interface. The code fragments
provided in this guide make extensive use of the system window classes.

Private Window Classes
A private window class is one that an application registers for its own use; it is available only
to the process that registers it. The application-provided window procedure for a private
window class resides either in the application's executable files or in a DLL file. A private
window class is deleted when its registering process is terminated.

Window Styles
A window can have a combination of styles; an application can combine styles by using the
bitwise inclusive OR operator. An application usually sets the window styles when it creates
the window. The OS/2 operating system provides several standard window styles that apply
to all windows. It also provides many styles for the predefined frame and control windows.
The frame and control styles are unique to each predefined window class and can be used
only for windows of the corresponding class.

Initially, the styles of the window class used to create the window determine the styles of the
new window. For example, if the window class has the style CS_SYNCPAINT, all windows
created using that class, by default, will have the window style WS_SYNCPAINT.

2-14 PM Basic Programming Guide

The OS/2 operating system has the following standard window styles:

Table 2-2 (Page 1 of 2). Standard Window Styles

Style Name

WS_CLlPCHILDREN

WS_CLlPSIBLINGS

WS_MAXIMIZED

WS_MINIMIZED

WS_PARENTCLIP

WS_SAVEBITS

Description

Prevents a window from painting over its child windows. This style
increases the time necessary to calculate the visible region. This style is
usually not necessary because if the parent and child windows overlap
and both are invalidated, the system draws the parent window before
drawing the child window. If the child window is invalidated independently
of the parent window, the system redraws only the child window. If the
update region of the parent window does not intersect the child window,
drawing the parent window causes the child window to be redrawn. This
style is useful to prevent a child window that contains a complex graphic
from being redrawn unnecessarily. WS_CLlPCHILDREN is an absolute
requirement if a window with children ever performs output in response to
any message other than WM_PAINT. Only WM_PAINT processing is
synchronized such that the children will get their messages after the
parent.

Prevents a window from painting over its sibling windows. This style
protects sibling windows but increases the time necessary to calculate the
visible region. This style is appropriate for windows that overlap and that
have the same parent window.

Used by an application to disable a window. It is up to the window to
recognize this style and reject input.

Specifies the first control of a group of controls in which the user can
move from one control to the next by using the ARROW keys. All controls
defined after the control with the WS_GROUP style belong to the same
group. The next control with the WS_GROUP style ends the first group
and starts a new group.

Enlarges a window to the maximum size.

Reduces a window to the size of an icon.

Extends a window's visible region to include that of its parent window.
This style simplifies the calculation of the child window's visible region but
is potentially dangerous because the parent window's visible region is
usually larger than the child window.

Saves the screen area under a window as a bit map. When the user
hides or moves the window, the system restores the image by copying
the bits; there is no need to add the area to the uncovered window's
update region. The style can improve system performance but also can
consume a great deal of memory. It is recommended only for transient
windows, such as menus and dialog windows, not for main application
windows.

Causes a window to receive WM_PAINT messages immediately after a
part of the window becomes invalid. Without this style, the window
receives WM_PAINT messages only if no other message is waiting to be
processed.

Chapter 2. Windows 2-15

Table 2-2 (Page 2 of 2). Standard Window Styles

Style Name Description

WS_TABSTOP Specifies one of any number of controls through which the user can move
by tabbing. Pressing the TAB key moves the keyboard focus to the next
control that has the WS _ TABSTOP style.

WS_VISIBLE Makes a window visible. The operating system draws the window on the
screen unless overlapping windows completely obscure it. Windows
without this style are hidden. If overlapping windows completely obscure
the window, the window is still considered visible. (Visibility means that
the operating system draws the window if it can.)

Window Handles
After creating a window, the creation function returns a window handle that uniquely identifies
the window. An application can use this handle to direct the action of functions to the
window. Window handles have the data type HWND; applications must use this data type

, when declaring variables that hold window handles.

There are special constants that an application can use instead of a window handle in certain
functions. For example, an application can use HWND _DESKTOP in the WinCreateWindow
function to specify the desktop window as the new window's parent. Similarly,
HWND_OBJECT represents the desktop-object window. HWND_TOP and HWND_BOTTOM
represent the top and bottom positions relative to the z-order position of a window.

Although the NULL constant is not a window handle, an application can use it in some
functions to specify that no window is affected. For example, an application can use NULL in
the WinCreateWindow function to create a window that has no owner window. Some
functions might return NULL, indicating that the given action applies to no window.

Window Size and Position
A window's size and position can be expressed as a bounding rectangle, given in
coordinates relative to its parent. An application specifies the window's initial size and
position when creating the window.

To use the system-default values for the initial size and position of a frame window, an
application can specify the FCF _SHELLPOSITION frame-creation flag. The application can
change a window's size and position at any time. Figure 2-6 on page 2-17 indicates the
size and position coordinates of a parent window and a child window.

2-16 PM Basic Programming Guide

Desktop

ex

x

Figure 2-6. Window Sizing and Positioning

Notes:

1. The default coordinate system for a window specifies that the point (0,0) is at the
lower-left corner of the window, with coordinates increasing as they go upward and to
the right.

2. A window can be positioned anywhere in relation to its parent.

Size
A window's size (width and height) is given in pels, in the range 0 through 65535. A window
can have 0 width and height; however, a window with 0 width or height is not drawn on the
screen, even though it has the WS_ VISIBLE style.

An application can create very large windows; however, it should check the size of the
screen before enlarging a window size. One way to choose an appropriate size is to use the
WinGetMaxPosition function to retrieve the size of the maximized window. A window that is
larger than its maximized size will be larger than the screen also.

An application can retrieve the current size of the window by using the
WinQueryWindowRect function.

Position
A window's position is defined as the x,Y coordinates of its lower-left corner. These
coordinates, sometimes called window coordinates, always are relative to the lower-left
corner of the parent window. For example, a window having the coordinates (10,10) is
placed 10 pels to the right of, and 10 pels up from, the lower-left corner of its parent window.
Notice, however, that a window can be positioned anywhere in relation to its parent, but
always relative to the parent's lower-left corner.

Adjusting a window's position can improve drawing performance. For example, an
application could position a window so that its horizontal position is a multiple of 8, relative to

Chapter 2. Windows 2-17

the screen origin (the lower-left corner of the screen). Coordinates that are multiples of 8
correspond to byte boundaries in the screen-memory bit map. It is usually faster to start
drawing at a byte boundary.

By default, the system positions a frame window on a byte boundary; but an application can
override this action by using the FCF _NOBYTEALIGN style when creating the window.

Size and Position Messages
A window receives messages when it changes size or position. Before a change is made,
the system might send a WM_ADJUSTWINDOWPOS message to allow the window
procedure to make final adjustments to the window's size and position. This message
includes a pointer to an SWP structure that contains the requested width, height, and
position. If the window procedure adjusts these values in the structure, the system uses the
adjusted values to redraw the window. The WM_ADJUSTWINDOWPOS message is not
sent if the change is a result of a call to the WinSetWindowPos function with the
SWP _NOADJUST constant specified.

After a change has been made to a window, the system sends a WM_SIZE message to
specify the new size of the window. If the window has the class style CS_MOVENOTIFY,
the system also sends a WM_MOVE message, which includes the new position for the
window. Ttle system sends a WM_SHOW message if the visibility of the window has
changed.

System Commands
An application that has a window with a system menu can change the size and position of
that window by sending system commands. The system commands are generated when the
user chooses commands from the system menu. An application can emulate the user action
by sending a WM_SYSCOMMAND message to the window.

Following are some of the system commands:

Table 2-3. System Commands

Command Description

SC_SIZE Starts a Size command. The user can change the size of the window
with a mouse and the keyboard.

SC_MOVE Starts a Move command. The user can move the window with a mouse
and the keyboard.

SC_MINIMIZE Minimizes the window.

SC_MAXIMIZE Maximizes the window.

SC_RESTORE Restores a minimized or maximized window to its previous size and
position.

SC_CLOSE Closes the window. This command sends a WM_ CLOSE message to the
window. The window performs all tasks needed to clean up and destroy
itself.

2-18 PM Basic Programming Guide

Window Data
Every window has an associated data structure. The window data structure contains all the
information specified for the window at the time it was created and any additional information
supplied for the window since that time. Although the exact size and meaning of the
information in the window data structure are private to the system, an application can access
any of the following data items via system-provided functions:

• Pointer to window-instance data structure
• Pointer to window procedure
• Parent-window handle
• Owner-window handle
• Handle of first child window
• Handle of next sibling window
• Window size and position (expressed as a rectangle)
• Window style
• Window identifier
• Update-region handle
• Message-queue handle.

An application can examine and modify this data by using functions such as
WinQueryWindowUShort and WinSetWindowUShort. These functions let an application
access data that is stored as 16-bit integers. Other functions let an application access data
containing 32-bitintegers and pointers. Several functions indirectly affect the data items in
the window data structure. For example, the WinSubclassWindow function replaces the
window-procedure pointer, and the WinSetWindowPos function changes the size and position
of the window.

An application can extend the number of available data items in the window data structure by
specifying a count of extra bytes when it registers the corresponding window class. Then,
the window procedure can use these bytes to store information about the window. The
WinQueryWindowUShort and WinSetWindowUShort functions give direct access to the extra
bytes.

It generally is not a good idea to use direct storage in the window data. It is better to
allocate a data structure dynamically and set a pointer to that data structure in the window
words. This provides two advantages:

1. Most importantly, it is a symbolic way of referencing the data structure. It is very easy to
make mistakes and provide the wrong offsets to WinQueryWindowUShort and so forth.

2. You now can add and remove fields without cross dependencies because you now use
symbolic references; whereas, when you use the technique of putting window words
directly in the window data structure, you have to account for changed offsets.

Window Resources
Window resources are read-only data segments stored in an application's EXE file or in a
dynamic link library's DLL file. Predefined PM window resources include keyboard
accelerator tables, icons, menus, bit maps, dialog boxes, and so forth; these are not a
regular part of the application window's code and data. Because, in most cases, window

Chapter 2. Windows 2-19

resources are not loaded into memory when the operating system runs a program, the
resources can be shared by multiple instances of the same application.

Most window resources are stored in a format that is unique to each resource type. The
application does not need to know these formats because the system translates them, as
necessary, for use in PM functions. The following table lists the ten most commonly used
PM window resource types.

Table 2-4. Presentation Manager-Defined Resource Types

Resource Identifier Description

RT_ACCELTABLE Keyboard accelerator table

RT_BITMAP Bit map

RT_DIALOG Dialog box template

RT_FONT Font

RT_FONTDIR Font directory

RT_MENU Menu template

RT_MESSAGE Message string

RT_POINTER Icon or mouse

RT_RCDATA Programmer-defined data

RT_STRING Text string

To access these resources, you must prepare a resource file (ASCII file with the extension
.RC). Then the ASCII resource file must be compiled into binary images using the resource
compiler. The compiled resource file extension is RES; it can be linked into your program's
EXE file or to a dynamic link library's DLL file.

, Maximized and Minimized Windows
A maximized window is a window that has been enlarged to fill the screen. Although a
window's size can be set so that it fills the screen exactly, a maximized window is slightly
different: the system automatically moves the window's title bar to the top of the screen and
sets the WS_MAXIMIZED style for the window.

A minimized window is a window whose size has been reduced to exactly the size of an icon
or, in the Workplace Shell*, it disappears altogether (by default). Like a maximized window,
a minimized window is more than just a window of a given size; typically, the system moves
the (icon) minimized window to the lower part of the screen and sets the WS_MINIMIZED
style for that window. The lower part of the screen is sometimes called the icon area.
Unless the application specifies another position, the system moves a minimized window into
the first available icon position in the icon area.

If a window is created with the WS_MAXIMIZED or WS_MINIMIZED styles, the system
draws the window as a maximized or minimized window.

2-20 PM Basic Programming Guide

An application can restore maximized or minimized windows to their previous size and
position by specifying the SWP _RESTORE flag in a call to the WinSetWindowPos function.

Window Visibility
A window that is a descendant of the desktop window can be either visible or invisible. The
system displays a visible window on the screen. It hides an invisible window by not drawing
it. If a window is visible, the user can supply input to the window and view the window's
output. If a window is invisible, the window, in effect; is disabled. An invisible window can
process messages from the system or from other windows, but it cannot process user input
or display output. An application sets a window's visibility state when it creates the window.
Later, a user or the application can change the visibility state.

The visible region of a window is the position clipped by any overlapping windows. These
overlapping windows can be child windows or other main windows in the system. The visible
region is defined by a set of one or more rectangles, as shown in Figure 2-7.

- Visible Region for Window A

Figure 2-7. Visible Region for Window A

A window is visible if the WS_ VISIBLE style is set for the window. By default, the
WinCreateWindow function creates invisible windows unless the application specifies
WS_ VISIBLE. The application often hides a window to keep its operational details from the
user. For example, an application can keep a new window invisible while it customizes the
window's appearance. An application can determine whether a window has the
WS_ VISIBLE style by using the WinlsWindowVisible function.

Even if a window has the WS_ VISIBLE style, the user might not be able to see the window
on the screen because other windows completely overlap it, or it might have been moved
beyond the edge of its parent. A visible window is subject to the clipping rules established
by its parent-child relationship. If the window's parent window is not visible, the window will
not be visible. Because a child window is drawn relative to its parent's lower-left corner, if
the parent window is moved beyond the edge of the screen, the child window also will be
moved. In other words, if a user moves the parent window containing the child window far
enough off the edge of the screen, the user will not be able to see the child window, even
though the child window and its parent window have the WS_ VISIBLE style. To determine

Chapter 2. Windows 2-21

whether the user actually can see a window, an application can use the
WinlsWindowShowing function.

Window Destruction
In general, an application must destroy all the windows it creates. It does this by using the
WinDestroyWindow function. When a window is destroyed, the system hides the window, if
it is visible, and then removes any internal data associated with the window. This invalidates
the window handle so that it can no longer be used by the application.

An application destroys many of the windows it creates soon after creating them. For
example, an application usually destroys a dialog window as soon as the application has
sufficient input from the user to continue its task. An application eventually destroys the
main window of the application (before terminating).

Destroying a window does not affect the window class from which the window was created.
New windows still can be created using that class, and any existing windows of that class
continue to operate.

When the application calls WinDestroyWindow, the system searches the descendancy tree
for all windows below the specified window and destroys them from the bottom up, so each
child receives WM_DESTROY before its parent. Each destroyed window is responsible for
cleaning up its own resources in response to the WM_DESTROY message.

If a presentation space was created by the WinGetPS function for any of the windows to be
destroyed, it must be released by calling the WinReleasePS function. The application must
do this before calling the WinDestroyWindow function. If a presentation space is associated
with the device context for the window, the application must disassociate or destroy the
presentation space by using the GpiAssociate or GpiDestroyPS function before calling
WinDestroyWindow. Failing to release a resource can cause an error.

For more information about presentation spaces and device contexts, see Chapter 7,
"Painting and Drawing."

If the window being destroyed is the active window, both the active and focus states are
transferred to another window. The window that becomes the active window is the next
window, as determined by the Alt+Esc key combination. The new active window then
determines which window receives the keyboard focus.

2-22 PM Basic Programming Guide

Using Windows
The following sections explain how to create and use windows in an application, how to
manage ownership and parent-child window relationships, and how to move and size
windows.

Creating a Top-Level Frame Window
The main window in most applications is a top-level frame window. An application creates a
top-level frame window by specifying the handle of the desktop window, or
HWND_DESKTOP, as the hwndParent parameter in a call to the WinCreateStdWindow
function.

Figure 2-8 on page 2-24 shows the mainO function for a simple PM application. This
function initializes the application, creates a message queue, and registers the window class
for the client window before creating a top-level frame window.

Chapter 2. Windows 2-23

.... " ...•.....•......•.......... ,.'•..•...•........•

#db.fin~ lOR i. R~SOURC~S l'

, , ,.,

iritmafn(YOID}
:{

HWNbtlwridFram~;
HWNDhl-mdClient; .
HMQ. ,hmq;
Q/:ISGqllisg.
HAB 'hab;

/*.Set·.the •. ~~ame-window. cre<ltion flags.
UlONG flFrameFlags=

FCFTlTLEBAR I
FCF -:-SIZEBORDER
FC(MINMAX I
rCF ~ SYSMENU I
FCF -SHELLPOSI'nON I
FCF)ASKLIST:

/* Title bar
/*Size' border
r" Minimize' and maximize buttons.
/* System menu */
1* System-d~fau1tS)zeand position*/
/* Add name. to Task List. */

/* Initialize the application for PM
hab =Winlnitialize(0);

/* Create the. application message queue.
hmq " WinCreateMsgQueue(hab. e);

/*Register the classfCi.r'. the client window .•
WinRegi sterCl ass (

hab;
"My!'r; vateC) ass ",
(PFNWP)ClientWndProc,

. CS_$IZEREDRAW I
CS HITTEST,
e);

1* Anchor blockh/lOdle */
/*Name. of class being registered *1
/okWindowprocedul"efor class */
/ok Class style *1
/* Class style.' */
/okEl<tra bytes to reserve */

1* Create a top-level frame window with a client window
1* that belongs to the window c1 ass "MyPrivateClass".

·hwndFrame" Wi nCreateStdWi ndow (
HWNO":'DESKTOP. /* Parent. is desktop window.
WS.;;.VlSIBlE, 1* Make frame Willdow visible.
&flFrilmeflags, 1* Frame controls
"/:IyPrivateClass". /* Window class {or client
NULL, /* No window title .. '
WSvrSIBLE,. /ok MaketHentwtndowvisible •
(HMODULE) e, /* Respurces;!l <lpplication module
lDR RESOURCES, 1* Resourceid~nti fi fir
NULl) ;. I * Pointer toeT; entwi ndow handle

1* Start themai nmessage1 oop •. Get messages from the
l-i<queueilnd disPilteh •• them to theappropriilt~wjndows,
while (WinGetMsg(hab. &qmsg,e. 0; .0»

WinDispat.chMsg(hab, &ql)1sg);

Figure 2-8. Structure of a Simple Presentation Manager Application

Creating an Object Window

2-24

An application can create an object window by using the WinCreateWindow function and
setting the desktop-object window as the parent window. The code fragment in Figure 2-9
on page 2-25 shows how to create an object window.

PM Basic Programming Guide

#defi ne ID_OBJWINOOW 2

HWNO hwndObj ect;

hwndObject = WinCreateWindow(
HWNO OBJECT, /* Parent is object window. */
"MyObjClass". /* Window class for cl ient */
NULL. /* Window text */
0, /* No styles for object window */
O. O. /* Lower~ left corner */
0, 0, /* Width and height */
NULL, /* No owner */
HWNO BOTTOM. /* Inserts window at bottom of z-order */
IO_OBJWINOOW. /* Window identifier */
NULL, /* No class-specific data */
NULL); /* No presentation data */

Figure 2-9. Creating an Object Window

Querying Window Data
An application can examine the values in the data structure associated with a window by
using the WinQueryWindowUShort and WinQueryWindowULong functions. Each of these
functions specifies a structure data item to examine. The index value can be an integer
representing a zero-based byte index or a constant (QWS ~ that identifies a specific item of
data. The code fragment in Figure 2-10 obtains the programmer-defined identifier of the
object window defined in the previous example:

HWNO hwndObject;
USHORT usObj IO;

usObj 10 = Wi nQueryWi ndowUShort (hwndObj ect. QWS_IO);

Figure 2-10. Getting the Window Identifier

Changing the Parent Window
An application can change a window's parent window by using the WinSetParent function.
For example, in an application that uses child windows to display documents, you might want
only the active document window to show a system menu. You can do this by changing that
menu's parent window back and forth between the document window and the object window
when WM_ACTIVATE messages are received. This technique is shown in the code
fragment in Figure 2-11 on page 2-26.

Chapter 2. Windows 2-25

/* Get the handl es of the· frame wi ndow and system menu.
hwndFrame := Wi nQueryWi ndow(hwnd. QW PARENT);
hwndSysMenu= Wi nWi ndowFromID (hwndFrame •• FI!):",SYSM~NU);

if (SHORTl FROMMP (mp 1))
Wi nSetParent (hwndSysMenu, hwndFrame, TRUE);

else
Wi nSetParent (hwndSysMenu. HWNO_OBJECT, TRUE);

return 0;

Figure 2-11. Changing the Parent Window

Finding a Parent, Child, or Owner Window
An application can determine the parent, child, and owner windows for any window by using
the WinQueryWindow function. This function returns the window handle of the requested
window.

The code fragment in Figure 2-12 determines the parent window of the given window:

Figure 2-12. Finding the Parent Window

The code fragment in Figure 2-13 determines the topmost child window (the child window in
the top z-order position):

Figure 2-13. Finding the Topmost Child Window

If a given window does not have an owner or child window, WinQueryWindow returns NULL.

2-26 PM Basic Programming Guide

Setting an Owner Window
An application can set the owner for a window by using the WinSetOwner function.
Typically, after setting the owner, a window notifies the owner window of the new relationship
by sending it a message.

The code fragment in Figure 2-14 shows how to set the owner window and send it a
message:

#defi ne NEW_OWNER 1

HWND hwndMyWi ndow;
HWND hwndNewOwner;

if (Wi nSetOwner (hwndMyWi ndow. hwndNewOwner»

/* Send a notification message. */
Wi nSendMsg (hwndNewOwner, /* Sends to owner */

WM_CONTROL, /* Control message for notification */
(MPARAM) NEW OWNER, /* Notification code */
NULL); - /* No extra data */

Figure 2-14. Setting the Owner Window

A window can have only one owner, so WinSetOwner removes any previous owner.

Retrieving the Handle of a Child or Owned Window
A parent or owner window can retrieve the handle of a child or owned window by using the
WinWindowFromlD function and supplying the identifier of the child or owned window.
WinWindowFromlD searches all child and owned windows to locate the window with the
given identifier. The window identifier is set when the application creates the child or owned
window.

Typically, an owned window uses WinQueryWindow to get the handle of the owner window;
then uses WinSendMsg to issue a notification message to its owner window.

The code fragment in Figure 2-15 on page 2-28 retrieves the window handle of an owner
window and sends the window a WM_ENABLE message.

Chapter 2. Windows 2-27

Figure 2-15. Getting a Handle to an Owner or Child Window

An application also can retrieve the handle of a child window by using the
WinWindowFromPoint function and supplying a point in the corresponding parent window.

Enumerating Top-Level Windows
An application can enumerate all top-level windows in the system by using the
WinBeginEnumWindows and WinGetNextWindow functions. An application also can create a
list of all child windows for a given parent window using WinBeginEnumWindows. This list
contains the window handles of immediate child windows. By using WinGetNextWindow, the
application then can retrieve the window handles, one at a time, from the list. When the
application has finished using the list, it must release the list with the WinEndEnumWindows
function.

The code fragment in Figure 2-16 shows how to enumerate all top-level windows (all
immediate child windows of the desktop window):

Figure 2-16. Enumerating Top-Level Windows

2-28 PM Basic Programming Guide

Moving and Sizing a Window
An application can move a window by using the WinSetWindowPos function and specifying
the SWP _MOVE constant. The function changes the position of the window to the specified
position. The position is always given in coordinates relative to the parent window.

The code fragment in Figure 2-17 moves the window to the position (10,10):

HWNO hwnd;

Wi n$etWi ndowPos (
hwnd,
NULL,
10, 10.
0, 0,
$WP _MOVE);

/* Window handle */
/* Not used for moving and sizing */
/* New position */
/* Not used for movi ng */
/* Move window */

Figure 2-.17. Moving a Window

An application can set the size of a window by using the WinSetWindowPos function and
specifying the SWP _SIZE constant. WinSetWindowPos changes the width and height of the
window to the specified width and height.

An application can combine moving and sizing in a single function call, as shown in
Figure 2-18.

HWNO hwnd;

Wi n$etWi ndowPos (
hwnd. /* Wi ndow handl e */
NULL. /* Not used for moving and sizing */
10. 10, /* New position */

.200. 200. /* Width and height */
SWP;.,.MOVE I SWP _SIZE); /*Moveand size window. */

Figure 2-18. Moving and Sizing a Window

An application can retrieve the current size and position of a window by using the
WinQueryWindowPos function. This function copies the current information to an SWP
structure.

The code fragment in Figure 2-19 on page 2-30 uses the current size and position to
change the height of the window, leaving the width and position unchanged.

Chapter 2. Windows 2-29

HWNO hwnd:
SWP swp:

WinQueryWi ndowPos (hwnd, &swp);
Wi nSetWindowPos (

hwnd,
NULL,
0, 0,
swp.cx,
swp.cy + 200,
SWP _SIZE);

1* Window handle *1
< 1* Not used for moving and sizing *1

1* Not used for sizing *1
/* Current width *1
/* New height */
/* Cl)ange the size. */

Figure 2-19. Changing the Size of a Window

An application also can move and change the size of several windows at once by using the
WinSetMultWindowPos function. This function takes an array of SWP structures. Each
structure specifies the window to be moved or changed.

An application can move and size a window even if it is not visible, although the user is not
able to see the effects of the moving and sizing until the window is visible.

Redrawing Windows
When the system moves a window or changes its size, it can invalidate all or part of that
window. The system attempts to preserve the contents of the window and copy them to the
new position; however, if the window's size is increased, the window must fill the area
exposed by the size change. If a window is moved from behind an overlapping window, any
area formerly obscured by the other window must be drawn. In these cases, the system
invalidates the exposed areas and sends a WM_PAINT message to the window.

An application can require that the system invalidate an entire window every time the window
moves or changes size. To do this, the application sets the CS_SIZEREDRAW class style in
the corresponding window class. Typically, this class style is selected for use in an
application that uses a window's current size and position to determine how to draw the
window. For example, a clock application always would draw the face of the clock so that it
filled the window exactly.

An application also can explicitly specify which parts of the window to preserve during a
move or size change. Before any change is made, the system sends a
WM_CALCVALIDRECTS message to windows that do not have the style
CS_SIZEREDRAW. This enables the window procedure to specify what part of the window
to save and where to align it after the move or size change.

Changing the Z-Order of Windows
An application can move a window to the top or bottom of the z-order by passing the
SWP _ZORDER constant to the WinSetWindowPos function. An application specifies where
to move the window by specifying the HWND_TOP or HWND_BOTTOM constants.

The code fragment in Figure 2-20 uses WinSetWindowPos to change the z-order of a
window.

2-30 PM Basic Programming Guide

HWND hwndPa rent;
HWND hwndNext;
HENUM henum;

Wi nSetWi ndowPos (
hwndNext.
HWND_TOP,
0, 0. 0. 0,
SWP _ZORDER);

/ * Next wi ndow to move * /
/* Put window on top */
/* Not used for z-order */
/* Change z-order */

Figure 2-20. Changing the Z-order of a Window

An application also can specify the window that the given window is to move behind. In this
case, the application specifies the window handle instead of the HWND _TOP or
HWND _BOTTOM constant.

HWND hwndParent;
HWND hwndNext;
HWND hwndExchange;
HENUM henum;

henum = Wi nBegi nEnumWi ndows (hwndParent) ;

hwndExchange = Wi nGetNextWi ndow (henum);

/* hwndNext has top window;
hwndExchange has wi ndow under the top. * /

Wi nSetWi ndowPos (
hwndNext.
hwndExchange,
0, 0, 0, 0,
SWP _ZORDER) ;

/ * Next wi ndow to move * /
/ * Put lower wi ndow on top * /
/* Not used for z-order */
/* Change z-order * /

Wi nEndEnumWi ndows (henum) ;

Figure 2-21. Exchanging the Z-order of Windows

Showing or Hiding a Window
An application can show or hide a window by using the WinShowWindow function. This
function changes the WS_ VISIBLE style of a window to the specified setting. An application
can also use the WinlsWindowVisible function to check the visibility of a window. This
function returns TRUE if the window is visible.

Maximizing, Minimizing, and Restoring a Frame Window
An application can maximize, minimize, or restore a frame window by using the
WinSetWindowPos function and specifying the constant SWP _MAXIMIZE, SWP _MINIMIZE,
or SWP _RESTORE. Only a frame window can maximize and minimize by default. For allY
other window, an application must provide support for these actions in the corresponding
window procedure.

Figure 2-22 on page 2-32 shows how to maximize a frame window.

Chapter 2. Windows 2-31

Figure 2-22. Maximizing a Frame Window

Destroying a Window
An application can destroy a window by using the WinDestroyWindow function. Figure 2-23
shows how to create and then destroy a control window:

Figure 2-23. Destroying a Window

2-32 PM Basic Programming Guide

Related Functions
This section covers the functions that are related to Windows.

WinBeginEnumWindows
This function begins the enumeration process for all of the immediate child windows of a
specified window.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

HENUM WinBeginEnumWindows (HWND hwnd)

Parameters
hwnd (HWND) - input

Handle of the window whose child windows are to be enumerated.

Enumerate all main windows
Enumerate al! object windows

HWND_DESKTOP
HWND _OBJECT
Other Enumerate all immediate children of the specified window.

Returns
henumHenum (HENUM) - returns

Enumeration handle.

Chapter 2. Windows 2-33

WinCreateStdWindow
This function creates a standard window.

Syntax

#define INCL_WINFRAMEMGR /* Or use INCL_WIN, INCL_PM, Also in COMON section */

#include <os2.h>

HWND WinCreateStdWindow (HWND hwndParent, ULONG flStyle,

Parameters
hwndParent (HWND) - input

Parent-window handle.

flStyle (ULONG) - input
Frame-window style.

PULONG pflCreateFlags, PSZ pszClassClient,
PSZ pszTitle, ULONG flStyleClient,
HMODULE Resource, ULONG ulld,
PHWND phwndClient)

pflCreateFlags (PULONG) - input
Frame-creation flags.

pszClassClient (PSZ) - input
Client-window class name.

pszTitle (PSZ) - input
Title-bar text.

flStyleClient (ULONG) - input
Client-window style.

Resource (HMODULE) - input
Resource identifier.

NULLHANDLE Resource definitions are contained in the application .EXE file.
Other The module handle returned by the DosLoadModule or

DosQueryModuleHandle call of the Dynamic Link Library (DLL)
containing the resource definitions.

ulld (ULONG) - input
Frame-window identifier.

phwndClient (PHWND) - output
Client-window handle.

2-34 PM Basic Programming Guide

Returns
hwndFrame (HWNO) - returns

Frame-window handle.

Chapter 2. Windows 2-35

WinCreateWindow
This function creates a new window of class pszClass and returns hwnd.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

HWND WinCreateWindow (HWND hwndParent, PSZ pszClass, PSZ pszName,
ULONG flStyle, LONG x, LONG y, LONG ex, LONG ey,
HWND hwndOwner, HWND hwndlnsertBehind,

Parameters
hwndParent (HWND) - input

Parent-window handle.

pszClass (PSZ) - input
Registered-class name.

pszName (PSZ) - input
Window text.

flStyle (ULONG) - input
Window style.

x (LONG) - input

ULONG id, PVOID pCtlData, PVOID pPresParams)

x-coordinate of window position.

y (LONG) - input
y-coordinate of window position.

ex (LONG) - input
Width of window, in window coordinates.

ey (LONG) - input
Height of window, in window coordinates.

hwndOwner (HWND) - input
Owner-window handle.

hwndlnsertBehind (HWND) - input
Sibling-window handle.

id (ULONG) - input
Window identifier.

pCtlData (PVOID) - input
Pointer to control data.

2-36 PM Basic Programming Guide

pPresParams (PVOID) - input
Presentation parameters.

Returns
hwnd (HWND) - returns

Window handle.

NULLHANDLE Error occurred
Other Window handle.

Chapter 2. Windows 2-37

WinOestroyWindow
This call destroys a window and its child windows.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, Also in COMON section */

#include <os2.h>

BOOl WinDestroyWindow (HWND hwnd)

Parameters
hwnd (HWNO) - input

Window handle.

Returns
rc (BOOl) - returns

Window-destroyed indicator.

TRUE
FALSE

Window destroyed
Window not destroyed.

2-38 PM Basic Programming Guide

WinEnableWindow
This function sets the window enabled state.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinEnableWindow (HWND hwnd, BOOl fNewEnabled)

Parameters
hwnd (HWNO) - input

Window handle.

fNewEnabled (BOOl) - input
New enabled state.

TRUE
FALSE

Returns

Set window state to enabled
Set window state to disabled.

rc (BOOl) - returns
Window enabled indicator.

TRUE
FALSE

Window enabled state successfully updated
Window enabled state not successfully updated.

Chapter 2. Windows 2-39

WinEndEnumWindows
This function ends the enumeration process for a specified enumeration.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOL WinEndEnumWindows (HENUM henum)

Parameters
henum (HENUM) - input

Enumeration handle.

Returns
rc (BOOl) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

2-40 PM Basic Programming Guide

WinGetMaxPosition
The WinGetMaxPosition function fills an SWP structure with the maximized-window size and
position.

Syntax

#define INCL_WINFRAMEMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinGetMaxPosition (HWND hwnd, PSWP pswp)

Parameters
hwnd (HWND) - input

Frame-window handle.

pswp (PSWP) - output
Set window position structure.

Returns
fSuccess (BOOl) - returns

Success indicator.

TRUE
FALSE

Successful completion.
Error occurred.

Chapter 2. Windows 2-41

WinGetMinPosition
This function returns the position to which a window is minimized.

Syntax

#define INCL_WINFRAMEMGR /* Or use INCL_WIN. INCL_PM, */

#include <os2.h>

BOOl WinGetMinPosition (HWND hwnd, PSWP pswp, PPOINTl pptl)

Parameters
hwnd (HWND) - input

Frame-window handle.

pswp (PSWP) - output
Set window position structure.

pptl (PPOINTl) - input
Preferred position.

NUll System is to choose the position
Other System is to choose the position nearest to the specified pOint.

Returns
rc (BOOl) - returns

Success indicator.

TRUE Successful completion.

The WS_MINIMIZE style is set for hwnd. This enables the system to
determine which other frame windows are minimized, during the enumeration
process performed by this function.

Also, the window words aWS_XMINIMIZE and aws_ YMINIMIZE for hwnd
are initialized. This enables the system to ensure that no windows that have
been, or are being, minimized use the same position.

FALSE Error occurred.

2-42 PM Basic Programming Guide

WinGetNextWindow
This function gets the window handle of the next window in a specified enumeration list.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

HWND WinGetNextWindow (HENUM henum)

Parameters
henum (HENUM) - input

Enumeration handle.

Returns
hwndNext (HWND) - returns

Next window handle in enumeration list.

NULLHANDLE Error occurred, henum was invalid, or all the windows have been
enumerated.

Other Next window handle.

Chapter 2. Windows 2-43

Winlnitialize
This function initializes the PM programming interface facilities for use by an application.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, Also in COMON section */

#include <os2.h>

HAB Winlnitialize (ULONG flOptions)

Parameters
flOptions (ULONG) - input

Initialization options.

o The initial state for newly created windows is that all messages for the window are
available for processing by the application.

This is the only option available in PM programming interface.

Returns
hab (HAB) - returns

Anchor-block handle.

NULLHANDLE An error occurred.
Other Anchor-block handle.

2-44 PM Basic Programming Guide

WinlsChiid
This function tests if one window is a descendant of another window.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WlnlsChiid (HWND hwnd, HWND hwndParent)

Parameters
hwnd (HWND) - input

Child-window handle.

hwndParent (HWND) - input
Parent-window handle.

Returns
fRelated (BOOl) - returns

Related indicator.

TRUE

FALSE

Child window is a descendant of the parent window, or is equal to it

Child window is not a descendant of the parent, or is an Object Window (even
if hwndParent is specified as the desktop or HWND_DESKTOP), or an error
occurred.

Chapter 2. Windows 2-45

WinlsThreadActive
This function determines whether the active window belongs to the calling execution thread.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinlsThreadActive (HAB hab)

Parameters
hab (HAB) - input

Anchor-block handle of calling thread.

Returns
rc (BOOl) - returns

Active-window indicator.

TRUE
FALSE

Active window belongs to calling thread
Active window does not belong to calling thread.

2-46 PM Basic Programming Guide

WinlsWindow
This function determines if a window handle is valid.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinlsWindow (HAB hab, HWND hwnd)

Parameters
hab (HAB) - input

Anchor-block handle.

hwnd (HWND) - input
Window handle.

Returns
rc (BOOl) - returns

Validity indicator.

TRUE
FALSE

Window handle is valid
Window handle is not valid.

Chapter 2. Windows 2-47

WinlsWindowEnabled
This function returns the enabled/disabled state of a window.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN. INCL_PM. */

#include <os2.h>

BOOl WinlsWindowEnabled (HWND hwnd)

Parameters
hwnd (HWNO) - input

Window handle.

Returns
rc (BOOl) - returns

Enabled-state indicator.

TRUE Window is enabled
FALSE Window is not enabled.

2-48 PM Basic Programming Guide

WinlsWindowShowing
This function determines whether any part of the window hwnd is physically visible.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN. INCL_PM. Also in COMON section */

#include <os2.h>

BOOL WinlsWindowShowing (HWND hwnd)

Parameters
hwnd (HWND) - input

Window handle.

Returns
rc (BOOl) - returns

Showing state indicator.

TRUE
FALSE

Some part of the window is displayed on the screen
No part of the window is displayed on the screen.

Chapter 2. Windows 2-49

WinlsWindowVisible
This function returns the visibility state of a window.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOL WinlsWindowVisible (HWND hwnd)

Parameters
hwnd (HWND) - input

Window handle.

Returns
rc (BOOl) - returns

Visibility-state indicator.

TRUE
FALSE

Window and all its parents have the WS_ VISIBLE style bit set on
Window or one of its parents have the WS_ VISIBLE style bit set off.

2-50 PM Basic Programming Guide

WinMultWindowFromlDs
This function finds the handles of child windows that belong to a specified window and have
window identities within a specified range.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

LONG WinMultWindowFromlDs (HWND hwndParent, PHWND prghwnd,
ULONG idFirst, ULONG idLast)

Parameters
hwndParent (HWND) - input

Parent-window handle.

prghwnd (PHWND) - output
Window handles.

idFirst (ULONG) - input
First window identity value in the range (inclusive).

idLast (ULONG) - input
Last window identity value in the range (inclusive).

Returns
IWindows (LONG) - returns

Number of window handles returned.

o No window handles returned
Other Number of window handles returned.

Chapter 2. Windows 2-51

WinQueryActiveWindow
This function returns the active window for HWND_DESKTOP, or other parent window.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

HWND WinQueryActiveWindow (HWND hwndParent)

Parameters
hwndParent (HWND) - input

Parent-window handle for which the active window is required.

HWND_DESKTOP The desktop-window handle that causes this function to return the
top-level frame wi,ndow.

Other Specified parent-window handle.

Returns
hwndActive (HWND) - returns

Active-window handle.

NULLHANDLE No window is active
Other Active-window handle.

2-52 PM Basic Programming Guide

WinQueryDesktopWindow
This function returns the desktop-window handle.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

HWNO WinQueryOesktopWindow (HAB hab, HOC hdc)

Parameters
hab (HAS) - input

Anchor-block handle.

hdc (HDC) - input
Device-context handle.

NULLHANDLE Default device (the screen).

Returns
hwndOeskTop (HWND) - returns

Desktop-window handle.

NULLHANDLE Error occurred
Other Desktop-window handle.

Chapter 2. Windows 2-53

WinQueryFocus
This function returns the focus window. It is NULLHANDLE if there is no focus window.

Syntax

#define INCL_WININPUT /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

HWND WinQueryFocus (HWND hwndDeskTop)

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle.

HWND_DESKTOP The desktop-window handle
Other Specified desktop-window handle.

Returns
hwndFocus (HWND) - returns

Focus-handle.

NULL Error occurred or no focus window.

2-54 PM Basic Programming Guide

WinQueryObjectWindow
This function returns the desktop object window handle.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

HWND WinQueryObjectWindow (HWND hwndDesktop)

Parameters
hwndDesktop (HWND) - input

Desktop-window handle.

HWND_DESKTOP The desktop-window handle
Other Specified desktop-window handle.

Returns
hwndObject (HWNO) - returns

Object-window handle.

NULLHANDLE Error occurred.

Chapter 2. Windows 2-55

WinQuerySysModalWindow
This function returns the current system modal window.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

HWND WinQuerySysModalWindow (HWND hwndDesktop)

Parameters
hwndDesktop (HWND) - input

Desktop-window handle.

HWND_DESKTOP
Other

The desktop-window handle
Specified desktop-window handle.

Returns
hwndSysModal (HWND) - returns

Handle of system modal window.

NULLHANDLE
Other

No system modal window
Handle of system modal window.

2-56 PM Basic Programming Guide

WinQueryWindow
This function returns the handle of a window that has a specified relationship to a specified
window.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

HWND WinQueryWindow (HWND hwnd, LONG ICode)

Parameters
hwnd (HWNO) - input

Handle of window to query.

ICode (LONG) - input
Type of window information.

OW_NEXT

OW_PREV

OW_TOP

OW_BOTTOM

OW_OWNER

OW_PARENT

OW_NEXTTOP

Next window in z-order (window below).

Previous window in z-order (window above).

Topmost child window.

Bottommost child window.

Owner of window.

Parent of window.

Returns the next window of the owner window hierarchy subject
to their z-ordering.

The enumeration is evaluated in this order:

1. The hierarchy of windows owned by this window in their
z-order.

2. The hierarchy of windows of the next z-ordered window
having the same owner as this window.

3. The hierarchy of windows in their z-order having the same
owner as the owner of this window. This step is repeated
until the top of the owner tree for this window is reached.

4. The hierarchy of windows in their z-order of unowned
windows.

OW_PREVTOP Returns the previous main window, in the enumeration order
defined by OW_NEXTTOP.

OW_FRAMEOWNER Returns the owner of hwnd normalized so that if shares the
same parent as hwnd.

Chapter 2. Windows 2-57

Returns
hwndRelated (HWND) - returns

Window handle.

2-58 PM Basic Programming Guide

WinQueryWindowPos
This function queries the window size and position of a visible window.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinQueryWindowPos (HWND hwnd, PSWP pswp)

Parameters
hwnd (HWNO) - input

Window handle.

pswp (PSWP) - output
SWP structure.

Returns
rc (BOOl) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Chapter 2. Windows 2-59

WinQueryWindowPtr
This function retrieves a pointer value from the memory of the reserved window word.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

PVOID WinQueryWindowPtr (HWND hwnd, LONG index)

Parameters
hwnd (HWND) - input

Window handle which has the pointer to retrieve.

index (LONG) - input
Zero-based index of the pointer value to retrieve.

Returns
pRet (PVOI D) - returns

Pointer value.

NULL Error occurred.
Other Pointer value.

2-60 PM Basic Programming Guide

WinQueryWindowRect
This function returns a window rectangle.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN. INCL_PM. Also in COMON section */

#include <os2.h>

BOOl WinQueryWindowRect (HWND hwnd, PRECTl prclDest)

Parameters
hwnd (HWNO) - input

Window handle whose rectangle is retrieved.

prclDest (PRECTl) - output
Window rectangle.

Returns
rc (BOOl) - returns

Rectangle-returned indicator.

TRUE
FALSE

Rectangle successfully returned
Rectangle not successfully returned.

Chapter 2. Windows 2-61

WinQueryWindowULong
This function obtains the unsigned long integer value, at a specified offset, from the memory
of a reserved window word, of a given window.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

ULONG WinQueryWindowULong (HWND hwnd, LONG index)

Parameters
hwnd (HWND) - input

Handle of window to be queried.

index (lONG) - input
Zero-based index into the window words of the value to be queried.

aWL_HMO Handle of message queue of window. Note that the
leading 16 bits of this value are zero.

aWL_STYLE Window style.

OWl_HWNDFOCUSSAVE Window handle of the child windows of this window that
last possessed the focus when this frame window was last
deactivated.

2-62 PM Basic Programming Guide

A UlONG value for applications to use is present at offset
aWL_USER in windows of the following preregistered
window classes:

WC _FRAME (includes dialog windows)
WC_COMBOBOX
WC_BUTTON
WC_MENU
WC_STATIC
WC _ENTRYFIElD
WC_LlSTBOX
WC SCROllBAR
WC TITTlEBAR
WC_MlE
WC_SPINBUTTON
WC_CONTAINER
WC SLIDER
WC_VAlUESET
WC_NOTEBOOK

Other

Returns
ulValue (ULONG) - returns

This value can be used to place application-specific data
in controls.

The default push button for a dialog.

The default push button is the one that sends its
WM_COMMAND message when the enter key is pressed.

Reserved for use by operating system extensions. It
allows an operating system extension to store data on a
per window basis.

Zero-based index.

Value contained in the window word.

Chapter 2. Windows 2-63

WinQueryWindowUShort
This function obtains the unsigned short integer value at a specified offset from the reserved
window word's memory of a given window.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN,INCL_PM, */

#include <os2.h>

USHORT WinQueryWindowUShort (HWND hwnd, LONG index)

Parameters
hwnd (HWND) - input

Handle of window to be queried.

index (LONG) - input
Zero-based index into the window words of the value to be queried.

QWSJD

QWS_FLAGS

Window identity. The value of the id parameter of the
WinCreateWindow function.

These indicators apply only to frame or dialog windows, and
contain combinations of the following indicators:

FF _ACTIVE Frame window is displayed in the
active state.

FF _DLGDISMISSED

Frame window is being used as a
dialog box.

Dialog has been dismissed by the
WinDismissDlg function.

Window is currently flashed. This
indicator toggles with each flash.

FF _FLASHWINDOW Frame window is flashing.

FF _OWNERDISABLED Window's owner is disabled. This

FF _OWNERHIDDEN

indicator is only set if the window and
its owner are siblings.

Frame window is hidden as a result of
its owner being hidden or minimized.
This indicator is set only if the window
and its owner are siblings.

Frame window is selected.

Dialog-result parameter, as established by the WinDismissDlg
function.

2-64 PM Basic Programming Guide

QWS _ XRESTORE The x-coordinate of the position to which the window is restored.

See also the QWS _ CYRESTORE value.

QWS _ YRESTORE The y-coordinate of the position to which the window is restored.

See also the QWS _ CYRESTORE value.

QWS_CXRESTORE The width to which the window is restored.

See also the QWS_CYRESTORE value.

QWS_CYRESTORE The height to which the window is restored.

Other

Returns

These values are only valid while the window is maximized or
minimized (that is, while either the WS_MINIMIZED or
WS_MAXIMIZED window style indicators are set). Changing
these values with the WinSetWindowUShort call alters the
restore size and position.

The x-coordinate of the position to which the window is
minimized. If this value is -1, the window has not been
minimized.

See also the QWS_YMINIMIZE value.

The y-coordinate of the position to which the window is
minimized.

When the window is minimized for the first time an arbitrary
position is chosen. Changing these values with the
WinSetWindowUShort call alters the position of the minimized
window, but only when the window is not in a minimized state.

Zero-based index.

usValue (USHORT) - returns
Value contained in the indicated window word.

Chapter 2. Windows 2-65

WinRequestMutexSem
WinRequestMutexSem requests ownership of a mutex semaphore or waits for a Presentation
Manager message.

Syntax

#define INCL_WINMESSAGEMGR

#include <os2.h>

APIRET WinRequestMutexSem (HMTX hmtx, ULONG ulTimeout)

Parameters
hmtx (HMTX) - input

The handle of the mutex semaphore to request.

ulTimeout (ULONG) - input
Time-out in milliseconds.

Returns
ulrc (APIRET) - returns

Return Code.

2-66 PM Basic Programming Guide

Wi nSetActiveWindow
This function makes the frame window the active window.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, Also in COMON section */

#include <os2.h>

BOOl WinSetActiveWindow (HWND hwndDeskTop, HWND hwnd)

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle.

HWND _DESKTOP The desktop-window handle
Other Specified desktop-window handle.

hwnd (HWND) - input
Window handle.

Returns
rc (Baal) - returns

Active-window-set indicator.

TRUE Active window is set
FALSE Active window is not set.

Chapter 2. Windows 2-67

WinSetFocus
This function sets the focus window.

Syntax

#define INCL_WININPUT /* Or use INCL_WIN, INCL_PM, Also in COMON section */

#include <os2.h>

BOOl WinSetFocus (HWND hwndDeskTop, HWND hwndNewFocus)

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle.

HWND _DESKTOP The desktop-window handle
Other Specified desktop-window handle.

hwndNewFocus (HWND) - input
Window handle to receive the focus.

Returns
rc (BOOl) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

2-68 PM Basic Programming Guide

WinSetMultWindowPos
This function performs the WinSetWindowPos function for cswp windows, using pswp, an
array of structures whose elements correspond to the input parameters of
WinSetWindowPos.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinSetMultWindowPos (HAB hab, PSWP pswp, UlONG cswp)

Parameters
hab (HAB) - input

Anchor-block handle.

pswp (PSWP) - input
An array of set window position (SWP) structures.

cswp (UlONG) - input
Window count.

Returns
rc (BOOl) - returns

Positioning success indicator.

TRUE
FALSE

Positioning succeeded
Positioning failed.

Chapter 2. Windows 2-69

WinSetOwner
This function changes the owner window of a specified window.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinSetOwner (HWND hwnd, HWND hwndNewOwner)

Parameters
hwnd (HWND) - input

Window handle whose owner window is to be changed.

hwndNewOwner (HWND) - input
Handle of the new owner.

NUllHANDlE The window becomes "disowned"
Other Handle of the new owner window.

Returns
rc (BOOl) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

2-70 PM Basic Programming Guide

WinSetParent
This function sets the parent for hwnd to hwndNewParent.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinSetParent (HWND hwnd, HWND hwndNewParent, BOOl fRedraw)

Parameters
hwnd (HWNO) - input

Window handle.

hwndNewParent (HWNO) - input
New parent window handle.

fRed raw (BOOl) - input
Redraw indicator.

TRUE If hwnd is visible, any necessary redrawing of both the old parent and the new
parent windows is performed.

FALSE No redrawing of the old and new parent windows is performed. This avoids
an extra device update when subsequent calls cause the windows to be
redrawn.

Returns
rc (BOOl) - returns

Parent-changed indicator.

TRUE
FALSE

Parent successfully changed
Parent not successfully changed.

Chapter 2. Windows 2-71

WinSetSysModalWindow
This function makes a window become the system-modal window, or ends the system-modal
state.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinSetSysModalWindow (HWND hwndDesktop, HWND hwnd)

Parameters
hwndDesktop (HWND) - input

Desktop-window handle, or HWND _DESKTOP.

hwnd (HWND) - input
Handle of window to become system-modal window.

Returns
rc (Baal) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

2-72 PM Basic Programming Guide

WinSetWindowBits
This function sets a number of bits into the memory of the reserved window words.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN. INCL_PM. */

#include <os2.h>

BOOL WinSetWindowBits (HWND hwnd, LONG index, ULONG flData,
ULONG flMask)

Parameters
hwnd (HWND) - input

Window handle.

index (LONG) - input
Zero-based index of the value to be set.

aWL_HMa Handle of message queue of window. Note that the
leading 16 bits of this value are zero.

aWL_STYLE Window style.

aWL_HWNDFOCUSSAVE Window handle of the child windows of this window that
last possessed the focus when this frame window was last
deactivated.

A ULONG value for applications to use is present at offset
aWL_USER in windows of the following preregistered
window classes:

WC_FRAME (includes dialog windows)
WC_COMBOBOX
WC_BUTTON
WC_MENU
WC_STATIC
WC ENTRYFIELD
WC_L1STBOX
WC _ SCROLLBAR
WC _ TITTLE BAR
WC_MLE
WC_SPINBUTTON
WC_CONTAINER
WC_SLlDER
WC_ VALUESET
WC_NOTEBOOK

Chapter 2. Windows 2-73

QWl_DEFBUTTON

Other

flData (UlONG) - input

This value can be used to place application-specific data
in controls.

The default push button for a dialog.

The default push button is the one that sends its
WM_COMMAND message when the enter key is pressed.

Reserved for use by operating system extensions. It
allows an operating system extension to store data on a
per window basis.

Zero-based index.

Bit data to store in the window words.

flMask (UlONG) - input
Bits to be written indicator.

Returns
rc (BOOl) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

2-74 PM Basic Programming Guide

WinSetWindowPos
This function allows the general positioning of a window.

Note: Messages may be received from other processes or threads during the processing of
this function.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN. INCL_PM. */

#include <os2.h>

BOOl WinSetWindowPos (HWND hwnd, HWND hwndlnsertBehind, lONG x,
lONG y, lONG ex, lONG ey, UlONG fl)

Parameters
hwnd (HWND) - input

Window handle.

hwndlnsertBehind (HWND) - input
Relative window-placement order.

Place hwnd on top of all siblings
Place hwnd behind all siblings

HWND_TOP
HWND _BOTTOM
Other Identifies the sibling window behind which hwnd is to be placed.

x (LONG) - input
Window position, x-coordinate.

Y (LONG) - input
Window position, y-coordinate.

ex (LONG) - input
Window size.

ey (LONG) - input
Window size.

fl (ULONG) - input
Window-positioning options.

Change the window size. SWP_SIZE

SWP_MOVE

SWP_ZORDER

SWP_SHOW

SWP_HIDE

Change the window x,y position.

Change the relative window placement.

Show the window.

Hide the window.

SWP _NOREDRAW Changes are not redrawn.

Chapter 2. Windows 2-75

SWP _NOADJUST Do not send a WM_ADJUSTWINDOWPOS message before
moving or sizing.

Activate the hwnd window if it is a frame window. This indicator
has no effect on other windows.

The frame window is made the topmost window, unless
SWP _ ZORDER is specified also in which instance the
hwndlnsertBehind window is used.

SWP DEACTIVATE Deactivate the hwnd window if it is a frame window. This

SWP MINIMIZE

SWP _MAXIMIZE

SWP RESTORE

Returns
rc (BOOl) - returns

Repositioning indicator.

indicator has no effect on other windows.

The frame window is made the bottommost window, unless
SWP _ZORDER is specified, in which instance the
hwndlnsertBehind window is used.

Minimize the window. This indicator has no effect if the window
is in a minimized state, and is also mutually exclusive with
SWP _MAXIMIZE and SWP _RESTORE.

Maximize the window. This indicator has no effect if the window
is in a maximized state, and is also mutually exclusive with
SWP _MINIMIZE and SWP _RESTORE.

Restore the window. This indicator has no effect if the window is
in its normal state, and is also mutually exclusive with
SWP _MINIMIZE and SWP _MAXIMIZE.

The position and size of the window in its normal state is
remembered in its window words when it is first maximized or
minimized, although these values can be altered by use of the
WinSetWindowUShort function.

The window is restored to the position and size remembered in
its window words, unless the SWP _MOVE or SWP _SIZE
indicators are set. These indicators cause the position and size
values specified in this function to be used.

TRUE
FALSE

Window successfully repositioned
Window not successfully repositioned.

2-76 PM Basic Programming Guide

WinSetWindowPtr
This function sets a pointer value into the memory of the reserved window words.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinSetWindowPtr (HWND hwnd, lONG Ib, PVOID pp)

Parameters
hwnd (HWND) - input

Window handle.

Ib (lONG) - input
Zero-based index into the window words.

pp (PVOID) - input
Pointer value to store in the window words.

Returns
rc (Baal) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Chapter 2. Windows 2-77

WinSetWindowULong
This function sets an unsigned, long integer value into the memory of the reserved window
words.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinSetWindowUlong (HWND hwnd, lONG index, UlONG ul)

Parameters
hwnd (HWND) - input

Window handle.

index (lONG) - input
Zero-based index of the value to be set.

aWL_STYLE

aWl_HHEAP

aWL _ HWNDFOCUSSAVE

aWL_USER

aWl_DEFBUTTON

2-78 PM Basic Programming Guide

Handle of message queue of window. Note that the
leading 16 bits of this value are zero.

Window style.

Heap handle used by child windows of this window.

Window handle of the child windows of this window that
last possessed the focus when this frame window was last
deactivated.

A UlONG value for applications to use is present at offset
aWL_USER in windows of the following preregistered
window classes:

WC_FRAME (includes dialog windows)
WC_LlSTBOX
WC BUTTON
WC STATIC
WC_ENTRYFIElD
WC _ SCROllBAR
WC_MENU

This value can be used to place application-specific data
in controls.

The default push button for a dialog.

The default push button is the one that sends its
WM_COMMAND message when the enter key is pressed.

Other

ul (UlONG) - input

Reserved for use by operating system extensions. It
allows an operating system extension to store data on a
per window basis.

Zero-based index.

Unsigned, long integer value to store in the window words.

Returns
rc (BOOl) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Chapter 2. Windows 2-79

WinSetWindowUShort
This function sets an unsigned, short integer value into the memory of the reserved window
words.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinSetWindowUShort (HWND hwnd, lONG index, USHORT us)

Parameters
hwnd (HWND) - input

Window handle.

index (lONG) - input
Zero-based index of the value to be set.

aWL_HMO Handle of message queue of window. Note that the
leading 16 bits of this value are zero.

aWL_STYLE Window style.

aWl_HWNDFOCUSSAVE Window handle of the child windows of this window that
last possessed the focus when this frame window was last
deactivated.

2-80 PM Basic Programming Guide

A UlONG value for applications to use is present at offset
aWL_USER in windows of the following preregistered
window classes:

WC _FRAME (includes dialog windows)
WC_COMBOBOX
WC_BUTTON
WC_MENU
WC_STATIC
WC _ENTRYFIElD
WC_L1STBOX
WC _ SCROllBAR
WC_ TITTLE BAR
WC_MlE
WC_SPINBUTTON
WC_CONTAINER
WC_SLlDER
WC_ VAlUESET
WC_NOTEBOOK .

QWl_DEFBUTTON

Other

us (USHORT) - input

This value can be used to place application-specific data
in controls.

The default push button for a dialog.

The default push button is the one that sends its
WM_COMMAND message when the enter key is pressed.

Reserved for use by operating system extensions. It
allows an operating system extension to store data on a
per window basis.

Zero-based index.

Unsigned, short integer value to store in the window words.

Returns
rc (BOOl) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Chapter 2. Windows 2-81

WinShowWindow
This function sets the visibility state of a window.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, Also in COMON section */

#include <os2.h>

BOOl WinShowWindow (HWND hwnd, BOOl fNewVisibility)

Parameters
hwnd (HWND) - input

Window handle.

fNewVisibility (BOOl) - input
New visibility state.

TRUE Set window state visible
FALSE Set window state invisible.

Returns
rc (BOOl) - returns

Visibility changed indicator.

TRUE
FALSE

Window visibility successfully changed
Window visibility not successfully changed.

2-82 PM Basic Programming Guide

WinStartApp
This function starts an application.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

HAPP WinStartApp (HWND hwndNotify, PPROGDETAILS pDetails, PSZ pParams,
PVOID pReserved, ULONG ulOptions)

Parameters
hwndNotify (HWND) - input

Notification-window handle.

NULLHANDLE Do not post the notification message
Other Post the notification message to this window.

pDetaiis (PPROGDETAILS) - input
Program list structure.

pParams (PSZ) - input
Input parameters for the application to be started.

NULL There are no parameters to be passed to the application
Other The parameters to be passed to the application.

pReserved (PVOID) - input
Start data.

ulOptions (ULONG) - input
Option indicators.

o
SAF _INSTALLEDCMDLlNE

SAF _STARTCHILDAPP

Returns
happ (HAPP) - returns

Application handle.

No options selected.
The command line parameters installed in the program
starter list are used; the pParams parameter is ignored.
The specified application is started as a child session of
the session from which WinStartApp is issued. The
calling application may terminate the called application
with a WinTerminateApp function.

NULL Application not started
Other Application handle.

Chapter 2. Windows 2-83

WinTerminate
This function terminates an application thread's use of the Presentation Manager and
releases all of its associated resources.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, Also in COMON section */

#include <os2.h>

BOOl WinTerminate (HAB hab)

Parameters
hab (HAB) - input

Anchor-block handle.

Returns
rc (BOOl) - returns

Termination indicator.

TRUE
FALSE

Application usage of Presentation Manager successfully terminated
Application usage of Presentation Manager not successfully terminated, or
Winlnitialize has not been issued on this thread.

2-84 PM Basic Programming Guide

WinTerminateApp
This function terminates an application previously started with the WinStartApp function.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOL WinTerminateApp (HAPP happ)

Parameters
happ (HAPP) - input

Anchor-block handle.

Returns
rc (BOOl) - returns

Termination indicator.

TRUE
NUll

Application successfully terminated
Error occurred.

Chapter 2. Windows 2-85

WinWaitEventSem
WinWaitEventSem waits for an event semaphore to be posted or for a Presentation Manager
message.

Syntax

#define INCL_WINMESSAGEMGR

#include <os2.h>

APIRET WinWaitEyentSem (HEV hey, ULONG ulTimeout)

Parameters
hey (H EV) - input

The handle of the event semaphore to wait for.

ulTimeout (ULONG) - input
Time-out in milliseconds.

Returns
rc (API RET) - returns

Return Code.

2-86 PM Basic Programming Guide

WinWaitMuxWaitSem
WinWaitMuxWaitSem waits for a muxwait semaphore to clear or for a Presentation Manager
message.

Syntax

#define INCL_WINMESSAGEMGR

#include <os2.h>

APIRET WinWaitMuxWaitSem (HMUX hmux, ULONG ulTimeout,
PULONG pulUser)

Parameters
hmux (HMUX) - input

The handle of the muxwait semaphore to wait for.

ulTimeout (ULONG) - input
Time-out in milliseconds.

SEM_IMMEDIATE_RETURN (0) WinWaitMuxWaitSem returns without blocking the
calling thread.

SEM-'NDEFINITE_WAIT (minus.1) WinWaitMuxWaitSem blocks the calling thread
indefinitely.

pulUser (PULONG) - output
Pointer to receive the user field.

Returns
ulrc (APIRET) - returns

Return Code.

Chapter 2. Windows 2-87

WinWindowFromlD
This function returns the handle of the child window with the specified identity.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

HWND WinWindowFromlD (HWND hwndParent, ULONG id)

Parameters
hwndParent (HWND) - input

Parent-window handle.

id (ULONG) - input
Identity of the child window.

Returns
hwnd (HWND) - returns

Window handle.

NULLHANDLE No child window of the specified identity exists
Other Child-window handle.

2-88 PM Basic Programming Guide

WinWindowFromPoint
This function finds the window below a specified point, that is a descendant of a specified
window.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

HWND WinWindowFromPoint (HWND hwndParent, PPOINTL pptlPoint,
BOOL fEnumChiidren)

Parameters
hwndParent (HWND) - input

Window handle whose child windows are to be tested.

HWND_DESKTOP The desktop-window handle, implying that all main windows are
tested. In this instance, pptlPoint must be relative to the bottom
left corner of the screen.

Other Parent-window handle.

pptlPoint (PPOINTl) - input
The point to be tested.

fEnumChiidren (BOOl) - input
Test control.

TRUE
FALSE

Test all the descendant windows, including child windows of child windows
Test only the immediate child windows.

Returns
hwndFound (HWND) - returns

Window handle beneath pptlPoint.

NUllHANDlE
Parent
Other

pptlPoint is outside hwndParent
pptlPoint is not inside any of the children of hwndParent
Window handle is beneath pptlPoint.

Chapter 2. Windows 2-89

2-90 PM Basic Programming Guide

Related Messages
This section covers the messages that are related to Windows.

WM_ACTIVATE
This message occurs when an application causes the activation or deactivation of a window.

Parameters
param1

usactive (USHORT)
Active indicator.

param2

TRUE
FALSE

The window is being activated
The window is being deactivated.

hwnd (HWND)
Window handle.

In the case of activation, hwnd identifies the window being activated. In the case of
deactivation, hwnd identifies the window being deactivated.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Chapter 2. Windows 2-91

WM_ADJUSTWINDOWPOS
This message is sent by the WinSetWindowPos call to enable the window to adjust its new
position or size whenever it is about to be moved.

Parameters
param1

pswp (PSWP)
SWP structure pointer.

The structure has been filled in by the WinSetWindowPos function with the
proposed move or size data. The control can adjust this new position by changing
the contents of the SWP structure. It can change the x or y fields to adjust its new
position; or the ex or ey fields to adjust its new size, or the hwndlnsertBehind field to
adjust its new z-order.

param2

flzero (ULONG)
Zero.

Returns
flResult (ULONG)

Window-adjustment status indicators.

o
AWP MINIMIZED
AWP MAXIMIZED
AWP _RESTORED
AWP _ACTIVATE
AWP _DEACTIVATE

No changes have been made
The frame window has been minimized.
The frame window has been maximized.
The frame window has been restored.
The frame window has been activated.
The frame window has been deactivated:

2-92 PM Basic Programming Guide

WM CALCFRAMERECT
This message occurs when an application uses the WinCalcFrameRect function.

Parameters
param1

pRect (PRECTl)
Rectangle structure.

This points to a RECTl structure.

param2

usFrame (USHORT)
Frame indicator.

TRUE
FALSE

Frame rectangle provided
Client area rectangle provided.

Returns
rc (BOOl)

Rectangle-calculated indicator.

TRUE
FALSE

Successful completion
Error occurred or the calculated rectangle is empty.

Chapter 2. Windows 2-93

WM_CALCVALIDRECTS
This message is sent from WinSetWindowPos and WinSetMultWindowPos to determine
which areas of a window can be preserved if a window is sized, and which should be
redisplayed.

Parameters
param1

pOldNew (PRECTL)
Window-rectangle structures.

param2

This points to two RECTL structures. The first structure contains the rectangle of
the window before the move, the second contains the rectangle of the window after
the move. The coordinates of the rectangles are relative to the parent window.

pNew (PSWP)
New window position.

This points to a SWP structure that contains information about the window after it is
resized (see the WinSetWindowPos function).

Returns
usAlign (USHORT)

Alignment control.

CVR_ALlGNLEFT Align with the left edge of the window.

CVR_ALlGNBOTTOM Align with the bottom edge of the window.

CVR_ALlGNTOP Align with the top edge of the window.

CVR_ALlGNRIGHT Align with the right edge of the window.

CVR REDRAW The whole window is invalid. If eVR_REDRAW, is set, the
whole window is assumed invalid, otherwise, the remaining
flags can be ORed together to get different kinds of alignment.
For example:

o

2-94 PM Basic Programming Guide

(CVR_ALIGNLEFT I CVR_ALIGNTOP)

aligns the valid window area with the top-left of the window.

It is assumed the application has changed the rectangles
pointed to by pOldNew and pNew itself.

WM_CLOSE
This message is sent to a frame window to indicate that the window is being closed by the
user.

Parameters
param1

ulReserved (ULONG)
Re$erved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Chapter 2. Windows 2-95

WM_CREATE
This message occurs when an application requests the creation of a window.

Parameters
param1

ctldata (PVOID)

param2

Pointer to control data.

This points to a Control-Data data structure initialized with the data provided in the
pCt/Data parameter of the WinCreateWindow function. This pointer is also
contained in the pCREATE parameter.

This parameter MUST be a pointer rather than a long.

The first 2 bytes in the data referenced by this pointer should be the total size of the
data referenced by the pointer, (for example, see the ENTRYFDATA or the
FRAMECDATA structure). PM requires this information to enable it to ensure that
the referenced data is accessible to both 16-bit and 32-bit code.

pCREATE(PCREATESTRUC~

Create structure.

This points to a CREATESTRUCT data structure. See the description of ct/data for
a complete description.

Returns
rc (BOOl)

Error indicator.

TRUE Discontinue window creation
FALSE Continue window creation.

2-96 PM Basic Programming Guide

WM_DESTROV
This message occurs when an application requests the destruction of a window.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Chapter 2. Windows 2-97

WM ENABLE
This message notifies a windows of a change to its enable state.

Parameters
param1

usnewenabledstate (USHORD
New enabled state indicator.

param2

TRUE
FALSE

The window was set to the enabled state.
The window was set to the' disabled state.

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

2-98 PM Basic Programming Guide

WM_MOVE
This message occurs when a window with style CS_MOVENOTIFY changes its absolute
position.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Chapter 2. Windows 2-99

WM_QUERYWINDOWPARAMS
This message occurs when an application queries the window parameters.

Parameters
param1

pwndparams (PWNDPARAMS)
Window parameter structure.

param2

This points to a window parameter structure; see "WNDPARAMS" on page 2-108.

The valid values of fsStatus are WPM_CCHTEXT, WPM_TEXT,
WPM_ CBCTlDATA, and WPM_ CTlDAT A.

The flags in fsStatus are cleared as each item is processed. If the call is
successful, fsStatus is O. If any item has not been processed, the flag for that item
is still set.

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

2-100 PM Basic Programming Guide

WM SETWINDOWPARAMS
This message occurs when an application sets or changes the window parameters.

Parameters
param1

pwndparams (PWNDPARAMS)
Window parameter structure.

This points to a window parameter structure; see "WNDPARAMS" on page 2-108.

The valid values of fsStatus are WPM_TEXT and WPM _ CTlDAT A.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful operation
Error occurred.

Chapter 2. Windows 2-101

WM_SHOW
This message occurs when the WS_ VISIBLE state of a window is being changed.

Parameters
param1

usshow (USHORT)
Show indicator.

TRUE Show the window
FALSE Hide the window.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

2-1 02 PM Basic Programming Guide

WM_SIZE
This message occurs when a window changes its size.

Parameters
param1

scxold (SHORT)
Old horizontal size.

scyold (SHORT)
Old vertical size.

param2

scxnew (SHORT)
New horizontal size.

scynew (SHORT)
New vertical size.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Chapter 2. Windows 2-1 03

WM_SYSCOMMAND
This message occurs when a control has a significant event to report to its owner or when a
key stroke has been translated by an accelerator table.

Parameters
param1

uscmd (USHORT)
Command value.

The command value can be one of the SC _ * values. It is the responsibility of the
application to be able to relate uscmd to an application function.

param2

ussource (USHORT)
Source type.

Identifies the type of control:

CMDSRC_PUSHBUTTON Posted by a push-button control. uscmd is the
window identifier of the push button.

CMDSRC_MENU Posted by a menu control. uscmd is the identifier of
the menu item.

CMDSRC_ACCELERATOR Posted as the result of an accelerator. uscmd is the
accelerator command value.

uspointer (USHORT)
Pointing-device indicator.

Other source. uscmd gives further control-specific
information defined for each control type.

TRUE
FALSE

The message is posted as a result of a pointing-device operation.
The message is posted as a result of a keyboard operation.

Returns
ulReserved (ULONG)

Reserved value, should be O.

2-104 PM Basic Programming Guide

WM_WINDOWPOSCHANGED
If this message has any of the values of the fI parameter of the SWP structure set, with the
exception of the SWP _NOADJUST and SWP _NOREDRAW values, it is sent to the window
procedure of the window whose position is changed.

This message is also sent if the return value from the WM_ADJUSTWINDOWPOS is not
NULL.

Parameters
param1

pswp (PSWP)

param2

SWP structures.

This points to two SWP structures. The first SWP structure describes the entire
new window state, whereas the second structure describes the entire old window
state. The fI parameter of the first structure contains only those indicators
corresponding to the state changes that occurred.

flAwp (ULONG)
Adjust window position status indicators.

The AWF _ * flags specify the state change of the frame window.

The return value from the WM_ADJUSTWINDOWPOS message:

o The SWP _ NOADJUST option has been specified.
Other Adjust window position status indicators.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Chapter 2. Windows 2-105

Related Data Structures
This section covers the data structures that are related to Windows.

CREATESTRUCT
Create-window data structure.

Syntax

t'y~eoefst ruc.t ··.CREATESTRWCT{
PYOID 'p~r~sParams;'
PVOlDpCtJOata; ..
ULONG jd;'
HWNO hwndInsertBehind;
HWND . hwndOwner;
LONG
LONG.
LONG
LONG
{)LONG
pst
PSZ
HWNO.rwndParent;

}CREATESTRUC1;

Fields
pPresParams (PVOID)

Presentation parameters.

pCtlData (PVOID)
Control data.

id (ULONG)
Window identifier.

hwndlnsertBehind (HWND)
Window behind which the window is to be placed.

hwndOwner (HWND)
Window owner.

ey (LONG)
Window height.

ex (LONG)
Window width.

2-106 PM Basic Programming Guide

y (LONG)
V-coordinate of origin.

x (LONG)
X-coordinate of origin.

flStyle (ULONG)
Window style.

pszText (PSZ)
Window text.

pszClassName (PSZ)
Registered window class name.

hwndParent (HWND)
Parent window handle.

Chapter 2. Windows 2-107

WNDPARAMS
Window parameters.

Syntax

Fields
fsStatus (ULONG)

Window parameter selection.

Identifies the window parameters that are to be set or queried:

WPM_CBCTLDATA
WPM_ CCHTEXT
WPM_CTLDATA
WPM_PRESPARAMS
WPM_TEXT

cchText (ULONG)
Length of window text.

pszText (PSZ)
Window text.

cbPresParams (ULONG)

Window control data length
Window text length
Window control data
Presentation parameters
Window text.

Length of presentation parameters.

pPresParams (PVOID)
Presentation parameters.

cbCtlData (ULONG)
Length of window class specific data.

pCtlData (PVOID)
Window class specific data.

2-1 08 PM Basic Programming Guide

Summary
Following are the OS/2 functions, messages, and data structures used with windows.

Table 2-5 (Page 1 of 3). Window Functions

Window Creation Functions

WinCreateWindow

WinCreateStdWindow

Winlnitialize

Window Destruction Functions

WinDestroyWindow

Window Data Functions

WinQueryWindowUShort

WinSetWindowUShort

WinQueryWindowULong

WinSetWindowULong

WinQueryWindowPtr

WinSetWindowPtr

WinSetWindowBits

Window Relationship Functions

WinlsWindow

WinlsThreadActive

WinSetParent

WinQueryWindow

WinSetOwner

WinBeginEnumWindows

The most direct way of creating a window. The window is
of class ClassName and returns hwnd.

Creates a main window. Requires an anchor block.

Initializes the PM programming interface facility.

Destroys a window and its child windows, and releases all
their resources.

Obtains the unsigned short integer value of a given
window at a specified offset from the reserved window
word's memory.

Sets an unsigned, short integer value into the memory of
the reserved window words.

Obtains the unsigned long integer value of a given
window, at a specified offset, from the memory of a
reserved window word.

Sets an unsigned, long integer value into the memory of
the reserved window words.

Retrieves a pointer value from the memory of the
reserved window word.

Sets a pointer value into the memory of the reserved
window words.

Sets a number of bits into the memory of the reserved
window words.

Determines if a window handle is valid.

Determines whether the active window belongs to the
calling execution thread.

Sets the parent for hwnd to NewParent.

Returns the handle of a window that has a specified
relationship to a specified window.

Changes the owner of a specified window.

Begins the enumeration process for all the immediate
child windows of a specified window.

Chapter 2. Windows 2-109

Table 2-5 (Page 2 of 3). Window Functions

WinGetNextWindow

WinEndEnumWindows

WinlsChiid

WinQueryDesktopWindow

WinQueryObjectWindow

WinWindowFromlD

WinWindowFromPoint

WinMultWindowFromlDs

Window Size and Position Functions

WinSetWindowPos

WinQueryWindowPos

WinSetMultWindowPos

WinQueryWindowRect

WinGetMaxPosition

WinGetMinPosition

Window Visibility Functions

WinlsWindowShowing

WinShowWindow

WinlsWindowVisible

Window Input Functions

WinEnableWindow

WinlsWindowEnabled

WinQueryActiveWindow

WinSetActiveWindow

WinQueryFocus

WinSetFocus

2-110 PM Basic Programming Guide

Gets the window handle of the next window in a specified
enumeration list.

Ends the specified enumeration process.

Tests to determine whether one window is a descendant
of another.

Returns the desktop window handle.

Returns the desktop-object window handle.

Returns the handle of the child window with the specified
10.

Finds the window, below a specified point, that is a
descendant of a specified window.

Finds the handles of child windows that belong to a
specified window and that have window IDs within a
specified range.

Facilitates the general positioning of a window.

Obtains the size and position of a window.

An efficient means of repositioning multiple windows with
one call, provided all windows being positioned have the
same parent.

Returns a window rectangle.

Fills an SWP structure with the maximized-window size
and position.

Returns the position to which a window is minimized.

Determines whether any part of the window, hwnd, is
physically visible.

Sets the visibility state of a window.

Returns the visibility state of a window.

Sets the window enabled state.

Returns the enabled or disabled state of a window.

Returns the active window for HWND_DESKTOP or other
parent window.

Sets the main window as the active window.

Returns the focus window; NULL if there is no focus ,
window.

Sets the focus window.

Table 2-5 (Page 3 of 3). Window Functions

WinQuerySysModalWindow

WinRequestMutexSem

WinSetSysModalWindow

WinStartApp

WinTerminate

WinTerminateApp

WinWaitEventSem

WinWaitMuxWaitSem

Returns the current system-modal window.

Requests the ownership of a mutex semaphore or waits
for a PM message.

Either sets a system-modal window or ends the
system-modal state.

Starts an application.

Terminates an application thread's use of PM and
releases all of its associated resources.

Terminates an application started with WinStartApp.

Waits for an event semaphore to be posted or for a PM
message.

Waits for a muxwait semaphore to clear or for a PM
message.

Chapter 2. Windows 2-111

Table 2-6. Window Messages

Message

WM_ACTIVATE

WM_ADJUSTWINDOWPOS

WM_CALCFRAMERECT

WM_CALCVALIDRECTS

WM_ENABLE

WM_MOVE

WM_PAINT

WM_QUERYWINDOWPARAMS

WM_SETWINDOWPARAMS

WM_SIZE

WM_SYSCOMMAND

WM_WINDOWPOSCHANGED

Table 2-7. Window Data Structures

Data Structure

CREATESTRUCT

WNDPARAMS

2-112 PM Basic Programming Guide

Description

Sent to a window as it gains or loses activation.

Sent to adjust a window's position. Not sent if
SWP _NOADJUST is specified.

Occurs when an application uses the
WinCalcFrameRect call.

Sent from WinSetWindowPos and
WinSetMultWindowPos to determine which
areas of a window will be preserved if a
window is sized and which should be
redisplayed.

Sent to a frame window to indicate that the
window is being closed by the user.

Occurs when the application requests creation'
of a window.

Occurs when the application requests
destruction of a window.

Sets the enable state of a window.

Occurs when a window with the style
CS_MOVENOTIFY changes its absolute
position.

Occurs when a window needs repainting.

Occurs when an application queries the window
parameters.

Occurs when a window is to receive or lose the
input focus.

Occurs when an application sets or changes
the window parameters.

Occurs when a window's WS_ VISIBLE state is
being changed.

Occurs when a window changes its size.

Occurs when a control has a significant event
to report to its owner.

Sent to the window procedure of the window
whose position is changed.

Description

Create window.

Window parameters.

Chapter 3. Messages and Message Queues

The OS/2 operating system uses messages and message queues to communicate with
applications and the windows belonging to those applications. This chapter explains how to
create and use messages and message queues in PM applications.

About Messages and Message Queues
Unlike traditional applications that take complete control of the computer's keyboard, mouse,
and screen, PM applications must share these resources with other applications that are
running at the same time. All applications run independently and rely on the operating
system to help them manage shared resources. The operating system does this by
controlling the operation of each application, communicating with each application when there
is keyboard or mouse input or when an application must move and size its windows.

Messages
A message is information, a request for information, or a request for an action to be carried
out by a window in an application.

The operating system, or an application, sends or posts a message to a window so that the
windoW can use the information or respond to the request.

There are three types of messages:

• User-initiated
• Application-initiated
• System-initiated.

A user-initiated message is the direct result of a user action, such as selecting a menu item
or pressing a key. An application-initiated message is generated by one window in the
application to communicate with another window. System-initiated messages are generated
by the interface as the indirect result of a user action (for example, resizing a window) or as
the direct result of a system event (such as creating a window).

A message that requires an immediate response from a window is sent directly to the
window by passing the message data as arguments to the window procedure. The window
procedure carries out the request or lets the operating system carry out default processing
for the message.

A message that does not require an immediate response from a window is posted (the
message data is copied) to the application's message queue. The message queue is a
storage area that the application creates to receive and hold its posted messages. Then, the
application can retrieve a message at the appropriate time, sending it to the addressed
window for processing.

© Copyright IBM Corp. 1994 3-1

Every message contains a message identifier, which is a 16-bit integer that indicates the
purpose of the message. When a window processes a message, it uses the message
identifier to determine what to do.

Every message contains a window handle, which identifies the window the message. is for.
The window handle is important because most message queues and window procedures
serve more than one window. The window handle ensures that the application forwards the
message to the proper window.

A message contains two message parameters-32-bit values that specify data or the location
of data that a window uses when processing the message. The meaning and value of a
message parameter depend on the message. A message parameter can contain an integer,
packed bit flags, a pointer to a structure that contains additional data, and so forth. Some
messages do not use message parameters and, typically, set the parameters to NULL. An
application always checks the message identifier to determine how to interpret the message
parameters.

A queue message is a QMSG data structure that contains six data items, representing the
window handle, message identifier, two message parameters, message time, and
mouse-pointer position. The time and position are included because most queue messages
are input messages, representing keyboard or mouse input from the user. The time and
position also help the application identify the context of the message. The operating system
posts a queue message by filling the QMSG structure and copying it to a message queue.

A window message consists of the window handle, the message identifier, and two message
parameters. A window message does not include the message time and mouse-pointer
position, because most window messages are requests to perform a task that is not related
to the current time or mouse-pointer position. The operating system sends a window
message by passing these values, as individual arguments, to a window procedure.

Message Queues
Every PM application must have a message queue. A message queue is the only means an
application has to receive input from the keyboard or mouse. Only applications that create
message queues can create windows.

An application creates a message queue by using the WinCreateMsgQueue function. This
function returns a handle that the application can use to access the message queue. After
an application creates a message queue, the system posts messages intended for windows
in the application to that queue. The application can retrieve queue messages by specifying
the message-queue handle in the WinGetMsg function. It also can examine messages,
without retrieving them, by using the WinPeekMsg function. When an application no longer
needs the message queue, it can destroy the queue by using the WinOestroyMsgQueue
function.

One message queue serves all the windows in a thread. This means a queue can hold
messages for several windows. A message specifies the handle of the window to which it
belongs so the application can forward a message easily to the appropriate window. The
message loop recognizes a NULL window handle and the message is processed within the

3-2 PM Basic Programming Guide

message loop rather than passed to WinDispatchMessage. See Figure 3-1 on page 3-5 for
an example of an input-message processing loop.

An application that has more than one thread can create more than one message queue.
The system allows one message queue for each thread. A message queue created by a
thread belongs to that thread and has no connection to other queues in the application.
When an application creates a window in a given thread, the system associates the window
with the message queue in that thread. The system then posts all subsequent messages
intended for that window to that queue.

Note: The recommended way to structure PM applications is to have at least two threads
and two message queues. The first thread and message queue control all the
user-interface windows, and the second thread and message queue control all the
object windows.

Several windows can use one message queue; it is important that the message queue be
large enough to hold all messages that possibly can be posted to it. An application can set
the size of the message queue when it creates the queue by specifying the maximum
number of messages the queue can hold. The default maximum number of messages is 10.

To minimize queue size, several types of posted messages are not actually stored in a
message queue. Instead, the operating system keeps a record in the queue of the message
being posted and combines any information contained in the message with information from
previous messages. Timer, semaphore, and paint messages are handled this way. For
example, if more than one WM_PAINT message is posted, the operating system combines
the update regions for each into a single update region. Although there is no actual
WM_PAINT message in the queue, the operating system constructs one WM_PAINT
message with the single update region when an application uses the WinGetMsg function.

The operating system handles mouse and keyboard input messages differently from the way
it handles other types of messages. The operating system receives all keyboard and mouse
events, such as keystrokes and mouse movements, into the system message queue. The
operating system converts these events into messages and posts them, one at a time, to the
appropriate application message queue. The application retrieves the messages from its
queue and dispatches them to the appropriate window, which processes the messages.

The operating system message queue usually is large enough to hold all input messages,
even if the user types or moves the mouse very quickly. If the operating system message
queue does run out of space, the system ignores the most recent keyboard input (usually by
beeping to indicate the input is ignored) and collects mouse motions into a
WM_MOUSEMOVE message.

Every message queue has a corresponding MQINFO data structure that specifies the
identifiers of the process and thread that own the message queue and gives a count of the
maximum number of messages the queue can receive. An application can retrieve the
structure by using the WinQueryQueuelnfo function.

A message queue also has a current status that indicates the types of messages currently in
the queue. An application can retrieve the queue status by using the
WinQueryQueueStatus function. An application also can use the WinPeekMsg function to

Chapter 3. Messages and Message Queues 3-3

examine the contents of a message queue. WinPeekMsg checks for a specific message or
range of messages in the queue and gives the application the option of removing messages
from the queue. An application can call the WinQueryQueueStatus function to determine the
contents of the queue before calling the WinPeekMsg or WinGetMsg function to remove a
message from the queue.

Message Handling
To handle and process messages, an application can use a message loop and the window
procedure. These terms are explained in the following two sections.

Message Loops
Every application with a message queue is responsible for retrieving the messages from that
queue. An application can do this by using a message loop, usually in the application's main
function, that retrieves messages from the message queue and dispatches them to the
appropriate windows. The message loop consists of two calls: one to the WinGetMsg
function; the other to the WinDispatchMsg function. The message loop has the following
form:

An application starts the message loop after creating the message queue and at least one
application window. Once started, the message loop continues to retrieve messages from
the message queue and to dispatch (send) them to the appropriate windows.
WinDispatchMsg sends each message to the window specified by the window handle in the
message.

Figure 3-1 on page 3-5 illustrates the typical routing of an input message through the
operating system's and application's message loops.

3-4 PM Basic Programming Guide

Appl

Mouse

Input
Router

Accelerator

Keystrokes

Sysyem
Event (t i me ordered)
Queue

Scancode
Translation

Message
Preprocessor Key Translation

,
,
,
,
,
,
,

Appl
msgO

priority
ordered

, WinGetMsgO
, WinDispatchMsgO

': t App's
Message

i Loop w;ndoWtProcedure

, return" ,
, ____________ ' ______ .J

Figure 3-1. Input Message Processing Loop

Only one message loop is needed for a message queue, even if the queue contains
messages for more than one window. Each queue message is a QMSG structure that
contains the handle of the window to which the message belongs. WinDispatchMsg always
dispatches the message to the proper window. WinGetMsg retrieves messages from the
queue in first-in, first-out (FIFO) order, so the messages are dispatched to windows in the
same order they are received.

If there are no messages in the queue, the operating system temporarily stops processing
the WinGetMsg function until a message arrives. This means that processor time that,
otherwise, would be spent waiting for a message can be given to the applications (or
threads) that do have messages in their queues.

The message loop continues to retrieve and dispatch messages until WinGetMsg retrieves a
WM_QUIT message. This message causes the function to return FALSE, terminating the
loop. In most cases, terminating the message loop is the first step in terminating the
application. An application can terminate its own loop by posting the WM_QUIT message in
its own queue.

Chapter 3. Messages and Message Queues 3-5

An application can modify its message loop in a variety of ways. For example, it can retrieve
messages from the queue without dispatching them to a window. This is useful for
applications that post messages without specifying a window. (These messages apply to the
application rather than a specific window; they have NULL window handles.) Also, an
application can direct the WinGetMsg function to search for specific messages, leaving other
messages in the queue. This is useful for applications that temporarily need to bypass the
usual FI FO order of the message queue.

Window Procedures
A window procedure is a function that receives and processes all input and requests for
action sent to the windows. Every window class has a window procedure; every window
created using that class uses that window procedure to respond to messages.

The system sends a message to the window procedure by passing the message data as
arguments. The window procedure takes the appropriate action for the given message.
Most window procedures check the message identifier, then use the information specified by
the message parameters to carry out the request. When it has completed processing the
message, the window procedure returns a message result.. Each message has a particular
set of possible return values. The window procedure must return the appropriate value for
the processing it performed.

A window procedure cannot ignore a message. If it does not process a message, it must
pass the message back to the operating system for default processing. The window
procedure does this by calling the WinDefWindowProc function to carry out a default action
and return the message result. Then, the window procedure must return this value as its
own message result.

A window procedure commonly processes messages for several windows. It uses the
window handle specified in the message to identify the appropriate window. Most window
procedures process just a few types of messages and pass the others on to the operating
system by calling WinDefWindowProc.

Posting and Sending Messages
Any application can post and send messages. Like the operating system, an application
posts a message by copying it to a message queue. It sends a message by passing the
message data as arguments to a window procedure. To post and send messages, an
application uses the WinPostMsg and WinSendMsg functions.

An application posts a message to notify a specific window to perform a task. The
WinPostMsg function creates a QMSG structure for the message and copies the message to
the message queue corresponding to the given window. The application's message loop
eventually retrieves the message and dispatches it to the appropriate window procedure. For
example, one message commonly posted is WM_QUIT. This message terminates the
application by terminating the message loop.

An application sends a message to cause a specific window procedure to carry out a task
immediately. The WinSendMsg function passes the message to the window procedure
corresponding to the given window. The function waits until the window procedure

3-6 PM Basic Programming Guide

completes processing and then returns the message result. Parent and child windows often
communicate by sending messages to each other. For example, a parent window that has
an entry-field control as its child window can set the text of the control by sending a message
to the child window. The control can notify the parent window of changes to the text (carried
out by the user) by sending messages back to the parent window.

Occasionally, an application might need to send or post a message to all windows in the
system. For example, if the application changes a system value, it must notify all windows
about the change by sending a WM_SYSVALUECHANGED message. An application can
send or post messages to any number of windows by using the WinBroadcastMsg function.
The options in WinBroadcastMsg determine whether the message is sent or posted and
specify the windows that will receive the message.

Any thread in the application can post a message to a message queue, even if the thread
has no message queue of its own. However, only a thread that has a message queue can
send a message. Sending a message between threads is relatively uncommon. For one
reason, sending a message is costly in terms of system performance. If an application posts
a message between threads, it is likely to be a semaphore message, which permits window
procedures to manage a shared resource jointly.

An application can post a message without specifying a window. If the application supplies a
NULL window handle when it calls the WinPostMsg function, the function posts the message
to the queue associated with the current thread. The application must process the message
in the message loop. This is one way to create a message that applies to the entire
application instead of to a specific window.

A window procedure can determine whether it is processing a message sent by another
thread by using the WinlnSendMsg function. This is useful when message processing
depends on the origin of the message.

A common programming error is to assume that the WinPostMsg function always succeeds.
It fails when the message queue is full. An application should check the return value of the
WinPostMsg function to see whether the message was posted. In general, if an application
intends to post many messages to the queue, it should set the message queue to an
appropriate size when it creates the queue. The default message-queue size is 10
messages.

Message Types
This section describes the three types of OS/2 messages:

• System-defined
• Application-defined
• Semaphore.

System-Defined Messages
There are many system-defined messages that are used to control the operations of
applications and to provide input and other information for applications to process. The
system sends or posts a system-defined message when it communicates with an application.
An application also can send or post system-defined messages. Usually, applications use

Chapter 3. Messages and Message Queues 3-7

these messages to control the operation of control windows created by using preregistered
Window classes.

Each system message has a unique message identifier and a corresponding symbolic
constant. The symbolic constant, defined in the system header files, states the purpose of
the message. For example, the WM_PAINT constant represents the paint message, which
requests that a window paint its contents.

The symbolic constants also specify the message category. System-defined messages can
belong to several categories; the prefix identifies the type of window that can interpret and
process the messages. The following table lists the prefixes and their related message
categories:

Table 3-1. Message Categories

Prefix Message category

BKM Notebook control -
BM Button control -
CBM Combination-box control -
CM Container control -
EM - Entry-field control

LM List-box control -
MLM - Multiple-line entry field control

MM Menu control -
SBM Scroll-bar control -
SLM Slider control -
SM Static control -
TBM Title-bar control -
VM Value set control -
WM General window -

General window messages cover a wide range of information and requests, including:

• Mouse and keyboard-input
• Menu- and dialog-input
• Window creation and management
• Dynamic data exchange (DOE).

Application-Defined Messages
An application can create messages to use in its own windows. If an application does create
messages, the window procedure that receives the messages must interpret them and
provide the appropriate processing.

3-8 PM Basic Programming Guide

The operating system reserves the message-identifier values in the range OxOOOO through
OxOFFF (the value of WM _USER - 1) for system-defined messages. Applications cannot
use these values for their private messages.

In addition, the operating system uses certain message values higher than WM_USER.
Applications should not use these message values. A partial listing of these messages is in
the following figure:

From PMSTDDLG.H:

#define FDM_FILTER
#define FDM_VALIDATE
#define FDM_ERROR

WM_USER+40
WM_USER+41
WM_USER+42

#define FNTM_FACENAMECHANGED
#define FNTM_POINTSIZECHANGED
#define FNTM STYLECHANGED
#define FNTM=COLORCHANGED
#define FNTM_UPDATEPREVIEW
#define FNTM_FILTERLIST

WM_USER+50
WM_USER+51
WM_USER+52
WM_USER+53
WM_USER+54
WM_USER+55

You should scan your header files to see if other messages have been defined with values
higher than WM _ USER.

Aside from the message values used by the operating system, values in the range Ox1000
(the value of WM _USER) through OxBFFF are available for message identifiers, defined by
an application, for use in that application.

Warning: It is very important that applications do not broadcast messages in the Ox1000
through OxBFFF range due to the risk of misinterpretation by other applications.

Values in the range OxCOOO through OxFFFF are reserved for message identifiers that an
application defines and registers with the system atom table; these can be used in any
application. Values above OxFFFF (Ox00010000 through OxFFFFFFFF) are reserved for
future use; applications must not use messages in this range.

Semaphore Messages
A semaphore message provides a way of signaling, through the message queue, the end of
an event. An application uses a semaphore message the same way it uses system
semaphore functions-to coordinate events by passing Signals. A semaphore message often
is used in conjunction with system semaphores.

There are four semaphore messages:

WM_SEM1
WM_SEM2
WM_SEM3
WM_SEM4.

An application posts one of these messages to signal the end of a given event. The window
that is waiting for the given event receives the semaphore message when the message loop
retrieves and dispatches the message.

Chapter 3. Messages and Message Queues 3-9

Each semaphore message includes a bit flag that an application can use to uniquely identify
the 32 possible semaphores for each semaphore message. The application passes the bit
flag (with the appropriate bit set) as a message parameter with the message. The window
procedure that receives the message then uses the bit flag to identify the semaphore.

To save space, the system does not store semaphore messages in the message queue.
Instead, it sets a record in the queue, indicating that the semaphore message has been
received, and then combines the bit flag for the message with the bit flags from previous
messages. When the window procedure eventually receives the message, the bit flag
specifies each semaphore message posted since the last message was retrieved.

Message Priorities
The WinGetMsg function retrieves messages from the message queue based on message
priority. WinGetMsg retrieves messages with higher priority first. If it finds more than one
message at a particular priority level, it retrieves the oldest message first. Messages have
the following priorities:

Table 3-2. Message Priorities

Priority Message

1 WM_SEM1

2 Messages posted using WinPostMsg

3 Input messages from the keyboard or mouse

4 WM_SEM2

5 WM_PAINT

6 WM_SEM3

7 WM_TIMER

8 WM_SEM4

Message Filtering
An application can choose specific messages to retrieve from the message queue (and
ignore other messages) by specifying a message filter with the WinGetMsg or WinPeekMsg
functions. The message filter is a range of message identifiers (specified by a first and last
identifier), a window handle, or both. The WinGetMsg and WinPeekMsg functions use the
message filter to select the messages to retrieve from the queue. Message filtering is useful
if an application needs to search ahead in the message queue for messages that have a
lower priority or that arrived in the queue later than other less important messages.

Any application that filters messages must ensure that a message satisfying the message
filter can be posted. For example, filtering for a WM_CHAR message in a window that does
not receive keyboard input prevents the WinGetMsg function from returning. Some
messages, such as WM_COMMANO, are generated from other messages; filtering for them
also can prevent WinGetMsg from returning.

3-10 PM Basic Programming Guide

To filter for mouse, button, and DDE messages, an application can use the following
constants:

WM_MOUSEFIRST and WM_MOUSELAST
WM_BUTTONCLICKFIRST and WM_BUTTONCLICKLAST
WM_DDE_FIRST and WM_DDE_LAST.

Using Messages
This section explains how to perform the following tasks:

• Create a message queue and message loop.
• Examine the message queue.
• Post and send messages between windows.
• Broadcast a message to multiple windows.
• Use message macros.

Creating a Message Queue and Message Loop
An application needs a message queue and message loop to process messages for its
windows. An application creates a message queue by using the WinCreateMsgQueue
function. An application creates a message loop by using the WinGetMsg and
WinDispatchMsg functions. The application must create and show at least one window after
creating the queue but before starting the message loop. Figure 3-2 on page 3-12 shows
how to create a message queue and message loop:

Chapter 3. Messages and Message Queues 3-11

hab = Winlnitialite(e);

hmq = Wi nCreateMsgQueue (hab, e);

/* Initialize theapplicationfOr
Presentation Manager interface. ,*/.

/* Create the application
message queue.

/* Register the windowchss for your
cli.ent window. .'if/

WinRegisterClass(hab. /*Anchor blotkhandle 'if/
"MyCl ientClass", !* Class name *!
(PFNWP) Cl ;entWndProc,/* Window procedure */
CS SrZEREDRAW., /* Class style */
G) -; . /* Extra bytes to reserve */

hwndFrame '" Wi nCreateStdWi ndow(
HWNb DESKTOP,
WS VIS1BLE,
&fl FrameFlags,
"Myel ienlCl ass".
(PSZ) NULL,
WS VISIBLE,
(HMODUlE). NULL,
e.!
&hwndClient) ;

/*Greate a main window. */

/* Parent window handle */
/* Style of frame window */
/* Frame controls */
/* Windowcl ass for client */
/* No titl e-bar text */
/* Style of client window */
/* ModuJ e hand1 e for. resources H
/* No resource identifier */
/* Pointer to client handle */

!* Start the message loop.
whi le. (WinGetMsg(hab,&qmsg, (HWND) NULL, e.G»

WinDispalchMsg (hab.&qmsg) ;

Figure 3-2. Creating a Message Queue and Message Loop

Both the WinGetMsg and WinDispatchMsg functions take a pointer to a QMSG structure as a
parameter. If a message is available, WinGetMsg copies it to the QMSG structure;
WinDispatchMsg then uses the data in the structure as arguments for the window procedure.

3-12 PM Basic Programming Guide

Occasionally, an application might need to process a message before dispatching it. For
example, if a message is posted but the destination window is not specified (that is, the
message contains a NULL window handle), the application must process the message to
determine which window should receive the message. Then the WinDispatchMsg function
can forward the message to the proper window. The following code fragment shows how the
message loop can process messages that have NULL window handles:

HAS hab;
QMSG qmsg;

while (W;nGetMsg (hab. &qmsg. (HWN[) NULL. 0. 0»
if (qmsg.hwnd ,,;= NULL) {

. /* Process the message, */

else
Wi nO; spatchMsg (hab. &qmsg);

Examining the Message Queue
An application can examine the contents of the message queue by using the WinPeekMsg or
WinQueryQueueStatus function. It is useful to examine the queue if the application starts a
lengthy operation that additional user input might affect, or if the application needs to look
ahead in the queue to anticipate a response to user input.

An application can use WinPeekMsg to check for specific messages in the message queue.
This function is useful for extracting messages for a specific window from the queue. It
returns immediately if there is no message in the queue. An application can use
WinPeekMsg in a loop without requiring the loop to wait for a message to arrive. The
following code fragment checks the queue for WM_CHAR messages:

HAS hab;
QMSG qmsg;

if (WinPeekMsg(nab, &qmsg, (HWNO) NULL. WM_CHAR. WM_CHAR, PM_NOREMOVE»){

'. /* Process the message. */

An application also can use the WinQueryQueueStatus function to check for messages in the
queue. This function is very fast and returns information about the kinds of messages
available in the queue and which messages have been posted recently. Most applications
use this function in message loops that need to be as fast as possible.

Chapter 3. Messages and Message Queues 3-13

Posting a Message to a Window
An application can use the WinPostMsg function to post a message to a window. The
message goes to the window's message queue. The following code fragment posts the
WM_QUIT message.

The WinPostMsg function returns FALSE if the queue is full, and the message cannot be
posted.

Sending a Message to a Window
An application can use the WinSendMsg function to send a message directly to a window.
An application uses this function to send messages to child windows. For example, the
following code fragment sends an LMJNSERTITEM message to direct a list-box control to
add an item to the end of its list:

HWNDhwndL; stBox;
stat i c CHAR. szWeekday[L= "Tuesday";

Wi n$endMsg (hwndL istBox,
LM INSERTlTEM.
(MPARAMJ LIt END,
MPFROMP(szW;ekday)J;

WinSendMsg calls the window's window procedure and waits for it to handle the message
and return a result. An application can send a message to any window in the system, as
long as the application has the handle of the target window. The message queue does not
store the message; however, the thread making the call must have a message queue.

3-14 PM Basic Programming Guide

Broadcasting a Message
An application can send a message to multiple windows by using the WinBroadcastMsg
function. Often this function is used to broadcast the WM_SYSVALUECHANGED message
after an application changes a system value. The following code fragment shows how to
broadcast this message to all frame windows in all applications:

HWND hwnd;

Wi nBroadcas tMsg (
hwnd,
WM_SYSVALUECHANGED,
NULL,
NULL,
BMSGJRAMEONLY I BMSG_POSTQUEUE);

/* Window handle */
/* Message identifier */
/* No message parameters */

/* All frame wi ndows * /

An application can broadcast messages to all windows, just frame windows, or just the
windows in the application.

Using Message Macros
The system header files define several macros that help create and interpret message
parameters.

One set of macros helps you construct message parameters. These macros are useful for
sending and posting messages. For example, the following code fragment uses the
MPFROMSHORT macro to convert a 16-bit integer into the 32-bit message parameter:

HWND hwndButton;

WinSendMsg(hwndButton, BM_SETCHECK, MPFROMSHORT(1), NULL);

A second set of macros helps you extract values from a message parameter. These macros
are useful for handling messages in a window procedure. The following code fragment
determines whether the window receiving the WM _FOCUSCHANGE message is gaining or
losing the keyboard focus. The fragment uses the SHORT1 FROMMP macro to extract the
focus-change flag, the SHORT2FROMMP macro to extract the focus flag, and the
HWNDFROMMP macro to extract the window handle.

Chapter 3. Messages and Message Queues 3-15

A third set of macros helps you construct a message result. These macros are useful for
returning message results in a window procedure, as the following code fragment illustrates:

3-16 PM Basic Programming Guide

Related Functions
This section covers the functions that are related to Messages.

WinBroadcastMsg
This function broadcasts a message to multiple windows.

Syntax

#define INCL_WINMESSAGEMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinBroadcastMsg (HWND hwndParent, UlONG ulMsgld,
MPARAM mpParam1, MPARAM mpParam2,
UlONG flCmd)

Parameters
hwndParent (HWND) - input

Parent-window handle.

ulMsgld (ULONG) - input
Message identifier.

mpParam1 (MPARAM) - input
Parameter 1.

mpParam2 (MPARAM) - input
Parameter 2.

flCmd (ULONG) - input
Broadcast message command.

BMSG_POST Post the message. This value is mutually exclusive with
BMSG_SEND and BMSG_POSTQUEUE.

BMSG SEND Send the message. This value is mutually exclusive with
BMSG_POST and BMSG_POSTQUEUE.

BMSG_POSTQUEUE Post a message to all threads that have a message queue.
This value is mutually exclusive with BMSG _POST and
BMSG_SEND. The hwnd parameter of the QMSG structure
is set to NULL.

BMSG_DESCENDANTS Broadcast the message to all the descendants of the
hwndParent parameter.

BMSG_FRAMEONLY Broadcast the message only to windows with a style of
CS_FRAME.

Chapter 3. Messages and Message Queues 3-17

Returns
rc (BOOl) - returns

Success indicator.

TRUE
FALSE

Message was sent or posted successfully to all applicable windows
Error occurred.

3-18 PM Basic Programming Guide

WinCallMsgFilter
This function calls a message-filter hook.

Syntax

#define INCL_WINHOOKS /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinCallMsgFilter (HAB hab, PQMSG pqmsg, UlONG ulFilter)

Parameters
hab (HAB) - input

Anchor-block handle.

pqmsg (PQMSG) - input
Message to be passed to the message-filter hook.

ulFilter (UlONG) - input
Filter.

MSGF _DIAlOGBOX

MSGF_TRACK

Dialog-box mode loop.

Window-movement and size tracking. When this hook is
used the TRACKINFO structure specified the ptiTrackinfo
parameter of the WinTrackRect function is updated to give the
current state before the hook is called. Only the rc/Track and
the fs parameters are updated.

MSGF _DRAG Direct manipulation mode loop.

MSGF _ DDEPOSTMSG DDE post message mode loop.

Returns
rc (BOOl) - returns

Message-filter hook return indicator.

TRUE
FALSE

A message-filter hook returns TRUE
All message-filter hooks return FALSE, or no message-filter hooks are
defined.

Chapter 3. Messages and Message Queues 3-19

WinCreateMsgQueue
This function creates a message queue.

Syntax

#define INCL_WINMESSAGEMGR /* Or use INCL_WIN, INCL_PM, Also in COMON section */

#include <os2.h>

HMQ WinCreateMsgQueue (HAB hab, LONG IQueuesize)

Parameters
hab (HAB) - input

Anchor-block handle.

IQueuesize (LONG) - input
Maximum queue size.

o Use the system default queue size; that is 10 messages.
Other Maximum queue size.

Returns
hmq (HMQ) - returns

Message-queue handle.

NULLHANDLE Queue cannot be created .
. Other Message-queue handle.

3-20 PM Basic Programming Guide

WinDestroyMsgQueue
This function destroys the message queue.

Syntax

#define INCL_WINMESSAGEMGR /* Or use INCL_WIN, INCL_PM, Also in COMON section */

#include <os2.h>

BOOl WinOestroyMsgQueue (HMQ hmq)

Parameters
hmq (HMQ) - input

Message-queue handle.

Returns
rc (BOOl) - returns

Queue-destroyed indicator.

TRUE
FALSE

Queue destroyed
Queue not destroyed.

Chapter 3. Messages and Message Queues 3-21

WinDispatchMsg
This function invokes a window procedure.

Syntax

#define INCL_WINMESSAGEMGR /* Or use INCL_WIN, INCL_PM, Also in COMON section */

#include <os2.h>

MRESUL T WinDispatchMsg (HAS hab, PQMSG pqmsgMsg)

Parameters
hab (HAS) - input

Anchor-block handle.

pqmsgMsg (PQMSG) - input
Message structure.

Returns
mresReply (MRESUL T) - returns

Message-return data.

3-22 PM Basic Programming Guide

WinGetMsg
This function gets, waiting if necessary, a message from the thread's message queue and
returns when a message conforming to the filtering criteria is available.

Syntax

#define INCL_WINMESSAGEMGR /* Or use INCL_WIN, INCL_PM, Also in COMON section */

#include <os2.h>

BOOl WinGetMsg (HAB hab, PQMSG pqmsgmsg, HWND hwndFilter,
UlONG ulFirst, UlONG ullast)

Parameters
hab (HAB) - input

Anchor-block handle.

pqmsgmsg (PQMSG) - output
Message structure.

hwndFilter (HWND) - input
Window filter.

ulFirst (UlONG) - input
First message identity.

ullast (UlONG) - input
Last message identity.

Returns
rc (BOOl) - returns

Continue message indicator.

TRUE
FALSE

Message returned is not a WM_QUIT message
Message returned is a WM_QUIT message.

Chapter 3. Messages and Message Queues 3-23

WinlnSendMsg
This function determines whether the current thread is processing a message sent by
another thread.

Syntax

#define INCL_WINMESSAGEMGR /* Or use INCL_WIN. INCL_PM. */

#include <os2.h>

BOOl WinlnSendMsg (HAB hab)

Parameters
hab (HAB) - input

Anchor-block handle.

Returns
rc (BOOl) - returns

Message-processing indicator.

TRUE
FALSE

Current thread is processing a message sent by another thread
Current thread is not processing a message, or an error occurred.

3-24 PM Basic Programming Guide

WinPeekMsg
This function inspects the thread's message queue and returns to the application with or
without a message.

Syntax

#define INCL_WINMESSAGEMGR /* Or use INCL_WIN, INCL_PM, Also in COMON section */

#include <os2.h>

SOOl WinPeekMsg (HAS hab, PQMSG pqmsg, HWND hwndFilter,
UlONG ulFirst, UlONG ullast, UlONG flOptions)

Parameters
hab (HAB) - input

Anchor-block handle.

pqmsg (PQMSG) - output
Message structure.

hwndFilter (HWND) - input
Window filter.

ulFirst (UlONG) - input
First message identity.

ullast (UlONG) - input
last message identity.

flOptions (UlONG) - input
Options.

PM_REMOVE
PM NOREMOVE

Remove message from queue
Do not remove message from queue.

Returns
rc (BOOl) - returns

Message-available indicator.

TRUE
FALSE

Message available
No message available.

Chapter 3. Messages and Message Queues 3-25

WinPostMsg
This function posts a message to the message queue associated with the window defined by
hwnd.

Syntax

#define INCL_WINMESSAGEMGR /* Or use INCL_WIN, INCL_PM, Also in COMON section */

#include <os2.h>

BOOL WinPostMsg (HWND hwnd, ULONG ulMsgid, MPARAM mpParam1,
MPARAM mpParam2)

Parameters
hwnd (HWND) - input

Window handle.

NUll The message is posted into the queue associated with the current thread.
When the message is received by using the WinGetMsg or WinPeekMsg
functions, the hwnd parameter of the QMSG structure is NULL.

Other Window handle.

ulMsgid (UlONG) - input
Message identity.

mpParam1 (MPARAM) - input
Parameter 1.

mpParam2 (MPARAM) - input
Parameter 2.

Returns
rc (BOOl) - returns

Message-posted indicator.

TRUE
FALSE

Message successfully posted
Message could not be posted; for example, because the message queue was
full.

3-26 PM Basic Programming Guide

WinPostQueueMsg
This function posts a message to a message queue.

Syntax

#define INCL_WINMESSAGEMGR /* Or use INCL_WIN. INCL_PM. */

#include <os2.h>

BOOl WinPostQueueMsg (HMQ hmq, UlONG msg, MPARAM mp1,
MPARAM mp2)

Parameters
hmq (HMQ) - input

Message-queue handle.

msg (UlONG) - input
Message identifier.

mp1 (MPARAM) - input
Parameter 1.

mp2 (MPARAM) - input
Parameter 2.

Returns
rc (BOOl) - returns

Success indicator.

Successful completion TRUE
FALSE Error occurred, or the queue was full.

Chapter 3. Messages and Message Queues 3-27

WinQueryMsgPos
This function returns the pointyr position,in screen coordinates, when the last message
obtained from the current message queue is posted.

Syntax

#define INCL_WINMESSAGEMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOL WinQueryMsgPos (HAB hab, PPOINTL pptl)

Parameters
hab (HAS) - input

Anchor-block handle.

pptl (PPOINTl) - output
Pointer position in screen coordinates.

Returns
rc (SOOl) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

3-28 PM Basic Programming Guide

WinQueryQueuelnfo
This function returns the information for the specified queue.

Syntax

#define INCL_WINMESSAGEMGR /* Or use INCL_WIN. INCL_PM. Also in COMON section */

#include <os2.h>

BOOl WinQueryQueuelnfo (HMQ hmq, PMQINFO pmqiMqinfo, UlONG cbCopied)

Parameters
hmq (HMQ) - input

Queue handle.

pmqiMqinfo (PMQINFO) - output
Message queue information structure to contain the queue information.

cbCopied (UlONG) - input
Size of message queue information structure that is provided (in bytes).

Returns
rc (BOOl) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Chapter 3. Message~ and Message Queues 3-29

WinQueryQueueStatus
This function returns a code indicating the status of the message queue associated with the
caller.

Syntax

#define INCL_WINMESSAGEMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

ULONG WinQueryQueueStatus (HWND hwndDesktop)

Parameters
hwndDesktop (HWND) - input

Desktop-window handle.

HWND_DESKTOP The desktop-window handle
Other Desktop-window handle returned by WinQueryDesktopWindow.

Returns
flStatus (ULONG) - returns

Status information.

Summary
Summary of message types existing on the queue.

This field contains a combination of the following values:

QS_MOUSE

An input event (keyboard or journaling) has caused a
WM _CHAR message to be placed in the queue.

An input event has caused a WM_MOUSEMOVE,
WM_BUTTON1 UP, WM_BUTTON1 DOWN,
WM_BUTTON1 DBLCLK, WM_BUTTON2UP,
WM_BUTTON2DOWN, WM_BUTTON2DBLCLK,
WM_BUTTON3UP, WM_BUTTON3DOWN, or
WM_BUTTON3DBLCLK message to be placed in the
queue.

QS_MOUSEBUTTON An input event has caused a WM_BUTTON1 UP,
WM_BUTTON1 DOWN, WM_BUTTON1 DBLCLK,
WM_BUTTON2UP, WM_BUTTON2DOWN,
WM _ BUTTON2DBLCLK, WM _ BUTTON3UP,
WM_BUTTON3DOWN, or WM_BUTTON3DBLCLK
message to be placed in the queue.

QS_MOUSEMOVE An input event has caused a WM_MOUSEMOVE message
to be placed in the queue.

3-30 PM Basic Programming Guide

as_PAINT

as_SEM1

as_SEM2

as_SEM3

as_SEM4

as_POSTMSG

Added
Message type additions.

A timer event has caused a WM_ TIMER message to be
placed in the queue.

A WM_PAINT message is available.

A WM_SEM1 message is available.

A WM _ SEM2 message is available.

A WM _ SEM3 message is available.

A WM _ SEM4 message is available.

A message has been posted to the queue. Note that this
message is probably not one of the messages listed
above, but could be a WM_CHAR, WM_MOUSEMOVE or
similar message if an application has posted one of these.
In this case, the corresponding input status flag (as_KEY,
as_MOUSE, and so on) is not set.

A message has been sent by another application to a
window associated with the current queue.

Message types added to the queue since the last use of this function. The value of
this field is a subset of the Summary field.

Chapter 3. Messages and Message Queues 3-31

WinReleaseHook
This function releases an application hook from a hook chain.

Syntax

#define INCL_WINHOOKS /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinReleaseHook (HAB hab, HMQ hmq, lONG IHook, PFN pAddress,
HMODUlE Module)

Parameters
hab (HAS) - input

Anchor-block handle.

hmq (HMO) - input
Handle of message queue from which the hook is to be released.

HMO_CURRENT The hook is released from the message queue associated with the
current thread (calling thread).

NULLHANDLE The hook is released from the system hook chain.

IHook (LONG) - input
Type of hook chain.

HK_CHECKMSGFILTER
HK_CODEPAGECHANGE
HK_DESTROYWINDOW
HK HELP
HKJNPUT
HK_JOURNALPLAYSACK
HK_JOURNALRECORD
HK_LOADER
HK_MSGCONTROL
HK_MSGFILTER
HK_SENDMSG

pAddress (PFN) - input
Address of the hook routine.

Module (HMODULE) - input
Module handle.

See CheckMsgFilterHook.
See CodePageChangedHook.
See DestroyWindowHook.
See HelpHook.
See InputHook.
See JournalPlaybackHook.
See JournalRecordHook.
See LoaderHook.
See MsgControlHook.
See MsgFilterHook.
See SendMsgHook.

NULLHANDLE The hook procedure is in the application's .EXE file.
Module This is the module that contains the application procedure, as returned

by the DosLoadModule or DosOueryModuleHandle call.

3-32 PM Basic Programming Guide

Returns
rc (BOOl) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Chapter 3. Messages and Message Queues 3-33

WinRegisterUserMsg
This function registers a user message and defines its parameters.

Syntax

#define INCL_WINMESSAGEMGR /* Or use INCL_WIN, INCL_PM, Also in COMON section */

#include<os2.h>

BOOL WinRegisterUserMsg (HAB hab, ULONG msgid, LONG datatype1,
LONG dir1, LONG datatype2, LONG dir2,
LONG datatyper)

Parameters
hab (HAB) - input

Anchor-block handle.

msgid (UlONG) -input
Message identifier.

datatype1 (lONG) - input
Data type of message parameter 1.

DTYP_BIT16

DTYP_BIT32

DTYP_BIT8

DTYP _BOOl

DTYP_lONG

DTYP_SHORT

DTYP_UCHAR

See BIT16 data type.

See BIT32 data type.

See BIT8 data type.

See BOOl data type.

See lONG data type.

See SHORT data type.

See UCHAR data type.

DTYP _UlONG See UlONG data type.

DTYP _ USHORT See USHORT data type.

DTYP P* A pointer to a system data type. Note that not all of the system data
types that exist in the CPI are valid.

< -DTYP USER A pOinter to a user data type. The user data type must have already
been defined via WinRegisterUserDatatype.

dir1 (LONG) - input
Direction of message parameter 1.

RUMJN Input parameter (inspected by the recipient of the message, but not
altered)

3-34 PM Basic Programming Guide

RUM OUT Output parameter (altered by the recipient of the message, without
inspecting its value first)

RUMJNOUT Input/output parameter (inspected by the recipient of the message, and
then altered).

datatype2 (lONG) - input
Data type of message parameter 2.

dir2 (lONG) - input
Direction of message parameter 2.

datatyper (lONG) - input
Data type of message reply.

Returns
rc (Baal) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Chapter 3. Messages and Message Queues 3-35

WinSendMsg
This function sends a message with identity ulMsgid to hwnd, passing mpParam1 and
mpParam2 as the parameters to the window.

Syntax

#define INCL_WINMESSAGEMGR /* Or use INCL_WIN, INCL_PM, Also in COMON section */

#include <os2.h>

MRESUL T WinSendMsg (HWND hwnd, ULONG ulMsgid, MPARAM mpParam1,
MPARAM mpParam2)

Parameters
hwnd (HWNO) - input

Window handle.

ulMsgid (ULONG) - input
Message identity.

mpParam1 (MPARAM) - input
Parameter 1.

mpParam2 (MPARAM) - input
Parameter 2.

Returns
mresReply (MRESUL T) - returns

Message-return data.

3-36 PM Basic Programming Guide

WinSetClassMsglnterest
This function sets the message interest of a window class.

Syntax

#define INCL_WINMESSAGEMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinSetClassMsglnterest (HAB hab, PSZ pszClassName,
UlONG ulMsgClass, lONG IControl)

Parameters
hab (HAB) - input

Anchor-block handle.

pszClassName (PSZ) - input
Window-class name.

ulMsgClass (UlONG) - input
Message class to have interest level set.

msgid
SMIM_All

A single message identity (for example, WM_SHOW).
All messages (except for WM_QUIT if IControl is SMLAUTODISPATCH or
SMI_NOINTEREST).

IControl (lONG) - input
Interest identifier for the message class.

SMIJNTEREST
SMLNOINTEREST
SMLAUTODISPATCH

Returns

Interested in the message, or messages
Not interested in the message, or messages
Interested in the message or messages, but they are to be
automatically dispatched to the window procedure.

rc (BOOl) - returns
Interest-changed indicator.

TRUE
FALSE

I nterest successfully changed
Interest not successfully changed.

Chapter 3. Messages and Message Queues 3-37

WinSetMsglnterest
This function sets a window's message interest.

Syntax

#define INCL_WINMESSAGEMGR /* Or use INCL_WIN. INCL_PM. */

#include <os2.h>

BOOl WinSetMsglnterest (HWND hwnd, UlONG ulMsgClass, lONG IControl)

Parameters
hwnd (HWND) - input

Window handle.

ulMsgClass (ULONG) - input
Message class to have interest level set.

msgid
SMIM ALL

A single message identity (for example, WM_ SHOW)
All messages (except for WM_QUIT if IControl is SMI_AUTODISPATCH or
SMI_NOINTEREST).

IControl (LONG) - input
Interest-identifier for the message class.

SMI RESET
SMLINTEREST
SMLNOINTEREST
SMI_AUTODISPATCH

Returns

Revert to interest specified for the window plass.
Interested in the messages.
Not interested in the messages.
Interested in the message or messages, but they.are to be
automatically dispatched to the window procedure.

rc (BOOL) - returns
Interest-changed indicator.

TRUE
FALSE

Interest successfully changed
Interest not successfully changed.

3-38 PM Basic Programming Guide

WinSetMsgMode
This function indicates the mode for the generation and processing of messages for the
private window class of an application.

Syntax

#define INCL_WINMESSAGEMGR /* Or use INCL_WIN. INCL_PM, Also in COMON section */

#include <os2.h>

BOOl WinSetMsgMode (HAB hab, PSZ pszClassName, lONG IControl)

Parameters
hab (HAB) - input

Anchor block handle.

pszClassName (PSZ) - input
Window class name.

IControl (lONG) - input
Message mode identifier.

SMD_DELAYED
SMD_IMMEDIATE

The generation of messages may be delayed
The generation of messages will not be delayed.

Returns
rc (Baal) - returns

Message delay indicator.

TRUE
FAlS~

Message mode successfully set
Message mode not successfully set.

Chapter 3. Messages and Message Queues 3-39

WinWaitMsg
This function waits for a filtered message.

Syntax

#define INCL_WINMESSAGEMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinWaitMsg (HAB hab, UlONG ulFirst, UlONG ullast)

Parameters
hab (HAB) - input

Anchor-block handle.

ulFirst (UlONG) - input
First message identity.

ullast (UlONG) - input
last message identity.

Returns
rc (BOOl) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

3-40 PM Basic Programming Guide

Related Messages
This section covers the messages that are related to Messages.

WM FOCUSCHANGE
This message occurs when the window possessing the focus is changed.

Parameters
param1

hwndFocus (HWND)
Focus window handle.

param2

usSetFocus (USHORT)
Focus flag.

TRUE The window is receiving the focus and hwndFocus identifies the window
losing the focus.

FALSE The window is losing the focus and hwndFocus identifies the window
receiving the focus.

fsFocusChange (USHORT)
Focus changing indicators.

The indicators are passed from the WinFocusChange function.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Chapter 3. Messages and Message Queues 3-41

WM_QUIT
This. message is posted to terminate the application.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be o.

param2

ulReserved (ULONG)
Reserved value, should be o.

Returns
ulReserved (ULONG)

Reserved value, should be o.

3-42 PM Basic Programming Guide

WM_SEM1
This message is sent or posted by an application.

Parameters
param1

flAccumBits (ULONG)
Semaphore value.

The semaphore values from all the WM_SEM1 messages posted to a queue, are
accumulated by a logical-OR operation.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Chapter 3. Messages and Message Queues 3-43

WM_SEM2
This message is sent or posted by an application.

Parameters
param1

flAccumBits (ULONG)
Semaphore value.

param2

The semaphore values from all the WM _ SEM2 messages posted to a queue, are
accumulated by a logical-OR operation.

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

3-44 PM Basic Programming Guide

WM SEM3
This message is sent or posted by an application.

Parameters
param1

flAccumBits (ULONG)
Semaphore value.

The semaphore values from all the WM_SEM3 messages posted to a queue, are
accumulated by a logical-OR operation.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Chapter 3. Messages and Message Queues 3-45 .

WM SEM4
This message is sent or posted by an application.

Parameters
param1

flAccumBits (ULONG)
Semaphore value.

param2

The semaphore values from all the WM_SEM4 messages posted to a queue, are
accumulated by a logical-OR operation.

ulReserved (ULONG)
Reserved value, should be o.

Returns
ulReserved (ULONG)

Reserved value, should be o.

3-46 PM Basic Programming Guide

WM_SYSVALUECHANGED
This message is posted to all main windows when one of the settable system values is
changed.

Parameters
param1

usChangedFirst (USHORT)
First system value.

The first of a contiguous set of system values that has been changed.

param2

usChangedLast (USHORT)
Last system value.

The last of a contiguous set of system values that has been changed.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Chapter 3. Messages and Message Queues 3-47

Related Data Structures
This section covers the data structures that are related to Messages.

HMQ
Message-queue handle.

Syntax

3-48 PM Basic Programming Guide

MQINFO
Message-queue information structure.

Syntax

typedef struct _MQINFO {
ULONG cb;.
PID pid;
TID tid;
ULONG cmsgs;
PYOID pReserved;
} MQINFO;

typedef MQINFO *PMQINFO;

Fields
cb (ULONG)

Length of structure.

pid (PID)
Process identity.

tid (TID)
Thread identity.

cmsgs (ULONG)
Message count.

pReserved (PVOID)
Reserved.

QMSG
Message structure.

Syntax

Chapter 3. Messages and Message Queues 3-49

Fields
hwnd (HWND)

Window handle.

msg (ULONG)
Message identity.

mp1 (MPARAM)
Parameter 1.

mp2 (MPARAM)
Parameter 2.

time (ULONG)
Message time.

ptl (POINTL)
Pointer position when message was generated.

reserved (ULONG)
Reserved.

3-50 PM Basic Programming Guide

Summary
Following are the functions and structures used with OS/2 messages and message queues.

Table 3-3. Commonly Used Message and Message Queue Functions

Function Name

WinCreateMsgQueue

WinDefDlgProc

Win DefWindowProc

WinDestroyMsgQueue

WinDispatchMsg

WinGetMsg

WinPeekMsg

WinPostMsg

WinSendDlgltemMsg

WinSendMsg

Description

Creates a message queue.

Invokes the default dialog procedure.

Invokes the default window procedure.

Destroys the message queue.

Invokes a window procedure.

Gets a message from the thread's message queue and
returns msg when a message conforming to the filtering
criteria is available.

Inspects the thread's message queue and returns to the
application with or without a message.

Posts a message to the message queue associated with
the window defined by hwnd.

Sends a message to the dialog item defined by item in
the dialog window specified by DIg

Sends a message with identity Msgid to hwnd.

Table 3-4. Seldom-Used Message and Message Queue Functions

Function Name Description

WinBroadcastMsg Broadcasts a message to multiple windows.

WinCallMsgFilter Calls a message-filter hook.

WinlnSendMsg Determines whether the current thread is processing a
message sent by another thread.

WinPostQueueMsg Posts a message to a message queue.

Chapter 3. Messages and Message Queues 3-51

Table 3-5. Almost-Never Used Message and Message Queue Functions

Function Name

WinQueryMsgPos

WinQueryQueuelnfo

WinQueryQueueStatus

WinRegisterUserMsg

WinReleaseHook

WinSetClassMsglnterest

WinSetMsglnterest

WinSetMsgMode

WinTranslateAccel

WinWaitMsg

Table 3-6. Related Messages

Message

WM_FOCUSCHANGE

WM_QUIT

WM_~EM1

WM_SEM2

WM_SEM3

WM_SEM4

WM_SYSVALUECHANGED

3-52 PM Basic Programming Guide

Description

Returns the pointer position, in screen coordinates, when
the last message obtained from the current message
queue is posted.

Returns the information for the specified queue.

Returns a code indicating the status of the message
queue associated with the caller.

Registers a user message and defines its parameters.

Releases an application hook from a hook chain.

Sets the message interest of a message class.

Sets a window's message interest.

Indicates the mode for the generation and processing of
messages for the private window class of an application.

Translates a WM_CHAR message.

Waits for a filtered message ..

Description

This message occurs when the window possessing the
focus is changed.

This message is posted to terminate the application.

This message is sent or posted by an application.

This message is sent or posted by an application.

This message is sent or posted by an application.

This message is sent or posted by an application.

This message is posted to all main windows when one of
the settable system values is changed.

Table 3-7. Message and Message Queue Structures

Structure Name Description

HMO Message-queue handle.

MOINFO Message-queue information structure.

OMSG Message structure.

Chapter 3. Messages and Message Queues 3-53

3-54 PM Basic Programming Guide

Chapter 4. Window Classes

A window class determines which styles and which window procedure are given to a window
when it is created. This chapter explains how a PM application creates and uses window
classes.

About Window Classes
Every window is a member of a window class. An application must specify a window class
when it creates a window. Each window class has an associated window procedure that is
used by all windows of the same class. The window procedure handles messages for all
windows of that class and, therefore, controls the behavior and appearance of the window.

A window class must be registered before an application can create a window of that class.
Registering a window class associates a window procedure and class styles with a class
name. When an application specifies the class name in a window-creation function such as
WinCreateWindow, the system creates a window that uses the window procedure and styles
associated with the class name.

An application can register private classes or use preregistered public window classes.

Private Window Classes
A private window class is any class registered within an application. An application registers
a private class by calling the WinRegisterClass function. A private class cannot be shared
with other applications. When an application terminates, the system removes any data
associated with the application's private window classes.

An application can register a private class anytime but, typically, does so as part of
application initialization. To register a private class during application initialization, the
application also must call Winlnitialize and, usually, WinCreateMsgQueue before class
registration.

An application cannot de-register a private window class; it remains registered and available
until the application terminates.

When an application registers a private window class, it must supply the following
information:

• Class name
• Class styles
• Window procedure
• Window data size.

Class Name
The class name identifies the window class. The application uses this name in the
window-creation functions to specify the class of the window being created. The class name
can be a character string or an atom, and it must be unique within the application. The

© Copyright IBM Corp. 1994 4-1

system checks as to whether a public class or a class already registered by the application
has the same name. If the class name is not unique to that application, the system returns
an error.

Class Styles
Each window class has one or more values, called class styles, that tell the system which
initial window styles to give a window created with that class. An application sets the class
styles for a private window class when it registers the class. Once a class is registered, the
application cannot change the styles.

An application can specify one or more of the following class styles in the WinRegisterClass
function, combining them as necessary by using the bitwise OR operator:

Table 4-1 (Page 1 of 2). Class Styles

Style Name

CS_CLlPCHILDREN

CS_FRAME

CS_HITTEST

CS_MOVENOTIFY

Description

Prevents a window from painting over its child windows, but increases the
time necessary to calculate the visible region. This style usually is not
necessary, because if the parent and child windows overlap and are both
invalidated, the operating system draws the parent window before
drawing the child window. If the child window is invalidated independently
of the parent window, the system redraws only the child window. If the
update region of the parent window does not intersect the child window,
drawing the parent window causes the child window to be redrawn. This
style is useful to prevent a child window containing a complex .graphic
from being redrawn unnecessarily.

Prevents a window from painting over its sibling windows. This style
protects sibling windows but increases the time necessary to calculate the
visible region. This style is appropriate for windows that overlap and have
the same parent window.

Identifies the window as a frame window.

Directs the operating system to send WM_HITTEST messages to the
window whenever the mouse pointer moves in the window.

Directs the system to send WM_MOVE messages to the window
whenever the user moves the window.

Extends a window's visible region to include that of its parent window.
This style simplifies the calculation of the child window's visible region
but, potentially, is dangerous, because the parent window's visible region
is usually larger than the child window.

Saves the screen area under a window as a bit map. When the user
hides or moves the window, the system restores the image by copying
the bits; there is no need to add the area to the uncovered window's
update region. This style can improve system performance, but also can
consume a great deal of memory. It is recommended only for transient
windows such as menus and dialog windows-not for main application
windows.

4-2 PM Basic Programming Guide

Table 4-1 (Page 2 of 2). Class Styles

Style Name Description

CS_SIZEREDRAW Causes the window to receive a WM_PAINT message and be completely
invalidated whenever the window is resized, even if it is made smaller.
(Typically, only the uncovered area of a window is invalidated when a
window is resized.) This class style is useful when an application scales
graphics to fill the window.

CS_SYNCPAINT Causes the window to receive WM_PAINT messages immediately after a
part of the window becomes invalid. Without this style, the window
receives WM_PAINT messages only if no other message is waiting to be
processed.

Window Procedure
The window procedure for a window class processes all messages sent or posted to all
windows of that class. It is the chief component of the window class beCause it controls the
appearance and behavior of each window created with the class. Window procedures are
shared by all windows of a class, so an application must ensure that no conflicts arise when
two windows of the same class attempt to access the same global data. In other words, the
window procedure must protect global data and other shared resources.

Window Data Size
The system creates a window data structure for each window, which includes extra space
that an application can use to store additional data about a window. An application specifies
the number of extra bytes to allocate in the WinRegisterClass function. All windows of the
same class have the same amount of window data space.

An application can store window data in a window's data structure by using the
WinSetWindowUShort and WinSetWindowULong functions. It can retrieve data by using the
WinQueryWindowUShort and WinQueryWindowULong functions.

Custom Window Styles
An application that registers a window class also can support its own set of styles for
windows of that class. Standard window styles-for example, WS_ VISIBLE and
WS_SYNCPAINT-still apply to these windows. A window style is a 32-bit integer, and only
the high 16 bits are used for the standard window styles; an application can use the low 16
bits for custom styles specific to a window class.

The operating system has unique window styles for all preregistered window classes. Styles
such as FS_BORDER and BS_PUSHBUTTON are processed by the window procedure for
the corresponding class. This means that an application can build the support for its own
window styles into the window procedure for its private class. A window style designed for
one window class will not work with another window class.

Chapter 4. Window Classes 4-3

Public Window Classes
Public window classes are registered during system initialization. Their window procedures
are in dynamic link libraries. Therefore, to use a public window class, an application need
not register it. Nor does the application need to import the window procedure for a public
window class because the system resolves references to the window procedure.

An application cannot use a public window class name when it registers a private window
class.

System-Defined Public Window Classes
The system provides a number of public window classes that support menus, frame
windows, control windows, and dialog windows. An application can create a window of a
system-defined public window class by specifying one of the following class name constants
in a call to WinCrea~eWindow:

Table 4-2 (Page 1 of 2). Public Window Classes

Class Name

WC_ENTRYFIELD

WC_FRAME

WC_LlSTBOX

WC_MENU

WC_SCROLLBAR

we_SLIDER

Description

Consists of buttons and boxes the user can select by clicking the pointing
device or using the keyboard.

Creates a combination-box control, which combines a list-box control and
an entry-field control. It enables the user to enter data either by typing in
the entry field or by choosing from the list in the list box.

Creates a control in which the user can group objects in a logical manner.
A container can display those objects in various formats or views. The
container control supports drag and drop so the user can place
information in a container by simply dragging and dropping.

Consists of a single line of text that the user can edit.

A composite window class that can contain child windows of many of the
other window classes.

Presents a list of text items from which the user can make selections.

Presents a list of items that can be displayed horizontally as menu bars,
or vertically as pull-down menus. Usually menus are used to provide a
command interface to applications.

Creates a control for the user that is displayed as a number of pages.
The top page is visible, and the others are hidden, with their presence
being indicated by a visible edge on each of the back pages.

Consists of window scroll bars that let the user scroll the contents of the
associated window.

Creates a control that is usable for producing approximate (analog)
values or properties. Scroll bars were used for this function in the past,
but the slider provides a more flexible method of achieving the same
result, with less programming effort.

4-4 PM Basic Programming Guide

Table 4-2 (Page 2 of 2). Public Window Classes

Class Name Description

WC_SPINBUTTON Creates a control that presents itself to the user as a scrollable ring of
choices, giving the user quick access to the data. The user is presented
only one item at a time, so the spin button should be used with data that
is intuitively related.

WC_STATIC Simple display items that do not respond to keyboard or pointing device
events.

WC_ TITLEBAR Displays the window title or caption and lets the user move the window's
owner.

WC_ VALUESET Creates a control similar in function to radio buttons but provides
additional flexibility to display graphical, textual, and numeric formats.
The values set with this control are mutually exclusive.

Each system-defined public window class has a corresponding set of window styles that an
application can use to customize a window of that class. For example, a window created
with the WC _BUTTON class has styles that include BS _PUSHBUTTON and
BS_CHECKBOX. Window styles enable you to customize aspects of a window's behavior
and appearance. The application specifies the window styles in the WinCreateWindow
function.

Custom Public Window Classes
An application can create a custom public window class, but it must do so during system
initialization. Only the shell can register a public window class, and it can do so only when
the system starts. Registering a public window class requires a special load entry in the
os2.ini file. That entry instructs the shell to load a dynamic link library whose initialization
routine registers the window class. Custom public window classes must be registered using
WinRegisterClass and must have the class style CS_PUBLIC. If a custom public window
class registered this way has the same name as an existing public window class, the custom
class replaces the original class.

If a dynamic link library replaces an existing public window class, the library can save the
address of the original window procedure and use the address to subclass the original
window class. The dynamic link library retrieves the original window procedure address
using the WinQueryClasslnfo function. The custom window procedure then passes
unprocessed messages to the original window procedure instead of calling
WinDefWindowProc.

When subclassing a public window class, the custom public window procedure must not
make the window data size smaller than the original wi'ndow data size, because all public
window classes that the operating system defines use 4 extra bytes for storing a pointer to
custom window data. This size is guaranteed only for public window classes defined by the
operating system dynamic link libraries.

Chapter 4. Window Classes 4-5

Class Data
An application can examine public window class data by using the WinQueryClasslnfo and
WinQueryClassName functions. An application retrieves the name of the class for a given
window by using the WinQueryClassName function. If the window is one of the
preregistered public window classes, the nqme returned is in the form #nnnnn, where nnnnn
is up to 5 digits, representing the value of the window class constant. Using this window
class name, the application can call WinQueryClasslnfo to retrieve the window class data.
WinQueryClasslnfo copies the class style, window procedure address, and window data size
to a CLASSINFO data structure.

4-6 PM Basic Programming Guide

Using Window Classes
This section explains how to perform the following tasks:

• Register a private window class.
• Register an imported window procedure.

Registering a Private Window Class
An application can register a private window class at any time by using the WinRegisterClass
function. You must define the window procedure in the application, choose a unique name,
and set the window styles for the class. The following code fragment shows how to register
the window class name "MyPrivateClass":

MRESUtT EXPENTRY Cl ieJitWndProc(HWNO hwnd.ULONG msg.MPARAM mpl.MPARAM mp2);

HAS hab;

Wi nRegisterCl ass(hab.
"MyPr; vciteCl ass\'.
Cl i entWndProc.
CS_SltE;REOMW .1
C$HITTESl.
G);

1* AnchOr block handl e */
I*ttame of cl ass being regiStered *1
1* Window procedure for class *1
1* Clilssstyle */

. 1* Class. style ."• '., '. . *1
1*.Extra . bytes to "reserVe */

Chapter 4. Window Classes 4-7

Related Functions
This section covers the functions that are related to Windows Classes.

WinQueryClasslnfo
This function returns window class information.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN. INCL_PM, */

#include <os2.h>

BOOL WinQueryClasslnfo (HAB hab, PSZ PSZClassName,
PCLASSINFO PclsiClasslnfo)

Parameters
hab (HAS) - input

Anchor-block handle.

PSZClassName (PSZ) - input
Class name.

PclsiClasslnfo (PCLASSINFO) - output
Class information structure.

Returns
rc (SOOl) - returns

Class:"exists indicator.

TRUE Class does exist
FALSE Class does not exist.

4-8 PM Basic Programming Guide

WinQueryClassName
This function copies the window class name, as a null-terminated string, into a buffer.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

LONG WinQueryClassName (HWND hwnd, LONG ILength, PCH PCHBuffer)

Parameters
hwnd (HWND) - input

Window handle.

ILength (LONG) - input
Length of PCHBuffer.

PCHBuffer (PCH) - output
Class name.

Returns
IRetLen (LONG) - returns

Returned class name length.

Chapter 4. Window Classes 4-9

WinRegisterClass
This function registers a window class.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN. INCL_PM. Also in COMON section */

#include <os2.h>

BOOl WinRegisterClass (HAB hab, PSZ pszClassName, PFNWP pfnWndProc,
UlONG flStyle, UlONG cbWindowData)

Parameters
hab (HAB) - input

Anchor-block handle.

pszClassName (PSZ) - input
Window-class name.

pfnWndProc (PFNWP) - input
Window-procedure identifier.

flStyle (ULONG) - input
Default-window style.

cbWindowData (ULONG) - input
Reserved storage.

Returns
rc (BOOl) - returns

Window-class-registration indicator.

TRUE
FALSE

Window class successfully registered
Window class not successfully registered .

. 4-10 PM Basic Programming Guide

Related Data Structures
This section covers the data structures that are related to Window Classes.

CLASSINFO
Class-information structure.

Syntax

typedef struct _CLASSINFO {
ULONG flClassStylei
PFNWP pfnWindowProci
ULONG cbWindowDatai
} CLASSINFOi

typedef CLASSINFO *PCLASSINFO;

Fields
flClassStyle (ULONG)

Class-style flags.

pfnWindowProc (PFNWP)
Window procedure.

cbWindowData (ULONG)
Number of additional window words.

Chapter 4. Window Classes 4-11

Summary
Following are the operating system functions and structure used with window classes.

Table 4-3. Window Class Functions

Function Name Description

WinQueryClasslnfo Returns window class information.

WinQueryClassName Copies, into a buffer, the window class name as a
null-terminated string.

WinRegisterClass Registers a window class.

WinSubclassWindow Subclasses the indicated window by replacing its window
procedure with another window procedure.

Table 4-4. Window Class Structure

Structure Name Description

CLASSINFO Class-information structure.

4-12 PM Basic Programming Guide

Chapter 5. Window Procedures

Windows have an associated window procedure-a function that processes all messages
sent or posted to a window. Every aspect of a window's appearance and behavior depends
on the window procedure's response to the messages. This chapter explains how window
procedures function, in general, and describes the default window procedure.

About Window Procedures
Every window belongs to a window class that determines which window procedure a
particular window uses to process its messages. All windows of the same class use the
same window procedure. For example, the operating system defines a window procedure for
the frame window class (We_FRAME), and all frame windows use that window procedure.

An application typically defines at least one new window class and an associated window
procedure. Then, the application can create many windows of that class, all of which use the
same window procedure. This means that the same piece of code can be called from
several sources simultaneously; therefore, you must be careful when modifying shared
resources from a window procedure.

Dialog procedures have the same structure and function as window procedures. The primary
difference between a dialog procedure and a window procedure is the absence of a client
window in the dialog procedure; that is, the controls in a dialog procedure are the immediate
child windows of the frame, whereas the controls in a normal window are the grandchildren
of the frame. This makes significant differences in the code between the two; for example,
WinSendDlgltemMsg does not work from a client window if you pass the client window
handle as the first parameter.

Structure of a Window Procedure
A window procedure is a function that takes 4 arguments and returns a 32-bit pointer. The
arguments of a window procedure consist of a window handle, a ULONG message identifier,
and two arguments, called message parameters, that are declared with the MPARAM data
type. The system defines an MPARAM as a 32-bit pointer to a VOID data type (a generic
pointer). The message parameters actually might contain any of the standard data types.
The message parameters are interpreted differentlY,depending on the value of the message
identifier. The operating system includes several macros that enable the application to cast
the information from the MPARAM values into the actual data type. SHORT1 FROMMP, for
example, extracts a 16-bit value from a 32-bit MPARAM.

© Copyright IBM Corp. 1994 5-1

The window-procedure arguments are described in the following table:

Table 5-1. Window Procedure Arguments

Argument Description

hwnd Handle of the window receiving the message.

msg Message identifier. The message will correspond to one of the predefined
constants (for example, WM_CREATE) defined in the system include files
or be an application-defined message identifier. The value of an
application-defined message identifier must be greater than the value of
WM _ USER, and less than or equal to Ox.tfff.

mp1,mp2 Message parameters. Their interpretation depends on the particular
message.

The return value of a window procedure is defined as an MRESUL T data type. The
interpretation of the return value depends on the particular message. Consult the description
of each message to determine the appropriate return value.

Default Window Procedure
All windows in the system share certain fundamental behavior, defined in the default
window-procedure function, WinDefWindowProc. The default window procedure provides the
minimal functionality for a window. An application-defined window procedure should pass
any messages it does not process to WinDefWindowProc for default processing.

Window-Procedure Subclassing
Subclassing enables an application to intercept and process messages sent or posted to a
window before that window has a chance to process them. Subclassing most often is used
to add functionality to a particular window or to alter a window's default behavior.

An application subclasses a window by using the WinSubclassWindow function to replace
the window's original window procedure with an application-defined window procedure.
Thereafter, the new window procedure processes any messages that are sent or posted to
the window. If the new window procedure does not process a particular message, it must
pass the message to the original window procedure, not to WinDefWindowProc, for default
processing.

5-2 PM Basic Programming Guide

Using Window Procedures
This section explains how to:

• Design a window procedure
• Associate a window procedure with a window class
• Subclass a window.

Designing a Window Procedure
The following code fragment shows the structure of a typical window procedure and how to
use the message argument in a switch statement, with individual messages handled by
separate case statements. Notice that each case returns a specific value for each message.
For messages that it does not handle itself, the window procedure calls WinDefWindowProc.

MRESULT C1 i entWndProc (
HWND hwnd,
ULONG msg.
MPARAM mpl,
MPARAMmp2)
{

1* Define 10c;1 variables here, if required. *1
switch (msg) {

case WM .. JREATE:

1* Initialize private window data. *1
return (MRESULT) FALSE;

case WM ... PAINT:

1* Paint the window.
return €I;

case· WM_DESTROY:

1'1< Cleanup private window data.
return 0;

}

defa.ult:
break; .

return WinDefWindowProc (hwnd, msg. mpl, mp2);

A dialog window procedure does not receive the WM_CREATE message; however, it does
receive a WMJNITDLG message when all of its control windows have been created.

Chapter 5. Window Procedures 5-3

At the very least, a window procedure should handle the WM_PAINT message to draw itself.
Typically, it should handle mouse and keyboard messages as well. Consult the descriptions
of individual messages to determine whether your window procedure should handle them.

An application can call WinDefWindowProc as part of the processing of a message. In such
a case, the application can modify the message parameters before passing the message to
WinDefWindowProc or can continue with the default processing after performing its own
operations.

Associating a Window Procedure with a Window Class
To associate a window procedure with a window class, an application must pass a pOinter to
that window procedure to the WinRegisterClass function. Once an application has registered
the window procedure, the procedure automatically is associated with each new window
created with that class.

The following code fragment shows how to associate the window procedure in the previous
example with a window class:

HAB hab;
CHAR szClientClass[] = liMy Window Class";

. WinRegisterClass(hab,
szCl i entCl ass.
C1 ientWndProc.
CS SIZEREDRAW.
a);

Subclassing a Window

I*Anchor'~b1ock handle
/*Cl ilSS. name. */
I*Polnter tq procedure *1
/* Cla!)s. style */
/*Window data *i

To subclass a window, an application calls the WinSubclassWindow function, specifying the
handle of the window to subclass and a pointer to the new window procedure. The
WinSubclassWindow function returns a pointer to the original window procedure; the
application can use this pointer to pass unprocessed messages to the original procedure.

5-4 PM Basic Programming Guide

The following code fragment subclasses a push button control window. The new window
procedure generates a beep whenever the user clicks the push button.

PFNWP pfnPushBtn:
CHAR szCancelD ""Cancelli;
HWND hwndCl ; ent;
HWND hwndPushBtn;

/* Create a push button control. */
hwndPushBtn " Wi nCreateWi ndow (

hwndClient, /* Parent-window handle */
WC BUTTON, /* Window class */
szCancel, /* Window text */
WS_VISIBlE I /* Wi ndow styl e */
WS_SYNCPAINT.I /* Window style */
BS PUSHBUTTON. /* Button style */
56: 56. /* Physical pos·itlon */
76, 36, /* Width and height */
hwndClient, /* Owner-window handle */
HWND_TOP, /* Z-order position */
I, /* Window identifier */
NUll, /* No control data */
NULL); /* No presentation parameters */

/ * Subclass the push button. contro 1 • * /
pfnPushBtn " Wi nSubclassWi ndow(hwndPtishBtn,

subclassPushBtnProc) ;

/* This procedure subclasses the push button. */
MRESUlT EXPENTRY SubclassPushBtnProc(HWND hwnd,ULONG msg,MPARAM mpl, MPARAM mp2)
(

swi tch . (msg) {

/* Beep when the user clicks the push button. */
case WM BUTTONlDOWN:

DosBeep(l666, 256);
break;

default:
break;

/* Pass a1T messages to the original wi ndow. procedure. */
return (MRESULT) pfilPushBtri(hwnd,msg,mpl, mp2};

Chapter 5. Window Procedures 5-5

Related Functions
This section covers the functions that are related to Windows Procedures.

WinDefDlgProc
This function invokes the default dialog procedure with hwndDlg, msg, mp1, and mp2.

Syntax

#define INCL_WINDIALOGS /* Or use INCL_WIN, INCL_PM, Also in COMON section */

#include <os2.h>

MRESUL T WinDefDlgProc (HWND hwndDlg, ULONG msg, MPARAM mp1,
MPARAM mp2)

Parameters
hwndDlg (HWND) - input

Dialog-window handle.

msg (ULONG) - input
Message identity.

mp1 (MPARAM) - input
Parameter 1.

mp2 (MPARAM) - input
Parameter 2.

Returns
mresReply (MRESUL T) - returns

Message-return data.

5-6 PM Basic Programming Guide

WinDefWindowProc
This function invokes the default window procedure.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN. INCL_PM. Also in COMON section */

#include <os2.h>

MRESUL T WinDefWindowProc (HWND hwnd, ULONG ulMsgid,

Parameters
hwnd (HWND) - input

Window handle.

ulMsgid (ULONG) - input
Message identity.

mpParam1 (MPARAM) - input
Parameter 1.

mpParam2 (MPARAM) - input
Parameter 2.

Returns
mresReply (MRESUL T) - returns

Message-return data.

MPARAM mpParam1, MPARAM mpParam2)

Chapter 5. Window Procedures 5-7

WinSubclassWindow
This function subclasses the indicated window by replacing its window procedure with
another window procedure, specified by pNewWindowProc.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

PFNWP WinSubclassWindow (HWND hwnd, PFNWP pNewWindowProc)

Parameters
hwnd (HWND) - input

Handle of window that is being subclassed.

pNewWindowProc (PFNWP) - input
New window procedure.

Returns
pOldWindowProc (PFNWP) - returns

Old window procedure.

5-8 PM Basic Programming Guide

Related Messages
This section covers the messages that are related to Windows Procedures.

WM_BUTTON1 DBLCLK
This message occurs when the operator presses button 1 of the pointing device twice within
a specified time, as detailed below.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

param2

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the
hit-test process, which determines the window to be associated with this message.
For details of the possible values, see "WM_HITTEST" on page 5-23.

fsfla9s (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM _CHAR message, the
following keyboard control codes are valid.

KC NONE Indicates that no key is pressed.

Returns
rc (BOOl)

Processed indicator.

TRUE
FALSE

Message processed
Message ignored.

Chapter 5. Window Procedures 5-9

WM BUTTON1 DOWN
This message occurs when the operator presses pointer button one.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

param2

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

1sHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the hit
test process, which determined the window to be associated with this message. For
details of the possible values, see "WM_HITTEST" on page 5-23.

1s11a9s (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the
following keyboard control codes are valid.

KC NONE Indicates that no key is pressed.

Returns
rc (BOOl)

Processed indicator.

TRUE
FALSE

Message processed
Message ignored.

5-10 PM Basic Programming Guide

WM_BUTTON1 UP
This message occurs when the operator releases button 1 of the pointing device.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

param2

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the
hit-test process, which determines the window to be associated with this message.
For details of the possible values, see "WM_HITTEST" on page 5-23.

fsfla9s (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the
following keyboard control codes are valid.

Returns
rc (BOOl)

Indicates that no key is pressed.

Processed indicator.

TRUE
FALSE

Message processed
Message ignored.

Chapter 5. Window Procedures 5-11

WM_BUTTON2DBLCLK
This message occurs when the operator presses button 2 of the pointing device twice within
a specified time, as detailed in "WM_BUTTON1 DBlClK" on page 5-9.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

param2

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

1sHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the
hit-test process, which determines the window to be associated with this message.
For details of the possible values, see "WM_HITTEST" on page 5-23.

1s11a9s (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the
following keyboard control codes are valid.

Returns
rc (BOOl)

Indicates that no key is pressed.

Processed indicator.

TRUE
FALSE

Message processed
Message ignored.

5-12 PM Basic Programming Guide

WM_BUTTON2DOWN
This message occurs when the operator presses button 2 on the pointing device.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

param2

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the hit
test process, which determined the window to be associated with this message. For
details of the possible values, see "WM_HITTEST" on page 5-23.

fsflags (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM _CHAR message, the
following keyboard control codes are valid.

Returns
rc (BOOl)

Indicates that no key is pressed.

Processed indicator.

TRUE
FALSE

Message processed
Message ignored.

Chapter 5. Window Procedures 5-13

WM_BUTTON2UP
This message occurs when the operator releases button 2 of the pointing device.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

param2

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

1sHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the
hit-test process, which determines the window to be associated with this message.
For details of the possible values, see "WM_HITTEST" on page 5-23.

1s11a9s (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the
following keyboard control codes are valid.

Returns
rc (BOOl)

Indicates that no key is pressed.

Processed indicator.

TRUE
FALSE

Message processed
Message ignored.

5-14 PM Basic Programming Guide

WM_BUTTON3DBLCLK
This message occurs when the operator presses button 3 of the pointing device twice within
a specified time, as detailed in "WM_BUTTON1DBlClK" on page 5-9.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

The pOinter position is in window coordinates relative to the bottom left corner of the
window.

param2

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the
hit-test process, which determines the window to be associated with this message.
For details of the possible values, see "WM_HITTEST" on page 5-23.

fsflags (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the
following keyboard control codes are valid.

Returns
rc (Baal)

Indicates that no key is pressed.

Processed indicator.

TRUE
FALSE

Message processed
Message ignored.

Chapter 5. Window Procedures 5-15

WM_BUTTON3DOWN
This message occurs when the operator presses button 3 on the pointing device.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

param2

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the hit
test process, which determined the window to be associated with this message. For
details of the possible values, see "WM_HITTEST" on page 5-23.

fsfla9s (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the
following keyboard control codes are valid.

Returns
rc (BOOl)

Indicates that no key is pressed.

Processed indicator.

TRUE
FALSE

Message processed
Message ignored.

5-16 PM Basic Programming Guide

WM_BUTTON3UP
This message occurs when the operator releases button 3 of the pointing device.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

param2

fsHitTestres (USHORT)
Hit-test result.

fsHitTestres provides the hit-test result. It contains the value returned from the
hit-test process, which determines the window to be associated with this message.
For details of the possible values, see "WM_HITTEST" on page 5-23.

fsflags (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM _CHAR message, the
following keyboard control codes are valid.

Returns
rc (BOOl)

Indicates that no key is pressed.

Processed indicator.

TRUE
FALSE

Message processed
Message ignored.

Chapter 5. Window Procedures 5-17

WM CHAR
This message is sent when an operator presses a key.

Parameters
param1

fsfla9S (USHORT)
Keyboard control codes.

KC_CHAR

KG _ SCANGODE

Indicates that usch value is valid.

Indicates that ucscancode is valid.

Generally, this is set in all WM_CHAR messages generated
from actual operator input. However, if the message has
been generated by an application that has issued the
WinSetHook function to filter keystrokes, or posted to the
application queue, this may not be set.

Indicates that usvk is valid.

Normally usvk should be given precedence when processing
the message.

Note: For those using hooks, when this bit is set,
KC _ SGANCODE should usually be set as well.

KG_KEYUP The event is a key-up transition; otherwise it is a down
transition.

KC_PREVDOWN The key has been previously down; otherwise it has been
previously up.

KC_DEADKEY The character code is a dead key. The application is
responsible for displaying the glyph for the dead key without
advancing the cursor.

KC_COMPOSITE The character code is formed by combining the current key
with the previous dead key.

KC_I NVALI DGOMP The character code is not a valid combination with the
preceding dead key. The application is responsible for
advancing the cursor past the dead-key glyph and then, if the
current character is not a space, sounding the alarm and
displaying the new character code.

KC_LONEKEY Indicates if the key is pressed and released without any other
keys being pressed or released between the time the key
goes down and up;

KG SHIFT The SHIFT state is active when key press or release
occurred.

KG AL T The AL T state is active when key press or release occurred.

5-18 PM Basic Programming Guide

KC CTRL

ucrepeat (UCHAR)
Repeat count.

ucscancode (UCHAR)
Hardware scan code.

The CTRL state was active when key press or release
occurred.

A keyboard-generated value that identifies the keyboard event. This is the raw scan
code, not the translated scan code.

param2

usch (USHORT)
Character code.

The character value translation of the keyboard event resulting from the current
code page that would apply if the CTRL or ALT keys were not depressed.

usvk (USHORT)
Virtual key codes.

A virtual key value translation of the keyboard event resulting from the virtual key
code table. The low-order byte contains the vk value, and the high-order byte is
always set to zero by the standard translate table.

D This value applies if fsfJags does not contain KC_ VIRTUAlKEY.

Returns
rc (BOOl)

Processed indicator.

TRUE
FALSE

Message processed
Message ignored.

Chapter 5. Window Procedures 5-19

WM COMMAND
This message occurs when a control has a significant event to notify to its owner, or when a
key stroke has been translated by an accelerator table.

Parameters
param1

uscmd (USHORT)
Command value.

It is the responsibility of the application to be able to relate uscmd to an application
function.

param2

ussource (USHORT)
Source type.

Identifies the type of control:

CMDSRC_PUSHBUTTON Posted by a push-button control. uscmd is the
window identity of the push button.

CMDSRC MENU Posted by a menu control. uscmd is the identity of
the menu item.

CMDSRC_ACCELERATOR Posted as the result of an accelerator. uscmd is the
accelerator command value.

CMDSRC FONTDLG

CMDSRC_FILEDLG

CMDSRC_OTHER

uspointer (USHORT)
Pointer-device indicator.

Font dialog. uscmdis the identity of the font dialog.

File dialog. uscmd is the identity of the file dialog.

Other source. uscmd gives further control-specific
information defined for each control type.

TRUE
FALSE

The message is posted as a result of a pointer-device operation.
The message is posted as a result of a keyboard operation.

Returns
ulReserved (ULONG)

Reserved value, should be O.

5-20 PM Basic Programming Guide

WM CONTROLPOINTER
This message is sent to a owner window of a control when the pointing device pointer moves
over the control window, allowing the owner to set the pointing device pointer.

Parameters
param1

usidCtl (USHORT)
Control identifier.

param2

hptrNew (HPOINTER)
Handle of the pointing device pointer that the control is to use.

Returns
hptrRet (HPOINTER)

Returned pointing device-pointer handle that is then used by the control.

Chapter 5. Window Procedures 5-21

WM HELP
This message occurs when a control has a significant event to notify to its owner or when a
key stroke has been translated by an accelerator table into a WM_HELP.

Parameters
param1

uscmd (USHORT)
Command value.

It is the responsibility of the application to be able to relate uscmd to an application
function.

param2

ussource (USHORT)
Source type.

Identifies the type of control:

CMDSRC_PUSHBUTTON Posted by a push-button control. uscmd is the
window identity of the push button.

CMDSRC_MENU Posted by a menu control. uscmd is the identity of
the menu item.

CMDSRC_ACCELERATOR Posted as the result of an accelerator. uscmd is the
accelerator command value.

uspointer (USHORT)
Pointer-device indicator.

Other source. uscmd gives further control-specific
information defined for each control type.

TRUE
FALSE

If the message is posted as a result of a pointer-device operation
If the message is posted as a result of a keyboard operation.

Returns
ulReserved (ULONG)

Reserved value, should be O.

5-22 PM Basic Programming Guide

WM_HITTEST
This message is sent to determine which window is associated with an input from the
pointing device.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

The pointer position is in window coordinates relative to the bottom-left corner of the
window.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulresult (ULONG)

Hit-test indicator.

HT _NORMAL The message should be processed as normal. A
WM_MOUSEMOVE, WM_BUTTON2DOWN, or
WM_BUTTON1 DOWN message is posted to the window.

HT _TRANSPARENT The part of the window underneath the pointer is transparent;
hit-testing should continue on windows underneath this window,
as if the window did not exist.

HT _DISCARD The message should be discarded; no message is posted to the
application.

HT _ERROR As HT _DISCARD, except that if the message is a button-down
message, an alarm sounds and the window concerned is
brought to the foreground.

Chapter 5. Window Procedures 5-23

WM_MENUSELECT
This message occurs when a menu item has been selected.

Parameters
param1

usltem (USHORT)
Identifier of selected item.

usPostCommand (USHORT)
Post-command flag.

param2

TRUE Indicates that either a WM_COMMAND, WM_SYSCOMMAND, or
WM_HElP message is being posted by the menu control on return from
the owner, subject to re.

FALSE Indicates that no message is being posted by the menu control on return
from the owner, subject to re.

hwnd (HWND)
Menu-control window handle.

Returns
rc (BOOl)

Post indicator.

TRUE Indicates that either a WM_COMMAND, WM_SYSCOMMAND, or WM_HElP
message is to be posted by the menu control window procedure. The menu
is dismissed if the selected item does not have a style of MIA_NODISMISS.

FALSE Indicates that no message is to be posted by the menu control window
procedure and that the menu is not dismissed.

5-24 PM Basic Programming Guide

WM_MOUSEMOVE
This message occurs when the pOinting device pointer moves.

Parameters
param1

sxMouse (SHORT)
&Pdev. x-coordinate.

syMouse (SHORT)
&Pdev. y-coordinate.

param2

uswHitTest (USHORT)
Message result.

Zero A pointing device capture is currently in progress
Other The result of the WM_HITTEST message.

fsfla9s (USHORT)
Keyboard control codes.

In addition to the control codes described with the WM_CHAR message, the
following keyboard control codes are valid.

Returns
rc (Baal)

Indicates that no key is pressed

Processed indicator.

TRUE
FALSE

The window procedure did process the. message.
The window procedure did not process the message.

Chapter 5. Window Procedures 5-25

WM_QUERYCONVERTPOS
This message is sent by an application to determine whether it is appropriate to begin
conversion of DBCS characters.

Parameters
param1

pCursorPos (PRECTL)
Cursor position.

param2

If usCode = QCP _CONVERT, pCursorPos should be updated to contain the position
of the cursor in the window receiving this message. The position is specified as a
rectangle in screen coordinates.

If usCode = QCP _NOCONVERT, pCursorPos should not be updated.

ulReserved (ULONG)
Reserved value, should be O.

Returns
usCode (USHORT)

Conversion code.

QCP _CONVERT Conversion may be performed for the window with the input
focus, pCursorPos has been updated to contain the position of
the cursor.

QCP _NOCONVERT Conversion should not be performed, the window with the input
focus cannot receive DBCS characters, pCursorPos has not
been updated.

5-26 PM Basic Programming Guide

WM_QUERYFOCUSCHAIN
This message is used to request the handle of a window in the focus chain.

Parameters
param1

fsCmd (USHORT)

param2

Command to be performed.

This field contains a flag to indicate what action is to be performed:

QFC_NEXTINCHAIN

QFC_FRAME

Return the next window in the focus chain.

The hwndParent parameter is not used.

Return the handle of the frame window that would be
activated or deactivated, if this window gains or loses the
focus.

The window handle returned is a child of the window
specified by the hwndParent parameter.

Return the handle of the first frame window associated
with this window.

The hwndParent parameter is not used.

QFC _ SELECTACTIVE Return the handle of the window from the group of owned
windows to which this window belongs which either
currently has the focus or, if no window has the focus,
previously had the focus.

Return NULL, if no window in the owner group has had
the focus.

The hwndParent parameter is not used.

QFC_PARTOFCHAIN Return TRUE if the handle of the window identified by the
hwndParent parameter is in the focus chain, otherwise
return FALSE.

Because this message is passed along the focus chain,
this is equivalent to returning TRUE, if the handle of the
window receiving this message is hwndParent or to
returning FALSE, if it is not.

hwndParent (HWND)
Parent window.

Chapter 5. Window Procedures 5-27

Returns
hwndResult (HWNO)

Handle of the window requested.

o No window handle exists for this case of the fsCrnd parameter

This value is also to be interpreted as FALSE for the case when the fsCrnd is
set to QFC_PARTOFCHAIN.

Other Handle of the window requested.

This value is also to be interpreted as TRUE for the cases when the fsCrnd is
set to QFC_PARTOFCHAIN.

5-28 PM Basic Programming Guide

WM_SETSELECTION
This message occurs when a window is selected or deselected.

Parameters
param1

usselection (USHORT)
Selection flag.

TRUE The window is selected.
FALSE The window is deselected.

param2

ulReserved (ULONG)
Reserved value, should be o.

Returns
ulReserved (ULONG)

Reserved value, should be o.

Chapter 5. Window Procedures 5-29

WM_TRANSLATEACCEL
This message is sent to the focus window whenever a WM _CHAR message occurs.

Parameters
param1

pqmsg (PQMSG)
Pointer to a QMSG structure.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Translated indicator.

TRUE The character exists in the accelerator table and has been translated in the
QMSG structure.

FALSE The character does not exist in the accelerator table or the window does not
have an accelerator table.

5-30 PM Basic Programming Guide

Summary
Following are the window-procedure functions and messages processed by the default
window procedure.

Table 5-2. Window Procedure Functions

Function Name Description

. WinDefDlgProc The default dialog procedure.

WinDefWindowProc The default window procedure.

WinRegisterClass Registers a window class.

WinSubclassWindow Subclasses the indicated window by replacing its window
procedure.

Table 5-3 (Page 1 of 2). Default Window Procedure Messages

Message

WM_BUTTON1 DBLCLK

WM_BUTTON1 DOWN

WM_BUTTON1 UP

WM_BUTTON2DBLCLK

WM_BUTTON2DOWN

WM_BUTTON2UP

WM_BUTTON3DBLCLK

WM_BUTTON3DOWN

WM_BUTTON3UP

WM_CALCVALIDRECTS

WM_ CONTROLPOINTER

WM_FOCUSCHANGE

Description

Occurs when the user presses button 1 of the pointing
device twice.

Occurs when the user presses pointer button 1.

Occurs when the user releases pointer button 1.

Occurs when the user presses button 2 of the pointing
device twice.

Occurs when the user presses pointer button 2.

Occurs when the user releases pointer button 2.

Occurs when the user presses button 3 of the pointing
device twice.

Occurs when the user presses pointer button 3.

Occurs when the user releases pointer button 3.

Sent to determine which areas of a window can be
preserved if a window is sized and which can be
redisplayed.

Occurs when the user presses a key.

Sent to a frame window to indicate that the window is
being closed by the user.

Sent when a control has a significant event to notify to its
owner, or when a keystroke has been translated by an
accelerator table.

Sent to a control's owner window when the pOinter moves
over the control window, allowing the user to set the
pointer.

Occurs when the focus window is changed.

Chapter 5. Window Procedures 5-31

Table 5-3 (Page 2 of 2). Default Window Procedure Messages

Message

WM_MENUSELECT

WM_MOUSEMOVE

WM_PAINT

WM_QUERYCONVERTPOS

WM_ QUERYFOCUSCHAIN

WM_QUERYFRAMECTLCOUNT

WM_QUERYWINDOWPARAMS

WM_SETSELECTION

WM_TIMER

WM_ TRANS LA TEACCEL

5-32 PM Basic Programming Guide

Description

Occurs when a control has a significant event to notify to
its owner, or when a key stroke has been translated into a
WM_HELP by an accelerator table.

Sent to determine which window is associated with an
input from the pointing device.

Occurs when a menu item is selected.

Occurs when the pointing device pOinter moves.

Occurs when a window needs repainting.

Sent by an application to determine whether it is
appropriate to begin D,BCS conversion.

Requests the handle of a window in the focus chain.

Sent to the frame window in response to receipt of a
WM_SIZE or WM_UPDATEFRAME message.

Occurs when an application queries the window
parameters.

Occurs when a window is selected or deselected.

Posted when a timer times out.

Sent to the focus window when a WM_CHAR message
occurs.

Chapter 6. Frame Windows

A frame window is the basic window used by most Presentation Manager applications to
enable the user to perform manipulation functions. This chapter explains how to create and
use frame windows in PM applications.

About Frame Windows
An application nearly always starts with a frame window to create a composite window (for
example, a main window) that consists of the frame window, several frame-control windows,
and a client window. The frame controls conform to the Common User Access (CUA) user
interface guidelines. The frame window coordinates the actions of the frame controls and
client window, enabling the composite window to act as a single unit.

Frame windows have the preregistered public window class WC _FRAME. The
frame-window class, like the preregistered control classes, defines the appearance and
behavior of the frame window.

Main Window
The main window of an application, typically, is composed of a frame window and a client
window. The frame window usually includes control windows such as a title bar, system
menu, menu bar (action bar or menu in user terminology), and scroll bars. Figure 6-1 on
page 6-2 is an example of a typical frame window.

© Copyright IBM Corp. 1994 6-1

Title-Bar
icon

Window
border

Informatio
area

Window title

Horizontal scroll bar

Figure 6-1. Typical Frame Window and Its Components

Window sizing buttons

Title-Bar

Vertical
scroll
bar

A frame window provides the standard services the user expects from a window-for
example, moving, sizing, minimizing, and maximizing. The frame window receives input from
the control windows (called frame controls) and sends messages to both the frame controls
and the client window.

Frame Controls
When creating a frame window, an application also can create one or more frame controls as
child windows of the frame window. Most frame windows contain at least a system menu
and title bar. Other optional controls might include a menu bar and scroll bar as shown
above.

An application can create a frame window with specified frame controls by calling
WinCreateStdWindow with the appropriate frame-control· flags.

The frame window owns the child frame-control windows, which can send notification
messages that tell the frame window what the user is doing with the frame controls. For
example, using a mouse, a user can move a window by clicking the title bar and dragging
the window to a new position. The title-bar control responds to the click by sending a
message to the frame window, notifying it of the user's request to move the window. Then
the frame window tracks the mouse motion and move,s the frame window and all of its child
windows to the new position.

6-2 PM Basic Programming Guide

PM, rather than the application, handles the processing of the frame controls, thus providing
the user a consistent interface for manipulating and interacting with windowed applications on
the screen. Frame controls are described in individual chapters. For more information about
control windows, see Chapter 16, "Control Windows."

Client Window
Every main window has a client window, which is the window in which the application
displays output and receives mouse and keyboard input from the user. What an application
displays in the client window, how it displays it, and how it interprets input to the window are
controlled by the client's application-defined window procedure.

An application creates the client window when it creates the frame window. The client
window, which is specific to the application, is nearly always created using a private window
class (a class registered by the application). Like a frame control, the client window is a
child window and is owned by the frame window. This means, for example, that the client
window is moved when the frame window moves, is clipped to the frame-window size, and is
destroyed when the frame window is destroyed.

The relationship between the frame window and the client window allows the frame window
to pass messages between other frame controls and the client window. For example, a
client window can send a message to the frame window requesting that the frame window
change the window title. The frame window, in turn, sends a message to the title-bar control,
telling it to change the title of the window.

Additional Frame-Window Items
In addition to its frame controls, a frame window also can contain a sizing border and the
minimize and maximize buttons (also known as minimize and maximize icons). These items
are not frame controls, because the frame window draws and maintains them. (Frame
controls are windows that draw and maintain themselves.)

The sizing border encloses the frame window and lets the user change the size of the
window using a mouse. The minimize button, at the right end of the title bar, lets the user
reduce the frame window to an icon. The maximize button, to the right of the minimize
button, lets the user enlarge the window so that it fills the screen. An application can add
these items to a frame window by using the FCF _SIZEBORDER, FCF _MAXBUTTON, and
FCF _MINBUTTON (or FCF _MINMAX) styles. (The FCF _MINMAX style adds both a
maximize button and a minimize button.)

Frame-Control Identifiers
A frame window uses a set of standard constants to identify the frame controls and the client
window. The frame-control identifiers all begin with the prefix FID_ and can be used in
functions such as WinWindowFromlD to uniquely identify a given control or the client
window. The frame controls also use these identifiers in notification messages sent to the
frame window. The following table describes the frame-control identifiers:

Chapter 6. Frame Windows 6-3

Table 6-1. Frame-Control Identifiers

Identifier Description

FlO_CLIENT Identifies a client window.

FIO_HORZSCROLL Identifies a horizontal scroll bar.

FlO_MENU Identifies a menu.

FIO_MINMAX Identifies the minimize and maximize (window-sizing)
buttons.

FIO_SYSMENU Identifies a system menu.

FlO _ TITLE BAR Identifies a title bar.

FlO _ VERTSCROLL Identifies a vertical scroll bar.

Frame-Window Creation
An application typically creates a frame window by using WinCreateStdWindow, which
creates a frame window, a client window, and the specified frame controls. The application
also can call WinCreateWindow with the WC_FRAME window class, which creates the frame
window and controls but not the client window. To create the client, the application can call
WinCreateWindow, specifying the original frame window as the parent and owner.

An application also can use a frame window to create a dialog window. For a dialog window,
the frame window contains control windows but no client window. The application creates
the dialog window by using WinLoadDlg or WinCreateDlg. These functions require an
appropriate dialog template from the application's resource-definition file. The dialog
template specifies the styles and dimensions for the frame window and for the control
windows that compose the dialog window.

Frame Window Controls and Styles
An application uses frame-control flags in WinCreateStdWindow to specify which frame
controls to give to the frame window. Frame-control flags are constants that have the FCF_
prefix.

The frame-window class (WC_FRAME) , like other public window classes, provides many
class-specific window styles that applications can use to adapt the appearance and behavior
of a frame window. To specify the frame-window styles, an application can use either
frame-control flags or the frame-window style constants, which have the FS_ prefix. Each
style constant has a corresponding frame-control flag. Both produce exactly the same styles
in a frame window. Typically, if an application is creating a frame window that uses frame
controls, the application uses frame-control flags to specify the frame-window styles-if not,
the application uses frame-style constants. An application can combine the frame-style
constants with the standard window styles when creating a frame window.

When an application calls WinCreateStdWindow without setting any frame-control flags, the
f~nction creates a standard window that is invisible and behind all its sibling windows, has a
width and height of 0, and is positioned at the lower-left corner of its parent window. After
the call to WinCreateStdWindow returns, the application can use WinSetWindowPos to
change the window's size, coordinates, z-order position, and visibility.

6-4 PM Basic Programming Guide

If an application calls WinCreateStdWindow with the FCF _SHELLPOSITION frame-control
flag, the function creates the window so that it is in front of its sibling windows and has a
standard size and coordinates determined by the system.

Frame-Window Resources
If an application specifies FCF _ACCELTABLE, FCF -,CON, FCF _MENU, FCF _STANDARD,
FS_ACCELTABLE, FS_ICON, or FS_STANDARD when creating a frame window, the
application must provide the resources to support the specified style. Failure to do so
causes the window creation to fail. Depending on the style, a frame window might attempt to
load one or more resources from the application's executable files.

The following table shows the frame-control flags and frame-window styles that require
resources:

Table 6-2. Frame Window Flags and Styles Requiring Resources

Flag Style Description

FCF _ACCELTABLE FS_ACCELTABLE Requires an accelerator-table
resource. The frame window
uses the accelerator table to
translate WM _CHAR
messages to
WM_COMMAND, WM_HELP,
or WM_SYSCOMMAND
messages.

FCF_ICON FS_ICON Requires an icon resource.
The frame window draws the
icon when the user minimizes
the window.

FCF_MENU FS_MENU Requires a menu-template
resource. A frame window
uses the menu template to
create a menu containing the
commands and menus
specified by the resource.

FCF _STANDARD FS_STANDARD Requires a menu-template
resource (FCF _STANDARD
only), an accelerator-table
resource, and an icon
resource.

You can use the resource compiler to add icon, menu, and accelerator-table resources to the
application's executable file. Each resource must have a resource identifier that matches the
resource identifier specified in the FRAMECDATA structure passed to WinCreateWindow or
in the idResources parameter of WinCreateStdWindow.

Note: For detailed information about icon, menu, and accelerator-table resources, see
Chapter 10, "Mouse Pointers and Icons," Chapter 13, "Menus," and Chapter 14,
"Keyboard Accelerators," respectively.

Chapter 6. Frame Windows 6-5

The following sample code illustrates how to use WinCreateStdWindow to load and set up
certain resources for a frame window. Normally the first step is to set up a header file
defining the the IDs of the applicable resources:

Figure 6-2.' Defining Resources for Header File

Then, make a resource (.RC) file, defining each resource:

Figure 6-3. Defining Resources for Resource (.RG) File

When using WinCreateStdWindow with more than one resource, each resource can have the
same 10, as in the above example (IO_RESOURCE or 1), but only if each resource is of a
different type. Resources of the same type must have unique IDs. Use FCF flags to
indicate what resources to load:

6-6 PM Basic Programming Guide

ULONG fl FrameFl ags=
FCF TITLEBAR
FCF)IZEBORDER
FCF MINMAX
FCF)YSMENU
FCF SHELLPOSITION
FCF-TASKLIST
FCF-ICON
FCF-ACCELTABLE
FCF=MENU

/* Title bar */
/* Size border */
/* Min & Max buttons */
/* System menu */
/* System size. & position */
/* Add name to task 1 i st */
/***Add icon */
/***Add acce 1. table * /
/***Add menu */

Figure 6-4. Using FCF Flags to Indicate What Resources to Load

Use 0 (or NULL) in the seventh parameter of WinCreateStdWindow to indicate that the
resource is stored in the application file, as follows:

hwndFrame = WinCreateStdWindow(
HWND DESKTOP,
WS VISIBLE.
&fl FrameFl ags,
U ResSamCl i ent" •
NULL,
WSVISIBLE,
(HMODULE) e.
ID RESOURCE,
NULL) ;

/* Parent is desktop window.
/* Make frame window visible.
/* Frame control s
/* Window class for client
/* No.window title
/* Make client window visible.
/* Resources in application module
/* Resource i dent; fi er
/* Poi nter to cl i ent wi ndow handl e

Figure 6-5. Indicating that a Resource is Stored in the Application File

Chapter 6. Frame Windows 6-7

Following is the full listing of the sample program:

#defineINCL PM
#include. <052: h>

lnt main(inta~gc.char *argv,
{

HWNO hwndFrame;
HWNO. hwndCl i eot;
HMQ hmq;
QMSG qmsg;
HAB hab:

ULONG fl FrameFl ags=
FCF TITlEBAR
FCF - S IZEBOROER
FCF-MINMAX
FCF-SYSMENU
FCF -SHEllPOSITION
FCF-TASKLlST
FCF-rCON
FCF-ACCELTABlE
FCF)ENU;

1* Title bar *1
1* 5i ze· Border *1
/* Min & Max Buttons */
1* System Menu */
/* System size & position */
/* Add name to task list. */
/***Add icon. */
1***Add accel erator table. */
1***Add menu. *!

hab = Winlnitialize(O);

hmq = Wi nCreateMsgQueue (hab,' 0) ;

Wi nRegi sterCl ass (
hab,
"ResSamClient" ,
(PFNWP) Cl j e.ntWndProc,
C5_SIZEREORAW I
CS HITTEST,
0);

!* Anchor block handl e */
!* Name of class being registered *1
/* Windowprocedure for class */
1* Class style */
j*Classstyle */
1* Extra hytes to reserve *1

hwndFrame = Wi nCreateStdW; ndow (
HWND DESKTOP.
WSVISIBlE,
&fl FrameFl ags,
"ResSamCl i ent" ,
NULL,
WS VISIBLE,
(HMODUlE) 0,
ro RESOURCE,
NULL) ;

1* Parent is desktop window.
/* Make frame window visible.
1* Frame controls
/* Wi ndow cl ass for c1 i ent
/* No window title
/* Make client window visible
!* Resources in application module
/* Resource identifier

, /* Pointer to client window handle

while (Wi nGetMsg (hab, &qmsg, 0,0, 0»
WinDispatchMsg(hij,b, &qmsg);

Wi nDestroyWi ndow (hwndFrame);
WinDestroyMsgQueue(hmq) ;
Wi nTerm; nate(hab);

return 0;

Figure 6-6 (Part 1 of 2). Sample Program for Loading Resources in a Frame Window

6-8 PM Basic Programming Guide

MRESULT EXPENTRY ClientWndProc(HWND hwnd,ULONG msg,MPARAM mpl,MPARAM mp2)
{

RECTL rcl;
HPS hps;
static LONG lColor=CLR RED;
switch (msg) { -

}

case WM PAINT:
hps=WinBeginPaint(hwnd,(HPS) NULL. &rc1};
WinFillRect(hps,&rcl,lColor) ;
Wi nEndPaint(hps) ;

return 0;

case WM_COMMAND:

swi tch (SHORTlFROMMP(mpl»
case IDM SHIFT:

if (1Color==CLR RED) lColor=CLR BLUE;
else lColor=CLR-RED; -
Winlnval idateRect(hwnd. (PRECTL)NULL,0UL);
return 0;

case IDM EXIT:
Wi nPostMsg (hwnd. WM CLOSE .MPVOID,MPVOI D) ;
return 6; -

return WinDefWindowProc (hwnd. msg. mpl. mp2);

/* Get hps */
/* Fill the window */
/* Free hps */

/ * Shift selected
/ * Change the
f* color
1* Paint Window

/* Exit selected
/* Exi t program.

Figure 6-6 (Part 2 of 2). Sample Program for Loading Resources in a Frame Window

Frame-Window Class Data
An application can specify class-specific data for a frame window by passing to
WinCreateWindowa pOinter to the FRAMECDATA structure. The class-specific data
contains the frame-control flags (FCF _ flags), resource-module handle, and resource
identifier to be used when creating the frame window. The resource-module handle and the
resource identifier specify where to find resources for the frame window.

Supplying class-specific data with WinCreateWindow is similar to using WinCreateStdWindow
without creating a client window.

Chapter 6. Frame Windows 6-9

Frame-Window Data
Frame-window data specifies the state of the frame window at a given time. An application
can retrieve the frame-window data by calling WinQueryWindowUShort. A frame window has
the following state flags:

Table 6-3. Frame Window State Flags and Their Meanings

Flag

FF_ACTIVE

FF _DLGDISMISSED

FF _FLASH HI LITE

FF _FLASHWINDOW

FF _NOACTIVATESWP

FF _OWNERDISABLE

FF _OWNERHIDDEN

FF _SELECTED

FI_ACTIVATEOK

FI_FRAME

FI_NOMOVEWITHOWNER

FI_OWNERHIDE

6-1 0 PM Basic Programming Guide

Description

Indicates that the frame window is active.

Indicates that a dialog window has been dismissed by a
call to WinDismissDlg.

Indicates that the frame window is flashing and its flash
state is TRUE.

Indicates that the frame window flashes as the result of
either a call to WinFlashWindow or a
WM_FLASHWINDOW message.

Indicates that the system should do no z-ordering on this
frame window.

Indicates whether the owner window was enabled or
disabled when the dialog window was loaded, for a frame
window that is part of a dialog window,

Indicates that the frame window's owner window is hidden
or minimized, in which case the frame window also is
hidden.

Indicates that the frame window has been selected.

Indicates that the window can be activated.

Indicates that the window is a frame window.

Indicates that the window should move when its owner
window moves.

Indicates that the frame window should be hidden or
shown as a result of its owner window being hidden,
shown, minimized, or maximized.

Frame-Window Operation
The frame window maintains the size, position, and visibility of itself, its frame controls, and
its client window. The frame window responds to user requests to move, size, minimize,
maximize, and redraw itself. It also responds to requests to close (destroy) itself and to
change the focus and activation state.

The frame window, when being moved or sized, maintains the position of each owned
window relative to its owner window's lower-left corner.

Whenever the frame window redraws itself (for example, after being moved or sized), it
draws the frame controls and then lets the application draw the client window. This order
ensures that the rapidly drawn frame controls are drawn before the client window.

The order in which the frame controls are drawn depends on the z-order position of the
controls. The following list specifies the z-order position of the frame controls (from top to
bottom):

FIO_SYSMENU
FlO _ TITLEBAR
FlO_MENU
FlO _ VERTSCROLL
FlO _HORZSCROLL
FlO_CLIENT

Although an application can change the z-order position of any window, changing the relative
positions of frame controls is not recommended.

When the user maximizes the frame window, the size of the frame window increases to the
size of its parent window, plus an additional amount on each of its four sides equal to the
width of its sizing border. A window always is clipped to its parent window; a maximized
standard frame window does not show its sizing border in its normal maximized position.

Frame controls owned by a frame window or windows owned by child windows of a frame
window are destroyed automatically when the frame window processes the WM _ DESTROY
message.

Nonstandard Frame Windows
Although most applications use frame windows to create their main windows and dialog
windows, they are not limited to frame windows. Applications can create nonstandard frame
windows and still use the standard frame controls, such as the title bar and system menu,
within the nonstandard windows.

Chapter 6. Frame Windows 6-11

An application can create a nonstandard frame window either by subclassing a frame window
or by creating a private frame-window class. An application that subclasses a frame window
can intercept the messages sent to the window and process them in new ways. An
application that creates private frame-window classes essentially rewrites the frame-window
procedure. In either case, by creating nonstandard frame windows, the application gains
much more control over the arrangement of frame controls in the frame window.

The messages WM_FORMATFRAME, WM_UPDATEFRAME, and WM_CALCVALIDRECTS
control the arrangement of frame controls for applications that subclass the frame-window
procedure. By intercepting these messages, an application can rearrange the frame controls
in a frame window.

To maintain the size and position of frame controls, an application that creates private
frame-window classes can use WinCreateFrameControls and WinCalcFrameRect. These
functions provide capabilities that are similar to those provided by frame windows.

Default Frame-Window Behavior
The following table lists all the messages specifically handled by the window procedure of
the predefined frame-window class (WC_FRAME) and describes how the window procedure
responds to each message.

Table 6-4 (Page 1 of 2). Default Frame-Window Messages and Behavior

Message

WM_BUTTON1 DOWN

WM_BUTTON2DOWN

WM_BUTTON3DOWN

WM_BUTTON1 UP

WM_BUTTON1 DBLCLK

WM_ CALCVALIDRECTS

6-12 PM Basic Programming Guide

Description

Sets the highlighted state of the title bar or border so that
it matches the frame window's activation state.

If the frame window is minimized, captures the mouse;
otherwise, activates the frame window.

Activates the frame window.

Activates the frame window.

Processes messages from minimized window frames.

If the frame window is minimized, posts a
WM_SYSCOMMAND message to itself; otherwise,
activates the frame window.

If the frame window has no client window or if the client
window has the CS_SIZEREDRAW style, returns the
CVR_REDRAW flag to invalidate the entire window.

If the frame window has a client window, passes this
message to the client; otherwise, returns the result of
WinDefWindowProc.

Creates the specified frame controls by calling
WinCreateFrameControls. Also creates any accelerator
tables, loads icons, and adds itself to the Window List.
These actions depend on the frame-window styles and
frame-control flags specified for the window.

Table 6-4 (Page 2 of 2). Default Frame-Window Messages and Behavior

Message

WM_ENABLE

WM_ERASEBACKGROUND

WM_FORMATFRAME

WM_MINMAXFRAME

WM_MOUSEMOVE

WM_QUERYTRACKINFO

WM_SHOW

WM_SIZE

WM_SYSCOMMAND

WM ~UPDATEFRAME

Description

If the focus is held by a child window of the frame
window, sets the focus to the frame window's parent
window, destroys any owned windows or child windows,
destroys any icons created by using the FSJCON style,
and destroys any accelerator tables created by using the
FS_ACCELTABLE style.

Returns the result of WinDefWindowProc.

Returns TRUE, signaling that the window should erase
the client-window area. The frame window sends this
message to itself during WM_PAINT processing.

Calculates the sizes and positions of the frame controls
and the client window.

If the frame window is minimized and disabled, returns
HT_ERROR; otherwise, returns TF _MOVE.

If the frame window has a client window, passes this
message to the client window; otherwise, passes this
message to WinDefWindowProc.

Determines the correct mouse pointer to use and returns
the result of WinDefWindowProc.

If the frame window is minimized, sends
WM_QUERYICON and WM_ERASEBACKGROUND to
itself and draws the icon; otherwise, paints the control
windows, sends a WM_ERASEBACKGROUND message
to the client window, and paints the client window.

Starts track-move processing of the title-bar control
window.

Returns the result of WinDefWindowProc.

Sends a WM_FORMATFRAME message to itself.

If the frame window has captured the mouse, ignores the
system command; otherwise, uses one of the following
commands: SC~PPMENU, SC_CLOSE, SC_MOVE,
SC_NEXT, SC_NEXTFRAME, SC_RESTORE, SC_SIZE,
SC_SYSMENU, SC_TASKMANAGER.

Reformats and updates the appearance of the frame
window. Sent after a frame control has been added to or
removed from the frame window.

Chapter 6. Frame Windows 6-13

Using Frame Windows
This section explains how to:

• Create a main window
• Retrieve a frame-control handle

Creating a Main Window
An application can create a main window by using WinCreateStdWindow. The following
code fragment creates a typical main window-a frame window that has a system menu, title
bar, menu, vertical and horizontal scroll bars, minimize and maximize (window-sizing)
buttons, and a sizing border:

6-14 PM Basic Programming Guide

An application also can create a standard main window by creating a frame window with the
FCF _STANDARD flag. The application must include icon, menu, and accelerator-table
resources if it uses the FCF _STANDARD flag.

The application creates the standard window by using WinCreateStdWindow, as shown in
the following code fragment:

#defi ne IDM.:,.RESOURCES 1

HWND hwndFrame;

/* Set the frame-.control flags. */
ULONG fl FrameControl Fl ags = FCF _STANDARD;

/* Create the standard main window. */
hwndFrame '" Wi nCreateStdWi ndow(HWNO DESKTOP, WS VISIBLE,
&flFrameControlFlags, - .-
"MyCl ass ". "Mai n Wi ndow", e. (HMODULE) NULL.
10M_RESOURCES, e);

Another way to create a main window and its frame controls is to use WinCreateWindow to
create the frame window and the frame controls, then call WinCreateWindow again to create
the client window. One advantage of this approach is that, when creating the frame window,
the application can specify the window's initial size and position. Figure 6-7 on page 6-16
illustrates this approach.

Chapter 6. Frame Windows 6-15

Figure 6-7 (Part 1 of 2). Using WinCreateWindow to Create Frame, Control, and Client
Windows

6-16 PM Basic Programming Guide

!* Set the size and position of the frame window. *!
Wi nQueryWi ndowPos (HWND _DESKTOP, &swp);
WinSetW;ndowPos(hwndFrame. HWND_TOP. swp.x. swp.cy / 2,
swp.cx, swp.cy / 2. SWP MOVElswP _SIZE);

/* Set the size and position of the client window. */
Wi nQueryWi ndowPos (hwnd Frame , &swp);
WinSetWindowPos(hwndClient. HWND TOP, SV CXSIZEBORDER.
SV CYSIZEBORDER - 1. swp.cx - SV-CXSIZEBORDER * 2,
(swp.cy - SV_CYSIZEBORDER * 2) +-1, SWP _MOVE I SWP _SIZE);

/* Make the frame and client windows visible. *!
WinShowWindow(hwndFrame. TRUE);
Wi nShowWi ndow(hwndCl i ent, TRUE);

Figure 6-7 (Part 2 of 2). Using WinCreateWindow to Create Frame, Control, and Client
Windows

Retrieving a Frame Handle
An application can retrieve a frame-control handle by using WinWindowFromlD. The
following code fragment retrieves the handle of a title-bar control:

HWNDhwndTitleBar.hwndFrame;

hwndTitleBar = WinWindowFromID(hwndFrame, FID_TITLEBAR);

Given a frame-control handle, an application can retrieve its parent frame-window handle by
using WinQueryWindow:

HWNO hwndFr:ame,hwndTftleBar:

By using identifiers to identify frame controls, rather than using window classes, an
application can create its own controls to replace the predefined controls.

Chapter 6. Frame Windows 6-17

Related Functions
This section covers the functions that are related to Frame Windows.

WinCalcFrameRect
This function calculates a client rectangle from a frame rectangle, or a frame rectangle from
a client rectangle.

Syntax

#define INCL_WINFRAMEMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinCaleFrameReet (HWND hwndFrame, PRECTl prel, BOOl fClient)

Parameters
hwndFrame (HWND) - input

Frame-window handle.

prel (PRECTl) - in/out
Window rectangle.

fClient (BOOl) - input
Frame indicator.

TRUE
FALSE

Returns

Frame rectangle prc;>vided
Client-area rectangle provided.

re (BOOl) - returns
Rectangle-calculated indicator.

TRUE
FALSE

Rectangle successfully calculated
Error occurred, or the calculated rectangle is empty.

6-18 PM Basic Programming Guide

WinCreateFrameControls
This function creates the standard frame controls for a specified window.

Syntax

#define INCL_WINFRAMEMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOL WinCreateFrameControls (HWND hwndFrame, PFRAMECDATA pfcdata,
PSZ pszTitle)

Parameters
hwndFrame (HWND) - input

Frame-window handle.

HWND _DESKTOP
HWND _OBJECT
Other

The desktop window
Object window
Specified window.

pfcdata (PFRAMECDATA) - input
Frame-control data.

pszTitle (PSZ) - input
Title string.

Returns
rc (Baal) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Chapter 6. Frame Windows 6-19

Related Messages
This section covers the messages that are related to Frame Windows.

WM_ADJUSTFRAMEPOS
This message is sent to a frame window whose position or size is to be adjusted.

Parameters
param1

pswp (PSWP)

param2

New frame window state.
4

This points to a SWP structure.

The structure has been filled in by the WinSetWindowPos or WinSetMultWindowPos
functions with the proposed move or size data for the frame window.

hsavewphsvwp (HSAVEWP)
Identifier of the frame window repositioning process.

Returns
ulReserved (ULONG)

Reserved value, should be o.

6-20 PM Basic Programming Guide

WM_ERASEBACKGROUND
This message causes a client window to be filled with the background, should this be
appropriate.

Parameters
param1

hpsFrame (HPS)
Presentation-space handle for the frame window.

param2

pprcPaint (PRECTl)
Rectangle structure of rectangle to be painted.

This points to a RECTl structure.

Returns
rc (BOOl)

Processed indicator.

TRUE If a FlO_CLIENT window exists, the area of the frame covered by the
FlO_CLIENT window is erased in the system-window background color.

If no FlO_CLIENT window exists, the entire frame window is erased in the
system-window background color.

FALSE The client window did process the message.

Chapter 6. Frame Windows 6-21

WM FLASHWINDOW
An application has issued a WinFlashWindow function.

Parameters
param1

usFlash (USHORT)
Flash indicator.

TRUE
FALSE

Start the window border flashing
Stop the window border flashing.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

6-22 PM Basic Programming Guide

WM_FORMATFRAME
This message is sent to a frame window to calculate the sizes and positions of all of the
frame controls and the client window.

Parameters
param1

pswp (PSWP)
Structure array.

This points to an array that is to hold the SWP structures.

param2

pprectl (PRECTL)
Pointer to client window rectangle.

This is typically the window rectangle of pswp, but where the window has a wide
border, as specified by FCF _DLGBORDER for example, the rectangle is inset by
the size of the border.

Returns
ccount (USHORT)

Count of the number of SWP arrays returned.

Chapter 6. Frame Windows 6-23

WM MINMAXFRAME
This message is sent to a frame window that is being minimized, maximized, or restored.

Parameters
param1

pswp (PSWP)

param2

Set window position structure.

This points to a SWP structure. The structure has the appropriate SWP_*
indicators set to describe the operation that is occurring to the window.

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Processed indicator.

TRUE The message has been processed; the default system actions for the
operation specified by the pswp parameter to the window are not to be
performed.

FALSE The message has been ignored; the default system actions for the operation
specified by the pswp parameter to the window are to be performed.

6-24 PM Basic Programming Guide

WM NEXTMENU
This message occurs when either the beginning or the end of the menu is reached by use of
the cursor control keys.

Parameters
param1

hwndMenu (HWND)
Menu-control window handle.

param2

usPrev (USHORT)
Previous-menu indicator.

TRUE
FALSE

Beginning of the menu has been reached
End of the menu has been reached.

Returns
hwndNewMenu (HWND)

New menu window handle.

NULLHANDLE No new menu
Other New menu window handle.

Chapter 6. Frame Windows 6-25

WM_QUERYFRAMECTLCOUNT
This message is sent to the frame window in response to the receipt of a WM_SIZE or a
WM_UPDATEFRAME (in Frame Controls) message.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
sControlCount (SHORT)

Count of frame controls.

6';'26 PM Basic Programming Guide

WM_ QUERYFRAMEINFO
This message enables an application to query information about frame windows.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be o.

param2

ulReserved (ULONG)
Reserved value, should be o.

Returns
flFlags (ULONG)

Frame information flags.

FI FRAME
FI_OWNERHIDE
FI_NOMOVEWITHOWNER
FI_ACTIVATEOK

Identifies a frame window.
The frame window is hidden when its owner is hidden.
The frame window does not move with its owner.
The frame window may be activated. This means, for
example, that the frame window is not disabled.

Chapter 6. Frame Windows 6-27

WM_QUERYICON
This message is sent to a frame window to query its associated icon.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be o.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
hptrlcon (HPOINTER)

Handle to the icon.

6-28 PM Basic Programming Guide

WM_QUERYTRACKINFO
The frame control generates this message on receiving a WM_ TRACKFRAME (in Frame
Controls) message.

Parameters
param1

ustflags (USHORT)
Tracking flags.

Contains a combination of one or more TF _* flags as defined in the TRACKINFO
structure.

param2

ptrackinfo (PTRACKINFO)
Track information structure.

This points to a TRACKINFO structure. The receiver of this message must modify
this structure.

Returns
rc (BOOl)

Continue indicator.

TRUE
FALSE

Continue sizing or moving
Terminate sizing or moving.

Chapter 6. Frame Windows 6-29

WM_SETBORDERSIZE
This message is sent to the frame window to change the width and height of the border.

Parameters
param1

uscx (USHORT)
Width of border.

param2

uscy (USHORT)
Height of border.

Returns
rc (BaaL)

Success indicator.

TRUE Successful completion
FALSE Error occurred.

6-30 PM Basic Programming Guide

WM SETICON
This message is sent to a frame window to set its associated icon.

Parameters
param1

hptrlcon (HPOINTER)
New icon handle.

param2

ulReserved (UlONG)
Reserved value, should be o.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Chapter 6. Frame Windows 6-31

WM SYSCOMMAND
This message occurs when a control window has a significant event to notify to its owner, or
when a key stroke has been translated by an accelerator table into a WM_SYSCOMMANO.

Parameters
param1

uscmd (USHORT)
Command value.

The frame control takes the action described on these uscmd values:

SC RESTORE

SC_NEXT

SC APPMENU

SC SYSMENU

SC_CLOSE

SC NEXTFRAME

SC_NEXTWINOOW

6-32 PM Basic Programming Guide

Sends a WM_TRACKFRAME (in Frame Controls) to the
frame window.

Sends a WM_TRACKFRAME (in Frame Controls) to the
frame window.

If a control with the identifier FlO MINMAX is present,
minimizes the frame window, or restores it to a
remembered size and position.

If a control with the identifier FIO_MINMAX is present,
maximizes the frame window, or restores it to a
remembered size and position.

When a window is moved or sized in the normal way at
least one border should remain on the screen. When a
window is maximized and the maximum size is as large as
the screen, all borders should be positioned just outside
the screen.

If a control with the identifier FIO_MINMAX is present,
restores a maximized frame window to its previous size
and position.

Cycles the active window status to the next main window.

Sends a MM_STARTMENUMOOE message to the control
with the identifier FlO MENU.

Sends a MM_STARTMENUMOOE message to the control
with the identifier FlO SYSMENU.

If Close is not enabled in the system menu, this message
is ignored. Otherwise the frame posts a WM_CLOSE
message to the client if it exists or to itself, if not.

The next frame window that is a child of the desktop
window is activated.

The next window with the same owner window is
activated.

param2

SC_TASKMANAGER The Task List is activated.

SC HElPEXTENDED The frame manager sends HM_EXT _HELP to the
associated Help Manager Object Window. If there is no
such associated window, the original message is sent to
the client.

SC_HElPKEYS The frame manager sends HM_KEYS_HElP to the
associated Help Manager Object Window. If there is no
such associated window, the original message is sent to
the client.

SC HElPINDEX The frame manager sends HM_HElP JNDEX to the
associated Help Manager Object Window. If there is no
such associated window, the original message is sent to
the client.

SC HIDE Sets the visibility state of the frame window to off causing
it to appear hidden or invisible.

ussource (USHORT)
Source type.

Identifies the type of control:

CMDSRC_PUSHBUTTON Posted by a push-button control: uscmd is the
window identifier of the push button.

CMDSRC_MENU Posted by a menu control: uscmd is the identifier of
the menu item.

CMDSRC_ACCElERATOR Posted as the result of an accelerator: uscmd is the
accelerator command value.

CMDSRC OTHER

fpointer (Baal)
Pointing-device indicator.

Other source: uscmd gives further control-specific
information defined for each control type.

TRUE
FALSE

The message is posted as a result of a pointing-device operation.
The message is posted as a result of a keyboard operation.

ulReserved (UlONG)
Reserved value, should be O.

Chapter 6. Frame Windows 6-33

WM TRACKFRAME
This message is sent to a window whenever it is to be moved or sized.

Parameters
param1

fsTrackFlags (USHORT)
Tracking flags.

Contains a combination of one or more TF _ * flags; for details, see the TRACKINFO
data structure description.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator

TRUE
FALSE

The operation is successful.
The operation is unsuccessful, or the operation is terminated.

6-34 PM Basic Programming Guide

WM_UPDATEFRAME
This message is sent by an application after frame controls have been added or removed
from the window frame.

Parameters
paraml

flCreateFlags (UlONG)
Frame-creation flags.

Contains the FCF _ * flags that indicate which frame controls have been added or
removed.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Processed indicator.

TRUE
FALSE

Message processed
Message ignored.

Chapter 6. Frame Windows 6-35

Related Data Structures
This section covers the data structures that are related to Frame Windows.

FRAMECDATA
Frame-control data structure.

Syntax

typedef:st.ruct •. :~f"RAMECD~TA •. {
USHORT cbj
ULONG flCr¢ateFl ags;
USHORT hlTlo<iResourcesj
USHORT idResourtes;

} FRAMECDATAj

Fields
cb (USHORT)

Length.

flCreateFlags (ULONG)
Frame-creation flags.

Possible values are described in the following list:

FCF _ TITLEBAR
FCF _SYSMENU
FCF_MENU
FCF _ SIZEBORDER
FCF _MINBUTTON
FCF_MAXBUTTON
FCF_MINMAX
FCF _ VERTSCROLL
FCF _ HORZSCROLL
FCF _DLGBORDER
FCF_BORDER
FCF _SHELLPOSITION
FCF _ TASKLIST
FCF _NOBYTEALIGN
FCF _NOMOVEWITHOWNER
FCF_ICON
FCF _ACCELTABLE
FCF _ SYSMODAL
FCF _SCREENALIGN
FCF _ MOUSEALIGN

6-36 PM Basic Programming Guide

FCF _HIDEBUTTON
FCF_HIDEMAX
FCF _AUTOICON
FCF_DBE_APPSTAT
FCF _STANDARD

hmodResources (USHORT)
Identifier of required resource.

The standard setting is equivalent to setting
FCF _TITLEBAR, FCF _SYSMENU, FCF _MENU,
FCF _SIZEBORDER, FCF _MINMAX, FCF -,CON,
FCF _ACCELTABLE, FCF _SHELLPOSITION, and
FCF _ TAS KLI ST.

This is supplied in an environment-dependent manner.

idResources (USHORT)
Resource identifier.

Chapter 6. Frame Windows 6-37

HSAVEWP
Frame window-repositioning process handle.

Syntax

6-38 PM Basic Programming Guide

Summary
Following are the OS/2 functions, messages, and structures used with frame windows.

Table 6-5. Frame-Window Functions

Function Name Description

WinCalcFrameRect Calculates a client rectangle from a frame rectangle or a
frame rectangle from a client rectangle.

WinCreateFrameControls Creates the standard frame controls for a specified
window.

Table 6-6 (Page 1 of 2). Frame-Window Messages

Message

WM_ADJUSTFRAMEPOS

WM_BUTTON1 DOWN

WM_BUTTON2DOWN

WM_BUTTON3DOWN

WM_BUTTON1 UP

WM_CALCVALIDRECTS

WM_DESTROY

WM_ENABLE

WM_ERASEBACKGROUND

WM_FLASHWINDOW

WM_FOCUSCHANGE

WM_FORMATFRAME

Description

Occurs when an application causes the activation or
deactivation of a window.

Sent by the WinSetWindowPos call to enable the window
to adjust its new position or size whenever it is about to
be moved.

Occurs when the user presses pointer button 1.

Occurs when the user presses pointer button 2.

Occurs when the user presses pointer button 3.

Occurs when the user releases point button 1.

Sent to determine which areas of a window can be
preserved and which can be displayed when a window is
sized.

Sent to a frame window to indicate that the user is closing
the window.

Occurs when the application requests creation of a
window.

Occurs when an application requests destruction of a
window.

Sets the enable state of a window.

Causes a client window to be filled with the background, if
appropriate.

Occurs when an application has issued a
WinFlashWindow call.

Occurs when the window possessing the focus is
changed.

Sent to a frame window to calculate the sizes and
positions of all the frame controls and the client window.

Sent to determine which window is associated with an
input from the pointing device.

Chapter 6. Frame Windows 6-39

Table 6-6 (Page 2 of 2). Frame-Window Messages

Message

WM_MINMAXFRAME

WM_MOUSEMOVE

WM_NEXTMENU

WM_PAINT

WM_QUERYFRAMECTLCOUNT

WM_QUERYFRAMEINFO

WM_QUERYICON

WM_ QUERYTRACKINFO

WM_SETACCELTABLE

WM_SETBORDERSIZE

WM_SETICON

WM_SHOW

WM_SIZECLIPBOARD

WM_SYSCOMMAND

WM_ TRACKFRAME

WM_ TRANSLA TEACCEL

WM_UPDATEFRAME

WM_ WINDOWPOSCHANGED

Description

Sent to a frame window that is being minimized,
maximized, or restored.

Occurs when the pointing device pointer moves.

Occurs when either the beginning or the end of the menu
is reached using the cursor control keys.

Occurs when a window needs painting.

Sent to the frame window in response to the receipt of a
WM_SIZE or WM_UPDATEFRAME message.

Enables an application to query information about frame
windows.

Sent to a frame window to query its associated icon.

The frame control and title bar generate this message
after receiving a WM_ TRACKFRAME message.

Establishes the window accelerator table to be used for
translation when the window is active.

Sent to the frame window to change the width and height
of the border.

Sent to a frame window to set its associated icon.

Occurs when a window's WS_ VISIBLE state is changing.

Sent when the clipqoard contains a data handle for the
CFI_ OWNERDISPLA Y format, and the clipboard
application window has changed size.

Occurs when a control has a significant event to notify to
its owner or when a keystroke has been translated by an
accelerator table into a WM_SYSCOMMAND message.

Sent to a window whenever it is to be moved or sized.

Sentto the focus window whenever a WM_CHAR
message occurs.

Sent by an application after frame controls have been
added or removed from the window frame.

Sent to the window procedure of the window whose
position is changed.

Table 6-7. Frame-Window Structures

Structure Name Description

FRAMECDATA Frame-control data structure.

HSAVEWP Frame window repositioning handle.

6-40 PM Basic Programming Guide

Chapter 7. Painting and Drawing

This chapter describes presentation spaces, device contexts, and window regions, explaining
how a PM application uses them for painting and drawing in windows.

About Painting and Drawing
An application typically maintains an internal representation of the data that it is manipulating.
The information displayed in a screen, window, or printed copy is a visual representation of
some portion of that data. This chapter introduces the concepts and strategies necessary to
make your PM application function smoothly and cooperatively in the OS/2 display
envi ron ment.

Presentation Spaces and Device Contexts
A presentation space is a data structure, maintained by the operating system, that describes
the drawing environment for an application. An application can create and hold several
presentation spaces, each describing a different drawing environment. All drawing in a PM
application must be directed to a presentation space.

Normally each presentation space is associated with a device context that describes the
physical device where graphics commands are displayed. The device context translates
graphics commands made to the presentation space into commands that enable the physical
device to display information. Typical device contexts are the screen, printers and plotters,
and off-screen memory bit maps.

© Copyright IBM Corp. 1994 7-1

Figure 7-1 shows how graphics commands from an application go through a presentation
space, to a device context, and then to the physical device.

Application
Graphics

Presentation
Space

GpiAssociate 1

Window
Device
Context

GpiAssociate 2
1------------1 ... (null device

context handle)

GpiAssociate 3

Printer
Device
Context

Figure 7-1. Application's Flow of Graphics Commands

By creating presentation spaces and associating them with particular device contexts, an
application can control where its graphics output appears. Typically, a presentation space
and device context isolate the application from the physical details of displaying graphics, so
the same graphics commands can be used for many types of displays. This virtualization of
output can reduce the amount of display code an application must include to support multiple
output devices.

This chapter describes how an application sets up its presentation spaces and device
contexts before drawing, and how to use window-drawing functions. Refer to the Graphics
Programming Interface Programming Guide for the graphics functions available to PM
applications.

7 -2 PM Basic Programming Guide

Window Regions
A window and its associated presentation space have three regions that control where
drawing takes place in the window. These regions ensure that the application does not draw
outside the boundaries of the window or intrude into the space of an overlapping window.

Table 7-1. Window Regions

Region

Update Region

Clip Region

Visible Region

Description

This region represents the area of the window that needs to be redrawn.
This region changes when overlapping windows change their z-order or
when an application explicitly adds an area to the update region to force
a window to be painted.

This region and the visible region determine where drawing takes place.
Applications can change the clip region to limit drawing to a particular
portion of a window. Typically, a presentation space is created with a clip
region equal to NULL, which makes this region equivalent to the update
region.

This region and the clip region determine where drawing takes place. The
system changes the visible region to represent the portion of a window
that is visible. Typically, the visible region is used to mask out
overlapping windows. When an application calls the WinBeginPaint
function in response to a WM_PAINT message, the system sets the
visible region to the intersection of the visible region and the update
region to produce a new visible region. Applications cannot change the
visible region directly.

Chapter 7. Painting and Drawing 7-3

Whenever drawing occurs in a window's presentation space, the output is clipped to the
intersection of the visible region and clip region. Figure 7-2 shows how the intersection of
the visible region and the clip region of a window that is behind another window prevents the
drawing in the back window from intruding into the front window.

The clip region includes the overlapped part of the back window, but the visible region
excludes that portion of the back window. The system maintains the visible region to protect
other windows on the screen; the application maintains the clip region to specify the portion
of the window in which it draws. Together, these two regions provide safe and controllable
clipping.

D
Visible Region Clip Region

Figure 7-2. Clip Region and Visible Region of a Window's Presentation Space

To further control drawing, both the system and the application manipulate the update region.
For example, if the windows shown in Figure 7-2 switch positions front to back, several
changes occur in the regions of both windows. The system adds the lower-right corner of
the new front window to that window's visible region. The system also adds that corner area
to the window's update region.

Window Styles for Painting
Most of the styles relating to window drawing can be set either for the window class (CS_
prefix) or for an individual window 0NS_ prefix). The styles described in this section control
how the system manipulates the window's regions and how the window is notified when it
must be painted or redrawn.

7-4 PM Basic Programming Guide

WS_CLIPCHILDREN, CS_CLIPCHILDREN
All the windows with this style are excluded from their parent's visible region. This style
protects windows but increases the amount of time necessary to calculate the parent's visible
region. This style normally is not necessary, because if the parent and child windows
overlap and both are invalidated, the parent window is drawn before the child window. If the
child window is invalidated independently from its parent window, only the child window is
redrawn. If the update region of the parent window does not intersect the child window,
drawing the parent window does not disturb the child window.

WS_CLIPSIBLINGS, CS_CLIPSIBLINGS
Windows with this style are excluded from the visible region of sibling windows. This style
protects windows with the same parent from being drawn accidentally, but increases the
amount of time necessary to calculate the visible region. This style is appropriate for sibling
windows that overlap.

WS_PARENTCLIP, CS_PARENTCLIP
The visible region for a window with this style is the same as the visible region of the parent
window. This style simplifies the calculation of the visible region but is potentially hazardous,
because the parent window's visible region usually is larger than the child window. Windows
with this style should not draw outside their boundaries.

WS_SAVEBITS, CS_SAVEBITS
The system saves the bits beneath a window with this style when the window is displayed.
When the window moves or is hidden, the system simply restores the uncovered bits. This
operation can consume a great deal of memory; it is recommended only for transient
windows such as menus and dialog boxes-not for main application windows. This style
also is inappropriate for windows that are updated dynamically, such as clocks.

WS_SYNCPAINT, CS_SYNCPAINT
Windows that have these styles receive WM_PAINT messages as soon as their update
regions contain something; they are updated immediately (synchronously).

CS_SIZEREDRAW
A window with this class style receives a WM_PAINT message; the window is completely
invalidated whenever it is resized, even if it is made smaller. (Typically, only the uncovered
area of a window is invalidated when a window is resized.) This class style is useful when
an application scales graphics to fill the current window.

Chapter 7. Painting and Drawing 7-5

Strategies for Painting and Drawing
A PM application shares the screen with other windows and applications; therefore, painting
and drawing must not interfere with those other applications and windows. When you follow
these strategies, your application can coexist with other applications and still take full
advantage of the graphics capabilities of the operating system.

Drawing in a Window
Ideally, all drawing in a window occurs as a result of an application's processing a
WM_PAINT message. Applications maintain an internal representation of what must be
displayed in the window, such as text or a linked list of graphics objects, and use the
WM_PAINT message as a cue to display a visual representation of that data in the window.

To route all display output through the WM_PAINT message, an application must not draw
on the screen at the time its data changes. Instead, it must update the internal
representation of the data and call the WinlnvalidateRect or WinlnvalidateRegion functions to
invalidate the portion of the window that must be redrawn. Sometimes it is much more
efficient to draw directly in a window without relying on the WM_PAINT message-for
example, when drawing and redrawing an object for a user who is using the mouse to drag
or size the object.

If a window has the WS_SYNCPAINT or CS_SYNCPAINT style, invalidating a portion of the
window causes a WM_PAINT message to be sent to the window immediately. Essentially,
sending a message is like making a function call; the actions corresponding to the
WM_PAINT message are carried out before the call that caused the invalidation
returns-that is to say, the painting is synchronous.

If the window does not have the WS_SYNCPAINT or CS_SYNCPAINT style, invalidating a
portion of the window causes the invalidated region to be added to the window's update
region. The next time the application calls the WinGetMsg or WinPeekMsg functions, the
application is sent a WM_PAINT message. If there are many messages in the queue, the
painting occurs after the invalidation-that is, the painting is asynchronous. A WM_PAINT
message is not posted to the queue in this case, so all invalidation operations since the last
WM_PAINT message are consolidated into a single WM_PAINT message the next time the
application has no messages in the queue.

There are advantages to both synchronous and asynchronous painting. Windows that have
simple painting functions should be painted synchronously. Most of the system-defined
control windows, such as buttons and frame controls, are painted synchronously because
they can be painted quickly without interfering with the responsiveness of the program.
Windows that require more time-consuming painting operations should be painted
asynchronously so that the painting can be initiated only when there are no other pending
messages that might otherwise be blocked while waiting for the window to be painted. Also,
a window that uses an incremental approach to invalidating small portions of itself usually
should allow those operations to consolidate into a single asynchronous WM_PAINT
message, rather than a series of synchronous WM_PAINT messages.

7 -6 PM Basic Programming Guide

If necessary, an application can call the WinUpdateWindow function to cause an
asynchronous window to update itself without going through the event loop.
WinUpdateWindow sends a WM_PAINT message directly to the window if the window's
update region is not empty.

The WM_PAINT Message
A window receives a WM_PAINT message whenever its update region is not NULL. A
window procedure responds to a WM_PAINT message by calling the WinBeginPaint function,
drawing to fill in the update areas, then calling the WinEndPaint function.

The WinBeginPaint function returns a handle to a presentation space that is associated with
the device context for the window and that has a visible region equal to the intersection of
the window's update region and its visible region. This means that only those portions of the
window that need to be redrawn are drawn. Attempts to draw outside this region are clipped
and do not appear on the screen.

If the application maintains its own presentation space for the window, it can pass the handle
of that presentation space to Win Begin Paint, which modifies the visible region of the
presentation space and passes the presentation-space handle back to the caller. If the
application does not have its own presentation space, it can pass a NULL presentation-space
handle and the system will return a cached-micro presentation space for the window. In
either case, the application can use the presentation space to draw in the window.

The WinBeginPaint function takes a pointer to a RECTL structure, filling in this structure with
the coordinates of the rectangle that encloses the area to be updated. The application can
use this rectangle to optimize drawing, by drawing only those portions of the window that
intersect with the rectangle. If an application passes a NULL pointer for the rectangle
argument, the application draws the entire window and relies on the clipping mechanism to
filter out the unneeded areas.

After the WinBeginPaint function sets the update region of a window to NULL, the application
does the necessary drawing to fill the update areas. If an application handles a WM_PAINT
message and does not call WinBeginPaint, or otherwise empty the update region, the
application continues to receive WM_PAIN! messages as long as the update region is not
empty.

After the application finishes drawing, it calls the WinEndPaint function to restore the
presentation space to its former state. When a cached-micro presentation space is returned
by Win Begin Paint, the presentation space is returned to the system for reuse. If the
application supplies its own presentation space to Win Begin Paint, the presentation space is
restored to its previous state.

Chapter 7. Painting and Drawing 7-7

Drawing the Minimized View
When an application creates a standard frame window, it has the option of specifying an icon
that the system uses to represent the application in its minimized state. Typically, if an icon
is supplied, the system draws it in the minimized window and labels it with the name of the
window. If the application does not specify the FS_ICON style for the window, the window
receives a WM_PAINT message when it is minimized. The code in the window procedure
that handles the WM_PAINT message can determine whether the frame window currently is
minimized and draw accordingly. Notice that because the WS_MINIMIZED style is relevant
only for the frame window, and not for the client window, the window procedure checks the
frame window rather than the client window.

The following code fragment shows how to draw a window in both the minimized and normal
states:

7 -8 PM Basic Programming Guide

Drawing Without the WM_PAINT Message
An application can draw in a window's presentation space without having received a
WM_PAINT message. As long as there is a presentation space for the window, an
application can draw into the presentation space and avoid intruding into other windows or
the desktop. Applications that draw without using the WM_PAINT message typically call the
WinGetPS function to obtain a cached-micro presentation space for the window and call the
WinReleasePS function when they have finished drawing. An application also can use any
of the other types of presentation spaces described in the following sections.

Three Types of Presentation Spaces
All drawing must take place within a presentation $pace.

Figure 7-3. Presentation Space versus Window

The operating system provides three types of presentation spaces for drawing: normal,
micro, and cached-micro presentation spaces.

Chapter 7. Painting and Drawing 7-9

The normal presentation space provides the most functionality, allowing access to all the
graphics functions of the operating system and enabling the application to draw to all device
types. The normal presentation space is more difficult to use than the other two kinds of
presentation spaces and it uses more memory. It is created by using the GpiCreatePS
function and is destroyed by using the GpiDestroyPS function.

The micro presentation space allows access to only a subset of the operating system
graphics functions, but it uses less memory and is faster than a normal presentation space.
The micro presentation space also enables the application to draw to all device types. It is
created by using the GpiCreatePS function and destroyed by using the GpiDestroyPS
function. .

The cached-micro presentation space provides the least functionality of the three kinds of
presentation spaces, but it is the most efficient and easiest to use. The cached-micro
presentation space draws only to the screen. It is created and destroyed by using either the
WinBeginPaint and WinEndPaint functions or the WinGetPS and WinReleasePS functions.

The following sections describe each of the types of presentation spaces, in detail, and
suggest strategies for using each type in an application. All three kinds of presentation
spaces can be used in a single application. Some windows, especially if they never will be
printed, are best served by cached-micro presentation spaces. Other windows might require
the more flexible services of micro or normal presentation spaces.

Normal Presentation Spaces
The normal presentation space supports the full power of the operating system graphics,
including retained graphics. The primary advantages of a normal presentation space over
the other two presentation-space types are its support of all graphics functions and its ability
to be associated with many kinds of device contexts.

A normal presentation space can be associated with many different device contexts.
Typically, this means that an application creates a normal presentation space and associates
it with a window device context for screen display. When the user asks to print, the
application associates the same presentation space with a printer device context. Later, the
application can reassociate the presentation space with the window device context. A
presentation space can be associated with only one device context at a time, but the normal
presentation space enables the application to change the device context whenever
necessary.

7 -10 PM Basic Programming Guide

Figure 7-4 shows how an application typically routes graphics through one normal
presentation space into another device context:

Application

Device Context .. ~/
for Printer

Presentation
Driver

Figure 7-4. Normal Presentation Space

Normal
Presentation Space

Device Context
for Display

Presentation
Driver

j

When creating a normal presentation space, an application can associate it with a device
context or defer the association to a later time. The GpiAssociate function associates a
device context with a normal presentation space after the presentation space has been
created. An application typically associates the normal presentation space with a device
context when calling the GpiCreatePS function and, later, associates the presentation space
with a different device context by calling GpiAssociate. To obtain a device context for a
window, call the WinOpenWindowDC function. To obtain a device context for a device other
than the screen, call the DevOpenDC function.

An application typically creates a normal presentation space during initialization and uses it
until termination. Each time the application receives a WM_PAINT message, it passes the
handle of the normal presentation space as an argument to Win Begin Paint; this prevents the
system from returning a cached-micro presentation space. The system modifies the visible
region of the supplied normal presentation space and returns the presentation space to the
application. This method enables the application to use the same presentation space for all
the drawing in a specified window.

Chapter 7. Painting and Drawing 7-11

Normal presentation spaces created using GpiCreatePS must be destroyed by calling
GpiDestroyPS before the application terminates. Do not call WinReleasePS to release a
presentation space obtained using GpiCreatePS. Before terminating, applications also must
use DevCloseDC to close any device contexts opened using DevOpenDC. No action is
necessary for device contexts obtained using WinOpenWindowDC, because the system
automatically closes these device contexts when destroying the associated windows.

Micro Presentation Spaces
The primary advantage of a micro presentation space over a cached-micro presentation
space is that it can be used for printing as well as painting in a window. An application that
uses a micro presentation space must explicitly associate it with a device context. This
makes the micro presentation space useful for painting to a printer, a plotter, or an off-screen
memory bit map.

A micro presentation space does not support the full set of OS/2 graphics functions. Unlike
a normal presentation space, a micro presentation space does not support retained graphics.

An application that must display graphics or text in a window and print to a printer or plotter
typically maintains two presentation spaces: one for the window and one for the printing
device. Figure 7-5 on page 7-13 shows how an application's graphics output can be routed
through separate presentation spaces to produce a screen display and printed copy.

7 -12 PM Basic Programming Guide

Device Context
for Printer

Presentation
Driver

Application

Figure 7-5. Micro Presentation Space

Device Context
for Display

Presentation
Driver

Chapter 7. Painting and Drawing 7-13

An application creates a micro presentation space by calling the GpiCreatePS function. A
device context must be supplied at the time the micro presentation space is created. An
application typically creates a device context and then a presentation space. The following
code fragment demonstrates this by obtaining a device context for a window and associating
it with a new micro presentation space:

hdc =WinOpenWindowOC(~ ••) ;
hps=GpiCreatePS(, ... hdc ••••• GPIA_ASSOC) ;

To create a micro. presentation space for a device other than the screen, replace the call to
the WinOpenWindowDC function with a call to the DevOpenDC function, which obtains a
device context for a device other than the screen. Then the device context that is obtained
by this call can be used as an argument to GpiCreatePS.

An application typically creates a micro presentation space during initialization and uses it
until termination. Each time the application receives a WM_PAINT message, it should pass
the handle of the micro presentation space as an argument to the WinBeginPaint function;
this prevents the system from returning a cached-micro presentation space. The system
modifies the visible region of the supplied micro presentation space and returns the
presentation space to the application. This method enables the application to use the same
presentation space for all drawing in a specified window.

Micro presentation spaces created by using GpiCreatePS should be destroyed by calling
GpiDestroyPS before the application terminates. Do not call the WinReleasePS function to
release a presentation space obtained by using GpiCreatePS. Before terminating,
applications must use the DevCloseDC function to close any device contexts opened using
the DevOpenDC function. No action is necessary for device contexts obtained using
WinOpenWindowDC, because the system automatically closes these device contexts when
destroying the associated windows.

Cached-Micro Presentation Spaces
The cached-micro presentation space provides the simplest and most efficient drawing
environment. It can be used only for drawing on the screen, typically in the context of a
window. It is most appropriate for application tasks that require simple window-drawing
functions that will not be printed. Cached-micro presentation spaces do not support retained
graphics. .

After an application draws to a cached-micro presentation space, the drawing commands are
routed through an implied device context to the current display. The application does not
require information about the actual device context, because the device context is assumed
to be the display. This process makes cached-micro presentation spaces easy for
applications to use.

7-14 PM Basic Programming Guide

The following code fragment illustrates this process:

HPS hps;

case WM PAINT:
hps-= WinBeginPaint(hwnd,NULL,NULL);

/*
* Use PS.
*/

WinEndPaint (hps);

or

HPS hps;

case WM_PAINT:

hps = WinGetPS(hwnd);

/*
* Use PS.
*/

Wi nRel easePS (hps);

There are two common strategies for using cached-micro presentation spaces in an
application. The simplest strategy is to call the WinBeginPaint function during the WM_PAINT
message, use the resulting cached-micro presentation space to draw in the window, then
return the presentation space to the system by calling the WinEndPaint function. By using
this method, the application interacts with the presentation space only when drawing in the
presentation space. This method is most appropriate for simple drawing. A disadvantage of
this method is that the application must set up any special attributes for the presentation
space, such as line color and font, each time a new presentation space is obtained.

A second strategy is for the application to allocate a cached-micro presentation space during
initialization, by calling the WinGetPS function and saving the resulting presentation-space
handle in a static variable. Then the application can set attributes in the presentation space
that exist for the life of the program. The presentation-space handle can be used as an
argument to the WinBeginPaint function each time the window gets a WM_PAINT message;
the system modifies the visible region and returns the presentation space to the application
with its attributes intact. This strategy is appropriate for applications that need to customize
their window-drawing attributes.

Chapter 7. Painting and Drawing 7-15

A presentation space that is obtained by calling the WinGetPS function must be released by
calling WinReleasePS when the application has finished using it, typically during program
termination. A presentation space that is obtained by calling Win Begin Paint must be
released by calling WinEndPaint, typically as the last part of processing a WM_PAINT
message.

7-16 PM Basic Programming Guide

Related Functions
This section covers the functions that are related to Painting and Drawing.

WinBeginPaint
This function obtains a presentation space whose associated update region is set ready for
drawing in a specified window.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, Also in COMON section */

#include <os2.h>

HPS WinBeginPaint (HWND hwnd, HPS hps, PRECTL prclPaint)

Parameters
hwnd (HWND) - input

Handle of window where drawing is going to occur.

HWND DESKTOP The desk top window.
Other Specified window.

hps (HPS) - input
Presentation-space handle.

NULLHANDLE Obtain a cache presentation space.
Other Presentation-space handle. This function sets its clipping region to the

update region of the hwnd parameter.

prclPaint (PRECTL) - output
Bounding rectangle.

NULL No bounding rectangle; that is, there is no need of changing any point.
Other Specifies the smallest rectangle bounding the update region, in window

coordinates.

Returns
hpsPaintPS (HPS) - returns

Presentation-space handle.

NULLHANDLE Error occurred
Other Presentation-space handle.

Chapter 7. Painting and Drawing 7 -17

WinEndPaint
This function indicates that the redrawing of a window is complete, generally as part of the
processing of a WM_PAINT message.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, Also in COMON section */

#include <os2.h>

BOOl WinEndPaint (HPS hps)

Parameters
hps (HPS) - input

Presentation-space handle.

Returns
rc (BOOl) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

7 -18 PM Basic Programming Guide

WinExcludeUpdateRegion
This function subtracts the update region (invalid region) of a window from the clipping region
of a presentation space.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

LONG WinExcludeUpdateRegion (HPS hps, HWND hwnd)

Parameters
hps (HPS) - input

Presentation-space handle whose clipping region is to be updated.

hwnd (HWND) - input
Window handle.

Returns
IComplexity (LONG) - returns

Complexity value.

RGN_NULL
RGN_RECT
RGN_COMPLEX
RGN_ERROR

Null Region
Rectangle region
Complex region
Error.

Chapter 7. Painting and Drawing 7 -19

WinGetClipPS
This function obtains a clipped cache presentation space.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, Also in COMON section */

#include <os2.h>

HPS WinGetClipPS (HWND hwnd, HWND hwndClipWindow, ULONG ulClipflags)

Parameters
hwnd (HWNO) - input

Handle of window for which the presentation space is required.

hwndClipWindow (HWNO) - input
Handle of window for clipping.

HWNO BOTTOM Clip the last window in the sibling chain and continue clipping until
the next window is hwnd or NULLHANDLE.

HWND _TOP Clip the first window in the sibling chain and continue clipping until
the next window is hwnd or NULLHANDLE.

NULLHANDLE Clip all siblings to the window hwnd.

ulClipflags (ULONG) - input
Clipping control flags.

PSF _CLlPSIBLINGS Clip out all siblings of hwnd.

PSF _CLlPCHILDREN Clip out all children. of hwnd.

PSF _CLlPUPWARDS Taking hwndClipWindow as a reference window" clip
out all sibling windows before hwndClipWindow. This
value may not be used with PSF _CLlPDOWNWARDS.

PSF CLlPDOWNWARDS Taking hwndClipWindow as a reference window, clip
out all sibling windows after hwndClipWindow. This
value may not be used with PSF _CLlPUPWARDS.

PSF _LOCKWINDOWUPDATE Calculate a presentation space that keeps a visible
region even though output may be locked by the
WinLockWindowUpdate function.

PSF _PARENTCLIP Calculate a presentation space that uses the visible
region of the parent of hwnd but with an origin
calculated for hwnd.

7-20 PM Basic Programming Guide

Returns
hps (HPS) - returns

Presentation-space handle that can be used for drawing.

Chapter 7. Painting and Drawing 7-21

WinGetPS
This function gets a cache presentation space.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, Also in COMON section */

#include <os2.h>

HPS WinGetPS (HWND hwnd)

Parameters
hwnd (HWND) - input

Handle of window for which the presentation space is required.

HWND_DESKTOP The desktop-window handle; a presentation space for the whole of
the desktop window is returned

Other Handle of window for which the presentation space is required.

Returns
hps (HPS) - returns

Presentation-space handle that can be used for drawing in the window.

7-22 PM Basic Programming Guide

WinGetScreenPS
This function returns a presentation space that can be used for drawing anywhere on the
screen.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

HPS WinGetScreenPS (HWND hwndDeskTop)

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle.

HWND DESKTOP The desktop-window handle
Other Specified desktop-window handle.

Returns
hpsScreenPS (HPS) - returns

Presentation-space handle.

NULLHANDLE hwndOeskTop is not HWND_DESKTOP or a desktop window handle
obtained from the WinQueryDesktopWindow function.

Other Presentation space handle.

Chapter 7. Painting and Drawing 7 -23

WinlnvalidateRect
This function adds a rectangle to a window's update region.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOL WinlnvalidateRect (HWND hwnd, PRECTL pwrc, BOOL flncludeChiidren)

Parameters
hwnd (HWND) - input

Handle of window whose update region is to be changed.

HWND_DESKTOP This function applies to the whole screen (or desktop).
Other Handle of window whose update region is to be changed.

pwrc (PRECTl) - input
Update rectangle.

NUll The whole window is to be added into the window's update region.
Other Rectangle to be added to the window's update region.

flncludeChiidren (BOOl) - input
Invalidation-scope indicator.

TRUE
FALSE

Returns

Include the descendants of hwnd in the invalid rectangle.
Include the descendants of hwnd in the invalid rectangle, but only if the parent
does not have a WS_CLlPCHllDREN style.

rc (BOOl) - returns
Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

7-24 PM Basic Programming Guide

Winlnval idateRegion
This function adds a region to a window's update region.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinlnvalidateRegion (HWND hwnd, HRGN hrgn, BOOl flncludeChiidren)

Parameters
hwnd (HWNO) - input

Handle of window whose update region is to be changed.

HWNO_OESKTOP This function applies to the whole screen (or desktop).
Other Handle of window whose update region is to be changed.

hrgn (HRGN) - input
Handle of the region to be added to the update region of the window.

NUllHANOlE The whole window is to be added into the window's update region.
Other Handle of the region to be added to the window's update region.

flncludeChiidren (BOOl) - input
Invalidation-scope indicator.

TRUE
FALSE

Include the descendants of hwnd in the invalid rectangle.

Returns

Include the descendants of hwnd in the invalid rectangle, but only if the parent
does not have a WS_CLlPCHllOREN style.

rc (BOOl) - returns
Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Chapter 7. Painting and Drawing 7-25

WinLockVisRegions
This function locks or unlocks the visible regions of all the windows on the screen, preventing
any of the visible regions from changing.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinlockVisRegions (HWND hwndDesktop, BOOl flock)

Parameters
hwndDesktop (HWND) - input

Desktop-window handle or HWND_DESKTOP.

flock (BOOL) - input
Indicates whether the visible regions are being locked or unlocked.

TRUE
FALSE

Returns

lock the visible regions
Unlock the visible regions.

rc (BOOl) - returns
Success indicator.

TRUE Successful.
FALSE An error occurred.

7-26 PM Basic Programming Guide

WinLockWindowUpdate
This function disables or enables output to a window and its descendants.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN. INCL_PM. */

#include <os2.h>

BOOl WinlockWindowUpdate (HWND hwndDeskTop, HWND hwndlockUpdate)

Parameters
hwndDeskTop (HWND) - input

Desktop handle of the screen containing the window to be locked.

HWND _DESKTOP The desktop-window handle
Other Specified desktop-window handle.

hwndlockUpdate (HWND) - input
Handle of window in which output is to be prevented.

NUllHANDlE Enable output in the locked window and its descendants.
Other Handle of the window in which output is to be prevented. Output is

also prevented in the descendants of the window.

Returns
rc (BOOl) - returns

Success indicator.

TRUE
FALSE

Successful operation.
Error occurred.

Chapter 7. Painting and Drawing 7-27

WinOpenWindowDC
This function opens a device context for a window.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, Also in COMaN section */

#include <os2.h>

HOC WinOpenWindowOC (HWNO hwnd)

Parameters
hwnd (HWND) - input

Window handle.

Returns
hdc (HOC) - returns

Device-context handle.

7 -28 PM Basic Programming Guide

WinQueryUpdateRect
This function returns the rectangle that bounds the update region of a specified window.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinQueryUpdateRect (HWND hwnd, PRECTl prclPrc)

Parameters
hwnd (HWND) - input

Handle of window whose update rectangle is to be queried.

prclPrc (PRECTl) - output
Update region that bounds the rectangle (in window coordinates).

Returns
rc (BOOl) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred, or window has no update region; it is wholly valid, therefore
pre/Pre is NULL.

Chapter 7. Painting and Drawing 7-29

WinQueryUpdateRegion
This call obtains an update region of a window.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

LONG WinQueryUpdateRegion (HWND hwnd, HRGN hrgn)

Parameters
hwnd (HWND) - input

Handle of window whose update region is to be queried.

hrgn (HRGN) - input
Handle of the window's update region.

Returns
IComplexity (LONG) - returns

Complexity of resulting region/error indicator.

RGN_NULL
RGN_RECT
RGN_COMPLEX
RGN_ERROR

Null region
Rectangular region
Complex region
Error.

7 -30 PM Basic Programming Guide

WinQueryWindowDC
This function returns the device context for a given window.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

HOC WinQueryWindowOC (HWNO hwnd)

Parameters
hwnd (HWND) - input

Window handle.

Returns
hdc (HDC) - returns

Device-context handle.

NULLHANDLE Either WinOpenWindowDC has not been called for this window, or an
error has occurred.

Other Device context handle.

Chapter 7. Painting and Drawing 7-31

WinReleasePS
This function releases a cache presentation space obtained using the WinGetPS, the
WinGetScreenPS, or the WinGetClipPS calL

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, Also in COMON section */

#include <os2.h>

BOOL WinReleasePS (HPS hps)

Parameters
hps (HPS) - input

Handle of the cache presentation space to release, as returned by the WinGetPS, the
WinGetScreenPS, or the WinGetClipPS function.

Returns
rc (BOOl) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

7 -32 PM Basic Programming Guide

WinUpdateWindow
This function forces the update of a window and its associated child windows.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN. INCL_PM. */

#include <os2.h>

BOOL WinUpdateWindow (HWND hwnd)

Parameters
hwnd (HWND) - input

Window handle.

Returns
rc (BOOl) - returns

Window-updated indicator.

TRUE
FALSE

Window successfully updated
Window not successfully updated.

Chapter 7. Painting and Drawing 7-33

WinValidateRect
This function subtracts a rectangle from the update region of an asynchronous paint window,
marking that part of the window as visually valid.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinValidateRect (HWND hwnd, PRECTl prclRect,
BOOl flncludeClippedChiidren)

Parameters
hwnd (HWND) - input

Handle of window whose update region is changed.

prclRect (PRECTl) - input
Rectangle to be subtracted from the window's update region.

flncludeClippedChiidren (BOOl) - input
Validation-scope indicator.

TRUE
FALSE

Returns

Include descendants of hwnd in the valid rectangle
Include descendants of hwnd in the valid rectangle, only if parent is not
WS_CLlPCHllDREN.

rc (BOOl) - returns
Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

7 -34 PM Basic Programming Guide

WinValidateRegion
This function subtracts a region from the update region of an asynchronous paint window,
marking that part of the window as visually valid.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinValidateRegion (HWND hwnd, HRGN hrgn,
BOOl flncludeClippedChiidren)

Parameters
hwnd (HWND) - input

Handle of window whose update region is changed.

hrgn (HRGN) - input
Handle of subtracted region.

flncludeClippedChiidren (BOOl) - input
Validation-scope indicator.

TRUE
FALSE

Include descendants of hwnd in the valid region

Returns

Include descendants of hwnd in the valid region, only if parent is not
WS_CLlPCHILDREN.

rc (BOOl) - returns
Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Chapter 7. Painting and Drawing 7-35

WinWindowFromDC
This function returns the handle of the window corresponding to a particular device context.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

HWNO WinWindowFromOC (HOC hdc)

Parameters
hdc (HDC) - input

Device-context handle.

Returns
hwnd (HWND) - returns

Window handle.

NULLHANDLE Error occurred. For example, the device context has not been opened
by the WinOpenWindowDC function.

Other Window handle.

7-36 PM Basic Programming Guide

Related Messages
This section covers the messages that are related to Drawing and Painting.

WM PAINT
This message occurs when a window needs repainting.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Chapter 7. Painting and Drawing 7 -37

Related Data Structures
This section covers the data structures that are related to Painting and Drawing.

RECTL
Rectangle structure.

Syntax

Fields
xLeft (LONG)

X-coordinate of left-hand edge of rectangle.

yBottom (LONG)
Y -coordinate of bottom edge of rectangle.

xRight (LONG)
X-coordinate of right-hand edge of rectangle.

yTop (LONG)
V-coordinate of top edge of rectangle.

7 -38 PM Basic Programming Guide

Summary
Following are the OS/2 functions used with presentation spaces, device contexts, and
window regions.

Table 7-2 (Page 1 of 2). Presentation Space, Device Context, and Window Region
Functions

Function Name

DevCloseDC

DevOpenDC

GpiAssociate

GpiCreatePs

GpiDestroyPS

WinBeginPaint

WinEnableWindowUpdate

WinEndPaint

WinExcludeUpdateRegion

WinGetClipPS

WinGetPS

WinGetScreenPS

WinlnvalidateRect

WinlnvalidateRegion

WinLockVisRegions

WinLockWindowUpdate

WinOpenWindowDC

WinQueryUpdateRect

WinQueryUpdateRegion

WinQueryWindowDC

WinReleasePS

WinUpdateWindow

WinValidateRect

Description

Closes a device context.

Opens a device context.

Associates a graphics presentation space with, or
disassociates it from, a device context.

Creates a presentation space

Destroys a presentation space.

Obtains a presentation space whose associated update
region is set to draw in a specified window.

Sets the visibility state for subsequent drawing.

Indicates that the redrawing of a window is complete.

Subtracts the update region of a window from the clipping
region of a presentation space.

Obtains a clipped cache presentation space.

Gets a cache presentation space.

Returns a presentation space that can be used for
drawing anywhere on the screen.

Adds a rectangle to a window's update region.

.Adds a region to a window's update region.

Locks or unlocks the visible regions or all the windows

Disables or enables output to a window and its
descendants.

Opens a device context for a window.

Returns the rectangle that bounds the update region of a
specified window.

Obtains an update region of a window.

Returns the device context for a given window.

Releases a cache presentation space obtained using the
WinGetPS or WinGetScreenPS calls.

Forces the update of a window an<;l its associated child
windows.

Subtracts a rectangle from the update region of an
asynchronous paint window, marking that part of the
window as visually valid.

Chapter 7. Painting and Drawing 7-39

Table 7-2 (Page 2 of 2). Presentation Space, Device Context, and Window Region
Functions

Function Name Description

WinValidateRegion Subtracts a region from the update region of an
asynchronous paint window, marking that part of the
widow as visually valid.

WinWindowFromDC Returns the handle of the window corresponding to a
particular device context.

Table 7-3. Presentation Space, Device Context, and Window Region Messages

Message Description

WM_PAINT Sent when a window needs repainting.

Table 7-4. Presentation Space, Device Context, and Window Region Structures

Structure name Description

RECTL Rectangle structure.

7 -40 PM Basic Programming Guide

Chapter 8. Drawing in Windows

This chapter describes, at a high level, the functions specifically intended for drawing in PM
windows. For information on the complete set of drawing functions, see the Graphics
Programming Interface Programming Guide.

About Window-Drawing Functions
The functionality of the PM window-drawing functions overlaps that of similar Graphic
Programming Interface (GPI) drawing functions in OS/2. These window-drawing functions
are less general than the GPI functions and are somewhat easier to use, but they also offer
fewer capabilitJes than the complete set of GPI functions. Programmers requiring optimum
functionality should use the GPI functions.

Points
All drawing in a window takes place in the context of the window's coordinate system.
Locations of points in the window are described by POINTL structures, which contain an x
and a y coordinate for the point. The lower-left corner of a window always has the
coordinates (0,0).

The WinMapWindowPoints function converts the coordinates of points from one
window-coordinate space to those of another window-coordinate space. If one of the
specified windows is HWND_DESKTOP, the function uses screen coordinates. This function
is useful for converting window coordinates to screen coordinates or the other way around.

Rectangles
Locations. of window rectangles are described by RECTL structures, which contain the
coordinates of two points that define the lower-left and upper-right corners of the rectangle.
An empty rectangle is one that has no area: either its right coordinate is less than or equal
to its left coordinate, or its top coordinate is less than or equal to its bottom coordinate.

There are two types of rectangles in OS/2: inclusive-inclusive and inclusive-exclusive. In
inclusive-exclusive rectangles, the lower-left coordinate of the rectangle is included within the
rectangle area, while the upper-right coordinate is excluded from the rectangle area. In an
inclusive-inclusive rectangle, both the lower-left and upper-right coordinates are included in
the rectangle. Figure 8-1 on page 8-2 shows both types of rectangles:

© Copyright IBM Corp. 1994 8-1

Inclusive - Inclusive Inclusive - Exclusive
(x,y) • (x,y)

~-------------~.

. ~.~------------~ (x,y) (x,y)

Figure 8-1. Types of Rectangles

In general, graphics operations involving device coordinates (such as regions, bit maps and
bit bits, and window management) use inclusive-exclusive rectangles. All other graphics
operations, such as GPI functions that define paths, use inclusive-inclusive rectangles.

Using Window-Drawing Functions
This section explains how to use drawing functions to fill (paint) a rectangle with color, scroll
the contents of a window, draw bit maps and text, and determine the dimensions of a
rectangle.

Working with Points and Rectangles
The operating system includes functions for manipulating rectangles, many of which change
the rectangle coordinates. Other functions draw in a presentation space, using a rectangle to
position the drawing operation.

The rest of the rectangle functions are mathematical and do not draw. They are used to
manipulate and combine rectangles to produce new rectangles that you then can use in
drawing operations.

Determining the Dimensions of a Rectangle
You can calculate the dimensions of an inclusive-exclusive rectangle as follows:

You can calculate the dimensions of an inclusive-inclusive rectangle as follows:

8-2 PM Basic Programming Guide

Filling a Rectangle
The WinFiliRect function fills (paints) a rectangle with a specified color. For example, to fill
an entire window with blue in response to a WM_PAINT message, you could use the
following code fragment, which is taken from a window procedure:

HPS hps;
RECTL rcl;

case WM PAINT:
hps-= WinBeginPaint(hwnd, (HPS) NULL, (PRECTL) NULL);
Wi nQueryWi ndowRect (hwnd, &rcl);
WinFi11Rect(hps, &rcl, CLR BLUE);
WinEndPaint(hps); -
return 0;

A more efficient way of painting a client window is to pass a rectangle to the WinBeginPaint
function. The rectangle is set to the coordinates of the rectangle that encloses the update
region of the window. Drawing in this rectangle updates the window, which can make
drawing faster if only a small portion of the window needs to be painted. This method is
shown in the following code fragment. Notice that WinFiliRect uses the presentation space
and a rectangle defined in window coordinates to guide the paint operation.

HPS hps:
RECTL rcl;

case WM PAINT:
hps-= WinBeginPaint(hwnd, (HPS) NULL, &rcl);
Wi nFill Rect (hps. &rcl, CLR BLUE);
WinEndPaint(hps); -
return 0;

You could draw the entire window during the WM_PAINT message, but the graphics output
would be clipped to the update region.

The default method of indicating that a particular portion of a window has been selected is
using the WinlnvertRect function to invert the rectangle's bits.

Scrolling the Contents of a Window
An application typically responds to a click in a scroll bar by scrolling the contents of 'the
window. This operation has three parts. First, the application changes its internal
data-representation .state to show what portion of the image must now be in the window.
Next, the application moves the current image in the window. Finally, the application draws
in the area that has been uncovered by the scrolling operation.

For example, a simple text editor might display a small portion of several pages of text in a
window. When the user clicks the Down arrow of the vertical scroll bar, the application
moves all the text up one line and displays the next line at the bottom of the window.

This clicking also causes a message to be sent to the client window of the frame window that
owns the scroll bar. The application responds to this message by changing its internal

Chapter 8. Drawing in Windows 8-3

data-representation state to show which line of text is topmost in the window, scrolling the
text in the window up one line, and drawing the new line at the bottom of the window. There
normally is no need to completely redraw the entire window, because the scrolled portion of
the image remains valid.

You can use the WinScrollWindow function to scroll the contents of your application
windows. WinScrollWindow scrolls a specified rectangular area of the window by a specified
x and y offset (in window coordinates). If you set the SW_INVALIDATERGN flag for this
function, the areas you uncover by scrolling are added to the window's update region
automatically, causing a WM_PAINT message for the areas to be sent to the window.

For example, as used in the simple text editor described previously, the following call scrolls
the text up one line (assuming that the iVScrolllnc parameter specifies the height of the
current font) and adds the uncovered area at the bottom of the window to the update region.

HWND hwnd;
LONG iVScrollInc;

/*Scroll, adding a new area to the update region. */

Wi nScro 11 Wi ndow (hwnd, /* Wi ndow handl e
0; /* x displacement
-(iVScrollInc) , /* y displacement */
(PRECTL) NULL, /* Scroll rectangle is entire window*/
(PRECTL) NULL, /* Clip rectangle is entire window *1
(HRGN) NULL, /* Update region */
(PRECTL) NULL, /* Update rectangle */
SW_INVALIDATERGN); /* Scroll-window flag */

When the uncovered area is added to the window's update region, a WM_PAINT message is
sent to the window. Upon receiving the message, the window draws the line of text at the
bottom of the window. If the window has the WS_SYNCPAINT style, the WM_PAINT
message is sent to the window before WinScrollWindow returns.

To optimize scrolling speed for repeated scrolling operations, you can omit the
SW_INVALIDATERGN flag from the call to WinScrollWindow, which prevents the function
from adding the invalid region (uncovered by the scroll) to the window's update region. If
you omit the SWJNVALIDATERGN flag, you must pass a region or rectangle to
WinScrollWindow. The rectangle or region will contain the area that must be updated after
scrolling.

Drawing a Bit Map
The WinDrawBitmap function draws a bit map, identified by a bit map handle, in a specified
rectangle. This function enables you to reduce or enlarge the bit map from the source
rectangle to the destination rectangle. WinDrawBitmap also can draw in several different
copy modes, including using the OR operator to combine source and destination pels.

8-4 PM Basic Programming Guide

Drawing Text
There are many ways to draw text in a window in an OS/2 application. The simplest way is
to use the WinDrawText function, which draws a single line of text in a specified rectangle,
using a variety of alignment methods.

WinDrawText allows you to set a flag so that the function does not draw any text; instead,
the function returns the number of characters in the string that will fit in the specified
rectangle. For a section of running text, an application can alternate between computation
and calls to WinDrawText to draw successive lines of text. When performing this kind of
repetitive operation, you can set the DT_WORDBREAK flag in the WinDrawText function to
put line breaks on word boundaries rather than between arbitrary characters.

Chapter 8. Drawing in Windows 8-5

Related Functions
This section covers the functions that are related to Drawing in Windows.

WinCopyRect
This function copies a rectangle from pre/Sre to pre/Dsl.

Syntax

#define INCL_WINRECTANGLES /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOL WinCopyRect (HAB hab, PRECTL prclDst, PRECTL prclSrc)

Parameters
hab (HAB) - input

Anchor-block handle.

prclDst (PRECTl) - output
Destination rectangle.

prclSrc (PRECTl) - input
Source rectangle.

Returns
rc (BOOl) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

8-6 PM Basic Programming Guide

WinDrawBorder
This function draws the borders and interior of a rectangle.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinDrawBorder (HPS hps, PRECTl prel, lONG ex, lONG cy,
lONG elrFore, lONG elrBaek, UlONG flCmd)

Parameters
hps (HPS) - input

Presentation-space handle.

prel (PRECTL) - input
Bounding rectangle for the border.

ex (LONG) - input
Width of border rectangle vertical sides.

ey (LONG) - input
Width of border rectangle horizontal sides.

elrFore (LONG) - input
Color of edge of border.

elrBaek (LONG) - input
Color of interior of border.

flCmd (ULONG) - input
Flags controlling the way in which the border is drawn.

DB_ROP A group of flags that specify the mix to be used, for both the
border and the interior.

DB_PATCOPY Use the ROP _PATCOPY raster operation (see "GpiBitBlt" in the
GP/). This is a copy of the pattern to the destination.

DB PATINVERT Use the ROP _PAT I NVERT raster operation (see "GpiBitBlt" in
the GP/). This is an exclusive-OR of the pattern with the
destination.

DB_DESTINVERT Use the ROP _DESTINVERT raster operation (see "GpiBitBlt" in
the GP/). This inverts the destination.

DB_AREAMIXMODE Map the current area foreground mix attribute into a Bitblt raster
operation (see "GpiBitBlt" in the GP/). The area background mix
mode is ignored.

Chapter 8. Drawing in Windows 8-7

DB INTERIOR

DB AREAATTRS

DB_DlGBORDER

Returns
rc (BOOl) - returns

Success indicator.

The area contained within the given rectangle, and not included
within the borders (as given by ex and ey), is drawn.

• If this is specified:

For any border, the pattern used is the pattern as currently
defined in the area attribute.

For any interior, the pattern used is the same as if
GpiSetAttrs for the area attributes is made with the
background color of the area attribute being passed for the
foreground color, and the foreground color of the area
attribute being passed as the background color.

• If this is not specified (default):

For any border, the pattern used is the same as if
GpiSetAttrs for the area attributes is made with a
foreground color of elrFore, and a background color of
elrBaek.

For any interior, the pattern used is the same as if
GpiSetAttrs for the area attributes is made with a
foreground color of elrBaek, and a background color of
elrFore.

ex and ey are multiplied by the system SV _ CXBORDER and
SV _ CYBORDER constants to produce the widths of the vertical
and horizontal sides of the border.

A standard dialog border is drawn, in the active titlebar color if
DB_PATCOPY is specified, or the inactive titlebar color if
DB_PATINVERT is specified. Other DB_ROP options, and
o B_AR EAATTRS , are ignored.

DB _ ROP and DB _ AREAA TTRS are also ignored for the interior.
The interior is drawn in the color specified by elrBaek.

TRUE
FALSE

Successful completion
Error occurred.

8-8 PM Basic Programming Guide

WinDrawText
This function draws a single line of formatted text into a specified rectangle.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN. INCL_PM. */

#include <os2.h>

LONG WinDrawText (HPS hps, LONG eehText, PCH IpehText, PRECTL prel,
LONG elrFore, LONG elrBaek, ULONG flCmd)

Parameters
hps (HPS) - input

Presentation-space handle.

eehText (LONG) - input
Count of the number of characters in the string.

-1 L The string is null-terminated and its length is to be calculated by this function.
Other Count of the number of characters in the string.

IpehText (PCH) - input
Character string to be drawn.

prel (PRECTL) - in/out
Text rectangle.

elrFore (LONG) - input
Foreground color.

elrBaek (LONG) - input
Background color.

flCmd (ULONG) - input
An array of flags that determines how the text is drawn.

DT LEFT Left-justify the text.

DT_CENTER Center the text.

DT_RIGHT Right-justify the text.

DT_VCENTER Vertically center the text.

DT TOP Top-justify the text.

DT_BOTTOM Bottom-justify the text.

DT_HALFTONE Halftone the text display.

Chapter 8. Drawing in Windows 8-9

DT _ QUERYEXTENT

If a mnemonic prefix character is encountered, the next
character is drawn with mnemonic emphasis.

The height prel is changed to a rectangle that bounds the
string if it were drawn with WinDrawText.

Only words that fit completely within the supplied rectangle
are drawn. A word is defined as:

Any number of leading spaces followed by one or more
visible characters and terminated by a space, carriage
return, or line-feed character.

When calculating whether a particular word fits within the
given rectangle, this function does not consider the trailing
blanks. Only the length of the visible part of the word is
tested against the right edge of the rectangle.

Also, note that this function always tries to draw at least
one word, even if that word does not fit in the passed
rectangle. This is so that progress is always made when
drawing multiline text.

DT _EXTERNALLEADING This flag causes the "external leading" value for the current
font to be added to the bottom of the bounding rectangle
before returning. It has an effect only when both DT _TOP
and DT _ QUERYEXTENT are also specified.

DT _ TEXTATTRS If this is specified, text is drawn using the character
foreground and background colors of the presentation
space, and elrFore and elrBaek are ignored.

DT_ERASERECT If this is specified, the rectangle defined by prel is erased
before drawing the text. Otherwise, the background of the
characters themselves can be erased if the character
background mix (see "GpiSetAttrs" and "GpiSetBackMix" in
the GP/) is set to BM_OVERPAINT.

DT _UNDERSCORE Underscore the characters. See
FATTR_SEL_UNDERSCORE in the FATTRS datatype.

DT _STRIKEOUT Overstrike the characters. See FATTR_SEL_STRIKEOUT
in the FATTRS datatype.

Returns
IChars (LONG) - returns

Count of characters drawn within the rectangle.

o Error occurred
Other Count of characters drawn within the rectangle.

8-1 0 PM Basic Programming Guide

WinEqualRect
This function compares two rectangles for equality.

Syntax

#define INCL_WINRECTANGLES /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOL WinEqualRect (HAB hab, PRECTL prcl1, PRECTL prcl2)

Parameters
hab (HAB) - input

Anchor-block handle.

prcl1 (PRECTL) - input
First rectangle.

prcl2 (PRECTL) - input
Second rectangle.

Returns
rc (BOOl) - returns

Equality indicator.

Rectangles are identical TRUE
FALSE Rectangles are not identical, or an error occurred.

Chapter 8. Drawing in Windows 8-11

WinFiliRect
This function draws a filled rectangular area.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, Also in COMON section */

#include <os2.h>

BOOl WinFiliReet (HPS hps, PRECTl prel, lONG IColor)

Parameters
hps (HPS) - input

Presentation-space handle.

prel (PRECTl) - input
Rectangle to be filled, in window coordinates.

IColor (lONG) - input
Color with which to fill the rectangle.

Returns
re (Baal) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

8-12 PM Basic Programming Guide

WinlntersectRect
This function calculates the intersection of the two source rectangles and returns the result in
the destination rectangle.

Syntax

#define INCL_WINRECTANGLES /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinlnterseetReet (HAB hab, PRECTl periOst, PRECTL perlSre1,
PRECTl perlSre2)

Parameters
hab (HAS) - input

Anchor-block handle.

periOst (PRECTl) - output
Intersection rectangle.

perlSre1 (PRECTl) - input
First rectangle.

perlSre2 (PRECTl) - input
Second rectangle.

Returns
re (SOOl) - returns

Success indicator.

Source rectangles intersect TRUE
FALSE Source rectangles do not intersect, or an error occurred.

Chapter 8. Drawing in Windows 8-13

WinlnvertRect
This function inverts a rectangular area.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOL WinlnvertRect (HPS hps, PRECTL prclRect)

Parameters
hps (HPS) - input

Presentation-space handle.

prclRect (PRECTl) - input
Rectangle to be inverted.

Returns
rc (BOOl) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

8-14 PM Basic Programming Guide

WinlsRectEmpty
This function checks whether a rectangle is empty.

Syntax

#define INCL_WINRECTANGLES /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinlsRectEmpty (HAB hab, PRECTl prclprc)

Parameters
hab (HAB) - input

Anchor-block handle.

prclprc (PRECTl) - input
Rectangle to be checked.

Returns
rc (BOOl) - returns

Empty indicator.

TRUE Rectangle is empty
FALSE Rectangle is not empty.

Chapter 8. Drawing in Windows 8-15

WinMakeRect
This function converts a rectangle to a graphics rectangle.

Syntax

#define INCL_WINRECTANGLES /* Or use INCL_WIN, INCL_PM, */

#include, <os2.h>

BOOl WinMakeRect (HAB hab, PRECTl pwrc)

Parameters
hab (HAB) - input

Anchor-block handle.

pwrc (PRECTl) - in/out
Rectangle to be converted.

Returns
rc (BOOl) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

8-16 PM Basic Programming Guide

WinMapWindowPoints
This function maps a set of points from a coordinate space relative to one window into a
coordinate space relative to another window.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOL WinMapWindowPoints (HWND hwndFrom, HWND hwndTo,
PPOINTL prgptl, LONG cwpt)

Parameters
hwndFrom (HWND) - input

Handle of the window from whose coordinates points are to be mapped.

HWND_DESKTOP Points are mapped from screen coordinates
Other Points are mapped from window coordinates.

hwndTo (HWND) - input
Handle of the window to whose coordinates points are to be mapped.

HWND DESKTOP Points are mapped into screen coordinates
Other Points are mapped into window coordinates.

prgptl (PPOINTl) - in/out
Points to be mapped to the new coordinate system.

cwpt (lONG) - input
Number of points to be mapped.

Returns
rc (Baal) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Chapter 8. Drawing in Windows 8-17

WinOffsetRect
This function offsets a rectangle.

Syntax

#define INCL_WINRECTANGLES /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinOffsetReet (HAB hab, PRECTl prel, lONG ex, lONG ey)

Parameters
hab (HAS) - input

Anchor-block handle.

prel (PRECTL) - in/out
Rectangle to be offset.

ex (LONG) - input
x-value of offset.

ey (LONG) - input
y-value of offset.

Returns
re (SOOL) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

8-18 PM Basic Programming Guide

WinPtlnRect
This function queries whether a point lies within a rectangle.

Syntax

#define INCL_WINRECTANGLES /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOL WinPtlnReet (HAB hab, PRECTL prel, PPOINTL pptl)

Parameters
hab (HAB) - input

Anchor-block handle.

prel (PRECTl) - input
Rectangle to be queried.

pptl (PPOINTl) - input
Point to be queried.

Returns
re (BOOl) - returns

Success indicator.

pptl lies within prel. TRUE
FALSE pptl does not lie within prel, or an error occurred.'

Chapter 8. Drawing in Windows 8-19

WinSetRect
This function sets rectangle coordinates.

Syntax

#define INCL_WINRECTANGLES /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinSetRect (HAB hab, PRECTl prclrect, lONG Ileft, lONG IBottom,
lONG IRight, lONG ITop)

Parameters
hab (HAB) - input

Anchor-block handle.

prclrect (PRECTL) - in/out
Rectangle to be updated.

Ileft (lONG) - input
Left edge of rectangle.

IBottom (lONG) - input
Bottom edge of rectangle.

IRight (lONG) - input
Right edge of rectangle.

ITop (lONG) - input
Top edge of rectangle.

Returns
rc (Baal) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

8-20 PM Basic Programming Guide

WinSetRectEmpty
This function sets a rectangle empty.

Syntax

#define INCL_WINRECTANGLES /* Or use INCL_WIN. INCL_PM. */

#include <os2.h>

BOOl WinSetRectEmpty (HAB hab, PRECTl prclrect)

Parameters
hab (HAB) - input

Anchor-block handle.

prclrect (PRECTl) - in/out
Rectangle to be set empty.

Returns
rc (BOOl) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Chapter 8. Drawing in Windows 8-21

WinShowTrackRect
This function hides or shows the tracking rectangle.

Syntax

#define INCL_WINTRACKRECT /* Or use INCL_WIN. INCL_PM. */

#include·<os2.h>

Baal WinShowTrackRect (HWND hwnd, Baal fShow)

Parameters
hwnd (HWND) - input

Window handle.

fShow (BOOl) - input
Show indicator.

TRUE
FALSE

Returns

Show the tracking rectangle
Hide the tracking rectangle.

rc (BOOl) - returns
Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

8-22 PM Basic Programming Guide

WinSubtractRect
This function subtracts one rectangle from another.

Syntax

#define INCL_WINRECTANGLES /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOL WinSubtractRect (HAB hab, PRECTL prclDest, PRECTL prclSrc1,
PRECTL prclSrc2)

Parameters
hab (HAS) - input

Anchor-block handle.

prclDest (PRECTl) - output
Result.

prclSrc1 (PRECTl) - input
First source rectangle.

prclSrc2 (PRECTl) - input
Second source rectangle.

Returns
rc (BOOl) - returns

Not-empty indicator.

TRUE
FALSE

Rectangle is not empty
Rectangle is empty or an error occurred.

Chapter 8. Drawing in Windows 8-23

WinTrackRect
This function draws a tracking rectangle.

Syntax

#define INCL_WINTRACKRECT /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinTrackRect (HWND hwnd, HPS hps, PTRACKINFO ptiTrackinfo)

Parameters
hwnd (HWND) - input

Window handle where tracking is to take place.

HWND_DESKTOP Track over the entire screen
Other Track over specified window only.

hps (HPS) - input
Presentation-space handle.

NUllHANDlE The hwnd parameter is used to calculate a presentation space for
tracking. It is assumed that tracking takes place within hwnd and that
the style of this window is not WS_CUPCHllDREN. Thus, when the
drag rectangle appears, it is not clipped by any children within the
window. If the window style is WS_CUPCHllDREN and the
application causes the drag rectangle to be clipped, it must explicitly
pass an appropriate presentation space.

Other Specified presentation-space handle.

ptiTrackinfo (PTRACKINFO) - in/out
Track information.

Returns
rc (BOOl) - returns

Success indicator.

TRUE Tracking successful.

FALSE Tracking canceled, or the pointing device was already captured when this
function was called.

Only one tracking rectangle can be in use at one time.

8-24 PM Basic Programming Guide

WinUnionRect
This function calculates a rectangle that bounds the two source rectangles.

Syntax

#define INCL_WINRECTANGLES /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinUnionRect (HAB hab, PRECTl prclDest, PRECTl prclSrc1,
PRECTl prclSrc2)

Parameters
hab (HAB) - input

Anchor-block handle.

prclDest (PRECTl) - output
Bounding rectangle.

prclSrc1 (PRECTl) - input
First source rectangle.

prclSrc2 (PRECTl) - input
Second source rectangle.

Returns
rc (BOOl) - returns

Nonempty indicator.

\
J

TRUE
FALSE

prclDest is a nonempty rectangle
Error, or prclDest is an empty rectangle.

Chapter 8. Drawing in Windows 8-25

Related Data Structures
This section covers the data structures that are related to Drawing in Windows.

FATTRS
Font-attributes structure.

Syntax

typedef structJATTRS {
USHORT usRecordLength;
USHORT fsS€)l ection;
LONG 1 Match;
CHAR szFacename[FACESIZE];
USHORT idRegistry;
USHORT usCodePage;
LONG 1 MaxBase lineExt;
LONG lAveCharWidth;
USHORT fsType;
USHORT fsFontUse;
1 FATTRS;

typedef FATJRS*PFATTRS;

Fields
usRecordLength (USHORT)

Length of record.

fsSelection (USHORT)
Selection indicators.

Flags causing the following features to be simulated by the system.

Note: If an italic flag is applied to a font that is itself defined as italic, the font is slanted
further by italic simulation.

Underscore or strikeout lines are drawn using the appropriate attributes (for
example, color) from the character bundle (see the CHARBUNDLE datatype), not
the line bundle (see LlNEBUNDLE). The width of the line, and the vertical
position of the line in font space, are determined by the font. Horizontally, the
line starts from a point in font space directly above or below the start pOint of
each character, and extends to a point directly above or below the escapement
point for that character.

For this purpose, the start and escapement points are those applicable to
left-to-right or right-to-Ieft character directions (see GpiSetCharDirection in GPI),
even if the string is currently being drawn in a top-to-bottom or bottom-to-top
direction.

8-26 PM Basic Programming Guide

For\left-to-right or right-to-Ieft directions, any white space generated by the
character extra and character break extra attributes (see GpiSetCharExtra and
GpiSetCharBreakExtra in GPI), as well as increments provided by the vector of
increments on GpiCharStringPos and GpiCharStringPosAt, are also
underlined/overstruck, so that in these cases the line is continuous for the string.

FATTR_SELJTALIC
FATTR_SEL_UNDERSCORE
FATTR_SEL_BOLD

FATTR_SEL_STRIKEOUT
FATTR_SEL_OUTLINE

IMatch (LONG)
Matched-font identity.

szFacename[FACESIZE] (CHAR)
Typeface name.

Generate italic font.
Generate underscored font.
Generate bold font. (Note that the resulting characters
are wider than those in the original font.)
Generate font with eveFstFl::lel(characters.
Use an outline font with hollow characters. If this flag is
not set, outline font characters are filled. Setting this
flag normally gives better performance, and for
sufficiently small characters (depending on device
resolution) there may be little visual difference.

The typeface name of the font, for example, Tms Rmn.

idRegistry (USHORT)
Registry identifier.

Font registry identifier (zero if unknown).

usCodePage (USHORT)
Code page.

If zero, the current Gpi code page (see GpiSetCp in GPI) is used. A subsequent
GpiSetCp function changes the code page used for this logical font.

IMaxBaselineExt (LONG)
Maximum baseline extension.

For raster fonts, this should be the height of the required font, in world coordinates.

For outline fonts, this should be zero.

IAveCharWidth (LONG)
Average character width.

For raster fonts, this should be the width of the required font, in world coordinates.

For outline fonts, this should be zero.

fsType (USHORT)
Type indicators.

FATTR_ TYPE_KERNING
FATTR_TYPE_MBCS
FATTR_TYPE_DBCS

Enable kerning (PostScript** only).
Font for mixed single- and double-byte code pages.
Font for double-byte code pages.

Chapter 8. Drawing in Windows 8-27

FATTR_TYPE_ANTIALIASED Antialiased font required. Only valid if supported by the
device driver.

fsFontUse (USHORT)
Font-use indicators.

These flags indicate how the font is to be used. They affect presentation speed and font
quality.

FATTR_FONTUSE_NOMIX Text is not mixed with graphics and can be
written without regard to any interaction with
graphics objects.

FATTR_FONTUSE_OUTLINE Select an outline (vector) font. The font
characters can be used as part of a path
definition. If this flag is not set, an outline
font might or might not be selected. If an
outline font is selected, however, character
widths are rounded to an integral number of
pels.

FATTR_FONTUSE_ TRANSFORMABLE Characters can be transformed (for example,
scaled, rotated, or sheared).

8-28 PM Basic Programming Guide

POINTL
Point structure (long integers).

Syntax

typedef struct _POINTL {
LONG X;
LONG y;
} POINTL;

typedef POINTL *PPOINTL;

Fields
x (LONG)

X-coordinate.

y (LONG)
Y -coordinate.

Chapter 8. Drawing in Windows 8~29

RECTL
Rectangle structure.

Syntax

Fields
xLeft (LONG)

X-coordinate of left-hand edge of rectangle.

yBottom (LONG)
V-coordinate of bottom edge of rectangle.

xRight (LONG)
X-coordinate of right-hand edge of rectangle.

yTop (LONG)
V-coordinate of top edge of rectangle.

8-30 PM Basic Programming Guide

Summary
Following are the OS/2 functions and structures used for drawing in windows.

Table 8-1 (Page 1 of 2). Window-Drawing Functions

Function Name

WinCalcFrameRect

WinCopyRect

WinDrawBitmap

WinDrawBorder

WinDrawText

WinEqualRect

WinFiliRect

WinlnflateRect

WinlntersectRect

WinlnvalidateRect

WinlnvertRect

WinlsRectEmpty

WinMakeRect

WinMapWindowPoints

WinOffsetRect

WinPtlnRect

WinQueryUpdateRect

WinQueryWindowRect

WinScroliWindow

WinSetRect

WinSetRectEmpty

WinShowTrackRect

WinSubtractRect

WinTrackRect

WinUnionRect

Description

Calculates a client rectangle from a frame rectangle or a
frame rectangle from a client rectangle.

Copies a rectangle from prc/Src to prclDest.

Draws a bit map using the current image colors and
mixes.

Draws the borders and interior of a rectangle.

Draws a single line of formatted text into a specified
rectangle.

Compares two rectangles for equality.

Draws a filled rectangular area.

Expands a rectangle.

Calculates the intersection of the two source rectangles
and returns the result in the destination rectangle.

Adds a rectangle to a window's update region.

Inverts a rectangular area.

Determines whether a rectangle is empty.

Converts points to graphics points.

Maps points from dialog coordinates to window
coordinates or from window coordinates to dialog
coordinates.

Offsets a rectangle.

Queries whether a point lies within a rectangle.

Returns the rectangle that bounds the update region of a
specified window.

Returns a window rectangle.

Scrolls the contents of a window rectangle.

Sets rectangle coordinates.

Sets a rectangle empty.

Hides or shows the tracking rectangle.

Subtracts one rectangle from another.

Draws a tracking rectangle.

Calculates a rectangle that bounds the two source
rectangles.

Chapter 8. Drawing in Windows 8-31

Table 8-1 (Page 2 of 2). Window-Drawing Functions

Function Name Description

WinValidateRect Subtracts a rectangle from the update region of an
asynchronous paint window, marking that part of the
window as visually valid.

Table 8-2. Window-Drawing Structures

Structure Name Description

FATTRS Font-attributes structure.

POINTL Point structure (long integer).

RECTL Rectangle structure.

8-32 PM Basic Programming Guide

Chapter 9. Mouse and Keyboard Input

An OS/2 Presentation Manager application can accept input from both a mouse (or other
pOinting device) and the keyboard. This chapter explains how these input events should be
received and processed.

About Mouse and Keyboard Input
Only one window at a time can receive keyboard input, and only one window at a time can
receive mouse input; but they do not have to be the same window. All keyboard input goes
to the window with the input focus, and, normally, all mouse input goes to the window under
the mouse pointer.

System Message Queue
The operating system routes all keystrokes and mouse input to the system message queue,
converting these input events into messages, and posts them, one at a time, to the proper
application-defined message queues. An application retrieves messages from its queue and
dispatches them to the appropriate window procedures, which process the messages.

Mouse and keyboard input events in the system message queue are strictly ordered so that
a new event cannot be processed until all previous events are fully processed: the system
cannot determine the destination window of an input event until then. For example, if a user
types a command in one window, clicks the mouse to activate another window, then types a
command in the second window, the destination of the second command depends on how
the application handles the mouse click. The second command would go to the second
window only if that window became active as a result of the mouse click.

It is important for an application to process all messages quickly to avoid slowing user
interaction with the system. A message must be responded to immediately in the current
thread, but the processing it initiates should be done asynchronously in another thread that
has no windows in the desktop tree.

The OS/2 operating system can display multiple windows belonging to several applications at
the same time. To manage input among these windows, the system uses the concepts of
window activation and keyboard focus.

Window Activation
Although the operating system can display windows from many different applications
simultaneously during a PM session, the user can interact with only one application at a
time-the active application. The other applications continue to run, but they cannot receive
user input until they become active.

To enable the user to easily identify the active application, the system activates all frames in
the tree between HWND_DESKTOP and the window with input focus. That is, the system
positions the active frame window above all other top-level windows on the screen. If the

© Copyright IBM Corp. 1994 9-1

active window is a standard frame window, the window's title bar and sizing border are
highlighted.

The user can control which application is active by clicking on a window or by pressing the
Alt-t Tab or Alt+Esc key combinations. An application can set the active frame window by
calling WinSetActiveWindow; it also can obtain the handle of the active frame window by
using WinQueryActiveWindow.

When one window is deactivated and another activated, the system sends a WM_ACTIVATE
message, first to the window being deactivated, then to the window being activated. The
fActive parameter of the WM_ACTIVATE message is set to FALSE for the window being
deactivated and set to TRUE for the window being activated. An application can use this
message to track the activation state of a client window.

Keyboard Focus
The keyboard focus is a temporary attribute of a window; the window that has the keyboard
focus receives all keyboard input until the focus changes to a different window. The system
converts keyboard input events into WM _CHAR messages and posts them to the message
queue of the window that has the keyboard focus.

An application can set the keyboard focus to a particular window by calling WinSetFocus. If
the application does not use WinSetFocus to explicitly set the keyboard-focus window, the
system sets the focus to the active frame window.

The following events occur when an application uses WinSetFocus to shift the keyboard
focus from one window (the original window) to another (the new window):

1. The system sends the original window a WM_SETFOCUS message (with the fFocus
parameter set to FALSE), indicating that that window has lost the keyboard focus.

2. The system then sends the original window a WM_SETSELECTION message, indicating
that the window should remove the highlight from the current selection.

3. If the original (frame) window is being deactivated, the system sends it a
WM_ACTIVATE message (with the fActive parameter set to FALSE), indicating that the
window is no longer active.

4. The system then sends the new application a WM_ACTIVATE message (with fActive set
to TRUE), indicating that the new application is now active.

5. If the new (main) window is being activated, the system sends it a WM_ACTIVATE
message (with fActive set to TRUE), indicating that the main window is now active.

6. The system sends the new window a WM _ SETSELECTION message, indicating that the
window should highlight the current selection.

7. Finally, the system sends the new window a WM_SETFOCUS message (with fFocus set
to TRUE), indicating that the new window has the keyboard focus.

If, while processing a WM_SETFOCUS message, an application calls
WinQueryActiveWindow, that function returns the handle of the previously-active window until
the application establishes a new active window. Similarly, if the application, while

9-2 PM Basic Programming Guide

processing WM_SETFOCUS, calls WinQueryFocus, that function returns the handle of the
previous keyboard-focus window until the application establishes a new keyboard-focus
window. In other words, even though the system has sent WM_ACTIVATE and
WM_SETFOCUS messages (with the fActive and fFocus parameters set to FALSE) to the
previous windows, those windows are considered the active and focus windows until the
system establishes new active and focus windows.

If the application calls WinSetFocus while processing a WM_ACTIVATE message, the
system does not send a WM_SETFOCUS message (with fFocus set to FALSE), because no
window has the focus.

A client window receives a WM _ACTIVATE message when its parent frame window is being
activated or deactivated. The activation or deactivation message usually is followed by a
WM _ SETFOCUS message that specifies whether the client window is gaining or losing the
keyboard focus. Therefore, if the client window needs to change the keyboard focus, it
should do so during the WM_SETFOCUS message, not during the WM_ACTIVATE
message.

Keyboard Messages
The system sends keyboard input events as WM _CHAR messages to the message queue of
the keyboard-focus window. If no window has the keyboard focus, the system posts
WM_CHAR messages to the message queue of the active frame window. Following are two
typical situations in which an application receives WM_CHAR messages:

An application has a client window or custom control window, either of which can have
the keyboard focus. If the window procedure for the client or control window does not
process WM _CHAR messages, it should pass them to WinDefWindowProc, which will
pass them to the owner. Dialog control windows, in particular, should pass unprocessed
WM_CHAR messages to the WinDefDlgProc function, because this is how the user
interface implements control processing for the Tab and Arrow keys.

An application window owns a control window whose window procedure can handle
some, but not all, WM_CHAR messages. This is common in dialog windows. If the
window procedure of a control in a dialog window cannot process a WM_CHAR
message, the procedure can pass the message to the WinDefDlgProc function. This
function sends the message to the control window's owner, which usually is a dialog
frame window. The application's dialog procedure then receives the WM_CHAR
message. This also is the case when an application client window owns a control
window.

A WM_CHAR message can represent a key-down or key-up transition. It might contain a
character code, virtual-key code, or scan code. This message also contains information
about the state of the Shift, Ctrl, and Alt keys.

Each time a user presses a key, at least two WM_CHAR messages are generated: one
when the key is pressed, and one when the key is released. If the user holds down the key
long enough to trigger the keyboard repeat, multiple WM _CHAR key-down messages are
generated. If the keyboard repeats faster than the application can retrieve the input events
from its message queue, the system combines repeating character events into one

Chapter 9. Mouse and Keyboard Input 9-3

WM_CHAR message and increments a count byte that indicates the number of keystrokes
represented by the message. Generally, this byte is set to 1, but an application should
check each WM_CHAR message to avoid missing any keystrokes.

An application can ignore the repeat count. For example, an application might ignore the
repeat count on Arrow keys to prevent the cursor from skipping characters when the system
is slow.

Message Flags
Applications decode WM _CHAR messages by examining individual bits in the flag word
contained in the first message parameter (mp 1) that the system passes with every
WM_CHAR message. The type of flag word indicates the nature of the message. The
system can set the bits in the flag word in various combinations. For example, a WM_CHAR
message can have the KC_CHAR, KC_SCANCODE, and KC_SHIFT attribute bits all set at
the same time. An application can use the following list of flag values to test the flag word
and determine the nature of a WM _CHAR message:

Table 9-1 (Page 1 of 2). Keyboard Character Flags

Flag Name

KC_ALT

KC_CHAR

KC_CTRL

KC_DEADKEY

KCJNVALIDCHAR

KCJNVALIDCOMP

Description

Indicates that the Alt key was down when the message was generated.·

Indicates that the message contains a valid character code for a key,
typically an ASCII character code.

In combination with the KC_CHAR flag, this flag indicates that the
character code is a combination of the key that was pressed and the
previous dead key. This flag is used to create characters with diacritical
marks.

Indicates that the Ctrl key was down when the message was generated.

In combination with the KC_CHAR flag, this flag indicates that the
character code represents a dead-key glyph (such as an accent). An
application displays the dead-key glyph and does not advance the cursor.
Typically, the next WM_CHAR message is a KC_COMPOSITE message,
containing the glyph associated with the dead key.

Indicates that the character is not valid for the current translation tables.

Indicates that the character code is not valid in combination with the
previous dead key.

Indicates that the message was generated when the user released the
key. If this flag is clear, the message was generated when the user
pressed the key. An application can use this flag to determine key-down
and key-up events.

In combination with the KC_KEYUP flag, this flag indicates that the user
pressed no other key while this key was down.

In combination with the KC_ VIRTUALKEY flag, this flag indicates that the
virtual key was pressed previously. If this flag is clear, the virtual key was
not previously pressed.

9-4 PM Basic Programming Guide

Table 9-1 (Page 2 of 2). Keyboard Character Flags

Flag Name

KC_SHIFT

KC_TOGGLE

Description

Indicates that the message contains a valid scan code generated by the
keyboard when the user pressed the key. The system uses the scan
code to identify the character code in the current code page; therefore,
most applications do not need the scan code unless they cannot identify
the key that the user pressed. WM_CHAR messages generated by user
keyboard input generally have a valid scan code, but WM _CHAR
messages posted to the queue by other applications might not contain a
scan code.

Indicates that the Shift key was down when the message was generated.

Toggles on and off every time the user presses a specified key. This is
important for keys like NumLock, which have an on or off state.

Indicates that the message contains a valid virtual-key code for a key.
Virtual keys typically correspond to function keys.

For those using hooks, when this bit is set, KC_SCANCODE should
usually be set as well.

The mp1 and mp2 parameters of the WM_CHAR message contain information describing the
nature of a keyboard input event, as follows:

• SHORT1 FROMMP (mp1) contaihs the flag word.
• CHAR3FROMMP (mp1) contains the key-repeat count.
• CHAR4FROMMP (mp1) contains the scan code.
• SHORT1 FROMMP (mp2) contains the character code.
• SHORT2FROMMP (mp2) contains the virtual key code.

An application window procedure should return TRUE if it processes a particular WM_CHAR
message or FALSE if it does not. Typically, applications respond to key-down events and
ignore key-up events.

The following sections describe the different types of WM_CHAR messages. Generally, an
application decodes these messages by creating layers of conditional statements that
discriminate among the different combinations of flag and code attributes that can occur in a
keyboard message.

Key-Down or Key-Up Events
Typically, the first attribute that an application checks in a WM_CHAR message is the
key-down or key-up event. If the KC_KEYUP bit of the flags word is set, the message is
from a key-up event. If the flag is clear, the message is from a key-down event.

Repeat-Count Events
An application can check the key-repeat count of a WM _CHAR message to determine
whether the message represents more than 1 keystroke. The count is greater than 1 if the
keyboard is sending characters to the system queue faster than the application can retrieve
them. If the system queue fills up, the system combines consecutive keyboard input events

Chapter 9. Mouse and Keyboard Input 9-5

for each key into a single WM_CHAR message, with the key-repeat count set to the number
of combined events.

Character Codes
The most typical use of WM _CHAR messages is to extract a character code from the
message and display the character on the screen. When the KC_CHAR flag is set in the
WM_CHAR message, the low word of mp2 contains a character code based on the current
code page. Generally, this value is a character code (typically, an ASCII code) for the key
that was pressed.

Virtual-Key Codes
WM_CHAR messages often contain virtual-key codes that correspond to various function
keys and direction keys on a typical keyboard. These keys do not correspond to any
particular glyph code but are used to initiate operations. When the KC_ VIRTUALKEY flag is
set in the flag word of a WM _CHAR message, the high word of mp2 contains a virtual-key
code for the key.

Note: Some keys, such as the Enter key, have both a valid character code and a virtual-key
code. WM_ CHAR messages for these keys will contain character codes for both
newline characters (ASCII 11) and virtual-key codes (VK _ ENTER).

Scan Codes
A third possible value in a WM_CHAR message is the scan code of the key that was
pressed. The scan code represents the value that the keyboard hardware generates when
the user presses a key. An application can use the scan code to identify the physical key
pressed, as opposed to the character code represented by the same key.

Accelerator-Table Entries
The system checks all incoming keyboard messages to see whether they match any existing
accelerator-table entries (in either the system message queue or the application message
queue). The system first checks the accelerator table associated with the active frame
window; if it does not find a match, the system uses the accelerator table associated with the
message queues. If the keyboard input event corresponds to an accelerator-table entry, the
system changes the WM_CHAR message to a WM_COMMAND, WM_SYSCOMMAND, or
WM_HELP message, depending on the attributes of the accelerator table. If the keyboard
input event does not correspond to an accelerator-table entry, the system passes the
WM_ CHAR message to the keyboard-focus window.

Applications should use accelerator tables to implement keyboard shortcuts rather than
translate command keystrokes. For example, if an application uses the F2 key to save a
document, the application should create a keyboard accelerator entry for the F2 virtual key
so that, when pressed, the F2 key generates a WM_COMMAND message rather than a
WM_CHAR message.

Mouse Messages
Mouse messages occur when a user presses or releases one of the mouse buttons (a click)
and when the mouse moves. All mouse messages contain the x and y coordinates of the
mouse~pointer hot spot (relative to the coordinates of the window receiving the message) at

9-6 PM Basic Programming Guide

the time the event occurs. The mouse-pointer hot spot is the location in the mouse-pointer
bit map that the system tracks and recognizes as the position of the mouse pointer.

If a window has the CS_HITTEST style, the system sends the window a WM_HITTEST
message when the window is about to receive a mouse message. Most applications pass
WM_HITTEST messages on to WinDefWindowProc by default, so disabled windows do not
receive mouse messages. Windows that specifically respond to WM_HITTEST messages
can change this default behavior. If the window is enabled and should receive the mouse
message, the WinDefWindowProc function (using the default processing for WM_HITTEST)
returns the value HT _NORMAL. If the window is disabled, WinDefWindowProc returns
HT _ERROR, in which case the window does not receive the mouse message.

The default window procedure processes the WM_HITTEST message and the us Hit
parameter in the WM_MOUSEMOVE message. Therefore, unless an application needs to
return special values for the WM_HITTEST message or the usHit parameter, it can ignore
them. One possible reason for processing the WM_HITTEST message is for the application
to react differently to a mouse click in a disabled window.

The contents of the mouse-message parameters (mp 1 and mp2) are as follows:

• SHORT1 FROMMP (mp1) contains the x position.
• SHORT2FROMMP (mp1) contains the y position.
• SHORT1 FROMMP (mp2) contains the hit-test parameter.

Capturing Mouse Input
The operating system generally posts mouse messages to the window that is under the
mouse pointer at the time the system reads the mouse input events from the system
message queue. An application can change this by using the WinSetCapture function to
route all mouse messages to a specific window or to the message queue associated with the
current thread. If mouse messages are routed to a specific window, that window receives all
mouse input until either the window releases the mouse or the application specifies another
capture window. If mouse messages are routed to the current message queue, the system
posts each mouse message to the queue with the hwnd member of the QMSG structure for
each message set to NULL. Because no window handle is specified, the WinDispatchMsg
function in the application's main message loop cannot pass these messages to a window
procedure for processing. Therefore, the application must process these messages in the
main loop.

Capturing mouse input is useful if a window needs to receive all mouse input, even when the
pointer moves outside the window. For example, applications commonly track the
mouse-pointer position after a mouse "button down" event, following the pOinter until a
"button up" event is received from the system. If an application does not call WinSetCapture
for a window and the user releases the mouse button, the application does not receive the
button-up message. If the application sets a window to capture the mouse and tracks the
mouse pointer, the application receives the button-up message even if the user moves the
mouse pointer outside the window.

Some applications are designed to require a button-up message to match a button-down
message. When processing a button-down message, these applications call WinSetCaptu,re

Chapter 9. Mouse and Keyboard Input 9-7

to set the capture to their own window; then, when processing a matching button-up
message, they call WinSetCapture, with a NULL window handle, to release the mouse.

Button Clicks
An application· window's response to a mouse click depends on whether the window is
active. The first click in an inactive window should activate the window. Subsequent clicks
in the active window produce an application-specific action.

A common problem for an application that processes WM_BUTTON1 DOWN or similar
messages is failing to activate the window or set the keyboard focus. If the window
processes WM_ CHAR messages, the window procedure should call WinSetFocus to make
sure the window receives the keyboard focus and is activated. If the window does not
process WM _CHAR messages, the application should call WinSetActiveWindow to activate
the window.

Mouse Movement
The system sendl? WM_MOUSEMOVE messages to the window that is under the mouse
pointer, or to the window that currently has captured the mouse, whenever the mouse pOinter
moves. This is useful for tracking the mouse pOinter and changing its shape, based on its
location in a window. For example, the mouse pointer changes shape when it passes over
the size border of a standard frame window.

All standard control windows use WM_MOUSEMOVE messages to set the mouse-pointer
shape. If an application handles WM_MOUSEMOVE messages in some situations but not
others, unused messages should be passed to the WinDefWindowProc function to change
the mouse-pointer shape.

Using the Mouse and Keyboard
This section explains how to perform the following tasks:

• Determine the active status of a frame window.
• Check for a key-up or key-down event.
• Respond to a character message.
• Handle virtual-key codes.
• Handle a scan code.

Determining the Active Status of a Frame Window
The activated state of a window is a frame-window characteristic. The system does not
provide an easy way to determine whether a client window is part of the active frame
window. That is, the window handle returned by the WinQueryActiveWindow function
identifies the active frame window rather than the client window owned by the frame window.

9-8 PM Basic Programming Guide

Following are two methods for determining the activated state of a frame window that owns a
particular client window:

• Call WinQueryActiveWindow and compare the window handle it returns with the handle
of the frame window that contains the client window, as shown in the following code
fragment:

HWND hwndCl i ent;
BOOL fActivated;

fActivated = (WinQueryWindow{hwndCHent. QW_PARENT) ==
Wi nQueryActi yeW; ndow(HWNO _DESKT()P)) ;

• Each time the frame window is activated, the client window receives a WM_ACTIVATE
message with the low word of the mp2 equal to TRUE. When the frame window is
deactivated, the client window receives a WM_ACTIVATE message with a FALSE
activation indicator.

Checking for a Key-Up or Key-Down Event
The following code fragment shows how to decode a WM _CHAR message to determine
whether it indicates a key-up event or a key-down event:

case· \11M CHAR: {
USHORT fsKeyFlags= SHORTlFROMMP(mpl) ~

if (fsKeyFlags& KC_KEYUP){

Chapter 9. Mouse and Keyboard Input 9-9

Responding to a Character Message
The following code fragment shows how to respond to a character message:

U?HOR!t~'Ke~ Flag $; "':
UCHARl!chChr 1;

. /* Process the character. */

return TRUE;

If the KC_CHAR flag is not set, the mp2 parameter from CHAR1 FROMMP still might contain
useful information. If either the Alt key or the Ctrl key, or both, are down, the KC_CHAR bit
is not set when the user presses another key. For example, if the user presses the a key
when the Alt key is down, the low word of mp2 contains the ASCII value for "a" (Ox0061), the
KC _ AL T flag is set, and the KC _CHAR flag is clear. If the translation does not generate any
valid characters, the char field is set to O.

9-10 PM Basic Programming Guide

Handling Virtual-Key Codes
The following code fragment shows how to decode a WM_CHAR message containing a valid
virtual-key code:

USHORT fsKeyFl ags;

case WM CHAR:
fsKeyFl ags = (USHORT) SHORTlFROMMP (mp!) ;

if (fsKeyFlags & KC_VIRTUALKEY) {

/* Get the virtual key from mp2. */
switch (SHORT2FROMMP(mp2» {
case VK_TAB:

• 1* Process the TAB key. */

return TRUE;
case VK_LEFT:

· /* Process the LEFT key. */

return TRUE;
case VK_UP:

.!* Process the UP key. */

return TRUE;
case VK_RIGHT:

· /* Process the RIGHT key. */

return TRUE;
case VK_DOWN:

· !* Process the DOWN key. */

return TRUE;

. /* Etc ...

default:
return FALSE;

Chapter 9. Mouse and Keyboard Input 9-11

Handling a Scan Code
All WM _CHAR messages generated by keyboard input events have valid scan codes.
WM_CHAR messages posted by other applications might or might not have valid scan
codes. The following code fragment shows how to extract a scan code from a WM _CHAR
message:

IJSHORT fsKeyFlags;
UCHAR·· uchSc;:anCode;

caseWM· CHAR:
fsKeyFlags = (USHORT) SHORTlFROMMP(mpi);

if (fsKeyFlags & KC5CANCODE) {

!* Get the scan code frommpl. *!
uchScanCode = CHAR4FROMMP(mpl);

. /* Process the scan code. */

return (MRESULT) TRUE;
}

9-12 PM Basic Programming Guide

Related Functions
This section covers the functions that are related to Mouse and Keyboard Input.

WinEnablePhyslnput
This function enables or disables queuing of physical input (keyboard or mouse).

Syntax

#define INCL_WININPUT /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

Baal WinEnablePhyslnput (HWND hwndDesktop, Baal tEnable)

Parameters
hwndDesktop (HWND) - input

Desktop-window handle.

HWND DESKTOP The desktop-window handle
Other Specified desktop-window handle.

tEnable (BOOl) - input
New state for the queuing of physical input.

TRUE
FALSE

Returns

&Pdev. and keyboard input are queued
&Pdev. and keyboard input are disabled.

rc (BOOl) - returns
Previous state for the queuing of physical input.

TRUE
FALSE

&Pdev. and keyboard input were queued
&Pdev. and keyboard input were disabled.

Chapter 9. Mouse and Keyboard Input 9-13

WinFocusChange
This function changes the focus window.

Syntax

#define INCL_WININPUT /* Or use INCL_WIN, INCL_PM, Also in COMON section */

#include <os2.h>

BOOl WinFocusChange (HWND hwndDeskTop, HWND hwndNewFocus,
UlONG flFocusChange)

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle.

HWND_DESKTOP The desktop-window handle
Other Specified desktop-window handle.

hwndNewFocus (HWND) - input
Window handle to receive the focus.

flFocusChange (UlONG) - input
Focus changing indicators.

FC_NOSETFOCUS

FC_NOlOSEFOCUS

FC _NOSETACTIVE

FC _NOlOSEACTIVE

FC _NOSETSElECTION

FC_NOlOSESElECTION

Do not send the WM _ SETFOCUS message to
the window receiving the focus.

Do not send the WM _ SETFOCUS message to
the window losing the focus.

Do not send the WM _ACTIVATE message to
the window being activated.

Do not send the WM _ACTIVATE message to
the window being deactivated.

Do not send the WM_SETSElECTION
message to the window being selected.

Do not send the WM_SETSElECTION
message to the window being deselected.

FC_NOBRINGTOTOP Do not bring any window to the top.

FC_NOBRINGTOTOPFIRSTWINDOW Do not bring the first frame window to the top.

Returns
rc (BOOl) - returns

Success indicator.

9-14 PM Basic Programming Guide

TRUE
FALSE

Successful completion
Error occurred.

Chapter 9. Mouse and Keyboard Input 9-15

Wi nGetKeyState
This function returns the state of the key at the time that the last message obtained from the
queue was posted.

Syntax

#define INCL_WININPUT /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

LONG WinGetKeyState (HWND hwndDeskTop, LONG vkey)

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle.

HWND_DESKTOP The desktop-window handle
Other Specified desktop-window handle.

vkey (LONG) - input
Virtual key value.

Returns
IKeyState (LONG) - returns

Key state.

Ox0001 The key has been pressed an odd number of times since the system has
been started.

Ox8000 The key is down.

9-16 PM Basic Programming Guide

WinGetPhysKeyState
This function returns the physical key state.

Syntax

#define INCL_WININPUT /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

LONG WinGetPhysKeyState (HWND hwndDeskTop, LONG sc)

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle.

HWND _DESKTOP The desktop-window handle
Other Specified desktop-window handle.

sc (LONG) - input
Hardware scan code.

Returns
IKeyState (LONG) - returns

Key state.

Ox0001 The key has been pressed an odd number of times since the system has
been started.

Ox0002 The key has been pressed since the last time this function was issued, or
since the system has been started if this is the first time the call has been
issued.

Ox8000 The key is down.

Chapter 9. Mouse and Keyboard Input 9-17

WinlsPhyslnputEnabled
This function returns the status of hardware input (on/off).

Syntax

#define INCL_WININPUT /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinlsPhyslnputEnabled (HWND hwndDeskTop)

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle.

HWND_DESKTOP The desktop-window handle

Returns
rc (BOOl) - returns

Return value.

TRUE
FALSE

If input is enabled.
If input is disabled.

9-18 PM Basic Programming Guide

WinQueryCapture
This function returns the handle of the window that has the pointer captured.

Syntax

#define INCL_WININPUT /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

HWND WinQueryCapture (HWND hwndDesktop)

Parameters
hwndDesktop (HWND) - input

Desktop-window handle.

HWND_DESKTOP The desktop-window handle
Other Specified desktop-window handle.

Returns
hwnd (HWNO) - returns

Handle of the window with the pOinter captured.

NULLHANDLE No window has the pointer captured, or an error occurred
Handle Handle of the window with the pointer captured.

Chapter 9. Mouse and Keyboard Input 9-19

WinSetCapture
This function captures all pointing device messages.

Syntax

#define INCL_WININPUT /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinSetCapture (HWND hwndDesktop, HWND hwnd)

Parameters
hwndDesktop (HWND) - input

Desktop-window handle, or HWND _DESKTOP.

hwnd (HWND) - input
Handle of the window that is to receive all pointing device messages.

Returns
rc (BOOl) - returns

Success indicator.

TRUE
FALSE

Successful completion.
Error occurred. If the pointing device has already been captured by another
thread or window, the call fails. This is to prevent applications from removing
the capture from other windows or threads.

9-20 PM Basic Programming Guide

WinSetKeyboardStateTable
This function gets or sets the keyboard state.

Syntax

#define INCL_WININPUT /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinSetKeyboardStateTable (HWND hwndDeskTop,

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle.

PBYTE abKeyStateTable, BOOl fSet)

HWND_DESKTOP The desktop-window handle
Other Specified desktop-window handle.

abKeyStateTable (PBYTE) - in/out
Key state table.

fSet (BOOl) - input
Set indicator.

TRUE
FALSE

The keyboard state is set from abKeyStateTable
The keyboard state is copied to abKeyStateTable.

Returns
rc (BOOl) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Chapter 9. Mouse and Keyboard Input 9-21

Related Messages
This section covers the messages that are related to Mouse and Keyboard Input.

WM_SETFOCUS
This message occurs when a window is to receive or lose the input focus.

Parameters
param1

hwnd (HWND)
Focus-window handle.

NULLHANDLE No window is losing or receiving the focus.
Other Window handle.

param2

usfocus (USHORT)
Focus flag.

TRUE The window is receiving the focus. hwnd is the window handle of the
window losing the focus, or NULLHANDLE if no window previously had
the focus.

FALSE The window is losing the focus. hwnd is the window handle of the
window receiving the focus, or NULLHANDLE if no window is receiving
the focus.

Returns
ulReserved (ULONG)

Reserved value, should be o.

9-22 PM Basic Programming Guide

Summary
Following are the OS/2 functions and messages used with activation and keyboard/mouse
input.

Table 9-2. Mouse/Keyboard Functions

Function Name

WinEnablePhyslnput

WinFocusChange

WinGetKeyState

WinGetPhysKeyState

WinlsPhyslnputEnabled

WinQueryActiveWindow

WinQueryCapture

WinQueryFocus

WinSetActiveWindow

WinSetCapture

WinSetFocus

WinSetKeyboardStateTable

Description

Enables or disables queuing of phYSical input.

Changes the focus window.

Returns the state of the key at the time the last message
from the message queue was posted.

Returns the physical key state.

Returns the status of the hardware (on/off)

Returns the active window for HWND_DESKTOP or other
parent window.

Returns the handle of the window the pointer has
captured.

Returns the focus window; NULL if there is not focus
window.

Makes the frame window the active window.

Captures all pointing device messages.

Sets the focus window.

Gets or sets the keyboard state.

Table 9-3. Focus-Change and Activation Messages

Message Description

WM_ACTIVATE Sent when a different window becomes the active
window.

WM_FOCUSCHANGE Occurs when the window having the focus is changed.

WM_QUERYFOCUSCHAIN Requests the handle of a window in the focus chain.

WM_SETFOCUS Occurs when a window is to lose or gain the input focus.

WM_SETSELECTION Occurs when a window is selected or deselected.

Chapter 9. Mouse and Keyboard Input 9-23

Table 9-4. Mouse Messages

Message

WM_BUTTON1 DBLCLK

WM_BUTTON1 DOWN

WM_BUTTON1 UP

WM_BUTTON2DBLCLK

WM_BUTTON2DOWN

WM_BUTTON2UP

WM_BUTTON3DBLCLK

WM_BUTTON3DOWN

WM_BUTTON3UP

WM_HITTEST

Table 9-5. Keyboard Messages

Message

WM_CHAR

WM_COMMAND

9-24 PM Basic Programming Guide

Description

Occurs when the user presses button 1 of the pointing
device twice.

Occurs when the user presses pointer button 1.

Occurs when the user releases pointer button 1.

Occurs when the user presses button 2 of the pointing
device twice.

Occurs when the user presses pointer button 2.

Occurs when the user releases pointer button 2.

Occurs when the user presses button 3 on the pointing
device twice.

Occurs when the user presses pointer button 3.

Occurs when the user releases pointer button 3.

Sent to determine which window is associated with an
input from the pointing device.

Occurs when the pointing device pointer moves.

Description

Occurs when the user presses a key.

Occurs when a control has a significant event to notify to
its owner, or when a keystroke has been translated by an
accelerator table into WM_COMMAND.

Chapter 10. Mouse Pointers and Icons

A mouse pointer is a special bit map the operating system uses to show a user the current
location of the mouse on the screen. When the user moves the mouse, the mouse pOinter
moves on the screen. This chapter describes how to create and use mouse pointers and
icons in PM applications.

About Mouse Pointers and Icons
Mouse pointers and icons are made up of bit maps that the operating system uses to paint
images of the pointers or icons on the screen. A monochrome bit map is a series of bytes.
Each bit corresponds to a single pel in the image. (The bit map representing the display
typically has four bits for each pel.)

A mouse pointer or icon bit map always is twice as tall as it is wide. The top half of the bit
map is an AND mask, in which the bits are combined, using the AND operator, with the
screen bits where the pointer is being drawn. The lower half of the bit map is an XOR mask,
in which the bits are combined, using the XOR operator, with the destination screen bits.

The combination of the AND and XOR masks results in four possible colors in the bit map.
The pels of an icon or pointer can be black, white, transparent (the screen color beneath the
pel), or inverted (inverting the screen color beneath the pel). Figure 10-1 shows the
relationship of the bit values in the AND and XOR masks:

AND mask
XOR mask

Result

o
o

Black

o
1

White

1
o

Transparent Inverted

Figure 10-1. Bit Values in the AND and XOR Masks

Mouse-Pointer Hot Spot
Each mouse pointer has its own hot spot, which is the point that represents the exact
location of the mouse pointer. This location is defined as an x and y offset from the
lower-left corner of the mouse-pointer bit map.

© Copyright IBM Corp. 1994 10-1

Arrow pointer I-ijeam pOinter

Figure 10-2. Mouse Pointers

For the arrow-shaped pointer, the hot spot is at the tip of the arrow. For the I-beam pointer,
the hot spot is at the middle of the vertical line.

Predefined Mouse Pointers
Before an application can use a mouse pointer, it first must receive a handle to the pointer.
Most applications load mouse pointers from the system or from their own resource file. The
operating system maintains many predefined mouse pointers that an application can use by
calling WinQuerySysPointer. System mouse pointers include all the standard mouse-pointer
shapes and message-box' icons. The following predefined mouse pointers are available:

Table 10-1 (Page 1 of 2). Predefined Mouse Pointers

Mouse Pointer Description

SPTR_APPICON Square icon; used to represent a minimized application
window.

SPTR_ARROW Arrow that points to the upper-left corner of the screen.

SPTR_ICONERROR Icon containing an exclamation point; used in a warning
message box.

SPTR_ICONINFORMATION Octagon-shaped icon containing the image of a human
hand; used in a warning message box.

SPTR_ICONQUESTION Icon containing a question mark; used in a query
message box.

SPTR_ICONWARNING Icon containing an asterisk; used in a warning message
box.

SPTR_MOVE Four-headed arrow; used when dragging an object or
window around the screen.

SPTR_SIZE Small box within a box; used when resizing a window by
dragging.

10-2 PM Basic Programming Guide

Table 10-1 (Page 2 of 2). Predefined Mouse Pointers

Mouse Pointer Description

SPTR_SIZENS Two-headed arrow that points up and down (north and
south); used when sizing a window.

SPTR_SIZENESW Two-headed diagonal arrow that points to the upper-right
(northeast) and lower-left (southwest) window borders;
used when sizing a window.

SPTR_SIZENWSE Two-headed diagonal arrow that points to the upper~left
(northwest) and lower-right (southeast) window borders;
used when sizing a window.

SPTR_SIZEWE Two-headed arrow that points left and right (west to east);
used when sizing a window.

SPTR_TEXT Text-insertion and selection pointer, often called the
I-beam pointer.

SPTR_WAIT Hourglass; used to indicate that a time-consuming
operation is in progress.

The operating system contains a second set of predefined mouse pOinters that are used as
icons in PM applications. An application can use one of these icons by supplying one of the
following constants in WinQuerySysPointer. If a copy of the system pointer is made using
WinQuerySysPointer, the pointer copy must be destroyed using WinDestroyPointer before
termination of the application.

Table 10-2. Presentation Manager Mouse Pointers

Icon Description

'SPTR_FILE Represents a file (in the shape of a single sheet of paper).

SPTR_FOLDER Represents a file folder.

SPTRJLLEGAL Circular icon containing a slash; represents an illegal operation.

SPTR_MUL TFILE Represents multiple files.

SPTR_PROGRAM Represents an executable file.

Applications can use mouse-pointer resources to draw icons. WinDrawPointer draws a
specified mouse pointer in a specified presentation space. Many of the predefined system
mouse pointers are standard icons displayed in message boxes.

In addition to using the predefined pointer shapes, an application also can use pointers that
have been defined in a resource file. Once the pointer or icon has been created (by Icon
Editor or a similar application), the application includes it in the resource file, using the
POINTER statement, a resource identifier, and a file name for the Icon Editor data. After
including the mouse-pointer resource, the application can use the pointer or icon by calling
WinLoadPointer, specifying the resource identifier and module handle. Typically, the
resource is in the executable file of the application, so the application simply can specify
NULL for the module handle to indicate the current application resource file.

Chapter 10. Mouse Pointers and Icons 10-3

An application can create mouse pOinters at run time by constructing a bit map for the
pointer and calling WinCreatePointer. This function, if successful, returns the new pointer
handle, which the application then can use to set or draw the pointer. The bit map must be
twice as tall as it is wide, with the first half defining the AND mask and the second half
defining the XOR mask. The application also must specify the hot spot when creating the
mouse pointer.

System Bit Maps
In addition to using the mouse pointers and icons defined by the system, applications can
use standard system bit maps by calling WinGetSysBitmap. This function returns a bit map
handle that is passed to WinDrawBitmap or to one of the GPI bit-map functions. The system
uses standard bit maps to draw portions of control windows, such as the system menu,
minimize/maximize box, and scroll-bar arrows. The following standard system bit maps are
available:

Table 10-3 (Page 1 of 2). Standard System Bit Maps

Bit Map

SBMP_BTNCORNERS

SBMP _CHECKBOXES

SBMP _CHILDSYSMENU

SBMP _CHILDSYSMENUDEP

SBMP _COMBODOWN

SBMP _MAXBUTTON

SBMP_MENUATTACHED

SBMP _MENUCHECK

SBMP _MINBUTTON

SBMP _OLD _ CHILDSYSMENU

1 0-4 PM Basic Programming Guide

Description

Specifies the bit map for push button corners.

Specifies the bit map for the check-box or radio-button
check mark.

Specifies the bit map for the smaller version of the
system-menu bit map; used in child windows.

Same as SBMP _CHILDSYSMENU but indicates that the
system menu is selected.

Specifies the bit map for the downward pointing arrow in
a drop-down combination box.

Specifies the bit map for the maximize button.

Specifies the bit map for the symbol used to indicate that
a menu item has an attached, hierarchical menu.

Specifies the bit map for the menu check mark.

Specifies the bit map for the minimize button.

Same as SBM_CHILDSYSMENU. (For compatibility with
previous versions of the OS/2 operating system.)

Same as SBM_MAXBUTTON. (For compatibility with
previous versions of the OS/2 operating system.)

Same as SBM_MINBUTTON. (For compatibility with
previous versions of the OS/2 operating system.)

Same as SBM_RESTOREBUTTON. (For compatibility
with previous versions of the OS/2 operating system.)

Same as SBM_SBDNARROW. (For compatibility with
previous versions of the OS/2 operating system.)

Same as SBM_SBLFARROW. (For compatibility with
previous versions of the OS/2 operating system.)

Table 10-3 (Page 2 of 2). Standard System Bit Maps

Bit Map

SBMP_RESTOREBUTTON

SBMP_RESTOREBUTTONDEP

SBMP _ SBDNARROW

SBMP_SBDNARROWDEP

SBMP _SBDNARROWDIS

SBMP _SBLFARROW

SBMP _SBLFARROWDEP

SBMP _SBMFARROWDIS

SBMP _SBRGARROW

SBMP _SBRGARROWDEP

SBMP _ SBRGARROWDIS

SBMP _SBUPARROW

SBMP_SBUPARROWDEP

SBMP _SBUPARROWDIS

SBMP _SIZEBOX

SBMP _SYSMENU

SBMP _ TREEMINUS

SBMP _ TREEPLUS

Description

Same as SBM_SBRGARROW. (For compatibility with
previous versions of the OS/2 operating system.)

Same as SBM_SBUPARROW. (For compatibility with
previous versions of the OS/2 operating system.)

Specifies the bit map for the symbol that File Manager
uses to indicate that a file is an executable program.

Specifies the bit map for the restore button.

Same as SBMP _RESTOREBUTTON but indicates that
the restore button is pressed.

Specifies the bit map for the scroll-bar down arrow.

Same as SBMP _SBDNARROW but indicates that the
scroll-bar down arrow is pressed.

Same as SBMP _SBDNARROW but indicates that the
scroll-bar down arrow is disabled.

Specifies the bit map for the scroll-bar left arrow.

Same as SBMP _SBLFARROW but indicates that the
scroll-bar left arrow is pressed.

Same as SBMP SBLFARROW but indicates that the
scroll-bar left arrow is disabled.

Specifies the bit map for the scroll-bar right arrow.

Same as SBMP _SBRGARROW but indicates that the
scroll-bar right arrow is pressed.

Same as SBMP _SBRGARROW but indicates that the
scroll-bar right arrow is disabled.

Specifies the bit map for the scroll-bar up arrow.

Same as SBMP _SBUPARROW but indicates that the
scroll-bar up arrow is pressed.

Same as SBMP _SBUPARROW but indicates that the
scroll-bar up arrow is disabled.

Specifies the bit map for the symbol that indicates an
area of a window in which the user can click to resize the
window.

Specifies the bit map for the system menu.

Specifies the bit map for the symbol that File Manager
uses to indicate an empty entry in the directory tree.

Specifies the bit map for the symbol that File Manager
uses to indicate that an entry in the. directory tree contains
more files.

Chapter 10. Mouse Pointers and Icons 1 0-5

Using Mouse Pointers and Icons
This section explains how to perform the following tasks:

• Save the current mouse pointer.
• Change the mouse pointer.
• Restore the original mouse pointer.

Changing the Mouse Pointer
Once you create or load a mouse pointer, you can change its shape by calling
WinSetPointer. Following are three typical situations in which an application changes the
shape of the mouse pointer:

• When an application receives a WM_MOUSEMOVE message, there is an opportunity to
change the mouse pointer based on its location in the window. If you want the standard
arrow pointer, pass this message on to WinDefWindowProc. If you want to change the
mouse pointer on a standard dialog window, you need to capture the
WM_CONTROLPOINTER message and return a pointing-device pointer handle.

• When an application is about to start a time-consuming process during which it will not
accept user input, the application displays the system-wait mouse pOinter (SPTR_WAIT).
Upon finishing the process, the application resets the mouse pointer to its former shape.

The following code fragment shows how to save the current mouse pointer, set the
hourglass pointer, and restore the original mouse pointer. Notice that the hourglass
pointer also is saved in a global variable so that the application can return it when
responding to a WM_MOUSEMOVE message during a time-consuming process.

• When an application needs to indicate its current operational mode, it changes the
pointer shape. For example, a paint program with a palette of drawing tools should
change the pointer shape to indicate which drawing tool is in use currently.

1 0-6 PM Basic Programming Guide

Related Functions
This section covers the functions that are related to Mouse Pointers and Icons.

WinCreatePointer
This function creates a pointer from a bit map.

Syntax

#define INCL_WINPOINTERS /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

HPOINTER WinCreatePointer (HWND hwndDesktop, HBITMAP hbmPointer,
BOOl fPointer, lONG xHotspot, lONG yHotspot)

Parameters
hwndDesktop (HWND) - input

Desktop-window handle or HWND_DESKTO~.

hbmPointer (HBITMAP) - input
Bit-map handle from which the pointer image is created.

fPointer (Baal) - input
Pointer-size indicator.

TRUE The bit map should be stretched (if necessary) to the system pointer
dimensions.

FALSE The bit map should be stretched (if necessary) to the system icon dimensions.

xHotspot (lONG) - input
x-offset of hot spot within pointer from its lower left corner (in pels).

yHotspot (lONG) - input
y-offset of hot spot within pointer from its lower left corner (in pels).

Returns
hptr (HPOINTER) - returns

Pointer handle.

NUllHANDlE Error
Other Handle of the newly created pointer.

Chapter 10. Mouse Pointers and Icons 10-7

WinCreatePointerlndirect
This function creates a colored pointer or icon from a bit map.

Syntax

#define INCL_WINPOINTERS /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

HPOINTER WinCreatePointerlndirect (HWND hwndDesktop, PPOINTERINFO pptri)

Parameters
hwndDesktop (HWND) - input

Desktop-window handle or HWND_DESKTOP.

pptri (PPOINTERINFO) - input
Pointer information structure.

Returns
hptr (HPOINTER) - returns

Pointer handle.

NULLHANDLE Error
Other Handle of the newly created pointer or icon.

1 0-8 PM Basic Programming Guide

WinDestroyPointer
This function destroys a pointer or icon.

Syntax

#define INCL_WINPOINTERS /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinDestroyPointer (HPOINTER hptrPointer)

Parameters
hptrPointer (HPOINTER) - input

Handle of pointer to be destroyed.

Returns
rc (BOOl) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Chapter 10. Mouse Pointers and Icons 10-9

WinDrawBitmap
This function draws a bit map using the current image colors and mixes.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinDrawBitmap (HPS hpsDst, HBITMAP hbm, PRECTl pwrcSrc,
PPOINTl pptlDst, lONG clrFore, lONG clrBack,
UlONG fl)

Parameters
hpsDst (HPS) - input

Handle of presentation space in which the bit map is drawn.

hbm (HBITMAP) - input
Bit-map handle.

pwrcSrc (PRECTL) - input
Subrectangle of bit map to be drawn.

NULL The whole of the bit map is drawn
Other The whole of the bit map is not drawn.

pptlDst (PPOINTL) - input
Bit-map destination.

clrFore (LONG) - input
Foreground color.

clrBack (LONG) - input
Background color.

fl (ULONG) - input
Flags that determine how the bit map is drawn.

DBM_NORMAL

DBM INVERT

Draw the bit map normally using ROP _SRCCOPY, as defined in
GpiBitBIt.

Draw the bit map inverted using ROP _NOTSRCCOPY, as
defined in GpiBitBIt.

pptlDst is used to point to a RECTL data structure representing
a rectangle in the destination presentation space, into which the
bit map will be stretched or compressed. If compression is
required, some rows and columns of the bit map are eliminated.

1 0-1 0 PM Basic Programming Guide

DBM_HAlFTONE Use the OR operator to combine the bit map with an alternating
pattern of ones or zeros before drawing it. It can be used with
either DBM_NORMAl or DBMJNVERT.

DBM_IMAGEATTRS If this is specified, color conversion of monochrome bit maps is
done by using the image attributes.

Returns
rc (BOOl) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Chapter 10. Mouse Pointers and Icons 10-11

WinDrawPointer
This function draws a pointer inthe passed hps at the passed coordinates [Ix, Iy].

Syntax

#define INCL_WINPOINTERS /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinDrawPointer (HPS hps, lONG lx, lONG Iy, HPOINTER hptrPointer,
UlONG ulHalftone)

Parameters
hps (HPS) - input

Presentation-space handle into which the pointer is drawn.

Ix (lONG) - input
x-coordinate at which to draw the pointer, in device coordinates.

Iy (lONG) - input
y-coordinate at which to draw the pointer, in device coordinates.

hptrPointer (HPOINTER) - input
Pointer handle.

ulHalftone (UlONG) - input
Shading control with which to draw the pointer.

DP_NORMAl
DP _HAlFTONED
DP INVERTED
DP MINIICON

Returns
rc (BOOl) - returns

Success indicator.

As it normally appears.
With a halftone pattern where black normally appears.
Inverted, black for white and white for black.
Bit map of a mini icon.

TRUE
FALSE

Successful completion
Function failed.

10-12 PM Basic Programming Guide

WinGetSysBitmap
This function returns a handle to one of the standard bit maps provided by the system.

Syntax

#define INCL_WINPOINTERS /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

HBITMAP WinGetSysBitmap (HWND hwndDesktop, ULONG ibm)

Parameters
hwndDesktop (HWND) - input

Desktop-window handle.

HWND DESKTOP The desktop-window handle
Other Specified desktop-window handle.

ibm (ULONG) - input
System bit-map index value.

SBMP _SYSMENU
SBMP _SYSMENUDEP
SBMP _SBUPARROW
SBMP _SBUPARROWDEP
SBMP _SBUPARROWDIS
SBMP _SBDNARROW
SBMP _SBDNARROWDEP
SBMP _SBDNARROWDIS
SBMP _SBRGARROW
SBMP _SBRGARROWDEP
SBMP _SBRGARROWDIS
SBMP _SBLFARROW
SBMP _SBLFARROWDEP
SBMP _SBLFARROWDIS
SBMP_MENUCHECK
SBMP_MENUATTACHED
SBMP _CHECKBOXES
SBMP _ COMBODOWN
SBMP _BTNCORNERS
SBMP _MINBUTTON
SBMP _MINBUTTONDEP
SBMP_MAXBUTTON
SBMP_MAXBUTTONDEP
SBMP_RESTOREBUTTON
SBMP_RESTOREBUTTONDEP
SBMP _CHILDSYSMENU

System menu
System menu in depressed state
Scroll bar up arrow
Scroll bar up arrow in depressed state
Scroll bar up arrow in disabled state
Scroll bar down arrow
Scroll bar down arrow in depressed state
Scroll bar down arrow in disabled state
Scroll bar right arrow
Scroll bar right arrow in depressed state
Scroll bar right arrow in disabled state
Scroll bar left arrow
Scroll bar left arrow in depressed state
Scroll bar left arrow in disabled state
Menu check mark
Cascading menu mark
Check box or radio button check marks
Combobox down arrow
Push-button corners
Minimize button
Minimize button in depressed state
Maximize button
Maximize button in depressed state
Restore button
Restore button in depressed state
System menu for child windows

Chapter 10. Mouse Pointers and Icons 10-13

SBMP ~CHILDSYSMENUDEP
SBMP_DRIVE
SBMP_FILE
SBMP_FOLDER
SBMP _ TREEPLUS

SBMP _ TREEMINUS

SBMP PROGRAM

SBMP SIZEBOX

Returns
hbm (HBITMAP) - returns

System bit-map handle.

NULLHANDLE Error occurred

System menu for child windows in depressed state
Drive
File
Folder
Used by the file system to indicate that an entry in
the directory can be expanded.
Used by the file system to indicate that an entry in
the directory can be collapsed.
Used by the file system to mark .EXE and .COM
files.
Used by some applications to display a sizebox in
the bottom-right corner of a frame window.

Other System bit-map handle.

1 0-14 PM Basic Programming Guide

WinLoadPointer
This function loads a pointer from a resource file into the system.

Syntax

#define INCL_WINPOINTERS /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

HPOINTER WinLoadPointer (HWND hwndDeskTop, HMODULE Resource,
ULONG idPointer)

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle.

HWND_DESKTOP The desktop window
Other Desktop-window handle returned by WinQueryDesktopWindow.

Resource (HMODULE) - input
Resource identity containing the pointer definition.

NULLHANDLE Use the resources file for the application.

Other Module handle returned by the DosLoadModule or
DosQueryModuleHandle call referencing a dynamic-link library
containing the resource.

idPointer (ULONG) - input
Identifier of the pOinter to be loaded.

Returns
hptr (HPOINTER) - returns

Pointer handle.

NULLHANDLE Error has occurred
Other Handle of loaded pointer.

Chapter 10. Mouse Pointers and Icons 1 0-15

WinQueryPointer
This function returns the pointer handle for hwndOeskTop.

Syntax

#define INCL_WINPOINTERS /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

HPOINTER WinQueryPointer (HWND hwndDeskTop)

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle.

HWND _DESKTOP The desktop-window handle
Other Specified desktop-window handle.

Returns
hptrPointer (HPOINTER) - returns

Pointer handle.

NULLHANDLE Error occurred.

10-16 PM Basic Programming Guide

WinQueryPointerlnfo
This function returns pointer information.

Syntax

#define INCL_WINPOINTERS /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinQueryPointerlnfo (HPOINTER hptr, PPOINTERINFO pptriPointerlnfo)

Parameters
hptr (HPOINTER) - input

Pointer handle.

pptriPointerlnfo (PPOINTERINFO) - output
Pointer-information structure.

Returns
rc (BOOl) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Chapter 10. Mouse Pointers and Icons 10-17

WinQueryPointerPos
This function returns the pointer position.

Syntax

#define INCL_WINPOINTERS /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinQueryPointerPos (HWND hwndDeskTop, PPOINTl pptlPoint)

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle.

HWND DESKTOP The desktop-window handle
Other Specified desktop-window handle.

pptlPoint (PPOINTl) - output
Pointer position in screen coordinates.

Returns
rc (Baal) - returns

Pointer position returned indicator.

TRUE
FALSE

Successful completion
Error occurred.

10-18 PM Basic Programming Guide

WinQuerySysPointer
This function returns the system-pointer handle.

Syntax

#define INCL_WINPOINTERS /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

HPOINTER WinQuerySysPointer (HWND hwndDeskTop, lONG IIdentifier,
BOOl fCopy)

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle.

IIdentifier (lONG) - input
System-painter identifier.

SPTR_ARROW
SPTR_TEXT
SPTR WAIT
SPTR SIZE
SPTR MOVE
SPTR SIZENWSE
SPTR SIZENESW
SPTR SIZEWE
SPTR_SIZENS
SPTR APPICON
SPTRJCONINFORMATION
SPTRJCONQUESICON
SPTRJCONERROR
SPTR ICONWARNING
SPTR IllEGAL
SPTR FilE
SPTR MUl TFllE
SPTR_FOlDER
SPTR_PROGRAM

fCopy (BOOl) - input
Copy indicator.

Arrow pointer
Text I-beam pointer
Hourglass pointer
Size pointer
Move pointer
Downward-sloping, double-headed arrow pointer
Upward-sloping, double-headed arrow pointer
Horizontal, double-headed arrow pointer
Vertical, double-headed arrow pointer
Standard application icon pointer
Information icon pointer
Question mark icon pointer
Exclamation mark icon pointer
Warning icon pointer
Illegal operation icon pointer
Single file icon pointer
Multiple files icon pointer
Folder icon pointer
Application program icon pointer

TRUE Create a copy of the default system pointer and return its handle. Specify this
value if the system pointer is to be modified. The application should destroy
the copy of the pointer created. This can be done by using the
WinDestroyPointer function.

FALSE. Return the handle of the current system pointer.

Chapter 10. Mouse Pointers and Icons 1 0-19

Returns
hptrPointer (HPOINTER) - returns

Pointer handle.

10-20 PM Basic Programming Guide

Wi nSetPointer
This call sets the desktop-pointer handle.

Syntax

#define INCL_WINPOINTERS /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinSetPointer (HWND hwndDeskTop, HPOINTER hptrNewPointer)

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle.

HWND_DESKTOP The desktop-window handle
Other Specified desktop-window handle.

hptrNewPointer (HPOINTER) - input
New pointer handle.

NUll Remove pointer from the screen.
Other Pointer handle associated with hwndOeskTop. Handles for application-defined

pointers are returned by the WinloadPointer and WinCreatePointer calls.

Returns
rc (BOOl) - returns

Pointer-updated indicator.

TRUE
FALSE

Pointer successfully updated
Pointer not successfully updated.

Chapter 10. Mouse Pointers and Icons 10-21·

WinSetPointerPos
This function sets the pointer position.

Syntax

#define INCL_WINPOINTERS /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinSetPointerPos (HWND hwndDeskTop, lONG lx, lONG Iy)

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle.

HWND _DESKTOP The desktop-window handle
Other Specified desktop-window handle.

Ix (lONG) - input
'x-position of pointer in screen coordinates.

Iy (lONG) - input
y-position of pointer in screen coordinates.

Returns
rc (Baal) - returns

Pointer position updated indicator.

TRUE
FALSE

Pointer position successfully updated
Pointer position not successfully updated.

1 0-22 PM Basic Programming Guide

WinShowPointer
This function adjusts the pointer display level to show or hide a pointer.

Syntax

#define INCL_WINPOINTERS /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

Baal WinShowPointer (HWND hwndDeskTop, Baal fShow)

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle.

HWND_DESKTOP The desktop-window handle
Other The specified desktop-window handle.

fShow (BOOL) - input
Level-update indicator.

TRUE Decrement pointer display level by one. (The pointer level is not decremented
to a negative value.)

FALSE Increment pointer display level by one.

Returns
rc (BOOL) - returns

Display-level-updated indicator.

TRUE
FALSE

Pointer display level not successfully updated.
Pointer display level successfully updated

Chapter 10. Mouse Pointers and Icons 10-23

Related Data Structures
This section covers the data structures that are related to Mouse Pointers and Icons.

POINTERINFO
Pointer-information structure.

Syntax

typedef ·.stl"uct ·:i,.POINl'EfHNFO.·· •• {
ULONG fPointer;
LONG xHotSpot;
LONG yHotSpot; ..
HBITMAP hbmPointer;
HBITMAP hbmColor;
HBITMAP hbmMi niPoi nter;
HBITMAP hbmMi ni Color;

} ... POI NTERI NFO;

Fields
fPointer (ULONG)

Bit-map size indicator.

TRUE
FALSE

Pointer-sized bit map
Icon-sized bit map.

xHotSpot (LONG)
X-coordinate of action point.

yHotSpot (LONG)
Y -coordinate of action point.

hbmPointer (HBITMAP)
Bit-map handle of pointer.

hbmColor (HBITMAP)
Bit-map handle of color bit map.

hbmMiniPointer (HBITMAP)
Bit-map handle of a pointer to a mini bit map.

hbmMiniColor (HBITMAP)
Bit-map handle of mini color bit map.

10-24 PM Basic Programming Guide

Summary
Following are the OS/2 functions and structure used with mouse pointers, icons, and bit
maps.

Table 10-4. Pointer and Bit Map Functions

Function name Description

WinCreatePointer Creates a pointer from a bit map.

WinCreatePointerlndirect Creates a colored pointer or icon from a bit map.

WinDestroyPointer Destroys a pointer or an icon.

WinDrawBitmap Draws a bit map using the current image colors and
mixes.

WinDrawPointer Draws a pointer.

WinGetSysBitmap Returns a handle to one of the standard bit maps
provided by the system.

WinLoadPointer Loads a pointer from a resource file into the system.

WinQueryPointer Returns the pointer handle for DeskTop.

WinQueryPointerlnfo Returns pointer information.

WinQueryPointerPos Returns the pointer position.

WinQuerySysPointer Returns the handle of the system pointer.

WinSetPointer Sets the handle of the Desktop pointer.

WinSetPointerPos Sets the pointer position.

WinShowPointer Adjusts the pointer display level to show or hide a pointer.

Table 10-5. Pointer Structure

Structure Description

POINTERINFO Pointer information structure.

Chapter 10. Mouse Pointers and Icons 10-25

10-26 PM Basic Programming Guide

Chapter 11. Cursors

A cursor is a rectangle that can be shown at any location in a window, indicating where the
user's next interaction with items on the screen will happen. This chapter describes how to
create and use cursors in your PM applications.

About Cursors
Only one cursor appears on the screen at a time-either marking the text-insertion point (a
text cursor) or indicating which items the user can interact with from the keyboard (a
selection cursor). For example, when an entry field has the keyboard focus, it displays a
blinking vertical bar to show the text-insertion point; however, when a button has the
keyboard focus, the cursor appears as a halftone rectangle the size of the button. The
operating system draws and blinks the cursor, freeing the application from handling these
details. Notice that the cursor has no direct relationship with the mouse pointer.

Cursor Creation and Destruction
The system can use only one cursor at a time, so windows must create and destroy cursors
as each windows gains and loses the keyboard focus. If an application attempts to use more
than one cursor at a time, the results can be unpredictable and might affect other
applications.

An application creates a cursor by calling WinCreateCursor. Generally, this is done when a
window gains the keyboard focus. The application specifies the window in which to display
the cursor, whether it be the desktop window, an application window, or a control window.
An application destroys a cursor by calling WinDestroyCursor- when the specified window
loses the keyboard focus, for example.

Position and Size
An application can set the position (in window coordinates) of an eXisting cursor by calling
WinCreateCursor, specifying the CURSOR_SETPOS flag. The cursor width is usually 0
(nominal border width is used) for text-insertion cursors. This is preferable to a value of 1,
since such a fine width is almost invisible on a high-resolution monitor. The cursor width
also can be related to the window size-for example, when a button control uses a
dotted-line cursor around the button text to indicate focus. To change the cursor size, the
application must destroy the current cursor and create a new one of the desired size.

Other Cursor Characteristics
An application uses the WinCreateCursor function to specify information about the cursor
rectangle and the clipping rectangle. WinCreateCursor specifies whether the cursor
rectangle should be filled, framed, blinking, or halftone. In addition, the function specifies the
clipping rectangle, in window coordinates, that controls the cursor clipping region. Probably
the most efficient strategy is for the application to specify NULL, which causes the rectangle
to clip the cursor to the window rectangle.

© Copyright IBM Corp. 1994 11-1

Cursor Visibility
An application can use the WinShowCursor function to show or hide a cursor. The operating
system maintains a show level for the cursor: when the cursor is visible, the its show level is
zero; each time the cursor is hidden, its show level is incremented; each time the cursor is
shown, its show level is decremented. The show:hide relationship is 1:1, so the show level
cannot drop below zero. When first creating a cursor, an application should show the cursor
because the application creates the cursor with a show level of 1.

The operating system automatically hides the cursor when the application calls
WinBeginPaint; it shows the cursor when the application calls WinEndPaint. Therefore, there
is no conflict with the cursor during WM_PAINT processing.

USing Cursors
This section explains how to perform the following tasks:

• Create and destroy a cursor.
• Respond to a WM_SETFOCUS message.

Creating and Destroying a Cursor
The following code fragment shows how an application should respond to a
WM_SETFOCUS message when using a cursor in a particular window:

Figure 11-1. Response to a WM _ SETFOCUS message

11-2 PM Basic Programming Guide

Related Functions
This section covers the functions that are related to Cursors.

WinCreateCursor
This function creates or changes a cursor for a specified window.

Syntax

#define INCL_WINCURSORS /* Or use INCL_WIN, INCL_PM, Also in COMON section */

#include <os2.h>

BOOl WinCreateCursor (HWND hwnd, lONG lx, lONG Iy, lONG lex, lONG ley,
UlONG ulrgf, PRECTl prelClip)

Parameters
hwnd (HWND) - input

Handle of window in which cursor is displayed.

Ix (LONG) - input
x-position of cursor.

Iy (LONG) - input
y-position of cursor.

lex (LONG) - input
x-size of cursor.

ley (LONG) - input
y-size of cursor.

ulrgf (ULONG) - input
Controls the appearance of the cursor.

CURSOR_SOLID The cursor is solid.

CURSOR_HALFTONE The cursor is halftone.

CURSOR_FRAME The cursor is a rectangular frame.

CURSOR_FLASH The cursor flashes.

CURSOR_SETPOS Set a new cursor position. lex and Icy are ignored. Used
when a cursor has already been created. In this case, all
other appearance flags are ignored.

prelClip (PRECTL) - input
Cursor rectangle.

Chapter 11. Cursors 11-3

Returns
rc (BOOl) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

11-4 PM Basic Programming Guide

WinDestroyCursor
This function destroys the current cursor, if it belongs to the specified window.

Syntax

#define INCL_WINCURSORS /* Or use INCL_WIN. INCL_PM. Also in COMON section */

#include <os2.h>

BOOl WinDestroyCursor (HWND hwnd)

Parameters
hwnd (HWNO) - input

Window handle to which the cursor belongs.

Returns
rc (BOOL) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Chapter 11. Cursors 11-5

WinQueryCursorlnfo
This function obtains information about any current cursor.

Syntax

#define INCL_WINCURSORS /* Or use INCL_WIN. INCL_PM. */

#include <os2.h>

BOOl WinQueryCursorlnfo (HWND hwndDeskTop,
PCURSORINFO pcsriCursorlnfo)

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle.

HWND_DESKTOP The desktop-window handle
Other Specified desktop-window handle.

pcsriCursorlnfo (PCURSORINFO) - output
Cursor information.

Returns
rc (BOOl) - returns

Current-cursor indicator.

TRUE
FALSE

Cursor exists
Cursor does not exist, pcsriCursorlnfo is not updated by this call.

11-6 PM Basic Programming Guide

WinShowCursor
This function shows or hides the cursor that is associated with a specified window.

Syntax

#define INCL_WINCURSORS /* Or use INCL_WIN, INCL_PM, Also in COMaN section */

#include <os2.h>

BOOl WinShowCursor (HWND hwnd, BOOl fShow)

Parameters
hwnd (HWND) - input

Handle of window to which the cursor belongs.

fShow (BOOl) - input
Show indicator.

TRUE Make cursor visible
FALSE Make cursor invisible.

Returns
rc (BOOl) - returns

Success indicator.

Successful completion TRUE
FALSE Error occurred, or an attempt was made to show the cursor when it was

already visible.

Chapter 11. Cursors 11-7

Related Data Structure
This section covers the data structure related to Cursors.

CURSORINFO
Cursor-information structure.

Syntax

Fields
hwnd (HWND)

Window handle.

x (LONG)
X-coordinate.

Y (LONG)
V-coordinate.

ex (LONG)
Cursor width.

ey (LONG)
Cursor height.

fs (ULONG)
Options.

rei Clip (RECTL)
Cursor box.

11-8 PM Basic Programming Guide

Summary
Following are the OS/2 functions and structure used with cursors:

Table 11-1. Cursor Functions

Function name Description

WinCreateCursor Used to create, set the size of, and move the cursor around the screen.

WinDestroyCursor Destroys the current cursor if it belongs to the specified window.

WinQueryCursorlnfo Obtains information about any current cursor.

WinShowCursor Shows or hides the cursor associated with a specified window.

Table 11-2. Cursor Structure

Structure name Description

CURSORINFO Cursor information structure.

Chapter 11. Cursors 11-9

11-1 0 PM Basic Programming Guide

Chapter 12. Resource Files

Resource files enable you to specify the resource information used in creating an
application's window. Some examples of resources that can be defined in resource files are:

• Menus
• Accelerator tables
• Dialog and window templates
• Icons
• Fonts
• Bit maps
• Strings

To add resource information to an application, use a text editor to create a resource script
file, and then compile it using the Resource Compiler, RC.EXE. The advantage of using
resource files is that resource information can be maintained and updated separately in the
resource script file and then linked to your application program's .EXE file. This greatly
simplifies customizing an application because you can modify resource information without
having to recompile the entire application.

This chapter describes the use of resource files in Presentation Manager (PM) programming.

About Resource Files
A resource script file is a text file that contains one or more resource statements that define
the type, identifier, and data for each resource. Because some resources might contain
binary data that cannot be created using a text editor, there are resource statements that let
you specify additional files to include when compiling the resource script file. For example,
you can use the Dialog Box Editor to design dialog boxes, the Font Editor to edit font files,
and the Icon Editor to create customized icons, pointers, and bit maps. The definitions for
these resources can be included with other resource definitions in the resource file.

Resource Statements
This section provides oveNiew information on resource statements and directives. Resource
statements consist of one or more keywords, numbers, character strings, constants, or file
names. You combine these to define the resource type, identifier, and data. Directives are
special types of resource statements that perform functions such as including header files,
defining constants, and conditionally compiling portions of the file. Resource statements
have three basic forms:

• Single-line statements
• Multiple-line statements
• Directives

© Copyright IBM Corp. 1994 12-1

Single-line Statements
Single-line statements consist of a keyword identifying the resource type, a constant or
number specifying the resource identifier, and a file name specifying the file containing the
resource data. For example, this ICON statement defines an icon resource:

ICON 1 myicon.ico

The icon resource has the icon identifier 1, and the file MYICON.ICO contains the icon data.

Multiple-line Statements
Multiple-line statements consist of a keyword identifying the resource type, a constant or
number specifying the resource identifier, and, between the BEGIN and END keywords,
additional resource statements that define the resource data. For example, this MENU
statement defines a menu resource:

MENU 1
BEGIN

END

MENUITEM "Alpha", 101
MENUITEM "Beta", 102

The menu identifier is 1. The menu contains two MENUITEM statements that define the
contents of the menu.

In multiple-line statements such as DLGTEMPLATE and WINDOWTEMPLATE, any level of
nested statements is allowed. For example, the DLGTEMPLATE and WINDOWTEMPLATE
statements typically contain a single DIALOG or FRAME statement. These statements can
contain any number of WINDOW and CONTROL statements; the WINDOW and CONTROL
statements can contain additional WINDOW and CONTROL statements, and so forth. The
nested statements let you define controls and other child windows for the dialog boxes and
windows.

If a nested statement creates a child window or control, the parent and owner of the new
window is the window created by the containing statement. (FRAME statements occasionally
create frame controls whose parent and owner windows are not the same.)

Directives
Directives consist of the reserved character # in the first column of a line, followed by the
directive keyword and any additional numbers, character strings, or file names.

Some examples of directives are:

• #define
• #if
• #ifdef
• #include

Descriptions of the individual directives follow the resource file statement descriptions.

12-2 PM Basic Programming Guide

Resource File Statement Descriptions
This section provides the syntax, description, and an example of each of the resource file
statements.

The following table summarizes, at a general level, the most commonly used parameters on
the statements.

Parameter

id

x

y

height

width

style

load option

mem option

text

class

Description

Control identifier.

X coordinate of the lower-left corner of the control.

Y coordinate of the lower-left corner of the control.

Height of the control (in 1/8 character units).

Width of the control.

Predefined bit representation of a style or combination of styles.

Definition of when the system should load the resource into memory (for
example, PRELOAD or LOADONCALL).

Definition of how the system manages the resource when in memory (for
example, FIXED, MOVABLE, or DISCARDABLE).

Text associated with a control.

Predefined class for a particular control.

Chapter 12. Resource Files 12-3

ACCELTABLE Statement

. The ACCEL TABLE statement creates a table of accelerators for an application.

Syntax

ACCELTABLE acceltable-id [mem-option] [load-option]
BEGIN
key-value, command[, accelerator-options] ...

END

Description: An accelerator is a keystroke that gives the user a quick way to choose a
command from a menu or carry out some other task. An accelerator table can be loaded
when needed from the executable file by using the WinLoadAccelTable function.

Example: This example creates an accelerator table whose accelerator-table identifier is
1. The table contains two accelerators: Ctrl+S and Ctrl+G. These accelerators generate
WM_COMMAND messages with values of 101 and 102, respectively, when the user presses
the corresponding keys.

ACCELTABLE 1
BEGIN

END

"S", 101, CONTROL
"G", 102, CONTROL

ASSOCTABLE Statement

The ASSOCTABLE statement defines a file-association table for an application.

Syntax

ASSOCTABLE assoctable-id [load-option][mem-option]
BEGIN
association-name, file-match-string[, extended-attribute-flag]

[, icon-filename]

END

Description: This table associates the data files that an application creates with the
executable file of the application. When the user selects one of these data files, the
associated application begins executing.

A file-association table can also associate icons with the data files that an application
creates. The icons are used to identify the data files graphically. Because a file-association
table associates icons by file type, all data files havi'ng the same file type have the same
icon.

12-4 PM Basic Programming Guide

You can provide any number of ASSOCTABLE statements in a resource script file, but each
statement must specify a unique assoctable-id value. The file-association tables are written
not only to the resources within your executable file, but also to the .ASSOC extended
attribute. However, only the last file-association table specified in the resource script file is
actually written to the extended attribute.

AUTOCHECKBOX Statement

The AUTOCHECKBOX statement creates an automatic-check-box control.

Syntax
AUTOCHECKBOX text, id, x, y, width [, style]

Description: The control is a small rectangle (check box) that contains an X when the
user selects it. The specified text is displayed to the right of the check box. An X appears in
the square when the user first selects the control and disappears the next time the user
selects it. The AUTOCHECKBOX statement, which can only be used in a DIALOG or
WINDOW statement, defines the text, identifier, dimensions, and attributes of a control
window. The predefined class for this control is WC_BUTTON. If the style is not specified,
the default style is BS _AUTOCHECKBOX and WS _ TABSTOP.

Example: This example creates an automatic-check-box control that is labeled "Italic."

AUTOCHECKBOX "Italic", 101, 10, 10, 100, 100

AUTORADIOBUTTON Statement
The AUTORADIOBUTTON statement creates an automatic-radio-button control.

Syntax
AUTORADIOBUTTON text, id, x, y, width, height [, style]

Description: This control is a small circle with the given text displayed to its right. The
control highlights the circle and sends a message to its parent window when the user selects
the button. The control also removes the selection from any other automatic-radio-button
controls in the same group. When the user selects the button again, the control removes the
highlight before sending a message. The AUTORADIOBUTTON statement, which you can
use only in a DIALOG or WINDOW statement, defines the text, identifier, dimensions, and
attributes of a control window. The predefined class for this control is WC_BUTTON. If you
do not specify a style, the default style is BS_AUTORADIOBUTTON.

Example: This example creates an automatic-radio-button control that is labeled "Italic."

AUTORADIOBUTTON "Italic", 101, 10, 10, 24, 50

Chapter 12. Resource Files 12-5

BITMAP Statement

The BITMAP statement defines a bit-map
resource for an application.

Syntax
BITMAP bitmap-id [load-option] [mem-option] filename

Description: A bit-map resource, typically created using the Icon Editor, is a custom bit
map that an application uses in its display or as an item in a menu.

The BITMAP statement copies the bit-map resource from the file specified in the filename
field and adds it to the application's other resources. A bit-map resource can be loaded from
the executable file when needed by using the GpiLoadBitmap function.

You can provide any number of BITMAP statements in a resource script file, but each
statement must specify a unique bitmap-id value.

Example: This example defines a bit map whose bit-map identifier is 12. The bit-map
resource is co'pied from the file GUSTOM.BMP.

BITMAP 12 custom.bmp

CHECKBOX Statement
The CHECKBOX statement creates a check-box control.

Syntax
CHECKBOX text, id, x, y, width, height [, style]

Description: The control is a small rectangle (check box) that has the specified text
displayed to the right. The control highlights the rectangle and sends a message to its
parent window when the user selects the control. The CHECKBOX statement, which you
can use only in a DIALOG or WINDOW statement, defines the text, identifier, dimensions,
and attributes of a control window. The predefined class for this control is WC_BUTTON. If
you do not specify a style, the default style is BS_CHECKBOX and WS_TABSTOP.

Example: This example creates a check-box control that is labeled "Italic."

CHECKBOX IIItalic ll
, 101, 10, 10, 100, 100

CODEPAGE Statement

The CODEPAGE statement sets the code page for all subsequent resources.

Syntax
CODEPAGE codepage-id

12-6 PM Basic Programming Guide

Description: The code page specifies the character set used for characters in the
resource.

If the CODEPAGE statement is ,not given in a resource script file, the resource compiler uses
the code page set up for the individual system. If more than one CODEPAGE statement is
given in the file, each CODEPAGE statement applies to the resource statements between it
and the next CODEPAGE statement.

Example: In this example, the code page for the character-string resources is set to
Portuguese (860).

CODEPAGE 860

STRINGTABLE
BEGIN

1 "Filename not found"
2 "Cannot open file for reading"

END

COMBOBOX Statement

The COMBOBOX statement creates a combination-box control.

Syntax
COMBOBOX text, id, x, y, width, height [, style]

Description: This control combines a list-box control with an entry-field control. It allows
the user to place the selected item from a list box into an entry field.

The COMBOBOX statement, which you can use only in a DIALOG or WINDOW statement,
defines the text, identifier, dimensions, and attributes of a control window. The predefined
class for this control is WC_COMBOBOX. If you do not specify a style, the default style is
CBS_SIMPLE, WS_GROUP, WS_TABSTOP, and WS_VISIBLE.

Example: This example creates a combination-box control.

COMBOBOX "", 101, 10, 10, 24, 50

CONTAINER Statement
The CONTAINER statement creates a container control within a dialog window.

Syntax
CONTAINER id, x, y, width, height [, style]

Description: The container control is a visual component that holds objects.

The CONTAINER statement defines the identifier, position, dimensions, and attributes of a
container control. The predefined class for this control is WC_CONTAINER. If you do not
specify a style, the default style is WS_ TABSTOP, WS_ VISIBLE, and CCS_SINGLESEL. A
CONTAINER statement is only used in a DIALOG or WINDOW statement.

Chapter 12. Resource Files 12-7

Example: This example creates a container control at position, (30,30) within the dialog
window. The container has a width of 70 character units and a height of 25 character units.
Its resource 10 is 301. The default style CCS_SINGLESEL has been overridden by the style
specification CCS_MULTIPLESEL. The default styles WS_TABSTOP and WS_GROUP are
both in effect, though only the latter is specified.

#define IDC_CONTAINER 301
#define IDD_CONTAINERDLG 504
DIALOG "Container". 100 CONTAINERDLG. 23. 6. 120. 280. FS NOBYTEALIGN

WS_VISIBLE. FCF=SYSMENU I FCF_TITLEBAR -
BEGIN

CONTAINER IDC_CONTAINER. 30. 30. 70. 200. CCS_MULTIPLESEL I
WS_GROUP

END

CONTROL Statement

The CONTROL statement defines a control as belonging to the specified class.

Syntax
CONTROL text. id. x. y. width. height. class [. style]
[data-definitions]
[BEGIN
control-definition

END]

Description: The statement defines the position and dimensions of the control within the
parent window, as well as the control style. The CONTROL statement is most often used in
a DIALOG or WINDOW statement.

Typically, several CONTROL statements are used in each DIALOG statement, and each
CONTROL statement must have a unique id value. The optional BEGIN and END
statements enclose any CONTROL statements that may be given with the control.
CONTROL statements given in this manner represent child windows belonging to the control
created by the CONTROL statement.

The CONTROL statement can actually contain any combination of CONTROL, DIALOG, and
WINDOW statements, but it usually does not contain such statements.

Example: This example creates a push-button control with the WS _ TABSTOP and
WS_ VISIBLE styles.

CONTROL "OK". 101. 10. 10. 20. 50. WC_BUTTON. BS_PUSHBUTTON
WS_TABSTOP
WS_VISIBLE

12-8 PM Basic Programming Guide

CTEXT Statement

The CTEXT statement creates a centered-text control.

Syntax
CTEXT text, id, x, y, width, height [, style]

Description: The control is a simple rectangle displaying the given text centered in the
rectangle. The text is formatted before it is displayed. Words that would extend past the
end of a line are automatically wrapped to the beginning of the next line.

The CTEXT statement defines the text, identifier, dimensions, and attributes of the control.
The predefined class for this control is WC_STATIC. If you do not specify a style, the default
style is SS_TEXT, DT_CENTER, and WS_GROUP.

Use the CTEXT statement only in a DIALOG or WINDOW statement.

Example: This example creates a centered-text control that is labeled "Filename."

CTEXT "Filename", 101, 10, 10, 100, 100

CTLDATA Statement

The CTLDATA statement defines control data for a custom dialog box, window, or control.

Syntax
CTLDATA word-value [, word-value] ...

CTLDATA string

CTLDATA MENU
BEGIN
menuitem-definition

END

Description: The statement has three basic forms to permit specifying a menu or
specifying data in words or characters. The data can be in any format, because only your
window procedure will use it. The window procedure of the dialog box, window, or control
receives this data when the item is created. It is up to the window procedure to process the
data.

CTLDATA is often used to supply data that controls the subsequent operation of the custom
window. For example, the CTLDATA statement may contain extended style bits - that is,
style bits designed specifically for your customized window.

You should reserve the CTLDATA statement for window classes that you create yourself.

Chapter 12. Resource Files 12-9

Example: This example creates a menu for the window created with the WINDOW
statement.

WINDOWTEMPLATE 1
BEGIN

WINDOW "Sampl e", 1, 0, 0, 100, 100, "MYCLASS", 0, FCF _STANDARD
CTLDATA MENU
BEGIN

END
END

MENUITEM ~Exit", 101

DEFAULTICON STATEMENT
This statement installs the named icon file definition under the ICON Extended Attribute of
the program file.

Syntax
DEFAULTICON filename

Description: An icon with an icon-id of 1 is the default icon by default, unless you supply
a different icon.

Example: DEFAULTICON filename.ico

DEFPUSHBUTTON Statement

The DEFPUSHBUTTON statement creates a default push-button control.

Syntax
DEFPUSHBUTTON text, id, x, y, width, height [, style]

Description: The control is a round-cornered rectangle containing the given text. The
rectangle has a bold outline to represent that it is the default response for the user. The
control sends a message to its parent window when the user chooses the control. The
DEFPUSHBUTTON statement defines the text, identifier, dimensions, and attributes of the
control. The predefined class for this control is we_BuTToN. If you do not specify a style,
the default style is BS_PUSHBUTTON, BS_DEFAULT, and WS_ TABSTOP.

Use the DEFPUSHBUTTON statement only in a DIALOG or WINDOW statement.

Example: This example creates a default push-button control that is labeled "CanceL"

DEFPUSHBUTTON "Cancel", 101, 10, 10, 24, 50

12-1 0 PM Basic Programming Guide

DIALOG Statement

The DIALOG statement defines a window that an application can use to create dialog boxes.

Syntax
DIALOG text, id, x, y, width, height [, [style] [,framectl]] [data-definitions]
BEGIN
control-definition

END

Description: The statement defines the position and dimensions of the dialog box on the
screen, as well as the dialog-box style. The DIALOG statement is most often used in a
DLGTEMPLA TE statement.

Typically, you use only one DIALOG statement in each DLGTEMPLATE statement, and the
DIALOG statement contains at least one control definition.

The exact meaning of the coordinates depends on the style defined by the style field. For
dialog boxes with FS _ SCREENALIGN style, the coordinates are relative to the origin of the
display screen. For dialog boxes with the style FS_MOUSEALlGN, the coordinates are
relative to the position of the mouse pointer at the time the dialog box is created. For all
other dialog boxes, the coordinates are relative to the origin of the parent window.

The DIALOG statement can actually contain any combination of CONTROL, DIALOG, and
WINDOW statements. Typically, a DIALOG statement contains one or more CONTROL
statements.

Example: This example creates a dialog box that is labeled "Disk Error."

DLGTEMPLATE 1
BEGIN

DIALOG "Disk Error", 100, 10, 10, 300, 110
BEGIN

END
END

CTEXT "Select One:", 1, 10, 80, 280, 12
RADIOBUTTON "Retry", 2, 75, 50, 60, 12
RADIOBUTTON "Abort", 3, 75, 30, 60, 12
RADIOBUTTON "Ignore", 4, 75, 10, 60, 12

DLGINCLUDE Statement

The DLGINCLUDE statement adds the specified file name to the resource file.

Syntax
DLGINCLUDE id filename

Chapter 12. Resource Files 12-11

Description: The DLGINCLUDE statement is typically used to let the application access
the definitions file for the dialog box with the corresponding identifier. The file specified in
the filename field must contain the define directives used by the dialog box.

You can provide any number of DLGINCLUDE statements in a resource script file, but each
must have a unique identifier.

Example: This example includes the name of the definition file dlgdef.h. The dialog-box
identifier is 5.

DLGINCLUDE 5 \\INCLUDE\\DLGDEF.H

DLGTEMPLATE Statement

The DLGTEMPLATE statement creates a dialog-box template.

Syntax
DLGTEMPLATE dialog-id [load-option] [mem-option]
BEGIN
dialog-definition

END

Description: A dialog-box template consists of a series of statements that define the
identifier, load and memory options, dialog-box dimensions, and controls in the dialog box.
The dialog-box template can be loaded from the executable file by using the WinLoadDlg
function.

You can provide any number of dialog-box templates in a resource script file, but each
template ~ust have a unique dialog-id value.

A DLGTEMPLA TE statement can actually contain DIALOG, CONTROL, and WINDOW
statements. Typically, you include only one DIALOG statement.

Example: This example uses a DLGTEMPLATE statement to create a dialog box.

DLGTEMPLATE ID_GETTIMER
BEGIN

END

DIALOG "Timer", 1, 10, 10, 100, 40
BEGIN

END

LTEXT "Time (O - 15) :", 4. 8, 24, 72, 12
ENTRYFIELD "0", ID_TIME, 80, 28, 16, 8, ES_MARGIN
DEFPUSHBUTTON "Enter". ID _ TIMEOK. 10, 6, 36, 12
PUSHBUTTON "Cancel", ID_TIMECANCEL, 52, 6, 40, 12

12-12 PM Basic Programming Guide

EDITTEXT Statement

The EDITTEXT statement creates an entry-field control.

Syntax
EDITTEXT text, id, x, y, width, height [, style]

Description: This control is a rectangle in which the user can type and edit text. The
control displays a pointer when the user selects the control. The user can then use the
keyb9ard to enter text or edit the existing text: Editing keys include the BACKSPACE and
DELETE keys. By using the mouse or the DIRECTION keys, the user can select the
characters to delete or select the place to insert new characters.

The EDITTEXT statement defines the text, identifier, dimensions, and attributes of a control
window. The predefined class for this control is WC_ENTRYFIELD. If you do not specify a
style, the default style is ES .fiUTOSCROLL and WS _ TABSTOP.

The EDITTEXT control statement is identical to the ENTRYFIELD control statement. Use the
EDITTEXT statement only in a DIALOG or WINDOW statement.

Example: This example creates an entry-field control that is not labeled.

EDITTEXT "", 101, 10, 10, 24, 50

ENTRYFIELD Statement

The ENTRYFIELD statement creates an entry-field control.

Syntax
ENTRYFIELD text, id, x, y, width, height [, style]

Description: This control is a rectangle in which the user can type and edit text. The
control displays a pointer when the user selects the control. The user can then use the
keyboard to enter text or edit the existing text. Editing keys include the BACKSPACE and
DELETE keys. By using the mouse or the DIRECTION keys, the user can select the
characters to delete or select the place to insert new characters. The ENTRYFIELD
statement, which you can use only in a DIALOG or WINDOW statement, defines the text,
identifier, dimensions, and attributes of a control window. The predefined class for this
control is WC_ENTRYFIELD. If you do not specify a style, the default style is
ES .fiUTOSCROLL and WS _ TABSTOP.

Example: This example creates an entry-field control that is not labeled.

ENTRYFIELD "", 101, 10, 10, 24, 50

Chapter 12. Resource Files 12-13

FONT Statement

The FONT statement defines a font resource for an application.

Syntax
FONT font-id [load-option] [mem-option] filename

Description: A font resource, typically created by using the OS/2 Font Editor, is a bit map
defining the shape of the individual characters in a character set. The FONT statement
copies the font resource from the file specified in the filename field and adds it to the other
resources of the application. A font resource can be loaded from the executable file when
needed by using the GpiLoadFonts function.

You can provide any number of FONT statements in a resource script file, but each
statement must specify a unique font-id value.

Example: This example defines a font whose font identifier is 5. The font resource is
copied from the file cmroman.fon.

FONT 5 cmroman.fon

FRAME Statement

The FRAME statement defines a frame window.

Syntax
FRAME text. id. x. y. width. height. style [. framectl]

data-definitions
[BEGIN
window-definition

END]

Description: The statement defines the title, identifier, position, and dimensions of the
frame window, as well as the window style. The FRAME statement is most often used in a
WINDOWTEMPLATE statement and, typically, only one FRAME statement is used. The
FRAME statement, in turn, typically contains at least one WINDOW statement that defines
the client window belonging to the frame window.

The frame window has no default style. You must use the frameetl field to define additional
frame controls, such as a title bar and system menu, to be created when the frame window
is created. If the text field is not empty, the statement automatically adds a title-bar control
to the frame window, whether or not you specify the FCF _ TITLEBAR style. Frame controls
are given default styles and control identifiers, depending on their class. For example, a
title-bar control receives the identifier FlO _ TITLE BAR.

The FRAME statement can actually contain any combination of CONTROL, DIALOG, and
WINDOW statements. Typically, a FRAME statement contains one WINDOW statement.

12-14 PM Basic Programming Guide

Example: This example creates a standard frame window with a title bar, a system menu,
minimize and maximize boxes, and a vertical scroll bar. The FRAME statement contains a
WINDOW statement defining the client window belonging to the frame window.

WINDOWTEMPLATE 1
BEGIN

FRAME liMy Window", I, 10, 10, 320, 130, 0,
FCF_STANDARD I FCF_VERTSCROLL

BEGIN

END
END

WINDOW 1111, flO_CLIENT, 0, 0, 0, 0, IMyClientClass"

GROUPBOX Statement

The GROUPBOX statement creates a group-box control.

Syntax
GROUPBOX text, id, x, y, width, height [, style]

Description: The control is a rectangle that groups other controls together by drawing a
border around them and displaying the given text in the upper-left corner.

The GROUPBOX statement defines the text, identifier, dimensions, and attributes of a control
window. The predefined class for this control is WC_STATIC. If you do not specify a style,
the default style is SS_GROUPBOX and WS_TABSTOP.

Use the GROUPBOX statement only in a DIALOG or WINDOW statement.

Example: This example creates a group-box control that is labeled "Options."

GROUPBOX "Options", 101, 10, 10, 100, 100

HELPITEM Statement

The HELPITEM statement defines the help items in a help table.

Syntax
HELPITEM application-window-id, help-subtable-id, extended-helppanel-id

Description: This statement specifies the resource identifier of an application window for
which help is provided, along with the resource identifiers of the help subtable and extended
help panel associated with the application window.

You can provide any number of HELPITEM statements in a HELPTABLE statement. You
should provide one HELPITEM statement for each application window for which help is
provided.

Use the HELPITEM statement only in a HELPTABLE statement.

Chapter 12. Resource Files 12-15

Example: This example defines a help item that associates a help subtable called
IDSUB_FILEMENU and an extended help panel called IDEXT _APPHLP with an application
window called IDWIN_FILEMENU.

HELPITEM IDWIN_FILEMENU, IDSUB_FILEMENU, IDEXT_APPHLP

HELPSUBITEM Statement
The HELPSUBITEM statement defines the help subitems in a help
subtable.

Syntax
HELPSUBITEM child-window-id, helppanel-id [, integer] ...

Description: This statement specifies the identifier of a child window for which help is
provided, the identifier of the help panel associated with the child window, and one or more
optional, application-defined integers.

You can provide any number of HELPSUBITEM statements in a HELPSUBTABLE statement.
You should provide one HELPSUBITEM statement for each child window for which help is
provided.

Use the HELPSUBITEM statement only in a HELPSUBTABLE statement.

Example: This example defines a help subitem that associates a child window called
IDCLD_FILEMENU with a help panel called IDHP _FILEMENU.

HELPSUBITEM IDCLD_FILEMENU, IDHP_FILEMENU

HELPSUBTABLE Statement

The HELPSUBTABLE statement defines the contents of a help-subtable resource.

Syntax
HELPSUBTABLE helpsubtable-id

[SUBITEMSIZE size]
BEGIN
helpsubitem-definition

END

Description: A help-subtable resource contains a help-subitem entry for each item that
can be selected in an application window. Each of these items should be a child window of
the application window specified in the help-table resource. The help subtable should
contain a help subitem for each control, child window, and menu item in the application
window.

You can provide any number of HELPSUBTABLE statements in a resource script file, but
each statement must specify a unique helpsubtable-id value. You can also provide any

12-16 PM Basic Programming Guide

number of helpsubitem-definition statements in the help subtable. These specify the child
window for which help is provided, the help panel containing the help text for the child
window, and one or more application-defined integers.

If you include optional integers in the helpsubitem-definition statements, you must also
include a SUBITEMSIZE statement to specify the size, in words, of each help subitem. All
help subitems in a help subtable must be the same size. The default size is two words per
help subitem.

Example: This example creates a help-subtable resource whose help-subtable identifier is
IDSUB_FILEMENU. Each HELPSUBITEM statement specifies a child window and a help
panel.

HELPSUBTABLE IDSUB_FILEMENU
BEGIN

HELPSUBITEM IDCLD_OPEN, IDPNL_OPEN
HELPSUBITEM IDCLD_SAVE, IDPNL_SAVE

END

HELPTABLE Statement

The HELPTABLE statement defines the contents of a help:.table resource.

Syntax
HELPTABLE helptable-id
BEGIN
helpitem-definition

END

Description: A help-table resource contains a help-item entry for each application
window, dialog box, and message box for which help is provided.

You can provide any number of HELPTABLE statements in a resource script file, but each
statement must specify a unique helptable-id value. You can also provide any number of
helpitem-definition statements in the help table. These statements specify the application
windows for which help is provided, the help subtables associated with each application
window, and the extended help panels associated with each application window ..

Example: This example creates a help-table resource whose help-table identifier is 1.
Each HELPITEM statement specifies an application window, a help subtable, and an
extended help panel.

HELPTABLE 1
BEGIN

HELPITEM IDWIN_FILEMENU, IDSUB_FILEMENU, IDEXT APPHLP
HELPITEM IDWIN_EDITMENU, IDSUB_EDITMENU, IDEXT APPHLP

END

Chapter 12. Resource Files 12-17

ICON Statement (Resource)

This form of the ICON statement defines an icon resource for an application.

Syntax
ICON icon-id [load-option] [mem-option] filename

Description: An icon resource, typically created by using the Icon Editor, is a bit map
defining the shape of the icon to be used for a given application. The ICON statement
copies the icon resource from the file specified in the filename field and adds it to the
application's other resources. An icon resource can be loaded when creating a window by
using the WinCreateStdWindow function with the FS JCON style.

You can provide any number of ICON statements in a resource script file, but each
statement must specify a unique icon-id value.

An icon with an icon-id of 1 is the default icon. The RC program writes the icon not only to
the resources in your executable file but also as the .ICON extended attribute.

Example: This example defines an icon whose icon identifier is 11. The icon resource is
copied from the file custom.ico.

ICON 11 custom.ico

ICON Statement (Control)

This form of the ICON statement creates an icon control.

Syntax
ICON icon-id, id, x, y, width, height [, style]

Description: This control is an icon displayed in a dialog box. The ICON statement
defines the icon-resource identifier, icon-control identifier, and position and attributes of a
control window. The predefined class for this control is WC_STATIC. If you do not specify a
style, the default style is SSJCON. For the ICON statement, the width and height fields are
ignored; the icon automatically sizes itself.

Use the ICON statement only in a DIALOG or WINDOW statement.

Example: This example creates an icon control whose icon identifier is 99.

ICON 99, 101, 10, 10, 0, °
LISTBOX Statement

The LlSTBOX statement creates commonly-used controls for a dialog box or window.

Syntax
LISTBOX id, x, y, width, height [, style]

12-18 PM Basic Programming Guide

Description: The control is a rectangle containing a list of user-selectable strings, such as
file names.

The LlSTBOX statement defines the identifier, dimensions, and attributes of a control
window. The predefined class for this control is WC_LlSTBOX. If you do not specify a style,
the default style is WS _ T ABSTOP.

Use the LlSTBOX statement only in a DIALOG or WINDOW statement.

Example: This example creates a list-box control whose identifier is 101.

LISTBOX 101, 10, 10, 100, 100

L TEXT Statement

The L TEXT statement creates a left-aligned text control.

Syntax
LTEXT text, id, x, y, width, height [, style]

Description: The control is a simple rectangle displaying the given text left-aligned in the
rectangle. The text is formatted before it is displayed. Words that would extend past the
end of a line are automatically wrapped to the beginning of the next line. The L TEXT
statement defines the text, identifier, dimensions, and attributes of the control. The
predefined class for this control is WC _STATIC. If you do not specify a style, the default
style is SS_TEXT, DT_LEFT, and WS_GROUP.

Use the L TEXT statement only in a DIALOG or WINDOW statement.

Example: This example creates a left-aligned text control that is labeled "Filename."

LTEXT "Filename", 101, 10, 10, 100, 100

MENU Statement

The MENU statement defines the contents of a menu resource.

Syntax
MENU menu-id [load-option] [mem-optfon]
BEGIN
menuitem-definition

END

Description: A menu resource is a collection of information that defines the appearance
and function of an application menu. A menu is a special input tool that lets a user choose
commands from a list of command names. A menu resource can be loaded from the
executable file when needed by using the WinLoadMenu function.

Chapter 12. Resource Files 12-19

You can provide any number of MENU statements in a resource script file, but each
statement must specify a unique menu-id value. You can provide any number of
menuitem-definition statements in the menu. These define the submenus and menu items
(commands) in the menu. The order of the statements defines the order of the menu items.

Example: This example creates a menu resource whose menu identifier is 1. The menu
contains a menu item named Alpha and a submenu named Beta. The submenu contains
two menu' items: Item 1 and Item 2.

MENU 1
BEGIN

MENUITEM "Alpha", 100
SUBMENU "Beta", 101
BEGIN

END
END

MENUITEM "Item 1", 200
MENUITEM "Item 2", 201, , MIA_CHECKED

MENUITEM Statement

The MENUITEM statement creates a menu item for a menu.

Syntax
MENUITEM text, menu-id [, menuitem-style [, menuitem-attributerbrk.]

Description:

This statement defines the text, identifier, and attributes of a menu item. Use the
MENUITEM statement only in a MENU or SUBMENU statement.

The system displays the text when it displays the corresponding menu. If the user chooses
the menu item, the system generates a WM_COMMAND message that includes the specified
menu-item identifier and sends it to the window owning the menu.

You can provide any number of MENU ITEM statements, but each must have a unique
menu-id value.

The alternative form of the MENUITEM statement, MENUITEM SEPARATOR, creates a
menu separator. A menu separator is a horizontal dividing bar between two menu items in a
submenu. The separator is not active - that is, the user cannot choose it, it has no text
associated with it, and it has no identifier.

You can use the \t or \a character combination in any item name. The \t character inserts a
tab when the name is displayed and is typically used to separate the menu-item name from
the name of an accelerator key. The \a character aligns to the right all text that follows it.
These characters are intended to be used for menu items in submenus only. The width of
the displayed submenu is always adjusted so there is at least one space (and usually more)
between any pieces of text separated by a \t or \a. (When compiling the menu resource, the

12-20 PM Basic Programming Guide

compiler stores the \t and \a characters as control characters. For example, the \t is stored
as Ox09.)

A tilde (~) character in the item name indicates that the following character is used as a
mnemonic character for the item. When the menu is displayed, the tilde is not shown, but
the mnemonic character is underlined. The user can choose the menu item by pressing the
key corresponding to the underlined mnemonic character.

Example: This example creates a menu item named Alpha. The item identifier is 101.

MENU ITEM "Alpha", 101

This example creates a menu item named Beta. The item identifier is 102. The menu item
has a text style and a checked attribute.

MENUITEM "Beta", 102, MIS_TEXT, MIA_CHECKED

This example creates a menu separator between menu items named Gamma and Delta.

MENUITEM "Gamma", 103
MENU ITEM SEPARATOR
MENU ITEM "Delta", 104

This example creates a menu item that has a bit map instead of a name. The bit-map
identifier, 1, is first defined using a BITMAP statement. The identifier for the menu item is
301. Note that a # sign must be placed in front of the bit map identifier in the MENUITEM
statement.

BITMAP 1 mybitmap.bmp

MENUITEM "#1", 301, MIS_BITMAP

MESSAGETABLE Statement

The MESSAGETABLE statement creates one or more string resources for an application.

Syntax
MESSAGETABLE [load-option] [mem-option]
BEGIN
string-id string-definition

END

Description: A string resource is a null-terminated character string that has a unique
string identifier. A string resource can be loaded from the executable file when needed by
using the DosGetResource or DdsGetResource2 function with the RT _MESSAGE resource
type.

You can provide any number of MESSAGETABLE statements in a resource script file. The
compiler treats all the strings from the various MESSAGETABLE statements as if they

Chapter 12. Resource Files 12-21

belonged. to a single statement. This means that no two strings in a resource script file can
have the same string identifier.

Although the MESSAGETABLE and STRINGTABLE statements are nearly identical, most
applications use the STRINGTABLE statement instead of the MESSAGETABLE statement to
create string resources.

You can continue a string on multiple lines by terminating the line with a backslash (\) or by
terminating the line with a double quotation mark (") and then starting the next line with a
double quotation mark.

Example: This example creates two string resources whose string identifiers are 1 and 2.

MESSAGETABLE
BEGIN

1 "Filename not found"
2 "Cannot open file for reading"

END

MLE Statement

The MLE statement creates a multiple-line entry-field control.

Syntax
MLE text, id, x, y, width, height [, style]

Description: The control is a rectangle in which the user can type and edit multiple lines
of text. The control displays a pointer when the user selects it. The user can then use the
keyboard to enter text or edit the existing text. Editing keys include the BACKSPACE and
DELETE keys. By using the mouse or the DIRECTION keys, the user can select the
characters to delete or select the place to insert new characters. The MLE statement, which
you can use only in a DIALOG or WINDOW statement, defines the text, identifier,
dimensions, and attributes of a control window. The predefined class for this control is
WC_MLE. If you do not specify a style, the default style is MLS_BORDER, WS_GROUP,
and WS _ TABSTOP.

Example: This example creates a multiple-line entry-field control that is not labeled.

MLE "", 101, 10, 10, 50, 100

NOTEBOOK Statement

The NOTEBOOK statement creates a notebook control within the dialog window.

Syntax
NOTEBOOK id, x, y, width, height [, style]

Description: This control is used to organize information on individual pages so that it can
be located and displayed easily. The NOTEBOOK statement defines the identifier, position,
dimensions, and attributes of a notebook control. The predefined class for this control is

12-22 PM Basic Programming Guide

we_NOTEBOOK. If you do not specify a style, the default style is WS _ TABSTOP and
WS_ VISIBLE.

Use the NOTEBOOK statement only in a DIALOG or WINDOW statement.

Example: This example creates a notebook control at position (20, 20) within the dialog
window. The notebook has a width of 200 character units and a height of 50 character units.
Its resource 10 is 201. The tabs style BKS_ROUNDEDTABS specification overrides the
notebook default style of square tabs. The default styles WS_TABSTOP and WS_GROUP
are both in effect, although only the latter is specified.

#define IDC_NOTEBOOK 201
#define IDD NOTEBOOKDLG 503
DIALOG "Notebook", IDD_NOTEBOOKDLG, 11, 11, 420, 420, FS_NOBYTEALIGN I

WS_VISIBLE, FCF_SYSMENU I FCF_TITLEBAR
BEGIN

NOTEBOOK IDe_NOTEBOOK, 20, 20, 200, 400, BKS_ROUNDEDTABS WS_GROUP
END

POINTER Statement

The POINTER statement defines a pointer resource for an application.

Syntax
POINTER pointer-id [load-option] [mem-option] filename

Description: A pointer resource, typically created by -using the OS/2 Icon Editor, is a bit
map defining the shape of the mouse pointer on the screen. The POINTER statement
copies the pointer resource from the file specified in the filename field and adds it to the
application's other resources. A pointer resource can be loaded from the executable file
when needed by using the WinLoadPointer function.

You can provide any number of POINTER statements in a resource script file, but each
statement must specify a unique pointer-id value.

Example: This example defines a pointer whose pointer identifier is 10. The pointer
resource is copied from the file custom.cur.

POINTER 10 custom. cur

PRESPARAMSSt~eme~

, The PRESPARAMS statement defines presentation fields that customize a dialog box, menu,
window, or control.

Syntax
PRESPARAMS presparam, value [, value] ...

Chapter 12. Resource Files 12-23

Description: PRESPARAMS data is a series of types and values. The window procedure
of the dialog box, menu, window, or control receives and processes this data when the item
is created. The data for custom controls can be in any format.

PRESPARAMS is often used to supply data to control the appearance of the customized
window when it is first created. For example, the PRESPARAMS statement may specify the
colors to be used in the window.

Example: This example creates a menu resource with a menu identifier of 1. The
PRESPARAMS statement specifies that the following three menu items be displayed in the
12-point Helvetica** font.

MENU 1
BEGIN

END

PRESPARAMS PPJONTNAMESIZE, "12.Helv"
MENUITEM "New", 100
MENUITEM "Open", 101
MENUITEM "Save", 102

PUSHBUTTON Statement

The PUSHBUnON statement creates a push-button control.

Syntax
PUSHBUTTON text, id, x, y, width, height [, style]

Description: The control is a round-cornered rectangle containing the given text. The
control sends a message to its parent whenever the user chooses the control. The
PUSHBUnON statement defines the text, identifier, dimensions, and attributes of a control
window. The predefined class for this control is we_BunON. If you do not specify a style,
the default style is BS_PUSHBUnON and WS_TABSTOP.

Use the PUSHBUnON statement only in a DIALOG or WINDOW statement.

Example: This example creates a push-button control that is labeled "OK."

PUSHBUTTON "OK", 101, 10, 10, 100, 100

RADIOBUTTON Statement

The RADIOBUnON statement creates a radio-button control, which is a small circle that has
the given text displayed to its right.

Syntax
RADIOBUTTON text, id, x, y, width, height [, style]

Description: The control highlights the circle and sends a message to its parent window
when the user selects the button. The control removes the highlight and sends a message
when the button is next selected. The RAD.lOBUnON statement defines the text, identifier,

12-24 PM Basic Programming Guide

dimensions, and attributes of a control window. The predefined class for this control is
WC_BUTTON. If you do not specify a style, the default style is BS_RADIOBUTTON.

Use the RADIOBUTTON statement only in a DIALOG or WINDOW statement.

Example: This example creates a radio-button control that is labeled "Italic."

RADIOBUTTON "Italic", 101, 10, 10, 24, 50

RCDATA Statement

The RCDATA statement defines a custom-data resource for an application.

Syntax
RCDATA resource-id
BEGIN
data-definition [, data-definition]

END

Description: The custom data can be in whatever format the application requires. You
can provide any number of RCDATA statements in a resource script file, but each statement
must specify a unique resource-id value. A custom-data resource can be loaded from the
executable file when needed by using the DosGetResource or DosGetResource2 functions
with the RT_RCDATA resource type.

Example: This example defines custom data that has a resource identifier of 5.

RCDATA 5
BEGIN

"E. A. Poe", 1849, -32, 3L, 0x8000000l, 3+4+5
END

RCINCLUDE Statement

The RCINCLUDE statement causes RC to process the resource script file specified in the
filename field along with the current resource script file.

Syntax
RCINCLUDE filename

Description: The contents of both script files are compiled by RC and the results are
placed in one binary resource file and/or executable file.

RCINCLUDE statements are processed before any other processing is done, including
preprocessing by RCPP.EXE, which removes comments, replaces values in the define
directives, and so forth.

Chapter 12. Resource Files 12-25

When specifying a high performance file system (HPFS) file name on an RCINCLUDE
statement, enclose the path and file name in double quotes; for example:

RCINCLUDE "d:\project\long dialog.dlg"

Double quotes enable the resource compiler to recognize a name containing embedded
blank characters.

Example: This example includes the file DIALOGS.RC as part of the current resource
script file.

RCINCLUDE dialogs.rc

RESOURCE Statement

The RESOURCE statement defines a custom resource for an application.

Syntax
RESOURCE type- i d resource- i d [load-opt ion] [mem-opt ion] fil ename

Description: A custom resource can be any data in any format. The RESOURCE
statement copies the custom resource from the specified file and adds it to the application's
other resources. A custom resource can be loaded from the executable file when needed by
using the DosGetResource or DosGetResource2 function and specifying the resource's type
and resource identifier.

You can provide any number of RESOURCE statements in a resource script file, but each
statement must specify a unique combination of type-id and resource-id values. That is,
RESOURCE statements having the same type-id value are permitted as long as the
resource-id value for each is unique.

Example: This example defines a custom resource whose type identifier is 300 and whose
resource identifier is 14. The custom resource is copied from the file CUSTOM.RES.

RESOURCE 300 14 custom. res

RTEXT Statement

The RTEXT statement creates a right-aligned text control.

Syntax
RTEXT text, id, x, y, width, height [, style]

Description: The control is a simple rectangle displaying the given text right-aligned in the
rectangle. The text is formatted before it is displayed. Words that would extend past the
end of a line are automatically wrapped to the beginning of the next line. The RTEXT
statement, which you can use only in a DIALOG or WINDOW statement, defines the text,
identifier, dimensions, and attributes of the control. The predefined class for the control is
WC_STATIC. If you do not specify a style, the default style is SS_TEXT, DT_RIGHT, and
WS GROUP.

12-26 PM Basic Programming Guide

Example: This example creates a right-aligned text control that is labeled "Filename."

RTEXT "Filename", 101, 10, 10, 100, 100

SLIDER Statement

The SLIDER statement creates a slider control within the dialog window.

Syntax
SLIDER id, x, y, width, height [, style]

Description: This control lets the user set, display, or modify a value by moving a slider
arm along a slider shaft. The SLIDER statement defines the identifier, position, dimensions,
and attributes of a slider control. The predefined class for this control is WC_SLlDER. If you
do not specify a style, the default style is WS_ TABSTOP and WS_ VISIBLE.

Use the SLIDER statement only in a DIALOG or WINDOW statement.

Example: This example creates a slider control at position (40, 30) within the dialog
window. The slider has a width of 120 character units and a height of 2 character units. Its
resource ID is 101. The style specification SLS_BUTTONSLEFT adds buttons to the left of
the slider shaft. The default styles WS_ TABSTOP and WS_ VISIBLE are both in effect,
although only the latter is specified.

#define IDC_SLIDER 101
#define IDD SLIDERDLG 502
DIALOG "Sl i der", IDD_SLIDERDLG, 11, 11, 200, 240, FS_NOBYTEALIGN I

WS_VISIBLE, FCF_SYSMENU I FCF_TITLEBAR
BEGIN

SLIDER IDC_SLIDER, 40, 30, 120, 16, SLS_BUTTONSLEFT WS_VISIBLE
END

SPIN BUTTON Statement

The SPINBUTTON statement creates a spin-button control within the dialog window.

Syntax
SPINBUTTON id, x, y, width, height [,style]

Description: This control gives the user quick access to a finite set of data. The
SPINBUTTON statement defines the identifier, position, dimensions, and attributes of a
spin~button control. The predefined class for this control is WC_SPINBUTTON. If you do
not specify a style, the default style is WS_ TABSTOP, WS_ VISIBLE, and SPBS_MASTER.

Use the SPINBUTTON statement only in a DIALOG or WINDOW statement.

Example: This example creates a spin-button control at position (80, 20) within the dialog
window. The spin button has a width of 60 character units and a height of 3 character units.
Its resource ID is 302. The style specification SPBS_NUMERICONLY creates a control

Chapter 12. Resource Files 12-27

which accepts only the digits 0-9 and virtual keys. The default styles SPBS_MASTER,
WS_TABSTOP, and WS_VISIBLE are all in effect, although only WS_TABSTOP is specified.

#define IDC_SPINBUTTON 302
#define IDD_SPINDLG 502
DIALOG "Spin button", IDD SPINDLG, 11, 11, 200, 240, FS_NOBYTEALIGN

WS_VISIBLE, FCF_SYSMENU I FCF_TITLEBAR
BEGIN

SPINBUTTON IDC_SPINBUTTON, 80, 20, 60, 24, SPBS_NUMERICONLY WS_TABSTOP
END

STRINGTABLE Statement

The STRINGTABLE statement creates one or more string resources for an application.

Syntax
STRINGTABLE [load-option] [mem-option]
BEGIN
string-id string-definition

END

Description: A string resource is a null-terminated character string that has a unique
string identifier. A string resource can be loaded from the executable file when needed by
using the WinLoadString function.

You can provide any number of STRINGTABLE statements in a resource script file. The
compiler treats all the strings from the various STRINGTABLE statements as if they belonged
to a single statement. This means that no two strings in a resource script file can have the
same string identifier.

You can continue a string on multiple lines by terminating the line with a backslash (\) or by
terminating the line with a double quotation mark (") and then starting the next line with a
double quotation mark.

Example: This example creates two string resources whose string identifiers are 1 and 2.

#define IDS_HELLO 1
#define IDS_GOODBYE 2

STRINGTABLE
BEGIN

END

IDS_HELLO "Hello"
IDS_GOODBYE "Goodbye"

12-28 PM Basic Programming Guide

SUBITEMSIZE Statement

The SUBITEMSIZE statement specifies the size, in words, of each help subitem in a help
subtable.

Syntax
SUBITEMSIZE size

Description: The minimum size is two words, and each help subitem in a help subtable
must be the same size. When used, the SUBITEMSIZE statement must appear after the
HELPSUBTABLE statement and before the BEGIN keyword.

You do not need to use the SUBITEMSIZE statement if the help subitems are the default
size (2).

Example: The SUBITEMSIZE statement in this example specifies that each
HELPSUBITEM statement contains three words.

HELPSUBTABLE 1
SUBITEMSIZE 3
BEGIN

HELPSUBITEM IDCLD_FILEMENU, IDHP_FILEMENU, 5
HELPSUBITEM IDCLD_HELPMENU, IDHP_HELPMENU, 6

END

SUBMENU Statement

The SUBMENU statement creates a submenu for a given menu.

Syntax
SUBMENU text, submenu-id [, menuitem-style[, menuitem-attributerbrk.]
BEGIN
menuitem-definition

END

Description: A submenu is a vertical list of menu items from which the user can choose a
command.

You can provide any number of SUBMENU statements in a MENU statement, but each
SUBMENU statement must specify a unique submenu-id value. You can provide any
number of menuitem-definition statements in the SUBMENU statement. These define the
menu items (commands) in the menu. The order of the statements determines the order of
the menu items.

Chapter 12. Resource Files 12-29

Example: This example creates a submenu named tlements. Its identifier is 2. The
submenu contains three menu items, which are created by using MENU ITEM statements.

SUBMENU "Elements", 2
BEGIN

MENUITEM "Oxygen", 200
MENU ITEM "Carbon", 201, , MIA_CHECKED
MENUITEM "Hydrogen", 202

END

VALUESET Statement

The VALUESET statement creates a value set control within the dialog window.

Syntax
VALUESET id, x, y, width, height [, style]

Description: This control lets a user select one choice from a group of mutually exclusive
choices. The VALUESET statement defines the id~ntifier, position, dimensions, and
attributes of a value set control. The predefined class for this control is WC_VALUESET. If
you do not specify a style, the default style is WS_TABSTOP and WS_VISIBLE.

Use the VALUESET statement only in a DIALOG or WINDOW statement.

Example: This example creates a value set control at position (40, 40) within the dialog
window. The value set control has a width of 220 character units and a height of 20
character units. Its resource ID is 302. The style specification VSJCON creates a control to
show items in icon form. The default styles WS_ TABSTOP and WS_ VISIBLE are both in
effect, although only WS_TABSTOP is specified.

#define IDC_VALUESET 302
#define IDD_VALUESETDLG 501
DIALOG "Value set", IDD VALUESETDLG, 11, 11, 260, 240, FS NOBYTEALIGN

WS_VISIBLE, FCF=SYSMENU I FCF_TITLEBAR -
BEGIN

VALUESET IDC_VALUESET, 40, 40, 220, 160, VS_ICON WS_TABSTOP
END

WINDOW Statement

The WINDOW statement creates a window of the specified class.

Syntax
WINDOW text, id, x, y, width, height, class [, style [, framect]]

data-definitions
[BEGIN
control-definition

END]

12-30 PM Basic Programming Guide

Description: The statement defines the position and dimensions of the window relative to
its parent window, as well as the window-box style. The WINDOW statement is typically
used in a WINDOWTEMPLATE or FRAME statement.

Usually, only one WINDOW statement is used in a FRAME statement. It defines the client
window belonging to the corresponding frame window. The optional BEGIN and END
keywords enclose any CONTROL statements that are given with the window. CONTROL
statements given in this manner represent child windows belonging to the window created by
the WINDOW statement.

The WINDOW statement can actually contain any combination of CONTROL, DIALOG, and
WINDOW statements. Typically, a WINDOW statement contains one or no such statements.

Example: This example creates a client window belonging to the frame window. The
client window belongs to the "MyClientClass" window class and has the standard window
identifier FID_CLlENT.

WINDOWTEMPLATE 1
BEGIN

FRAME "My Wi ndow", 1, 10, 10, 320, 130,
0, FCF_STANDARD I FCF_VERTSCROLL

BEGIN

END
END

WINDOW"", FID_CLIENT, 0, 0, 0, 0, "MyClientClass"

WINDOWTEMPLATE Statement

The WINDOWTEMPLATE statement creates a window template.

Syntax
WINDOWTEMPLATE window-id [load-option] [mem-option]
BEGIN
window-definition

END

Description: A window template consists of a series of statements that define the window
identifier, load and memory options, window dimensions, and controls in the window. The
window template can be loaded from the executable file by using the WinLoadDlg function.

You can provide any number of window templates in a resource script file, but each template
must have a unique window-id value.

A WINDOWTEMPLATE statement can contain DIALOG, CONTROL, and WINDOW
statements. Typically, only one WINDOW statement is used in the WINDOWTEMPLATE
statement.

Chapter 12. Resource Files 12-31

Directive Descriptions
Thissection provides the syntax, a description, and an example of each of the directives.

#define Directive
The #define directive assigns the given value to the specified name. All subsequent
occurrences of the name are replaced by the value.

Syntax
#define name value

Example
This example assigns values to the names "NONZERO" and "USERCLASS".

#define
#define

#elifDirective

NONZERO
USERCLASS "MyControlClass"

The #elif directive marks an optional clause of a conditional-compilation block defined by a
#ifdef, #ifndef, or #if directive. The directive controls conditional compilation of the resource
file by checking the specified constant expression. If the constant expression is nonzero,
#elif directs the compiler to continue prbcessing statements up to the next #endif, #else, or
#elif directive and then skip to the statement after #endif. If the constant expression is zero,
#elif directs the compiler to skip to the next #endif, #else, or #elif directive. You can use any
number of #elif directives in a conditional block.

Syntax
#elif constant-expression

Example
In this example, #elif directs the compiler to process the second BITMAP statement only if
the value assigned to the name "Version" is less than 7. The #elif directive itself is
processed only if Version is greater than or equal to 3.

#if Version < 3
BITMAP 1 errbox.bmp
#elif Version < 7
BITMAP 1 userbox.bmp
#endif·

#else Directive
The #else directive marks an optional clause of a conditional-compilation block defined by a
#ifdef, #ifndef, or #if directive. The #else directive must be the last directive before the
#endif directive.

This directive has no arguments.

12-32 PM Basic Programming Guide

Syntax
#else

Example
This example compiles the second BITMAP statement only if the name "DEBUG" is not
defined.

#ifdef DEBUG
BITMAP 1 errbox.bmp

#else
BITMAP 1 userbox.bmp

#endif

#endif directive
The #endif directive marks the end of a conditional-compilation block defined by a #ifdef
directive. One #endif is required for each #if, #ifdef, or #ifndef directive.

This directive has no arguments.

Syntax
#endif

#if Directive
The #if directive controls conditional compilation of the resource file by checking the specified
constant expression. If the constant expression is nonzero, #if directs the compiler to
continue processing statements up to the next #endif, #else, or #elif directive and then skip
to the statement after the #endif directive. If the constant expression is zero, it directs the
compiler to skip to the next #endif, #else, or #elif directive.

Syntax
#if constant-expression

Example
This example compiles the BITMAP statement only if the value assigned to the name
"Version" is less than 3.

#if Version < 3
BITMAP 1 errbox.bmp
#endif

#ifdef Directive
The #ifdef directive controls conditional compilation of the resource file by checking the
specified name. If the name has been defined by using a define directive or by using the -d
command-line option of rc, #ifdef directs the compiler to continue with the statement
immediately after the #ifdef directive. If the name has not been defined, #ifdef directs the
compiler to skip all statements up to the next #endif directive.

Chapter 12. Resource Files 12-33

Syntax
#ifdef name

Example
This example compiles the BITMAP statement only if the name "Debug" is defined.

#i fdef Debug
BITMAP 1 errbox.bmp
#endif

#ifndef Directive
The #ifndef directive controls conditional compilation of the resource file by checking the
specified name. If the name has not been defined or if its definition has been removed by
using the #undef directive, #ifndef directs the compiler to continue processing statements up
to the next #endif, #else, or #elif directive and then skip to the statement after the #endif
directive. If the name is defined, #ifndef directs the compiler to skip to the next #endif, #else,
or #elif directive.

Syntax
#ifndef name

Example
This example compiles the BITMAP statement only if the name "Optimize" is not defined.

#ifndef Optimize
BITMAP 1 errbox.bmp
#endif

#include Directive
The #include directive causes RC to process the file specified in the filename field. This file
should be a header file that defines the constants used in the resource script file. Only the
define directives in the specified file are processed. All other statements are ignored.

The filename field is handled as a C string. Therefore, you must include two backslashes (\\)
wherever one is required in the path. (As an alternative, you can use a single forward slash
(I) instead of two backslashes.)

Syntax
#include filename

Example
This example processes the header files OS2.H and HEADERS\MYDEFS.H\I while compiling
the resource script file.

#include <os2.h>
#include "headers\\\\mydefs.h"

12-34 PM Basic Programming Guide

#undef Directive
The undef directive removes the current definition of the specified name. All subsequent
occurrences of the name are processed without replacement.

Syntax
#undef name

Example
This example removes the definitions for the names "nonzero" and "USERCLASS".

#undef
#undef

nonzero
USERCLASS

Chapter 12. Resource Files 12-35

Using Resource Files
This section explains how to create a resource script file, compile it using the Resource
Compiler (RC.EXE), and optionally add the resources to your executable file. Resource
script files have a default file-name extension of .RC.

For resource information on the individual controls, see the chapter on the specific control.
For example, an example· of a resource script file for frame windows is in Chapter 6, "Frame
Windows" on page 6-1.

Creating and Compiling a Resource File
The resource compiler (RC) compiles a resource script file to create a new file, called a
binary resource file, which has a .RES file-name extension. The binary resource file can be
added to the executable file of the application, thereby replacing any existing resources in
that file.

The RC command line has the following three basic forms:

rc resource-script-file [executable-file]

rc binary-resource-file [executable-file]

rc -r resource-script-file [binary-resource-file]

Note: The third option does not add to the executable file.

The resource-script-file parameter is the file name of the resource script file to be compiled.

The executable-file parameter must be the name of the executable file to receive the
compiled resources. This is a file having a file-name extension of either .EXE or .DLL. If
you omit the executable-file field, RC adds the compiled resources to the executable file that
has the same name as the resource script file but which has the .EXE file-name extension.

The binary-resource-file parameter is the name of the binary resource file to be added to the
executable file.

The -r option directs RC to compile the resource script file without adding it to an executable
file.

Compiling and Adding Resources to the .EXE File
To compile the resource script file EXAMPLERC and add the result to the executable file
EXAMPLE.EXE, use the following command:

rc example

You do not need to specify the .RC extension. RC creates the binary resource file
EXAMPLERES and adds the compiled resource to the executable file EXAMPLE EXE.

12-36 PM Basic Programming Guide

Compiling without Adding Resources to the .EXE File
To compile the resource script file EXAMPLE.RC into a binary resource file without adding
the resources to an executable file, use the following command:

rc -r example

The compiler creates the binary resource file EXAMPLE. RES. To create a binary resource
file that has a name different from the resource script file, use the following command:

rc -r example newfile.res

Adding the Compiled Resources to the .EXE File
To add the compiled resources in the binary resource file EXAMPLE.RES to an executable
file, use the following command:

rc example.res

To specify the name of the executable file, if the name is different from the resource file, use
the following command:

rc example.res newfile.exe

Adding the Compiled Resources to a DLL
To add the compiled resources to a dynamic-link-library (DLL) file, use the following
command:

rc example.res dynalink.dll

Chapter 12. Resource Files 12-37

Summary
The following tables summarize the resource statements and directives associated with
resource files.

Table 12-1 (Page 1 of 4). Resource File Statements

Statement Name

ACCELTABLE

ASSOCTABLE

AUTOCHECKBOX

AUTORADIOBUTTON

BITMAP

CHECKBOX

CODEPAGE

COMBOBOX

CONTAINER

CONTROL

CTEXT

CTLDATA

DEFAUL TICON

DEFPUSHBUTTON

12-38 PM Basic Programming Guide

Description

Creates a table of accelerators for an application. An accelerator
is a keystroke that gives the user a quick way to choose a
command from a menu or carry out some other task.

Defines a file-association table for an application. This table
associates the data files that an application creates with the
executable file of the application.

Creates an automatic-check-box control, which is a small
rectangle (check box) that contains an X when the user selects
it.

Creates an automatic-radio-button control, which is a small circle
with the given text displayed to its right.

Defines a bit-map resource for an application. A bit-map
resource, typically created using the Icon Editor, is a custom bit
map that an application uses in its display or as an item in a
menu.

Creates a check-box control, which is a small rectangle (check
box) that has the specified text displayed to the right.

Sets the code page for all subsequent resources. The code
page specifies the character set used for characters in the
resource.

Creates a combination-box control, which combines a list-box
control with an entry-field control. It allows the user to .place the
selected item from a list box into an entry field.

Creates a container control within a dialog window. The
container control is a visual component that holds objects.

Defines a control as belonging to the specified class. The
statement defines the position and dimensions of the control
within the parent window, as well as the control style.

Creates a centered-text control, which is a simple rectangle
displaying the given text centered in the rectangle.

Defines control data for a custom dialog box, window, or control.
The CTLDAT A statement is reserved for window classes that
you create yourself.

Installs an icon definition under the ICON EA of the program file.

Creates a default push-button control, which is a round-cornered
rectangle containing the given text. The rectangle has a bold
outline to represent that it is the default response for the user.

Table 12-1 (Page 2 of 4). Resource File Statements

Statement Name Description

DIALOG Defines a window that an application can use to create dialog
boxes. The statement defines the position and dimensions of
the dialog box on the screen, as well as the dialog-box style.

DLGINCLUDE Adds the specified file name to the resource file. The
DLGINCLUDE statement is typically used to let the application
access the definitions file for the dialog box with the
corresponding identifier.

DLGTEMPLATE Creates a dialog-box template, which consists of a series of
statements that define the identifier, load and memory options,
dialog-box dimensions, and controls in the dialog box.

EDITTEXT Creates an entry-field control, which is a rectangle in which the
user can type and edit text. The control displays a pointer when
the user selects the control.

ENTRYFIELD Creates an entry-field control, which is a rectangle in which the
user can type and edit text.

FONT Defines a font resource for an application. A font resource,
typically created by using the OS/2 Font Editor, is a bit map
defining the shape of the individual characters in a character set.

FRAME Defines a frame window, specifying title, identifier, position, and
dimensions of the frame window, as well as the window style.

GROUPBOX Creates a group-box control, which is a rectangle that groups
other controls together by drawing a border around them and
displaying the given text in the upper-left corner.

HELPITEM Defines the help items in a help table, specifying the resource
identifier of an application window for which help is provided,
along with the resource identifiers of the help subtable and
extended help panel associated with the application window.

HELPSUBITEM Defines the help subitems in a help subtable, specifying the
identifier of a child window for which help is provided, the
identifier of the help panel associated with the child window, and
one or more optional, application-defined integers.

HELPSUBTABLE Defines the contents of a help-subtable resource, which contains
a help-sub item entry for each item that can be selected in an
application window.

HELPTABLE Defines the contents of a help-table resource, which contains a
help-item entry for each application window, dialog box, and
message box for which help is provided.

ICON (resource) This form of the ICON statement defines an icon resource for an
application. An icon resource, typically created by using the Icon
Editor, is a bit map defining the shape of the icon to be used for
a given application.

Chapter 12. Resource Files 12-39

Table 12-1 (Page 3 of 4). Resource File Statements

Statement Name Description

ICON (control) This form of the ICON statement creates an icon control, which
is an icon displayed in a dialog box. The ICON statement
defines the icon-resource identifier, icon-control identifier,
position, and attributes of a control window.

LlSTBOX Creates commonly-used controls for a dialog box or window.
The control is a rectangle containing a list of user-selectable
strings such as file names.

LTEXT Creates a left-aligned text control, which is a simple rectangle
displaying the given text left-aligned in the rectangle.

MENU Defines the contents of a menu resource, which is a collection of
information that defines the appearance and function of an
application menu.

MENUITEM Creates a menu item for a menu, specifying the text, identifier,
and attributes of a menu item.

MESSAGETABLE Creates one or more string resources for an application. A string
resource is a null-terminated character string that has a unique
string identifier.

MLE Creates a multiple-line entry-field control, which is a rectangle in
which the user can type and edit multiple lines of text.

NOTEBOOK Creates a notebook control within the dialog window. This
control is used to organize information on individual pages so it
can be located and displayed easily.

POINTER Defines a pointer resource for an application. A pointer
resource, typically created by using the OS/2 Icon Editor, is a bit
map defining the shape of the mouse pointer on the screen.

PRESPARAMS Defines presentation fields that customize a dialog box, menu,
window, or control.

PUSHBUTTON Creates a push-button control, which is a round-cornered
rectangle containing the given text.

RADIOBUTTON Creates a radio-button control, which is a small circle that has
the given text displayed to its right.

RCDATA Defines a custom-data resource for an application. The custom
data can be in whatever format the application requires.

RCINCLUDE Causes RC to process the resource script file specified in the
filename field along with the current resource script file.

RESOURCE Defines a custom resource for an application. A custom
resource can be any data in any format.

RTEXT Creates a right-aligned text control, which is a simple rectangle
displaying the given text right-aligned in the rectangle.

SLIDER Creates a slider control within the dialog window. This control
lets the user set, display, or modify a value by moving a slider
arm.

12-40 PM Basic Programming Guide

Table 12-1 (Page 4 of 4). Resource File Statements

Statement Name

SPINBUTTON

STRINGTABLE

SUBITEMSIZE

SUBMENU

VALUESET

WINDOW

WINDOWTEMPLATE

Table 12-2. Directives

Directive Name

#define

#elif

#else

#endif

#if

#ifdef

#ifndef

#include

#undef

Description

Creates a spin-button control within the dialog window. This
control gives the user quick access to a finite set of data.+

Creates one or more string resources for an application. A string
resource is a null-terminated character string that has a unique
string identifier.

Specifies the size, in words, of each help subitem in a help
subtable.

Creates a submenu for a given menu. A submenu is a vertical
list of menu items from which the user can choose a command.

Creates a value set control within the dialog window. This
control lets a user select one choice from a group of mutually
exclusive choices.

Creates a window of the specified class, defining the position
and dimensions of the window relative to its parent window, as
well as the window-box style.

Creates a window template, which consists of a series of
statements that define the window identifier, load and memory
options, window dimensions, and controls in the window.

Description

Assigns the given value to the specified name. All subsequent
occurrences of the name are replaced by the value.

Marks an optional clause of a conditional-compilation block
defined by a #ifdef, #ifndef, or #if directive.

Marks an optional clause of a conditional-compilation block
defined by a #ifdef, #ifndef, or #if directive.

Marks the end of a conditional-compilation block defined by a
#ifdef directive.

Controls conditional compilation of the resource file by checking
the specified constant expression.

Controls conditional compilation of the resource file by checking
the specified name.

Controls conditional compilation of the resource file by checking
the specified name.

Causes RC to process the file specified in the filename field.

Removes the current definition of the specified name.

Chapter 12. .Resource Files 12-41

12-42 PM Basic Programming Guide

Chapter 13. Menus

A menu is a window that contains a list of items- text strings, bit maps, or images drawn by
the application-that enables the user, by mouse or keyboard, to choose from these
predetermined choices. This chapter describes how to use menus in your PM applications.

About Menus
A menu always is owned by another window, usually a frame window. When a user makes
a choice from a menu, the menu posts a message containing the unique identifier for the
menu item to its owner by way of the owner window's window procedure.

Menu bar

Figure 13-1. Menus

Pull-down Cascaded
menu menu

Pop-up
menu

An application typically defines its menus using Resource Compiler, and then associates the
menus with a frame window when the frame window is created. Applications also can create
menus by filling in menu-template data structures and creating windows with the WC_MENU
class. Either way, applications can add, delete, or change menu items dynamically by
issuing messages to menu windows.

Menu Bar and Pull-Down Menus
A typical application uses a menu bar and several pull-down submenus. The pull-down
submenus ordinarily are hidden, but become visible when the user makes selections in the
menu bar. Pull-down submenus always are attached to the menu bar.

© Copyright IBM Corp. 1994 13-1

The menu bar is a child of the frame window; the menu bar window handle is the key to
communicating with the menu bar and its submenus. You can retrieve this handle by calling
WinWindowFromlO, with the handle of the parent window and the FlO_MENU frame-control
identifier. Most messages for the menu bar and its submenus can be issued to the
menu-bar window. Flags in the messages tell the window whether to search submenus for
requested menu items.

Pop-Up Menus
A pop-up menu is like a pull-down submenu, except that it is not attached to the menu bar; it
can appear anywhere in its parent window. A pop-up menu usually is associated with a
portion of a window, such as the client window (see Figure 13-2), or it is associated with a
specific object, such as an icon.

Pop-up menu

Figure 13-2. Pop-Up Menu

'. 11 alte comm mu constued uip ex
not res et lebo 1 ncuen ni comodo

mun nom, Vemnami qui r eos
. Eroat eol ust eu1 e1labore
notsi us di mu 1emporal emH

u mi numal velcao e1 temp
emie nom. Vemnami disr et.
mu nami qui r eos mun nom.
u temporal lebo i ncuen ni
i qui r eos no1res et lebo et.
mmat col ust eut et eos mun nom.

A pop-up menu remains hidden until the user selects it (either by moving the·cursor to the
appropriate location and pressing Enter or clicking on the location with the mouse).
Typically, pop-up menus are displayed at the position of the cursor or mouse pOinter; they
provide a quick mechanism for selecting often-used menu items.

To include a pop-up menu in an application, you first must define a menu resource in a
resource-definition file, then load the resource using the WinLoadMenu or WinCreateMenu

13-2 PM Basic Programming GUide

functions. You must call WinPopupMenu to create the pop-up menu and display it in the
parent window. Applications typically call WinPopupMenu in a window procedure in
response to a user-generated message, such as WM_BUTTON2DBLCLK or WM_CHAR.

WinPopupMenu requires that you specify the pop-up menu's handle and also the handles of
the parent and owner windows of the pop-up menu. WinLoadMenu and WinCreateMenu
return the handle of the pop-up menu window, but you must obtain the handles of the parent
and owner by using WinQueryWindow.

You determine the position of the pop-up menu in relation to its parent by specifying
coordinates and style flags in WinPopupMenu. The x and y coordinates determine the
position of the lower-left corner of the menu relative to the lower-left corner of the parent.
The system may adjust this position, however, if you include the PU_HCONSTRAIN or
PU_ VCONSTRAIN style flags in the call to WinPopupMenu. If necessary,
PU_HCONSTRAIN adjusts the horizontal position of the menu so that its left and right edges
are within the borders of the desktop window. PU _ VCONSTRAIN makes the same
adjustments vertically. Without these flags, a desktop-level pop-up menu can lie partially off
the screen, with some items not visible nor selectable.

The PU_POSITIONONITEM flag also can affect the position of the pop-up menu. This flag
positions the pop-up menu so that, when the pop-up menu appears, the specified item lies
directly under the mouse pointer. Also, PU_POSITIONONITEM automatically selects the
item. PU_POSITIONONITEM is useful for placing the current menu selection under the
pointer so that, if the user releases the mouse button without selecting a new item, the
current selection remains unchanged.

The PU_SELECTITEM flag is similar to PU_POSITIONONITEM except that it just selects the
specified item; it does not affect the position of the menu.

You can enable the user to choose an item from a pop-up menu by using the same mouse
button that was used to display the menu. To do this, specify the PU_MOUSEBUTTONn
flag, where n corresponds to the mouse button used to display the menu. This flag specifies
the mouse buttons for the user to interact with a pop-up menu once it is displayed.

By using the PU_MOUSEBUTTONn flag, you can enable the user to display the pop-up
menu, select an item, and dismiss the menu, all in one operation. For example, if your
window procedure displays the pop-up window when the user double-clicks mouse button 2,
specify the PU_MOUSEBUTTON2DOWN flag in the WinPopupMenu function. Then, the
user can display the menu with mouse button 2; and, while holding the button down, select
an item. When the user releases the button, the item is chosen and the menu dismissed.

System Menu
The system menu in the upper-left corner of a standard frame window is different from the
menus defined by the application. The system menu is controlled and defined almost
exclusively by the system; your only decision about it is whether to include it when creating a
frame window .. (It is unu~ual for a frame window not to include a system menu.) The
system menu generates WM_SYSCOMMAND messages instead of WM_COMMAND

Chapter 13. Menus 13-3

messages. Most applications simply use the default behavior for WM_SYSCOMMAND
messages, although applications can add, delete, and change system-menu entries.

Menu Items
All menus can contain two main types of menu items: command items and submenu items.
When the user chooses a command item, the menu immediately posts a message to the
parent window. When the user selects a submenu item, the menu displays a submenu from
which the user may choose another item. Since a submenu window also can contain a
submenu item, submenus can originate from other submenus.

When the user chooses a command item from a menu, the menu system posts a
WM_COMMANO, WM_SYSCOMMANO, or WM_HELP message to the owner window,
depending on the style bits of the menu item.

Applications can change the attributes, style, and contents of menu items, and insert and
delete items at run time, to reflect changes in the command environment. An application
also can add items to or delete items from the menu bar, a pop-up menu, or a submenu.
For example, an application might maintain a menu of the fonts currently available in the
system. This application would use graphics programming interface (GPI) calls to determine
which fonts were available and, then, insert a menu item for each font into a submenu.
Furthermore, the application might set the check-mark attribute of the menu item for the
currently chosen font. When the user chose a new font, the application would remove the
check-mark attribute from the previous choice and add it to the new choice.

The Help Item
To present a standard interface to the novice user, all applications must have a Help item in
their menu bars. The Help item is defined with a particular style, attributes, and position in
the menu. When the user chooses the Help item, the menu posts a WM_HELP message to
the owner window, enabling the application to respond appropriately.

The item should read Hel p, have an identifier of 0, and have the MIS_BUTTONSEPARATOR
or MIS_HELP item styles. The Help menu item should be the last item in the menu
template, so that it is displayed as the rightmost item in the menu bar.

If an application uses the system default accelerator table, the user can select the Help item
using either a mouse or the F1 key.

Menu-Item Styles
All menu items have a combination of style bits that determine what kind of data the item
contains and what kind of message it generates when the user selects it. For example, a
menu item can have the MIS_TEXT, MIS_BITMAP, or other styles that specify the visual
representation of the menu item on the screen. Other styles determine what kinds of
messages the item sends to its owner and whether the owner draws the item. Menu-item
styles typically do not change during program execution, but you can query and set them
dynamically by sending MM_QUERYITEM and MM_SETITEM messages with the menu-item
identifier to the menu-bar window. For text menu items (MIS_TEXT) , an MM_SETITEMTEXT
message sets the text. The MM_QUERYITEMTEXT message queries the text of the item.

13-4 PM Basic Programming Guide

For non-text menu items, the hltem field of the MENUITEM structure typically contains the
handle of a display object, such as a bit-map handle for MIS_BITMAP menu items.

An application can draw a menu item by setting the style MIS_OWNERDRAW for the menu
item. This usually is done by specifying the MIS_OWNERDRAW style for the menu item in
the resource-definition file; but it also can be done at run time. When the application draws a
menu item, it must respond to messages from the menu each time the item must be drawn.

Menu-Item Attributes
Menu items have attributes that determine how the items are displayed and whether or not
the user can choose them. An application can set and query menu-item attributes by
sending MM_SETITEMATTR and MM_OUERYITEMATTR messages, with the menu-item
identifier, to the menu-bar window. If the specified item is in a submenu, there are two
methods of determining its attributes. The first is to send MM _ SETITEMA TTR and
MM_OUERYITEMATTR messages to the top-level menu, specifying the identifier of the item
and setting a flag so that the message searches all submenus for the item. Then, you can
retrieve the handle of the menu-bar by calling WinWindowFromlD, with the handle of the
frame window and the FID_MENU frame-control identifier.

The second method, which is more efficient if you want to either work with more than one
submenu item or set the same item several times, involves two steps:

1. Send an MM_OUERYITEM message to the menu, with the identifier of the submenu.
The updated MENUITEM structure contains the window handle of the submenu.

2. Send an MM_OUERYITEMATTR (or MM_SETITEMATTR) message to the submenu
window, specifying the identifier of the item in the submenu.

Menu-Item Structure
A single menu item is defined by the MENU ITEM data structure. This structure is used with
the MM-,NSERTITEM message to insert it€)ms in a menu or to query and set item
characteristics with the MM_OUERYITEM and MM_SETITEM messages. The MENUITEM
structure has the following form:

type(lefstT;'lJct'.J'IENUITEM { I *mi~l
SHORT.· ..• ; Posit i Qn;

USH~RT.afStyle~ ...•
U$HORl.·iI,fA1;tr:i.bute;

·I.lSHORt·.Jq; .•.• , •....•...••.....••
HWNO,.· •• twmdSubMenu;·'

:ui:.ottG :hlt~m; .
MENUITEM.. .

You can derive the values of most of the fields in this structure directly from the
resource-definition file. However, the last field in the structure, hltem, depends on the style
of the menu item.

The iPosition field specifies the ordinal position of the item within its menu window. If the
item is part of the menu bar, iPosition specifies its relative left-to-right position, with 0 being
the leftmost item. If the item is part of a submenu, iPosition specifies its relative

Chapter 13. Menus 13-5

top-to-bottom and left-to-right positions, with 0 being the upper-left item. An item with the
MIS_BREAKSEPARATOR style in a pull:down menu causes a new column to begin.

The afStyle field contains the style bits of the item. The afAttribute field contains the attribute
bits.

The id field contains the menu-item identifier. The identifier should be unique but does not
have to be. Just remember that, when multiple items have the same identifier, they post the
same command number in the WM_COMMAND, WM_SYSCOMMAND, and WM_HELP
messages. Also, any message that specifies a menu item with a non-unique identifier will
find the first item that has that identifier.

The hwndSubMenu field contains the window handle of a submenu window (if the item is a
submenu item). The hwndSubMenu field is NULL for command items.

The hltem field contains a handle to the display object for the item, unless the item has the
MIS_TEXT style, in which case, hltem is O. For example, a menu item with the
MIS_BITMAP style has an hltem field that is equal to its bit-map handle.

Menu Access
The OS/2 operating system is designed to work with or without a mouse or other pointing
device. The system provides default behavior that enables a user to interact with menus
without a mouse. Following are the keystrokes that produce this default behavior:

Table 13-1 (Page 1 of 2). Keystroke Menu Access

Keystroke Action

Alt Toggles in and out of menu-bar mode.

Alt+Spacebar Shows the system menu.

F10 Backs up one level. If a submenu is displayed, it is canceled. If no
submenu is displayed, this keystroke exits the menu.

Shift+Esc Shows the system menu.

Right Arrow Cycles to the next top-level menu item. If the selected item is at the
far-left side of the menu, the menu code sends aWM_NEXTMENU
message to the frame window. The default processing by the frame
window is to cycle between the application and system menus. (An
application can modify this behavior by subclassing the frame window.) If
the selected item is in a submenu, the next column in the submenu is
selected, or the next top-level menu item is selected; this keystroke also
can send or process a WM_NEXTMENU message.

Left Arrow Works like the Right Arrow key, except in the opposite direction. In
submenus, this keystroke backs up one column, except when the
currently selected item is in the far-left column, in which case the previous
submenu is selected.

Up Arrow or Down When pressed in a top-level menu, activates a submenu. When 'pressed
Arrow in a submenu, this keystroke selects the previous or next or item,

respectively.

13-6 PM Basic Programming Guide

.

Table 13-1 (Page 2 of 2). Keystroke Menu Access

Keystroke Action

Enter Activates a submenu, and highlights the first item if an item has a
submenu associated with it; otherwise, this keystroke chooses the item as
though the user released the mouse button while the item was selected.

Alphabetic Selects the first menu item with the specified character as its mnemonic
character key. A mnemonic is defined for a menu item by placing a tilde n before

the character in the menu text. If the selected item has a submenu
associated with it, the menu is displayed, and the first item is highlighted;
otherwise, the item is chosen.

An application does not support the default keyboard behavior with any unusual code;
instead, the application receives a message when a menu item is chosen by the keyboard
just as though it had been chosen by a mouse.

Mnemonics
Adding mnemonics to menu items is one way of providing the user with keyboard access to
menus. You can indicate a mnemonic keystroke for a menu item by preceding a character in
the item text with a tilde, as in -nFile. Then, the user can choose that item by pressing the
mnemonic key when the menu is active. Figure 13-3 shows the result on screen.

Mnemonics

Figure 13-3. Examples of Mnemonics

The menu bar is active when the user presses and releases the Alt key, and the first item in
the menu bar is highlighted. A pop-up or pull-down menu is active when it is open.

Chapter 13. Menus 13-7

Accelerators
In addition to mnemonics, a menu item can have an associated keyboard accelerator.
Accelerators are different from mnemonics in that the menu need not be active for the
accelerator key to work. If you have associated a menu item with a keyboard accelerator,
display the accelerator to the right of the menu item. Do this in the resource-definition file by
placing a tab character (\t) in the menu text before the characters that 'will be displayed on
the right. For example, if the Close item had the F3 function key as its keyboard accelerator,
the text for the item would be Close\tF3.

Using Menus
This section explains how to perform the following tasks:

• Define menu items in a resource file.
• Include a menu bar in a standard window.
• Create a pop-up menu.
• Add a menu to a dialog window.
• Access the system menu.
• Respond to a the menu choice of a user.
• Set and query menu-item attributes.
• Add and delete menu items.
• Create a custom menu item.

Defining Menu Items in a Resource File
Typically, a menu resource represents the menu bar or pop-up menu and all the related
submenus. A menu-item definition is organized as shown in the following code:

The menu resource-definition file specifies the text of each item in the menu, its unique
identifier, its style and attributes, and whether it is a command item or a submenu item. A
menu item that has no specification for style or attributes has the default style of MIS_TEXT
and all attribute bits off, indicating that the item is enabled. The MIS_SEPARATOR style
identifies nonselectable lines between menu items. Figure 13-4 on page 13-9 is sample
Resource Compiler source code that defines a menu resource. The code defines a menu
with three submenu items in the menu bar (File, Edit, and Font) and a command item (Help).
Each submenu has several command items, and the Font submenu has two other submenus
within it.

13-8 PM Basic Programming Guide

MENU ID_MENU_RESOURCE
BEGIN

SUBMENU II-File". IDM FILE
BEGIN . -

MENU ITEM II-Open ••• ",
MENUITEM "-Close\tF3".
MENU ITEM II-Quit",
MENU ITEM "".
MENU ITEM "-About Sample",

END
SUBMENU "-Edit". 10M_EDIT

BEGIN

END

MENU ITEM II-Undo",
MENU ITEM 1111,

MENU ITEM II-Cut".
MENU ITEM "C-opy",
MENU ITEM II-Paste",
MENU ITEM "C-lear",

SUBMENU "Font", IDMJONT'
BEGIN

SUBMENU "Style".
BEGIN

10M FI OPEN
IOM-FI-CLOSE, 0."MIA DISABLED
IDM ~ FI - QU IT -
IDM - FI - SEP1, MIS SEPARATOR
IDM)(ABOUT -

10M ED UNDO, 0, MIA DISABLED
IDM - ED - SEPI. MIS SEPARATOR
IOM-ED-CUT -
10M-EO-COPY
IDM - ED -PASTE
IOM)(CLEAR

MENUITEM "Plain". 10M FONT STYLE PLAIN
MENUITEM "Bold". r'OM-FONT-STYLE-BOLD

END

MENUITEM "Ital i e". ID(FON(STYL(ITALIC
END

SUBMENU "Si ze",
BEGIN

END

'MENU ITEM "10",
MENUITfM. "12",
MENUITEM "14",

IDMJONT_SIZE

IDM FONT SIZE 10
IDM - FONT-SIZE -12
IO(FON(SIZ(14

MENUITEM "F1=Help", 0x00, MIS_TEXT I MIS_BUTTONSEPARATOR I MIS_HELP
END

Figure 13-4. Resource Compiler Code Defining a Menu Resource

To define a menu item with the MIS_BITMAP style, an application must use a tool such as
Icon Editor to create a bit map, include the bit map in its resource-definition file, and define a
menu in the file (as shown in Figure 13-5 on page 13-10). The text for the bit map menu
items is an ASCII representation of the resource identifier of the bit map resource to be
displayed for that item.

Chapter 13. Menus 13-9

j* '~ri ~.~.': ~~terri~tJ~ .·~,r~~¥e~1it%,~p~'intq t:.h~! r~~9IjJ~¢e·, rt lei
e lTMA~l~l,.butt'QT1.~' blllP , .
BITMAprO~:hfr~s.(.~IJlP· '.
BltM/Wl'03'h.1ZdQlI1,tiIllP< "
BITMAPI04.,,'h1red.blllp,

Figure 13-5. Defining a Menu with the MIS_BITMAP Style

Including a Menu Bar in a Standard Window
If you have defined a menu resource in a resource-definition file, you can use the menu
resource to create a menu bar in a standard window. You include the menu bar by using the
FCF _MENU attribute flag and specifying the menu-resource identifier in a call to
WinCreateStdWindow, as shown in the following code fragment:

#defi ne' ID:.;.MENU:.;.RESOURCE, leo

HWN.O" hwndFrame;
CHARszCl assNameH ="MyClass";
CHAR szTitle[J="My Title";

After you make this call, the operating system automatically includes the menu in the
window, drawing the menu bar across the top of the window. When the user chooses an
item from the menu, the menu posts the message to the frame window. The frame window
passes any WM_COMMAND messages to the client window. (The frame window does not
pass WM_SYSCOMMAND messages to the client window.) WM_HELP messages are
posted to the focus window. The WinDefWindowProc function passes WM_HELP messages
to the parentwindow. 11 aWM_HELP message is passed to a frame window, the frame
window calls the HK_HELP hook. Your client window procedure must process these
messages to respond to the user's actions.

13-1 0 PM Basic Programming Guide

Creating a Pop-up Menu
The following code fragment shows how to make a pop-up menu appear when the user
double-clicks mouse button 2 anywhere in the parent window. The menu is positioned with
the mouse pointer located on the item having the IDM_OPEN identifier and is constrained
horizontally and vertically. Then, the user can select an item from the pop-up menu using
mouse button 2.

#define 10 MENU RESOURCE 110
#define 10M_OPEN 120

HWND hwndFrame.

MRESUl T C1 i entWndProc (
HWND hwnd,
UlONG msg,
MPARAM mpl,
MPARAM mp2)
{

HWND hwndMenu;
BOOl fSuccess;

swi tch (msg) {

/* Process other messages. */

case WM BUTTON2DBLCLK:
hwndMenu = Wi nLoadMenu (hwnd, (HMODULE) NULL, 10 _MENU_RESOURCE);
fSuccess = Wi nPopupMenu (hwnd.

hwndFrame.
hwndMenu,
20.
50,
10M OPEN,
pujos 1TIONON ITEM
PU HCONSTRAIN
PU)CONSTRAIN I
PUJv10USEBUTTON200WN I
PU_MOUSEBUTTON2) ;

Adding a Menu to a Dialog Window
You might want to use menus in windows that were not created using the
WinCreateStdWindow function. For these windows, you can load a menu resource by using
the WinLoadMenu function and specifying the parent window for the menu. WinLoadMenu
assigns the specified menu resource to the parent. To see the menu in the window, you
must send a WM_UPDATEFRAME message to the parent after loading the menu resource.
This strategy is especially useful for adding menus to a window created as a dialog window,
but it can be used no matter what type of window is specified as the parent.

Chapter 13. Menus 13-11

Accessing the System Menu
Although most applications do not alter the system menu, you can obtain the handle of the
system menu by calling WinWindowFromlD with a frame-window handle (or dialog-window
handle) and the identifier FID_SYSMENU. Once you have the handle of the system menu,
you can access the individual menu items by using predefined constants. For example, the
following code fragment shows how to disable the Close menu item· in the system menu of a
window:

HWND hwndSysMenu;
HWND hwndFrame;

hwndSysMenu = Wi nWi ndowFromlO(hwhdFrame, FlO _ SYSMENU) ;

Wi nSendMsg (hwndSysMenu, MM.,.:SETITEMATTR,
MPFROM2SHORT (SC CLOS E. TRU E) •
MPFROM2SHORT(MIA_DISABLED, Ml~DISABLED»;

Responding to a User's Menu Choice
When a user chooses a menu item, the client window procedure receives a WM_COMMAND
message with SHORT1 FROMMP(mp1) equal to the menu identifier of the chosen item. Your
application must use the menu identifier to guide its response to the choice. Typically, the
code in the client window procedure resembles the following code fragment:

case WM COMMAND:
DoMenuCommand (hwnd. SHORTlFROMMP(mpl»:
return 0;

The function that translates the menu identifier into an action typically· resembles the
following code fragment:

VOID DoMenuCommand(
HWND hwnd,
USHORT usItemID)
{

1*. Testthelllenu item •. *1
swi tch (usItemID) {

case 10M FI NEW:
DoNew(hwnd) ;
break;

13-12 PM Basic Programming Guide

The menu window sends a WM_MENUSELECT message every time the menu selection
changes. SHORT1 FROMMP(mp1) contains the identifier of the item that is changing state,
and SHORT2FROMMP(mp2) is a 16-bit Boolean value that describes whether or not the
item is chosen; the mp2 parameter contains the handle of the menu.

If the Boolean value is FALSE, the item is selected but not chosen; for example, the user
may have moved the cursor or mouse pointer over the item while the button was down. An
application can use this message to display Help information at the bottom of the application
window. The return value is ignored.

If the Boolean value is TRUE, the item is chosen-that is, the user pressed Enter or released
the mouse button while an item was selected. If the application returns FALSE, the menu
does not generate a WM_COMMAND, WM_SYSCOMMAND, or WM_HELP message, and
the menu is not dismissed.

Setting and Querying Menu-Item Attributes
Menu-item attributes are represented in the fAttribute field of the MENUITEM data structure.
Typically, attributes are set in the resource-definition file of the menu and are changed at run
time as required. Applications can use the MM_SETITEMATTR and MM_QUERYITEMATTR
messages to set and query attributes for a particular menu item. One of the most common
uses of these messages is to check and uncheck menu items to let the user know what
option is selected currently. For example, if you have a menu item that should toggle
between checked and unchecked each time the user selects it, you can use Figure 13-6 to
change the checked attribute. In this example, you send an MM_QUERYITEMATTR
message to the menu item to obtain its current checked attribute; then, you use the exclusive
OR operator to toggle the state; and finally, you send the new attribute state back to the item
using an MM_SETITEMATTR message.

usAttri b = SHORTlFROMMR(
Wi nSendMsg (hwndMenu,
MM QUERYITEMATTR,
(MPARAM) i temID,
(MPARAM)MIA CHECKED »; -

usAttri b = MIA_CHECKED;

/* Submenu window
/* Message
/* Item identifier
/* Attribute mask

/* XOR to toggle checked attribute *1

Wi nSendMsg(hwndMenu, /* Submenu window t</
MM SETITEMATTR. 1* Message */
(MPARAM) i temID. / * Item i dent ifi er */
MPFROM2SHORT(MIILCHECKED, usAttrib»; /* Attri butemask, value */

Figure 13-6. Changing a Menu Item to Toggle Between Checked and Unchecked

Adding and Deleting Menu Items
An application can add and delete items from its menus dynamically by sending
MMJNSERTITEM and MM_DELETEITEM messages to the menu window. Any item,
including those in submenus, can be deleted by sending a message to the menu window.

Chapter 13. Menus 13-13

Messages to insert items in submenus must be sent to the submenu's window (rather than to
the window of the top-level menu). You can retrieve the handle of a submenu of the menu
bar by sending an MM_QUERYITEM message to the menu-bar and specifying the identifier
of the submenu item for the submenu, as shown in the following code fragment:

hwndPull Down = mL hwndSubMenu;

Once the application has the handle of the submenu, it can insert an item by filling in a
MENUITEM structure and sending an MM-,NSERTITEM message to the submenu. For
text-menu items, the application must send a pointer to the text string as well as to the
MENUITEM structure, as shown in Figure 13-7.

PSZpszNewItemString;

mLiPosition= MIT END;
mi •. afStyle " MIS TE'XT(
ml.afAttri bute =~0:
mi. id ==!oM MYMENUFIRST;
mi .hwndSubMenu= NULL;·
mLhrtem " 0;

Figure 13-7. Inserting a Menu Item

to delete an item, the application sends an MM_DELETEITEM message to the menu bar,
specifying the identifier of the item to delete. For example, to clear all the items following
IDM_MYMENU_FIRST in a submenu in which the items are numbered sequentially, use the
following code:

13-14 PM Basic Programming Guide

Adding a complete submenu to the menu bar is a more complicated procedure than that
shown in the previous examples. There are two strategies. The recommended technique is
to define all possible submenus in your resource-definition file; and then, as your application
runs, selectively remove and insert the submenus as needed.

For example, assume that your application has a submenu that you want to be displayed
only when a particular application tool is in use. You must first define the submenu as part
of the main menu resource in your resource-definition file, so that the system reads in the
resource menu template and creates the submenu window along with the rest of the menu.
You then can remove the submenu from the menu bar, saving the title of the submenu and
the MENUITEM structure that defines the submenu, as shown in Figure 13-8:

HWND hwndMenu. hwndCl; ent;
MENU ITEM mi;
CHAR szMenuTitle[MAX_STRINGSIZE];

/* Remove a submenu 56 that you can replace it later. */

/* Obtain the handle of a menu. */
hwndMenu =WinWindowFromID (Wi nQueryWi ndow(hwndCl; ent. QW_PARENT).

, " FID_MENU);

i*Obtajn'information on the item to remove. */
Win$endMsg{hwndMenu. 'MMQUERYITEM,

MPFRQM2SHORT(IOM MENUID. TRUE), /*TRUE to search submenus */
(MPARAM) &mi) ; -

1* Save the text for the submenu item.
Wi nSendMsg(hwndMenu,MM_ QUERYITEMTEXT,

MPFROM2SHORT(IDM FONT" MAXSTRINGSIZE).
(MPARAM)szMenuTitle); , -

/* Remove the item, but retain mi and szMenuTitle.
WiliSendMsg (hwndMenu. MM REMOVE ITEM.

MPFROM2~HORT{IDM]ONT, TRUE); N~lh};

Figure 13-8. Removing a Submenu from the Menu Bar

It is important to use the MM_REMOVEITEM message, rather than MM_DELETEITEM, to
remove the item; deleting the item destroys the submenu window-removing it does not.
The submenu should remain intact so that you can insert it later.

To reinsert the submenu, send an MM_INSERTITEM message to the menu bar, passing the
MENU ITEM structure and menu title that you saved when you removed the item. The
following code fragment shows how to insert a submenu that was removed by using the
previous code example.

Chapter 13. Menus 13-15

, " ... ",,", u,,· ';:'::. :.: .•...•. :. '." ... : .•.. : .. : ...•........... : .. :, " .: : : ::'.': ' .. :. :...... ..•.... : .. ". :•.... '.:'" '::"': .. " < '"•... :.
I*, :\J~:~thetnfor:mat~on:: tha:t:YQu $ayedwhen.: YQU removed. th~: menu,
Win~endMsg(hwndMenu.MM~INSERnrgM. (MPARAM)&mi,

, : (MPARAM) szMeruHtl e);

The other technique that you can use to insert a submenu in the menu bar is to build up, in
memory, a data structure as a menu template and use that template and WinCreateWindow
to create a submenu. The resultant submenu window handle then is placed in the
hwndSubMenu field of a MENUITEM structure, and the menu item is sent to the menu bar
with an MMJNSERTITEM message.

You also can create an empty submenu window by using WinCreateWindow. Pass NULL for
the pet/Data and pPresParams parameters, instead of building the menu template in
memory. Then insert a new menu item in the menu bar by using the MMJNSERTITEM
message, setting the MIS_SUBMENU style, and putting the window handle of the created
menu into the hwndSubMenu field. Then use the MMJNSERTITEM message to insert the
items in the new pull-down menu.

Creating a Custom Menu Item
Applications can customize the appearance of an individual menu item by setting the
MIS_OWNERDRAW style bit for the item. The operating system sends two different
messages to an application that include owner-drawn menu items: WM_MEASUREITEM
and WM_DRAWITEM. Both messages include a pointer to an OWNERITEM data structure.

WM_MEASUREITEM is sent only once for each owner-drawn item when the menu is
initialized. The message is sent to the owner of the menu (typically, a frame window), which
forwards the message to its client window. Typically, the client window procedure processes
WM_MEASUREITEM by filling in the yTop and Right fields of the RECTL structure, specified
by the rcl/tem field of this OWNERITEM structure~ this specifies the size of the rectangle
needed to enclose the item when it is drawn. The following code fragment responds to a
WM_MEASUREITEM message.

If a menu item has the MIS_OWNERDRAW style, the owner window receives a
WM_DRAWITEM message every time the menu item needs to be drawn. You process this
message by using the hps and rcl/tem fields of the OWNERITEM structure to draw the item.
There are two situations in which the owner window receives a WM_DRAWITEM message:

• When the item must be redrawn completely
• When the item must be highlighted or have its highlight removed.

13-16 PM Basic Programming Guide

You can choose to handle one or both of these situations. Typically, you handle the drawing
of the item. You may not want to handle the second situation, however, since the
system-default behavior (inverting the bits in the item rectangle) often is acceptable. The two
situations in which a WM_DRAWITEM message is received are detected by comparing the
values of the fsState and fsStateOld fields of the OWNERITEM structure that is sent as part
of the message. If the two fields are the same, draw the item. Before drawing the item,
however, check its attributes to see whether it has the attributes MIA_CHECKED,
MIA_FRAMED, or MIA_DISABLED. Then draw the item according to the attributes.

For example, when the checked attribute of an owner-drawn menu item changes, the system
sends a WM_DRAWITEM message to the item so that it can redraw itself and either draw or
remove the check mark. If you want the system-default check mark, simply draw the item
and leave the fsAttribute and fsAttributeOld fields unchanged; the system draws the check
mark if necessary. If you draw the check mark yourself, clear the MIA_CHECKED bit in both
fsAttribute and fsAttributeOld so that the system does not attempt to draw a check mark.

In the same example, if fsAttribute and fsAttributeOld are not equal, the highlight showing
that an item is selected needs to change. The MIA_HILITED bit of the fsAttribute field is set
if the item needs to be highlighted and is not set if the highlight needs to be removed. If you
do not want to provide your own highlighting, you should ignore any WM_DRAWITEM
message in which fsAttribute and fsAttributeOld are not equal. If you do not alter these two
fields, the system performs its default highlighting operation. If you want to provide your own
visual cue that an item is selected, respond to a WM_DRAWITEM message in which the
fsAttribute and fsAttributeOld fields are not equal by providing the cue and clearing the
MIA_HILITED bit of both fields before returning from the message.

Likewise, the MIA_CHECKED and MIA_FRAMED bits of fsAttribute and fsAttributeOld either
can be used to perform the corresponding action or passed on, unchanged, so that the
system performs the action. The following code fragment shows how to respond to a
WM_DRAWITEM message when you want to draw the item and also be responsible for its
highlighted state.

Chapter 13. Menus 13-17

if

'else i f«poi ~>fsAtt ri bute & MIA,.Hl,"ITED}!=
(poi->fsAttributeOld &MIA_HIUTEOJ) {

}
return TRUE; /* TRUE means the ftem·;sdrawn.'
} /* endcase*/

Figure 13-9. Responding to WM _ DRAWITEM Message

13-18 PM Basic Programming Guide

Related Functions
This section covers the functions that are related to Menus.

WinCheckMenultem
This macro sets the check state of the specified menu item to the flag.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinCheckMenultem (HWND hwndMenu, USHORT usld, BOOl fCheck)

Parameters
hwndMenu (HWND) - input

Menu window handle.

usld (USHORT) - input
Item identifier.

fCheck (BOOl) - input
Check flag.

Returns
rc (BOOl) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Chapter 13. Menus 13-19

WinCreateMenu
This function creates a menu window from the menu template.

Syntax

#define INCL_WINMENUS /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

HWND WinCreateMenu (HWND hwndParent, PVOID Ipmt)

Parameters
hwndParent (HWND) - input

Owner- and parent-window handle of the created menu window.

HWND_DESKTOP
HWND _OBJECT
Other

Ipmt (PVOID) - input

The desktop window
Object window
Specified window.

Menu template in binary format.

Returns
hwndMenu (HWND), returns

Menu-window handle.

13-20 PM Basic Programming Guide

WinEnableMenultem
This macro sets the state of the specified menu item to the enable flag.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinEnableMenultem (HWND hwndMenu, USHORT usld, BOOl fEnable)

Parameters
hwndMenu (HWND) - input

Menu window handle.

usld (USHORT) - input
Item identifier.

fEnable (BOOl) - input
Enable flag.

Returns
rc (BOOl) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Chapter 13. Menus 13-21

WinlsMenultemChecked
This macro returns the state (checked/not checked) of the identified menu item.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinlsMenultemChecked (HWND hwndMenu, USHORT usld)

Parameters
hwndMenu (HWNO) - input

Menu window handle.

usld (USHORT) - input
Identity of the menu item.

Returns
rc (BOOl) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

13-22 PM Basic Programming Guide

WinlsMenultemEnabled
This macro returns the state (enable/disable) of the menu item specified.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN. INCL_PM. */

#include <os2.h>

BOOl WinlsMenultemEnabled (HWND hwndMenu, USHORT usld)

Parameters
hwndMenu (HWND) - input

Menu window handle.

usld (USHORT) - input
Identity of the menu item.

Returns
rc (Baal) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Chapter 13. Menus 13-23

WinlsMenultemValid
This macro returns TRUE if the specified item is a valid choice.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN. INCL_PM. */

#include <os2.h>

BOOl WinlsMenultemValid (HWND hwndMenu, USHORT usld)

Parameters
hwndMenu (HWNO) - input

Menu window handle.

usld (USHORT) - input
Identity of the menu item.

Returns
rc (BOOl) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

13-24 PM Basic Programming Guide

WinLoadMenu
This function creates a menu window from the menu template idMenu from hmod, and
returns in hwndMenu the window handle for the created window.

Syntax

#define INCL_WINMENUS /* Druse INCL_WIN, INCL_PM, */

#include <os2.h>

HWND WinLoadMenu (HWND hwndFrame, HMODULE hmod, ULONG idMenu)

Parameters
hwndFrame (HWND) - input

Owner- and parent-window handle.

HWND _DESKTOP
HWND _OBJECT
Other

The desktop window
Object window
Specified window.

hmod (HMODULE) - input
Resource identifier.

NULLHANDLE The resource is in the .EXE file of the application.
Other The module handle returned by the DosLoadModule or

DosQueryModuleHandle call.

idMenu (ULONG) - input
Menu identifier within the resource file.

Returns
hwndMenu (HWND) - returns

Menu-window handle.

Chapter 13. Menus 13-25

WinPopupMenu
This function causes a pop-up menu to be presented.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinPopupMenu (HWND hwndParent, HWND hwndOwner,
HWND hwndMenu, lONG x, lONG y, lONG idltem,
UlONG fs)

Parameters
hwndParent (HWNO) - input

Parent-window handle.

hwndOwner (HWNO) - input
Owner-window handle.

hwndMenu (HWNO) - input
Pop-up menu-window handle.

x (LONG) - input
x-coordinate of the pop-up menu position.

y (LONG) - input
y-coordinate of the pop-up menu position.

idltem (LONG) - input
Item identity.

fs (ULONG) - input
Options.

Position
Pop-up menu position.

PU_POSITIONONITEM Position the pop-up menu so that the item identified by
the idltem parameter of the top-level menu specified by
the hwndMenu parameter lies directly under the x \ y
coordinates.

13-26 PM Basic Programming Guide

The position of the pop-up menu can be affected, if either
the PU_HCONSTRAIN or or PU_VCONSTRAIN values
of the fs parameter is also set.

This value also causes the pop-up menu item identified
by the idltem to be selected.

Restrain,
Pop-up menu position constraints.

These options allow the application to ensure that the pop-up menu is visible on the
desktop.

PU_HCONSTRAIN Constrain the pop-up menu so that its width is wholly visible
on the desktop.

If necessary the position of the pop-up menu will be adjusted
so that its left edge is coincident with the left edge of the
desktop or that its right edge is coincident with the right edge
of the desktop.

PU _ VCONSTRAIN Constrain the pop-up menu so that its height is wholly visible
on the desktop.

InitialState

If necessary the position of the pop-up menu will be adjusted
so that its top edge is coincident with the top edge of the
desktop or that its bottom edge is coincident with the bottom
edge of the desktop.

Initial input state of the pop-up menu.

This allows the user interaction which caused the application to summon the pop-up
menu to be carried through as the initial user interaction with the pop-up menu.

For example, this permits the application to support the user interface in which
mouse button 1 can be depressed to cause the pop-up menu to be presented and
held down while moving the mouse over the menu in order to select another menu
item and then released to dismiss the menu.

Only one of the following values can be selected:

PU_MOUSEBUTTON1 DOWN The pop-up menu is initialized with mouse button 1
depressed.

PU _MOUSEBUTTON2DOWN The pop-up menu is initialized with mouse button 2
depressed.

PU_MOUSEBUTTON3DOWN The pop-up menu is initialized with mouse button 3
depressed.

PU_NONE The pop-up menu is to be presented uninfluenced
by the user interaction which caused it to be
summoned.

This is the default value.

Select
Item selection.

PU_SELECTITEM The item identified by idltem is to be selected. This is only
valid if PU_NONE is set in the InitialState parameter.

If the identified item is in a submenu of the pop-up menu, then

Chapter 13. Menus 13-27

all the previous submenus in the menu hierarchy are
presented with the correct path to the identified item.

Usage
Input device usage.

The window procedure controlling the pop-up menu must be informed of which input
devices are available for interaction with the pop-up menu.

These options are independent to those of the InitialState parameter. Therefore, if
an application indicates in the Initia/State parameter that the pop-up menu is to be
initialized with a particular user interaction, then the mechanism which permits that
user interaction would usually be specified in this parameter. In this way the user's
expectation, that once a device has been employed for the manipulation of the
pop-up menu then that device can continue to be used for that purpose, is fulfilled.

It is valid to specify a user interaction as an initialization of the pop-up menu by an
input mechanism which is not identified as available for interaction with the pop-up
menu. This implies that the user cannot necessarily complete the interaction with
the pop-up menu with that input mechanism.

For example, if a pop-up menu is initialized with a mouse button depressed but that
mouse button is not identified as available for manipulating the pop-up menu, then
that mouse button can manipulate the pop-up menu until it is released. Assuming
that the pop-up menu is not dismissed when that mouse button is released, then the
mouse button cannot be used for further interaction with the pop-up menu, since it
is not identified as available for that use.

The following list shows the input device valid for interaction with the pop-up menu
with each option:

PU KEYBOARD
PU _ MOUSEBUTTON 1
PU_MOUSEBUTTON2
PU _ MOUSEBUTTON3

Returns
rc (BOOl) - returns

The keyboard.
Mouse button 1.
Mouse button 2.
Mouse button 3.

Pop-up menu invoked indicator.

TRUE
FALSE

Pop-up menu successfully invoked
Pop-up menu not successfully invoked.

13-28 PM Basic Programming Guide

WinSetMenultemText
This macro sets the text for Menu indexed item to buffer.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinSetMenultemText (HWND hwndMenu, USHORT usld, PSZ pText)

Parameters
hwndMenu (HWND) - input

Menu window handle.

usld (USHORT) - input
Identity of the menu item.

pText (PSZ) - input
Text for the menu item.

Returns
rc (Baal) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Chapter 13. Menus 13-29

Related Messages
This section covers the messages that are related to Menus.

MM DELETEITEM
This message deletes a menu item.

Parameters
param1

usitem (USHORT)
Item identifier.

usincludesubmenus (USHORT)
Include submenus indicator.

param2

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for an item with the specified
identifier and delete it.

FALSE If the menu does not have an item with the specified identifier, do not
search the submenus and subdialogs of the menu for an item with the
specified identifier.

ulReserved (ULONG)
Reserved value, should be O.

Returns
sltemsLeft (SHORT)

Number remaining.

13-30 PM Basic Programming Guide

MM_ENDMENUMODE
This message is sent to a menu control to terminate menu selection.

Parameters
param1

usdismiss (USHORT)
Dismiss menu indicator.

Dismiss the submenu or subdialog window TRUE
FALSE Do not dismiss the submenu or subdialog window.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Chapter 13. Menus 13-31

MM INSERTITEM
This message inserts a menu item into a menu.

Parameters
param1

pmenuitem (PMENUITEM)
Menu-item data structure.

This points to a MENU ITEM structure.

param2

pszltemText (PSZ)
Item text.

This points to a string containing the text to be inserted.

Returns
slndexlnserted (SHORT)

Index of inserted item.

MIT MEMERROR The menu control cannot allocate space to insert the menu item in
the menu.

MIT_ERROR An error otlwr than MIT_MEMERROR occurred.

Other The zero-based index of the offset of the item within the menu.

13-32 PM Basic Programming Guide

MM ISITEMVALID
This message returns the selectable status of a specified menu item.

Parameters
param1

us item (USHORT)
Item identifier.

usincludesubmenus (USHORT)
Include submenus indicator.

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for an item with the specified
identifier.

FALSE If the menu does not have an item with the specified identifier, do not
search the submenus and subdialogs of the menu for an item with the
specified identifier.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Selectable indication.

TRUE
FALSE

The user can select and enter the specified item.
The user cannot select and enter the specified item.

Chapter 13. Menus 13-33

MM_ITEMIDFROMPOSITION
This message returns the identity of a menu item of a specified index.

Parameters
param1

sltemlndex (SHORT)
Item index.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
sldentity (SHORT)

Item identity.

MIT_ERROR Error occurred; for example, because s/temlndex is not valid.
Other Item identity.

13-34 PM Basic Programming Guide

MM_ITEMPOSITIONFROMID
This message returns the index of a menu item of a particular identity.

Parameters
param1

usitem (USHORT)
Item identifier.

usincludesubmenus (USHORT)
Include submenus indicator.

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for an item with the specified
identifier.

FALSE If the menu does not have an item with the specified identifier, do not
search the submenus and subdialogs of the menu for an item with the
specified identifier.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
slndex (SHORT)

Item index.

MIT_NONE Item does not exist
Other Item index.

Chapter 13. Menus 13-35

MM_QUERVDEFAULTITEMID
This message returns the default item id for a conditional cascade menu. For any other type
of menu or submenu, this message returns zero.

Parameters
param1

ulReserved (ULONG)
Reserved value, must be O.

param2

ulReserved (ULONG)
Reserved value, must be O.

Returns
ulDefltemlD (ULONG)

Menu id of the default menu item.

13-36 PM Basic Programming Guide

MM_QUERYITEM
This message returns the definition of the specified menu item.

Parameters
param1

usltem (USHORT)
Item identifier.

usincludesubmenus (USHORT)
Include submenus flag.

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for an item with the specified
identifier and copy its definition.

FALSE If the menu does not have an item with the specified identifier, do not
search the submenus and subdialogs of the menu for an item with the
specified identifier.

param2

pmenuitem (PMENUITEM)
Menu-item data structure.

This points to a MENUITEM structure.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Chapter 13. Menus 13-37

MM_QUERYITEMATTR
This message returns the attributes of a menu item.

Parameters
param1

usitem (USHORT)
Item identity.

uslncludeSubmenus (USHORT)
Include submenus indicator.

param2

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for an item with the specified
identifier and return its state.

FALSE If the menu does not have an item with the specified identifier, do not
search the submenus and subdialogs of the menu for an item with the
specified identifier.

usattributemask (USHORT)
Attribute mask.

Returns
usState (USHORT)

State.

13-38 PM Basic Programming Guide

MM_QUERYITEMCOUNT
This message returns the number of items in the menu.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
sresult (SHORT)

Item count.

Chapter 13. Menus 13-39

MM_QUERYITEMRECT
This message returns the bounding rectangle of a menu item.

Parameters
param1

usitem (USHORT)
Item identity.

flncludeSubmenus (BOOl)
Include submenus indicator.

param2

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for an item with the specified
identifier and return its state.

FALSE If the menu does not have an item with the specified identifier, do not
search the submenus and subdialogs of the menu for an item with the
specified identifi~r.

prect (PRECTl)
Bounding rectangle of the menu item in device coordinates relative to the menu
window.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Specified item was found.
Specified item was not found.

13-40 PM Basic Programming Guide

MM_QUERYITEMTEXT
This message returns the text of the specified menu item.

Parameters
param1

usitem (USHORT)
Item identifier.

smaxcount (SHORT)
Maximum count.

Copy the item text as a null-terminated string, but limit the number of characters
copied, including the null termination character, to this value, which must be greater
than O.

param2

pszltemText (PSZ)
Buffer into which the item text is to be copied.

This points to a string (character) buffer.

Returns
sTextLength (SHORT)

Length of item text.

o Error occurred. For example, no item of the specified identity exists or the item
has no text. No text is copied.

Other Length of item text.

Chapter 13. Menus 13-41

MM_QUERYITEMTEXTLENGTH
This message returns the text length of the specified menu item.

Parameters
param1

usitem (USHORT)
Item identifier.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
sLength (SHORT)

Length of item text.

o Error occurred. For example, no item of the specified identity exists or the item
has no text. No text is copied.

Other Length of item text.

13-42 PM Basic Programming Guide

MM_QUERYSELITEMID
This message returns the identity of the selected menu item.

Parameters
param1

usReserve (USHORT)
Reserved value, should be O.

usincludesubmenus (USHORT)
Include submenus indicator.

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for a selected item with the
specified identifier.

FALSE If the menu does not have an item with the specified identifier, do not
search the submenus and subdialogs of the menu for a selected item with
the specified identifier.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
sresult (SHORT)

Selected item identifier.

MID_ERROR
MIT_NONE
Other

Error occurred
No item selected
Selected item identifier.

Chapter 13. Menus 13-43

MM REMOVEITEM
This message removes a menu item.

Parameters
param1

usitem (USHORT)
Item identifier.

usincludesubmenus (USHORT)
Include submenus indicator.

param2

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for an item with the specified
identifier and delete it.

FALSE If the menu does not have an item with the specified identifier, do not
search the submenus and subdialogs of the menu for an item with the
specified identifier.

ulReserved (ULONG)
Reserved value, should be O.

Returns
sltemsLeft (SHORT)

Count of remaining items.

13-44 PM Basic Programming Guide

MM_SELECTITEM
This message selects or deselects a menu item.

Parameters
param1

sitem (SHORT)
Item identifier.

MIT NONE Deselect all the items in the menu.
Other Item identifier.

usincludesubmenus (USHORT)
Include submenus indicator.

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for an item with the specified
identifier and select or deselect it.

FALSE If the menu does not have an item with the specified identifier, do not
search the submenus and subdialogs of the menu for an item with the
specified identifier.

param2

usReserve (USHORT)
Reserved value, should be O.

usdismissed (USHORT)
Dismissed flag.

TRUE
FALSE

Returns
rc (BOOl)

Dismiss the menu
Do not dismiss the menu.

Success indicator.

TRUE
FALSE

A selection has been made, or sitem is MIT_NONE.
A selection has not been made, or a deselection has been made, or sitem is
not MIT_NONE.

Chapter 13. Menus 13-45

MM SETDEFAUL TITEMID
This message is used to set the default item in a conditional cascade menu.

Parameters
param1

ulDefltemlD (UlONG)
The menu id of the item to become the new default.

param2

ulReserved (UlONG)
Reserved value, must be O.

Returns
rc (BOOl)

Success of failure indicator.

TRUE The conditional cascade default was set.
FALSE The conditional cascade default was not set.

13-46 PM Basic Programming Guide

MM_SETITEM
This message sets the definition of a menu item.

Parameters
param1

usReserve (USHORT)
Reserved value, should be o.

usincludesubmenus (USHORT)
Include submenus indicator.

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for an item with the specified
identifier and set its definition.

FALSE If the menu does not have an item with the specified identifier, do not
search the submenus and subdialogs of the menu for an item with the
specified identifier.

param2

pmenuitem (PMENUITEM)
Menu-item data structure.

This points to a MENU ITEM structure.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Chapter 13. Menus 13-47

MM_SETITEMATTR
This message sets the attributes of a menu item.

Parameters
param1

usitem (USHORT)
Item identifier.

usincludesubmenus (USHORT)
Include submenus indicator.

param2

TRUE If the menu does not have an item with the specified identifier, search the
submenus and subdialogs of the menu for an item with the specified
identifier and set its attributes.

FALSE If the menu does not have an item with the specified identifier, do not
search the submenus and subdialogs of the menu for an item with the
specified identifier.

usattributemask (USHORT)
Attribute mask.

usattributedata (USHORT)
Attribute data.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

13-48 PM Basic Programming Guide

MM SETITEMHANDLE
This message sets the handle of a menu item.

Parameters
param1

usitem (USHORT)
Item index.

param2

ulitemhandle (UlONG)
Item handle.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Chapter 13. Menus 13-49

MM SETITEMTEXT
This message sets the text of a menu item.

Parameters
param1

usitem (USHORT)
Item identifier.

param2

pszltemText (PSZ)
Item text.

This points to a string containing the text to set the menu item to.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

13-50 PM Basic Programming Guide

MM_STARTMENUMODE
This message is used to begin menu selection.

Parameters
param1

usshowsubmenu (USHORT)
Show submenu flag.

TRUE Show the submenu (pull-down menu) of the selected action bar item
when the menu enters selection mode. If the action bar is not visible, the
submenu is shown, otherwise it is not shown. If the item selected does
not have a submenu, this parameter is ignored.

FALSE Do not show the submenu (pull-down menu) of the selected action bar
item when the menu enters selection mode.

usresumemenu (USHORT)

param2

Resume menu mode flag.

TRUE Resume the user interaction with the menu from where it left off. The
menu is assumed to have been used previously and left without
dismissing one of the submenus, and therefore is resumed in that
submenu.

FALSE Begin user interaction with the menu from the action bar, subject to the
value of the usshowsubmenu parameter.

ulReserved (UlONG)
ReseNed value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Chapter 13. Menus 13-51

WM CONTEXTMENU
This message occurs when the operator requests a pop-up menu.

Parameters
param1

ptspointerpos (POINTS)
Pointer position.

param2

The pointer position is in window coordinates relative to the bottom-left corner of the
window. This value is ignored if fPointer is not set to TRUE.

\
usReserved (USHORT)

Reserved value, o.
fPointer (USHORT)

Input device flag.

TRUE
FALSE

Message resulted from keyboard event.
Message resulted from mouse pointer event.

Returns
rc (BOOl)

Processed indicator.

TRUE
FALSE

Message processed
Message ignored.

13-52 PM Basic Programming Guide

WM INITMENU
This message occurs when a menu control is about to become active.

Parameters
param1

smenuid (SHORT)
Menu-control identifier.

param2

hwnd (HWND)
Menu-window handle.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Chapter 13. Menus 13-53

WM MENUEND
This message occurs when a menu control is about to terminate.

Parameters
param1

usmenuid (USHORT)
Menu-control identifier.

param2

hwnd (HWNO)
Menu-control window handle.

Returns
ulReserved (ULONG)

Reserved value, should be O.

13-54 PM Basic Programming Guide

Related Data Structures
This section covers the data structures that are related to Menus.

MENUITEM
Menu item.

Syntax

typedef struct MENUITEM {
SHORT iPosition;
USHORT afStyle;
USHORT afAttribute;
USHORT id;
HWND hwndSubMenu;
ULONG hItem;
} MENUITEM;

typedef MENUITEM *PMENUITEM;

Fields
iPosition (SHORT)

Position.

afStyle (USHORT)
Style.

afAttribute (USHORT)
Attribute.

id (USHORT)
Identity.

hwndSubMenu (HWND)
Submenu.

hltem (ULONG)
Item.

Chapter 13. Menus 13-55

OWNERITEM
Owner item.

Syntax

Fields
hwnd (HWNO)

Window handle.

hps (HPS)
Presentation-space handle.

fsState (ULONG)
State.

fsAttribute (ULONG)
Attribute.

fsStateOld (ULONG)
Old state.

fsAttributeOld (ULONG)
Old attribute.

rclltem (RECTL)
Item rectangle.

idltem (LONG)
Item identity.

hltem (ULONG)
Item.

13-56 PM Basic Programming Guide

Summary
This section lists the OS/2 functions, messages, and structures used with menus.

Table 13-2. Menu Functions

Function Name Description

WinCheckMenultem Sets the check state of the specified menu item to the
flag.

WinCreateMenu Creates a menu window from the menu template.

WinEnableMenultem Sets the state of the specified menu item to the enable
flag.

WinlsMenultemChecked Returns the state (checked/not checked) of the identified
menu item.

WinlsMenultemEnabled Returns the state (enable/disable) of the specified menu
item.

WinlsMenultemValid Returns TRUE if the specified item is a valid choice.

Win Load Menu Creates a menu window from the menu template Menuid
from Resource, and returns in Menu the window handle
for the created window.

WinPopupMenu Displays a pop-up menu.

WinSetMenultemText Sets the text for menu indexed item to buffer.

Table 13-3 (Page 1 of 2). Messages Received by a Menu

Message

MM_DELETEITEM

MM_ENDMENUMODE

MM_INSERTITEM

MM_ISITEMVALID

MM_ITEMIDFROMPOSITION

MM_ITEMPOSITIONFROMID

MM _ QUERYDEFAUL TITEMID

MM_QUERYITEM

MM_QUERYITEMATTR

MM_ QUERYITEMCOUNT

MM_QUERYITEMRECT

MM_QUERYITEMTEXT

MM_ QUERYITEMTEXTLENGTH

MM_ QUERYSELITEMID

MM_REMOVEITEM

Description

Deletes a menu item.

Sent to a menu control to terminate menu selection.

Inserts a menu item in a menu.

Returns the selectable status of a specified menu item.

Returns the identity of a menu item of a specified index.

Returns the index of a menu item of a particular identify.

Returns the default item id for a conditional cascade
menu.

Returns the definition of the specified menu item.

Returns the attributes of a menu item.

Returns the number of items in the menu.

Returns the bounding rectangle of a menu item.

Returns the text of the specified menu item.

Returns the text length of the specified menu item.

Returns the identity of the selected menu item.

Removes a menu· item.

Chapter 13. Menus 13-57

Table 13-3 (Page 2 of 2). Messages Received by a Menu

Message Description

MM_SELECTITEM Selects or deselects a menu item.

MM_SETDEFAUL TITEMID Used to set the default item in a conditional cascade
menu.

MM_SETITEM Sets the definition of a menu item.

MM_SETITEMATIR Sets the attributes of a menu item.

MM_SETITEMHANDLE Sets the handle of a menu item.

MM-. SETITEMTEXT Sets the text of a menu item.

MM_STARTMENUMODE Used to begin menu selection.

Table 13-4 (Page 1 of 2). Messages Generated by a Menu

Message Description

WM_ADJUSTWINDOWPOS Sent by WinSetWindowPos to enable the window to
adjust its new position or size whenever it is about to be
moved.

WM_BUTION1 DOWN Occurs when the user presses pointer button 1.

WM_BUTION2DOWN Occurs when the user presses pointer button 2.

WM_BUTION3DOWN Occurs when the user presses pointer button 3.

WM_COMMAND Occurs when a control has a significant event to notify to
its owner or when a keystroke has been translated by an
accelerator table.

WM_CONTEXTMENU Occurs when the operator requests a pop-up menu.

WM_CONTROLPOINTER Sent to the owner window of a control when the pointing
device pOinter moves over the control window, enabling
the owner to set the pointer.

WM_CREATE Occurs when an application requests the creation of a
window.

WM_DESTROY Occurs when an application requests the destruction of a
window.

WM_DRAWITEM Sent to the owner of a menu control each time an item is
to be drawn.

WM_ENABLE Sets the enable state of a window.

WM_FOCUSCHANGE Occurs when the window possessing the focus is
changed.

WM_HELP Occurs when a control has a significant event to notify to
its owner or when a keystroke has been translated by an
accelerator table into a WM_HELP.

WMJNITMENU Occurs when a menu control is about to become active.

WM_MEASUREITEM Sent to the owner of a meu control to establish the height
for an item in that control.

13-58 PM Basic Programming Guide

Table 13-4 (Page 2 of 2). Messages Generated by a Menu

Message Description

WM_MENUEND Occurs when a menu control is about to terminate.

WM_MENUSELECT Occurs when a menu item has been selected.

WM_MOUSEMOVE Occurs when the pointing device pointer moves.

WM_NEXTMENU Occurs when either the beginning or the end of the menu
is reached using the cursor control keys.

WM_PAINT Occurs when a window needs repainting.

WM_QUERYCONVERTPOS Sent by an application to determine whether it is
appropriate to begin conversion of OSCS characters.

WM_SETFOCUS Occurs when a window is to receive or lose the input
focus.

WM_SETWINDOWPARAMS Occurs when an application sets or changes the menu
parameters.

WM_SYSCOMMAND Occurs when a control has a significant event to notify to
its owner or when a keystroke has been translated by an
accelerator table into a WM_SYSCOMMANO.

Table 13-5. Menu Structures

Structure Name Description

MENUITEM Menu item.

OWNERITEM Owner item.

Chapter 13. Menus 13-59

13-60 PM Basic Programming Guide

Chapter 14. Keyboard Accelerators

A keyboard accelerator (shortcut key to the user) is a keystroke that generates a command
message for an application. This chapter describes how to use keyboard accelerators in
your PM applications.

About Keyboard Accelerators
Using a keyboard accelerator has the same effect as choosing a menu item. While menus
provide an easy way to learn an application's command set, accelerators provide quick
access to those commands.

Without accelerators, a user might generate commands by pressing the Alt key to access the
menu bar, using the Arrow keys to select an item, then pressing the Enter key to choose the
item. In contrast, accelerators allow the user to generate commands with a single keystroke.
Figure 14-1 shows examples of accelerators.

Shortcut teys

Figure 14-1. Accelerators

Like menu items, accelerators can generate WM_COMMANO, WM_HELP, and
WM_SYSCOMMANO messages. Although, normally, accelerators are used to generate
existing commands as menu items, they also can send commands that have no menu-item
equivalent.

© Copyright IBM Corp. 1994 14-1

Accelerator Tables
An accelerator table contains an array of accelerators. Accelerator tables exist at two levels
within the operating system: a single accelerator table for the system queue and individual
accelerator tables for application windows. Accelerators in the system queue apply to all
applications-for example, the F1 key always generates a WM_HELP message. Having
accelerators for individual application windows ensures that an application can define its own
accelerators without interfering with other applications. An accelerator for an application
window can override the accelerator in the system queue. An application can modify both its
own accelerator table and the system's accelerator table.

The application can set and query the accelerator table for a specific window or for the entire
system. For example, an application can query the system accelerator table, copy it, modify
the copied data structures; and then, use the modified copy to set the system accelerator
table. An application also can modify its window's accelerator table at run time to respond
more appropriately to the current environment.

Note: An application that modifies any accelerator table other than its own should maintain
the original accelerator table; and, before terminating, restore that table.

Accelerator-Table Resources
You can use accelerators in an application by creating an accelerator-table resource in a
resource-definition file. Then, when the application creates a standard frame window, the
application can associate that window with the resource.

As specified in a resource-definition file, an accelerator table consists of a list of accelerator
items, each defining the keystroke that triggers the accelerator, the command the accelerator
generates, and the accelerator's style. The style specifies whether the keystroke is a virtual
key, a character, or a scan code, and whether the generated message is WM_COMMANO,
WM_SYSCOMMAND, or WM_HELP; WM_COMMAND is the default.

Accelerator-Table Handles
Applications that use accelerator tables refer to them with a 32-bit handle. An application
using this handle, by default, can make most API function calls for accelerators without
having to account for the internal structures that define the accelerator table. When an
application needs to dynamically create or change an accelerator table, it must use the
ACCEL and ACCEL TABLE data structures.

Accelerator-Table Data Structures
An accelerator table consists of individual accelerator items. Each item in the table is
represented by an ACCEL structure that defines the accelerator's style, keystroke, and
command identifier. Typically, an application defines these aspects of an accelerator in a
resource-definition file, but the ACCEL structure also can be built in memory at run time.

14-2 PM Basic Programming Guide

An accelerator table is represented by an ACCEL TABLE structure that specifies the number
of accelerator items in the table, the code page used for the keystrokes in the accelerator
items, and an array of ACCEL structures (one for each item in the table). Applications that
use ACCEL TABLE structures directly must allocate sufficient memory to hold all the items in
the table.

Accelerator-Item Styles
An accelerator item has a style that determines what combination of keys produces the
accelerator and what command message is generated by the accelerator. An application
can specify the following accelerator-item styles in the fs field of the ACCEL structure:

Table 14-1. Accelerator-Item Styles

Style

AF_CONTROL

Description

Specifies that the user must hold down the Alt key while pressing the
accelerator key.

Specifies that the keystroke is a character that is translated using the
code page for the accelerator table. (This is the default style.)

Specifies that the user must hold down the Ctrl key while pressing the
accelerator key.

Specifies that the accelerator generates a WM_HELP message instead of
a WM_COMMAND message.

Specifies that the user need not press another key while the accelerator
key is down. Typically, this style is used with the Alt key to specify that
simply pressing and releasing that key triggers the accelerator.

Specifies that the keystroke is an untranslated scan code from the
keyboard.

Specifies that the user must hold down the Shift key when pressing the
accelerator key.

Specifies that the accelerator generates a WM_SYSCOMMAND message
instead of a WM_COMMAND message.

Specifies that the keystroke is a virtual key-for example, the F1 function
key.

Using Keyboard Accelerators
This section explains how to perform the following tasks:

• Create an accelerator-table resource.
• Include an accelerator table in a frame window.
• Modify an accelerator table.

Chapter 14. Keyboard Accelerators 14-3

Creating an Accelerator-Table Resource
The following code fragment shows a typical accelerator-table resource:

This accelerator table has four accelerator items. The first one is triggered when the user
presses Shift+Esc, which sends a WM_COMMAND message (the default).

An accelerator table in a resource-definition file has an identifier (ID_ACCEL_RESOURCE in
the previous example). You can associate an accelerator-table resource with a standard
frame window by specifying the table's resource identifier as the idResources parameter of
the WinCreateStdWindow function.

An application can load an accelerator table resource-definition file automatically when
creating a standard frame window, or it can load the resource independently and associate it
with a window or with the entire system.

Including an Accelerator Table in a Frame Window
You can add an accelerator table to a frame window either by using the WinSetAccelTable
function or by defining an accelerator-table resource (as shown in the previous section) and
creating a frame window with the FCF _ACCELTABLE frame style. The second method is
shown in the following code fragment:

hwndFrame, hwndCl i ent;
szGlassName[J="MyClass 11 ;

szTitl e [] =,IMYWi nqow";

ULONG flGontro1 Sty 1 e == FCF_SIZEBORDER I FCF ~ ACCELTABLE.I
FCF _JITLEBIXR I reF -,-MENU;

14-4 PM Basic Programming Guide

Notice that if you set the flControlStyle parameter to the FCF _STANDARD flag, you must
define an accelerator-table resource, because FCF _STANDARD includes the
FCF _ACCELTABLE flag.

If the window being created also has a menu, the menu resource and accelerator resource
must have the same resource identifier; this is because the WinCreateStdWindow function
has only one input parameter to specify the resource identifiers for menus, accelerator
tables, and icons. If an application creates an accelerator table resource-definition file; then,
opens a standard frame window (as shown in the preceding example), the accelerator table
is installed automatically in the window's message queue, and keyboard events are
translated during the normal processing of events. The application simply responds to
WM_COMMAND, WM_SYSCOMMAND, and WM_HELP messages; it does not matter
whether these messages come from a menu or an accelerator.

An application also can add an accelerator table to a window by calling the
WinSetAccelTable function with an accelerator-table handle and a frame-window handle.
The application can call either the WinLoadAccelTable function to retrieve an accelerator
table from a resource file or the WinCreateAccelTable function to create an accelerator table
from an accelerator-table data structure in memory.

Modifying an Accelerator Table
You can modify an accelerator table, for either your application windows or the system, by
doing the following:

1. Retrieve the handle of the accelerator table.

2. Use that handle to copy the accelerator-table data to an application-supplied buffer.

3. Change the data in the buffer.

4. Use the changed data to create a new accelerator table.

Then you can use the new accelerator-table handle to set the accelerator table, as outlined
in the following list:

1. Call WinQueryAccelTable to retrieve an accelerator-table handle.

2. Call WinCopyAccelTable with a NULL buffer handle to determine how many bytes are in
the table.

3. Allocate sufficient memory for the accelerator-table data.

4. Call WinCopyAccelTable, with a pointer to the allocated memory.

5. Modify the data in the buffer (assuming it has the form of an ACCELTABLE structure).

6. Call WinCreateAccelTable, passing a pointer to the buffer with the modified
accelerator-table data.

7. Call WinSetAccelTable with the handle returned by WinCreateAccelTable.

Chapter 14. Keyboard Accelerators 14-5

Related Functions
This section covers the functions that are related to Keyboard Accelerators.

WinCopyAccelTable
This function is used to get the accelerator-table data corresponding to an accelerator-table
handle, or to determine the size of the accelerator-table data.

Syntax

#define INCL_WINACCELERATORS /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

ULONG WinCopyAccelTable (HACCEL hAccel, PACCELTABLE pacctAccelTable,
ULONG ulCopyMax)

Parameters
hAccel (HACCEL) - input

Accelerator-table handle.

pacctAccelTable (PACCELTABLE) - in/out
Accelerator-table data area.

NULL Return the size, in bytes, of the complete accelerator table, and ignore the
ulCopyMax parameter.

Other Copy up to ulCopyMax bytes of the accelerator table into this data area.

ulCopyMax (ULONG) - input
Maximum data area size.

Returns
ulCopied (ULONG) - returns

Amount copied or size required.

Other Amount of data copied into the data area, or the size of data area required for
the complete accelerator table.

o Error occurred.

14-6 PM Basic Programming Guide

WinCreateAccelTable
This function creates an accelerator table from the accelerator definitions in memory.

Syntax

#define INCL_WINACCELERATORS /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

HACCEL WinCreateAccelTable (HAB hab, PACCELTABLE pacctAccelTable)

Parameters
hab (HAB) - input

Anchor-block handle.

pacctAccelTable (PACCELTABLE) - input
Accelerator table.

Returns
haccelhAccel (HACCEL) - returns

Accelerator-table handle.

Chapter 14. Keyboard Accelerators 14-7

Win DestroyAccelTable
This function destroys an accelerator table.

Syntax

#define INCL_WINACCELERATORS /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinDestroyAccelTable (HACCEl haccelAccel)

Parameters
haccelAccel (HACCEl) - input

Accelerator-table handle.

Returns
rc (BOOl) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

14-8 PM Basic Programming Guide

WinLoadAccelTable
This function loads an accelerator table.

Syntax

#define INCL_WINACCELERATORS /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

HACCEL WinLoadAccelTable (HAB hab, HMODULE Resource,
ULONG idAccelTable)

Parameters
hab (HAS) - input

Anchor-block handle.

Resource (HMODULE) - input
Resource identity containing the accelerator table.

idAccelTable (ULONG) - input
Accelerator-table identifier, within the resource file. ,

Returns
haccelAccel (HACCEL) - returns

Accelerator-table handle.

Chapter 14. Keyboard Accelerators 14-9

WinQueryAccelTable
This function queries the window or queue accelerator table.

Syntax

#define INCL_WINACCELERATORS /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

HACCEL WinQueryAccelTable (HAB hab, HWND hwndFrame)

Parameters
hab (HAB) - input

Anchor-block handle.

hwndFrame (HWND) - input
Frame-window handle.

NULLHANDLE Return queue accelerator.
Other Return the window accelerator table, by sending the

WM_QUERYACCELTABLE message to hwndFrame.

Returns
haccelAccel (HACCEL) - returns

Accelerator-table handle.

NULLHANDLE Error occurred
Other Accelerator-table handle.

14-1 0 PM Basic Programming Guide

WinSetAccelTable
This function sets the window-accelerator, or queue-accelerator table.

Syntax

#define INCL_WINACCELERATORS /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinSetAccelTable (HAB hab, HACCEl haccelAccel, HWND hwndFrame)

Parameters
hab (HAS) - input

Anchor-block handle.

haccelAccel (HACCEl) - input
Accelerator-table handle.

NUllHANDlE Remove any accelerator table in effect for the window or the queue
Other Accelerator-table handle.

hwndFrame (HWND) - input
Frame-window handle.

NUllHANDlE Set the queue-accelerator table
Other Set the window-accelerator table.

Returns
rc (BOOl) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Chapter 14. Keyboard Accelerators 14-11

WinTranslateAccel
This function translates a WM_CHAR message.

Syntax

#define INCL_WINACCELERATORS /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinTranslateAccel (HAB hab, HWND hwnd, HACCEl haccelAccel,
PQMSG pQmsg)

Parameters
hab (HAS) - input

Anchor-block handle.

hwnd (HWND) - input
Destination window.

haccelAccel (HACCEl) - input
Accelerator-table handle.

pQmsg (PQMSG) - in/out
Message to be translated.

Returns
rc (SOOl) - returns

. Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

14-12 PM Basic Programming Guide

Related Messages
This section covers the messages that are related to Keyboard Accelerators.

WM_QUERYACCELTABLE
This message returns the handle to the accelerator table of a window.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
haccel (HACCEL)

Accelerator table handle.

NULLHANDLE No accelerator table is associated with the window.
Other The handle of the accelerator table associated with the window.

Chapter 14. Keyboard Accelerators 14-13

WM SETACCELTABLE
This message establishes the window accelerator table to be used for translation, when the
window is active. .

Parameters
param1

haccelNew (HACCEl)
New accelerator table.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

14-14 PM Basic Programming Guide

Related Data Structures
This section covers the data structures that are related to Keyboard Accelerators.

ACCEL
Accelerator structure.

Syntax

typedef struct _ACCEL {
USHORT fs;
USHORT key;
USHORT cmd;
} ACCEL;

typedef ACCEL *PACCEL;

Fields
1s (USHORT)

Options.

key (USHORT)
Key.

cmd (USHORT)
Command code.

The value to be placed in the uscmd parameter of a WM_HELP, a WM_COMMAND, or
a WM_SYSCOMMAND.

Chapter 14. Keyboard Accelerators 14-15

ACCELTABLE
Accelerator-table structure.

Syntax

typedef struct _ACCELTABLE {
U$HORT cAccel;
USHORT codepage;
ACCEL aacce 1 [1] ;
} ACCELTABLE;

typedef ACCELTABLE *PACCELTABLE;

Fields
cAccel (USHORT)

Number of accelerator entries.

codepage (USHORT)
Code page for accelerator entries.

aaccel[1] (ACCEL)
Accelerator entries.

The default accelerator table has the following 16 entries:

Options Key Command

HELP VIRTUALKEY VK F1 0
SYSCOMMAND ALT VIRTUALKEY VK F4 SC_CLOSE
SYSCOMMAND ALT VIRTUALKEY VK ENTER SC_RESTORE
SYSCOMMAND ALT VIRTUALKEY VK_NEWLINE SC_RESTORE
SYSCOMMAND ALT VIRTUALKEY VKJ5 SC_RESTORE
SYSCOMMAND ALT VIRTUALKEY VKJ6 SC_NEXTFRAME
SYSCOMMAND ALT VIRTUALKEY VKJ7 SC_MOVE
SYSCOMMAND ALT VIRTUALKEY VKJ8 SC_SIZE
SYSCOMMAND ALT VIRTUALKEY VKJ9 SC_MINIMIZE
SYSCOMMAND ALT VIRTUALKEY VKJ10 SC_MAXIMIZE
SYSCOMMAND VIRTUALKEY VKJ10 SC_APPMENU
SYSCOMMAND LONEKEY VIRTUALKEY VK_ALT SC_APPMENU
SYSCOMMAND LONEKEY VIRTUALKEY VK_ALTGRAF SC_APPMENU
SYSCOMMAND ALT VIRTUALKEY VK_SPACE SC_SYSMENU
SYSCOMMAND SHIFT VIRTUALKEY VK_ESC SC_SYSMENU
SYSCOMMAND CONTROL VIRTUALKEY VK_ESC SC_TASKMANAGER

14-16 PM Basic Programming Guide

Summary
Following are the OS/2 functions, messages, and structures used with accelerator tables:

Table 14-2. Accelerator-Table Functions

Function name Description

WinCopyAccelTable Used to get the accelerator table corresponding to an
accelerator-table handle, or to determine the size of the
accelerator-table data.

WinCreateAccelTable Creates an accelerator table from the accelerator
definitions in memory.

WinDestroyAccelTable Destroys an accelerator table.

WinLoadAccelTable Loads an accelerator table.

WinQueryAccelTable Queries the window or queue accelerator table.

WinSetAccelTable Sets the window-accelerator or queue-accelerator table.

WinTranslateAccel Translates a WM_CHAR message.

Table 14-3. Accelerator-Table Messages

Message Description

WM_QUERYACCELTABLE Returns the handle to a window's accelerator table.

WM_SETACCELTABLE Establishes the window accelerator table to be used for
translation when the window is active.

WM_TRANSLATEACCEL Sent to the focus window when a WM_CHAR message
occurs.

Table 14-4. A ccelera tor-Table Structures

Structure name Description

ACCEL Accelerator structure.

ACCELTABLE Accelerator-table structure.

Chapter 14. Keyboard Accelerators 14-17

14-18 PM Basic Programming Guide

Chapter 15. Dialog Windows

Dialog windows (also called dialog boxes) provide a high-level method for applications to
display and gather information. This chapter describes the creation and use of dialog
windows and message boxes in your PM applications.

Note: Dialog windows, dialog boxes, and message boxes all are secondary windows to the
user.

About Dialog Windows
A dialog window is a temporary window that contains one or more control windows and,
typically, is used to display messages to and gather input from the user. An application
usually destroys a dialog window immediately after using it.

The OS/2 operating system contains many functions and messages that help manage the
control windows that make up a dialog window, thereby easing the burden of maintaining
complex input and output systems.

Modal and Modeless Dialog Windows
Dialog windows can be modal or modeless. A modal dialog window requires that the dialog
window be dismissed before the user can activate other windows in the same application.
Generally, an application uses a modal dialog window to get essential information from the
user before proceeding with an operation. A modeless dialog window allows the user to
activate other windows in the same application without dismissing the dialog window. Both
modal and modeless dialog windows allow the user to activate windows in another
application before responding to the dialog window.

Modal dialog windows are easier for an application to manage because they are created,
perform their task, and are closed, all with a single function call.

Modeless dialog windows require more attention from the application because they exist until
explicitly dismissed. Modeless dialog windows provide a more flexible interface, however, by
allowing the user to move to other windows in the application before responding to the dialog
window.

Dialog Items
A dialog item is a child window of the dialog window, which usually is a window of class
We_FRAME. The operating system provides many predefined window classes, called
control windows, that you can use as dialog items. Figure 15-1 on page 15-2 is an
example.

© Copyright IBM Corp. 1994 15-1

Dialog window
Controls _______ ---1

Figure 15-1. Dialog Window with Control Windows

Predefined control windows include static display boxes, text-entry fields, buttons, and list
boxes. You also can use customized window classes as dialog items.

Dialog items are windows and, thus, can be manipulated by all window-management
functions relating to size, position, and visibility. Dialog items always are owned by the

. dialog frame window. Most predefined control-window classes send notification messages to
their owners when the user interacts with their control windows. The dialog frame window
receives these notification messages and passes them to the application through the
application-defined dialog procedure.

Dialog-Item Groups
Items within a dialog window can be organized into dialog-item groups. When items are
arranged in a group, the user can move from one item to another in the same group by using
the direction keys. When the user presses a direction key, the focus will not shift to items in
other groups within the dialog window.

Arranging items in groups is useful for radio buttons and check boxes. Although some
control types also can be displayed this way, entry-field controls cannot; they process
direction keys themselves, as do MLE, value-set, container, slider, and notebook controls.

The first item in a dialog-item group has the WS_GROUP window style. All subsequent
items in the dialog template are considered part of that group until another item is given the
WS_GROUP style, which begins a new group.

The WS_TABSTOP style often is used along with the WS_GROUP style. WS_TABSTOP
marks the items that can receive the focus when the user presses the Tab key. Each time
the user presses the Tab key, the focus moves to the next item that has the WS_TABSTOP
style. Generally, the WS_GROUP and WS_TABSTOP styles are defined together for the
first item of each group in the dialog template. This makes it possible for a user to press the

15-2 PM Basic Programming Guide

Tab key to move among groups of items and to use the direction keys to move among items
in a group.

The WS _ TABSTOP style should not be used for radio buttons because the system
automatically maintains a tab stop on any selected item in a radio-button group; therefore,
when the Tab key is pressed in a group of radio buttons, the focus remains on the currently
selected item.

The WS_GROUP and WS_TABSTOP styles are also useful for preventing the user from
moving to a pa'rticular button when using the keyboard. For example, if the dialog window
has OK and Cancel push buttons, they should be in the same group, with the OK push
button as the first item in the group. The user can press Tab to select the OK push button
but not the Cancel push button. To move to the Cancel button using the keyboard, the user
first must press the Tab key to move to the OK push button, and then press a direction key
to move the focus to the Cancel push button.

Message Boxes
Message boxes are dialog windows predefined by the system and used as a simple interface
for applications, without the necessity of creating dialog-template resources or dialog
procedures. Message boxes are best for short notification messages that require a simple
acknowledgment or choice by the user. Applications do not specify a dialog procedure for
message boxes, so they cannot readily change the action of a message box. However,
there is no need to do so, since there are many predefined message-box styles. There are
two types of message boxes available to applications: standard and enhanced.

Standard Message Boxes
To generate a standard message box, an application calls WinMessageBox and specifies the
type of message box and message text. The system displays the message and waits for the
user to dismiss the message box by selecting a button in the message box. The system
then returns a result code to the application, indicating which button the user selected.

Standard message boxes are always modal-either application-modal or system-modal.
Application-modal (the default style) means that the user cannot activate another window in
the current application before responding to the message box but can switch to another
application. System-modal means that the user cannot activate another window in any
application before responding to the message box. A system-modal message box should be
used only to display urgent error messages (running out of memory, for example).
Figure 15-2 on page 15-4 shows a sample standard message box.

Chapter 15. Dialog Windows 15-3

Push button

Icon

Message

Figure 15-2. Example of a Standard Message Box

Enhanced Message Boxes
To generate an enhanced message box, an application calls WinMessageBox2. An
enhanced message box has all the functionality of the standard message box, with the
addition of the following:

• It can be modeless.
Its buttons can be customized with text and icons.

• It can support customized icons in the window icon field.

Figure 15-3 shows a sample enhanced message box.

Figure 15-3. Example of an Enhanced Message Box

In creating enhanced message boxes, the MB21NFO button information block structure is
used to specify button style flags as shown in the following table:

15-4 PM Basic Programming Guide

Table 15-1. MB21NFO Button Style Flags

Style Name

MB_CUSTOMICON

MB_ERROR

MBJCONASTERISK

MB_ICONEXCLAMATION

MB_ICONHAND

MBJCONQUESTION

MB_INFORMATION

MB_MOVEABLE

MB_NOICON

MB_NONMODAL

MB_QUERY

MB_SYSTEMMODAL

MB_WARNING

Minimizing Dialog Windows

Description

Message box is application modal. This is the default
case.

A user-specified value.

Message box contains a STOP sign (white background).

Message box contains an asterisk icon.

Message box contains an exclamation point icon.

Message box contains a hand icon.

Message box contains a question mark icon.

Message box contains a black "i" in a box.

Message box is moveable. A title bar and system menu
with Move, Close and Task Manager choices are
displayed.

Message box does not contain an icon.

Message box is modeless (the program continues after
displaying the message box).

Message box contains a question mark in a box.

Message box is system modal.

Message box contains a black "!" in a box.

Whenever the dialog window is to be minimized to the desktop (as opposed to the Minimized
Window Viewer), the program should hide all its child control windows, then restore them
when the dialog needs to be restored.

Dialog Data Structures
Each item in a dialog window is described by a DLGTITEM data structure. This structure is
rarely accessed directly by an application, since system functions handle most of the
manipulation of dialog items. Applications that create dialog items that are not defined as
part of a dialog-template resource must create dialog-window-item structures in memory.

A dialog window can have many items, so applications can use another structure,
DLGTEMPLATE, to define the items. This structure consists of header information, followed
by an array of dialog-window items. Applications that create dialog windows without using
dialog resources must create a dialog template in memory, and, then, call the WinCreateDlg
function.

Dialog Resources
Most applications define dialog templates in resource files rather than constructing template
data structures in memory at run time. The dialog resource file defines the size and style of
the dialog-window frame and specifies each dialog item.

Chapter 15. Dialog Windows 15-5

The dimensions and position of each dialog item are specified in dialog coordinates, which
are based on the size of the system font. A horizontal unit is one-fourth the average width of
the characters in the system font; a vertical unit is one-eighth the average height of the
characters in the system font. The origin of the dialog template is the lower-left corner of the
dialog window. The operating system provides the WinMapDlgPoints function for converting
dialog coordinates into window coordinates.

Using Message Boxes and Dialog Windows
The simplest dialog window is the message box. Most message boxes present simple
messages and offer the user one, two, or three responses (represented by buttons). A
message box is easy to use and is appropriate when an application requires a clearly
defined response to a static message. However, standard message boxes lack flexibility in
size and placement on the screen and are limited in the choices they offer the user.
Applications that require more control over the size, position, and content should use
enhanced message boxes or regular Dialog Windows instead of standard message boxes.

Creating a Standard Message Box
There are three parts to a message box: the icon, the message, and buttons. Applications
specify the icons and buttons by using message-box style constants. Message text is
specified by a null-terminated string.

To create a message box, the application calls WinMessageBox, which displays the
message box and processes user input until the user selects a button in the message box.
The WinMessageBox return value indicates which button the user selected.

The following code fragment illustrates how to create a message box with a default Yes
button, a No button, and a question-mark (?) icon. This example assumes that you have
defined a string resource with the MY _MESSAGESTRJD identifier in the resource file.

15-6 PM Basic Programming Guide

UCHAR szMessageStri n9 [255] ;
ULONG ul Result;

WinLoadString(hab, (HMODULE) NULL, MY MESSAGESTR ID.
sizeof(szMessageString). szMessageString); -

ul Result = Wi nMessageBox (hwndFrame,
hwndFrame,
szMessageSt ri ng,
(PSl) NULL.
MY MESSAGEWIN.
M(YESNO I
MB_ICONQUESTION I
MB_DEFBUTTON1) ;

if (ulResult == MBID_YES)

/* Do yes case, */

} el se {

/* Do no case. */

/* Parent */
/* OWner */
/* Text */
/* capt; on */
/* Window IO */

/* Style */

The WinMessageBox function returns· predefined values indicating which button has been
selected.

Notice that strings for message boxes should be defined as string resources to facilitate
program translation for other countries. However, there is danger in using string resources in
message boxes that are called in low-memory situations; loading a string resource in such
situations could result in severe memory problems and cause an application to fail. One way
to prevent this problem is to preload the string resource and make it nondiscardable so it will
be available when the message box must be displayed.

Creating a System-Modal Standard Message Box
There are two levels of modality for system-modal message boxes-soft modal and hard
modal. A soft-modal message box does not allow keystrokes or mouse input to reach any
other window but does allow other messages, such as deactivation and timer messages, to
reach other windows. A hard-modal message box does not allow any messages to reach
other windows. A hard-model message box is appropriate for serious system warnings.

To create a hard-modal message box, combine the MB_ICONHAND style with the
MB_SYSTEMMODAL style. To create a soft-modal message box, use the
MB_SYSTEMMODAL style with any style other than MB_ICONHAND. The
MB_SYSTEMMODAL icon always is in memory and is available even in low-memory
situations.

Creating an Enhanced Message Box
WinMessageBox2 creates a message window that can be used to display error messages
and ask questions. It is a more powerful version of WinMessageBox, including options for
non-modality and customization of buttons with text and icons or mini-icons. Buttons

Chapter 15. Dialog Windows 15-7

included in the enhanced message box are specified in the button definition array MB2D,
where custom text can be added.

To support the use of the MB_NONMODAL style, two notification messages are used:

WM_MSGBOXINIT This message notifies the owner of the message when a
non-modal message box is being displayed. It is the
responsibility of the owner window to store the window handle
returned by the function for later use when the message box is to
be destroyed.

WM_MSGBOXDISMISS This message notifies the owner of the message when a
non-modal message box has been dismissed. It is the parent
window's responsibility to destroy the message box.

The following example uses WinMessageBox2 to create a message box containing a
customized icon:

#define INCl WINDIAlOGS
#define INCl)INPOINTERS

#include<os2.h>
#irlcl ude <stdi o. h>
#include <:stririg.h>

CHAR
HWND
MB2INFO

szMsg [100] ;
hwndCl i ent;
mb2i nfo;

/* Window Dialog Manager Functions */
/* Window Pointer Functions */

/*Messilge
/* C1; ent-wi ndow handl e
/* Message Box input structure

MB2D mb2d[41 = { 1* Array of button definitions*l

};

.. { "MAA", ID BUTTONl,BS DEFAULT},
{ "BBeB", ID - BUTTON2, EJ}:
{ "CCCC"; ID.;..BUTTON3, 0};
{IIDDDD". ID_BUTTON4. 0}

Illb2info.hJcon=WinloadPoin1;er(HWND DESKTOP, 0. ID ICONI);
mb2i nfo. cButtQnS"'4; •1*-Number of byttons
mb2info.HStyle = M~_CUSTOMICONJMB..,MOVEAeLE;

. /*IConstyle flags
mb2info.hwndNotlfy '" NUllHANDlE; /*Reserved
mb2info.cb =osizeof(MB2INFO)+«mb2info.cButons >1};?

(T11b2info;cButtons ;..1)t< sjzeof (MB2D) : 0);

15-8 PM Basic Programming Guide

Using a Dialog Window
When using a dialog window, an application must load the dialog window, process user
input, and destroy the dialog window when the user finishes the task. The process for
handling a dialog window varies, depending on whether the dialog window is modal or
modeless.

Creating a Dialog Template
The following source-code fragment creates a dialog template. Notice that the WS_GROUP
and WS _ TABSTOP style designations are given for the first item in each group.

DLGTEMPLATE IDD ABOUT
BEGIN -

DIALOG "", IDD_ABOUT2,
10, 10, 150, 110, FS DLGBORDER, °
BEGIN -

CONTROL "Attributes:",100,
10, 30, 100, 70,
WC STATIC,
S(GROUPBOX I WS_VISIBLE

CONTROL "Hi gh 1 i ghted" ,101,
20, 80, 58, 12,
WC BUTTON,
W(GROUP I WS_TABSTOP I BS_AUTOCHECKBOX I WS_VISIBLE

CONTROL "Enabled II ,102,
20, 60, 58, 12,
WC BUTTON,
B(AUTOCHECKBOX I WS_VISIBLE

CONTROL "Checked",103,
20, 40, 58, 12,
WC BUTTON,
B(AUTOCHECKBOX I WS_VISIBLE

CONTROL "Okay", DID OK,
. 10, 10, 50, 14, -

WC BUTTON,
W(GROUP I WS_TABSTOP I BS_PUSHBUTTON I BS_DEFAULTI WS_VISIBLE

CONTROL "Cance 1", DID CANCEL,
80, 10, 50, 14, -
WC BUTTON.
BS)USHBUTTON I WS_VISIBLE

END
END

Creating a Modal Dialog Window
The easiest way to use a modal dialog window is to define a dialog template in the resource
file (as in the preceding section), and then, call the WinDlgBox function, specifying the
dialog-window resource identifier and a pointer to the dialog procedure. WinDlgBox loads
the dialog-window resource, displays the dialog window, and handles all user input until the
user dismisses the dialog window. The dialog procedure receives messages when the dialog
window is created (WMJNITDLG) and other messages each time the user interacts with a
dialog item (enters text in entry fields or selects a button, for example).

Chapter 15. Dialog Windows 15-9

You must specify both the parent and owner windows when loading a dialog window using
the WinDlgBox function. Generally, the parent window will be HWND_DESKTOP and the
owner will be a client window in your application.

Dialog windows typically contain buttons that send WM_COMMAND messages when
selected by the user. WM_COMMAND messages passed to the WinDefDlgProq function
result in the WinDismissDlg function's being called, with the window identifier of the source
button as the return code (from WinDismissDlg). Dialog windows with either OK or Cancel
as their only button can ignore WM_COMMAND messages, allowing them to be passed to
WinDefDlgProc. WinDefDlgProc calls WinDismissDlg to dismiss the dialog window and
returns the DID_OK or DID_CANCEL code.

Passing WM_COMMAND messages to WinDefDlgProc means that all button presses in the
dialog window dismiss the dialog window. If you want certain buttons to initiate operations
without closing the dialog window, or if you want to perform some processing without closing
the dialog window, handle the WM_COMMAND messages in the dialog procedure.

If you handle WM_COMMAND messages in the dialog procedure, you must call
WinDismissDlg to dismiss the dialog window. Your dialog procedure passes the DID_OK
code to WinDismissDlg if the user selects the OK button or the DID_CANCEL code if the
user selects the Cancel button.

When you call WinDismissDlg or pass the WM_COMMAND message to WinDefDlgProc, the
dialog window is dismissed, and the WinDlgBox function returns the value passed to
WinDismissDlg. This return value identifies the button selected.

An alternative to using WinDlgBox is to call the individual functions that duplicate its
functionality, as shown in the following code fragment:

After calling the WinProcessDlg function, your dialog procedure must call WinDismissDlg to
dismiss the dialog window. Although the dialog window is dismissed (hidden), it still exists.
You must call the WinDestroyWindow function to destroy a dialog window if it was loaded
using the WinLoadDlg function. WinDlgBox automatically destroys a dialog window before
returning.

If you want to manipulate individual items in a dialog window, or add a menu after 'loading
the dialog window (but before calling WinProcessDlg), it is better to make individual calls
rather than call WinDlgBox. Individual calls also are useful for querying individual dialog
items-to determine the contents of an entry-field control after a dialog window is closed but
before it is destroyed, for example. Destroying a dialog window also destroys any
dialog-item control windows that are child windows of the dialog window.

15-1 0 PM Basic Programming Guide

Creating a Modeless Dialog Window
To use a modeless dialog window in an application, create a dialog template in the resource
file, just as for a modal dialog window. Modeless dialog windows share the screen equally
with other frame windows. It is a good idea to give modeless dialog windows a title bar so
they can be moved around the screen. The following Resource Compiler source-code
fragment shows a dialog template for a dialog window with a title bar, system menu, and
minimize button.

DLGTEMPLATE IDD_SAMP
BEGIN

DIALOG "Modeless Dialog", !DO SAMP, 80, 92,126,130,
WS_VISIBLE I FS_DLGBORDER~
FCF_TITLEBAR I FCF_SYSMENU I FCF~INBUTTON

BEGIN

/* Put control-window definitions here. */

END
END

The application loads the dialog resource from the resource file using the WinLoadOlg
function, receiving in return a window handle to the dialog window. The application treats the
dialog window as if it were an ordinary window. Messages for the dialog window are
dispatched through the event loop the application uses for its other windows. In fact, an
application can have a modeless dialog window as its only window.

The resource for a modeless dialog window is like the resource used for a modal dialog
window. The difference between modal and modeless dialog windows is the way
applications handle input to each. For a modal dialog, the WinOlgBox and WinProcessOlg
functions handle all user input to the dialog window, preventing access to other windows in
the application. For a modeless dialog window, the application does not call these functions,
relying instead on a normal message loop to dispatch messages to the dialog procedure.

The primary difference between a modeless dialog window and a standard frame window
with child control windows is that, for a modeless dialog window, an application can define
child windows for the dialog window in a dialog template, automating the process of creating
the window and its child windows. The same effect can be achieved by creating a standard
frame window, but then, the child control windows must be created individually.

It is important that an application keep track of all open modeless dialog windows so that it
can destroy all open windows before terminating.

Initializing a Dialog Window
Generally, an application defines a dialog template in its resource file and loads the dialog
window by calling the Win Load Dig function or the WinOlgBox function (which calls
WinLoadOlg). The dialog window is created as an invisible window unless the window style·
WS_ VISIBLE is specified in the dialog template. A WMJNITOLG message is sent to the
dialog procedure before WinLoadOlg returns. As each control defined in the template is

Chapter 15. Dialog Windows 15-11

created, the dialog procedure might receive various control notifications before the function
returns. WinLoadDlg returns a handle to the dialog window immediately after creating a
dialog window.

In general, it is a good idea to define a dialog window as invisible, since this allows for
optimization. For example, an experienced user might type ahead rapidly, anticipating the
processing of a dialog-window command. In such a case, there is no need to display the
dialog window, because the user has finished the interaction before the window can be
displayed. This is how the WinProcessDlg function works-it does not display a dialog
window while there still are WM_CHAR messages in the input queue; it lets these messages
to be processed first.

As control windows in a dialog window are created from the template, strings in the template
are processed by the WinSubstituteStrings function. Any WM_SUBSTITUTESTRING
messages are sent to the dialog procedure before WinLoadDlg returns.

When child windows of a dialog window are created, WinSubstituteStrings is used so child
windows can make substitutions in their window text. If any child-window text string contains
the percent sign (%) substitution character, the length of the text string is limited to 256
characters after it is returned from the substitution.

Adding a Menu in a Dialog Window
To create a menu bar and menus in a dialog window, an application first must load the
dialog window to get a handle to the dialog-frame window. The dialog-frame window can be
associated with a menu resource by calling the WinLoadMenu function. This function
requires arguments that specify the menu identifier and the handle of the parent window for
the menu. Finally, the dialog-frame window must incorporate the menu by sending a
WM_UPDATEFRAME message to the dialog window. The following code fragment
illustrates these operations:

Applications can create menus in both modal and modeless dialog windows. The preceding
code fragment can be used for either type of dialog window. For a modal dialog window,
your application must call the WinProcessDlg function to handle user input until the dialog
window is dismissed. For a modeless dialog window, your application must call the
WinShowWindow function to display the dialog window, enabling the message loop to direct
messages to the dialog window.

15-12 PM Basic Programming Guide

Creating a Dialog Procedure
In contrast to window procedures, which receive WM_CREATE messages, dialog procedures
receive WMJNITDLG messages, which are sent after a dialog window is created, but before
it is displayed. WMJNITDLG can do the same type of initialization tasks that WM_CREATE
handles, but is not the first message that is received.

For example, if a dialog window contains a list box, use WMJNITDLG to fill the list box with
items. Also use this procedure to enable or disable buttons in a dialog window, depending
on your application.

You also can call the WinSetDlgltemText or WinSetDlgltemShort functions during dialog
initialization, to set up text items that reflect the current conditions in your application.

Another typical task for the WMJNITDLG message handler is centering a dialog window on
the screen or within its owner window. The following code fragment illustrates how to center
a dialog window on the screen using WMJNITDLG:

RECTL rc 1 Screen. rc 1 Di a 1 og;
LONG sWi dth. sHei ght. sBLCx. sBLCy;

caseWM INlTDLG:
i*Centeithe dialog window and get the screen rectangle. */
Wi nQueryWi ndowRect (HWND _DESKTOP, arc 1 Sc reen) ;

/* Get the.d:lalog:-window rectangle. */
Wi nQueryWi ndowRect (hwnd. arc 1 Di a log) ;

/* Get the dialog~windowwidth; */
sWidth = (LONG) (rclDialog.xRight - rclDialog.xLeft);

/* Get the dial og .. wi ndow height. */
sHeight = (LONG) (rclOialog.yTop - rclDia1og.yBottom);

/i:<Setthe horizontal coordinate of the 1 ower .. 1 eft corner. */
sBLCx .:i1 ... «(LONG). rcl Screen. xRight - sWidth} / 2;

/* set vertical coordinate of the lower-left corner. */
sBtCy "'«LONG) rclScreen.yTop ~ sHeight) I 2;

!*Move, size" and show the window. *!
Wi hSetWi ndowpos(hwnd .•

I:IW~DTOP •
. sBLCit';;$BlCy.
e·(>e. .••... ·.••

·~~P;;:MpYE)f

The dialog procedure receives notification messages from each control-window item in a
dialog window whenever a user clicks an item or enters text in an entry field. Most dialog
procedures wait for the user to select one or more dialog-window buttons to signal being
finished with the dialog window. When the dialog procedure receives one of these
messages, it calls the WinDismissDlg function, as shown in the following code fragment.
The second argument to WinDismissDlg is the value returned by the WinDlg80x or
WinProcessDlg functions. Generally, these functions return the identifier of the button that
was pressed.

Chapter 15. Dialog Windows 15-13

MRESUl T EXPENTRY SampDialogProc (HWNDhwlld,
ULONG'ulMessage.
MPARAMmpl,
MPARAM mp2)

s~ttch (ulMessage), {
case WM COMMAND:

}

switch (SHORTlFROMMP(mpl))
,case OlD_OK:

}
break:

/*
* Final dialog-item queries,
* dismiss the dialog.
*/ '

Wi nO; smi ssDl 9 (hwnd, DID OK);
return 0; -

return (Wi nDefDl gProc (hwnd, ul Message. mp1, mp2));

Other dialog-window items send notification messages specific to the type of control window.
Your dialog procedure should respond to notification messages from any relevant or
important dialog items, and pass the messages that your dialog procedure does not handle
to the WinDefDlgProc function for default processing. The default dialog procedure is used
similarly to the default frame-window procedure.

The WM_COMMAND message from the OK button indicates that the user has selected the
OK button and is finished with the dialog window. If the dialog window has other controls,
such as entry fields or check boxes, have your dialog procedure query the contents or state
of each control upon receipt of a message from the OK button. Before dismissing a dialog
window, have your dialog procedure collect input from each dialog-window control before
closing the dialog window.

Manipulating Dialog Items
Dialog items are control windows and, as such, can be manipulated using standard
Window-management function calls. The window handle is obtained for each dialog item by
calling the WinWindowFromlD function and passing the window handle for the dialog window
and the window identifier for the dialog item as defined in the dialog template. Include the
following Resource Compiler source-code fragment in your dialog template:

DlGTEMPLATE IDD ABOUT
BEGIN -

. DIALOG "11, IDD ABOUT. 80,92, 126. 130, FSf)lGBORDER, 0
BEGIN -, -

END
END

PUSHBUTTON "MyButton",ITEMID_MYBUTTON. 37. 107. 56,

;""Other item defi nitjons ••• */

15-14 PM Basic Programming Guide

Based on this code fragment, your application will receive the button-item handle by initiating
the following call to WinWindowFromlD:

hwndItem = Wi nWi ndowFromID (hwndDi a 109. ITEMID _MYBUTTON) ;

Applications often change the contents, enabled state, or position of dialog items at run time.
For example, in a dialog window that contains a list box of file names and an Open button,
the Open button should be disabled until the user selects a file from the list. To do this,
define the button as disabled in the dialog resource so that it is disabled when the dialog
window first is displayed. At run time, the dialog procedure receives a notification message
from the list box when the user selects a file. At that time, the dialog procedure should call
the WinEnableWindow function to enable the Open button.

Applications also can change the text in static dialog items and buttons by calling the
WinSetWindowText function and using the window handle of a particular dialog item.

Chapter 15. Dialog Windows 15-15

Related Functions
This section covers the functions that are related to Dialog Windows.

WinAlarm
This function generates an audible alarm.

Syntax

#define INCL_WINDIALOGS /* Or use INCL_WIN, INCL_PM, Also in COMON section */

#include <os2.h>

BOOl WinAlarm (HWND hwndDeskTop, UlONG flStyle)

Parameters
hwndDeskTop (HWND) - input

Desktop-window handle.

HWND _DESKTOP The desktop window
Other Specified desktop window.

flStyle (UlONG) - input
Alarm style. Different alarms are selected by use of these values:

WA_WARNING
WA_NOTE
WA ERROR

Returns
rc (BOOl) - returns

Alarm-generated indicator.

TRUE
FALSE

Alarm generated
Alarm not generated.

15-16 PM Basic Programming Guide

WinCreateDlg
This function' creates a dialog window.

Syntax

#define INCL_WINDIALOGS /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

HWND WinCreateDlg (HWND hwndParent, HWND hwndOwner,
PFNWP pfnDlgProc, PDLGTEMPLATE pdlgt,
PVOID pCreateParams)

Parameters
hwndParent (HWND) - input

Parent-window handle of the created dialog window.

HWND _DESKTOP
HWND _OBJECT
Other

The desktop window
Object window
Specified window.

hwndOwner (HWND) - input
Requested owner-window handle of the created dialog window.

pfnDlgProc (PFNWP) - input
Dialog procedure for the created dialog window.

pdlgt (PDLGTEMPLATE) - input
Dialog templa,te.

pCreateParams (PVOID) - input
Pointer to application-defined data area.

Returns
hwndDlg (HWND) - returns

Dialog-window handle.

NULLHANDLE Dialog window not created
Other Dialog-window handle.

Chapter 15. Dialog Windows 15-17

WinDismissDlg
This function hides the modeless dialog window, or destroys the modal dialog window, and
causes the WinProcessDlg or WinDlgBox functions to return.

Syntax

#define INCL_WINDIALOGS /* Or use INCL_WIN, INCL_PM, Also in COMON section */

#include <os2.h>

BOOl WinDismissDlg (HWND hwndDlg, UlONG usResult)

Parameters
hwndDlg (HWND) - input

Dialog-window handle.

usResult (UlONG) - input
Reply value.

Returns
rc (BOOl) - returns

Dialog-dismissed indicator.

TRUE
FALSE

Dialog successfully dismissed
Dialog not successfully dismissed.

15-18 PM Basic Programming Guide

WinDlgBox
This function loads and processes a modal dialog window and returns the result value
established by the WinDismissDlg call.

Syntax

#define INCL_WINDIALOGS /* Or use INCL_WIN, INCL_PM, Also in COMON section */

#include <os2.h>

ULONG WinDlgBox (HWND hwndParent, HWND hwndOwner, PFNWP pfnDlgProc,
HMODULE hmod, ULONG idDlg, PVOID pCreateParams)

Parameters
hwndParent (HWND) - input

Parent-window handle of the created dialog window.

HWND_DESKTOP

HWND_OBJECT

Other

The desktop window

Object window

Specified window.

hwndOwner (HWND) - input
Requested owner-window handle of the created dialog window.

pfnDlgProc (PFNWP) - input
Dialog procedure for the created dialog window.

hmod (HMODULE) - input
Resource identity containing the dialog template.

NULLHANDLE Use the application's .EXE file.
Other Module handle returned from the DosLoadModule or

DosQueryModuleHandle call.

idDlg (ULONG) - input
Dialog-template identity within the resource file.

pCreateParams (PVOID) - input
Pointer to application-defined data area.

Returns
ulResult (ULONG) - returns

Reply value.

Chapter 15. Dialog Windows 15-19

WinEnumDlgltem
This function returns the window handle of a dialog item within a dialog window.

Syntax

#define INCL_WINDIALOGS /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

HWND WinEnumDlgltem (HWND hwndDlg, HWND hwnd, ULONG code)

Parameters
hwndDlg (HWND) - input

Dialog-window handle.

hwnd (HWND) - input
Child-window handle.

code (ULONG) - input
Item-type code.

EDI_PREVTABITEM Previous item with style WS_TABSTOP. Wraps around to
end of dialog item list when beginning is reached.

EDI_NEXTTABITEM Next item with style WS_ TABSTOP. Wraps around to
beginning of dialog item list when end is reached.

EDI_FIRSTTABITEM First item in dialog with style WS_TABSTOP. hwnd is
ignored.

EDI_LASTTABITEM Last item in dialog with style WS_ TABSTOP. hwnd is
ignored.

EDI_PREVGROUPITEM Previous item in the same group. Wraps around to end of
group when the start of the group is reached. For
information on the WS_GROUP style, see "Window Styles"
on page 2-14.

EDI_NEXTGROUPITEM Next item in the same group. Wraps around to beginning of
group when the end of the group is reached.

EDI_FIRSTGROUPITEM First item in the same group.

EDI_LASTGROUPITEM Last item in the same group.

Returns
hwndltem (HWND) - returns

Item-window handle.

15-20 PM Basic Programming Guide

WinGetDlgMsg
This function obtains a message from the application's queue associated with the specified
dialog.

Syntax

#define INCL_WINDIALOGS /* Or use INCL_WIN, INCL_PM, Also in COMON section */

#include <os2.h>

BOOl WinGetDlgMsg (HWND hwndDlg, PQMSG pqmsg)

Parameters
hwndDlg (HWND) - input

Dialog-window handle.

pqmsg (PQMSG) - output
Message structure.

Returns
rc (BOOl) - returns

Continue message indicator.

TRUE Message returned is not a WM_QUIT message and the dialog has not been
dismissed.

FALSE Message returned is a WM_QUIT message or the dialog has been dismissed.

Chapter 15. Dialog Windows 15-21

WinLoadDlg
This function creates a dialog window from the dialog template idDlg in hmod and returns the
dialog window handle.

Syntax

#define INCL_WINDIALOGS /* Or use INCL_WIN, INCL_PM, Also in COMON section */

#include <os2.h>

HWND WinLoadDlg (HWND hwndParent, HWND hwndOwner, PFNWP pfnDlgProc,
HMODULE hmod, ULONG idDlg, PVOID pCreateParams)

Parameters
hwndParent (HWND) - input

Parent-window handle of the created dialog window.

HWND DESKTOP
HWND _OBJECT
Other

The desktop window
Object window
Specified window.

hwndOwner (HWND) - input
Requested owner-window handle of the created dialog window.

pfnDlgProc (PFNWP) - input
Dialog procedure for the created dialog window.

hmod (HMODULE) - input
Resource identity containing the dialog template.

NULLHANDLE Use the application's .EXE file.
Other Module handle returned from the DosLoadModule or

DosQueryModuleHandle functions. '

idDlg (ULONG) - input
Dialog-template identity within the resource file.

pCreateParams (PVOID) - input
Pointer to application-defined data area.

Returns
hwndDlg (HWND) - returns

Dialog-window handle.

NULL Dialog window not created
Other Dialog window handle.

15-22 PM Basic Programming Guide

WinMapDlgPoints
This function maps pOints from dialog coordinates to window coordinates, or from window
coordinates to dialog coordinates.

Syntax

#define INCL_WINDIALOGS /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinMapDlgPoints (HWND hwndDlg, PPOINTl prgwptl, UlONG cwpt,
BOOl fCalcWindowCoords) .

Parameters
hwndDlg (HWND) - input

Dialog-window handle.

prgwptl (PPOINTl) - in/out
Coordinate points to be mapped.

cwpt (UlONG) - input
Number of coordinate points.

fCalcWindowCoords (BOOl) - input
Calculation control.

TRUE The pOints are in dialog coordinates and are to be mapped into window
coordinates relative to the window specified by the hwndOlg parameter.

FALSE The pOints are in window coordinates relative to the window specified by the
hwndOlg parameter and are to be mapped into dialog coordinates.

Returns
rc (BOOl) - returns

Coordinates-mapped indicator.

TRUE
FALSE

Coordinates successfully mapped
Coordinates not successfully mapped.

Chapter 15. Dialog Windows 15-23

WinMessageBox
This function creates, displays, and operates a message box window ..

Syntax

#define INCL_WINDIALOGS /* Or use INCL_WIN, INCL_PM, Also in COMON section */

#include <os2.h>

ULONG WinMessageBox (HWND hwndParent, HWND hwndOwner, PSZ pszText,
PSZ pszCaption, ULONG idWindow, ULONG flStyle)

Parameters
hwndParent (HWND) - input

Parent-window handle of the created message-box window.

HWND DESKTOP The message box is to be main window.
Other Parent-window handle.

hwndOwner (HWND) - input
Requested owner-window handle of the created message-box window.

pszText (PSZ) - input
Message-box window message.

pszCaption (PSZ) - input
Message-box window title.

NULL The text Error is to be displayed as the title of the message-box window.
Other The text to be displayed as the title of the message-box window.

idWindow (ULONG) - input
Message-box window identity.

flStyle (ULONG) - input
Message-box window style.

Returns
usResponse (ULONG) - returns

User-response value.

MBID ENTER
MBID OK
MBID CANCEL
MBID_ABORT
MBID RETRY
MBID IGNORE
MBID YES

ENTER push button was selected
OK push button was selected
CANCEL push button was selected
ABORT push button was selected
RETRY push button was selected
IGNORE push button was selected
YES push button was selected

15-24 PM Basic Programming Guide

MBID NO
MBID ERROR

NO push button was selected
Function not successful; an error occurred.

Chapter 15. Dialog Windows 15-25

WinMessageBox2
This function creates a message-box window that can be used to display error messages
and ask questions.

Syntax

#define INCL_WINDIALOGS /* Or use INCL_WIN, INCL_GPI, INCL_WINWINDOWMGR, */

#include <os2.h>

ULONG WinMessageBox2 (HWND hwndParent, HWND hwndOwner, PSZ pszText,
PSZ pszTitle, ULONG ulWindow, PMB21NFO pmb2info)

Parameters
hwndParent (HWND) - input

Parent-window handle of the message-box window to be created.

HWND-DESKTOP The message box is to be main window.
Other Parent-window handle.

hwndOwner (HWND) - input
Requested owner-window handle of the message-box window to be created.

pszText (PSZ) - input
Message-box window message.

pszTitie (PSZ) - input
Message-box window title.

ulWindow (ULONG) - input
Message-box window identity.

pmb2info (PMB2INFO) - input
Input structure for mesage-box window.

Returns
ulButtonld (ULONG) - returns

Id of the button that was clicked, or MBID_ERROR.

15-26 PM Basic Programming Guide

WinProcessDlg
This function dispatches messages while a modal dialog window is displayed.

Syntax

#define INCL_WINDIALOGS /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

ULONG WinProcessDlg (HWND hwndDlg)

Parameters
hwndDlg (HWND) - input

Dialog-window handle.

Returns
ulReply (ULONG) - returns

Reply value.

Chapter 15. Dialog Windows 15-27

WinQueryDlgltemShort
This function converts the text of a dialog item into an integer value.

Syntax

#define INCL_WINDIALOGS /* Or use INCL_WIN, INCL_PM, Also in COMON section */

#include <os2.h>

BOOl WinQueryDlgltemShort (HWND hwndDlg, UlONG idltem,
PSHORT psResult, BOOl fSigned)

Parameters
hwndDlg (HWND) - input

Parent-window handle.

idltem (UlONG) - input
Identity of the child window whose text is to be converted.

psResult (PSHORT) - output
Integer value resulting from the conv~rsion.

fSigned (Baal) - input
Sign indicator.

TRUE
FALSE

Returns

Signed text. It is inspected for a minus sign (-).
Unsigned text.

rc (Baal) - returns
Success indicator.

TRUE Successful conversion
FALSE Error occurred.

15-28 PM Basic Programming Guide

WinQueryDlgltemText
This function queries a text string in a dialog item.

Syntax

#define INCL_WINDIALOGS /* Or use INCL_WIN, INCL_PM, Also in COMON section */

#include <os2.h>

ULONG WinQueryDlgltemText (HWND hwndDlg, ULONG idltem, LONG I MaxText,
PSZ pszText)

Parameters
hwndDlg (HWND) - input

Parent-window handle.

idltem (ULONG) - input
Identity of the child window whose text is to be queried.

IMaxText (LONG) - input
Length of pszText.

pszText (PSZ) - output
Output string.

Returns
ulRetLen (ULONG) - returns

Actual number of characters returned.

o Error occurred
Other Actual number of characters returned, not including the null-terminating

character. The maximum value is (IMaxText-1).

Chapter 15. Dialog Windows 15-29

WinQueryDlgltemTextLength
This function queries the length of the text string in a dialog item, not including any null
termination character.

Syntax

#define INCL_WINDIALOGS /* Or use INCL_WIN, INCL_PM, Also in COMON section */

#include <os2.h>

LONG WinQueryDlgltemTextLength (HWND hwndDlg, ULONG idltem)

Parameters
hwndDlg (HWND) - input

Parent-window handle.

idltem (ULONG) - input
Identity of the child window whose text is to be queried.

Returns
IRetLen (LONG) - returns

Length of text.

o Error occurred
Other Length of text.

15-30 PM Basic Programming Guide

WinSendDlgltemMsg
This function sends a message to the dialog item defined by idltem in the dialog window
specified by hwndOlg.

Syntax

#define INCL_WINDIALOGS /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

MRESUL T WinSendDlgltemMsg (HWND hwndDlg, ULONG idltem, ULONG msg,
MPARAM mp1, MPARAM mp2)

Parameters
hwndDlg (HWND) - input

Parent-window handle.

idltem (ULONG) - input
Identity of the child window.

msg (ULONG) - input
Message identity.

mp1 (MPARAM) - input
Message parameter 1.

mp2 (MPARAM) - input
Message parameter 2.

Returns
mresReply (MRESUL T) - returns

Message-return data.

Chapter 15. Dialog Windows 15-31

WinSetDlgltemShort
This function converts an integer value into the text of a ~ialog item.

Syntax

#define INCL_WINDIALOGS /* Or use INCL_WIN, INCL_PM, Also in COMON section */

#include <os2.h>

BOOl WinSetDlgltemShort (HWND hwndDlg, UlONG idltem, USHORT usValue,
BOOl fSigned)

Parameters
hwndDlg (HWNO) - input

Parent-window handle.

idltem (UlONG) - input
Identity of the child window whose text is to be changed.

usValue (USHORT) - input
Integer value used to generate the dialog item text.

fSigned (BOOl) - input
Sign indicator.

TRUE
FALSE

Returns

Signed integer value
Unsigned integer value.

rc (BOOl) - returns
Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

15-32 PM Basic Programming Guide

WinSetWindowText
This function sets the window text for a specified window.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinSetWindowText (HWND hwnd, PSZ pszString)

Parameters
hwnd (HWNO) - input

Window handle.

pszString (PSZ) - input
Window text.

Returns
rc (BOOL) - returns

Success indicator.

TRUE
FALSE

Text updated
Error occurred.

Chapter 15. Dialog Windows 15-33

WinSubstituteStrings
This function performs a substitution process on a text string, replacing specific marker
characters with text supplied by the application.

Syntax

#define INCL_WINDIALOGS /* Or use INCL_WIN, INCl_PM, */

#include <os2.h>

LONG WinSubstituteStrings (HWND hwnd, PSZ pszSrc, LONG I DestMax,
PSZ pszDest)

Parameters
hwnd (HWND) - input

Handle of window that processes the call.

pszSrc (PSZ) - input
Source string.

IDestMax (LONG) - input
Maximum number of characters returnable.

pszDest (PSZ) - output
Resultant string.

Returns
IDestRet (LONG) - returns

Actual number of characters returned.

15-34 PM Basic Programming Guide

Related Messages
This section covers the messages that are related to Dialog Windows.

WM INITDLG
This message occurs when a dialog box is being created.

Parameters
param1

hwnd (HWND)
Focus window handle.

The handle of the control window that is to receive the input focus.

param2

pcreate (PVOID)
Application-defined data area.

This points to the data area and is passed by the WinloadDlg, WinCreateDlg, and
WinDlgBox functions in their pCreateParams parameter.

This parameter MUST be a pointer rather than a long.

The first 2 bytes in the data referenced by this pointer should be the total size of the
data referenced by the pointer, (for example, see the ENTRYFDATA or the
FRAMECDATA structure). PM requires this information to enable it to ensure that
the referenced data is accessible to both 16-bit and 32-bit code.

Returns
rc (BOOl)

Focus set indicator.

TRUE Focus window is changed. The dialog procedure can change the window to
receive the focus, by issuing a WinSetFocus whose hwndNewFocus specifies
the handle of another control within the dialog box.

FALSE Focus window is not changed.

Chapter 15. Dialog Windows 15-35

WM_MSGBOXDISMISS
This message notifies the owner of the message when a non-modal message box has been
dismissed (the message box is no longer visible).

Parameters
param1

hwnd (HWNO)
Non-modal window handle.

param2

ulButtonld (ULONG)
Identity of the selected button in the message box.

Returns
ulReserved (ULONG)

Reserved value, must be O.

15-36 PM Basic Programming Guide

WM MSGBOXINIT
This message notifies the owner of the message when a non-modal message box has been
created and is currently being displayed.

Parameters
param1

hwnd (HWND)
Non-modal window handle.

param2

idWindow (LONG)
Window identity of the message box.

Returns
ulReserved (ULONG)

Reserved value, must be O.

Chapter 15. Dialog Windows 15-37

WM_SUBSTITUTESTRING
This message is sent from the WinSubstituteStrings call.

Parameters
param1

iindex (USHORT)
Substitution index.

A value corresponding to the decimal character in the substitution phrase.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
pString (PSZ)

String to be substituted.

o No substitution string
Other Substitution string.

15-38 PM Basic Programming Guide

Related Data Structures
This section covers the data structures that are related to Dialog Windows.

DLGTEMPLATE
Dialog-template structure.

Syntax

typedef struct DLGTEMPLATE {
USHORT cbTemplate;
USHORT type;
USHORT codepage;
USHORT offadlgti; ,
USHORT fsTemplateStatus;
USHORT iltemFocus;
USHORT coffPresParams;
DLGTITEM adlgti[l];
} DLGTEMPLATE;

typedef DLGTEMPLATE *PDLGTEMPLATE;

Fields
cbTemplate (USHORT)

Length of template.

type (USHORT)
Template format type.

codepage (USHORT)
Code page.

offadlgti (USHORT)
Offset to dialog items.

fsTemplateStatus (USHORT)
Template status.

iltemFocus (USHORT)
Index of item to receive focus initially.

coffPresParams (USHORT) _,
Count of presentation-parameter offsets.

adlgti[1] (DLGTITEM)
Start of dialog items.

Chapter 15. Dialog Windows 15-39

DLGTITEM
Dialog-item structure.

Syntax

typedef struet DLGTITEM {
USHORTfsltemStatus;
USHORT eChildren;
USHORT echClassLen;
USHORT offClassName;
USHORT eChTextLen;
USHORT off Text;
ULONG flStyle;
SHORT x;
SHORT y;
SHORT ex;
SHORT ey;
USHORT id;
USHORT offPresParams;
USHORT offetl Data;
} DU~TITEM;

typedef DLGTITEM *PDLGTITEM;

Fields
fsltemStatus (USHORT)

Status.

cChiidren (USHORT)
Count of children to this dialog item.

cchClassLen (USHORT)
Length of class name.

If zero, offClassName contains the hexadecimal equivalent ofa preregistered class
name.

offClassName (USHORT)
Offset to class name.

If cchClassLen is nonzero, this is the offset to a null-terminated ASCII string that
contains the classname. If cchClassLen is zero, this is of the form Oxhhhh, where hhhh
is the hexadecimal. equivalent of the preregistered class name.

cchTextLen (USHORT)
Length of text.

offText (USHORT)
Offset to text.

15-40 PM Basic Programming Guide

flStyle (ULONG)
Dialog item window style.

The high-order 16 bits are the standard WS _ * style bits. The low-order 16 bits are
available for class-specific use.

x (SHORT)
X-coordinate of origin of dialog-item window.

Y (SHORT)
V-coordinate of origin of dialog-item window.

ex (SHORT)
Dialog-item window width.

ey (SHORT)
Dialog-item window height.

id (USHORT)
Identity.

offPresParams (USHORT)
Reserved.

offCtlData (USHORT)
Offset to control data.

Chapter ·15. Dialog Windows 15-41

MB2D
Array of button definitions.

Syntax

Fields
achText[MAX_MB2DTEXT +1] (CHAR)

Text of the button.

For example, "CanceL"

Currently, MAX_MB2DTEXT is equal to 70.

idButtons (ULONG)
Button Id returned when selected.

flStyle (ULONG)
Button style flags.

These style flags may be ORed with internal styles.

15-42 PM Basic Programming Guide

MB21NFO
Button information block.

Syntax

typedef struet _MB2INFO {
ULONG eb;
HPOINTER hIeon;
ULONG cButtons;
ULONG flStyle;
HWND hwndNotify;
MB2D mb2d[1];
} MB2INFO;

typedef MB2INFO *PMB2INFO;

Fields
cb (ULONG)

Current size of the structure.

hlcon (HPOINTER)
Icon handle.

cButtons (ULONG)
Number of buttons.

flStyle (ULONG)
Icon style flags.

Possible values are described in the following list:

MB_APPLMODAL Message box is application modal. This is the default
case. Its owner is disabled; therefore, do not specify the
owner as the parent if this option is used.

MB ERROR Message box contains a stop sign with a white
background.

MBJCONASTERISK Message box contains a asterisk icon.

MB_CUSTOMICON Message box contains a custom icon specified in hlcon.

MBJCONEXCLAMATION Message box contains a exclamation point icon.

MBJCONHAND Message box contains a hand icon.

MB JCONQUERY Message box contains a question mark in a box.

MB_ICONQUESTION Message box contains a question mark icon.

MB_INFORMATION Message box contains a black "i" in a box.

Chapter 15. Dialog Windows 15-43

MB_NOICON

MB_NONMODAL

MB_SYSTEMMODAL

MB WARNING

hwndNotify (HWND)
Owner notification handle.

mb2d[1] (MB2D)
Array of button definitions.

15-44 PM Basic Programming Guide

Message box is moveable.

The message box is displayed with 'a title bar and a system
menu, showing only the Move, Close, and Task Manager
choices, which can be selected either by use of the
pointing device or by accelerator keys.

Message box does not contain an icon.

Message box is non modal (the program continues after
displaying the non modal message box).

The message box remains visible until the owner window
destroys it. Two notification messages, WM_MSGBOXINIT
and WM_MSGBOXDISMISS, are used to support this
non-modality.

Message box is system modal.

Message box contains a black "!" in a box.

Summary
Following are the OS/2 functions, messages, and structures used with dialog windows.

Table 15-2. Dialog Functions

Function name Description

WinAlarm Generates an audible alarm.

WinCreateDlg Creates a dialog window.

WinDefDlgProc Invokes the default dialog procedure.

WinDestroyWindow Destroys a window and its child windows.

WinDismissDlg Hides the modeless dialog window, or destroys the modal
dialog window, and causes the WinProcessDlg or
WinDlgBox calls to return.

WinDlgBox Loads and processes a modal dialog window and returns
the result value established by the WinDismissDlg call.

WinEnumDlgltem Returns the window handle of a dialog item within a
dialog window.

WinGetDlgMsg Obtains a message from the application's queue
associated with the specified dialog.

WinLoadDlg Creates a dialog window from the dialog template Dlgid in
Resource.

WinMapDlgPoints Maps points from dialog coordinates to window
coordinates or from window coordinates to dialog
coordinates.

WinMessageBox Creates, displays, and operates a standard message box.

WinMessageBox2 Creates, displays, and operates an enhanced message
box. This control supports customized icons and text
within buttons and can be non-modal.

WinProcessDlg Dispatches messages while a modal dialog window is
displayed.

WinQueryDlgltemShort Converts the text of a dialog item into an integer value.

WinQueryDlgltemText Queries a text string in a dialog item.

WinQueryDlgltemTextLength Queries the length of the text string in a dialog item.

WinSendDlgltemMsg Sends a message to the dialog item defined by item in
the dialog window specified by DIg.

WinSetDlgltemShort Converts an integer value into the text of a dialog item.

WinSetDlgltemText Sets a text string in a dialog item.

WinSetWindowText Sets the window text for a specified window.

WinSubstituteStrings Performs a substitution process on a text string, replacing
specific marker characters with text supplied by the
application.

Chapter 15. Dialog Windows 15-45

Table 15-3. Dialog Messages

Message

WM_CHAR

WMJNITDLG

WM_MSGBOXDISMISS

WM_MSGBOXINIT

WM_ QUERYDLGCODE

WM_SUBSTITUTESTRING

Table 15-4. Dialog Structures

Structure name

DLGTEMPLATE

DLGTITEM

MB2D

MB21NFO

15-46 PM Basic Programming Guide

Description

Sent when a user presses a key.

Occurs when a dialog box is being created.

Notifies the owner of the message when a non-modal
message box has been dismissed.

Notifies the owner of the message when a non-modal
message box has been created and is currently being
displayed.

Sent by the dialog manager to identify the type of control,
to determine what kinds of messages the control
understands, and to determine whether an input message
may be processed by the dialog manager or passed down
to the control.

Sent from the WinSubstituteStrings call.

Description

Dialog-template structure.

Dialog-item structure.

Array of button definitions.

Button information block.

Chapter 16. Control Windows

A control window is a window that an application uses in conjunction with another window to
carry out simple input and output tasks. This chapter describes how to create and use
control windows in PM applications.

About Control Windows
Control windows are used most often as part of a frame or dialog window, but they also can
be used in a client window. An application can create control windows in a frame window by
using frame-control flags in the WinCreateStdWindow function, or it can create control
windows individually by calling the WinCreateWindow function.

Including control windows in a dialog window requires the use of a dialog template, which is
a data structure that describes a dialog window and its control windows. The system uses
the data in the dialog template to create the dialog window and control windows. An
application can create a dialog template at run time, or it can use the system resource
compiler to create a dialog-template resource.

The operating system provides many types of predefined control windows. An application
can create a control of a particular type by specifying the appropriate control-window class
name, either in the WinCreateWindow function or in a dialog template. The following is a list
of the predefined control-window classes:

Table 16-1 (Page 1 of 2). Control Window Classes

Class name Description

WC_BUTTON Consists of buttons and boxes the user can select by clicking the pointing
device or using the keyboard.

WC_COMBOBOX Creates a combination-box control, which combines a list-box control and
an entry-field control. It allows the user to enter data by typing in the entry
field or choosing from a list in the list box.

WC_CONTAINER Creates a control for the user to group objects in a logical manner. A
container can display those objects in various formats or views. The
container control supports drag and drop so the user can place
information in a container by simply dragging and dropping.

WC_ENTRYFIELD Consists of a single line of text that the user can edit.

WC_FRAME A composite window class that can contain child windows of many of the
other window classes.

WC_LlSTBOX Presents a list of text items from which the user can make selections.

WC_MENU Presents a list of items that can be displayed horizontally as action bars,
or vertically as pull-down menus. Menus usually are used to provide a
command interface to applications.

WC_NOTEBOOK Creates a control for the user that is displayed as a number of pages.
The top page is visible, and the others are hidden, with their presence
being indicated by a visible edge on each of the back pages.

© Copyright IBM Corp. 1994 16-1

Table 16-1 (Page 2 of 2). Control Window Classes

Class name Description

WC_SCROLLBAR Consists of window scroll bars that let the user request to scroll the
contents of an associated window.

WC_SLlDER Creates a control that is usable for producing approximate (analog)
values or properties. Scroll bars were used for this function in the past,
but the slider provides a more flexible method of achieving the same
result, with less programming effort.

WC_SPINBUTTON Creates a control that presents itself to the user as a scrollable ring of
choices, giving the user quick access to the data. The user is presented
only one item at a time, so the spin button should be used with data that
is intuitively related.

WC_STATIC Simple display items that do not respond to keyboard or pointing device
events.

WC _ TITLE BAR Displays the window title or caption and lets the user move the window's
owner.

WC_VALUESET Creates a control similar in function to the radio buttons but provides
additional flexibility to display graphical, textual, and numeric formats.
The values set with this control are mutually exclusive.

A control window is always owned by another window, usually a frame or dialog window.
This relationship is important because a control window sends WM_CONTROL messages to
its owner whenever an input event occurs in the control window. Each WM_CONTROL
message includes the identifier of the control window in which the event occurred and a
notification code that specifies the nature of the event. An application specifies a control
window's 10 either in the WinCreateWindow function or in a dialog template. Each 10 must
be unique.

Control windows are like other predefined window classes in that they respond to standard
window-management messages and functions, such as WinSetWindowText and
WinShowWindow.

All control-window classes have a set of specific messages they send and receive. The
summary at the end of this chapter lists the messages that all control windows have in
common.

The system paints most control windows synchronously-that is, it redraws a control window
as soon as any part of that window becomes invalid.

16-2 PM Basic Programming Guide

Using Control Windows
An application can use control windows in a dialog window, standard frame window, or client
window. The following sections describe how to use control windows in an application.

Using Control Windows in a Dialog Window
To use a control window in a dialog window, an application specifies the control in a dialog
template in the application's resource-definition file. A dialog template typically includes
several control windows. When the application loads the dialog-template resource and
displays the dialog window, the system automatically displays the control windows as part of
the dialog window.

An application can send messages, through the dialog-window procedure, to a control
window to change its state. The control window sends notification messages to the
dialog-window procedure. The content of a notification message depends on the type of
control window.

Using Control Windows in a Non-Dialog Window
To use a control window in a non-dialog window, an application must call the
WinCreateWindow function, using the appropriate window class name. An application
usually specifies one of its client windows as the owner of the control window. Therefore,
the client-window procedure receives notification messages from the control window. In
cases where a control is owned by the frame window (such as a menu control), the
notification messages to the frame window are passed to the client window.

Creating a Custom Control Window
The operating system provides the following three ways to create custom control windows:

• Use ownerdraw list boxes and menus or buttons.
• Subclass an existing control-window class.
• Register and implement a window class from scratch.

List boxes and menus can have an ownerdraw style, and buttons can have a user-button
style, which cause the system to send a message to the owner of the ownerdraw control
whenever the control must be drawn. (If the owner is a frame window, it sends these
messages on to its client windows for handling by the client window procedure.) This feature
lets an application alter the appearance of a control window. For menus and list boxes, the
owner window draws the items within the control, and the system draws the outline of the
control. For buttons, the user-button style affects the drawing of the entire control.
Subclassing an existing control window is an easy way to create a custom control. The
subclass procedure can alter selected behavior of the control window by processing only
those messages that affect the selected behaviors. All other messages pass to the original
control-window procedure.

The techniques for defining a custom control-window class are the same as those used for
creating a client-window class. When you create a custom control-window class, be sure the
window procedure can send and receive the messages listed in Table 16-2 on page 16-7
and Table 16-3 on page 16-7.

Chapter 16. Control Windows 16-3

If an application creates a private control-window class, the name of the private class could
be used in the dialog template, just like a predefined window-class constant. For example, if
an application defines and registers a window class called "MyControIClass", it could create a
dialog window that contains that type of control window by using the following resource
definition:

OLGTEMPLATE 100 CUSTOM TEST
BEGIN --
DIALOG ""; 100 CUSTOM TEST, 1; 1. 126. 139, FS_OLGBOROER, 9
BEGIN -.-

CONTROL "Tnis is Text". IOO)lTLE,
37,. 197. 56, 12,
WC STATIC,
SS)EXT lOT_CENTER I OLTOP I OT_WOROBREAK
I WS __ VISIBLE

CONTROL "'custom Control'i, roO_CUSTOM,
33. 68,64, 13,
"MyContro 1 Class" •
WS VISIBLE

CONTROL "Okay", OIDOK,
57. 1l:), 24, 14,
WC_BUTTON,

END
END

BS...;PUSHBUTTON I BS_OEF"AULT I WS_JABSTOP I WS_VISIBLE

16-4 PM Basic Programming Guide

Related Messages
This section covers the messages that are related to Control Windows.

WM CONTROL
This message occurs when a control has a significant event to notify to its owner.

Parameters
param1

id (USHORT)
Control-window identity.

This is either the id parameter of the WinCreateWindow function or the identity of an
item in a dialog template.

usnotifycode (USHORT)
Notify code.

The meaning of the notify code depends on the type of the control. For details,
refer to the section describing that control.

param2

ulcontrolspec (ULONG)
Control-specific information.

The meaning of the control-specific information depends on the type of the control.
For details, refer to the section describing that control.

Returns
ulReserved (ULONG)

Reserved value, should be o.

Chapter 16. Control Windows 16-5

WM_QUERYDLGCODE
This message is sent by the dialog manager to identify the type of control, to determine what
kinds of messages the control understands, and also to determine whether an input message
may be processed by the dialog manager or passed down to the control.

Parameters
param1

pQmsg (PQMSG)
Message queue structure.

This points to a QMSG structure.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulDialogCode (ULONG)

Dialog code information flags.

DLGC_ENTRYFIELD Identifies an entry field control. Assumed to understand the
EM_SETSEL message.

DLGC BUTTON Identifies a button item. Assumed to understand the
BM_CLlCK message.

DLGC _ RADIOBUTTON Identifies a radio button control. Used with the
DLGC_BUTTON code.

DLGC_STATIC Identifies a static control. Static controls are not included in
arrow key enumeration.

DLGC_DEFAULT

DLGC _PUSHBUTTON

DLGC CHECKBOX

DLGC _ SCROLLBAR

DLGC MENU

DLGC _ TABONCLICK

DLGC MLE

16-6 PM Basic Programming Guide

Identifies a default push-button control.

Identifies a nondefault push button.

Identifies a check-box item. Used with the DLGC_BUTTON
code.

Identifies a scroll bar control.

Identifies a menu control.

Used by static controls to indicate that a mouse click on this
control will cause focus to be placed on the next control in the
dialog that has the WP _ TABSTOP style. This should be
useed in combination with the DLGC _STATIC code.

Identifies a multiline entry field control.

Summary
Following are the OS/2 messages used with control windows.

Table 16-2. Messages Received by a Control Window

Message Description

WM_ADJUSTWINDOWPOS Sent by WinSetWindowPos to enable the window to adjust its
new position or size when it is about to be moved.

WM_QUERYDLGCODE Sent by the dialog manager to identify the type of control, to
determine what kinds of messages the control understands, and
to determine whether an input message may be processed by
the dialog manager or passed down to the control.

Table 16-3. Messages Generated by a Control Window

Message

WM_COMMAND

WM_ CONTROLPOINTER

WM_SYSCOMMAND

Description

Occurs when a control has a significant event to notify to its
owner, or when a keystroke has been translated by an
accelerator table.

This message occurs when a control has a significant event to
report to its owner.

Sent to a control's owner window when the pointing device
pointer moves over the control window, allowing the owner to set
the pointer.

Notifies the owner that an event, usually a keystroke, has been
translated by an accelerator table into a WM_HELP message.

Notifies the owner that an event, usually a keystroke, has been
translated by an accelerator table into a WM_SYSCOMMAND
message.

Chapter 16. Control Windows 16-7

16-8 PM Basic Programming Guide

Chapter 17. Title-Bar Controls

A title bar is one of several control windows that comprise a standard frame window, giving
the frame window its distinctive look and performance capabilities. This chapter describes
how to create and use title-bar control windows in PM applications.

About Title Bars
The title bar in a standard frame window performs the following four functions:

• Displays the title of the window across the top of the frame window.

• Changes its highlighted appearance to show whether the frame window is active.
(Ordinarily, the topmost window on the screen is the active window.)

• Responds to the actions of the user-for example, dragging the frame window to a new
location on the screen.

• Flashes (as a result of the WinFlashWindow function) to get the attention of the user.

.. Title Bar

Figure 17-1. Title Bar in a Standard Frame Window

Once the frame controls are in place in the frame window, an application typically ignores
them, because the system handles frame controls. In some cases, however, an application
can take control of the title bar by sending messages to the title-bar control window.

Default Title-Bar Behavior
A title-bar control window sends messages to its owner (the frame window) when the control
receives user input. Following are the messages that the title-bar control processes. Each
message is described in terms of how the title-bar control responds to that message.

© Copyright IBM Corp. 1994 17-1

Table 17-1. Messages Processed by Title-Bar Control

Message

TBM_ QUERYHILITE

TBM_SETHILITE

WM_BUTTON1 DBLCLK

WM_BUTTON1 DOWN

WM_DESTROY

WM_HITTEST

WM_PAINT

WM_OUERYDLGCODE

WM_OUERYWINDOWPARAMS

WM_SETWINDOWPARAMS

WM_ WINDOWPOSCHANGED

USing Title-Bar Controls
This section explains how to:

Description

Returns the highlighted state of the title bar.

Sets the highlighted state of the title bar, repainting the
title bar if the state is changing.

Restores the title bar if the owner window is minimized or
maximized. If the window is neither minimized nor
maximized, this message maximizes the window.

Sends the WM_ TRACKFRAME message to the owner
window to start the tracking operation for the frame
window.

Sets the text for the title bar. Returns FALSE if the text is
already set.

Frees the window text for the title bar.

Always returns HT_NORMAL, so that the title bar does
not beep when it is disabled. (It is disabled when the
frame window is maximized.)

Draws the title bar.

Returns the predefined constant DLGC_STATIC. The
user cannot use the Tab key to move to the title bar in a
dialog window.

Returns the requested window parameters.

Sets the specified window parameters.

Returns FALSE. Processes this message to prevent the
WinDefWindowProc function from sending the size and
show messages.

• Include a title bar in a frame window.
• Alter the dragging action of a title bar.

Including a Title Bar in a Frame Window
An application can include a title bar in a standard frame window by specifying the
FCF _ TITLE BAR flag in the WinCreateStdWindow function.

The following code fragment shows how to create a standard frame window with a title bar,
minimize and maximize (window-sizing) buttons, size border, system menu, and an
application menu.

17 -2 PM Basic Programming Guide

#define ID_MENU_RESOURCE 101

HWND hwndFrame, hwndCl i ent;
UCHAR szCl assName [255] ;

ULONG flControlStyle ~ FCF_TITLEBAR I FCF_MINMAX I FCF_SIZEBORDER I
FCF _SYSMENU I FCF _MENU;

hwndFrame ~ WinCreateStdWindow(HWND_DESKTOP, WS_VISIBLE I FS_ACCELTABLE,
&flControlStyle, szClassName, "",
0, (HMODULE) NULL, ID MENU RESOURCE,
&hwndCl i ent) ; --

To get the window handle of a title-bar control, an application calls WinWindowFromlD,
specifying the frame-window handle and a constant identifying the title-bar control, as shown
in the following code fragment:

hwndTit 1 eBar ~ Wi nWi ndowFromID (hwndFrame, FID _ TITLEBAR) ;

To set the text of a title bar, an application can use the WinSetWindowText function. The
frame window passes the new text to the title-bar control in a WM_SETWINDOWPARAMS
message.

Altering Dragging Action
When the user clicks the title bar, the title-bar control sends a WM_ TRACKFRAME message
to its owner (the frame window). When the frame window receives the WM_ TRACKFRAME
message, the frame sends a WM_OUERYTRACKINFO message to itself to fill in a
TRACKINFO structure that defines the tracking parameters and boundaries. To modify the
default behavior, an application must subclass the frame window, intercept the
WM_OUERYTRACKINFO message, and modify the TRACKINFO structure. If the
application returns TRUE for the WM_OUERYTRACKINFO message, the tracking operation
proceeds according to the information in the TRACKINFO structure. If the application returns
FALSE, no tracking occurs.

Chapter 17. Title-Bar Controls 17-3

Related Functions
This section covers the functions that are related to Title Bar Controls.

WinFlashWindow
This function starts or stops a window flashing.

Syntax

#define INCL_WINFRAMEMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinFlashWindow (HWND hwndFrame, BOOl fFlash)

Parameters
hwndFrame (HWND) - input

Handle of window to be flashed.

fFlash (BOOl) - input
Start-flashing indicator.

TRUE
FALSE

Returns

Start window flashing
Stop window flashing.

rc (BOOl) - returns
Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

17-4 PM Basic Programming Guide

Related Messages
This section covers the messages that are related to Title Bar Controls.

TBM_QUERYHILITE
This message returns the highlighting state of a title-bar control.

Parameters
param1

ulReserved (UlONG)
Reserved value, should be O.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Highlighting state.

TRUE
FALSE

Title-bar control is highlighted
Title-bar control is not highlighted.

Chapter 17. Title-Bar Controls 17-5

TBM SETHILITE
This message is used to highlight or unhighlight a title-bar control.

Parameters
param1

usHighlighted (USHORT)
Highlighting indicator.

TRUE
FALSE

Highlight the title-bar control
Remove highlight from the title-bar control.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

17 -6 PM Basic Programming Guide

Related Data Structures
This section covers the data structures that are related to Title Bar Controls.

SWP
Set-window-position structure.

Syntax

typedef struet _SWP {
ULONG flo
LONG ey;
LONG ex;
LONG y;
LONG x;
HWND hwndlnsertBehind;
HWND hwnd;
ULONG ulReservedl;
ULONG ulReserved2;
} SWP;

typedef SWP *PSWP;

Fields
11 (ULONG)

Options.

In alphabetic order:

SWP ACTIVATE
SWP _DEACTIVATE
SWP_HIDE
SWP _MAXIMIZE
SWP MINIMIZE
SWP MOVE
SWP NOADJUST
SWP _NOERASEWINDOW
SWP _NOREDRAW
SWP RESTORE
SWP SHOW
SWP_SIZE
SWP_ZORDER

ey (LONG)
Window height.

ex (LONG)
Window width.

Chapter 17. Title-Bar Controls 17-7

Y (LONG)
V-coordinate of origin.

x (LONG)
X-coordinate of origin.

hwndlnsertBehind (HWNO)
Window behind which this window is placed.

hwnd (HWNO)
Window handle.

uiReserved1 (ULONG)
Reserved value, must be o.

uiReserved2 (ULONG)
Reserved value, must be o.

17-8 PM Basic Programming Guide

TRACKINFO
Tracking-information structure.

Syntax

typedef struct _TRACKINFO {
LONG cxBorder;
LONG cyBorder;
LONG cxGrid;
LONG cyGrid;
LONG cxKeyboard;
LONG > cyKeyboard;
RECTL rclTrack;
RECTL rclBoundary;
POINTL ptlMinTrackSize;
POINTL ptlMaxTrackSize;
ULONG fs;

}TRACKINFO;

typedef TRACKINFO *PTRACKINFO;

Fields
cxBorder (LONG)

Border width.

The width of the left and right tracking sides.

cyBorder (LONG)
Border height.

The height of the top and bottom tracking sides.

cxGrid (LONG)
Grid width.

The horizontal bounds of the tracking movements.

cyGrid (LONG)
Grid height.

The vertical bounds of the tracking movements.

cxKeyboard (LONG)
Character cell width movement for arrow key.

cyKeyboard (LONG)
Character cell height movement for arrow key.

Chapter 17. Title-Bar Controls 17-9

rclTrack (RECTL)
Starting tracking rectangle.

This is modified as the rectangle is tracked and holds the new tracking position, when
tracking is complete. '

rclBoundary (RECTL)
Boundary rectangle.

This is, an absolute bounding rectangle that the tracking rectangle cannot extend; see
also TF ALLINBOUNDARY.

ptlMinTrackSize (POINTL)
Minimum tracking size.

ptlMaxTrackSize (POINTL)
Maximum tracking size.

fs (ULONG)
Tracking options.

In alphabetic order:

TF ALLINBOUNDARY
The default tracking is such that some part of the tracking rectangle is within the
bounding rectangle defined by re/Boundary. This minimum size is defined by
exBorder and eyBorder.

If TF _ALLINBOUNDARY is specified, the tracking is performed so that no part of the
tracking rectangle ever falls outside of the bounding rectangle.

TF BOTTOM
Track the bottom side of the rectangle.

TF GRID
Tracking is restricted to the grid defined by exGrid and eyGrid.

TF LEFT
Track the left side of the rectangle.

TF MOVE
Track all sides of the rectangle.

TF_RIGHT
Track the right side of the rectangle.

TF SETPOINTERPOS
The pointer is repositioned according to other flags as follows:
none Pointer is centered in the tracking rectangle.
TF _MOVE Pointer is centered in the tracking rectangle.
TF _LEFT Pointer is vertically centered at the left of the tracking rectangle.
TF _TOP Pointer is horizontally centered at the top of the tracking rectangle.
TF _RIGHT Pointer is vertically centered at the right of the tracking rectangle.
TF _BOTTOM Pointer is horizontally centered at the bottom of the tracking rectangle.

TF STANDARD
ex, ey, exGrid, and eyGrid are all multiples of exBorder and cyBorder.

TF_TOP
Track the top side of the rectangle.

17 -1 0 PM Basic Programming Guide

Summary
Following are the OS/2 functions, messages, and structures used with title-bar controls.

Table 17-2. Title-Bar Functions

Function name

WinCreateStdWindow

WinFlashWindow

WinSetWindowText

WinWindowFromlD

Table 17-3. Title-Bar Messages

Message

TBM_QUERYHILITE

TBM_SETHILITE

WM_BUTTON1 DBLCLK

WM_BUTTON1 DOWN

WM_CREATE

WM_DESTROY

WM_PAINT

WM_QUERYCONVERTPOS

WM_QUERYDLGCODE

WM_QUERYWINDOWPARAMS

WM_SETWINDOWPARAMS

WM_ TRACKFRAME

WM_WINDOWPOSCHANGED

Description

Creates a standard window.

Starts or stops the flashing of a window.

Sets the window text for a specified window.

Returns the handle of the child window with the specified
identity.

Description

Returns the highlighting state of a title-bar control.

Used to highlight or unhighlight a title-bar control.

Occurs when the user presses button 1 of the pointing
device twice.

Occurs when the user presses pointer button 1.

Occurs when an application requests the creation of a
window.

Occurs when an application requests the destruction of a
window.

Sent to determine which window is associated with an
input from the pointing device.

Occurs when a window ne'eds repainting.

Sent by an application to determine whether it is
appropriate to begin conversion of OBCS characters.

Sent by the dialog manager to identify the type of control,
to determine what kinds of messages the control
understands, and to determine whether an input message
can be processed by the dialog manager or passed down
to the control.

Occurs when an application queries the title-bar control
window procedure window parameters.

Occurs when an application sets or changes the title-bar
control window procedure window parameters.

Sent to a window whenever it is to be moved or sized.

Sent to the window procedure of the window whose
position is changed.

Chapter 17. Title-Bar Controls 17 -11

Table 17-4. Title-Bar Structures

Structure name Description

SWP Set window position structure.

TRACKINFO Tracking information structure.

17 -12 PM Basic Programming Guide

Chapter 18. Scroll-Bar Controls

Scroll bars are control windows that convert mouse and keyboard input into integers; they
are used by an application to scroll the contents of a client window. This chapter describes
how to create and use scroll bars in PM applications.

About Scroll Bars
. A scroll bar has three main parts: the bar, its arrows, and a slider (see Figure 18-1).

iii Scroll Bars

This window has vertical and horizontal scroll bars.

Slider ----7

Vertical scroll bar ----7 r Hm';zontal scroll bar

<J L>

Figure 18-1. Scroll Bars in a Window

The arrows are located at each end of the scroll bar. The left scroll arrow, on the left side of
a horizontal scroll bar, enables the user to scroll to the left in a document. The right scroll
arrow lets the user scroll to the right.

On a vertical scroll bar, the upper scroll arrow enables the user to scroll upward in the
document; the lower scroll arrow, downward. The slider, which lies between the two scroll
arrows, reflects the current value of the scroll bar. Scroll bars monitor the slider and send
notification messages to the owner window when the slider position changes as a result of
mouse or keyboard input.

Although, typically, scroll bars are used in frame windows, an application can use
stand-alone scroll bars of any size or shape, at any position, in a window of almost any
class. Scroll bars can be used as parts of other control windows; for example, a list box
uses a scroll bar to enable the user to view items when the list box is too small to display all
the items.

© Copyright IBM Corp. 1994 18-1

Scroll-Bar Creation
An application can include a scroll bar in a standard frame window by specifying the
FCF _HORZSCROLL or FCF _ VERTSCROLL flag in the WinCreateStdWindow function. To
create a scroll bar in another type of window, an application can specify the predefined
(preregistered) window class WC _ SCROLLBAR in the WinCreateWindow function or in the
CONTROL statement in a resource file.

Although most applications specify an owner window when creating a scroll bar, an owner is
not required. If an application does not specify an owner, the scroll bar does not send
notification messages.

Scroll-Bar Styles
A scroll bar has styles that determine what it looks like and how it responds to input. Styles
are specified in the WinCreateWindow function or the CONTROL statement. A scroll-bar can
have the following styles:

Table 18-1. Scroll-Bar Styles

Style Meaning

SBS_AUTOTRACK Causes the entire slider to track the movement of the mouse pointer
when the user scrolls the window. Without this style, only an outlined
image of the slider tracks the movement of the mouse pointer, and the
slider jumps to the new location when the user releases the mouse
button.

SBS_HORZ Creates a horizontal scroll bar.

SBS_ THUMBSIZE Used to calculate the size of the scroll-bar slider from the SBCDAT A
passed to WinCreateWindow.

SBS_VERT Creates a vertical scroll bar.

Scroll-Bar Range and Position
Every scroll bar has a range and a slider position. The range specifies the minimum and
maximum values for the slider position. As the user moves the slider in a scroll bar, the
scroll bar reports the slider position as an integer in this range. If the slider position is the
minimum value, the slider is at the top of a vertical scroll bar or at the left end of a horizontal
scroll bar. If the slider position is the maximum value, the slider is at the bottom or right end
of the vertical or horizontal scroll bar, respectively.

An application can adjust the range to convenient integers by using SBM_SETSCROLLBAR
or WM_SETWINDOWPARAMS, or by using the SBCDATA structure during creation of the
scroll bar. This enables you to easily translate the slider position into a value that
corresponds to the data being scrolled. For example, an application attempting to display
100 lines of text (numbered 0 to 99) in a window that can show only 20 lines at a time could
set the vertical scroll-bar range from 0-99, permitting any line to be the top line, alld
requiring blank lines to fill the viewing area when there are not sufficient lines of information
to fill the area (lines 80-99). More likely, the range would be set to 0-79, so that only the
first 80 lines could be the top line; this guarantees that there would always be 20 lines of text
to fill the window.

18-2 PM Basic Programming Guide

The current settings can be obtained using SBM_QUERYRANGE or
WM_QUERYWINDOWPARAMS.

To establish a useful relationship between the scroll-bar range and the data, an application
must adjust the range whenever the data or the size of the window changes. This means
the application should adjust the range as part of processing WM_SIZE messages.

An application must move the slider in a scroll bar. Although the user requests scrolling in a
scroll bar, the scroll bar does not update the slider position. Instead, it passes the request to
the owner window, which scrolls the data and updates the slider position using the
SBM_SETPOS message. The application controls the slider movement and can move the
slider in the increments best suited for the data being scrolled.

An application can retrieve the current slider position of a scroll bar by sending the
SBM_QUERYPOS message to the scroll bar.

If a scroll bar is a descendant of a frame window, its position relative to its parent can
change when the position of the frame window changes. Frame windows draw scroll bars
relative to the upper-left corner of the frame window (rather than the lower-left corner). The
frame window can adjust the y coordinate of the scroll..,bar position, which would be desirable
if the scroll bar is a child of the frame window, but would be undesirable if the scroll bar is
not a child window.

Scroll-Bar Slider Size
The slider can be displayed either as a square (the default), or as a portion of the scroll bar if
SBCDATA and the SBS_THUMBSIZE style are specified at creation. Displaying the slider
as a proportional rectangle permits the size of the slider to be proportional to the amount of
data being viewed in the visible range. The size is set based on the visible range and the
number of values in the range. As an example, where the viewing area is 20 items and the
range is 100, the slider size would be 20% of the potential slider area. Note that there is no
direct connection between the scroll bar range and the range value used to set the slider
size. It is possible to set the scroll-bar range from 0-99, and base the slider size on a
viewing area of 500 and a range of 1000. This will set the scroll-bar to have 100 positions
and will display a slider that is half the size of the scroll bar.

The slider size can be set using SBM_SETIHUMBSIZE or WM_SETWINDOWPARAMS, and
obtained using WM_QUERYWINDOWPARAMS.

Scroll-Bar Notification Messages
A scroll bar sends notification messages to its owner whenever the user clicks the scroll bar.
WM_ YSCROLL and WM_HSCROLL are the notification messages for vertical and horizontal
scroll bars, respectively. If the scroll bar is a frame control window, the frame window
passes the message to its client window.

Each notification message includes the scroll-bar identifier, scroll-bar command code
corresponding to the action of the user, and, in some cases, the position of the slider. If an
application creates a scroll bar as part of a frame control window, the scroll-bar identifier is

Chapter 18. Scroll-Bar Controls 18-3

the predefined constant FID_VERTSCROLL or FID_HORZSCROLL. Otherwise, it is the
identifier given in the WinCreateWindow function.

The scroll-bar command codes specify the action the user has taken. Operating system
user-interface guidelines recommend certain responses for each action. Figure 18-2
illustrates the S8M _xxx messages your application can send to a scroll bar.

Ii Title Bars

1:= r Slider
~ ~

~

v~

>

L

WM_VSCROLL:

SB-LINEUP

SBYAGEUP

SB~LIDERPOSITI ON

SBYAGEDOWN

SB-LINEDOWN

WMJISCROLL:

SB-LINERIGHT
SBYAGERIGHT
SB~LIDERPOSITION

SBYAGELEFT
SB-LINELEFT

Figure 18-2. Standard Window Scroll Bar and Command Codes

Following is a list of the command codes; for each code, the user action is specified,
followed by the application's response. In each case, a scrolling unit, appropriate for the
given data, must be defined by the application. For example, for scrolling text vertically, the
typical unit is a line.

18-4 PM Basic Programming Guide

Table 18-2. Scroll-Bar Command Codes

Command Code Description

SB_L1NEUP Indicates that the user clicked the top scroll arrow.
Decrement the slider position by one, and scroll toward
the top of the data by one unit.

SB_L1NEDOWN Indicates that the user clicked the bottom scroll arrow.
Increment the slider position by one, and scroll toward the
bottom of the data by one unit.

SB_LINELEFT Indicates that the user clicked the left scroll arrow.
Decrement the slider position by one, and scroll toward
the left end of the data by one unit.

SB_L1NERIGHT Indicates that the user clicked the right scroll arrow.
Increment the slider position by one, and scroll toward the
right end of the data by one unit.

SB_PAGEUP Indicates that the user clicked the scroll-bar background
above the slider. Decrement the slider position by the
number of data units in the window, and scroll toward the
top of the data by the same number of units.

SB_PAGEDOWN Indicates that the user clicked the scroll-bar background
below the slider. Increment the slider position by the
number of data units in the window, and scroll toward the
bottom of the data by the same number of units.

SB_PAGELEFT Indicates that the user clicked the scroll-bar background
to the left of the slider. Decrement the slider position by
the number of data units in the window, and scroll toward
the left end of the data by the same number of units.

SB_PAGERIGHT Indicates that the user clicked the scroll-bar background
to the right of the slider. Increment the slider position by
the number of data units in the window, and scroll toward
the right end of the data by the same number of units.

SB_SLlDERTRACK Indicates that the user is dragging the slider. Applications
that draw data quickly can set the slider to the position
given in the message, and scroll the data by the same
number of units the slider has moved. Applications that
cannot draw data quickly should wait for the
SB_SLlDERPOSITION code before moving the slider and
scrolling the data.

SB _SLIDER POSITION Indicates that the user released the slider after dragging
it. Set the slider to the position given in the message, and
scroll the data by the same number of units the slider was
moved.

SB_ENDSCROLL Indicates that the user released the mouse after holding it
on an arrow or in the scroll-bar background. No response
is necessary.

Chapter 18. Scroll-Bar Controls 18-5

If the command code is SB_SLlDERTRACK or SB_SLlDERPOSITION, indicating that the
user is moving the scroll-bar slider, the notification message also contains the current
position of the slider.

The owner window can send a message to the scroll bar to read or reset the current value
and range of the scroll bar. To reflect any changes in the state of the scroll bar, the owner
window also can adjust the data the scroll bar controls.

An application can use the WinEnableWindow function to disable a scroll bar. A disabled
scroll bar ignores the actions of the user, sending out no notification messages when the
user tries to manipulate it. If an application has no data to scroll, or if all data fits in the
client window, the application should disable the scroll bar.

Scroll Bars and the Keyboard
When a scroll bar has the keyboard focus, it generates notification messages for the
following keys:

Table 18-3. Scrol/-bar Notification Messages

Keys Response

UP SB_LlNEUP or SB_LlNELEFT

LEFT SB_LlNEUP or SB_LlNELEFT

DOWN SB_LlNEDOWN or SB_LlNERIGHT

RIGHT SB_LlNEDOWN or SB_LlNERIGHT

PGUP SB_PAGEUP or SB_PAGELEFT

PGDN SB_PAGEDOWN or SB.c..PAGERIGHT

If an application uses scroll bars to scroll data but does not give the scroll bar the input
focus, the window with the focus must process keyboard input. The window can generate
scroll-bar notification messages or carry out the indicated scrolling. The following table
shows the responses to keys that a window must process:

Table 18-4 (Page 1 of 2). Focus Window Message Responses to Keys

Key Response

UP SB_LlNEUP

DOWN SB_LlNEDOWN

PGUP SB_PAGEUP

PGDN SB_PAGEDOWN

CTRL+HOME SB_SLlDERTRACK, with the slider set to the minimum
position

CTRL+END SB_SLlDERTRACK, with the slider set to the maximum
position

LEFT SB LlNELEFT

18-6 PM Basic Programming Guide

Table 18-4 (Page 2 of 2). Focus Window Message Responses to Keys

Key Response

RIGHT SB _ LlNERIGHT

CTRL+PGUP SB_PAGELEFT

CTRL+PGDN SB_PAGERIGHT

HOME SB_SLlDERTRACK, with the slider set to the minimum
position

END SB_SLlDERTRACK, with the slider set to the maximum
position

For vertical scroll bars that are part of list boxes, the following table shows the responses to
keys:

Table 18-5. List Box Responses to Keys

Key Command

CTRL+UP SB_SLlDERTRACK, with the slider set to the minimum
position

CTRL+DOWN SB_SLlDERTRACK, with the slider set to the maximum
position

F7 SB_PAGEUP

Fa SB_PAGEDOWN

USing Scroll Bars
This section explains how to perform the following tasks:

• Create scroll bars.
• Retrieve a scroll-bar handle.
• Initialize, adjust, and read the scroll-bar range and position.

Creating Scroll Bars
When creating a frame window, you can add scroll bars by specifying the
FCF _HORZSCROLL flag, FCF _ VERTSCROLL flag, or both flags in the
WinCreateStdWindow function. This adds horizontal, vertical, or both (as specified) scroll
bars to the frame window. The frame window owns the scroll bars and passes notification
messages from the scroll bars to the client window.

Chapter 18. Scroll-Bar Controls 18-7

The following code fragment adds scroll bars to a frame window:

/* Set flags for a. main window with scroll bars. */
ULONG ulFrameControlFlags i:

FCF _STANDARD I FCF _HORZSCROLLI FCF .. ':yERtSCROLL;

/* Create the window. */
hwndFrame " Wl nCreateStdWi ndow(HWND DESKTOP,

WS VISIBLE, -
&ul FrameContro1 Fl ags,
szC1 i entCl ass,
szFrameTitl e,
0,
(HMODULE) NULL,
0,
&hwndC1 i ent) ;

Scroll bars created this way have the window identifier FID_HORZSCROLL or
FID _ VERTSCROLL. To determine the size and position of the scroll bars, the frame window
uses the standard size specified by the system values SV _ CXVSCROLL and
SV _ CYHSCROLL. The position always is defined by the right and bottom edges of the
frame window.

Another way to create scroll bars is using the WinCreateWindow function. This method is
most commonly used for stand-alone scroll bars. Creating scroll bars this way lets you set
the size and position of the scroll bars. You also can specify which window should receive
notification messages.

The following code fragment creates a stand-alone scroll bar:

HWNO hwndScro 11, hwndCli ent;
hwndScroll " WinCreateWindow(

hwndCl i ent.
WC SCROLLBAR,
(PSZ) NULL,
SBS_VERT I WS_VISIBLE,
10, 10,'
20, 100,
hwndCl i ent,
HWND_TOP,
ID_SCROLL_BAR,
NULL,
NULL) ;

18-8 PM Basic Programming Guide

/*. Scro11-:-bar parent window */
/*Preregis1;ered scroll-bar class */
/* No wi ndow ti tl e */
/* Vertical style and visible */
/* Position & Size */
/* Size */
/* Owner *1
/*Z;"orderposition *1
/* Scroll~bqr identifier '*/
/* No class-specific data */
/* No presentation parameters */

Retrieving a Scroll-Bar Handle
If you use the WinCreateStdWindow function to create a scroll bar as a child of the frame
window, you must be able to retrieve the scroll-bar handle. One way to do this is to use the
WinWindowFromlD function, the frame-window handle, and a predefined identifier (such as
FID_HORZSCROLL or FID_ VERTSCROLL), as shown in the following code fragment:

HWND hwndFrame.hwndHorzScro11 ,hwndVertScroll;

hwndHorzScro 11 = Wi nWi ndowFromID (hwndFrame, FID HORZSCROLL);
hwndVertScro11 = WinWindowFromID(hwndFrame, FID)ERTSCROLL);

If the standard frame window includes a client window, you can use that handle to access
the scroll bars. The idea is to get the frame-window handle first; then, the scroll-bar handle.

HWND hwndScro 11, hwndCl i ent;

/* Get a handle to the horizontal scroll bar. */
hwndScro 11 = Wi nWi ndowFromI D (

Wi nQueryWi ndow (hwndC1 i ent, QW_PARENT),
FID_HORZSCROLL) ;

USing the Scroll-Bar Range and Position
You can initialize the current value and range of a scroll bar to non-default values by sending
the SBCDATA structure with class-specific data for a call to WinCreateWindow:

#define ID_SCROLL_BAR 1

SBCDATA sbcd;
HWND hwndScro 11, hwndC1 i ent;

/* Set up scroll-bar control data.
sbcd.posFirst = 200.
sbcd.posLast '" 400.
sbcd.posThumb = 300;

/* Create the scroll bar. */
hwndScroll =WinCreateWindow(hwndC1 i ent,

WC SCROLLBAR,
(PSZ) NULL,
SBS_VERT I WS_VISIBLE,
10, 10,
20, 100.
hwndCl i ent.
HWND TOP,
ID SCROLL BAR,
&sbcd, - !* C1 ass-speci fi c data * /

. ·NULL);

Chapter 18. Scroll-Bar Controls 18-9

You can adjust a scroll-bar value and range by sending it an SBM_SETSCROLLBAR
message:

WinSendMsg(hwndStro11. ·.SBM_SETSCRO(LBAR;
(MPARAM) 300.
MPFROM2SHORT(200,400» ;

You can read a scroll-bar value by sending it an SBM_QUERYPOS message:

USHORT . usSl i derPos;

1* Read the scroll-bar value. *1
usSl i derPos ::: (USHORT) Wi nSendMsg (hwndScro 11 ,

SBM_QUERYPOS, (MPARAM) NULL. (MPARAM) NULL);

Similarly, you can set a scroll-bar value by sending an SBM_SETPOS message:

1* Set the vertical scroll-bar value. *1
WinSendMsg(hwndScroll, SBM_SETPOS. (MPARAM) 300, (MPARAM) NULL);

You can read a scroll-bar range by sending it an SBM_QUERYRANGE message:

MRESULT mr;
USHORT usMi ntmum, usMaximum;

!*Readthe vertical sero 11 ~bar ra~ge. * I
mr.=. WinSendMsg{hwndScrol1,SBM_QUERYRANGE. (MPARAM). NUI,o.L,. (MPARAM) NULL);

18-1 0 PM Basic Programming Guide

Related Messages
This section covers the messages that are related to Scroll Bar Controls.

SBM_QUERYPOS
This message returns the current slider position in a scroll bar window.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
sslider (SHORT)

Slider position.

Chapter 18. Scroll-Bar Controls 18-11

SBM_QUERYRANGE
This message returns the scroll bar range minimum and maximum values.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ReturnCode

sfirst (SHORT)
First bound.

slast (SHORT)
Last bound.

18-12 PM Basic Programming Guide

SBM_SETPOS
This message sets the position of the slider in a scroll bar window.

Parameters
param1

sslider (SHORT)
Position of slider.

If this value is outside the scroll-bar range, the slider is moved to the nearest valid
position within the range.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred

Chapter 18. Scroll-Bar Controls 18-13

SBM_SETSCROLLBAR
This message sets the scroll-bar range and slider position.

Parameters
param1

sslider (SHORT)
Position of slider.

param2

If this value is outside the scroll-bar range, the slider is moved to the nearest valid
position within the range.

sfirst (SHORT)
First bound.

This value must not be less than O. If a value less than 0 is supplied, 0 is used as
the value.

slast (SHORT)
last bound.

The value must not be less than 0 or stirst. If a value less than this is supplied, the
higher of 0 or stirst is used as the value.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

18-14 PM Basic Programming Guide

SBM_SETTHUMBSIZE
This message sets the scroll bar slider size.

Parameters
param1

svisible (SHORT)
Size of the visible part of the document.

stotal (SHORn
Size of the entire document.

param2

ulReserved (UlONG)
Reserved value, should be o.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Chapter 18. Scroll-Bar Controls 18-15

WM_HSCROLL
This message occurs when a horizontal scroll bar control has a significant event to notify to
its owner.

Parameters
param1

usidentifier (USHORT)
Scroll bar control window identifier.

param2

sslider (SHORT)
Slider position.

o Either the operator is not moving the slider with the pointer device, or for
the instance where uscmd is SB_SLlDERPOSITION the pointer is outside
the tracking rectangle when the button is released.

Other Slider position.

uscmd (USHORT)
Command.

SB LlNELEFT Sent if the operator clicks on the left arrow of the scroll
bar, or depresses the VK_LEFT key.

SB_LlNERIGHT Sent if the operator clicks on the right arrow of the scroll
bar, or depresses the VK_RIGHT key.

SB_PAGELEFT Sent if the operator clicks on the area to the left of the
slider, or depresses the VK_PAGELEFT key.

SB_PAGERIGHT Sent if the operator clicks on the area to the right of the
slider, or depresses the VK_PAGERIGHT key.

SB_SLlDERPOSITION Sent to indicate the final position of the slider.

SB_SLlDERTRACK If the operator moves the scroll bar slider with the pointer
device, this is sent every time the slider position changes.

SB_ENDSCROLL Sent when the operator has finished scrolling, but only if
the operator has not been doing any absolute slider
positioning.

Returns
ulReserved (ULONG)

Reserved value, should be o.

18-16 PM Basic Programming Guide

WM VSCROLL
This message occurs when a vertical scroll-bar control has a significant event to notify to its
owner.

Parameters
param1

usidentifier (USHORT)
Scroll bar-control window identifier.

param2

sslider (SHORT)
Slider position.

o Either the operator is not moving the slider with the pointer device, or for
the instance when uscmd is SB_SLlDERPOSITION the pointer is outside
the tracking rectangle when the button is released.

Other Slider position.

uscmd (USHORT)
Command.

SB_LlNEUP Sent if the operator clicks on the up arrow of the scroll
bar, or presses the VK_UP key.

SB_LlNEDOWN Sent if the operator clicks on the down arrow of the scroll
bar, or presses the VK_DOWN key.

SB_PAGEUP Sent if the operator clicks on the area above the slider, or
presses the VK_PAGEUP key.

SB_PAGEDOWN Sent if the operator clicks on the area below the slider, or
presses the VK_PAGEDOWN key.

SB_SLlDERPOSITION Sent to indicate the final position of the slider.

SB_SLlDERTRACK If the operator moves the scroll bar slider with the pointer
device, this is sent every time the slider position changes.

SB_ENDSCROLL Sent when the operator has finished scrolling, but only if
the operator has not been doing any absolute slider
positioning.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Chapter 18. Scroll-Bar Controls 18-17

Related Data Structures
This section covers the data structures that are related to Scroll Bar Controls.

SBCDATA
Scroll-bar control data structure.

Syntax

typ~d~fstt'(jct:...SBCDATA·· {
USHORTcb;
USHORT sHi 1 He;
SHORT posFirst;
SHORT posLast;
SHORT posThumb;
SHORT cVisible;
SHORTcTota 1;

}SBCDATA;

Fields
cb (USHORT)

Length of control data in bytes.

The length of the control data for a scroll-bar control.

This indicates which part of the scroll bar is to be highlighted, if any.

sHilite (USHORT)
Highlighting code.

ZERO
SB_LlNEUP
SB_LlNELEFT
SB_LlNEDOWN
SB_LlNERIGHT
SB PAGEUP
SB PAGELEFT
SB PAGEDOWN
SB PAGERIGHT
SB_SLlDERTRACK

posFirst (SHORT)

No highlighting
Line up arrow
Line left arrow
Line down arrow
Line right arrow
Page up arrow
Page left arrow
Page down arrow
Page right arrow
Slider.

First bound of the scroll-bar range.

posLast (SHORT)
Last bound of the scroll-bar range.

18-18 PM Basic Programming Guide

posThumb (SHORT)
Slider position.

cVisible (SHORT)
Number of data items visible.

cTotal (SHORT)
Number of data items available.

Chapter 18. Scroll-Bar Controls 18-19

Summary
Following are the operating system messages and structure used with scroll bars.

Table 18-6. Messages Received by a Scroll Bar

Message Description

SBM_QUERYPOS Returns the slider position.

SBM_QUERYRANGE Returns the scroll bar range.

SBM_SETPOS Sets the position of the slider.

SBM_SETSCROLLBAR Sets the scroll-bar range and slider positions.

SBM_SETTHUMBSIZE Sets the scroll bar slider size.

Table 18-7. Messages Generated by a Scroll Bar

Message Description

WM_HSCROLL Occurs when a horizontal scroll bar control has a
significant event to notify to its owner.

WM_QUERYCONVERTPOS Sent by an application to determine whether it is
appropriate to begin conversion of DBCS characters.

WM_QUERYWINDOWPARAMS Occurs when an application queries the scroll bar control
window parameters.

WM_SETWINDOWPARAMS Occurs when an application sets or changes the scroll bar
control window.

WM_VSCROLL Occurs when a vertical scroll bar control has a significant
event to notify to its owner.

Table 18-8. Scroll-Bar Structure

Structure name Description

SBCDATA Scroll-bar control data structure.

18-20 PM Basic Programming Guide

Chapter 19. Button Controls

A button is a type of control window used to initiate an operation or to set the attributes of an
operation. This chapter describes how to create and use buttons in PM applications.

About Button Controls
A button control can appear alone or with a group of other buttons. When buttons are
grouped, the user can move from button to button within the group by pressing the Arrow
keys. The user also can move among groups by pressing the Tab key.

A user can select a button by clicking it with the mouse, pressing the spacebar when the
button has the keyboard focus, or sending a 8M_CLICK message. In most cases, a button
changes its appearance when selected.

A button control is always owned by another window, usually a dialog window or an
application's client window. A button control posts WM_COMMAND messages or sends
WM_ CONTROL notification messages to its owner when a user selects the button. For
further information on messages generated, see "Button Notification Messages" on
page 19-7. The owner window receives messages from a button control and can send
messages to the button to alter its position, appearance, and enabled/disabled state.

To use a button control in a dialog window, an application specifies the control in a dialog
template in the application's resource-definition file. The application processes button
messages in the dialog-window procedure.

An application creates a button control in a client window by calling WinCreateWindow,
specifying a window class of WC_BUTTON, and identifying the client window as the owner of
the button control.

Button Types
There are four main types of buttons: push buttons, radio buttons, check boxes, and
three-state check boxes. A button's type determines how the button looks and behaves.

A radio button, check box, or three-state check box controls an operation; a push button
initiates an operation. For example, a user might set printing options (such as paper size,
print quality, and printer type) in a print-command dialog window containing an array of radio
buttons and check boxes. After setting the options, the user would select a push button to
tell an application that printing should begin (or be canceled). Then, the application would
query the state of each check box and radio button to determine the printing parameters.

Push Buttons
A push button is a rectangular window typically used to enable the user to start or stop an
operation. When selected, a push button control posts a WM_COMMAND message to its
owner window.

© Copyright IBM Corp. 1994 19-1

The push button can contain a text string, an icon or mini-icon, or a combination of text and
images. A push button containing a text string is shown in Figure 19-1 on page 19-2.

Figure 19-1. Push Button with Text in a Dialog Box

A push button containing a combination of text and a mini-icon is shown in Figure 19-2.

Figure 19-2. Push Button with Icon and Text

A push button containing text and a custom icon is shown in Figure 19-3.

Figure 19-3. Push Button with Text and Custom Icon

Radio Buttons
A radio button is a window with text displayed to the right of a small circular indicator. Each
time the user selects a radio button, that button's state toggles between selected and
unselected. This state remains until the next time the user selects the button. An application
typically uses radio buttons in groups, as shown in Figure 19-4 on page 19-3.

19-2 PM Basic Programming Guide

Radio button

Figure 19-4. Radio Buttons in a Dialog Box

Within a group, usually one button is selected by default, and the user can move the
selection to another button by using the cursor keys; however, only one button can be
selected at a time. Radio buttons are appropriate if an exclusive choice is required from a
fixed list of related options. For example, applications often use radio buttons to allow the
user to select the screen foreground and background colors. A radio-button control sends
WM_CONTROL messages to its owner window.

Check Boxes
Check boxes are similar to radio buttons, except that they can offer multiple-choice selection
as well as individual choice. Figure 19-5 offers the user a fixed list of choices, with the
option of selecting more than one, or even all.

Check: box

Figure 19-5. Check Boxes in a Dialog Box

Check boxes also toggle application features on or off. For example, a word processing
application might use a check box to let the user turn word wrapping on or off. A check-box
control sends WM_CONTROL messages to its owner window.

Three-State Check Boxes
Three-state check boxes are similar to check boxes, except that they can be displayed in
halftone as well as selected and unselected. An application might use the halftone state to
indicate that, currently, the checkbox is not selectable. A three-state check-box control

Chapter 19. Button Controls 19-3

sends WM_CONTROL messages and posts WM_COMMAND messages to its owner
window.

Application-defined Buttons
In addition to using the four predefined button-control types, an application can create button
controls that appear as defined by the owner window. When they must be drawn or
highlighted, these button controls send WM_CONTROL messages with BN_PAINT as the
notification code to their owner windows.

Button Styles
The following table describes the button styles an application can use when creating button
controls:

Table 19-1 (Page 1 of 2). Button Styles

Style

BS_AUT03STATE

BS_AUTOCHECKBOX

BS_AUTORADIOBUTTON

BS_AUTOSIZE

19-4 PM Basic Programming Guide

Description.

Creates a three-state check box (see also BS_CHECKBOX).
When the user selects the check box, it sends a WM_CONTROL
message to the owner window. The owner should set the check
box to the appropriate state: selected, unselected, or halftone.

Creates an auto-three-state check box (see also
BS_CHECKBOX). When the user selects the check box, the
system automatically sets the check box to the appropriate state:
selected, unselected, or halftone.

Creates an auto-check box (see also BS_CHECKBOX). The
system automatically toggles the check box between the
selected and unselected states each time the user selects the
box.

Creates an auto-radio button (see also BS_RADIOBUTTON).
When the user selects an auto-radio button, the system
automatically selects the button and removes the selection from
the other auto-radio buttons in the group.

Creates a button that is sized automatically to ensure that the
contents fit. Note: The ex or ey parameter of WinCreateWindow
must be specified as -1 to implement the autosize feature.

Creates a push button containing a bit map instead of text. This
style can only be implemented with BS_PUSHBUTTON.

Creates a check box-a small square that has text displayed to
its right. When the user selects a check box, the check box
sends a WM_CONTROL message to the owner window. The
owner window should toggle the check box between selected
and unselected states.

Creates a push button that has a heavy black border. The user
can select this push buttonby pressing the spacebar. This style
is useful for letting the user quickly select the most likely set of
options in a dialog window. This style is valid only in
combination with the BS_PUSHBUTTON style or the
PUSHBUTTON statement in a resource-definition file.

Table 19-1 (Page 2 of 2). Button Styles

Style

BS_ICON

BS_MINIICON

BS_NOBORDER

BS_NOCURSORSELECT

BS_NOPOINTERFOCUS

BS_RADIOBUTTON

BS_SYSCOMMAND

BS_TEXT

BS_ USERBUTTON

Description.

Creates a push button that posts a WM_HELP message (instead
of a WM_COMMAND message) to its owner window when the
user selects the button. This style is valid only in combination
with the BS_PUSHBUTTON style or the PUSHBUTTON
statement in a resource-definition file.

Creates a push button containing an icon instead of text.

Creates a push button containing a mini-icon instead of text.

Creates a push button that has no border. This style is valid
only in combination with the BS_PUSHBUTTON style or the
PUSHBUTTON statement in a resource-definition file.

Creates an auto-radio button that will not be selected
automatically when the user moves the cursor to the button
using the cursor-movement keys. This style is valid only in
combination with the BS_AUTORADIOBUTTON style or the
AUTORADIOBUTTON statement in a resource-definition file.

Creates a radio button or check box that does not receive the
keyboard focus when the user selects it. This style is valid in
combination with the BS_AUTORADIOBUTTON,
BS_RADIOBUTTON, BS_3STATE, BS_AUT03STATE,
BS_AUTOCHECKBOX, and BS_CHECKBOX styles, or the
AUTORADIOBUTTON, RADIOBUTTON, AUTOCHECKBOX, or
CHECKBOX statements in a resource-definition file.

Creates a push button-a round-cornered rectangle with text
displayed inside it. When selected, the push button posts a
WM_COMMAND message to its owner window.

Creates a radio button-a small circle that has text displayed to
its right. Radio buttons usually are used in groups of related, but
exclusive, choices. When the user selects a radio button, the
button sends a WM_CONTROL message to its owner window.
The user should select the button and remove the selection from
the other radio buttons in the group.

Creates a button that posts a WM_SYSCOMMAND message
(instead of a WM_COMMAND message) to the owner window
when the user selects the button. This style is valid only in
combination with the BS_PUSHBUTTON style or the
PUSHBUTTON statement in a resource-definition file.

Creates a push button containing both text and icons/mini-icons.

Creates a user-defined button that sends a WM_CONTROL
message to the owner window when the button needs to be
drawn, highlighted, or disabled. A user-defined button also posts
WM_COMMAND messages to the owner window when the user
selects the button.

Chapter 19. Button Controls 19&5

Default Button Behavior
Following are the messages processed by the predefined button-control window class
(We_BUTTON). Each message is described in terms of how a button control responds to
that message.

Table 19-2 (Page 1 of 2). Messages Processed by the WC_BUTTON Class

Message Description

BM_CLlCK Sends a WM_BUTTON1 DOWN and
WM_BUTTON1 UP message to itself to
simulate a user button selection.

BM_QUERYCHECK Returns the checked state of the button.

BM_ QUERYCHECKINDEX Returns the O-based index to the selected
button in a group. Returns -1 if no button in
the group is selected or if the button receiving
the message is not a radio button or an
auto-radio button.

BM_QUERYHILITE Returns the highlighted state of the button.

BM_SETCHECK Sets the checked state of the button and
returns the previous checked state.

BM_SETDEFAULT Sets the default button state and redraws the
button.

BM_SETHILITE Sets the highlighted state of the button and
returns the previous highlighted state.

WM_BUTTON1 DBLCLK Highlights the button and sends a
BN_DBLCLICKED notification code when the
button-up message arrives.

WM_BUTTON1 DOWN Sets the button window so it can capture
mouse input.

WM_BUTTON1 UP If the button window is set to capture mouse
input, and if the mouse pointer is inside the
button window when the mouse button is
released, this message releases the mouse
and sends a notification message to the owner
window. If the button is a push button, the
push button control posts a WM_COMMAND
message; otherwise, the button control sends a
WM_CONTROL message with the
BN_CLlCKED notification code.

WM_CHAR Sets the button window so it can capture
mouse input when the spacebar is pressed;
releases the mouse when the spacebar is
released. Passes other key messages to the
default window procedure.

WM_CREATE Validates the requested button style and sets
the window text.

WM_DESTROY Frees the memory containing the window's text.

19-6 PM Basic Programming Guide

Table 19-2 (Page 2 of 2). Messages Processed by the WC_BUTTON Class

Message

WM_MATCHMNEMONIC

WM_QUERYDLGCODE

WM_QUERYWINDOWPARAMS

WM_SETFOCUS

WM_SETWINDOWPARAMS

Button Notification Messages

Description

Sent when an application changes the enabled
state of a window.

Returns TRUE if mp1 matches a mnemonic in
the control window's text.

Sets the default mouse pointer. If the button
has the mouse captured, the button's
highlighted state changes as the mouse pointer
moves in and out of the button boundary.

Draws the button according to its style and
current state.

Returns the DLGC_BUTTON code combined
with other DLGC _ codes that designate the
button's type.

Returns the requested window parameters.

Creates a cursor if the button-control window is
receiving the focus. Destroys the cursor if the
button-control window is losing the focus.

Sets the requested window parameters and
redraws the button, including the cursor, if the
button-control window has the focus.

A button, regardless of its style or type, posts a message to its owner when selected by the
user. The message posted by push buttons is ordinarily WM_COMMAND. However, for
buttons created with the BS_PUSHBUTTON or BS_USERBUTTON style, the message
posted can be changed to WM_HELP or WM_SYSCOMMAND by additionally specifying
either the BS_HELP or BS_SYSCOMMAND styles, respectively, when creating the button. A
button control that has a style other than BS_PUSHBUTTON or BS_USERBUTTON sends
WM_CONTROL messages to its owner when the user selects it.

When the user selects a push button using the mouse pointer, the system automatically
highlights the button. The button's window procedure tracks the movement of the pointer
until the user releases the button. If the user moves the pointer so that it is outside the
button boundary, the system turns off the highlight. The push button control does not post a
WM_COMMAND message until the user releases the pointer button, and then, only if the
button is released inside the push button boundary. When the owner window receives a
WM_COMMAND message from a push button, the low word of the first parameter in the
message contains the identifier of the button as specified either in the dialog template or in
the WinCreateWindow function when the button was created.

An application should avoid duplicating identifiers for menu items and button controls,
because both the items and the controls post identifiers to owner windows as
WM_COMMAND messages. However, the application can determine whether a
WM_COMMAND message came from a menu or a push button control by looking for the

Chapter 19. Button Controls 19-7

value CMDSRC_MENU or CMDSRC_PUSHBUTTON in the low word of the message's
second parameter.

When the user selects any button other than a push button, that button sends a
WM_CONTROL message. The application can examine SHORT1 FROMMP(mp1) in the
WM_CONTROL message to find the button identifier, and can examine
SHORT2FROMMP(mp1) to determine the notification code for the control message. The
notification code can be one of the following:

Table 19-3. Notification Code for Button Control Messages

Code Description

BN_CLlCKED The user selected the button.

BN _ DBLCLICKED The user double-clicked the button.

BN_PAINT A user-defined button needs to be drawn. Buttons with the
BS_USERBUTTON style send this notification code to instruct the owner
window to draw the button control. The second message parameter of
the WM_CONTROL message contains a pointer to a USERBUTTON
structure that contains the information necessary for drawing the button.

When the user selects a check box or radio button, the button control sends the
WM_CONTROL message with the BN_CLlCKED notification code to the owner window. In
response, the owner window should set the display state of the button by sending the
appropriate message back to the button.

An application need not respond to WM _CONTROL messages sent by an auto-check box or
an auto-radio button; the system automatically sets the states of these buttons.

Button States
An application can query and set the highlighted and checked states of its buttons by
sending messages to them. An application can obtain the handle of a button by calling
WinWindowFromlD, using the parent window handl.e and the identifier of the button. In the
case of a dialog window, the parent window would be the dialog window, and the identifier
would be the button identifier from the dialog template.

Button-control text is stored as window text. An application can set and retrieve this text by
using the WinSetWindowText and WinQueryWindowText functions. To set the size, position,
and visibility of a button control, an application uses the standard window functions.

Custom Buttons
An application can customize the appearance of a button by using the BS_USERBUTTON
style in combination with other button styles. The owner window receives WM _CONTROL
messages for these custom buttons whenever they must be drawn, highlighted, or disabled.

When a button must be drawn, the owner window receives a WM_CONTROL message with
the high word of the first parameter equal to BN_PAINT. The second parameter is a pointer

19-8 PM Basic Programming Guide

to a USERBUnON structure that contains information the application needs to draw the
button.

An application uses the hwnd member of the USERBUnON structure in a call to the
WinQueryWindowRect function to find the bounding rectangle for the button. The hps
member is used as a presentation space for any drawing. The fsState member contains
flags that tell an application how to draw the button: highlighted, unhighlighted, or disabled.
The fsStateOld member contains flags that describe the current highlighted, unhighlighted, or
disabled state of the button.

USing Button Controls
This section explains how to perform the following tasks:

• Create a dialog template for a button resource.
• Create a button for a client window.

An application creates a group by setting the WS_GROUP style bit for the first member of
the group.

USing Buttons in a Dialog Window
You can define dialog-window buttons as part of a dialog template in a resource-definition
file, as shown in the following Resource Compiler source-code fragment.

OLGTEMPLATE IOO_BUTTON
BEGIN

END

DIALOG "", 2, 10, 10, 235, 180, WS VISIBLE, FCF OLGBORDER
BEGIN --

AUTORADIOBUTTON "Radio-I", 10 RADI01, 15, 80, 45, 12, WS GROUP
AUTORADIOBUTTON "Radio-2", IO)AOI02, 15, 60, 45, 12 -
AUTORADIOBUTTON "Radio-3", 10 RAOI03, 15, 40, 45, 12
AUTORADIOBUTTON "Radio-4", IO)AOI04, 15, 20, 45. 12

PUSHBUTTON "Button 1",10 PUSH1, 20 100,50,14, WS GROUP
PUSHBUTTON "Button 2", ID-PUSH2, 75,100,50,14, WS-GROUP
PUSHBUTTON "Button 3", IO)USH3, 130, 100, 50, 14, W(GROUP

CHECKBOX "Check Box 1", 10 CHECK1, 150, 65, 65, 12, WS GROUP
CHECKBOX "no toggle", IO-CHECK2, 150, 40, 58, 12, WS-GROUP
AUTOCHECKBOX "Check Box 3", ID=CHECK3, 150, 20, 65,12, W(GROUP

OEFPUSH8UTTON "OK",
END

75, 26, 46, 20, WS_GROUP

Figure 19-6. Defining Dialog-Window Buttons in a Dialog Template

Each button in a dialog window has an identifier (for example, ID_RADI01) that allows an
application to identify the source of the WM_COMMAND and WM_CONTROL messages. An
application can use the identifier as the second argument of the WinWindowFromlD function
to retrieve the button-window handle.

Chapter 19. Button Controls 19-9

The dialog template also contains the text for each button. For push buttons, this text is
displayed in a rectangular box. If the text is too long to fit in the box, the text is clipped. For
radio buttons and check boxes, text is displayed to the right of the button. A user selects the
button by clicking either the button or the text itself.

The WS_GROUP style identifies the beginning of each new group of buttons. In the
preceding example, the four auto-radio buttons are in the same group, and each of the other
buttons is in its own group. The auto-radio buttons in the first group can be selected one at
a time only. An application must ensure that only one check box in a group is selected at a
time. The order in which items can be selected in the group can wrap around from the end
of the item list to its beginning.

Notice that the DEFPUSHBUTTON style in the preceding example has the identifier DID_OK.
It is customary to include an OK button with this identifier in most dialog windows to provide
a uniform user interface. The DEFPUSHBUTTON style draws a thick border around a button
and allows a user to select the button by pressing the spacebar.

The dialog-window procedure for a dialog window that contains buttons must respond to
WM_COMMAND and WM_CONTROL messages. A common strategy is to use auto-radio
buttons and auto-check boxes to let the user set a list of capabilities for a command, and,
then, let the user execute the command by choosing an OK push button. With this strategy,
the dialog-window procedure ignores all WM_CONTROL messages that come from
auto-radio buttons and auto-check boxes. When the dialog-window procedure receives a
WM _COMMAND message for the OK push button, the procedure should query the
auto-radio buttons and auto-check boxes to determine which options have been selected.

Using Buttons in a Client Window
An application can create a button control using an application client window as the owner.
The following code fragment shows how an application can use buttons in client windows:

#defi ne ID PBWINDOW 110
HWND hwndButton,hwndCl ient;

/* Create a button wi ndow. */
hwndButton = Wi nCreateWi nclow(hwndCl i eilt >

WC BUTTON,
"Test Button"
WS_VISIBLE I
BS PUSHBUTTON,
10~ 10,
70, 60,
hwndCl i ent,
HWND_TOP.
ID_PBWINDOW,
NULL,
NULL) ;

Figure 19-7. Creating a Button Control for a Client Window

Once created in the client window, the button control posts a WM_COMMAND message or
sends a WM_CONTROL message to the client-window procedure. This window procedure

19-10 PM Basic Programming G.uide

should examine the message identifier to determine which button posted or sent the
message.

An application that has client-window buttons can move and size the buttons when the client
window receives a WM_SIZE message. An application can move and size a window by
using the WinSetWindowPos function. An application can obtain a window handle for a
button control by calling the WinWindowFromlD function, specifying the handle of the parent
window and the window identifier for each button.

Creating Buttons with Icons and Icon/Text Combinations
The following styles generate buttons containing images or icons:

• BS-,CON

• BS_MINIICON

• BS BITMAP

The image or icon is activated by specifying the image ID in the button text string. For
example, to load an icon (#define ICON-,D 300) and display it with the button, the button
text string is set to "#300".

Where text is to be combined with an image, BS_TEXT is selected. To display an icon
(#define ICON-,D 300) with the words "My button", the button text string is set to "#300\tMy
button". Notice that "\t" is used to separate text from the image ID.

The following code example creates a customized button with text.

1/ presparm.c -- demonstrates presentation parameters
/I creates a bu.tton as a chil d wi ndow
1/ . and sets its text color

#deflne INCL WIN
#define INCL-GPI

···~ii1c1~de.<()s2:/l>
#include"string.h>
Hinel ude·· "presparm.N'
Ifinclude "migr'ate.h"

intma1n{i rit&rgci cbar *aigv[l) :

IE Inte~l1:al •• 1'unctlo)'l·ptotofypes

·~"TEXP~~YMy:ipdOWPr6C{HW"~ hwnd, MS6ID msg
.<;' ... , •.... ' ..•• ·.~MPARAMmpl. MPARAM rnp2);
·i·ntm~iri{intargc.c/lar *&rgv[]);

Figure 19-8 (Part 1 of 4). Creating a Customized Button with Text

Chapter 19. Button Controls 19-11

II global variables

HABhab;

i.nt main (fntargc. char *argv[)
{

HMQ hmq;
HWND hwndFrame;
HWND hwndCl i ent ;
QMSG qmsg;
liLONG fl Create;
hab '" WinIniti alize(0);
hmq = Wi nCreateMsgQueue (hab, 0);

1/ Anchor block handle

II Message queue handle
II .Frame wi ndowhandl e
II C1 i ent wi ndow handl e
II Message from message queue
II Window creation control flags

WinRegisterClass(hab, IIpresparm", MyWindowProc, 0L, 0);

fl Create = FCF _SYSMENU I FCF _SIZEBORDER I FCF _TITLEBAR I
FCF _MINMAX I FCF _SHELLPOSITION I FCF _TASKLIST;

hwndFrame = WinCreateStdWindow(HWND DESKTOP, WS VISIBLE, &flCreate,
"presparm", 1111, 0L, 0, ID_WINDOW~ &hwndClient);

while(WinGetMsg(hab, &qmsg. 0, 0, 0))
Wi nD; s patchMsg (hab. &qmsg);

WinDestroyWindow(hwndFrame);

Wi nOes t royMsgQueue (hmq);
WinTerminate(hab);
return 0;

Figure 19-8 (Part 2 of 4). Creating a Customized Button with Text

19-12 PM Basic Programming Guide

/ /
MRESULT EXPENTRY MyWi ndowProc(HWND hwnd, MSGID msg

, MPARAM mpl, MPARAM mp2)

HPS hps;
BTNCDATA btn;

typedef struct JORECOLORPARAM
{

ULONG id;
ULONG cb;

ULONG ulColor;
FORECOLORPARAM;

typedef struct JONTPARAM
{

ULONG id;
ULONG cb;
CHAR szFontNameSize[20];

FONTPARAM;

ULONG cb;
FORECOLORPARAM fcparam;
FONTPARAM fntparam;
pres;

/ / PS handle

/ / pres. params

/ / 1 ength
/ / foreground color
/ / font name & size

static HWND hwndButton;
stat; c POINTL pt;

/ / button wi ndow handl e
//windowsize

swi tch (msg)
(

case WM CLOSE:
WinPostMsg(hwnd, WM QUIT, 0L, 0L);
return ((MRESULT) 0-);

/ / set the foreground color to CLR RED in
!I the button I s presentati on parameters

pres. fcparam. i d = PP JOREGROUNDCOLORINDEX;
pres.fcparam.cb = sizeof (pres.fcparam.ulColor);

pres. fcparam.ulColor = CLR_RED;

Figure 19-8 (Part 3 of 4). Creating a Customized Button with Text

Chapter 19. Button Controls 19-13

}

~et1;hef~ntused bythebuttontd12 point· Courier
, • p'res .fntpClr~l1l.id"'PP';';FONTNAMESIZE;

pres .'fntpariim.cb=.' 2~;
. strcpy.(pres . .Jntparam.szFootNameSize, "24~~elvoi).;

pres; cb=sizeof (pres .fcparam '). +S1 zE!9.frpres;fntpar~rn)
hwndButton. ",' WinCreateWindow (. hwnd II parent .

• WC .. ;.BUTTON I I .class
• "#30e\ tNumber Oneu I I wtndowtext
• BS]USHBUnON I

BS.JCONI BS TEXT
• 10e. 100
• 400, 4e0
• hwnd
• HWND_TOP
• 255
• NULL
, &pres);

(hwndButton, hab);
return (MRESULT) FALSE;

case .WtIi SIZE:
pt.x = (LONG) SHORTlFROMMP (mp2);
pt.y = (LONG) SHORT2FROMMP (mp2 h

II style
II x, y
Ilcx,Cy
'II owner
I I sibl ing
I I 10
I I ,ctrl data

/I pres • params
I I pmassert

Wi nSetWi ndowPos (hwndButton • HWND TOP
• (SHORT)pt.x I 3 -
• (SHORT)pt.y I 2
• (SHORT)pt.x I 2
, (SHORT)pt.yl 3
'. SWP _SIZE I SWP _MOVE

return (MRESULT)e;

case WM_PAINT:
hps = Wi nBegi nPai nt (hwnd , 0 , NULL);
Gpi Erase (hps);
WinEndPaint (hps);
return {(MRESUL T) 0);

default:
return

return (Win[)efWindowProc(hwnd. msg, mpt. mp2));

Figure 19-8 (Part 4 of 4). Creating a Customized Button with Text

19-14 PM Basic Programming Guide

Related Functions
This section covers the functions that are related to Button Controls.

WinQueryWindowText
This function copies window text into a buffer.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

LONG WinQueryWindowText (HWND hwnd, LONG ILength, PCH pchBuffer)

Parameters
hwnd (HWND) - input

Window handle.

ILength (LONG) - input
Length of pchBuffer.

pchBuffer (PC H) - output
Window text.

Returns
IRetLen (LONG) - returns

Length of returned text including the null terminator.

Chapter 19. Button Controls 19-15

Related Messages
This section covers the messages that are related to Button Controls.

8M_CLICK
An application sends this message to cause the effect of the operator clicking a push ,button.

Parameters
param1

usUp (USHORT)

param2

Up and down indicator.

TRUE
FALSE

Perform the default upclick action
Perform the default downclick action.

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

19-16 PM Basic Programming Guide

8M QUERYCHECK
This message returns the checked state of a button control.

Parameters
param1

ulReserved (ULONG)
ReseNed value, should be o.

param2

ulReserved (ULONG)
ReseNed value, should be o.

Returns
usCheck (USHORT)

Check indicator.

o The button control is in unchecked state.
1 The button control is in checked state.
2 The button control is in indeterminate state.

Chapter 19. Button Controls 19-17

BM_QUERYCHECKINDEX
This message returns the zero-based index of a checked radio button.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be o.

param2

ulReserved (ULONG)
Reserved value, should be o.

Returns
slndex (SHORT)

Radio-button index.

-1 No radio button of the group is checked, or this button control does not have the
style BS_RADIOBUTTON or BS_AUTORADIOBUTTON.

Other Zero-based index of the checked radio button of the group.

19-18 PM Basic Programming Guide

BM_QUERYHILITE
This message returns the highlighting state of a button control.

Parameters
param1

ulReserved (UlONG)
Reserved value, should be o.

param2

ulReserved (UlONG)
Reserved value, should be o.

Returns
rc (BOOl)

Highlight indicator.

TRUE
FALSE

The button control is displayed in highlighted state.
The button control is displayed in unhighlighted state.

Chapter 19. Button Controls 19-19

BM_SETCHECK
This message sets the checked state of a button control.

Parameters
param1

uscheck (USHORT)
Check state.

param2

o Display the button control in the unchecked state
Display the button control in the checked state

2 Display a 3-state button control in the indeterminate state.

ulReserved (ULONG)
Reserved value, should be O.

Returns
usoldstate (USHORT)

Old check state of the button control.

o Unchecked
1 Checked
2 Indeterminate.

19-20 PM Basic Programming Guide

8M SETDEFAULT
This message sets the default state of a button control.

Parameters
param1

usdefault (USHORT)
Default state.

TRUE
FALSE

Display the button control in the default state
Display the button control in the nondefault state.

param2

ulReserved (UlONG)
Reserved value, should be o.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful operation
Error occurred.

Chapter 19. Button Controls 19-21

BM SETHILITE
This message sets the highlight state of a button control.

Param~ters
param1

ushilite (USHORT)
Highlight indicator.

param2

TRUE
FALSE

Display the button control in the highlighted state
Display the button control in the unhighlighted state.

ulReserved (UlONG)
Reserved value, should be O.

Returns
foldstate (BOOl)

Old highlight state.

TRUE
FALSE

The button control was in highlighted state
The button control was in unhighlighted state.

19-22 PM Basic Programming Guide

WM_MATCHMNEMONIC
This message is sent by the dialog box to a control window to determine whether a typed
character matches a mnemonic in its window text.

Parameters
param1

usmatch (USHORT)
Match character.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
rc (BOOL)

Match indicator.

TRUE Mnemonic found
FALSE Mnemonic not found, or an error occurred.

Chapter 19. Button Controls 19-23

Related Data Structures
This section covers the data structures that are related to Button Controls.

BTNCDATA
Button-control-data structure.

Syntax

typedefstruct _BTNCDATA {
USHORT cb;
USHORT fsCheckState;
USHORT fsHiliteState~
LHANDLE hlmage;
} BTNCDATA;

typedef BTNCDATA *PBTNCDATA;

Fields
cb (USHORT)

Length of the control data in bytes.

This is the length of the control data for a button control.

fsCheckState (USHORT)
Check state of button.

This is the same value as returned by the BM_QUERYCHECK message and passed to
the BM_SETCHECK message.

fsHiliteState (USHORT)
Highlighting state of button.

This is the same value as returned by the BM_QUERYHILITE message and passed to
the BM_SETHILITE message.

hlmage (LHANDLE)
Resource handle for icon or bit map.

19-24 PM Basic Programming Guide

USERBunON
User-button data structure.

Syntax

typedef struct USERBUTTON {
HWND hwnd;
HPS hps;
ULONG fsState;
ULONG fsStateOld;
} USERBUTTON;

typedef USERBUTTON *PUSERBUTTON;

Fields
hwnd (HWND)

Window handle.

hps (HPS)
Presentation-space handle.

fsState (ULONG)
New state of user button.

fsStateOld (ULONG)
Old state of user button.

Chapter 19. Button Controls 19-25

Summary
Following are the OS/2 functions, messages, and structures used with button controls:

Table 19-4. Button-Control Functions

Function Name Description

WinCreateWindow Creates a new window.

WinOueryWindowText Copies window text into a buffer.

WinSetWindowText Sets the window text for the specified window.

WinWin(:lowFromlD Returns the handle of the child window with the specified
identify.

Table 19-5. Messages Received by a Button Control

Message Description

BM_CLlCK Application sends this message to cause the effect of the
user clicking a push button.

BM_OUERYCHECK Returns the zero-based index of a checked radio button.

BM_OUERYCHECKINDEX Returns the zero-based index of a checked radio button.

BM_OUERYHILITE Returns the highlighting state of a button control.

BM_SETCHECK Sets the checked state of a button control.

BM_SETDEFAULT Sets the default state of a button control.

BM_SETHILITE Sets the highlight state of a button control.

19-26 PM Basic Programming Guide

Table 19-6. Messages Generated by a Button Control

Message

WM_CONTROL

WM_ CONTROLPOINTER

WM_ENABLE

WM_HELP

WM_MATCHMNEMONIC

WM_QUERYCONVERTPOS

WM_QUERYWINDOWPARAMS

WM_SETWINDOWPARAMS

WM_SYSCOMMAND

Description

The button control generates this message when a push
button of style BS_PUSHBUTTON is pressed or when it
receives a BM_CLlCK message. The button control posts
the message to the queue of the control owner.

The button control generates this message and sends it
to its owner when:

• Its style is not BS_PUSHBUTTON and the button is
pressed.

• It receives a BM _CLICK message.
• Its style is BS _PUSHBUTTON and the button is

clicked or double clicked.

Sent to a control's owner window when the pointer moves
over the control window, allowing the owner to set the
pointer.

Sets the enable state of a window.

The button control generates this message and posts it to
the queue of its owner, if it has the style of BS_HELP and
a pushbutton is pressed, or when it receives a BM_CLlCK
message.

Sent by the dialog box to a control window to determine
whether a typed character matches a mnemonic in its
window text.

Sent by an application to determine whether it is
appropriate to begin conversion of DBCS characters.

Occurs when an application queries the button control
window procedure window parameters.

Occurs when an application sets or changes the button
control window procedure window parameters.

If the button control is specified with a style of
BS_SYSCOMMAND but not with BS_HELP, the button
control generates this message and posts it to the queue
of its owner when a pushbutton is pressed, or when it
receives a BM_ CLICK message.

Table 19-7. Button-Control Structures

Structure Name Description

BTNCDATA Button-control data structure.

USERBUTTON User-button structure.

Chapter 19. Button Controls 19-27

19-28 PM Basic Programming Guide

Chapter 20. Entry-Field Controls

An entry field is a control window that enables a user to view and edit a single line of text.
This chapter describes how to create and use entry-field controls in your PM applications.

About Entry Fields
An entry field provides the text-editing capabilities of a simple text editor and is useful
whenever an application requires a short line of text from the user as illustrated in
Figure 20-1.

Read-only
field

Figure 20-1. Example of Entry Fields

Entry
fields

If the application requires more sophisticated text-editing capabilities and multiple lines of text
from the user, the application can use a multiple-line entry (MLE) field. See Presentation
Manager Programming Guide - Advanced Topics for more information about MLE controls.

Both the user and the application can edit text in an entry field. Applications typically use
entry fields in dialog windows, although they can be used in non-dialog windows as well.

An application creates an entry field by specifying either the WC_ENTRYFIELD window class
in the WinCreateWindow function or the ENTRYFIELD statement in a resource-definition file.

Entry-Field Styles
An entry field has a style that determines how it appears and behaves. An application
specifies the style in either the WinCreateWindow function or the ENTRYFIELD statement in
a resource-definition file. An application can specify a combination of the following styles for
an entry field.

© Copyright IBM Corp. 1994 20-1

Table 20-1. Entry-Field Styles

Style

ES_AUTOSCROLL

ES_AUTOSIZE

ES_CENTER

ES_DBCS

ES_LEFT

ES_MARGIN

ES_READONLY

ES_RIGHT

ES_SBCS

Description

Allows the entry-field text to contain a mixture of double-byte and
single-byte characters.

Automatically scrolls text horizontally to show the insertion point.

Automatically sets the size of the entry field, based on the width of the
field's text string and the metrics of the current system font. This style
can set the width, height, or both-whichever has a value of -1 in the
WinCreateWindow function or resource-definition file. This style affects
only the initial size of the entry field; it does not adjust the size as the font
or text~string width changes.

Automatically moves the cursor to the next control window when the user
enters the maximum number of characters.

Centers text within the entry field.

Specifies that the entry-field text consist of double-byte characters only.

Left-aligns text within the entry field.

Draws a border around the entry field. The border is 1/2-character wide
and 1/4-character high. Without this style, the application draws no
border around the entry field. The width of the entry-field rectangle is
increased on all sides by the width of this margin. After an entry field
with the ES_MARGIN style is created, the WinQueryWindowRect function
returns a larger rectangle that includes this margin and whose origin,
therefore, is different from the origin specified when the entry field was
created. If an application does not adjust for this size difference when
moving or sizing an entry field, the entry field becomes larger after each
moving and sizing operation.

Allows the entry-field text to contain a mixture of single-byte and
double-byte characters. Unlike the ES_ANY style, this style lets ASCII
DBCS data be converted to EBCDIC DBCS data without causing an
overflow condition.

Prevents the user from entering or editing text in the entry field.

Right-aligns text within the entry field.

Specifies that the entry-field text must consist of single-byte characters
only.

Displays each character as an asterisk (*). This style is useful when
obtaining a password from the user.

Entry-Field Notification Codes
An entry field is always owned by another window. A WM_CONTROL notification message
is sent to the owner whenever an event occurs in the entry field. This message contains a
notification code that specifies the exact nature of the event. An entry field can send the
notification codes described in the following table to its owner.

20-2 PM Basic Programming Guide

Table 20-2. Notification of Entry-Field Events

Notification Code Description

EN_CHANGE Indicates that the contents of an entry field have changed.

EN_INSERTMODETOGGLE Indicates that the insert mode has been toggled ..

EN_KILLFOCUS Indicates that an entry field has lost the keyboard focus.

EN_MEMERROR Indicates that an entry field cannot allocate enough
memory to perform the requested operation, such as
extending the text limit.

EN_OVERFLOW Indicates that either the user or the application attempted
to exceed the text limit.

EN_SCROLL Indicates that the text in an entry field is about to scroll.

EN_SETFOCUS Indicates that an entry field received the keyboard focus.

An application typically ignores notification messages from an entry field, thereby allowing
default text editing to occur. For more specialized uses, an application can use notification
messages to filter input. For example, if an entry field is intended for numbers only, an
application can use the EN_CHANGE notification code to check the contents of the entry
field each time the user enters a non-numeric character.

As an alternative, an application can prevent inappropriate characters from reaching an entry
field by using EN_SETFOCUS and EN_KILLFOCUS, in filter code, placed in the main
message loop. Whenever the entry field has the keyboard focus, the filter code can intercept
and filter WM_CHAR messages before the WinDispatchMsg function passes them to the
entry field. An application also can respond to certain keystrokes, such as the Enter key, as
long as the entry-field control has the keyboard focus.

Default Entry-Field Behavior
The following table lists and describes all the messages specifically handled by the
predefined entry-field control-window class (WC_ENTRYFIELD).

Table 20-3 (Page 1 of 3). Messages Handled by WC_ENTRYFIELD Class

Message Description

EM_CLEAR Deletes the current text selection from the control window.

EM_COPY Copies the current text selection to the system clipboard,
in CF _TEXT format.

EM_CUT Copies the current text selection to the system clipboard,
in CF _TEXT format, and deletes the selection from the
control window.

EM_PASTE Copies the current contents of the system clipboard that
have CF _TEXT format, replacing the current text selection
in the control window.

EM_QUERYCHANGED Returns TRUE if the text has changed since the last
EM_QUERYCHANGED message.

Chapter 20. Entry-Field Controls 20-3

Table 20-3 (Page 2 of 3). Messages Handled by WC_ENTRYFIELD Class

Message Description

EM_ QUERYFIRSTCHAR Returns the offset to the first character visible at the left
edge of the control window.

EM_QUERYREADONLY Determines whether the entry field is in the read-only
state.

EM_QUERYSEL Returns a long word that contains the offsets for the first
and last characters of the current selection in the control
window.

EM_SETFIRSTCHAR Scrolls the text so that the character at the specified
offset is the first character visible at the left edge of the
control window.

EM_SETINSERTMODE Toggles the text-entry mode between insert and
overstrike.

EM_SETREADONLY Sets the entry field to the read-only state.

EM_SETSEL Sets the current selection to the specified character
offsets.

EM~SETTEXTLIMIT Allocates memory from the control heap for the specified
maximum number of characters, returning TRUE if it is
successful and FALSE if it is not. Failure causes the
entry field to send a WM _CONTROL message with the
EN MEMERROR notification code to the owner window.

WM_ADJUSTWINDOWPOS Changes the size of the control rectangle if the control
has the ES_MARGIN style.

WM_BUTTON1 DBLCLK Occurs when the user presses mouse button 1 twice.

WM_BUTTON1 DOWN Sets the mouse capture and keyboard focus to the entry
field, and prepares to track the movement of the mouse
during WM _ MOUSEMOVE messages.

WM_BUTTON1 UP Releases the mouse.

WM_BUTTON2DOWN Returns TRUE to prevent this message from being
processed further.

WM_BUTTON3DOWN Returns TRUE to prevent this message from being
processed further.

WM_CHAR Handles text entry and other keyboard input events.

WM_CREATE Validates the requested style and sets the window text.

WM_DESTROY Frees the memory used for the window text.

WM_ENABLE Sent when an application changes the enabled state of a
window.

WM_MOUSEMOVE If the mouse button is down, the entry field tracks the text
selection. If the mouse button is up, the entry field sets
the mouse pointer to the default arrow shape.

WM_PAINT Draws the entry field and text.

WM_ QUERYDLGCODE Returns the predefined DLGC_ENTRYFIELD constant.

20-4 PM Basic Programming Guide

Table 20-3 (Page 3 of 3). Messages Handled by WC_ENTRYFIELD Class

Message Description

WM_QUERYWINDOWPARAMS Returns the requested window parameters.

WM_SETFOCUS If the entry field is gaining the focus, it creates a cursor
and sends the owner window a WM _CONTROL message
with the EN_SETFOCUS notification code. If the entry
field is losing the focus, it destroys the current cursor and
sends the owner window a WM_CONTROL message with
the EN_KILLFOCUS notification code.

WM_SETSELECTION Toggles the current selection status.

WM_SETWINDOWPARAMS Sets the specified window parameters, redraws the entry
field, and sends the owner window a WM_CONTROL
message with the EN_CHANGE notification code.

WM_TIMER Blinks the insertion point if the entry field has the focus.
The entry field scrolls the text, if necessary, while
extending the selection to text that becomes visible in the
window.

Entry-Field Text Editing
The user can insert (type) text or numeric values in an entry field when that entry field has
the keyboard focus. An application can insert text by using the WinSetWindowText function.
An application can insert numeric values by using the WinSetDlgltemShort function. The text
or numeric value is inserted into the entry field at the cursor position.

The entry field's entry mode, either insert or overstrike, determines what happens when the
user enters text. The user sets the entry mode by pressing the Insert key; the entry mode
toggles each time the Insert key is pressed. The application can set the entry mode by
sending the EM_SETINSERTMODE message to the entry field.

The cursor position, identified by a blinking bar, is specified by a character offset relative to
the beginning of the text. The user can set the cursor position by using the mouse or the
Arrow keys. An application can set the cursor position by using the EM_SETSEL message.
This message directs the entry field to move the blinking bar to the given character position.

The EM_SETSEL message also sets the selection. The selection is one or more characters
of text on which the entry field carries out an operation, such as deleting or copying to the
clipboard. The user selects text by pressing the Shift key while moving the cursor, or by
pressing mouse button 1 while. moving the mouse. An application selects text by using the
EM_SETSEL message to specify the cursor position and the anchor point. The selection
includes all text between the cursor position and the anchor point. If the cursor position and
anchor point are equal, there is no selection. An application can retrieve the selection
(cursor position and anchor point) by using the EM_QUERYSEL message.

The user can delete characters, one at a time, by pressing the Delete key or the Backspace
key. The Delete key deletes the character to the right of the cursor; the Backspace key
deletes the character to the left of the cursor. The user also can delete a group of

Chapter 20. Entry-Field Controls 20-5

characters by selecting them and pressing the Delete key. An application can delete
selected text by using the EM_CLEAR message.

An application can use the EM_QUERYCHANGED message to determine whether the
contents of an entry field have changed.

An application can prevent the user from editing an entry field by setting the ES READONL Y
style in the WinCreateWindow function or in the ENTRYFIELD statement in the -
resource-definition file. The application also can set and query the read-only state by using
the EM_SETREADONLY and ES_QUERYREADONLY messages.

If text extends beyond the left or right edges of an entry field, the user can scroll the text by
using the Arrow keys. An application can scroll the text by using the EM_SETFIRSTCHAR
message to specify the first character visible at the left edge of the entry field. For scrolling
to occur, the entry field must have the ES_AUTOSCROLL style. An application can use the
EM_QUERYFIRSTCHAR message to obtain the first character that is currently visible.

Entry-Field Control Copy and Paste Operations
The user can cut, copy, and paste text in an entry field by using the Shift+Delete and
Ctrl+lnsert key combinations. An application, either by itself or in response to the user, can
cut, copy, and paste text by using the EM_CUT, EM_COPY, and EM_PASTE messages. An
application can use the ES_CUT and EM_COPY messages to copy the selected text to the
clipboard. The EM_CUT message also deletes the text (EM_COPY does not). The
EM_PASTE message copies the text on the clipboard to the current position in the entry
field, replacing any existing text with the copied text. An application can delete the selected
text, without copying it to the clipboard, by using the EM_CLEAR message.

Entry-Field Text Retrieval
An application can retrieve selected text from an entry field by calling WinQueryWindowText
and then sending an EM_QUERYSEL message to retrieve the offsets to the first and last
characters of the text selection. These offsets are used to retrieve selected text.

An application can retrieve numeric values by calling WinQueryDlgltemShort, passing the
entry-field identifier and the handle of the owner window. WinQueryDlgltemShort converts
the entry-field text to a signed or unsigned integer and returns the value in a specified
variable. The application can use the WinWindowFromlD function to retrieve the handle of
the control window. The entry-field identifier is specified in the dialog template in the
application's resource-definition file.

20-6 PM Basic Programming Guide

Using Entry-Field Controls
This section explains how to perform the following tasks:

• Create an entry field in a dialog or client window.
• Change the default size of the entry field.

Creating an Entry Field in a Dialog Window
A dialog window usually serves as the parent and owner of an entry field. The dialog
window often includes a button that indicates whether the user wants to carry out an
operation. When the user selects the button, the application queries the contents of the
entry field and proceeds with the operation.

The definition of an entry field in an application's resource-definition file sets the initial text,
window identifier, size, position, and style of the entry field. The following example shows
how to define an entry field as part of a dialog template:

DLGTEMPLATE IOD SAMPLE
BEGIN -

DIALOG "Sample Dialog", ID_DLG. 7. 7, 253, 145, FS-,DLGBORDER,0
BEGIN

END
END

DEFPUSHBUTTON "-OK". DID OK. 8, 151.50. 23. WS GROUP
ENTRYFlELD "Here is some-text". ID ENTFLD.42. 46, 68,15,

ES_MARGIN I ES_AUTOSCROLL -

Creating an Entry Field in a Client Window
To create an entry field in a non-dialog window, an application calls WinCreateWindow with
the window class WC_ENTRYFIELD. The entry field is owned by an application's client
window, whose window procedure receives notification messages from the entry field.

Chapter 20. Entry-Field Controls 20-7

The following code fragment shows how to create an entry field in a client window:

Figure 20-2. Code for Creating an Entry Field in a Client Window

Changing the Default Size of an Entry Field
The default text limit of an entry field is 32 characters. An application can set a non-default
size when creating an entry field by setting the cchEditLimit member of an ENTRYFDAT A
structure and supplying a pointer to the structure as the pCt/Data parameter to
WinCreateWindow.

20-8 PM Basic Programming Guide

The following code fragment creates an entry field with a text limit of 12 characters:

HW~O· hwndEntryFi eld2;
HWNOhwndCl fent;
ENTRYFDATA efd;
LONG xPos '" 50, yPos = 50;
LONG xWidth = -1, yHeight = -1;

1* must lle -1 for
ES_AUTOSIZE *1

1* InU; al ite the ENTRYFDATA
structure. *1

efd.cb =sizeof(ENTRYFDATA);
efd.cchEditLimit = 12;
efd. ichMinSel = 0;
efd. ichMaxSel '= 0;

1* Create the entry
field. *1

hwndEntryFi el d2 = Wi nCreateWi ndow(
hwndCli ent. 1 * Parent-wi ndow hand] e *1
we ENTRYFIELD. 1* Window class *1 "projects.xls". 1* No initial text *1
WS_VISIBLE.I 1* Visible When. created *1
ES MARGIN 1* Create a border~ */
E(AUTOSIZE. 1* System sets the size *1
xPos. yPos. 1* x and ypositions */
xWidth. yHeight. !*Width andtrei;ght .. *!
hwndCli ent. 1* Owner-wi ndownandle*/
HWNO;...TOP. 1* Z-orderpos1ti on * 1
e. !*Window identifier */
&efd. 1* Control data *1
NULl); 1* No pres. parameters *1

Figure 20-3. Code for Creating Entry Field with 12-Character Text Limit

To expand or reduce the text limit after creating the entry field, an application can send an
EM_SETTEXTLIMIT message specifying a new maximum text limit for the entry field. The
following code fragment increases to 20 characters the text limit of the entry field created in
the previous example:

WinSendMsg(hwndEntryField2,EMSETTEXTLIMIT •
(MPARAM)20 •.. (MPARAM) 0): -

Figure 20-4. Code for Creating Entry Field with 20-Character Text Limit

Retrieving Text From an Entry Field
An application can use the WinQueryWindowTextLength and WinQueryWindowText functions
to retrieve the text from an entry field. WinQueryWindowTextLength returns the length of the
text; WinQueryWindowText copies the window text to a buffer.

Chapter 20. Entry-Field Controls 20-9

Typically, an application needs to retrieve the text from an entry field only if the user changes
the text. An entry field sends an EN_CHANGE notification code in the low word of the first
message parameter of the WM_CONTROL message whenever the text changes. The
following code fragment sets a flag when it receives the EN_CHANGE code, checksthe flag
during the WM_COMMAND message and, if it is set, retrieves the text of the entry field:

Figure 20-5. Code for Flagging a Text Change in an Entry Field

20-10 PM Basic Programming Guide

Related Functions
This section covers the functions that are related to Entry Field Controls.

WinQueryWindowTextLength
This call returns the length of the window text, excluding any null termination character.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN. INCL_PM. */

#include <os2.h>

LONG WinQueryWindowTextLength (HWND hwnd)

Parameters
hwnd (HWND) - input

Window handle.

Returns
IRetLen (LONG) - returns

Length of the window text.

Chapter 20. Entry-Field Controls 20-11

Related Messages
This section covers the messages that are related to Entry Field Controls.

EM_CLEAR
This message deletes the text that forms the current selection.

Parameters
param1

ulReserve (UlONG)
Reserved value, should be o.

param2

ulReserve (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

20-12 PM Basic Programming Guide

EM_COPY
This message copies the current selection to the clipboard.

Parameters
param1

ulReserved (UlONG)
Reserved value, should be O.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Chapter 20. Entry-Field Controls 20-13

EM_CUT
This message copies the text that forms the current selection to the clipboard, and then
deletes it from the entry field control.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
rc (BOOL)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

20-14 PM Basic Programming Guide

EM_PASTE
This message replaces the text that forms the current selection with text from the clipboard.

Parameters
param1

ulReserved (UlONG)
Reserved value, should be O.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

For example, if the text to be inserted does not fit in the entry field control
without overflowing the text limit set by the EM_SETIEXTLIMIT message, in
which instance no text is inserted.

Chapter 20. Entry-Field Controls 20-15

EM_QUERYCHANGED
This message enquires if the text of the entry field control has been changed since the last
enquiry.

Parameters
param,1

ulReserved (UlONG)
ReseNed value, should be o.

param2

ulReserved (UlONG)
ReseNed value, should be o.

Returns
rc (BOOl)

Changed indicator.

TRUE The text in the entry field control has been changed since the last time it
received this message or a WM_QUERYWINDOWPARAMS message.

FALSE All other situations.

20-16 PM Basic Programming Guide

EM_QUERYFIRSTCHAR
This message returns the zero-based offset of the first character visible at the left edge of an
entry-field control.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
sOffset (SHORT)

Zero-based offset.

Chapter 20. Entry-Field Controls 20-17

EM_QUERYREADONLY
This message returns the read only state of an entry field control.

Parameters
param1

ulReserved (UlONG)
Reserved value, should be O.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Read only state indicator.

TRUE Read only state is enabled.
FALSE Read only state is disabled.

20-18 PM Basic Programming Guide

EM_QUERYSEL
This message gets the zero-based offsets of the bounds of the text that forms the current
selection.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ReturnCode

sMinSel (SHORT)
Offset of the first character in the selection.

sMaxSel (SHORT)
Offset of the first character after the selection.

Chapter 20. Entry-Field Controls 20-19

EM_SETFIRSTCHAR
This message specifies the offset of the character to be displayed in the first position of the
entry field control.

Parameters
param1

sOffset (SHORT)
Zero-based offset of the first character to be displayed.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred. For example, because sOffset is not valid.

20-20 PM Basic Programming Guide

EM_SETINSERTMODE
This message sets the insert mode of an entry field.

Parameters
param1

uslnsert (USHORT)
Insert mode indicator.

param2

TRUE
FALSE

Enable insert mode.
Enable overtype mode.

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Previous insert mode indicator.

TRUE
FALSE

Insert mode was previously enabled.
Overtype mode was previously enabled.

Chapter 20. Entry-Field Controls 20-21

EM SETREADONL Y
This message sets the read only state of an entry field control.

Parameters
param1

usReadOnly (USHORT)
Read only state indicator.

TRUE
FALSE

Enable read only state
Disable read only state.

param2

ulReserved (UlONG)
Reserved value, should be o.

Returns
rc (BOOl)

Previous read only state indicator.

TRUE
FALSE

Read only state was previously enabled.
Read only state was previously disabled.

20-22 PM Basic Programming Guide

EM SETSEL
This message sets the zero-based offsets of the bounds of the text that forms the current
selection.

Parameters
param1

usminsel (USHORT)
Offset of the first character in the selection.

usmaxsel (USHORT)
Offset of the first character after the selection.

param2

ulReserved (UlONG)
Reserved value, should be o.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Chapter 20. Entry-Field Controls 20-23

EM_SETTEXTLIMIT
This message sets the maximum number of bytes that an entry field control can contain.

Parameters
param1

sTextLimit (SHORT)
Maximum number of characters in the entry field control.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred. For example, because not enough storage can be allocated.

20-24 PM Basic Programming Guide

WM_CONTROL (in Entry Fields)
For the cause of this message, see "WM_CONTROL" on page 16-5.

Parameters
param1

id (USHORT)
Control window identity.

usnotifycode (USHORT)
Notify code.

param2

EN_CHANGE The content of the entry field control has changed, and the
change has been displayed on the screen.

EN_KILLFOCUS The entry field control is losing the focus.

EN MEMERROR The entry field control cannot allocate the storage necessary to
accommodate window text of the length implied by the
EM _ SETTEXTLIMIT mess~ge.

EN OVERFLOW The entry field control cannot insert more text than the current
text limit. The text limit may be changed with the
EM_SETTEXTLIMIT message.

If the recipient of this message returns TRUE, then the entry
field control retries the operation, otherwise it terminates the
operation.

EN_SCROLL The entry field control is about to scroll horizontally. This can
happen in these circumstances:

• The application has issued a WinScroliWindow call
• The content of the entry field control has changed
• The caret has moved
• The entry field control must scroll to show the caret

position.

EN_SETFOCUS The entry field control is receiving the focus.

hwndcontrolspec (HWND)
Entry field control window handle.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Chapter 20. Entry-Field Controls 20-25

Related Data Structures
This section covers the data structures that are related to Entry Field Controls.

ENTRYFDATA
Entry-field control data structure.

Syntax

typedef struct _ENTRYFDATA {
USHORT cb;
USHORT cchEditLimit;
USHORT ichMinSel;
USHORT ichMaxSel;

} ENTRY.FDATA;

typedef ENTRYFDATA *PENTRYFDATA;

Fields
cb (USHORT)

Length of control data in bytes.

The length of the control data for an entry field control.

cchEditLimit (USHORT)
Edit limit.

This is the maximum number of characters that can be entered into the entry field
control.

If the operator tries to enter more text into an entry field control than is specified by the
text limit set by the EM_SETTEXTLIMIT message, the entry field control indicates the
error by sounding the alarm and does not accept the characters.

ichMinSel (USHORT)
Minimum selection.

ichMaxSel (USHORT)
Maximum selection.

The ichMinSel and ichMaxSel parameters identify the current selection within the entry
field control. Characters within the text with byte offsets less than the ichMaxSel
parameter and greater than or equal to the ichMinSel parameter are the current
selection. The cursor is positioned immediately before the character identified by the
ichMaxSel parameter.

If the ichMinSel parameter is equal to the ichMaxSel parameter, the current selection
becomes the insertion point.

20-26 PM Basic Programming Guide

If the ichMinSel parameter is equal to 0 and the ichMaxSel is greater than or equal to
text limit set by the EM_SETTEXTLIMIT message, the entire text is selected.

Chapter 20. Entry-Field Controls 20-27

Summary
Following are the OS/2 functions, messages, and data structures used with entry-field
controls.

Table 20-4. Entry-Field Functions

Function Name Description

WinQueryDlgltemShort Converts the text of a dialog item into an integer value.

WinQueryWindowText Copies window text into a buffer.

WinQueryWindowTextLength Returns the length of the window text, excluding any
NULL termination character.

WinSetDlgltemShort Converts an integer value into the text of a dialog item.

WinSetWindowText Sets the window text for a specified window.

Table 20-5. Messages Received by an Entry Field

Message

EM_CLEAR

EM_COPY

EM_CUT

EM_QUERYCHANGED

EM_ QUERYFIRSTCHAR

EM_QUERYREADONLY

EM_QUERYSEL

EM_SETFIRSTCHAR

EM_SETINSERTMODE

EM_SETREADONLY

EM_SETSEL

EM_SETTEXTLIMIT

20-28 PM Basic Programming Guide

Description

Deletes the text that forms the current selection.

Copies the current selection to the clipboard.

Copies the text that forms the current selection to the
clipboard, then deletes it from the entry field control.

Replaces the text that forms the current selection with text
from the clipboard.

Queries whether the text of the entry field control has
been changed since the last inquiry.

Returns the zero-based offset of the first character
displayed in the entry field control.

Returns the read-only state of an entry field control.

Gets the zero-based offsets of the bounds of the text that
forms the current selection.

Specifies the offset of the character to be displayed in the
first position of the entry field control.

Sets the insert mode of an entry field.

Sets the read-only state of an entry field control.

Sets the zero-based offsets of the bounds of the text that
forms the current selection.

Sets the maximum number of bytes that an entry field
control can contain.

Table 20-6. Message Generated by an Entry Field

Message Description

WM_CHAR Occurs when the user presses a key.

WM_CONTROL Occurs when a control has a significant event to notify to
its owner.

WM_QUERYCONVERTPOS Sent by an application to determine whether it is
appropriate to begin conversion of DSCS characters.

WM_QUERYWINDOWPARAMS Occurs when an application queries the entry field control
window parameters.

WM_SETWINDOWPARAMS Occurs when an application sets or changes the entry
field control window parameters.

Table 20-7. Entry-Field Structure

Structure Name Description

ENTRYFDATA Entry-field data structure

Chapter 20. Entry-Field Controls 20-29

20-30 PM Basic Programming Guide

Chapter 21. List-Box Controls

A list box is a control window that displays several text items at a time, one or more of which
can be selected by the user. This chapter explains how to create and use list-box controls in
PM applications.

About List Boxes
An application uses a list box when it requires a list of selectable fields that is too large for
the display area or a list of choices that can change dynamically. Each list item contains a
text string and a handle. Usually, the text string is displayed in the list-box window; but the
handle is available to the application to reference other data associated with each of the
items in the list.

A list box always is owned by another window that receives messages from the list box when
events occur, such as when a user selects an item from the list box. Typically, the owner is
a dialog window (as shown in Figure 21-1,) or the client window of an application frame
window. The client- or dialog-window procedure defined by the application responds to
messages sent from the list box.

Figure 21-1. List Box in a Dialog Box

A list box always contains a scroll bar for use when the list box contains more items than can
be displayed in the list-box window. The list box responds to mouse clicks in the scroll bar
by scrolling the list; otherwise, the scroll bar is disabled.

The maximum number of items permitted in a list box is 32767.

Using List Boxes
An application uses a list-box control to display a list in a window. List boxes can be
displayed in standard application windows, although they are more commonly used in dialog
windows. In either case, notification messages are sent from the list box to its owner
window, enabling the application to respond to user actions in the list.

© Copyright IBM Corp. 1994 21-1

Once a list box is created, the application controls the insertion and deletion of list items.
Items can be inserted at the end of the list, automatically sorted into the list, or inserted at a
specified index position. Applications can turn list drawing on and off to speed up the
process of inserting numerous items into a list.

The owner-window procedure of the list box receives messages when a user manipulates the
list-box data. Most default list actions (for example, highlighting selections and scrolling) are
handled automatically by the list box itself. The application controls the responses when the
user chooses an item in the list, either by double-clicking the item or by pressing Enter after
an item is highlighted. The list box also notifies the application when the user changes the
selection or scrolls the list.

Normally, list items are text strings drawn by a list box. An application also can draw and
highlight the items in a list. This enables the application to create customized lists that
contain graphics. When an application creates a list box with the LS_OWNERDRAW style,
the owner of the list box receives a WM_DRAWITEM message for each item that should be
drawn or highlighted. This is similar to the owner-drawn style for menus, except that the
owner-drawn style applies to the entire list rather than to individual items.

Creating a List-Box Window
List boxes are WC_LlSTBOX class windows and are predefined by the system. Applications
can create list boxes by calling WinCreateWindow, using WC_LlSTBOX as the window-class
parameter.

A list box passes notification messages to its owner window, so an application uses its client
window, rather than the frame window, as the owner of the list. The client-window procedure
receives the messages sent from the list box. For example, to create a list box that
completely fills the client area of a frame window, an application would make the client
window the owner and parent of the list-box window, and make the list-box window the same
size as the client window. This is shown in the following code fragment.

21-2 PM Basic Programming Guide

Because the list box draws its own border, and a frame-window border already surrounds the
client area of a frame window due to the adjacent frame controls, the effect is a double-thick
border around the list box. You can change this effect by calling WinlnflateRect to overlap
the list-box border with the surrounding frame-window border, resulting in only one list-box
border.

Notice that the code specifies the list-box window style LS_NOADJUSTPOS. This ensures
that the list box is created exactly the specified size. If the LS_NOADJUSTPOS style is not
specified, the list-box height is rounded down, if necessary, to make it a multiple of the item
height. Enabling a list box to adjust its height automatically is useful for preventing partial
items being displayed at the bottom of a list box.

Using a List Box in a Dialog Window
List boxes most commonly are used in dialog windows. A list box in a dialog box is a control
window, like a push button or an entry field. Typically, the application defines a list box as
one item in a dialog template in the resource-definition file, as shown in the following
resource compiler source-code fragment.

DLGTEMPLATE IDOOPEN
BEGIN -

DIALOG "Open •• • u, lDD":OPE:N,35, 35.150. 135.
FS·DLGBORDER •. FCF TITLEBAR .

BEGIN - -
LISTBOX IDDFILELIST. 15, 15. 90, 90
PUSHBUTTON "Drive", IDDDRIVEBUTTON. 115. 70, 30. 14
OEFPUSHBUTTON "Open", IDOjjpENBUTTON, 115, 40. 30, 14
PUSHBUTTON "Cancel", IDD..;.CANCELBUTTON. 115,15,30, 14

END

Once the dialog resource is defined, the application loads and displays the dialog box as it
would normally. The application inserts items into the list when processing the WMJNITDLG
message.

A dialog window with a list box usually has an OK button. The user can select items in the
list, and then indicate a final selection by double-clicking, pressing Enter, or clicking the OK
button. When the dialog-window procedure receives a message indicating that the user has
clicked the OK button, it queries the list box to determine the current selection (or selections,
if the list allows multiple selections), and then responds as though it had received a
WM_CONTROL message with the LN_ENTER notification code.

Adding or Deleting an Item in a List Box
Applications can add items to a list box by sending an LMJNSERTITEM or
LMJNSERTMULTITEMS message to the list-box window; items are deleted using the
LM_DELETEITEM message. Items in a list are specified with a O-based index (beginning at
the top of the list). A new list is created empty; the application initializes the list by inserting
items. LMJNSERTMULTITEMS allows up to 32767 items to·be inserted as a group, while
LMJNSERTITEM adds items one-by-one to a list.

Chapter 21. List-Box Controls 21-3

The application specifies the text and position for each new item. It can specify an
absolute-position index or one of the following predefined index values:

Table 21-1. List It?m Position Index

Value Meaning

LIT_END Insert item at end of list.

LlT_SORTASCENDING Insert item alphabetically ascending into list.

LIT _SORTDESCENDING Insert item alphabetically descending into list.

If a large number of items are to be inserted into a list box at one time, use of
LM_INSERTMULTITEMS is more efficient than use of LM_INSERTITEM. The same
positioning flags are used. When L1T_SORTASCENDING or L1T_SORTDESCENDING is
specified with LMJNSERTMULTITEMS, new items are inserted before the updated list is
sorted. If items are being added using several LMJNSERTMULTITEMS messages,
LIT_END should be specified for all messages except the last; this will avoid unnecessary
multiple sorts of the list.

If no text array is specified, empty items are inserted into the list. This is very useful for list
boxes created with LS_OWNERDRAW style, which do not use text strings.

The application must send an LM_DELETEITEM message and supply the absolute-position
index of the item when deleting items from a list. The LM_DELETEALL message deletes all
items in a list.

One wayan application can speed up the insertion of list items is to suspend drawing until it
has finished inserting items .. This is a particularly valuable approach when using a sorted
insertion process (when inserting one item can cause rearrangement of the entire list). You
can turn off list drawing by calling WinEnableWindowUpdate, specifying FALSE for the
enable parameter, and then calling WinShowWindow. This forces a total update when
insertion is complete. The following code fragment illustrates this concept:

Notice that this optimization is unnecessary if an application is adding list items while
processing a WMJNITDLG message, because the list box is not visible, and the list-box
routines are internally optimized.

21-4 PM Basic Programming Guide

Responding to a User Selection in a List Box
When a user chooses an item in a list, the primary notification an application receives is a
WM_CONTROL message, with the LN_ENTER control code sent to the owner window of the
list. Within the window procedure for the owner window, the application responds to the
LN_ENTER control code by querying the list box for the current selection (or selections, in
the case of an LS_MULTIPLESEL or LS_EXTENDEDSEL list box).

The LN_ENTER control code notifies the application that the user has selected a list item. A
WM_CONTROL message with an LN_SELECT control code is sent to the list-box owner
whenever a selection in a list changes, such as when a user moves the mouse pointer up
and down a list while pressing the mouse button. In this case, items are selected but not yet
chosen. An application can ignore LN_SELECT control codes when the selection changes,
responding only when the item is actually chosen. Or an application can use LN_SELECT to
display context-dependent information that changes rapidly with each selection made by the
user.

Handling Multiple Selections
When a list box has the style LS_MULTIPLESEL or LS_EXTENDEDSEL, the user can select
more than one item at a time. An application must use different strategies when working
with these types of lists. For example, when responding to an LN _ENTER control code, it is
not sufficient to send a single LM_QUERYSELECTION message, because that message will
find only the first selection. To find all current selections, an application must continue
sending LM_QUERYSELECTION messages, using the return index of the previous message
as the starting index of the next message, until no items are returned.

Creating an Owner-Drawn List Item
To draw its own list items, an application must create a list that has the style
LS_OWNERDRAW: the owner window of the list box must respond to the
WM_MEASUREITEM and WM_DRAWITEM messages.

When the owner window receives a WM_MEASUREITEM message, it must return the height
of the list item. All items in a list must have the same height (greater than or equal to 1).
The WM_MEASUREITEM message is sent when the list box is created, and every time an
item is added. You can change the item height by sending an LM_SETITEMHEIGHT
message to the list-box window. The maximum width of a list box created with the
LM_HORZSCROLL style can be set using an LM_SETITEMWIDTH message.

The owner window receives a WM_DRAWITEM message whenever an item in an
owner-drawn list should be drawn or highlighted. Although it is quite common for an
owner-drawn list to draw items, it is less common to override the system-default method of
highlighting. (This method inverts the rectangle that contains the item.) Do not create your
own highlighting unless, for some reason, the system-default method is unacceptable to you.

The WM_DRAWITEM message contains a pointer to an OWNERITEM data structure. The
OWNERITEM structure contains the window identifier for the list box, a presentation-space
handle, a bounding rectangle for the item, the position index for the item, and the
application-defined item handle. This structure also contains two fields that determine

Chapter 21. List-Box Controls 21-5

whether a message draws, highlights, or removes the highlighting from an item. The
OWNER ITEM structure has the following form:

When the item must be drawn, the owner window receives a WM_DRAWITEM message with
the fsState field set differently from the fsStateOld field. If the owner window draws the item
in response to this message, it returns TRUE, telling the system not to draw the item. If the
owner window returns FALSE, the system draws the item, using the default list-item drawing
method.

You can get the text of a list item by sending an LM_QUERYITEMTEXT message to the
list-box window. You should draw the item using the hps and rcl/tem arguments provided in
the OWNERITEM structure.

If the item being drawn is currently selected, the fsState and fsStateOld fields are both
TRUE; they both will be FALSE if the item is not currently selected. The window receiving a
WM_DRAWITEM message can use this information to highlight the selected item at the
same time it draws the item. If the owner window highlights the item, it must leave the
fsState and fsStateOld fi~lds equal to each other. If the system provides default highlighting
for the item (by inverting the item rectangle), the owner window must set the fsState field to 1
and the fsStateOld field to 0 before returning from the WM_DRAWITEM message.

The owner window also receives a WM_DRAWITEM message when the highlight state of a
list item changes. For example, when a user clicks an item, the highlighting must be
removed from the currently selected item, and the new selection must be highlighted. If
these items are owner-drawn, the owner window receives one WM_DRAWITEM message for
each unhighlighted item and one message for the newly highlighted item. To highlight an
item, the fsState field must equal TRUE, and the fsStateOld field must equal FALSE. In this
case, the application should highlight the item and return the fsState and fsStateOld fields
equal to FALSE, which tells the system not to highlight the item. The application also can
return the fsState and fsStateOld fields with two different (unequal) values and the list box
will highlight the item (the default action).

To remove highlighting from an item, the fsState field must equal FALSE and the fsStateOld
field must equal TRUE. In this case, the application removes the highlighting and returns
both the fsState and the fsStateOld fields equal to FALSE. This tells the system not to
attempt to remove the highlighting. The application also can return the fsState and
fsStateOld fields with two different (unequal) values, and the list box will remove the

21-6 PM Basic Programming Guide

highlighting (the default response). The following code fragment shows these selection
processes:

OWNERITEM *poi;

case WM_DRAWITEM:

/* Convert mp2 into an OWNERITEM structure poi nter.
poi = (POWNERITEM) PVOIDFROMMP{mp2);

/* Test to see if this is drawing or highlighting/unhighlighting. */
if (poi->fsState!= poi->fsStateOld) {

}

/* This is either highlighting or unhighlighting.
if (poi ->fsStale) {

· !*Highlight the item.

}
else {

• /* Remove the highlighting. */

/* Set fsState .. fsStateOld to tell system you did it. */
poi->fs$tate =poi->fsStateOld .. 0;

return TRUE; f* Tells list box you did the highlighting. */

else {

• !*Draw the item.

if (po; ->fsState) { / * Chec ks to see if item ; s se 1 ected * /

• /* Highlight the item. */

/*5et fSState=fsStateOld to tell system you did it. *1
}
return TRUE; 1* Tells list box you did the drawing. */

Default List-Box Behavior
The following table lists all the messages handled by the predefined list-box window-class
procedure.

Table 21-2 (Page 1 of 3). Messages Handled by WC_L1STBOX Class

Message Description

LM_DELETEALL Deletes all items in the list.

LM_DELETEITEM Removes the specified item from the list, redrawing the
list as necessary. Returns the number of items remaining
in the list.

Chapter 21. List-Box Controls 21-7

Table 21-2 (Page 2 of 3). Messages Handled by WC_L1STBOX Class

. Message

LMJNSERTITEM

LM_INSERTMULTITEMS

LM_ QUERYITEMCOUNT

LM_ QUERYITEMHANDLE

LM_ QUERYITEMTEXT

LM_ QUERYITEMTEXTLENGTH

LM_QUERYSELECTION

LM_QUERYTOPINDEX

LM_SEARCHSTRING

LM_SELECTITEM

LM_SETITEMHANDLE

LM_SETITEMHEIGHT

LM_SETITEMTEXT

LM_SETITEMWIDTH

LM_SETTOPINDEX

WM_ADJUSTWINDOWPOS

WM_BUTTON2DOWN

WM_BUTTON3DOWN

WM_CHAR

WM_CREATE

WM_DESTROY

21-8 PM Basic Programming Guide

Descri ption

Inserts a new item into the list according to the position
information passed with the message.

Inserts one or more items into a list box at one time.

Returns the number of items in the list.

Returns the specified item handle.

Copies the text of the specified item to a buffer supplied
by the message sender.

Returns the text length of the specified item.

For a single-selection list box, returns the zero-based
index of the currently selected item. For a
multiple-selection list box, returns the next selected item
or LIT_NONE if no more items are selected.

Returns the zero-based index to the item currently visible
at the top of the list.

Searches the list for a match to the specified string.

Selects the specified item. If the list is a single-selection
list, deselects the previous selection. Sends a
WM_CONTROL message (with the LN_SELECT code) to
the owner window.

Sets the specified item handle.

Sets the item height for the list. All items in the list have
the same height.

Sets the text for the specified item.

Sets the maximum width of a list box created with the
LS _ HORZSCROLL style.

Shows the specified item as the top item in the list
window, scrolling the list as necessary.

If the list box has the style LS_NOADJUSTPOS, makes
no changes to the SWP structure and returns FALSE.
Otherwise, adjusts the height of the list box so that a
partial item is not shown at the bottom of the list. Returns
TRUE if the SWP structure is changed.

Returns TRUE; the message is ignored.

Returns TRUE; the message is ignored.

Processes virtual keys for line and page scrolling. Sends
an LN_ENTER notification code for the Enter key.
Returns TRUE if the key is processed; otherwise, passes
the message to the WinDefWindowProc function.

Creates an empty list box with a scroll bar.

Destroys the list and deallocates any memory allocated
during its existence.

Table 21-2 (Page 3 of 3). Messages Handled by WC_LlSTBOX Class

Message Description

WM_ENABLE Enables the scroll bar if there are more items than can be
displayed in a list-box window.

WM_MOUSEMOVE Sets the mouse pointer to the arrow shape and returns
TRUE to show that the message was processed.

WM_PAINT Draws the list box and its items.

WM_HSCROLL Handles scrolling indicated by the list-box horizontal scroll
bar.

WM_VSCROLL Handles scrolling indicated by the list-box vertical scroll
bar.

WM_SETFOCUS If the list box is gaining the focus, creates a cursor and
sends an LN_SETFOCUS notification code to the owner
window. If the list box is losing the focus, this message
destroys the cursor and sends an LN_KILLFOCUS
notification code to the owner window.

WM_TIMER Uses timers to control automatic scrolling that occurs
when a user drags the mouse pointer outside the window.

Chapter 21. List-Box Controls 21-9

Related Functions
This section covers the functions that are related to List Box Controls.

WinDeleteLboxltem
This macro deletes the indexed item from the List Box. It returns the number of items left.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

LONG WlnDeleteLboxltem (HWND hwndLbox, LONG Index)

Parameters
hwndLbox (HWNO) - input

Listbox handle.

index (LONG) - input
Index of the listbox item.

Returns
IItems (LONG) - returns

Number of items left.

21-10 PM Basic Programming Guide

WinEnableWindowUpdate
This function sets the window visibility state for subsequent drawing.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN. INCL_PM. */

#include <os2.h>

BOOl WlnEnableWlndowUpdate (HWND hwnd, BOOl fEnable)

Parameters
hwnd (HWND) - input

Window handle.

fEnable (BOOl) - input
New visibility state.

TRUE Set window state visible
FALSE Set window state invisible.

Returns
rc (BOOl) - returns

Visibility-changed indicator.

TRUE Window visibility successfully changed
FALSE Window visibility not successfully changed.

Chapter 21. List-Box Controls 21-11

WinlnflateRect
This function expands a rectangle.

Syntax

#define INCL_WINRECTANGLES /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinlnflateReet (HAB hab; PRECTl prel, lONG ex, lONG ey)

Parameters
hab (HAB) - input

Anchor-block handle.

prel (PRECTL) - in/out
Rectangle to be expanded.

ex (LONG) - input
Horizontal expansion.

ey (LONG) - input
Vertical expansion.

Returns
re (BaaL) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

21-12 PM Basic Programming Guide

WinlnsertLboxltem
This macro inserts text into a list box at index, index may be a LIT_constant. The macro
returns the actual index where it was inserted.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN. INCL_PM. */

#include <os2.h>

LONG WlnlnsertLboxltem (HWND hwndLbox, LONG Index, PSZ psz)

Parameters
hwndLbox (HWNO) - input

List box handle.

Index (LONG) - input
Index of the list box item.

psz (PSZ) - input
Text to be inserted.

Returns
IRetlndex (LONG) - returns

Actual index where it was inserted.

Chapter 21. List-Box Controls 21-13

WinQueryLboxCount
This macro returns the number of items in the List Box.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

LONG WlnQueryLboxCount (HWND hwndLbox)

Parameters
hwndLbox (HWND) - input

Listbox handle.

Returns
IRetNumlt (LONG) - returns

Number of items in the list box.

21-14 PM Basic Programming Guide

WinQueryLboxltemText
This macro fills the buffer with the text of the indexed item. It returns the length of the text.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

LONG WlnQueryLboxltemText (HWND hwndLbox, SHORT index, PSZ psz,
SHORT cchMax)

Parameters
hwndLbox (HWND) - input

List box handle.

index (SHORT) - input
Index of the listbox item.

psz (PSZ) - input
Pointer to a null terminated string.

cchMax (SHORT) - input
Maximum number of characters allocated to the string.

Returns
IRetTxtL (LONG) - returns

Actual text length copied.

Chapter 21. List-Box Controls 21-15

WinQueryLboxltemTextLength
This macro returns the length of the text of the indexed item in the List Box.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM. */

#include <os2.h>

SHORT WinQueryLboxltemTextLength (HWND hwndLbox, SHORT Index)

Parameters
hwndLbox (HWND) - input

Listbox handle.

index (SHORT) - input
Index of the item in the List Box.

Returns
sRetLen (SHORT) - returns

Text length of the indexed item.

21-16 PM Basic Programming Guide

WinQueryLboxSelectedltem
This macro returns the index of the selected item in the List Box (for single selection only).

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

LONG WlnQueryLboxSelectedltem (HWND hwndLbox)

Parameters
. hwndLbox (HWND) - input

List box handle.

Returns
IRetlndex (LONG) - returns

Index of the selected item.

Chapter 21. List-Box Controls 21-17

WinSetLboxltemText
This macro sets the text of the list box indexed item to buffer.

Syntax

#define INCL_WINWINDOWMGR /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinSetLboxltemText (HWND hwndlbox, lONG index, PSZ psz)

Parameters
hwndlbox (HWNO) - input

List box handle.

index (LONG) - input
Index of the list box item.

psz (PSZ) - input
Pointer to a null terminated string.

Returns
rc (BOOL) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

21-18 PM Basic Programming Guide

Related Messages
This section covers the messages that are related to List Box Controls.

LM_DELETEALL
This message is sent to a list box control to delete all the items in the list box.

Parameters
param1

ulReserved (UlONG)
Reserved value, should be o.

param2

ulReserved (UlONG)
Reserved value, should be o.

Returns
rc (BOOl)

Success indicator.

TRUE Successful completion
FALSE Error occurred.

Chapter 21. List-Box Controls 21-19

LM_DELETEITEM
This message deletes an item from the list box control.

Parameters
param1

sltemlndex (SHORT)
Item index.

The zero-based index of the item to be deleted.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
sltemsLeft (SHORT)

Number remaining.

21-20 PM Basic Programming Guide

LM_INSERTITEM
This message inserts an item into a list box control.

Parameters
param1

sltemlndex (SHORT)
Item index.

param2

LIT END
LIT _SORTASCENDING
LIT _SORTDESCENDING
Other

pszltemText (PSZ)
Item text.

Add the item to the end of the list.
Insert the item into the list sorted in ascending order.
Insert the item into the list sorted in descending order.
Insert the item into the list at the offset specified by this
zero-based index.

This points to a string containing the item text.

Returns
slndexlnserted (SHORT)

Index of inserted item.

LIT _MEMERROR The list box control cannot allocate space to insert the list item in
the list.

LIT_ERROR An error, other than LIT _MEMERROR, occurred.

Other The zero-based index of the offset of the item within the list.

Chapter 21. List-Box Controls 21-21

LM_INSERTMUL TITEMS
This message inserts one or more items into a list box.

Parameters
param1

pListboxlnfo (PLBOXINFO)
Pointer to a structure containing list box information.

,param2

papszText (PSZ *)
Pointer to an array of pointers to text strings.

This parameter is a pointer to an array of pointers to zero-terminated strings. The
array must contain at least ulltemCount items. (ulltemCount is a field in
LBOXINFO.)

If this parameter is set to NULL, a ulltemCount number of empty items are inserted
into the list. This is useful for ownerdraw listboxes that do not make use of text
strings.

Returns
ICount (LONG)

Number of items successfully inserted into the list.

21-22 PM Basic Programming Guide

LM_ QUERYITEMCOUNT
This message returns a count of the number of items in the list box control.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
sltemCount (SHORT)

Item count.

Chapter 21. List-Box Controls 21-23

LM_ QUERYITEMHANDLE
This message returns the handle of the indexed item of the list box control.

Parameters
param1

sltemlndex (SHORT)
Item index.

param2

ulReserved (ULONG)
Reserved value, should be o.

Returns
ulltem (ULONG)

Item handle.

o The indexed item does not exist.
Other Item handle.

21-24 PM Basic Programming Guide

LM_QUERYITEMTEXT
This message returns the text of the specified list box item.

Parameters
param1

sltemlndex (SHORT)
Item index.

smaxcount (SHORT)
Maximum count.

o No text is copied.
Other Copy the item text as a null-terminated string, but limit the number of

characters copied, including the null termination character, to this value.

param2

pszltemText (PSZ)
Buffer into which the item text is to be copied.

This points to a string (character) buffer.

Returns
sTextLength (SHORT)

Length of item text.

Chapter 21. List-Box Controls 21-25

LM_ QUERYITEMTEXTLENGTH
This message returns the length of the text of the specified list box item.

Parameters
param1

sltemlndex (SHORT)
Item index.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
sTextLength (SHORT)

Length of item text.

LIT_ERROR Error occurred. For example, the item specified by its index does not
exist.

Other Length of item text.

21-26 PM Basic Programming Guide

LM_ QUERYSELECTION
This message is used to enumerate the selected item, or items, in a list box.

Parameters
param1

sltemStart (SHORT)

param2

Index of the start item.

If the list box allows multiple selected items, that is, if it has a style of
LS_MULTIPLESEL, then this parameter indicates the index of the item from which
the search for the next selected item is to begin. Therefore, to get all the selected
items of the list, this message is sent repeatedly, each time setting this parameter to
the index of the item returned by the previous usage of this message.

If this parameter is set to LIT_CURSOR the index of the item in the list box which
currently has the cursor is returned.

If the list box only allows a single selection, this parameter is ignored.

LIT_CURSOR Return the index of the item in the list box which currently has the
cursor.

LIT_FIRST

Other

Start the search at the first item.

Start the search after the item specified by this index.

ulReserved (ULONG)
Reserved value, should be o.

Returns
sltemSelected (SHORT)

Index of the selected item.

LIT_NONE No selected item.

For a single selection list box, this implies that there is no selected item in
the list box. For a multiple selection list box, this implies that there is no
selected item in the list box whose index is higher than the index specified
by the s/temStart parameter.

Other Index of selected item. For a single selection list box, this is the index of
the only selected item in the list box. For a multiple selection list box, this
is the index of the next selected item in the list box whose index is higher
than the index specified by the s/temStart parameter.

If s/temStart is set to LIT_CURSOR, the index of the list-box item which
currently has the cursor is returned.

Chapter 21. List-Box Controls 21-27

LM_QUERVTOPINDEX
This message obtains the index of the item currently at the top of the list box.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
sltemTop (SHORT)

Index of the item currently at the top of the list box.

LIT NONE No items in the list box
Other Index of the item currently at the top of the list box.

21-28 PM Basic Programming Guide

LM_SEARCHSTRING
This message returns the index of the list box item whose text matches the string.

Parameters
param1

uscmd (USHORT)
Command.

Defines the criteria by which the string specified by the pszSearchString parameter
is to be compared with the text of the items, to determine the index of the first
matching item.

These values can be combined using the logical-OR operator:

LSS _ CASESENSITIVE Matching occurs if the item contains the characters
specified by the pszSearchString parameter exactly.

LSS_SUBSTRING

sltemStart (SHORT)
Index of the start item.

This value is mandatory.

Matching occurs if the leading characters of the item
contain the characters specified by the pszSearchString
parameter.

If this value is specified, LSS_SUBSTRING must not be
specified.

Matching occurs if the item contains a substring of the
characters specified by the pszSearchString parameter.

If this value is specified, LSS_PREFIX must not be
specified.

LIT_FIRST Start the search at the first item.
Other Start the search after the item specified by this index.

param2

pszSearchStrlng (PSZ)
Search string.

This points to the string to search for.

Returns
sltemMatched (SHORT)

Index item whose text matches the string.

LIT_ERROR
LIT_NONE

Error occurred
No item found

Chapter 21. List-Box Controls 21-29

Other Index item whose text matches the string.

21 .. 30 PM Basic Programming Guide

LM_SELECTITEM
This message is used to set the selection state of an item in a list box.

Parameters
param1

sltemlndex (SHORT)
Index of the item to be selected or deselected:

LIT_NONE All items are to be deselected
Other Index of the item to be selected or deselected.

param2

usselect (USHORT)
Select flag.

(Ignored if sltemlndex is set to LIT_NONE).

TRUE The item is selected. If the control is a single selection list box (that is, it
does not have the style of lS_MUlTIPlESEl), any previously selected
item is deselected.

FALSE The item is deselected.

Returns
rc (BOOl)

Success indicator.

TRUE Successful completion
FALSE Error occurred. For example, when the item does not exist in the list box, or

when an item that is not selected is deselected.

Chapter 21. List-Box Controls 21-31

LM_SETITEMHANDLE
This message sets the handle of the specified list box item.

Parameters
param1

sltemlndex (SHORT)
Item index.

param2

ulltemHandle (UlONG)
Item handle.

Returns
rc (BOOl)

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

21-32· PM Basic Programming Guide

LM_SETITEMHEIGHT
This message sets the height of the items in a list box.

Parameters
param1

flNewHelght (ULONG)
Height of items in list box.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
rc (BOOL)

Success indicator.

TRUE Successful operation
FALSE Error occurred.

Chapter 21. List-Box Controls 21-33

LM_SETITEMTEXT
This message sets the text into the specified list box item.

Parameters
param1

sltemlndex (SHORT)
Item index.

param2

pszltemText (PSZ)
Item text.

This pOints to a string containing the text to set the list-box item to.

Returns
rc (Baal)

Success indicator.

TRUE Successful completion
FALSE Error occurred.

21-34 PM Basic Programming Guide

LM_SETITEMWIDTH
This message sets the width of the items in a list box.

Parameters
param1

INewWldth (UlONG)
Width of items in list box.

param2

reserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE Successful completion
FALSE Error occurred.

Chapter 21. Ust-Box Controls 21-35

LM_SETTOPINDEX
This message is used to scroll a particular item to the top of the list box.

Parameters
param1

sltemlndex (SHORT)
Index of the item to be made top.

param2

ulReserved (UlONG)
Reserved value, should be O.

Returns
rc (BOOl)

Success indicator.

TRUE Successful completion
FALSE Error occurred.

21·36 PM Basic Programming Guide

WM_CONTROL (in List Boxes)
For the cause of this message, see "WM_CONTROL" on page 16-5.

Parameters
param1

id (USHORT)
Control-window identity.

usnotifycode (USHORT)
Notify code.

param2

The list box control window procedure uses these notification codes:

LN_ENTER Either the Enter or Return key has been pressed while the list
box control has the focus, or the list box control has been
double-clicked.

LN_KILLFOCUS The list box controt loses the focus.

LN_SCROLL The list box control is about to scroll horizontally. This can
happen when the application has issued a WinScroliWindow
function.

LN _ SETFOCUS The list box control receives the focus.

LN_SELECT An item is being selected (or deselected).

Note: To discover the index of the selected item, the
application must use the LM_QUERYSELECTION
message.

hwndcontrolspec (HWNO)
List box control window handle.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Chapter 21. List-Box Controls 21-37

WM_DRAWITEM (in List Boxes)
This notification.is sent to the owner of a list box control each time an item is to be drawn.

Parameters
param1

idListBox (USHORT)
Window identifier.

The window identity of the list box control sending this notification message.

param2

pOwnerltem (POWNERITEM)
Owner·item structure.

This points to an owner-item structure; see "OWNERITEM" on page 21-41.

Returns
rc (BOOl)

Item-drawn indicator.

TRUE
FALSE

The owner draws the item, so the list box control does not draw it.
If the item contains text and the owner does not draw the item, the owner
returns this value, and the list box control draws the item.

21-38 PM Basic Programming Guide

WM_MEASUREITEM (in List Boxes)
This notification is sent to the owner of a list box control to establish the height and width for
an item in that control.

Parameters
param1

sListBox (SHORT)
list-box identifier.

param2

sltemlndex (SHORT)
Item index.

The zero-based index of the item which has changed.

Returns
ReturnCode

sHelght (SHORT)
Height of item.

sWldth (SHORT)
Width. of item.

This value is required only if the list box control is scroll able horizontally, that is, it
has a style of LS _HORZSCROLL.

Chapter 21. List-Box Controls 21-39

Related Data Structures
This section covers the data structures that are related to List Box Controls.

LBOXINFO
List box information structure.

Syntax

Fields
IItemlndex (LONG)

Index of the item to insert after.

Possible values are described in the following list:

L1T_ENT

L1T_SORTASCENDING

LIT _ SORTDESCENDING

Other

ulitemCount (ULONG)

Add items to the end of the list.

Add items to the list and sort the complete list in ascending
order.

Add items to the list and sort the complete list in
descending order.

Add the items to the list after the specified zero-based
index. Valid range is 0 to 32767.

Number of items to be inserted into the list.

A maximum· of 32768 can be inserted into the list at one time.

reserved (ULONG)
Reserved value, must be O.

reserved2 (ULONG)
Reserved value, must be O.

21-40 PM Basic Programming Guide

OWNERITEM
Owner item.

Syntax

typedefstruct _OWNERITEM {
HWND hwnd;
HPS hps;
ULONG fsState;
ULONG fsAttribute;
ULONG fsStateOld;
ULONG fsAttributeOld;
RECTL rclltem;
LONG idItem;
ULONG hItem;
} OWNERITEM;

typedefOWNERITEM *POWNERITEM;

Fields
hwnd (HWND)

Window handle.

hps (HPS)
Presentation-space handle.

fsState (ULONG)
State.

fsAttribute (ULONG)
Attribute.

fsStateOld (ULONG)
Old state.

fsAttributeOld (ULONG)
Old attribute.

rclltem (RECTL)
Item rectangle.

idltem (LONG)
Item identity.

hltem (ULONG)
Item.

Chapter 21. List-Box Controls 21-41

Summary
Following are the functions, messages, and data structures used with list boxes.

Table 21-3. List-Box Functions

Function Name

WinDeleteLboxltem

WinEnableWindowUpdate

WinlnflateRect

WinlnsertLboxltem

WinQueryLboxCount

WinQueryLboxltemText

WinQueryLboxltemTextLength

WinQueryLboxSelectedltem

WinSetLboxltemText

Description

Deletes the indexed item from the list box. Returns the
number of items left.

Sets the window visibility state for subsequent drawing.

Expands a rectangle.

Inserts text into a list box at index. Returns the actual
index where it was inserted.

Returns the number of items in the list box.

Fills the buffer with the text of the indexed item. Returns
the length of the text.

Returns the length of the text of the indexed item in the
list box.

Returns the index of the selected item in the list box. For
single selection only.

Sets the text of the list-box indexed item to buffer.

Table 21-4. Messages Generated by a List Box

Message

WM_MEASUREITEM

WM_QUERYCONVERTPOS

WM_QUERYWINDOWPARAMS

WM_SETWINDOWPARAMS

21-42 PM Basic Programming Guide

Description

Occurs when a list-box control has a significant event to
notify to its owner.

Notification sent to the owner of a list-box control each
time an item is to be drawn.

Notification sent to the owner of a specific list-box control
to establish the height and width of an item in that control.

Sent by an application to determine whether it is
appropriate to begin conversion of DBCS characters.

Occurs when an application queries the list-box control
window parameters.

Occurs when an application sets or changes the list-box
control window parameters.

Table 21-5. Messages Received by a List Box

Message Description

LM_DELETEALL Sent to a list-box control to delete all the items in the list
box.

LM_DELETEITEM Deletes an item from the list-box control.

LM_INSERTITEM Inserts an item into a list-box control.

LM_INSERTMULTITEMS Inserts one or more items into a list box at one time.

LM_QUERYITEMCOUNT Returns a count of the number of items in the list-box
control.

LM_QUER~TEMHANDLE Returns the handle of the indexed item of the list-box
control.

LM_QUERYITEMTEXT Returns the text of the specified list-box item.

LM_ QUERYITEMTEXTLENGTH Returns the length of the text of the specified list-box
item.

LM_ QUERYSELECTION Used to enumerate the selected item, or items, in a list
box.

LM_ QUERYTOPINDEX Obtains the index of the item currently at the top of the
list box.

LM_SEARCHSTRING Returns the index of the list-box item whose text matches
the string.

LM_SELECTITEM Used to set the selection state of an item in a list box.

LM_SETITEMHANDLE Sets the handle of the specified list-box item.

LM_SETITEMHEIGHT Sets the height of the items in a list box.

LM_SETITEMTEXT Sets the text into the specified list-box item.

LM_SETITEMWIDTH Sets the maximum width of a list box created with the
LS_HORZSCROLL style.

LM_SETTOPINDEX Used to scroll a particular item to the top of the list box.

Table 21-6. List-Box Data Structures

Structure Name Description

OWNERITEM Owner item.

LBOXINFO List-box information structure.

Chapter 21. List-Box Controls 21-43

21-44 PM Basic Programming Guide

Chapter 22. Clipboards

The clipboard is a small amount of system-managed random-access memory (RAM) used for
user-driven data exchange. This is in contrast with dynamic data exchange (DOE), which is
application driven. While the clipboard stores only pointers or handles to data, its associated
set of functions can be used in applications to move and exchange data. This chapter
describes how to use the clipboard in PM applications.

About the Clipboard
The clipboard enables the user to move data in a single application or exchange data
between applications. Typically, a user selects data in the application using the mouse or
keyboard, and then initiates a cut, copy, or paste operation on that selection.

Descriptions of these operations are in the following table:

Table 22-1. Operations on Clipboard Data

Operation Description

Cut Deletes the selected data from the application and copies it to the
clipboard. Any previous contents of the clipboard are destroyed.

Copy Copies the selected data to the clipboard. The selection remains
unchanged. Previous contents of the clipboard are destroyed.

Paste Deletes the selected data from the application and replaces it with the
contents of the clipboard. The contents of the clipboard are not changed.

Figure 22-1 on page 22-2 is an example of copying data from one application, and
Figure 22-2 on page 22-2 illustrates pasting that same data into another application by way
of the clipboard.

© Copyright IBM Corp. 1994 22-1

vi , , . " . - - o 0

I Services Options Help
Search ... Ctrl+S v I . , , -"- , -, , ~~
~rint. ..

-'
!!ookmark ... Ctrl+B /* DosAcknowledgeSignalException

New window Ctrl+N indicates that a process wants to receive
further signals. */

CQPY Ctrl+lns

.Q.opy to file Ctrl+F
#define INCL DOSEXCEPTIONS
#include <os2.h>

~ppend to file Ctrl+A

E~it F3 ULONG ulSignalNumber;
ULONG ulrc; /* Return Code */

ulrc = DosAcknowledgeSignalException(
ulSignalNumber);

J -.J

p!e~i~~~JI~~~r~~ll ~rint II index II Con!ents II !!ack II forward I

Figure 22-1. A Copy Operation Between Applications Using the Clipboard

Figure 22-2. A Paste Operation Between Applications Using the Clipboard

An application should not perform any clipboard operations unless the user initiates them
explicitly. Other OS/2 features, such as pipes, queues, shared memory, and especially DOE
should be used when data exchange is needed without user involvement. For example, an
application that continuously passes remotely collected data to a data-analysis application
must not use the clipboard. Such an application, instead, should use the other interprocess
data-communication capabilities of the operating· system.

22-2 PM Basic Programming Guide

The data on the clipboard is maintained in memory only. Clipboard data is lost when the
computer is turned off.

Shared Memory and the Clipboard
An application must store, in shared memory, text data that is destined for the clipboard. To
do so, the application calls the DosAliocSharedMem function with the OBJ_GIVEABLE
attribute to allocate a shared memory object, and then copies the text data to the object.
The application passes the clipboard a pointer, which the clipboard uses to access the
shared memory object. Clipboard functions use the CFI_POINTER flag to indicate text data
stored in a shared memory object.

To pass a bit map or metafile to the clipboard, an application passes the clipboard a bit map
or metafile handle. The clipboard functions make the bit map or metafile shareable. The
CFI_HANDLE flag is used in clipboard functions to indicate bit map or metafile data.

After closing the clipboard, an application no longer can access the data it passed to the
clipboard. Likewise, when an application requests data from the clipboard, it receives a
pointer or handle that is good only until the application closes the clipboard. Typically, the
application either uses the data immediately before closing the clipboard, or it copies the
data to local memory for future use, then closes the clipboard.

Clipboard Operations
An application uses the clipboard when cutting, copying, or pasting data. Typically, an
application places data on the clipboard for cut and copy operations and removes data from
the clipboard for paste operations. The following paragraphs describe all these clipboard
operations.

Cut and Copy Operations
To put data on the clipboard, an application first calls the WinOpenClipbrd function to verify
that other applications are not trying to retrieve or set clipboard data. The WinOpenClipbrd
function does not return if another thread has the clipboard open; it waits until either the
clipboard is free or there is a message in the message queue of the calling thread. In
practice, the WinOpenClipbrd function waits until the clipboard is available or until the calling
application responds to a message. If the clipboard cannot be opened before a message
arrives, the application receives the message, and the WinOpenClipbrd function continues to
try to open the clipboard. The WinOpenClipbrd function does not return until the clipboard is
open. However, the application continues to receive messages.

Once an application successfully opens the clipboard, it must remove any previously stored
data on the clipboard by calling the WinEmptyClipbrd function. If the clipboard is not cleared,
writing an existing format on the clipboard replaces the old data in that format with the new
data. Old data in other formats remains on the clipboard.

After emptying the clipboard, an application should write its data to the clipboard in as many
standard formats as possible. For each format, the application passes the data to the
clipboard by calling the WinSetClipbrdData function, specifying each data format. The
clipboard is not cleared when a new format is written to it; all new data formats coexist on
the clipboard until it is cleared by the ne~ clipboard user.

Chapter 22. Clipboards 22-3

If an application passes NULL as the ulData parameter of the WinSetClipbrdData function,
applications must render the data on request.

Finally, when an application finishes writing the clipboard data, it must release the clipboard
by calling the WinCloseClipbrd function so that other applications can use the clipboard.

Paste Operation
To retrieve data from the clipboard, an application first must call the WinOpenClipbrd function
to verify that no other applications are trying to retrieve or set the clipboard data.

Once an application successfully opens the clipboard, it calls the WinQueryClipbrdData
function, specifying a preferred format. If that format is not available (indicated by a NULL
return from the WinQueryClipbrdData function) the application should continue to call
WinQueryClipbrdData for other possible formats until it either receives the data or runs out of
format choices.

If the clipboard contains one of the requested formats, the WinQueryClipbrdData function
returns a 32-bit integer, the meaning of which depends on the particular format. For text
data, the return value is a pointer to a shareable memory object containing the text. For bit
map data, the return value is a bit map handle. For metafile data, the return value is a
metafile handle.

It is important that an application use the WinCloseClipbrd function to close the clipboard as
soon as possible so that other applications can access it.

Standard Clipboard-Data Formats
The clipboard can accept data in three standard formats: text, bit map, and metafile.
Applications can either use these formats or create their own private formats.

All PM applications can access the clipboard, so applications can copy to the clipboard the
same selection of data in many different formats. For example, a word processor that
supports multiple fonts might write the same selection of text to the clipboard in three
different formats: straight text, rich text, and metafile. Then, another application (pasting
from the clipboard) could choose the appropriate format.

Applications can use the following constants to specify the standard clipboard-data formats:

Table 22-2 (Page 1 of 2). Clipboard Data Formats

Format Description

CF_BITMAP Specifies that the data in the clipboard is a bit map.

CF _DSPBITMAP Specifies that the data in the clipboard is a bit map representation of a
private-data format. The clipboard viewer uses this format to display a·
private format.

CF _DSPMETAFILE Specifies that the data in the clipboard is a metafile representation of a
private-data format. The clipboard viewer uses this format to display a
private format.

22-4 PM Basic Programming Guide

Table 22-2 (Page 2 of 2). Clipboard Data Formats

Format Description

CF_DSPTEXT Specifies that the data in the clipboard is a text representation of a
private-data format. The clipboard viewer uses this format to display a
private format.

CF _METAFILE Specifies that the data in the clipboard is a metafile.

CF_TEXT Specifies that the data in the clipboard is an array of text characters.
These characters can include newline characters to indicate line breaks.
The NULL character indicates the end of the text data.

Private Clipboard-Data Formats
Applications that use the clipboard to move data within the documents of the application can
use private clipboard-data formats when standard formats are insufficient for representing
clipboard data. For example, a word processor might have a rich-text format that contains
font and style information in addition to the usual text characters. Clearly, if the word
processor uses the clipboard to support cut, copy, and paste operations for moving data in
its documents, a standard text format will be inadequate.

In such case, the word processor should write at least two formats to the clipboard for each
cut or copy operation: a standard text format representing the text of the current selection
and a private rich-text format representing the true state of the selection. If the word
processor periorms a paste operation by using clipboard data, it can use the rich-text format
to retain all formatting. If another application requests the same data, it can use the
standard-text format if it does not recognize the private format. Also, the word processor
should be able to render data in CF _BITMAP and CF _METAFILE formats for painting and
drawing applications .

. Format Identification Number
Each private format must have a unique identification number. To obtain an identification
number, the application registers the name of the private format in the system atom table.
The system assigns a unique identification number for the format name. Other applications
having access to the format name can query the system atom table for the format
identification number.

An application can interpret its own private formats and request them from the clipboard for
cutting and pasting its own data. Other applications that know the private-format
identification number also can interpret the formatted data.

Display Formats
The OS/2 operating system provides three standard display formats for applications that use
private formats: CF _DSPTEXT, CF _DSPBITMAP, and CF _DSPMETAFILE. These formats
correspond to the standard text, bit map, and metafile formats, with the exception that they
are intended for use only by the clipboard viewer. An application that uses a private format
should write one of the DSP formats that approximates the appearance of the private data so
that the clipboard viewer can display the data regardless of the format. For example, a word

Chapter 22. Clipboards 22-5

processor using the rich-text format also would write a CF _DSPBITMAP formatted picture of
the selected text that contains all the type fonts and styles.

Notice that you can choose delayed rendering for DSP formats because there might not
always be,a clipboard viewer active on the screen. With delayed rendering, an application
actually does not render the format unless it is requested to do so.

Delayed Rendering
An application can pass NULL as the ulData parameter of the WinSetClipbrdData function
instead of a pointer or a handle. This indicates that the data is rendered only when another
application requests it from the clipboard. This is useful if an application supports several
clipboard formats that are time-consuming to render. With delayed rendering, an application
can send NULL handles for each clipboard format that it supports and render individual
formats only when the format actually is requested from the clipboard. An application can
either write data for standard formats or choose delayed rendering for more complex formats.

When an application uses delayed rendering for one or more of its clipboard formats, it must
become the clipboard owner. As long as the application is the clipboard owner, it receives a
WM_RENDERFMT message whenever a request is received by the clipboard for a format
using delayed rendering. When the application receives such a message, it renders the data
and passes the pointer or handle to the clipboard by calling the WinSetClipbrdData function.
The rules for shared-memory access for rendered data are the same ,as those for standard
clipboard data. This simply is a delayed execution of the operation that occurs if the data
does not have delayed rendering.

The clipboard owner, with one or more delayed-rendering formats on the clipboard, receives
a WM_RENDERALLFMTS message just before the clipboard-owner application terminates.
This ensures that the application renders all of its data before terminating.

Clipboard Viewer
A window can become a clipboard viewer and display the current contents of the clipboard.
The clipboard viewer is informed whenever the clipboard contents change. Typically, the
clipboard viewer is a window that can draw the standard clipboard formats. The clipboard
viewer is a convenience for the user; it does not have any effect on the data-transaction
functions of the clipboard.

To create a clipboard viewer, an application calls WinSetClipbrdViewer, specifying the
window in which the clipboard data will be displayed. Usually this is the client window of an
application. There can be only one clipboard viewer at any time in the system, so setting a
clipboard viewer replaces any previous clipboard viewer. The WinQueryClipbrdViewer
function receives the handle to the current clipboard viewer so that the application can reset
it when finished with the clipboard viewer.

Once a window becomes the clipboard viewer, it receives WM_DRAWCLIPBOARD
messages whenever the contents of the clipboard change. The window should respond to
these messages by drawing the contents of the clipboard.

22-6 PM Basic Programming Guide

The clipboard viewer displays all the standard formats and should process
CFI_OWNERDISPLAY items by sending the appropriate message to the clipboard owner.

The clipboard viewer cannot display private-format data. For this reason, an application that
writes private-format data to the clipboard also must write the data in one of the three
standard-display formats: CF _DSPTEXT, CF _DSPBITMAP, or CF _DSPMETAFILE.

If a standard format is not provided in addition to the private formats, the clipboard owner
must draw the clipboard data in the clipboard-viewer window. An application uses the
CFLOWNERDRAW flag to identify clipboard data that the clipboard owner draws. When the
clipboard viewer encounters data with the CFI_ OWNERDRAW flag set, it sends
WM_PAINTCLIPBOARD messages to the clipboard owner whenever the data must be
drawn, scrolled, or sized.

The clipboard viewer determines the attributes of a particular clipboard format by calling the
WinQueryClipbrdFmtlnfo function. The identity of the current owner is found by calling the
WinQueryClipbrdOwner function.

Clipboard Owner
The clipboard owner is any application window connected to the clipboard data. Following
are situations in which an application would call WinSetClipbrdOwner to become the
clipboard owner:

• The application calling WinSetClipbrdData passes a NULL pointer or handle to the
clipboard, indicating that the application renders the data in a particular format on
request. As a result, the system sends rendering requests to the current clipboard
owner.

• The application calling WinSetClipbrdData passes data with the CFI_ OWNERFREE
attribute, indicating that the application frees memory for data when the clipboard is
emptied. As a result, the system sends owner-free requests to the current clipboard
owner.

• The application calling WinSetClipbrdData passes data with the CFI_ OWNERDISPLA Y
attribute, indicating that the owner application draws the data in the clipboard viewer. As
a result, the clipboard viewer sends drawing-related requests to the current clipboard
owner.

The window specified in the call to the WinSetClipbrdOwner function responds to the
following messages:

Table 22-3 (Page 1 of 2). Messages Handled by Clipboard Owner

Message Description

WM_RENDERFMT Sent by the system to the clipboard owner when a
particular format with delayed rendering must be
rendered. The receiver must render the data in the
specified format and pass it to the clipboard by calling the
WinSetClipbrdData function.

Chapter 22. Clipboards 22-7

Table 22-3 (Page 2 of 2). Messages Handled by Clipboard Owner

Message Description

WM_RENDERALLFMTS Sent by the system to the clipboard owner just before the
owner application terminates. The receiver must render
the clipboard data in all formats on the clipboard with
delayed rendering. It must pass the data for each format
to the clipboard by calling the WinSetClipbrdData function.

WM_DESTROYCLIPBOARD Sent by the system to the clipboard owner when the
clipboard is cleared by another application calling the
WinEmptyClipbrd function. The receiver must free the
memory occupied by any clipboard formats using the
CFL OWNERFREE attribute.

WM_SIZECLIPBOARD Sent by the clipboard viewer to the clipboard owner when
the clipboard contains the data handle with the
CFI_OWNERDISPLAY attribute and when the
clipboard-viewer changes size. When the clipboard
viewer is being destroyed or reduced to an icon, this
message is sent with the coordinates of the opposite
corners set to (0,0), which permits the owner to free its
display resources.

WM_ VSCROLLCLIPBOARD Sent by the clipboard viewer to the clipboard owner when
the clipboard contains data with the
CFL OWNERDISPLA Y attribute and when an event
occurs in the clipboard-viewer scroll bars. The receiver
must respond to this message by scrolling the image,
invalidating the appropriate area of the clipboard viewer,
and updating the slider position.

WM_HSCROLLCLIPBOARD Sent by the clipboard viewer to the clipboard owner when
the clipboard contains data with the
CFLOWNERDISPLAY attribute and when an event
occurs in the scroll bars of the clipboard viewer. The
receiver must respond to this message by scrolling the
image, invalidating the appropriate area of the clipboard
viewer, and updating the slider position.

WM_PAINTCLIPBOARD Sent by the clipboard viewer to the clipboard owner when
the clipboard contains data with the
CFLOWNERDISPLAY attribute and when the
clipboard-viewer client area needs repainting. The
receiver must respond to this message by painting the
requested format (by calling WinGetPS for the window
handle of the clipboard viewer).

An application automatically loses ownership of the clipboard when the clipboard data is
cleared by the WinEmptyClipbrd function. Ownership is necessary only when data is present
on the clipboard. Typically, an application loses ownership when another application places
data on the clipboard.

22-8 PM Basic Programming Guide

Using the Clipboard
You can use the clipboard functions to perform the following tasks:

• Put data on the clipboard.
• Retrieve data from the clipboard.
• View data on the clipboard.

Putting Data on the Clipboard
The following code fragment shows how an application places text data on the clipboard,
how it opens the clipboard, copies the text to a shared memory object, empties the clipboard,
and passes the pointer to the clipboard:

#defi ne MAXSTR 1G24

PSZ pszSrc, pszOest;
BOOl. fSiJccess;
CHAR szGl i pString [MAXSTR] ;

. HAS hab;

Chapter 22. Clipboards 22-9

Retrieving Data from the Clipboard
The following code fragment shows how to open the clipboard, retrieve data in the requested
format, copy the data to local memory, and close the clipboard:

Viewing Data on the Clipboard
The following code fragment shows how a sample clipboard viewer responds to the
WM_DRAWCLIPBOARD message, drawing text and bit map data in its window. Notice that
the code uses the data retrieved from the clipboard before closing the clipboard. An
alternative strategy is to copy the data and then close the clipboard. In any case, the original
data from the clipboard cannot be used after the clipboard is closed.

22-1 0 PM Basic Programming Guide

Figure 22-3. Responding to WM_DRAWCLIPBOARD Message

Chapter 22. Clipboards 22-11

Related Functions
This section covers the functions that are related to Clipboards.

WinCloseClipbrd
This function closes the clipboard, allowing other applications to open it with the
WinOpenClipbrd function.

Syntax

#define INCL_WINCLIPBOARD /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinCloseClipbrd (HAB hab)

Parameters
hab (HAB) - input

Anchor-block handle.

Returns
rc (BOOl) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

22-12 PM Basic Programming Guide

WinEmptyClipbrd
This function empties the clipboard, removing and freeing all handles to data that is in the
clipboard.

Syntax

#define INCL_WINCLIPBOARD /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinEmptyClipbrd (HAB hab)

Parameters
hab (HAB) - input

Anchor-block handle.

Returns
rc (BOOL) - returns

Success indicator.

TRUE Successful completion
FALSE Error occurred.

Chapter 22. Clipboards 22-13

WinEnumClipbrdFmts
This function enumerates the list of clipboard data formats available in the clipboard.

Syntax

#define INCL_WINCLIPBOARD /* Or use INCL_WIN. INCL_PM. */

#include <os2.h>

ULONG WinEnumCllpbrdFmts (HAB hab, ULONG fmt)

Parameters
hab (HAS) - input

Anchor-block handle.

fmt (ULONG) - input
Previous clipboard-data format index.

Returns
ulNext (ULONG) - returns

Next clipboard-data format index.

o Enumeration is complete; that is, there are no more clipboard formats available.
Other Index of the next available clipboard-data format in the clipboard.

22·14 PM Basic Programming Guide

WlnOpenClipbrd
This function opens the clipboard.

Syntax

#define INCL_WINCLIPBOARD /* Or use INCL_WIN. INCL]M.*/

#include <os2.h>

BOOl WlnOpenCllpbrd (HAB hab)

Parameters
hab (HAB) - input

Anchor-block handle.

Returns
rc (BOOl) - returns

Success indicator.

TRUE Clipboard successfully opened
FALSE Error occurred.

Chapter 22. Clipboards 22·15

WinQueryClipbrdData
This function obtains a handle to the current clipboard data with a specified format.

Syntax

#define INCL_WINCLIPBOARD /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

ULONG WinQueryClipbrdData (HAB· hab, ,ULONG fmt)

Parameters
hab (HAB) - input

Anchor-block handle.

fmt (ULONG) - input
Format of the data to be accessed.

CF _TEXT Text format. Each line ends with a carriage-return/line-feed
combination. Tab characters separate fields within a line. A
NULL character signals the end of the data.

CF _DSPTEXT Text display format associated with private format.

CF _BITMAP Bit map.

CF _DSPBITMAP Bit-map display format associated with private format.

CF _METAFILE Metafile.

CF _DSPMETAFILE Metafile display format associated with private format.

CF _PALETTE Palette.

Returns
ulRet (ULONG) - returns

Handle to the clipboard data.

o Format does not exist, or an error occurred
Other Handle to the clipboard data.

22-16 PM Basic Programming Guide

WinQueryClipbrdFmtlnfo
This function determines whether a particular format of data is present in the clipboard, and if
so, provides information about that format.

Syntax

#define INCL_WINCLIPBOARD /* Or use INCL_WIN. INCL_PM. */

#include <os2.h>

BOOl WinQueryClipbrdFmtlnfo (HAS hab, UlONG fmt, PUlONG prgfFmtlnfo)

Parameters
hab (HAB) - input

Anchor-block handle.

fmt (UlONG) - input
Format of the data to be queried.

CF_DSPTEXT

CF_BITMAP

CF _DSPBITMAP

CF _METAFilE

CF _DSPMETAFllE

CF_PAlETIE

Text format. Each line ends with a carriage-return/line-feed
combination. Tab characters separate fields within a line. A
NUll character signals the end of the data.

Text display format associated with private format.

Bit map.

Bit-map display format associated with private format.

Metafile.

Metafile display format associated with private format.

Palette.

prgfFmtlnfo (PUlONG) - output
Memory model and usage flags.

Returns
rc (BOOl) - returns

Format-exists indicator.

TRUE
FALSE

fmt exists in the clipboard and prgfFmtlnfo is set
fmt does not exist in the clipboard and prgfFmtlnfo is not set.

Chapter 22. Clipboards 22-17

WinQueryClipbrdOwner
This function obtains any current clipboard owner window.

Syntax

#define INCL_WINCLIPBOARD /* Or use INCL_WIN, INCL_PM, */

#include<os2.h>

HWND WlnQueryCllpbrdOwner (HAB hab)

Parameters
hab (HAB) - input

Anchor-block handle.

Returns
hwndCllpbrdOwner (HWNO) - returns

Window handle of the current clipboard owner.

NULLHANDLE If the clipboard is not owned by any window, or if an error occurred.
Other Window handle of the current clipboard owner.

22·18 PM Basic Programming Guide

WinQueryClipbrdViewer
This function obtains any current clipboard viewer window.

Syntax

#define INCL_WINCLIPBOARD /* Or use INCL_WIN. INCL_PM. */

#include <os2.h>

HWND WinQueryClipbrdVlewer (HAB hab)

Parameters
hab (HAS) - input

Anchor-block handle.

Returns
hwndCllpbrdViewer (HWND) - returns

Current clipboard viewer window handle.

NULLHANDLE Clipboard does not have a current viewer window, or an error occurred
Other Current clipboard viewer window handle.

Chapter 22. Clipboards 22·19

WinSetClipbrdData
This call puts data into the clipboard.

Syntax

#define INCL_WINCLIPBOARD /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinSetClipbrdData (HAB hab, UlONG ulh, UlONG ulfmt,
ULONG flFmtlnfo)

Parameters
hab (HAB) - input

Anchor-block handle.

ulh (ULONG) - input
General handle to the data object being set into the clipboard.

ulfmt (ULONG) - input
Clipboard format of the data object referenced by ulh.

CF_DSPTEXT
CF_BITMAP
CF _DSPBITMAP
CF _METAFILE
CF _DSPMETAFILE
CF_PALETTE

flFmtlnfo (ULONG) - input
Information.

Returns
rc (BOOL) - returns

Data-placed indicator.

Text format. Each line ends with a carriage-return/line-feed
combination. Tab characters separate fields within a line. A
NULL character signals the end of the data.
Text display format associated with private format.
Bit map.
Bit-map display format associated with private format.
Metafile.
Metafile display format associated with private format.
Palette.

TRUE
FALSE

Data placed into clipboard.
Data is npt placed into clipboard, either an error occurred, or ulh is NULL.

22-20 PM Basic Programming Guide

WinSetClipbrdOwner
This function sets the current clipboard-owner window.

Syntax

#define INCL_WINCLIPBOARD /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl WinSetClipbrdOwner (HAB hab, HWND hwnd)

Parameters
hab (HAB) - input

Anchor-block handle.

hwnd (HWND) - input
Window handle of the new clipboard owner.

NUllHANDlE Clipboard-owner window is released and no new clipboard-owner
window is established.

Other Window handle of the new clipboard owner.

Returns
rc (Baal) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Chapter 22. Clipboards 22-21

WinSetClipbrdViewer
This function sets the current clipboard-viewer window to a specified window.

Syntax

#define INCL_WINCLIPBOARD /* Or use INCL_WIN. INCL_PM. */

#include <os2.h>

BOOl WlnSetCllpbrdViewer (HAB hab, HWND hwndNewClipVlewer)

Parameters
hab (HAB) - input

Anchor-block handle.

hwndNewCllpVlewer (HWND) - input
Window handle of the new clipboard viewer.

NUllHANDlE The clipboard-viewer window is released and no new clipboard-viewer
window is established.

Other Window handle of the new clipboard viewer.

Returns
rc (BOOl) - returns

Success indicator.

TRUE
FALSE

Valid, new clipboard-viewer window established
There is no new clipboard-viewer window established.

22·22 PM Basic Programming Guide

Related Messages
This section covers the messages that are related to Clipboards.

WM_DESTROYCLIPBOARD
This message is sent to the clipboard owner when the clipboard is emptied through a call to
WinEmptyClipbrd.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Chapter 22. Clipboards 22-23

WM_DRAWCLIPBOARD
This message is sent to the clipboard viewer window whenever the contents of the clipboard
change; that is, as a result of the WinCloseClipbrd function following a call to
WinSetClipbrdData.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

22-24 PM Basic Programming Guide

WM_HSCROLLCLIPBOARD
This message is sent to the clipboard-owner window when the clipboard contains a data
handle for the CFI_ OWNERDISPLA Y format, and there is an event in the clipboard viewer's
horizontal scroll bar.

Parameters
param1

hwndViewer (HWND)
Handle.

This contains a handle to the clipboard application window.

param2

sposScroll (SHORT)
Scroll position.

The position is either:

o scodeScroll is other than SB_SLlDERPOSITION
Other The position of the slider when scodeScroll is SB_SLlDERPOSITION.

scodeScroll (SHORT)
Scroll-bar code.

This is one of the SB_* scroll-bar codes as defined in WM_HSCROLL (in Horizontal
Scroll Bars).

SB LlNELEFT Sent if the operator clicks the left arrow of the scroll bar,
or presses the VK_LEFT key.

SB_LlNERIGHT Sent if the operator clicks the right arrow of the scroll bar,
or presses the VK_RIGHT key.

SB_PAGELEFT Sent if the operator clicks the area to the left of the slider,
or presses the VK_PAGELEFT key.

SB_PAGERIGHT Sent if the operator clicks the area to the right of the
slider, or presses the VK_PAGERIGHT key.

SB_SLlDERPOSITION Sent to indicate the final position of the slider. sposScroll
contains the final position of the slider.

SB_SLlDERTRACK Sent every time the slider position changes if the operator
moves the scroll bar slider with the pointer device.

SB_ENDSCROLL Sent when the operator has finished scrolling, but only if
the operator has not been doing any absolute slider
positioning.

Chapter 22. Clipboards 22-25

Returns
ulReserved (ULONG)

Reserved value, should be O.

22-26 PM Basic Programming Guide

WM_PAINTCLIPBOARD
This message is sent when the clipboard contains a data handle with the
CFI_OWNERDISPLAY information flag set.

Parameters
param1

hwndVlewer (HWNO)
Handle.

This is a handle to the clipboard application window.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Chapter 22. Clipboards 22-27

WM_RENDERALLFMTS
This message is sent to the application that owns the clipboard while the application is being
destroyed.

Parameters
param1

ulReserved (ULONG)
Reserved value, should be O.

param2

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

22-28 PM Basic Programming Guide

WM RENDERFMT
This message is a request to the clipboard owner to render the data of the format specified
in usfmt.

Parameters
param1

usfmt (USHORT)
Data format.

This is the format of the data to be rendered.

param2

CF_BITMAP

CF _DSPBITMAP

CF _DSPMETAFILE

CF_DSPTEXT

CF _METAFILE

CF_TEXT

ulReserved (ULONG)

A bit map.

A bit-map representation of a private data format.

A metafile representation of a private data format.

A textual representation of a private data format.

A metafile.

An array of text characters.

Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

Chapter 22. Clipboards 22-29

WM_SIZECLIPBOARD
This message is sent when the clipboard contains a data handle for the
CFI_OWNERDISPLAY format, and the clipboard application window has changed size.

Parameters
param1

hwndVlewer (HWND)
Handle of viewer window.

param2

ppalnt (PRECTL)
Rectangle to be re-painted.

Returns
ulReserved (ULONG)

Reserved value, should be O.

22-30 PM Basic Programming Guide

WM_ VSCROLLCLIPBOARD
This message is sent to the clipboard owner window when the clipboard contains a data
handle for the CFI_ OWNERDISPLA Y format, and there is an event in the clipboard viewer's
vertical scroll bar.

Parameters
param1

hwndVlewer (HWND)
Handle.

This contains a handle to the clipboard application window.

param2

sposScroll (SHORT)
Scroll position.

The position is either:

o scodeScroll is other than SB_SLlDERPOSITION
Other The position of the slider when scodeScrol/ is SB_SLlDERPOSITION.

scodeScroll (SHORT)
Scroll-bar code.

This is one of the SB _ * scroll-bar codes as defined in WM _ HSCROLL (in Horizontal
Scroll Bars).

SB_LlNELEFT Sent if the operator clicks the left arrow of the scroll bar,
or depresses the VK _LEFT key.

SB_LlNERIGHT Sent if the operator clicks the right arrow of the scroll bar,
or depresses the VK_RIGHT key.

SB_PAGELEFT Sent if the operator clicks the area.to the left of the slider,
or depresses the VK_PAGELEFT key.

SB_PAGERIGHT Sent if the operator clicks the area to the right of the
slider, or depresses the VK_PAGERIGHT key.

SB_SLlDERPOSITION Sent to indicate the final position of the slider. sposScroll
contains the final position of the slider.

SB_SLlDERTRACK Sent every time the slider position changes if the operator
moves the scroll bar slider with the pointer device.

SB_ENDSCROLL Sent when the operator has finished scrolling, but only if
the operator has not been doing any absolute slider
positioning.

Chapter 22. Clipboards 22·31

Returns
ulReserved (ULONG)

Reserved value, should be o.

22-32 PM Basic Programming Guide

Summary
Following are the OS/2 functions and messages used with the clipboard:

Table 22-4. Clipboard Functions

Function name Description

WinCloseClipbrd Closes the clipboard, enabling other applications to open
it by calling WinOpenClipbrd.

WlnEmptyCllpbrd Empties the clipboard, removing and freeing all handles to
data that is in the clipboard.

WlnEnumClipbrdFmts Enumerates the list of clipboard data formats available in
the clipboard.

WlnOpenCllpbrd Opens the clipboard.

WinQueryClipbrdData Obtains a handle to the current clipboard data with a
specified format.

WlnQueryClipbrdFmtlnfo Determines whether a particular format of data is present
in the clipboard; and, if so, provides information about that
format.

WinQueryClipbrdOwner Obtains any current clipboard owner window.

WlriQueryClipbrdViewer Obtains any current clipboard viewer window.

WinSetClipbrdData Puts data into the clipboard.

WinSetClipbrdOwner Sets the current clipboard owner window.

WinSetClipbrdViewer Sets the current clipboard viewer window to a specified
window.

Table 22-5 (Page 1 of 2). Clipboard Messages

Message Description

WM_DESTROYCLIPBOARD Sent to the clipboard owner when the clipboard is emptied
through a call to WinEmptyClipbrd.

WM_DRAWCLIPBOARD Sent to the clipboard viewer window whenever the
contents of the clipboard change, that is, as a result of
the WinCloseClipbrd call following a call to
WinSetClipbrdData.

WM_HSCROLLCLIPBOARD Sent to the clipboard owner window when the clipboard
contains a data handle for the CFI_OWNERDISPLAY
format.

WM_PAINTCLIPBOARD Sent when the clipboard contains a data handle with the
CFL OWNERDISPLA Y information flag set.

WM_RENDERALLFMTS Sent to the application that owns the clipboar~ while the
application is being destroyed.

WM_RENDERFMT A request to the clipboard owner to render the data of the
format specified in usfmt.

Chapter 22. Clipboards 22-33

Table 22-5 (Page 2 of 2). Clipboard Messages

Message Description

WM_SIZECLIPBOARD Sent when the clipboard contains a data handle for the
CFL OWNERDISPLA Y format, and the clipboard
application window has changed size.

WM_ VSCROLLCLIPBOARD Sent to the clipboard owner window when the clipboard
contains a data handle for the CFL OWNERDISPLA Y
format.

22-34 PM Basic Programming Guide

Chapter 23. Window Timers

A window timer enables an application to post timer messages at specified intervals. This
chapter describes how to use window timers in PM applications.

About Window Timers
A window timer causes the system to post WM_ TIMER messages to a message queue at
specified time intervals called timeout values. A timeout value is expressed in milliseconds.

An application starts the timer for a given window, specifying the timeout value. The system
counts down approximately that number of milliseconds and posts a WM_ TIMER message to
the message queue for the corresponding window. The system repeats the countdown-post
cycle continuously until the application stops the timer.

The timeout value can be any value in the range from 0 through 4,294,967,295 (full
magnitude of ULONG) for OS/2 Version 3; for previous versions, the maximum value is
65535. However, the operating system cannot guarantee that all values are accurate. The
actual timeout depends on how often the application retrieves messages from the queue and
the system clock rate. In many computers, the operating system clock ticks about every 50
milliseconds, but this can vary widely from computer to computer. In general, a timer
message cannot be posted more frequently than every system clock tick. To make the
system post a timer message as often as possible, an application can set the timeout value
to o.

An application starts a timer by using the WinStartTimer function. If a window handle is
given, the timer is created for that window. In such case, the WinDispatchMsg function
dispatches the WM_TIMER message to the given window when the message is retrieved
from the message queue. If a NULL window handle is given, it is up to the application to
check the message queue for WM_TIMER messages and dispatch them to the appropriate
window.

A new timer starts counting down as soon as it is created. An application can reset or
change a timer's timeout value in subsequent calls to the WinStartTimer function. To stop a
timer, an application can use the WinStopTimer function.

The system contains a limited number of timers that must be shared among all PM
applications; each application should use as few timers as possible. An application can
determine how many timers currently are available by checking the SV_CTIMERS system
value.

Every timer has a unique timer identifier. An application can request that a timer be created
with a particular identifier or have the system choose a unique value. When a WM_TIMER
message is received, the timer identifier is contained in the first message parameter. Timer
identifiers enable an application to determine the source of the WM_ TIMER message.

© Copyright IBM Corp. 1994 23-1

Three timer identifiers are reserved by and for the system and cannot be used by
applications; these system timer identifiers and their symbolic constants are shown in the
following table:

Table 23-1. System Timers

Value Meaning

TID_CURSOR Identifies the timer that controls cursor blinking. Its timeout value is stored
in the os2.ini file under the CursorBlinkRate keyname in the
PM _ Control Panel section.

TID _FLASHWINDOW Identifies the window-flashing timer.

TID_SCROLL Identifies the scroll-bar repetition timer that controls scroll-bar response
when the mouse button or a key is held down. Its timeout value is
specified by the system value SV _SCROLLRATE.

WM_TIMER messages, like WM_PAINT and semaphore messages, are not actually posted
to a message queue. Instead, when the time elapses, the system sets a record in the queue
indicating which timer message was posted. The system builds theWM _TIMER message
when the application retrieves the message from the queue.

Although a timer message may be in the queue, if there are any messages with higher
priority in the queue, the application retrieves those messages first. If the time elapses again
before the message is retrieved, the system does not create a separate record for this timer,
meaning that the application should not depend on the timer messages being processed at
precise intervals. To check the accuracy of the message, an application can retrieve the
actual system time by using the WinGetCurrentTime function. Comparing the actual time
with the time of the previous timer message is useful in determining what action to take for
the timer. .

USing Window Timers
There are two methods of using window timers. In the first method, you start the timer by
using the WinStartTimer function, supplying the window handle and timer identifier. The
function associates the timer with the specified window. The following code fragment starts
two timers: the first timer is set for every half second (500 milliseconds); the second, for
every two seconds (2000 milliseconds).

23-2 PM Basic Programming Guide

Once these timers are started, the WinDispatchMsg function dispatches WM_ TIMER
messages to the appropriate window. To process these messages, add a WM_TIMER case
to the window procedure for the given window. By checking the first parameter of the
WM_TIMER message, you can identify a particular timer, then carry out the actions related
to it. The following code fragment shows how to process WM_ TIMER messages:

c(lse.WM· TIMER:
. switch (SHORTl FROMMP (mpl» { /*Obtains timer identifier */

case ID_TIMERl:

• 1* Carry out tfmer-rel ated tasks.

*/

In the second method of using a timer, you specify NULL as the hwnd parameter of the
WinStartTimer call. The system starts a timer that has no associated window and assigns an
arbitrary timer identifier. The following code fragment starts two window timers using this
method:

,":' .. ::: >'::-:< .. <: <:".:.: .,::':." ::".:>; ,::."

{dT1 .. in¢~t~ Wi~Star1:ti mer(~al>. (HWNi» ~ULl.C:) • see);
.·.i~n",e¥';2'=Wir:lStartTilJler(hab. (HWND}·NULL. e, 2eee);

These timers have no associated window, so the application must check the message queue
for WM_ TIMER messages and dispatch them to the appropriate window procedure. The
following code fragment shows a message loop that handles the window timers:

Chapter 23. Window Timers 23-3

You can use the WinStopTimer function at any time to stop a timer. The following code
fragment demonstrates how to stop a timer:

23-4 PM Basic Programming Guide

Related Functions
This section covers the functions that are related to Windows Timers.

WinGetCurrentTime
This function returns the current time.

Syntax

#define INCL_WINTIMER /* Or use INCL_WIN. INCL_PM. */

#include <os2.h>

ULONG WinGetCurrentTlme (HAB hab)

Parameters
hab (HAS) - input

Anchor-block handle.

Returns
ulTime (ULONG) - returns

System-timer count.

Chapter 23. Window Timers 23·5

WinStartTimer
This function starts a timer.

Syntax

#define INCL_WINTIMER /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

ULONG WinStartTimer (HAB hab, HWND hwnd, ULONG idTimer,
ULONG dtTimeout)

Parameters
hab (HAB) - input

Anchor-block handle.

hwnd (HWND) - input
Window handle that is part of the timer identification.

NULLHANDLE The idTimer parameter is ignored, and this function returns a unique,
nonzero, identity which represents that timer. The timer message is
posted in the queue associated with the current thread, with the hwnd
parameter of the QMSG structure set to NULLHANDLE.

Other Window handle.

idTimer (ULONG) - input
Timer identifier.

dtTimeout (ULONG) - input
Delay time in milliseconds.

Returns
idTimer (ULONG) - returns

Timer identity.

23-6 PM Basic Programming Guide

WinStopTimer
This function stops a timer.

Syntax

#define INCL_WINTIMER /* Or use INCL_WIN. INCL_PM. */

#include <os2.h>

BOOl WlnStopTlmer (HAB hab, HWND hwnd, UlONG ulTlmer)

Parameters
hab (HAB) - input

Anchor-block handle.

hwnd (HWNO) - input
Window handle.

ulTlmer (UlONG) - input
Timer identifier.

Returns
rc (BOOl) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred, or timer did not exist.

Chapter 23. Window Timers 23-7

Related Messages
This section covers the messages that are related to Windows Timers.

WM_TIMER
This message is posted when a timer times out.

Parameters
param1

idTimer (USHORT)
Timer identity.

param2

Any timer Ids that are not being used must be passed on the default window
procedure.

ulReserved (ULONG)
Reserved value, should be O.

Returns
ulReserved (ULONG)

Reserved value, should be O.

23-8 PM Basic Programming Guide

Summary
Following are the OS/2 functions and the message used with window timers:

Table 23-2. Window Timer Functions

Function Name Description

WlnGetCurrentTlme Returns the current time.

WlnStartTlmer Starts a timer.

WlnStopTlmer Stops a timer.

Table 23-3. Window Timer Message

Message Description

WM_TIMER Posted when a timer times out.

Chapter 23. Window Timers 23-9

23-10 PM Basic Programming Guide

Chapter 24. Initialization Files

Initialization files enable an application to store and retrieve information that the application
uses when it starts up. This chapter describes how to use the OS/2 Profile Manager to
create, manage, and use the system's initialization files. The following topics are related to
this chapter:

• File system
• Presentation Manager interface applications.

About Initialization Files
An initialization file is a convenient place to store information between sessions. Profile
Manager enables applications to create their own initialization files and to access the OS/2
initialization files, os2.ini and os2sys.ini. Just as the system uses the os2.ini and os2sys.ini
files to store configuration information for system startup, an application can create an
initialization file that stores information it uses to initialize windows and data.

The system initialization files contain sections and settings used by the PM applications.
Although applications can read settings from the initialization files, only rarely does an
application need to change a setting. OS/2 initialization files are binary; the user cannot view
or edit them directly.

An initialization file consists of one or more sections; each section contains one or more
settings, or keys. Each key consists of two parts: a name and a value. Both section names
and key names are null-terminated strings. The value assigned to a key can be a
null-terminated string, a null-terminated string representing a signed integer, or individual
bytes of data.

Once an initialization file is created, an application can rename, copy, move, or delete that
file just as it does any other file. Although an application also could read directly to or write
directly to the initialization file, the application should always use Profile Manager functions to
access the contents of the file. Both character-based OS/2 applications and PM applications
can use Profile Manager functions. Before calling Profile Manager, a thread must initialize
an anchor block by using the Winlnitialize function.

Using Initialization Files
This section explains how to use Profile Manager functions to perform the following tasks:

• Create, open, and close initialization files.
• Read and write settings.
• Identify the initialization files.

© Copyright IBM Corp. 1994 24-1

Creating, Opening, and Closing Initialization Files
You can create an initialization file or open an existing initialization file by using the
PrfOpenProfile function. The function requires a handle to an anchor block and a pointer to
the name of an initialization file. If the file does not exist in the given path, the function
automatically creates an initialization file.

The fol/owing code fragment creates an initialization file named pmtools.ini in the current
directory:

If the PrfOpenProfile function is successful, it returns a handle to the initialization file.
Otherwise, it returns NULL, and the file is not created. Once you have an initialization-file
handle, you can create new sections and settings in the file.

To close an initialization file, you use the PrfCloseProfile function.

Reading and Writing Settings
An application can store strings, integers, and binary data in an initialization file and retrieve
them. To read from or write to an initialization file, your application must provide a section
name and a key name that specify which setting to read or change. If the section or key
name you specify in a writing operation does not exist in the file, it is added to the file and
assigned the given value.

The fol/owing code fragment creates a section named "MyApp" and a key named
"MainWindowColor" in a previously opened initialization file, and assigns the value of the
RGB structure to the new setting:

24-2 PM Basic Programming Guide

To read a setting, your application can retrieve the size of the setting and then read the
setting into an appropriate buffer by using the PrfQueryProfileSize and PrfQueryProfileData
functions, as shown in the following example. This example reads the setting
"MainWindowColor" from the "MyApp" section only if the size of the data is equal to the size
of the RGB structure.

HINI hin;.
ULONG c;b;
RGB.rgb;

PrfQueryProfileSize(hini _ II MyApp" • IMainWindowColor" .&cb);
if .(cb ==$i~eo.f(RGB»)

PrfQueryProfi 1 eData (hi n i •• IIMyAppll."Ma fnWindowCQl or". &rgb. &cb);

An application can also read strings by using the PrfQueryProfileString function, write strings
by using the PrfWriteProfileString function, and read integers (stored as strings) by using the
PrfQueryProfilelnt function.

Identifying the OS/2 Initialization Files
Your application can retrieve the names of the system initialization files by using the
PrfQueryProfile function. Although the OS/2 initialization files are usually named os2.ini and

. os2sys.ini, you can use other files when starting the system.

The following example retrieves the names of the initialization files and copies their names to
the strings szUserName and szSysName. Once you know the names of the OS/2
initialization files, you can use them to open the files and read settings.

You can change the OS/2 initialization files to files of your choice by using the PrfReset
function. This function requires the names of two initialization files and uses them as
replacements for the os2.ini and os2sys.ini files. The system is then reset by using the
settings in the new files.

Chapter 24. Initialization Files 24-3

Related Functions
This section covers the functions that are related to Initialization Files.

PrfCloseProfile
This function indicates that a profile is no longer available for use.

Syntax

#define INCL_WINSHELLDATA /* Or use INCL_WIN. INCL_PM. */

#include <os2.h>

BOOl PrfCloseProfile (HINI hini)

Parameters
hini (HINI) - input

Initialization-file handle.

Returns
rc (BOOl) - returns

Success indicator.

TRUE
FALSE

Successful completion.
Error occurred.

24-4 PM Basic Programming Guide

PrfOpen Profi Ie
This function indicates that a file is available for use as a profile.

Syntax

#define INCL_WINSHELLDATA /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

HINI PrfOpenProflle (HAS hab, PSZ pszFileName)

Parameters
hab (HAB) - input

Anchor-block handle.

pszFlleName (PSZ) - input
User-profile file name.

Returns
hini (HINI) - returns

Initialization-file handle.

NULLHANDLE
Other

Error occurred
Initialization-file handle.

Chapter 24. Initialization Files 24-5

PrfQueryProfile
This function returns a description of the current user and system profiles.

Syntax

#define INCL_WINSHELLDATA /* Or use INCL_WIN. INCL_PM. */

#include <os2.h>

BOOLPrfQueryProfile (HAB hab, PPRFPROFILE pprfproProfile)

Parameters
hab (HAB) - input

Anchor-block handle.

pprfproProfile (PPRFPROFllE) - in/out
Profile names structure.

Returns
rc (BOOl) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred, or there was insufficient space to record the names, which
have been truncated.

24-6 PM Basic Programming Guide

PrfQueryProfi leData
This function returns a string of binary data from the specified profile.

Syntax

#define INCL_WINSHELLDATA /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl PrfQueryProfileData (HINI hlnl, PSZ pszApp, PSZ pszKey, PVOID pBuffer,
PUlONG pulBufferMax)

Parameters
hini (HINI) - input

Initialization-file handle.

HINI_PROFILE
HINLUSERPROFILE
HINLSYSTEMPROFILE
Other

Both the user profile and system profile are searched
The user profile is searched
The system profile is searched

pszApp (PSZ) - input
Application name.

pszKey (PSZ) - input
Key name.

pBuffer (PVOID) - output
Value data.

Initialization-file handle.

pulBufferMax (PULONG) - in/out
Size of value data.

Returns
rc (BOOL) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Chapter 24. Initialization Files 24-7

PrfQueryProfilelnt
This function returns an integer value from the specified profile.

Syntax

#define INCL_WINSHELLDATA /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

LONG PrfQueryProfilelnt (HINI hini, PSZ pszApp, PSZ pszKey, LONG IDefault)

Parameters
hini (HINI) - input

Initialization-file handle.

HINI_PROFILE
HINI_USERPROFILE
HINI_SYSTEMPROFILE
Other

pszApp (PSZ) - input
Application name.

pszKey . (PSZ) - input
Key name.

IDefault (LONG) - input
Default value.

Returns
IResult (LONG) - returns

Both the user profile and system profile are searched
The user profile is searched
The system profile is searched
Initialization-file handle returned by PrfOpenProfile.

Key value specified in the initialization file.

24 .. 8 PM Basic Programming Guide

PrfQueryProfileSize
This function obtains the size in bytes of the value of a specified key for a specified
application in the profile.

Syntax

#define INCL_WINSHELLDATA /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl PrfQueryProfileSize (HINI hini, PSZ pszApp, PSZ pszKey,
PUlONG pDatalen)

Parameters
hinl (HINI) - input

Initialization-file handle.

HINI_PROFllE
HINL USERPROFllE
HINI_ SYSTEMPROFllE
Other

pszApp (PSZ) - input
Application name.

pszKey (PSZ) - input
Key name.

pDatalen (PUlONG) - output
Data length.

Returns
rc (BOOl) - returns

Success indicator.

Both the user profile and system profile are searched
The user profile is searched
The system profile is searched
Initialization-file handle returned by PrfOpenProfile.

TRUE
FALSE

Successful completion
Error occurred.

Chapter 24. Initialization Files 24-9

PrfQueryProfileString
This function retrieves a string from the specified profile.

Syntax

#define INCL_WINSHELLDATA /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

ULONG PrfQueryProfileString (HINI hlni, PSZ pszApp, PSZ pszKey,
PSZ pszOefault, PVOID pBuffer,
ULONG cchBufferMax)

Parameters
hini (HINI) - input

Initialization-file handle.

HINI_PROFILE
HINI_USERPROFILE
HINI_ SYSTEMPROFILE
Other

pszApp (PSZ) - input
Application name.

pszKey (PSZ) - input
Key name.

pszDefault (PSZ) - input
Default string.

pBuffer (PVOID) - output
Profile string.

Both the user profile and system profile are searched
The user profile is searched
The· system profile is searched
Initialization-file handle returned by the PrfOpenProfile
function.

cchBufferMax (ULONG) - input
Maximum string length.

Returns
pulLength (ULONG) - returns

String length returned.

24-10 PM Basic Programming Guide

PrfReset
This function defines which files are to be used as the user and system profiles.

Syntax

#define INCL_WINSHELLDATA /* Or use INCL_WIN, INCL_PM, */

#include <os2.h>

BOOl PrfReset (HAB hab, PRFPROFllE prfproProflle)

Parameters
hab (HAB) - input

Anchor-block handle.

prfproProflle (PRFPROFllE) - input
Profile-names structure.

Returns
rc (BOOl) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Chapter 24. Initialization Files 24-11

PrfWriteProfileData
This function writes a string of binary data into the specified profile.

Syntax

#define INCL_WINSHELLDATA /* Or use INCL_WIN, INCL_PM, */

, #include <os2.h>

BOOl PrfWriteProfileOata (HINI hini, PSZ pszApp, PSZ pszKey, PVOID pOata,
ULONG cchOataLen)

Parameters
hini (HINI) - input

Initialization-file handle.

HINI_PROFllE
HINI_USERPROFllE
HINI_SYSTEMPROFllE
Other

pszApp (PSZ) - input
Application name.

pszKey (PSZ) - input
Key name.

pOata (PVOID) - input
Value data.

cchDataLen (UlONG) - input
Size of value data.

Returns
rc (BOOl) - returns

Success indicator.

User profile
User profile
System profile
Initialization-file handle returned by PrfOpenProfile.

TRUE Successful completion
FALSE Error occurred.

24-12 PM Basic Programming Guide

PrfWriteProfileString
This function writes a string of character data into the specified profile.

Syntax

#define INCL_WINSHELLDATA /* Or use INCL_WIN. INCL_PM. */

#include <os2.h>

BOOL PrfWriteProfileString (HINI hini, PSZ pszApp, PSZ pszKey, PSZ pszData)

Parameters
hini (HINI) - input

Initialization-file handle.

User profile
User profile
System profile

HINI_PROFllE
HINI_USERPROFllE
HINLSYSTEMPROFllE
Other Initialization-file handle returned by PrfOpenProfile.

pszApp (PSZ) - input
Application name.

pszKey (PSZ) - input
Key name.

pszData (PSZ) - input
Text string.

Returns
rc (Baal) - returns

Success indicator.

TRUE
FALSE

Successful completion
Error occurred.

Chapter 24. Initialization Files 24-13

Related Data Structures
This section covers the data structures that are related to Initialization Files.

PRFPROFILE
Profile structure.

Syntax

Fields
cchUserName (ULONG)

Length of user profile name.

pszUserName (PSZ)
User profile name.

cchSysLen (ULONG)
Length of system profile name.

pszSysName (PSZ)
System profile name.

24-14 PM Basic Programming Guide

Summary
Following are the functions and data structure used with initialization files:

Table 24-1. Initialization File Functions

Function name Description

PrfCloseProflle Indicates that a profile is no longer available for use.

PrfOpenProflle Indicates that a file is available for use as a profile

PrfQueryProflle Returns a description of the current user and system
profiles.

PrfQueryProflleData Returns a string of binary data from the specified profile.

PrfQueryProfllelnt Returns an integer value from the specified profile.

PrfQueryProflleSlze Obtains the size, in bytes, of the value of a specified key
for a specified application in the profile.

PrfQueryProflleStrlng Retrieves a string from the specified profile.

PrfReset Defines which files are to be used as the user and system
profiles.

PrfWrlteProflleData Writes a string of binary data into the specified profile.

PrfWrlteProflleStrlng Writes a string of character data into the specified profile.

Table 24-2. Initialization File Structures

Structure name Description

PRFPROFILE Profile Structure.

Chapter 24. Initialization Files 24-15

24-16 PM Basic Programming Guide

Appendix A. Notices

References in this publication to IBM products, programs, or services do not imply that IBM
intends to make these available in all countries in which IBM operates. Any reference to an
IBM product, program or service is not intended to state or imply that only IBM's product,
program, or service may be used. Any functionally equivalent product, program, or service
that does not infringe any of IBM's intellectual property rights or other legally protectable
rights may be used instead of the IBM product, program, or service. Evaluation and
verification of operation in conjunction with other products, programs, or services, except
those expressly designated by IBM, are the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.
You can send license inquiries, in writing, to the IBM Director of Licensing, IBM Corporation,
500 Columbus Avenue, Thornwood NY 10594, U.S.A.

Trademarks
The following terms, denoted by an asterisk (*) in this publication, are trademarks of the IBM
Corporation in the United States or other countries:

Common User Access
IBM
OS/2
SAA
Workplace Shell

CUA
Operating System/2
Presentation Manager
Systems Application Architecture

The following terms, denoted by a double asterisk (**) in this publication, are trademarks of
other companies as follows. Other trademarks are trademarks of their respective companies.

Helvetica Trademark of Linotype Company

Double-Byte Character Set (DBCS)
Throughout this publication, you will see reference to specific values for character strings.
The values are for single-byte character set (SBCS). If you use the double-byte character
set (DBCS), note that one DBCS equals two SBCS characters.

© Copyright IBM Corp. 1994 A-1

A-2 PM Basic Programming Guide

Glossary

This glossary defines many of the terms used in this
book. It includes terms and definitions from the IBM
Dictionary of Computing, as well as terms specific to
the OS/2 operating system and the Presentation
Manager. It is not a complete glossary for the entire
OS/2 operating system; nor is it a complete
dictionary of computer terms.

Other primary sources for these definitions are:

• The American National Standard· Dictionary for
Information Systems, ANSI X3.172-1990,
copyrighted 1990 by the American National
Standards Institute, 11 West 42nd Street, New
York, New York 10036. These definitions are
identified by the symbol (A) after the definition.

• The Information Technology Vocabulary,
developed by Subcommittee 1, Joint Technical
Committee 1, of the International Organization
for Standardization and the International
Electrotechnical Commission (lSO/IEC
JTC1/SC1). Definitions of published parts of this
vocabulary are identified by the symbol (I) after
the definition; definitions taken from draft
international standards, committee drafts, and
working papers being developed by ISO/IEC
JTC1/SC1 are identified by the symbol (T) after
the definition, indicating that final agreement has
not yet been reached among the participating
National Bodies of SC1.

© Copyright I BM Corp. 1994

Glossary Listing

A
accelerator. In SAA Common User Access
architecture, a key or combination of keys that
invokes an application-defined function.

accelerator table. A table used to define which key
strokes are treated as accelerators and the
commands they are translated into.

access mode. The manner in which an application
gains access to a file it has opened. Examples of
access modes are read-only, write-only, and
read/write.

access permission. All access rights that a user
has regarding an object. (I)

action. One of a set of defined tasks that a
computer performs. Users request the application to
perform an action in several ways, such as typing a
command, pressing a function key, or selecting the
action name from an action bar or menu.

action bar. In SAA Common User Access
architecture, the area at the top of a window that
contains choices that give a user access to actions
available in that window.

action point. The current position on the screen at
which the pointer is pointing. Contrast with hot spot
and input focus.

active program. A program currently running on
the computer. An active program can be interactive
(running and receiving input from the user) or
noninteractive (running but not receiving input from
the user). See also interactive program and
noninteractive program.

active window. The window with which the user is
currently interacting.

address space. (1) The range of addresses
available to a program. (A) (2) The area of virtual
storage available for a particular job.

X-1

alphanumeric video output. Output to the logical
video buffer when the video adapter is in text mode
and the logical video buffer is addressed by an
application as a rectangular array of character cells.

American National Standard Code for Information
Interchange. The standard code, using a coded
character set consisting of 7 -bit coded characters (8
bits including parity check), that is used for
information interchange among data processing
systems, data communication systems, and
associated equipment. The ASCII set consists of
control characters and graphic characters. (A)

Note: IBM has defined an extension to ASCII code
(characters 128-255).

anchor. A window procedure that handles
Presentation Manager* message conversions
between an icon procedure and an application.

anchor block. An area of
Presentation-Manager-internal resources to allocated
process or thread that calls Winlnitialize.

anchor point. A point in a window used by a
program designer or by a window manager to
position a subsequently appearing window.

ANSI. American National Standards Institute.

APA. All points addressable.

API. Application programming interface.

application. A collection of software components
used to perform specific types of work on a
computer; for example, a payroll application, an
airline reservation application, a network application.

application object. In SM Advanced Common
User Access architecture, a form that an application
provides for a user; for example, a spreadsheet form.
Contrast with user object.

application programming interface (API). A
functional interface supplied by the operating system
or by a separately orderable licensed program that
allows an application program written in a high-level
language to use specific data or functions of the
operating system or the licensed program.

X-2 PM Basic Programming Guide

application-modal. Pertaining to a message box or
dialog box for which processing must be completed
before further interaction with any other window
owned by the same application may take place.

area. In computer graphics, a filled shape such as' a
solid rectangle.

ASCII. American National Standard Code for
Information Interchange.

ASCIIZ. A string of ASCII characters that is
terminated with a byte containing the value O.

aspect ratio. In computer graphics, the
width-to-height ratio of an area, symbol, or shape.

asynchronous (ASYNC). (1) Pertaining to two or
more processes that do not depend upon the
occurrence of specific events such as common
timing signals. (T) (2) Without regular time
relationship; unexpected or unpredictable with
respect to the execution of program instructions.
See also synchronous.

atom. A constant that represents a string. As soon
as a string has been defined as an atom, the atom
can be used in place of the string to save space.
Strings are associated with their respective atoms in
an atom table. See also integer atom.

atom table. A table used to relate atoms with the
strings that they represent. Also in the table is the
mechanism by which the presence of a string can be
checked.

atomic operation. An operation that completes its
work on an object before another operation can be
performed on the same object.

attribute. A characteristic or property that can be
controlled, usually to obtain a required appearance;
for example, the color of a line. See also graphics
attributes and segment attributes.

automatic link. In Information Presentation Facility
(IPF), a link that begins a chain reaction at the
primary window. When the user selects the primary
window, an automatic link is activated to display
secondary windows.

AVIO. Advanced Video Input/Output.

B
Bezier curve. (1) A mathematical technique of
specifying smooth continous lines and surfaces,
which require a starting point and a finishing point
with several intermediate points that influence or
control the path of the linking curve. Named after
Dr. P. Bezier. (2) (D of C) In the AIX Graphics
Library, a cubic spline approximation to a set of four
control points that passes through the first and fourth
control points and that has a continuous slope where
two spline segments meet. Named after Dr. P.
Bezier.

background. (1) In multiprogramming, the
conditions under which low-priority programs are
executed. Contrast with foreground. (2) An active
session that is not currently displayed on the screen.

background color. The color in which the
background of a graphic primitive is drawn.

background mix. An attribute that determines how
the background of a graphic primitive is combined
with the existing color of the graphics presentation
space. Contrast with mix.

background program. In multiprogramming, a
program that executes with a low priority. Contrast
with foreground program.

bit map. A representation in memory of the data
displayed on an APA device, usually the screen.

block. (1) A string of data elements recorded or
transmitted as a unit. The elements may be
characters, words, or logical records. (T) (2) To
record data in a block. (3) A collection of contiguous
records recorded as a unit. Blocks are separated by
interblock gaps and each block may contain one or
more records. (A)

block device. A storage device that performs I/O
operations on blocks of data called sectors. Data on
block devices can be randomly accessed. Block
devices are designated by a drive letter (for example,
C:).

blocking mode. A condition set by an application
that determines when its threads might block. For
example, an application might set the Pipemode
parameter for the DosCreateNPipe function so that,

its threads perform I/O operations to the named pipe
block when no data is available.

border. A visual indication (for example, a
separator line or a background color) of the
boundaries of a window.

boundary determination. An operation used to
compute the size of the smallest rectangle that
encloses a graphics object on the screen.

breakpoint. (1) A point in a computer program
where execution may be halted. A breakpoint is
usually at the beginning of an instruction where halts,
caused by external intervention, are convenient for
resuming execution. (T) (2) A place in a program,
specified by a command or a condition, where the
system halts execution and gives control to the
workstation user or to a specified program.

broken pipe. When all of the handles that access
one end of a pipe h·ave been closed.

bucket. One or more fields in which the result of an
operation is kept.

buffer. (1) A portion of storage used to hold input
or output data temporarily. (2) To allocate and
schedule the use of buffers. (A)

button. A mechanism used to request or initiate an
action. See also barrel buttons, bezel buttons,
mouse button, push button, and radio button.

byte pipe. Pipes that handle data as byte streams.
All unnamed pipes are byte pipes. Named pipes can
be byte pipes or message pipes. See byte stream.

byte stream. Data that consists of an unbroken
stream of bytes.

c
cache. A high-speed buffer storage that contains
frequently accessed instructions and data; it is used
to reduce access time.

cached micro presentation space. A presentation
space from a Presentation-Manager-owned store of
micro presentation spaces. It can be used for
drawing to a window only, and must be returned to
the store when the task is complete.

CAD. Computer-Aided Design.

Glossary X-3

call. (1) The action of bringing a computer program,
a routine, or a subroutine into effect, usually by
specifying the entry conditions and jumping to an
entry point. (I) (A) (2) To transfer control to a
procedure, program, routine, or subroutine.

calling sequence. A sequence of instructions
together with any associated data necessary to
execute a call. (T)

Cancel. An action that removes the current window
or menu without processing it, and returns the
previous window.

cascaded menu. In the OS/2 operating system, a
menu that appears when the arrow to the right of a
cascading choice is selected. It contains a set of
choices that are related to the cascading choice.
Cascaded menus are used to reduce the length of a
menu. See also cascading choice.

cascading choice. In SM Common User Access
architecture, a choice in a menu that, when selected,
produces a cascaded menu containing other choices.
An arrow (~) appears to the right of the cascading
choice.

CASE statement. In PM programming, provides the
body of a window procedure. There is usually one
CASE statement for each message type supported
by an application.

CGA. Color graphics adapter.

chained list. A list in which the data elements may
be dispersed but in which each data element
contains information for locating the
next. (T) Synonymous with linked list.

character. A letter, digit, or other symbol.

character box. In computer graphics, the boundary
that defines, in world coordinates, the horizontal and
vertical space occupied by a single character from a
character set. See also character mode. Contrast.
with character cell.

character cell. The physical, rectangular space in
which any single character is displayed on a screen
or printer device. Position is addressed by row and
column coordinates. Contrast with character box.

character code. The means of addressing a
character in a character set, sometimes called code
point.

X-4 PM Basic Programming Guide

character device. A device that performs I/O
operations on one character at a time. Because
character devices view data as a stream of bytes,
character-device data cannot be randomly accessed.
Character devices include the keyboard, mouse, and
printer, and are referred to by name.

character mode. A mode that, in conjunction with
the font type, determines the extent to which
graphics characters are affected by the character
box, shear, and angle attributes.

character set. (1) An ordered set of unique
representations called characters; for example, the
26 letters of English alphabet, Boolean 0 and 1, the
set of symbols in the Morse code, and the 128 ASCII
characters. (A) (2) All the valid characters for a
programming language or for a computer system.
(3) A group of characters used for a specific reason;
for example, the set of characters a printer can print.

check box. In SM Advanced Common User
Access architecture, a square box with associated
text that represents a choice. When a user selects a
choice, an X appears in the check box to indicate
that the choice is in effect. The user can clear the
check box by selecting the choice again. Contrast
with radio button.

check mark. (1) (0 of C) In SM Advanced
Common User Access architecture, a (y) symbol that
shows that a choice is currently in effect. (2) The
symbol that is used to indicate a selected item on a
pull-down menu.

child process. In the OS/2 operating system, a
process started by another process, which is called
the parent process. Contrast with parent process.

child window. A window that appears within the
border of its parent window (either a primary window
or another child window). When the parent window
is resized, moved, or destroyed, the child window
also is resized, moved, or destroyed; however, the
child window can be moved or resized independently
from the parent window, within the boundaries of the
parent window. Contrast with parent window.

choice. (1) An option that can be selected. The
choice can be presented as text, as a symbol
(number or letter), or as an icon (a pictorial symbol).
(2) (0 of C) In SM Common User Access
architecture, an item that a user can select.

,chord. (1) To press more than one button on a
pointing device while the pointer is within the limits
that the user has specified for the operating
environment. (2) (D of C) In graphics, a short line
segment whose end points lie on a circle. Chords
are a means for producing a circular image from
straight lines. The higher the number of chords per
circle, the smoother the circular image.

class. In object-oriented design or programming, a
group of objects that share a common definition and
that therefore share common properties, operations,
and behavior. Members of the group are called
instances of the class.

class method. In System Object Model, an action
that can be performed on a class object.
Synonymous with factory method.

class object. In System Object Model, the run-time
implementation of a class.

class style. The set of properties that apply to
every window in a window class.

client. (1) A functional unit that receives shared
services from a server. (T) (2) A user, as in a
client process that uses a named pipe or queue that
is created and owned by a server process.

client area. The part of the window, inside the
border, that is below the menu bar. It is the user's
work space, where a user types information and
selects choices from selection fields. In primary
windows, it is where an application programmer
presents the objects that a user works on.

client program. An application that creates and
manipulates instances of classes.

client window. The window in which the application
displays output and receives input. This window is
located inside the frame window, under the window
title bar and any menu bar, and within any scroll
bars.

clip limits. The area of the paper that can be
reached by a printer or plotter.

clipboard. In SM Common User Access
architecture, an area of computer memory, or
storage, that temporarily holds data. Data in the
clipboard is ava.ilable to other applications.

clipping. In computer graphics, removing those
parts of a display image that lie outside a given
boundary. (I) (A)

clipping area. The area in which the window can
paint.

clipping path. A clipping boundary in
world-coordinate space.

clock tick. The minimum unit of time that the
system tracks. If the system timer currently counts
at a rate of X Hz, the system tracks the time every
1/X of a second. Also known as time tick.

CLOCK$. Character-device name reserved for the
system clock.

code page. An assignment of graphic characters
and control-function meanings to all code points.

code point. (1) Synonym for character code. (2)
(D of C) A 1-byte code representing one of 256
potential characters.

code segment. An executable section of
programming code within a load module.

color dithering. See dithering.

color graphics adapter (CGA). An adapter that
simultaneously provides four colors and is supported
by all IBM Personal Computer and Personal
System/2 models.

cammand. The name and parameters associated
with an action that a program can perform.

command area. An area composed of a command
field prompt and a command entry field.

command entry field. An entry field in which users
type commands.

command line. On a display screen, a display line,
sometimes at the bottom of the screen, in which only
commands can be entered.

command mode. A state of a system or device in
which the user can enter commands.

command prompt. A field prompt showing the
location of the command entry field in a panel.

Common Programming Interface (CPI).
Definitions of those application development

Glossary X-5

languages and services that have, or are intended to
have, implementations on and a high degree of
commonality across the SAA environments. One of
the three SAA architectural areas. See also
Common User Access architecture.

Common User Access (CUA) architecture.
Guidelines for the dialog between a human and a
workstation or terminal. One of the three SAA
architectural areas. See also Common Programming
Interface.

compile. To translate a program written in a
higher-level programming language into a machine
language program.

composite window. A window composed of other
windows (such as a frame window, frame-control
windows, and a client window) that are kept together
as a unit and that interact with each other.

computer-aided design (CAD). The use of a
computer to design or change a product, tool, or
machine, such as using a computer for drafting or
illustrating.

COM1, COM2, COM3. Character-device names
reserved for serial ports 1 through 3.

CON. Character-device name reserved for the
console keyboard and screen.

container. In SAA Common User Access
architecture, an object that holds other objects. A
folder is an example of a container object. See also
folder and object.

contextual help. In SAA Common User Access
Architecture, help that gives specific information
about the item the cursor is on. The help is
contextual because it provides information about a
specific item as it is currently being used. Contrast
with extended help.

contiguous. Touching or joining at a common edge
or boundary, for example, an unbroken consecutive
series of storage locations.

control. In SAA Advanced Common User Access
architecture, a component of the user interface that
allows a user to select choices or type information;
for example, a check box, an entry field, a radio
button.

X-6 PM Basic Programming Guide

control area. A storage area used by a computer
program to hold control information. (I) (A)

Control Pane'. In the Presentation Manager, a
program used to set up user preferences that act
globally across the system.

Control Program. (1) The basic functions of the
operating system, including DOS emulation and the
support for keyboard, mouse, and video input/output.
(2) A computer program designed to schedule and to
supervise the execution of programs of a computer
system. (I) (A)

control window. A window that is used as part of a
composite window to perform simple input and
output tasks. Radio buttons and check boxes are
examples.

control word. An instruction within a document that
identifies its parts or indicates how to format the
document.

coordinate space. A two-dimensional set of points
used to generate output on a video display of printer.

Copy. A choice that places onto the clipboard, a
copy of what the user has selected. See also Cut
and Paste.

correlation. The action of determining which
element or object within a picture is at a given
position on the display. This follows a pick
operation.

coverpage window. A window in which the
application's help information is displayed.

CPl. Common Programming Interface.

critical extended attribute. An extended attribute
that is necessary for the correct operation of the
system or a particular application.

critical section. (1) In programming languages, a
part of an asynchronous procedure that cannot be
executed simultaneously with a certain part of
another asynchronous procedure. (I)

Note: Part of the other asynchronous procedure
also is a critical section. (2) A section of code that is
not reentrant; that is, code that can be executed by
only one thread at a time.

CUA architecture. Common User Access
architecture.

current position. In computer graphics, the
position, in user coordinates, that becomes the
starting point for the next graphics routine, if that
routine does not explicitly specify a starting point.

cursor. A symbol displayed on the screen and
associated with an input device. The cursor
indicates where input from the device will be placed.
Types of cursors include text cursors, graphics
cursors, and selection cursors. Contrast with pointer
and input focus.

Cut. In SM Common User Access architecture, a
choice that removes a selected object, or a part of
an object, to the clipboard, usually compressing the
space it occupied in a window. See also Copy and
Paste.

D
daisy chain. A method of device interconnection for
determining interrupt priority by connecting the
interrupt sources serially.

data segment. A nonexecutable section of a
program module; that is, a section of a program that
contains data definitions.

data structure. The syntactic structure of symbolic
expressions and their storage-allocation
characteristics. (T)

data transfer. The movement of data from one
object to another by way of the clipboard or by direct
manipulation.

DBCS. Double-byte character set.

DOE. Dynamic data exchange.

deadlock. (1) Unresolved contention for the use of
a resource. (2) An error condition in which
processing cannot continue because each of two
elements of the process is waiting for an action by,
or a response from, the other. (3) An impasse that
occurs when multiple processes are waiting for the
availability of a resource that will not become
available because it is being held by another process
that is in a similar wait state.

debug. To detect, diagnose, and eliminate errors in
programs. (T)

decipoint. In printing, one tenth of a point. There
are 72 points in an inch.

default procedure. A function provided by the
Presentation Manager Interface that may be used to
process standard messages from dialogs or
windows.

default value. A value assumed when no value has
been specified. Synonymous with assumed value.
For example, in the graphics programming interface,
the default line-type is 'solid'.

definition list. A type of list that pairs a term and
its description.

delta. An application-defined threshold, or number
of container items, from either end of the list.

descendant. See child process.

descriptive text. Text used in addition to a field
prompt to give more information about a field.

Deselect all. A choice that cancels the selection of
all of the objects that have been selected in that
window.

Desktop Manager. In the Presentation Manager, a
window that displays a list of groups of programs,
each of which can be started or stopped.

desktop window. The window, corresponding to
the physical device, against which all other types of
windows are established.

detached process. A background process that
runs independent of the parent process.

detent. A point on a slider that represents an exact
value to which a user can move the slider arm.

device context. A logical description of a data
destination such as memory, metafile, display,
printer, or plotter. See also direct device context,
information device context, memory device context,
metafile device context, queued device context, and
screen device context.

device driver. A file that contains the code needed
to attach and use a device such as a display, printer,
or plotter.

device space. (1) Coordinate space in which
graphics are assembled after all GPI transformations
have been applied. Device space is defined in

Glossary X-7

device-specific units. (2) (0 of C) In computer
graphics, a space defined by the complete set of
addressable points of a display device. (A)

dialog. The interchange of information· between a
computer and its user through a sequence of
requests by the user and the presentation of
responses by the computer.

dialog box. In SM Advanced Common User
Access architecture, a movable window, fixed in size,
containing controls that a user uses to provide
information required by an application so that it can
continue to process a user request. See also
message box, primary window, secondary window.
Also known as a pop-up window.

Dialog Box Editor. A WYSIWYG editor that
creates dialog boxes for communicating with the
application user.

dialog item. A component (for example, a menu or
a button) of a dialog box. Dialog items are also used
when creating dialog templates.

dialog procedure. A dialog window that is
controlled by a window procedure. It is responsible
for responding to all messages sent to the dialog
window.

dialog tag language. A markup language used by
the DTL compiler to create dialog objects.

dialog template. The definition of a dialog box,
which contains details of its position, appearance,
and window ID, and the window ID of each of its
child windows.

direct device context. A logical description of a
data destination that is a device other than the
screen (for example, a printer or plotter), and where
the output is not to go through the spooler. Its
purpose is to satisfy queries. See also device
context.

direct manipulation. The action of using the
mouse to move objects around the screen. For
example, moving files and directories around in the
Workplace Shell.

direct memory access (DMA). A technique for
moving data directly between main storage and
peripheral equipment without requiring processing of
the data by the processing unit.(T)

x-a PM Basic Programming Guide

directory. A type of file containing the names and
controlling information for other files or other
directories.

display point. Synonym for pel.

dithering. (1) The process used in color displays
whereby every other pel is set to one color, and the
intermediate pels are set to another. Together they
produce the effect of a third color at normal viewing
distances. This process can only be used on solid
areas of color; it does not work, for example, on
narrow lines. (2) (0 of C) In computer graphics, a
technique of interleaving dark and light pixels so that
the resulting image looks smoothly shaded when
viewed from a distance.

DMA. Direct memory access.

DOS Protect Mode Interface (DPMI). An interface
between protect mode and real mode programs.

double-byte character set (DBCS). A set of
characters in which each character is represented by
two bytes. Languages such as Japanese, Chinese,
and Korean, which contain more characters than can
be represented by 256 code points, require
double-byte character sets. Since each character
requires two bytes, the entering, displaying, and
printing of DBCS characters requires hardware and
software that can support DBCS.

doubleword. A contiguous sequence of bits or
characters that comprises two computer words and
is capable of being addressed as a unit. (A)

DPMI. DOS Protect Mode Interface.

drag. In SM Common User Access, to use a
pointing device to move an object; for example,
clicking on a window border, and dragging it to make
thewindow larger.

dragging. (1) In computer graphics, moving an
object on the display screen as if it were attached to
the pointer. (2) (0 of C) In computer graphics,
moving one or more segments on a display surface
by translating. (I) (A)

drawing chain. See segment chain.

drop. To fix the position of an object that is being
dragged, by releasing the select button of the
pointing device.

drop. To fix the position of an object that is being
dragged, by releasing the select button of the
pointing device. See also drag.

DTL. Dialog tag language.

dual-boot function. A feature of the OS/2
operating system that allows the user to start DOS
from within the operating system, or an OS/2 session
from within DOS.

duplex. Pertaining to communication in which data
can be sent and received at the same time.
Synonymous with full duplex.

dynamic data exchange (DOE). A message
protocol used to communicate between applications
that share data. The protocol uses shared memory
as the means of exchanging data between
applications.

dynamic data formatting. A formatting procedure
that enables you to incorporate text, bit maps or
metafiles in an IPF window at execution time.

dynamic link library. A collection of executable
programming code and data that is bound to an
application at load time or run time, rather than
during linking. The programming code and data in a
dynamic link library can be shared by several
applications simultaneously.

dynamic linking. The process of resolving external
references in a program module at load time or run
time rather than during linking.

dynamic segments. Graphics segments drawn in
exclusive-OR mix mode so that they can be moved
from one screen position to another without affecting
the rest of the displayed picture.

dynamic storage. (1) A device that stores data in a
manner that permits the data to move or vary with
time such that the specified data is not always
available for recovery. (A) (2) A storage in which
the cells require repetitive application of control
signals in order to retain stored data. Such repetitive
application of the control signals is called a refresh
operation. A dynamic storage may use static
addressing or sensing circuits. (A) (3) See also
static storage.

dynamic time slicing. Varies the size of the time
slice depending on system load and paging activity.

dynamic-link module. A module that is linked at
load time or run time.

E
EBCDIC. Extended binary-coded decimal
interchange code. A coded character set consisting
of a-bit coded characters (9 bits including parity
check), used for information interchange among data
processing systems, data communications systems,
and associated equipment.

edge-triggered. Pertaining to an event semaphore
that is posted then reset before a waiting thread gets
a chance to run. The semaphore is considered to be
posted for the rest of that thread's waiting period; the
thread does not have to wait for the semaphore to
be posted again.

EGA. Extended graphics adapter.

element. An entry in a graphics segment that
comprises one or more graphics orders and that is
addressed by the element pointer.

EMS. Expanded Memory Specification.

encapsulation. Hiding an object's implementation,
that is, its private, internal data and methods.
Private variables and methods are accessible only to
the object that contains them.

entry field. In SAA Common User Access
architecture, an area where a user types information.
Its boundaries are usually indicated. See also
selection field.

entry panel. A defined panel type containing one or
more entry fields and protected information such as
headings, prompts, and explanatory text.

entry-field control. The component of a user
interface that provides the means by which the
application receives data entered by the user in an
entry field. When it has the input fbcus, the entry
field displays a flashing pointer at the position where
the next typed character will go.

environment segment. The list of environment
variables and their values for a process.

environment strings. ASCII text strings that define
the value of environment variables.

Glossary X-9

environment variables. Variables that describe the
execution environment of a process. These
variables are named by the operating system or by
the application. Environment variables named by the
operating system are PATH, DPATH, INCLUDE,
INIT, LIB, PROMPT, and TEMP. The values of
environment variables are defined by the user in the
CONFIG.SYS file, or by using the SET command at
the OS/2 command prompt.

error message. An indication that an error has
been detected. (A)

event semaphore. A semaphore that enables a
thread to signal a waiting thread or threads that an
event has occurred or that a task has been
completed. The waiting threads can then perform an
action that is dependent on the completion of the
signaled event.

exception. An abnormal condition such as an I/O
. error encountered in processing a data set or a file.

exclusive system semaphore. A system
semaphore that can be modified only by threads
within the same process.

executable file. (1) A file that contains programs or
commands that perform operations or actions to be
taken. (2) A collection of related data records that
execute programs.

exit. To execute an instruction within a portion of a
computer program in order to terminate the
execution of that portion. Such portions of computer
programs include loops, subroutines, modules, and
so on. (T) Repeated exit requests return the user
to the point from which all functions provided to the
system are accessible. Contrast with cancel.

expanded memory specification (EMS). Enables
DOS applications to access memory above the 1 MB
real mode addressing limit.

extended attribute. An additional piece of
information about a file object, such as its data
format or category. It consists of a name and a
value. A file object may have more than one
extended attribute associated with it.

extended help. In SAA Common User Access
architecture, a help action that provides information
about the contents of the application window from
which a user requested help. Contrast with
contextual help.

X-10 PM Basic Programming Guide

extended-choice selection. A mode that allows
the user to select more than one item from a
window. Not all windows allow extended choice
selection. Contrast with multiple-choice selection.

extent. Continuous space on a disk or diskette that
is occupied by or reserved for a particular data set,
data space, or file.

external link. In Information Presentation Facility, a
link that connects external online document files.

F
family-mode application. An application program
that can run in the OS/2 environment and in the
DOS environment; however, it cannot take
advantage of many of the OS/2-mode facilities, such
as multitasking, interprocess communication, and
dynamic linking .

FAT. File allocation table.

FEA. Full extended attribute.

field-level help. Information specific to the field on
which the cursor is positioned. This help function is
"contextual" because it provides information about a
specific item as it is currently used; the information is
dependent upon the context within the work session.

FIFO. First-in-first-out. (A)

file. A named set of records stored or processed as
a unit. (T)

file allocation table (FAT). In IBM personal
computers, a table used by the operating system to
allocate space on a disk for a file, and to locate and
chain together parts of the file that may be scattered
on different sectors so that the file can be used in a
random or sequential manner.

file attribute. Any of the attributes that describe the
characteristics of a file.

File Manager. In the Presentation Manager, a
program that displays directories and files, and
allows various actions on them.

file specification. The full identifier for a file, which
includes its drive designation, path, file name, and
extension.

file system. The combination of software and
hardware that supports storing information on a
storage device.

file system driver (FSD). A program that manages
file 1\0 and controls the format of information on the
storage media.

fillet. A curve that is tangential to the end points of
two adjoining lines. See also polyfillet.

filtering. An application process that changes the
order of data in a queue.

first-in-first-out (FIFO). A queuing technique in
which the next item to be retrieved is the item that
has been in the queue for the longest time. (A)

flag. (1) An indicator or parameter that shows the
setting of a switch. (2) A character that signals the
occurrence of some condition, such as the end of a
word. (A) (3) (D of C) A characteristic of a file or
directory that enables it to be used in certain ways.
See also archive flag, hidden flag, and read-only
flag.

focus. See input focus.

folder. A container used to organize objects.

font. A particular size and style of typeface that
contains definitions of character sets, marker sets,
and pattern sets.

Font Editor. A utility program provided with the IBM
Developers Toolkit that enables the design and
creation of new fonts.

foreground program. (1) The program with which
the user is currently interacting. Also known as
interactive program. Contrast with background
program. (2) (D of C) In multiprogramming, a
high-priority program.

frame. The part of a window that can contain
several different visual elements specified by the
application, but drawn and controlled by the
Presentation Manager. The frame encloses the
client area.

frame styles. Standard window layouts provided by
the Presentation Manager.

FSD. File system driver.

full-duplex. Synonym for duplex.

full-screen application. An application that has
complete control of the screen.

function. (1) In a programming language, a block,
with or without formal parameters, whose execution
is invoked by means of a call. (2) A set of related
control statements that cause one or more programs
to be performed.

function key. A key that causes a specified
sequence of operations to be performed when it is
pressed, for example, F1 and Alt-K.

function key area. The area at the bottom of a
window that contains function key assignments such
as F1=Help.

G
GDT. Global Descriptor Table.

general protection fault. An exception condition
that occurs when a process attempts to use storage
or a module that has some level of protection
assigned to it, such as I/O privilege level. See also
IOPL code segment.

Global Descriptor Table (GDT). A table that
defines code and data segments available to all
tasks in an application.

global dynamic-link module. A dynamic-link
module that can be shared by all processes in the
system that refer to the module name.

global file-name character. Either a question mark
(?) or an asterisk (*) used as a variable in a file
name or file name extension when referring to a
particular file or group of files.

glyph. A graphic symbol whose appearance
conveys information.

GPI. Graphics programming interface.

graphic primitive. In computer graphics, a basic
element, such as an arc or a line, that is not made
up of smaller parts and that is used to create
diagrams and pictures. See also graphics segment.

graphics. (1) A picture defined in terms of graphic
primitives and graphics attributes. (2) (D of C) The
making of charts and pictures. (3) Pertaining to

Glossary X-11

charts, tables, and their creation. (4) See computer
graphics, coordinate graphics, fixed-image graphics,
interactive graphics, passive graphics, raster
graphics.

graphics attributes. Attributes that apply to graphic
primitives. Examples are color, line type, and
shading-pattern definition. See also segment
attributes.

graphics field. The clipping boundary that defines
the visible part of the presentation-page contents.

graphics mode. One of several states of a display.
The mode determines the resolution and color
content of the screen.

graphics model space. The conceptual coordinate
space in which a picture is constructed after any
model transforms have been applied. Also known as
model space.

Graphics programming interface. The formally
defined programming language that is between an
IBM graphics program and the user of the program.

graphics segment. A sequence of related graphic
primitives and graphics attributes. See also graphic
primitive.

graying. The indication that a choice on a
pull-down is unavailable.

group. A collection of logically connected controls.
For example, the buttons controlling paper size for a
printer could be called a group. See also program
group.

H
handle. (1) An identifier that represents an object,
such as a device or window, to the Presentation
Interface. (2) (D of C) In the Advanced DOS and
OS/2 operating systems, a binary value created by
the system that identifies a drive, directory, and file
so that the file can be found and opened.

hard error. An error condition on a network that
requires either that the system be reconfigured or
that the source of the error be removed before the
system can resume reliable operation.

header. (1) System-defined control information that
precedes user data. (2) The portion of a message

X-12 PM Basic Programming Guide

that contains control information for the message,
such as one or more destination fields, name of the
originating station, input sequence number, character
string indicating the type of message, and priority
level for the message.

heading tags. A document element that enables
information to be displayed in windows, and that
controls entries in the contents window controls
placement of push buttons in a window, and defines
the shape and size of windows.

heap. An area of free storage available for dynamic
allocation by an application. Its size varies according
to the storage requirements of the application.

help function. (1) A function that provides
information about a specific field, an application
panel, or information about the help facility. (2) (D of
C) One or more display images that describe how to
use application software or how to do a system
operation.

Help index. In SAA Common User Access
architecture, a help action that provides an index of
the help information available for an application.

help panel. A panel with information to assist users
that is displayed in response to a help request from
the user.

help window. A Common-User-Access-defined
secondary window that displays information when the
user requests help.

hidden file. An operating system fife that is not
displayed by a directory listing.

hide button. In the OS/2 operating system, a small,
square button located in the right-hand corner of the
title bar of a window that, when selected, removes
from the screen all the windows associated with that
window. Contrast with maximize button. See also
restore button.

hierarchical inheritance. The relationship between
parent and child classes. An object that is lower in
the inheritance hierarchy than another object, inherits
all the characteristics and behaviors of the objects
above it in the hierarchy.

hierarchy. A tree of segments beginning with the
root segment and proceeding downward to
dependent segment types.

high-performance file system (HPFS). In the
OS/2 operating system, an installable file system that
uses high-speed buffer storage, known 'as a cache,
to provide fast access to large disk volumes. The
file system also supports the coexistence of multiple,
active file systems on a single personal computer,
with the capability of multiple and different storage
devices. File names used with the HPFS can have
as many as 254 characters.

hit testing. The means of identifying which window
is associated with which input device event.

hook. A point in a system-defined function where
an application can supply additional code that the
system processes as though it were part of the
function.

hook chain. A sequence of hook procedures that
are "chained" together so that each event is passed,
in turn, to each procedure in the chain.

hot spot. The part of the pointer that must touch an
object before it can be selected. This is usually the
tip of the pointer. Contrast with action point.

HPFS. high-performance file system.

hypergraphic link. A connection between one
piece of information and another through the use of
graphics.

hypertext. A way of presenting information online
with connections between one piece of information
and another, called hypertext links. See also
hypertext link.

hypertext link. A connection between one piece of
information and another.

I/O operation. An input operation to, or output
operation from a device attached to a computer.

I-beam pointer. A pointer that indicates an area,
such as an entry field in which text can be edited.

icon. In SM Advanced Common User Access
architecture, a graphical representation of an object,
consisting of an image, image background, and a
label. Icons can represent items (such as a
document file) that the user wants to work on, and
actions that the user wants to perform. In the

Presentation Manager, icons are used for data
objects, system actions, and minimized programs.

icon area. In the Presentation Manager, the area at
the bottom of the screen that is normally used to
display the icons for minimized programs.

Icon Editor. The Presentation Manager-provided
tool for creating icons.

image font. A set of symbols, each of which is
described in a rectangular array of pels. Some of
the pels in the array are set to produce the image of
one of the symbols. Contrast with outline font.

indirect manipulation. Interaction with an object
through choices and controls.

information device context. A logical description
of a data destination other than the screen (for
example, a printer or plotter), but where no output
will occur. Its purpose is to satisfy queries. See
also device context.

information panel. A defined panel type
characterized by a body containing only protected
information.

Information Presentation Facility (IPF). Afacility
provided by the OS/2 operating system, by which
application developers can produce online
documentation and context-sensitive online help
panels for their applications. '

input focus. (1) The area of a window where user
interaction is possible using an input device, such as
a mouse or the keyboard. (2) The position in the
active window where a user's normal interaction with
the keyboard will appear.

input router. An internal OS/2 process that
removes messages from the system queue.

input/output control. A device-specific command
that requests a function of a device driver.

installable file system (IFS). A file system in which
software is installed when the operating system is
started.

instance. A single occurrence of an object class
that has a particular behavior.

instruction pointer. In system/38, a pointer that
provides addressability for a machine interface
instruction in a program.

Glossary X-13

integer atom. An atom that represents a predefined
system constant and carries no storage overhead.
For example, names of window classes provided by
Presentation Manager are expressed as integer
atoms.

interactive graphics. Graphics that can be moved
or manipulated by a user at a terminal.

interactive program. (1) A program that is running
(active) and is ready to receive (or is receiving) input
from a user. (2) A running program that can receive
input from the keyboard or another input device.
Compare with active program and contrast with
noninteractive program.

Also known as a foreground program.

interchange file. A file containing data that can be
sent from one Presentation Manager interface
application to another.

interpreter. A program that translates and executes
each instruction of a high-level programming
language before it translates and executes.

interprocess communication (IPC). In the OS/2
operating system, the exchange of information
between processes or threads through semaphores,
pipes, queues, and shared memory.

interval timer. (1) A timer that provides program
interruptions on a program-controlled basis. (2) An
electronic counter that counts intervals of time under
program control.

IOCtl. Input/output control.

IOPL. Input/output privilege level.

IOPL code segment. An 10PL executable section
of programming code that enables an application to
directly manipulate hardware interrupts and ports
without replacing the device driver. See also
privilege level.

IPC. Interprocess communication.

IPF. Information Presentation Facility.

IPF compiler. A text compiler that interpret tags in
a source file and converts the information into the
specified format.

X-14 PM Basic Programming Guide

IPF tag language. A markup language that
provides the instructions for displaying online
information.

item. A data object that can be passed in a DDE
transaction.

J
journal. A special-purpose file that is used to
record changes made in the system.

K
Kanji. A graphic character set used in Japanese
ideographic alphabets.

KBD$. Character-device name reserved for the
keyboard.

kernel. The part of an operating system that
performs basic functions, such as allocating
hardware resources.

kerning. The design of graphics characters so that
their character boxes overlap. Used to space text
proportionally.

keyboard accelerator. A keystroke that generates
a command message for an application.

keyboard augmentation. A function that enables a
user to press a keyboard key while pressing a
mouse button.

keyboard focus. A temporary attribute of a
window. The window that has a keyboard focus
receives all keyboard input until the focus changes to
a different window.

Keys help. In SAA Common User Access
architecture, a help action that provides a listing of
the application keys and their assigned functions.

L
label. In a graphics segment, an identifier of one or
more elements that is used when editing the
segment.

LAN. local area network.

language support procedure. A function provided
by the Presentation Manager Interface for
applications that do not, or cannot (as in the case of
COBOL and FORTRAN programs), provide their own
dialog or window procedures.

lazy drag. See pickup and drop.

lazy drag set. See pickup set.

LOT. In the OS/2 operating system, Local
Descriptor Table.

LIFO stack. A stack from which data is retrieved in
last-in, first-out order.

linear address. A unique value that identifies the
memory object.

linked list. Synonym for chained list.

list box. In SAA Advanced Common User Access
architecture, a control that contains scrollable
choices from which a user can select one choice.

Note: In CUA architecture, this is a programmer
term. The end user term is selection list.

list button. A button labeled with an underlined
down-arrow that presents a list of valid objects or
choices that can be selected for that field.

list panel. A defined panel type that displays a list
of items from which users can select one or more
choices and then specify one or more actions to
work on those choices.

load time. The point in time at which a program
module is loaded into main storage for execution.

load-on-call. A function of a linkage editor that
allows selected segments of the module to be disk
resident while other segments are executing. Disk
resident segments are loaded for execution and
given control when any entry point that they contain
is called.

local area network (LAN). (1) A computer network
located on a user's premises within a limited
geographical area. Communication within a local
area network is not subject to external regulations;
however, communication across the LAN boundary
may be subject to some form of regulation. (T)

Note: A LAN does not use store and forward
techniques. (2) A network inwhich a set of devices
are connected to one another for communication and
that can be connected to a larger network.

Local Descriptor Table (LOT). Defines code and
data segments specific to a single task.

lock. A serialization mechanism by means of which
a resource is restricted for use by the holder of the
lock.

logical storage device. A device that the user can
map to a physical (actual) device.

LPT1, LPT2, LPT3. Character-device names
reserved for parallel printers 1 through 3.

M
main window. The window that is positioned
relative to the desktop window.

manipulation button. The button on a pointing
device a user presses to directly manipulate an
object.

map. (1) A set of values having a defined
correspondence with the quantities or values of
another set. (I) (A) (2) To establish a set of
values having a defined correspondence with the
quantities or values of another set. (I)

marker box. In computer graphics, the boundary
that defines, in world coordinates, the horizontal and
vertical space occupied by a single marker from a
marker set.

marker symbol. A symbol centered on a point.
Graphs and charts can use marker symbols to
indicate the plotted points.

marquee box. The rectangle that appears during a
selection technique in which a user selects objects
by drawing a box around them with a pointing
device.

Master Help Index. In the OS/2 operating system,
an alphabetic list of help topics related to using the
operating system.

maximize. To enlarge a window to its largest
possible size.

Glossary X-1S

media window. The part of the physical device
(display, printer, or plotter) on which a picture is
presented.

memory block. Part memory within a heap.

memory device context. A logical description of a
data destination that is a memory bit map. See also
device context.

memory management. A feature of the operating
system for allocating, sharing, and freeing main
storage.

memory object. Logical unit of memory requested
by an application, which forms the granular unit of
memory manipulation from the application viewpoint.

menu. In SAA Advanced Common User Access
architecture, an extension of the menu bar that
displays a list of choices available for a selected
choice in the menu bar. After a user selects a
choice in menu bar, the corresponding menu
appears. Additional pop-up windows can appear
from menu choices.

menu bar. In SAA Advanced Common User
Access architecture, the area near the top of a
window, below the title bar and above the rest of the
window, that contains choices that provide access to
other menus.

menu button. The button on a pointing device that
a user presses to view a pop-up menu associated
with an object.

message. (1) In the Presentation Manager, a
packet of data used for communication between the
Presentation Manager interface and Presentation
Manager applications (2) In a user interface,
information not requested by users but presented to
users by the computer in response to a user action
or internal process.

message box. (1) A dialog window predefined by
the system and used as a simple interface for
applications, without the necessity of creating
dialog-template resources or dialog procedures. (2)
(D of C) In SAA Advanced Common User Access
architecture, a type of window that shows messages
to users. See also dialog box, primary window,
secondary window.

X-16 PM Basic Programming Guide

message filter. The means of selecting which
messages from a specific window will be handled by
the application.

message queue. A sequenced collection of
messages to be read by the application.

message stream mode. A method of operation in
which data is treated as a stream of messages.
Contrast with byte stream.

metacharacter. See global file-name character.

metaclass. The conjunction of an object and its
class information; that is, the information pertaining
to the class as a whole, rather than to a single
instance of the class. Each class is itself an object,
which is an instance of the metaclass.

metafile. A file containing a series of attributes that
set color, shape and size, usually of a picture or a
drawing. Using a program that can interpret these
attributes, a user can view the assembled image.

metafile device context. A logical description of a
data destination that is a metafile, which is used for
graphics interchange. See also device context.

metalanguage. A language used to specify another
language. For example, data types can be
described using a metalanguage so as to make the
descriptions independent of anyone computer
language.

mickey. A unit of measurement for physical mouse
motion whose value depends on the mouse device
driver currently loaded.

micro presentation space. A graphics presentation
space in which a restricted set of the GPI function
calls is available.

minimize. To remove from the screen all windows
associated with an application and replace them with
an icon that represents the application.

mix. An attribute that determines how the
foreground of a graphic primitive is combined with
the existing color of graphics output. Also known as
foreground mix. Contrast with background mix.

mixed character string. A string containing a
mixture of one-byte and Kanji or Hangeul (two-byte)
characters.

mnemonic. (1) A method of selecting an item on a
pull-down by means of typing the highlighted letter in
the menu item. (2) (D of C) In SAA Advanced
Common User Access architecture, usually a single
character, within the text of a choice, identified by an
underscore beneath the character. If all characters
in a choice already serve as mnemonics for other
choices, another character, placed in parentheses
immediately following the choice, can be used.
When a user types the mnemonic for a choice, the
choice is either selected or the cursor is moved to
that choice.

modal dialog box. In SAA Advanced Common
User Access architecture, a type of movable window,
fixed in size, that requires a user to enter information
before continuing to work in the application window
from which it was displayed. Contrast with modeless
dialog box. Also known as a serial dialog box.
Contrast with parallel dialog box.

Note: In CUA architecture, this is a programmer
term. The end user term is pop-up window.

model space. See graphics model space.

modeless dialog box. In SAA Advanced Common
User Access architecture, a type of movable window,
fixed in size, that allows users to continue their
dialog with the application without entering
information in the dialog box. Also known as a
parallel dialog box. Contrast with modal dialog box.

Note: In CUA architecture, this is a programmer
term. The end user term is pop-up window.

module definition file. A file that describes the
code segments within a load module. For example,
it indicates whether a code segment is loadable
before module execution begins (preload), or
loadable only when referred to at run time
(load-on-call) .

mouse. In SAA usage, a device that a user moves
on a flat surface to position a pointer on the screen.
It allows a user to select a choice 0 function to be
performed or to perform operations on the screen,
such as dragging or drawing lines from one position
to another.

MOUSE$. Character-device name reserved for a
mouse.

multiple-choice selection. In SAA Basic Common
User Access architecture, a type of field from which

a user can select one or more choices or select
none. See also check box. Contrast with
extended-choice selection.

multiple-line entry field. In SAA Advanced
Common User Access architecture, a control into
which a user types more than one line of information.
See also single-line entry field.

multitasking. The concurrent processing of
applications or parts of applications. A running
application and its data are protected from other
concurrently running applications.

mutex semaphore. (Mutual exclusion semaphore).
A semaphore that enables threads to serialize their
access to resources. Only the thread that currently
owns the mutex semaphore can gain access to the
resource, thus preventing one thread from
interrupting operations being performed by another.

muxwait semaphore. (Multiple wait semaphore). A
semaphore that enables a thread to wait either for
multiple event semaphores to be posted or for
multiple mutex semaphores to be released.
Alternatively, a muxwait semaphore can be set to
enable a thread to wait for any ONE of the event or
mutex semaphores in the muxwait semaphore's list
to be posted or released.

N
named pipe. A named buffer that provides
client-to-server, server-to-client, or full duplex
communication between unrelated processes.
Contrast with unnamed pipe.

national language support (NLS). The
modification or conversion of a United States English
product to conform to the requirements of another
language or country. This can include the enabling
or retrofitting of a product and the translation of
nomenclature, MRI, or documentation of a product.

nested list. A list that is contained within another
list.

NLS. national language support.

non-8.3 file-name format. A file-naming convention
in which file names can consist of up to 255
characters. See also 8.3 file-name format.

Glossary X-17

noncritical extended attribute. An extended
attribute that is not necessary for the function of an
application.

nondestructive read. Reading that does not erase
the data in the source location. (T)

noninteractive program. A running program that
cannot receive input from the keyboard or other input
device. Compare with active program, and contrast
with interactive program.

nonretained graphics. Graphic primitives that are,
not remembered by the Presentation Manager
interface when they have been drawn. Contrast with
retained graphics.

null character (NUL). (1) Character-device name
reserved for a nonexistent (dummy) device. (2) (D of
C) A control character that is used to accomplish
media-fill or time-fill and that may be inserted into or
removed from a sequence of characters without
affecting the meaning of the sequence; however, the
control of equipment or the format may be affected
by this character. (I) (A)

null-terminated string. A string of (n+ 1) characters
where the (n+ 1)th character is the 'null' character
(OxOO) Also known as 'zero-terminated' string and
'ASCIIZ' string.

o
object. A set of data and actions that can be
performed on that data.

Object Interface Definition Language (OIDL).
Specification language for SOM class definitions.

object window. A window that does not have a
parent but which might have child windows. An
object window cannot be presented on a device.

OIDL. Object Interface Definition Language.

open. To start working with a file, directory, or other
object.

ordered list. Vertical arrangements of items, with
each item in the list preceded by a number or letter.

outline font. A set of symbols, each of which is
created as a series of lines and curves.

X-18 PM Basic Programming Guide

Synonymous with vector font. Contrast with image
font.

output area. An area of storage reserved for
output. (A)

owner window. A window into which specific
events that occur in another (owned) window are
reported.

ownership. The determination of how windows
communicate using messages.

owning process. The process that owns the
resources that might be shared with other processes.

p
page. (1) A 4KB segment of contiguous physical
memory. (2) (D of C) A defined unit of space on a
storage medium.

page viewport. A boundary in device coordinates
that defines the area of the output device in which
graphics are to be displayed. The presentation-page
contents are transformed automatically to the page
viewport in device space.

paint. (1) The action of drawing or redrawing the
contents of a window. (2) In computer graphics, to
shade an area of a display image; for example, with
crosshatching or color.

panel. In SAA Basic Common User Access
architecture, a particular arrangement of information
that is presented in a window or pop-up. If some of
the information is not visible, a user can scroll
through the information.

panel area. An area within a panel that contains
related information. The three major Common User
Access-defined panel areas are the action bar, the
function key area, and the panel body.

panel area separator. In SAA Basic Common User
Access architecture, a solid, dashed, or blank line
that provides a visual distinction between two
adjacent areas of a panel.

panel body. The portion of a panel not occupied by
the action bar, function key area, title or scroll bars.
The panel body can contain protected information,
selection fields, and entry fields. The layout and
content of the panel body determine the panel type.

panel body area. See client area.

panel definition. A description of the contents and
characteristics of a panel. A panel definition is the
application developer's mechanism for predefining
the format to be presented to users in a window.

panel 10. In SM Basic Common User Access
architecture, a panel identifier, located in the
upper-left corner of a panel. A user can choose
whether to display the panel 10.

panel title. In SM Basic Common User Access
architecture, a particular arrangement of information
that is presented in a window or pop-up. If some of
the information is not visible, a user can scroll
through the information.

paper size. The size of paper, defined in either
standard U.S. or European names (for example, A,
B, A4), and measured in inches or millimeters
respectively.

parallel dialog box. See modeless dialog box.

parameter list. A list of values that provides a
means of associating addressability of data defined
in a called program with data in the calling program.
It contains parameter names and the order in which
they are to be associated in the calling and called
program.

parent process. In the OS/2 operating system, a
process that creates other processes. Contrast with
child process.

parent window. In the OS/2 operating system, a
window that creates a child window. The child
window is drawn within the parent window. If the
parent window is moved, resized, or destroyed, the
child window also will be moved, resized, or
destroyed. However, the child window can be
moved and resized independently from the parent
window, within the boundaries of the parent window.
Contrast with child window.

partition. (1) A fixed-size division of storage. (2)
On an IBM personal computer fixed disk, one of four
possible storage areas of variable size; one may be
accessed by ~OS, and each of the others may be
assigned to another operating system.

Paste. A choice in the Edit pull-down that a user
selects to move the contents of the clipboard into a
preselected location. See also Copy and Cut.

path. The route used to locate files; the storage
location of a file. A fully qualified path lists the drive
identifier, directory name, subdirectory name (if any),
and file name with the associated extension.

POD. Physical device driver.

peeking. An action taken by any thread in the
process that owns the queue to examine queue
elements without removing them.

pel. (1) The smallest area of a display screen
capable of being addressed and switched between
visible and invisible states. Synonym for display
point, pixel, and picture element. (2) (0 of C) Picture
element.

physical device driver (POD). A system interface
that handles hardware interrupts and supports a set
of input and output functions.

pick. To select part of a displayed object using the
pointer.

pickup. To add an object or set of objects to the
pickup set.

pickup and drop. A drag operation that does not
require the direct manipulation button to be pressed
for the duration of the drag.

pickup set. The set of objects that have been
picked up as part of a pickup and drop operation.

picture chain. See segment chain.

picture element. (1) Synonym for pel. (2) (0 of C)
In computer graphics, the smallest element of a
display surface that can be independently assigned
color and intensity. (T) . (3) The area of the finest
detail that can be reproduced effectively on the
recording medium.

PID. Process identification.

pipe. (1) A named or unnamed buffer used to pass
data between processes. A process reads from or
writes to a pipe as if the pipe were a standard-input
or standard-output file. See also named pipe and
unnamed pipe. (2) (0 of C) To direct data so that
the output from one process becomes the input to
another process. The standard output of one
command can be connected to the standard input of
another with the pipe operator (I).

Glossary X-19

pixel. (1) Synonym for pel. (2) (0 of C) Picture
element.

plotter. An output unit that directly produces a
hardcopy record of data on a removable medium, in
the form of a two-dimensional graphic
representation. (T)

PM. Presentation Manager.

pOinter. (1) The symbol displayed on the screen
that is moved by a pointing device, such as a
mouse. The pointer is used to point at items that
users can select. Contrast with cursor. (2) A data
element that indicates the location of another data
element. (T)

POINTER$. Character-device name reserved for a
pointer device (mouse screen support).

pointing device. In SAA Advanced Common User
Access architecture, an instrument, such as a
mouse, trackball, or joystick, used to move a pointer
on the screen.

pointings. Pairs of x-y coordinates produced by an
operator defining positions on a screen with a
pointing device, such as a mouse.

polyfillet. A curve based on a sequence of lines.
The curve is tangential to the end points of the first
and last lines, and tangential also to the midpoints of
all other lines. See also fillet.

polygon. One or more closed figures that can be
drawn filled, outlined, or filled and outlined.

polyline. A sequence of adjoining lines.

polymorphism. A concept whereby the behavior of
an application object is dependent solely upon the
class and contents of the messages received by that
object, and is not affected by any other external
factor.

pop. To retrieve an item from a last-in-first-out
stack of items. Contrast with push.

pop-up window. (1) A window that appears on top
of another window in a dialog. Each pop-up window
must be completed before returning to the underlying
window. (2) (0 of C) In SAA Advanced Common
User Access architecture, a -movable window, fixed
in size, in which a user provides information required
by an application so that it can continue to process a
user request.

X-20 PM Basic Programming Guide

presentation drivers. Special purpose I/O routines
that handle field device-independent I/O requests
from the PM and its applications.

Presentation Manager (PM). The interface of the
OS/2 operating system that presents, in windows a
graphics-based interface to applications and files
installed and running under the OS/2 operating
system.

presentation page. The coordinate space in which
a picture is assembled for display.

presentation space (PS). (1) Contains the
device-independent definition of a picture. (2) (0 of
C) The display space on a display device.

primary window. In SAA Common User Access
architecture, the window in which the main
interaction between the user and the application
takes place. In a multiprogramming environment,
each application starts in its own primary window.
The primary window remains for the duration of the
application, although the panel displayed will change
as the user's dialog moves forward. See also
secondary window.

primitive. In computer graphics, one of several
simple functions for drawing on the screen, including,
for example, the rectangle, line, ellipse, polygon, and
so on.

primitive attribute. A specifiable characteristic of a
graphic primitive. See graphics attributes.

print job. The result of sending a document or
picture to be printed.

Print Manager. In the Presentation Manager, the
part of the spooler that manages the spooling
process. It also allows users to view print queues
and to manipulate print jobs.

privilege level. A protection level imposed by the
hardware architecture of the IBM personal computer.
There are four privilege levels (number 0 through 3).
Only certain types of programs are allowed to
execute at each privilege level. See also IOPL code
segment.

procedure call. In programming languages, a
language construct for invoking execution of a
procedure.

process. An instance of an executing application
and the resources it is using.

program. A sequence of instructions that a
computer can interpret and execute.

program details. Information about a program that
is specified in the Program Manager window and is
used when the program is started.

program group. In the Presentation Manager,
several programs that can be acted upon as a single
entity.

program name. The full file specification of a
program. Contrast with program title.

program title. The name of a program as it is listed
in the Program Manager window. Contrast with
program name.

prompt. A displayed symbol or message that
requests input from the user or gives operational
information; for example, on the display screen of an
IBM personal computer, the DOS A> prompt. The
user must respond to the prompt in order to proceed.

protect mode. A method of program operation that
limits or prevents access to certain instructions or
areas of storage. Contrast with real mode.

protocol. A set of semantic and syntactic rules that
determines the behavior of functional units in
achieving communication. (I)

pseudocode. An artificial language used to
describe computer program algorithms without using
the syntax of any particular programming
language. (A)

pull-down. (1) An action bar extension that displays
a list of choices available for a selected action bar
choice. After users select an action bar choice, the
pull-down appears with the list of choices. Additional
pop-up windows may appear from pull-down choices
to further extend the actions available to users. (2)
(0 of C) In SAA Common User Access architecture,
pertaining to a choice in an action bar pull-down.

push. To add an item to a last-in-first-out stack of
items. Contrast with pop.

push button. In SAA Advanced Common User
Access architecture, a rectangle with text inside.
Push buttons are used in windows for actions that
occur immediately when the push button is selected.

putback. To remove an object or set of objects
from the lazy drag set. This has the effect of
undoing the pickup operation for those objects

putdown. To drop the objects in the lazy drag set
on the target object.

Q

queue. (1) A linked list of elements waiting to be
processed in FIFO order. For example, a queue
may be a list of print jobs waiting to be printed. (2)
(0 of C) A line or list of items waiting to be
processed; for example, work to be performed or
messages to be displayed.

queued device context. A logical description of a
data destination (for example, a printer or plotter)
where the output is to go through the spooler. See
also device context.

R
radio button. (1) A control window, shaped like a
round button on the screen, that can be in a checked
or unchecked state. It is used to select a single item
from a list. Contrast with check box. (2) In SAA
Advanced Common User Access architecture, a
circle with text beside it. Radio buttons are
combined to show a user a fixed set of choices from
which only one can be selected. The circle is
partially filled when a choice is selected.

RAS. Reliability, availability, and serviceability.

raster. (1) In computer graphics, a predetermined
pattern of lines that provides uniform coverage of a
display space. (T) (2) The coordinate grid that
divides the display area of a display device. (A)

read-only file. A file that can be read from but not
written to.

real mode. A method of program operation that
does not limit or prevent access to any instructions
or areas of storage. The operating system loads the
entire program into storage and gives the program
access to all system resources. Contrast with
protect mode.

realize. To cause the system to ensure, wherever
possible, that the physical color table of a device is

Glossary X-21

set to the closest possible match in the logical color
table.

recursive routine. A routine that can call itself, or
be called by another routine that was called by the
recursive routine.

reentrant. The attribute of a program or routine that
allows the same copy of the program or routine to be
used concurrently by two or more tasks.

reference phrase. (1) A word or phrase that is
emphasized in a device-dependent manner to inform
the user that additional information for the word or
phrase is available. (2) (0 of C) In hypertext, text
that is highlighted and preceded by a
single-character input field used to signify the
existence of a hypertext link.

reference phrase help. In SAA Common User
Access architecture, highlighted words or phrases
within help information that a user selects to get
additional information.

refresh. To update a window, with changed
information, to its current status.

region. A clipping boundary in device space.

register. A part of internal storage having a
specified storage capacity and usually intended for a
specific purpose. (T)

remote file system. A file-system driver that gains
access to a remote system without a block device
driver.

resource. The means of providing extra information
used in the definition of a window. A resource can
contain definitions of fonts, templates, accelerators,
and mnemonics; the definitions are held in a
resource file.

resource file. A file containing information used in
the definition of a window. Definitions can be of
fonts, templates, accelerators, and mnemonics.

restore. To return a window to its original size or
position following a sizing or moving action.

retained graphics. Graphic primitives that are
remembered by the Presentation Manager interface
after they have been drawn. Contrast with
non retained graphics.

X-22 PM Basic Programming Guide

return code. (1) A value returned to a program to
indicate the results of an operation requested by that
program. (2) A code used to influence the execution
of succeeding instructions. (A)

reverse video. (1) A form of highlighting a
character, field, or cursor by reversing the color of
the character, field, or cursor with its background; for
example, changing a red character on a black
background to a black character on a red
background. (2) In SAA Basic Common User
Access architecture, a screen emphasis feature that
interchanges the foreground and background colors
of an item.

REXX Language. Restructured Extended Executor.
A procedural language that provides batch language
functions along with structured programming
constructs such as loops; conditional testing and
subroutines:

RGB. (1) Color coding in which the brightness of
the additive primary colors of light, red, green, and
blue, are specified as three distinct values of white
light. (2) Pertaining to a color display that acqepts
signals representing red, green, and blue.

roman. Relating to a type style with upright
characters.

root segment. In a hierarchical database, the
highest segment in the tree structure.

round-robin scheduling. A process that allows
each thread to run for a specified amount of time.

run time. (1) Any instant at which the execution of
a particular computer program takes place. (T) (2)
The amount of time needed for the execution of a
particular computer program. (T) (3) The time
during which an instruction in an instruction register
is decoded and performed. Synonym for execution
time.

s
SAA. Systems Application. Architecture.

SBes. Single-byte character set.

scheduler. A computer program designed to
perform functions such as scheduling, initiation, and
termination of jobs.

screen. In SAA Basic Common User Access
architecture, the physical surface of a display device
upon which information is shown to a user.

screen device context. A logical description of a
data destination that is a particular window on the
screen. See also device context.

SCREEN$. Character-device name reserved for the
display screen.

scroll bar. In SAA Advanced Common User
Access architecture, a part of a window, associated
with a scrollable area, that a user interacts with to
see information that is not currently allows visible.

scrollable entry field. An entry field larger than the
visible field.

scrollable selection field. A selection field that
contains more choices than are visible.

scrolling. Moving a display image vertically or
horizontally in a manner such that new data appears
at one edge, as existing data disappears at the
opposite edge.

secondary window. A window that contains
information that is dependent on information in a
primary window and is used to supplement the
interaction in the primary window.

sector. On disk or diskette storage, an addressable
subdivision of a track used to record one block of a
program or data.

segment. See graphics segment.

segment attributes. Attributes that apply to the
segment as an entity, as opposed to the individual
primitives within the segment. For example, the
visibility or detectability of a segment.

segment chain. All segments in a graphics
presentation space that are defined with the
'chained' attribute. Synonym for picture chain.

segment priority. The order in which segments are
drawn.

segment store. An area in a normal graphics
presentation space where retained graphics
segments are stored.

select. To mark or choose an item. Note that
select means to mark or type in a choice on the

screen; enter means to send all selected choices to
the computer for processing.

select button. The button on a pointing device,
such as a mouse, that is pressed to select a menu
choice. Also known as button 1.

selection cursor. In SAA Advanced Common User
Access architecture, a visual indication that a user
has selected a choice. It is represented by outlining
the choice with a dotted box. See also text cursor.

selection field. (1) In SAA Advanced Common
User Access architecture, a set of related choices.
See also entry field. (2) In SAA Basic Common User
Access architecture, an area of a panel that cannot
be scrolled and contains a fixed number of choices.

semantics. The relationships between symbols and
their meanings.

semaphore. An object used by applications for
signalling purposes and for controlling access to
serially reusable resources.

separator. In SAA Advanced Common User
Access architecture, a line or color boundary that
provides a visual distinction between two adjacent
areas.

serial dialog box. See modal dialog box.

serialization. The consecutive ordering of items.

serialize. To ensure that one or more events occur
in a specified sequence.

serially reusable resource (SRR). A logical
resource or object that can be accessed by only one
task at a time.

session. (1) A routing mechanism for user
interaction via the console; a complete environment
that determines how an application runs and how
users interact with the application. OS(2 can
manage more than one session at a time, and more
than one proce~s can run in a session. Each
session has its own set of environment variables that
determine where OS(2 looks for dynamic-link
libraries and other important files. (2) (0 of C) In the
OS(2 operating system, one instance of a started
program or command prompt. Each session is
separate from all other sessions that might be
running on the computer. The operating system is
responsible for coordinating the resources that each

Glossary X-23

session uses; such as computer memory, allocation
of processor time, and windows on the screen.

Settings Notebook. A control window that is used
to display the settings for an object and to enable the
user to change them.

shadow box. The area on the screen that follows
mouse movements and shows what shape the
window will take if the mouse button is released.

shared data. Data that is used by two or more
programs.

shared memory. In the OS/2 operating system, a
segment that can be used by more than one
program.

shear. In computer graphics, the forward or
backward slant of a graphics symbol or string of
such symbols relative to a line perpendicular to the
baseline of the symbol.

shell. (1) A software interface between a user and
the operating system of a computer. Shell programs
interpret commands and user interactions on devices
such as keyboards, pointing devices, and
touch-sensitive screens, and communicate them to
the operating system. (2) Software that allows a
kernel program to run under different
operating-system environments.

shutdown. The process of ending operation of a
system· or a subsystem, following a defined
procedure.

sibling processes. Child processes that have the
same parent process.

sibling windows. Child windows that have the
same parent window.

simple list. A list of like values; for example, a list
of user names. Contrast with mixed list.

single-byte character set (SeCS). A character set
in which each character is represented by a one-byte
code. Contrast with double-byte character set.

slider box. In SAA Advanced Common User
Access architecture: a part of the scroll bar that
shows the position and size of the visible information
in a window relative to the total amount of
information available. Also known as thumb mark.

SOM. System Object Model.

X-24 PM Basic Programming Guide

source file. A file that contains source statements
for items such as high-level language programs and
data description specifications.

source statement. A statement written in a
programming language.

specific dynamic-link module. A dynamic-link
module created for the exclusive use of an
application.

spin button. In SAA Advanced Common User
Access architecture, a type of entry field that shows
a scroll able ring of choices from which a user can
select a choice. After the last choice is displayed,
the first choice is displayed again. A user can also
type a choice from the scrollable ring into the entry
field without interacting with the spin button.

spline. A sequence of one or more Bezier curves.

spooler. A programthat intercepts the data going
to printer devices and writes it to disk. The data is
printed or plotted when it is complete and the
required device is available. The spooler prevents
output from different sources from being intermixed.

stack. A list constructed and maintained so that the
next data element to be retrieved is the most
recently stored. This method is characterized as
last-in-first-out (LIFO).

standard window. A collection of window elements
that form a panel. The standard window can include
one or more of the following window elements: sizing
borders, system menu icon, title bar,
maximize/minimize/restore icons, action bar and
pull-downs, scroll bars, and client area.

static control. The means by which the application
presents descriptive information (for example,
headings and descriptors) to the user. The user
cannot change this information.

static storage. (1) A read/write storage unit in
which data is retained in the absence of control
signals. (A) Static storage may use· dynamic
addressing or sensing circuits. (2) Storage other
than dynamic storage. (A)

style. See window style.

subdirectory. In an IBM personal computer, a file
referred to in a root directory that contains the

names of other files stored on the diskette or fixed
disk.

swapping. (1) A process that interchanges the
contents of an area of real storage with the contents
of an area in auxiliary storage. (I) (A) (2) In a
system with virtual storage, a paging technique that
writes the active pages of a job to auxiliary storage
and reads pages of another job from auxiliary
storage into real storage. (3) The process of
temporarily removing an active job from main
storage, saving it on disk, and processing another
job in the area of main storage formerly occupied by
the first job.

switch. (1) In SM usage, to move the cursor from
one point of interest to another; for example, to
move from one screen or window to another or from
a place within a displayed image to another place on
the same displayed image. (2) In a computer
program, a conditional instruction and an indicator to
be interrogated by that instruction. (3) A device or
programming technique for making a selection, for
example, a toggle, a conditional jump.

switch list. See Task List.

symbolic identifier. A text string that equates to an
integer value in an include file, which is used to
identify a programming object.

symbols. In Information Presentation Facility, a
document element used to produce characters that
cannot be entered from the keyboard.

synchronous. Pertaining to two or more processes
that depend upon the occurrence of specific events
such as common timing signals. (T) See also
asynchronous.

System Menu. In the Presentation Manager, the
pull-down in the top left corner of a window that
allows it to be moved and sized with the keyboard.

System Object Model (SOM). A mechanism for
language-neutral, object-oriented programming in the
OS/2 environment.

system queue. The master queue for all pointer
device or keyboard events.

system-defined messages. Messages that control
the operations of applications and provides input an
other information for applications to process.

Systems Application Architecture (SAA). A set of
IBM software interfaces, conventions, and protocols
that provide a framework for designing and
developing applications that are consistent across
systems.

T
table tags. In Information Presentation Facility, a
document element that formats text in an
arrangement of rows and columns.

tag. (1) One or more characters attached to a set of
data that contain information about the set, including
its identification. (I) (A) (2) In Generalized
Markup Language markup, a name for a type of
document or document element that is entered in the
source document to identify it.

target object. An object to which the user is
transferri ng information.

Task List. In the Presentation Manager, the list of
programs that are active. The list can be used to
switch to a program and to stop programs.

template. An ASCII-text definition of an action bar
and pull-down menu, held in a resource trle, or as a
data structure in program memory.

terminate-and-stay-resident (TSR). Pertaining to
an application that modifies an operating system
interrupt vector to point to its own location (known as
hooking an interrupt).

text. Characters or symbols.

text cursor. A symbol displayed in an entry field
that indicates where typed input will appear.

text window. Also known as the VIO window.

text-windowed application. The environment in
which the operating system performs advanced-video
input and output operations.

thread. A unit of execution within a process. It
uses the resources of the process.

thumb mark. The portion of the scroll bar that
describes the range and properties of the data that is
currently visible in a window. Also known as a slider
box.

Glossary X-25

thunk. Term used to describe the process of
address conversion, stack and structure realignment,
etc., necessary when passing control between 16-bit
and 32-bit modules.

tilde. A mark used to denote the character that is to
be used as a mnemonic when selecting text items
within a menu.

time slice. (1) An interval of time on the processing
unit allocated for use in performing a task. After the
interval has expired, processing-unit time is allocated
to another task, so a task cannot monopolize
processing-unit time beyond a fixed limit. (2) In
systems with time sharing, a segment of time
allocated to a terminal job.

time-critical process.. A process that must be
performed within a specified time after an event has
occurred.

timer. A facility provided under the Presentation
Manager, whereby Presentation Manager will
dispatch a message of class WM_ TIMER to a
particular window at specified intervals. This
capability may be used by an application to perform
a specific processing task at predetermined intervals,
without the necessity for the application to explicitly
keep track of the passage of time.

timer tick. See clock tick.

title bar. In SAA Advanced Common User Access
architecture, the area at the top of each window that
contains the window title and system menu icon.
When appropriate, it also contains the minimize,
maximize, and restore icons. Contrast with panel
title.

TLB. Translation lookaside buffer.

transaction. An exchange between a workstation
and another device that accomplishes a particular
action or result.

transform. (1) The action of modifying a picture by
scaling, shearing, reflecting, rotating, or translating.
(2) The object that performs or defines such a
modification; also referred to as a transformation.

X-26 PM Basic Programming Guide

Translation lookaside buffer (TLB). A
hardware-based address caching mechanism for
paging information.

Tree. In the Presentation Manager, the window in
the File Manager that shows the organization of
drives and directories.

truncate. (1) To terminate a computational process
in accordance with some rule (A) (2) To remove
the beginning or ending elements of a string. (3) To
drop data that cannot be printed or displayed in the
line width specified or available. (4) To shorten a
field or statement to a specified length.

TSR. Terminate-and-stay-resident.

unnamed pipe. A circular buffer, created in
memory, used by related processes to communicate
with one another. Contrast with named pipe.

unordered list. In Information Presentation Facility,
a vertical arrangement of items in a list, with each
item in the list preceded by a special character or
bullet.

update region. A system-provided area of dynamic
storage containing one or more (not necessarily
contiguous) rectangular areas of a window that are
visually invalid or incorrect, and therefore are in need
of repainting.

user interface. Hardware, software, or both that
allows a user to interact with and perform operations
on a system, program, or device.

User Shell. A component of OS/2 that uses a
graphics-based, windowed interface to allow the user
to manage applications and files installed and
running under OS/2.

utility program. (1) A computer program in general
support of computer processes; for example, a
diagnostic program, a trace program, a sort
program. (T) (2) A program designed to perform
an everyday task such as copying data from one
storage device to another. (A)

u
There are no glossary terms for this starting letter.

v
value set control. A visual component that enables
a user to select one choice from a group of mutually
exclusive choices.

vector font. A set of symbols, each of which is
created as a series of lines and curves.
Synonymous with outline font. Contrast with image
font.

VGA. Video graphics array.

viewing pipeline. The series of transformations
applied to a graphic object to map the object to the
device on which it is to be presented.

viewing window. A clipping boundary that defines
the visible part of model space.

VIO. Video Input/Output.

virtual memory (VM). Synonymous with virtual
storage.

virtual storage. (1) The storage space that may be
regarded as addressable main storage by the user of
a computer system in which virtual addresses are
mapped into real addresses. The size of virtual
storage is limited by the addressing scheme of the
computer system and by the amount of auxiliary
storage available, not by the actual number of main
storage locations. (I) (A) (2) Addressable space
that is apparent to the user as the processor storage
space, from which the instructions and the data are
mapped into the processor storage locations. (3)
Synonymous with virtual memory.

visible region. A window's presentation space,
clipped to the boundary of the window and the
boundaries of any overlying window.

volume. (1) A file-system driver that uses a block
device driver for input and output operations to a
local or remote device. (I) (2) A portion of data,
together with its data carrier, that can be handled
conveniently as a unit.

w
wildcard character. Synonymous with global
file-name character.

window. (1) A portion of a display surface in which
display images pertaining to a particular application
can be presented. Different applications can be
displayed simultaneously in different windows. (A)
(2) An area of the screen with visible boundaries
within which information is displayed. A window can
be smaller than or the same size as the screen.
Windows can appear to overlap on the screen.

window class. The grouping of windows whose
processing needs conform to the services provided
by one window procedure.

window coordinates. A set of coordinates by
which a window position or size is defined; measured
in device units, or pels.

window handle. Unique identifier of a window,
generated by Presentation Manager when the
window is created, and used by applications to direct
messages to the window.

window procedure. Code that is activated in
response to a message. The procedure controls the
appearance and behavior of its associated windows.

window rectangle. The means by which the size
and position of a window is described in relation to
the desktop window.

window resource. A read-only data segment
stored in the .EXE file of an application 0 the .DLL
file of a dynamic link library.

window style. The set of properties that influence
how events related to a particular window will be
processed.

window title. In SAA Advanced Common User
Access architecture, the area in the title bar that
contains the name of the application and the OS/2
operating system file name, if applicable.

workstation. (1) A display screen together with
attachments such as a keyboard, a local copy
device, or a tablet. . (2) (0 of C) One or more
programmable or nonprogrammable devices that
allow a user to do work.

Glossary X-27

world coordinates. A device-independent
Cartesian coordinate system used by the application
program for specifying graphical input and
output. (I) (A)

world-coordinate space. Coordinate space in
which graphics are defined before transformations
are applied.

WYSIWYG. What-You-See-Is-What-You-Get. A
capability of a text editor to continually display pages
exactly as they will be printed.

x
There are no glossary terms for this starting letter.

y
There are no glossary terms for this starting letter.

X-28 PM Basic Programming Guide

z
z-order. The order in which sibling windows are
presented. The topmost sibling window obscures
any portion of the siblings that it overlaps; the same
effect occurs down through the order of lower sibling
windows.

zooming. The progressive scaling of an entire
display image in order to give the visual impression
of movement of all or part of a display group toward
or away from an observer. (I) (A)

8.3 file-name format. A file-naming convention in
which file names are limited to eight characters
before and three characters after a single dot.
Usually pronounced "eight-dot-three." See also
non-B.3 file-name format.

Index

Special Characters
#define directive 12-32, 12-41
#elif directive 12-32, 12-41
#else directive 12-32, 12-41
#endif directive 12-33, 12-41
#if directive 12-33, 12-41
#ifdef directive 12-33, 12-41
#ifndef directive 12-34, 12-41
#include directive 12-34, 12-41
#undef directive 12-35, 12-41

A
ACCEL 14-2, 14-15, 14-17
accelerator table

copy 14-6
create 14-7
destroy 14-8
load 14-9
query 14-10
set 14-11
translate 14-12

accelerators
data structures 14-2
definition 1-9
examples 14-1
including table in frame window 14-4
item styles 14-3
items 14-2
keyboard 13-8
keyboard, description 14-1
menu 13-8
modifying table 14-5
shortcut keys 2-7
structures 14-17
summary 14-17
table 1-9
table entries 9-6
table functions 14-17
table handles 14-2
tables 14-2
using WinLoadAccelTable 14-5
using WinSetAccelTable 14-4

ACCELTABLE 14-2, 14-16, 14-17
ACCELTABLE statement 12-4,12-38

© Copyright IBM Corp. 1994

accessing
message queue 3-2
system menu 13-12
window resources 2-20

active application, description 9-1
active window

becoming system-modal window 2-10
button clicks 9-8
definition 1-7
description 2-1, 2-8
destruction 2-22
location 2-8
response to mouse click 9-8
set by mouse click 9-1
setting 9-1
transferring active state 2-22
transferring focus 2-22
user interaction 2-8
using 2-1

AF_ALT 14-3
AF _CHAR 14-3
AF _CONTROL 14-3
AF _HELP 14-3
AF _LONEKEY 14-3
AF _ SCANCODE 14-3
AF _SHIFT 14-3
AF _SYSCOMMAND 14-3
AF _ VI RTUALKEY 14-3
alarm sound 15-16
altering dragging action 17-3
ancestor, description 2-4
application

-defined messages 3-7
accessing initialization files 24-1
accessing message queue 3-2
button states 19-8
button styles 19-4
bypassing FIFO order of message queue 3-6
capturing mouse input 9-7
changing appearance of control window 16-3
control windows 16-1
creating 2-6
creating a list with LS_OWNERDRAW 21-5
creating a normal presentation space 7 -11
creating and using message queue 3-2
creating control windows 16-1

X-29

application (continued)
creating frame windows 6-2, 6-4
creating initialization file 24-1
creating nonstandard frame windows 6-11
customizing public window classes 4-5
customizing window styles 4-3
cutting and pasting 20-6
default window procedure 5-2
determining message queue size 3-3
examining message queue 3-13
frame-window class data 6-9
handling mouse and keyboard input

messages 3-3
loading and displaying dialog box 21-3
main window 6-1
maintaining presentation spaces 7-12
message queue 3-2
message-identifier values 3-8
mouse and keyboard input 9-1
mouse button clicks 9-8
obtaining button handles 19-8
performing actions on initialization files 24-1
posting and sending messages 3-6
posting messages to message queue 3-1
posting or sending messages to all windows 3-7
private window classes 4-1
public window class data 4-6
public window classes 4-4
queue 1-9
registering window classes 4-1
resources 1-9
retrieving entry-field text 20-9
sharing message resources 3-1
specifying absolute-position index 21-3
specifying accelerator-item styles 14-3
speeding up insertion of items in a list 21-4
subclassing a window procedure 5-2
system message queue 9-1
terminating message loop 3-5
types 2-6
using a message loop 3-4
using accelerators 14-2
using buttons in a client window 19-10
using client window 6-3
using control windows 16-3
using list box in dialog window 21-3
using list boxes 21-1
using menus 13-1
using messages and message queues 3-1
using semaphore messages 3-9

X-30 PM Basic Programming Guide

application (continued)
window classes 4-1
window data size for window class 4-3
window procedure for window class 4-3
window, creating 2-6
window, description 2-6

arranging frame controls 6-12
assigning timer identifier 23-3
associating

device context with presentation space 7 -14
window class with window procedure 5-4
windows with message queue 3-2

ASSOCTABLE statement 12-4, 12-38
attributes

CFI OWNERDISPLAY 22-7
CFI_OWNERFREE 22-7
keyboard focus 9-2
menu-item 13-5
setting and querying menu-item 13-13

AUTOCHECKBOX statement 12-5, 12-38
AUTORADIOBUTTON statement 12-5, 12-38

B
bit maps

clipboard format 22-4
definition 1-9
draw 8-4, 10-10
enlarging 8-4
get system 10-13
monochrome 10-1
mouse pointer 9-6, 10-1
reducing 8-4
SBMP _BTNCORNERS 10-4
SBMP _ CHECKBOXES 10-4
SBMP _CHILDSYSMENU 10-4
SBMP _CHILDSYSMENUDEP 10-4
SBMP _COMBODOWN 10-4
SBMP _MAXBUTTON 10-4
SBMP _MENUATTACHED 10-4
SBMP _MENUCHECK 10-4
SBMP _MINBUTTON 10-4
SBMP _OLD_CHILDSYSMENU 10-4
SBMP _OLD..:.MAXBUTTON 10-4
SBMP _OLD_MINBUTTON 10-4
SBMP _OLD_RESTOREBUTTON 10-4
SBMP _OLD_SBDNARROW 10-4
SBMP _OLD_SBLFARROW 10-4
SBMP _OLD_SBRGARROW 10-4
SBMP _OLD_SBUPARROW 10-4

bit maps (continued)
SBMP _PROGRAM 10-4
SBMP _RESTOREBUTTON 10-4
SBMP _RESTOREBUTTONDEP 10-4
SBMP _SBDNARROW 10-4
SBMP _SBDNARROWDEP 10-4
SBMP _SBDNARROWDIS 10-4
SBMP _SBLFARROW 10-4
SBMP _SBLFARROWDEP 10-4
SBMP _SBLFARROWDIS 10-4
SBMP _SBRGARROW 10-4
SBMP _SBRGARROWDEP 10-4
SBMP _SBRGARROWDIS 10-4
SBMP _SBUPARROWDEP 10-4
SBMP _SBUPARROWDIS 10-4
SBMP _SIZEBOX 10-4
SBMP _SYSMENU 10-4
SBMP _ TREEMINUS 10-4
SBMP _ TREEPLUS 10-4
system 10-4

BITMAP statement 12-6, 12-38
BKM_ messages 3-8
BM _ messages 3-8
BM_CLlCK 19-1, 19-6, 19-16, 19-26
BM_QUERYCHECK 19-6, 19-17, 19-26
BM_QUERYCHECKINDEX 19-6, 19-18, 19-26
BM_QUERYHILITE 19-6, 19-19, 19-26
BM_SETCHECK 19-6, 19-20, 19-26
BM_SETDEFAULT 19-6,19-21,19-26
BM_SETHILITE 19-6,19-22,19-26
BMSG_ * values 3-17
BN_CLlCKED 19-8
BN_DBLCLICKED 19-8
BN_PAINT 19-4, 19-8
bounding rectangle, button 19-9
broadcasting messages 3-15
BS_3STATE 19-4
BS _ AUT03STATE 19-4
BS_AUTOCHECKBOX 19-4
BS _ AUTORADIOBUTTON 19-4
BS_AUTOSIZE 19-4
BS _BITMAP 19-4
BS_CHECKBOX 4-5,19-4
BS_DEFAULT 19-4
BS_HELP 19-4, 19-7
BSJCON 19-4
BS_MINIICON 19-4
BS_NOBORDER 19-4
BS_NOCURSORSELECT 19-4

BS_NOPOINTERFOCUS 19-4
BS _PUSHBUTTON 4-3, 4-5, 19-4, 19-7
BS_RADIOBUTTON 19-4
BS_SYSCOMMAND 19-4, 19-7
BS _TEXT 19-4
BS _ USERBUTTON 19-4, 19-7
BTNCDATA 19-24, 19-27
button clicks 9-8
button controls

as control windows 2-8
BM _ messages 3-8
bounding rectangles 19-9
button styles 19-4
check boxes 19-3
creating in client window 19-1
custom 19-8
default behavior 19-6
description 19-1
in enhanced message box 15-8
maximize 6-3
minimize 6-3
notification code for messages 19-8
notification messages 19-7
push buttons 19-1
radio buttons 19-2
selecting a button 19-7
states 19-8
summary of functions 19-26
summary of messages 19-26
summary of structures 19-27
text, retrieving 19-8
types of buttons 19-1
using 19-9
using buttons in a client window 19-10
window class (WC _BUTTON) 19-6

button style flags
MB_APPLMODAL 15-4
MB_CUSTOMICON 15-4
MB_ERROR 15-4
MB_ICONASTERISK 15-4
MBJCONEXCLAMATION 15-4
MBJCONHAND 15-4
MBJCONQUESTION 15-4
MBJNFORMATION 15-4
MB_MOVEABLE 15-4
MB_NOICON 15-4
MB_NONMODAL 15-4
MB_QUERY 15-4
MB_SYSTEMMODAL 15-4
MB_WARNING 15-4

Index X-31

button styles
BS_3STATE 19-4
BS _ AUT03STATE 19-4
BS_AUTOCHECKBOX 19-4
BS _ AUTORADIOBUTTON 19-4
BS_AUTOSIZE 19-4
BS_BITMAP 19-4
BS_CHECKBOX 19-4
BS_DEFAULT 19-4
BS_HELP 19-4,19-7
BSJCON 19-4
BS_MINIICON ·19-4
BS_NOBORDER 19-4
BS_NOCURSORSELECT 19-4
BS_NOPOINTERFOCUS 19-4
BS _PUSHBUTTON 19-4, 19-7
BS_RADIOBUTTON 19-4
BS_SYSCOMMAND 19-4,19-7
BS _TEXT 19-4
BS _ USERBUTTON 19-4, 19-7
description 19-4
table 19-4

button-down message 9-7
button-up message 9-7

c
cached-micro presentation space

description 7-10
strateg ies 7-15
using 7-14
using, code 7-15

calculating dimensions of rectangles 8-2
capture window 9-7
capturing mouse input 9-7
CBM _ messages 3-8
CF_* values 22-16,22-17,22-20,22-29
CF _BITMAP 22-4
CF _ DSPBITMAP 22-4
CF _DSPMETAFILE 22-4
CF _DSPTEXT 22-4
CF _METAFILE 22-4
CF _TEXT 22-4
CFI_HANDLE flag 22-3
CFLOWNERDISPLAYattribute 22-6,22-7
CFLOWNERFREE attribute 22-7
CFI_POINTER flag 22-3
changing

active windows 2-10
control window appearance 16-3

X-32 PM Basic Programming Guide

changing (continued)
default size of entry field 20-8
input focus 2-9
menu attributes, styles, and contents 13-4
mouse pointer 10-6
parent window 2-4, 2-25
size of a window 2-29
window size and position 2-16, 2-18
z-order 2-5, 2-30

CHAR1 FROMMP 9-10
CHAR3FROMMP 9-5
CHAR4FROMMP 9-5
character codes 9-6
check boxes

description 19-1, 19-3
uses of 19-3

CHECKBOX statement 12-6, 12-38
checking

accuracy of timer message 23-2
for key-up or key-down event, code 9-9
queue for WM _CHAR messages, code 3-13

child window
clipping 2-4
description 2-3
destroying 2-22
finding 2-26
keyboard focus 2-10
main 2-3
retrieving handles 2-27

class data
examining 4-6
frame-window 6-9
window 4-6

class name
description 4-1
private window class 4-1

class styles
CS_CLlPCHILDREN 2-4, 4-2
CS_CLlPSIBLINGS 2-4,4-2
CS _FRAME 4-2
CS HITTEST 4-2
CS=MOVENOTIFY 2-18,4-2
CS_PARENTCLIP 4-2
CS _ SAVEBITS 4-2
CS_SIZEREDRAW 2-30,4-2
CS_SYNCPAINT 2-14,4-2
description 4-2
predetermining 2-14
private window classes 4-2
table, private window classes 4-2

classes, window
creating 2-13
description 4-1
rules of ownership 2-2

CLASSINFO 4-6, 4-11,4-12
clearing the clipboard 22-3
client window

creating 6-3
creating entry field 20-7
definition 2-7
description 2-7, 6-3
using buttons 19-10
window procedure 2-7

clipboard
CF _DSPBITMAP 22-4
CF _DSPMETAFILE 22-4
CF _DSPTEXT 22-4
CF _METAFILE 22-4
CF _TEXT 22-4
clearing 22-3
copying, cutting, and pasting data,

example 22-1
CR_BITMAP 22-4
cut and copy operations 22-3
data formats, table 22-4
delayed rendering 22-6
description 1-10, 22-1
display formats 22-5
format identification number 22-5
formats 22-4
metafile format 22-4
operations on data 22-1
owner 22-6, 22-7
passing bit map or metafile 22-3
paste operation 22-4
private data formats 22-5
putting data on 22-9
query format information 22-17
query viewer window 22-19
releasing 22-4
retrieving data from 22-10
rich text format 22-4
set data 22-20
shared memory 22-3
standard data formats 22-4
straight text format 22-4
summary of functions 22-33
summary of messages 22-33
ulData parameter 22-6
using 22-9

clipboard (continued)
viewer 22-6
viewing data on 22-10

clipped window 1-3
clipping area

window, description 2-4
WS_CLlPCHILDREN 2-4
WS_CLlPSIBLINGS 2-4

clipping region 7 -19
closing initialization file 24-2
CM _ messages 3-8
CMDSRC _ * values 2-104, 5-20, 5-22, 6-33
CODEPAGE statement 12-6, 12-38
combination-box control

as control windows 2-8
CBM _ messages 3-8

combining window styles 2-14
COMBOBOX statement 12-7, 12-38
command codes, scroll bar

example 18-4
SB_ENDSCROLL 18-5
SB_LlNEDOWN 18-5
SB_LlNELEFT 18-5
SB_LlNERIGHT 18-5
SB_LlNEUP 18-5
SB_PAGEDOWN 18-5
SB_PAGELEFT 18-5
SB_PAGERIGHT 18-5
SB_PAGEUP 18-5
SB_SLlDERPOSITION 18-5
SB_SLlDERTRACK 18-5

command items, menu 13-4
commands

application's flow of graphics 7-2
command identifier 14-2
command set 14-1
generated by keyboard accelerators 14-1
message 14-3

composite window
creating 6-1
description 2-7, 6-1

constants
FID_HORZSCROLL 18-3
FID_VERTSCROLL 18-3
frame-control flag 6-4
HWND_BOTTOM 2-16,2-30
HWND_DESKTOP 2-16
HWND_OBJECT 2-16
HWND _TOP 2-16, 2-30
QWS_ 2-25

Index X-33

constants (continued)
specifying· message category 3-8
substituting for window handles 2-16
SWP _MAXIMIZE 2-31
SWP _MINIMIZE 2-31
SWP _MOVE 2-29
SWP _NOADJUST 2-18
SWP _RESTORE 2-31
SWP _SIZE 2-29
SWP _ZORDER 2-30
symbolic 3-8
WM_BUTTONCLICKFIRST 3-11-
WM_BUTTONCLICKLAST 3-11
WM_DDE_FIRST 3-11
WM_DDE_LAST 3-11
WM_MOUSEFIRST 3-11
WM_MOUSELAST 3-11

constructing message result, code 3-16
container control messages 3-8
CONTAINER statement 12-7,12-38
CONTROL statement 12-8, 12-38
control window

changing appearance 16-3
child windows 1-5
classes 2-8, 2-14
classes, table 16-1
contents

buttons 2-8
combination boxes 2-8
entry fields 2-8
list boxes 2-8
menus 2-8
scroll bars 2-8
static text 2-8
title bars 2-8

creating 16-1
creating custom 16-3
definition 2-8
description 2-8, 16-1
in dialog windows 2-7, 16-1
messages generated by 16-7
messages received by 16-7
ownerdraw style 16-3
ownership 16-2
painting 16-2
predefined 16-1
preregistered 1-5
scroll-bar 18-1
title-bar 17-1
uses 16-1

X-34 PM Basic Programming Guide

control window (continued)
using 16-3
using in non-dialog window 16-3

controls
button 19-1
entry field 20-1
frame 6-2
list box 21-1
scroll-bar 18-1
styles, frame 6-4
title-bar 17-1

coordinates, window
default 2-17
parent window 2-11

copy and paste operations
COpy command 1-10,22-1,22-3
COpy operation in entry-field control 20-6
CUT command 1-10, 22-1, 22-3
description 1-10, 22-1
in entry-field controls 20-6
PASTE command 1-10,22-1,22-4
PASTE operation in entry-field control 20-6
using clipboard 22-1

copy and paste operations, entry field 20-6
COPY command 1-10
CREATESTRUCT 2-106, 2-112
creating

accelerator-table resource 14-4
application windows 2-6
client window 6-3
clipboard viewer 22-6
composite window 6-1
control windows 2-8
cursors 11-1
custom control window 16-3
custom menu item 13-16
desktop window 2-2
desktop-object window 2-2, 2-6
dialog procedure 15-13
dialog template 15-9, 16-1
enhanced message box 15-7
entry field in client window 20-7
entry field in dialog window 20-7
frame windows 6-2, 6-4
initialization 24-1
invisible windows 2-21
list box window 21-2
main window 2-6, 6-14
message box 15-6
message parameters 3-15

creating (continued)
message queue 3-2
message queue and message loop 3-11
message queues 2-11
micro presentation spaces 7 -12
modal dialog window 15-9
modeless dialog window 15-11
new list 21-3
nonstandard frame windows 6-11
normal presentation space 7-11
object window 2-6, 2-24
owner-drawn list item 21-5
pop-up menu 13-2, 13-11
scroll bars 18-2
setting in initialization file, code 24-2
system-modal message box 15-7
timer identifier 23-1
top-level frame window 2-23
window classes 2-13
windows 2-11, 2-23

CS_CLlPCHILDREN 4-2,7-4
CS_CLlPSIBLINGS 4-2,7-5
CS_FRAME 4-2
CS_HITTEST 4-2,9-7
CS_MOVENOTIFY 2-18,4-2
CS_PARENTCLIP 4-2,7-5
CS_PUBLIC 4-5
CS _ SAVEBITS 4-2, 7-5
CS_SIZEREDRAW 2-30,4-2,7-5
CS_SYNCPAINT 4-2,7-5
CTEXT statement 12-9, 12-38
CTLDATA statement 12-9, 12-3~
cursor

characteristics 11-1
create 11-3
creating 11-1
definition 1-7
description 11-1
destroy 11-5
functions 11-9
hide 11-7
hiding 11-2
keyboard focus 11-1
query information 11-6
setting position and size 11-1
show 11-7
show level 11-2
specifying display window 11-1
visibility 11-2

CURSOR_* values 11-3
CURSORINFO 11-8, 11-9
customizing

buttons 19-8
control windows 16-3
menu items 13-16
public window classes 4-5
window styles 4-3

cut and copy operations 22-3
CUT command 1-10
CV _TIMERS system value 23-1
CVR _ * values 2-94

D
data exchange 1-10
data structures

ACCEL 14-2, 14-17
ACCEL TABLE 14-2, 14-17
BTNCDATA 19-27
CLASSINFO 4-6,4-12
CREATESTRUCT 2-112
CURSORINFO 11-9
dialog 15-5
DLGTEMPLATE 15-5, 15-46
DLGTITEM 15-5, 15-46
ENTRYFDATA 20-8,20-29
FATTRS 8-32
FRAMECDATA 6-5,6-40
HMO 3-53
HSAVEWP 6-40
LBOXINFO 21-43
MB2D 15-8, 15-46
MB21NFO 15-4, 15-46
MENUITEM 13-5, 13-59
MOINFO 3-3, 3-53
OWNERITEM 13-16, 13-59, 21-5, 21-43
POINTERINFO 10-25
POINTL 8-1,8-32
PRFPROFILE 24-15
OMSG 3-2, 3-53, 9-7
querying window 2-25
RECTL 7-7, 7-40, 8-1,8-32
SBCDATA 18-2,18"20
SWP 17-12
TRACKINFO 17-3, 17-12
USERBUTTON 19-8,19-27
window 2-19
window, table 2-112
WNDPARAMS 2-112

Index X-35

data types, window
HWND 2-16
MPARAM 5-1
MRESULT 5-2
VOID 5-1

DBM_* values 10-10
default behavior, frame window 6-12
default button behavior 19-6
default dialog procedure 1-6
default entry-field behavior 20-3
default window procedure 5-2
DEFAULTICON statement 12-10,12-38
defining

dialog resource 21-3
dialog-window buttons 19-9
menu items in a resource file 13-8
menu resource 13-2
menus 13-1

DEFPUSHBUTTON 19-10
DEFPUSHBUTTON statement 12-10, 12-38
delayed rendering, clipboard 22-6
deleting

item in list box 21-3
menu items 13-13

descendant, description 2-4
description 4-1
description, clipboard viewer 22-6
designing

window procedure 5-3
desktop window

creating 2-2
description 1-2, 2-2
top-level window 2-3

desktop-object window
creating 2-2
descendant object window 2-6
description 2-2

destroying
a window 2-4, 2-22
child windows 2-22
cursors 11-1
definition 2-3
descendant windows 2-22
message queue 3-2
system-modal window 2-10
window 2-32

determining
active status of frame window 9-8
dimensions of a rectangle 8-2
keyboard focus, code 3-15

X-36 PM Basic Programming Guide

determining (continued)
scroll-bar range and position 18-2

DevCloseDC 7-14, 7-39
device context

associating with presentation space, code 7-14
description 7-1
obtaining 7 -14
open for a window 7 -28
summary of functions 7-39

DevOpenDC 7-14, 7-39
dialog

-item groups 15-2
box 1-6
create 15-17
default procedure 5-6
dialog box editor 1-10
dialog-item groups 15-2
dismiss 15-18
enumerate item 15-20
includes 1-9
items 15-1
load 15-22
procedure 1-6
process modal 15-27
query item short 15-28
send message to item 15-31
set item short 15-32
template, description 1-5, 16-1
templates 1-9

dialog item
query text 15-29
query text length 15-30

dialog points
map 15-23

DIALOG statement 12-11, 12-39
dialog window

adding menu 13-11, 15-12
creating 6-4
creating dialog procedure 15-13
creating entry field 20-7
creating modal 15-9
creating modeless 15-11
data structures 15-5
description, 1-5, 2-6, 2-7, 15-1
destroy modal 15-18
dialog items 15-1
dialog-item groups 15-2
hide modeless 15-18
including control windows 16-1
initializing 15-11

dialog window (continued)
list box figure 21-1
loading and displaying 21-3
manipulating dialog items 15-14
message boxes 15-3
modal 15-1
modeless 15-1
resources 15-5
summary of dialog functions 15-45
summary of dialog messages 15-46
summary of structures 15-46
using 15-6, 15-9
using button controls 19-9
using control windows 16-3
using list box 21-3

directives 12-2
disabled window

description 2-10
enabling 2-10
using WinEnableWindow 2-10
WS_DISBLED 2-15

disabling
system-modal window 2-10
to prevent input 2-10
windows 2-10

dispatching WM_TIMER messages 23-3
display formats, clipboard 22-5
displaying list boxes 21-1
DLGC _ * values 16-6
DLGINCLUDE statement 12-11, 12-39
DLGTEMPLATE 15-5, 15-39, 15-46
DLGTEMPLATE statement 12-12, 12-39
DLGTITEM 15-5, 15-40, 15-46
DosAliocSharedMem 22-3
DOWN key 18-6
DP _* values 10-12
dragging action, altering 17-3
drawing

a bit map 8-4
in windows 8-1
minimized view 7-8
strategies 7-6
text 8-5

DT _ * values 8-9
DT _ WORDBREAK 8-5

E
EDI_* values 15-20

EDITTEXT statement 12-13, 12-39
EM _ messages 3-8
EM_CLEAR 20-3, 20-5, 20-12, 20-28
EM_COPY 20-3,20-6,20-13,20-28
EM_CUT 20-3,20-6,20-14,20-28
EM_PASTE 20-3,20-6,20-15,20-28
EM_QUERYCHANGED 20-3,20-5,20-16,20-28
EM_QUERYFIRSTCHAR 20-3,20-17,20-28
EM_QUERYREADONLY 20-3,20-18,20-28
EM_QUERYSEL 20-3,20-19,20-28
EM_READONLY 20-5
EM_SETFIRSTCHAR 20-3,20-20,20-28
EM_SETINSERTMODE 20-3,20-21,20-28
EM_SETREADONLY 20-3, 20-22, 20-28
EM_SETSEL 20-3, 20-23,20-28
EM_SETTEXTLIMIT 20-3, 20-24, 20-28
EN _ * values 20-25
EN_CHANGE 20-3
ENJNSERTMODETOGGLE 20-3
EN_KILLFOCUS 20-3
EN_MEMERROR 20-3
EN_OVERFLOW 20-3
EN_SCROLL 20-3
EN;... SETFOCUS 20-3
enabled and disabled windows 2-10
enabling

disabled windows 2-10
using WinlsWindowEnabled function 2-10
windows 2-10

enhanced message box 15-4
entry field

as control windows 2-8
changing default size 20-8
controls 20-1
creating in client window 20-7
creating in dialog window 20-7
default behavior 20-3
inserting text 20-5
notification codes 20-2
owner 20-2
retrieving text 20-9
styles 20-1
summary 20-28
text editing 20-5
text retrieval 20-6

entry-field controls
copy and paste operations 20-6
description 20-1
EM_messages 3-8
EM_QUERYSEL 20-5

Index X-37

entry-field controls (continued)
EM_SETSEL message 20-5
functions 20-28
messages 20-28
messages generated by 20-28
messages received by 20-28
setting flags 20-9
structures 20-29
summary 20-28
using 20-7

entry-field styles
ES_ANY 20-1
ES_AUTOSCROLL 20-1
ES_AUTOSIZE 20-1
ES _ AUTOTAB 20-1
ES_CENTER 20-1
ES_DBCS 20-1
ES_LEFT 20-1
ES_MARGIN 20-1
ES_MIXED 20-1
ES_READONLY 20-1
ES_RIGHT 20-1
ES _ SBCS 20-1
ES _UNREADABLE 20-1

ENTRYFDATA 20-8, 20-26, 20-29
ENTRYFIELD statement 12-13, 12-39,20-1
enumerating windows 2-28
ES_ANY 20-1
ES _ AUTOSCROLL 20-1
ES _ AUTOSIZE 20-1
ES _ AUTOTAB 20-1
ES_CENTER 20-1
ES _ OBCS 20-1
ES _LEFT 20-1
ES_MARGIN 20-1
ES_MIXED 20-1
ES_READONLY 20-1
ES_RIGHT 20-1
ES _ SBCS 20-1
ES_UNREADABLE 20-1
events

input, mouse and keyboard 9-1
key-down 9-5
key-up 9-5
repeat-count 9-5

examining
message queue 3-13
public window class data 4-6
structure members 2-25

X-3S PM Basic Programming Guide

examples
accelerators 14-1
application's flow of graphics commands 7-2
broadcasting a message 3-15
changing the parent window 2-25
changing the size of a window 2-29
changing the z-order of a window 2-30
check boxes in a dialog box 19-3
clipboard bit map format 22-4
clipboard metafile format 22-4
clipboard text format 22-4
code for flagging a text change 20-9
copying, cutting, and pasting data 22-1
creating a frame window with

FCF _ ACCEL TABLE 14-4
creating a message queue 2-23
creating a top-level frame window 2-23
creating an accelerator-table resource 14-4
creating an initialization file, sample code 24-2
creating an object window 2-24
creating entry field in client window 20-7
creating entry field with text limit 20-8
defining entry field in dialog window 20-7
defining list box in dialog template 21-3
destroying a window 2-32
determining active status of frame window,

code 9-9
determining scroll bar range 18-2
dialog-window procedure 21-3
drawing in a window 7-6
enumerating top-level windows 2-28
exchanging the z-order of windows 2-31
extracting a scan code 9-12
finding the parent window 2-26
finding the topmost child window 2-26
frame and client windows using

WinCreateWindow 6-15
frame window 6-2
getting handle to owner or child window 2-27
getting the window identifier 2-25
handling virtual-key codes 9-11
how to create a standard window using

WinCreateStdWindow 6-15
how to create a typical main window 6-14
how to retrieve handle of title-bar control 6-17
input message processing loop 3-5
inserting items in a list 21-4
fist box in dialog box 21-1
list box selection processes, code 21-7
mainO function for a simple application 2-23

examples (continued)
maximizing a frame window 2-31
menu item structure 13-5
menus 13-1
message box 15-6
micro presentation space 7-12
moving a window 2-29
moving and sizing a window 2-29
normal presentation space 7-11
OWNERITEM structure, code 21-5
push buttons 19-1
radio buttons in a dialog box 19-2
registering a window class 2-23
resource definition 16-4
response to a WM_SETFOCUS Message 11-2
retrieving names of initialization files 24-3
scroll bars in a window 18-1
setting the owner window 2-27
sizing the list-box window 21-2
standard window scroll bar and command

codes 18-3, 18-4
structure of a typical window procedure 5-3
title bar in a standard frame window 17-1
using buttons in a client window 19-10
window procedure arguments 5-2

extracting focus flag 3-15
extracting focus-change flag 3-15

F
fActive parameter 9-2
FATTR_SEL_* values 8-27
FATTR_TYPE_* values 8-27
FATTRS 8-26,8-32
FC_* values 9-14
FCF_ACCELTABLE 6-5,14-4
FCF _ICON 6-5
FCF _MAXBUTTON 6-3
FCF _MENU 6-5
FCF _MINBUTTON 6-3
FCF _MINMAX 6-3
FCF _NOBYTEALIGN 2-18
FCF _SHELLPOSITION 2-16,6-4
FCF _SIZEBORDER 6-3
FCF _STANDARD 6-5,6-15
FF _* indicators 2-64
FF _ACTIVE 6-10
FF _DLGDISMISSED 6-10
FF _FLASHHILITE 6-10

FF _FLASHWINDOW 6-10
FF _NOACTIVATESWP 6-10
FF _OWNERDISABLE 6-10
FF _OWNERHIDDEN 6-10
FF _SELECTED 6-10
fFocus parameter 9-2
FL * values 6-27
FI_ACTIVATEOK 6-10
FLFRAME 6-10
FLNOMOVEWITHOWNER 6-10
FID_CLlENT 6-3,6-11
FID_HORZSCROLL 6-3, 6-11, 18-3
FID_MENU 6-3, 6-11, 13-1
FID_MINMAX 6-3
FID_SYSMENU 6-3,6-11
FID_TITLEBAR 6-3,6-11
FI D _ VERTSCROLL 6-3, 6-11, 18-3
files

dialog resource 15-5
os2.ini 4-5

filling a rectangle 8-3
filtering

input 1-9
messages 3-1 0

finding parent, child, or owner window 2-26
flags

CFL HANDLE 22-3
CFL OWNERDISPLA Y 22-6
CFLPOINTER 22-3
CURSOR_SETPOS flag 11-1
DT _ WORDBREAK 8-5
FCF _ ACCEL TABLE 6-5
FCF -,CON 6-5
FCF _MENU 6-5
FCF _SHELLPOSITION 6-4
FCF _STANDARD 6-5,6-15
FF _ACTIVE 6-10
FF_DLGDISMISSED 6-10
FF _FLASHHILITE 6-10
FF_FLASHWINDOW 6-10
FF _NOACTIVATESWP 6-10
FF _OWNERDISABLE 6-10
FF _OWNERHIDDEN 6-10
FF _SELECTED 6-10
FLACTIVATEOK 6-10
FI_FRAME 6-10
FLNOMOVEWITHOWNER 6-10
frame-control 6-4
KC_ALT 9-4,9-10
KC _CHAR 9-4, 9-10

Index X-39

flags (continued)
KC_COMPOSITE 9-4
KC,-CTRL 9-4
KC_DEADKEY 9-4
KCJNVALIDCHAR 9-4
KCJNVALIDCOMP 9-4
KC_KEYUP 9-4
KC_LONEKEY 9-4
KC _PREVDOWN 9-4
KC _ SCANCODE 9-4
KC_SHIFT 9-4
KC_TOGGLE 9-4
KC_VIRTUALKEY 9-4
keyboard character 9-4
message 9-4
PU,-HCONSTRAIN 13-3
PU_MOUSEBUTTON 13-3
PU_POSITIONONITEM 13-3
PU _ SELECTITEM 13-3
PU_VCONSTRAIN 13-3
SWJNVALIDATERGN 8-4
using in entry fields 20-9

flashing
start 17-4
stop 17-4

focus
change window 9-14
keyboard 2-10, 2-22, 9-2, 9-8
losing 2-10
query 2-54
set window 2-68

focus window
as the active window 2-9
message responses to keys 18-6

focus-change and activation messages 9-23
FONT statement 12-14, 12-39
fonts

definition 1-9
editor 1-10

format identification number, clipboard 22-5
forwarding messages 3-2
frame controls, description 6-2, 6-3
FRAME statement 12-14, 12-39
frame window

adding an accelerator table 14-5
additional items 6-3
class data 6-9
client window 6-3
controls 6-2
controls and styles 6-4

X-40 PM Basic Programming Guide

frame window (continued)
creating 6-2
creating composite window 6-1
creating dialog window 6-4
creating main window 6-14
creation 6-4
data 6-10

. default behavior 6-12
definition 1-5
description 2-6, 2-7, 6-1
description of operation 6-11
determining active status 9-8
drawing minimized view 7-8
example 6-2
flags and styles that require resources 6-5
frame-control identifiers 6-3
FS_NOMOVEWITHOWNER 2-5
hiding or minimizing 2-5
including an accelerator table 14-4
including title bar 17-2
maximizing 2-31
message box 2-7
minimizing 2-31
moving 2-5
nonstandard 6-11
operation 6-11
ownership properties 2-5
resources 6-5
restoring 2-5, 2-31
retrieving a frame handle 6-17
state flags 6-10
styles 6-5
summary of functions, structure, messages 6-39
title-bar functions 17-1
types of 6-4
using 6-14
using FCF _ ACCEL TABLE 14-4
We_FRAME class 6-1

frame-creation flags, FCF_
FCF _NOBYTEALIGN 2-18
FCF _ SHELLPOSITION 2-16
specifying 6-5

FRAMECDATA 6-5, 6-36, 6-40
FS_ACCELTABLE 6-5
FS _BORDER 4-3
FS_ICON 6-5
FS_MENU 6-5
FS _NOMOVEWITHOWNER 2-5
FS_STANDARD 6-5

functions
accelerator-table 14-17
button control 19-26
calling 2-11
cursor 11-9
DevCloseDC . 7-14, 7-39
DevOpenDC 7-14,7-39
DosAliocSharedMem 22-3
entry field control 20-28
for working with points and rectangles 8-2
GpiAssociate 2-22, 7-11, 7-39
GpiCreatePS 7-10, 7-39
GpiDestroyPS 2-22, 7-10
initialization file summary 24-15
pOinter and bit map 10-25
PrfCloseProfile 24-2, 24-15
PrfOpenProfile 24-2, 24-15
PrfOueryProfi Ie 24-15
PrfOueryProfileData 24-3, 24-15
PrfOueryProfilelnt 24-15
PrfOueryProfileSize 24-3, 24-15
PrfOueryProfileString 24-3, 24-15
PrfReset 24-15
PrfWriteProfileData 24-15
PrfWriteProfileString 24-3, 24-15
sumary of dialog 15-45
summary of device context 7 -39
summary of presentation space 7 -39
summary of title-bar 17 -11
summary of window regions 7-39
summary of window-drawing 8-31
title-bar 17-1
using Profile Manager 24-1
using window-drawing 8-2
using WinLoadAccelTable 14-5
WinAlarm 15-45
WinBeginEnumWindows 2-28,2-109
WinBeginPaint 7-7,7-10,7-39,11-2
WinBroadcastMsg 3-15,3-51
WinCalcFrameRect 6-12, 6-39, 8-31
WinCallMsgFilter 3-51
WinCheckMenultem 13-57
WinCloseClipbrd 22-4, 22-33
WinCopyAccelTable 14-17
WinCopyRect 8-31
WinCreateAccelTable 14-5, 14-17
WinCreateCursor 11-1, 11-9
WinCreateDlg 2-12, 6-4, 15-45
WinCreateFrameControls 2-12, 6-12, 6-39
WinCreateMenu 2-12, 13-2, 13-57

functions (continued)
WinCreateMsgOueue 2-11, 3-2, 3-11,3-51,4-1
WinCreatePointer 10-25
WinCreatePointerlndirect 10-25
WinCreateStdWindow 2-12,2-109,6-2,6-4,

6-15, 16-1, 17-11
WinCreateWindow 2-11, 2-21, 2-24, 2-109, 4-1,

4-4, 6-4, 6-15, 16-1, 16-3, 18-3, 19-1, 19-26,
20-1,21-2

WinDefDlgProc 3-51, 5-3, 5-31, 9-3, 15-45
WinDefWindowProc 3-6, 3-51,4-5,5-2, 5-31,

9-3, 9-7, 9-8
WinDeleteLboxltem 21-42
WinDesktopCursor 11-1
WinDestroyAccelTable 14-17
WinDestroyCursor 11-9
WinDestroyMsgOueue 3-51
WinDestroyPointer 10-25
WinDestroyWindow 2-22, 2-32, 2-109, 15-45
WinDismissDlg 15-45
WinDispatchMsg 3-5,3-11, 3-51,9-7, 23-1,23-3
WinDlgBox 2-12, 15-45
window procedure 2-11, 5-31
window-creation 2-12
window-drawing 8-1
WinDrawBitmap 8-4, 8-31, 10-25
WinDrawBorder 8-31
WinDrawPointer 10-25
WinDrawText 8-5, 8-31
WinEmptyClipbrd 22-3,22-7, 22-33
WinEnableMenultem 13-57
WinEnablePhyslnput 9-23
WinEnableWindow 2-10,2-110,18-6
WinEnableWindowUpdate 7-39,21-42
WinEndEnumWindows 2-28, 2-110
WinEndPaint 7-7,7-10,7-39,11-2
WinEnumClipbrdFmts 22-33
WinEnumDlgltem 15-45
WinEqualRect 8-31
WinExcludeUpdateRegion 7 -39
WinFiliRect 8-3, 8-31
WinFlashWindow 17-11
WinFocusChange 9-23
WinGetClipPS 7 -39
WinGetCurrentTime 23-2, 23-9
WinGetDlgMsg 3-52, 15-45
WinGetKeyState 9-23
WinGetMaxPosition 2-17, 2-110
WinGetMinPosition 2-110
WinGetMsg 3-2, 3-5, 3-10, 3-11, 3-51

Index X-41

functions (continued)
WinGetNextWindow 2-28, 2-110
WinGetPhysKeyState 9-23
WinGetPS 2-22,7-9, 7-39
WinGetScreenPS 7 -39
WinGetSysBitmap 10-25
WinlnflateRect 8-31, 21-42
Win Initialize 2-11, 2-109,4-1, 24-1
WinlnSendMsg 3-7,3-51
WinlnsertLboxltem 21-42
WinlntersectRect 8-31
WinlnvalidateRect 7-39,8-31
WinlnvalidateRegion 7-39
WinlnvertRect 8-3,8-31
WinlsChiid 2-110
WinlsMenultemChecked 13-57
WinlsMenultemEnabled 13-57
WinlsMenultemValid 13-57
WinlsPhyslnputEnabled 9-23
WinlsRectEmpty 8-31
WinlsThreadActive 2-109
WinlsWindow 2-109
WinlsWindowEnabled 2-10,2-110
WinlsWindowShowing 2-21, 2-110
WinlsWindowVisible 2-21, 2-110
WinLoadAccelTable 14-17
WinLoadDlg 2-12,6-4, 15-45
WinLoadMenu 2-12, 13-2, 13-57
WinLoadPointer 10-25
WinLockVisRegions 7-39
WinLockWindowUpdate 7-39
WinMakeRect 8-31
WinMapDlgPoints 15-45
WinMapWindowPoints 8-1,8-31
WinMessageBox 2-12, 15-45
WinMessageBox2 15-45
WinMultWindowFromlDs 2-110
WinOffsetRect 8-31
WinOpenClipbrd 22-3, 22-33
WinOpenWindowDC 7 -11, 7-39
WinPeekMsg 3-2,3-13,3-51
WinPopupMenu 13-2, 13-57
WinPostMsg 3-6,3-14,3-51
WinPostQueueMsg 3-51
WinProcessDlg 15-45
WinPtlnRect 8-31
WinQueryAccelTable 14-17
WinQueryActiveWindow 2-110, 9-2, 9-8
WinQueryCapture 9-23
WinQueryClasslnfo 4-5, 4-12

X-42 PM Basic Programming Guide

functions (continued)
WinQueryClassName 4-6, 4-12
WinQueryClipbrdData 22-4, 22-33
WinQueryClipbrdFmtlnfo 22-7, 22-33
WinQueryClipbrdOwner 22-7,22-33
WinQueryClipbrdViewer 22-6, 22-33
WinQueryCursorlnfo 11-9
WinQueryDesktopWindow 2-110
WinQueryDlgltemShort 15-45, 20-28
WinQueryDlgltemText 15-45
WinQueryDlg Item TextLength 15-45
WinQueryFocus 2-9, 2-110, 9-23
WinQueryLboxCount 21-42
WinQueryLboxltemText 21-42
WinQueryLboxltemTextLength 21-42
WinQueryLboxSelectedltem 21-42
WinQueryMsgPos 3-52
WinQueryObjectWindow 2-110
WinQueryPointer 1 0-25
WinQueryPointerlnfo 10-25
WinQueryPointerPos 10-25
WinQueryQueuelnfo 3-3, 3-52
WinQueryQueueStatus 3-3, 3-13, 3-52
WinQuerySysModalWindow 2-111
WinQuerySysPointer 10-25
WinQueryUpdateRect 7-39,8-31
WinQueryUpdateRegion 7-39
WinQueryWindow 2-26,2-109,6-17
WinQueryWindowDC 7-39
WinQueryWindowPos 2-29, 2-110
WinQueryWindowPtr 2-109
WinQueryWindowRect 2-17, 2-110, 8-31, 19-9
WinQueryWindowText 19-8, 19-26, 20-28
WinQueryWindowTextLength 20-28
WinQueryWindowULong 2-25,2-109,4-3
WinQueryWindowUShort 2-19, 2-25, 2-109, 4-3,

6-10
WinRegisterClass 4-1,4-3, 4-5, 4-12, 5-4, 5-31
WinRegisterUserMsg 3-52
WinReleaseHook 3-52
WinReleasePS 2-22,7-9,7-12,7-39
WinRequestMutexSem 2-111
WinScrollWindow 8-4
WinSendDlgltemMsg 3-51, 5-1, 15-45
WinSendMsg 3-6,3-14,3-51
WinSetAccelTable 14-4, 14-5, 14-17
WinSetActiveWindow 2-110, 9-2, 9-8
WinSetCapture 9-7, 9-23
WinSetClassMsglnterest 3-52
WinSetClipbrdData 22-3, 22-6, 22-7, 22-33

functions (continued)
WinSetClipbrdOwner 22-7,22-33
WinSetClipbrdViewer 22-6, 22-33
WinSetDlgltemShort 15-45, 20-5, 20-28
WinSetDlgltemText 15-45
WinSetFocus 2-110, 9-2, 9-8, 9-23
WinSetKeyboardState Table 9-23
WinSetLboxltemText 21-42
WinSetMenultemText 13-57
WinSetMsglnterest 3-52
WinSetMsgMode 3-52
WinSetMultWindowPos 2-30, 2-110
WinSetOwner 2-27, 2-109
WinSetParent 2-4, 2-25, 2-109
WinSetPointer 10-25
WinSetPointerPos 10-25
WinSetRect 8-31
WinSetRectEmpty 8-31
WinSetSysModalWindow 2-10, 2-111
WinSetWindowBits 2-109
WinSetWindowPos 2-18, 2-29, 2-30, 2-110, 6-4,

19-10
WinSetWindowPtr 2-109
WinSetWindowText 15-45,16-2,17-11, 19-8,

19-26, 20-5, 20-28
WinSetWindowULong 2-14,2-109,4-3
WinSetWindowUShort 2-19,2-109,4-3
WinShowCursor 11-2, 11-9
WinShowPointer 10-25
WinShowTractRect 8-31
WinShowWindow 2-14, 2-31, 2-110, 16-2
WinStartApp 2-111
WinStartTimer 23-1,23-2,23-3,23-9
WinStopTimer 23-1,23-9
WinSubclassWindow 2-19,4-12,5-2,5-4,5-31
WinSubstituteStrings 15-45
WinSubtractRect 8-31
WinTerminate 2-111
WinTerminateApp 2-111
WinTrackRect 8-31
WinTranslateAccel 3-52, 14-17
WinUnionRect 8-31
WinUpdateWindow 7-39
WinValidateRect 7-39, 8-31
WinValidateRegion 7 -39
WinWaitEventSem 2-111
WinWaitMsg 3-52
WinWaitMuxWaitSem 2-111
WinWindowFromDC 7-39
WinWindowFromlD 2-27,2-110,6-3,6-17,13-1,

17-11,19-8,19-9,19-10

functions (continued)
WinWindowFromPoint 2-28, 2-110

G
general window messages 3-8
getting window identifier 2-25
GpiAssociate 2-22,7-11, 7-39
GpiCreatePS 7-10,7-39
GpiDestroyPS 2-22,7-10
graphical user interface (GUI)

definition 1-1
provided by PM 1-1

GROUPBOX statement 12-15, 12-39
GUI

See graphical user interface (GUI)

H
handles

accelerator-table 14-2
button 19-8
in messages 3-2
invalidating 2-22
retrieving frame 6-17
retrieving scroll-bar 18-9
specifying 2-31

handling
a scan code 9-12
input messages 3-3
multiple selections, list box 21-5
virtual-key codes 9-11

help item 13-4
HELP ITEM statement 12-15, 12-39
HELPSUBITEM statement 12-16, 12-39
HELPSUBTABLE statement 12-16, 12-39
HELPTABLE statement 12-17, 12-39
hiding

a frame window 2-5
a window 2-21, 2-31
cursors 11-2
submenus 13-1

high performance file system 12-25
HMO 3-48,3-53
HMO_ * values 3-32
hook

releasing 3-32
hot spot

definition 1-7
description 9-6

Index X-43

hot spot (continued)
mouse-pointer 9-6, 10-1

HPFS 12-25
HSAVEWP 6-38,6-40
HT _ * values 5-23
HT_ERROR 9-7
HT_NORMAL 9-7
HWND data type 2-16
hwnd parameter 23-3
HWND_* values 2-75,6-19,7-20,8-17,13-20,

13-25, 15-16, 15-17, 15-19, 15-22
HWND_BOTTOM 2-16,2-30
HWND_DESKTOP 2-6,2-16,8-1
HWND_OBJECT. 2-6,2-16
HWND _TOP 2-16, 2-30
hwnd, window-procedure argument 5-2
HWNDFROMMP macro 3-15

icon
and mouse pointers 10-1
definition 1-10
destroy 1 0-9
Editor 1-10
specifying 7-8

ICON statement (Control) 12-18, 12-40
ICON statement (Resource) 12-18, 12-39
ID_RADI01 19-9
identifiers

button 19-7, 19-8, 19-9
button, in dialog windows 15-13
commands in accelerator tables 14-2
control window 16-2
duplicating (avoid) 19-8
entry field 20-6
frame controls and client window 6-3
frame-control 6-3, 6-17, 13-2
frame-control FI D _ * 6-3
menu 13-12, 15-12
menu resource-definition 13-8
menu-item 13-5, 13-6
menu-resource 13-9, 13-10
message 3-2, 3-6, 3-8, 5-1, 5-2, 19-11
message-identifier values 3-8
process 3-3
resource 2-19, 6-5, 10-3, 12-1, 14-5
resource, in dialog windows 15-9
resources, accelerator tables 14-4
scroll-bar 18-4

X-44 PM Basic Programming Guide

identifiers (continued)
SUb-menu item 13-5
symbolic 2-13
thread 3-3
timer 23-1
timer, assigning 23-3
using to get handle 2-27
window 2-12,2-27,15-10,18-8,19-11,20-7
window, in dialog windows 15-14

identifying OS/2 initialization files 24-3
including

accelerator table in a frame window 14-4
menu bar in a standard window 13-10
pop-up menu in application 13-2
title bar in frame window 17-2

information required, private window classes 4-1
initialization files

closing 24-2
copying 24-1
creating 24-1
deleting 24-1
description 24-1
identifying 24-3
keys values 24-1
managing 24-1
moving 24-1
opening and closing 24-2
PrfQueryProfile String 24-3
PrfWriteProfileString function 24-3
reading setting 24-3
sections 24-1
summary of functions used 24-15
using 24-1
using PrfOpenProfile function 24-2
using Profile Manager 24-1
using Profile Manager functions 24-1
writing setting 24-2

initialize Presentation Interface 2-44
initializing

anchor block 24-1
dialog window 15-11
windows and data 24-1

input
accelerator-table entries 9-6
button clicks 9-8
capturing mouse input 9-7
character codes 9-6
checking for key-up or key-down event 9-9
description 9-1
determining active status of frame window,

code 9-9

input (continued)
determining active status of window 9-8
event 9-1
handling a scan code 9-12
handling virtual-key codes 9-11
key-down events 9-5
key-up events 9-5
keyboard character flags table 9-4
message flags 9-4
mouse messages 9-6
mouse movement 9-8
receiving and processing 9-1
repeat-count events 9-5
responding to a character message, code 9-10
scan codes 9-6
summary of functions and messages 9-23
system message queue 9-1
using mouse and keyboard 9-8
virtual-key codes 9-6
window activation 9-1

input event, description 9-1
input focus

changing 2-9
description 2-8
WinOueryFocus 2-9

inserting items in a list 21-4
interacting with active window 2-1
iVScrolllnc 8-4

K
KC_* values 5-18
KC_ALT 9-4,9-10
KC _CHAR 9-4, 9-10
KC_COMPOSITE 9-4
KC_CTRL 9-4
KC_DEADKEY 9-4
KC-,NVALIDCHAR 9-4
KC_INVALIDCOMP 9-4
KC_KEYUP 9~4

KC_LONEKEY 9-4
KC _PREVDOWN 9-4
KC _ SCANCODE 9-4
KC_SHIFT 9-4
KC _TOGGLE 9-4
KC_VIRTUALKEY 9-4
kerning

enable 8-27
key-down events 9-5

key-up events 9-5
keyboard

accelerator summary 14-17
accelerators 13-8, 14-1
and scroll bars 18-6
character flags 9-4
focus 2-10,9-2,9-8
focus, description 9-2
input 1-7, 9-1
keystroke menu access 13-6
messages 9-3
summary of input functions and messages 9-23
using accelerators 14-1

keyboard control codes 5-18
keystroke menu access 13-6
KS_ * values 9-16

L
LBOXINFO 21-40, 21-43
LEFT key 18-6
list box

adding and deleting items 21-3
as control window 2-8
controls 21-1
creating a window 21-2
displaying 21-1
features 21-1
in dialog box, figure 21-1
LS_NOADJUSTPOS style 21-3
owner window 21-1
querying current selection 21-5
responding to user selection 21-5
responses to keys 18-6
using 21-1
using in dialog window 21-3

list box controls
contents of OWNERITEM structure 21-5
creating owner-drawn list item 21-5
description 21-1
handling multiple selections 21-5
highlighting list items 21-6
inserting items in a list 21-4
item position index table 21-4
LM_ messages 3-8
LM_OUERYSELECTION message 21-5
messages generated by list box to owner 21-42
messages handled by WC_LlSTBOX class 21-7
messages received by 21-43
selection processes, code 21-7

Index X-45

list box controls (continued)
summary 21-42
using 21-1
WM_CONTROL 21-42
WM_DRAWITEM 21-42
WM_MEASUREITEM 21-42
WM_QUERYCONVERTPOS 21-42
WM_QUERYWINDOWPARAMS 21-42
WM_SETWINDOWPARAMS 21-42

LlSTBOX statement 12-18, 12-40
LIT _* values 21-21
LIT_END 21-4
LlT_SORTASCENDING 21-4
LIT _ SORTDESCENDING 21-4
LM _ messages 3-8
LM_DELETEALL 21-7,21-19,21-43
LM_DELETEITEM 21-3,21-7,21-20,21-43
LMJNSERTITEM 3-14,21-3,21-7,21-21,2.1-43
LM_INSERTMULTITEMS 21-3,21-7,21-22,21-43
LM_QUERYITEMCOUNT 21-7,21-23,21-43
LM_QUERYITEMHANDLE 21-7,21-24,21-43
LM_QUERYITEMTEXT 21-7,21-25,21-43
LM_QUERYITEMTEXTLENGTH 21-7,21-26,21-43
LM_QUERYSELECTION 21-5,21-7,21-27,21-43
LM_QUERYTOPINDEX 21-7,21-28,21-43
LM_SEARCHSTRING 21-7,21-29,21-43
LM_SELECTITEM 21-7,21-31,21-43
LM_SETITEMHANDLE 21-7,21-32,21-43
LM_SETITEMHEIGHT 21-7,21-33,21-43
LM_SETITEMTEXT 21-7,21-34,21-43
LM_SETITEMWIDTH 21-7,21-35,21-43
LM_SETTOPINDEX 21-7,21-36,21-43
LN_ * values 21-37
LN_ENTER notification code 21-3, 21-5
loading resources for a frame window, code 6-6
long file name support 12-25
LS_EXTENDEDSEL 21-5
LS_MULTIPLESEL 21-5
LS_OWNERDRAW 21-5
LSS _ * values 21-29
L TEXT statement 12-19, 12-40

M
macros, using message 3-15
main window

and secondary windows 2-7
common parentage 2-3
creating 6-14
description 1-2, 2-2, 2-6, 6-1

X-46 PM Basic Programming Guide

managing
frame windows 2-7
ownership 2-23.
parent-child relationships 2-23
shared resources 3-1
window ownership and relationships 2-23

manipulating dialog items 15-14
maximized window

description 2-20
restoring size and position 2-21
WS_MAXIMIZED 2-15,2-20

maximizing
a frame window 2-31
message queue size 3-3
window 2-20

MB_APPLMODAL 15-4
MB_CUSTOMICON 15-4
MB_ERROR 15-4
MB_ICONASTERISK 15-4
MBJCONEXCLAMATION 15-4
MBJCONHAND 15-4
MBJCONQUESTION 15-4
MB_INFORMATION 15-4
MB_MOVEABLE 15-4
MB_NOICON 15-4
MB_NONMODAL 15-4
MB_QUERY 15-4
MB_SYSTEMMODAL 15-4
MB_WARNING 15-4
MB2D 15-8, 15-42, 15-46
MB21NFO 15-4, 15-43, 15-46
MB21NFO style flags table 15-4
MBID_* values 15-24
MENU statement 12-19, 12-40
MENUITEM 13-5, 13-55, 13-59
MENU ITEM statement 12-20, 12-40
menus

accelerators 13-8
access 13-6
accessing system menu 13-12
adding and deleting menu items 13-13
adding to dialog window 13-11, 15-12
as control windows 2-8
as secondary window 2-6
bar 1-5
changing attributes, styles, and contents 13-4
changing dynamically 13-1
communicating with 13-1
create 13-20
create window 13-20

menus (continued)
creating 13-1
creating custom menu items 13-16
creating pop-up 13-11
defining 13-1
defining menu items in a resource file 13-8
definition 1-10
description 2-8, 13-1
generating WM_SYSCOMMAND

messages 13-3
help item 13-4
including menu bar in standard window 13-10
inserting and deleting menu items 13-4
load 13-25
menu- and dialog-input messages 3-8
menu-item attributes 13-5
menu-item structure 13-5
menu-item styles 13-4
menu-item styles, description 13-4
messages generated by 13-58
messages received by 13-57
MM_ messages 3-8
mnemonics 13-7
owner 13-1
owner hierarchy 13-1
pop-up 13-1, 13-2
positioning 13-3
pull-down 13-1
responding to user menu choice 13-12
setting and querying menu-item attributes 13-13
summary of functions 13-57
summary of messages 13-57
summary of structures 13-59
types 13-1
types of menu items 13-4
using PU _ MOUSEBUTTON 13-3

message boxes
application-modal 15-3
as secondary window 2-6
constants 15-6
creating 15-6
creating enhanced 15-7
creating system-modal 15-7
definition 2-7,15-3
description 2-7, 15-3
enhanced 15-4
modal 15-3
non-modal 15-7
part 15-6
standard 15-3

message boxes (continued)
system-modal 15-3
uses of 2-7
using 15-6

message handling
combining messages in message queue 3-3
message loop 3-5
modifying message loop 3-6
mouse and keyboard input 3-3
terminating message loop 3-5
using a message loop 3-4

message queues
accessing 3-2
and messages, description 3-1
associating window with 3-2
broadcasting a message 3-15
bypassing FIFO order 3-6
capturing mouse input 9-7
creating 2-11, 3-2
creating and using 3-1
default size 3-7
description 3-1
destroying 3-2
examining 3-13
example 2-23
input message processing loop flow 3-5
keyboard messages 9-3
message filtering 3-10
message priorities 3-1 0
message queue and message loop, sample

code 3-11
message status 3-3
minimizing size 3-3
mouse and keyboard input 9-1
MOINFO data structure 3-3
owning 3-3
posting messages 3-1
posting messages to a window 3-14
purpose of OMSG data structure 3-2
reasons for examining 3-13
sending message to a window 3-14
serving all windows in thread 3-2
sizing 3-3
status 3-3
summary of functions 3-51
summary of messages 3-52
summary of structures 3-53
terminating message loop 3-5
what happens when full 3-7

Index X-47

messages
and message queues, description 3-1
application event 2-10
application sending 2-10
application-defined 3-7
BKM_ 3-8
BM_ 3-8
BM_CLlCK 19-1, 19-6, 19-26
BM_QUERYCHECK 19-6, 19-26
BM_QUERYCHECKINDEX 19-6,19-26
BM_QUERYHILITE 19-6,19-26
BM_SETCHECK 19-6, 19-26
BM_SETDEFAULT 19-6, 19-26
BM_SETHILITE 19-6, 19-26
broadcast 3-17
broadcasting 3-15
button control 19-26
button control notification 19-7
button control notification codes 19-8
button-down 9-7
button-up 9-7
categories table 3-8
CBM_ 3-8
CM_ 3-8
create queue 3-20
creating and using 3-1
creating queue and loop 3-11
default processing 3-6
default window-procedure 5-31
definition 1-7
description 3-1
destroy queue 3-21
dispatch 3-22
drawing without WM_PAINT 7-9
dynamic data exchange 3-8
EM_ 3-8
EM_ADJUSTWINDOWPOS 20-3
EM_BUTTON1 DBLCLK 20-3
EM_BUTTON1 DOWN 20-3
EM_BUTTON1 UP 20-3
EM_BUTTON2DOWN 20-3
EM_BUTTON3DOWN 20-3
EM_CLEAR 20-3,20-5,20-28
EM_COPY 20-3,20-28
EM_CUT 20-3,20-28
EM_PASTE 20-3,20-6,20-28
EM_QUERYCHANGED 20-3,20-5,20-28
EM_QUERYFIRSTCHAR 20-3, 20-28
EM_QUERYREADONLY 20-3,20-28
EM_QUERYSEL 20-3,20-5,20-28

X-48 PM Basic Programming Guide

messages (continued)
EM_READONLY 20-5
EM_SETFIRSTCHAR 20-3,20-28
EM_SETINSERTMODE 20-3,20-5,20-28
EM_SETREADONLY 20-3,20-28
EM_SETSEL 20-3,20-5,20-28
EM_SETTEXTLIMIT 20-3,20-28
ensuring cooperative use of the system 2-10
entry field 20-3
entry field control 20-28
filtering 3-10
flags 9-4
forwarding 3-2
from user input 2-9
generated by a button control to its owner 19-27
generated by a control window, table 16-7
generated by list box to owner 21-42
generating WM_SYSCOMMAND 13-3
get one 3-23
handled by clipboard owner, table 22-7
handled by WC_L1STBOX 21-7
HSCROLLCLIPBOARD 22-33
identifier 3-2
identifying receiver 2-9
input parameters 1-9
keyboard 9-3
LM_ 3-8
LM_DELETEALL 21-7, 21-43
LM_DELETEITEM 21-3,21-7,21-43
LMJNSERTITEM 3-14,21-3,21-7,21-43
LMJNSERTMULTITEMS 21-7,21-43
LM_QUERYITEMCOUNT 21-7,21-43
LM _ QUERYITEMHANDLE 21-7, 21-43
LM_QUERYITEMTEXT 21-7,21-43
LM_QUERYITEMTEXTLENGTH 21-7,21-43
LM_QUERYSELECTION 21-5,21-7,21-43
LM_QUERYTOPINDEX 21-7,21-43
LM_SEARCHSTRING 21-7, 21-43
LM_SELECTITEM 21-7,21-43
LM_SETITEMHANDLE 21-43
LM_SETITEMHEIGHT 21-43
LM_SETITEMTEXT 21-43
LM_SETITEMWIDTH 21-7,21-43
LM_SETTOPINDEX 21-43
loop processing, code example 3-13
menu- and dialog-input 3-8
message loops, description 3-4
message parameters, description 3-2
message processing 1-7
messages generated by a scroll bar 18-20

messages (continued)
MLM_ 3-8
MM_ 3-8
MM_DELETEITEM 13-57
MM_DISMISSMENU 13-57
MM_ENDMENUMODE 13-57
MM_INSERTITEM 13-5, 13-57
MMJSITEMVALID 13-57
MMJTEMIDFROMPOSITION 13-57
MM_ITEMPOSITIONFROMID 13-57
MM_OUERYDEFAULTITEMID 13-57
MM_OUERYITEM 13-4, 13-57
MM_OUERYITEMATTR 13-57
MM_OUERYITEMCOUNT 13-57
MM_OUERYITEMRECT 13-57
MM_OUERYITEMTEXT 13-57
MM_OUERYITEMTEXTLENGTH 13-57
MM_OUERYSELITEMID 13-57
MM_REMOVEITEM 13-57
MM_SELECTITEM 13-57
MM_SETDEFAULTITEMID 13-57
MM _ SETITEM 13-4, 13-57
MM_SETITEMATTR 13-57
MM_SETITEMHANDLE 13-57
MM_SETITEMTEXT 13-4, 13-57
MM_STARTMENUMODE 13-57
mouse 9-6
mouse and keyboard-input 3-8
mouse and keyboard, handling 3-3
mouse/keyboard activation 9-23
operating system sending 2-9
PAINTCLIPBOARD 22-33
parameters 3-2, 5-1
peek 3-25
post 3-26
post queue 3-27
posting and sending 3-6
posting to a window 3-14
posting to all windows in system 3-7
posting to message queue 3-1
priorities 3-1 0
processed by title-bar control 17-1
processed by WC _BUTTON 19-6
purpose of 3-2
OUERYCONVERTPOS 21-42
OUERYWINDOWPARAMS 21-42
received by a button control, table 19-26
received by a control window, table 16-7
received by a list box 21-43
received by a scroll bar 18-20

messages (continued)
RENDERALLFMTS 22-33
RENDERFMT 22-33
responding to character 9-10
responding to WM_SETFOCUS 11-2
SBM_ 3-8
SBM_OUERYPOS 18-3, 18-20
SBM_OUERYRANGE 18-20
SBM_SETPOS 18-3, 18-20
SBM_SETSCROLLBAR 18-2,18-20
SBM_SETTHUMBSIZE 18-20
scroll-bar notification 18-3
semaphore 3-7
semaphore, names of 3-9
send, WinSendMsg 3-36
sending to a window 3-14
sending to all windows in system 3-7
sending to another application 2-10
sent from a menu 13-57
sent to a menu 13-57
SETITEMHANDLE 21-7
SETITEMHEIGHT 21-7
SETITEMTEXT 21-7
SETTOPINDEX 21-7
SETWINDOWPARAMS 21-42
SIZECLIPBOARD 22-33
SLM_ 3-8
SM_ 3-8
sources of events 2-9
summary of clipboard 22-33
summary of dialog 15-46
summary of functions 3-51
summary of messages 3-52
summary of structures 3-53
summary of title-bar 17 -11
system-defined, description 3-7
TBM_ 3-8
TBM_OUERYHILITE 17-2
TBM_SETHILITE 17-2
to add an item to a list, code 3-14
types 3-7
update regions 3-3
using 2-9, 3-11
VSCROLLCLIPBOARD 22-33
wait for 3-40
window handles 3-2
window message 3-2
window ownership 2-2
window procedure, table 5-31
window-creation 2-12

Index X-49

messages (continued)
window-creation and -management 3-8
window, general 3-8
WinPeekMsg 3-10
WM_ 3-8
WM_ACTIVATE 2-8,2-25,2-112,6-12,6-39,

9-2, 9-9, 9-23
WM_ADJUSTFRAMEPOS 6-39
WM_ADJUSTWINDOWPOS 2-12,2-18,2-112,

13-58,16-7,21-7
WM_BUTTON1DBLCLK 5-31,6-12,9-24,17-2,

19-6
WM_BUTTON1DOWN 5-31,6-12,6-39,9-8,

9-24, 13-58, 17-2, 19-6
WM_BUTTON1UP 5-31,6-12,6-39,9-24,19-6
WM_BUTTON2DBLCLK 5-31, 9-24
WM_BUTTON2DOWN 5-31,6-12,6-39,9-24,

13-58,21-7
WM_BUTTON2UP 5-31, 9-24
WM_BUTTON3DBLCLK 5-31, 9-24
WM_BUTTON3DOWN 5-31,6-12,6-39,9-24,

13-58
WM_BUTTON3UP 5-31,9-24
WM_CALCFRAMERECT 2-112
WM_CALCVALIDRECTS 2-30,2-112,5-31,

6-12, 6-39
WM_CHAR 5-31,9-2,9-3,9-6,9-9,9-24,15-46,

19-6, 20-28, 21-7
WM_CLOSE 2-18,2-112,5-31,6-12,6-39
WM COMMAND 5-31,9-6,9-24, 13-4, 13-58,

16-7, 19-1, 19-7, 19-9, 19-10, 19-27
WM_CONTEXTMENU 13-58
WM_CONTROL 16-2,16-7,19-1,19-7,19-9,

19-10, 19-27, 20-2, 20-28, 21-3, 21-42
WM_CONTROLPOINTER 5-31,13-58,16-7,

19-27
WM_CREATE 2-12,2-112,5-2,5-3,6-12,6-39,

13-58, 17-2, 19-6,20-3,21-7
WM_DESTROY 2-4,2-22,2-112,6-12,6-39,

13-58,17-2,19-6,20-3,21-7
WM_DESTROYCLIPBOARD 22-7,22-33
WM_DRAWCLIPBOARD 22-6,22-10,22-33
WM_DRAWITEM 13-58,21-5,21-42
WM_ENABLE 2-27,2-112,6-12,6-39,13-58,

19-6, 19-27,20-3,21-7
WM_ERASEBACKGROUND 6-12,6-39
WM_FLASHWINDOW 6-39
WM_FOCUSCHAIN 6-39
WM_FOCUSCHANGE 3-15,3-52,5-31,9-23,

13-58

X-50 PM Basic Programming Guide

messages (continued)
WM_FORMATFRAME 6-12,6-39
WM_HELP 5-31, 13-4,13-58, 16-7, 19-27
WM_HITTEST 5-31,6-12,6-39,9-7,9-24,17-2
WM_HSCROLL 18-3,18-20
WM _ HSCROLLCLI PBOARD 22-7
WM_INITDLG 5-3, 15-46,21-3
WMJNITMENU 13-58
WM_MATCHMNEMONIC 19-6,19-27
WM_MEASUREITEM 13-58,21-5,21-42
WM_MENUEND 13-58
WM_MENUSELECT 5-31, 13-58
WM_MINMAXFRAME 6-12,6-39
WM_MOUSEMOVE 3-3,5-31,6-12,6-39,9-7,

9-8,9-24,13-58,19-6,20-3,21-7
WM_MOVE 2-18,2-112
WM_MSGBOXDISMISS 15-46
WM_MSGBOXINIT 15-46
WM_NEXTMENU 6-39
WM_PAINT 2-30,2-112,3-3,5-3,5-31,6-12,

6-39, 7-7, 7-40, 8-3, 17-2, 19-6, 20-3, 21-7
WM_PAINTCLIPBOARD 22-7
WM_QUERYCONVERTPOS 5-31, 13-58,

18-20, 19-27
WM_QUERYDLGCODE 16-7, 17-2, 19-6,20-3
WM_QUERYFOCUSCHAIN 5-31, 9-23, 13-58
WM_QUERYFRAMECTLCOUNT 5-31, 6-39
WM_QUERYFRAMEINFO 6-39
WM_QUERYICON 6-39
WM_QUERYTRACKINFO 6-12,6-39
WM_QUERYWINDOWPARAMS 2-112,5-31,

17-2,18-20,19-6,19-27,20-3,20-28
WM_QUIT 3-5,3-14,3-52
WM_RENDERALLFMTS 22-6,22-7
WM_RENDERFMT 22-6,22-7
WM_SEM1 3-9,3-52
WM_SEM2 3-9,3-52
WM_SEM3 3-9,3-52
WM_SEM4 3-9,3-52
WM _ SETACCEL TABLE 6-39
WM _ SETBORDERSIZE 6-39
WM_SETFOCUS 2-9,2-112,9-2,9-23, 13-58,

19-6,20-3,21-7
WM_SETICON 6-39
WM_SETSELECTION 5-31,9-2,9-23,20-3
WM_SETWINDOWPARAMS 2-112,17-2,

18-20, 19-6, 19-27,20-3,20-28
WM_SHOW 2-18,2-112,6-12,6-39
WM_SIZE 2-18,2-112,6-12,18-3,19-10
WM_SIZECLIPBOARD 6-39,22-7

messages (continued)
WM_SUBSTITUTESTRING 15-46
WM_SYSCOMMAND 2-18,2-112,6-12,6-39,

9-6,13-58,16-7,19-27
WM_SYSVALUECHANGED 3-15,3-52
WM_TIMER 5-31,20-3,21-7,23-1,23-3,23-9
WM_TRACKFRAME 6-39
WM _ TRANSLA TEACCEL 5-31, 6-39
WM_UPDATEFRAME 6-12,6-39
WM_USER 5-2
WM_VSCROLL 18-3,18-20,21-7
WM_ VSCROLLCLIPBOARD 22-7
WM_WINDOWPOSCHANGED 2-112,6-39,

17-2
MESSAGETABLE statement 12-21, 12-40
metafile format, clipboard 22-4
methods of selecting list items 21-3
micro presentation space

advantages 7-12
creating 7 -12
description 7-10
example 7-12
modifying the visible region 7 -14

minimize and maximize buttons, description 6-3
minimized window

description 2-20
icon 2-20
restoring size and position 2-21
WS_MINIMIZED 2-15, 2-20

minimizing
a frame window 2-31
message queue size 3-3
window 2-20

MIS_BITMAP 13-4
MIS_BUTTONSEPARATOR 13-4
MIS_HELP 13-4
MIS_TEXT 13-4
MIT _* values 13-32, 13-35, 13-45
MLE statement 12-22, 12-40
MLM_ messages 3-8
MM_ messages 3-8
MM_DELETEITEM 13-30, 13-57
MM_DISMISSMENU 13-57
MM_ENDMENUMODE 13-31, 13-57
MMJNSERTITEM 13-32, 13-57
MM_ISITEMVALID 13-33, 13-57
MMJTEMIDFROMPOSITION 13-34,13-57
MMJTEMPOSITIONFROMID 13-35, 13-57
MM_QUERYDEFAULTITEMID 13-36, 13-57

MM_QUERYITEM 13-4, 13-37, 13-57
MM_QUERYITEMATTR 13-38, 13-57
MM_QUERYITEMCOUNT 13-39, 13-57
MM_QUERYITEMRECT 13-40, 13-57
MM_QUERYITEMTEXT 13-41, 13-57
MM _ QU ERYITEMTEXTLENGTH 13-42, 13-57
MM_QUERYSELITEMID 13-43, 13-57
MM_REMOVEITEM 13-44, 13-57
MM_SELECTITEM 13-45, 13-57
MM_SETDEFAULTITEMID 13-46, 13-57
MM_SETITEM 13-4,13-47, 13-57
MM_SETITEMATTR 13-48, 13-57
MM_SETITEMHANDLE 13-49, 13-57
MM_SETITEMTEXT 13-4, 13-50, 13-57
MM_STARTMENUMODE 13-51, 13-57
mnemonic keystroke, using 13-7
mnemonics, menu 13-7
modal dialog

box, description 1-6
load and process 15-19
window, description 15-1

modeless dialog
box, description 1-6
window, description 15-1

modifying
accelerator table 14-5
message loop 3-6
visible region of micro presentation space 7 -14

mouse
and keyboard-input messages 3-8
capture window 1-7
input 1-7
input, capturing 9-7
messages 9-6
movement 9-8

mouse pointers
and icons 1 0-1
changing 10-6
definition 1-7
description 10-1
hot spot 1 0-1
predefined 10-2
SPTR_APPICCON 10-2
SPTR_ARROW 10-2
SPTR_FILE 10-3
SPTR_FOLDER 10-3
SPTRJCONERROR 10-2
SPTRJCONINFORMATION 10-2
SPTRJCONQUESTION 10-2
SPTRJCONWARNING 10-2

Index X-51

mouse pointers (continued)
SPTRJLLEGAL 10-3
SPTR_MOVE 10-2
SPTR_MULTFILE 10-3
SPTR_PROGRAM 10-3
SPTR _SIZE 10-2
SPTR_SIZENESW 10-2
SPTR_SIZENS 10-2
SPTR_SIZENWSE 10-2
SPTR _ SIZEWE 10-2
SPTR_ TEXT 10-2
SPTR_WAIT 10-2

moving
a window 2-29
multiple windows 2-30

mp1 parameter 9-4
mp1 ,mp2, window-procedure argument 5-2
mp2 parameter 9-4
M PARAM data type 5-1
MPFROMSHORT macro, using 3-15
MQINFO 3-3, 3-49, 3-53
MRESUL T data type 5-2
msg, window-procedure argument 5-2
MSGF _* values 3-19

N
non-dialog window, using control window in 16-3
nonstandard frame windows 6-11
normal presentation space

advantages 7 -10
creating 7 -11
description 7-10

notebook control
BKM _ messages 3-8

NOTEBOOK statement 12-22, 12-40
notification codes

BN_CLlCKED 19-8
BN _ DBLCLICKED 19-8
BN_PAINT 19-4, 19-8
button control messages 19-8
EN_CHANGE 20-3
ENJNSERTMODETOGGLE 20-3
EN_KILLFOUS 20-3
EN_MEMERROR 20-3
EN_OVERFLOW 20-3
EN_SCROLL 20-3
EN_SETFOCUS 20-3
in entry field controls 20-2
LN_ENTER 21-3

X-52 PM Basic Programming Guide

notification codes (continued)
LN_KILLFOCUS 21-9
LN_SELECT 21-5
LN_SETFOCUS 21-9

notification· messages
in button controls '19-1, 19-7
in control windows 16-3
in dialog procedure 15-13
in dialog windows 15-2
in entry field controls 20-3
in frame windows 6-2
in list-box controls 21-1
in nonmodal message boxes 15-8
in scroll-bar controls 18-1
processing 2-5
scroll-bar 18-3

notification messages, keys
DOWN 18-6
LEFT 18-6
PGDN 18-6
PGUP 18-6
RIGHT 18-6
UP 18-6

Notification of Entry-Field Events table 20-2

o
object view 1-6
object window

changing parent window 2-6
creating 2-6, 2-24
description 2-6
displaying 2-6
relationship rules 2-6
sending and receiving messages 2-6
sharing databases 2-6
WS_ VISIBLE style 2-6

obtaining
device context 7-11
device context with DevOpenDC 7-14
identifier of object window 2-25

operation, frame window 6-11
operations

cut and copy 22-3
delayed rendering 22-6
on clipboard data 22-1
paste 22-4

os2.ini 4-5, 24-3
os2sys,ini 24-3

owner window 1-3
owner, clipboard 22-7
ownerdraw, description 16-3
OWNERITEM 13-16,13-56,13-59,21-5,21-41,

21-43
owning windows

p

communicating using messages 2-2
defining rules 2-2
description 2-2
finding 2-26
independent of relationships 2-5
purpose of 2-5
retrieving handles 2-27
rules 2-2
setting 2-27

paint
begin 7-17
end 7-18

painting
a window 2-11
and drawing windows 7-1
control windows 16-2
description, window 7-1
icons on the screen 10-1
strategies 7-6

parameter values
fActive 9-2
fFocus 9-2
mp1 9-4
mp2 9-4

parameters
creating and interpreting message 3-15
fActive 9-2
fFocus 9-2
hwnd 23-3
message 3-2, 5-1
mp1 9-4
mp2 9-4
ulData 22-4, 22-6
usHit 9-7
using WC _ LlSTBOX 21-2

parent window
changing 2-4, 2-25
description 2-3, 2-11
exceptions 2-3
finding 2-26
positioning child windows 2-3

parent window (continued)
retrieving handles 2-27
setting ·2-3
using WinSetParent 2-25
WS_PARENTCLIP 2-15

parent-child relationships
appearance of windows 2-2
descendant windows 2-4
description 2-2
result of window destruction 2-2
rules 2-2

passing
bit map or metafile to clipboard 22-3
window messages 3-2

PASTE command 1-10
paste operations 22-4
PGDN key 18-6
PGUP key 18-6
pointer

create 10-7
create indirect 10-8
destroy 1 0-9
draw 10-12
hide 10-23
load 10-15
query handle 10-16
query information 10-17
query position 1 0-18
set 10-21
set position 10-22
show 10-23

POINTER statement 12-23, 12-40
POINTERINFO 10-24, 10-25
pointing device

capture messages 9-20
POINTL 8-1, 8-29, 8-32
pop-up menu, description 13-2
positioning

menus 13-3
top-level window 2-3
windows 2-17

post, definition 3-1
posting

message to menu owner 13-1
messages 3-6
messages to a window. 3-14
messages to all windows in system 3-7
WM_HELP messages 13-4

predefined mouse pointers 10-2

Index X-53

preregistered window classes 1-3
Presentation Interface

initialize 2-44
Presentation Manager interface

clearing system-modal window 2-10
features of 1-1
frame windows 6-1
initializing application windows 2-11
introduction to windows 2-1
mainO function for a simple application 2-23
mouse pointers 10-3
window activation 9-1

presentation space
associating with device context, code 7-14
cached-micro 7 -10
clip region and visible region 7-4
description 7-1
drawing without WM_PAINT 7-9
get a cache 7 -22
micro 7-10
normal 7-10
release cache 7 -32
releasing 7 -12
summary of functions 7-39
types of 7-9
using cached-micro 7 -14

PRESPARAMS statement 12-23, 12-40
PrfCloseProfile 24-2, 24-4, 24-15
PrfOpenProfile 24-2, 24-5, 24-15
PRFPROFILE 24-14, 24-15
PrfOueryProfile 24-6, 24-15
PrfOueryProfileData 24-3, 24-7, 24-15
PrfOueryProfilel nt 24-8, 24-15
PrfOueryProfileSize 24-3, 24-9, 24-15
PrfOueryProfileString 24-3, 24-10, 24-15
PrfReset 24-11, 24-15
PrfWriteProfileData 24-12, 24-15
PrfWriteProfileString 24-3, 24-13, 24-15
primary windows 1-6
private clipboard-data formats 22-5
private window class

creating 2-14
definition 1-3
description 6-3

procedure
creating dialog 15-13

processing
WM_TIMER, sample code 23-3

profile
query string 24-10

X-54 PM Basic Programming Guide

Profile Manager, using 24-1
program object 1-3
protecting global data and shared resources 4-3
PSF _ * values 7-20
PU_HCONSTRAIN 13-3
PU_MOUSEBUTTON 13-3
PU_POSITIONONITEM 13-3
PU _ SELECTITEM 13-3
PU_VCONSTRAIN 13-3
public window class

availability 4-4
creating 2-13
definition 1-3
description 4-4

push buttons
definition 19-1
description 19-1
uses of 19-1
with icons/mini-icons, example 19-1
with text and icons, example 19-1
with text in a dialog box, example 19-1

PUSHBUTTON statement 12-24, 12-40
putting data on the clipboard 22-9

Q
OFC _ * values 5-27
OMSG 3-2, 3-49, 3-53, 9-7
OS _ * values 3-30
querying

for current selection 21-5
menu-item attributes 13-13
window data 2-25

queue
query information 3-29
query status 3-30

queue message, description 3-2
OW _ * values 2-57
OWL_* values 2-62,2-73
OWS _ constant, query window data structure 2-25
OWS _ * values 2-64

R
radio buttons

definition 19-1
description 19-2
in a dialog box, example 19-2
uses of 19..;2

RADIOBUTTON statement 12-24, 12-40
range and position, scroll-bar 18-2
RCDATA statement 12-25, 12-40
RCINCLUDE statement 12-25, 12-40
reading

setting in initialization file 24-3
setting in initialization file, code 24-3
settings 24-2

rectangle
calculate frame 6-18
compare for equality 8-11
convert to graphic 8-16
copy 8-6
description 1-4
draw border 8-7
draw interior 8-7
fill 8-12
inclusive-exclusive 8-2
inclusive-inclusive 8-2
inflate 21-12
intersect 8-13
invalidate 7 -24
invert 8-14
query if point within 8-19
query update 7-29
set coordinates 8-20
set empty 8-21
subtract 8-23
types of 8-1
validate 7 -34

RECTL 7-7, 7-38, 7-40, 8-1, 8-30, 8-32
redrawing windows

invalidating entire windows 2-30
invalidating parts 2-30
sending WM_CALCVALIDRECTS 2-30
using CS_SIZEREDRAW 2-30
using WM_PAINT 2-30

regions
invalidate 7-25
validate 7-35

registering
a window class name, code 4-7
private window classes 4-1,4-7
private window classes, required information 4-1
window classes 4-1

relationships
window

owning a window 2-2
parent-child 2-2

releasing
clipboard 22-4
presentation space 7 -12

rendering
delayed 22-6
individual formats 22-6

repeat-count events 9-5
resource compiler 1-10

#define directive 12-32
#elif directive 12-32
#else directive 12-32
#endif directive 12-33
#if directive 12-33
#ifdef directive 12-33
#ifndef directive 12-34
#include directive 12-34
#undef directive 12-35
ACCEL TABLE statement 12-4
ASSOCTABLE statement 12-4
AUTOCHECKBOX statement 12-5
AUTORADIOBUTTON statement 12-5
BITMAP statement 12-6
CHECKBOX statement 12-6
CODEPAGE statement 12-6
COMBO BOX statement 12-7
command line 12-36
CONTAINER statement 12-7
CONTROL statement 12-8
CTEXT statement 12-9
CTLDATA statement 12-9
DEFAUL TICON statement 12-10
DEFPUSHBUTTON statement 12-10
DIALOG statement 12-11
DLGINCUJDE statement 12-11
DLGTEMPLATE statement 12-12
EDITTEXT statement 12-13
ENTRYFIELD statement 12-13
FONT statement 12-14
FRAME statement 12-14
GROUPBOX statement 12-15
HELPITEM statement 12-15
HELPSUBITEM statement 12-16
HELPSUBTABLE statement 12-16
HELPTABLE statement 12-17
ICON statement (Control) 12-18
ICON statement (Resource) 12-18
LlSTBOX statement 12-18
L TEXT statement 12-19
MENU statement 12-19
MENUITEM statement 12-20

Index X-55

resource compiler (continued)
MESSAGETABLE statement 12-21
MLE statement 12-22
NOTEBOOK statement 12-22
POINTER statement 12-23
PRESPARAMS statement 12-23
PUSHBUTTON statement 12-24
RADIOBUTTON statement 12-24
RCDAT A statement 12-25
RCINCLUDE statement 12-25
RESOURCE statement 12-26
RTEXT statement 12-26
SLIDER statement 12-27
SPINBUTTON statement 12-27
starting 12-36
STRINGTABLE statement 12-28
SUBITEMSIZE statement 12-29
SUBMENU statement 12-29
VALUESET statement 12-30
WINDOW statement 12-30
WINDOWTEMPLATE statement 12-31

Resource Editors 1-10
resource files

#define directive 12-32
#elif directive 12-32
#else directive 12-32
#endif directive 12-33
#if directive 12-33
#ifdef directive 12-33
#ifndef directive 12-34
#include directive 12-34
#undef directive 12-35
ACCEL TABLE statement 12-4
ASSOCTABLE statement 12-4
AUTOCHECKBOX statement 12-5
AUTORADIOBUTTON statement 12-5
BITMAP statement 12-6
CHECKBOX statement 12-6
CODEPAGE statement 12-6
COMBOBOX statement 12-7
compiling 12-36
CONTAINER statement 12-7.
CONTROL statement 12-8
creating 12-36
CTEXT statement 12-9
CTLDATA statement 12-9
DEFAUL TICON statement 12-10
definition 1-9
DEFPUSHBUTTON statement 12-10
description 12-1

X-56 PM Basic Programming Guide

resource files (continued)
DIALOG statement 12-11
directives 12-2
DLGINCLUDE statement 12-11
DLGTEMPLATE statement 12-12
EDITTEXT statement 12-13
ENTRYFIELD statement 12-13
examples 12-1
FONT statement 12-14
FRAME statement 12-14
frame window resources 2-7
GROUPBOX statement 12-15
HELPITEM statement 12-15
HELPSUBITEM statement 12-16
HELPSUBTABLE statement 12-16
HELPTABLE statement 12-17
ICON statement (Control) 12-18
ICON statement (Resource) 12-18
LlSTBOX statement 12-18
L TEXT statement 12-19
MENU statement 12-19
MENU ITEM statement 12-20
MESSAGETABLE statement 12-21
MLE statement 12-22
NOTEBOOK statement 12-22
overview 12-1
POINTER statement 12-~3

PRESPARAMS statement 12-23
PUSHBUTTON statement 12-24
RADIOBUTTON statement 12-24
RCDATA statement 12-25
RCINCLUDE statement 12-25
RESOURCE statement 12-26
RTEXT statement 12-26
script files 12-1
SLIDER statement 12-27
SPINBUTTON statement 12-27
statements 12-1, 12-3
STRINGTABLE statement 12-28
SUBITEMSIZE statement 12-29
SUBMENU statement 12-29
VALUESET statement 12-30
WINDOW statement 12-30
WINDOWTEMPLATE statement 12-31

RESOURCE statement 12-26, 12-40
resource statements 12-1
resources

accelerator table 1-9
accelerator-table 14-2
accessing window 2-20

resources (continued)
bit map 1-9
creating accelerator-table 14-4
dialog 15-5
dialog includes 1-9
dialog templates 1-9
flags requiring 6-5
fonts 1-9
frame window 6-5
icons 1-10
identifiers 2-19
menu 1-10
pointer 1-10
RT_ACCELTABLE 2-19
RT _BITMAP 2-19
RT_DIALOG 2-19
RT _FONT 2-19
RT_FONTDIR 2-19
RT_MENU 2-19
RT_MESSAGE 2-19
RT_POINTER 2-19
RT_RCDATA 2-19
RT_STRING 2-19
string tables 1-10
styles requiring 6-5
types of 1-9
window templates 1-9

responding
to a character message, code 9-10
to user menu choice 13-12

restoring
a frame window 2-5, 2-31
normal input to windows 2-10
SWP _RESTORE flag 2-21

retained graphics, support 7 -10
retrieving

button-window handle 19-9
data from initialization files 24-2
data from the clipboard 22-10
entry field text 20-6
frame handle 6-17
message queue current status 3-3
names of initialization files 24-3
original window procedure 4-5
scroll-bar handles 18-9
text from entry field 20-9
window handles 2-27
window size 2-17

RGN_* values 7-30

rich text format, clipboard 22-4
RIGHT key 18-6
RT_ACCELTABLE 2-19
RT_BITMAP 2-19
RT_DIALOG 2-19
RT _FONT 2-19
RT_FONTDIR 2-19
RT_MENU 2-19
RT_MESSAGE 2-19
RT_POINTER 2-19
RT_RCDATA 2-19
RT_STRING 2-19
RTEXT statement 12-26, 12-40
RUM_* values 3-34

s
sample code

adding an item to a list message 3-14
assigning timer identifier 23-3
associating device context with presentation

space 7-14
associating window procedure with window

class 5-4
broadcasting a message 3-15
calculating dimensions of rectangles 8-2
check the queue for WM _CHAR messages 3-13
checking for key-up or key-down event 9-9
constructing message result 3-16
creating a standard window 6-15
creating a typical main window 6-14
creating an accelerator-table resource 14-4
creating entry field in client window 20-7
creating entry field with text limit 20-8
creating frame window with

FCF _ACCEL TABLE 14-4
creating initia!ization file 24-2
creating message queue and message

loop 3-11
creating setting in initialization file 24-2
defining dialog-window buttons 19-9
defining entry field in dialog window 20-7
defining list box in dialog template 21-3
determining active status of frame window 9-9
determining keyboard focus 3-15
drawing window in minimized and normal

states 7-8
drawing with WinFiliRect 8-3
extracting a scan code 9-12
filling an entire window, WM_PAINT 8-3

Index X-57

sample code (continued)
flagging text change in entry field 20-9
frame and client window using

WinCreateWindow 6-15
handling virtual-key codes 9-11
how to register the window class name 4-7
inserting items in a list 21-4
list box selection processes 21-7
Loading and Setting Up Resources for a Frame

Window 6-6
message loop processing messages with NULL

handles 3-13
obtaining a device context 7-14
OWNERITEM structure 21-5
post the WM_QUIT message 3-14
processing WM_ TIMER messages 23-3
putting data on the clipboard 22-9
reading setting in initialization file 24-3
resource definition 16-4
responding to character message 9-10
retrieving data from the clipboard 22-10
retrieving handle of title-bar control 6-17
retrieving names of initialization files 24-3
sending a message to a window 3-14
sizing the list-box to client window 21-2
starting two timers 23-2, 23-3
stopping a window timer 23-4
structure of a typical window procedure 5-3
subclassing a window 5-5
using buttons in a client wihdow 19-10
using cached-micro presentation spaces 7 -15
using list-box ID in dialog template 21-3
viewing data on the clipboard 22-10

SB_* values 18-16,18-17,22-25,22-31
SB_ENDSCROLL 18-5
SB_LlNEDOWN 18-5
SB_LlNELEFT 18-5
SB_LlNERIGHT 18-5
SB_LlNEUP 18-5
SB_PAGEDOWN 18-5
SB_PAGELEFT 18-5
SB_PAGERIGHT 18-5
SB_PAGEUP 18-5
SB_SLlDERPOSITION 18-5
SB_SLlDERTRACK 18-5
SBCDATA 18-2,18-18,18-20
SBM _ messages 3-8
SBM_QUERYPOS 18-3,18-11,18-20
SBM_QUERYRANGE 18-12, 18-20

X-58 PM Basic Programming Guide

SBM_SETPOS 18-3, 18-13, 18-20
SBM_SETSCROLLBAR 18-2, 18-14, 18-20
SBM;....SEITHUMBSIZE 18-15, 18-20
SBMP _* values 10-13
SBMP _BTNCORNERS 10-4
SBMP _ CHECKBOXES 10-4
SBMP _CHILDSYSMENU 10-4
SBMP _CHILDSYSMENUDEP 10-4
SBMP _ COMBODOWN 10-4
SBMP _MAXBUITON 10-4
SBMP _MENUAITACHED 10-4
SBMP _MENUCHECK 10-4
SBMP _MINBUITON 10-4
SBMP _OLD_CHILDSYSMENU 10-4
SBMP _OLD_MAXBUITON 10-4
SBMP _OLD_MINBUITON 10-4
SBMP _OLD_RESTOREBUITON 10-4-
SBMP _OLD_SBDNARROW 10-4
SBMP _OLD_SBLFARROW 10-4
SBMP _OLD_SBRGARROW 10-4
SBMP _OLD_SBUPARROW 10-4
SBMP _PROGRAM 10-4
SBMP _RESTOREBUITON 10-4
SBMP _RESTOREBUITONDEP 10-4
SBMP _SBDNARROW 10-4
SBMP _SBDNARROWDEP 10-4
SBMP _SBDNARROWDIS 10-4
SBMP _SBLFARROW 10-4
SBMP _SBLFARROWDEP 10-4
SBMP _SBLFARROWDIS 10-4
SBMP _SBRGARROW 10-4
SBMP _SBRGARROWDEP 10-4
SBMP _SBRGARROWDIS 10-4
SBMP _SBUPARROW 10-4
SBMP _SBUPARROWDIS 10-4
SBMP _SIZEBOX 10-4
SBMP _SYSMENU 10-4
SBMP _TREEMINUS 10-4
SBMP _ TREEPLUS 10-4
SBS_AUTOTRACK 18-2
SBS_HORZ 18-2
SBS _ THUMBSIZE 18-2
SBS _VERT 18-2
SC _, system commands 2-18
SC _ * values 6-32
SC_CLOSE 2-18
SC_MAXIMIZE 2-18
SC_MINIMIZE 2-18
SC_MOVE 2-18

SC_RESTORE 2-18
SC_SIZE 2-18
scan codes 9-6
screen position, description 2-11
scroll bar

and the keyboard 18-6
as control windows 2-8
as window element 1-5
creation 18-2
determining range, example 18-2
example 18-1
notification messages 18-3
range and position 18-2
range and position, using 18-9
retrieving handles 18-9
standard window and command codes 18-4
styles 18-2
SYSCLR_SCROLLBAR 18-6
using 18-7

scroll-bar controls
description 18-1
SBM_ messages 3-8
SBS_AUTOTRACK 18-2
SBS_HORZ 18-2
SBS_THUMBSIZE 18-2
SBS _VERT 18-2

scrolling
contents of a window 8-3

secondary windows 1-6, 2-6
selected state, radio button 19-2
selecting

button 19-1, 19-7
items in a list 21-3
list items, methods 21-3
multiple items at a time 21-5

semaphore messages 3-7, 3-9
sending

message to a window 3-14
messages 3-1, 3-6
messages to all windows in system 3-7
messages to another application 2-10
messages to the application 2-10
messages to windows 2-9
·operating system messages 2-9

setting
active window 9-1
keyboard focus 9-2
menu-item attributes 13-13
owner window 2-27
position and size of a cursor 11-1

setting (continued)
reading and writing 24-3
size of a window 2-29
window position structure 2-18

shared memory
clipboard 22-3
rules for access 22-6

SHORT1 FROMMP 5-1,9-5
SHORT1 FROMMP macro 3-15
SHORT2FROMMP 9-5
SHORT2FROMMP macro 3-15
shortcut keys 2-7
showing a window 2-31
sibling window

clipping 2-4
definition 1-3
description 2-3, 2-11
parentage 2-3
top-level 2-3
viewing order 2-3
WS_CLlPSIBLlNGS 2-15

sizing
a window 2-29
multiple windows 2-30

sizing border, description 6-3
slider controls

SLM _ messages 3-8
SLIDER statement 12-27, 12-40
SLM_ messages 3-8
SM_ messages 3-8
SM,-* values 3-37, 3-38
SMIM_ * values 3-37, 3-38
specifying

absolute-position index 21-3
accelerator-item styles 14-3
capture window 9-7
cursor position 20-5
CURSOR_SETPOS flag 11-1
FCF_ 6-5
HWND_BOTTOM constant 2-30
HWND _TOP constant 2-30
maximum number of messages in message

queue 3-3
message category 3-8
message data and location 3-2
window handle 2-31
z-order position 6-11

SPINBUTTON statement 12-27, 12-41
SPTR_* values 10-19

Index X-59

SPTR_APPICON 10-2
SPTR _ARROW 10-2
SPTR_FILE 10-3
SPTR _FOLDER 10-3
SPTR-,CONERROR 10-2
SPTR-,CONINFORMATION 10-2
SPTR-,CONOUESTION 10-2
SPTR-,CONWARNING 10-2
SPTR-,LLEGAL 10-3
SPTR_MOVE 10-2
SPTR_MULTFILE 10-3
SPTR_PROGRAM 10-3
SPTR_SIZE 10-2
SPTR_SIZENESW 10-2
SPTR_SIZENS 10-2
SPTR_SIZENWSE 10-2
SPTR_SIZEWE 10-2
SPTR _TEXT 10-2
SPTR_WAIT 10-2
standard clipboard-data formats 22-4
standard window

definition 1-4
elements 1-4
styles 2-14
styles, operating system 2-15

starting
two timers, sample code 23-2, 23-3

static control styles
static text 2-8
stopping a timer, sample code 23-4
straight text format, clipboard 22-4
string tables 1-10
strings

substitute 15-34
STRINGTABLE statement 12-28,12-41
structures

ACCEL 14-2, 14-17
ACCEL TABLE 14-2, 14-17
BTNCDATA 19-27
button control 19-27
CLASSINFO 4-6, 4-12
copying current information to SWP 2-29
CREATESTRUCT 2-112
CURSORINFO 11-9
DLGTEMPLATE 15-5, 15-46
DLGTITEM 15-5, 15-46
entry field control 20-29
ENTRYFDATA 20-8, 20-29
FATTRS 8-32
FRAMECDATA 6-5,6-40

X-50 PM Basic Programming Guide

structures (continued)
HMO 3-53
HSAVEWP 6-40
LBOXINFO 21-43
list box 21-43
MB2D 15-8, 15-46
MB21NFO 15-4, 15-46
menu-item 13-5
MENUITEM 13-5, 13-59
messages and message queues, summary 3-53
MOINFO 3-3, 3-53
OWNERITEM 13-16, 13-59, 21-5, 21-43
pointer 10-25
POINTERINFO 10-25
POINTL 8-1,8-32
PRFPROFILE 24-15
OMSG 3-2, 3-53, 9-7
RECTL 7-7, 7-40, 8-1, 8-32
SBCDATA 18-2, 18-20
simple Presentation Manager application 2-23
summary of dialog 15-46
summary of title-bar 17 -12
summary of window-drawing 8-31
SWP 17-12
to specify windows to be moved or

changed 2-30
TRACKINFO 17-3,17-12
USERBUTTON 19-8, 19-27
window class 4-12
window procedure 5-1
WNDPARAMS 2-112

style bits
WS_GROUP 19-9

styles
description 2-11
FS_ACCELTABLE 6-5
FS-,CON 6-5
FS_MENU 6-5
FS_STANDARD 6-5
private window classes 4-2
scroll-bar 18-2
WS_CLlPCHILDREN 2-15
WS_CLlPSIBLINGS 2-15
WS_DISABLED 2-15
WS_GROUP 2-15
WS_MAXIMIZED 2-15
WS_MINIMIZED 2-15
WS_PARENTCLIP 2-15
WS _ SAVEBITS 2-15
WS_SYNCPAINT 2-15

styles (continued)
WS_TABSTOP 2-15
WS_VISIBLE 2-15

subclassed window
WinSubclassWindow 2-19

subclassing
a window 5-4
a window procedure, description 5-2
existing control window 16-3
procedure 16-3
windows 1-4

SUBITEMSIZE statement 12-29, 12-41
submenu items 13-4
SUBMENU statement 12-29, 12-41
summary

button control functions 19-26
button control messages 19-26
button control structures 19-27
clipboard functions 22-33
clipboard messages 22-33
cursor functions 11-9
cursor structure 11-9
default window-procedure messages 5-31
dialog functions 15-45
dialog messages 15-46
dialog structures 15-46
entry-field control 20-28
focus-change and activation messages 9-23
frame window functions, structure,

messages 6-39
functions used with device contexts 7 -39
functions used with initialization files 24-15
functions used with presentation spaces 7 -39
functions used with window regions 7-39
keyboard accelerator 14-17
menu functions 13-57
menu structures 13-59
messages and message queues, functions 3-51
messages and message queues,

messages 3-52
messages and message queues,

structures 3-53
messages generated by a menu 13-58
messages generated by a scroll bar 18-20
messages generated by an entry field 20-28
messages received by a control window 16-7
messages received by a menu 13-57
messages received by a scroll bar 18-20
messages received by an entry field 20-28
messages sent to a menu 13-57

summary (continued)
mouse and keyboard input 9-23
mouse and keyboard input functions 9-23
mouse and keyboard input messages 9-23
pointer and bit map functions 10-25
scroll-bar structure 18-20
title-bar functions 17 -11
title-bar messages 17 -11
title-bar structures 17 -12
window class functions 4-12
window class structure 4-12
window data structures 2-112
window functions 2-109
window messages 2-112
window procedures 5-31
window timer functions 23-9
window-drawing functions 8-31
window-drawing structures 8-31
window-procedure functions 5-31

SV_SCROLLRATE system value 23-2
SWJNVALIDATERGN 8-4
SWP 17-7, 17-12
SWP _* values 2-59,2-75, 17-7
SWP _MAXIMIZE 2-31
SWP _MINIMIZE 2-31
SWP _MOVE 2-29
SWP _RESTORE 2-21,2-31
SWP _SIZE 2-29
SWP _ZORDER 2-30
SYSCLR_SCROLLBAR 18-6
system bit maps 1 0-4
system commands, SC_

generating 2-18
SC_ 2-18
SC_CLOSE 2-18
SC_MAXIMIZE 2-18
SC_MINIMIZE 2-18
SC_MOVE 2-18
SC_RESTORE 2-18
SC_SIZE 2-18
table 2-18
WM_CLOSE 2-18
WM_SYSCOMMAND 2-18

system menu
description 13-3

system message queue 9-1
system pointer

query 10-19
system queue 1-8

Index X-61

system timers table 23-2
system-defined messages 3-7
system-defined public window classes 4-4
system-defined window classes, description 4-4
system-modal window

T

controlling input 2-10
description 2-10
designating 2-10
explicitly clearing 2-10
setting and clearing 2-10
using WinSetSysModalWindow 2-10
when to use 2-10

table
accelerator 14-2
accelerator-item styles 14-3
accelerator-table functions 14-17
accelerator-table messages 14-17
accelerator-table structures 14-17
accelerator, description 14-2
accelerator, entries 9-6
button styles 19-4
class styles 4-2
clipboard data formats 22-4
control window classes 16-1
cursor functions 11-9
cursor structure 11-9
default messages and window-procedure

responses 6-12
default window procedure messages 5-31
entry-field functions 20-28
entry-field messages 20-28
entry-field structures 20-29
entry-field styles 20-1
flags and styles that require resources 6-5
frame window state flags 6-10
frame windows, summary 6-39
frame-control identifiers 6-3
handles 14-2
initialization file summary 24-15
keyboard character flags 9-4
keystroke menu access 13-6
list item position index 21-3
list-box structure 21-43
MB21NFO style flags 15-4
message categories 3-8
message priorities 3-1 0
messages generated by a button control to its

owner 19-27

X-62 PM Basic Programming Guide

table (continued)
messages generated by a control window 16-7
messages generated by a menu 13-58
messages generated by an entry field 20-28
messages generated by list box to owner 21-42
messages handled by clipboard owner 22-7
messages handled by WC_ENTRYFIELD 20-3
messages handled by WC_LlSTBOX 21-7
messages processed by title-bar control 17-1
messages processed by WC _BUTTON 19-6
messages received by a button control 19-26
messages received by a control window 16-7
messages received by a list box 21-43
messages received by a menu 13-57
messages received by an entry field 20-28
modifying accelerator 14-5
mouse/keyboard activation messages 9-23
mouse/keyboard functions 9-23
notification of entry-field events 20-2
operations on clipboard data 22-1
OS/2 Operating System Standard Window

Styles 2-15
pointer and bit map functions 10-25
pointer structure 10-25
predefined mouse pointers 10-2
Presentation Manager-Defined Resource

Types 2-19
scroll-bar command codes 18-3
scroll-bar messages 18-20
scroll-bar notification messages 18-3
scroll-bar structure 18-20
standard system· bit maps 1 0-4
summary of clipboard functions 22-33
summary of clipboard messages 22-33
summary of dialog functions 15-45
summary of dialog messages 15-46
summary of dialog structures 15-46
summary of title-bar functions 17 -11
summary of title-bar messages 17 -11
summary of title-bar structures 17 -12
summary of window timer functions 23-9
summary of window-procedure functions 5-31
System Commands 2-18
system timers 23-2
using ACCEL 14-2
using ACCEL TABLE 14-2
window class structure 4-12
Window Classes 2-13, 4-4
window data functions 2-109
window data structure 2-112

table (continued)
window functions 2-109
window input functions 2-110
window messages 2-112
window procedure arguments 5-2
window procedure functions 5-31
window procedure message 5-31
window procedure syntax 5-31
window regions 7-3
window relationship functions 2-109
window size and position functions 2-110
window visibility functions 2-110
window-creation functions 2-109
window-destruction functions 2-109

TBM _ messages 3-8
TBM_QUERYHILITE 17-2,17-5,17-11
TBM_SETHILITE 17-2,17-6,17-11
terminate 2-85
text

draw 8-9
drawing 8-5
editing, entry field 20-5
format, clipboard 22-4
retrieval, entry field 20-6

TF_* values 17-10
threads

associating windows with message queue 3-2
message queue serving 3-2

three-state check boxes 19-1, 19-3
TID_CURSOR 23-2
TID _FLASHWINDOW 23-2
TID_SCROLL 23-2
timeout values, description 23-1
timer

start 23-6
title bars

as control windows 2-8
as element of standard window 1-5
icon 1-5
in a standard frame window 17-1
including in frame window 17-2

title-bar controls
default behavior 17-1
description 17-1
functions in standard frame window 17-1
summary of functions 17 -11
summary of messages 17-11
summary of structures 17 -12
TBM _ messages 3-8

top-level window
creating 2-23
creation example 2-23
description 2-2
enumerating 2-28
positioning 2-3

TRACKINFO 17-3, 17-9, 17-12
tracking rectangle

hide 8-22
show 8-22

U
ulData parameter 22-4,22-6
unselected state, radio button 19-2
UP key 18-6
update region

exclude 7 -19
query 7-30

update regions, description 3-3
update regions, system-combined 3-3
updating a list 21-4
user interface 1-4
user-driven data exchange 22-1
user-generated data exchange 1-10
USERBUTTON 19-8, 19-25, 19-27
usHit parameter 9-7
using

accelerators in an application 14-2
button controls 19-9
buttons in a client window 19-10
control windows 16-3
cursors 11-1
dialog windows 15-6, 15-9
entry field controls 20-7
FCF_STANDARD 6-15
frame windows 6-14
initialization files 24-1
keyboard accelerators 14-1
list boxes 21-1
message boxes 15-6
message macros 3-15
messages 2-9, 3-1 , 3-11
mnemonic keystroke 13-7
mouse and keyboard 9-8
private clipboard-data formats 22-5
PU_MOUSEBUTTON to display menu 13-3
scroll bars 18-7
scroll-bar range and position 18-9
the clipboard 22-9

Index X-S3

using (continued)
WinCreateWindow 6-15
window classes '4-7
window handle 3-2
window procedures 5-3
window timers 23-1
window timers, methods of 23-2
window-drawing functions 8-2
windows 2-23
WinWindowFromlD 2-27

using windows

v

handles 2-16
system-modal 2-10

value set control
VM _ messages 3-8

VALUESET statement 12-30, 12-41
viewer description, clipboard 22-6
viewing

data on the clipboard 22-10
virtual-key codes 9-6
visibility

window 2-21, 2-31
WS_VISIBLE 2-15

VK_* values 14-16
VM _ messages 3-8
VOID data type 5-1

W
WA_* values 15-16
WC _, window classes 2-13, 4-4
WC _ * classes 2-62, 2-73, 2-78, 2-80
WC_BUTTON 2-13,4-4,16-1,19-1,19-6
WC_COMBOBOX 16-1
WC_CONTAINER 2-13,4-4, 16-1
WC _ENTRYFIELD 2-13, 4-4, 16-1, 20-1
WC_ENTRYFIELD, messages 20-3
WC_FRAME 2-2, 2-5, 2-13, 5-1, 6-1
WC_LlSTBOX 2-13,4-4, 16-1
WC_MENU 2-13,4-4, 16-1
WC _NOTEBOOK 2-13, 4-4, 16-1
WC_SCROLLBAR 2-5,2-13,4-4,16-1
WC_SLlDER 2-13,4-4, 16-1
WC_SPINBUTTON 2-13,4-4, 16-1
WC_STATIC 2-13,4-4, 16-1
WC_TITLEBAR 2-5,2-13,4-4, 16-1

X-64 PM Basic Programming Guide

WC_VALUESET 2-13,4-4, 16-1
WinAlarm 15-16, 15-45
WinBeginEnumWindows 2-28, 2-33, 2-109
WinBeginPaint 7-7,7-10,7-17,7-39,11-2
Win BroadcastMsg 3-15,3-17,3-51
WinCalcFrameRect 6-12,6-18,6-39,8-31
WinCallMsgFilter 3-19,3-51
WinCheckMenultem 13-19, 13-57
WinCloseClipbrd 22-4, 22-12, 22-33
WinCopyAccelTable 14-6,14-17
WinCopyRect 8-6, 8-31
WinCreateAccelTable 14-5, 14-7, 14-17
WinCreateCursor 11-1, 11-3, 11-9
WinCreateDlg 2-12, 6-4, 15-17, 15-45
WinCreateFrameControls 2-12, 6-12, 6-19, 6-39
WinCreateMenu 2-12, 13-2, 13-20, 13-57
WinCreateMsgQueue 2-11, 3-2, 3-11,3-20,3-51,

4-1
WinCreatePointer 10-7, 10-25
WinCreatePointerlndirect 10-8, 10-25
WinCreateStdWindow 2-12,2-34,2-109,6-2,6-4,

6-15, 16-1, 17-11
WinCreateWindow 2-11, 2-12, 2-36, 2-109, 4-1,

4-4,6-4,6-15,16-1,16-3,18-3,19-1,19-26,20-1
WinDefDlgProc 3-51, 5-3, 5-6, 5-31, 9-3, 15-45
WinDefWindowProc 3-6,3-51,4-5, 5-2, 5-3, 5-7,

5-31, 9-3, 9-7, 9-8
WinDeleteLboxltem 21-10, 21-42
WinDesktopCursor 11-1
Win DestroyAccelTable 14-8, 14-17
WinDestroyCursor 11-5, 11-9
WinDestroyMsgQueue 3-2,3-21, 3-51
WinDestroyPointer 10-9, 10-25
WinDestroyWindow 2-22, 2-32, 2-38, 2-109, 15-45
WinDismissDlg 15-18, 15-45
WinDispatchMsg 3-5,3-11, 3-22, 3-51, 9-7, 23-1,

23-3
WinDlgBox 2-12, 15-19, 15-45
window

activation 9-1, 9-8
application

uses of 2-6
border 1-5
classes

associating with window procedure 5-4
creating 2-13
custom window styles 4-3
customizing public 4-5
data 4-6
definition 1-3
description 2-11

window (continued)
classes (continued)

frame, data 6-9
painting data 2-8
preregistered 4-1
preregistered public 2-5
private 2-14
public 2-13; 4-4
recognizing ownership 2-5
registering 2-14, 4-1
registering example 2-23
registering private 4-1
relationship to window procedures 5-1
structure 4-12
subclassing a window· 5-4
summary of functions 4-12
system-defined (public) 4-4
table 2-13
types of 2-13
types of support provided 4-4
using 4-7
WC_* 2-13
window procedure 4-3

classifying 1-3
client

uses of 2-7
window procedure 2-7

clipping area 2-4
composite

description 2-7
control

classes 2-8
description 2-8

coordinates
repositioning 2-17

create 2-36
creating 1-3
creation

functions 2-12
information 2-19
messages 2-12
object 2-24
top-level frame 2-23
using WinCreateMsgQueue 2-11
using WinCreateWindow 2-11
using Winlnitialize 2-11
window data structure 2-19

data size 4-3
definition 1-1
desktop

creating 2-2

window (continued)
desktop-object

creating 2-2
description 2-2

destroy 2-38
destruction

using WM_DESTROY 2-4
dialog

description 2-7
uses of 2-7

environment 1-1
frame

managing 2-7
message box 2-7

handles
retrieving 2-27

hierarchy 1-1
main

creating 2-6
description 1-2

message, description and uses 3-2
messages and message queues

creating 2-11
object

creating 2-24
ownership

rules 2-2
painting 2-11
parent

WS_PARENTCLIP 2-15
position

adjusting 2-12
procedures

description 2-11 , 3-6
painting window data 2-8

query 2-57
query active 2-52
query class name 4-9
query desktop 2-53
query device context for 7-31
query handle from device context 7 -36
query pointer 2-60
query position 2-59
query size 2-59
query text 19-15
query text length 20-11
query unsigned short integer value of 2-64
relationships

definition 1-1
owning a window 2-2
parent-child 2-2

Index X-65

window (continued)
set message interest 3-38
set multiple positions 2-69
set owner 2-70
set to system modal 2-72
sibling

WS_CLlPSIBLINGS 2-15
size

adjusting 2-12
changing 2-29
specifying 2-17

update 7-33
visibility

using WS_VISIBLE style 2-21
WS_VISIBLE 2-15

window classes
messages handled by WC _ LlSTBOX 21-7
set message interest 3-37
styles

CS_CLlPCHILDREN 4-2
CS_CLlPSIBLINGS 4-2
CS_FRAME 4-2
CS_HITIEST 4-2
CS_MOVENOTIFY 4-2
CS_PARENTCLIP 4-2
CS SAVEBITS 4-2
CS=SIZEREDRAW 4-2
CS_SYNCPAINT 4-2

table 4-4
table of control 16-1
WC_ 4-4
WC_BUTION 2-13,4-4,16-1,19-1
WC_COMBOBOX 16-1
WC_CONTAINER 2-13,4-4, 16-1
WC_ENTRYFIELD 20-1,20-7
WC _FRAME 2-2, 2-5, 2-13, 4-4, 5-1, 6-1, 6-4,

16-1
WC_LlSTBOX 2-13,4-4,16-1,21-2
WC_MENU 2-13,4-4,13-1,16-1
WC_NOTEBOOK 2-13,4-4, 16-1
WC _ SCROLLBAR 2-5, 2-13, 4-4, 16-1
WC_SLlDER 2-13,4-4, 16-1
WC_SPINBUTION 2-13,4-4, 16-1
WC_STATIC 2-13,4-4, 16-1
WC _ TITLE BAR 2-5, 2-13, 4-4, 16-1
WC_VALUESET 2-13,4-4,16-1

window data
painting 2-8
querying 2-25
size, window class 4-3

X-66 PM Basic Programming Guide

window data (continued)
window data structure 2-19

window data structure
adding storage 2-19
dynamically allocating memory 2-19
extending available members 2-19
handles 2-19
members 2-19
pointers 2-19
window size and position 2-19

window destruction
active window 2-22
application 2-22
dialog 2-22
main 2-22
releasing presentation space 2-22
releasing resources 2-22
saving data 2-22
using WinDestroyWindow 2-22
WM_DESTROY 2-22

window drawing
application's flow of graphics commands 7-2
clip region and visible region of presentation

space 7-4
coordinates 8-1
determining dimensions of rectangles 8-2
device contexts 7-1
drawing a bit map 8-4
drawing text 8-5
example 7-6
filling a rectangle 8-3
in minimized and normal states, code 7-8
in presentation spaces 8-2
inclusive-exclusive 8-1
inclusive-inclusive 8-1
methods of drawing text 8-5
minimized view 7-8
painting and drawing, description 7-1
points 8-1
presentation spaces 7-1
rectangles 8-1
scrolling contents of a window 8-3
strategies for using cached-micro presentation

spaces 7-15
summary of functions 8-31
summary of structures 8-31
types of presentation spaces 7-9
using cached-micro presentation spaces 7-14
using functions 8-2
window regions 7-3

window drawing (continued)
window styles for painting 7-4
without WM_PAINT 7-9
WM_PAINT 7-7
working with points and rectangles 8-2

window handles
as window identifier 1-4
definition 2-12
description 3-2
specifying NULL 2-16
substituting constants 2-16
using 2-16

window input and output
directing input data 2-8
displaying output 2-8
types of output 2-8

window ownership
definition 2-2
descendancy and destruction 2-5
establishing an independent relationship 2-5
rules for 2-5
setting the owner window 2-5

window procedures
arguments, example 5-2
as component of window class 2-11
associating with window class 5-4
associating with window class, code 5-4
comparison to dialog procedures 5-1
default 5-2
default messages 5-31
default processing 3-6
definition 1-3
description 1-3,2-7,3-6,4-3,5-1
designing 5-3
message parameters 5-1
message processing 3-6
protecting shared resources 4-3
relationship to window classes 5-1
retrieving original 4-5
structure 5-1
structure of a typical window procedure 5-3
subclassing 5-2
subclassing a window 5-4
subclassing a window, code 5-5
summary 5-31
summary of functions 5-31
syntax table 5-31
using 5-3
using WinlnSendMsg 3-7
window class 4-3

window regions
clip 7-3
clip region and visible region of presentation

space 7-4
description 7-3
summary of functions 7 -39
update 7-3
visible 7-3

window relationships
definition 1-1, 2-2

window resources
description 2-19
predefined Presentation Manager 2-19
sharing 2-19
types 2-19

window size and position
adjusting 2-17
buttons 1-5
changing 2-16
definition 1-4
description 2-11
expressing 2-16
improving drawing performance 2-17
messages 2-18
redrawing windows 2-18
restoring 2-21
retrieving 2-17
retrieving size 2-17
specifying 2-16
specifying size 2-17
system commands 2-18
using system commands 2-18
using the WM_SYSCOMMAND message 2-18
using WinQueryWindowRect 2-17
window data structure 2-19
WinGetMaxPosition 2-17
WinQueryWindowRect 2-17
WinSetWindowPos 2-18, 2-19
WM_ADJUSTWINDOWPOS 2-18
WM_MOVE 2-18
WM_SHOW 2-18
WM_SIZE 2-18

WINDOW statement 12-30, 12-41
window styles

BS_CHECKBOX 4-5
BS_PUSHBUTTON 4-3,4-5
class-determined 2-14
combining 2-14
CS_CLlPCHILDREN 7-4
CS_CLlPSIBLINGS 7-5

Index X-67

window styles (continued)
CS _ H ITTEST 9-7
CS_PARENTCLIP 7-5
CS_PUBLIC 4-5
CS _ SAVEBITS 7-5
CS_SIZEREDRAW 2-30,7-5
CS_SYNCPAINT 7-5
custom 4-3
description 2-11, 4-3
FCF _MAXBUnON 6-3
FCF_MINBUnON 6-3
FCF _MINMAX 6-3
FCF _NOBYTEALIGN 2-18
FCF _SIZEBORDER 6-3
for painting 7-4
frame 6-4
frame window 6-5
FS _ ACCEL TABLE 6-5
FS_BORDER 4-3
FS_ICON 6-5
FS_MENU 6-5
FS_NOMOVEWITHOWNER 2-5
FS_STANDARD 6-5
LS_NOADJUSTPOS 21-3
LS_OWNERDRAW 21-5
predefined 2-14
standard 2-14
table 2-15
WS_ 2-15
WS_CLlPCHILDREN 2-4,2-15,7-4
WS_CLlPSIBLINGS 2-4,2-15,7-5
WS_DISABLED 2-10,2-15
WS_GROUP 2-15
WS_MAXIMIZED 2-15,2-20
WS_MINIMIZED 2-15,2-20
WS_PARENTCLIP 2-15,7-5
WS_SAVEBITS 2-15,7-5
WS_SYNCPAINT 2-11,2-15,4-3,7-5
WS_TABSTOP 2-15
WS_VISIBLE 2-15,2-17,2-21,2-31,4-3

window templates 1-9
window timers

CV_TIMERS 23-1
description 23-1
dispatching WM_ TIMER messages 23-3
stopping a timer 23-4
summary of functions 23-9
SV_SCROLLRATE 23-2
TID_CURSOR 23-2
TID_FLASHWINDOW 23-2

X-58 PM Basic Programming Guide

window timers (continued)
TID_SCROLL 23-2
timeout values 23-1
using 23~ 1, 23-2

window title 1-5
window view 1-5
window visibility 2-21, 2-31
window words area 1-3
window-creation and -management messages 3-8
window-creation functions

WinCreateDlg 2-12
WinCreateFrameControls 2-12
WinCreateMenu 2-12
WinCreateStdWindow 2-12
WinCreateWindow 2-12, 2-21, 2-24
WinDlgBox 2-12
WinLoadDlg 2-12
WinLoadMenu 2-12
WinMessageBox 2-12

window-creation messages
WM_CREATE 2-12

window-drawing functions 8-1
windows

create standard 2-34
create standard frame controls 6-19
definition 1-1
description 2-1
dialog 15-1
disabled

WS_DISABLED 2-15
enable update 21-11
find descendant 2-89
get maximum position 2-41
get minimum position 2-42
get multiples from identities 2-51
identifiers 2-12
il!troduction to 2-1
invoke default procedure 5-7
is handle valid 2-47
map points 8-17
maximized

WS_MAXIMIZED 2-15
minimized

WS_MINIMIZED 2-15
open device context 7-28
process message box 15-24, 15-26
query class information 4-8
query descendancy 2-45
query enabled state 2-48
query handle from identifier 2-88

windows (continued)
query is child 2-45
query object 2-55
query rectangle 2-61
query system modal 2-56
query unsigned long integer value of 2-62
query visibility 2-50
redrawing 2-30

using adjusted values 2-18
register class of 4-10
set active 2-67
set enabled state 2-39
set parent 2-71
set position 2-75
set text 15-33
set visibility state 2-82, 21-11
show 2-82
standard

classes 2-14
styles 2-14

start flashing 17-4
stop flashing 17-4
subclassed

control window 16-3
description 5-4
DLL 4-5
frame window 6-12, 13-6, 17-3
window procedure 5-2
WinSubclassWindow 4-12,5-2,5-31

types of
application 2-6
client 2-7
composite 2-7
control 2-8
desktop 2-2
desktop-object 2-2
dialog 2-7
frame 2-7
main 2-6

using
managing ownership and relationships 2-23
WinCreateMsgQueue 2-11
WinCreateWindow 2-11

WINDOWTEMPLATE statement 12-31, 12-41
WinDrawBitmap 8-4, 8-31, 10-10, 10-25
WinDrawBorder 8-7,8-31
WinDrawPointer 10-12,10-25
WinDrawText 8-5, 8-9, 8-31
WinEmptyClipbrd 22-3, 22-7, 22-13, 22-33

WinEnableMenultem 13-21, 13-57
WinEnablePhyslnput 9-13, 9-23
WinEnableWindow 2-10, 2-39, 2-110, 18-6
WinEnableWindowUpdate 7-39,21-11,21-42
WinEndEnumWindows 2-28, 2-40, 2-110
Win End Paint 7-7,7-10, 7-18, 7-39, 11-2
WinEnumClipbrdFmts 22-14, 22-33
WinEnumDlgltem 15-20, 15-45
WinEqualRect 8-11,8-31
WinExcludeUpdateRegion 7-19, 7-39
WinFiliRect 8-3,8-12,8-31
WinFlashWindow 17-4,17-11
WinFocusChange 9-14, 9-23
WinGetClipPS 7-20,7-39
WinGetCurrentTime 23-2, 23-5, 23-9
WinGetDlgMsg 3-52, 15-21, 15-45
WinGetKeyState 9-16, 9-23
WinGetMaxPosition 2-41, 2-110
WinGetMinPosition 2-42, 2-110
WinGetMsg 3-2, 3-5, 3-10, 3-11, 3-23, 3-51
WinGetNextWindow 2-28, 2-43, 2-110
WinGetPhysKeyState 9-17, 9-23
WinGetPS 2-22, 7-9, 7-22, 7-39
WinGetScreenPS 7-23, 7-39
WinGetSysBitmap 10-13, 10-25
WinlnflateRect 8-31, 21-12, 21-42
Winlnitialize 2-11, 2-44, 2-109, 4-1
WinlnSendMsg 3-7, 3-24, 3-51
WinlnsertLboxltem 21-13, 21-42
WinlntersectRect 8-13,8-31
WinlnvalidateRect 7-24, 7-39, 8-31
WinlnvalidateRegion 7-25, 7-39
WinlnvertRect 8-3,8-14,8-31
WinlsChild 2-45, 2-110
WinlsMenultemChecked 13-22, 13-57
WinlsMenultemEnabled 13-23, 13-57
WinlsMenultemValid 13-24, 13-57
WinlsPhyslnputEnabled 9-18, 9-23
WinlsRectEmpty 8-15,8-31
WinlsThreadActive 2-46, 2-109
WinlsWindow 2-47,2-109
WinlsWindowEnabled 2-10,2-48,2-110
WinlsWindowShowing 2-21, 2-49, 2-110
WinlsWindowVisible 2-21, 2-50, 2-110
WinLoadAccelTable 14-5, 14-9, 14-17
WinLoadDlg 2-12, 6-4, 15-22, 15-45
WinLoadMenu 2-12, 13-2, 13-25, 13-57
Win Load Pointer 10-15,10-25
WinLockVisRegions 7 -26, 7-39

Index X;.69

WinLockWindowUpdate 7-27,7-39
WinMakeRect 8-16,8-31
WinMapDlgPoints 15-23, 15-45
WinMapWindowPoints 8-1, 8-17, 8-31
WinMessageBox 2-12, 15-7, 15-24, 15-45
Win MessageBox2 15-8, 15-26, 15-45
WinMultWindowFromlDs 2-51, 2-110
WinOffsetRect 8-18, 8-31
WinOpenClipbrd 22-3, 22-15, 22-33
WinOpenWindowDC 7-11,7-28,7-39
WinPeekMsg 3-2,3-10,3-13,3-25,3-51
WinPopupMenu 13-2, 13-26, 13-57
WinPostMsg 3-6,3-14,3-26,3-51
WinPostQueueMsg 3-27, 3-51
WinProcessDlg 15-27, 15-45
WinPtlnRect 8-19, 8-31
WinQueryAccelTable 14-10, 14-17
WinQueryActiveWindow 2-52, 2-110, 9-2, 9-8
WinQueryCapture 9-19, 9-23
WinQueryClasslnfo 4-5, 4-8, 4-12
WinQueryClassName 4-6, 4-9, 4-12
WinQueryClipbrdData 22-4, 22-16, 22-33
WinQueryClipbrdFmtlnfo 22-7, 22-17, 22-33
WinQueryClipbrdOwner 22-7, 22-18, 22-33
WinQueryClipbrdViewer 22-6, 22-19, 22-33
WinQueryCursorlnfo 11-6, 11-9
WinQueryDesktopWindow 2-53, 2-110
WinQueryDlgltemShort 15-28, 15-45, 20-28
WinQueryDlgltemText 15-29, 15-45
WinQueryDlgltemTextLength 15-30, 15-45
WinQueryFocus 2-9, 2-54, 2-110, 9-23
WinQueryLboxCount 21-14, 21-42
WinQueryLboxltemText 21-15,21-42
WinQueryLboxltemTextLength 21-16, 21-42
WinQueryLboxSelectedltem 21-17, 21-42
WinQueryMsgPos 3-28, 3-52
WinQueryObjectWindow 2-55, 2-110
WinQueryPointer 10-16, 10-25
WinQueryPointerlnfo 10-17, 10-25
WinQueryPointerPos 10-18, 10-25
WinQueryQueuelnfo 3-3, 3-29, 3-52
WinQueryQueueStatus 3-3, 3-13, 3-30, 3-52
WinQuerySysModalWindow 2-56, 2-111
WinQuerySysPointer 10-19, 10-25
WinQueryUpdateRect 7-29, 7-39, 8-31
WinQueryUpdateRegion 7-30, 7-39
WinQueryWindow 2-26,2-57,2-109,6-17
WinQueryWindowDC 7-31,7-39
WinQueryWindowPos 2-29,2-59,2-110

X-70 PM Basic Programming Guide

WinQueryWindowPtr 2-60, 2-109
WinQueryWindowRect 2-61, 2-110, 8-31, 19-9

. WinQueryWindowText 19-8, 19-15, 19-26,20-28
WinQueryWindowTextLength 20-11, 20-28
WinQueryWindowULong 2-25,2-62,2-109,4-3
WinQueryWindowUShort 2-19, 2-25, 2-64, 2-109,

4-3, 6-10
WinRegisterClass 4-1,4-3,4-5,4-10,4-12,5-4,

5-31
WinRegisterUserMsg 3-34, 3-52
WinReleaseHook 3-32,3-52
WinReleasePS 2-22, 7-9, 7-32, 7-39
WinRequestMutexSem 2-66, 2-111
WinScroliWindow 8-4
WinSendDlgltemMsg 3-51, 5-1, 15-31, 15-45
WinSendMsg 3-6,3-14, 3-36, 3-51
WinSetAccelTable 14-11,14-17
WinSetActiveWindow 2-67,2-110,9-2,9-8
WinSetCapture 9-7,9-20, 9-23
WinSetClassMsglnterest 3-37, 3-52
WinSetClipbrdData 22-3,22-6, 22-7, 22-20, 22-33
WinSetClipbrdOwner 22-7,22-21, 22-33
WinSetClipbrdViewer 22-6, 22-22, 22-33
WinSetDlgltemShort 15-32, 15-45, 20-5, 20-28
WinSetDlgltemText 15-45
WinSetFocus 2-68, 2-110, 9-2, 9-8, 9-23
WinSetKeyboardStateTable 9-21,9-23
WinSetLboxltemText 21-18, 21-42
WinSetMenultemText 13-29, 13-57
WinSetMsglnterest 3-38,3-52
WinSetMsgMode 3-39,3-52
WinSetMultWindowPos 2-30, 2-69, 2-110
WinSetOwner 2-27, 2-70, 2-109
WinSetParent 2-4, 2-71, 2-109
WinSetPointer 10-21, 10-25
WinSetPointerPos 10-22, 10-25
WinSetRect 8-20, 8-31
WinSetRectEmpty 8-21, 8-31
WinSetSysModalWindow 2-10, 2-72, 2-111
WinSetWindowBits 2-73,2-109
WinSetWindowPos 2-18,2-29,2-30,2-75,2-110,

6-4, 19-10
WinSetWindowPtr 2-77, 2-109
WinSetWindowText 15-15, 15-33, 15-45, 16-2,

17-11, 19-8, 19-26, 20-5, 20-28 .
WinSetWindowULong 2-14,2-78,2-109,4-3
WinSetWindowUShort 2-19,2-80,2-109,4-3
WinShowCursor 11-2, 11-7, 11-9
WinShowPointer 10-23, 10-25

WinShowTrackRect 8-22, 8-31
WinShowWindow 2-14, 2-31, 2-82, 2-110, 16-2
WinStartApp 2-83, 2-111
WinStartTimer 23-1,23-2, 23-3, 23-6, 23-9
WinStopTimer 23-1,23-7, 23-9
WinSubclassWindow 2-19, 4-12, 5-2, 5-4, 5-8, 5-31
WinSubstituteStrings 15-34, 15-45
WinSubtractRect 8-23,8-31
WinTerminate 2-84,2-111
WinTerminateApp 2-85,2-111
WinTrackRect 8-24,8-31
WinTranslateAccel 3-52, 14-12, 14-17
WinUnionRect 8-25, 8-31
WinUpdateWindow 7 -33, 7-39
WinValidateRect 7-34, 7-39, 8-31
WinValidateRegion 7-35,7-39
WinWaitEventSem 2-86, 2-111
WinWaitMsg 3-40, 3-52
WinWaitMuxWaitSem 2-87, 2-111
WinWindowFromDC 7 -36, 7-39
WinWindowFromlD 2-27,2-88,2-110,6-3,6-17,

17-11,19-8,19-26
WinWindowFromPoint 2-28, 2-89, 2-110
WM_ messages 3-8
WM _ * messages 3-30
WM_ACTIVATE 2-8,2-25,2-91,2-112,6-12,6-39,

9-2, 9-9, 9-23
WM_ADJUSTFRAMEPOS 6-20,6-39
WM_ADJUSTWINDOWPOS 2-12,2-18,2-92,

2-112,13-58,16-7,20-3,21-7
WM_BUTTON1 DBLCLK 5-9,5-31,6-12,9-24,

17-2,17-11,19-6,20-3
WM_BUTTON1 DOWN 5-10,5-31,6-12,6-39,9-8,

9-24, 13-58, 17-2, 17-11, 19-6, 20-3
WM_BUTTON1UP 5-11,5-31,6-12,6-39,9-24,

19-6,20-3
WM _ BUTTON2DBLCLK 5-12, 5-31, 9-24
WM_BUTTON2DOWN 5-13,5-31,6-12,6-39,9-24,

13-58,20-3,21-7
WM_BUTTON2UP 5-14,5-31,9-24
WM _BUTTON3DBLCLK 5-15, 5-31, 9-24
WM_BUTTON3DOWN 5-16,5-31,6-12,6-39,9-24,

13-58,20-3,21-7
WM_BUTTON3UP 5-17,5-31,9-24
WM_BUTTONCLICKFIRST 3-11
WM_BUTTONCLICKLAST 3-11
WM_CALCFRAMERECT 2-93,2-112
WM_CALCVALIDRECTS 2-30,2-94,2-112,5-31,

6-12,6-39

WM _CHAR 5-18, 5-31, 9-2, 9-3, 9-6, 9-9, 9-24,
15-46, 19-6,20-28,21-7

WM _CHAR, checking queue, example code 3-13
WM_CLOSE 2-18,2-95,2-112,5-31,6-12,6-39
WM_COMMAND 5-20,5-31,9-6,9-24,13-4,13-58,

16-7,19-1,19-7,19-9,19-10,19-27
WM_CONTEXTMENU 13-52,13-58
WM_CONTROL 16-2,16-5,16-7,19-1,19-7,19-9,

19-10, 19-27, 20-28, 21-42
WM_CONTROL (in Entry Fields) 20-25
WM_CONTROL (in List Boxes) 21-37
WM_CONTROLPOINTER 5-21,5-31, 13-58, 16-7,

19-27
WM _CREATE 2-6, 2-12, 2-96, 2-112, 5-2, 5-3,

6-12,6-39, 13-58, 17-2, 17-11, 19-6,20-3,21-7
WM_DDE_FIRST 3-11
WM_DDE_LAST 3-11
WM_DESTROY 2-4,2-6,2-22,2-97,2-112,6-12,

6-39,13-58,17-2,17-11,19-6,20-3,21-7
WM_DESTROYCLIPBOARD 22-7,22-23,22-33
WM_DRAWCLIPBOARD 22-6,22-10,22-24,22-33
WM_DRAWITEM 13-58,21-5,21-42
WM_DRAWITEM (in List Boxes) 21-38
WM_ENABLE 2-27,2-98,2-112,6-12,6-39, 13-58,

19-6, 19-27,20-3,21-7
WM_ERASEBACKGROUND 6-12,6-21,6-39
WM_FLASHWINDOW 6-22,6-39
WM_FOCUSCHAIN 6-39
WM_FOCUSCHANGE 3-15,3-41,3-52,5-31,9-23,

13-58
WM_FORMATFRAME 6-12,6-23,6-39
WM_HELP 5-22,5-31,13-4,13-58,16-7,19-27
WM_HITTEST 5-23,5-31,6-12,6-39,9-7,9-24,

17-2,17-11
WM _ HSCROLL 18-3, 18-16, 18-20
WM_HSCROLLCLIPBOARD 22-7,22-25,22-33
WMJNITDLG 5-3,15-35, 15-46
WMJNITMENU 13-53, 13-58
WM_MATCHMNEMONIC 19-6,19-23,19-27
WM_MEASUREITEM 13-58,21-5,21-42
WM_MEASUREITEM (in List Boxes) 21-39
WM_MENUEND 13-54, 13-58
WM_MENUSELECT 5-24, 5-31, 13-58
WM_MINMAXFRAME 6-12,6-24,6-39
WM_MOUSEFIRST 3-11
WM_MOUSELAST 3-11
WM_MOUSEMOVE 3-3,5-25,5-31,6-12,6-39,

9-7,9-8,9-24, 13-58, 19-6,20-3,21-7
WM_MOVE 2-18,2-99,2-112

Index X-71

WM_MSGBOXDISMISS 15-8, 15-36, 15-46
WM_MSGBOXINIT 15-8, 15-37, 15-46
WM_NEXTMENU 6-25,6-39
WM_PAINT 2-30,2-112,3-3,5-3,5-31,6-12,6-39,

7-7,7-9,7-37,7-40,8-3,11-2,13-58,17-2,17-11,
19-6, 20-3, 21-7

WM_PAINTCLIPBOARD 22-7,22-27,22-33
WM_QUERYACCELTABLE 14-13, 14-17
WM_QUERYCONVERTPOS 5-26,5-31,13-58,

17-11,18-20,19-27,21-42
WM_QUERYDLGCODE 15-46, 16-6, 16-7, 17-2,

17-11, 19-6,20-3
WM_QUERYFOCUSCHAIN 5-27,5-31,9-23, 13-58
WM_QUERYFRAMECTLCOUNT 5-31, 6-26, 6-39
WM_QUERYFRAMEINFO 6-27, 6-39
WM_QUERYICON 6-28,6-39
WM_QUERYTRACKINFO 6-12,6-29,6-39
WM_QUERYWINDOWPARAMS 2-100,2-112,

5-31, 17-2, 17-11, 18-20, 19-6, 19-27, 20-3, 20-28,
21-42

WM_QUIT 3-5,3-14,3-42,3-52
WM_RENDERALLFMTS 22-6,22-7,22-28,22-33
WM_RENDERFMT 22-6,22-7,22-29,22-33
WM_SEM1 3-9,3-43,3-52
WM_SEM2 3-9,3-44,3-52
WM_SEM3 3-9,3-45,3-52
WM_SEM4 3-9,3-46,3-52
WM_SETACCELTABLE 6-39, 14-14, 14-17
WM_SETBORDERSIZE 6-30,6-39
WM_SETFOCUS 2-9, 2-112, 9-2, 9-22, 9-23,

13-58, 19-6, 20-3, 21-7
WM_SETICON 6-31, 6-39
WM_SETSELECTION 5-29,5-31,9-2,9-23,20-3
WM_SETWINDOWPARAMS 2-101,2-112,17-2,

17-11,18-20,19-6,19-27,20-3,20-28,21-42
WM_SHOW 2-18,2-102,2-112,6-12,6-39
WM_SIZE 2-18,2-103,2-112,6-12,18-3,19-10
WM_SIZECLIPBOARD 6-39, 22-7, 22-30, 22-33
WM_SUBSTITUTESTRING 15-38,15-46
WM_SYSCOMMAND 2-18,2-104,2-112,6-12,

6-32,6-39,9-6, 13-58, 16-7, 19-27
WM_SYSVALUECHANGED 3-15, 3-47, 3-52
WM_TIMER 5-31,20-3,21-7,23-1,23-8,23-9
WM_TRACKFRAME 6-34,6-39, 17-11
WM_TRANSLATEACCEL 5-30,5-31,6-39,14-17
WM_UPDATEFRAME 6-12,6-35,6-39
WM_USER 5-2
WM_VSCROLL 18-3,18-17,18-20,21-7
WM_ VSCROLLCUPBOARD 22-7, 22-31, 22-33

X-72 PM Basic Programming Guide

WM_WINDOWPOSCHANGED 2-105,2-112,6-39,
17-2,17-11

WNDPARAMS 2-108,2-112
working

with points and rectangles 8-2
workplace 2-2
writing

settings 24-2
WS _, window styles 2-15
WS_CLlPCHILDREN 2-4,2-15,7-4
WS_CLlPSIBLINGS 2-4, 2-15, 7-5
WS_DISABLED 2-10,2-15

refid=winstyI.WS_DISABLED 2-10
WS_GROUP 2-15, 19-9, 19-10
WS_MAXIMIZED 2-15,2-20
WS_MINIMIZED 2-15,2-20
WS_PARENTCLIP 2-15,7-5
WS_SAVEBITS 2-15,7-5
WS_SYNCPAINT 2-11,2-15,4-3,7-5
WS_TABSTOP 2-15
WS_VISIBLE 2-6,2-15,2-21,2-31,4-3

z
z-order

changing 2-5, 2-30
definition 1-3
description 2-3, 2-11
desktop 1-2
position, description 2-11
position, specifying 6-11
specifying position 6-11
window 2-3

G25H-71 03-00

